

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

NEW ALGORITHMS FOR TWO

LOGISTICS OPTIMIZATION PROBLEMS

XIAOFAN LAI

Ph.D

The Hong Kong Polytechnic University

2015

The Hong Kong Polytechnic University

Department of Logistics and Maritime Studies

New Algorithms for Two Logistics Optimization

Problems

Xiaofan LAI

A thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

May 2015

 CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

_________________(Singed)

__LAI Xiaofan____ (Name of student)

ABSTRACT

New Algorithms for Two Logistics Optimization Problems

by

Xiaofan LAI

Logistics optimization plays a critical role for modern companies in minimizing their

costs to gain competitive advantage. In this thesis we study two logistics optimization

problems, with one to determine an optimal route for a vehicle, which is a problem at

operational level, and with the other to jointly decide on facility locations and network

connections, which is a problem at both strategic and tactic level. Both of the two

problems aim to minimize the total operational cost and have wide applications in

transportation industry. For the first problem, its solution can help shipping carriers

using a barge to reposition empty containers in a tree-shaped water system. For the

second problem, its solution can be used to help transportation companies to construct

plans of facility locations combined with vehicle routing or cargo shipping. Since

both of the two problems are NP-hard, i.e., there unlikely exists any polynomial time

algorithms that can solve them to optimality, it is of great interest to develop efficient

or improved approximation algorithms that can produce near-optimal solutions in

affordable running time for these two problems.

This thesis comprises two essays and presents newly developed algorithms for

these two logistics optimization problems. The problem studied in the first essay is

v

named the Capacitated Traveling Salesman Problem with Pickup and Delivery on a

Tree, and it aims to determine the best route for a vehicle with a finite capacity to

transport amounts of a product from pickup points to delivery points on a tree-shaped

network, such that the total travel distance of the vehicle is minimized. This problem

has several applications in transportation industry and is well-known to be strongly

NP-hard. We therefore develop a 2-approximation algorithm that is a significant

improvement over the best constant approximation ratio of 5 derived from existing

literature. Computational results show that the proposed algorithm also achieves

good average performance, with a much shorter running time and better quality

solution, over randomly generated instances.

The problem studied in the second essay is named the k-median Steiner Forest

Problem that jointly optimizes the opening of at most k facility locations and their

connections to the client locations, so that each client is connected by a path to an

open facility, with the total connection cost minimized. The problem has wide appli-

cations in the transportation and telecommunication industries, but is known to be

strongly NP-hard. In the literature, only a 2-approximation algorithm is available,

it being based on a Lagrangian relaxation of the problem and using a sophisticated

primal-dual schema. Therefore, we develop an improved approximation algorith-

m using a simple transformation from an optimal solution of a minimum spanning

tree problem. Compared with the existing algorithm, our new algorithm not only

achieves a better approximation ratio that is easier to be proved, but also guarantees

to produce solutions of equal or better quality-up to 50% improvement in some cases.

Additionally, for two non-trivial special cases, where either every location contains a

client, or all the locations are in a tree-shaped network, we have developed, for the

first time in the literature, new algorithms that can solve the problem to optimality

in polynomial time.

vi

Publications arising from this thesis

This thesis is mainly based on the following publication and working paper [52, 77]:

• An Improved Approximation Algorithm for the Capacitated TSP with Pickup

and Delivery on a Tree, co-authored with Zhou Xu, Andrew Lim and Fan Wang,

Networks, 63(2):179–195, 2014.

• Improved Algorithms for Joint Optimization of Facility Locations and Network

Connections, co-authored with Zhou Xu, accepted by European Journal of Op-

erational Research, 2015.

Moreover, the author of this thesis also completed two other research works during

his Ph.D study, which result in other papers as follows:

• A Multi-objective Optimization for Green Supply Chain Network Design, co-

authored with Fan Wang and Ning Shi, Decision Support Systems, 51(2):262–

269, 2011.

• Purchasing Transportation Services from Ocean Carriers, co-authored with Zhou

Xu, in Handbook of Ocean Container Transport Logistics: Making Global Sup-

ply Chains Effective, Chung-Yee Lee and Qiang Meng (Ed.), 399–428, Springer,

2015.

However, since the above papers are not related to providing new improved approxi-

mation algorithms, we do not include them into this thesis.

vii

ACKNOWLEDGEMENTS

I would like to thank The Hong Kong Polytechnic University (PolyU) for providing

me with both the opportunity and perfect environment to pursue my Ph.D degree.

At this point in my life I am highly indebted to so many people for their assistance

and support during my studies and life here at PolyU.

First and foremost, I would like to extend my sincerest appreciation to my chief

supervisor Dr Zhou Xu for his insightful guidance, instructive suggestions and intel-

lectual inspiration during the completion of this thesis. Working with him has become

one of the most unforgettable experiences of my life so far – his strict attitude to-

ward research, his acute research sense and his extreme efficiency have made a deep

impression on me that will benefit me throughout the rest of my life. Furthermore, I

have been honored to have Prof. Liming Liu as my co-supervisor. His encouragement

and instruction have benefited me immensely, and without his constant support and

help I could not have accomplished all that I have.

My thanks also go to my two co-authors, Prof. Fan Wang and Prof. Andrew Lim,

who have contributed to one chapter of my thesis. In particular, Prof. Fan Wang, as

supervisor during my Master studies, is always willing to share with me his wealth of

knowledge and expertise, and I cannot imagine how my academic career would turn

out without his guidance and continuous assistance.

I am grateful to all the other great teachers at PolyU during my Ph.D studies –

ones like Dr Pengfei Guo, Dr Li Jiang, Prof. Eric Ngai and Dr Xiaowen Fu, along

with so many others whose delightful sharing has equipped me with the necessary

viii

knowledge and skills. Moreover, I am also thankful to those from our department,

such as Prof. Hong Yan, Prof. Chung-Lun Li, Prof. Andy Yeung, Dr Meifeng Luo,

Dr Hengqing Ye, Dr Yulan Wang, Dr Bibo Yang and Dr Johnny Wan, as well as the

staff in the General Office of LMS and FB, such as Ms. Joyce Yip, Ms. Irene Lam,

and so on. Their enthusiastic help has played an undoubted role in my Ph.D studies.

In particular, special thanks go to Dr Daniel Ng for his generous support and care.

Moreover, I would like to sincerely thank my thesis Board of Examiners chairman

Dr Tsz Leung Yip, and the committee members, Prof. Xiangtong Qi and Dr Yanzhi

Li, for their time and valuable comments on my thesis.

I am also thankful for all my dear friends during this period of my Ph.D studies,

especially the roommates who live together in 1986 and B1310, the classmates who

study together in offices NEOC803, NEOC102, W710 and CD405, the fellows who

always lunch together from the BRE and CEE Departments, as well as my academic

brothers who willingly discuss together and share their knowledge with me. Their

names are not listed here due to the page limit. They have all provided me with

immense help and support in every respect. I am also grateful to Dr Jinwen Ou

and Dr Xian Zheng from Jinan University for sharing with me their experience in

academia, as well as their helpful suggestions on my career development and planning.

Finally, I would like to express my heartfelt gratitude and admiration to my

family members, especially my grandparents, my parents, my wife and my sister.

Their support, unconditional love and tremendous tolerance have smoothed the way

for my studies and research.

ix

TABLE OF CONTENTS

ABSTRACT . v

ACKNOWLEDGEMENTS . viii

LIST OF FIGURES . xii

LIST OF TABLES . xiv

CHAPTER

1. Introduction . 1

2. An Improved Approximation Algorithm for the Capacitated
TSP with Pickup and Delivery on a Tree 7

2.1 Introduction . 7
2.1.1 Literature Review 9
2.1.2 Main Results . 11

2.2 Notation . 12
2.3 Standard Instances . 13
2.4 Structured Route Lists . 16
2.5 The 2-Approximation Algorithm 23

2.5.1 Computation of wv 24
2.5.2 Operators on Routes and Route Lists 25
2.5.3 Construction of 〈v, wv〉-Route Lists for Leaves . . . 26
2.5.4 Construction of 〈v, wv〉-Route Lists for Internal Nodes 29
2.5.5 Main Algorithm . 43

2.6 Computational Results . 46
2.7 Summary . 49

3. Improved Algorithms for Joint Optimization of Facility Lo-
cations and Network Connections 51

x

3.1 Introduction . 51
3.1.1 Previous Work . 53
3.1.2 Our Results . 55

3.2 Improved Approximation Algorithm 56
3.2.1 The new algorithm 56
3.2.2 Approximation ratio of the new algorithm 58
3.2.3 Comparison with the existing 2-approximation algo-

rithm . 60
3.3 Polynomial Time Algorithms for Special Cases 75

3.3.1 When J = V . 75
3.3.2 When vertices are located in a tree-shaped network 77

3.4 Summary . 86

4. Conclusions . 87

APPENDICES . 91
A.1 Mixed integer programming formulation 93

BIBLIOGRAPHY . 95

xi

LIST OF FIGURES

Figure

2.1 Illustration of the greedy structure. 19

2.2 Illustration of observations on ~π(σ, v), where circles indicate internal
nodes, rectangles indicate leaves, numbers inside the circles and rect-
angles indicate vertex indices, numbers below the rectangles indicate
product amounts, arrows indicate the vehicles’ routes, numbers along
the arrows indicate the vehicle’s loads, and vertex 9 is the root of the
tree. 21

2.3 Construction of 〈v, wv〉-route lists ~σv for leaves v ∈ {1, 2, 4, 5, 7} of
the instance in Figure 2.2(a). 27

2.4 Construction of a 〈3, w3〉-route list for the instance in Figure 2.2(a). 30

2.5 Construction of ~σv for an internal node v: when q(Tl) ≥ 0 and q(Tr) ≥ 0. 32

2.6 Construction of a 〈6, w6〉-route list for the instance in Figure 2.2(a). 35

2.7 Construction of ~σv for an internal node v: when q(Tl) ≥ 0, q(Tr) < 0,
q(Tv) ≥ 0, and m(r, wr) ≥ 2. 37

2.8 Construction of a 〈8, w8〉-route list for the instance in Figure 2.2(a). 41

2.9 Construction of ~σv for an internal node v: when q(Tl) ≥ 0, q(Tr) < 0,
q(Tv) < 0, and m(l, wl) ≥ 2. 42

xii

3.1 An instance of the k-median Steiner forest problem with k = 2, V =
{1, 2, ..., 8}, J = {1, 2, 3, 4} and W = {6, 7, 8}: Vertices 5, 6, 7, and 8
are Steiner vertices; the numbers on the edges indicate edge weights;
for each edge not shown, its weight equals the total edge weight of
the shortest path that connects its endpoints; the optimal k-median
Steiner forest (shown in solid lines) opens facilities 6 and 7, and has
a total edge weight of 6. 52

3.2 Illustration of the construction of T ′ from T in the proof of Theo-
rem 3.1, where T is one of the trees of the optimal solution for the
instance shown in Figure 3.1. 60

3.3 Illustration of Ĝ for the instance in Figure 3.1: The numbers on the
edges indicate the edge weights under `λ(·); for edges not shown, their
weights under `λ(·) are too large to be selected, and are omitted; Tλk
with λk = 1 are shown in solid lines. 62

3.4 Illustration of the construction of T ′ from T in the proof of Theo-
rem 3.3, where T is one of the trees of the optimal solution for the
instance shown in Figure 3.1. 69

3.5 Two equivalent instances with k = 2 and r = 9 for the special case
of the problem: Vertices are located on a tree with clients shown in
cycles and facilities shown in squares; the optimal k-median Steiner
forests for both instances are shown in solid lines with facilities 1 and
9 open, and with total edge weights both equal to 7. 78

xiii

LIST OF TABLES

Table

2.1 Computation of wv, m(v, wv), tail(v, wv), and n(v) for the instance
in Figure 2.2(a). 24

2.2 Average approximation ratios of the 2-approximation algorithm (A)
and the greedy algorithm (G) over randomly generated instances. . 47

3.1 Computational results for the optimality gap (%) on randomly gen-
erated small instances. 72

3.2 Computational results for the upper bound gap (%) on randomly
generated small instances. 73

3.3 Computational results for the gap ratio [`(F̂)− `(F)]/`(F̂) ·100%(%)
on randomly generated large instances. 74

3.4 Values of S(v, q,~a) for ~a ∈ A, q ∈ {0, 1}, and each leaf v ∈ {1, 2, 3, 4, 5}
of the tree of the instance shown in Figure 3.5(b), with k = 2. . . . 80

xiv

CHAPTER 1

Introduction

As market competition becomes progressively fiercer, logistics optimization plays

an increasingly critical role for modern companies seeking to gain a competitive edge.

The logistics optimization process generally includes three planning level decisions:

the strategic level, the tactical level and the operational level [1]. Specifically, the

strategic level refers to decisions that have long-term implications for the companies,

such as decisions on facility location, ship fleet size and mix. The tactical level

relates to the implementation of strategic level decisions and includes decisions that

have relatively short-term implications on the companies, such as decisions on service

network design, scheduling and network connections. The operational level relates

to day-to-day operations of the companies and decisions that are always made with

a short-term decision horizon, such as decisions on vehicle routing, cargo selection

and cargo shipping. Therefore, logistics optimization problems can be described as a

class of problems necessitating decisions involving any combination of the above three

planning levels, with the aim of optimizing a certain objective, such as minimizing

the total operational cost.

Logistics optimization problems and their solutions have wide applications in

many industries, such as in the shipping industry [25, 26, 30], the telecommunica-

tion industry [11, 19, 65], and the aviation industry [43, 49, 66], and have already

1

attracted great attention from modern companies around the world. The main reason

is that, as businesses expand globally, and the scale of the decisions they face increas-

es, more and more companies are turning to exploit the techniques in mathematics

and computer science to model their practical operations into such problems and ob-

tain solutions that assist them in making their decisions, thus further maintaining

their competitive advantage.

Typically, solving such kinds of problems is a complex and challenging task faced

by each operations manager, not only due to the scale and complexity of the problem-

s, but also because most logistics optimization problems are known to be NP-hard

in theory, i.e., it is unlikely that any polynomial time algorithms exist that can solve

them to optimality, which leads to them being intractable. Therefore, efficient meth-

ods of solving these problems are urgently needed, so as to find high quality solutions

that can be used for decision support in everyday practice.

For certain logistics optimization problems, since it is not possible to determine

optimal solutions in polynomial time through exact algorithms, a common solution

method in practice is not to seek optimal solutions, but rather to seek near-optimal

solutions in reasonable running time through developing efficient algorithms. In par-

ticular, the developed algorithms should have a ”trade-off” between the running time

and the solution quality. In the area of computer science, one of the typical methods

of evaluating the ”trade-off”, which is also known as the performance of algorithm-

s, is worst-case analysis, where polynomial time is used to measure the algorithm’s

running time, and an approximation ratio is used to measure the solution quality.

For a minimization problem, an algorithm is said to have an approximation ratio

ρ if it runs in polynomial time and can always produce a feasible solution with an

objective value no more than ρ times that of an optimal solution, and hence the al-

gorithm is defined as a ρ-approximation algorithm with constant ratio ρ. Moreover,

the approximation ratio ρ is tight if there exists an instance of the problem to which

2

the solution produced by the algorithm is of an objective value exactly equal to ρ

times that of an optimal solution [32]. Therefore, for certain logistics optimization

problems that are NP-hard, it is of great interest to develop efficient approximation

algorithms with constant approximation ratios that produce near-optimal solutions

in affordable running time.

In this thesis, we study two logistics optimization problems. The first problem,

considered in Chapter 2, is called the Capacitated Traveling Salesman Problem with

Pickup and Delivery on a Tree. The problem is a variant of the traveling salesman

problem and makes operational level decisions. In particular, given a tree-shaped

network and a vehicle with a finite capacity, the problem aims to determine the best

route for this vehicle to transport amounts of a product from pickup points to delivery

points on the network. The objective is to minimize the total travel distance of the

vehicle. Assume that the given vehicle should start and end at a specified depot,

and can transport any amount of the product collected from any pickup point to any

delivery point, as only one type of product is involved. Moreover, the vehicle can serve

each pickup or delivery point more than once, because the requests are splittable, but

cannot temporarily unload and store any amount of the product prior to delivering

it, because the delivery service is non-preemptive. In addition, we focus particularly

on the case where pickup and delivery requests are balanced, due to the assumption

that the depot can either absorb or supply any excess amount of the product.

This problem has several applications in logistics and transportation, because the

tree-shaped network appears in many practical situations, including shorelines for

cargo transportation, certain railway systems in pit mines, rural delivery systems

with roads that branch off from a single highway, and certain inland water systems

that include a main stream and several tributaries; for example, the systems in the

Pearl River Delta of China is a typical tree-shaped network. More specifically, one

possible application of the problem in such kind of water system is to decide on the

3

best route for a barge to take that repositions empty containers for shipping carriers,

with the empty container that should be picked up or delivered at each port being

decided by the existing and target amount of empty containers. To save on shipping

cost, minimizing the total shipping distance during the repositioning is typically set

as the optimization objective.

However, this problem is well-known to be strongly NP-hard [74]. In the existing

literature, we have found approximation algorithms for the problem on the general

network, but not for the tree-shaped network we considered, and therefore the existing

algorithms can be directly applied to the tree case. Nevertheless, the best existing

approximation algorithm for the general case only has an approximation ratio of 5,

and thus is expected to be further improved on in such a tree-shaped network. We

therefore develop a 2-approximation algorithm for the problem, which is a significant

improvement over the best constant approximation ratio of 5 derived from the existing

literature. In particular, our algorithm extends an exact algorithm for the problem

on a path developed by [74], where they first derived a lower bound on the number

of traversals of each edge, and then constructed the route from a series of route lists.

The route obtained is optimal because the number of traversals of each edge in it

equals the lower bound. In order to obtain the route in the tree-shaped network,

more complicated route lists have been considered, and we propose an algorithm to

construct the route where the number of traversals of each edge is bounded by the

lower bound in [74] plus two, and hence the new algorithm has an approximation

ratio of 2. Moreover, we have conducted computational experiments over randomly

generated instances, and the results show that our proposed algorithm also achieves

good average performance, with a much shorter running time and better quality

solution than a greedy algorithm.

The second problem, studied in Chapter 3, is called a k-median Steiner forest

problem, which makes both strategic and tactical level decisions, including facility

4

locations and network connections. In particular, given that k is the maximum num-

ber of facilities that are allowed to be opened and a set of clients that need to be

served through connecting to any open facility, the problem is to jointly optimize

opening facilities and connect the open facilities to the clients by a path, such that

the number of open facilities should not exceed the given k and each client must be

connected. The objective is to minimize the total connection cost. Therefore, the

resulting solution is a collection of at most k trees with a minimum total edge weight,

where the trees should cover all the clients and each tree should contain a distinct

facility as the root.

The problem has wide applications in both the transportation and telecommu-

nication industries. In particular, carriers in the transportation industry often need

to decide on the location of vehicle depots and how to connect these depots with

the customers through road constructions. Moreover, this kind of application can be

extended to more complicated cases, where plans of facility locations combined with

vehicle routing or cargo shipping for carriers can be constructed. In the telecommu-

nication industry, service providers often need to determine the best service center

locations, as well as establish the optimum cable connections between the open cen-

ters and their clients, so as to provide high quality and effective services. In order to

save on the total expense, their objective is to minimize the total used cable length,

which is represented as the edge weight in the problem.

This problem, however, is also well-known to be strongly NP-hard, because it

contains the classical Steiner tree problem as a special case [50, 73]. In the litera-

ture, only a 2-approximation algorithm is known, this being based on a Lagrangian

relaxation of the problem that relies on a sophisticated primal-dual schema. How-

ever, since the existing algorithm is extremely complicated, it is of great interest to

develop simpler and improved algorithms for this problem. Therefore, we develop an

improved approximation algorithm that includes only a simple transformation from

5

an optimal solution of a minimum spanning tree problem, and which has a polynomial

time complexity. Compared with the existing algorithm, our new algorithm theoreti-

cally achieves a better and tight approximation ratio that is much easier to be proved.

Computational results show that our algorithm also guarantees to produce solutions

of equal or better quality over randomly generated instances, the improvement be-

ing, in some cases, up to 50%. Additionally, we have also considered two non-trivial

special cases of this problem, where either every location contains a client, or all the

locations are in a tree-shaped network. Both of these two cases are commonly seen in

practice. For these two cases, whether there exist any algorithms that can solve them

to optimality in polynomial time is still unknown. Therefore, we provide a positive

answer to this question by proposing new algorithms to solve the above two special

cases to optimality in polynomial time.

The remainder of this thesis is organized as follows. The above two problems, as

well as the newly developed algorithms, will be presented in Chapter 2 and Chapter

3, respectively. In Chapter 4 we conclude this thesis, along with a discussion of future

research directions for the two problems.

6

CHAPTER 2

An Improved Approximation Algorithm for the

Capacitated TSP with Pickup and Delivery on a

Tree

2.1 Introduction

The Capacitated Traveling Salesman Problem with Pickup and Delivery (CTSP-

PD) is a variant of the Traveling Salesman Problem (TSP) [2, 37]. Consider a graph

G = (V,E), where V is the vertex set and E is the edge set. Each edge e ∈ E is

associated with a non-negative edge length denoted by d(e). Each vertex v ∈ V is

associated with an amount of a product denoted by an integer q(v). Each positive

q(v) indicates that v is a pickup point from which q(v) units of the product need to

be picked up, each negative q(v) indicates that v is a delivery point to which −q(v)

units of the product need to be delivered, and each zero q(v) indicates that v is a

transient point having no requirement for pickups or deliveries. Consider a vehicle of

capacity k that needs to start and end its route at a depot s ∈ V . Suppose that s can

either absorb or supply any excess amount of the product so as to maintain a balance

between pickups and deliveries, i.e.,
∑

v∈V q(v) = 0. The goal of the CTSPPD is to

minimize the length of the route for the vehicle to carry out all the pickup and de-

7

livery requests, but without ever exceeding its capacity. As only one type of product

is involved, the vehicle can transport any amount of the product collected from any

pickup point to any delivery point. Since pickup and delivery requests can both be

split, the vehicle can serve each pickup or delivery point more than once. However,

the delivery service is non-preemptive, and as a result the vehicle cannot temporarily

unload and store any amount of the product prior to delivering it.

The CTSPPD has several applications in logistics [23, 74]. For example, heavy

construction projects often require terrain modifications, which involve moving large

volumes of earth from cut locations to fill locations by an earth-moving vehicle, where

a cut location is a pickup point that supplies earth, and a fill location is a delivery

point that needs earth [12, 35, 54]. To save the cost of earth excavation, the distance

traveled by the vehicle needs to be minimized. Applications of the CTSPPD also

occur in inventory repositioning, where retailers that have excess stock can serve as

pickup points for supplying retailers that are short of stock [2]. Other applications of

the CTSPPD with one pickup point include newspaper distribution [70], cattle feed

distribution [58], and helicopter routing for crew changes [69].

This chapter studies the CTSPPD on a tree (CTSPPD-T), where the given graph

is a tree, denoted by T , and the depot s is located at the root of T . Such tree-shaped

networks appear in practical situations, including certain railway systems in pit mines

[51], shorelines for cargo transportation [46], and rural delivery systems with roads

that branch off from a single highway [13, 72]. In some water systems, such as those

in the Pearl River Delta of China, the main stream and its tributaries also often form

a tree-shaped network. One application of the CTSPPD-T in such a water system is

to decide on the route for a barge that must reposition empty containers for shipping

carriers, with the differences between existing and target number of empty containers

at each port corresponding to the number that should be picked up or delivered.

The CTSPPD-T is strongly NP-hard even when q(v) = 1 for all v ∈ V [74].

8

Therefore, developing approximation algorithms that give near-optimal solutions is

of great interest.

2.1.1 Literature Review

Approximation ratios known for the CTSPPD-T are all taken from the approx-

imation algorithms for the CTSPPD. Chalasani and Motwani [18] first developed a

(5α + 2− 5α/k)-approximation algorithm for the CTSPPD, where α is the approxi-

mation ratio available for the TSP. Anily and Bramel [2] later devised two algorithms

that improved the approximation ratio to (4α + 1 − 2α/k), and α + blog2 kc/2 +

(2bk/2c− 1)/2dlog2 ke. Since the TSP on a tree can be solved to optimality in polyno-

mial time, one can apply the above three approximation algorithms to the CTSPPD-

T as a special case to achieve approximation ratios of (7 − 5/k), (5 − 2/k), and

1+blog2 kc/2+(2bk/2c−1)/2dlog2 ke. Thus, the existing best constant approximation

ratio for the CTSPPD-T is 5.

It is important to note that all three constant ratio approximation algorithms

reviewed above for the CTSPPD and the CTSPPD-T assume that each pickup or

delivery point requests exactly one unit of the product. Although a pickup or delivery

point requesting q ≥ 2 units can be split into q identical points with each requesting

one unit, the time complexity of the split is proportional to
∑

v∈V |q(v)|.

Moreover, for the CTSPPD with k = 1, several studies developed heuristics that

exhibited good average performance over randomly generated instances but with no

constant approximation ratio guarantees [35, 54]. For the CTSPPD-T with k equal

to one or infinity, and for the CTSPPD on a path (CTSPPD-P), which is a special

case of the CTSPPD-T with T being a single path, Wang et al. [74] showed that they

can be solved to optimality in polynomial time.

The CTSPPD is different from other pickup and delivery problems [7, 48, 57, 59,

60, 68], such as the Swapping Problem and the TSP with Delivery and Backhauls.

9

In the Swapping Problem [3, 18, 68], products for pickup and delivery belong to

multiple commodity types, and the set of products is partitioned into two subsets:

preemptive products that can be stored temporarily at any intermediate vertex, and

non-preemptive products that should be shipped directly from pickup points to de-

livery points. In the TSP with Delivery and Backhauls [4, 17], a vehicle needs to

serve two types of demand, including the delivery demand that requests the vehicle

to deliver products from the depot to a delivery point, and the backhaul demand that

requests the vehicle to pick up products from a pickup point and return them to the

depot.

Katoh and Yano [47] studied a variant of the TSP with Delivery and Backhauls,

which, as with the CTSPPD-T, assumes that the given graph forms a tree, and

that both delivery and backhaul demands can be split. Since the depot is the only

destination of each backhaul demand and the only origin of each delivery demand,

each sub-route of the vehicle between two consecutive visits to the depot can serve

at most k delivery points and k pickup points. Based on this property, Katoh and

Yano [47] developed a 2-approximation algorithm, and Asano et al. [9] showed that

an approximation ratio of 1.351 can be achieved for a special case with no backhaul

demand. However, in the CTSPPD-T, the property mentioned above does not hold,

since in between two consecutive visits to the depot it is possible that the vehicle

carries the product back and forth between pickup points and delivery points, and as

a result serves more than k pickup points and k delivery points. Thus, the techniques

in [9, 47] cannot be applied.

The CTSPPD is also a variant of the one commodity pickup and delivery TSP (1-

PDTSP) [37, 39, 55]. Unlike the CTSPPD, the 1-PDTSP imposes a restriction such

that the vehicle must follow a Hamiltonian tour so as to visit each vertex exactly

once. Thus, the vehicle can pick up the product from each pickup point or deliver the

product to each delivery point only once. Since for the 1-PDTSP it is strongly NP-

10

hard to find even a feasible solution [37], existing works on the 1-PDTSP have focused

on the development of exact algorithms for small-size instances [36, 38], or heuristics

for large-size instances [37] with no constant approximation ratio guarantees.

2.1.2 Main Results

We develop a 2-approximation algorithm for the CTSPPD-T which improves on

the best constant approximation ratio of 5 derived from the CTSPPD literature [2].

The proposed algorithm has a time complexity of O(|V |(1 +
∑

v∈V |q(v)|/k)), which

is polynomial in the input size, as long as the ratio (
∑

v∈V |q(v)|)/k is polynomially

bounded by |V |. This improves on the time complexities of existing approximation

algorithms derived from the CTSPPD literature [2, 18], which are polynomial in the

input size only when
∑

v∈V |q(v)| is polynomially bounded by |V |.

Our algorithm extends an exact algorithm for the CTSPPD-P developed by Wang

et al. [74], who first derived a lower bound on the number of traversals of each edge,

and then constructed a series of route lists to form an optimal route where the number

of traversals of each edge equals the lower bound. For the CTSPPD-T, our construc-

tion of route lists is more complicated, and the route obtained from the route lists

traverses each edge a number of times that is bounded from above by the lower bound

plus two, leading to an approximation ratio of 2.

The remainder of this chapter is organized as follows. In Section 2.2, we formulate

the problem and introduce notation. In Section 2.3, we define standard instances of

the problem, and show that it is sufficient to consider only standard instances in this

study. In Section 2.4, we define a structured route list with respect to each vertex

of the given tree, and show that in order to achieve an approximation ratio of 2,

it is sufficient to construct such a structured route list for the root. Based on this,

we develop a 2-approximation algorithm in Section 2.5, and evaluate its performance

over randomly generated instances in Section 2.6. The chapter is summarized in

11

Section 2.7.

2.2 Notation

Let I = (T, d, q, s, k) denote an instance of the CTSPPD-T, where tree T = (V,E).

For each v ∈ V , let p(v) denote the parent of v in T , which is the vertex adjacent to

v on the shortest path from v to the root s. Thus, v is called a child of p(v). Let

e(v) denote the edge joining p(v) and v. Let Tv denote the subtree of T rooted at v,

and use V (Tv) and E(Tv) to denote the vertex and edge sets of Tv. Define the total

balance of vertices in Tv as q(Tv) :=
∑

v∈V (Tv) q(v). For ease of presentation, let us

assume p(s) = s, and assume (v, v) ∈ E and d(v, v) = 0 for each v ∈ V . If a vertex v

is not a leaf of T , we call it an internal node of T .

Along any route, the vehicle can either change its position from one vertex to the

other vertex via an edge of T , or change its load by picking up or delivering a certain

amount of the product from or to its current position. Define a state of the vehicle

as a pair of its position and load. Thus, a route for the vehicle, denoted by σ, can

be represented by a sequence of states [pos(σ, i), load(σ, i)] for 1 ≤ i ≤ size(σ), where

pos(σ, i) ∈ V and load(σ, i) with 0 ≤ load(σ, i) ≤ k indicate the position and the

load of the vehicle in its i-th state, and size(σ) indicates its total number of states.

We refer to [pos(σ, 1), load(σ, 1)] and load(σ, 1) as the initial state and initial load of

σ, and refer to [pos(σ, size(σ)), load(σ, size(σ))] and load(σ, size(σ)) as the final state

and final load of σ. Let d(σ) :=
∑size(σ)

i=2 d(pos(σ, i − 1), pos(σ, i)) represent the total

length of σ. Hence, a feasible route σ for I is defined as a route that satisfies the

following four conditions:

1. The vehicle starts at root s with an empty load, and also ends at s. That is,

pos(σ, 1) = pos(σ, size(σ)) = s, and load(σ, 1) = 0.

2. The vehicle either moves through an edge of T , or stays at a vertex to pick

12

up or deliver the product. That is, for 2 ≤ i ≤ size(σ), either (pos(σ, i −

1), pos(σ, i)) ∈ E and load(σ, i− 1) = load(σ, i), or pos(σ, i− 1) = pos(σ, i) and

|load(σ, i)− load(σ, i− 1)| ≤ k.

3. The vehicle satisfies all the pickup and delivery requests in T , picks up the prod-

uct only from pickup points that still have supplies, and delivers the product

only to delivery points that still have requirements. That is, along σ the vehicle

picks up exactly max{q(v), 0} units of the product from v, and delivers exactly

max{−q(v), 0} units to v, for each vertex v ∈ V .

4. The vehicle’s load never falls below zero or exceeds capacity k. That is, 0 ≤

load(σ, i) ≤ k for 1 ≤ i ≤ size(σ).

The total length of an optimal route is indicated by OPT(I). Although each edge

(u, v) ∈ E is undirected, a traversal of (u, v) can be in either direction, from u to

v or from v to u, as represented by a traversal of u → v or a traversal of v → u,

respectively. Due to the balance between pickups and deliveries, every feasible route

σ must end with an empty load, i.e., load(σ, size(σ)) = 0.

Moreover, we define a route list, denoted by ~σ, as a sequence of routes σi for

1 ≤ i ≤ |~σ|, where |~σ| indicates the number of routes in ~σ. We also define the

total balance of routes in ~σ as their total final load minus their total initial load.

Accordingly, if ~σ contains only one route σ, and σ is a feasible route, then the total

balance of ~σ is zero.

2.3 Standard Instances

In this section, we first define standard instances of the CTSPPD-T in Defini-

tion 2.1, and then show in Theorem 2.1 that from any 2-approximation algorithm for

standard instances we can obtain a 2-approximation algorithm for arbitrary instances.

13

Hence, it is sufficient to consider only standard instances throughout the remainder

of this chapter.

Definition 2.1. A CTSPPD-T instance (T, d, q, s, k) is standard if, and only if, it

satisfies:

1. Each leaf of T is either a pickup point, a delivery point, or the root s;

2. Each internal node of T is a transient point;

3. T is a full binary tree, i.e., a tree in which every internal node has exactly two

children;

4. For each internal node v of T , the left child l and the right child r of v satisfy

q(Tl) ≥ q(Tr).

According to Definition 2.1, a tree T of a standard instance is a full binary tree

in which each internal node v satisfies q(v) = 0 and q(Tl) ≥ q(Tr) for its left child

l and right child r. Thus, when constructing a partial solution that serves requests

in subtree Tv, we need to handle only these three cases: (i) with q(Tl) ≥ 0 and

q(Tr) ≥ 0, or q(Tl) < 0 and q(Tr) < 0; (ii) with q(Tl) ≥ 0, q(Tr) < 0, and q(Tv) ≥ 0;

and (iii) with q(Tl) ≥ 0, q(Tr) < 0, and q(Tv) < 0, respectively. Compared with

having to take into account all problem instances, the number of cases to be handled

for only standard instances is much smaller. As a result, the presentation of our

approximation algorithm, as shown later on in Section 2.5, can be much simpler.

To establish Theorem 2.1, we define traversal (σ, e) as the number of traversals of

edge e by σ (in either direction) for each edge e ∈ E.

Theorem 2.1. Each CTSPPD-T instance I ′ = (T ′, d′, q′, s′, k′) with T ′ = (V ′, E ′)

can be transformed in O(|V ′|) time to a standard instance I = (T, d, q, s, k) with

T = (V,E), such that each feasible route σ of I can be transformed to a feasible route

σ′ of I ′ in O(|V ′|maxe∈E traversal(σ, e)) time with d′(σ′)/OPT(I ′) ≤ d(σ)/OPT(I).

14

Proof. Consider Definition 2.1. Condition 1 can be assumed for I ′ without loss of

generality, since each leaf that is a transient point but not the root can be removed. If

Condition 3 is satisfied, then Condition 4 can be assumed without loss of generality.

Thus, we need to consider only the case when I ′ does not satisfy either Condition 2

or Condition 3.

If I ′ does not satisfy Condition 2, there exists an internal node v of T ′ with

|q′(v)| > 0. To transform I ′ to an instance I that satisfies Condition 2, we can

initialize I ← I ′, and then revise I, by inserting a new child u to v with d(v, u)← 0

and q(u) ← q′(v), and then setting q(v) ← 0. By doing so, the optimal route length

is not changed, and so we can replace each pickup or delivery at u in a feasible

route σ of I with a pickup or delivery at v, thus obtaining a feasible route σ′ of I ′,

but without changing the route length. Thus, d′(σ′)/OPT(I ′) ≤ d(σ)/OPT(I). By

setting I ′ ← I, the above transformation can be iterated until I satisfies Condition 2.

Assume that I ′ now satisfies Condition 2. Next, we show that I ′ can be trans-

formed to an instance I where each internal node has at least two children. Con-

sider any internal node v of T ′ that has exactly one child u. According to Con-

dition 2, v must be a transient node. Initialize I ← I ′, and then consider the

following two cases. Case 1: v is not the root. We can revise I without changing

the optimal route length by replacing edges (p(v), v) and (v, u) with (p(v), u), setting

d(p(v), u) ← d′(p(v), v) + d′(v, u), and then removing v. We can thus replace each

traversal of p(v) → u or u → p(v) in a feasible route σ of I with p(v) → v → u

or u → v → p(v), thereby constructing a feasible route σ′ of I ′, but without chang-

ing the route length. Thus, d′(σ′)/OPT(I ′) ≤ d(σ)/OPT(I). Case 2: v is the

root. According to Condition 1, a feasible route of I ′ must traverse v → u and

u → v at least once each way. Thus, we can revise I by removing (v, u) and set-

ting u as the root, which decreases the optimal route length by at least 2d′(v, u).

Accordingly, any feasible route σ of I can be transformed to a feasible route σ′

15

of I ′ by adding a traversal of v → u at the beginning of σ, and a traversal of

u → v at the end of σ, which increases the route length by 2d′(v, u). Thus, since

OPT(I) ≤ OPT(I ′) − 2d′(v, u), d′(σ′) = d(σ) + 2d′(v, u) and d(σ) ≥ OPT(I), it

can be seen that d′(σ′)/OPT(I ′) ≤ d(σ)/OPT(I). By setting I ′ ← I, the above

transformation can be iterated until each internal node has at least two children.

Now assume that each internal node of T ′ has at least two children. Thus, if I ′ does

not satisfy Condition 3 of Definition 2.1, there must exist an internal node v of T ′ with

at least three children, denoted by u1, ..., ut for t ≥ 3. To transform I ′ to an instance

I that satisfies Condition 3, initialize I ← I ′, and revise I, by choosing u1 as the left

child of v, adding a new transient point u as the right child of v with d(u, v)← 0, and

moving each uj for 2 ≤ j ≤ t to be a child of u with d(u, uj)← d′(v, uj). By doing so,

the optimal route length is not changed, and by replacing each visit to u in a feasible

route σ of I with a visit to v, we can obtain a feasible route σ′ of I ′ without changing

the route length. Thus, d′(σ′)/OPT(I ′) ≤ d(σ)/OPT(I). By setting I ′ ← I, the

above transformation can be iterated until I satisfies Condition 3.

Hence, I ′ can be transformed to a standard instance I. The transformation takes

only O(|V ′|) time, since |E ′| ≤ |V ′| − 1, each part of the transformation must stop

after O(|V ′|+ |E ′|) iterations, and each iteration takes O(1) time. This implies that

V contains at most O(|V ′|) vertices. As shown above, each feasible route σ of I can

be transformed backward to a feasible route σ′ of I ′. Thus, the transformation from

σ to σ′ takes O(|V ′|maxe∈E traversal(σ, e)) time, since (i) V contains at most O(|V ′|)

vertices; (ii) in the transformation, at most O(|V |maxe∈E traversal(σ, e)) new states

are created; and (iii) each deletion or replacement of a state takes O(1) time.

2.4 Structured Route Lists

Consider any standard instance I. In this section, we introduce a structured route

list, called a 〈v, w〉-route list, for each vertex v ∈ V , where w with 0 ≤ w ≤ k is an

16

integer parameter indicating the initial load of the first route in the route list. The

2-approximation algorithm developed in Section 2.5 is based on the construction of

an 〈s, 0〉-route list.

Before introducing the definition of the 〈v, w〉-route list, let us make the following

three observations from any feasible route σ and vertex v ∈ V :

Observation 1. Let ~π(σ, v) indicate a list of sub-routes of σ, where πi(σ, v) for

1 ≤ i ≤ |~π(σ, v)| represents the sub-route between the i-th traversal of p(v) → v

and the i-th traversal of v → p(v) in σ. Thus, each πi(σ, v) starts and ends at p(v),

visiting only vertices of Tv in between, and |~π(σ, v)| equals both the total number of

traversals of p(v) → v and the total number of traversals of v → p(v). To fulfill the

pickup and delivery requests in Tv, the total balance of routes in ~π(σ, v) must equal

q(Tv). Since I is standard and the vehicle has a capacity of k, edge e(v) must be

traversed at least 2 max{d|q(Tv)|/ke, 1} times. Thus, define

n(v) := max{d|q(Tv)|/ke, 1}. (2.1)

We obtain |~π(σ, v)| ≥ n(v), and a lower bound on OPT(I) as shown below:

∑

u∈V
2n(u)d(e(u)) ≤ OPT(I). (2.2)

Observation 2. By (2.1) and (2.2), if |~π(σ, u)| ≤ n(u) + 1 for all u ∈ V , then

d(σ) ≤ 2OPT(I). Assuming |~π(σ, u)| ≤ n(u) + 1 for u ∈ V (Tv) \ {v}, let us consider

how to ensure |~π(σ, v)| ≤ n(v)+1. One possible way is to require that ~π(σ, v) complies

with a greedy structure, as defined in the following two cases, so that routes in ~π(σ, v)

achieve a total balance of q(Tv) with each route carrying as much of the product as

possible out of or into Tv, given that the first route in ~π(σ, v) is forced to have an

initial load of w, where 0 ≤ w ≤ k:

17

Case 1: q(Tv) ≥ 0. The greedy structure requires that the route list consists of a

minimum number of routes to carry q(Tv) more units of the product out of Tv

than into Tv, such that: (i) each route, other than the last one, must carry a full

final load of k units out of Tv; (ii) each route, other than the first one, must carry

an empty initial load into Tv; and (iii) the final load of the last route cannot be

empty if q(Tv)+w > 0. Thus, if q(Tv) = 0 and w = 0, then the route list consists

of only one route with empty initial and final loads. If not, then q(Tv) +w > 0,

and as shown in Figure 2.1(a), the route list consists of d(q(Tv) +w)/ke routes,

with the last route having a final load of (q(Tv)+w−1) (mod k)+1, which equals

k if q(Tv)+w > 0 and (q(Tv)+w) (mod k) = 0, and equals (q(Tv)+w) (mod k)

otherwise.

Case 2: q(Tv) < 0. The greedy structure requires that the route list consists of

a minimum number of routes to carry −q(Tv) more units of the product into

Tv than out of Tv, such that: (i) each route, other than the first one, must

carry a full initial load of k units into Tv; and (ii) each route, other than the

last one, must carry an empty final load out of Tv. Accordingly, as shown in

Figure 2.1(b), the route list consists of d−(q(Tv) + w)/ke + 1 routes, with the

last route having a final load of (q(Tv) + w) (mod k).

Let m(v, w) and tail(v, w) denote the number of routes, and the load of the final

one, in a route list that complies with the greedy structure with respect to v and w.

18

(q
(T

v
)
+

w
−

1
)
(m

o

d

k
)
+

1

kk

w 0 00

k

π(σ, v)

p(v)

... ...

v

(a) q(Tv) ≥ 0 and q(Tv) + w > 0

000

w k kk

p(v)

... ...

v

(q
(T

v
)
+

w
)
(m

o

d

k
)

π(σ, v)

(b) q(Tv) < 0

Figure 2.1: Illustration of the greedy structure.

According to the arguments above, we have that

m(v, w) =

1, when q(Tv) = 0 and q(Tv) + w = 0,

d−(q(Tv) + w)/ke+ 1, when q(Tv) < 0,

d(q(Tv) + w)/ke, when q(Tv) ≥ 0 and q(Tv) + w > 0.

(2.3)

tail(v, w) =

0, when q(Tv) = 0 and q(Tv) + w = 0,

(q(Tv) + w) (mod k), when q(Tv) < 0,

(q(Tv) + w − 1) (mod k) + 1, when q(Tv) ≥ 0 and q(Tv) + w > 0.

(2.4)

Thus, from (2.1), (2.3), and 0 ≤ w ≤ k, we obtain that

n(v) ≤ m(v, w) ≤ n(v) + 1. (2.5)

Furthermore, we can now establish Lemma 2.1, which provides unified representations

of m(v, w) and tail(v, w) for the cases when q(Tv) + w > 0 and when q(Tv) + w < k,

respectively.

Lemma 2.1. Consider any integer w with 0 ≤ w ≤ k.

1. If q(Tv) +w > 0, then m(v, w) = d(q(Tv) +w)/ke and tail(v, w) = (q(Tv) +w−

19

1) (mod k) + 1;

2. If q(Tv) + w < k, then m(v, w) = d−(q(Tv) + w)/ke + 1 and tail(v, w) =

(q(Tv) + w) (mod k).

Proof. To prove Item 1 in Lemma 2.1, consider the case when q(Tv) + w > 0. If

q(Tv) ≥ 0, then due to (2.3) and (2.4), Item 1 is true. Otherwise, q(Tv) < 0, which

implies that: (i) m(v, w) = d−(q(Tv) + w)/ke + 1 due to (2.3); (ii) tail(m,w) =

(q(Tv) + w) (mod k) due to (2.4); and (iii) 0 < q(Tv) + w < k. Moreover, since

0 < q(Tv) + w < k, we have 1 = d(q(Tv) + w)/ke = d−(q(Tv) + w)/ke + 1, and

(q(Tv) + w − 1) (mod k) + 1 = (q(Tv) + w) (mod k). Thus, Item 1 is true.

To prove Item 2 in Lemma 2.1, consider the case when q(Tv)+w < k. If q(Tv) < 0,

then due to (2.3) and (2.4), Item 2 is true. Otherwise, q(Tv) ≥ 0, which implies that

0 ≤ q(Tv) + w < k. If q(Tv) + w = 0, then q(Tv) = w = 0, which, taken together

with (2.3), implies that m(v, w) = 1 = d−(q(Tv) + w)/ke + 1, and, taken together

with (2.4), implies that tail(v, w) = 0 = (q(Tv) + w) (mod k). Thus, Item 2 is

true. Otherwise, 0 < q(Tv) + w < k, which, taken together with (2.3), implies that

m(v, w) = d(q(Tv) + w)/ke = 1 = d−(q(Tv) + w)/ke + 1, and, taken together with

(2.4), implies that tail(m,w) = (q(Tv) + w − 1) (mod k) + 1 = (q(Tv) + w) (mod k).

Thus, Item 2 is true.

Observation 3. When m(v, w) = n(v), we can observe from (2.5) that in order to

ensure |~π(σ, v)| ≤ n(v) + 1 it is not necessary for ~π(σ, v) to consist of only m(v, w)

routes that comply with the greedy structure. Instead, ~π(σ, v) can contain an addi-

tional route that has empty initial and final loads, leading to |~π(σ, v)| = n(v) + 1.

Moreover, this additional route might not be an empty route, as it can be used to

transport the product within Tv. For example, consider the standard instance I in

Figure 2.2(a), where n(u) = 1 for all u ∈ V by (2.1). Consider the feasible route σ

shown in Figure 2.2(b), where the two sub-routes shown by dotted lines form ~π(σ, 6)

20

+(

9

3 8

61 2 7

4 5

+(k-3) +2

+2 -1

-k

(a) A standard instance
with capacity k ≥ 4.

0

+

6

4

6

0 1

6

5

0

8 8

0

0

6

4

6

k-1 k

8 8

k-1 k

+2 +1 -1

-k

9 9

00k-1

3

1

3

0 k-3

3

2

k-1

9 9

0

+(k-3) +2

3

9

0 0

3
0

0

6

8
0

9

k-1

8

7

0

8

k

0

k-1

k

0
9 9
0

(b) A feasible route σ, where integers indicate load changes
of the vehicle, and the sub-routes shown by dotted lines form
~π(σ, 6).

Leaf nodes: 1, 2, 4, 5, 7

Internal nodes: 3, 6, 8, 9

+

9

3 8

61 2 7

5

+(k-3) +2

+2-1

-k

3 3

9

6 6

4

8 8

9

0

0 k-3 k-1

k-1

k-1

k-1 k-2 k

k k 0

0

(c) An optimal route σ∗, where integers in-
dicate the load changes of the vehicle.

Figure 2.2: Illustration of observations on ~π(σ, v), where circles indicate internal n-
odes, rectangles indicate leaves, numbers inside the circles and rectangles
indicate vertex indices, numbers below the rectangles indicate product
amounts, arrows indicate the vehicles’ routes, numbers along the arrows
indicate the vehicle’s loads, and vertex 9 is the root of the tree.

with w = k − 1. By (2.1) and (2.3), m(6, w) = 1 = n(6). It can be seen that the

first route in ~π(σ, 6) complies with the greedy structure in picking up one unit from

vertex 4 and carrying it out of T6. The second route in ~π(σ, 6), which carries empty

initial and final loads, only transports one unit from vertex 4 to vertex 5 inside T6.

Thus, σ traverses edge (6, 8) four times. Since another feasible route σ∗ shown in

Figure 2.2(c) traverses each edge twice, we obtain that σ∗ is an optimal route, but σ

is not.

Based on the above three observations of ~π(σ, v), we define the 〈v, w〉-route list as

21

follows.

Definition 2.2. For any vertex v ∈ V and any integer w with 0 ≤ w ≤ k, a route

list ~σ is a 〈v, w〉-route list if, and only if, ~σ satisfies the following conditions:

1. Each route starts and ends at p(v), visiting only vertices of Tv in between;

2. Routes in ~σ serve all the pickup and delivery requests in Tv;

3. Routes in ~σ traverse each e(u) with u ∈ V (Tv) \ {v} at most 2n(u) + 2 times in

total;

4. ~σ consists of exactly n(v) + 1 routes, denoted by σi for 1 ≤ i ≤ n(v) + 1;

5. The initial load of the first route σ1 equals w;

6. The first m(v, w) routes, σi for 1 ≤ i ≤ m(v, w), comply with the greedy

structure;

7. If m(v, w) = n(v), then σn(v)+1 has an empty initial load and an empty final

load.

Thus, we can establish Theorem 2.2, which implies that in order to develop a

2-approximation algorithm for the CTSPPD-T, it is sufficient to construct an 〈s, 0〉-

route list.

Theorem 2.2. Given any 〈s, 0〉-route list, it takes O(1) time to construct a feasible

route with a total length not greater than 2OPT(I).

Proof. Consider any 〈s, 0〉-route list ~σs. Since q(Ts) = 0, we have n(s) + 1 = 2 by

(2.1), m(s, 0) = 1 by (2.3), and tail(s, 0) = 0 by (2.4). Thus, by Conditions 2 and

4 of Definition 2.2, ~σs contains exactly two routes, denoted by σs,1 and σs,2, which

together serve all the pickup and delivery requests in T . By Conditions 3 and 4 of

Definition 2.2, σs,1 and σs,2 together traverse each e(u) with u ∈ V at most (2n(u)+2)

22

times, which, together with (2.2), implies that d(σs,1) + d(σs,2) ≤ 2OPT(I). Since

m(s, 0) = 1 = n(s) and tail(s, 0) = 0, by Conditions 5–7 of Definition 2.2, both σs,1

and σs,2 have empty initial and final loads. Thus, they can be linked in O(1) time to

form a feasible route that follows σs,1 and σs,2 sequentially, with a total length not

greater than 2OPT(I).

2.5 The 2-Approximation Algorithm

Consider any standard instance I. In this section, we follow the implication of

Theorem 2.2 to develop a 2-approximation algorithm for the CTSPPD-T, by con-

structing an 〈s, 0〉-route list.

Without loss of generality, suppose that vertices in V are re-labeled by 1, 2, ..., |V |

according to the postorder traversal sequence of T [28], so that each vertex is labeled

after all the vertices in its subtrees are labeled. As a result, we have s = |V | and p(v) >

v for each v ∈ V \{s}. Our construction of an 〈s, 0〉-route list uses a recursive process,

which constructs a 〈v, wv〉-route list for v = 1, 2, ..., |V | − 1, |V |. Here, wv represents

the value of the initial load of the first route in the route list to be constructed for each

vertex v, and its value can be different for different v. To ensure that the recursive

construction of the route lists is feasible, we will fix ws = 0, and predetermine values

of wv for other vertices v in Section 2.5.1. Based on several operators defined in

Section 2.5.2 on routes and route lists, we will first present in Section 2.5.3 a sub-

routine to construct a 〈v, wv〉-route list for each leaf v, and then, for each internal

node v, given an 〈l, wl〉-route list ~σl and an 〈r, wr〉-route list ~σr for the left child l and

the right child r of v, respectively, we will present in Section 2.5.4 three sub-routines

that can be used recursively to construct a 〈v, wv〉-route list from ~σl and ~σr. Based on

these constructions, we can develop the main algorithm and prove its approximation

ratio in Section 3.2.1.

23

2.5.1 Computation of wv

Before constructing the 〈v, wv〉-route lists, we need to first determine the value of

each wv, using the following iterative process:

1. Initialize ws ← 0, since s = |V | is the root.

2. For each v = |V |, |V | − 1, ..., 1, if v is an internal node, whose left and right

children are denoted by l < v and r < v, then set wl ← wv and wr ← tail(l, wl).

It can be seen that the above process starts with ws = 0, runs in O(|V |) time, and

ends with values of wv satisfying 0 ≤ wv ≤ k for v ∈ V . By following this process,

we can compute the values of wv for the instance in Figure 2.2(a), these being shown

in Table 2.1 along with the values of m(v, wv), tail(v, wv), and n(v).

Table 2.1: Computation of wv, m(v, wv), tail(v, wv), and n(v) for the instance in
Figure 2.2(a).

v 1 2 3 4 5 6 7 8 9

q(v) k − 3 2 0 2 −1 0 −k 0 0

q(Tv) k − 3 2 k − 1 2 −1 1 −k 1− k 0

wv 0 k − 3 0 k − 1 1 k − 1 k k − 1 0

q(Tv) + wv k − 3 k − 1 k − 1 k + 1 0 k 0 0 0

m(v, wv) 1 1 1 2 1 1 1 1 1

tail(v, wv) k − 3 k − 1 k − 1 1 0 k 0 0 0

n(v) 1 1 1 1 1 1 1 1 1

For any internal node v with the left and right children denoted by l and r,

consider any 〈l, wl〉-route list ~σl and 〈r, wr〉-route list ~σr. Due to Step 2 above, we

have wr = tail(l, wl). For example, Table 2.1 shows that w2 = tail(1, w1) = k − 3

for the instance in Figure 2.2(a). This, together with Condition 6 of Definition 2.2,

implies that the final load of the m(l, wl)-th route in ~σl always equals the initial load

of the first route in ~σr. Thus, these two routes can be linked together to form a

new route. This property has been used extensively later on in Section 2.5.4 for the

construction of a 〈v, wv〉-route list from ~σl and ~σr.

24

2.5.2 Operators on Routes and Route Lists

To make it easier when presenting our construction of the 〈v, wv〉-route lists, we

here define the following operators:

1. Add(~σ, σ): Given a route list ~σ and a route σ, Add(~σ, σ) adds σ at the end of

~σ.

2. Extract(~σ, i1, i2): Given a route list ~σ, and two integers i1 and i2, where 1 ≤

i1, i2 ≤ |~σ|, Extract(~σ, i1, i2) returns a route list that consists of the routes σi in

~σ for each i1 ≤ i ≤ i2 if i1 ≤ i2, and returns an empty route list otherwise.

3. Extend(~σ, v): Given a vertex v ∈ V and a route list ~σ with each route starting

and ending at v, Extend(~σ, v) extends each route in ~σ to start and end at

p(v). Specifically, each route σ in ~σ is considered. If σ is not empty, then

Extend(~σ, v) replaces σ with a route that starts from p(v) with an initial load

equal to load(σ, 0), then traverses p(v) → v, follows the states of σ, and then

traverses v → p(v); otherwise, σ must be empty, and Extend(~σ, v) replaces σ

with a degenerate route that consists of only p(v) with an empty load.

4. Link(σ, π): Given two routes, σ and π, such that either σ or π is empty, or that

the final state of σ equals the initial state of π, Link(σ, π) returns a route that

follows σ and then follows π.

5. CrossLink(~σ, ~π): Given two route lists, ~σ and ~π, containing the same number

of routes h, such that the final state of route σi equals the initial state of route

πi for 1 ≤ i ≤ h, and that the final state of route πi equals the initial state of

route σi+1, for 1 ≤ i ≤ h − 1, CrossLink(~σ, ~π) returns a route that follows σ1,

π1, σ2, π2, ..., σh, and πh, sequentially.

6. Replace(~σ, i, π): Given a route list ~σ, an integer i with 1 ≤ i ≤ |~σ|, and a route

π, Replace(~σ, i, π) replaces route σi with route π in ~σ.

25

By storing both the states for routes, and the routes for route lists, as linked lists,

it is easy to see that the following time complexities can be achieved for the above

operators.

Lemma 2.2. If linked lists are used as the data structure for routes and route lists,

then

1. Add(σ̃, σ) and Link(σ, π) run in O(1) time;

2. Extract(~σ, i1, i2), Extend(~σ, v), and Replace(~σ, i, σ) run in O(|~σ|) time;

3. CrossLink(~σ, ~π) runs in O(|~σ|+ |~π|) time.

2.5.3 Construction of 〈v, wv〉-Route Lists for Leaves

The construction of 〈v, wv〉-route lists for each leaf v of T is the basis of our

approximation algorithm. To understand the basic concept, consider leaf 2 and leaf 4

of the instance in Figure 2.2(a). According to Table 2.1, w2 = k − 3 and w4 = k − 1,

which implies that q(2) + w2 = k − 1 and q(4) + w4 = k + 1. We can construct a

〈4, w4〉-route list ~σ4 by following the greedy structure, as explained in Section 2.4, to

carry as much of the product as possible out of T4, which, due to the capacity limit of

k, needs to contain two routes, with the first carrying a full final load and the second

carrying a final load of 1 unit, as shown in Figure 2.3. Similarly, we can construct a

〈2, w2〉-route list ~σ2, which, due to 0 ≤ q(2) + w2 < k, needs only the first route to

follow the greedy structure and pick up both of the two units of the product out of T2,

as shown in Figure 2.3. Since m(2, w2) = 1 = n(2), ~σ2 needs to contain a degenerate

route that consists of only vertex 3 with an empty load, in order that ~σ2 can satisfy

Condition 7 of Definition 2.2 as a 〈2, w2〉-route list.

We can now generalize the idea above so as to construct a 〈v, wv〉-route list ~σv for

each leaf v, using the following three stages.

Stage 1 (Initialization): Set ~σv ← ∅.

26

Stage 2 (Construction): We first follow the greedy structure, as defined in Sec-

tion 2.4, to construct routes σv,i for 1 ≤ i ≤ m(v, wv). Consider the following three

cases:

• Case 1: 0 ≤ q(v) + wv ≤ k. Thus, m(v, wv) = 1 by (2.3), and tail(v, wv) =

q(v) +wv by (2.4). To comply with the greedy structure, only one route σv,1 is

needed, set as [p(v), wv][v, wv][v, wv + q(v)][p(v), wv + q(v)], carrying an initial

load of wv units of the product, and then picking up q(v) units from v (if

q(v) ≥ 0), or delivering −q(v) units to v (if q(v) < 0).

• Case 2: q(v) + wv > k. Thus, m(v, wv) ≥ 2 by (2.3), and q(v) > 0 by wv ≤ k.

To comply with the greedy structure, each route needs to pick up as much of

the product as possible from v. Thus, set σv,1 ← [p(v), wv][v, wv][v, k][p(v), k]

as the first route, carrying an initial load of wv units and picking up (k − wv)

units from v. If m(v, wv) ≥ 3, set σv,i ← [p(v), 0][v, 0][v, k][p(v), k] for 2 ≤ i ≤

m(v, wv) − 1, carrying an empty initial load and picking up k units from v.

Finally, set σv,m(v,wv) ← [p(v), 0][v, 0][v, tail(v, wv)][p(v), tail(v, wv)] as the last

route, carrying an empty initial load and picking up tail(v, wv) units from v to

clear the remaining supplies.

• Case 3: q(v) + wv < 0. Thus, m(v, wv) ≥ 2 by (2.3), and q(v) < 0 by

3

1

3

0 k-3

3

2

3

k-1k-3

6

4

6

kk-1

6

4

6

10

6

5

6

1 0

8

7

8

k 0

+(k-3) +2 +2 +1 -1 -k

3 3 6 8

1 42 5 7

Figure 2.3: Construction of 〈v, wv〉-route lists ~σv for leaves v ∈ {1, 2, 4, 5, 7} of the
instance in Figure 2.2(a).

27

wv ≥ 0. To comply with the greedy structure, each route needs to deliv-

er as much of the product as possible to v. Similar to Case 2, set σv,1 ←

[p(v), wv][v, wv][v, 0][p(v), 0] as the first route, carrying an initial load of wv units

and delivering it all to v. If m(v, wv) ≥ 3, set σv,i ← [p(v), k][v, k][v, 0][p(v), 0]

for 2 ≤ i ≤ m(v, wv)− 1, carrying an initial load of k units and delivering it all

to v. Finally, set σv,m(v,wv) ← [p(v), k][v, k][v, tail(v, wv)][p(v), tail(v, wv)] as the

last route, carrying an initial load of k units and delivering k− tail(v, wv) units

to v to meet the remaining requirements.

We then apply Add(~σv, σv,i) for each 1 ≤ i ≤ m(v, wv). Thus, the m(v, wv) routes

constructed above for ~σv have served all the pickup and delivery requests for leaf v,

which implies that Condition 2 of Definition 2.2 for a 〈v, wv〉-route list is satisfied.

Since each route starts and ends at p(v), Condition 1 of Definition 2.2 is also satisfied.

Moreover, since V (Tv) = {v}, Condition 3 of Definition 2.2 is satisfied. Since σv,1 has

an initial load of wv, and since the m(v, wv) routes comply with the greedy structure,

Conditions 5 and 6 of Definition 2.2 are also satisfied.

Stage 3 (Finalization): If m(v, wv) = n(v), then in order to satisfy Conditions 4

and 7 of Definition 2.2, we set σv,n(v)+1 ← [p(v), 0], and apply Add(~σv, σv,n(v)+1) to

add to ~σv a degenerate route that consists of only p(v). Otherwise, due to (2.5), we

have m(v, wv) = n(v) + 1, which implies that after Stage 2, ~σv has already satisfied

Conditions 4 and 7 of Definition 2.2.

Hence, we have obtained a 〈v, wv〉-route list ~σv for each leaf v. Figure 2.3 illustrates

the route lists constructed for each leaf of the instance in Figure 2.2(a). Lemma 2.3

can thus be established.

Lemma 2.3. For each leaf v of T , a 〈v, wv〉-route list ~σv can be obtained in O(n(v))

time.

Proof. We have shown that ~σv constructed by the three stages above is a 〈v, wv〉-route

28

list. Moreover, the construction of each σv,i for 1 ≤ i ≤ m(v, wv) in Stage 2 takes O(1)

time. By Lemma 2.2, Add(~σv, σv,i) applied in Stages 2 and 3 for each 1 ≤ i ≤ n(v)+1

takes O(1) time. Since m(v, wv) ≤ n(v) + 1 by (2.5), the construction of ~σv takes

O(n(v)) time in total.

2.5.4 Construction of 〈v, wv〉-Route Lists for Internal Nodes

Consider each internal node v of T , with the left and right children denoted by l

and r. Since I is standard, q(v) = 0, which implies q(Tv) = q(Tl) + q(Tr).

Given an 〈l, wl〉-route list ~σl, which contains n(l) + 1 routes denoted by σl,i for

1 ≤ i ≤ n(l) + 1, and given an 〈r, wr〉-route list ~σr, which contains n(r) + 1 routes

denoted by σr,i for 1 ≤ i ≤ n(r) + 1, we need to construct a 〈v, wv〉-route list ~σv to

establish Lemma 2.4.

Lemma 2.4. For each internal node v of T with the left and right children denoted

by l and r, given an 〈l, wl〉-route list ~σl and an 〈r, wr〉-route list ~σr, a 〈v, wv〉-route

list ~σv can be obtained in O(n(l) + n(r)) time.

Since I is standard, implying that q(Tl) ≥ q(Tr), it is sufficient to consider only

the following three cases: Case 1, where q(Tl) ≥ 0 and q(Tr) ≥ 0, or q(Tl) < 0

and q(Tr) < 0; Case 2, where q(Tl) ≥ 0, q(Tr) < 0, and q(Tv) ≥ 0; and Case 3,

where q(Tl) ≥ 0, q(Tr) < 0, and q(Tv) < 0. Thus, we present three sub-routines

in Section 2.5.4.1, Section 2.5.4.2, and Section 2.5.4.3, to construct ~σv and prove

Lemma 2.4 for each of these three cases, respectively.

2.5.4.1 Case 1: q(Tl) ≥ 0 and q(Tr) ≥ 0, or q(Tl) < 0 and q(Tr) < 0.

As we have shown, q(Tv) = q(Tl) + q(Tr). Thus, in this case, if q(Tl) ≥ 0 and

q(Tr) ≥ 0, then q(Tv) ≥ 0; otherwise, q(Tl) < 0 and q(Tr) < 0, implying that

q(Tv) < 0.

29

3

1

3

0 k-3

3

2

k-1

9 9

0 k-1

+(k-3) +2

3

9 9

0 0

3
0

3

1,1 2,1 1,2 2,2

(lr) (0)

k-3

k-3

Figure 2.4: Construction of a 〈3, w3〉-route list for the instance in Figure 2.2(a).

To understand the basic idea of the construction, let us first consider internal

node 3 of the instance in Figure 2.2(a), where its left child is leaf 1 and its right

child is leaf 2. From Table 2.1, we have q(T1) = k − 3 ≥ 0, q(T2) = 2 ≥ 0, w3 = 0,

tail(3, w3) = k − 1, and n(3) = 1. Given the 〈1, w1〉-route list ~σ1 and 〈2, w2〉-route

list ~σ2 shown in Figure 2.3, we can merge ~σ1 and ~σ2 to construct a 〈3, w3〉-route list

~σ3 as follows. According to Definition 2.2, ~σ3 must contain two routes that comply

with the greedy structure, with the first route σ3,1 having an empty initial load and

a final load of k − 1, and the second route σ3,2 having empty initial and final loads.

It can be seen that the first route σ1,1 of ~σ1 has an empty initial load, and its final

load equals the initial load of the first route σ2,1 of ~σ2, which has a final load of k− 1.

Thus, as shown in Figure 2.4, we can obtain a route σ(lr) that follows σ1,1 and σ2,1

sequentially, so that σ(lr) has an empty initial load and a final load of k − 1. Thus,

σ(lr) can be used to form σ3,1. Furthermore, since both the second route σ1,2 of ~σ1

and the second route σ2,2 of ~σ2 have empty initial and final loads, we can obtain a

route σ(0) that follows σ1,2 and σ2,2 sequentially, so that σ(0) has empty initial and

final loads. Thus, σ(0) can be used to form σ3,2. Accordingly, by extending both σ3,1

and σ3,2 to start and end at vertex 9, we can obtain the two routes of ~σ3, which form

a 〈3, w3〉-route list.

30

By generalizing the idea above, we develop the following sub-routine for the con-

struction of ~σv for Case 1, consisting of three stages.

Stage 1 (Initialization): Set ~σv ← ∅, and construct two routes, denoted by σ(lr)

and σ(0), in the following two steps:

1. Construction of σ(lr): By Definition 2.2 and wr = tail(l, wl), the final load of

σl,m(l,wl) equals the initial load of σr,1. Thus, set σ(lr) ← Link(σl,m(l,wl), σr,1), so

that σ(lr) follows σl,m(l,wl) and σr,1 sequentially.

2. Construction of σ(0): By Definition 2.2, for each u ∈ {l, r}, if m(u,wu) = n(u),

both the initial and final loads of σu,n(u)+1 are empty. Thus, set σ(0) to be a route

that follows σl,n(l)+1 if m(l, wl) = n(l), and then follows σr,n(r)+1 if m(r, wr) =

n(r). Thus, σ(0) has empty initial and final loads, and if m(u,wu) = n(u) + 1

for each u ∈ {l, r}, then σ(0) is an empty route.

Accordingly, consider σl,i for 1 ≤ i ≤ m(l, wl)− 1, σr,i for 2 ≤ i ≤ m(r, wr), σ
(lr), and

σ(0). They together serve all the pickup and delivery requests in Tl and Tr. Thus,

using these m(l, wl) +m(r, wr) routes, the sub-routine constructs ~σv in the next two

stages.

Stage 2 (Construction): The aim is to construct m(v, wv) routes of ~σv that comply

with the greedy structure, with the first route having an initial load of wv. We apply

the following two steps to construct routes σv,i for 1 ≤ i ≤ m(l, wl) + m(r, wr) − 1

and add them to ~σv:

1. Set σv,i ← σl,i for each 1 ≤ i ≤ m(l, wl) − 1. Set σv,m(l,wl) ← σ(lr). Set

σv,m(l,wl)+i−1 ← σr,i for each 2 ≤ i ≤ m(r, wr).

2. Apply Add(~σv, σv,i) for 1 ≤ i ≤ m(l, wl) +m(r, wr)− 1.

The construction of the m(v, wv) routes for q(Tl) ≥ 0 and q(Tr) ≥ 0 is illustrated in

Figure 2.5, and the construction of routes for q(Tl) < 0 and q(Tr) < 0 is similar.

31

w
l

k k

0

k

0 0

ta
il
(r
,w

r
)

l

v

k

0 w
r

ta
il
(l
,w

l)

...

σr,2 σr,m(r,wr)......σl,1 σ(lr)σl,m(l,wl)−1

σl,m(l,wl) σr,1

r

Figure 2.5: Construction of ~σv for an internal node v: when q(Tl) ≥ 0 and q(Tr) ≥ 0.

As a result of Stage 2, since wv = wl and σl,1 has an initial load of wl, we obtain

that σv,1 has an initial load of wv. Since the first m(l, wl) routes in ~σl and the first

m(r, wr) routes in ~σr together have a total balance of q(Tl)+q(Tr) = q(Tv), the routes

σv,i for 1 ≤ i ≤ m(l, wl)+m(r, wr)−1 also have a total balance of q(Tv). Now consider

the following two situations: (i) if q(Tl) ≥ 0 and q(Tr) ≥ 0, then q(Tv) ≥ 0. Thus,

since the first m(l, wl) routes in ~σl and the first m(r, wr) routes in ~σr both comply with

the greedy structure, each of the routes σv,i for 1 ≤ i ≤ m(l, wl) +m(r, wr)− 1 must

carry as much of the product as possible out of Tv; (ii) If q(Tl) < 0 and q(Tr) < 0,

then q(Tv) < 0. Thus, since the first m(l, wl) routes in ~σl and the first m(r, wr)

routes in ~σr both comply with the greedy structure, each of the routes σv,i for 1 ≤

i ≤ m(l, wl) + m(r, wr) − 1 must carry as much of the product as possible into Tv.

Therefore, in both situations, the m(l, wl)+m(r, wr)−1 routes comply with the greedy

structure. By (2.3) and (2.4), we obtain that m(l, wl) +m(r, wr)− 1 = m(v, wv), and

that σv,m(v,wv) has a final load of tail(v, wv). Hence, ~σv satisfies Conditions 5 and 6 of

Definition 2.2 for a 〈v, wv〉-route list.

Moreover, due to Condition 1 of Definition 2.2 for ~σl and ~σr, each of the routes

32

σv,i constructed in Stage 2 for 1 ≤ i ≤ m(v, wv), as well as the route σ(0) constructed

in Stage 1, must start and end at v, visiting vertices in Tv only. Due to Conditions

2 and 3 of Definition 2.2 for ~σl and ~σr, the route σ(0) and the m(v, wv) routes in

~σv together serve all the pickup and delivery requests in Tv and traverse each edge

e(u) with u ∈ V (Tv) \ {v} at most 2n(u) + 2 times, satisfying Conditions 2 and 3 of

Definition 2.2.

Stage 3 (Finalization): The aim is to transform ~σv to satisfy Conditions 1, 2,

3, 4 and 7 of Definition 2.2 to become a 〈v, wv〉-route list. If m(v, wv) = n(v),

then we add σ(0) to ~σv, so that |~σv| = n(v) + 1. Since σ(0) has empty initial and

final loads, Conditions 2, 3, 4 and 7 of Definition 2.2 are thus satisfied. Otherwise,

m(v, wv) = n(v) + 1, and we need to link σ(0) with a route in ~σv that has an empty

initial load or empty final load. To see that such a route always exists in ~σv, note that

|~σv| = m(v, wv) ≥ 2, which implies that ~σv contains at least two routes. Thus, since

routes in ~σv comply with the greedy structure, σv,2 must have an empty initial load if

q(Tv) ≥ 0, or else σv,1 must have an empty final load. As a result, Conditions 2, 3, 4

and 7 of Definition 2.2 are satisfied. To further satisfy Condition 1 of Definition 2.2,

we can apply Extend(~σv, v) to extend each route in ~σv to start and end at p(v). Thus,

the transformation of ~σv can be summarized into the following two steps:

1. If m(v, wv) = n(v), then Add(~σv, σ
(0)). If m(v, wv) 6= n(v) and q(Tv) ≥ 0, then

apply Replace(~σv, 2, Link(σ(0), σv,2)) to replace σv,2 with the route that links

σ(0) and σv,2. Otherwise, we have m(v, wv) 6= n(v) and q(Tv) < 0, and thus,

apply Replace(~σv, 1,Link(σv,1, σ
(0))) to replace σv,1 with the route that links σv,1

and σ(0).

2. Apply Extend(~σv, v) to extend each route in ~σv to start and end at p(v).

Hence, according to Definition 2.2, ~σv returned by the above 3-stage sub-routine

is a 〈v, wv〉-route list. Moreover, by Lemma 2.2, the Link operator takes O(1) time,

33

which implies that Stage 1 runs in O(1) time. Since the Add operator takes O(1)

time, and since |~σl| = n(l) + 1 and |~σr| = n(r) + 1, Stage 2 runs in O(n(l) + n(r))

time. Since the Add and Link operators take O(1) time, since the Replace and Extend

operators on ~σv take O(|~σv|) time, and since |~σv| = n(v) + 1, Stage 3 runs in O(n(v))

time. By (2.1) and q(Tv) = q(Tr) + q(Tl), we have n(v) ≤ n(l) +n(r). Thus, all three

stages run in O(n(l) + n(r)) time. Lemma 2.4 has thus been proved for Case 1.

2.5.4.2 Case 2: q(Tl) ≥ 0, q(Tr) < 0, and q(Tv) ≥ 0.

In this case, to achieve a total balance of q(Tv), routes to be constructed for ~σv

need to carry q(Tv) more units of the product out of Tv than into Tv.

To understand the basic idea of the construction, let us first consider internal

node 6 of the instance in Figure 2.2(a), where its left child is leaf 4 and its right child

is leaf 5. From Table 2.1, we have q(T4) = 2 ≥ 0, q(T5) = −1 < 0, w6 = k − 1,

tail(6, w6) = k, and n(6) = 1. Given the 〈4, w4〉-route list ~σ4 and 〈5, w5〉-route list

~σ5 shown in Figure 2.3, we can merge ~σ4 and ~σ5 to construct a 〈6, w6〉-route list ~σ6

as follows. According to Definition 2.2, ~σ6 must contain two routes that comply with

the greedy structure, with the first route σ6,1 having an initial load of k−1 and a final

load of k, and the second route σ6,2 having empty initial and final loads. It can be

seen that the final load of σ4,2 equals the initial load of σ5,1, and thus we can obtain

a route σ(lr) that follows σ4,2 and σ5,1 sequentially, as shown in Figure 2.6. Having

noted that both σ(lr) and σ5,2 have empty initial and final loads, we can construct

σ(0) by following σ5,2 and σ(lr) sequentially, so that σ(0) has empty initial and final

loads. Thus, σ(0) can be used to form σ6,2. Moreover, since σ4,1 has an initial load of

k − 1 and a final load of k, it can be used to form σ6,1. Thus, by extending both σ6,1

and σ6,2 to start and end at vertex 8, we can obtain the two routes of ~σ6, which form

a 〈6, w6〉-route list.

By generalizing the idea above, we develop the following sub-routine for the con-

34

6

4

6

0 1

6

5

0

8 8

0 0

6

4

6

k-1 k

8 8

k-1 k

+2 +1 -1

6 6

1

4,1 5,2 4,2 5,1

(lr)(0)

0 1

Figure 2.6: Construction of a 〈6, w6〉-route list for the instance in Figure 2.2(a).

struction of ~σv for Case 2, which, as with Case 1, consists of three stages.

Stage 1 (Initialization): Repeat Stage 1 in Case 1 to set ~σv ← ∅, and construct

routes σ(lr) and σ(0).

Stage 2 (Construction): This has the same objective as Stage 2 in Case 1, that of

constructing m(v, wv) routes of ~σv that comply with the greedy structure, with the

first route having an initial load of wv. However, the construction is more complicated,

and σ(0) may need modifications so that σ(0) and the m(v, wv) routes of ~σv together

serve all the pickup and delivery requests in Tv and traverse each edge e(u) with

u ∈ V (Tv) \ {v} at most 2n(u) + 2 times, with σ(0) still having empty initial and final

loads.

First, consider a simple situation, where m(r, wr) = 1. If m(l, wl) = 1, then σ(lr)

alone achieves a balance of q(Tl) + q(Tr) = q(Tv), complies with the greedy structure,

and has an initial load of wv. Thus, we apply Add(~σv, σ
(lr)), so that σv,1 ← σ(lr).

Otherwise, m(l, wl) ≥ 2, which implies that σ(lr) has an empty initial load. Thus,

consider the following two cases: (i) If the final load of σ(lr) is not empty, then

consider routes σl,i for 1 ≤ i ≤ m(l, wl) − 1, and route σ(lr), which together comply

with the greedy structure, with σl,1 having an initial load of wl = wv. Thus, we apply

Add(~σv, σl,i), so that σv,i ← σl,i, for 1 ≤ i ≤ m(l, wl)−1, and then apply Add(~σv, σ
(lr)),

35

so that σv,m(l,wl) ← σ(lr). (ii) If σ(lr) has an empty final load, then tail(r, wr) = 0,

which, together with wr = tail(l, wl), m(r, wr) = 1, q(Tr) < 0, (2.3), and (2.4), implies

that tail(l, wl) + q(Tr) = 0. Accordingly, routes σl,i for 1 ≤ i ≤ m(l, wl) − 1 have

a total balance of q(Tl) − tail(l, wl) = q(Tv) − q(Tr) − tail(l, wl) = q(Tv), and thus

comply with the greedy structure, with σl,1 having an initial load of wl = wv. We

then apply Add(~σv, σl,i), so that σv,i ← σl,i, for 1 ≤ i ≤ m(l, wl)− 1. Moreover, since

σ(lr) has empty initial and final loads, we reset σ(0) ← Link(σ(0), σ(lr)), which still

retains the empty initial and final loads.

Next, consider another situation, where m(r, wr) ≥ 2. The construction of the

m(v, wv) routes has the following three steps, which are illustrated in Figure 2.7.

In Step 1, we reset σ(0) as follows by linking σ(0) and σ(lr):

• Set σ(0) ← Link(σ(0), σ(lr)).

To prove that this Link operation is valid and that σ(0) still has empty initial and

final loads, it is sufficient to show that σ(lr) has empty initial and final loads. Define

∆m := m(l, wl) −m(r, wr). By q(Tv) ≥ 0 and Lemma 2.5 below, ∆m ≥ 0, implying

m(l, wl) ≥ m(r, wr) ≥ 2. Since the first m(l, wl) routes in ~σl and the first m(r, wr)

routes in ~σr both comply with the greedy structure, σl,m(l,wl) must have an empty

initial load, and σr,1 must have an empty final load. Thus, σ(lr) has empty initial and

final loads.

Lemma 2.5. For each internal node v of T , if q(Tv) ≥ 0, then ∆m ≥ 0, and otherwise

∆m ≤ 0.

Proof. By wr = tail(l, wl) ≤ k and q(Tr) < 0, we have q(Tr) +wr < k. Thus, we have

tail(r, wr) = [q(Tr) + wr] (mod k) ≤ k − 1, (2.6)

−q(Tr) = [m(r, wr)− 1]k + wr − tail(r, wr), (2.7)

36

k

0

ta
il
(r
,w

r
)

0

k

k

... ...

k

k

0

σr,m(r,wr)

σl,1 σl,∆m
...

σr,2 σl,∆m+2σl,∆m+1 ...

w
l

k

... ...

rl

v

0

σ̂(lr)

0

0 w
r

σl,m(l,wl)

00

ta
il
(l
,w

l)

σ(lr)σ(0)

σr,1

σ(0)

Figure 2.7: Construction of ~σv for an internal node v: when q(Tl) ≥ 0, q(Tr) < 0,
q(Tv) ≥ 0, and m(r, wr) ≥ 2.

due to Lemma 2.1. By q(Tl) ≥ 0, (2.3), and (2.4), we have:

q(Tl) = [m(l, wl)− 1]k + tail(l, wl)− wl. (2.8)

Thus, since q(Tv) = q(Tl) + q(Tr), from wr = tail(l, wl), wl = wv, (2.7), and (2.8), we

obtain:

q(Tv) + wv = q(Tl) + q(Tr) + wl = [m(l, wl)−m(r, wr)]k + tail(r, wr). (2.9)

Moreover, if q(Tv) ≥ 0, then tail(r, wr) ≤ k− 1 by (2.6), which, together with wv ≥ 0

and (2.9), implies that m(l, wl) − m(r, wr) ≥ 0, and thus ∆m ≥ 0. Otherwise,

q(Tv) < 0, which, together with wv ≤ k, tail(r, wr) ≥ 0, and (2.9), implies that

m(l, wl)−m(r, wr) ≤ 0, and thus ∆m ≤ 0.

In Step 2, as shown below and in Figure 2.7, noting that m(l, wl) ≥ m(r, wr), we

extract m(r, wr) − 1 routes from ~σl and from ~σr, respectively, and then link them

to construct a route, denoted by σ̂(lr), which follows σl,∆m+1, σr,2,σl,∆m+2, σr,3, ...,

37

σl,∆m+m(r,wr)−1, and σr,m(r,wr), sequentially, moving amounts of the product from Tl

to Tr back and forth:

• Set ~σ′l ← Extract(~σl,∆m+1,∆m+m(r, wr)−1), and ~σ′r ← Extract(~σr, 2,m(r, wr)).

Set σ̂(lr) ← CrossLink (~σ′l, ~σ
′
r).

To show that the CrossLink operation is valid, consider the first m(l, wl) routes in

~σl and the first m(r, wr) routes in ~σr, which both comply with the greedy structure.

Thus, for 1 ≤ i ≤ m(r, wr) − 1, both the final load of σl,∆m+i and the initial load of

σr,i+1 equal k, and for 1 ≤ i ≤ m(r, wr)−2, both the final load of σr,i+1 and the initial

load of σl,∆m+i+1 are empty. This implies the validity of the CrossLink operation.

In Step 3, using σ̂(lr) and σl,i for 1 ≤ i ≤ ∆m, we determine the routes for ~σv as

follows. Since only the first ∆m routes of ~σl have not been included in either σ̂(lr) or

σ(0), we first apply Add(~σv, σl,i) for 1 ≤ i ≤ ∆m to add them to ~σ, so that σv,i ← σl,i

for 1 ≤ i ≤ ∆m. However, these routes may not be sufficient to achieve a total

balance of q(Tv). Thus, we next determine whether or not to add σ̂(lr), by considering

the following two situations: (i) If ∆m = 0, or the final load of σ̂(lr) is not empty,

then apply Add(~σv, σ̂
(lr)), so that σv,∆m+1 ← σ̂(lr), from which it can be seen that

the (∆m + 1) routes in ~σv together have a total balance of q(Tl) + q(Tr) = q(Tv) and

comply with the greedy structure, and that route σv,1 has an initial load of wl = wv.

(ii) If ∆m > 0 and σ̂(lr) has an empty final load, then since ∆m > 0, the initial load

of σ̂(lr) is also empty. Thus, reset σ(0) ← Link(σ(0), σ̂(lr)), so that σ(0) still has empty

initial and final loads. It can be seen that the ∆m routes in ~σv together have a total

balance of q(Tl)+q(Tr) = q(Tv) and comply with the greedy structure, and that route

σv,1 has an initial load of wl = wv. Accordingly, Step 3 can be summarized as follows:

• Apply Add(~σv, σl,i) for 1 ≤ i ≤ ∆m. If ∆m = 0 or the final load of σ̂(lr) is not

empty, then apply Add(~σv, σ̂
(lr)); otherwise, reset σ(0) ← Link(σ(0), σ̂(lr)).

As a result of Stage 2, routes in ~σv achieve a total balance of q(Tv), and comply

38

with the greedy structure, with the first route having an initial load of wv. By

(2.3) and (2.4), we obtain that |~σv| = m(v, wv) and σv,m(v,wv) has a final load of

tail(v, wv). Hence, ~σv satisfies Conditions 5 and 6 of Definition 2.2 for a 〈v, wv〉-route

list. Moreover, as with Stage 2 for Case 1, it can be seen that σ(0) still has empty

initial and final loads, and that all routes in ~σv ∪ {σ(0)} start and end at v, visit

vertices in Tv only, and together satisfy Conditions 2 and 3 of Definition 2.2.

Stage 3 (Finalization): Similar to Stage 3 in Case 1, ~σv can be transformed to

satisfy Conditions 1, 2, 3, 4 and 7 of Definition 2.2 by the following two steps:

1. If m(v, wv) = n(v), then Add(~σv, σ
(0)). Otherwise, ~σv must contain at least

two routes with σv,2 having an empty initial load, and thus, we can apply

Replace(~σv, 2,Link(σ(0), σv,2)) to replace σv,2 with the route that links σ(0) and

σv,2. As a result, ~σv satisfies Conditions 2, 3, 4 and 7 of Definition 2.2.

2. Apply Extend(~σv, v) to extend each route in ~σv to start and end at p(v). As a

result, ~σv satisfies Condition 1 of Definition 2.2.

Hence, according to Definition 2.2, ~σv, returned by the above 3-stage sub-routine,

is a 〈v, wv〉-route list. Moreover, as with Case 1, it can be shown that Stage 1 runs in

O(1) time and Stage 3 runs in O(n(v)) time. Now consider Stage 2: If m(r, wr) = 1,

then since the Add and Link operators run in O(1) time (due to Lemma 2.2), and

since m(l, wl) ≤ n(l) + 1, Stage 2 runs in O(n(l)) time. Otherwise, m(r, wr) ≥ 2, and

Stage 2 has three steps. It is easy to see that Step 1 and Step 3 run in O(1) time

and O(n(l) + n(r)) time, respectively. For Step 2, we have |~σ′l| + |~σ′r| ≤ |~σl| + |~σr| ≤

n(l) + n(r) + 2. Thus, since the Extract operator on ~σl and on ~σr run in O(|~σl|) time

and O(|~σr|) time, respectively, and since the CrossLink operator on ~σ′l and ~σ′r runs in

O(|~σ′l|+ |~σ′r|) time, then Step 2 runs in O(n(l) + n(r)) time, and so does Stage 2. By

(2.1) and q(Tv) = q(Tr) + q(Tl), we have n(v) ≤ n(l) + n(r). Thus, the three stages

together run in O(n(l) + n(r)) time. Lemma 2.4 has been proved for Case 2.

39

2.5.4.3 Case 3: q(Tl) ≥ 0, q(Tr) < 0, and q(Tv) < 0.

In this case, to achieve a total balance of q(Tv), routes to be constructed for ~σv

need to carry −q(Tv) more units of the product into Tv than out of Tv.

To understand the basic idea of the construction, let us first consider internal

node 8 of the instance in Figure 2.2(a), where its left child is leaf 6 and its right

child is internal node 7. From Table 2.1, we have q(T6) = 1 ≥ 0, q(T7) = −k < 0,

q(T8) = 1 − k < 0, w8 = k − 1, tail(8, w8) = 0, and n(8) = 1. Given the 〈6, w6〉-

route list ~σ6 shown in Figure 2.6 and the 〈7, w7〉-route list ~σ7 shown in Figure 2.3,

we can merge ~σ6 and ~σ7 to construct a 〈8, w8〉-route list ~σ8 as follows. According to

Definition 2.2, ~σ8 must contain two routes that comply with the greedy structure,

with the first route σ8,1 having an initial load of k − 1 and an empty final load, and

the second route σ8,2 having empty initial and final loads. It can be seen that the final

load of σ6,1 equals the initial load of σ7,1, and thus we can obtain a route σ(lr) that

follows σ6,1 and σ7,1 sequentially, as shown in Figure 2.8, which has an initial load of

k − 1 and an empty final load. Thus, σ(lr) can be used to form σ8,1. Furthermore,

since both σ6,2 and σ7,2 have empty initial and final loads, we can then construct a

route σ(0) by following σ6,2 and σ7,2 sequentially, so that σ(0) has empty initial and

final loads. Thus, σ(0) can be used to form σ8,2. Accordingly, by extending both σ8,1

and σ8,2 to start and end at vertex 9, we can obtain the two routes of ~σ8, and can

verify these forming a 〈8, w8〉-route list.

By generalizing the above idea, we develop the following sub-routine for the con-

struction of ~σv for Case 3, which, as with Case 1 and Case 2, consists of three stages.

Stage 1 (Initialization): Repeat Stage 1 in Case 1 to set ~σv ← ∅, and construct

routes σ(lr) and σ(0).

Stage 2 (Construction): Similar to Stage 2 in Case 2, the aim is to construct

m(v, wv) routes of ~σv that comply with the greedy structure, with the first route in

~σv having an initial load of wv, and with route σ(0) retaining its empty initial and

40

6

4

6

0 1

6

5

0

8 8

0 0

6

4

6

k-1 k

8 8

k-1 k

+2 +1 -1

8

7

0

-k

9 9 9 9

0 00k-1

6

8

0

0

7,2

8

k

7,16,1 6,2

(lr) (0)

k

Figure 2.8: Construction of a 〈8, w8〉-route list for the instance in Figure 2.2(a).

final loads. .

First, consider a simple situation, where m(l, wl) = 1. Since route σ(lr) and routes

σr,i for 2 ≤ i ≤ m(r, wr) − 1 together comply with the greedy structure, with σ(lr)

having an initial load of wl = wv, we apply Add(~σv, σ
(lr)), so that σv,1 ← σ(lr), and

apply Add(~σv, σr,i), so that σv,i ← σr,i, for 2 ≤ i ≤ m(r, wr).

Next, consider another situation, where m(l, wl) ≥ 2. Similar to the situation of

m(r, wl) ≥ 2 in Case 2, the construction of the m(v, wv) routes has three steps, as

illustrated in Figure 2.9.

In Step 1, we reset σ(0) ← Link(σ(0), σ(lr)). To prove that Step 1 is valid and

that σ(0) retains its empty initial and final loads, it is sufficient to show that σ(lr) has

empty initial and final loads. Recall that ∆m := m(l, wl) −m(r, wr). By q(Tv) < 0

and Lemma 2.5, we have ∆m ≤ 0. Thus, m(r, wr) ≥ m(l, wl) ≥ 2. Note that the

first m(l, wl) routes in ~σl, and the first m(r, wr) routes in ~σr, both comply with the

greedy structure. Thus, σl,m(l,wl) must have an empty initial load, and σr,1 must have

an empty final load. Hence, σ(lr) has empty initial and final loads.

In Step 2, since m(r, wr) ≥ m(l, wl), we extract m(l, wl) − 1 routes from ~σl and

from ~σr, respectively, and link them so as to construct a route σ̂(lr), which follows

41

kk

0

... ...

σr,m(r,wr)σr,m(l,wl)+1 ...

l r

k

w
l

0

k

k

... ...

k

σ̂(lr)

σl,1

0

0

ta
il
(r
,w

r
)

v

σr,m(l,wl)−1σr,2 σl,2 ...

0

0 w
r

σl,m(l,wl)

00

ta
il
(l
,w

l)

σ(lr)σ(0)

σr,1

σ(0)

Figure 2.9: Construction of ~σv for an internal node v: when q(Tl) ≥ 0, q(Tr) < 0,
q(Tv) < 0, and m(l, wl) ≥ 2.

σl,1, σr,2,σl,2, σr,3, ..., σl,m(l,wl)−1, and σr,m(l,wl), sequentially. This can be achieved by

setting ~σ′l ← Extract(~σl, 1,m(l, wl) − 1), ~σ′r ← Extract(~σr, 2,m(l, wl)), and σ̂(lr) ←

CrossLink (~σ′l, ~σ
′
r). The CrossLink operation is valid, since the first m(l, wl) routes in

~σl, and the first m(r, wr) routes in ~σr, both comply with the greedy structure, which

implies that for 1 ≤ i ≤ m(l, wl)− 1, both the final load of σl,i and the initial load of

σr,i+1 are equal to k, and that for 1 ≤ i ≤ m(l, wl) − 2, both the final load of σr,i+1

and the initial load of σl,i+1 are empty.

In Step 3, since σ̂(lr) starts with σl,1, it has an initial load of wl = wv. Moreover,

route σ̂(lr) and the −∆m routes σr,m(l,wl)+i for 1 ≤ i ≤ −∆m of ~σr together have a

total balance of q(Tl)+q(Tr) = q(Tv) and comply with the greedy structure. Thus, we

apply Add(~σv, σ̂
(lr)) to set σv,1 ← σ̂(lr), and apply Add(~σv, σr,m(l,wl)+i) to set σv,i+1 ←

σr,m(l,wl)+i, for 1 ≤ i ≤ −∆m.

As a result of Stage 2, routes in ~σv have a total balance of q(Tv), and comply

with the greedy structure, with the first route having an initial load of wv. By (2.3)

and (2.4), we obtain that |~σv| = m(v, wv) and that σv,m(v,wv) has a final load of

tail(v, wv). Hence, ~σv satisfies Conditions 5 and 6 of Definition 2.2 for a 〈v, wv〉-route

list. Moreover, as with Stage 2 for Cases 1 and 2, it can be seen that σ(0) still has

42

empty initial and final loads, and that all routes in ~σv ∪ {σ(0)} start and end at v,

visit vertices in Tv only, and together satisfy Conditions 2 and 3 of Definition 2.2.

Stage 3 (Finalization): Similar to Stage 3 in Cases 1 and 2, ~σv can be transformed

to satisfy Conditions 1, 2, 3, 4 and 7 of Definition 2.2 by the following two steps:

1. If m(v, wv) = n(v), then Add(~σv, σ
(0)). Otherwise, ~σv must contain at least two

routes with σv,1 having an empty final load, and thus, we can apply

Replace(~σv, 1,Link(σv,1, σ
(0))) to replace σv,1 with the route that links σv,1 and

σ(0). As a result, ~σv satisfies Conditions 2, 3, 4 and 7 of Definition 2.2.

2. Apply Extend(~σv, v) to extend each route in ~σv to start and end at p(v). As a

result, ~σv satisfies Condition 1 of Definition 2.2.

Hence, according to Definition 2.2, ~σv returned by the above 3-stage sub-routine

is a 〈v, wv〉-route list. Moreover, as with Case 1, it can be shown that Stage 1 runs

in O(1) time, Stage 3 runs in O(n(v)) time, Stage 2 runs in O(n(l) + n(r)) time,

and n(v) ≤ n(l) + n(r). Thus, the three stages together run in O(n(l) + n(r)) time.

Lemma 2.4 has been proved for Case 3, which completes the proof of Lemma 2.4.

2.5.5 Main Algorithm

Given the constructions in Section 2.5.3 and Section 2.5.4, we can now develop an

approximation algorithm for the CTSPPD-T, as shown in Algorithm 2.1.

Algorithm 2.1.

1. Re-label vertices of V by 1, 2, ..., |V |, according to the postorder traversal se-

quence of T .

2. Follow Section 2.5.1 to compute wv for each v ∈ V so that ws = 0, and that

wl = wv and wr = tail(l, wl) for each internal vertex v ∈ V and its left and right

children l and r.

43

3. For v = 1, 2, ..., |V |, do the following:

(a) If v is a leaf, follow the sub-routine in Section 2.5.3 to construct a 〈v, wv〉-

route list ~σv.

(b) Otherwise, v is an internal node. Let l < v and r < v denote the left and

right children of v. Given ~σl and ~σr, which were constructed for l and r

before the construction of ~σv, follow the sub-routines in Section 2.5.4 to

construct a 〈v, wv〉-route list ~σv.

4. Follow the proof of Theorem 2.2 to transform ~σs to a feasible route σ, and return

σ.

For example, consider the instance shown in Figure 2.2(a). Following Algorith-

m 2.1, we can construct 〈v, wv〉-route lists for v = 1, 2, ..., 9. The route lists for

1 ≤ v ≤ 8 have been presented in Figures 2.3, 2.4, 2.6, and 2.8. Given the 〈3, w3〉-route

list in Figure 2.4 and the 〈8, w8〉-route list in Figure 2.8, we can construct a 〈9, w9〉-

route list ~σ9 by following the sub-routine in Section 2.5.4.2, since q(T3) = k − 1 > 0,

q(T8) = 1 − k < 0, and q(T9) = 0. Accordingly, the two routes in ~σ9 can be linked

together to form a feasible route, this being the same as the route in Figure 2.2(b).

The approximation ratio and time complexity of Algorithm 2.1 are shown in The-

orem 2.3.

Theorem 2.3. Given any standard instance I, Algorithm 2.1 returns a feasible route

σ with d(σ) ≤ 2OPT(I) in O(|V |(1 +
∑

v∈V |q(v)|/k)) time, and the approximation

ratio of 2 is tight.

Proof. To show the correctness and approximation ratio of Algorithm 2.1, we first

prove by induction that ~σv obtained in Step 3 of Algorithm 2.1 for each v = 1, 2, ..., |V |

is a 〈v, wv〉-route list. This holds true when v is a leaf of T , due to Step 3(a) and

Lemma 2.3. For each internal node v with the left and right children denoted by l < v

44

and r < v, suppose that ~σt is a 〈t, wt〉-route list for 1 ≤ t ≤ v−1, which includes t = l

and t = r. Thus, due to Step 3(b) and Lemma 2.4, ~σv is a 〈v, wv〉-route list. The

induction is therefore established. Hence, ~σs is an 〈s, 0〉-route list, which, together

with Step 4 and Theorem 2.2, implies that σ is feasible and d(σ) ≤ 2OPT(I).

To see that the approximation ratio of 2 is tight, consider the instance I in Fig-

ure 2.2(a). Define d(6, 8) := 1 and d(e) := 0 for each e ∈ E \ {(6, 8)}. As we have

shown, Algorithm 2.1 on I returns the same feasible route as that in Figure 2.2(b),

whose total length equals 4. According to Figure 2.2(c), we have OPT(I) = 2. Thus,

the approximation ratio of 2 is tight for Algorithm 2.1.

Moreover, for each leaf u ∈ T , by Lemma 2.3 the construction of ~σu runs in

O(n(u)) time, which is in O(1 +
∑

v∈V |q(v)|/k) time due to (2.1). For each internal

node u ∈ T , by Lemma 2.4 the construction of ~σu runs in O(n(l) + n(r)) time,

which is in O(1 +
∑

v∈V |q(v)|/k) time due to (2.1). Hence, Algorithm 2.1 runs in

O(|V |(1 +
∑

v∈V |q(v)|/k)) time.

From the proofs of Theorem 2.2 and Theorem 2.3, we know that route σ returned

by Algorithm 2.1 traverses each edge e(v) with v ∈ V at most 2n(v) + 2 times. Thus,

in the CTSPPD-T, although pickup and delivery requests can be split, σ serves each

request by at most n(v) + 1 divisions, which is one time more than the minimum

number of divisions for a full load service. Moreover, due to (2.1), we obtain that

maxv∈V traversal(σ, e(v)) is O(1 +
∑

v∈V |q(v)|/k), which, together with Theorem 2.1

and Theorem 2.3, implies that the tight approximation ratio of 2 can also be achieved

in O(|V |(1 +
∑

v∈V |q(v)|/k)) time for any arbitrary instance. It is interesting to see

that the demand-capacity ratio
∑

v∈V |q(v)|/k arises as a key parameter in assessing

the algorithm time complexity, since such a parameter also plays a key role in other

similar problems (even if in the context of solution quality rather than algorithm

time complexity) [5, 6]. Finally, although in this study we assume that each q(v) is

an integer, all the results obtained are valid even when each q(v) is fractional. As a

45

result, the time complexity of the proposed algorithm is robust with respect to both

rescaling of demands and the vehicle capacity.

2.6 Computational Results

This section reports on the computational results of the 2-approximation algorith-

m described in this chapter. For comparison, we also implemented a simple greedy

algorithm that constructs a feasible route by starting from the root, alternating be-

tween pickup sub-routes and delivery sub-routes, and returning to the root after all

the pickup and delivery requests are served, where each pickup sub-route keeps mov-

ing to the closest pickup point to pick up items until the vehicle’s load is full, and

each delivery sub-route keeps moving to the closest delivery point to deliver item-

s until the vehicle’s load is empty. It can be verified that the algorithm runs in

O(|V |
∑

v∈V |q(v)|/k + 2|V |2) time. We coded both the algorithms in Java, and the

experiments were performed on a Dell PC with a 2.83GHz CPU.

In our experiments we considered 1920 problem instances. For each

|V | ∈ {20, 80, 320, 1280}, we generated 480 instances by first randomly generating

ten trees in which vertices of each tree were sampled uniformly from a square [0, 1]×

[0, 1] and connected randomly, each edge having a length equal to the distance of its

endpoints. Each vertex v was assigned a product amount q(v) randomly from −γ to

+γ, where γ is a parameter with its value chosen from {16, 32, 64, 128}. The vehicle

capacity k was then chosen from {20, 21, 22, ..., 211}. Thus, for each value combination

of γ, |V |, and k, we obtained 10 problem instances based on the ten trees.

According to the experiments, the 2-approximation algorithm exhibited much

shorter running time than the greedy algorithm, particularly for large sized instances.

For instances with |V | = 1280 and k = 1, the 2-approximation algorithm took less

than 1 minute on average, including the time of the transformation to standard in-

stances, while the greedy algorithm took more than 40 minutes, which is greatly slower

46

than the 2-approximation algorithm. The main reason is that, for these randomly

generated instances, when k = 1, the expected time complexity of the greedy algorith-

m is O(|V |
∑

v∈V |q(v)|) but the 2-approximation algorithm is only O(
∑

v∈V |q(v)|).

Due to evenly distributed pickup and delivery points and evenly generated product

amount in these randomly instances, the internal node u ∈ V can have an expected

total balance equals to zero, i.e., q(Tu) = 0. According to (2.1), n(u) = 1 hold-

s for each internal node u, leading to the improvement on time complexity of the

2-approximation algorithm.

Table 2.2: Average approximation ratios of the 2-approximation algorithm (A) and
the greedy algorithm (G) over randomly generated instances.

γ k k/γ
|V |=20 |V |=80 |V |=320 |V |=1280
A G A G A G A G

16 1 0.06 1.00 1.06 1.13 1.19 1.00 1.06 1.00 1.07
16 2 0.13 1.02 1.11 1.20 1.29 1.03 1.12 1.03 1.14
16 4 0.25 1.07 1.19 1.09 1.22 1.09 1.23 1.09 1.26
16 8 0.50 1.17 1.27 1.19 1.36 1.19 1.41 1.20 1.45
16 16 1.00 1.19 1.33 1.32 1.55 1.32 1.63 1.35 1.70
16 32 2.00 1.08 1.19 1.28 1.48 1.31 1.69 1.32 1.72
16 64 4.00 1.00 1.19 1.15 1.42 1.22 1.56 1.22 1.65
16 128 8.00 1.00 1.00 1.05 1.16 1.12 1.45 1.13 1.55
16 256 16.00 1.00 1.00 1.00 1.18 1.02 1.42 1.05 1.49
16 512 32.00 1.00 1.00 1.00 1.00 1.00 1.25 1.00 1.41
16 1024 64.00 1.00 1.00 1.00 1.00 1.00 1.19 1.00 1.39
16 2048 128.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.22

32 1 0.03 1.00 1.05 1.00 1.07 1.00 1.06 1.00 1.07
32 2 0.06 1.01 1.07 1.02 1.11 1.02 1.10 1.02 1.10
32 4 0.13 1.05 1.13 1.05 1.17 1.05 1.16 1.05 1.17
32 8 0.25 1.09 1.22 1.10 1.29 1.11 1.28 1.10 1.29
32 16 0.50 1.20 1.33 1.20 1.45 1.22 1.47 1.21 1.47
32 32 1.00 1.32 1.43 1.37 1.71 1.38 1.73 1.36 1.72
32 64 2.00 1.18 1.38 1.32 1.61 1.35 1.72 1.32 1.73
32 128 4.00 1.03 1.27 1.20 1.48 1.23 1.59 1.23 1.65
32 256 8.00 1.00 1.04 1.08 1.29 1.14 1.49 1.11 1.57
32 512 16.00 1.00 1.00 1.00 1.16 1.03 1.44 1.05 1.49

continued on next page

47

continued from previous page

γ k k/γ
|V |=20 |V |=80 |V |=320 |V |=1280
A G A G A G A G

32 1024 32.00 1.00 1.00 1.00 1.00 1.01 1.25 1.01 1.43
32 2048 64.00 1.00 1.00 1.00 1.00 1.00 1.24 1.00 1.41

64 1 0.02 1.00 1.04 1.00 1.04 1.00 1.06 1.00 1.06
64 2 0.03 1.01 1.05 1.01 1.06 1.01 1.08 1.01 1.08
64 4 0.06 1.02 1.08 1.02 1.09 1.03 1.12 1.03 1.11
64 8 0.13 1.06 1.12 1.05 1.15 1.06 1.18 1.06 1.18
64 16 0.25 1.10 1.19 1.10 1.26 1.12 1.30 1.12 1.30
64 32 0.50 1.18 1.33 1.20 1.41 1.23 1.48 1.23 1.50
64 64 1.00 1.32 1.47 1.34 1.64 1.40 1.76 1.39 1.76
64 128 2.00 1.23 1.34 1.31 1.57 1.36 1.73 1.35 1.77
64 256 4.00 1.09 1.17 1.20 1.49 1.21 1.61 1.24 1.67
64 512 8.00 1.00 1.02 1.02 1.35 1.11 1.49 1.14 1.58
64 1024 16.00 1.00 1.00 1.00 1.17 1.02 1.43 1.06 1.51
64 2048 32.00 1.00 1.00 1.00 1.00 1.00 1.24 1.01 1.46

128 1 0.01 1.00 1.04 1.00 1.05 1.00 1.05 1.00 1.06
128 2 0.02 1.00 1.05 1.00 1.05 1.00 1.06 1.00 1.07
128 4 0.03 1.01 1.06 1.01 1.07 1.01 1.08 1.01 1.09
128 8 0.06 1.02 1.09 1.02 1.10 1.03 1.12 1.03 1.13
128 16 0.13 1.05 1.12 1.06 1.16 1.06 1.18 1.06 1.20
128 32 0.25 1.10 1.19 1.12 1.27 1.12 1.30 1.13 1.32
128 64 0.50 1.19 1.31 1.22 1.42 1.23 1.50 1.24 1.51
128 128 1.00 1.34 1.52 1.34 1.65 1.40 1.73 1.40 1.78
128 256 2.00 1.25 1.26 1.33 1.61 1.33 1.73 1.34 1.76
128 512 4.00 1.05 1.13 1.24 1.38 1.22 1.60 1.24 1.67
128 1024 8.00 1.00 1.00 1.08 1.31 1.10 1.49 1.13 1.57
128 2048 16.00 1.00 1.00 1.00 1.20 1.01 1.43 1.07 1.49

We measured the quality of a solution by the approximation ratio between the

length of the solution and the lower bound on the length of the optimal solution

shown in the left hand side of (2.2). Table 2.2 reports the average approximation

ratios for both the 2-approximation algorithm and the greedy algorithm over all 10

instances for each value combination of γ, |V |, and k. It can be seen that the average

approximation ratios are sensitive to k/γ and |V |. When k/γ is either extremely

small or extremely large, the average approximation ratio of the 2-approximation

algorithm is close to 1. When k/γ approaches 1, the ratio reaches the largest value,

48

which never exceeds 1.40. When |V | increases from 20, 80, 320, to 1280, the average

ratio increases when k/γ ≥ 1, but changes little when k/γ < 1. The results also

show that the 2-approximation algorithm performed significantly better than the

simple greedy algorithm. For instances with k/γ = 1 and |V | = 1280, the average

approximation ratio of the greedy algorithm is 1.74, more than 26.5% larger than

that of the 2-approximation algorithm, whose average ratio is 1.375.

2.7 Summary

In this chapter, we have developed a 2-approximation algorithm for the CTSPPD-

T. The new improved algorithm extends an exact algorithm for the CTSPPD-P from

the literature and employs more complicated techniques to construct the solution.

Our algorithm has a polynomial time complexity under a reasonable and practical

condition, which is similar with that in the existing literature. Comparing with the

existing approximation algorithms derived from the CTSPPD literature, our algo-

rithms not only improves on the solution quality, i.e., with a better approximation

ratio, but also improves on the time complexities, i.e., under a more relax condition.

Moreover, computational results show that our algorithm also achieves good average

performance over randomly generated instances and exhibits a much shorter running

time and better solution quality than a greedy algorithm. According to the assump-

tions we have made in this chapter, our future work will mainly focus on whether the

unbalanced case still has constant ratio approximation algorithms and whether the

results in this chapter can be further extended to a more complicated setting for the

problem.

49

CHAPTER 3

Improved Algorithms for Joint Optimization of

Facility Locations and Network Connections

3.1 Introduction

Consider a complete undirected graph G = (V,E) where V = {1, 2, ..., n} denotes

the vertex set, E denotes the edge set, and each edge e ∈ E has a non-negative weight

denoted by `(e). Let W ⊆ V denote a set of potential facilities, and J ⊆ V a set

of clients, where both W and J are not empty. Let k with 1 ≤ k ≤ |W | indicate

the maximum number of facilities that are allowed to be opened. Each client in J

needs to be served by connecting it to an open facility along a path. The resulting

connections can be represented by a k-median Steiner forest, which is defined as a

collection of at most k trees that covers all the clients, with each tree containing a

distinct facility location as the root, where vertices in V \ J are Steiner vertices that

may or may not be included in the forest. To minimize the total connection cost, we

study in this chapter a k-median Steiner forest problem that aims to find an optimal

k-median Steiner forest that minimizes the total edge weight. See Figure 3.1.

The k-median Steiner forest problem aims to jointly optimize facility locations and

network connections. This problem has wide applications, particularly in the telecom-

munication and transportation industries, where facilities, such as service centers or

51

7

432

6

8

1

1

1 1 1 2 15

5

Figure 3.1: An instance of the k-median Steiner forest problem with k = 2, V =
{1, 2, ..., 8}, J = {1, 2, 3, 4} and W = {6, 7, 8}: Vertices 5, 6, 7, and 8 are
Steiner vertices; the numbers on the edges indicate edge weights; for each
edge not shown, its weight equals the total edge weight of the shortest
path that connects its endpoints; the optimal k-median Steiner forest
(shown in solid lines) opens facilities 6 and 7, and has a total edge weight
of 6.

factories, need to be located and connected to clients by cable or road constructions.

Its solutions can also be utilized to construct plans of facility locations combined with

vehicle routing or cargo shipping [16, 61, 64].

The k-median Steiner forest problem is strongly NP-hard, since it contains the

classical Steiner tree problem as a special case with |W | = k = 1. As with the

classical Steiner tree problem [73], it can be assumed without loss of generality that

the weight of each edge equals the total edge weight of the shortest path that connects

the endpoints of the edge, so that the edge weights satisfy triangle inequality and form

a metric. This is because each edge of a k-median Steiner forest can always be replaced

by the shortest path that connects its endpoints, without increasing the total edge

weight of the Steiner forest.

Since the k-median Steiner forest problem is strongly NP-hard, it is of great inter-

est to develop approximation algorithms for it with provable guarantees on running

time and solution quality, as well as to identify special cases that are commonly seen

in practice and can be solved to optimality by polynomial time algorithms. In this

chapter, we develop an improved approximation algorithm for the k-median Steiner

forest problem, as well as new polynomial time algorithms that can solve two non-

52

trivial special cases of the problem.

3.1.1 Previous Work

For the k-median Steiner forest problem, only a 2-approximation algorithm is

known in the literature [64, 16]. It is based on a Lagrangian relaxation of the prob-

lem, and uses a sophisticated primal-dual schema that holds a so-called Lagrangian

preserving performance guarantee to construct Steiner forests. (See a detailed review

in Section 3.2.3.1.) As a result, the proof of its approximation ratio is complicated.

The k-median Steiner forest problem is a joint optimization problem that takes

into account decisions on both facility locations and network design [27]. Among

many facility location problems that have been extensively studied in the literature,

the k-median problem is the most relevant one, which aims to open at most k facil-

ities and directly connect each client to an open facility by an edge with the total

edge weight minimized. For the k-median problem, [20] achieved the first constant

approximation ratio of 6.67, and recently, based on a breakthrough made by [53], [15]

achieved the current best approximation ratio of 2.61 + ε for any ε > 0. The existing

2-approximation algorithm for the k-median Steiner forest problem [16] followed the

approach of a 6-approximation algorithm developed by [42] for the k-median prob-

lem. [42] reduced the k-median problem to an uncapacitated facility location problem

by relaxing the constraint of opening at most k facilities, and penalizing the open-

ing of each facility by a Lagrangian multiplier. They then applied a primal-dual

schema to obtain a 3-approximation of the uncapacitated facility location problem,

and transformed it to a 6-approximation of the k-median problem. This approach

has been improved by [40] and [8] to achieve approximation ratios of 4 and 3 + ε for

the k-median problem.

Among various network design problems that have been extensively studied in

the literature, the classical Steiner tree problem is the most relevant one, which,

53

as mentioned earlier, is a special case of the k-median Steiner forest problem with

|W | = k = 1, aiming to minimize the total cost of connecting all the clients to a given

facility. It is well-known that a minimum spanning tree of the subgraph induced by

the clients can lead to a 2-approximation of the Steiner tree problem [73]. Moreover,

approximation ratios smaller than 2 have been achieved by [78, 44, 62, 67], and with

the current best approximation ratio being ln(4)+ ε < 1.39, recently achieved by [14].

Moreover, [63] proposed a primal-dual schema that achieves an approximation ratio

of 2 for a Steiner forest problem, which aims to connect clients by a given number of

trees with the total edge weight minimized. This problem is equivalent to a special

case of the k-median Steiner forest problem, where each vertex contains a facility, i.e.,

W = V .

Solutions to the k-median Steiner forest problem are often used to construct ap-

proximations of other problems that jointly optimize facility locations and network

design. [64] studied a location-shipping problem that aims to open at most k facilities

and install cables of sufficient capacity for shipping cargo from clients to facilities.

By combining the 2-approximation of the k-median Steiner forest problem and a

ρ-approximation of the k-median problem, they constructed a (ρ + 2, 2) bicriteria

approximation with a total cost at most ρ+ 2 times that of the optimal solution, and

with a total of at most 2k facilities opened. [16] studied a k-location-routing prob-

lem that aims to assign depots (facilities) to k vehicles and to route the vehicles to

serve clients, with the total routing cost minimized. By duplicating each edge of the

2-approximation of the k-median Steiner forest problem, they obtained a collection of

k tours with each tour starting and ending at an open facility, and proved that such

a tour collection is a 2-approximation of the k-location-routing problem. Moreover,

[76] studied a special case of the k-location-routing problem, where vertices are locat-

ed in a tree-shaped network and edge weights represent lengths of shortest paths on

the tree. Such a tree shaped network appears in several manufacturing and logistics

54

applications [10, 22, 24, 45, 74], including those in rural or water transportation sys-

tems [72, 77]. For this special case, solutions to the k-median Steiner forest problem

and solutions to the k-location-routing problem are one-to-one correspondence, and

therefore these two problems are equivalent. [76] developed an algorithm that can

solve this special case of the problem to optimality in O(n26k) time. However, when k

is part of the input, whether or not this special case has a polynomial time algorithm

still remains open.

3.1.2 Our Results

For the k-median Steiner forest problem, we have developed a new 2-approximation

algorithm. It is simpler than the existing 2-approximation algorithm of [16], consist-

ing of only an O(n2)-time transformation from a minimum spanning tree of the clients

and a new vertex that replaces all the facilities. This extends the well-known result

that a minimum spanning tree of the clients can lead to a 2-approximation of the

Steiner tree problem. Compared with the existing 2-approximation algorithm, our

new algorithm has an improved approximation ratio of 2 − 1/|J |, which is not only

tight but easier to be proved, and it can always produce solutions of equal or better

quality, the quality improvement being up to 50% in some cases.

Moreover, we have developed new polynomial time algorithms that can solve two

non-trivial special cases of the k-median Steiner forest problem to optimality. For

a special case where each vertex contains a client, i.e, J = V , we show that it is

equivalent to a problem of finding a minimum weighted basis for a matroid, and that

its optimal solution can be obtained in polynomial time by a transformation from a

minimum spanning tree of the clients. This result is interesting because the same

special case for the k-median problem, where J = V , is still strongly NP-hard. For

the other special case, where vertices are located in a tree-shaped network, we develop

a dynamic programming algorithm that, for the first time in the literature, can solve

55

the problem to optimality in polynomial time, a significant improvement over the

existing best algorithm of O(n26k) running time [76].

The remainder of this chapter is organized as follows: In Section 3.2 we present

the improved approximation algorithm for the k-median Steiner forest problem, and

compare its performance with the existing 2-approximation algorithm. In Section 3.3

we present the new polynomial time algorithms for the two special cases of the prob-

lem. We then summarize the chapter in Section 3.4 with discussions on applications

of the results obtained as well as directions for future research.

3.2 Improved Approximation Algorithm

We present our new approximation algorithm for the k-median Steiner forest prob-

lem in Section 3.2.1, prove its tight approximation ratio of 2− 1/|J | in Section 3.2.2,

and then show its improvement over the existing 2-approximation algorithm in Sec-

tion 3.2.3.

As mentioned earlier, we can assume without loss of generality that edge weights

satisfy triangle inequality. Throughout this section, we also assume that W and J

are disjoint, since each vertex that belongs to both W and J can be duplicated to

two vertices, one being a facility and the other being a client.

3.2.1 The new algorithm

Our new approximation algorithm consists of the following three steps:

Step 1. Construct a complete undirected graph H by shrinking vertices of W to a

new vertex r and eliminating vertices not in J . As a result, H is a complete

graph on vertices of J ∪ {r}. For each edge (u, v) with u ∈ J and v ∈ J , its

weight still equals `(u, v), and for each edge (r, v) with v ∈ J , we let `(r, v) =

min{`(u, v) : u ∈ W}.

56

Step 2. Define a k-root-degree spanning tree of H, or k-RDST of H in short, as

a spanning tree of H, with r being its root, such that the degree of r does

not exceed k. Compute a minimum k-RDST TH , which is a k-RDST of the

minimum total edge weight.

Step 3. Construct from TH a k-median forest F of G with `(F) = `(TH), as follows.

For each edge (r, v) of TH with v ∈ J , we replace it with an edge (u, v) where

u ∈ W and `(u, v) = `(r, v). Since the degree of r in TH does not exceed k, we

know that the resulting tree collection F must contain at most k trees, with

each tree containing a distinct facility in W . Thus, F is a k-median Steiner

forest of G. Since each edge (r, v) of TH with v ∈ J corresponds to an edge

(u, v) with u ∈ W of equal weight, we have `(F) = `(TH). Since k ≤ n, this

step takes O(n) time.

It can be seen that the above algorithm constructs a k-median Steiner forest

F of G by an O(n)-time transformation from a minimum k-RDST TH of H with

`(F) = `(TH), where H is a complete graph with its vertices including all the clients,

as well as an additional vertex r that replaces all the facilities. We next show that TH

can be computed by an O(n2)-time transformation from a minimum spanning tree of

H.

Lemma 3.1. For any minimum spanning tree T ∗ of H, it can be transformed to a

minimum k-RDST TH of H in O(n2)-time.

Proof. For 1 ≤ q ≤ k, let T (q) indicate a spanning tree of H that minimizes the total

edge weight, with the degree of r equal to q. Thus, among all T (q) for 1 ≤ q ≤ k,

the one with the minimal total edge weight is a minimum k-RDST of H. It is known

from [31] that each T (q) can be obtained by an O(n2)-time transformation from the

minimum spanning tree T ∗ of H. Thus, a minimum k-RDST of H can be obtained

by applying k times such a transformation. Next, we show that it is sufficient to

57

apply at most once such a transformation. To see this, consider the following two

cases: If the degree of r in T ∗ does not exceed k, then we directly obtain that T ∗ is

a minimum k-RDST of H. Otherwise, the degree of r in T exceeds k. For this case,

it is known from [56] that there exists a minimum k-RDST of H with the degree of

r exactly equal to k. Thus, T (k) is a minimum k-RDST of H. Since T (k) can be

obtained by an O(n2)-time transformation from T ∗ [31], Lemma 3.1 is proved.

By Lemma 3.1, the new approximation algorithm is also an O(n2)-time transfor-

mation from a minimum spanning tree of H. It is noted that the fastest minimum

spanning tree algorithm runs in O(α(|E|,
√
|E|)|E|) time, where α(|E|,

√
|E|) is the

functional inverse of Ackermann’s function, which grows very slowly and can be con-

sidered as a constant [21]. Since |E| is in O(n2), we obtain that our new algorithm

runs in O(α(n2, n)n2) time.

Example 3.1. Apply the new algorithm on the instance shown in Figure 3.1, where

k = 2. In H constructed by Step 1, we have `(r, v) = 1 for v ∈ {3, 4}, `(r, v) = 2 for

v ∈ {1, 2}, `(1, 2) = 2, and `(3, 4) = 3. By the definition in Step 2, it is easy to verify

that the tree ({r, 1, 2, 3, 4}, {(r, 1), (1, 2), (r, 3), (3, 4)}) is a minimum k-RDST TH of

H with `(TH) = 8. Thus, replacing edges (r, 1) and (r, 3) with (6, 1) and (7, 3), we

obtain a k-median Steiner forest F of G in Step 3 of `(F) = `(TH) = 8.

3.2.2 Approximation ratio of the new algorithm

Consider the k-median Steiner forest F obtained by the new approximation algo-

rithm. Let OPT indicate an optimal k-median Steiner forest. We prove as follows

that the new approximation algorithm guarantees an approximation ratio of 2−1/|J |.

Theorem 3.1. `(F) ≤ (2− 1/|J |)`(OPT).

Proof. For each tree T of OPT, let wT indicate its facility, nT indicate the number of

clients in T , and PT indicate the path of the largest total edge weight that connects

58

wT and a client in T , for which we use vT ∈ J to indicate the endpoint of PT that is

a client. We duplicate each edge of T except those on PT , so as to obtain a subgraph

that contains an Eulerian path that starts from wT , visits every edge exactly once,

and then returns to vT . Thus, by short-cutting vertices not in J ∪ W as well as

facilities other than wT at the start, we obtain a path T ′ that starts from wT and

visits all the clients of T exactly once. See Figure 3.2.

Hence, by repeating the above procedure for every tree T in OPT, and replacing

all the facilities with r, we can obtain a collection of at most k paths that all start

from r, cover all the clients, and contain no other vertices. Thus, it forms a k-RDST

of H, denoted by T ′H , and we have `(TH) ≤ `(T ′H). Hence, by `(F) = `(TH), we have

`(F) ≤ `(T ′H).

Moreover, since OPT is an optimal k-median Steiner forest, without loss of gen-

erality it can be assumed that each leaf of the trees in OPT is a client. Thus, for

each tree T ∈ OPT, since every edge of T belongs to a certain path that connects wT

and a client in T , we obtain that `(PT) ≥ `(T)/nT . By triangle inequality, we know

`(T ′H) ≤ 2[`(OPT) −
∑

T∈OPT `(PT)] +
∑

T∈OPT `(PT) = 2`(OPT) −
∑

T∈OPT `(PT),

which, together with `(PT) ≥ `(T)/nT and nT ≤ |J | for each T ∈ OPT, im-

plies that `(T ′H) ≤ (2 − 1/|J |)`(OPT). Hence, we obtain that `(F) ≤ `(T ′H) ≤

(2− 1/|J |)`(OPT).

Moreover, the approximation ratio (2− 1/|J |) is tight by the following example.

Example 3.2. Let k = 1, n = h + 2, J = {1, 2, .., h}, and W = {h + 1, h + 2}.

Define `(h + 1, u) = 1 for u ∈ J , and `(h + 2, 1) = 1. For other edges (u, v), define

`(u, v) = 2. It can be seen that the edge weights satisfy triangle inequality, and that

it is optimal to connect facility h+1 to each client u ∈ J by an edge (h+1, u), so that

`(OPT) = h = |J |. Moreover, since edges (h + 2, 1) and (1, v) for 2 ≤ v ≤ h form a

minimum k-RDST of H, it can be seen that the approximation solution F produced

59

2

6

1

51 1

1

(a) T , where PT = 〈6, 5, 1〉
is shown in bold lines

21

5

6

(b) After duplicating each
edge of T except those on
PT

21

6

2

2

(c) T ′ with `(T ′) = 4

Figure 3.2: Illustration of the construction of T ′ from T in the proof of Theorem 3.1,
where T is one of the trees of the optimal solution for the instance shown
in Figure 3.1.

by the proposed algorithm consists of edges (h + 2, 1) and (1, v) for 2 ≤ v ≤ h, so

that `(F) = 1 + 2(h− 1) = 2|J | − 1 = (2− 1/|J |)|J | = (2− 1/|J |)`(OPT). Thus, the

approximation ratio of (2− 1/|J |) is tight for the proposed approximation algorithm.

3.2.3 Comparison with the existing 2-approximation algorithm

To compare our new algorithm with the existing 2-approximation algorithm de-

veloped by [16], we first provide a detailed review of the existing algorithm in Sec-

tion 3.2.3.1, and prove its equivalence to a transformation from an optimal solution

of a minimum spanning tree problem in Section 3.2.3.2. Based on this equivalence,

we then show the improvements made by our new algorithm in Section 3.2.3.3.

3.2.3.1 Review of the existing 2-approximation algorithm

[16] studied a problem that is equivalent to the k-median Steiner forest problem.

It can be formulated as a Steiner tree problem on a new graph Ĝ with a root degree

constraint, where the vertex set of Ĝ consists of V and a new root vertex r, and the

edge set of Ĝ consists of E and root edges (r, v) for v ∈ W with `(r, v) = 0. It can be

seen that the k-median Steiner forest problem is equivalent to finding a Steiner tree

of Ĝ of minimum total edge weight, such that it connects the root r and all clients

60

v ∈ J with the degree of r not exceeding k. As a result, a facility v ∈ W is open if,

and only if, the Steiner tree of Ĝ contains the root edge (r, v).

To construct such a Steiner tree of Ĝ, [16] first relaxed the degree constraint on r

and introduced a non-negative Lagrangian multiplier λ to penalize selections of root

edges (r, v) for v ∈ W . For any given λ ≥ 0, they proposed a primal-dual schema to

construct a Steiner tree of Ĝ such that the sum of its total edge weight and its total

penalty do not exceed twice the sum of the total edge weight and total penalty of the

optimal solution OPT. They then proved that there exists a value λk such that the

Steiner tree obtained for λ = λk is a 2-approximation of the problem.

According to [16], the primal and dual schema that constructs the Steiner tree

of Ĝ for a given λ is equivalent to applying a truncated version of the well-known

Kruskal’s minimum spanning tree algorithm on Ĝ under revised edge weights `λ(·),

where `λ(u, v) = `(u, v)/2 for u ∈ J and v ∈ J , `λ(u, v) = `(u, v) for u ∈ W and

v ∈ J , `λ(r, u) = s(u) + λ for u ∈ W , where s(u) indicates the smallest value of

`(u, v) with v ∈ J , and for other edges (u, v), it sets `λ(u, v) = ∞. See Figure 3.3

for an example of `λ(·). The primal and dual schema starts with an empty set of

edges, and iteratively selects and adds an edge (u, v) of the smallest weight such that

v belongs to an active connected component Cv that does not contain u. Here, an

active connected component is defined as a connected component of the subgraph

induced by the selected edges such that the component contains at least one client in

J , but does not contain the root r. Among all such edges of the same length, ties are

broken (i) by preferring root edges if less than k root edges have been selected, and

preferring non-root edges otherwise, and (ii) by not selecting edges that join a facility

and a client if other choices are available. Edges (u, v) with u ∈ W and v ∈ W are

never selected, since `λ(u, v) =∞. When no new edges can be selected, the iteration

stops and a Steiner tree T̂λ of Ĝ that connects r and all clients in J is obtained.

[16] proved the following lemma for the resulting Steiner tree T̂λ.

61

7

432

6

8

1

1 1
2 2

1 1.5

5

2

1 + λ

1 + λ

2 + λ r

5

5

3.5

3.5

Figure 3.3: Illustration of Ĝ for the instance in Figure 3.1: The numbers on the edges
indicate the edge weights under `λ(·); for edges not shown, their weights
under `λ(·) are too large to be selected, and are omitted; Tλk with λk = 1
are shown in solid lines.

Lemma 3.2 ([16]). For each λ ≥ 0, in T̂λ every facility u ∈ W is incident with at

most one edge (u, v) with v ∈ J , and if T̂λ contains an edge (u, v) for u ∈ W and

v ∈ J , then `(u, v) = s(u).

Proof. The proof is presented below for completeness. For each λ ≥ 0, consider the

Steiner tree T̂λ of Ĝ constructed above.First, if in T̂λ, a facility u ∈ W is incident

with two edges (u, v) and (u, v′) with v ∈ J and v′ ∈ J , then by triangle inequality

for `(·) and by the definition of `λ(·) in Section 3.2.3.1, we know that `λ(v, v
′) =

`(v, v′)/2 ≤ [`(u, v) + `(u, v′)]/2, implying that either `λ(v, v
′) ≤ `(u, v) = `λ(u, v) or

`λ(v, v
′) ≤ `(u, v′) = `λ(u, v

′). Thus, due to the preference adopted for tie breaking in

the construction of Tλ, we know that T̂λ cannot contain both (u, v) and (u, v′). Thus,

every facility u ∈ W is incident with at most one edge (u, v) with v ∈ J .

Next, if T̂λ contains (u, v) for u ∈ W and v ∈ J , then by the argument above

we know that at the time when (u, v) is added to T̂λ, no edge (u, v′) with v′ ∈ J is

selected, and thus `λ(u, v) cannot be larger than `λ(u, v
′) for any other (u, v′) with

v′ ∈ J and v′ 6= v, which, together with `λ(u, v) = `(u, v) and `λ(u, v
′) = `(u, v′),

implies that `(u, v) = s(u). This completes the proof of Lemma 3.2.

62

According to Lemma 3.2, one can eliminate every edge (u, v) with u ∈ W , v ∈ J ,

and (r, u) not in T̂λ, such that the remainder is still a Steiner tree of Ĝ, denoted by

Tλ. Let δ(r) = {(r, v) : v ∈ W} denote the set of root edges. Let xe be a binary

variable that indicates whether or not Tλ contains an edge e ∈ E ∪ δ(r). [16] proved

that Tλ has a Lagrangian preserving performance guarantee, as shown below:

∑

e∈E
`(e)xe + 2

∑

e∈δ(r)
λxe ≤ 2`(OPT) + 2kλ. (3.1)

Next, [16] showed as follows that there exists λk ≥ 0 such that Tλk is a 2-

approximation of the problem. If T0 (for λ = 0) contains no more than k edges

of δ(r), then by (3.1) we have `(T0) ≤ 2`(OPT), and thus T0 is a 2-approximation of

the problem, so that one can set λk = 0. Otherwise, T0 contains more than k edges

of δ(r). For this case, [16] proved that there exists λk > 0 such that Tλk contains

exactly k edges of δ(r). The computation of λk depends on how edges are selected

through the construction of T∞ (for λ = ∞), in which only one edge of δ(r) is se-

lected. For each edge (u, v) of T∞ with u ∈ J and v ∈ J , consider the time before

(u, v) is selected. Let Cu and Cv indicate the connected components that contain

u and v, respectively, in the subgraph induced by the edges selected before (u, v).

Let s(Cu) and s(Cv) indicate the smallest values of s(i) for all facilities i in Cu and

Cv, respectively. Define s(u, v) := max{s(Cu), s(Cv)}. It can be seen that if `(u, v)

exceeds s(u, v) + λ, then both Cu and Cv must become inactive before (u, v) can be

selected, and thus (u, v) will not be selected. In light of this, [16] defined λk as the

value of λ such that exactly |J | − k edges of T∞ with u ∈ J and v ∈ J are selected

in Tλ for λ = λk. Thus, by Lemma 3.2, it can be seen that Tλk must contain exactly

k edges of δ(r) to form a Steiner tree of Ĝ. By (3.1), we have `(Tλk) ≤ 2`(OPT),

implying that Tλk is a 2-approximation of the problem.

Example 3.3. Apply the algorithm of [16] on the instance in Figure 3.1, where Ĝ

63

is shown in Figure 3.3. When λ = 0, it can be seen that edges (1, 2), (7, 3), (r, 7),

(8, 4), (r, 8), (6, 1) and (r, 6) are selected one by one to form T0, which contains

all the three edges (i.e., more than k = 2 edges) in δ(r) = {(r, 6), (r, 7), (r, 8)}.

Next, when λ = ∞, it can be seen that edges (1, 2), (7, 3), (8, 4), (3, 4), (6, 1),

(2, 3), and (r, 7) are selected one by one to form T∞. From this, we can see that

when λ = 1, edges (1, 2), (7, 3), (8, 4), and (3, 4) are still selected one by one in the

construction of T1. Since `1(r, 7) = 1 + 1 = 2 = `1(6, 1), edges (r, 7) and (6, 1) are

then included in T1. Now, consdier edge (2, 3), which connects connected components

C2 of vertices in {1, 2, 6} and C3 of vertices in {3, 7, r}, implying that s(2, 3) + λ =

max{2 + λ, 1 + λ} = 3 < 3.5 = `1(2, 3). Thus, edge (2, 3) is not include in T1.

Moreover, since `1(r, 6) = 3, edge (r, 6) is then selected in T1. Hence, T1 consists of

edges in {(1, 2), (7, 3), (8, 4), (3, 4), (r, 7), (6, 1), (r, 6)}, including exactly |J | − k = 2

edges (u, v) of T∞ with u ∈ J and v ∈ J . Thus, we can set λk = 1. By removing

(8, 4) (since (r, 8) is not selected), and removing (r, 6) and (r, 7), we obtain from T1 a

k-median Steiner forest of G.

We have seen that the existing 2-approximation algorithm, developed by [16],

is a primal-dual schema that is equivalent to a truncated version of the well-known

Kruskal’s minimum spanning tree algorithm, for which the best implementation takes

O(|E| log n) or O(n2 log n) time, slower than our newly proposed approximation al-

gorithm by a factor of log n. Moreover, the proof of its approximation ratio relies on

(3.1), which is derived from a complicated construction and analysis of a dual feasible

solution associated with the primal-dual schema. Compared with this, the proof of

the approximation ratio in Theorem 3.1 for our algorithm is much simpler.

3.2.3.2 A simple equivalence of the existing 2-approximation algorithm

We now show that the existing 2-approximation algorithm, developed by [16], is

equivalent to a transformation from an optimal solution to a minimum spanning tree

64

problem. For this, by Lemma 3.1, it is sufficient for us to show as follows that it

is equivalent to a transformation from a minimum k-RDST of H under some edge

weights that are different from `(·), where H, as defined earlier in Section 3.2.1, is a

complete graph on J ∪ {r}.

For any λ ≥ 0, we are reminded that edges (u, v) with u ∈ W and v ∈ W are

never selected in Tλ due to `λ(u, v) =∞. Thus, by Lemma 3.2 we know that for each

facility u ∈ W of Tλ, it must be incident and only incident with two edges in Tλ,

including the root edge (r, u) and the other edge (u, v) with v ∈ J and `(u, v) = s(u).

Thus, we can transform Tλ to a spanning tree Sλ of H by replacing (r, u) and (u, v)

with (r, v). Consider revised edge weights πλ(·) for edges of H, where πλ(r, v) =

min{`(u, v) : u ∈ W} + λ for v ∈ J , and πλ(u, v) = `(u, v)/2 for u ∈ J and v ∈ J .

We can then establish the following lemma for Sλ.

Lemma 3.3. Sλ is a minimum spanning tree of H under edge weights πλ(·), for

λ ≥ 0.

Proof. Note that Sλ is obtained from Tλ, which is obtained from T̂λ. From the

construction of T̂λ we know that Sλ can also be obtained in the following way: Start

with an empty edge set for Sλ. For each edge (u, v) of T̂λ according to their sequence

in the construction of T̂λ, if u ∈ J and v ∈ J , then we add (u, v) to Sλ; if u ∈ W and

v ∈ J , we ignore (u, v) (since it does not appear in Sλ); and if u = r and v ∈ W , then

we add (r, i) to Sλ with i ∈ J and `(v, i) = s(v). By Lemma 3.2, it can then be seen

that Sλ is a spanning tree of H.

To prove the lemma, it is sufficient to show that the above construction of Sλ is

equivalent to applying Krusal’s minimum spanning tree algorithm on H under πλ(·).

To show this, it is sufficient to show that for each edge e of Sλ, when e is to be added

to Sλ, πλ(e) ≤ πλ(x, y) is held for every edge (x, y), with x ∈ J ∪ {r} and y ∈ J not

being connected by any path of edges that have been added to Sλ. First, we know

65

that at this moment an edge denoted by e′ is also to be added to T̂λ. By the following

two cases, we know `λ(e
′) ≤ πλ(x, y):

• If x ∈ J , then x and y are not connected by any path of edges that have been

added to T̂λ, and since y ∈ J implies `λ(x, y) = πλ(x, y), we have `λ(e
′) ≤

`λ(x, y) = πλ(x, y).

• Otherwise, x = r, and thus there exists i ∈ W , such that `(i, y) = min{`(i′, y) :

i′ ∈ W}. This implies that πλ(r, y) = `(i, y) + λ. Thus, we have that `λ(i, y) =

`(i, y) ≤ πλ(r, y), and that `λ(r, i) = s(i) + λ ≤ πλ(r, y). Since r and y are

not connected by any path of the selected edges in Sλ, we know either that

i and y are not connected by any path of the selected edges in T̂λ, implying

`λ(e
′) ≤ `λ(i, y) ≤ πλ(r, y), or that i and y are connected by a path of the

selected edges in T̂λ but r and i are not, implying `λ(e
′) ≤ `λ(r, i) ≤ πλ(r, y).

Hence, we obtain that `λ(e
′) ≤ πλ(r, y) = πλ(x, y).

Moreover, for the edge e, which is now to be added to Sλ, by the following two cases,

we can see that πλ(e) ≤ `λ(e
′):

• If the endpoints of e are both in J , then e = e′, and πλ(e) = `(e)/2 = `(e′)/2 =

`λ(e
′).

• Otherwise, e and e′ can be represented by e = (r, i) and e′ = (r, v) with i ∈ J ,

v ∈ W and `(v, i) = s(v). Thus, since πλ(r, i) = min{`(u′, i) : u′ ∈ W}+ λ and

`λ(r, v) = s(v) + λ, we have that πλ(e) = πλ(r, i) ≤ l(v, i) + λ = s(v) + λ =

`λ(r, v) = `λ(e
′).

Hence, we obtain that πλ(e) ≤ `λ(e
′) ≤ πλ(x, y).

Therefore, Sλ can be constructed by applying Krusal’s minimum spanning tree

algorithm on H under πλ(·), and so Sλ is a minimum spanning tree of H under

πλ(·).

66

Lemma 3.3 implies that for any given λ ≥ 0, the primal-dual schema used in the

2-approximation algorithm of [16] is equivalent to computing a minimum spanning

tree of H under the revised edge weights πλ(·). From this, we can prove as follows

that the 2-approximation algorithm of [16] is equivalent to computing a minimum

k-RDST of H under π0(·) (for λ = 0).

Theorem 3.2. Consider the value of λk determined in the algorithm of [16]. Then,

Sλk is a minimum k-RDST of H under π0(·).

Proof. If T0 consists of no more than k trees, then λk = 0, and the degree of the root

r in S0 does not exceed k. Since by Lemma 3.3, S0 is a minimum spanning tree of H

under π0(·), we know that Sλk is a minimum k-RDST of H under π0(·). Otherwise,

for the value of λk determined in the algorithm of [16], Tλk must contain exactly k

trees, implying that the degree of root r in Sλk equals k, and thus Sλk is a k-RDST

of H. Consider any minimum k-RDST S∗ of H under π0(·). Since S∗ is a spanning

tree of H, by Lemma 3.3 we have that

∑

e∈E(Sλk)

π0(e) =
∑

e∈E(Sλk)

πλk(e)− λkk ≤
∑

e∈E(S∗)

πλk(e)− λkk ≤
∑

e∈E(S∗)

π0(e).

Hence, Sλk is a minimum k-RDST of H under π0(·).

In light of Theorem 3.2, we can simplify the existing 2-approximation algorithm

of [16] to a transformation from a minimum k-RDST of H, so that it consists of the

following three steps:

Step 1. Construct H and π0(·);

Step 2. Compute a minimum k-RDST S∗ of H under π0(·);

Step 3. Transform S∗ to a Steiner forest F̂ of G by replacing each edge (r, v) in F̂

with (u, v), where u ∈ W and `(u, v) = min{(u′, v) : u′ ∈ W}, so that we have

`(F̂) = `(S∗).

67

Since Lemma 3.1 indicates that a minimum k-RDST of H can be transformed from

a minimum spanning tree of H, we obtain that the algorithm of [16] is also equivalent

to a transformation from the minimum spanning tree of H under π0(·). Moreover,

based on this equivalence, we can provide a simpler proof of the approximation ratio

2 for the algorithm of [16], as demonstrated below.

Consider the above 3-step algorithm. Let F̂ indicate the k-median Steiner forest

of G that it constructs, with `(F̂) = `(S∗), where S∗ is a minimum k-DRST of H

under edge weights π0(·), and H, as defined in Section 3.2.1, is a complete graph on

J ∪ {r}. Consider an optimal k-median Steiner forest OPT of G. We thus estab-

lish Theorem 3.3 below, providing a new proof of the approximation ratio 2 for the

algorithm of [16].

Theorem 3.3. `(F̂) ≤ 2`(OPT).

Proof. For each tree T of OPT, let wT indicate its root, V (T) the set of its vertices,

J(T) the set of its clients, E(T) the set of its edges, and EJ(T) the set of its edges

(u, v) that join pairs of clients with u ∈ J and v ∈ J . By the definition of πλ for

λ = 0,we have π0(EJ(T)) + `(E(T) \ EJ(T)) ≤ `(EJ(T)) + `(E(T) \ EJ(T)) = `(T).

We first follow the procedure below to construct from T a new tree T ′ with

π0(EJ(T ′)) + `(E(T ′) \ EJ(T ′)) ≤ π0(EJ(T)) + `(E(T) \ EJ(T)), such that (i) V (T ′)

consists of only vertices in J(T ′) ∪ {wT}, and that (ii) T ′ contains at most one edge

that wT is incident with.

Start with T ′ = T . First, until T ′ satisfies the above condition (i), repeat the

following to revise T ′ with π0(EJ(T ′))+`(E(T ′)\EJ(T ′)) always being non-increasing.

Since condition (i) is not satisfied, it can be seen that there must exist a vertex

u ∈ V (T ′) \ J(T ′) \ {wT} such that every child of u (if it exists) is a client in J(T ′).

Let p(u) indicate the parent of u in T ′. We revise T ′ by the following three cases: For

case 1, where u has no child, we remove u and (p(u), u) from T ′, and it is then easy

to see that π0(EJ(T ′)) + `(E(T ′) \EJ(T ′)) is not increasing. For case 2, where u has

68

2

6

1

51 1

1

(a) Initially, T ′ = T ,
where wT = 6

21

5

6

(b) After replacing (5, 2)
with (1, 2), as u = 5 has
two children v = 1 and
v′ = 2.

21

6

2

2

(c) After removing 5 and
replacing (6, 5) and (5, 1)
with (6, 1), as u = 5 has
only one child v = 1, and
p(u) = 6.

Figure 3.4: Illustration of the construction of T ′ from T in the proof of Theorem 3.3,
where T is one of the trees of the optimal solution for the instance shown
in Figure 3.1.

only one child denoted by v, we remove u and replace edges (p(u), u) and (u, v) with

(p(u), v) in T ′, and by triangle inequality, we have that `(p(u), v) ≤ `(p(u), u)+`(u, v),

which, together with π0(p(u), v) ≤ `(p(u), v) if p(u) ∈ J and v ∈ J , implies that

π0(EJ(T ′)) + `(E(T ′) \ EJ(T ′)) is not increasing. For case 3, where u has at least

two children, we let v denote the child of u with `(u, v) minimized, and for each

child v′ of u other than v, replace (u, v′) with (v, v′), and by triangle inequality, we

have that π0(v, v′) = `(v, v′)/2 ≤ [`(u, v) + `(u, v′)]/2 ≤ `(u, v′), which implies that

π0(EJ(T ′)) + `(E(T ′) \ EJ(T ′)) is not increasing. See Figure 3.4.

Next, until T ′ satisfies the above condition (ii), repeat the followings to revise T ′,

with π0(EJ(T ′)) + `(E(T ′) \ EJ(T ′)) also always being non-increasing: Since condi-

tion (i) is satisfied but condition (ii) is not satisfied, we know that wT must have at

least two children that are all clients in J(T ′). We can thus follow the step for the

above case 3 to replace (wT , v
′) with (v, v′) for each child v′ of u other than v, where

v is the child of wT with `(wT , v) minimized, and similarly, by triangle inequality,

π0(EJ(T ′)) + `(E(T ′) \ EJ(T ′)) is also not increasing.

Hence, we obtain a tree T ′ from T satisfying both conditions (i) and (ii) with

π0(EJ(T ′)) + `(E(T ′) \EJ(T ′)) ≤ π0(EJ(T)) + `(E(T) \EJ(T)) ≤ `(T). Moreover, it

69

can be seen from the above construction that J(T ′) = J(T). Thus, by condition (i),

V (T ′) = J(T) ∪ {wT}.

Repeating the above procedure for every tree T in OPT, we can obtain a collection

F ′ of at most k trees with π0(EJ(F ′)) + `(E(F ′) \ EJ(F ′)) ≤ `(OPT), such that F ′

covers all vertices of J , with each tree containing only vertices in J∪W and containing

exactly one facility in W . Thus, by replacing facilities with r for all these trees, we can

obtain a k-RDST S ′ of H with π0(S ′) ≤ π0(EJ(F ′)) + `(E(F ′) \ EJ(F ′)) ≤ `(OPT).

Since S∗ is a minimum k-RDST of H under π0(·), we have π0(S∗) ≤ π0(S ′). Hence,

by `(F̂) = `(S∗) ≤ 2π0(S∗), we obtain `(F̂) ≤ 2π0(S∗) ≤ 2π0(S ′) ≤ 2`(OPT).

3.2.3.3 Improvements made by the new algorithm

We can now compare the solution F̂ returned by the existing 2-approximation

algorithm of [16] with the solution F returned by our newly proposed approximation

algorithm. The following theorem shows that our algorithm always produces solutions

of equal or better quality than the existing algorithm.

Theorem 3.4. `(F) ≤ `(F̂).

Proof. As we have shown earlier in Section 3.2.3.2 and Section 3.2.1, F̂ can be ob-

tained from a minimum k-RDST S∗ of H under π0(·) with `(S∗) = `(F̂), and F is

constructed from a minimum k-RDST TH of H under `(·) with `(TH) = `(F). Thus,

since S∗ is also a k-RDST of H under `(·), we have `(F) = `(TH) ≤ `(S∗) = `(F̂).

Moreover, the following example shows that `(F) can be strictly better than `(F̂),

and that the improvement can be up to 50% in some cases.

Example 3.4. Consider J = {1, 2, ..., k} and W = {k + 1, k + 2, ..., 2k}, where

`(k + 1, 1) = 1, `(k + v, v) = 1 + ε for each v ∈ {2, ..., k} and for any ε > 0, and

`(u, v) = 2 for other edges (u, v). Since edges in {(r, v) : v ∈ J} form a minimum

k-RDST of H under `(·), it can be seen that our algorithm produces a solution F

70

that consists of edges (k + v, v) for v ∈ J with `(F) = k + (k − 1)ε. Since edges in

{(r, 1)} ∪ {(1, v) : 2 ≤ v ≤ k} form a minimum k-RDST of H under π0(·), it can be

seen that the algorithm of [16] produces a solution F̂ that consists of edges (k+ 1, 1)

and (1, v) for 2 ≤ v ≤ k with `(F̂) = 2(k − 1) + 1 = 2k − 1. It can be seen that

[`(F̂)− `(F)]/`(F̂) = 1/2− [1 + 2(k− 1)ε]/(4k− 2), which can be arbitrarily close to

50% when k grows to infinity and ε goes to zero.

To demonstrate the algorithm improvement, we conduct numerical experiments on

randomly generated instances. Following the method proposed by [34], we generated

43 classes randomly, with each class containing 20 instances for a specific combination

of |V | and |J |, and we set W = V \ J . To obtain the optimal solution (best lower

bound) and best integer solution as the benchmark for comparison, we model the

problem as a mixed integer programming (see Appendix A for details) and solve it by

commercial solver CPLEX 12.6. However, since the problem is NP-hard, for large

instances with |V | greater than 30, it is difficult to obtain a better lower bound which

is close to the optimal solution. Our preliminary results on these instances show that

even after running CPLEX for two hours, the gap between best lower bound and best

integer solution is still larger than 25%. Therefore, our experiments only use CPLEX

to solve small instances, with a time limit of two hours, and compare the returned

optimal solution (best lower bound) or best integer solution with the solutions F and

F̂ , respectively. While for large instances, only the relative solution improvement

made by F over F̂ is evaluated.

For small instances with |V | only in {10, 15, 20, 25}, we compare the solutions

with the best lower bound returned by CPLEX. The optimality gap of the solutions

is shown in Table 3.1, where columns 4-13 present the average optimality gap of

the two approximation algorithms over the 20 instances for different values of ρ in

{0.1, 0.3, 0.5, 0.7, 0.9} with k = dρ|W |e holds, respectively. The results show that

the solution produced by our new algorithm (New) is close to the optimal solution,

71

Table 3.1: Computational results for the optimality gap (%) on randomly generated
small instances.

|V | |J | |W | ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9
New CS New CS New CS New CS New CS

10 5 5 3.6 3.6 3.9 11.8 3.0 17.9 0.0 15.4 0.0 16.0
15 10 5 2.4 2.4 2.6 6.3 2.4 10.6 0.5 11.3 0.6 11.0
15 5 10 4.6 4.6 3.8 12.8 0.0 17.8 0.0 16.6 0.0 19.2
20 10 10 2.5 2.5 4.3 10.2 1.2 16.2 0.2 16.2 0.0 14.4
20 5 15 5.9 9.7 0.0 13.2 0.0 16.4 0.0 20.2 0.0 19.4
25 15 10 17.7 17.7 7.8 12.1 2.7 12.8 0.9 15.4 0.3 14.3
25 10 15 3.3 3.8 2.4 16.1 0.0 19.7 0.0 20.3 0.0 20.7

Average 5.7 6.3 3.6 11.8 1.3 15.9 0.2 16.5 0.1 16.4

especially when ρ is large. However, the solution produced by the approximation

algorithm of [16] (CS) is far away from the optimal solution. For example, when

ρ = 0.9, our algorithm can return optimal solutions for most of instances while the

average gap of the algorithm in [16] has 16.4%. Moreover, it can be seen that our

new algorithm always outperforms the algorithm of [16], that is, for our algorithm the

average optimality gap for all instance classes is less than 5.7% but it is greater than

6.3% for the algorithm of [16]. This result is consistent with the theoretical analysis

in Theorem 3.4.

For small instances with |V | in {30, 35, 40}, we compare the solutions with the best

upper bound (UB) returned by CPLEX. The upper bound gap, which is measured by

[`(F) − `(UB)]/`(F) · 100% and [`(F̂) − `(UB)]/`(F̂) · 100%, is shown in Table 3.2,

where columns 4-13 present the average upper bound gap of the two approximation

algorithms. The results show that our new algorithm can effectively produce solutions

for these instances in a short running time (less than 0.1 seconds) with quality as good

as those of CPLEX (two hours). In particular, the average gap is less than 1.2%, and

can even be negative, which implies that our solutions are better than those returned

by CPLEX. However, the solutions F̂ are always worse than those of CPLEX for all

72

Table 3.2: Computational results for the upper bound gap (%) on randomly generated
small instances.

|V | |J | |W | ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9
New CS New CS New CS New CS New CS

30 20 10 1.6 1.6 0.3 4.6 1.5 10.8 0.7 12.1 0.8 13.1
30 15 15 0.4 0.4 3.0 9.4 1.6 16.3 0.0 17.6 0.0 14.7
35 25 10 -0.3 -0.3 0.2 3.9 0.5 7.0 -2.0 7.8 0.0 10.4
35 20 15 0.0 0.0 1.6 8.5 1.1 12.8 0.0 15.3 -2.8 13.3
35 15 20 0.8 0.8 3.5 17.5 0.3 18.7 0.0 19.8 0.0 21.4
40 25 15 -4.5 -4.5 -2.8 1.5 -2.2 6.6 -2.1 10.1 -2.5 9.1
40 20 20 -3.0 -2.3 2.4 11.7 0.5 14.7 -0.1 16.5 0.0 15.0
40 15 25 0.5 1.2 1.6 16.1 0.0 19.9 0.0 19.7 0.0 19.2

Average -0.6 -0.4 1.2 9.1 0.4 13.4 -0.4 14.9 -0.6 14.5

the instances when ρ ≥ 0.3.

For large instances, we only evaluate the average improvement made by F over

F̂ , which is measured by the gap ratio [`(F̂)− `(F)]/`(F̂) · 100%. The computational

results are shown in Table 3.3, where columns 5–11 present the average gap ratios

over the 20 instances of each class for different values of ρ ranging from 0.2 to 0.8,

respectively. From the results, it can be seen that (i) the solution F produced by

our new algorithm is always better than the solution F̂ produced by the algorithm

of [16], and that (ii) the average improvement increases from 4.3% to 11.4% as ρ

increases from 0.2 to 0.8. This is mainly because the improvement [`(F̂) − `(F)]

equals [`(S∗)− `(TH)], and both S∗ and TH are minimum k-RDSTs of H but under

different edge weights, i.e., π0(·) and `(·), respectively. Since π0(r, v) equals `(r, v) for

v ∈ J , and π0(u, v) is only half of `(u, v) for u ∈ J and v ∈ J , those root edges (r, v)

in TH may not be preferred by S∗. A further investigation on the numerical results

reveals that S∗ contains significantly fewer root edges than TH , and this difference

becomes greater as k increases. This results in the increase of [`(S∗)− `(TH)], which

results in the increase of the improvement [`(F̂)− `(F)].

73

Table 3.3: Computational results for the gap ratio [`(F̂) − `(F)]/`(F̂) · 100%(%) on
randomly generated large instances.

Class |V | |J | |W | ρ
0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 50 40 10 0.3 1.4 2.3 3.5 4.2 5.4 6.6
2 60 50 10 0.1 1.5 1.5 3.1 3.5 4.3 4.3
3 60 30 30 3.7 9.0 11.4 12.4 13.0 13.1 13.7
4 70 40 30 2.0 5.9 8.8 9.8 11.3 11.2 10.6
5 80 50 30 2.4 5.4 8.2 8.5 8.7 9.3 8.5
6 100 50 50 5.4 10.7 12.5 12.2 11.9 12.6 14.0
7 70 60 10 0.2 1.1 1.6 2.2 2.9 3.1 3.6
8 90 60 30 2.7 4.9 7.6 7.9 8.3 8.7 8.4
9 110 60 50 5.4 9.8 13.0 13.2 13.2 13.1 12.2
10 80 70 10 0.4 1.0 1.6 2.3 2.6 3.0 3.4
11 100 70 30 2.4 5.2 7.3 8.3 8.3 8.8 8.8
12 120 70 50 5.3 9.1 12.7 13.0 13.8 13.4 13.9
13 140 70 70 8.6 14.4 17.0 16.6 16.7 16.2 17.9
14 90 80 10 8.6 14.4 17.0 16.6 16.7 16.2 17.9
15 110 80 30 2.8 4.9 7.1 8.2 8.4 8.4 9.0
16 130 80 50 5.2 9.1 12.5 13.3 13.9 13.6 13.1
17 150 80 70 8.2 13.6 17.2 17.9 17.8 17.2 18.2
18 100 90 10 0.5 1.0 1.6 2.2 2.5 2.6 3.1
19 120 90 30 2.9 4.8 6.3 7.9 8.3 8.4 8.3
20 140 90 50 5.2 8.5 11.4 13.1 13.0 12.8 13.0
21 160 90 70 7.9 12.4 16.7 17.7 17.8 16.8 17.7
22 180 90 90 10.2 16.4 21.3 21.3 21.0 20.9 20.3
23 110 100 10 0.5 1.0 1.6 2.1 2.2 3.0 2.4
24 130 100 30 2.6 4.4 6.2 7.9 8.2 7.7 8.5
25 150 100 50 4.9 8.0 11.0 12.2 13.1 13.4 13.1
26 170 100 70 7.4 11.4 15.6 17.4 17.2 17.0 17.3
27 190 100 90 9.7 15.1 19.8 20.3 20.5 20.6 20.3

Average 4.3 7.6 10.0 10.8 11.1 11.1 11.4

74

3.3 Polynomial Time Algorithms for Special Cases

In this section, we present new polynomial time algorithms that can solve two

non-trivial special cases of the k-median Steiner forest problem to optimality.

3.3.1 When J = V

First, we show that solving the k-median Steiner forest problem with J = V is

equivalent to finding a minimum weighted basis for a matroid. Consider a collection

S of edge subsets of E, such that for each S ∈ S the subgraph (V, S) satisfies that it

has no cycles, and that at least k of its connected components each contain at least

one facility in W .

The system (E,S) is a matroid, due to the following arguments. It is easy to

see that ∅ ∈ S, and that if X ⊆ Y ∈ S, then X ∈ S. Thus, to prove that (E,S)

is a matroid, we only need to show that, for each subset Y ⊆ E, every maximal

independent subset X of Y , which is also called a basis of Y , has the same cardinality.

For each S ⊆ E, let αS and βS denote the numbers of connected components of

the subgraph (V, S) that contain no facility, and that contain at least one facility,

respectively. Since X contains no cycle, we have |X| = |V | − αX − βX . Since X is

a maximal independent subset of Y , we have that αX = αY and βX = max{k, βY }.

Hence, |X| is always equal to (|V | − αY −max{k, βY }), and so (E,S) is a matroid.

Since G is a complete graph, implying that αE = 0 and βE = 1, every basis of

(E,S) consists of |V | − k edges that correspond to a k-median Steiner forest of G.

Moreover, it is easy to see that for every k-median Steiner forest of G, its edge set

is a basis of (E,S). Hence, we obtain the following theorem, which implies that the

k-median Steiner forest problem with J = V can be solved to optimality by finding a

minimum weighted basis of the matroid (E,S), which can be obtained in O(n2 log n)

time by a greedy algorithm known in the literature [50].

75

Theorem 3.5. Solving the k-median Steiner forest problem with J = V is equivalent

to finding a minimum weighted basis of (E,S).

Next, consider a complete graph H extended from G, where V (H) = V ∪ {r},

E(H) = E ∪ {(r, u) : u ∈ W}, and `(r, u) = 0 for u ∈ W . We can show as follows

that, when J = V , an optimal k-median Steiner forest F of G can be transformed

from a minimum k-RDST T of H. First, by eliminating vertex r and all edges (r, u)

with u ∈ W from T , we can obtain a tree collection F that covers all vertices in V .

Since the degree of r in T does not exceed k, we know that F has at most k trees,

with each tree containing a vertex in W as the root. Hence, F is a k-median Steiner

forest of G, and it can be seen that `(F) = `(T). Since OPT denotes an optimal

k-median Steiner forest of G, we have that `(OPT) ≤ `(F) = `(T). Moreover, from

OPT we can obtain a k-RDST of H by joining the root of each tree in OPT to r.

This implies that `(T) ≤ `(OPT). Hence, we have `(F) = `(T) = `(OPT), and so F

is an optimal k-median Steiner forest of G. Since T can be obtained by an O(n2)-time

transformation from a minimum spanning tree T ∗ of H (by Lemma 3.1), F can also

be obtained by an O(n2)-time transformation from T ∗. Since T ∗ can be obtained in

O(α(n2, n)n2) time [21], F can also be obtained in O(α(n2, n)n2) time, faster than

by directly applying the greedy algorithm of finding a minimum weighted basis for a

matroid.

Example 3.5. Consider the instance in Figure 3.1, but let J = V = {1, 2, ..., 8}.

It can be seen that H contains vertices 1, 2, ..., 8 as well as a new vertex r, and

that edges in {(r, 6), (r, 7), (6, 5), (5, 1), (5, 2), (7, 3), (7, 4), (4, 8)} form a minimum k-

RDST of H. By removing (r, 6) and (r, 7) we obtain an optimal k-median Steiner

forest of G of total edge weight equal to 7. This can also be obtained by applying the

greedy algorithm of finding a minimum weighted basis for a matroid, which selects

edges (1, 5), (2, 5), (5, 6), (3, 7), (4, 8), (4, 7) sequentially to form the optimal k-median

Steiner forest.

76

3.3.2 When vertices are located in a tree-shaped network

Suppose that vertices of G are all located on a tree T with a root r ∈ W , so

that the weight of each edge of G equals the total edge weight of the simple path

that connects the endpoints in T . For this special case, the k-median Steiner forest

problem on G is equivalent to that on T , and we can solve it to optimality by the

O(kn)-time algorithm below, which improves on the existing fastest algorithm of [76]

that runs in O(n26k) time.

For each edge (u, v) of T , we still use `(u, v) to indicate its edge weight. First,

without loss of generality, assume that J and W are disjoint. Moreover, the same as

only considering the standard instances in Chapter 2 (condition 3 of Definition 2.1),

we assume that the tree T considered is a full binary tree, where each vertex other

than the leaves has exactly two children, due to the following transformation, similar

to the proof of Theorem 2.1 in Chapter 2 as well as the transformations in [71, 76]:

1. For any non-leaf vertex v with only one child, we can add a new vertex s as a

child of v with `(v, s) = 0. Repeat this until every non-leaf v in G has at least

two children.

2. For any non-leaf vertex v with more than two children, as denoted by u1, u2, ..., uq

with q ≥ 3, we can add a new vertex s as a second child of v with `(v, s) = 0,

and add edges (s, uj) with `(s, uj) = `(v, uj) to replace (v, uj) for 2 ≤ j ≤ q, so

that u2, ..., uq become children of s. Repeat this until every non-leaf vertex v

has exactly two children.

Notice that J and W are not changed. It can be seen that each k-median Steiner forest

for the original tree corresponds to a k-median Steiner forest for the transformed tree

with equal total edge weights, and vice versa. See Figure 3.5, where the instance on

the right is on a full binary tree, and it is equivalently transformed from the instance

on the left. Hence, we can assume without loss of generality that T is a full binary

77

9
1

3
1

2

13

7

5

6

2

(a) An instance on a general tree.

4

1
9

0
1

2
2

0

3

2

0

3 5

6

7
8

1

(b) An instance on a full binary tree.

Figure 3.5: Two equivalent instances with k = 2 and r = 9 for the special case of the
problem: Vertices are located on a tree with clients shown in cycles and
facilities shown in squares; the optimal k-median Steiner forests for both
instances are shown in solid lines with facilities 1 and 9 open, and with
total edge weights both equal to 7.

tree.

Second, from any k-median Steiner forest F of T , we can obtain another k-median

Steiner forest of T as follows, such that trees of the new forest are all vertex-disjoint,

without increasing the total edge weight: If trees in F are all vertex-disjoint, then F

is the forest we need. Otherwise, we can repeatedly combine those trees in F that

share some vertices into one tree, until trees in F are all vertex-disjoint.

Third, in light of the above observation we know that to find an optimal k-median

Steiner forest of T , it is equivalent to selecting a collection of at most k vertex-disjoint

subtrees of T with the total edge weight minimized, such that it covers all the clients

and contains at least one facility in each subtree. The latter problem can be solved

to optimality by dynamic programming, as follows.

For each vertex v, let Tv indicate the subtree of T rooted at v that contains v

and all descendants of v. For each integer q ∈ {0, 1, ..., k}, and ~a = 〈a2a1a0〉 with

ai ∈ {0, 1} for 0 ≤ i ≤ 2, we use (v, q,~a) to denote a subproblem that aims to

minimize the total edge weight of a collection of q selected vertex-disjoint subtrees

of Tv such that: (i) Each client of Tv belongs to one and only one selected subtree;

78

(ii) each selected subtree that does not include v contains at least one facility; (iii)

v belongs to a selected subtree if, and only if, a2 = 1; (iv) v belongs to a selected

subtree that contains at least one client if, and only if, a1 = 1; and (v) v belongs to

a selected subtree that contains at least one facility if, and only if, a0 = 1. It can be

seen that if a2 = 0, then unless a1 = a0 = 0, no feasible solutions to the subproblem

(v, q,~a) exist. Hence, it is sufficient to consider only those subproblems with ~a ∈ A,

where A = {〈000〉, 〈100〉, 〈110〉, 〈101〉, 〈111〉}.

For example, consider the instance in Figure 3.5(b), for which a subtree formed by

edges in {(8, 5), (8, 6)} and vertices in {5, 6, 8} is feasible to subproblem (8, 1, 〈110〉),

and for which a collection of two vertex-disjoint subtrees formed by edges in {(6, 1), (6, 2)}

and vertices in {1, 2, 5, 6} is not feasible to subproblem (8, 2, 〈000〉), because the sub-

tree ({5}, ∅) does not include 8 or any facility.

Let S(v, q,~a) indicate the optimal value of the subproblem (v, q,~a). Since r ∈ W

and r /∈ J , the minimum value of S(r, q,~a) over 1 ≤ q ≤ k and ~a ∈ {〈000〉, 〈111〉}

equals the total edge weight of the minimum k-median Steiner tree of T .

We next present a dynamic programming algorithm to compute S(v, q,~a) recur-

sively for v ∈ V , from leaves to the root r. For each leaf v of T , we can compute

S(v, q,~a) with 0 ≤ q ≤ k and ~a ∈ A by the following three cases:

• Case 1: v ∈ J is a client. Since only the subtree ({v}, ∅) can cover v, and

since v ∈ J , we have that S(v, q,~a) = 0 if q = 1 and ~a = 〈110〉, and that

S(v, q,~a) =∞ otherwise.

• Case 2: v ∈ W is a facility. Since only the subtree ({v}, ∅) can cover v, and since

v ∈ W , we have that S(v, q,~a) = 0 if q = 1 and ~a = 〈101〉, that S(v, q,~a) = 0 if

q = 0 and ~a = 〈000〉, and that S(v, q,~a) =∞ otherwise.

• Case 3: v ∈ V \ J \W . Since v is neither a client nor a facility, we have that

S(v, q,~a) = 0 if q = 0 and ~a = 〈000〉, that S(v, q,~a) = 0 if q = 1 and ~a = 〈100〉,

79

Table 3.4: Values of S(v, q,~a) for ~a ∈ A, q ∈ {0, 1}, and each leaf v ∈ {1, 2, 3, 4, 5} of
the tree of the instance shown in Figure 3.5(b), with k = 2.

v
q = 0 q = 1

~a: 〈000〉 〈100〉 〈110〉 〈101〉 〈111〉 ~a: 〈000〉 〈100〉 〈110〉 〈101〉 〈111〉
3,5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞
1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞

2,4 0 ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞

and that S(v, q,~a) =∞ otherwise.

For example, consider the instance in Figure 3.5(b) with k = 2, for which Table 3.4

presents the values of S(v, q,~a) for each leaf v ∈ {1, 2, 3, 4, 5} of the tree, where

q ∈ {0, 1} and ~a ∈ A, and we know S(v, 2,~a) =∞ for each leaf v ∈ {1, 2, 3, 4, 5} and

~a ∈ A.

For each non-leaf v of T , let u1 and u2 denote its left and right children. Consider

each subproblem (v, q,~a) with q = 0, 1, ..., k and ~a ∈ A. If ~a = 〈000〉, implying that

v does not belong to any selected subtree of Tv, then an optimal solution to (v, q,~a)

exists only when v is not a client, and if such an optimal solution exists, then we can

partition it into two collections of selected subtrees that are optimal to subproblems

(u1, q1,~a1) and (u2, q2,~a2), respectively, for certain q1 and q2 with q1 + q2 = q, and

for certain ~a1 and ~a2 in A. Moreover, for j ∈ {1, 2}, since (v, uj) is not selected, the

selected subtree that contains uj (if any) must contain at least one client and at least

one facility. In other words, for any optimal solution to the subproblem (uj, qj,~aj),

it can be part of an optimal solution to (v, q,~a) only if ~aj ∈ {〈000〉, 〈111〉}. Thus, if

v ∈ J , we obtain that S(v, q, 〈000〉) =∞, and otherwise,

S(v, q, 〈000〉) = minS(u1, q1,~a1) + S(u2, q2,~a2)

s.t. q1 + q2 = q,

0 ≤ q1, q2 ≤ q,

~a1 ∈ {〈000〉, 〈111〉}, ~a2 ∈ {〈000〉, 〈111〉}.

80

For example, consider the instance in Figure 3.5(b), in which it can be seen that

S(6, 1, 〈000〉) =∞ since 6 is a client, and that by Table 3.4, S(7, 1, 〈000〉) =∞ since

S(v, 1, 〈000〉) = S(v, 1, 〈111〉) =∞ for both v ∈ {3, 4}.

Next, consider the situation where ~a ∈ A \ {〈000〉} = {〈100〉, 〈110〉, 〈101〉, 〈111〉},

implying that a2 = 1, and thus v belongs to a selected subtree of Tv. Depending on

whether or not edge (v, u1) and/or edge (v, u2) are selected, there are four possibilities

for v to be connected to a selected subtree of Tv. We can thus decompose the sub-

problem (v, q,~a) into the following four restricted subproblems denoted by (v, q,~a)i

with 1 ≤ i ≤ 4, so that representing the optimal value of each restricted subproblem

by Si(v, q,~a), we have

S(v, q,~a) = min
1≤i≤4

Si(v, q,~a). (3.2)

For the restricted subproblem (v, q,~a)1, it is restricted to a constraint where nei-

ther edge (v, u1) nor (v, u2) is selected. Thus, the subtree ({v}, ∅) must be selected.

Define

~b := 〈1b1b0〉, (3.3)

where b1 = 1 if v is a client, and b1 = 0 otherwise, and b0 = 1 if v is a facility,

and b0 = 1 otherwise. If ~a 6= ~b, then no feasible solution exists to the restricted

subproblem (v, q,~a)1, implying that S1(v, q,~a) = ∞. Otherwise, ~a = ~b, and then,

for any optimal solution to (v, q,~b)1, it can be partitioned into three components,

including a vertex v, a collection of subtrees that is optimal to subproblem (u1, q1,~a1),

and a collection of subtrees that is optimal to subproblem (u2, q2,~a2), for certain q1

and q2 with q1 + q2 + 1 = q, and for certain ~a1 ∈ A and ~a2 ∈ A. Moreover, for each

j ∈ {1, 2}, since (v, uj) is not selected, by following the same argument used earlier

for ~aj in solving S(v, q, 〈000〉), we know that for any optimal solution to (uj, qj,~aj),

81

it can be part of an optimal solution to (v, q,~a)1 only if ~aj ∈ {〈000〉, 〈111〉}. Hence,

we obtain that

S1(v, q,~b) = minS(u1, q1,~a1) + S(u2, q2,~a2)

s.t. q1 + q2 + 1 = q,

0 ≤ q1, q2 ≤ q,

~a1 ∈ {〈000〉, 〈111〉}, ~a2 ∈ {〈000〉, 〈111〉},

where S1(v, q,~b) = ∞ if q = 0. For example, consider the instance in Figure 3.5(b)

with v = 6, u1 = 1 and u2 = 2, for which ~b = 〈110〉, and it can be seen that

S1(6, 1, 〈111〉) = ∞ since ~b 6= 〈111〉, and that S1(6, 1, 〈110〉) = 0, since by Table 3.4

S(1, 0, 〈000〉) = S(2, 0, 〈000〉) = 0.

For the restricted subproblem (v, q,~a)2, it is restricted to a constraint where (v, u1)

is selected but (v, u2) is not. Thus, for any optimal solution to (v, q,~a)1, it can be

partitioned into three components, including (v, u1), a collection of subtrees that is

optimal to subproblem (u1, q1,~a1), and a collection of subtrees that is optimal to

subproblem (u2, q2,~a2), for certain q1 and q2 with q1 + q2 = q, and for certain ~a1 ∈ A

and ~a2 ∈ A with ~a1 ∨ ~b = ~a, where b is as defined in (3.3). Since (v, u2) is not

selected, by following the same argument used earlier for ~a2 in solving S(v, q, 〈000〉),

we know that for any optimal solution to (u2, q2,~a2), it can be part of an optimal

solution to (v, q,~a)2 only if ~a2 ∈ {〈000〉, 〈111〉}. Moreover, since (v, u1) is selected,

we know that for any optimal solution to (u1, q1,~a1), it can be part of an optimal

solution to (v, q,~a)2 only if q1 ≥ 1 and a1,2 = 1, or in other words, q1 ≥ 1 and

~a1 ∈ {〈100〉, 〈101〉, 〈110〉, 〈111〉}. Hence, we obtain that

82

S2(v, q,~a) = min `(v, u1) + S(u1, q1,~a1) + S(u2, q2,~a2)

s.t. q1 + q2 = q, ~a1 ∨~b = ~a,

1 ≤ q1 ≤ q, 0 ≤ q2 ≤ q,

~a1 ∈ {〈100〉, 〈101〉, 〈110〉, 〈111〉}, ~a2 ∈ {〈000〉, 〈111〉},

where S2(v, q,~a) = ∞ if q = 0 or no ~a1 ∈ {〈100〉, 〈101〉, 〈110〉, 〈111〉} satisfies that

~a1 ∨~b = ~a. For example, consider the instance in Figure 3.5(b) with v = 6, u1 = 1

and u2 = 2, for which ~b = 〈110〉, and it can be seen that S2(6, 1, 〈111〉) = `(6, 1) = 1,

since by Table 3.4 S(1, 1, 〈101〉) = S(2, 0, 〈000〉) = 0.

For the restricted subproblem (v, q,~a)3, it is restricted to a constraint where (v, u2)

is selected but (v, u1) is not. Since the subproblem (v, q,~a)3 can be transformed to

(v, q,~a)2 by switching the notation u1 and u2, similarly to S2(v, q,~a), we obtain that

S3(v, q,~a) = min `(v, u2) + S(u1, q1,~a1) + S(u2, q2,~a2)

s.t. q1 + q2 = q, ~a2 ∨~b = ~a,

0 ≤ q1 ≤ q, 1 ≤ q2 ≤ q,

~a1 ∈ {〈000〉, 〈111〉}, ~a2 ∈ {〈100〉, 〈101〉, 〈110〉, 〈111〉},

where S3(v, q,~a) = ∞ if q = 0, or no ~a2 ∈ {〈100〉, 〈101〉, 〈110〉, 〈111〉} satisfies that

~a2 ∨~b = ~a. For example, consider the instance in Figure 3.5(b) with v = 6, u1 = 1

and u2 = 2, for which ~b = 〈110〉, and it can be seen that S3(6, 1, 〈111〉) = ∞, since

by Table 3.4 S(1, 0, 〈111〉) = S(2, 1, 〈101〉) = S(2, 1, 〈111〉) =∞.

Finally, for the restricted subproblem (v, q,~a)4, it is restricted to a constraint where

both (v, u1) and (v, u2) are selected. Thus, for any optimal solution to (v, q,~a)1, it can

be partitioned into three components, including edges (v, u1) and (v, u2), a collection

of subtrees that is optimal to subproblem (u1, q1,~a1), and a collection of subtrees

that is optimal to subproblem (u2, q2,~a2), for certain q1 and q2 with q1 + q2 − 1 = q,

83

and for certain ~a1 ∈ A and ~a2 ∈ A with ~a1 ∨ ~a2 ∨ ~b = ~a. Moreover, for each

j ∈ {1, 2}, since (v, uj) is selected, by following the same argument used earlier for

~a1 in computing S1(v, q,~b), we know that for any optimal solution to the subproblem

(uj, qj,~aj), it can be part of an optimal solution to (v, q,~a)4 only if qj ≥ 1 and

~aj ∈ {〈100〉, 〈101〉, 〈110〉, 〈111〉}. Hence, we obtain that

S4(v, q,~a) = min `(v, u1) + `(v, u2) + S(u1, q1,~a1) + S(u2, q2,~a2)

s.t. q1 + q2 − 1 = q, ~a1 ∨ ~a2 ∨~b = ~a,

1 ≤ qj ≤ q,

~aj ∈ {〈100〉, 〈101〉, 〈110〉, 〈111〉}, for j ∈ {1, 2},

where S4(v, q,~a) =∞ if q = 0, or no ~aj ∈ {〈100〉, 〈101〉, 〈110〉, 〈111〉} for j = 1 and j =

2 satisfy that ~a1∨~a2∨~b = ~a. For example, consider the instance in Figure 3.5(b) with

v = 6, u1 = 1 and u2 = 2, for which~b = 〈110〉, and it can be seen that S4(6, 1, 〈111〉) =

`(6, 1) + `(6, 2) = 1, since by Table 3.4 S(1, 1, 〈101〉) = S(2, 1, 〈100〉) = 0. Hence,

from (3.2), we obtain that S(6, 1, 〈111〉) = min{∞, 1,∞, 1} = 1.

We can now follow the above dynamic programming algorithm to solve subprob-

lems (v, q,~a) recursively for all vertices v ∈ V , from leaves to the root r, for each

q = 0, 1, ..., k, and for each ~a ∈ A. As shown earlier, by taking the minimum value of

S(r, q,~a) over 1 ≤ q ≤ k and ~a ∈ {〈000〉, 〈111〉}, we can obtain the total edge weight

of the optimal k-median Steiner forest of T . For example, consider the instance in

Figure 3.5(b) with r = 9 and k = 2, for which we can follow this dynamic program-

ming algorithm to compute subproblems for vertices 1, 2, 3, ..., r = 9, sequentially,

and to obtain that S(r, 2, 〈111〉) = 7 is the total edge weight of the optimal k-median

Steiner forest.

Moreover, the dynamic programming algorithm runs in O(kn) time, as shown

below.

84

Theorem 3.6. When vertices are located on a tree T , the k-median Steiner forest

problem can be solved to optimality in O(kn) time.

Proof. We have shown that for this special case, an optimal k-median Steiner forest

can be obtained by a dynamic programming algorithm, which solves at most O(kn)

subproblems (v, q,~a) recursively. Since q ≤ k, by definition it can be seen that each

subproblem (v, q,~a) can be solved in O(k) time. Thus, the total time complexity of

the algorithm is O(k2n).

It can further be shown as follows that the total time complexity is O(kn). Similar

to the analysis in [71], we define that a vertex v is rich if it is not a leaf, and for

each of its children uj with j ∈ {1, 2}, the subtree Tuj rooted at uj contains at

least k/2 vertices. By Lemma 1 in [71], we know that the number of rich vertices

is bounded above by 2n/k. This implies that the total time complexity for solving

subproblems (v, q,~a) with v being a rich vertex is O(kn). Next, we will show that

the total time complexity for solving subproblems (v, q,~a) with v not being a rich

vertex is also O(kn). For each vertex v, let H ′v denote the total time spent for solving

subproblems (u, q,~a) with u ∈ Tv being not rich, and define Hv := nH ′v. If v is rich,

then H ′v = H ′u1 + H ′u2 , which implies Hv = Hu1 + Hu2 . Otherwise, v is not rich, and

then, it can be seen that H ′v ≤ H ′u1 +H ′u2 + cmin{|V (Tu1)|, k/2}min{|V (Tu2)|, k/2},

where c is a constant, and V (Tuj) indicates the set of vertices in Tuj for j ∈ {1, 2}.

This implies that Hv ≤ Hu1 + Hu2 + cnmin{|V (Tu1)|, k/2}min{|V (Tu2)|, k/2}. By

Lemma 2 in [71], we have Hv ≤ ckn|V (Tv)|, where V (Tv) indicates the set of vertices

in Tv. Thus, we obtain that H ′r ≤ Hr/n ≤ ckn|V |/n = ckn. Hence, the total time

complexity of the dynamic programming algorithm is O(kn).

85

3.4 Summary

In this chapter, we have proved that the new proposed approximation algorithm

achieves a tight approximation ratio of (2 − 1/|J |) for the k-median Steiner forest

problem that jointly optimizes facility locations and network connections, which is

better and much simpler to prove than the existing 2-approximation algorithm in the

literature. Computational experiments and examples show that our new algorithm

can always produce solutions of equal or better quality than the existing algorithms,

up to 50% improvement in some cases. Moreover, we have further considered two

special cases of the problem, where either each vertex containers a client, or all the

vertices are located in a tree-shaped network. For these two cases, new polynomial

time algorithms, which can produce optimal solution, have been proposed. In the

future, one possible research direction is to improve the worst-cast approximation

ratio for the problem, or to develop approximation algorithms with constant ratio to

other variants of the problem.

86

CHAPTER 4

Conclusions

This thesis comprises two essays, each of which has studied a different logistics

optimization problem that has wide applications within the transportation industry.

For these two problems, we have developed new improved approximation algorithms

with constant approximation ratios. Moreover, for some special cases which are com-

monly seen in practice, we have also proposed new polynomial time algorithms that

can solve them to optimality. In the following, we summarize, respectively, the main

results of each essay, and provide several possible interesting directions for future

research.

In the first essay, for the CTSPPD-T problem, we developed a 2-approximation

algorithm that has a polynomial time complexity provided the ratio (
∑

v∈V |q(v)|)/k

is polynomially bounded by |V |. Since each pickup or delivery point v needs at least

d|q(v)|/ke times of pickups or deliveries, every feasible route must consist of at least
∑

v∈V d|q(v)|/ke states. Thus, unless it requires an exponential number of pickups or

deliveries, which is unlikely in practice, the ratio (
∑

v∈V |q(v)|)/k is always polynomi-

ally bounded by |V |. Moreover, computational results show that our algorithm also

achieves good average performance over randomly generated instances, and exhibits

a much shorter running time and better solution quality than a greedy algorithm.

Note that in keeping with the literature [2, 18, 37], in this essay we only consider

87

the case where the request for pickups and deliveries is balanced, with
∑

v∈V q(v) = 0.

Therefore, one natural direction of future research is to consider an unbalanced case
∑

v∈V q(v) > 0, where the vehicle may only serve partial pickup requests or partial

delivery requests due to its unbalanced nature. One possible method is to firstly

determine an actual pickup or delivery amount q′(v) for each v ∈ V , so as to obtain

a balanced instance, with
∑

v∈V q
′(v) = 0, to which therefore our newly developed

algorithm can be applied. The resulting route will achieve an approximation ratio of 2

if, similar to (2.2),
∑

u∈V 2n′(u)d(e(u)) is a lower bound on the optimal route length,

where n′(u) = max{d|q′(Tu)|/ke, 1}. To achieve this, we can determine q′(v) for

v ∈ V so as to minimize
∑

u∈V 2n′(u)d(e(u)). Therefore, using the above mentioned

method of determining an actual amount, seeing whether the final solution obtained

has a better quality performance and whether it has a polynomial time complexity

are interesting problems for future research to consider.

Another direction for our future research is to consider a more complicated setting

for the problem, such as there being multiple types of products to transport, as well

as being able to use multiple vehicles, since in actual practice there always exist

multiple types of products to transport or carriers always using a number of vehicles

in their practice operations. For such cases, the results obtained in this essay can be

further extended and embedded into more sophisticated methods, e.g., as a method

of generating routes used as columns in column generation or as initial solutions in

meta-heuristics, such as simulated annealing or local search. This can be possible in

order to solve large scale instances and let the problem be of more practical value.

In the second essay, we have presented a new approximation algorithm for the

k-median Steiner forest problem that jointly optimizes facility locations and network

connections. The new algorithm is based on a simple transformation from a minimum

spanning tree of the clients and a new vertex that replaces all the facilities. Compared

with the existing best 2-approximation algorithm that combines a Lagrangian relax-

88

ation with a primal-dual schema, our new algorithm is much simpler, and achieves

a better approximation ratio that is easier to be proved. We have also shown that

the new algorithm can always produce solutions of equal or better quality than the

existing 2-approximation algorithm, and the quality improvement can be up to 50%

in some cases. Moreover, we have developed new polynomial time algorithms that

can solve the problems to optimality for two special cases, where either each vertex

contains a client, or all the vertices are located in a tree-shaped network.

One direction of our future research is to improve the approximation ratio for the

k-median Steiner forest problem. For this, one possible approach is to extend the

techniques that have successfully been used in improving the approximations of the

Steiner tree problem, for which the current best approximation ratio is ln(4)+ε < 1.39

[14].

The other direction of our future research is to develop constant ratio approx-

imation algorithms for other variants of the problem. For example, one variant is

that with a capacity constraint that restricts the maximum number of clients that

can be connected to each facility. The constraint is similar to that in the classical

capacitated facility location problem, which has wide applications in practice and

is well-studied in the literature [8, 40, 80]. Moreover, another possible variant is to

extend to the case not only having the facility number constraints, but also having a

different facility opening cost, i.e., each facility has a different fixed cost to open [75].

A similar problem, k-facility location problem, has been considered in the literature

[41, 79], and can be applied to a more general setting in practice. For these, the re-

sults obtained in this study have laid down a sound foundation that can be extended

upon even further.

89

APPENDICES

91

APPENDIX A

Formulation for k-median Steiner forest problem

A.1 Mixed integer programming formulation

We now propose a multi-commodity flow formulation for the k-median Steiner

forest problem. As mentioned before in Section 3.2.3.1, the problem on G = (V,E)

can be formulated as a constrained Steiner tree problem on a new undirected graph

Ĝ with a root degree constraint [29, 33], where the vertex set consists of V and a new

root vertex r, and the edge set consists of E and the root edges (r, v) for v ∈ W with

`(r, v) = 0, denoted by Er. Hence, Ĝ = (V ∪ {r}, E ∪ Er).

For each client j ∈ J , define a commodity j. Given the graph Ĝ, define a bi-

directed graph B = (V ∪ {r}, A) through bidirecting every edge of E and adding the

root arcs (r, v) for v ∈ W . For each arc a = (u, v) ∈ A, let f juv be the flow variable

representing the commodity j flows from node u to node v. For each edge e ∈ E∪Er,

let xe be a binary variable equal to 1 if and only if the edge e is in the Steiner tree (0

otherwise). Therefore, the multi-commodity flow formulation is the following:

min
∑

e∈E
`(e)xe (A.1)

93

subject to:

∑

e∈Er
xe ≤ k (A.2)

∑

u∈V
f juv −

∑

u∈V
f jvu =

−1 for v = r, j ∈ J

1 for v = j, j ∈ J

0 for v ∈ V \ {r, j}, j ∈ J

(A.3)

f juv ≤ xe, for each e ∈ E ∪ Er, (u, v) ∈ A with e = (u, v), j ∈ J (A.4)

f juv ≥ 0, for each (u, v) ∈ A, j ∈ J (A.5)

xe ∈ {0, 1}, for each e ∈ E ∪ Er (A.6)

The objective function (A.1) asks for minimizing the total connection cost in the tree.

Constraint (A.2) ensures the degree of vertex r not exceeding k. Constraints (A.3)

are the flow balancing constraints for each commodity j that ensure only one unit

outflow of vertex r and one unit inflow of client j, as well as the outflow equals to

inflow in other vertices. Moreover, constraints (A.4) impose that there are flows in

the arc (u, v) if and only if the edge e is included in the Steiner tree, i.e., xe = 1.

Finally, constraints (A.5) and (A.6) define f juv as non-negative continuous variables

and xe as binary variables.

94

BIBLIOGRAPHY

95

BIBLIOGRAPHY

[1] R. Agarwal and O. Ergun. Ship scheduling and network design for cargo routing

in liner shipping. Transportation Science, 42(2):175–196, 2008.

[2] S. Anily and J. Bramel. Approximation algorithms for the capacitated traveling

salesman problem with pickups and deliveries. Naval Research Logistics, 46(6):

654–670, 1999.

[3] S. Anily and R. Hassin. The swapping problem. Networks, 22(4):419–433, 1992.

[4] S. Anily and G. Mosheiov. The traveling salesman problem with delivery and

backhauls. Operations Research Letters, 16(1):11–18, 1994.

[5] C. Archetti and M. G. Speranza. Vehicle routing problems with split deliveries.

International Transactions in Operational Research, 19(1-2):3C–22, 2012.

[6] C. Archetti, M. W. P. Savelsbergh, and M. G. Speranza. Worst-case analysis for

split delivery vehicle routing problems. Transportation science, 40(2):226–234,

2006.

[7] E. M. Arkin, R. Hassin, and L. Klein. Restricted delivery problems on a network.

Networks, 29(4):205–216, 1997.

[8] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Lo-

cal search heuristics for k-median and facility location problems. SIAM Journal

on Computing, 33(3):544–562, 2004.

97

[9] T. Asano, N. Katoh, and K. Kawashima. A new approximation algorithm for

the capacitated vehicle routing problem on a tree. Journal of Combinatorial

Optimization, 5(2):213–231, 2001.

[10] T. Asano, N. Katoh, and K. Kawashima. A new approximation algorithm for

the capacitated vehicle routing problem on a tree. Journal of Combinatorial

Optimization, 5(2):213–231, 2001.

[11] A. Balakrishnan, M. Banciu, K. Glowacka, and P. Mirchandani. Hierarchical ap-

proach for survivable network design. European Journal of Operational Research,

225(2):223 – 235, 2013.

[12] S. H. Bartholomew. Estimating and bidding for heavy construction. Prentice-

Hall, Englewood Cliffs, NJ, 2000.

[13] C. Basnet, L. R. Foulds, and J. M. Wilson. Heuristics for vehicle routing on

tree-like networks. Journal of the Operational Research Society, 50(6):627–635,

1999.

[14] J. Byrka, F. Grandoni, T. Rothvoss, and L. Sanità. Steiner tree approximation

via iterative randomized rounding. Journal of the ACM, 60(1):6:1–6:33, 2013.

[15] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An improved

approximation for k-median, and positive correlation in budgeted optimization.

In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete

Algorithms, to appear. SIAM, 2015.

[16] T. Carnes and D. B. Shmoys. Primal-dual schema and Lagrangian relaxation for

the k-location-routing problem. In Approximation, Randomization, and Combi-

natorial Optimization. Algorithms and Techniques, pages 99–110. Springer, 2011.

98

[17] D. O. Casco, B. L. Golden, and E. A. Wasil. Vehicle routing: methods and

studies, chapter Vehicle routing with backhauls: Models, algorithms, and case

studies, pages 127–147. North-Holland, Amsterdam, 1988.

[18] P. Chalasani and R. Motwani. Approximating capacitated routing and delivery

problems. SIAM Journal on Computing, 28(6):2133–2149, 1999.

[19] S. Chamberland, B. Sanso, and O. Marcotte. Topological design of two-level

telecommunication networks with modular switches. Operations Research, 48

(5):745–760, 2000.

[20] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor approx-

imation algorithm for the k-median problem. In Proceedings of the Thirty-First

Annual ACM Symposium on Theory of Computing, pages 1–10. ACM, 1999.

[21] B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type

complexity. Journal of the ACM, 47(6):1028–1047, 2000.

[22] H. Chen, A. M. Campbell, and B. W. Thomas. Network design for time-

constrained delivery. Naval Research Logistics, 55(6):493–515, 2008.

[23] S. Chen, B. Golden, and E. Wasil. The split delivery vehicle routing problem:

Applications, algorithms, test problems, and computational results. Networks,

49(4):318–329, 2007.

[24] D. Chhajed and T. J. Lowe. An O(n) algorithm for a special case of the multi-

median location problem on a tree. European Journal of Operational Research,

63(2):222–230, 1992.

[25] M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Maritime transporta-

tion. Handbooks in operations research and management science, 14:189–284,

2007.

99

[26] M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Ship routing and

scheduling in the new millennium. European Journal of Operational Research,

228(3):467–483, 2013.

[27] I. Contreras and E. Fernández. General network design: A unified view of com-

bined location and network design problems. European Journal of Operational

Research, 219(3):680–697, 2012.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms (2nd Edition), chapter Binary Search Trees, page 254. The MIT

Press, 2001.

[29] D.-Z. Du and X. Cheng. Steiner Trees In Industries. Kluwer Academic Publisher,

2000.

[30] R. Epstein, A. Neely, A. Weintraub, F. Valenzuela, S. Hurtado, G. Gonzalez,

A. Beiza, M. Naveas, F. Infante, F.Alarcon, G. Angulo, C. Berner, J. Catalan,

C. Gonzalez, and D. Yung. A strategic empty container logistics optimization in

a major shipping company. Interfaces, 42(1):5–16, 2012.

[31] H. N. Gabow and R. E. Tarjan. Efficient algorithms for a family of matroid

intersection problems. Journal of Algorithms, 5(1):80–131, 1984.

[32] M. R. Garey and D. S. Johnson. Computers and intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[33] M. X. Geomans and Y. Myung. A catalog of steiner tree formulations. Networks,

23:19–28, 1993.

[34] É. Gourdin, M. Labbé, and G. Laporte. The uncapacitated facility location

problem with client matching. Operations Research, 48(5):671–685, 2000.

100

[35] D. Henderson, D. E. Vaughan, S. H. Jacobson, R. R. Wakefield, and E. C.

Sewell. Solving the shortest route cut and fill problem using simulated annealing.

European Journal of Operational Research, 145(1):72–84, 2003.

[36] H. Hernández-Pérez and J. J. Salazar-González. A branch-and-cut algorithm

for a traveling salesman problem with pickup and delivery. Discrete Applied

Mathematics, 145(1):126–139, 2004.

[37] H. Hernández-Pérez and J. J. Salazar-González. Heuristics for the one-

commodity pickup-and-delivery traveling salesman problem. Transportation Sci-

ence, 38(2):245–255, 2004.

[38] H. Hernández-Pérez and J. J. Salazar-González. The one-commodity pickup-

and-delivery traveling salesman problem: inequalities and algorithms. Networks,

50(4):258–272, 2007.

[39] H. Hernández-Pérez and J. J. Salazar-González. The multi-commodity one-to-

one pickup-and-delivery traveling salesman problem. European Journal of Oper-

ational Research, 196(3):987–995, 2009.

[40] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility loca-

tion problems. In Proceedings of the Thiry-Fourth Annual ACM Symposium on

Theory of Computing, pages 731–740. ACM, 2002.

[41] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility

location algorithms analyzed using dual fitting with factor-revealing lp. Journal

of the ACM, 50(6):795–824, 2003.

[42] K. l. Jain and V. V. Vazirani. Approximation algorithms for metric facility

location and k-median problems using the primal-dual schema and Lagrangian

relaxation. Journal of the ACM, 48(2):274–296, 2001.

101

[43] H. Jiang and C. Barnhart. Dynamic airline scheduling. Transportation Science,

43(3):336–354, 2009.

[44] M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner

tree problems. Journal of Combinatorial Optimization, 1(1):47–65, 1997.

[45] Y. Karuno, H. Nagamochi, and T. Ibaraki. Vehicle scheduling on a tree to min-

imize maximum lateness. Journal of the Operations Research Society of Japan-

Keiei Kagaku, 39(3):345–355, 1996.

[46] Y. Karuno, H. Nagamochi, and T. Ibaraki. Better approximation ratios for the

single-vehicle scheduling problems on line-shaped networks. Networks, 39(4):

203–209, 2002.

[47] N. Katoh and T. Yano. An approximation algorithm for the pickup and delivery

vehicle routing problem on trees. Discrete Applied Mathematics, 154(16):2335–

2349, 2006.

[48] H. L. M. Kerivin, M. Lacroix, and A. R. Mahjoub. Models for the single-vehicle

preemptive pickup and delivery problem. Journal of Combinatorial Optimization,

23(2):196–223, 2012.

[49] D. Klabjan, E. L. Johnson, G. L. Nemhauser, E. Gelman, and S. Ramaswamy.

Airline crew scheduling with regularity. Transportation Science, 35(4):359–374,

2001.

[50] B. H. Korte and J. Vygen. Combinatorial optimization: theory and algorithms,

chapter 13. Matroids, pages 305–336. Springer Verlag, 2008.

[51] M. Labbe, G. Laporte, and H. Mercure. Capacitated vehicle routing problems

on trees. Operations Research, 39(2):616–622, 1991.

102

[52] X. Lai and Z. Xu. Improved algorithms for joint optimization of facility locations

and network connections, 2015. Forthcoming.

[53] S. Li and O. Svensson. Approximating k-median via pseudo-approximation. In

Proceedings of the Forty-Fifth annual ACM Symposium on Theory of Computing,

pages 901–910. ACM, 2013.

[54] A. Lim, B. Rodrigues, and J. Zhang. Tabu search embedded simulated annealing

for the shortest route cut and fill problem. Journal of the Operational Research

Society, 56(7):816–824, 2004.

[55] F. Louveaux and J. J. Salazar-González. On the one-commodity pickup-and-

delivery traveling salesman problem with stochastic demands. Mathematical

Programming, 119(1):169–194, 2009.

[56] W. Malik, S. Rathinam, and S. Darbha. An approximation algorithm for a sym-

metric generalized multiple depot, multiple travelling salesman problem. Oper-

ations Research Letters, 35(6):747–753, 2007.

[57] G. Mosheiov. The travelling salesman problem with pick-up and delivery. Euro-

pean Journal of Operational Research, 79(2):299–310, 1994.

[58] P. A. Mullaseril, M. Dror, and J. Leung. Split-delivery routeing heuristics in

livestock feed distribution. Journal of the Operational Research Society, 48(2):

107–116, 1997.

[59] M. Nowak, O. Ergun, and C. C. White. Pickup and delivery with split loads.

Transportation Science, 42(1):32–43, 2008.

[60] S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and delivery

problems. Journal für Betriebswirtschaft, 58(2):81–117, 2008.

103

[61] C. Prodhon and C. Prins. A survey of recent research on location-routing prob-

lems. European Journal of Operational Research, 238(1):1–17, 2014.

[62] H. J. Prömel and A. Steger. A new approximation algorithm for the Steiner tree

problem with performance ratio 5/3. Journal of Algorithms, 36(1):89–101, 2000.

[63] R. Ravi. A primal-dual approximation algorithm for the Steiner forest problem.

Information processing letters, 50(4):185–189, 1994.

[64] R. Ravi and A. Sinha. Approximation algorithms for problems combining facility

location and network design. Operations Research, 54(1):73–81, 2006.

[65] M. G. C. Resende and P. Pardalos. Handbook of Optimization in Telecommuni-

cations. Springer, 2006.

[66] H. Richter. Thirty years of airline operations research. Interfaces, 19(4):3–9,

1989.

[67] G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graph-

s. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 770–779. SIAM, 2000.

[68] M. W. P. Savelsbergh and M. Sol. The general pickup and delivery problem.

Transportation Science, 29(1):17–29, 1995.

[69] G. Sierksma and G. A. Tijssen. Routing helicopters for crew exchanges on off-

shore locations. Annals of Operations Research, 76:261–286, 1998.

[70] S. H. Song, K. S. Lee, and G. S. Kim. A practical approach to solving a newspaper

logistics problem using a digital map. Computers & industrial engineering, 43

(1-2):315–330, 2002.

[71] A. Tamir. An O(pn2) algorithm for the p-median and related problems on tree

graphs. Operations Research Letters, 19(2):59–64, 1996.

104

[72] J. N. Tsitsiklis. Special cases of traveling salesman and repairman problems with

time windows. Networks, 22(3):263–282, 1992.

[73] V. V. Vazirani. Approximation algorithms, chapter 3. Steiner Tree and TSP,

pages 27–37. Springer, 2001.

[74] F. Wang, A. Lim, and Z. Xu. The one-commodity pickup and delivery travelling

salesman problem on a path or a tree. Networks, 48(1):24–35, 2006.

[75] F. Wang, X. Lai, and N. Shi. A multi-objective optimization for green supply

chain network design. Decision Support Systems, 51(2):262–269, 2011.

[76] L. Xu, Z. Xu, and D. Xu. Exact and approximation algorithms for the min–

max k-traveling salesmen problem on a tree. European Journal of Operational

Research, 227(2):284–292, 2013.

[77] Z. Xu, X. Lai, A. Lim, and F. Wang. An improved approximation algorithm

for the capacitated TSP with pickup and delivery on a tree. Networks, 63(2):

179–195, 2014.

[78] A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner

problem. Algorithmica, 9(5):463–470, 1993.

[79] P. Zhang. A new approximation algorithm for the k-facility location problem.

Theoretical Computer Science, 384:126–135, 2007.

[80] Z. Zhang, G. Berenguer, and Z. M. Shen. A capacitated facility location model

with bidirectional flows. Transportation Science, 49(1):114–129, 2015.

105

