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Abstract

Web-based data services have become more and more popular. Users from

different fields are interested in different web-based data services. In this thesis,

we consider three application scenarios with different queries and objectives. We

propose effective methods to process and optimize users’ queries over web data

services.

In the first application, users are interested in datasets provided in Cloud

Data Market (e.g., Windows Azure Data Market), which is an emerging cloud

service that enables data owners to sell their datasets in a public cloud. Users

(i.e., buyers) can access their interested data in data market via a RESTful API.

Accessing data in the data market may not be free. We present PayLess, a system

that helps users to process and optimize their SQL queries such that they pay

less.

In the second application, mobile users of location-based services (LBS)

issue range/K-NN queries over points-of-interest (e.g., restaurants, cafes), and

they require accurate query results with up-to-date travel times. Lacking the

monitoring infrastructure for road traffic, the LBS may obtain live travel times of

routes from online route APIs (e.g., Google Directions API and Bing Maps API)

in order to offer accurate results. Our goal is to reduce the number of external

requests issued by the LBS significantly while preserving accurate query results.

In the third application, emerging spatial crowdsourcing web services enable
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the users (i.e., crowdsourcing workers) to complete spatial crowdsourcing tasks

(like taking photos, conducting citizen journalism) that are tagged with both time

and location features. We study the problem of online recommending an optimal

route for a crowdsourcing worker, such that he can (i) reach his destination on

time and (ii) receive the maximum reward for tasks along the route. We show

that no algorithms can achieve a non-zero competitive ratio in this problem.

Therefore, we propose several heuristics, and powerful pruning rules to speed up

the methods.

For each application scenario above, we evaluate the performance of our

solutions on both synthetic data and real data. Our experimental results show

that our solutions are effective and scalable.
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Chapter 1

Introduction

With the advent of web, web data services become more and more popu-

lar. Web data services enable mashup, reuse, and sharing data from sources in

different categories. Such data include structured data (such as relational ta-

bles), semi-structured information (such as XML documents) and unstructured

information (such as content from web applications). The consumers of web data

services can be location-based services, enterprises, research organizations, social

media, social networks and so on. To access web data services, the consumers

need to follow the API interfaces provided by these data services. For example:

– Google Directions API [16] requires the consumers to issue HTTP requests

to retrieve live traffic information.

– Microsoft Azure Marketplace [4] requires the consumers to follow the lim-

ited access patterns defined in the marketplace to access data.
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Consumers use information from web data services for different purposes. For

instance:

– Companies or organization can use data from Microsoft Azure Data Mar-

ketplace [4] to conduct business or research analytics.

– Location based services can use live traffic information from Google Direc-

tions API [16] to solve spatial queries accurately.

– Crowdsourcing workers can use tasks published in Amazon Mechanical

Turk [3] to make money through completing those tasks.

Queries issued by consumers which involve data from web data services are called

queries over web data services.

Queries in various fields can have various objectives. From a user’s perspec-

tive, obtaining an accurate/optimal result for a query in a short response time

is always preferred. Thus, as a hot topic in database field, query optimization is

of great importance for query processing over web data services.

As shown in Figure 1.1, our query optimizer is located in the client side,

delegating our user to interact with web data services. In this thesis, we investi-

Web Data 

Services
Query

Optimizer

Our 

User

External

requests

Response

Query

Result

Our Work
Client

Figure 1.1. Position of our work

gate three different types of queries over web data services: (i) SQL queries over
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Table 1.1. Differences of query optimizers for different queries
Query Our User Data Services Optimization Goal

SQL queries data buyers cloud paying less
(e.g., companies, data to data sellers
organizations) market

Spatial location-based online issuing fewer requests
range and KNN services route APIs to online route APIs
queries
Route spatial spatial earning more rewards
recommendation crowdsourcing crowdsourcing by conducting
queries workers servers crowdsourcing tasks

cloud data markets, (ii) spatial queries (e.g., spatial range and K-NN queries)

over online route APIs, and (iii) route recommendation queries for crowdsourc-

ing workers over crowdsourcing task marketplaces. We summarize the differences

among the query optimizers for these three kinds of queries in Table 1.1.

SQL queries over cloud data market. Cloud data market is an emerging

type of cloud services that enables a data owner to host and sell datasets in a

public cloud. Buyers who are interested in a certain dataset can access the data

in the market via a RESTful API. Figure 1.2 shows an example of interfaces

for the GetStation table in Worldwide Historical Weather (WHW) dataset [26]

in Windows Azure Marketplace. Given a range or a value for input attributes

in Figure 1.2a, the data market returns values for the output attributes in Fig-

ure 1.2c. For instance, the Azure Marketplace may take a country name as an

input, and return a set of tuples, each details the elevation, latitude, longitude

of each weather station in that country. Accessing data in the data market may

not be free. As shown in Figure 1.2b, it costs USD $12 to grant access to every

100 “transactions” to the WHW data, where a transaction is a unit of result

size which refers to at most 100 records. There is an increasing trend of selling
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valuable datasets in data market. Correspondingly, we envision that there is an

increasing demand from end users (data buyers) to carry out analytics that in-

volve those datasets. Thus, we study how to optimize the queries for data buyers

such that they can get query results by paying less to data sellers.

(a) input interface (b) pricing model

(c) data market output

Figure 1.2. Example dataset WHW in Microsoft Azure Data Marketplace

Spatial queries over online route APIs. Location-based services (LBS)

enable mobile users to issue spatial queries (i.e., range or K-NN queries) over

points-of-interest (e.g., restaurants, cafes) on various features (e.g., price, quality,

variety, distance to travel). Users require accurate query results with up-to-date

travel times within short response time. Lacking the monitoring infrastructure

for road traffic, the LBS may obtain live travel times of routes from online route

APIs in order to offer accurate results. Take Google Directions API [16] for
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instance, as shown in Table 1.2, the request is an HTTP query string, whose

parameters contain the origin and destination locations in latitude, longitude, as

well as the travel mode. The response is an XML/JSON document that stores a

sequence of route segments from the origin to the destination. Using online route

APIs raises challenges for the LBS in meeting the response time requirement of

the users because a route request to route APIs incurs considerable time (0.1s-

0.3s) which is high compared to CPU time in LBS. Also, in order to solve end-

users’ queries, LBS may need to pay for their issued requests to the online route

APIs. Thus, it is important to optimize the end-users’ queries in the LBS such

that LBS incurs fewer requests to online route APIs.

Table 1.2. Example Google Directions API
HTTP request

http://maps.googleapis.com/maps/api/directions/xml?

origin=44.94033,-93.22294&destination=44.94198,-93.23722
mode=driving

XML response

<step>

<start_location>

<lat>44.9403300</lat> <lng>-93.2229400</lng>

</start_location>

<end_location>

<lat>44.9395900</lat> <lng>-93.2229500</lng>

</end_location>

<duration> <value>8</value> </duration>

</step>

...... remaining steps ......

Route recommendation queries over spatial crowdsourcing tasks. Spa-

tial crowdsourcing platforms may publicly publish crowdsourcing tasks that are

associated with rewards and tagged with spatial / temporal attributes (e.g., lo-

cation, release time and deadline). To complete a task, a worker must reach

the location of the task before its deadline. Popular tasks include taking photos,

reporting activities/accidents, and verifying data on-site, etc. The spatial crowd-

sourcing approach in worker-centric mode [55] enables the workers to choose tasks
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autonomously and protects their location privacy. [55] returns a route that cov-

ers the maximum number of tasks (in a worker’s specified region, e.g., his city).

Compared to [55], two extra requirements should be supported: (R1) update the

worker’s route online with respect to newly released tasks and (R2) align with

the worker’s trip, i.e., reaching a destination before deadline. It is important to

support requirement R1 in order to assign a worker as many tasks as possible.

New spatial crowdsourcing tasks are indeed being released continuously in real

systems 1.1. Requirement R2 is also important as the worker may have planned

his own activities, e.g., reaching a specified destination by an expected time [90].

Such worker is willing to take crowdsourcing tasks along his trip provided that

he can arrive at his destination on time. As a result, such workers may issue

queries to retrieve an optimal route such that he can (i) reach his destination

on time and (ii) receive the maximum reward for tasks along the route. For

example, as shown in Figure 1.3, the worker starts from s at time 0 and plans

to arrive at home (5, 0) at time 8. At time 0, tasks p1, p2 are known, and the

worker is recommended to take the task p2. When new tasks are released (e.g.,

p3, p4), the worker is recommended to take them. In the end, the complete rec-

ommended route is s → p2 → p3 → p4 → d, which covers 3 tasks and reaches

the destination d on time. Therefore, we study the online route recommendation

problem for spatial crowdsourcing workers, by taking requirements R1 and R2

into consideration.

The main contributions of this thesis can be summarized as follows:

– We design a system to help data buyers solve SQL queries over cloud data

1.1www.clickworker.com/en/clickworkerjob
www.lionbridge.com
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Arrive here before time 8

[0-7]
p2

[2-7]
p3

p4

[3-7]

p1

[0-5]

d

s

0 1 2 3
0

1

2

3

4 5 x

y

Figure 1.3. Example of route recommendation for workers: each task pi with
[release time - deadline]

markets by paying less to data sellers.

– We develop reusing algorithms and pruning rules to support efficient and

accurate spatial range and KNN search on LBS using online route APIs.

– We present algorithms for recommending routes for spatial crowdsourcing

workers.

The rest of this thesis is organized as follows. Chapter 2 gives an overview

of the existing work related to query optimization over web data sources.

Chapter 3 (based on [91]) studies how to optimize SQL queries which involve

datasets in data markets. A system PayLess is built to optimize a SQL query,

which takes into consideration the limited access pattern in the data market and

its unique pricing model. We design a bottom-up cost-based dynamic program-

ming approach to find the optimal execution plan for a SQL query. Besides, we

adapt a semantic query rewriting approach [53] to reuse the records retrieved

from data market for previous queries to save money further. We conduct ex-
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tensive performance evaluations on both real data (i.e., datasets from Microsoft

Azure Data Marketplace) and synthetic data (i.e., TPC-H dataset) to evaluate

our PayLess system.

Chapter 4 (based on [92]) studies how to help LBS calculate accurate answers

for end-users’ spatial queries within a short response time. For the requirement of

providing accurate answers, we use live traffic information retrieved from online

route APIs to help LBS solve spatial queries. For the efficiency requirement, we

reuse the retrieved route information for previous queries to reduce the number

of requests issued to online route APIs. We derive tight lower/upper shortest

path distance bounds between the end-user and points-of-interest (POIs), which

can be used to prune un-promising POIs to improve the efficiency. Moreover, we

design parallel algorithm to reduce the response time on the LBS further. We

conduct experiments on both real and synthetic data.

Chapter 5 (based on [93]) studies how to recommend routes for spatial

crowdsourcing workers, such that the worker can arrive his destination on time

as well as earn most reward by completing spatial crwodsourcing tasks on the

route. The route recommendation problem is an online problem as tasks are

continuously published by the crowdsourcing servers. We first prove that, there

is no optimal online algorithm for this problem, thus, we propose two categories

of heuristics to solve this problem. Then we utilize the spatial property of this

problem to design powerful pruning rules to reduce the route searching space to

speed up the algorithm. Extensive experiments over real and synthetic datasets

are conducted.

Chapter 6 concludes the thesis and discusses some future research directions.



Chapter 2

Literature Review

In this chapter, we present an overview of query optimization techniques over

remote data sources, semantic caching over web queries, and query processing of

location dependent queries.

2.1 Query Optimization over Remote Data Sources

Remote data sources (e.g., web services) have recently gained tremendous

momentum for sharing data and functionality among loosely-coupled, hetero-

geneous systems. Companies/organizations prefer to hide their databases by

providing an interoperable, function-call like interface for interacting with their

data [117]. Given a query over remote data sources, query optimization tech-

niques aim at finding an optimal execution plan with respect to different cost

models. In this section, we review those optimization techniques in the literature.

9
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2.1.1 Query Optimization with Limited Access Patterns

The access pattern of remote data sources is usually restricted to X → Y

style: by specifying values of attributes in X , values of attributes in Y are re-

trieved. This requirement is commonly referred to as access limitations (or bind-

ing patterns) [43]. In such contexts, traditional query optimization techniques

may not work; instead, the target query plan should incur the lowest cost and

comply with the access limitations at the same time. To evaluate a Select-

Project-Join (SPJ) query, the so-called maximal answer (i.e., the set of answer

tuples can be disclosed for the query) needs to be retrieved while minimizing

accesses to remote sources. Next, we elaborate query optimization techniques

applicable at query definition time (i.e., static optimization) and at run-time,

respectively.

To begin with, determining which sources are relevant to a given query is

of great importance, as it saves query execution time by excluding irrelevant

sources. Existing solutions [42, 88] of determining relevance sources at query

definition time are limited to SPJ queries over relations with exactly one ac-

cess pattern. After ruling out irrelevant data sources from a query plan, Cal̀ı

and Martinenghi [42] further proposed techniques to avoid accesses (to relevant

relations) that are unnecessary for obtaining the maximal answer.

By taking full advantage of intermediate data extracted from the remote

sources, query plans can further be optimized at run-time. Particularly, when

remote databases enforce certain integrity constraints, some accesses to sources

planned statically may turn out to be useless for the computation of new answer

tuples. In such cases, we can avoid those accesses at run-time [41, 56, 98, 99].
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For instance, Cal̀ı et al. [41] proposed a dynamic optimization for relations with

integrity constraints including functional dependencies and inclusion dependen-

cies.

2.1.2 Query Optimization over Multiple Web Services

The ability of efficiently evaluate queries over multiple Web services is nec-

essary, in light of the expensive communication cost over the network. Srivas-

tava [117] proposed to optimize queries over a collection of Web services with a

Web Service Management System (WSMS). In their system, each Web service

WS(X ,Y) is modeled as a virtual table with X → Y style data access pattern.

The optimization algorithms in the system take the Select-Project-Join (SPJ)

queries as input, and return a pipelined execution plan over multiple Web ser-

vices with minimum total running time. Qi and Athman [130] took a further step

to take both the response time and the quality of Web services into consideration

in the query optimization. Braga et al. [38] proposed the so-called multi-domain

queries that can be answered by combining knowledge from multiple domains,

e.g., Where can I attend an interesting database workshop close to a sunny beach?

To evaluate such queries, they designed a branch-and-bound search strategy to

find the best query plan with regard to a scheduling of (possibly parallel) service

invocation. As the cost for data transfer is the main bottleneck for the evalu-

ation of queries involving multiple web services, Anastasios et al. [67] proposed

a robust control solution to tune the block size for data transfer at run-time.

Finally, we remark that the concept of utilizing the results from one web service

to query another is essentially the same as the Dependent Join [47, 95].
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2.1.3 Distributed Query Optimization

In above setting of query processing over remote data sources, only data

shipping is allowed, that is, data is transferred between client-side and the re-

mote sources, and remote sources process the data according to their pre-defined

functionality. In contrast, traditional distributed query processing and optimiza-

tion has been addressed extensively in the literature [78,100], where code shipping

is also allowed apart from data shipping, that is, assigning each machine to ex-

ecute portions of code over portions of data. To reduce the communication cost

in this distributed query processing environment, a multitude of techniques are

proposed in previous work [78], including semi-join, fragment-replicate join, and

double-pipelined hash join.

2.2 Semantic Caching

Semantic caching is a client-side caching technique in client-server systems.

The data cached at the client side contains both semantic descriptions and results

of previous queries.

When a new query comes, we check whether the cached results of a previ-

ously computed query can be used for a new query, or whether the client needs

to request additional data from the server. A cache located at a client can only

serve queries from the client itself, not from other clients. Thus, with semantic

cache in client-side, less cost will be spent to communicate with servers.

With semantic caching [53, 105], a new query will be split into two disjoint

pieces: (i) a probe query that extracts the relevant portion of the query result
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0      10     20     30                        60                                  100
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Rem
Q2
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Q3

Rem

Figure 2.1. Example of using semantic caching

in the local client cache, and (2) a remainder query that accesses the server

to retrieve any missing tuples in the query result. To illustrate, consider the

example in Figure 2.1. The example assumes that the results of two queries V1

and V2 on table R have been stored in the semantic cache. Both V1 and V2

are range queries on an integer attribute A whose domain is [0, 100]. V1 and V2

respectively cover the ranges [10, 20) and [30, 60) on attribute A. Now, with V1

and V2, we assume the following query Q is posed to retrieve from R all tuples

with 0 ≤ A ≤ 100:

Q : R(A[0, 100])

Then the remainder query QRem = QRem1 ∨QRem2 ∨QRem3 is generated as:

QRem : R(A[0, 10) ∨ [20, 30) ∨ [60, 100])

Semantic caching has been studied for web queries [32,33,50,84]. Chidlovskii

et al. [84] introduce a semantic caching scheme for conjunctive keyword-based

web queries. The results of previous queries are stored as semantic regions [53]

in the cache and reused to reduce the response time and network traffic of a new

query. Here, to quickly process a comparison of an input query against the se-

mantic views, binary signature method is used. DBProxy [32] is a semantic data

cache at the edge server. DBProxy decides dynamically to add new views and
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discards others on the fly to save space and execution time. Consistency mainte-

nance of the semantic cache is considered in DBProxy. Results of SQL queries are

stored as materialized views in the cache, independent from the original database

schema. The list of queries whose results are currently stored is kept in a cache

index. The system uses template based query containment checking algorithms

to answer a new query using the cached results of previous queries [33].

Semantic caching has also been studied for mobile services [70, 85, 133].

In [133], the Voronoi cell of a spatial object is defined as its semantic region,

which can be used to solve spatial NN queries for a moving user. Semantic

caching of tree nodes in an R-tree is studied in [70]. Lee et al. [85] support

generic spatial queries by building generic semantic regions for spatial objects.

2.3 Location-dependent Queries

Location-dependent query [71] is a query whose answer depends on the lo-

cations of the query and points-of-interest (POIs). The location of a POI deter-

mines whether or not it can be chosen as part of the answer. According to their

objectives, the location-dependent queries can be divided into different types.

Range queries. Range queries find the POIs located within a certain range [101,

124]. According to whether the query’s location is fixed or moving, range queries

can be divided into static range or moving range queries. When the range of query

is a rectangle window [120], the range queries are called as window queries; when

the range is a circular range centered on a certain location, the range queries are

called as within-distance queries [123]. An example of range query is illustrated
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in Figure 2.2. A car c1 issues a range query to retrieve the restaurants inside

the region R1, which is a circle centered at c1 with radius r1. According to

Figure 2.2a, three restaurants {f1, f2, f3} fall in the region R1. Thus, the result

is {f1, f2, f3}.

Nearest neighbor (NN) queries. Nearest neighbor query [119] is to retrieve

the POI with certain features, which is the closest to the query location in terms

of the spatial distance. When k POIs must be returned, the problem becomes

KNN queries. Static NN queries are executed against a static database whereas

in dynamic NN queries, the target location can move. [101] studies how to

process range queries and KNN queries over POIs, with respect to shortest

path distances on a road network. To speed up the KNN query processing over

road network, landmark [82, 83, 103] and distance oracle [109] can be applied

to estimate shortest path distance bounds between two locations, which can be

used to prune irrelevant objects and early detect results. For example, a car c1

in Figure 2.2a searches for its k = 1 nearest hotels. All k nearest hotels {h1} will

be returned as the query result (i.e., last line in Figure 2.2b).

Navigation queries. Navigation query is to recommend the best route for

a mobile client to arrive at his destination, based on the underlying road net-

work, current traffic conditions, and his specific purposes [115]. Such navigation

query can be issued by tourists for guidance to travel in a region [127]. Based

on tourists’ interest profile, up-to-date POI information and trip information,

an optimal and feasible selection of POIs and a route between them can be sug-

gested. Traveling salesman problem (TSP) [114] is another example of navigation

queries. Selective traveling salesman problem (STSP) [60] is a variant of TSP
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(a) Example map and regions
Query type Query parameters Answer

Query point Region / K POI Type

Range Car c1 Region R1 (radius r1) Restaurant {f1, f2, f3}
KNN Car c1 k = 1 Hotel {h1}

(b) range and KNN query results

Figure 2.2. Example of range and KNN queries

problem, where the user has flexibility to reject part of the POIs on the map.

When all POIs are known in advance, the navigation problem is a static trip

planning problem [60, 66, 90, 113, 114, 126]. On the other hand, when the POIs

are known progressively, the navigation problem becomes online path selection

problems [34,37,72,128].



Chapter 3

Query Optimization over

Cloud Data Market

Data market [4, 35, 110] is an emerging type of cloud service that enables

a data owner to host and sell their datasets in a public cloud. Buyers who are

interested in a certain dataset can access the data in the market via a RESTful

API. The REST based API has function-call like interface X → Y, where X

and Y are sets of attributes: given a range or a value for an attribute in X , the

data market returns values for the attributes in Y (if no values are specified for

X , the whole table is returned). For example, the Worldwide Historical Weather

(WHW) dataset [26] in Windows Azure Marketplace [4] may take a country name

and a date, and return a set of tuples, each details the temperature, precipitation,

dew point, sea level pressure, windspeed, and wind gust recorded by each weather

station in that country on that date.

Accessing data in the data market may not be free. For example, it costs

17
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USD 12 to grant access to every 100 “transactions” to the WHW data, where a

transaction is a unit of result size (e.g., a query result of 4400 records costs 44

transactions in Windows Azure Marketplace, which confines one transaction to

100 records). There is an increasing trend of selling valuable datasets in data

market [80]. Correspondingly, we envision that there is an increasing demand

from end users (data buyers) to carry out analytics that involve those datasets.

To this end, in this chapter, we present PayLess, a system that helps users to

optimize their queries so that they can obtain the query results by paying less

to the data sellers.

Query optimization is never trivial. First, from a data buyer’s (the com-

pany or the organization) perspective, it is hard to know in advance how many

queries will be posed by their end users eventually. Otherwise, downloading the

whole dataset would become a viable plan when the foreknowledge tells that

the number of transactions incurred by user queries would eventually exceed the

number of transactions required to download the complete data set. Second,

query optimization would never work well without rich data statistics. Unfor-

tunately, datasets in data market are rarely tagged with rich statistics (e.g., no

value distribution), although basic information like the size (cardinality) of each

table and the domain size of the attribute is usually available.

Tackling the above two challenges sounds not difficult, especially that we can

build a learning optimizer like LEO [118] so that it begins with little statistic

and introduces a feedback loop to correct the statistics when more queries are

issued. The evil, however, lies in the detail of adopting the learning approach to

data market query optimization.
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First, learning-based optimizers like LEO [118] and POP [96] are originally

designed for traditional databases that have full access to the data. In contrast,

the access pattern of data market is restricted to only X → Y style. When a

data source has limited access patterns, (a) operations might become compli-

cated and (b) specialized access paths may shine. An example of (a) is that

a query that asks Country = ‘Canada’ OR Country = ‘Germany’ has to de-

compose into two queries, one asks for Country = ‘Canada’ and another asks

for Country = ‘Germany’. An example of (b) is bind joins (other names in-

clude theta semi-join, dependent join) [63]. To explain, consider the real access

patterns of Worldwide Historical Weather (WHW) dataset in Windows Azure

Marketplace listed in Figure 3.1a.3.1 The access patterns are specified using a

notation of binding patterns extended from [63]. We write Rα(A1, A2, A3) to

denote a table R in the data market with three attributes A1, A2, and A3 and

binding pattern α. We write α = R(Ab1, A
f
2) to denote a binding pattern that in

any query accessing R, the value of attribute A1 must be bound (given/speci-

fied). In contrast, the value of attribute A2 is free to be specified or not specified

in any query. If an attribute is not included in the binding pattern (e.g., A3),

it is solely served as an output attribute in a query result. In other words, if

an access pattern of a table has only free attributes, then we can download the

whole table by not specifying any value to any attribute.

Now, consider the following SQL query that asks the WHW dataset for the

daily temperature of Seattle in June 2014:

3.1The attribute names here are renamed for better exposition.
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SELECT Temperature -------// Query Q1

FROM Station, Weather

WHERE City = ‘Seattle’ AND

Country = ‘United States’ AND

Date >= 20140601 AND Date <= 20140630 AND

Station.StationID = Weather.StationID

Figure 3.1b shows an execution plan P1 for this SQL. It first submits two

RESTful GET calls C1 and C2, where C1 gets the StationID of Seattle from

Station table, and C2 gets the weather records for all stations in the United

States on June 2014 from Weather table. The final query result is obtained

by carrying out a local join (i.e., regular join) operation at the end user (data

buyer) side because joins cannot be done at the data market [4]. In plan P1, a

total of 238 transactions were incurred – one was spent on RESTful call C1 and

237 were spent on RESTful call C2 (there are 788 weather stations in the US

and each station contributes 30 days records, resulting in d788× 30/100e = 237

transactions). Figure 3.1c shows an alternate execution plan P2. It first gets

the list of StationIDs of Seattle (call C1). Then, it carries out a bind join (−→1 )

operation that binds each StationID (e.g., 3817) to an individual RESTful call to

Weather. Finally, the weather records for each station in Seattle are collectively

retrieved and returned. In this case, plan P2 incurs only two transactions: call

C1 costs one transaction and call C3, which returns 30 days of weather records

for the only one weather station in Seattle, costs also one transaction.

Second, although there are optimizers designed for queries over remote data

sources with limited access patterns (e.g., [42,59,63,86–89,104,117]), they focus

on minimizing the number of calls to the remote data sources so as to reduce the
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Data Set Schema and Access Pattern α Size

WHW Stationα1 (Country, StationID, City, State· · · ) 3962
α1=Station(Countryf , StationIDf , Cityf )

Weatherα2 (Country, StationID, Date, Temperature · · · )19549140
α2=Weather(Countryf , StationIDf , Datef )

EHR Pollutionα3 (ZipCode, Rank, Latitude, Longitude· · · ) 44210
α3=Pollution(ZipCodef , Rankf )

local ZipMap (ZipCode, City )
(a)

Station Weather 

City= ‘Seattle’ and  
Country = ‘United States’ 

Country = ‘United States’ and 
Date  20140601 and 
Date ≤ 20140630 

RESTful GET Call C2 

 (‘United States’, -, [20140601, 20140630]) 

# Records: 23640 

# Trans.: 237 

  
 ⋈ 

RESTful GET Call C1 

( ‘United States’, -, ‘Seattle’) 

# Records: 1 

# Trans.: 1 

(b) Plan P1

Station 
Weather 

City= ‘Seattle’ and  
Country = ‘United States’ 

Country = ‘United States’ and 
StationId = 3817 and  
Date  20140601 and 
Date ≤ 20140630 

RESTful GET Call C3 

 (‘United States’, 3817, [20140601, 20140630]) 

# Records: 30 

# Trans.: 1 

  ⋈ 
RESTful GET Call C1 

( ‘United States’, -, ‘Seattle’) 

# Records: 1 

# Trans.: 1 

(c) Plan P2

Figure 3.1. Query processing in Data Market

overall execution time. As an example, assume that there are 15 weather stations

in Seattle, those optimizers will pick plan P1 because it incurs only two RESTful

calls (C1 and C2). In data market, although P2 needs to bind each Seattle’s

weather station id, resulting in 1 + 15 = 16 RESTful calls and 16 transactions

(each transaction returns 30 days of records for each weather station), it is still

more economical than P1, which requires 238 transactions. On the other hand,

if we further assume that there are only 20 weather stations in the United States
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and 15 of them are in Seattle. Then, plan P1 will cost only 1+d20×30/100e = 7

transactions. In contrast, plan P2 still costs 16 transactions. In this case, P1 is

better than P2.

Summing up the above, we need a (i) learning-based optimizer that (ii) in-

cludes bind join as an access path with the goal of (iii) minimizing the amount

of (intermediate) retrieved data measured in terms of data market pricing units.

Traditional learning-based optimizers satisfy (i) and partially satisfy (iii)3.2 but

not (ii). Optimizers for queries over remote data sources satisfy only (ii). There-

fore, the principal contributions of this chapter are centered around the issues of

building an optimizer for PayLess that satisfies all (i), (ii), and (iii) above. Those

include:

– Defining the cost model and search space for data market query optimiza-

tion.

– Devising effective techniques to reduce the amount of intermediate retrieved

data (e.g., by adapting semantic query rewriting methods) and integrating

those techniques into our optimizer.

– Implementing a prototype and evaluating its performance through exten-

sive experiments over synthetic data and real data.

The remainder of this chapter is organized as follows. Section 3.1 gives

more background about the data market. Section 3.2 presents the architecture

of PayLess. Section 3.3 describes the details of PayLess’s optimizer. Section 3.4

3.2Traditional optimizers also aim to generate plans that minimize intermediate result size of
each operation (e.g., push down selection).
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reports the results of the evaluation. Section 3.5 discusses the related work and

Section 3.6 concludes.

3.1 Preliminaries

According to a recent survey [8], the three most established data market-

places are Factual [14], Microsoft Windows Azure Data Marketplace [4], and

DataMarket [10]. Factual [14] and DataMarket [10] are specialized data markets

that sell datasets in a very specific domain (e.g., Factual sells mainly geographi-

cal data and DataMarket sells mainly economic indicators). Microsoft Windows

Azure Data Marketplace offers datasets in all kinds and many popular data

resellers in smaller size like Wolfram Alpha [24], ESRI [13], World Bank [25],

data.gov [9], Xignite [27] also provide their data in the Windows Azure Data

Marketplace [4]. After Infochimps [19], one of the early data market entrants,

gradually leaves the data market business [11, 20], Microsoft Windows Azure

Data Marketplace is becoming the de facto data market [8]. Therefore, in this

chapter, we base our setting on Windows Azure Data Marketplace.

3.1.1 Data Market

A data market hosts and sells multiple datasets. Each dataset’s access/bind-

ing pattern is defined by the data owner on per table basis. For numeric at-

tributes, the input can be bound with a single value or a range like [150, 200).

Datasets in data market are tagged with very basic statistics, normally the do-
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main of each attribute and the number of records (cardinality).3.3 Datasets in

a data market are append-only because they are released for analytic purposes.

New data could be added periodically (e.g., every month). The price of accessing

data is mainly based on the number of tuples retrieved. A transaction represents

a page of t tuples (e.g., 100 tuples) and it is the smallest pricing unit. Let p

be the price per transaction for a particular dataset. Then, the total price of a

RESTful call is:

p · d number of resulting records

number of tuples per transaction (t)
e (3.1)

For easy exposition, in the subsequent discussion, we assume p = $1 and a

transaction page size is t = 100 tuples.

3.1.2 Queries over Data Market

Figure 3.2 shows the target setting of PayLess. An organization is interested

in carrying out certain analytics that involve datasets hosted in a data market.

The organization thus registers with the data market to obtain the authentica-

tion access keys of the datasets. The access keys are stored in PayLess, which

constructs RESTful calls to the data market when necessary. PayLess encapsu-

lates the details of interacting with the data market and exposes a SQL query

interface for client query processing. A SQL query to PayLess can query against

both tables in a local DBMS and tables in data market. The following is an

example PayLess query that aims to retrieve the average temperature for each

3.3If not publicly available, the data sellers would release the basic statistic to data buyers
upon email requests [4].
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city in a country whose environmental pollution rank is lower than a threshold

within a period:

Data Set 3

Data Market

Data Buyer (Organization)

Web Forms
End 

Users

PayLess

SQL1

SQL2

SQLn

Local 
Databases

RESTful Call

Result

Data Set 2

Data Set 4

Data Set 1

Bills

Register

Authentication Key

Figure 3.2. Setting of PayLess

SELECT City, AVG(Temperature)

FROM Pollution, Station, Weather, ZipMap

WHERE Station.Country = Weather.Country = ? AND

Weather.Date >= ? AND Weather.Date <= ? AND

Pollution.Rank <= ? AND

Pollution.ZipCode = ZipMap.ZipCode AND

ZipMap.City = Station.City AND

Station.StationID = Weather.StationID

GROUP BY City

This query involves joining four tables: the Station and Weather tables from

the aforementioned Worldwide Historical Weather (WHW) [26] dataset, another

Data Market table, the Pollution table from the Environmental Hazard Ranking

(EHR) [12] dataset, and a local table that maps Zip codes to a city name. The
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access patterns of these tables are shown in Figure 3.1a. We expect SQL queries

to PayLess are parameterized queries embedded in certain application so that

users (e.g., data scientists) issue the queries by specifying the parameter values

via a web interface. We do not expect the organization restricts her users the

number of queries to the data market because that is counter-productive.

3.2 System Overview

Figure 3.3 shows the architecture of PayLess. It is designed to be lightweight

and offloads most query processing to a DBMS query engine. It accepts and

parses a SQL query (with parameter values instantiated) 1 . The parser differ-

entiates local tables and tables from the data market using the information (e.g.,

the table name) obtained when registering with the data market (see Figure 3.2).

Then, the optimizer of PayLess optimizes the query 2 by consulting the statis-

tics of local and data market data 3 . The optimized query is then passed to an

execution engine 4 . A query, after optimization, may be able to skip some or the

entire access to the data market. When it is necessary to access the data market,

the execution engine will pass the access requests to the data market connector

5 and let the connector interact with the data market 5.1 5.2 . PayLess stores

all the data market access requests and their returned data in a semantic store

5.3 . Whenever new data is retrieved from the data market, PayLess will update

its statistics 5.4 . In our implementation, we implement our updatable statistics

using ISOMER [116]. After this step, all data required by a query should be

ready and stored in the DBMS and the execution engine of PayLess instructs the

DBMS query engine 6 to process the query 7 . In the end, the execution engine
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Figure 3.3. System architecture

of PayLess retrieves the query result from the DBMS 8 and then returns it to

the front end 9 .

PayLess is supposed to be installed by each data buyer and serves all the

end users from the same data buyer. As a data buyer would not be interested

in all datasets available in the data market, the storage space (for the DBMS)

is not a problem here. Cache management is out of PayLess’s interest because

we deliberately use cheap storage space to store all intermediate results (i.e., no

eviction) in order to eschew retrieving redundant data from the data market. Be-

sides, PayLess is indeed amenable for any updatable statistic. As our focus of this

chapter is to give a proof-of-concept first solution, we will test other updatable

statistics (e.g., [61]) in place of ISOMER in the next version of PayLess.
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3.3 Query Optimization

PayLess’s optimizer follows the typical bottom-up, cost-based, and dynamic

programming approach [65]. That is, it first considers the best plan for single

relations, then the best plan for joining two relations, and then for three relations,

so on. On top of that, PayLess’s optimizer considers bind joins −→1as an access

path in addition to the regular join 1. The key feature of PayLess’s optimizer

is that it carries out semantic query rewriting to optimize its queries using the

query results stored in the semantic store. Semantic query rewriting [53] is not

new, but later we will explain why it is not included in limited access query

optimizer (e.g., [42,63,117]) and why it is helpful to us here. We will also explain

the limitations of current semantic query rewriting techniques in our setting and

our solutions to unlock their potential and integrate them into our optimizer.

This section describes how to derive the optimal execution plan after parsing

a SQL query. We first propose several techniques to reduce the plan search

space and prove their correctness (see Section 3.3.1). After that, we illustrate

the semantic query rewriting method used in PayLess (see Section 3.3.2). In the

end, we end with some discussions about our query optimization approach (see

Section 3.3.3).

3.3.1 Plan Space

When optimizing queries for limited access pattern data sources, bushy trees

are included in the plan space to avoid plans with Cartesian products [63]. For

example, consider a query that joins four relations U , R, S and T with access
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R(yb, zf) S(tf, wf) T(wb, zf) U(xf, yf) 

  
 ⋈ 

  ⋈ 
  ⋈ 

U(xf, yf) 

  ⋈ 

R(yb, zf) 

S(tf, wf) 

T(wb, zf) 

  ⋈ 

 

(a) Bushy tree (b) Left-deep tree

Figure 3.4. Bushy tree v.s. Left-deep tree

patterns: U(xf , yf ), R(yb, zf ), S(tf , wf ), T (wb, zf ). Since R has a bind attribute

y, it must require values for attribute y to retrieve tuples. In the example, the

only choice is thus to carry out a bind join U−→1R. Similarly, since T has a bind

attribute w, it must require values for attribute w to retrieve tuples. In the

example, the only choice is thus to carry out a bind join S−→1T . After that, the

only way is to join them together by using a local join, resulting in a bushy tree

like Figure 3.4a. So, if only left-deep plans are allowed, a “logical” cross product

must be used to logically connect the relations like Figure 3.4b3.4.

Including bushy trees would significantly enlarge the search space. In our

problem setting, as our primary goal is to minimize the money-to-pay, we exclude

bushy trees in our plan space because:

Theorem 1. Given any plan P , we can transform it to a left-deep plan P ′ such

that φ(P ) ≥ φ(P ′), where φ(·) denotes the total price of a plan. In other words,

the optimal plan must be one of the left-deep plans.

3.4The cross product is just logically connecting intermediate results U−→1R and S−→1T. Phys-
ically, (U−→1R) joins (S−→1T) is done by the DBMS, using any equi-join implementation like
hash-join.
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Proof. In what follows, we use the terms RESTful call, leaf node, and rela-

tion/table interchangeably.

First, we re-iterate a very important fact:

Fact Only leaf nodes in P contribute to the price φ(P ) because they represent

RESTful calls to the data market. Therefore, φ(P ) equals to the sum of prices

of leaf nodes in P .

Without loss of generality, we name the leaf nodes (RESTful calls) in P

from left-to-right as: C1, C2, · · · , Cn.

We write P (k) to denote that, for all leaf nodes of P , if named from left-to-

right, the first k leaf nodes form a left-deep subtree. So, given a plan P with

n leaf nodes, if we write P (n), we mean P is a complete left-deep tree. As an

example, for the bushy tree P in Figure 3.4a. P (1) and P (2) hold. As another

example, let P be the plan in Figure 3.4b, then we see that P (1), P (2), P (3) and

P (4) all hold.

Now, we proceed to prove φ(P ) = φ(P (1)) ≥ φ(P (2)) ≥ · · · ≥ φ(P (n)). In

the following, we first prove φ(P (1)) = φ(P ) and then prove that for a given

1 ≤ k ≤ n− 1, we have φ(P (k+1)) ≤ φ(P (k)).

Base case: k = 1 P (1) simply means we just look at the left-most leaf nodes

of P without moving any nodes, so the cost of the whole plan P is unchanged:

φ(P (1)) = φ(P ).

General case: φ(P (k+1)) ≤ φ(P (k))

When Ck+1 is Ck’s uncle: Figure 3.5a illustrates this case. In this case,

the left-most k + 1 leaf nodes form a left-deep subtree. So, P k+1 holds. Note
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that we did not move any leaf node yet, so the plan cost would not change:

φ(P (k+1)) = φ(P (k)).

When Ck+1 is not Ck’s uncle: Figure 3.5b illustrates this case. In this case,

the uncle node of Ck, say U , must be a non-leaf node and its subtree contains

Ck+1. Let TF be the left-deep subtree rooted at F , the father of Ck. Further, we

let G be the grandfather of Ck. Finally, we let TUL, TUR be the left and right

subtrees rooted at U , respectively.

We now explain that making P (k+1) holds by joining TF with Ck+1 through

a new node G′ would not increase the overall plan cost. Figure 3.5c illustrates

the resulting plan P ′ with P ′(k+1) holds.

First, we see that the price of subtree TF is the same among P and P ′.

Second, the price of Ck+1 is the same in both P and P ′ because Ck+1 takes

the same join result from TF no matter G or G′ is a bind join or a regular (local)

join.

Now, we consider the price for each node (other than Ck+1) in TUL and

TUR in P and P ′. Let Cu be such a node. First, if Cu does not require any

binding from Ck+1, then the price of Cu in P ′ is unchanged. Second, if Cu

requires binding values from Ck+1, then the price of Cu depends on the number

of distinct binding values from Ck+1. Note that in P ′, Ck+1 has been joined

with the others earlier than P , that causes the number of binding values to Cu

possibly decreases. So, the price for Cu would not increase.

Finally, we look at the subtree Tother. As the result of the left operand of

Tother remains the same, the price of Tother is unchanged.
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Figure 3.5. Illustration figures for Theorem 1

As the price of any Ci in P would not increase, we have φ(P (k+1)) ≤ φ(P (k)).

Traditional optimizers include only left-deep plans as a heuristic to improve

the efficiency of the plan search. In PayLess, with Theorem 1, enumerating only

left-deep plans is not a heuristic but with a guarantee that the optimal plan is

not lost. Furthermore, in PayLess, including Cartesian product is not a problem

because that would not contribute any extra data market transaction.

In addition to enumerating left-deep plans only (Theorem 1), PayLess’s op-

timizer further trims the search space by first joining all relations that incur zero

price to the data market. Those relations can either be local relations or relations

whose required tuples can be found in the semantic store. In the following, we

show that such zero-price-relations-join-first idea retains the optimal plan in the

plan space:

Theorem 2. Let P = 〈C1, C2, . . . , Cn〉 be a left-deep plan with a leaf node

(RESTful call) Ci whose price φ(Ci) = 0. Then, the plan P ′ = 〈Ci, C1, . . . , Cn〉

has φ(P ′) ≤ φ(P ).

Proof. We divide the other calls into two groups: (1) RESTful calls that executed
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before Ci, i.e. C1 to Ci−1, and (2) RESTful calls that executed after Ci, i.e. Ci+1

to Cn.

If we move Ci to the left-deepest node of P :

– φ(Ci) is unchanged and remains 0.

– φ(Cj) for j > i is unchanged because the join results before executing Cj

and the possible binding values for Cj are the same.

– φ(Cj) for j < i cannot increase. If Cj does not use any binding attributes,

then moving Ci before Cj would not increase φ(Cj). If Cj uses binding

values from a bind join, then moving Ci before Cj would not increase (but

may decrease) the number of bind join values for Cj , and that would not

increase φ(Cj).

PayLess’s optimizer applies Theorem 2 repeatedly and moves all zero price

calls to the leftmost subtree of P . That way, the search space of PayLess’s

optimizer is further reduced.

Lastly, PayLess’s optimizer would prune some candidate subplans during

plan enumeration:

Theorem 3. When searching for the best plan for a set C of relations C1, C2, . . . , Cn,

if C can be partitioned into disjoint subsets C1 . . . Cj, where relations in Ci cannot

join with relations in Cj (unless using Cartesian product ×). Then the best plan

for C is Best(C1)×Best(C2)× . . . Best(Cj), where Best(Ci) denotes the best plan

for the set of relations in Ci.
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Proof. The proof is trivial because the relations in Ci cannot join with relations

in Cj , the price of calling Cj would not be influenced by Ci. So, the best plan

for C becomes simply connecting the best subplans of C1 . . . Cj using Cartesian

product.

Consider a chain query that joins four relations: C = {U(v, w), R(w, x),

S(x, y), T (y, z)}. Assuming that the best plans determined for the pairs of rela-

tions are:

{U,R} {U, T} {U, S} {R,S} {R, T} {S, T}

Best Plan U−→1R U × T U × S R−→1S R× T S−→1T

So, when determining the best plan for 3-way join, the candidate plans that

would be generated are:

{U,R, S} {U,R, T} {U, S, T} {R,S, T}

Candidate (U−→1R) 1 S (U−→1R) 1 T ... ...

Plans (U−→1R)−→1S (U × T ) 1 R ... ...

(U × S)−→1R (U × T )−→1R ... ...

... (R× T ) 1 U ... ...

... (R× T )−→1U ... ...

Observe that the set {U,R, T} can be partitioned into two disjoint subsets:

C1 = {U,R} and C2 = {T}. So, we can apply Theorem 3 to determine the best

plan for the set {U,R, T} as Best(U,R) × T , i.e., (U−→1R) × T . In other words,

Theorem 3 eliminates many candidates (e.g., (R × T )−→1U) and eliminates their

associated costing steps and semantic rewriting steps.

Let the total number of candidate plans in all levels of the dynamic pro-
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gramming approach be the size of the search space. For a chain query with n

relations whose attributes are all free. The use of the above theorems can re-

duce the search space from ≈ 6n − 5n down to ≈ 2n
′
+ 2

3 · n
′3 with the optimal

plan retained, where m is the number of zero price relations and n′ = n − m.

Specifically, the original plan space with dynamic programming is:

n+
n∑
k=2

(

(
n

k

)
· (
k−1∑
i=1

(
k

i

)
· 4min{i,k−i}) ) ≈ 6n − 5n

where k represents the level in dynamic programming (e.g., when k = 2, we

consider joining two relations). At level k, there are
(
n
k

)
size-k subsets to be

examined. For each size k subset, we can form a plan by: (i) choosing a size i

subset for the left subtree (and the complementary size k− i subset for the right

subtree), and (ii) deciding the binding attributes for the join (at root). For (ii),

each call on the right subtree can bind with attributes from at most 2 calls from

the left subtree; thus, there are 2·2=4 binding choices per call, and at most 4k−i

choices per plan. We can tighten this number to 4min{i,k−i} when i is small and

the left subtree can provide at most 4i binding choices.

The plan space of PayLess’s optimizer is:

4n′ +
n′∑
k=2

(
4 · k · (n′ − k + 1) + (

(
n′

k

)
− (n′ − k + 1))

)

≈ 2n
′
+

2

3
· n′3

where m is the number of zero price relations and n′ = n −m. Specifically by

Theorem 2, we first build a plan with all local m relations. Then, in dynamic
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programming, we consider growing the plan by using the remaining n′ = n−m

relations. At level k, there are
(
n′

k

)
size-k subsets. We can divide them into

(i) disconnected subsets (in which some relations must be joined by Cartesian

product), and (ii) connected subsets. For the chain query, there are n′ − k +

1 connected subsets and
(
n′

k

)
− (n′ − k + 1) disconnected subsets. For each

disconnected subset, we can compute its best plan directly by Theorem 3. For

each connected subset, we can obtain it by Theorem 1, i.e., combining a size-

(k−1) subset with a new call. There are k choices for the call and at most 2·2=4

binding choices for that call.

3.3.2 Semantic Query Rewriting

In PayLess, we store all RESTful queries issued to the data market and their

corresponding results in the semantic store. The objective of doing so is to carry

out semantic query rewriting, i.e., answer the queries using those stored results

so as to reduce the amount of data retrieved from the data market. Semantic

query rewriting falls into the category of rewriting queries using views [68, 129].

Given a query Q, a set V of RESTful queries and their corresponding stored

results, the key step in semantic query rewriting is to compute the setRem(Q,V)

of remainder queries [53]. The set Rem(Q,V) essentially contains the set of

RESTful queries that has to be sent to the data market in order to retrieve the

tuples required by Q but not covered by V.

Before we delve deeper, we first explain why optimizers for queries over re-

mote data sources like [42,63,117] do not use semantic query rewriting. Consider

our example query Q1 (page 1), which inquires about the daily temperature of
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Figure 3.6. Generation of remainder queries

Seattle in June 2014, has been issued, and its 30 resulting tuples (one tuple for

each day in June) are stored in the semantic store. Assume that there is an-

other query Q2 being issued, with Q2 shares the same query template like Q1

but the date ranges from May 2014 to July 2014 (3 months). Using semantic

query rewriting, Q2 will generate two remainder queries: one asks for weather

records in May (31 records; 1 transaction), another asks weather records in July

(31 records; 1 transaction). The final result is then obtained by union the above

with the stored results of Q1. The plan of using semantic query rewriting incurs

a total of two calls to the external data source. In contrast, only one call to

the external data source is required if Q2 is sent to the external data source

without semantic query rewrite. So, in the context of minimizing the number of

calls to external data sources, semantic query rewriting obviously is not a fruitful

technique because it decomposes a call to several sub-calls.

Now, we show how we could adapt semantic query rewriting to PayLess’s

optimizer to yield competitive plans for data market query processing. To illus-

trate, consider the example in Figure 3.6. The example assumes that the results

of two queries V1 and V2 have been stored in the semantic store. Both V1 and

V2 are range queries on an integer attribute A whose domain is [0, 100]. V1 and

V2 respectively cover the ranges [10, 20) and [30, 60) on attribute A and have
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retrieved 28 and 91 tuples from table R. In what follows, we write a query Q in

the form as

Q : − R1(A[s, e], B = β,C), R2(C, ..)

which means it joins R1 and R2 using C as the join attribute, and tuples in table

R1 have values in numeric attribute A fall between s and e and have values in

categorical attribute B equal β.

Now, with V1 and V2, we assume the following query Q is posed:

Q : − R(A[0, 100])

Using the vanilla semantic query rewriting techniques, it will generate an

invalid remainder query QReminvalid:

QReminvalid : − R(A[0, 10) ∨ [20, 30) ∨ [60, 100])

In data market, QReminvalid is invalid because it involves disjunction, which

is not supported by the access pattern of data market. Therefore, our first

step to adapt semantic query rewriting techniques is to decompose remainder

queries that violate the data source access patterns into a set of valid remain-

der (sub)queries. For the example above, PayLess will generate a set Rem1 of

remainder queries:
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QRem1 : − R(A[0, 10)) //21 tuples; 1 transaction

QRem2 : − R(A[20, 30)) //34 tuples; 1 transaction

QRem3 : − R(A[60, 100]) //123 tuples; 2 transactions

So, altogether, Rem1 will cost a total 4 transactions.

Note that such straightforward decomposition may not yield the best plan.

For example, the following is another possible set of remainder queries Rem2 :

QRem4 : − R(A[0, 30)) //21+28+34= 83 tuples; 1 transaction

QRem3 : − R(A[60, 100])//123 tuples; 2 transactions

The remainder query QRem4 , although overlaps with stored query V1, will

still cost d(21 + 28 + 34)/100e = 1 transaction. So, altogether, Rem2 will cost a

total 3 transactions only.

The example above illustrates a new and unique issue specific to the gen-

eration of remainder queries in data market. Specifically, we see that there are

alternate ways to generate valid remainder queries and it is possible that a lower

overall price can be achieved even when a remainder query overlaps with a stored

query.

PayLess obviously does not want to miss the above opportunity when opti-

mizing the queries. So, we have devised a remainder query generation method

that leverages the above opportunity to reduce the overall price to access the

data market.

We illustrate our idea using a more general example in Figure 3.7a. In the

example, the query Q is a 2d-query that inquires table R:
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Figure 3.7. Generation of remainder queries for data market

Q : − R(A1[30, 80], A2[0, 50])

In the example, we assume there are ten RESTful queries V1, . . . , V10 stored

in the semantic store. Figure 3.7b shows the intersection of Q and the comple-

ment of V, i.e., the data supposed to be retrieved from the data market. Denoting

that space as V, there are alternate sets of remainder queries that can retrieve all

the missing data. For example, consider the following set of remainder queries

Rem3:
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QRem5 : − R(A1[50, 70), A2[30, 50])

QRem6 : − R(A1[70, 80], A2[30, 40])

Rem3 covers the missing data in region 1. Alternately, the following set of

remainder queries Rem4 can also cover data in region 1:

QRem7 : − R(A1[50, 80), A2[30, 50])

From the above, we see that our goal boils down to finding a set of bounding

boxes that cover all the data regions in V using the least number of data market

transactions.

To achieve a good solution, we use a two-step approach. The first step aims

to generate a set of promising bounding box B candidates that cover different

data regions in V. The bounding box candidates may possibly overlap with each

other. The second step aims to extract from B the best set of bounding boxes

that cover all the data regions in V in minimum price.

We now elaborate the first step. Specifically, we begin with a decomposition

of V into a union E of disjoint elementary boxes. Figure 3.7c shows an example.

On each dimension i, we collect a separator set Si from the corners of each

elementary box. For example, elementary box E8 contributes values 50 and 70

to S1 and contributes values 0 and 10 to S2. Accounting for all elementary boxes,

then we have S1 = {30, 40, 50, 70, 80} and S2 = {0, 10, 20, 30, 40, 50}. Then, we

exhaustively construct a set B of bounding boxes, where the extent of a bounding

box B ∈ B on dimension i is picked from any two values in Si. For example, the

bounding box B1 in Figure 3.7c has extent [50, 80] on dimension A1 and extent

[0, 20] on dimension A2 when it picks values 50 and 80 from S1 and values 0

and 20 from S2. Each resulting bounding box represents a remainder query that
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covers certain data to be retrieved from the data market.

Algorithm 3.1 presents the pseudo-code of generating the bounding boxes,

with powerful pruning rules to prune unpromising bounding boxes. First, it esti-

mates the number of tuples falling into each elementary box in E from ISOMER

(Lines 2–3). Figure 3.7c shows an illustration with those estimates. We will

discuss the case of insufficient/inaccurate statistics in Section 3.3.3. Next, it

enumerates a set of bounding boxes from the separator sets S1, S2, ...Sd, where

d is the dimensionality of the query. It applies two pruning rules to discard

unpromising bounding boxes.

The first pruning rule (Line 6) prunes a bounding box B if it is not tight. In

other words, only minimum bounding boxes could stay. Consider the bounding

boxes B1 and B2 in Figure 3.7c. They both contain the same set of elementary

boxes E7, E8, E10 but B2 contains B1. Therefore, B2 is not a minimum bounding

box and is pruned. This makes sense because B2 has to download an extra

155 + 33 redundant tuples comparing with B1.

The second pruning rule (Line 8) prunes a bounding box if its price is not

smaller than the price sum of its individual elementary boxes. Consider bounding

box B3 Figure 3.7c. It requires d(125 + 60 + 40 + 155)/100e = 4 transactions.

However, if E3 and E6 are individually retrieved, they collectively cost only

d40/100e + d60/100e = 2 transactions. So, in this case, B3 is not helpful and is

pruned as well.

Algorithm 3.1 would enumerate
(|Si|

2

)d
bounding boxes for a d-dimensional

query in the worst case. However, because of the high effectiveness of the pruning

rules, the number of (minimum) bounding boxes considered is indeed much fewer
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Algorithm 3.1 Generating Candidate Remainder Queries

Input (elementary boxes E , separator sets {S1, S2, ..., Sn})
Output (A collection of minimum bounding boxes B)

1: initialize B
2: for each elementary box Ei in E do
3: Ei.price ← estimate the price of Ei

4: enumerate every possible bounding box B using the separator sets
S1, S2, . . . , Sn.

5: for each bounding box B do
6: if B is a minimum bounding box then . pruning rule 1
7: estimate the price of B
8: if B.price <

∑
Ei∈B Ei.price then . pruning rule 2

9: insert B into B
10: return B

than the worst case in practice.

The second step of our idea is to find the best subset of minimum bounding

boxes (generated from Algorithm 3.1) that cover all the elementary boxes (all

missing data) in minimum price. This is a weighted set cover problem [51].

Specifically, the weighted set cover problem states that, given (1) a set of elements

E = {E1, E2, ...} and (2) a family B of subsets of E , in which each subset in B is

associated with a costi, find a collection of subsets, namely the cover, Cover ⊆ B,

whose union of the elements in Cover is E and the sum of cost of elements in

Cover is the minimum. In our context, we have (1) E as all elementary boxes and

(2) B as the set of candidate minimum bounding boxes returned by Algorithm 3.1,

costi is referred as a bounding box ’s estimated transactions. To solve this NP-

hard problem, we use the greedy algorithm in [51] that runs in O(|B| · |E|) time

with (1 + ln(|B|)) approximation ratio.

The generation of bounding boxes for queries with categorical attributes is

illustrated as follows. Figure 3.8a shows an example similar to the previous one
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Figure 3.8. Generation of remainder queries with a categorical attribute A2

but with attribute A2 now becomes a categorical attribute with the following

domain: {β1, β2, β3, β4, β5, β6}. We remark that there are no stored queries that

can span across multiple categorical values because of the limitation of the access

interface.

Figure 3.8b shows the corresponding space V. Since A2 is a categorical

attribute, the bounding box B1, which represents the following remainder query,

is invalid:

: − R(A1[50, 80), A2 = β1 ∨A2 = β2)

Therefore, we will only generate bounding boxes that span either one value

or the whole domain of a categorical attribute. For example, bounding boxes B2,

which represents the following remainder query, is valid and would be generated:

: − R(A1[50, 70), A2 = β5)
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Similarly, bounding boxes B3, which represents the following remainder

query, is also valid and would be generated:

: − R(A1[30, 40))

The generation of bounding boxes for queries with bind joins is illustrated

as follows. Consider a relation U with binding pattern U(Af1 , A
f
2) and a relation

S with binding pattern S(Ab2, A
f
3), where all attributes are integer attributes.

Further, consider a query V that joins U and S:

V : − U(A1[2, 3], A2), S(A2, A3[10, 15])

V needs a bind join because A2 is a bind attribute. So, assume that there

are four tuples t1, t2, t3, and t4 in U having values within the range [2, 3] in

attribute A1 and their corresponding values in attribute A2 are 2, 5, 9, and 10,

respectively. Then, the bind join is carried out with S by binding the values 2,

5, 9, and 10 to S’s attribute A2. Note that when retrieving tuples from S whose

attribute A2 has a value, say, 2, those tuples have to satisfy the other condition

A3[10, 15] as well. Figure 3.9a illustrates the above process.

Now, assume the query results of V are stored in the semantic store and

let us consider a query Q that shares the same query template as V but with a

different query range:

Q : − U(A1[2, 5], A2), S(A2, A3[8, 18])
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Figure 3.9. Example for 2D-Bind

Note that in this case, assuming that we can estimate that two tuples tx and

ty will be retrieved from U for A1 = 4, one tuple tz will be retrieved from U for

A1 = 5 (we don’t need to estimate the cardinality for A1 = 2 and A1 = 3 because

we know the exact cardinality from V ), exact values of tx, ty, tz’s attribute A2 are
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Algorithm 3.2 PayLess Query Optimization

Input ( a query Q, a set V of RESTful queries and their stored results, the
metadata M for cost estimation )
Output ( the optimal plan P ∗ : Best(Q) for the query Q )

1: Rlocal ← {Ci ∈ Q : φ(Ci) = 0}; R′ ← {Ci ∈ Q} −Rlocal
2: Plocal ← the best subplan for Rlocal; found by offloading to a DBMS’s opti-

mizer
3: for each Ci ∈ Q do . size-1 subplans
4: Best(Ci) ← SemanticRewrite(Ci,V,M)

5: execute Line 1 again to update Rlocal and R′
6: for each k from 2 to |R′| do . Theorem 2
7: for each size-k subset Rk of R′ do
8: if Rlocal ∪Rk form ` disjoint subsets then . Theorem 3
9: Best(Rk)← Best(Rk1)×Best(Rk2)× · · · ×Best(Rk` )

10: else for each call Ci ∈ Rk . Theorem 1
11: rewrite Ci as

−→
Ci by using binding from Plocal 1 Best(Rk − Ci)

12: Pbind ← SemanticRewrite(
−→
Ci,V,M)

13: Ptemp ← Best(Rk − Ci) 1 Best(Ci)
14: if φ(Pbind) ≤ φ(Best(Ci)) then
15: Ptemp ← Best(Rk − Ci)−→1Pbind
16: update Best(Rk)← Ptemp if φ(Best(Rk)) ≥ φ(Ptemp)

still unknown (denoted as ? in Figure 3.9b). In this case, it will generate V like

Figure 3.9c. Consequently, when enumerating the set of candidate bounding

boxes, we can generate a bounding box for each individual elementary box (e.g.,

B1), for a range of known values (e.g., B2), or for the whole domain (e.g., B3).

In contrast, we cannot generate a bounding box like B4 because the exact value

for A2 of tz is actually unknown.

Algorithm 3.2 shows the pseudo code of PayLess optimization. It is self-

explanatory and mainly summarizes what we have discussed above, so we do not

give it a walkthrough here.
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3.3.3 Discussion

We end this section with a number of discussions about our query opti-

mization approach.

Optimization without statistics. First, as in traditional cost-based query

optimization, our approach relies on metadata like histograms. In the begin-

ning when no rich statistics such as value distributions are available, PayLess’s

optimizer would carry out the cardinality estimation using the basic textbook

methods (e.g., using the domain size and uniform distribution assumption).

Consistency in PayLess. Second, answering a query using the stored query re-

sults may include obsolete tuples if datasets permit in-place data update. How-

ever, so far the datasets we found in Windows Azure Marketplace are append-

only. In case in-place data update exists, we will introduce several consistency

levels into PayLess. That would allow organizations that install PayLess to choose

between consistency levels like (i) weak consistency or (ii) full consistency. If the

data buyers allow partially obsolete results, then weak consistency will be an ap-

propriate choice. Weak consistency means all RESTful queries and their results

are stored in the semantic store (with obsolete results get updated if new results

are retrieved). Under weak consistency, semantic query rewriting is always en-

abled. If the data buyers require accurate results, then strong consistency will

be a better choice. Strong consistency means semantic query writing is simply

disabled and PayLess always go to the data market to obtain the latest results.

These options are trade-off between price-to-pay and the freshness of the result,

and Table 3.1 compares these two options.
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Table 3.1. Query result accuracy options
Method Result Accurate? Query Execution Price
PayLess No Low
PayLess w/o SQR
(i.e., disabling semantic query Yes High
rewriting in PayLess)

Organization in semantic store. Third, the data in the semantic store in-

cludes issued RESTful queries and records received from the data market. The

records are stored in hard disk and used in query execution in local DBMS.

Thus, the organization of retrieved records is handled by the local DBMS query

execution engine instead of PayLess. For the RESTful queries, they are clustered

according to the relation they accessed in the data market. Each time, when a

new RESTful query is inserted into semantic store, it will be merged with exist-

ing RESTful queries of the same relation. Since the number of RESTful queries

is not large, we do not build any index on them.

3.4 Experimental Evaluation

PayLess aims to help organizations to pay less when their end users have to

query against the data market. Without PayLess, one option is to employ query

optimizers for data sources with limited access pattern because those optimizers

at least consider binding patterns and bind joins in their architecture. Another

option is to download all required tables from the data market upfront and carry

out local processing afterwards. Notice this “Download All” option is not always

bad. First, it is optimal if the queries have to scan the whole dataset. In this case,
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Table 3.2. Query templates on real DataSets
Q1 SELECT * FROM Weather

WHERE Weather.Country = ? AND Weather.Date >= ? AND

Weather.Date <= ?

Q2 SELECT COUNT(ZipCode) FROM Pollution

WHERE Pollution.Rank >= ? AND

Pollution.Rank <= ?

Q3 SELECT AVG(Temperature) FROM Station, Weather

WHERE Station.Country = Weather.Country = ? AND

Weather.Date >= ? AND Weather.Date <= ? AND

Station.StationID = Weather.StationID

GROUP BY City

Q4 SELECT Temperature FROM Station, Weather, ZipMap

WHERE Station.Country = Weather.Country = ? AND

ZipMap.ZipCode = ? AND Weather.Date >= ? AND

Weather.Date <= ? AND Station.City = ZipMap.City AND

Station.StationID = Weather.StationID

Q5 SELECT * FROM Pollution, Station, Weather, ZipMap

WHERE Station.Country = Weather.Country = ? AND

Weather.Date >= ? AND Weather.Date <= ? AND

Pollution.Rank >= ? AND Pollution.Rank <= ? AND

Pollution.ZipCode = ZipMap.ZipCode AND

ZipMap.City = Station.City AND

Station.StationID = Weather.StationID

once the whole dataset is downloaded, all queries can work on the downloaded

data locally. Second, if the number of transactions incurred by user queries

would eventually exceed the number of transactions required to download the

complete data set, then downloading the whole dataset upfront would be a more

economical option. However, we re-iterate that it is always tough to predict how

many user queries would eventually be issued in practice. Consider that the

users walk away from the dataset forever after issuing just a few queries (maybe

due to no interesting information is found), then downloading the whole dataset

would become a very costly option.

In this section, we evaluate the effectiveness of PayLess using both real data

and synthetic data. Specifically, we extract query templates from a meteoro-
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Figure 3.10. Overall effectiveness

logical application that involves queries to the Worldwide Historical Weather

(WHW) [26] and Environmental Hazard Rank (EHR) [12] datasets in Windows

Azure Marketplace. Table 3.2 lists the query templates and Figure 3.1a lists

the sizes of the tables. We generate valid query instances from those templates
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by randomly assigning values to the parameters. A query instance is valid if

it returns non-empty results (e.g., we would not instantiate Q4 with a country

equals ‘USA’ but a zip code in Germany). We also use the TPC-H workload

in the experiments. We generate 1G of TPC-H data and 1G of TPC-H skew

data [45] with zipf = 1. All parametric attributes in TPC-H queries are set

as free attributes in the experiments. We set the relations Nation and Region

local. By default, we set 100 tuples as one transaction (i.e., t = 100).

Overall effectiveness. We first study the overall effectiveness of PayLess under

different workloads and datasets. For comparison, we include the results of using

[63] to optimize the queries (denoted as “Minimizing Calls” in the figure). We

also include the results of disabling semantic query rewriting (SQR) in PayLess

(denoted as “PayLess w/o SQR” in the figure). We respectively generated q

query instances per template. The query instances are issued in a random order

and the results are reported as an average over 30 repeated experiments. In this

experiment, we set q = 10 and q = 200 for TPC-H workload and real workload,

respectively.

Figure 3.10a illustrates the total (cumulative) number of data market trans-

actions used to answer the real queries. Except the “Download All” option, when

more queries are issued, the total (cumulative) number of data market transac-

tions increases. Comparing with those data buyers who recklessly download the

whole dataset upfront, PayLess can now help them to answer the queries using

about two orders of transactions fewer. The number of transactions used by

PayLess grows slowly because many queries are rewritten using the stored results

in the semantic cache. PayLess can answer the queries using about an order of
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transactions fewer than queries optimized using [63]. That is because semantic

query rewriting (SQR) is not applicable to their setting but is a powerful helper

here in our data market setting. When we disable SQR, PayLess still outper-

forms [63]. That is because PayLess can find optimal plans in a reduced search

space using progressively refined statistics. In contrast, [63] has to find plans in

a larger search space (including bushy trees) using heuristics.

Figures 3.10b and c show the results of using TPC-H workload. TPC-H

queries scan a large portion of data. Therefore, without rewriting the queries

using the stored data, each query optimized by [63] and PayLess (if SQR is

disabled) would retrieve a large portion of the data from the data market, and

those data are largely overlapping with each other. That explains why they are

worse than “Download All”, because the latter only downloads the whole dataset

once. When PayLess is in full power with semantic query rewriting, we see that

the subsequent queries can largely reuse the stored results, thereby saving a lot

more transactions than “Download All” until about 80 queries have been issued.

When about 80 queries have been issued, all the data required by TPC-H queries

(indeed the whole TPC-H dataset) are stored by PayLess, therefore PayLess would

not repeatedly retrieve the data from the data market anymore. From the above

experimental results, we regard PayLess to be practically better than “Download

All” in all means because nobody could have known the number of queries to be

issued and the distribution of the data in practice. A data buyer can freely query

against any dataset in the data market and walk away from that dataset anytime

— she does not need to worry whether it is worth or not to download the whole

dataset in the beginning, or switch to download the whole dataset when she finds

out that she has to ask more queries after she has burned a certain amount of
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money.

Influence of number of tuples per transaction. We next study whether

the effectiveness of PayLess would be influenced by the number of tuples per

transaction, which could be a different value in different data markets. Since [63]

is consistently outperformed by PayLess in all our experiments, so we remove it,

together with PayLess with semantic query rewriting disabled, from our discus-

sion.

Figure 3.11 shows the effectiveness of PayLess when we vary the number

of tuples per transaction t. Note that when t is smaller, more transactions are

required to retrieve the same number of tuples from the data market. Therefore,

the number of transactions used by both PayLess and “Download All” must

increase. Nevertheless, we see that the effectiveness of PayLess is not influenced

by that data market parameter. PayLess still outperforms “Download All” under

real data in all cases. In addition, it still outperforms “Download All” on TPC-H

and TPC-H skew data until the whole dataset is retrieved.

Influence of number of query instances per query template. We next

study whether the effectiveness of PayLess would be influenced by q, the number

of query instances per query template. Figure 3.12 shows that the effectiveness

of PayLess is not influenced by that parameter. We see that PayLess still consis-

tently outperforms “Download All” on real data in all cases. In addition, it still

outperforms “Download All” on TPC-H and TPC-H skew data until the whole

dataset is retrieved.

Influence of data size. We also study whether the effectiveness of PayLess
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Figure 3.11. Varying the number of results t per transaction

would be influenced when the size of the data is varied. As we cannot control

the size of the real data, we control only the size of the synthetic data.

Note that when the data size increases, “Download all” needs more trans-
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Figure 3.12. Varying the number of query instances (q) per template

actions to download the whole dataset. But PayLess also needs to retrieve more

tuples for each query. Figure 3.13 shows that PayLess still outperforms “Down-

load All” on TPC-H and TPC-H skew data until the whole dataset is retrieved.
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Effectiveness of search space reduction techniques. We have also carried

out an experiment to evaluate the effectiveness of our techniques devoted to re-

ducing the search space size. Figure 3.14 shows the average number of candidate

(sub)plans for all query instances under our default setting. We report the case

when (i) SQR is disabled (Disable SQR), (ii) both SQR and search space prun-

ing (Theorems 1 to 3) are disabled (Disable All), and (iii) nothing is disabled

(PayLess). We can see that our techniques significantly reduce the search space

by orders of magnitude. This is actually what enables us to look for optimal

plans. We notice that enabling SQR indeed reduces the search plan because

SQR would cause some relations become local, which can then trigger Theorem

2. This also explains why the average number of candidate (sub)plans PayLess

has to considered decreases when we increase the number of query instances gen-

erated for each template. That is because if we increase the number of query

instances generated for each template, that would retrieve more data from the

data market, which in turn increases the chance of using Theorem 2 to reduce

the search space.

Effectiveness of bounding box pruning. Our last experiment is to evaluate

the effectiveness of the bounding box pruning rules in Algorithm 3.1. Figure 3.15

shows the average number of bounding boxes generated for all query instances

under our default setting. We see that the two pruning rules can reduce about

an order bounding boxes generated.

Efficiency. In all experiments, to find the optimal execution plan, PayLess

optimizer takes about 0.01s in average over real data and 0.05s over TPC-H
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Figure 3.14. Effectiveness of search space reduction techniques
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data to find the optimal execution plan. For comparison, it takes about 2s in

average to access one page (i.e., a transaction with no more than 100 records)

from Microsoft Azure Data Marketplace. Thus, the execution time of a query is

dominated by the RESTful calls to the data market.

3.5 Related Work

The related work relevant to this chapter is described in Chapter 2,especially

in Sections 2.1 and 2.2. This section will present the differences between this

chapter and those related work presented in Chapter 2.

To the best of our knowledge, this chapter is the first to tackle the issue

of optimizing queries that access the data market. So far, projects related to

the data market are mainly developed for query market. In their setting, the

query market can support SQL. A data buyer sends a SQL query that accesses

a dataset in the query market. The query market computes the results of the

query and returns the answer to the buyer. The research focus is how to set

the price of arbitrary SQL queries (e.g. [28,35,79,80,94,97,125]). The setting of

query market is different from our data market setting. Specifically, existing data

market like Windows Azure Marketplace [4] and Xignite [27] are still charging

data buyers according to the size of retrieved data.

In terms of problem setting, PayLess is indeed more similar to projects that

support queries over remote data sources with limited access patterns (e.g., [42,

47, 59, 63, 86–89, 104, 117]). Nevertheless, as mentioned, all these projects have

a very different focus with us — they are designed to minimize the number of
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calls to external data and/or the execution time. In contrast, PayLess focuses on

minimizing the amount of intermediate retrieved data measured in terms of data

market transactions. Besides, the optimization of distributed queries with semi-

join/magic sets [46, 112] are similar to PayLess; however, they do not consider

limited access patterns.

In terms of implementation, PayLess has borrowed the idea of learning op-

timizer from LEO [118] and has used feedback driven histogram ISOMER [116].

However, PayLess has to develop its own architecture, construct its own plan

search space, and devise its own semantic query rewriting technique (e.g., [50,

53, 84, 105]) to fit the data market. In computational geometry, the problem of

partitioning an orthogonal polygon into rectangles (PiR) [62] is similar to our

remainder query generation problem, but they are not the same. Using Fig-

ure 3.7b as an example, the PiR problem would NOT consider QRem7 , which

contains some empty regions. In contrast, in our context, QRem7 could be a good

choice according to our cost function.

3.6 Chapter Summary

This chapter presents PayLess, a system that helps data buyers to freely

query against any dataset in the data market and walk away from that dataset

anytime. The data buyers do not need to worry whether it is worth or not to

download the whole dataset in the beginning. They can simply issue their queries

to PayLess and PayLess optimizes their queries with the objective of minimizing

their money-to-pay-to-data-sellers. Currently, our use-case does not cover many

end users using PayLess simultaneously. When it does, we will incorporate multi-
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query optimization in PayLess if users are willing to defer theirs to become a

batch.



Chapter 4

Query Processing using Route

APIs

The availability of GPS-equipped smartphones leads to a huge demand of

location-based services (LBSs), like city guides, restaurant rating, and shop rec-

ommendation websites, e.g.,OpenTable, Hotels, UrbanSpoon.4.1 They manage

points-of-interest (POIs) specific to their applications, and enable mobile users

to query for POIs that match with their preferences and time constraints. As an

example, consider a restaurant rating website that manages a dataset of restau-

rants P (see Fig. 4.1a) with various attributes like: location, food type, quality,

price, etc. Via the LBS (website), a mobile user q could query restaurants based

on these attributes as well as travel times on road network to reach them. Here

are examples for a range query and a KNN query, based on travel times on road

network.

4.1www.opentable.com www.hotels.com www.urbanspoon.com

63



64

ID loc. food quality price TV
type

p1 (4,1) burger 5 4
√

p2 (6,2) grill 2 2 ×
p3 (8,7) cafe 5 3

√

p4 (1,3) burger 3 2 ×
p5 (3,6) grill 4 5

√

p5  

p4 

? 

? 

p1  

p2  

p3 

q 
? 

? 

? 

v ? 

? 

(a) dataset P (b) live travel times

Figure 4.1. A restaurant rating website: data and queries

select * from P where P.TV = ’yes’

and TIME(q,P.loc) < 10

select * from P where P.price < 5

order by TIME(q,P.loc) limit 2

A successful LBS must fulfill two essential requirements: (R1) accurate

query results, and (R2) reasonable response time. Query results with inaccurate

travel times may disrupt the users’ schedules, cause their dissatisfaction, and

eventually risk the LBS losing its users and advertisement revenues. Similarly,

high response time may drive users away from the LBS.

Observe that the live travel times from user q to POIs vary dynamically due

to road traffic and factors like rush hours, congestions, road accidents. As a case

study, we used Google Maps to measure the live travel times for three pairs of

locations in Brisbane, Singapore, and Tokyo, on two days (see Fig.4.2). Even on

the same weekday (Wednesday), the travel times exhibit different trends. Thus,

historical traffic data may not provide accurate estimates of live travel times.

Unfortunately, if the LBS estimates travel times based on only local infor-

mation (distances of POIs from user q), then query results (for range and KNN)
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Figure 4.2. Measurement of live travel times

would have low accuracy (50% for NoAPI, see Fig. 4.7). Typical LBS lacks

the infrastructure and resources (e.g., road-side sensors, cameras) for monitoring

road traffic and computing live travel times [131] [132]. To meet the accuracy

requirement (R1), the framework SMashQ [131] [132] is proposed for the LBS to

answer KNN queries accurately by retrieving live travel times (and routes) from

online route APIs (e.g., Google Directions API [16], Bing Maps API [6]), which

have live traffic information [15]. Given a query q, the LBS first filters POIs by

local attributes in P. Next, the LBS calls a route API to obtain the routes (and

live travel times) from q to each remaining POI, and then determines accurate

query results for the user. As a remark, online maps (e.g., Google Maps, Bing

Maps), on the other hand, cannot process queries for the LBS either, because

those queries may involve specific attributes (e.g., quality, price, facility) that

are only maintained by the LBS.

Using online route APIs raises challenges for the LBS in meeting the response

time requirement (R2). It is important for LBS to reduce the number of route

requests for answering queries because a route request incurs considerable time

(0.1s-0.3s) which is high compared to CPU time at LBS (see Fig. 4.8 and 4.11).
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SMashQ [131] [132] obtains the latest travel times for queries from online route

API. Though it guarantees accurate query results, it may still incur a considerable

number of route requests.

In this chapter, we exploit an observation from Fig. 4.2, namely that travel

times change smoothly within a short duration. Routes recently obtained from

online route APIs (e.g., 10 minutes ago) may still provide accurate travel times

to answer current queries. This property enables us to design a more efficient

solution for processing range and KNN queries. Our experiments show that

our solution is 3 times more efficient than SMashQ, and yet achieves high result

accuracy (above 98%). Specifically, our method Route-Saver keeps at the LBS

the routes which were obtained in the past δ minutes (from an online route API),

where δ is the expiry time parameter [57]. For instance, based on Fig. 4.2, we may

set δ to 10 minutes. These recent routes are then utilized to derive lower/upper

bounding travel times to reduce the number of route requests for answering range

and KNN queries.

Another related work [121] studies how to cache shortest paths for reducing

the response times on answering shortest path queries (but not range/KNN

queries in this chapter). They mainly exploit the optimal subpath property [52]

of shortest paths, i.e., all subpaths of a shortest path must also be shortest

paths. Given a shortest path query (s, t), if both nodes s, t fall on the same

(cached) shortest path, then the shortest path from s to t can be extracted from

that cached path. Unfortunately, this optimal subpath property is not powerful

enough in reducing the number of route requests significantly in our problem.

This is because each path contains a few data points and thus the probability

for points lying on the same path with the query point is small. We show in
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an experiment (see Fig. 4.10) that the optimal subpath property (‘τL’ in black)

saves very few route requests, whereas our techniques (e.g., lower/upper bounds

to be discussed below) provide the major savings in route requests. Furthermore,

Ref. [121] has not considered the expiry time requirement as in our work.

To reduce the number of route requests while providing accurate results, we

combine information across multiple routes in the log to derive tight lower/upper

bounding travel times. We also propose effective techniques to compute such

bounds efficiently. Moreover, we examine the effect of different orderings for

issuing route requests on saving route requests. And we study how to parallelize

route requests in order to reduce the query response time further.

In the following, we first review related work in Section 4.1. Then, we

describe the system architecture and our objectives in Section 4.2. Our contri-

butions are:

– Combine information across multiple routes in the log to derive lower/upper

bounding travel times, which support efficient and accurate range andKNN

search (Section 4.3);

– Develop heuristics to parallelize route requests for reducing the query re-

sponse time further (Section 4.4);

– Evaluate our solutions on a real route API and also on a simulated route

API for scalability tests (Section 4.5).

Finally, we conclude this chapter in Section 4.6.
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4.1 Related Work

The related work relevant to this chapter is described in Chapter 2,especially

Section 2.2 and Section 2.3. This section will present the differences between this

chapter and the related work presented in Chapter 2.

4.1.1 Query Processing on Road Networks

Indexing on road networks have been extensively studied in the literature [69,

73,77,101,108]. Various shortest path indices [69,73,108] have been developed to

support shortest path search efficiently. Papadias et al. [101] study how to process

range queries and KNN queries over points-of-interest (POIs), with respect to

shortest path distances on a road network. The evaluation of range queries and

KNN queries can be further accelerated by specialized indices [69,77,108].

In our problem scenario, query users require accurate results that are com-

puted with respect to live traffic information. All the above works require the

LBS to know the weights (travel times) of all road segments. Since the LBS lacks

the infrastructure for monitoring road traffic, the above works are inapplicable

to our problem. Some works [54, 74] attempt to model the travel times of road

segments as time-varying functions, which can be extracted from historical traffic

patterns. These functions may capture the effects of periodic events (e.g., rush

hours, weekdays). Nevertheless, they still cannot reflect live traffic information,

which can be affected by sudden events, e.g., congestions, accidents and road

maintenance.

Landmark [82, 83, 103] and distance oracle [109] can be applied to estimate
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shortest path distance bounds between two nodes in a road network, which can

be used to prune irrelevant objects and early detect results. The above works are

inapplicable to our problem because they consider constant travel times on road

segments (as opposed to live traffic). Furthermore, in this chapter, we propose

novel lower/upper travel time bounds derived from both the road network and the

information of previously obtained routes; these bounds have not been studied

before.

4.1.2 Querying on Online Route APIs

Online route APIs. An online route API [6, 16] has access to current traffic

information [15]. It takes a route request as input and then returns a route along

with travel times on route segments. The example below illustrates the request

and response format of Google Directions API [16]. Bing Maps API [6] uses a

similar format.

Table 4.1. Example Google Directions API
HTTP request

http://maps.googleapis.com/maps/api/directions/xml?

origin=44.94033,-93.22294&destination=44.94198,-93.23722
mode=driving

XML response

<step>

<start_location>

<lat>44.9403300</lat> <lng>-93.2229400</lng>

</start_location>

<end_location>

<lat>44.9395900</lat> <lng>-93.2229500</lng>

</end_location>

<duration> <value>8</value> </duration>

</step>

...... remaining steps ......

The request is an HTTP query string, whose parameters contain the ori-

gin and destination locations in latitude-longitude, as well as the travel mode.

In this example, the origin is at (44.94033,−93.22294), the destination is at
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(44.94198,−93.23722), and the user is at ‘driving’ mode.

The response is an XML document that stores a sequence of route segments

from the origin to the destination. Each segment, enclosed by <step> tags,

contains its endpoints and its travel time by driving (see the <duration> tags).

The segment in this example takes 8 seconds to travel. We omit the remaining

segments here for brevity. Besides, the XML response contains the total travel

time on this route (the sum of travel times on all segments).

Query processing algorithms. Thomsen et al. [121] study the caching of

shortest paths obtained from online route APIs. They exploit the optimal sub-

path property [52] on cached paths to answer shortest path queries. As we

discussed in the introduction and verified in experiments, this property cannot

significantly reduce the number of route requests in our problem. Also, they

have not studied the processing of range/KNN queries, the lower/upper bound

techniques developed in this chapter, as well as the accuracy of query results.

The framework SMashQ [131, 132] is the closest work to our problem. It

enables the LBS to process KNN queries by using online route APIs. To re-

duce the number of route requests (for processing queries), SMashQ exploits the

maximum driving speed VMAX and the static road network GS (with only dis-

tance information) stored at the LBS. Upon receiving a KNN query from user

q, the LBS first retrieves K objects with the smallest network distance from q

and issues route requests for them. Let γ be the Kth smallest current travel time

(obtained so far). The LBS inserts into a candidate set C the objects whose

network distance to q is within γ · VMAX . Next, SMashQ groups the points in

C to road junctions, utilizes historical statistics to order the road junctions, and
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then issues route requests for junctions in above order. Compared with our work,

SMashQ does not utilize route log to derive exact travel times nor lower/upper

bounds to boost the query performance of the LBS. As we will show in the ex-

periments, even if we extend SMashQ to use a route log and apply the optimal

subpath property [52] [121] to save route requests, it still incurs much more route

requests than our proposed method.

Efficient algorithms [81, 111] have been developed for KNN search on data

objects with respect to generic distance functions. It is expensive to compute the

exact distance from a query object q to a data object p (e.g., using exact spatial

object geometry). On the other hand, it is cheap to compute the lower/upper

bound distance from q to p (e.g., using bounding rectangle). Seidl et al. [111]

propose a KNN search algorithm that fetches the optimal number of objects from

the dataset P. These generic solutions [81, 111] are applicable to our problem;

however, they do not exploit the rich information of routes that are specific in

our problem. In our problem, the exact route from q to p reveals not only the

current travel time to p, it may also provide the current travel times to other

objects p′ on the route, and may even offer tightened lower/upper bounds of

travel times to other objects, as we will illustrate in Section 4.3.

4.2 Problem Statement

In this section, we first describe the system architecture and then formulate

the objectives of our problem.

System architecture and notations. In this chapter, we adopt the system
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architecture as depicted in Fig. 4.3. It consists of the following entities:

– Online Route API. Examples are: Google / Bing route APIs [16] [6].

Such API computes the shortest route between two points on a road net-

work, based on live traffic [15]. It has the latest road network G with live

travel time information.

– Mobile User. Using a mobile device (smartphone), the user can acquire

his current geo-location q and then issue queries to a location-based server.

In this chapter, we consider range and KNN queries based on live traffic.

– Location-Based Service/Server (LBS). It provides mobile users with

query services on a dataset P, whose POIs (e.g., restaurants, cafes) are

specific to the LBS’s application. The LBS may store a road network G

with edge weights as spatial distances, however G cannot provide live travel

times. In case P and G do not fit in main memory, the LBS may store P

as an R-tree and store the G as a disk-based adjacency list [101].

We then define route, travel time, and queries formally.

Definition 1 (Route and travel time). The route ψt(vs, vd) between vs and vd,

obtained from route API at timestamp t, is a sequence of pairs { 〈vi, τt(vs, vi)〉 :

vi ∈ ψt }. Each pair stores a node vi and its travel time τt(vs, vi) from the

source vs. Let τt(v, v
′) be the (shortest) travel time between two locations v and

v′ (obtained at timestamp t).
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Figure 4.3. System architecture

Definition 2 (Query results).

Let q be a query point and tnow be the current time.

Given q and a travel time limit T , the result set of range query is: R = { p ∈

P : τtnow(q, p) ≤ T }.

Given q and a result size K, the result set of KNN query is: R = { p ∈ P :

τtnow(q, p) ≤ τtnow(q, p′), p′ ∈ P −R } with size K.

As discussed in the introduction, queries in real applications may involve

filters on (i) non-spatial features (e.g., quality, price) of P as well as (ii) live

travel times from the query point q to POIs in P. These queries cannot be

solved by the LBS alone nor an online map (e.g., Google Map) alone. LBS

lacks access to live traffic information (i.e. travel times), whereas the dataset P

maintained by the LBS is not available to an online map.

The flow of the system is as follows. A user first issues a query to the LBS

via his/her mobile client (Step 1). The LBS then determines the necessary route

requests for the query and submits them to the route API (Step 2). Next, the

route API returns the corresponding routes back to the LBS (Step 3). Having

such information, the LBS can compute the query results and report them back

to the user (Step 4). As a remark, our system architecture is similar to [131],
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except our LBS maintains a route log L and some additional attributes with

edges on G (to be elaborated soon).

Objective and our approach. Our objective is to reduce the response time of

queries (i.e., requirement R2) while offering accurate query results (i.e., require-

ment R1). It is important to minimize the number of route requests issued by

the LBS because route requests incur considerable time (see introduction).

As observed in Fig. 4.2, travel times change slightly within a short duration

(e.g., 10 minutes). Based on this observation, we approximate the travel time

(from v to v′) at current time tnow as the travel time obtained from a route API

at an earlier time t′:

Assumption 1 (Temporal approximation). For any locations v, v′, we have:

τtnow(v, v′) ≈ τt′(v, v
′) if t′ ≥ tnow − δ.

This approximation enables the LBS to save route requests significantly,

while still providing high accuracy. Specifically, at the LBS, we employ a log L

of routes that were requested from an online route API within the last δ minutes.

Like in [131] [132], we assume that the road network G used in LBS is the

same with that used in route service. This is feasible when the LBS can obtain

accurate maps from the government [23], route service providers [18] or their map

suppliers [5]. However, when the LBS cannot have access to the same G as the

route service, we will discuss the applicability of our techniques in Section 4.3.5.

To achieve low response time, we will exploit the route log and road net-

work G to reduce the number of external route requests (issued to online route

API) for answering queries (Section 4.3). We will also parallelize route requests
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(Section 4.4) to further reduce the response time.

4.3 Query Processing

This section presents our approach Route-Saver for answering queries effi-

ciently. First, we discuss the maintenance of the time-tagged road network G

and the route log L (Section 4.3.1). Then, we exploit G and L to design effec-

tive bounds for travel times (Section 4.3.2). Next, we present our algorithms for

answering range and KNN queries in Sections 4.3.3, 4.3.4 respectively. Finally,

we discuss the applicability of our techniques when no local maps are available

in Section 4.3.5.

In subsequent discussion, we drop the subscript t in τt(v, v
′) as we only use

valid routes (and their travel times).

4.3.1 Maintenance of Structures at LBS

Conservative travel time bounds. Given an edge e(v, v′), we define cω−(e)

and cω+(e) as conservative lower-bound and upper-bound of travel time on e,

respectively. Observe that the lower-bound cω−(e) is limited by the Euclidean

distance of e and the maximum driving speed VMAX :

cω−(e) = dist(e)/VMAX (4.1)
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On the other hand, the upper-bound is cω+(e) = ∞ because the travel time on

e can be arbitrarily long in case of traffic congestion.

Structures. We employ a route log L and a time-tagged network G in the LBS.

The route log L stores all routes obtained from an online route API within

the last δ time units, as described in Section 4.2. Recall from Definition 1 that

the timestamp of a route ψt(v, v
′) is indicated by its subscript t. Assume that

we use δ = 2 in Fig. 4.4a. At time tnow = 4, L keeps the routes obtained during

time 2–4.

To support query operations efficiently, we summarize the travel times of

edges in L into a time-tagged network G. Specifically, each edge e in G is tagged

with a tuple (cω−(e), ω(e))µ(e), where cω−(e) is the conservative lower-bound

travel time on e (Eqn. 4.1), ω(e) is the exact travel time stored in L, and µ(e) is

the last-update timestamp for ω(e). We call an edge e to be valid if its last-update

timestamp µ(e) satisfies µ(e) ≥ tnow − δ.

As an example, consider the time-tagged network G at current time tnow = 4

in Fig. 4.4b. Assume that the expiry time is δ = 2. We draw valid edges by solid

lines and invalid edges by dotted lines. For the solid edge (v3, v6), the tuple

(25, 42)3 means that its conservative lower bound cω−(v3, v6) is 25, its exact

travel time ω(v3, v6) is 42, and its last-update timestamp µ(v3, v6) is 3. The

dotted edge (v2, v3) is invalid since its timestamp µ(v2, v3) = 1 is less than

tnow − δ = 4− 2 = 2.

Maintenance. We then discuss how to maintain the route log L and the time-

tagged road network G.
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To support efficient lookup on L, we employ inverted lists of routes for each

node [121]. Specifically, each inverted list of node v stores a list of route IDs that

contain v. The insertion/deletion of a route can be implemented to take O(|ψ|)

time, where |ψ| is the number of vertices on a route.

At time tnow, we remove from L the routes ψt having t < tnow − δ (i.e.,

expired). E.g., at tnow = 5, we remove ψ2(v5, v6) from L (see Fig. 4.4a). Also,

we update the inverted lists for v4, v5, v6 ∈ ψ2(v5, v6). We need not update G

now because it stores the last-update timestamps of edges.

When we retrieve a route ψtnow from online route API, e.g., ψ5(v1, v7) :

v1 → v8 → v7, we insert it into L (see Fig. 4.4a), and update the inverted lists

for nodes v1, v7, v8. For the edges on ψ5(v1, v7), e.g., (v1, v8), (v8, v7), we update

their ω(e) and µ(e) in G (see Fig. 4.4c).

4.3.2 Exact Travel Times and Their Bounds

In this section, we exploit the time-tagged road network G and the route

log L to derive lower and upper bounds of travel times for data points. As we

will elaborate soon, these bounds enable us to save route requests during query

processing.

Before presenting these techniques, we first show an example of data stored

at LBS (see Fig. 4.5). Besides G and L, the LBS also stores a dataset P (points

pj with locations). Assume the current time tnow = 9 and the expiry time δ = 5.

The route log L contains only valid routes (not yet expired). For the time-tagged

network G (see Fig. 4.5c), solid edges are valid while dotted edges are not. Each

edge e is tagged with cω−(e) and ω(e) (underlined), and the icons of routes via
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Route ID Route Content tnow=4 tnow=5 tnow=6

ψ1(v2, v4) (v2, 0), (v3, 15), (v4, 50)
ψ2(v5, v6) (v5, 0), (v4, 60), (v6, 135)

√

ψ3(v3, v6) (v3, 0), (v6, 42)
√ √

ψ4(v2, v6) (v2, 0), (v8, 40), (v6, 50)
√ √ √

ψ5(v1, v7) (v1, 0), (v8, 20), (v7, 30)
√ √

ψ6(v2, v3) (v2, 0), (v3, 15)
√

(a) Route Log L (at different times)

v1 

v7 

v2 

v5 

v8 v6 

v3 v4 

(40,60)2 

(10,15)1 (25,35)1 

(50,75)2 

(25,42)3 
(15,40)4 

(3,10)4 

(10,?)? (6,?)? 

(18,?)? 

v1 

v7 

v2 

v8 v6 

v3 v4 

(10,15)1 (25,35)1 

(50,75)2 

(25,42)3 
(15,40)4 

(3,10)4 

(10,?)? (6,10)5 

(18,20)5 v5 

(40,60)2 

(b) G at tnow = 4 (c) G at tnow = 5

Figure 4.4. Example route log L and time-tagged road networkG, with expiry time
δ = 2; solid edges have valid travel times

e (if any). For clarity, we omit µ(e) (i.e., the last-update timestamp) of edges.

We first introduce the concept of travel time bounds:

Definition 3 (Travel time bounds). Given a query point q and a data point

p, we denote p.τ− and p.τ+ as a lower bound and an upper bound of the exact

travel time τ(q, p). Specifically, we require that p.τ− ≤ τ(q, p) ≤ p.τ+. For

convenience, we may denote τ(q, p) by p.τ .

As an example, consider a data point p and a range query with travel time

limit T . The upper-bound time p.τ+ helps detect true results early. If p satisfies

p.τ+ ≤ T , then p must be a result. The lower-bound time p.τ− enables pruning

unpromising points. If p satisfies p.τ− > T , then p cannot be a result. In either
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Point Loc.

p1 (x1, y1)
p2 (x2, y2)
p3 (x3, y3)
p4 (x4, y4)
p5 (x5, y5)
p6 (x6, y6)
p7 (x7, y7)

Route ID Route Content

ψ4(q′2, p2) (v7, 0), (v6, 5), (v5, 15)
ψ5(q′3, p4) (v6, 0), (v11, 18), (v9, 50),(v2, 60)
ψ6(q′4, p2) (v3, 0), (v10, 5), (v4, 15), (v5, 25)
ψ7(q′4, p7)(v3, 0), (v10, 5), (v12, 20), (v16, 76)
ψ8(q′4, p5) (v3, 0), (v10, 5), (v12, 20),

(v9, 35), (v13, 52), (v1, 55)

(a) dataset P (b) route log L
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(c) Road network G with travel time information

Figure 4.5. Data stored at the LBS, at tnow = 9 (δ = 5); each edge is tagged with
(cω−(e), ω(e))

case, we save a route request for p. Observe that a tight upper bound should be

as small as possible because it is more likely to satisfy p.τ+ ≤ T . Similarly, a

tighter lower bound should be as large as possible to satisfy p.τ− > T . Techniques

discussed below aim to derive tight bounding travel times for data points.

Conservative lower-bound. Let sptcω−(q, p) be the shortest travel time from

q to p defined on the edge weight cω−(e) (see Eqn.4.1). The conservative lower-
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bound travel time from q to p is:

p.τ−c = sptcω−(q, p) (4.2)

We take the point p3 in Fig. 4.5c as an example. With respect to the

weight cω−(e), the shortest path from q to p3 is q → v14 → p3, with length

cω−(q, v14) + cω−(v14, p3) = 41. Table 4.2 shows p.τ−c for each data point p.

Bounding travel times based on ω+ and ω−. Recall that the exact travel

time τ(q, p) is defined as the shortest travel time based on live traffic information.

Thus, we have: τ(q, p) = sptω∗(q, p), where ω∗(e) denotes the current travel time

for an edge e. We use the notations τ(q, p) and sptω∗(q, p) interchangeably in

the following discussion.

Our idea is to define upper-bound weight ω+(e) and lower-bound weight

ω−(e) for each edge e, by using the information in the time-tagged road network

G.

ω+(e) =


ω(e) if µ(e) ≥ tnow − δ

∞ otherwise

(4.3)

ω−(e) =


ω(e) if µ(e) ≥ tnow − δ

cω−(e) otherwise

(4.4)

Note that ω∗(e) is unknown to the LBS in general. If µ(e) ≥ tnow − δ, then the

last-update travel time ω(e) (in above equations) serves as an approximation of

ω∗(e), due to Assumption 1.
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Table 4.2. Example travel time information (for user q), tnow = 9
Point p.τ−c p.τ−G p.τG p.τ+G p.τ−I
p1 (v4) 26 40 40 40 20
p2 (v5) 30 45 NIL 50 40
p3 (v8) 41 41 NIL NIL NIL
p4 (v2) 5 10 10 10 NIL
p5 (v1) 10 10 NIL 20 NIL
p6 (v17) 37 42 NIL NIL NIL
p7 (v16) 10 10 NIL 71 41

With these edge weights, we establish the upper and lower bounds for travel

times from q to p (Lemma 1).

Lemma 1 (bounding travel times on ω+, ω−).

Let sptω+(q, p) be the shortest travel time from q to p with respect to the edge

weight ω+(e), on a time-tagged road network G.

Similarly, let sptω−(q, p) be the shortest travel time with respect to the edge weight

ω−(e). With Assumption 1, we have: sptω−(q, p) ≤ sptω∗(q, p) ≤ sptω+(q, p).

Proof. We first aim to prove: sptω∗(q, p) ≤ sptω+(q, p). Let SP ∗ and SP+ be

the shortest path between q and p defined on the edge weights ω∗(e) and ω+(e),

respectively. According to Eqn. 4.3, we have ω(e) ≤ ω+(e). By Assumption 1,

we approximate ω∗(e) by ω(e). Thus, we have ω∗(e) ≤ ω+(e). Applying it on

all edges on SP+, we obtain:
∑

e∈SP+ ω∗(e) ≤
∑

e∈SP+ ω+(e) —(N). By the

definition of shortest path on the edge weight ω∗(e), the travel time of SP ∗ is no

larger than that of SP+. Thus, we have:
∑

e∈SP ∗ ω
∗(e) ≤

∑
e∈SP+ ω∗(e) —(H).

Combining inequalities (N) and (H), we obtain:
∑

e∈SP ∗ ω
∗(e) ≤

∑
e∈SP+ ω+(e).

Therefore, sptω∗(q, p) ≤ sptω+(q, p).

The proof for sptω−(q, p) ≤ sptω∗(q, p) is similar to the above proof, except

that we apply Eqn. 4.4 instead.
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In subsequent discussion, we represent the bounds sptω+(q, p) and sptω−(q, p)

by p.τ+
G and p.τ−G respectively. Observe that we can compute p.τ+

G (or p.τ−G ) for

all points efficiently by running the Dijkstra algorithm using edge weight ω+(e)

(or ω−(e)).

Table 4.2 shows the upper-bound p.τ+
G and lower-bound p.τ−G for all data

points. We take the candidate p2 in Fig. 4.5c as an example. After running

Dijkstra on G using ω−(e), the shortest path from q to p2 is q → v11 → v15 → p2

with the length as ω(q, v11) + cω−(v11, v15) + cω−(v15, p2) = 45. After running

Dijkstra on G using ω+(e), the shortest path from q to p2 as q → v12 → v10 →

v4 → p2 with length as ω(q, v12) + ω(v12, v10) + ω(v10, v4) + ω(v4, p2) = 50.

Condition for exact travel time. When a point p satisfies certain condition

(see Lemma 2), its lower-bound travel time (p.τ−G ) serves as its exact travel time

from q (denoted by p.τG). In this case, we save a route request for p regardless

of the value of p.τG.

Lemma 2 (Road network exact travel time).

Let SP− (with travel time sptω−(q, p)) be the shortest path from q to p with

respect to the edge weight ω−(e), on a time-tagged road network G. If each edge

on SP− satisfies µ(e) ≥ tnow − δ, then we have: sptω∗(q, p) = sptω−(q, p).

Proof. If an edge e satisfies µ(e) ≥ tnow − δ (i.e., valid edge), then we have:

ω−(e) = ω+(e) = ω(e) (= ω∗(e)). Applying this to each edge on SP−, we

obtain: sptω−(q, p) =
∑

e∈SP− ω
−(e) =

∑
e∈SP− ω

∗(e).

We then claim that SP− is the shortest path with respect to the edge weight

ω∗. For the sake of contradiction, assume there exists a path SP ′ shorter than
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SP− on edge weight ω∗. Then, SP ′ has a shorter travel time than sptω−(q, p),

contradicting the fact that sptω−(q, p) is a lower-bound. Thus, this lemma is

proved.

Table 4.2 lists the exact travel time p.τG of all data points. Take the can-

didate p1 in Fig. 4.5c as an example. With respect to edge weight ω−(e), the

shortest path from q to p1 is q → v12 → v10 → p1. Since each edge on this path

has valid exact travel time, thus we obtain: p1.τG = ω(q, v12) + ω(v12, v10) +

ω(v10, v4) = 40.

Tightening the lower-bound using route log. As we will illustrate soon,

the lower-bound p.τ−G (derived from edge weight ω−(e)) may not be tight for

some data points.

Next, we utilize a shared node ı among routes in L to derive another lower-

bound travel time for candidates (see Lemma 3). We denote this lower-bound

travel time as p.τ−I = |τ(q, ı)− τ(p, ı)|.

Lemma 3 (Route log lower-bound travel time). Let ψi, ψj be two different routes

in the route log L such that they share a node ı. If q, p fall on ψi, ψj respectively,

then we have: |τ(q, ı)− τ(p, ı)| ≤ τ(q, p) (i.e. sptω∗(q, p)).

Proof. For the sake of contradiction, assume that: τ(q, p) < |τ(q, ı)−τ(p, ı)|. For

case I ( τ(q, ı) ≥ τ(p, ı) ), we obtain: τ(q, p) + τ(p, ı) < τ(q, ı). This contradicts

with that τ(q, ı) is the shortest between q and ı. For case II ( τ(q, ı) < τ(p, ı)

), we obtain: τ(p, q) + τ(q, ı) < τ(p, ı). This contradicts with that τ(p, ı) is the

shortest between p and ı. Thus, the lemma is proved.
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Since ψi, ψj are routes in L, so the values τ(q, ı), τ(p, ı) can be directly

obtained from L according to optimal subpath property [52]. Through using the

inverted node index [121] of L, we can efficiently retrieve the subset of routes

which contains q (i.e. Lq) and the corresponding subset for each remaining

candidate point p (i.e. Lp). Then, we can identify the shared node between

routes in Lq and Lp, and use it to calculate p.τ−I .

Continuing with the example, we show how to derive p7.τ
−
I of point p7 (in

Fig. 4.5c). First, we find the subset of routes that contain q, i.e., Lq = {ψ5, ψ8}.

Then, we find the subset of routes that contain p7, i.e., Lp7 = {ψ7}. Next,

we identify a shared node between Lq and Lp7 , which is the node v12 on the

routes ψ8 ∈ Lq and ψ7 ∈ Lp7 . With these routes, we obtain these exact travel

times: τ(q, v12) = 15 and τ(p7, v12) = 56. Thus, we derive p7.τ
−
I = |τ(p7, v12)−

τ(q, v12)| = |56 − 15| = 41. Observe that this bound p7.τ
−
I = 41 is tighter than

the bound p7.τ
−
G = 10.

Nevertheless, the bound p.τ−I can be looser or unavailable for some points,

e.g., p1, p3 in Table 4.2. So, we combine bounds τ−G and p.τ−I into a tighter lower

bound for p:

p.τ− = max{p.τ−G , p.τ
−
I } (4.5)

4.3.3 Range Query Algorithm

In this section, we present our Route-Saver algorithm for processing a range

query (q, T ). It applies the travel time bounds discussed above to reduce the

number of route requests. To guarantee the accuracy of returned results, it

removes all expired routes ψt in L. The algorithm first conducts a distance
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range search (q, T · VMAX) for P on G [101] to obtain a set C of candidate

points. Algorithm 4.1 consists of two phases to process the candidate points in

C and store the query results in the set R.

The first phase (Lines 4–17) aims to shrink the candidate set C, so as to

reduce the number of route requests to be issued in the second phase. First, we

execute Dijkstra on G two times, using edge weight ω−(e) and ω+(e) respectively.

Then, we obtain the bounds p.τ+
G , p.τ−G and p.τG for every candidate p ∈ C. If

p.τ+
G ≤ T or p.τG ≤ T , then p must be a true result so we place it into R. If

p.τ−G > T , then p cannot become a result and it gets removed from C. Next, for

each candidate p remaining in C, we compute its exact travel time p.τL using

optimal subpath property in L [52] [121], and use p.τL to detect true result.

Moreover, we derive the lower bound travel time p.τ−I using route log L for

pruning.

In the second phase, we issue route requests for the remaining candidates in

C, based on a certain ordering. We will elaborate the effect of candidate ordering

at the end of this section. For the moment, suppose that we examine candidates

in ascending order, i.e., pick a candidate p ∈ C with the minimum p.τ− (Line

19). Next, we issue a route request for p and then insert the returned route ψtnow

into the route log L. For each edge on the returned route ψtnow , we update its

ω(e) and µ(e) accordingly.

This route provides not only the exact travel time for p, but also potential

information for updating the bounds for other candidate p′ ∈ C. We remove p′

from C if (i) it cannot become result, i.e., p′.τ− > T , or (ii) its exact travel time

p′.τL is known (i.e., p′ lies on route ψtnow). In case p′.τL ≤ T , we insert p′ into
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Algorithm 4.1 Route-Saver Algorithm for Range Queries

function Route-Saver-Range ( Query (q, T ), Dataset P )
. system parameters: time-tagged graph G, route log L, expiry time δ

1: Remove from the log L any route ψt with t < tnow − δ
2: Create a result set R← ∅
3: Cand. set C ← range search (q, T · VMAX) for P on G . By [101]
4: Run Dijkstra for q on G using ω+(e) and ω−(e) to retrieve p.τ+G , p.τ

−
G , p.τG .

Phase 1:detect results,prune objects
5: for each p ∈ C do . use time-tagged graph G
6: if p.τG is known or p.τ−G > T or p.τ+G ≤ T then
7: Remove p from C

8: if p.τG ≤ T or p.τ+G ≤ T then
9: Insert p into R

10: for each p ∈ C do . use route log L
11: if ∃ route ψ ∈ L such that ψ contains p and q then
12: Compute p.τL . optimal subpath property [52] [121]
13: if p.τL is known and p.τL ≤ T then
14: Insert p into R

15: Compute p.τ− as max{p.τ−G , p.τ
−
I }

16: if p.τ− > T or p.τL is known then
17: Remove p from C

18: while C is not empty do . Phase 2: Issue route requests
19: Pick an object p ∈ C with minimum p.τ− . ordering
20: Route ψtnow

← RouteRequest(q, p) . call external API
21: Insert ψtnow

into L; Update ω(e), µ(e) in G for e ∈ ψtnow

22: Update p.τL for all p on ψtnow . optimal subpath property [52] [121]
23: Run incremental Dijkstra to update all p.τ− . By [44]
24: for each p′ ∈ C do
25: if p′.τ− > T or p′.τL is known then
26: Remove p′ from C

27: if p′.τL ≤ T then
28: Insert p′ into R

29: Return R

R. Whenever C becomes empty, the loop terminates and the algorithm reports

R as the result set.

Example. Consider the range query at q with T = 40 in Fig. 4.5c. We illustrate

the running steps of Route-Saver in Table 4.3. Entries without values are labeled

as ‘/’.
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Suppose that VMAX = 110 km/h. First, we do a range search at q with

distance T · VMAX , and obtain the candidate set C = p1, p2, p4, p5, p6, p7. Note

that further away points (e.g. p3) are not in C. Then, we derive the p.τ+
G , p.τ

−
G

and p.τG using the time-tagged road network G, as shown in the first three

columns of Table 4.3. Candidates p1, p4, p5 are inserted into the result set R, since

their exact or upper-bound travel times are smaller than T = 40. Candidates

p2, p6 are pruned with lower bounds larger than T = 40. Then, we compute

the lower bound for the remaining candidate using L: p7.τ
−
I = 41, and p7 is

pruned. We skip the second phase as the candidate set becomes empty. Thus,

the algorithm returns R = {p1, p4, p5} to the user. In this example, Route-Saver

issues 0 route request.

Table 4.3. Range/KNN query example for Route-Saver, T = 40
p.τ−G p.τG p.τ+G p.τL p.τ−I p.τ by Is

route API result?

p1 40 40 40 / / /
√

p2 45 / 50 / / / ×
p3 41 / / / / / ×
p4 10 10 10 / / /

√

p5 10 / 20 / / /
√

p6 42 / / / / / ×
p7 10 / 71 / 41 / ×

Candidate ordering and its analysis. This section studies the effect of can-

didate orderings on the cost of Algorithm 4.1, i.e., the number of route requests

issued. Various orderings can be used for processing the candidates (in phase 2).

We consider two orderings for picking the next candidate p ∈ C (at Line 19):

Ascending order (ASC): Pick a candidate with the minimum p.τ−. This

order is the same as in Algorithm 4.1.

Descending order (DESC): Pick a candidate with the maximum p.τ−. The
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rationale is that longer routes are more likely to cover other candidates and thus

save route requests for them.

We proceed to analyze the number of route requests incurred by ASC and

DESC.

For simplicity, we assume that the underlying graph is a unit-weight grid

network (in 2D space). Let q be at the origin (0, 0) and T be the travel time limit.

Let α be the data density, i.e., the probability that a node contains a point. Let

the layer i be the set of nodes whose travel times from q equal to i. Observe that,

in layer i, there are 4i nodes and 4αi candidates. Summing up this from layer 1

to layer T , the number of candidates is: Cand(α, T ) =
∑

i∈[1,T ] 4αi ≈ 2αT 2

ASC issues route requests for candidates in ascending order of their layers.

Thus, it cannot save any route request for candidates. The cost of ASC is:

CostASC(α, T ) = Cand(α, T ) ≈ 2αT 2

On the other hand, DESC issues route requests for candidates in descending

order of their layers. Consider a node v in the layer i. Note that the number of

candidates from layer i+ 1 to layer T is: 2αT 2−2αi2 = 2α(T 2− i2). If the route

from q to any of these candidates passes v, then we can save a route request for

v. Since there are 4 · i possible locations for v, the probability of saving a route

request for v is: max{2α(T 2−i2)
4i , 1} = max{α(T 2−i2)

2i , 1}. Thus, the cost of DESC

is: CostDESC(α, T ) =
∑

i∈[1,T ] 4αi · (1−max{α(T 2−i2)
2i , 1}) To simplify the above

equation, we find the maximum value for i such that: α(T 2−i2)
2i ≥ 1. By solving

this quadratic inequality, we get: i ≤
√

1+1α2T 2−1
α . When T > 1

α , the cost of
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DESC is upper-bounded by:

CostDESC(α, T ) ≤ 4T

In summary, DESC incurs a much lower cost than ASC.

4.3.4 KNN Query Algorithm

In this section, we extend our Route-Saver algorithm for processing KNN

queries. We will also examine suitable orderings for processing candidates.

Unlike range queries, KNN queries do not have a (fixed) travel time limit

T for obtaining a small candidate set. Instead, we first compute a (temporary)

result set R so that it contains K candidates with the smallest p.τ+
G or p.τG.

Recall that we can obtain these bounds/values for all candidates efficiently by

two Dijkstra traversal on G. Let γ be the largest p.τ+
G or p.τG in R. Having

this value γ, we can prune each candidate p that satisfies p.τ− > γ, as it cannot

become the result.

Algorithm 4.2 is the pseudo-code of our KNN algorithm. First, we initialize

the candidate set C with the dataset P, insert K dummy pairs (with ∞ travel

time) into the result set R, and set γ to the largest travel time in R. The

algorithm consists of three phases. In the first phase, it obtains γ by using the

idea discussed above. In the second phase, it prunes candidates whose lower

bounds or exact times are larger than γ. In the third phase, it examines the

candidates according to a certain order and issues route requests for them. The

algorithm terminates when the candidate set contains exactly K objects, and
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then reports them as query results.

Algorithm 4.2 Route-Saver Algorithm for KNN Queries

function Route-Saver-KNN ( Query (q,K), Dataset P )
. system parameters: time-tagged graph G, route log L, expiry time δ

1: Remove from the log L any route ψt with t < tnow − δ
2: Create a candidate set C ← P
3: Create a result set R with K pairs 〈NULL,∞〉
4: γ ← the largest travel time in R
5: Run Dijkstra for q on G using ω+(e) and ω−(e) to retrieve p.τ+G , p.τ

−
G , p.τG .

Phase 1: obtain the threshold γ
6: for each p ∈ C do
7: Update R, γ by p with p.τ+G or p.τG

8: for each p ∈ C do . Phase 2: prune objects

9: if p.τG > γ or p.τ−G > γ then
10: Remove p from C

11: if ∃ route ψ ∈ L such that ψ contains p and q then
12: Compute p.τL . optimal subpath property [52] [121]
13: Update R, γ by p with p.τL
14: Compute p.τ− as max{p.τ−G , p.τ

−
I }

15: if p.τ− > γ or (p.τL is known and p.τL > γ) then
16: Remove p from C

17: while |C| > K do . Phase 3: Issue route requests
18: Pick an object p ∈ C with minimum p.τ− . ordering
19: Route ψtnow ← RouteRequest(q, p) . call external API
20: Insert ψtnow into L; Update ω(e), µ(e) in G for e ∈ ψtnow

21: Update p.τL for all p on ψtnow
. optimal subpath property [52]

22: Run incremental Dijkstra to update all p.τ− . By [44]
23: for each p′ ∈ C do
24: if p′.τ− > γ or p′.τL > γ then
25: Remove p′ from C

26: if p′.τL < γ then
27: Update R by p′ with p′.τL
28: Return R

Example. Consider the KNN query with K = 3 in Fig. 4.5c. We illustrate the

running steps of Route-Saver in Table 4.3. Entries without values are marked as

’/’.

In the first phase, we derive the upper bounds p.τ+
G , p.τG, p.τ

−
G using the
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time-tagged road graph G, which are shown in the first three columns in Ta-

ble 4.3. Since p1.τG, p4.τG and p5.τ
+
G are the smallest three travel times, we

insert them into R and update γ = 40. In the second phase,first we prune

candidates p2, p5, p6 since their p.τ−G are larger than γ. Then, we calculate the

lower-bound travel time for p7 using L: p7.τ
−
I = 41 > γ, so p7 is pruned. We

skip the third phase as the candidate set contains exactly K = 3 objects, the

same as the result set R. Thus, the algorithm returns R = {p1, p4, p5} as the

query result. Route-Saver issues 0 route request in this example. On the other

hand, SMashQ incurs 7 route requests when solving this query ( see the method

description in Sec. 4.1.2).

Candidate ordering. For the orderings to rank candidates in C (Line 18) in

Algorithm 4.2, in addition to the orderings discussed in Section 4.3.3, we propose

a new ordering:

Maximum difference (DIFF): Pick a candidate with the maximum p.τ+ −

p.τ−. This order tends to tighten the lower and upper bounds of candidates

rapidly. A tight p.τ+ helps refine the value γ whereas a tight p.τ− helps prune

the candidate itself.

4.3.5 Applicability of Techniques without Map

In this section, we discuss how to adapt the Route-Saver in case the LBS

cannot obtain the same map G used in the route service. We observe that, if the

LBS uses the map G′ (e.g., a free map [21]) which are not the same with that

used in route services, bounding travel times p.τ−G can be over-estimated. For

example, if the real shortest path from q to p is missing in local map G′, then it
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is possible that Route-Saver calculates a higher p.τ−G for p and mistakenly prunes

it from results. Therefore, the LBS is not allowed to use inaccurate maps.

In case that the LBS cannot access to the map G used in route services, the

applicability of our techniques are as follows:

– p.τ−G , p.τG and p.τ+
G are not applicable because they are calculated based

on G, which is not available to the LBS.

– p.τL is applicable, since it is solely calculated using route logs which are

obtained from route services.

– p.τ−I is applicable, as it is solely based on route logs.

– p.τ+
GL

is applicable, where GL is a road network formed by routes in the

log. Observe that GL must be a subgraph of G.

4.4 Parallelized Route Requests

Our objective (see Section 4.2) is to minimize the response time of queries.

Section 4.3 optimizes the response time through reducing the number of route

requests. Can we further reduce the response time? In this section, we examine

how to parallelize route requests in order to optimize user response time further.

We propose two parallelization techniques that achieve different tradeoffs on the

number of route requests and user response time.

The execution of algorithms in Section 4.3 follows a sequential schedule like

Fig. 4.6a. The user response time consists of: (i) the time spent on route requests

(in gray), and (ii) local computation at the LBS (in white).



CHAPTER 4. QUERY PROCESSING USING ROUTE APIS 93

Consider the sequential schedule in Fig. 4.6a. An experiment (see Fig. 4.11)

reveals that the user response time is dominated by the time spent on route

requests. Let a slot be the waiting period to obtain a route from the route

API4.2. In Fig. 4.6a, the sequential schedule takes 5 slots for 5 route requests.

Intuitively, the LBS may reduce the number of slots by issuing multiple route

requests to a route API in parallel. Fig. 4.6b illustrates a parallel schedule with

2 slots; each slot contains 3 route requests issued in parallel.

Although parallelization helps reduce the response time, it may prevent

sharing among routes and cause extra route requests (e.g., request for route p2),

as we will explain later. Existing parallel scheduling techniques [58] have not

exploited this unique feature in our problem. We also want to avoid extra route

requests because a route API may impose a daily route request limit [17] or

charge the LBS based on route requests [7].

We proceed to present two parallelization techniques. They achieve different

tradeoffs on the number of route requests and the number of slots. Our discussion

focuses on range queries only. Our techniques can be extended to KNN queries

as well.

Greedy parallelization. Let m be the number of threads for parallel execution

(per query). Our greedy parallelization approach dispatches route request to a

thread as soon as it becomes available. Specifically, we modify Algorithm 4.1

as follows. Instead of picking one object p from the candidate set C (at Lines

19–20), we pick m candidate objects and assign their route requests to m threads

in parallel. Observe that this approach minimizes the number of time slots in

4.2Different route requests incur similar time (see Fig. 4.8).
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slot 1 slot 2 slot 3 slot 4 slot 5

p1 p3 p6 p7 p5
(a) sequential schedule

slot 1 slot 2

thread 1: p1 p6
thread 2: p2 p7
thread 3: p3 p5

slot 1 slot 2 slot 3

thread 1: p1
thread 2: p3
thread 3: p6 p7 p5

(b) greedy parallelization (c) direction-based parallelization

ID p1 p2 p3 p4
p.τ− 50 40 20 5

ID p5 p6 p7
p.τ− 8 15 12

v0 (q)  v6 (p6)  

v 1(p1)  

v7 (p7)  

v5 (p5)  

v3 (p3)  

v2 (p2)  

v4(p4)  

(d) lower-bound travel times (e) actual routes

Figure 4.6. Effect of parallelization on schedules

the schedule (Fig. 4.6b).

We proceed to compare the sequential schedule with the greedy schedule

on the example. Consider a range query at q with T = 60. Suppose that the

candidate set is C = {p1, p2, p3, p4, p5, p6, p7}. Fig. 4.6d shows the lower-bound

travel time of each object and Fig. 4.6e depicts the locations of all objects.

Assume that the routes (dotted lines) are missing from the the route log L at

the LBS. Here, we order the candidates using DESC ordering (see Section 4.3.3),

and set the number of threads m = 3.

Fig. 4.6a shows a sequential schedule of route requests (issued by the original

Algorithm 4.1). By the DESC ordering, the candidates will be examined in the

order: p1, p2, p3, p6, p7, p5, p4. First, a route request is issued for p1. Since the

route to p1 covers p2, we save a route request for p2. Similarly, after issuing a

route request for p3, we save a route request for p4. After that, route requests are

issued for the remaining candidates p6, p7, p5. Note that the sequential schedule
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(Fig. 4.6a) takes 5 slots.

Fig. 4.6b illustrates a parallel schedule of route requests by using the greedy

approach. First, it selects m (= 3) objects in the DESC order: p1, p2, p3. Thus,

3 route requests are issued for them at the same time. Since p4 lies on the route

from q to p3, the route request for p4 is saved. After that, 3 route requests are

issued for remaining candidates p5, p6, p7 at the same time. In summary, the

greedy approach takes only 2 slots, but incurs 6 route requests.

Direction-based parallelization. Observe that the extra route request(s) in

the greedy approach is caused by objects at similar directions from q (e.g., p1, p2

in Fig. 4.6e). If we issue route requests to candidates in different directions in

parallel, then we may avoid extra route requests. This is the intuition behind

our direction-based parallelization approach.

In this approach, the LBS divides the candidate set C into m groups

(C1, C2, · · · , Cm), based on the direction angle ](q, p) of each candidate p from

user q. A candidate p is inserted into the group Ci if (i−1)·360o

m ≤ ](q, p) ≤ i·360o

m .

This step can be implemented just before Line 18 of Algorithm 4.1. Then, we

modify Lines 19–20 as follows: pick a candidate from each group Ci and then

assign their route requests to m threads in parallel.

For example, in Fig. 4.6e, the candidates are divided into m (= 3) groups

based on their direction angles from q: C1 = {p1, p2}, C2 = {p3, p4}, and C3 =

{p5, p6, p7}. Again, the candidates within each Ci are examined by the DESC

order. Fig. 4.6c illustrates the schedule of the direction-based approach. First,

this approach selects the candidates p1 ∈ C1, p3 ∈ C2, and p6 ∈ C3, and issues

route requests for them in parallel. Since the routes to p1 and p3 cover p2 and
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p4 respectively, we saved two requests. After that, C1 and C2 become empty.

In each subsequent slot, only one route request (for a candidate in C3) is issued

to the route APIs. In total, the direction-based approach incurs only 5 route

requests, but it takes 3 slots.

Comparison. In summary, the greedy approach offers the best response time

but with considerable extra route requests; the direction-based approach reduces

the number of extra route requests and yet provides a competitive response time.

4.5 Experimental Evaluation

In this section, we compare the accuracy and the performance of our Route-

Saver (abbreviated as RS) with an existing method SMashQ (abbreviated as

SMQ) [132]. Although SMQ handles only KNN queries, we also adapt it to

process range queries. Note that SMQ does not utilize any route log to save

route requests. We also consider an extension of SMQ, called SMQ∗, which

keeps the routes within expiry time into a route log. SMQ∗ applies only the

optimal subpath property [52] [121] and retrieves exact travel times from the

log; however, it does not apply the upper/lower bounding techniques in this

chapter. By default, RS uses the DESC and DIFF orderings for range and KNN

queries respectively.

Section 4.5.1 describes our experimental setting. We first examine the ac-

curacy of the methods on real traffic data in Section 4.5.2. Then, we study the

performance and scalability of the methods in Section 4.5.3. Finally, in Sec-

tion 4.5.4, we conduct small-scale experiments on Google Directions API [16], as
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it imposes a daily request limit 2,500 per evaluation user [17]. Due to this limit,

we use a simulated route API in Sections 4.5.2, 4.5.3.

4.5.1 Experimental Setting

Road networks. For accuracy experiments on real traffic data, we will discuss

the road network and traffic data in Section 4.5.2.

For the performance and scalability study (Section 4.5.3), we obtain three

road maps in USA from [1]: Chowan County, in North Carolina (14K nodes,

14K edges), Erie County, in Pennsylvania (106K nodes, 115K edges) and Florida

State (1,049K nodes, 1,331K edges). Following [131], the maximum speed limit

VMAX is set to 110 km/h. According to [2], the travel speed of each road segment

is set to a fraction of VMAX , based on its road category.

For the experiments on Google Directions API [16], we consider the Man-

hattan region (in New York), whose area is 87.5km2.

Performance measure and parameters. For each method, we measure its

result accuracy (Sec. 4.5.2), its number of route requests and user response time

(Sec. 4.5.3). Table 4.4 summarizes the default values and ranges of parameters

used in our experiments. The values for dataset size |P|, K, T follow [131]. The

default expiry time δ is 10 minutes, according to Fig. 4.2. To simulate the arrival

of queries, we set the default query rate λ to 60 queries / min and uniformly

generate query points on the road network. This query rate (60 queries / min)

is justified by visit statistics4.3 from restaurant and travel guide websites [22].

4.3 E.g., Hotels has 2.38 million monthly visits, corresponding to the query rate λ = 2,380,000
/ (30 · 24 · 60) = 55.1 queries / min. Similarly, OpenTable and UrbanSpoon have 2.9 and 4



98 4.5. EXPERIMENTAL EVALUATION

Table 4.4. Experiment parameters
Parameters Default Range

Road map [only for simulation] Erie Chowan, Erie, Florida
Dataset size |P| 10 (K) 1, 5, 10, 15, 20 (K)

Distribution of query q uniform uniform, gaussian
For KNN: Result size K 10 1, 5, 10, 15, 20

For range: Time limit T (seconds) 60 10, 30, 60, 90, 120
Expiry time δ (minutes) 10 0,2,5,10,20,30

Query rate λ (queries/minute) 60 30, 60, 120, 300
Number of threads 1 [sequential] 1, 2, 4, 6, 8, 10

All methods were implemented in C++ and ran on an Ubuntu 11.10 machine

with a 3.4GHz Intel Core i7-3770 processor and 16GB RAM. In experiments, the

route log contains at most 30,000 routes and occupies at most 30 MB. The largest

road network (Florida) and dataset occupies 87 MB and 1 MB respectively. Thus,

the largest map, route log, and dataset can fit in the main memory.

4.5.2 Accuracy on Real Traffic Data

In this section, we test the result accuracy of the methods on real traffic

data, for various expiry time δ (2, 5, 10, 20 and 30 minutes). Other parameters

(|P|,K, T ) are set to default values in Table 4.4.

Real traffic data. We downloaded historical real traffic on freeways in Los

Angeles from PeMS4.4. The corresponding road network contains 17,563 nodes

and 17,694 edges. We use the traffic data on 31 Dec. 2012 for 24 hours; the travel

times on edges are updated every 30 seconds. We also conduct this experiment

million monthly visits respectively, corresponding to λ = 67.1 and λ = 92.4. See the statistics
at: http://www.quantcast.com/hotels.com
http://www.quantcast.com/opentable.com http://www.quantcast.com/urbanspoon.com

4.4California Dept. of Transportation http://pems.dot.ca.gov/
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with traffic data on other dates, and obtain similar results.

Accuracy measure. Besides the methods discussed before, we also consider

a baseline method NoAPI, which uses only local distance information to answer

queries, without issuing route requests.

We measure the accuracy of a method by the F1 score:

F1 = 2 · precision · recall/(precision+ recall)

precision = | Rmethod ∩R∗ | / | Rmethod |

recall = | Rmethod ∩R∗ | / | R∗ |

where R∗ is the exact result set derived from the current traffic and Rmethod is

the result set obtained by a method.

The accuracy of SMQ is always 100% because it does not use route log. We

only measure the accuracy of RS, SMQ∗, NoAPI in this experiment. Fig. 4.7a

shows the average accuracy of the methods on a day. NoAPI has low accuracy

as it does not use live traffic information. Our proposed RS and SMQ∗ can find

results with very high accuracy. When the expiry time δ increases, the route log

contains less accurate travel time information and thus the accuracy decreases.

The standard deviation of the accuracy is within 1.5% for SMQ∗ and RS, whereas

NoAPI has a higher standard deviation. Fig. 4.7b, 4.7c show the accuracy of RS

and NoAPI along the timeline. As a remark, the traffic changes most rapidly

during rush hours in the morning and the evening. During those intervals, the

accuracy of the methods on range queries drops because their result sizes are

sensitive to the traffic. The accuracy on KNN queries is insensitive to the traffic
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δ range KNN
(Min) SMQ∗ RS NoAPI SMQ∗ RS NoAPI

2 99.97 99.95 99.99 99.99
5 99.89 99.75 99.95 99.94
10 99.36 99.28 69.04 99.68 99.65 52.95
20 99.02 98.60 99.12 99.10
30 98.63 98.11 98.95 98.86

(a) average accuracy (%) on a day
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Figure 4.7. Result accuracy on real traffic data [in color]

due to the fixed result size.

As we will show in Section 4.5.3, RS issues much fewer route requests than

SMQ∗. RS still achieves high accuracy because our proposed bounding techniques

offers tight lower/upper bounds. We found in our experiments that, the upper

bounds, if exist, are almost equal to the exact travel time in most cases, and the

lower bounds are at least 60% of the exact travel time.

4.5.3 Performance and Scalability Study

For the sake of obtaining the user response time in our simulations, we

measure the time of route requests on Google Directions API [16]. On each

roadmap, we randomly sample 400 pairs of points and issue route requests for
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them to Google Directions API. Fig. 4.8a plots the time of each route request

versus its length (exact travel time), on the Erie roadmap. Fig. 4.8b summarizes

the average and standard deviation of route request time on all roadmaps.
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Erie 0.189 0.0287

Florida 0.165 0.0490
New York 0.113 0.003

(a) Erie (b) statistics on all roadmaps

Figure 4.8. Time of route requests on roadmaps

Section 4.5.3.1 studies the temporal stability of the methods along the time-

line. Section 4.5.3.2 examines the effect of our proposed optimizations. Sec-

tion 4.5.3.3 tests the scalability of the methods with respect to various parame-

ters. Section 4.5.3.4 evaluates the performance of RS with parallelization.

4.5.3.1 Temporal Stability

In this section, we simulate the arrival of queries along a 60-minute (1-hour)

timeline, while fixing all parameters to default. Thus, each test uses 60 ·λ = 3600

queries. The route log L is initially empty. To report temporal behavior, we

measure (i) the route log size and (ii) the number of route requests of each

query.

We first conduct experiments with uniformly distributed queries and datasets.

Fig. 4.9a shows the number of routes in L of RS and SMQ∗ versus the timeline,

for range queries. SMQ is not plotted here as it does not utilize the log L. The

log size rises steadily in the first δ = 10 minutes (the warm-up period) and then
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the expiration mechanism starts its effect. Observe that the drop in the log size

during the [10, 20) minutes matches with the drop in the number of route re-

quests during the [0, 10) minutes (see Fig. 4.9b). After that, the log size remains

stable in subsequent minutes because L contains only the routes requested by

the latest λ · δ queries. SMQ∗ has a larger log size because it incurs more route

requests than RS.

Fig. 4.9b illustrates the number of route requests of each query versus the

timeline, for range queries. The performance of SMQ remains constant since it

does not utilize the route log. In the first δ = 10 minutes, as the log size of

RS rises, it could exploit more information, like deriving exact values and tight

lower/upper bounds for travel times, to reduce the number of route requests.

After that, its log size keeps stable so its performance also keeps stable. The trend

of SMQ∗ is similar to RS, except that SMQ∗ incurs much more route requests

than RS. That is because SMQ∗ uses only the optimal subpath property to derive

exact travel times from the route log, but it does not use the lower/upper bounds

applied in RS. Experimental results on KNN queries are similar (see Fig. 4.9c,d).

As observed in the above experiments, the number of route requests con-

verges to a stable value after the first δ minutes (the warm-up period). Thus,

in subsequent experiments, we simulate the arrival of queries along 2δ-minute

time interval. We view the first δ minutes as the warm-up period, and the last

δ minutes as the stable period. We only measure the average performance in the

stable period.
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Figure 4.9. Temporal behavior, expiry time δ = 10

4.5.3.2 Effect of Optimization Techniques

First, we investigate the effectiveness of our proposed lower/upper bound

techniques. Recall that RS exploits the travel time information obtained from

recent routes for three techniques: (i) retrieve the exact travel time of a point

p, (ii) prune p by its lower bound p.τ−G , p.τ
−
I (excluding cases using p.τ−c ), and (iii)

detect p as a true hit by its upper bound p.τ+
G . We further divide technique (i)

into two types: (i.a) existing technique using the optimal subpath property [52]

on the route log L, and (i.b) our proposed technique using Lemma 2 on the

time-tagged network G. Note that SMQ∗ applies only technique (i.a), but not

techniques (i.b), (ii), (iii).
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Figure 4.10. Effectiveness of techniques

Table 4.5. Effect of candidate ordering
RS [range] RS [KNN]

ASC DESC ASC DESC DIFF
route requests 17.12 11.57 21.29 20.29 18.39

Fig. 4.10 depicts the statistics of applying these techniques in the meth-

ods, at the default setting. Observe that our proposed lower-bound technique

(for computing p.τ−G , p.τ
−
I ) saves the largest number of route requests, while the

existing technique for computing exact travel time p.τL (using optimal subpath

property) saves the least. The reason for p.τ−G , p.τ
−
I outperforming p.τ+

G is that,

RS has a higher chance to derive a tight p.τ−G , p.τ
−
I for each data point, but a

finite p.τ+
G may not exist for a data point.

Next, we study the effect of candidate orderings on RS in terms of the

number of route requests per query. It can apply the ASC / DESC orderings for

range queries, and ASC / DESC / DIFF orderings for KNN queries. Table 4.5

shows that RS-DESC and RS-DIFF achieve the best performance for range and

KNN queries, respectively.
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4.5.3.3 Scalability Experiments

As discussed before, in this section, we simulate the arrival of queries along

2δ-minute time interval. And we measure the performance in terms of: (i) av-

erage number of route requests per query in the stable period, and (ii) average

user response time per query in the stable period. Furthermore, we also plot

the breakdown of user response time into server CPU time and the time spent

on route requests, as illustrated in Section 4.4. The server CPU time already

includes the overhead of maintaining the structures in Section 4.3.1.

Effect of expiry time δ. Fig. 4.11a shows the average number of route requests

for range queries with respect to various δ. To illustrate the trend of route

requests for smaller expiry times, we add the result for four more δ ( 20, 30, 60,

90 seconds) apart from the values listed in Table 4.4. Since SMQ does not use

the log, its cost remains constant and much higher than that of RS and SMQ∗.

When δ increases, the route log of RS and SMQ∗ accumulates routes requested

from more warm-up queries (λ · δ). Thus, RS and SMQ∗ could exploit more

information in the log to reduce the cost. Fig. 4.11c illustrates the decomposition

of the user response time for various δ. Here, ‘R’, ‘S’, ‘S*’ refer to RS, SMQ,

SMQ∗, respectively. To make the server CPU time visible, we plot the y-axis in

log scale. Clearly, the time on route requests dominates the user response time.

RS achieves a low server CPU time (0.1s) and user response time (1s). As a

remark, the LBS’s query throughput is decided only by its CPU time because

it remains idle while issuing route requests. Fig. 4.11b,d depict the performance

for KNN queries. The trends are similar to those for range queries. Due to the

overhead on using route log, RS and SMQ∗ incur slightly higher server CPU time
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Figure 4.11. Effect of expiry-time δ

than SMQ.

Since the user response time is mostly spent on route requests, we only

report the number of route requests in experiments below.

Effect of query rate λ. As shown in Fig. 4.12a,b, the effect of query rate λ

on the performance is similar to that of expiry time δ as discussed above. The

reason is that, the route log of RS and SMQ∗ accumulate routes requested from

more warm-up queries (λ · δ), as λ increases.

Effect of dataset size |P|. In this experiment, we vary dataset size |P| and

plot the number of route requests for range queries in Fig. 4.12c. The number

of route requests rises proportionally to |P| as more objects are covered by the
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Figure 4.12. Effect of various parameters [y-axis: route requests]

query range. The performance gap between SMQ/SMQ∗ and RS widens because

RS applies effective bounding techniques. In contrast, for KNN queries, the per-

formance is insensitive to |P|, as depicted in Fig. 4.12d. When |P| increases, the

travel time from q to its KNN decreases. This enables pruning more candidates,

canceling out the effect of |P|.

Effect of time limit T and result size K. Fig. 4.12e shows the performance of

the methods on range queries versus the travel time limit T . As T increases, the

number of query results increases and so does the number of route requests. RS

outperforms SMQ/SMQ∗ by a wide margin. As a remark, the average number of

query results rises from 1.5 to 35.6 when T increases from 10s to 120s. Fig. 4.12f

depicts the performance of the methods by varying K. Again, when the result
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Table 4.6. Effect of roadmap on range and KNN queries
Roadmap route requests [range] route requests [KNN]

SMQ SMQ∗ RS SMQ SMQ∗ RS

Chowan 37.81 18.76 2.37 44.03 20.38 3.29
Erie 40.53 36.1 11.92 49.23 41.36 16.8

Florida 44.7 40.07 18.71 55.31 54.51 25.01

size K increases, so does the number of route requests.

Effect of roadmaps. We then examine the effect of the roadmaps on the

performance of the methods. Table 4.6 lists the roadmaps in ascending sizes

(Chowan, Erie, Florida), together with the average number of route requests of

the methods, for range queries and KNN queries. We follow the experimental

methodology in [134] and fix the object density (i.e., the ratio of |P| over the

number of nodes in the network) to 10%. That is, we have |P | = 1.4K, 10.6K and

104.9K for Chowan, Erie and Florida, respectively. As the log routes have fewer

intersections in larger road networks, the derived lower/upper bounds become

looser, and thus the number of route requests increases in larger networks.

Effect of query distribution. This experiment illustrates the effect of query

distribution on the performance of the methods. For each query set ‘Gau x%’, we

select 30 Gaussian bells randomly, set the standard deviation of each Gaussian to

be x% of the map domain length [39], and generate points in these bells following

such distribution. For comparison, we also use an uniformly generated query set

(‘Uniform’).

Table 4.7 shows that, SMQ is insensitive to the distribution of the queries

since it does not utilize the logs obtained from recent queries. For Gaussian

queries, when the standard deviation is small, the current query is likely to be
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Table 4.7. Effect of query distribution
Distribution route requests [range] route requests [KNN]
of query q SMQ SMQ∗ RS SMQ SMQ∗ RS

Gau 2.5% 42.43 17.44 3.83 48.61 15.33 5.51
Gau 5.0% 40.84 23.52 5.91 51.02 25.52 8.25
Gau 10% 41.42 28.53 8.51 51.24 28.43 11.52
Gau 20% 41.73 32.00 10.31 50.81 33.33 14.74
Gau 50% 40.92 33.21 10.98 48.85 36.53 15.65
Uniform 39.37 34.67 11.57 49.97 42.29 18.39

near to some recent queries, and thus recent routes provide valuable information

for RS and SMQ∗ to save route requests. Observe that uniform query distribu-

tion, i.e., our default query distribution, leads to the the worst-case performance

because the current query can be located far from recent queries and reuse less

information from their routes.

4.5.3.4 Effect of Route Request Parallelization

This section studies the user response time of parallelization variants of RS:

(i) RS-Greedy using greedy parallelization, and (ii) RS-Direction using direction-

based parallelization. Fig. 4.13a,c show their average number of route requests

and user response time versus the number of threads m, for range queries. At

m = 1, both variants are the same as RS which issues route requests sequentially

and incurs the longest user response time. As expected in Section 4.4, RS-

Direction results in fewer route requests but a slightly longer user response time

than RS-Greedy. We obtain similar experimental results for KNN queries in

Fig. 4.13b,d.
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Figure 4.13. Effect of the number of threads m

4.5.4 Experiments on Google Directions API

We have implemented SMQ, SMQ∗ and RS with Google Directions API [16],

whose request/response format has been described in Section 4.1.2. Due to the

daily request limit (2,500) for evaluation users [17], we conduct this experiment

on the Manhattan region (see Section 4.5.1). We randomly select 100 POIs4.5 in

this region, and generate 100 queries (along a 100-second time period).

Fig. 4.14 depicts the number of route requests of each query versus the

timeline, for range queries and KNN queries. RS outperforms SMQ and SMQ∗

on both range queries and KNN queries. Also, the performance gap between

them widens with the timeline. The number of route requests is still decreasing

4.5 E.g., There are about 50 ATMs in the Manhattan region
http://locators.bankofamerica.com/locator/locator/ListLoadAction.do
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Figure 4.14. Temporal behavior vs. timeline, δ = 10 minutes, Manhattan region
(in New York), on Google Directions API

as the timeline has not yet reached the (default) expiry time δ = 10 minutes.

4.6 Chapter Summary

In this chapter, we propose a solution for the LBS to process range/KNN

queries such that the query results have accurate travel times and the LBS incurs

few number of route requests. Our solution Route-Saver collects recent routes

obtained from an online route API (within δ minutes). During query processing,

it exploits those routes to derive effective lower-upper bounds for saving route

requests, and examines the candidates for queries in an effective order. We

have also studied the parallelization of route requests to further reduce query

response time. Our experimental evaluation shows that Route-Saver is 3 times

more efficient than a competitor, and yet achieves high result accuracy (above

98%).
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Chapter 5

Route Recommendation for

Spatial Crowdsourcing

Workers

Spatial crowdsourcing platforms5.1 5.2 publish crowdsourcing tasks that are

associated with rewards and tagged with spatial / temporal attributes (e.g.,

location, release time and deadline). To complete a task, a worker must reach

the task’s location before its deadline. Popular tasks include taking photos,

reporting activities / accidents, and verifying data on-site, etc.

Regarding the matching between tasks and workers, existing approaches on

spatial crowdsourcing can be divided into: (i) the server-centric mode [75, 76],

where the server assigns tasks to workers based on their reported locations /

5.1www.clickworker.com/en/mobile-crowdsourcing
5.2features.en.softonic.com/mobile-crowdsourcing-does-it-work

113
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regions, or (ii) the worker-centric mode [31, 40, 55], where the server publishes

its tasks and let workers to choose any task freely. In this chapter, we adopt the

worker-centric mode as it protects the location privacy of the worker [55] and

enables the worker to choose tasks autonomously from different crowdsourcing

platform which he has registered in.

The closest work to ours is the maximum task scheduling (MTS) prob-

lem [55]. It returns a route that covers the maximum number of tasks (in a

worker’s specified region, e.g., his city). Since [55] considers the MTS problem

at a snapshot, it would not update the worker’s route when new tasks arrive.

We illustrate it in Figure 5.1a. Assume that we use the Manhattan distance and

each grid takes a time unit to travel. Each task pi is tagged with its release time

and deadline. Suppose that the worker starts from s at time 0. The MTS route

is s→ p1 → p2. The solution in [55] would not update the route when new tasks

are released (e.g., p3, p4).
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(a) snapshot route by MTS [55] (b) online route by our method

Figure 5.1. Route recommendation for the worker: each task pi with [release time
- deadline]

In this chapter, we wish to support two extra requirements compared to [55]:
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(R1) update the worker’s route online with respect to newly released tasks and

(R2) align with the worker’s trip, i.e., reaching a destination before expected

time. It is important to support R1 in order to assign a worker as many tasks as

possible. New spatial crowdsourcing tasks are indeed being released continuously

in real systems5.3. We also consider requirement R2 as the worker may have

planned his own activities, e.g., reaching a specified destination by an expected

time [90]. Such worker is willing to take crowdsourcing tasks along his trip

provided that he can arrive at his destination on time.

To this end, we study the online route recommendation problem for spatial

crowdsourcing workers, by taking requirements R1 and R2 into consideration.

Figure 5.1b illustrates the route recommended by our method. Suppose that the

worker starts from s at time 0 and plans to arrive at home (5, 0) at time 8. At

time 0, the worker is recommended to take the task p2. When new tasks are

released (e.g., p3, p4), the worker is recommended to take them. In summary,

our recommended route is s → p2 → p3 → p4 → d, which covers 3 tasks and

reaches the destination d on time.

To the best of our knowledge, this chapter is the first on tackling the online

route recommendation problem for spatial crowdsourcing workers with destina-

tion and arrival time constraints. We contribute the followings:

– We show that no algorithm can achieve a non-zero competitive ratio [30]

in our online problem, meaning that the number of tasks found by any

online algorithm may be arbitrarily small compared to the optimal offline

solution.

5.3www.clickworker.com/en/clickworkerjob
www.lionbridge.com
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– We propose two categories of heuristics (GetNextTask and Re-Route) that

offers trade-offs between the response time and the number of tasks. Get-

NextTask greedily selects the next task to complete so it incurs a short

response time. On the other hand, Re-Route produces a route with more

tasks as it conducts a complete search to update the optimal route with

respect to newly released tasks.

– We further propose pruning rules to reduce the response time of Re-Route.

Experiments on real datasets show that our methods take less than 1 second to

update the route, and return routes that contain 82–91% of the optimal number

of tasks.

The remainder of this chapter is organized as follows. We formally define our

problem in Section 5.1. Then, we illustrate our proposed heuristics in Section 5.2

and present optimization techniques in Section 5.3. After that, some discussions

are made on the Route Recommendation in Section 5.4. In Section 5.5, we test

the performance of our proposed techniques on both real and synthetic datasets.

Section 5.6 highlights the related work. Finally, we conclude our chapter in

Section 5.7.

5.1 Problem Statement

We first introduce some terminology and then define our problem formally.

Definition 4 (Task p). We denote a task by psid,kid = (loc, [t−p , t
+
p ]), where

loc is the task’s location, t−p , t
+
p are the release time and deadline of the task,
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respectively. The subscripts sid and kid denote the task’s server ID and task ID,

respectively. A worker may complete p and collect the reward5.4 if he can reach

p.loc before t+p .

Definition 5 (Query q). We denote a query q by q = (s, d, [t−q , t
+
q ]). s and d

are the worker’s start and destination locations, respectively. t−q and t+q are the

start time from s and expected arrival time at d, respectively.

Definition 6 (Travel Time τ). We denote the travel time as τ(v, u) = dist(v,u)
speedq

,

where dist(v, u) is the distance5.5 between v and u, and speedq is the (constant)

travel speed of the worker for q. τ(R) denotes the travel time along a route R

(via vertices on R).

With the above terminology, we are ready to define our problem formally

below.

Problem 1 (Oriented Online Route Recommendation (OnlineRR)). Let a worker’s

query be q = (s, d, [t−q , t
+
q ]). OnlineRR aims to find a route such that it covers the

maximum number of tasks and the worker can arrive at d by t+q . It may update

the route according to the worker’s live location and the new tasks released by

crowdsourcing servers.

We adopt the system architecture as depicted in Figure 5.2. Spatial crowd-

sourcing servers publish new spatial crowdsourcing tasks. A worker may install

our route recommender on his mobile device (smartphone). The route recom-

mender is responsible for: (i) collecting task information from different servers

5.4The reward of a task can be collected by the same worker for only once. Similar to [55], we
assume that each task has a unit reward and can be completed immediately.

5.5Our method can be applied to any distance function provided that it satisfies the triangle
inequality, such as Euclidean distance, Manhattan distance, and road network distance.
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Figure 5.2. System architecture

continuously, (ii) recommending / updating a route based on the worker’s current

location and available tasks.

5.2 Online Route Recommendation

First, we prove in Section 5.2.1 that no online algorithm can achieve a non-

zero competitive ratio in OnlineRR. Then, we propose two categories of heuristic

approaches for OnlineRR in Sections 5.2.2 and 5.2.3.

5.2.1 Competitive Analysis

We use the competitive ratio [30] to measure the performance of online

algorithms. Since OnlineRR is a maximization problem, the competitive ratio

CR is defined as:

CR = min
e∈E

count(Ralg(e))

count(Ropt(e))
(5.1)

where E denotes the set of all problem instances, Ralg(e) is the route recom-

mended by an online algorithm alg for instance e, Ropt(e) is the optimal route

Ropt for instance e (cf. Definition 7), and count(R∗(e)) means the number of

tasks on R∗(e).
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Definition 7 (Optimal route Ropt(e) for OnlineRR). Given a problem instance

e, we denote its optimal route by Ropt(e), which is obtained under assumption

that the information of all tasks are known in advance (even before their release

times).

We show our competitive analysis below. It applies to any online algorithm,

including both deterministic algorithms and randomized algorithms.

Theorem 4. No online algorithm has a non-zero competitive ratio for OnlineRR.

Proof. Since CR = mine∈E
count(Ralg(e))
count(Ropt(e))

, it suffices to find a specific instance (i.e.,

the adversary) that makes CR as low as possible. Without loss of generality, in

the following proof, we consider only locations on the positive half line [0,+∞).

For the query, we set t−q = 0, s = 0, t+q = 10, d = 7. Assume that speedq = 1,

that is τe(v, u) = |v − u|. We simply denote a task p by (p.loc, [t−p , t
+
p ]).

At time 0, the adversary releases a task p1 = (3, [0, 3]). At time m = 3, the

adversary will check the worker’s current location (say x), and then decides to

further release n tasks accordingly. There are two cases: (1) x = 0, or (2) x > 0.

We show that the adversary can release those n tasks to make CR arbitrarily

small.

Case 1: x = 0. In this case, the adversary will release tasks p2≤i≤n+1 =

(2, [3, 4]) (see Figure 5.3a). The worker cannot complete these tasks, since he

cannot reach them before their deadlines, and thus count(Ralg) = 0. But if all

tasks are known in advance, the worker can wait at position 2 until all tasks are

released and finish them on time m = 3. In this case, the competitive ratio is:

CR = 0/n = 0.
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Figure 5.3. At time m = 3, adversaries release tasks p2≤i≤n+1 with [release time -
deadline]

Case 2: x > 0. In this case, the adversary would release n tasks p2≤i≤n+1 =

(0, [m,∞]) (see Figure 5.3b). As m+x+d > m+d = 10 = t+q , the worker cannot

proceed to position 0 at time m; otherwise, he cannot reach d before t+q . So, the

worker can finish at most the task p1 only if he moves directly to m at time

0. However, if all tasks are known in advance, the worker could stay at 0 until

time m = 3 to finish tasks p2≤i≤n+1, and thus count(Ropt) = n. Therefore,

CR ≤ 1/n→ 0 because n can be an arbitrary large value.

5.2.2 Greedy Task Approach

In this section, we present a greedy approach that incurs low response times.

The greedy approach works as follows. Initially, it calls GetNextTask (cf.

Algorithm 5.1) to find the first task for the worker. Given the set of available5.6

tasks P and the worker’s location snow at current time tnow, GetNextTask greed-

ily selects the task with the highest score ψp. Upon reaching the chosen task,

GetNextTask is involved to get the next task repeatedly until reaching d.

5.6Available tasks are tasks released before the current time tnow.
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Algorithm 5.1 Get next best task

algorithm GetNextTask (Query q = (snow, d, [tnow, t
+
q ]), Set of available tasks P )

1: Cand← compute the set of feasible tasks from P . apply Equation 5.2
2: if Cand 6= ∅ then
3: pnext ← choose p ∈ Cand with best score ψp . ψp is a heuristic function
4: Return pnext
5: else
6: Apply policy Pstay or Pgo until Cand 6= ∅ or tnow + τ(snow, d) = t+q

Due to the tasks’ deadlines and the worker’s expected arrivial time (cf.

Definitions 4, 5), the worker may complete a task p if: (i) he can reach p.loc

before t+p , and (ii) he can reach d no later than t+q . Therefore, we call a task to

be feasible if it satisfies:

τ(snow, p) + τ(p, d) ≤ t+q − tnow and tnow + τ(snow, p) ≤ t+p (5.2)

If there is no feasible task for q, the worker may stay or move based on a

predefined policy (cf. Line 6 in Algorithm 5.1). In the policy Pgo, the worker

simply moves towards the destination d. In the policy Pstay, the worker waits

at snow until tnow + τ(snow, d) = t+q . When new feasible tasks are released, we

resume the search and invoke GetNextTask to obtain the next task.

We illustrate several heuristics for computing the score ψp. Figure 5.4a

shows the map of tasks which are labeled with release times and deadlines, and

Figure 5.4b shows the result route of each heuristic. In this example, we use the

query q = (s, d, [0, 10]), the policy Pstay, and the Manhattan distance.

Nearest Neighbor Heuristic (G-NN). It chooses the nearest feasible task

to the worker’s current location snow, and thus setting ψp = τ(snow, p). In

Figure 5.4, G-NN produces the route 〈s, p7, p5, d〉.
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(c) all possible routes known at tnow = 0

Figure 5.4. Example of query q = (s, d, [0, 10]) in OnlineRR (using Manhattan
Distance)

Earliest Deadline Heuristic (G-SD). It chooses the task with the earliest

deadline, and thus setting ψp = t+p . In Figure 5.4, G-SD recommends the route

〈s, p7, p5, d〉.

Maximum Candidate Space Heuristic (G-MCS). It chooses the task p that

can maximize the search space of feasible tasks (Equation 5.2) in future. The

search space in future is obtained under the assumption that p is just completed.

The space shape differs for different distance metrics, but we can use a general

approach Monte Carlo [107] to compare it. If a specific distance metric is used,

then the exact candidate space size can be calculated. Take Euclidean distance

for example, the space size is the area of the ellipse shown in Figure 5.5a, and
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thus we can calculate the score ψp using equations in Figure 5.5b for Euclidean

distance metric.

s'now d

t(s'now, p')+t(p', d)  tq-t'now

p'

+

rBp

rAp

p' ψp = π · rAp · rBp

rAp = (t+q − t′now)/2

rBp =
√
rA2

p − (τ(s′now, d)/2)2

where t′now = tnow + τ(snow, p)
and s′now = p.loc

(a) search space (in shade) (b) search space size calculation

Figure 5.5. Feasible candidates search space for Euclidean distance metric

We illustrate how G-MCS works in Figure 5.4. At time 0, the feasible tasks

are p1, p2, p3, p7. Since p1 has the highest score (ψp1), p1 is chosen to be visited.

When the worker reaches p1, a new task p4 is released while p7 expires, so the

set of feasible tasks becomes {p2, p3, p4}. Then p4 is chosen as it has the highest

score (ψp4). Upon reaching p4, the algorithm selects p6 as it has the best score

among {p3, p6, p8}. After completing task p6, there are no more feasible tasks.

After waiting for two more time units, the worker moves toward d. In summary,

G-MCS obtains the route 〈s, p1, p4, p6, d〉.

5.2.3 Complete Search for Route Approach

In this section, we present a complete search approach that tends to find

more tasks than the heuristics in Section 5.2.2.

Specifically, we formulate the following SnapshotRR problem, which takes the

current query and the set of available tasks as input. Then, we solve SnapshotRR

by enumerating all possible routes and obtain the one with the maximum number

of tasks.

Problem 2 (Snapshot Route Recommendation (SnapshotRR)). Given a query
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q = (snow, d, [tnow, t
+
q ]) at the current snapshot tnow, SnapshotRR aims to find

a route such that it covers the maximum number of tasks and the worker can

arrive at d by t+q .

We illustrate this approach for the query q = (s, d, [0, 10]) in Figure 5.4.

At time 0, we apply Equation 5.2 and obtain the set of feasible tasks: P =

{p1, p2, p3, p7}. Figure 5.4c shows all possible routes (known at time 0). The

optimal route at time 0 is 〈s, p1, p2, p3, d〉.

We propose a simple optimization to solve SnapshotRR in Algorithm 5.2. At

Line 3, we check whether there exists a new feasible task p (that was not available

in the previous call of Algorithm 5.2). If such p exists, we must solve SnapshotRR

again. Otherwise, the best route remains the same as in the previous call, so we

need not solve SnapshotRR again.

Algorithm 5.2 Complete search the result route

algorithm Re-Route (Query q = (snow, d, [tnow, t
+
q ]), Set of available tasks P )

1: Let Pprev be the set of available tasks in the previous call
2: if P 6= ∅ then
3: if ∃p ∈ P − Pprev such that p is feasible then . Equation 5.2
4: R← Solve SnapshotRR(q, P ) . conduct complete search

5: else
6: Apply policy Pstay or Pgo until P 6= ∅ or tnow + τ(snow, d) = t+q

We proceed to illustrate how Re-Route works in the example in Figure 5.4.

At time 0, Re-Route computes the route R0 = 〈s, p1, p2, p3, d〉, and then the

worker moves along R0 to p1. Upon reaching p1, a new feasible task p4 is found,

so Re-Route re-calculates the route as R1 = 〈p1, p2, p3, d〉. When the worker

reaches p2, a new feasible task p8 is found, so Re-Route updates the route to

R2 = 〈p2, p3, p8, d〉. After reaching p8, a new task p9 is found but it is not
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feasible. Thus, Re-Route would not computes the route again (cf. Line 3 in

Algorithm 5.2). Eventually, the worker moves to d. In summary, the actual

route traveled by the worker is: 〈s, p1, p2, p3, p8, d〉. It covers more tasks than

other heuristics (cf. Figure 5.4b).

Since it is expensive to solve SnapshotRR by enumerating all possible routes,

we will present optimizations to solve SnapshotRR efficiently in Section 5.3.

5.3 Optimization for SnapshotRR

We adapt the bi-directional search algorithm for the Orienteering Problem

with Time Windows (OPTW) problem [106] to solve our problem. For brevity

in discussion, we use q = (s, d, [t−q , t
+
q ]) instead of q = (snow, d, [tnow, t

+
q ]). We

will conduct bi-directional search for SnapshotRR in three steps:

Step 1: Search sub-routes in the forward direction (from s) and store in
−→
IR

Step 2: Search sub-routes in the backward direction (from d) and store in
←−
IR

Step 3: Join sub-routes between
−→
IR and

←−
IR

According to Pruning Rule 1, the bi-directional search can reduce the search

space. However, the method in [106] does not exploit spatial properties in our

problem. In this section, we develop more effective pruning rules to accelerate

bi-directional search on SnapshotRR.

Pruning Rule 1 (Half travel time bound property proved in [106]). In the

forward (or backward) route searching from vertex s (or d), only routes R with

τ(R) ≤ τmax/2 are maintained and extended, where τmax = t+q − t−q .
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5.3.1 Forward Search and Backward Search

In this section, we elaborate the forward search (Step 1) and discuss adap-

tations for the backward search (Step 2) at the end. In the following discussion,

we use R instead of
−→
R to represent a sub-route found in forward search (which

will be stored in
−→
IR ) for simplicity.

We first introduce the sub-route concept and its extension operation. Then,

we propose a pruning rule and a search strategy to speedup the computation. In

the following, we denote the set of vertices as V = P ∪ {s, d}, where P is the set

of available tasks.

Sub-route Extension.

We denote a path from s to v ∈ V as a sub-route Rv, which contains four

attributes Rv = (τ(Rv), BRv , CRv , v).

– τ(Rv) represents the travel time along Rv (i.e., from s to v).

– BRv stores a sequence of tasks visited before on the sub-route Rv. We

denote the profit of Rv as |BRv | because all tasks have the same reward.

– CRv is a set of candidate vertices (that are feasible for visiting in future),

and its calculation is discussed in Equation 5.5.

During route search, for each vertex v, we store all sub-routes of the form

Rv into a set IRv. In addition, we only consider feasible routes. Recall that τ(Rv)

represents the travel time (along Rv) from s to v. According to Equation 5.2, a
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sub-route Rv is said to be feasible if:

τ(Rv) ≤ t+v − t−q and τ(Rv) ≤ t+q − t−q (5.3)

where t+v is the deadline for vertex v when v is a task, or ∞ when v ∈ {s, d}.

For each vertex u ∈ CRv , we can extend Rv with an arc (v, u) to form a

new sub-route Ru. The component of Ru = (τ(Ru), BRu , CRu , u) is calculated as

follows:

BRu ← 〈BRv , v〉 and τ(Ru)← τ(Rv) + τe(v, u) (5.4)

The set CRu contains each candidate vertex p that satisfies:

p ∈ CRv(♥) and p /∈ BRu(♦)

τ(u, p) ≤ t+p − t−q − τ(Ru) and τ(u, p) ≤ (t+q − t−q )/2− τ(Ru)(♣,♠,♦)

τ(u, p) + τ(p, d) ≤ t+q − t−q − τ(Ru)(♣,♥) (5.5)

which involve the constraints in Equation 5.4 (♣), Equation 5.3 (♠), triangle

inequality (♥), the constraint that each task can be visited only once (♦), the

worker’s arrival time t+q (♥) and Pruning Rule 1 (♦).

We illustrate sub-route extension in Figure 5.6. Assume that q = (s, d, [0, 10])

and P = {p1, p2, · · · , p7}. We consider Manhattan distance in this example.

First, we compute the candidate set of s. By Pruning Rule 1, we only consider

tasks within 10/2 = 5 units from s (i.e., tasks in the dotted diamond in Fig-

ure 5.6). Thus, tasks p3, p7 are not feasible. The tasks p4 and p5 are not feasible

as they violate constraints on the task’s deadline and the worker’s arrival time,
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respectively. Thus, we obtain the candidate set of s as Cs = {p1, p2, p6}, and com-

pute the sub-route for s as Rs = (0, ∅, Cs, s). Next, we append arcs (s, p1), (s, p2),

(s, p6) into Rs to generate three new sub-routes: R1 = (1, 〈p1〉, {p2, p6}, p1),

R2 = (3, 〈p2〉, {p6}, p2), R6 = (5, 〈p6〉, ∅, p6).
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Figure 5.6. Example query q = (s, d, [0, 10]) for SnapshotRR problem (using Man-
hattan distance)

Dominate Test Pruning.

We develop the following pruning rule to further reduce the search space.

Pruning Rule 2 (Dominating Pruning). Let Rv = (τ(R), BRv , CRv , v) and

R′v = (τ(R′v), BR′v , CR′v , v) be two feasible routes associated with v. We can prune

R′v if:

τ(Rv) ≤ τ(R′v) and |CR′v ∩BRv | ≤ |BRv | − |BR′v |

Proof. Among all full routes with R′v as the prefix, let R′opt = 〈s,BR′v , R
′
tail, d〉

be the maximum reward route. With the given condition τ(Rv) ≤ τ(R′v), after

traveling along Rv, we can still follow all tasks in R′tail and arrive at d by t+q .

There exists a route Rexist = 〈s,BRv , Rtail, d〉 where Rtail = R′tail − BRv . Rexist



CHAPTER 5. ROUTE RECOMMENDATION FOR SPATIAL
CROWDSOURCING WORKERS 129

ensures that the reward of each task is gained at most once as BRv and Rtail

have no common tasks.

Since R′tail ⊆ CR′v , we have |R′tail| = |Rtail|+ |R′tail ∩BRv | ≤ |Rtail|+ |CR′v ∩

BRv |.

By combining the above with the given condition |CR′v ∩ BRv | ≤ |BRv | −

|BR′v |, we derive: |BRv |+ |Rtail| ≥ |BR′v |+ |CR′v ∩BRv |+ |Rtail| ≥ |BR′v |+ |R
′
tail|.

As the reward of Rexist (extended from Rv) is greater than or equal to that of

R′opt (extended from R′v), we can prune the subroute R′v.

Search Strategy.

Our strategy is to identify sub-routes with better reward values in order

to utilize pruning rule 2. To do so, we introduce the concept of upper bound

reward:

Definition 8 (Vertex upper bound reward $+
v ). Given a sub-route

Rv = (τ(Rv), BRv , CRv , v), we define its upper bound reward as:

$+
Rv

= |BRv |+ |CRv |.

The upper bound reward of vertex v ∈ V is defined as:

$+
v = max{$+

Rv
| Rv ∈

−→
IRv}.

Initially, we begin the search from a sub-route at s. We iteratively extend

sub-routes found so far and apply pruning rule 2 to discard unpromising sub-

routes. During the search, we employ a heap H to process vertices in descending

order of $+
v .

We illustrate this method on the example in Figure 5.6 and show the running
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steps in Table 5.1. Iteration 1 corresponds to the extension of the sub-route Rs

at s, which we have discussed before. We obtain three new subroutes R1, R2, R6,

insert them in their corresponding route sets
−→
IRp, and also enheap p1, p2, p6 into

H. In each subsequent iteration, we deheap the vertex v ∈ H with the largest

$+
v , and extend its sub-routes Rv in the descending order of |BRv |.

In iteration 2, we generate a new sub-route (3, 〈p1, p2〉, {p6}, p2) and apply

Pruning Rule 2 to discard the previous subroute at p2, i.e., (3, 〈p2〉, {p6}, p2).

Similarly, the previous sub-routes for p6: (5, 〈p6〉, ∅, p6) and (5, 〈p1, p6〉, ∅, p6) are

pruned in iterations 2 and 3, respectively.

The forward search terminates when H becomes empty, i.e., no sub-routes

can be extended. It returns the set
−→
IR of all surviving sub-routes.

Algorithm 5.3 illustrates the pseudo code of route search in forward direc-

tion. It is self-explanatory and summarizes what we have discussed above.

Backward Search. Route space search in backward direction is similar to that

in forward direction. The pruning rules, searching strategies, and dominating

testing discussed for forward search can be modified for backward search directly.

Table 5.1. Forward space search
Iteration Selected Vertex Extended Route R Modified IR Heap H

1 s (0, ∅, {p1, p2, p6}, s)
−−→
IRp1 = {(1, 〈p1〉, {p2, p6}, p1)} (p1, 3)
−−→
IRp2 = {(3, 〈p2〉, {p6}, p2)} (p2, 2)
−−→
IRp6 = {(5, 〈p6〉, ∅, p6)} (p6, 1)

2 p1 (1, 〈p1〉, {p2, p6}, p1)
−−→
IRp2 = {(3, 〈p1, p2〉, {p6}, p2)} (p2, 3)
−−→
IRp6 = {(5, 〈p1, p6〉, ∅, p6)} (p6, 2)

3 p2 (3, 〈p1, p2〉, {p6}, p2)
−−→
IRp6 = {(5, 〈p1, p2, p6〉, ∅, p6)} (p6, 3)

4 p6 ∅ ∅ ∅
−→
IR (5, 〈p1, p2, p6〉, ∅, p6), (3, 〈p1, p2〉, {p6}, p2), (1, 〈p1〉, {p2, p6}, p1), (0, ∅, {p1, p2, p6}, s)
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Algorithm 5.3 Forward Search

function RouteSearchFW(Query q = (s, d, [t−q , t
+
q ]), Vertex set V = P ∪ {s, d})

. Initialization
1: Create an empty set

−→
IRv for each vertex v ∈ V to store sub-routes associated with v

2: Calculate the candidate vertex set Cs of s . Equation 5.5

3:
−→
IRs ← {(0, ∅, Cs, s)}

4: Create a max-heap H ← {(s, |Cs|)} to store vertices whose routes will be extended
. Repeatedly generate feasible sub-routes

5: while H 6= ∅ do
6: (v, v.ub)← Extract-Max(H) . Searching strategy

7: Sort routes R ∈
−→
IRv in the descending order of |BR| . Searching strategy

8: for all Rv ∈
−→
IRv do

9: for all u ∈ CRv do
10: Ru ← Extend(Rv, q, u) . Equation 5.4, 5.5, Pruning Rule 1

11: RemoveDominate(
−→
IRu, Ru) . Pruning Rule 2

12: if Ru ∈
−→
IRu then . Ru not pruned

13: if (u, u.ub) /∈ H then
14: Insert (u, $+Ru

) into H
15: else
16: u.ub← max{u.ub, $+Ru

}
17: Return

−→
IR ← all routes in each nonempty

−→
IRv

5.3.2 Route Join

In this section, we elaborate on how to join sub-routes obtained in the

forward search and the backward search. Let
−→
Rv = (τ(

−→
Rv), B−→Rv

, C−→
Rv
, v) and

←−
Ru = (τ(

←−
Ru), B←−

Ru
, C←−

Ru
, u) be two sub-routes in the forward and the backward

directions, respectively. They are feasible to be joined if:

τ(
−→
Rv) + τ(v, u) ≤ u.t+p and τ(

−→
Rv) + τ(

←−
Ru) + τ(v, u) ≤ t+q − t−q

B−→
Rv
∩B←−

Ru
= ∅ (5.6)

We denote the joined route as Rjoin = 〈s,B−→
Rv
, rev(B←−

Ru
), d〉, where rev(B←−

Ru
)

refers to a list of vertices in B←−
Ru

but in the reversed order. Its reward is: |B−→
Rv
|+

|B←−
Ru
|.
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Table 5.2. Route join
sub-routes sorted in the descending order of |BR|

−→
IR (5, 〈p1, p2, p6〉, ∅, p6), (3, 〈p1, p2〉, {p6}, p2),

(1, 〈p1〉, {p2, p6}, p1), (0, ∅, {p1, p2, p6}, s)←−
IR (5, 〈p7, p3, p6〉, ∅, p6), (2, 〈p7, p3〉, {p6}, p3),

(1, 〈p7〉, {p3, p6}, p7), (0, ∅, {p3, p6, p7}, d)

route join iterations

iteration candidate join pairs join result $best
−→
R

←−
R Rjoin

1 (5, 〈p1, p2, p6〉, ∅, p6) (5, 〈p7, p3, p6〉, ∅, p6) not feasible (Equation 5.6) 0
2 (5, 〈p1, p2, p6〉, ∅, p6) (2, 〈p7, p3〉, {p6}, p3) R = 〈s, p1, p2, p6, p3, p7, d〉 5
· · · · · · · · · skipped (Pruning Rule 3) 5

optimal route for this snapshot R = 〈s, p1, p2, p6, p3, p7, d〉

We develop two optimization techniques to accelerate the join procedure.

First, we apply pruning rule 3 to skip the feasible checking (cf. Equation 5.6) for

pairs of sub-routes. Second, we sort sub-routes in the descending order of their

|BR|. This helps us find a tigher $best earlier, and in turn boosts the power of

Pruning Rule 3.

Pruning Rule 3 (Reward bound pruning). Let $best be the maximum reward

on all joined routes found so far. If |B−→
R
|+ |B←−

R
| ≤ $best, then we need not join

−→
R and

←−
R .

Continuing with the example in Figure 5.6, we illustrate the join procedure

in Table 5.2. First, we sort forward sub-routes
−→
R ∈

−→
IR and backward sub-routes

←−
R ∈

←−
IR in descending order of |BR|. For each pair of

−→
R and

←−
R , if it survives

Pruning Rule 3, then we conduct feasible checking and then join the pair. After

joining the forward sub-route
−→
R = (5, 〈p1, p2, p6〉, ∅, p6) with the backward sub-

route
←−
R =(2, 〈p7, p3〉, {p6}, p3), we update $best to 5. All remaining pairs are

pruned according to Pruning Rule 3. The best route (known at this snapshot)

is 〈s, p1, p2, p6, p3, p7, d〉.
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5.4 Discussion

In this section, we discuss three enhancements in our proposed Route Recom-

mendation methods: (1) supporting different output formats, (2) recommending

routes for multiple workers, and (3) supporting tasks that have non-zero execu-

tion times.

Output format of Route Recommender. The best route returned by the

Route Recommender is a sequence of spatial crowdsourcing tasks. The worker

is advised to conduct tasks in the sequence one by one. Therefore, instead of a

complete route, it is also fine to return the next task on the best route each time

the spatial crowdsourcing worker finishes a task.

Route recommendation for multiple workers. When recommending routes

for multiple spatial crowdsourcing workers, a global assignment will be conducted

before recommending the best route for each individual worker. The global

assignment will assign tasks to workers fairly. In detail, for each new published

task, the global assignment will find a set of workers such that the new task is a

feasible candidate for them (according to Equations 5.2 and 5.5). Then, taking

fairness into consideration, the new task will be assigned to the worker whose

retrieved reward is minimum so far. Each task, after being assigned to a worker

w, is treated as locked by w, and will not be assigned to other workers unless

it becomes in-feasible for w. With the global assignment, each worker can have

a distinct set of tasks, which can avoid conflicts in conducting tasks. Then, the

Route Recommender can find the best route for each worker over his assigned
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tasks.

Route recommendation of tasks that have non-zero execution times.

Let τexe(p) be the execution time of task p. Methods discussed in above sections

assume that each task can be completed immediately, that is τexe(p) = 0. In

fact, our methods can be easily extended to support the spatial crowdsourcing

tasks with τexe(p) > 0. In detail, the modifications are:

1. When detecting candidate tasks, the Equation 5.2 is modified to:

τ(snow, p) + τexe(p) + τ(p, d) ≤ t+q − tnow

tnow + τ(snow, p) + τexe(p) ≤ t+p (5.7)

2. When finding the candidate set in Re-Route, the Equation 5.5 is modified

to:

p ∈ CRv and p /∈ BRu

τ(u, p) + τexe(p) ≤ t+p − t−q − τ(Ru)

τ(u, p) + τexe(p) ≤ (t+q − t−q )/2− τ(Ru)

τ(u, p) + τexe(p) + τ(p, d) ≤ t+q − t−q − τ(Ru) (5.8)

3. When extending a route Rv by appending a vertex u into it, the calculation

of the travel time for the new generated sub-route Ru in Equation 5.4 is

modified to:

τ(Ru)← τ(Rv) + τe(v, u) + τexe(u) (5.9)
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5.5 Experiment

This section studies the effectiveness and efficiency of our proposed methods

on both real and synthetic datasets.

5.5.1 Experimental Setting

We first introduce the datasets used in experiments, and then describe the

performance measures for algorithms.

Datasets.

Real datasets. Similar to [55], we obtain real check-in data in Foursquare5.7

and convert them to crowdsourcing tasks in our problem. Specifically, we collect

check-in data for New York city (NYC) and Los Angeles County (LA) in a month

(September 2012). For each day in that month, we use all check-in items within

a 90-minute duration. We take check-in items at the same location as a single

task, set its release time and deadline to the earliest and the latest check-in time

respectively5.8. We measure the travel time τ(v, u) as the Euclidean distance

between two locations divided by the average speed. We use a walking speed 6

km/h for NYC (whose map size 789 km2 is small), and use a driving speed 60

km/h for LA (whose map size 10,570 km2 is large).

Synthetic datasets. As NYC and LA have similar result trends (see Fig-

ure 5.7), we use the map domain of LA to generate synthetic datasets. For each

synthetic task, we randomly choose its release time t−p randomly in [t−q , t
+
q ] and

5.7https://foursquare.com/
5.8For each location with only one check-in item (say, at time t), we choose its deadline

randomly in [t, t+q ], where t+q refers to the query’s deadline.
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then choose its deadline t+p in range [t−p , t
+
q ], as we consider queries of the form

q = (s, d, [t−q , t
+
q ]) in our experiments. We generate two types of datasets. In

each uniform dataset (UNI), task locations are randomly chosen within the map

domain. In each Gaussian dataset (GAU), task locations are generated based

on four Gaussian bells, with the standard deviation of Gaussian bell as x times

of the map domain length. The parameter values for the number of tasks and

Gaussian standard deviation x are shown in Table 5.3.

Platform and Performance Measures. We implemented our methods (G-

NN, G-MCS, G-SD, Re-Route) in C++, and conducted experiments on an Ubuntu

11.10 machine with a 3.4 GHz Intel Core i7-3770 processor and 16 GB RAM.

We use queries of the form q = (s, d, [t−q , t
+
q ]), where t+q − t−q = 90 minutes

by default. We randomly choose s, d in the map domain such that τ(s, d) = 45

minutes. The parameter values for t+q − t−q are given in Table 5.3.

In each experiment, we run a set Q of 50 queries and report (i) the quality

ratio for Q, and (ii) the average response time per call of a method. Specifically,

we define the quality ratio of a method as:

quality ratio =
1

|Q|
·
∑
q∈Q

count(Rmethod(q))

count(Ropt(q))

where q is a query in Q, Rmethod(q) is the route for q found by our method,

Ropt(q) is the optimal route for q found by an offline method that knows all tasks

in advance5.9.

5.9 As mentioned in Definition 7, Ropt(q) is obtained with assumption that all tasks’ informa-
tion are known in advance at time t−q . With this assumption, OnlineRR becomes a special case of
SnapshotRR where tasks can have release time larger than t−q and the approach for SnapshotRR
can be used to find Ropt(q) then.
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Table 5.3. Experiment parameters
Parameter Default Range

total number of tasks 100 20, 50, 100, 200, 500
t+q − t−q [minutes] 90 30, 60, 90, 120, 150

Gaussian x 0.1 0.05, 0.1, 0.25, 0.5

We have tested the effects of policies Pstay and Pgo (cf. Section 5.2.2) on

our methods. For the same method, the quality ratios between Pstay and Pgo

differ only by 0.01 − 0.02. Thus, we take the default policy in our methods as

Pstay.

5.5.2 An Experiment on Real Datasets

We plot the performance of methods on real datasets (LA and NYC) on each

day from Sep/21/2012 to Sep/30/2012 in Figure 5.7. Within the query period,

LA and NYC contain 60 and 40 tasks on average, respectively. The optimal

routes Ropt in LA and NYC cover 10 and 5 tasks on average, respectively. Fig-

ures 5.7a,c show the quality ratio of the methods on NYC and LA, respectively.

Re-Route outperforms other methods and achieves 0.82–0.91 quality. G-MCS is

the second best and obtains 0.70–0.84 quality. Although Re-Route incurs higher

response time, it takes less than 1 second per call, as depicted in Figure 5.7b,d.

We consider such time acceptable for crowdsourcing workers. For example, for

the LA dataset, Re-Route is called for 10 times (on average) during the query

period (90 minutes). Observe that the time per call (1 second) is negligible

compared to the average travel time between two tasks (90/10 = 9 minutes).



138 5.5. EXPERIMENT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

q
u

al
it

y
 r

at
io

day ID

Re-Route

G-MCS

G-NN

G-ED
 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8  9
re

sp
o

n
se

 t
im

e 
p

er
 c

al
l 

(s
)

day ID

Re-Route

G-MCS

G-NN

G-ED

(a) quality ratio (NYC) (b) response time per call (NYC)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

q
u

al
it

y
 r

at
io

day ID

Re-Route

G-MCS

G-NN

G-ED
 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8  9

re
sp

o
n

se
 t

im
e 

p
er

 c
al

l 
(s

)

day ID

Re-Route

G-MCS

G-NN

G-ED

(c) quality ratio (LA) (d) response time per call (LA)

Figure 5.7. Performance on real datasets

5.5.3 Scalability Experiments on Synthetic Datasets

Effect of task distribution. Figure 5.8 depicts the performance of methods

on GAU datasets with standard deviation x and on a UNI dataset. As illustrated

in Table 5.4a, a more skewed dataset (i.e., with smaller x) leads to an optimal

route with higher reward because tasks in the same cluster are close together.

Since our methods can also find routes with higher reward on a more skewed

dataset, the quality ratio does not vary much (See Figure 5.8a). Re-Route again

outperforms other methods on the quality ratio. On the other hand, a more

skewed dataset induces more feasible candidate tasks in Re-Route, and thus it
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Figure 5.8. Effect of task distribution

Table 5.4. Reward on the optimal route
Task Gaussian Uniform

distribution
Parameter (a) standard deviation (b) total number (c) query period

x of tasks t+q − t−q
values 0.05, 0.1, 0.25, 0.5 20, 50, 100, 200, 500 30, 60, 90, 120, 150

Reward of Ropt 12.57, 9.39, 6.84, 4.72 1.7, 3.14, 5.26, 7.94, 13.2 1.62, 3.26, 5.26, 6.92, 8.92

incurs higher response time. Nevertheless, Re-Route takes at most around 1

second per call in Figure 5.8b, which is acceptable for crowdsourcing workers.

Since the trend on quality is consistent across different task distributions,

we only use UNI datasets in the remaining experiments.

Effect of total number of tasks. When the total number of tasks increases,

both the optimal route (cf. Table 5.4b) and our methods’ routes would cover

more tasks. Thus, the quality ratio is independent of the total number of tasks,

as shown in Figure 5.9a. The response time of Re-Route increases slightly with

the total number of tasks (see Figure 5.9b), but it is still within 0.1 seconds per

call.

Effect of the query period t+q − t−q . As the query period t+q − t−q widens, more
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Figure 5.10. Effect of the query period t+q − t−q

tasks become feasible and thus the optimal route contains more tasks, as shown

in Table 5.4c. We plot the performance of the methods with respect to t+q − t−q

in Figure 5.10. The quality ratio is independent of t+q − t−q as our methods are

also able to find routes with more tasks. The response time per call in Re-Route

remains acceptable.

Effect of Pruning Rules on Re-Route. We proceed to test the effect of opti-

mization techniques (cf. Section 5.3) on the response time per call of Re-Route.

We consider two variations of Re-Route: (i) DISABLE applies only pruning rule 1
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Figure 5.11. Effect of pruning rules on Re-Route (E for ENABLE, D for DISABLE)

(in Ref. [106]), and (ii) ENABLE applies all three pruning rules in Section 5.3.

As DISABLE is very slow, we scale down the total number of tasks in this

experiment, and terminate it if it takes more than 300 seconds per call. We

show the response time per call of DISABLE and ENABLE on both UNI and GAU

datasets in Figure 5.11. Observe that ENABLE runs much faster than DISABLE,

implying that our pruning rules are able to shrink the search space significantly.

5.6 Related Work

The related work relevant to this chapter is described in Section 2.3. This

section will present the differences between this chapter and the related work

presented in Chapter 2.

Spatial crowdsourcing is an emerging topic in crowdsourcing research. Ex-

isting researches are divided into the server-centric mode [49,75,76,102,122] and

the worker-centric mode [31, 40, 55]. We focus on the latter one as discussed in

the introduction. However, [31, 40] do not consider the influence of the worker’s
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travel time, which is critical in our OnlineRR problem. The closest work to ours

is [55], which selects a route with the maximum number of tasks for a worker.

However, [55] does not discuss how to update a route with respect to online task

arrivals. Also, it does not consider the worker’s destination and deadline.

Our OnlineRR problem is related to the orienteering problem [66, 126]. The

orienteering problem is a variant of the selective traveling salesman problem [60],

where (i) not all requests need to be completed, and (ii) the cost is the sum

of the total travel time and the penalty of rejected requests. The orienteering

problem is well studied [66, 126], but only several works [36, 48, 64, 106] consider

the Orienteering Problems with each request having a Time Window (OPTW).

Those works focus on the offline scenario but not the online scenario. While

there exist approximation algorithms for OPTW offline [36, 48, 64], OnlineRR is

an online problem and does not permit any online algorithm to achieve a non-zero

competitive ratio.

Righini et al. [106] propose an exact bi-directional search algorithm for

OPTW, which can be adapted to solve our SnapshotRR problem. Unlike our

solution, this algorithm does not exploit spatial properties to prune unpromising

sub-routes. In Section 5.3, we have developed two pruning rules and a search

strategy that are specific for SnapshotRR.

Other related route planning problems include the trip planning problem [90]

and the optimal sequenced route problem [113]. They require finding the shortest

route that passes through specific types of points-of-interests. On the other hand,

our problem needs to maximize the number of tasks on a route subject to the

tasks’ deadlines and the worker’s deadline.
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OnlineRR problem is also related to online traveling salesman problem (OL-

TSP) [34, 72]. Few works have studied OL-TSP with each request having a

deadline [37,128]. While OL-TSP aims to minimize the travel distance, our On-

lineRR problem aims to maximize the number of tasks on a route. Moreover, the

above works on OL-TSP do not consider the worker’s destination and deadline.

Finally, our problem is similar to an online job-scheduling problem whose tasks

have dependent setup costs [29]. However, this problem does not exploit the

spatial properties as in OnlineRR.

5.7 Chapter Summary

In this chapter, we study the oriented online route recommendation (Onlin-

eRR) problem for spatial crowdsourcing task workers. We prove that no online

algorithm can achieve a non-zero competitive ratio for OnlineRR. Then we pro-

pose several heuristics for OnlineRR and optimizations to speedup the compu-

tation. According to our experimental findings, Re-Route produces routes with

the highest quality (0.82–0.91) with acceptable response time per call (0.1–1 s),

whereas G-MCS returns routes with the second highest quality (0.70–0.84) at

real-time (below 1 ms). Workers who prefer to save smartphone battery power

may choose to use G-MCS rather than Re-Route as G-MCS has less computation

cost and thus costs less battery power.
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Chapter 6

Conclusion and Future Work

Web data services provide rich categories of data, which attract more and

more consumers. Queries over different web data services have different purposes.

In this thesis, we study how to optimize three types of queries over web data

services.

6.1 Contributions

The first contribution is that, for SQL queries over data markets, we present

a system to help data buyers to freely query against any dataset in the data

market and walk away from that dataset anytime. Our experimental results

verify that, with our system the data buyers do not need to worry whether it is

worth or not to download the whole dataset in the beginning.

The second contribution is that, for the location based services, we propose

a solution for them to process spatial range/KNN queries such that the query
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results have accurate travel times and the LBS incurs few number of route re-

quests. Our experimental evaluation shows that our method is 3 times more

efficient than a competitor, and yet achieves high result accuracy (above 98%).

The third contribution is that, for a spatial corwdsourcing worker, we pro-

pose several heuristics to find the optimal route for a worker which can guarantee

the worker to arrive at his destination on time as well as enable the worker to

finish the maximum number of tasks. According to our experimental findings,

our prosed method produces routes with high quality (0.82–0.91) with acceptable

response time per call (0.1–1 s).

6.2 Future Research Directions

We proceed to outline several future research directions as follows.

Currently, our use-case in Chapter 3 does not cover many end users using

PayLess simultaneously. In the future, we will incorporate multi-query optimiza-

tion in PayLess if users are willing to defer their queries to become a batch.

Our Route-Saver in Chapter 4 for LBS utilizes δ to control the freshness of

the route log. As a future work, we plan to investigate automatic tuning the

expiry time δ based on a given accuracy requirement. This would help the LBS

guarantee its accuracy and improve their users’ satisfaction.

For the route recommendation OnlineRR in Chapter 5, a possible research

direction is to consider the diversity and novelty of tasks during the path selec-

tion, and another direction is to extend it to support road networks with dynamic

traffic.
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[83] Hans-Peter Kriegel, Peer Kröger, Matthias Renz, and Tim Schmidt. Prox-

imity queries in large traffic networks. In 15th ACM International Sympo-

sium on Geographic Information Systems, ACM-GIS 2007, November 7-9,

2007, Seattle, Washington, USA, Proceedings, page 21, 2007.

[84] Dongwon Lee and Wesley W. Chu. Towards intelligent semantic caching

for web sources. J. Intell. Inf. Syst., 17(1):23–45, 2001.

[85] Ken C. K. Lee, Wang-Chien Lee, Baihua Zheng, and Jianliang Xu. Caching

complementary space for location-based services. In Advances in Database

Technology - EDBT 2006, 10th International Conference on Extending

Database Technology, Munich, Germany, March 26-31, 2006, Proceedings,

pages 1020–1038, 2006.

[86] Chen Li. Computing complete answers to queries in the presence of limited

access patterns. VLDB J., 12(3):211–227, 2003.

[87] Chen Li and Edward Y. Chang. Query planning with limited source capa-

bilities. In IEEE ICDE, pages 401–412, 2000.

[88] Chen Li and Edward Y. Chang. Answering queries with useful bindings.

ACM Trans. Database Syst., pages 313–343, 2001.

[89] Chen Li and Edward Y. Chang. On answering queries in the presence of

limited access patterns. In Database Theory - ICDT 2001, 8th International



BIBLIOGRAPHY 159

Conference, London, UK, January 4-6, 2001, Proceedings., pages 219–233.

Springer, 2001.

[90] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and

Shang-Hua Teng. On trip planning queries in spatial databases. In Ad-

vances in Spatial and Temporal Databases, 9th International Symposium,

SSTD 2005, Angra dos Reis, Brazil, August 22-24, 2005, Proceedings, vol-

ume 3633, pages 273–290, 2005.

[91] Yu Li, Eric Lo, Man Lung Yiu, and Wenjian Xu. Query optimization over

cloud data market. In Proceedings of the 18th International Conference on

Extending Database Technology, EDBT 2015, Brussels, Belgium, March

23-27, 2015., pages 229–240, 2015.

[92] Yu Li and Man Lung Yiu. Route-saver: Leveraging route apis for accu-

rate and efficient query processing at location-based services. IEEE Trans.

Knowl. Data Eng., 27(1):235–249, 2015.

[93] Yu Li, Man Lung Yiu, and Wenjian Xu. Oriented online route recommen-

dation for spatial crowdsourcing task workers. In submitted to SSTD.

[94] Ziyang Liu and Hakan Hacigümüs. Online optimization and fair costing for

dynamic data sharing in a cloud data market. In International Conference

on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,

2014, pages 1359–1370, 2014.

[95] Ioana Manolescu, Luc Bouganim, Françoise Fabret, and Eric Simon. Effi-

cient querying of distributed resources in mediator systems. In On the

Move to Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE



160 BIBLIOGRAPHY

2002 Confederated International Conferences DOA, CoopIS and ODBASE

2002 Irvine, California, USA, October 30 - November 1, 2002, Proceedings,

volume 2519, pages 468–485, 2002.

[96] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman,

and Hamid Pirahesh. Robust query processing through progressive opti-

mization. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, Paris, France, June 13-18, 2004, pages 659–670,

2004.

[97] Alexander Muschalle, Florian Stahl, Alexander Löser, and Gottfried
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