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Statement of Originality

The following contributions reported in this thesis are claimed to be original.

1. The predicting method of protein-ligand binding site usingSupport Vector Machine

with protein properties in Chapter 3.Different protein properties are used as at-

tributes to predict the protein-ligand binding site.

2. The hybrid pre-processing method based on Synthetic Minority Over-sampling Tech-

nique (SMOTE) and CHC in Chapter 4.The hybrid pre-processing method SMOTE+CHC

consists of SMOTE and CHC. SMOTE is first applied to generate new samples of

the minority class. CHC is applied to under-sample the synthetic samples and the

samples of the majority class. It has the advantages of hybrid methods with a rela-

tively small increase in the size of training sets.

3. The hybrid pre-processing method based on fuzzy rule base and CHC in Chapter 5.

The hybrid pre-processing method FRB+CHC uses fuzzy rule base to generate new

samples of the minority class. CHC is then applied to under-sample the synthetic

samples and the samples of the majority class. It gives better performance and im-

proves the robustness.

4. The under-sampling method based on fuzzy rule base and CHC inChapter 6.The

under-sampling method uFRB+CHC uses fuzzy rule base to select samples of the

majority class. CHC is then applied to further reduce the data size. It improves the

performance over large imbalanced datasets.
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5. The predicting method of protein-ligand binding site usingFRB +CHC in Chap-

ter 8.FRB+CHC is applied to solve the imbalanced problem of binding site dataset

and gives a significant improvement.

v



Those who hope in the LORD will renew their strength. They

will soar on wings like eagles; they will run and not grow

weary, they will walk and not be faint. (Isaiah 40:31)
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Abstract

The identification of protein-ligand binding site is an important task in structure-based

drug design and docking algorithm. In the past two decades, different approaches have

been developed to predict the binding site, such as the geometric, energetic and sequence-

based methods. The prediction for these approaches is usually based on some scores,

which are defined with a single protein property. Then, a threshold of the scores is set to

determine the binding sites. However, it is difficult to set the threshold value even after

considering the mean and standard deviation from the practical data.

This thesis investigates the computational prediction of protein-ligand binding sites

from the structure and sequence of proteins. The binding site prediction can be formu-

lated as a problem of binary classification: discriminatingwhether a location is likely to

bind the ligand or not. When the scores are calculated from the protein properties, the

algorithm for performing classification becomes very important, which affects the pre-

diction results significantly. In this thesis, a Support Vector Machine (SVM) is proposed

to classify the pockets that are most likely to bind ligands on considering the attributes of

geometric characteristics, interaction potential, offset from protein, conservation score,

and properties surrounding the pockets. Different kinds ofprotein properties are consid-

ered to do the classification instead of only one single protein property as used in some

published approaches.

First, the grid points near the protein surface are used to represent the locations of bind-

ing sites. Our method is compared to eight existing methods on the datasets of LigASite

and 198 drug-target complexes. The results show that the proposed method improves
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the success rate in terms of F-measure and area under the receiver operating charac-

teristic (AUC). Our method improves the AUC measure from 66 to 81 percent without

decreasing the F-measure values, and increases the successrate of locating the binding

sites within three largest pockets from 74 to 82 percent. Ourmethod also provides more

comprehensive results than the others.

Similar to many datasets in Bioinformatics, the datasets ofprotein binding sites en-

counter the problem of being imbalanced and the complexity of doing classification.

Re-sampling has become an important step to pre-process theimbalanced data. It aims

at balancing the datasets by increasing the samples of the smaller class (the minority

class) and/or decreasing the samples of the larger class (the majority class), which are

respectively known as over-sampling and under-sampling. Most of the machine learn-

ing tools (including SVM) is biased to the majority class, sothat the classification of the

minority class might not be done satisfactorily. To deal with the imbalanced dataset of

binding sites, random under-sampling is used at this stage.

After that, two hybrid pre-processing re-sampling methodsand one under-sampling

method are proposed. The first one applies Synthesis Minority Over-sampling Tech-

nique (SMOTE) to create new samples of the minority class. However, the resulting

large sample size will increase the complexity of the classification model. The effi-

ciency of the learning algorithm applied to the classification model will be decreased.

Therefore, an evolutionary algorithm (EA) is introduced tofurther process the synthetic

samples and the samples of the majority class for doing under-sampling. The chosen

EA is the CHC algorithm. Since the above proposed method is using an existing method

(SMOTE) to over-sample the data, the advantages over some previous hybrid methods

are not significant. However, it can decrease the over-sampling rate about 50 percent.
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Then, the second hybrid pre-processing re-sampling methodis proposed, which makes

use of fuzzy logic methods to create new samples of the minority class, and CHC as

a data cleaning method to the over-sampled dataset. It is found that this pre-processing

method can offer an obvious improvement over some previous over-sampling and hybrid

methods. From experimental results, our method outperforms the other methods in terms

of F-measure and AUC with the lowest over-sampling rate. It also shows its robustness

with respect to data complexity.

Large imbalanced datasets have caused many difficulties to the classification problem.

Therefore, an under-sampling method is proposed to reduce the data size. It makes use

of fuzzy logic to select samples of the majority class, and CHC is employed to further

reduce the data size. From experimental results, it can be seen that our proposed method

improves both the F-measure and AUC. The complexity of the classification model

is also compared. It is found that our proposed method bringsthe lowest complexity

among all methods under comparison.

Finally, a general comparison of the three proposed pre-processing methods is pre-

sented. One of the hybrid methods is selected and applied to the datasets for predicting

the protein-ligand binding sites. A SVM with the proposed attributes is employed to

identify the binding sites. Improvement over our previous method, which does not use

the hybrid pre-processing method, is obtained in the testing datasets of 198 drug-target

complexes. Improved results over the dataset of 210 bound structures are also obtained.

The improvement in success rate is 3 percent and 6 precent respectively. Our method is

also compared to five other prediction methods. The results show that our method can

have more protein-ligand the binding sites located successfully.
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Chapter 1

Introduction

1.1 An Introduction to Drug Design

1.1.1 General Background

In this thesis, drugs refer to a single or combination of small molecules (e.g. ligands)

that activates or inhibits the function of a biomolecule to realize a therapeutic effect.

This process of drug design is an expensive and time-consuming activity, where failures

are expected. On average, it costs US$800 million and 14 years [1], [2] for bringing a

new drug to the market. Therefore, many companies carry out alarge amount of projects

in the early stages and select only a few to go forward at each stage. The later stages

are much more expensive and time-consuming than the early stages; hence, the projects

selection and management are important.

The modern process of new drug identification can be divided into two phases: drug

discovery and drug development. Drug discovery includes target identification, identifi-

cation of a compound to bind the target with desired effect, optimizing the affinity and
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Chapter 1. Introduction

selectivity of those compounds, and optimizing the drug-like properties with sufficient

affinity and appropriatein vivo activity. Once the compound meets the required criteria

of in vivo efficacy, the process of drug development with pre-clinicalstage and clinical

trials will begin.

The drug discovery process starts with target identification and validation. This opera-

tion searches the causes of the phenotype of the disease. Protein plays a critical role in

causing the symptoms of a human disease. Activating or inhibiting its function can have

a positive effect on the disease [3]. After the relationshipbetween the target (protein)

and disease has been found, the next operation of drug discovery is to find a method to

modify that target. This consists of protein-protein and protein-ligand (small chemical

molecule) interactions.

Traditionally, drug discovery relies on trial-and-error testings of chemical substances

and matching the apparent effect to the treatments. Thanks to the rapid growth of com-

putational chemistry, the drug candidate can be determinedby testing hundreds of chem-

ical substances or designed by computer virtually, which save time and cost as compared

with the traditional way. This process is generally called computer-aided drug design.

1.1.2 Computer-Aided Drug Design

There are mainly two types of computer-aided drug design. One is ligand-based, which

relies on the knowledge of ligands and their particular characteristics. This type is suit-

able if no structural information about the target is available. Another one is structure-

based, which relies on the knowledge of the structure of targets. This type is commonly
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1.2 Motivation

used since lots of protein structure have been modeled nowadays. Based on the structure

of a target protein, different approaches can be used to find the ligand, such as virtual

screening, docking, andde novodrug design [4].

1.1.3 Structure-Based Drug Design

Taking advantage of the three-dimensional (3D) structure of a given protein, structure-

based drug design (SBDD) attempts to contribute to drug discovery [5]. The 3D struc-

ture of a protein can be obtained experimentally with x-ray crystallography or Nuclear

Magnetic Resonance (NMR) spectroscopy. Another method is to construct the protein

based on its amino acid sequence and a similar protein with a known 3D structure. All

this information can be found from the Protein Data Bank (PDB) [6] or Protein Qua-

ternary Structure file server (PQS) [7], which show the atomic coordinates and the qua-

ternary structure of proteins respectively. This has made SBDD more and more feasible

because the 3D atoms’ arrangements of proteins allow the prediction of protein-ligand

binding sites, which is an important prerequisite of SBDD [8]. One famous example use

of SBDD is the inhibition of the HIV protease. The drug is highly effective against HIV

[9].

1.2 Motivation

This thesis focuses on the identification of protein-ligandbinding sites, which directly

participate in the interaction of target (protein) and molecules (ligand). The identifica-

tion of protein-ligand binding site is an important step of SBDD. There are three main
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Chapter 1. Introduction

representations of the binding sites. They are the grid points surrounding the protein

[10], residues contacting the ligand [11], and molecular surface of the protein [12]. The

binding site prediction can be formulated as a binary classification problem: discrim-

inating whether grid point / residue / molecular surface is likely to bind the ligand or

not.

1.2.1 Problems of Determinate Methods

In this thesis, the binding sites (pockets) are representedby grid points surrounding the

protein. As the binding sites are usually found at the cleftson the surface of proteins,

many previous works assigned some scores to the grid points based on different protein

characteristics, and tried to predict the binding sites using these scores. There are several

determinate methods after the corresponding scores of the grid points are calculated.

The simplest one is to apply a threshold to the grid point value to determine if the grid

point belongs to a pocket [13]. This threshold is set to all proteins and does not consider

the difference among them. A poor scenario may cluster most of the grid points as

pockets if the threshold is set too low, or the number of pockets is much smaller than

that of binding sites if the threshold is set too large.

Another method calculates the mean and standard deviation of the grid points’ values

to determine the threshold for each protein [14]. Although this approach calculates the

threshold for different proteins, the threshold depends onthe grid points’ values. If the

grids embedded in the protein vary, the mean and standard deviation of the grid points’

values will be different. That means, the threshold and the number of pockets could be

varying for a particular protein used.
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In [15], a binary search for the grid threshold is performed.The binary search produces

a culled set of pockets, which have specified properties based on the sizes and shapes of

the pockets. When the method iterates, the grid points are adjusted until the set of pock-

ets meet all the properties. Although this approach can consider the sizes and shapes

of the pockets, all the grid thresholds are set by the users, and we do not know which

values of thresholds are suitable for a given protein. To overcome the weakness of the

above determinate methods, the Support Vector Machine (SVM) is proposed and will

be covered in this thesis.

1.2.2 Problems of Imbalanced Dataset

Like most of the datasets in bioinformatics, the datasets ofbinding sites have the prob-

lem of being imbalanced [16], which is a popular topic in recent years [17]. The imbal-

anced dataset problem increases the difficulty of determining binding sites with SVM

since most of the machine learning tools, including neural networks and SVMs, are orig-

inally designed for well-balanced datasets. If the datasetis imbalanced, the performance

of the classifier can be poor. The reason for this is apparent.For example, considering a

dataset with 99% of data from class A and only 1% of data from class B, the accuracy

is 99% if the classifier ignores the data from class B and labels the whole dataset as

class A. It is already very hard to achieve an accuracy above 99% by using most of the

learning algorithms. However, the minority class in datasets is usually more important

and meaningful. For example, there are much less samples of people with a particular

disease than those of healthy people in a medical problem. Ifa classifier is needed to la-

bel whether some people are infected or not, it is obvious that the minority class (people

with a particular disease) is the more interested class.
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Problems with imbalanced datasets can be easily found in thereal world, such as the

detection of oil spills from satellite images [18], spotting customers for telecommuni-

cations management [19], and the identification of power distribution fault causes [20].

There are two main approaches to solve the problems caused byimbalanced datasets.

One is the data level approach and the other is the algorithm level approach. The data

level approaches in [21]–[23] include balancing the class distribution by over-sampling

the minority class or under-sampling the majority class. The algorithm level approaches

improve the existing machine learning methods by adjustingthe probabilistic estimate

[24], modifying the cost per class [25], adding some penaltyconstants [26], or learning

from one class instead of two classes [27].

Many experiments [28] show that re-sampling is a good data level pre-processing ap-

proach to handle imbalanced data. Moreover, preprocessingapproaches are more flex-

ible since they are independent of the chosen classifier. Therefore, re-sampling ap-

proaches are focused in this thesis. There are three main types of strategies for re-

sampling data. They are over-sampling, under-sampling, and hybrid methods, which

combine the two previous methods (over-sampling and under-sampling methods). The

importance of designing sampling strategies has been discussed in [29], which can lead

to successful learning of different classes.

1.3 Contributions

This thesis presents the predicting methods of protein-ligand binding sites and the pre-

processing methods of imbalanced dataset. Firstly, SVM is employed to predict the

binding sites using different protein properties. To solvethe imbalanced problem in the
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protein datasets, different pre-processing methods are investigated. Then, two hybrid

pre-processing methods and one under-sampling methods areproposed. Based on the

performance, one of the hybrid methods is applied on the protein datasets and improved

results of the prediction of binding sites are shown. The main contributions are given as

follows.

Firstly, SVM is proposed to predict the protein-ligand binding sites and handle the prob-

lems mentioned in Section 1.2.1. The prediction of binding sites can be expressed as a

problem of binary classification. SVM [30]–[33] is one of thesupervised learning tools

for doing classification. It has shown its high applicability and advantage on classifying

high-dimensional and large datasets [34], [35].

The SVM is trained to generate the hyperplane by using 29 proteins’ properties, includ-

ing the geometric characteristics, interaction energy, sequence conservation, distance

from protein, and the properties of the surrounding grid points. A radial basis function

(RBF) is used as the SVM kernel, which is a common kernel for non-linear classifica-

tion. Like most of the datasets in bioinformatics, the data of the binding sites have the

problem of being imbalanced [16]. Therefore, random under-sampling and filtering are

applied to reduce the data size.

Two experiments are used to evaluate our approach. The first one uses LigASite [36]

as the dataset which is suggested in ConCavity [15]. Our approach is compared with

four other methods. They are LIGSITE [13], PocketFinder [14], ConCavity [15], and

SURFNET [37]. The other experiment uses 198 drug-target dataset which is developed

in MetaPocket [38]. Only the location of the three largest binding sites are selected

as the potential pockets, which are represented by the center points of these pockets,
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for the evaluation in this experiment. There are sometimes more than one binding site

within a protein or the prediction can identify more than onebinding site. In this case,

only the correct prediction at the larger pocket is counted when the success rate is cal-

culated. Our approach is compared with six other methods. They are ConCavity [15],

SURFNET [37], MetaPocket [38], LIGSITEcsc [39], Fpocket [40], and Q-SiteFinder

[41]. Two different measurements are applied since the representations of the binding

sites are different in these experiments.

On data sampling, three different pre-processing methods are proposed. Two of them

are hybrid methods and the other one is an under-sampling method. Both hybrid meth-

ods have two stages: over-sampling first and under-samplingnext. Their under-sampling

stage uses the same approach. The size of training dataset isincreased after the first stage

of over-sampling, which causes over-generalization easily. It increases the complexity of

the classification model, and decreases the efficiency of thelearning algorithm. There-

fore, an evolutionary algorithm (EA) is applied to both the synthetic samples and major-

ity samples to under-sample the dataset. The chosen EA is theCHC (Cross-generational

elitist selection, Heterogeneous recombination and Cataclysmic mutation) algorithm

[42] because it can select the smallest and most representative instances among many

algorithms as reported in [43]. The main difference betweenthe two proposed hybrid

methods is that the first one uses the Synthetic Minority Over-sampling Technique

(SMOTE) to generate new samples of the minority class (SMOTE+CHC), while the

second one generates the new samples based on a fuzzy rule base (FRB+CHC).

The third proposed pre-processing method using under-sampling aims at solving the

problem of large imbalanced dataset. It first selects the samples of the majority class

based on fuzzy logic. To further reduce the data size, the evolutionary computational
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method of CHC [42] is suggested. This method is named as uFRB+CHC.

Finally, FRB+CHC is selected as the pre-processing method for the dataset of the protein-

ligand binding sites because of its robust performance. SVMis employed to train the

re-sampled dataset. Two benchmark datasets are used to evaluate this method: the 198

drug-target complexes and 210 bound structures. Both of them are developed in MetaPoc-

ket [38]. It is first compared to our previous work, which usedrandom under-sampling

as the pre-processing method. Then, this approach is compared with five other methods.

They are LIGSITECSC, PASS [44], SURFNET, Q-SiteFinder, and MetaPocket.

1.4 Outline of the Thesis

The main content of this thesis is organized into eight chapters. In Chapter 2, a liter-

ature review on different predicting methods of protein-ligand binding sites and pre-

processing methods is given. In Chapter 3, the proposed predicting method of protein-

ligand binding site is introduced. It uses an SVM and 29 protein properties to predict

the binding sites. Chapter 4, Chapter 5, and Chapter 6 give the details of SMOTE+CHC,

FRB+CHC, and uFRB+CHC respectively. They are all proposed pre-processing meth-

ods for imbalanced datasets. Chapter 7 shows a general comparison of these three pro-

posed pre-processing methods. In Chapter 8, FRB+CHC is applied on the protein dataset

to improve the results in Chapter 3. In the final chapter, a conclusion is drawn and some

potential directions for further work are also given.
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Chapter 2

Literature Review

A review on the previous works on protein-ligand binding sites prediction and re-sampling

methods is given in this chapter.

2.1 Prediction of Protein-Ligand Binding Sites

The protein-ligand binding sites are commonly located in the clefts on the surface of

proteins. However, not all the clefts are identified as the potential binding sites (pock-

ets), as we need to examine the pockets’ size, the interaction energy of the surrounding

protein atoms, and the sequence conservation of the contacted residues. The follow-

ing sections are divided into three parts. The first part describes the studies that mainly

use the geometric characteristics of a protein to predict the pockets. The second part

describes the studies that use the energy criteria by calculating the van der Waals in-

teraction potential to do the prediction. The last part describes the studies that integrate

the sequence conservation with the structural informationof a protein to identify the

potential pockets.
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2.1.1 Geometry-Based Methods

POCKET [45] is one of the geometry-based methods to define the binding sites. Firstly,

a 3D grid is generated. Secondly, a distance check is appliedon the grid to make sure

the atoms of protein do not overlap with the grid point. All the grid points, which do

not overlap with the atoms of protein, are labeled as solvent. If the grid points outside

the protein are enclosed by the protein surface in opposite directions of the same axis

(i.e. the grid points are enclosed by pairs of atoms within the protein), it is called a

protein-solvent-protein (PSP) event (Fig. 2.1).

Figure 2.1: PSP event used to describe the geometric feature of a grid point. It counts
the number scanning directions that pairs of protein atoms can enclose the grid point.
For the POCKET method, the maximum number of PSP event is three while it is seven
for the LIGSITE method.

LIGSITE [13] is an extension of POCKET with more scanning directions. Both of them

considered the identification of PSP events on the basis of atom coordinates. LIGSITE

scans for the pockets along three axes and four cubic diagonals while POCKET only

scans along three axes. The number of PSP events occurred in the scanning directions

are counted and the value is assigned to each grid point of theprotein. The grid points

with higher values are more likely to be the pockets. Therefore, when the grid point’s
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value exceeds a certain threshold, it can be considered as a pocket. Fig. 2.1 shows the

PSP events of two enclosed grid points.

SURFNET [37] is another geometry-based method to define the binding sites. Like

LIGSITE, a 3D grid is generated first. The grid values of SURFNET are calculated by

counting the number of constructed spheres. Firstly, pairsof relevant atoms are taken

within the protein. Then, testing spheres are formed between the pairs. If the sphere

overlaps with other atoms, the radius decreases until no overlapping occurs (Fig. 2.2).

Only the distance between two atoms within 10Å is considered. The sphere of radius

smaller than 1.5̊A is also ignored. If the grid points are out of the pockets, the distances

between pairs of atoms are very large or cannot be found. On the contrary, if the grid

points are inside the pockets, more than one sphere can be formed.

Figure 2.2: SURFNET. There are three solid line circles and several dotted line circles
in each graph. The top and bottom solid line circles represent the pair of relevant atoms
and the middle one shows the constructed sphere of a grid point. The dotted line circles
represent the other atoms that surround the grid point undertesting. The initial sphere
in the graph on the left overlaps with other atoms; therefore, its radius decreases until
no overlapping occurs to form the final sphere in the graph on the right.

CASTp (Computed Atlas of Surface Topography of proteins) [46] is based on Delaunay

triangulation, alpha shape, and discrete flow [47]–[49]. Delaunay triangulation is used
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to represent the surface of a protein and a convex hull is formed containing all atom

centers inside. To obtain the alpha shape, the edges of Delaunay triangulation that are

outside the protein are omitted. A triangle with one or more edges omitted is called an

“empty” triangle. Fig. 2.3(a) shows the alpha shape of the protein and the solid line in

red color is the omitted edges of Delaunay triangulation.

The discrete flow is applied to determine the pockets and defined only for the empty

triangles. An obtuse empty triangle flows to its adjacent triangle, whereas an acute tri-

angle collects the flow from adjacent triangles. Fig. 2.3(b)shows a pockets formed by

five empty triangles. All the triangles are obtuse, except triangle 2. Therefore, triangle

2 collects all the flows from other triangles and this cleft isidentified as the potential

binding site. If a cleft consists of obtuse empty triangles only, the triangles will flow

sequentially to infinity. This type of cleft is not identifiedas a binding site. Fig. 2.3(c)

shows an example of this kind of cleft, which is formed by five obtuse empty triangles.

They flow from triangle 1 to triangle 5 and then to the infinity.

(a) Alpha Shape. (b) A pocket is composed by
five empty triangles.

(c) This type of cleft is not
identified as a binding site.

Figure 2.3: CASTp

Fpocket [40] uses the concept of alpha sphere, which is a sphere contacting with four

protein atoms on its boundary and not containing any atoms inside. The size of these

alpha spheres is used to determine the property of the spherelocations. Small spheres

13



Chapter 2. Literature Review

are located inside the protein, whereas large spheres are located outside the protein.

For the clefts or pockets, the size of the spheres is intermediate. Therefore, a filtered

collection of spheres are identified by measuring the radii of the alpha spheres. Fpocket

then clusters the spheres close together and identifies themas potential pockets.

PASS (Putative Active Site with Spheres) [44] looks at all uniquetriplets of protein

atoms. If they are close together, two possible probe spheres, which lie tangential to all

three protein atoms, will be calculated. It results in an initial layer of spherical probes

coating the protein. These probes are filtered if they clash with any protein atoms and

two probes lie too close to each other. In addition, the burial count of each probe is

calculated by measuring the number of protein atoms found within 8Å radius of the

probe. The probes with a low burial count are most likely outside the pockets. Therefore,

a burial count threshold is applied to eliminate the probes outside the pockets.

After the initial layer of probes is formed, additional layers of spheres are accreted onto

the existing probes and the filtration to the new probes as described above is followed.

These cycles of addition and filtration are repeated until the number of probes bounded

to the protein is no longer changed. PASS then assigns a weight to each probe and

identify the central probes in regions that contain many spheres with high burial count

(Fig. 2.4).

2.1.2 Energy-Based Methods

PocketFinder [14] is an energy-based method for ligand binding site prediction. It uses

the van der Waals interaction energy between the protein atoms and the simple atomic
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2.1 Prediction of Protein-Ligand Binding Sites

Figure 2.4: PASS. The black dots represent the the central probes of eachpotential
pockets and the empty circles surrounding are the retained spheres after the repeated
cycles of addition and filtration.

probes to locate the binding sites with high energy. A 3D gridpotential map is generated

first. The potential of each grid pointp is calculated by the Lennard-Jones formula:

V (p) =
N∑

i=1

(
C i

12

r12pi
− C i

6

r6pi
) (2.1)

whereC i
12 andC i

6 are constants, which are the typical 12-6 Lennard-Jones parameters

used to model the van der Waals interaction energy between a carbon atom placed at

the grid pointp and the protein atomi; N is the total number of protein atoms.r12pi and

r6pi are the 12-th and 6-th powers ofrpi respectively, whererpi is the distance between

the grid pointp and the protein atomi. The first term describes the repulsion between

atoms when they are very close to each other. The second term describes the attraction

between atoms at long distance.

The grid points are then filtered with a threshold, which is determined by the mean and

standard deviation of the grid points’ values. Those filtered grid points are clustered into

many groups and the potential pockets are identified as thosegroups with a large size.
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Q-SiteFinder [41] uses a concept similar to PocketFinder (described above) to define

the potential pockets. It uses methyl (–CH3) probes, which are initialized on the protein

surface, to calculate the van der Waals interaction energy between the protein atoms and

the probes. Those probes with high interaction energy are retained and clustered into

many groups. The clusters with a large size and high energy are considered as potential

pockets.

2.1.3 Sequence Conservation

Residues in a protein are the individual organic compounds called amino acids. As not

all residues in a protein are equally important, conservation analysis becomes a very

useful method to indicate those functionally important residues in the protein sequence

[50]–[52]. Conservation analysis has been shown to be strongly correlated with the pre-

diction of ligand binding sites [53], [54]. It is a scoring method that involves the conser-

vation of sequentially adjacent residues. Therefore, somestudies suggested combining

the sequence conservation and the structure of protein to predict the protein ligand bind-

ing sites through weighting every pair of protein atoms [15], [39].

LIGSITE CSC [39] is an extension of LIGSITE. It uses the Connolly surface[55] and

defines surface-solvent-surface events, instead of PSP events defined in POCKET and

LIGSITE. In the Connolly algorithm, a probe sphere of typical 1.4Å radius rolls over

the protein. The Connolly surface consists of the van der Waals surface of the protein,

which is touched by the probe sphere, and the probe sphere surface when it is in contact

with more than one protein atom. Fig. 2.5 shows the difference between the Connolly

surface and the van der Waals surface. LIGSITECSC scans the three axes and four cubic

16



2.1 Prediction of Protein-Ligand Binding Sites

diagonals for the surface-solvent-surface events. The pockets with high values of such

events are re-ranked by the degree of conservation of the involved surface residues.

Figure 2.5: The van der Waals surface in green is the outer surface of a protein. It sep-
arates the inner space from the outer space. The Connolly surface in blue is composed
of two parts. One is the van der Waals surface of the protein, which contacts with the
probe sphere. The other one is the probe sphere surface when it contacts with more than
one protein atom.

ConCavity [15] consists of three steps to predict the binding sites: grid creation, pocket

extraction, and residue mapping. Like LIGSITE, SURFNET, orPocketFinder, a 3D grid

surrounding a given protein is created first. The structuralproperties and sequence con-

servation of the protein are used to assign a value to each grid point. Those grid points

with high values are retained and clustered into many groups. A binary search is then

performed and produces a culled set of pockets, which have specified properties based

on the sizes and shapes of the pockets. After several searches, the grid points are ad-

justed with the set of pockets having all the properties. Finally, the retained grid points

are mapped to the surface of the protein and scored the protein residues.

MetaPocket [38], [56] is a combination of eight predictors, including ConCavity [15],

SURFNET [37], LIGSITECSC [39], Fpocket [40], Q-SiteFinder [41], PASS [44], GHE-
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COM [57], and POCASA [58]. A given protein is first sent to the predictors to identify

the pocket sites. A z-score, which is a statistical measurement to find out the probability

of a score occurring within normal distribution, is calculated separately for each pocket

in different methods in order to compare the ranking scores of the pockets. Then, only

the three highest-scored pockets of each method are selected. Totally 24 retained pock-

ets are clustered according to their spatial similarity. The total z-score of each cluster

is calculated and used to re-rank the final pockets. Finally,the potential ligand binding

residues are figured out based on the final pockets.

2.2 Re-sampling Methods

Re-sampling is a common approach to handle the imbalanced dataset. There are three

main strategies of re-sampling. The first one is over-sampling, which generates some

new instances of the minority class, and the second one is under-sampling, which elimi-

nates some samples of the majority class. The above two strategies artificially re-balance

the class distribution. However, this kind of re-balancingmay not solve the problems of

some imbalanced datasets.Therefore, hybrid methods, which combine the two previous

methods (over-sampling and under-sampling methods), are also considered.

2.2.1 Over-sampling Methods

Random over-sampling (ROS)is a non-heuristic method that replicates samples of the

original minority class to generate the new instances. Thismethod causes over-fitting

easily since the new instances copy exactly from the original minority class.
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Synthetic Minority by Over-sampling TEchnique (SMOTE) [22] creates the new in-

stances by interpolating several minority samples that join together. This method makes

use of each minority class sample and inserts synthetic samples along the line segments

joining any/all of thek minority class nearest neighbors to over-sample the minority

class. The synthetic samples are randomly chosen among the neighbors from thek

nearest neighbors, depending upon the degree of over-sampling required. An example is

shown in Fig. 2.6. Five nearest neighbors are used in it, wherexi is a selected sample of

minority class,xi1 to xi5 are the 5 nearest neighbors ofxi ands1 to s5 are the synthetic

samples created by interpolation. If the degree of over-sampling required is 300%, three

synthetic examples are selected randomly froms1 to s5.

Figure 2.6: Example of SMOTE with 5 nearest neighbors.

Each sample can be represented by a feature vector. Synthetic samples are generated

in the following steps. Firstly, the difference between thefeature vector of the selected

sample and that of its neatest neighbor is calculated. Then,this difference is multiplied

by a random number between 0 to 1. Finally, this value is addedto the feature vector

of the selected sample. Therefore, the final value should liealong the line segment at a

random position between 2 specific vectors. Since the synthetic samples provide a less

specific and larger decision regions, the over-fitting problem can be reduced. However,
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this method may introduce more minority synthetic samples in the area of majority class

where the minority class is very sparse with respect to the majority class. This causes the

problem of overgeneralization [59], which means the decision boundary is very narrow

or there is large overlapping area between the majority class and minority class.

2.2.2 Under-sampling Methods

Random under-sampling (RUS)is a non-heuristic method that aims to balance the

datasets by randomly removing samples of the majority class. This method may easily

remove some useful data.

Condensed nearest neighbor rule (CNN)[60] eliminate the majority class samples

that are distant from the decision border since these samples can be considered as less

relevant for learning. First, a majority class sample is randomly drawn and formed a

subset with all the minority class samples. Then, 1-NN is used over this subset to classify

the other majority class samples. Every misclassified majority sample is selected to form

the re-sampled majority dataset.

Tomek links (TL) [61] is opposite to CNN. It edits out noisy and borderline majority

class samples. Borderline samples can be treated as unsafe samples since only small

changes can cause them to be assigned to a wrong class. The process can be described

as follows. First, each sample is used to find another sample which has the minimum

distance between them. If these two samples are in differentclasses, the sample of ma-

jority class will be removed. This method can remove the noisy and borderline majority

class samples to increase the area of decision border. However, some useful data, which
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is important for the classification, may also be discarded.

One-sided selection (OSS)[62] applies TL followed by CNN. By combining the ad-

vantages of both methods, the remainder majority samples are safe and more relevant

for learning.

Neighborhood Cleaning Rule (NCL) [63] is modified the Wilson’s Edited Nearest

Neighbor Rule (ENN) [64] to remove majority class samples. Firstly, three nearest

neighbors of each sample in the training set are found. If theselected sample belongs to

the majority class but the three nearest neighbors classifyit wrongly, the selected sam-

ple will be removed. If the selected sample belongs to the minority class but the three

nearest neighbors classify it wrongly, the nearest neighbors belonging to the majority

class will be removed.

CHC [42] is a kind of EAs that combines a selection strategy with ahighly disruptive

recombination operator. To avoid premature convergence and maintain diversity, incest

prevention and cataclysmic mutation are introduced. The process of CHC can be de-

scribed as follows. Firstly, a population set of chromosomesP is created. Each chromo-

somepi = (pi1, pi2, . . . , pin) is ann-dimensional vector, which is a set of genes, where

pij is the jth gene value (j = 1, 2, . . . , n) of the ith chromosome in the population

(i = 1, 2, . . . , m); m is the population size andn is the number of genes.

Secondly, the chromosomes are evaluated by a defined fitness function. The form of

fitness function depends on the application. Thirdly, an intermediate population set of

chromosomesC, which is of the same size asP is generated by copying all members

of P in a random order.
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Then, a uniform crossover (HUX) operator is applied onC to formC ′. HUX exchanges

half of the genes randomly between the parents. CHC also usesan additional method for

incest prevention. Before applying HUX to the parents, the Hamming distance between

them is calculated. If half of that distance is larger than a difference thresholdd, HUX

is applied; otherwise these two parents are deleted fromC. The initial thresholdd is

set atn/4. After C ′ has formed, it is evaluated by the fitness function and an elitist

selection is taken. Only the best chromosomes from bothP andC ′ are selected to form

the offspring population in the next generation. If the offspring population is the same

asP , the difference thresholdd is decreased by one.

CHC is different from the traditional genetic algorithm. Mutation is not performed at the

recombination stage. CHC performs partial reinitialization (divergence) when the search

becomes trapped (i.e., the difference thresholdd becomes zero and no new offspring

population is formed for several generations). The population is reinitialized, based on

the best chromosome, by changing the elements’ values randomly with a user-defined

divergence rateDrate. For example, ifDrate = 0.35, the values of 35% elements will

be changed randomly. The search is then resumed with a new difference thresholdd =

Drate ∗ (1−Drate) ∗ n. This process is called cataclysmic mutation.

CHC has shown the ability of selecting the most representative instances among the

other algorithms studied in [43]. Therefore, it is chosen asthe under-sampling algorithm

[65]–[66].
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2.2.3 Hybrid Methods

Although both over-sampling and under-sampling can balance the class distribution, dif-

ferent kinds of drawbacks are also introduced, including overgeneralization and removal

of useful data. Therefore, hybrid methods are introduced such that both over-sampling

and under-sampling are used to tackle the problems.

SMOTE+Tomek links (sTL) [21] is one of the hybrid methods. As discussed above, al-

though SMOTE can reduce the problem of over-fitting and balance the class distribution,

it may introduce synthetic samples too deeply in the area of majority class. Therefore,

this method applies TL to the over-sampled training set as a data cleaning method. In-

stead of removing only majority class samples, TL used here removes samples of both

classes.

SMOTE+ENN (sENN) [21] is similar to sTL. This method applies ENN as the data

cleaning method. ENN used in this method is different from NCL mentioned previously.

Instead of removing only majority class samples, ENN removes samples of both classes.

Therefore, any sample that is misclassified by its three nearest neighbors is removed.

SMOTE+Rough Set (sRST)[67] applies the rough set theory (RST) as the data clean-

ing method to include the original samples and the syntheticminority samples that be-

long to the lower approximation for their class in the final training set.

Borderline-SMOTE (sBorder) [68] is a modified version of SMOTE. It only over-

samples or strengthens the borderline minority samples, which can be found by using the
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following method. Firstly,m nearest neighbors of each minority sample in the training

set are calculated. The number of majority samples among thesem nearest neighbors

is denoted bym′, where0 ≤ m′ ≤ m. If m = m′, the selected minority sample will

be considered as noise. Ifm/2 ≤ m′ < m, which means that the number of majority

samples among the nearest neighbor is larger than that of minority samples, the selected

sample will be considered as being misclassified easily, andit will become one of the

borderline minority samples. If0 ≤ m′ < m/2, the selected sample will be considered

as safe. After all the borderline minority samples have beenfound, only these samples

will undergo the SMOTE process continuously to generate thesynthetic samples.

Safe-Level-SMOTE (sSafe)[69] is also a modified version of SMOTE. It assigns each

minority sample its safe level before the SMOTE process. Firstly,m nearest neighbors

of each minority sample in the training set are calculated. The safe level of the selected

sample can be calculated by counting the number of minority samples among thesem

nearest neighbors. If the safe level of a sample is close to 0,it will consider as noise. If it

is close tom, it will be considered to be safe. The synthetic samples are only generated

in safe regions.
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Chapter 3

Predicting Protein-Ligand Binding Site

using Support Vector Machine with

Protein Properties

3.1 Introduction

Identification of protein-ligand binding site is an important task in structure-based drug

design and docking algorithms. In the past two decades, different approaches have been

developed to predict the binding site, including the geometric, energetic and sequence-

based methods. While scores are calculated from these methods, the algorithm for do-

ing classification becomes very important and can affect theprediction results greatly.

In this chapter, the Support Vector Machine (SVM) is used to cluster the pockets that

are most likely to bind ligands under the consideration of attributes of geometric char-

acteristics, interaction potential, offset from protein,conservation score and properties

surrounding the pockets.
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The binding sites predictions of the previous methods were based on different scores,

which were calculated from some protein characteristics. The simplest method was set-

ting a threshold to help determining the binding sites [13].If the score of a point was

greater than the threshold, that point would be identified asthe binding site. In [14],

mean and standard deviation of the scores were considered onfinding the threshold.

The results of these approaches are easily affected by the grid format and the threshold

has to be set carefully; otherwise the results would not be satisfactory. Machine learning

techniques have been widely applied in bioinformatics and have shown satisfactory per-

formance in binding site prediction [70]–[73]. In this chapter, support vector machine

(SVM) is proposed for tackling this problem. SVM [30]–[33] has shown its high appli-

cability and advantage on classifying high-dimensional and large datasets [34], [35].

The prediction of binding sites can be formulated as a problem of binary classification

to determine a location for binding the ligand. SVM is one of the supervised learning

tools and it mainly applies two techniques to do the classification: the formulation of a

large-margin hyperplane and the use of a kernel function. SVM can construct an(n−1)-

dimensional hyperplane in ann-dimensional space to separate the data, where each

datum is represented by ann-dimensional vector.

We train the SVM to generate the hyperplane by using 29 proteins’ attributes, including

the geometric characteristics, interaction energy, sequence conservation, distance from

protein, and the properties of the surrounding grid points.A radial basis function (RBF)

is used as the SVM kernel since a non-linear classification model is needed and RBF is a

common kernel to handle this problem. Like most of the datasets in bioinformatics, the

data of the binding sites have the problem of being imbalanced and in large data scales

[16]. Therefore, down sampling and filtering are also applied to reduce the data size.
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Two experiments are conducted to evaluate our approach. Thefirst one uses LigASite

[36] as the dataset which is suggested in ConCavity. The predicted binding sites are

represented as grid points in this experiment. Our approachis compared with four other

methods. They are LIGSITE, SURFNET, PocketFinder and ConCavity. The other ex-

periment uses 198 drug-target dataset which is developed inMetaPocket [38]. Only the

location of the top three largest binding sites are predicted, and each site is represented as

one center point in this experiment. Our approach is compared with six other methods.

They are LIGSITECSC, SURFNET, Fpocket, Q-SiteFinder, ConCavity, and MetaPocket.

Two different measurements are applied since the representations of the binding sites

are different in these experiments.

3.2 Methodology

This section explains the datasets and attributes used in this chapter, and the details of

the SVM classifier. The overall flow of our method is then described.

3.2.1 Datasets

We have used two sets of proteins to evaluate our method. The first one is the non-

redundant LigASite (v9.4) dataset [36], which was suggested in [15]. The other one is

the 198 drug-target complexes, which was discussed in [38].For the dataset of LigA-

Site, only six main classes of enzyme (categorized for 272 protein complexes) from the

dataset are selected. They are transferase, hydrolase, oxidoreductase, lyase, ligase and

isomerase, which occupy around 70% of LigASite. Fig. 3.1 shows the percentages of the

27



Chapter 3. Predicting Protein-Ligand Binding Site using Support Vector Machine
with Protein Properties

number of proteins distributed among these six enzyme classes. For reference, Fig. 3.2

shows the number of chains distributed in the selected proteins of LigASite.

Figure 3.1: Percentages of distribution among six enzyme classes. Mostof the proteins
in LigASite belong to the transferase class. The second is hydrolase. The contribution
of the other classes are almost the same.

3.2.2 Protein Properties Used for Training and Testing

The structure of proteins with bound ligands are obtained from the Protein Data Bank

(PDB) [6], which is a collection of atomic coordinates and other information describing

proteins and other important biological macromolecules. Structural biologists use meth-

ods such as X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy to

determine the location of each atom relative to each other inthe molecule.

After the structure of each protein is retrieved, a 3D grid isgenerated by covering the

free-space surrounding the proteins. The program is based on the source of ConCavity,

which is available on its website. The attributes of each grid point used in the SVM are
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Figure 3.2: Distribution of the number of chains in the selected proteins of LigASite.
Most of the proteins have less than three chains.

calculated based on the protein properties in the following:

3.2.2.1 Grid values

These are the two values of each grid point that are calculated by LIGSITE and SURFNET.

They represent the binding site preference based on geometric characteristics.

3.2.2.2 Interaction potential

This is the van der Waals interaction potential of an atomic probe with the protein [14].

The calculation is done by the PocketFinder method. The Lennard-Jones formula (3.1) is

used to estimate the interaction potential between the protein and a carbon atom placed

at the grid point:
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V (p) =

N∑

i=1

(
C i

12

r12pi
− C i

6

r6pi
) (3.1)

whereC i
12 andC i

6 are constants, which are the typical 12-6 Lennard-Jones parameters

used to model the van der Waals interaction energy between the carbon atom placed

at the grid pointp and the protein atomi; N is the total number of protein atoms.r12pi

andr6pi are the powers 12 and 6 ofrpi respectively, whererpi is the distance between

the grid pointp and the protein atomi. The first term describes the repulsion between

atoms when they are very close to each other. The second term describes the attraction

between atoms at long distance.

3.2.2.3 Conservation score

Conservation score is obtained from a residue-level analysis to identify which residues

in a protein are responsible for its function. The score of each grid point is the conserva-

tion score of the nearest residue. The Jensen-Shannon divergence (JSD) method is used

to calculate the score since it has been shown to provide an outstanding performance in

identifying residues near bound ligands. It is an open source program which is freely

available on its webpage [52].

3.2.2.4 Distance from protein

The squared distance from each grid point to the closest point on the van der Waals

surface of the protein is calculated. When the grid points are too far from the atoms,

they are not likely to be a pocket. In the experiment, almost 90% of ligand atoms are

located within 5̊A of the protein’s van der Waals surface. Hence, the grid points with

30



3.2 Methodology

the squared distance larger that 5Å are filtered out in order to reduce the huge data size.

To explain the relationship between the binding sites and the selected attributes, graphs

of probability density for the normalized attribute valuesare shown in Fig. 3.3. The

solid line represents the corresponding probability density for non-binding sites (nega-

tive class) and the dotted line represents the corresponding probability density for bind-

ing sites (positive class). Some of the attributes, such as LIGSITE values, SURFNET

values, and interaction potential, show a very high densityof small values when the

grid points are located at non-binding sites. On the other hand, these attributes show a

small difference on the density when the grid points are located at binding sites. This

difference is shown more clearly in Fig. 3.4. Hence, we can see that the values of these

attributes are relevant to the location of the binding sites. However, it may be inadequate

to use only one property to classify the binding sites. Therefore, we propose to use all

of them as the features of the training set for an SVM.

3.2.2.5 Properties of surrounding grid points

All the binding sites are formed by many grid points (the distance between two grid

points is 1̊A [15]), so the properties of the grid points nearby are also relevant features

to the prediction. Six connected points (as shown in Fig. 3.5) are selected and their

properties as described in Sections 3.2.2.1–3.2.2.3 aboveare used as the attributes. The

point in the middle of the cube in Fig. 3.5 is the selected gridpoint to be classified.

There are totally 29 features assigned as the SVM attributes.
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Figure 3.3: Probability density functions of protein properties.

3.2.3 Classification with Support Vector Machine

Machine learning methods have been applied to predict catalytic sites [70], [74]. In

this chapter, one of the machine learning tools, the supportvector machine (SVM), is
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Figure 3.4: A zoom-in version of Fig. 3.3: (a) LIGSITE values, (b) SURFNET values,
and (c) Interaction potential.

employed to predict the protein-ligand binding sites. It uses the radial basis function as

the kernel to construct a non-linear hyperplane. The program called SVMlight is used,

which is available on its website [75].

SVM basically is a binary classifier. Let a vectorx be denoted by[xj ], j = 1, . . . , m,

wherem is the number of attributes and[xj ] is a point in anm-dimensional vector

space. The notationxi is thei-th vector in a dataset{(xi, yi)}ni=1, whereyi ∈ {−1, 1} is

the condition label for a binary classification problem andn is the number of examples

(grid points). To construct the SVM, all training samples are first mapped to a feature

space by a non-linear functionφ(x). A separating hyperplane in the feature space can
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Figure 3.5: Six connected grid points of a selected grid point. All the black spots in the
graph represent the grid points. The middle one is the selected grid point to be classified
and the larger black spots are the connected grid points: their properties are also used as
the attributes of the classification.

be expressed as

f(x) = 〈w, φ(x)〉+ b (3.2)

=
m∑

j=1

wjφ(xj) + b

wherew is the weight vector andb is the bias.

The optimal separating hyperplane is defined as a linear classifier which can separate

the two classes of training samples with the largest marginal width, and the solution

α = [αi] is obtained by maximizing the following function:

W (α) =
n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyj〈φ(xi), φ(xj)〉 (3.3)

subject to:
n∑

i=1

yiαi = 0, i = 1, . . . , n, (3.4)
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where0 ≤ αi ≤ C ∗ Cfactor (for positive samples) and0 ≤ αi ≤ C (for negative

samples).C is the regularization parameter controlling the tradeoff between training

error and margin. The larger the value ofC, the larger penalty is assigned to errors.

Cfactor is a cost-factor, which makes the training errors on positive samples outweigh

the errors on negative samples [76].

In the above optimization problem, only those items withαi > 0 can remain. The sam-

plesxi that lie along or within the margins of the decision boundary(by Kuhn-Tucker

theorem) are called the support vectors. The weight vector in (3.2) can be expressed in

terms ofxi and the solutionsαi of the optimization function (3.3):

w =

n∑

i=1

αiyiφ(xi) (3.5)

whereαi ≥ 0.

Then, the separating hyperplane in (3.2) becomes

f(x) =

n∑

i=1

αiyi〈φ(xi), φ(x)〉+ b (3.6)

To avoid the computation of the inner product〈φ(xi), φ(x)〉 in the high dimensional

space during the optimization of (3.3), the kernel functionthat can satisfy the Mercer’s

condition is introduced:

K(xi, x) = 〈φ(xi), φ(x)〉 (3.7)

The kernel function can be computed efficiently and solve theproblem of mapping the

samples to the potentially high dimensional feature space.
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Table 3.1:Training Dataset.
1pkj 3gd9 1lf3 3lem 1llo
1ybu 4tpi 3h72 2j4e 1rn8
2v8l 1x2b 1g97 2zhz 3a0t
1o26 1rzu 1znz 1ojz 1sqf
2gga 3gh6 3d1g 2jgv 1dy3
1jyl 2e1t 2ywm 1kwc 2g28
3d4p 2wyw 2dtt 1tjw 2za1
2art 1u7z 3gid 1i1h 2w1a

Radial basis function is used as the kernel in this chapter, which is defined by

K(xi, x) = exp(−1

σ
‖xi − x‖2) (3.8)

whereσ > 0 is the parameter to determine the width of the radial basis function. It

controls the flexibility of the classifier. Whenσ decreases, the flexibility of the resulting

classifier in fitting the training data increases, and this might lead to over-fitting.

Around 15% of the proteins in LigASite (40 proteins) are selected as the training set of

SVM since we find that the results are only slightly differentwhen more proteins are

used as training data. As the number of grid points of each protein is very large, more

proteins will cause the training time to increase greatly. Based on the consideration of

interpretability, only 15% of the proteins are selected to form the training set. (The rest

85% are for testing.) The training data are selected randomly with the same distribution

of enzyme type as that of the whole dataset (as shown in Fig. 3.1). The proteins used in

the training set are shown in Table 3.1.

Like most of the datasets in bioinformatics, the dataset used in this chapter encounters

the problem of being imbalanced, i.e. the number of positivesamples (the grid points
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of binding site) is much smaller than the number of negative samples (the other grid

points). Random under-sampling is applied to reduce this problem. Normalization is

also applied to even the contribution of each attribute. After several experiments, it was

found that one proper proportion between the negative samples and the positive samples

is 2:1. Therefore, the negative samples are selected randomly to get to this ratio in the

training set.

As a summary, the flowchart for the prediction of protein-ligand binding site is shown

in Fig. 3.6. The training dataset is built with the 29 attributes of each grid point by using

the ConCavity program, and the 3D grid space is set as 1Å. The training set undergoes

random under-sampling, so that the ratio 2:1 for the negative to positive samples can be

obtained. SVM is applied on the re-sampled training set to form the classification model.

This model is used later to classify the grid points of the testing proteins. The prediction

datasets for testing are also built with the 29 attributes byusing the ConCavity program.

Both the learning and classifying processes of SVM use the SVM light program.

Generate 3D grid
Calculate the features 

of each grid point

Apply under-sampling

and normalization

 to the training set

Apply SVM to train

the classification model

Use the model to classify

the grid points of each

testing protein

Figure 3.6: Flowchart for the prediction of protein-ligand binding site.
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3.3 Evaluation

To evaluate and compare our method to the other methods, the same performance mea-

surement should be used. We apply two different measurements on different methods

and datasets.

3.3.1 Dataset of LigAsite

For this dataset, grid points are used to represent the potential binding sites. If a grid

point is clustered as not suitable for binding ligands, a zero value will be assigned to it.

Therefore, the prediction of ligand binding sites can be represented by non-zero values

of the grid point, which represent the potential of being binding sites. The prediction

can be validated by computing the difference with the grid points of known ligands. We

define the grid points of the ligand atoms calculated from PDBas the positive samples

and the other grid points as the negative samples.

The terms of precision and recall are introduced [59] to helpshowing the evaluation

metric for imbalanced problems. The definitions of precision and recall are given as

follows:

Precision =
TP

TP + FP
(3.9)

Recall =
TP

TP + FN
(3.10)

whereTP is the number of true positives,FP is the number of false positives andFN

is the number of false negatives. The high value of precisionindicates that the predicted
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positive samples are most likely relevant. The high value ofrecall indicates that most of

the positive samples can be predicted correctly.

Another term calledF − measure [59], which is a function of precision and recall,

is introduced. It is a popular evaluation metric for imbalanced problems. In principle,

F −measure represents a harmonic mean between precision and recall. A high value

of F −measure means both the precision and recall values are high and do notdiffer

very much. It is defined as follows:

F −measure =
2 ∗ precision ∗ recall
precision + recall

(3.11)

The area under the receiver operating characteristic curve(AUC) is also commonly used

to measure the performance of classification. TheAUC metric [66] is the probability of

correctly identifying a random sample and can be defined as:

AUC =
1 +Recall − FPrate

2
(3.12)

whereRecall is defined in (3.10),FPrate = FP
FP+TN

andTN is the number of true

negatives.FPrate defines the percentage of true negatives cases misclassifiedas pos-

itives. A high value ofAUC implies small values ofFN andFP , meaning that the

corresponding classifier is very effective.
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3.3.2 198 Drug-target Complexes for Testing

For this dataset, the center points of the three largest pockets are used to represent the

potential binding sites. [38] proved that most of ligands bind to large pockets. Therefore,

they suggested an evaluation method for comparing the top three largest sites only. In

our experiment, after the grid points of potential binding sites are predicted by SVM,

the top three largest sites [38] are selected and each site isrepresented by a grid point in

the center of it.

If the center grid points are located at the real pocket sites(i.e. the distance between

the center grid points and any atoms of the ligand is within 4Å), the prediction will

count as a hit, which means the predicted binding site is identified correctly. There are

sometimes more than one binding site within a protein and theprediction may identify

more than one binding site correctly at the same time. In thiscase, only one hit in the

larger cluster is counted. The success rate is calculated bythe following equation to

compare the performance of different methods:

success rate =
NHIT

NP

(3.13)

whereNHIT is the number of proteins that at least one binding sites can be located

correctly andNP is the total number of proteins in the dataset.
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Table 3.2:Performance under different parameters of the SVM classifier.
C Cfactor σ F-measure AUC Number of support vectors

0.3817 0.5 0.5 0.3089 0.6891 53,651
0.3817 0.5 1 0.3053 0.6883 54,951
0.3817 0.5 2 0.2991 0.6866 58,939
0.3817 1 0.5 0.2756 0.7289 52,327
0.3817 1 1 0.2733 0.7295 53,279
0.3817 1 2 0.2687 0.7316 56,854
0.3817 2 0.5 0.2358 0.7420 54,662
0.3817 2 1 0.2359 0.7416 55,655
0.3817 2 2 0.2345 0.7409 59,362
0.7635 0.5 0.5 0.3118 0.6928 52,106
0.7635 0.5 1 0.3081 0.6934 53,322
0.7635 0.5 2 0.3009 0.6933 56,987
0.7635 1 0.5 0.2784 0.7275 50,899
0.7635 1 1 0.2767 0.7269 51,936
0.7635 1 2 0.2731 0.7277 55,510
0.7635 2 0.5 0.2397 0.7410 53,599
0.7635 2 1 0.2409 0.7397 54,674
0.7635 2 2 0.2413 0.7377 58,366
1.1452 0.5 0.5 0.3125 0.6943 51,386
1.1452 0.5 1 0.3075 0.6940 52,574
1.1452 0.5 2 0.3014 0.6955 56,243
1.1452 1 0.5 0.2797 0.7260 50,260
1.1452 1 1 0.2781 0.7251 51,367
1.1452 1 2 0.2749 0.7247 54,960
1.1452 2 0.5 0.2416 0.7398 53,092
1.1452 2 1 0.2430 0.7370 54,149
1.1452 2 2 0.2443 0.7343 57,834

3.4 Results

In this chapter, the value ofσ in (3.8) is set to the usually chosen value of 1, the value

of Cfactor for αi in (3.4) is set to 1, and the value ofC in (3.4) is equal to 1
avg x·avg x

=

0.7635, whereavg x =
∑n

i=1 xi

n
, xi is thei-th vector in the training dataset andn is the

number of samples in the dataset. These SVM parameters are set as the default values

of SVMlight program. Table 3.2 shows the validation results for different parameters of
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the SVM classifier. Six random proteins from different enzyme classes are chosen to

generate the validation dataset. They are 2cwh, 1g6c, 3p0x,1wxg, 3kco, and 1k54. In

the experiment, the values ofσ andCfactor differ from 0.5 to 2. The default value ofC is

0.7635 and it differs from a half to a double of the default value. The results show that an

increase ofF −measure may lead to the decrease ofAUC and the difference brought

by the parameters is not significant. Therefore, the defaultvalues of each parameter are

used to get a balance betweenF −measure andAUC. The number of support vectors

after the training is about 52,000.

3.4.1 Dataset of LigASite

In the first experiment, six enzyme classes are selected to compare our method with

four other methods. They are LIGSITE, SURFNET, PocketFinder and ConCavity. Both

LIGSITE and SURFNET used geometric characteristics to predict the ligand binding

site. PocketFinder used energy criteria and ConCavity usedboth geometric and se-

quence conservation properties to do the prediction. For the grid points determination,

LIGSITE applied a threshold with the value of 5.5, SURFNET and PocketFinder de-

termine the threshold value by considering the mean and standard deviation of the grid

values. ConCavity applied a binary search to the grid points. The search was made by

considering different specified properties based on the sizes and shapes of the pockets.

Only the grid points, which met all the properties, were selected.

The performance is calculated in terms ofF −measure in (3.11) andAUC in (3.12).

TheF −measure andAUC of the training data set are shown in Table 3.3. Both results

of sampled and non-sampled training data are given. The results of sampled training
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data are the classification outcome of the training set that is used to learn the classifi-

cation model of SVM. As mentioned before, random under-sampling is applied before

the SVM training in order to tackle the problem of imbalanceddataset. The results of

non-sampled training data are the classification results ofthe training set provided by

the trained SVM without applying any under-sampling. The other 85% of the selected

proteins are then used as testing data to test the performance of our method.

Table 3.3:Performance of Training Data.
Dataset F-measure AUC

Sampled Training Data 0.8150 0.8585
Non-sampled Training Data 0.3360 0.8417

From previous studies, ligands are not likely to be bound in small cavities. Therefore, af-

ter the grid points are classified by the SVM model, the cavities with volume small than

100Å3 are ignored. Table 3.4 shows the classification results of the testing dataset and

our method can classify the grid points correctly with a highvalue ofAUC. The other

methods define the pockets with lowAUC because the thresholds of the grid points

are not always suitable to the proteins and only one propertyof protein is considered.

The thresholds may be wrongly set by the user. On the contrary, we do not define any

threshold for our method. We use SVM to train the system and cluster the grid points

which are most likely to bind with ligands. The results also show that the success rate

is not sensitive to the enzyme classes the proteins belong to. BothF − measure and

AUC show a small difference of values (around 10%) among the six enzyme classes.

Table 3.5 shows theF −measure andAUC of testing datasets with different numbers

of chains in the proteins. The results can be interpreted by separating them into groups.

The first group has 1 or 2 chains, which has the largest values of F − measure. The

second group has 3 or 4 chains, where the values ofF − measure are 0.2803 and
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Table 3.4:Performance of Testing Data in Six Enzyme Classes.
Type Method F-measure AUC

Transferase Our Method 0.3338 0.8162
LIGSITE 0.1622 0.6615

SURFNET 0.2806 0.6516
PocketFinder 0.08970 0.6353
ConCavity 0.3195 0.6588

Hydrolase Our Method 0.3376 0.7548
LIGSITE 0.0982 0.6026

SURFNET 0.2577 0.6332
PocketFinder 0.07476 0.6132
ConCavity 0.2963 0.6562

Oxidoreductase Our Method 0.3895 0.8208
LIGSITE 0.2044 0.6705

SURFNET 0.3142 0.6467
PocketFinder 0.1255 0.6396
ConCavity 0.3314 0.6441

Lyase Our Method 0.3025 0.8464
LIGSITE 0.1507 0.7101

SURFNET 0.2709 0.6698
PocketFinder 0.06788 0.6349
ConCavity 0.3292 0.6933

Ligase Our Method 0.3453 0.8407
LIGSITE 0.1540 0.6831

SURFNET 0.2823 0.6612
PocketFinder 0.07515 0.63915
ConCavity 0.3750 0.6988

Isomerase Our Method 0.3442 0.7839
LIGSITE 0.1758 0.6685

SURFNET 0.2497 0.6341
PocketFinder 0.1205 0.6236
ConCavity 0.2519 0.6177

Overall Our Method 0.3422 0.8105
LIGSITE 0.1576 0.7993

SURFNET 0.2759 0.6494
PocketFinder 0.07133 0.6310
ConCavity 0.3172 0.6615
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0.2933 respectively. The third group has 6 or more chains, which has the lowest values

of F −measure. Generally, from the results of these three groups, F-measure decreases

when the number of chains increases, except when the number of chains is 5. Fig. 3.2

shows that there is only one protein with 5 chains. Therefore, the result of the case

of 5 chains is not sufficient to reflect the trend. The values ofAUC is insensitive to the

number of chains. The reason is that more chains in a protein means a more complicated

protein structure, and the number of potential pockets on the protein’s surface increases.

The method predicts some extra pockets which are not true binding sites.

Table 3.5:Performance of Testing Data with Different Numbers of Chains in the Pro-
teins.

No. of Chains F-measure AUC
1 0.3427 0.7950
2 0.3674 0.8057
3 0.2803 0.7976
4 0.2933 0.8105
5 0.4416 0.8989

>= 6 0.2575 0.7956

The grid points classified as binding sites are subject to evaluation, which is carried

out by computing the difference with the known bound ligands. TheF − measure of

all methods cannot reach a very high rate, since the size of predicted binding sites is

much larger than that of ligands. Also, some predicted binding sites may be useful to

look for some new ligands in the further research. Therefore, the comprehensive results

are more important. After the binding sites are predicted, docking process and many

medical experiments are needed to find a correct ligand to bind to the protein.
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3.4.2 198 Drug-target Complexes for Testing

In the second experiment, 198 drug-target protein complexes are used and our method

is compared with six other approaches, based on the evaluation of top three largest bind-

ing sites. The six other approaches are LIGSITECSC, SURFNET, Fpocket, Q-SiteFinder,

ConCavity, and MetaPocket. LIGSITE and PocketFinder are not applied in this ex-

periment since LIGSITECSC and Q-SiteFinder are the extension of them respectively.

LIGSITECSC, SURFNET, and Fpocket use geometric characteristics to predict the lig-

and binding site. Q-SiteFinder uses energy criteria and ConCavity uses both geomet-

ric and sequence conservation properties to do the prediction. MetaPocket predicts the

binding site by combining eight other approaches. Fig. 3.7 shows an example of bind-

ing sites prediction for the protein 1p5j. The real ligand isshown in red sticks at the

center and the predicted pockets by all the seven approachesare shown in spheres with

different colors.

The success rate of this experiment is calculated by (3.13).The prediction results of

top 1 to top 3 binding sites for all approaches are evaluated separately. Table 3.6 shows

the prediction results of our method and the other six approaches on the 198 drug-

target dataset. Our method can achieve the highest success rate among all the methods.

Table 3.7 shows the number of hit proteins among the seven methods on the drug-target

dataset. There are 122 proteins that can have the binding sites correctly identified as the

top 1 predictions. There are 30 and 10 proteins that can have the binding sites correctly

identified as the top 2 and top 3 predictions respectively. There are 36 proteins that no

associated binding sites can be identified correctly in the top 3 predictions. Our method

can locate the highest number of binding sites among all methods.
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Figure 3.7:The real ligand (red) binding site and the predicted pocketsfor protein 1p5j.
The pockets sites of MetaPocket (orange), LIGSITECSC (white), SURFNET (yellow),
Fpocket (cyan), Q-SiteFinder (magenta), ConCavity (grey), and our method (blue) are
shown in spheres.

The reason why our method can outperform the other methods isthat no threshold is

set to the grid points to identify the binding sites. Our method forms a training set

with 29 different properties of some proteins first, and thenapplies an SVM to train

a classification model. Finally, this model is used to predict the binding sites of other

proteins. Besides, we have applied many different properties of protein, such as the

geometric characteristics, interaction energy between the protein and a carbon probe,

and sequence conservation score, to do the predictions; while some other methods use

only one property to locate the binding sites.

Our method still has some limitations. In the drug-target dataset, 36 proteins cannot have

the binding sites located correctly. From these cases, we conclude with three limitations

of our method. The first one is that ligands may bind to a flat region. Since our method

tends to predict the binding sites inside a cavity or pocket,the sites in a flat region
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Table 3.6: Success Rate (%) of Top 3 Binding Sites Predictions on 198 Drug-Target
Dataset.

Method Top 1 Top 1-2 Top 1-3
Our Method 61.6 76.8 81.8
MetaPocket 61 70 74
LIGSITECSC 48 57 61
SURFNET 24 30 34

Fpocket 31 48 57
Q-SiteFinder 40 54 62
ConCavity 47 53 56

Table 3.7:Number of Hit Proteins on 198 Drug-Target Dataset.
Method Top 1 Top 2 Top 3 None

Our Method 122 30 10 36
MetaPocket 121 17 9 51
LIGSITECSC 95 18 7 78
SURFNET 46 11 8 133

Fpocket 61 34 17 86
Q-SiteFinder 79 28 16 75
ConCavity 93 12 6 87

are difficult to locate. There are16 cases in the drug-targetdataset belonging to this

category. The second limitation is that ligands may bind to small cavities. Since only

the top three largest binding sites are considered in the drug-target dataset, sites in small

cavities cannot be selected . There are 17 cases in the drug-target dataset belonging to

this category. The third limitation is that the binding sites may be inside the proteins

while only the pockets on the protein surface can be detected. There are three cases

in the drug-target dataset belonging to this category. Fig.3.8 shows three examples of

the difficult structures mentioned above. The real ligands are shown in red sticks. The

predicted binding sites of our method are shown in blue spheres.
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(a) 1pk2. (b) 1e7a. (c) 3cog.

Figure 3.8: Examples of the three limitations of our method. (a) The ligand binds to a
flat region. (b) The ligands bind to small cavities. (c) The binding sites are inside the
protein.

3.5 Conclusion

The determination of binding sites (pockets) is the prerequisite for protein-ligand dock-

ing and an important step of structure-based drug design. The prediction of the protein-

ligand binding site has been investigated in this chapter. SVM is employed to distinguish

the binding sites. It makes use of the properties of geometric characteristics, interaction

potential, distance from protein, conservation score and the grid points nearby to iden-

tify the binding sites. Threshold assignment is no longer needed to determine the pock-

ets. Distance filter and random under-sampling are also employed to reduce the effects

of large data size and imbalanced data respectively.

Our approach is compared to LIGSITE, LIGSITECSC, SURFNET, Fpocket, PocketFinder,

Q-SiteFinder, ConCavity, and MetaPocket on the datasets ofLigASite and 198 drug-

target protein complexes. For the LigASite dataset, the binding sites are represented as

grid points and our approach gets better results than the other approaches. The sites are
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predicted correctly with 35 % and 80 % ofF − measure andAUC respectively. The

proposed method is shown to offer more comprehensive results than the others since

more proteins fail to have the binding sites located when other approaches are used. For

the 198 drug-target dataset, only the top three largest binding sites are considered and

represented as one center point of each site. The results show that our approach performs

better than the other approaches and predicts the binding sites correctly in 62% at top

1 prediction, 77% at top 1–2 prediction, and 82% at top 1–3 prediction. This study of

binding sites identification can be further developed in theapplication of ligands finding

by virtual screening, docking or de novo drug design.
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Chapter 4

An Evolutionary Preprocessing

Method Based on Over-sampling and

Under-sampling for Imbalanced

Datasets (SMOTE+CHC)

4.1 Introduction

Imbalanced datasets are commonly encountered in real-world classification problems.

However, many machine learning algorithms are originally designed for well-balanced

datasets. Re-sampling has become an important step to pre-process imbalanced dataset.

It aims at balancing the datasets by increasing the sample size of the smaller class or

decreasing the sample size of the larger class, which are known as over-sampling and

under-sampling respectively. In this chapter, a sampling method based on both over-

sampling and under-sampling is proposed, in which the new samples of the smaller

class are created by the Synthetic Minority Over-sampling Technique (SMOTE) [21].
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The improvement of the datasets is done by the evolutionary computational method

of CHC [42] (Cross-generational elitist selection, Heterogeneous recombination and

Cataclysmic mutation) that works on both the synthetic samples and the samples of the

majority class.

In [21], it was reported that over-sampling and hybrid approaches provided better re-

sults than the under-sampling approaches. However, the re-sampled training dataset has

a larger size and causes an increase in the complexity of the classification model. It also

decreases the efficiency of the learning algorithm. Therefore, a hybrid method that com-

bines SMOTE and Evolutionary Algorithm (EA) is proposed, which shows a good bal-

ance between the over-sampling rate and the accuracy. The well-known over-sampling

method SMOTE is applied first to generate the new samples of the minority class. In

[59], the problem of over-generalization was mentioned. This means that the synthetic

samples of the minority class have occupied the area of the majority class. Therefore,

hybrid methods are introduced to overcome this problem. An EA approach is used to

under-sample both the synthetic samples and the samples of the majority class to im-

prove the performance of SMOTE in this chapter. The chosen EAis the CHC algorithm

since it can select the smallest and most representative instances among many algo-

rithms as reported in [43].

Experiments were then carried out to show the performance ofour proposed approach,

which are compared to random under-sampling (RUS), Tomek links (TL) [61], random

over-sampling (ROS), SMOTE [22], and SMOTE+Tomek links (SMOTE+TL) [21] us-

ing 22 imbalanced datasets from UCI Repository [77]. (Thesemethods have already

been introduced in Chapter 2.) C4.5 [78] is used as the learning algorithm for obtaining

a classification model from each re-sampled dataset, so as toevaluate the corresponding
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preprocessing method.

This chapter is organized as follows. Section 4.2 introduces the details of the novel

sampling strategy and the evaluation method of this study. To show the effectiveness of

our proposed method, the results and comparisons with othermethods are discussed in

Section 4.3. A conclusion is drawn in Section 4.4.

4.2 Methodology

In this section, the details of the proposed hybrid data preprocessing method is dis-

cussed. The data preprocessing method involves two stages:the first stage is SMOTE

(over-sampling). The samples in the minority class of the training sets are firstly over-

sampled with SMOTE. After applying SMOTE, the size of the minority class are the

same as that of the majority class. CHC is then implemented toreduce the numbers of

both the synthetic samples and the samples in the majority class. CHC has been shown

to be able to reach a good balance between convergence rate and diversity of results

among the EAs in [43].

There are two important issues that need to be addressed clearly before CHC is em-

ployed: the representation of each chromosome and the definition of fitness function.
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4.2.1 Chromosome Representation

CHC is used to eliminate the synthetic samples as well as the majority class samples.

Therefore, the chromosomes need to represent the subsets ofthese samples, which can

be done by a binary representation. Each chromosome is ann-dimensional vector, which

is a set of genes, wheren is the number of genes. In this study,n is the number of

synthetic samples plus the samples in the majority class. Each gene shows whether the

corresponding sample exists in the training set or not. Therefore, there are two possible

values for each gene: 0 and 1. If the gene value is 1, the corresponding sample is included

in the subset of the training set. If the gene value is 0, the corresponding sample is

excluded from the subset.

4.2.2 Fitness function

In this study, the k-Nearest Neighbor (k-NN) classifier is used as the evaluation method

of CHC to obtain the subset with the highest classification rate. Normally, accuracy

(ratio of correctly classified samples to total number of samples) would be used as the

measure of classification rate. However, it may cause difficulty for imbalanced datasets

since the corrected classification rate of the majority class affects the accuracy more

seriously than that of the minority class. This problem is more obvious if the ratio of

the size of majority class to that of minority class is large.The worst case could be

that even all the minority class samples are misclassified, the accuracy is still very high.

Therefore, the measures used in Chapter 3 are used here instead. They areF −measure

in (3.11) andAUC in (3.12).
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Since bothF − measure andAUC are important measures on imbalanced datasets,

a multi-objective fitness function is used here. If a chromosomeX as compared with

chromosomeY has a higher value ofF − measure (FX > FY ) and a lower value of

AUC (AX < AY ), the difference between the chromosomes’F−measure (|FX−FY |)

and the difference between the chromosomes’AUC (|AX − AY |) will be compared. If

|FX − FY | > |AX − AY |, chromosomeX will be regarded as a better one; otherwise

chromosomeY will be regarded as a better one.

4.3 Experimental Study

In this section, experiments are carried out to compare our proposed method, which

is called SMOTE+CHC, with the others methods, including RUS, TL, ROS, SMOTE,

and SMOTE+TL. To measure the performance of the preprocessing method, the same

classification algorithm should be used among all the methods and C4.5 is selected to

obtain the classification model from the re-sampled training set. The program of all

testing algorithms and the learning algorithm are based on KEEL, which is an open

source software tool available at the Web [79].

In this chapter, the geometric mean ofF−measure andAUC (GMFA) in (4.1) is used

as the measure to analyze the results of the experiments.GMFA is defined as follows:

GMFA =
√
F −measure · AUC (4.1)

The over-sampling rate of ROS, SMOTE, SMOTE+TL, and SMOTE+CHC will also be
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compared. The over-sampling rate is defined as follows:

Rateover =
(Nsampled −Noriginal)

Noriginal
∗ 100% (4.2)

whereNsampled is the number of samples in the re-sampled training set andNoriginal is

the number of samples in the original training set.

4.3.1 Datasets

To evaluate the algorithms’ performance, 22 datasets with different imbalanced ratio

(IR) from UCI Repository [77] are used. IR is the ratio of the size of majority class to

that of minority class. Table 4.1 shows the details of the selected datasets, where the

number of samples (Nsamp.), the number of attributes (Nattr.), the percentage distribu-

tion of the minority and majority classes, and the IR for eachdataset can be found.

Table 4.1:Descriptions of the Imbalanced Datasets.

Dataset Nsamp. Nattr. Min., Maj.(%) IR
yeast2vs4 514 8 (9.92, 90.08) 9.08

yeast05679vs4 528 8 (9.66, 90.34) 9.35
vowel0 988 13 (9.01, 90.99) 9.98

glass016vs2 192 9 (8.85, 91.15) 10.29
glass2 214 9 (7.94, 92.06) 11.59

shuttlec0vsc4 1829 9 (6.72, 93.28) 13.87
yeast1vs7 459 7 (6.53, 93.47) 14.3

glass4 214 9 (6.07, 93.93) 15.47
ecoli4 336 7 (5.95, 94.05) 15.8

pageblocks13vs4 472 10 (5.93, 94.07) 15.86
abalone918 731 8 (5.65, 94.25) 16.4
glass016vs5 184 9 (4.89, 95.11) 19.44
shuttlec2vsc4 129 9 (4.65, 95.35) 20.5
yeast1458vs7 693 8 (4.33, 95.67) 22.1

glass5 214 9 (4.2, 95.8) 22.78
yeast2vs8 482 8 (4.15, 95.85) 23.1

yeast4 1484 8 (3.43, 96.57) 28.1
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Dataset Nsamp. Nattr. Min., Maj.(%) IR
yeast1289vs7 947 8 (3.16, 96.84) 30.57

yeast5 1484 8 (2.96, 97.04) 32.73
ecoli0137vs26 281 7 (2.49, 97.51) 39.14

yeast6 1484 8 (2.36, 97.64) 41.4
abalone19 4174 8 (0.77, 99.23) 129.44

4.3.2 Setup of Experiments

In this chapter, C4.5 with pruning is used to evaluate the influence of each preprocessing

method. For CHC, which is applied to improve the performanceof SMOTE, the basic

settings of the parameters are as follows:

• Population size: 50.

• Divergence rate: 0.35.

• k of k-NN classifier used for evaluation: 1.

• Number of Evaluations: 10,000.

• Maximum number of best fitness: 1,000.

Two criteria are set to end the process of CHC. The first one is the number of evaluations.

The second one is the maximum number of best fitness. If the best fitness value does not

increase for 1,000 evaluations, the convergence to the global optimum is assumed. The

process of CHC will then be ended. We adopt a 5-fold cross validation model to conduct

the experiments, i.e., dividing the whole dataset into five parts randomly, and combining

four of them for training and the remaining part for testing.All the algorithms except TL

involve some random parameters, so ten experiments are carried out for each method

and the average results are obtained. Table 4.2 shows theGMFA for each sampling

method on the 22 datasets. The results of the original datasets are also shown in the
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first column and the bestGMFA value for each dataset is highlighted in bold. The last

row shows the averageGMFA value of each sampling method for the datasets. The

over-sampling and hybrid approaches can obtain better results than the under-sampling

methods. RUS performs the worst among the seven preprocessing methods and it even

performs worse than the original datasets on average. The performance of the over-

sampling and hybrid methods is very similar and the difference among them is around

3%. This finding can be seen in Table 4.3 as well, which shows the average ofAUC

andF −measure values of all the datasets. In Table 4.3, all the preprocessing methods

work better than the original datasets in terms ofAUC value. However, RUS gets a

poor result inF − measure. This is because many samples of the majority class are

predicted wrongly as the minority class. The over-samplingand hybrid approaches get

a balance betweenAUC andF −measure value. The results can re-confirm that data

preprocessing is an important step to deal with imbalanced datasets.

Although the results of both over-sampling and hybrid approaches are better than that of

under-sampling approaches, the number of training samplesare increased greatly. If the

value of IR is large, the over-sampling rate in (4.2) will become almost 100%. A large

training set increases the complexity of the classificationmodel. SMOTE+CHC can use

less training samples and the performance does not lead to a great drop. Table 4.4 shows

the over-sampling rate of different approaches. For the over-sampling methods, new mi-

nority samples are produced to balance the datasets. Therefore, the over-sampling rate

of SMOTE and ROS are the same and it depends on the IR value. When the IR value

is increased, the over-sampling rate is increased as well. SMOTE+CHC can obtain the

lowest over-sampling rate for all the datasets and it does not depend on the IR value.

CHC only selects the samples to increase the performance of the datasets, but not con-

sidering the locations of the samples.

58



4.3 Experimental Study

Table 4.2:GMFA of Testing Datasets under Different Sampling Approaches.

Dataset Original RUS TL ROS SMOTE SMOTE+TL SMOTE+CHC

yeast2vs4 0.7701 0.78810.78860.7661 0.7750 0.7706 0.7832

yeast05679vs4 0.5425 0.55770.55230.5503 0.5989 0.5902 0.6091

vowel0 0.9628 0.84210.96280.9483 0.9600 0.9581 0.9399

glass016vs2 0.4051 0.37890.37610.4477 0.4568 0.4561 0.4574

glass2 0.5897 0.41930.52080.5179 0.5450 0.5327 0.5821

shuttlec0vsc4 0.9978 1.00000.99780.9979 0.9977 0.9953 0.9979

yeast1vs7 0.4832 0.29590.37430.4725 0.4250 0.4258 0.4449

glass4 0.6510 0.64700.77490.8319 0.7282 0.6898 0.6829

ecoli4 0.7884 0.57710.78840.7977 0.7541 0.7523 0.7783

pageblocks13vs4 0.9815 0.79490.98150.9841 0.8956 0.8857 0.9359

abalone918 0.4065 0.41840.45540.6011 0.6292 0.6208 0.5004

glass016vs5 0.8288 0.69800.74150.7270 0.7385 0.7320 0.7258

shuttlec2vsc4 0.9129 0.95810.91291.0000 0.9904 0.9962 0.9700

yeast1458vs7 0.0000 0.23040.00000.2464 0.2646 0.2683 0.2760

glass5 0.8544 0.66320.84390.6930 0.7503 0.7081 0.6509

yeast2vs8 0.2236 0.43740.00000.7072 0.6621 0.5996 0.5922

yeast4 0.4312 0.41530.50490.4853 0.5041 0.4912 0.4793

yeast1289vs7 0.4701 0.29590.27240.3735 0.3109 0.3060 0.3486

yeast5 0.8164 0.62310.79780.7815 0.7975 0.7879 0.7845

ecoli0137vs26 0.6234 0.38370.81110.5613 0.4712 0.5457 0.5458

yeast6 0.6067 0.43280.69590.5801 0.5600 0.5499 0.5796

abalone19 0.0000 0.12360.00000.1535 0.1594 0.1585 0.1254

Mean 0.6066 0.54460.59790.6466 0.6352 0.6282 0.6268

Table 4.3:Mean of AUC and F-measure.

Original RUS TL ROS SMOTE SMOTE+TL SMOTE+CHC

Mean of AUC 0.7440 0.79900.75550.7760 0.8137 0.8157 0.8091

Mean of F-measure0.5386 0.39910.53060.5590 0.5167 0.5051 0.5070
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Table 4.4: Over-Sampling Rate(%) of Different Over-Sampling and Hybrid Ap-
proaches.

Dataset ROS SMOTE SMOTE+TL SMOTE+CHC
yeast2vs4 80.16 80.16 76.85 26.31

yeast05679vs4 80.68 80.68 74.48 26.70
vowel0 81.78 81.78 81.78 33.93

glass016vs2 82.29 82.29 73.18 21.35
glass2 84.11 84.11 75.93 17.99

shuttlec0vsc4 86.55 86.55 86.50 36.13
yeast1vs7 86.93 86.93 81.64 31.64

glass4 87.85 87.85 83.64 26.64
ecoli4 88.10 88.10 86.46 31.55

pageblocks13vs4 88.14 88.14 84.85 33.05
abalone918 88.58 88.58 83.28 34.54
glass016vs5 90.22 90.22 88.45 22.69
shuttlec2vsc4 90.70 90.70 89.92 23.06
yeast1458vs7 91.34 91.34 86.33 37.27

glass5 91.59 91.59 89.37 26.52
yeast2vs8 91.70 91.70 89.83 35.22

yeast4 93.13 93.13 90.09 41.00
yeast1289vs7 93.66 93.66 90.05 41.00

yeast5 94.07 94.07 92.62 42.03
ecoli0137vs26 95.02 95.02 93.24 36.48

yeast6 95.28 95.28 93.36 43.14
abalone19 98.47 98.47 97.32 47.86

4.4 Conclusion

A hybrid re-sampling method developed based on both over-sampling and under-sampling

has been proposed. First, SMOTE is employed to generate new synthetic samples of the

minority class. The problem of over-generalization can occur if only SMOTE is used.

Therefore, CHC is employed over the synthetic samples and the samples of the majority

class to reduce the problem.

The proposed sampling method (SMOTE+CHC) is compared to RUS, TL, ROS, SMOTE,

and SMOTE+TL on 22 datasets. To evaluate the performance of these seven sampling
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approaches, the same classifier (C4.5 algorithm) has been used in the experimental ver-

ification. The performance of all over-sampling and hybrid methods is better than that

of under-sampling in practice. Additionally, the results of the four approaches (ROS,

SMOTE, SMOTE+TL, and SMOTE+CHC) are very similar and their difference is only

around 3%. Although the over-sampling and hybrid methods outperform the under-

sampling methods, an increased size of the training sets will lead to low efficiency of

the classification model. Therefore, the over-sampling rates of them are also compared.

SMOTE+CHC can obtain the lowest over-sampling rates among the four approaches

for all 22 testing datasets. It can be seen that the proposed algorithm has the advantages

of hybrid sampling methods with a relatively small increasein the size of training sets.
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Chapter 5

An Evolutionary Hybrid Preprocessing

Method Based on Regular Membership

Functions for Imbalanced Datasets

(FRB+CHC)

5.1 Introduction

Another hybrid sampling method is proposed in this chapter,in which the synthetic

samples of the minority class are generated based on fuzzy logic, which is a useful tool

to treat imbalanced datasets [28]. However, a large re-sampled training dataset will in-

crease the complexity of the classification model and decrease the efficiency of the clas-

sification. It may cause over-generalization, which leads to a narrow decision boundary

between two classes. Therefore, an evolutionary algorithm(EA) is applied on the syn-

thetic samples and the samples of the majority class to under-sample the datasets and as

a cleaning method to solve the over-generalization problem. The chosen EA is the CHC
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algorithm [42] (Cross-generational elitist selection, Heterogeneous recombination and

Cataclysmic mutation) since it shows the ability of selecting the smallest group of most

representative instances among many algorithms studied in[43].

Experiments are then carried out to show the performance of our proposed method,

which is compared to SMOTE and different hybrid re-samplingmethods, including

SMOTE+Tomek Links [21], SMOTE+ENN [21], Borderline-SMOTE[68], Safe-Level-

SMOTE [69], and SMOTE+Rough Set [67]. 44 imbalanced datasets from UCI Repos-

itory [77] are used as the datasets. The Support Vector Machine (SVM) [80] is used as

the tool for reaching a classification model from each re-sampled dataset, so as to evalu-

ate the corresponding preprocessing method. The evaluation measures are based on the

functions of precision and recall. Since the size of datasetis related to the complexity

of classification model, the over-sampling rate and number of support vectors used are

also compared. Data complexity measure, which was suggested in [81], is also used to

compare the performance of different preprocessing methods.

This chapter is organized as follows: Section 5.2 introduces the details of the proposed

re-sampling method and the evaluation measures of this study. To show the effectiveness

of our proposed method, the comparisons and results are discussed in Section 5.3. A

conclusion is drawn in Section 5.4.

5.2 Methodology

In this section, the details of the proposed hybrid preprocessing method are discussed.

The proposed method involves two stages. The minority samples of the training sets
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are firstly over-sampled based on fuzzy logic. To decrease the size of training sets and

prevent over-generalization, CHC is then implemented to reduce the size of synthetic

samples and samples of the majority class.

5.2.1 Fuzzy Logic

In this chapter, let thepositive class be the minority class and onlyλ training samples

of positive class are considered. A training sample of positive class is denoted byXα,

whereXα = (xα1, . . . , xαγ) is aγ-dimensional vector,α = 1, 2, . . . , λ andxαβ is the

βth attribute value(β = 1, 2, . . . , γ) of theαth training sample. Theθth fuzzy if-then

rule can be written as follows:

Ruleθ : IF z1 is Aθ
1 AND . . . AND zγ isAθ

γ

THEN class = positive withwθ (5.1)

whereAθ
β is a fuzzy term of theθth rule corresponding to the attributezβ, β = (1, 2, . . . , γ)

and z = (z1, z2, . . . , zγ) is a γ-dimensional attribute vector, andwθ is the θth rule

weight. The regular triangular membership functions are used for the fuzzy terms.

The fuzzy rules are generated based on the samples of positive class. For each sample,

the label of each attribute with the highest membership value is selected to form the

corresponding rule. Therefore, the number of rules must notgreater thanλ. The max-

imum number of rules depends on the numbers of labels and attributes and is equal to

Lγ , whereL is the number of labels.
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The rule weightwθ is used to reflect the degree of matching of each fuzzy rule over

all the positive samples, so that the importance of each rulecan be evaluated. First, the

fuzzy value of each sample is calculated. The fuzzy value ofXα for theθth fuzzy rule

is defined as follows:

µAθ(Xα) = T (µAθ
1
(xα1), . . . , µAθ

γ
(xαγ)), (5.2)

whereµAθ
β
(xαβ) is the fuzzy value of theβth attribute for theθth fuzzy rule and the

product T-norm is used. The rule weight (wθ) is calculated by adding the fuzzy values

of all samples. In this way,wθ reflects the effect of a rule towards the whole positive

samples dataset.

wθ =

λ∑

α=1

(µAθ(Xα)). (5.3)

After the rule base of the positive class is generated, the rules are randomly drawn based

on the rule weight. The rule with a higher rule weight will have a higher probability to

be chosen. Then, a new sample is generated within the area of the selected rule. These

processes are repeated until the number of positive samplesis the same as the negative

samples.

To illustrate the idea more clearly, Fig. 5.1 shows the original distribution of two classes

with two attributes as an example of the formulation of fuzzyrules. The x-axis and y-

axis govern the values of the two different attributes and regular triangular membership

functions with five labels are used. The circle dots represent the negative samples and

the square dots represent the positive samples. The dashed lines show the minimum

or maximum value of the corresponding attribute of the positive samples. As only the

attribute vectors of the positive class are considered to generate fuzzy rules, totally ten
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rules can be formed in this example:

Rule1: IF Attr.1 isL 1 AND Attr.2 is L 4. THEN class = positive with 0.897

Rule2: IF Attr.1 isL 2 AND Attr.2 is L 3. THEN class = positive with 1.147

Rule3: IF Attr.1 isL 2 AND Attr.2 is L 4. THEN class = positive with 1.508

Rule4: IF Attr.1 isL 3 AND Attr.2 is L 3. THEN class = positive with 1.230

Rule5: IF Attr.1 isL 3 AND Attr.2 is L 4. THEN class = positive with 2.344

Rule6: IF Attr.1 isL 3 AND Attr.2 is L 5. THEN class = positive with 1.607

Rule7: IF Attr.1 isL 4 AND Attr.2 is L 1. THEN class = positive with 0.727

Rule8: IF Attr.1 isL 4 AND Attr.2 is L 4. THEN class = positive with 1.319

Rule9: IF Attr.1 isL 4 AND Attr.2 is L 5. THEN class = positive with 1.731

Rule10: IF Attr.1 isL 5 AND Attr.2 is L 4. THEN class = positive with 1.399

whereAttr.1 andAttr.2 represent Attribute 1 and Attribute 2 for the x-axis and y-axis

in Fig. 5.1 respectively. Rule 5 has the highest rule weight and rule 7 has the lowest rule

weight in this example.

For generating the synthetic samples, a rule out of these tenrules is selected with the

probability of selection depending on the rule weight. Then, this rule sets up the cri-

teria with the highest and lowest value of each attribute. The new sample is generated

randomly within these criteria. This process is repeated until the number of the posi-

tive samples is the same as that of the negative samples. Fig.5.2 shows the distribution

of samples after over-sampling. The triangle dots represent the synthetic samples. It is

found that the spread of the synthetic samples is similar to that of the original positive

samples (shown as the square dots). The synthetic samples inFig. 5.2 are dense in the
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area of rule 5.

Figure 5.1: Example of the distribution of imbalanced dataset. The y-axis represents
the values ofAttr.2 and x-axis represents the value ofAttr.1.

5.2.2 Setting of CHC

After the over-sampling, the number of minority class samples is the same as that of

majority class and CHC is then applied. There are two important issues that need to be

addressed clearly before the algorithm is employed: the representation of each chromo-

some and the definition of fitness function.

5.2.2.1 Chromosome Representation

CHC is used to reduce the synthetic samples as well as the majority class samples. The

chromosomes are used to represent the subsets of the dataset. The details have been

discussed when we presented the method of SMOTE+CHC, which can be found in
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Figure 5.2: Distribution of the samples after over-sampling. The y-axis represents the
values ofAttr.2 and x-axis represents the value ofAttr.1.

Section 4.2.1 of Chapter 4.

5.2.2.2 Fitness function

In this study, the k-Nearest Neighbor (k-NN) classifier is used again as the evaluation

method of CHC to obtain the subset with the highest classification rate. The fitness

function is formed fromF −measure andAUC, which has been introduced in Section

3.3.1 of Chapter 3.

Since bothF − measure andAUC are important measures on imbalanced datasets,

a multi-objective fitness function is used here. If a chromosomeX as compared with

chromosomeY has a higher value ofF − measure (FX > FY ) and a lower value of

AUC (AX < AY ), the difference between the chromosomes’F−measure (|FX−FY |)

and the difference between the chromosomes’AUC (|AX − AY |) will be compared. If
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|FX − FY | > |AX − AY |, chromosomeX will be regarded as a better one; otherwise

chromosomeY will be regarded as a better one.

5.3 Experimental Study

In this section, we present the experiments that are carriedout to compare our proposed

method with other hybrid sampling methods. The datasets used can be found in UCI

Repository [77].

The experiments involve SMOTE, sTL, sENN, sRST, sBorder, sSafe, and our proposed

method, which is named as Fuzzy Rule Base+CHC (FRB+CHC). To measure the per-

formance of the preprocessing method, the same learning tool should be used among all

the experimental methods. This tool is a Support Vector Machine (SVM) that attempts

to obtain the classification model from the re-sampled training set. The program of all

testing methods and the learning tool are based on KEEL, which is an open source soft-

ware available at the Web [79].F −measure andAUC are used as measures to analyze

the results. The average value of these measures of each method will be calculated. As

the large re-sampled training datasets will increase the complexity of the classification

model, the over-sampling rate and the number of support vectors formed from SVM

will also be compared. Finally, the behavior of each method in data complexity mea-

sures will be analyzed.
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5.3.1 Setup of Experiment

For over-sampling, the rules of the minority class samples are formed from regular

triangular membership functions with five labels. For CHC, the basic setting of the

parameters are:

• Population size: 50.

• Divergence rate: 0.35.

• Threshold decreasing rate: 0.001.

• k of k-NN classifier used as evaluation: 1.

• Number of Evaluations: 5,000.

It was found that the above values have no significant effect to the performance of CHC.

In this chapter, SVM is used to weigh the influence of each preprocessing methods. A

radial basis function (RBF) is used as the SVM kernel since a non-linear classification

model is needed and RBF is a common kernel to handle this problem. The RBF is

defined as follows:

RBF = exp(−1

σ
‖xi − x‖2) (5.4)

whereσ > 0 is a parameter to determine the width of the radial basis function. It

controls the flexibility of the classifier. Whenσ decreases, the flexibility of the resulting

classifier in fitting the training data increases, and this might lead to over-fitting easily.

The value ofσ is set as 0.01. The tradeoff between training error and margin of SVM is

set as 100. The above values are chosen through experiments.
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We consider a 5-fold cross validation model to develop the experiments, i.e., dividing

the whole dataset into five parts randomly, and combining four of them for training and

the remaining part for testing. All the methods involve somerandom parameters, so five

experiments are carried out for each 5-fold cross validation model and the average value

are calculated as the results, i.e. totally 25 experiments are done for each method.

5.3.2 Evaluation Method

To show the performance of our proposed method,F − measure andAUC are used.

As mentioned before, the main drawback of over-sampling or hybrid sampling methods

is to increase the complexity of the learning model. Therefore, the over-sampling rates

of different methods are also compared. It is defined as follows:

Rateover =
(Nsampled −Noriginal)

Noriginal

∗ 100% (5.5)

whereNsampled is the number of samples in the re-sampled training set andNoriginal is

the number of samples in the original training set. The over-sampling rate shows the

increase rate of the number of training samples. The increase rate of the support vectors

used to form the classification model is also shown to evaluate the complexity of the

learning model. This rate is calculated based on the supportvectors generated.

RateSV =
(SVsampled − SVoriginal)

SVoriginal
(5.6)

whereSVsampled is the number of support vectors trained by the re-sampled training set

andSVoriginal is the number of support vectors trained by the original training set.
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In [81], the performance of different preprocessing methods has been compared by

means of data complexity measures. It has been proved that these measures are useful

to evaluate the behavior of re-sampling approaches, and three kinds of data complexity

measures (F1, L3, and N4) were suggested under the imbalanced framework. F1 is the

maximum Fisher’s discriminant ratio, which focuses on the effectiveness of the single

feature dimension of different classes. It is calculated bythe means and variances of

each feature to investigate the overlap between different classes. First, define:

f =
(µ1 − µ2)

2

σ2
1 + σ2

2

(5.7)

whereµ1, µ2, σ1, andσ2 are the means and variances of the two classes, respectively,

for that feature. Thef value of each feature is calculated and the maximum value off

is taken as F1. A small value of F1 means the overlapping area between two different

classes is large. Therefore, a larger value of F1 representsa lower complexity of the

dataset. L3 is the nonlinearity based on a linear classifier by linear programming. A

measure of the nonlinearity of a classifier with respect to a given dataset is suggested in

[82]. This measure has been modified to study the nonlinearity of the class boundary in

[83]. First, a test set is created by linear interpolation between random sample pairs from

the same class. Then, the error rate on this test set is measured. In this study, the error

rate, L3, is defined as(1 − AUC). A Support Vector Machine with a linear kernel is

used as the linear classifier in this case. N4 is the nonlinearity of a 1 Nearest-Neighbor

(1NN) classifier. This measure follows the same procedure ofL3 to obtain the value.

The only difference is that the error rate is calculated for a1NN classifier in this case.

Therefore, a larger value of L3 or N4 represents a higher complexity of the dataset. The

three measures of F1, L3, and N4 are used to evaluate the behavior of different hybrid

methods of re-sampling by comparing the data complexity of the training set and testing

72



5.3 Experimental Study

set.

5.3.3 Datasets

To study the methods on different datasets, 44 datasets withdifferent imbalanced ratio

(IR) are chosen. IR is the ratio of the number of majority class to the number of minority

class. Table 5.1 shows the details of the selected datasets,where the number of samples

(Nsamp.), the number of attributes (Nattr.), the percentage of minority class against ma-

jority class, IR, and the data complexity measures (F1, L3, and N4) for each dataset can

be found.
Table 5.1:Descriptions of the Selected Imbalanced Datasets.

Dataset Nsamp. Nattr. Min., Maj.(%) IR F1 L3 N4

ecoli034vs5 200 7 (10, 90) 9 1.6323 0.1083 0.1300

yeast2vs4 514 8 (9.92, 90.08) 9.08 1.5793 0.4843 0.1733

ecoli067vs35 222 7 (9.91, 90.09) 9.09 0.9205 0.1760 0.1956

ecoli0234vs5 202 7 (9.9, 90.1) 9.1 1.6180 0.1094 0.0947

glass015vs2 172 9 (9.88, 90.12) 9.12 0.1375 0.5 0.4403

yeast0359vs78 506 8 (9.88, 90.12) 9.12 0.3113 0.4046 0.3758

yeast0256vs3789 1004 8 (9.86, 90.14) 9.14 0.6939 0.4506 0.3047

yeast02579vs368 1004 8 (9.86, 90.14) 9.14 1.6349 0.3510 0.1793

ecoli046vs5 203 6 (9.85, 90.15) 9.15 1.6030 0.1341 0.0988

ecoli01vs235 244 7 (9.83, 90.17) 9.17 1.1028 0.1080 0.1897

ecoli0267vs35 224 7 (9.82, 90.18) 9.18 0.9129 0.1798 0.1870

glass04vs5 92 9 (9.78, 90.22) 9.22 1.5422 0.1833 0.0400

ecoli0346vs5 205 7 (9.76, 90.24) 9.25 1.5952 0.1393 0.1221

ecoli0347vs56 257 7 (9.73, 90.27) 9.28 1.1296 0.1137 0.1261

yeast05679vs4 528 8 (9.66, 90.34) 9.35 1.0507 0.5 0.3248

vowel0 988 13 (9.01, 90.99) 9.98 2.4579 0.0855 0.1078

ecoli067vs5 220 6 (9.09, 90.91) 10 1.6922 0.1355 0.1573

glass016vs2 192 9 (8.85, 91.15) 10.29 0.2692 0.5 0.4311
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Dataset Nsamp. Nattr. Min., Maj.(%) IR F1 L3 N4
ecoli0147vs2356 336 7 (8.63, 91.37) 10.59 0.5275 0.1780 0.1585

led7digit02456789vs1 443 7 (8.35, 91.65) 10.97 1.9568 0.1010 0.3684

glass06vs5 108 9 (8.33, 91.67) 11 1.0487 0.3833 0.1621

ecoli01vs5 240 6 (8.33, 91.67) 11 1.3898 0.1309 0.0670

glass0146vs2 205 9 (8.29, 91.71) 11.06 0.3487 0.5 0.4399

glass2 214 9 (7.94, 92.06) 11.59 0.3952 0.5 0.4352

ecoli0147vs56 332 6 (7.53, 92.47) 12.28 0.9124 0.1088 0.1149

cleveland0vs4 177 13 (7.34, 92.66) 12.62 1.3442 0.1835 0.4511

ecoli0146vs5 280 6 (7.14, 92.86) 13 1.3399 0.1777 0.0896

shuttlec0vsc4 1829 9 (6.72, 93.28) 13.87 12.9723 0 0.0102

yeast1vs7 459 7 (6.53, 93.47) 14.3 0.3534 0.5 0.4228

glass4 214 9 (6.07, 93.93) 15.47 1.4693 0.4325 0.0808

ecoli4 336 7 (5.95, 94.05) 15.8 3.2474 0.5 0.0969

pageblocks13vs4 472 10 (5.93, 94.07) 15.86 1.5470 0.1462 0.2245

abalone918 731 8 (5.65, 94.25) 16.4 0.6320 0.5 0.3630

glass016vs5 184 9 (4.89, 95.11) 19.44 1.8505 0.5 0.1926

shuttlec2vsc4 129 9 (4.65, 95.35) 20.5 12.1322 0 0

yeast1458vs7 693 8 (4.33, 95.67) 22.1 0.1757 0.5 0.4598

glass5 214 9 (4.2, 95.8) 22.78 1.0185 0.5 0.1980

yeast2vs8 482 8 (4.15, 95.85) 23.1 1.1424 0.2284 0.3194

yeast4 1484 8 (3.43, 96.57) 28.1 0.7411 0.5 0.2787

yeast1289vs7 947 8 (3.16, 96.84) 30.57 0.3660 0.5 0.4306

yeast5 1484 8 (2.96, 97.04) 32.73 4.1976 0.5 0.2121

ecoli0137vs26 281 7 (2.49, 97.51) 39.14 2.3018 0.1738 0.2031

yeast6 1484 8 (2.36, 97.64) 41.4 1.9675 0.5 0.2373

abalone19 4174 8 (0.77, 99.23) 129.44 0.5295 0.5 0.4909

5.3.4 Results

Tables 5.2 and 5.3 show the results onF − measure andAUC for each sampling

method on the 44 datasets respectively. The results of the original datasets are shown

in the first column and the best value for each dataset are highlighted in bold. The last
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row shows the average value of each sampling method for the datasets. FRB+CHC

can obtain the highest average values of bothF − measure andAUC among all the

methods. The performance of sTL and sENN are similar. All thepreprocessing methods

can perform better than the original datasets. This is expected and can re-confirm that

the preprocessing is an important step to deal with imbalanced datasets.

The main drawback of over-sampling or hybrid sampling methods is that the number of

training samples are increased greatly. If IR of the datasetis large, the size of the re-

sampled training set is almost a double of that of the original one (an over-sampling rate

of nearly 100%). This drawback will cause the increase of complexity of the learning

model. Table 5.4 shows the over-sampling rate (5.5) of different methods on each dataset

and the mean rate of each method. FRB+CHC can obtain the best over-sampling rate of

all datasets while the rates of the other methods are similar. A negative value is shown

in many datasets. It means the size of the re-sampled datasetis smaller than the original

one. The difference between FRB+CHC and the other methods issignificant. This shows

that FRB+CHC can use less training samples to achieve high performance.

Table 5.5 shows the increased rate of the number of support vectors used to form the

classification model (5.6). The number of support vectors can reflect the complexity

of the classification model formed by SVM. When the number of support vectors is

smaller, the classification model is more easily applied. Some negative values can be

found since the number of support vectors for the re-sampleddatasets is less than that

of original datasets. FRB+CHC gives the best rate in the overall performance. The av-

erage number of support vectors are only increased by around0.9 times of the original

datasets; while most of the other methods have been increased by over 2 times.
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Table 5.2:F-measure of Testing Datasets among Different Sampling Methods.

Dataset Original SMOTE sTL sENN sBorder sSafe sRST FRB+CHC
ecoli034vs5 0 0.5629 0.59010.5522 0.2678 0.55780.5007 0.5829
yeast2vs4 0.6384 0.6824 0.66830.6963 0.7090 0.68240.6787 0.7015

ecoli067vs35 0 0.4540 0.51220.4661 0.4977 0.46090.4447 0.4308
ecoli0234vs5 0 0.5176 0.52400.5307 0.2958 0.50120.4734 0.6142
glass015vs2 0 0.3094 0.31030.3143 0.2427 0.33010.3419 0.2049

yeast0359vs78 0.3481 0.3541 0.33790.3637 0.3912 0.35800.3529 0.3470
yeast0256vs3789 0.1782 0.5282 0.52060.5371 0.5363 0.52860.5325 0.5899
yeast02579vs368 0.8152 0.7199 0.71790.7304 0.7275 0.71890.7201 0.7747

ecoli046vs5 0 0.3901 0.39580.3732 0.2014 0.40840.4214 0.5225
ecoli01vs235 0 0.4325 0.43960.4201 0.2869 0.43520.4264 0.4224
ecoli0267vs35 0 0.3158 0.32570.3002 0.3091 0.29020.3253 0.4592

glass04vs5 1 0.8793 0.87470.8950 1 0.92280.9209 0.9631
ecoli0346vs5 0 0.5446 0.63970.6147 0.2870 0.57410.5642 0.6766
ecoli0347vs56 0 0.5743 0.56280.5547 0.5189 0.55760.5104 0.5176
yeast05679vs4 0 0.4327 0.42820.4387 0.4736 0.43330.4250 0.4786

vowel0 1 0.9936 0.99050.9899 0.9984 0.98900.9816 0.9060
ecoli067vs5 0 0.3260 0.34630.3745 0.1910 0.34440.3225 0.6173
glass016vs2 0 0.3196 0.26860.2955 0.3195 0.30480.2963 0.2001

ecoli0147vs2356 0 0.4230 0.49600.4445 0.3897 0.43540.4435 0.4043
led7digit02456789vs10.7748 0.5707 0.52260.4746 0.7389 0.57660.5156 0.6746

ecoli01vs5 0 0.4138 0.44820.4437 0.2873 0.41030.4946 0.6843
glass06vs5 1 0.9057 0.89530.9102 0.9899 0.88570.9083 0.9783

glass0146vs2 0 0.2463 0.22470.2560 0.2836 0.24730.2814 0.2597
glass2 0 0.2477 0.23290.2590 0.2486 0.24780.2988 0.2019

ecoli0147vs56 0 0.5757 0.62880.5805 0.4192 0.60220.5103 0.6762
cleveland0vs4 0 0.1539 0.15600.1497 0.1169 0.12630.1600 0.1687
ecoli0146vs5 0 0.4280 0.41120.4264 0.2263 0.43560.4422 0.7456
shuttlec0vsc4 0.9490 0.9740 0.97490.9757 0.9753 0.97400.9817 0.7964

yeast1vs7 0 0.2926 0.28650.2998 0.2760 0.29390.2738 0.3161
glass4 0.8560 0.6633 0.65900.6371 0.8657 0.66130.6463 0.7273
ecoli4 0.7500 0.6352 0.63540.6399 0.8075 0.63890.6491 0.7356

pageblocks13vs4 0.2270 0.2033 0.20100.2010 0.1949 0.20340.1894 0.1816
abalone918 0.0444 0.4522 0.42060.4507 0.5671 0.44740.4570 0.5732
glass016vs5 0.6650 0.5674 0.56010.5172 0.7211 0.56680.6551 0.7694

shuttlec2vsc4 0.4000 0.7152 0.71520.7152 0.7152 0.71520.7288 0.6126
yeast1458vs7 0 0.1318 0.12600.1345 0.1569 0.13230.1344 0.1557

glass5 0.7000 0.5937 0.54950.5684 0.7000 0.59320.4838 0.7533
yeast2vs8 0.6967 0.5972 0.59050.6035 0.6128 0.59890.5984 0.6967

yeast4 0 0.2703 0.26480.2713 0.3435 0.27150.2711 0.3533
yeast1289vs7 0 0.1395 0.13570.1429 0.1663 0.13970.1308 0.1967

yeast5 0 0.4843 0.47420.4836 0.5111 0.48180.4751 0.4476
ecoli0137vs26 0 0.3976 0.46810.4378 0.4208 0.42920.3636 0.3465

yeast6 0 0.2698 0.26060.2702 0.3546 0.27050.2670 0.3288
abalone19 0 0.0408 0.04030.0409 0.0457 0.04090.0486 0.0482

Mean 0.2510 0.4711 0.47340.4723 0.4634 0.47330.4693 0.5179
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Table 5.3:AUC of Testing Datasets among Different Sampling Methods.

Dataset Original SMOTE sTL sENN sBorder sSafe sRST FRB+CHC
ecoli034vs5 0.4972 0.7069 0.72360.7014 0.5922 0.70470.6799 0.8217
yeast2vs4 0.7362 0.8924 0.89000.8929 0.8804 0.89310.8892 0.8757

ecoli067vs35 0.5 0.6860 0.70630.6800 0.6818 0.67900.6700 0.7860
ecoli0234vs5 0.4972 0.6978 0.70810.7084 0.6006 0.69430.6820 0.8289
glass015vs2 0.5 0.7152 0.72840.7082 0.5982 0.73760.7496 0.5530

yeast0359vs78 0.6067 0.7344 0.72810.7407 0.7572 0.73910.7334 0.6062
yeast0256vs3789 0.5486 0.7960 0.79720.8015 0.7943 0.79650.7993 0.7691
yeast02579vs368 0.8695 0.9057 0.90850.9100 0.9120 0.90350.9071 0.9125

ecoli046vs5 0.4973 0.6496 0.64880.6421 0.5626 0.65740.6696 0.7880
ecoli01vs235 0.4955 0.6606 0.66280.6571 0.6023 0.65980.6616 0.7866
ecoli0267vs35 0.5 0.6073 0.60930.6038 0.6078 0.60200.6113 0.8176

glass04vs5 1 0.9754 0.97280.9771 1 0.98420.9830 0.9732
ecoli0346vs5 0.4973 0.6974 0.74210.7274 0.5898 0.71240.7127 0.8459
ecoli0347vs56 0.5 0.7569 0.75940.7477 0.6899 0.74440.7294 0.7888
yeast05679vs4 0.5 0.7869 0.78620.7892 0.7950 0.78610.7797 0.7899

vowel0 1 0.9993 0.99900.9989 0.9998 0.99880.9981 0.9892
ecoli067vs5 0.5 0.6103 0.61550.6295 0.5608 0.61750.6106 0.8125
glass016vs2 0.5 0.7529 0.71060.7242 0.7084 0.74640.7322 0.6114

ecoli0147vs2356 0.4984 0.6509 0.69200.6625 0.6358 0.65800.6629 0.8054
led7digit02456789vs10.8788 0.8819 0.87990.8791 0.8684 0.88560.8650 0.8844

ecoli01vs5 0.4977 0.6602 0.67860.6705 0.5980 0.65660.6875 0.8159
glass06vs5 1 0.9774 0.95740.9669 0.9900 0.96290.9436 0.9840

glass0146vs2 0.5 0.6823 0.65940.6946 0.6833 0.68210.7142 0.6336
glass2 0.5 0.7132 0.69380.7253 0.6623 0.71270.7607 0.6078

ecoli0147vs56 0.5 0.7160 0.74600.7215 0.6382 0.73350.7053 0.8578
cleveland0vs4 0.4969 0.5622 0.55260.5508 0.5304 0.53210.5421 0.5857
ecoli0146vs5 0.4981 0.6440 0.63940.6444 0.5831 0.64670.6558 0.8371
shuttlec0vsc4 0.9515 0.9747 0.97550.9763 0.9759 0.97470.9845 0.9812

yeast1vs7 0.5 0.7583 0.76320.7625 0.6757 0.76020.7500 0.6932
glass4 0.9092 0.9148 0.91130.9128 0.9393 0.91430.9163 0.9230
ecoli4 0.8000 0.9101 0.91430.9171 0.9326 0.91710.9426 0.9368

pageblocks13vs4 0.5700 0.7528 0.74930.7495 0.7388 0.75310.7298 0.7141
abalone918 0.5125 0.8961 0.88630.8859 0.8674 0.89390.8916 0.8597
glass016vs5 0.8443 0.8856 0.87910.8810 0.8893 0.88530.9221 0.9186

shuttlec2vsc4 0.7000 0.9548 0.95480.9548 0.9548 0.95480.9590 0.9493
yeast1458vs7 0.5 0.6427 0.63960.6434 0.6302 0.64440.6539 0.5958

glass5 0.8451 0.8760 0.88070.8816 0.8451 0.88450.8515 0.8967
yeast2vs8 0.7739 0.7628 0.76140.7642 0.6964 0.76330.7770 0.7739

yeast4 0.5 0.8156 0.82270.8136 0.8203 0.81600.8124 0.7991
yeast1289vs7 0.5 0.7141 0.71330.7166 0.6761 0.71090.6968 0.6990

yeast5 0.5 0.9668 0.96550.9667 0.9703 0.96650.9655 0.9621
ecoli0137vs26 0.5 0.7118 0.73900.7425 0.7434 0.74130.6909 0.6655

yeast6 0.5 0.8742 0.87160.8743 0.8624 0.87440.8736 0.8879
abalone19 0.5 0.7177 0.71630.7183 0.6882 0.71800.7715 0.7016

Mean 0.6141 0.7784 0.78050.7799 0.7507 0.77950.7801 0.8028
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Table 5.4:Over-sampling Rate (%) of Training Sets among Different Sampling Meth-
ods.

Dataset SMOTE sTL sENN sBorder sSafe sRST FRB+CHC
ecoli0347vs56 80.53 77.63 77.02 80.53 80.53100.77 -4.54

yeast2vs4 80.16 76.85 76.17 80.16 80.16 80.16 -4.23
ecoli067vs35 80.18 77.14 76.02 80.18 80.18 94.13 -4.95
ecoli0234vs5 80.20 77.10 77.47 80.20 80.20 89.36 -6.44
glass015vs2 80.23 70.79 70.06 80.23 80.23 80.23 0.44

yeast0359vs78 80.24 71.49 70.60 80.24 80.24 80.34 -3.26
yeast0256vs3789 80.28 74.25 73.58 80.28 80.28 80.73 0.60
yeast02579vs368 80.28 76.97 76.77 80.28 80.28 80.28 -2.57

ecoli046vs5 80.30 77.09 76.72 80.30 80.30112.06 -2.10
ecoli0147vs2356 84.01 80.02 80.57 84.01 84.01119.57 3.01
ecoli0267vs35 80.36 76.56 75.67 80.36 80.36 94.65 -0.22

glass04vs5 80.44 77.18 75.81 80.44 80.44 96.76 -3.56
ecoli034vs5 80.20 77.72 77.59 80.20 80.20 86.63 -2.76
ecoli0346vs5 80.39 78.18 78.55 80.39 80.39 87.98 -1.60

yeast05679vs4 80.68 74.48 72.16 80.68 80.68 80.68 -1.94
vowel0 81.78 81.78 81.65 81.78 81.78 84.56 -3.09

ecoli067vs5 81.82 75.68 73.86 81.82 81.82 87.27 -0.57
glass016vs2 82.29 73.18 71.88 82.29 82.29 82.29 -5.60

ecoli0137vs26 90.48 87.65 87.21 90.48 90.48169.85 -3.86
led7digit02456789vs1 83.30 78.39 49.55 83.30 83.30 94.02 -5.59

ecoli0147vs56 83.97 79.91 79.46 83.97 83.97137.03 0.81
glass06vs5 83.34 80.79 79.17 83.34 83.34 91.22 3.24

glass0146vs2 83.41 74.63 73.66 83.41 83.41 83.41 -2.56
glass2 84.11 75.93 75.70 84.11 84.11 84.11 1.16

ecoli0146vs5 89.30 86.00 86.17 89.30 89.30139.65 -0.22
cleveland0vs4 84.97 80.35 79.19 84.97 84.97205.49 -0.29

ecoli01vs5 92.75 90.61 90.49 92.75 92.75186.47 -2.23
shuttlec0vsc4 86.55 86.50 86.50 86.55 86.55136.58 -2.43
yeast1458vs7 91.81 87.16 87.11 91.81 91.81 91.81 -2.16

glass4 87.85 83.65 82.48 87.85 87.85112.84 -3.04
ecoli4 88.10 86.46 86.61 88.10 88.10 88.39 -3.20

pageblocks13vs4 88.14 86.60 85.86 88.14 88.14157.10 -1.59
abalone918 88.58 83.38 83.28 88.58 88.58 88.58 -1.47
glass016vs5 90.22 88.45 87.10 90.22 90.22 94.57 -3.26

shuttlec2vsc4 90.70 89.92 87.98 90.70 90.70113.19 -9.30
yeast1289vs7 92.32 88.44 88.30 92.32 92.32 92.32 -0.41

glass5 91.59 89.37 88.44 91.59 91.59 92.76 -1.64
yeast2vs8 91.70 89.83 89.63 91.70 91.70 98.44 -1.45

yeast4 93.13 90.09 89.56 93.13 93.13 93.13 -1.23
yeast1vs7 89.62 85.04 84.63 89.62 89.62 89.62 -3.36

yeast5 94.07 92.62 92.59 94.07 94.07 94.07 -2.91
ecoli01vs235 82.59 78.95 77.60 82.59 82.59106.04 0.98

yeast6 95.28 93.36 93.33 95.28 95.28 95.28 -2.06
abalone19 98.47 97.32 97.66 98.47 98.47 98.47 -0.76

Mean 80.70 81.94 80.71 85.70 85.70103.47 -2.09
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Table 5.5:The Increased Rate of Number of Support Vectors of the Classification Model
formed by SVM.

Dataset SMOTE sTL sENN sBorder sSafe sRST FRB+CHC
ecoli0347vs56 0.245 0.418 0.412 0.194 0.143 0.476 0.020

yeast2vs4 2.662 2.507 2.439 2.050 2.981 2.698 1.001
ecoli067vs35 0.252 0.468 0.452 0.255 0.249 0.465 0.010
ecoli0234vs5 0.272 0.472 0.462 0.144 0.122 0.473 -0.004
glass015vs2 3.731 3.193 3.456 3.111 3.996 3.583 1.331

yeast0359vs78 1.384 1.149 1.159 0.917 1.434 1.418 0.116
yeast0256vs3789 3.555 3.240 3.064 3.033 3.669 3.577 0.928
yeast02579vs368 2.142 1.919 1.771 1.799 2.251 2.188 0.505

ecoli046vs5 0.263 0.460 0.457 0.142 0.125 0.490 0.040
ecoli0147vs2356 0.229 0.435 0.431 0.188 0.170 0.494 0.080
ecoli0267vs35 0.279 0.490 0.438 0.283 0.234 0.467 0.063

glass04vs5 1.839 1.467 1.333 -0.015 4.104 1.242 0.329
ecoli034vs5 0.269 0.456 0.452 0.118 0.135 0.477 0.038
ecoli0346vs5 0.286 0.488 0.475 0.120 0.140 0.497 0.040

yeast05679vs4 3.500 3.113 3.033 2.375 3.561 3.575 1.422
vowel0 1.116 0.752 0.822 0.045 2.311 0.972 1.582

ecoli067vs5 0.227 0.391 0.398 0.211 0.212 0.438 0.058
glass016vs2 3.868 3.296 3.571 2.965 4.209 3.660 1.405

ecoli0137vs26 0.175 0.338 0.333 0.141 0.089 0.439 0.016
led7digit02456789vs1 3.332 2.864 0.043 0.344 4.139 2.838 0.408

ecoli0147vs56 0.218 0.391 0.386 0.204 0.121 0.522 -0.112
glass06vs5 1.494 1.124 1.249 0.034 2.924 1.204 0.331

glass0146vs2 3.967 3.396 3.711 3.117 4.271 3.725 1.605
glass2 3.820 3.221 3.691 2.934 4.036 3.671 1.689

ecoli0146vs5 0.189 0.361 0.351 0.170 0.105 0.394 0.053
cleveland0vs4 0.540 0.712 0.721 0.485 0.247 0.505 0.019

ecoli01vs5 0.148 0.309 0.310 0.164 0.082 0.417 -0.041
shuttlec0vsc4 0.221 0.264 0.263 0.212 0.001 0.450 1.359
yeast1458vs7 3.121 2.947 3.027 1.624 3.233 3.100 2.157

glass4 1.968 0.836 1.118 0.200 4.223 1.852 0.426
ecoli4 2.173 2.020 2.086 1.521 2.668 2.394 0.886

pageblocks13vs4 0.836 0.863 0.847 0.925 0.057 1.198 0.103
abalone918 8.586 8.058 8.325 3.973 10.025 8.077 4.159
glass016vs5 2.084 1.440 1.575 0.264 3.498 1.846 0.551

shuttlec2vsc4 0.616 1.388 1.345 0.713 0.153 1.310 0.378
yeast1289vs7 4.846 4.611 4.721 3.421 5.170 5.087 1.064

glass5 2.307 1.884 2.128 0.282 4.623 2.151 0.615
yeast2vs8 4.905 4.920 4.808 4.789 5.282 5.169 1.212

yeast4 3.133 2.902 3.002 1.580 3.379 3.173 0.959
yeast1vs7 5.196 4.870 4.982 3.869 5.523 5.382 1.711

yeast5 3.178 2.617 2.894 2.537 3.676 3.265 1.995
ecoli01vs235 0.286 0.463 0.419 0.176 0.153 0.484 -0.080

yeast6 6.825 6.376 6.448 2.412 7.216 6.900 3.083
abalone19 13.156 12.829 13.097 8.465 14.221 12.973 8.265

Mean 2.351 2.198 2.193 1.420 2.708 2.403 0.949
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To show the behavior of different hybrid methods with data complexity measures, Figs. 5.3,

5.4, and 5.5 reveal theAUC result for each sampling method sorted by F1, L3, and N4

in ascending order. The y-axis of each figure shows the averageAUC results obtained

for both training and testing sets. The x-axis shows the 44 datasets sorted by F1, L3, and

N4 accordingly. The solid lines in the figures represent the averageAUC results for the

testing set; while the dashed lines represent the averageAUC results for the training

set. In [81], it is suggested that different intervals of F1,L3, and N4 can present good

or bad behavior under different sampling methods. In this study, good behavior means

a high averageAUC value for the testing set, which is experimentally set as 0.75, and

the absence of over-fitting (less than a difference of 0.2 between theAUC values of

training set and testing set). For bad behavior, it means thepresence of over-fitting or a

low averageAUC value of testing set.

The performance of the SMOTE-based methods are similar to each other since they all

use SMOTE as the over-sampling method. Therefore, the improvements are not signifi-

cant, even they have used different under-sampling methodsto eliminate the drawbacks

of SMOTE.

The good and bad behavior intervals of F1, L3, and N4 under different sampling meth-

ods can be extracted from theAUC graphs (Figs. 5.3, 5.4, and 5.5). Based on these

intervals, Tables 5.7, 5.8, and 5.9, which sort the datasetsby F1, L3, and N4 measures

respectively in ascending order, are used to compare the region of good and bad behav-

ior under different sampling methods. In Table 5.8, the region of bad behavior cannot be

separated by using L3 values since there are 16 datasets withthe same L3 values. There-

fore, the rules of bad behavior in Table 5.6 cannot be summarized with the L3 values.

Table 5.6 summarizes the intervals to form different rules to represent the good and bad
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(a) AUC results with SMOTE (b) AUC results with sTL

(c) AUC results with sENN (d) AUC results with sBorder

(e) AUC results with sSafe (f) AUC results with sRST

(g) AUC results with FRB+CHC

Figure 5.3: Average AUC results obtained from training and testing setssorted by F1.
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(a) AUC results with SMOTE (b) AUC results with sTL

(c) AUC results with sENN (d) AUC results with sBorder

(e) AUC results with sSafe (f) AUC results with sRST

(g) AUC results with FRB+CHC

Figure 5.4: Average AUC results obtained from training and testing setssorted by L3.
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(a) AUC results with SMOTE (b) AUC results with sTL

(c) AUC results with sENN (d) AUC results with sBorder

(e) AUC results with sSafe (f) AUC results with sRST

(g) AUC results with FRB+CHC

Figure 5.5: Average AUC results obtained from training and testing setssorted by N4.
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Table 5.6:Summary of the Intervals of F1, L3, and N4.
SMOTE sTL sENN sBorder sSafe sRST FRB+CHC

Good Behavior
F1≥ 2.3018

L3 ≤ 0.1080 L3 ≤ 0.1462
N4≤ 0.0808 N4≤ 0.2121

Bad Behavior
F1≤ 0.6320 F1≤ 0.5275

N4≥ 0.3684

behavior. Comparing the rules and the covered datasets, FRB+CHC covers the widest

regions of good behavior of L3 and N4 data complexity measures. This indicates that

FRB+CHC is more robust with the data complexity. The regionsof the SMOTE-based

methods are the same because of the same over-sampling method used.

5.4 Conclusion

A hybrid re-sampling method developed based on both over-sampling and under-sampling

has been proposed. The synthetic samples of the minority class are generated based on

fuzzy logic. To minimize the size of datasets and prevent over-generalization, CHC

has been employed over the synthetic samples and the majority samples as a cleaning

method to the over-sampled training set.

The proposed preprocessing method (FRB+CHC) is compared toSMOTE, sTL, sENN,

sBorder, sSafe, and sRST on 44 datasets. To evaluate the performance of these seven

sampling methods, the same SVM classifier has been used to obtain the experimental

results. It is shown that FRB+CHC outperforms the other sampling methods on both
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Table 5.7:Datasets Sorted by F1.

Dataset F1 SMOTE sTL sENN sBorder sSafe sRST FRB+CHC

glass015vs2 0.1375

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

yeast1458vs7 0.1757

glass016vs2 0.2692

yeast0359vs78 0.3113

glass0146vs2 0.3487

yeast1vs7 0.3534

yeast1289vs7 0.3660

glass2 0.3952

ecoli0147vs2356 0.5275

Undefined

abalone19 0.5295

abalone918 0.6320

Undefined Undefined Undefined Undefined Undefined Undefined

yeast0256vs3789 0.6939

yeast4 0.7411

ecoli0147vs56 0.9124

ecoli0267vs35 0.9129

ecoli067vs35 0.9205

glass5 1.0185

glass06vs5 1.0487

yeast05679vs4 1.0507

ecoli01vs235 1.1028

ecoli0347vs56 1.1296

yeast2vs8 1.1424

ecoli0146vs5 1.3399

cleveland0vs4 1.3442

ecoli01vs5 1.3898

glass4 1.4693

glass04vs5 1.5422

pageblocks13vs4 1.5470

yeast2vs4 1.5793

ecoli0346vs5 1.5952

ecoli046vs5 1.6030

ecoli0234vs5 1.6180

ecoli034vs5 1.6323

yeast02579vs368 1.6349

ecoli067vs5 1.6922

glass016vs5 1.8505

led7digit02456789vs11.9568

yeast6 1.9675

ecoli0137vs26 2.3018

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

vowel0 2.4579

ecoli4 3.2474

yeast5 4.1976

shuttlec2vsc4 12.1322

shuttlec0vsc4 12.9723
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Table 5.8:Datasets sorted by L3.

Dataset L3 SMOTE sTL sENN sBorder sSafe sRST FRB+CHC

shuttlec2vsc4 0

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

shuttlec0vsc4 0

vowel0 0.0855

led7digit02456789vs10.1010

ecoli01vs235 0.1080

Undefined Undefined Undefined Undefined Undefined Undefined

ecoli034vs5 0.1083

ecoli0147vs56 0.1088

ecoli0234vs5 0.1094

ecoli0347vs56 0.1137

ecoli01vs5 0.1309

ecoli046vs5 0.1341

ecoli067vs5 0.1355

ecoli0346vs5 0.1393

pageblocks13vs4 0.1462

Undefined

ecoli0137vs26 0.1738

ecoli067vs35 0.1760

ecoli0146vs5 0.1777

ecoli0147vs2356 0.1780

ecoli0267vs35 0.1798

glass04vs5 0.1833

cleveland0vs4 0.1835

yeast2vs8 0.2284

yeast02579vs368 0.3510

glass06vs5 0.3833

yeast0359vs78 0.4046

glass4 0.4325

yeast0256vs3789 0.4506

yeast2vs4 0.4843

ecoli4 0.5

glass016vs5 0.5

glass5 0.5

yeast5 0.5

yeast6 0.5

yeast4 0.5

yeast05679vs4 0.5

abalone918 0.5

yeast1vs7 0.5

yeast1289vs7 0.5

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

glass016vs2 0.5

glass2 0.5

glass0146vs2 0.5

glass015vs2 0.5

yeast1458vs7 0.5

abalone19 0.5
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Table 5.9:Datasets Sorted by N4.

Dataset N4 SMOTE sTL sENN sBorder sSafe sRST FRB+CHC

shuttlec2vsc4 0

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

Good
Behavior

shuttlec0vsc4 0.0102

glass04vs5 0.0400

ecoli01vs5 0.0670

glass4 0.0808

Undefined Undefined Undefined Undefined Undefined Undefined

ecoli0146vs5 0.0896

ecoli0234vs5 0.0947

ecoli4 0.0969

ecoli046vs5 0.0988

vowel0 0.1078

ecoli0147vs56 0.1149

ecoli0346vs5 0.1221

ecoli0347vs56 0.1261

ecoli034vs5 0.1300

ecoli067vs5 0.1573

ecoli0147vs2356 0.1585

glass06vs5 0.1621

yeast2vs4 0.1733

yeast02579vs368 0.1793

ecoli0267vs35 0.1870

ecoli01vs235 0.1897

glass016vs5 0.1926

ecoli067vs35 0.1956

glass5 0.1980

ecoli0137vs26 0.2031

yeast5 0.2121

Undefined

pageblocks13vs4 0.2245

yeast6 0.2373

yeast4 0.2787

yeast0256vs3789 0.3047

yeast2vs8 0.3194

yeast05679vs4 0.3248

abalone918 0.3630

led7digit02456789vs10.3684

yeast0359vs78 0.3758

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

Bad
Behavior

yeast1vs7 0.4228

yeast1289vs7 0.4306

glass016vs2 0.4311

glass2 0.4352

glass0146vs2 0.4399

glass015vs2 0.4403

cleveland0vs4 0.4511

yeast1458vs7 0.4598

abalone19 0.4909
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F − measure andAUC. Our method has improved theF − measure from 47% to

52% and theAUC from 78% to 80% when compared with sRST. To show the advan-

tages of the proposed method, the over-sampling rate and thenumber of support vectors

formed from SVM for different methods are also compared. FRB+CHC achieves good

results under these criteria, which means that FRB+CHC obtains a good balance be-

tween accuracy and over-sampling rate. It also decreases the complexity of the learning

model. The major reason is that CHC only selects the samples to increase the perfor-

mance of the datasets, but not considering the locations of the samples. Therefore, the

more representative samples are selected to form the training sets.

In the analysis with data complexity measures, the SMOTE-based hybrid methods can-

not show a significant difference between them. In contrast,FRB+CHC uses fuzzy logic

to over-sample the minority class samples. It shows a significant improvement over the

previous methods and is more robust than them against the data complexity of the orig-

inal datasets.
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Chapter 6

An Under-sampling Method Based on

Fuzzy Set Theory for Large

Imbalanced Dataset (uFRB+CHC)

6.1 Introduction

Large imbalanced datasets will introduce difficulties to classification problems. The

large data size and imbalanced nature may cause a high error rate of classifying the

minority class samples and a long training time of the classification model. Therefore,

re-sampling and data size reduction have become an important step to pre-process the

data. In this chapter, an under-sampling strategy over a large imbalanced dataset is pro-

posed, in which the samples of the majority class are selected based on fuzzy logic. To

further reduce the data size, the evolutionary computational method of CHC [42] (Cross-

generational elitist selection, Heterogeneous recombination and Cataclysmic mutation)

is suggested.
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In this chapter, experiments are carried out to show the performance of our proposed

method, which is compared to different under-sampling methods. They are random

under-sampling (RUS), condensed nearest neighbor rule (CNN) [60], Tomek Links (TL)

[61], one-sided selection (OSS) [62], and neighborhood cleaning rule (NCL) [63]. A

large imbalanced dataset from UCI Repository [77] is used asthe dataset for evaluation.

The Support Vector Machine (SVM) [80] is used as the tool for reaching a classification

model from each re-sampled dataset, so as to evaluate the corresponding preprocessing

method. The evaluation measures are based on the functions of precision and recall.

This chapter is organized as follows: Section 6.2 introduces the details of the proposed

under-sampling strategy and the evaluation measures of this study. To show the effec-

tiveness of our proposed method, the results and comparisons are discussed in Sec-

tion 6.3. A conclusion is drawn in Section 6.4.

6.2 Methodology

In this section, the details of the proposed under-samplingmethod are discussed. The

proposed method involves two stages. The majority class samples of the training sets

are firstly under-sampled based on fuzzy logic. To further reduce the data size, CHC is

then implemented to both minority and majority class samples.
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6.2.1 Fuzzy Logic

In this chapter, fuzzy logic is used to cluster the majority class samples and select the

samples according to their importance. Let the classnegative be the majority class

and onlyλ training samples (Xα) of the class negative are considered, whereXα =

(xα1, . . . , xαγ) is aγ-dimensional vector,α = 1, 2, . . . , λ andxαβ is theβth attribute

value(β = 1, 2, . . . , γ) of theαth training sample. Theθth fuzzy if-then rule can be

written as follows:

Ruleθ : IF z1 is Aθ
1 AND . . . AND zγ isAθ

γ

THEN class = negative withwθ (6.1)

whereAθ
β is a fuzzy term of theθth rule corresponding to the attributezβ, β = (1, 2, . . . , γ)

and z = (z1, z2, . . . , zγ) is a γ-dimensional attribute vector, andwθ is the θth rule

weight. The number of rules is governed by the distribution of the samples. The Gaus-

sian membership functions are used as the antecedent fuzzy sets, which are formed

based on the distribution of the attributes. The choice of the shape and the arrangement

of each label of the membership functions, and the use of the rule weight are introduced

in the following subsections.

6.2.1.1 Membership Functions

When deciding the membership function of each label, the distribution of the attribute is

considered. First, the mean value (meanβ) and standard deviation (stdevβ) of each at-

tribute are calculated, whereβ = 1, 2, . . . , γ. The samples closer to the mean value are
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treated as more informative. Therefore, the membership function near the mean value is

assigned with a narrower “bell” to cluster the samples with more fuzzy labels. An odd

number should be assigned as the number of labels. Considering,L labels per attribute

are employed and the Gaussian membership function of labelk (k = 1, 2, . . . , L) is

defined as follows:

fk(xαβ) = e
−

(xαβ−mβk)2

2σβk , (6.2)

wheremβk andσβk are the mean and standard deviation of thekth label corresponding

to theβth attribute respectively. Bothmβk andσβk are assigned based onmeanβ and

stdevβ. Table 6.1 shows the method of setting the parameters of eachmembership func-

tion, and in Fig. 6.1, we use 5 labels as an example to explain the method. This setting

of membership functions can cluster the samples near the mean value with more fuzzy

labels.

Table 6.1:The Label Setting of Each Membership Function of theβth Attribute.

Label mβk σβk

1 Area( 1
L+1

) stdevβ∗(L+1)/2

L

2 Area( 2
L+1

) stdevβ∗(L−1)/2

L
...

...
...

L+1
2

meanβ
stdevβ

L
...

...
...

L-1 Area(L−1
L+1

) stdevβ∗(L−1)/2

L

L Area( L
L+1

) stdevβ∗(L+1)/2

L

Note: Area( 1
L+1

) means the samples smaller than the value have occu-
pied 1

L+1
number of samples.
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Figure 6.1: Arrangement of the membership function of each label. 5 labels are em-
ployed as an example.

6.2.1.2 Rule Weight

Rule weight is used to assign the degree of matching of each fuzzy rule over all the

negative samples, so that the importance of each rule can be reflected. First, the fuzzy

value of each sample is calculated. The fuzzy value ofXα for the θth fuzzy rule is

defined as follows:

µAθ(Xα) = T (µAθ
1
(xα1), . . . , µAθ

γ
(xαγ)), (6.3)

whereµAθ
β
(xαβ) is the fuzzy value of theβth attribute for theθth fuzzy rule and the

product T-norms are used. The rule weight (wθ) is calculated by adding all the fuzzy

values of each sample.

wθ =

λ∑

α=1

(µAθ(Xα)). (6.4)
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6.2.1.3 Selection of the Majority Samples

After the rule base of the class negative is generated, the rules are randomly drawn

based on the rule weight. The rule with a higher rule weight has a higher probability

to be chosen. Then, a sample matching this rule is selected randomly to form the new

dataset. These processes are repeated until the number of negative samples is twice that

of positive samples. The above ratio of negative samples to positive samples of 2 to 1 is

obtained through experiments.

6.2.2 Setting of CHC

After the under-sampling, the number of majority class samples is twice that of minority

class and CHC is then applied. There are two important issuesthat need to be addressed

clearly before the algorithm is employed: the representation of each chromosome and

the definition of fitness function.

6.2.2.1 Chromosome Representation

CHC is used to further reduce the data size. The chromosomes are to represent subsets

of the dataset. The details are the same as those for the previously proposed method

(SMOTE+CHC), which can be found in Section 4.2.1 of Chapter 4.
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6.2.2.2 Fitness function

In this study, the SVM is used as the evaluation method of CHC to obtain the subset

with the highest classification rate. The fitness function isformed fromF − measure

andAUC, which is introduced in Section 3.3.1 of Chapter 3.

Since bothF −measure andAUC are important measures on imbalanced datasets, a

multi-objective fitness function is used here. If a chromosomeX has a higher value of

F − measure and a lower value ofAUC than that of chromosomeY , the difference

between the chromosomes’F−measure and the difference between the chromosomes’

AUC will be compared. If the difference between the chromosomes’ F −measure is

larger than that ofAUC, chromosomeX will be regarded as a better one; otherwise

chromosomeY will be regarded as a better one.

6.3 Experimental Study

In this section, we present the experiments that compare ourproposed method with other

under-sampling methods. The dataset used can be found in UCIRepository [77].

The experiments involve RUS, CNN, TL, OSS, NCL, and our proposed method, which

is named as uFRB+CHC. To measure the performance of the preprocessing methods, the

same learning tool should be used among them. This tool is a Support Vector Machine

(SVM) that attempts to obtain the classification model from the re-sampled training set.

The program of all testing methods and the learning tool are based on KEEL, which is

an open source software available at the Web [79].F −measure andAUC are used as
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Table 6.2:Descriptions of the Selected Imbalanced Dataset.

Dataset Nsamp. Nattr. Min., Maj.(%) IR

Census (Training/Testing) 57,008 41 (5.73, 94.27) 16.45

Census (Validation) 28504 41 (5.73, 94.27) 16.45

measures to analyze the results of the experimental methods, five trials are carried out

and the average value of these measures of each method will becalculated.

As mentioned before, the large re-sampled training datasets will increase the complex-

ity of the classification model. Therefore, the under-sampling rate and the number of

support vectors formed from the SVM will also be compared.

6.3.1 Dataset

To evaluate the methods, a large dataset called Census from UCI is chosen. It has been

divided into five parts evenly. The training set and testing set take two parts of them

separately. The remaining part forms the validation set used to calculate the fitness func-

tion of CHC. Table 6.2 shows the details of the selected dataset, where the number of

samples (Nsamp.), the number of attributes (Nattr.), the percentage distributions of the

minority and majority classes, and the imbalanced ratio (IR) are given. IR is the ratio of

the number of majority class samples to the number of minority class samples.

6.3.2 Setup of Experiment

For CHC, the basic settings of the parameters are:
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• Population size: 30.

• Divergence rate: 0.35.

• Threshold decreasing rate: 0.001.

• Kernel of SVM: Radial Basis Function.

• Number of Evaluations: 2,000.

SVM is used to compare the influence of each preprocessing methods. A radial basis

function (RBF) is used as the SVM kernel since a non-linear classification model is

needed and RBF is a common kernel to handle this problem. The RBF is defined as

follows:

RBF = exp(−1

σ
‖xi − x‖2) (6.5)

whereσ > 0 is the parameter to determine the width of the radial basis function. It

controls the flexibility of the classifier. Whenσ decreases, the flexibility of the resulting

classifier in fitting the training data increases, and this might lead to over-fitting easily.

The value ofσ is set as 0.01 for the experiment.

6.3.3 Results

Table 6.3 shows theF −measure andAUC of each sampling method. Our proposed

method of uFRB+CHC can obtain the best performance among allmethods. The perfor-

mance of TL and that of NCL are similar since the ideas of them are similar to remove

the noisy and borderline samples. The under-sampling rate and the number of support

vectors of the classification model for different methods are also shown in the table. The
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Table 6.3:The Testing Results of Census.

Results RUS CNN TL OSS NCL uFRB+CHC

F-measure 0.1579 0.057530.023330.079130.02578 0.1702

AUC 0.6703 0.5095 0.5043 0.5163 0.5046 0.6869

Under-sampling Rate 0.8855 0.8455 0.05334 0.8592 0.1228 0.9083

Number of Support Vectors6,396 8,799 40,083 8,024 36,690 4,381

under-sampling rate is defined as follows:

Rateunder =
(Noriginal −Nsampled)

Noriginal
∗ 100% (6.6)

whereNsampled is the number of samples in the re-sampled training set andNoriginal

is the number of samples in the original training set. uFRB+CHC can obtain the high-

est under-sampling rate. This shows that our method can use less training samples to

achieve the high performance.

6.4 Conclusion

An under-sampling method over large imbalanced dataset hasbeen proposed. The sam-

ples of the majority class are selected based on fuzzy logic.CHC is then applied to

further reduce the data size. The proposed method (uFRB+CHC) is compared to RUS,

CNN, TL, OSS, and NCL. To evaluate the performance of these six sampling methods,

the same SVM classifier has been used to obtain the experimental results. It shows that

our method outperforms the other sampling methods on bothF −measure andAUC.

The under-sampling rate and the support vectors’ number of the classification model are

also compared. Our method achieves good results on all thesemeasures, which means
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the proposed method can select the most representative samples to form the training

sets.
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Chapter 7

Comparison

7.1 Introduction

In this thesis, three different preprocessing methods for imbalanced datasets have been

presented in Chapters 4, 5, and 6 respectively. In this chapter, a general comparison

among these three preprocessing methods using 44 imbalanced datasets from UCI Repos-

itory will be given out.

7.2 Summary

In this section, a summary of each preprocessing method is discussed. The first method

is SMOTE+CHC, which is a hybrid data preprocessing method with two parts: Synthetic

Minority Over-sampling Technique (SMOTE) and CHC algorithm (Cross-generational

elitist selection, Heterogenous recombination and Cataclysmic mutation). SMOTE [22]

is a common over-sampling method for imbalanced datasets. It creates new instances by

interpolating several minority samples that join together. In [59], the problem of over-
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generalization was mentioned. Hence, CHC is implemented toboth synthetic samples

and majority samples to under-sample the dataset and selectthe more representative

samples to form the dataset.

The second method is Fuzzy Rule Base+CHC (FRB+CHC). It makesuse of fuzzy logic

to generate new samples of the minority class, and then uses CHC to reduce both syn-

thetic samples and majority samples (the same latter part ofSMOTE+CHC). In the

over-sampling part, the fuzzy rules are first generated based on the samples of the mi-

nority class. The rules are randomly drawn based on the rule weight. The rule with a

higher rule weight has a higher probability to be chosen. Then, the samples are produced

using the selected rules as the criteria.

The third method is under-sampling Fuzzy Rule Base+CHC (uFRB+CHC), which is

an under-sampling data preprocessing method. It focus on the large imbalanced datasets

and uses fuzzy logic and CHC to reduce the datasets. This method is similar to FRB+CHC.

The main difference is that the fuzzy rule base here is formedwith the samples of the

majority class. The Gaussian membership functions are usedfor the fuzzy terms. After

the fuzzy rule base is generated, the rules are randomly drawn based on the rule weight.

The samples matching the rules are selected to form the new dataset. Then, CHC is

applied to the samples of the minority class and the under-sampled majority class to

further reduce the size of dataset.
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7.3 Comparison with Experimental Results

In this section, experimental results of the 44 imbalanced dataset from UCI Repository

are presented. FRB+CHC using two different membership functions will be compared.

One uses regular triangular membership functions, named asFRB+CHC, the other one

uses Gaussian membership functions, named as FRB+CHCgau. SVM will be used as the

learning tool to train the re-sampled dataset. F-measure and AUC are used as measures

to analyze the results. The sampling rate and the number of support vectors formed from

SVM will also be compared. At last, the behavior of each method will be analyzed.

7.3.1 Datasets

To study the methods, 44 datasets with different imbalancedratio (IR) are chosen. IR is

the ratio of the number of majority class samples to the number of minority class sam-

ples. Table 7.1 shows the details of the selected datasets, where the number of samples

(Nsamp.), the number of attributes (Nattr.), the percentage distribution of the minority

and majority classes, IR, and the data complexity N4 for eachdataset can be found.

N4 is the nonlinearity based on a linear classifier by linear programming. A measure of

the nonlinearity of a classifier with respect to a given dataset is suggested in [82]. This

measure has been modified to study the nonlinearity of the class boundary in [83]. First,

a test set is created by linear interpolation between randomsample pairs from the same

class. Then, the error rate on this test set is measured. In this study, the error rate, N4,

is defined as(1 − AUC). A 1 Nearest-Neighbor (1NN) is used as the linear classifier.

Therefore, a larger value of N4 represents a higher complexity of the dataset.
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Table 7.1:Descriptions of the Selected Imbalanced Datasets.
Dataset Nsamp. Nattr. Min., Maj.(%) IR N4

shuttlec2vsc4 129 9 (4.65, 95.35) 20.5 0.0000
shuttlec0vsc4 1829 9 (6.72, 93.28) 13.87 0.0102
glass04vs5 92 9 (9.78, 90.22) 9.22 0.0400
ecoli01vs5 240 6 (8.33, 91.67) 11 0.0670

glass4 214 9 (6.07, 93.93) 15.47 0.0808
ecoli0146vs5 280 6 (7.14, 92.86) 13 0.0896
ecoli0234vs5 202 7 (9.9, 90.1) 9.1 0.0947

ecoli4 336 7 (5.95, 94.05) 15.8 0.0969
ecoli046vs5 203 6 (9.85, 90.15) 9.15 0.0988

vowel0 988 13 (9.01, 90.99) 9.98 0.1078
ecoli0147vs56 332 6 (7.53, 92.47) 12.28 0.1149
ecoli0346vs5 205 7 (9.76, 90.24) 9.25 0.1221
ecoli0347vs56 257 7 (9.73, 90.27) 9.28 0.1261
ecoli034vs5 200 7 (10, 90) 9 0.1300
ecoli067vs5 220 6 (9.09, 90.91) 10 0.1573

ecoli0147vs2356 336 7 (8.63, 91.37) 10.59 0.1585
glass06vs5 108 9 (8.33, 91.67) 11 0.1621
yeast2vs4 514 8 (9.92, 90.08) 9.08 0.1733

yeast02579vs368 1004 8 (9.86, 90.14) 9.14 0.1793
ecoli0267vs35 224 7 (9.82, 90.18) 9.18 0.1870
ecoli01vs235 244 7 (9.83, 90.17) 9.17 0.1897
glass016vs5 184 9 (4.89, 95.11) 19.44 0.1926
ecoli067vs35 222 7 (9.91, 90.09) 9.09 0.1956

glass5 214 9 (4.2, 95.8) 22.78 0.1980
ecoli0137vs26 281 7 (2.49, 97.51) 39.14 0.2031

yeast5 1484 8 (2.96, 97.04) 32.73 0.2121
pageblocks13vs4 472 10 (5.93, 94.07) 15.86 0.2245

yeast6 1484 8 (2.36, 97.64) 41.4 0.2373
yeast4 1484 8 (3.43, 96.57) 28.1 0.2787

yeast0256vs3789 1004 8 (9.86, 90.14) 9.14 0.3047
yeast2vs8 482 8 (4.15, 95.85) 23.1 0.3194

yeast05679vs4 528 8 (9.66, 90.34) 9.35 0.3248
abalone918 731 8 (5.65, 94.25) 16.4 0.3630

led7digit02456789vs1 443 7 (8.35, 91.65) 10.97 0.3684
yeast0359vs78 506 8 (9.88, 90.12) 9.12 0.3758

yeast1vs7 459 7 (6.53, 93.47) 14.3 0.4228
yeast1289vs7 947 8 (3.16, 96.84) 30.57 0.4306
glass016vs2 192 9 (8.85, 91.15) 10.29 0.4311

glass2 214 9 (7.94, 92.06) 11.59 0.4352
glass0146vs2 205 9 (8.29, 91.71) 11.06 0.4399
glass015vs2 172 9 (9.88, 90.12) 9.12 0.4403

cleveland0vs4 177 13 (7.34, 92.66) 12.62 0.4511
yeast1458vs7 693 8 (4.33, 95.67) 22.1 0.4598

abalone19 4174 8 (0.77, 99.23) 129.44 0.4909
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7.3.2 Setup of Experiment

For CHC, the basic settings of the parameters are:

• Population size: 50.

• Divergence rate: 0.35.

• Threshold decreasing rate: 0.001.

• k of k-NN classifier used as evaluation: 1.

• Number of Evaluations: 5,000.

The 1-Nearest Neighbor (1-NN) classifier is used as the evaluation method of CHC to

obtain the subset with the highest classification rate. The fitness function is formed from

F −measure andAUC, which is introduced in Section 3.3.1 of Chapter 3.

Since bothF − measure andAUC are important measures on imbalanced datasets,

a multi-objective fitness function is used here. If a chromosomeX has a higher value

of F − measure (FX > FY ) and a lower value ofAUC (AX < AY ) than that of

chromosomeY , the difference between the chromosomes’F −measure (|FX − FY |)

and the difference between the chromosomes’AUC (|AX − AY |) will be compared. If

|FX − FY | > |AX − AY |, chromosomeX will be regarded as a better one; otherwise

chromosomeY will be regarded as a better one.

SVM is used to weigh the influence of each preprocessing methods. A radial basis func-

tion (RBF) is used as the SVM kernel since a non-linear classification model is needed
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and RBF is a common kernel to handle this problem. The RBF is defined as follows:

RBF = exp(−1

σ
‖xi − x‖2) (7.1)

whereσ > 0 is the parameter to determine the width of the radial basis function. It

controls the flexibility of the classifier. Whenσ decreases, the flexibility of the resulting

classifier in fitting the training data increases, and this might lead to over-fitting easily.

The value ofσ is set as 0.01 and the tradeoff between training error and margin of SVM

is set as 100. The above values are chosen through experiments.

We consider a 5-fold cross validation model to develop the experiments, i.e., dividing

the whole dataset into five parts randomly, and combining four of them for training and

the remaining part for testing. All the methods involve somerandom parameters, so ten

experiments are carried out for each 5-fold cross validation model and the average value

are calculated as the results. Therefore, totally 50 experiments were done.

7.3.3 Experimental Results

Tables 7.2 and 7.3 show the values ofF − measure andAUC respectively for each

sampling method on the 44 datasets, and the results are sorted by N4 in ascending order.

The last row shows the average value of each method on all datasets. FRB+CHC outper-

forms the other methods in terms ofF −measure andAUC. TheF −measure values

have only a small difference among the methods. The performance of SMOTE+CHC

and FRB+CHCgau are similar to each other.

Table 7.4 shows the under-sampling rate of each sampling method. The negative val-
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ues mean the size of the re-sampled dataset is larger than theoriginal one. The under-

sampling rate is defined as follows:

Rateunder =
(Noriginal −Nsampled)

Noriginal
∗ 100% (7.2)

whereNsampled is the number of samples in the re-sampled training set andNoriginal

is the number of samples in the original training set. Table 7.5 shows the number of

support vectors used to form the classification model. Obviously, the under-sampling

rate of uFRB+CHC has the highest value, and the number of support vectors is related to

the number of training samples. FRB+CHC uses the greatest number of support vectors

in most of the datasets.

To show the behavior of different methods, Fig. 7.1 and 7.2 reveal theAUC andF −

measure results respectively sorted by N4 values in ascending order. The y-axis of each

figure shows the averageAUC orF−measure results obtained from either the training

or testing set. The x-axis shows the 44 datasets sorted by N4 values. The solid lines in

the figures represent the averageAUC or F − measure results for the testing set; the

dashed lines represent the averageAUC or F −measure results for the training set.

Both uFRB+CHC and FRB+CHC show the advantage on relaxing theover-fitting prob-

lem since the performances on training set and testing set are similar in bothAUC

andF −measure. However, uFRB+CHC shows its disadvantage in the value ofF −

measure in Fig. 7.2(a). That means the precision is low and the difference between

precision and recall is large. This is a common problem of under-sampling since some

informative samples of the majority class may be eliminated, which makes the sam-

ples of the majority class classified wrongly. The performance of SMOTE+CHC and
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Table 7.2:F-measure of Testing Datasets among Different Sampling Methods.
Dataset uFRB+CHC SMOTE+CHC FRB+CHC FRB+CHCgau

shuttlec2vsc4 0.6363 0.6103 0.6126 0.3493
shuttlec0vsc4 0.4533 0.9724 0.7964 0.8048
glass04vs5 0.3121 0.9933 0.9631 1
ecoli01vs5 0.5570 0.4392 0.6843 0.4560

glass4 0.2055 0.8190 0.7273 0.8074
ecoli0146vs5 0.6881 0.3762 0.7456 0.4005
ecoli0234vs5 0.6050 0.5577 0.6142 0.4988

ecoli4 0.5562 0.7931 0.7356 0.7594
ecoli046vs5 0.4629 0.3827 0.5225 0.4063

vowel0 0.2194 0.9833 0.9060 0.9559
ecoli0147vs56 0.6160 0.5164 0.6762 0.5499
ecoli0346vs5 0.7217 0.5985 0.6766 0.5478
ecoli0347vs56 0.6142 0.5913 0.5176 0.5503
ecoli034vs5 0.5969 0.5054 0.5829 0.4337
ecoli067vs5 0.5210 0.3787 0.6173 0.3393

ecoli0147vs2356 0.5552 0.5021 0.4043 0.4986
glass06vs5 0.5484 0.9866 0.9783 0.9553
yeast2vs4 0.1366 0.6996 0.7015 0.7127

yeast02579vs368 0.6705 0.7437 0.7747 0.7826
ecoli0267vs35 0.5128 0.3856 0.4592 0.4420
ecoli01vs235 0.4820 0.4844 0.4224 0.5030
glass016vs5 0.1377 0.7548 0.7694 0.7259
ecoli067vs35 0.4700 0.5108 0.4308 0.6064

glass5 0.3734 0.6583 0.7533 0.7477
ecoli0137vs26 0.2489 0.4306 0.2929 0.2554

yeast5 0.4819 0.5146 0.4476 0.4674
pageblocks13vs4 0.5377 0.3563 0.1803 0.1763

yeast6 0.5398 0.3577 0.3288 0.3185
yeast4 0.7599 0.3076 0.3533 0.3207

yeast0256vs3789 0.7349 0.5624 0.5899 0.5891
yeast2vs8 0.6763 0.7068 0.6967 0.6967

yeast05679vs4 0.4817 0.5066 0.4786 0.4885
abalone918 0.3691 0.5221 0.5732 0.5661

led7digit02456789vs1 0.3268 0.7308 0.6746 0.7333
yeast0359vs78 0.7071 0.4117 0.3470 0.3695

yeast1vs7 0.5616 0.3120 0.3161 0.2991
yeast1289vs7 0.3253 0.1851 0.1967 0.1741
glass016vs2 0.1755 0.2102 0.2001 0.2161

glass2 0.6020 0.2484 0.2019 0.2910
glass0146vs2 0.7536 0.2823 0.2597 0.2984
glass015vs2 0.3269 0.2137 0.2049 0.2148

cleveland0vs4 0.1357 0.0923 0.1687 0.0542
yeast1458vs7 0.1812 0.1585 0.1557 0.1662

abalone19 0.0287 0.0437 0.0482 0.0495
Mean 0.4683 0.5090 0.5179 0.4904
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Table 7.3:AUC of Testing Datasets among Different Sampling Methods.
Dataset uFRB+CHC SMOTE+CHC FRB+CHC FRB+CHCgau

shuttlec2vsc4 0.8796 0.9440 0.9493 0.7691
shuttlec0vsc4 0.6978 0.9731 0.9812 0.9823
glass04vs5 0.8140 0.9988 0.9732 1
ecoli01vs5 0.7245 0.6659 0.8159 0.6761

glass4 0.5949 0.9333 0.9230 0.9323
ecoli0146vs5 0.7523 0.6260 0.8371 0.6381
ecoli0234vs5 0.7277 0.7181 0.8289 0.6914

ecoli4 0.7720 0.9244 0.9368 0.9278
ecoli046vs5 0.6858 0.6395 0.7880 0.6548

vowel0 0.6538 0.9982 0.9892 0.9952
ecoli0147vs56 0.7627 0.6905 0.8578 0.7048
ecoli0346vs5 0.8097 0.7170 0.8459 0.6951
ecoli0347vs56 0.7241 0.7511 0.7888 0.7258
ecoli034vs5 0.7678 0.6747 0.8217 0.6422
ecoli067vs5 0.7336 0.6245 0.8125 0.6083

ecoli0147vs2356 0.7250 0.6891 0.8054 0.6837
glass06vs5 0.9056 0.9895 0.9840 0.9595
yeast2vs4 0.5737 0.8656 0.8757 0.8772

yeast02579vs368 0.8505 0.9041 0.9125 0.9091
ecoli0267vs35 0.7102 0.6405 0.8176 0.6638
ecoli01vs235 0.7042 0.6758 0.7866 0.6950
glass016vs5 0.5347 0.8979 0.9186 0.8781
ecoli067vs35 0.7402 0.6943 0.7860 0.7523

glass5 0.7559 0.8515 0.8967 0.8789
ecoli0137vs26 0.6035 0.7294 0.6306 0.5989

yeast5 0.7875 0.9683 0.9621 0.9649
pageblocks13vs4 0.8622 0.6847 0.7120 0.7043

yeast6 0.9174 0.8735 0.8879 0.8798
yeast4 0.8258 0.8177 0.7991 0.8076

yeast0256vs3789 0.9305 0.8038 0.7691 0.7940
yeast2vs8 0.8011 0.7852 0.7739 0.7739

yeast05679vs4 0.7442 0.7934 0.7899 0.7971
abalone918 0.6766 0.8745 0.8597 0.8863

led7digit02456789vs1 0.8869 0.8946 0.8844 0.8975
yeast0359vs78 0.8484 0.7289 0.6062 0.6163

yeast1vs7 0.7860 0.6777 0.6932 0.6801
yeast1289vs7 0.6694 0.7201 0.6990 0.7073
glass016vs2 0.5516 0.6239 0.6114 0.6453

glass2 0.8824 0.6648 0.6078 0.7202
glass0146vs2 0.9068 0.6717 0.6336 0.7026
glass015vs2 0.5840 0.5905 0.5530 0.5727

cleveland0vs4 0.5256 0.5210 0.5857 0.4926
yeast1458vs7 0.5970 0.6638 0.5958 0.6329

abalone19 0.6675 0.7166 0.7016 0.7288
Mean 0.7421 0.7703 0.8020 0.7624
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Table 7.4:Under-sampling Rate of Training Sets among Different Sampling Methods.

Dataset uFRB+CHC(%) SMOTE+CHC (%) FRB+CHC (%) FRB+CHCgau (%)
shuttlec2vsc4 91.86 3.86 3.43 3.80
shuttlec0vsc4 87.49 3.32 3.17 3.32
glass04vs5 90.78 4.39 2.90 2.50
ecoli01vs5 84.38 3.58 1.22 1.14

glass4 94.39 2.68 0.95 0.94
ecoli0146vs5 86.43 3.34 2.73 2.71
ecoli0234vs5 81.56 4.46 5.50 2.59

ecoli4 94.42 1.59 1.40 1.46
ecoli046vs5 81.90 3.99 2.72 1.89

vowel0 88.46 4.82 4.29 4.45
ecoli0147vs56 86.07 3.39 1.73 0.61
ecoli0346vs5 81.95 3.54 3.12 3.55
ecoli0347vs56 81.71 5.60 3.06 1.28
ecoli034vs5 81.50 4.43 2.73 4.09
ecoli067vs5 83.30 4.78 1.68 2.63

ecoli0147vs2356 84.23 4.05 1.50 1.83
glass06vs5 92.13 2.71 1.67 4.33
yeast2vs4 89.54 3.13 3.89 2.89

yeast02579vs368 90.64 3.46 2.52 2.71
ecoli0267vs35 81.36 4.03 2.63 1.17
ecoli01vs235 81.76 4.04 0.59 1.29
glass016vs5 95.65 2.84 1.03 1.22
ecoli067vs35 81.65 5.19 4.15 1.74

glass5 95.09 1.57 -0.11 1.46
ecoli0137vs26 95.46 1.32 -0.28 0.29

yeast5 97.57 1.66 2.09 1.07
pageblocks13vs4 89.04 2.88 0.86 2.05

yeast6 98.03 2.54 1.88 0.69
yeast4 96.16 1.69 1.16 -0.10

yeast0256vs3789 90.39 5.70 0.92 1.25
yeast2vs8 96.01 1.86 0.46 -0.27

yeast05679vs4 90.58 5.71 2.48 1.66
abalone918 93.33 1.72 1.44 1.93

led7digit02456789vs1 90.91 3.93 7.89 4.64
yeast0359vs78 88.44 4.90 2.14 -1.17

yeast1vs7 92.05 3.39 3.31 1.04
yeast1289vs7 95.99 2.50 2.35 0.34
glass016vs2 91.01 0.78 2.11 2.24

glass2 90.54 2.07 0.42 1.93
glass0146vs2 90.85 0.94 1.40 1.45
glass015vs2 89.68 2.06 2.28 3.01

cleveland0vs4 85.84 3.26 1.14 -0.71
yeast1458vs7 95.27 1.13 2.51 0.64

abalone19 99.01 -1.04 0.31 0.53
Mean 89.65 3.13 2.17 1.77
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Table 7.5:Number of Support Vectors of the Classification Model formedby SVM.
Dataset uFRB+CHC SMOTE+CHC FRB+CHC FRB+CHCgau

shuttlec2vsc4 8.2 76.92 85.34 78.3
shuttlec0vsc4 110.2 361.88 944.42 939.12
glass04vs5 3 9 12.28 9.2
ecoli01vs5 29.8 156.88 185.74 169.08

glass4 3.4 18.42 22.84 18.74
ecoli0146vs5 30.2 178.38 213.86 191.42
ecoli0234vs5 29.4 133.64 149.7 143.46

ecoli4 10.8 58.46 66.4 60.56
ecoli046vs5 29 135.02 154.64 144.48

vowel0 16.4 34.04 92.08 54.38
ecoli0147vs56 36.2 213.86 257.72 241.76
ecoli0346vs5 29 136.88 155.64 143.94
ecoli0347vs56 37 168.64 195.96 188.58
ecoli034vs5 29 132.06 152.24 140.12
ecoli067vs5 29 143.38 169.8 154.12

ecoli0147vs2356 41.4 223.36 262.1 252.52
glass06vs5 3.4 14.3 17.5 13.4
yeast2vs4 32.4 165.68 152 151.26

yeast02579vs368 39.2 240.74 205.3 156.98
ecoli0267vs35 32.8 149.86 171.62 166.08
ecoli01vs235 34.8 166.3 191.52 185.02
glass016vs5 3 20.84 25.7 19.26
ecoli067vs35 32 147.16 167.42 163.76

glass5 3.6 21.24 26.76 19.46
ecoli0137vs26 10.2 168.28 177.68 155.08

yeast5 15.6 188.18 219.5 199.08
pageblocks13vs4 40.8 322.26 352.02 347.7

yeast6 16.4 331.1 366.8 339.36
yeast4 34 459.56 468.16 491.16

yeast0256vs3789 48.8 376.64 310.5 309.82
yeast2vs8 11.8 186.04 131.02 135.4

yeast05679vs4 32.8 206.48 212.36 215.66
abalone918 35.8 332.66 371.6 348.46

led7digit02456789vs1 10.8 58.48 67.2 40.8
yeast0359vs78 40.6 257.8 225.08 215.56

yeast1vs7 27.2 235.1 218.98 236.42
yeast1289vs7 28.2 507.2 450.9 508.8
glass016vs2 10.6 113.58 101.18 108.3

glass2 13.2 121 113.9 118.02
glass0146vs2 13.2 119.52 108.38 111.84
glass015vs2 10 108.2 91.16 98.6

cleveland0vs4 19.4 124.64 136.14 132.5
yeast1458vs7 24.4 417.02 397.14 408.6

abalone19 28.2 1659.98 2343.46 1890.46
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FRB+CHCgau are similar.

(a) AUC results with uFRB+CHC (b) AUC results with SMOTE+CHC

(c) AUC results with FRB+CHC (d) AUC results with FRB+CHCgau

Figure 7.1: Average AUC results obtained from training and testing set sorted by N4.

Although the implementation of FRB+CHC and FRB+CHCgau are similar and they

only differ in terms of the membership function used at the over-sampling stage, their

performance has a great difference. Fig. 7.3 and 7.4 show an example of the distribu-

tion of the positive samples and negative samples after the re-sampling of FRB+CHC

and FRB+CHCgau respectively. The circle dots correspond tothe samples of the ma-

jority class. The square dots correspond to the samples of the original minority class.

The triangle dots correspond to the synthetic samples. Fig.7.4 show that the synthetic

samples are generated densely around some of the original minority samples. On the

contrary, the synthetic samples in Fig. 7.3 are distributedmore evenly in the area of the

original minority samples. Therefore, FRB+CHCgau runs into the over-fitting problem

more easily. Fig. 7.5 shows an example after the implementation of SMOTE+CHC. The

distribution of the synthetic samples is similar to that of FRB+CHCgau. Therefore, their
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(a) F-measure results with uFRB+CHC (b) F-measure results with SMOTE+CHC

(c) F-measure results with FRB+CHC (d) F-measure results with FRB+CHCgau

Figure 7.2: Average F-measure results obtained from training and testing set sorted by
N4.

experimental results are nearly the same.

Figure 7.3: Distribution of the samples after the implementation of FRB+CHC.
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Figure 7.4: Distribution of the samples after the implementation of FRB+CHCgau.

Figure 7.5: Distribution of the samples after the implementation of SMOTE+CHC.

7.4 Conclusion

In this chapter, four preprocessing methods presented in Chapters 4, 5, and 6 are com-

pared. The FRB+CHC method proposed in Chapter 5 with triangular membership func-

tions outperforms the other preprocessing methods in bothAUC andF −measure val-

ues. As it is a hybrid preprocessing method, the number of samples has not decreased
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in a large rate. There is only around 1.7% of under-sampling rate. Therefore, it uses

more support vectors to form the classification model and increases the complexity of

the classifier. On the contrary, the uFRB+CHC method can offer a high under-sampling

rate, which is around 89.7%. However, itsAUC andF −measure values are inferior

to the other methods, which is a common phenomenon of under-sampling methods. Ex-

ample class distribution graphs of the sampled dataset are shown to explain the different

performance when the shape of the membership functions is changed in FRB+CHC,

and the similarity of the performance of SMOTE+CHC and FRB+CHCgau.

To conclude, FRB+CHC with triangular membership function should first be considered

to deal with the imbalanced dataset. If the size of the re-sampled dataset is too large,

uFRB+CHC could be an alternative.
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Chapter 8

Predicting Protein-Ligand Binding Site

using Support Vector Machine and

Hybrid Preprocessing Method

8.1 Introduction

In this chapter, the hybrid preprocessing method of FRB+CHCpresented in Chapter 5

is applied on the datasets of binding sites before classification in order to improve the

results in Chapter 3. The comparison among the preprocessing methods presented in

this thesis has been shown in Chapter 7 and FRB+CHC is found tobe superior to the

other methods in terms of bothF −measure andAUC values.

SVM is employed to classify the protein-ligand binding sites by using 29 proteins’ at-

tributes as discussed in Chapter 3. To solve the imbalanced problem of the training

dataset, random under-sampling method is used previously.In this chapter, FRB+CHC,

which is a hybrid preprocessing method proposed in Chapter 5, is applied before the
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training of SVM. Our new method is named as SVMBs2; while the old method in Chap-

ter 3 is named as SVMBs1.

Two benchmark datasets are used to evaluate our methods. Thefirst one involves 210

bound structures and the other one involves 198 drug-targetcomplexes. Both of them are

developed in MetaPocket. SVMBs2 is first compared to SVMBs1,which used random

under-sampling method as the preprocessing. Then, our approach is compared with five

other methods. They are LIGSITECSC, PASS, SURFNET, Q-SiteFinder, and MetaPoc-

ket.

8.2 Methodology

8.2.1 Overall Process

This section describes the overall process of the proposed method for predicting the

protein-ligand binding sites. Each site is represented by acenter grid point. First, a 3D

grid is generated surrounding the protein based on its structure information of each pro-

tein from Protein Data Bank (PDB) [6]. Then, 29 properties (attributes) of each grid

point are obtained. The details of each property are introduced in Section 3.2.2 of Chap-

ter 3. The grid resolution of the training dataset and testing dataset are assigned differ-

ently, which are 2.5̊A and 1Å respectively. A decrease of grid resolution can reduce the

data size greatly. However, if the spacing value is too large, the calculated values of each

grid point will become unreliable. Therefore, the spacing value of training dataset is just

a bit larger than that of testing dataset to decrease the datasize. The radii for common
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atoms are from 1.1̊A to 1.948Å, so the grid resolution should not be set greater than

3.9Å.

After the attributes of each grid point are calculated, the FRB+CHC method is applied

on the training dataset to solve the imbalanced problem. Thechange of data size is

shown in Table 8.1, where the grid points of the binding sitesare represented by the

positive samples. SVM is employed to the re-sampled training dataset to form the clas-

sification model, which is used to classify the grid points ofthe testing dataset. The

grid points, which are predicted as the binding sites, are clustered into different groups

by K-means clustering [84]. The initial number of clusters and centroids are set based

on groups of neighboring predicted grid points. The initialcentroids of the groups of

neighboring grid points are found. Then, the K-means clustering [84] is performed for

the grid points. After the K-means clustering, each clusteris represented by a final cen-

troid. Fig. 8.1 shows the overall process of the proposed predicting method.

Table 8.1:Change of data size before and after applying FRB+CHC.
Before After

Number of negative samples 263,289 131,816
Number of positive samples 5,206 134,644

8.2.2 Datasets

In this study, the same training dataset, which has been introduced in Chapter 3, is used

and shown in Table 8.2. In this chapter, two different testing datasets are used to evaluate

our method against the other six methods. They are 210 bound structures and 198 drug-

target complexes (that was used in Chapter 3, which are developed in MetaPocket.
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Generate 3D grid
Calculate the features 

of each grid point

Apply FRB+CHC and 

normalization to 

the training set

Apply SVM to train

the classification model

Use the model to classify

the grid points of each

testing protein

Apply K-means to cluster 

the predicted grid points

to form the pockets

Use a center point to

represent

each predicted pocket

Calculate 

the success rate

Figure 8.1: Flowchart for the proposed predicting method.

Table 8.2:Training Data Set.
1pkj 3gd9 1lf3 3lem 1llo
1ybu 4tpi 3h72 2j4e 1rn8
2v8l 1x2b 1g97 2zhz 3a0t
1o26 1rzu 1znz 1ojz 1sqf
2gga 3gh6 3d1g 2jgv 1dy3
1jyl 2e1t 2ywm 1kwc 2g28
3d4p 2wyw 2dtt 1tjw 2za1
2art 1u7z 3gid 1i1h 2w1a

8.3 Evaluation

To evaluate the performances of SVMBs2, SVMBs1 and the otherfive methods, the

same measure is used. First, several clusters are formed from the predicted grid points

by K-means clustering and each cluster is represented by a center grid point. Only the

three largest clusters are selected to do the identificationof binding sites since most of

the ligands bind to large pockets [38]. Then, if the center grid points are located at the

real pocket sites (i.e. the distance between the center gridpoints and any atoms of the
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ligand is within 4Å), the prediction will be counted as a hit, which means the predicted

binding site is identified correctly. There are sometimes more than one binding site

within a protein and the prediction may identify more than one binding site correctly

at the same time. In this case, only one hit in the larger cluster will be counted. The

success rate is calculated by the following equation to compare the performance of

different methods:

success rate =
NHIT

NP
∗ 100% (8.1)

whereNHIT is the number of proteins that at least one binding sites can be located

correctly andNP is the total number of proteins in the dataset.

8.4 Results

This section shows the comparison of our method and the othermethods. In the fol-

lowing tables, top 1 represents the success rate of the largest cluster; top 1-2 represents

the success rate of the two largest clusters; top 1-3 represents that of the three largest

clusters.

8.4.1 Improvement of SVMBs2 by using FRB+CHC as

preprocessing method

The main difference between SVMBs2 and SVMBs1 is the preprocessing method used

before the training of the SVM classification model. SVMBs2 takes advantage of FRB+CHC

while SVMBs1 uses random under-sampling method. They are evaluated on the 198

drug-target complexes and 210 bounded structures datasets. Table 8.3 shows the com-
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parison of the success rate (8.1) of these datasets. In the 210 bounded dataset, SVMBs2

has improved the success rate by 6% for all the top 3 predictions. In the 198 drug-target

complexes, a significant improvement of SVMBs2 over SVMBs1 is illustrated. The

success rate is increased by 7% at the top 1 prediction and 4% for all the top three pre-

dictions. Fig. 8.2 shows an example for the different prediction of binding sites between

SVMBs2 and SVMBs1. The real ligands are represented by red sticks. The predicted

pockets of SVMBs2 and SVMBs1 are represented by blue spheresand magenta spheres,

respectively.

There are totally 408 proteins in the two testing datasets. Table 8.4 shows the distri-

bution of the number of chains of these proteins and the success rate of SVMBs2 and

SVMBs1 under different numbers of the chains. Most of the proteins are less than three

chains and the number of chains is more likely to be an even number. Although the

success rate is decreased by the increased number of chains,SVMBs2 has improved the

success rate from 3% to 8% for all the top 3 predictions. Overall, SVMBs2 has improved

the performance of prediction for different datasets. Thisshows that the preprocessing

method is an important on doing the prediction of binding sites.

Table 8.3: Comparison of SVMBs2 and SVMBs1 on Success Rate (%) for Different
Datasets.

Dataset Method Top 1 Top 1-2 Top 1-3
210 bounded structures SVMBs2 71.4 85.2 90.0

SVMBs1 66.7 78.6 83.8
198 drug-target complexes SVMBs2 68.7 81.3 85.9

SVMBs1 61.6 76.8 81.8
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Table 8.4:Comparison of SVMBs2 and SVMBs1 on Success Rate for Different Num-
ber of Chains.

Chain No. Number of Pro-
teins

Top 1-3 of
SVMBs2 (%)

Top 1-3 of
SMVBs1 (%)

1 152 92.8 90.1
2 176 92.0 85.2
3 18 83.3 77.8
4 49 71.4 67.3

>=5 13 46.2 38.5

Figure 8.2:The real ligand (red) binding site and the predicted pocketsfor protein 1e7a.
The predicted pockets of SVMBs1 (magenta) and SVMBs2 (blue)are shown in spheres.

8.4.2 Improvement of SVMBs2 over the other prediction methods

Table 8.5 shows the success rate of SVMBs2 and the other five prediction methods. The

success rate is calculated by adding the results of two testing datasets (198 drug-target

complexes and 210 bounded structure). Overall, SVMBs2 performs better than the other

predicting methods. Although the success rate at top 1 prediction of SVMBs2 is a bit

lower than that of MetaPocket, the success rate at top 3 prediction of SVMBs2 has im-

proved by 3%. Table 8.6 shows the number of hit proteins amongthe six predicting
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methods. SVMBs2 can locate the binding sites of 286 proteinscorrectly at top 1 predic-

tion. There are 54 and 19 proteins that their binding sites can be located correctly at top

2 and top 3 prediction, respectively. There are still 49 proteins that their binding sites

cannot be located correctly. Overall, SVMBs2 can identify the binding sites correctly

with the highest number of proteins over the other five methods.

Table 8.5: Success Rate (%) of Top 3 Binding Sites Prediction with SVMBs2 and the
Other 5 Predicting Methods.

Method Top 1 Top 1-2 Top 1-3
SVMBs2 70.1 83.3 88.0

MetaPocket 71.3 80.6 84.8
LIGSITECSC 59.1 68.9 73.5

PASS 43.4 61.0 67.9
Q-SiteFinder 56.6 69.9 76.2
SURFNET 32.8 40.7 45.3

Table 8.6:Number of Hit Proteins of Top 3 Binding Sites Prediction withSVMBs2 and
the Other 5 Predicting Methods.

Method Top 1 Top 2 Top 3 None
SVMBs2 286 54 19 49

MetaPocket 291 38 17 62
LIGSITECSC 241 40 19 98

PASS 177 72 28 131
Q-SiteFinder 231 54 26 97
SURFNET 134 32 19 223

8.4.3 Discussion

SVMBs2 still has some limitations. There are 49 proteins that the correct binding sites

cannot be identified in the three largest predicted pockets.From these cases, two limita-

tions of SVMBs2 can be concluded. The first limitation is thatligands are bound to the

atoms at a flat region. Since SVMBs2 tends to predict the binding sites in a cleft, the

flat region is likely to be discarded. Totally, 32 cases belong to this category. The other

limitation is that ligands are bound to some small binding sites. Since SVMBs2 only

selects the three largest predicted pockets for classification, the smaller binding sites are
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not easy to be discovered. There are 17 cases belonging to this category. Fig. 8.3 shows

two examples of the difficult structures mentioned above. The real ligands are shown in

red sticks. The predicted binding sites are shown in blue spheres.

(a) 2pk4.

(b) 1bj4.

Figure 8.3: Examples of the two limitations of SVMBs2. (a) The ligand binds to the
atoms at a flat region. (b) The ligands bind to small binding sites.

8.5 Conclusion

The prediction of the protein-ligand binding site has been investigated in this chapter.

A preprocessing method (FRB+CHC) has been added to solve theimbalanced problem
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of protein dataset. FRB+CHC outperforms the other preprocessing methods in terms

of F − measure andAUC in our previous study. Then, SVM is employed to train a

classification model and locate the grid points, which are most likely to form the binding

sites. K-means is applied to cluster the grid points to form the predicted pockets, and

we select the three largest pockets to evaluate the performance.

The method proposed in this chapter is named as SVMBs2, whichis first compared with

our previous method that uses random under-sampling as the preprocessing method.

SVMBs2 has a significant improvement in both the 198 drug-target complexes and 210

bounded structures datasets. SVMBs2 has improved the success rate from 3% to 8 % for

proteins of different number of chains. Moreover, SVMBs2 iscompared to MetaPocket,

LIGSITECSC, PASS, Q-SiteFinder, and SURFNET. Although the success rate at top 1

prediction of SVMBs2 is a bit lower than that of MetaPocket, the success rate at top

3 prediction of SVMBs2 has improved by 3%. Overall, SVMBs2 can locate the bind-

ing sites correctly for the largest number of the proteins among all prediction methods

mentioned in this chapter.
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Chapter 9

Conclusion

9.1 Achievements

In this thesis, a prediction method of protein-ligand binding site using Support Vec-

tor Machine (SVM) with 29 protein properties and three pre-processing methods of

imbalanced datasets are developed. Two of the pre-processing methods use hybrid re-

sampling methods and the other one uses an under-sampling method. These studies

improve the ability of a classifier to deal with imbalanced datasets, and the success rate

of the binding sites prediction.

The details of the proposed prediction method for protein-ligand binding site are pre-

sented in Chapter 3. SVM is employed to classify the grid points near the protein surface

for the binding sites. It make uses of 29 different protein properties, including geomet-

ric characteristics, interaction potential, distance from protein, conservation score, and

the properties of the grid points nearby to do the classification. Two datasets (LigA-

Site and 198 drug-target complexes) are used to test and evaluate the success rate of

the proposed method. Our method is compared to LIGSITE, LIGSITECSC, SURFNET,
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Fpocket, PocketFinder, Q-SiteFinder, ConCavity, and MetaPocket. For the LigASite

dataset, the proposed method is shown to offer more comprehensive results than the

other methods as less proteins have the binding sites located wrongly. For the 198 drug-

target complexes, the proposed method outperforms the other methods, and shows the

highest success rate to identify the binding sites.

The three proposed pre-processing methods are discussed inChapter 4 to Chapter 6. The

first one is called SMOTE+CHC, which is presented in Chapter 4. This proposed sam-

pling method consists of two stages. SMOTE is first employed to generate new samples

of the minority class. Then, CHC is applied on the synthetic samples and the samples

of the majority class to do under-sampling. The proposed method is compared to RUS,

TL, ROS, SMOTE+TL on 22 datasets. All the over-sampling and hybrid methods get the

similar results. SMOTE+CHC shows its ability of obtaining the lowest over-sampling

rate while keeping the advantages of hybrid methods.

The second pre-processing method is called FRB+CHC, which is presented in Chap-

ter 5. This proposed hybrid method generates new samples of the minority class based

on a fuzzy rule base, and CHC is then applied on the synthetic samples and the samples

of majority class. FRB+CHC is compared to different over-sampling and hybrid meth-

ods, including SMOTE, sTL, sENN, sBorder, sSafe, and sRST, on 44 datasets. It out-

performs the other pre-processing methods in terms ofF −measure andAUC values,

and gives the lowest over-sampling rate. Data complexity measures are also investigated

to show that FRB+CHC is more robust to data complexity than the other methods.

The third pre-processing method is called uFRB+CHC, which is presented in Chapter 6.

This proposed method is different from our previous methods. It is an under-sampling
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method over large imbalanced datasets. The samples of the majority are selected based

on a fuzzy rule base and CHC is then applied to further decrease the data size. The

proposed method is compared to different under-sampling methods, including RUS,

CNN, TL, OSS, and NCL on a large dataset called Census. It outperforms the other

methods in terms ofF −measure andAUC values.

A general comparison among these three proposed methods is given in Chapter 7. Trian-

gular and Gaussian membership functions are used in FRB+CHCto show its impact on

the results. Overall, FRB+CHC with triangular membership function shows the best per-

formance in terms ofF −measure andAUC values. The performance becomes worse

when the Gaussian membership functions are used instead. The reason is that the syn-

thetic samples are generated densely around some of the original minority samples and

cause the over-fitting problem when the Gaussian membershipfunctions are used. Al-

though uFRB+CHC is inferior to the other proposed methods interms ofF −measure

andAUC values, its results does not have the over-fitting problem and has the highest

under-sampling rate, which is beneficial to large datasets.

Finally, FRB+CHC with triangular membership functions is applied on the datasets

of protein-ligand binding sites. The details are presentedin Chapter 8. Two testing

datasets (198 drug-target complexes and 210 bound structure) are used to illustrate the

improvement brought by different pre-processing methods.Our proposed method shows

a significant improvement in both datasets. Then, the success rates of the two datasets

are added together, which is used to compare the proposed method with MetaPocket,

LIGSITECSC, PASS, Q-SiteFinder, and SURFNET. Overall, our method can locate the

binding sites successfully for a larger number of proteins than the other prediction meth-

ods.
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9.2 Future Works

In this thesis, the protein-ligand binding sites prediction is done by a SVM classifier.

The binding sites are represented by geometric grids. Contacting protein residues to

the ligands is also a common representations of the binding sites. We might further

improve the accuracy and decrease the false positive rate byusing the “protein-family

approach” to train the SVM classification model. It groups the similar residues of the

proteins, based on the proteins’ sequence, and trains the classification model of each

group. This approach can also be used in the docking phase to determine the scoring

function. Docking phase is the next step of structure-baseddrug design after the protein-

ligand binding site is located, and the scoring function is used to rank the best poses of

ligands.
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