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Statement of Originality

The following contributions reported in this thesis ardroked to be original.

1. The predicting method of protein-ligand binding site usthgpport Vector Machine
with protein properties in Chapter 3Different protein properties are used as at-

tributes to predict the protein-ligand binding site.

2. The hybrid pre-processing method based on Synthetic MynOxier-sampling Tech-
nique (SMOTE) and CHC in ChapterBhe hybrid pre-processing method SMOTE+CHC
consists of SMOTE and CHC. SMOTE is first applied to generate samples of
the minority class. CHC is applied to under-sample the stitlsamples and the
samples of the majority class. It has the advantages of thybethods with a rela-

tively small increase in the size of training sets.

3. The hybrid pre-processing method based on fuzzy rule bas€HBIEC in Chapter 5.
The hybrid pre-processing method FRB+CHC uses fuzzy ride bmgenerate new
samples of the minority class. CHC is then applied to underge the synthetic
samples and the samples of the majority class. It givesry@stéormance and im-

proves the robustness.

4. The under-sampling method based on fuzzy rule base and Cl@Gdpter 6.The
under-sampling method uFRB+CHC uses fuzzy rule base totssenples of the
majority class. CHC is then applied to further reduce tha dae. It improves the

performance over large imbalanced datasets.



5. The predicting method of protein-ligand binding site uskgB +CHC in Chap-
ter 8.FRB+CHC is applied to solve the imbalanced problem of bigdirte dataset

and gives a significant improvement.



Those who hope in the LORD will renew their strength. They
will soar on wings like eagles; they will run and not grow

weary, they will walk and not be faint. (Isaiah 40:31)
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Abstract

The identification of protein-ligand binding site is an innfamt task in structure-based
drug design and docking algorithm. In the past two decad#ereht approaches have
been developed to predict the binding site, such as the gecnemergetic and sequence-
based methods. The prediction for these approaches ishyubasked on some scores,
which are defined with a single protein property. Then, asioéd of the scores is set to
determine the binding sites. However, it is difficult to det threshold value even after

considering the mean and standard deviation from the pedctata.

This thesis investigates the computational prediction roftgn-ligand binding sites

from the structure and sequence of proteins. The bindiegpsédiction can be formu-
lated as a problem of binary classification: discriminatirigether a location is likely to

bind the ligand or not. When the scores are calculated franptbtein properties, the
algorithm for performing classification becomes very intpot, which affects the pre-
diction results significantly. In this thesis, a Supporttéedachine (SVM) is proposed
to classify the pockets that are most likely to bind ligandsonsidering the attributes of
geometric characteristics, interaction potential, dffsem protein, conservation score,
and properties surrounding the pockets. Different kindsrofein properties are consid-
ered to do the classification instead of only one single prgisperty as used in some

published approaches.
First, the grid points near the protein surface are usedai@sent the locations of bind-

ing sites. Our method is compared to eight existing methodb® datasets of LigASite

and 198 drug-target complexes. The results show that thgopeal method improves
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the success rate in terms of F-measure and area under tleremgerating charac-
teristic (AUC). Our method improves the AUC measure from®81 percent without
decreasing the F-measure values, and increases the stateestlocating the binding
sites within three largest pockets from 74 to 82 percent.r@ethod also provides more

comprehensive results than the others.

Similar to many datasets in Bioinformatics, the datasetprofein binding sites en-
counter the problem of being imbalanced and the compleXityoing classification.
Re-sampling has become an important step to pre-processtadanced data. It aims
at balancing the datasets by increasing the samples of thkesrolass (the minority
class) and/or decreasing the samples of the larger classn@jority class), which are
respectively known as over-sampling and under-samplingstMf the machine learn-
ing tools (including SVM) is biased to the majority classtisat the classification of the
minority class might not be done satisfactorily. To dealwitie imbalanced dataset of

binding sites, random under-sampling is used at this stage.

After that, two hybrid pre-processing re-sampling methadd one under-sampling
method are proposed. The first one applies Synthesis Myn@wer-sampling Tech-
nique (SMOTE) to create new samples of the minority classvéider, the resulting
large sample size will increase the complexity of the cfasgion model. The effi-
ciency of the learning algorithm applied to the classifmatmodel will be decreased.
Therefore, an evolutionary algorithm (EA) is introducedudher process the synthetic
samples and the samples of the majority class for doing usalapling. The chosen
EA is the CHC algorithm. Since the above proposed methodng @ existing method
(SMOTE) to over-sample the data, the advantages over soen@ps hybrid methods

are not significant. However, it can decrease the over-sagte about 50 percent.
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Then, the second hybrid pre-processing re-sampling mathmebposed, which makes
use of fuzzy logic methods to create new samples of the mjnolass, and CHC as
a data cleaning method to the over-sampled dataset. It iifthat this pre-processing
method can offer an obvious improvement over some previeeissampling and hybrid
methods. From experimental results, our method outpedtimother methods in terms
of F-measure and AUC with the lowest over-sampling ratelstt ahows its robustness

with respect to data complexity.

Large imbalanced datasets have caused many difficultidsetolassification problem.
Therefore, an under-sampling method is proposed to redhgcdata size. It makes use
of fuzzy logic to select samples of the majority class, and3dsiemployed to further
reduce the data size. From experimental results, it candsetbat our proposed method
improves both the F-measure and AUC. The complexity of tlassification model
is also compared. It is found that our proposed method bringdowest complexity

among all methods under comparison.

Finally, a general comparison of the three proposed pregssing methods is pre-
sented. One of the hybrid methods is selected and applidettdatasets for predicting
the protein-ligand binding sites. A SVM with the proposettibtites is employed to
identify the binding sites. Improvement over our previoustimod, which does not use
the hybrid pre-processing method, is obtained in the tgstatasets of 198 drug-target
complexes. Improved results over the dataset of 210 bounckstes are also obtained.
The improvement in success rate is 3 percent and 6 preceaatagely. Our method is
also compared to five other prediction methods. The resht® shat our method can

have more protein-ligand the binding sites located sufaigs



Publication List

Journal Papers

[1] Ginny Y. Wong, Frank H. F. Leung, and Sai-Ho Ling, “Prethg protein-ligand
binding site using support vector machine with protein prtips,” IEEE/ACM
Transactions on Computational Biology and Bioinformatiesl. 10, no. 6, pp.

1517-1529, Nov. -Dec. 2013.

[2] Ginny Y. Wong, Frank H. F. Leung, and Sai-Ho Ling, “A HybriEvolutionary Pre-

processing Method for Imbalanced Datasdtgdrmation Science(Submitted)
Conference Papers

[1] Ginny Y. Wong and Frank H. F. Leung, “Predicting protdigand binding site with
support vector machine,” iRroceedings of the IEEE Congress on Evolutionary

Computation 2010 (CEC 201,Q)p. 1-5, July 2010.

[2] Ginny Y. Wong, Frank H. F. Leung, and Sai-Ho Ling, “Prethg protein-ligand
binding site with differential evolution and support veateachine,” inProceedings
of the International Joint Conference on Neural Network$2(0JCNN 2012)pp.
1-6, June 2012.

[3] Ginny Y. Wong, Frank H. F. Leung, and Sai-Ho Ling, “A nowalolutionary pre-

processing method based on over-sampling and under-samioli imbalanced



datasets,” inProceedings of the 39th Annual Conference of the IEEE Imidlist
Electronics Society (IECON 201,3)p. 2354-2359, Nov. 2013.

[4] Ginny Y. Wong, Frank H. F. Leung, and Sai-Ho Ling, “An umeggampling method
based on fuzzy logic for large imbalanced dataset,Pinceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE R(Qdpl 1248-1252,
July 2014.

Xi



Acknowledgements

First and foremost, praises and thanks to God, the Almidbtygiving me patience,

health, wisdom, and blessing to accomplish my research.work

| would like to express my sincere gratitude to my chief suser, Dr. Frank H.F.
Leung for his continuous support through my research stldout his patient and
guidance, this work would not have been possible. | would ake to thank my co-
supervisor, Dr. Steve S.H. Ling for the helpful advice arstdssions during the progress

of the research.

My gratitude is extended to my friends, Mr. Benny C.Y. Yeuby, Johnny C.Y. Lai,
and Mr. lvan C.F. Lau for providing help on my work and a detfghlife in graduate

school.

| am deeply thankful to my grandmother who has passed awag tfears ago, for her
unwavering love and support. | cannot overstate her impoedo me. | am extremely
grateful to my parents and my brother for their steadfast |@aring, and encourage-
ment. My heartfelt thanks are due to my boyfriend Mr. C.K. @ingfor his understand-
ing, prayers, and continuing support. In addition, | exprey thanks to my brothers

and sisters in Christ for their support and valuable prayers
| would also like to show my great appreciation to the stafthed General Office of

the Department of Electronic and Information Engineeridgng Kong Polytechnic

University, for their kindness.

Xii



The work described in this thesis was substantially supgdoity a grant from Hong
Kong Polytechnic University of the Hong Kong Special Adrsinative Region (Project
Account Code RPKP and G-YL79).

Xiii



Contents

Statement of Originality iv
Abstract Vil
Publication List X
Acknowledgements Xii
Contents Xiv
List of Figures XX
List of Tables XXIV
Nomenclature List XXVii
Abbreviations XXViii
1 Introduction 1

1.1 AnlIntroductionto Drug Design . . . ... ... .. ... .......

1.1.1 GeneralBackground . ... ... ... .............
1.1.2 Computer-Aided DrugDesign . . . . . .. ... ... .....

1.1.3 Structure-Based DrugDesign. . . . . . . . ... ... . ....

Xiv



1.2 Motivation . . . . . . . . .. e 3

1.2.1 Problems of Determinate Methods . . . . ... ... ...... 4
1.2.2 Problems of Imbalanced Dataset . . . .. .. .......... 5
1.3 Contributions . . . . .. .. . ... 6
1.4 OutlineoftheThesis . . . .. .. .. .. ... .. .. .. ....... 9
Literature Review 10
2.1 Prediction of Protein-Ligand Binding Sites . . . . . . . . ... ... 10
2.1.1 Geometry-BasedMethods . . .. ... ... ... ....... 11
2.1.2 Energy-BasedMethods . . . ... .. ... ... ........ 14
2.1.3 SequenceConservation . . . . . ... ... ... ... 16
2.2 Re-samplingMethods . . . . ... ... ... ... .. ......... 18
2.2.1 Over-samplingMethods . . . . ... .. ... ... ...... 18
2.2.2 Under-samplingMethods . . . . . ... ... .. ........ 20
2.2.3 HybridMethods. . . .. .. ... ... ... .......... 23

Predicting Protein-Ligand Binding Site using Support Vedor Machine

with Protein Properties 25
3.1 Introduction . . . . . . . . ... 25
3.2 Methodology . . ... .. .. . . . ... 27
3.21 Datasets . . . . . . .. 27

3.2.2 Protein Properties Used for Training and Testing . ...... . 28
3.221 Gridvalues . . .. ... ... .. .. . 29

XV



3.2.2.2 Interactionpotential . .. ... ... ... ...... 29

3.2.2.3 Conservationscore . . . . . . . .. .. ... 30
3.2.2.4 Distancefromprotein . . ... ... .. ....... 30
3.2.2.5 Properties of surrounding grid points . . . . . . . .. 31
3.2.3 Classification with Support Vector Machine . . . ... ... 32
3.3 Evaluation . . . . . . . . ... 38
3.3.1 DatasetofLigAsite . . . . . .. ... . ... ... . .. 38
3.3.2 198 Drug-target Complexes for Testing . . .. .. ... ... 40
34 Results. . . . . . . . e 41
3.4.1 DatasetofLigASite . . . . . .. ... . ... .. .. 0. 42
3.4.2 198 Drug-target Complexes for Testing . . . . ... ... .. 46
3.5 Conclusion . . . .. ... 49

An Evolutionary Preprocessing Method Based on Over-sampig and Under-

sampling for Imbalanced Datasets (SMOTE+CHC) 51

4.1 Introduction . . . . . . ... 51

4.2 Methodology . . . . . . . . . ... 53
4.2.1 Chromosome Representation . . . . ... ... ......... 54
4.2.2 Fitnessfunction . . . . ... .. .. ... .. .. ... ... 54

4.3 Experimental Study . . .. ... ... ... .. 55
431 Datasets . . . . . . . e 56
4.3.2 SetupofExperiments . . . . . ... ... ... .. ... .. 57

XVi



4.4 Conclusion . . . . . . . .

An Evolutionary Hybrid Preprocessing Method Based on Reglar Mem-

bership Functions for Imbalanced Datasets (FRB+CHC)

5.1 Introduction . . . . . . . . . .
5.2 Methodology . . . . . . . .. . ...

52,1 Fuzzylogic. . . .. ... . . . . e
5.2.2 Settingof CHC . . . . ... ... .. .. .. .. ... ...,
5.2.2.1 Chromosome Representation . . ... ... ...
5.2.2.2 Fitnessfunction . ... .. .............
5.3 ExperimentalStudy . . .. ... ... ... ... .. . L.
5.3.1 SetupofExperiment . ... ... ..............
5.3.2 EvaluationMethod . ... ... ... ............
533 Datasets . . . . . ..
534 Results . ... ... .. ...

5.4 Conclusion . . . . . . . . s

An Under-sampling Method Based on Fuzzy Set Theory for Larg Im-

balanced Dataset (UFRB+CHC)

6.1 Introduction . . . . . . .. .. ...
6.2 Methodology . .. .. .. ... . ... ...
6.2.1 Fuzzylogic. .. .. ... .. . . .
6.2.1.1 Membership Functions . . . . . ... ... ....

XVii



6.2.1.2 RuleWeight . . ... ... ... ........... 93

6.2.1.3 Selection of the Majority Samples . . . . . ... ... 94

6.2.2 Settingof CHC . . .. ... ... ... ... .. ... .. ... 94

6.2.2.1 Chromosome Representation . .. .. ... .. ... 94

6.2.2.2 Fitnessfunction . ... ... ... .. ........ 95

6.3 Experimental Study . . . . . .. .. ... ... 95

6.3.1 Dataset . .. .. ... ... .. ... 96

6.3.2 Setupof Experiment . ... .. .. ... ... ... .. ..., 96

6.3.3 Results . ... .. ... ... 97

6.4 Conclusion . . . . . . ... 98
Comparison 100

7.1 Introduction . . . . . . . ... 100

7.2 SUMMAIY . . . . o e e e e e e 100

7.3 Comparison with Experimental Results . . . . . .. ... .. ...... 102

7.3.1 Datasets . . . . . . ... 102
7.3.2 Setupof Experiment . .. ... ... ... ... ... ..., 104
7.3.3 ExperimentalResults . . . . ... .. ... ... ........ 105
7.4 Conclusion . . ... 113

Predicting Protein-Ligand Binding Site using Support Vedor Machine

and Hybrid Preprocessing Method 115

8.1 Introduction . . . . . . . . . . e 115

XViii



8.2 Methodology . . ... .. . . . . ... 116

8.2.1 OverallProcess . . . ... ... . . ... 116
8.22 Datasets . . . . . . .. 117
8.3 Evaluation . . . . . . . . ... 118
8.4 Results. . .. ... . . . . 119

8.4.1 Improvement of SVMBs2 by using FRB+CHC as preproogssi
method . .. .. ... ... .. ... 119

8.4.2 Improvement of SVMBs2 over the other prediction mdtho. . 121

8.4.3 DISCUSSION. . . . . . . . e, 122

8.5 Conclusion . . . . . . . . 123
9 Conclusion 125

9.1 Achievements . . . . . . . . ... e 125

9.2 Future Works . . . . . . . . 128
References 129

XiX



List of Figures

2.1 PSP event used to describe the geometric feature of gandl It counts
the number scanning directions that pairs of protein atcansenclose the
grid point. For the POCKET method, the maximum number of P&atEs

three while it is seven for the LIGSITE method. . . . . . ... ... ..

2.2 SURFNET. There are three solid line circles and severtad line circles
in each graph. The top and bottom solid line circles repreenpair of
relevant atoms and the middle one shows the constructedespha grid
point. The dotted line circles represent the other atomsghaound the
grid point under testing. The initial sphere in the graphloaleft overlaps
with other atoms; therefore, its radius decreases untiMedl@pping occurs

to form the final sphere in the graph ontheright.. . . . . . . . .......
2.3 CASTP . o o

2.4 PASS. The black dots represent the the central probeaabf potential
pockets and the empty circles surrounding are the retaipkdrss after

the repeated cycles of addition and filtration. . . . . . . .. ...... . ..

2.5 The van der Waals surface in green is the outer surfac@uitain. It sep-
arates the inner space from the outer space. The Connofcsuin blue
is composed of two parts. One is the van der Waals surfacesgfribtein,
which contacts with the probe sphere. The other one is thieepsphere

surface when it contacts with more than one protein atom. . . . . . . .

XX

11

15

17



2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Example of SMOTE with 5 nearest neighbors. . . . . . . ... ....... 19

Percentages of distribution among six enzyme classest & the proteins

in LigASite belong to the transferase class. The second dsdigse. The
contribution of the other classes are almostthesame. . .. ... ... 28
Distribution of the number of chains in the selected girst of LigASite.

Most of the proteins have less than three chains. . . . .. .. ... .. 29
Probability density functions of protein properties.. . . . . . . ... .. 32
A zoom-in version of Fig. 3.3: (a) LIGSITE values, (b) SENET values,

and (c) Interaction potential. . . . . . ... ... ... L. 33
Six connected grid points of a selected grid point. Adl thack spots in the
graph represent the grid points. The middle one is the sslepid point to

be classified and the larger black spots are the connectéggints: their
properties are also used as the attributes of the clasmficat . . . . . . . 34
Flowchart for the prediction of protein-ligand bindisitge. . . . . . . . .. 37
The real ligand (red) binding site and the predicted ptecfor protein 1p5j.

The pockets sites of MetaPocket (orange), LIGSITHwhite), SURFNET
(yellow), Fpocket (cyan), Q-SiteFinder (magenta), Conyalgrey), and

our method (blue) are showninspheres. . . . ... ... ........ 47
Examples of the three limitations of our method. (a) Tigarld binds to a

flat region. (b) The ligands bind to small cavities. (c) Theding sites are

insidetheprotein. . . . . . . . . .. 49

XXi



5.1

5.2

5.3

5.4

5.5

6.1

7.1

7.2

7.3

7.4

7.5

8.1

8.2

Example of the distribution of imbalanced dataset. Tagig represents the

values ofAttr.2 and x-axis represents the valueAftr.1. . ... ... .. 67

Distribution of the samples after over-sampling. Thaxis represents the

values ofAttr.2 and x-axis represents the valuedftr.1.. . . . . .. . .. 68
Average AUC results obtained from training and testetg sorted by F1. . 81
Average AUC results obtained from training and testetg sorted by L3. . 82

Average AUC results obtained from training and testetg sorted by N4. . 83

Arrangement of the membership function of each labedbels are em-

ployedasanexample. . . . . . . . . . . ... 93

Average AUC results obtained from training and testitgssrted by N4. . 111

Average F-measure results obtained from training astthteset sorted by

NA. e e e e 112
Distribution of the samples after the implementatioRRB+CHC. . . . . 112
Distribution of the samples after the implementatioRBB+CHCgau. . . . 113
Distribution of the samples after the implementatioSMOTE+CHC. . . . 113
Flowchart for the proposed predicting method. . . . . . ...... . . ... 118

The real ligand (red) binding site and the predicted ptsckor protein
le7a. The predicted pockets of SVMBs1 (magenta) and SVMBE&Z)

areshowninspheres. . . . . . . . . ... 121

XXii



8.3 Examples of the two limitations of SVMBs2. (a) The ligamdds to the

atoms at a flat region. (b) The ligands bind to small binditgssi. . . . . .

XXiii



List of Tables

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.5

Training Dataset. . . . . . . . . . . . . .. ... 6 3
Performance under different parameters of the SVMiflass . . . . . . . 41
Performance of TrainingData. . . . ... ... ... ... ....... 43
Performance of Testing Data in Six Enzyme Classes. . . . ... ... 44

Performance of Testing Data with Different Numbers o&i@h in the Pro-

Success Rate (%) of Top 3 Binding Sites Predictions on[Ir®§-Target

Dataset. . . . . . . . . e 48
Number of Hit Proteins on 198 Drug-Target Dataset. . . ...... . . .. 48
Descriptions of the Imbalanced Datasets. . . . . .. ... ....... 56
GMFA of Testing Datasets under Different Sampling Agotees. . . . . . 59
Mean of AUC and F-measure. . . . . . . . . . .. . ... ... 59

Over-Sampling Rate(%) of Different Over-Sampling arydb#d Approaches. 60

Descriptions of the Selected Imbalanced Datasets. . . . ... .. ... 73
F-measure of Testing Datasets among Different SamMethods. . . . . 76
AUC of Testing Datasets among Different Sampling Method . . . . . . 77

Over-sampling Rate (%) of Training Sets among Diffe&arnpling Methods. 78

The Increased Rate of Number of Support Vectors of thes@ieation

Modelformed by SVM. . . . . . . . . .. 79

XXiV



5.6

5.7

5.8

5.9

6.1

6.2

6.3

7.1

7.2

7.3

7.4

7.5

8.1

8.2

8.3

8.4

8.5

Summary of the Intervals of F1,L3,andN4. . . . . ... ... ...... 84

Datasets Sorted by F1. . . .. . ... ... .. ... . ... ... ..., 5
Datasetssorted by L3. . . . . . . . . . . .. .. .. ... 86
Datasets Sorted by N4. . . . . . . . . . . . ... .. .. 7
The Label Setting of Each Membership Function ofgheAttribute. . . . 92
Descriptions of the Selected Imbalanced Dataset. . . . ... ... .. 96
The Testing ResultsofCensus. . . . . . . . .. .. ... .. ... ... 98
Descriptions of the Selected Imbalanced Datasets. . . . ... ... .. 103
F-measure of Testing Datasets among Different SamMethods. . . . . 107
AUC of Testing Datasets among Different Sampling Method . . . . . . 108

Under-sampling Rate of Training Sets among Differemy@ang Methods. 109

Number of Support Vectors of the Classification Modetrfed by SVM. . . 110

Change of data size before and after applying FRB+CHC.. . . . . . .. 117
TrainingDataSet. . . . . . . .. ... ... . .. .. 181

Comparison of SVMBs2 and SVMBs1 on Success Rate (%) fiherient

Datasets. . . . . . . .. e 120

Comparison of SVMBs2 and SVMBs1 on Success Rate for i2iftadNum-

berof Chains. . . . . . . . . . e 121

Success Rate (%) of Top 3 Binding Sites Prediction witiM8g2 and the

Other 5 Predicting Methods. . . . . ... .. .. ... .. ......... 212

XXV



8.6 Number of Hit Proteins of Top 3 Binding Sites PredictiothwS§VMBs2

and the Other 5 Predicting Methods. . . . .. ... ... ........ 122

XXVi



Nomenclature List

Unless otherwise specified, some commonly-used symboleithiesis are defined as

follow.

C Regularization parameter of SVM for controlling the trafide-
tween training and margin

C'tactor Cost-factor of SVM

K(-) Kernel function of SVM

o Parameter of the RBF of SVM

FP.o. False positive rate

Nyrr Number of proteins that at least one binding sites can beddca
correctly

Np Total number of proteins

Rateover Over-sampling rate

Nsampled Number of samples in the re-sampled training set

Noriginal Number of samples in the original training set

Fy F-measure of chromosome X

Iy F-measure of chromosome Y

Ax AUC of chromosome X

Ay AUC of chromosome Y

Af Fuzzy term

,uAg(-) Fuzzy value

Wy Fuzzy rule weight

XXVil



Abbreviations

Unless otherwise specified, some commonly-used abbrengaith the thesis are defined

as follow.

3D
AUC
CHC

CNN
CS
EA
ENN
FN
FP
FRB

JSD
NCL
NN
0SS
PASS
PDB
PSP
RBF

3-Dimensional

Area Under the receiver operating characteristic Curve
Cross-generational elitist selection, Heterogeneseembination
and Cataclysmic mutation

Condensed Nearest Neighbor rule

Connolly Surface

Evolutionary Algorithm

Edited Nearest Neighbor rule

False Negative

False Positive

Fuzzy Rule Base

Imbalanced Ratio

Jensen-Shannon Divergence

Neighborhood Cleaning Rule

Nearest Neighbor

One-Sided Selection

Putative Active Site with Spheres

Protein Data Bank

Protein-Solvent-Protein

Radial Basis Function

XXVili



ROS
RUS
SMOTE
SVM
TL

N

TP

Random Over-Sampling

Random Under-Sampling

Synthetic Minority Over-sampling TEchnique
Support Vector Machine

Tomek Links

True Negative

True Positive

XXiX



Chapter 1

Introduction

1.1 An Introduction to Drug Design

1.1.1 General Background

In this thesis, drugs refer to a single or combination of $mmallecules (e.g. ligands)
that activates or inhibits the function of a biomolecule ¢alize a therapeutic effect.
This process of drug design is an expensive and time-comguactivity, where failures
are expected. On average, it costs US$800 million and 14y&gr[2] for bringing a
new drug to the market. Therefore, many companies carry langa amount of projects
in the early stages and select only a few to go forward at e@desThe later stages
are much more expensive and time-consuming than the eaggsthence, the projects

selection and management are important.

The modern process of new drug identification can be dividéa two phases: drug
discovery and drug development. Drug discovery includegetadentification, identifi-

cation of a compound to bind the target with desired effegtinaizing the affinity and



Chapter 1. Introduction

selectivity of those compounds, and optimizing the drikg-properties with sufficient
affinity and appropriatén vivo activity. Once the compound meets the required criteria
of in vivo efficacy, the process of drug development with pre-clinstage and clinical

trials will begin.

The drug discovery process starts with target identificedind validation. This opera-
tion searches the causes of the phenotype of the diseaseinRylays a critical role in
causing the symptoms of a human disease. Activating oriimgiats function can have
a positive effect on the disease [3]. After the relationdbepween the target (protein)
and disease has been found, the next operation of drug @iscevto find a method to
modify that target. This consists of protein-protein andtg@in-ligand (small chemical

molecule) interactions.

Traditionally, drug discovery relies on trial-and-errestings of chemical substances
and matching the apparent effect to the treatments. Tharketrapid growth of com-
putational chemistry, the drug candidate can be deterntipéeisting hundreds of chem-
ical substances or designed by computer virtually, whiglke sane and cost as compared

with the traditional way. This process is generally callechputer-aided drug design.

1.1.2 Computer-Aided Drug Design

There are mainly two types of computer-aided drug desige. i©tigand-based, which
relies on the knowledge of ligands and their particular abgaristics. This type is suit-
able if no structural information about the target is aua@#aAnother one is structure-

based, which relies on the knowledge of the structure oétard his type is commonly
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used since lots of protein structure have been modeled rayy@aBased on the structure
of a target protein, different approaches can be used to li@digand, such as virtual

screening, docking, armtk novadrug design [4].

1.1.3 Structure-Based Drug Design

Taking advantage of the three-dimensional (3D) structfigegiven protein, structure-
based drug design (SBDD) attempts to contribute to drugodesy [5]. The 3D struc-
ture of a protein can be obtained experimentally with x-rgjstallography or Nuclear
Magnetic Resonance (NMR) spectroscopy. Another methoal é@mstruct the protein
based on its amino acid sequence and a similar protein wittoak 3D structure. All
this information can be found from the Protein Data Bank (P[P® or Protein Qua-
ternary Structure file server (PQS) [7], which show the atocoordinates and the qua-
ternary structure of proteins respectively. This has m&@Zmore and more feasible
because the 3D atoms’ arrangements of proteins allow thiegpien of protein-ligand
binding sites, which is an important prerequisite of SBDD (8e famous example use

of SBDD is the inhibition of the HIV protease. The drug is Higaffective against HIV
[9].

1.2 Motivation

This thesis focuses on the identification of protein-ligaintting sites, which directly
participate in the interaction of target (protein) and neales (ligand). The identifica-

tion of protein-ligand binding site is an important step &C®. There are three main
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representations of the binding sites. They are the gridtp@uarrounding the protein
[10], residues contacting the ligand [11], and moleculafege of the protein [12]. The
binding site prediction can be formulated as a binary di&ssion problem: discrim-
inating whether grid point / residue / molecular surfaceksly to bind the ligand or

not.

1.2.1 Problems of Determinate Methods

In this thesis, the binding sites (pockets) are represdmtagtid points surrounding the
protein. As the binding sites are usually found at the cleftghe surface of proteins,
many previous works assigned some scores to the grid paseon different protein
characteristics, and tried to predict the binding sitesgiliese scores. There are several
determinate methods after the corresponding scores ofritigpgints are calculated.
The simplest one is to apply a threshold to the grid pointevatudetermine if the grid
point belongs to a pocket [13]. This threshold is set to at@ns and does not consider
the difference among them. A poor scenario may cluster mbgteogrid points as
pockets if the threshold is set too low, or the number of ptxciemuch smaller than

that of binding sites if the threshold is set too large.

Another method calculates the mean and standard devidtithre @rid points’ values
to determine the threshold for each protein [14]. Althoughk approach calculates the
threshold for different proteins, the threshold dependthergrid points’ values. If the
grids embedded in the protein vary, the mean and standaratidevof the grid points’
values will be different. That means, the threshold and tiralver of pockets could be

varying for a particular protein used.
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In [15], a binary search for the grid threshold is performBae binary search produces
a culled set of pockets, which have specified propertiestchais¢he sizes and shapes of
the pockets. When the method iterates, the grid points gqustad until the set of pock-
ets meet all the properties. Although this approach canidenshe sizes and shapes
of the pockets, all the grid thresholds are set by the usatsywe do not know which
values of thresholds are suitable for a given protein. Toamvee the weakness of the
above determinate methods, the Support Vector Machine (S¥Mroposed and will

be covered in this thesis.

1.2.2 Problems of Imbalanced Dataset

Like most of the datasets in bioinformatics, the datasetsrafing sites have the prob-
lem of being imbalanced [16], which is a popular topic in rgogears [17]. The imbal-
anced dataset problem increases the difficulty of detengibinding sites with SVM
since most of the machine learning tools, including neusaorks and SVMs, are orig-
inally designed for well-balanced datasets. If the datasetbalanced, the performance
of the classifier can be poor. The reason for this is appafenexample, considering a
dataset with 99% of data from class A and only 1% of data frams<B, the accuracy
is 99% if the classifier ignores the data from class B and &atied whole dataset as
class A. Itis already very hard to achieve an accuracy ab8%& 9y using most of the
learning algorithms. However, the minority class in datss®usually more important
and meaningful. For example, there are much less samplesoplg@with a particular
disease than those of healthy people in a medical problesrtl#ssifier is needed to la-
bel whether some people are infected or not, it is obviougthigaminority class (people

with a particular disease) is the more interested class.
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Problems with imbalanced datasets can be easily found inetllevorld, such as the
detection of oil spills from satellite images [18], spottioustomers for telecommuni-
cations management [19], and the identification of powdritigion fault causes [20].

There are two main approaches to solve the problems causidblajanced datasets.
One is the data level approach and the other is the algorighied Approach. The data
level approaches in [21]-[23] include balancing the classibution by over-sampling

the minority class or under-sampling the majority class @lgorithm level approaches
improve the existing machine learning methods by adjugtiegprobabilistic estimate
[24], modifying the cost per class [25], adding some penadtystants [26], or learning

from one class instead of two classes [27].

Many experiments [28] show that re-sampling is a good datel lgre-processing ap-
proach to handle imbalanced data. Moreover, preprocesgipgaches are more flex-
ible since they are independent of the chosen classifieneidre, re-sampling ap-

proaches are focused in this thesis. There are three maés typstrategies for re-
sampling data. They are over-sampling, under-samplind,atrid methods, which

combine the two previous methods (over-sampling and usaetpling methods). The
importance of designing sampling strategies has beensfisdun [29], which can lead

to successful learning of different classes.

1.3 Contributions

This thesis presents the predicting methods of proteemligbinding sites and the pre-
processing methods of imbalanced dataset. Firstly, SVMripleyed to predict the

binding sites using different protein properties. To saheimbalanced problem in the
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protein datasets, different pre-processing methods aestigated. Then, two hybrid
pre-processing methods and one under-sampling methogs@resed. Based on the
performance, one of the hybrid methods is applied on theeprotatasets and improved
results of the prediction of binding sites are shown. Thexgantributions are given as

follows.

Firstly, SVM is proposed to predict the protein-ligand binglsites and handle the prob-
lems mentioned in Section 1.2.1. The prediction of bindibgsscan be expressed as a
problem of binary classification. SVM [30]-[33] is one of thgpervised learning tools
for doing classification. It has shown its high applicaliand advantage on classifying

high-dimensional and large datasets [34], [35].

The SVM is trained to generate the hyperplane by using 2®mstproperties, includ-
ing the geometric characteristics, interaction energgueace conservation, distance
from protein, and the properties of the surrounding grich{iA radial basis function
(RBF) is used as the SVM kernel, which is a common kernel for-lveear classifica-
tion. Like most of the datasets in bioinformatics, the ddtthe binding sites have the
problem of being imbalanced [16]. Therefore, random ursgenpling and filtering are

applied to reduce the data size.

Two experiments are used to evaluate our approach. The fiesuses LigASite [36]
as the dataset which is suggested in ConCavity [15]. Ourcagagpris compared with
four other methods. They are LIGSITE [13], PocketFinder[TbnCavity [15], and
SURFNET [37]. The other experiment uses 198 drug-targeisgéatvhich is developed
in MetaPocket [38]. Only the location of the three largestdiong sites are selected

as the potential pockets, which are represented by thercpaiats of these pockets,
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for the evaluation in this experiment. There are sometimeserthan one binding site
within a protein or the prediction can identify more than dmeding site. In this case,
only the correct prediction at the larger pocket is countbémthe success rate is cal-
culated. Our approach is compared with six other methodsy Bine ConCavity [15],
SURFNET [37], MetaPocket [38], LIGSITE [39], Fpocket [40], and Q-SiteFinder
[41]. Two different measurements are applied since theessgmtations of the binding

sites are different in these experiments.

On data sampling, three different pre-processing methoelp@posed. Two of them
are hybrid methods and the other one is an under-samplingogheBoth hybrid meth-
ods have two stages: over-sampling first and under-sampéixig Their under-sampling
stage uses the same approach. The size of training datasatigsed after the first stage
of over-sampling, which causes over-generalizationgdsihcreases the complexity of
the classification model, and decreases the efficiency detraing algorithm. There-
fore, an evolutionary algorithm (EA) is applied to both tyathetic samples and major-
ity samples to under-sample the dataset. The chosen EA@H(Cross-generational
elitist selection, Heterogeneous recombination and Gatlac mutation) algorithm
[42] because it can select the smallest and most represenitagtances among many
algorithms as reported in [43]. The main difference betwientwo proposed hybrid
methods is that the first one uses the Synthetic Minority Geenpling Technique
(SMOTE) to generate new samples of the minority class (SME&IHC), while the

second one generates the new samples based on a fuzzy rilg-B&stCHC).

The third proposed pre-processing method using underigagn@ims at solving the
problem of large imbalanced dataset. It first selects thepkesof the majority class

based on fuzzy logic. To further reduce the data size, theuggnary computational
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method of CHC [42] is suggested. This method is named as uUERE:

Finally, FRB+CHC is selected as the pre-processing methatié dataset of the protein-
ligand binding sites because of its robust performance. 3§ ®mployed to train the
re-sampled dataset. Two benchmark datasets are used tatevidlis method: the 198
drug-target complexes and 210 bound structures. Both of Hre developed in MetaPoc-
ket [38]. It is first compared to our previous work, which usaddom under-sampling
as the pre-processing method. Then, this approach is ceahpath five other methods.

They are LIGSITESC, PASS [44], SURFNET, Q-SiteFinder, and MetaPocket.

1.4 Outline of the Thesis

The main content of this thesis is organized into eight airaptn Chapter 2, a liter-
ature review on different predicting methods of protegahd binding sites and pre-
processing methods is given. In Chapter 3, the proposedctiregimethod of protein-
ligand binding site is introduced. It uses an SVM and 29 pnopeoperties to predict
the binding sites. Chapter 4, Chapter 5, and Chapter 6 gevédtails of SMOTE+CHC,
FRB+CHC, and uFRB+CHC respectively. They are all proposeeppocessing meth-
ods for imbalanced datasets. Chapter 7 shows a general oesmpaf these three pro-
posed pre-processing methods. In Chapter 8, FRB+CHC igealgh the protein dataset
to improve the results in Chapter 3. In the final chapter, &lumon is drawn and some

potential directions for further work are also given.



Chapter 2

Literature Review

Areview on the previous works on protein-ligand bindingsiprediction and re-sampling

methods is given in this chapter.

2.1 Prediction of Protein-Ligand Binding Sites

The protein-ligand binding sites are commonly located m ¢lefts on the surface of
proteins. However, not all the clefts are identified as theepital binding sites (pock-
ets), as we need to examine the pockets’ size, the intereetiergy of the surrounding
protein atoms, and the sequence conservation of the cedtaesidues. The follow-
ing sections are divided into three parts. The first part riless the studies that mainly
use the geometric characteristics of a protein to predetpibckets. The second part
describes the studies that use the energy criteria by egileglthe van der Waals in-
teraction potential to do the prediction. The last part dbss the studies that integrate
the sequence conservation with the structural informadioa protein to identify the

potential pockets.

10
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2.1.1 Geometry-Based Methods

POCKET [45] is one of the geometry-based methods to define the hjrsiias. Firstly,

a 3D grid is generated. Secondly, a distance check is appiigtde grid to make sure
the atoms of protein do not overlap with the grid point. Aketbrid points, which do
not overlap with the atoms of protein, are labeled as solvéttie grid points outside
the protein are enclosed by the protein surface in opposiettbns of the same axis
(i.e. the grid points are enclosed by pairs of atoms withi photein), it is called a

protein-solvent-protein (PSP) event (Fig. 2.1).

HEEE
SOIVEntW“‘? K Scanned directions
® Grid points
// “\* === PSP event
\ Protein E
C 1
T[]

Figure 2.1: PSP event used to describe the geometric feature of a gmd. piocounts

the number scanning directions that pairs of protein atoamsenclose the grid point.
For the POCKET method, the maximum number of PSP event is thinde it is seven

for the LIGSITE method.

LIGSITE [13]is an extension of POCKET with more scanning directi@wh of them
considered the identification of PSP events on the basiaf abordinates. LIGSITE
scans for the pockets along three axes and four cubic ditgaiale POCKET only
scans along three axes. The number of PSP events occurteel scanning directions
are counted and the value is assigned to each grid point gfrttein. The grid points

with higher values are more likely to be the pockets. Theefarhen the grid point’'s

11
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value exceeds a certain threshold, it can be considered askeatpFig. 2.1 shows the

PSP events of two enclosed grid points.

SURFNET [37] is another geometry-based method to define the bindieg.d.ike
LIGSITE, a 3D grid is generated first. The grid values of SURHNare calculated by
counting the number of constructed spheres. Firstly, pdirelevant atoms are taken
within the protein. Then, testing spheres are formed batvike pairs. If the sphere
overlaps with other atoms, the radius decreases until ndapyeng occurs (Fig. 2.2).
Only the distance between two atoms withinAds considered. The sphere of radius
smaller than 1.8 is also ignored. If the grid points are out of the pockets,distances
between pairs of atoms are very large or cannot be found. ®udhtrary, if the grid

points are inside the pockets, more than one sphere canrbedor

¢ |mitial
/ Sphere

Figure 2.2: SURFNET. There are three solid line circles and severaéddine circles
in each graph. The top and bottom solid line circles repraberpair of relevant atoms
and the middle one shows the constructed sphere of a gridl ftie dotted line circles
represent the other atoms that surround the grid point uedéng. The initial sphere
in the graph on the left overlaps with other atoms; therefitseradius decreases until
no overlapping occurs to form the final sphere in the grapthenight.

CASTp (Computed Atlas of Surface Topography of proteins) [46asdxl on Delaunay

triangulation, alpha shape, and discrete flow [47]-[49]aDeay triangulation is used

12
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to represent the surface of a protein and a convex hull isédroontaining all atom
centers inside. To obtain the alpha shape, the edges of mmlatiangulation that are
outside the protein are omitted. A triangle with one or matges omitted is called an
“empty” triangle. Fig. 2.3(a) shows the alpha shape of tletgin and the solid line in

red color is the omitted edges of Delaunay triangulation.

The discrete flow is applied to determine the pockets and etkfamly for the empty

triangles. An obtuse empty triangle flows to its adjacemtnigie, whereas an acute tri-
angle collects the flow from adjacent triangles. Fig. 2.3tjws a pockets formed by
five empty triangles. All the triangles are obtuse, excaphgle 2. Therefore, triangle
2 collects all the flows from other triangles and this clefidentified as the potential
binding site. If a cleft consists of obtuse empty trianglesyothe triangles will flow

sequentially to infinity. This type of cleft is not identified a binding site. Fig. 2.3(c)
shows an example of this kind of cleft, which is formed by filuse empty triangles.

They flow from triangle 1 to triangle 5 and then to the infinity.

Infinity -~

/

(a) Alpha Shape. (b) A pocket is composed by (c) This type of cleft is not
five empty triangles. identified as a binding site.

Figure 2.3: CASTp

Fpocket [40] uses the concept of alpha sphere, which is a sphereatorgavith four
protein atoms on its boundary and not containing any atosigden The size of these

alpha spheres is used to determine the property of the spwons. Small spheres

13
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are located inside the protein, whereas large spheres eagetboutside the protein.
For the clefts or pockets, the size of the spheres is inteateedl herefore, a filtered
collection of spheres are identified by measuring the rddh@alpha spheres. Fpocket

then clusters the spheres close together and identifiesabgrotential pockets.

PASS (Putative Active Site with Spheres) [44] looks at all uniguelets of protein

atoms. If they are close together, two possible probe sphett@ch lie tangential to all
three protein atoms, will be calculated. It results in atiahiayer of spherical probes
coating the protein. These probes are filtered if they claigih any protein atoms and
two probes lie too close to each other. In addition, the buwaant of each probe is
calculated by measuring the number of protein atoms fourttinvBA radius of the

probe. The probes with a low burial count are most likely mi#$he pockets. Therefore,

a burial count threshold is applied to eliminate the prohéside the pockets.

After the initial layer of probes is formed, additional lag®f spheres are accreted onto
the existing probes and the filtration to the new probes asritbesl above is followed.
These cycles of addition and filtration are repeated urgiinbhmber of probes bounded
to the protein is no longer changed. PASS then assigns a teigtach probe and
identify the central probes in regions that contain manyesgh with high burial count

(Fig. 2.4).

2.1.2 Energy-Based Methods

PocketFinder[14] is an energy-based method for ligand binding site mtexth. It uses

the van der Waals interaction energy between the protemsatmd the simple atomic

14
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@ Central Probes
O Probe Shperes

Figure 2.4: PASS. The black dots represent the the central probes of mateintial
pockets and the empty circles surrounding are the retaipkdrss after the repeated
cycles of addition and filtration.

probes to locate the binding sites with high energy. A 3D gatential map is generated

first. The potential of each grid poiptis calculated by the Lennard-Jones formula:

N . .
Cl, G

V)= (5 = %) (2.1)
i=1 pi pi

whereC1i, andC} are constants, which are the typical 12-6 Lennard-JonesTpters
used to model the van der Waals interaction energy betweanbamr atom placed at
the grid pointp and the protein atom N is the total number of protein atoms? and

rgi are the 12-th and 6-th powers gf, respectively, where,, is the distance between
the grid pointp and the protein atom The first term describes the repulsion between
atoms when they are very close to each other. The second tsonilokes the attraction

between atoms at long distance.
The grid points are then filtered with a threshold, which iedmined by the mean and

standard deviation of the grid points’ values. Those fitleged points are clustered into

many groups and the potential pockets are identified as tijrosgs with a large size.
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Q-SiteFinder [41] uses a concept similar to PocketFinder (described @bimvdefine
the potential pockets. It uses methyl (-CH3) probes, whiehratialized on the protein
surface, to calculate the van der Waals interaction eneztyyden the protein atoms and
the probes. Those probes with high interaction energy deénex and clustered into
many groups. The clusters with a large size and high enemgganrsidered as potential

pockets.

2.1.3 Sequence Conservation

Residues in a protein are the individual organic compouatls&amino acids. As not
all residues in a protein are equally important, conseswasinalysis becomes a very
useful method to indicate those functionally importantdess in the protein sequence
[50]-[52]. Conservation analysis has been shown to be glyaorrelated with the pre-
diction of ligand binding sites [53], [54]. It is a scoring thed that involves the conser-
vation of sequentially adjacent residues. Therefore, sstondies suggested combining
the sequence conservation and the structure of proteiretbgdthe protein ligand bind-

ing sites through weighting every pair of protein atoms [159].

LIGSITE ©SC€ [39] is an extension of LIGSITE. It uses the Connolly surf#g] and
defines surface-solvent-surface events, instead of PSRsadefined in POCKET and
LIGSITE. In the Connolly algorithm, a probe sphere of typitaA radius rolls over
the protein. The Connolly surface consists of the van deri$\&aaface of the protein,
which is touched by the probe sphere, and the probe sphdaeswvhen it is in contact
with more than one protein atom. Fig. 2.5 shows the diffeedmetween the Connolly

surface and the van der Waals surface. LIGSITscans the three axes and four cubic
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diagonals for the surface-solvent-surface events. Thigisavith high values of such

events are re-ranked by the degree of conservation of tloé/ew surface residues.

Connolly Surface
Probe Sphere

Protein Atoms

van der Waals Surface

Figure 2.5: The van der Waals surface in green is the outer surface oftaiprdt sep-
arates the inner space from the outer space. The Connoffycsun blue is composed
of two parts. One is the van der Waals surface of the protdmcwcontacts with the
probe sphere. The other one is the probe sphere surface idwsriacts with more than
one protein atom.

ConCavity [15] consists of three steps to predict the binding sitas: greation, pocket
extraction, and residue mapping. Like LIGSITE, SURFNETRocketFinder, a 3D grid
surrounding a given protein is created first. The structomaperties and sequence con-
servation of the protein are used to assign a value to eadlpgmt. Those grid points
with high values are retained and clustered into many grofigsnary search is then
performed and produces a culled set of pockets, which haa@fsgal properties based
on the sizes and shapes of the pockets. After several ssatbieegrid points are ad-
justed with the set of pockets having all the propertiesaliynthe retained grid points

are mapped to the surface of the protein and scored the pretEdues.

MetaPocket[38], [56] is a combination of eight predictors, including@Cavity [15],
SURFNET [37], LIGSITESC[39], Fpocket [40], Q-SiteFinder [41], PASS [44], GHE-
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COM [57], and POCASA [58]. A given protein is first sent to thregbictors to identify
the pocket sites. A z-score, which is a statistical measentibo find out the probability
of a score occurring within normal distribution, is caldeld separately for each pocket
in different methods in order to compare the ranking scoféseopockets. Then, only
the three highest-scored pockets of each method are skl@ctally 24 retained pock-
ets are clustered according to their spatial similaritye Tdtal z-score of each cluster
is calculated and used to re-rank the final pockets. Finddéypotential ligand binding

residues are figured out based on the final pockets.

2.2 Re-sampling Methods

Re-sampling is a common approach to handle the imbalandedetaThere are three
main strategies of re-sampling. The first one is over-samgplivhich generates some
new instances of the minority class, and the second one ertgampling, which elimi-
nates some samples of the majority class. The above twegigatartificially re-balance
the class distribution. However, this kind of re-balanangy not solve the problems of
some imbalanced datasets.Therefore, hybrid methodshwbimbine the two previous

methods (over-sampling and under-sampling methods) |smecansidered.

2.2.1 Over-sampling Methods

Random over-sampling (ROS)s a non-heuristic method that replicates samples of the
original minority class to generate the new instances. ethod causes over-fitting

easily since the new instances copy exactly from the origmority class.
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Synthetic Minority by Over-sampling TEchnique (SMOTE) [22] creates the new in-
stances by interpolating several minority samples thattgether. This method makes
use of each minority class sample and inserts syntheticlearafmng the line segments
joining any/all of thek minority class nearest neighbors to over-sample the ntynori
class. The synthetic samples are randomly chosen amongetgbbors from thek
nearest neighbors, depending upon the degree of over-sgmnediuired. An example is
shown in Fig. 2.6. Five nearest neighbors are used in it, evhes a selected sample of
minority class;z;; to ;5 are the 5 nearest neighborsaxgfands; to s; are the synthetic
samples created by interpolation. If the degree of overptiagrequired is 300%, three

synthetic examples are selected randomly frqrto ss.

Figure 2.6: Example of SMOTE with 5 nearest neighbors.

Each sample can be represented by a feature vector. Synsla@tiples are generated
in the following steps. Firstly, the difference between fisgture vector of the selected
sample and that of its neatest neighbor is calculated. Tthengifference is multiplied
by a random number between 0 to 1. Finally, this value is addede feature vector
of the selected sample. Therefore, the final value shouladieg the line segment at a
random position between 2 specific vectors. Since the syatb@mples provide a less

specific and larger decision regions, the over-fitting peobtan be reduced. However,
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this method may introduce more minority synthetic sampiglé area of majority class
where the minority class is very sparse with respect to thjenityclass. This causes the
problem of overgeneralization [59], which means the deaisioundary is very narrow

or there is large overlapping area between the majoritys@asl minority class.

2.2.2 Under-sampling Methods

Random under-sampling (RUS)is a non-heuristic method that aims to balance the
datasets by randomly removing samples of the majority clEsis method may easily

remove some useful data.

Condensed nearest neighbor rule (CNNJ60] eliminate the majority class samples
that are distant from the decision border since these sancple be considered as less
relevant for learning. First, a majority class sample isdanly drawn and formed a
subset with all the minority class samples. Then, 1-NN isluser this subset to classify
the other majority class samples. Every misclassified ntgjgample is selected to form

the re-sampled majority dataset.

Tomek links (TL) [61] is opposite to CNN. It edits out noisy and borderline omgy
class samples. Borderline samples can be treated as umsaftes since only small
changes can cause them to be assigned to a wrong class. Tespoan be described
as follows. First, each sample is used to find another sampiehvhas the minimum
distance between them. If these two samples are in diffefasses, the sample of ma-
jority class will be removed. This method can remove theyaigl borderline majority

class samples to increase the area of decision border. oyg®me useful data, which
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is important for the classification, may also be discarded.

One-sided selection (0SY)62] applies TL followed by CNN. By combining the ad-
vantages of both methods, the remainder majority sampéesaie and more relevant

for learning.

Neighborhood Cleaning Rule (NCL)[63] is modified the Wilson’s Edited Nearest
Neighbor Rule (ENN) [64] to remove majority class samplesstly, three nearest
neighbors of each sample in the training set are found. I§#&hected sample belongs to
the majority class but the three nearest neighbors clagsiffongly, the selected sam-
ple will be removed. If the selected sample belongs to theontinclass but the three
nearest neighbors classify it wrongly, the nearest neighbelonging to the majority

class will be removed.

CHC [42] is a kind of EAs that combines a selection strategy withighly disruptive
recombination operator. To avoid premature convergendevaintain diversity, incest
prevention and cataclysmic mutation are introduced. Tloegss of CHC can be de-
scribed as follows. Firstly, a population set of chromossiés created. Each chromo-
somep; = (pi, pi2, - - -, Pin) IS @nn-dimensional vector, which is a set of genes, where
pi; is the jth gene valuef = 1,2,...,n) of the ith chromosome in the population

(: = 1,2,...,m); mis the population size andis the number of genes.

Secondly, the chromosomes are evaluated by a defined fitmessoin. The form of
fitness function depends on the application. Thirdly, arrmiediate population set of
chromosomes’, which is of the same size d3is generated by copying all members

of P in a random order.
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Then, a uniform crossover (HUX) operator is applied’dto form C’. HUX exchanges
half of the genes randomly between the parents. CHC alsansadditional method for
incest prevention. Before applying HUX to the parents, tlerhing distance between
them is calculated. If half of that distance is larger thanffeigence threshold, HUX

is applied; otherwise these two parents are deleted frorihe initial threshold? is
set atn/4. After C’ has formed, it is evaluated by the fitness function and arstelit
selection is taken. Only the best chromosomes from boamdC”’ are selected to form
the offspring population in the next generation. If the pffag population is the same

asP, the difference thresholdis decreased by one.

CHC is different from the traditional genetic algorithm. Mtion is not performed at the
recombination stage. CHC performs partial reinitialiaatidivergence) when the search
becomes trapped (i.e., the difference threshbliecomes zero and no new offspring
population is formed for several generations). The poparas reinitialized, based on
the best chromosome, by changing the elements’ values magduaith a user-defined
divergence raté,.,;.. For example, itD, ;. = 0.35, the values of 35% elements will
be changed randomly. The search is then resumed with a nfasedie threshold =

Diyate * (1 — Dygte) * n. This process is called cataclysmic mutation.
CHC has shown the ability of selecting the most represemtatistances among the

other algorithms studied in [43]. Therefore, it is chosethasunder-sampling algorithm

[65]-[66].
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2.2.3 Hybrid Methods

Although both over-sampling and under-sampling can ba&#me class distribution, dif-
ferent kinds of drawbacks are also introduced, includireygeneralization and removal
of useful data. Therefore, hybrid methods are introduceth iat both over-sampling

and under-sampling are used to tackle the problems.

SMOTE+Tomek links (sTL) [21] is one of the hybrid methods. As discussed above, al-
though SMOTE can reduce the problem of over-fitting and lzaddine class distribution,
it may introduce synthetic samples too deeply in the areaabnty class. Therefore,
this method applies TL to the over-sampled training set aata ceaning method. In-
stead of removing only majority class samples, TL used hereves samples of both

classes.

SMOTE+ENN (sENN) [21] is similar to STL. This method applies ENN as the data
cleaning method. ENN used in this method is different fromiLN@ntioned previously.
Instead of removing only majority class samples, ENN rers@amnples of both classes.

Therefore, any sample that is misclassified by its threeas¢aeighbors is removed.
SMOTE+Rough Set (sRST)67] applies the rough set theory (RST) as the data clean-
ing method to include the original samples and the syntimeinority samples that be-

long to the lower approximation for their class in the finaliing set.

Borderline-SMOTE (sBorder) [68] is a modified version of SMOTE. It only over-

samples or strengthens the borderline minority sampleshndan be found by using the
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following method. Firstlyn nearest neighbors of each minority sample in the training
set are calculated. The number of majority samples amorsgthenearest neighbors

is denoted byn/, where0 < m’ < m. If m = m/, the selected minority sample will
be considered as noise.’f/2 < m’ < m, which means that the number of majority
samples among the nearest neighbor is larger than that orityisamples, the selected
sample will be considered as being misclassified easily,jtandl become one of the
borderline minority samples. {f < m’ < m/2, the selected sample will be considered
as safe. After all the borderline minority samples have deand, only these samples

will undergo the SMOTE process continuously to generatesyin¢hetic samples.

Safe-Level-SMOTE (sSafe)69] is also a modified version of SMOTE. It assigns each
minority sample its safe level before the SMOTE processtlyjrm nearest neighbors
of each minority sample in the training set are calculatdak Jafe level of the selected
sample can be calculated by counting the number of mincaitydes among these
nearest neighbors. If the safe level of a sample is closeitovill consider as noise. If it

is close tom, it will be considered to be safe. The synthetic samples akegenerated

in safe regions.
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Chapter 3
Predicting Protein-Ligand Binding Site
using Support Vector Machine with

Protein Properties

3.1 Introduction

Identification of protein-ligand binding site is an importaéask in structure-based drug
design and docking algorithms. In the past two decade®rdifit approaches have been
developed to predict the binding site, including the gesimetnergetic and sequence-
based methods. While scores are calculated from these dsetthe algorithm for do-
ing classification becomes very important and can affecptidiction results greatly.
In this chapter, the Support Vector Machine (SVM) is usedltster the pockets that
are most likely to bind ligands under the consideration tflattes of geometric char-
acteristics, interaction potential, offset from proteonservation score and properties

surrounding the pockets.
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The binding sites predictions of the previous methods wearse8 on different scores,
which were calculated from some protein characteristibg. Simplest method was set-
ting a threshold to help determining the binding sites [1f3jhe score of a point was
greater than the threshold, that point would be identifiethasbinding site. In [14],
mean and standard deviation of the scores were considerédding the threshold.
The results of these approaches are easily affected byithéogmat and the threshold
has to be set carefully; otherwise the results would not bsfaetory. Machine learning
techniques have been widely applied in bioinformatics amelshown satisfactory per-
formance in binding site prediction [70]-[73]. In this clhap support vector machine
(SVM) is proposed for tackling this problem. SVM [30]-[33$1shown its high appli-

cability and advantage on classifying high-dimensional lange datasets [34], [35].

The prediction of binding sites can be formulated as a proldébinary classification

to determine a location for binding the ligand. SVM is onelo# supervised learning
tools and it mainly applies two techniques to do the clasdifi: the formulation of a
large-margin hyperplane and the use of a kernel functiodM $&n construct afrn—1)-
dimensional hyperplane in amdimensional space to separate the data, where each

datum is represented by andimensional vector.

We train the SVM to generate the hyperplane by using 29 prsteitributes, including
the geometric characteristics, interaction energy, sgcpieonservation, distance from
protein, and the properties of the surrounding grid poistadial basis function (RBF)
is used as the SVM kernel since a non-linear classificatiomatie needed and RBF is a
common kernel to handle this problem. Like most of the dasasebioinformatics, the
data of the binding sites have the problem of being imbaldarel in large data scales

[16]. Therefore, down sampling and filtering are also agpl@reduce the data size.
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Two experiments are conducted to evaluate our approachfirBh@ene uses LigASite
[36] as the dataset which is suggested in ConCavity. Theigestbinding sites are
represented as grid points in this experiment. Our apprisamtmpared with four other
methods. They are LIGSITE, SURFNET, PocketFinder and CeitCa he other ex-
periment uses 198 drug-target dataset which is developeiaPocket [38]. Only the
location of the top three largest binding sites are predicad each site is represented as
one center point in this experiment. Our approach is contparth six other methods.
They are LIGSITESC, SURFNET, Fpocket, Q-SiteFinder, ConCavity, and Metatck
Two different measurements are applied since the repasams of the binding sites

are different in these experiments.

3.2 Methodology

This section explains the datasets and attributes usedsichiapter, and the details of

the SVM classifier. The overall flow of our method is then didsat.

3.2.1 Datasets

We have used two sets of proteins to evaluate our method. T&teofie is the non-
redundant LigASite (v9.4) dataset [36], which was suggestdg15]. The other one is
the 198 drug-target complexes, which was discussed in B8]the dataset of LigA-
Site, only six main classes of enzyme (categorized for 2@&pr complexes) from the
dataset are selected. They are transferase, hydrolaslereductase, lyase, ligase and

isomerase, which occupy around 70% of LigASite. Fig. 3. \shihe percentages of the
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number of proteins distributed among these six enzymeeatas®r reference, Fig. 3.2

shows the number of chains distributed in the selected ipot# LigASite.

o _
<

30
|

Percentage
20
|

37.13%

28.68%

10

12.5%

5.88% 7.72% 8.09%

Hydrolase Isomerase Ligase Lyase Oxidoreductase Transferase

Figure 3.1: Percentages of distribution among six enzyme classes. dltis¢ proteins
in LigASite belong to the transferase class. The seconddsdigse. The contribution
of the other classes are almost the same.

3.2.2 Protein Properties Used for Training and Testing

The structure of proteins with bound ligands are obtainethfthe Protein Data Bank
(PDB) [6], which is a collection of atomic coordinates andestinformation describing
proteins and other important biological macromoleculésic®ural biologists use meth-
ods such as X-ray crystallography, NMR spectroscopy, aymetectron microscopy to

determine the location of each atom relative to each oth#tr@molecule.
After the structure of each protein is retrieved, a 3D gridgeserated by covering the

free-space surrounding the proteins. The program is baséueossource of ConCauvity,

which is available on its website. The attributes of eact gdint used in the SVM are
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Figure 3.2: Distribution of the number of chains in the selected pratahLigASite.
Most of the proteins have less than three chains.

calculated based on the protein properties in the following

3.2.2.1 Grid values

These are the two values of each grid point that are calacliste|GSITE and SURFNET.

They represent the binding site preference based on georolediracteristics.

3.2.2.2 Interaction potential

This is the van der Waals interaction potential of an atomabp with the protein [14].

The calculation is done by the PocketFinder method. The &hdones formula (3.1) is

used to estimate the interaction potential between thejprand a carbon atom placed

at the grid point:
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N

Ci, Ci
Vi) =) (5 — ) (3.1)
i=1 P pr

whereC1, andC} are constants, which are the typical 12-6 Lennard-JonesTpters
used to model the van der Waals interaction energy betweepdtbon atom placed
at the grid poinip and the protein atont V is the total number of protein aton'vs}m.2
andrfn. are the powers 12 and 6 of; respectively, where,, is the distance between
the grid pointp and the protein atorm The first term describes the repulsion between
atoms when they are very close to each other. The second e=oniloes the attraction

between atoms at long distance.

3.2.2.3 Conservation score

Conservation score is obtained from a residue-level arsaigsdentify which residues
in a protein are responsible for its function. The score chazid point is the conserva-
tion score of the nearest residue. The Jensen-Shannogeines (JSD) method is used
to calculate the score since it has been shown to provide tsteoding performance in
identifying residues near bound ligands. It is an open soprogram which is freely

available on its webpage [52].

3.2.2.4 Distance from protein

The squared distance from each grid point to the closest poirthe van der Waals
surface of the protein is calculated. When the grid poingstao far from the atoms,
they are not likely to be a pocket. In the experiment, alm@8b ®f ligand atoms are

located within & of the protein’s van der Waals surface. Hence, the grid tsoivith
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the squared distance larger thét &re filtered out in order to reduce the huge data size.

To explain the relationship between the binding sites ards#iected attributes, graphs
of probability density for the normalized attribute valle® shown in Fig. 3.3. The
solid line represents the corresponding probability dgrier non-binding sites (nega-
tive class) and the dotted line represents the correspgmaobability density for bind-
ing sites (positive class). Some of the attributes, suchl&SITE values, SURFNET
values, and interaction potential, show a very high denslitgmall values when the
grid points are located at non-binding sites. On the othadhthese attributes show a
small difference on the density when the grid points aretkgtat binding sites. This
difference is shown more clearly in Fig. 3.4. Hence, we cantkat the values of these
attributes are relevant to the location of the binding sitesvever, it may be inadequate
to use only one property to classify the binding sites. Tloeeg we propose to use all

of them as the features of the training set for an SVM.

3.2.2.5 Properties of surrounding grid points

All the binding sites are formed by many grid points (the aigte between two grid
points is A [15]), so the properties of the grid points nearby are aédevant features
to the prediction. Six connected points (as shown in Fig) 8rgé selected and their
properties as described in Sections 3.2.2.1-3.2.2.3 adrevesed as the attributes. The
point in the middle of the cube in Fig. 3.5 is the selected guiht to be classified.

There are totally 29 features assigned as the SVM attributes
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Figure 3.3: Probability density functions of protein properties.

3.2.3 Classification with Support Vector Machine

Machine learning methods have been applied to predictytatadites [70], [74]. In

this chapter, one of the machine learning tools, the supgmtor machine (SVM), is
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Figure 3.4: A zoom-in version of Fig. 3.3: (a) LIGSITE values, (b) SURFN#zalues,
and (c) Interaction potential.

employed to predict the protein-ligand binding sites. Bsuthe radial basis function as
the kernel to construct a non-linear hyperplane. The pragralled SVM9" is used,

which is available on its website [75].

SVM basically is a binary classifier. Let a vectotbe denoted byz;|, j = 1,...,m,
wherem is the number of attributes arld;] is a point in anm-dimensional vector
space. The notatiax; is thei-th vector in a datas€t(x;, v;) }?_,, wherey, € {—1,1} is
the condition label for a binary classification problem anid the number of examples
(grid points). To construct the SVM, all training samples &rst mapped to a feature

space by a non-linear functiaf(x). A separating hyperplane in the feature space can
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Figure 3.5: Six connected grid points of a selected grid point. All thedsl spots in the
graph represent the grid points. The middle one is the sslepid point to be classified
and the larger black spots are the connected grid points;ttaperties are also used as
the attributes of the classification.

be expressed as

f(x) =(w,9(x)) +b (3.2)
= Zm:quﬁ(a:j) +0b

wherew is the weight vector andlis the bias.

The optimal separating hyperplane is defined as a lineasitilxswhich can separate
the two classes of training samples with the largest margudth, and the solution

a = [oy] is obtained by maximizing the following function:

n 1 n
W(O() = ; Q; — 5 ijZ:1 aiajyiyj <¢(XZ), ¢(X]>> (33)
subject to:
Zyiai:& 1=1,...,n, (3.4)
i=1
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where0 < a; < C * Cpua0r (for positive samples) and < o; < C (for negative
samples)C is the regularization parameter controlling the tradeeffween training
error and margin. The larger the value @©f the larger penalty is assigned to errors.
Cractor 1S @ cost-factor, which makes the training errors on pasis@mples outweigh

the errors on negative samples [76].

In the above optimization problem, only those items with> 0 can remain. The sam-
plesx; that lie along or within the margins of the decision boundgny Kuhn-Tucker
theorem) are called the support vectors. The weight vent@.R) can be expressed in

terms ofx; and the solutiong; of the optimization function (3.3):

W = Z iy h(X;) (3.5)

whereq; > 0.

Then, the separating hyperplane in (3.2) becomes

flx) = Z ayi(o(x;), $(x)) + b (3.6)

To avoid the computation of the inner prodyetx;), ¢(x)) in the high dimensional
space during the optimization of (3.3), the kernel functivat can satisfy the Mercer’s

condition is introduced:

K (x4, X) = (¢(xi), ¢(x)) (3.7)

The kernel function can be computed efficiently and solveptisblem of mapping the

samples to the potentially high dimensional feature space.
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Table 3.1: Training Dataset.

1pkj 3gd9 11f3 3lem 1llo
lybu Atpi 3h72 2jde 1rn8
2v8l 1x2b 1997 2zhz 3a0t
1026 lrzu 1znz lojz 1sqf
2gga 3gh6 3d1g 2jgv 1dy3
1jyl 2elt 2ywm  1lkwc 2928
3d4p  2wyw 2dtt 1tjw 2zal
2art lu7z 3gid lilh 2wla

Radial basis function is used as the kernel in this chaptaciwis defined by
1 2
K (xi, x) = exp(——|x; = x|) (3.8)

whereo > 0 is the parameter to determine the width of the radial basistfan. It
controls the flexibility of the classifier. Whendecreases, the flexibility of the resulting

classifier in fitting the training data increases, and thightiead to over-fitting.

Around 15% of the proteins in LigASite (40 proteins) are stdd as the training set of
SVM since we find that the results are only slightly differgriten more proteins are
used as training data. As the number of grid points of eactejprds very large, more
proteins will cause the training time to increase greathsd&l on the consideration of
interpretability, only 15% of the proteins are selectedaianf the training set. (The rest
85% are for testing.) The training data are selected ranglautih the same distribution
of enzyme type as that of the whole dataset (as shown in Fijy. Bae proteins used in

the training set are shown in Table 3.1.

Like most of the datasets in bioinformatics, the datased us¢his chapter encounters

the problem of being imbalanced, i.e. the number of posgamaples (the grid points
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of binding site) is much smaller than the number of negataraes (the other grid
points). Random under-sampling is applied to reduce thledlpm. Normalization is
also applied to even the contribution of each attributeeP$everal experiments, it was
found that one proper proportion between the negative ss@guid the positive samples
is 2:1. Therefore, the negative samples are selected rdpdomet to this ratio in the

training set.

As a summary, the flowchart for the prediction of proteirahd binding site is shown
in Fig. 3.6. The training dataset is built with the 29 atttdmiof each grid point by using
the ConCavity program, and the 3D grid space is setAsThe training set undergoes
random under-sampling, so that the ratio 2:1 for the negatiypositive samples can be
obtained. SVM is applied on the re-sampled training settimfihe classification model.
This model is used later to classify the grid points of théimggproteins. The prediction
datasets for testing are also built with the 29 attributes$gg the ConCavity program.

Both the learning and classifying processes of SVM use thid'SV program.

Appl y under-sanpling
and nornalization
to the training set

Cal cul ate the features
of each grid point

Generate 3D grid

\ 4

\ 4

Use the nodel to classify
the grid points of each &
testing protein

Apply SVMto train
the classification nodel

Figure 3.6: Flowchart for the prediction of protein-ligand bindingesit
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3.3 Evaluation

To evaluate and compare our method to the other methodsathe gerformance mea-
surement should be used. We apply two different measurenoendifferent methods

and datasets.

3.3.1 Dataset of LigAsite

For this dataset, grid points are used to represent the fotemding sites. If a grid
point is clustered as not suitable for binding ligands, @ z&tue will be assigned to it.
Therefore, the prediction of ligand binding sites can beesgnted by non-zero values
of the grid point, which represent the potential of beingdong sites. The prediction
can be validated by computing the difference with the grishigoof known ligands. We
define the grid points of the ligand atoms calculated from RBBhe positive samples

and the other grid points as the negative samples.

The terms of precision and recall are introduced [59] to t&lpwing the evaluation
metric for imbalanced problems. The definitions of precisamd recall are given as

follows:

TP

Precision = TP+ FP (3.9)
TP
Recall = m (310)

whereT P is the number of true positives,P is the number of false positives akdV

is the number of false negatives. The high value of precisiditates that the predicted
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positive samples are most likely relevant. The high valuecéll indicates that most of

the positive samples can be predicted correctly.

Another term calledF” — measure [59], which is a function of precision and recall,
is introduced. It is a popular evaluation metric for imbaed problems. In principle,
F' — measure represents a harmonic mean between precision and recaijhA/hlue
of F' — measure means both the precision and recall values are high and ddiffet

very much. It is defined as follows:

2 x precision * recall
F — measure =

3.11
precision + recall ( )

The area under the receiver operating characteristic ¢4i/€') is also commonly used
to measure the performance of classification. AIb&” metric [66] is the probability of

correctly identifying a random sample and can be defined as:

1+ Recall — F P,ge
2

AUC =

(3.12)

where Recall is defined in (3.10)F P,ue = and TN is the number of true

FP
FP+TN
negatives.F' P, defines the percentage of true negatives cases misclasssfipds-
itives. A high value ofAUC implies small values of'N and F'P, meaning that the

corresponding classifier is very effective.
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3.3.2 198 Drug-target Complexes for Testing

For this dataset, the center points of the three largestgis@te used to represent the
potential binding sites. [38] proved that most of ligandsiio large pockets. Therefore,
they suggested an evaluation method for comparing the teg targest sites only. In
our experiment, after the grid points of potential bindings are predicted by SVM,
the top three largest sites [38] are selected and each sg@prissented by a grid point in

the center of it.

If the center grid points are located at the real pocket gitesthe distance between
the center grid points and any atoms of the ligand is withk), 2he prediction will
count as a hit, which means the predicted binding site istifieth correctly. There are
sometimes more than one binding site within a protein angbtbdiction may identify
more than one binding site correctly at the same time. Indase, only one hit in the
larger cluster is counted. The success rate is calculatetidojollowing equation to

compare the performance of different methods:

N,
success_rate = —L (3.13)
Np

where Ny ;7 is the number of proteins that at least one binding sites ealotated

correctly andVp is the total number of proteins in the dataset.
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Table 3.2: Performance under different parameters of the SVM classifie

C Ctactor o F-measure| AUC Number of support vectors
0.3817 0.5 0.5 0.3089 0.6891 53,651
0.3817 0.5 1 0.3053 0.6883 54,951
0.3817 0.5 2 0.2991 0.6866 58,939
0.3817 1 0.5 0.2756 0.7289 52,327
0.3817 1 1 0.2733 0.7295 53,279
0.3817 1 2 0.2687 0.7316 56,854
0.3817 2 0.5 0.2358 0.7420 54,662
0.3817 2 1 0.2359 0.7416 55,655
0.3817 2 2 0.2345 0.7409 59,362
0.7635 0.5 0.5 0.3118 0.6928 52,106
0.7635 0.5 1 0.3081 0.6934 53,322
0.7635 0.5 2 0.3009 0.6933 56,987
0.7635 1 0.5 0.2784 0.7275 50,899
0.7635 1 1 0.2767 0.7269 51,936
0.7635 1 2 0.2731 0.7277 55,510
0.7635 2 0.5 0.2397 0.7410 53,599
0.7635 2 1 0.2409 0.7397 54,674
0.7635 2 2 0.2413 0.7377 58,366
1.1452 0.5 0.5 0.3125 0.6943 51,386
1.1452 0.5 1 0.3075 0.6940 52,574
1.1452 0.5 2 0.3014 0.6955 56,243
1.1452 1 0.5 0.2797 0.7260 50,260
1.1452 1 1 0.2781 0.7251 51,367
1.1452 1 2 0.2749 0.7247 54,960
1.1452 2 0.5 0.2416 0.7398 53,092
1.1452 2 1 0.2430 0.7370 54,149
1.1452 2 2 0.2443 0.7343 57,834

3.4 Results

In this chapter, the value af in (3.8) is set to the usually chosen value of 1, the value

of Cactor fOr ; in (3.4) is set to 1, and the value 6fin (3.4) is equal to—1— =

avg-x-avg-xX
i

0.7635, whereavg x = Tl" x; is thei-th vector in the training dataset ands the

number of samples in the dataset. These SVM parameterstaas $e default values

of SVM'9"t program. Table 3.2 shows the validation results for difiearameters of
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the SVM classifier. Six random proteins from different eneyolasses are chosen to
generate the validation dataset. They are 2cwh, 1g6c, 3p@xg, 3kco, and 1k54. In
the experiment, the values efandC's,.., differ from 0.5 to 2. The default value 6f is
0.7635 and it differs from a half to a double of the defauluealThe results show that an
increase of” — measure may lead to the decrease 4t/C' and the difference brought
by the parameters is not significant. Therefore, the defalltes of each parameter are
used to get a balance betweBnr- measure and AUC. The number of support vectors

after the training is about 52,000.

3.4.1 Dataset of LigASite

In the first experiment, six enzyme classes are selectedrnpacee our method with
four other methods. They are LIGSITE, SURFNET, PocketHiaghel ConCavity. Both
LIGSITE and SURFNET used geometric characteristics toiprede ligand binding
site. PocketFinder used energy criteria and ConCavity le#d geometric and se-
guence conservation properties to do the prediction. Fogtid points determination,
LIGSITE applied a threshold with the value of 5.5, SURFNET &vocketFinder de-
termine the threshold value by considering the mean andatdrdeviation of the grid
values. ConCavity applied a binary search to the grid poiftte search was made by
considering different specified properties based on tressand shapes of the pockets.

Only the grid points, which met all the properties, were cteld.
The performance is calculated in termsfof- measure in (3.11) andAUC' in (3.12).

The F —measure and AU C of the training data set are shown in Table 3.3. Both results

of sampled and non-sampled training data are given. Thétsesusampled training
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data are the classification outcome of the training set thased to learn the classifi-
cation model of SVM. As mentioned before, random under-daxms applied before

the SVM training in order to tackle the problem of imbalandatiaset. The results of
non-sampled training data are the classification resulteetraining set provided by
the trained SVM without applying any under-sampling. Thieeot85% of the selected

proteins are then used as testing data to test the perfoentdiocir method.

Table 3.3: Performance of Training Data.

Dataset F-measure AUC
Sampled Training Data 0.8150 0.8585
Non-sampled Training Data 0.3360 0.8417

From previous studies, ligands are not likely to be boundialscavities. Therefore, af-
ter the grid points are classified by the SVM model, the caswvith volume small than
100A3 are ignored. Table 3.4 shows the classification resultseofehting dataset and
our method can classify the grid points correctly with a higlue of AUC. The other
methods define the pockets with lad/C' because the thresholds of the grid points
are not always suitable to the proteins and only one propdrpyotein is considered.
The thresholds may be wrongly set by the user. On the contrarylo not define any
threshold for our method. We use SVM to train the system austet the grid points
which are most likely to bind with ligands. The results alkow that the success rate
IS not sensitive to the enzyme classes the proteins belor8ptb F* — measure and

AUC show a small difference of values (around 10%) among thersyrae classes.

Table 3.5 shows thé' — measure and AUC' of testing datasets with different numbers
of chains in the proteins. The results can be interpreteegpgrating them into groups.
The first group has 1 or 2 chains, which has the largest valués-e measure. The

second group has 3 or 4 chains, where the valueE ef measure are 0.2803 and
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Table 3.4:Performance of Testing Data in Six Enzyme Classes.

Type Method F-measure AUC
Transferase Our Method 0.3338 0.8162
LIGSITE 0.1622 0.6615
SURFNET 0.2806 0.6516
PocketFinder 0.08970 0.6353
ConCavity 0.3195 0.6588
Hydrolase Our Method 0.3376 0.7548
LIGSITE 0.0982 0.6026
SURFNET 0.2577 0.6332
PocketFinder 0.07476 0.6132
ConCavity 0.2963 0.6562
Oxidoreductase Our Method 0.3895 0.8208
LIGSITE 0.2044 0.6705
SURFNET 0.3142 0.6467
PocketFinder 0.1255 0.6396
ConCavity 0.3314 0.6441
Lyase Our Method 0.3025 0.8464
LIGSITE 0.1507 0.7101
SURFNET 0.2709 0.6698
PocketFinder 0.06788 0.6349
ConCavity 0.3292 0.6933
Ligase Our Method 0.3453 0.8407
LIGSITE 0.1540 0.6831
SURFNET 0.2823 0.6612
PocketFinder 0.07515 0.63915
ConCavity 0.3750 0.6988
Isomerase Our Method 0.3442 0.7839
LIGSITE 0.1758 0.6685
SURFNET 0.2497 0.6341
PocketFinder 0.1205 0.6236
ConCavity 0.2519 0.6177
Overall Our Method 0.3422 0.8105
LIGSITE 0.1576 0.7993
SURFNET 0.2759 0.6494
PocketFinder 0.07133 0.6310
ConCavity 0.3172 0.6615
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0.2933 respectively. The third group has 6 or more chaingwimas the lowest values
of F'—measure. Generally, from the results of these three groups, F-meatacreases
when the number of chains increases, except when the nurhbkaios is 5. Fig. 3.2
shows that there is only one protein with 5 chains. Thereftre result of the case
of 5 chains is not sufficient to reflect the trend. The valued Gt is insensitive to the
number of chains. The reason is that more chains in a proteamsia more complicated
protein structure, and the number of potential pockets emptbtein’s surface increases.

The method predicts some extra pockets which are not trukrigrsites.

Table 3.5: Performance of Testing Data with Different Numbers of Ckeamthe Pro-
teins.

No. of Chains F-measure AUC
1 0.3427 0.7950
2 0.3674 0.8057
3 0.2803 0.7976
4 0.2933 0.8105
5 0.4416 0.8989
>=6 0.2575 0.7956

The grid points classified as binding sites are subject téuatian, which is carried
out by computing the difference with the known bound ligaridse F' — measure of
all methods cannot reach a very high rate, since the sizeeafigied binding sites is
much larger than that of ligands. Also, some predicted bigdites may be useful to
look for some new ligands in the further research. Theretbeecomprehensive results
are more important. After the binding sites are predictextkthg process and many

medical experiments are needed to find a correct ligand tbtbithe protein.
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3.4.2 198 Drug-target Complexes for Testing

In the second experiment, 198 drug-target protein complare used and our method
is compared with six other approaches, based on the evahuatiop three largest bind-
ing sites. The six other approaches are LIGSITESURFNET, Fpocket, Q-SiteFinder,
ConCavity, and MetaPocket. LIGSITE and PocketFinder areapplied in this ex-
periment since LIGSITESC and Q-SiteFinder are the extension of them respectively.
LIGSITE®S®, SURFNET, and Fpocket use geometric characteristics wigirthe lig-
and binding site. Q-SiteFinder uses energy criteria anddaweity uses both geomet-
ric and sequence conservation properties to do the predididetaPocket predicts the
binding site by combining eight other approaches. Fig. Boiws an example of bind-
ing sites prediction for the protein 1p5j. The real ligandi®wn in red sticks at the
center and the predicted pockets by all the seven approachefiown in spheres with

different colors.

The success rate of this experiment is calculated by (3TI8). prediction results of

top 1 to top 3 binding sites for all approaches are evaluapdrately. Table 3.6 shows
the prediction results of our method and the other six apres on the 198 drug-
target dataset. Our method can achieve the highest suetessmong all the methods.
Table 3.7 shows the number of hit proteins among the sevemaugbn the drug-target
dataset. There are 122 proteins that can have the bindegytrectly identified as the
top 1 predictions. There are 30 and 10 proteins that can haveinding sites correctly

identified as the top 2 and top 3 predictions respectivelgré&lare 36 proteins that no
associated binding sites can be identified correctly indpetpredictions. Our method

can locate the highest number of binding sites among all oaksth
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Figure 3.7: The real ligand (red) binding site and the predicted podketgrotein 1p5;.
The pockets sites of MetaPocket (orange), LIGSITHwhite), SURFNET (yellow),
Fpocket (cyan), Q-SiteFinder (magenta), ConCavity (gragyl our method (blue) are
shown in spheres.

The reason why our method can outperform the other methatistisio threshold is
set to the grid points to identify the binding sites. Our noetHorms a training set
with 29 different properties of some proteins first, and theplies an SVM to train
a classification model. Finally, this model is used to prethe binding sites of other
proteins. Besides, we have applied many different progeiif protein, such as the
geometric characteristics, interaction energy betweerptbtein and a carbon probe,
and sequence conservation score, to do the predictionte adme other methods use

only one property to locate the binding sites.

Our method still has some limitations. In the drug-targeadet, 36 proteins cannot have
the binding sites located correctly. From these cases, wewde with three limitations
of our method. The first one is that ligands may bind to a flabregSince our method

tends to predict the binding sites inside a cavity or poctfet, sites in a flat region
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Table 3.6: Success Rate (%) of Top 3 Binding Sites Predictions on 19&Darget
Dataset.

Method Top 1 Top 1-2 Top 1-3
Our Method 61.6 76.8 81.8
MetaPocket 61 70 74
LIGSITE®SC 48 57 61
SURFNET 24 30 34

Fpocket 31 48 57
Q-SiteFinder 40 54 62
ConCavity 47 53 56

Table 3.7:Number of Hit Proteins on 198 Drug-Target Dataset.

Method Top 1 Top 2 Top 3 None
Our Method 122 30 10 36
MetaPocket 121 17 9 51
LIGSITE®SC 95 18 7 78
SURFNET 46 11 8 133

Fpocket 61 34 17 86
Q-SiteFinder 79 28 16 75

ConCavity 93 12 6 87

are difficult to locate. There arel6 cases in the drug-tadgé&set belonging to this
category. The second limitation is that ligands may bindnal§ cavities. Since only

the top three largest binding sites are considered in thgnget dataset, sites in small
cavities cannot be selected . There are 17 cases in the ahggj-tdataset belonging to
this category. The third limitation is that the binding sit@ay be inside the proteins
while only the pockets on the protein surface can be detedieere are three cases
in the drug-target dataset belonging to this category. &8 .shows three examples of
the difficult structures mentioned above. The real ligarrdsshown in red sticks. The

predicted binding sites of our method are shown in blue ssher
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(a) 1pk2. (b) 1e7a.

Figure 3.8: Examples of the three limitations of our method. (a) Therdyainds to a
flat region. (b) The ligands bind to small cavities. (c) Thading sites are inside the
protein.

3.5 Conclusion

The determination of binding sites (pockets) is the preigtgufor protein-ligand dock-
ing and an important step of structure-based drug desiganpfédiction of the protein-
ligand binding site has been investigated in this chapiévl & employed to distinguish
the binding sites. It makes use of the properties of geomeliaracteristics, interaction
potential, distance from protein, conservation score aedjtid points nearby to iden-
tify the binding sites. Threshold assignment is no longedee to determine the pock-
ets. Distance filter and random under-sampling are also@raglto reduce the effects

of large data size and imbalanced data respectively.

Our approach is compared to LIGSITE, LIGSS¥, SURFNET, Fpocket, PocketFinder,
Q-SiteFinder, ConCavity, and MetaPocket on the dataselsgéfSite and 198 drug-
target protein complexes. For the LigASite dataset, thdibmsites are represented as

grid points and our approach gets better results than thex affproaches. The sites are
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predicted correctly with 35 % and 80 % 6T — measure and AUC' respectively. The
proposed method is shown to offer more comprehensive sethdn the others since
more proteins fail to have the binding sites located wheermdipproaches are used. For
the 198 drug-target dataset, only the top three largesirgrgites are considered and
represented as one center point of each site. The resultglshbour approach performs
better than the other approaches and predicts the bindiegy&rrectly in 62% at top
1 prediction, 77% at top 1-2 prediction, and 82% at top 1-8lipten. This study of
binding sites identification can be further developed irgpglication of ligands finding

by virtual screening, docking or de novo drug design.
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Chapter 4

An Evolutionary Preprocessing
Method Based on Over-sampling and
Under-sampling for Imbalanced

Datasets (SMOTE+CHC)

4.1 Introduction

Imbalanced datasets are commonly encountered in reathwtassification problems.
However, many machine learning algorithms are originaéigigned for well-balanced
datasets. Re-sampling has become an important step toqgress imbalanced dataset.
It aims at balancing the datasets by increasing the sanmg#eo$ithe smaller class or
decreasing the sample size of the larger class, which anerkas over-sampling and
under-sampling respectively. In this chapter, a samplimghaod based on both over-
sampling and under-sampling is proposed, in which the nempkss of the smaller

class are created by the Synthetic Minority Over-sampliaghhique (SMOTE) [21].

51



Chapter 4. An Evolutionary Preprocessing Method Based on Over-sampling and
Under-sampling for I mbalanced Datasets (SMOTE+CHC)

The improvement of the datasets is done by the evolutionanypatational method
of CHC [42] (Cross-generational elitist selection, Hetgneeous recombination and
Cataclysmic mutation) that works on both the synthetic dam@nd the samples of the

majority class.

In [21], it was reported that over-sampling and hybrid apgtes provided better re-
sults than the under-sampling approaches. However, teamgled training dataset has
a larger size and causes an increase in the complexity ofdksification model. It also
decreases the efficiency of the learning algorithm. Theeetohybrid method that com-
bines SMOTE and Evolutionary Algorithm (EA) is proposed jethshows a good bal-
ance between the over-sampling rate and the accuracy. Th&mwegvn over-sampling
method SMOTE is applied first to generate the new sampleseofminority class. In
[59], the problem of over-generalization was mentioneds Tiheans that the synthetic
samples of the minority class have occupied the area of therityaclass. Therefore,
hybrid methods are introduced to overcome this problem. Aragproach is used to
under-sample both the synthetic samples and the samplég ofidjority class to im-
prove the performance of SMOTE in this chapter. The chosersBiAe CHC algorithm
since it can select the smallest and most representatit@nitess among many algo-

rithms as reported in [43].

Experiments were then carried out to show the performanoeioproposed approach,
which are compared to random under-sampling (RUS), Tonméis {TL) [61], random
over-sampling (ROS), SMOTE [22], and SMOTE+Tomek links (SME+TL) [21] us-
ing 22 imbalanced datasets from UCI Repository [77]. (Thesthods have already
been introduced in Chapter 2.) C4.5 [78] is used as the leguadgorithm for obtaining

a classification model from each re-sampled dataset, sosashaate the corresponding
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preprocessing method.

This chapter is organized as follows. Section 4.2 introdute details of the novel
sampling strategy and the evaluation method of this stualghbw the effectiveness of
our proposed method, the results and comparisons with oth#rods are discussed in

Section 4.3. A conclusion is drawn in Section 4.4.

4.2 Methodology

In this section, the details of the proposed hybrid data noegssing method is dis-
cussed. The data preprocessing method involves two stéggeirst stage is SMOTE
(over-sampling). The samples in the minority class of theing sets are firstly over-
sampled with SMOTE. After applying SMOTE, the size of the amity class are the
same as that of the majority class. CHC is then implementeedoace the numbers of
both the synthetic samples and the samples in the majoassclCHC has been shown
to be able to reach a good balance between convergence chuhvansity of results

among the EAs in [43].

There are two important issues that need to be addressety defore CHC is em-

ployed: the representation of each chromosome and thetitsfiof fithess function.
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4.2.1 Chromosome Representation

CHC is used to eliminate the synthetic samples as well as #jerity class samples.
Therefore, the chromosomes need to represent the subghesefsamples, which can
be done by a binary representation. Each chromosomeiisdanensional vector, which
is a set of genes, where is the number of genes. In this study,s the number of
synthetic samples plus the samples in the majority classh Bane shows whether the
corresponding sample exists in the training set or not. &fbee, there are two possible
values for each gene: 0 and 1. If the gene value is 1, the gameéng sample is included
in the subset of the training set. If the gene value is 0, threesponding sample is

excluded from the subset.

4.2.2 Fitness function

In this study, the k-Nearest Neighbor (k-NN) classifier isdias the evaluation method
of CHC to obtain the subset with the highest classificatide. rdlormally, accuracy
(ratio of correctly classified samples to total number of gi&s) would be used as the
measure of classification rate. However, it may cause diffi¢ar imbalanced datasets
since the corrected classification rate of the majoritysckf$ects the accuracy more
seriously than that of the minority class. This problem igenobvious if the ratio of
the size of majority class to that of minority class is largjbe worst case could be
that even all the minority class samples are misclassitedatcuracy is still very high.
Therefore, the measures used in Chapter 3 are used hewdnBtey ard” — measure

in (3.11) andAUC' in (3.12).
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Since bothF — measure and AUC are important measures on imbalanced datasets,
a multi-objective fitness function is used here. If a chroomee X as compared with
chromosom&” has a higher value af' — measure (Fxy > Fy) and a lower value of
AUC (Ax < Ay), the difference between the chromosomis' measure (| Fx — Fy|)

and the difference between the chromosom#sC (|Ax — Ay |) will be compared. If

|Fx—Fy| > |Ax—Ay

, chromosomeX will be regarded as a better one; otherwise

chromosomé&” will be regarded as a better one.

4.3 Experimental Study

In this section, experiments are carried out to compare capgsed method, which
is called SMOTE+CHC, with the others methods, including RUS, ROS, SMOTE,

and SMOTE+TL. To measure the performance of the prepraugssethod, the same
classification algorithm should be used among all the metlaodl C4.5 is selected to
obtain the classification model from the re-sampled trgirset. The program of all
testing algorithms and the learning algorithm are based BELK which is an open

source software tool available at the Web [79].

In this chapter, the geometric meanfof measure andAUC (GM F A) in (4.1) is used

as the measure to analyze the results of the experim@nis: A is defined as follows:

GMFA =+/F —measure - AUC (4.1)

The over-sampling rate of ROS, SMOTE, SMOTE+TL, and SMOTB&GWwill also be
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compared. The over-sampling rate is defined as follows:

(Nsampled - Noriginal)

* 100% (4.2)

Rate ey = N
original

whereNgqmpieq IS the number of samples in the re-sampled training setNg;,.; is

the number of samples in the original training set.

4.3.1 Datasets

To evaluate the algorithms’ performance, 22 datasets witbrent imbalanced ratio
(IR) from UCI Repository [77] are used. IR is the ratio of theesof majority class to
that of minority class. Table 4.1 shows the details of theted datasets, where the
number of samplesNs..,.), the number of attributes\(,... ), the percentage distribu-

tion of the minority and majority classes, and the IR for edataset can be found.

Table 4.1: Descriptions of the Imbalanced Datasets.

Dataset Nsamp. | Nattr. | Min., Maj.(%) IR
yeast2vs4 514 8 (9.92,90.08) | 9.08
yeast05679vs4 | 528 8 (9.66,90.34) | 9.35
vowel0 088 13 (9.01,90.99) | 9.98
glass016vs2 192 9 (8.85,91.15) | 10.29
glass2 214 9 (7.94,92.06) | 11.59
shuttlecOvsc4 1829 9 (6.72,93.28) | 13.87
yeastlvs7 459 7 (6.53,93.47) | 14.3
glass4 214 9 (6.07,93.93) | 15.47
ecoli4 336 7 (5.95,94.05) | 15.8
pageblocks13vs4| 472 10 (5.93,94.07) | 15.86
abalone918 731 8 (5.65,94.25) | 16.4
glass016vs5 184 9 (4.89,95.11) | 19.44
shuttlec2vsc4 129 9 (4.65, 95.35) | 20.5
yeast1458vs7 693 8 (4.33,95.67) | 22.1
glass5 214 9 (4.2,95.8) |22.78
yeast2vs8 482 8 (4.15,95.85) | 23.1
yeast4 1484 8 (3.43,96.57) | 28.1
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Dataset Nsamp. | Nater. | Min., Maj.(%) IR

yeast1289vs7] 947 8 (3.16,96.84) | 30.57
yeast5 1484 8 (2.96,97.04) | 32.73
ecoli0137vs2§ 281 7 (2.49,97.51) | 39.14
yeast6 1484 8 (2.36,97.64) | 41.4
abalonel9 4174 8 (0.77,99.23) | 129.44

4.3.2 Setup of Experiments

In this chapter, C4.5 with pruning is used to evaluate the@mnfte of each preprocessing
method. For CHC, which is applied to improve the performamic8MOTE, the basic

settings of the parameters are as follows:

Population size: 50.

Divergence rate: 0.35.

e k of k-NN classifier used for evaluation: 1.

Number of Evaluations: 10,000.

Maximum number of best fithess: 1,000.

Two criteria are set to end the process of CHC. The first orfieistimber of evaluations.
The second one is the maximum number of best fithess. If thditress value does not
increase for 1,000 evaluations, the convergence to thebtgiimum is assumed. The
process of CHC will then be ended. We adopt a 5-fold crosgataéin model to conduct
the experiments, i.e., dividing the whole dataset into faggprandomly, and combining
four of them for training and the remaining part for testiAdi the algorithms except TL

involve some random parameters, so ten experiments aiectaut for each method
and the average results are obtained. Table 4.2 showS ilié'A for each sampling

method on the 22 datasets. The results of the original datase also shown in the
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first column and the begt M F' A value for each dataset is highlighted in bold. The last
row shows the averag@M F' A value of each sampling method for the datasets. The
over-sampling and hybrid approaches can obtain betteltseban the under-sampling
methods. RUS performs the worst among the seven preprogas&ithods and it even
performs worse than the original datasets on average. THerp@ance of the over-
sampling and hybrid methods is very similar and the diffeeeéamong them is around
3%. This finding can be seen in Table 4.3 as well, which showsatterage oAU C'
andF — measure values of all the datasets. In Table 4.3, all the preprongssiethods
work better than the original datasets in terms4éfC' value. However, RUS gets a
poor result inF' — measure. This is because many samples of the majority class are
predicted wrongly as the minority class. The over-sampdind hybrid approaches get

a balance betweeAUC and F' — measure value. The results can re-confirm that data

preprocessing is an important step to deal with imbalanegasets.

Although the results of both over-sampling and hybrid apphes are better than that of
under-sampling approaches, the number of training sarapéeiscreased greatly. If the
value of IR is large, the over-sampling rate in (4.2) will beee almost 100%. A large
training set increases the complexity of the classificatimael. SMOTE+CHC can use
less training samples and the performance does not lead éabdyop. Table 4.4 shows
the over-sampling rate of different approaches. For the-sampling methods, new mi-
nority samples are produced to balance the datasets. dheréie over-sampling rate
of SMOTE and ROS are the same and it depends on the IR valuen WbdR value
is increased, the over-sampling rate is increased as WalDTEE+CHC can obtain the
lowest over-sampling rate for all the datasets and it doéslepend on the IR value.
CHC only selects the samples to increase the performante afatasets, but not con-

sidering the locations of the samples.
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Table 4.2: GMFA of Testing Datasets under Different Sampling Apprach

Dataset Original RUS | TL | ROS |SMOTE/SMOTE+TL|SMOTE+CH(C
yeast2vs4 | 0.7701|0.78810.78860.7661 0.7750| 0.7706 0.7832
yeast05679vs4| 0.5425|0.55770.55230.5503 0.5989| 0.5902 0.6091
vowel0 0.9628(0.84210.96280.9483 0.9600| 0.9581 0.9399
glass016vs2 | 0.4051|0.37890.37610.4477 0.4568| 0.4561 0.4574
glass2 0.5897(0.41930.52080.5179 0.5450| 0.5327 0.5821
shuttlecOvsc4 | 0.9978({1.00000.99780.9979 0.9977| 0.9953 0.9979
yeastlvs7 | 0.4832|0.29590.37430.4725 0.4250| 0.4258 0.4449
glass4 0.6510|0.64700.77490.8319 0.7282| 0.6898 0.6829
ecoli4 0.7884/0.57710.78840.7971 0.7541| 0.7523 0.7783
pageblocksl3vs%1 0.9815|0.79490.98150.9841 0.8956| 0.8857 0.9359
abalone918 | 0.4065|0.41840.45540.6011 0.6292| 0.6208 0.5004
glass016vs5 | 0.8288(0.69800.74150.727Q 0.7385| 0.7320 0.7258
shuttlec2vsc4 | 0.9129(0.95810.91291.000Q 0.9904| 0.9962 0.9700
yeast1458vs7 | 0.0000|0.23040.00000.2464 0.2646| 0.2683 0.2760
glass5 0.8544|0.66320.84390.693Q 0.7503| 0.7081 0.6509
yeast2vs8 | 0.2236|0.43740.00000.7072 0.6621| 0.5996 0.5922
yeast4 0.4312|0.41530.50490.4853 0.5041| 0.4912 0.4793
yeast1289vs7 | 0.4701|0.29590.27240.3735 0.3109| 0.3060 0.3486
yeastb 0.8164|0.62310.79780.7815 0.7975| 0.7879 0.7845
ecoli0137vs26 | 0.6234(0.38370.81110.5613 0.4712| 0.5457 0.5458
yeast6 0.6067|0.43280.69590.5801 0.5600| 0.5499 0.5796
abalonel9 | 0.0000|0.12360.00000.1535 0.1594| 0.1585 0.1254
Mean 0.6066|0.54460.59790.6466 0.6352| 0.6282 0.6268

Table 4.3:Mean of AUC and F-measure.

Original | RUS | TL ROS |SMOTE |SMOTE+TL |[SMOTE+CHC
Mean of AUC | 0.7440|0.79900.755530.776Q 0.8137 0.8157 0.8091

Mean of F-measure0.5386 |0.39910.53060.559Q 0.5167 0.5051 0.5070
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Table 4.4: Over-Sampling Rate(%) of Different Over-Sampling and HgbAp-
proaches.

Dataset ROS | SMOTE | SMOTE+TL | SMOTE+CHC
yeast2vs4 80.16| 80.16 76.85 26.31
yeast05679vs4 | 80.68| 80.68 74.48 26.70
vowel0 81.78| 81.78 81.78 33.93
glass016vs2 | 82.29| 82.29 73.18 21.35
glass2 84.11| 84.11 75.93 17.99
shuttlecOvsc4 | 86.55| 86.55 86.50 36.13
yeastlvs7 86.93| 86.93 81.64 31.64
glass4 87.85| 87.85 83.64 26.64
ecoli4 88.10| 88.10 86.46 31.55
pageblocks13vs4 88.14| 88.14 84.85 33.05
abalone918 | 88.58| 88.58 83.28 34.54
glass016vs5 | 90.22| 90.22 88.45 22.69
shuttlec2vsc4 | 90.70( 90.70 89.92 23.06
yeast1458vs7 | 91.34| 91.34 86.33 37.27
glass5 91.59| 91.59 89.37 26.52
yeast2vs8 91.70| 91.70 89.83 35.22
yeast4 93.13| 93.13 90.09 41.00
yeast1289vs7 | 93.66| 93.66 90.05 41.00
yeast5 94.07| 94.07 92.62 42.03
ecoli0137vs26 | 95.02| 95.02 93.24 36.48
yeast6 95.28| 95.28 93.36 43.14
abalonel9 98.47| 98.47 97.32 47.86

4.4 Conclusion

A hybrid re-sampling method developed based on both ovepbag and under-sampling
has been proposed. First, SMOTE is employed to generateymhetic samples of the
minority class. The problem of over-generalization canuogtonly SMOTE is used.
Therefore, CHC is employed over the synthetic samples andgadimples of the majority

class to reduce the problem.

The proposed sampling method (SMOTE+CHC) is compared ta RUSROS, SMOTE,

and SMOTE+TL on 22 datasets. To evaluate the performandeesétseven sampling
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approaches, the same classifier (C4.5 algorithm) has beenmuge experimental ver-
ification. The performance of all over-sampling and hybrietihods is better than that
of under-sampling in practice. Additionally, the resulfstlee four approaches (ROS,
SMOTE, SMOTE+TL, and SMOTE+CHC) are very similar and thdfifledence is only
around 3%. Although the over-sampling and hybrid methodpeytorm the under-
sampling methods, an increased size of the training setdead to low efficiency of
the classification model. Therefore, the over-samplingsraf them are also compared.
SMOTE+CHC can obtain the lowest over-sampling rates ambaddur approaches
for all 22 testing datasets. It can be seen that the propdgedtam has the advantages

of hybrid sampling methods with a relatively small increasthe size of training sets.
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Chapter 5

An Evolutionary Hybrid Preprocessing
Method Based on Regular Membership
Functions for Imbalanced Datasets

(FRB+CHC)

5.1 Introduction

Another hybrid sampling method is proposed in this chaptewhich the synthetic
samples of the minority class are generated based on fugiy iehich is a useful tool
to treat imbalanced datasets [28]. However, a large re-&ahtraining dataset will in-
crease the complexity of the classification model and deertee efficiency of the clas-
sification. It may cause over-generalization, which leads marrow decision boundary
between two classes. Therefore, an evolutionary algor{téf) is applied on the syn-
thetic samples and the samples of the majority class to tsataple the datasets and as

a cleaning method to solve the over-generalization probldra chosen EA is the CHC
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algorithm [42] (Cross-generational elitist selection tétegeneous recombination and
Cataclysmic mutation) since it shows the ability of selegtihe smallest group of most

representative instances among many algorithms studi@@jn

Experiments are then carried out to show the performancauopmposed method,
which is compared to SMOTE and different hybrid re-samplingthods, including
SMOTE+Tomek Links [21], SMOTE+ENN [21], Borderline-SMOTESB], Safe-Level-
SMOTE [69], and SMOTE+Rough Set [67]. 44 imbalanced dasaset UCI Repos-
itory [77] are used as the datasets. The Support Vector MaqldVM) [80] is used as
the tool for reaching a classification model from each regathdataset, so as to evalu-
ate the corresponding preprocessing method. The evaluagasures are based on the
functions of precision and recall. Since the size of datesedlated to the complexity
of classification model, the over-sampling rate and numbsupport vectors used are
also compared. Data complexity measure, which was sughesf81], is also used to

compare the performance of different preprocessing msthod
This chapter is organized as follows: Section 5.2 introdube details of the proposed
re-sampling method and the evaluation measures of thig.sStaghow the effectiveness

of our proposed method, the comparisons and results aressisd in Section 5.3. A

conclusion is drawn in Section 5.4.

5.2 Methodology

In this section, the details of the proposed hybrid premsicg method are discussed.

The proposed method involves two stages. The minority sesngl the training sets
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are firstly over-sampled based on fuzzy logic. To decreassitte of training sets and
prevent over-generalization, CHC is then implemented tluce the size of synthetic

samples and samples of the majority class.

5.2.1 Fuzzy Logic

In this chapter, let theositive class be the minority class and onlytraining samples
of positive class are considered. A training sample of pasitlass is denoted by,
whereX, = (Za1,..., %4y ) iS ay-dimensional vectory = 1,2,..., A andz,g is the
Sth attribute valués = 1,2, ...,~) of theath training sample. Théth fuzzy if-then

rule can be written as follows:

Rulef : IF z; is AT AND ... AND z, is A}

THEN class = positive withw, (5.1)

WhereA% is a fuzzy term of théth rule corresponding to the attributg 5 = (1,2,...,7)
andz = (z,2,...,2,) is ay-dimensional attribute vector, and, is the 6th rule

weight. The regular triangular membership functions aeglder the fuzzy terms.

The fuzzy rules are generated based on the samples of podiiss. For each sample,
the label of each attribute with the highest membershipevéduselected to form the
corresponding rule. Therefore, the number of rules musgredter tham\. The max-

imum number of rules depends on the numbers of labels anduaéts and is equal to

L7, whereL is the number of labels.
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The rule weightw, is used to reflect the degree of matching of each fuzzy rule ove
all the positive samples, so that the importance of eachcanebe evaluated. First, the
fuzzy value of each sample is calculated. The fuzzy valu& ofor the 6th fuzzy rule

is defined as follows:

prao(Xa) = T(MA‘{ (Ta1), - - - A8 (Tar)), (5.2)

whereuAg (zqp) is the fuzzy value of theth attribute for thedth fuzzy rule and the
product T-norm is used. The rule weight,( is calculated by adding the fuzzy values
of all samples. In this wayy, reflects the effect of a rule towards the whole positive

samples dataset.

Wy = Z(MA9(Xa))- (5.3)

After the rule base of the positive class is generated, tles are randomly drawn based
on the rule weight. The rule with a higher rule weight will leaa higher probability to

be chosen. Then, a new sample is generated within the arba eétected rule. These
processes are repeated until the number of positive samsples same as the negative

samples.

To illustrate the idea more clearly, Fig. 5.1 shows the aagdistribution of two classes
with two attributes as an example of the formulation of furzles. The x-axis and y-
axis govern the values of the two different attributes armgii@ triangular membership
functions with five labels are used. The circle dots repredennegative samples and
the square dots represent the positive samples. The daslesdshow the minimum
or maximum value of the corresponding attribute of the pasgamples. As only the

attribute vectors of the positive class are considered neigge fuzzy rules, totally ten
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rules can be formed in this example:

Rulel: IF Attr.1is L_1 AND Attr.2is L.4. THEN class = positive with 0.897
Rule2: IF Attr.1is L_.2 AND Attr.2is L_.3. THEN class = positive with 1.147
Rule3: IF Attr.1is L_.2 AND Attr.2is L 4. THEN class = positive with 1.508
Rule4: IF Attr.1is L3 AND Attr.2is L_.3. THEN class = positive with 1.230
Ruleb: IF Attr.1is L3 AND Attr.2is L 4. THEN class = positive with 2.344
Rule6: IF Attr.1is L_.3 AND Attr.2is L_.5. THEN class = positive with 1.607
Rule7: IF Attr.1is L4 AND Attr.2is L_.1. THEN class = positive with 0.727
Rule8: IF Attr.1is L4 AND Attr.2is L. 4. THEN class = positive with 1.319
Rule9: IF Attr.1is L4 AND Attr.2is L_-5. THEN class = positive with 1.731
Rule10: IF Attr.1is L_5 AND Attr.2is L 4. THEN class = positive with 1.399

whereAttr.1 and Attr.2 represent Attribute 1 and Attribute 2 for the x-axis and ysax
in Fig. 5.1 respectively. Rule 5 has the highest rule weigltrale 7 has the lowest rule

weight in this example.

For generating the synthetic samples, a rule out of theseutes is selected with the
probability of selection depending on the rule weight. Thihms rule sets up the cri-
teria with the highest and lowest value of each attribute aw sample is generated
randomly within these criteria. This process is repeated the number of the posi-
tive samples is the same as that of the negative sample$.Bighows the distribution
of samples after over-sampling. The triangle dots reptebensynthetic samples. It is
found that the spread of the synthetic samples is similanabdf the original positive

samples (shown as the square dots). The synthetic samts. iB.2 are dense in the
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area of rule 5.
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Figure 5.1: Example of the distribution of imbalanced dataset. The ig-agpresents
the values ofdtir.2 and x-axis represents the valueAfir.1.

5.2.2 Setting of CHC

After the over-sampling, the number of minority class saspt the same as that of
majority class and CHC is then applied. There are two impbitsues that need to be
addressed clearly before the algorithm is employed: theesgmtation of each chromo-

some and the definition of fithess function.

5.2.2.1 Chromosome Representation

CHC is used to reduce the synthetic samples as well as theitpajass samples. The
chromosomes are used to represent the subsets of the datesetetails have been

discussed when we presented the method of SMOTE+CHC, wiichbe found in
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Figure 5.2: Distribution of the samples after over-sampling. The ysaepresents the
values ofAttr.2 and x-axis represents the valueAfir.1.

Section 4.2.1 of Chapter 4.

5.2.2.2 Fitness function

In this study, the k-Nearest Neighbor (k-NN) classifier isdiggain as the evaluation
method of CHC to obtain the subset with the highest classificaate. The fitness
function is formed from#” — measure and AUC', which has been introduced in Section

3.3.1 of Chapter 3.

Since bothF" — measure and AUC' are important measures on imbalanced datasets,
a multi-objective fitness function is used here. If a chroomee X as compared with
chromosom&” has a higher value of' — measure (Fy > Fy) and a lower value of
AUC (Ax < Ay), the difference between the chromosomés’ measure (| Fx — Fy|)

and the difference between the chromosom#sC (|Ax — Ay |) will be compared. If
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|Fx — Fy| > |Ax — Ay|, chromosomeX will be regarded as a better one; otherwise

chromosomé&” will be regarded as a better one.

5.3 Experimental Study

In this section, we present the experiments that are castetb compare our proposed
method with other hybrid sampling methods. The datasetd aae be found in UCI

Repository [77].

The experiments involve SMOTE, sTL, SENN, sRST, sBordeafesSand our proposed
method, which is named as Fuzzy Rule Base+CHC (FRB+CHC). 8asnre the per-
formance of the preprocessing method, the same learnihgtioald be used among all
the experimental methods. This tool is a Support Vector Mec(SVM) that attempts
to obtain the classification model from the re-sampled ingirset. The program of all
testing methods and the learning tool are based on KEEL ,hwhian open source soft-
ware available at the Web [79. — measure and AU C are used as measures to analyze
the results. The average value of these measures of eacbhdneithbe calculated. As
the large re-sampled training datasets will increase theptexity of the classification
model, the over-sampling rate and the number of supporbx®ddormed from SVM
will also be compared. Finally, the behavior of each methodata complexity mea-

sures will be analyzed.
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5.3.1 Setup of Experiment

For over-sampling, the rules of the minority class samphesfarmed from regular
triangular membership functions with five labels. For CHRe basic setting of the

parameters are:

Population size: 50.

Divergence rate: 0.35.

Threshold decreasing rate: 0.001.

k of k-NN classifier used as evaluation: 1.

Number of Evaluations: 5,000.

It was found that the above values have no significant eftettte¢ performance of CHC.
In this chapter, SVM is used to weigh the influence of eachnoegssing methods. A
radial basis function (RBF) is used as the SVM kernel sinceralmear classification
model is needed and RBF is a common kernel to handle this grobThe RBF is
defined as follows:

1
RBF = exp(—;”xi — x||2) (5.4)

whereo > 0 is a parameter to determine the width of the radial basistiomclt
controls the flexibility of the classifier. Whendecreases, the flexibility of the resulting
classifier in fitting the training data increases, and thighhiead to over-fitting easily.
The value ofr is set as 0.01. The tradeoff between training error and maigsVM is

set as 100. The above values are chosen through experiments.
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We consider a 5-fold cross validation model to develop theedrents, i.e., dividing
the whole dataset into five parts randomly, and combining éthem for training and
the remaining part for testing. All the methods involve saar@om parameters, so five
experiments are carried out for each 5-fold cross validatiodel and the average value

are calculated as the results, i.e. totally 25 experimaets@ane for each method.

5.3.2 Evaluation Method

To show the performance of our proposed methiod; measure and AUC are used.
As mentioned before, the main drawback of over-sampling/brid sampling methods
is to increase the complexity of the learning model. Thersfthe over-sampling rates

of different methods are also compared. It is defined asviclio

(Nsampled — Nom'ginal)
Noriginal

« 100% (5.5)

Rateyper =

where Ngqmpiea 1S the number of samples in the re-sampled training set\ang;,.; is
the number of samples in the original training set. The @anpling rate shows the
increase rate of the number of training samples. The ineneds of the support vectors
used to form the classification model is also shown to evaltts complexity of the

learning model. This rate is calculated based on the suppotors generated.

(S‘/gampled - S‘/;)riginal)
S‘/;)riginal

Rategy = (5.6)

whereSVsampieq IS the number of support vectors trained by the re-sampéeding set

andSV,,igina 1S the number of support vectors trained by the originahtraj set.
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In [81], the performance of different preprocessing methbds been compared by
means of data complexity measures. It has been proved @& theasures are useful
to evaluate the behavior of re-sampling approaches, ard ttinds of data complexity
measures (F1, L3, and N4) were suggested under the imbdl&aceework. F1 is the
maximum Fisher’s discriminant ratio, which focuses on tfieativeness of the single
feature dimension of different classes. It is calculatedh®y means and variances of

each feature to investigate the overlap between diffelasses. First, define:

2

S 6
whereu, 12, 01, ando, are the means and variances of the two classes, respectively
for that feature. Theg value of each feature is calculated and the maximum valye of
is taken as F1. A small value of F1 means the overlapping atacen two different
classes is large. Therefore, a larger value of F1 represeltwer complexity of the
dataset. L3 is the nonlinearity based on a linear classifidinear programming. A
measure of the nonlinearity of a classifier with respect tvargdataset is suggested in
[82]. This measure has been modified to study the nonlineafrihe class boundary in
[83]. First, atest setis created by linear interpolatiotween random sample pairs from
the same class. Then, the error rate on this test set is neelasarthis study, the error
rate, L3, is defined afl — AUC). A Support Vector Machine with a linear kernel is
used as the linear classifier in this case. N4 is the nonliyeafra 1 Nearest-Neighbor
(INN) classifier. This measure follows the same proceduire3ao obtain the value.
The only difference is that the error rate is calculated faiNaN classifier in this case.
Therefore, a larger value of L3 or N4 represents a higher ¢exitp of the dataset. The
three measures of F1, L3, and N4 are used to evaluate theibebédifferent hybrid

methods of re-sampling by comparing the data complexithettaining set and testing
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set.

5.3.3 Datasets

To study the methods on different datasets, 44 datasetsiffiginent imbalanced ratio
(IR) are chosen. IR is the ratio of the number of majority slasthe number of minority
class. Table 5.1 shows the details of the selected datagetse the number of samples
(Nsamp.), the number of attributes\(,.. ), the percentage of minority class against ma-
jority class, IR, and the data complexity measures (F1, bd@,N4) for each dataset can

be found.
Table 5.1: Descriptions of the Selected Imbalanced Datasets.

Dataset Nsamp. | Nattr. [Min., Maj.(%) | IR F1 L3 N4
ecoli034vs5 200 7 (10, 90) 9 ]1.63230.10830.1300
yeast2vs4 514 8 (9.92,90.08)| 9.081.57930.48430.1733
ecoli067vs35 | 222 7 (9.91, 90.09) | 9.090.92050.1760 0.1956
ecoli0234vs5 | 202 7 (9.9,90.1) | 9.1 |{1.61800.10940.0947
glass015vs2 | 172 9 (9.88,90.12)| 9.12|0.1375 0.5 |0.4403

yeast0359vs78 506 8 (9.88,90.12)| 9.12]0.31130.4046 0.3758
yeast0256vs3789 1004 8 (9.86,90.14)| 9.14 |0.69390.4506 0.3047
yeast02579vs368 1004 8 (9.86,90.14)| 9.14|1.63490.35100.1793
ecoli046vs5 203 6 (9.85,90.15)| 9.15|1.60300.13412 0.0988
ecoli0lvs235 | 244 7 (9.83,90.17)| 9.17|1.1028 0.1080 0.1897
ecoli0267vs35| 224 7 (9.82,90.18)| 9.180.91290.17980.1870
glass04vs5 92 9 (9.78,90.22) | 9.221.54220.18330.0400
ecoli0346vs5 | 205 7 (9.76, 90.24) | 9.25|1.59520.13930.1221
ecoli0347vs56| 257 7 (9.73,90.27)| 9.281.12960.11370.1261
yeast05679vs4 528 8 (9.66, 90.34)| 9.35|1.0507 0.5 |0.3248
vowel0 988 13 (9.01, 90.99) | 9.98 |2.45790.08550.1078
ecoli067vs5 220 6 (9.09,90.91)| 10 |1.69220.13550.1573
glass016vs2 | 192 9 (8.85,91.15)(10.290.2692 0.5 |0.4311
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Dataset Niamp. | Nater. [Min., Maj.(%) | IR F1 L3 | N4
ecoli0147vs2356 | 336 7 (8.63,91.37)| 10.59| 0.5275|0.17800.1585
led7digit02456789vsl 443 7 (8.35,91.65)| 10.97| 1.9568|0.10100.3684
glass06vs5 108 9 (8.33,91.67)| 11 | 1.0487|0.38330.1621
ecoli0lvs5 240 6 (8.33,91.67)| 11 | 1.3898|0.13090.0670
glass0146vs2 205 9 (8.29,91.71)| 11.06| 0.3487| 0.5 |0.4399
glass2 214 9 (7.94,92.06) | 11.59| 0.3952| 0.5 |0.4352
ecoli0147vs56 332 6 (7.53,92.47)| 12.28| 0.9124|0.10880.1149
clevelandOvs4 177 13 (7.34,92.66) | 12.62| 1.3442(0.18350.4511]
ecoli0146vs5 280 6 (7.14,92.86)| 13 | 1.3399|0.17770.0896
shuttlecOvsc4 1829 9 (6.72,93.28) | 13.87|12.9723 0 |0.0102
yeastlvs7 459 7 (6.53,93.47)| 14.3 | 0.3534| 0.5 |0.4228
glass4 214 9 (6.07,93.93) | 15.47| 1.4693|0.43250.0808
ecoli4 336 7 (5.95,94.05)| 15.8 | 3.2474| 0.5 |0.0969
pageblocks13vs4 472 10 (5.93,94.07)| 15.86| 1.5470|0.14620.2245
abalone918 731 8 (5.65,94.25)| 16.4 | 0.6320| 0.5 |0.3630
glass016vs5 184 9 | (4.89,95.11)| 19.44| 1.8505| 0.5 |0.1926

shuttlec2vsc4 129 9 (4.65,95.35)| 20.5(12.1322 O 0
yeast1458vs7 693 8 (4.33,95.67)| 22.1 | 0.1757| 0.5 |0.4598
glass5 214 9 (4.2,95.8) | 22.78| 1.0185| 0.5 |0.1980Q
yeast2vs8 482 8 (4.15,95.85)| 23.1 | 1.1424|0.22840.3194
yeast4 1484 8 (3.43,96.57)| 28.1 | 0.7411| 0.5 |0.2787
yeast1289vs7 947 8 (3.16,96.84) | 30.57| 0.3660| 0.5 |0.4306
yeast5 1484 8 (2.96,97.04) | 32.73| 4.1976| 0.5 |0.2121
ecoli0137vs26 281 7 (2.49,97.51)| 39.14| 2.3018|0.17380.2031
yeast6 1484 8 (2.36,97.64)| 41.4 | 1.9675| 0.5 |0.2373
abalonel9 4174 8 (0.77,99.23)(129.44 0.5295| 0.5 |0.4909

5.3.4 Results

Tables 5.2 and 5.3 show the results Bn— measure and AUC' for each sampling

method on the 44 datasets respectively. The results of thmak datasets are shown

in the first column and the best value for each dataset ardigiingdxd in bold. The last
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row shows the average value of each sampling method for ttesets. FRB+CHC
can obtain the highest average values of bBth measure and AUC among all the
methods. The performance of sTL and sENN are similar. Alptfegprocessing methods
can perform better than the original datasets. This is @érgesind can re-confirm that

the preprocessing is an important step to deal with imbakhdatasets.

The main drawback of over-sampling or hybrid sampling meshs that the number of
training samples are increased greatly. If IR of the datsskirge, the size of the re-
sampled training set is almost a double of that of the origina (an over-sampling rate
of nearly 100%). This drawback will cause the increase ofmerity of the learning
model. Table 5.4 shows the over-sampling rate (5.5) of diffemethods on each dataset
and the mean rate of each method. FRB+CHC can obtain the\mrssampling rate of
all datasets while the rates of the other methods are similaegative value is shown
in many datasets. It means the size of the re-sampled d&asealler than the original
one. The difference between FRB+CHC and the other methadgrigicant. This shows

that FRB+CHC can use less training samples to achieve higbrpeance.

Table 5.5 shows the increased rate of the number of suppcitréeused to form the
classification model (5.6). The number of support vectors redlect the complexity
of the classification model formed by SVM. When the numberugdpmort vectors is
smaller, the classification model is more easily appliedn&megative values can be
found since the number of support vectors for the re-samgbéeasets is less than that
of original datasets. FRB+CHC gives the best rate in theadvperformance. The av-
erage number of support vectors are only increased by ar@@niimes of the original

datasets; while most of the other methods have been incrégsaver 2 times.
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Table 5.2: F-measure of Testing Datasets among Different Samplindndist.

Dataset Original [SMOTE| sTL |sENN|sBorder| sSafe| sSRST|FRB+CHC
ecoli034vs5 0 0.5629(0.59010.5522 0.2678|0.55780.5007 0.5829
yeast2vs4 0.6384 | 0.6824|0.66830.6963 0.7090(0.68240.6787 0.7015

ecoli067vs35 0 0.4540(0.51220.4661 0.4977|0.46090.4447 0.4308
ecoli0234vs5 0 0.51760.52400.5307 0.2958|0.50120.4734 0.6142
glass015vs2 0 0.3094 {0.31030.3143 0.2427|0.33010.3419 0.2049
yeast0359vs78 | 0.3481| 0.3541|0.33790.3637 0.3912/0.35800.3529 0.3470
yeast0256vs3789 | 0.1782| 0.5282|0.52060.5371 0.5363|0.52860.5323 0.5899
yeast02579vs368 | 0.8152| 0.71990.71790.7304 0.7275|0.71890.7201 0.7747
ecoli046vs5 0 0.3901 {0.39580.3732 0.2014|0.40840.4214 0.5225
ecoli0lvs235 0 0.4325(0.43960.4201 0.2869(0.43520.4264 0.4224
ecoli0267vs35 0 0.3158(0.32570.3002 0.3091|0.29020.3253 0.4592
glass04vs5 1 0.8793]0.87470.8950 1 |0.92280.9209 0.9631
ecoli0346vs5 0 0.5446 |0.63970.6147 0.2870|0.57410.5642 0.6766
ecoli0347vs56 0 0.574310.56280.5547 0.5189|0.55760.5104 0.5176
yeast05679vs4 0 0.432710.42820.4387 0.4736|0.43330.425Q0 0.4786

vowel0 1 0.9936 {0.99050.9899 0.9984{0.98900.9816 0.9060
ecoli067vs5 0 0.3260(0.34630.3745 0.1910|0.34440.3225 0.6173
glass016vs2 0 0.3196 {0.26860.2955 0.3195|0.30480.2963 0.2001

ecoli0147vs2356 0 0.4230(0.496Q0.4445 0.3897|0.43540.4435 0.4043
led7digit02456789v410.7748 | 0.5707 |0.52260.4746 0.7389|0.57660.5156 0.6746
ecoli01lvs5 0 0.4138]0.44820.4437 0.2873|0.41030.4946 0.6843
glass06vs5 1 0.9057 {0.89530.9102 0.9899|0.885710.9083 0.9783
glass0146vs2 0 0.2463(0.224710.2560Q 0.2836|0.24730.2814 0.2597
glass2 0 0.247710.23290.259Q 0.2486|0.24780.2988 0.2019
ecoli0147vs56 0 0.5757(0.62880.5805 0.4192|0.60220.5103 0.6762
clevelandOvs4 0 0.1539(0.156Q0.1497 0.1169|0.12630.160Q 0.1687
ecoli0146vs5 0 0.4280(0.41120.4264 0.2263|0.43560.4422 0.7456
shuttlecOvsc4 0.9490| 0.97400.97490.9757 0.9753|0.974Q0.9817 0.7964

yeastlvs7 0 0.2926 {0.28650.2998 0.2760(0.29390.2738 0.3161

glass4 0.8560| 0.6633|0.65900.6371 0.8657|0.66130.6463 0.7273

ecoli4 0.7500| 0.6352|0.63540.6399 0.8075(0.63890.6491 0.7356

pageblocks13vs4 | 0.2270| 0.2033(0.20100.2010 0.1949|0.20340.1894 0.1816
abalone918 0.0444 | 0.4522(0.42060.4507 0.5671|0.44740.457Q0 0.5732
glass016vs5 0.6650| 0.5674|0.56010.5172 0.7211|0.56680.6551 0.7694
shuttlec2vsc4 0.4000| 0.71520.71520.7152 0.7152|0.71520.7288 0.6126
yeast1458vs7 0 0.1318(0.126Q0.1345 0.1569|0.13230.1344 0.1557

glass5 0.7000| 0.5937|0.54950.5684 0.7000(0.59320.4838 0.7533
yeast2vs8 0.6967 | 0.5972|0.59050.6035 0.6128(0.59890.5984 0.6967

yeast4 0 0.2703]0.26480.2713 0.3435|0.27150.2711 0.3533

yeast1289vs7 0 0.1395(0.13570.1429 0.1663|0.139710.1308 0.1967

yeastb 0 0.484310.47420.4836 0.5111|0.48180.4751 0.4476

ecoli0137vs26 0 0.3976 0.46810.4378 0.4208|0.42920.3636 0.3465

yeast6 0 0.2698 |0.26060.2702 0.3546|0.27050.267Q 0.3288

abalonel9 0 0.0408 {0.04030.0409 0.0457|0.04090.0486 0.0482
Mean 0.2510( 0.4711|0.47340.4723 0.4634(0.47330.4693 0.5179
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Table 5.3: AUC of Testing Datasets among Different Sampling Methods.

Dataset Original [SMOTE| sTL |sENN|sBorder| sSafe| sSRST|FRB+CHC
ecoli034vs5 0.4972| 0.7069(0.72360.7014 0.5922|0.70410.6799 0.8217
yeast2vs4 0.7362| 0.8924|0.89000.8929 0.8804(0.89310.8892 0.8757

ecoli067vs35 0.5 | 0.6860|0.70630.680Q 0.6818|0.67900.6700 0.7860
ecoli0234vs5 0.4972| 0.6978|0.70810.7084 0.6006(0.69430.6820 0.8289
glass015vs2 0.5 | 0.7152|0.72840.7082 0.5982|0.73760.7496 0.5530

yeast0359vs78 | 0.6067| 0.7344|0.72810.7407 0.7572|0.73910.7334 0.6062
yeast0256vs3789 | 0.5486 | 0.7960|0.79720.8013 0.7943|0.79630.7993 0.7691
yeast02579vs368 | 0.8695 | 0.9057 |0.90850.910Q 0.9120|0.90330.9071 0.9125

ecoli046vs5 0.4973| 0.6496|0.64880.6421 0.5626|0.65740.669¢4 0.7880
ecoli0lvs235 0.4955 | 0.6606 |0.66280.6571 0.6023|0.65980.6614 0.7866
ecoli0267vs35 0.5 0.6073(0.60930.603§ 0.6078{0.60200.6113 0.8176
glass04vs5 1 0.9754(0.97280.9771 1 ]0.98420.983Q 0.9732

ecoli0346vs5 0.4973| 0.6974|0.74210.7274 0.5898|0.71240.7127 0.8459

ecoli0347vs56 0.5 0.7569 (0.75940.7477 0.6899|0.74440.7294 0.7888

yeast05679vs4 0.5 0.7869 |0.78620.7892 0.7950(0.78610.7791 0.7899

vowelO 1 0.9993(0.99900.9989 0.9998|0.99880.9981 0.9892
ecoli067vs5 0.5 0.6103(0.61550.6295 0.5608|0.61750.6106 0.8125
glass016vs2 0.5 0.7529 (0.71060.7242 0.7084|0.74640.7322 0.6114

ecoli0147vs2356 | 0.4984| 0.6509 |0.69200.6625 0.6358|0.65800.6629 0.8054
led7digit02456789v410.8788 | 0.8819|0.87990.8791 0.8684|0.88560.8650 0.8844

ecoli0lvs5 0.4977| 0.6602|0.67860.6703 0.5980|0.65660.6879 0.8159
glass06vs5 1 0.9774|0.95740.9669 0.9900|0.96290.9436 0.9840
glass0146vs2 0.5 0.6823|0.65940.6946 0.6833|0.68210.7142 0.6336

glass2 0.5 0.7132|0.69380.7253 0.6623|0.71270.7607 0.6078

ecoli0147vs56 0.5 0.7160 (0.74600.7215 0.6382|0.73350.7053 0.8578
clevelandOvs4 0.4969 | 0.5622|0.55260.5508 0.5304|0.53210.5421 0.5857
ecoli0146vs5 0.4981 | 0.6440|0.63940.6444 0.5831|0.64610.655§ 0.8371
shuttlecOvsc4 0.9515| 0.9747|0.97550.9763 0.9759|0.97410.9845 0.9812

yeastlvs7 0.5 0.7583(0.76320.7625 0.6757|0.76020.750Q 0.6932
glass4 0.9092 | 0.9148|0.91130.9128 0.9393|0.91430.9163 0.9230
ecoli4 0.8000 | 0.9101{0.91430.9171 0.9326|0.91710.942¢ 0.9368

pageblocks13vs4 | 0.5700| 0.7528|0.74930.7495 0.7388|0.75310.7298 0.7141
abalone918 0.5125| 0.8961 |0.88630.8859 0.8674|0.89390.8916 0.8597
glass016vs5 0.8443| 0.8856|0.87910.8810 0.8893|0.88530.9221 0.9186
shuttlec2vsc4 0.7000 | 0.9548|0.95480.9548 0.9548|0.95480.9590 0.9493
yeast1458vs7 0.5 | 0.6427|0.63960.6434 0.6302|0.64440.6539 0.5958

glass5 0.8451| 0.8760|0.88070.8816 0.8451|0.88430.8513 0.8967
yeast2vs8 0.7739| 0.7628|0.76140.7643 0.6964|0.76330.777Q 0.7739
yeast4 0.5 0.8156 (0.822710.8136 0.8203|0.81600.8124 0.7991
yeast1289vs7 0.5 0.7141|0.71330.7166 0.6761|0.71090.6968 0.6990
yeast5 0.5 0.9668 [0.96550.9667 0.9703|0.96650.9653 0.9621
ecoli0137vs26 0.5 0.71180.73900.7425 0.7434|0.74130.6909 0.6655
yeast6 0.5 0.8742|0.87160.8743 0.8624|0.87440.8736 0.8879
abalonel9 0.5 0.7177|0.71630.7183 0.6882|0.71800.7713 0.7016
Mean 0.6141| 0.7784|0.78050.7799 0.7507|0.77950.7801 0.8028
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Table 5.4: Over-sampling Rate (%) of Training Sets among Different Slamg Meth-
ods.

Dataset SMOTE| sTL [sENN|sBorder|sSafg sRST|FRB+CHC
ecoli0347vs56 80.53 [77.6377.02| 80.53 [80.53100.7 -4.54
yeast2vs4 80.16 [76.85976.17| 80.16 (80.14G 80.16 -4.23

ecoli067vs35 80.18 |77.1476.02| 80.18 |80.18 94.13| -4.95
ecoli0234vs5 80.20 |77.10 77.47| 80.20 |80.2Q0 89.36| -6.44
glass015vs2 80.23 |70.7970.06| 80.23 |80.23 80.23| 0.44
yeast0359vs78 | 80.24 |71.4970.60[ 80.24 |80.24 80.34| -3.26
yeast0256vs3789 | 80.28 |74.25 73.58| 80.28 |80.28 80.73| 0.60
yeast02579vs368 | 80.28 |76.97 76.77| 80.28 |80.28 80.28| -2.57
ecoli046vs5 80.30 |77.09 76.72| 80.30 |80.30112.06 -2.10
ecoli0147vs2356 | 84.01 |80.0280.57| 84.01 |84.01119.57 3.01
ecoli0267vs35 80.36 |76.56 75.67| 80.36 |80.36 94.65| -0.22
glass04vs5 80.44 |77.1875.81| 80.44 (80.44 96.76 -3.56
ecoli034vs5 80.20 |77.7277.59| 80.20 (80.2Q0 86.63| -2.76
ecoli0346vs5 80.39 |78.18 78.55| 80.39 |80.39 87.98| -1.60
yeast05679vs4 | 80.68 |74.48 72.16| 80.68 |80.68 80.68| -1.94
vowelO 81.78 |81.7881.65| 81.78 |81.78 84.56| -3.09
ecoli067vsb 81.82 |75.68 73.86) 81.82 [81.82 87.27 -0.57
glass016vs2 82.29 |73.1871.88| 82.29 (82.29 82.29 -5.60
ecoli0137vs26 90.48 |87.6587.21| 90.48 |90.48169.8§ -3.86
led7digit02456789v41 83.30 |78.39 49.55| 83.30 |83.30 94.02| -5.59
ecoli0147vs56 83.97 |79.91/79.46| 83.97 |83.97137.03 0.81
glass06vs5 83.34 [80.7979.17) 83.34 [83.34 91.22 3.24
glass0146vs2 83.41 |74.6373.66| 83.41 (83.41 83.41 -2.56
glass2 84.11 |75.9375.70, 84.11 |84.11 84.11 1.16
ecoli0146vs5 89.30 |86.0086.17| 89.30 |89.30139.65 -0.22
clevelandOvs4 84.97 |180.3579.19| 84.97 |84.97205.49 -0.29
ecoli0lvs5 92.75 190.61{90.49| 92.75 (92.75186.41 -2.23
shuttlecOvsc4 86.55 |86.50 86.50| 86.55 |86.55136.58 -2.43
yeast1458vs7 91.81 |87.1687.11 91.81 [91.81 91.81 -2.16
glass4 87.85 |83.6582.48 87.85|87.85112.84 -3.04
ecoli4 88.10 |86.4686.61| 88.10 |88.10 88.39| -3.20
pageblocks13vs4 | 88.14 |86.60 85.86| 88.14 |88.14157.1Q -1.59
abalone918 88.58 |183.38 83.28| 88.58 |88.58 88.58| -1.47
glass016vs5 90.22 [88.4587.10, 90.22 [{90.22 94.57 -3.26
shuttlec2vsc4 90.70 |89.9287.98/ 90.70 |90.70113.19 -9.30
yeast1289vs7 92.32 |188.4488.30| 92.32 |92.32 92.32| -0.41

glass5 91.59 89.37 88.44| 91.59 |91.59 92.76| -1.64
yeast2vs8 91.70 |89.83 89.63| 91.70 |91.70 98.44| -1.45
yeast4 93.13 [90.09 89.56| 93.13 |93.13 93.13| -1.23
yeastlvs7 89.62 |85.04 84.63| 89.62 |89.62 89.62| -3.36
yeast5 94.07 192.6292.59| 94.07 |94.07 94.07| -2.91
ecoli0lvs235 82.59 |78.9577.60| 82.59 |82.59106.04 0.98
yeast6 95.28 193.3G6 93.33| 95.28 |95.28 95.28| -2.06
abalonel9 98.47 |97.3297.66| 98.47 |98.47 98.47| -0.76
Mean 80.70 [81.94 80.71| 85.70 |85.70103.4 -2.09
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Table 5.5:The Increased Rate of Number of Support Vectors of the Gieason Model
formed by SVM.

Dataset SMOTE | sTL | seENN | sBorder | sSafe | sRST | FRB+CHC
ecoli0347vs56 0.245 | 0.418 | 0.412| 0.194 | 0.143| 0.476 0.020
yeast2vs4 2.662 | 2.507 | 2.439| 2.050 | 2.981 | 2.698 1.001
ecoli067vs35 0.252 | 0.468 | 0.452 | 0.255 | 0.249 | 0.465 0.010
ecoli0234vs5 0.272 | 0.472 | 0.462 | 0.144 | 0.122 | 0.473 -0.004
glass015vs2 3.731 | 3.193| 3.456 | 3.111 | 3.996 | 3.583 1.331

yeast0359vs78 1.384 | 1.149 | 1.159 | 0.917 | 1.434 | 1.418 0.116
yeast0256vs3789 | 3.555 | 3.240 | 3.064 | 3.033 | 3.669 | 3.577 0.928
yeast02579vs368 | 2.142 | 1919 | 1.771| 1.799 | 2.251 | 2.188 0.505

ecoli046vs5 0.263 | 0.460 | 0.457 | 0.142 | 0.125| 0.490 0.040
ecoli0147vs2356 0.229 | 0.435| 0.431| 0.188 | 0.170 | 0.494 0.080
ecoli0267vs35 0.279 | 0.490 | 0.438 | 0.283 | 0.234 | 0.467 0.063

glass04vs5 1.839 | 1.467 | 1.333 | -0.015 | 4.104 | 1.242 0.329
ecoli034vs5 0.269 | 0.456 | 0.452 | 0.118 | 0.135| 0.477 0.038
ecoli0346vs5 0.286 | 0.488 | 0.475| 0.120 | 0.140 | 0.497 0.040
yeast05679vs4 3.500 | 3.113| 3.033| 2.375 | 3.561 | 3.575 1.422
vowelO 1.116 | 0.752 | 0.822 | 0.045 | 2.311 | 0.972 1.582
ecoli067vs5 0.227 | 0.391| 0.398 | 0.211 | 0.212 | 0.438 0.058
glass016vs2 3.868 | 3.296 | 3.571| 2.965 | 4.209 | 3.660 1.405

ecoli0137vs26 0.175 | 0.338 | 0.333| 0.141 | 0.089 | 0.439 0.016
led7digit02456789vs] 3.332 | 2.864 | 0.043 | 0.344 | 4.139 | 2.838 0.408
ecoli0147vs56 0.218 | 0.391| 0.386 | 0.204 | 0.121 | 0.522 -0.112

glass06vs5 1.494 | 1.124 | 1.249 | 0.034 | 2.924 | 1.204 0.331
glass0146vs2 3.967 | 3.396 | 3.711 | 3.117 | 4.271 | 3.725 1.605
glass2 3.820 | 3.221 | 3.691| 2.934 | 4.036 | 3.671 1.689
ecoli0146vs5 0.189 | 0.361| 0.351| 0.170 | 0.105| 0.394 0.053
clevelandOvs4 0.540 | 0.712 | 0.721| 0.485 | 0.247 | 0.505 0.019
ecoli0lvs5 0.148 | 0.309 | 0.310| 0.164 | 0.082 | 0.417 -0.041
shuttlecOvsc4 0.221 | 0.264 | 0.263 | 0.212 | 0.001 | 0.450 1.359
yeast1458vs7 3.121 | 2.947 | 3.027 | 1.624 | 3.233 | 3.100 2.157
glass4 1.968 | 0.836 | 1.118 | 0.200 | 4.223 | 1.852 0.426
ecoli4 2173 | 2.020| 2.086 | 1.521 | 2.668 | 2.394 0.886
pageblocks13vs4 0.836 | 0.863 | 0.847 | 0.925 | 0.057 | 1.198 0.103
abalone918 8.586 | 8.058 | 8.325| 3.973 | 10.025| 8.077 4.159
glass016vs5 2.084 | 1.440| 1.575| 0.264 | 3.498 | 1.846 0.551
shuttlec2vsc4 0.616 | 1.388 | 1.345| 0.713 | 0.153 | 1.310 0.378
yeast1289vs7 4846 | 4.611| 4721 | 3.421 | 5.170| 5.087 1.064
glass5 2307 | 1.884 | 2.128 | 0.282 | 4.623 | 2.151 0.615
yeast2vs8 4905 | 4.920 | 4.808 | 4.789 | 5.282 | 5.169 1.212
yeast4 3.133 | 2.902 | 3.002 | 1.580 | 3.379| 3.173 0.959
yeastlvs?’ 5196 | 4.870| 4.982 | 3.869 | 5523 | 5.382 1.711
yeastb 3.178 | 2.617 | 2.894 | 2.537 | 3.676 | 3.265 1.995
ecoli01vs235 0.286 | 0.463 | 0.419| 0.176 | 0.153 | 0.484 -0.080
yeast6 6.825 | 6.376 | 6.448 | 2.412 | 7.216 | 6.900 3.083
abalonel9 13.156 | 12.829| 13.097| 8.465 | 14.221| 12.973 8.265
Mean 2351 | 2198 | 2.193| 1.420 | 2.708 | 2.403 0.949

79



Chapter 5. An Evolutionary Hybrid Preprocessing Method Based on Regular
Membership Functions for | mbalanced Datasets (FRB+CHC)

To show the behavior of different hybrid methods with datamptexity measures, Figs. 5.3,
5.4, and 5.5 reveal thaU C result for each sampling method sorted by F1, L3, and N4
in ascending order. The y-axis of each figure shows the agetd ' results obtained
for both training and testing sets. The x-axis shows the 4dseé#s sorted by F1, L3, and
N4 accordingly. The solid lines in the figures represent tlezageAU C' results for the
testing set; while the dashed lines represent the avefade results for the training
set. In [81], it is suggested that different intervals of E3, and N4 can present good
or bad behavior under different sampling methods. In thigystgood behavior means
a high averagelU C' value for the testing set, which is experimentally set a§,0and

the absence of over-fitting (less than a difference of 0.%véen theAUC' values of
training set and testing set). For bad behavior, it meanpibgence of over-fitting or a

low averageAU C' value of testing set.

The performance of the SMOTE-based methods are similardio @#er since they all
use SMOTE as the over-sampling method. Therefore, the wepments are not signifi-
cant, even they have used different under-sampling metiooglgninate the drawbacks

of SMOTE.

The good and bad behavior intervals of F1, L3, and N4 undéréiit sampling meth-
ods can be extracted from th/C graphs (Figs. 5.3, 5.4, and 5.5). Based on these
intervals, Tables 5.7, 5.8, and 5.9, which sort the datdsetsl, L3, and N4 measures
respectively in ascending order, are used to compare ti@refgood and bad behav-
ior under different sampling methods. In Table 5.8, theor@f bad behavior cannot be
separated by using L3 values since there are 16 datasettheghme L3 values. There-
fore, the rules of bad behavior in Table 5.6 cannot be sunmednvith the L3 values.

Table 5.6 summarizes the intervals to form different ruteiepresent the good and bad
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Figure 5.3: Average AUC results obtained from training and testing setted by F1.
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Chapter 5. An Evolutionary Hybrid Preprocessing Method Based on Regular
Membership Functions for | mbalanced Datasets (FRB+CHC)

Table 5.6: Summary of the Intervals of F1, L3, and N4.

SMOTE | sTL | sSENN| sBorder | sSafe| SRST| FRB+CHC
Good Behavior
F1>2.3018
L3 < 0.1080 L3 < 0.1462
N4 < 0.0808 N4 < 0.2121
Bad Behavior
F1<0.6320 | F1<0.5275
N4 > 0.3684

behavior. Comparing the rules and the covered datasets+ERB covers the widest
regions of good behavior of L3 and N4 data complexity measurhis indicates that
FRB+CHC is more robust with the data complexity. The regioithe SMOTE-based

methods are the same because of the same over-samplinghhostth

5.4 Conclusion

A hybrid re-sampling method developed based on both ovepbag and under-sampling
has been proposed. The synthetic samples of the minorig el generated based on
fuzzy logic. To minimize the size of datasets and prevenr-gemeralization, CHC
has been employed over the synthetic samples and the ngagartples as a cleaning

method to the over-sampled training set.

The proposed preprocessing method (FRB+CHC) is comparsM®@TE, sTL, SENN,
sBorder, sSafe, and sRST on 44 datasets. To evaluate tlwemarice of these seven
sampling methods, the same SVM classifier has been usedamdbé experimental

results. It is shown that FRB+CHC outperforms the other demgpnethods on both
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Table 5.7: Datasets Sorted by F1.

Dataset F1 SMOTE sTL SENN sBorder sSafe sRST FRB+CHC

glass015vs2 0.1375
yeast1458vs7 0.1757
glass016vs2 0.2692

yeast0359vs78 | 0.3113 Bad
glass0146vs2 | 0.3487 Bad Bad Bad Bad Bad Bad Behavior
yeastlvs7 0.3534| Behavior Behavior Behavior Behavior Behavior Behavior
yeast1289vs7 0.3660
glass2 0.3952

ecoli0147vs2356 | 0.5275
abalonel9 0.5295
abalone918 0.6320
yeast0256vs3789 | 0.6939
yeast4 0.7411
ecoli0147vs56 0.9124
ecoli0267vs35 0.9129
ecoli067vs35 0.9205
glassb 1.0185
glass06vs5 1.0487
yeast05679vs4 | 1.0507
ecoli0lvs235 1.1028
ecoli0347vs56 1.1296
yeast2vs8 1.1424
ecoli0146vs5 1.3399

clevelandOvs4 1.3442 ) ) ) ) ) ) Undefined
- Undefined | Undefined | Undefined | Undefined | Undefined | Undefined
ecoli0lvs5 1.3898
glass4 1.4693
glass04vs5 1.5422
pageblocks13vs4 | 1.5470
yeast2vs4 1.5793
ecoli0346vs5 1.5952
ecoli046vs5 1.6030
ecoli0234vs5 1.6180
ecoli034vs5 1.6323
yeast02579vs368 | 1.6349
ecoli067vs5 1.6922
glass016vs5 1.8505
led7digit02456789vs(L1.9568
yeast6 1.9675
ecoli0137vs26 2.3018
vowelO 2.4579
ecoli4 3.2474 Good Good Good Good Good Good Good
yeast5 4.1976| Behavior Behavior Behavior Behavior Behavior Behavior Behavior

shuttlec2vsc4 12.1322
shuttlecOvsc4 12.9723
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Table 5.8: Datasets sorted by L3.

Dataset L3 SMOTE sTL sENN sBorder sSafe sRST FRB+CHC
shuttlec2vsc4 0
shuttlecOvsc4 0

vowelo 0.0853 Good Good Good Good Good Good

Behavior Behavior Behavior Behavior Behavior Behavior

led7digit02456789vs(l0.101(Q
ecoli0lvs235 0.108(
ecoli034vs5 0.1083
ecoli0147vs56 |0.1088 Good
ecoli0234vs5  [0.1094 Behavior
ecoli0347vs56 |0.1137
ecoli0lvs5 0.1309
ecoli046vs5 0.1341
ecoli067vs5 0.1355
ecoli0346vs5 0.1393

pageblocks13vs4 [0.1462
ecoli0137vs26 |0.1738
ecoli067vs35 0.176(
ecoli0146vs5 0.1777
ecoli0147vs2356 |0.1780
ecoli0267vs35 |0.1799
glass04vs5 0.1833 Undefined | Undefined | Undefined | Undefined | Undefined | Undefined
clevelandOvs4 |0.1834
yeast2vs8 0.2284
yeast02579vs368 |0.3510
glass06vs5 0.3833

Undefined
yeast0359vs78 |0.40449
glass4 0.4325
yeast0256vs3789 | 0.4506
yeast2vs4 0.4843
ecoli4 0.5
glass016vs5 0.5
glassb5 0.5
yeast5 0.5
yeast6 0.5
yeast4 0.5
yeast05679vs4 0.5
abalone918 0.5
yeastlvs7 0.5
yeast1289vs7 0.5
glass016vs2 0.5
glass2 0.5
glass0146vs2 0.5 Bad Bad Bad Bad Bad Bad Bad
glass015vs2 0.5 Behavior Behavior Behavior Behavior Behavior Behavior Behavior
yeast1458vs7 0.5
abalone19 0.5
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Table 5.9: Datasets Sorted by N4.

Dataset N4 SMOTE sTL SENN sBorder sSafe SRST FRB+CHC
shuttlec2vsc4 0
shuttlecOvsc4 {0.0102  Good Good Good Good Good Good
glass04vs5 0.040q Behavior Behavior Behavior Behavior Behavior Behavior
ecoli0lvs5 0.067(
glass4 0.0808
ecoli0146vs5 0.089¢
ecoli0234vs5 0.0947
ecoli4 0.0969
ecoli046vs5 0.0988
vowel0 0.1078
ecoli0147vs56 |0.1149
ecoli0346vs5 0.1221
ecoli0347vs56 |0.1261 BeGhoﬁor
ecoli034vs5 0.130(0
ecoli067vs5 0.1573
ecoli0147vs2356 |0.1585
glass06vs5 0.1621
yeast2vs4 0.1733
yeast92579vs368 0.1793 Undefined | Undefined | Undefined | Undefined | Undefined | Undefined
ecoli0267vs35 |0.1870
ecoli0lvs235 0.1897
glass016vs5 0.1924
ecoli067vs35 0.1956
glass5 0.198(0
ecoli0137vs26 |0.2031
yeast5 0.2121
pageblocks13vs4 |0.2245
yeast6 0.2373
yeast4 0.2787
yeast0256vs3789 |0.3047 Undefined
yeast2vs8 0.3194
yeast05679vs4 |0.3248
abalone918 0.363(0
led7digit02456789vs(l0.3684
yeast0359vs78 |0.3758
yeastlvs7 0.4228
yeast1289vs7 |0.4309
glass016vs2 0.4311
glass2 0.4352 Bad Bad Bad Bad Bad Bad Bad
glass0146vs2 [0.439d Behavior Behavior Behavior Behavior Behavior Behavior Behavior
glass015vs2 0.4403
clevelandOvs4 | 0.451]
yeast1458vs7 |0.4598
abalone19 0.4909
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F — measure and AUC. Our method has improved thié — measure from 47% to
52% and theAUC' from 78% to 80% when compared with sSRST. To show the advan-
tages of the proposed method, the over-sampling rate amiithber of support vectors
formed from SVM for different methods are also compared. FRBC achieves good
results under these criteria, which means that FRB+CHCirub&a good balance be-
tween accuracy and over-sampling rate. It also decreasenthplexity of the learning
model. The major reason is that CHC only selects the samplegtease the perfor-
mance of the datasets, but not considering the locatiortsecsamples. Therefore, the

more representative samples are selected to form thertgeseits.

In the analysis with data complexity measures, the SMOT&tdybrid methods can-
not show a significant difference between them. In contFi®8B+CHC uses fuzzy logic
to over-sample the minority class samples. It shows a sagmfiimprovement over the
previous methods and is more robust than them against thedatplexity of the orig-

inal datasets.
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Chapter 6

An Under-sampling Method Based on
Fuzzy Set Theory for Large
Imbalanced Dataset (UFRB+CHC)

6.1 Introduction

Large imbalanced datasets will introduce difficulties tassification problems. The
large data size and imbalanced nature may cause a high ateoofr classifying the
minority class samples and a long training time of the cfacsgion model. Therefore,
re-sampling and data size reduction have become an impastemto pre-process the
data. In this chapter, an under-sampling strategy ovega llanbalanced dataset is pro-
posed, in which the samples of the majority class are seldzised on fuzzy logic. To
further reduce the data size, the evolutionary computatimethod of CHC [42] (Cross-
generational elitist selection, Heterogeneous recoribmand Cataclysmic mutation)

is suggested.
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Chapter 6. An Under-sampling Method Based on Fuzzy Set Theory for Large
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In this chapter, experiments are carried out to show theopednce of our proposed
method, which is compared to different under-sampling weésh They are random
under-sampling (RUS), condensed nearest neighbor rul®&j@@0], Tomek Links (TL)

[61], one-sided selection (OSS) [62], and neighborhoodritey rule (NCL) [63]. A

large imbalanced dataset from UCI Repository [77] is usdti@dataset for evaluation.
The Support Vector Machine (SVM) [80] is used as the tool &aching a classification
model from each re-sampled dataset, so as to evaluate ttesponding preprocessing

method. The evaluation measures are based on the funcfipnsoision and recall.

This chapter is organized as follows: Section 6.2 introdube details of the proposed
under-sampling strategy and the evaluation measuressétidy. To show the effec-
tiveness of our proposed method, the results and comparas@ndiscussed in Sec-

tion 6.3. A conclusion is drawn in Section 6.4.

6.2 Methodology

In this section, the details of the proposed under-samptiethod are discussed. The
proposed method involves two stages. The majority clasplesnof the training sets
are firstly under-sampled based on fuzzy logic. To furthduce the data size, CHC is

then implemented to both minority and majority class sasiple
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6.2.1 Fuzzy Logic

In this chapter, fuzzy logic is used to cluster the majorigss samples and select the
samples according to their importance. Let the clasgative be the majority class
and only\ training samplesX,) of the class negative are considered, wh&e =
(Ta1, - .., Tay) IS ay-dimensional vectorr = 1,2,..., X andz,g is the Sth attribute
value(f = 1,2,...,7) of the ath training sample. Théth fuzzy if-then rule can be

written as follows:

Ruled : IF z; is AT AND ... AND z, is A}

THEN class = negative withy, (6.1)

whereA% is a fuzzy term of théth rule corresponding to the attributg 5 = (1,2,...,7)
andz = (z,2,...,2,) is ay-dimensional attribute vector, and, is the 6th rule
weight. The number of rules is governed by the distributibthe samples. The Gaus-
sian membership functions are used as the antecedent feizywhich are formed
based on the distribution of the attributes. The choice efstiape and the arrangement
of each label of the membership functions, and the use otilleereight are introduced

in the following subsections.

6.2.1.1 Membership Functions

When deciding the membership function of each label, thieibligion of the attribute is
considered. First, the mean valuedang) and standard deviationt#levg) of each at-

tribute are calculated, where = 1,2,...,~. The samples closer to the mean value are

91



Chapter 6. An Under-sampling Method Based on Fuzzy Set Theory for Large
I mbalanced Dataset (UFRB+CHC)

treated as more informative. Therefore, the membershigtimmnear the mean value is
assigned with a narrower “bell” to cluster the samples witirerfuzzy labels. An odd

number should be assigned as the number of labels. Comsgigdériabels per attribute

are employed and the Gaussian membership function of lakel = 1,2,... L) is
defined as follows:
_ (@ap-mpp)®
Je(wag) =€ R (6.2)

wheremg;, andog;, are the mean and standard deviation of#ttelabel corresponding
to the Sth attribute respectively. Bothng, andog, are assigned based emcans and

stdevg. Table 6.1 shows the method of setting the parameters ofreantbership func-
tion, and in Fig. 6.1, we use 5 labels as an example to exglaimethod. This setting
of membership functions can cluster the samples near tha wadae with more fuzzy

labels.

Table 6.1: The Label Setting of Each Membership Function of file Attribute.

Label mgg O3k
1 stdevgx(L+1)/2
1 Area(;) — ==
2 stdevg*(L—1)/2
2 Area(y) — =
L4l stdevg
2 meanﬂ T
_ L-1)/2
L-1 Area(:=1 stdevgr(L_1)/2
L stdevg*(L+1)/2
L Area(;75) s
Note: Areaﬁ) means the samples smaller than the value have occy-
pied %ﬂ number of samples.
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6.2 Methodology

®—Label 1
Label 2
—Label 3
***Label 4
Label 5

f(x)

Figure 6.1: Arrangement of the membership function of each label. Sisabee em-
ployed as an example.

6.2.1.2 Rule Weight

Rule weight is used to assign the degree of matching of eattyfrule over all the
negative samples, so that the importance of each rule caefleeted. First, the fuzzy
value of each sample is calculated. The fuzzy valueXgffor the 6th fuzzy rule is

defined as follows:

prao(Xa) = T(NA‘{ (Ta1), - - A (Tar)), (6.3)

whereuAg (zqp) is the fuzzy value of theth attribute for thefth fuzzy rule and the
product T-norms are used. The rule weigli) is calculated by adding all the fuzzy

values of each sample.

wo =) _(1as(Xa))- (6.4)
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6.2.1.3 Selection of the Majority Samples

After the rule base of the class negative is generated, tles are randomly drawn
based on the rule weight. The rule with a higher rule weiglst dadoigher probability
to be chosen. Then, a sample matching this rule is selecteldmaly to form the new
dataset. These processes are repeated until the numbeyativeesamples is twice that
of positive samples. The above ratio of negative samplessdipe samplesof 2to 1 is

obtained through experiments.

6.2.2 Setting of CHC

After the under-sampling, the number of majority class dasis twice that of minority
class and CHC is then applied. There are two important isba¢seed to be addressed
clearly before the algorithm is employed: the represemadf each chromosome and

the definition of fitness function.

6.2.2.1 Chromosome Representation

CHC is used to further reduce the data size. The chromosomaés eepresent subsets
of the dataset. The details are the same as those for theopséviproposed method

(SMOTE+CHC), which can be found in Section 4.2.1 of Chapter 4
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6.2.2.2 Fitness function

In this study, the SVM is used as the evaluation method of CéiGhbtain the subset
with the highest classification rate. The fitness functioformed fromF — measure

and AUC', which is introduced in Section 3.3.1 of Chapter 3.

Since bothF' — measure and AUC' are important measures on imbalanced datasets, a
multi-objective fitness function is used here. If a chrommed( has a higher value of

F — measure and a lower value oAU C' than that of chromosomg, the difference
between the chromosomes™— measure and the difference between the chromosomes’
AUC will be compared. If the difference between the chromosomes measure is
larger than that oAU C, chromosomeX will be regarded as a better one; otherwise

chromosomé&” will be regarded as a better one.

6.3 Experimental Study

In this section, we present the experiments that companeroposed method with other

under-sampling methods. The dataset used can be found iRRE}@isitory [77].

The experiments involve RUS, CNN, TL, OSS, NCL, and our peggbmethod, which
isnamed as uFRB+CHC. To measure the performance of thegmessing methods, the
same learning tool should be used among them. This tool ippduVector Machine
(SVM) that attempts to obtain the classification model frowa ite-sampled training set.
The program of all testing methods and the learning tool aset on KEEL, which is

an open source software available at the Web [F9}: measure andAUC are used as
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Table 6.2: Descriptions of the Selected Imbalanced Dataset.
Dataset Nsamp. | Nattr. | Min., Maj.(%) IR
Census (Training/Testing) 57,008 41 (5.73,94.27) | 16.45
Census (Validation) 28504 41 (5.73,94.27) | 16.45

measures to analyze the results of the experimental metfieel$rials are carried out

and the average value of these measures of each method wélddated.

As mentioned before, the large re-sampled training datasiditincrease the complex-
ity of the classification model. Therefore, the under-sangptate and the number of

support vectors formed from the SVM will also be compared.

6.3.1 Dataset

To evaluate the methods, a large dataset called Census f@insdhosen. It has been
divided into five parts evenly. The training set and testiagtake two parts of them
separately. The remaining part forms the validation sed tsealculate the fitness func-
tion of CHC. Table 6.2 shows the details of the selected datasere the number of
samples Vsump. ), the number of attributes\,.,. ), the percentage distributions of the
minority and majority classes, and the imbalanced rati@ éife given. IR is the ratio of

the number of majority class samples to the number of miyotéss samples.

6.3.2 Setup of Experiment

For CHC, the basic settings of the parameters are:
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Population size: 30.

Divergence rate: 0.35.

Threshold decreasing rate: 0.001.

Kernel of SVM: Radial Basis Function.

Number of Evaluations: 2,000.

SVM is used to compare the influence of each preprocessinigotiet A radial basis
function (RBF) is used as the SVM kernel since a non-lineassification model is
needed and RBF is a common kernel to handle this problem. BieiRdefined as
follows:

1
RBF = eap(——|jx; = x|?) (6.5)

whereos > 0 is the parameter to determine the width of the radial basistion. It
controls the flexibility of the classifier. Whendecreases, the flexibility of the resulting
classifier in fitting the training data increases, and thighhiead to over-fitting easily.

The value ofr is set as 0.01 for the experiment.

6.3.3 Results

Table 6.3 shows thé" — measure and AUC' of each sampling method. Our proposed
method of uUFRB+CHC can obtain the best performance amomngedhods. The perfor-
mance of TL and that of NCL are similar since the ideas of thesrsanilar to remove
the noisy and borderline samples. The under-sampling rate¢tee number of support

vectors of the classification model for different methodsaso shown in the table. The
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Table 6.3: The Testing Results of Census.

Results RUS | CNN TL OSS | NCL |uFRB+CHC
F-measure 0.15790.057530.023330.079130.02578 0.1702
AUC 0.6703 0.5095| 0.5043| 0.5163| 0.5046| 0.6869

Under-sampling Rate [0.8855 0.8455|0.05334 0.8592| 0.1228| 0.9083
Number of Support Vectofs6,396| 8,799 | 40,083| 8,024 | 36,690 4,381

under-sampling rate is defined as follows:

(Noriginal - Nsampled)

Rateypger = * 100% (6.6)

Noriginal

where Nygmpiea 1S the number of samples in the re-sampled training set’é)ngdna
is the number of samples in the original training set. uFRB€Q:an obtain the high-
est under-sampling rate. This shows that our method canegsetiaining samples to

achieve the high performance.

6.4 Conclusion

An under-sampling method over large imbalanced datasdides proposed. The sam-
ples of the majority class are selected based on fuzzy I&HC is then applied to
further reduce the data size. The proposed method (UFRB}@HOmpared to RUS,
CNN, TL, OSS, and NCL. To evaluate the performance of thessanpling methods,
the same SVM classifier has been used to obtain the expeahteatilts. It shows that
our method outperforms the other sampling methods on bBothmeasure and AUC.
The under-sampling rate and the support vectors’ numbéeatiassification model are

also compared. Our method achieves good results on all theasures, which means
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the proposed method can select the most representativdesatodorm the training

sets.
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Chapter 7

Comparison

7.1 Introduction

In this thesis, three different preprocessing methodsnitralanced datasets have been
presented in Chapters 4, 5, and 6 respectively. In this ehaptgeneral comparison
among these three preprocessing methods using 44 imbdldatasets from UCI Repos-

itory will be given out.

7.2 Summary

In this section, a summary of each preprocessing methoddsissed. The first method
is SMOTE+CHC, which is a hybrid data preprocessing methal tmio parts: Synthetic
Minority Over-sampling Technique (SMOTE) and CHC algamtiCross-generational
elitist selection, Heterogenous recombination and Cgsaulc mutation). SMOTE [22]
is a common over-sampling method for imbalanced dataseigdtes new instances by

interpolating several minority samples that join togetihe59], the problem of over-
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generalization was mentioned. Hence, CHC is implementdubtio synthetic samples
and majority samples to under-sample the dataset and skkchore representative

samples to form the dataset.

The second method is Fuzzy Rule Base+CHC (FRB+CHC). It ma¢e®sf fuzzy logic
to generate new samples of the minority class, and then ud€st&€reduce both syn-
thetic samples and majority samples (the same latter pa®M®DTE+CHC). In the
over-sampling part, the fuzzy rules are first generateddbansdghe samples of the mi-
nority class. The rules are randomly drawn based on the ralghtt The rule with a
higher rule weight has a higher probability to be chosennTtiee samples are produced

using the selected rules as the criteria.

The third method is under-sampling Fuzzy Rule Base+CHC B##EHC), which is
an under-sampling data preprocessing method. It focusediathe imbalanced datasets
and uses fuzzy logic and CHC to reduce the datasets. Thishetkimilar to FRB+CHC.
The main difference is that the fuzzy rule base here is formiglal the samples of the
majority class. The Gaussian membership functions arefosede fuzzy terms. After
the fuzzy rule base is generated, the rules are randomlydoaged on the rule weight.
The samples matching the rules are selected to form the neagetaThen, CHC is
applied to the samples of the minority class and the undepksd majority class to

further reduce the size of dataset.
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7.3 Comparison with Experimental Results

In this section, experimental results of the 44 imbalancadskt from UCI Repository
are presented. FRB+CHC using two different membershiptions will be compared.
One uses regular triangular membership functions, name&®kBs-CHC, the other one
uses Gaussian membership functions, named as FRB+CHCgsluwil be used as the
learning tool to train the re-sampled dataset. F-measwWtBIC are used as measures
to analyze the results. The sampling rate and the numbepptstvectors formed from

SVM will also be compared. At last, the behavior of each métadl be analyzed.

7.3.1 Datasets

To study the methods, 44 datasets with different imbalanagal (IR) are chosen. IR is
the ratio of the number of majority class samples to the nurabminority class sam-
ples. Table 7.1 shows the details of the selected dataske¢sewwhe number of samples
(Nsamp.), the number of attributes\i,..,.), the percentage distribution of the minority
and majority classes, IR, and the data complexity N4 for edathiset can be found.
N4 is the nonlinearity based on a linear classifier by lineagpamming. A measure of
the nonlinearity of a classifier with respect to a given dettassuggested in [82]. This
measure has been modified to study the nonlinearity of tlss tlaundary in [83]. First,
a test set is created by linear interpolation between rarshomple pairs from the same
class. Then, the error rate on this test set is measuredisisttidy, the error rate, N4,
is defined ag1l — AUC'). A 1 Nearest-Neighbor (1NN) is used as the linear classifier.

Therefore, a larger value of N4 represents a higher contylekihe dataset.
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Table 7.1: Descriptions of the Selected Imbalanced Datasets.

Dataset Nsamp. | Nattr. | Min., Maj.(%) IR N4
shuttlec2vsc4 129 9 (4.65,95.35) | 20.5 | 0.0000
shuttlecOvsc4 1829 9 (6.72,93.28) | 13.87 | 0.0102

glass04vs5 92 9 (9.78,90.22) | 9.22 | 0.0400
ecoli0lvs5 240 6 (8.33,91.67) 11 | 0.0670
glass4 214 9 (6.07,93.93) | 15.47 | 0.0808
ecoli0146vs5 280 6 (7.14, 92.86) 13 | 0.0896
ecoli0234vs5 202 7 (9.9, 90.1) 9.1 | 0.0947
ecoli4 336 7 (5.95,94.05) | 15.8 | 0.0969
ecoli046vs5 203 6 (9.85,90.15) | 9.15 | 0.0988

vowelO 988 13 (9.01,90.99) | 9.98 | 0.1078
ecoli0147vs56 332 6 (7.53,92.47) | 12.28 | 0.1149
ecoli0346vs5 205 7 (9.76,90.24) | 9.25 | 0.1221
ecoli0347vs56 257 7 (9.73,90.27) | 9.28 | 0.1261

ecoli034vs5 200 7 (10, 90) 9 0.1300
ecoli067vs5 220 6 (9.09, 90.91) 10 | 0.1573
ecoli0147vs2356 336 7 (8.63,91.37) | 10.59 | 0.1585
glass06vs5 108 9 (8.33,91.67) 11 | 0.1621
yeast2vs4 514 8 (9.92,90.08) | 9.08 | 0.1733
yeast02579vs368 | 1004 8 (9.86,90.14) | 9.14 | 0.1793
ecoli0267vs35 224 7 (9.82,90.18) | 9.18 | 0.1870
ecoli0lvs235 244 7 (9.83,90.17) | 9.17 | 0.1897
glass016vs5 184 9 (4.89,95.11) | 19.44 | 0.1926
ecoli067vs35 222 7 (9.91,90.09) | 9.09 | 0.1956
glass5 214 9 (4.2,95.8) 22.78 | 0.1980
ecoli0137vs26 281 7 (2.49,97.51) | 39.14 | 0.2031
yeast5 1484 8 (2.96,97.04) | 32.73 | 0.2121
pageblocks13vs4 472 10 (5.93,94.07) | 15.86 | 0.2245
yeast6 1484 8 (2.36,97.64) | 41.4 | 0.2373
yeast4 1484 8 (3.43,96.57) | 28.1 | 0.2787
yeast0256vs3789 | 1004 8 (9.86,90.14) | 9.14 | 0.3047
yeast2vs8 482 8 (4.15,95.85) | 23.1 | 0.3194
yeast05679vs4 528 8 (9.66,90.34) | 9.35 | 0.3248
abalone918 731 8 (5.65,94.25) | 16.4 | 0.3630
led7digit02456789vsl 443 7 (8.35,91.65) | 10.97 | 0.3684
yeast0359vs78 506 8 (9.88,90.12) | 9.12 | 0.3758
yeastlvs7 459 7 (6.53,93.47) | 14.3 | 0.4228
yeast1289vs7 947 8 (3.16,96.84) | 30.57 | 0.4306
glass016vs2 192 9 (8.85,91.15) | 10.29 | 0.4311
glass2 214 9 (7.94,92.06) | 11.59 | 0.4352
glass0146vs2 205 9 (8.29,91.71) | 11.06 | 0.4399
glass015vs2 172 9 (9.88,90.12) | 9.12 | 0.4403
clevelandOvs4 177 13 (7.34,92.66) | 12.62 | 0.4511
yeast1458vs7 693 8 (4.33,95.67) | 22.1 | 0.4598
abalonel9 4174 8 (0.77,99.23) | 129.44| 0.4909
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Chapter 7. Comparison

7.3.2 Setup of Experiment

For CHC, the basic settings of the parameters are:

Population size: 50.

Divergence rate: 0.35.

Threshold decreasing rate: 0.001.

k of k-NN classifier used as evaluation: 1.

Number of Evaluations: 5,000.

The 1-Nearest Neighbor (1-NN) classifier is used as the atialu method of CHC to
obtain the subset with the highest classification rate. Theds function is formed from

F — measure and AUC, which is introduced in Section 3.3.1 of Chapter 3.

Since bothF" — measure and AUC are important measures on imbalanced datasets,
a multi-objective fitness function is used here. If a chrooms X has a higher value

of FF — measure (Fx > Fy) and a lower value oAUC (Ax < Ay) than that of
chromosomé’, the difference between the chromosomiEs- measure (|Fx — Fy|)

and the difference between the chromosom¥sC (|Ax — Ay |) will be compared. If

|Fx—Fy| > |Ax—Ay

, chromosomeX will be regarded as a better one; otherwise

chromosomé&” will be regarded as a better one.

SVM is used to weigh the influence of each preprocessing rdsti#oradial basis func-

tion (RBF) is used as the SVM kernel since a non-linear diaasion model is needed
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7.3 Comparison with Experimental Results

and RBF is a common kernel to handle this problem. The RBFfisettas follows:
1 2
RBF = exp(——|x; — x|*) (7.1)
o

whereo > 0 is the parameter to determine the width of the radial basistfan. It
controls the flexibility of the classifier. Whendecreases, the flexibility of the resulting
classifier in fitting the training data increases, and thighhiead to over-fitting easily.
The value ot is set as 0.01 and the tradeoff between training error andimaf SVM

is set as 100. The above values are chosen through expesiment

We consider a 5-fold cross validation model to develop theeerments, i.e., dividing
the whole dataset into five parts randomly, and combining éthem for training and
the remaining part for testing. All the methods involve saar@om parameters, so ten
experiments are carried out for each 5-fold cross validatiodel and the average value

are calculated as the results. Therefore, totally 50 expris were done.

7.3.3 Experimental Results

Tables 7.2 and 7.3 show the valuesiot- measure and AUC respectively for each
sampling method on the 44 datasets, and the results ard bgrié4 in ascending order.
The last row shows the average value of each method on afietat& RB+CHC outper-
forms the other methods in terms Bf— measure andAUC. The F' — measure values
have only a small difference among the methods. The perimcenaf SMOTE+CHC

and FRB+CHCgau are similar to each other.

Table 7.4 shows the under-sampling rate of each samplingade®The negative val-
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ues mean the size of the re-sampled dataset is larger thamigiveal one. The under-

sampling rate is defined as follows:

(Noriginal - Nsampled)

Ratepger = * 100% (7.2)

Noriginal

where Nygmpicqa 1S the number of samples in the re-sampled training set/8ng;,q

is the number of samples in the original training set. Tabfeshows the number of
support vectors used to form the classification model. Qlshg the under-sampling
rate of UFRB+CHC has the highest value, and the number ofstipgctors is related to
the number of training samples. FRB+CHC uses the greatesbeiuof support vectors

in most of the datasets.

To show the behavior of different methods, Fig. 7.1 and ARaktheAUC and F' —
measure results respectively sorted by N4 values in ascending ofthery-axis of each
figure shows the averagd/ C' or F'—measure results obtained from either the training
or testing set. The x-axis shows the 44 datasets sorted byaNés, The solid lines in
the figures represent the averag€C' or ' — measure results for the testing set; the

dashed lines represent the averadéC or F' — measure results for the training set.

Both uFRB+CHC and FRB+CHC show the advantage on relaxingubefitting prob-
lem since the performances on training set and testing sesianilar in bothAUC
and F' — measure. However, uFRB+CHC shows its disadvantage in the valug ef
measure in Fig. 7.2(a). That means the precision is low and the difiee between
precision and recall is large. This is a common problem ofetisdmpling since some
informative samples of the majority class may be eliminatedich makes the sam-

ples of the majority class classified wrongly. The perforoeanf SMOTE+CHC and
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7.3 Comparison with Experimental Results

Table 7.2: F-measure of Testing Datasets among Different Samplindndaist.

Dataset uFRB+CHC | SMOTE+CHC | FRB+CHC | FRB+CHCgau
shuttlec2vsc4 0.6363 0.6103 0.6126 0.3493
shuttlecOvsc4 0.4533 0.9724 0.7964 0.8048

glass04vs5 0.3121 0.9933 0.9631 1
ecoli0lvsb 0.5570 0.4392 0.6843 0.4560
glass4 0.2055 0.8190 0.7273 0.8074
ecoli0146vs5 0.6881 0.3762 0.7456 0.4005
ecoli0234vs5 0.6050 0.5577 0.6142 0.4988
ecoli4 0.5562 0.7931 0.7356 0.7594
ecoli046vs5 0.4629 0.3827 0.5225 0.4063

vowel0 0.2194 0.9833 0.9060 0.9559
ecoli0147vs56 0.6160 0.5164 0.6762 0.5499
ecoli0346vs5 0.7217 0.5985 0.6766 0.5478
ecoli0347vs56 0.6142 0.5913 0.5176 0.5503
ecoli034vs5 0.5969 0.5054 0.5829 0.4337
ecoli067vshb 0.5210 0.3787 0.6173 0.3393

ecoli0147vs2356 0.5552 0.5021 0.4043 0.4986
glass06vs5 0.5484 0.9866 0.9783 0.9553
yeast2vs4 0.1366 0.6996 0.7015 0.7127

yeast02579vs368 0.6705 0.7437 0.7747 0.7826

ecoli0267vs35 0.5128 0.3856 0.4592 0.4420
ecoli01vs235 0.4820 0.4844 0.4224 0.5030
glass016vs5 0.1377 0.7548 0.7694 0.7259
ecoli067vs35 0.4700 0.5108 0.4308 0.6064
glass5 0.3734 0.6583 0.7533 0.7477
ecoli0137vs26 0.2489 0.4306 0.2929 0.2554

yeastb 0.4819 0.5146 0.4476 0.4674

pageblocks13vs4 0.5377 0.3563 0.1803 0.1763

yeast6 0.5398 0.3577 0.3288 0.3185

yeast4 0.7599 0.3076 0.3533 0.3207

yeast0256vs3789 0.7349 0.5624 0.5899 0.5891
yeast2vs8 0.6763 0.7068 0.6967 0.6967

yeast05679vs4 0.4817 0.5066 0.4786 0.4885
abalone918 0.3691 0.5221 0.5732 0.5661
led7digit02456789vsl  0.3268 0.7308 0.6746 0.7333
yeast0359vs78 0.7071 0.4117 0.3470 0.3695
yeastlvs7 0.5616 0.3120 0.3161 0.2991
yeast1289vs7 0.3253 0.1851 0.1967 0.1741
glass016vs2 0.1755 0.2102 0.2001 0.2161
glass?2 0.6020 0.2484 0.2019 0.2910
glass0146vs2 0.7536 0.2823 0.2597 0.2984
glass015vs2 0.3269 0.2137 0.2049 0.2148
clevelandOvs4 0.1357 0.0923 0.1687 0.0542
yeast1458vs7 0.1812 0.1585 0.1557 0.1662
abalonel9 0.0287 0.0437 0.0482 0.0495
Mean 0.4683 0.5090 0.5179 0.4904
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Table 7.3: AUC of Testing Datasets among Different Sampling Methods.

Dataset uFRB+CHC | SMOTE+CHC | FRB+CHC | FRB+CHCgau
shuttlec2vsc4 0.8796 0.9440 0.9493 0.7691
shuttlecOvsc4 0.6978 0.9731 0.9812 0.9823

glass04vs5 0.8140 0.9988 0.9732 1
ecoli0lvsb 0.7245 0.6659 0.8159 0.6761
glass4 0.5949 0.9333 0.9230 0.9323
ecoli0146vs5 0.7523 0.6260 0.8371 0.6381
ecoli0234vs5 0.7277 0.7181 0.8289 0.6914
ecoli4 0.7720 0.9244 0.9368 0.9278
ecoli046vs5 0.6858 0.6395 0.7880 0.6548

vowel0 0.6538 0.9982 0.9892 0.9952
ecoli0147vs56 0.7627 0.6905 0.8578 0.7048
ecoli0346vs5 0.8097 0.7170 0.8459 0.6951
ecoli0347vs56 0.7241 0.7511 0.7888 0.7258
ecoli034vs5 0.7678 0.6747 0.8217 0.6422
ecoli067vshb 0.7336 0.6245 0.8125 0.6083

ecoli0147vs2356 0.7250 0.6891 0.8054 0.6837
glass06vs5 0.9056 0.9895 0.9840 0.9595
yeast2vs4 0.5737 0.8656 0.8757 0.8772

yeast02579vs368 0.8505 0.9041 0.9125 0.9091

ecoli0267vs35 0.7102 0.6405 0.8176 0.6638
ecoli0lvs235 0.7042 0.6758 0.7866 0.6950
glass016vs5 0.5347 0.8979 0.9186 0.8781
ecoli067vs35 0.7402 0.6943 0.7860 0.7523
glass5 0.7559 0.8515 0.8967 0.8789
ecoli0137vs26 0.6035 0.7294 0.6306 0.5989

yeastb 0.7875 0.9683 0.9621 0.9649

pageblocks13vs4 0.8622 0.6847 0.7120 0.7043

yeast6 0.9174 0.8735 0.8879 0.8798

yeast4 0.8258 0.8177 0.7991 0.8076

yeast0256vs3789 0.9305 0.8038 0.7691 0.7940
yeast2vs8 0.8011 0.7852 0.7739 0.7739

yeast05679vs4 0.7442 0.7934 0.7899 0.7971
abalone918 0.6766 0.8745 0.8597 0.8863
led7digit02456789vs1l  0.8869 0.8946 0.8844 0.8975
yeast0359vs78 0.8484 0.7289 0.6062 0.6163
yeastlvs7 0.7860 0.6777 0.6932 0.6801
yeast1289vs7 0.6694 0.7201 0.6990 0.7073
glass016vs2 0.5516 0.6239 0.6114 0.6453
glass?2 0.8824 0.6648 0.6078 0.7202
glass0146vs2 0.9068 0.6717 0.6336 0.7026
glass015vs2 0.5840 0.5905 0.5530 0.5727
clevelandOvs4 0.5256 0.5210 0.5857 0.4926
yeast1458vs7 0.5970 0.6638 0.5958 0.6329
abalonel9 0.6675 0.7166 0.7016 0.7288
Mean 0.7421 0.7703 0.8020 0.7624
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Table 7.4:Under-sampling Rate of Training Sets among Different SamggVlethods.

Dataset uFRB+CHC(%) SMOTE+CHC (%) |[FRB+CHC (%) FRB+CHCgau (%)
shuttlec2vsc4 91.86 3.86 3.43 3.80
shuttlecOvsc4 87.49 3.32 3.17 3.32

glass04vs5 90.78 4.39 2.90 2.50
ecoli0lvsb 84.38 3.58 1.22 1.14

glass4 94.39 2.68 0.95 0.94
ecoli0146vs5 86.43 3.34 2.73 2.71
ecoli0234vs5 81.56 4.46 5.50 2.59

ecoli4 94.42 1.59 1.40 1.46
ecoli046vs5 81.90 3.99 2.72 1.89

vowel0 88.46 4.82 4.29 4.45
ecoli0147vs56 86.07 3.39 1.73 0.61
ecoli0346vs5 81.95 3.54 3.12 3.55
ecoli0347vs56 81.71 5.60 3.06 1.28
ecoli034vs5 81.50 4.43 2.73 4.09
ecoli067vs5 83.30 4.78 1.68 2.63

ecoli0147vs2356 84.23 4.05 1.50 1.83
glass06vs5 92.13 2.71 1.67 4.33
yeast2vs4 89.54 3.13 3.89 2.89

yeast02579vs368 90.64 3.46 2.52 2.71

ecoli0267vs35 81.36 4.03 2.63 1.17
ecoli0lvs235 81.76 4.04 0.59 1.29
glass016vs5 95.65 2.84 1.03 1.22
ecoli067vs35 81.65 5.19 4.15 1.74

glassb 95.09 1.57 -0.11 1.46
ecoli0137vs26 95.46 1.32 -0.28 0.29

yeastb 97.57 1.66 2.09 1.07

pageblocks13vs4 89.04 2.88 0.86 2.05
yeast6 98.03 2.54 1.88 0.69
yeast4 96.16 1.69 1.16 -0.10

yeast0256vs3789 90.39 5.70 0.92 1.25
yeast2vs8 96.01 1.86 0.46 -0.27

yeast05679vs4 90.58 5.71 2.48 1.66
abalone918 93.33 1.72 1.44 1.93
led7digit02456789vg1 90.91 3.93 7.89 4.64
yeast0359vs78 88.44 4.90 2.14 -1.17
yeastlvs7 92.05 3.39 3.31 1.04
yeast1289vs7 95.99 2.50 2.35 0.34
glass016vs2 91.01 0.78 2.11 2.24

glass2 90.54 2.07 0.42 1.93
glass0146vs2 90.85 0.94 1.40 1.45
glass015vs2 89.68 2.06 2.28 3.01
clevelandOvs4 85.84 3.26 1.14 -0.71
yeast1458vs7 95.27 1.13 2.51 0.64

abalonel9 99.01 -1.04 0.31 0.53
Mean 89.65 3.13 2.17 1.77
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Table 7.5:Number of Support Vectors of the Classification Model forrbgdsVM.

Dataset uFRB+CHC | SMOTE+CHC | FRB+CHC | FRB+CHCgau
shuttlec2vsc4 8.2 76.92 85.34 78.3
shuttlecOvsc4 110.2 361.88 944.42 939.12

glass04vs5 3 9 12.28 9.2
ecoli01lvs5 29.8 156.88 185.74 169.08
glass4 3.4 18.42 22.84 18.74
ecoli0146vs5 30.2 178.38 213.86 191.42
ecoli0234vs5 29.4 133.64 149.7 143.46
ecoli4 10.8 58.46 66.4 60.56
ecoli046vs5 29 135.02 154.64 144.48
vowel0 16.4 34.04 92.08 54.38
ecoli0147vs56 36.2 213.86 257.72 241.76
ecoli0346vs5 29 136.88 155.64 143.94
ecoli0347vs56 37 168.64 195.96 188.58
ecoli034vs5 29 132.06 152.24 140.12
ecoli067vs5 29 143.38 169.8 154.12
ecoli0147vs2356 41.4 223.36 262.1 252.52
glass06vs5 3.4 14.3 17.5 134
yeast2vs4 324 165.68 152 151.26
yeast02579vs368 39.2 240.74 205.3 156.98
ecoli0267vs35 32.8 149.86 171.62 166.08
ecoli0lvs235 34.8 166.3 191.52 185.02
glass016vs5 3 20.84 25.7 19.26
ecoli067vs35 32 147.16 167.42 163.76
glass5 3.6 21.24 26.76 19.46
ecoli0137vs26 10.2 168.28 177.68 155.08
yeastb 15.6 188.18 219.5 199.08
pageblocks13vs4 40.8 322.26 352.02 347.7
yeast6 16.4 331.1 366.8 339.36
yeast4 34 459.56 468.16 491.16
yeast0256vs3789 48.8 376.64 310.5 309.82
yeast2vs8 11.8 186.04 131.02 1354
yeast05679vs4 32.8 206.48 212.36 215.66
abalone918 35.8 332.66 371.6 348.46
led7digit02456789vs1 10.8 58.48 67.2 40.8
yeast0359vs78 40.6 257.8 225.08 215.56
yeastlvs7 27.2 235.1 218.98 236.42
yeast1289vs7 28.2 507.2 450.9 508.8
glass016vs2 10.6 113.58 101.18 108.3
glass2 13.2 121 113.9 118.02
glass0146vs2 13.2 119.52 108.38 111.84
glass015vs2 10 108.2 91.16 98.6
clevelandOvs4 19.4 124.64 136.14 132.5
yeast1458vs7 24.4 417.02 397.14 408.6
abalonel9 28.2 1659.98 2343.46 1890.46
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FRB+CHCgau are similar.

= = AUC(Training set) with = = AUC(Training set) with
UFRB+CHC sorted by N4 03 SMOTE+CHC sorted by N4

= AUC (Testing set) with ——AUC (Testing set) with
0.2 UFRB+CHC sorted by N4 0.2 SMOTE+CHC sorted by N4
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(a) AUC results with uFRB+CHC (b) AUC results with SMOTE+CHC
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~———AUC (Testing set) with FRB
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(c) AUC results with FRB+CHC (d) AUC results with FRB+CHCgau

Figure 7.1: Average AUC results obtained from training and testing eetesl by N4.

Although the implementation of FRB+CHC and FRB+CHCgau amalar and they
only differ in terms of the membership function used at theresampling stage, their
performance has a great difference. Fig. 7.3 and 7.4 showanme of the distribu-
tion of the positive samples and negative samples afterefsampling of FRB+CHC
and FRB+CHCgau respectively. The circle dots corresportigsamples of the ma-
jority class. The square dots correspond to the sampleseddrilyinal minority class.
The triangle dots correspond to the synthetic samples.7/Hgshow that the synthetic
samples are generated densely around some of the originatitgisamples. On the
contrary, the synthetic samples in Fig. 7.3 are distributede evenly in the area of the
original minority samples. Therefore, FRB+CHCgau runs thie over-fitting problem
more easily. Fig. 7.5 shows an example after the implementat SMOTE+CHC. The

distribution of the synthetic samples is similar to that BB+CHCgau. Therefore, their
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(a) F-measure results with uFRB+CHC  (b) F-measure results with SMOTE+CHC
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(c) F-measure results with FRB+CHC  (d) F-measure results with FRB+CHCgau

Figure 7.2: Average F-measure results obtained from training andhigstet sorted by
N4.

experimental results are nearly the same.

100 © Negative (Majority)
& positive (Minority)
%0 Synthetic Samples € ¢
" | | o & e
» [ew]
w4 5" 4
70 | I l = o e 3 B
© » o
60 @ o® diﬁ'
Q 080 Q [owny =
)
50 . ® P ’ o whe
it had ® g0 | o o°
Q
% oc ® < P ¢
30 [
<
Q
20
Q
10 i i ® T
°o e ®lo * e
0
0 10 20 30 40 50 60 70 80 90

Figure 7.3: Distribution of the samples after the implementation of FHRIBIC.
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Figure 7.4: Distribution of the samples after the implementation of FHRIBICgau.
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Figure 7.5: Distribution of the samples after the implementation of SNE3CHC.

7.4 Conclusion

In this chapter, four preprocessing methods presented apt€ls 4, 5, and 6 are com-
pared. The FRB+CHC method proposed in Chapter 5 with trimgaembership func-
tions outperforms the other preprocessing methods in A6t6' and F' — measure val-

ues. As it is a hybrid preprocessing method, the number opkasihas not decreased
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in a large rate. There is only around 1.7% of under-samplatg. rTherefore, it uses
more support vectors to form the classification model anceeses the complexity of
the classifier. On the contrary, the uFRB+CHC method cam affegh under-sampling
rate, which is around 89.7%. However, #$/C and F' — measure values are inferior

to the other methods, which is a common phenomenon of uraaepling methods. Ex-
ample class distribution graphs of the sampled dataseharmsto explain the different
performance when the shape of the membership functionsaisgeld in FRB+CHC,

and the similarity of the performance of SMOTE+CHC and FRBt&gau.

To conclude, FRB+CHC with triangular membership functibadd first be considered

to deal with the imbalanced dataset. If the size of the repdasindataset is too large,

uFRB+CHC could be an alternative.
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Chapter 8
Predicting Protein-Ligand Binding Site
using Support Vector Machine and

Hybrid Preprocessing Method

8.1 Introduction

In this chapter, the hybrid preprocessing method of FRB+Qir3ented in Chapter 5
is applied on the datasets of binding sites before classditan order to improve the
results in Chapter 3. The comparison among the preprocessathods presented in
this thesis has been shown in Chapter 7 and FRB+CHC is foubd superior to the

other methods in terms of both — measure and AUC values.

SVM is employed to classify the protein-ligand binding site/ using 29 proteins’ at-
tributes as discussed in Chapter 3. To solve the imbalanc#algmm of the training
dataset, random under-sampling method is used previdoghjis chapter, FRB+CHC,

which is a hybrid preprocessing method proposed in Chapter &oplied before the
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training of SVM. Our new method is named as SVMBs2; while tldeethod in Chap-
ter 3 is named as SVMBs1.

Two benchmark datasets are used to evaluate our methodsirgthene involves 210
bound structures and the other one involves 198 drug-taogeplexes. Both of them are
developed in MetaPocket. SVMBs?2 is first compared to SVMBgiich used random
under-sampling method as the preprocessing. Then, ouoagpis compared with five
other methods. They are LIGSITE:, PASS, SURFNET, Q-SiteFinder, and MetaPoc-

ket.

8.2 Methodology

8.2.1 Overall Process

This section describes the overall process of the proposstiad for predicting the
protein-ligand binding sites. Each site is represented tgraer grid point. First, a 3D
grid is generated surrounding the protein based on itststreimformation of each pro-
tein from Protein Data Bank (PDB) [6]. Then, 29 propertieriautes) of each grid
point are obtained. The details of each property are inttedin Section 3.2.2 of Chap-
ter 3. The grid resolution of the training dataset and tgdtiataset are assigned differ-
ently, which are 2.8 and 13 respectively. A decrease of grid resolution can reduce the
data size greatly. However, if the spacing value is too lafgecalculated values of each
grid point will become unreliable. Therefore, the spaciafyie of training dataset is just

a bit larger than that of testing dataset to decrease thesdagaThe radii for common
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atoms are from 1A to 1.9483, so the grid resolution should not be set greater than

3.9A.

After the attributes of each grid point are calculated, tRBFCHC method is applied
on the training dataset to solve the imbalanced problem.cHamge of data size is
shown in Table 8.1, where the grid points of the binding satesrepresented by the
positive samples. SVM is employed to the re-sampled trgidetaset to form the clas-
sification model, which is used to classify the grid pointslod testing dataset. The
grid points, which are predicted as the binding sites, arsteted into different groups
by K-means clustering [84]. The initial number of clustensl@entroids are set based
on groups of neighboring predicted grid points. The inidahtroids of the groups of
neighboring grid points are found. Then, the K-means ctugdg84] is performed for
the grid points. After the K-means clustering, each clusteepresented by a final cen-

troid. Fig. 8.1 shows the overall process of the proposedigtiag method.

Table 8.1: Change of data size before and after applying FRB+CHC.

Before After
Number of negative samples| 263,289 131,816
Number of positive samples 5,206 134,644

8.2.2 Datasets

In this study, the same training dataset, which has beeoduated in Chapter 3, is used
and shown in Table 8.2. In this chapter, two different tegstiatasets are used to evaluate
our method against the other six methods. They are 210 bduwradiges and 198 drug-

target complexes (that was used in Chapter 3, which are ajgeelin MetaPocket.
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Generate 3D grid

Cal cul ate the features

Apply K-nmeans to cluster
the predicted grid points
to formthe pockets

of each grid point

Apply FRB+CHC and
normalization to
the training set

y

Use the nodel to classify

the grid points of each
testing protein

Apply SVMto train

the classification nodel

y

Use a center point to
represent

Cal cul ate

each predicted pocket

the success rate

Figure 8.1: Flowchart for the proposed predicting method.

Table 8.2: Training Data Set.

1pkj 3gd9 1If3 3lem 1llo
lybu 4tpi 3h72 2jde 1rn8
2v8l 1x2b 1997 2zhz 3a0t
1026 lrzu 1znz lojz 1sqf
2gga 3gh6 3dig 2jgv 1dy3
1jyl 2elt 2ywm  1lkwc 2928
3d4p  2wyw 2dtt 1tjw 2zal
2art 1u7z 3gid lilh 2wla

8.3 Evaluation

To evaluate the performances of SVMBs2, SVMBs1 and the dihermethods, the

same measure is used. First, several clusters are fornmadiie predicted grid points

by K-means clustering and each cluster is represented bgtaragrid point. Only the

three largest clusters are selected to do the identificafitmnding sites since most of

the ligands bind to large pockets [38]. Then, if the centet goints are located at the

real pocket sites (i.e. the distance between the centempgiids and any atoms of the
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ligand is within 4&), the prediction will be counted as a hit, which means thexlmted

binding site is identified correctly. There are sometimegartban one binding site
within a protein and the prediction may identify more thare dsinding site correctly
at the same time. In this case, only one hit in the larger efusill be counted. The
success rate is calculated by the following equation to @mphe performance of

different methods:

N
success_rate = —2L % 100% (8.1)
Np

where Ny ;1 is the number of proteins that at least one binding sites ealodated

correctly andVp is the total number of proteins in the dataset.

8.4 Results

This section shows the comparison of our method and the otle¢énods. In the fol-
lowing tables, top 1 represents the success rate of theslazlyester; top 1-2 represents
the success rate of the two largest clusters; top 1-3 repieteat of the three largest

clusters.

8.4.1 Improvement of SVMBs2 by using FRB+CHC as

preprocessing method

The main difference between SVMBs2 and SVMBsL1 is the preggsiog method used
before the training of the SVM classification model. SVMBaRkds advantage of FRB+CHC
while SVMBs1 uses random under-sampling method. They aakiated on the 198

drug-target complexes and 210 bounded structures datdaéte 8.3 shows the com-
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parison of the success rate (8.1) of these datasets. In thed2ihded dataset, SVMBs2
has improved the success rate by 6% for all the top 3 preditio the 198 drug-target
complexes, a significant improvement of SVMBs2 over SVMBs1llustrated. The
success rate is increased by 7% at the top 1 prediction ana#éd the top three pre-
dictions. Fig. 8.2 shows an example for the different prialicof binding sites between
SVMBs2 and SVMBsL1. The real ligands are represented by rekkstThe predicted
pockets of SVMBs2 and SVMBsL1 are represented by blue sphateshagenta spheres,

respectively.

There are totally 408 proteins in the two testing dataseibler8.4 shows the distri-
bution of the number of chains of these proteins and the ssaege of SVMBs2 and
SVMBs1 under different numbers of the chains. Most of thegins are less than three
chains and the number of chains is more likely to be an everbrurmilthough the
success rate is decreased by the increased number of CReMI8s2 has improved the
success rate from 3% to 8% for all the top 3 predictions. Qv&¥MBs2 has improved
the performance of prediction for different datasets. Bhiews that the preprocessing

method is an important on doing the prediction of bindingsit

Table 8.3: Comparison of SVMBs2 and SVMBs1 on Success Rate (%) for iiffe
Datasets.

Dataset Method Top 1 Top 1-2 Top 1-3
210 bounded structures SVMBs2 71.4 85.2 90.0
SVMBs1 66.7 78.6 83.8
198 drug-target complexes| SVMBs2 68.7 81.3 85.9
SVMBs1 61.6 76.8 81.8
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Table 8.4: Comparison of SVMBs2 and SVMBs1 on Success Rate for Diftexem-
ber of Chains.

Chain No. Number of Pro- Top 1-3 of Top 1-3 of
teins SVMBs2 (%) SMVBs1 (%)
1 152 92.8 90.1
2 176 92.0 85.2
3 18 83.3 77.8
4 49 71.4 67.3
>=5 13 46.2 38.5

Figure 8.2: The real ligand (red) binding site and the predicted podketgrotein 1e7a.
The predicted pockets of SVMBs1 (magenta) and SVMBs2 (ldue$hown in spheres.

8.4.2 Improvement of SVMBs2 over the other prediction methds

Table 8.5 shows the success rate of SYMBs2 and the other gdégtion methods. The
success rate is calculated by adding the results of twotgdtatasets (198 drug-target
complexes and 210 bounded structure). Overall, SVMBs2pad better than the other
predicting methods. Although the success rate at top 1 grediof SVMBs2 is a bit
lower than that of MetaPocket, the success rate at top 3qgtie@adiof SVMBs2 has im-

proved by 3%. Table 8.6 shows the number of hit proteins antbagix predicting
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methods. SVMBs2 can locate the binding sites of 286 protmn®ctly at top 1 predic-
tion. There are 54 and 19 proteins that their binding sitesbealocated correctly at top
2 and top 3 prediction, respectively. There are still 49 g@iret that their binding sites
cannot be located correctly. Overall, SYMBs2 can identifg binding sites correctly

with the highest number of proteins over the other five method

Table 8.5: Success Rate (%) of Top 3 Binding Sites Prediction with SVRIBed the
Other 5 Predicting Methods.

Method Top 1 Top 1-2 Top 1-3
SVMBs2 70.1 83.3 88.0
MetaPocket 71.3 80.6 84.8
LIGSITE®SC 59.1 68.9 73.5
PASS 43.4 61.0 67.9
Q-SiteFinder 56.6 69.9 76.2
SURFNET 32.8 40.7 45.3

Table 8.6:Number of Hit Proteins of Top 3 Binding Sites Prediction w8iiMBs2 and
the Other 5 Predicting Methods.

Method Top 1 Top 2 Top 3 None
SVMBs2 286 54 19 49
MetaPocket 291 38 17 62
LIGSITE®SC 241 40 19 98
PASS 177 72 28 131
Q-SiteFinder 231 54 26 97
SURFNET 134 32 19 223

8.4.3 Discussion

SVMBSs2 still has some limitations. There are 49 proteins tha correct binding sites
cannot be identified in the three largest predicted pocketsn these cases, two limita-
tions of SVMBs2 can be concluded. The first limitation is thgénds are bound to the
atoms at a flat region. Since SVMBs2 tends to predict the bandites in a cleft, the
flat region is likely to be discarded. Totally, 32 cases bgltnthis category. The other
limitation is that ligands are bound to some small bindingssiSince SVMBs2 only

selects the three largest predicted pockets for classificahe smaller binding sites are
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not easy to be discovered. There are 17 cases belongingtceti@gory. Fig. 8.3 shows

two examples of the difficult structures mentioned above fHal ligands are shown in

red sticks. The predicted binding sites are shown in bluergsh

(a) 2pk4.

(b) 1bj4.

Figure 8.3: Examples of the two limitations of SVMBs2. (a) The ligand dsrto the
atoms at a flat region. (b) The ligands bind to small binditegssi

8.5 Conclusion

The prediction of the protein-ligand binding site has beemstigated in this chapter.

A preprocessing method (FRB+CHC) has been added to solumti@anced problem
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of protein dataset. FRB+CHC outperforms the other premsing methods in terms
of F' — measure and AUC' in our previous study. Then, SVM is employed to train a
classification model and locate the grid points, which arstriely to form the binding
sites. K-means is applied to cluster the grid points to fdmen predicted pockets, and

we select the three largest pockets to evaluate the penfmena

The method proposed in this chapter is named as SVMBs2, uitcht compared with
our previous method that uses random under-sampling asrépegeessing method.
SVMBs2 has a significant improvement in both the 198 drugelacomplexes and 210
bounded structures datasets. SVMBs2 has improved thessuate from 3% to 8 % for
proteins of different number of chains. Moreover, SVMBs2ompared to MetaPocket,
LIGSITE®SC, PASS, Q-SiteFinder, and SURFNET. Although the successatatop 1
prediction of SVMBs2 is a bit lower than that of MetaPockég success rate at top
3 prediction of SVMBs2 has improved by 3%. Overall, SVMBs2 ¢acate the bind-
ing sites correctly for the largest number of the proteinsagnall prediction methods

mentioned in this chapter.

124



Chapter 9

Conclusion

9.1 Achievements

In this thesis, a prediction method of protein-ligand bingdsite using Support Vec-
tor Machine (SVM) with 29 protein properties and three preepssing methods of
imbalanced datasets are developed. Two of the pre-processethods use hybrid re-
sampling methods and the other one uses an under-samplithgpen& hese studies
improve the ability of a classifier to deal with imbalancedadats, and the success rate

of the binding sites prediction.

The details of the proposed prediction method for protgjard binding site are pre-
sented in Chapter 3. SVM is employed to classify the grid {saiear the protein surface
for the binding sites. It make uses of 29 different proteiogarties, including geomet-
ric characteristics, interaction potential, distancerfrprotein, conservation score, and
the properties of the grid points nearby to do the classiinaffwo datasets (LigA-
Site and 198 drug-target complexes) are used to test andag¢gahe success rate of

the proposed method. Our method is compared to LIGSITE, IT&SC, SURFNET,
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Fpocket, PocketFinder, Q-SiteFinder, ConCavity, and Metket. For the LigASite
dataset, the proposed method is shown to offer more commseteeresults than the
other methods as less proteins have the binding sites tbeatengly. For the 198 drug-
target complexes, the proposed method outperforms the otéthods, and shows the

highest success rate to identify the binding sites.

The three proposed pre-processing methods are discusSkdjmter 4 to Chapter 6. The
first one is called SMOTE+CHC, which is presented in Chaptditdls proposed sam-
pling method consists of two stages. SMOTE is first emplopegenerate new samples
of the minority class. Then, CHC is applied on the synthatimgles and the samples
of the majority class to do under-sampling. The proposedhatkis compared to RUS,
TL, ROS, SMOTE+TL on 22 datasets. All the over-sampling aytatid methods get the
similar results. SMOTE+CHC shows its ability of obtainingetlowest over-sampling

rate while keeping the advantages of hybrid methods.

The second pre-processing method is called FRB+CHC, wkigrasented in Chap-
ter 5. This proposed hybrid method generates new samplé® ohinority class based
on a fuzzy rule base, and CHC is then applied on the synthatipkes and the samples
of majority class. FRB+CHC is compared to different ovempang and hybrid meth-
ods, including SMOTE, sTL, sENN, sBorder, sSafe, and sR8HB4datasets. It out-
performs the other pre-processing methods in ternis efmeasure and AUC values,
and gives the lowest over-sampling rate. Data complexitgsuees are also investigated

to show that FRB+CHC is more robust to data complexity thamtiner methods.

The third pre-processing method is called uFRB+CHC, wisgirésented in Chapter 6.

This proposed method is different from our previous methétds an under-sampling
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method over large imbalanced datasets. The samples of flogityare selected based
on a fuzzy rule base and CHC is then applied to further deerdees data size. The
proposed method is compared to different under-samplintpoas, including RUS,
CNN, TL, OSS, and NCL on a large dataset called Census. Iteoiaipns the other

methods in terms of' — measure and AUC values.

A general comparison among these three proposed methauernsig Chapter 7. Trian-
gular and Gaussian membership functions are used in FRBH+GHRow its impact on
the results. Overall, FRB+CHC with triangular membershipction shows the best per-
formance in terms of" — measure and AUC' values. The performance becomes worse
when the Gaussian membership functions are used insteade@hon is that the syn-
thetic samples are generated densely around some of theabmgnority samples and
cause the over-fitting problem when the Gaussian membehshgions are used. Al-
though uFRB+CHC is inferior to the other proposed methodenms of ' — measure

and AUC values, its results does not have the over-fitting problechtas the highest

under-sampling rate, which is beneficial to large datasets.

Finally, FRB+CHC with triangular membership functions ispied on the datasets
of protein-ligand binding sites. The details are presemte@hapter 8. Two testing
datasets (198 drug-target complexes and 210 bound st)iette used to illustrate the
improvement brought by different pre-processing meth@us.proposed method shows
a significant improvement in both datasets. Then, the saaegss of the two datasets
are added together, which is used to compare the proposduwdeith MetaPocket,
LIGSITEC®SC, PASS, Q-SiteFinder, and SURFNET. Overall, our method oaaté the
binding sites successfully for a larger number of protdnastthe other prediction meth-

ods.

127



Chapter 9. Conclusion

9.2 Future Works

In this thesis, the protein-ligand binding sites predictis done by a SVM classifier.
The binding sites are represented by geometric grids. Conggprotein residues to
the ligands is also a common representations of the bindteg. 3Me might further
improve the accuracy and decrease the false positive ratsibyg the “protein-family
approach” to train the SVM classification model. It groups #imilar residues of the
proteins, based on the proteins’ sequence, and trains aissifctation model of each
group. This approach can also be used in the docking phasetéontine the scoring
function. Docking phase is the next step of structure-bdseg design after the protein-
ligand binding site is located, and the scoring functiongsdito rank the best poses of

ligands.
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