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    In this thesis, a novel fast remesh-free finite element method (FEM) 

for optimal design of electric machines and other electromagnetic (EM) 

devices is investigated to accelerate the process of optimal design of EM 

devices. Both two-dimensional (2D) and three-dimensional (3D) 

engineering optimal design problems can be solved using the proposed 

algorithms which are also developed into software packages in C++. This 

work is aiming to accelerate the solution of optimal shape design 

problems of EM devices, and the contribution of this work includes  fast 

remesh-free mesh deformation techniques for 2D and 3D meshes, a novel 

adaptive degrees-of-freedom (DoFs) finite element algorithm and a 

low-frequency approximation to the Maxwell equations simultaneously 

considering inductive and capacitive effects. The remesh-free mesh 

deformation method, FEM and global optimization algorithms are 

combined to tackle several engineering optimal shape design problems. 

    In this research of accelerating the optimal design process of EM 

devices, the 2D Delaunay parameterized mesh generation and refinement 

method and 3D remesh-free mesh deformation method are first proposed 

and applied to practical problems. To solve the magnetic field accurately 

with minimal effort, a novel error estimator is proposed to obtain the 

numerical error of the computed magnetic field with multiple materials in 

the problem domain. Besides, an adaptive DoFs FEM is proposed and 

applied to static nonlinear problems and transient field computation in 

time-domain. To solve the quasi-magneto-static field inside high-speed 

moving conductors presenting thin eddy-current layers accurately, the 
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adaptive discontinuous Galerkin method (DGM), characteristic Galerkin 

method (CGM) and operator splitting method (OSM) are proposed and 

proved to be effective in use. For 3D EM field computation, a 

low-frequency approximation to the Maxwell equations simultaneously 

considering inductive and capacitive effects is proposed. All the proposed 

algorithms are implemented into computer code in C++, which is then 

applied to optimize the performance of several EM devices, such as 

electromagnet, permanent magnet motor, and magnetic gear. 

    In this thesis, the following work has been done: 

    (1) 2D parameterized mesh generation and mesh refinement 

algorithms, including edge bisection, element trisection and regular mesh 

refinement methods; 2D parameterized mesh deformation technique for 

small shape modification and large mesh deformation; 3D fast 

remesh-free mesh deformation technique and its application to practical 

optimal design problems. 

    (2) 2D finite element solver with second-order triangular finite 

element basis functions for the approximation of the magnetic vector 

potential (MVP); To analyze the EM fields in electric machines, nonlinear 

material, rotational movement and circuit-coupling are all taken into 

account. Adaptive mesh refinement is allowed using several optional 

error estimators. The Newton-Raphson iteration method is adopted for 

handling nonlinear magnetic material. For transient eddy-current field 

analysis, the backward-Euler time stepping scheme with slave-master 

technique for handling of rotational movement is adopted. 

    (3) A novel adaptive DoFs FEM and its application to each Newton 

iteration step for nonlinear problems and each time-step for transient 

eddy-current field analysis. Only one set of mesh is needed in the method, 

the DoFs can be dynamically adjusted to adapt to the variation of the 

solution, both mesh refinement and mesh coarsening are processed 

implicitly. 

    (4) 3D finite element solver with Whitney edge element to 

discretize the MVP and first-order nodal element to discretize the electric 

scalar potential (ESP). A low-frequency approximation to the Maxwell 

equations simultaneously considering inductive and capacitive effects is 
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proposed. The magnetostatic, transient eddy-current, and nearly full-wave 

EM fields with external circuit-coupling can be solved with the developed 

code. Benchmark TEAM Workshop problems are used to validate the 

accuracy of the developed program. 

    (5) An adaptive DGM, CGM and OSM are applied to eddy-current 

problems with high-speed moving conductors which present thin 

eddy-current layers. The advantages of these proposed methods are 

compared with traditional FEM. 

    The major contributions of this work can be summarized as: 

 A novel parameterized mesh generation, refinement and 

deformation method for 2D and 3D optimal design problems.  

 A novel adaptive DoFs FEM which can reduce the 

computational time for both static and transient problems. A 

novel error estimator which is convenient to be used to 

estimate the local error distribution of the finite element 

solution.  

 The DGM, CGM and OSM are used to capture the thin 

eddy-current layers for problems with high-speed moving 

conductors.  

 Second-order 2D finite element and first-order 3D edge 

element programs are developed to solve EM field 

computation problems with nonlinear material, mechanical 

movement and external circuit.  

 A low-frequency approximation to the Maxwell equations 

simultaneously considering inductive and capacitive effects in 

the time-domain is proposed and validated using a numerical 

example.  

 Practical engineering optimal design problems are solved 

using the proposed methods and evolutionary optimization 

algorithms for several types of EM devices. 
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CHAPTER 1 

INTRODUCTION 

1.1. Computational Challenges of Optimal Design Problems 

and Motivation of the Thesis 

        In today’s fiercely competitive world, companies manufacturing electromagnetic 

(EM) devices, such as electric machines and transformers, have to continually 

improve the quality and reduce the cost of their products. For electric machines, 

which are the major constituent for electromechanical energy conversion, even a 

small efficiency increment in the energy conversion process can produce very 

substantial savings in the global energy resources because of large number of electric 

machines are running in daily life. It is hence of paramount importance to investigate 

novel optimal design methods.  

        Good designs of EM devices should be cost-saving, with high power density, 

high performance, optimal efficiency and high level of reliability. Optimal machine 

designs by accurate performance prediction can effectively maximize their energy 

conversion efficiency and minimize their cost. In practice, there may be multiple 

objective functions to be optimized and there are constraints for the design variables 

(for example, the electrical machines used in the hub of a wheel have strict volume 

constraints), to find the optimal design is usually a complicated task. Nowadays, 

optimal design algorithms coupled with numerical methods that can search 

automatically the optimal solution under given constraints, are very useful and widely 

used in practice [A1]. Finding the best design quickly by just clicking a mouse on the 

computer is indeed the ultimate dream of many electrical engineers. 

        To accurately predict the performance parameters of the EM devices, finite 

element method (FEM) is a good choice which is one of the most widely used 

numerical methods in engineering. Nowadays, with the development of computer 

aided design (CAD) system, even the design process of new EM devices can be 

accomplished with EM numerical software packages by parameter sweeping 
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analysis[A2-A4]. Based on the numerical simulation results, designers can calculate 

the parameters they are interested in and have a quantitative knowledge of the design 

and improve it.  

        However, finding the best design within reasonable time is a big challenge for 

researchers. Firstly, the inverse problems of finding the design parameters which are 

solved using FEM are very time‐consuming, because magnetic field problem needs to 

be solved thousands of times in optimization studies. Secondly, an associated FEM 

mesh needs to be generated again for each set of updated geometric parameters during 

the optimization process. Such remeshing procedure usually needs to be executed 

thousands of times, which is very time‐consuming and is also not very robust, 

especially for complicated 3D applications, where the mesh-making process may take 

up to 90% of the total simulation time [A5]. Furthermore, since there are usually too 

many design parameters, the computational time needed for finding the optimal 

design is still too long although the computing ability of computers increases very fast. 

Due to the limited time allowed for the design process, there is still a great need to 

reduce the computational time when finding the optimal design, especially for 3D 

optimal design problems. 

 

1.2. Contributions and Research Objectives 

        Considering the importance of optimal design problems and the computational 

challenges, this research work focuses on reducing the computational time and 

accelerating the optimal design process. To achieve this goal, two respects requiring 

intensive computation can be improved to tackle this issue. On is to reduce each finite 

element computation time by improving the algorithm, the other is to reduce the time 

needed to make meshes when design parameters change. The contributions and 

research objectives of this research work are 

        (1) Computer implementation of 2D and 3D FEM using objective-oriented 

programming technique for numerical computation of EM fields. The developed 

software packages are used to analyze the forward problem in optimal design of EM 

devices; 
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        (2)  2D parameterized and remesh-free mesh generation, refinement and 

deformation methods for geometric shape variations; 

        (3) 3D remesh-free mesh deformation method for geometric shape variations; 

        (4)  2D adaptive DoFs FEM for nonlinear static and transient eddy-current field 

computation; 

        (5) A 3D MVP formulation of the Maxwell equations simultaneously 

considering inductive and capacitive effects in the time-domain; 

        (6)  Application of the developed optimal design package to 2D and 3D optimal 

design problems, including benchmark examples and engineering design examples. 

 

1.3. Literature Review of FEM in Electromagnetics 

        In electrical engineering analysis and design, many phenomena have to be 

considered in order to fully predict a device’s behavior. Commonly physical processes 

involved are of electromagnetic, thermal, mechanical, or other type. Mathematically, 

these physical phenomena can be described by partial differential equations (PDEs) 

with proper boundary conditions (BCs) and initial conditions (ICs), which forms the 

so-called initial boundary value problems (BVPs). The availability of immense and 

cheap computing power on desktop or laptop computers has provided a solid 

hardware platform for the numerical solution of these problems. Today numerical 

simulations are commonly used to analyze and design devices, though often only one 

field phenomenon is studied in detail. In this thesis, the electromagnetic field 

computation is mainly concerned and investigated in detail. 

        There are mainly two categories of numerical methods that can be used to solve 

the BVPs, including PDE-based methods and integral equation based methods which 

works with the integral forms of the PDEs. Integral equation solvers are mainly used 

in linear high-frequency regime to analyze the EM wave phenomena [A6]. 

Differential BVP solvers are derived from the PDEs directly or their weak forms, they 

can treat nonlinearity conveniently and the resultant matrices are sparse which can be 

solved efficiently by iterative linear solvers or parallel sparse direct linear solvers [A7, 

A8]. 
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        Commonly used PDE-based numerical methods for the solution of EM BVPs are 

finite difference method (FDM) [A9, A10], FEM [A7, A8, A11], finite volume 

method (FVM, also called the generalized FDM) [A12, A13], discontinuous Galerkin 

method (DGM) [A14-A16]and so on. All these methods have their own popularity, 

depending on the applications and the underlying nature of the problems. Of these 

numerical methods the first two methods are the most popular ones.  

        The FDM which uses difference quotient to approximate derivatives on finite 

Cartesian grids is simple in nature and relatively easier to be parallelized. It is widely 

used in high-frequency EM field analysis. The FEM, where unstructured mesh are 

usually used, can approximate the geometry outlines much more accurately and hence 

remove the staircase problems encountered when using FDM. It is more widely used 

to solve low-frequency EM BVPs defined on complex geometric domains usually 

containing different types of materials, such as air, permanent magnets, nonlinear iron 

materials, and stranded or solid conductors. 

        The FEM was introduced and applied to computational mechanics in 1950s 

[A17]. It was applied to computational electromagnetics since 1960s [A18]. It is now 

a well-established technique in electromagnetics and still generates considerable 

research. To perform finite element analysis (FEA), three processes are generally 

included [A19], namely the preprocessing where the finite element mesh is generated; 

the solution process where the discrete matrix equation is built and solved; and the 

post post-processing where the quantities or parameters of interest are calculated from 

the field solution and numerical results are displayed in figures. It is noted that usually 

the mesh generation in the preprocessing phase and the solution of the resultant linear 

matrix equation takes up most of the computational time. 

        FEM has become a powerful and routine tool to simulate the magnetic fields and 

eddy current fields in EM devices, especially in electric motors. Different 

formulations are widely used by people, including the magnetic vector potential 

(MVP) formulation (usually also called the A 


formulation) [A20-A25], and the 

magnetic scalar potential (MSP) formulation (usually also called the T  


or 

0T T  
 

formulation) [A26-A32]. The MSP formulation uses a scalar potential in 

the non-conducting region, so the total number of unknowns can be reduced greatly, 
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compared with the MVP formulation where a vector potential is used in the non-

conducting region. However there are immense difficulties when implementing the 

MSP formulation for eddy-current problems containing multiply-connected 

conductors [A31-A34] in the solution domain. Because of its elegant treatment of 

conductors with arbitrary geometric topology, the MVP formulation is implemented 

in C++ in this thesis. 

        For 2D finite element field analysis, the scalar dependent variable are usually the 

z-component of the MVP. In such a case the divergence of the MVP is zero and thus 

the Coulomb gauge is satisfied automatically [A35], which indicating the resultant 

linear system has unique solution. Thus the MVP formulation is mostly adopted for 

2D magnetic field analysis. Traditional nodal element works well for this case. The 

Newton-Raphson iteration can be applied to deal with nonlinear regions in the 

problem domain conveniently [A36]. For transient eddy-current field analysis of the 

motor with rotational movement, the slave-master technique can be applied to the 

sliding surface connecting the rotor and stator meshes [A37]. Since the EM devices 

are usually driven by external circuit, the strong field-circuit coupling can be also 

accomplished using FEM conveniently [A11, A37]. 

        Although 2D instead of 3D FEA is more commonly used because of its lower 

computational complexity, it has several limitations and is generally not possible to 

model the skewing effect, variation of material properties along the axial direction, 

and the flux leakage in the end-winding regions of radial-flux motors (RFMs). 2D 

FEA can’t be used to analyze the axial-flux modulated motors (AFMMs) either. A 

complete 3D FEA that fully resolves these shortcomings is necessary when one 

desires an accurate prediction of performances of electric machines[A38-A40]. 

        For 3D finite element field analysis, the MVP A


 is a vector field with three 

components. Traditional nodal element can be applied to each component without 

considering the underlying continuity constraints [A41]. However, the nodal element 

presents unacceptable numerical errors at geometry corners or interfaces between iron 

and air [A42]. These problems can be cured by using Whiney edge element [A20-A23] 

basis functions to approximate the MVP A


. For eddy-current field problems, an 
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additional potential called the electric scalar potential (ESP)   is needed and useful to 

describe the induced eddy currents in conductors.  

        By introducing the ESP in conducting regions, the continuity equation of the 

current can be explicitly imposed which is also computationally advantageous [A22, 

A43, A44]. Although the resultant PDE system of A 


formulation is singular, if the 

right hand side is consistent, the resultant linear matrix can be solved by iteration 

method with suitable preconditioning matrix and converges fast. The consistency of 

the linear matrix equation can be accomplished using a current vector potential (CVP) 

representation of the source excitation current [A45]. For simple circular or racetrack-

shaped coil, analytical expressions of the CVP are also available [A28, A36]. For 

coils of general shape, the source field CVP can be computed numerically [A46].The 

pre-computed source field can be also used for circuit-coupling in case of external 

circuit excitations [A32]. 

 

1.4. Review of Global Optimal Design Methods 

        In the optimal design process of EM devices, their performance parameters are 

usually taken as the design objectives which will be continuously improved by 

selecting better design parameters under the requirement of given constraints. The 

evolution of the design parameters or the optimization variables is determined by 

calling the optimization solvers. In practice, global stochastic optimization methods 

are more suitable for the inverse EM design problems because they are capable of 

finding global optimal solution under complex constraints of design variables. 

        Popular global optimization methods includes genetic algorithm (GA) [A47], 

taboo search algorithm (TSA) [A48], particle swarm optimization (PSO) [A49] and 

differential evolution algorithm(DEA) [A50]. These heuristic algorithms are invented 

by analyzing and animating natural phenomena and society activities. They usually 

starts with an arbitrary feasible solution and continually improve it by different 

stochastic evolution operations. Such optimization methods are good at finding the 

globally optimal solution and is widely used in the optimization of EM devices.  
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        In the evaluation of the performance of a design of EM devices, the FEM can be 

applied to compute the objective function values under a set of design parameters. 

Since it is impossible to sweep every set of design parameters as there are infinitely 

many choices, the response surface methodology (RSM) is a good choice to describe 

the relationship between design parameters and the response values, so that the 

inverse problem can be replaced with direct ones. A number of user-specified sample 

points determined by optimization solvers and the response values obtained finite 

element analysis were combined together to build a response surface model. Then the 

optimal solution is solved through the reconstructed model. The objective function 

values are calculated from the response surface model instead of calling the 

computation intensive finite element program. It is now widely used in engineering 

optimization problems [A51-A55]. 

 

1.5. Layout of the Thesis 

        The scope of this thesis covers a review study of the potential formulations for 

the Maxwell’s system used in low-frequency computational electromagnetics. 2D and 

3D FEM with nodal and edge basis functions are studied for both static and transient 

eddy-current problems. Field-motion-circuit coupling method for dynamical 

simulation of EM devices is investigated. Several global optimization algorithms are 

discussed and the integration of global optimization algorithms with FEA is applied to 

several optimal design examples. 

        The next chapters are organized as follows: Chapter 2 gives the detailed potential 

formulations of the Maxwell system for low-frequency problems. Several global 

optimization methods and the RSM are briefly presented. Chapter 3 mainly discusses 

the parameterized mesh generation, refinement and deformation methods, for both 2D 

and 3D applications. Two techniques for large shape deformation are also presented. 

Chapter 4 deals with the implementation details of the 2D nodal FEM and 3D edge 

element method with nonlinear material, mechanical motion and circuit-coupling. In 

Chapter 5, a novel adaptive DoFs FEM is applied to nonlinear static problems and 

transient eddy-current filed computation. In Chapter 6, three numerical methods for 
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the solution of eddy-current problem with high-speed moving conductors are 

investigated. In Chapter 7, optimal design examples, including benchmark examples 

and practical examples, are solved by combining FEA and optimization solvers. 

Finally, conclusions are drawn and future work is identified in Chapter 8. To make it 

clear, the flowchart of this thesis is shown below: 

 

 
Fig. 1.1. Flowchart of this thesis. 
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CHAPTER 2 

LOW-FREQUENCY FEM AND OPTIMAL DESIGN 

METHODS 

2.1. Introduction to Low-frequency Maxwell Problems 

        The differential form of full-wave Maxwell equations reads 

 
,

D
H J

t


  



 
  (2.1) 

 ,
B

E
t


  




 (2.2) 

 
0,B 


 (2.3) 

 
,D   


 (2.4) 

with constitutive relations 

 ,B H
 

 (2.5) 

 ,J E
 

 (2.6) 

 ,D E
 

 (2.7) 

where E


 and H


 are the electric and magnetic field, D


 and B


 the electric and 

magnetic induction, respectively, J


 is the density of the electric current and   the 

electric charge density;   is the magnetic permeability,   is the electric conductivity 

and   is the permittivity, generally they are tensors for anisotropic materials, 

depending on the spatial variable ( , , )x x y z


. Physically, (2.1) is Ampere’s circuital 

law, (2.2) is Faradays’ law of induction, (2.3) and (2.4) are Gauss’s law for the 

magnetic field and electric field respectively. 

        For low-frequency EM field computation problems, the frequency of the source 

varies slowly with time such that the wavelength is immensely longer than the 

characteristic size of geometry in the domain considered. Thus the field varies 

instantaneously with the change of the source other than lagging behind it. This 

assumption is the case for most of low-frequency EM devices, such as electric 
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machines, power transformers, induction heating devices, non-destructive testing 

devices EM brakes, sensors and so on. Thus the displacement current is much 

smaller than the conduction current and hence can be neglected from (2.1). 

        The low-frequency approximation of the Maxwell system without displacement 

current is also called the quasistatic approximation. The problems to be solved are 

usually called eddy-current or magneto-quasistatic problems. Typically the 

computational domain of an eddy-current problem V  can be split into two parts as 

shown in Fig. 2.1. One part is the eddy current region 1V  with 0   , which includes 

the passive conductors or solid source conductors with skin effect. The other is the 

remaining eddy-current free region 2V  with 0  , which includes the stranded 

source conductors, the nonconducting ferromagnetic cores and the air region. The 

boundary of the domain V  is decomposed into BS  where the normal component of 

the magnetic flux density is prescribed, and HS  where the tangential component of 

the magnetic field intensity is prescribed. Without loss of generality, in this thesis the 

conducting and nonconducting material interface 12S  also denotes the magnetic and 

non-magnetic material interface. In the nonconducting region, the field 

instantaneously adapts to the excitation (quasi-stationary behavior), while, in the 

conducting region, this adaptation takes some time (due to eddy currents induced by 

the varying magnetic fields). 

 

 
Fig. 2.1. Illustration of typical eddy-current problems. 

 

        Dropping the displacement current term of (2.1), the eddy-current problem in 1V  

is given by 

 
,H E 

 
  (2.8) 

 ,
B

E
t


  




 (2.9) 
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0,B 


 (2.10) 

and in 2V  

 
,sH J 

 
  (2.11) 

 
0.B  


 (2.12) 

Usually the BCs are homogenous Dirichlet ones 

 
0, on ,BB n S 

 
 (2.13) 

 
0,on .HH n S 

 
 (2.14) 

And on the material interface 12S , there holds 

 
1 12 2 12,B n B n  
  

 (2.15) 

 
1 12 2 12,H n H n  
  

 (2.16) 

where sJ


 is the known impressed current density, eJ E
 

 is the unknown induced 

eddy-current density, n


 is the unit outward vector on surface V  and 12n


is the unit 

normal vector pointing from region 1V  to 2V . (2.8) and (2.11) can be also unified as 

 
.e sH J J J   

   
  (2.17) 

        Note that the intersection of 1V  and 2V  maybe not empty, which is the case for 

solid excitation coils where the skin effect and proximity effect can’t be neglected. 

Since sJ


 is known and appears to the right hand side of (2.11), the solid excitation 

coil can be then removed from the study domain and leaves the solid excitation coils 

region as a part of the eddy-current region. It is also noted that in eddy-current free 

region 2V , the problem is of magnetostatic type. So only formulations for eddy-

current problems are given in the following sections. 

 

2.1.1. Potential Formulations for Magnetoquasistatics 

        For very simple problems, analytical solutions to the Maxwell equations and 

prescribed BCs and ICs are available. In general, the Maxwell problems have to be 

tackled numerically and the BVPs to be solved can be formulated by field quantities 

or potentials. Field formulations work directly with the physical variables while 

potential formulations work with some auxiliary variables from which the physical 

field variables can be derived. 
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        To reduce the number of components of the unknown dependent variables (there 

are totally six components of E


 and H


) and to make it convenient for considering 

nonlinear effects of ferromagnetic materials or coupling with external circuits, the 

potential formulations [B1-B4] rather than the field formulations [B5, B6] are widely 

used in low-frequency static and transient eddy current solvers. Another reason of 

using potentials lies in the fact that (2.8) and (2.9) only contain first order spatial 

derivative of the unknown variables and this type of PDEs is not suitable for directly 

applying traditional FEM to find the numerical solutions. Furthermore, the required 

physical discontinuities of field variables, namely (2.15) and (2.16), can be modeled 

by differentiating the continuous potentials which can be discretized with usual finite 

elements. There are mainly two types of potential formulations, including the MSP 

formulations and the MVP formulations, which are dual to each other [B7-B11]. 

        The merit of the MSP formulation is that it uses scalar potentials in current-free 

regions and hence greatly reduces the total number of DoFs. While if the current-

carrying regions are multiply-connected, which is very common to see, surface cuts or 

volume cuts have to be introduced [A30-A34] to make these regions simply-

connected and Ampere’s law is satisfied by assigning suitable jump discontinuities to 

the MSP [A30] or put the required jump of the MSP to the CVP [A31, A32]. However, 

this cut-making process is very complicated and the resultant scalar potential solver is 

very difficult to develop.  

        On the other hand, there is more DoFs in the MVP formulation but it doesn’t 

need to care much about the topological properties of the conducting regions of the 

problem domain [B13]. For BVPs defined in complicated multiply-connected 

domains, the MVP also works just as the case in simply-connected problem domains, 

thus it is widely used in the solution of static and eddy-current problems. These two 

types of potential formulations are presented in the following sections. 

 

2.1.2. Magnetic Scalar Potential Formulation 

        From the continuity of the given source current sJ


 and induced eddy-current eJ


, 

 
0,sJ 


 (2.18) 
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0,eJ 


 (2.19) 

two CVPs 0T


 and T


 can be introduced such that 

 
0,sJ T

 
 (2.20) 

 
.eJ T

 
 (2.21) 

From (2.17), the MSP   can be introduced in 1V  

 
0,H T T  

  
 (2.22) 

and in 2V  

 
0 .H T  

 
 (2.23) 

        Applying Faradays’ law and Gauss’s law for the solenoidality of the magnetic 

flux density, the MSP formulation in conducting region 1V  is 

 
0

0

1
( ) ( ) ( )

,

( ) ( )

T T T
t t

T T

   

   

         
    

  

   (2.24) 

and in nonconducting region 2V  

 
0( ) ( ).T     


 (2.25) 

        In the MSP formulation, both vector potential T


 and scalar potential   exist in 

conducting region while only scalar potential   exists in nonconducting region, 

which greatly reduces the total number of DoFs. However, nothing comes for free and 

the MSP formulation encounters difficulties in case of multiply-connected current-

carrying conductor loops.  

        The difficulty when implementing the MSP method is mainly due to the fact that 

the curl-free function space can’t be represented by purely gradient fields on general 

geometric domains with nontrivial topologies [A31, B13]. An example is shown in 

Fig. 2.2, where the coil loop carries a nonzero net current I and the closed path C 

passed through the hole of the loop. Suppose the purely gradient function   is used to 

approximate the magnetic field in the multiply-connected air region, since there is no 

conduction current and 0H J  
 

. As a result, there holds 

 
d 0.

C
H H s    
    (2.26) 

On the other hand, from Ampere’s law, there holds 

 
d 0.

C
H s I  
   (2.27) 
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This contradiction is due to the fact that the curl-free function space can’t be 

represented by purely gradient fields in case of multiply-connected conducting 

regions.  

 

 
Fig. 2.2. Typical multiply-connected eddy current problems. 

 

        One way to conquer this difficulty is to introduce a cutting surface in the 

conducting region and set double scalar potential values for each node on this surface. 

The potential jump is set to be the net current flowing in the conductor loop to make 

the magnetic field satisfy Ampere’s law [A30]. However, when there are multiple 

conductors with holes in the domain, the cuts introduced may intersect with each 

other which is quite complicated to deal with [A34]. 

         Another method is to use thick cuts constructed from the thin surface cuts [A31, 

A32], which removes the additional difficulties both in the theory and in the 

implementation. The thick cuts can be one layer of elements and the required jump of 

the MSP is absorbed by the CVP, leaving the MSP single-valued in the entire domain. 

However, these cut-making process is not trivial and the desired MSP finite element 

solver is very difficult to develop and test. For illustration, a multiply-connected 

conductor is shown in Fig. 2.3, the conductor mesh with a cutting surface blocking the 

hole is shown in Fig. 2.4 and the conductor mesh with thick cut which is composed 

one layer of elements is shown in Fig. 2.5. 
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Fig. 2.3. A multiply-connected conductor with a hole inside it. 

 

 

Fig. 2.4. The conductor becomes simply-connected by introducing a cutting surface 

blocking the hole. 

 

 

Fig. 2.5. The conductor becomes simply-connected by a cutting domain composed of 

one layer of tetrahedral elements. 
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2.1.3. Magnetic Vector Potential Formulation 

 

        From the solenoidality of the magnetic flux density, the MVP A


 can be 

introduced such that 

 
,B A 


 (2.28) 

and the use of the MVP makes sure that the Gauss’s law for magnetic field (2.10) is 

satisfied automatically. Then the Faraday’s law (2.9) can be rewritten as 

 
( ) 0.

A
E

t


  




 (2.29) 

Thus a scalar potential   can be introduced such that 

 
.

A
E

t


  



 (2.30) 

        Then the MVP formulation of the eddy-current problem (2.8)-(2.16) reads 

 

( )
,

( ) 0

A
A

t

A

t

   

  

 
      


     



  (2.31) 

in conducting region 1V  and 

 
( ) .sA J  

 
 (2.32) 

in nonconducting region 2V , where 1 /   is the magnetic reluctivity. Note that the 

ESP   exists only in conductors. Furthermore, in practice the eddy-current region is 

always surrounded by an sufficiently large air layer to model infinitely large space. So 

on the boundary of the problem domain there is only A


. And the BCs of the potential 

A


 are  

 
0, on ,Bn A S 


 (2.33) 

 
( ) 0, on .HA n S  

 
 (2.34) 

On the material interface 12S  of 1V  and 2V , there holds 

 
1 12 2 12 12, on ,A n A n S  
  

 (2.35) 

 
12 12 ( ) 0, on .

A
n S

t
  
    






 (2.36) 
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Equation (2.35) can be obtained by  

 

1 12 2 12 1 12 2 12

1 12 2 12 12

( ) ( )

( ) ( ), on ,

B n B n A n A n

A n A n S

        

   

     
    (2.37) 

and 

 
( ) ( ) ( ),a b a b a b       

    
 (2.38) 

which indicated that the continuity of the tangential component of the MVP A


 on the 

interface 12S  can guarantee the continuity of the normal component of the magnetic 

flux density B


. Condition (2.35) can also be obtained using the fact that 

 
1 12 2 12 12 12[[ ]] 0, on ,B n B n B n S     
    

 (2.39) 

and Stokes’ theorem 

 12

[[ ]] d [[ ]] d .
S C

B S A l   
 

  (2.40) 

Equation (2.36) means that the induced eddy-current flows tangentially along the 

interface of conducting and non-conducting interface. 

        Although there are three components of A


 in nonconducting region which incurs 

more DoFs the magnetic scalar formulation, it is the duality and complementary of the 

MSP formulation. For the MSP formulation the Ampere’s equation is rigorously 

satisfied while for the MVP formulation the Faraday’s equation is rigorously satisfied. 

Furthermore, if the edge element is used, the continuity of the normal component of 

B


 is rigorously satisfied in the MVP formulation, leaving the tangential component of 

H


 weakly imposed by the variational form. And for the MSP formulation, the 

tangential component of H


 is rigorously satisfied, leaving the normal component of 

B


weakly imposed. There are several computational advantages of the A 


 

formulation: 

        (1) The formulation is much easier to implement than the MSP formulation and 

it is very elegant for arbitrary geometry topologies, multiply-connected conductors are 

convenient to deal with; 

        (2) The BCs on internal interfaces are natural boundary conditions which are 

automatically satisfied when the FEM is applied to discretize the BVPs; 

        (3) The resultant discrete algebraic equation is better-conditioned and easier to 

be solved than that from the MSP formulation, especially for nonlinear problems. 
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Actually, the ungauged A 


 formulation converged fast using iterative solvers if the 

matrix equation is consistent, which can be accomplished using a CVP representation 

of the source current densities. 

        (4) The circuit-coupling with the MVP formulation is also easier to implement 

than that of the MSP formulation. The expression of the back electromotive force 

(EMF), which is the bridge to link the magnetic field domain with the electric circuit 

domain, depends on the MVP A


 directly. 

 

2.1.4. On the Uniqueness of the MVP 

 

        It is well known that the solution of the MVP formulation (2.31)-(2.32) for 

analyzing eddy-currents is not unique. Although the curl of the MVP A


 is specified 

by (2.28), there is no equation to specify its divergence. So from Helmholtz’s theorem, 

the solution of A


 is not  unique. Actually, for arbitrary scalar field  , the following 

vector field and scalar field 
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also satisfy 
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The function   is called the gauge function.  

        In literature, there are many choices to treat this problem. One is to specify the 

divergence of the MVP A


 to make the problem has unique solution. A popular choice 

in low-frequency computational electromagnetics is to adopt the Coulomb gauge 

 
0.A 


 (2.43) 

Another gauge condition which is usually used in high-frequency case is the Lorentz 

gauge  

 
.A

t

   



 (2.44) 
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While it is also feasible not to specify the divergence of A


, just solving the 

discretized eddy-current equation (2.31)-(2.32) by Krylov space iterative solvers, 

provided that the right-hand-side (RHS) vector is consistent. An explanation of this 

method is that in the iteration process, the divergence of A


 is auto-determined or A


 

is auto-gauged [A45]. This is the state-of-the-art and popular technique in 

contemporary low-frequency computational electromagnetics. Because there are some 

difficulties to adopt the gauged formulation, as can be seen below. 

        Take the Coulomb gauge for example, one method to specify this gauge 

condition is to use the penalty technique, where the gauged formulation reads 

 

( ) ( )
,

( ) 0

A
A A

t

A

t

    

  

 
        


     

 

  (2.45) 

in conducting region 1V  and 

 
( ) ( ) .sA A J     

  
 (2.46) 

in nonconducting region 2V , where   is a penalty parameter [A41]. Taking the 

divergence of the first equation in (2.45) and (2.46), it can be observed that  

( ) 0A  


 is implicitly imposed in the whole problem domain where   is the 

Laplace operator. So if the boundary condition 0A  


 is applied, the Coulomb 

gauge condition 0A  


 is also satisfied in the whole domain. The Coulomb-gauged 

formulation (2.45)-(2.46) can be solved using nodal finite elements. Unfortunately, 

large numerical error are observed at sharp geometry corners or iron and air interfaces 

[A42].  

        Edge elements can be used to remove the numerical error at interfaces when 

there are materials with different parameters of large ratios. However for edge 

elements, since 0A  


 is automatically satisfied locally in each element, it is 

impossible to use to penalty method to impose the Coulomb gauge globally. To make 

the resultant matrix equation discretized from edge elements have a unique solution,  

the tree-cotree method can be used to remove the redundant DoFs by setting the tree-

DoFs to be zero. Unfortunately, this way the reduced linear system becomes ill-

conditioned and the iterative linear solvers lose their effectiveness [A36].  
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        Another method to apply the Coulomb gauge is to introduce a Lagrange 

multiplier p to apply this constraint of divergence of the MVP A

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 (2.47) 

in conducting region 1V  and 
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sA p J

A
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in nonconducting region 2V . Homogeneous Dirichlet boundary condition is applied to 

the multiplier p. Taking the divergence of the first equation in (2.47) and (2.48), it can 

be observed that  0p    is implicitly imposed in the whole problem domain. So if 

the boundary condition 0p   is applied, the multiplier p is zero in the whole domain. 

The problem now is a mixed saddle point problem, the linear system discretized from 

this method is indefinite for which the effective linear solver should be carefully 

designed preconditioner [B14-B16]. 

        Considering the above mentioned difficulties, and the necessity to adopt iterative 

linear solvers in large-scale 3D EM field computation, the ungauged formulation 

(2.31)-(2.32) with edge elements for the MSP A


 and nodal elements for the ESP   is 

really a good choice in practice [A21-A23].     

 

2.2. Optimal Design Methods 
 

        In the world of EM design, state-of-the-art finite element simulation, which can 

be used to compute the performance parameters of each design, is critical to the 

virtual testing of new concepts and optimization of existing designs. This enables a 

reduction in the number of costly prototypes and offers the engineer an insight into 

the behavior of the magnetic field which complements, rather than competes with, test 

and measurement.  

        To find the optimal design parameters of a device by using finite element 

computation, there are usually two kinds of methods widely used, including the 

gradient based methods and the stochastic optimization methods. For the solution of 

optimal design or inverse design problems, deterministic gradient based methods use 

design sensitivity analysis, such as direct differentiation or adjoint method, to search 
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the optimal solution successively. Since the gradient based algorithms are known to 

lack design space exploration and are easily trapped by local optima [B17] and by the 

fact that the optimal design problems is highly complicated with nonlinearity or non-

convexity in practical design of EM devices, stochastic optimization methods which 

avoid the complicated derivation and computation of the sensitivity and can easily get 

rid of arbitrary variable constraints, has become very popular nowadays [A54, A55, 

B18-B20].   

 

2.3. Review of Evolutionary Global Optimization Solvers 

        Since there may be multiple local extremums of the objective function, classic 

gradient-based optimization solvers such as the conjugate gradient method (also 

called the steepest descent method) are effective in finding a single local  extremum 

using the gradient information and searching in the steepest descent direction 

successively. To find the global extremum of complicated optimal design problems in 

electrical engineering, it is much better to adopt the global or evolutionary 

optimization solvers.  

        Generally speaking, the evolutionary optimization solvers are heuristic in that 

they gradually update the population of individuals by some principle similar to the 

evolution process of species in nature and try to find better solution in the iteration 

process. In this section, four frequently used global optimization solvers are briefly 

reviewed, including the Genetic Algorithm (GA), the Tabu Search Algorithm (TSA),  

the Particle Swarm Optimization (PSO) Algorithm and the Differential Evolution 

Algorithm (DEA).  

        Without loss of generality, suppose the single object function is f(X) and the 

problem under consideration is a minimal optimization problem. For all the four 

algorithms, suppose the number of the design parameters is d, the population size is  

Np, and the i-th individual in the G-th generation is denoted by Xi,G (i=1,2,…,Np, 

G=0,1,2,…,Gmax), where Gmax denotes the maximum generation number in the 

optimization process. The design parameters’ lower and upper limits are denoted by 

Xmin and Xmax respectively. 
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2.3.1. Genetic Algorithm (GA) 

        GA is a directed search algorithm based on the mechanics of biological evolution, 

which is widely used in engineering optimization problems since its invention in 1975 

[B21]. The essence of GA involves the encoding of the design variables as arrays of 

binary bits or character strings to represent the chromosomes, the selection, crossover 

and mutation operations according to their fitness to find a global optimal solution to 

the problem concerned. This is often done by the following procedure:  

        (1) Encoding of the objectives or optimization functions;  

        (2) Creating an initial population of individuals;  

        (3) Doing iterations by evaluating the fitness of each individuals in the 

population, generating a new population by performing selection, crossover, and 

mutation, and replacing the old population with the new population;  

        (4) Decoding the results to obtain the solution to the problem. 

        The design variables is usually coded in the form of binary arrays or real-valued 

arrays [B22]. For simplicity, the binary string with fixed string length L is adopted for 

coding to facilitate the genetic operators. The selection of individuals in a population 

is carried out by the evaluation of their fitness, and the selection probability is given 

by  

 
,

select ,

,
1

( )
( )

( )

i G
i G Np

i G
i

f X
P X

f X









, (2.49)  

where f  is called the fitness function, which is the corresponding maximum object 

function of f(X). The crossover of two parent strings is the main operator with 

probability Pc (usually 0.6 to 1.0) and is carried out by switching one segment of one 

string with the corresponding segment on another string at a random position, as 

shown in Fig. 2.6. The mutation operation is achieved by the flopping of randomly 

selected bits, and the mutation probability Pm is usually taken to be small (0.001 to 

0.05), as shown in Fig. 2.7. The whole process of GA can be briefly summarized as 

Fig. 2.8. 
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Fig. 2.6. Illustration of the crossover operation. 

 

 

Fig. 2.7. Illustration of the mutation operation. 
 

 

Fig. 2.8. Structure of a GA. 

 

2.3.2. Tabu Search Algorithm (TSA) 

 

        TSA is a heuristic optimization technique originally developed for combinatorial 

problems or integer programming [B23]. It has been widely used in optimization 

problems with continuous variables [B24-B26]. The idea of the TSA is very simple. It 

starts from an initial solution s, then a set of individuals S’ are randomly generated in 

the neighbors of s. The objective function values are evaluated at each individual of S’, 

and the best element s’ in S’ becomes the new current solution, even if it is worse than 

s. Hence it is possible to escape from the local minima of the objective function. Then 

a new iteration is performed: the previous procedure is repeated by starting from the 

new current point, until some given stopping condition is reached. 

        In computer implementation, the intervals of different variable directions 

min max 1{ , }j j d
jX X   are all transformed into [0,1] first. Then a series of subdomains 
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contained in the whole feasible domain is selected around the current best solution 

according to the predetermined step-lengths 1{ }Np
i ih  , and the population of the next 

generation is diversified in each of the subdomain. The step lengths can be taken as 

for each coordinate direction [B25] 

 

1

1
1
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1

1
1, ( ) ,

, 2,3,..., .
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i
i
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h

h
h i Np
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




 


  

, (2.50)  

where minh is the minimum step-length which usually taken to be 410  to meet the 

accuracy requirement of practical engineering problems. The following formula is 

used to update the population from the current best solution 1{ }j d
G jX   

 

, 1

max min

2

j j
i G G ij j i

j j

j

X X r P h

X X
P

    

 




, (2.51)  

where rij is a random number in the interval [-1,1]. 

2.3.3. Particle Swarm Optimization (PSO) Algorithm 

        The PSO method is a population based stochastic searching and optimization 

algorithm. It is inspired by social behavior of bird flocking or fish schooling. 

Individual swarm members can profit from the discoveries and previous experience of 

all other members of the school. These instructions help in the decision making 

process of individuals based on the following items [B27, B28]: 

        (1) experience of individual as its best results so far; 

        (2) outlay of experience of swarm as the best result among all individuals. 

PSO algorithm use the swarm intelligence, which is the ability of each individual to 

use the experience of others guides the swarm toward its optimum goal, to 

successively attain the optimal solution.  

        In the PSO method, a potential solution is named as a particle. The trajectory of 

each particle is gradually adjusted towards its own best position and the global best 

position discovered by its neighbors, as well as the whole swarm. These particles try 

to converge to the optimal solution by coordinating and cooperating. The flowchart of 

the standard PSO algorithm can be illustrated as Fig. 2.9.  
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Fig. 2.9. Flowchart of the standard PSO algorithm. 

        The standard PSO method can be further improved by introducing some control 

parameters, including the inertial weight   which is used to adjust the global and 

local optimization capability of the method, the acceleration parameters c1 and c2, and 

the positive maximum velocity in the j-th coordinate max
jv . The formula to update the 

population of particles read
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 (2.52) 
 

where j
ig  represents the best particle position among the entire population and j

ip  is 

the previous best particle position. This iteration process terminates when the 

maximum generation number Gmax is attained. 
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2.3.4. Differential Evolution Algorithm (DEA) 

        For the DEA, after initializing a population of the design variables according to 

their upper and lower limits as ,0 1{ }Np
i iX  , the evaluation process is done to get the 

objective function values ,0 1{ ( )}Np
i if X  . The mutation (crossover, recombination) 

operation is executed to increase the diversity of the population. For each individual 

Xi,G in the population, three random integers 1 2 3, , {1,2,..., }r r r Np  which are mutually 

different to each other and a random integer {1,2,..., }rj d  are used to generate a 

new individual ,iGX  with its j-th (j=1,2,…,d) component as 

 
1 2 3, , ,

,

,

( ), if rand[0,1]< or

,else.

j j j
r G r G r G c rj

iG j
i G

X F X X P j j
X

X

    


 , (2.53)  

where F is the crossover factor and Pc is the crossover probability. Then the  selection 

process is executed to get the (G+1)-th population 
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, 1
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, if ( ) ( ),

,else.

j j j
i G i G i Gj

i G j
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X f X f X
X

X


  


 
 (2.54)  

The whole process is terminated when some conditions are satisfied, for example, 

when the maximum generation number Gmax is met and the optimal solution is taken 

as the one in the population with minimal objective function value. This algorithm can 

be realized within only about 20 lines in C code [B29]. 

 

2.4. Introduction to Response Surface Methodology 

        After sweeping all the sampling shape design parameters by FEM, a continuous 

optimization problem can be then reconstructed using the RSM [A54, A55]. RSM is 

an interpolation method to reconstruct a continuous multidimensional function from 

given discrete function values at the sample points. In the following, the RSM with 

radial basis functions is used as an example to illustrate the basic idea. 

        The construction of the response surface model using RBF can be briefly 

described as follows. Let  , 0R x R x     denote the set of non-negative real 

numbers and suppose a RBF :H R R   is continuous with (0) 0H  . For example, 
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the RBF on dR  is defined in the form (|| ||)H X , where dX R , || ||  is the Euclidean 

norm of the point X.  

        In general, the reconstruction of an objective or constraint function 

( ) : df X R R  according to its value jf  at a given set of sample points 

, 1,2,..., ,d
jX R j N   under the radial basis functions 1{ }N

j jH   is  

 1 1

( ) (|| ||).
N N

j j j j
j j

f X c H c H X X
 

     (2.55) 

The unknown expansion coefficients 1{ }N
j jC c   are determined by solving the 

following linear algebraic system: 

 
1 ,C H F  (2.56) 

where H is the interpolation matrix with entries (|| ||)ij i jH H X X  , and 1{ }N
j jF f   

is the right hand side vector  with jf  computed from the FEA at each sample point of 

the design space. 
 

2.5. Summary 
 

        In this chapter, the formulations for low-frequency EM field computation is 

reviewed. The MVP-based formulation is elegant and easy to implement for 

arbitrarily complicated 3D geometries. Although the MSP-based formulation is 

computationally  efficient since there is less unknowns, this formulation is highly 

difficult to implement for complicated multiply-connected 3D geometries.  

        For practical engineering optimal design problems, there may be multiple local 

extremums of the objective function. To find the global extremum of complicated 

optimal design problems in electrical engineering, it is much better to adopt the global 

or evolutionary optimization solvers.  

        In this chapter, four classical global optimization algorithms are introduced, 

including the GA, TSA,  PSO and DEA. They are all proved to be effective in practice. 

To reduce the number of forward finite element runs to get the objective function 

values, the RSM can be also utilized to reconstruct a surrogate model to replace the 

actual finite element computations. 
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        For simple geometries, structured meshes can be generated conveniently [C1]. A 

comparison between the structured mesh and unstructured mesh is given in Fig. 3.2. 

For general geometries with complicated object outlines, structured meshing is much 

more difficult to generate and unstructured mesh generation methods are more 

popular.  

3.1.1. Delaunay Mesh Generation Methods 

        There are a lot of reported work on mesh generation methods for 2D domains 

and 3D domains, such as the advancing front or paving method [C1, C2], Delaunay 

method [C1, C3-C6], quadtree/octree methods [C7] and so on. Among these methods, 

the Delaunay mesh generation method has the advantage that the resultant triangles 

are optimal for the given set of points in that they usually do not contain many 

extremely skewed cells, which is a very desirable property from the viewpoint of 

computational accuracy when using the finite element method (FEM).  

        The Delaunay method has maximum minimal angles and empty circle properties, 

where no point of the forming node set can be contained inside the circum-circle of 

any triangle, as shown in Fig. 3.3. So the method can avoid generating long and thin 

triangular elements of bad shape/quality. In this thesis, the shape/quality of an element 

is evaluated by the quality factor (QF) defined as 2 2 24 3 / ( )Q a b c    , where a, 

b and c are the length of the three edges of the triangle being considered;   is its area. 

Clearly Q = 1.0 for an equiangular triangle, the smaller the value of Q, the worse the 

shape of an element. Typical elements with bad shape are illustrated in Fig. 3.4.  

 

Fig. 3.3. Every triangle of a Delaunay triangulation has an empty circum-circle. 
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                                (a)                                                               (b) 

Fig. 3.4. Triangular elements with bad shape: where small angles cause poor 

conditioning of the finite element matrix and large angles cause discretization error 

and big errors in interpolated derivatives. 
 

        To show the advantage of the Delaunay triangulation that it can avoid long and 

thin triangular elements with bad QFs, an arbitrary triangulation and the Delaunay one 

is given in Fig. 3.5 for comparison. From Fig. 3.5 one can easily observe that the QFs 

of the triangular elements in the Delaunay mesh are significantly improved. 

 

  
                                  (a)                                                               (b) 
Fig. 3.5. An arbitrary triangulation and the Delaunay mesh of the same domain with 
the same nodes.  
     

        There are mainly two algorithms to implement the Delaunay method, namely 

Lawson algorithm [C4] and Bowyer-Watson algorithm [C3, C8, C9]. In this thesis, 

the Delaunay method with Lawson algorithm is used to generate the initial mesh for 

the geometry of problem domain. To make sure that all input domain boundaries and 

material interface segments are present in the resultant initial mesh, a conforming 

Delaunay method adding stitch points or Steiner points is used [C5]. 

        In Lawson’s incremental insertion algorithm for Delaunay mesh generation, the 

nodes are inserted to the existing mesh one by one. For the insertion of a node P, 

firstly the triangular element E containing the node P is found using the algorithm 

illustrated in Fig. 3.6. Since the directed area of the triangle PBC is negative and the 
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neighboring element E1 on the right hand side of edge BC is non-empty, the search is 

moved to E1. This iteration will terminate when the element E containing P is found, 

in that case all the directed area of the triangle PAB, PBC and PCA are all positive. 

 

   
Fig. 3.6. Method to search the element containing P. 

 

        Then the element E is subdivided into three smaller triangles. This generally 

make the new mesh does not satisfy the Delaunay’s empty circle property. To make 

the mesh satisfy Delaunay’s principle, a key operation is to apply the edge swapping 

process, as shown in Fig. 3.7, to improve the quality of the mesh successively. The 

edge AC and BD is to be swapped if .BAD BCD     

 

Fig. 3.7. Illustration of the edge swapping process. The left triangulation does not 

meet the Delaunay condition (the circumcircles contain more than three points). 

Flipping the common edge produces a Delaunay triangulation for the four points. 

 

        After the edge swapping operations to the mesh recursively after the insertion of 

the node P, every triangle in the mesh is now with good shape. This process is 

illustrated in Fig. 3.8. 
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                                         (a)                                                (b) 

     
                                         (c)                                                (d)                                 

Fig. 3.8. (a) Insert a point P to the element E. (b) The element E is subdivided into 

three triangles with bad shapes. (c) The mesh after first edge swapping operation. (d) 

The mesh after second edge swapping operation.  

 

        It is noted that the result of mesh by Bowyer-Watson algorithm is the same as 

that of the Lawson algorithm. The difference lies in that in the Bowyer-Watson 

algorithm, instead of the tri-sectioning the element E containing the newly inserted 

point P, the cavity ABCDFA is first found, as shown in Fig. 3.9, and then P is 

connected to the vertices of the cavity to form the Delaunay mesh. The result is the 

same as what is shown in Fig. 3.8(d). 

  
Fig. 3.9. Illustration of the Bowyer-Watson algorithm when inserting a point P. 
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3.1.2. Delaunay Mesh Refinement Methods    

        To assure the accuracy of the finite element solution, usually the mesh needs to 

be refined several times to achieve the desired accuracy [C10-C15]. The Delaunay 

method is also suitable for mesh refinement because the insertion of a vertex to a 

triangle is very local and only needs minor modification to existing mesh.  

        Three mesh refinement methods are widely used in FEM, namely the trisection 

method, (longest edge) bisection method [C16-C18] and the regular refinement 

method [C19, C20]. The trisection mesh refinement process is the same as the 

formerly mentioned node insertion process as shown in Fig. 3.8. In the regular mesh 

refinement method, also called the red-green refinement method, the element will be 

subdivided into four similar triangles by bisecting all the three edges. To make the 

mesh to be conforming, the three neighbor elements are bisected, as shown in Fig. 

3.10. As can be seen from the figure, the mesh quality yet becomes worse than that of 

the original mesh.  

   
Fig. 3.10. Illustration of the red-green mesh refinement method. 
 

        A good choice is to adopt the bisection refinement method, which can improve 

the mesh quality at the same time when refining the mesh [C16]. In this thesis, the 

backward-longest-edge-bisection (BLEB) algorithm is adopted. Suppose the element 

t0 is marked to be bisected, then the longest-edge propagation path (LEPP), which is 

composed of several elements, of t0 is found to be {t0, t1, t2, t3}. The elements in the 

LEPP have strictly increasing longest edge. So it is easy to see that there are finite 

number of element in the LEPP. For the first iteration, the common longest edge of t2 
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and t3 AB is bisected and the LEPP is updated as {t0, t1, t2}. In the second iteration, the 

common longest edge of t1 and t2 AC is bisected and the LEPP is updated to be {t0, t1, 

t2, t3, t4}. In the third iteration, the common longest edge of t3 and t4 AD is bisected... 

This process will terminate if the element t0 itself is bisected. The final result of the 

BLEB algorithm is shown in Fig. 3.11(d), where node 1 to node 6 are inserted into the 

mesh.  

  

                                         (a)                                                     (b) 

 

 

                                        (c)                                                     (d) 

Fig. 3.11. (a) Initial triangulation, where the element t0 is to be refined. (b) In the first 

step of the bisection refinement process, node 1 is inserted to the middle of AB. (c) In 

the second step, node 2 is inserted into the middle of AC. (d) Final triangulation after 

the insertion of node 1 to 6. In the last step, the insertion of node 6 bisects the element 

t0 and the iteration terminates. 
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3.2. 2D Parameterized Mesh Deformation Method 

        To improve the performance of EM devices when designing new products, 

geometric shape optimization is a very important design objective. In practice, FEA is 

an indispensable tool for magnetic field computation in finding the sampling objective 

function values. In the optimization process, because there are frequent variations in 

geometric design parameters, the computational mesh has to be generated repeatedly 

before one can proceed to the finite element computations. However, the re-meshing 

process from scratch costs a lot of computing time, even if there is only very minor 

changes in the design parameters. Thus it is highly desirable to reduce the computing 

time required in mesh regeneration if there is no need to fully remesh the domain. 

        Several methods are available to update the mesh associated with the new design 

parameters from the previous mesh. One method is to partially remesh the domain by 

solving the equations of elasticity [C21] or the Laplace equation [C22] to calculate the 

new coordinates of the current mesh. However this type of partially remeshing 

method is still rather time consuming and not very robust and may even generate 

folding elements if there are large shape modifications. The method proposed in [C23] 

aims at alleviating the mesh overlapping problem in case of large shape deformations, 

however it is not automatic in that the whole domain must be manually decomposed 

into several convex sub-regions. 

 

3.2.1. Parameterized Meshing Method 

        To overcome the drawbacks of the above mentioned method when making the 

meshes for new geometric parameters, a parameterized mesh technique is proposed 

for fast 2-D mesh deformation. In this method the coordinates of each node in the 

mesh is explicitly expressed as a set of expansion coefficients under a set of basis 

which includes all the shape design parameters. When the design parameter changes, 

the new coordinates of the nodes in the mesh can be calculated readily and the new 

mesh is obtained accordingly. Only arithmetic operations are all that required to 

deform the mesh without partially or fully remeshing the domain.  
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        For simplicity but without losing generality, a 2D FEM with triangular element is 

used as an example to illustrate the basic idea of the proposed parameterized mesh 

method. Supposing there are geometry parameters p1, p2, …, pN, which will vary 

during parameter sweeping, are expressed in a column matrix as: 
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Suppose the coordinates (xi,yi) of a vertex i in a finite element mesh is expressed as 

linear functions of these parameters p1, p2, …, pN  by: 
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where [ ]i
xC  and [ ]i

yC  are real coefficient matrices for the vertices. For each vertex, 

not only the current coordinates (xi,yi) associated with current {p} will be stored, the 

two coefficient matrices are also be stored in the class of vertex. When {p} varies 

during the design process, the coordinates of all the vertices of the mesh will be 

changed accordingly and no remeshing process is needed. 

        During the meshing refinement, if a new vertex k is added at the barycenter of 

the triangular element with three vertices i, j, m, its coordinates (xk, yk) are governed 

by the following two formulas: 
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The expansion coefficients for vertex k with coordinates (xk, yk) under parameters {1, 

p1, p2, …, pN} can be further expressed as , , , ,( [ ] / 3, [ ] / 3)l l
l i j m x l i j m yC C   . For general 

cases, the coefficients of the newly added vertices are computed by: 

 
, ,[ ] [ ]k l

x l i j m l xC C  , (3.6) 

 
, ,[ ] [ ]k l

y l i j m l yC C  , (3.7) 

where the weightings { }l  are the area coordinates of the vertex k located in the 

triangle with vertices i, j and m. The definition of the area coordinates in 2D and the 

barycentric coordinates in 3D is illustrated in Fig. 3.12. To compute the area 

coordinate i  of a point ( , )x x y


 in the physical coordinates, first the area of the 

sub-triangle facing the vertex ( , )i i ix x y


 is calculated as ( )i x 
, then  
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 (3.8) 

where   is the area of the element considered. It is noted that the area coordinates 

have the following properties 
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Fig. 3.12. Geometric explanation of barycentric coordinates for 2D and 3D element. 
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        Note that, in general, the mesh parameters {p} and the expansion coefficient 

matrices [Cx] and [Cy] (hereinafter referred as C-matrices) may depend on the 

coordinates of the vertices and as the geometry parameters {p} are stored in the vertex 

class, some memory overhead is required. It can be seen however that if the initial 

mesh generation and mesh refinement methods are combined properly, this drawback 

can be successfully overcome. 

        With the C-matrices for each vertex, including the initial mesh vertices inputted 

by the user and the vertices adaptively added to the initial mesh in FEA, all 

coordinates of the vertices in the refined mesh will be changed automatically 

whenever the parameters {p} vary. The shape of the refined mesh may change but its 

mesh quality will remain high by some mesh improvement methods. No mesh 

regeneration is required, thus the computing time for regeneration is greatly reduced. 

Furthermore, the solutions on each vertex can be carried over from previous mesh to 

the current mesh and no mapping of vertices is required. 

        For arbitrary vertex inserted to the mesh, it is necessary to have the information 

of the three vertices of the triangle in order to determine its vertex position. But if the 

insertion of new vertex is at the middle point of an edge of the triangle, then only two 

vertices’ information suffice for determining the new vertex. To save memory for the 

parameterized mesh method, the bisection mesh refinement method, or the longest 

side bisection-Delaunay method [C16-C18] is used for adaptive mesh refinement. In 

this bisection method, whenever a triangular element is refined, its longest side will be 

bisected in a recursive way. During mesh refinement, for every vertex added into the 

initial mesh, the indices of the starting and ending points of the side where it is 

inserted are stored. 

        In practice, the procedures of the proposed parameterized mesh generation and 

refinement method is described as follows.  

        (1) Firstly input all the C-matrices for each key point (such as the four corners of 

a square) of the geometry under a set of design parameters {p}, then choose the initial 

values for these parameters and calculate the coordinates of all the key points by (2) 

and (3). Then input all the constrained sides’ information (including the starting point 

and ending point of an edge and specify whether it is straight line edge, arc edge, etc.).  
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Specify the domain boundaries and material interface boundaries for the initial mesh 

generator. Send the parameterized geometry inputs to the initial mesh generator to 

generate the initial coarse mesh.  

        (2) Secondly, refine the initial parameterized mesh adaptively several times to 

get a relatively dense mesh for final FEM computation. Since the initial boundary 

mesh is composed of boundary vertices only, one can refine all the elements for the 

first time to make sure there exist certain interior vertices to define the unknowns for 

intermediate FEM computations and then compute the error indicators.  

        After obtaining the FEM solution during each refinement iteration, calculate the 

a posterior error for each triangle element according to some error estimator and 

refine adaptively certain percentage of the elements in the mesh. Each newly inserted 

vertex should be inserted at the middle point on the longest side of the triangle. These 

vertices are added one by one to the rear of the vertex list of the mesh, the last 

additional vertex is dependent totally on the two former ones in the mesh and they are 

referred as the “master vertices”. This process is illustrated in Fig. 3.13(a)-(d), where 

the index (ID) i represents the vertex i in the plane for simplicity. It is not difficult to 

see that when the parameters change, one only needs to modify the coordinates of 

every vertex according to its master vertices in the natural order of all the vertices in 

the mesh. That is, the smaller the ID of a vertex, the more likely is its coordinates 

being modified. So in the proposed parameterized mesh method, only the ID numbers 

of the two master vertices for each vertex, instead of the two C-matrices, are stored. 

However this is equivalent to the method of storing all the C-matrices for each vertex. 

        (3) To generate high-quality computational mesh we also need to implement 

some mesh improvement operations using the longest edge bisection-Delaunay 

method. That is, the QF for each triangular element in the mesh is firstly calculated. 

With the calculated quality indicators, we will refine elements whose QF is less than 

the user-specified threshold value by the bisection method to improve the mesh. 

        (4) At last, the mesh is refined further to generate the final mesh for finite 

element analysis. With steps (2)-(3) done several times and all the coordinates of the 

vertices of the mesh resettled to new mesh parameters accordingly, the Delaunay 

diagonal swapping is realized for each edge first [C4] and then smart Laplacian mesh 



48 
 

smoothing is used to adjust the position of the vertices to enhance the mesh quality 

[C24].  

 
               (a)                                         (b) 

 
               (c)                                         (d) 

Fig. 3.13.  (a) The initial mesh with vertex list {1, 2, 3, 4}. (b) The mesh after 

inserting vertex 5 in the middle of edge {1, 3}, the vertex list is {1, 2, 3, 4, 5}. (c) The 

mesh after inserting vertex 6 in the middle of edge {1, 4},the vertex list is {1, 2, 3, 4, 

5, 6}. (d) The mesh after inserting vertex 7 at the middle of edge {3, 4} and vertex 8 

in the middle of edge {4, 5}, the final mesh vertex list is {1, 2, 3, 4, 5, 6, 7, 8}. 

 

3.2.2. 2D Small Shape Deformation Examples 

        The proposed parameterized mesh method works well in case of relatively small 

mesh deformations. The following are some examples. In the first example, a square 

with two circular holes is deformed, as shown in Fig. 3.14. For the second example, a 
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mesh with multiple objects are deformed, as shown in Fig. 3.15. For the last example, 

a practical motor mesh is deformed, as shown in Fig. 3.16. 

 

     

(a)                                                                 (b) 

Fig. 3.14. Left: mesh before deformation. Right: mesh after deformation.  

 

     
(a)                                                                  (b) 

Fig. 3.15. Left: mesh before deformation. Right: mesh after deformation.  
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(a)                                                                 (b) 

Fig. 3.16. Left: mesh before deformation. Right: mesh after deformation.  

 

3.2.3. 2D Large Shape Deformation Techniques 

        For the above proposed parameterized mesh method, in case of large variations 

of the design parameters {p}, the deformed mesh may also become overlapping which 

is invalid for FEA [C23]. How to generate the deformed mesh without overlapping in 

case of large shape deformations attracts much attention by researchers from different 

fields [C23, C25, C26]. In this thesis, two methods are proposed in regard to mesh 

folding due to large shape variation.  

        The first one is motivated by observing that the space available for the nodes to 

move freely when repositioning them is too limited, if it is based directly on the 

refined mesh. It is indeed more robust to work with an initial coarse mesh when 

updating the mesh. Note that all the elements in the initial coarse mesh also form a 

convex decomposition [C23, C25] of the geometry domain, so by keeping all the 

edges of elements of the initial coarse mesh un-swapped in subsequent mesh 

refinements (the refined meshes are nested) will ensure there is no inverted elements 

even in cases with large shape variation of the parameterized geometry.  

        For computer implementation, this can be realized easily by introducing an 

integer flag for each of the triangular element in the mesh. For the initial mesh, each 

triangle is assigned a unique integer for this flag and an edge is allowed to be swapped 
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only if its neighboring element has the same flag. An example of the effectiveness of 

this technique is shown in Figs. 3.17(a)- 3.17(f). Another example is also given in 

Figs. 3.18(a)-3.18(f). 

     

                                         (a)                                                (b) 

     

                                          (c)                                               (d) 

     

                                         (e)                                                (f) 

Fig. 3.17. (a) The initial coarse mesh. (b) Non-nested refined mesh of (a). (c) The 

invalid folding mesh obtained by resetting the parameterized mesh (b) for new design 

parameters. (d) Close view of the folding mesh. (e) Nested refined mesh of (a). (f) 

Valid mesh obtained by resetting the parameterized mesh (b) for the same parameters 

used in (c). 
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                                     (a)                                                          (b) 

       

                                    (c)                                                           (d) 
 

        

                                    (e)                                                           (f) 

Fig. 3.18. (a) Original 2D finite element mesh. (b) Initial mesh. (c) Plot of both the 

fine mesh and the initial mesh. (d) The initial mesh with movable red nodes. (e) The 

deformed initial mesh. (f) The deformed finite element mesh. 
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3.3. 3D Remesh-free Mesh Deformation Method 

        In this section a novel fast remesh-free mesh deformation method for 3D 

problems is to be developed. Due to the complicated geometric input of the problem 

domain and difficult boundary conforming mesh generation process for 3D 

geometries [C6], a seamless generalization of the 2D parameterized mesh method to 

3D is not straightforward. Nevertheless such remesh-free idea still provides a 

guideline for 3-D mesh deformation. A robust fast remesh-free mesh deformation 

technique is being proposed and can be applied for both 2D and 3D problems, aiming 

to reduce the time needed for generating the meshes for different design parameters to 

accelerate the optimal shape design process. 

        The proposed method requires only one set of fine finite element computational 

mesh and an initial mesh, which contains all the movable nodes in the fine mesh and 

yet they do not need to conform to the complicated outlines of the geometry. By using 

a coordinate mapping technique, the area coordinates of each node of the fine mesh in 

the initial mesh are first calculated and stored, and that needs to be done only once. 

By fixing these calculated area coordinates for each node, new meshes can be updated 

by providing the new positions of the nodes of the initial mesh and one can then map 

back the area coordinates to the Cartesian coordinates. 

        For the methods proposed in [C21, C22], the solution of some kind of equations 

to determine the interior nodal displacements are required to deform the mesh, and 

these may cost much time for complex 3-D geometries. In this work, such equation 

solution process is avoided using a coordinates mapping technique with the help of an 

initial coarse mesh, which contains all the movable nodes in the fine mesh.  

        To deform the fine mesh, firstly the area coordinates of each node in the fine 

mesh relative to its initial mesh is computed and stored for each node. This process 

needs to be done once and only once. When the geometry parameters are updated, the 

new initial mesh is first updated by resetting the movable nodes located on the 

geometry outlines. The formerly computed area coordinates of each node in the fine 

mesh are mapped back to the Cartesian coordinates under the basis of the newly 

updated initial mesh. In this way each node in the fine mesh is repositioned to form 
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the new fine mesh with its mesh connectivity unchanged. The flowchart of the 

proposed mesh deformation process is shown in Fig. 3.23. 

        This method is robust in that the deformed fine mesh is valid if and only if the 

deformed initial mesh is valid. Besides, the method can be applied to both 2-D and 3-

D problems. For the first example, the original 3-D computation mesh is given in Fig. 

3.24(a) and Fig. 3.24(b). In Fig. 3.24(c), the inner ball is enlarged and the deformed 

mesh is given. Fig. 3.24(d) is the 3-D view of the deformed mesh. 

 

Fig . 3.23. Flowchart of the mesh deformation process.    

 

      

                                 (a)                                                                 (b) 
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                                (c)                                                                  (d) 

Fig. 3.24. (a) Original 3D computational mesh, cut view. (b) Original 3D 

computational mesh, 3-D view. (c) Deformed mesh using the proposed method, cut 

view. (d) 3-D view of the deformed mesh. 

 

        In the second example, the 3D mesh of the three-phase induction motor of the 

TEAM Workshop Problem 30A [A35] is deformed using the proposed method. The 

original 2D problem domain is extruded along the axial direction to form the 3D 

problem domain. The initial shape of the induction motor with smooth solid rotor is 

shown in Fig. 3.25(a), where there are 202936 tetrahedral elements and 34923 nodes 

in the mesh.  

        The radius of the innermost cylinder shown in Fig. 3.25(a) is 2cm. The deformed 

mesh when the innermost cylinder is enlarged radially using the proposed remesh-free 

mesh deformation method is shown in Fig. 3.25(b), where the radius of the innermost 

cylinder is now 2.6cm. The mesh shown in Fig. 3.25(b) has exactly the same mesh 

topology as the one given in Fig. 3.25(a).  

        For this example, the CPU time needed to compute the area coordinates of all the 

nodes in the fine mesh is about 0.04s and the time for updating the mesh by mapping 

back these coordinates to Cartesian ones is about 0.003s. It costs about 140s for the 

generation of the geometry-conforming finite element mesh as shown in Fig. 3.25(a). 

One can clearly see that the proposed method cost relatively little time and hence the 

time needed for mesh deformation is reduced greatly. 
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                                (a)                                                                   (b) 

Fig. 3.25. (a) The mesh for the initial shape of the motor. (b) Deformed mesh for the 

new shape when the innermost region is enlarged radially. 

 

        In the third example, an optimal shape design problem is studied using the 

proposed method. The device to be optimized is a magnet as shown in Fig. 3.26(a), 

and it is similar to the permanent magnet Magnetic Resonance Imaging (MRI) system 

in [C27]. The objective is to get a highly homogeneous magnetic field distribution in 

the working region. A sample view of the old mesh and the deformed mesh using the 

proposed method are shown in Figs. 3.26(b) and 3.26(c). 

 

 

(a) 
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                                 (b)                                                                 (c) 

Fig. 3.26. (a) The MRI device where the shape of the pole piece is to be optimized. (b) 

Finite element mesh of the initial shape of the device. (c) Finite element mesh of the 

new shape of the device. 

 

3.4. Summary 
 
        In this chapter, the Delaunay mesh generation method is given in detail. 

Commonly used mesh refinement methods are also given, where the longest edge 

bisection method is highly recommended to use because it can simultaneously 

improve the quality of the mesh when refining it.  

        After reviewing the state-of-the-art mesh deformation methods, a novel 2D 

parameterized mesh deformation method is presented. For this method, the mesh 

vertex contains the information of the design variables. When these design variables 

are changed, new deformed meshes can be obtained very fast. Besides, two techniques 

to avoid inverted elements in case of relatively large mesh deformation are proposed 

and validated through practical examples. For 3D mesh deformation, a novel fast 

remesh-free mesh deformation technique is proposed using a coordinate mapping 

technique,  Several examples are given to showcase the effectiveness of this method. 
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CHAPTER 4 

2D AND 3D FINITE ELEMENT FIELD SOLVERS  

4.1. 2D Nodal FEM for Magnetic Field Computation 

        Finite element method (FEM) has been widely used in 2D magnetic field 

analysis nowadays because its versatility and high accuracy [A8, A11, A35, A37, D1-

D3]. The chapter discusses several aspects when applying the FEM to practical 

electromagnetic field analysis, including how to deal with nonlinear material and 

rotational movement. The field-circuit coupled formulation is later given in the 3D 

form. 

 

4.1.1. 2D Finite Element MVP Formulation 

        For numerical modeling of most of the radial flux motors, by ignoring the end 

effect, the 3D problem reduces to 2D, supposing the field is the invariant at each 

section along the axial direction of the motor. In 2D FEA of magnetic fields, the MVP 

A


 is mostly used as the unknown variable, in such as case the MVP and the electric 

current are reduced to only one component (usually along the z direction in Cartesian 

coordinate system). Denote by A the unknown component to be solved, the 2D eddy-

current problem reads [A11] 

 
0 0( ) ( ) ( ) ( ),y x

s r s

MA A A M
J M J

t x x y y x y
    

     
      

      


 (4.1) 

where ( ) 1 /B     is the magnetic reluctivity, sJ  is the applied source current 

density, rM


 is the magnetization vector with two components xM  and yM . B is the 

magnitude of the magnetic flux density [ , ,0] :
A A

B A
y x

 
   

 


 

 
2 2|| || ( ) ( ) ( , ) ( , ),
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 
        
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 
 (4.2) 
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where [0,0, ].A A


 For 2D magnetostatic problem, the control equation is 

 
0( ) ( ) ( ).y x

s

MA A M
J

x x y y x y
  
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    
       (4.3) 

        In low-frequency EM field analysis, two kinds of BCs are usually encountered, 

one is the homogenous Dirichlet BC 

 
0,A  (4.4) 

which models infinite BC where the magnetic flux density decreases to zero and the 

magnetic flux flows tangentially along the boundary of the problem domain. The 

other one is the homogenous Neumann BC 

 
0,

A

n




  (4.5) 

which is usually applied on symmetric planes where the magnetic flux is vertical to 

the boundary of the problem domain.  

        For problems with non-homogenous Dirichlet BC, the unknowns can be split 

into two parts, one part includes the non-homogenous Dirichlet boundary data and is 

zero on all other nodes, the remaining part to be solved is hence zero on the domain 

boundary. Note that the BC (4.4) has to be explicitly imposed on the finite element 

space while (4.5) is implicitly imposed by the weak form given as follows. 

        The FEM works with the weak form of the PDE (4.1), which can be obtained by 

multiplying both sides of (4.1) by an arbitrary test function N and integrating by parts: 

 
0
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V V
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   

 
  

 

 

 

 


 (4.6) 

The problem domain V  is then triangulated into a finite number of non-overlapping 

triangular elements {e}, called finite elements, whose union covers the whole domain. 

The unknowns to be solved, i.e., the DoFs, can be defined on the vertices, edges or 

interior of each element. The unknown potential function A is expanded under the 

finite element space spanned by finite element basis functions with the expansion 

coefficients to be the unknown DoFs. In this thesis, the second-order triangular finite 

element basis functions with six DoFs per element which are continuous across 
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elemental interfaces is adopted to approximate A. These elemental shape functions 
6

1{ }i iN   for each triangular element are shown in Fig. 4.1. 

 

  

  

  

Fig. 4.1. Second order finite element shape functions 6
1{ }i iN  . 

 

        Within each element e, the MVP A can then be expanded as  

 

6

1

,e e
i i

i

A A N


   (4.7) 

where { }e
iA  are the elemental DoFs. Substitute (4.7) into (4.6) and perform integrals 

for an element e instead of the whole domain V , one can obtain the element matrices 

and element load vectors, this is the so-called element analysis process. These 
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computed element matrices and vectors are then assembled into the global ones in the 

subsequent global assembly process. 

        The main computational burden of the whole finite element solution process is in 

the element analysis process, where the integration of the multiplication of elemental 

shape functions and their spatial derivatives have to be calculated. To preserve the 

desired order of convergence for second-order elements, the seven point Gauss 

quadrature formula with fifth order of accuracy [A19] is adopted to numerically 

compute the integrals in (4.4). Under area coordinates, the formula reads 

 0

7

0 0
1

( , , )d | | ( , , ).i i i iV
i

f V V W f     


   (4.8) 

for a function ( , , )f     defined on 0V  with measure 0| |V , where ( , , )    is the area 

coordinates of a point ( , )x y  in the Cartesian or physical coordinates and the 

summation of the area coordinates is always unity: 

 
1.      (4.9) 

The weights and coordinates of the integration points of the seven-point Gauss 

quadrature are shown in Table 4.1. The positions of these integration points within a 

triangular element are shown in Fig. 4.2. 

 
Table 4.1. Weights and area coordinates of the seven point Gauss quadrature formula. 

 

Fig. 4.2. Seven point Gauss quadrature points within a triangular element. 

        The final matrix form of (4.6) reads 
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d
[ ] { } [ ]{ } { },

d
M A K A P

t
   (4.10) 

where [M] is the mass matrix, [K] is the stiffness matrix, {A} denotes all the DoFs and 

the right hand side (RHS) vector {P} includes the prescribed current density and the 

contribution from any permanent magnets (PMs). The entries of the element matrices 

[M], [K] on an element e can be written as 

 
d d ,e

ij i je
M N N x y   (4.11) 

 
( )d d .j je i i

ij e

N NN N
K x y

x x y y


  
 

     (4.12) 

        The last step before solving the linear matrix equation is to handle the BCs. The 

homogeneous Neumann BC is actually natural in that it is implicitly satisfied in (4.6) 

and it doesn’t need any special treatment. While the Dirichlet BC must be handled 

explicitly which can be easily imposed using a TGV (tremendously great value) 

technique [D4, D5]. After setting all the BCs, the resultant matrix equation can be 

solved by calling direct linear solvers such as UMFPack [D6], PARDISO [D7]; or 

Krylov-space iterative solvers such as the conjugate gradient (CG) method [D8]. 

 

4.1.2. Handling Nonlinear Material 

 

        Ferromagnetic materials with high permeability such as iron, cobalt and nickel 

are usually used in EM devices to modify the magnetic field shape and conduction of 

flux to regions where it is requires. For electric machines, the iron materials can 

generate high magnetic field in air-gaps to further generate high-torque, which 

depends on the field intensity squared. Furthermore, the iron materials are usually 

characterized by nonlinear B-H relationship. As a result, the matrix [K] generally 

depends on the unknowns {A}, because the magnetic reluctivity   in (4.12) is a 

function of B.  

        The Newton-Raphson (NR) iteration, which uses first order derivative 

information of the nonlinear equations and has second order rate of convergence, can 

then be applied to linearize the problem successively. To show the NR iteration 
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scheme, the magnetostatic problem is enough for illustration because the electric 

conductivity is linear so that [M] is independent of {A} in (4.10).  

        Suppose the resultant nonlinear algebraic equation system is 

 
( ) [ ( )]{ } { },F A K A A P   (4.13) 

then the k-th equation reads (e(i) is an element in the mesh and there are totally NE 

elements) 

 ( )
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k ke i
i
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which is obtained by testing with the k-th global nodal basis function. The element 

Jacobian matrix reads (g, h are integer indices) 
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The first term in the above equation is nothing but the stiffness matrix. The partial 

derivative 
hA




 in the second term can be further written as 

 

( , )

1 ( , )

2 ( , )

1 ( )
(2 , )

2

1 ( )
( , )

1
( , )

h h

h

h

h

h

h

B

A B A

A A

B A

A A

B AA A

A
A

B B A

A
A

B B A

A N
B B

 











  


  

  

 
   


  

  
 
 
  

 
 


  


, (4.16) 

where 

 2

( / ) /H B H B B H

B B B
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 
. (4.17) 
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In practice, the single-valued B-H curve is usually given by a set of discrete points. 

Then the derivative /H B   and H for given B can be approximated by spline 

function.  

        Just like the finite element global assembly process, the element Jacobian matrix 
( )e iJ  is then assembled into the global one called J. At last, the NR iteration scheme 

reads 

 
( ) ( ) ( 1) ( ) ( ) ( )( ) ( ) ( ) ,l l l l l lJ A A P F A P K A A      (4.18) 

where 

 
( 1) ( 1) ( ) , 0,1,2,...l l lA A A l      (4.19) 

The iteration will terminate if the condition  

 
( )|| ( ) || ,lP F A    (4.20) 

is met. 

        For transient FEA, the temporal variable in (4.10) is discretized using the 

absolutely stable backward Euler scheme. The fully-discrete finite element scheme for 

the 2D eddy-current equation (4.1) including nonlinearity reads 

 

1
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Then (4.22) is of the same form as (4.13) and 1{ }nA   can be iteratively found using 

NR scheme. 

 

4.1.3. Numerical Examples 

 

        In this section, the NR iteration scheme is to be validated with two examples, 

including an artificial example with exact solution to test the accuracy of the 

developed 2D nodal FE program and a benchmark magnetostatic problem. It can be 

verified that  
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 (4.23) 
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is a solution to (4.3) with 1/42B H . The nonhomogeneous Dirichlet BC is applied 

on the boundary of the problem domain, which is a unit square, according to the exact 

solution of A. The mesh and numerical solution is shown in Fig. 4.3. And the L2 error 

of A with different meshes are given in Table 4.2, where the optimal order of 

convergence is achieved using second order basis functions. In the computation, the 

NR scheme (4.18)-(4.19) terminates after about 10 iterations. 

 

     

Fig. 4.3. Finite element mesh and numerical solution to the nonlinear magnetostatic 

problem with exact solution (4.23). 

 

 
Table 4.2. L2 error of A versus different number of DoFs. 

 

        For the second example, the TEAM workshop problem 25 is solved using the 

NR iteration for handling material nonlinearity. This is a magneto-static problem, 

originally designed for testing optimization algorithms [D9]. Here we only take a set 

of fixed design parameters to check the developed computer program. The design 

parameters are given in Fig. 4.4 and the problem domain with R1=7.2mm, L2=15.3mm, 

L3=29.5mm, L4=11.5mm is shown in Fig. 4.5.  
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Fig. 4.4. Four geometric design parameters of the TEAM workshop problem 25. 

 

 
Fig. 4.5. Problem domain of the TEAM workshop problem 25, the size of the domain 

is 163mm  180mm, where R1=7.2mm, L2=15.3mm, L3=29.5mm, L4=11.5mm. The 

excitation current in the coil region is 4253 ampere-turns (AT). 
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Fig. 4.6. Nonlinear B-H curve of the iron used in TEAM workshop problem 25. 

        The B-H curve for the nonlinear material is shown in Fig. 4.6. The computed 

mesh and the isopotential lines of the MVP A are shown in Fig. 4.7. For comparison, 

the mesh and numerical solution obtained by ANSYS Maxwell 2D are also given in 

Fig. 4.8. It can be observed that the two results are very close to each other. 

 

   

Fig. 4.7. Finite element mesh and the solution isopotential lines of the magnetic 

potential A of TEAM workshop problem 25. 

 

   

Fig. 4.8. Finite element mesh and the solution isopotential lines of the magnetic 

potential A of TEAM workshop problem 25, obtained by the software ANSYS 

Maxwell 2D. 
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4.1.4. Slave-master Technique for Rotational Movement 

        For dynamic simulation of electric machines, rotational movement must be taken 

into account in the transient finite element magnetic field analysis. If the rotor is solid, 

smooth and the material properties are invariant when it is rotating, one can simply 

add a convective term into the equation (4.1) to model the effect of velocity using 

Eulerian formulations [D10], where a fixed mesh is used throughout the time-stepping 

process. For most electric machines, the rotor is nonuniform when rotating, in such 

cases the Lagrangian formulations must be used to model the mechanical motion. In 

the Lagrangian formulations, the whole problem domain is divided into the rotor and 

stator parts, which are non-overlapping. The stationary part and the moving part are 

modeled in their own coordinate systems, only the matching condition is applied to 

the sliding interface to maintain the global continuity of the MVP A.  

        For computer implementation, the matching condition on the sliding surface can 

be fulfilled using the so-called slave-master technique. Take Fig. 4.9 for illustration, 

where the nodes 1, 2 , ..., 7, ... are master nodes on the master moving surface, while 

the nodes 1’, 2’, ..., 7’, ... are slave nodes on the slave moving surface. All the DoFs 

associated with the slave nodes can be eliminated using the matching condition or the 

continuity condition.  

 

1' 1' 1'
1' 1 1 2 2 3 3

2 ' 2 ' 2 '
2 ' 1 1 2 2 3 3

5' 5' 5'
5' 1 5 2 6 3 7

6' 6 ' 6 '
6 ' 1 5 2 6 3 7

,

,

...

,

,

...

A w A w A w A

A w A w A w A

A w A w A w A

A w A w A w A

  

  

  

  

 (4.24) 

where the interpolation weights ' ' '
1 2 3{ , , }, 1,2,...i i iw w w i   are calculated from the one-

dimensional area coordinates of the node 'iP  relative to its three master nodes [Fu, Jan 

2010]. It is noted that all the three weights are nonnegative and the sum of them 

equals to unity. A practical nonconforming mesh is also shown in Fig. 4.10, where the 

sliding surface is located between the blue and green region and is in the middle of the 

airgap region. 



 

         

Fig. 4.9. Il

Fig. 4.10.
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0
[ ] ,
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M MM
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A AA I
T

A W A A

      
       
      

 (4.27) 

where [I] is the identity matrix and [W] is the interpolation weights matrix. The slave 

DoFs within element e can be eliminated by modifying the element matrix and 

element RHS vector using [T] as 

 
[ ] [ ][ ][ ],T

e eM T M T  (4.28) 

 
[ ] [ ][ ][ ],T

e eK T K T  (4.29) 

 
[ ] [ ][ ],T

e eP T P  (4.30) 

where [ ]TT  is the transpose of [T]. It is not difficult to see from the above equations 

that by using this matrix transformation method, the symmetry property of the original 

matrix system can be upheld. 

 

4.1.5. A Numerical Example 

        The slave-master technique for handling rotational movement is applied to the 

numerical solution of the TEAM workshop problems 30A [D11]. The TEAM problem 

30A is to simulate a three-phase induction motor. The physical parameters are given 

in Fig. 4.11 [D11]. The winding in the stator is excited by an alternating current 

density at a frequency f=60 Hz. The rotor is made of steel (with electric conductivity 

 =1.6106S/m) and aluminum (with electric conductivity  =3.72107S/m), with the 

rotor steel surrounded by the rotor aluminum. The stator steel is laminated and its 

conductivity is set to be  =0.  

 
Fig. 4.11. The setting of TEAM workshop problem 30A. 
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        In the computation, the time-dependent exciting source currents for phase A , 

phase B  and phase C  are respectively set to be  Jmsin(2 f t),  Jmsin(2 f t+2

/3) and  Jmsin(2 f t+4 /3), where Jm= 2  3.1 106A/m2. When the rotor rotates 

at an angular speed of  = 200rad/s counterclockwisely, the magnetic field is solved 

using two formulations, namely the Eulerian formulation and the Lagrangian one. It is 

due to the cylindrical shape of the solid rotor that the rotational motion can be 

described by both the Eulerian formulation and the Lagrangian one.  

        In Figs. 4.12(a)-4.12(e) the numerical solution contour lines are shown when the 

rotor rotates 0, 90, 180, 270 and 360 degrees counterclockwisely within the first 

period using the Lagrangian formulation. The numerical result obtained using ANSYS 

Maxwell 2D is given in Figs. 4.12(a’)-4.12(e’). For comparison, numerical results 

obtained by the Eulerian formulation is also given in Figs. 4.12(a’’)-4.12(e’’). It can 

be observed that all the three sets of results are close to each other. 

 

 

   

                     (a)                                         (a’)                                        (a’’) 

 

   

                     (b)                                         (b’)                                        (b’’) 
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                     (c)                                         (c’)                                        (c’’) 

 

   

                     (d)                                         (d’)                                       (d’’) 

 

   

                     (e)                                         (e’)                                        (e’’) 

Fig. 4.12. (a)-(e) The isopotential lines of the solution of A when the rotor rotates 0, 

90, 180, 270 and 360 degrees using the slave-master technique. (a’)-(e’) The 

isopotential lines of the solution of A when the rotor rotates 0, 90, 180, 270 and 360 

degrees using the commercial software ANSYS Maxwell 2D. (a’’)-(e’’) The 

isopotential lines of the solution of A when the rotor rotates 0, 90, 180, 270 and 360 

degrees on a fixed mesh using Eulerian formulation. 

 

4.2. 3D Edge-based FEM with MVP Formulation  
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        The MVP formulation of the 3D eddy-current problem reads 

 

( )
,

( ) 0

A
A

t

A

t

   

  

 
      


     



  (4.31) 

in conducting region 1V  and 

 
( ) .sA J  

 
 (4.32) 

in nonconducting region 2.V  As illustrated in Fig. 2.1, two kinds of boundary 

conditions are typically encountered in low-frequency EM field computation, namely 

 
0, on Bn A S 


, (4.33) 

and 

 
( ) 0, on Hn A S  


. (4.34) 

At the interface between conducting region and non-conducting region, the normal 

component of the induced eddy-currents are required to be vanishing 

 
12( ) 0, on .

A
n S

t
  
    






 (4.35) 

      The solution of (4.31)-(4.35) has attracted much attention during the past decades 

[A20-A23, A36, A41-A44]. As discussed in Chapter 2, if nodal finite elements  are 

used to approximate the three components of the MVP A


, the numerical result is not 

satisfactory at material interfaces or shape corners of the problem domain. And the 

imposition of the Coulomb gauge condition by penalty technique results in an 

unacceptable error for problems involving different media of high contrast [A42]. In 

this thesis, the edge element is adopted to approximate A


. Supposing the 

solenoidality of the source current can be rigorously satisfied after spatial 

discretization, then (4.31) and (4.32) can be directly used for eddy-current problems 

without any gauge condition.  
 

4.2.1. Finite Edge Element MVP Formulation 
  

        In this thesis, the tetrahedral element is used for the discretization of the problem 

domain V. For the MVP A


 on an element e as shown in Fig. 4.13, its edge element 

expression is  
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6

1

,e e k
k

k

A A N

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 (4.36) 

where kN


 is the edge element basis function which is defined by 

 
( ) .k

ij i j j i ijN N N N N N l    
 

 (4.37) 

where the k-th (k=1,2,…,6) edge e(i,j)’s two end points are denoted by i and j and the 

length of the edge ijl  is used to normalize the edge basis function as well as to make it 

dimensionless [D5]. As a result, the edge element basis function ijN


 has the property 

 
1ij ijN e 

 
, (4.38) 

where ije


 is the unit vector pointing from i to j.  

1 (N1)
2 (N2)

3 (N3)

4 (N4)

N 2

N 1

N 3

N 4

N 5

N 6

 

Fig. 4.13. The six edge element basis functions defined on an element e, the local 

edge directions are also indicated. 

 

Besides the fact that the vector basis function ijN


 has unit tangential component along 

the edge (i,j), it also has zero tangential component along all the other 5 edges of a 

tetrahedron. So the interpolation coefficients 6
1{ }e

k kA   are the tangential component of 

the MVP along the k-th (or (i,j)-th) edge, namely 

 

6

( , ) ( , )
1

.e e k e e
k ij ke i j e i j

k

A dl A N dl A A


     
 

 (4.39) 

        In the definition of the edge element basis function, Ni is the usual nodal element 

basis function on a tetrahedral element: 

 
 1

, 1,2,3,4
6i i i i i

e

N p q x r y s z i
V

     , (4.40) 



81 
 

where eV  is the volume of the element e. These nodal basis functions have the 

Kronecker-delta property: 

 

1,
( , , )

0,i j j j ij

i j
N x y z

i j



   

. (4.41) 

        As shown in Fig. 4.13, the six edge basis functions within an element can be 

written as  
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 (4.43) 
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From the equation that AvAvvA  )( , and   0 v for any scalar 

function v, the curl of ijN


 is a constant vector within an element 
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        For the eddy-current equation (4.31)-(4.35), the Galerkin weak form obtained by 

multiplying the two equations with arbitrary test function A


 ,   and then integrating 

by parts. For the term on the left-hand-side of the first equation of (4.31),   
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1

1 1

1 1
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. (4.49) 

From the following equation 

 
)()( TGFTGF


 , (4.50) 

one can easily see that 

 
( )A A n A A n         

    
. (4.51) 

From the fact that the test function A


 satisfies zero Dirichlet BC (4.33), the last 

boundary integration term of (4.49) vanishes. 

        For the second equation of (4.31), multiply both sides by   and integrate by 

parts, one has 
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where the interface condition (4.35) is used. 

        Finally, the Galerkin weak form of the eddy-current problem (4.31)-(4.35) reads 
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.sV V
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They can be combined into a compact form as 
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or 
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The fully-discrete finite element scheme with backward Euler formula to discretize 

the temporal variable reads 
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( , ) ( , ) ( , ) ( , ) ( , )
,

( , ) ( , ) ( , )

n n n n
s

n n n

A A A A A A A A J
t t

A t A

        

      





        
       

        

  (4.57)    

where t  is the time-step. In the following, the detailed computation of the element 

matrices and load vectors of (4.57) are given.  

 

4.2.2. Computing the Element Matrices 
 

        In this thesis, the following notations are used for any tetrahedral element e in the 

mesh: 
 

 
( , ) ,e e

AAM A A
 

 (4.58) 

 
( , ) ,e e

AAK A A  
 

 (4.59)    

 
( , ) ,e e

AVK A  


 (4.60)    

 
( , ) ,e e

VAK A  


 (4.61)    

 
( , ) ,e e

VVK       (4.62)    

 
( , ) ,e e

sF A J
 

 (4.63) 

and AAM , AAK , AVK , VAK , VVK , F denote the global matrices and RHS load vector.  

        The entries of the elemental matrices are given in the following: 
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(1) The (p,q)-th (p,q=1,2,…,6) entry of the element matrix e
AAM  is 

 

1 1 2 2

1 1 2 2 1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

1 1 2 2
1 2 1 2 1 2 1 2

1

1 2

1 1 2 2

2

( , )

( ) ( )

36

e
AA i j i je

i j i j i j j i i j j ie

i i j j j j i i

i j i j e
i j j i j i i j

j

i i

i j i j

e

M p q N N dxdydz

l l N N N N N N N N dxdydz

N N N N N N N N
l l dxdydz

N N N N N N N N

q

N N

l l

V

 

       

      
        








 

2 1 2

1 2 1 2 1 2

1 21 2

1 22 1

1 2 1 2 1 2 1 2

2 11 2

j i i

j j j j i i

i ij j

e
j ji i

i j j i j i i j

i ij j

q q q
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s ss s
dx

q qq q

N N r r N N r r

s ss s

        
                   
               
                                      



1 2 1 2

1 2 1 2 1 2 1 2

1 21 21 1 2 2

1 22 1

1 2 1 2 1 2 1 2

2 11 2
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e j ji i
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q q q q

N N r r N N r r

s ss sl l

V q qq q
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       
                 

             
      
              

           

1 2 3ˆ

1 1 2 2
1 2 1 2 1 2 1 2

1
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6 120
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 
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  
 

       
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where 
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1 2

1 2

T

j j

j j

j j

q q

r r

s s

   
   
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q q
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      
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1 2

1 2
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T

j i

j i

ij

q q

r r

ss

   
      

     
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21

1 2

1 2

.

T
ji

i j

i j

qq

r r

s s

  
      

      

 

(2) The (p,q)-th (p,q=1,2,…,6) entry of the element matrix e
AAK  is 

1 1 2 2 1 1 2 2( , )e
AA i j i j e i j i je

K p q N N dV V N N     
   

 
where the curl of the edge element basis function is given by (4.48). 

(3) The (p,l)-th (p=1,2,…,6; l=1,2,3,4) entry of the element matrix e
AVK  is 
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2 2
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36 36
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AV l ij le e
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ij i je e
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   
  

 
    
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 


 

 

 

(4) The (l,p)-th (p=1,2,…,6; l=1,2,3,4) entry of the element matrix e
VAK  is given by 

( , ) ( , )e e
VA AVK l p K p l . 

(5) The (i,j)-th i,j=1,2,3,4) entry of the element matrix e
VVK  is given by 

2

( , )

36

36

e
VV i je

i j i j i j
e

e

i j i j i j

e

K i j N N dV

q q rr s s
V

V

q q rr s s

V

  

 


 



. 

        Unlike tradition nodal finite elements, the global edge orientation must be taken 

into account in the global assembly process [A7]. If the local edge orientation is 

opposite to the global one, one should put a negative sign to the corresponding 

element matrix entries for assembling. At last, the matrix form of the fully-discrete 

finite element scheme with backward Euler formula for the temporal derivative can be 

expressed as 

 
1 .

0

n n
AA AA AV AA n

n

VA VV VA

AM K K M F
At t

K t K K

  
  


                       

 (4.64) 

 

4.2.3. Generating the Source Field  

        In practice, to make the resultant linear system consistent and hence the solution 

of which converges fast using iterative solvers, the RHS vector must be in the range 

of the left hand side stiffness matrix [A45]. The key issue is to make sure that the 

applied excitation current is divergence free in the discrete level. Numerically, since 

only the values of current density on the Gaussian quadrature points are taken into 
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account, it is hard to ensure the zero divergence of the source current after 

discretization and hence the consistency of the resultant linear equation system.  

        To overcome this problem, one can introduce a current vector potential 0T


, also 

called the source field [A46], whose curl is the applied current density 0J


 in the coil 

region,  

 
0 0.J T 
 

 (4.65) 

The source field 0T


 can be computed by the Biot-Savart law, which is however too 

computationally expensive to use. Alternatively the source field can be purely non-

physical [D12-D15], besides this fictitious field can be made to be compactly 

supported [D16].  

 

 

Fig. 4.14. Illustration of the current vector potential T0 for stranded circular coil. 

 

        For stranded circular-shaped coil placed in parallel with the x-y place, we have 

the following analytical expression [A36] of the vector potential 0 0,[0,0, ]zT T


 

 

0

0, 0

| | ( ' ),

| | ( ' ), ' ,

0, '
z

J R R r R

T J R r R r R

r R

  


   
 




 (4.66) 

which is shown in Fig. 4.14. It is noted that the support of this source field is a 

simply-connected region comprising the conductor. Another commonly used coil is 
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the race-track-shaped coil, as shown in Fig. 4.15, the source field 0T


 for which can be 

given analytically [A28]. For rectangular coil as shown in Fig. 4. 16, analytical source 

field is also available [D17]. 

 
Fig. 4.15. Illustration of the race-track-shaped coil. 

  

 
Fig. 4.16. Illustration of the rectangular coil. 

 

        For arbitrarily shaped stranded coil with given current density 0J


, the following 

variational equation can be solved in the conducting region cV to determine the source 

field 0T


: 

 
0 0 .

c cV V
T T dV T J dV      
   

 (4.67) 

Note that the above equation is symmetric and compatible [D18], because the current 

density is projected to the curl of edge element space [A46]. For arbitrarily shaped 

solid coil, the following variational equation can be solved in the conducting region 

cV to determine the source field 0T


: 

 
0

1
0,

cV
T T dV


  

 
 (4.68) 

with appropriate boundary conditions [A46]. 
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4.2.4. Handling Nonlinear Materials 

        Since the electric conductivity is piecewisely constant in the conductors, the only 

nonlinear part is contained in the curl-curl operator. In this section the Newton-

Raphson scheme for the nonlinear magnetostatic problem 

 
( ) ,sA J  

 
 (4.69) 

is derived in details.  

        Suppose the resultant nonlinear algebraic equation system is F(A)=p, then the k-

th equation reads (e(i) is an element in the mesh and there are totally NE elements) 

 ( )
1

(||  ||)( ) ,
NE

k ke i
i

F A N A dV


   
 

 (4.70) 

which is obtained by testing with the k-th global edge basis function. For the unknown 

vector potential A


, it is expanded under the edge element basis functions as: 

 1

,
NEdge

i i
i

A A N


 
 

 (4.71) 

where iN


 is the i-th edge basis function and iA  is the tangential component along the 

i-th edge. 

        The elemental Jacobian matrix reads (g, h are integer indices) 

 

( ) ( )

( ) ( )

ge
gh g ge e

h h h

g h ge e
h

F
J N A dV N A dV

A A A

N N dV N A dV
A





  
      
  


     



 

 

  

    (4.72) 

where the first term in the above equation can be calculated easily. For the second 

term, it can be computed as  

 

( , )

1 ( , )
.

2 ( , )

1 ( ) 1 ( )
(2 , ) ( , )

2

1
( , )

h h

h

h h
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A A

A B A
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B AA A

A A
A A

B B A B B A

A N
B B

 



 



   


  

   

  

     
   
   


  


 

 
 

 

 

 (4.73) 
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where 

 2

( / ) /H B H B B H

B B B

     
 

 
. (4.74) 

As in the 2D nonlinear magnetic field case, the derivative /H B   and H for given B 

can be approximated by spline function.  

        As a simple example, an artificial nonlinear magnetostatic problem is solved 

using the developed edge element program. The artificial solution is taken as 

 2 2

[0,0, / 2]

(|| ||) / 2 ,

[0,0, 2 ]

x y T

x y

x y T
s

A e

B e

J e









 
 
  



  (4.75)                     

where the nonlinear B-H relationship is given by 

 

1/4|| || 2 || ||.B H  (4.76) 

When using the Newton-Raphson iteration scheme, the convergence rates are given in 

Table 4.3, where about first-order rate of convergence of the magnetic flux density 

vector B


 can be observed. It should be noted that since the divergence of the MVP A


 

is not specified in (4.75), the solution of A


 is not unique so there is no order of 

accuracy can be observed. It is very different from the 2D case. 

Number of nodes 2294 14338 105172 

L2 error of A


=[Ax,Ay,Az]
T 1.795E-001 2.062E-001 2.208E-001 

1.907E-001 2.002E-001 2.193E-001 
2.031E-001 2.557E-001 2.793E-001 

L2 error of B


=[Bx,By,Bz]
T 2.702E-002 1.494E-002 7.520E-003 

2.790E-002 1.503E-002 7.565E-003 
2.601E-002 1.403E-002 7.052E-003 

Table 4.3. L2 Error of MVP A


 and magnetic flux density B


. 
 

Number of nodes 2294 14338 105172 

L2 error of A


=[Ax,Ay,Az]
T 1.201E-003 5.379E-004 2.561E-04 

1.204E-003 5.266E-004 2.531E-04 
1.784E-003 7.478E-004 3.353E-04 

L2 error of B


=[Bx,By,Bz]
T 2.660E-003 1.478E-003 8.120E-04 

2.769E-003 1.491E-003 8.059E-04 
2.550E-003 1.387E-003 7.417E-04 

Table 4.4. L2 Error of MVP A


 and magnetic flux density B


. 

 

4.2.5. Benchmark Numerical Examples 
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A. TEAM Workshop Problem 20 

        TEAM Workshop Problem 20 is a 3-D magnetostatic benchmark problem and its 

definition can be found in [D19]. The geometry of TEAM problem 20 consists of a 

steel center pole, surrounded by a coil with 381 windings of stranded copper wire, 

which is excited by a direct current. The magnetic circuit is completed by a yoke 

made of the same sort of steel as the center pole. In Figs. 4.17-19, the plan view, front 

view and 3D view of the geometry of the problem are given, where the length unit is 

mm. The magnetic flux density vector in the magnetic circuit using the 3D edge 

element solver is shown in Fig. 4.20, where the finite element mesh is shown in Fig. 

4.21.  

 

Fig. 4.17. Plan View of TEAM 20 Geometry. 

 

Fig. 4.18. Front View of TEAM 20 Geometry (Length Unit: mm). 
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Fig. 4.19. 3D View of TEAM 20 Geometry. 

 

 
Fig. 4.20. Magnetic flux density vector in the center pole and the yoke, when the 

current in the coil is 4500A. 
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Fig. 4.21. Finite element mesh of the problem. 

        To check the accuracy of the developed edge element solver, the forces acting on 

the center pole with different DC excitations are computed using the Maxwell stress 

tensor method [D20] and compared with the measured results. In Fig. 4.22, the finite 

element mesh of the center pole and one layer of elements surrounding the pole for 

force computation are shown. In Table 4.5, the  z-component of the force Fz on the 

center pole is listed when the excitation current is 1000AT, 3000AT, 4500AT and 

5000AT. It can be seen that the numerical results are close to the measured data. 

 

          

Fig. 4.22. Left: Mesh for the center pole; Right: Center pole mesh with the one layer 

of elements surrounding it for force computation by the Maxwell stress tensor method.  

 
DC Excitations (AT) Numerical results (N) Measured Results (N) 

1000 8.08 8.1 
3000 56.5 54.4 
4500 77.3 75.0 
5000 82.5 80.1 

Table 4.5. Force Fz acting on the center pole with different DC excitations. 

 

B. TEAM Workshop Problem 7 

        As the second benchmark, the TEAM Workshop problem 7 [D21, D22] is solved 

in the time domain using the 3D edge element solver. In Figs. 4.23-4.25, the plan, 

front and full 3D views of the geometry are given, where the length unit is mm. It 

consists of a racetrack shaped coil (square coil with 200mm of width, 100mm of 



93 
 

height, 50/25mm of maximum/minimum radius at the corner) driven by a time 

harmonic current (amplitude I = 2742AT, frequency = 50Hz) over an asymmetrical 

conductor (a square plate of 294mm of width and 19mm of thickness) with a hole 

(108mm 108 mm). The conductivity of the aluminum conductor is 3.526 107S/m.  

 

 
Fig. 4.23. Plan view of TEAM 7 geometry. 

 
Fig. 4.24. Front view of TEAM 7 geometry. 

 

 
Fig. 4.25. 3D view of TEAM 7 geometry. 
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        The TEAM workshop problem 7 is solved in the time-domain using the 

Backward-Euler time-discretization scheme (4.64) and the CVP representation of the 

source current density. The size of the problem domain is taken to be 800mm   

800mm  600mm, and homogeneous boundary condition (4.33) is applied to the 

boundary of the cuboid. The FE time-stepping is computed to T= 0.025s from zero 

initial value, where the time step is dt=5  10-4s. The numerical result and the 

measured result of the z-component of the magnetic flux density along the line from 

A1 to B1 is shown in Fig. 4.26. The induced eddy-current in the aluminum conductor 

is also given in Fig. 4.27. In the computation, all the linear matrix equations are 

solved by the GMRES solver with a Gauss-Seidel preconditioner.  

 
Fig. 4.26. Bz along the line from (0mm,72mm,34mm) to (288mm,72mm,34mm). 
 

 
Fig. 4.27. Vector plot of the eddy current induced in the aluminum plate at time T= 

0.025s, where the time step is dt=5 10-4s. 
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C. A skin-effect problem with voltage excitation 

        In the third example, the developed 3D edge element code based on the MVP 

formulation is used to solve a skin-effect problem with voltage excitation in the time-

domain. The problem considered is shown in Fig. 4.28(a), where a sinusoidal voltage 

excitation is applied to the upper end terminal of the conductor while the lower end 

terminal of the conductor is grounded, i.e., the helical solid coil is excited by an 

alternating voltage as sin(wt).  

        The solid coil is made of copper with electric conductivity 5.8 107S/m. The 

diameter of the coil is 3mm, and the dimensions of the problem domain is 40mm

40mm 35mm. One finite element mesh of the helical coil is shown in Fig. 4.28(b). 

In the computation, the linear matrix equations are solved by the GMRES solver with 

a Gauss-Seidel preconditioner. 

        To check the accuracy of the developed 3D edge element code, the software 

package ANSYS Maxwell 3D is used for comparison for the same problem with the 

same problem settings. A global quantity, which is the total current in the solid 

conductor, defined as  

 
( ) ,

S

A
I dS

t
 

    



 (4.77) 

is calculated for each time-step.  

 

  

                                           (a)                                                          (b) 

Fig. 4.28 (a) The problem domain. (b) The finite element mesh of the solid conductor. 
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Fig. 4.29. The total current in the solid conductor for the first 80 time-steps with 

sinusoidal voltage excitation at a frequency of 50Hz. 

 

Fig. 4.30. Total current in the solid conductor for the first 120 time-steps with 

sinusoidal voltage excitation at a frequency of 3000Hz.  

 

        The total current in the conductor versus time when the voltage excitation 

frequency f is 50Hz and 3000Hz are given in Figs. 4.29 and 4.30 respectively with a 

uniform time-step dt=1/f/40s, where one can see that the two results are very close to 

each other. Besides, one can clearly see that the total current in the solid conductor 

decreases when the frequency rises due to skin-effect. Besides, at a frequency of 

3000Hz, both the skin effect and the proximity effect can be clearly seen in the 

conductor as shown in Fig. 4.31. 
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Fig. 4.31. The magnitude of the total current density in the conductor. Both the skin 

effect and the proximity effect can be clearly seen with the frequency of the excitation 

voltage to be 3000Hz. 

 

D. A simple transformer 

        In the last example, a transformer with complex geometry, as shown in Fig. 4.32, 

is analyzed using the 3D A-V potential formulation solver. For this example, the 

primary winding and the secondary winding are both solid conductors with electric 

conductivity 1.0 106S/m. The iron core is linear with relative permeability 1000. The 

radius of the primary winding conductor is 10mm and the problem domain is of size 

500mm 200mm 400mm. 

        Take the excitation frequency to be f=50Hz and use a uniform time-step 

dt=1/f/40s, the magnetic flux density vector in the iron core the total current density 

vector in the primary winding at 10 time-steps later are given in Fig. 4.33 and Fig. 

4.34 respectively.  

 

Fig. 4.32. The geometry of the studied transformer with AC voltage excitation. 
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Fig. 4.33. Magnetic flux vector in the iron core with constant permeability 1000 at 10 

time-steps later. 

  

Fig. 4.34. Current density vector in the primary winding at 10 time-steps later. 

 

        The total current in the primary winding is also studied under two cases. For the 

first case, the secondary winding is open-circuited by adding a thin airgap to the 

conductor. For the second case, the secondary winding is short-circuited by replacing 

the airgap with conducting material. The total current in the primary conductor within 

120 time-steps are calculated and plotted for the two cases. For comparison, the 

results with the commercial software package ANSYS Maxwell 3D are plotted 

together. One can see that the numerical results using A-V edge element solver are 

very close to that obtained by the Maxwell 3D solver, where a MSP formulation is 

used.      



99 
 

 
Fig. 4.35. Total current in primary conductor, when the secondary winding is open-

circuited, compared with ANSYS Maxwell 3D. 

 

 

Fig. 4.36. Total current in the primary winding, when the secondary winding is short-

circuited, compared with ANSYS Maxwell 3D.  

 

 
Fig. 4.37. Comparison of the observed total current when the secondary winding is 

short-circuited or open-circuited. 
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4.2.6. A Low-frequency Approximation to the Maxwell Equations 

Simultaneously Considering Inductive and Capacitive Effects in the 

Time-domain 

 

        Electric motors driven by power electronics are widely used nowadays as 

modern inverters can modulate their output waveforms flexibly to reduce the power 

loss in the electric machines. However, these inverters also create new problems to 

researchers because of their high speed switching operations and repetitive steep 

rising or falling of the pulse-width-modulation (PWM) waveforms. The presence of 

high-frequency signals also makes the transient simulation study of the motor much 

more complicated [D23-D26].  

        For inverter-fed electrical machines, where the machine windings are exposed to 

higher harmonic field components originating from the fast-switching inverter via the 

connecting cable, capacitive effects become relevant in addition. The common-mode 

voltage caused by the inverter in combination with the dielectric insulation of the 

machine windings gives rise to common-mode currents at higher frequencies [D27]. 

To simultaneously study the coupled inductive and capacitive effects, one can solve 

the ungauged potential formulation of the full wave Maxwell system:  

 

 
.
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s
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  

   (4.78) 

        There are other full-wave Maxwell potential formulations proposed by 

researchers,  such as the ghost-field-gauged MVP formulation [D28] and the 

Coulomb-gauged version [D29, D30]. Because there are more DoFs of the method 

proposed in [D28] and the current continuity equation is not explicitly specified (and 

thus maybe improper to be adopted to obtain physically correct solutions) [D29, D30], 

recently in [D31] a stable formulation was proposed in frequency domain to consider 

simultaneously the inductive and capacitive effects. In the formulation of [D31], the 

full wave Maxwell system is solved in the frequency domain, the term 2 A 


 is 

dropped. It is reasonable when the frequency of the excitation is relatively low  [D32].  
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        In this thesis, the following MVP formulation in time-domain for analyzing 

fields considering  simultaneously the inductive and capacitive effects reads  

 

   

 

( )

( ) 0

s
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t t

A

t t
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 (4.79) 

After spatial discretization, the semi-discrete scheme reads 

 

,
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 (4.80) 

Finally, the fully-discrete scheme using backward Euler time-stepping is  
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 (4.81) 

        To test the developed computer program, a capacitor with alternating voltage 

excitation is numerically solved in the time-domain, as shown in Fig. 4.38. The radius 

of the upper terminal of the iron conductor is 1mm; the radius and height of the 

cylindrical dielectric are 5mm and 0.5mm respectively. The conductivity of the iron 

conductor is 106S/m.  

  

Fig. 4.38. The capacitor with alternating voltage excitation. 
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        When the excitation peak voltage Vm=1000V, f=104Hz, the relative permittivity 

of the dielectric 410 ,r   the total terminal current versus time-steps is given in Fig. 

4.39, where a uniform time-step is used and there are 40 time-steps within a period. 

 

 

Fig. 4.39. Terminal total current flowing out of the terminal of the parallel capacitor. 

        For the capacitor considered, one can easily calculate the expected current as  

 

0

4 2
4 40
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   


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    
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 (4.82) 

which can be observed from Fig. 4.39, where the peak current is 0.8699A and the 

current is of cosine wave form. Other parameters are also chosen to test the code, it is 

further observed that the total current varies linearly with both the frequency of the 

excitation and the relative permittivity of the dielectric. So the potential formulation 

(4.79)-(4.81) is validated. 

4.2.7. Coupling EM Field with External Circuit 

        For all the numerical examples given above, the source excitations such as the 

current density or the ESP are all explicitly specified for the conductors. Actually, as 

long as all currents inside the stranded conductors and all solid conductor voltage 
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drops are known, no extra unknowns have to be added to the system of equations. In 

practice, EM devices are usually connected through their terminals to external circuits 

[A32, B2, B3, D15, D33-D35]. As a result, the current or the ESP can’t be directly 

applied as source terms. The analysis of the EM fields driven by circuits requires the 

coupling of FEM with electric circuit analysis to make it possible for the designers to 

perform system level simulation.  

        Based on the observed skin effect in the windings, two conductor models are 

mainly used: 

         (1) Thin (filamentary or stranded) conductors: windings are composed of many 

turns of thin wire, thus specifying the distribution of the current density vector J


. 

Stator windings in most electric machines fall under this category. For such 

conductors, induced eddy currents can be, and typically are neglected. For the case of 

thin conductors, the stranded conductors are included in the non-conducting region. 

And the transient analysis of coupled field-circuit equations can be viewed as a 

sequence of magnetostatic analysis coupled to the circuit equations via the 

specification of the current density vector J


. 

        For a 2D conducting region composed of N filamentary turns distributed 

uniformly over an area S and carrying uniform current i per turn, so the current 

density across the coil section is uniform and can be expressed as  

 
/ .J Ni S  (4.83) 

For 3D stranded conductors, the current density vector can be expressed as 

 
0 .

N
J t i

S

 

 (4.84) 

where 0t


 is the unit vector along the coil direction or the current flow direction. For 

3D field analysis, to get a solenoidal and uniformly distributed current density in an 

arbitrarily-shaped coil is not an easy task [D14, D36, D37]. In practice, the usage of 

inhomogeneous current density distribution obtained by solving the Laplace equation 

within conductor windings is also feasible [D38, D39]. As shown in [D39], the values 

calculated by using inhomogeneous current density distribution are nearly equal to 

those by the conventional method. Furthermore, the results by using inhomogeneous 

current density distribution are also in good agreement with the experiments. 
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        (2) Thick (massive or solid) conductors: windings are typically made of solid 

conducting bars such as the cage rotor bars of induction machines. In solid conductors, 

induced eddy currents must be considered, which results in a nonuniform distribution 

of current density vector J


. For a massive conductor with conductivity  , the current 

density vector is given by 

 
( ).

A
J

t
 

   



 (4.85) 

In 2-D,   is constant over the conductor length and is directly related to the voltage 

drop along the conductor. The total current i in a solid conductor can be found by 

integrating the current density in (4.79) over the cross-sectional surface of the 

conductor, i.e. 

 
( ) .

S

A
i dS

t
 

    

 

 (4.86) 

        Equations for circuits composed of resistors, inductors, capacitors, and voltage 

and current sources can be generated automatically using loop or nodal analysis [A11], 

or using graph-theoretic techniques [D40, D41]. If the machine contains only stranded 

conductors, loop analysis is generally applied where the unknowns in the circuit part 

are loop currents; and if it contains only solid conductors, then nodal analysis is 

preferred where the unknowns in the circuit part are nodal potentials. For devices that 

contain both solid and stranded conductors, the circuit equations are generally 

established using the technique of modified nodal analysis, which avoids current and 

voltage transformations. 

        For stranded conductors, the induced back-EMF are mostly used as the bridge to 

link the magnetic field domain with the electric circuit domain [D33, D42-D44]. For 

solid conductors connected with electric circuits, as has been shown in [D45], the 

voltage of a conductor with skin effect can be prescribed by specifying on the 

electrodes in addition to setting the tangential component of to zero there. So it is 

convenient to set the terminal voltage as the bridge for field-circuit coupling. 

        The field-circuit coupling problem is illustrated in Fig. 4.40, where the finite 

element part is connected with the external circuit with inductance Le and resistance 

Re. In this thesis, six kinds of excitations, which are most frequently encountered, are 

considered, namely, 

        (A) Solid conductor with voltage source;  
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        (B) Solid conductor with total current source;  

        (C) Solid conductor with external circuit source; 

        (A’) Stranded conductor with current source; 

        (B’) Stranded conductor with known voltage source;  

        (C’) Stranded conductor with external circuit source. 

        For (A) and (A’),  there is no need for field-circuit coupling. For (B), one can 

introduce one DoF Vs, the terminal voltage difference, for each conductor. For (C), 

one can introduce two DoFs Vs and I for each conductor. For (B’) and (C’), one needs 

to introduce the current as one extra DoF. 

 

 

Fig. 4.40. Illustration of the field-circuit coupling problems. 

        For case (B) where solid conductors with total current excitation, one can 

introduce one DoF Vs for each conductor, and the fully-discrete finite element scheme 

reads 
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 (4.87) 

where the last equation is discretized from (4.86). Take Fig. 4.41 for example, the 

upper coil terminal is supposed to be with equal-potential 
n

sV  and the lower terminal 

is supposed to be grounded. In fact, it is only the voltage difference that matters. For 

the boundary condition of each node on the upper terminal, the global coefficient 

matrix of (4.87) should be modified as 
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For the lower coil terminal, the Dirichlet BC is treated in the traditional way. 

 

Fig. 4.41. Helical coil example for illustration of the field-circuit coupling. 

        As an example, the helical coil shown above is excited with total current 

100sin(2 50 )I t  , as shown in Fig. 4.42. The computed upper terminal voltage is 

given in Fig. 4.43, which is the same as using the commercial software Maxwell 3D. 

 

Fig. 4.42. Total current excitation to a solid conductor, the current is obtained by post-

processing the field solution. 
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Fig. 4.43. Total current excitation to a solid conductor, the upper terminal voltage of 

the conductor which is extracted from field-circuit coupled model. 

        For case (C) where solid conductors with external circuit excitation, one can 

introduce two DoFs Vs and I for each conductor, and the fully-discrete finite element 

scheme reads 
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where the last equation is discretized from the voltage balance equation 
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Fig. 4.44. Total current in the solid conductor as shown in Fig. 4.41 when it is 

connected to an external circuit with parameters Re=0.01ohm, Le=10mH, and 

sin(2 50 )U t  .  

 
Fig. 4.45. Coil terminal potential of the solid conductor as shown in Fig. 4.41. 

        For case (B’) and (C’) where stranded conductors with voltage or external circuit 

excitation, one needs to introduce the current as one extra DoF, and the fully-discrete 

finite element scheme reads 
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where the last equation is discretized from the voltage balance equation for stranded 

conductors with resistance 0R  
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and the flux linkage  is given by 

 
0d

cV

N
A t V

S
  

 
. (4.93) 

        The numerical example is similar to that in [D46], where the induced back-EMF 

in a stranded coil with voltage excitation is solved using the formulation (4.91). The 

problem setting is shown in Fig. 4.46, where the cylindrical plate above the coil can 

be made of air, aluminum or iron. The thickness of the plate is 1cm and its radius is 

8cm. The inner and outer radius of the coil are 5cm and 6cm respectively, the height 

of the coil is 1cm. The stranded winding resistance is taken to be 1Ohm, and the 

number of turns is 100. The applied voltage excitation is sin(2 50 )U t  . 

  

Fig. 4.46. The numerical example for testing the field-circuit coupling with stranded 

conductor.  

        The plate above the coil can be air, aluminum or iron, so there are three cases to 

be tested: 
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         (1) Air plate, 00, ;     

         (2) Aluminum plate, 7
03.8 10 S/m, ;      

         (3) Iron plate, 5
03.8 10 S/m, 1000 .      

The numerical results of the induced back EMF in the stranded coil are given in Figs. 

4.47-4.49 respectively, where the numerical results obtained using ANSYS Maxwell 

3D are also given for comparison. It can be noticed that the results obtained using 

formulation (4.91) are very close to that of the Maxwell 3D.  

 

 
Fig. 4.47. Test (1), induced back EMF in the stranded coil, air plate above the coil. 
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Fig. 4.48. Test (2), induced back EMF in the stranded coil, aluminum plate above the 

coil. 

 

 
Fig. 4.49. Test (3), induced back EMF in the stranded coil, iron plate above the coil. 

4.3. Summary 

        In this chapter, the 2D FEM for magnetostatic and transient field computation is 

fully described. Second-order nodal elements are used to discretize the MVP A. The 

nonlinear material is handled using the Newton-Raphson iteration. The rotational 

movement of the rotor is handled using the slave-master technique, where a matching 

boundary condition is applied at the sliding surface between the rotor and stator. For 

transient eddy-current fields, a time-stepping process is needed. The backward Euler 

time-discretization scheme is adopted in this thesis since it is absolutely stable.  

        For the solution of the magnetic vector potential in 3D space, since the 

component-wise solution method by nodal element present large error at air-iron 

interface, nowadays the edge element is widely used to discretize vector variables. All 

the three components of the MVP are viewed as a whole and the tangential 

component along the mesh edges are set to be the unknowns to solve. The detailed 

finite element formulation of 3D edge element for static and transient EM fields are 

presented. Extensive numerical examples are given to validate the developed code. A 
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novel solver for analyzing problems with both conductive and  capacitive effects are 

developed and validated. Formulations for field-circuit coupled problems are also 

given and verified  by numerical experiments. 
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CHAPTER 5 

ADAPTIVE FINITE ELEMENT METHODS 

5.1. Introduction to AFEMs And Error Estimates 

        Adaptive finite element methods (AFEMs) are indispensable in the numerical 

computation of engineering magnetic field nowadays [E1-E8]. Indeed, AFEMs can 

obtain solutions with the desired accuracy and lower degrees of freedom (DoFs) and 

hence saving computing time. Generally, the AFEMs can be classified into three 

categories, including the h-refinement [E9-E17], p-refinement [E18-E20] and r-

refinement [E21-E25] methods. These methods can also be used in combination with 

each other, such as the h-r-refinement [E21], h-p-method [E26, E27] and so on.  

        In the h-refinement AFEM, the same type of finite elements (FEs) are being used 

continuously but their sizes are changed. In the p-refinement method, the order of the 

polynomial basis functions is increased adaptively but the mesh element size is kept to 

be unchanged. For the r-refinement, the number of mesh nodes and elements are kept 

constant, but the nodes are repositioned to areas where needed to enhance the 

resolution. 

        Of all the AFEMs, the local h-refinement method is usually simpler and hence 

widely used. As is well known, a suitable computational mesh with well-distributed 

mesh nodes and elements with good quality factor is a key factor for getting accurate 

finite element solution. One key isse is how to determine the regions where needed to 

insert the nodes in order to balance or evenly distribute the numerical error of the FE 

solution, which can be done by a local a posterior error estimate procedure from the 

computed numerical solution. For all other AFEMs, the a posterior error estimate is 

also the most important technical issue to be addressed. It is the error estimator that 

mostly determines the efficiency of the AFEMs.   

        For the h-type AFEM, the a posteriori error estimation is to obtain an estimated 

numerical error from the existing FE solution for each element, which plays an 

important role in guiding the mesh refinement procedures. The ideal error estimator 

should be asymptotically accurate and effective in use, computationally simple and 
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robust with regard to a wide range of applications. Hitherto, fellow researchers have 

proposed many error estimators, such as the norm of the gradient of the solution [E1], 

the jump in the normal derivative at element edges [E1], the error of the constitutive 

relations [E2-E6], the energy-based method [E7] and recently the magnetic flux line 

method [E8]. Other error estimators in literature mainly include the recovery-type 

[E9-E15] and residual-type [E16, E17].  

        The idea of the recovery-type error estimators is to recover or reconstruct the 

potential, the gradient or the flux value to a higher accuracy than the ones obtained 

directly from the FE solution. This recovery process can be obtained only by 

postprocessing the FE solution and the improved solutions are then used as the exact 

solutions. The most well known recovery type error estimator is the ZZ error 

estimator proposed by Zienkiewicz and Zhu [E9], which is based on flux recovery by 

solving local least square problems over discrete patches. The method is relatively 

easy to incorporate into a finite element code and is independent of the problem 

formulation. In practice, the reconstruction process can be replaced by an averaging 

technique using the superconvergent points to obtain the improved nodal gradient 

values. This recovery process is simple if linear FEM is used [E13], however it 

becomes more complicated for high order finite elements [E13, E15] and for interface 

problems [E10, E14]. 

        The residual-type error estimator can be further classified into the explicit type 

and implicit type [E28]. The explicit error estimator involves a direct computation of 

the elemental residuals and jumps at the element boundaries for finding the error in 

the energy norm. In the implicit error estimate, one needs to solve a local Dirichlet or 

Neumann problem on one element (element residual method) or a patch of elements 

(subdomain residual method), and it is more time consuming and more expensive than 

the recovery-type error estimators. Furthermore, to get accurate error estimate, the 

boundary conditions for the local problem must be carefully prescribed [E16, E17]. 

        In the following sections, first a novel convenient error estimator is proposed for 

magnetostatic field computation using second-order nodal FEs. Then an adaptive 

DoFs FEM is proposed to accelerate the nonlinear iteration process in the solution of 

magnetostatic problems. At last, the proposed adaptive DoFs FEM is also used to 
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transient eddy-current field analysis, where the DoFs can be dynamically changing 

within each time-step.   

 

5.2. AFEM for Magnetostatic Problems 

        To ensure the accuracy of the FE solution for magnetostatic problems, adaptive 

mesh refinements are usually needed to get a series of more and more accurate 

numerical solutions converging to the exact solution. This can be done in a standard 

SOLVE-ESTIMATE-MARK-REFINE way [E29]. In practice, the linear FEM is 

usually not accurate enough to resolve the magnetic field and second order FEM is 

necessary nowadays. Besides, the presence of material discontinuities is very common 

in engineering magnetic field problems. Considering the afore-mentioned difficulties 

encountered for the a posteriori error estimate process for high order FEM as well as 

for problems with material interface, a novel estimator for the second-order elements 

is proposed in this section for second-order nodal FEs. Several numerical examples 

are given to show the effectiveness of the proposed error estimator.  

5.2.1. A Proposed Error Estimator 

        For numerical computation of engineering magnetic field problems, the linear 

FEM with piecewise linear basis functions for solving the magnetic potential A is 

usually inadequate, as only piecewisely constant magnetic flux density on each 

element can be obtained. In most applications, it is necessary to use second-order or 

quadratic FEs. For each triangular element e= ijk  in the mesh T of the problem 

domain, denote Ae as the quadratic FE solution and Ai, Aj, Ak as the nodal values of  Ae 

on that element. From the three nodal values Ai, Aj, Ak, it is easy to construct a linear 

interpolation function Aijk on the same element. Then the proposed error estimator is 

computed by the L2 norm of Ae and Aijk to give the elemental error e =||Ae  Aijk||, 

which is very easy to compute and simple to implement. 

        The reason for the proposed error estimator lies in the fact that if the exact 

solution belongs to the quadratic polynomial space, then the FEM solution is actually 

the exact solution and thus this error estimator gives the exact L2 error when 
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approximating the exact solution by linear interpolation. It is simple in practice and is 

expected to work in more general cases. 

        After calculating the error indicators for each element e in the mesh, certain 

percentages of the triangular elements in the mesh with the largest error indicators are 

then refined. The adaptive refinement process is done several times until some 

termination conditions are satisfied. The elements can be refined either by bisection, 

trisection, regular refinement or their combinations. The bisection method is to add a 

middle point to the longest side of the triangle. The trisection method is to add a point 

to the centroid of the triangle. Regular refinement is to divide the triangle into four 

similar sub-triangles by adding three middle nodes to all their edges. These methods 

can be separately used or mixed together to produce satisfactory mesh node 

distribution.  

        In this thesis a unified implementation to allow for arbitrary refinement type is 

used. Firstly, a subroutine is needed to mark the refinement type for each element 

with the largest estimated errors. This can be done by introducing an integer flag to 

indicate the refinement type for each element. For example, 1 is used for do nothing, 2 

for bisection, 3 for trisection and 4 for regular refinement to the element. For all 

elements marked for refinement, another two subroutines, one for adding nodes and 

the other for Delaunay diagonal swapping, would suffice to perform the adaptive h-

refinement process.          

5.2.2. Numerical Examples 

A. An Artificial Numerical Example 

        The proposed method is first applied to an artificial numerical example which is 

a steady state Poisson problem with constant diffusion coefficient 

 
u f  , (5.1)  

on the unit square with the homogeneous Dirichlet boundary condition. The analytical 

solution is chosen to be  

 

2 21000[( 0.5) ( 0.117) ](1 )(1 ) x yu xy x y e      , (5.2)  

and the right hand side function f is calculated by substituting (5.2) to (5.1). Note that 

the solution u has a rapid variation around the point (0.5, 0.117). The ideal 
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computational mesh should have much more nodes which are concentrated around 

that point. 

        The initial mesh composing of 16 elements is shown in Fig. 5.1(a). The 

adaptively refined mesh using the proposed error estimator containing 756 elements is 

shown in Fig. 5.1(b), where it is refined 12 times from the mesh shown in Fig. 5.1(a) 

and each time 30% of the elements are refined using the bisection mesh refinement 

method. The equipotential lines and the surface plot of the FEM solution uh are shown 

in Fig. 5.1(c) and Fig. 5.1(d), respectively (with absolute L2 error 9.6610-7), where it 

is clearly seen that the solution has been sharply resolved by the adaptive FEM.  

 

     
                                    (a)                                                          (b) 

     
    (c)                                                           (d) 

Fig. 5.1. (a) The initial mesh. (b) The FE mesh after 12 times refinement (with 756 

elements). (c) The equipotential lines of the solution u. (d) Surface plot of the FEM 

solution. 
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        To check the effectiveness of the proposed error estimator, the ZZ error estimator 

which is widely used in engineering computation is used for comparison. In Fig. 5.2, 

the same problem computed by FEM with uniform mesh refinement and by AFEM 

using different error estimators are shown, where the red line is obtained by using the 

exact error measured in the L2 norm of the FEM solution to the analytical solution 

given in (2). From the figure one can see the proposed error estimator which is simple 

in implementation is effective in use. 

 

Fig. 5.2. Numerical error of the FEM solution computed on the mesh by uniform 

refinement (green line) and by AFEM with different error estimators, thereby 

highlighting the accuracy of the AFEM. 

B. An Example where the Problem Domain Contains Multiple Materials 

        In the second example, the magnetic potential distribution in a magnetic device is 

solved. The device composes of a permanent magnet (PM) with Hc=8.38105A/m and 

its polarization is along the x axis, two blocks made of ferromagnetic iron material 

with r =1000 and surrounded by air with r =1.  

        The problem setting is as follows. In Fig. 5.3(a), the black region is the PM, the 

two blue subdomains are the ferromagnetic blocks and the other is the air. On the left 

boundary of the problem domain, the homogeneous Neumann condition is used and 

on the other three boundaries the homogenous Dirichlet condition A=0 is prescribed.  

        In Fig. 5.3(b) the initial coarse mesh is shown. In Fig. 5.3(c) the adaptive mesh 

after 8 times using the proposed error estimator (30% of the elements in the mesh are 

refined each time) and the bisection refinement method is shown. The computed 
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magnetic potential is shown in Fig. 5.3(d). From Fig. 5.3(c) and Fig. 5.3(d) one can 

see clearly that the mesh nodes are concentrated in the region where the equipotential 

lines are dense. So the proposed a posteriori error estimator can also work with 

problems containing more than one material conveniently. 

     

                                       (a)                                                    (b) 

     

                                       (c)                                                    (d) 

Fig. 5.3. (a) The material composition of the problem. (b) The initial mesh. (c) The 

adaptive  mesh after 8 refinements (30% of the elements in the mesh are refined each 

time). (d) The equipotential lines of the solution. 
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5.3. Adaptive DoFs FEM 

        The AFEMs for static problems use successively refined meshes to achieve a 

solution with high accuracy. For time-dependent problems or nonlinear problems, 

there are multiple static problems to be solved, either in each time-step or each 

nonlinear iteration step. As a result, it is usually necessary to adapt the mesh by both 

refinement or coarsening. However, it is difficult and tedious to simultaneously refine 

or coarsen the mesh [E30-E32]. In this section a novel adaptive DoFs FEM for 

nonlinear and transient magnetic field analysis is proposed. To illustrate the basic idea, 

first-order linear triangular elements are considered only. Generalization of the 

proposed AFEM to high-order elements and quadrilateral meshes is straightforward. 

        The proposed method incorporates functions of both mesh refinement and mesh 

coarsening. Instead of explicitly eliminating unnecessary nodes in the mesh, the 

proposed mesh coarsening algorithm only needs a single mesh. The procedure is to 

apply constraints to those DoFs with small estimated error. This process avoids 

solution interpolation errors due to changes from a fine mesh to a coarse mesh and can 

be implemented readily. The slave-master technique is adopted to eliminate the 

constrained DoFs in the linear system, which has the same effect as mesh coarsening. 

Unlike the usual slave-master technique applied to multiple meshes, it is generalized 

to be applicable within only one set of mesh. Implementation details of the algorithm 

are presented and numerical examples are tested to showcase the effectiveness of the 

proposed method.  

         

5.3.1. Algorithm to Adapt the DoFs 

        The key idea is to use the longest edge bisection method [C16-C18] for adaptive 

mesh refinement and record the mesh refinement process. All the nodes in the initial 

coarse mesh is set as master nodes, and the nodes later inserted to the middle of the 

edges are set as slave nodes, with their master nodes to be the two ends of the 

corresponding edges. Based on the error estimate, if the DoF associated with a slave 

node is to be eliminated from the unknowns list, an algebraic condition is applied 

there to reduce the total number of DoFs.  
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        The AFEM using adaptive DoFs is both applicable to the numerical computation 

of static magnetic fields involving nonlinear materials [E33] and transient eddy-

current problems [E34]. For nonlinear magnetostatic problems, the resultant algebraic 

matrix equation is nonlinear, which is usually successively linearized by the Newton-

Raphson (NR) method. For static linear problems, the NR algorithm terminates after 

one nonlinear iteration step. This means both linear and nonlinear problems can be 

unified in formulation, the only difference is that iterations are needed for nonlinear 

materials to converge. For transient problems, a linear or nonlinear field needs to be 

solved for each time-step in a time-stepping process. Since the smallest computation 

unit is to advance the problem to a linear iteration step, all the adaptive techniques are 

therefore focused for linear problems in the following discussions. 

A. Error Estimator and Adaptive Mesh Refinement Method 

        For each AFEM computation of transient problems, the FE solution is first 

solved before the error estimator is extracted. The mesh adaptation method is then 

invoked to adjust the mesh according to estimated errors. Mesh nodes are either added 

to those elements with larger error or removed from the mesh if the error of the 

surrounding elements is small enough.  

        As for the error estimator, the ZZ estimator [E9] is used in this work. Although 

the ZZ estimator is computed for the mesh elements, the nodal errors can be obtained 

by averaging these errors on the surrounding elements. For the mesh refinement 

method, the edge bisection method is adopted as mentioned above. A simple mesh 

refinement example by the bisection algorithm is show in Fig. 5.4(a)-(b). 

   
          (a)                                                  (b) 

Fig. 5.4. (a) The initial mesh, element K is marked to be refined. (b) The final refined 

mesh using the longest edge bisection algorithm. 
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B. Imposing Constraints to Slave DoFs 

        When it is necessary to remove unwanted DoFs and decrease the number of 

unknowns in the FE computation, which is very useful in transient field analysis, one 

choice is to perform mesh coarsening by explicitly deleting some nodes from the 

mesh [E30]. Realization of this procedure is however complicated in computer 

implementation. Besides, the mesh data have to be modified frequently and a solution 

projection process from the old mesh to the new mesh is also needed. Such procedure 

may also introduce noise to the solutions. 

        In this thesis, the proposed mesh coarsening process is effectively realized in an 

implicit manner, that means, the actual mesh coarsening function is not executed. The 

mesh data do not need to be updated repeatedly when performing the coarsening 

function. Besides, the proposed mesh coarsening method is also solution-projection-

free and thus there are neither solution data transition noises nor other related errors.  

        The core idea for mesh coarsening is to coarsen the FE space or remove the 

unknowns associated with the mesh nodes without deleting the nodes from the mesh 

explicitly. This can be done by introducing a constraint equation for each node to be 

removed from the mesh. That is, if a node is to be removed from the unknowns list in 

accordance to the error estimator, an algebraic equation which is obtained from the 

variational principle, instead of the original FE equation, is applied to constrain the 

solution value on that node as explained below. 

        In the implementation of the former edge bisection mesh refinement algorithm, 

the newly added nodes are inserted into the rear of the node list of the initial mesh one 

by one. Thus the coordinates of a new node S, and potentially the solution value of S, 

are dependent on those of the two nodes in the initial mesh referred as M1 and M2. If 

the solution around S varies smoothly and if it is also to be eliminated from the 

unknowns list, the following algebraic equation is applied 

 
1 2

2
M M

S

u u
u


 . (5.3)  

C. Node Data Structure in the Adaptive DoF Algorithm 

        To facilitate the management of the master DoFs and slave DoFs, a data structure 

of the mesh node is proposed and described as follows. For any node in the FE mesh, 
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its data members consist of its coordinates (x, y), its geometric Id (Id) in the whole 

node list, its DoF Id (dofId) which indicates whether it is a slave node (dofId = 1 if the 

node is a regular node; dofId = -1 if the node is a slave node), its global equation Id 

(eqId) in the equation list (eqId = 0 if the node is a slave node), as well as the two 

master nodes’ geometric Id m1 and m2 (m1 and m2 are set to be 0 for non-slave DoFs).  

        As a simple example, for the initial mesh and the refined mesh of a unit square 

shown in Figs. 5.5(a) and 5.5(b), where the node with Id = 25 is set to be a slave node, 

the settings for all the data members of the nodes are given in Table 5.1. In summary, 

there is one slave node with Id = 25 in the mesh and there are totally 41 nodes in the 

mesh, which means there are 40 unknowns to be solved. 

     

        (a)                                                         (b) 

Fig. 5.5. (a) The initial mesh (20 nodes). (b) The refined mesh using the longest edge 

bisection algorithm (41 nodes). 
 

Id dofId eqId m1 m2 x y 
1 1 1 0 0 0.0 0.0 
2 1 2 0 0 0.3333 0.0 
… … … … … … … 
20 1 20 0 0 0.2143 0.7719 
21 1 21 10 11 0.0 0.8333 
22 1 22 4 5 1.0  0.1667  
23 1 23 1 12 0.0 0.1667  
24 1 24 6 7 1.0  0.8333  
25 -1 0 2 13 0.4167 0.1535  
26 1 25 3 13 0.5833 0.1535  
… … … … … … … 
41 1 40 14 16 0.3690 0.5965 

Table 5.1. Settings of the data members for all nodes shown in Fig. 5.5(b).  



128 
 

D. Method to Modify the Element Matrix 

        In principle, after performing traditional element analysis process, the algebraic 

constrain equation (5.3) can be incorporated into the global FE equation in a global 

manner as stated in [E35]. However such algorithm cannot be implemented readily 

because the resulting global matrix operations require a lot of memory and is 

computationally very expensive. To ensure the proposed method is useful in practice, 

the constraint equation (5.3) should be realized at an element analysis level with little 

overhead. Fortunately, with the help of the following node data structure, equation 

(5.3) can be assembled into the global matrix easily and conveniently.         

        In this section, the proposed DoF constraining algorithm is briefly reviewed to 

illustrate how element matrix is modified in order to produce the correct global matrix 

equation for the solution of the remaining active DoFs in the coarsened FE space. 

Since the adaptive mesh coarsening is done by imposing constraints to those nodes 

with sufficiently small estimated numerical errors, the triangular element K in the FE 

mesh generally consists of both master nodes and slave nodes. Moreover, the DoFs 

defined on the latter are not present in the list of unknowns. In other words, all the 

DoFs {uK} involved in an element K can be classified either into the slave DoFs {uS} 

or the master DoFs {uM}. All the master DoFs associated with all the three nodes of 

element K include the master DoFs in K {uM} as well as the ‘active’ master DoFs of 

{uS} which are outside {uK} [E36]. 

        For simplicity, the three-node linear triangular element is taken to illustrate the 

slave DoFs elimination idea. High order FEs can be treated in a similar manner. In the 

element analysis process of element K, the traditional element matrix Se of size 3 3 is 

computed first. For the master DoFs {uM} in element K, the entries in the modified 

element matrix eS
~

 corresponding to them are invariant. The main technique is to 

calculate the element entries corresponding to the slave DoFs {uS} in the modified 

element matrix and distribute their contributions to the global FE equation correctly. 

This can be done by properly modifying the traditional element matrix and global 

assembly process.  

        As shown in the following example, by using the proposed data structure of the 

mesh node, the DoF constraining algorithm proposed in this work can be realized 
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readily in an element level without adjusting the global matrix profile for the slave 

DoFs [E35]. The method used to remove slave DoFs is basically the same as that used 

in [A37, E37], where the element matrix transformation method is used to address the 

matching condition on the circular sliding interface between the rotor mesh and stator 

mesh.  

        In this work, it is shown that the idea of element matrix transformation in [A37, 

E37] can be used within only a single mesh to remove the unused DoFs. Besides, the 

resultant modified element matrices using the method are symmetrical. As a simple 

example of the proposed DoF constraining algorithm, the procedure to modify the 

element matrix and the element right hand side (RHS) using the transformation matrix 

is shown below.  

        For element K as shown in Fig. 5.5(b) which has nodes with Ids {25, 13, 17}, the 

node with Id 25 is a slave node and it is constrained by u25 = (u2+u13)/2. It can be seen 

that the following relationship between {uK} = {u25, u13, u17} and the set of all master 

DoFs for {uK} (in this case is the set {u2, u13, u17}) is satisfied: 
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u u
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               

 .  (5.4)  

Then the element matrix Se (of size 3 3) is transformed into a 4 4 matrix 

 
T

e eS T S T ,  (5.5)  

and the element RHS vector fe (of size 3 1) is transformed into a 4 1 vector 

 
T

e ef T f .  (5.6)  

        Subsequently the transformed matrix (5.5) and the transformed RHS vector (5.6) 

are assembled into the global matrix and the global RHS vector, respectively, where 

the global row and column indices are the global equation indices corresponding to 

{u2, u13, u13, u17}. It is not difficult to see from (5.5) that by using this matrix 

transformation method, the symmetry property of the original system will be upheld. 

For general cases (quadrilateral meshes, higher order FEs, higher-dimensional 

problems), the element matrix and RHS can be assembled in the same way. After 
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solving the resultant global FE equation, the solution for the slave DoF u25 can be 

recovered by averaging its master solution values u2 and u13 according to (5.3). 

E. Method for Handling Multiple-level Slave Nodes 

        In successive mesh refinement processes, the meshes of all the refinement steps 

are hierarchical. As a result, a slave node to be removed from the DoF list can be a 

multiple-level slave node, whose master nodes are slave nodes of some nodes in a 

higher level mesh. In other words, a slave node may depend on the master nodes of 

different hierarchy levels. In this case the node data structure as introduced above can 

be slightly modified to account for this problem. 

        By denoting l as the mesh node hierarchy number, set l=0 for the initial mesh 

nodes and l=1 for the nodes inserted in the first mesh refinement. Then for a multiple-

level slave DoF, the transformation matrix T in (5.4) can be calculated in the similar 

way as that for the single-level slave DoF. Here all the master nodes of a multiple-

level slave node S are found recursively and then sorted according to their hierarchy 

number l as {{M0}, {M1}, ...,{ML}}, where L is the maximum refinement level and 

the set {Ml} denotes all l-level master nodes for the slave node S. Then the algebraic 

constraint equation 

 1
0 { } 2l

L
M

S l
l M M

u
u 

 

   ,  (5.7)  

is imposed for uS.  

5.3.2. Validating the Proposed Algorithm 

        In this section, two simple examples are used to validate the proposed algorithm, 

including artificial problems with linear function solution and polynomial solution. 

A. A very simple example 

        To check the DoF constraining algorithm, the first example is to solve the 

Poisson equation with exact solution u=x+y. For this example, the solution contour 

lines are parallel and uniformly distributed, it is very easy to see whether the slave 

DoFs are correctly handled. The mesh is shown in Fig. 5.5(b), and the nodes with Id 

greater than 20 are set as slaves. There are 21 constraints hence only an equation with 
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20 unknowns needs to be solved.  From Fig. 5.6(b), it can be seen that the contour 

lines is the same as Fig. 5.6(a) without any slave DoF. 

  

                                  (a)                                                               (b) 

Fig. 5.6. (a) The solution contour lines without slave DoF. (b) The solution contour 

lines with 21 slave DoFs. 

B. A Linear Poisson Problem 

        In this example, the problem is a Poisson problem with exact solution to be 

 
(1 )(1 ).u xy x y    (5.8)  

To check the algorithm, the nodes in the mesh shown in Fig. 5.5(b) with Id greater 

than 20 are set as slaves. The L2 error of the numerical solution obtained using the 

mesh shown in Fig. 5.5(a) is calculated as 8.16 10-3, while the L2 error calculated on 

the mesh as shown in Fig. 5.5(b) with 20 constraints is 7.74 10-3. Note that the result 

is reasonable, because the meshes shown in Fig. 5.5(a) and Fig. 5.5(b) are nested, the 

corresponding finite element spaces are also nested.  

 
Fig. 5.7. The solution surface plot with 21 slave DoFs (41 nodes in the mesh). 
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Fig. 5.8. The solution surface plot with 300 slave DoFs (598 nodes in the mesh). 

        The surface plot of the calculated solution on the mesh as shown in Fig. 5.5(b) 

with 20 constraints is shown in Fig. 5.7. When there are 300 slave nodes in a mesh 

having 598 nodes, the solution contour plot is shown in Fig. 5.8, where the L2 error of 

the solution is accuracy is 5.714 10-4. Hence the correctness of the DoF constraining 

algorithm is validated.  

5.3.3. Application to Nonlinear Static Problems 

        To check the usefulness of the algorithm for engineering problems, the TEAM 

workshop problem 25 [D9] is solved using the proposed AFEM. The problem domain 

and the B-H curve for the nonlinear material are shown in Fig. 5.9 (a) and Fig. 5.9(b) 

respectively. The computed potential lines and the dofId plot of the mesh nodes are 

shown in Figs. 5.10(a) and 5.10(b) respectively, where there are totally 6246 nodes in 

the mesh.  

        In the computation, the NR iteration process terminates after 7 times iteration 

with the relative residual error 1.7  10-5. During each NR iterative step, there are 

about 4900 unknowns to be solved in the linearized equation, hence about 1350 DoFs 

are constrained. It is estimated that roughly about 20% of the CPU time can be saved 

using the proposed adaptive finite element algorithm than using traditional FEM. 

Furthermore, it is not difficult to see that the proposed technique can be also directly 

applied to transient field analysis.  
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proposed adaptive DoFs algorithm to show its effectiveness. The equation to be 

solved reads 

 

2500( ( ))( , , ) cx x tu x y t e  
 

,  (5.9)  

where  

 
( ) (0.5 0.3cos( ),0.5 0.3sin( ))cx t t t  


,  (5.10)  

and homogeneous Dirichlet boundary condition  

 
( , , ) 0, ( , )u x y t x y  ,  (5.11)  

is applied on the boundary of the domain   = [0,1]2. The problem (5.9)-(5.11) is then 

solved for t [0, 2π] with a uniform time step / 20t   , where only one mesh 

containing 4331 nodes is used and the adaptive DoFs algorithm is applied for each 

time step. The numerical solution contour figures and the DoF distribution figures are 

shown Figs. 5.11(a)-5.11(h) at four selected time instants, namely, t = 0, t = π/2, t = π 

and t = 3π/2. 

        From Figs. 5.11(a)-5.11(h) one can see that the proposed adaptive DoFs 

algorithm can dynamically track the peak of the solution in a fixed mesh. The DoFs 

are kept in the region where the solution varies rapidly while in smooth region they 

are removed by imposing constraints. For all the selected 4 time instants, There are 

about 1400 slave DoFs for each time step and about 30% computational time is saved, 

when compared to traditional FEM. It is also easy to adapt the DoF in each time step 

for the proposed adaptive DoFs, when compared to the adaptive method used in [E32], 

for time-dependent problems. 

 

 

                                       (a)                                                     (b) 
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                                       (c)                                                     (d) 

 
                                       (e)                                                     (f) 

 
                                       (g)                                                     (h) 

Fig. 5.11. (a) The solution contour plot at t=0. (b) The computational mesh and the 

dofId at t=0 (1385 slave DoFs). (c) The solution contour plot at t= π/2. (d) The 

computational mesh and the dofId at t= π /2 (1413 slave DoFs). (e) The solution 

contour plot at t= π. (f) The computational mesh and the dofId at t=π (1392 slave 

DoFs). (g) The solution contour plot at t=3 π/2. (h) The computational mesh and the 

dofId at t=3 π/2 (1412 slave DoFs). For Figs. (b), (d), (f) and (h), the red color means 

master nodes and blue color means slave nodes. 
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B. Accelerating the Steady-state Solution Process in Time-domain  

        The proposed adaptive DoFs FEM can be applied to accelerate the calculation of 

the steady-state solution in time-domain. In [E38], the authors have proposed four 

novel techniques to accelerate the transient analysis process to reach the steady-state 

using time-stepping FEM. The adaptive DoFs FEM can be another choice to do this. 

        For illustration, the above TEAM workshop problem 30A [D11] is used as an 

example to calculate the transient torque curve versus time when the rotor rotates at 

1200rad/s. Before the induction motor reaches its steady-state, the transition process is 

usually not important since the steady-state performance is mainly concerned. In the 

numerical computation, a coarse mesh is first used at the beginning of the time 

stepping by using the proposed multiple-level DoFs constraining algorithm.    

        For this example, two-level slave nodes are applied (5804 DoFs in the FE 

equation) when the average dc component of the solution |Xdc(t)| 10-6
 [E38]. When 

|Xdc(t)| <10-6, the solution is close to the steady-state, the mesh containing 14538 

nodes is used to continue the time-stepping process. By using the adaptive DoFs FEM 

and the initial coarse mesh technique by setting multiple-level DoFs, the steady-state 

toque is calculated as -2.1257Nm, which is almost identical with the result given in 

[A35]. The transient torque curve versus time is given in Fig. 5.12. At last, the total 

computing time for this example is reduced to about 48% of that needed for 

traditional FEM, which showcases the effectiveness of the proposed adaptive DoFs 

FEM when used to compute the steady-state solutions. 

 

Fig. 5.12. The torque of the rotor versus time for TEAM workshop problem 30A, 

where the rotor speed is 1200rad/s. 
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5.4. Summary  
 
        AFEMs are very useful numerical techniques that can be used to get more 

accurate results given the same DoFs or attain the same accuracy with less DoFs. In 

this chapter, an error estimator was proposed that is very effective to use for problems 

with multiple materials. The effectiveness of this error estimator is also compared 

with classical ones. Then an adaptive DoFs FEM was proposed where only one set of 

mesh is used in the whole computation process, which can be applied to each 

nonlinear iteration step or each time-step for transient field analysis. Numerical 

examples are presented to illustrate the advantages of the proposed method. 
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CHAPTER 6  

NUMERICAL METHODS FOR PROBLEMS WITH 

HIGH SPEED MOVING CONDUCTORS 

6.1. Field Analysis in High-speed Moving Conductors 

        Solid rotors are commonly found in induction motors and magnetic brakes [F1-

F4]. For these rotors with cylindrical shape, the material configuration and property of 

the rotor are invariably constant along the rotational direction. If the Lagrangian 

formulation is used to model rotational movement, one has to generate multi-meshes 

in the meshing process and special techniques are needed to match the solution on the 

interface between the stator and the rotor of these devices [F5-F8]. To enhance the 

accuracy of the numerical solution of the magnetic fields between the stator and the 

rotor, recently a novel slave-master technique which has more slave modes than the 

master nodes on the sliding surface is proposed [F9]. 

        To overcome the difficulties when using multiple meshes to model motion in the 

Lagrangian formulation, it is preferable to use the Eulerian formulation, where only a 

fixed mesh is needed for the modeling of eddy-current phenomena to include motion 

effects in cylindrical solid rotors. In the Eulerian description of motion, the potential 

formulation of the eddy-current equation for these devices including motional effect 

can be expressed in time-domain as [F3] 

 
( ( ) (| |) ) ,  ( , ) (0, ]t s fA f A A A J x t T        
 

,  (6.1)  

together with the homogeneous Dirichlet boundary condition 

 
| 0A   ,  (6.2)  

and the initial condition 

 
0 0| ( )tA A x 


.  (6.3) 

where   is the boundary of the problem domain  ; Tf is the stopping time of the 

analysis; A is the axial component of the magnetic vector potential;   is the electric 

conductivity of the conductor; v


 is the velocity of the rotor;   is the magnetic 

reluctivity; the excitation term sJ  is the current density of the applied source. 
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        The above eddy-current equation is of elliptic-parabolic type, where in the 

insulating regions with 0 , the magnetic field will respond instantaneously to the 

excitation, while such response takes some time in conducting regions with 0 due 

to the presence of induced eddy currents. When the rotor rotates at high speeds, in the 

conducting region with positive conductivity, the governing equation is a convection-

diffusion equation with dominated convection coefficient. It is well-known that the 

solutions of this type of equations usually contain sharp and narrow transition layers 

which may also evolve with time [F5-F8].  

        In order to well resolve these local layers effectively, it is too computationally 

time-consuming and wasteful to use uniformly refined meshes and a much better 

choice is to track the sharp layers by concentrating the mesh nodes in layers with 

sharp changes and dynamically reposition the mesh nodes to track these layers with 

time. This is usually referred as the moving mesh method [F10]. However, an extra 

governing equation, referred as the moving mesh partial differential equation 

(MMPDE) to determine the motion of the mesh nodes, has to be solved besides the 

physical equation concerned. In [E30] the adaptive mesh finite element method, 

which allows for adaptive mesh refinement as well as mesh coarsening for transient 

magnetic field analysis, is adopted. However this is too complicated to implement in 

software. In this thesis, three numerical methods are proposed to capture the thin 

eddy-current layers efficiently, including the (adaptive) Discontinuous Galerkin 

Method (DGM), the Characteristic Galerkin Finite Element Method (CGFEM) and 

the Operator Splitting Method (OSM).   

 

6.2. Discontinuous Galerkin Method 

        During the past decades, the discontinuous Galerkin (DG) method for the 

numerical solution of hyperbolic partial differential equations (PDEs), and related 

local discontinuous Galerkin (LDG) method for parabolic PDEs and elliptic PDEs, are 

recognized to be effective numerical tools to address time-dependent or steady-state 

convection-dominated problems [F11-F13]. Moreover, these methods can be realized 

for adaptive algorithms easily [F13]. For second order convection-diffusion problems, 
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the LDG method can treat the convective term effectively by suitably defining the 

numerical fluxes in the scheme. The main feature of the LDG method is that it 

requires no continuity across interelement boundaries. For convection dominated 

problems, the LDG method is a good choice because the upwinding stabilization 

mechanism has been built naturally into the method by the definition the numerical 

fluxes.  

6.2.1. Some Notations 

        For convenience of discussion and without loss of generality, only two-

dimensional (2-D) problems are considered and the notations adopted are introduced 

here. Define the k-th order discontinuous finite element space as 

 
2{ ( ) : | ( ), }k

h K hV u L u P K K T      , (6.4)  

where   is the problem domain which is a bounded region in R2; Th is a mesh 

triangulation of the domain  ; h is the maximum mesh element diameter of the 

triangulation. 

        Taking any two neighboring elements K   and K   from Th, then for the common 

edge e K K    , n  and n  are, respectively, the unit outward normal vectors 

pointing out to K   and K   at any point of  e as shown in Fig. 6.1. Denote by Eh the 

set of interior edges of the mesh Th. Let w  be the respective trace of w  from the 

interior of K  . Define {{}} , [[ ]]  be the average value and jumping value of related 

function at x e  

 

{{ }} ( ) / 2, {{ }} ( ) / 2

[[ ]] , [[ ]]

u u u q q q

u u n u n q q n q n

   

       

   

     

  
       , (6.5)  

 
Fig. 6.1.  Illustration of the mesh notations for the DG method. 
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6.2.2. LDG Method for A Steady-state Eddy-current Problem
 

 

        In this section, the formulation of a LDG method is presented for a steady state 

eddy-current problem including motion effect, for which the control equation reads 

 gu

ukufu c




:

0)(: 22


. (6.6)  

To adopt the LDG method for numerical solution, the PDE in (6.6) is first rewrote 

into the mixed form as 

 2( ) 0c

q u

q f u k u

 

   


 , (6.7)  

The LDG scheme for (6.7) reads [F14] 

 
2

ˆ

( )

ˆˆ

h h hK K K

h h cK K K

hK K

q wdV u wdV u w nds

q vdV f u vdV k uvdV

vq nds vf nds



 

      

    

   

  
  
 

    



 
, (6.8) 

for any 2( , ) h hw v V V 


, where ˆhu , ˆhq and f̂  are the numerical fluxes which are 

defined by 

 
11 12

12

1ˆ ( ( ) ( ) [[ ]])
2

ˆ {{ }} [[ ]] [[ ]]

ˆ {{ }} [[ ]]

h h h h

h h h

f n f u n f u n u

q q C u C q

u u C u

      

  

 

   

 


, (6.9)  

in the interior of the domain and by 

 
11ˆ ( ) ,on

ˆ ,on
h h h

h

q q C u g n

u g

    
 

 
, (6.10)  

on the boundary of the domain  , where   is an estimation of the biggest eigenvalue 

of the Jacobian ( / )u f n  
 

, 11 (1 / )C O h  and 12C


 is a vector in 2R  of Euclidean 

length 1/2. The definition of the numerical flux f̂ n


 on   can be found in [1]. In 

this thesis the numerical flux f̂  is simply the local Lax-Friedrichs numerical flux and 

it can also take up other forms [F14]. 

        The TEAM workshop problem 9 [F15, F16] is solved as a further verification of 

the proposed methodology. The geometry of this problem consists of an infinite 
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nonferromagnetic material with a 28 mm diameter cylindrical bore in it. A single loop 

of 24 mm in diameter moves inside the bore and carries a current of 1 A. The 

magnetic conductivity of either material is σ = 5.0×106 S/m. The quantity of interest is 

the magnetic flux density along the line La of r = 13 mm illustrated in Fig. 6.2 at 

different velocities of v = 0, 10, 100 m/s. 

 

 

Fig. 6.2.  Illustration of TEAM problem 9. 
 

        The mathematical model of this problem is a steady state axisymmetric problem. 

Due to rotational symmetry along the axis of the cylindrical bore, the constituent 

vector of function A


 only has the  -component A . For simplicity A  is denoted as 

A, and the reduced two-dimensional problem can be expressed in its Euler formulation 

in cylindrical coordinates ( , , )r z  [F16, F17]: 

 

1 ( ) 1 1rA A A
v J

r r r z z z 
 

      
            

, (6.11)  

where   is the magnetic permeability of the media, and J  is the  -component of 

the applied current source density.  

        In this thesis, the diameter of the circular cross section of the current loop is 

taken as 1 mm, because in our numerical computation the results are almost not 

affected by this value. The rectangular solution domain in (r, z) plane is taken to be [0 

mm, 70 mm] in the r-direction, and [-200 mm, 200 mm] in the z-direction as in [F15]. 

The rectangular mesh used for the LDG computation is shown in Fig. 6.3 (a), where a 

total number of 50 50 mesh points are used and of which 10 10 mesh points are 

located in the loop cross section domain where the source current density exists.  

        The equal magnetic potential lines for the LDG solution of A in (10) with v = 0 

m/s is shown in Fig. 6.3 (b). The r- and z- components of B A   of the LDG 

solution on the line La shown in Fig. 6.2 are given in Fig. 6.4 (a) and 6.4 (b), 

respectively. It can be seen clearly that the numerical solutions agree well with the 

experimental results.  
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        The LDG method can cope with large velocities as well. The numerical results 

for the current loop moving at velocity of v = 10 m/s and v = 100 m/s are illustrated in 

Fig. 6.3 (c) and 6.3 (d) for the equal potential lines of A. In Fig. 6.5 and Fig. 6.6, the r- 

and z- components of B are shown and it can be seen that the LDG solutions agree 

very well with the experimental data for these high speed velocity cases. 

    
              (a)                           (b)                                (c)                               (d) 

Fig. 6.3.  (a) The mesh for LDG computation. (b) The equal potential lines of A at v = 

0 m/s. (c) The equal potential lines of the LDG solution of A at v = 10 m/s. (d) The 

equal potential lines of the LDG solution of A at v = 100 m/s. 

 

(a) 
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(b) 

Fig. 6.4.  (a) The r- component of B on La of the LDG solution for v = 0 m/s. (b) The 

z- component of B on La of the LDG solution for v = 0 m/s. 

 

Fig. 6.5.  The r- and z- components of B on La of the LDG solution for v = 10 m/s.  

 

Fig. 6.6.  The r- and z- components of B on La of the LDG solution for v = 100 m/s. 
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6.2.3. The DGM for Eddy-current Problems 

        The definition of the DG scheme for time-dependent eddy-current equation (6.1) 

is following the same way given in [F18]. Let Ah be the DG approximation of the 

unknown magnetic potential A in the space Vh, then multiply (4) by an arbitrary test 

function vh in the same space Vh and integrate by parts, the semi-discrete DG 

formulation can be obtained as follows 

 
, ( ( ), ) ( ( ), ) ( ( ), )h

h h h h h h h

A
v a A t v b A t v L A t v

t 


      
, (6.12)  

where the definitions of the operators a (u,w), b(u,w) and L(u,w) are given by 

 

0

0( , ) [[ ]][[ ]]
| |

{{ }}[[ ]] {{ }}[[ ]]

h h

h h

nK e
K T e E

e e
e E e E

m
a u w u wdV u w ds

e

u w ds w u ds

 

  

 

 

    

  

  

  
, (6.13)  

 
ˆ( , ) ( ) [[ ]]

h h
K e

K T e E

b u w f u wdV u w ds
 

     


, (6.14)  

 
( , ) ( )sL u w J u wdV


  , (6.15)  

where |e| is the length of the edge e, û  is the upwind convective flux which can also 

take other forms as given by [F11], m0=1 and n0=1 are stabilization parameters. In this 

thesis the parameter   is set to be 1 and the resultant DG scheme is actually a non-

symmetric interior penalty Galerkin method. 

        The nonlinear reluctivity in the DG formulation can be solved using traditional 

Newton-Raphson iteration method. At the starting time t=0, the initial value given by 

(6) is projected onto the DG space Vh. For time discretization of (9), the backward 

Euler scheme is used. 

 

6.2.4. Adaptive DGM for Transient Field Analysis 

        For transient eddy-current problems, to capture the sharp solution fronts 

accurately and try to equi-distribute the numerical error on each element, each 

triangular element may be refined or coarsened according to the estimated elemental 
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errors at each time-step. In this thesis the elemental error estimator given in [E30] is 

used to determine how to adapt the mesh.  

        Suppose K  is the calculated elemental error indicator, then every N time-steps 

later (N=30), the mesh is adapted in the following way: for each mesh adaption, first 

all the error indicators are sorted in an ascending order and then 30% of the elements 

with the largest errors are marked to be refined while 10% of the elements with the 

smallest errors are marked to be de-refined. In order to prevent the mesh from 

changing too drastically, the 1-irregulerity rule is enforced to maintain the quality of 

the mesh, where the refinement level number of any two edges in the same triangular 

element are not greater than 1 [F19]. 

        For algorithm implementation, the parent-children mesh data structure for the 

nonconforming adaptive mesh is adopted. In computation, if an element K1 is labeled 

to be refined, then this element itself is deactivated and its four children elements K11, 

K12 K13, and K14 are activated and vice versa, see Fig. 6.7. A sample nonconforming 

mesh with hanging nodes is also shown in Fig. 6.8.  

        After obtaining the new mesh, the solution on the old mesh is then projected onto 

the new mesh to continue the time-stepping computation process. To enhance the 

stability of DG scheme for convection-dominated problems, the slope limiter is also 

used to adjust the obtained numerical solution at each time-step [F20]. 

 

Fig. 6.7.  A simple example illustrating the refinement and de-refinement operations. 

 

Fig. 6.8.  A sample nonconforming mesh. 
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6.2.5. Application to TEAM Workshop Problem 30 

        A benchmark problem with a moving interface is solved by using the adaptive 

DG method. The problem domain is [-1,1] [-1,1] and the control equation is given by 

 

2 2 2 2

2 2

1

2 2 Re

u u u u u

t x y x y

         
                 

, (6.16)  

The exact solution is given by the following equation 

 

1 Re
( , , ) {1 tanh[ ( )]}

2 4
u x y t x y t    . (6.17)  

        Take Re=1000 and compute to Tf=1.0, the meshes and the corresponding 

solution at t=0, t=0.5 and t=1.0 by using P2 DG basis functions are shown in Figs. 6.9-

6.11. From them one can clearly see that the sharp moving interfaces at different time 

instants have been well-resolved. 

   
                                       (a)                                                     (b) 
Fig. 6.9. Adaptive mesh and solution contour at t=0. 
 

   
                                       (a)                                                     (b) 
Fig. 6.10. Adaptive mesh and solution contour t=0.5. 
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         (a)                                                     (b) 

Fig. 6.11. Adaptive mesh and solution contour t=1.0. 
 

        Select different rotation speeds, the magnetic fields are computed and the torque 

is also calculated to Tf=100ms for both problems. The torque errors of the DG method 

(P2 DG basis functions are used and about 3700 nodes in the mesh) between the 

analytical values are shown in Fig. 6.12 and Fig. 6.13, respectively. For comparison, 

the results given in [A35] using the traditional FEM are used as reference solutions. 

Once can clearly see that when the rotor is rotating at high speeds, the torque 

calculated by using the adaptive DG method is more accurate than using the FEM. 

 

 

Fig. 6.12. Torque errors of the three-phase motor of the TEAM workshop problem 

30A using DG and FEM for different rotor speeds. 
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Fig. 6.13. Torque errors of the single-phase motor of the TEAM workshop problem 

30B using DG and FEM for different rotor speeds. 

 

6.3. Characteristic Galerkin Finite Element Method 
         

        In this section the Characteristic Galerkin Method (CGFEM), which needs only 

minor modification to the widely used FEM formulation, is used for the numerical 

solution of transient eddy-current problems with high rotor speed. Numerical 

experiments are also carried out to illustrate the effectiveness of CGFEM. 

 

6.3.1. Introduction to CGFEM 

        CGFEM combines the FEM for spatial discretization and the backward-Euler 

method for temporal discretization of the time-dependent convection-diffusion 

problem defined in (6.1). To introduce the scheme of the CGFEM, suppose the 

convection term has the following form  

 
( ) ( , ),x yf A vA v A v A 
 

 (6.18)  

then the weak problem of (6.1) is to find a solution A in the trial space U  

 
s

A
wdx v Awdx A wdx J wdx

t
  

   


     

   
    

, (6.19)  

for any test function w in the test space U at any time t.  
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        For all numerical methods, an important issue is to define the unknowns to be 

solved and establish the algebraic linear equation of the original problem. For 

CGFEM, to define the unknowns, the domain   is divided into a set of triangular 

elements containing N nodes at which the degrees of freedom (DoFs) are defined. In 

the following numerical computation process, the equations of (1)-(3) are solved in 

the N-dimensional finite element space UN, which is a subspace of U to which UN 

converges when N approaches infinity. The unknown function A can be represented in 

the approximation space UN as  

 1

( )
N

i i
i

A A t 


  , (6.20)  

where 1{ }N
i i   are the basis functions of UN.  

        For any time t>0, one substitutes (5) into (4) and, assuming it is valid for each of 

the basis functions 1{ }N
i i  , then a system of ordinary differential equations (ODEs) 

consisting of N components is obtained as follows 

 

( )
( ) ( )

dA t
M KA t F t

dt
 

  
, (6.21)  

where 1 2( ) { ( ), ( ),..., ( )}T
NA t A t A t A t


 is the column vector of all unknown nodal 

values (at t=0, (0)A


 is calculated from the initial condition (3)), M is the mass matrix, 

K is the stiffness matrix and ( )F t


 is the source vector.  

        To discretize the ODEs (5) for the temporal variable t, a uniform time step size 

t =T/Nt is used and the time levels are given by tn=n t , n=1, 2, …, Nt. In practical 

engineering computations, the backward Euler scheme which is unconditionally stable 

is widely used and which reads 

 

1n n
n nA A

M KA F
t


 



   
. (6.22)  

        Based on the method of characteristics, the main idea of the CGFEM is to adopt 

a backward tracing method by looking at which point, moving along the 

characteristics starting from t=tn-1, that reaches the mesh node x


 at time level t=tn. 

For the model equation (1), in order to solve for the solution of A at the n-th time level 

An, the first two terms of (1) are approximated by [F21, F22] 
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t t

A A A X
v A

t t
  
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  

 
 

, (6.23)  

where the symbol “  ” is an operator which has similar meaning as the composite 

function and 

 
1

1 1( ) ( , ) ( ; , )n
n n nX x x v t x dt X t t x
   

    
, (6.24)  

is an Euler explicit approximation of the characteristics 1( ; , ), [ , ]n n nX t t x t t t
 

 is 

determined by 
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v t X t t x
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X t t x x





   

  
, (6.25)  

In short, it is noted that the characteristic curve ( ; , )nX t t x
 

 is composed of the 

departure point at time t of a particle that arrives at mesh node x


 at time tn. Finally, 

the CGFEM scheme for updating the solution from the (n-1)-th time to n-th time reads 

 

1 1n n n
n n

s

A A X
wdx A wdx J wdx

t
 
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  


   

  
   

, (6.26)  

for any test function w  in the finite element space UN. 

 

6.3.2. Application to An Artificial Problem 

        In this section, the performance and effectiveness of the CGFEM method are 

illustrated by several examples.  

        Firstly, a convection-diffusion problem, defined on the half unit circle with a 

large Peclet number (the convection coefficient is p=1000 and the diffusive 

coefficient is 1.0), is solved using the CGFEM. The control equation of the example is  

 

2 2

2 2
0

A A A A
p

t x x y

   
   

   
, in 2 2{( , ) | 1, 0}x y x y y     , (6.27)  

the boundary conditions are 

 
( , ) 1A x t 


, on 2 2
1 {( , ) | 1, 0}x y x y y     , (6.28)  

 

( , )
0

A x t

y







, on 2 {( , ) | 1 1, 0}x y x y      , (6.29)  

and the initial condition is A=0. 
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        With a maximum mesh size of 1/30, the computed solution using the CGFEM at 

stopping time 1/p is shown in Fig. 6.14 (a). In Fig. 6.14 (b), the numerical result on 

the diameter is also shown. It can be seen that the boundary and internal layers of the 

solution have been well-resolved by CGFEM without oscillation. It is noted that if 

Standard Galerkin FEM (SGFEM) is used, the mesh size needs to be about 1/1000 

(about two million nodes in the mesh) to ensure there is no spurious oscillation in the 

computed solution [F23]. It is obviously advantageous to use CGFEM rather than 

SGFEM for convection-dominated problems, as much less computer resource is 

needed by the former.       

   

  

                                  (a)                                                               (b) 

Fig. 6.14. (a) The contour lines of the numerical solution at time T=1/1000 with 

p=1000. (b) The numerical solution on the diameter of the unit circle. 

 

        In the second example, the Peclet number is increased to an extremely large 

value of p=4000. Figs. 6.15(a)-(b) show the numerical results at stopping time 1/4000 

with a maximum mesh size 1/100. It can be seen that the CGFEM still works well to 

produce non-oscillatory solution. From Figs. 6.14(a) and 6.15(a), it can be seen that as 

the Peclet number increases, the boundary and internal layers become thinner and 

thinner. Actually, it is these steep fronts appearing in convection-dominated problems 

that undermines the efficiency of SGFEM. However CGFEM still works well for 

convection-diffusion problems with large Peclet numbers and relatively small DOFs. 

Indeed, it is believed that the proposed method can efficiently and accurately solve 

problems with dominated convection terms. 
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                                  (a)                                                               (b) 

Fig. 6.15. (a) The contour lines of the numerical solution at time T=1/4000 with 

p=4000. (b) The numerical solution on the diameter of the unit circle.         

6.3.3. Application to TEAM Workshop Problem No. 30 

        For eddy-current problems when the rotor rotates at high speeds, the problems 

are convection-dominated. CGFEM can also be used to address the steep fronts 

effectively in the solution. The third example is a benchmark problem, the TEAM 

workshop problem 30A. The problem definition is given in Fig. 4.11, which is a 

three-phase induction motor with a solid rotor rotating at different speeds [D11]. 

        The physical parameters (electric conductivity, magnetic permeability, applied 

source current density) are given in Fig. 4.11. The winding in the stator is excited at a 

frequency of 60 Hz. The rotor is made of steel (with electric conductivity 

=1.6106S/m) and aluminum (with electric conductivity  =3.72107S/m), with the 

steel rotor surrounded by the aluminum rotor. The stator steel is laminated and its 

conductivity is assumed to be  =0.  

        The problem is solved using CGFEM when the rotor rotates at a high angular 

speed of  =1200rad/s counterclockwisely (the corresponding linear speed is 

calculated by v


=[vx,vy]=[- y, x]). In this case, the maximum Peclet number is 

about 1683, and about ten thousand nodes are probably needed in the mesh if the 

SGFEM is used to obtain the non-oscillatory numerical solution. However, if CGFEM 

is used, only 829 nodes are enough and the computational mesh is shown in Fig. 

6.16(a). Hence the computational effort for the CGFEM is much smaller than that of 

the SGFEM. To check the accuracy of the CGFEM, the rotational torque is also 

calculated and found to be -2.14476Nm, while the torque found by using SGFEM 
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(which has 20,000 nodes in the mesh) is -2.12514Nm [A35]. Since the analytical 

value is -2.24966Nm [A35], it is clear that CGFEM is more accurate even on a coarse 

mesh. 

        In the time-stepping analysis, at t=0, a static magnetic field is firstly computed to 

provide the initial values [A37]. Let T0=2 /  , then the numerical solutions using 

CGFEM on the mesh as shown in Fig. 6.16(a) at t=0, T0/4, T0/2, 3T0/4 are given in 

Figs. 6.16(b)-6.16(e), respectively. Numerical results again show that CGFEM can 

generate good solutions for eddy-current problems at high rotor speed. 
 

   

                                 (a)                                                                 (b) 

     

                                 (c)                                                                 (d) 
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(e) 

Fig. 6.16. (a) Mesh for TEAM workshop problem 30A with 829 nodes. (b) Initial 

solution of the magnetic potential A at t=0. (c) The solution A at time t=T0/4, a quarter 

of period later. (d) The solution A at time t=T0/2, a half period later. (e) The solution A 

at time t=3T0/4. 

6.4. Operator Splitting Method  

        In this section the operator splitting finite element method (OSFEM) [F24-F26] 

is proposed for numerically solving the transient eddy-current problem that may 

include high-speed rotation of a solid rotor. The motivation of the OSFEM is to 

isolate the convection part and diffusion part of the eddy-current equation to be solved. 

It is a divide-and-conquer strategy where the time evolution is split into partial steps 

to separate the effects of convection and diffusion in order to combine modern 

methods developed for hyperbolic equations and that for the parabolic equations 

readily. Moreover, it has also been reported that OSFEM is even superior to 

upwinding algorithms [F26]. 

        To evaluate the performance and accuracy of OSFEM, an artificial example with 

extremely large convection coefficient is first calculated. Then two benchmark 

transient eddy-current field problems, the TEAM workshop problems 30A and 30B 

[A35], are used to test the accuracy of the method further. Numerical results show that 
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the solution obtained using the OSFEM is non-oscillatory even for convection 

dominated cases. Besides, the calculated torque values are more accurate using 

OSFEM when compared to those obtained using SGFEM. Consequently one 

concludes that the OSFEM can solve eddy-current problems with high-speed rotating 

conductors efficiently and accurately. 

 

6.4.1. Introduction to Operator Splitting Method 

        In the OSFEM, the convective and diffusive terms of the original convection-

diffusion equation are solved separately in each time step [F24, F25]. Suppose the 

time interval [0, T] has been divided into N equal sub-intervals with a time-step dt 

such that 0=t0<t1<…<tN=T. For (6.1) and (6.18), the operator splitting method is to 

first solve the convective part which is a hyperbolic problem 
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,ihA  denotes the computed solution of (6.30). The diffusive part of (1) reads 

 
1( ) ( ) , ( , ), 1,2,...,s i i

A A A
J t t t i N

t x x y y
   
    

    
    

, (6.31)  

with homogeneous Dirichlet boundary condition and initial condition 1/2
1 ,( , )i h iA x t A 


 

is then solved. The calculated solution is denoted as ihA , . 

        As illustrated for the OSFEM scheme described above, in each time-step, the 

eddy-current equation (6.1) and (6.18) is split into two simple sub-problems. The pure 

convection problem (6.30) can be solved by using either analytical methods or any 

numerical method available for first order hyperbolic equations. The pure diffusion 

problem (6.31) can be solved by SGFEM with good stability and high accuracy. 

Hence the OSFEM is simple in idea and also easy to implement.  

 

6.4.2. Application to TEAM Workshop Problem No. 30 

 

        To check the accuracy of the OSFEM, the electromagnetic torque of the rotor is 

calculated when it rotates at high speeds. The formulation for calculating the torque is 
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based on the Maxwell stress tensor method [D20]. All the computations are calculated 

to the stopping time of T=100ms for both the TEAM Problem 30A and 30B. The 

SGFEM solution in the time domain using A,V-A formulation numerical results 

reported in [A35] is used for comparison.  

        For TEAM Problem 30A, when the rotor rotates at different speeds, the torque 

values obtained by using OSFEM and SGFEM versus the analytical ones [F27] are 

given in Table 6.1. There are 2990 nodes in the mesh for OSFEM and there are about 

20,000 nodes in the mesh for SGFEM in the numerical computation process. From 

Table 6.1 it is clear that the OSFEM is more accurate even with a lesser number of 

DoFs than that of the SGFEM at high rotor speeds. For example, when the rotor 

rotates at a high speed of 600 rad/s, the steady torque obtained is -5.5363Nm by using 

the OSFEM. The accuracy is very satisfactory because the analytical one is -

5.75939Nm. While the torque value obtained by using the SGFEM is -5.3482Nm.  

        When the rotor rotates at an even higher speed of 1200 rad/s, the calculated 

steady torque is -2.2239Nm using the OSFEM, while the torque value obtained using 

the SGFEM in time-domain is -2.1249Nm. All these are compared to the analytical 

value of -2.24996Nm. Again it is clear that the OSFEM is more accurate even with a 

less number of degrees of freedom. In Figs. 6.17 and 6.18, the torque of the rotor 

versus time is also shown when the rotor rotates at 600rad/s and 1200rad/s.  

 
Rotor 
speed 
(rad/s) 

Analytical 
(Nm)[F27]

OSFEM 
(Nm) 

SGFEM 
(Nm)[A35] 

0 3.825857 3.46526   3.5884 
200 6.505013 5.97154   5.9835 
400 -3.89264 -3.32115   -3.2941 
600 -5.75939 -5.5363   -5.3482 
800 -3.59076 -3.5510   -3.3763 
1000 -2.70051 -2.6884   -2.5472 
1200 -2.24996 -2.2239   -2.1249 

Table 6.1. Numerical comparison of the torque values computed by OSFEM and 

SGFEM for TEAM problem 30A. 
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Fig. 6.17. The electromagnetic torque of the rotor versus time for TEAM workshop 

problem 30A. The rotor speed is 600rad/s. 

 

 

Fig. 6.18. The electromagnetic torque of the rotor versus time for TEAM workshop 

problem 30A. The rotor speed is 1200rad/s. 

 

        When the rotor rotates at different speeds, the torque-speed characteristics of the 

three-phase motor and the single-phase motor are given in Figs. 6.19 and 6.20, 

respectively. For comparison, the numerical results using A,V-A formulation in time-

domain as given in [A35] are used as the SGFEM solution. One can again observe 

that the torque values calculated using the OSFEM is more accurate than using the 

SGFEM. 
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Fig. 6.19. Torque-speed characteristics of the three-phase motor of the TEAM 
workshop problem 30A. 
 

 

Fig. 6.20. Torque-speed characteristics of the single-phase motor of the TEAM 
workshop problem 30B. 

 

6.5. Summary 
 

        The EM fields in high-speed moving conductors usually present thin eddy-

current layers, the accurate solution of these fields needs special numerical techniques. 

In this chapter, three numerical methods were proposed to capture the thin eddy-

current layers efficiently, including the (adaptive) DGM, the CGFEM and the OSM. 
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Benchmark TEAM workshop problems are solved by these methods and the classical 

FEM, numerical comparisons are carried out to show the accuracy and effectiveness 

of the proposed methods. 
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CHAPTER 7 

APPLICATION OF THE COUPLED METHOD IN 

OPTIMAL DESIGN OF EM DEVICES 

7.1. Integrating FEM with Global Optimization Method 

        Electromagnetic (EM) devices such as permanent magnet (PM) motors are 

widely used in industry. Good designs of PM motors with high performance and high 

reliability can greatly reduce energy losses during the energy conversion process. 

Unfortunately, the motor design process is complicated and time consuming because 

the products are required to meet several special specifications under many design 

parameters [G1-G4]. To avoid the expensive prototyping, optimal design by use of 

computers is needed to find the best design before manufacturing. Mathematically, 

this is a multiobjective optimization problem to find the optimal solution to meet 

multiple performance parameters under constraints of the design variables. In practice, 

single objective optimization is the most popular, which can be also used to solve 

multiobjective optimization problems by using the weighed sum method [G5].  

        Of the optimal design problems, sizing [G1-G4] and shape optimization [G6-G10] 

is of paramount importance. With the fast increase of the computational ability of 

digital computers and thanks to the versatility of the finite element method (FEM) for 

field computation, the objective function values can be extracted from the numerical 

solution by postprocessing for a design with a set of chosen design parameters. In this 

process, FEM is much more widely used than analytical approach in order to get 

motor parameters, including machine parameters that can be computed by static field 

analysis (air-gap flux density that the PM and armature winding act on alone, no-load 

back electromotive force (EMF) and the thrust force in steady-state operation) and 

those must be computed by transient field analysis (torque, loss or the efficiency).  

        Nowadays, the combination of FEM with stochastic or evolutionary optimization 

solvers makes the field computation to be successfully extended to the design stage 

and greatly useful in the design phase of various EM devices [G1-G4, G6, G10]. To 
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combine the finite element (FE) solver with evolutionary optimization algorithms in 

the design optimization process, there are two ways available. Firstly, one can directly 

couple the optimization solver with the FE solver to compute the objective function 

values. One can initialize the stochastic optimization solver an generate an initial 

population of individuals, call the  FE solver to get the objective function values for 

each individual and generate the new population again and again until the stopping 

criterion is met.  

        Another choice is to use the response surface method (RSM) [A54-A55, G4, G10] 

to reconstruct a relationship of the objective functions and the design variables 

through chosen design parameters and observed response data from the system by FE 

computation, then the optimization solver will find the global optimal solution from 

the response surface function instead of directly calling the FE solver to get the 

objective function values to save computational time. In the following section, the 

popular evolutionary algorithms widely used in industry is briefly reviewed. Optimal 

design examples are also solved using the developed remesh-free FEM and global 

optimal solvers.        

7.2. Shape Optimization of A DC Magnet Device 

        In this section, an optimal shape design problem is solved using the FEM with 

the developed remesh-free mesh deformation technique and the Tabu Search 

Algorithm (TSA). The direct current (DC) magnet device is shown in Fig. 7.1, where 

the pole shape AB is to be optimized to generate a magnetic flux density as uniform as 

possible in the observation line CD.  Due to symmetry, only the right half of the 

problem domain is illustrated. For this problem, the design variables are taken to be 

{x0, y0, r0} as shown in Fig. 7.2. The ranges of the design variables are 

55mm<x0<65mm, -55mm<y0<-15mm and 18mm<r0<60mm. There are also 

additional two constraints of the design variables,  

 
0 0 0 0

0 0 0 0

sin( -acos( -50)/ )+ 5,
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Fig. 7.1. An optimal shape design problem, where the shape of AB is to be optimized to 

generate uniform magnetic density on the line of CD in the center line of the airgap. The 

dimensions of the DC magnet is given in the unit of mm.  

 

 

Fig. 7.2. The shape of AB is to be optimized with the design variables {x0, y0, r0}.  

 

        In the shape design process, the mesh needs to be deformed according to the change of 

the design parameters. By using the developed remesh-free mesh deformation technique as 

stated in chapter 3, no mesh-regeneration is needed. One FE mesh is shown in Fig. 7.3(a), the 

initial boundary mesh is given in Fig.7.3(b). The deformed boundary mesh is shown in Fig. 

7.3(c), and the final deformed mesh is given in Fig. 7.3(d).  In Fig. 7.4, the enlarged view of 

the meshes before and after deformation are plotted together, where the original mesh is 

plotted with thick lines and the deformed mesh is plotted with thin lines. The arrows represent 

the nodal displacement vectors for each node in the mesh before deformation. 
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                                        (a)                                                               (b) 

   
                                        (c)                                                               (d) 
Fig. 7.3. (a) The FE mesh before deformation. (b) The boundary mesh with red dots 

indicating the boundary nodes. (c) The deformed boundary mesh. (d) The FE mesh after 

deformation. 

 

Fig. 7.4. Illustration of the nodal displacement vectors by using the remesh-free mesh 

deformation method.  
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        The TSA is used to find the optimal solution. In the computation, the population size is 

taken to be 20 and the maximum iteration number is taken to be 200. The optimal solution is 

found to be {x0=60.1798mm, y0=26.5629mm, r0=36.1074mm} and the corresponding 

geometry is given in Fig. 7.5(a). The numerical solution on the optimal geometry is shown in 

Fig. 7.5(b). In Figs. 7.6(a) and 7.6(b), the magnetic flux density vector on the line CD, as 

indicated in Fig. 7.1, are given for an initial pole shape and the optimized shape, where one 

can see that the flux density is uniform and very close to the desired value of 0.04T by 

performing optimal design.   

 

   
                                    (a)                                                                       (b) 

Fig. 7.5. (a) The optimized pole shape. (b) The flux lines on the geometry with the optimal 

pole shape.  

 

  
(a)                                                                       
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 (b) 

Fig. 7.6. (a) The magnetic flux density on the observation line CD for an initial pole shape. (b) 

The magnetic flux density on the observation line CD for the optimized pole shape. 

 

7.3. A Benchmark 2D Sizing Design Problem 

        The remesh-free FEM coupled with evolutionary optimization method is applied 

to a nonlinear magneto-static benchmark sizing design problem, the TEAM Workshop 

Problem 25 [D9, G11, G12] as shown in Fig. 7.7, where the stranded coils carry a DC 

current excitation of 4253 Ampere-Turns (AT). The nonlinear B-H curve of the 

ferromagnetic pole piece is given in Fig. 4.6. Due to symmetry, one can solve the 

problem in one fourth of the whole problem domain, as shown in Fig. 7.7. 

        The objective is to optimize the shape of the die press to generate radially 

distributed magnetic flux density in the die mold. There are totally four sizing 

parameters {R1, L2, L3, L4} to be optimized as illustrated in Fig. 7.8 (see also Fig. 4.4). 

The geometric constraints of the design parameters are given by 5mm<R1<9.4mm, 

12.6mm<L2<18mm, 14mm<L3<45mm and 4mm<L4<19mm. The aim of the design 

optimization is to minimize the following objective function 
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where n is the number of specified points along the test line e-f (n=10); Bxp and Byp are 

the respective computed x- and y- components of the magnetic flux density values 

along the line e-f; Bxo and Byo are the desired value specified as Bxo=0.35cos(θ) (T), 

Byo=0.35sin(θ) (T). 
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Fig. 7.7. Illustration of the whole model of the TEAM Workshop Problem 25. 

 

 

Fig. 7.8. Enlarged view of the die molds of TEAM Workshop Problem 25, the shape 

design parameters are R1, L2, L3 and L4. 

 

        The initial boundary mesh of the problem domain and the fine mesh after 5 

adaptive refinements (30% elements in the mesh are refined each time) are shown in 

Figs. 7.9 (a)-(b), respectively. The RSM is adopted here to reconstruct the objective 

function and then the Differential Evolution Algorithm (DEA) is used to find the 

optimal solution. The design parameters are swept 104 times, with 10 sample values 

for each parameter.  

        Using the RSM and the DEA (Np=40, Gmax=100), the optimal solution calculated 

is R1=7.18mm, L2=13.75mm, L3=13.97mm, L4=14.63mm with the optimal objective 
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7.4. A Practical PM Motor Sizing Design Problem  

        In this example, the geometrical parameters of a PM motor with 24 slots and 4 

PM poles is optimized, aiming to maximize the magnetic flux of the windings. The 

design parameters are set to be the thickness of the PM p1, the embrace ratio of the 

PM p2 and the distance between slots or the width of the tooth of the stator p3. There 

are totally three parameters {p}={p1, p2, p3} to sweep for the design analysis, the 

constrains are 2 mm   p1 10 mm, 0.7   p2   0.99, 4 mm  p3 6 mm. The initial 

geometry of the motor when p1 = 3 mm, p2 = 0.7, p3 = 4 mm is given in Fig. 7.11 (a) 

and the corresponding initial mesh is shown in Fig. 7.11 (b). During FEM sweeping 

analysis, a constraint is imposed to keep the area of each slot unchanged at 72 mm2. 

     

              (a)                                           (b) 

Fig. 7.11.  (a) The PM motor geometry with p1 = 3 mm, p2 = 0.7, and p3 = 4 mm. (b) 

The corresponding initial boundary mesh of the PM motor. 

        In the optimal design process, the sizing parameters are changed in order to 

obtain the desired optimal solution to fulfill the objective. As an example, the mesh 

with p1 = 3 mm, p2 = 0.7, and p3 = 4 mm is given Fig. 7.12 (a), and the deformed mesh 

when p1 is changed to 5mm is given in Fig. 7.12 (b). The x- and y-components of the 

nodal displacement vectors, which is the nodal position difference between the 

original mesh and the deformed mesh, are also given in Figs. 7.12 (c) and 7.12(d) 

respectively. The numerical solution of the magnetic vector potential A and the 

magnetic flux density B is also shown in Figs. 7.13 (a) and 7.13(b). 
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           (a)                                   (b) 

 
                                   (c)                                                            (d) 
Fig. 7.12.  (a) The mesh before deformation with p1=3 mm, p2=0.7, and p3=4 mm. (b) 

The mesh after deformation with new design parameters p1=5 mm, p2=0.7, and p3=4 

mm. (c) The x-component of the nodal displacement vectors. (d) The y-component of 

the nodal displacement vectors. 

   
     (a)                                                             (b) 

Fig. 7.13.  (a) The computed magnetic flux contour lines. (b) The computed magnetic 

flux density. 
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        For all the parameters in the sweeping analysis, uniform size steps are used to 

solve for the optimal design such that h1 = 0.8 mm, h2 = 0.2, h3 = 0.01 mm for 

parameters p1, p2, and p3, so there are totally 211130 = 6930 times FEM 

computations. In our finite element parameter sweeping computation, it takes around 

5.0 hours to obtain all the solutions. For each FEM computation of a set of chosen 

parameters, the time consumed on initial mesh generation and mesh refinement 

processes occupies about 30% of the total computational time. For classical methods 

for parameter sweeping analysis, where we have to generate the mesh again and again, 

it will take about 7.0 hours. 

        After obtaining the average magnetic flux values versus the sample parameters, it 

is found that the magnetic flux is essentially independent of the width of tooth p3. The 

average magnetic flux values versus the thickness of the PM p1 for various PM ratio 

p2 is shown in Fig. 7.14. It can be seen that when p1 6mm, p2 0.88, and p3 6mm, 

the approximate maximum magnetic flux of 22.0 mWb is obtained, and further 

enlargement of the volume of PM will produce hardly any magnetic flux increase. 

 

Fig. 7.14.  Average phase magnetic flux versus p1 and p2. 

7.5. A 3D Mesh Deformation Example 

        The developed remesh-free mesh deformation method in this thesis is applied to 

perform a sweeping of the design variable of an EM device, as shown in Fig. 7.15. 

The problem is the same as a 3D magnetostatic example of the commercial software 
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Maxwell 3D. In the sweeping process, the armature of the device will be rotated in 

center of a fixed point around the x-axis counterclockwisely. The range of the design 

variable   is 0 00 5  .   

 

Fig. 7.15.  The EM device where the armature is rotated around the x-axis. 

 

        The initial mesh with 00   having 127,967 tetrahedral elements and 22,137 

nodes is shown in Fig. 7.16(a). The deformed mesh with 05   is given in Fig. 7.16 

(b). It is noted that it costs about 85 seconds to generate the conforming mesh shown 

in Fig. 7.16(a) by the mesh generator. While it only costs 0.02 second to deform the 

mesh. So the mesh regeneration time is almost totally saved when using the remesh-

free technique, compared with the traditional brute force sweeping method.  

        For the initial mesh, the mean quality factor (QF) of the elements is 0.7839, 

where the QF is defined as [G14] 
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where V  is the signed volume of a tetrahedral element and 0 3{ }ij i jl     are the lengths 

of all its six edges. For the deformed mesh, the mean quality factor (QF) of the 

elements is 0.7786, so the quality of the mesh is still good. In Figs. 7.17(a) and 

7.17(b), the contour plot of the absolute value of the displacement vectors and the 

vector plot of them are also given respectively. It can be seen that the modification of 
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the boundary interface nodes are diffused into the interior nodes of the armature 

object by the remesh-free mesh deformation method proposed in Chapter 3. 
 

 
(a)                                                       (b) 

Fig. 7.16.  (a) The initial mesh when 00  . (b) The deformed mesh using the 

remesh-free mesh deformation method with 05  . 

 

  
                                    (a)                                                           (b) 

Fig. 7.17. (a) The absolute value of the nodal displacement vectors. (b) The vector 

plot the nodal displacement vectors. 

7.6. A Practical 3D Optimal Design Example 

        The developed remesh-free FEM is applied to optimize the geometrical sizes of 

an electromechanical levitation device to produce a maximum magnetic force per unit 
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volume of PM. The dimensions of the device are the same as those given in [G15], 

except that the device is extended along the z-axis to 10mm and a 3D test problem is 

thus formulated, as shown in Fig. 7.18(a). The volume of the PM is constrained to be 

10-3m3 and the airgap is 0.5mm. There are three geometry variables for designing, 

namely {p1, p2, p3}, as illstrated in Fig. 7.18(b). The ranges of the design variables are 

0<p1<5mm, 0<p2<10mm, 0<p3<100mm.  

 

       

                                   (a)                                                                (b) 

Fig. 7.18. (a) Full 3D view of the PM magnet. (b) Front view of the 3D PM magnet, 

where the design parameters are also shown. 
 

        In the computation, 103 times of the parameters are swept and there are 10 

sample values for each design parameter. Using the RSM and the DEA (Np=40, 

Gmax=100), the optimal solution is found to be [2.77 mm, 7.55 mm, 39.87 mm], and 

the corresponding objective function value is 1.25N, which is close to the results 

given in [G15].  

        The mesh in Fig. 7.19(a) is generated when p1=1mm, p2=1.5mm and p3=1mm, 

and the deformed mesh using the proposed remesh-free method is shown in Fig. 
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7.19(b). The nodal displacement vectors are also shown in Figs. 7.20(a) and 7.20(b). 

To morph the mesh shown in Fig. 7.19(a) having 140,159 tetrahedral elements and 

25,710 nodes, which costs about 90s to make, only 0.022s is needed to deform it by 

applying the remesh-free mesh deformation technique proposed in Chapter 3.   

         

     
(a)                                                                  (b) 

Fig. 7.19. (a) 3-D computational mesh when p1=1mm, p2=1.5mm and p3=1mm.  (b) 3-

D deformed mesh when p1=0.5mm, p2=2mm and p3=1mm. 

        The solution of the magnetic flux density on the mesh shown in Fig. 7.20(a) is 

given in Fig. 7.21, where the magnetic vector potential formulation with edge element 

basis functions is used. The homogenous Neumann boundary condition is imposed on 

the symmetric plane x=0, and the homogenous Dirichlet boundary conditions are 

imposed for all other boundary surfaces. For each FE computation, it takes about 30s 

to solve the field solution. As it costs about 90s to make the boundary conforming 

mesh each time for the conventional method, it is clear that the total computational 

time elapsed in the optimal design process is greatly saved when the developed 

remesh-free FE technique is adopted. 
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(a)                                                            (b) 

Fig. 7.20. (a) Nodal displacement vectors on the surface of the domain.  (b) Nodal 

displacement vectors in the interior of the domain. 

 

Fig. 7.21. Magnetic flux density in the PM and iron regions, where the FE mesh is the 

one shown in Fig. 7.19(a). 

7.7. Summary 

        In this chapter, several optimal design problems, including 2D and 3D examples, 

are solved using the developed remesh-free FEM. Benchmark test examples are 

solved using the developed method and the numerical results are compared with the 
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analytical ones, they are shown to be similar to each other and hence validated the 

developed optimal design package. The developed method can be also used to 

practical optimal shape design and optimal sizing design problems. For example, the 

shape the pole piece of a DC magnet is optimized to produce uniform magnetic fields 

in the targeted region. In another example, several sizing parameters of a PM motor is 

optimized to produce maximum magnetic flux in the C phase. 3D optimal design 

problems can also be solved using the developed method efficiently. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

In this thesis, a novel fast remesh-free finite element method (FEM) for optimal 

design of electromagnetic (EM) devices is investigated and the computer program is 

developed. The 2D parameterized algorithm and 3D remesh-free mesh deformation 

method are proposed and implemented in C++. Benchmark and practical optimal 

design problems are solved using the developed method to verify its effectiveness. 

The mesh re-generation time can be almost totally saved in the mesh deformation 

process using the proposed method, which hence greatly reduce the time needed when 

solving optimal design problems.  

    For the proposed fast remesh-free mesh deformation methods, it is effective to 

use in most optimal sizing or shape design problems. However there may be inverted 

elements in case of very large shape changes of the geometry under consideration, 

which makes the finite element solution process invalid. A future work to totally 

remove this disadvantage is to develop an overlapping finite element technique which 

is still valid even for overlapping mesh with inverted elements. 

Practical engineering optimal design problems are solved using the developed 

remesh-free FEM combined with evolutionary optimization algorithms and the 

response surface methodology (RSM). Global optimization methods including 

Genetic Algorithm (GA), Taboo Search Algorithm (TSA),Particle Swarm 

Optimization (PSO) and Differential Evolution Algorithm (DEA) are coupledwith 

FEM program to find the best design. Further improvements can be investigated to try 

to reduce the number of sampling points without sacrificing the accuracy of the 

optimal result, adaptive RSMs can be helpful to this end. 

2D nodal FEMand 3D edge element-based FEM are developed in C++ to analyzeEM 

fields in devices.The developed time stepping FEM with Newton-Raphson iteration 

for nonlinearmaterials, slave-mastertechnique for rotational movement 

andfield-circuit coupling technique is used to analyze practical problems. The 

developed program is verifiedfor benchmark problems and compared with the 
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numerical solutions obtained by the commercial software ANSYS Maxwell. 

    A low-frequency approximation to the Maxwell equations simultaneously 

considering inductive and capacitive effects in the time-domain is developed using 3D 

edge elements. A parallel-plate capacitor is analyzed using the developed code to 

check its correctness. In the future work, more engineering applications can be solved 

by the proposed solver where eddy-current solvers are not accurate enough or they are 

unable to resolve the coupled inductive and capacitive effects. 

    A novel error estimator, which is very convenient to use, is proposed to estimate 

the error of the numerical solution. It is effective when the solution domain contains 

multiple materials, which is very common in practical magnetic field analysis. 

Besides, a novel adaptive Degrees of Freedom (DoFs) FEM is proposed for the first 

time and it can be applied to static nonlinear problems and transient time-domain field 

computation. The implementation details of the algorithm is presented and numerical 

examples are given to show its usefulness in accelerating the transient field analysis 

without sacrificing the accuracy. To further accelerate the optimal design process, 

reduced basis method (RBM) or other model order reduction methods can be 

investigated to shorten the numerical simulation time for a design. 

To solve quasi-magneto-static problems with high-speed moving conductors, which 

presents thin eddy-current layers, the adaptive discontinuous Galerkin method (DGM), 

characteristic Galerkin method (CGM) and operator splitting method (OSM) are 

proposed. Numerical examples are given to show their advantages over traditional 

FEM. The generalization of these proposed methods from 2D to 3D problems can be 

investigated in a further study. 

    In reality, the magnetic field and the thermal field are coupled together for 

practical EM devices. The optimal design process should consider this thermal effect 

to obtain the true optimal solution. The key for magnetic-thermal field coupling is 

how to model the energy dissipation from the magnetic field side as the heat source in 

the thermal field side. Since the thermal field is a scalar field, the developed computer 

code can account for this with minimal modification. The coupling of magnetic field 

and thermal field can be considered in a future study. 
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