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Abstract 

Optimal Power Flow (OPF) is an essential and practical tool for power system 

planning and operating attributed to its ability of approaching the best economic 

operating point by optimally adjusting the controllable variables. However, OPF 

solutions without security constraints imposed would have little practical value 

when contingencies were encountered, especially for modern power systems with 

increasing load demand and decreasing stability margin. The transient stability 

constrained OPF (TSCOPF) capable of effectively reconciling both the economic 

and stability of power systems would be therefore imperative for power grid 

operation. Based on the foundations of pioneering research in TSCOPF, this 

thesis strives to further investigate this TSCOPF problem and its effective 

analytical and computational intelligence solution methods. 

TSCOPF is a semi-infinite optimization problem with finite number of 

controllable variables and infinite number of constraints, thus it is difficult to 

solve even for small power systems. Though promising results have been 

obtained in solving TSCOPF, a complete solution approach to effectively solve 

all types of TSCOPF problems, in particular extreme unstable and over-

stabilization cases, is still lacking. This thesis therefore develops an all-round 

analytical solution approach, in which the transient stability constraint for each 

contingency is incorporated into the OPF model as a single stability constraint 

derived from the minimum kinetic energy for normal unstable case or the 

minimum accelerating power distance for extreme unstable case using SIngle 

Machine Equivalent (SIME) theory with trajectory sensitivity strategy based on 

time domain simulation. The proposed constraint is robust and scalable for large 

power systems as well as applicable to multi-swing unstable, normal unstable 

and extreme unstable cases. In addition, this stability constraint is further refined 
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to overcome the issue of over-stabilization by guiding the solution gradually 

across the stability boundary in the optimization process. As a whole, a complete 

solution method capable to solve all types of TSCOPF problems is established.  

With the fast development of electronic technology and the rapid expansion of 

power network, many complex dynamic components such as FACTS devices are 

now widely applied in power grids. Coupled with the extensive use of discrete 

control devices, such as transformer taps and capacitor banks for power system 

preventive control, and the physical operation limitations, such as prohibited 

operation zone (POZ) and valve point effects in thermal generators, the TSCOPF 

problem has become much more challenging and needs to be solved as a non-

differentiable and discontinuous optimization problem. As a remedy, a general 

non-convex Mixed Integer Nonlinear Program (MINLP) TSCOPF model with 

consideration of discrete control variables, generation POZ and valve-point 

effects as well as applicable to all complex dynamic components is proposed and 

solved using an Enhanced Particle Swarm Optimization (EPSO) with dynamic 

adjusted inertia weight and shrinking Gaussian distribution disturbance. The 

effectiveness and efficiency of this MINLP-TSCOPF model and EPSO solution 

approach have been comprehensive evaluated using a well-established bench-

marking mathematical function and two representative power systems with 

FACTS devices. 

Since MINLP is a hard mathematical problem and TSCOPF with semi-infinite 

feature is tough to solve, the proposed MINLP-TSCOPF model would pose a 

huge challenge for any optimization methods. Though the proposed EPSO 

method is capable to search for effective solutions, further exploration for a 

better method with improved quality and consistency of MINLP-TSCOPF 

solutions is still needed. Inspired by the encouraging optimization capability of 

the Group Search Optimization (GSO) algorithm in many engineering problems, 

an enhanced version referred as improved GSO (IGSO) is developed with new 

features including backward searching strategy, Cauchy mutation and inheritance 
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operator. Comparison study with seven representative artificial intelligence 

algorithms including EPSO on the WSCC 9-bus system, New England 39-bus 

system, and IEEE 145-bus system has confirmed the outperformance and 

superiority of the proposed IGSO method in solving this MINLP-TSCOPF 

problem. 

Over the years, TSCOPF model has been mostly handled as a deterministic 

optimization problem with pre-assumed conditions while uncertainties in real 

power grids, such as stochastic load injections, uncertain generations and 

protection device activation time, are seldom considered. Meanwhile, due to the 

worldwide growing concerns on the depletion of fossil resources and their 

environmental effects, recent installation surge of wind power generations has 

led to even higher level of uncertainties and higher risk to the safe operation of 

power systems. In the coming era of smart grid, a new generation of stochastic 

TSCOPF models considering economic, stability and uncertainty simultaneously 

will be essential and indispensable for power system preventive control. In this 

thesis, a novel probabilistic TSCOPF (P-TSCOPF) model is therefore proposed. 

In this model, not only the detailed wind generator model with rotor flux 

magnitude and angle control strategy but also uncertainties including 

probabilistic load injections, stochastic fault clearing time and multiple correlated 

uncertain wind generations will all be considered. While the correlated 

uncertainties are efficiently handled using the 2m+1 Point Estimated (PE) 

method with Cholesky decomposition, the proposed IGSO algorithm is further 

developed to form a new IGSO-PE solution approach to effectively solve this P-

TSCOPF problem. The validity of the proposed P-TSCOPF model and the 

capability of the proposed IGSO-PE solution method have been thoroughly 

tested on a modified New England 39-bus system with correlated uncertain wind 

generations and validated using the Monte Carlo (MC) simulations. 
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Chapter I  

Introduction 

1.1 Research Background 

As one of the most important man-made complex project, power systems 

consisting of a huge number of generation plants, substation facilities, 

transmission and distribution devices as well as various electricity consumers 

have been developed with a long history of more than 130 years aiming to 

conveniently provide human beings with indispensable power energy. However, 

how to make the best energy utilization or obtain the most economic operation 

status of a power system is always a timeless issue in power industry. Optimal 

Power Flow (OPF) is a useful tool specially developed since 1960s for this 

purpose. The core principle of OPF is to find the most economic operating point 

of a power system with a given objective such as minimum fuel cost, minimum 

power losses, maximum transfer capacity, etc. by optimally adjusting the 

controllable variables.  

Historically, the classical Economic Dispatch (ED), targeted to economically 

allocating the total load demand among all the dispatchable generation units with 

the equal marginal cost, was a precursor of OPF. The classical ED only considers 

a single constraint in term of the total active power balance to obtain a crude 

optimization solution. Due to its fast computing speed, ED has been widely used 

in the power dispatch centre to reduce the total generation cost. However, as ED 

focuses mainly on power system economic operation without considering either 

the network topology or any static security constraints, the resulted solutions 

would most often violate the system operation security limits, such as exceeding 
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the allowable range of node voltage or overloading the transmission line. As a 

complement to the classical ED, the OPF problem was consequently put forward 

to support various complicated operational constraints, particularly the electric 

network physical constraints [1, 2]. 

So far, OPF has been persistently expanded and constituted by a vast class of 

models with a wide range of industrial applications in the field of power system 

optimization. Though different OPF models do have different objectives and 

constraints, their core works the same to optimally adjust the controllable 

variables for a given economic target, such as saving fuel cost, reducing power 

losses [3], enhancing available transfer capacity [4], etc. or combination of those 

[5, 6] without violating any static constraints in the base case [7] or under any 

contingencies [8, 9]. Meanwhile, a wide variety of optimization techniques has 

been developed to solve these OPF models, for instance nonlinear programming 

[10-12], linear programming [9], quadratic programming [13-16], interior point 

method [17] and even the heuristic methods [18-22]. With the increased variable 

dimensions of OPF model for large-scale modern power networks, many 

decomposition methods have been proposed to divide the high-dimensional 

optimization problem into multiple sub-problems such that the original 

complicated OPF model can be effectively addressed. The Min-Cut algorithm in 

[8] and Benders decomposition in [23, 24] have been successfully applied to 

solve large-scale non-convex optimization problems with satisfactory solutions 

within an acceptable time period. As these OPF models consider only the 

security constraints of a power system in a given time without considering any 

time-related constraints between successive time instances, they are categorised 

as Static OPF (SOPF) [25].  

However, when SOPF solutions obtained in a given time series were 

implemented in a real power grid, the following two major issues would arise 

and as a result hindered its applications: 1) Due to the physical device limits, it is 

not practical or desirable to allow dramatic sequential parameter changes in 
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power systems operating over a time period. For instance, transformer taps will 

be adjusted too frequently and the total number of tap changes per day will be 

over the daily limit if SOPF solution for each time interval was followed, or 

generator outputs are overrun the ramp up/down rate limit between successive 

time intervals. 2) The sum of all the individual optimal solutions for a given time 

in the time series is not necessary the optimal solution of the given time period, 

i.e. the overall cost covered the entire time period is not necessary minimum. 

Consequently, the so-called Dynamic OPF (DOPF) was proposed as an extended 

SOPF with consideration of transitional constraints over a time interval, such as 

the unit ramp rate, charge / discharge dynamics of storage devices, long term 

water reservoir capacity and electricity supply contracts [26-28]. Obviously, 

DOPF over a long time period is highly complicated due to the huge dimensional 

constraints and its computation speed is a major concern to its implementation in 

a real power grid. Based on the special block structure of DOPF, a decomposed 

predictor-corrector interior point algorithm was proposed in [29] to first decouple 

the large-scale DOPF problem into many sub-problems and then solve using an 

inequality iteration strategy to obtain a satisfactory solution in terms of 

robustness, computing time and convergence speed. 

With the increasing concerns on energy saving and growing enthusiasms in 

the deregulated power market, the unremitting pursuit for high-quality optimal 

solutions has compelled modern power grids to operate closer to their stability 

limit than ever before. Large scale blackouts [30-32] caused by power system 

instability in recent years have showed the increasing importance of power 

system stability in the safe operation of a power grid, and that modern power 

systems operated with economic consideration alone but low ability to withstand 

credible contingencies will not be sufficient. Stability constrained OPF model 

taken into account of both dynamic security and economic operation has 

therefore been proposed and actively researched in recent years. In [33-37], a 

voltage stability constrained OPF model based on the active power-voltage curve 
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was presented. In [38, 39], a small signal stability constrained OPF was 

developed with linearization around the operation point in concern. On the other 

hand, angle stability constrained OPF problems were investigated in [40-45] to 

ensure the transient angle stability against large disturbances. 

In [46], the IEEE/CIGRE Joint Task Force has provide a physically based 

definition for power system stability as the ability of an electric power system, 

for a given initial operating condition, to regain a state of operating equilibrium 

after being subjected to a physical disturbance, with most system variables 

bounded so that practically the entire system remains intact. Among various 

categories of stability problems, transient instability is one of the most dominant 

stability issues and has been obtained much attention from the industry [47-50]. 

In this thesis, transient stability has been identified as one of the main concerns 

in addition to the traditional static constraints in optimizing the operation of 

modern power grids, and the so-called Transient Stability Constrained Optimal 

Power Flow (TSCOPF) is selected as the core research issue to simultaneously 

reconcile power system economics and transient angle stability in the new 

emerging smart grid paradigm with high penetration of renewable energy. 

1.2 Incentives of Thesis 

In today’s much stressed power grid and deregulated power market, the 

transient stability and economic of power system should be reconciled 

simultaneously. Meanwhile, with the increasing concerns on the energy-saving 

policy and in the environmental-friendly strategic framework in power industries, 

more and more wind power generations have been incorporated into power grids. 

This not only provides the power system with a valuable opportunity to be green 

and sustainable but also brings new challenges and concerns to power system 

safe operation. One of the immediate concerns is how to maintain the safe and 

economic operation of the power system with high uncertainty for example due 
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to the intermittency of wind or solar power generation. This thesis would 

therefore focus on the problem of TSCOPF aimed to develop new effective 

solution methods to overcome the following difficulties faced nowadays. 

1) TSCOPF problem involves a huge number of Differential Algebraic 

Equations (DAEs) and transient stability inequality constraints covering the 

entire simulation period. It is a difficult semi-infinite optimization problem 

with finite number of controllable variables but infinite number of constraints 

[44]. How to deal with the constraints imposed by the dynamic components 

and generate a suitable transient stability index for use in the TSCOPF model 

is the key for solving this challenging problem. There are mainly two types of 

derivative-based methods: a) generation rescheduling strategy - it coarsely 

shifts generation from the most advanced generator to the least advanced 

generator based on trajectory sensitivities [45, 51, 52] and would usually 

obtain conservative suboptimal solutions; b) numerical discretization method 

- it discretizes the DAEs as a large set of small-step algebraic inequalities and 

equalities by means of implicit trapezoidal integration, and then solves the 

TSCOPF problem using Interior Point Method (IPM) [53-56]. The limitation 

of this discretization approach is that the number of constraints would rise 

sharply with the growing of system size, number of contingencies, simulation 

period, etc. and would lead to a high dimensional complexity or even 

unsolvable ‘dimension disaster’. Therefore, a non-conservative TSCOPF 

solution method with low dimensional constraint using the minimum kinetic 

energy for normal unstable case or the minimum accelerating power distance 

for extreme unstable case is proposed in the thesis based on the trajectory 

sensitivity and SIngle Machine Equivalent (SIME) strategy. So far, most of 

previously published works on TSCOPF mainly concerned the normal 

unstable cases while the extreme unstable cases are not mentioned, and the 

issue of over-stabilization in the optimization process is also not handled. 

Therefore, the first incentive for this thesis is to develop an all-round solution 
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method capable to cope with all TSCOPF problems including extreme 

unstable cases and handle the issue of over-stabilization. 

2) Considering that a) with the rapid development of power electronics, more 

and more sophisticated power electronics devices such as flexible AC 

transmission system (FACTS) are widely adopted in modern power grids; b) 

real thermal generators do exhibit the so-called valve-point effects due to the 

valve opening characteristics of multi-valve steam turbines [26, 57, 58]; and 

c) discrete control devices such as transformer taps and capacitor banks are 

commonly found in the power system optimization formulation, a general 

TSCOPF model readily accommodating to those would be indispensable. 

Consequently, a non-convex Mixed Integer Nonlinear Program TSCOPF 

(MINLP-TSCOPF) model with consideration of generation valve-point 

effects and discrete control variables as well as applicable to all complex 

dynamic components is proposed in the thesis. So far, there is no satisfactory 

published method for solving this type of TSCOPF with non-convex MINLP 

characteristics. Since the updating of control variables in any gradient-based 

methods requires the derivatives of constraint-error, applying gradient-based 

methods to solve such MINLP-TSCOPF problem with complex power 

system models and discrete control variables will not only be cumbersome 

but also require major development effort for any changes in the system 

models. More importantly, due to the non-convexity of TSCOPF, gradient-

based algorithms would likely be trapped in suboptimal solutions [59]. As the 

second incentive in this thesis, a heuristic method referred as Enhanced 

Particle Swarm Optimization (EPSO) algorithm is proposed to solve this 

difficult MINLP-TSCOPF problem. 

3) Heuristic algorithms are derivative-free and capable of finding the global 

optimal or a sufficiently good solution with no strict requirements for neither 

the convexity nor the differentiability of the model. Many such heuristic 

algorithms have been presented as promising tools for power system 
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optimization [3-7, 19-22]. Most notably, for solving the TSCOPF model, 

several swarm intelligence algorithms including Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO) and Differential Evolution (DE) have 

been adopted in [43, 44, 60] to generate a set of encouraging optimal 

solutions. However, those algorithms have only been implemented and tested 

on simple and continuous TSCOPF models with limited attention on MINLP-

TSCOPF problems characterized to have high discontinuity, non-convex 

features and multiple minima. Based on the No Free Lunch theorem, “for any 

algorithm, any elevated performance over one class of problems is exactly 

paid for in performance over another class” [61], an optimal solution method 

should therefore be specially designed for solving this MINLP-TSCOPF 

problem effectively. Consequently, the third incentive of this thesis is to 

develop a better solution method referred as an improved Group Search 

Optimization (IGSO) method for solving this MINLP-TSCOPF problem.  

4) So far, most literatures such as [42, 43, 45, 62-66] have handled TSCOPF as 

a deterministic optimization problem and successfully solved it using either 

gradient-based methods or heuristic methods with encouraging results. While 

these approaches have made valuable contributions and advancements in 

TSCOPF, uncertainties in power systems are not considered and statistical 

information on the likelihood of constraint violations as well as stability risk 

level are seldom provided. However, the practical operation of a power 

system do involve uncertainties stemming from, for instances, stochastic load 

injections, uncertain generations and probabilistic fault clearing time imposed 

by practical relay operations. Furthermore, growing global concerns on the 

depletion of fossil resources and their environmental effects have driven the 

rapid deployment of renewable energy, among which wind power is the most 

dominated type [67, 68]. The recent installation surge of large-scale wind 

farms with intermittent nature has leaded to even higher level of uncertainties 

and threatened the safe operation of power systems with high wind 
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penetration. Therefore, as the last but not the least incentive of this thesis is to 

first propose a new probabilistic TSCOPF model with consideration of the 

operation and generation uncertainties in power system transient stability, and 

then design an effective solution approach named IGSO-PE to ensure the 

economic and secure operation of power system with uncertainties. 

1.3 Primary Contributions 

Transient stability and economic should be reconciled with each other in 

TSCOPF for modern stressed power systems incorporated with intermittent 

renewable energy. The following are the main achievements in this research 

work: 1) developed a complete approach to analytically solve all types of 

TSCOPF problems; 2) proposed a general MINLP-TSCOPF model with support 

for various dynamic components; 3) developed two solution methods to 

effectively solve the MINLP-TSCOPF; and 4) established a new probabilistic 

TSCOPF (P-TSCOPF) model to accommodate the generation, load and operation 

uncertainties in transient stability and proposed a corresponding effective 

solution method.  

To be specific, this thesis has made the following original contributions: 

 Foremost, the SIME power distance is introduced as the transient stability 

constraint for extreme unstable case in traditional TSCOPF model, and then 

the model is iteratively solved by a trajectory sensitivity based analytical 

method. Meanwhile, the over-stabilization issue in TSCOPF is properly 

addressed by guiding the solution gradually across the stability boundary. As 

a result, an all-round solution approach which accommodates all types of 

TSCOPF problems including multi-swing unstable, normal unstable and 

extreme unstable cases for multi-contingency with over-stabilization is 

established.  
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 Secondly, a general non-convex MINLP-TSCOPF model with many minima 

and support for any dynamic components and discrete control variables is 

proposed. A newly developed EPSO method is presented to effectively solve 

this MINLP-TSCOPF problem. 

 Thirdly, an improved GSO (IGSO) method is specially established with 

backward searching strategy, Cauchy mutation and inheritance operator for 

solving the MINLP-TSCOPF problem. Comprehensive benchmarking study 

of IGSO with published heuristic methods has validated the prowess of IGSO 

in solving this MINLP-TSCOPF problem.  

 Finally, for the first time a P-TSCOPF model simultaneously considering 

power system transient stability and various practical operating uncertainties 

is proposed for power system preventive control. A new IGSO-PE approach 

based on the Point Estimated (PE) strategy and IGSO is developed to solve 

this P-TSCOPF model with satisfactory solutions.  

1.4 Organization of Thesis  

This thesis consists of seven chapters and is organized as follows:  

Chapter I first introduces the background and motivation of this research, and 

then briefly outlines the primary contributions and the organization of this thesis. 

In Chapter II, fundamentals and essentials of transient stability constrained 

optimal power flow with uncertainties are reviewed and discussed. Firstly, the 

transient stability analysis method and the mathematical formulation of 

traditional TSCOPF model are introduced, and then a comprehensive literature 

survey on various TSCOPF solution methods is conducted. The current state of 

art techniques to deal with uncertainties in transient stability are then presented 

and followed by some basic definitions in probability theory for random 

variables.  Gram-Charlier expansion is finally introduced as the essentials to 

handle uncertainties in the P-TSCOPF problem presented in Chapter VI.  
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In Chapter III, the TSCOPF problem is divided into traditional OPF and 

stability analysis processes and solved iteratively by IPM. Based on the SIME 

theory, a single stability constraint derived from the minimum accelerating 

power distance is proposed for extreme unstable multi-machine TSCOPF 

problems. Issue of over-stabilization, if there is any, is overcome by gradually 

guiding the solution across the stability boundary. As a result, a complete 

solution method capable of solving multi-contingency TSCOPF problems in 

normal unstable or extreme unstable conditions with over-stabilized issue is 

established. The performance of this proposed method has been fully evaluated 

using the New England 39-bus system and the IEEE 50-generator system. 

In Chapter IV, valve-point effects and discrete control variables are 

considered to form a more general non-convex MINLP-TSCOPF model, in 

which the energy based transient angle and voltage constraints are included as an 

integrated stability control process. A new EPSO method with dynamic adjusted 

inertia weight and shrinking Gaussian distribution disturbance is proposed to 

solve this MINLP-TSCOPF problem and tested firstly with a benchmarking 

MINLP mathematical function. Two representative power systems with FACTS 

devices are prepared to fully evaluate the validity of the proposed MINLP-

TSCOPF model and the full capability of the proposed EPSO method. 

In Chapter V, based on the good performance of group search optimization, 

an IGSO algorithm is developed with enhancements of backward searching 

strategy, Cauchy mutation and inheritance operator to effectively solve the 

challenging MINLP-TSCOPF problem. The outperformance of IGSO method 

have been tested and validated by four comprehensive case studies on the WSCC 

9-bus system, New England 39-bus system, and IEEE 145-bus system 

benchmarking with several typical heuristic methods in the state of art. 

Chapter VI puts forward a probabilistic TSCOPF model to accommodate the 

generation and operation uncertainties in the transient stability for power system 

preventive control. The detailed model of wind generator with Rotor Flux 
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Magnitude and Angle Control (FMAC) strategy is introduced in the P-TSCOPF 

to describe the dynamic behaviours of wind generators. Also, typical 

uncertainties, such as probabilistic load injections, stochastic fault clearing time 

and multiple correlated uncertain wind generations, are incorporated in the P-

TSCOPF model. Furthermore, based on PE method with Cholesky 

decomposition and IGSO algorithm, an IGSO-PE approach is designed to 

effectively solve the challenging P-TSCOPF problem. The effectiveness of the 

proposed P-TSCOPF model and the IGSO-PE approach is thoroughly tested on 

the modified New England 39-bus system with correlated uncertain wind 

generations and benchmarked with Monte Carlo (MC) simulations. 

Finally, some concluding remarks of the thesis are summarized in Chapter 

VII, and the prospective extensions of the thesis are discussed as the future work 

in that chapter. 

1.5 List of Publications 

Journal papers published 

1. S. W. Xia, K. W. Chan, and Z. Guo, “A novel margin sensitivity based 

method for transient stability constrained optimal power flow,” Electric 

Power Systems Research, vol. 108, pp. 93-102, March 2014. 

2. S. W. Xia, K. W. Chan, X. Bai, and Z. Guo, “Enhanced particle swarm 

optimization applied for transient angle and voltage constrained discrete 

optimal power flow with FACTS,” IET Generation, Transmission & 

Distribution, vol. 9, no. 1, pp. 61-74, January 2015. 

3. S. W. Xia, B. Zhou, K. W. Chan, and Z. Guo, “An Improved GSO Method 

for Discontinuous Non-convex Transient Stability Constrained Optimal 

Power Flow with Complex System Model,” International Journal of 

Electrical Power & Energy Systems, vol. 64, pp. 483-492, January 2015. 



12 

4. X. Luo, S. W. Xia, and K. W. Chan, “A decentralized charging control 

strategy for plug-in electric vehicles to mitigate wind farm intermittency and 

enhance frequency regulation,” Journal of Power Sources, vol. 248, pp. 

604-614, Feb. 2014. 

Journal papers under review or in preparation 

5. S. W. Xia, X. Luo, and K. W. Chan, “Probabilistic transient stability 

constrained optimal power flow for power systems with multiple correlated 

uncertain wind generations,” submitted to IEEE Transactions on 

Sustainable Energy, Manuscript ID: TSTE-00101-2015. 

6. S. W. Xia, X. Luo, and K. W. Chan, “Optimal sizing of energy storage 

system for power grid planning with intermittent wind generations,” 

submitted to IET Generation, Transmission & Distribution, Manuscript ID: 

GTD-SI-2015-0171. 

7. S. W. Xia, X. Luo, and K. W. Chan, “Optimal sizing and siting of energy 

storage system for reliability constrained power network operation with high 

penetration of renewable generations,” in preparation for submission to 

IEEE Transactions on Power Systems. 

8. S. W. Xia, X. Luo, and K. W. Chan, “A fully distributed charging control 

strategy for multiple energy storages to smooth wind power fluctuation and 

strengthen frequency regulation,” in preparation for submission to IEEE 

Transactions on Smart Grid. 

Papers presented at international Conferences 

9. S. W. Xia, X. Luo, and K. W. Chan, “A framework for self-healing smart 

grid with incorporation of Multi-Agents,” The 6th International Conference 

on Applied Energy, May 30-June 2, 2014, Taipei, Taiwan. 

10. X. Luo, S. W. Xia, and K. W. Chan, “A simple decentralized charging 

control scheme of plug-in electric vehicles for alleviating wind farm 



13 

intermittency,” The 6th International Conference on Applied Energy, May 

30-June 2, 2014, Taipei, Taiwan. 



14 
 

Chapter II 

Essentials for Transient Stability Constrained 
Optimal Power Flow with Uncertainties 

2.1 Essentials for TSCOPF problem 

2.1.1 Overview of Transient Stability Analysis 

Transient stability is the ability of a power system to regain a stable 

equilibrium operation point when exposed to a severe disturbance such as a 

three-phase ground fault, where the dynamic behaviours and interactions of 

multiple complex dynamic components should be considered [69]. Power system 

transient stability is directly or indirectly inferred from the solutions of high 

dimensional DAEs, and it is closely related to the initial condition of DAEs, i.e. 

power system initial operation point. So far, transient stability analysis methods 

can be categorized into the following three branches: 1) time domain simulation 

method; 2) direct energy function method; and 3) hybrid method. 

In time domain simulation method, DAEs describing the system dynamic 

behaviours in transient stability are usually solved using classical mathematical 

integration algorithms, such as Euler method [70] or implicit trapezoid method 

[71], to obtain the state variables. Consequently, the power system transient 

stability can be determined from these state variables, such as through comparing 

the generator angles with a heuristically assumed threshold. Time domain 

simulation method is straightforward for transient stability analysis, and with 

good flexibility to support various complex dynamic models in large-scale power 

systems. Therefore, time domain simulation method has been widely adopted in 

the industry and plays the important role as a benchmark for other stability 
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analysis methods [72]. However, the major deficiency of time domain simulation 

method is the lack of direct quantitative information on the transient stability 

margin [73]. In addition, the heavy computation burden or expensive CPU time 

cost is also a concern for its on-line applications though vast improvements have 

been made in recent years to enhance its efficiency using, for example, parallel 

computation [74-79] and Taylor series techniques with large integration step-

sizes [80-84].  

Direct energy function method is an alternative tool for transient stability 

analysis capable of determining the power system stability margin directly from 

the perspective of system energy [85]. Based on Lyapunov’s stability theory, this 

method compares the accumulated system energy during the contingency period 

with the predefined critical energy, and hence the system transient stability can 

be directly derived without calculating generator angle trajectories over the entire 

simulation period. Based on how this critical energy is defined, the direct energy 

function method can be categorized as: 1) Controlling Unstable Equilibrium 

Point (CUEP) method [86]; 2) Potential Energy Boundary Surface (PEBS) 

method [87]; 3) Boundary of stability region based Controlling Unstable 

equilibrium point (BCU) method [88-90]; and 4) Extended Equal Area Criterion 

(EEAC) method [91]. Compared with time domain simulation, direct energy 

function method is more efficient and effective to quantify transient stability 

margin and calculate various critical parameters, such as the critical clearing time, 

etc. However, the limitations of direct energy function method are: 1) the 

accuracy cannot be guaranteed due to various assumptions made on the 

calculation of critical stable energy; 2) the transient stability margin of power 

systems with complex dynamic components cannot be readily obtained [92] 

while high-order synchronous generator models, complex excitation systems and 

power electronic devices are quite common in modern power systems nowadays. 

The hybrid method is the third method for transient stability assessment [73, 

93-95]. In this method, a time domain simulation is first performed beyond the 
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fault clearing time, and then transient stability margin is determined using the 

concept of SIME by examining the candidate critical and non-critical machines 

[93]. The SIME theory is based on the fact that if a power system with multiple 

machines is transient unstable, the machines will first be separated into two 

groups and then may further be split into many groups. Therefore, the two 

equivalent groups can be mapped into SIME, and the system stability could then 

be observed [73]. The hybrid method inherits not only the high flexibility of time 

domain simulation method in power system modelling but also the high 

computation efficiency and quantified stability margin of direct method. Hence, 

SIME has been recognized and widely adopted as the most promising method for 

transient stability assessment [42, 66, 96]. 

2.1.2 Overview of Transient Stability Constrained OPF 

The mathematical formulation of TSCOPF problems is formulated as follows.  

Minimize   ( , )f x u                                                          (2.1) 

Subject to  ( , ) 0g x u =                                                     (2.2) 

( , ) 0h x u ≤                                                     (2.3) 

0( , )x y x u=                                                   (2.4) 

TSI ε≤                                                          (2.5) 

where u is a set of control variables and x is a set of dependent variables 

corresponding to u, f(x,u) is the objective function, which could be the total 

generation cost, total power grid loss or total compensation cost, and so on. g(x, u) 

and h(x,u) stand for the system operating equality and inequality constraints in 

normal state; y(x0,u) is the differential equations for generators and dynamic 

components, such as synchronous generators, rotating excitation systems, speed 

governors, induction machines, etc. The exact descriptions of the dynamic 

constraints would depend on which dynamic models were adopted to mimic the 

power system dynamic characteristics. The transient stability index TSI is 
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typically expressed in term of the generator angle margin to a heuristically fixed 

angle threshold. 

2.2 State of the Art Methodologies for TSCOPF 

With stress from power system deregulation and increasing load demand, 

power systems are operating much closer to its security limit than ever before [97, 

98], and the so-called TSCOPF problem has therefore been widely investigated 

to effectively reconcile the economics and security for power system operation. 

So far, there are mainly three approaches for solving the TSCOPF problem, 

namely generation rescheduling method, numerical discretization method and 

Artificial Intelligence algorithms (AIs).  

Generation rescheduling is a typical TSCOPF strategy used in [45, 51, 52] to 

shift power from the most advanced generator in terms of generator rotor angles 

to the least advanced generator [94, 99, 100] so as to drive the system to move to 

a stable operating point. Since power generation is only re-dispatched among the 

most advanced and least advanced generators, the solution is sub-optimal.  

In numerical discretization method, the semi-infinite TSCOPF problem is first 

transformed to a generalized large-scale nonlinear programming problem, and 

then solved by classical optimization methods such as IPM in [45, 53-55, 101, 

102], etc. In [103], an enhanced numerical discretization method was proposed to 

reduce the burden of optimization by relaxing and transforming the equality 

constraints to inequality constraints. In [65, 104-106], the difficulty of semi-

infinite optimization was overcome by substituting the infinite constraints with a 

constraint transcription based on functional transformation techniques, which 

transformed the infinite transient constraints into lower dimension inequality 

constraints, and then incorporated into the conventional OPF and solved by IPM. 

The SIME strategy was also introduced in many publications to reduce the 

number of generator stability constraints. In [38], a method based on substituting 
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the original multi-machine by a SIME machine was presented to reduce the 

generator constraints for each time step; however, the OPF model still involves 

many transient stability constraints during the entire heuristic simulation period. 

In [66], though a SIME method with partial simulation period discretized was 

proposed to reduce the number of constraints, the computation of Jacobian and 

Hessian matrices is still included in the discretization of differential equations 

during the unstable period and hence resulted in an expensive time consuming 

optimization process. In [64], an improved SIME method was proposed to reduce 

the stability constraints to one SIME angle constraint applied only at the initial 

time with the angle threshold 0 0t t
sh UT UTδ δ λδ= −  updated by renewing λ  or using 

linear extrapolation or interpolation between the changes of unstable margin and 

variations of generator angles of two successive iterations. While the initial λ  

shall be heuristically and properly selected, the One Machine Infinite Bus (OMIB) 

mode may change in successive iterations and complex handling would be 

required to cope with the change of OMIB m-swing structure [64]. In [107], a 

two-step strategy using trajectory sensitivities based on time domain simulation 

was proposed in which trajectory sensitivities calculation and OPF are run in turn 

to form an iterative process to solve the TSCOPF problem. However, the same 

problems of large number of angle constraints over the whole simulation period 

and heuristically fixed angle threshold still exist. In [108], the trajectory 

sensitivity theory and the SIME method were further applied to solve the 

TSCOPF problem iteratively. It accurately and directly formulates the transient 

stability constraint using the unstable margin, instead of a heuristic angle 

constraint as in [64], to reduce the dimension of transient stability constraints for 

the normal unstable case; this strategy thus made the TSCOPF optimization 

dimension comparable to a conventional OPF. In [40], a nonlinear transient 

stability boundary (TSB) trained by the Artificial Neural Network (ANN) for a 

large number of operating points using time domain simulation was incorporated 

into OPF to address the TSCOPF problem.  
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All these gradient-based optimization methods in above indeed enriched the 

content of solving TSCOPF. However, they still share a few common 

shortcomings such as high sensitivity to initial conditions due to their 

dependence on derivatives. In addition, these derivative based optimization 

methods would encounter high dimensional constrains and possibly diverge in 

their optimization processes in large-scale power systems with many complicated 

dynamic components. In the worst case, some TSCOPF problems may even be 

un-differentiable and discontinuous, and thus shall not be solved with classical 

gradient-based methods. On the other hand, AIs which mimic the behaviour of 

nature biological species have been developed as an alternative TSCOPF solution 

approach to overcome the above drawbacks. AIs such as DE [43], evolutionary 

programming (EP) [109], GA [110] and PSO [44, 111-115] are population-based 

stochastic optimizations, which do not rely on  derivatives, and therefore are the 

promising methods for readily handling the non-derivative and non-convex 

optimization problems.  

So far, the most noticeable reported applications of AIs for solving the 

TSCOPF problem are GA, PSO, and DE. Encouraged by the good performance 

for some hard optimization problems with faster and stable convergence, [44] has 

adopted the PSO with constriction factor (CPSO) to solve a TSCOPF problem 

with multiple contingencies, while [43] has obtained a satisfactory TSCOPF 

solution effectively based on a well-tuned DE algorithm. In [60], an orthogonal 

array based GA was successfully applied to solve a TSCOPF problem in the New 

England system and obtained quite good solutions. 

2.3 State of the Art Methodologies for TSCOPF with 

Uncertainties 

Currently, the efforts of considering various typical uncertainties in power 

system operations are mainly spent in the field of probabilistic power flow 
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problem instead of TSCOPF problem because of the high complexity involved in 

solving TSCOPF. So far, there are three main approaches to deal with 

uncertainties in the probabilistic power flow analysis, namely the Monte Carlo 

(MC) method, the analytical method, and the point estimated (PE) method. 1) 

The MC method firstly solves the traditional power flow in a deterministic 

manner for a large number of system samples, and then summarizes all the 

solutions [116-118] to obtain the statistics distribution of the concerning output 

variables. 2) The analytical method transforms the power flow equations into a 

quasi-linear form or second-order Taylor expansions of uncertain inputs, and then 

obtains the probability density function of random outputs by convolution 

computing [119]. 3) The PE method is the third promising tool for handling 

probabilistic power flow problems [120, 121] based on the deterministic 

solutions of only a few concentrations inferred from the first several central 

moments of random inputs. 

Though uncertainties in power flow problem can now be addressed readily, 

efficient handling of uncertainties in transient stability analysis is still difficult 

due to the complicated nature of the problem. The state-of-the-art Probabilistic 

Transient Stability Analysis (PTSA), including the basic theories for extended 

research and development, were comprehensively reported in [122, 123] and 

further investigated in [124]. While a PTSA approach based on the regression of 

the critical clearing time in terms of system load distribution was proposed in 

[125-127], recent research has focused on analyzing the uncertainties of fault 

occurrence, fault location, fault type, and fault clearing time for PTSA using the 

Monte Carlo (MC) method and conditional probability theory. A probabilistic 

stability index considering random characteristics of pre-fault loading condition, 

fault type and location was calculated using the Bayes’ theorem in [128], such 

that the system “weak points” were identified by the probabilistic stability index. 

In [129], a conceptual framework based on the steady-state and dynamic security 

regions was proposed to first assess the probabilistic distribution of critical 
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clearing time and then analyze the system probabilistic security. A stochastic 

modelling of high-speed reclosing was investigated in [130] for quantitative 

assessment of the effect of the occurrence of a transmission line fault on the 

likelihood of system instability. A risk-based security index in terms of both 

probability of instability and impact of instability was calculated by MC method 

in [131] to determine the operating limits for a stability-restricted power system. 

In [132], the probabilistic transient stability of a large scale B.C. Hydro system 

was assessed using a modified shell of B.C. Hydro’s on-line transient stability 

program and MC formulation, and it was found that BC Hydro’s operation was 

very conservative under the traditional deterministic criteria with a probabilistic 

instability lower than 0.2%. A probabilistic methodology based upon an 

approximated quadratic stability region, taking into account the randomness of 

fault clearing time, reclosing time and fault location, was proposed in [133] to 

determine the probabilistic transient stability margin. A set of stochastic 

differential equations was utilized to analyze the stochastic transient stability and 

solved by stochastic Euler and Milstein schemes in [134]. Most notably and 

recently, with the rapid development of wind power generations, a probabilistic-

based approach was presented in [48] to evaluate the probabilistic transient 

stability for a wind farm with two-mass shaft wind turbines using the 

electromagnetic transient program. In order to enhance the PTSA efficiency, a 

corrected transient energy function-based probabilistic approach was adopted in 

[135] to speed up the calculation process of PTSA while grid-computing 

technique was also introduced in [136] for PTSA. 

Though MC method is straightforward, accurate and well-tested, it is quite 

time consuming for PTSA as a large number of random time domain simulations 

are needed to determine the probabilistic transient stability index. Its further 

application to address the uncertainties in TSCOPF problem, which embeds the 

PTSA in an optimization problem, would be even more computational expensive 

and time consuming. 
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As an alternative, the analytical method, which handles uncertainties by 

linearizing the relationship between output and input and obtains the probability 

of random output variables using convolution computing of inputs, seems more 

computationally effective. An analytical approach based on EEAC was 

successfully implemented on a simple single-machine system in [125-127] 

without any further consideration on neither its application in large-scale system 

with multiple machines and complicated dynamic components nor the 

correlations among uncertainties. 

Generally, for solving PTSA on multiple-machine systems with correlated 

uncertainties, the analytical method first requires some mathematical 

assumptions to simplify the relationship between the concerned output and 

uncertain inputs [120]; and then based on this simplified linear relationship, the 

probability expansion theory could be used to estimate the probability 

distribution of output random variables. Though the linearization of transient 

stability margin to the random inputs could be obtained from the trajectory 

sensitivity calculations of DAEs, it would be arduous to derive the probabilistic 

transient stability index in the term of multiple correlated uncertain inputs for 

large power systems with complicated dynamic components, and hence has 

prohibited its practical application. 

The PE method is capable of calculating the raw moments of output random 

variables using only the deterministic solutions of very few concentrations. 

Compared to the large sample set required in MC and the complicated 

linearization of transient stability margin involved in the analytical method, 

uncertainties in complicated power systems could be readily and effectively 

addressed by the PE method. Among the common PE variants such as 2m and 

4m+1 schemes, 2m+1 PE scheme has been found to provide the best 

performance with satisfactory accuracy of results at the cost of relatively low 

computational burden [120]. 
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2.4 Basic Probabilistic Theory for Uncertainties 

2.4.1 Basic Definitions 

The uncertainties for discrete random variables are usually described by 

discrete probability at each point while for continuous random variables it is 

described by probability density function (PDF). The following are some basic 

definitions of expectation, variance and covariance, etc. which are fundamental 

and essential to the research in Chapter VI. 

1) Mathematic expectation 

Suppose the discrete random variable X  has a series value 1x , 2x ,…, nx  with a 

probability of 1p , 2p ,…, np , namely ( )i iP X x p= = , its mathematic expectation 

denoted as ( )E X or X is [137, 138] 

1
( )

n

i i
i

E X X x p
=

= =∑                                               (2.6) 

If X is a continuous random variable with a PDF as ( )f x , its mathematic 

expectation is [137, 138] 

( ) ( )E X xf x dx
+∞

−∞
= ∫                                                 (2.7) 

2) Variance 

The variance of a discrete variable X , denoted as 2σ , is [137, 138] 

2 2 2

1
[( ) ] ( )

n

i i
i

E X X x X pσ
=

= − = −∑                           (2.8) 

where σ is the standard derivation which measures the degree of points 

scattering around its mathematic expectation.  

The variance of continuous variable X  is [137, 138] 

2 2 2[( ) ] ( ) ( )iE X X x X f x dxσ
+∞

−∞
= − = −∫                      (2.9) 

3) Covariance 

Suppose Y  is another discrete variable with the expectation Y , then the 

covariance between X  and Y , denoted as XYC , is [137, 138] 
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[( )( )]XYC E X X Y Y= − −                                      (2.10) 

4) Correlation coefficient 

The correlation coefficient XYρ between X  and Y is defined as the 

covariance XYC divided by standard derivation Xσ and Yσ , namely [137, 138] 

XY
XY

X Y

Cρ
σ σ

=                                                    (2.11) 

5) Moment 

Suppose X  is a discrete random variable with series value ( )i iP X x p= = , its 

r-order moment, denoted as rm , is [138, 139] 

1
( )

n
r r

r i i
i

m E X x p
=

= =∑                                       (2.12) 

If X is a continuous random variable with the PDF as ( )f x , its r-order 

moment is [138, 139] 

( ) ( )r r
rm E X x f x dx

+∞

−∞
= = ∫                                 (2.13) 

For a random vector [ ]1 2, ,... T
nX X X X= , the r-order mixed moment of X is 

[138, 139] 

1 2( , ... )

1

( )n i

n
e e e e

r i
i

m E X
=

= ∏                                           (2.14) 

where 
1

n

i
i

r e
=

=∑ . 

6) Central Moment 

The r-order central moment of discrete random variable X , denote as rM  is  

1
[( ) ] ( )

n
r r

r i i
i

M E X X x X p
=

= − = −∑                 (2.15) 

If X is a continuous variable with a PDF as ( )f x , its r-order central moment is 

calculated as [138, 139] 

[( ) ] ( ) ( )r r
rM E X X x X f x dx

+∞

−∞
= − = −∫             (2.16) 
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For a random vector[ ]1 2, ,... nX X X , the r-order mixed central moment can be 

expressed as [138, 139] 

1 2( , ... )

1

[ ( ) ]n i

n
e e e e

r i
i

M E X X
=

= −∏                            (2.17) 

where 
1

n

i
i

r e
=

=∑ . 

There is also a compact relationship between central moment and moment as 

expressed in the following form. 

1

2
2 2 1

3
3 3 1 2 1

2 4
4 4 1 3 1 2 1

2 3 5
5 5 1 4 1 3 1 2 1

2 3 4 6
6 6 5 1 1 4 1 3 1 2 1

7

7 7 7 1
0

0

( )

3 2( )

4 6 () 3( )

5 10( ) 10( ) 4( )

6 15( ) 20( ) 15( ) 5( )

( )j j
j

j

M

M m m

M m m m m

M m m m m m m

M m m m m m m m m

M m m m m m m m m m m

M C m m−
=

=

= −

= − +

= − + −

= − + − +

= − + − + −

= −∑

 (2.18) 

where Mj and mj are the jth order central moment and jth order moment of X, and 

7
jC is the mathematical combinatorial number. 

7) Cumulant 

As the moments of a random variable are the characteristics to represent its 

probability distribution, the cumulants are also important attributes to describe its 

probability distribution, which can be calculated from moments or central 

moments. The following gives the first seven order cumulants in the term of 

central moments [138, 139].  
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1 1

2 2

3 3

4 4 2 2

5 5 3 2

3
6 6 4 2 3 3 2

7 7 5 2 4 3 3 2 2

3

10

15 10 30( )

21 35 210

K m

K M

K M

K M M M

K M M M

K M M M M M M

K M M M M M M M M

=

=

=

= −

= −

= − − +

= − − +

  (2.19) 

where rK is the r-order cumulant. 

8) Normal distribution  

If a continuous random variable X has a probability density function in the 

following form 
2 2( ) / 21( )

2
x Xf x e σ

σ π
− −=                                         (2.20) 

X is a normal distribution with an expectation of X and variance 2σ , and 

recorded as 2( , )N X σ  [138, 139]. The expectation X determines the 

displacement of density curve and variance 2σ  determines the shape of density 

curve. The cumulative distribution function (CDF) is  
2 2( ) / 21( )

2
x u XP X x e duσ

σ π
− −

−∞
≤ = ∫                         (2.21) 

If 0X =  and 1σ = , the normal distribution is specially called standard normal 

distribution, denoted as (0,1)N . In addition, any normal distribution can be 

standardized by  
X XX
σ
−

=                                                  (2.22) 

where X obeys (0,1)N  with a PDF as  
2 /21( )

2
xf x e

π
−= 

                                         (2.23) 

and its CDF is  
2 /21( )

2
x uP X x e du

π
−

−∞
≤ = ∫





                             (2.24) 
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2.4.2 Gram-Charlier Expansion for Probability Estimation  

The PDF of a random variable can be calculated from its moments or 

cumulants by the Cornish-Fisher expansion, Edgeworth expansion or Gram-

Charlier expansion [137, 140]. In this thesis, the Gram-Charlier expansion is 

adopted for PDF estimation in Chapter VI, and the following is the related theory.  

If X  is standardized by X XX
σ
−

=  and its r-order normalized cumulant is 

denoted as rg , rg  can be calculated as 

r
r r

Kg
σ

=                                                       (2.25) 

where rK is the r-order cumulant of X and σ is the standard derivation of X. 

According to the Gram-Charlier expansion, the CDF of X can be estimated by 

normalized cumulants as [140, 141]  



   

 

3 54
2 3 4

2
6 3 7 3 4

5 6

( ) ( ) ( )[ ( ) ( ) ( )
3! 4! 5!

10 35( ) ( ) ...]
6! 7!

x g ggP X x N u d uN x H x H x H x

g g g g gH x H x

−∞
≤ = − + +

+ +
+ + +

∫
 (2.26) 

where  x Xx
σ
−

= , X  and σ are the expectation and standard deviation of 

X ;
2 /21( )

2
uN u e

π
−=  is the PDF of standard normal distribution; and ( )rH x is 

r-order Hermite polynomial function with the specific expression as  

0

1

2
2

3
3

4 2
4

5 3
5

6 4 2
6

( ) 1

( )

( ) 1

( ) 3

( ) 6 3

( ) 10 15

( ) 15 45 15

H x

H x x

H x x

H x x x

H x x x

H x x x x

H x x x x

=

=

= −

= −

= − +

= − +

= − + −



 

 

  

  

   

   

                          (2.27) 
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When (2.25) and (2.27) are substituted into (2.26), the CDF of X  can be 

expressed as the function of the first several order cumulants as [140] 



   

 

2 33 4
3 4

4 25
5

( ) ( ) ( )[ ( 1) ( 3 )
3! 4!

( 6 3) ...]
5!

x K KP X x N u du N x x x x

K x x

σ σ

σ

−∞
≤ = − − + −

+ − + +

∫
 (2.28) 

and the PDF of X can be estimated by  

    

  

3 4 23 4
3 4

5 35
5

( ) ( )[1 ( 3 ) ( 6 3)
3! 4!

( 10 15 ) ...]
5!

K Kf x N x x x x x

K x x x

σ σ

σ

= + − + − + +

− + +
  (2.29) 

2.5 Summary 

In this chapter, the fundamentals of transient stability constrained optimal 

power flow have been reviewed. The traditional TSCOPF model is first 

represented using a compact mathematical formulation, then the current state of 

art algorithms for solving this TSCOPF problem are reviewed and categorized 

into the following three solution approaches: 1) iterative generation rescheduling, 

2) analytical method by discretizing the DAEs, and 3) various AIs. In addition, 

methodologies to handle the TSCOPF problem with uncertainties are 

comprehensively reviewed. Last but not least, some basic definitions in the 

probability theory are introduced for describing random variables, and the Gram-

Charlier Expansion for probability distribution estimation is briefly introduced to 

serve as the foundations to handle uncertainties in the P-TSCOPF model 

proposed in Chapter VI. 
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Chapter III  

A Novel Energy Sensitivity Based Method for 
Transient Stability Constrained Optimal Power 
Flow 

3.1 Introduction 

Transient stability constrained optimal power flow (TSCOPF) is a difficult 

optimization problem for power system planning and operation. The key concern 

is how to deal with the transient stability constraint efficiently using a proper 

method to reduce the optimization burden. Since the number of TSCOPF 

constraints would rise sharply with the increasing power system scale, number of 

contingencies, transient stability simulation time, etc., a huge dimension 

complexity and expensive computation time would be resulted for solving 

TSCOPF problem by the discretized method. In addition, the usual transient 

stability constraint described by a heuristic generator angle threshold or energy 

based stability margin is applicable only to the normal unstable TSCOPF while 

the extreme unstable TSCOPF problem was often neglected. Furthermore, the 

issue of over-stabilization in the TSCOPF optimization procedure has not yet 

been fully addressed in the current state of art algorithms. 

In this chapter, the TSCOPF problem is decomposed into two iterative 

processes as in [64, 107, 108], namely the OPF process and the stability analysis 

process. As compared to [64], the proposed method adopted the trajectory 

sensitivities technique [108] to 1) eliminate the problem of changed OMIB mode 

and the need for properly set of initial angle decrement’s percentage λ  in [64], 

and 2) handle the extreme unstable cases and over-stabilization. In the OPF 
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process, for each contingency, one linear energy constraint for unstable case or 

one power balance constraint for extreme unstable case derived from the 

transient stability analysis will be added to the conventional OPF model. In the 

stability analysis process, the stability margin constraint is constructed using the 

well-established trajectory sensitivities technique with enhancements to handle 

extreme unstable cases and over-stabilization. As a whole, this chapter presents a 

complete analytical solution method for solving all types of TSCOPF problems. 

3.2 Traditional TSCOPF Model 

The objective of TSCOPF could be in many different forms. For example, it 

could be the minimum power loss of network, the minimum fuel cost of 

generators, or the participants’ bids in a deregulated electricity market. Here, the 

quadratic fuel cost functions of the generators are adopted as the OPF objective 

as 

2

1
+

Gn

G i Gi i Gi i
i

F a P b P c
=

= +∑     (3.1) 

where ia , ib , ic  are the cost coefficients for active power GiP , and Gn is the 

number of generators.  

The static constraints include the following power flow equalities. 

1

1

0 ( cos sin )

0 Q ( sin cos )

b

b

n

Gi Di i j ij ij ij ij
j

n

Gi Di i j ij ij ij ij
j

P P V V G B

Q V V G B

θ θ

θ θ

=

=


= − − +



 = − − −


∑

∑
                   (3.2) 

where 1,2,..., bi n= ; bn  is the total number of nodes; DiP  and DiQ  are the active 

and reactive load demand; GiQ  is the generator reactive power; iV  is the voltage 

magnitude of node i ; ijθ is the angle difference between node i and j . 

The pre-fault security inequalities include the following. 

min max ( 1, 2,......, )Gi Gi Gi GP P P i n≤ ≤ =                         (3.3) 

min max ( 1, 2,......, )Gi Gi Gi GQ Q Q i n≤ ≤ =                        (3.4) 
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min max ( 1, 2,......, )i i i bV V V i n≤ ≤ =                           (3.5) 

min max ( 1, 2,....., )l l l lS S S i n≤ ≤ =                            (3.6) 

where ln  is the number of branches; miniV  and maxiV are the lower and upper 

limits of node voltage magnitude, respectively; minlS and maxlS  are transmission 

line loading limits.  

The dynamic constraints include the DAEs describing the following system 

dynamic behaviours and the transient stability. 

0 0

0 0

( ( ), ( ), ), ( )
0 ( ( ), ( ), ), ( )
x f x t y t x t x

g x t y t y t y
α
α

= =
 = =



  (3.7) 

where x  is a vector of dynamic state variables such as generator angle and speed 

etc., y  is a vector of algebraic variables, and α  stands for the control parameters 

to be optimized. The DAEs (3.7) can be solved for instance by implicit 

trapezoidal integration in time domain simulation. 

In most references, the transient stability is constrained by a heuristic angle 

threshold. However, for different threshold settings, the optimization results 

could be very different. Here, as a better alternative, the proposed method adopts 

a SIME-based transient stability margin constraint instead. 

3.3 SIME Method 

The Transient Energy Function (TEF) method, such as the BCU method, is an 

important tool for power system transient stability analysis. The BCU method is 

based on the correct controlling Unstable Equilibrium Point (UEP) obtained by 

two numerical integrations (one for the PEBS crossing on faulted system and the 

other for the reduced gradient system) and one Newton iteration for the nonlinear 

algebraic equations. While these extra efforts can consistently ensure the exact 

controlling UEP of the BCU method and offer higher accurate analysis of 

transient stability, the analysis will be slowed down [88, 142]. On the other hand, 

the SIME is a hybrid temporal-direct method with fast execution speed for multi-
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machine system transient stability analysis. It uses the results from the time 

domain simulation of the full multi-machine system to (1) observe the system 

stability in a SIME frame by examining the candidate critical machines and the 

unstable conditions, and then (2) determine the stability margin [143]. SIME has 

been widely adopted as an effective method for transient stability assessment in 

[93, 94, 96] and TSCOPF problem in [42, 52, 64, 66, 108]. Based on the SIME 

theory, if the system is separated into two groups of Critical Machines (CMs) and 

Non-critical Machines (NMs) by the decomposition pattern method [42, 94], the 

original system can be mapped to the SIME model as 

E
E a mE eE

E
E

dM P P P
dt

d
dt

ω

δ ω

 = = −

 =


            (3.8) 

where / ( )E C N C NM M M M M= +  is the equivalent inertial coefficient in OMIB 

with subscripts ‘C’ and ‘N’ stood for CMs and NMs and the inertia coefficients 

defined as C kk C
M M

∈
=∑  and N jj N

M M
∈

=∑ ; 1 = E C N C k kk C
M Mδ δ δ δ−

∈
= − −∑    

1
N j jj N

M M δ−
∈∑  and 1 1 = E C N C k k N j jk C j N

M M M Mω ω ω ω ω− −
∈ ∈

= − −∑ ∑  are the 

OMIB angle and speed. The equivalent mechanical power and electric power are 
1 1( )mE E C mk N mjk C j N

P M M P M P− −
∈ ∈

= −∑ ∑  and 1 1( )eE E C ek N ejk C j N
P M M P M P− −

∈ ∈
= −∑ ∑ , 

respectively.  

Based on the SIME theory, the system stability could be assessed via the 

accelerating area accA  and the decelerating area decA  as  

dec accA Aη = −                       (3.9) 

For normal unstable case, η  can be derived from the residual dynamic energy 

at the exit point when the potential energy is totally offset by the dynamic energy. 

At this exit point, the characteristic of electric and mechanical power satisfies 

( ) ( ) ( ) 0

( ) 0

a u mE u eE u

a
a u

P t P t P t
dPP t
dt

= − =
 = >


    (3.10) 

and the stability margin is 
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21
2

( ( ))u E E uM tη ω= −             (3.11) 

For stable case, before the system approaches the exit point, the system stops 

its excursion at rδ  and returns for the reverse swing. For this stable condition, 

the characteristics of system are 

( ) 0
( ) 0

r

a r

t
P t
ω =
 <

                              (3.12) 

and the stability margin is 

( ) / 2u

r
s a ar u rP d P

δ

δ
η δ δ δ= − ≈ −∫     (3.13) 

where uδ  is the angle at time ut when the generator active power crosses 

mechanical power by the second kick method [96], rδ  are the return angle at 

time rt , and arP  is the active power at rδ . 

It shall be noted that condition (3.10) alone is not sufficient to cover all the 

unstable cases. For extreme unstable case, the mechanical power mEP

 

would 

remain larger than the electric power eEP

 

even after the fault was cleared. The 

generator speed will therefore continue to increase, and as a result, the generator 

angle will rapidly increase and the system loses stability quickly. Since there is 

no intersection point between mEP  and eEP , condition (3.10) cannot be satisfied, 

and the accelerating power distance [94], which is the minimum distance 

between mEP  and eEP , is adopted and redefined as the stability margin for the 

extreme unstable cases as (3-14). 

min min { ( ) ( ), , ( ) 0}u a mE eE c aP P t P t t t P tη = − = − − > >  (3.14) 

where ct is the fault clearing time. It is also worth to mention that the stability 

margins defined in (3.11) and (3.14) are not directly comparable as the former is 

the kinetic energy of a normal unstable system whereas the later is the 

accelerating power distance of an extreme unstable system. In Section 3.4, the 

sensitivities of these margins will be derived and used to pull the system from 

extreme unstable to normal unstable and then finally economic stable. 
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3.4 Proposed Approach for TSCOPF 

3.4.1 Proposed Stability Constraint for TSCOPF 

So far the transient stability constraints proposed in [64, 108] are not 

applicable to extreme unstable TSCOPF. As mentioned above, for extreme 

unstable cases, there is no intersection between the mechanical and electrical 

powers and a redefined power criterion (3.14) is therefore used to measure the 

stability margin and its sensitivities can be used to effectively improve the 

system instability. Also, in order to reduce the computation burden, transient 

stability simulation could be stopped once the system is detected as unstable 

when the generator angle in Centre Of Inertia (COI) frame is greater than, say, 2π.  

For an extreme unstable case with the redefined stability margin (3.14), the 

stability constraint can be formulated as (3.15) to drive the system from extreme 

unstable to normal unstable. 

min
min 0

k
k a

a mik
mi

dPP P
dP

+ ∆ <     (3.15) 

where min /k k
a midP dP  is a function of the sensitivities of the generator angle when 

the power unbalance is minimum minaP . From (3.14), instability under extreme 

unstable conditions is measured by the accelerating power distance, and the 

constraint (3.15) would improve the stability by reducing the minimum distance 

between the mechanical and electrical power. When there is an intersection, the 

system effectively reaches the range of normal unstable (as shown in Fig. 3.2 in 

Section 3.5).  

Once the system has pulled back to a normal unstable operation point, the 

stability margin η as defined in (3.11) with condition (3.10) can be computed 

using the SIME method and its sensitivity can be expressed as follows [108]: 

( )( )equu E u
E E u

mi mi mi

dEd d tM t
dP dP dP
η ωω= − = −   (3.16) 

where ut  is the unstable time defined by condition (3.10). The stability constraint 
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for the k+1th iteration can then be described as (3.17) based on the kth iteration 

results for normal unstable case. 

1

1 1

( )[ ( ) ] 0
k kn n

k k k k ku E u
u u mi u E E u mik

i imi mi

d d tP M t P
dP dP
η ωη η η ω+

= =

= + ∆ = − ∆ >∑ ∑

 

 (3.17) 

where k  is the iteration number and /k k
E mid dPω  is the sensitivities of speed to 

generator power in SIME for the kth iteration. 

In case the stabilized system is over-stabilized, say with a stability margin 

over a pre-defined stability margin tolerance tη , the following strategy is applied 

to gradually drive the system from unstable to stable without the system being 

over-stabilized via a series of continuous unstable operating points. The process 

is as follows: if the system is unstable in the kth iteration but over-stabilized in the 

k+1th
 iteration, the stability constraint (3.17) is refined as constraint (3.18). 

1

1
0

kn
k k u
u j u mi

i mi

d P
dP
ηη λ η+

=

= + ∆ >∑    (3.18) 

where 1=0.5j jλ λ −  with 0 1λ =  and j is the number of times that the system was 

over-stabilized based on the same solution of kth iteration. By gradually reducing 

the stability margin k
uη  by a factor of jλ , the unstable operating point will 

gradually move across the stability boundary without the system being over-

stabilized. Compared with [64], the handling of over-stabilization is only applied 

in the final stage by reducing the compensated stability margin k
j uλ η  so as to 

reduce the generation perturbation in the last one or two iterations, instead of re-

starting the whole TSCOPF process from the beginning as in [64]. Nevertheless, 

whether a system is over-stabilized or not is a relative concept depending on the 

stability margin tolerance tη  which could be set differently to meet the 

requirements of different systems. Here, the same tolerance (0.1 pu-rad) as in [64] 

is used to determine whether a system is over-stabilized or not, i.e. a system with 

stability margin higher than 0.1 pu-rad is considered as over-stabilized. 
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3.4.2 Trajectory Sensitivities Calculation 

According to 1 1
E C k k N j jk C j N

M M M Mω ω ω− −
∈ ∈

= −∑ ∑  in SIME, the sensitivities 

/E mid dPω  in (3.17) are obviously a function of / mid dPω  while /a midP dP  in 

(3.15) can be calculated from / mid dPδ  based on  = a mE eEP P P−  which is a 

function of generator angles. Therefore, their sensitivities depends on / midx dP =  

[ / , / ]mi mid dP d dPδ ω  which can be calculated by trajectory sensitivities strategy 

as follows. 

For power system dynamics described by DAEs (3.7), the trajectory 

sensitivities with respect to control parameters α  are obtained by deriving (3.7) 

by α at both sides [100, 144, 145]. 

0
0( , , ) ( , , ) ( , , ), ( )x y

dxx f x y x f x y y f x y x t
dα α α α αα α α
α

= + + =                (3.19) 

0 ( , , ) ( , , ) ( , , )x yg x y x g x y y g x yα α αα α α= + +                                   (3.20) 

where ( , , ) ( , , )xf x y f x y xα α= ∂ ∂ , ( , , ) ( , , )yf x y f x y yα α= ∂ ∂  and ( , , )f x yα α =  

( , , )f x y α α∂ ∂  for differential equation (3.19); ( , , ) ( , , )xg x y g x y xα α= ∂ ∂ , 

( , , ) ( , , )yg x y g x y yα α= ∂ ∂  and ( , , ) ( , , )g x y g x yα α α α= ∂ ∂  for algebraic 

equation (3.20). 

Equations (3.19) and (3.20) describe the trajectory sensitivities of the DAEs 

(3.7). If further denoting ( )k
kx x t= , ( )k

ky y t= , ( )k
kx x tα α=  and ( )k

ky y tα α= , 

and assuming kx  and ky  are readily available from the results of implicit 

trapezoidal integration of DAEs (3.7) in time domain simulation, the trajectory 

sensitivities kxα  and kyα  can be derived from (3.19) and (3.20) by the implicit 

trapezoidal rule as 

1( , , ) ( , , ) ( , , )
2 2 2

( , , ) ( , , ) ( , , )

k k k k k k kk
x y

k
k k k k k k

x y

t t tI f x y f x y A f x yx
yg x y g x y g x y

αα

α
α

α α α

α α α

−∆ ∆ ∆   − −   +   =      −    

  (3.21) 

where t∆  is the integration step, I  is the identity matrix and 1kA −  contains 

values from previous step in a form of  
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1 1 1 1 1 1 1 1 1 1[ ( , , )  ( , , ) ( , , )]  
2

k k k k k k k k k k
x y

tA x f x y x f x y y f x yα α α αα α α− − − − − − − − − −∆
= + + +  

(3.22) 

Since the coefficient matrix on the left hand side of (3.21) can be obtained as a 

by-product at each integration step in the calculation of kx  and ky  using the 

implicit trapezoidal integration algorithm in time domain simulation, the 

calculation burden of trajectory sensitivities kxα  and kyα  at each integration step 

would be about the same as one extra Newton iteration at each time step of the 

numerical integration, and would therefore not add a heavy calculation burden to 

the time domain simulation for kx  and ky  [100, 145, 146]. When a discontinuity 

occurs, say transiting from during-fault to post-fault conditions, the trajectory 

sensitivities would undergo a jump and a re-initialization would be needed as 

reported in [45, 146, 147] and is adopted here to handle any discontinuity or 

network switching. 

3.4.3 Procedures for the Proposed Approach 

The following summarizes the steps of the proposed energy sensitivity based 

TSCOPF method. 

Step 1: Run a standard OPF to find the initial optimal point without any transient 

stability constraints and record as OPi where i is the iteration number. If 

all contingencies are stable, go to Step 6. 

Step 2: For each contingency k, run the transient stability simulation with initial 

operating point OPi. Stop the simulation if the simulation period is 

reached or there is any rotor angle exceeded the predefined threshold, say 

2π, in the COI frame. 

Step 3: For each stable case, stability margin (3.13) is checked against the 

stability margin tolerance for over-stabilized case. Stability constraint will 

be relaxed using (3.18) for any over-stabilized case. 
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Step 4: For each early terminated case, construct and update the stability 

constraint by (3.15) or (3.17) for contingency k using the trajectory 

sensitivity technique. In particular, for unstable case with condition (3.10) 

satisfied, identify tu
k for the formulation of energy stability constraint by 

(3.17), otherwise update the constraint with minimum accelerating power 

distance using (3.15) for the extreme unstable case. 

Step 5: Unless all contingencies are stable with at least one contingency being 

non-over-stabilized or the maximum number of iteration is reached, re-

run the OPF with constraint (3.1)-(3.6) and update stability constraint 

(3.15), (3.17) or (3.18) depending on the stability status to find a new 

OPi+1, and then go back to Step 2. 

Step 6: Terminate the TSCOPF optimization and output the solution OPi , number 

of iteration i, etc. 

The above iterative process would first start with the OPF solution without 

any transient stability constraints as the base case. If convergence cannot be 

reached after a predefined number of iterations, say 10, a random perturbation 

using a normal distribution within a 20% range would be applied to modify the 

initial conditions of the next iteration so as to overcome the convexity problem 

and allow the process to converge via a different path [42]. So far in the case 

studies, the use of the base case solution as the start point is sufficient for the 

iteration process to converge within 5 iterations. Furthermore, restriction on the 

maximum generation perturbation size in step 5 as adopted in [100] is not 

generally needed as suggested from the case studies. For rare cases which do 

have problems on this would be caught as cases with convergence problem and 

handled as outlined above. If all else fails, restriction on the maximum generation 

perturbation size could be applied as a last resort at the expense of convergence 

speed and solution time. 
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3.4.4 Remarks 

The entire TSCOPF objective and constraints are concisely formulated as 

(3.1)-(3.7), (3.15), (3.17) or (3.18), and solved iteratively using the following two 

processes: (1) regular OPF with an additional SIME stability constraint for each 

contingency, and (2) transient stability simulation with stability margin 

sensitivities calculation. Those two processes will run in turn and continue until 

the system is stabilized. The following are the main features of this TSCOPF 

solution approach. 

1) Based on the redefined power balance stability margin, the extreme unstable 

TSCOPF, which is not considered in [64] or [108], can be effectively solved 

by an iterative process, namely OPF and concise formulation of stability 

constraint, while existing well-tested OPF and transient stability simulation 

program can be used with little customization. 

2) Only one additional energy or power constraint will be added for each 

contingency in normal unstable or extreme unstable case, respectively, 

instead of nG×T/tstep angle constraints as in discretization method. This 

constraint eliminates the need for complex Hessen matrix calculation and 

bestows the proposed approach with a good scalability for large power 

systems.  

3) The issue of over-stabilization is properly handled by guiding the solution 

gradually across the stability boundary.  

4) The proposed framework is the first complete solution capable to deal with 

multi-swing unstable, normal unstable and extreme unstable case with multi-

contingency as well as issue of over-stabilization in TSCOPF problems. 

3.5 Numerical Examples 

The effectiveness of the proposed TSCOPF approach has been extensively 
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validated using the New England 10-generator 39-bus system and the IEEE 50-

generator 145-bus system. Each contingency will be simulated for 5s with 10ms 

time step. While MATPOWER 4.1 [148] was adopted as the OPF engine, both 

the transient stability program and the stability margin sensitivity calculation 

were developed in-house running under MATLAB R2010b on a PC with a 3.0 

GHz Intel CPU and 4GB RAM. 

3.5.1 New England 10-Generator 39-Bus System 

Firstly, the widely used New England 10-machine 39-bus system is adopted as 

the benchmarking system for validating the proposed TSCOPF formulation and 

solution. While the full network and dynamic data of this system is collected 

from [149], generation cost coefficients and ratings are obtained from [42, 45]. 

Three scenarios, including two single-contingencies and one multi-contingency, 

are tested on this system. Here, a multi-contingency in a TSCOPF problem is 

defined as a set of separate single contingencies considered for transient stability 

analysis to have a common stable solution for each of the individual contingency. 

1) Contingency A 

Contingency A (CTG A) is the case D in [42] which is a single contingency: a 

three-phase-to-ground fault occurs at the end of line 21-22 near bus 21 and is 

cleared after 0.16s by tripping line 21-22.  

As shown in Table 3.1, the initial OPF solution without any transient stability 

constraint is first obtained by the IPM method as the starting point in which the 

system is unstable but with the lowest Fuel Cost (FC) of 60918.79 $/h and G10 

as the least advanced generator as shown in Fig. 3.1(a). The system is then 

gradually alleviated as shown in Fig. 3.1 (b) and (c) which indicate that the 

system has become multiple-swing unstable for the solutions of TSC-1 and TSC-

2 in Table 3.1. After three iterations, the system is stabilized as shown in TSC-3 

in Table 3.1 and Fig. 3.1(d) with FC of 60937.93 $/h, which is close to but not as 
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good as the cost 60937.85 $/h obtained in [42]. The corresponding stability 

margin is 0.032 pu-rad which can be further improved with constraint (3.18) if it 

is considered as over-stabilized; otherwise, the optimization can be stopped. In 

the 4th iteration, 50% of the stability margin plus the sensitivities of TSC-2 is 

used to produce a continuous unstable operating point TSC-4, and then a better 

solution is obtained in TSC-5 with lower FC of 60937.33 $/h and smaller 

stability margin of 0.0181 pu-rad as shown in Table 3.1 and Fig. 3.1(f). Thus, this 

scenario has illustrated the process of proposed approach to improve the 

solutions of a multi-swing unstable with over-stabilized TSCOPF problem. 

Table 3.1  TSCOPF solutions for contingency A of New England system 

Gen Base OPF 
Proposed method for CTG A 

[42] 
TSC-1 TSC-2 TSC-3 TSC-4 TSC-5 

G1(MW) 242.39 245.57 247.25 247.78 247.6 247.63 245.94 

G2(MW) 566.94 573.22 573.27 572.52 572.33 572.74 572.56 

G3(MW) 642.73 647.65 649.02 649.08 648.86 649.03 648.11 

G4(MW) 629.5 629.34 628.4 627.05 627.13 627.22 627.56 

G5(MW) 507.9 507.14 506.35 505.03 505.13 505.27 505.91 

G6(MW) 650.38 631.73 625.55 624.5 625.39 624.74 628.12 

G7(MW) 557.99 541.17 535.38 534.5 535.3 534.73 539.01 

G8(MW) 534.76 539.15 541.1 541.66 541.43 541.5 539.94 

G9(MW) 829.38 833 833.97 834.25 834.09 834.47 833.38 

G10(MW) 977.57 990.98 998.45 1002.24 1001.4 1001.31 998.56 

Margin (pu-rad) -0.9832 -1.6091 -0.3781 0.032 -0.1785 0.0181 -- 

Iterations -- 3 5 37 

Cost ($/h) 60918.79 60927.79 60935.49 60937.93 60936.64 60937.33 60937.85 
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Fig. 3.1  TSCOPF process for contingency A of New England system 
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2) Contingency B 

Contingency B (CTG B) is an extreme unstable single contingency with a 

three-phase-to-ground fault occurred at the end of line 28-29 near bus 29 and 

cleared after 0.35s by tripping line 28–29.  

Table 3.2 TSCOPF solutions for contingency B of New England system 

Gen Base OPF 
Proposed method for CTG B 

TSC-1 TSC-2 TSC-3 TSC-4 TSC-5 

G1(MW) 242.39 249.66 255.66 265.72 260.76 264.47 

G2(MW) 566.94 581.67 593.9 623.76 611.73 622.48 

G3(MW) 642.73 656.64 668.09 686.13 676.92 683.73 

G4(MW) 629.5 646.87 661.27 681.2 670.26 678.39 

G5(MW) 507.9 519.72 529.42 542.77 535.39 540.84 

G6(MW) 650.38 667.38 681.46 700.8 690.14 698.09 

G7(MW) 557.99 574.06 587.41 606.15 595.97 603.61 

G8(MW) 534.76 551.08 564.74 586 575.03 582.68 

G9(MW) 829.38 692.06 580.25 403.17 491.82 425.72 

G10(MW) 977.57 996.85 1012.42 1039.38 1026.28 1034.8 

Margin (pu-rad) (-6.617)* (-1.501)* -8.1647 0.8837 -3.6834 0.036 

Iterations -- 5 

Cost ($/h) 60918.79 61089.49 61482.00 62575.78 61955.89 62405.08 

Note: ( )* is the margin defined by (3.14) for extreme unstable with unit as 
per unit (pu). 

First, OPF results without any transient stability constraint are used as the 

starting point with FC of 60918.79 $/h. The system is extreme unstable with G9 

as CMs and all other machines as NMs. There is no intersection between the 

SIME mechanical and electric power, and the minus of the minimum accelerating 

power distance, i.e. -6.617 pu, is used as the stability margin according to (3.14) 

as shown in Fig. 3.2(a). Constraint (3.15) is then used to obtain an alleviated 

unstable solution TSC-1 as shown in Table 3.2 and Fig. 3.2(b), where the system 

is still extreme unstable but with a smaller minimum accelerating power distance, 

i.e. smaller power unbalance. The system then evolves to normal unstable with 
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FC increased to 61482.00 $/h and results shown as TSC-2 in Table 3.2 and Fig. 

3.2(c). After three iterations, this system is stabilized with FC of 62575.78 $/h 

and stability margin of 0.8837 pu-rad which is considered as over-stabilized if 

the tolerance is set to 0.1 pu-rad as adopted in [64]. Using the sensitivities of 

TSC-2 and relaxed constraint (3.18) with 1 0.5λ = , a further alleviated unstable 

solution is obtained as TSC-4 in Table 3.2 and Fig. 3.2(e). Finally, the system is 

stabilized as TSC-5 with the best FC of 62405.08 $/h and non-over-stabilized 

stability margin 0.036 pu-rad as shown in Table 3.2 and Fig. 3.2(f). 
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Fig. 3.2  TSCOPF process for contingency B of New England system 

3) Multi-contingency A+B 

The third scenario is a multi-contingency consisting of contingency A and B 

(CTG A+B) presented in above for evaluating the capability of the proposed 

method in handling multiple contingencies simultaneously. The main feature of 

this multi-contingency is that contingency A and B do possess different SIME 

modes, namely contingency A is normal unstable with G10 as NMs and others as 

CMs versus contingency B is extreme unstable with G9 as CMs and others as 

NMs.  

One stability constraint per contingency is constructed, using (3.17) or (3.15) 

respectively for contingency A and B, and added to the OPF model at each 

iteration for searching a common stable operating point for the two contingencies. 

After 3 iterations, the system is over-stabilized for contingency B with FC 

62751.74 $/h and stability margin of 0.2494 pu-rad as shown in TSC-3 in Table 

3.3 while contingency A is still unstable.  Therefore the stability constraint for 

contingency B is relaxed according to (3.18) with 1 0.5λ =  and sensitivities of 

TSC-2 while the one for contingency A is updated by (3.17) using TSC-3 results. 

The system is finally stabilized after 4 iterations with FC of 62756.8 $/h, which 

is as expected to be slightly more expensive than the ones for contingency A or B 
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alone, and with stability margin of 0.0667 pu-rad and 0.2419 pu-rad for 

contingency A and B, respectively. The corresponding generator angles for this 

multi-contingency are plotted in Fig. 3.3. 

Table 3.3  TSCOPF solutions for Contingency A+B of New England system 

Gen Base OPF 
Proposed method for CTG A+B 

TSC-1 TSC-2 TSC-3 TSC-4 
G1(MW) 242.39 255.38 265.68 282.04 282.94 
G2(MW) 566.94 592.88 611.46 645 644.63 
G3(MW) 642.73 665.59 682.82 706.63 706.37 
G4(MW) 629.5 647.36 661.17 675.64 674.39 
G5(MW) 507.9 518.92 528.16 533.47 531.9 
G6(MW) 650.38 637.02 632.6 631.63 631.04 
G7(MW) 557.99 546.73 542.92 543.37 542.96 
G8(MW) 534.76 559.35 579.09 608.77 610.58 
G9(MW) 829.38 691.09 578.79 398.5 398.44 
G10(MW) 977.57 1020.49 1050.13 1107.31 1109.05 

Margin A (pu-rad) -0.9832 -2.1355 -0.7341 -0.1857 0.0667 
Margin B (pu-rad) (-6.617)* (-1.489)* -8.13 0.2494 0.2419 

Iterations -- 4 
Cost ($/h) 60918.79 61114.37 61546.52 62751.74 62756.8 

Note: ( )* is the margin defined by (3.14) for extreme unstable with unit as 
per unit (pu). 
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Fig. 3.3  Rotor angles for multi-contingency A+B of New England system 

3.5.2 IEEE 50-Generator 145-Bus System 

The proposed TSCOPF has been further evaluated with the larger IEEE 50-

generator 145-bus system [150] using the following three contingencies with bus 

voltages limited to 0.9< Vi <1.15. 

Contingency A: three-phase earth fault at the end of line 60-59 near bus 60 at 

t=0ms, and cleared by tripping line 60-59 at tcl=200ms; 

Contingency B: three-phase earth fault at the end of line 89-103 near bus 89 

at t=0ms and cleared by tripping line 89-103 at tcl=420ms;  

Contingency C: three-phase earth fault at the end of line 108-73 near bus 108 

at t=0ms and cleared by tripping line 108-73 at tcl=260ms.  

Table 3.4 shows the solutions obtained with the proposed TSCOPF method for 

single contingency A, B or C, and multi-contingency A+B+C (CTG A+B+C), 

and compared with the base case solution without any transient stability 

constraints. For contingency A, B or C, the increase in FC for stabilizing the 

system is little, ranged from 0.0031% to 0.0192%. For multi-contingency 

A+B+C, the FC is further increased to 51,449,579.07 $/h, i.e. increased by 

0.0323% compared to the base case, in order to simultaneously stabilize all the 

CTG B 



50 

contingency A, B and C as shown in Fig. 3.4. It is noted that this is a strong and 

stable system with maximum rotor swing close to 200° as shown in Fig. 3.4(a) 

for contingency A. However, this contingency would be considered as unstable if 

a heuristic angle threshold criteria was used instead with a limit of 100° or 2/3 π 

as suggested in [104, 106]. Also, the convergence rate of the proposed method 

for this 50-generator system has not been deteriorated with the increase in 

number of contingencies, and some of the generators have reached their 

generation limit. However, since the OPF optimization would drive the system 

along different directions under different contingencies, and as a result, different 

generators would reach their generation limits for different single contingency A, 

B, C and multi-contingency A+B+C. 

Table 3.4 TSCOPF solutions for IEEE 50-generator system 

Gen No. Base OPF 
(MW) CTG A (MW) CTG B (MW) CTG C (MW) CTG A+B+C 

(MW) 

G1 71.40 61.06 71.40 71.40 62.96 

G2 1480.80 1501.33 1485.91 1485.11 1509.91 

G3 201.68 226.03 219.71 202.47 244.10 

G4 0.00 0.00 0.00 0.00 0.00 

G5 98.00 98.00 98.00 98.00 98.00 

G6 360.14 357.99 217.00 361.20 215.72 

G7 30.80 28.23 30.80 30.80 29.86 

G8 89.60 89.60 89.60 89.60 89.60 

G9 980.00 980.00 980.00 980.00 980.00 

G10 210.15 216.68 211.13 210.17 219.48 

G11 183.40 138.58 183.40 183.40 137.96 

G12 84.00 84.00 84.00 84.00 84.00 

G13 196.00 196.00 196.00 196.00 196.00 

G14 466.74 448.43 480.31 470.06 474.93 

G15 280.00 280.00 280.00 280.00 280.00 

G16 172.21 169.50 185.38 172.70 185.16 

G17 434.00 434.00 434.00 434.00 434.00 

G18 2505.14 2436.77 2503.15 2506.16 2462.48 

G19 112.48 111.70 129.94 112.68 130.24 



51 

G20 1267.68 1252.03 1284.93 1276.25 1294.02 

G21 1365.05 1358.70 1385.13 1379.86 1414.87 

G22 1282.95 1272.19 1302.33 1296.92 1326.85 

G23 1120.00 1120.00 1120.00 937.95 678.46 

G24 72.80 72.80 72.80 72.80 72.80 

G25 980.00 980.00 980.00 980.00 980.00 

G26 1391.58 1380.91 1406.85 1399.57 1418.89 

G27 420.00 420.00 420.00 420.00 420.00 

G28 3490.20 3490.20 3490.20 3490.20 3490.20 

G29 3798.20 3798.20 3798.20 3798.20 3798.20 

G30 2380.31 2402.73 2378.89 2380.17 2395.54 

G31 5908.00 5908.00 5908.00 5908.00 5908.00 

G32 12675.60 12675.60 12675.60 12675.60 12675.60 

G33 3829.44 3881.35 3828.83 3932.00 4096.72 

G34 1094.10 1098.35 1094.59 1093.82 1096.24 

G35 2362.75 2408.38 2366.82 2365.76 2406.61 

G36 14403.59 14324.03 14413.77 14451.29 14517.60 

G37 8311.80 8311.80 8311.80 8311.80 8311.80 

G38 19394.78 19487.08 19402.64 19379.28 19407.52 

G39 4088.95 4082.24 4084.85 4083.34 4063.33 

G40 17267.31 17316.91 17275.20 17271.90 17318.88 

G41 7576.64 7601.76 7575.72 7576.60 7599.68 

G42 43663.39 43613.95 43658.04 43663.28 43630.02 

G43 14467.30 14467.30 14467.30 14467.30 14467.30 

G44 48545.27 48524.16 48543.00 48544.89 48529.33 

G45 27885.33 27885.33 27885.33 27885.33 27885.33 

G46 31070.94 31166.48 31079.34 31069.99 31132.90 

G47 21558.11 21550.53 21548.70 21545.53 21505.04 

G48 7355.60 7355.60 7355.60 7355.60 7355.60 

G49 15955.80 15955.80 15955.80 15955.80 15955.80 

G50 15401.05 15343.29 15393.68 15398.32 15351.00 

Iterations ----- 4 2 2 3 

Margin 
(pu-rad) 

----- 0.028 0.063 0.0597 
A: 0.0087 
B: 0.3947 
C: 0.6096 

Cost($/h) 51432959.2 51438622.84 
(0.0110%) 

51434583.83 
(0.0031%) 

51442836.48 
(0.0192%) 

51449579.07 
(0.0323%) 
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Fig. 3.4 Rotor plots for multi-contingency A+B+C of IEEE 50-generator system 
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3.5.3 Computation Time Analysis 

Table 3.5 shows the computation times of the proposed method for solving the 

TSCOPF problem on the two different sized systems with single/multi-

contingency. In column 2, A, B and C are the entries corresponding to 

contingency A, B and C with the Jacobian matrix formed in the final Newton 

iteration in the time domain simulation reused to improve the sensitivity 

calculation speed. Column 3 and 4 show the total number of iterations and the 

total CPU time with break downs on the time taken for solving the OPF and 

forming the Transient Stability Constraint (TSC). 

Table 3.5  Computation times for solving various TSCOPF problems 

Systems Iterations OPF+TSC=Total Time (s) 

New England 
10-Gen 

A  3 0.95+7.16=8.11 

B 5 1.31+7.13=8.44 

A-B  4 1.02+13.32=14.34 

IEEE 50-Gen 

A 4 3.51+52.91=56.42 

B 2 2.18+17.50=19.68 

C 2 2.08+19.69=21.77 

A-B-C  3 3.24+93.56=96.80 

A-B-C (parallel) 3 3.35+39.76=43.11 

For the New England 10-generator system, 3 iterations were required to 

complete the optimization process for contingency A as compared to 37 iterations 

in [42] with similar solution. The total time taken is 8.11s. For contingency B, 5 

iterations and 8.44s were required for the optimization; whereas for multi-

contingency A+B, 4 iterations were needed and the total CPU time taken 

increased to 14.34s due to the number of transient stability simulations increased 

in each iteration. 
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For the 50-generator system, the execution times for single contingency A, B, 

or C were 56.42s for 4 iterations, 19.68s for 2 iterations and 21.77s for 2 

iterations, respectively. The time taken for the 46-gen Mexican power system, 

which is comparable in size to the IEEE 50-gen system, is 33.34s as reported in 

[64]. Thus, the timing for the two methods is roughly comparable or in the 

similar order of magnitude. The time taken for stabilizing the multi-contingency 

A+B+C increased to 96.80s for 3 iterations due to the increased number of 

contingencies. When parallel processing technique is used to evenly distribute 

the computation burden among 3 PCs, the CPU time is significantly reduced to 

43.11s with speedup and efficiency increased to 2.25 and 74.8%, respectively. 

In general, the proposed method could solved the TSCOPF problem with 

satisfied solutions in an acceptable time scale with the help of the following: (1) 

only one transient stability constraint for each contingency would be introduced 

irrespective of system size or simulation period; (2) the reuse of the Jacobian 

matrix in time domain simulation for trajectory sensitivity calculation.  

3.5 Summary 

A novel energy sensitivity based transient stability constrained OPF for multi-

machine power system is proposed in this chapter. Since only a single stability 

constraint is introduced for each extreme unstable contingency based on the 

SIME power distance of the whole system instead of angles of multiple machines, 

the dimension of the stability constraints in TSCOPF is greatly reduced. The 

proposed method splits the TSCOPF into two sub-processes solving iteratively in 

turn to obtain the stable and economic operating point with convergence 

characteristic comparable to traditional OPF. The issue of over-stabilization of 

TSCOPF optimization is also properly handled by guiding the solution gradually 

across the stability boundary. Consequently, an all-round approach is proposed 

for the first time to effectively solve all types of TSCOPF problems. The 
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proposed approach has been extensively tested and validated on the New 

England 10-generator 39-bus system and the IEEE 50-generator 145-bus system. 

Simulations showed that the proposed approach is capable of handling multi-

swing and extreme instability with multiple contingencies and possible over-

stabilized TSCOPF problem and can effectively obtain the stable and economic 

solutions. 
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Chapter IV  

Enhanced Particle Swarm Optimization Applied 
for Transient Angle and Voltage Constrained 
MINLP-TSCOPF Problem with FACTS 

4.1 Introduction  

In Chapter III, a basic TSCOPF model was introduced and solved analytically 

by the trajectory sensitivity-based method. With the rapid development of power 

electronics technologies, many new dynamic complicated components such as 

FACTS devices are now widely used in power systems, which make the system 

much more complex and bring new challenges to TSCOPF solving. Meanwhile, 

real generators do have valve-point effects in power generations, and discrete 

control variables such as transformer taps and capacitor banks are common in 

power system optimization. In order to properly consider all these factors, the 

TSCOPF will have to transform to a non-differential and discrete optimization 

problem. As a timely development, in this chapter, a general non-convex Mixed 

Integer Non-Linear Program TSCOPF (MINLP-TSCOPF) model is proposed to 

support any complicated dynamic components and discrete control variables. 

The proposed MINLP-TSCOPF model is highly discontinuous and non-

convex with multiple minima and thus very difficult to be addressed. The Branch 

and Bound (B&B) algorithm is a classical algorithm proposed in 1960 which can 

deal with discrete variables and its combination with a gradient-based method 

could in principle solve this non-convex MINLP-TSCOPF. However, as the B&B 

algorithm is based on a systematic enumeration of all the potential solutions in 

which large subsets of candidates are compared and discarded so as to find the 
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final solution, the resulted hybrid algorithm will be too complicated for solving 

any practical TSCOPF problems with large number of discrete control variables. 

More important, due to the non-convexity of TSCOPF, B&B hybrid with 

gradient-based algorithm would likely be trapped in suboptimal solutions [59]. 

So far, there is no successful deterministic method published for solving any non-

convex MINLP-TSCOPF problems. 

Intelligent methods such as DE [43], ANN [40], EP [109], GA [110] and PSO 

[44, 111-115] are population-based stochastic optimizations which do not rely on 

derivatives and therefore could handle non-derivative and non-convex problems. 

From the simplicity and practical point of view, PSO imitating the social 

behaviours of bird flocking is a good stochastic optimization algorithm with only 

a few parameters needed to be tuned [151]. Coupled with the encouraging 

performance for some hard optimization problems with fast and stable 

convergence, PSO has been widely and successfully applied in power system 

optimization such as the PSO method with Constriction factor (CPSO) proposed 

in [44] for solving traditional TSCOPF. 

In this chapter, an MINLP-TSCOPF model is first presented to consider the 

generation valve-point effects, discrete control variables and complicated 

behaviours of FACTS devices. A signal energy expression is also proposed to 

form the transient voltage constraint such that the transient angle and transient 

voltage performance can be coordinated as an integrated stability control process 

in the MINLP-TSCOPF model and solved by a new enhanced PSO (EPSO) 

method. Last but not least, the proposed MINLP-TSCOPF model and proposed 

EPSO solution method are investigated and validated using two representative 

power systems with complex generator models and FACTS devices. 

4.2 Proposed MINLP-TSCOPF Model 

As widely adopted in [42-44, 64, 66], the generation fuel cost is adopted as 
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the objective function in this thesis for benchmarking with published methods. 

Due to the sharp increase of fuel losses in the valve opening process of turbine, 

generators would have valve point effects on the heat rate curve with ripples [26, 

57, 58], which makes the objective function become high order nonlinear, non-

convex with many minima. A refined model with consideration of the valve point 

effects is therefore expressed as a sum of quadratic polynomials and sinusoidal 

terms of active power as follows. 

2
min

1
{ + | sin( ( )) |}

Gn

G i Gi i Gi i i i Gi Gi
i

F a P b P c e f P P
=

= + + −∑               (4.1) 

where Gn  is the numbers of generators; GiP is the generator active power; ai, bi, ci, 

ei, and fi are fuel cost coefficients. Control variables include active power GiP  of 

generators, discrete capacity of compensation capacitors and discrete tap ratio of 

on-load tap changers. It shall be noted that, though the valve load point effect is 

considered in the TSCOPF objective to form a non-differential optimization 

problem from the viewpoint of economy, the valve opening dynamic process for 

prime mover control is not included and thus a constant mechanical power is 

adopted during transient stability analysis as in [42-44, 64-66] for TSCOPF. 

Static constraints are the following power flow equalities and static security 

inequalities. 

1) Equality constraints of power flow 

1
0 ( cos sin )

bn

Gi Di i j ij ij ij ij
j

P P V V G Bθ θ
=

= − − +∑                           (4.2) 

1
0 Q ( sin cos )

bn

Gi Di i j ij ij ij ij
j

Q V V G Bθ θ
=

= − − −∑                          (4.3) 

where 1,2......, bi n=  and bn  is the number of buses; PGi and QGi are the generator 

active and reactive power; PDi and QDi are the active and reactive load demand; Vi 

and θi are voltage magnitude and angle of bus i.  

2) Inequality constraints for static security [42, 66] 

min max ( 1, 2,..., )Gi Gi GiP P P i n≤ ≤ =                              (4.4) 
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min max ( 1, 2,..., )Gi Gi GiQ Q Q i n≤ ≤ =                             (4.5) 

min max ( 1, 2,..., )i i i bV V V i n≤ ≤ =                               (4.6) 

min max ( 1, 2,..., )l l l lS S S i n≤ ≤ =                               (4.7) 

min max ( 1, 2,..., )i i i tT T T i n≤ ≤ =                               (4.8) 

where Sl and Ti  are the line flow and transformer tap ratio, respectively; ln  and 

tn  are the number of transmission lines and transformers, respectively. 

The proposed TSCOPF model also includes transient constraints for detailed 

generators, Static VAr Compensators (SVC), and Thyristor-Controlled Series 

Capacitors (TCSC) as follows. 

3) Equality constraints of generator motion 

The dynamic for a n -generator power system in the COI frame is generally 

described by [152]  

1

d ( ) ( )
d

d ( 1,2,..., )
d

n
i i

i mi ei mi ei i
iT

i
i

MM P P P P f
t M

i n
t

ω

δ ω

=

 = − − − ≡ ⋅

 = =

∑
  (4.9) 

where iM  is inertia constant of machine, and 
1

n

T i
i

M M
=

=∑ ; miP  and eiP  are the 

mechanical power input and electrical power output of machine i . The 

expressions for eiP  would vary with different generator models, and the detailed 

equations involved in computing eiP  can be found in [150]. Here, a two-axis 

transient generator model with Automatic Voltage Regulator (AVR) is adopted as 

a representative complex generation system [149, 150] for the evaluation of the 

proposed TSCOPF model and solution method. 

4) Equality constraints of SVC 

The static model of SVC can be simply represented as a susceptance svcB  with 

reactive power output dependent on the bus voltage as follows [4] 

2
svc iQ B V=      (4.10) 

where iV  is the voltage magnitude of the bus to which the SVC is connected. Its 

dynamics can be modelled as a lead-lag controller and an inertial block with anti-
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windup limiter as shown in Fig. 4.1(a). The corresponding differential equations 

are as follows: 

2
1

2

1

2

(1 )( )

( )[ ]

ref

B ref B svc

i

svc
i

dx
T V V x

dt

dB
T x V V K B

dt

T
T

T
T

= − − −

= + − −







     (4.11) 

where refV  is the reference voltage of SVC.  
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(a) Block diagram of SVC controller 
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(b) Module of TCSC 
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(c) Block diagram of TCSC controller 

Fig. 4.1  Models of SVC and TCSC 

5) Equality constraints of TCSC 

TCSC can be considered as a controllable reactance inserted in a transmission 

line as shown in Fig. 4.1(b) with its power flow equations written as [153]: 
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2

2

2

2

cos( ) sin( )

sin( ) cos( )

cos( ) sin( )

sin( ) cos( )

km m km k m km k m k m km k m

km m km k m km k m k m km k m

mk n km k m km k m k m km k m
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P V g V V g V V b

Q V b V V g V V b

P V g V V g V V b

Q V b V V g V V b

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

= − − − −

= − − − + −

= − − + −

= − + − − −

  (4.12) 

where Pkm and Qkm are the active power and reactive power transferred from bus 

k to m; 2 2
csc[ ( ) ]km km km km tg r r x x= + − , 2 2

csc csc( ) [ ( ) ]km t km km km tb x x r x x= − + − , and 

xtcsc is the TCSC series reactance. While (4.12) is used to calculate the power 

flows of the lines with TCSC installed for constraint (4.7), xtcsc will be lumped to 

the line reactance as shown in Fig. 4.1(b) in considering the power flow 

constraints in (4.2) and (4.3). 

The TCSC controller is modelled as an inertial block with anti-windup limiter 

as shown in Fig. 4.1(c). The input signal is the active power error of the 

controlled transmission line, and the output signal is the series reactance of 

TCSC. Its differential equation is as follows. 

( )p ref p
tcsc

km tcsc
dx

T P P K
dt

x= − −    (4.13) 

where refP  is the active power reference of the controlled transmission line. 

6) Inequality constraints of transient voltage 

Recently, power system network frequently encountered problems of poor 

transient voltage causing, for example, disconnections of wind generators with 

poor Low Voltage Ride Through capability, stalling of induction motor, or mal-

tripping of relay. Most utilities have adopted the North American Electric 

Reliability Committee [154] criteria for assessing the transient voltage 

performance. As a result, the transient voltage performance is becoming a 

concern and therefore shall also be considered in the TSCOPF model together 

with the transient angle stability. With reference to the energy expression of a 

signal [155], the transient voltage performance can be expressed as follows. 

21 ( ) ( )
( )

f

cl

t Tt s t s
t

f cl s s

V V V V N
t t V V

γ− −
⋅ ⋅ ≤ ⋅

− ∫ W                      (4.14) 
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where clt  and ft  are the fault clearing time and the total simulation time, 

respectively; tV  and sV  are the transient voltages during the simulation period 

and the reference voltage of the corresponding buses; W is the weight matrix; N  

is the number of buses, and γ  is the threshold for the average derivation of 

voltage. sV  usually is the pre-fault steady-state voltage of each bus. During the 

transient, voltage could typically vary in the range of [0.8, 1.2] and γ  could 

therefore be set to 20%. Thus, (4.14) represents the acceptable energy derivation 

during the simulation period. 

7) Inequality constraints of transient angle stability 

Transient angle stability constraints are commonly defined heuristically as a 

maximum allowable generator angle in COI frame such as π in [45], 100° in [55] 

and 120° in [44, 65, 104]. It is obvious that such heuristic constraints would be 

system dependent and lead to sub-optimal results, and there will be Gn  inequality 

constraints resulted for Gn  generators as this angle constraint is tied to the 

individual generator. On the other hand, the SIME method is an effective method 

for transient stability analysis [93, 94, 96], therefore, the SIME method 

introduced in Chapter III is adopted here to calculate the transient stability 

margin (TSM) for precise formulation of the transient angle stability constraints 

in the proposed MINLP-TSCOPF model. 

Based on SIME theory [93, 94, 96], the calculation of TSM depends on the 

post-fault trajectory simulation. For a normal unstable case, it is defined as the 

negative value of the SIME kinetic energy at the exit point; for a stable case, the 

TSM is defined as the SIME potential energy increment from the return point of 

post-fault trajectory to the exit point of the reinserted permanent fault trajectory, 

which give a measure of how much more kinetic energy the post-fault system can 

withstand before becoming unstable. The approach to evaluate TSM is 

summarized as follows: 

Step 1: Determine the system state at fault clearing and then continue the 
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simulation of the post-fault power system and keep track of Eω  along 

the simulation trajectory, where Eω  is the equivalent SIME speed [93, 

94]. If Eω  passes through a positive minimum value indicated as cω , go 

to Step 2; if Eω  changes its value from positive to negative, go to Step 3; 

if Eω  continuously increases without a minimum, go to Step 4. 

Step 2: Normal unstable case: TSM is evaluated as the negative minima of 

SIME kinetic energy, i.e. 2 / 2E cTSM M ω= − . 

Step 3: Stable case: Perform a “reinserted fault-on” simulation commencing at 
the return point to locate the exit point, then ( ) / 2ar u rTSM P δ δ= − . 

Step 4: Extreme unstable case: calculate the redefined stability margin by 

min min { ( ) ( ), , ( ) 0}a mE eE c aTSM P P t P t t t P t= − = − − > > , where tc is the 

fault clearing time [94]. 

In short, (i) TSM is positive if and only if the system is stable; (ii) TSM is 

negative if and only if the system is dynamic unstable; (iii) when TSM is zero, 

the system is critical; (iv) the stability margin defined for extreme unstable case 

is not directly comparable to the stable or normal unstable case as the former is 

defined as the accelerating power distance while the latter is defined in term of 

energy. 

As a result, the proposed transient stability constraint can be expressed as  

0TSM ≥    or   0TSM− ≤     (4.15)  

which not only is a precise constraint for transient stability but also reduces the 

number of constraints to one for the complete system instead of Gn for all the 

generators. 

While equality constraints (4.2), (4.3) and (4.10) are implicitly handled in the 

Newton-Raphson power flow calculation and equality constraints (4.9), (4.11) 

and (4.13) are implicitly addressed in the time domain simulation, the remaining 

inequality constraints (4.4)-(4.8), (4.14) and (4.15) are grouped as:  

( , ) 0 1,2,3,...,i ueqH x u i n≤ =                         (4.16) 
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and handled using the external penalty method [44, 114, 115, 156] with a new 

objective function expressed as: 
~

2( , ) ( , ) [max(0, ( , ))]i iMin F x u f x u H x uβ= +                      (4.17) 

where iβ  is the penalty factor which should be properly selected to sufficiently 

penalize the violations and also guarantee a good flexible solution [156]. As a 

rule of thumb derived from experiments, the penalty factor iβ  in this thesis is set 

to one order of magnitude higher than the objective function value ( , )f x u . 

4.3 Improved Particle Swarm Optimization 

4.3.1 Standard Particle Swarm Optimization 

The Standard PSO (SPSO) algorithm is an optimization method based on the 

foraging behaviour of birds. Each possible optimal solution is a ‘bird’ in a search 

space, and is called ‘particle’ in the algorithm. The particle in the group moves to 

a better area according to its fitness. The core of the algorithm is the ‘speed-

displacement’ search model described mathematically as follows. Assuming there 

are m particles in the D-dimensional search space, and the position of ith particle 

is 1 2( , ,..., )i i i iDX x x x= ; the best position of each particle is 1 2( , ,..., )i i i iDPBest p p p=  

with corresponding fitness ifPBest ; the best position of the swarm is 

1 2( , ,..., )g g g gDBest p p p=  and the corresponding fitness is global best fGBest . 

Denoted the flight speed of particles as 1 2( , ,..., )i i i iDV v v v= , their velocities and 

positions are updated by (4.18) [112]. 

1
1 1 2 2

1 1

( ) () ( )

1, 2,...,

k k k k k k
i i i i g i

k k k
i i i

V V c Rand Pbest X c Rand Best X

X X V i m

ω+

+ +

 = + ⋅ ⋅ − + ⋅ ⋅ −


= + =

()
       (4.18) 

where k is the number of iterations;ω is the inertia weight factor; 1c  and 2c  are 

cognitive and social constants, and they are typically set to 2.0; Rand1 and Rand2 

are the uniform random number in range of (0, 1). The inertia weight decreases 

linearly as (4.19) [112] 
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max min
max *

total
k

k
ω ωω ω −

= −                                      (4.19) 

where totalk  and k  are the total and current number of iterations, maxω and minω  

are the upper and lower limits of inertia weight, and they are heuristically set at 

0.9 and 0.4 by experiments.. 

4.3.2 Enhanced Particle Swarm Algorithm 

Two new enhancements to the SPSO method are proposed here to form an 

EPSO with improved convergency and accuracy based on the following two 

strategies: 1) adopting different inertia weights for different groups of PSO 

particles; and 2) introducing a shrinking disturbance to the position of PSO 

particles. 

1) Dynamic adjustment of inertia weight 

The inertia weight ω  is an important parameter of the PSO method. It 

controls the impact of previous velocities of particles on the current velocity, 

therefore directly influences the trade-off between global exploration and local 

exploitation ability. While a larger ω  has better global searching capability to 

detect unexplored area, a smaller ω  will facilitate local search ability to finely 

exploit the current search area [157]. A proper designed inertia weight can ensure 

a balance between global and local search capability. An improved PSO (IPSO) 

method with random dynamic inertia weight and linearly changed acceleration 

coefficients was presented in [115]. Different from a randomly changed initial 

weight in [115], the proposed EPSO method classified the particle into three 

groups according to its fitness, and then separately updated the inertia weight for 

particles in each group.  

Let m  be the size of the particle swarm, if  be the fitness of particle iX  in 

iteration k , fGBest  be the global optimum of the swarm, fAVg  be the average 

fitness of the swarm, f AVg′  be the average fitness of the particles whose fitness 

are better than fAVg  with fAVg f AVg′∆ = − , the inertia weight ω  would be 
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adjusted as follows: 

Group I: If if  is better than f AVg′ , the inertia weight is adjusted as:  

1 2

10.4
1 exp( )k k

ω = −
+ ⋅ ⋅∆

                              (4.20) 

where k1 and k2 are empirically set to 2 and 5, respectively, by experiments. In 

case the particle distribution is widely dispersed, ∆  would be larger, and 

larger ω  would be resulted in (4.20) to enhance the exploration. When 

particles are gathered closely, ∆  would be smaller and hence ω  will be 

reduced as a result in (4.20) to enhance the local search ability. 

Group II: If if  is better than fAVg  but worse than f AVg′ , particles are neither 

particularly well dispersed nor gathered, the regular linear adjustment 

following (4.19) would be adopted to update the inertia weight. 

Group III: If if  is worse than fAVg , particles are rangers in the swarm. They 

have better global search capability and helpful for new explorations, hence 

their inertia weight would be unchanged. 

Through the well-tailored inertia weight for PSO particles in different groups, 

the proposed EPSO would balance the global and local search capabilities for 

searching high quality solutions. 

2) Shrinking disturbance to PSO particle positions  

Premature convergence is a common problem encountered by the PSO 

method. Many improvements have been proposed to handle this problem. In 

[113], a Hybrid PSO (HPSO) method introduced the mutation operation of GA to 

enhance the PSO search ability. A Modified PSO (MPSO) was proposed in [114] 

by combining the temperature judgment of simulated annealing algorithm for 

accepting partial bad particles to avoid the premature convergence. These 

methods enhanced the global search capability by adding new perturbations to 

PSO particles, such as by introducing GA mutation in HPSO or allowing partial 

bad particles in MPSO. As inspired by this observation, a Gaussian distributed 
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disturbance is introduced here for updating the EPSO particle positions so as to 

allow the particles to escape from the ‘basin of attraction’ of the local optimum. 

In addition, considered that the disturbance shall not influence the quality of final 

optimal solution, the disturbance is designed to nonlinearly shrink with iterations. 

Now the positions of EPSO particles are reinforced with a shrinking Gaussian 

distribution disturbance as follows: 

2( ) (0,1)total
i i

total

k kR PBest N
k

ρ−
= ⋅ ⋅ ⋅                          (4.21) 

where ρ  is the coefficient of the neighbourhood radius which has been 

determined experimentally as 0.5, iPBest  is the individual best position of ith 

particle, (0,1)N is the Gaussian distribution whose mathematical expectation is 

zero and standard deviation is one. As shown in (4.21), the neighbourhood radius 

iR  decreases with iterations. In the beginning of the optimization, the radius of 

the area is large and hence a large disturbance will be resulted, and the algorithm 

will have a high probability to escape from a local optimum or move away from 

a plateau. As the number of iterations increase, EPSO moves gradually close to 

the optimum while the disturbance reduces to a negligible level. Through the 

above process, the dynamic adjustment of disturbance enhances the optimality of 

EPSO. Taking (4.21) into consideration, positions of EPSO particles are 

calculated as 

1
1 1 2 2

1 1

( ) () ( )

1, 2,...,

k k k k k k
i i i i g i i

k k k
i i i

V V c Rand Pbest X c Rand Best X R

X X V i m

ω+

+ +

 = + ⋅ ⋅ − + ⋅ ⋅ − +


= + =

()
 (4.22) 

After the position is updated, a round operator is used to enforce the allowable 

discrete value for the discrete variables; then EPSO particles are evaluated and 

compared to find individual best and global best for next iteration.  

4.3.3 Test on Mathematic MINLP Problem 

A mathematic MINLP problem with a known global optimum is first selected 
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to test the proposed EPSO method. For MINLP problems, classical methods such 

as Outer Approximation with Equality-Relaxation (OA/ER), Benders 

Decomposition (BD), and B&B algorithm are often used [59]. The proposed 

EPSO method are therefore compared with these deterministic methods as well 

as different versions of published PSO methods, namely SPSO[112], HPSO[113], 

CPSO[44], MPSO[114] and IPSO[115]. The selected benchmark is a MINLP 

model of selecting reactors minimizing for the production cost in [59], which is 

described as 

Min 1 2 1 2COST 7.5y 5.5y 7 6 5xν ν= + + + +                    (Model I) 

s.t. 10.5
1 1z -0.9(1-e ) 0xν− =  

20.4v
2 2z -0.8(1-e ) 0x− =  

1 2 0x x x+ − =  

1 2 10z z+ =  

1 110 0yν − ≤  

2 210 0yν − ≤  

1 120 0x y− ≤  

2 220 0x y− ≤  

1 2 1y y+ =  

1 2 1 2 1 2, , , , , 0x x z zν ν ≥  

1 2( , ) {0,1}y y ∈  

where y1 and y2 are integer variables. The global optimal value of this MINLP 

problem is 99.24 with the solution at (x1, x2, v1, v2, z1, z2, x, y1, y2) = (13.428, 0, 

3.514, 0, 10, 0, 13.428, 1, 0). It was reported in [59] that OA/ER and BD 

obtained a suboptimal solution 107.376 with (yl, y2) = (0, 1) as the initial point, 

while B&B found an optimal value of 99.24 with initial point (yl, y2) = (1, 0) and 

107.376 with initial point (yl, y2) = (0, 1). It is clear that OA/ER and BD have 

found a suboptimal solution while the quality of B&B solution is dependent on 

the starting point and only a proper initial point would result in a global optimal 
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solution.  

The SPSO, HPSO, CPSO, MPSO, IPSO and the proposed EPSO are 

implemented in Matlab 2011b and applied to solve this problem. The optimal 

variables coded in PSO particles are assumed as (y1, z1, x1, x2), while other 

variables (y2, z2, v1, v2, x) are solved from the equality constraints in the model. 

The inequality constraints are handled by the penalty method. The population 

size and iterations are fixed as 4 and 100; the penalty factor is 1000. The initial 

points of optimal variables for all the PSO methods are randomly generated 

within the corresponding boundary.  

Table 4.1 Statistical results of various methods for MINLP Model I 

Vars SPSO 
[112] 

HPSO 
[113] 

CPSO 
[44] 

MPSO 
[114] 

IPSO 
[115] EPSO 

B&B[59] (y1,y2) 

(1,0) (0,1) 

x1 13.4122 13.4211 13.4381 13.4332 13.4265 13.4280 13.4280 0.0000 

x2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 14.9998 

v1 3.5256 3.5192 3.5070 3.5106 3.5153 3.5142 3.5142 0.0000 

v2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.4796 

z1 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 0.0000 

z2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 

x 13.4122 13.4211 13.4381 13.4332 13.4265 13.4280 13.4280 14.9998 

y1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 

y2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 

Best 99.2400 99.2397 99.2398 99.2397 99.2396 99.2396 99.2396 107.3764 

Mean 112.5537 107.1383 103.2276 107.1290 105.1237 99.2397 - - 

Worst 193.1539 118.8530 118.8530 118.8530 118.8530 99.2401 - - 

Std. 
Dev. 29.4705 9.5803 8.2378 10.2916 9.4741 0.0001 - - 

CPU 
Time  0.40s 0.43s 0.41s 0.53s 0.42s 0.42s 0.30s 0.20s 

Table 4.1 shows the statistical results including the mean, worst, best value 

and standard deviations of these methods for 50 independent runs. It is clear that 

all PSO methods could approach the optimal solution 99.24 at the expense of 

slightly higher average CPU time compared with B&B. Furthermore, the 

proposed EPSO has the lowest mean value with Standard Deviation (Std. Dev.) 
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as low as 0.0001. This means EPSO could nearly always approach the global 

optimal solution. In short, the proposed EPSO method has outperformed all other 

methods for the MINLP model as shown in Table 4.1. 

When the MINLP problem has an objective with multiple minimums, B&B is 

even more likely to be trapped in suboptimal solutions and fails to escape from 

the basins of attraction around the local optimal solution. The proposed TSCOPF 

model is in fact one of such multimodal problems when the valve-point effects is 

considered in the fuel cost objective as formulated in (1). For the investigation on 

the impacts due to the valve-point effects, the benchmarking MINLP model 

(Model I) was modified with an additional sinusoidal term added in its objective 

to become Model II as follows. 

Min 1 2 1 2COST 7.5y 5.5y 7 6 5 + 10sin(2 ( 6))x xν ν= + + + + × −       (Model II) 

Table 4.2 Statistical results of various methods for MINLP model II 

Vars SPSO 
[112] 

HPSO 
[113] 

CPSO 
[44] 

MPSO 
[114] 

IPSO 
[115] EPSO 

B&B[59] (y1,y2) 

(1,0) (0,1) 

x1 13.8539 13.8529 13.8542 13.8540 13.8405 13.8540 12.2818 0.0000 

x2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 20.0000 

v1 3.2392 3.2398 3.2390 3.2391 3.2470 3.2391 4.7010 0.0000 

v2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.4521 

z1 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 0.0000 

z2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 

x 13.8539 13.8529 13.8542 13.8540 13.8405 13.8540 12.2818 20.0000 

y1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 

y2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 

Best 99.4446 99.4652 99.4477 99.4440 99.7020 99.4439 101.8431 122.9214 

Mean 117.1390 111.5288 108.3631 99.6035 115.0278 99.5701 - - 

Worst 121.5621 121.5621 121.5621 100.1109 121.5621 99.9554 - - 

Std. 
Dev. 9.3247 10.6347 11.3617 0.2323 10.5213 0.1597 - - 

CPU 
Time  0.39s 0.44s 0.43s 0.52s 0.43s 0.43s 0.30s 0.20s 

While B&B was re-run with initial points (yl, y2) = (1, 0) and (yl, y2) = (0, 1), 

the same parameters as before were used in SPSO, HPSO, CPSO, MPSO, IPSO 
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and EPSO. As shown in Table 4.2, B&B obtained suboptimal solutions of 101.84 

and 122.92 for the two initial points while SPSO, HPSO, CPSO, MPSO, IPSO 

and EPSO all approached the global optimum 99.44. Furthermore, MPSO and 

EPSO have a better mean solution of 99.6 with small standard deviation of 0.23 

and 0.16, respectively, therefore would be the best algorithms for this modified 

MINLP model. The success of MPSO and EPSO is mainly due to the 

insensitivity to initial points of the PSO method and the good balance of their 

exploration and exploitation capabilities. 

4.4 Procedures of EPSO for TSCOPF 

In applying the EPSO method to address the TSCOPF problem, the following 

screening strategy is adopted in the particle initialization to reduce the CPU time 

spending on non-convergent power flow [43]. If dP  is the total active power 

demand, SP  is the total generation sum excluding the slack bus, and min
slackP  and 

max
slackP  are the lower and upper generation limits at the slack bus, respectively; the 

individual will be re-initialized when one of the following two conditions is 

satisfied: i) max
d S slackP P P> +  which implies the power demand could never be met 

even with the maximum generation in the slack bus; ii) min(1 10%)d S slackP P P× + < +  

which would be considered as a bad candidate as power loss over 10% would be 

considered as too large for a practical system.  

The following are the main steps of EPSO in solving this TSCOPF problem. 

Step 1: Input system data and contingency set Ci (i=1,…, k), specify EPSO 

parameters, control variables and the corresponding lower and upper 

boundaries. 

Step 2: Randomly initialize the control variables within their lower and upper 

boundaries using the screening strategy described above. 

Step 3: Run an unconstrained Newton-Raphson power flow for each particle to 

determine the static variables and the initial state values of the dynamic 
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differential equations. It should be noted that as the generation in the 

slack bus is obtained from the power flow calculation, it needs to be 

checked against its upper and lower limits for constraint (4) in Step 5. 

Step 4: For each contingency Ci, solve the dynamic differential equations and 

obtain the transient angle and voltage performance in the simulation 

period. As a result, there will be k transient angle constraints and k 

transient voltage constraints derived and incorporated into the TSCOPF 

model for k contingencies. 

Step 5: Evaluate the fitness of each particle with (19) by the penalty method. 

Step 6: Find the best position of individual particle (PBesti) by comparing the 

fitness between the current and previous iteration, then update the best 

position of the swarm (Bestg). 

Step 7: If the maximum number of iterations is reached, go to Step 10; 

otherwise, increase the iteration number. 

Step 8: Dynamic adjust the inertia weight with (21)-(22), and then update the 

velocity and position of each particle using (23)-(24) and check against 

their upper and lower limits. 

Step 9: Return to Step 3 to re-run the Newton-Raphson power flow. 

Step 10: The last Bestg is the final optimal solution. 

Remarks: 

1) During the initialization in Step 2, if either condition i) or ii) is satisfied, 

particle Xi will be re-initialized as Xi = XL + rand × ( XU – XL), where XU and 

XL are the upper and lower limit of control variables; otherwise, 

unconstrained power flow calculation will be conducted. If the power flow is 

diverged, Xi will be re-initialized. The whole condition and divergence 

checking process will be repeated whenever the particle is re-initialized. 
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2) The time domain simulation in Step 4 is the most calculation intensive part. 

Since one simulation will be required for each contingency, the run time for 

solving the TSCOPF will be increased linearly with the growing number of 

contingencies [44]. In order to reduce the total computation burden, 

contingency screening, ranking and filtering techniques [158, 159] shall 

therefore be used to identify the critical contingencies and thus reduced the 

number of contingencies in the TSCOPF optimization. 

3) In Step 6, individual particles compete with each other to find the PBesti and 

Bestg. However, the fitness of particles obtained in Step 5 may not be directly 

comparable since the definition of stability margin for normal unstable/stable 

and extreme unstable cases are different in Step 4. As a result, the following 

strategy is adopted to identify the better particle from two: If both particles 

are normal unstable/stable or extreme unstable, the one with a lower fitness 

value is better; otherwise, the normal unstable/stable one would be better. 

4) In Step 8, the screening strategy for EPSO initialization is not considered 

again at each step of TSCOPF procedure. If an EPSO particle is identified as 

non-converged by the power flow calculation, it will be not considered for 

updating the best individual position PBesti, thus will implicitly be 

abandoned in following iterations. 

4.5 Discussion of TSCOPF Solutions for Power Systems 

4.5.1 Case A : New England 10-generator 39-bus System 

When factors such as FACTs devices, discrete control variables and valve 

point effects are considered, the TSCOPF model would become a complicated 

non-convex non-derivative MINLP-TSCOPF problem. So far there is no result 

published using any deterministic methods on this MINLP-TSCOPF problem, 

and comparisons in the following case studies are therefore made among 

different versions of PSO methods. 
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The New England 10-generator 39-bus system [160] tabulated in Appendix A 

was slightly modified by installing two SVCs at bus 3 and 26 with the following 

parameters: 1T = 0.65s, 2T = 0.2s, BK = 10, BT = 0.05s, svcmaxB = 5pu, minsvcB = -2pu. 

The fuel cost coefficients ai, bi, ci, of generators were extracted from [45] with 

valve-point effects considered as ei = 200, fi = 0.35 for i = 1, 2,…,5 and ei = 300, 

fi = 0.22 for i = 6, 7,…,10. The lower and upper limits of bus voltages were set to 

0.95 and 1.1, respectively. The continuous control variables are the active power 

of the 10 generators while discrete control variables are the tap ratio of on-load 

tap changers 12-11, 12-13 and 19-20 (with range of 1.0-1.1 in discrete step of 

0.01); the compensation capacitors at bus 5, 8, 9, 18, 21 and 25 (with size of 0-

0.5 pu in discrete step of 0.05 pu). The contingency was a three-phase fault 

occurred at the end of line 15-16 near bus 15 and subsequently cleared by line 

tripping after 0.5 s. The simulation period was 2s with integration step of 0.01s. 

The penalty coefficient iβ  in (19) for all PSO methods was set to 105. 

First, EPSO method was executed for parameter sensitivity analysis. The 

effects of swarm size on the search performance and computation burden was 

investigated with swarm size varied from 10 to 40 when the iterations fixed at 

100. As shown in Table 4.3, the quality of average solutions was improved 

greatly when the swarm size was increased from 10 to 20 while the quality of 

solutions was improved only slightly with larger swarm size. The best 

compromised swarm size was therefore set to 20. The corresponding total 

computation time was breakdown into CPU times for power flow (PF) 

calculation, Transient Simulation (TS), and Function evaluation and Position 

update (FP) in Table 4.3. It showed that the total CPU time increased linearly 

with the growing number of swarm size. Similar behaviour on the CPU time has 

also observed for varying the number of iterations as shown in Table 4.4. It was 

found that when the number of iterations was fixed at 100, EPSO had a good 

trade-off between the solution quality and the total computation time. Therefore, 

in this case study, swarm size and iteration number were fixed at 20 and 100, 
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respectively, for all PSO methods such that comparison among various PSO 

methods was on a basis of the same number of function evaluations while other 

parameters were directly cited from the corresponding references. 

Table 4.3 CPU time and fuel cost against swarm sizes for Case A (Iterations=100) 

Swarm size 
CPU time (s) Mean Fuel cost 

($/h) PF (s) TS (s) FP (s) Total 

10 4.86 437.55 19.18 461.59 62529.46 

20 9.72 914.87 21.20 945.79 62354.45 

30 14.10 1212.50 24.24 1350.84 62334.01 

40 18.65 1773.30 27.07 1819.02 62319.70 

Table 4.4 CPU time and fuel cost against iterations for Case A (swarm size=20) 

Iterations CPU time (s) Fuel cost  
($/h)  PF TS FP Total 

50 4.85 440.30 10.88 456.03 62725.81 
100 9.72 914.87 21.20 945.79 62354.45 
150 14.21 1295.34 32.66 1348.91 62322.28 
200 19.41 1798.75 41.45 1859.60 62310.25 

Table 4.5 Optimal solutions for New England system over 20 runs for Case A  

Variables* OPF 
Generator outputs of TSCOPF 

SPSO 
[112] 

HPSO 
[113] 

CPSO  
 [44] 

MPSO 
[114] 

IPSO 
 [115] EPSO 

G1 242.6963 259.34 266.58 191.53 269.02 205.81 206.13 

G2 618.4651 501.88 538.97 565.17 574.56 574.46 565.51 

G3 593.6217 621.59 557.64 602.87 558.26 592.12 645.55 

G4 645.4233 564.93 565.36 629.47 570.67 591.95 493.74 

G5 430.9937 485.65 512.22 447.86 520.93 422.19 512.80 

G6 671.249 574.28 570.17 600.00 557.28 554.81 615.14 

G7 555.8852 487.92 470.20 442.51 472.24 499.81 483.00 

G8 511.6804 542.40 556.92 559.28 514.07 599.26 514.53 

G9 899.8187 900.00 900.00 900.00 900.00 898.65 900.00 

G10 971.5783 1200.00 1200.00 1200.00 1200.00 1200.00 1200.00 

T12-11 1.05 1.10 1.07 1.09 1.02 1.08 1.01 

T12-13 1.07 1.08 1.10 1.09 1.04 1.07 1.03 

T19-20 1.03 1.05 1.06 1.09 1.07 1.07 1.04 

C5 0.15 0.20 0.50 0.00 0.30 0.40 0.50 

C8 0.15 0.15 0.50 0.50 0.00 0.20 0.30 



76 
 

C9 0.2 0.30 0.25 0.00 0.20 0.30 0.05 

C18 0.5 0.25 0.35 0.35 0.35 0.25 0.40 

C21 0.25 0.20 0.35 0.00 0.15 0.35 0.15 

C25 0.35 0.20 0.50 0.50 0.50 0.30 0.45 

Best FC ($/h) 61619.21 62295.52 62093.18 62262.51 62099.37 62031.43 62048.12 

Worst FC ($/h) 61956.81 62735.24 62744.52 62707.16 62608.70 62707.16 62576.64 

Average FC ($/h) 61831.82 62485.84 62473.26 62486.58 62372.41 62463.32 62354.45 

Std. Dev. FC ($/h) 100.0485 128.07 165.23 117.06 117.68 148.59 157.96 

CPU time for PF (s) 13.35 9.89 9.71 10.36 9.79 11.14 9.72 

CPU time for TS (s) 0.00 912.82 909.30 898.44 936.48 949.94 914.87 

CPU time for FP (s) 19.85 22.18 19.18 21.61 23.47 24.35 21.20 

Total CPU time (s) 33.20 944.89 938.20 930.41 969.74 985.43 945.79 

* The units for generation, tap-ratio and capacitor are MW, per unit and per unit, respectively. 

The optimal solutions of conventional OPF solved by EPSO and MINLP-

TSCOPF solved by SPSO[112], HPSO[113], CPSO[44], MPSO[114], IPSO[115] 

and EPSO were detailed in Table 4.5. It is clear and expected that the fuel costs 

of MINLP-TSCOPF are higher than OPF without transient angle and voltage 

performance constraints as a compromise in cost for better system security. 

Furthermore, comparing the MINLP-TSCOPF solutions of different PSO 

methods, EPSO is capable to find a better solution with lower fuel cost than other 

PSO methods while the computation times are comparable among all. This 

clearly demonstrated that, with similar CPU time cost, the proposed EPSO does 

have superior performance in terms of solution quality. 

0 0.2 0.4 0.6 0.8 1 1.20

20

40

60

80

K
in

et
ic

 E
ne

rg
y 

(p
u-

ra
d)

0 0.2 0.4 0.6 0.8 1 1.2-200

0

200

400

G
en

er
at

or
 A

ng
le

(D
eg

)

Time (s)

 

 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

 
(a) Energy and angles with OPF 
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(b) Energy and angles with TSCOPF-EPSO 
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(c) Bus voltage plots with OPF 
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(d) Bus voltage plots with TSCOPF-EPSO 
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(e) SVC dynamic susceptance with TSCOPF-EPSO 

Fig. 4.2 Transient energy, generator angle, bus voltage and SVC susceptance 

profiles for New England system with OPF and TSCOPF-EPSO 

Fig. 4.2 plotted the transient energies, generator rotor angles, and bus 

voltages for the solutions of OPF and MINLP-TSCOPF solved by EPSO. 

Though the fuel cost for the OPF solution is the lowest, it is transient unstable for 

the given contingency as shown in Fig. 4.2 (a) and (c). After the fault is cleared, 

the SIME kinetic energy of the system firstly decreases due to unbalance of 

mechanical and electrical power and then increases from a minima at 0.7s when 

ABω  passes through the positive minimum value. The system loses its stability 

with TSM defined as the negative value of minimum SIME kinetic energy, i.e. -

8.87 pu-rad. The instability can be seen from the generator rotor angle curves in 

Fig. 4.2(c) which became divergent. On the contrary, when the constraints of 

transient angle and voltage performance are considered, the resulted system is 

transient stable as shown in the plots of transient energies, generator rotor angles, 

and bus voltages in Fig. 4.2 (b) and (d). As shown in Fig. 4.2(b), the minima of 

SIME kinetic energy in the simulation period are always zero, which indicates 

that ABω  have changed its sign twice. The system is stable in the simulation 

period with rotor angle peaked at 150 degrees and bus voltages fluctuated within 
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the predefined signal energy envelope as shown in Fig. 4.2 (d). Fig. 4.2 (e) also 

showed the dynamic behaviours of two SVCs. 

Fig. 4.3 plotted the average convergence for 20 runs of different PSO methods. 

It is clear that TSCOPF-EPSO not only has a better convergence but also obtains 

a lower fuel cost. 
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Fig. 4.3 Average convergence of various PSO methods for England system 

4.5.2 Case B : IEEE 50-generator 145-bus System 

The proposed EPSO method was further examined with the IEEE 50-

generator 145-bus system including 4th order generators and AVR with 

parameters extracted from [150] and selectively listed in Table B.1. The system 

was slightly modified with three SVC devices installed at bus 18, 53 and 76, and 

a TCSC installed in line 58-57 to compensate 10% of its reactance in steady state. 

The lower and upper limits of bus voltage are 0.9 pu and 1.15 pu, respectively. 

The control variables are the active power of generators, the tap ratio of on-load 

tap changers at 17-59, 24-22, 22-83 and 24-76 (with range of 1.0-1.1 pu and 

discrete step of 0.01pu) and the compensation capacitors at bus 5, 15, 19, 35, 39 

and 45 (with size of 0-0.5 pu in discrete step of 0.05 pu).  
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The parameter sensitivity strategy adopted in Case A was also used to study 

the impact of swarm size and iterations on the optimization solution quality and 

computation time. As shown in Table 4.6 and 4.7, the total CPU time increased 

linearly with the growing swarm size and increasing iteration number as in 

previous cases, and the best swarm size and iteration number were determined as 

60 and 100 as a compromise between the computation time and solution quality. 

In the following comparisons, the penalty factor of PSO methods was set to 108 

by experiments, and the following contingency was considered: a three-phase 

short-circuit occurred at the end of line 108-73 near bus 108, subsequently 

cleared by tripping the line after 0.26s. The transient stability simulation period 

was 2s with integration step 0.02s.  

Table 4.6 CPU time and fuel cost against swarm sizes in Case B (Iterations=100) 

Swarm size 
CPU time (s) Fuel cost 

($/h) PF (s) TS (s) FP (s) Total 

30 30.2 1205.3 33.2 1268.7 49305110.4 

60 64.2 2252.3 36.1 2352.6 46858843.6 

90 89.4 3351.2 39.1 3479.7 46504048.1 

120 123.6 4506.8 41.5 4671.9 46325614.3 

Table 4.7 CPU time and fuel cost against iterations in Case B (swarm size=60) 

Iterations 
CPU time (s) Fuel cost 

($/h) PF TS FP Total 

50 31.5 1134.7 18.2 1184.4 51256372.4 

100 64.2 2252.3 36.1 2352.6 46858843.6 

150 95.6 3408.6 54.4 3558.6 46515532.3 

200 126.1 4405.3 70.5 4601.9 46464048.1 

Without any optimization, the system is unstable, as shown in the angle and 

bus voltage curves plotted in Fig. 4.4 (a) and (c), with total fuel cost of 

63,314,317.12 $/h. The statistics solutions of TSCOPF optimized by SPSO [112], 

HPSO[113], CPSO[44], MPSO[114], IPSO[115] and EPSO method are detailed 
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and compared in Table 4.8. While solutions of all PSO methods are transient 

stable, EPSO outperforms other methods with better ‘best fuel cost’, lower 

‘worst fuel cost’, smaller ‘average fuel cost’, similar ‘variance’ and comparable 

CPU time. Fig. 4.4 (b) and (d) plotted the corresponding transient energies, 

generator rotor angles, and bus voltages for the TSCOPF solution found by 

EPSO, and showed that the system is transient stable with maximum rotor angle 

close to 200° and bus voltages constrained within the acceptable range.  
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(c) Bus voltage plots without optimization 
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(d) Bus voltage plots with TSCOPF-EPSO 

Fig. 4.4 Transient energy, generator angle and bus voltage profiles for IEEE 50-

generator system without and with TSCOPF-EPSO method 

Fig. 4.5 plotted the average convergence for 20 runs of different PSO methods 

and validated that the proposed EPSO had managed to consistently find a better 

solution with satisfied convergence rate. 
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Table 4.8 Optimal solutions for IEEE 50-generator system over 20 runs 

Solutions 
Generator outputs of TSCOPF 

SPSO [112] HPSO [113] CPSO [44] MPSO [114] IPSO [115] EPSO 

Best FC 
($/h) 47075681.1 50248845.9 51881827.6 47180529.2 47777960.1 45621431.8 

Average 
FC ($/h) 48776956.9 52234796.4 52569842.1 48305108.4 48243209.4 46858843.6 

Worst FC 
($/h) 49800647.6 53662126.9 53465313.7 49449617.4 49264833.5 47755306.9 

Std. Dev. 
FC ($/h) 767835.0 1399790.6 596230.4 966395.5 612024.6 893037.7 

Total CPU 
time (s) 2399.1 2367.1 2406.0 2497.0 2388.6 2352.6 
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Fig. 4.5 Average convergence of various PSO methods for IEEE 50-gen system 

4.6 Summary 

A sophisticated TSCOPF model with valve-point effects and discrete control 

variables was first established as a hard MINLP problem, and a unified TSCOPF 

framework with consideration of both transient angle and voltage performance 

was conveniently formed. The proposed model is general and flexible, capable of 

supporting any complex dynamic power system models with valve point effects 
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and discrete control variables. An EPSO method with dynamic inertia weight and 

shrinking Gaussian distribution disturbance was then proposed to solve this 

MINLP-TSCOPF problem. The proposed model and solution methodology have 

been extensively studied and tested on the New England 10-generator 39-bus 

system and IEEE 50-generator 145-bus system with complex generator models 

and FACTS devices. Results of these case studies have confirmed the rationality 

of the non-convex MINLP-TSCOPF model and the promising performances of 

EPSO method for solving this problem. 
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Chapter V  

An Improved Group Search Optimization Method 
for MINLP-TSCOPF with Detail Generator Model 

5.1 Introduction 

In Chapter IV, a very general and flexible MINLP-TSCOPF model has been 

proposed and primarily solved by an EPSO method. Since MINLP itself is a hard 

mathematical problem and TSCOPF problem with semi-infinite feature is also 

difficult to solve, TSCOPF with non-convex MINLP characteristic would be a 

huge challenge for any optimization methods. A specially designed method 

targeted to the discontinuity, non-convexity and multiple minima characteristics 

of MINLP-TSCOPF would therefore be highly desirable for solving this problem 

more effectively. 

Artificial Intelligence algorithms (AIs) such as DE, GA and PSO, perform 

optimizations based on their population-based stochastic process, and they have 

potentials to comfortably handle non-derivative non-convex optimization 

problems. Most significantly, as a new breakthrough of AIs, the Group Search 

Optimization (GSO) method originated from [161, 162] has gained much 

attention recently due to its excellent global search ability, competitive accuracy 

and convergence speed. A co-operation evolutionary strategy based GSO 

algorithm was adopted in [163] to solve classical mechanical design problems. 

Since at least one feasible member is needed in the initialization, the method is 

inappropriate for solving hard optimization problems, as initializing a feasible 

solution is itself difficult. A Modified Group Search Optimization (MGSO) 

algorithm based on levy flight random step was proposed and validated using 
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simple mathematical benchmarks without constraints in [164]. Inspired by 

human social-network, a GSO with an Improved Small World topology 

(GSOISW) was also established to train the neural network for ammonia 

synthesis in [165]. [166] proposed an Opposition-based GSO method with 

Modified Differential Evolution strategy (OGSOMDE) for feed-forward 

networks training. Though the GSO method is a promising optimization 

approach with many engineering applications, so far it has not been applied to 

the TSCOPF problem. Furthermore, those previous algorithms have been 

designed and implemented only for rather simple optimization problems instead 

of, say, the proposed MINLP-TSCOPF model.  

In this chapter, a newly Improved GSO (IGSO) method with improvements of 

backward searching strategy, Cauchy mutation and inheritance operator is 

specially designed as the best solver for this non-convex MINLP-TSCOPF 

problem. Simulations on four representative power systems and benchmarking 

with other AIs have validated the superior performance of IGSO method for 

solving MINLP-TSCOOPF problems. 

5.2 Generation Prohibited Operation Zones for TSCOPF 

In operation, generators may have certain Prohibited Operation Zones (POZs) 

due to physical operation limitations. Therefore, constraints (5.1) for generator 

output with POZs is included in TSCOPF model to substitute the continuous 

generation constraints (4.4) in Chapter IV. 

The generation constraints with POZs restriction can be formulated as  

,min ,1

, 1 ,

, ,max

( 1, 2,......, )

( 1, 2,......, , 2,3,... )

( 1, 2,......, , )

l
Gi Gi Gi G

u l
Gi Gi j Gi Gi j G i

u
Gi j Gi Gi G i

P P P i n

P P P P i n j z

P P P i n j z
−

 ≤ ≤ =
∈ ≤ ≤ = =


≤ ≤ = =

   (5.1) 

where iz  is the total number of POZs, ,
l

Gi jP  and ,
u

Gi jP are lower and upper bound 

of the jth POZ for generator i. Since the solution space of TSCOPF problem will 
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be partitioned into multiple discrete blocks by the POZs constraints, the solution 

will be very difficult to find.  

The static equalities (4.1)-(4.9) and transient stability constraint (4.15) in 

Chapter IV plus the POZs constraints (5.1) constitute the MINLP-TSCOPF 

model in this chapter for validating the proposed IGSO in the following case 

studies. 

5.3 Improved Group Search Optimization 

GSO method is a population based optimization algorithm. Targeting to seek 

for optima in a bounded space of optimization problems, GSO employs the 

concept of resource searching behaviours of animals in nature and a producer–

scrounger model to design the searching strategies [161, 162]. 

Based on the producer-scrounger model, each individual in GSO is classified 

either as a producer, scrounger or ranger based on its fitness [161, 162]. 1) 

Producer: it is the member with the best fitness for the current generation, and it 

will lead the searching directions of all members in next generation, thus has a 

profound influence on the optimization results; 2) Scroungers: besides the 

producer, usually 80% of the remaining members are randomly selected as 

scroungers to follow the producer to join its resource; 3) Rangers: the rest 

members in the GSO group are rangers responsible for discovering distributed 

resources in the search space by randomly walks. There is no restrict prohibition 

among the producer, scroungers and rangers, and they could switch from one to 

another according to their fitness evaluations.  

5.3.1 Standard GSO Method  

Suppose the ith member has a position 1 2( , ,..., ,... )k k k k k n
i i nx x x x R= ∈X  and a head 

angle 
1 2 ( 1)

1( , ,..., )
n

k k k k n
i i i i Rϕ ϕ ϕ

−

−= ∈φ , the search direction 
1 2

( ) ( , ,..., )
n

k k k k k n
i i i i id d d R= ∈Dφ  is 

calculated by sphere polar to Cartesian coordinate transformation as [161, 162] 
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1) Producer: The producer employs the scanning strategy to explore new 

solutions and the scanning field is represented by the maximum pursuit angle 

θmax∈R1, the maximum pursuit distance lmax∈R1 and producer’s position Xp. At 

kth iteration, the producer will scan the hypercube search space by randomly 

selecting three points as [161, 162] 

1 max ( )k k k
z p pr l= +X X Dφ       (5.3) 

1 max 2 max( / 2)k k k
r p pr l θ= + +X X Dφr    (5.4) 

1 max 2 max( / 2)k k k
l p pr l θ= + −X X Dφr    (5.5) 

where r1∈R1 is a normally distribution random number with mean 0 and standard 

deviation 1; r2∈Rn-1 is a uniform distributed random vector in range of [0,1]. The 

maximum pursuit distance lmax is  

2
max

1
( )

n

i i
i

l U L
=

= = −∑U - L           (5.6) 

where Ui and Li are the lower and upper bounds in the ith dimension of control 

variables. 

Among the three randomly selected points by (5.3)-(5.5), the one having a 

better fitness than previous produce Xp will become the producer; otherwise, the 

producer will stay at its current position and turn its head angle to 

1
2 max

k k α+ = +φφr      (5.7) 

where maxα  is the maximum turning angle and equals θmax/2. 

If the producer cannot find a better position within a iterations, it will turn its 

head angle at zero degree.  

k a k+ =φφ             (5.8) 

where ( 1)a round n= + , n is the vector dimension of control variables. 



89 
 

2) Scroungers: At each generation, the positions of scroungers are updated by 

1
3 ( - )k k k k

i i p i
+ = +X X r X X

     (5.9) 

where r3∈Rn is a uniform random vector in the range [0,1], and operator ‘  ’ is 

the entrywise product [161, 162]. 

3) Rangers: The rest members are rangers and they walk randomly to explore 

dispersed resources. At the kth iteration, it generates a random head angle iφ  by 

(5.7) and its position is update by [161, 162] 

1 maxil a r l= ⋅       (5.10) 

1 1( )k k k k
i i i i il+ += +X X Dφ       (5.11) 

where li is a random distance calculated from a normal distributed random 

number r1 and constant a.  

5.3.2 Improvements in the Proposed IGSO Method 

1) Backward searching for producers 

The position of producer updated via (5.3), (5.4) and (5.5) would search only 

forward for potential better solutions in the hypercube search space. This strategy 

would ignore the backward hypercube space even when there is a high possibility 

of good resources behind, thus enhancement on the back searching ability of 

producer is proposed here. 

In the sphere polar coordinate, the backward searching is obtained by rotating 

the forward direction by π radian as shown in Fig. 5.1. Fig. 5.1(a) and (b) 

describe the backward searching point XZs of the producer XZ in two and three 

dimensions, respectively. For n dimensions as a hypercube, the search cannot be 

visualized. However, when unfold the hypercube in a plane, the search direction 

of the ith member will be the length of a series of right angled triangles as shown 

in Fig. 5.1(c), and the backward searching point can be calculated by increasing 
the head angle by π radian. Thus, if the function 

1 2
( ) ( , ,..., )

n

k k k k k n
i i i i is s s Rϕ = ∈S  is 

defined as 
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and the three backward searching points can be calculated as  

1 max ( )k k k
zs p pr l π= + +X X Sφ     (5.13) 

1 max 2 max( / 2 )k k k
rs p pr l θ π= + + +X X Sφr   (5.14) 

1 max 2 max( / 2 )k k k
ls p pr l θ π= + − +X X Sφr   (5.15) 
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Fig. 5.1  Backward searching strategy for IGSO method 
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Based on this backward searching strategy, previously ignored searching 

space will be covered and the new producer would derive from six scanning 

points by (5.3)-(5.5) and (5.13)-(5.15) in both forward and backward directions 

simultaneously. 

2) Cauchy mutation disturbance for scroungers 

The scroungers, as the dominated type (80%) of GSO individuals, are 

influenced only by the producer via (5.9), and premature problem is often 

resulted. Since the mutation operator in heuristic methods could improve the 

solution performance [167] and Cauchy mutation is capable to generate a larger 

jumps compared with other mutations such as Gaussian mutation [168], Cauchy 

mutation is adopted for the GSO scroungers in the proposed IGSO method to 

escape from a local optimum or jump out a plateau, and increase the diversity of 

the GSO individuals. In addition, considered that the mutation disturbance shall 

not have any negative effects on the quality of the final solution, the disturbance 

should be reduced to a negligible level at later stage, a self-adaptive Cauchy 

mutation is formulated as (5.16) in which a large deviation would be resulted in 

the beginning to reduce the impact of producer on scroungers while at later stage 

the deviation will become small and the producer would have dominant influence 

on scroungers for fine searching.  

1 2
3 ( - ) ( ) (0,1)k k k k k total

i i p i i
total

k k Cauchy
k

ρ+ −
= + + × × ×X X r X X X   (5.16) 

where r3∈Rn is a uniform random vector in the range [0, 1]; k and totalk  are the 

current and total iteration number, respectively; Cauchy(0, 1) stands for the 

standard Cauchy distribution with the probability density function 

Cauchy(0,1)=1/(π(1+x2)) [168]; ρ is the coefficient of Cauchy mutation. 

According to (5.16), the Cauchy mutation space will dynamically shrink with 

increasing iteration number, and the last term of (5.16) will therefore have more 

influence on the position updating of scroungers in the beginning while less 

impact at the later stage in optimization process. The head angles of scroungers 
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are also updated by (5.7). 

3) Inheritance operator for GSO individuals 

For the position updated via (5.9) or (5.11), it is uncertain if there is any good 

attributes inherited from one generation to another. For instance, after updating 

the position of ith member via (5.9) or (5.11), if the previous member Xi
k has 

better fitness than Xi
k+1, Xi

k+1 will be retrogressive compared with Xi
k, and some 

of the good attributes of previous members would be lost in the new generation 

as a result. In fact, good attributes of previous generation could be inherited to 

next generation by comparing the fitness of Xi
k and Xi

k+1 and retaining the better 

one as (5.17).  

1 1 1 1( ) ( ) ( ) ( )k k k k k k k
i i i i i i if f f f+ + + += × < + × <X X X X X X X   (5.17) 

where ( )k
if X is the fitness evaluation; symbol x y<  is the Boolean calculation, 

namely if x y< , x y<  equals one, otherwise zero. Considering that ( )k
if X and 

1( )k
if +X have already been evaluated, this strategy maintains the useful 

information for the IGSO individuals in next generation only by simple 

comparisons without heavy computation but with high cost-performance gain. 

5.3.3 Procedures of IGSO for Solving TSCOPF Problem 

In the proposed IGSO method, the external penalty method [44, 156] is 

adopted to deal with the inequality and equality constraints of the MINLP-

TSCOPF model. The following are the main steps of IGSO method in solving the 

TSCOPF problem. 

Step 1: Input system data and contingency set Ci (i=1,…, k), specify IGSO 

parameters and randomly initialize IGSO individuals for the control 

variables within their lower and upper boundaries. 

Step 2: For each contingency Ci, run an unconstrained Newton-Raphson power 

flow and time domain simulation for each individual to determine the 

static variables and transient stability margin, then evaluate the fitness of 
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these initialized points by the penalty method. 

Step 3: Find the IGSO producer Xp and perform producing strategy, i.e. the 

producer searches points forward by (5.3)-(5.5) and backward by (5.13)-

(5.15). If any one of the scanning points has a better fitness than the 

producer, the producer will fly to that point; otherwise the producer will 

stay at the current position and update its head angle by (5.7), or by (5.8) 

if the producer cannot find a better point in a iterations. 

Step 4: Randomly select 80% members to perform scrounging strategy using 

(5.16). 

Step 5: Rest of the members are scroungers to perform dispersing strategy by 

(5.10) and (5.11). 

Step 6: For each contingency Ci, run an unconstrained Newton-Raphson power 

flow and time domain simulation for IGSO members to determine the 

static variables and transient stability margin and evaluate their fitness 

by the penalty method. 

Step 7: Compare previous generation fitness f(Xi
k) with current generation 

fitness f(Xi
k+1), then update Xi

k+1 by the inheritance operator using (5.17). 

Step 8: If the number of iterations reach maximum, go to next step; otherwise, 

increase the iteration number and go to Step 3. 

Step 9: The individual with best fitness of the last generation is the final optimal 

solution. 

Remarks: 

1) Since the proposed TSCOPF problem has discontinuous control variables due 

to the POZs of generations considered in (5.1), a well-designed round 

operation as follows is needed to properly handle the discontinuity. 
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where [*] stands for the round operation, xi is the control variable and xi ∈X. It 

is clear that, if the control variable for generation is located in POZs, the 
generation output will be confined to either , 1

u
Gi jP −  or ,

l
Gi jP . 

2) Targeted to the specific characteristics of proposed discontinuous non-convex 

TSCOPF model with many minima, the IGSO method is tailored in the 

following aspects: 1) the round operator (5.18) can effectively deal with the 

discontinuous variables stemmed from generation POZs; 2) the Cauchy 

mutation disturbance is specially designed to allow escape from the local 

optimum plateau of the optimization problem with many minima; 3) the 

backward searching strategy and inheritance operator enhance and refine the 

search capability of IGSO in solving the TSCOPF problem.  

Evenly distribute IGSO individuals 
over K CPU cores

Core 1 Core 2 Core K

Collect results and update  
positions of IGSO individuals

For each IGSO 
individual, run power 

flow and  transient 
stability simulation 

Evaluate the fitness of 
each IGSO individual

Core K

Fig. 5.2  Parallel IGSO implementation for TSCOPF problem 

3) When large-scale power system is considered, the computation time of 

TSCOPF optimization would increase rapidly. However, due to the intrinsic 

independent characteristic of GSO members, TSCOPF optimization can be 

readily parallelized. A distributed platform with a master and slave 

architecture has been established to conduct the parallel TSCOPF 

optimization as shown in Fig. 5.2, in which the master is responsible for 
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distributing IGSO individuals, collecting results and updating the positions of 

IGSO members while slave CPU cores are responsible for fitness evaluation 

including the power flow calculation and transient stability analysis. 

5.4 Validation of IGSO Method in Power Systems 

The prowess of proposed IGSO method to solve the discontinuous non-

convex TSCOPF problem has been fully tested with following four case studies 

using the WSCC 3-machine 9-bus system, New England 10-machine 39-bus 

system, and IEEE 50-machine 145-bus system. In all studies, loads are modelled 

as constant impedances in the time domain simulation with a time period of 5s. A 

distributed computing platform with 16 nodes, each equipped with a 3.2GHz 

Intel Core 2 Quad processor and 8GB RAM, has been built with MATLAB 

Distributed Computing Server 5.2 and Parallel Computing Toolbox 5.2 for 

conducting the parallel TSCOPF optimization. Furthermore, the following seven 

representative AIs have also been implemented for benchmarking the 

performance of the proposed IGSO method: DE [43], GA [60], GSO[162], 

MGSO[164], GSOISW[165], OGSOMDE[166] and EPSO in Chapter IV. 

5.4.1 Case A : 3-machine 9-bus System 

The widely used WSCC 3-machine 9-bus system was firstly tested. The 

system network and load data are taken from [169], and the generation ratings 

and fuel cost coefficients are cited from [45]. The generation valve-point effects 

and POZs are not considered for benchmarking of results from published papers. 

All bus voltages are limited to [0.95, 1.05]. A three-phase ground fault at the end 

of line 7-5 near bus 7 is applied at t=0ms and subsequently cleared by tripping 

line 7-5 at t=350ms.  

The parameters of GA and EPSO method are cited from [60] and Chapter IV, 

respectively. For various GSO variants including IGSO, the initial head angle φ0 
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of individuals is set to (π/4 … π/4); the constant a is given by round( 1n + ) and 

the maximum search angle θmax is π/a2
; the maximum turning angle αmax is set to 

θmax/2. For the IGSO method, the coefficient of the Cauchy mutation ρ is set to 

0.005. In order to have fair comparisons with the same number of function 

evaluations for each method, the population size of IGSO is set to 10 since the 

producer of IGSO method would scan extra 5 points in each iteration; similarly, 

the population size of GSO, GSOISW and OGSOMDE are set to 13 since their 

producer would explore extra 2 points in each iteration, while the population size 

of GA, EPSO and MGSO were 15. The maximum iterations of all methods are 

fixed at 100.  

For the given contingency, two published solutions are also collected from [40] 

and [43] for benchmarking with the results obtained from the proposed IGSO 

method and the seven representative AIs as tabulated in Table 5.1. While DE 

approached a quite expensive stable solution with fuel cost of 1,140.06 $/hr in 

[43] and 1,137.31 $/hr here, the TSB and ANN method in [40] found a better 

stable solution with fuel cost of 1,134.2 $/hr. It is clear that all AIs including the 

EPSO proposed in Chapter IV manage to find a satisfactory best solution 

compared with [40] and [43] with comparable CPU time. Compared with the 

other AIs, IGSO is capable of finding the best stable solution with the lowest fuel 

cost of 1,133.96 $/hr, average, worst, and standard deviation as highlighted in 

bold in Table 5.1. This shows that the proposed IGSO method is the best solution 

approach for this case study. 

Fig. 5.3 plots the generator angle and kinetic energy curve for the solutions of 

IGSO method, and validates the system stability with maximum rotor angle close 

to 135° and SIME kinetic energy varied from zero to 2 pu-rad. 
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Fig. 5.3  Angle and energy curves of 9-bus system with classical model after 

optimization 

Table 5.1  Optimal solutions of different methods for 9-bus system in Case A 

Variables 

Generator optimal outputs 

{ANN 
[40]}* 

{DE 
[43]}* 

DE  
[43] 

GA  
[60] 

GSO 
[162] 

MGSO 
[164] 

GSOISW 
[165] 

OGSOM
DE [166] 

EPSO in 
Chapter 

IV 
IGSO (IGSO)* 

G1 (MW) {119.75}* {130.94}* 127.65 120.12 119.87 118.21 118.10 118.25 118.55 118.04 (133.66)* 

G2 (MW) {106.35}* {94.46}* 100.37 105.27 101.89 103.93 103.87 103.31 104.22 103.51 (96.36)* 

G3 (MW) {91.81}* {93.09}* 89.82 92.55 96.28 95.84 96.05 96.41 95.19 96.43 (88.11)* 

V 1(pu) {1.05}* {0.959}* 1.049 1.050 1.040 1.047 1.045 1.050 1.048 1.045 (0.994)* 

V2 (pu) {1.05}* {1.014}* 1.037 1.043 1.025 1.040 1.027 1.047 1.045 1.048 (1.046)* 

V3 (pu) {1.04}* {1.047}* 1.037 1.037 1.025 1.043 1.046 1.040 1.041 1.041 (1.050)* 

Fuel cost 
($/hr) {1134.2}* {1140.06}* 1137.31 1134.37 1134.85 1133.98 1134.09 1133.99 1133.99 1133.96 (1141.63)* 

Mean 
($/hr) - {1140.65}* 1139.68 1136.21 1135.89 1134.55 1135.63 1134.71 1134.61 1134.12 (1141.77)* 

Worst 
($/hr) - {1141.57}* 1140.76 1141.82 1137.24 1135.66 1138.49 1136.38 1135.67 1134.52 (1142.11)* 

Std. Dev. 
($/hr) - {0.456}* 0.67 2.00 0.69 0.59 1.13 0.69 0.65 0.14 (0.14)* 

Time cost 
(s) - - 39.62 49.3 47.4 45.2 46.1 55.4 42.51 46.1 47.2 

Note: { }* are published results, and ( )* are solutions of TSCOPF with complex power system 
models. 

For the investigation of the impacts of complex power system models on 

TSCOPF solution, Table 5.1 also includes the IGSO optimal solution for 

TSCOPF with 4th order generator model and IEEE Type 1 exciters in the last 

column. The best fuel cost obtained is 1,141.63 $/hr which is also better than the 
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counterpart in [40] with fuel cost of 1,143.42 $/hr. Compared with the solutions 

with classical model, the fuel cost is increased by about 1% but with quite 

different generator outputs as well as generator angle and kinetic energy as 

plotted in Fig. 5.3 and Fig. 5.4. This indicates that complex power system models 

are necessary in practice for accurate representation of the system dynamics of 

TSCOPF problem. 
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Fig. 5.4  Angle and energy curves of 9-bus system with complex model after 

optimization 

5.4.2 Case B : 10-generator 39-bus System  

The New England 10-generator 39-bus system [149] was used as the second 

test system to evaluate the effectiveness of the proposed IGSO method. The fuel 

cost coefficients for the quadratic polynomial objective of TSCOPF are extracted 

from [45] for benchmarking with [42, 43] without considering any valve-point 

effects and POZs. The contingency is a fault occurred at 21-16 near bus 21 and 

cleared by line tripping after 0.16 s.  

The parameter settings for all the AIs are the same as in Case A except for the 

population size which is fixed as following: 40 individuals for GA, EPSO and 

MGSO, 38 for GSO, GSOISW and OGSOMDE, 35 for the proposed IGSO 

method, such that the total number of function evaluations for each method 
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remains the same. 

As shown in Table 5.2, DE stabilized the system with a fuel cost of 60,988.25 

$/hr in [43] and CPU time of 91.86s running on a computer with Intel Pentium 

IV 2.66GHz CPU and 512M RAM. In [42], the OMIB equivalent method found 

a stable solution with fuel cost of 60,937.85 $/hr and a normalized CPU time of 

57.39 p.u. for one OPF without stability constraints plus one time-domain 

simulation. Table 5.2 also lists the statistical results obtained with all the AIs 

including the proposed IGSO method running on the MATLAB distributed 

computing platform. It is clear that all AIs including the EPSO proposed in 

Chapter IV approach an excellent optimal solution with comparable CPU time 

while the proposed IGSO method has the most economic solution 60,925.21 $/hr 

with lowest mean fuel cost and smallest standard deviation compared with others. 

Table 5.2 Optimal solutions of different methods for New England system in 

Case B 

Variables 
Generator optimal outputs (MW) 

{OMIB 
[42]}* 

{DE 
[43]}* 

DE 
[43] 

GA 
[60] 

GSO 
[162] 

MGSO 
[164] 

GSO-SW 
[165] 

OGSO-DE 
[166] 

EPSO in 
Chapter IV IGSO 

G30 {245.94}* {237.06}* 244.16 247.24 242.61 244.18 249.06 245.67 244.48 244.37 

G31 {572.56}* {587.35}* 568.53 569.85 568.50 567.55 569.65 568.15 569.44 568.11 

G32 {648.11}* {668.64}* 647.41 640.85 644.02 642.45 638.56 645.41 643.15 646.15 

G33 {627.56}* {634.92}* 614.33 630.69 629.50 632.39 628.39 631.39 621.98 631.84 

G34 {505.91}* {493.77}* 524.35 503.68 513.75 511.38 505.50 507.22 506.53 504.78 

G35 {628.12}* {619.79}* 609.94 648.05 644.79 648.67 645.90 645.40 650.53 641.96 

G36 {539.01}* {514.00}* 567.23 557.54 555.76 550.32 556.26 552.97 563.52 556.93 

G37 {539.94}* {542.87}* 550.60 530.29 530.81 539.51 534.15 533.26 537.12 533.40 

G38 {833.38}* {837.03}* 820.67 825.64 823.72 818.42 827.35 831.82 824.71 827.87 

G39 {998.56}* {1003.93}* 992.99 985.65 986.50 984.75 985.50 978.79 978.15 984.07 

Best FC 
($/h) {60937.85}* {60988.25}* 60965.70 60928.57 60935.42 60930.12 60940.82 60930.48 60925.53 60925.21 

Mean 
FC($/h) - {61027.57}* 61010.60 60943.79 60969.37 60946.41 60962.92 60936.94 60939.55 60932.99 

Worst 
FC($/h) - {61068.87}* 61078.12 60985.34 61078.12 61030.32 60993.02 60998.67 60983.91 60936.94 

Std. Dev. 
($/h) - {24.41}* 37.77 13.24 31.90 25.87 19.29 14.70 17.79 2.98 

CPU 
time (s) 

{57.39 
p.u.}* {91.86}* 53.38 63.27 54.16 56.37 57.27 63.99 58.46 57.82 

Note: { }* are published results. 
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5.4.3 Case C : 10-generator 39-bus System with POZs 

The third case study was also conducted on the New England 10-machine 39-

bus system but with 4th order dynamic generator model [160] and Type 1 exciter 

with parameters listed in appendix A and Table C.1. The generation valve point 

effects and POZs are also considered in this study. The coefficients of fuel cost 

with valve-point effects consist of ai, bi, ci, from [45] plus ei=200, fi,=0.35 for i=1, 

2…5 and ei=300, fi=0.22 for i=6, 7…10 with generation rating given in [45]. The 

POZs are set to an interval of 10% of the generation range in the middle of the 

original operation zone for each generator. The control variables include 9 active 

power outputs and 10 generator terminal voltages. The static constraints are the 

same as the ones provided in Matpower [170] and the node voltage range is [0.94, 

1.06]. The contingency is a three-phase earth fault at line 4-5 near bus 4 and 

subsequently cleared by tripping line 4-5 at 300ms. The population size for DE, 

GA, EPSO and MGSO methods are 40; GSO, GSOISW and OGSOMDE 

methods have 38 individuals while IGSO has a population size of 35. 
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Fig. 5.5  Angle and energy of New England system after optimization in Case C 

Table 5.3 shows the best solution of DE[43], GA[60], GSO[162], MGSO[164], 

GSOISW[165], OGSOMDE[166], EPSO and IGSO with the corresponding best 

fuel costs of 62,986.22 $/h, 61,299.60 $/h, 61,350.17 $/h, 61,404.71 $/h, 
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61,411.45 $/h, 61,299.13 $/h, 61,314.37 $/h and 61,250.64 $/h, respectively. 

While all the solutions are stable without violating any generation and voltage 

limits, the one from IGSO method is the most economic. Fig. 5.5 plots the 10 

generator angles and kinetic energy curves for the best solution of IGSO method 

and shows that the system is indeed stable with maximum generator angle 

reached 140°. 

Further comparison of the statistical results among all the AIs for 20 

independent runs showed that the proposed IGSO method has the lowest mean 

fuel cost 61,488.55 $/h, the smallest worst fuel cost 61,783.59 $/h, and the lowest 

standard deviation 135.63 $/h while the CPU time of various AIs are comparable. 

This verified that the proposed IGSO method indeed outperformed the other AIs 

including EPSO in terms of both solution quality and consistency. Fig. 5.6 plots 

the average convergence curve of all the AIs. It is evident that IGSO is able to 

find the lowest mean fuel cost with good convergence. 

Table 5.3  Optimal solutions of different AIs for New England system in Case C 

Variables 
Generator optimal outputs 

DE 
[43] 

GA 
[60] 

GSO 
[162] 

MGSO 
[164] 

GSO-ISW 
[165] 

OGSO-MDE 
[166] 

EPSO in 
Chapter IV IGSO 

G1 (MW) 157.50 251.34 251.35 252.09 250.91 260.20 269.31 242.56 

G2 (MW) 448.50 422.25 439.82 466.75 457.77 457.77 484.70 484.66 

G3 (MW) 537.56 664.14 647.98 637.50 636.21 637.31 637.51 646.37 

G4 (MW) 660.56 637.31 637.38 628.92 628.32 619.21 628.61 601.15 

G5 (MW) 591.36 511.69 511.57 511.81 502.96 511.54 466.00 493.79 

G6 (MW) 643.11 642.64 656.91 642.69 656.47 641.15 685.05 656.85 

G7 (MW) 629.21 571.21 571.20 571.34 570.85 571.64 499.91 599.59 

G8 (MW) 547.40 556.95 556.96 557.35 556.38 557.04 556.92 571.30 

G9 (MW) 789.65 856.90 841.47 842.65 856.34 842.94 856.30 756.83 

G10 (MW) 1140.72 1028.80 1028.22 1030.66 1027.28 1042.54 1056.72 1085.23 

V1 (pu) 1.058 1.049 1.048 1.048 1.045 1.046 1.038 1.045 

V2 (pu) 1.012 0.981 0.981 0.984 0.976 0.988 0.968 0.997 

V3 (pu) 1.009 0.985 0.984 0.999 0.979 0.985 0.990 0.984 
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V4 (pu) 0.979 0.997 0.998 1.004 0.990 1.009 1.001 0.999 

V5 (pu) 0.941 1.011 1.012 1.015 1.006 1.009 1.010 1.011 

V6 (pu) 1.008 1.059 1.048 1.049 1.045 1.049 1.040 1.055 

V7 (pu) 1.052 1.060 1.058 1.058 1.051 1.057 1.055 1.047 

V8 (pu) 1.029 1.030 1.027 1.029 1.022 1.029 1.034 1.025 

V9 (pu) 1.023 1.027 1.024 1.028 1.021 1.033 1.029 1.003 

V10 (pu) 0.969 1.031 1.029 1.026 1.023 1.025 0.969 1.020 

Best FC 
($/h) 62986.22 61299.60 61350.17 61404.71 61411.45 61299.13 61314.37 61250.64 

Mean FC 
($/h) 63636.10 61768.18 61634.89 61602.52 61583.88 61546.36 61575.29 61488.55 

Worst FC 
($/h) 65146.48 62383.60 61906.64 61894.65 61971.97 61959.06 61929.91 61783.59 

Std. Dev. 
($/h) 534.22 282.64 164.45 144.33 144.98 165.48 161.48 135.63 

CPU time 
(s) 65.70 73.89 68.99 69.62 71.23 74.87 64.79 70.09 
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Fig. 5.6  Convergence of different methods for New England system in Case C 

5.4.4 Case D : 50-generator 145-bus System with POZs 

The IEEE 50-generator 145-bus system was tested as the fourth case study for 

validating the IGSO method on a larger power grid. The control variables consist 

of the active power outputs of 49 generators and the terminal voltage of 50 

generators, thus there are 99 optimal variables in total. The dynamic data is 

obtained from [150], in which all the generators are modelled as classical model 

except those at bus 93,104, 105, 106, 110 and 111 which use a 4th order model, 
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i.e. G9, G20, G21, G22, G25, G26 in Table 5.4, with IEEE Type 1 exciter and its 

parameters listed in Table C.1. The optimal range of generation is [0, 1.4×Prating], 

where Prating is the generator rating. All bus voltages are limited in the range [0.9, 

1.15]. Coefficients of fuel cost with valve-point effects are: a=0.01, b=0.3, c=0.2, 

e=100, f=8.4 for G1 to G30; a=0.006, b=0.3, c=0.2, e=150, f=6.3 for G31 to G50. 

The POZs are set to an interval of 10% of the generation range in the middle of 

the original operation zone for each generator. The population size of DE, GA, 

EPSO and MGSO are 100, and 98 for MGSO, GSOISW and OGSOMDE, while 

IGSO has a population size of 95. 
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Fig. 5.7 Angle and energy of IEEE 50-gen system before optimization in Case D 

The contingency is a three-phase ground fault occurred at the end of line 138-

95 near bus 138, and subsequently cleared by tripping line 138-95 at 500ms. The 

system is unstable with the default generation setting. Fig. 5.7 plots the generator 

angle and energy curves and shows that G1, G3, G4, G7, G10 and G11 are the 

critical machines while the rest are non-critical machines. 

With 20 runs of the proposed IGSO method, Table 5.4 shows the best solution 

with fuel cost 46,043,271.01 $/h without violating any constraints. The effects of 

POZs constraints can be observed from the generation of G1, G19, G21, G38 and 

G42 being bounded at the upper limit of POZs while G2 was bounded at lower 
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limit of POZs. Fig. 5.8 plots the corresponding generator angle and system 

kinetic energy curves and clearly shows that the system is stable with maximum 

rotor angle close to 180° which is significantly larger than the empirical 

threshold of 100° in [11, 13], 120° in [18, 19, 29], or 4π/5 radian in [17].  

Table 5.4  Optimal solution of IGSO method for IEEE 50-gen system in Case D  

Variables IGSO 

G1(V1) 39.27 1.0988 G26(V26) 1665.46 0.9981 

G2(V2) 936.18 1.1050 G27(V27) 245.64 0.9559 

G3(V3) 307.37 1.1408 G28(V28) 2252.40 1.1128 

G4(V4) 45.95 1.1411 G29(V29) 3798.20 1.1107 

G5(V5) 43.52 0.9098 G30(V30) 2122.38 1.0383 

G6(V6) 767.88 1.1027 G31(V31) 3840.20 1.0294 

G7(V7) 26.86 0.9607 G32(V32) 9904.95 1.1029 

G8(V8) 23.89 0.9000 G33(V33) 3404.67 1.0802 

P9(V9) 692.88 1.0120 G34(V34) 1058.86 1.0578 

G10(V10) 247.37 1.0333 G35(V35) 4207.00 1.0093 

G11(V11) 109.23 1.0227 G36(V36) 14249.05 1.0400 

G12(V12) 60.45 1.0486 G37(V37) 8280.49 1.1219 

G13(V13) 130.51 0.9621 G38(V38) 21791.00 1.0970 

G14(V14) 587.28 0.9797 G39(V39) 4333.00 0.9808 

G15(V15) 192.30 1.0497 G40(V40) 27232.82 1.1194 

G16(V16) 205.32 1.0881 G41(V41) 8374.41 1.1246 

G17(V17) 250.46 1.0192 G42(V42) 40001.50 1.0552 

G18(V18) 2059.41 0.9773 G43(V43) 14306.98 1.0682 

G19(V19) 103.95 0.9669 G44(V44) 32195.66 1.1164 

G20(V20) 930.77 1.0894 G45(V45) 27431.87 0.9733 

G21(V21) 1247.40 1.0370 G46(V46) 29211.03 1.0379 

G22(V22) 873.11 0.9524 G47(V47) 25321.20 1.1459 

G23(V23) 979.25 1.0538 G48(V48) 7219.72 1.0046 

G24(V24) 72.77 0.9146 G49(V49) 15955.80 1.0000 

G25(V25) 759.11 0.9664 G50(V50) 21834.87 1.1063 

Cost 46043271.01($/h)  

Note: The units for generation and voltage are MW and per unit. 
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Fig. 5.8 Angle and energy of IEEE 50-gen system after optimization in Case D 
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Fig. 5.9  Convergence of different methods for IEEE 50-gen system in Case D 

Table 5.5  Comparisons of different AIs for IEEE 50-gen system in Case D 

Fuel Cost DE 
[43] 

GA 
[60] 

GSO 
[162] 

MGSO 
[164] 

GSO-ISW 
[165] 

OGSO-MDE 
[166] 

EPSO in 
Chapter IV IGSO 

Best ($/hr) 55032371.54 53920751.33 52386874.34 53466038.74 52216875.00 49739707.81 49212273.27 46043271.01 

Mean ($/h) 57783502.58 56622866.91 55317901.43 54727309.22 54315216.66 52296503.87 50717998.90 47984385.80 

Worst $/h ) 61363637.67 59692039.35 59547554.79 56342188.82 58827847.14 57153966.81 52101561.24 49410461.11 

Std. ($/h) 1805766.28 1590076.79 1860467.10 952195.23 2089197.63 2134928.66 964491.61 1062587.63 

Std. Dev. 
(%) 3.1% 2.8% 3.4% 1.7% 3.8% 4.1% 112.68 2.2% 

CPU Time 
(s) 100.21 114.35 107.12 111.47 117.76 122.60 49212273.27 116.94 
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Fig. 5.9 plots the average convergence of all the AIs after 20 runs. It is 

obviously that the proposed IGSO method does have the best convergence and 

obtained the most economic solution. Details of the statistical results are given in 

Table 5.5. The average fuel cost of IGSO is 47,984,385.80 $/hr, which was 

reduced by 17%, 15%, 13%, 12%, 11%, 8% and 5% compared with the 

counterpart of DE [43], GA [60], GSO[162], MGSO[164], GSOISW[165], 

OGSOMDE[166] and EPSO in Chapter IV, respectively. Also, in terms of the 

best and worst value, IGSO is the best one for this IEEE 50-generator 145-bus 

system with comparable standard deviation. 

5.5 Summary 

The practical operation limitations caused by generation prohibited operation 

zones is considered and incorporated into the formulation of the TSCOPF model. 

A tailor-made solution method IGSO is proposed based on the GSO with new 

enhancement features including backward searching strategy, Cauchy mutation 

and inheritance operator. Four comprehensive case studies on the WSCC 9-bus 

system, New England 39-bus system, and IEEE 145-bus system with complex 

power system models have verified the superiority of the proposed IGSO method 

with results benchmarked and compared against seven representative artificial 

intelligence algorithms including the EPSO proposed in Chapter IV. 
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Chapter VI 

Optimization of Probabilistic TSCOPF with 
Renewable Energy Uncertainties 

6.1 Introduction 

In Chapter III to V, the deterministic TSCOPF problem is comprehensively 

investigated to find an optimal point for power systems operation with 

predefined parameters, while the uncertainties in practical power systems such as 

the uncertain loads injections or fault clearing time etc. are not considered. With 

the increasing concerns on environment and energy conservation, the high 

penetration of renewable energy generation would surely bring even more 

uncertainties to power systems and challenge the safe operation of power grid. 

Therefore, a probabilistic TSCOPF (P-TSCOPF) model capable of coordinating 

the economics, transient stability and uncertainties would be timely and desirable 

for the new generation of power system preventive control. However, so far there 

is still no satisfactory solution method published for such P-TSCOPF model yet. 

In this chapter, a novel P-TSCOPF model is first proposed to consider 

generation and operation uncertainties in TSCOPF for power system preventive 

control. In the proposed P-TSCOPF, the wind generation systems are 

dynamically modelled with rotor flux magnitude and angle control (FMAC) 

while stochastic loads injections, fault clearing time, and wind generations are all 

considered with their individual correlations handled effectively by the 2m+1 PE 

method with Cholesky decomposition. Furthermore, a new IGSO-PE solution 

approach is developed using the IGSO algorithm and PE method to efficiently 

solve the P-TSCOPF problem. The validity of the proposed P-TSCOPF model 
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and the effectiveness of the IGSO-PE method have been thoroughly tested and 

evaluated on a modified New England system. 

6.2 Model of Wind Generations 

In the proposed P-TSCOPF model, the wind generation system used for 

transient stability analysis consists of a dynamic wind turbine (WT) model with 

two lumped-mass shaft as described in (6.1)-(6.2) [48], and a Doubly Fed 

Induction Generator (DFIG) model with partial scale frequency converter as 

shown in Fig. 6.1 [171]. 

( )tw
b t r

d
dt
θ ω ω ω= −                                                        (6.1) 

( )t
tw tw tw t r

t t

d 1 K D
d 2H

mP
t
ω θ ω ω

ω
 

= − − − 
 

                   (6.2) 

where ωt, ωr and ωb are the turbine speed, rotor speed and system base speed, 

respectively; θtw (rad) is the shaft twist angle; Ktw (p.u./rad) and Dtw are the shaft 

stiffness and mechanical damping coefficients; Ht (s) is wind turbine inertia 

constant; Pm is the mechanical power extracted from the wind. 

RSC GSC

ds qsjv v+

dr qrjv v+

C

si

Control System

Networkri

wP

 

Fig. 6.1 Structure of Doubly Fed Induction Generators  

Fig. 6.1 shows the schematic diagram of the DFIG generator widely used for 

stability analysis in which 1) the dynamics of the DC capacitor can be neglected, 

and 2) the active powers on the rotor side converter (RSC) and grid side 
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converter (GSC) are considered as equal. Moreover, GSC is assumed ideal that 

there is no reactive power exchanged with the grid during the transient and the 

total reactive power is supported only by the stator [171]. By ignoring the 

dynamics of the stator current, the DFIG model is derived as 

( )d m
d qs s q s qr

b 0 r m

d L1 1 X X
d T L L
e e i s e v
t

ω ω
ω

′ = − − − + −  +
        (6.3) 

( )q m
q ds s d s dr

b 0 r m

d L1 1 X X
d T L L
e

e i s e v
t

ω ω
ω

′ = − + − − +  +
         (6.4) 

( )r
tw tw tw t r d ds q qs

g

d 1 K D ( )
d 2H

e i +e i
t
ω θ ω ω = + − −             (6.5) 

ds s ds qs dr Xv i i e′= − + +                                                             (6.6) 
qs s qs ds qr Xv i i e′= − − +                                                             (6.7) 

ds ds qs qs dr dr qr qr= +wP v i v i v i v i− −                                               (6.8) 

qs ds ds qs=wQ v i v i−                                                                      (6.9) 

where ed and eq are d and q components of internal voltage; Pw and Qw are active 

and reactive power of DFIG absorbed by network; X and X' are open-circuit and 

short-circuit reactance; T0 is the transient open-circuit time constant; Hg is the 

generator inertia constant. 
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Fig. 6.2 Block diagram of FMAC controller 

Fig. 6.2 shows the FMAC structure with two control loops, one for the 

terminal voltage and the other for the power output of DFIG [171]. It controls the 

generator terminal voltage and power by adjusting the magnitude and angle of 

the rotor flux vector, and has the advantage of 1) providing low interaction 

between the power and voltage control loop, and 2) enhancing voltage recovery 

after faults. 
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6.3 General Form of Proposed P-TSCOPF Model 

Inspired by the chance constrained programming problems for power system 

optimization in [172-175], the general formation of the P-TSCOPF model is 

proposed as 

Minimize  0 0{ ( , , , )}t tE F x y uε                                                  (6.10) 

Subject to  0 0( , , , ) 0t t =G x y uε                                                 (6.11) 
0 0{ ( , , , ) }t t

j jP h β≤ ≥x y uε0                           (6.12) 

0 0

0

0 0

( ( ), ( ), , )
 ( ]( ( ), ( ), , ) 0

( ) , ( )

end

t t

d t t
dt t t ,tt t

t t

 = ∈ =

 = =

x H x y uε

G x y uε
x x y y

            (6.13) 

{ ( ( ), ( ), , ) 0} rP t tη β> ≥x y uε                             (6.14) 

where symbol E stands for the mathematic expectation calculation; ε is the 

uncertain variables; u is the control variables with lower and upper limits, such 

as the traditional generator active power and terminal voltage; x(t) and y(t) are 

the state and algebraic variables during the transient period with initial value as 

xt
0 and yt

0; η is the transient stability margin. Since the objective function would 

depend on the uncertain variables, its expectation is adopted as the P-TSCOPF 

objective in (6.10). Equality constraint (6.11) stands for steady-state power flow 

equation. Constraint (6.12) requires the chance constraints for steady-state 

variables, such as node voltage magnitudes and transmission line thermal limits, 

above a fixed security level βj. (6.13) describes the dynamics of the power 

system during the transient period, including complex generator models with 

AVR and dynamic wind generator models. (6.14) is the probabilistic transient 

stability constraint with an acceptable security level βr. 

The proposed P-TSCOPF model can be interpreted as follows: an optimal 

solution u is to be searched for power system preventive control such that the 

expectation of its objective is minimized while the inequality constraints are 

satisfied with a predefined probability for the optimal solution u. Fig. 6.3 shows 
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the probability density functions of constraint h(x,y,ε,u) which has two different 

control variables u1 and u2 with diverse objective expectation E{f(x,y,ε,u)} in 

solving P-TSCOPF. As the best compromise for smaller probability of constraints 

violation or higher security level, the proposed P-TSCOPF model would search 

for the best control u with minimal expected value above a satisfactory security 

level. 
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Fig. 6.3 Constraint violations for different control variables 

For simplicity, only the following three uncertain variables are considered 

here in the case study: load injections, wind generations, and fault clearing time, 

while other uncertain factors, such as fault occurrence, fault type and fault 

location, could be tackled similarly using the conditional probability approach in 

[48, 122-124, 176]. 

1) Probabilistic model of load injection 

The continuous varying load injection is an important factor contributing to 

uncertainties in real power system. Normal distribution is commonly adopted to 

model the uncertainties of active load injections as [120, 177] 
2 2( ) / 2 )1( )

2
D p pi

i

P
D

p

f P e µ σ

πσ
− −= （

                            (6.15) 

where μp and σp are the mean and standard deviation of probabilistic load active 
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power. As load power consumption usually has related or dependent patterns in 

different conditions such as in holiday, in evening or in cold days, the 

correlations of active load injections in different conditions should therefore be 

considered and are described here using the correlation coefficients Cpd while the 

reactive load injection is modelled as a variable with a constant ratio to its 

corresponding active load. 

2) Probabilistic model of wind generations 

The popular Weibull distribution with shape parameter λ and scale parameter 

k is used for modelling the probabilistic wind speed as follows [178, 179] 

( )1( , , ) ( )
kwv

kw
w

vkf v k e λλ
λ λ

−−=                                 (6.16) 

where νw is the wind speed. Similarly, the correlation of wind speeds for wind 

farms at different locations is represented with a correlation coefficient Cv. The 

wind power output is determined from the linear speed-power curve 

characteristic of wind turbine [179]. 
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              (6.17) 

where Prated is the rated power; νci, νrd and νct are the cut-in, rated and cut-out wind 

speed, respectively. The distribution of wind generations can be calculated from 

(6.17) using the wind speed samples based on its probabilistic model (6.16). 

3) Probabilistic model of fault clearing time 

The fault clearing time tcl used for transient stability analysis here is not a 

deterministic value, and its probabilistic model is assumed as a normal 

distribution [123]  

2 2( ) /21( )
2

cl t tt
cl

t

f t e µ σ

πσ
− −=                              (6.18) 

where μt and σt are mean and standard deviations of tcl. 
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6.4 Proposed P-TSCOPF Problem: Explicit Formulation 

Based on the general form of P-TSCOPF model described in Section 6.3, a 

representative P-TSCOPF model is constructed here for further investigation and 

studying in Section 6.6.  

1) Objective function 

Usually, slack bus generator is used to keep the power balance in the system. 

However, the uncertainties of random variables would cause the slack bus 

generation become probabilistic too. As a result, the system total generation fuel 

cost will be probabilistic, and its expected value shall be adopted as the objective 

of the proposed P-TSCOPF model as (6.19) 

2

1

{ ( + )}
Gn

G i Gi i Gi i
i

F E a P b P c
=

= +∑     (6.19) 

where PG is the active power of traditional generators, nG is the total generator 

number. 

2) Static equality constraints  

The static constraints (6.11) for the P-TSCOPF problem are explicitly 

described by the following power flow equations. 

1
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∑
          (6.20) 

where i=1,2,…,nb; nb is the total number of nodes; PDi is the active load; QGi and 

QDi are the generator reactive output and the reactive load; Vi and Vj are the 

voltage magnitude of node i and j; θij is the angle difference between node i and j. 

These active and reactive power balance constraints are enforced in initialization 

and subsequent time domain simulations for transient stability analysis. 

3) Static probabilistic inequality constraints  

The static constraints (6.12) explicitly include the probabilistic constraints for 
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generator reactive power, node voltage and transmission line thermal limit as 

min max{ }   ( 1, 2,......, )Gi Gi Gi Q GP Q Q Q i nβ≤ ≤ > =   (6.21) 

min max{ }  ( 1,2,......, )i i i V bP V V V i nβ≤ ≤ > =    (6.22) 

max{ }   ( 1, 2,..... )
i il l S lP S S i nβ≤ > =     (6.23) 

where nl is the index of branches and Sli is the apparent power in the ith branch. 

These probabilistic constraints ensure that bus voltage, generator reactive power 

and power flow of transmission line are bounded in the required ranges with an 

acceptable security level.  

4) Dynamic equality constraint  

Equality constrains (6.13) are a set of differential algebraic equations (DAEs) 

describing the dynamic behaviours of power system components including the 

traditional and wind generators. In this chapter, a four-order dynamic model with 

IEEE Type 1 exciter [169] is adopted for presenting the traditional generators 

while the dynamic WT and DFIG model presented in Section 6.2 is used to 

model the wind generators. 

5) Probabilistic transient stability constraint  

The SIME method has been an effective strategy for transient stability 

assessment [93, 94] and TSCOPF problem [42, 66]. With the transient stability 

margin η calculated by the SIME method in Chapter III, the probabilistic stability 

constraint (6.14) of the proposed P-TSCOPF model could be expressed as 

{ 0} rP η β> ≥                        (6.24) 

In other words, the proposed explicit P-TSCOPF model would consists of 

objective (6.19), power balance equality constraint (6.20), DAEs for the wind 

generator model (6.1)-(6.9) and four-order traditional generators with IEEE Type 

1 exciters, probabilistic static inequality constraints (6.21)-(6.23), and 

probabilistic transient stability constraints (6.24). The challenge for solving this 

model is how the probabilistic constraints (6.21)-(6.24) could be effectively 

evaluated. 
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6.5 Methodology 

The new IGSO-PE method proposed here uses a two-stage approach for 

solving the P-TSCOPF model. In the first stage, the PE method is used to 

calculate the probability of concerned output variables. The IGSO algorithm in 

Chapter V is then used in the second stage to search for the optimal generation 

outputs that would minimize the expected total fuel cost as well as satisfy all the 

probabilistic security constraints. 

6.5.1 Point Estimated Method 

2m+1 PE method concentrates the statistical information provided by the first 

four central moments on three points for each variable [120, 121]. Based on these 

concentrations and the function relating input and output variables, the uncertain 

properties of outputs can be estimated.  

The uncertain input variables in the proposed model, denoted as (z1 , z2 ,…, 

zl ,… ,zm), include the stochastic load injections, uncertain wind generations and 

the normal distributed fault clearing time. Based on probability theory [120, 121], 

the 2m+1 PE method would generate three concentrations for each uncertain 

variable as follows: the uncertain variable zl is replaced with three locations zl,k 

(k=1,2,3), while the remaining m-1 uncertain variables are fixed at their mean 

value μz1, μz2,…, μzm, thus three vectors, referred as concentrations of PE, would 

be formed in terms of (μz1 , μz2,… zl,k ,..., μzm). Similarly, in total 3m 

concentrations (μz1 , μz2,… zl,k ,..., μzm) (k=1,2,3, l=1,2,…,m) would be generated 

for the uncertain vector (z1 , z2 ,…, zl ,… ,zm) with m random variables. The 

location zl,k is expressed as 

, ,     1, 2,3l k zl l k zlz kµ ε σ= + ⋅ =                            (6.25) 

where l=1,…,m; εl,k is the standard location, μzl and σzl are the mean and standard 

deviation of the variable zl. The standard location εl,k and weight ωl,k are obtained 

by Hong’s method [121]  
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where λl,3  and λl,4  are the skewness and kurtosis of variable zl . In (6.26), the 

setting εl,3=0 yields zl,k =μzl in (6.25), thus m of the concentrations are the same as 

(μz1 , μz2 ,…, μzl ,… ,μzm), and the total number of concentrations would reduce 

from 3m to 2m+1. 

With the known concentrations, which are a set of deterministic scenarios 

standing for the uncertain variables, the conventional power flow and transient 

stability analysis are conducted at each concentration to calculate the concerned 

outputs, say the slack bus generation, the reactive power of each generator, node 

voltages, transmission line power flows and the transient stability margin η. Here 

the relationship between these outputs S and the concentration (μz1 , μz2,… zl,k ,..., 

μzm) is denoted by function F as 

, 1 2 ,( , , , , , )l k z z l k zmS F zµ µ µ=                    (6.28) 

where Sl,k is a vector of concerned outputs obtained by deterministic power flow 

and transient stability analysis at concentration (μz1 , μz2,… zl,k ,..., μzm). Then, by 

using Sl,k with its weights ωl,k , the jth raw moment mj of outputs S is calculated as 
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 (6.29) 

Once various order of raw moments of outputs S are obtained, their cumulative 

distribution functions (CDFs) F(x) can be estimated as (6.30) by using the Gram-

Charlier expansion [141].  


     

2 3 4 23 54
3 4 5( ) ( ) ( )[ ( 1) ( 3 ) ( 6 3)]

3! 4! 5!
x K KKF x N u du N x x x x x x

σ σ σ−∞
= − − + − + − +∫  (6.30) 
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where ( )x x µ σ= −
 is the standardized variable, μ and σ are the mean value and 

the standard deviation of S; N(*) is the standard normal distribution function; Kj 

are the jth order cumulant derived from the central moment Mj as 

3 3
2

4 4 2

5 5 3 2

3( )
10

K M
K M M
K M M M

=
= −
= −

                                 (6.31) 

where Mj  is calculated from raw moment mj  in (6.29) as  
2

2 2 1
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     (6.32) 

Once the CDFs for the random outputs, including the generation of slack bus 

generator, reactive powers of all generators, node voltages, transmission line 

power flows, stability margin, etc., are obtained by (6.30), the probabilistic 

constraints in (6.21)-(6.24) and the system total fuel cost expectation (6.19) could 

be easily evaluated from the CDFs. 

6.5.2 Cholesky Decomposition for Handing Correlations 

As mentioned in Section 6.3, random variables are often correlated to each 

other and these correlations should be considered in the probabilistic analysis 

[180]. The 2m+1 PE method with Cholesky decomposition in [181] is adopted 

here to handle the correlated uncertainties in P-TSCOPF. The correlated input 

variables are first converted to uncorrelated variables by Cholesky 

decomposition; then the concentration points for these uncorrelated variables are 

worked out and inversed to find the corresponding correlated input variables. 

The following briefly summarizes how the probabilistic correlated input 

variables are handled using the 2m+1 PE method with Cholesky decomposition. 

1) Based on the probabilistic model given in Section 6.3 for each random input 

with correlation coefficients, calculate the mean value μx, covariance matrix 
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Cx, skewness coefficients λl,3 and kurtosis coefficients λl,4 (l=1,2,…,m), then 

obtain the matrix L using the Cholesky decomposition Cx =LLT where L is an 

inferior triangular matrix. 

2) Transform the mean value, covariance, skewness and kurtosis coefficients to 

the independent space using the following transformation. 
' 1

' 1
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          (6.33) 

where 1
,l rL−  represents the element at the lth row and rth column of the inverse of 

matrix L. 

3) Calculated the 2m+1 transformed concentration points as ' ' '
1 2( , , ,z zx µ µ=   

' '
, , , )l k zmz µ  with corresponding weights ωl,k by (6.25)-(6.27). 

4) Transform the concentration points 'x  back to the original space by applying 

the inverse transformation 'x Lx= . 

5) Solve a deterministic power flow and transient stability analysis for each 

concentration point obtained in Step 4 so as to obtain the solution Sl,k  in (6.28). 

6) Calculate the jth order raw moment mj by (6.29) and the CDFs of output 

random variables using Gram-Charlier expansion by (6.30); thus, the fuel cost 

expectation, the probabilistic inequality constraints (6.21)-(6.23) and 

probabilistic transient stability constraint (6.24) can be easily evaluated. 

6.5.3 Group Search Optimization Method 

GSO is an effective global optimization method based on producer-scrounger 

model developed in [162, 182]. It is initialized with random individuals and 

approaches the optimal solution by updating the positions of its producer, 

scroungers and ranger.  
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In Chapter V, the IGSO has been proposed and successfully applied to solve 

discontinuous non-convex TSCOPF problems with complex system model. Here, 

this IGSO method is adopted as the optimization engine for solving the proposed 

P-TSCOPF model (6.10)-(6.14) which consists of 1) equality constraints, formed 

by the power flow equations (6.20) and DAEs for the traditional and wind 

generators, which are implicitly handled by the power flow calculation and time 

domain simulation embedded within the 2m+1 PE method, and 2) probabilistic 

inequality constraints (6.21)-(6.24), evaluated by the 2m+1 PE method with 

Cholesky decomposition. The penalty function method [44] is adopted to 

transform the constrained P-TSCOPF problem to an unconstrained one like (6.34) 

such that it could be readily optimized using the IGSO method. 

0 0( , ) max(0, { ( , , , )})
                          max(0, { ( ( ), ( ), , )})

t t
G j j j

r r

Min F x u F p P h
p P t t

β

β η

= + −

+ −

x y uε
x y uε

  (6.34) 

where pj and pr are the penalty factors to produce large discrimination if any 

probabilistic constraints in (6.21)-(6.24) are violated. 

The following are the main procedures of the proposed IGSO-PE method for 

solving the P-TSCOPF problem with the flowchart shown in Fig. 6.4. 

Step 1: Input system data, specify IGSO parameters and randomly initialize the 

IGSO particles for control variables within the lower and upper limits; 

Step 2: The CDFs of steady-state variables in (6.21)-(6.23), the stability margin 

in (6.24) and fuel cost are calculated by 2m+1 PE approach with 

Cholesky decomposition, then the probabilistic constraint and fuel cost 

expectation can be evaluated from the corresponding CDFs; 

Step 3: Evaluate the fitness of each particle by (6.34); 

Step 4: Find the best fitness value among all particles, and determine whether the 

maximum number of iterations is reached , if yes, go to Step 6; otherwise, 

go to Step 5; 

Step 5: Increase iteration number and update control variables by IGSO method, 
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then go to Step 2; 

Step 6: Output the optimal solutions of P-TSCOPF model. 

Set iteration number k=1 and initialize positions of GSO 
particles in upper and lower limits of  control variables 

 Conduct a deterministic  transient stability analysis for the 
lth concentration (l=1,2,...2m+1), and calculate the 

concerned outputs including the system cost, node voltages, 
transmission line power flow, transient stability margin, etc.  

Yes

Input system  data and probabilistic 
model of uncertain variables

Generate 2m+1 concentrations for uncertain variables 
using PE method with Cholesky decomposition

Collect outputs of these  2m+1 TSA and calculate  various 
order raw moments of outputs by (6.29)

Output the positions of 
GSO particles with the 

best fitness as the optimal 
solution of P-TSCOPF

 Specify GSO parameters such as the maximum 
optimal iteration number         and population sizes totalk

Estimate the CDFs of outputs by Gram-Charlier expansion  
and evaluate the probabilistic constraints (6.21)-(6.24) 

Evaluate the fitness of each particle by (6.34), 
and find the best fitness among all particles

         k< totalk No

k=k+1

 Update positions of 
GSO producer, 

scroungers and rangers 
for  control variables

In  kth iteration, fixed the control variables at 
the updated positions of GSO particles   

 

Fig. 6.4 Flowchart of IGSO-PE for solving P-TSCOPF model 

6.6 Case Study  

For evaluating the proposed P-TSCOPF model and IGSO-PE solution 

approach, a modified New England 39-bus system with four correlated wind 

farms (WFs) as shown in Fig. 6.5 is prepared. 
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The fuel cost coefficients of generators at bus 30 to 39 are cited from [45], and 

their dynamic model for transient stability analysis are 4th order with data cited 

from [160], and equipped with IEEE Type 1 exciter with data given in Table C.1. 

For WFs, an aggregated model is sufficient for investigating its impact on the 

system transient stability [183]. Specifically, a total number of 100 DFIGs with 

rated power 2 MW each and parameters cited from [171] are aggregated to form 

a WF with wind turbine parameters: Ktw =0.6p.u./rad, Dtw=0.45 and Ht=3.8s.  

G G

G
G

G

GG GG G

30

39

1

2

25
37

29

17

26

9

3
38

16

5

4

18

27

28

3624

35

22

21

20

34

23
19

33
10

11

13

14

15

8 31

126

32

7

W

W

W

W

40

41

42

43

 

Fig. 6.5 Modified New England System with four WFs 

The contingency considered in transient stability analysis is a three-phase 

earth fault occurred at the end of line 15-16 near bus 15 at t=0ms, and 

subsequently cleared by tripping line 15-16 at time tcl. Generator reactive power 

limits and transmission line thermal limits are cited from Matpower [170]; the 

node voltages of PQ bus are required to be in the range [0.97, 1.06]. The 

threshold of all probabilistic constraints (i.e. βQ, βV, βS, and βr) are assumed as 

0.95, which means when all the left hand side of probabilistic constraints (6.21)-

(6.24) are not smaller than 0.95, the corresponding operation point is considered 

as acceptable in the view of security risk.  
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The following are the uncertain parameter settings for the random variables. 

1) The base load given in [170] is assumed as the mean value of the normal 

distributed load injection with the standard deviation is fixed as 10% of the 

mean value. There are totally 21 correlated loads with correlations assumed 

as 0.15. 

2) The shape and scale parameters of wind speed are set as λ=2 and k=12 with 

correlations of 0.3, while the cut-in, cut-out and rated wind speed for WTs are 

νci=3m/s, νct=25m/s and νrd=12 m/s [184], respectively. 

3) The normal distribution parameters for the fault clearing time are set as μt 

=350ms, σt =0.1 μt. 

6.6.1 Benchmarking and Comparisons of Results 

For evaluating the accuracy and efficiency of the proposed IGSO-PE method, 

the widely used MC method is also deployed for benchmarking. Both the MC 

and PE methods run on a PC with a 3.0GHz Intel Core2Quad CPU and 4GB 

RAM under MATLAB R2010b. The required number of samples in MC is 

estimated as 5,000 based on the convergence theory [185-187]. The performance 

of IGSO-PE is compared with MC using the mean and standard deviation (SD) 
error x

µε  and x
σε  . 

100(| |) / [%]x
MC PE MCµε µ µ µ= −                (6.35) 

100(| |) / [%]x
MC PE MCσε σ σ σ= −          (6.36) 

where μMC, σMC, μPE and σPE are the mean value and SD of output random 

variables calculated by MC and PE method, respectively. The Average Root 

Mean Square (ARMS) [141] error of output random variables resulted from the 

PE method is measured by an accuracy index as 

2

1
( )

ARMS
i i

N

MC PE
i

F F

N
=

−
=
∑

               (6.37) 

where FMCi and FPEi are the values on the CDF curve solved by MC and PE 

method, respectively. Here, N is set as 10 for the range of CDF curve with 
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confident level [2%, 98%]. 

6.6.2 Investigations on Original Operating Point 

The proposed P-TSCOPF model is first checked with the base operating 

conditions that consists of original generations and slack bus voltage in [160], as 

detailed in Table 6.1. At this operation point, the probabilistic output of generator 

at slack bus by the PE method is shown in Fig. 6.6 and the expectation of total 

fuel cost is relatively low as 57486.97 $/h. However, not all the probabilistic 

constraints are satisfied with the acceptable security level at this operating point. 

For example, the probability of voltage profile for bus 4 in range [0.97, 1.06] is 

only 0.19 as shown in Fig. 6.7, which means the probabilistic voltage constraint 

(6.22) cannot be fulfilled with the required 0.95 security level. Similarly, the 

probabilistic constraint for transmission line 6-11 is also violated as shown in Fig. 

6.8. With its thermal limit being 6 p.u., the probability of over-loading line 6-11 

is 0.5, which considerably violates the limit that probability of line over-loading 

shall not be larger than 0.05. Moreover, the probabilistic transient stability 

margin for stable case (η>0) is 0.53 as shown in Fig. 6.9, which indicates that the 

system would lose transient stability with a probability of 0.47; therefore, the 

system cannot maintain the transient stability with a satisfactory security level.  
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Fig. 6.6 Generation of slack bus without P-TSCOPF 
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Fig. 6.7 Voltage probability of bus 4 without P-TSCOPF 
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Fig. 6.8 Power probability of line 6-11 without P-TSCOPF 
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Fig. 6.9 Probability of stability margin without P-TSCOPF 
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Table 6.1 Comparisons of the base case and P-TSCOPF solution 

Control Variables Original point P-TSCOPF solution 

G30 (MW) 250 281 

G32 (MW) 650 476 

G33 (MW) 632 652 

G34 (MW) 508 536 

G35 (MW) 650 411 

G36 (MW) 560 241 

G37 (MW) 540 485 

G38 (MW) 830 869 

G39 (MW) 1000 1199 

V31 (p.u.) 0.982 1.095 

Are All Constraints Satisfied? No Yes 

Cost Expectation ($/h) 57486.97 59008.96 

Table 6.2 Error comparisons for the base case 

Variable MC 
(Mean, SD ) 

PE 
(Mean, SD ) 

Error (%) 
x
µε
 x

σε
 ARMS 

V4 (0.9686,0.0012) (0.9684,0.0013) 0.02 3.63 0.09 

P6-11 (5.9911,1.0510) (6.1421,1.0799) 2.52 2.76 0.08 

TSM (-0.1594,4.8406) (-0.1758,4.5155) 10.28 6.72 0.08 

Pslack (1.7826,2.1355) (1.6453,2.2283) 7.70 4.35 0.05 

The MC method with 5,000 samples is also conducted for benchmarking the 

performance of the 2m+1 PE method. The total computation time taken by the 

MC method is 2,236s, which is almost 2 orders of magnitude slower than the 

proposed 2m+1 PE method whose computation time is only 24s. Compared with 
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the large number of time domain simulations required by the MC method, the 

2m+1 PE method only needs to perform a small fraction of time domain 

simulations and is therefore significantly more efficient. For instance, only 53 

time domain simulations would be needed with m=26 as in this case study. 

Furthermore, the accuracy of the PE method is diligently validated by 

qualitatively comparing the probability curves of slack bus generation (Pslack), 

voltage in bus 4 (V4), power flow in line 6-11 (P6-11), and transient stability 

margin (SM) obtained by the PE and MC methods as plotted in Fig. 6.6-6.9. The 

results of this comparison study are concisely summarized in Table 6.2. As is 

evidenced by the small mean and SD errors (<10.3% and <6.8%, respectively) as 

well as small ARMS errors (<0.2%) found in all the four variables in concern, the 

accuracy of the PE method is acceptable for its application in P-TSCOPF. 

6.6.3 Investigations on Optimal Solutions of P-TSCOPF Model 

As shown in Section 6.6.2, the base case does pose a high risk of system 

instability, a new operating point, which shall be secure and economic, is 

therefore desirable and can be found using the proposed IGSO-PE method as 

demonstrated in the following case study which contains 10 control variables 

consisting of 9 generator active powers and a slack bus voltage within the range 

of [0.95, 1.1]. The swarm size of IGSO is set to 15 and the total number of 

iterations is fixed at 30. Parameters for initializing IGSO individuals are the same 

as in Chapter V. The penalty factors pj and pr in (6.34) are set to 107 to introduce 

sufficient discrimination for any constraint violations in the P-TSCOPF model.  

Fig. 6.10 plots the convergence of the proposed IGSO-PE optimization 

applied to solve this P-TSCOPF problem. The convergence is good and the total 

CPU time taken for the whole optimization process is 2,647s which is 

comparable to a single run of MC for assessing one IGSO individual. 
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Fig. 6.10 Convergence of IGSO-PE approach for New England system 

After P-TSCOPF optimization, the system has a slightly higher total fuel cost 

expectation of 59,008.96 $/h, which is increased by 2.6% compared to the base 

case as a small price to pay to mitigate the risk of instability. The optimized 

solution given in Table 6.1 is probabilistically transient stable and all the static 

probabilistic constraints are satisfied. For example, as shown in Fig. 6.11, the 

voltage CDF of bus 4 at threshold 0.97 is zero, thus the probability of voltage in 

the range of [0.97, 1.06] is 1 which is higher than the required security level 0.95. 

In Fig. 6.12, the probability of line flow 6-11 below the thermal limit 6 p.u. is 

0.97 which is also higher than the required security level 0.95. In other words, 

this line is statistically unlikely to be overloaded. Moreover, the probability plot 

of stability margin in Fig. 6.13 indicates that the system is stable with a high 

probability as 1 with the given uncertainties. Meanwhile, the probability curves 

of bus 4 voltage, line flow 6-11 and transient stability margin obtained using the 

MC method are also given in Fig. 6.11-6.13 to show the good match of results 

between the PE and MC methods.  

When compare the fuel cost expectation before and after P-TSCOPF 

optimization in Table 6.1, the fuel cost expectation of optimal solution increases 

2.6 percent compared with the fuel cost expectation 57486.97 $/h of the base 

case. It is reasonable to sacrifice a small amount economic benefit for 

considerably mitigating the risk of instability for the stressed power system.  



 

128 
 

0.96 0.97 0.98 0.99 1 1.01 1.020

0.2

0.4

0.6

0.8

1

Voltage of bus 4(p.u.)

Pr
ob

ab
ilit

y

 

 

PE
MC

 

Fig. 6.11 Voltage probability of bus 4 with P-TSCOPF 
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Fig. 6.12 Power probability of line 6-11 with P-TSCOPF 
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Fig. 6.13 Probability of stability margin with P-TSCOPF 
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Table 6.3 compares the results obtained from the PE and MC methods for the 

optimized solution found by the proposed IGSO-PE method. Again, the mean, 

SD, and ARMS errors are small (<2.8%, <4.8%, and <0.6%, respectively), and 

the PE method can indeed be used as the fast alterative of the MC method with 

acceptable accuracy. 

Table 6.3 Error comparisons for the optimal solution 

Variable MC 
(Mean, SD ) 

PE 
(Mean, SD ) 

Error (%) 

x
µε
 x

σε
 ARMS 

V4 (0.9876,0.0042) (0.9880,0.0040) 0.04 4.76 0.45 

P6-11 (3.4174,1.3011) (3.5041,1.3485) 2.53 3.64 0.15 

SM (4.4237,0.2289) (4.3737,0.2271) 1.13 0.78 0.60 

Pslack (6.5295,3.4782) (6.3513,3.5012) 2.73 0.66 0.16 

The fuel cost expectations at different security levels for βQ, βV, βS, and βr are 

also investigated. As shown in Table 6.4, the fuel cost expectation is relative 

small when the security level is low. With a higher security level, the fuel cost 

expectation increased as expected since the system has to pay a higher expected 

fuel cost to establish a more secure operation state. Results presented in Table 6.4 

also provide qualitative information to power system operators for making 

decisions in selecting the best compromised operation point with low expected 

fuel cost and acceptable system security level. 

Table 6.4 Fuel cost expectations at different security level 

Confident Level 0.80 0.85 0.90 0.95 0.98 

Fuel Cost($/h) 57189 57420 57876 59009 59885 
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6.7 Summary 

In this chapter, a novel probabilistic transient stability constrained optimal 

power flow (P-TSCOPF) model is presented for the first time to simultaneously 

consider the transient stability and uncertainties stemming from, for instance, 

correlated uncertain loads, uncertain fault clearing time and multiple correlated 

wind generations, etc. for power system preventive control. A new IGSO-PE 

approach based on the point-estimated method and IGSO algorithm has been 

established to efficiently solve the P-TSCOPF model. Tests and analysis on the 

modified New England 39-bus system with four correlated uncertain WFs have 

demonstrated the validity of the proposed P-TSCOPF model and the 

effectiveness of IGSO-PE method. Compared with the widely used MC method, 

the proposed IGSO-PE method is orders of magnitude faster while the solution 

quality is generally comparable. 
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Chapter VII 

Conclusions and Future Work 

7.1 Conclusions 

With worldwide increasing concerns on the forthcoming energy crisis, OPF 

has regained its vital force due to its capability of approaching the best power 

system economic operation point and saving energy for power industries. 

However, the endless pursuit of economic benefits would continuously push 

modern power systems to operate with deteriorated stability margin or even 

instability when contingencies occur. Moreover, under the sustainable and smart 

grid paradigm, there is a continuous surge of wind power generations in power 

grids. Operation uncertainties coupled with the intermittent nature of wind power 

have brought new challenges and problems to power system security. A powerful 

schedule tool capable of simultaneously reconciling the economics, stability and 

uncertainties would be urgently needed for the much stressed power grids, and 

TSCOPF is such tool. In this thesis, various TSCOPF models and their effective 

solution methods are studied and investigated, and the uncertainties in operation 

and generation are further considered and handled in the P-TSCOPF model. 

Specifically, the following are the primary conclusions drawn from this research. 

1) An all-round analytical approach capable of effectively handling multi-swing 

unstable, normal unstable or extreme unstable cases with multi-contingency 

and over-stabilization is proposed for TSCOPF problems. 

Based on the SIME theory, a single stability constraint derived from the 

minimum accelerating power distance is proposed to handle the extreme unstable 

TSCOPF cases. Since only one stability constraint is introduced for each 
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contingency, the dimension of TSCOPF is greatly reduced to be comparable to 

traditional OPF and hence make solution approach scalable for large power 

systems. Also, the problem of over-stabilization in the TSCOPF optimization 

process is overcome by guiding the solution gradually across the stability 

boundary. As a result, an all-round approach is established for the first time to 

effectively solve all types of TSCOPF problems with multi-swing, normal or 

extreme unstable conditions, multi-contingency and over-stabilization. 

2) A general and flexible MINLP-TSCOPF model with consideration of valve-

point effects and discrete control variables as well as transient angle and 

voltage performance is proposed and solved by a novel EPSO method. 

With consideration of the practical power system operation characteristics 

such as generation valve-point effects and discrete control variables, a non-

convex discrete TSCOPF model with many minima is proposed and formulated 

as a general MINLP optimization problem. The reliable SIME-based TSM and 

signal energy are introduced to establish the constraints for transient angle 

stability and transient voltage performance, respectively, so as to conveniently 

form a unified MINLP-TSCOPF framework with transient angle and voltage 

performance taken into account. Furthermore, an EPSO with dynamic inertia 

weight and shrinking Gaussian distribution disturbance is proposed for solving 

this MINLP-TSCOPF. While the proposed MINLP-TSCOPF model is general 

and flexible to support any complex dynamic power system components, valve 

point effects and discrete control variables, the proposed EPSO is verified to be 

capable of finding effective MINLP-TSCOPF solutions. 

3) A novel IGSO method with backward searching strategy, Cauchy mutation 

and inheritance operator is specially designed as the best solver for MINLP-

TSCOPF problems compared with other AI methods. 

A novel IGSO algorithm is specially developed for solving the non-convex 

MINLP-TSCOPF model with many minima. While backward searching strategy 
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and inheritance operator are adopted to enhance its search capability, Cauchy 

mutation disturbance is introduced to allow solutions to escape from the local 

optimum plateau during the optimization. The performance of IGSO method is 

fully investigated using four comprehensive case studies and benchmarked with 

variants of PSO, GA, GSO and DE methods, etc. to demonstrate its superiority in 

solving the MINLP-TSCOPF problem with generation POZs.  

4) For the first time, a probabilistic transient stability constrained optimal power 

flow model with consideration of correlated wind power generation and 

operation uncertainties is established and efficiently solved by the proposed 

hybrid IGSO-PE approach. 

An original P-TSCOPF model is proposed to consider both transient stability 

and uncertainties for power system preventive control. Typical uncertainties 

including uncertain load injections, probabilistic fault clearing time and multiple 

correlated stochastic wind generations are considered in this P-TSCOPF model. 

A hybrid approach, consisting of IGSO optimization and PE strategy with 

Cholesky decomposition, is established for solving the proposed P-TSCOPF 

model effectively. Case study on a modified New England 39-bus system with 

four correlated uncertain WFs has confirmed the validity of the proposed P-

TSCOPF model and demonstrated the effectiveness of IGSO-PE solution method 

with fast computation speed and good accuracy compared with Monte Carlo 

simulations. 

7.2 Future Work 

The thesis has first developed an efficient and all-round analytical approach 

to solve the traditional TSCOPF problem, then proposed a general and flexible 

MINLP-TSCOPF model solved by specially designed heuristic solution methods, 

and finally established a P-TSCOPF model with consideration of generation and 

operation uncertainties for power system preventive control. With the endeavour 
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to solve the P-TSCOPF model more effectively, the following on-going work is 

worth to continue in the follow-up research. 

1) Large-scale parallel computation should be adopted to reduce the CPU time 

of IGSO-PE method in solving P-TSCOPF problems.  

The dominated execution in solving the P-TSCOPF problem by IGSO-PE 

method is to calculate the transient stability index for each PE concentration 

using time domain simulations. As these time domain simulations are 

independent of each other, large-scale parallel computation strategy can therefore 

be used to efficiently speed up the IGSO-PE optimization process. 

2) The principal component analysis strategy can be used to identify the key 

uncertain factors among all uncertain input variables, thus reduce the number 

of concentrations required for time domain simulations. 

When the PE strategy is used to approximate the probabilistic distribution of 

concerned outputs, a few concentrations shall be selected based on the 

probability theory for time domain simulations. As the number of concentrations 

required is dependent on the number of uncertain factors, identifying the key 

uncertain factors so as to decrease the number of concentrations would reduce 

the time cost for solving the P-TSCOPF problem. The principal component 

analysis is a promising strategy which could be used to screen out the main 

uncertain factors from non-significant uncertainties.  

3) An analytical method based on power system dynamic security region and 

convolution calculation could be developed to address the P-TSCOPF 

problem more efficiently.  

The major key in solving the P-TSCOPF problem is how the probabilistic 

distribution of concerned random output variables can be determined effectively, 

in particular the probabilistic transient stability margin which is always coupled 

with solutions of power system DAEs. With the linear relationship between 
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concerned outputs and uncertain inputs provided, the analytical method using 

convolution computation could approximate the probability of random outputs. 

As a result, an analytical approach based on power system dynamic security 

region [188] targeting to estimating the linear relationship between the transient 

stability index and uncertain inputs by perturbations, could be formed to compute 

the probabilistic distribution of transient stability margin, and hence the P-

TSCOPF problem could be solved more efficiently in an analytical manner.  

4) Besides the wind power generations, uncertainties and dynamic models of 

many other intermittent renewable generations shall also be investigated such 

that a complete P-TSCOPF model accommodating various renewable 

energies could be formed and analysed in the future.  

Since only multiple correlated wind generations is considered as one typical 

renewable generation in this thesis, many other common intermittent renewables 

such as photovoltaic power generations and electric vehicle aggregators could 

also be introduced in the P-TSCOPF problem. The full models of photovoltaic 

power generations and electric vehicle aggregators shall be properly developed 

for describing their dynamic behaviours in P-TSCOPF for bulk power systems, 

such that an all-sided P-TSCOPF model including all types of renewables could 

be established and investigated. 



 

136 
 

Appendices 

A. Data of New England 10-Generator 39-Bus Power System 

Note: If not specified, all data in per unit are given based on power rating of 

100 MW. 

Table A.1 Generation cost coefficients of New England system 

Gen 
No. 

Bus 
No. 

ai 
($/(MW2.h)) 

bi 
($/(MW.h)) 

ci 
($/h) di 

ei 
($/(MW.h)) 

Rating  
(MW) 

G1 30 0.0193 6.9 0 200 0.35 350 
G2 31 0.0111 3.7 0 200 0.35 650 
G3 32 0.0104 2.8 0 200 0.35 800 
G4 33 0.0088 4.7 0 200 0.35 750 
G5 34 0.0128 2.8 0 200 0.35 650 
G6 35 0.0094 3.7 0 300 0.22 750 
G7 36 0.0099 4.8 0 300 0.22 750 
G8 37 0.0113 3.6 0 300 0.22 700 
G9 38 0.0071 3.7 0 300 0.22 900 

G10 39 0.0064 3.9 0 300 0.22 1200 

Table A.2 Machine data of New England system 

Gen No. H Xd' Xq' Xd Xq T′d0 (s) T′q0 (s) 

G1 42 0.004 0.004 0.2 0.196 5.7 0.5 
G2 30.3 0.0647 0.0647 0.295 0.282 6.56 1.5 
G3 35.8 0.0531 0.0531 0.2495 0.237 5.7 1.5 
G4 28.6 0.0436 0.0436 0.262 0.258 5.69 1.5 
G5 26 0.066 0.066 0.33 0.31 5.4 0.44 
G6 34.8 0.05 0.05 0.254 0.241 7.3 0.4 
G7 26.4 0.049 0.049 0.295 0.292 5.66 1.5 
G8 24.3 0.057 0.057 0.29 0.28 6.7 0.41 
G9 34.5 0.057 0.057 0.2106 0.205 4.79 1.96 
G10 500 0.006 0.006 0.02 0.019 6 0.7 
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Table A.3 Transmission line data of New England system 

Line No. From bus To bus Resistance 
(pu) 

Reactance 
(pu) 

Susceptance 
(pu) Ratio Rating 

(MVA) 
1 2 1 0.0035 0.0411 0.6987 1 600 
2 39 1 0.001 0.025 0.75 1 1000 
3 3 2 0.0013 0.0151 0.2572 1 500 
4 25 2 0.007 0.0086 0.146 1 500 
5 4 3 0.0013 0.0213 0.2214 1 500 
6 18 3 0.0011 0.0133 0.2138 1 500 
7 5 4 0.0008 0.0129 0.1382 1 600 
8 14 4 0.0008 0.0128 0.1342 1 500 
9 6 5 0.0002 0.0026 0.0434 1 1200 
10 8 5 0.0008 0.0112 0.1476 1 900 
11 7 6 0.0006 0.0092 0.113 1 900 
12 11 6 0.0007 0.0082 0.1389 1 600 
13 8 7 0.0004 0.0046 0.078 1 900 
14 9 8 0.0023 0.0363 0.3804 1 900 
15 39 9 0.001 0.025 1.2 1 900 
16 11 10 0.0004 0.0043 0.0729 1 600 
17 13 10 0.0004 0.0043 0.0729 1 600 
18 14 13 0.0009 0.0101 0.1723 1 600 
19 15 14 0.0018 0.0217 0.366 1 600 
20 16 15 0.0009 0.0094 0.171 1 600 
21 17 16 0.0007 0.0089 0.1342 1 600 
22 19 16 0.0016 0.0195 0.304 1 600 
23 21 16 0.0008 0.0135 0.2548 1 600 
24 24 16 0.0003 0.0059 0.068 1 600 
25 18 17 0.0007 0.0082 0.1319 1 600 
26 27 17 0.0013 0.0173 0.3216 1 600 
27 22 21 0.0008 0.014 0.2565 1 900 
28 23 22 0.0006 0.0096 0.1846 1 600 
29 24 23 0.0022 0.035 0.361 1 600 
30 26 25 0.0032 0.0323 0.513 1 600 
31 27 26 0.0014 0.0147 0.2396 1 600 
32 28 26 0.0043 0.0474 0.7802 1 600 
33 29 26 0.0057 0.0625 1.029 1 600 
34 29 28 0.0014 0.0151 0.249 1 600 
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35 12 11 0.0016 0.0435 0 1.006 500 
36 12 13 0.0016 0.0435 0 1.006 500 
37 6 31 0 0.025 0 1.07 1800 
38 10 32 0 0.02 0 1.07 900 
39 19 33 0.0007 0.0142 0 1.07 900 
40 20 34 0.0009 0.018 0 1.009 900 
41 22 35 0 0.0143 0 1.025 900 
42 23 36 0.0005 0.0272 0 1 900 
43 25 37 0.0006 0.0232 0 1.025 900 
44 2 30 0 0.0181 0 1.025 900 
45 29 38 0.0008 0.0156 0 1.025 1200 
46 19 20 0.0007 0.0138 0 1.06 900 

Table A.4 Load demand data of New England system 

Bus No. PDi (pu) QDi (pu) 
3 3.22 0.024 
4 5 1.84 
7 2.338 0.84 
8 5.22 1.76 
12 0.075 0.88 
15 3.2 1.53 
16 3.294 0.323 
18 1.58 0.3 
20 6.28 1.03 
21 2.74 1.15 
23 2.475 0.8466 
24 3.086 -0.922 
25 2.24 0.472 
26 1.39 0.17 
27 2.81 0.755 
28 2.06 0.276 
29 2.835 0.269 
31 0.092 0.046 
39 11.04 2.5 
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B. Data of IEEE 50-Generator 145-Bus Power System 

Note: If not specified, all data in per unit are calculated on the basis of power 

rating of 100 MW. 

Table B.1 Machine data of IEEE 50-generator system 

Gen No. Bus No. H Xd' Xq' Xd Xq T′d0 (s) T′q0 (s) 

G1 60 1.41 0.4769      

G2 67 52.1796 0.0213      

G3 79 6.65 0.1292      

G4 80 1.2857 0.6648      

G5 82 2.115 0.5291      

G6 89 20.5602 0.0585      

G7 90 0.7628 1.6      

G8 91 1.6848 0.3718      

G9 93 115.037 0.024 0.03655 0.09842 0.09673 8.5 1.24 

G10 94 17.3424 0.0839      

G11 95 5.4662 0.1619      

G12 96 2.1216 0.4824      

G13 97 5.4912 0.2125      

G14 98 13.96 0.0795      

G15 99 17.108 0.1146      

G16 100 7.56 0.1386      

G17 101 12.2844 0.0924      

G18 102 78.4366 0.0135      

G19 103 8.16 0.1063      

G20 104 73.8528 0.0122 0.0144 0.1016 0.0982 10 1.5 

G21 105 84.3915 0.0208 0.03149 0.1144 0.1092 6.61 1.5 

G22 106 56.261 0.03118 0.0472 0.17165 0.16377 6.61 1.5 

G23 108 30.432 0.0248      

G24 109 2.6622 0.2029      

G25 110 115.05 0.024 0.0365 0.09842 0.09673 8.5 1.24 

G26 111 73.8528 0.0122 0.0144 0.1016 0.0982 10 1.5 
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G27 112 12.2844 0.0924      

G28 115 97.33 0.0024      

G29 116 105.5 0.0022      

G30 117 102.16 0.0017      

G31 118 162.74 0.0014      

G32 119 348.22 0.0002      

G33 121 116.54 0.0017      

G34 122 39.24 0.0089      

G35 124 116.86 0.0017      

G36 128 503.87 0.0001      

G37 130 230.9 0.001      

G38 131 1101.72 0.0001      

G39 132 120.35 0.0016      

G40 134 802.12 0.0003      

G41 135 232.63 0.0008      

G42 136 2018.17 0.0001      

G43 137 469.32 0.0004      

G44 139 2210.2 0.0001      

G45 140 899.19 0.0003      

G46 141 1474.22 0.0001      

G47 142 950.8 0.0003      

G48 143 204.3 0.0023      

G49 144 443.22 0.0004      

G50 145 518.08 0.0018      
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C. Data of Excitation System for 4th Order Generators 

Note: If not specified, all data in per unit are calculated on the basis of power 

rating of 100 MW. 

Table C.1 Excitation System parameters for 4th order generators 

Systems Gen No. KA TA(s) KE TE(s) KF(s) TF(s) Aex Bex Vrmin Vrmax 

New England 
10-gen system 

All 
generators 20 0.055 0.36 0.05 0.125 1.8 0.0056 1.075 -10 10 

IEEE 50-gen 
system 

G9 20 0.055 0.36 0.05 0.125 1.8 0.0056 1.075 -10 10 

G20 20 0.055 0.36 0.05 0.125 1.8 0.0056 1.075 -10 10 

G21 20 0.055 0.36 0.05 0.125 1.8 0.0056 1.075 -10 10 

G22 20 0.055 0.36 0.05 0.125 1.8 0.0056 1.075 -10 10 

G25 20 0.055 0.36 0.05 0.125 1.8 0.0056 1.075 -10 10 

G26 20 0.055 0.36 0.05 0.125 1.8 0.0056 1.075 -10 10 
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