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Abstract

Epidemic waves of new emerging infectious diseases have awakened global

concerns regarding their potential pandemic threats. Early prevention and control

measures can prevent the spread or even control the outbreak of an infectious

disease. Geographic information science (GIS) is used in this study as an integrated

platform for epidemic surveillance. Combined with powerful spatial data

management and statistical analysis methods, geospatial technologies offer a new

perspective to model how a disease may spread together with its evolutionary path.

This tool enables policy makers to explore the spatial interactions between disease

emergence and its risk or protective factors, thereby allowing epidemiologists or

public health officials to target areas with more effective means to control a disease

spread.

This  research  aims  to  develop  innovative  models  within  the  GIS  framework  for

characterizing the spatial and temporal distribution patterns of an infectious

disease,  to  assist  the  planning  of  preventive  intervention  measures.  Firstly,  it

summarizes background, methods and research developments in emerging

infectious diseases. Chapter 2 gives a description of relevant experimental data in

GIS and Epidemiology based on H1N1 of Hong Kong in 2009, H7N9 of

Mainland China in 2013, and the Ebola epidemic of West Africa in 2014. An

in-depth discussion of elementary analysis methods - Standard Deviational Ellipse

(SDE), is introduced in Chapter 3, using H1N1 infection of Hong Kong to

highlight the spatiotemporal concentrations.

Mathematics has long been a powerful tool for understanding and assessing the

disease spread. Understanding the how, when, and why an epidemic spreads across

a geographic landscape is of critical importance, as effective preventive measures
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can be put in place before a disaster occurs. Chapter 4 devotes to discussing how

the temporal dynamics of infectious disease are modeled by basic SIR

compartmental models, and how the meta-population model is used to characterize

the spatiotemporal movement of a disease infection. The typical reaction diffusion

equation models are also thoroughly explored, followed by a detailed description of

computer implementation procedures using the Runge-Kutta method.

Spatiotemporal analysis can potentially contribute to characterizing the temporal

evolution process and revealing possible spatial propagation patterns. As such, an

innovative approach was proposed in Chapter 5 to examine the impact of

spatiotemporal proximity upon the onset risk prediction of an emerging infectious

disease. Experiments based on the avian in uenza A H7N9 that occurred in

eastern China from February to May 2013 demonstrated that such spatiotemporal

proximity integrated approach was capable of providing approximately 70%

correct  prediction  on  average  in  predicting  the  H7N9  illness  onset  risk  for  the  5

days following the forecast date.

Furthermore, a sequential Bayesian inference combined with stochastic SEIR

model has been employed to estimate the time-varying effective reproduction

numbers, together with their 95% confidence intervals, for the Ebola virus

epidemic in West Africa. Experimental results indicated that concerted efforts

should be made to halt all transmission in Liberia for the dreadful reproduction

number  there.  Based  on  the aforementioned theoretical models, a software

prototype framework has resulted for further development and to enable the

analysis of spatiotemporal spreading patterns and dynamic evolution trends of an

infectious disease. Discussions regarding the limitations and potentialities of the

models explored here are also carried out for guiding future research work to better

prevent the infectious disease spread.
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Chapter 1 Introduction

The formidable task of developing models for endemic disease may be compared

to building a house in a hurry. Practical workers insist on building a complete house,

and  are  not  too  worried  that  it  may  need  replacing  later.  Theoreticians  insist  on

building reliable foundations and are not too worried if the house is never finished.

Both viewpoints have their merits, and ideally we need to combine them together.

—— (Mollison and Kuulasmaa 1985)

1.1 Research Background

Over the past few years, epidemic waves of emerging infectious diseases (EID)

appeared one after another. The more recent diseases included the severe acute

respiratory syndrome (SARS) that happened in 2003 (Riley et al. 2003), the highly

pathogenic H5N1 avian in uenza with its peak of incidence in 2006 (Zhang et al.

2010), the swine influenza pandemic of H1N1 in 2009 (Fraser et al. 2009), the

avian influenza A H7N9 that occurred in eastern China (Li et al. 2014) in the last

two years, and the latest Ebola epidemic currently spreading in West Africa

(Nishiura and Chowell 2014). The continuously emerging infectious diseases have

always  caused  both  very  serious  life  risks  and  social-economic  risks  and  been

awakening the global concerns each time regarding their potential pandemic threats.

Meanwhile, tens of thousands humans from all over the world unfortunately lost

their  life due to the spread of these infectious disease.  There is  an urgent need to
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develop theoretical methods and software to analyze and evaluate the risks due to

the epidemic spread. Geographic information science (GIS) together spatial

analysis can potentially be used for developing the solutions regarding this issue.

Studies on epidemic outbreaks began more than two thousand years ago (Bailey

1975). However, quantitative research on human diseases and deaths did not start

until the 17th century (Graunt 1939).  The  earliest  work  on  the  geography  of

disease concentrated on mapping. A typical representative personage was John

Snow, perceived to be one of the fathers of modern epidemiology, partially due to

his pioneering work in 1854 about tracing the source of a cholera outbreak in Soho,

London (Shiode 2012).

Much of the basic theory in Mathematical epidemiology was developed between

1900 and 1935. During that period, the well-known SIR model was formalized

under a homogeneous mixing assumption, to characterize the temporal evolution

of epidemic with the susceptible, infectious and immune compartments (Kermack

and McKendrick 1927, Kermack and McKendrick 1932, Kermack and

McKendrick 1933, McKendrick 1940). Another major contribution of Kermack

and McKendrick was the Threshold Theorems, which claim that an introduction of

a few infectious individuals into a population will not cause an epidemic outbreak,

unless the proportion of susceptible population is above a certain critical value.

Also supported by the Threshold Theorems is that not every susceptible person

would necessarily be infected before an epidemic stops. This theory is in
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conjunction with the mass action principle, a cornerstone of modern theoretical

epidemiology.

The deterministic version of SIR model was extended into a continuous-time and

stochastic version by Kermack and McKendrick (1927). As infectious disease data

often come in time-series format with unobservable latent disease states, Bayesian

methods own exceptional advantages to make inferences on model parameters and

predictions computed from these stochastic epidemic models (O’Neill 2002).

Bayesian analysis implemented by the Markov Chain Monte Carlo method enables

the estimation of a time-dependent transition rate and an effective reproductive

number (Yin 2007). Informative prior distributions allow the inclusion of

information from other analyses and expert opinion while posterior distributions

can  be  used  to  inform  additional  data  and  structure  inputs  to  simulation  studies.

The Bayesian approach has been applied by Spiegelhalter et al. (2004) in  a  spatial

analysis of clinical trial data and Lawson et al. (2003) in disease mapping. Besides,

Multilevel Bayesian models have been applied to investigate the spatial distribution

of malaria in South Africa (Kleinschmidt et al. 2002),  and  the  BSE(bovine

spongiform encephalopathy) in Great Britain (Stevenson et al. 2005).

The concept of contact network epidemiology emerges as the idea of passing on a

bacterial disease through contact between susceptible and infectious individuals

becomes a consensus. This analytical framework intuitively captures the

multifarious host interactions that underlie parasite transmission (Meyers 2007,
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Newman 2002). This approach firstly builds a realistic network model at an

appropriate temporal and spatial scale for characterizing the contact patterns,

through which the disease spreading can be predicted, based on intrinsic features

of both the parasite and the network structure. Besides, percolation generating

function methods originating from the discipline of statistical physics are often

employed for mathematically analyzing the disease spread through networks

(Grimmett 1999).

With rapidly increasing computing capacity, numerical simulations have been used

to investigate more complex computational models, such as the "agent-based

models" (ABMs) or micro-simulation models. An "artificial society" is created

containing some population of "agents" in the computer program, typically the

distinct individual of human beings. The agent-based model investigates the macro

phenomena of the artificial society by simulating micro actions of individual, or

"agents" (Epstein 2006). For example, Epstein (2004) built an agent-based model

containing a population of 400 adults and 400 children living in two towns that

share a school and a hospital. The 800 individuals formed 100 family households,

each with two working adults and two school-age children. During the daytime,

interactions between coworkers in work places and between students in the school

were simulated, as were interactions within each household at night. After

calibration, this program was used as a test-bed for comparing different smallpox

outbreak control policies. The simulations showed that a combination of contact

tracing by households and mass vaccination targeting at high-risk population
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provided the most effective control.

Due to the rapid rates of human mobility across the globe, the geographic spread

of infectious diseases is of increasing concern. It is crucial to understand how,

when,  and  why  epidemics  spread  across  the  landscape  so  that  effective  planning,

preparation, and control measures can be put in place before a disaster occurs.

However, human mobility patterns are often complicated. Data sets that would aid

in  the  understanding  of  these  patterns  are  probably  available  but  scattered  in

various proprietary locations. For example, Gonzalez et al. (2008) attempted to

understand individual human mobility patterns by exploring the historical trajectory

of 100,000 anonymized mobile phone users. Other potential sources of data on

population travel patterns might include traffic counters along major roads or

records from credit card use or hotel stays.

Objectively speaking, mathematical models play important roles in resisting the

disease spreading. It can help to not only discover and elucidate important patterns

from epidemiological data (Gonzalez et al. 2008), but also determine the potential

risk  factors  for  understanding  and  predicting  disease  spread (Gilbert et al. 2008).

Besides, uncertainties hidden in epidemiological data can also be estimated by using

mathematical models (Delmelle et al. 2014).  However,  it  is  of particular  note that

mathematical epidemiology differs from most sciences as it does not lend itself to

experimental validation of models, which may probably be ethically unacceptable

or technically unfeasible. It thus gives great importance to mathematical models as
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a  versatile  tool  of  comparing  strategies  for  an  anticipated  epidemic  or  pandemic,

and to cope with a disease outbreak in real time. Excellent models must either be

able to be generalized to different infectious diseases and geographical conditions

with ease or be readily adaptable to specific conditions. As conditions change in the

progress of the disease, the model must be able to be updated promptly to take on

new conditions.  Of  course,  the  outputs  from the  model  must  be  rapidly  available

before a real time epidemic runs its course.

The Eclipse Foundation developed the Spatiotemporal Epidemiological Modeler

(STEM), an auxiliary tool designed for public health officials to rapidly prototype

and validate models for an emerging infectious disease (Edlund et al. 2010). STEM

employs mathematical models of diseases (normally based on differential equations)

to simulate the spatial-temporal behaviors of a disease (e.g., avian flu). These

models can be used in understanding, and potentially preventing, the diseases

spread process.

Humans with confirmed H7N9 virus infection may bring about rapid progressive

pneumonia, acute respiratory distress syndrome (ARDS) and even death (Gao et al.

2013b). Up till July 2014, there were more than 450 laboratory confirmed influenza

A  (H7N9)  cases  including  at  least  150  deaths,  reported  by  the  Center  for  Health

Protection of Hong Kong (http://www.chp.gov.hk/files/pdf/2014_avian_influenza_report_vol10_wk26.pdf).

As the research continues, locally distributed density of live-poultry markets was

perceived to be the most relevant environmental predictor for indicating the H7N9
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infection risk (Li et al. 2014). Surveillance for influenza-like illness among

susceptible individuals in close contact with laboratory-confirmed H7N9 cases

indicated that there was no evidence of sustained onwards virus transmission

between infected individuals, except at most a history of recent exposure to poultry.

Most notably, an international scientific research team, with members from

Belgium, United Kingdom, China, etc. adopted boosted regression tree models for

correlating the risk of H7N9 market infection across Asia with locations of newly

assembled thousands of live-poultry markets (Gilbert et al. 2014). However, their

model only focuses on displaying of the static spatial distribution of H7N9 market

infection risk, rather than indicating the future specific propagation tendency.

The currently ongoing epidemic of Ebola virus disease in West Africa has caused

worldwide panic, mostly due to its significant mortality and rapid spreading rate.

One research (Gomes et al. 2014) has even walk into the American congress for

reference to the promotion of banning all the incoming flights from West Africa,

soon after the first domestic cases of Ebola emerging. This research is known for

estimating the importation probability of Ebola virus disease in countries by

simulating the international outbreak spread using the worldwide daily airline

passenger traffic data.

1.2 Roles of GIS & Mathematics

Sudden  epidemic  of  an  infectious  disease  urgently  needs  early  prevention  and

control measures. To prevent the large-scale epidemic, using geographic
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information systems (GIS) to analysis the spatial-temporal clusters and diffusion

patterns of diseases can assist in timely control measures for emergent infectious

diseases or epidemics initiated from imported cases. The disease information, such

as public health resources, spreading trends can be mapped together in relation to

their surrounding environmental elements, also making GIS as a common platform

for monitoring and management of epidemics.

Table 1.1 Roles of GIS & Mathematics

GIS

(1) Data management, processing, visualization and

(2) Spatial analysis,

(3) Monitoring of epidemic situation,

(4) Interactive operation based on Web GIS.

Mathematics

(1) Discover transmission patterns from epidemiological data,

(2) Determine the potential risk factors,

(3) Understand and predict disease spread,

(4) Estimate the hidden uncertainties from epidemiological data.

Objectively speaking, mathematical models play important roles in resisting the

disease spread. It can help to not only discover important patterns from

epidemiological data (Gonzalez et al. 2008), but also determine the potential risk

factors for understanding and predicting disease spread (Gilbert et al. 2008).

Besides, the uncertainties hidden in the epidemiological data can also be estimated

by using mathematical models (Delmelle et al. 2014). Integrated with powerful
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mathematical models, geospatial technologies offer a new perspective to study the

spatial interactions between disease emergence and protective factors. The Table

1.1 above lists out the roles of both GIS and mathematics in epidemic prevention.

1.3 Research Scope

This research mainly aims to explore the spatial and temporal characteristic

patterns of epidemics by integrating mathematical models with the geographic

information science technology, anticipating these innovative approaches can be

conductive to understand and capture the behaviors of these frequent emerging

infectious diseases.

To reach the above aim, specific research objectives are identified as follows,

(a) To dynamically manage and visualize epidemic data, identify the concentrated

hot spots and interpret the evolutionary trends of the disease cases

spatiotemporally using GIS solutions;

(b) Attempt to utilize the deterministic Partial Differential Equation (PDE) models

to characterize the spatiotemporal dynamics of infectious diseases, thereby

making it tractable for monitoring the whole epidemic evolution process;

(c) Propose innovative approach that can make (short-term) predictions upon the

infection risk of emerging infectious disease, for the potential development of

an early warning system;

(d) Reflect the real-time hazard level regarding the disease transmission intensity by
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estimating some time-varying indicators (such as the effective reproduction

number), which can be hopefully merged into the Geographical maps so as to

identify areas of higher risk for an outbreak;

(e) If possible, to develop a software prototype integrating with the functionalities

of mapping hot spots, as well as flows and evolutionary trends of the disease,

forecasting early warning and graphical risk maps based on suitable epidemic

models and GIS technology.

1.4 Layout of this study

This thesis is divided into seven major chapters (plus this introduction), which deal

with different characteristic patterns of epidemics and propose four typical models

that can be conductive to understand and capture their behavior.

The structure of this thesis has been arranged as follows. The first chapter devotes

to a comprehensive introduction for the background, methods and developments

of the infectious disease related research. Chapter 2 is intended to give the

description of the relevant experimental data in GIS and epidemiology formats for

H1N1 of Hong Kong in 2009, H7N9 of Mainland China in 2013 and cumulative

infections of Ebola virus in West Africa, 2014. After that, in-depth discussions of

the elementary analysis methods - Standard Deviational Ellipse (SDE), are explored

in Chapter 3. Mathematical approaches to disease spread are presented in Chapter 4

including the basic compartmental SIR model, traditional approach to modeling

temporal dynamics of infectious disease, and the meta-population model for
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characterizing the spatiotemporal spreading dynamics of disease infection. Besides,

the typical reaction-diffusion equation models are thoroughly explored, following

with the detailed computer implementation procedures via the Runge-Kutta

method. Chapter 5 innovatively proposes an approach for investigating the

spatiotemporal proximity impact upon the prediction of illness onset risk of

emerging infectious disease, with experiments upon the avian in uenza A H7N9,

February to May 2013 in eastern China. In addition, a sequential Bayesian inference

combined with stochastic SEIR model has been employed in Chapter 6 for

estimating the time-varying effective reproduction numbers, together with their 95%

confidence intervals for the Ebola virus epidemic in West Africa. In the end, the

final  Chapter  7  provides  the  concluding  remarks  of  this  study  and  framework  of

one software prototype, to be developed for characterizing the spatiotemporal

spreading dynamics and predicting future evolutionary trends for emerging

infectious diseases. Discussions regarding the limitations and potentialities of the

models  involved  here  are  also  carried  out  for  guiding  the  future  research  work  to

better prevent the infectious disease spread.

We acknowledge that there is no explicit relationship between each of these four

models.  However,  the  theory  behind  each  chapter  goes  from the  shallower  to  the

deeper. All these models are contributing to characterize the transmission patterns

of speci c disease. Figure below presents concise illustrations of Chapter 3 to

Chapter 6 to help with a rapid understanding of their theoretical relationships.
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Figure 1.1 Illustration of theoretical relationships among Chapter 3 to Chapter 6
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Chapter 2 Summarization of limited Data

This chapter is devoted to the description of all relevant data acquired for this

research. In general, three types of data are necessary for a spatial epidemiological

study. They include the core case series data usually given as some spatial and

temporal points; additional geographical layers, such as the population distribution

layer describing the (dynamic) population density; and the mobility network layer

of the host (like transportation routes) characterizing the potential spreading

patterns of the disease. However, it is noteworthy that the contributing models of

this  research  are  mainly  put  forward  under  the  circumstance  of  very  with  limited

clinical database in hand.

2.1 H1N1 of Hong Kong in 2009

The  core  data  with  epidemiological  date  and  residential  address  of  human  swine

influenza  cases  (see  Figures  2.1-2.2)  from  1st May  to  26th June, were gathered by

NGAN (2010) and Zhang (2011) from lists of building(s) with confirmed case(s)

of  Human  Swine  Influenza  on  a  daily  basis  released  by  Center  of  Health

Protection (CHP), list of suspended school announced by Education Bureau,

News  Press  in  CHP  and  various  local  newspapers,  websites.  The  way  to  acquire

location of the publicized infected buildings is firstly extracting the Lat/Long in

UTM upon Google Map, and further converting them into HK1980Grid.

Other Spatial and non-spatial additional data includes the Road Centerline data
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(RG1000, see Figure 2.1) from the Geo-Reference Database and the shape files of

18 Administrative District Council (1996) in Hong Kong and 289 tertiary planning

units (TPUs) boundaries. Non-spatial data includes the demographic data of Hong

Kong population census distribution in 2011 (Figure 2.2).

Figure 2.1 Locations of the confirmed H1N1 cases plotted on Hong Kong

territory map with the Road Centerlines (RG1000)

Sincere thanks are owed to Mr. Raymond Tse, Census and Statistics Department

for providing the guidance of building the own custom Census table from the 2011

Population Census Database, and Associate Professor, Lilian PUN CHENG,

(LSGI, PolyU) for sharing me the collative Geo-Reference Database including the

TPUs boundaries map data and Road Centerline data (RG1000). Derived from the

Hong Kong Grid 1980 Coordinate System, all these geographic map layers are

utilized for locating the position of H1N1 occurrences.
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Figure 2.2 Locations of the confirmed H1N1 cases plotted on Hong Kong

territory map (289 TPUs) rendered of the population density distribution

2.2 H7N9 of Eastern China in 2013

Database of H7N9 occurrence cases are gathered from two sources. One is a

real-time H7N9 reporting system (http://goo.gl/maps/ZsVW8) developed by Yujun

ZHAO & Dr. Jiankui HE from the South University of Science and Technology in

China since the first outbreak, including a total of 87 cases as of 18 April, 2013.

The other source is from an international public forum, FluTrackers.com

(http://www.flutrackers.com/forum/showthread.php?t=202713), which investigates

various emerging infectious diseases. It constantly publishes the confirmed or

suspected cases of human avian influenza a (H7N9) with detailed hyperlinks for
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each case in chronological sequence. An additional 48 cases before June, 2013 are

further filtered out from this forum. We have carefully checked each notification

record by verifying them according to announcements from official websites of the

national health and family planning commissions at the provincial level and local

news reports for tracking the accurate infection site for each case, and then

geocoded  them  into  the  WGS84  coordinate  system.  The  collative  data  set  finally

combines with 135 records in total, covering the period between 19th February and

21th May,  2013.  All  cases are displayed with bar graph in Figure 2 from the aspect

of temporal evolution. More detailed document with illness onset date and spatial

site information (longitude and latitude) is also provided being the supplementary

material (H7N9_Cases.xlsx).

Figure 2.3 Temporal evolution of notified cases of human infected with avian

in uenza A H7N9, 19 Feb to 21 May, 2013
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China's geographical administrative divisions are extracted from the GADM

database (http://www.gadm.org/country) in shapefile format. Considering the entire

epidemic area mainly concentrated in eastern China, all geographic maps, together

with the 135 georeferenced occurrences, are both projected into the same Universal

Transverse Mercator coordinate system of zone 50N for preferable display

considerations of the later forecasted illness onset risk layer.

2.3 Ebola virus disease in West Africa, 2014

Data  of  the  Ebola  virus  disease  in  West  Africa  was  gathered  from  the  Disease

Outbreaks News of the WHO, which tracked new cases and deaths by date with

generally biweekly reports. We carefully collating in Guinea, Sierra Leone, Liberia

and Nigeria as officially affected by the EVD epidemics.

Figure 2.4 Ebola virus epidemic in West Africa, up to Oct 12, 20141

As of 12 October, 2014, a total of 8997 confirmed, probable, and suspected cases

1 https://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa
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of Ebola virus disease (EVD) come together with 4493 deaths, reported from

seven affected countries (Guinea, Liberia, Nigeria, Senegal, Sierra Leone, Spain,

and the United States of America). The following Figures 2.5-2.8 illustrate the

cumulative totals of infected cases and deaths by EVD over time in Guinea, Sierra

Leone, Liberia and Nigeria.

Figure 2.5 Cumulative total numbers of Cases and Deaths over time in Guinea

Figure 2.6 Cumulative total numbers of Cases and Deaths over time in Sierra Leone
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Figure 2.7 Cumulative total numbers of Cases and Deaths over time in Liberia

Figure 2.8 Cumulative total numbers of Cases and Deaths over time in Nigeria

From these figures, obviously it can be observed that the EVD started its journey

from Guinea in December, 2013 and spread into Sierra Leone and Liberia during

March, 2014. The cumulative infected case number in Guinea was shortly exceeded
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to be under control. However, it was till unoptimistic of the epidemic situation in

the preceding three countries, especially in Liberia, where the epidemic situation

was even getting worse.
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Chapter 3Standard Deviational Ellipse and its Extension1

Standard deviational ellipse (SDE) has long been served as a versatile GIS tool for

delineating the geographic distribution of concerned features. This chapter firstly

summarizes two existing models of calculating SDE, and then proposes a novel

approach to constructing the same SDE based on spectral decomposition of the

sample covariance, by which the SDE concept is naturally generalized into higher

dimensional Euclidean space, named standard deviational hyper-ellipsoid (SDHE).

Then, rigorous recursion formulas are derived for calculating the confidence levels

of  scaled  SDHE  with  arbitrary  magnification  ratios  in  any  dimensional  space.

Besides, an inexact-newton method based iterative algorithm is also proposed for

solving  the  corresponding  magnification  ratio  of  a  scaled  SDHE  when  the

confidence probability and space dimensionality are pre-specified. These results

provide an efficient manner to supersede the traditional table lookup of tabulated

chi-square  distribution.  Finally,  synthetic  data  were  employed  to  generate  the  1-3

multiple  SDEs  and  SDHEs.  And  exploratory  analysis  by  means  of  SDEs  and

SDHEs are also conducted for measuring the spread concentrations of H1N1 of

Hong Kong in 2009.

3.1 Introduction

Standard deviation arises as one of classical statistical measures for depicting the

1 This chapter are mainly based on such publication: WANG, B., SHI, W. and MIAO, Z. 2015.
Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional
Euclidean Space. PLoS ONE, 10(3), e0118537.
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dispersion of univariate features around its center. Its evolution in two dimensional

space arrives at the standard deviational ellipse (SDE), which was firstly proposed

by Lefever in 1926. Ever since then, SDE has long served as a versatile GIS tool for

delineating bivariate distributed features. It is typically employed for sketching the

distributional trend of geographical features by summarizing both of their

dispersion and orientation. Although SDE’s arrival had once aroused great

attention,  a  certain  amount  of  criticisms  followed  as  well,  mainly  due  to  the  fact

that  Lefever’s  defined  curve  is  not  an  ellipse (Furfey 1927), but the standard

deviation curve (SDC) as nominated by Gong (2002).

The utilization potentials of SDE have been found in many research fields and

commercial industries. For instance, Smith and Cheeseman (1986) employed it for

estimating spatial uncertainty between coordinate frames representing the relative

locations of a mobile robot. Besides, SDE has also been adopted to quantitatively

analyze the orientation anisotropy in contaminant barrier particles (Wang et al.

2008), and explore the geographical distribution of household activities or travel

behaviors thereby promoting policy formulation in response to urban travel

reduction strategies (Buliung and Kanaroglou 2006). Meanwhile, geographical

profiling of the distributional trend for a series of crimes (Kent and Leitner 2007,

Chainey et al. 2008) by SDE might detect a relationship to particular physical

features such as some restaurants or apartments and even the lairs of the criminals.

Mapping groundwater well samples for some kind of contaminant could identify

how and to what extent the toxin is spreading, which consequently, may be
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conducive to deploy the responding mitigation strategies (Cloutier et al. 2008).

Moreover, comparing the coverage area, shape, and overlap of ellipses for various

racial or ethnic groups may provide insights regarding racial or ethnic segregation

(Wong 1998). Furthermore, graphing ellipses for a disease outbreak such as malaria

surveillance (Eryando et al. 2012) over time can potentially make the real-time

prediction of its spatial path, since the central tendency and dispersion are two

principal aspects attracting concerns from epidemiologists.

As a GIS tool for delineating spatial point data, SDE is mainly determined by three

measures: average location, dispersion (or concentration) and orientation. In

addition  to  the  traditional  mean  center  (gravity  of  the  distribution)  suggested  by

Lefever (1926), weighted mean or median could also be the alternative options,

together with the weighted covariance of observations which evolve into some

variants  of  the  SDE (Yuill 1971).  It  is  worth  noting  that  SDE  also  lays  the

foundation for many other advanced models, such as the minimum covariance

determinant estimator (MCD) (Rousseeuw and Driessen 1999, Hubert and

Debruyne 2009) for outlier detection and elliptic spatial scan statistic (Kulldorff et

al. 2006) employed in spatiotemporal disease surveillance. From the perspective of

practical implementation, Alexandersson (2004) once  wrote  an ellip command for

graphing the confidence ellipses in Stata 8, with the latest version being Stata 13.

Although SDE has extensive applications in various fields since 1926, it still has not

been correctly clarified sometimes. For instance, from the latest resources in
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ArcGIS Help 10.1 describing how standard deviational ellipse works, it is stated

that one, two and three standard deviation(s) can encompass approximately 68%,

95% and 99% of all input feature centroids respectively, supposing the features

concerned follow a spatially normal distribution. However, this content

corresponds to the well-known 3-sigma rule with respect to univariate normal

distribution, rather than the bivariate case. Worse still, there is even an attached

illustration therein depicting several bivariate geographical features located within a

planar map. Obviously, such confusing interpretation may mislead the GIS users to

believe the univariate 3-sigma rule remains valid in two-dimensional Euclidean

space, or even higher dimensions.

For fully clarifying the implications of SDE, section 3.2 below devotes to firstly

summarizing two existing models of deriving the SDE’s calculation formulas, and

secondly proposing a novel approach for constructing the same SDE based on

spectral decomposition of the sample covariance, by which SDE concept is further

extended into higher dimensional Euclidean space, named standard deviational

hyper-ellipsoid (SDHE). Most of all, rigorous recursive formulas are then derived

for calculating the confidence levels of scaled SDHE with arbitrary magnification

ratios in any dimensional space. Besides, an inexact-newton method based iterative

algorithm is also proposed for solving the corresponding magnification ratio of a

scaled SDHE when the confidence probability and space dimensionality are

pre-specified. Finally, synthetic data is employed to generate the 1-3 multiple SDEs

and SDHEs in two and three dimensional spaces, respectively. Meanwhile,
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exploratory analysis by means of SDEs and SDHEs are also conducted for

measuring the spread concentrations of Hong Kong’s H1N1 in 2009.

3.2 Standard Deviational Ellipse

First two subsections below devotes to a brief summarization of two classical

approaches to generating the standard deviational ellipses in 2D. After that, a novel

approach based on spectral decomposition of the covariance matrix is introduced

which achieves the same calculation formula of SDE. This spectral decomposition

based approach will be adopted for constructing the generalized standard

deviational (hyper-)ellipsoids into higher dimensional Euclidean space in the next

section 3.3.

3.2.1 Exploring extreme standard deviations

A standard deviational ellipse delineates the geographical distributing trend by

summarizing both dispersion and orientation of the observed samples. There are

already several approaches to obtaining the computational formula of SDE. The

upcoming discussed method presented by Yuill (1971) was actually a melioration of

Lefever’s original model (Lefever 1926) despite suffering from certain criticisms

(Furfey 1927).

Suppose a series of independent and identically distributed samples ,i ix y ,

1, ,i n  are drawn from a Gaussian population. A standard deviational ellipse

can be determined according to the following steps. Firstly, make the sample mean
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as the origin of new axes, thereby simultaneously centering all the observed

samples,

1

1 n

i
i

x x
n

,
1

1 n

i
i

y y
n

; i i

i i

x x x
y y y

.            (3.1)

Next, introduce a rotation matrix
cos sin
sin cos

G  with an angle  in the

clockwise direction as illustrated in Figure 3.1. All observed sample points are then

transformed into a new planar coordinate system,

sin coscos sin
cos sinsin cos

i i i i i

i i i i i

x x x y x
G

y y y y x
.      (3.2)

Figure 3.1 An ellipse rotated with an angle  in clockwise direction

The maximum likelihood estimator (Li and Racine 2007) of the rotated samples’

variance yields,

y

xO
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2 22

1 1

2 22

1 1

1 1 sin cos

1 1 cos sin

n n

x i i i
i i
n n

y i i i
i i

x y x
n n

y y x
n n

.            (3.3)

Consequently, corresponding angles for producing the maximum and minimum

standard deviations can be obtained by equating any derivative of the above

variance estimators w.r.t.  to be zero (Yuill 1971, Wang et al. 2008), that is

2
2 2 2 2

1

2 sin cos cos sin sin cos 0
n

x
i i i i

i

d y x y x
d n

.

According to Vieta's formulas, the general solution to the above quadratic equation

is then given by

2 2
2 2 2 2

1 1 1 1 1

1

4
tan

2

n n n n n

i i i i i i
i i i i i

n

i i
i

x y x y x y

x y
.        (3.4)

Each of these two angles corresponds to the maximum and minimum deviation in

the new coordinate system, respectively. By merging equation (3.4) into equation

(3.3), the major axis and minor axis of SDE can be determined for measuring the

dispersion distribution of original observations.

It should be noticed that rotating  equation (3.3) around the sample mean

center defines an implicit locus curve (Lefever 1926). However, such a closed curve

is not an ellipse (Furfey 1927),  but  actually  the  standard  deviation  curve  (SDC)

nominated by Gong (2002) with its expression as follows,

2
x
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22 2 2 2 2 22x x y yx y x xy y .               (3.5)

Here  is the correlation coefficient between x  and y  coordinates. For

seeking  a  striking  contrast  between  SDC  and  SDE,  a  numerical  experiment  is

conducted, employing 500 synthetic points extracted from a bivariate normal

variable with mean T0,0  and covariance matrix
0.9 0.4
0.4 0.5

C . Based on

these sampling points, contradistinctive profiles of 1-3 multiple SDC and SDE are

illustrated in Figure 3.2. Conspicuously there are 4 tangency points for each

corresponding pair, and SDC appears occupying an overall larger area then SDE.

Figure 3.2 One synthetic experiment of SDC and SDE constructed using 500

sampling points from a bivariate norm distribution
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3.2.2 Optimal linear central tendency measure

Another method described by Cromley (1992) aims to explore such an optimal

linear central tendency measure, 0ax by c , which passes through the

distributed samples. This is equivalent to an optimization problem with the

objective of minimizing the summation of total perpendicular distances from any

observation point to this line subject to the constraint of 2 2 1a b , which

guarantees the scale invariance, namely,

2

1
2 2

min

. . 1

n
i ii

ax by c

s t a b
.                   (3.6)

The above constrained optimization problem can be solved by Lagrangian

multiplier method, yielding the optimal linear central tendency which precisely

coincides with the direction of the principal axis of SDE. Therefore, solution to

the above optimization arrives at exactly the same calculation formulas of SDE as

the aforementioned first approach.

3.2.3 Spectral decomposition of covariance matrix

Using symbols introduced in equation (3.1), this subsection devotes to presenting

another approach for constructing SDE by means of spectral decomposition of

the sample covariance matrix, which is formulated as follows,
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2

1 1

2

1 1

var cov , 1
cov , var

n n

i i i
i i
n n

i i i
i i

x x y
x x y

C
y x y n

x y y
,         (3.7)

where 2 2

1 1

1 1var
n n

i i
i i

x x x x
n n

,
1 1

1 1,
n n

i i i i
i i

cov x y x x y y x y
n n

and 2 2

1 1

1 1var
n n

i i
i i

y y y y
n n

.

It must be said there are two common textbook definitions of variance and

covariance, as well as the standard deviation. One is the unbiased estimator while

the other one is the maximum likelihood estimator proved by Li and Racine (2007).

Their calculation formulas differ only in 1n  versus n  in the divisor. To keep

consistent with the previous equations involved, the latter estimator is employed

hereafter.

After spectral decomposition of the sample covariance (3.7), SDE can be

constructed by assigning square roots of eigenvalues as the lengths of its

semi-major and semi-minor axes (Härdle and Simar 2012), to which being parallel

by the corresponding eigenvectors. Solving of the characteristic polynomial

equation of covariance matrix C , namely,

2

1 1

2

1 1

1 1

det det 0
1 1

n n

i i i
i i

n n

i i i
i i

x x y
n n

f I C
x y y

n n

,       (3.8)

yields the lengths of the SDE’s semi-major and semi-minor axes, which are
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1
22 2

2 2 2 2

1 1 1 1 1
1,2

4

2

n n n n n

i i i i i i
i i i i i

x y x y x y

n
;     (3.9)

Meanwhile,  one  group  of  base  vectors  from  the  characteristic  vector  space

satisfying equation (3.8) can be obtained by

T
2 2

2 2 2 2
1,2

1 1 1 1 1 1

4 , 2
n n n n n n

i i i i i i i i
i i i i i i

v x y x y x y x y . (3.10)

Thus, it takes no effort to verify that orientation angles intersected by the principle

axes of SDE and the planar coordinate axes are exactly the same, namely, the

optimal angle appeared in equation (3.4).

In  conclusion,  the  above  three  approaches  actually  all  calculate  the  same  SDE

according to formulas (3.1), (3.4) and (3.9), respectively, which lays the theoretical

basis for SDE to be one functional component in the Spatial Statistics toolbox of

ArcGIS 10.1.

3.3 Standard Deviational Hyper-Ellipsoid

In section 3.2, three approaches for constructing SDE have been summarized and

compared upon the distributed samples in two-dimensional space. This section will

generalize the SDE concept into higher dimensional Euclidean space, yielding the

standard deviational hyper-ellipsoid (SDHE), be means of the spectral
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decomposition of covariance matrix. Meanwhile, rigorous mathematical derivations

attempt to figure out the relationship between the confidence levels characterizing

the probabilities of random scattered points falling inside a scaled SDHE and the

corresponding magnification ratio under the assumption that samples follow the

Gaussian distribution.

3.3.1 Construction of a Standard Deviational Hyper-Ellipsoid

Suppose nS R  be an n-dimensional Gaussian random vector, that is

~ ,S N C  with its probability density function

T 1
1

2 2

1 1exp
22

nf s s C s
C

.         (3.11)

And 1 2, , , mS S S  represent m  independent and identically distributed samples

extracted from population S . In general, the maximum likelihood estimators (Li

and Racine 2007) for parameters  and C  employed in equation (3.11) can be

given by

1

1ˆ
m

i
i

S
m

, T

1

1ˆ ˆ ˆ
m

i i
i

C S S
m

.            (3.12)

Since covariance matrix C  is real symmetric (positive semi-definite), there exists

an orthogonal matrix Q  (formed by eigenvectors of C ) complying with the

spectral decomposition,

TC QDQ .                        (3.13)
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Without loss of generality, suppose all the main diagonal elements of

diag iD , 1,2, ,i n  have  been  sorted  in  descending  order,

1 2 n . Due to the symmetry of covariance matrix C , its spectral

decomposition is actually equivalent to its singular value decomposition which

outputs a series of automatically sorted eigenvalues (singular values). As thus,

mapping a unit sphere by square root of covariance matrix, 1
2C , yields a standard

hyper-ellipsoid, with eigenvalues to be its principle semi-axes oriented by their

corresponding eigenvectors (Trefethen and Bau III 1997).

Proceeding in this way, now comes to such an interesting question: how could this

SDHE defined by equation (3.13) be represented graphically? This can be figured

out by means of the Mahalanobis transformation (Härdle and Simar 2012) which is

defined as

1 1 T2 2T C S QD Q S .              (3.14)

It can be verified that ~ 0, nT N I . In other words, Mahalanobis transformation

eliminates correlation between the variables and standardizes each variable with

variance. Apparently, random vector T ’s SDHE happens to be a unit sphere

(
2

1T ) in view of its isotropic distribution along any direction. Therefore,

SDHE of original random vector S  can be constructed from the transformation

of a unit sphere by firstly stretching with a ratio of i  along each axis

successively, then rotating the ellipsoid by orthogonal matrix Q  and a final

translation of distribution center  according to the following inverse
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Mahalanobis transformation,

1 T2S QD Q T .                     (3.15)

3.3.2 Confidence level analysis of SDHE

This section settles the relationship between confidence levels characterizing the

probabilities of random scattered points falling inside the scaled ellipsoids and the

corresponding magnification ratio of such an SDHE by means of the rigorous

mathematical formulas derivations.

The following scalar quantity

T2 1r S C S ,                   (3.16)

is known as the Mahalanobis distance of the vector S  away from its mean . By

merging equations (3.13) and (3.14) into equation (3.16), it can be easily perceived

that  the  above  defined  quadratic  function  is  exactly  the  magnified  SDHE  with  a

magnification ratio of r  and follows the chi-square distribution with n  degrees

of freedom,

2 2
,Pr n pr p .                      (3.17)

Table lookup of a tabulated chi-square distribution is always adopted as the

traditional approach to acquire the exact confidence levels. Therefore, exploring to

what extent the scattered samples obeying a Gaussian distribution is equivalent to

examining whether they are falling inside such a scaled ellipsoid defined in terms of
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equation (3.16). Actually, calculation of the cumulative distribution function of

chi-square distribution for a prescribed value x  and the degrees-of-freedom n ,

namely,
2 2

2

1

0
22

n t

n

x

n

t eF x n dt , is eventually transformed to calculate the gamma

density function with parameters 2n  and 2 in computer implementation, since

chi-square distribution can be perceived as one child of the gamma distribution

family with two varying parameters. Knüsel (1986) has proposed a numerical

algorithm with some supplement functions and a specified relative accuracy, which

has been adopted in many modern statistical softwares, such as Matlab and R

language. However, even using this algorithm, computation of the gamma density

function is still extremely complex.

As mentioned above, SDE serves as a versatile spatial statistical tool for measuring

the geographical distribution of features. Because of this, it has been embedded

into many commercial software, like ArcGIS and Stata (Alexandersson 2004). As a

result, the algorithm’s practicability including the simplicity, speed and precision are

of particular concern, which also originally stimulates us pursuing for an innovative

approaches. In the subsequent portion, recursion formulas are derived for

calculating the confidence levels and an iterative algorithm is proposed for solving

the corresponding magnification ratio of the scaled ellipsoids after the prescribed

scaling ratio or confidence level is given.
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3.3.2.1 The confidence level defined by a scaled SDHE

Here an innovative recursion formula is presented by means of the multiple

integral  method  for  calculating  the  confidence  level nP r  of  a  scaled  SDHE

specified with a magnification factor r  in n  dimensional space so as to estimate

the distribution of a random vector ~ ,S N C ,  which  is  equivalent  to  the

confidence level value of ~ 0, nT N I , whose confidence region is exactly a

sphere as explained in section 3.1; namely,

T 1 2 T 2Pr PrS C S r T T r .

Therefore, for 1D case,

2
2T 2

1 1 1
1Pr
2

xr

r
P r X X r e ds

2 222

2 20 0

2 2 erf
rxr tx re d e dt ;       (3.18)

where the error function is defined as
2

0

2erf
x tx e dt , with another name

being Gauss error function (Andrews 1992), which is a non-elementary function of

sigmoid shape constantly occurring in probability, statistics and partial differential

equations. As a matter of fact, equation (3.18) formulates the well-known 3-sigma

rule of the most common normal distribution as illustrated in Figure3.3.
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Figure 3.3 The confidence intervals correspond to 3-sigma rule of the normal

distribution

For 2D case,

2 2
1 2

2

2 2 2
1 2

2
T 2

2 2 2 1 2
1Pr
2

x x

x x r

P r X X r e dx dx

2 2
2 2

2

0 0

1 1
2

r rr
re drd e ;                  (3.19)

Hereinto, polar coordinate transformation brings into the existence of the

penultimate equal sign above. Next, the following Figure 3.4 demonstrates the

confidence ellipses corresponding to 1-3 multiples of SDEs in red, blue and green,

respectively.

x

f(x)

68.27%
95.45%
99.73%

+3+2+--2-3
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Figure 3.4 The confidence regions corresponds to 1-3 multiples of SDEs

It’s worth noting that an inverse formula here exists,

2ln 1r p ,                      (3.20)

for determining the magnification factor r  which corresponds to a prescribed

confidence level.

Before proceeding to the general formulas applicable in n  dimensional space, we

introduce the cubature formula (Huber 1982) firstly,  which  calculates  the  volume

of the n -sphere of radius r , with the quantity proportional to its n th power as

follows,

2

2 1

n

n
n n

V r r .                     (3.21)

Accordingly, for a general dimensional number 3n ,
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Hereinto,  is the gamma function, with some useful properties: 1
2 ,

1 1  and 1x x x . It should be noted that the first  comes

according to the results for 2D case in terms of equation (3.19) and the second

follows equation (3.21) representing a sphere’s volume with radius r  and

dimensionality of 2n . Therefore, equation (3.22) totally characterizes the

confidence probability for an arbitrary magnified SDHE with any specified

magnification factor r  in the form of a recursive formula applicable in any

Euclidean space with dimensionality greater than 2. Similar findings regarding the

confidence ellipse in terms of dimensionality n  less than 3 have been provided in

the appendix section of Smith and Cheeseman (1986)’s  article.  However,  to  our

knowledge, there is no precedent of such analytical expression of confidence levels
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for an ellipsoid in higher dimensional Euclidean space.

Computation of confidence levels using equation (3.22) is rather simple and

efficient. There is only some algebraic manipulations and calculation of the

supplement error function erf x  if n  is assigned to be an odd number. For

better quantitatively perceiving the confidence levels of these scaled ellipsoids, the

following Table 3.1 lists probability values corresponding to the scaled SDHEs

which  are  magnified  with  different  integral  multiples  from  1  to  7  and  the  space

dimensionality not exceeding 10.

Table 3.1 Confidence levels of scaled SDHE vary with different magnification

factors in spaces with the dimensionality not exceeding 10

Dimensionality
Magnification factor

1 2 3 4 5 6 7

1 0.6827 0.9545 0.9973 0.9999 1.0000 1.0000 1.0000

2 0.3935 0.8647 0.9889 0.9997 1.0000 1.0000 1.0000

3 0.1987 0.7385 0.9707 0.9989 1.0000 1.0000 1.0000

4 0.0902 0.5940 0.9389 0.9970 0.9999 1.0000 1.0000

5 0.0374 0.4506 0.8909 0.9932 0.9999 1.0000 1.0000

6 0.0144 0.3233 0.8264 0.9862 0.9997 1.0000 1.0000

7 0.0052 0.2202 0.7473 0.9749 0.9992 1.0000 1.0000

8 0.0018 0.1429 0.6577 0.9576 0.9984 1.0000 1.0000

9 0.0006 0.0886 0.5627 0.9331 0.9970 1.0000 1.0000

10 0.0002 0.0527 0.4679 0.9004 0.9947 0.9999 1.0000
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Observed from Table 3.1, 1-3 SDE(s) can encompass approximately 39.35%, 86.47%

and 98.89% of all input feature centroids assuming these features follow a planar

Gaussian distribution. It is evidently different from the content of our familiar

3-sigma rule. This finding can be conducive to clarify the confusing interpretation

of confidence level regarding directional distribution in ArcGIS Help 10.1.

3.3.2.2 The corresponding magnification factor to a prescribed confidence level

Conversely, what size of a magnified SDHE can encompass the scattered features

with a prescribed confidence probability? In other words, How to find the

magnification factor r  corresponding to a specified confidence level p  in n

dimensional space? This question can be answered by solving the following

equation,

nF r P r p ,                      (3.23)

with its derivative to be

2
2

2
2

2
3 2

1
2

2

2

2
2

2

1

2

2 3

r

r

r
n

n
n

n

r e
n

e n

F r P r re n

P r r n n

.        (3.24)

Thus, the approximate scaling ratio r  can be solved according to the following

iterative algorithm, which is put forward based on Newton method with Armijo

rule (Kelley 2003).
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Algorithm 3.1 0 , , , ,a rr n pnsolg

Evaluate 0 0nF r P r p ; a r F r .

While F r Do

 Calculate the Newton direction 1d F r F r  using (3.23)~(3.24), and

set 1 .

While 1 ( )F r d F r Do

 where 1 1
10 2,  is the reduction factor of the line search

computed by minimizing a quadratic polynomial
2

F r d .

End While

r r d

End While

Input arguments for this algorithm are the initial iterate 0r  with default value

1n  which is an approximation of inflection point of the S-shape cumulative

density function, space dimensionality n , confidence level p , relative and

absolute termination tolerances machinea r  which need to be prescribed

beforehand. Approximate solution with high accuracy can be soon obtained after a

few iterations using this algorithm. Table 3.2 has tabulated the magnification ratios

of scaled SDHEs for some commonly used confidence levels with space

dimensionality not exceeding 10.
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Table 3.2 Magnification ratios of scaled SDHE corresponding to different

specified confidence levels with space dimensionality not exceeding 10

Dimensionality
Confidence Level (%)

80.0 85.0 90.0 95.0 99.0 99.9

1 1.2816 1.4395 1.6449 1.9600 2.5758 3.2905

2 1.7941 1.9479 2.1460 2.4477 3.0349 3.7169

3 2.1544 2.3059 2.5003 2.7955 3.3682 4.0331

4 2.4472 2.5971 2.7892 3.0802 3.6437 4.2973

5 2.6999 2.8487 3.0391 3.3272 3.8841 4.5293

6 2.9254 3.0735 3.2626 3.5485 4.1002 4.7390

7 3.1310 3.2784 3.4666 3.7506 4.2983 4.9317

8 3.3212 3.4680 3.6553 3.9379 4.4822 5.1112

9 3.4989 3.6453 3.8319 4.1133 4.6547 5.2799

10 3.6663 3.8123 3.9984 4.2787 4.8176 5.4395

Seen from Table 3.2, the corresponding magnification factors become larger and

larger along with the increase of space dimensionality, indicating that only bigger

magnified ellipsoids can maintain the same prescribed confidence level in higher

dimensional space compared with the counterpart in lower dimensional space.

3.4 Experiments & Applications

3.4.1 Synthetic data experiments

In this section, two groups of synthetic data are employed to generate the 1-3

multiple SDEs and SDHEs in two and three dimensional spaces, respectively, to

depict their aggregation extent and demonstrate the relationship between the scaled
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ellipse (or ellipsoid) size and their corresponding confidence levels.

3.4.1.1 2D case

Suppose that a series of scattered points 2
iX R  are randomly generated from a

two  dimensional  Gaussian  vector,  that  is ~ ,iX N C . The following example

employs 100 points with mean
T2, 3 , and covariance

0.9 0.2
0.2 0.5

C .

Overlaying upon these scattered samples, 1-3 multiple SDEs are then created in

terms of equations. (3.7)~(3.10) encompassing their geographic distribution with

corresponding confidence degrees listed in Table 3.1.

For a better visualization of SDEs in computer imaging, the observed samples can

be  overlaid  by  a  warning  coloration,  for  example  a  (gradually  varied)  red  layer

processed with a transparency function. Intuitionally it should be inversely

proportional to the confidence probability density of the features. By incorporating

equation (3.16) into (3.11), an desirable transparency function can be of the

following form,

2
21
r

f e .                        (3.25)

This function can also be considered as a projection of the Gaussian probability

density  function  upon  the  sample  space.  In  the  end,  Figure  3.5  presents  a

visualization of 1-3 multiple SDEs for these 2D scattered points.
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Figure 3.5 Visualization of 1-3 multiple SDEs for 2D scattered points

3.4.1.2 3D case

Once again, suppose that a series of scattered points 3
iX R  are randomly

generated, following 3D Gaussian distribution, that is ~ ,iX N C . The

following example employs 600 points with mean T1, 3, 2 , and covariance

8 2 1
2 8 2

1 2 5
C . Based on these data samples, Figure 3.6 exhibits 1-3 multiple

SDEs constructed in terms of equations. (3.12)~(3.15), encompassing their

geographic distribution with corresponding confidence degrees as listed in Table

3.1.
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Figure 3.6 Visualization of 1-3 multiple SDEs for 3D scattered points

3.4.2 Spreading analysis of H1N1 infections

The spread of epidemic diseases causes both very serious life risks and

social-economic risks. For example, the latest epidemic outbreak in Hong Kong

was Swine Flu Virus A (H1N1) in 2009 causing hundreds of deaths and making

many residents in fear of fatal infection.

Geographic information science (GIS) serves as a common platform for the

convergence of disease surveillance activities. As one of its significant functional

components,  SDE,  as  well  as  SDHE,  can  be  served  to  understand  how a  disease

cluster together with its evolutionary trend, thereby assisting the epidemiologists or

public health officials to raise more effective strategies so as to control the disease

spread.
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For  the  epidemic  data,  a  total  of  410  human  swine  influenza  infected  cases  are

gathered  with  epidemiological  date  and  address  from  1st  May  to  26th  June  on  a

daily basis released by Center of Health Protection (CHP), Hong Kong. Addresses

of infected buildings were then geocoded into the WGS84 coordinate for the

subsequent  mapping.  Exploratory  analysis  by  1-3  multiple  SDEs  was  then

conducted in order to keep the focus limited to only those areas with the most

occurrences of infected cases (Figure 3.7). Although the resulting output map is

simple,  yet  it  conveys  a  strong  message  about  where  is  the  most  severe  region  of

H1N1 occurring.

Figure 3.7 Exploratory analysis by 1-3 multiple SDEs for Hong Kong’s H1N1

Further, 1-3 multiple SDHEs (in three-dimensional space) were employed for

highlighting the spatiotemporal concentrations of H1N1 infections (Figure 3.8).
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Apparently, most of the confirmed cases appeared densely during late June in time

and converged on both sides of Victoria Harbor, including the Kowloon Peninsula

and Hong Kong Island, in space.

Figure 3.8 Exploratory analysis by 1-3 multiple SDHEs for Hong Kong’s H1N1

3.5 Conclusions

In this chapter, confidence analysis of standard deviational ellipse (SDE) and its

extension into higher dimensional Euclidean space has been comprehensively

explored from the origin, formula derivations to algorithm implementation and

applications. Firstly, two existing models are summarized and one novel approach is

proposed based on the spectral decomposition of sample covariance for calculating

the same SDE. After that, the SDE concept is naturally generalized into higher

dimensional Euclidean space, namely the standard deviational hyper-ellipsoid
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(SDHE).  Then,  rigorous  recursive  formulas  were  derived  for  calculating  the

confidence levels of scaled SDHE with arbitrary magnification ratios in any

dimensional space. Such a formula can be employed for tabulating the confidence

levels in relation to the magnification ratio and the space dimensionality more

efficiently since the results obtained in low dimensional space can still be repeatedly

utilized in subsequent higher dimensional spaces, whereas the traditional approach

of calculating the chi-square distribution is mainly relying on the complex

computation of gamma density function. Besides, an inexact-newton method based

iterative algorithm is also proposed for solving the corresponding magnification

ratio of a scaled SDHE when the confidence probability and space dimensionality

are pre-specified, thereby making a commutatively computation of either the

necessary  scaled  ratio  or  the  confidence  level  of  SDHE  when  one  of  these  two

parameters is given in any dimensional space. These results provide a more efficient

manner to supersede the traditional table lookup of tabulated chi-square

distribution.

Finally, synthetic data is employed to generate the 1-3 multiple SDEs and SDHEs.

And  exploratory  analysis  by  means  of  SDEs  and  SDHEs  are  also  conducted  for

measuring the spread concentrations of Hong Kong’s H1N1 in 2009.

It is worth noting, standard deviational ellipses (or the SDHE) were derived under

the assumption that observed samples follow the normal distribution. Therefore,

the SDE tool must be employed with a certain degree of caution when measuring
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the geographic distribution of concerned features. Particularly, delineation of an

area concerned by SDE may not be representative of the hotspot boundaries, but

produce ambiguous outcomes when distribution of features is multimodal (Yuill

1971).

Fortunately, the aforementioned normal distribution assumption is no longer

indispensable for the confidence ellipses owning to considerable progresses in the

last three decades. Nonetheless, these shining ideas emerged during the SDE

derivation process still sparkle for prompting innovative advanced models, among

which the elliptically contoured distribution (Fang 2004) attracts wide attention,

with its contours of constant density being ellipsoids, that is T 1x C x

constant. Amazingly, a scaled SDHE in terms of equations. (3.12)~(3.15) is actually

depicted by this formulation, which also lays core foundation for many of the

current popular method, such as the minimum covariance determinant estimator

(MCD), multivariate kernel density estimation and support vector machine (SVM)

with the Gaussian kernel.
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Chapter 4 Mathematical Approaches to Disease Spread

Mathematics has long been perceived to be an important tool for characterizing

the spreading patterns of infectious diseases. In the following, we firstly give an

overview of compartmental models, the traditional approach to modeling dynamics

of infectious disease, and then the meta-population model for characterizing the

spatiotemporal spreading dynamics of disease infection. Besides, the typical

reaction-diffusion models are thoroughly explored with its detailed computer

implementation procedures using Runge-Kutta method. As illustrated, these

methods lay theoretical foundations for addressing public health challenges and

have the potentials of being coupled with powerful computational methods to

simulate the real-time invasion process and predict the future evolutionary trend of

infectious disease.

4.1 SIR Compartmental Model

In this  section,  we begin with the SIR model  as a starting point for analyzing the

temporal evolution behavior of an infectious disease into a well-mixed population.

This basic epidemic model is based on dividing the host population into several

compartments, each containing individuals of identical characteristics in terms of

their status with respect to a disease. In the SIR model, there are three

compartments,

• Susceptible: those who have no immunity to the infectious agent, therefore might
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become infected if exposed;

• Infectious: those currently infected and can potentially transmit the infection to

susceptible individuals they contact;

• Removed: individuals who confer immunity to the disease after recovery, and

consequently could not be involved in the transmission dynamics any more.

It is customary to denote the numbers of individuals in each of these

compartments as S , I  and R , respectively. After compartmentalization of the

host population, an individual potentially transit his/her status from susceptible to

infected when in contact with infected persons, and a transmission may also occur

from an infected person to a recovered or immune person. Therefore, such a

one-way only disease progress can be represented schematically as:

S I R® ® .

Let ( )S t  denote the number of individuals who are susceptible to the disease at

time t  (measured usually in days), ( )I t  the number of infected individuals and

( )R t  the number of individuals who are immune to the same infection strain

hence they cannot be infected again during the outbreak. In a more general context,

( )R t  may refer to either be immune, isolated or deceased individuals.

When  a  disease  breaks  out,  individuals  may  be  infected  and  ultimately  recovered,

and such a dynamic evolution process from one compartment to another can be

formulated in terms of a set of differential equations that specify how the sizes of
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the compartments change over time.

,

,

.

dS
SI N

dt
dI

SI N I
dt
dR

I
dt

b

b g

g

= -

= -

=

                   (4.1)

Here parameter b  is the transmission rate (per capita). The above first equation

describes the disease transmission as a result of contacts between susceptible and

infectious persons. Each infectious individual transmits the pathogen to b

susceptible individual per unit time; nevertheless, new emerging infection arises

only when the contact is with a susceptible person in terms of the probability

S N  under an implicit assumption that the population is homogenous and

randomly mixing. Besides, the incubation time has been ruled out meaning that a

susceptible becomes infectious immediately once being infected. The other

parameter g  is the recovery rate, which corresponds to the inverse of the average

of an exponentially distributed time to recovery, thereby making 1 g  to be the

mean infectious period (average duration of the infection).

In addition, there is further assumption that no other entry or exit of population

such as birth, natural death or migration from the compartments will be involved,

i.e. S I R N+ + =  for all time t . Correspondingly, if we define three groups

as fractions (or densities) of the total population N  in lower case, /s S N= ,

/i I N=  and /r R N=  thereby ensuring 1s i r+ + = , the model (4.1) can

have even more concise form
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ds
si

dt
b= - , di

si i
dt

b g= - , .
dr

i
dt

g=              (4.2)

The formulation of above dynamic system can be completed with the specification

of appropriate initial conditions
0

s ,
0

i  and
0

r . Often, epidemics are modeled

with an introduction of a single infectious individual into a society where everyone

else is susceptible, meaning that
0

1 /s N= ,
0 0

1i s= -  and
0

0r = .

By taking the ratio of the first two equations, we obtain 1
di
ds s

g
b

= - + , which

can be integrated immediately to yield

( )0 0 0
lni i s s s sg b= + - + .                 (4.3)

This gives an exact expression for characterizing the dynamic density i  as a

function of s . Figure 4.1 shows the instantaneity interactive flexible plots of ( )i s

according to various values of parameters b  and g  depicting the phase portrait

solutions.
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Figure 4.1 Phase portrait solutions of the basic SIR model

According to (4.2) , the implicit relationship between the infectious and susceptible

compartmental population for a newly invading infectious disease with initial

moment begins at the bottom right corner of the graph (
0

1s  and
0

0i ).

These dynamic curves are labeled by the basic reproduction ratio R b g= .

Although the exact solution (4.3) for phase portrait has been obtained, it is

unfortunately not possible to deduce an analytical formula for describing each

compartmental densities
t

s ,
t
i  and

t
r  trajectories over time, even for this

extremely simple model. Solving the system of differential equations can be

achieved numerically by using Euler method, or even the more precisely

Runge-Kutta-Fehlberg (denoted RKF45) method (Lapidus and Pinder 2011).
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If everyone is initially susceptible ( ( )0 1s = ), then a newly introduced infected

individual  can  be  expected  to  infect  other  people  at  the  rate Nb  during  the

expected infectious period 1 g .  Thus,  this  rst  infective  individual  can  be

expected to infect
0

R Nb g=  individuals. The number
0

R  is called the basic

reproduction number which is unquestionably one of the most important quantity

to consider when analyzing any epidemic model for an infectious disease.

Particularly,
0

R  determines whether an epidemic can occur at all. It actually varies

with the evolution of the disease over time, which indicates how the risk grade is of

the current disease.

Figure 4.2 Example of SIR models for charactering the temporal evolutionary
behavior

Extended compartmental model with various modifications (including birth and

death rates, migration, exposed compartment, vaccination campaign and further
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age-structured models) have proven extremely useful in analyzing epidemics and

particularly for modeling the spread of moderately to highly infectious disease in a

larger and well-mixed society.

4.2 Meta-Population Model

Intuitively,  disease  transmission  can  be  predominantly  perceived  to  be  a  localized

process in most circumstances. For directly transmitted diseases, transmissions

most likely occur between individuals with the most intense interaction. In addition,

movement of individuals may facilitate the geographical spread of infectious

diseases. The population distribution and the interaction patterns linking different

groups are two important factors to consider that influence the infectious disease

spread across space and time.

This  chapter  is  mainly  concerned  with  elucidating  in  more  detail  some  typical

population-based dynamic models. Before the late 1980s, rigorous analytical results

for spatial epidemiological models remain rare (Keeling and Rohani 2008), however,

the increasing ease of access to computational power has turned the simulation of

such models into reality (Levin et al. 1997).

Most of the spatial models make provisions upon spatial scale of interaction and

the scale at which hosts are aggregated. However, it operates difficult in practice to

choose a “correct” scale, because creating many subpopulations of fine scale leads

to computational prohibition, whereas subdividing the population at large scale
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may eliminate the spatial effects of primary interest. Therefore, answer to exploring

the optimal, most informative scale (Keeling and Grenfell 1997, Pascual et al. 2001)

should be based on sound epidemiological knowledge.

A meta-population model is a particular type of multi-group model in which a

population is distributed into a collection of n  spatially discrete groups that are

linked to one another. Most often it is assumed that the individuals within a group

are well-mixed and the groups of subpopulations are coupled to one another in

some way. Coupling terms are used to represent the way that infection can be

spread between groups. The spatial scale represented by the groups depends on the

context of the study. For example, Lai et al. (2013) employed an environmental and

social variations incorporated SEIR model upon the partitioned grids of HKSAR

region consisting of 500  500 metric cells, and Brockmann and Helbing (2013b)

explored the hidden geometry of complex, network-driven contagion phenomena

using the global air-traffic lines. A meta-population model may also be regarded

abstractly as a graph, with each population patch as a vertex of the graph and each

travel  route  between  two patches  as  an  edge  of  the  graph.  Since  travel  may  be  in

either direction, the graph is bidirectional. The population of a patch is said to have

direct access to another patch if there is a route linking the two patches. If there is

a sequence of more than one route to another patch, the population is said to have

indirect access to the second patch. For simplicity, we will always assume that a

meta-population is fully connected, that is, that there is a route linking every pair of

patches.
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Although meta-populations are one of the simplest spatial models, they are also

one of the most applicable to modeling many human diseases like SARS or

pandemic influenza A (H1N1). When used in studying the geographic spread of

infectious diseases, these models do not incorporate explicit mobility among

groups; rather, they attempt to mimic the effect of explicit mobility by defining an

appropriate contact matrix that represents the strength of contact within and

between groups (Brockmann and Helbing 2013a). In recent studies, the

meta-population model is generally incorporated with other models involving

description of the infectious diseases dynamics (Lai et al. 2013),  such  as  the  SIR

model. Recall that the generalized SIR model with demography can be formulated

as follows, with differences compared with the basic SIR is the introduction of the

population births and deaths.

,

,

.

N SdS SI N
dt
dI SI N I
dt
dR

I

d
RI

t

                    (4.4)

The rate at which individuals (in any epidemiological class) suffer natural mortality

is  given by  and the population’s crude birth rate is denoted by . For brevity,

these  two  rates  are  always  supposed  to  be  the  same  so  as  to  ensure  the  total

population size does not change through time ( 0dS dI dR
dt dt dt ).

A deterministic SIR cross-coupled meta-population model can be written to be the

following differential equations:
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,

,

,

i
i i i i i i

i
i i i i i

i
i i i i

dS N S S
dt
dI S I I
dt
dR I R
dt

                    (4.5)

where the subscript i  defines parameters and variables related to subpopulation i .

Parameters i  and i  denote the birth rate and mortality rate, respectively.

Besides, parameter i  is still the recovery rate. The infection force, i ,

incorporates transmission from both the number of infected within subpopulation

i  and the coupling to other subpopulations. Demographic and epidemiological

parameters may vary within subpopulations, re ecting differences in the local

environments (Finkenstädt and Grenfell 1998, Broadfoot et al. 2001). In all honesty,

meta-populations provide a useful framework for modeling disease dynamics for

hosts which can be naturally partitioned into several spatial sub-units.

The relationship between infection force for population i  and the number of

infectious individuals in population j  depends on the transmission mechanism of

and between the two populations. In general terms, the infection force is written as

a sum:

j
i i ij

j i

I
N

,                         (4.6)

where parameter i  is still the transmission rate (per capita), and the coef cients,

, measuring of the strength of interaction between populations. Speci cally, ij

measures the relative transmission rate to subpopulation i  from subpopulation j .
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An important aspect of this formulation concerns the precise scaling with

population size in the expression of i . The equation (4.6) contains iN  in the

denominator, which re ects the implicit assumption that transmission takes place

in population i , presumably resulting from the movement of an infectious

individual from population j . Alternatively, the transmission due to a susceptible

individual from population i  picking up the infection during a temporary visit to

population j  would be incorporated by placing jN  in the denominator.

Therefore, the force of infection within a subpopulation can be expressed as a

weighted sum of the prevalence in all populations.

The meta-population models serve as spatial models which are usually high

dimensional and contain many parameters. Simulations can easily be performed

with parameters relevant for a particular disease with given demography and spatial

structure. These models assume that each group population is sufficiently large so

that a deterministic model is appropriate and there is homogeneous mixing with

each subpopulation. Stochastic effects may be significant when group populations

are small (Aparicio et al. 2002).

4.3 Reaction-Diffusion Equations

As a typical representative of meta-population model, square lattice-based model

are often employed when there is no idea of partitioning the population into

discrete subpopulations. However, one major disadvantage of the lattice-based

models is the stationary lattice structure which may restrict the space discretization
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process. Resolution of an individual’s position is generally limited by the scale of

each grid cell. An alternative formulation is the reaction-diffusion equations which

describe the dynamics of populations in continuous space using partial differential

equations (PDE) (Murray 2003). Although these models generally provide

theoretical predictions (Beardmore  and  Beardmore  2003,  Reluga  2004), However,

the insights from this type of model have also proved to be invaluable in

understanding the spatial spread of infection (Kao 2003, Lai et al. 2013). Main

theoretical advantage of the reaction-diffusion equations is the deterministic and

tractable nature of the continuous-space models.

The standard PDE models are derived under the assumption that infectious

individuals only transmit disease to susceptible ones at their current location, and

that all individuals are freely diffusing at random through the landscape. A typical

PDE model for a disease with SIR-type dynamics are,

2

2

2

,

,

,

S

I

R

S N SI N S D S
t
I SI N I I D I
t
R I R D R
t

                (4.7)

where S , I  and R  are functions of both space and time, and represent the

local number of susceptible, infectious, and recovered individuals, and as always

N S I R  when omitting the demographic variations. Hence, if we’re dealing

with a two-dimensional landscape, , ,S x y t  represents the number of the

susceptible individuals at location ,x y  at time t .
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Here the Laplacian operator 2  is involved to characterize the local diffusion of

individuals  through  space.  Since  is shorthand for the change rate of the

quantity, thus 2  is the change in the rate of change. In two dimensions, the

diffusion term for the susceptible compartment becomes:

2 2
2

2 2
S SS

x y
.                       (4.8)

Inclusion of these spatial derivatives mimics the diffusion of individuals in the

real-world situations. In general, susceptible, infectious, and recovered individuals

may corresponds to different diffusing rates ( SD , YD , and ZD ), agreeing with

the fact that sick individuals are unlikely to move.

For better understand the diffusion role of such PDE model, considering a group

of susceptible individuals initially piled at the origin 0,0 . Ignoring demography,

our equation becomes:

2
S

S D S
t

.

The corresponding solution is,

2 2
1, , exp

4 4S S

x y
S x y t

D t D t
.                 (4.9)

This is actually the Gaussian distribution, with an ever-expanding bell-shape. The

diffusion parameter SD  governs the varying speed of the Gaussian distribution.

Therefore, the scene can be acquired of the Gaussian-like distributed individuals
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spreading radically away from the origin.

Reaction-diffusion models come out relying on spatial diffusion of hosts, with

assumption of local interactive transmission of infection, to characterize the

spatio-temporal  dynamics  of  infectious  disease.  Very  few  PDE  models  can  be

analytically solved, with majority of these models being simulated via numerical

methods. The common practice is firstly to translate the differential terms via

discretizing the domain space into a lattice formulation.

Impose  a  square  lattice  structure  onto  the  space  of  concern,  with  the  lattice  side

length of a distance d . Therefore the lattice solution ,i jS t  is  expected  to

approximate the PDE solution , ,S i d j d t . We are familiar with the temporal

derivatives (e.g. d
dt

) in the ODE (ordinary differential equation) model, which can

be numerically integrated forward in time using methods such as forward Euler or

Runge-Kutta (Lapidus and Pinder 2011), However, the spatial derivatives involved

in the PDF model normally need to be expressed in terms of the lattice structures

for numerical implementation. In the following, the number of susceptible

individuals, ,i jS , is taken as the instance for better interpretation of lattice

formulation procedures.

Firstly, the second derivative along x  dimension can be approximated as the

change in the rst derivative of S  between 1
2 ,i j  and 1

2 ,i j  divided by

the distance, d . That is,



- 65 -

1 1
2 2, ,

2
,

2

i j i j

i j

S S
S x x
x d

.

Further, a similar handling for the rst derivatives leading to the approximation,

1, , , 1,2
, 1, , 1,

2 2

2i j i j i j i jS S S S
d di j i j i j i jS S S S

x d d
.

As thus, the full diffusion term becomes,

2 2
, ,2

, 1, 1, , 1 , 1 ,2 2 2 4i j i j S
S i j S S i j i j i j i j i j

S S DD S D D S S S S S
x y d

.  (4.10)

After substituting the second derivatives by spatial difference approximation in the

PDE model,  we arrive at  our familiar  ODE equation for each lattice point,  which

can be solved with ease in our familiar manner. Spatial diffusion therefore behaves

like the movement of individuals between the four nearest-neighbor lattice sites.

And 2
SD d  is the coupling rate reflecting how fast of the individuals moving.

When considering the spatiotemporal dynamic diffusion process of the local

density, but not the population size, of the susceptible, infectious, and recovered

compartments, the foregoing SIR-type PDE model (4.7) becomes:

2

2

2

,

,

,

s

i

r

s si s D s
t
i si i i D i
t
r i r D r
t

                (4.11)

where the lowercase characters s , i  and r  represent the local density of the
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spatiotemporal distribution for susceptible, infectious, and recovered

compartments. Figure 5.2 below illustrates a PDE model for characterizing the

spatiotemporal spreading dynamics of an SIR-type infection. Starting at a point

source, the infection spreads as an expanding epidemic wave, leaving secondary

oscillations around the endemic equilibrium in its wake. The top left-hand three

subfigures demonstrate a snapshot of such circular wave fronts for the susceptible,

infectious and recovered compartments, respectively. However, the fourth graph

located in lower right corner plots disease prevalence against the distance from

initial source (blue solid line). This curve approximately coincides with the solution

of the standard (non-spatial) SIR model (red dash-dot line), hinting a deeper

relationship between each other. Involved mathematical deviations indicate that the

PDE  leads  to  a  traveling  wave  with  constant  velocity (Keeling and Rohani 2008)

once transient dynamics fading away.

Once an invading virus attaches a population, it may spread and expand its

geographic range, at times an inexorable march begins. The invasion of new virus

such as H1N1 influenza by organisms is a fundamental ecological process. Invading

viruses have had tremendous epidemiological and socioeconomic, sometimes even

potential catastrophic impact upon our whole human society. As thus, by

integrating the related environmental information, here the discussed reaction

diffusion models owe great potential to understand the real-time invasion process

(Brockmann and Helbing 2013a) and predict the future evolution trend of

infectious disease (Lai et al. 2013), as well as providing assistance for epidemiologist

or government officers to formulate effective defensive measures timely.
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Figure 4.3 Snapshots of population proportion dynamic solved from the SIR-type PDE model

The top left-hand three subfigures present snapshot circular wave fronts at time 45t  of the density of the susceptible, infectious and recovered

compartments, respectively. This PDE model was simulated upon the region , 30,30x y  which has been divided into a 101 101 lattice, with

parameters configured as follows: 310 , 1, 0.1, 0.1s i rD D D . Detailed implementation procedure are presented in section

4.4 by being integrated with difference approximation upon lattice formulation and Runge-Kutta methods of order four with step size 0.1t . The

lower right-hand gure compares the distribution of infection (at time 45t ) as a function of diffusion distance d  from the initial source, with

the results from a standard (non-spatial) SIR model equipped with the same basic parameters, whose solution domain ranging from 0 to 45. For the

non-spatial model the x -axis represents the time from the beginning of this epidemic simulation, whereas for the PDE model the x -axis

represents the distance from the initial point of infection. The values on the x -axis have been scaled by the wave speed so that the two curves

coincide to the largest extent.
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4.4 Runge-Kutta method based implementation

Population Number based SIR Model:

2

2

2

,

,

,

S

I

R

S N SI N S D S
t
I SI N I I D I
t
R I R D R
t

Population Proportion based SIR Model:

2

2

2

,

,

,

s

i

r

s si s D s
t
i si i i D i
t
r i r D r
t

Solution: Discretize the region into mesh grids and spatially approximate the

second-order derivatives (the Laplacian Operator) involved by difference of
subpopulation number/density from the neighbored lattices; and utilizing the
Runge-Kutta method along the time dimension.

Parameter Configuration: 310 , 1 , 0.1 , 0.1s i rD D D .
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4.5 Applicability of Reaction-Diffusion Equations

Recall equation of (4.11), we consider spatio-temporal dynamic diffusion process

of  the  local  density  of  susceptible,  infectious,  and  recovered  compartments,  a

typical SIR-type PDE model is,

2

2

2

,

,

,

s

i

r

s si s D s
t
i si i i D i
t
r i r D r
t

where the lowercase characters s , i  and r  represent the local density of the

spatio-temporal distribution for susceptible, infectious, and recovered

compartments.

4.5.1 Adaptive Diffusion Coefficient Matrix

A more general reaction-diffusion equation normally comprises a reaction

term and a diffusion term, i.e. the typical form is as follows:

2
tu f u D u .                    (4.12)

For an epidemic, ,u u x t  denotes the state variable describing

density\concentration of the subpopulations at position x ,  at  time t . 2

denotes the Laplace operator. Thus, the first term, f u , describes the interactive

disease infection process. And the second term characterizes the “physical diffusion”

in space, including D  as diffusion coefficient matrix.
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Therefore, big challenge for applying the RD model is how to assign the diffusion

coefficient so as to incorporate hosts mobility patterns into the disease spreading

process, thereby forecasting the spatial spread trends of infectious disease. The

diffusion coefficient can be determined by further integrating with the layers of

hosts distribution, transmission routes, etc. so as to reflect the complicated disease

spreading situation. Therefore, It is also possible, that the diffusion coefficient

matrix D  may  depend  on u , and/or explicitly on position x  and time t .

Sometimes, the geographic barrier constraints may also be added to limit the

spreading range.

Approaches from meta-population model family usually consider both the

temporal evolution and spatial propagation simultaneously. Analogous models to

the RD model within the meta-population model family include the Lattice-based

Model (Lai et al. 2013) and Contact Network Modeling (Brockmann and Helbing

2013a), which seem to be more popular from the application aspect. Specifically,

the RD model is more suitable for the regionally distributed infectious disease and

some other “diffusion” related applications with explicit transmission patterns

which can be characterized by the relevant environmental factors.



- 72 -

Table 4.1 Other potential applications of Reaction Diffusion Equations

Other potential applications Relevant factors

Hand-mouth-foot disease Distribution of population, village, paths

Atmosphere pollution, PM 2.5 Wind speed & direction, Chemical plant location

Water pollution River distribution, flow velocity

…… ……

4.5.2 Advantages & Disadvantages

The Reaction Diffusion equation serves as a spatial model. Simulations can easily

be  performed  with  parameters  relevant  for  a  particular  disease  with  given

demography and spatial structure. Main theoretical advantage of the

reaction-diffusion  equations  is  the  deterministic  and  tractable  nature  of  the

continuous-space models. However, this model assumes that each group

population is sufficiently large and homogeneous mixing with each subpopulation.

Stochastic effects may be significant when group populations are small.
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Chapter 5Investigating the Spatiotemporal Proximity Impact

Epidemic waves of emerging infectious disease come out successively one after

another ever since the new millennium beginning. Spatiotemporal analysis may

potentially contribute to characterizing the temporal evolutionary process and

revealing the possible spatial propagation patterns, thereby being conducive to the

optimal allocation of limited public health resources. Though different emerging

infectious diseases may vary in transmission route and hazard level, yet they usually

exhibit the aggregation tendency both in time and space. As such, this chapter

intends to propose an innovative approach for investigating the spatiotemporal

proximity impact upon the illness onset risk prediction of emerging infectious

disease.

5.1 Background

Understanding the contact patterns between hosts and reservoir of infectious

agents, as well as the corresponding transmission rates, are critical to developing

effective  responding  measures  so  as  to  cope  with  the  sudden  outbreak  of  an

infectious disease. However, investigation of the entire human’s contact activities

involved is often impracticable. Alternatively, spatiotemporal proximity, revealed by

the First Law of Geography (Tobler 1970),  can  be  employed  as  an  metric  for

inferring the contact transmission modes (Williams et al. 2014). Numerous

spatiotemporal analysis methods have emerged in the past few years. For instance,

Zhang et al. (2010) proposed a novel spatiotemporal kernel technique for
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evaluating the global highly pathogenic avian influenza H5N1 outbreaks. Shi  et  al.

(2014) analyzed the spatiotemporal pattern of hand-foot-mouth disease in China

by using empirical orthogonal functions. Besides, Yu et al. (2014a) proposed an

online spatiotemporal prediction approach by integrating the Susceptible Infected

Recovered (SIR) model into the Bayesian maximum entropy (BME) framework for

dengue fever epidemic in Kaohsiung (Taiwan). Furthermore, Jandarov et al. (2014)

employed the Gaussian process approximation to emulate the gravity model for

inferring the spatiotemporal dynamics of measles outbreaks in England and Wales.

Forecasting the spatiotemporal spreading dynamics of an infectious disease can be

conducive to the decision-making regarding optimal allocation of limited public

health resources and development of preventive intervention measures. Typical

previous forecasting approaches (Nsoesie et al. 2014) include the time series

models, compartmental models, agent-based models and the meta-population

models, which are generally differing from the prediction mechanism and problem

scale. However, all these models are always more or less accompanied by some

inherent limitations. For instance, predictions provided by time series models (Held

and Paul 2012, Kane et al. 2014) may be inconsistent with the epidemic (influenza)

activity due to the seasonal variation. Homogeneous population assumption in the

compartmental models (Biswas et al. 2014) likely  fails  to  capture  the  contact

patterns corresponding to demographic structure of the entire population. One

major dif culty in applying agent-based models and meta-population models (Ajelli

et al. 2010) is the challenge of empirically justifying modeling assumptions under
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which they operate, compounded by our lack of recognizing the human behavior

via contact networks. Meanwhile, though some innovative spatiotemporal methods

for the epidemics have been emerging in the recent related researches (Tsui et al.

2011, Angulo et al. 2013, Meyer et al. 2012), they are still inadequate for depicting

any of the currently global pandemic threats, in general.

What is more, although there are indeed some well-thought models (Chowell et al.

2006, Balcan et al. 2010), whereby almost all of the relevant factors have been

taken into account for simulating the disease spreading dynamics. However, during

the early stage of a newly emerged infectious disease, external environmental

factors (transmission route, climatic factor, etc.) normally still need to be further

excavated (or even unknowable) whether they are relevant with the disease

spreading or not. As thus, apart from the spatiotemporal location information of

laboratory-confirmed  cases,  external  environmental  factors  may  not  be  directly

employed, thereby cutting down the utilization potentiality of these complicated

models.

On this occasion, here an innovative approach is proposed, totally based on the

spatiotemporal location information of the laboratory-confirmed cases, without

involving the external environmental factors. It is expected to be equipped into the

disease detection and rapid response system (Yang et al. 2011) for forecasting the

spatiotemporal illness onset risk especially during the early outbreak stage for an

emerging infectious disease. The spatiotemporal proximity impact has been
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investigated upon the infection risk prediction of emerging infectious disease,

illustrated with experiments upon avian in uenza A H7N9, February to May 2013

in eastern China.

The rest of this chapter is structured as follows. Section 5.2 provides a detailed

description of the spatiotemporal proximity integrated approach. It can be

subdivided into three subsections, which are firstly retrospective inference of

historical pathogens distribution and then spatial extrapolation of pathogens

distribution by weighted kernel density estimation, finally forecasting the illness

onset  risk  for  the  entire  considered  epidemic  region.  In  Section  5.3,  experiments

upon avian in uenza A H7N9 fully examines validities of the previous proposed

spatiotemporal proximity integrated model. Meanwhile, subsequent discussions

regarding these experimental results are also extensively carried out. Concluding

remarks are provided in the final section 5.4.

5.2 Spatiotemporal Proximity Integrated Approach

This section devotes to proposing a spatiotemporal proximity integrated

framework for the infection risk prediction of emerging infectious disease,

illustrated upon avian in uenza A H7N9 for an instance. Before further proceeding

with in-depth analysis of this model, we intend to introduce some reasonable

assumptions so as to simplify the relatively complicated disease infection and illness

onset processes.

In consideration of the expression preciseness, there are altogether 5 assumptions
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introduced for simplifying the relatively complicated reality regarding the disease

transmission process and practical operability during the data collection stage.

Assumptions:

 Infected cases were timely collected and released once their clinical symptoms

developed (including the provisional suspected cases at notification time, but

later laboratory-confirmed cases). Namely, the onset-to-report interval time

was excluded.

 Susceptible individuals acquired H7N9 infection exclusively by exposing to the

pathogens reservoir of poultry or a live poultry market, rather than via the

human-to-human transmission route.

 All infected cases reported were independent of each other from exposure to

H7N9 pathogens until the clinical symptoms developing.

 Somewhere infections happened or not is solely determined upon the local

distributed concentration of H7N9 pathogens.

 All infected individuals had a limited activity territory ever since their exposure

to the H7N9 pathogens. In other words, their spatial locations can be regarded

to be several stationary points within a relatively large scale epidemic region.

We believe these assumptions are reasonable and acceptable with appropriate

justifications below. Assumption  applies to the data collection stage, it can be

acceptable as the automated system for outbreak early detection and rapid response
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has sprung up (Yang et al. 2011). Assumption  concerns the H7N9 disease

transmission route, actually it comes from the reference (Chowell et al. 2013), of

which on Page 3 it states “most human cases are due to spillover events originating

from exposure to an animal reservoir or the environment, and human-to-human

transmission is limited”. As the main transmission route is from the pathogens

reservoir of poultry, assumption  dealing with the case independence makes

sense for quantitatively characterizing the likelihood of pathogens distribution.

Besides, as there is no data of transmission routes involved, assumption  states

that the spatial pathogen concentration directly determines the possibility of H7N9

infection, which accords with our common sense. Finally, the introduction of

assumption  is due to the fact that occurrence data of new emerging infectious

disease (such as H7N9) generally involves only the illness onset date and location

information, rather than other unknowable external environmental factors

(transmission route, climatic factor), which are still not verified or needing further

excavated to be relevant with the disease spreading, especially during the early

outbreak stage of the new emerging infectious disease. The final assumption put

forward also paves the employment of Kernel Density Estimator for investigating

the spatial impact.
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Figure 5.1 A schematic operational framework for the spatiotemporal proximity

integrated approach

This innovative approach, which operates totally based on the spatiotemporal site

information of laboratory-confirmed cases, comes up with full consideration of

the impact of spatiotemporal proximity upon the illness onset risk of an emerging

infectious disease. There are altogether three steps: a) firstly retrospective inference

of the historical existence likelihood of H7N9 pathogens from temporal

dimension at each fixed notification site, b) then, spatial extrapolation of pathogens

distribution by a weighted kernel density estimation on each fixed historical date,

and c) finally, making prospective prediction of the illness onset risk for the entire

epidemic region during some day in near future. The diagram illustrated in Figure

5.1 above provides a schematic operational framework for this spatiotemporal

proximity integrated approach to the prediction risk of H7N9 infection. For better
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classifying the meaning of each involved symbols, Table 6.1 below summarizes the

primary variables arising here, followed by the corresponding detailed descriptions.

Table 5.1 A summary of primary variables and their descriptions

Variable Description

The probabilistic density function for the incubation period

distribution, with respect to the time interval .

The likelihood of retrospective Virus distribution of H7N9 at

spatial site , on date .

The predicted risk of H7N9 infection possibility at spatial site ,

on date .

PRSIOR ,s t
Standardized illness onset risk indicator for the predicted H7N9

infection risk, for fixed date .

5.2.1 Retrospective inference of historical pathogens’ existence

This section devotes to inferring the retrospective likelihood of historical existence

of pathogens in terms of the probabilistic density function (PDF) of the

incubation period, which is the time period elapsed from exposure to the pathogen

until the emergence of clinical symptom. The probabilistic density function for

characterizing the incubation period distribution can be generally expressed as

, univariate function of the time interval from the moment of virus

exposure to the symptom development date, that is independent of the spatial

location of each notified H7N9 infection. Two commonly employed PDFs for

characterizing the incubation period distribution are the Weibull distribution

IPP t
t

RV ,P s t
s t

PR ,P s t
s

t

t

IPP t
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(Cowling et al. 2013), , including the exponential

distribution to be one of its special case; and the lognormal distribution (Yu et al.

2014b), with its PDF formulated as .

The core idea of retrospective inference process is given below as illustration using

the avian influenza A H7N9 for easier clarification. Once an individual was

exposed to the H7N9 virus, the possibility of subsequent illness onset risk can be

depicted in terms of , where t  is the elapsed time lag from the occasion

of virus exposure to the moment of symptom onset. Similarly, the likelihood of

historical exposure time (or exactly the existence of H7N9 virus) can also be

represented as retrospective inference using , giving the temporal

information of each infected case with clinical symptoms developed. This process

coincides with the truth, as normally we are only aware of the illness onset date for

most of the notified cases, but rarely getting the facts of their history exposure

time or infections.

Now we concentrate on the formulation of the retrospective inference based on

the foregoing discussions. Since most of the infections experienced a history

exposure to the poultry or a live poultry market, rather than through

human-to-human transmission, it is reasonable to assume that all susceptible

individuals were infected after contact with H7N9 pathogens independently. That is

to  say,  the  clinical  symptoms  of  infected  cases  would  emerge  separately  at  their

own  pace  one  after  another.  As  a  result,  at  a  fixed  spatial  site  where  human

1,
ktk kP t k k t e

2ln
221

2
,

t

t
P t e

IPP t

IPP t
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infection with H7N9 virus was precisely reported, the potential likelihood of

retrospective existence of H7N9 pathogens on date it  implies the possibility of at

least  one  susceptible  individual  infected  on  date it  and later starting clinical

symptoms on date st . Therefore, the existence probability of H7N9 virus on date

it  can be estimated by retrospective inference as follows,

RV IP, 1 1 ts

s i

n
i s i

t t
P s t P t t ,                (5.1)

where
st

n  denotes the number of notified cases on date st . The likelihood of

RVP  can also be perceived to be the reservoir’s concentration of H7N9 pathogens.

5.2.2 Spatial extrapolation of pathogens distribution

This section devotes to the spatial extrapolation of H7N9 pathogens distribution

on any fixed historical date, by some spatial smoothing techniques based on the

existence likelihood of dispersedly distributed pathogens estimated using

retrospective inference in the previous section.

Considering the First  Law of Geography introduced by Tobler (1970), suggesting

that “everything is related to everything else, but that near things are more related

than distant things”, thus the spatial proximity effects upon the historical

distribution of H7N9 pathogens can be handled employing the weighted kernel

density estimation (WKDE) method.

The WKDE method derived from KDE method, can be briefly formulated below.
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For bivariate independent and identically distributed samples 1 2, , , ns s s  drawn

from some distribution with an unknown density function ,f  its kernel density

estimator is

1

1

ˆ ;
n

i
i

f s n K s s ,                      (5.2)

where T
1 2,s s s  and T

1 2,i i is s s , 1, 2, ,i n , the symbol  denotes the

bandwidth matrix. Here the Gaussian kernel (De Smith et al. 2007) is adopted,

T 11
2expK s s s .                      (5.3)

The bandwidth matrix can generally be determined by plug-in method or

cross-validation method (Duong and Hazelton 2005). However, the Scott’s rule of

thumb (Scott 1979) provides a simple and alternative way of designating the

bandwidth matrix to be an matrix proportional to the sample covariance matrix ˆ .

Here we pick out the bandwidth matrix 1
3 ˆn (Ahamada et al. 2010). The

WKDE can then be straightforwardly derived by appending additional weights i ,

1,2, ,i n , yielding

T 11
2

1

1ˆ ; exp
n

i i i
i

f s s s s s
n

.                (5.4)

This estimator can also be perceived as the weighted average of all Gaussian

probability density surfaces centering at each sample position. Accordingly, for any

fixed historical date it , the spatial extrapolation of existence likelihood of the

historically distributed H7N9 pathogens can thus be formulated using the
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above-mentioned WKDE as follows,

1
RV RV

1

T1 11
RV 2

1

, ; ,

, exp ,

ti

i

ti

i

n

i t j i j
j

n

t j i j j
j

P s t n P s t K s s

n P s t s s s s

          (5.5)

where RV ,j iP s t  is the existence likelihood of historical H7N9 pathogens (or

alternatively be regarded as the virus concentration) distribution by retrospective

inference at spatial location js , on history date it , serving as the weighting

coefficients of WKDE for extrapolating the potential distribution of H7N9

pathogens in space.

5.2.3 Infection risk prediction

The  foregoing  spatial  extrapolation  by  WKDE  produces  the  entire  spatial

distribution of H7N9 pathogen’s reservoir on a historical date it . At each fixed

spatial site s  within the epidemic region, the predicted possibility of illness onset

risk on some date pt  in near future, that is the likelihood of at least one infected

individual developing clinical symptoms on pt  who acquired H7N9 infection

from all the days it i pt t  in the past, can similarly be formulated as,

PR RV IP, 1 1 ,
i p

p i p i
t t

P s t P s t P t t .            (5.6)

Among above equation, RV , iP s t indicates the existence likelihood of historical

H7N9 pathogens by retrospective inference, and the quantity IP p iP t t
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measures the occurrence likelihood of time interval between the historical virus

exposure date it  and  the  future  illness  onset  date pt  in  terms  of  the  PDF  of

incubation period.

5.3 Experiments & Discussions

This section intends to verify the innovative spatiotemporal proximity integrated

model via experiments upon avian in uenza A H7N9, February to May 2013,

emerged in eastern China. Discussions and comments upon the experimental

outputs are fully explored and provided subsequently.

5.3.1 Parameter Configuration

An epidemiology study conducted by Cowling et al. (2013), demonstrated that the

Weibull models best t the incubation period for H7N9 infection process, with an

estimated mean incubation period of 3.1 days and the corresponding standard

deviation of 1.4 days. Therefore, we employ the Weibull distribution to depict the

incubation period of H7N9 occurrence cases,

1 0,; ,
0 0.

ktk kk t e tf t k
t

                    (5.7)

For a given Weibull random variable, T , its mean and variance can be formulated

as the function of parameters  and k , which can be calculated by some

numerical iterative method (for example, the Newton-type method) as follows,



- 86 -

2
2

11

2 11 1

E T k

D T k k

3.4981
2.3539k

.         (5.8)

Besides, bandwidth matrix of the Gaussian kernel is designated following an

empirical formula (Ahamada et al. 2010), in terms of the isotropic covariance of all

these 135 spatially distributed infection sites,

1
3 10 0.7888   -0.0846ˆ 10

-0.0846    1.0985
n (m2).                  (5.9)

5.3.2 Historical pathogens distribution by retrospective inference

Experiments based on avian in uenza A H7N9 were implemented on the

MATLAB platform. Given a series of confirmed cases, the historically

spatiotemporal distribution of H7N9 pathogens’ concentration can then be

retrospectively inferred according to the first two procedures. Firstly, the existence

likelihoods of historical pathogens are estimated at the sites of dispersedly

distributed notifications via retrospective inference according to equation (5.1),

which can be calculated complying with the recursive Algorithm 5.1 by

programming.

Then, the spatially distributed existence likelihood of historical H7N9 pathogens

can then be extrapolated by WKDE method according to equation (5.5) within the

entire epidemic region.
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Algorithm 5.1 Recursive iteration for estimating the pathogens’ existence

RV , 0iP t ;

For s it t ,

RV RV IP, 1 1 , 1 tsn
i i s iP t P t P t t .

End

Other than the formerly rendered risk map by Zhu and Peterson (2014) via  a

calibrated niche model to account for the primitive spatiotemporal information

from the notified infections, these animated layers delineate the historical

pathogens’ distribution (existence likelihoods), which are normally one incubation

period on average earlier before the illness onset date. Thus, it makes such

retrospectively inferred risk maps be more conducive to deeply exploring the

possible transmission patterns of H7N9 infection course, as well as inspecting the

relationship between environmental risk factors (such as poultry markets and bird

migration routes) and H7N9 incidence in the follow-up studies.

A GIF image (H7N9_History.GIF) has been made hereby serving as the

supplementary material to demonstrate the existence likelihoods of historical

H7N9 pathogens during covering the period from 3th February to 21th May, 2013,

totally based on the collected H7N9 occurrence cases. It is revealed that the

forepassed H7N9 pathogens were firstly prevalent in the Shanghai municipality in

February, then spreading spatially around its adjacent geographic provinces

including  Jiangsu,  Anhui,  and  Zhejiang,  respectively,  in  March.  Afterwards,  the
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H7N9 epidemic areas further expanded towards the central and southeast regions,

including Henan, Jiangxi and Fujian provinces in late April, and diminishing

thereafter. These pathogens also reemerged intermittently within the historical

epidemic areas because periodic temperature changes due to seasonal variations

and migratory birds inhabiting south in winter and flying northwards when spring

comes. Such a pattern of spatiotemporal evolution of H7N9 pathogens coincides

roughly with temperature variation and bird migration routes, as demonstrated by

Zhang et al. (2014) that there were obvious correlation between H7N9 epidemic

and environmental risk factors, such as the high-risk temperature range (9°C–19°C)

occurring and bird migration coverage.

5.3.3 Forecast risk map

After the derivation of historical distribution of H7N9 pathogens via retrospective

inference and spatial extrapolation, prospective forecasts of illness onset risk

during some period in near future can then be made at each site within the entire

epidemic region using equation (5.6). The onset possibility can be calculated with

the following recursive Algorithm 5.2 by programming.

Algorithm 5.2 Recursive iteration for predicting H7N9 illness onset risk

PR , 0pP t ;

For i pt t ,

PR PR RV IP, 1 1 , 1 ,p p i p iP t P t P t P t t .

End
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There were altogether 45 unique dates in the original H7N9 database. Risk maps of

illness onset can thus be generated according to the proposed approach by

employing spatiotemporal information of the beginning few occurrence cases

before each of the 45 different dates. All the other subsequent H7N9 occurrences

later than that forecasting date can then be used to verify these forecast results of

this spatiotemporal proximity integrated model.

It should be noted that exponential kernel function involved in WKDE, and the

integral upon small area of both tail sides of incubation period’ PDF may give rise

to extremely tiny possibility values regarding the forecast risk of illness onset. In

view of this, we standardize the predicted risk PR , pP s t  in space, by introducing

an additional SRIO (Standardized Risk of Illness Onset) indicator (falling behind 0

and 1) so as to highlight the severe areas of considered epidemic regions. That is,

PR
PR

PR

SRI
,

,
x

O
ma ,

p
p

ps

P s t
s t

P s t
.                  (5.10)

Figure 5.2 provides box plots of the predicted SRIOs at checkpoints of subsequent

H7N9  occurrences  with  respect  to  different  forecast  time  intervals  from  1  to  14

days (the maximum prediction time span, beyond which the forecast results may be

unreliable). From this figure, it can be seen that this innovative approach is capable

of providing approximately 70% correct prediction on average in terms of the

H7N9 illness onset risk during the future 5 days from the forecast date. However,

correct predictions become less than 50% and getting even progressively smaller
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with increasing time span beyond 5 days. On the whole, a roughly negative

correlation  can  be  overserved  between  predicted  illness  onset  risks  and  the

corresponding time intervals, which exactly reflects the temporal proximity impact

upon the predicted H7N9 illness risk gradually decreasing along with the

increasingly broadening time spans.

Figure 5.2 Box plots of SRIOs with respect to different forecast time intervals

Figure 5.3 Box plot for the forecast time spans
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The box plot for all the summarized forecasting time spans presented in Figure 5.3,

shows that median of the predicted time intervals is about 6 days. As current data

for avian in uenza A (H7N9) infection indicate an incubation period ranging

between  2  and  8  days,  with  an  average  of  five  days (Gao et al. 2013a) or even

shorter,  3.1  days  stated  by Cowling et al. (2013), thus the maximum forecasting

time span is thus best anticipated not more than twice the average incubation

period, which is exactly reflected by these boxplots of forecasting time spans. As

thus, by further consideration of Figure 5.2, the effective forecast time length can

be asserted of 5 days for this spatiotemporal proximity integrated approach.

Besides, each of the subsequent occurrences can be used to verify multiple forecast

results made by the first several cases notified earlier before the current predictive

date. Figure 5.4 provides three-dimensional bar graphs reflecting these multiple

“prediction-verification” chains in terms of the maximum and median furcating

illness onset risk, together with the predictive time spans corresponding to the

maximum (best) forecasting results in the day of each subsequent H7N9

occurrence. For each subfigure, the abscissa represents the issued date of notified

cases, of which at most 8 cases (occurring on Apr, 3, 2013) simultaneously appear

in a day from our collective data set. All notified cases coming up in one day were

assigned a daily case ID number in turn according to the original recorded orders.

Inapplicable cases (on the first-day or the forecast failure cases) were indicated as

black  blocks.  With  the  best  forecasting  results  (subgraph  a  in  Figure  5.4),  the

spatiotemporal proximity integrated model seemingly provide mostly 90% or more
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accurate prediction for the future H7N9 illness onset risks. Median values

(subgraph b in Figure 5.4) of the forecast risks performed barely satisfactorily, with

only 50% or so verification accuracy. The bottom sugraph c in Figure 5.4 gives the

predictive time spans corresponding to the best forecasts as illustrated in the top

sugraph a. Actually, Figures 5.2-5.3 have already conveyed a general impression of

the forecast time spans, while sugraph c presents more intuitive visualization of

these  time  intervals  from  forecast  to  verification  upon  each  H7N9  occurrence  in

chronological order.

(a)

(b)
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Figure 5.4 3D bar graphs of the multiple “prediction-verification” chains

generated by the spatiotemporal proximity integrated model for each H7N9

infected cases in chronological order. (a) maximum (best) forecasted illness onset

risks, (b) median value of the forecasted illness onset risks and (c) the predictive

time spans corresponding to the best forecasts

As indicated above, H7N9 occurrences nearer the forecast dates exert more impact

upon subsequent cases regarding the risk of illness onset. Thus, we further provide

an animated image (H7N9_Predict.GIF) consisting of a continuous single-step

“prediction-verification” chains for investigating the spatiotemporal proximity

impact upon the forecasting performance along with a chronological order of the

collected H7N9 occurrences. For each ring of the “prediction-verification” chains,

the forecast was firstly made employing the information of all H7N9 occurrences

before one H7N9 occurrence date. And then the verification was conducted

immediately against subsequent H7N9 infections during one succeeding date.

Moreover, every forecast risk map was also overlapped with its subsequent

(c)
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occurrences for visual comparison. As an example, Figure 5.5 below illustrates the

forecast H7N9 illness risk map on 20 March, based on all earlier occurrences

before 19 March, using the spatiotemporal proximity integrated approach. It is

expected  that  these  forecast  risk  maps  can  be  served  for  depicting  the  tread  of

real-time epidemic evolution; especially in the under-development areas where

statistics of human H7N9 infected cases are always overdue or incomplete; thereby

guiding the development of more effective intervention measures and the

optimized allocation of limited medical aid resources (vaccines) to potential targets.

Figure 5.5 One instance of “prediction-verification” chain link regarding the

H7N9 illness onset risk
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5.4 Conclusions

This chapter presents a spatiotemporal proximity integrated approach (under

appropriate assumptions) for predicting the infection risk of an infectious disease.

This model is motivated by the principle that clinical symptoms appear certainly

posterior to the historical virus exposure time, which can be described by PDF of

the incubation period fitted using retrospective cases. There are altogether three

procedures involved in the proposed model: a) estimating historical existence

likelihoods of infectious pathogens via retrospective inference, b) undertaking

spatial extrapolation of pathogens distribution by weighted kernel density

estimations, and c) forecasting risk maps of illness onset. This approach also

operates based entirely on the spatiotemporal information of laboratory-confirmed

cases.

Validation  experiments  were  implemented  using  a  combined  data  set  of  avian

in uenza A H7N9 in eastern China comprising of 135 records, during the period

between  19th  February  and  21th  May,  2013.  A  preliminary  outcome  is  the  virus

distribution map via the retrospective inference, which depicts the historical

distribution  of  H7N9  infectious  pathogens,  thereby  making  it  an  axillary  tool  of

value for further excavating possible dissemination pattern of the H7N9

contagions, and identifying potentially relevant environmental factors.

Besides, experiments based on avian in uenza A H7N9 have demonstrated that the

spatiotemporal proximity integrated approach is capable of providing an
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approximately 70% correct prediction on average in terms of the H7N9 illness

onset  risk  during  the  near  future  5  days  ever  since  the  forecasting  date.  Higher

prediction accuracy of this straightforward model can be anticipated if further

environmental factors were taken into account, such as road networks, distribution

of poultry markets and human population density, which may more accurately

account for the dissemination patterns of H7N9 dynamics. Nevertheless, these

forecast risk maps of illness onset computed by the spatiotemporal proximity

integrated model can function as early-warnings to identify areas where proactive

surveillance efforts and preventive intervention measures should be targeted

against further propagation of human H7N9 infections.

Tobler's First Law of Geography acknowledges the spatiotemporal proximity

impacts are widely observed in both manmade and natural worlds. The innovative

idea presented by the proposed approach can further serve proximity investigation

of many other real phenomena, such as the praxeology analysis (criminology),

atmospheric pollution and natural disasters (landslide, debris flow), etc. Although

effectiveness of the approach has only been verified by employing the database of

human H7N9 infections that occurred in eastern China, in 2003, it is felt that this

approach  can  be  readily  applied  to  other  infectious  diseases  that  exhibit  apparent

spatiotemporal aggregation patterns; for instance, the foot and mouth disease

(Wang et al. 2011, Wang et al. 2013). It is worth mentioning that spatiotemporal

proximity are also observed in their propagating processes for some typical

human-to-human transmitted infectious diseases, such as the SARS outbreak and
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H1N1 pandemic. However, the conventional geographic distance may need to be

substituted with a probabilistically motivated effective transmission distance

(Brockmann and Helbing 2013a) so as to take the rapid host mobility and expanded

scope of human’s activities into considerations.

When an emerging infectious disease outbreak, occurrence cases generally afford

only the illness onset date and spatial location information. Other external

environmental factors (such as transmission route, climatic factor), are normally

still unknowable, and needs to be further excavated whether relevant with the

disease transmission or not along with the epidemic evolution. In this context, this

proposed approach comes out operating entirely upon the spatiotemporal

information of the laboratory-confirmed infections. It is expected to forecast the

spatiotemporal illness onset risk, especially during the early stages of an emerging

infectious  disease.  We are  confident  of  that  such  model  can  be  served  to  provide

valuable scientific support for policy constitutors of public health to formulate

more effective prevention and control measures.
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Chapter 6 Bayesian Inference of the Reproduction

Number

This  chapter  employs  a  Bayesian  scheme for  estimating  the  time-varying  effective

reproduction numbers so as to understand the real-time transmission potential of

the Ebola epidemic situation in West Africa.

6.1 Stochastic SEIR model

To characterize the evolutionary dynamic process for the West African Ebola

epidemic  over  time,  we  utilize  a  modified  SEIR-type  compartmental  model

(Anderson and May 1991) which classifies the time-varying individuals as

susceptible, exposed, infectious, and removed, with the assumption of the

population being homogeneously well-mixed. This nonlinear differential equation

system can be formulated as follows,

,

,

,

,

,

S t S t I t N t

E t S t I t N t E t

I t E t I t

R t I t

C t E t

               (6.1)

where the dot denotes time derivatives, and C t  is the cumulative case number

counting all the infections. The parameters = , ,  are  related  to  the

transition rates from one disease stage to the next. Susceptible individuals enter the
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exposed compartment at the rate of I t N t  after  contact  with  the  virus,

where  represents the pathogen transmission capacity from infectious to

susceptible individuals per unit time, and N t S t E t I t R t  is the

total population at time t . It is assumed that the susceptible occupies almost the

entire population at the early stage of a disease outbreak. The “exposed but not yet

infectious” individuals (E) enter into the infectious class at the rate of  per unit

time, while  is the diminishing rate (per unit time) of infectious individuals I

due to recovery or death. In epidemiological terminology, parameters  and

correspond  to  the  inverse  of  the  average  of  an  exponentially  distributed  time  to

onset of infectiousness and to recovery since infection, respectively. Namely, 1

and 1  are the mean incubation and infectious period (duration of the infection).

Besides, the demographic effects are ignored here in consideration of rapid

spreading of the Ebola epidemic and the slow population growth during the

interim.

6.2 Reproduction number

The basic reproduction number, which is one of key concepts in epidemiology,

originates from the compartmental model (such as SIR, SEIR), where a population

is assumed nearly all susceptible at the initial stage and well-mixed during the whole

epidemic process. This concept is defined as the average number of secondary

infections arising from a primary case during the course of its infectious period,

with the calculation formula as
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0R .                           (6.2)

It is a crucial quantity for identifying the hazard level of an infectious disease, and

guiding the requisite intervention intensity to be adopted for preventing the further

spread of an epidemic.

However, humans may have high mobility in reality, be isolated or confer lifelong

immunity after some pathogens infected. Thus, the effective reproduction number,

tR , is timely put forward, more suitable for estimating the average number of

secondary cases per infectious case. The subsequent section 6.4 provides the

calculation formula for effective reproduction number. Unquestionably, the

estimation of tR  indicator  has  proved  to  be  of  critical  importance  to  gauge  the

risk level for an infectious disease; for instance, understanding the outbreak and

potential danger from SARS (Riley et al. 2003) or the H1N1 (Chowell et al. 2007).

6.3 Approximation of the early phase of exponential-growth

The basic reproduction number can typically be estimated during the early stage of

an epidemic, as there would not be interventions or evidence of depletion effects

of the susceptible compartment at this stage. Thus, it is often assumed that the

initial growth rate of the cumulative infected case number behaves exponentially.

Based on the same considerations, Lipsitch et al. (2003) has estimated the basic

reproduction number 0R  of the SARS outbreak in Singapore before control

measures  were  instituted,  by  fitting  the  cumulative  case  number  in  a  logarithmic
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scale with a straight line 0b kt . The optimal exponential phase scope can be

determined by the R square or chi-square goodness of fit test (Favier et al. 2006).

The Chi-Square Goodness of Fit  Test  is  put forward to examine how "close" the

observed values would be reflected by a fitted model. In general, the chi-square test

statistic is of the form
2

2 i i

i i

O E
E

, where 2  is the obtained Chi Square,

iO  and iE  are observed and expected scores respectively. A large computed test

statistic indicates the observed and expected values are not close and the employed

model  is  a  poor  fit  of  the  observations.  Alternatively,  the  R  square  index

characterizes the goodness of fit between the observations and the fitting function

by comparing the variability of the estimation errors with the variability of the

original values, with the formulation being

2 1 E

T

SSR
SS

,                        (6.3)

where 2
E i i

i
SS O E  is the sum of squared errors, and

2

T i
i

SS O O

is the total sum of squares. The following Figures 6.1-6.4 provide the optimal

exponential phase scopes in terms of the R square index for each of the Ebola

affected countries in West Africa.
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Figure 6.1 The R square index to the exponential growth phase of cumulative

EVD case number for Guinea

Figure 6.2 The R square index to the exponential growth phase of cumulative

EVD case number for Sierra Leone
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Figure 6.3 The R square index to the exponential growth phase of cumulative

EVD case number for Liberia

Figure 6.4 The R square index to the exponential growth phase of cumulative

EVD case number for Nigeria
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estimated straight slope k  with the spectral radius (dominant eigenvalue) of a

linearized SEIR model (6.1) assuming no depletion of the susceptible

compartment. That is achieved by setting S t N t  in equation (6.1), yielding

E tE t
I tI t

,                  (6.4)

with a Corresponding dominant eigenvalue 21
4

2
k .

Recall of formula (6.2), we obtain the estimated basic reproduction number as

0
1 +R k k .                     (6.5)

It should be noted that the above calculation formula has also be equivalently

derived before involving extra quantities like the mean infectious period and serial

interval as mentioned in other studies (Heffernan et al. 2005, Chowell et al. 2007).

6.4 Sequential Bayesian Inference of

A communicable disease requires prompt adoption of emergency responses such

as quarantine, or deployment of vaccine resources. Precise and prompt estimates

of the reproduction number are of critical importance since this quantity can

frequently be employed for not only indicating the critical level of the disease

transmission over time, but also assessing the ef cacy of the adopted

countermeasures. This section describes a Sequential Bayesian inference combined

with a stochastic SEIR model (Chowell et al. 2007) for estimating the real time
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effective reproduction number tR ,  the  actual  number  in  average  of  secondary

infected cases per primary case at time t (Nishiura et al. 2006) and is normally

smaller than the basic reproduction number 0R . It may vary over time on account

of changes in the demographic structure, as well as the virus evolution.

Epidemiological reports of Ebola that were updated intermittently on the WHO

official website provided a tally of infected cases in chronological order. Thus, it is

convenient to proceed with the estimation procedure through progressive

increment in the cumulative number of notified cases, C t ,  as  described  in

equation (6.1). The newly reported cases over the period t t  can be written

as C t C t C t , where time interval  between successive dates of

epidemic information release may vary over time from 1 day to almost 1 week, or

even longer. Suppose that the susceptible population portion remains

approximately constant over each incremental period , namely,

t tS t N t c  but  may  vary  across  two  successive  periods,  then

simultaneous differential equations associated with E t  and I t  can be

reformulated by simplification from the linearization of the SEIR model (6.1) as

follows,

t E tE t
I tI t

.                  (6.6)

Following the approach adopted in the literature (Lipsitch et al. 2003) and using

formula (6.2)’s variant t tR , we can figure out the dominant eigenvalue
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21 4
2 tR ,

thereby arriving at the approximate solution of E t  to equation (6.6), that is the

relationship of tE t b R E t , or equivalently,

tC t b R C t , where exptb R .         (6.7)

Parameters  and  are constant for this model, thus the time-varying effective

reproduction number tR  is the sole parameter to be estimated.

In general, core idea of the sequential Bayesian inference approach is to predict the

distribution of future case number increment C t  based on currently new

issued case number C t  after giving tR  (and other parameters such as

and ).  Fortunately,  our  familiar  Poisson  distribution  can  be  utilized  here  to

characterize such dynamic renewal process as it indicates probability of a given

number  of  events  occurring  in  a  fixed  time  interval,  with  only  one  parameter

to be estimated,  which is  exactly its  expectation.  Recall  equation (6.7),  future case

number can thus be predicted as

tP C t C t R Pois , tb R C t .        (6.8)

This probabilistic formulation implies that future increased case number

C t  rests with currently new released case number C t , given tR .

Therefore, estimation of tR  with quantified uncertainty can be straightforwardly

formulated as posterior distribution via the Bayesian rule, that is
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t t
t

P C t C t R P R
P R C t C t

P C t C t
,      (6.9)

where tP R  is  a  prior,  reflecting  any  desirable  guessing  knowledge  of tR ; and

the denominator, independent of tR ,  is  a  normalization  factor,  which  is  not

necessarily  in  the  subsequent  simulated  computation  if  utilizing  the  MCMC

(Markov Chain Monte Carlo) iteration approach. Another advantage for employing

the simulated MCMC approach is that the traditional analytical-likelihood-based

inferences are generally computationally intractable.

Overall, the knowledge of two or more newly notified cases incorporated into this

probabilistic contagion model, comes into the posterior estimation of the

probability distribution of tR , via the Bayesian theorem. A scheme of the

estimation algorithm proceeds through continuous iterations, where the posterior

probability estimation of tR  in the foregoing step is chosen to be the prior for

new cases notified within the subsequent time interval, t . After successive

iterations upon a series of incremental number of released cases, the maximum

likelihood estimates (average or median) can be perceived as the optimum estimator

for tR , and the desired confidence intervals corresponding to different confidence

levels. After a series of Bayesian recursive iterations, the effective reproduction

number, tR , can be elaborately estimated by excavating as much information as

possible from the successive reported cases. However, the estimated tR  may have

the declining trend due to depletion of the susceptible portion within the total

population.
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It is noteworthy that when applying the above SEIR model for a sporadically

distributed population, the homogeneous mixing assumption may not be satisfied.

Further, the evolutionary epidemic spreading may lead to a gradual depletion of

susceptible individuals, thereby cutting down the estimated effective reproduction

number. In the real-world situation, whether taking the susceptible depletion into

consideration is also subject to the geographical scale of an epidemic region. Image

that the EVD may infect all humans in a village but hardly affect the entire citizens

of a big city. Therefore, if we take the whole country into account as an epidemic

pool for the SEIR model, the susceptible portion can thus be regarded to be always

constant during the whole Ebola spreading course.

6.5 Experiments and Discussion

For here the discussed sequential Bayesian inference model, an appropriate early

time stage should be firstly picked out corresponding to the exponential epidemic

growth with enough care. Because the approximate solution of E t  to the

linearization equation of SEIR model (6.4) may directly influence the priori

distribution of basic reproduction number. Normally, a prior of this sequential

Bayesian iterative model can be assigned with a trimmed Gaussian

0
2, 1R RRN  restricted within the interval of 0 2 R  for the

estimation of tR .  Meanwhile,  the  latent  and  infectious  periods  are  referred  with

1/ 5.3  and 1/ 5.61 (Chowell et al. 2004).
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Figure 6.5 Time-varying Effective Reproduction Number for Guinea 

 

Figure 6.6 Time-varying Effective Reproduction Number for Sierra Leone 
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Figure 6.7 Time-varying Effective Reproduction Number for Liberia 

 

Figure 6.8 Time-varying Effective Reproduction Number for Nigeria 
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we carry out the estimations of  the time-varying effective reproduction number; as 

well as their 95% confidence intervals for the EVD infected countries in West 

Africa (Figure 6.5 to Figure 6.8). Solely based on the number of  notified 

         
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

OctoberSeptemberAugustJulyJuneMayAprilMarch

Exponential phase length (days)

E
f
f
e
ct

iv
e

r
e
p
r
o
d
u
ct

io
n

n
u
m

be
r

R
t

 

 

95% confidence interval
maximum likelihood Rt

     
0.5

1

1.5

2

2.5

3

3.5

4

OctoberSeptemberAugustJuly

Exponential phase length (days)

E
f
f
e
ct

iv
e

r
e
p
r
o
d
u
ct

io
n

n
u
m

be
r

R
t

 

 

95% confidence interval
maximum likelihood Rt



- 112 -

cumulative cases, the estimated effective reproduction number here provides an

indicator of critical significance for perceiving the transmission intensity of EVD

in each country. The final stabilized reproduction number for these four countries

were, 1.15 for Guinea, 1.39 for Sierra Leone, dreadful 2.81 for Liberia, and 2.3 for

Nigeria. It should be pointed out that the estimation for Nigeria may be not correct

due to the insufficient EVD infected cases.

Figure 6.9 Choropleth map showing the effective reproduction number of Ebola
affected countries

Geographical maps indicating the value of effective reproduction number can be

used  to  identify  areas  of  higher  risk  for  an  outbreak  after  an  introduction.  Figure

6.9 provides the choropleth map indicating the effective reproduction number of

Ebola affected countries. Apparently, particular concerns and concerted efforts

should be paid to halt all transmission in Liberia, where there was not only a high

effective reproduction number, but also a prodigious base number of the infectious

population. If no effective prevention measures were adopted, more and more

EVD infected cases will be reported right from this country in the subsequent near
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future days.

In addition, such choropleth map can be further refined if the collected clinical

database  of  EVD  infection  could  be  more  location-specific.  What's  more,  the

smooth risk surface can also be expected (after being incorporated with the

transport networks and population distribution) so as to precisely indicate where is

the badly stricken area, thereby guiding the allocation of disaster relief resources.
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Chapter 7 Conclusions

Epidemic waves of new emerging infectious diseases have awakened global

concerns regarding their potential pandemic threats. In the meantime, rapid

urbanization processes apparently accelerate the epidemic spread of emerging

infectious diseases. Thus, spatiotemporal data analysis and mining can potentially

contribute to characterizing the temporal evolution process and revealing possible

spatial propagation patterns, thereby guiding the development of preventive

intervention measures.

This research has investigated or developed several innovative models integrated

with mathematical models within the GIS framework to understand and capture

the behaviors of the frequent emerging infectious diseases, anticipating these

models being conducive to the formulation of preventive intervention measures

against infectious disease spread.

7.1 Concluding Summary

Firstly, the Standard deviational ellipse (SDE) has always been a versatile GIS tool

for measuring the geographic distribution of concerned features. This research

firstly summarizes two existing models of calculating SDE and then proposes a

novel approach to construct the same SDE based on the spectral decomposition of

the sample covariance, by which the SDE concept is further extended into higher

dimensional Euclidean space, named standard deviational hyper-ellipsoid (SDHE).



- 116 -

A rigorous recursion formula is provided for calculating the confidence level of the

scaled SDHE with an arbitrary magnification ratio in any dimensional space.

Besides, an inexact-newton method based iterative algorithm is also proposed for

solving  the  corresponding  magnification  ratio  of  a  scaled  SDHE  when  the

confidence probability and space dimensionality are pre-specified. These results

provide an efficient manner for substituting traditional table lookup of tabulated

chi-square distribution. Finally, synthetic data is employed to generate the 1-3

multiple SDEs in two and three dimensions, and exploratory analysis by means of

SDE is also conducted for measuring the spread concentrations of H1N1 of Hong

Kong in 2009.

Mathematics is perceived as a powerful tool for understanding disease spread.

Chapter  4  firstly  devotes  to  modeling  the  temporal  dynamics  of  an  infectious

disease by the basic SIR compartmental model, which potentially is capable of

addressing some public health challenges and have recently been coupled with

powerful computational methods to optimize the epidemic control strategies.

The geographic spread of infectious disease epidemics is of increasing concern,

not  only  because  of  continuing  threats  of  the  liberal  release  of  biological  agents

but  also  due  to  increasing  rates  of  global  travel,  which  provides  an  effective

mechanism for disease spread. This situation makes it crucial to understand how,

when, and why epidemics spread across the geographic landscape so that effective

planning, preparation, and control measures can be in place before a disaster occurs.
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In this connection, Chapter 4 further focuses upon one significant class of

spatiotemporal methods come into being the form of partial differential equations,

with reaction diffusion equation model as its typical representative, which possess

the capacity of characterizing the dynamic evolution process for an infectious

disease transmitting the virus from infectious individuals to the susceptible. Besides,

it is also provided detailed computer implementation procedures using the

Runge-Kutta method for simulating reaction diffusion equations.

Spatiotemporal analysis of new emerging infectious disease potentially contributes

to characterizing the dynamic evolution process over time and revealing possible

spatial propagation patterns. As such, an innovative approach was proposed in

Chapter 5 for investigating the impact of spatiotemporal proximity upon the

forecast infection risk of infectious disease outbreak. Experiments making use of

the avian in uenza A H7N9 in eastern China, from February to May 2013,

demonstrated that the spatiotemporal proximity integrated approach is capable of

providing approximately 70% correct prediction on average in terms of the H7N9

illness onset risk during the future 5 days ever since the forecasting date. Findings

of this research can be served as an auxiliary means of great value for exploring the

spatiotemporal propagation pattern of new emerging infectious disease, as well as

making short-term predictions for deploying intensive effective prevention

measures.

The epidemic situation of Ebola virus disease (EVD) in West Africa has been an
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ongoing concern in 2015. The effective reproduction number, average number of

secondary infected cases, is an important indicator not only for reflecting the

critical level of disease transmission over time, but also for assessing the ef cacy of

the adopted countermeasures. Thus, precise and prompt estimates of the

reproduction number are of critical importance. A sequential Bayesian inference

combined with stochastic SEIR model was used to estimate time-varying effective

reproduction numbers, together with their 95% confidence intervals for each

affected countries, so as to explore the transmission potential of the EVD.

Experimental findings demonstrated that concerted efforts should be preferentially

paid in Liberia to halt the dreadful transmission of EVD as indicated by a greater

value of the effective reproduction number there.

7.2 Main Contributions

Main contributions of this thesis comprise four parts, being located in Chapter 3 to

Chapter  6,  which  all  deal  with  different  characteristic  patterns  of  epidemics.  One

chapter devotes to each model, contributing to characterize the transmission

patterns of speci c disease. The theory behind each chapter goes from the

shallower to the deeper. However, there is no explicit relationship between each of

these four models. Thus, we intend to conclude their contributions as per each

model, respectively.
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7.2.1 Standard Deviational Ellipse

(a) This research extends spatial analysis tool of Standard Deviational Ellipse

(SDE) into higher dimensional Euclidean space, named standard deviational

hyper-ellipsoid (SDHE).

(b) Meanwhile, it provides an efficient manner by a rigorous recursion formula and

an inexact-newton method based iterative algorithm for conducting the

confidence analysis.

(c) The proposed SDHE is obviously superior to the traditional SDE, since 1-3

multiple SDHEs (in three-dimensional space) can be employed for highlighting

the spatiotemporal concentrations of Hong Kong’s H1N1 infections.

7.2.2 Reaction Diffusion Equations

(a) The Reaction Diffusion equation serves as a spatial model. Simulations can

easily be performed with parameters relevant for a particular disease with given

demography and spatial structure.

(b) Diffusion coefficient of reaction diffusion equations can be determined if

being integrated with the layers of hosts distribution, transmission routes, etc.

so as to forecast the spatial spread trends of infectious disease.

(c) Main theoretical advantage of the reaction-diffusion equations is the

deterministic and tractable nature of the continuous-space models.
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7.2.3 Spatiotemporal Proximity Integrated Approach

(a) An innovative approach has been proposed for investigating the impact of

spatiotemporal proximity upon the infection risk prediction of emerging

infectious disease

(b) Experiments upon avian in uenza A H7N9, February to May 2013 in eastern

China,  demonstrates  that  such  spatiotemporal  proximity  integrated  model  can

provide an approximately 70% correct prediction on average of the spatial

significance level of the infection risk likelihood during the next five days ever

since the notification release date.

(c) Findings of this research can be served as an auxiliary means for exploring the

spatiotemporal propagation pattern of new emerging infectious disease, as well

as making short-term predictions for the development of intensive effective

prevention measures.

7.2.4 Sequential Bayesian Inference of Reproduction Number

(a) The sequential Bayesian inference approach only involves the data of

cumulative number of case noti cations, thereby making it versatile for most

of the infectious disease.

(b) Time-varying  effective  reproduction  numbers  (including  their  95%  CIs)  are

conductive  to  reflecting  the  real-time  hazard  level  regarding  the  disease

transmission intensity.

(c) Geographical maps indicating the value of effective reproduction number can
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be used to identify areas of higher risk for an outbreak after an introduction.

7.3 A Software Prototype

Based on the aforementioned theoretical models, a software prototype framework

is further presented below for analyzing the spatiotemporal spreading patterns and

dynamic evolution trends of emerging infectious disease. From the practical

viewpoint, its flexibility and extendibility allow rooms for improvement and wider

applications in spatiotemporal analysis of the general infectious diseases.

Framework of a developing Software Prototype

Mission Spatial-Temporal analysis of epidemic spread by mathematical models

upon the platform of Geographic Information System

This icon is temporarily employed as the logo for this software prototype.

We named this software prototype as ST, which has been integrated with some

functionality such as the elementary GIS operation of the geographic layers, spatial

visualization and buffer analysis, as well as the Standard deviational ellipse (SDE),

Kernel Density Estimation (KDE) and Kriging Trend Analysis (KTA), etc.

The  Figure  7.1  illustrates  the  proposed  framework  of  this  software  prototype,  in

which partial functionalities have been achieved (marked in blue color) while others

indicated in red will be accomplished in the near future.
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Figure 7.1 The framework of software prototype ST integrated with 

spatial-temporal epidemic models 

 

This software prototype is put forward by integrating disease relevant data with 

typical mathematical models within the GIS platform. Meeting a need of  solid 

expertise for effective decisions, this software prototype would probably be of  

interest for institutional decision makers and insurance industry. 
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7.4 Discussion (Limitations and Future Work)

This thesis mainly comprises four contributing models, which are anticipated to be

conductive to understand and capture the behaviors of infectious disease. It is

noteworthy that all these four models are proposed under the circumstance of very

with limited clinical database in hand.

Derivations of both Standard Deviational Ellipses and its extension are under the

assumption of observed samples following the normal distribution. Thus, a certain

degree of caution is always necessary when employing the SDE tool for measuring

the geographic distribution of concerned features. Particularly, delineation of an

area concerned by SDE may not be representative of the hotspot boundaries, but

produce ambiguous outcomes when distribution of features is multimodal.

Big challenge for applying the Reaction Diffusion Equations (RDE) is how to

assign the diffusion coefficient so as to incorporate hosts mobility patterns into the

disease spreading process, thereby forecasting the spatial spread trends of

infectious disease. In theory, the diffusion coefficient can be determined by

integrating with the layers of hosts distribution, transmission routes, etc. so as to

reflect the complicated disease spreading situation. Therefore, It is also possible,

that the diffusion coefficient D  may depend on u , and/or explicitly on position

x  and time t . Sometimes, the geographic barrier constraints may also be added to

limit the spreading range.
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Still and all, research upon the RDE model is mainly staying from the theory level.

Its enormous potential needs definitely to be attempted with more practical

applications. Besides, the RDE model assumes that each group population is

sufficiently large and homogeneous mixing with each subpopulation. Stochastic

effects may be significant when group populations are small.

For the spatiotemporal proximity integrated approach, it is worth approving of the

temporal proximity which creatively motivated by the principle that clinical

symptom onset date is certainly posterior to the historical virus exposure time, as

described by PDF of the incubation period fitted. However, the spatial proximity

depicted by the KDE model seems a little bit arbitrary, not to mention the

assumption of the spatial locations of infected individuals being static points

within the epidemic region. As thus, higher prediction accuracy of this

spatiotemporal proximity integrated approach can be anticipated if further

environmental factors are taken into account, such as road networks, distribution

of poultry markets and human population density, which may prominently account

for the dissemination patterns of H7N9 dynamics.

Geographical maps with the value of effective reproduction number can be

conductive for identifying areas of higher risk for an outbreak once infection

introduced. Conservatively speaking, the Sequential Bayesian Inference (SBI) model

can be further improved to output the spatial & temporal reproduction number (a

GIS layer of the time-varying effective reproduction number) directly. Thus,

choropleth map of tR  can be further refined (even the smooth risk surface) by
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utilizing more location-specific clinical database of EVD infections. Meanwhile, the

calculated effective reproduction number by SBI can be employed to predict the

future cumulative case number of EVD infections, thereby guiding the optimal

allocation of limited public health resources.
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