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Abstract

The thesis is concerned with multi-period mean-variance asset-liability portfolio s-
election. It is a nonseparable problem in the sense of dynamic programming as it
cannot be decomposed by a stage-wise backward recursion. In this thesis, we re-
sort to tackling the nonseparability of the problem and seeking analytical optimal
solutions and efficient frontiers.

On the one hand, we formulate the mean-variance model by fixing the terminal
mean and deal with it using the parameterized method. By a variable substitution
and Lagrange multiplier method, we can turn the nonseparable problem to a solvable
stochastic linear quadratic optimal control problem. One prominent feature of the
dynamic mean-variance formulations is that the optimal portfolio policy is always
linear with respect to the current wealth and liability. According to this feature,
we derive the analytical optimal policies and efficient frontiers. The analytical for-
m of the Lagrange multiplier is also given in expression of the expectation of the
final surplus. The results are much more explicit and accurate compared with the
similar model solved by the embedding technique. It is worth mentioning that the
relationship of returns between the assets and liability plays an important role in
the whole derivation. We consider different cases such as the returns of assets of
liability are stochastically correlated at the same period and in different periods as
well as uncorrelated, compare their differences and illustrate their effects on optimal

strategy and efficient frontier theoretically and numerically.
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On the other hand, by putting weights on the two criteria, we transform the
mean-variance problem into a single-objective optimization problem. Instead of the
parameterized method, we employ the mean-field formulation to solve different asset-
liability mean-variance model with various constraints such as uncertain exit time,
and bankruptcy control, respectively. In fact, when uncertain exit time or bankruptcy
are considered in the model, the parameterized method and the embedding technique
will not work smoothly. We shed light on the efficiency and accuracy of mean-field
formulation when dealing with the issue of dynamic nonseparability in those models.
By taking “mean” of the constraints and some simple calculation, the state space
and the control space are enlarged in the language of optimal control. The objective
function then becomes separable in the expanded space which enables us to solve
the problem by dynamic programming. The analytical form of optimal policy and
efficient frontier are derived. It is showed that when the uncertain exit time reduces
to terminal exit time or the control over bankruptcy is left out and deterministic
expected return is taken, the results of the parameterized method and mean-field
formulation are proved to be the same. This further suggests that the two approaches

to solve multi-period mean-variance model are accurate.
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Notation

A the transpose of matrix (or vector) A.

A1 the inverse of matrix A.

AT the Moore-Penrose pseudoinverse of matrix A

| M| the determinant of square matrix M

I, identity matrix of dimension n

St the return rate of the riskless asset at time period ¢
el the return rate for asset ¢ at time period ¢

Pl the excess return rate for asset i at time period ¢

q: the return rate of the liability at time period ¢

oy the probability mass function at time period ¢

Ty the wealth of the investor at the beginning of the ¢-th

time period

ly the liability of the investor at the beginning of the t-th

time period

il the amount invested in the i-th risky asset at the be-

ginning of the ¢-th time period

XV



xXvi



Chapter 1

Introduction

1.1 Background

Most of us own a portfolio of assets, which may include real assets, such as a house,
a car, or a laptop, and financial assets, such as stocks and bonds. Portfolio selection,
which is concerned with finding the most desirable group of funds to hold, plays
an important role in the process of gathering wealth. Rational investors prefer a
higher expected return as well as a lower risk. However, the portfolio with maximum
expected return is not always the one with lowest risk. Mean-variance portfolio
selection refers to the design of optimal portfolios balancing the gain with the risk,
which are in expression of expectation and variance of the final return, respectively.
In order to trace out the efficient frontier for this bi-objective optimization problem,
a typically method is to put weights on the two criteria and transform the problem
into a single-objective optimization problem.

The mean-variance framework of portfolio selection originated by Markowitz, the
1990 Nobel Laureate in Economics. The principles introduced in Markowitz (1952)
are still at the core of many modern approaches for asset allocation, investment
analysis and risk management. In recent years, research on mean-variance portfolio
selection problems have been well developed. Li and Ng (2000) extended Markowitz’s

model in single period to dynamic version and derived analytical solution by the



embedding technique. Costa and Nabholz (2007) generalized the results of Li and
Ng (2000) for the case in which the intermediate variances and expected values of
the portfolio are also considered in the performance criterion and/or constraints.
Zhou and Li (2000) introduced the stochastic linear quadratic control as a general
framework to study the continuous-time mean-variance portfolio selection problem
and obtained analytical optimal policy and explicit expression of efficient frontier. Li
et al. (2002) developed it to a constrained one where short-selling is not allowed. Yin
and Zhou (2004) studied a discrete-time mean-variance portfolio selection problem
where the market parameters depend on the market mode (regime) that jumps among
a finite number of states and revealed their relationship with the continuous-time
counterparts. Czichowsky (2013) developed a time-consistent formulation of mean-
variance portfolio selection problem based on a local notion of optimality called local
mean-variance efficiency in a general semimartingale setting for both discrete and
continuous time cases. Cui et al. (2014) presented a mean-field formulation to tackle
the multi-period mean-variance portfolio selection problem and derived analytical
optimal strategies and efficient frontiers. Pang et al. (2014) considered continuous
mean-variance portfolio selection under partial information by dynamic programming
approach through exploiting the properties of the filtering process and the wealth
process.

Asset-liability management is a financial tool for an investor that sets out to max-
imize their wealth. The aim of asset-liability management is to reduce risk as well as
increase returns and it has been used successfully for banks, pension funds, insurance
companies and wise individuals. A judicious investment considers assets and liabili-
ties simultaneously. A financial institution taking liabilities into account can operate
more soundly and lucratively. Krouse (1970) noticed that many mean-variance mod-
els concentrated only upon to assets with little or no effort being directed to the
liabilities. The mean-variance framework of asset-liability management was first in-
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vestigated by Sharpe and Tint (1990) in single-period setting. Leippold et al. (2004)
derived the closed form optimal policies and mean-variance frontiers under exogenous
and endogenous liabilities using a geometric approach; Chiu and Li (2006) employed
the stochastic optimal control theory to analytically solve the asset-liability man-
agement in a continuous time setting; Xie et al. (2008) considered the situation in
an incomplete market by using the general stochastic linear-quadratic control tech-
nique. Chen and Yang (2011) studied the case with regime switching; Zeng and
Li (2011) investigated the model under benchmark and mean-variance criteria in a
jump diffusion market. Wu and Li (2012) considered the regime switching and cash
flow together in the model.

An important assumption of the simple portfolio selection models is that the in-
vestment time horizon is deterministic, which means that the investor determines the
exit time at the beginning of the investment. In the real world, however, the investor
might be forced to abandon his or her original investment plan for some unexpected
events or accidents, such as sudden huge consumption, serious illness, retirement and
etc. Therefore, it seems more realistic to relax the restrictive assumption that the
investment horizon is pre-determined with certainty. Yaari (1965) formulated an op-
timal consumption problem for an individual with an uncertain date of death, under
a pure deterministic investment environment. Hakansson (1969) extended Yaari’s
work to a multi-period setting with a risky asset and an uncertain exit time. Merton
(1971) introduced an uncertain retiring time into a dynamic optimal investment and
consumption problem, where the uncertain time was defined as the first jump of
an independent Poisson process. Li and Xie (2010) incorporated a market-related
exogenous uncertain time horizon into a continuous-time mean-variance portfolio
selection problem. Yi et al. (2008) investigated a multi-period mean-variance port-
folio selection problem with an uncertain exit time. Wu and Li (2011) studied a
multi-period mean-variance portfolio selection problem with regime switching and
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an uncertain exit time. Yao et al. (2013) considered an asset-liability management
problem under a multi-period mean-variance model with uncontrolled cash flow and
uncertain time-horizon.

Due to the volatility of the financial market, it is impossible to eliminate the
possibility of bankruptcy in multi-period investment setting. We assume in this
thesis bankruptcy occurs when the surplus (total wealth minus liability) falls below
a preset level. Once an investor goes bankruptcy, he/she will suffer a great loss such
as retrieve part of his/her wealth (even take nothing back), high liability and low
credit. It is crucial for a successful investment to take bankruptcy into account.
Zhu et al. (2004) generalized the multi-period mean-variance model by considering a
good risk control over bankruptcy. Bielecki et al. (2005) studied the continuous-time
mean-variance problem with bankruptcy prohibition. Wei and Ye (2007) studied
the multi-period optimization portfolio with bankruptcy control when the random
returns of risky assets depend on the state of the stochastic market. Wu and Zeng
(2013) investigated the case in a regime-switching market.

Most studies above are under a circumstance that the time and returns are in-
dependent. In fact, the returns of risky assets or liability always exhibit certain
degree of dependency among different time periods. Correlated returns are neces-
sary and meaningful to be considered in the mean-variance portfolio selection. Since
the model becomes difficult to solve, there are a few works about it in the literature.
Balvers and Mitchell (1997) was the first to derive an explicit analytical solution
to the dynamic portfolio problem when the returns are autocorrelated by a normal
ARMA(1,1) process. Xu and Li (2008) investigated a dynamic portfolio selection in
a market with only one risky asset and one risk-free asset and Zhang and Li (2012)
extended it to the case with uncertain exit time. Gao and Li (2014) considered the
capital market consisting of all risky assets. By embedding technique, all the last
three derived analytical optimal strategies.
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We now get an overview of the analytical solution of the mean-variance portfo-
lio selection problem. For the single period model proposed by Markowitz (1952),
Merton (1972) gave the analytic solution in the case where the covariance matrix is
positive definite and short-selling is allowed. However, a multi-period or continuous-
time treatment is considerably more delicate. In order to solve this dynamic problem
in dynamic programming approach, it must satisfy the principle of optimality: An
optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision(See Bellman (2010)). In other words, the problem
should be separable so that the objective function can be decomposed by a stage-wise
backward recursion. Since the variance term in multi-period mean-variance model
is nonlinear with respect to the expected wealth, it does not satisfy the smoothing
property, i.e.,

Var (Var(:|F;)|F;) # Var(-|F;), Vi>j

where F; is the information set available at time j and F,_; < F,. So the multi-
period mean-variance problem is nonseparable in the sense of dynamic program-
ming. All traditional dynamic programming-based optimal stochastic control solu-
tion methods are then invalid. The main approaches to tackle it include martingale
theory, embedding technique, parameterized methoed and mean-field formulation.
Let us first review the embedding technique by Li and Ng (2000)) in detail which
is widely used to solve the noseparability (See Leippold et al. (2004), Chiu and Li
(2006), Yi et al. (2008), Li and Xie (2010), Zhang and Li (2012), Yao et al. (2013)
etc.). Suppose that the capital market consists of one risk-free asset and n risky
assets with given return s, and random return e; = [e}, -+ ,e?]’. An investor join-
ing the market at the beginning of period 0 with initial wealth xy and plans to

invest his/her wealth within a time horizon 7. Then the multi-period mean-variance



portfolio selection problem can be formulated as (see Li and Ng (2000)):

MV (w) max E(xr) — wVar(xr),

n
st.xi1 = sy (xt - Z W;) + Z €,

i=1

ZSt.Tt"i-P;T('t, t:O,l,Q,"',T—l.

where x; denotes the wealth of the investor at the beginning of period ¢, 7! denotes
the amount invested in the ith risky asset at the beginning of period t, w > 0 is
the trade-off parameter between the mean and variance representing the degree of
the investor’s risk aversion. This is hard to solve directly by dynamic program-
ming approach. Adopting an embedding scheme, they considered instead a family

of auxiliary problems, A(w, A), parameterized in A,

A(w,)\) min E(wzr — A\vr),

™

stz =sy+ Py t=0,1,2,--- T — 1.

Note that problem A(w, A) is a separable linear-quadratic stochastic control formula-
tion and can be thus solved analytically. The optimal solution to the original problem
can the be located via the solution to the auxiliary problem.

The second method is the parameterized method. By introducing an auxiliary
variable d and an equality constraint E(xy) = d for the expected terminal wealth,
Li et al. (2002) studied the following slightly modified and equivalent version of

(MV(w)) (the no-shorting constraint is omitted here),

(MV(d)) min Var(ar) = E(xr — d)?,

s.t. E(l‘T) = d,

T = sy + Py t6=0,1,2,...,T — 1.

Introducing a Lagrangian multiplier A and applying Lagrangian relaxation to (MV(d))
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give rise to the following linear quadratic stochastic control (LQSC) problem,
(L(N\) min E(zr — d)? — ME(zr — d),

st vy =sy+ Py t=0,1,2--- T — 1.

By maximizing the dual function L(\) over all Lagrangian multiplier A € R, we can
derive the optimal policy of (MV(d)). Set v = d + A\/2, the Lagrangian problem
(L(X)) can be further written as the following LQSC problem,

(MVH(vy)) min E(zp — )%,

s.t. I’t+1:8tl't+P27Tt t:O,1,27"' ,T—l,

which is a special mean-variance hedging problem. Under a quadratic objective
function, the investor can hedge the target v by his/her portfolio. (MV H (7)) has
been well studied and can be solved by LQSC theory (see Li et al. (2002)), mar-
tingale/convex duality theory (see Schweizer et al. (1996), Xia and Yan (2006)) and
sequential regression method (see Cerny and Kallsen (2009)).

The third method is the mean-filed formulation approach developed by Cui et al.
(2014). The so-called mean-field type stochastic control problem refers to the prob-
lem where either the objective functional or the dynamic system involves state
processes and their expectations. Note that the multi-period or continuous-time
Markowitz-type mean-variance portfolio selection problems are typical mean-field
type stochastic control problems, where the variance term appears as a quadrat-
ic function of the expected terminal state. In this line of literature, the theory of
the mean-field optimal controls for forward systems has been well established and
extensively applied, especially to mean-field LQ control problems proposed by Yong
(2013) and some financial applications such as those studied in Li et al. (2002), Li and
Zhou (2006), Fu et al. (2010). Despite the active research efforts in recent years (see
Meyer2012, Nourian et al. (2013)), the related topic of mean-field formulations for
multi-period mean-variance models remains a relatively new and largely unexplored
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area. In Cui et al. (2014), they developed a unified framework of mean-field formu-
lations to investigate three multi-period mean-variance models in the literature: the
classical multi-period mean-variance model in Li and Ng (2000), the multi-period
mean-variance model with intertemporal restrictions in Costa and Nabholz (2007),
and the generalized mean-variance model with risk control over bankruptcy in Zhu
et al. (2004). They demonstrated that the mean-field approach represents a new
promising way in dealing with nonseparable stochastic control problems related to
the mean-variance formulations and even improves solution quality of some existing

results in the literature.

1.2 Contributions and organization of the Thesis

In this thesis, we study asset-liability management under a multi-period mean-
variance portfolio selection framework. The main difficulty to solve the problem
is the nonseparability. As mentioned above, most multi-period mean-variance mod-
els derive the analytical optimal policies based on the embedding technique. One of
the prominent features of the embedding technique is that it builds a bridge between
multi-period portfolio selection problems and standard stochastic control models.
Embedding scheme is indeed an efficient way to deal with problems with the nonsepa-
rable property. However, it is prone to involve inefficient and complicated calculation
during the derivation of the optimal strategies and efficient frontiers by embedding
since an auxiliary problem should be built and a long list of notation should be
established, especially when adding some constraints such as asset-liability manage-
ment, uncertain exit time and risk control over bankruptcy and/or serial correlated
returns. We resort to exploring new method to solve the multi-period asset-liability
mean-variance portfolio selection problem efficiently.

In Chapter 2 we present a brief introduction of multi-period mean-variance asset-



liability portfolio selection problem. Some lemmas which will be used in the following
chapters are also given.

Chapter 3 tackles the multi-period mean-variance portfolio of asset-liability man-
agement problem using the parameterized method addressed in Li et al. (2002). By a
variable substitution and Lagrange multiplier method, we can turn the nonseparable
problem in the sense of dynamic programming to a solvable stochastic linear quadrat-
ic optimal control problem. One prominent feature of the dynamic mean-variance
formulations is that the optimal portfolio policy is always linear with respect to the
current wealth and liability. According to this feature, we derive the analytical op-
timal policies and efficient frontiers. The analytical form of the Lagrange multiplier
is also given in expression of the expectation of the final surplus. The results are
much more explicit and accurate compared with the similar model solved by the
embedding technique. It is worth mentioning that the relationship of returns plays
an important role in the whole derivation. We first deduce the case when assets
and liability are correlated just in the same time period, then it is reduced to the
uncorrelated setting. Numerical examples are presented to shed light on the results
established in this work.

When uncertain exit time or bankruptcy are considered in the model, neither the
parameterized method nor the embedding technique will work smoothly. Chapter 4
is devoted on the mean-field formulation for the multi-period asset-liability mean-
variance portfolio selection with an uncertain exit time. Note that the multi-period
or continuous-time Markowitz-type mean-variance portfolio selection problems are
typical mean-field type stochastic control problems, where the variance term appears
as a quadratic function of the expected terminal state. We shed light on the efficiency
and accuracy of mean-field formulation when dealing with the issue of dynamic non-
separability in those models. By taking “mean” of the constraints and some simple

calculation, the state space and the control space are enlarged in the language of op-
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timal control. The objective function then becomes separable in the expanded space
which enables us to solve the problem by dynamic programming. In the first section
we introduce mean-filed formulation and use it to deal with the noseparability of a
simple multi-period mean-variance problem without liability. Then we employed the
mean-field formulation to solve the asset-liability management. We derive strictly
the optimal strategies and efficient frontiers of the mean-variance model with corre-
lation of assets and liability and the results with uncorrelation of assets and liability
respectively. Numerical examples are presented to illustrate the efficiency and accu-
racy of the mean-field formulation to solve the multi-period mean-variance model.
It is showed that compared to the embedding technique (see Yi et al. (2008)), the
mean-field approach makes the whole process to derive the optimal strategy sim-
pler and more direct. When the uncertain exit time reduces to terminal exit time
and take deterministic expected return, the results of the parameterized method and
mean-field formulation are proved to be the same. This in turn suggests that the
two approaches to solve multi-period mean-variance model are accurate.

Chapter 5 deals with the multi-period mean-variance portfolio selection problem
with risk control over bankruptcy. Mean-field formulation is proved to be also efficient
when we take bankruptcy into account. The effect of control over bankruptcy is
showed theoretically and numerically. When the bankruptcy control is left out and
the terminal expected expectation is deterministic as the model in Chapter 3, the
results are also the same as it.

Chapter 6 resolves the problem of Chapter 3 when the returns of assets and lia-
bility are correlated among different time periods, which is much more complex but
is always the case in real financial market. We prove that the similar results hold
when the expectation, the variance, the covariance are extended to conditional ex-
pectation, conditional variance, conditional covariance, respectively. In other words,

the results in this Chapter can be reduced to that of Chapter 3 when the assets and
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liability are independent in different periods. In fact, it is not an easy thing. On the
one hand, there are not enough references about the mean-variance model when the
returns are serially correlated. On the other hand, since we do not have the deter-
ministic distribution of the correlated returns but just adopt a formulation with a
general form, how to calculate the expectation of it is crucial. We deal with this by
using a approximate formulation. The differences of different cases are illustrated by
numerical examples.

The whole thesis deals with the multi-period mean-variance asset-liability portfo-
lio selection problem with different constraints, such as uncertain exit time, bankrupt-
cy control and correlated returns in parameterized method or mean-field approach.
We can also consider other situations such as regime switching or time consistent

problem. Chapter 7 concludes the whole thesis and plans for the future work.
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Chapter 2

Preliminary

The purpose of this chapter is to review the basic concepts of multi-period asset-
liability mean-variance model and present some lemmas which will be used in the

following chapters.

2.1 Multi-period Asset-Liability Mean-Variance
Model

Assume that an investor joining the market at the beginning of period 0 with an
initial wealth zy and initial liability [y, plans to invest his/her wealth within a time
horizon T'. He/she can reallocates his/her portfolio at the beginning of each following
T — 1 consecutive periods. The capital market consists of one risk-free asset, n risky
assets and one liability. At time period ¢, the given deterministic return of the
risk-free asset, the random returns of the n risky assets, and the random return of

the liability are denoted by s; (> 1), vector e; = [e}, - ,el']’ and g, respectively.

The random vector e; = [e}, -+, e}

]" and the random variable ¢, are defined over
the probability space (€2, F, P) and are supposed to be statistically independent at
different time periods.

We assume that the only information known about e; and ¢; are their first two

unconditional moments, E[e,] = (E[ef], - ,E[e?])/, E[¢] and (n + 1) x (n + 1)

13



positive definite covariance

on(£) 2[5 o] <[]t o1

From the above assumptions, we have
57 siEler] siE[qi]
StE[et] E[eteg] E[etqt] > 0.
siElg:] Elge] E[g]]

We further define the excess return vector of risky assets P; = (P}, ---

(ef — s8¢, -+, e — ;). The following is then true for ¢t = 0,1,--- , T — 1:

si:E[Py] E[P.P}] E[P;q]
siEla] E[eP;] E[¢]

1 0 0 s? siEle}]  siE[q] 1 -1 0
= -1 I 0 stIE[et] E[ete;] E[etqt] 0 I 0
0 0 1 siE[q] El[qel] E[¢?] 0 0o 1

57 siE[P1]  siE[q] )

>0,

) Ptn)/ as

where 1 and O are the n-dimensional all-one and all-zero vectors, respectively, and

I is the n x n identity matrix, which further implies, for t =0,1,--- T — 1,

E[P,P;] > 0,
s?(1 — E[P,]JE~'[P,P,]E[P,]) > 0,
E[¢?] - E[¢.P]E~' [P, P/]E[Piq] > 0.
We further denote
B, < E[P/JE"'[P,P{|E[P/],
B, = E[¢,P|JE"'[P,P|E[P,],

~

B; 2 E[¢.P,JE~'[P,P,|E[P.q.].

Thus, 0 < B, < 1,V t =0,1,--- ;7 — 1. If the returns of asset and liability are

uncorrelated at every period, then

ét = E[Qt]Bt and Et = (E[Qt])2Bt-
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Let x; and [; be the wealth and liability of the investor at the beginning of period
t respectively, then x; — [; is the surplus. At period ¢, if 7!, ¢ = 1,2,--- ,n is the
amount invested in the i-th risky asset, then, z; — > | 7} is the amount invested in
the risk-free asset. We assume in this paper that the liability is exogenous, which
means it is uncontrollable and cannot be affected by the investor’s strategies. De-
note the information set at the beginning of period t, ¢t = 1,2,--- ;T — 1, as F; =
o(Po,P1, -+ Py 1,490,q1, -+ ,q:—1) and the trivial o-algebra over {2 as Fy. Therefore,
E[-|Fo] is just the unconditional expectation E[-]. We confine all admissible invest-
ment strategies to be Fi-adapted Markov controls, i.e., m = (7}, 72, -+, ) € F;.
Then, P, and m; are independent, {z,[;} is an adapted Markovian process and
Fi = o(x, ly).

If we consider the multi-period mean-variance portfolio selection problem without
liability (¢, = I; = 0), which is to say, the capital market consists of n risky assets

and one risk-free asset, then the information set at the beginning of period t is F; =

o(Poy,Py,--- ,P,_1), and the positive definite covariance matrix of e, is
Ot11 " Otin

Cov (e;) = Elese}] — E[e/]Ele}] = o > 0,
Otin " Otnn

where 0y ;; is the covariance between assets ¢ and j. We also have E[P,P}] > 0 and

O<B,<1l,Vt=0,1,---,T—1.

2.2 Some Lemmas

Lemma 2.1 (Sherman-Morrison formula). Suppose that A is an invertible square

matrix and p and v are two given vectors. If

1+ VA #0,
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then the following holds,

At/ At

N—=1 _ A-1 __
(A+w/') " =A T VAT

For any matrix A, we denote by A* the Moore-Penrose pseudoinverse of A sat-
isfying
AATA = A ATAAT = AT (AAT) = AAT (ATA) = AT A.

It can be proved that AT is unique for any matrix A and if the inverse A~! of A
exists, then A* = A~L.

Suppose that M and N are symmetric matrices with the same order. We denote
M > N (M > N) if and only if (iff) M — N is positive definite (semidefinite). Let

M be a symmetrical square matrix partitioned as

My M
M =
(. )

where Mj; and Masy are also symmetrical square matrices. Denoted by |M]| the

determinant of a square matrix M. Then the following lemmas hold.
Lemma 2.2. If My, > 0, then | M| = [Ma| [ My — Mo My M1,|.
Lemma 2.3. If M > N > 0, then |M| > |N|.

The proofs of Lemma 2.2 and Lemma 2.3 can be found in Zhang (2011).

Lemma 2.4. A symmetrical square matrix M > 0 is equivalent to Myy > 0,

MQQMQ—EM{Q = M{Q and Mll - MlgMQ-EM{Q > 0.

The proof of Lemma 2.4 can be found in Albert (1969).
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Chapter 3

A Parameterized Method for
Optimal Multi-Period

Mean-Variance Asset-Liability
Portfolio Selection

In this chapter, we study asset-liability management under a multi-period mean-
variance portfolio selection framework using the parameterized method. The model
is formulated in minimizing the variance with deterministic expected return. By the
Lagrange multiplier method and a variable substitution we turn the problem to a
much simpler one which has the same optimal strategy with the original problem and
can be solved by dynamic programming. We first deduce the case when the returns
of assets and liability are correlated, then we reduce it to the uncorrelated setting.
The analytical optimal policies and efficient frontiers are derived. The analytical
form of the Lagrange multiplier is also given in expression of the expectation of the
final surplus. Numerical examples of different cases are presented to shed light on

the results established in this work.
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3.1 Formulation

The multi-period mean-variance asset-liability model is to seek the best strategy, =}
= [(z})*, (z2)*, -+, (7)*], t = 0,1,--- , T — 1, which is the solution of the following

dynamic stochastic optimization problem,

((min Var(zp — I7) = E[(z7 — Ip — d)?],
st. Elzy —Ir] = d,
) Tt+1 = St <$t - Z?ﬂ Wz) + Z?:l eiﬂg (3.1)

= sixy + Pimy,
\ lt+1:qtlta t:07177T_1

Introducing a Lagrange multiplier 2w > 0 yields

min E[(x7 — Ip — d)?] — 2w(E[zr — I7] — d), (32)

s.t.  {x, Iy, m} satisfies the dynamic system of problem (3.1), '
which is equivalent to the following problem,

min E[(zy — Ir — d — w)?], (3.3)

s.t. {x, 1, ™} satisfies the dynamic system of problem (3.1), .

in the sense that the two problems have the same optimal strategy. It can be rewritten

as
min E[(zy — v — I7r)?],
[(zr — v 'T) ] | (3.4)
s.t. {xy, 1, m} satisfies the dynamic system of problem (3.1),
where v = d + w. Set
T-1
Yp =Ty — 7y H it (3.5)
k=t

18



and denote Z;; 3;1 := 1. Then the dynamic system of problem (3.1) turns to
Yer1 = Sty + Py,
{ lt+1 :qtlta t:0717 7T_1a (36)

where yo = 20 — v [[}_y 55"~ The problem (3.4) can be reformulated into

min  E[(yr — I7)?], (3.7)
s.t. {y, Iy, m} satisfies equation (3.6), .
and it is the ‘same’ with the following problem:
min  E[y% — 2l7yr],
v 2l | (3.8)
s.t. {1, ™} satisfies equation (3.6),

The ‘same’ here means they have the same optimal strategy. By studying the problem

(3.8), we can obtain the optimal strategy of the original problem (3.1).

3.2 Optimal Strategy

3.2.1 The Optimal Strategy with Correlation of Assets and
Liability
In this subsection, assume that the returns of assets and liability are correlated at

every period, i.e., P, and ¢, are dependent each other at period ¢t =0,1,--- ,7 — 1.

Theorem 3.1. Assume that the returns of assets and liability are correlated at every

period. Then the optimal strategy of problem (3.1) is given by

¢ = —E[P,P/E[P,]s; <g;t—7* ﬁ Sy, ) + ( ﬁ w) E~[P,P,]E[¢P;]l:,

k=t k=t+1 (1= By)si
(3.9)

where

1‘01:[(1 — By)sp —d — loﬁ (Elgx] — Ek)
y= = = . (3.10)

l;[(l — Bi) -1
k=0
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Proof. We prove it by making use of the dynamic programming approach. For the
information set F;, the cost-to-go functional of problem (3.8) at period ¢ is

iy, 1) = H}ritnE[JtH(ym, lee1)|F ],

where the terminal condition Jr(yr,lr) = y% — 2lryr.
We start from the last stage 7' — 1. While t =T — 1, we have
E[JT<yT; lT) ‘-FT—I]
= E[y7 — 2lryr| Fr-i]
= st Y71 + 257 1yr 1 B[P Jmroy + 1 E[Pr_ Ph_ |mr
- 2E[QT—1]ST—1ZT—1QT—1 - 2]E[(IT—1P/T_1]lT—17TT—1-
Minimizing it with respect to my_; yields the optimal decision at period T'— 1 as

below

T =— ]E_l[PT—1P/T,1]E[PT—1]ST—1?JT—1 + E_l[PT—1P,T71]E[QT—1PT—1]lT—l.

Substituting 7% _; to IE[JT(yT, ZT)’}"T,l], we obtain
Jra(yr—1,lr—1) = E{I}E[JT(ZU% Ir)| Fr-1]
= (1 - BT—I)SgLﬂJ%Ll - 2(E[QT—1] - éT—1)5T—1lT—1yT—1 - ET—ll%,l.

In order to derive the cost-to-go functional and the optimal decision at period ¢

clearly, we patiently repeat the procedure at time 7' — 2. While t = T" — 2, we have
E[JTfl(nyla Ir—1) ‘]'—sz]

= E[(l - BT—1)3%_1?J%_1 - Q(E[QT—l] - éT—1)ST—1ZT—13JT—1 - éT—ll%_l}fT—Q]

= (1= Br_1)st_4 (5%—29%_2 + 257 oyr2E[P7_,]mr 2 + Wép-zE[PT—zp%—z]WTﬂ)
- 2<E[QT—1] - éT—1)IE[(JT—z]ST—18T—2ZT—2?/T—2
- 2(E[QT—1] - §T—1)E[QT—QP'IJLQ]ST—llT—ﬂTT—Z

- ETflE[Q:ZF—z]ltzr—z-
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We derive the following optimal decision at period T — 2 by minimizing the above

functional with respect to mp_s
Ty = — E7 Pr_oPh L ]E[Pr_s|sr_oyr—

Elgr1] — éT—1 1 ,
E™|Pr_oP Elgr—oPr_o|lr_s.
+ (1 — Br_1)sr_1 [Pr—2Pr_5|E[gr—2Pr_o]lr—2

Then the cost-to-go functional at period T" — 2 is
Jr—a(yr—2,lr—2) = min E[Jp_1 (yr_1, lr—1)| Fr—2]
Tr—2
= (1= Br-1)(1 — Br—2)s7_1S7_s¥7_»

- 2<E[QT—1] - ET—l) (E[C]T—z] - ET—Q)ST—LST—ZZT—Z?JT—Q

A~ 2
Elgr—1] — Br—1) B
_ ( [ T 1] T 1) BT*Q + BT*IE[Q%fQ] l%72.
1—Br

While ¢ =T — 3, we can similarly get
E[JT—2(?JT—27 lT—2) ’fT—3]
= E[(1 — Br-1)(1 — Br-2)st_157_s¥7_»

- 2(E[QT—1] - §T—1) (E[QT—z] - éT—2)=5‘T—18:r’—2lT—2yT—2

Br_o + ET—lE[QIQ“—Q] l%—Q Fr-3
1 —Br

_ ((E[QTl] - §T71)2 ~
= (1 - BTfl)(l - BT72)S%7152T72
(3%_3(@%_3 + 257_syr—sE[P}_s]mr_g + 75 sE[Pr_sPp_g]m T—3>

- 2(E[QT—1] - éT—1) (E[QT—Q] - éT—2)E[QT—:;]ST—1ST—Q8T—3lT—3?JT—3

- Q(E[QTA] - éTfl) (E[Qsz] - éTfQ)E[QT73P/T_3]ST715T72lT737TT73

]E[QT—1] - éT—1 ? ~ ~
(! V Byt BroaElad ) Bl 15
1—DBr,
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Thus the optimal decision at period T"— 3 is

Tp_3 = — ]E_l[PT—3P/T,3]E[PT—3]ST—3?JT—3

]E[C_ITA] - E’Tq E[QT&] - §T72

E-YPr sPL E[gr sPr s3llr
(1 —BT—1)ST—1 (1 _BT—2)3T—2 [ T-3 T_3] [QT 3T 3] T-3;

and the cost-to-go functional at period T'— 3 is
Jr-s(yr—s,lr—3) = min E[Jr_o(yr—2, lp—2) | Fr_s]
T3
= (1= Br-1)(1 = Br_s)(1 = Br_3)s7_157_257_3Y7_3

- Q(E[QTA] - éTfl) (]E[CIsz] - éTfQ) (E[CITf?)] - §T73)3T713T723T73lT733/T73

l(E[QT—l] - éT—1)2 (E[QT—Q] - éT—2)2 ~
- Br_3
1—Br 1—Br_s

Elgr_1] — Br_1)’ ~ -
+ ( Ti r-1) Brs + BrElg7_,] |Elgr_s] | 175
1—Br

Inspired by the above three stages, we conjecture that the cost-to-go functional at

period ¢ can be expressed by the following form

T ) = (ﬁu - Bt )it - 2(ﬁ<E[qk] - B )
S Bl = B0 5 () .
_ ;t (kgll_—&cﬁj(gm[m)zt.

Next, we prove it in mathematical induction. Assume that the cost-to-go functional
(3.11) holds at period ¢+ 1. Then we shall prove that it still holds at time ¢. For the

given information set F;, we have

E[Jt+1 (yt-i-la lt+1) “Ft]

= El<kﬁ (1- Bk)3i> Vi — 2< ﬁ (Efax] - E’k)$k>lt+1yt+1

=t+1 k=t+1
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5 () f s

j=t+1 Nk=j+1 m=t+1

|

-1
— < H (1-— Bk)si) (s7y; + 25 E[P}]m + mE[P,P}m)

k=t+1

~2( TT (Blad - Bo)s ) (Blalsi -+ Blalir,)

k=t+1

_TZl<H1]_—Bk) (HEqm) Al

j=t+1 Nk=j+1 m=t+1

Minimizing the above functional with respect to m;, we get the optimal strategy

decision at time t as follows

T-1 5
% — E[Qk] - Bk _
T, = —E 1[PtP;]E[Pt]Styt + (kg_l m E 1 [PtPQ]E[tht]lt

Substituting it to ]E[JHl(ytH, lt-i—l)‘ft] yields
Je(Ye, lt) = U}TinE[JtH(ytH, lt+1)‘ft]

- ( ﬁ (1- Bk)sz) Siyp — 2( ﬁ (Elgx] - E’k)sk)E[qt]Stltyt

k=t+1 k=t+1

- ( TT (- Bst ) ErPge- (PPlEPAs:

k=t+1

+ 2( 1;[ (E[qk] - ék)sk)E[QtPQ]E_l[PtP::]E[Pt]Stltyt

k=t+1

_( [l M)E[th;]E‘l[PtP?]E[QtPt]ltz

k=t+1

_Z<Hl]——B) ([T et

j=t+1 Nk=j+1 m=t+1
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- <ﬁ(1 - Bk)sk) - 2(1@ (Elqx] — ék)5k>ltyt

k=t

<.

(ﬁE[q?n])zf,

m=t

-3 BB
j=t k=j+1 1- Bk
which proves (3.11).

To derive the expression (3.10) of v, we first consider the value of the optimal

objective function in (3.8). In fact,

Ely7 — 2lryr| = E[y7 — 2lryr| Fo] = Jo(yo, lo)

T-1
ZySH(l—Bk —2loyOH Sk
k=0
T-1 T-1 5\2 j—1
2 ] - Bk) ~ 2
— 1 L ( H 1 - B, >Bj< 1—_[ E[qm])
7=0 k=j+1 m=0

Then
Var(zr — Ir) = E[(zr — Iy — d)?]
= E[(zr —lr — d)*] = 20(E[zr — Ir] — d) + w® —
= E[(zr — lr — d)* = 2w(zr — Iy — d) + w*] — &
= El(zr — Iy —d — w)*] — w?
= E[(yr — Ir)?] — w?

= E[y3 — 2lpyr] + E[l3] — w*

= yg (1 — By)sy — 210901_[ (E[Qk] - ék)sk
k=0 k=0
T-1 , T—1 (E[qk] _ék)2 =
_zg‘ (H S )B](HE ) | | Elar
J=0 Nk=j+1 =0



Since

Yo —xo—ynskl —xo—(d—l—w)l—[skl
k=0 k=0
we have
T—1 T-1 271
yg (1-— Bk)sz = (JBO — (d+w) s,:l) (1 — By)sy,
k=0 k=0 k=0
T-1 271
- (xonsk—(der)) (1—By)
k=0 k=0
and
T-1 ~ T—1 T—1 R
n [Tl - Bs. = (a0 @+ ) [Ts) T Elad - s
k=0 k=0 k=0
T-1 T-1 R
= (xo sk — (d+ w)) (E[qk] — Bk)
k=0 k=0
Hence,
Var(xzp — Ir)
T-1 27-1 T-1 T-1 ~
— (mo H s — (d+ w)> H(l — By) — 2l (xo H sk — (d+ w)) H (Elgx] — Bx)
k=0 k=0 k=0 k=0

3 (11 (E[l]_—B) (HEqm)HlejE[qz]—w

j=0 Nk=j+1

- B B _ (%szo s — d) [Tico (1= Br)—loI Ti—o (E[qk]—ék) ?
—HN@)@G [11-5(1 =50 - 1 )

T-1
+1_Hl’“_[§,<1(1_"}3( xonsk—i-lol—[ 1—Bkk) + 120,
k=0

k=0

(3.12)

where
TAE[] B -1, T-1 @ B = , T-1 ,
Co = — IH) ( ik— By, k) B oy <k1;r1 ( [(f’c]_ B: k) ) J <TQ)E[Qm]) + ’!:([)E[Qk]
(3.13)
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Since 0 < By <1fort=0,1,---,T —1,
T—
rll—Bk

This implies that the variance Var(xy — Ir) in (3.12) is concave in w. To obtain the
minimum variance Var(zr — l7) and optimal strategy for the original portfolio selec-
tion problem (3.1), one needs to maximize the value in (3.12) over w € R according
to the Lagrange duality theorem in Luenberger (1968). Taking the first order for
(3.12) with respect to w yields

T—
<ZEQHSk— ) 1—Bk —ZOH
k=0
1

w* = -

T—
[J-By)-1
k=0

A simple calculation of v* = d + w* implies the desired result (3.10). O

3.2.2 Efficient Frontier

The efficient frontier consists of the envelope curve of all portfolios that lie between
the global minimum variance portfolio and the maximum return portfolio ( Elton
et al. (2009)). It is the subset of portfolios that will be taken by the investors who
prefer less risk to more and prefer more return to less. Before analyzing the efficient

frontier, we prove the following important result.
Lemma 3.1. IfE [(Ek) (P;C qk)] is positive definite for k = 0,1,--- ,T — 1, then
k
Co =0,

where Cy is defined as (3.13).
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Proof. Let L, = (Iik) and Q) = (E)k) , then
k

L) L") o] mni o
(IIEE[[E:PI’ZC]] El[éij%k]> -k @: ) (Pi qk)] = E[Q:Q}], (3.15)
(Soed Bd) e[ (P) @ o] -seu. e

Taking determinant on both sides for (3.14)-(3.16) and according to Lemma 2.2, we

get

‘E[PkPk] E[P]

Bl 5| = (1~ EIPUET [PPLIELP]) [E[PLP] - [EILLLi,

(3.17)

Bop] el |~ (Bl - ElaPE ' [PPLIE[P.) [E[PPL]| = [EIQQL
(3.18)

‘E[PkP%] E[gxPy]

= (Elgx] — E[gxPLJE™' [Py PLIE[P,]) [E[PLPL]| = [E[QrLy]|.
(3.19)

‘E[PkPﬂ E[Pk]
E[lg:Py]  E[g]

By the assumption of E[QxQ}] > 0, the inverse E™'[Qy,Q;] of E[Q)Q}] exists. Then
E*[QxQ}] = E7'[QxQ;]. Since

e|(5) @ o] - (Eodd] Haal) =0 e

it follows from Lemma 2.4 that

E[LL;] — E[LiQJE [QrQE[QrLy] > 0.

Obviously,

E[LiQ}JE[QrQ}] 'E[QkL}] = E[LyQLJE[QrQ1] (E[LrQS]) > 0.
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Consequently,
E[Ly L] > E[LiQ}JE™ [QrQL]E[Q1Ly]- (3.21)

Then according to (3.21) and Lemma 2.3, it follows that

[E[LeLi]l = [E[LyQLIE [QrQLIE[Qr L] = [E[LeQL| [E™ [Qu@4l| E[QkL';z]\- |
3.22

Notice that |E[QyLi]| = |E[LyQL]| and [E-[QxQL]| = [E[QxQL]|™", then (3.22)

implies
E[QuLy]* < [E[QuQ4]| [E[Li L] (3.23)
By (3.17)-(3.19) and (3.23), we obtain
(1 — E[P,JE ' [PyP}IE[P,]) (E[g}] — E[q:P}]E ' [PyP,IE[g:Py])
> (E[q] — E[gxPL]E™ [PLPLIE[P,])”.

Namely,

Then

Therefore,
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(] e )
-3 (1 ) (M) - 5 (1155 (T e
(LT ) (T mne) - (T3 ) (T mue)
(et - (7 =20y
- (Te) - (TT54500)

As a result, it follows from the above inequality that

T— 2 T—-1 ( T-1 (E[ ] ) ( j T-1
H —Z ]_[— HEqm)+ Elq] =
k=0 1 - B’f §=0 Nk=j+1 L= By k=0
that is, Cy > 0. This completes the proof of the lemma. O

It follows equation (3.12) with w* that we have the following minimum variance

theorem.

Theorem 3.2. Assume that the returns of assets and liability are correlated at every

period. Then the efficient frontier is given by

Var(zp — ly) = e0(1 = By) ]_[ +zH 2+z20
ar(rr T—l_ fol(l—Bk — Zo Sk 0 l—Bk 0“0,

where Cy is defined as (3.13).
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3.2.3 The Optimal Strategy with Uncorrelation of Assets
and Liability

Assume that the returns of asset and liability are uncorrelated at every period. Then

B, =E[g]B; and B, = (E[¢])*B:.

Hence, we have the following results

T—1 S~ 71
Elgx| — Bx _
= E[qk]s 3
et (1 — Bk>8k 1:[ k
T-1 R T-1
(Elge] — Bi) = HE[Qk]<1 — By),
k=t k=t
T—1 ~ 71
E[qr] — Bx
E{qr],
177 B g [ax]

(3.24)

Therefore, we have the following two theorems.

Theorem 3.3. Assume that the returns of assets and liability are uncorrelated at

every period. Then the optimal strategy of problem (3.1) is given by

T-1 T-1
m = —E7[P,P]E[Py]s, <$Ut -7 H s — b HE[Qk]5k1>= (3.25)
k=t k=t
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where

2701:[(1 — Bk)Sk —d— loﬁE[qk](l — Bk)
y* = =0 = : (3.26)

l;[(l — Bi) -1
k=0

Theorem 3.4. Assume that the returns of assets and liability are uncorrelated at

every period. Then the efficient frontier is given by

T-1(1 _ By) 71 T—1 2
Var(zr — ) = ey i <d — @ H Sk + loH E[Qk]> +15Co,
1 =110 (1—By) k=0 k=0

where Cy is defined as (3.24).

3.3 Numerical Examples

We consider an example of constructing a pension fund consisting of S&P 500 (SP),
the index of Emerging Market (EM), Small Stock (MS) of U.S market and a bank
account. Based on the data provided in Elton et al. (2009), Table 3.1 presents the
expected values, variances and correlation coefficients of the annual return rates of

these three indices. And the annual risk free rate is supposed to be 5% (s; = 1.05).

Table 3.1: Data for assets and liability example

SP EM MS liability
Expected return 14% 16% 17%  10%
Standard deviation 18.5% 30% 24%  20%
Correlation coefficient

SP 1 0.64 0.79 p1
EM 0.64 1 075 P2
MS 079 0.7 1 03
liability p1 P2 P3 1
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Thus, for any time ¢, we have

0.09 0.0342 0.0355 0.0351
E[P;] = | 0.11 |, Cov(P;) = | 0.0355 0.0900 0.0540 |,
0.12 0.0351 0.0540 0.0576

0.0423 0.0454 0.0459
E[P,P)] = | 0.0454 0.1021 0.0672
0.0459 0.0672 0.0720

The correlation of assets and the liability is p = (p1, p2, p3), Where

COV(qt7 Ptl)

~ \/Var(g)/Var(F})

is the correlation coefficient of the i-th asset and the liability. This means

E[qF/] = E[q]E[F/] + pin/ Var(g)4/ Var(F;).

Suppose that the investor consider a 5-time-period investment with initial wealth

Pi

xo = 3 and initial liability [y = 1.

Example 3.1. An Correlation Example

Assume that the returns of the assets and liability are correlated with p = (p1, p2, p3) =
(—0.25,0.5,0.25). Hence,
Cov Pt _ COV(Pt) COV(qt, Pt)
q Cov(q;, P})  Var(q)
0.0342 0.0355 0.0351 —0.0092
0.0355 0.0900 0.0540  0.0300

0.0351 0.0540 0.0576  0.0120
—0.0092 0.0300 0.0120  0.0400

>0.

Using the above formula of E[qP/], we have E[q,P;] = (0.0898,0.1510,0.1440)".

Moreover,
1.0580 —0.2398
K, = E'[P,P,JE[P;] = | —0.1207 | , K, =E'[P,P,|E[¢;P;] = | 0.4374
1.1052 1.7446
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We seek for the expected terminal target with d = 3.5. According to Theorem
3.1, we can derive 7* = 4.0470 and the optimal strategy of problem (3.1) is specified
as follows,

7 = —1.05(z — 3.1710)K; + 1.2053Kl,
7 = —1.05(z1 — 3.3295)K; + 1.1503K14,
T = —1.05(22 — 3.4960)K; + 1.0979K1s,
74 = —1.05(x3 — 3.6708)K; + 1.0478Kls,

The variance of the final optimal surplus is Var(zs — I5) = 0.7289.

Example 3.2. An Uncorrelation Example

Assume that the returns of the assets and liability are uncorrelated. Hence,

Cov Pt _ COV(Pt) COV(qt, Pt)
Q@ Cov(g:, Py)  Var(q)
0.0342 0.0355 0.0351 O
0.0355 0.0900 0.0540 O

0.0351 0.0540 0.0576 O
0 0 0 0.04

>0.

We still seek for the same expected terminal target with d = 3.5. According to
Theorem 3.3, we can derive v* = 4.0464 and the optimal strategy of problem (3.1)
is specified as follows,

m% = —1.05(z — 3.1705 + 1.14721y Ky,
7% = —1.05(z, — 3.3290 + 1.0950( )Kj,
7 = —1.05(z — 3.4955 + 1.04525)Kj,
mF = —1.05(z5 — 3.6702 + 0.997715)Kj,

7y = —1.05(z4 — 3.8538 + 0.952414) K,
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where K; is the same as Example 3.1. And the variance of the final optimal surplus

is Var(zs — l5) = 1.0043.

3.4 Conclusion

Using the parameterized method, the state variable transformation technique and the
dynamic programming approach, we obtain in this chapter the closed-form expres-
sions for the optimal investment strategy and the efficient frontier of our multi-period
mean-variance asset-liability management problem. Compared with previous litera-
tures, our method is simpler yet more efficient, and the result is more concise and

powerful.
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Chapter 4

A Mean-Field Formulation for
Multi-Period Mean-Variance
Asset-Liability Portfolio Selection

with an Uncertain Exit time

Most investors realize that they never know exactly the time exiting the market.
That is due to many factors can affect the exit time, for example, the price move-
ment of risky assets, securities markets behavior, exogenous huge consumption such
as purchasing a house or accident. Therefore, it seems more realistic to relax the
restrictive assumption that the investment horizon is pre-determined with certainty.
Many papers (see Yi et al. (2008); Li and Xie (2010); Wu and Li (2011); Zhang and Li
(2012)) concerned with multi-period mean- variance model with uncertain exit time
and derived analytical optimal strategies for their problems. The main difficulty of
the model is the non-separability induced by the variance term. There are several
methods to conquer it, such as the embedding technique proposed by Li and Ng
(2000), the parameterized method developed by Li et al. (2002), just like Chapter 3,
the mean-field formulation presented by Cui et al. (2014) and etc. In fact, when the
investor exits the capital market with an uncertain time, the first two methods do

not work smoothly and efficiently. This chapter we focus on the mean-field formu-
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lation to tackle the multi-period mean-variance portfolio of asset and liability with
uncertain exit time. We drive the analytical optimal strategies and efficient frontiers.
Numerical examples are presented to show efficiency and accuracy of the mean-field
formulation to solve the non-separability of multi-period mean-variance portfolio s-
election problems. Compared to the embedding technique, the mean-field approach
makes the whole process to derive the optimal strategy simpler and more direct. We
first introduce the mean-field formulation to solve an uncertain exit model without
liability, then we extend it to the case when liability is concerned. The results can
reduce to those derived in Chapter 3 if we fix the expected return and the exit time

to the terminal, which suggests further our methods make sense.

4.1 Multi-Period Mean-Variance Portfolio Selec-
tion without Liability

In order to see the mean-field formulation tackle multi-period mean-variance model

clearly, we consider in this section a problem without liability.

4.1.1 The Model

Assume that an investor joins the market at the beginning of period 0 with an
initial wealth zy. He may be forced to leave the financial market at time 7 before
T by some uncontrollable reasons. The uncertain exit time 7 is supposed to be
an exogenous random variable with probability mass function p, = Pr{r = t},t =
1,2,---. Therefore, the actual exit time of the investor is ' A 7 = min{T, 7}, and its

Y

probability mass function is

ﬁtu t:1727‘ 7T_17
A T-1
ar=Pr{T' AT =1t} = 1_22% T
j=1
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The multi-period mean-variance investor with an uncertain exit time is to seek the
best strategy, m} = [(7})*, (7})*, -+, (77")*], t = 0,1,--- ,T — 1, which is the opti-

mizer of the following stochastic optimal control problem,

min  Var™ (zp,,) — wED [z,,],

s.t. X411 = Z eiwi + (wt — sz) St (4-1)

i=1 =1
:St.Tt‘f‘P;’ﬂ't, t=0,1,~-,T—1,

where w > 0 is the trade-off parameter between the mean and the variance, and

EM[z7,,] and Var(™ (x7n,) are defined as follows,

T T
E™ [27Ar] 2 ZE[xTM‘T AT = t]Pr{T AT =1} = ZE[Q}t]Ozt,
=1

t=1
T T
Var(T)(ITAT) a Z\far(xTﬂ‘T AT = t)Pr{T AT =1} = Zvar(xt)at,
t=1 t=1

respectively. Then the multi-period mean-variance model with an uncertain exit time

(4.1) can be equivalently re-written into the following problem,

min ) at{Var(a:t) - wE[ﬂft]}a (4.2)

t=1
st. xy1 =swy + Py, t=0,1,--- T —1.

4.1.2 The Mean-Field Formulation

Similar to other dynamic mean-variance problems, model (4.2) cannot be solved by
dynamic programming directly, as the variance term does not satisfy the smooth
property as mentioned in Chapter 1. In this section, we use the mean-field formula-
tion approach proposed in Cui et al. (2014) to tackle this difficulty. The mean-field
type stochastic control problem refers to the problem where either the objective

functional or the dynamic system involves state processes and their expectations.
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Now, let us build the mean-field formulation for problem (4.2). First, for ¢ =
0,1,---,T — 1, the evolution of the expectation of the wealth dynamics specified in
(4.2) can be presented as

(4.3)

{ Elzii1] = siE[z] + E[P}E[m],
E[zo] = xo,

due to the independence between P; and m;. Combining the wealth dynamics speci-
fied in (4.2) and dynamic equation (4.3) yields the following for ¢t = 0,1,--- |7 — 1,
Tyl — ]E[.’L't+1:| = S (.Tt — E[wt]) + P;’ﬂ't — E[P;]E[’/Tt]
= si(x — E[zy]) + Py(m, — E[m]) + (P, — E[P}])E[m,], (4.4)
o — E[l‘o] = 0.

In the language of optimal control, by doing so, we have enlarged the state space
(x;) into (E[x], z; — E[x¢]) and the control space () into (E[m], 7 — E[m]).
Second, although the new control vectors E[m;] and 7, — E[m;] can be determined

independently at time ¢, they should be chosen such that

E(’Tft—E[ﬂ't]):O, tIO,].,,T—]_

Furthermore, we confine E[m;] to be an Fy-measurable control and m, — E[m] to
be an Fi-measurable Markov control. Then, E[z;] is Fy-measurable, z; — E[z;]
is Fi-measurable, {(E[z;],z; — E[x;])} is again an adapted Markovian process and
Fi = o(Elz], 2 — E[ay]).

We need to point out that state E[z;,1] is not observable in the market. Actually,
E[xt41] is computed through dynamic equation (4.3) after choosing Fy-measurable
control E[m;] and knowing E[x,] at time ¢. Then, state x4, —E[z;,1] is obtained after
observing z;,1 in the market at time ¢ + 1. The constraint E(m; — E[m;]) = 0 makes
sure that Fo-measurable control E[m;] and F;-measurable Markov control m; — E[m]

are consistent.
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Thus, problem (4.2) can be equivalently reformulated as a mean-field type of

linear quadratic optimal stochastic control problem,
( T

min Z ozt{]E[(xt — E[xt])Q] _ w]E[iUt]}u

{ st E[lxt] satisfies dynamic equation (4.3), (4.5)
z; — E[z,] satisfies dynamic equation (4.4),

L ]E(ﬂ't—]E[ﬂ't]):O, t=0,1,,T—1

In this mean-filed formulation of the multi-period mean-variance model with an un-
certain exit time, the objective function becomes separable in the expanded state
space (E[x:], x; — E[x;]), which enables us to solve the problem by dynamic pro-
gramming. However, an additional linear constraint on the second control vector

m — E[m] is imposed, which requires caution during the solution process.

4.1.3 The Optimal Strategy and the Efficient Frontier

In this section, we will derive the optimal strategy of problem (4.5) and its corre-
sponding efficient frontier by dynamic programming. Two useful lemmas are intro-

duced before our main results.

Lemma 4.1. Suppose that E[P,P}] — E[P,|E[P}] is invertible. Then

(E[P.P}) - EPJEIP)) B[P - .~ B [PPEP.

Proof. Applying Sherman-Morrison formula (lemma 2.1) directly gives rise to the

result. ]

Define a cost-to-go function at time ¢t + 1 as

Jer(Blia], 21— Elwen]) £ min Y ap{E[(r; - Ela,))?] - wElz;]}.
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Lemma 4.2. If the cost-to-go function Jii1(E[xi41], 2i11 — E[zi1]) at time ¢ + 1

satisfies the following decomposition,
E[Jii1(E[2s1], o1 — E[weg1]) | F]

= G (E[ajt], xy — Elzy]; E[my], w1 — E[m]) + G? (E[l’t], xy — Elzy]; E[my], w1 — E[m])

where E[G?(E[z¢], z; — E[zs]; E[m], 7 — E[m¢])|Fo] = 0 holds for all admissible

{E[m;], 7 — E[m;]}._y, then we can choose

Jt (E[l't], Tt — ]E[xt]) = (E[r ]IEIEIE[W D th (E[.I't], Ty — E[l't], E[’ﬂ't], T — ]E[ﬂ't])

as the cost-to-go function at time t.

Proof. The principle of optimality implies that
{E[r;], 7} — B[]}z
= arg min E[J; 11 (E[z51], 2041 — E[xe1])| Fol
= arg min E[E[Jy41 (E[ze1], mrs1 — Elzi1])|F] |1 Fo]
= argmin E[G, (E[z,], 7 — E[;]; E[m], m, — E[m])| Fo]

= argmin E min Gr(E[xy], z: — E[xy]; E[m,], 7 — E[m]) | Fo]-
P g2 p) G (Bl 20 = Blaili B, me = Bl ) 7o)

Obviously, we can set - ]min]E[ ])th (Elz¢), z¢ — E[zi); E[m], ™ — E[m]) as the

benefit-to-go function at time ¢. ]

Remark 4.1. Lemma 4.1 is the same as the one in Cui et al. (2014). Lemma 4.2
is a simple version of Lemma 3 in Cui et al. (2014). Presenting them here again is

to keep the solution procedure intact.

Lemma 4.2 suggests that we can simplify the cost-to-go function at time ¢ by
removing the terms with a zero unconditional expected value. Before presenting our
main theorem, we define the following backward recursions for {£;} and {(},
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& = oy + 83(1 — By)&iia,
Gt = oy + 5¢Gry1,

fort =T —-1,T—2,---,1, with &g = ar,(r = ar. Also, we set [[ () =1 and

2.(+) = 0 for the convenience in this thesis.

Theorem 4.1. The optimal strategies of problem (4.5) are represented by

m — E[n}] = —si (2 — E[z]) E7'[P,P,]E[Py], (4.6)
Blr] = 5ot B [PPELP, (A7)

fort =0,1,---,T — 1, where the optimal expected wealth level is

t—1

E[z] —xgnsk+ ZCJH‘ H sp, fort=1,2,---,T. (4.8)

€]+1 Bj 2 J+1

Proof. We prove by backward induction that, for a given information set F;, =

o (E[x¢], z; — E[z;]), we have the following expression,

(4.9)

m‘m

Jy (E[xt]7$t - ]E[fft]) =& (It - E[xt])Q B wC’J o wz Z

Q

as the cost-to-go function at time t.
When t =T,
Jr (E[ZBT], T — E[a:T]) = ar (ZBT — IEJ[Q;T])2 — warE[zr]
= & (o7 — El2r])” — w¢rE[er].
Assume that we have expression (4.9) for the cost-to-go function at time ¢ + 1. We

prove that we still have expression (4.9) for the cost-to-go function at time ¢. For

the given information set F;, i.e., (E[;Et], Ty — E[xt]), the recursive equation reads as

Jy (E[mt], Ty — E[mt])

=0y (ZL’t - E[It])Q — wozt]E[xt] + (E[r ]IEIPIE[W D E[Jt+1 (E[$t+1], Tty — E[$t+1]) ‘ft] .
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Based on dynamics (4.3) and (4.4), we deduce
]E[Jt-i-l (E[xt+1]7 Tyl — E[%H]) |E]

2 w2 = Cz_;'_]_ B
= E[ftﬂ(l‘tﬂ - E[xt+1]) - thHE[?CtH]‘]:t] B ],_1 _JB

¢, uE [sf (2 — Elz])” + (P; (m — E[m])>2 + ((P; - E[P;])E[thQ

+ 28y (2 — E[a,]) Py (m — E[me]) + 284 (2, — E[z]) (P} — E[P}])E[m]

+2(m — E[m,]) Py (P, — E[P}])E[]

]:t] — W41 (StE[xt] + E[PQ]E[WD

_wt Ny Ga B
4 j=t+1€j+11_Bj

Since both m; — E[m;| and E[m,;] are F;-measurable and P, is independent of F;, we

have

E:<PQ [, — IE,[m]])2

fﬂ:@rﬂhmmwmmm—MM%

|7 = Bl (51PPY)  BlPJE(P) Bl

E| (P}~ E[P/))E[m])

E :23t (:1:,5 — E[ﬂct])Pfg (7Tt - E[Wt])

E]:%JQ—EMDMEKm—EmD,

E :23t (2, — E[z]) (P, — E[P}])E[r,] ]-"t] —0,

E :2 (m — E[m]) P (P}, — E[P}])E[r]

42
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which further implies,
E[Jt+1 (E[xt+1]a Tyl — E[%:H]) ‘th]
- [sf (z: — Bl2:])* + (m — B[m]) B[P, P} (m — E[r,])

+ 284 (y — E[z] ) E[P}] (m — E[ﬂt])] + & E[m ] (E[PP}] — E[P,]E[P}])E[r]

9 T— 2
w
—th+1E[P;]E[ t] wStCt+1E xt - Z ; fj_

b

— 21 (m — E[m]) (E[P,P}] - E[P/]E[P}])E[r,]
=G (]E[a:t], xy — Elzy]; Elmy], m — E[wt]) +G? (]E[:z:t], xy — Elzy]; E[my], m — E[wt]),
where
G, (E[zs], 3 — E[;]; E[m], m — E[m])
1|53 (@0~ Elwi])” + (7 — Elm]) E[PP) (m, — E[m))

+ 28y (2 — E[z] ) E[P}] (7, — E[wt])] + & E[m] (E[PP)] — E[P{|E[P}])E[r]

2

T—
/ w
— W E[P)E[m,] — wsiCEla] — T ;

2
]

m ‘

]

G (E[x,], v — E[2); E[m], m — E[m]) = 26011 (m — E[m]) (E[P,P}] — E[P]E[P;])E[r,].

Note that any admissible (E[m], 7, —E[m]) satisfies E(m,—E[m,]) = 0, which implies

E[G; (E[x,], z, — E[z,]; E[m], m — E[m])|Fo] = 0.

Since

E[P,P;] — E[P,]E[P;] = Cov(P;) = Cov(e; — s,1) = Cov(e;) > 0,
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we complete the square for G(-) directly to derive the optimal strategy at time ¢,
G, (E[z:], z — E[;]; E[m], 7 — E[m,])

~6 {31 = B) (@~ Bla))” + [ (0~ Elm]) + 50w ~ Bl B~ [PPE[P)]
"E[P,P!] [(m — E[m]) + iz, — E[xt])E’l[PtP;]E[P;]] }

!/

o [Em] - ;“g: (E[P,P]] - E[Pt]E[PQ])_lE[Pt]] (E[P,P}] - E[P/JE[P}))

t+ / 71\ — 2 152 Bt
Bt - e (wtppl) - BPAE(P) B | - P - sl
wg T—1 ﬁ B]

4 j=t+1 §rl—B;

By means of Lemma 4.1, we further have
G% [E[th], Ty — ]E[th], E[’ﬂ't], T — E[Wt]]

:gt+1{s§(1 — B) (2, — E[])” + [(m —E[m]) + s¢ (20 — E[mt])E—l[PtP;]E[P;]]'

"E[P,P/] [(w,5 — E[m]) + sz, — E[xt])]E’l[PtP;]E[PQ]]}

6 [ BIm] - 5 (=B [PPUEIP | (BIPP] - E[PJEIP])
’LU2 % Bt

w 1 _
<t+1 . E l[PtP;]E[Pt]] — Ié‘ 1 B — wstct+1]E[$t]
t+1 + — Dt

We first derive the optimal (E[r}], 7} — E[n}]) by maximizing G} without the linear

constraint E(m, — E[m;]) = 0, and then show the derived optimal strategy satisfies

44



this constraint. More specifically, maximizing G} yields

mF — E[n}] = —si (2 — E[z]) E7'[P,P}]E[Py],

% w41 1 1 /
E = : EP,P.|E|P,|.
[ﬂ-t] 2£t+1 1 - Bt [ t t] [ t]

Therefore, we get
G, (Elzy], z — E[z,); E[n}], 7} — E[7]]) + a (20 — E[xt])2 — woyE[zy]

=€t+1sf(1 — Bt) (l’t — ]E[l’t])Z — w5t€t+1E[$t] + o (.It — E[Z't])Q — watE[ZEt]
2 T-1

:&w(z’ﬂt [l‘t]) —w(E xt _ Z 5j-‘rl
J

+1W 1- B B;

as the cost-to-go function at time t.
Substituting the optimal expected strategy (4.7) into dynamic equation (4.3), we
further deduce the following recursive relationship of the optimal expected wealth

level,

U)Ct+1_ B,
26 1- B

Elzi11] = sE[z,] +

which implies

t—1 t—1
w Gi+1
E[xt]=$0HSk+_ZJ_' Hse
k=0 2 j=0 Eivr 1 — Bﬂ f=j+1
Finally, we show that this optimal strategy satisfies the linear constraint. At time
0, E(n} — E[ng]) = 0 is obvious. Then, according to the dynamic equation (4.4), we
have E(z; — E(x;)) = 0, which further implies E(n} — E[#}]) = 0. Repeating this
argument, we have E(7 — E[x]) = 0 holds for all t. O

45



It follows from Theorem 4.1 that we have

= — 5, E [P, P,JE[P,]z; + s, E [P, P,]E[P,|E[x,] + E[r}]

t
P, onSk
k=0

= — 5,E7'[P,P,JE[P]x, + E"'[P,P}]E

t

ng+1 W11 1
. : 4.1
+Z2£]+1 1—B L] T 1—Bt]’ (4.10)

I t=j+1

which is the optimal portfolio strategy obtained in Zhang and Li (2012).
Substituting the optimal strategies (4.6) and (4.7) into dynamic equation (4.4),

we further deduce the following recursive relationship,
Tyl — E[:Et+1] = St(l — P;E_l[PtP;]E[Pt]) (l‘t — ]E[.It])

W41 1

% T=5 Pt~ EPDE[P.PE[P,].

Completing the square for the above equation yields

(111 — Elzen])® = s2(1 = PiE [P, PE[P,])* (2, — E[x/])?

2

w2 Ct2 1 / / — /
S gyl (P EIPE PP e[|

+ 5:(1 = PIE[PPE[P]) (v — Elz.])

L (P - E[P))E [PREIP]

which implies

Var(xt+1) = E[(Jitﬂ - E[xtﬂ])Q]

B
— (1 - B)E[(z,— E 2+w—£- t
(1= BOE[ (e = Elwl)' |+ 5 1,
B
:21_B th-i—l. t.
St( t)Var(ast) + _4 _€t+1 1 Bt
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This leads to

HS£1—Bg fort=1,2,---, 7.  (4.11)

JZ =j+1

It follows from (4.8) and (4.11) that we have

E™ [l’TAT] = Z E[It]at

t=1 k=0 J =j+1
T ot T t—1 t—1
w j+1 B;
=z ] [set 5 qe 2 =0 1] =
t=1 k=0 t=1 j=0 &1 T =i+
and
T

t=1

Thus, we have the following theorem.

Theorem 4.2. The optimal strategy of problem (4.1) is represented by (4.10) and

the efficient frontier is given by

T t—1 +2 =
2 ,
Z {at y2+ 1— JB H 34(1 N B‘Z)} T -1 2
t=1 0 >+l Te=j+1 r
T = - B - —1 2 (E( )[xT”]_xOZatHSk>
<Z{ ZC j H Se}) t=1 k=0
ol Qe RS

for E xTM xoZatnsk.

Var™™ (z7,,) =




The optimal strategy obtained in Theorem 4.2 is the same as the result established

in Zhang and Li (2012) when the return rates in their work are not serially correlated.

4.1.4 Numerical Example

Example 4.1. Consider the example as Section 3.3. Here we ignore the information
of liability i.e., ignore the last line and last column of Table 3.1 and do not fix
the terminal expectation but balance the variance and expectation by the trade-off
parameter.

Assume that an investor plans a five-period investment with an initial wealth
ro = 1 and that the trade-off parameter w = 1. But he may exit the market at
any time t (¢ = 1,2,3,4,5). To investigate the impact of uncertain exit time on
the optimal policy and efficient frontier clearly, we choose different probability mass

function a® = (a{?, af? al? o i), (i = 1,2,3,4) of the exit time 7
oM =(0.1,0.15,0.2,0.25,0.3),

o® =(0,0.1,0.1,0.3,0.5),
a® =(0,0,0.1,0.2,0.7),
a® =(0,0,0,0,1),

4)

where a® means the investor exit the market at the terminal time.

Then the optimal expected wealth level
E[x]? = (E[21]Y, E[25]?, B[x5]®, E[24]®, E[z5]?),i = 1,2,3,4
are given by
E[x]® = (1.2675,1.5210, 1.7659, 2.0055, 2.2423),
E[x]® = (1.3006,1.5723, 1.8304, 2.0756, 2.3159),

E[x]® = (1.3220,1.6125,1.8781,2.1304, 2.3735),
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E[x]® = (1.3451,1.6557, 1.9392, 2.2017, 2.4483).

Therefore, according to Theorem 4.2, the optimal strategy of problem 4.1 is specified

as follows,

7% = (=1.0520 + 2.0635)Kj,
a0 = (21.0521 + 2.2175)K,,
7% = (=1.052 + 2.3841)Kj,
V% = (=1.0525 + 2.5596)Kj,

7% = (=1.0524 + 2.7423)K4,

m* = (—1.0520 + 2.3182)K,
7 = (21,0521 + 2.4341)K;,
7 = (—1.0525 + 2.5558)K,
I = (—1.0523 + 2.7103)K,

7P = (—1.0524 + 2.8735)K,

where K; is the same as Example 3.1. The variances of the optimal wealth levels

Var(x)®? = (Var[z,]®, Var[z,]®, Var[zs] @, Var[z,]®, Var[z5]®),i = 1,2,3,4

are given as

w7 = (—1.05z9 + 2.2182)K],
7 = (—1.0521 + 2.3291)K;,
7% = (=1.052; + 2.4879)K;,
a3 = (—1.0521 + 2.6384)K],

7% = (=1.052; + 2.8159)K,

a0 = (—1.0529 + 2.4256)K],
7 = (—1.0521 + 2.5468)K;,
a* = (—1.0521 + 2.6742)K],
M = (—1.0521 + 2.8079)K;,

% = (—1.0521 + 2.9483)K],

Var(x)() = (0.1731,0.2824, 0.3489, 0.3860, 0.4026),

Var(x)® = (0.2299, 0.3555, 0.4260, 0.4554, 0.4626),

Var(x)® = (0.2710,0.4190, 0.4882,0.5146, 0.5140),

Var(x)® = (0.3188,0.4930, 0.5744, 0.5978, 0.5860).
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Finally, we have
E[z5,,]" = 1.8821, Var™(z5,,)Y = 0.3467,
EM[z5,,]? = 2.1209, Var™(zs5,,)? = 0.4461,
E[z5,,]® =2.2753, Var™(z5,,)® = 0.5115,

B [z5,,]® = 2.4483,  Var™(z5,,)* = 0.5860,
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Figure 4.1: Efficient frontiers with different probability mass function of exit time

Figure 4.1 is the efficient frontier with different probability mass function of the

exit time. We can see that the one exits at the terminal time gets most expected
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wealth return at the same risk level compared with others. It also indicates that
when the later the investor exits the financial market, the more expected wealth
returns he/she will obtain at the same level of the risk, which is consistent with the

real life.

4.2 Multi-Period Mean-Variance Asset-Liability
Portfolio Selection

This section is concerned with optimal multi-period asset-liability mean-variance
portfolio selection with an uncertain exit time in a mean-field formulation. Compared

with Section 4.1, we take liability into account.

4.2.1 Formulation

The multi-period asset-liability mean-variance portfolio selection problem with un-
certain exit time is to seek the best strategy, m* = [(7})*, (72)*, -+, (7!)*], t =
0,1,---,7T — 1, which is the optimizer of the following stochastic optimal control

problem with uncertain exit time,

((min Var™ (2., — lp.,) — wED [21,, — lpas],

n

n
s.t. x = A - s
J t+1 ; +/¢ ( t ; t) t (4‘12)
= ST + P;ﬂ't,

\ lt+IZQtlt7 t:Oa17"'7T_17

where EO [z, — lpar], Var(” (xrar — lrAr) are defined as

T
E™ [277r — 7 A7) 2 ZE[xTM — ZTM‘T AT = t]Pr{T AT =1}

t=

o

|
M=

E[fft - lt]at>

T
o

o1



T
Var(™ (TP nr — lrar) 2 ZVar(xTM — ZTM‘T AT = t)Pr{T AT =1}
t=0

T
= Z Var(x; — l;) oy,
t=0

respectively. Similar to Section 4.1, we tackle it by mean-field formulation. For

t=0,1,--- ,T — 1, taking the expectation operator of the dynamic system specified

in (4.12) and noticing that P; and 7, ¢; and [; are independent, we can drive
1E[z] + E[P}]E[m],

E[ JE[L],

[$t+1]
Elli41] =
E[xo

4.13
[ ]

Combining the dynamic systems of (4.12) and (4.13) yields the following, for ¢ =
0717"' 7T_17
1) + Pim — E[P|E[m]
= s¢(w¢ — E[zy]) + P}(m — E[m]) + (P, — E[P}])E[m],
liv1 — Ellis1] = ¢le — Elq:|E[l:]

( Tit1 — E[$t+1] = St (ft - E[fft

4.14
= Qt(lt - E[lt]) + ( E[Qt])E[Zt] ( )
zo — E[zo] =0,
| lo — E[lp] = 0.

Then the state space (zy,[;) and the control space (m;) are enlarged into (E[z;], z; —
E[x:], E[l], l; —E[l;]) and (E[m], m; —E[m]), respectively. Although we can select the
control vector E[m;] and 7, — E[m;| independently at time ¢, they should be chosen
such that

]E[T('t—E[ﬂ't]]:O, tZO,l,,T—l
and thus
E[$t—E[xt]]:0, tZO,l,,T—l
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is satisfied. We also confine admissible investment strategies (E[m], 7, — E[m]) to be
Fi-measurable Markov controls.
The problem (4.12) can be now reformulated as the following mean-filed type of

linear quadratic optimal stochastic control problem

( T

min ) o E[ (e — by — Elw, — 4])"] - wE[z, ~ 4]},

s.t. qg[xt],E[lt],E[wt]} satisfy dynamic equation (4.13),
{z; — E|x¢], l; — E[l;], 7 — E[m]} satisfy dynamic equation (4.14),
E[m —E[m]] =0, t=0,1,---,T —1.

A

(4.15)

Now, it is indeed a separable linear quadratic optimal stochastic control problem

which can be solved by classic dynamic programming approach.

4.2.2 The Optimal Strategies with Correlation Between As-
sets and Liability

In this subsection, assume that the returns of assets and liability are correlated at
every period. For simplicity, we define the following backward recursions for seven
deterministic sequences of parameters, {&}, {m}, {€:}, {G:}, {0:}, {0:} and {¢/4}, as

& = &a(1— By)si + ay,

Nt = Me+1 (]E[Qt] - Et)st + Oy,

& = e B[] — 77t2+1f;r11§t + g,

Gt = G185t +

Ct1Mt+1 ét - E[Qt]Bt
-+ g,
§ir1 1-DB

0, = 9t+1E[Qt] -

(B — E[qt]f)

b = 81 (Ela))? + (B[] — (E[))?) — 2L (ét - (Bla)* + =

§t1

i B

% = thrl - @1_—&7
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fort =T —1,T —2,---,0, with terminal conditions

E&r = ap, Ny = ap, €p = ap, (r = ar, Op = ap, op =0, Y = 0.

These parameters can also be expressed as follows,

T k—1
&= | [(1-By)s],
k=t j=t
T k—1 R
m= Y | | (Elg] - By)sy,
k=t j=t
T—-1 N k—1 T—1
e = Y. (o — nin &l Br) | [ Bl + or [ [ B[],
k=t j=t j=t
T k—1
Ct = Z (6773 Sj,
k=t j=t

T—1 ~
Br — B
0, — (Oék B Ckt+1Mk+1 B Qk k) HE qj + ar 1—[ ]E qj

P &k 1= By -
5_ e Bl Bl 12 (B g+ e Pl )]H o)
_ _2 e (5, — g+ (P EL0") ﬁ(E[qJD?
. <a gk B (H E[] —ﬁ(E[quQ) +ar (H E[?] —:<E[%D2)’

Theorem 4.3. Assume that the returns of assets and liability are correlated at every
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period. Then, the optimal strategy of problem (4.15) is given by

W41 + 2741 (ét - E[Qt])E[Zt]]
25:&:1(1 — By) (4.16)

1 = —E'[P,P.|E[P,]s: [a:t —E[z,] -
_i_ME_l [PtP;]E[Ptqt] lt;

§t+1

where

- < ( O n k—1
Wk 1 B Mi+1 Be — Elgx] B,
B ¥ ( S)( + (.10 ).
. 0j=0 ’ lczo H 7 )\ 2&41(1 — By) 1— B, H [4;1lo

= j=k+1 §k+1

(4.17)

Proof. We prove the main results by dynamic programming approach. For the

information set F;, the cost-to-go functional at period ¢ is computed by
Jt(]E[l't], Ty — E[th], E[Zt], lt — E[lt])

:{ _EI[Hi]HE[ ]I}E[Jt+1 (E[$t+1]>$t+1 - E[$t+1]>E[lt+l]a liv1 — E[ltﬂ])}]‘—t]

+ oy (a:t —l; — E[zy — lt])2 — woyElx, — 1]
The cost-to-go functional at terminal time 7' is
Jr(E[zr], 27 — Elzr], Ellr], Iy — E[lr])
=ar (:L'T —lp — Elzp — lT])2 — waTE[:cT — ZT]
=& (2 — IE[xT])2 — 207 (lr — E[lr]) (z7 — Elzr]) + er(lr — E[ZT])z
— w(rElzr] + wrE[lr] + 67 (E[l7])? + w’¢r.

Assume that the cost-to-go functional at time ¢ + 1 is the following expression

Jii1 (E[$t+1], Tiy1 — E[$t+1]7E[lt+1], lig1 — E[lt+1])
= &1 (It+1 - E[%H])Q - 277t+1(lt+1 - E[Zt-i-l]) ($t+1 - E[$t+1])
tEy1 (lt+1 - E[lt+1])2 — WG E[zp1] + WO E[lpa] + 5t+1(E[lt+1D2 + w2¢t+1-
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We prove that the above statement still holds at time ¢. For given information set

Fi, ie., knowing z, — E[x], E[z,], I, — E[l;] and E[l;], we have

E[Jor (Blzea], 21 — Elwa], Bl bosr — Eflei])| ]

:El&m | (w0 — E[:]) + Py (mi — Blm]) + (P} - IE[PQ])H“Z[M]]2
Oy [qt(lt —E[L]) + (¢ — ]E[qt])IE[lt]] [st (2, — Elz:]) + P)(m, — E[x,])
+ (P~ E[P)E[m]| + cun [0l — E[L]) + (a0 ~ E[a])E[L]]’

— Wit (s:E[z] + E[P}]E[m]) + wOpni E[@E[L] + 641 (B[ ]E[L])? + w?irsn

7|
=601 [53 (2~ B[+ (me— Blm]) EPP}) (mu—E[m]) + 250 (3~ Bl B[P (e~ B[,
+ E[m) (E[P.P}] — E[PE[P}))E[r,] + 2(m, — E[x])' (E[PP}] - E[P,|E[P}])E[n]|
~ 241 | sEla] (1 — E[]) (2 — E[2.]) + ElaP}] (4 — E[L]) (v — E[x])
+ (B[0P} — ElqJE[P]]) (E[4] (. — Elx]) + (i - E[W])Elr] + E[LJE[x]) |
+ €41 [E[Q?] (h—E[l])* +2(E[q;] - (Elq.])*) (b —E[LDE[L] + (E[¢/] - (E[a])*) (E[lt])ﬂ
— wGer1 (siE[we] + E[PE[m]) + w0 E[q]E[l] + 01 (B[ ]E[L])* + w e

Since any admissible strategy of (E[m], 7 — E[m]) satisfies E[m; — E[m]] = 0 and
E[l; — E[l;]] = 0 holds, we have

E :(wt — E[m]) (E[P,P}] — E[P,|E[P}])E[]

F| =0,

E[ (E[qP)] — E[¢|E[P,))E[L] (. — E[m])

fo] —0,

E[ (E[0P}] - E[gJE[P]) (1. - E.])E[x]

R| =0,

E[(E[q2] — (E[q.])?)(l; — E[L])E[L]

]-"0] —0.
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We first identify optimal (E[x}], 7} — E[7;]) by minimizing the following equivalent
cost functional,

E[Jt+1 (]E[l‘tﬂ]’ Ti41 — ]E[xtJrl]v E[ltJrl]’ L1 — E[ltﬂ]) |-7:t]

2

=& [sf (z¢ — Elze])” + (m — E[Wt])/E[PtPQ] (7 — E[m])

+ 25, (2, — E[z,])E[P})] (m, — E[m]) + B[] (E[P,P}] — E[Pt]]E[P;])E[m]]
Mt [stE[qt] (I, — B[L]) (z, — E[x]) + E[¢P}] (I — E[L]) (m — E[m,])
+ (ElaP}] — E[a]E[P)ELIELr] | + cri| Elg?1( — B[L])?

+ (Elg;] - (E[qt])Q)(E[lt])Q] — w1 (5[] + E[P}]E[r,])

+ w01 E[GE[l] + 61 (E[@]E[L])? + w?iriq,

without considering the linear constraint E[m, — E[m]] = 0, and verify then the
derived optimal strategy satisfies this constraint automatically.

It is easy to see that 7} — E[r}] can be expressed by the linear form of states
and their expected states, and E[7}] can be constructed by the linear form of the
expected states, i.e.,

m = E[r}] = ~E7 [P PE[P,]s¢ (2~ E[x.]) + 11§ A E T [PPE[Pg] (1 —E[L]),
(4.18)

Blrf] = (BIPP] - B[PJBIPY) " [5eBIP ]+ 2 (B[P - BladEIP ) B

0G4 2 (B=E[@))E[L] o SN
B 2%, (1 — By E™[P.PE[P]+ &HE [P, P/E[P,q,]E[L].
(4.19)

In order to get the explicit expression of the cost-to-go functional at time ¢, we
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substitute 7 — E[*] and E[r] back and derive
Ji(Elz:), 2 — Elze], E[l,], I — E[l;])
= in Bl (Bl 2 = Eloen] Elleal b = Ellea]) | 7]
+ay(z — b — Bz, — 1,])° — woyEla, — 1]
=615} (1 —E[2])” —2m0s15.E[q)] (L —E[L]) (2~ E[2e]) =018 B[] +06, 1 E[g,JE[L]
+ e [ElG1(t — E[L])? + (Elg?] — (Ela))®) (BLLD)Y + 01 (BLaJELL]) + wtie
— Gt~ BT [PPIER s (0 — E[e]) + men &34 E7 [PPE[qP]] (1 — ELL))|

-E[P,P!] [— E~ [P, PE[P, s, (2, — E[]) + 165 B [PPIE[Pg,] (I, — B[] )]

. [%E[Pﬂ RUEVRYE E[qt]E[P;J)E[zt]}
t+1 £t+1

(BIPP] - E[PJE(PY) | S EIP] + 2 (B[R] - ElglBP)EL |

+ ay[(z — Ela]) — (I — E[L)]* — waElz, — 1]
:ftJrlS?(l - Bt) ($t - E[l’t])Q — 20 415¢ (E[Qt] - ét) (lt - ]E[lt]) (flft - E[xt])

+ (€t+1E[Qt2] - n752+1€t_—‘r11§t> (lt - E[lt])2 — w15/ E[14]

Ct1Me+1 ét - E[Qt]Bt] [ §t+1 B, ]
+ w| 0 E — Ell| +w -
[ t+1 [C]t] € 1- B, [t] Y 46, 1— B,

§t+1

[t e el i) (B ot PP g

+ (v —E[24])* =20 (I, —E[l]) (v, —E[2]) + (L —E[l1])? —woyE[2,] +wa, E[1;]

—& (2 — Bl)])” = 20 (L — B[L]) (20 — Elz]) + e (b — E[1,])°

— thE[l’t] + U)QtE[lt] + 6t<E[lt])2 + w2¢t.
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Substituting E[7}] to dynamics of E[x;] in (4.13) yields

w1 B By —E[g]By
261 1-B &1 1-By

Elzi11] = sE[z] +

which implies (4.17). Hence, following from (4.18), (4.19) and (4.17), we derive the
desired result, i.e., 7} = (7} — E[n}]) + E[n}] in (4.16).

Finally, we show that this optimal strategy satisfies the linear constraints. At time
0, E[ns —E[n5]] = 0 is obvious due to zy = E[z¢] and [y = E[lo]. Then, according to
the dynamic system of (4.14), we have E[z; —E[z]] = 0 and E[l; —E[l;]] = 0, which
further implies E[7; —E[7}]] = 0. Repeating this argument, we have E[n} —E[7}]] =
0 holds for all ¢. O

Based on the proof of Theorem 4.3, the optimal objective of problem (4.15) is as

follows,

J[) (E[[Eo], 0, E[lo], 0) = —U)C()E[ZE()] + UJ@QE[Z()] + 50(E[[0])2 + ’LU2'¢0. (420)

In addition, from (4.17), we have

T
= Z Elz]ay — E[l¢] o
t=0 S
t— t— - ~
w118y, Nk+1 Br — E[qi] Bk
;1) ( E) ,Z;) jgl 26k41(1 = By) &1 1= DBy JHO
_E[lt] Qi

= (oTo — 2wy — ol

ie.,

—(2¢00) "M (ED 2707 — lrar] — Como + bolo)-
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Hence, according to (4.20), we can derive the variance term as
Var (w7 ,r = lyar)
=wED 27, — lpar] + Jo(20, 0,1, 0)
= — wty + Golp
= - (4%)_1 (]E(T) [Z7ar — lrar] — Coxo + 9010)2 + (5053-
Theorem 4.4. Assume that the returns of assets and liability are correlated at every
period. Then, the efficient frontier of problem (4.12) is given by

Var® (2707 —lrar) = =(400) " (B 27,7 — Irar] = Goo + olo)” + 8ol

(4.21)
for EO[xp.; — lpar] = (oo — Oolo.

Now we consider the case with terminal exit. We assume that the investment
will be stopped at the terminal time 7. This means that ar = 1 and «; = 0 for
t=20,1,---,T — 1. Then, the seven deterministic parameters are reduced into the

following expressions,

m =[] (Blg] - By)ss.
o == 3 B [T B T mtgz)+ [Tl

Gt = H5j7
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Qt = -~ 1_ B] )
Jj=t
T—1IE _B.)? T-1 T-1 Ej B2 k-1 T-1
o= - [T B0 (T B0 (TTmig) + [T eia
j=t J k=t j=k+1 J j=t j=t
Wy = 71 - HJT:_tl(l - BJ)

Furthermore, with the help of Theorem 4.3, we get

E[z,] = HS +Z ﬁ W41 DBy +T]k+1§k— [qx] Bk HE
! OJ o 28k+1(1— By 1 — By,

j=k+1 §k+1 j=0
T-1 t—1 t—1
1 By, 1
=[] (H—)Z (1-5)
i t(l—B) j kZOl—Bk j:k+11_Bj

j=t k=0

t—1 T-1 t—1
w 1 1 -TTo(1 = Bj)
:xOHSj+§<H(1_B.)S.> = :
j=0 j=t 779 Hj:ﬂ(l B Bj)

(i) i 2

j=t j=0 3=0 I
Hence,

E[l‘t] . 1 (thH Tt+1 (]E[q] . Et)]E[lt]>

(1= By)se \ 2641 &
T-1 T-1 Bt
w 1 Elg;] - B
=E[x] + = - ’ = | [Elgllo
¢ 2 H (1 — Bj)S] =t (1 - BJ)SJ =0 !

Theorem 4.5. Assume that the returns of assets and liability are correlated at every

period. If the exit time is the terminal time, then the optimal strategy of problem
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(4.15) is given by

~

¢ = —E7'[P,P,JE[P; 3t< yT 13 ) (ﬁ %)E‘I[PtPQ]E[PtQt]Zt,

j=t j=t+1 J

where

T-1 e E[g,] - B,
_ L w B j j
7_$°HSJ+2H1—BJ» ] | 1-B,
Jj=0 J=0 j=0
And the efficient frontier of problem (4.15) is given by

T-1 - - 2
1-B;
Var(xp — Ir) = HJ ~ i) ( r—Ir]— H :1:0+H E o) +60l3,

1-T1,- (1-B)) j=0 j=0
(4.22)
T-1 T-1 A
Elq B
for Bley —Ir] = | [ sjz0— | | Lzo,
i i 1= B;
where
-1 S -1 T-1 T-1
Elg] - B)? 'S » E[q;] - B,
50:_1_[( [1J]_B.]> _ZBk< 1_[ ( 1]_ HEqJ +HE[QJ2]
j=0 J k=0 j=k+1 j=0

4.2.3 The Optimal Strategies with Uncorrelation between
Assets and Liability

In this subsection, we assume that the returns of assets and liability are uncorrelated

at every period.

The seven deterministic parameters can be reduced into the following expressions,
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T-1 k—1 T-1

e = Y (o = i1 &l Br(Elax)) [ [Elg]] + ar [ [El]],

k=t J=t J=t

T k—1
G =2 ] s
k=t  j=t

T-1 k—1 k—1
5= (ot BeCEla®) ( [TE021 - [](55)?)

k=t

" aT(jle[qz] - ﬁ(E[qﬂf)

j=t

w _ jil C]?-i—l Bk
t = — S E——
k=t 4€k+1 1 - Bk

It follows from Theorem 4.3 and the above notations that we have the following

theorem.

Theorem 4.6. Assume that the returns of assets and liability are uncorrelated at

every period. Then, the optimal strategy of problem (4.15) is given by

W11  me1Elge] (1 — E[])
25¢6111(1 — By) St8t+1 ’

i = B [PRE[P o[~ Bl -
where

t—1 w t—1 t—1 Ck; ) Bk
+
E[;Ct] = Xy Sj + 5 E ( | | Sj)al_—Bk.

j=k+1
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And the efficient frontier of problem (4.15) is given by

Var(zr — Ir)
¢ 1 T k—1 T k—1 2
f+1 2
[z — 7] $iTo+ ) o Eq»l)+5l,
(Zer) (-t Rolon oo +on
(4.23)
for Elzr — Ir] = Zaknijo—ZakH]EqJ ly,
where
-1 - k—1 T-1 T-1
= Y bt BB (HE H et ar ([T EH T ElD?)
k=0 j=0 j=0 =0 =0

Now we consider the case with terminal exit. Assume that the investment will
be stopped at the terminal time 7. This means that ar = 1 and oy = 0 for ¢t =

0,1,2,---,T — 1. The seven deterministic parameters are reduced to

T-1

& = H(l - Bj)SJQ',

j=t

e =— ), (Ela])* B 1_[ (Elg;])*(1 = B;) HE[Q?] + H E[q;],

G = H3j7
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1-TT,5 (1= By)
4Hj:t( _Bj) ‘

=

It follows from Theorem 4.5 that we have the following theorem.

Theorem 4.7. Assume that the returns of assets and liability are uncorrelated at
every period. If the exit time is terminal time, then the optimal strategy of problem

(4.15) is given by

7.0 77 Elgl
ot = 5 PP (o [Tt - []7,20)
j=t j=t 7

where
T—1 wi=l T-1
= af s+ 511 -0l T
j=0 7=0 j=0

And the efficient frontier of problem (4.15) is given by

HT_tl(l - BJ) ﬁ ﬁ 2 2

Var(xT — lT) = = — <E[1’T — lT] — S;xo + E[q]lg) + 50[0,
1-Tho (- B) o qo

(4.24)

fOI“EZL’T—lT HSJ'IO_HE% l0>

where
o= [ 1@l )78, @5 [ Sl0-8) (T 0+ Bl
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4.2.4 Numerical Examples

We consider the example as Section 3.3. The only difference here is that the terminal
expectation is not deterministic and we choose the trade-off parameter w=1.
Case 1 Correlation Examples

Assume the same p as Example 3.1.

Example 4.2. An example with an Uncertain Exit Time

The probability mass function of an exit time 7 is
(o1, g, g, g, a5) = (0.10,0.15,0.2,0.25,0.3),

respectively, for t = 1,2,3,4,5. According to Theorem 4.3, we can derive the optimal

strategy of problem (4.12) as follows,
7w = —1.05(z — 2.7999)K; + 1.1124Kl;,
7y = —1.05(x1 — 2.9681)K; + 1.0793K!;,
7t = —1.05(x — 3.1437)K; + 1.0505Kls,
7 = —1.05(z3 — 3.3241)K; + 1.0244Ko1;,

7y = —1.05(x4 — 3.5081)K; + 1.0000Kl4.

The mean and variance of the final optimal surplus are E( (5., — I5,,) = 2.8521

and Var(™ (X577 — l5nr) = 0.3644, respectively.

Example 4.3. An example with the Terminal Exit

The probability mass function of an exit time 7 is
(ala Qg, (3, Oy, 055) = (Oa 07 07 Oa 1)7

respectively, for t = 1,2,3,4,5. According to Theorem 4.5, we can derive the optimal
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strategy of problem (4.12) as follows,
7 = —1.05(x0 — 3.0477)K; + 1.2053Kolo,
7F = —1.05(2; — 3.2001)K; + 1.1503Kol;,
7 = —1.05(xs — 3.3601)K; + 1.0979Kols,
7 = —1.05(xs — 3.5281)K; + 1.0478Kols,

The mean and variance of the final optimal surplus are E(xs — [5) = 3.3897 and

Var(xzs — l5) = 0.6135, respectively.

Case 2 Uncorrelation Examples

Example 4.4. An example with an Uncertain Exit Time

The probability mass function of an exit time 7 is
(Oél, 9, O3, Oy, Oé5) = (010, 015, 02, 025, 03),

respectively, for t = 1,2,3,4,5. According to Theorem 4.6, the optimal strategy of

problem (4.12) is specified as follows,
7y = —1.05(z¢ — 2.8005 + 1.05900y) K,

7y = —1.05(x1 — 2.9689 + 1.02761;) K,

(

(

75 = —1.05(zs — 3.1446 + 1.00030)Kj,

w5 = —1.05(x3 — 3.3252 + 0.975503) K,
(

7y = —1.05(z4 — 3.5094 + 0.95241,4)K;.

The mean and variance of the final optimal surplus are E™ (T5nr — lsar) = 2.8529

and Var(™ (5.7 — l55r) = 0.5388, respectively.
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Example 4.5. An example with the Terminal Exit

The probability mass function of an exit time 7 is
(ala Qg, (3, Oy, Oé5) = (Oa 07 07 07 ]-)a

respectively, for t = 1,2,3,4,5. According to Theorem 4.7, the optimal strategy of

problem (4.12) is specified as follows,
7 = —1.05(z0 — 3.0487 + 114721, K,
7F = —1.05(z; — 3.2012 + 1.09500,) K,
7 = —1.05(zs — 3.3612 + 1.04520) K,
7 = —1.05(z5 — 3.5203 + 0.997715) K,

7% = —1.05(z4 — 3.7058 + 0.95241,)K;.

The mean and variance of the final optimal surplus are E(zs — [5) = 3.3911 and

Var(z; — [5) = 0.8903, respectively.
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Chapter 5

Multi-Period Mean-Variance
Asset-Liability Portfolio Selection

with Bankruptcy Control

This chapter considers the multi-period asset-liability mean-variance portfolio selec-
tion with control over bankruptcy. It is impossible to eliminate the possibility of
bankruptcy in multi-period investment setting since the financial market is volatile.
We assume in this paper bankruptcy occurs when the surplus (total wealth minus
liability) falls below a preset level. Once an investor goes bankruptcy, he/she will
suffer a great loss such as retrieve part of his/her wealth (even take nothing back),
high liability and low credit. It is crucial for a successful investment take bankruptcy
into account. Analytical optimal policy and efficient frontier are obtained by using
the mean-field formulation. Numerical examples are presented to show the necessity

of considering bankruptcy when an investor builds his/her investment.

5.1 Formulation

We add the constraint on bankruptcy control in this chapter. An investor goes
bankruptcy when his/her surplus falls below zero, i.e., his wealth is not more than

liability, at any intermediate or the final period. We denote the event of a bankruptcy
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at period t as A;. The probability of A, is
PI"(At) = PI’(IL’t < lt>$i = ll,Z = 1,2, s ,t — 1)

Since the probabilistic constraint is not easy to conquer in dynamic portfolio selec-

tion, we turn it to its upper bound:

Pr(Ay) =Pr(z, <l,x;=1,i=1,2,---,t—1)
< Pr(z, < )
Var(zy — [})
= (Elz — L))
where the second inequality is due to the Tchebycheff inequality. The mean-variance
model for multi-period asset-liability portfolio selection with probability constraints
is to seek the best strategy, 77 = [(7})*, (72)*,-- -, (77")*], t = 0,1,--- , T —1, which

is the optimizer of the following stochastic optimal control problem,

min Var(xp — lp) — wE[zr — I7],
s.t. Tiy1 = Sty + P;ﬂ't,

(5.1)
liv1 = qly,

Var(l‘t—lt) < Clt(]E[.fCt—lt])27 t= 1, ,T— 1,

where a = (ay,...,ar_1) is the vector whose components are the levels of a risk
control over bankruptcy for the intermediate periods in a dynamic investment. To
solve problem (5.1), we consider the following Lagrangian minimum problem,
T-1
min Var(xp — lp) — wE[zr — 7] + Z by (Var(:ct — 1) — a(E[zy — lt])Q),

t=1
/
st. i1 = sy + Pymy,

lt-i-l:qtlt? t:17"'7T_17
(5.2)
where A = (A1, Ay, ..., Ap_1) € RT 7! is the vector of Lagrangian multipliers.
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As in Chapter 4, the problem (5.2) can be now reformulated as the following

mean-filed type of linear quadratic optimal stochastic control problem

-

min E[(ZL‘T — lT — E[ZL’T — lT])Q:I — wE[zT — lT]
+§ {ME[ (w0 = s ~ Elw, — 4])"] = Man(Elz, - 4])*},

s.t.  {E[x:], E[l;], E[m]} satisfy dynamic equation (4.13),
{z; — E|x¢], l; — E[l;], 7 — E[m]} satisfy dynamic equation (4.14),
E(ﬂ't—E[ﬂ't]):O, t:O,l,,T—l

It is indeed a separable linear quadratic optimal stochastic control problem which

can be solved by classic dynamic programming approach.

5.2 The Optimal Strategy

Before deriving the main results, we present two useful lemmas.
Lemma 5.1. Suppose that {1(1 — By) + Bi41B; # 0 holds. Then

(SaBIPPY) — (6 — Ao EIPE(P]]) B[P

_ 1 . /
= €t+1(1 _ Bt) + ﬁt+1BtE [PtPt]E[Pt]

(5.4)

Proof. Applying Sherman-Morrison formula yields
~1
(&1 EIPP] = (§41 — Biv)E[PIE[P]])  E[P,]

EHET PP (&1 — B )E[PE[P]E L ET PP
1= &4(&v1 — B E[PE-L[P,PYE[P,]

- (s ey + JEIPs
1

— &41(1— By) + ﬁthE_l[PtPﬂE[Pt]'
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Lemma 5.2. Suppose that §,1(1 — B;) + Bi41Bi # 0 holds. Then

(6 BRI — (€111 — A EIPJEIPY)  ElPigl]

1 — B é (55)
__ (-gR)b E-U[PP)JE[P,] + ——E'[P,P|]E[Pyq]
§v1(1 — By) + B By ' &1 t

Proof. Applying Sherman-Morrison formula yields
—1
(&1 BIPP] = (G4 — Bt )EPIE[P]])  E[Pygi]

ELETPP (61 — B E[PE[PLELE P PY]
1— 5;31 (&1 — B E[PLE P PLE[P,]

_ (&allE—l[PtP;] " )E[Ptqt]

__ -g)B E-'[P,P|E[P,] + —E'[P,P||E[P,q]
&1(1— By) + Bina By SR T an e

]

Assume that the returns of assets and liability are correlated at every period.

For simplicity, we define the following backward recursions for eight deterministic

sequences of parameters, {&}, {n:}, {&:}, {B:}, {G)s {0:), {0} and {1}, as
& = &asi(1— By) + Xy,

n = Nes15:(Elge] — ét) + Aps

2
€ = €t+1E[Qt2] - ZtH By + A,
t+1
ﬁt2+13§Bt
&41(1 — By) + Bia By

Gev1 Bt + 2m41 (ét - ]E[Qt]Bt)]E[lt]
&41(1 = By) + B By

Me+1 (ét - E[Qt]Bt)
&+1(1 — By) + B By

Br = 5t+15§ -

- )\tat7

Gt = G415t — Biv15t + 2N B[],

0, = 9t+1E[Qt] — Ge41
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O = O¢y1 (E[Qt])2 + €141 (]E[qf] - (E[QtDQ)

11\ D a 2
9 ((1 - %)BE — 2E[q:] B; + (E[Qt]) By N 1 §> v
it §01(1 — By) + Bry1 By §t1 ! e

1 C152+1Bt

Ve =ten = thﬂ(l — By) + B By

fort =T —1,T—2,---,0, with terminal conditions

)\T:Oa gT:]w 77T:—1> ET:17 BT:O, <T:—'UJ, QT:UJ, 5T:Oa ¢T:O7
where A\g = 0.

Remark 5.1. When the returns of assets and liability are uncorrelated, which is to
say, B, = E[¢:]B:, B, = (Elq:])?B;, parameters {n;}, {e:}, {¢:}, {0:} and {6} reduce

to

N = Mes15E[q] (1 — By) + Ay,

2
q:qﬂmﬂ—%%@mwﬁ+&,
t+

Ct+15t+1Bt8t
&i41(1 — By) + B B

0, = 9t+1E[Qt]7

Gt = G185t — + 2\ E[l],

6 = 01 (Ele])” + €1 (E[g?] — (E[qr])?) — M.

And others are the same as the correlated case.

Theorem 5.1. Assume that the returns of assets and liability are correlated at every

73



period. Then, the optimal strategy of problem (5.2) is given by

R s / (& = B)(1 = By)
m = ~ETIRPIRR <S“"t Eor (1= By) + BB L]

2Ct+1 + 77t+1(( o1 )Bt E[Qt])E[lt]) B 77”1]}3:
§i41(1 — By) + Bra1 By vt

- [PtPQ]E[PtQt]lt,

(5.6)

where
t—1

i G- < Gl b))
el xog) §i+1(1—Bj) + BJ+1B 2 j= k+1§J+1<1 = Bj) + 811 B;

. 1Cer1Be + 77k+1(§k —Elg ]B’“)(H E[%])l
§rr1(1 — By) + Bry1 By

(5.7)

fort=0,1,---,T —1.

Proof. We prove the main results by dynamic programming approach. For the
information set F;, the cost-to-go functional at period ¢ is computed by

Jt(]E[xt]a Ty — E[l’t]a E[lt]a I — E[Zt])

= r _]E%i]nE[ﬁ ]I}E[Jtﬂ (]E[xt+1]7 Tip1 — Blzep ], Blla]s b — E[lt+1]) \]:t]

+ )\t(xt — lt — E[l‘t — lt])2 — )\tatGE[fEt — lt])z.
The cost-to-go functional at terminal time T is

Jr (E[CUTL T — E[xT]v E[ZTL lr — E[ZT])

= (w7 — Iy — B[y — Ir])” — wE[wr — Ir]

2

= €T (J,‘T — E[IT])2 + QUT(ZT — ]E[ZT]) (.I’T — E[ZL‘T]) + ET(ZT — E[lT]>
+ BT(E[I‘T])Z + CTE[ZL’T] + QTE[ZT] + (ST(E[ZT])Q + ’QZ)T.
Assume that the cost-to-go functional at time ¢t + 1 is the following expression

Ji41 (E[l't—&-l]? Ti41 — E[$t+1], E[lt+1]7 lip1 — E[lt+1])
= &1 (l’t+1 —E[CCtH]) ? + 2041 (lt+1 _]E[ltJrl]) (ilft+1 —E[ﬂftﬂ]) + €41 (lt+1 —E[lt+1])2
+Bi41(Elzi1])? + Cr1Blzea] + 01 E[lisn] + 601 (Elli41])® + Vg
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We prove that the above statement still holds at time ¢. For given information

set Fy, i.e., knowing x; — E[z,|, E[z,], I} — E[l;] and E[l;], we have

E[Jor (Blzia], 21 — Elwea], Ellan], bosr — Eflei])| 7]
_ Elf [s0(0 — Blas]) + Py, ~ E[m]) + (P}~ E[P])E[]|
+ 2 [qt(lt —E[L]) + (@ — E[qt])E[lt]]
[se(we ~ Elw]) + Pi(m ~ Efm]) + (P, — E[P)))Elx]|
+ ev1 (@l = E[L) + (a0 = E[@)ELL]] + Beon (siElwi] + E[PJE[x,])’

+ i1 (St]E[-Tt] + E[P;]E[Wt]) + 01 E[q]E[l;] + 5t+1(]E[Qt]E[lt])2 + i1

7

+ 28y (2 — E[z,])E[P}] (7, — E[m]) + E[m](E[P,P}] — E[P,]E[P}])E[r]

=& [s? (2 — ]E[xt])z + (m — E[Wt])/E[PtP;] (me — E[m])

+2(m — E[m]) (E[PP] — E[PE[P/])E[x] | + 201 [siElai] (1 — E[L))

(w2 — Elwa]) + E[aP] (1 — ElL]) (me — E[m]) + (Ela.P] — Ela]E[P]])

- (B0 (me ~ E[m]) + (t — ELDE[m] + E[ELm]) | + 1| Ela?) (¢ — B[]
+ 2(E?] — (Ela])®)(t — ELDEL] + (Bla?] — (Ela)?)(ELL])?]

+ Bror| 53 (Elwi))” + 25 [z E[P{E[m] + B[] JE[P/|E[P{]E[x,]|

+ Gt (B[] + E[PYE[m]) + 6 B[g B[] + 601 (B[a]E[L)? + Y.

Using the same technique in Chapter 4, we can obtain optimal (E[x}], 7} — E[7}])
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by minimizing the following equivalent cost functional,
E[Je1 (Blzei, zeer — Efwen), Bl bt — Eflisa]) 7]
=G| (v~ E[2])” + (m ~ Elm]) E[PP]) (r, ~ Elm])
+ 250 (1 — B[] E[PY) (. — E[x/]) + E[x;] (E[P,P] ~ E[P,|E[P{])E[r,]|
+ M [stIE[qt] (I — E[L]) (1 — Elz2]) + E[qP}] (L — E[1]) (7, — E[x,])
+ (B[aP;] - Elg, B[P/ E[L]E[x] |
+ v |Elg?]( — E[L]) + (Elg?] - (Ela])) (E[L])?]
+ Byt 53 (Elwi])” + 25, JE[P|E[r,] + B[/ E[P/]E[P}]E[r,]|
+ G (seEfz] + E[PE[]) + 00 E[@JE[L] + b1 (B[ JE[L]) + ¢
= &t 57 (31~ Elar]) + (m — E[]) E[P.P]) (r: — E[])
+ 251 (e, — B[] E[P) (r: — E[m])|
+ B[] (6 EIP.P}] — (&1 — B E[PE[P]]) E[n]
+ 21| sl (4 — B4]) (2 — El]) + E[aP]) (1 — E[L]) (, — E[x,))
+ (E[qP}] - Elg,JE[P}])E[L]E[x]
+ e |[Elg?)( — E[L])? + (Elg?] - (Ela)®)(E[L])?]
+ B |5 (BL2])” + 25w JE[PYE[x] | + Gar (sEle] + E[P]JE[m,))
+ 0,1 B[gJE[L] + 8t41 (B[] E[L])? + tipa

It is easy to see that 7} —E[n}] can be expressed by the linear form of states and their

expected states, and E[7] can be constructed by the linear form of the expected
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states, i.e.,

m — E[rf] = - E_I[PtP;]E[Pt]St (xt - E[xt]) - nj—j:E_l[PtP;]E[PtQt] (lt - EUt])»
(5.8)

E[W:] = = (&HE[PtPﬂ - (§t+1 - 5t+1)]E[Pt]E[P;])_1 <5t+13tE[xt]E[Pt]

+ %Ct—i—lE[Pt] + 11 (E[Prge] — E[Qt]E[Pt])E[lt])

BrersiElmi] + 2Gir + e (1= 222) B, —E[g,] E[1,]

Ett1

§41(1 — By) + B By

= —E7'[P,P{|E[P]

- %El[PtP;]E[PthE[u. (5.9)
t+1

In order to get the explicit expression of the cost-to-go functional at time ¢, we

substitute 7 — E[r/] and E[x}] back and derive
Jt (E[It], Tt — ]E[J:t], ]E[lt], lt — ]E[lt])

= min E[Jt-i-l (E[%H], Tir1 — B[z ], B[l ], L — ]E[lt-i-l]) ‘th]

{me—E[m].E[m:]}

+ A (2 — b — Elz, — 1)) = Nay (Bl — 1))
— & 152 (v — El2])” + 2m1 B[] (I — B[L]) (2, — E[2])
+ Br15 (E[n1])” + GrsiEler] + O ElaJELL]
+ €t [E[qf]at —E[L])* + (E[¢7] - (E[qt])Q)(E[lt]V] + 01 (E[gE[L])” + 14

/

- §t+1[ - E[Pt]st (ft - E[xt]) - %E[Pt%] (lt - E[lt])]

t+1

. E—l[Ptp;][ — E[Py]s¢ (2 — E[z]) — %E[Ptqt] (1, - E[lt])]

t+1
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- [5t+13t]E[$t]E[Pt] + %Ct-‘rl]E[Pt] + Net1 (E[PtQt] - ]E[Qt]E[Pt])E[lt]]
(& E[PP] — (&1 — Brr)E[PJE[P]])
) [@H&E[IJE[P?&] + %Q+1E[Pt] + Met1 (E[PtQt] - E[Qt]E[Pt])E[lt]]

+ N2 — b — Bl — 1])° = Na (Bl — 1,])°

—&152(1 — By) (2 — Blz,))” + 2m151(Blg] — By) (I — E[L]) (2, — E[2])

 (conBlaf) — L) (0 — B + (o — PP ()

Cer1 Bt + 2141 (Bt E[Qt]Bt)E[lt]

+
&41(1 — By) + B By

Ge+1 — Brat

) siE[xy]

Mt+1 (Bt E[Qt]Bt)
Ct+1ft+1(1 — B;) + 5t+1Bt> L]

+

(
+ (01Elq)]
e

€1 (E D?) + 6e1(E[ge])?

(1— 5”1)B2—2E[qt]Bt+(E[qt])QBt 1 -~ )
2
Y o T sy *@HBJMM”)
1 Ct2+1Bt

+ )\t(iﬁt — 1l — E[z; — lt])2 - )‘tat(E[mt a lt]>2

_I_ -
Verr 4&41(1 — By) + Biy1 By

~ (6st01 B £ 3) (2~ Bl

+ 2(nt+1st(]E[qt] ~B)+ /\t) (1, — E[L]) (2 — Efz:])

+ <€t+1E[Qt2] i f — B + >\t> (I, — E[1,])?

§et1

5t+1‘9§Bt
&i41(1 — By) + B By

+ (@HS? - - Atat> (E[%])2
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Cir1Bt + 2mi1 (ét - E[Qt]Bt)E[lt]
§i11(1 — By) + By By

Nt+1 (ét - E[Qt]Bt)
&41(1 = By) + B By

+ [(<t+13t — Big15¢ ) + 2)‘tatE[lt]]E[mt]

+ (9t+1E[Qt] — Gev1 )E[lt]
" [(sm(mqt])z + e (B[] — (Ela])?)

2
— M

(1- Bz+1)B2 — 2E[q:] B; + (E[qt])th .
( E1(1 — By) + Bia1 By + €t+1Bt) — /\tat] (E[lt])z

1 CtQHBt
4&1(1 = By) + Prs1 By

=& (20— Bla]) + 200 (1 — B[L]) (2 — Ela]) + e (L — E[1])?

+ Bi(E[z])* + GE[z:] + 0,E[l] + 5(E[1,])? + s

+ Pyyp1 —

Substituting E[7}] to dynamics of E[x;] yields

£t+1(1 — Bt)St %Ct+1Bt + Ne+1 (ét - E[qt]Bt)E[lt]
&i41(1 — By) + B By &1(1 — By) + B By

E[xi41] = E[z:] —

which implies

&1 ( 1 — Bj)s; © < T &n(l—B)s; )
- H t &1 (1= By) + Bj41B; Z H +1(1 = Bj) + Bj41B;

k=0 j:k+1£]+1<1

' %<k+1Bk + Mi+1 (Ek - E[qk]Bk> ( H;:é E[Qj])lﬂ
Ek+1(1 — Bi) + Bry1 DBy '

Hence, combining with (5.8) and (5.9), we derive the desired result (5.6).

Remark 5.2. When the returns of assets and liability are not correlated,

5a+1 — Bj)s;
$ =X
o} =0 H &+1(1 = By) + Bj+1B;

_ = Z ( &1 ( Bj)s, ) Cit1DBr
§41(1 = By) + 84185 ) &1 (1 — Bi) + Br1Bi

j=k+1
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Based on the proof of Theorem 5.1, the optimal objective of problem (5.2) is as

follows,

Jo(E[z0],0,E[lp], 0) = Box§ + oo + bolo + ol + to. (5.10)

In fact, Jo(-) is convex in A. Hence, according to (5.10), we can derive the variance

term as

Var(zr — lr) = max_Jo(wo,0,1lp,0) + wE[zr — I7].
AeRTT!
Theorem 5.2. Assume that the returns of assets and liability are correlated at every

period. Then, the efficient frontier of problem (5.2) is given by

Var(xp — Ir) = max Jo (ZEQ, 0, lp, 0) + wE[zr — Ir]. (5.11)
AeRT

Remark 5.3. When we delete the constraint on bankruptcy, all the results reduce to
those in Section 4.2 when the exit time is terminal. We can also consider the case
when the exit time is random, but we omit it due to the same approach and space

limat.
5.3 Numerical Examples

We consider the example as Section 3.3 but we do not fix the terminal expecta-
tion. We further assume that the trade-off parameter w = 1 and the probability of
bankruptcy a; = 0.1, for t = 1,2,3,4. We adopt the Matlab optimization function

“fmincon” to identify the optimal multiplier \*.

Example 5.1. Assume that the returns of the assets and liability are correlated
with the same p in Example 3.1. By interior point algorithm of “fmincon” with the

initial point A = (0,0,0,0), we can obtain \* = (0,0,0,0.4902). Then according to
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Theorem 5.1, we can derive the optimal strategy of problem (5.2) as follows,
75 = —1.05(z¢ — 3.6997)K; + 0.3520K/y,
w1 = —1.05(x; — 3.8847)K; + 0.3360K/4,
75 = —1.05(xe — 4.0789)K; + 0.3207Kls,
75 = —1.05(z3 — 4.2829)K; + 0.3060K/3,

The optimal expected surplus levels are E(z5—[5) = 3.2005 and Var(zs—15) = 0.5740,

respectively.

Example 5.2. Assume that the returns of the assets and liability are uncorrelated.
Then parameters {&}, {n:}, {e}, {8}, {G}, {04}, {0} and {¢;} are defined in Remark
5.1 By interior point algorithm of “fmincon” with the initial point A = (0,0,0,0), we
can obtain A* = (0,0,0,0.1775). According to Theorem 5.1, the optimal strategy of

problem (5.2) is specified as follows,
= —1.05(z0 — 3.3587 + 0.76581) K,
7 = —1.05(z1 — 3.5267 + 0.73100) K,
7t = —1.05(z5 — 3.7030 + 0.69771) K,
7 = —1.05(z5 — 3.8882 + 0.66600) K,

7y = —1.05(z4 — 3.6231 + 0.95241,) K.

The mean and variance of the final optimal surplus are E(z5 — [5) = 3.3042 and

Var(zs — [5) = 0.8157, respectively.

Remark 5.4. When we do not take bankruptcy into account, which is to say, A =
(0,0,0,0) in formulation (5.8), Example 5.1 and Example 5.2 reduce to Example 4.3

and Example 4.5 in Section 4.2, respectively. And the results are same.
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Chapter 6

Multi-Period Mean-Variance
Asset-Liability Portfolio Selection

with Correlated Returns

This chapter reconsiders the problem in Chapter 3 while we allow the return vectors
in different time periods, {e;}7', to be statistically correlated, which is always the
case in real financial market. The returns of assets and liability are also correlated at
every period, i.e., P, and ¢; are dependent each other at period t =0,1,--- ;T — 1.
The formulation of the multi-period mean-variance asset-liability portfolio selection
is the same as Chapter 3. Since the only difference is the returns in different time

periods are statistically correlated, we do not repeat the formulation.

6.1 Preliminary

We use the notation E[-|, Cov,[-] and Var[-] to denote the conditional expectation
E[-|F:], the conditional covariance matrix Cov|[:|F;] and the conditional variance

Var[-|F;], respectively. It is reasonable to assume that the conditional covariance

o (5))-=[(0) ¢ ][]t o

are positive definite for all ¢t =0,1,--- T — 1.

matrices,
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Before presenting the main result, we define seven sequences as follows:

& = ]Et[ftﬂ] — By,
M = Eelqme1] — Et,
G = Belq7 ] + Etu
By = Ei[& 1 PHE; (&4 PP E[&41 P,
By = B[4 PYE;  [€41 PPy Ee[ne11: Py,
By = Ei[n0410:/ P 1B, [€11 PPy By [ 1P,
e = Eilerng],
with & =nr =ep =1,(r = 0.
Lemma 6.1. Foranyt=0,1,--- ;T —1,0<& < 1.

Proof. We prove it by mathematical induction. For any stage k, Covi[ex] > 0,
implies Covg[Py] > 0. At stage T — 1, Applying Schur complement theorem to

Covy_1[Pr_1] > 0 derives
0<1-— ET—l[P/T_l]ET—l[PT—1P/T_1]ET—1[PT—1] < 1,

that is
0<£T71 = 1_BT71 < 1.
Assume that 0 < &1 < 1, we will show that 0 < & < 1. Since &1 > 0, we have

Ey[&k+1] > 0. Define a positive random variable Z 2 Ej[’“&:jrl]. Obviously, Ex[Z] = 1.

Thus we can construct a new probability measure PasP = $.Z (w)df@’(w), for any
A € Fy.. Under the new probability measure P, we use the notation K[, 6&%[]
and @k[] to denote the conditional expectation @[\fk], the conditional covariance
matrix C/&H]:k] and the conditional variance \//z;"[-|}"k], respectively. First we prove
that G&/k[Pk] = I@k[PkP;] — IAEk[Pk]]E[P;] > 0. In fact, suppose that there exists
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an r € R" with z # 0 such that 2’ 60\\fk[Pk]x = 0, which in turn implies that
I@k[(x’ P.)? — E, [#'P;]?] = 0. Since the probability measure P and P are equivalent
in the sense that they are absolute continuous with each other, we have Ey[(2/Py)? —
Ek[x’Pk]Q] = 0, which is a contradiction to Covg[Px| > 0. Applying the Schur’s

complement theorem to it yields
1 — B, [PL]E;, [Py P,]EL[P}] > 0.

Since Ex[Pi] = Ex[ZP}], the above equality gives rise to

| B 6 PYIE [ PP EL [ Py > 0.
Er[&rt1]

Multiplying Ex[£x+1] > 0 on both sides of the above inequality yields

&k = Exl&e1] — Ek[€k+1P;€]Eizl[§k+1PkP2]Ek[£k+1Pk] > 0. (6.1)

Note that @k[Pk] > 0 also implies Egl[kaPkPﬂ > 0. On the other hand, the

induction assumption &1 < 1 implies that Ex[&,1] < 1. Thus

& = Ei[&hi1] — Ei[&e1 PLIEL o1 PrPLIEx[6+1Pr] < 1,

which together with inequality (6.1) derives 0 < &, < 1. This completes the proof.

Lemma 6.2. IfE, l(%ﬂfq)k) (5k+1PZ nkﬂqk)] is positive definite fork = 0,1, - - |
k+14k

T — 1, then
— 2k Gt =0 (6.2)

Proof. We prove it by mathematical induction. When ¢t = T" — 1, it is obvious.

Assume that the inequality holds at the stage t = k£ + 1, i.e.

Mt < (€rr1 = Crrr)Ehp- (6.3)
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We will show it is still true at stage k, i.e.

M < (ex — C)& (6.4)

Let Ly = <I1k> and Qp = (ngPk) , then

Nk+19k

Ex[€es1PrePy] Ei[&eiPr]) Eei1 Py ) B /
( Ek[fk—&-lpz] Ek[£k+1] ) o Ek l( gk-i-l ) (Pk 1)] - Ek[€k+1LkLk],

(6.5)

Eu[6i PPy ExlnenracPy] :
klSk+1E k] k| e+1G1E k :E[(kaPk) (p;C ZZ—E%”:E’“[Q’“ Qk]a

2
Ey, [UkﬂCIkPZ;] E Mqi% Nk+19k Eht1

Ek+1

(6.6)

Ei[é1PiPl] Ei[éiPi]) 0 AN B ,
(Ek[nmlqkpﬂ Ek[ﬁkﬂqk]) = B l(nkJrlCIk) (P} 1)] = Ep[QrL}]. (6.7)

By lemma 6.1 we have E;[{:1PrP)] > 0. Taking determinant on both sides for
(6.5)-(6.7) we get

[Eelgir L Lyl = (Bul6nii] — Be) [Exlée PoPL (6.8)
(22 _ Qéil 2| D /
Ex| Qr = | Ex i | — Br. | [Ex[&r1PeP] (6.9)
k1 k1
B[ Qa4 = (Bulmran] — Be) [Bule PiPY). (6.10)

From lemma 6.2, we have 0 < &1 < 1. By the assumption of E;[QQ}] > 0, the

Ek+1

Ei[érr1Lily]  Ei[LiQl]
Sk L ;oo\ |

inverse E;l [Qk%} of E, le ! ] exists. Since

Ekt+1

it follows from Lemma 2.4 that
Q).

Ekv1

Ei[€es1LiLy] — B[ Li QLB [Qk ]E[Qk%] > 0.
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Consequently,

Q/
Skl

Ep[rr1LiLy] > Ep[LirQ) B, [Qk

Then according to (6.12) and Lemma 2.3, it follows that
Q
Ert1

Q/
o]

2 Ekl@k Qs ]

Eht1

|Ex[&er1 LeLi]| =

Ek[Lk@;]EkI[@k ]Ek[@kf:;]

= |Ex[LrQ}]| |E

= |Ex[QrLy]|

I

i.e.

Ee[Qr L] B [Er1 L Ly ]| -

< Ek[@k Qi ]

Eht1

By (6.8)-(6.10) and (6.14), we obtain

<Ek[77k+1Qk] - §k>2 < <Ek[7h%+1q2] - Ek) (Ex[€k+1] — Br) -

k1
Namely,
i <Ek {nkﬂ 2] - Ek) k-
§k+1

In order to prove inequality (6.4), we just need to show

EklnkH] Bk €r — Ck-
vl

In fact, the assumption (6.3) is the same as

< €1 — Cra1s
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then

2

N

Ek[ k+1q2] < Egl(egsr — Ck+1)qi]7
€1

thus

2

T] ~ ~

Ex Lf:i q;ﬁ] — By < Egler10r] — Ex[Crsrdi] — Br,
+

which is
ne < (ex — Go)éx

This completes the proof.

6.2 Optimal Strategy

Theorem 6.1. Assume that the returns of assets and liability are correlated at every
period and the returns in different time periods are correlated too. Then the optimal

strategy of problem (3.1) is given by

T-1 T-1
m; = —E & PP <Et[§t+1Pt]5t (xt -7 H Skl) - ( H Skl)Et[ntHQtPt]lt)’
k=t k=t+1
(6.15)

where

T—1
505301_[ sk — d — ol
k=0

v = &1 : (6.16)

And the efficient frontier is

v RS e nolbo\* 2
ar(zp — lr) = wonsk—d—— + (g——Co+€o)lo- (6.17)
- 0

Proof. We prove it by making use of the dynamic programming approach. For the

information set J;, the cost-to-go functional of problem (3.8) at period ¢ is

Ty, 1) = H}ritnE[JtH(ytH, lis1) ’Ft],
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where the terminal condition Jr(yr,lr) = y% — 2lryr.

Assume that the cost-to-go functional at period ¢ + 1 is the following expression

T-1 T—1
Jt+1<yt+1alt+1) = < H Sz>§t+1yt2+1 - 2< H 3k> M1 ler1 Y1 — Ct+1lt2+17

k=t+1 k=t+1

Then we shall prove that it still holds at time ¢. For the given information set

Fi, we have

E[ o1 (g1, e )| 1]

_ T—1 T-1

=K ( 32) §t+1yt2+1 - 2( 1_[ 3k> Nes1lig1Yee1 — Ct+1lt2+1 Ft]
L\ k=t+1 k=t+1
-, T—1

=FE ( 32) &1 (sfyt2 + 28y, Py + W;PtP;Ft)

Sk) Nt+1 (qtstltyt + QtP:glﬂTt) - Ct+1qt2[t2
1

|
[\
7 N
>
I ~
o |
+ —

d

T—1 T—1
- ( I sz)Et[@H]sfym( I sz)Et[ngstWt

bt 1 k=t+1
_— T—1

+7T£< H Sz)Et[€t+1PtP:§]W7§_2( l_[ S’“)Et[m“qt]stltyt
ketil k=t+1

T-1
- 2< H 5k>Et[nt+1QtP:§]ltﬂ't - Et[Ct+1qt2]lt2-

k=t+1

Minimizing the above functional with respect to m;, we get the optimal strategy

decision at time t as follows

T-1

T = _E;1[€t+1PtP:§] <Et[ft+1Pt]3tyt - < H Skl)Et[ﬁtHQtPt]lt)-

k=t+1

89



Substituting it to E[Ji41(yes1, lt+1)‘]:t] yields
Je(Ye, lt) = min E[Je1(Yer, lea) | Fi]

T—1 T—1
= ( H Si>Et[£t+1]8?yt2 _2< H 3k>Et[nt+IQt]3tltyt_Et[Ct+IQ152]l152
k=t+1 k=t+1

— E[&1 PUE; &1 P PHE &1 Py s7y;

T-1 T-1
+ 2Et[§t+1P2]Et1[§t+1PtP;]Et[nt+1QtPt]< H 3%) ( 1_[ Skl)stltyt

k=t+1 k=t+1
— E; [77t+1QtP;]Et_1 [ft-i-lPtP:f]Et [77t+1(]tPt]l,g2
- T-1 ~ N
< H > Et ft+1 )yf—2< 1_[ Sk) (Et[qmtﬂ] —Bt)ltyt— (Et[QtQCtJrl] +Bt)l,52
k=t

T-1 T-1
= < H si) &i — 2( H Skz) Melyy — Gl7.

k=t k=t
To derive the expression (6.16) of ~, we first consider the value of the optimal

objective function in (3.8). In fact,

Ely7 — 2lryr| = E[y7 — 2lryr| Fo] = Jo(yo, lo)

T-1 T-1
- ( 1_[ 5%) £y — 2( H Sk) noloyo — Col-

k=0 k=0

Then
Var(zr — lr) = E[y — 2lryr] + E[l7] —

T-1 T-1
= ( H si) ol — 2( H Sk) Moloyo — ol + €oly — w?

k=0 k=0

T-1 T-1 2 T-1 _
:(HSi)ﬁo(xo—(cH—w) s,;l) —Q(Hsk)nol()(:m— (d+ w) H )

k=0 k=0 k=0

k=0
— (old + el — w?
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T-1

= (&% — Lw® —2& (Io

T-1 2
Sk —d)w—i—{o(xonsk —d)
k=0

k=0

T-1

+ 27]0[0&] — 2770l0 ($0 1_[ Sk — d) - Colg + 60[3
k=0

= (&% —1) (w _ So(@ofTiso s = d) - ’70[0)>

§o—1

TNt R S RNt R
§o—1

— T-1
+ fo( n Sk — d) — 2nolo <€Eo Sk — d) = Golg + eolg

k=0 =0

= (& - 1) (w Gl o s = d) - nolo)>

b

§o—1

g T—1 2 277 l 7]2
0 _ oto . A2 2 0 2
+ 2 5 (xo Sk d) ( H Sk ) Col2 + eol? + = 12

B €o (%1—[2;01 sk — d) + nolo i
—(50—1)<W— &1

By lemma 6.1, we have

0<& <1,

the variance Var(xp — Ir) is concave in w. Similar to Chapter 3, we can drive

Wt — o (%H;}F:_ol Sk — d) — nolo
§o—1 .

and the expression of Var(zr — Ir) (6.17).
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Remark 6.1. If the returns e; and q; are independent among different periods, the
conditional expectations degenerates to the unconditional expectation. In particular,
we have Et[&11Pt] = i E[Py], Ee[&1 P Py] = & B[P P, Eo[n1qi] = e Elg:],
Einr1aPi] = i ElaPe], ElG1a7] = CnBlaf], Eleia?] = eniElg?]. Then

Theorem 6.1 reduces to Theorem 3.4.

6.3 An Example

In this section, we use a simple example to illustrate the computational procedure.
We consider a 2 periods investment case with one riskless asset, one risky asset and
one liability.

Let

Py =ag, P1=pPy+a,
qo = 0o, q1 = PBqo + Q.

To be simple, we assume further o; and @; are independent, for ¢ = 0, 1. Obviously,
the excess return of the asset P; and the return of the liability {; follow AR(1) models

at period ¢ = 1. Since this is a two-period model, we have

=1, m=1, (=0, =1

Before deriving the strategy at period time t = 1, we estimate the following param-

eters:
Ei[6P1] = Ei[BPo + a1] = BPg + E[a],
Ei[&PY] = Ei[(BPg + a1)’] = B°P§ + 26PoE[an] + E[a]],
Ei[20:P1] = E1[(Bqo + @1)(BPo + a1)] = (Bgo + E[an])(8Po + E[an]),

Ei[neq] = E1[Bqo + a1] = Bao + E[au],
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B (E,[&Pq])* (BPy + E[ay])?
YU E[&PY 52P] + 26PE[al] + E[a3]’

é _ E, [52P1]E1[7)2Q1P1]
1 E[&:P3]

_ (BPg + E[an])*(Bgo + E[a:])
B2P32 + 28PoE[a;] + E[a?] ’

B — (Ea[neiP1])®  (Bao + E[a])* (BP0 + E[on])?
L E&P B*P§ + 26PoE [ ] + E[at]

- . E[af] — (E[aq])?
&G =Ei[&]-Bi=1-B = B?PE + 26PE[a;] + E[af]’

m = E1[772(I1] - §1

(6Po + E[au])(Bgo + E[au])
B2P2 + 28PoE[ay] + E[a?]

_ (Bgo + E[aq]) (E[e] — (E[a1])?)
B2P% + 26PE[aq] + E[af]

= Bqo + Elay] —

(Bgo + E[a1])*(BPo + E[o1])?

(1 =Ei[Gogi] + By = B2P2 + 28PoE[ay] + E[a?]

e1 = Eifeaqi] = Ea[(Bao + a1)*] = B¢ + 2BqE[aa] + E[af].

Hence, using Theorem 6.1 yields

*

Ty [P ][E1[§2P1]31 (351 - Z—1> - E1[772Q1P1]ll]

1
= P21 20PoElon] + E[a]] [ AP0+ Ela] (x )

(ﬁﬂpo% + ﬁQOE[Oél] + BE[a:1]Po + E[a4 |E ) ]

Simulating the deriving procedure of period time ¢t = 1, we estimate the following
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parameters while time ¢ = 0,

E[af] — (E[aq])? ]
32P2 + 28PE[ay] + E[0?] °

Eo[&1Po] = Eo [

= (]E[Oz%] — (E[&l])2)E[ﬁ2ag 4 2504()1;[041] + E[O‘%]]’

S

32P2 + 28PE[oy] + E[a?] °

= (]E[Oz%] — (E[C“l])Q)E[ﬁ2ag + QﬁOéOE?[Oél] + E[O‘%]]7

(Bgo + E[an]) (E[a7] — (E[aq])?)
B2P3 + 26PoE[aq] + E[ad]

Eo[maqoPo] = Eo[ 0Py

_ 2 2 (Baoa + apaoElas])
= (Bl — o) )= T e

(Bgo + E[as]) (E[o?] — (E[au])?) qo]

Eo[mao] = EO[ B2PG + 20PE[ay] + E[of]

= (E[a}] - (E[all)Q)E[ o+l ]]

B2a3 + 2BagE[an] + E[a?] |

(Eo[&Po])?
Eo[&iPF]

R _ Eo[§1Po]Eo[1190Po]
’ Eo[&,P7)]

5 _ EolmaoPo])”
’ Eo[&PF]

o = Eo[&1] — Bo

) Efo2] - (E[a])?
= o [ﬁ?Pa T 20PEan] + E[a%]] —

0=

2 2 !
= (]E[al] — (E[a1]) )E[ﬁ204(2) + 2BapE[aq] + E[&%]] ~
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no = Eo[m1q0] — By

Ba2 + Elay]ag } ~

— (E[a?] - (E[al])2)]E[ Ba2 + 2BacE[ar] + E[a3] |~ P

(Bgo + E[a1])*(BPg + E[a1])? 2] 5

= Fo[C1¢?] + By = E B
G = EolGio] + Bo O[ B52P2 1 28PoE[a,] + E[a2] 0] T

l(ﬁ_CJo + E[a,])*(6Po + E[aq])?
p2ai + 2BapE[aq] + E[a?]

073] + By,
co = Eolerqy] = Bo[ (B¢ + 28qoE[a1] + E[a7]) ]
= E[(8°a5 + 2Ba0E[aq] + E[ai])ag].

Hence, using Theorem 6.1 yields

w5 = —Ey ' [&P] [Eo[flpo]so <$Uo -

5051

*

) - 511E0[771QOP0]10]-

In order to calculate the above parameters, we introduce the following lemma.

Lemma 6.3. Let X and Y be two random variables for which the mean of functions

of X and Y exists. Then

1 o
E[X],E[Y]
+ Nam)Z g - Cov[X Y] gz y)
— I —qg\xr 'V —qg\x
5 529 Y5 a9y
E[X]E[Y] E[X]LE[Y]
Let
X
AR Ry s
X2
R Ry s
1
X) )= —
95(X) aX?+0bX + ¢’
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g1(Y) = (aY? +bY +¢)Y?,

mXY? +nXY
X.Y) =
95(XY) = X e
mY? +nY
X,y)— ot
96(XY) = X
sX + t)2(mY +n)?Y?
g7(X,Y):( )4 )

aX?2+bX +c ’

and let a = B%b = 2B6E[aq],c = E[a?],a = 32,0 = 28E[ay],¢ = E[a?], then

according to Lemma 6.3, we have

E[gl (OKO)] = E[BZQ(Q) + QﬁE[cfl]Oéo + E[O‘%]]

~ E[Oéo]
B2E[ap]? + 28E[cn |E[ao] + E[a?]

Var(ag) 28'E[a]® — 68°E[a?]E[ag] — 48E[aq |E[a?]
2 (B?E[ag]? + 28E[ |E[ag] + E[a2])?

2
Qg

E[gg(ao)] =E 5205(2) + QﬁE[al]Oéo + E[O‘%]

~ E[Ozo]2
62E[040]2 + QBE[OQ]E[Q/()] + E[Oé%]

Var(ag) —48°E[oq |E[ag]? — 682E[a?]E[ag]? + 2E[af]?

2 (B2E[ap]? + 28E[an |E[ap] + E[a?])? ’
1
Hlostoll = 8| ooy 98B oo + Bl
1

~ B?E[ao)® + 28E[1]|E[a] + E[a?]

N Var(ag) 65 E[ap]? + 128°E[aq |E[ag] — 26%E[a?] + 43°E[a; |
2 (B2E[a]? + 28E[a|E[ao] + E[ad])3 ’
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Elgs(ao)] = E[(B*a5 + 26E[ai]ag + E[ai])ag)
~ (F°Elag)® + 28E[a,|E[ao] + E[a?])E[ao)?

Var(ay)
* 2

- (128%E[a)? + 128E[a, |E[ao] + 2E[a?]),

(60600_63 + OéoO_é()E[O_él]>
B2a + 2Ba0E[aq] + E[a?]

E[gs(a0, )] = ]E[
N (BE[ao]E[ao]? + E[ao]E[ag|E[a4])
B2E[ap]? + 28E[ag]|Elay] + E[a?]

N Var(ayp) ( B (BE[ao)? + Ela:]E[ao]) )
2 (B%E[ap]? + 28E[cn |E[ag] + E[a2])?

(= 28*E[ao]® + 68°E[a2]E[ao] + 48E[on |E[0?])

Var(ayg) 28E[v]
2 B2E[ag)? + 28E[a1|E[ag] + E[of]

BC_Y(Q) + E[O_fl]ao 2063 + 25@01[3[&1] + ]E[Oé%]]

Blgan, )] - E|
N BE[ag]? + E[a; |E[a]
B2E[ap]? + 28E[ap]|E[aq] + E[a?]

Var(ayp) ( (BE[a]* + E[a1]E[a)) >
2 (B%E[ap]? + 28E[cn |E[ag] + E[a2])?

- (68*E[ag]? + 128°E[a1|E[ao] + 48%E[a1]* — 26°E[a]])

Var(ay) 2/
L (52E[a0]2+25E[a1]E[a0]+E[a§])’
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_ (Bag + Elen])*(Bag + Elaq])?
Elgr (o, do)] = [ B2a + 2Ba0E[aq] + E[a?] ]

 (BE[ao] + E[a1])*(BE[ao] + E[an])*E[as]?
B*E[ag]? + 2BE[ag|E[a1] + E[a]]
Var(ag) 2(BE[ag] + E[ai])*E[ao]?
2 (B2E[ag)? + 28E[a; |E[ag] + E[ad])?

: (E[a§]252 + 48%E[a1 ]*E[on ]? + BE[on |E[ao]* (3E[an] + 2B8E[ag])
+ B3E[al]E[a0](3E[a1]2 — ﬁQE[a()P)E[(X%] (ZBZJE[aI]E[al]
+ B*(E[a1]* + 68E[a1]E[ag] + 3521@[@0]2)))

Var(ayg) (BE[ag] + E[a])?
2 [E[ag)? + 20E[ag|E[c1] + E[a?]

(126°E[ao]® + 128E[a4 |E[ap] + 2E[a1]%).

Suppose that the correlation parameters are 3 = 0.2, 3 = 0.9. We still use the
same data as Example 3.1. This time we just consider one asset, the S&P 500.
That is to say, the return of riskless asset is s; = 1.05, the first and second moment
of the disturbance variables are E[ay] = 0.09,E[a;] = 1.1,E[a?] = 0.0423, and
E[a?] = 1.25, for t = 0,1, 2. The initial wealth and liability are zo = 3 and [y = 1

respectively, and d = 3.5. Then we have
Eo[&Po] = (E[af] — (E[cn])?)E[g1(a0)] = 0.0431,
Eo[&PF] = (Elai] — (E[a1])?)E[g2(ag)] = 0.0272,

Eo[maqoPo] = (E[ef] — (E[1])?)E[gs(cv, )] = 0.0576,
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& = (E[a7] = (E[a1])?) (E[93(a0)] — %) — 0.6777,
o = (E[af] = (E[en])?) (E[gﬁ(ao,ao)] -~ E[m(ag[g([izg?o’@“)]) — 0.9043,
Co = Elgr(a0, ao)] = (E[af] — (E[en])?) (Elgs(a0 a0)))* _ 0.5893,

E[g2(ao)]

€) = E[g4(070)] = 1.8900.

By Theorem 6.1, the optimal strategies are given by

(0.21rg + 0.0945) (21 — 6.3913) — (0.02a0@0 + 0.22a + 0.009a, + 0.099) 1,
™ = — ’

0.04a3 + 0.036c¢ + 0.0423

i = —1.6634(zo — 6.08698) + 2.0162ly,

and Var(zs — ly) = 4.9964.

Remark 6.2. If we consider a 2 periods investment in Example 3.1 and just consider
the asset SEP, then the results are the same with the example here when we take

B = B =0. This further prove that.
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Chapter 7

Conclusions and Future work

This chapter draws conclusions on the thesis, and points out some possible research

directions related to the work done in this thesis.

7.1 Conclusions

The focus of the thesis has been placed on multi-period asset-liability mean-variance
portfolio selection. It is a nonseparable dynamic programming problem since it
cannot be decomposed by a stage-wise backward recursion. In this thesis, we first
formulate the problem in deterministic terminal expectation and solved it by param-
eterized method. By introducing a Lagrangian multiplier and applying Lagrangian
relaxation and state variable substitution, we turn it to a solvable stochastic control
problem. Second, we put weights on the variance and the expectation to transfor-
m the bi-objective optimization problem to single-objective problem and tackle it
using mean-field formulation. By these two methods, we derive the analytical op-
timal strategies and efficient frontiers of multi-period asset-liability mean-variance
portfolio selection problems with various kinds of constraints, such as uncertain exit
time, bankruptcy control, correlated returns. The relation of them are given and the
effects of different constraints are illustrated by numerical examples. Our methods

are showed to be much more efficient and accuracy compared with other methods in
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the literature.

7.2 Future Work

Related topics for the future research work are listed below.

1. This thesis suppose that there is only one deterministic market state. Howev-
er, the underlying market environment is random and there are various mar-
ket states in the real world. In recent years, regime-switching models have
become popular for reflecting the various states of the financial market. In
the future, using mean-field formulation to tackle mean-variance model with

regime-switching is worthwhile and challenging.

2. Although asset-liability mean-variance portfolio selection is an important issue
in modern finance theory, the time-consistent problem has not attract much
attention. In the future work, seeking for time-consistent optimal strategy and

efficient frontier for asset-liability management is indeed meaningful.
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