
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 

 

 

 

 

MULTI-PERIOD MEAN-VARIANCE ASSET-LIABILITY 

PORTFOLIO SELECTION 

 

 

 

 

XIANPING WU 

 

 

 

 

 

 

Ph.D 

The Hong Kong Polytechnic University 

2015 



The Hong Kong Polytechnic University

Department of Applied Mathematics

Multi-Period Mean-Variance
Asset-Liability Portfolio Selection

Xianping WU

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

May 2015



ii



Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

WU Xianping (Name of student)

iii



iv



Dedicate to my parents.

v



vi



Abstract

The thesis is concerned with multi-period mean-variance asset-liability portfolio s-

election. It is a nonseparable problem in the sense of dynamic programming as it

cannot be decomposed by a stage-wise backward recursion. In this thesis, we re-

sort to tackling the nonseparability of the problem and seeking analytical optimal

solutions and efficient frontiers.

On the one hand, we formulate the mean-variance model by fixing the terminal

mean and deal with it using the parameterized method. By a variable substitution

and Lagrange multiplier method, we can turn the nonseparable problem to a solvable

stochastic linear quadratic optimal control problem. One prominent feature of the

dynamic mean-variance formulations is that the optimal portfolio policy is always

linear with respect to the current wealth and liability. According to this feature,

we derive the analytical optimal policies and efficient frontiers. The analytical for-

m of the Lagrange multiplier is also given in expression of the expectation of the

final surplus. The results are much more explicit and accurate compared with the

similar model solved by the embedding technique. It is worth mentioning that the

relationship of returns between the assets and liability plays an important role in

the whole derivation. We consider different cases such as the returns of assets of

liability are stochastically correlated at the same period and in different periods as

well as uncorrelated, compare their differences and illustrate their effects on optimal

strategy and efficient frontier theoretically and numerically.
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On the other hand, by putting weights on the two criteria, we transform the

mean-variance problem into a single-objective optimization problem. Instead of the

parameterized method, we employ the mean-field formulation to solve different asset-

liability mean-variance model with various constraints such as uncertain exit time,

and bankruptcy control, respectively. In fact, when uncertain exit time or bankruptcy

are considered in the model, the parameterized method and the embedding technique

will not work smoothly. We shed light on the efficiency and accuracy of mean-field

formulation when dealing with the issue of dynamic nonseparability in those models.

By taking “mean” of the constraints and some simple calculation, the state space

and the control space are enlarged in the language of optimal control. The objective

function then becomes separable in the expanded space which enables us to solve

the problem by dynamic programming. The analytical form of optimal policy and

efficient frontier are derived. It is showed that when the uncertain exit time reduces

to terminal exit time or the control over bankruptcy is left out and deterministic

expected return is taken, the results of the parameterized method and mean-field

formulation are proved to be the same. This further suggests that the two approaches

to solve multi-period mean-variance model are accurate.
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Notation

A1 the transpose of matrix (or vector) A.

A´1 the inverse of matrix A.

A` the Moore-Penrose pseudoinverse of matrix A

|M | the determinant of square matrix M

In identity matrix of dimension n

st the return rate of the riskless asset at time period t

eit the return rate for asset i at time period t

pit the excess return rate for asset i at time period t

qt the return rate of the liability at time period t

αt the probability mass function at time period t

xt the wealth of the investor at the beginning of the t-th

time period

lt the liability of the investor at the beginning of the t-th

time period

πit the amount invested in the i-th risky asset at the be-

ginning of the t-th time period
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Chapter 1

Introduction

1.1 Background

Most of us own a portfolio of assets, which may include real assets, such as a house,

a car, or a laptop, and financial assets, such as stocks and bonds. Portfolio selection,

which is concerned with finding the most desirable group of funds to hold, plays

an important role in the process of gathering wealth. Rational investors prefer a

higher expected return as well as a lower risk. However, the portfolio with maximum

expected return is not always the one with lowest risk. Mean-variance portfolio

selection refers to the design of optimal portfolios balancing the gain with the risk,

which are in expression of expectation and variance of the final return, respectively.

In order to trace out the efficient frontier for this bi-objective optimization problem,

a typically method is to put weights on the two criteria and transform the problem

into a single-objective optimization problem.

The mean-variance framework of portfolio selection originated by Markowitz, the

1990 Nobel Laureate in Economics. The principles introduced in Markowitz (1952)

are still at the core of many modern approaches for asset allocation, investment

analysis and risk management. In recent years, research on mean-variance portfolio

selection problems have been well developed. Li and Ng (2000) extended Markowitz’s

model in single period to dynamic version and derived analytical solution by the
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embedding technique. Costa and Nabholz (2007) generalized the results of Li and

Ng (2000) for the case in which the intermediate variances and expected values of

the portfolio are also considered in the performance criterion and/or constraints.

Zhou and Li (2000) introduced the stochastic linear quadratic control as a general

framework to study the continuous-time mean-variance portfolio selection problem

and obtained analytical optimal policy and explicit expression of efficient frontier. Li

et al. (2002) developed it to a constrained one where short-selling is not allowed. Yin

and Zhou (2004) studied a discrete-time mean-variance portfolio selection problem

where the market parameters depend on the market mode (regime) that jumps among

a finite number of states and revealed their relationship with the continuous-time

counterparts. Czichowsky (2013) developed a time-consistent formulation of mean-

variance portfolio selection problem based on a local notion of optimality called local

mean-variance efficiency in a general semimartingale setting for both discrete and

continuous time cases. Cui et al. (2014) presented a mean-field formulation to tackle

the multi-period mean-variance portfolio selection problem and derived analytical

optimal strategies and efficient frontiers. Pang et al. (2014) considered continuous

mean-variance portfolio selection under partial information by dynamic programming

approach through exploiting the properties of the filtering process and the wealth

process.

Asset-liability management is a financial tool for an investor that sets out to max-

imize their wealth. The aim of asset-liability management is to reduce risk as well as

increase returns and it has been used successfully for banks, pension funds, insurance

companies and wise individuals. A judicious investment considers assets and liabili-

ties simultaneously. A financial institution taking liabilities into account can operate

more soundly and lucratively. Krouse (1970) noticed that many mean-variance mod-

els concentrated only upon to assets with little or no effort being directed to the

liabilities. The mean-variance framework of asset-liability management was first in-
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vestigated by Sharpe and Tint (1990) in single-period setting. Leippold et al. (2004)

derived the closed form optimal policies and mean-variance frontiers under exogenous

and endogenous liabilities using a geometric approach; Chiu and Li (2006) employed

the stochastic optimal control theory to analytically solve the asset-liability man-

agement in a continuous time setting; Xie et al. (2008) considered the situation in

an incomplete market by using the general stochastic linear-quadratic control tech-

nique. Chen and Yang (2011) studied the case with regime switching; Zeng and

Li (2011) investigated the model under benchmark and mean-variance criteria in a

jump diffusion market. Wu and Li (2012) considered the regime switching and cash

flow together in the model.

An important assumption of the simple portfolio selection models is that the in-

vestment time horizon is deterministic, which means that the investor determines the

exit time at the beginning of the investment. In the real world, however, the investor

might be forced to abandon his or her original investment plan for some unexpected

events or accidents, such as sudden huge consumption, serious illness, retirement and

etc. Therefore, it seems more realistic to relax the restrictive assumption that the

investment horizon is pre-determined with certainty. Yaari (1965) formulated an op-

timal consumption problem for an individual with an uncertain date of death, under

a pure deterministic investment environment. Hakansson (1969) extended Yaari’s

work to a multi-period setting with a risky asset and an uncertain exit time. Merton

(1971) introduced an uncertain retiring time into a dynamic optimal investment and

consumption problem, where the uncertain time was defined as the first jump of

an independent Poisson process. Li and Xie (2010) incorporated a market-related

exogenous uncertain time horizon into a continuous-time mean-variance portfolio

selection problem. Yi et al. (2008) investigated a multi-period mean-variance port-

folio selection problem with an uncertain exit time. Wu and Li (2011) studied a

multi-period mean-variance portfolio selection problem with regime switching and
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an uncertain exit time. Yao et al. (2013) considered an asset-liability management

problem under a multi-period mean-variance model with uncontrolled cash flow and

uncertain time-horizon.

Due to the volatility of the financial market, it is impossible to eliminate the

possibility of bankruptcy in multi-period investment setting. We assume in this

thesis bankruptcy occurs when the surplus (total wealth minus liability) falls below

a preset level. Once an investor goes bankruptcy, he/she will suffer a great loss such

as retrieve part of his/her wealth (even take nothing back), high liability and low

credit. It is crucial for a successful investment to take bankruptcy into account.

Zhu et al. (2004) generalized the multi-period mean-variance model by considering a

good risk control over bankruptcy. Bielecki et al. (2005) studied the continuous-time

mean-variance problem with bankruptcy prohibition. Wei and Ye (2007) studied

the multi-period optimization portfolio with bankruptcy control when the random

returns of risky assets depend on the state of the stochastic market. Wu and Zeng

(2013) investigated the case in a regime-switching market.

Most studies above are under a circumstance that the time and returns are in-

dependent. In fact, the returns of risky assets or liability always exhibit certain

degree of dependency among different time periods. Correlated returns are neces-

sary and meaningful to be considered in the mean-variance portfolio selection. Since

the model becomes difficult to solve, there are a few works about it in the literature.

Balvers and Mitchell (1997) was the first to derive an explicit analytical solution

to the dynamic portfolio problem when the returns are autocorrelated by a normal

ARMA(1,1) process. Xu and Li (2008) investigated a dynamic portfolio selection in

a market with only one risky asset and one risk-free asset and Zhang and Li (2012)

extended it to the case with uncertain exit time. Gao and Li (2014) considered the

capital market consisting of all risky assets. By embedding technique, all the last

three derived analytical optimal strategies.
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We now get an overview of the analytical solution of the mean-variance portfo-

lio selection problem. For the single period model proposed by Markowitz (1952),

Merton (1972) gave the analytic solution in the case where the covariance matrix is

positive definite and short-selling is allowed. However, a multi-period or continuous-

time treatment is considerably more delicate. In order to solve this dynamic problem

in dynamic programming approach, it must satisfy the principle of optimality: An

optimal policy has the property that whatever the initial state and initial decision are,

the remaining decisions must constitute an optimal policy with regard to the state

resulting from the first decision(See Bellman (2010)). In other words, the problem

should be separable so that the objective function can be decomposed by a stage-wise

backward recursion. Since the variance term in multi-period mean-variance model

is nonlinear with respect to the expected wealth, it does not satisfy the smoothing

property, i.e.,

Var
`

Varp¨|Fiq|Fj

˘

‰ Varp¨|Fjq, @ i ą j,

where Fj is the information set available at time j and Fj´1 Ă Fj. So the multi-

period mean-variance problem is nonseparable in the sense of dynamic program-

ming. All traditional dynamic programming-based optimal stochastic control solu-

tion methods are then invalid. The main approaches to tackle it include martingale

theory, embedding technique, parameterized methoed and mean-field formulation.

Let us first review the embedding technique by Li and Ng (2000)) in detail which

is widely used to solve the noseparability (See Leippold et al. (2004), Chiu and Li

(2006), Yi et al. (2008), Li and Xie (2010), Zhang and Li (2012), Yao et al. (2013)

etc.). Suppose that the capital market consists of one risk-free asset and n risky

assets with given return st and random return et “ re
1
t , ¨ ¨ ¨ , e

n
t s
1. An investor join-

ing the market at the beginning of period 0 with initial wealth x0 and plans to

invest his/her wealth within a time horizon T . Then the multi-period mean-variance
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portfolio selection problem can be formulated as (see Li and Ng (2000)):

MV pωq max
π

EpxT q ´ ωVarpxT q,

s.t.xt`1 “ st

ˆ

xt ´
n
ÿ

i“1

πit

˙

`

n
ÿ

i“1

eitπ
i
t

“ stxt `P1
tπt, t “ 0, 1, 2, ¨ ¨ ¨ , T ´ 1.

where xt denotes the wealth of the investor at the beginning of period t, πit denotes

the amount invested in the ith risky asset at the beginning of period t, ω ą 0 is

the trade-off parameter between the mean and variance representing the degree of

the investor’s risk aversion. This is hard to solve directly by dynamic program-

ming approach. Adopting an embedding scheme, they considered instead a family

of auxiliary problems, Apω, λq, parameterized in λ,

Apω, λq min
π

Epωx2
T ´ λxT q,

s.t. xt`1 “ stxt `P1
tπt t “ 0, 1, 2, ¨ ¨ ¨ , T ´ 1.

Note that problem Apω, λq is a separable linear-quadratic stochastic control formula-

tion and can be thus solved analytically. The optimal solution to the original problem

can the be located via the solution to the auxiliary problem.

The second method is the parameterized method. By introducing an auxiliary

variable d and an equality constraint EpxT q “ d for the expected terminal wealth,

Li et al. (2002) studied the following slightly modified and equivalent version of

pMV pωqq (the no-shorting constraint is omitted here),

pMV pdqq min
π

VarpxT q “ EpxT ´ dq2,

s.t. EpxT q “ d,

xt`1 “ stxt `P1
tπt t “ 0, 1, 2, ..., T ´ 1.

Introducing a Lagrangian multiplier λ and applying Lagrangian relaxation to pMV pdqq
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give rise to the following linear quadratic stochastic control (LQSC) problem,

pLpλqq min EpxT ´ dq2 ´ λEpxT ´ dq,

s.t. xt`1 “ stxt `P1
tπt t “ 0, 1, 2, ¨ ¨ ¨ , T ´ 1.

By maximizing the dual function Lpλq over all Lagrangian multiplier λ P R, we can

derive the optimal policy of pMV pdqq. Set γ “ d ` λ{2, the Lagrangian problem

pLpλqq can be further written as the following LQSC problem,

pMVHpγqq min EpxT ´ γq2,

s.t. xt`1 “ stxt `P1
tπt t “ 0, 1, 2, ¨ ¨ ¨ , T ´ 1,

which is a special mean-variance hedging problem. Under a quadratic objective

function, the investor can hedge the target γ by his/her portfolio. pMVHpγqq has

been well studied and can be solved by LQSC theory (see Li et al. (2002)), mar-

tingale/convex duality theory (see Schweizer et al. (1996), Xia and Yan (2006)) and

sequential regression method (see Černỳ and Kallsen (2009)).

The third method is the mean-filed formulation approach developed by Cui et al.

(2014). The so-called mean-field type stochastic control problem refers to the prob-

lem where either the objective functional or the dynamic system involves state

processes and their expectations. Note that the multi-period or continuous-time

Markowitz-type mean-variance portfolio selection problems are typical mean-field

type stochastic control problems, where the variance term appears as a quadrat-

ic function of the expected terminal state. In this line of literature, the theory of

the mean-field optimal controls for forward systems has been well established and

extensively applied, especially to mean-field LQ control problems proposed by Yong

(2013) and some financial applications such as those studied in Li et al. (2002), Li and

Zhou (2006), Fu et al. (2010). Despite the active research efforts in recent years (see

Meyer2012, Nourian et al. (2013)), the related topic of mean-field formulations for

multi-period mean-variance models remains a relatively new and largely unexplored
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area. In Cui et al. (2014), they developed a unified framework of mean-field formu-

lations to investigate three multi-period mean-variance models in the literature: the

classical multi-period mean-variance model in Li and Ng (2000), the multi-period

mean-variance model with intertemporal restrictions in Costa and Nabholz (2007),

and the generalized mean-variance model with risk control over bankruptcy in Zhu

et al. (2004). They demonstrated that the mean-field approach represents a new

promising way in dealing with nonseparable stochastic control problems related to

the mean-variance formulations and even improves solution quality of some existing

results in the literature.

1.2 Contributions and organization of the Thesis

In this thesis, we study asset-liability management under a multi-period mean-

variance portfolio selection framework. The main difficulty to solve the problem

is the nonseparability. As mentioned above, most multi-period mean-variance mod-

els derive the analytical optimal policies based on the embedding technique. One of

the prominent features of the embedding technique is that it builds a bridge between

multi-period portfolio selection problems and standard stochastic control models.

Embedding scheme is indeed an efficient way to deal with problems with the nonsepa-

rable property. However, it is prone to involve inefficient and complicated calculation

during the derivation of the optimal strategies and efficient frontiers by embedding

since an auxiliary problem should be built and a long list of notation should be

established, especially when adding some constraints such as asset-liability manage-

ment, uncertain exit time and risk control over bankruptcy and/or serial correlated

returns. We resort to exploring new method to solve the multi-period asset-liability

mean-variance portfolio selection problem efficiently.

In Chapter 2 we present a brief introduction of multi-period mean-variance asset-
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liability portfolio selection problem. Some lemmas which will be used in the following

chapters are also given.

Chapter 3 tackles the multi-period mean-variance portfolio of asset-liability man-

agement problem using the parameterized method addressed in Li et al. (2002). By a

variable substitution and Lagrange multiplier method, we can turn the nonseparable

problem in the sense of dynamic programming to a solvable stochastic linear quadrat-

ic optimal control problem. One prominent feature of the dynamic mean-variance

formulations is that the optimal portfolio policy is always linear with respect to the

current wealth and liability. According to this feature, we derive the analytical op-

timal policies and efficient frontiers. The analytical form of the Lagrange multiplier

is also given in expression of the expectation of the final surplus. The results are

much more explicit and accurate compared with the similar model solved by the

embedding technique. It is worth mentioning that the relationship of returns plays

an important role in the whole derivation. We first deduce the case when assets

and liability are correlated just in the same time period, then it is reduced to the

uncorrelated setting. Numerical examples are presented to shed light on the results

established in this work.

When uncertain exit time or bankruptcy are considered in the model, neither the

parameterized method nor the embedding technique will work smoothly. Chapter 4

is devoted on the mean-field formulation for the multi-period asset-liability mean-

variance portfolio selection with an uncertain exit time. Note that the multi-period

or continuous-time Markowitz-type mean-variance portfolio selection problems are

typical mean-field type stochastic control problems, where the variance term appears

as a quadratic function of the expected terminal state. We shed light on the efficiency

and accuracy of mean-field formulation when dealing with the issue of dynamic non-

separability in those models. By taking “mean” of the constraints and some simple

calculation, the state space and the control space are enlarged in the language of op-
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timal control. The objective function then becomes separable in the expanded space

which enables us to solve the problem by dynamic programming. In the first section

we introduce mean-filed formulation and use it to deal with the noseparability of a

simple multi-period mean-variance problem without liability. Then we employed the

mean-field formulation to solve the asset-liability management. We derive strictly

the optimal strategies and efficient frontiers of the mean-variance model with corre-

lation of assets and liability and the results with uncorrelation of assets and liability

respectively. Numerical examples are presented to illustrate the efficiency and accu-

racy of the mean-field formulation to solve the multi-period mean-variance model.

It is showed that compared to the embedding technique (see Yi et al. (2008)), the

mean-field approach makes the whole process to derive the optimal strategy sim-

pler and more direct. When the uncertain exit time reduces to terminal exit time

and take deterministic expected return, the results of the parameterized method and

mean-field formulation are proved to be the same. This in turn suggests that the

two approaches to solve multi-period mean-variance model are accurate.

Chapter 5 deals with the multi-period mean-variance portfolio selection problem

with risk control over bankruptcy. Mean-field formulation is proved to be also efficient

when we take bankruptcy into account. The effect of control over bankruptcy is

showed theoretically and numerically. When the bankruptcy control is left out and

the terminal expected expectation is deterministic as the model in Chapter 3, the

results are also the same as it.

Chapter 6 resolves the problem of Chapter 3 when the returns of assets and lia-

bility are correlated among different time periods, which is much more complex but

is always the case in real financial market. We prove that the similar results hold

when the expectation, the variance, the covariance are extended to conditional ex-

pectation, conditional variance, conditional covariance, respectively. In other words,

the results in this Chapter can be reduced to that of Chapter 3 when the assets and

10



liability are independent in different periods. In fact, it is not an easy thing. On the

one hand, there are not enough references about the mean-variance model when the

returns are serially correlated. On the other hand, since we do not have the deter-

ministic distribution of the correlated returns but just adopt a formulation with a

general form, how to calculate the expectation of it is crucial. We deal with this by

using a approximate formulation. The differences of different cases are illustrated by

numerical examples.

The whole thesis deals with the multi-period mean-variance asset-liability portfo-

lio selection problem with different constraints, such as uncertain exit time, bankrupt-

cy control and correlated returns in parameterized method or mean-field approach.

We can also consider other situations such as regime switching or time consistent

problem. Chapter 7 concludes the whole thesis and plans for the future work.
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Chapter 2

Preliminary

The purpose of this chapter is to review the basic concepts of multi-period asset-

liability mean-variance model and present some lemmas which will be used in the

following chapters.

2.1 Multi-period Asset-Liability Mean-Variance

Model

Assume that an investor joining the market at the beginning of period 0 with an

initial wealth x0 and initial liability l0, plans to invest his/her wealth within a time

horizon T . He/she can reallocates his/her portfolio at the beginning of each following

T ´ 1 consecutive periods. The capital market consists of one risk-free asset, n risky

assets and one liability. At time period t, the given deterministic return of the

risk-free asset, the random returns of the n risky assets, and the random return of

the liability are denoted by st pą 1q, vector et “ re1
t , ¨ ¨ ¨ , e

n
t s
1 and qt, respectively.

The random vector et “ re1
t , ¨ ¨ ¨ , e

n
t s
1 and the random variable qt are defined over

the probability space pΩ,F , P q and are supposed to be statistically independent at

different time periods.

We assume that the only information known about et and qt are their first two

unconditional moments, Erets “
`

Ere1
t s, ¨ ¨ ¨ ,Erent s

˘1
, Erqts and pn ` 1q ˆ pn ` 1q

13



positive definite covariance

Cov

ˆˆ

et
qt

˙˙

“ E
„ˆ

et
qt

˙

`

e1t qt
˘



´ E
„ˆ

et
qt

˙

E
“`

e1t qt
˘‰

.

From the above assumptions, we have
¨

˝

s2
t stEre1ts stErqts

stErets Erete1ts Eretqts
stErqts Erqte1ts Erq2

t s

˛

‚ą 0.

We further define the excess return vector of risky assets Pt “ pP 1
t , ¨ ¨ ¨ , P

n
t q
1 as

pe1
t ´ st, ¨ ¨ ¨ , e

n
t ´ stq

1. The following is then true for t “ 0, 1, ¨ ¨ ¨ , T ´ 1:
¨

˝

s2
t stErP1ts stErqts

stErPts ErPtP
1
ts ErPtqts

stErqts ErqtP1ts Erq2
t s

˛

‚

“

¨

˝

1 01 0
´1 I 0
0 01 1

˛

‚

¨

˝

s2
t stEre1ts stErqts

stErets Erete1ts Eretqts
stErqts Erqte1ts Erq2

t s

˛

‚

¨

˝

1 ´11 0
0 I 0
0 01 1

˛

‚

ą0,

where 1 and 0 are the n-dimensional all-one and all-zero vectors, respectively, and

I is the nˆ n identity matrix, which further implies, for t “ 0, 1, ¨ ¨ ¨ , T ´ 1,

ErPtP
1
ts ą 0,

s2
t p1´ ErP1

tsE´1
rPtP

1
tsErPtsq ą 0,

Erq2
t s ´ ErqtP1

tsE´1
rPtP

1
tsErPtqts ą 0.

We further denote

Bt
∆
“ ErP1

tsE´1
rPtP

1
tsErPts,

pBt
∆
“ ErqtP1

tsE´1
rPtP

1
tsErPts,

rBt
∆
“ ErqtP1

tsE´1
rPtP

1
tsErPtqts.

Thus, 0 ă Bt ă 1, @ t “ 0, 1, ¨ ¨ ¨ , T ´ 1. If the returns of asset and liability are

uncorrelated at every period, then

pBt “ ErqtsBt and rBt “ pErqtsq2Bt.

14



Let xt and lt be the wealth and liability of the investor at the beginning of period

t respectively, then xt ´ lt is the surplus. At period t, if πit, i “ 1, 2, ¨ ¨ ¨ , n is the

amount invested in the i-th risky asset, then, xt ´
řn
i“1 π

i
t is the amount invested in

the risk-free asset. We assume in this paper that the liability is exogenous, which

means it is uncontrollable and cannot be affected by the investor’s strategies. De-

note the information set at the beginning of period t, t “ 1, 2, ¨ ¨ ¨ , T ´ 1, as Ft =

σpP0,P1, ¨ ¨ ¨ ,Pt´1, q0, q1, ¨ ¨ ¨ , qt´1q and the trivial σ-algebra over Ω as F0. Therefore,

Er¨|F0s is just the unconditional expectation Er¨s. We confine all admissible invest-

ment strategies to be Ft-adapted Markov controls, i.e., πt “ pπ
1
t , π

2
t , ¨ ¨ ¨ , π

n
t q
1 P Ft.

Then, Pt and πt are independent, txt, ltu is an adapted Markovian process and

Ft “ σpxt, ltq.

If we consider the multi-period mean-variance portfolio selection problem without

liability (qt “ lt “ 0), which is to say, the capital market consists of n risky assets

and one risk-free asset, then the information set at the beginning of period t is Ft =

σpP0,P1, ¨ ¨ ¨ ,Pt´1q, and the positive definite covariance matrix of et is

Cov petq “ Erete1ts ´ EretsEre1ts “

»

—

–

σt,11 ¨ ¨ ¨ σt,1n
...

. . .
...

σt,1n ¨ ¨ ¨ σt,nn

fi

ffi

fl

ą 0,

where σt,ij is the covariance between assets i and j. We also have ErPtP
1
ts ą 0 and

0 ă Bt ă 1, @ t “ 0, 1, ¨ ¨ ¨ , T ´ 1.

2.2 Some Lemmas

Lemma 2.1 (Sherman-Morrison formula). Suppose that A is an invertible square

matrix and µ and ν are two given vectors. If

1` ν 1A´1µ ‰ 0,

15



then the following holds,

pA` µν 1q´1
“ A´1

´
A´1µν 1A´1

1` ν 1A´1µ
.

For any matrix A, we denote by A` the Moore-Penrose pseudoinverse of A sat-

isfying

AA`A “ A,A`AA` “ A`, pAA`q1 “ AA`, pA`Aq1 “ A`A.

It can be proved that A` is unique for any matrix A and if the inverse A´1 of A

exists, then A` “ A´1.

Suppose that M and N are symmetric matrices with the same order. We denote

M ą N (M ě N) if and only if (iff) M ´ N is positive definite (semidefinite). Let

M be a symmetrical square matrix partitioned as

M “

ˆ

M11 M12

M 1
12 M22

˙

,

where M11 and M22 are also symmetrical square matrices. Denoted by |M | the

determinant of a square matrix M . Then the following lemmas hold.

Lemma 2.2. If M22 ą 0, then |M | “ |M22|
ˇ

ˇM11 ´M12M
´1
22 M

1
12

ˇ

ˇ.

Lemma 2.3. If M ľ N ľ 0, then |M | ě |N |.

The proofs of Lemma 2.2 and Lemma 2.3 can be found in Zhang (2011).

Lemma 2.4. A symmetrical square matrix M ľ 0 is equivalent to M22 ľ 0,

M22M
`
22M

1
12 “M 1

12 and M11 ´M12M
`
22M

1
12 ľ 0.

The proof of Lemma 2.4 can be found in Albert (1969).
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Chapter 3

A Parameterized Method for
Optimal Multi-Period

Mean-Variance Asset-Liability

Portfolio Selection

In this chapter, we study asset-liability management under a multi-period mean-

variance portfolio selection framework using the parameterized method. The model

is formulated in minimizing the variance with deterministic expected return. By the

Lagrange multiplier method and a variable substitution we turn the problem to a

much simpler one which has the same optimal strategy with the original problem and

can be solved by dynamic programming. We first deduce the case when the returns

of assets and liability are correlated, then we reduce it to the uncorrelated setting.

The analytical optimal policies and efficient frontiers are derived. The analytical

form of the Lagrange multiplier is also given in expression of the expectation of the

final surplus. Numerical examples of different cases are presented to shed light on

the results established in this work.
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3.1 Formulation

The multi-period mean-variance asset-liability model is to seek the best strategy, π˚t

“ rpπ1
t q
˚, pπ2

t q
˚, ¨ ¨ ¨ , pπnt q

˚s1, t “ 0, 1, ¨ ¨ ¨ , T ´1, which is the solution of the following

dynamic stochastic optimization problem,

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

min VarpxT ´ lT q ” ErpxT ´ lT ´ dq2s,

s.t. ErxT ´ lT s “ d,

xt`1 “ st

ˆ

xt ´
řn
i“1 π

i
t

˙

`
řn
i“1 e

i
tπ
i
t

“ stxt `P1
tπt,

lt`1 “ qtlt, t “ 0, 1, ¨ ¨ ¨ , T ´ 1.

(3.1)

Introducing a Lagrange multiplier 2ω ą 0 yields

#

min ErpxT ´ lT ´ dq2s ´ 2ωpErxT ´ lT s ´ dq,

s.t. txt, lt, πtu satisfies the dynamic system of problem (3.1),
(3.2)

which is equivalent to the following problem,

#

min ErpxT ´ lT ´ d´ ωq2s,

s.t. txt, lt, πtu satisfies the dynamic system of problem (3.1),
(3.3)

in the sense that the two problems have the same optimal strategy. It can be rewritten

as

#

min ErpxT ´ γ ´ lT q2s,

s.t. txt, lt, πtu satisfies the dynamic system of problem (3.1),
(3.4)

where γ “ d` ω. Set

yt :“ xt ´ γ
T´1
ź

k“t

s´1
k , (3.5)

18



and denote
śT´1

k“T s
´1
k :“ 1. Then the dynamic system of problem (3.1) turns to
"

yt`1 “ styt `P1
tπt,

lt`1 “ qtlt, t “ 0, 1, ¨ ¨ ¨ , T ´ 1,
(3.6)

where y0 “ x0 ´ γ
śT´1

k“0 s
´1
k . The problem (3.4) can be reformulated into

#

min ErpyT ´ lT q2s,

s.t. tyt, lt, πtu satisfies equation (3.6),
(3.7)

and it is the ‘same’ with the following problem:

#

min Ery2
T ´ 2lTyT s,

s.t. tyt, lt, πtu satisfies equation (3.6),
(3.8)

The ‘same’ here means they have the same optimal strategy. By studying the problem

(3.8), we can obtain the optimal strategy of the original problem (3.1).

3.2 Optimal Strategy

3.2.1 The Optimal Strategy with Correlation of Assets and
Liability

In this subsection, assume that the returns of assets and liability are correlated at

every period, i.e., Pt and qt are dependent each other at period t “ 0, 1, ¨ ¨ ¨ , T ´ 1.

Theorem 3.1. Assume that the returns of assets and liability are correlated at every

period. Then the optimal strategy of problem (3.1) is given by

π˚t “ ´E´1
rPtP

1
tsErPtsst

ˆ

xt´γ
˚

T´1
ź

k“t

s´1
k

˙

`

ˆ T´1
ź

k“t`1

Erqks ´ pBk

p1´Bkqsk

˙

E´1
rPtP

1
tsErqtPtslt,

(3.9)

where

γ˚ “

x0

T´1
ź

k“0

p1´Bkqsk ´ d´ l0

T´1
ź

k“0

`

Erqks ´ pBk

˘

T´1
ź

k“0

p1´Bkq ´ 1

. (3.10)
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Proof. We prove it by making use of the dynamic programming approach. For the

information set Ft, the cost-to-go functional of problem (3.8) at period t is

Jtpyt, ltq “ min
πt

E
“

Jt`1pyt`1, lt`1q
ˇ

ˇFt

‰

,

where the terminal condition JT pyT , lT q “ y2
T ´ 2lTyT .

We start from the last stage T ´ 1. While t “ T ´ 1, we have

E
“

JT pyT , lT q
ˇ

ˇFT´1

‰

“ E
“

y2
T ´ 2lTyT

ˇ

ˇFT´1

‰

“ s2
T´1y

2
T´1 ` 2sT´1yT´1ErP1

T´1sπT´1 ` π
1
T´1ErPT´1P

1
T´1sπT´1

´ 2ErqT´1ssT´1lT´1yT´1 ´ 2ErqT´1P
1
T´1slT´1πT´1.

Minimizing it with respect to πT´1 yields the optimal decision at period T ´ 1 as

below

π˚T´1 “´ E´1
rPT´1P

1
T´1sErPT´1ssT´1yT´1 ` E´1

rPT´1P
1
T´1sErqT´1PT´1slT´1.

Substituting π˚T´1 to E
“

JT pyT , lT q
ˇ

ˇFT´1

‰

, we obtain

JT´1pyT´1, lT´1q “ min
πT´1

E
“

JT pyT , lT q
ˇ

ˇFT´1

‰

“ p1´BT´1qs
2
T´1y

2
T´1 ´ 2

`

ErqT´1s ´ pBT´1

˘

sT´1lT´1yT´1 ´ rBT´1l
2
T´1.

In order to derive the cost-to-go functional and the optimal decision at period t

clearly, we patiently repeat the procedure at time T ´ 2. While t “ T ´ 2, we have

E
“

JT´1pyT´1, lT´1q
ˇ

ˇFT´2

‰

“ E
“

p1´BT´1qs
2
T´1y

2
T´1 ´ 2

`

ErqT´1s ´ pBT´1

˘

sT´1lT´1yT´1 ´ rBT´1l
2
T´1

ˇ

ˇFT´2

‰

“ p1´BT´1qs
2
T´1

´

s2
T´2y

2
T´2 ` 2sT´2yT´2ErP1

T´2sπT´2 ` π
1
T´2ErPT´2P

1
T´2sπT´2

¯

´ 2
`

ErqT´1s ´ pBT´1

˘

E
“

qT´2ssT´1sT´2lT´2yT´2

´ 2
`

ErqT´1s ´ pBT´1

˘

ErqT´2P
1
T´2ssT´1lT´2πT´2

´ rBT´1Erq2
T´2sl

2
T´2.
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We derive the following optimal decision at period T ´ 2 by minimizing the above

functional with respect to πT´2

π˚T´2 “´ E´1
rPT´2P

1
T´2sErPT´2ssT´2yT´2

`
ErqT´1s ´ pBT´1

p1´BT´1qsT´1

E´1
rPT´2P

1
T´2sErqT´2PT´2slT´2.

Then the cost-to-go functional at period T ´ 2 is

JT´2pyT´2, lT´2q “ min
πT´2

E
“

JT´1pyT´1, lT´1q
ˇ

ˇFT´2

‰

“ p1´BT´1qp1´BT´2qs
2
T´1s

2
T´2y

2
T´2

´ 2
`

ErqT´1s ´ pBT´1

˘`

E
“

qT´2s ´ pBT´2

˘

sT´1sT´2lT´2yT´2

´

ˆ

`

ErqT´1s ´ pBT´1

˘2

1´BT´1

rBT´2 ` rBT´1Erq2
T´2s

˙

l2T´2.

While t “ T ´ 3, we can similarly get

E
“

JT´2pyT´2, lT´2q
ˇ

ˇFT´3

‰

“ E
“

p1´BT´1qp1´BT´2qs
2
T´1s

2
T´2y

2
T´2

´ 2
`

ErqT´1s ´ pBT´1

˘`

E
“

qT´2s ´ pBT´2

˘

sT´1sT´2lT´2yT´2

´

ˆ

`

ErqT´1s ´ pBT´1

˘2

1´BT´1

rBT´2 ` rBT´1Erq2
T´2s

˙

l2T´2

ˇ

ˇ

ˇ

ˇ

FT´3



“ p1´BT´1qp1´BT´2qs
2
T´1s

2
T´2

´

s2
T´3y

2
T´3 ` 2sT´3yT´3ErP1

T´3sπT´3 ` π
1
T´3ErPT´3P

1
T´3sπT´3

¯

´ 2
`

ErqT´1s ´ pBT´1

˘`

E
“

qT´2s ´ pBT´2

˘

ErqT´3ssT´1sT´2sT´3lT´3yT´3

´ 2
`

ErqT´1s ´ pBT´1

˘`

E
“

qT´2s ´ pBT´2

˘

ErqT´3P
1
T´3ssT´1sT´2lT´3πT´3

´

ˆ

`

ErqT´1s ´ pBT´1

˘2

1´BT´1

rBT´2 ` rBT´1Erq2
T´2s

˙

Erq2
T´3sl

2
T´3.
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Thus the optimal decision at period T ´ 3 is

π˚T´3 “´ E´1
rPT´3P

1
T´3sErPT´3ssT´3yT´3

`
ErqT´1s ´ pBT´1

p1´BT´1qsT´1

ErqT´2s ´ pBT´2

p1´BT´2qsT´2

E´1
rPT´3P

1
T´3sErqT´3PT´3slT´3,

and the cost-to-go functional at period T ´ 3 is

JT´3pyT´3, lT´3q “ min
πT´3

E
“

JT´2pyT´2, lT´2q
ˇ

ˇFT´3

‰

“ p1´BT´1qp1´BT´2qp1´BT´3qs
2
T´1s

2
T´2s

2
T´3y

2
T´3

´ 2
`

ErqT´1s ´ pBT´1

˘`

E
“

qT´2s ´ pBT´2

˘`

ErqT´3s ´ pBT´3

˘

sT´1sT´2sT´3lT´3yT´3

´

„

`

ErqT´1s ´ pBT´1

˘2

1´BT´1

`

ErqT´2s ´ pBT´2

˘2

1´BT´2

rBT´3

`

ˆ

`

ErqT´1s ´ pBT´1

˘2

1´BT´1

rBT´2 ` rBT´1Erq2
T´2s

˙

Erq2
T´3s



l2T´3.

Inspired by the above three stages, we conjecture that the cost-to-go functional at

period t can be expressed by the following form

Jtpyt, ltq “

ˆ T´1
ź

k“t

p1´Bkqs
2
k

˙

y2
t ´ 2

ˆ T´1
ź

k“t

pErqks ´ pBkqsk

˙

ltyt

´

T´1
ÿ

j“t

ˆ T´1
ź

k“j`1

pErqks ´ pBkq
2

1´Bk

˙

rBj

ˆ j´1
ź

m“t

Erq2
ms

˙

l2t .

(3.11)

Next, we prove it in mathematical induction. Assume that the cost-to-go functional

(3.11) holds at period t` 1. Then we shall prove that it still holds at time t. For the

given information set Ft, we have

E
“

Jt`1pyt`1, lt`1q
ˇ

ˇFt

‰

“ E
„ˆ T´1

ź

k“t`1

p1´Bkqs
2
k

˙

y2
t`1 ´ 2

ˆ T´1
ź

k“t`1

`

Erqks ´ pBk

˘

sk

˙

lt`1yt`1
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´

T´1
ÿ

j“t`1

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

rBj

ˆ j´1
ź

m“t`1

Erq2
ms

˙

l2t`1

ˇ

ˇ

ˇ

ˇ

Ft



“

ˆ T´1
ź

k“t`1

p1´Bkqs
2
k

˙

`

s2
ty

2
t ` 2stytErP1

tsπt ` π
1
tErPtP

1
tsπt

˘

´ 2

ˆ T´1
ź

k“t`1

`

Erqks ´ pBk

˘

sk

˙

`

Erqtsstltyt ` ErqtP1
tsltπt

˘

´

T´1
ÿ

j“t`1

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

rBj

ˆ j´1
ź

m“t`1

Erq2
ms

˙

Erq2
t sl

2
t .

Minimizing the above functional with respect to πt, we get the optimal strategy

decision at time t as follows

π˚t “ ´E´1
rPtP

1
tsErPtsstyt `

ˆ T´1
ź

k“t`1

Erqks ´ pBk

p1´Bkqsk

˙

E´1
rPtP

1
tsErqtPtslt.

Substituting it to E
“

Jt`1pyt`1, lt`1q
ˇ

ˇFt

‰

yields

Jtpyt, ltq “ min
πt

E
“

Jt`1pyt`1, lt`1q
ˇ

ˇFt

‰

“

ˆ T´1
ź

k“t`1

p1´Bkqs
2
k

˙

s2
ty

2
t ´ 2

ˆ T´1
ź

k“t`1

`

Erqks ´ pBk

˘

sk

˙

Erqtsstltyt

´

ˆ T´1
ź

k“t`1

p1´Bkqs
2
k

˙

ErP1
tsE´1

rPtP
1
tsErPtss

2
ty

2
t

` 2

ˆ T´1
ź

k“t`1

`

Erqks ´ pBk

˘

sk

˙

ErqtP1
tsE´1

rPtP
1
tsErPtsstltyt

´

ˆ T´1
ź

k“t`1

`

Erqks ´ pBk

˘2

1´Bk

˙

ErqtP1
tsE´1

rPtP
1
tsErqtPtsl

2
t

´

T´1
ÿ

j“t`1

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

rBj

ˆ j´1
ź

m“t`1

Erq2
ms

˙

Erq2
t sl

2
t

23



“

ˆ T´1
ź

k“t

p1´Bkqs
2
k

˙

y2
t ´ 2

ˆ T´1
ź

k“t

`

Erqks ´ pBk

˘

sk

˙

ltyt

´

T´1
ÿ

j“t

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

rBj

ˆ j´1
ź

m“t

Erq2
ms

˙

l2t ,

which proves (3.11).

To derive the expression (3.10) of γ, we first consider the value of the optimal

objective function in (3.8). In fact,

E
“

y2
T ´ 2lTyT

‰

“ E
“

y2
T ´ 2lTyT

ˇ

ˇF0

‰

“ J0py0, l0q

“ y2
0

T´1
ź

k“0

p1´Bkqs
2
k ´ 2l0y0

T´1
ź

k“0

`

Erqks ´ pBk

˘

sk

´ l20

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

rBj

ˆ j´1
ź

m“0

Erq2
ms

˙

.

Then

VarpxT ´ lT q “ ErpxT ´ lT ´ dq2s

“ ErpxT ´ lT ´ dq2s ´ 2ωpErxT ´ lT s ´ dq ` ω2
´ ω2

“ ErpxT ´ lT ´ dq2 ´ 2ωpxT ´ lT ´ dq ` ω
2
s ´ ω2

“ ErpxT ´ lT ´ d´ ωq2s ´ ω2

“ ErpyT ´ lT q2s ´ ω2

“ Ery2
T ´ 2lTyT s ` Erl2T s ´ ω2

“ y2
0

T´1
ź

k“0

p1´Bkqs
2
k ´ 2l0y0

T´1
ź

k“0

`

Erqks ´ pBk

˘

sk

´ l20

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

rBj

ˆ j´1
ź

m“0

Erq2
ms

˙

` l20

T´1
ź

k“0

Erq2
ks ´ ω

2.
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Since

y0 “ x0 ´ γ
T´1
ź

k“0

s´1
k “ x0 ´ pd` ωq

T´1
ź

k“0

s´1
k ,

we have

y2
0

T´1
ź

k“0

p1´Bkqs
2
k “

ˆ

x0 ´ pd` ωq
T´1
ź

k“0

s´1
k

˙2 T´1
ź

k“0

p1´Bkqs
2
k

“

ˆ

x0

T´1
ź

k“0

sk ´ pd` ωq

˙2 T´1
ź

k“0

p1´Bkq,

and

y0

T´1
ź

k“0

pErqks ´ pBkqsk “

ˆ

x0 ´ pd` ωq
T´1
ź

k“0

s´1
k

˙ T´1
ź

k“0

`

Erqks ´ pBk

˘

sk

“

ˆ

x0

T´1
ź

k“0

sk ´ pd` ωq

˙ T´1
ź

k“0

`

Erqks ´ pBk

˘

.

Hence,

VarpxT ´ lT q

“

ˆ

x0

T´1
ź

k“0

sk ´ pd` ωq

˙2 T´1
ź

k“0

p1´Bkq ´ 2l0

ˆ

x0

T´1
ź

k“0

sk ´ pd` ωq

˙T´1
ź

k“0

`

Erqks ´ pBk

˘

´l20

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

rBj

ˆ j´1
ź

m“0

Erq2
ms

˙

` l20

T´1
ź

k“0

Erq2
ks ´ ω

2

“

„T´1
ź

k“0

p1´Bkq´1



˜

ω ´

`

x0

śT´1
k“0 sk ´ d

˘
śT´1

k“0 p1´Bkq´l0
śT´1

k“0

`

Erqks´ pBk

˘

śT´1
k“0 p1´Bkq ´ 1

¸2

`

śT´1
k“0 p1´Bkq

1´
śT´1

k“0 p1´Bkq

ˆ

d´ x0

T´1
ź

k“0

sk ` l0

T´1
ź

k“0

Erqks ´ pBk

1´Bk

˙2

` l20C0,

(3.12)

where

C0 “ ´

T´1
ź

k“0

`

Erqks ´ pBk

˘2

1´Bk

´

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

pErqks ´ pBkq
2

1´Bk

˙

rBj

ˆ j´1
ź

m“0

Erq2
ms

˙

`

T´1
ź

k“0

Erq2
ks.

(3.13)
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Since 0 ă Bt ă 1 for t “ 0, 1, ¨ ¨ ¨ , T ´ 1,

0 ă
T´1
ź

k“0

p1´Bkq ă 1.

This implies that the variance VarpxT ´ lT q in (3.12) is concave in ω. To obtain the

minimum variance VarpxT ´ lT q and optimal strategy for the original portfolio selec-

tion problem (3.1), one needs to maximize the value in (3.12) over ω P R according

to the Lagrange duality theorem in Luenberger (1968). Taking the first order for

(3.12) with respect to ω yields

ω˚ “

ˆ

x0

T´1
ź

k“0

sk ´ d

˙ T´1
ź

k“0

p1´Bkq ´ l0

T´1
ź

k“0

`

Erqks ´ pBk

˘

T´1
ź

k“0

p1´Bkq ´ 1

.

A simple calculation of γ˚ “ d` ω˚ implies the desired result (3.10). l

3.2.2 Efficient Frontier

The efficient frontier consists of the envelope curve of all portfolios that lie between

the global minimum variance portfolio and the maximum return portfolio ( Elton

et al. (2009)). It is the subset of portfolios that will be taken by the investors who

prefer less risk to more and prefer more return to less. Before analyzing the efficient

frontier, we prove the following important result.

Lemma 3.1. If E
„ˆ

Pk

qk

˙

`

P1
k qk

˘



is positive definite for k “ 0, 1, ¨ ¨ ¨ , T ´ 1, then

C0 ě 0,

where C0 is defined as (3.13).
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Proof. Let Lk “

ˆ

Pk

1

˙

and Qk “

ˆ

Pk

qk

˙

, then

ˆ

ErPkP
1
ks ErPks

ErP1
ks 1

˙

“ E
„ˆ

Pk

1

˙

`

P1
k 1

˘



“ ErLkL1ks, (3.14)

ˆ

ErPkP
1
ks ErqkPks

ErqkP1
ks Erq2

ks

˙

“ E
„ˆ

Pk

qk

˙

`

P1
k qk

˘



“ ErQkQ
1
ks, (3.15)

ˆ

ErPkP
1
ks ErPks

ErqkP1
ks Erqks

˙

“ E
„ˆ

Pk

qk

˙

`

P1
k 1

˘



“ ErQkL
1
ks. (3.16)

Taking determinant on both sides for (3.14)-(3.16) and according to Lemma 2.2, we

get

ˇ

ˇ

ˇ

ˇ

ErPkP
1
ks ErPks

ErP1
ks 1

ˇ

ˇ

ˇ

ˇ

“
`

1´ ErP1
ksE´1

rPkP
1
ksErPks

˘

|ErPkP
1
ks| “ |ErLkL1ks| ,

(3.17)

ˇ

ˇ

ˇ

ˇ

ErPkP
1
ks ErqkPks

ErqkP1
ks Erq2

ks

ˇ

ˇ

ˇ

ˇ

“
`

Erq2
ks ´ ErqkP1

ksE´1
rPkP

1
ksErqkPks

˘

|ErPkP
1
ks| “ |ErQkQ

1
ks| ,

(3.18)

ˇ

ˇ

ˇ

ˇ

ErPkP
1
ks ErPks

ErqkP1
ks Erqks

ˇ

ˇ

ˇ

ˇ

“
`

Erqks ´ ErqkP1
ksE´1

rPkP
1
ksErPks

˘

|ErPkP
1
ks| “ |ErQkL

1
ks| .

(3.19)

By the assumption of ErQkQ
1
ks ą 0, the inverse E´1rQkQ

1
ks of ErQkQ

1
ks exists. Then

E`rQkQ
1
ks “ E´1rQkQ

1
ks. Since

E
„ˆ

Lk
Qk

˙

`

L1k Q1k
˘



“

ˆ

ErLkL1ks ErLkQ1ks
ErQkL

1
ks ErQkQ

1
ks

˙

ě 0, (3.20)

it follows from Lemma 2.4 that

ErLkL1ks ´ ErLkQ1ksE´1
rQkQ

1
ksErQkL

1
ks ě 0.

Obviously,

ErLkQ1ksErQkQ
1
ks
´1ErQkL

1
ks “ ErLkQ1ksE´1

rQkQ
1
ks pErLkQ1ksq

1
ě 0.
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Consequently,

ErLkL1ks ě ErLkQ1ksE´1
rQkQ

1
ksErQkL

1
ks. (3.21)

Then according to (3.21) and Lemma 2.3, it follows that

|ErLkL1ks| ě
ˇ

ˇErLkQ1ksE´1
rQkQ

1
ksErQkL

1
ks
ˇ

ˇ “ |ErLkQ1ks|
ˇ

ˇE´1
rQkQ

1
ks
ˇ

ˇ |ErQkL
1
ks| .
(3.22)

Notice that |ErQkL
1
ks| “ |ErLkQ1ks| and |E´1rQkQ

1
ks| “ |ErQkQ

1
ks|
´1, then (3.22)

implies

|ErQkL
1
ks|

2
ď |ErQkQ

1
ks| |ErLkL1ks| . (3.23)

By (3.17)-(3.19) and (3.23), we obtain

`

1´ ErP1
ksE´1

rPkP
1
ksErPks

˘ `

Erq2
ks ´ ErqkP1

ksE´1
rPkP

1
ksErqkPks

˘

ě
`

Erqks ´ ErqkP1
ksE´1

rPkP
1
ksErPks

˘2
.

Namely,

`

Erqks ´ pBk

˘2
ď
`

Erq2
ks ´

rBk

˘

p1´Bkq.

Then

rBk ď Erq2
ks ´

`

Erqks ´ pBk

˘2

1´Bk

.

Therefore,

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

rBj

ˆ j´1
ź

m“0

Erq2
ms

˙

ď

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙ˆ

Erq2
j s ´

pErqjs ´ pBjq
2

1´Bj

˙ˆ j´1
ź

m“0

Erq2
ms

˙
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“

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

Erq2
j s

ˆ j´1
ź

m“0

Erq2
ms

˙

´

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

pErqjs ´ pBjq
2

1´Bj

ˆ j´1
ź

m“0

Erq2
ms

˙

“

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

`

Erqks´ pBk

˘2

1´Bk

˙ˆ j
ź

m“0

Erq2
ms

˙

´

T´1
ÿ

j“0

ˆT´1
ź

k“j

`

Erqks´ pBk

˘2

1´Bk

˙ˆ j´1
ź

m“0

Erq2
ms

˙

“

ˆ T´1
ź

k“T

`

Erqks ´ pBk

˘2

1´Bk

˙ˆ T´1
ź

m“0

Erq2
ms

˙

´

ˆ T´1
ź

k“0

`

Erqks ´ pBk

˘2

1´Bk

˙ˆ ´1
ź

m“0

Erq2
ms

˙

“

ˆ T´1
ź

m“0

Erq2
ms

˙

´

ˆ T´1
ź

k“0

`

Erqks ´ pBk

˘2

1´Bk

˙

“

ˆ T´1
ź

k“0

Erq2
ks

˙

´

ˆ T´1
ź

k“0

`

Erqks ´ pBk

˘2

1´Bk

˙

.

As a result, it follows from the above inequality that

´

T´1
ź

k“0

`

Erqks ´ pBk

˘2

1´Bk

´

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

`

Erqks ´ pBk

˘2

1´Bk

˙

rBj

ˆ j´1
ź

m“0

Erq2
ms

˙

`

T´1
ź

k“0

Erq2
ks ě 0,

that is, C0 ě 0. This completes the proof of the lemma. l

It follows equation (3.12) with ω˚ that we have the following minimum variance

theorem.

Theorem 3.2. Assume that the returns of assets and liability are correlated at every

period. Then the efficient frontier is given by

VarpxT ´ lT q “

śT´1
k“0 p1´Bkq

1´
śT´1

k“0 p1´Bkq

ˆ

d´ x0

T´1
ź

k“0

sk ` l0

T´1
ź

k“0

Erqks ´ pBk

1´Bk

˙2

` l20C0,

where C0 is defined as (3.13).
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3.2.3 The Optimal Strategy with Uncorrelation of Assets
and Liability

Assume that the returns of asset and liability are uncorrelated at every period. Then

pBt “ ErqtsBt and rBt “ pErqtsq2Bt.

Hence, we have the following results

T´1
ź

k“t

Erqks ´ pBk

p1´Bkqsk
“

T´1
ź

k“t

Erqkss´1
k ,

T´1
ź

k“t

`

Erqks ´ pBk

˘

“

T´1
ź

k“t

Erqks
`

1´Bk

˘

,

T´1
ź

k“t

Erqks ´ pBk

1´Bk

“

T´1
ź

k“t

Erqks,

T´1
ź

k“t

`

Erqks ´ pBk

˘2

1´Bk

“

T´1
ź

k“t

`

Erqks
˘2
p1´Bkq

and

C0 “´

T´1
ź

k“0

`

Erqks
˘2`

1´Bk

˘

´

T´1
ÿ

j“0

ˆ T´1
ź

k“j`1

`

Erqks
˘2`

1´Bk

˘

˙

`

Erqjs
˘2
Bj

ˆ j´1
ź

m“0

Erq2
ms

˙

`

T´1
ź

k“0

Erq2
ks.

(3.24)

Therefore, we have the following two theorems.

Theorem 3.3. Assume that the returns of assets and liability are uncorrelated at

every period. Then the optimal strategy of problem (3.1) is given by

π˚t “ ´E´1
rPtP

1
tsErPtsst

ˆ

xt ´ γ
˚

T´1
ź

k“t

s´1
k ´ lt

T´1
ź

k“t

Erqkss´1
k

˙

, (3.25)
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where

γ˚ “

x0

T´1
ź

k“0

p1´Bkqsk ´ d´ l0

T´1
ź

k“0

Erqks
`

1´Bk

˘

T´1
ź

k“0

p1´Bkq ´ 1

. (3.26)

Theorem 3.4. Assume that the returns of assets and liability are uncorrelated at

every period. Then the efficient frontier is given by

VarpxT ´ lT q “

śT´1
k“0 p1´Bkq

1´
śT´1

k“0 p1´Bkq

ˆ

d´ x0

T´1
ź

k“0

sk ` l0

T´1
ź

k“0

Erqks
˙2

` l20C0,

where C0 is defined as (3.24).

3.3 Numerical Examples

We consider an example of constructing a pension fund consisting of S&P 500 (SP),

the index of Emerging Market (EM), Small Stock (MS) of U.S market and a bank

account. Based on the data provided in Elton et al. (2009), Table 3.1 presents the

expected values, variances and correlation coefficients of the annual return rates of

these three indices. And the annual risk free rate is supposed to be 5% (st “ 1.05).

Table 3.1: Data for assets and liability example

SP EM MS liability
Expected return 14% 16% 17% 10%
Standard deviation 18.5% 30% 24% 20%

Correlation coefficient
SP 1 0.64 0.79 ρ1

EM 0.64 1 0.75 ρ2

MS 0.79 0.75 1 ρ3

liability ρ1 ρ2 ρ3 1
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Thus, for any time t, we have

ErPts “

¨

˝

0.09
0.11
0.12

˛

‚, CovpPtq “

¨

˝

0.0342 0.0355 0.0351
0.0355 0.0900 0.0540
0.0351 0.0540 0.0576

˛

‚,

ErPtP
1
ts “

¨

˝

0.0423 0.0454 0.0459
0.0454 0.1021 0.0672
0.0459 0.0672 0.0720

˛

‚.

The correlation of assets and the liability is ρ “ pρ1, ρ2, ρ3q, where

ρi “
Covpqt, P

i
t q

a

Varpqtq
a

VarpP i
t q

is the correlation coefficient of the i-th asset and the liability. This means

ErqtP i
t s “ ErqtsErP i

t s ` ρi
a

Varpqtq
b

VarpP i
t q.

Suppose that the investor consider a 5-time-period investment with initial wealth

x0 “ 3 and initial liability l0 “ 1.

Example 3.1. An Correlation Example

Assume that the returns of the assets and liability are correlated with ρ “ pρ1, ρ2, ρ3q “

p´0.25, 0.5, 0.25q. Hence,

Cov

ˆˆ

Pt

qt

˙˙

“

ˆ

CovpPtq Covpqt,Ptq

Covpqt,P
1
tq Varpqtq

˙

“

¨

˚

˚

˝

0.0342 0.0355 0.0351 ´0.0092
0.0355 0.0900 0.0540 0.0300
0.0351 0.0540 0.0576 0.0120
´0.0092 0.0300 0.0120 0.0400

˛

‹

‹

‚

ą0.

Using the above formula of ErqtP i
t s, we have ErqtPts “ p0.0898, 0.1510, 0.1440q1.

Moreover,

K1 “ E´1
rPtP

1
tsErPts “

»

–

1.0580
´0.1207

1.1052

fi

fl , K2 “ E´1
rPtP

1
tsErqtPts “

»

–

´0.2398
0.4374
1.7446

fi

fl .
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We seek for the expected terminal target with d “ 3.5. According to Theorem

3.1, we can derive γ˚ “ 4.0470 and the optimal strategy of problem (3.1) is specified

as follows,

π˚0 “ ´1.05px0 ´ 3.1710qK1 ` 1.2053K2l0,

π˚1 “ ´1.05px1 ´ 3.3295qK1 ` 1.1503K2l1,

π˚2 “ ´1.05px2 ´ 3.4960qK1 ` 1.0979K2l2,

π˚3 “ ´1.05px3 ´ 3.6708qK1 ` 1.0478K2l3,

π˚4 “ ´1.05px4 ´ 3.8543qK1 ` 1.0000K2l4.

The variance of the final optimal surplus is Varpx5 ´ l5q “ 0.7289.

Example 3.2. An Uncorrelation Example

Assume that the returns of the assets and liability are uncorrelated. Hence,

Cov

ˆˆ

Pt

qt

˙˙

“

ˆ

CovpPtq Covpqt,Ptq

Covpqt,P
1
tq Varpqtq

˙

“

¨

˚

˚

˝

0.0342 0.0355 0.0351 0
0.0355 0.0900 0.0540 0
0.0351 0.0540 0.0576 0

0 0 0 0.04

˛

‹

‹

‚

ą0.

We still seek for the same expected terminal target with d “ 3.5. According to

Theorem 3.3, we can derive γ˚ “ 4.0464 and the optimal strategy of problem (3.1)

is specified as follows,

π˚0 “ ´1.05px0 ´ 3.1705` 1.1472l0qK1,

π˚1 “ ´1.05px1 ´ 3.3290` 1.0950l1qK1,

π˚2 “ ´1.05px2 ´ 3.4955` 1.0452l2qK1,

π˚3 “ ´1.05px3 ´ 3.6702` 0.9977l3qK1,

π˚4 “ ´1.05px4 ´ 3.8538` 0.9524l4qK1,
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where K1 is the same as Example 3.1. And the variance of the final optimal surplus

is Varpx5 ´ l5q “ 1.0043.

3.4 Conclusion

Using the parameterized method, the state variable transformation technique and the

dynamic programming approach, we obtain in this chapter the closed-form expres-

sions for the optimal investment strategy and the efficient frontier of our multi-period

mean-variance asset-liability management problem. Compared with previous litera-

tures, our method is simpler yet more efficient, and the result is more concise and

powerful.
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Chapter 4

A Mean-Field Formulation for
Multi-Period Mean-Variance
Asset-Liability Portfolio Selection

with an Uncertain Exit time

Most investors realize that they never know exactly the time exiting the market.

That is due to many factors can affect the exit time, for example, the price move-

ment of risky assets, securities markets behavior, exogenous huge consumption such

as purchasing a house or accident. Therefore, it seems more realistic to relax the

restrictive assumption that the investment horizon is pre-determined with certainty.

Many papers (see Yi et al. (2008); Li and Xie (2010); Wu and Li (2011); Zhang and Li

(2012)) concerned with multi-period mean- variance model with uncertain exit time

and derived analytical optimal strategies for their problems. The main difficulty of

the model is the non-separability induced by the variance term. There are several

methods to conquer it, such as the embedding technique proposed by Li and Ng

(2000), the parameterized method developed by Li et al. (2002), just like Chapter 3,

the mean-field formulation presented by Cui et al. (2014) and etc. In fact, when the

investor exits the capital market with an uncertain time, the first two methods do

not work smoothly and efficiently. This chapter we focus on the mean-field formu-
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lation to tackle the multi-period mean-variance portfolio of asset and liability with

uncertain exit time. We drive the analytical optimal strategies and efficient frontiers.

Numerical examples are presented to show efficiency and accuracy of the mean-field

formulation to solve the non-separability of multi-period mean-variance portfolio s-

election problems. Compared to the embedding technique, the mean-field approach

makes the whole process to derive the optimal strategy simpler and more direct. We

first introduce the mean-field formulation to solve an uncertain exit model without

liability, then we extend it to the case when liability is concerned. The results can

reduce to those derived in Chapter 3 if we fix the expected return and the exit time

to the terminal, which suggests further our methods make sense.

4.1 Multi-Period Mean-Variance Portfolio Selec-

tion without Liability

In order to see the mean-field formulation tackle multi-period mean-variance model

clearly, we consider in this section a problem without liability.

4.1.1 The Model

Assume that an investor joins the market at the beginning of period 0 with an

initial wealth x0. He may be forced to leave the financial market at time τ before

T by some uncontrollable reasons. The uncertain exit time τ is supposed to be

an exogenous random variable with probability mass function p̃t “ Prtτ “ tu, t “

1, 2, ¨ ¨ ¨ . Therefore, the actual exit time of the investor is T ^ τ “ mintT, τu, and its

probability mass function is

αt
∆
“ PrtT ^ τ “ tu “

$

’

&

’

%

p̃t, t “ 1, 2, ¨ ¨ ¨ , T ´ 1,

1´
T´1
ÿ

j“1

p̃j, t “ T.
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The multi-period mean-variance investor with an uncertain exit time is to seek the

best strategy, π˚t “ rpπ
1
t q
˚, pπ2

t q
˚, ¨ ¨ ¨ , pπnt q

˚s1, t “ 0, 1, ¨ ¨ ¨ , T ´ 1, which is the opti-

mizer of the following stochastic optimal control problem,

$

’

’

’

&

’

’

’

%

min VarpτqpxT^τ q ´ wEpτqrxT^τ s,

s.t. xt`1 “

n
ÿ

i“1

eitπ
i
t `

ˆ

xt ´
n
ÿ

i“1

πit

˙

st

“ stxt `P1
tπt, t “ 0, 1, ¨ ¨ ¨ , T ´ 1,

(4.1)

where w ą 0 is the trade-off parameter between the mean and the variance, and

EpτqrxT^τ s and VarpτqpxT^τ q are defined as follows,

EpτqrxT^τ s
∆
“

T
ÿ

t“1

E
“

xT^τ
ˇ

ˇT ^ τ “ t
‰

PrtT ^ τ “ tu “
T
ÿ

t“1

Erxtsαt,

VarpτqpxT^τ q
∆
“

T
ÿ

t“1

Var
`

xT^τ
ˇ

ˇT ^ τ “ t
˘

PrtT ^ τ “ tu “
T
ÿ

t“1

Varpxtqαt,

respectively. Then the multi-period mean-variance model with an uncertain exit time

(4.1) can be equivalently re-written into the following problem,

$

’

&

’

%

min
T
ÿ

t“1

αt

!

Varpxtq ´ wErxts
)

,

s.t. xt`1 “ stxt `P1
tπt, t “ 0, 1, ¨ ¨ ¨ , T ´ 1.

(4.2)

4.1.2 The Mean-Field Formulation

Similar to other dynamic mean-variance problems, model (4.2) cannot be solved by

dynamic programming directly, as the variance term does not satisfy the smooth

property as mentioned in Chapter 1. In this section, we use the mean-field formula-

tion approach proposed in Cui et al. (2014) to tackle this difficulty. The mean-field

type stochastic control problem refers to the problem where either the objective

functional or the dynamic system involves state processes and their expectations.
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Now, let us build the mean-field formulation for problem (4.2). First, for t “

0, 1, ¨ ¨ ¨ , T ´ 1, the evolution of the expectation of the wealth dynamics specified in

(4.2) can be presented as

#

Erxt`1s “ stErxts ` ErP1
tsErπts,

Erx0s “ x0,
(4.3)

due to the independence between Pt and πt. Combining the wealth dynamics speci-

fied in (4.2) and dynamic equation (4.3) yields the following for t “ 0, 1, ¨ ¨ ¨ , T ´ 1,

$

’

&

’

%

xt`1 ´ Erxt`1s “ st
`

xt ´ Erxts
˘

`P1
tπt ´ ErP1

tsErπts

“ st
`

xt ´ Erxts
˘

`P1
t

`

πt ´ Erπts
˘

`
`

P1
t ´ ErP1

ts
˘

Erπts,

x0 ´ Erx0s “ 0.

(4.4)

In the language of optimal control, by doing so, we have enlarged the state space

pxtq into pErxts, xt ´ Erxtsq and the control space pπtq into pErπts, πt ´ Erπtsq.

Second, although the new control vectors Erπts and πt´Erπts can be determined

independently at time t, they should be chosen such that

Epπt ´ Erπtsq “ 0, t “ 0, 1, ¨ ¨ ¨ , T ´ 1.

Furthermore, we confine Erπts to be an F0-measurable control and πt ´ Erπts to

be an Ft-measurable Markov control. Then, Erxts is F0-measurable, xt ´ Erxts

is Ft-measurable, tpErxts, xt ´ Erxtsqu is again an adapted Markovian process and

Ft “ σpErxts, xt ´ Erxtsq.

We need to point out that state Erxt`1s is not observable in the market. Actually,

Erxt`1s is computed through dynamic equation (4.3) after choosing F0-measurable

control Erπts and knowing Erxts at time t. Then, state xt`1´Erxt`1s is obtained after

observing xt`1 in the market at time t` 1. The constraint Epπt ´ Erπtsq “ 0 makes

sure that F0-measurable control Erπts and Ft-measurable Markov control πt ´Erπts

are consistent.
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Thus, problem (4.2) can be equivalently reformulated as a mean-field type of

linear quadratic optimal stochastic control problem,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

min
T
ÿ

t“1

αt

!

E
“

pxt ´ Erxtsq2
‰

´ wErxts
)

,

s.t. Erxts satisfies dynamic equation (4.3),

xt ´ Erxts satisfies dynamic equation (4.4),

Epπt ´ Erπtsq “ 0, t “ 0, 1, ¨ ¨ ¨ , T ´ 1.

(4.5)

In this mean-filed formulation of the multi-period mean-variance model with an un-

certain exit time, the objective function becomes separable in the expanded state

space pErxts, xt ´ Erxtsq, which enables us to solve the problem by dynamic pro-

gramming. However, an additional linear constraint on the second control vector

πt ´ Erπts is imposed, which requires caution during the solution process.

4.1.3 The Optimal Strategy and the Efficient Frontier

In this section, we will derive the optimal strategy of problem (4.5) and its corre-

sponding efficient frontier by dynamic programming. Two useful lemmas are intro-

duced before our main results.

Lemma 4.1. Suppose that ErPtP
1
ts ´ ErPtsErP1

ts is invertible. Then

´

ErPtP
1
ts ´ ErPtsErP1

ts

¯´1

ErPts “
1

1´Bt

E´1
rPtP

1
tsErPts.

Proof. Applying Sherman-Morrison formula (lemma 2.1) directly gives rise to the

result. l

Define a cost-to-go function at time t` 1 as

Jt`1pErxt`1s, xt`1 ´ Erxt`1sq
∆
“ min

T
ÿ

j“t`1

αj

!

E
“

pxj ´ Erxjsq2
‰

´ wErxjs
)

.
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Lemma 4.2. If the cost-to-go function Jt`1pErxt`1s, xt`1 ´ Erxt`1sq at time t ` 1

satisfies the following decomposition,

ErJt`1pErxt`1s, xt`1 ´ Erxt`1sq|Fts

“ G1
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

`G2
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

where ErG2
t pErxts, xt ´ Erxts;Erπts, πt ´ Erπtsq|F0s “ 0 holds for all admissible

tErπis, πi ´ Erπisuti“0, then we can choose

JtpErxts, xt ´ Erxtsq “ min
pErπts,πt´Erπtsq

G1
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

as the cost-to-go function at time t.

Proof. The principle of optimality implies that

tErπ˚i s, π˚i ´ Erπ˚i suti“0

“ arg minErJt`1pErxt`1s, xt`1 ´ Erxt`1sq|F0s

“ arg minErErJt`1pErxt`1s, xt`1 ´ Erxt`1sq|Fts|F0s

“ arg minErG1
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

|F0s

“ argmin
tErπis,πi´Erπisut´1

i“0

Er min
pErπts,πt´Erπtsq

G1
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

|F0s.

Obviously, we can set min
pErπts,πt´Erπtsq

G1
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

as the

benefit-to-go function at time t. l

Remark 4.1. Lemma 4.1 is the same as the one in Cui et al. (2014). Lemma 4.2

is a simple version of Lemma 3 in Cui et al. (2014). Presenting them here again is

to keep the solution procedure intact.

Lemma 4.2 suggests that we can simplify the cost-to-go function at time t by

removing the terms with a zero unconditional expected value. Before presenting our

main theorem, we define the following backward recursions for tξtu and tζtu,
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ξt “ αt ` s
2
t p1´Btqξt`1,

ζt “ αt ` stζt`1,

for t “ T ´ 1, T ´ 2, ¨ ¨ ¨ , 1, with ξT “ αT , ζT “ αT . Also, we set
ś

H
p¨q “ 1 and

ř

H
p¨q “ 0 for the convenience in this thesis.

Theorem 4.1. The optimal strategies of problem (4.5) are represented by

π˚t ´ Erπ˚t s “ ´st
`

xt ´ Erxts
˘

E´1
rPtP

1
tsErPts, (4.6)

Erπ˚t s “
wζt`1

2ξt`1

¨
1

1´Bt

E´1
rPtP

1
tsErPts, (4.7)

for t “ 0, 1, ¨ ¨ ¨ , T ´ 1, where the optimal expected wealth level is

Erxts “ x0

t´1
ź

k“0

sk `
w

2

t´1
ÿ

j“0

ζj`1

ξj`1

¨
Bj

1´Bj

t´1
ź

`“j`1

s`, for t “ 1, 2, ¨ ¨ ¨ , T. (4.8)

Proof. We prove by backward induction that, for a given information set Ft “

σ
`

Erxts, xt ´ Erxts
˘

, we have the following expression,

Jt
`

Erxts, xt ´ Erxts
˘

“ ξt
`

xt ´ Erxts
˘2
´ wζtErxts ´

w2

4

T´1
ÿ

j“t

ζ2
j`1

ξj`1

Bj

1´Bj

, (4.9)

as the cost-to-go function at time t.

When t “ T ,

JT
`

ErxT s, xT ´ ErxT s
˘

“ αT
`

xT ´ ErxT s
˘2
´ wαTErxT s

“ ξT
`

xT ´ ErxT s
˘2
´ wζTErxT s.

Assume that we have expression (4.9) for the cost-to-go function at time t ` 1. We

prove that we still have expression (4.9) for the cost-to-go function at time t. For

the given information set Ft, i.e.,
`

Erxts, xt´Erxts
˘

, the recursive equation reads as

Jt
`

Erxts, xt ´ Erxts
˘

“αt
`

xt ´ Erxts
˘2
´ wαtErxts ` min

pErπts,πt´Erπtsq
E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s
˘
ˇ

ˇFt

‰

.

41



Based on dynamics (4.3) and (4.4), we deduce

E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s
˘
ˇ

ˇFt

‰

“ E
“

ξt`1

`

xt`1 ´ Erxt`1s
˘2
´ wζt`1Erxt`1s

ˇ

ˇFt

‰

´
w2

4

T´1
ÿ

j“t`1

ζ2
j`1

ξj`1

Bj

1´Bj

“ξt`1wE
”

s2
t

`

xt ´ Erxts
˘2
`

´

P1
t

`

πt ´ Erπts
˘

¯2

`

´

`

P1
t ´ ErP1

ts
˘

Erπts
¯2

` 2st
`

xt ´ Erxts
˘

P1
t

`

πt ´ Erπts
˘

` 2st
`

xt ´ Erxts
˘`

P1
t ´ ErP1

ts
˘

Erπts

` 2
`

πt ´ Erπts
˘1

Pt

`

P1
t ´ ErP1

ts
˘

Erπts
ˇ

ˇ

ˇ
Ft

ı

´ wζt`1

`

stErxts ` ErP1
tsErπts

˘

´
w2

4

T´1
ÿ

j“t`1

ζ2
j`1

ξj`1

Bj

1´Bj

.

Since both πt ´ Erπts and Erπts are Ft-measurable and Pt is independent of Ft, we

have

E
”´

P1
t

“

πt ´ Erπts
‰

¯2ˇ
ˇ

ˇ
Ft

ı

“
`

πt ´ Erπts
˘1ErPtP

1
ts
`

πt ´ Erπts
˘

,

E
”´

`

P1
t ´ ErP1

ts
˘

Erπts
¯2ˇ
ˇ

ˇ
Ft

ı

“ Erπ1ts
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘

Erπts,

E
”

2st
`

xt ´ Erxts
˘

P1
t

`

πt ´ Erπts
˘

ˇ

ˇ

ˇ
Ft

ı

“ 2st
`

xt ´ Erxts
˘

ErP1
ts
`

πt ´ Erπts
˘

,

E
”

2st
`

xt ´ Erxts
˘`

P1
t ´ ErP1

ts
˘

Erπts
ˇ

ˇ

ˇ
Ft

ı

“ 0,

E
”

2
`

πt ´ Erπts
˘1

Pt

`

P1
t ´ ErP1

ts
˘

Erπts
ˇ

ˇ

ˇ
Ft

ı

“ 2
`

πt ´ Erπts
˘1`ErPtP

1
ts ´ ErPtsErP1

ts
˘

Erπts,
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which further implies,

E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s
˘
ˇ

ˇFt

‰

“ξt`1

”

s2
t

`

xt ´ Erxts
˘2
`
`

πt ´ Erπts
˘1ErPtP

1
ts
`

πt ´ Erπts
˘

` 2st
`

xt ´ Erxts
˘

ErP1
ts
`

πt ´ Erπts
˘

ı

` ξt`1Erπ1ts
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘

Erπts

´ wζt`1ErP1
tsErπts ´ wstζt`1Erxts ´

w2

4

T´1
ÿ

j“t`1

ζ2
j`1

ξj`1

Bj

1´Bj

´ 2ξt`1

`

πt ´ Erπts
˘1`ErPtP

1
ts ´ ErPtsErP1

ts
˘

Erπts

“ G1
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

`G2
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

,

where

G1
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

“ξt`1

”

s2
t

`

xt ´ Erxts
˘2
`
`

πt ´ Erπts
˘1ErPtP

1
ts
`

πt ´ Erπts
˘

` 2st
`

xt ´ Erxts
˘

ErP1
ts
`

πt ´ Erπts
˘

ı

` ξt`1Erπ1ts
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘

Erπts

´ wζt`1ErP1
tsErπts ´ wstζt`1Erxts ´

w2

4

T´1
ÿ

j“t`1

ζ2
j`1

ξj`1

Bj

1´Bj

,

G2
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

“ 2ξt`1

`

πt ´ Erπts
˘1`ErPtP

1
ts ´ ErPtsErP1

ts
˘

Erπts.

Note that any admissible
`

Erπts, πt´Erπts
˘

satisfies E
`

πt´Erπts
˘

“ 0, which implies

E
“

G2
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘ˇ

ˇF0

‰

“ 0.

Since

ErPtP
1
ts ´ ErPtsErP1

ts “ CovpPtq “ Covpet ´ st1q “ Covpetq ą 0,
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we complete the square for G1p¨q directly to derive the optimal strategy at time t,

G1
t

`

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
˘

“ξt`1

!

s2
t p1´Btq

`

xt ´ Erxts
˘2
`

”

`

πt ´ Erπts
˘

` st
`

xt ´ Erxts
˘

E´1
rPtP

1
tsErP1

ts

ı1

¨ ErPtP
1
ts

”

`

πt ´ Erπts
˘

` st
`

xt ´ Erxts
˘

E´1
rPtP

1
tsErP1

ts

ı)

` ξt`1

„

Erπts ´
wζt`1

2ξt`1

`

ErPtP
1
ts ´ ErPtsErP1

ts
˘´1ErPts

1
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘

¨

„

Erπts ´
wζt`1

2ξt`1

`

ErPtP
1
ts ´ ErPtsErP1

ts
˘´1ErPts



´
w2

4

ζ2
t`1

ξt`1

Bt

1´Bt

´ wstζt`1Erxts

´
w2

4

T´1
ÿ

j“t`1

ζ2
j`1

ξj`1

Bj

1´Bj

.

By means of Lemma 4.1, we further have

G1
t

“

Erxts, xt ´ Erxts;Erπts, πt ´ Erπts
‰

“ξt`1

!

s2
t p1´Btq

`

xt ´ Erxts
˘2
`

”

`

πt ´ Erπts
˘

` st
`

xt ´ Erxts
˘

E´1
rPtP

1
tsErP1

ts

ı1

¨ ErPtP
1
ts

”

`

πt ´ Erπts
˘

` st
`

xt ´ Erxts
˘

E´1
rPtP

1
tsErP1

ts

ı)

ξt`1

„

Erπts ´
wζt`1

2ξt`1

¨
1

1´Bt

E´1
rPtP

1
tsErPts

1
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘

¨

„

Erπts ´
wζt`1

2ξt`1

¨
1

1´Bt

E´1
rPtP

1
tsErPts



´
w2

4

ζ2
t`1

ξt`1

Bt

1´Bt

´ wstζt`1Erxts

´
w2

4

T´1
ÿ

j“t`1

ζ2
j`1

ξj`1

Bj

1´Bj

.

We first derive the optimal pErπ˚t s, π˚t ´Erπ˚t sq by maximizing G1
t without the linear

constraint Epπt ´ Erπtsq “ 0, and then show the derived optimal strategy satisfies
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this constraint. More specifically, maximizing G1
t yields

π˚t ´ Erπ˚t s “ ´st
`

xt ´ Erxts
˘

E´1
rPtP

1
tsErPts,

Erπ˚t s “
wζt`1

2ξt`1

¨
1

1´Bt

E´1
rPtP

1
tsErPts.

Therefore, we get

G1
t

`

Erxts, xt ´ Erxts;Erπ˚t s, π˚t ´ Erπ˚t s
˘

` αt
`

xt ´ Erxts
˘2
´ wαtErxts

“ξt`1s
2
t p1´Btq

`

xt ´ Erxts
˘2
´ wstζt`1Erxts ` αt

`

xt ´ Erxts
˘2
´ wαtErxts

“ξtw
`

xt ´ Erxts
˘2
´ wζtErxts ´

w2

4

T´1
ÿ

j“t

ζ2
j`1

ξj`1w

Bj

1´Bj

as the cost-to-go function at time t.

Substituting the optimal expected strategy (4.7) into dynamic equation (4.3), we

further deduce the following recursive relationship of the optimal expected wealth

level,

Erxt`1s “ stErxts `
w

2

ζt`1

ξt`1

¨
Bt

1´Bt

,

which implies

Erxts “ x0

t´1
ź

k“0

sk `
w

2

t´1
ÿ

j“0

ζj`1

ξj`1

¨
Bj

1´Bj

t´1
ź

`“j`1

s`.

Finally, we show that this optimal strategy satisfies the linear constraint. At time

0, Epπ˚0 ´Erπ˚0 sq “ 0 is obvious. Then, according to the dynamic equation (4.4), we

have Epx1 ´ Epx1qq “ 0, which further implies Epπ˚1 ´ Erπ˚1 sq “ 0. Repeating this

argument, we have Epπ˚t ´ Erπ˚t sq “ 0 holds for all t. l
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It follows from Theorem 4.1 that we have

π˚t “´ stE´1
rPtP

1
tsErPtsxt ` stE´1

rPtP
1
tsErPtsErxts ` Erπ˚t s

“ ´ stE´1
rPtP

1
tsErPtsxt ` E´1

rPtP
1
tsErPts

«

x0

t
ź

k“0

sk

`

t´1
ÿ

j“0

wζj`1

2ξj`1

¨
Bj

1´Bj

t
ź

`“j`1

s` `
wζt`1

2ξt`1

¨
1

1´Bt

ff

, (4.10)

which is the optimal portfolio strategy obtained in Zhang and Li (2012).

Substituting the optimal strategies (4.6) and (4.7) into dynamic equation (4.4),

we further deduce the following recursive relationship,

xt`1 ´ Erxt`1s “ st
`

1´P1
tE´1

rPtP
1
tsErPts

˘`

xt ´ Erxts
˘

`
wζt`1

2ξt`1

¨
1

1´Bt

`

P1
t ´ ErP1

ts
˘

E´1
rPtP

1
tsErPts.

Completing the square for the above equation yields

`

xt`1 ´ Erxt`1s
˘2
“ s2

t

`

1´P1
tE´1

rPtP
1
tsErPts

˘2`
xt ´ Erxts

˘2

`
w2

4

ζ2
t`1

ξ2
t`1

¨
1

p1´Btq
2

”

`

P1
t ´ ErP1

ts
˘

E´1
rPtP

1
tsErPts

ı2

` st
`

1´P1
tE´1

rPtP
1
tsErPts

˘`

xt ´ Erxts
˘

¨
wζt`1

ξt`1

¨
1

1´Bt

`

P1
t ´ ErP1

ts
˘

E´1
rPtP

1
tsErPts,

which implies

Var
`

xt`1

˘

“ E
“`

xt`1 ´ Erxt`1s
˘2‰

“ s2
t p1´BtqE

“`

xt ´ Erxts
˘2‰
`
w2

4

ζ2
t`1

ξ2
t`1

¨
Bt

1´Bt

“ s2
t p1´BtqVar

`

xt
˘

`
w2

4

ζ2
t`1

ξ2
t`1

¨
Bt

1´Bt

.
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This leads to

Var
`

xt
˘

“
w2

4

t´1
ÿ

j“0

ζ2
j`1

ξ2
j`1

¨
Bj

1´Bj

t´1
ź

`“j`1

s2
`p1´B`q, for t “ 1, 2, ¨ ¨ ¨ , T. (4.11)

It follows from (4.8) and (4.11) that we have

EpτqrxT^τ s “
T
ÿ

t“1

Erxtsαt

“

T
ÿ

t“1

"

x0

t´1
ź

k“0

sk `
w

2

t´1
ÿ

j“0

ζj`1

ξj`1

¨
Bj

1´Bj

t´1
ź

`“j`1

s`

*

αt

“ x0

T
ÿ

t“1

αt

t´1
ź

k“0

sk `
w

2

T
ÿ

t“1

"

αt

t´1
ÿ

j“0

ζj`1

ξj`1

¨
Bj

1´Bj

t´1
ź

`“j`1

s`

*

and

VarpτqpxT^τ q “
T
ÿ

t“1

Varpxtqαt

“

T
ÿ

t“1

"

w2

4

t´1
ÿ

j“0

ζ2
j`1

ξ2
j`1

¨
Bj

1´Bj

t´1
ź

`“j`1

s2
`p1´B`q

*

αt

“
w2

4

T
ÿ

t“1

"

αt

t´1
ÿ

j“0

ζ2
j`1

ξ2
j`1

¨
Bj

1´Bj

t´1
ź

`“j`1

s2
`p1´B`q

*

.

Thus, we have the following theorem.

Theorem 4.2. The optimal strategy of problem (4.1) is represented by (4.10) and

the efficient frontier is given by

VarpτqpxT^τ q “

T
ÿ

t“1

"

αt

t´1
ÿ

j“0

ζ2
j`1

ξ2
j`1

¨
Bj

1´Bj

t´1
ź

`“j`1

s2
`p1´B`q

*

ˆ T
ÿ

t“1

"

αt

t´1
ÿ

j“0

ζj`1

ξj`1

¨
Bj

1´Bj

t´1
ź

`“j`1

s`

*̇ 2

ˆ

EpτqrxT^τ s´x0

T
ÿ

t“1

αt

t´1
ź

k“0

sk

˙2

for EpτqrxT^τ s ě x0

T
ÿ

t“1

αt

t´1
ź

k“0

sk.

47



The optimal strategy obtained in Theorem 4.2 is the same as the result established

in Zhang and Li (2012) when the return rates in their work are not serially correlated.

4.1.4 Numerical Example

Example 4.1. Consider the example as Section 3.3. Here we ignore the information

of liability i.e., ignore the last line and last column of Table 3.1 and do not fix

the terminal expectation but balance the variance and expectation by the trade-off

parameter.

Assume that an investor plans a five-period investment with an initial wealth

x0 “ 1 and that the trade-off parameter w “ 1. But he may exit the market at

any time t (t “ 1, 2, 3, 4, 5). To investigate the impact of uncertain exit time on

the optimal policy and efficient frontier clearly, we choose different probability mass

function αpiq “ pα
piq
1 , α

piq
2 , α

piq
3 , α

piq
4 , α

piq
5 q, pi “ 1, 2, 3, 4q of the exit time τ :

αp1q “ p0.1, 0.15, 0.2, 0.25, 0.3q,

αp2q “ p0, 0.1, 0.1, 0.3, 0.5q,

αp3q “ p0, 0, 0.1, 0.2, 0.7q,

αp4q “ p0, 0, 0, 0, 1q,

where αp4q means the investor exit the market at the terminal time.

Then the optimal expected wealth level

Erxspiq “ pErx1s
piq,Erx2s

piq,Erx3s
piq,Erx4s

piq,Erx5s
piq
q, i “ 1, 2, 3, 4

are given by

Erxsp1q “ p1.2675, 1.5210, 1.7659, 2.0055, 2.2423q,

Erxsp2q “ p1.3006, 1.5723, 1.8304, 2.0756, 2.3159q,

Erxsp3q “ p1.3220, 1.6125, 1.8781, 2.1304, 2.3735q,
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Erxsp4q “ p1.3451, 1.6557, 1.9392, 2.2017, 2.4483q.

Therefore, according to Theorem 4.2, the optimal strategy of problem 4.1 is specified

as follows,

π
p1q˚
0 “ p´1.05x0 ` 2.0635qK1, π

p2q˚
0 “ p´1.05x0 ` 2.2182qK1,

π
p1q˚
1 “ p´1.05x1 ` 2.2175qK1, π

p2q˚
1 “ p´1.05x1 ` 2.3291qK1,

π
p1q˚
2 “ p´1.05x2 ` 2.3841qK1, π

p2q˚
2 “ p´1.05x1 ` 2.4879qK1,

π
p1q˚
3 “ p´1.05x3 ` 2.5596qK1, π

p2q˚
3 “ p´1.05x1 ` 2.6384qK1,

π
p1q˚
4 “ p´1.05x4 ` 2.7423qK1, π

p2q˚
4 “ p´1.05x1 ` 2.8159qK1,

π
p3q˚
0 “ p´1.05x0 ` 2.3182qK1, π

p4q˚
0 “ p´1.05x0 ` 2.4256qK1,

π
p3q˚
1 “ p´1.05x1 ` 2.4341qK1, π

p4q˚
1 “ p´1.05x1 ` 2.5468qK1,

π
p3q˚
2 “ p´1.05x2 ` 2.5558qK1, π

p4q˚
2 “ p´1.05x1 ` 2.6742qK1,

π
p3q˚
3 “ p´1.05x3 ` 2.7103qK1, π

p4q˚
3 “ p´1.05x1 ` 2.8079qK1,

π
p3q˚
4 “ p´1.05x4 ` 2.8735qK1, π

p4q˚
4 “ p´1.05x1 ` 2.9483qK1,

where K1 is the same as Example 3.1. The variances of the optimal wealth levels

Varpxqpiq “ pVarrx1s
piq,Varrx2s

piq,Varrx3s
piq,Varrx4s

piq,Varrx5s
piq
q, i “ 1, 2, 3, 4

are given as

Varpxqp1q “ p0.1731, 0.2824, 0.3489, 0.3860, 0.4026q,

Varpxqp2q “ p0.2299, 0.3555, 0.4260, 0.4554, 0.4626q,

Varpxqp3q “ p0.2710, 0.4190, 0.4882, 0.5146, 0.5140q,

Varpxqp4q “ p0.3188, 0.4930, 0.5744, 0.5978, 0.5860q.
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Finally, we have

Epτqrx5^τ s
p1q
“ 1.8821, Varpτqpx5^τ q

p1q
“ 0.3467,

Epτqrx5^τ s
p2q
“ 2.1209, Varpτqpx5^τ q

p2q
“ 0.4461,

Epτqrx5^τ s
p3q
“ 2.2753, Varpτqpx5^τ q

p3q
“ 0.5115,

Epτqrx5^τ s
p4q
“ 2.4483, Varpτqpx5^τ q

p4q
“ 0.5860,

Figure 4.1: Efficient frontiers with different probability mass function of exit time

Figure 4.1 is the efficient frontier with different probability mass function of the

exit time. We can see that the one exits at the terminal time gets most expected
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wealth return at the same risk level compared with others. It also indicates that

when the later the investor exits the financial market, the more expected wealth

returns he/she will obtain at the same level of the risk, which is consistent with the

real life.

4.2 Multi-Period Mean-Variance Asset-Liability

Portfolio Selection

This section is concerned with optimal multi-period asset-liability mean-variance

portfolio selection with an uncertain exit time in a mean-field formulation. Compared

with Section 4.1, we take liability into account.

4.2.1 Formulation

The multi-period asset-liability mean-variance portfolio selection problem with un-

certain exit time is to seek the best strategy, π˚t “ rpπ1
t q
˚, pπ2

t q
˚, ¨ ¨ ¨ , pπnt q

˚s1, t “

0, 1, ¨ ¨ ¨ , T ´ 1, which is the optimizer of the following stochastic optimal control

problem with uncertain exit time,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

min VarpτqpxT^τ ´ lT^τ q ´ wEpτqrxT^τ ´ lT^τ s,

s.t. xt`1 “

n
ÿ

i“1

eitπ
i
t `

ˆ

xt ´
n
ÿ

i“1

πit

˙

st

“ stxt `P1
tπt,

lt`1 “ qtlt, t “ 0, 1, ¨ ¨ ¨ , T ´ 1,

(4.12)

where EpτqrxT^τ ´ lT^τ s, VarpτqpxT^τ ´ lT^τ q are defined as

EpτqrxT^τ ´ lT^τ s
∆
“

T
ÿ

t“0

E
“

xT^τ ´ lT^τ
ˇ

ˇT ^ τ “ t
‰

PrtT ^ τ “ tu

“

T
ÿ

t“0

Erxt ´ ltsαt,
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VarpτqpxT^τ ´ lT^τ q
∆
“

T
ÿ

t“0

Var
`

xT^τ ´ lT^τ
ˇ

ˇT ^ τ “ t
˘

PrtT ^ τ “ tu

“

T
ÿ

t“0

Varpxt ´ ltqαt,

respectively. Similar to Section 4.1, we tackle it by mean-field formulation. For

t “ 0, 1, ¨ ¨ ¨ , T ´ 1, taking the expectation operator of the dynamic system specified

in (4.12) and noticing that Pt and πt, qt and lt are independent, we can drive

$

’

’

’

’

&

’

’

’

’

%

Erxt`1s “ stErxts ` ErP1
tsErπts,

Erlt`1s “ ErqtsErlts,

Erx0s “ x0,

Erl0s “ l0.

(4.13)

Combining the dynamic systems of (4.12) and (4.13) yields the following, for t “

0, 1, ¨ ¨ ¨ , T ´ 1,
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

xt`1 ´ Erxt`1s “ st
`

xt ´ Erxts
˘

`P1
tπt ´ ErP1

tsErπts

“ st
`

xt ´ Erxts
˘

`P1
t

`

πt ´ Erπts
˘

`
`

P1
t ´ ErP1

ts
˘

Erπts,

lt`1 ´ Erlt`1s “ qtlt ´ ErqtsErlts

“ qt
`

lt ´ Erlts
˘

`
`

qt ´ Erqts
˘

Erlts,

x0 ´ Erx0s “ 0,

l0 ´ Erl0s “ 0.

(4.14)

Then the state space pxt, ltq and the control space pπtq are enlarged into pErxts, xt ´

Erxts,Erlts, lt´Erltsq and pErπts, πt´Erπtsq, respectively. Although we can select the

control vector Erπts and πt ´ Erπts independently at time t, they should be chosen

such that

Erπt ´ Erπtss “ 0, t “ 0, 1, ¨ ¨ ¨ , T ´ 1,

and thus

Erxt ´ Erxtss “ 0, t “ 0, 1, ¨ ¨ ¨ , T ´ 1,
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is satisfied. We also confine admissible investment strategies pErπts, πt´Erπtsq to be

Ft-measurable Markov controls.

The problem (4.12) can be now reformulated as the following mean-filed type of

linear quadratic optimal stochastic control problem
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

min
T
ÿ

t“1

αt

!

E
“`

xt ´ lt ´ Erxt ´ lts
˘2‰
´ wE

“

xt ´ lt
‰

)

,

s.t. tErxts,Erlts,Erπtsu satisfy dynamic equation (4.13),

txt ´ Erxts, lt ´ Erlts, πt ´ Erπtsu satisfy dynamic equation (4.14),

Erπt ´ Erπtss “ 0, t “ 0, 1, ¨ ¨ ¨ , T ´ 1.

(4.15)

Now, it is indeed a separable linear quadratic optimal stochastic control problem

which can be solved by classic dynamic programming approach.

4.2.2 The Optimal Strategies with Correlation Between As-
sets and Liability

In this subsection, assume that the returns of assets and liability are correlated at

every period. For simplicity, we define the following backward recursions for seven

deterministic sequences of parameters, tξtu, tηtu, tεtu, tζtu, tθtu, tδtu and tψtu, as

ξt “ ξt`1p1´Btqs
2
t ` αt,

ηt “ ηt`1

`

Erqts ´ pBt

˘

st ` αt,

εt “ εt`1Erq2
t s ´ η

2
t`1ξ

´1
t`1

rBt ` αt,

ζt “ ζt`1st ` αt,

θt “ θt`1Erqts ´
ζt`1ηt`1

ξt`1

pBt ´ ErqtsBt

1´Bt

` αt,

δt “ δt`1pErqtsq2 ` εt`1pErq2
t s ´ pErqtsq2q ´

η2
t`1

ξt`1

ˆ

rBt ´ pErqtsq2 `
p pBt ´ Erqtsq2

1´Bt

˙

,

ψt “ ψt`1 ´
ζ2
t`1

4ξt`1

Bt

1´Bt

,

53



for t “ T ´ 1, T ´ 2, ¨ ¨ ¨ , 0, with terminal conditions

ξT “ αT , ηT “ αT , εT “ αT , ζT “ αT , θT “ αT , δT “ 0, ψT “ 0.

These parameters can also be expressed as follows,

ξt “
T
ÿ

k“t

αk

k´1
ź

j“t

p1´Bjqs
2
j ,

ηt “
T
ÿ

k“t

αk

k´1
ź

j“t

`

Erqjs ´ pBj

˘

sj,

εt “
T´1
ÿ

k“t

pαk ´ η
2
k`1ξ

´1
k`1

rBkq

k´1
ź

j“t

Erq2
j s ` αT

T´1
ź

j“t

Erq2
j s,

ζt “
T
ÿ

k“t

αk

k´1
ź

j“t

sj,

θt “
T´1
ÿ

k“t

ˆ

αk ´
ζk`1ηk`1

ξk`1

pBk ´ ErqksBk

1´Bk

˙ k´1
ź

j“t

Erqjs ` αT
T´1
ź

j“t

Erqjs,

δt “
T´1
ÿ

k“t

„

εk`1pErq2
ks´pErqksq2q´

η2
k`1

ξk`1

ˆ

rBk´pErqksq2`
p pBk ´ Erqksq2

1´Bk

̇ k´1
ź

j“t

pErqjsq2

“ ´

T´1
ÿ

k“t

η2
k`1

ξk`1

ˆ

rBk ´ pErqksq2 `
p pBk ´ Erqksq2

1´Bk

˙ k´1
ź

j“t

pErqjsq2

`

T´1
ÿ

k“t

pαk ´ η
2
k`1ξ

´1
k`1

rBkq

ˆk´1
ź

j“t

Erq2
j s´

k´1
ź

j“t

pErqjsq2
˙

`αT

ˆT´1
ź

j“t

Erq2
j s´

T´1
ź

j“t

pErqjsq2
˙

,

ψt “ ´
T´1
ÿ

k“t

ζ2
k`1

4ξk`1

Bk

1´Bk

.

Theorem 4.3. Assume that the returns of assets and liability are correlated at every
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period. Then, the optimal strategy of problem (4.15) is given by

π˚t “ ´E´1
rPtP

1
tsErPtsst

„

xt ´ Erxts ´
wζt`1 ` 2ηt`1

`

pBt ´ Erqts
˘

Erlts
2stξt`1p1´Btq



`
ηt`1

ξt`1

E´1
rPtP

1
tsErPtqtslt,

(4.16)

where

Erxts “ x0

t´1
ź

j“0

sj `
t´1
ÿ

k“0

ˆ t´1
ź

j“k`1

sj

˙ˆ

wζk`1Bk

2ξt`1p1´Bkq
`
ηk`1

ξk`1

pBk ´ ErqksBk

1´Bk

k´1
ź

j“0

Erqjsl0
˙

.

(4.17)

Proof. We prove the main results by dynamic programming approach. For the

information set Ft, the cost-to-go functional at period t is computed by

JtpErxts, xt ´ Erxts,Erlts, lt ´ Erltsq

“ min
tπt´Erπts,Erπtsu

E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s,Erlt`1s, lt`1 ´ Erlt`1s
˘ˇ

ˇFt

‰

` αt
`

xt ´ lt ´ Erxt ´ lts
˘2
´ wαtErxt ´ lts.

The cost-to-go functional at terminal time T is

JT
`

ErxT s, xT ´ ErxT s,ErlT s, lT ´ ErlT s
˘

“αT
`

xT ´ lT ´ ErxT ´ lT s
˘2
´ wαTE

“

xT ´ lT
‰

“ξT
`

xT ´ ErxT s
˘2
´ 2ηT

`

lT ´ ErlT s
˘`

xT ´ ErxT s
˘

` εT
`

lT ´ ErlT s
˘2

´ wζTErxT s ` wθTErlT s ` δT pErlT sq2 ` w2ψT .

Assume that the cost-to-go functional at time t` 1 is the following expression

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s,Erlt`1s, lt`1 ´ Erlt`1s
˘

“ ξt`1

`

xt`1 ´ Erxt`1s
˘2
´ 2ηt`1

`

lt`1 ´ Erlt`1s
˘`

xt`1 ´ Erxt`1s
˘

`εt`1

`

lt`1 ´ Erlt`1sq
2
´ wζt`1Erxt`1s ` ωθt`1Erlt`1s ` δt`1pErlt`1sq

2
` w2ψt`1.
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We prove that the above statement still holds at time t. For given information set

Ft, i.e., knowing xt ´ Erxts, Erxts, lt ´ Erlts and Erlts, we have

E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s,Erlt`1s, lt`1 ´ Erlt`1s
˘ˇ

ˇFt

‰

“E
„

ξt`1

”

st
`

xt ´ Erxts
˘

`P1
t

`

πt ´ Erπts
˘

`
`

P1
t ´ ErP1

ts
˘

Erπts
ı2

´ 2ηt`1

”

qt
`

lt ´ Erlts
˘

`
`

qt ´ Erqts
˘

Erlts
ı”

st
`

xt ´ Erxts
˘

`P1
t

`

πt ´ Erπts
˘

`
`

P1
t ´ ErP1

ts
˘

Erπts
ı

` εt`1

“

qtplt ´ Erltsq ` pqt ´ ErqtsqErlts
‰2

´ wζt`1

`

stErxts ` ErP1
tsErπts

˘

` wθt`1ErqtsErlts ` δt`1pErqtsErltsq2 ` w2ψt`1

ˇ

ˇ

ˇ

ˇ

Ft



“ξt`1

”

s2
t

`

xt´Erxts
˘2
`
`

πt´Erπts
˘1ErPtP

1
ts
`

πt´Erπts
˘

`2st
`

xt´Erxts
˘

ErP1
ts
`

πt´Erπts
˘

` Erπ1ts
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘

Erπts ` 2
`

πt ´ Erπts
˘1`ErPtP

1
ts ´ ErPtsErP1

ts
˘

Erπts
ı

´ 2ηt`1

”

stErqts
`

lt ´ Erlts
˘`

xt ´ Erxts
˘

` ErqtP1
ts
`

lt ´ Erlts
˘`

πt ´ Erπts
˘

`
`

ErqtP1
ts ´ ErqtsErP1

ts
˘

´

Erlts
`

πt ´ Erπts
˘

`
`

lt ´ Erlts
˘

Erπts ` ErltsErπts
¯ı

` εt`1

”

Erq2
t splt´Erltsq2`2pErq2

t s´pErqtsq2qplt´ErltsqErlts`pErq2
t s´pErqtsq2qpErltsq2

ı

´ wζt`1

`

stErxts ` ErP1
tsErπts

˘

` wθt`1ErqtsErlts ` δt`1pErqtsErltsq2 ` w2ψt`1.

Since any admissible strategy of pErπts, πt ´ Erπtsq satisfies Erπt ´ Erπtss “ 0 and

Erlt ´ Erltss “ 0 holds, we have

E
”

`

πt ´ Erπts
˘1`ErPtP

1
ts ´ ErPtsErP1

ts
˘

Erπts
ˇ

ˇ

ˇ
F0

ı

“ 0,

E
”

`

ErqtP1
ts ´ ErqtsErP1

ts
˘

Erlts
`

πt ´ Erπts
˘

ˇ

ˇ

ˇ
F0

ı

“ 0,

E
”

`

ErqtP1
ts ´ ErqtsErP1

ts
˘`

lt ´ Erlts
˘

Erπts
ˇ

ˇ

ˇ
F0

ı

“ 0,

E
”

pErq2
t s ´ pErqtsq2qplt ´ ErltsqErlts

ˇ

ˇ

ˇ
F0

ı

“ 0.
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We first identify optimal pErπ˚t s, π˚t ´ Erπ˚t sq by minimizing the following equivalent

cost functional,

E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s,Erlt`1s, lt`1 ´ Erlt`1s
˘ˇ

ˇFt

‰

“ξt`1

”

s2
t

`

xt ´ Erxts
˘2
`
`

πt ´ Erπts
˘1ErPtP

1
ts
`

πt ´ Erπts
˘

` 2st
`

xt ´ Erxts
˘

ErP1
ts
`

πt ´ Erπts
˘

` Erπ1ts
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘

Erπts
ı

´ 2ηt`1

”

stErqts
`

lt ´ Erlts
˘`

xt ´ Erxts
˘

` ErqtP1
ts
`

lt ´ Erlts
˘`

πt ´ Erπts
˘

`
`

ErqtP1
ts ´ ErqtsErP1

ts
˘

ErltsErπts
ı

` εt`1

”

Erq2
t splt ´ Erltsq2

` pErq2
t s ´ pErqtsq2qpErltsq2

ı

´ wζt`1

`

stErxts ` ErP1
tsErπts

˘

` wθt`1ErqtsErlts ` δt`1pErqtsErltsq2 ` w2ψt`1,

without considering the linear constraint Erπt ´ Erπtss “ 0, and verify then the

derived optimal strategy satisfies this constraint automatically.

It is easy to see that π˚t ´ Erπ˚t s can be expressed by the linear form of states

and their expected states, and Erπ˚t s can be constructed by the linear form of the

expected states, i.e.,

π˚t ´ Erπ˚t s “ ´E´1
rPtP

1
tsErPtsst

`

xt´Erxts
˘

`ηt`1ξ
´1
t`1E´1

rPtP
1
tsErPtqts

`

lt´Erlts
˘

,

(4.18)

Erπ˚t s “
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘´1

„

wζt`1

2ξt`1

ErPts`
ηt`1

ξt`1

`

ErPtqts´ErqtsErPts
˘

Erlts


“
wζt`1 ` 2ηt`1

`

pBt´Erqts
˘

Erlts
2ξt`1p1´Btq

E´1
rPtP

1
tsErPts`

ηt`1

ξt`1

E´1
rPtP

1
tsErPtqtsErlts.

(4.19)

In order to get the explicit expression of the cost-to-go functional at time t, we
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substitute π˚t ´ Erπ˚t s and Erπ˚t s back and derive

Jt
`

Erxts, xt ´ Erxts,Erlts, lt ´ Erlts
˘

“ min
tπt´Erπts,Erπtsu

E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s,Erlt`1s, lt`1 ´ Erlt`1s
˘ˇ

ˇFt

‰

` αt
`

xt ´ lt ´ Erxt ´ lts
˘2
´ wαtErxt ´ lts

“ξt`1s
2
t

`

xt´Erxts
˘2
´2ηt`1stErqts

`

lt´Erlts
˘`

xt´Erxts
˘

´wζt`1stErxts`wθt`1ErqtsErlts

` εt`1

”

Erq2
t splt ´ Erltsq2 ` pErq2

t s ´ pErqtsq2qpErltsq2
ı

` δt`1pErqtsErltsq2 ` w2ψt`1

´ ξt`1

”

´ E´1
rPtP

1
tsErP1

tsst
`

xt ´ Erxts
˘

` ηt`1ξ
´1
t`1E´1

rPtP
1
tsErqtP1

ts
`

lt ´ Erlts
˘

ı

¨ ErPtP
1
ts

”

´ E´1
rPtP

1
tsErPtsst

`

xt ´ Erxts
˘

` ηt`1ξ
´1
t`1E´1

rPtP
1
tsErPtqts

`

lt ´ Erlts
˘

ı

´ ξt`1

„

wζt`1

2ξt`1

ErP1
ts `

ηt`1

ξt`1

`

ErqtP1
ts ´ ErqtsErP1

ts
˘

Erlts


¨
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘´1

„

wζt`1

2ξt`1

ErPts `
ηt`1

ξt`1

`

ErPtqts ´ ErqtsErPts
˘

Erlts


` αt
“

pxt ´ Erxtsq ´ plt ´ Erltsq
‰2
´ wαtErxt ´ lts

“ξt`1s
2
t p1´Btq

`

xt ´ Erxts
˘2
´ 2ηt`1st

`

Erqts ´ pBt

˘`

lt ´ Erlts
˘`

xt ´ Erxts
˘

`
`

εt`1Erq2
t s ´ η

2
t`1ξ

´1
t`1

rBt

˘`

lt ´ Erlts
˘2
´ wζt`1stErxts

` w

„

θt`1Erqts ´
ζt`1ηt`1

ξt`1

pBt ´ ErqtsBt

1´Bt



Erlts ` w2

„

ψt`1 ´
ζ2
t`1

4ξt`1

Bt

1´Bt



`

„

δt`1pErqtsq2`εt`1pErq2
t ´pErqtsq2q´

η2
t`1

ξt`1

ˆ

rBt´pErqtsq2`
p pBt´Erqtsq2

1´Bt

˙

`

Erlts
˘2

` αtpxt´Erxtsq2´2αtplt´Erltsqpxt´Erxtsq ` αtplt´Erltsq2´wαtErxts`wαtErlts

“ξt
`

xt ´ Erxts
˘2
´ 2ηt

`

lt ´ Erlts
˘`

xt ´ Erxts
˘

` εt
`

lt ´ Erlts
˘2

´ wζtErxts ` wθtErlts ` δtpErltsq2 ` w2ψt.
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Substituting Erπ˚t s to dynamics of Erxts in (4.13) yields

Erxt`1s “ stErxts `
w

2

ζt`1

ξt`1

Bt

1´Bt

`
ηt`1

ξt`1

pBt ´ ErqtsBt

1´Bt

Erlts,

which implies (4.17). Hence, following from (4.18), (4.19) and (4.17), we derive the

desired result, i.e., π˚t “
`

π˚t ´ Erπ˚t s
˘

` Erπ˚t s in (4.16).

Finally, we show that this optimal strategy satisfies the linear constraints. At time

0, Erπ˚0 ´Erπ˚0 ss “ 0 is obvious due to x0 “ Erx0s and l0 “ Erl0s. Then, according to

the dynamic system of (4.14), we have Erx1´Erx1ss “ 0 and Erl1´Erl1ss “ 0, which

further implies Erπ˚1´Erπ˚1 ss “ 0. Repeating this argument, we have Erπ˚t ´Erπ˚t ss “

0 holds for all t. l

Based on the proof of Theorem 4.3, the optimal objective of problem (4.15) is as

follows,

J0

`

Erx0s, 0,Erl0s, 0
˘

“ ´wζ0Erx0s ` wθ0Erl0s ` δ0pErl0sq2 ` w2ψ0. (4.20)

In addition, from (4.17), we have

EpτqrxT^τ ´ lT^τ s

“

T
ÿ

t“0

Erxtsαt ´
T
ÿ

t“1

Erltsαt

“

T
ÿ

t“0

ˆ

x0

t´1
ź

j“0

sj `
t´1
ÿ

k“0

ˆ t´1
ź

j“k`1

sj

˙ˆ

wζk`1Bk

2ξk`1p1´Bkq
`
ηk`1

ξk`1

pBk ´ ErqksBk

1´Bk

k´1
ź

j“0

Erqjsl0
˙

´Erlts
˙

αt

“ ζ0x0 ´ 2wψ0 ´ θ0l0,

i.e.,

w “ ´p2ψ0q
´1
`

EpτqrxT^τ ´ lT^τ s ´ ζ0x0 ` θ0l0
˘

.
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Hence, according to (4.20), we can derive the variance term as

VarpτqpxT^τ ´ lT^τ q

“wEpτqrxT^τ ´ lT^τ s ` J0

`

x0, 0, l0, 0
˘

“´ w2ψ0 ` δ0l
2
0

“´ p4ψ0q
´1
`

EpτqrxT^τ ´ lT^τ s ´ ζ0x0 ` θ0l0
˘2
` δ0l

2
0.

Theorem 4.4. Assume that the returns of assets and liability are correlated at every

period. Then, the efficient frontier of problem (4.12) is given by

VarpτqpxT^τ ´ lT^τ q “ ´p4ψ0q
´1
`

EpτqrxT^τ ´ lT^τ s ´ ζ0x0 ` θ0l0
˘2
` δ0l

2
0,

for EpτqrxT^τ ´ lT^τ s ě ζ0x0 ´ θ0l0.
(4.21)

Now we consider the case with terminal exit. We assume that the investment

will be stopped at the terminal time T . This means that αT “ 1 and αt “ 0 for

t “ 0, 1, ¨ ¨ ¨ , T ´ 1. Then, the seven deterministic parameters are reduced into the

following expressions,

ξt “
T´1
ź

j“t

p1´Bjqs
2
j ,

ηt “
T´1
ź

j“t

`

Erqjs ´ pBj

˘

sj,

εt “ ´
T´1
ÿ

k“t

rBk

T´1
ź

j“k`1

pErqjs ´ pBjq
2

1´Bj

k´1
ź

j“t

Erq2
j s `

T´1
ź

j“t

Erq2
j s,

ζt “
T´1
ź

j“t

sj,
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θt “
T´1
ź

j“t

Erqjs ´ pBj

1´Bj

,

δt “ ´
T´1
ź

j“t

pErqjs ´ pBjq
2

1´Bj

´

T´1
ÿ

k“t

rBk

ˆ T´1
ź

j“k`1

`

Erqjs ´ pBj

˘2

1´Bj

˙ˆ k´1
ź

j“t

Erq2
j s

˙

`

T´1
ź

j“t

Erq2
j s,

ψt “ ´
1´

śT´1
j“t p1´Bjq

4
śT´1

j“t p1´Bjq
.

Furthermore, with the help of Theorem 4.3, we get

Erxts “x0

t´1
ź

j“0

sj `
t´1
ÿ

k“0

ˆ t´1
ź

j“k`1

sj

˙ˆ

wζk`1Bk

2ξk`1p1´Bkq
`
ηk`1

ξk`1

pBk´ErqksBk

1´Bk

k´1
ź

j“0

Erqjsl0
˙

“x0

t´1
ź

j“0

sj `
w

2

ˆ T´1
ź

j“t

1

p1´Bjqsj

˙ t´1
ÿ

k“0

Bk

1´Bk

ˆ t´1
ź

j“k`1

1

1´Bj

˙

`

ˆ T´1
ź

j“t

Erqjs ´ pBj

p1´Bjqsj

˙ t´1
ÿ

k“0

pBk ´ ErqksBk

1´Bk

ˆ t´1
ź

j“k`1

Erqjs ´ pBj

1´Bj

˙ k´1
ź

j“0

Erqjsl0

“x0

t´1
ź

j“0

sj `
w

2

ˆ T´1
ź

j“t

1

p1´Bjqsj

˙

1´
śt´1

j“0p1´Bjq
śt´1

j“0p1´Bjq

`

ˆ T´1
ź

j“t

Erqjs ´ pBj

p1´Bjqsj

˙ˆ t´1
ź

j“0

Erqjs ´
t´1
ź

j“0

Erqjs ´ pBj

1´Bj

˙

l0.

Hence,

Erxts `
1

p1´Btqst

ˆ

wζt`1

2ξt`1

´
ηt`1

ξt`1

`

Erqts ´ pBt

˘

Erlts
˙

“Erxts `
w

2

T´1
ź

j“t

1

p1´Bjqsj
´

T´1
ź

j“t

Erqjs ´ pBj

p1´Bjqsj

t´1
ź

j“0

Erqjsl0

“

ˆ

x0

T´1
ź

j“0

sj `
w

2

T´1
ź

j“0

1

1´Bj

´ l0

T´1
ź

j“0

Erqjs ´ pBj

1´Bj

˙ T´1
ź

j“t

s´1
j .

Theorem 4.5. Assume that the returns of assets and liability are correlated at every

period. If the exit time is the terminal time, then the optimal strategy of problem
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(4.15) is given by

π˚t “ ´E´1
rPtP

1
tsErPtsst

ˆ

xt ´ γ
T´1
ź

j“t

s´1
j

˙

`

ˆ T´1
ź

j“t`1

Erqjs ´ pBj

sjp1´Bjq

˙

E´1
rPtP

1
tsErPtqtslt,

where

γ “ x0

T´1
ź

j“0

sj `
w

2

T´1
ź

j“0

1

1´Bj

´ l0

T´1
ź

j“0

Erqjs ´ pBj

1´Bj

.

And the efficient frontier of problem (4.15) is given by

VarpxT ´ lT q “

śT´1
j“t p1´Bjq

1´
śT´1

j“t p1´Bjq

ˆ

ErxT´lT s´
T´1
ź

j“0

sjx0`

T´1
ź

j“0

Erqjs´ pBj

1´Bj

l0

˙2

`δ0l
2
0,

(4.22)

for ErxT ´ lT s ě
T´1
ź

j“0

sjx0 ´

T´1
ź

j“0

Erqjs ´ pBj

1´Bj

l0,

where

δ0 “ ´

T´1
ź

j“0

pErqjs ´ pBjq
2

1´Bj

´

T´1
ÿ

k“0

rBk

ˆ T´1
ź

j“k`1

`

Erqjs ´ pBj

˘2

1´Bj

˙ˆ k´1
ź

j“0

Erq2
j s

˙

`

T´1
ź

j“0

Erq2
j s.

4.2.3 The Optimal Strategies with Uncorrelation between
Assets and Liability

In this subsection, we assume that the returns of assets and liability are uncorrelated

at every period.

The seven deterministic parameters can be reduced into the following expressions,

ξt “
T
ÿ

k“t

αk

k´1
ź

j“t

p1´Bjqs
2
j ,

ηt “
T
ÿ

k“t

αk

k´1
ź

j“t

p1´BjqErqjssj,
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εt “
T´1
ÿ

k“t

pαk ´ η
2
k`1ξ

´1
k`1BkpErqksq2q

k´1
ź

j“t

Erq2
j s ` αT

T´1
ź

j“t

Erq2
j s,

ζt “
T
ÿ

k“t

αk

k´1
ź

j“t

sj,

θt “
T
ÿ

k“t

αk

k´1
ź

j“t

Erqjs,

δt “
T´1
ÿ

k“t

pαk ´ η
2
k`1ξ

´1
k`1BkpErqksq2q

ˆ k´1
ź

j“t

Erq2
j s ´

k´1
ź

j“t

pErqjsq2
˙

` αT

ˆ T´1
ź

j“t

Erq2
j s ´

T´1
ź

j“t

pErqjsq2
˙

,

ψt “ ´
T´1
ÿ

k“t

ζ2
k`1

4ξk`1

Bk

1´Bk

.

It follows from Theorem 4.3 and the above notations that we have the following

theorem.

Theorem 4.6. Assume that the returns of assets and liability are uncorrelated at

every period. Then, the optimal strategy of problem (4.15) is given by

π˚t “ ´E´1
rPtP

1
tsErPtsst

„

xt ´ Erxts ´
wζt`1

2stξt`1p1´Btq
´
ηt`1Erqtsplt ´ Erltsq

stξt`1



,

where

Erxts “ x0

t´1
ź

j“0

sj `
w

2

t´1
ÿ

k“0

ˆ t´1
ź

j“k`1

sj

˙

ζk`1

ξk`1

Bk

1´Bk

.
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And the efficient frontier of problem (4.15) is given by

VarpxT ´ lT q

“

ˆ T´1
ÿ

k“0

ζ2
k`1

ξk`1

Bk

1´Bk

˙´1ˆ

ErxT ´ lT s ´
T
ÿ

k“0

αk

k´1
ź

j“0

sjx0 `

T
ÿ

k“0

αk

k´1
ź

j“0

Erqjsl0
˙2

` δ0l
2
0,

(4.23)

for ErxT ´ lT s ě
T
ÿ

k“0

αk

k´1
ź

j“0

sjx0 ´

T
ÿ

k“0

αk

k´1
ź

j“0

Erqjsl0,

where

δ0“

T´1
ÿ

k“0

pαḱ η
2
k`1ξ

´1
k`1BkpErqksq2q

ˆk´1
ź

j“0

Erq2
j ś

k´1
ź

j“0

pErqjsq2
˙

ὰT

ˆT´1
ź

j“0

Erq2
j ś

T´1
ź

j“0

pErqjsq2
˙

.

Now we consider the case with terminal exit. Assume that the investment will

be stopped at the terminal time T . This means that αT “ 1 and αt “ 0 for t “

0, 1, 2, ¨ ¨ ¨ , T ´ 1. The seven deterministic parameters are reduced to

ξt “
T´1
ź

j“t

p1´Bjqs
2
j ,

ηt “
T´1
ź

j“t

p1´BjqErqjssj,

εt “ ´
T´1
ÿ

k“t

pErqksq2Bk

T´1
ź

j“k`1

pErqjsq2p1´Bjq

k´1
ź

j“t

Erq2
j s `

T´1
ź

j“t

Erq2
j s,

ζt “
T´1
ź

j“t

sj,

θt “
T´1
ź

j“t

Erqjs,
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δt “ ´
T´1
ź

j“t

pErqjsq2p1´Bjq ´

T´1
ÿ

k“t

pErqksq2Bk

ˆ T´1
ź

j“k`1

pErqjsq2p1´Bjq

˙

¨

ˆ k´1
ź

j“t

Erq2
j s

˙

`

T´1
ź

j“t

Erq2
j s,

ψt “ ´
1´

śT´1
j“t p1´Bjq

4
śT´1

j“t p1´Bjq
.

It follows from Theorem 4.5 that we have the following theorem.

Theorem 4.7. Assume that the returns of assets and liability are uncorrelated at

every period. If the exit time is terminal time, then the optimal strategy of problem

(4.15) is given by

π˚t “ ´E´1
rPtP

1
tsErPtsst

ˆ

xt ´ γ
T´1
ź

j“t

s´1
j ´

T´1
ź

j“t

Erqjs
sj

lt

˙

,

where

γ “ x0

T´1
ź

j“0

sj `
w

2

T´1
ź

j“0

1

1´Bj

´ l0

T´1
ź

j“0

Erqjs.

And the efficient frontier of problem (4.15) is given by

VarpxT ´ lT q “

śT´1
j“t p1´Bjq

1´
śT´1

j“0 p1´Bjq

ˆ

ErxT ´ lT s ´
T´1
ź

j“0

sjx0 `

T´1
ź

j“0

Erqjsl0
˙2

` δ0l
2
0,

(4.24)

for ErxT ´ lT s ě
T´1
ź

j“0

sjx0 ´

T´1
ź

j“0

Erqjsl0,

where

δ0“´

T´1
ź

j“0

pErqjsq2p1́ Bj q́

T´1
ÿ

k“0

pErqksq2Bk

ˆ T´1
ź

j“k`1

pErqjsq2p1́ Bjq

˙ˆk´1
ź

j“0

Erq2
j s

˙

`

T´1
ź

j“0

Erq2
j s.
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4.2.4 Numerical Examples

We consider the example as Section 3.3. The only difference here is that the terminal

expectation is not deterministic and we choose the trade-off parameter w=1.

Case 1 Correlation Examples

Assume the same ρ as Example 3.1.

Example 4.2. An example with an Uncertain Exit Time

The probability mass function of an exit time τ is

pα1, α2, α3, α4, α5q “ p0.10, 0.15, 0.2, 0.25, 0.3q,

respectively, for t “ 1, 2, 3, 4, 5. According to Theorem 4.3, we can derive the optimal

strategy of problem (4.12) as follows,

π˚0 “ ´1.05px0 ´ 2.7999qK1 ` 1.1124K2l0,

π˚1 “ ´1.05px1 ´ 2.9681qK1 ` 1.0793K2l1,

π˚2 “ ´1.05px2 ´ 3.1437qK1 ` 1.0505K2l2,

π˚3 “ ´1.05px3 ´ 3.3241qK1 ` 1.0244K2l3,

π˚4 “ ´1.05px4 ´ 3.5081qK1 ` 1.0000K2l4.

The mean and variance of the final optimal surplus are Epτqpx5^τ ´ l5^τ q “ 2.8521

and Varpτqpx5^τ ´ l5^τ q “ 0.3644, respectively.

Example 4.3. An example with the Terminal Exit

The probability mass function of an exit time τ is

pα1, α2, α3, α4, α5q “ p0, 0, 0, 0, 1q,

respectively, for t “ 1, 2, 3, 4, 5. According to Theorem 4.5, we can derive the optimal
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strategy of problem (4.12) as follows,

π˚0 “ ´1.05px0 ´ 3.0477qK1 ` 1.2053K2l0,

π˚1 “ ´1.05px1 ´ 3.2001qK1 ` 1.1503K2l1,

π˚2 “ ´1.05px2 ´ 3.3601qK1 ` 1.0979K2l2,

π˚3 “ ´1.05px3 ´ 3.5281qK1 ` 1.0478K2l3,

π˚4 “ ´1.05px4 ´ 3.7045qK1 ` 1.0000K2l4.

The mean and variance of the final optimal surplus are Epx5 ´ l5q “ 3.3897 and

Varpx5 ´ l5q “ 0.6135, respectively.

Case 2 Uncorrelation Examples

Example 4.4. An example with an Uncertain Exit Time

The probability mass function of an exit time τ is

pα1, α2, α3, α4, α5q “ p0.10, 0.15, 0.2, 0.25, 0.3q,

respectively, for t “ 1, 2, 3, 4, 5. According to Theorem 4.6, the optimal strategy of

problem (4.12) is specified as follows,

π˚0 “ ´1.05px0 ´ 2.8005` 1.0590l0qK1,

π˚1 “ ´1.05px1 ´ 2.9689` 1.0276l1qK1,

π˚2 “ ´1.05px2 ´ 3.1446` 1.0003l2qK1,

π˚3 “ ´1.05px3 ´ 3.3252` 0.9755l3qK1,

π˚4 “ ´1.05px4 ´ 3.5094` 0.9524l4qK1.

The mean and variance of the final optimal surplus are Epτqpx5^τ ´ l5^τ q “ 2.8529

and Varpτqpx5^τ ´ l5^τ q “ 0.5388, respectively.
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Example 4.5. An example with the Terminal Exit

The probability mass function of an exit time τ is

pα1, α2, α3, α4, α5q “ p0, 0, 0, 0, 1q,

respectively, for t “ 1, 2, 3, 4, 5. According to Theorem 4.7, the optimal strategy of

problem (4.12) is specified as follows,

π˚0 “ ´1.05px0 ´ 3.0487` 1.1472l0qK1,

π˚1 “ ´1.05px1 ´ 3.2012` 1.0950l1qK1,

π˚2 “ ´1.05px2 ´ 3.3612` 1.0452l2qK1,

π˚3 “ ´1.05px3 ´ 3.5293` 0.9977l3qK1,

π˚4 “ ´1.05px4 ´ 3.7058` 0.9524l4qK1.

The mean and variance of the final optimal surplus are Epx5 ´ l5q “ 3.3911 and

Varpx5 ´ l5q “ 0.8903, respectively.
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Chapter 5

Multi-Period Mean-Variance
Asset-Liability Portfolio Selection

with Bankruptcy Control

This chapter considers the multi-period asset-liability mean-variance portfolio selec-

tion with control over bankruptcy. It is impossible to eliminate the possibility of

bankruptcy in multi-period investment setting since the financial market is volatile.

We assume in this paper bankruptcy occurs when the surplus (total wealth minus

liability) falls below a preset level. Once an investor goes bankruptcy, he/she will

suffer a great loss such as retrieve part of his/her wealth (even take nothing back),

high liability and low credit. It is crucial for a successful investment take bankruptcy

into account. Analytical optimal policy and efficient frontier are obtained by using

the mean-field formulation. Numerical examples are presented to show the necessity

of considering bankruptcy when an investor builds his/her investment.

5.1 Formulation

We add the constraint on bankruptcy control in this chapter. An investor goes

bankruptcy when his/her surplus falls below zero, i.e., his wealth is not more than

liability, at any intermediate or the final period. We denote the event of a bankruptcy
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at period t as At. The probability of At is

PrpAtq “ Prpxt ă lt, xi ě li, i “ 1, 2, ¨ ¨ ¨ , t´ 1q.

Since the probabilistic constraint is not easy to conquer in dynamic portfolio selec-

tion, we turn it to its upper bound:

PrpAtq “ Prpxt ă lt, xi ě li, i “ 1, 2, ¨ ¨ ¨ , t´ 1q

ď Prpxt ă ltq

ď
Varpxt ´ ltq

pErxt ´ ltsq2
,

.

where the second inequality is due to the Tchebycheff inequality. The mean-variance

model for multi-period asset-liability portfolio selection with probability constraints

is to seek the best strategy, π˚t “ rpπ
1
t q
˚, pπ2

t q
˚, ¨ ¨ ¨ , pπnt q

˚s1, t “ 0, 1, ¨ ¨ ¨ , T ´1, which

is the optimizer of the following stochastic optimal control problem,

$

’

’

’

’

&

’

’

’

’

%

min VarpxT ´ lT q ´ wErxT ´ lT s,

s.t. xt`1 “ stxt `P1
tπt,

lt`1 “ qtlt,

Varpxt ´ ltq ď atpErxt ´ ltsq2, t “ 1, ¨ ¨ ¨ , T ´ 1,

(5.1)

where a “ pa1, ..., aT´1q is the vector whose components are the levels of a risk

control over bankruptcy for the intermediate periods in a dynamic investment. To

solve problem (5.1), we consider the following Lagrangian minimum problem,

$

’

’

’

’

&

’

’

’

’

%

min VarpxT ´ lT q ´ wErxT ´ lT s `
T´1
ÿ

t“1

λt

´

Varpxt ´ ltq ´ atpErxt ´ ltsq2
¯

,

s.t. xt`1 “ stxt `P1
tπt,

lt`1 “ qtlt, t “ 1, ¨ ¨ ¨ , T ´ 1,

(5.2)

where λ “ pλ1, λ2, ..., λT´1q P RT´1
` is the vector of Lagrangian multipliers.
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As in Chapter 4, the problem (5.2) can be now reformulated as the following

mean-filed type of linear quadratic optimal stochastic control problem

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

min E
“`

xT ´ lT ´ ErxT ´ lT s
˘2‰
´ wErxT ´ lT s

`
T´1
ř

t“1

!

λtE
“`

xt ´ lt ´ Erxt ´ lts
˘2‰
´ λtatpErxt ´ ltsq2

)

,

s.t. tErxts,Erlts,Erπtsu satisfy dynamic equation (4.13),

txt ´ Erxts, lt ´ Erlts, πt ´ Erπtsu satisfy dynamic equation (4.14),

Epπt ´ Erπtsq “ 0, t “ 0, 1, ¨ ¨ ¨ , T ´ 1.

(5.3)

It is indeed a separable linear quadratic optimal stochastic control problem which

can be solved by classic dynamic programming approach.

5.2 The Optimal Strategy

Before deriving the main results, we present two useful lemmas.

Lemma 5.1. Suppose that ξt`1p1´Btq ` βt`1Bt ‰ 0 holds. Then

´

ξt`1ErPtP
1
ts ´

`

ξt`1 ´ βt`1

˘

ErPtsErP1
ts

¯´1

ErPts

“
1

ξt`1p1´Btq ` βt`1Bt

E´1
rPtP

1
tsErPts.

(5.4)

Proof. Applying Sherman-Morrison formula yields

´

ξt`1ErPtP
1
ts ´

`

ξt`1 ´ βt`1

˘

ErPtsErP1
ts

¯´1

ErPts

“

ˆ

ξ´1
t`1E´1

rPtP
1
ts `

ξ´1
t`1E´1rPtP

1
tspξt`1 ´ βt`1qErPtsErP1

tsξ
´1
t`1E´1rPtP

1
ts

1´ ξ´1
t`1pξt`1 ´ βt`1qErP1

tsE´1rPtP1
tsErPts

˙

ErPts

“
1

ξt`1p1´Btq ` βt`1Bt

E´1
rPtP

1
tsErPts.

l
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Lemma 5.2. Suppose that ξt`1p1´Btq ` βt`1Bt ‰ 0 holds. Then

´

ξt`1ErPtP
1
ts ´

`

ξt`1 ´ βt`1

˘

ErPtsErP1
ts

¯´1

ErPtqts

“

`

1´ βt`1

ξt`1

˘

pBt

ξt`1p1´Btq ` βt`1Bt

E´1
rPtP

1
tsErPts `

1

ξt`1

E´1
rPtP

1
tsErPtqts.

(5.5)

Proof. Applying Sherman-Morrison formula yields

´

ξt`1ErPtP
1
ts ´

`

ξt`1 ´ βt`1

˘

ErPtsErP1
ts

¯´1

ErPtqts

“

ˆ

ξ´1
t`1E´1

rPtP
1
ts `

ξ´1
t`1E´1rPtP

1
tspξt`1 ´ βt`1qErPtsErP1

tsξ
´1
t`1E´1rPtP

1
ts

1´ ξ´1
t`1pξt`1 ´ βt`1qErP1

tsE´1rPtP1
tsErPts

˙

ErPtqts

“

`

1´ βt`1

ξt`1

˘

pBt

ξt`1p1´Btq ` βt`1Bt

E´1
rPtP

1
tsErPts `

1

ξt`1

E´1
rPtP

1
tsErPtqts.

l

Assume that the returns of assets and liability are correlated at every period.

For simplicity, we define the following backward recursions for eight deterministic

sequences of parameters, tξtu, tηtu, tεtu, tβtu, tζtu, tθtu, tδtu and tψtu, as

ξt “ ξt`1s
2
t p1´Btq ` λt,

ηt “ ηt`1stpErqts ´ pBtq ` λt,

εt “ εt`1Erq2
t s ´

η2
t`1

ξt`1

rBt ` λt,

βt “ βt`1s
2
t ´

β2
t`1s

2
tBt

ξt`1p1´Btq ` βt`1Bt

´ λtat,

ζt “ ζt`1st ´ βt`1st
ζt`1Bt ` 2ηt`1

`

pBt ´ ErqtsBt

˘

Erlts
ξt`1p1´Btq ` βt`1Bt

` 2λtatErlts,

θt “ θt`1Erqts ´ ζt`1

ηt`1

`

pBt ´ ErqtsBt

˘

ξt`1p1´Btq ` βt`1Bt

,
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δt “ δt`1

`

Erqts
˘2
` εt`1

`

Erq2
t s ´ pErqtsq2

˘

´ η2
t`1

´p1´ βt`1

ξt`1
q pB2

t ´ 2Erqts pBt `
`

Erqts
˘2
Bt

ξt`1p1´Btq ` βt`1Bt

`
1

ξt`1

rBt

¯

´ λtat,

ψt “ ψt`1 ´
1

4

ζ2
t`1Bt

ξt`1p1´Btq ` βt`1Bt

,

for t “ T ´ 1, T ´ 2, ¨ ¨ ¨ , 0, with terminal conditions

λT “ 0, ξT “ 1, ηT “ ´1, εT “ 1, βT “ 0, ζT “ ´w, θT “ w, δT “ 0, ψT “ 0,

where λ0 “ 0.

Remark 5.1. When the returns of assets and liability are uncorrelated, which is to

say, pBt “ ErqtsBt, rBt “ pErqtsq2Bt, parameters tηtu, tεtu, tζtu, tθtu and tδtu reduce

to

ηt “ ηt`1stErqtsp1´Btq ` λt,

εt “ εt`1Erq2
t s ´

η2
t`1

ξt`1

pErqtsq2Bt ` λt,

ζt “ ζt`1st ´
ζt`1βt`1Btst

ξt`1p1´Btq ` βt`1Bt

` 2λtatErlts,

θt “ θt`1Erqts,

δt “ δt`1

`

Erqts
˘2
` εt`1

`

Erq2
t s ´ pErqtsq2

˘

´ λtat.

And others are the same as the correlated case.

Theorem 5.1. Assume that the returns of assets and liability are correlated at every
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period. Then, the optimal strategy of problem (5.2) is given by

π˚t “ ´E´1
rPtP

1
tsErPts

ˆ

stxt ´
pξt`1 ´ βt`1qp1´Btq

ξt`1p1´Btq ` βt`1Bt

stErxts

`

1
2
ζt`1 ` ηt`1

`

p1´ βt`1

ξt`1
q pBt ´ Erqts

˘

Erlts
ξt`1p1´Btq ` βt`1Bt

˙

´
ηt`1

ξt`1

E´1
rPtP

1
tsErPtqtslt,

(5.6)

where

Erxts “x0

t´1
ź

j“0

ξj`1p1´Bjqsj
ξj`1p1´Bjq ` βj`1Bj

´

t´1
ÿ

k“0

ˆ t´1
ź

j“k`1

ξj`1p1´Bjqsj
ξj`1p1´Bjq ` βj`1Bj

˙

¨

1
2
ζk`1Bk ` ηk`1

`

pBk ´ ErqksBk

˘`
śk´1

j“0 Erqjs
˘

l0

ξk`1p1´Bkq ` βk`1Bk

. (5.7)

for t “ 0, 1, ¨ ¨ ¨ , T ´ 1.

Proof. We prove the main results by dynamic programming approach. For the

information set Ft, the cost-to-go functional at period t is computed by

JtpErxts, xt ´ Erxts,Erlts, lt ´ Erltsq

“ min
tπt´Erπts,Erπtsu

E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s,Erlt`1s, lt`1 ´ Erlt`1s
˘
ˇ

ˇFt

‰

` λt
`

xt ´ lt ´ Erxt ´ lts
˘2
´ λtat

`

Erxt ´ lts
˘2
.

The cost-to-go functional at terminal time T is

JT
`

ErxT s, xT ´ ErxT s,ErlT s, lT ´ ErlT s
˘

“
`

xT ´ lT ´ ErxT ´ lT s
˘2
´ wE

“

xT ´ lT
‰

“ ξT
`

xT ´ ErxT s
˘2
` 2ηT

`

lT ´ ErlT s
˘`

xT ´ ErxT s
˘

` εT
`

lT ´ ErlT s
˘2

` βT pErxT sq2 ` ζTErxT s ` θTErlT s ` δT pErlT sq2 ` ψT .

Assume that the cost-to-go functional at time t` 1 is the following expression

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s,Erlt`1s, lt`1 ´ Erlt`1s
˘

“ ξt`1

`

xt`1´Erxt`1s
˘2
`2ηt`1

`

lt`1´Erlt`1s
˘`

xt`1´Erxt`1s
˘

`εt`1

`

lt`1´Erlt`1sq
2

`βt`1pErxt`1sq
2
` ζt`1Erxt`1s ` θt`1Erlt`1s ` δt`1pErlt`1sq

2
` ψt`1.
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We prove that the above statement still holds at time t. For given information

set Ft, i.e., knowing xt ´ Erxts, Erxts, lt ´ Erlts and Erlts, we have

E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s,Erlt`1s, lt`1 ´ Erlt`1s
˘ˇ

ˇFt

‰

“E
„

ξt`1

”

st
`

xt ´ Erxts
˘

`P1
t

`

πt ´ Erπts
˘

`
`

P1
t ´ ErP1

ts
˘

Erπts
ı2

` 2ηt`1

”

qt
`

lt ´ Erlts
˘

`
`

qt ´ Erqts
˘

Erlts
ı

¨

”

st
`

xt ´ Erxts
˘

`P1
t

`

πt ´ Erπts
˘

`
`

P1
t ´ ErP1

ts
˘

Erπts
ı

` εt`1

“

qtplt ´ Erltsq ` pqt ´ ErqtsqErlts
‰2
` βt`1

`

stErxts ` ErP1
tsErπts

˘2

` ζt`1

`

stErxts ` ErP1
tsErπts

˘

` θt`1ErqtsErlts ` δt`1pErqtsErltsq2 ` ψt`1

ˇ

ˇ

ˇ

ˇ

Ft



“ ξt`1

”

s2
t

`

xt ´ Erxts
˘2
`
`

πt ´ Erπts
˘1ErPtP

1
ts
`

πt ´ Erπts
˘

` 2st
`

xt ´ Erxts
˘

ErP1
ts
`

πt ´ Erπts
˘

` Erπ1ts
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘

Erπts

` 2
`

πt ´ Erπts
˘1`ErPtP

1
ts ´ ErPtsErP1

ts
˘

Erπts
ı

` 2ηt`1

”

stErqts
`

lt ´ Erlts
˘

`

xt ´ Erxts
˘

` ErqtP1
ts
`

lt ´ Erlts
˘`

πt ´ Erπts
˘

`
`

ErqtP1
ts ´ ErqtsErP1

ts
˘

¨

´

Erlts
`

πt ´ Erπts
˘

`
`

lt ´ Erlts
˘

Erπts ` ErltsErπts
¯ı

` εt`1

”

Erq2
t splt ´ Erltsq2

` 2pErq2
t s ´ pErqtsq2qplt ´ ErltsqErlts ` pErq2

t s ´ pErqtsq2qpErltsq2
ı

` βt`1

”

s2
t

`

Erxts
˘2
` 2stErxtsErP1

tsErπts ` Erπ1tsErPtsErP1
tsErπts

ı

` ζt`1

`

stErxts ` ErP1
tsErπts

˘

` θt`1ErqtsErlts ` δt`1pErqtsErltsq2 ` ψt`1.

Using the same technique in Chapter 4, we can obtain optimal pErπ˚t s, π˚t ´ Erπ˚t sq
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by minimizing the following equivalent cost functional,

E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s,Erlt`1s, lt`1 ´ Erlt`1s
˘
ˇ

ˇFt

‰

“ ξt`1

”

s2
t

`

xt ´ Erxts
˘2
`
`

πt ´ Erπts
˘1ErPtP

1
ts
`

πt ´ Erπts
˘

` 2st
`

xt ´ Erxts
˘

ErP1
ts
`

πt ´ Erπts
˘

` Erπ1ts
`

ErPtP
1
ts ´ ErPtsErP1

ts
˘

Erπts
ı

` 2ηt`1

”

stErqts
`

lt ´ Erlts
˘`

xt ´ Erxts
˘

` ErqtP1
ts
`

lt ´ Erlts
˘`

πt ´ Erπts
˘

`
`

ErqtP1
ts ´ ErqtsErP1

ts
˘

ErltsErπts
ı

` εt`1

”

Erq2
t splt ´ Erltsq2 ` pErq2

t s ´ pErqtsq2qpErltsq2
ı

` βt`1

”

s2
t

`

Erxts
˘2
` 2stErxtsErP1

tsErπts ` Erπ1tsErPtsErP1
tsErπts

ı

` ζt`1

`

stErxts ` ErP1
tsErπts

˘

` θt`1ErqtsErlts ` δt`1pErqtsErltsq2 ` ψt`1

“ ξt`1

”

s2
t

`

xt ´ Erxts
˘2
`
`

πt ´ Erπts
˘1ErPtP

1
ts
`

πt ´ Erπts
˘

` 2st
`

xt ´ Erxts
˘

ErP1
ts
`

πt ´ Erπts
˘

ı

` Erπ1ts
`

ξt`1ErPtP
1
ts ´ pξt`1 ´ βt`1qErPtsErP1

ts
˘

Erπts

` 2ηt`1

”

stErqts
`

lt ´ Erlts
˘`

xt ´ Erxts
˘

` ErqtP1
ts
`

lt ´ Erlts
˘`

πt ´ Erπts
˘

`
`

ErqtP1
ts ´ ErqtsErP1

ts
˘

ErltsErπts
ı

` εt`1

”

Erq2
t splt ´ Erltsq2 ` pErq2

t s ´ pErqtsq2qpErltsq2
ı

` βt`1

”

s2
t

`

Erxts
˘2
` 2stErxtsErP1

tsErπts
ı

` ζt`1

`

stErxts ` ErP1
tsErπts

˘

` θt`1ErqtsErlts ` δt`1pErqtsErltsq2 ` ψt`1.

It is easy to see that π˚t ´Erπ˚t s can be expressed by the linear form of states and their

expected states, and Erπ˚t s can be constructed by the linear form of the expected
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states, i.e.,

π˚t ´ Erπ˚t s “ ´ E´1
rPtP

1
tsErPtsst

`

xt ´ Erxts
˘

´
ηt`1

ξt`1

E´1
rPtP

1
tsErPtqts

`

lt ´ Erlts
˘

,

(5.8)

Erπ˚t s “ ´
`

ξt`1ErPtP
1
ts ´ pξt`1 ´ βt`1qErPtsErP1

ts
˘´1

ˆ

βt`1stErxtsErPts

`
1

2
ζt`1ErPts ` ηt`1

`

ErPtqts ´ ErqtsErPts
˘

Erlts
˙

“´E´1
rPtP

1
tsErPts

βt`1stErxts ` 1
2
ζt`1 ` ηt`1

`

p1´ βt`1

ξt`1
q pBt´Erqts

˘

Erlts
ξt`1p1´Btq ` βt`1Bt

´
ηt`1

ξt`1

E´1
rPtP

1
tsErPtqtsErlts. (5.9)

In order to get the explicit expression of the cost-to-go functional at time t, we

substitute π˚t ´ Erπ˚t s and Erπ˚t s back and derive

Jt
`

Erxts, xt ´ Erxts,Erlts, lt ´ Erlts
˘

“ min
tπt´Erπts,Erπtsu

E
“

Jt`1

`

Erxt`1s, xt`1 ´ Erxt`1s,Erlt`1s, lt`1 ´ Erlt`1s
˘
ˇ

ˇFt

‰

` λt
`

xt ´ lt ´ Erxt ´ lts
˘2
´ λtat

`

Erxt ´ lts
˘2

“ ξt`1s
2
t

`

xt ´ Erxts
˘2
` 2ηt`1stErqts

`

lt ´ Erlts
˘`

xt ´ Erxts
˘

` βt`1s
2
t

`

Erxts
˘2
` ζt`1stErxts ` θt`1ErqtsErlts

` εt`1

”

Erq2
t splt ´ Erltsq2 ` pErq2

t s ´ pErqtsq2qpErltsq2
ı

` δt`1pErqtsErltsq2 ` ψt`1

´ ξt`1

”

´ ErPtsst
`

xt ´ Erxts
˘

´
ηt`1

ξt`1

ErPtqts
`

lt ´ Erlts
˘

ı1

¨ E´1
rPtP

1
ts

”

´ ErPtsst
`

xt ´ Erxts
˘

´
ηt`1

ξt`1

ErPtqts
`

lt ´ Erlts
˘

ı
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´

„

βt`1stErxtsErPts `
1

2
ζt`1ErPts ` ηt`1

`

ErPtqts ´ ErqtsErPts
˘

Erlts
1

¨
`

ξt`1ErPtP
1
ts ´ pξt`1 ´ βt`1qErPtsErP1

ts
˘´1

¨

„

βt`1stErxtsErPts `
1

2
ζt`1ErPts ` ηt`1

`

ErPtqts ´ ErqtsErPts
˘

Erlts


` λt
`

xt ´ lt ´ Erxt ´ lts
˘2
´ λtat

`

Erxt ´ lts
˘2

“ ξt`1s
2
t p1´Btq

`

xt ´ Erxts
˘2
` 2ηt`1stpErqts ´ pBtq

`

lt ´ Erlts
˘`

xt ´ Erxts
˘

`

´

εt`1Erq2
t s ´

η2
t`1

ξt`1

rBt

¯

plt ´ Erltsq2 `
´

βt`1 ´
β2
t`1Bt

ξt`1p1´Btq ` βt`1Bt

¯

s2
t

`

Erxts
˘2

`

´

ζt`1 ´ βt`1

ζt`1Bt ` 2ηt`1

`

pBt ´ ErqtsBt

˘

Erlts
ξt`1p1´Btq ` βt`1Bt

¯

stErxts

`

´

θt`1Erqts ´ ζt`1

ηt`1

`

pBt ´ ErqtsBt

˘

ξt`1p1´Btq ` βt`1Bt

¯

Erlts

`

„

εt`1pErq2
t s ´ pErqtsq2q ` δt`1pErqtsq2

´ η2
t`1

´p1´ βt`1

ξt`1
q pB2

t ´ 2Erqts pBt `
`

Erqts
˘2
Bt

ξt`1p1´Btq ` βt`1Bt

`
1

ξt`1

rBt

¯



`

Erlts
˘2

` ψt`1 ´
1

4

ζ2
t`1Bt

ξt`1p1´Btq ` βt`1Bt

` λt
`

xt ´ lt ´ Erxt ´ lts
˘2
´ λtat

`

Erxt ´ lts
˘2

“

´

ξt`1s
2
t p1´Btq ` λt

¯

`

xt ´ Erxts
˘2

` 2
´

ηt`1stpErqts ´ pBtq ` λt

¯

`

lt ´ Erlts
˘`

xt ´ Erxts
˘

`

´

εt`1Erq2
t s ´

η2
t`1

ξt`1

rBt ` λt

¯

plt ´ Erltsq2

`

´

βt`1s
2
t ´

β2
t`1s

2
tBt

ξt`1p1´Btq ` βt`1Bt

´ λtat

¯

`

Erxts
˘2
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`

„

´

ζt`1st ´ βt`1st
ζt`1Bt ` 2ηt`1

`

pBt ´ ErqtsBt

˘

Erlts
ξt`1p1´Btq ` βt`1Bt

¯

` 2λtatErlts


Erxts

`

´

θt`1Erqts ´ ζt`1

ηt`1

`

pBt ´ ErqtsBt

˘

ξt`1p1´Btq ` βt`1Bt

¯

Erlts

`

„

δt`1

`

Erqts
˘2
` εt`1

`

Erq2
t s ´ pErqtsq2

˘

´ η2
t`1

´

`

1´ βt`1

ξt`1

˘

pB2
t ´ 2Erqts pBt `

`

Erqts
˘2
Bt

ξt`1p1´Btq ` βt`1Bt

`
1

ξt`1

rBt

¯

´ λtat



`

Erlts
˘2

` ψt`1 ´
1

4

ζ2
t`1Bt

ξt`1p1´Btq ` βt`1Bt

“ ξt
`

xt ´ Erxts
˘2
` 2ηt

`

lt ´ Erlts
˘`

xt ´ Erxts
˘

` εt
`

lt ´ Erlts
˘2

` βtpErxtsq2 ` ζtErxts ` θtErlts ` δtpErltsq2 ` ψt.

Substituting Erπ˚t s to dynamics of Erxts yields

Erxt`1s “
ξt`1p1´Btqst

ξt`1p1´Btq ` βt`1Bt

Erxts ´
1
2
ζt`1Bt ` ηt`1

`

pBt ´ ErqtsBt

˘

Erlts
ξt`1p1´Btq ` βt`1Bt

which implies

Erxts “x0

t´1
ź

j“0

ξj`1p1´Bjqsj
ξj`1p1´Bjq ` βj`1Bj

´

t´1
ÿ

k“0

ˆ t´1
ź

j“k`1

ξj`1p1´Bjqsj
ξj`1p1´Bjq ` βj`1Bj

˙

¨

1
2
ζk`1Bk ` ηk`1

`

pBk ´ ErqksBk

˘`
śk´1

j“0 Erqjs
˘

l0

ξk`1p1´Bkq ` βk`1Bk

.

Hence, combining with (5.8) and (5.9), we derive the desired result (5.6).

Remark 5.2. When the returns of assets and liability are not correlated,

Erxts “x0

t´1
ź

j“0

ξj`1p1´Bjqsj
ξj`1p1´Bjq ` βj`1Bj

´
1

2

t´1
ÿ

k“0

ˆ t´1
ź

j“k`1

ξj`1p1´Bjqsj
ξj`1p1´Bjq ` βj`1Bj

˙

ζk`1Bk

ξk`1p1´Bkq ` βk`1Bk

.
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Based on the proof of Theorem 5.1, the optimal objective of problem (5.2) is as

follows,

J0

`

Erx0s, 0,Erl0s, 0
˘

“ β0x
2
0 ` ζ0x0 ` θ0l0 ` δ0l

2
0 ` ψ0. (5.10)

In fact, J0p¨q is convex in λ. Hence, according to (5.10), we can derive the variance

term as

VarpxT ´ lT q “ max
λPRT´1

`

J0

`

x0, 0, l0, 0
˘

` wErxT ´ lT s.

Theorem 5.2. Assume that the returns of assets and liability are correlated at every

period. Then, the efficient frontier of problem (5.2) is given by

VarpxT ´ lT q “ max
λPRT´1

`

J0

`

x0, 0, l0, 0
˘

` wErxT ´ lT s. (5.11)

Remark 5.3. When we delete the constraint on bankruptcy, all the results reduce to

those in Section 4.2 when the exit time is terminal. We can also consider the case

when the exit time is random, but we omit it due to the same approach and space

limit.

5.3 Numerical Examples

We consider the example as Section 3.3 but we do not fix the terminal expecta-

tion. We further assume that the trade-off parameter w “ 1 and the probability of

bankruptcy at “ 0.1, for t “ 1, 2, 3, 4. We adopt the Matlab optimization function

“fmincon” to identify the optimal multiplier λ˚.

Example 5.1. Assume that the returns of the assets and liability are correlated

with the same ρ in Example 3.1. By interior point algorithm of “fmincon” with the

initial point λ “ p0, 0, 0, 0q, we can obtain λ˚ “ p0, 0, 0, 0.4902q. Then according to
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Theorem 5.1, we can derive the optimal strategy of problem (5.2) as follows,

π˚0 “ ´1.05px0 ´ 3.6997qK1 ` 0.3520K2l0,

π˚1 “ ´1.05px1 ´ 3.8847qK1 ` 0.3360K2l1,

π˚2 “ ´1.05px2 ´ 4.0789qK1 ` 0.3207K2l2,

π˚3 “ ´1.05px3 ´ 4.2829qK1 ` 0.3060K2l3,

π˚4 “ ´1.05px4 ´ 3.5243qK1 ` 1.0000K2l4.

The optimal expected surplus levels are Epx5´l5q “ 3.2005 and Varpx5´l5q “ 0.5740,

respectively.

Example 5.2. Assume that the returns of the assets and liability are uncorrelated.

Then parameters tξtu, tηtu, tεtu, tβtu, tζtu, tθtu, tδtu and tψtu are defined in Remark

5.1 By interior point algorithm of “fmincon” with the initial point λ “ p0, 0, 0, 0q, we

can obtain λ˚ “ p0, 0, 0, 0.1775q. According to Theorem 5.1, the optimal strategy of

problem (5.2) is specified as follows,

π˚0 “ ´1.05px0 ´ 3.3587` 0.7658l0qK1,

π˚1 “ ´1.05px1 ´ 3.5267` 0.7310l1qK1,

π˚2 “ ´1.05px2 ´ 3.7030` 0.6977l2qK1,

π˚3 “ ´1.05px3 ´ 3.8882` 0.6660l3qK1,

π˚4 “ ´1.05px4 ´ 3.6231` 0.9524l4qK1.

The mean and variance of the final optimal surplus are Epx5 ´ l5q “ 3.3042 and

Varpx5 ´ l5q “ 0.8157, respectively.

Remark 5.4. When we do not take bankruptcy into account, which is to say, λ “

p0, 0, 0, 0q in formulation (5.3), Example 5.1 and Example 5.2 reduce to Example 4.3

and Example 4.5 in Section 4.2, respectively. And the results are same.
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Chapter 6

Multi-Period Mean-Variance
Asset-Liability Portfolio Selection

with Correlated Returns

This chapter reconsiders the problem in Chapter 3 while we allow the return vectors

in different time periods, tetu
T´1
t“0 , to be statistically correlated, which is always the

case in real financial market. The returns of assets and liability are also correlated at

every period, i.e., Pt and qt are dependent each other at period t “ 0, 1, ¨ ¨ ¨ , T ´ 1.

The formulation of the multi-period mean-variance asset-liability portfolio selection

is the same as Chapter 3. Since the only difference is the returns in different time

periods are statistically correlated, we do not repeat the formulation.

6.1 Preliminary

We use the notation Etr¨s,Covtr¨s and Vartr¨s to denote the conditional expectation

Er¨|Fts, the conditional covariance matrix Covr¨|Fts and the conditional variance

Varr¨|Fts, respectively. It is reasonable to assume that the conditional covariance

matrices,

Covt

ˆˆ

et
qt

˙˙

“ Et
„ˆ

et
qt

˙

`

e1t qt
˘



´ Et
„ˆ

et
qt

˙

Et
“`

e1t qt
˘‰

,

are positive definite for all t “ 0, 1, ¨ ¨ ¨ , T ´ 1.
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Before presenting the main result, we define seven sequences as follows:

ξt “ Etrξt`1s ´Bt,

ηt “ Etrqtηt`1s ´ pBt,

ζt “ Etrq2
t ζt`1s ` rBt,

Bt “ Etrξt`1P
1
tsE´1

t rξt`1PtP
1
tsEtrξt`1Pts,

pBt “ Etrξt`1P
1
tsE´1

t rξt`1PtP
1
tsEtrηt`1qtPts,

rBt “ Etrηt`1qtP
1
tsE´1

t rξt`1PtP
1
tsEtrηt`1qtPts,

εt “ Etrεt`1q
2
t s,

with ξT “ ηT “ εT “ 1, ζT “ 0.

Lemma 6.1. For any t “ 0, 1, ¨ ¨ ¨ , T ´ 1, 0 ă ξt ă 1.

Proof. We prove it by mathematical induction. For any stage k, Covkreks ą 0,

implies CovkrPks ą 0. At stage T ´ 1, Applying Schur complement theorem to

CovT´1rPT´1s ą 0 derives

0 ă 1´ ET´1rP
1
T´1sET´1rPT´1P

1
T´1sET´1rPT´1s ă 1,

that is

0 ă ξT´1 “ 1´BT´1 ă 1.

Assume that 0 ă ξk`1 ă 1, we will show that 0 ă ξk ă 1. Since ξk`1 ą 0, we have

Ekrξk`1s ą 0. Define a positive random variable Z
∆
“

ξk`1

Ekrξk`1s
. Obviously, EkrZs “ 1.

Thus we can construct a new probability measure pP as pP fi
ş

A
ZpwqdpPpwq, for any

A P Fk. Under the new probability measure pP, we use the notation pEkr¨s,yCovkr¨s

and yVarkr¨s to denote the conditional expectation pEr¨|Fks, the conditional covariance

matrix yCovr¨|Fks and the conditional variance yVarr¨|Fks, respectively. First we prove

that yCovkrPks “
pEkrPkP

1
ks ´

pEkrPksErP1
ks ą 0. In fact, suppose that there exists
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an x P Rn with x ‰ 0 such that x1yCovkrPksx “ 0, which in turn implies that

pEk
“

px1Pkq
2 ´ pEkrx1Pks

2
‰

“ 0. Since the probability measure P and pP are equivalent

in the sense that they are absolute continuous with each other, we have Ek
“

px1Pkq
2´

Ekrx1Pks
2
‰

“ 0, which is a contradiction to CovkrPks ą 0. Applying the Schur’s

complement theorem to it yields

1´ pEkrP1
ks
pE´1
k rPkP

1
ks
pEkrPks ą 0.

Since pEkrPks “ EkrZPks, the above equality gives rise to

1´
1

Ekrξk`1s
Ekrξk`1P

1
ksE´1

k rξk`1PkP
1
ksEkrξk`1Pks ą 0.

Multiplying Ekrξk`1s ą 0 on both sides of the above inequality yields

ξk “ Ekrξk`1s ´ Ekrξk`1P
1
ksE´1

k rξk`1PkP
1
ksEkrξk`1Pks ą 0. (6.1)

Note that yCovkrPks ą 0 also implies E´1
k rξk`1PkP

1
ks ą 0. On the other hand, the

induction assumption ξk`1 ă 1 implies that Ekrξk`1s ă 1. Thus

ξk “ Ekrξk`1s ´ Ekrξk`1P
1
ksE´1

k rξk`1PkP
1
ksEkrξk`1Pks ă 1,

which together with inequality (6.1) derives 0 ă ξk ă 1. This completes the proof.

Lemma 6.2. If Ek
„ˆ

ξk`1Pk

ηk`1qk

˙

`

ξk`1P
1
k ηk`1qk

˘



is positive definite for k “ 0, 1, ¨ ¨ ¨ ,

T ´ 1, then

´
η2
k

ξk
´ ζk ` εk ě 0. (6.2)

Proof. We prove it by mathematical induction. When t “ T ´ 1, it is obvious.

Assume that the inequality holds at the stage t “ k ` 1, i.e.

η2
k`1 ď pεk`1 ´ ζk`1qξk`1. (6.3)
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We will show it is still true at stage k, i.e.

η2
k ď pεk ´ ζkqξk. (6.4)

Let Lk “

ˆ

Pk

1

˙

and Qk “

ˆ

ξk`1Pk

ηk`1qk

˙

, then

ˆ

Ekrξk`1PkP
1
ks Ekrξk`1Pks

Ekrξk`1P
1
ks Ekrξk`1s

˙

“ Ek
„ˆ

ξk`1Pk

ξk`1

˙

`

P1
k 1

˘



“ Ekrξk`1LkL
1
ks,

(6.5)

¨

˝

Ekrξk`1PkP
1
ks Ekrηk`1qkPks

Ekrηk`1qkP
1
ks Ek

„

η2k`1

ξk`1
q2
k



˛

‚“ E
„ˆ

ξk`1Pk

ηk`1qk

˙

´

P1
k

ηk`1

ξk`1
qk
¯



“ Ek
„

Qk
Q1k
ξk`1



,

(6.6)

ˆ

Ekrξk`1PkP
1
ks Ekrξk`1Pks

Ekrηk`1qkP
1
ks Ekrηk`1qks

˙

“ Ek
„ˆ

ξk`1Pk

ηk`1qk

˙

`

P1
k 1

˘



“ EkrQkL
1
ks. (6.7)

By lemma 6.1 we have Ekrξk`1PkP
1
ks ą 0. Taking determinant on both sides for

(6.5)-(6.7) we get

|Ekrξk`1LkL
1
ks| “ pEkrξk`1s ´Bkq |Ekrξk`1PkP

1
ks| , (6.8)

ˇ

ˇ

ˇ

ˇ

Ek
„

Qk
Q1k
ξk`1


ˇ

ˇ

ˇ

ˇ

“

ˆ

Ek
„

η2
k`1

ξk`1

q2
k



´ rBk

˙

|Ekrξk`1PkP
1
ks| , (6.9)

|EkrQkL
1
ks| “

´

Ekrηk`1qks ´ pBk

¯

|Ekrξk`1PkP
1
ks| . (6.10)

From lemma 6.2, we have 0 ă ξk`1 ă 1. By the assumption of EkrQkQ
1
ks ą 0, the

inverse E´1
k

„

Qk
Q1k
ξk`1



of Ek
„

Qk
Q1k
ξk`1



exists. Since

Ek
„ˆ

ξk`1Lk
Qk

˙

´

L1k
Q1k
ξk`1

¯



“

¨

˝

Ekrξk`1LkL
1
ks EkrLkQ1ks

EkrQkL
1
ks Ek

„

Qk
Q1k
ξk`1



˛

‚ě 0, (6.11)

it follows from Lemma 2.4 that

Ekrξk`1LkL
1
ks ´ EkrLkQ1ksE´1

k

„

Qk
Q1k
ξk`1



ErQkL
1
ks ě 0.
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Consequently,

Ekrξk`1LkL
1
ks ě EkrLkQ1ksE´1

k

„

Qk
Q1k
ξk`1



EkrQkL
1
ks. (6.12)

Then according to (6.12) and Lemma 2.3, it follows that

|Ekrξk`1LkL
1
ks| ě

ˇ

ˇ

ˇ

ˇ

EkrLkQ1ksE´1
k

„

Qk
Q1k
ξk`1



EkrQkL
1
ks

ˇ

ˇ

ˇ

ˇ

(6.13)

“ |EkrLkQ1ks|
ˇ

ˇ

ˇ

ˇ

E´1
k

„

Qk
Q1k
ξk`1

ˇ

ˇ

ˇ

ˇ

|EkrQkL
1
ks|

“ |EkrQkL
1
ks|

2

ˇ

ˇ

ˇ

ˇ

Ek
„

Qk
Q1k
ξk`1


ˇ

ˇ

ˇ

ˇ

´1

,

i.e.

|EkrQkL
1
ks|

2
ď

ˇ

ˇ

ˇ

ˇ

Ek
„

Qk
Q1k
ξk`1

ˇ

ˇ

ˇ

ˇ

|Ekrξk`1LkL
1
ks| . (6.14)

By (6.8)-(6.10) and (6.14), we obtain

´

Ekrηk`1qks ´ pBk

¯2

ď

ˆ

Ek
„

η2
k`1

ξk`1

q2
k



´ rBk

˙

pEkrξk`1s ´Bkq .

Namely,

η2
k ď

ˆ

Ek
„

η2
k`1

ξk`1

q2
k



´ rBk

˙

ξk.

In order to prove inequality (6.4), we just need to show

Ek
„

η2
k`1

ξk`1

q2
k



´ rBk ď εk ´ ζk.

In fact, the assumption (6.3) is the same as

η2
k`1

ξk`1

ď εk`1 ´ ζk`1,
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then

Ek
„

η2
k`1

ξk`1

q2
k



ď Ekrpεk`1 ´ ζk`1qq
2
ks,

thus

Ek
„

η2
k`1

ξk`1

q2
k



´ rBk ď Ekrεk`1q
2
ks ´ Ekrζk`1q

2
ks ´

rBk,

which is

η2
k ď pεk ´ ζkqξk.

This completes the proof.

6.2 Optimal Strategy

Theorem 6.1. Assume that the returns of assets and liability are correlated at every

period and the returns in different time periods are correlated too. Then the optimal

strategy of problem (3.1) is given by

π˚t “ ´E´1
t rξt`1PtP

1
ts

ˆ

Etrξt`1Ptsst

ˆ

xt ´ γ
˚

T´1
ź

k“t

s´1
k

˙

´

ˆ T´1
ź

k“t`1

s´1
k

˙

Etrηt`1qtPtslt

˙

,

(6.15)

where

γ˚ “

ξ0x0

T´1
ź

k“0

sk ´ d´ η0l0

ξ0 ´ 1
. (6.16)

And the efficient frontier is

VarpxT ´ lT q “
ξ0

1´ ξ0

ˆ

x0

T´1
ź

k“0

sk ´ d´
η0l0
ξ0

˙2

`
`´η2

0

ξ0

´ ζ0 ` ε0
˘

l20. (6.17)

Proof. We prove it by making use of the dynamic programming approach. For the

information set Ft, the cost-to-go functional of problem (3.8) at period t is

Jtpyt, ltq “ min
πt

E
“

Jt`1pyt`1, lt`1q
ˇ

ˇFt

‰

,
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where the terminal condition JT pyT , lT q “ y2
T ´ 2lTyT .

Assume that the cost-to-go functional at period t` 1 is the following expression

Jt`1pyt`1, lt`1q “

ˆ T´1
ź

k“t`1

s2
k

˙

ξt`1y
2
t`1 ´ 2

ˆ T´1
ź

k“t`1

sk

˙

ηt`1lt`1yt`1 ´ ζt`1l
2
t`1,

Then we shall prove that it still holds at time t. For the given information set

Ft, we have

E
“

Jt`1pyt`1, lt`1q
ˇ

ˇFt

‰

“ E
„ˆ T´1

ź

k“t`1

s2
k

˙

ξt`1y
2
t`1 ´ 2

ˆ T´1
ź

k“t`1

sk

˙

ηt`1lt`1yt`1 ´ ζt`1l
2
t`1

ˇ

ˇ

ˇ

ˇ

Ft



“ E
„ˆ T´1

ź

k“t`1

s2
k

˙

ξt`1

`

s2
ty

2
t ` 2stytP

1
tπt ` π

1
tPtP

1
tπt

˘

´ 2

ˆ T´1
ź

k“t`1

sk

˙

ηt`1

`

qtstltyt ` qtP
1
tltπt

˘

´ ζt`1q
2
t l

2
t

ˇ

ˇ

ˇ

ˇ

Ft



“

ˆ T´1
ź

k“t`1

s2
k

˙

Etrξt`1ss
2
ty

2
t ` 2

ˆ T´1
ź

k“t`1

s2
k

˙

Etrξt`1P
1
tsstytπt

` π1t

ˆ T´1
ź

k“t`1

s2
k

˙

Etrξt`1PtP
1
tsπt ´ 2

ˆ T´1
ź

k“t`1

sk

˙

Etrηt`1qtsstltyt

´ 2

ˆ T´1
ź

k“t`1

sk

˙

Etrηt`1qtP
1
tsltπt ´ Etrζt`1q

2
t sl

2
t .

Minimizing the above functional with respect to πt, we get the optimal strategy

decision at time t as follows

π˚t “ ´E´1
t rξt`1PtP

1
ts

ˆ

Etrξt`1Ptsstyt ´

ˆ T´1
ź

k“t`1

s´1
k

˙

Etrηt`1qtPtslt

˙

.
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Substituting it to E
“

Jt`1pyt`1, lt`1q
ˇ

ˇFt

‰

yields

Jtpyt, ltq “ min
πt

E
“

Jt`1pyt`1, lt`1q
ˇ

ˇFt

‰

“

ˆ T´1
ź

k“t`1

s2
k

˙

Etrξt`1ss
2
ty

2
t ´ 2

ˆ T´1
ź

k“t`1

sk

˙

Etrηt`1qtsstltyt ´ Etrζt`1q
2
t sl

2
t

´ Etrξt`1P
1
tsE´1

t rξt`1PtP
1
tsEtrξt`1Ptss

2
ty

2
t

` 2Etrξt`1P
1
tsE´1

t rξt`1PtP
1
tsEtrηt`1qtPts

ˆ T´1
ź

k“t`1

s2
k

˙ˆ T´1
ź

k“t`1

s´1
k

˙

stltyt

´ Etrηt`1qtP
1
tsE´1

t rξt`1PtP
1
tsEtrηt`1qtPtsl

2
t

“

ˆ T´1
ź

k“t

s2
k

˙

`

Etrξt`1s´Bt

˘

y2
t ´2

ˆ T´1
ź

k“t

sk

˙

`

Etrqtηt`1s´ pBt

˘

ltyt´
`

Etrq2
t ζt`1s` rBt

˘

l2t

“

ˆ T´1
ź

k“t

s2
k

˙

ξty
2
t ´ 2

ˆ T´1
ź

k“t

sk

˙

ηtltyt ´ ζtl
2
t .

To derive the expression (6.16) of γ, we first consider the value of the optimal

objective function in (3.8). In fact,

E
“

y2
T ´ 2lTyT

‰

“ E
“

y2
T ´ 2lTyT

ˇ

ˇF0

‰

“ J0py0, l0q

“

ˆ T´1
ź

k“0

s2
k

˙

ξ0y
2
0 ´ 2

ˆ T´1
ź

k“0

sk

˙

η0l0y0 ´ ζ0l
2
0.

Then

VarpxT ´ lT q “ Ery2
T ´ 2lTyT s ` Erl2T s ´ ω2

“

ˆ T´1
ź

k“0

s2
k

˙

ξ0y
2
0 ´ 2

ˆ T´1
ź

k“0

sk

˙

η0l0y0 ´ ζ0l
2
0 ` ε0l

2
0 ´ ω

2

“

ˆ T´1
ź

k“0

s2
k

˙

ξ0

ˆ

x0 ´ pd` ωq
T´1
ź

k“0

s´1
k

˙2

´ 2

ˆ T´1
ź

k“0

sk

˙

η0l0

ˆ

x0 ´ pd` ωq
T´1
ź

k“0

s´1
k

˙

´ ζ0l
2
0 ` ε0l

2
0 ´ ω

2
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“ pξ0 ´ 1qω2
´ 2ξ0

ˆ

x0

T´1
ź

k“0

sk ´ d

˙

ω ` ξ0

ˆ

x0

T´1
ź

k“0

sk ´ d

˙2

` 2η0l0ω ´ 2η0l0

ˆ

x0

T´1
ź

k“0

sk ´ d

˙

´ ζ0l
2
0 ` ε0l

2
0

“ pξ0 ´ 1q

˜

ω ´
ξ0

`

x0

śT´1
k“0 sk ´ d

˘

´ η0l0
˘

ξ0 ´ 1

¸2

´
ξ2

0

`

x0

śT´1
k“0 sk ´ d

˘2
´ 2ξ0η0l0

`

x0

śT´1
k“0 sk ´ d

˘

` η2
0l

2
0

ξ0 ´ 1

` ξ0

ˆ

x0

T´1
ź

k“0

sk ´ d

˙2

´ 2η0l0

ˆ

x0

T´1
ź

k“0

sk ´ d

˙

´ ζ0l
2
0 ` ε0l

2
0

“ pξ0 ´ 1q

˜

ω ´
ξ0

`

x0

śT´1
k“0 sk ´ d

˘

´ η0l0
˘

ξ0 ´ 1

¸2

`
ξ0

1´ ξ0

ˆ

x0

T´1
ź

k“0

sk ´ d

˙2

´
2η0l0
1´ ξ0

ˆ

x0

T´1
ź

k“0

sk ´ d

˙

´ ζ0l
2
0 ` ε0l

2
0 `

η2
0

1´ ξ0

l20

“ pξ0 ´ 1q

˜

ω ´
ξ0

`

x0

śT´1
k“0 sk ´ d

˘

` η0l0

ξ0 ´ 1

¸2

`
ξ0

1´ ξ0

ˆ

x0

T´1
ź

k“0

sk ´ d´
η0l0
ξ0

˙2

`
`´η2

0

ξ0

´ ζ0 ` ε0
˘

l20.

By lemma 6.1, we have

0 ă ξ0 ă 1,

the variance VarpxT ´ lT q is concave in ω. Similar to Chapter 3, we can drive

ω˚ “
ξ0

`

x0

śT´1
k“0 sk ´ d

˘

´ η0l0

ξ0 ´ 1
.

and the expression of VarpxT ´ lT q (6.17).
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Remark 6.1. If the returns et and qt are independent among different periods, the

conditional expectations degenerates to the unconditional expectation. In particular,

we have Etrξt`1Pts “ ξt`1ErPts, Etrξt`1PtP
1
ts “ ξt`1ErPtP

1
ts, Etrηt`1qts “ ηt`1Erqts,

Etrηt`1qtPts “ ηt`1ErqtPts, Etrζt`1q
2
t s “ ζt`1Erq2

t s, Etrεt`1q
2
t s “ εt`1Erq2

t s. Then

Theorem 6.1 reduces to Theorem 3.4.

6.3 An Example

In this section, we use a simple example to illustrate the computational procedure.

We consider a 2 periods investment case with one riskless asset, one risky asset and

one liability.

Let
"

P0 “ α0, P1 “ βP0 ` α1,
q0 “ ᾱ0, q1 “ β̄q0 ` ᾱ1.

To be simple, we assume further αt and ᾱt are independent, for t “ 0, 1. Obviously,

the excess return of the asset P1 and the return of the liability l1 follow AR(1) models

at period t “ 1. Since this is a two-period model, we have

ξ2 “ 1, η2 “ 1, ζ2 “ 0, ε2 “ 1.

Before deriving the strategy at period time t “ 1, we estimate the following param-

eters:

E1rξ2P1s “ E1rβP0 ` α1s “ βP0 ` Erα1s,

E1rξ2P
2
1s “ E1rpβP0 ` α1q

2
s “ β2P2

0 ` 2βP0Erα1s ` Erα2
1s,

E1rη2q1P1s “ E1rpβ̄q0 ` ᾱ1qpβP0 ` α1qs “ pβ̄q0 ` Erᾱ1sqpβP0 ` Erα1sq,

E1rη2q1s “ E1rβ̄q0 ` ᾱ1s “ β̄q0 ` Erᾱ1s,
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B1 “
pE1rξ2P1sq

2

E1rξ2P2
1s

“
pβP0 ` Erα1sq

2

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
,

pB1 “
E1rξ2P1sE1rη2q1P1s

E1rξ2P2
1s

“
pβP0 ` Erα1sq

2pβ̄q0 ` Erᾱ1sq

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
,

rB1 “
pE1rη2q1P1sq

2

E1rξ2P2
1s

“
pβ̄q0 ` Erᾱ1sq

2pβP0 ` Erα1sq
2

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
,

ξ1 “ E1rξ2s ´B1 “ 1´B1 “
Erα2

1s ´ pErα1sq
2

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
,

η1 “ E1rη2q1s ´ pB1

“ β̄q0 ` Erᾱ1s ´
pβP0 ` Erα1sqpβ̄q0 ` Erᾱ1sq

β2P2
0 ` 2βP0Erα1s ` Erα2

1s

“
pβ̄q0 ` Erᾱ1sq

`

Erα2
1s ´ pErα1sq

2
˘

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
,

ζ1 “ E1rζ2q
2
1s `

rB1 “
pβ̄q0 ` Erᾱ1sq

2pβP0 ` Erα1sq
2

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
,

ε1 “ E1rε2q
2
1s “ E1rpβ̄q0 ` ᾱ1q

2
s “ β̄2q2

0 ` 2β̄q0Erᾱ1s ` Erᾱ2
1s.

Hence, using Theorem 6.1 yields

π˚1 “ ´E´1
1 rξ2P

2
1s

„

E1rξ2P1ss1

ˆ

x1 ´
γ˚

s1

˙

´ E1rη2q1P1sl1



“ ´
1

β2P2
0 ` 2βP0Erα1s ` Erα2

1s

„

s1

´

βP0 ` Erα1s

¯

ˆ

x1 ´
γ˚

s1

˙

´

´

ββ̄P0q0 ` β̄q0Erα1s ` βErᾱ1sP0 ` Erα1sErᾱ1s

¯

l1



.

Simulating the deriving procedure of period time t “ 1, we estimate the following
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parameters while time t “ 0,

E0rξ1P0s “ E0

„

Erα2
1s ´ pErα1sq

2

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
P0



“
`

Erα2
1s ´ pErα1sq

2
˘

E
„

α0

β2α2
0 ` 2βα0Erα1s ` Erα2

1s



,

E0rξ1P
2
0s “ E0

„

Erα2
1s ´ pErα1sq

2

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
P2

0



“
`

Erα2
1s ´ pErα1sq

2
˘

E
„

α2
0

β2α2
0 ` 2βα0Erα1s ` Erα2

1s



,

E0rη1q0P0s “ E0

„

pβ̄q0 ` Erᾱ1sq
`

Erα2
1s ´ pErα1sq

2
˘

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
q0P0



“
`

Erα2
1s ´ pErα1sq

2
˘

E
„

pβ̄α0ᾱ
2
0 ` α0ᾱ0Erᾱ1sq

β2α2
0 ` 2βα0Erα1s ` Erα2

1s



,

E0rη1q0s “ E0

„

pβ̄q0 ` Erᾱ1sq
`

Erα2
1s ´ pErα1sq

2
˘

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
q0



“
`

Erα2
1s ´ pErα1sq

2
˘

E
„

β̄ᾱ2
0 ` Erᾱ1sᾱ0

β2α2
0 ` 2βα0Erα1s ` Erα2

1s



,

B0 “
pE0rξ1P0sq

2

E0rξ1P2
0s

,

pB0 “
E0rξ1P0sE0rη1q0P0s

E0rξ1P2
0s

,

rB0 “
pE0rη1q0P0sq

2

E0rξ1P2
0s

,

ξ0 “ E0rξ1s ´B0

“ E0

„

Erα2
1s ´ pErα1sq

2

β2P2
0 ` 2βP0Erα1s ` Erα2

1s



´B0

“
`

Erα2
1s ´ pErα1sq

2
˘

E
„

1

β2α2
0 ` 2βα0Erα1s ` Erα2

1s



´B0,
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η0 “ E0rη1q0s ´ pB0

“
`

Erα2
1s ´ pErα1sq

2
˘

E
„

β̄ᾱ2
0 ` Erᾱ1sᾱ0

β2α2
0 ` 2βα0Erα1s ` Erα2

1s



´ pB0,

ζ0 “ E0rζ1q
2
0s `

rB0 “ E0

„

pβ̄q0 ` Erᾱ1sq
2pβP0 ` Erα1sq

2

β2P2
0 ` 2βP0Erα1s ` Erα2

1s
q2

0



` rB0

“ E
„

pβ̄q0 ` Erᾱ1sq
2pβP0 ` Erα1sq

2

β2α2
0 ` 2βα0Erα1s ` Erα2

1s
ᾱ2

0



` rB0,

ε0 “ E0rε1q
2
0s “ E0rpβ̄

2q2
0 ` 2β̄q0Erᾱ1s ` Erᾱ2

1sqq
2
0s

“ Erpβ̄2ᾱ2
0 ` 2β̄ᾱ0Erᾱ1s ` Erᾱ2

1sqᾱ
2
0s.

Hence, using Theorem 6.1 yields

π˚0 “ ´E´1
0 rξ1P

2
0s

„

E0rξ1P0ss0

ˆ

x0 ´
γ˚

s0s1

˙

´ s´1
1 E0rη1q0P0sl0



.

In order to calculate the above parameters, we introduce the following lemma.

Lemma 6.3. Let X and Y be two random variables for which the mean of functions

of X and Y exists. Then

ErgpX, Y qs « gpErXs,ErY sq `
1

2
VarpXq

B2

Bx2
gpx, yq

ˇ

ˇ

ˇ

ˇ

ˇ

ErXs,ErY s

`
1

2
VarpY q

B2

By2
gpx, yq

ˇ

ˇ

ˇ

ˇ

ˇ

ErXs,ErY s

` CovrX, Y s
B2

ByBx
gpx, yq

ˇ

ˇ

ˇ

ˇ

ˇ

ErXs,ErY s

.

Let

g1pXq “
X

aX2 ` bX ` c
,

g2pXq “
X2

aX2 ` bX ` c
,

g3pXq “
1

aX2 ` bX ` c
,
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g4pY q “ pāY
2
` b̄Y ` c̄qY 2,

g5pX, Y q “
mXY 2 ` nXY

aX2 ` bX ` c
,

g6pX, Y q “
mY 2 ` nY

aX2 ` bX ` c
,

g7pX, Y q “
psX ` tq2pmY ` nq2Y 2

aX2 ` bX ` c
,

and let a “ β2, b “ 2βErα1s, c “ Erα2
1s, ā “ β̄2, b̄ “ 2β̄Erᾱ1s, c̄ “ Erᾱ2

1s, then

according to Lemma 6.3, we have

Erg1pα0qs “ E
„

α0

β2α2
0 ` 2βErα1sα0 ` Erα2

1s



«
Erα0s

β2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1s

`
Varpα0q

2

2β4Erα0s
3 ´ 6β2Erα2

1sErα0s ´ 4βErα1sErα2
1s

pβ2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1sq
3

,

Erg2pα0qs “ E
„

α2
0

β2α2
0 ` 2βErα1sα0 ` Erα2

1s



«
Erα0s

2

β2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1s

`
Varpα0q

2

´4β3Erα1sErα0s
3 ´ 6β2Erα2

1sErα0s
2 ` 2Erα2

1s
2

pβ2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1sq
3

,

Erg3pα0qs “ E
„

1

β2α2
0 ` 2βErα1sα0 ` Erα2

1s



«
1

β2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1s

`
Varpα0q

2

6β4Erα0s
2 ` 12β3Erα1sErα0s ´ 2β2Erα2

1s ` 4β2Erα1s
2

pβ2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1sq
3

,
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Erg4pᾱ0qs “ Erpβ̄2ᾱ2
0 ` 2β̄Erᾱ1sᾱ0 ` Erᾱ2

1sqᾱ
2
0s

« pβ̄2Erᾱ0s
2
` 2β̄Erᾱ1sErᾱ0s ` Erᾱ2

1sqErᾱ0s
2

`
Varpᾱ0q

2
¨
`

12β̄2Erᾱ0s
2
` 12β̄Erᾱ1sErᾱ0s ` 2Erᾱ2

1s
˘

,

Erg5pα0, ᾱ0qs “ E
„

pβ̄α0ᾱ
2
0 ` α0ᾱ0Erᾱ1sq

β2α2
0 ` 2βα0Erα1s ` Erα2

1s



«
pβ̄Erα0sErᾱ0s

2 ` Erα0sErᾱ0sErᾱ1sq

β2Erα0s
2 ` 2βErα0sErα1s ` Erα2

1s

`
Varpα0q

2

ˆ

´
pβ̄Erᾱ0s

2 ` Erᾱ1sErᾱ0sq

pβ2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1sq
3

˙

¨
`

´ 2β4Erα0s
3
` 6β2Erα2

1sErα0s ` 4βErα1sErα2
1s
˘

`
Varpᾱ0q

2

2β̄Erα0s

β2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1s

Erg6pα0, ᾱ0qs “ E
„

β̄ᾱ2
0 ` Erᾱ1sᾱ0

,
β2α2

0 ` 2βα0Erα1s ` Erα2
1s



«
β̄Erᾱ0s

2 ` Erᾱ1sErᾱ0s

β2Erα0s
2 ` 2βErα0sErα1s ` Erα2

1s

`
Varpα0q

2

ˆ

pβ̄Erᾱ0s
2 ` Erᾱ1sErᾱ0sq

pβ2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1sq
3

˙

¨ p6β4Erα0s
2
` 12β3Erα1sErα0s ` 4β2Erα1s

2
´ 2β2Erα2

1sq

`
Varpᾱ0q

2

ˆ

2β̄

β2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1s

˙

,
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Erg7pα0, ᾱ0qs “ E
„

pβα0 ` Erα1sq
2pβ̄ᾱ0 ` Erᾱ1sq

2

β2α2
0 ` 2βα0Erα1s ` Erα2

1s
ᾱ2

0



«
pβErα0s ` Erα1sq

2pβ̄Erᾱ0s ` Erᾱ1sq
2Erᾱ0s

2

β2Erα0s
2 ` 2βErα0sErα1s ` Erα2

1s

`
Varpα0q

2

2pβ̄Erᾱ0s ` Erᾱ1sq
2Erᾱ0s

2

pβ2Erα0s
2 ` 2βErα1sErα0s ` Erα2

1sq
3

¨

ˆ

Erα2
1s

2β2
` 4β2Erα1s

2Erα1s
2
` β4Erα1sErα0s

2
p3Erα1s ` 2βErα0sq

` β3Erα1sErα0sp3Erα1s
2
´ β2Erα0s

2
qErα2

1s
`

2β2Erα1sErα1s

` β2
pErα1s

2
` 6βErα1sErα0s ` 3β2Erα0s

2
q
˘

˙

`
Varpᾱ0q

2

pβErα0s ` Erα1sq
2

β2Erα0s
2 ` 2βErα0sErα1s ` Erα2

1s

`

12β̄2Erᾱ0s
2
` 12β̄Erᾱ1sErᾱ0s ` 2Erᾱ1s

2
˘

.

Suppose that the correlation parameters are β “ 0.2, β̄ “ 0.9. We still use the

same data as Example 3.1. This time we just consider one asset, the S&P 500.

That is to say, the return of riskless asset is st “ 1.05, the first and second moment

of the disturbance variables are Erαts “ 0.09,Erᾱts “ 1.1,Erα2
t s “ 0.0423, and

Erᾱ2
t s “ 1.25, for t “ 0, 1, 2. The initial wealth and liability are x0 “ 3 and l0 “ 1

respectively, and d “ 3.5. Then we have

E0rξ1P0s “
`

Erα2
1s ´ pErα1sq

2
˘

Erg1pα0qs “ 0.0431,

E0rξ1P
2
0s “

`

Erα2
1s ´ pErα1sq

2
˘

Erg2pα0qs “ 0.0272,

E0rη1q0P0s “
`

Erα2
1s ´ pErα1sq

2
˘

Erg5pα0, ᾱ0qs “ 0.0576,
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ξ0 “
`

Erα2
1s ´ pErα1sq

2
˘

ˆ

Erg3pα0qs ´
Erg1s

2

Erg2pα0qs

˙

“ 0.6777,

η0 “
`

Erα2
1s ´ pErα1sq

2
˘

ˆ

Erg6pα0, ᾱ0qs ´
Erg1pα0qsErg5pα0, ᾱ0qs

Erg2pα0qs

˙

“ 0.9043,

ζ0 “ Erg7pα0, ᾱ0qs ´
`

Erα2
1s ´ pErα1sq

2
˘pErg5pα0, ᾱ0qsq

2

Erg2pα0qs
“ 0.5893,

ε0 “ Erg4pᾱ0qs “ 1.8900.

By Theorem 6.1, the optimal strategies are given by

π˚1 “ ´

`

0.21α0 ` 0.0945
˘`

x1 ´ 6.3913
˘

´
`

0.02α0ᾱ0 ` 0.22ᾱ0 ` 0.009ᾱ0 ` 0.099
˘

l0

0.04α2
0 ` 0.036α0 ` 0.0423

,

π˚0 “ ´1.6634px0 ´ 6.08698q ` 2.0162l0,

and Varpx2 ´ l2q “ 4.9964.

Remark 6.2. If we consider a 2 periods investment in Example 3.1 and just consider

the asset S&P, then the results are the same with the example here when we take

β “ β̄ “ 0. This further prove that.
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Chapter 7

Conclusions and Future work

This chapter draws conclusions on the thesis, and points out some possible research

directions related to the work done in this thesis.

7.1 Conclusions

The focus of the thesis has been placed on multi-period asset-liability mean-variance

portfolio selection. It is a nonseparable dynamic programming problem since it

cannot be decomposed by a stage-wise backward recursion. In this thesis, we first

formulate the problem in deterministic terminal expectation and solved it by param-

eterized method. By introducing a Lagrangian multiplier and applying Lagrangian

relaxation and state variable substitution, we turn it to a solvable stochastic control

problem. Second, we put weights on the variance and the expectation to transfor-

m the bi-objective optimization problem to single-objective problem and tackle it

using mean-field formulation. By these two methods, we derive the analytical op-

timal strategies and efficient frontiers of multi-period asset-liability mean-variance

portfolio selection problems with various kinds of constraints, such as uncertain exit

time, bankruptcy control, correlated returns. The relation of them are given and the

effects of different constraints are illustrated by numerical examples. Our methods

are showed to be much more efficient and accuracy compared with other methods in
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the literature.

7.2 Future Work

Related topics for the future research work are listed below.

1. This thesis suppose that there is only one deterministic market state. Howev-

er, the underlying market environment is random and there are various mar-

ket states in the real world. In recent years, regime-switching models have

become popular for reflecting the various states of the financial market. In

the future, using mean-field formulation to tackle mean-variance model with

regime-switching is worthwhile and challenging.

2. Although asset-liability mean-variance portfolio selection is an important issue

in modern finance theory, the time-consistent problem has not attract much

attention. In the future work, seeking for time-consistent optimal strategy and

efficient frontier for asset-liability management is indeed meaningful.
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