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Abstract 

The Volterra series based nonlinear analysis and design methodology is a 

powerful tool that has been applied to various engineering practices. This study 

addresses several key issues of the Volterra series based methodology that have 

not been well developed in the literature, including its convergence, applications, 

and extensions. 

Two novel concepts, i.e., the parametric bound of convergence (PBoC) and 

parametric convergence margin (PCM), are proposed for nonlinear systems 

described by  nonlinear auto-regressive with exogenous input (NARX) models. 

The proposed PBoC can calculate the convergence bound not only for the input 

magnitude, but also for the parameters of interest. The PCM is developed as a 

quantitative assessment to examine the distance from a given nonlinear system to 

the bound of a convergent Volterra series expansion.  

By applying the theoretical results above, the nonlinear characteristic output 

spectrum (nCOS) function can be well analysed and designed within a certain 

region of nonlinear parameters of interest. A nonlinear damping is proposed to 

overcome the well-known dilemma with respect to linear damping. The 

performance of the nonlinear damping is derived with the nCOS method, which 

also provides a straightforward and effective way to tackle the multiple-object 

nonlinear optimization problem.  

Linear components or linear controllers are usually easier to implement in 

practice, and are thus of considerable interest for analysis and design to achieve a 

better performance when simultaneously considering a system that is inherently 

nonlinear. The existing nCOS method is only available for nonlinear parameters, 

and thus is extended to those linear parameters of interest. A symbolic algorithm 

for calculating the new nCOS function is developed for single-input 

single-output (SISO) systems. In case that the built symbolic algorithm is 

complicated for MIMO systems, a numerical identification method is developed.  
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The results above are established for nonlinear systems with polynomial 

nonlinearity. For those nonlinear systems with exponential-type nonlinearity, 

there would be too many parameters in the analysis and design because 

exponential nonlinearity is usually approximated by Taylor series expansions. An 

efficient algorithm with many fewer parameters for calculating the generalized 

frequency response function (GFRF) in the nonlinear analysis and design is then 

developed.  

The contributions of this thesis lie in the following points. The results of 

PBoC and PCM are notable extensions of those convergence results in the 

literature, and can provide a more straightforward and useful guidance for the 

parameter design or feedback design of nonlinear systems via the nCOS method. 

The new nCOS function can provide a straightforward understanding of the 

effect of the linear parameters of interest on the nonlinear output spectrum and 

thereby greatly facilitate the analysis and design of linear components or 

controllers for nonlinear systems. The extension of the nCOS method to 

exponential-type nonlinear system will considerably ease the analysis and design 

of systems with exponential nonlinearity, such as amplifier circuits and neural 

networks, in the frequency domain.   
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1.  Introduction 

Many practical systems have inherent nonlinearity. Examples can be observed 

in mechanical engineering, i.e., the leaf spring in a vehicle suspension [1], the 

magnetorheological fluid damper and the pneumatic spring in a vibration isolator 

[2-4], and also in electronic engineering, i.e., satellite communication channel 

modelling [5] and a radio frequency amplifier [6-11]. Even if all of the system 

components have ideal linear characteristics, the system characteristics can 

possess observable nonlinearity, for example, the quasi-zero stiffness isolator 

[12-20] and the recently developed scissor-like isolator [21, 22]. Moreover, many 

results show that some potential advantages or benefits can be achieved when 

nonlinearity is intentionally employed in the system, for example, the nonlinear 

damper investigated in [23, 24] to overcome the well-known dilemma associated 

with linear viscous damping. 

From the above, system nonlinearity should be well taken into account in 

system analysis and design, but the existence of nonlinearity often introduces 

difficulties. An effective and efficient method for the analysis and design of 

nonlinear systems is increasingly demanded but is still a challenging topic in the 

literature.  

In the following, the overview and comparison of different nonlinear analysis 

methods are first presented. Then, the motivation, objectives, and corresponding 

main contributions of this thesis are presented. Finally, an outline of this thesis is 
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given.  

1.1 Overview of nonlinear analysis methods 

A variety of methods (both time domain methods and frequency domain 

methods) have been independently developed for analysing nonlinear systems. A 

brief overview of the following nonlinear analysis methods is presented: 

Time domain methods 

• Adomian Decomposition Method 

• Homotopy Analysis Method 

Frequency domain methods 

• Harmonic Balance Method 

• Lindstedt-Poincare Method 

• Describing Function Method 

• Volterra Series Associated Method 

• Nonlinear Characteristic Output Spectrum (nCOS) Method  

 

1.1.1 Time Domain Methods 

Adomian Decomposition Method 

The Adomian decomposition method was introduced by Adomian [25] in the 

1980s and has been widely used in various areas [26-29]. It is defined by the 

nonlinear equation 

 ( ( )) ( ( )) ( )y t y t u t L N   (1.1) 
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where ( )L  is a linear operator, ( )N  is a nonlinear operator, ( )y t  is the 

system output, and ( )u t  is the system input. The Adomian decomposition 

method decomposes the solution ( )y t  and the nonlinear operator ( )N  as, 

 
0

( ) ( )n
n

n

y t y t




   (1.2) 

and 

 1
0 1

0

( ( )) ( ( ), ( ), , ( ))n
n n

n

N y t A y t y t y t






   (1.3) 

where 0 1( ( ), ( ), , ( ))n nA y t y t y t is referred to as Adomian polynomials, which can 

be analytically calculated. Substituting (1.2) and (1.3) into nonlinear equation (1.1) 

and equating the coefficients of n  on both sides, the nonlinear equation can be 

decomposed into a series of linear equations as 

 
0

1 0 1 1

( ( )) ( )

( ( )) ( ( ), ( ), , ( )),     1.n n n

y t u t

y t A y t y t y t n 



 

L

L
  (1.4) 

From(1.4), ( )ny t can be recursively calculated with 0 1 1( ), ( ), , ( )ny t y t y t . It 

should be noted that no perturbation theory or closure approximation is required 

for calculating ( )ny t , so the small parameters assumption is thus not needed, and 

the Adomian decomposition method is able to work in circumstances where the 

perturbation method fails. Supposing that (1.2) and (1.3) converge when 1  , the 

solution y can then be obtained via (1.2). This assumption works in many 

circumstances but with the problem that (1.2) and (1.3) are not always convergent 

[30, 31]. Thus, the Adomian decomposition method is only applicable to mild 

nonlinearities, although it is not restricted to a small parameters assumption [32]. 
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Homotopy Analysis Method    

 The homotopy analysis method was proposed by Liao [32] in the 1990s 

based on homotopy, a fundamental concept of topology. An auxiliary parameter 

and an auxiliary function are introduced in this method to adjust the convergence 

region and convergence rate, which enables its use for some strongly nonlinear 

cases. Considering the following nonlinear equation, ( ( )) 0y t N , Liao 

constructed a so-called homotopy, 

 0(1 ) [ ( , ) ( )] ( ) [ ( , )]t y t t t       L H N   (1.5) 

where ( )L  is an auxiliary linear operator with the property (0) 0L , which 

need not be the linear part of nonlinear operator ( )N . 
0( )y t  is an initial 

guess output. The choice of a different auxiliary linear operator ( )L  and 

initial guess output 
0( )y t  makes it possible to construct the system output ( )y t  

with different sets of base functions.  and ( )tH  are the auxiliary parameter 

and auxiliary function for adjusting the convergence region and convergence rate, 

respectively. [0,1]   is an embedding parameter, and ( , )t   is a function of 

t  and  . When 0   holds, we have 
0( ,0) ( )t y t  , and ( ,1) ( )t y t 

holds when  equals to 1. As the embedding parameter   increases from 0 to 

1, the solution ( , )t   varies from the guess output 
0( )y t  to the exact output 

( )y t . Such a continuous variation is called deformation in topology.  

The homotogy analysis method provides great freedom to choose the initial 

guess output
0( )y t , the auxiliary linear operator ( )L , the auxiliary parameter , 
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and the auxiliary function ( )tH , but no rigorous guidance has been developed 

for choosing them. The choice of those auxiliary elements may require some 

prior knowledge about the nonlinear operator, and would not be easy if the 

nonlinear problem is completely new to engineers [32].   

Most studies of homotogy analysis method focus on the initial value problem 

or the boundary value problem [33-36]. In a case with an external input, the 

homotogy analysis method also has the problem [37] that occurs in the harmonic 

balance method or the Lindstedt-Poincare method, which will be discussed later. 

 

1.1.2 Frequency Domain Methods 

Although time domain methods for nonlinear problems are easy to implement, 

nonlinear phenomena such as super-harmonic, sub-harmonic, or intermodulation 

directly relate to the concepts in the frequency domain, making the use of 

frequency domain methods more straightforward, which has led to their 

popularity in the literature.  

 

Harmonic Balance Method 

The harmonic balance method is not restricted to mildly nonlinear problems 

and can easily be understood by transferring a nonlinear differential equation 

problem into a nonlinear algebraic problem [38]. Considering the nonlinear 

equation in (1.1), the harmonic balance method assumes that the solution is given 
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by a truncated Fourier series of the form 

 
0

cos( )
M

m m

m

y A m t 


    (1.6) 

where M  is the truncation order, and 
mA  and 

m  are the coefficients to be 

determined. First, approximate the nonlinear operator ( )N  in (1.1) with a 

Taylor series expansion, and then substitute solution (1.6) into the approximated 

nonlinear equation. After equating the coefficients of the lowest 1M    

harmonics to 0,  2 1M   nonlinear algebraic equations involving mA   , m  , 

and the input frequency variable    can be obtained. The solution is obtained by 

solving the algebraic equations, which would be much easier than directly solving 

nonlinear differential equations. The technical line of the harmonic balance 

method is straightforward and easy to understand.  

One problem of the harmonic balance method is that the accuracy of the 

solution depends on the number of harmonics, M , in (1.6). One needs to use a 

large enough truncated order M  or to understand a great deal of the solution a 

priori, or the solution would otherwise be inaccurate [39, 40]. However, a large 

truncated order M would cause a dimension problem of the nonlinear algebraic 

equations, which would be even worse when a multi-tone input or a general input 

acts on the system [41-43]. Hence, Nayfeh had the following 

comment—‘therefore we prefer not to use this technique’ [39]. 
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Lindstedt-Poincare Method 

The Lindstedt-Poincare method was developed to eliminate the secular terms 

that exist in the perturbation method [38, 39]. Considering nonlinear equation 

(1.1) again, the Lindstedt-Poincare method expands the system output y  and 

the frequency variable   as power series of the small parameter  in the 

nonlinear operator ( )N , 

 
2

0 1 2( )y t y y y       (1.7) 

 
2

0 1 2          (1.8) 

where 0   is the resonant frequency in the linear operator ( )L . Substituting 

(1.7) and (1.8) into nonlinear equation (1.1) and equating the coefficient of each 

power of   to zero, the nonlinear equation is then transferred into a series of 

linear differential equations. New nonlinear algebraic equations can be derived to 

eliminate the secular terms. After solving the nonlinear algebraic equations, the 

solution ( )y t  can be obtained.  

The Lindstedt-Poincare method strongly depends on the small parameter 

assumption, so would fail if there exists no small parameter in the nonlinear 

equation. Usually, the approximation of the system output in (1.7) is truncated up 

to second-order or third-order because it is very complicated to derive the 

associated nonlinear algebraic equations of a higher-order approximation ny  . 

Another problem of the Lindstedt-Poincare method is that 1 2, ,y y  are 

implicitly involved in the nonlinear algebraic equations, so it fails to provide an 

explicit relationship between the system output and the system input (or model 
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parameters of interest). Moreover, when nonlinear equation (1.1) is a 

multi-degree-of-freedom system or subject to a multi-tone input, it is not easy to 

derive the nonlinear algebraic equations based on the rule of eliminating secular 

terms, which limits the application of this method. 

 

Describing Function Method 

The frequency response function (or transfer function) is a powerful tool in 

linear system analysis and design that does not work in nonlinear systems 

because the principles of superposition and homogeneity do not hold. The 

describing function method tries to extend the concept of the frequency response 

function to a nonlinear problem [44, 45]. Assuming that a single-tone input 

( ) j tu t Ue   acts on the nonlinear operator ( ( ))u tN , the describing function is 

then defined as 

 
( , )

( , )
Y U

D U
U


    (1.9) 

where ( , )Y U   is the output of nonlinear operator ( ( ))u tN  at frequency   

with input amplitude U . The nonlinear operator ( ( ))u tN  can then be 

approximated as a linear operator with transfer function ( , )D U  . The describing 

function is a function of input amplitudeU , which is different from the linear 

transfer function (that is independent of input).       

From (1.9), the describing function only considers the output at the 

fundamental excitation frequency, so it fails to characterize the super-harmonic 

components, sub-harmonic components, and the intermodulation effect of the 
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nonlinear operator. The nonlinear operator ( )N  is usually assumed to have 

odd-order nonlinearity, and the input is supposed to be single-tone in the 

literature to simplify the calculation, which limits the application of the 

describing function. The generalized describing function was then proposed to 

relax the input to be multi-tone [46, 47], but in this case, the nonlinear operator 

( )N should be Volterra-type.  

 

Volterra series associated method 

The Volterra series associated frequency method generalizes the concept of 

the frequency response function in linear systems to nonlinear systems. Initiated 

by Vito Vloterra [48] and then developed by many researchers, for example, 

Brilliant [49], Brockett [50], Sandberg [51-54], and Boyd [55, 56], it was shown 

that the input-output relationship of the nonlinear operator ( )N can be 

approximated uniformly and to an arbitrary degree of precision by a sufficient 

high order Volterra series as 

 1

1 10 0

( ) ( , , ) ( )
nN

n n i i

n i

y t h u t d   
 

 

      (1.10) 

where 
1( , , )n nh   is the nth-order Volterra kernel, N  is the truncated order, and 

i  is the convolution variable. In (1.10), the existence of the convolution variable 

i implies that the output of the nonlinear system at the given moment t via 

Volterra series expansion depends on the part input to the system, which provides 

the ability of the output via Volterra series expansion to capture the ‘memory’ 

effect of the nonlinear system. This is the fundamental difference between the 
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Volterra series expansion and the Taylor series expansion because the output of the 

nonlinear system via Taylor series expansion depends strictly on the input at that 

particular time. Therefore, the Volterra series associated method is more suitable 

for the devices/systems having ‘memory’ effect, for example, capacitors and 

inductors.  

The generalized frequency response function (GFRF) was first introduced by 

George [57] and is defined as the n-dimensional Fourier transform of the Volterra 

kernel as 

 1

1 1 1( , , ) ( , , )

n

i i

i

j

n n n n nH h e d d


     

  

 


    . (1.11) 

The calculation of the nth-order generalized frequency response function (GFRF) 

was first developed for nonlinear autoregressive models with exogenous inputs 

(NARX) [58] using the probing method and then built for nonlinear 

integro-differential equations [59] and nonlinear rational models [60]. According 

to these results, higher-order GFRFs can be recursively calculated from 

lower-order GFRFs, which provides a powerful tool to calculate GFRFs from 

model parameters, greatly facilitating the analysis of nonlinear systems. The 

calculation of GFRFs for a nonlinear system with constant terms [61-63] was 

investigated thereafter, and algorithms for multiple-input single-output [64] and 

multiple-input multiple-output (MIMO) [65] nonlinear systems were also 

developed for a wide range of practical systems. The algorithm for determining 

the GFRFs of a nonlinear system was also studied with other methods, for 

example, the Adomian method [66] and the Diophantine equation method [67], 
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and techniques for simplifying and improving the computation efficiency of 

higher-order GFRFs were studied in [62, 68, 69].   

The nonlinear output spectrum can be analytically calculated with the input 

spectrum and the calculated GFRFs as  

 
 

1

1

1 1

1 1Ω

1
(Ω) ( , , ) ( )

2

n

i i

i

n

nN j t

n n i nn
n i

Y H e U j d d


 

    




   


    (1.12) 

where Ω  is the output frequency, ( )iU j  is the input spectrum, and 

1( , , )n nH    is the calculated GFRF. Lang and Billings studied the nonlinear 

output response function when a nonlinear system is subjected to a multi-tone 

harmonic input and general input [70]. The output frequency range was 

investigated in [70-73], and was found to be totally different from that in linear 

systems (in linear cases, the output frequency range is the same as the input 

frequency range), and important nonlinear output frequency properties were 

theoretically revealed in [73]. Studies were also attempted to visually interpret 

the nonlinear output frequency response characteristics in [74-78], and a 

theoretical understanding of the nonlinear influence on the output response in 

vibration control was given in [79]. The concept of nonlinear energy transfer was 

developed and discussed in [73, 80-83], which illustrated phenomena of 

nonlinear energy transfer from one frequency to others. Applications of nonlinear 

properties and the benefits of nonlinearity for vibration control were studied in 

[23, 24, 79, 84-86]. The concept of a nonlinear output frequency response 

function (NOFRF) was proposed by Lang [82], with applications in structural 

health monitoring and fault diagnosis [87-90]. A systematic method for the 
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analysis and design of nonlinear systems in the frequency domain was developed 

in the last 10 years [79, 91-93] based on the concept of GFRFs with a parametric 

characteristic approach, initially referred to as the output frequency response 

function based method [94, 95] and later called the nCOS method [92]. With this 

parametric characteristic approach, the magnitude-bound characteristics of 

nonlinear frequency response functions (i.e., GFRFs and output spectrum) were 

studied in [96-98]. These results provide the important basis for the results, 

including the novel parametric convergence bounds and the new nCOS function, 

to be established in this thesis.  

Studies of the Volterra series associated frequency domain method were also 

conducted for time delay systems [59, 99, 100], time varying systems [101], 

spatial-temporal systems [102-106], and even systems with strong nonlinearity 

having sub-harmonic [107-109] or jump phenomena [110, 111].   

 

Nonlinear Characteristic Output Spectrum (nCOS) Method 

As mentioned before, the nCOS method is developed with a parametric 

characteristic approach based on the GFRF concept [112]. One significant 

advantage of the nonlinear characteristic output spectrum (nCOS) method is that 

the nonlinear output spectrum can be expressed in the form of a polynomial 

function with respect to the nonlinear system model parameters, which provides 

an explicit and analytical relationship between the nonlinear output spectrum and 

the nonlinear model parameters of interest. The above several methods (both the 
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time domain methods and frequency domain methods) focus more on the 

nonlinear model analysis rather than the system design. With the constructed 

explicit and analytical relationship between the nonlinear output spectrum and 

the nonlinear model parameters, the nCOS method provides a straightforward 

insight into nonlinear system design that can greatly facilitate the process.  

The nCOS method was proposed and developed by Jing and Lang [73, 79, 85, 

86, 91-95, 113-117], as summarized in monograph [112]. The output spectrum is 

given as a polynomic function of nonlinear model parameters [95,113] as 

 1

1

1

1(Ω) (Ω) sN

s NN

j jsN

jj
j j sY k k    (1.13) 

where 1, ,
Nsk k  are Ns  nonlinear parameters of interest, and 

1
(Ω)

sN
j j are 

the coefficients of the corresponding terms 1

1
sN

N

jj

sk k . The terms related to the 

nonlinear parameters of interest and the corresponding coefficients can be 

symbolically calculated with the results in [93, 113-117]. Applications in 

vibration suppression were then studied with the developed characteristic 

relationship [85, 86, 94]. Further studies of the property of opposition of input 

nonlinearity and alternating series were then conducted in [73, 79]. An effective 

method for the identification of coefficients 
1

(Ω)
sN

j j in (1.13) was theoretically 

investigated [91] with an efficient algorithm developed in [92], which would 

greatly facilitate the application of the nCOS method for nonlinear analysis and 

design.   
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1.1.3 Comparison 

 

Table 1.1 Comparison between different frequency methods 

 
Multi-Degree-of-Freedom 

system 

Multi-tone 

excitation 

Input-output 

relationship 

Response at 

non-excited 

frequencies2 

Harmonic Balance difficult difficult implicit available 

Lindstedt-Poincare 

method 
difficult difficult implicit available 

Describing 

Function 
easy 

not 

available 

partially 

explicit1 
not available 

Volterra series 

associated method 
easy easy explicit available 

1 only limited and specific model parameters are involved. 

2 Non-excited frequencies involve the inter-modulated frequencies and harmonic frequencies. 

 

This section concludes with some comparisons between the different 

frequency domain methods discussed above. From Table 1.1, it can be observed 

that both the harmonic balance method and Lindstedt-Poincare method have 

difficulty analysing multi-degree-of-freedom (MDoF) systems or nonlinear 

systems with a multi-tone input. The reason for this is that the input-output 

relationship via these two methods is implicitly involved in a set of nonlinear 

algebraic equations, whose derivation would be very complicated. The describing 

function method usually requires that the input be a single tone sinusoid input 

and only considers the response at the excited frequency. The generalized 

describing function (GDF) method can relax the single tone input to a multi-tone 

input when the nonlinear system is Volterra-type nonlinear, but for this case, the 

GDF method is in essence a Volterra series associated method. The Volterra 

series associated method thus show great advantages over the other methods.   
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The nCOS method provides a more straightforward and explicit relationship 

between the output spectrum and the nonlinear parameters of interest (equation 

(1.13)) than the traditional Volterra series associated method (equation (1.12)). 

Moreover, a new recursive calculation for the output spectrum is required via 

(1.12) when the nonlinear parameters of interest change, but not for the nCOS 

method via (1.13). These advantages of the nCOS method are the motivation for 

this thesis work.    

  

1.2 Motivation, Objectives and Contributions   

1.2.1 Motivation of study 

The nonlinear characteristic output spectrum (nCOS) method explicitly 

defines an analytical relationship between the output spectrum and the system 

nonlinear parameters of interest and shows great advantages over other nonlinear 

analysis methods for the analytical study and design of a wide class of nonlinear 

systems, but it requires that the nonlinear system be Volterra-type. A nonlinear 

system is defined as possessing Volterra-type nonlinearity if the input-output 

relationship of the nonlinear system has a convergent Volterra series expansion. 

The nonlinearity degree of a given nonlinear system relates to the model 

parameters, the input magnitude, and the excited frequency. For example, upon 

applying a given input to a nonlinear system at the resonant frequency, strongly 

nonlinear behaviours such as jump phenomena, bifurcation, or chaos may occur 



 
 

16 
 

in the system output, but the nonlinearity degree of the system may be very weak 

when the system is excited at a frequency far away from the resonant frequency 

with the same input magnitude. The model parameters, input magnitude, and 

frequency variable are denoted as the characteristic parameters that affect the 

nonlinearity degree of a given nonlinear system. 

Determining under what range the characteristic parameters can freely take 

values such that the system input-output relationship is always valid for a 

convergent Volterra series expansion is very important not only for the nonlinear 

characteristic output spectrum (nCOS) method, but also for other Volterra series 

associated time domain and frequency domain methods. Although the 

convergence problem is a fundamental issue in this area, it still has not been 

completely solved. The convergence criteria for fading memory systems or 

nonlinear operators were theoretically given by Boyd [55, 56] and Sandberg [51, 

53, 54], but may not be easy to implement in practice. Similarly, the convergence 

criterion for analytic systems in PL space was established in [118]. For a specific 

nonlinear system such as a Duffing oscillator, the convergence criteria in the 

frequency domain were discussed in [110, 119, 120], but almost all of the results 

are obviously over-estimated (the computed convergence bound for the input 

magnitude is larger than the real bound), and only one of the results can catch the 

convergence bound at the 1/3 super resonant frequency [120]. Recently, the 

results were developed for the convergence bound of the input magnitude, but 

they require the system to be input analytic [121, 122], i.e., with an input 
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nonlinear degree not larger than 1, which shows limitations in practical 

application (only for the input magnitude and only for an input analytic system). 

 The system always suffers from various perturbations. If the design 

parameters are chosen very close to the convergence bound, the system would 

easily go out of convergence. If the designed nonlinear system is out of the 

convergence region, the real output of the designed system may be very different 

from the design output. Therefore, for any characteristic parameter, it is 

reasonable to develop a measure for accessing the convergence margin in terms 

of this characteristic parameter, which is referred to here as the parametric 

convergence margin (PCM). A large PCM implies that the system dynamics stay 

far from divergence in terms of the concerned parameters and in the sense of a 

convergent Volterra series expansion. 

With the parametric bound of convergence (PBoC) and parametric 

convergence margin (PCM) developed in this thesis, the system output response 

can be freely studied in the computed convergence region using the nonlinear 

characteristic output spectrum (nCOS) method. The nonlinear benefits or 

advantages can then be studied with the intentionally introduced nonlinearity or 

nonlinear controller based on this powerful tool.  

A well-known dilemma for linear damping is that a large linear damping can 

suppress the vibration around the resonant frequency but deteriorate the 

performance at the frequencies away from the resonant frequencies. Overcoming 

this issuse is a hot topic in the literature. Nonlinear damping or a nonlinear 
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controller would be potential technique to achieve this aim.  

In the analysis and design of vibration control systems, multiple-objects are 

often required for a full assessment of the design. One problem of 

multiple-object analysis and optimization for nonlinear systems is that complex 

nonlinear phenomena may exist. To avoid such complex dynamics as chaos, 

bifurcation, sub-harmonics, and jump phenomena, one can design a nonlinear 

system to be Volterra-type nonlinear because the Volterra series theory works 

only for mild nonlinearity, which can be easily ensured by taking the parameters 

in the computed convergence region via the parametric bound of convergence 

(PBoC) developed in the thesis. Another problem is that the calculation of the 

nonlinear system performance is difficult and not straightforward in the literature, 

especially when a multi-degree of freedom system or a multi-tone input is 

considered.  

For those systems with inherent nonlinearity, the design of a linear 

components or linear controller is sometimes preferable because of the ease in 

implementation. The nonlinear characteristic output spectrum (nCOS) method 

developed in (1.13) is only available for nonlinear parameters of interest, and 

fails in the analysis and design of linear parameters of interest. This thesis thus 

aims to extend the nonlinear characteristic output spectrum (nCOS) method to 

analyse and design those linear parameters of interest. 

Note that the nCOS method is developed for polynomial nonlinearities, so 

exponential nonlinearities should first be transformed into polynomial 
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nonlinearities via a Taylor series expansion. Higher accuracy Taylor series 

approximations require a larger truncation order, which obviously leads to a large 

number of parameters in the analysis and design and would significantly 

complicate the application of the nCOS method. An effective and straightforward 

method for the analysis and design of an exponential nonlinear system is thus 

targeted in this thesis.  

1.2.2 Objectives 

The research in this thesis aims to contribute an effective and efficient method 

for the analysis and design of nonlinear systems. The following two objectives 

are addressed: 

1. To study the parametric convergence problem of the Volterra series 

expansion.  

2. To apply, develop, and extend the existing nCOS method.  

The first objective is to address under what parametric conditions the 

input-output relationship of a nonlinear dynamic system has a convergent 

Volterra series expansion. Obviously, only when we know this clear can we 

confidently apply the nonlinear characteristic output spectrum (nCOS) method 

mentioned above to any nonlinear analysis and design in any context of signal 

processing or control.  

The second objective involves the following three parts: 

1. Applying the nCOS method to the analysis and design of nonlinear 
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parameters considering the parametric convergence bound. First, a 

nonlinear damping is proposed and studied using the nCOS method to 

overcome the well-known dilemma of linear damping. It is shown that the 

nCOS method can provide a straightforward insight into the analysis and 

design of such a system. Then, the nCOS method is applied to a nonlinear 

optimization problem. By mapping the multiple-object performance 

function into the nonlinear characteristic function as shown in (1.13), the 

multiple-object analysis and optimization problem is then ready for 

analysis and design in the convergence region computed by the developed 

algorithm for PBoC, which shows straightforward insight and can greatly 

facilitate the nonlinear analysis and optimization problem. A systematic 

and novel method for the nonlinear analysis and optimization problem is 

then developed in this thesis.  

2. Developing a new nCOS function for the analysis and design of linear 

parameters of interest. The existing nCOS method is only developed for 

nonlinear parameters of interest. The issue is how to express the output 

spectrum as an explicit and analytical function of those linear parameters 

of interest such as that built for nonlinear parameters in (1.13). The 

development of such an expression that maintains the independence 

between the coefficients 
1

(Ω)
sN

j j  and the linear parameters of interest 

is not straightforward. An algorithm is thus built for the symbolic 

calculation of the independent coefficients 
1

(Ω)
sN

j j for single-input 



 
 

21 
 

single-output nonlinear systems, and a numerical identification method is 

developed for multiple-input multiple-output (MIMO) nonlinear systems 

described in state space. After these, a systematic method can be built for 

the analysis and design of linear parameters of interest.  

3. Extending the nCOS method and the new nCOS function to 

exponential nonlinearities. To this aim, an effective and efficient 

algorithm is developed to determine the generalized frequency response 

function (GFRF) of exponential nonlinearities with many fewer 

parameters. The proposed algorithm can greatly facilitate the application 

of the new nCOS function to the analysis and design of exponential 

nonlinear systems in practical engineering applications. 

1.2.3 Contributions 

The main contributions of this thesis are summarized as: 

1. The parametric bound of convergence (PBoC) and parametric convergence 

margin (PCM) are proposed for nonlinear systems, and the corresponding 

algorithms for calculations are also developed. It should be noted that the 

computation of PBoC is not only for the input magnitude but also for the 

model parameters and frequency variables. All of the result in the literatures 

were focused only on the convergence bound of the input magnitude. This 

study thus would be the first one on the convergence bound of the model 

parameters, and it provides a solid basis for the analysis and design of 
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nonlinear systems via the nonlinear characteristic output spectrum (nCOS) 

method. 

2. A systematic and novel method for multiple-object nonlinear analysis and 

optimization problems is proposed by mapping the multiple-object function 

onto the nonlinear characteristic output spectrum function. The proposed 

concept of the parametric bound of convergence (PBoC) or parametric 

convergence margin (PCM) can help guarantee that the designed or 

optimized system is Volterra-type nonlinear to avoid the complex dynamics 

of strong nonlinearity. 

3. The nonlinear characteristic output spectrum (nCOS) function is extended to 

those linear parameters of interest, which shows great significance in 

practical engineering applications because the design of linear components or 

a linear controller would be easier for implementation. The algorithm for the 

symbolic calculation of the independent coefficients is developed for a 

single-input single-output (SISO) nonlinear system, and a procedure is built 

for the numerical identification of the independent coefficients in state 

feedback controller design. 

4. An algorithm for calculating the generalized frequency response function 

(GFRF) of exponential nonlinearities is proposed by introducing two 

auxiliary equations, which has many fewer parameters of interest than that 

necessary upon approximating the exponential nonlinearity with a truncated 

Taylor series expansion. The newly developed algorithm can greatly facilitate 
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the analysis and design of many exponential nonlinear problems with the 

nCOS method in practical engineering applications such as the design of 

power amplifiers or the analysis of a neural network.  

1.3 Outline of the thesis  

All of the results in this thesis aim to provide effective and efficient methods 

for the analysis, design, and optimization of nonlinear systems. The other parts of 

this thesis are organized as follows. 

In Chapter 2, the parametric bound of convergence (PBoC) and parametric 

convergence margin (PCM) are proposed. The algorithms for calculating the 

PBoC and PCM are first developed for single-input single-output nonlinear 

systems with a harmonic input. The results are then extended to single-input 

multiple-output nonlinear systems and also to nonlinear systems with a general 

input, which are thus applicable to a wide class of nonlinear systems in practical 

applications such as those multi-degree of freedom (MDoF) systems or 

multiple-input multiple-output (MIMO) systems.  

Chapter 3 involves two applications of the nCOS method to the analysis and 

design of nonlinear parameters considering the result of PBoC in Chapter 2. First, 

a nonlinear damping defined as a function of both position and velocity is 

proposed to overcome the well-known linear damping dilemma. This part 

focuses on the qualitative analysis of nonlinear damping based on the nonlinear 

characteristic output spectrum (nCOS) method. Then, the multiple-object 
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optimization problem is investigated by mapping the nonlinear multiple-object 

function onto a nonlinear characteristic output spectrum function. This method 

provides a straightforward insight into the nonlinear optimization problem. A 

procedure is given, and an application to nonlinear suspension vibration control 

is presented to demonstrate this systematic and novel method.  

In Chapter 4, the analysis and design of linear parameters of interest in a 

nonlinear system is studied. The traditional nCOS method cannot be applied to 

this problem because it is developed only for nonlinear parameters of interest. It 

is shown that the generalized frequency response function (GFRF) and the 

nonlinear output spectrum can both be expressed as a polynomial function with 

respect to linear parameters of interest. The coefficients of the polynomial 

function are independent of those linear parameters of interest, which is similar 

to that in the traditional nCOS method in (1.14). The newly developed method 

for linear parameters of interest can thus be observed as an extension of the 

traditional nCOS method. An algorithm for the symbolic calculation of the 

independent coefficients is developed for single-input single-output nonlinear 

systems, and a numerical identification procedure for the independent 

coefficients is built for multiple-input multiple-output (MIMO) nonlinear 

systems (expressed in state space with state feedback control). Applications for 

the improvement of the harmonic distortion of the common-gate amplifier and 

linear state feedback controller for nonlinear suspension systems are presented to 

demonstrate the effectiveness and efficiency of the proposed method. 
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In Chapter 5, two auxiliary equations are introduced to facilitate the 

calculation of the generalized frequency response function (GFRF) of the 

exponential-type nonlinearity. With the auxiliary equations, the exponential-type 

nonlinear equation is transformed into polynomial-type nonlinear equations but 

with many fewer parameters of interest than that obtained by Taylor series 

expansion. Examples, the design of a common-gate amplifier and the analysis of 

a neural network with the new nCOS function, are presented to illustrate the 

advantages of the proposed algorithm. 

Finally, in Chapter 6, the conclusion is given, and some recommendations for 

further study are presented.      
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2 Parametric convergence bound for 

Volterra series expansion of nonlinear 

systems 

2.1 Introduction 

For a large class of nonlinear systems, the input-output relationship allows a 

Volterra series expansion [51, 53, 56, 57]. The Volterra series and its associated 

nonlinear analysis methods have been extensively applied in practice for control 

designing, signal processing, system identification, and system analysis 

[123-129].   

Whether a nonlinear system has a convergent Volterra series expansion is 

determined by the input magnitude, the input frequencies, and the model 

parameters, referred to as the characteristic parameters. When applying the 

Volterra series based methods to the nonlinear analysis and design, a fundamental 

issue is to ensure that the underlying nonlinear dynamics can be approximated by 

the Volterra series, which requires the characteristic parameters be within certain 

appropriate ranges. Several results in the literature attempted to address this issue 

only focusing on the input magnitude bound. That is to estimate a bound of input 

magnitude for a given nonlinear system to guarantee the nonlinear system has a 

convergent Volterra series expansion. The results in [51, 53, 56] are general 

operator theory based results, which theoretically prove the existence of the 

Volterra series expansion for a class of nonlinear systems but fail to provide a 
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detailed parametric convergent bound for any characteristic parameter. Some 

other works can be found in [110, 119, 120], which were studied only for a 

specific nonlinear system, the Duffing oscillator. A recent result in [121] tackled 

the input-analytic nonlinear systems. All the results above are either conservative 

or obviously over-estimated and only focus on a convergent criterion for the 

input magnitude.  

In the analysis and design of a nonlinear system, a fundamental problem could 

be: in what parameter ranges (in terms of the input magnitude, the model 

parameters, and the input frequencies) can the nonlinear system has a convergent 

Volterra series expansion? More specifically, for the parameter design of a 

nonlinear system, the question could be: under what range can a parameter freely 

take its value such that the system is valid for a convergent Volterra series 

expansion? These practical questions are clear the key issues before any 

nonlinear analysis and design based on the Volterra series based methods but are 

still not well addressed.  

 

2.2 The parametric convergence bound for single-input single-output 

(SISO) nonlinear autoregressive with exogenous input (NARX) model 

Many nonlinear systems can be identified into a NARX model [130-132] , 

which includes several commonly-used nonlinear models as special cases. The 

NARX model actually provides a generic and convenient platform for the 

analysis and design of a nonlinear system in practice. Consider the NARX model 
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    

        (2.1) 

where M is the maximum nonlinear degree in terms of ( )y k and ( )u k , p is the 

nonlinear degree in terms of ( )y k , and m p is the nonlinear degree in terms of 

( )u k  which is denoted later by q m p  . 1( , , )mk k  denotes all of the 

combinations of nonlinear terms in terms of input and output, which can be 

expressed as 1 1 1( , , ) {( , , ) |1 , ,m m m i pk k k k k K p k k pK         

1 }p mq k k qK    , where K  is the maximum order of the derivative, and 

, 1( , , )p m p mc k k  is the corresponding coefficient of 
1 1

( ) ( )
p m

i i

i i p

y t k u t k
  

   . 

The NARX model (2.1) can be approximated by a Volterra series expansion as 

 1

1 1

( ) ( , , ) ( )
nN

n n i i

n i

y k h u k d   
 

 
 

      (2.2) 

where N is the truncation order, and 1( , , )n nh    is the thn order Volterra 

kernel.  

The following comes to study the convergence bound of the characteristic 

parameters (the input magnitude, the input frequencies, and the model parameters

, 1( , , )p m p mc k k  ) in the frequency domain to guarantee the Volterra series 

expansion in (2.2) holds for the NARX model given in (2.1).  

 

2.2.1 The GFRFs and the nonlinear output spectrum        

The thn order GFRF of the NARX model can be recursively calculated as 
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Where 0,0( ) 1H  , ,0( ) 0nH   for 0n  , , ( ) 0n pH   for n p , 
1

1

i

j

j

X r




 , 

and 
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q

n q i p i
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q p
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q p
   



  
  

  
   (2.7) 

When 1n  , the first-order GFRF is the linear transfer function as 
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The nonlinear output spectrum when the system is subject to a harmonic input 
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where sT  is the sampling interval can be computed as 
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where { , }i    , ( )A A  , 
*( )A A  , and U A . 
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2.2.2 Notations and definitions 

The operator  denotes the absolute value for scalars and Euclidian norm 

2
for vectors.  is the set for all nonnegative integers, and   for positive 

integers. Define 

  1( ) inf ( , , )n n
W

L L j j  


   (2.11) 

where 1

1 1

{Ω |Ω , { , }}k k i

k k

W W     
 



 

       . kW  is the set of all 

of the output frequencies in the thk  order output spectrum, and W  represents 

the whole output frequency range when the NARX model is subject to the input 

(2.9). Define  

 
1

, 1

( , , )

( , ) ( , , )
m

p q m

k k

C p q c k k    (2.12) 

where , 1( , , )p q mc k k  is the coefficient of the NARX model (2.1), and clear 

( , )C p q  is a nonnegative function. Denote 

 1 1 1 1( ) ( )H j H j    (2.13) 

 

2.2.3 The bound results of output spectrum 

Lemma 2.1: The upper bound of the thn order GFRF can be obtained as 

  
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  (2.14) 

Proof: See Lemma 1 in [98]. 

Lemma 2.2: The upper bound of the nonlinear output spectrum involving the 
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whole output frequency range W  is given as 

1

0 1 1

( ) ( ) ( ) ( ) ( , , )
n

n

k n n n

k W n W n
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          

  (2.15) 

where ( )kY U
is the upper bound of the output spectrum at frequency 

,k k   , which is given as 
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  (2.16) 

Proof: For k  ,  

 

2( 1)

2( 1) 12( 1)
1 1

1

2( 1) 2( 1)

2( 1) 1 2( 1)2( 1) 1
1

2
( ) ( , , ) ( )

2

               ( , , ) ,
2

k n

k k n n ik n
n k i

n

k n k n

k n k nk n
n

Y U H j A

C
H j j U

 
 

  

 

 

   
  


   

     






  



  

For k=0, the result is straightforward.  

Proposition 2.1: The analytical relationship among the upper bound of nonlinear 

output spectrum, the model parameters, magnitude bound of the first-order GFRF, 

the input magnitude, and frequency variable can be obtained as 

 
1

1 0 2

( , ) ( ) ( ) ( ) (0, ) 0,  2
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p q m

C p q U x L x L H j U C m U p q  
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  (2.17) 

where x is simplified for ( , )x U . Denote 

1

1

( , ) ( ) ( , , ) n

n n

n

x U Y U H j j U  




  , and 
pM  is the maximum nonlinear 

degree in terms of output ( )y k . Specifically, when the NARX model only 
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involves those nonlinear terms with 1p   or together with the pure input 

nonlinearity, the upper bound of the nonlinear output spectrum x  can be 

obtained directly as 
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1

1
( ) (0, )

( )

1
1 (1, )
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m

q m
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
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 














  (2.18) 

Proof: See Appendix 2.1. 

Remark 2.1: The output bound x in (2.17) should be a real nonnegative 

number. If (2.17) possesses only one positive root, this positive root is the output 

bound; when (2.17) has more than two positive roots, the parametric convergence 

margin proposed later can help to determine the true output bound. 

2.2.4 Parametric bound of Convergence (PBoC) 

The parametric bound of convergence (PBoC) is referred to as a bound (e.g., 

C ) for any characteristic parameter C (i.e., C C  ) under which the NARX 

model has a convergent Volterra series expansion. 

Proposition 2.2: Denote the formal function ( ; , , )x C U   as 

 1

1 0

1
( , ) ,        2

( )

pM

q p

p q

pC p q U x p q
L







 

     (2.19) 

The upper bound of the nonlinear output spectrum, the power series

1

1

( , , ) n

n n

n

x H j j U 




 , is convergent when 0 1   holds and divergent 

when 1  holds. 

Proof: See Appendix 2.2.  
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Remark 2.2: The function   is a non-negative continuous and monotonically 

increasing function of ( , )C p q  or the input magnitude U .  

Remark 2.3: When the NARX model (2.1) has only pure input nonlinearity, then 

the whole input part can be considered as a new input. In this case, the model can 

be regarded as a linear model with this new input, which is not focused on in this 

study. 

Proposition 2.3: Consider the NARX model except the case that the NARX 

model involves only the nonlinear terms with index 1p   or together with only 

pure input nonlinear terms, the analytical PBoC can be obtained by solving the 

following equation 
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where 
pM  takes the same definition as in Proposition 1, and 
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   (2.21) 

 1,0 1
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( ) ( ) (0, ) ,m
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a L H j U C m U 

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 
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p p
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a p C p q U p M
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
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When the NARX model (2.1) involves only the nonlinear terms with 1p   or 

together with the pure input nonlinear terms with p=0, the PBoC can be obtained 

by directly solving Γ=1 as 

 
1

1
(1, ) 1

( ) 

q

q

C q U
L 





   (2.25) 

Proof: See Appendix 2.3.  

Remark 2.4: If the NARX model only involves the nonlinear terms with index 

1p   or together with 0p  , the coefficients of the pure input nonlinearity do 

not play a role in (2.19), which means that these pure input nonlinearities do not 

affect the convergence bound. Otherwise, the pure input nonlinearities could 

have great influence on the convergence bound, which can be seen in (2.20) and 

(2.22) and will be validated in Examples 2.2.6.3 and 2.2.6.4.  

Remark 2.5: When the input amplitude U is given, the PBoC of any model 

parameter of interest can be obtained from (2.20). When the parameter values are 

selected under the bound calculated by (2.20), the nonlinear system can be well 

approximated by a convergent Volterra series. When all of the model parameters 

are given, the PBoC of the input amplitude can be obtained. The latter has been 

studied in [110, 118-121] for some specific nonlinear systems. The result in 

Proposition 2.3 is  more general, not restrictive to any specific nonlinear system, 

and less conservative due to the frequency dependent bound used.  

Algorithm 2.1 (Computation of PBoC) : 

Step 1. Calculate ( )L   according to (2.4) and (2.11); Calculate 1 1( )H j
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according to (2.8) and (2.13); Calculate ( , )C p q  using (2.12). 

Step 2. Compute (2.21)-(2.24) to construct (2.20) for the applicable case. 

Step 3. Solve (2.20) or (2.25) for the applicable case to obtain the PBoC . 

 

2.2.5 The parametric convergence margin (PCM) 

For any characteristic parameter, it is reasonable to develop a measure to 

assess the convergence margin with respective to this parameter, referred to as 

the parametric convergence margin (PCM), before the Volterra series expansion 

diverges. A larger PCM implies that the system dynamics can be well 

approximated by a Volterra series expansion and stays away from its divergence.     

Considering the function  in (2.19), when all of the nonlinear coefficients in 

the NARX model are equal to 0 or the input amplitude 0U  , then 0  ;  

when the nonlinear coefficients or the input amplitude reach the PBoC, then 

1  ; when the nonlinear coefficients or the input amplitude is out of the PBoC, 

then 1  . Because of these properties, the function  can be used as an 

overall indicator to the convergence margin of the NARX model. Therefore, the 

PCM is defined as  

 PCM 1     (2.26)                        

When the PCM is very close to 1, the NARX model possesses the largest 

convergence margin; when the PCM is close to 0, the NARX model is very close 

to the convergent bound and has smaller convergence margin; when the PCM is 
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negative, the system cannot be expanded by a Volterra series and thus is not a 

Volterra-type system.  

Proposition 2.4: When the NARX model does not only possess nonlinearities 

with index 1p   or together with pure input nonlinearity, the indicator  can 

be obtained by solving (2.20) with  

 1,

0

( , ) ,  q

p

q

a C p q U




   (2.27) 

 1,1

1

(1, ) ( ),q

q

a C q U L 




    (2.28) 

 1,0 1

2

( ) ( ) (0, ) ,m

m

a L H j U C m U 




    (2.29) 

 2, 1

0

( , ) ,q

p

q

a p C p q U






    (2.30) 

 2,0

1

(1, ) ( ) .q

q

a C q U L 




    (2.31) 

where 2 pp M  . When the NARX model possesses only nonlinear terms with 

index 1p   or together with pure input nonlinearity, Γ can be directly obtained 

according to (2.19).   

Proof: See Appendix 2.4.  

Remark 2.6: When  0 1 0 1PCM    , the NARX model possesses 

unique steady state and can be well approximated by a convergent Volterra series; 

when 1  , i.e., PCM 0 , the Volterra series becomes divergent, and 

therefore cannot approximate to the NARX model. From (2.19), it is clear that 

 is a real nonnegative number. Therefore, if (2.20) has no real positive root, the 

nonlinear system can be seen as divergent in the sense of Volterra series 



 
 

37 
 

expansion. If there exists more than one real positive root, the PBoC can be used 

to determine the true  . That is, when the nonlinear coefficients are out of the 

PBoC, the solution that is larger than 1 should be the true ; otherwise, the 

solution that is smaller than 1 would be the true one. Similarly, when there exists 

more than one real positive solutions in (2.17),  can be calculated by 

substituting the solutions into (2.19), the true solution for the output bound x  

should be the one who has the same   by (2.19) as that obtained by (2.20).  

Remark 2.7: The PBoC and PCM provide a novel view for understanding the 

nonlinear influences on a system dynamic response (such as super/sub harmonics 

and inter-modulation) incurred by different characteristic parameters. Some other 

recent advances also vindicate that the Volterra series approach can also be used 

for interpretation of complicated nonlinear behaviour such as bifurcation and 

even chaos [107, 109, 110].  

Remark 2.8: There are some other nonlinear analysis methods, for example, the 

harmonic balance method and the nonlinear normal mode [133], which are often 

computationally intensive as the nonlinear degree of the system increases [134, 

135]. This study presents a simple and novel evaluation on the nonlinear 

influence in terms of the characteristic parameters and on the parametric 

convergence bound of a nonlinear system in the sense of Volterra series 

expansion. This provides a very fundamental and significant basis for the 

nonlinear analysis and design using the Volterra series based methods [58, 70, 73, 

98, 113, 116, 117]. 



 
 

38 
 

To facilitate the computation of the PCM, the procedure is summarized as 

Algorithm 2.2 (Computation of PCM) :  

Step 1. Calculate ( )L   according to (2.4) and (2.11); Calculate 
1 1( )H j

according to (2.8) and (2.13); Calculate ( , )C p q  from (2.12). 

Step 2. Compute (2.27)-(2.31) to construct (2.20) for the applicable case. 

Step 3. Solve (2.20) or (2.19) for the applicable case to obtain the indicator 

 .  

Step 4. Calculate (2.26) for the applicable case to obtain the PCM. 

2.2.6 Examples and discussion 

In order to illustrate the theoretical results, the NARX model in four cases 

with different nonlinear terms are discussed, which is given with zero initial 

conditions as  

3

1,0 1,0 3,0

2 3

1,2 0,3 0,1

( ) (1) ( 1) (2) ( 2) (1,1,1) ( 1)

               (1,1,1) ( 1) ( 1) (1,1,1) ( 1) (1) ( 1)

y k c y k c y k c y k

c y k u k c u k c u k

     

      
  (2.32) 

The model in (2.32) can be obtained by discretizing in a backward manner the 

following nonlinear differential equation  

3 2 3
1 30 12 03( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )my t cy t k y t k y t k y t u t k u t u t        (2.33) 

where the linear coefficients are given as
2

0 1 0 01, 0.01 , , 20m c k        , 

and ( ) cos( )u t U t  . Setting 1 / 2000sT s  , then ( ) cos( )u k U k  

cos( )sU T k and 

2 2

1,0 1,0 0,1(1) 2 1.9987, (2) 1 0.9997, (1)s s s scT kT cT T
c c c

m m m m
           

2
7 30

3,02.5*10 , (1,1,1) sk T
c

m

   , 

2

12
1,2 (1,1,1) sk T

c
m

  , 

2

03
0,3(1,1,1) sk T

c
m

  . 
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The discussion starts with the case that the NARX model only possesses pure 

output nonlinear terms, that is, 1,2 0,3(1,1,1) (1,1,1) 0c c  , which can be obtained 

by discretizing the well-known Duffing oscillator equation. Several existing 

results available in the literature are compared with this example. However, no 

existing results can be applied to all the other examples. In example 2.2.6.2, the 

nonlinear term with coefficient 1,2 (1,1,1)c  is considered in the discussion, and 

only 0,3(1,1,1)c  is set to be zero in (2.32). Example 2.2.6.3 and example 2.2.6.2 

are presented to illustrate and validate Remark 2.4 (how and in what conditions 

can the pure input nonlinearities affect the PBoC and PCM of a given nonlinear 

system). 

When all of the parameters of the NARX model are given, (2.20) or (2.25) can 

also give an estimation of the PBoC for the input amplitude. But this thesis 

focuses on the PBoC for model parameters and the PCM in the following 

discussion. 

In order to indicate the error between the synthesized output using Volterra 

series and the true output, the normalized root mean square error (NRMSE) is 

introduced, 

 
 

 

2

2

( ) ( )

( )

synthesized true

true

y k y k
NRMSE

y k






  (2.34) 

where synthesizedy  is the synthesized output and ( )truey k is the true output.  
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2.2.6.1 The NARX model with pure output nonlinearity 

The model is given as 

3

1,0 1,0 3,0 0,1( ) (1) ( 1) (2) ( 2) (1,1,1) ( 1) (1) ( 1)y k c y k c y k c y k c u k          (2.35) 

which can be obtained by discretizing the well-known Duffing equation. The 

PBoC of  3,0(1,1,1)c  is calculated first, and then the PCM is discussed when the 

coefficient 3,0(1,1,1)c  and the input are given.  

The PBoC of 3,0(1,1,1)c  can be computed via Algorithm 2.1. According to 

(2.21)-(2.24), it gives 
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where 3,0(3,0) (1,1,1)C c . Then from (2.20), the following equation holds 
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 
  
 

, 

3 (3,0) 0

0  3 (3,0)

0 0

C

C C

 
 

  
 
 

, 

( ) 0 0

0 ( ) 0

3 (3,0) 0 ( )

L

D L

C L







 
 

  
  

, (2.36) is equivalent 

to 1 0A D CA B  . The following equation can be obtained 

  
2

1

27
( ) (3,0) ( ) 0

4
L C H j U     (2.37) 

From Eq. (2.37), (3,0)C can be solved.  

In the discussion, the input amplitude is given as 0.5U  . ( )L   and 
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1( )H j  can be obtained from (2.11) and (2.13), respectively. From (2.11), it can 

be obtained that  ( ) inf ( ), (3 ), (5 ), (7 ),L L L L L     [117]. Since the first 

several orders of output spectra take the dominant roles, it can be simplified as 

 ( ) inf ( ), (3 ), (5 ), (7 )L L L L L     [73, 117]. The estimated PBoC of 

3,0 (1,1,1)c  is shown in Fig. 2.1, indicating a very close estimation to the real 

ones (obtained by numerical simulations) at different frequencies. The estimated 

bound varies at different frequencies and is very small at or around the harmonic 

resonant frequencies, which shows the nonlinear influence and potential 

behaviour due to this specific nonlinearity.  

 
Figure 2.1 The PBoC of 

3,0(3,0) (1,1,1)C c  

 

To validate the effectiveness of the convergent bound above, a comparison 

with different nonlinear coefficients 3,0 (1,1,1)c  at 00.8  is given in Fig. 2.2. 

The estimated PBoC is (3,0) 426.0788C  . Fig. 2.2 shows that when the 

coefficient 3,0 (1,1,1) (3,0)c C holds, the synthesized output and the true output 
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has good agreement with each other (with the NRMSE quickly decrease to 0 as 

the synthesized order increases), while a larger nonlinear coefficient 
3,0 (1,1,1)c

leads to the divergence of the synthesized output with an observable increasing 

NRMSE.  

For the comparison with the other existing results [110, 119-121], the PBoCs 

of the input amplitude are given in Fig. 2.3, which indicates that our result 

provides the closest estimation.  

 

Figure 2.2 Comparison of the synthesized output and the true output at 
00.8  . 
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Figure 2.3 The PBoCs for the input amplitude 

 

The following is to show the parametric convergence margin (PCM). 

According to (2.27)-(2.31), the following equations hold 
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   

  

 

 

Then   can be estimated from (2.20) as 

 

1

1

(3,0)                  0                ( )    ( ) ( )           0

   0                   (3,0)                 0            ( )          ( ) ( )

3 (3,0)               0               (

C L H j UL

C L H j UL

C L

  

  







 )           0                       0

   0                  3 (3,0)                0           ( )                0

   0                       0                3 (3,0)            0                

C L

C



 







0

( )    L 

  

  (2.38)  

From (2.38), the following equation can be obtained  

 
 

2

13 2
27 (3,0) ( )

6 9 0
( )

C H j U

L


  


      (2.39) 

 can then be solved, and the PCM can be obtained according to (2.26). The 
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convergence margin with 3,0(1,1,1) 153.8223c    and 0.5U   is presented 

in Fig. 2.4.  

 
Figure 2.4 The parametric convergence margin (PCM)  

The PCM is equal to zero around the resonant frequency, which means that 

the nonlinear system with given coefficients and input is divergent in the sense of 
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a pure output nonlinear term with 3p   as 

 

3

1,0 1,0 3,0

2

1,2 0,1

( ) (1) ( 1) (2) ( 2) (1,1,1) ( 1)

                                 (1,1,1) ( 1) ( 1) (1) ( 1)

y k c y k c y k c y k

c y k u k c u k

     

    
  (2.40) 

From (2.21)-(2.24), it can be obtained that 

1,3 1,0 1

2

2,2 2,0

1,2 1,1 2,1

2 (3,0), ( ) ( ),

3 (3,0), (1,2) ( ),

0.

a C a H j UL

a C a C U L

a a a

 



  

  

     

 

where 
3,0(3,0) (1,1,1)C c , and 

1,2(1,2) (1,1,1)C c . Then according to (2.20), it 

gives 

    
3 22

1

27
(1,2) ( ) (3,0) ( ) ( ) 0

4
C U L C H j UL       (2.41) 

Clearly, (2.41) provides an analytical relationship among the parametric bounds 

( (3,0)C , (1,2)C , and U ), and the linear part of the model. It can be obtained 

that 

 
 

2
3

1

2

27( ) (3,0) ( ) ( )
4(1,2)

L C H j UL
C

U

  
   (2.42) 

 
 

 

3
2

2

1

( ) (1,2)4
(3,0)

27 ( ) ( )

L C U
C

H j UL



 


   (2.43) 

In the discussion, the input amplitude is given as 0.5U  , and give 

3,0(1,1,1) 153.8223c    for (2.42), and 
4

1,2 (1,1,1) 1.5382*10c   for (2.43). The 

estimated bound results are presented in Fig. 2.5 and Fig. 2.6. Fig. 2.5 shows that 

at or around the resonant frequency or some harmonic resonant frequencies, the 

PBoC C(1,2) is zero, which means that the Volterra series expansion of the model 

with 3,0(1,1,1) 153.8223c   , 1,2(1,1,1) 0c  , and 0.5U  diverges; Similar 

phenomena can also be observed in Fig. 2.6 for the PBoC of C(3,0).  
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Figure 2.5 The PBoC of  1,2(1,2) 1,1,1C c  

 

Figure 2.6 The PBoC of  3,0(3,0) 1,1,1C c  
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Figure 2.7 Comparison of the synthesized output and the true output at 
00.8   with 

3,0 (1,1,1) 153.8223c   . 

  

Figure 2.8 Comparison of the synthesized output and the true output at 
00.8   with 

4

1,2 (1,1,1) 1.5382 10c    . 
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Then  satisfies the following equation according to (2.20) 

     

 

23 23 2 2 2

2

12 3

( ) 3 ( ) (1,2) 3 ( ) (1,2)

27 (3,0) ( ) ( )
                                    ( (1, 2) ) ) 0

4

L L C U L C U

C L H j U
C U

     

 

 

  

  (2.44) 

The convergence margin indicator Γ can then be solved. When Γ ≥1, the Volterra 

series expansion is divergent with PCM<0, which is denoted by PCM=0 in the 

Figures. The PCM can then be calculated according to (2.26) and is presented in 

Fig. 2.9 with 3,00.5, (1,1,1) 153.8223U c   , and 
4

1,2 (1,1,1) 1.5382*10c   .  

 

Figure 2.9 The parametric convergence margin (PCM)  
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Example A). This means that the nonlinear dynamic response of the NARX 

model becomes more complicated after introducing a new nonlinear term.  

 

2.2.6.3 The NARX model with pure input nonlinearity and cross 

nonlinearity 

The system model is given by 

 

2

1,0 1,0 1,2

3

0,3 0,1

( ) (1) ( 1) (2) ( 2) (1,1,1) ( 1) ( 1)

          (1,1,1) ( 1) (1) ( 1)

y k c y k c y k c y k u k

c u k c u k

      

   
  (2.45) 

Eqs (2.25) and (2.19) can be used for the computation of the PBoC and PCM, 

respectively. It is interesting to see that the pure input nonlinear term with the 

coefficient 0,3(1,1,1)c  does not affect the PBoC of 1,2 (1,1,1)c , the PBoC of the 

input magnitude, and the PCM.  

From (2.25), the convergent bound can be obtained 

 

2(1,2)
1

( )

C U

L 
   (2.46) 

The PBoC for 1,2 (1,1,1)c  with 0.5U   is presented in Fig. 2.10. The PBoC of 

1,2 (1,1,1)c  is very close to 0 at or around harmonic resonance frequencies. In 

order to validate that the convergent bound (PBoC of  1,2(1,2) 1,1,1C c  ) is 

independent of the pure input nonlinear parameter, the case that 0,3(1,1,1) 0c    

and the case that 
5

0,3(1,1,1) 2.5*10c    are compared. In both cases, the 

simulations take the same input magnitude and consider the same frequency 

point, for example, 0.5U  , and 00.8  . The PBoC of (1,2)C is computed 

as 0.00142. The results are presented in Figs. 2.11-2.12, which show that when 
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1,2 (1,1,1)c  is out of the estimated bound, the synthesized output is divergent, and 

the convergent bound is independent of 0,3(1,1,1)c . 

 

Figure 2.10 The PBoC of  1,2(1,2) 1,1,1C c  

 

Figure 2.11 Comparison of the synthesized output and the true output at 
00.8  with

0,3 (1,1,1) 0c   
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Figure 2.12 Comparison of the synthesized output and the true output at 

00.8  with

5

0,3(1,1,1) 2.5 10c     

 

 

Figure 2.13 The PCM 
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complicated nonlinear dynamics there. 

2.2.6.4 The NARX model with pure input nonlinearity and pure output 

nonlinearity 

The system model is given by 

 

3

1,0 1,0 3,0

3

0,3 0,1

( ) (1) ( 1) (2) ( 2) (1,1,1) ( 1)

          (1,1,1) ( 1) (1) ( 1)

y k c y k c y k c y k

c u k c u k

     

   
  (2.47) 

This example is given as a comparison with example 2.2.6.1 and 2.2.6.3 to 

further show how the pure input nonlinearity affects the PBoC and the PCM. In 

this case, (2.20) can be used to calculate the PBoC. From (2.21)-(2.24), 

3

1,3 1,0 1

2,2 2,0

1,2 1,1 2,1

2 (3,0), (0,3) ( ) ( ),

3 (3,0), ( ),

0.

a C a C U H j UL

a C a L

a a a

 



   

  

  

 

the following equation holds 

    
23 3

1

27
( ) (3,0) ( ) ( ) (0,3) 0

4
L C H j UL C U     .  (2.48) 

Then, the PBoCs can be obtained as 

 
 

 

3

2
3

1

( )4
(3,0)

27 ( ) ( ) (0,3)

L
C

H j UL C U



 



  (2.49) 

 

 
3

1

3

4 ( )
( ) ( )

27 (3,0)
(0,3)

L
H j UL

C
C

U


 

   (2.50) 

From (2.49), it is clear that the coefficient of the pure input nonlinearity (i.e., 

0,3(1,1,1)c ) does affect the the bound (3,0)C . This is different from the case in 

example 2.2.6.3 where the pure input nonlinearity does not affect the PBoC.  



 
 

53 
 

 

Figure 2.14 The PBoC of 
3,0(3,0) (1,1,1)C c  

The estimated PBoCs for (3,0)C and (0,3)C are shown in Figs. 2.14-2.15 

respectively, with 
7

0,3(1,1,1) 2.3073*10c    in Fig. 2.14 and 

3,0(1,1,1) 153.8223c    in Fig. 2.15. In Fig. 2.14 and Fig. 2.15, the computed 
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Figure 2.15 The PBoC of 
0,3(0,3) (1,1,1)C c  

 

Figure 2.16 Comparison of the synthesized output and the true output at 
00.8  with 

7

0,3(1,1,1) 2.3073 10c     
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The PBoCs are computed as C(3,0)=281.2949 and C(0,3)=6.6431×10-7 . Fig. 

2.16 and Fig. 2.17 show that the estimated bound is effective, and the synthesized 

output becomes slowly divergent when the nonlinear coefficients are out of the 

estimated bound. 

 

Figure 2.17 Comparison of the synthesized output and the true output at 
00.8  with 
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Figure 2.18 The PCM 

For the calculation of the PCM , the following equations hold from (2.27)

-(2.31) 

3
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 

    

  

 

 

Then from (2.20), it can be obtained that 

 
 

2
3 1

1
3

27 (3,0) ( ) ( ) (0,3)1
( )

( ) 4

C L H j U C U

L

 





    (2.51) 

Given 0.5U  , 3,0(1,1,1) 153.8223c    and 
7

0,3(1,1,1) 2.3073*10c    , 

the convergence margin is presented in Fig. 2.18, which shows that the pure 

input nonlinearity leads to a smaller PCM, indicating a stronger nonlinear 

behaviour. The PCM around the super-resonant frequencies decreases to 0, and 

the region where PCM 0  becomes wider, implying that the nonlinear 

dynamics become more complicated.  
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2.3 Parametric convergence bound for general input 

2.3.1 Notations and definitions 

Let Rω as the input frequency range of a input signal u(t), and Wω is the output 

frequency range. The latter can be determined with the method in [71, 73]. C(p,q) 

is a non-negative function of parameter cp,q(·) (0≤p,q≤n) defined in (2.12). 

Define 

  
1

max ( )
n

n n
R

H H
  

    (2.52) 

For any input U(jω) defined in Rω , and denote the minimum value of |L(jω)| as 

 min{ ( )}R
W

L L j



    (2.53) 

Obviously, different input U(jω) leads to different RL


.  For any input signal r(t), 

denote R(jω) as the spectrum of r(t), and 

  | |max R j    (2.54) 

     /U j R j     (2.55) 

It is clear that U(jω) is the normalized spectrum of R(jω), and max|U(jω)|=1. The 

output frequency response of the nonlinear system can be obtained as [71, 136] 

 1 11
1

1

1
( ) d d

(2 )

N

nn
n

n

Y j   


 

  




     (2.56) 

where 1 1 1 1 1 1= ( , , , ( )) ( , , , )n n n n nH j j j U j j j                and 

1 1 1 1 1 1 1 1 11( Ω, , , ) ( ) ( ) ( (Ω ))n n n nU j j j U j U j U j              . 
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2.3.2 The main result 

Magnitude bounds of nonlinear frequency response functions including the 

GFRFs and output spectrum have been studied in [96-98] with a parametric 

characteristic point of view, where the magnitude bounds are expressed as 

polynomial functions of the magnitude bound of the first-order GFRF H1(jω). In 

this study, the bound of the output spectrum in (2.56) is formulated into a 

frequency-dependent polynomial function of the input magnitude, and this 

polynomial function is actually an infinite power series with respect to the input 

magnitude. The closed form polynomial function in (2.58) explicitly involves the 

frequency variable, wave form information of the input, input magnitude, and also 

the model parameters, which provides a novel insight into the bound of output 

spectrum and leads to the new parametric convergence criterion in Proposition 2.5 

based on the analytic inversion lemma in [137].  

Lemma 2.3: The bound of the output frequency response in (2.56) subjected to a 

general input having the Fourier transform ρU(jω) ( R ) is given by 

 
1

1
( ) n

n

n

Y j Y H 






     (2.57) 

which can be further written into a closed form as 

 1

2
0 ,

1
( , )

M
p q

m p q mR
p q m

Y H C p q Y
L



 
  

 

      (2.58) 

where 

 

1

1
1 1( ) d ,  ,  

R

U j Y Y







     


     (2.59) 
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Specifically, if 
1

( ) cos( )
K

i i i

i

u t F t F


   with max|Fi|=1, σ in (2.59) is given 

by  

 
1

1

( )
k

k

R

F j


 


    (2.60) 

with 1 2{ , , , }KR     and 1

1 1
( ) kj F

k kF F e


  for  1, ,ik K  . For a 

single-tone input, i.e., 1K   , 1H  can be replaced by 1( )H j  in (2.57) and 

(2.58).  

Proof: See Appendix 2.5.  

Remark 2.9: σ in (2.59) involves the wave form information of the input, Y  and 

γ can then be considered as a new bound for the output spectrum and the new input 

magnitude having wave form information, respectively. The input wave form 

information involved in σ makes the result in this section available for a general 

input.  

In [137], it is shown that an analytic function locally admits an analytic inverse 

near any point where the first derivative of the inverse is non-zero. However, a 

function cannot be analytically inverted in a neighbourhood of a point where the 

first derivative vanishes.  

The output bound in (2.57), 
1

1 n
n

n

Y H 






  , is analytic in its convergence 

region, which allows an analytic inverse. That is, in the convergence region, there 

exists an inverse 
1f 
 such that 

1( )f Y   . Therefore, the minimum input 

magnitude bound where the first derivative of the inverse is zero, i.e., 0Y   , 

can be regarded as the convergence bound of the power series (2.57) (where the 

analytic inverse does not exists). The following proposition can be obtained. 
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Proposition 2.5 The parametric convergence bound of the Volterra series 

expansion of the NARX system subjected to any input ρu(t) with a Fourier 

transform ρU(jω) (satisfying |U(jω)|≤1 for all ω) for any model parameters (with 

p+q>1) and input magnitude ρ can be obtained by solving the following equations: 

 

1

2
0 ,

1

2
0 ,

1
( , )

1
( , ) 1

M
p q

m p q mR
p q m

M
p q

m p q mR
p q m

H C p q Y Y
L

pC p q Y
L





 



  
 



  
 


 



 



 

 
  (2.61) 

Proof: To ensure the convergence of the power series in (2.57) is to guarantee the 

existence of analytic inverse and thus to find the singular point where the first 

derivative of the inverse is zero. Therefore, applying the first derivative operation 

to both sides of (2.57) with respect to Y , and setting it to be 0d
dY

  , it yields 

the second equation of (2.61). Together with (2.57), the convergence bound for 

can be obtained and thus the bound of ρ can be computed by (2.59). If the input 

magnitude ρ is given, solving (2.61) can give a bound for any model parameters 

with p+q>1.  

Remark 2.10 Proposition 2.5 presents a more general result, which is applicable 

to any input signal (not just for single-tone harmonic input as those in [110, 119, 

120, 138, 139]), and can achieve a convergence bound for both input magnitude 

and any model parameter (with p+q>1). Due to the definition of γ in (2.59), the 

convergence bound obtained with Proposition 2.5 is dependent on the wave form 

of the input (not just input magnitude in all of the existing results). Also, due to the 

definition of 
RL


in (2.53), different input frequencies may result in different 





 
 

61 
 

values of RL


, and thus the bound result by Proposition 2.5 is also 

frequency-dependent.  

Remark 2.11 A convergence bound (denoted by   ) for γ can be obtained via 

Proposition 2.5. From (2.59), the input magnitude bound for ρ can be calculated 

with     . For a single-tone harmonic input 1 1( ) cos( )u t t F    , 

1   in (2.59) and the input magnitude bound is 1     , which is the input 

magnitude bound obtained in last section. For a general input, the convergence 

bound of input magnitude in [121] is a constant that close to the worst case in this 

frequency-dependent bound.  

The convergence bound results obtained by Proposition 2.5 is dependent of the 

frequency, the magnitude and wave form information of input signals, and is 

available to any characteristic parameters (including input magnitude and model 

parameters with p+q>1). This cannot be achieved by all the existing methods. To 

compute the parametric convergence bound, the following procedure can be used 

Algorithm 2.3: 

Step 1. Compute the bounds 1H  and RL


 with (2.4), (2.8), (2.52), and (2.53). 

Step 2. Solve (2.61) to find the bound for   or any model parameters cp,q(·) 

with p+q>1. 

Step 3. If all model parameters are known, the parametric convergence bound 

of input magnitude ρ can be obtained with the computed bound of γ, and (2.59) ; if 

input magnitude ρ is given, then γ can be computed with  (2.59), and a 

convergence bound for any specific model parameter cp,q(·) with p+q>1 can be 
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obtained from (2.61). 

2.3.3 Examples and discussion 

Consider that model (2.35) is subject to a multi-tone input  

 
1 2( ) (cos( ) cos( ))u k k k       (2.62)  

where 2cos( )k   can be seen as a disturbance of 1cos( )k , satisfying 

0 1   . Similar conclusions can be drawn for any other input signals. 

2.3.3.1 Computation of the convergence bound of input 

The parametric bound of convergence (PBoC) of input magnitude ρ can be 

computed according to Algorithm 2.3. From (2.61), the following equations hold, 

 

3

1

2

(3,0) 0

3 (3,0) 0

R R

R

C Y L Y L H

C Y L

 



   


 

  (2.63) 

From the second equation of (2.63), it gives 3 (3,0)RY L C


  . Substituting Y  

into the first equation of (2.63), the convergence bound of γ can be obtained. Then 

according to (2.59), the PBoC of ρ is straightforward as 

 
1

2

1 3(1 ) 3 (3,0)

RL

H C




 
 

 
  (2.64) 

Given c3,0(1,1,1)=−153.8, k30=0.01ω0
2, β=0.2, and ω2=ω1+2π·1·Ts, the computed 

PBoC of input magnitude is presented in Fig. 2.19. From Fig. 2.19, it can be seen 

that the computed PBoC of the input magnitude ρ is very close to the convergence 

bound by numerical simulations. As a comparison, the PBoC of input magnitude 

when model (2.35) is subject to a single-tone input, setting β to 0 in (2.62), is also 

presented in Fig. 2.19. It can be seen that even though β is very small, for example, 
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0.2 in this case, the PBoC with a multi-tone input is obviously smaller than the 

PBoC with a single-tone input because of the inter-modulation between the two 

input frequencies [39, 73]. When the model (2.35) is subject to a multi-tone input, 

the results in [110, 119, 120, 138, 139] are not applicable, and the convergence 

bound according to [121] is 65.3895 10 , which is more conservative compared 

with the PBoC via Proposition 2.5 at the resonant frequency (0.0032 in this case).  

 

 

Figure 2.19 The PBoC of the input magnitude 
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Figure 2.20 The normalized root mean square error 

The normalized root mean square error is again given to validate the 

effectiveness of the bound result above. The NRMSE taken at ω1=1.1ω0 as an 

example is presented in Fig. 2.20 It can be seen that when the input magnitude is 

smaller than the computed PBoC, the NRMSE dramatically decreases to 0 as the 

synthesized order increases, but the synthesized output ysynthesized(k) becomes 

divergent with an observed increasing NRMSE when the input magnitude is larger 

than the computed PBoC.  

2.3.3.2 The convergence bound of model parameters  

The computation of the PBoC of model parameter c3,0(1,1,1) is given as 

 
2

2 2 2

1
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H
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  (2.65) 
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Figure 2.21 The PBoC of the model parameter c3,0(111) 
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For the computation of the PBoC, the method in [121] is not applicable. 

Considering the input magnitude as ρ=0.5, the computed PBoC is presented in Fig. 

2.21 In Fig. 2.21, the multi-tone input 1, multi-tone input 2, and single-tone input 

correspond to the input in (2.62) with β=0.1, β=0.3, and β=0, respectively. The 

PBoC of the model parameter with the multi-tone input is also smaller than that 

with a single-tone input. When β varies from 0.1 to 0.3, the nonlinearity degree of 

model (2.35) increases, which leads to a smaller PBoC of the parameter (see Fig. 

2.21).  
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2.4 Parametric convergence bound for single-input multiple-output (SIMO) 

system 

Consider a SIMO NARX model with M subsystems as [65] 
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 

  (2.66) 

where ( )
kj

y k  is the jkth output, jk=1,2,⋯,M. M is the number of subsystems, and Nl 

is the maximum nonlinear order in terms of output y(k) and input u(k). 

1 1

, 1( , , ; )p pj j j

p q p q kc k k j

 is the model parameter of the corresponding term 

1 1
( ) ( )

i

p p q

j i ii i p
y k k u k k



  
    in the jkth subsystem, which has a nonlinearity 

degree p+q (p order in terms of the output and q order in terms of the input), and ki 

is the difference order with the maximum order K. The superscript ji, i=1,2,,p in 

the model parameter 1 1

, 1( , , ; )p pj j j

p q p q kc k k j

  means that the  jith output, ( )
ij

y k , 

is in the corresponding term 
1 1

( ) ( )
i

p p q

j i ii i p
y k k u k k



  
    . Denote m=p+q, 

which is, clearly from the above, the nonlinear degree in NARX model (2.66). An 

example for a single-input four-output NARX model can be seen in Section 3.3. 

The jkth output of the SIMO NARX model in (2.66) can be approximated by the 

Volterra series (truncated up to the order N) as, 
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      (2.67) 

where 
( )

1( , , )kj

n nh    is the nth-order Volterra kernel of the jkth subsystem. 
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2.4.1 The nth-order GFRF and nonlinear output spectrum 

The nth-order generalized frequency response function (GFRF) can be recursively 

calculated [65] as, 
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  (2.68) 

where
( )

1( , , )kj

n nH j j   is the nth-order GFRF of the jkth subsystem, Ai,n 

represents the ith element of An. ωi, i=1,⋯,n is the frequency variable in the 

nth-order GFRF,   
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  (2.69) 

Equation (2.69) involves only the linear model parameters, e.g., c1,0(.). 
,kj nA  in 

(2.68) is given by, 
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where m=p+q, and  
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1 1

1

, , 1;p p

n p

r r r r n q

 

    

 is the summation of all different combination of (γ1,γ2,⋯,γp) 

which satisfy , 1≤γ1,γ2,⋯,γp≤n-p+1 andγ1+γ2+⋯+γp=n-q.  
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n n n nH j j H j j e
       

   (2.72) 

 1 1( ) 1     =0, >1
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p n q p q nj k k q p
e

q p

       
 


  (2.73) 

In (2.71), Xi=γ1+γ2+⋯+γi-1, and γ1+γ2+⋯+γp=n-q for all p≥2 and positive integer γi. 

It is clear that higher-order GFRFs can be recursively calculated from the 

lower-order GFRFs, and the recursion terminates at the first-order GFRF, i.e., 

( )

1 1( )kjH j . To compute the first-order GFRF via (2.68), (2.70) is then defined by 

 1 1

1

,1 0,1 1

0

( ; ) .
k

K
j k

j k

k

A c k j e 



   (2.74) 

When the SIMO NARX model is subject to the harmonic input (2.9), the nonlinear 

output spectrum of the jkth subsystem (truncated at the order N) can be obtained as 

[70, 73, 79, 117] 

 
1

( )

1

1 1

1
( ) ( , , ) ( )

2
k

k

n

nN
j

j n n in
n i

Y j H j j A
 

  
    

  
    

  
     (2.75) 

where |A| is the magnitude of the input u(k), which is denoted by U latter, Ω is the 

output frequency, ω is the input frequency, { , }i    . 

2.4.2 Notations and Definitions  

 is denoted for matrix A as 
1

sup
x

A Ax


  . Denote the upper bound of 

1

1,( ),n nL j j   , which is defined in (2.68), over the whole output frequency 

range W∞ as 
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  1 1

1( ) sup ( , , )n n
W

L L j j  


 



   (2.76) 

where 
11 1

{ | , { , }}inn n nW W     
 

  
        represents the 

output frequency range when the NARX model (2.66) is excited by (2.9), and Wn 

is the output frequency range of the nth-order output (see more discussion in [73]). 

Define 

 1 1 1 1

1

( , ; ) , 1

, , 0

( , , ; )p p p p

k

p q

K
j j j j j j

p q j p q p q k

k k

C c k k j 







    (2.77) 

Obviously, 1 1

( , ; )
p p

k

j j j

p q jC   is a nonnegative function of the model parameters 

1 1

, ( ; )p pj j j

p q kc j .  

 

2.4.3 Boundedness of the GFRF and nonlinear output spectrum 

Lemma 2.4: The upper bound of the nonlinear output spectrum of the jkth 

subsystem at Ω=kω is given by 
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  (2.78) 
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where 
( )

1( , , )kj

n nH j j   is the upper bound of the nth-order GFRF, which 

satisfies the following equation 
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  (2.80) 
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and 

 ( ) ( )

1 1 1 1( ) ( ) ,           1.k kj j
H j H j n     (2.81) 

Proof: See Appendix 2.6. 

Lemma 2.5: The upper bound of the nonlinear output spectrum of the jkth 

subsystem involving all of the frequencies in the output frequency range W∞ is 

given as 
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1 1
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 
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  (2.82) 

Proof: Following Lemma 2.2 . 

Lemma 2.6: When ( )L    holds, and the upper bound of the nonlinear output 

spectrum of any subsystem is divergent, the upper bounds of the nonlinear output 

spectrum of all of the other subsystems also diverge.  

Proof: See Appendix 2.7. 

Remark 2.12: The bound results above can be seen as an extension of the results 

for SISO case in section 2. The upper bound of the nonlinear output spectrum of 

the thkj subsystem in (2.82) is expressed as the summation of an infinite power 

series, which can also be seen as the summation of the power series (with 

nonnegative coefficients) in (2.78) and (2.79). If the upper bound of the nonlinear 

output spectrum in (2.82) converges, the upper bound of the nonlinear output 

spectrum at any frequency for any subsystem converges. Obviously, this indicates 

a convergent Volterra series expansion. 
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Lemma 2.7: The upper bounds of the nonlinear output spectrum of all of the M 

subsystems satisfy 
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  (2.83) 

Proof: See Appendix 2.8. 

 

2.4.4 Parametric bound of convergence (PBoC) 

The parametric bound of convergence (PBoC) is defined as the upper bound of a 

characteristic parameter in which a given nonlinear system has a convergent 

Volterra series expansion.  

Proposition 2.6: The PBoC can be obtained by solving (2.20), with  
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where 1,{ , }j M  which means that 
( )

1 ( )jH  can be any one of 

 (1) ( )

1 1( ), , ( )MH H  . 
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Proof: See Appendix 2.9.  

Note that the PBoC in Proposition 2.6 can be computed via any subsystem of 

the SIMO model, and the PBoCs by different subsystems will be the same with 

each other, which is consistent with the result in Lemma 2.6, that is, if one of the 

subsystem is not Volterra-type, then all of the other subsystems are also not 

Volterra-type. 

Remark 2.13: If (2.20) has only one positive root, this positive root is the 

computed PBoC. If there exists more than one positive roots, then the smallest one 

is the computed PBoC. Otherwise, if there does not exist any positive root, the 

computed PBoC is 0, which means that the nonlinear model under study is already 

out of the convergence bound, and the system is not Volterra-type. Although the 

PBoC estimated here is derived for harmonic input signal, it can act as a useful 

reference or guidance for parameter optimization and design in practice for any 

input signals.  

Remark 2.14: The bound result in (2.83) is an explicit expression of the output 

bound of all of the M subsystems, which is for the first time developed for a 

multi-output system and cannot be simply extended from the result in for SISO 

case. The result in Proposition 2.6 holds for any j from 1 to M, which is in 

compliance with Lemma 2.6. With Lemma 2.6 and the approximation (I-1) in 

Appendix 2.9, the bound result of the nonlinear output spectrum in (2.83) for a 

single-input multiple-output (SIMO) model can then be cast into the SISO case as 

shown in (I-2) in Appendix 2.9.   
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The procedures for calculating the PBoC is summarized as: 

Algorithm 2.4 Computation of PBoC:  

Step 1. Calculate 
1( )L 

 according to (2.69) and (2.76); Calculate 1 1

( , ; )
p pj j j

p q jC   

according to (2.77). 

Step 2. Calculate 
( )

1
kjH  according to (2.68)-(2.70), (2.74), and (2.81). 

Step 3. Solving (2.20), the PBoC can then be obtained. 
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2.5 Conclusion  

In this chapter, the parametric bound of convergence (PBoC) is studied for the 

single-input single-output (SISO) nonlinear systems, the single-input 

multiple-output (SIMO) nonlinear systems, and also the nonlinear systems with a 

general input. The developed algorithms for calculating the PBoC not only 

determine the convergence bound of input magnitude (the results existed in the 

literatures) but also determine the convergence bound of model parameters of 

interest. These results can provide a straightforward and useful guidance for the 

analysis and design of nonlinear systems with the nCOS method, which will be 

illustrated in the following chapter. 
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3  The nCOS method based analysis and 

design of nonlinear parameters, 

considering the parametric convergence 

bound (PBoC)  

3.1  Introduction 

Nonlinearities are complex phenomena in practice for analysis and design. If a 

nonlinear system has multiple steady states, the dynamic response could be very 

complicated, and even a simple harmonic excitation could lead to complex 

bifurcation or chaos. This could greatly complicate nonlinear analysis and design. 

In vibration control problems, system nonlinearity usually comes from two 

sources: inherent nonlinearity such as in a vehicle suspension [140-142] or robotic 

manipulators [143-145] and externally introduced nonlinearity for performance 

improvement, which can be observed in nonlinear stiffness and damping design 

[23, 73, 79, 92], energy harvesting systems [146], hard disk drivers [147], elastic 

drives [148], and power invertors [149].  

As discuss in Chapter 1, there are several methods for the analysis and design of 

nonlinear systems, for example, the harmonic balance method and perturbation 

method [39]. Difficulties such as analysis complexity and computation burden can 

often be observed, especially when these methods are applied to a 

multi-degree-of-freedom (MDoF) system or a multiple input multiple output 

(MIMO) system. Compared with the harmonic balance or the perturbation method, 
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the Volterra series associated frequency domain method has an obvious advantage, 

i.e., the output spectrum of the system can be expressed as a polynomial function 

with respect to the nonlinear model parameters of interest [92, 95, 113, 115], 

which is referred to as the nonlinear characteristic output spectrum (nCOS) 

function in [92].  

The nCOS function can be any system output function or multiple-object 

performance function to be optimized, it is therefore obvious that the nCOS 

function based method can provide a straightforward insight into the analysis and 

design of nonlinear systems and also greatly facilitate the applications in practice, 

especially for MDoF or MIMO systems. 

In this chapter, two applications of the nCOS method to the analysis and design 

of nonlinear parameters are presented: 

1. In section 3.2, a nonlinear damper is proposed to overcome the dilemma 

associated with linear viscous damping. The system performance (force 

transmissibility and displacement transmissibility) is analytically derived in 

the form of the nCOS function with respect to the nonlinear damping 

coefficient. The transmissibility performance can then be easily studied, and 

the superior performance of the proposed nonlinear damping relative to that of 

linear viscous damping can be well demonstrated.  

2. In section 3.3, a nonlinear optimization problem is studied. The 

multiple-object performance function is constructed and mapped onto an 

nCOS function with respect to nonlinear parameters of interest. The 
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optimization can then be straightforwardly conducted within the determined 

parametric convergence region, i.e., the PBoC proposed in Chapter 2.     

In these two cases, the nCOS method works only when the system input-output 

relationship allows a convergent Volterra series expansion, which can be 

guaranteed via the PBoC or PCM proposed in Chapter 2. These two cases show 

that: 

1. The results in Chapter 2 can provide a useful guidance for Volterra series 

associated methods such as the nCOS method.  

2. The nCOS method can provide a straightforward and effective way for the 

analysis and design of nonlinear parameters or nonlinear components.  
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3.2 nCOS method based analysis of nonlinear damping 

There is a well-known dilemma associated with linear viscous damping 

systems, i.e., a larger damping coefficient leads to performance improvement 

at/around the resonant frequency 𝜔0  but deteriorates the performance at 

frequency Ω > √2𝜔0  [150, 151]. To overcome this dilemma, isolators with 

nonlinear stiffness and/or nonlinear damping have been widely studied to explore 

the potential nonlinear benefits in vibration control [24, 95, 152-156].  

In [153], vibration isolators with nonlinear stiffness and nonlinear damping 

have been investigated. The transmissibility was derived using the harmonic 

balance method. Jump phenomena can be observed because of the nonlinear 

stiffness. Nonlinear damping defined as a pure function of velocity is studied 

under force excitation [24, 85, 86] via the Volterra series associated method [94, 95, 

113]. The cubic-order nonlinear damping can produce an ideal vibration isolation, 

i.e., the force transmissibility is suppressed only in/around the resonant frequency 

but remains almost unaffected in the non-resonant frequency region. Milovanovic 

[157] studied vibration isolators with cubic-order nonlinear stiffness and damping 

under base excitation. The absolute displacement transmissibility of the isolator 

with cubic-order nonlinear damping approaches 1 as Ω→∞, which corresponds to 

a rigidly connected system.  

In this section, a cubic-order nonlinear damping (i.e., (∙)2 𝑑(∙)

𝑑𝑡
) is investigated. 

The performance (force and absolute displacement transmissibility) is derived to 

be an explicit and analytical polynomial function with respect to the nonlinear 
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damping coefficient (defined as nonlinear parameter of interest). With these 

transmissibilities developed in the form of the nCOS function, it is then 

straightforwardly and analytically shown that the nonlinear damping (∙)2 𝑑(∙)

𝑑𝑡
 

can produce much better vibration isolation performance under both force 

excitation and base excitation.  

 

3.2.1 Nonlinear isolators and transmissibility functions 

 

Figure 3.1 Isolator subjected to force excitation  

 

Figure 3.2 Isolator subjected to base excitation 

The nonlinear damping force is denoted as: 

 2

nd 2

( ) ( )
( )

d d

dt dt
F c c

 
     (3.1) 

where c is the linear damping coefficient and 𝑐2  is the cubic order nonlinear 
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damping parameter.  

3.2.1.1 The isolator subjected to force excitation and the force 

transmissibility 

From Fig. 3.1, the governing equation of an isolator under force excitation can 

be given as 

  2

1 1 1 2 1 1 sinmx kx cx c x x A t       (3.2) 

The force ratio 𝑇fr(𝑡) is then defined as 

  
2

out 1 1 2 1 1
fr

F kx cx c x x
T t

A A A A
      (3.3) 

These two equations can be non-dimensionalized as  
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with  
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3.2.1.2 The isolator subjected to base excitation, and the force and 

displacement transmissibility 

The governing equation of an isolator in Fig. 3.2 under base excitation can be 

written as: 

 
2

1 1 1 2 1 1( ) ( ) ( ) ( )mx k u x c u x c u x u x         (3.5) 

where  sinu A t . The force ratio 𝑇fr(𝑡) is denoted by: 



 
 

82 
 

   2out 2
fr 1 1 1 1

1
( ) ( ) ( ) ( )

F cc
T t u x u x u x u x

kA A kA kA

 
          (3.6) 

Denote the relative displacement 𝑥 of the isolator as: 

 1x x u    (3.7) 

The following non-dimensional equations can be obtained: 
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with  

 

   

           

   

0 0
0 0

2

0 0 1

2

2
2 1 2

, , , ,

, , ,

, ,f

kt z x t x
m

z
x t z x t z y

A

c Acy T
km km

    
 


    

   

        
 

  

  

  

From (3.4) and (3.8), it can be observed that the base excitation can be 

equivalent to a force excitation when the magnitude of the disturbing force is 

proportional to the square of the exciting frequency 2Ω .  

In the following, the absolute displacement transmissibility is derived. The 

displacement ratio is defined by: 

   1
dr

x x u
T t

A A


    (3.9) 

which is non-dimensionalized as: 

  3 1 sin Ωy y     (3.10) 

where 1y  is defined in (3.8).   

   

In the next section, an explicit and analytical relationship between the force or 

displacement transmissibility and the nonlinear damping coefficient 𝛽2 will be 

developed in the frequency domain using the nCOS method. 
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3.2.2 The force and displacement transmissibility in the frequency domain 

The concept of the nonlinear characteristic output spectrum (nCOS) was 

recently proposed [5, 12-13]. The advantage of this concept is that the output 

spectrum can be given as an explicit and analytical polynomial function with 

respect to the nonlinear parameters of interest. The analytical relationships 

between the transmissibilities, i.e., the force transmissibility 𝑇f(𝛺)  and 

displacement transmissibility𝑇d(𝛺), and the nonlinear damping coefficients 𝛽2 

are developed in this section, which can provide a straightforward understanding 

of the proposed nonlinear damping.  

3.2.2.1 Force transmissibility 𝑻𝐟(𝜴) 

From system (3.4) and system (3.8), it can be observed that the force ratio under 

base displacement excitation has the same form as that under force excitation. The 

only difference is that the input magnitude is 1 for force excitation but 2Ω  for base 

excitation. These two transmissibilities will be developed in the frequency domain 

in this section.  

According to [65, 85, 114], system (3.4) and system (3.8) can be regarded as a 

single-input-double-output system, with the output spectrum obtained as 

     
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J n n nn
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     (3.11) 

where 𝐻𝑛
𝐽(𝑗𝜔1, ⋯ , 𝑗𝜔𝑛) is the nth-order generalized frequency response function 
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(GFRF), N is the truncation order, and  𝑈(𝜔𝑖) is the input spectrum. For system 

(3.4),  

  

                   when Ω ,  1, ,  

0                              otherwise

                   when Ω, 1, ,   

i

i

i

j i n

U

j i n




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 
   

  (3.12) 

For system (3.8), 
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  (3.13) 

(3.11) involves the computation of the nth-order GFRFs 𝐻𝑛
𝐽(𝑗𝜔1, ⋯ , 𝑗𝜔𝑛), 

which can be referred to Appendix 3.1 . With the results in Appendix 3.1, the 

output spectrum 𝑌2(𝑗𝜔) in system (3.4) and system (3.8) can be written as 
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where  
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  (3.16) 

The definition of L(jω) is also given in Appendix 3.1.  (3.14) presents an 

analytical relationship between the output spectrum and the nonlinear parameters 

𝛽2 . The force transmissibility can then be given by 
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It can be observed that (3.14) and (3.17) are explicit polynomial functions of the 
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input and first-order GFRF. Substituting (3.12) into (3.15) and (3.16), for system 

(3.4) (nonlinear isolator subjected to force excitation), it can be obtained that  
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where 𝜔𝑖𝜖{−Ω, Ω}, 𝑖 = 1, ⋯ ,2𝑛 + 1 

Similarly for system (3.8) (the nonlinear isolator subjected to base excitation), 

it can be obtained that 
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where 𝜔𝑖𝜖{−Ω, Ω}, 𝑖 = 1, ⋯ ,2𝑛 + 1 . 

From (3.17), when there exists no nonlinear damping coefficients, i.e., 𝛽2 = 0 

and 𝛽4 = 0 , the nonlinear isolator turns into a linear isolator. The force 

transmissibility is easy to obtain as  

For system (3.4), the linear isolator under force excitation,  
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For system (3.8), the linear isolator under base displacement excitation,  
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3.2.2.2 Absolute displacement transmissibility 𝑻𝐝(𝜴) 

The output spectrum of 3y  in (3.10) is given as 
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  (3.26) 

The absolute displacement transmissibility can be obtained as 
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3.2.3 Effects of nonlinear damping coefficients on vibration isolation 

The force transmissibility and the absolute displacement transmissibility are 

derived in section 3.2.2. All of these transmissibilities have an explicit analytical 

polynomial relationship with the nonlinear damping coefficient 2 . The 

performance of the proposed nonlinear damping can then be easily investigated 

with the explicit nCOS function. The following results can be obtained 

Proposition 3.1: For force excitation, the nonlinear damping (∙)2 𝑑(∙)

𝑑𝑡
 can produce 

the following performance for force transmissibility: 

(I) When Ω ≫ 1 or Ω ≪ 1, 
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(II) When Ω ≈ 1, there exists a 𝛽 such that the force transmissibility can be 

expressed by an alternating series with respect to the nonlinear coefficient 𝛽2 if 

0 < 𝛽2 < 𝛽. The force transmissibility can therefore be suppressed by exploiting 

the properties of alternating series. 

Proof: See Appendix 3.2.  

Proposition 3.1 indicates that the nonlinear damping term (∙)2 𝑑(∙)

𝑑𝑡
 has almost 

no effect on the force transmissibility over the non-resonant frequency regions, i.e., 

a frequency much lower or much higher than the resonant frequency, and the force 

transmissibility is obviously suppressed at/around the resonant frequency.  

Proposition 3.2: When the isolator is under base excitation, the following 

performance for the force excitation can be obtained: 

(I) When Ω ≫ 1 or Ω ≪ 1, nonlinear damping (∙)2 𝑑(∙)

𝑑𝑡
 leads to 
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(II) When Ω ≈ 1, there exists a 𝛽 such that the force transmissibility can be 

expressed as an alternating series with respect to the nonlinear coefficient 𝛽2 

where 0 < 𝛽2 < 𝛽. The force transmissibility can therefore be suppressed by 

exploiting the properties of alternating series. 

Proof: See Appendix 3.3. 

Proposition 3.2 shows that the proposed nonlinear damping can significantly 
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reduce the force transmissibility over the resonant frequency while leaving it 

almost unaffected in the non-resonant frequency region.  

The absolute displacement transmissibility under base displacement excitation 

is very similar to the force transmissibility discussed above. 

Proposition 3.3: The proposed nonlinear damping (∙)2 𝑑(∙)

𝑑𝑡
 leads to the following 

performance for the absolute displacement transmissibililty: 

(I) When Ω ≫ 1 or Ω ≪ 1, nonlinear damping (∙)2 𝑑(∙)

𝑑𝑡
 can make 
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  (3.30) 

(II) When Ω ≈ 1, there exists a 𝛽 > 0 such that  
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d T

d
 


     (3.31) 

Proof: See Appendix 3.4.  

In this section, the performance of the nonlinear damping is theoretically 

investigated with the nCOS method. When the harmonic balance method or 

perturbation method is used to analyse the proposed nonlinear damping, the 

isolator perfromance (the force transmissibility and absolute displacement 

transmissibility) and the input are involved in a set of nonlinear algebraic 

equations that must be numerically solved to obtain the performance. The 

derivation of the isolator performance in Proposition 3.1-Proposition 3.3 via nCOS 

method is thus more straightforward. 
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3.2.4 Examples and Discussion 

The following simulations via the Runge-Kutta method are given to verify the 

theoretical results above. The demonstrations of the results in section 3.2.3 are 

based on the nCOS functions developed between the system performance (force 

transmissibility and displacement transmissibility) and the nonlinear damping 

coefficient, so the convergent Volterra series expansion relationship between the 

system performance and the system input should thus be studied first. The 

parametric convergence bound for the nonlinear damping coefficient 2  is 

computed. 

3.2.4.1 Compute the PBoC of the nonlinear damping coefficient 2  

From (3.4) and (3.8), it can be observed that the only difference between the 

dimensionless governing equation of force excitation and that of base excitation 

is that the input magnitude for force excitation is 1 but the input magnitude for 

base excitation is 2Ω . Thus, the parametric convergence bounds, i.e., PBoC, for 

the nonlinear damping coefficient 2  in these two cases can be computed in the 

same way but with different input magnitudes.  

The first equation of the governing equations ((3.4) or (3.8)) is transformed 

into a SIMO NARX model as 
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  (3.32) 

where 1U   for (3.4) and 2=ΩU for (3.8)，and ( )x k  and ( )z k  denote the 

acceleration and velocity of 1( )y k , respectively. sT  is the sample time.  

According to Proposition 2.6, and denoting 2  as the parametric bound of 

nonlinear damping coefficient 2 , the following equations hold 
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From (2.20)，the following equation can be obtained: 

 
2 2 3

1,0 1,3 1,1 1,327 4 0a a a a    

Then, the parametric bound for the nonlinear damping coefficient 2  can be 

obtained as 
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


 
    (3.33) 

In Figure 3.3 and Figure 3.4, the parameter is given as 1 0.1, 1 2000ssT   . 

It can be observed that the computed parametric convergence bound for the 

nonlinear damping coefficient 2  has  good agreement with that obtained by 

numerical simulations, thereby validating the results proposed in Chapter 2, i.e., 

the parametric convergence bound for the Volterra series expansion of nonlinear 

systems.  
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Figure 3.3 The parametric convergence bound 

2  for a nonlinear isolator under force excitation 

(3.4) 

 

Figure 3.4 The parametric convergence bound 
2  for a nonlinear isolator under base excitation 

(3.8) 
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3.2.4.2 Isolator performance 

Figure 3.5 presents the force transmissibility of an isolator under force 

excitation. The solid line and dash line are the force transmissibilities with linear 

damping coefficients 𝜉1 = 0.1  and 𝜉1 = 0.325 , respectively. The star line 

presents the performance when the cubic order nonlinear damping (∙)2 𝑑(∙)

𝑑𝑡
 is 

introduced into an isolator with nonlinear damping coefficient 𝛽2 = 0.1. It can 

be observed that the force transmissibility over the resonant frequency is 

obviously suppressed but remains almost unaffected over the non-resonant 

regions. The dash line is presented as a reference case. To reach the same force 

transmissibility in the resonant frequency as that by cubic-order nonlinear 

damping, the linear damping coefficient 𝜉1 increases from 0.1 to 0.325, which 

obviously leads to performance deterioration at high frequency. 

The nonlinear damping coefficient is chosen as 2 0.1   in the following 

discussion. This is because that the convergence bound for the nonlinear 

damping coefficient, 2 , is larger than 0.1 in almost the whole frequency range 

except around the resonant frequency. For the case in/around the resonant 

frequency, the equivalent damping coefficient, i.e.,  
2

1 2  , is a positive 

damping coefficient that is always larger than 1 , which will obviously lead to a 

superior vibration suppression, so the discussion are thus still reasonable and 

meaningful.  
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Figure 3.5 The force transmissibility of an SDoF isolator under force excitation 

 
Figure 3.6 The force transmissibility of an isolator under base displacement excitation 

In Figure 3.6, the force transmissibilities under base displacement excitation 

are presented. The proposed nonlinear damping can significantly suppress the 

force transmissibility over the resonant frequency and keep the performance very 

close to that with a small linear damping coefficient over the non-resonant regions. 
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The dash line is also presented as a reference case, from which it can be observed 

that the force transmissibility can reach the same performance as that by 

cubic-order nonlinear damping at the resonant frequency but results in 

performance deterioration at high frequency.  

In Figure 3.7, the absolute displacement transmissibility with cubic-order 

nonlinear damping (∙)2 𝑑(∙)

𝑑𝑡
 is presented. Superior performance for the absolute 

displacement transmissibility relative to that by a larger linear damping coefficient 

can also be observed.  

 
Figure 3.7 The absolute displacement transmissibility of an isolator under base displacement 
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Figure 3.8 Equivalent damping coefficient of the cubic order nonlinear damping 

To provide a more straightforward insight into the nonlinear mechanism in 

vibration suppression, the equivalent damping coefficient of the isolator is 

provided in Figure 3.8. As shown in Figure 3.8, the cubic order nonlinear damping 

(∙)2 𝑑(∙)

𝑑𝑡
 has an equivalent linear damping coefficient very close to 0.325 at the 

resonant frequency and near 0.1 in non-resonant frequency region. The better 

performance of the nonlinear damping (∙)2 𝑑(∙)

𝑑𝑡
 at high frequency presented in 

Figure 3.5 to Figure 3.7 therefore straightforwardly results from this small 

equivalent damping coefficient.  
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3.3 Multiple-object nonlinear optimization based on the nCOS method 

Vibration control of a vehicle suspension is a multiple-object (body 

acceleration, relative tire load, and suspension stroke) optimization problem. This 

multiple-object problem is often nonlinear because of the inherent nonlinearity of 

the spring [158, 159] and damper [160], and also the actuator saturation [161]. 

Controller designs that neglecting these inherent system nonlinearities may 

therefore lead to performance deterioration, so an effective and efficient method 

for the analysis and design of nonlinear suspension systems is needed.  

The body acceleration, relative tire load, and suspension stroke are three 

indicators for assessing the vehicle suspension performance. Note that 4-8Hz is 

suggested by ISO2361 as nominal frequency range for assessing the ride comfort; 

a systematic methodology in the frequency domain for the analysis and design of 

the vehicle suspension may provide straightforward information for the engineers. 

The existence of nonlinearity makes it more difficult to analyse and design the 

suspension system, and the nCOS method could be a powerful tool for the 

nonlinear analysis and design of this multiple-object optimization problem.  

First, the PBoC can be computed to indicate whether the system is Volterra-type 

or has strong nonlinear dynamics such as bifurcation or chaos. By guaranteeing 

that the system nonlinearity is Volterra-type, the system nonlinear dynamics can be 

well analysed using the nCOS method. Second, the multiple-object performance 

(MOP) function (including the ride comfort, suspension stroke, and relative tire 

load) is constructed. The MOP function is regarded as a nonlinear output function 
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and expressed as a polynomial function of model parameters with the nCOS 

method [92]. How the model parameters of interest affect the MOP can then be 

studied in the frequency domain, and the design and optimization of the MOP 

function can be conducted directly within the computed PBoC.  

In this section, a nonlinear controller based on 
3

sx  is deliberately introduced 

into the suspension system for performance improvement. Compared with the 

sprung mass acceleration adopted here, the absolute sprung mass displacement 

and velocity based control strategies [162-165] (for example, the skyhook control, 

ground hook control, acceleration driven damper (ADD), mixed skyhook and 

ADD strategy, and state feedback control) may have a limitation in that required 

motion signals such as absolute displacement and velocity are not readily available 

for measurement on a moving vehicle. Usually, these motion signals can be 

obtained by state estimation methods or filters (e.g., integration of acceleration 

signal or Kalman filters), which will introduce estimation error and control delay 

to the system, and increase development or manufacturing cost. However, by 

employing beneficial nonlinearity in vibration control, a simple nonlinear 

controller with measurable signals could provide the same or even better 

performance. 

3.3.1 Model under consideration  

According to Figure 3.9, the governing equation of the quarter vehicle 

suspension model is given as, 
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3

3( )

t t t t t t t t s s

s s s s t s s s

m x k u c u k x c x m x

m x c x x c x f

    


    
  (3.34) 

where
2 3

1 2 3( ) ( ) ( )s s s t s s t s s tf k x x k x x k x x       . The model parameters are 

borrowed from [141], which are obtained by curve fitting with measurement data 

from a Hyundai Elantra front suspension and given as 

1 2240 , 25 , 160 / , 12 / , 10 / ,s t t s t sm kg m kg k kN m k kN m c N s m k        

2 3

373696 / , 3170400 / , 1385.4 / .s sN m k N m c N s m     Here only the model 

parameter cs3 is unknown, which is considered a characteristic parameter of 

interest. To compute the PBoC of cs3, the road input is assumed to be a cosine input 

u=Ucos(2πft). 

 

Figure 3.9 A quarter vehicle suspension model 

 

3.3.2 Compute the PBoC of cs3 

The suspension model in (3.34) can be transformed into a SIMO (single-input 

four-output) NARX model by backward discretization as, 
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  

    
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2 1
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4 1,0 2 1,0 2 1,0 2
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k c x k

c x k

x k c x k c x k

x k c x k c x k c x k












  

     

  (3.35) 

where x1=xt, x2=xs, and all of the coefficients are presented in table 3.1.  

 

Table 3.1 Coefficients of (3.35) 

𝑐1,0
1 (1; 1) =(2mt+ctTs)/D 𝑐1,0

1 (2; 1)  =-mt 

/D 

     𝑐0,1(0; 1) = (𝑘𝑡𝑇𝑠
2 + 𝑐𝑡𝑇𝑠)/𝐷 𝑐1,0

2 (1; 2) =2 

     𝑐0,1(1; 1) = −𝑐𝑡𝑇𝑠/𝐷 𝑐1,0
2 (2; 2) =-1 

𝑐1,0
3 (0; 2)  =(−𝑘𝑠1𝑇𝑠

2 + 𝑐𝑠𝑇𝑠)/

𝑚𝑠 

𝑐1,0
3 (1; 2)  

=csT/ 𝑚𝑠 

𝑐2,0
33 (0,0; 2) =−𝑘𝑠2𝑇𝑠

2/𝑚𝑠 𝑐1,0
2 (0; 3) =1 

𝑐2,0
333(0,0,0; 2) =−𝑘𝑠3𝑇𝑠

2/𝑚𝑠 𝑐1,0
1 (0; 3) =-1 

𝑐3,0
444(0,0,0; 2) =−𝑐𝑠3𝑇𝑠

2/𝑚𝑠 𝑐1,0
2 (0; 4)  

=-1/𝑇𝑠
2 

𝑐1,0
2 (2; 4) =1/𝑇𝑠

2 𝑐1,0
2 (1; 4)  

=-2/𝑇𝑠
2 

D=𝑘𝑡
2𝑇𝑠

2 + 𝑐𝑠𝑇𝑠 + mt Ts=1/2000 

 

From (3.35),  
2444

3,0 3(0,0,0;2) /s s sc Tc m   , and cs3 is only involved in 

444

3,0 (0,0,0;2)c  . Thus the PBoC of cs3 (denoted as Cs3) can be obtained as 

  2 444

3 (3,0;2)s s sC m T C   (3.36) 

where 
444

(3,0;2)C is the computed PBoC of 
444

3,0 (0,0,0;2)c . The computation of 
444

(3,0;2)C  

can be conducted according to the procedure in Algorithm 2.4. The elements in 

(2.20) can be obtained according to (2.84)-(2.88), which are given as (as shown in 

Proposition 2.6, j can be any value from 1 to 4, and here j takes 4 in the following 
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calculation) 

3
(3) 4

( )333 4441
1,3 (3,0;2) (3,0;2) 1,0 1(4)

11
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( )(3) 4

33 1 1
1,2 (2,0;2) 1,1(4) (4)
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2,2 1,3 2,1 1,2 2,0 1,
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( )
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( ) ,
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3 ,  2 ,  
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k
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j

j

j

j

H j
a L j C C a H j U

H j

H j H j
a L j C a

H j H j

a a a a a a


 



 


 





  
    
   

 
   

 

  





1  

where 333 333 444 444 33 33

(3,0;2) 3,0 3,0 2 3,0 (2,0;2) 2,0(0,0,0;2) , (0,0,0;2) , (0,0;2)C c C c C c  （ ；） . The following 

equation then holds, 

    2 2 3 3 2 2

1,0 1,3 1,1 1,2 1,1 1,0 1,3 1,2 1,1 1,2 1,327 (4 18 ) 4 0a a a a a a a a a a a       (3.37) 

Equation (3.37) is a quadratic equation of a1,3 with known coefficients. Solving 

a1,3 from (3.37), the PBoC 
444

(3,0;2)C   can then be obtained, 

  
3

444 333 (3) (4)

(3,0;2) 1,3 (3,0;2) 1 1( ) ( ) ( ) .C a L j C H j H j      (3.38) 

When 
444

(3,0;2)C  from (3.38) is smaller than 0, denote 
444

(3,0;2) 0C   because 
444

(3,0;2)C  

is nonnegative. This means that the suspension model with existing nonlinear 

stiffness is not a Volterra-type nonlinear system. Based on (3.38), the PBoC Cs3 

can then be computed according to (3.36). 

The computed PBoC for Cs3 is presented in Fig. 3.10 with the input amplitude 

given as  

 0 02 ( )U n G n v f   (3.39) 

where G(n0) is the spatial ground displacement power spectral density, which has 8 

grades according to ISO/TC108/SC2N67. G(n0) is chosen as 256×10-6 m3 in (3.39), 

which corresponds to the C grade road profile. The vehicle velocity v here is 20 

m/s, f is the excited frequency, and n0 is the reference spatial frequency, which 

equals 0.1 m in (3.39). The input amplitude U in (3.39) is closer to the actual road 
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profile over a constant amplitude in the whole frequency range because the road 

profile has a higher amplitude at a lower frequency and a lower amplitude at a 

higher frequency. 

From Figure 3.10, the smallest PBoC, which is located at the first resonant 

frequency, is 20. The estimated convergence bound by numerical simulation is 

approximately 140. This deviation mainly comes from the large damping ratio in 

this example, that is, 12 0.4s s sc k m    .  In the rest of the frequency range, 

the PBoC obtained by Proposition 2.6 is very close to the true convergence bound. 

 
Figure 3.10 The PBoC of Cs3 

To validate the effectiveness of the result above, the normalized root mean 

square error (NRMSE) defined in (2.34) is used to measure the closeness between 

the synthesized output truncated up to the Nth-order and the real output by ode 45.
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Figure 3.11 The normalized root mean square error when f=4 Hz  

 

From Figure 3.11, when the model parameter cs3 is chosen to be smaller than 

the computed PBoC, the NRMSEs of all of the outputs in (3.35) dramatically 

decrease to 0 as the synthesized order increases. For example, when f=4 Hz and 

cs3 takes 140, which is smaller than the computed PBoC ( i.e., 190 ), the higher 

the order of the approximation used, the smaller the NRMSEs that can be 

obtained. This means that the vehicle suspension system (3.35)  involves a 

convergent Volterra series expansion. As the parameter cs3 becomes larger and 

larger, the synthesized outputs up to the same truncated order also have 

observablely growing NRMSEs. When the model parameter cs3 is taken to be 

much larger than the computed PBoC, for example, if cs3 equals 600, the 

NRMSEs of the synthesized outputs become larger and larger after a certain 

synthesized order (fifth-order in this case), which indicates that the synthesized 
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outputs diverge. Therefore, within the PBoC range, the suspension system (3.35) 

is Volterra-type and consequently can be freely analysed with the Volterra-series 

based methods. 

3.3.3 Multiple-object performance analysis 

The performance of the vehicle suspension system, for example, the ride 

comfort (the vertical body acceleration) 𝑦1 = 𝑥̈𝑠, the relative dynamic tire load 

y2=kt(xt-u)/(ms+mt)g, and the suspension stroke y3=xs-xt , can be analysed in the 

frequency domain using the nonlinear output spectrum if the nonlinear model 

(3.35) is Volterra-type. Any nonlinear output function including the MOP function 

can be treated with the nCOS (nonlinear characteristic output spectrum) function 

based method, and thus can be expressed as an explicit and analytic polynomial 

function of the model parameter of interest [92] (the model parameter is cs3 in this 

case), 

 

3
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s

i

s

i

s

i

i i i i s i sc
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i s i s s i sc
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Y j Y j Y j Y j c c j

Y j c c j

Y j c c j c c j







     

  
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





   

 

  +

  (3.40) 

where Yi,m(jω) is the mth-order output spectrum for the output yi, and , 3( ; )k

i m sc j   

is the model parameter independent part in the mth-order output spectrum, which 

corresponds to the kth-order of the model parameters cs3. When cs3 is taken under 

the convergence bound, (3.40) is always valid.  
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For a Volterra-type nonlinear system, there are no jumping or chaotic 

phenomena because it works around a stable equilibrium. Therefore, the system 

dynamic response will change continuously with the characteristic parameters, 

and thus the nCOS in (3.40) at several typical frequencies can well represent the 

system output spectrum. 

Under cosine wave excitation. Figure 3.12 presents the performance of 

vertical body acceleration when the suspension system is subjected to a cosine 

wave excitation. cs3 here takes 140, and thus, system (3.35) is Volterra-type over 

the whole frequency range. Figure 3.12 presents the first-order harmonic 

component of the acceleration, that is, the Fourier transform of the acceleration at 

the first-order harmonic frequency (the same as the input frequency). It can be 

observed that the nonlinear controller has much better performance in the 

frequency range between the two resonant frequencies (e.g., 4-8 Hz, which are 

most sensitively felt by the human body and are suggested as a nominal frequency 

range for assessing the ride comfort according to ISO 2361). Another advantage of 

the nonlinear controller when compared with the skyhook based methods is that it 

is much easier to measure the acceleration signal than to obtain the absolute 

velocity or displacement signal. The active suspension controller based on H∞ 

[166] is developed with linear models, and thus they are not available in this case. 

For those based on fuzzy control [167] and adaptive control [142, 159, 168], more 

complicated controllers, state estimation and filters are needed. Compared with the 

methods above, the proposed nonlinear controller is much easier to implement. 
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Figure 3.12 only shows how the performance varies with the frequency change 

but does not present how the performance is affected by model parameters. 

Therefore, the nCOS (nonlinear characteristic output spectrum) function would be 

much better than the traditional simulation based output spectrum analysis. When 

it is truncated up to the fifth-order, (3.40) can be rearranged as, 

 
2

0 3 1 3 2( ) ( ) ( ) ( ),  1,2,3i i s i s iY j Y j c Y j c Y j i         (3.41) 

where 
3 3 3

0 ,1 ,2 ,3 ,4 ,5 10 0 0
( ) ( ) ( ) ( ) ( ) ( ) , ( )

s s s
i i i i i i ic c c

Y j Y j Y j Y j Y j Y j Y j      
  

     

,3 3 ,4 3 ,5 3( ; ) ( ; ) ( ; )i s i s i sc j c j c j        and 
2

2 ,5 3( ) ( ; )i i sY j c j   .  

 

Figure 3.12 Comparison of vertical body acceleration under cosine road excitation  

 

Denote the multiple-object performance (MOP) including vertical body 

acceleration y1, relative dynamic tire load y2, and suspension stroke y3 as, 
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where z0, z1, z2, z3, and z4 are independent of cs3, as presented in table 3.2. Yil(jω) 

stands for the performance when only linear damping is used, and μ1, μ2, 

μ3=1-μ1-μ2 stand for the weight of the vertical body acceleration, the relative tire 

load, and the suspension stroke in the multiple-object performance function (3.42), 

respectively. Clearly, μ1+μ2+μ3=1 holds. The MOP function in (3.42) implies the 

performance improvement of the vehicle suspension by taking all of the three 

indicators into account. 

 

Table 3.2 Coefficients of (3.42) 
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To estimate the parameter-independent parts in (3.40),  the following 

procedure is given [92]: 
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Algorithm 3.1: 

Step 1. Given cs3, for example, cs3=10, then 5 simulations with different input 

magnitudes are needed to estimate Yi,m(jω) (because it is truncated up to the 

fifth-order in (3.40)). 

Step 2. Take two additional values of cs3, for example, 50 and 90, and repeat step 

1. 

Step 3. Estimate the model parameter independent part using the different Yi,m(jω) 

obtained by steps 1 and 2. 

It can be observed that only 15 simulations are needed for the estimation of the 

nCOS function in (3.40) and (3.41) up to the fifth-order with a simple least squares 

method. Three different Yi,m(jω)s are needed in Procedure 1 because the quadratic 

term 
2
3sc  exists in Yi,5(jω) in (3.40). The MOP function can then be studied with 

different model parameters cs3 and different weights (μ1 and μ2) according to 

(3.42).  

In (3.42), μ1=1, μ2=0 means that only vertical body acceleration is considered in 

the MOP function. μ1=0, μ2=1 and μ1=0, μ2=0 present the case that only the relative 

tire load or suspension stroke is taken into account in the MOP function, 

respectively. cs3=0 stands for the case when only linear damping is used. 
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Figure 3.13 Multiple-object performance under cosine excitation: (a) at 4Hz, (b) at 8Hz 

 

Figure 3.13 presents the influence of the model parameter cs3 on the MOP 

function when only the vertical body acceleration y1, relative tire load y2, or 

suspension stroke y3 is considered. It can be observed that the proposed nonlinear 

controller can improve both the vertical body acceleration and relative tire load, 

which correspond to the ride comfort and vehicle handling ability (relates to the 

ride safety), respectively. The suspension stroke represents the relative motion 

between the unsprung mass and the sprung mass, and thus usually it is designed to 

be smaller than a constraint value. The nonlinear controller maintains almost the 

same suspension stroke as that when only linear damping is used at 4 Hz which 

leads to a slightly larger suspension stroke at 8 Hz.  

The computed PBoC at f=4Hz is approximately 190 according to Figure 3.11. 

Thus, the results in Figure 3.13 by the MOP function based on the nCOS function 
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are reliable when cs3 is taken to be smaller than the computed PBoC, and if cs3 is 

much larger than the computed PBoC, for example, larger than 400, the 

multiple-object performance (MOP) function based on the nCOS function by 

(3.42) may results in some errors when compared with those by numerical 

simulation. This shows the significance and guidance of the results in Proposition 

2.6 for the optimization and design of nonlinear systems using the nCOS-based 

MOP function. 

The MOP function considering both vertical body acceleration and relative tire 

load with different weights μ1+μ2=1 is presented in Figure 3.14. The MOP function 

takes 400000 numerical simulations (by ode 45) when μ1=0:0.01:1 and 

cs3=0:0.1:400 for Figure 3.14. However, only 15 simulations are needed for the 

nCOS method. When more than one model parameter of interest is studied, the 

efficiency of the nCOS-based method using (3.40) is more obvious. Theoretically, 

the harmonic balance or perturbation method is available in this case, but the 

computation complexity makes it impractical. Therefore, if a system is 

Volterra-type, the advantages of the nCOS-based method including the 

computational efficiency and the effectiveness for practical applications are 

obvious, and the results in Proposition 2.6 provide an important guidance for 

nonlinear analysis, design, and optimization using these Volterra series associated 

theory and methods. 
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Figure 3.14 Multiple-object performance under cosine excitation at 4 Hz with μ1+μ2=1, the red 

ball is the MOP function by numerical simulation 

 

Under random road excitation. The road disturbance is usually considered a 

random process, and according to ISO/TC108/SC2N67, the road profile can be 

classified into 8 grades. In this case, the total suspension performance can also be 

studied according to (3.40)-(3.42).  

There also exists other comfort oriented strategies, for example, the 

acceleration driven damper (ADD) strategy [162] and the improved mixed 

skyhook and ADD method [164]. The latter has a controller of 
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  (3.43) 

where cin(t) is the requested damping coefficient. The actual damping coefficient is 
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obtained by applying a low pass filter on cin(t), i.e., ( ) ( ) ( )inc t c t c t    . The 

comparison of the performance between the proposed nonlinear controller and that 

with the mixed skyhook and the ADD method is presented in Figure 3.15. The 

comparison takes the following coefficients:α=11, β=30, cmin=300, cmax=4000 

[164], and cs3=140. Figure 3.15-(a) presents the performance when the 

suspension system is subjected to a C level road profile with velocity 20 m/s, and 

Figure 3.16-(b) presents those with a D level road profile and velocity 20 m/s. 

The performance with the mixed skyhook and ADD method is close to that with 

the proposed nonlinear controller when subjected to a C level road profile, but 

when the road profile deteriorates to D level, the proposed nonlinear controller 

has a much better performance than that with the mixed skyhook and ADD 

method.   

A unified comparison between the active forces of the proposed nonlinear 

controller and the hybrid skyhook and ADD method when subjected to a C level 

road profile is presented in Figure 3.16. The active force with the proposed 

nonlinear controller is much smoother than that with the hybrid method, and thus 

the damping force of the hybrid method at high frequency is larger than the 

proposed one, which leads to a worse performance at high frequency.  
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Figure 3.15 Comparison of the performances with different strategies. (a) subjected to C level 

road profile with 20 m/s, (b) subjected to D level road profile with 20 m/s 

 

 

Figure 3.16 Comparison of the active forces  

From the results above, the nCOS-based MOP analysis for different excitation 

inputs indicates clearly that: (1) the proposed nonlinear analysis method provides a 
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straightforward insight into the nonlinear relationship between the characteristic 

parameters and system output performance, which can considerably facilitate 

nonlinear analysis and design and is also computationally efficient; (2) the 

suspension performance can be effectively improved with the proposed nonlinear 

acceleration control method, which is much easier to implement than many 

existing ones; (3) the proposed PBoC can ensure that the system nonlinearity 

always remains at a Volterra-type level without strong complicated jumping or 

chaos phenomena. 

 

To provide a straightforward understanding of the proposed nCOS-based MOP 

analysis method for nonlinear analysis and optimization design in practice, the 

following general procedure can be followed. 

 

Algorithm 3.2: 

Step 1. Identify the real plant into a NARX model with experimental data. The 

example in (3.34)-(3.35) shows how to obtain the NARX from a 

continuous model. 

Step 2. Determine the characteristic parameters of interest in the design and 

optimization, e.g., input magnitude or model/controller parameters. 

Step 3. Compute the PBoC of these characteristic parameters of interest 

according to Proposition 2.6 to find the parameter ranges to guarantee that 

the underlying nonlinearity is Volterra-type. 
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Step 4. Determine the nonlinear characteristic output spectrum (nCOS) based 

multiple-object performance (MOP) function. This can follow Algorithm 

3.1. 

Step 5. Evaluate the MOP function with respect to the characteristic parameters 

of interest. Examples can be referred to the results in Fig. 3.13-Fig. 3.15 

 

3.4 Conclusions 

 

In this chapter, the application of the nCOS method to the analysis and design 

of nonlinear parameters of interest is shown in two case studies, i.e., the analysis of 

the proposed nonlinear damping in section 3.2 and the multiple-object 

optimization of a vehicle suspension in section 3.3. In these two cases, the 

parametric bound of convergences (PBoC) in Chapter 2 are calculated to 

guarantee the input-output relationship a convergent Volterra series expansion, 

which therefore ensure the effectiveness of the nCOS method. Thus, the nCOS 

method is shown to provide a straightforward insight into the analysis and 

understanding of the nonlinear systems and also to offer a powerful tool for the 

design and optimization of nonlinear parameters of interest.



 
 

115 
 

4 A new nCOS function for the analysis and 

design of linear parameters in a nonlinear 

system 

4.1 Introduction  

Many practical systems are inherently nonlinear, for example, a power 

amplifier [6, 8, 169] or phase lock loop [128]. Nonlinearity often brings 

difficulties to the analysis and design of these systems. In Chapter 3, it is shown 

that the nCOS method can significantly facilitate the analysis and design of 

nonlinear parameters of interest. One weak point of the nCOS method is that it is 

only applicable to those nonlinear parameters of interest.  

A simple linear control or linear component is often preferable in engineering 

practice for its ease of implementation. How to design linear components and/or 

how to evaluate the potential influence of linear components or linear feedback 

control while well considering the inherent system nonlinearity is far from 

sufficiently investigated in the literature.  

In this chapter, a new nCOS function is developed for those linear parameters 

of interest in a nonlinear system. The linear parameters of interest can be linear 

components or linear feedback control in engineering practice. The new nCOS 

function is a significant extension of the existing nCOS method.  

In section 4.2, the new nCOS function is developed for a single-input 

single-output (SISO) nonlinear system. It is shown that the output spectrum of 
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the nonlinear system can be analytically and explicitly expressed as a polynomial 

function of those linear parameters of interest. An algorithm for symbolically 

calculating the coefficients of the new nCOS function is proposed. An example, 

i.e., the design of linear components in a nonlinear circuit system, is presented to 

illustrate the application of the proposed new nCOS function.  

In section 4.3, the new nCOS function is extended to a multiple-input 

multiple-output (MIMO) nonlinear system. A numerical algorithm for estimating 

the coefficients of the new nCOS function is proposed, which can greatly 

facilitate the application of the new nCOS function to a wide class of engineering 

practice. Linear feedback control design for a nonlinear vehicle suspension is 

given as an example to demonstrate the effectiveness of the proposed results.   
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4.2 New nCOS function for linear parameters of interest 

The following nonlinear differential equation (NDE) model is considered, 

 
1

, 1

1 0 , , 0 1 1
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( , , ) 0
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p q p q l l
m p l l i i p
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c l l
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



     
 

       (4.1) 

where y(t) is the system output, u(t) is the system input, and M is the maximum 

nonlinear order. li, i=1,2,⋯,p+q is the differential order with maximum order L. 

𝑐𝑝̅,𝑞(𝑙1, ⋯ , 𝑙𝑝+𝑞) is the model parameters with nonlinear degree p in terms of 

output y(t) and nonlinear degree q in terms of input u(t). 𝑐𝑝̅,𝑞(𝑙1) with p+q=1 

corresponds to the linear model parameters.  

System (4.1) allows a Volterra series expansion of its input-output relationship 

[48, 51, 53, 56, 170] as 

 1

1 1

( ) ( , , ) ( )
n

n n i i

n i

y t h u t d   
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 

      

where 
1( , , )n nh    is the nth-order Volterra kernel, and τi is the convolution 

variable. The input-output relationship can also be expressed in the frequency 

domain as [70], 
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where 1( , , )n nH j   is the nth-order generalized frequency response function 

(GFRF) (which is the n-dimensional Fourier transform of the Volterra kernel 

1( , , )n nh   ), and U(ωi) is the input spectrum. The nth-order (n2) GFRF can be 

calculated as[59, 116] 
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where  
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where Xi=r1+⋯+ri-1. In (4.4), r1+⋯+rp=n holds, and thus ri is smaller than n. It is 

clear from (4.2) that higher-order GFRFs can be recursively calculated from 

lower-order GFRFs. The first-order GFRF (when all of the nonlinear model 

parameters equal 0, i.e., cp,q(∙)=0 with p+q≥2) is given as, 
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  (4.5) 

For convenience in discussion, denote the linear parameters of (4.1) as two 

parts, i.e.,  

, , ,
ˆ( ) ( ) ( ),         1,    0,1, ,p q p q p qc l c l c l p q l L      

where 𝑐̂1,0(𝑙) and 𝑐̂0,1(𝑙)  denote those existing system inherent linear 

components or those linear components of no interest, and 𝑐1,0(𝑙) and 𝑐0,1(𝑙) 

are linear parameters to be analysed and designed (introduced by the linear 

feedback control or linear circuit components). Moreover, denote  1 2 L  α , 

 1 2 L  β , , ,l l    0, ,l L . 𝝎𝒏 = [𝜔1𝜔2 ⋯ 𝜔𝑛] . Let 𝑐𝛂,𝛃 =

∏ 𝑐1,0
𝛼𝑙𝐿

𝑙=0 (𝑙)𝑐0,1
𝛽𝑙 (𝑙), which  involves only those linear parameters of interest. 
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4.2.1 Explicit polynomial relationship between GFRFs and those linear 

parameters of interest  

Proposition 4.1: If |𝐿̂𝑛
−1(𝝎𝒏)𝛿(𝝎𝒏)| < 1 , 𝛿(𝝎𝒏) = ∑ 𝑐1,0(𝑙)(𝑗𝜔1 + ⋯ +𝐿

𝑙=0

𝑗𝜔𝑛)𝑙, then the following equation holds, 
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Proof: From (4.3), 𝐿𝑛
−1(𝝎𝒏) = 𝐿̂𝑛

−1(𝝎𝒏) ∑ [𝐿̂𝑛
−1(𝝎𝒏)𝛿(𝝎𝒏)]

𝑖∞
𝑖=0 . [𝛿(𝝎𝒏)]𝑖 =

[∑ 𝑐1,0(𝑙)(𝑗𝜔1 + ⋯ + 𝑗𝜔𝑛)𝑙𝐿
𝑙=0 ]

𝑖
= ∏ 𝑐1,0

𝛼𝑙𝐿
𝑙=0 (𝑙)(𝑗𝜔1 + ⋯ + 𝑗𝜔𝑛)𝑙×𝛼𝑙  where 

𝛼1 + ⋯ + 𝛼𝐿 =i. This completes the proof.  

Remark 4.1: From (4.7) and (4.8), it is clear that 𝜑𝑛
𝜶,𝟎(𝝎𝒏) only involves those 

linear parameters of no interest, i.e., 𝑐̂1,0(𝑙), so it is independent of those linear 

parameters to be analysed and designed, c1,0(l). 𝑐𝜶,𝟎 = ∏ 𝑐1,0
𝛼𝑙𝐿

𝑙=0 (𝑙)  only 

involves those linear parameters of interest.  

Proposition 4.2: The first-order GFRF of system (4.1) can be given as a 

polynomial function with respect to the linear parameters of interest as 
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and 𝜃1
𝟎,𝟎(𝜔1) = −𝜑𝟎,𝟎(𝜔1) ∑ 𝑐0̅,1(𝑙)(𝑗𝜔1)𝑙𝐿

𝑙=0  is the first-order GFRF when all 

of the linear parameters of interest are 0.  

Proof: Substituting (4.6) into (4.5), the result in Proposition 4.2 is 

straightforward.  

For higher-order GFRFs (n2), the following proposition holds: 

Proposition 4.3: The GFRFs of system (4.1) with order n2 can also be 

expressed in the form of a polynomial function with respect to those linear 

parameters of interest, 
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𝜶𝝋 = [𝛼1
𝜑

𝛼2
𝜑

⋯ 𝛼𝐿
𝜑

]  and 𝜶𝒃 = [𝛼1
𝑏𝛼2

𝑏 ⋯ 𝛼𝐿
𝑏]  denote the nonlinear orders of 

c1,0(l) in 𝜑𝑛(𝝎𝒏) and 𝑏𝑛(𝝎𝒏), respectively.   
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where 𝛼𝑖 = [𝛼1
𝑖 𝛼2

𝑖 ⋯ 𝛼𝐿
𝑖 ]  and 𝛽𝑖 = [𝛽1

𝑖𝛽2
𝑖 ⋯ 𝛽𝐿

𝑖 ]  are the nonlinear orders of  
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𝜃𝛾𝑖
(𝝎𝑿𝒊

), 𝝎𝑿𝒊
= [𝜔𝑋𝑖+1, ⋯ , 𝜔𝑋𝑖+𝛾𝑖

], 𝑋𝑖 = 𝛾1+ ⋯ + 𝛾𝑖−1for i2, and 𝑋1 = 0. 

Proof: In this proof, we first assume that Proposition 4.3 holds for all of the 

nth-order GFRFs with n<n0, and it is then shown that Proposition 4.3 also holds 

for n=n0. 

First, 𝑑𝑛−𝑞,𝑝
𝜶,𝜷

(𝝎𝒏−𝒒)  in (4.14) is derived, and then 𝑏𝑛
𝜶,𝜷(𝝎𝒏) in (4.13) is 

demonstrated. Based on these results, 𝜃𝑛
𝜶,𝜷(𝝎𝒏) in (4.12) can be obtained, and 

thus, the nth-order GFRF in (4.11) is then straightforward to derive. Details are 

given in Appendix 4.1.  

Remark 4.2: 𝜃1
𝟎,𝟎(𝜔1) and 𝜃𝑛

𝟎,𝟎(𝜔𝑛) in (4.9) and (4.11) are the GFRFs when 

all of the linear parameters of interest, i.e., c1,0(l) and c0,1(l), are 0. The 

coefficients 𝜃𝑛
𝛂,𝛃(𝜔𝑛) for n=1,2,⋯ only involve those parameters of no interest, 

so they are independent of the linear parameters to be analysed and designed, i.e., 

c1,0(l) and c0,1(l). 

Remark 4.3: The GFRFs in (4.9) and (4.11) are given as polynomial function 

with respect to the linear parameters of interest i.e., c1,0(l) and c0,1(l). How those 

linear parameters of interest act on the nth-order GFRF is then straightforward. 

Note that those existing relationships between the nth-order GFRF and the linear 

parameters in (4.2)-(4.5) involve complicated recursive calculations, so the 

polynomial functions in (4.9) and (4.11) provide a very straightforward and 

explicit expression.  

Remark 4.4: Once the coefficients, 𝜃𝑛
𝛂,𝛃(𝜔𝑛), have been calculated, the effects 

of the different linear parameters of interest on the nth-order GFRF can all be 
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obtained via (4.11), and no additional recursive calculation is needed. When 

recursive computation via  (4.2)-(4.5) is adopted, , the first-order GFRF should 

be computed again via (4.5) if the linear parameters of interest change, and then 

new recursive calculations (4.2)-(4.4) are required. These show the computation 

efficiency of the results in (4.9) and (4.11).  

The following procedure is developed for computing the 

coefficients 𝜃𝑛
𝛂,𝛃(𝜔𝑛):  

Algorithm 4.1: Calculation of coefficients for the nth-order GFRF 

Step 1. Calculate 𝜑𝑛
𝜶,𝟎(𝝎𝒏) and 𝜑𝑛

𝟎,𝟎(𝝎𝒏)via (4.7) and (4.8), respectively.  

Step 2. Calculate 𝜃1
𝛂,𝛃(𝜔1) via (4.10) for the first-order GFRF. 

Step 3. For n2, calculate 𝑑𝑛−𝑞,𝑝
𝜶,𝜷

(𝝎𝒏−𝒒) and 𝑏𝑛
𝜶,𝜷(𝝎𝒏) via (4.14) and (4.13), 

respectively.  

Step 4. Calculate 𝜃𝑛
𝜶,𝜷(𝝎𝒏) via (4.12). 

 

Following Algorithm 4.1, the developed characteristic relationship between 

the nth-order GFRF and the linear parameters of interest in (4.11) is ready for 

analysis and design with different linear parameters of interest. 

4.2.2 Nonlinear characteristic output spectrum (nCOS) function with 

respect to linear parameters of interest 

The analytical and explicit polynomial relationship shown in Proposition 

4.1-4.3 provides a straightforward and effective way to study the effects of the 

linear parameters of interest on the nth-order GFRF. Note that the GFRFs, 
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together with the input spectrum, determine the output spectrum of the system, 

and how those linear parameters of interest affect the nonlinear output spectrum 

can then be investigated based on the results in section 4.2.1.  

Proposition 4.4: The nonlinear output spectrum of system (4.1) can be given as a 

polynomial function with respect to the linear parameters of interest as  
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N, here, is the truncation order. Clearly, the coefficients 𝛹𝜶,𝜷(ω) in (4.15) are 

also independent of those linear parameters of interest. 𝛹𝟎,𝟎(ω) is the case in 

which all of the linear parameters of interest are 0.  
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This completes the proof.  

 

Algorithm 4.2: Calculation of coefficients for the nth-order nonlinear output 
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spectrum 

Step. 1 Calculate coefficients 𝜃𝑛
𝜶,𝜷(𝝎𝒏) for the nth-order GFRF via Algorithm 

4.1.  

Step. 2 Calculate coefficients 𝛹𝜶,𝜷(ω) via (4.16) for the nth-order output 

spectrum. 

 

Remark 4.5: The relationship between the nonlinear output spectrum and the 

linear parameters of interest in Proposition 4.4 is referred to as the nonlinear 

characteristic output spectrum (nCOS). Proposition 4.4 still has the following 

advantages: 1. a more straightforward and explicit relationship between the 

nonlinear output spectrum and the linear parameters of interest, 2. the 

coefficients of the polynomial function, i.e., 𝛹𝜶,𝜷(ω), are independent of those 

linear parameters of interest, 3. high computational efficiency (especially when a 

higher truncation order is required for the nonlinear output spectrum), 4. ease of 

application by symbolic calculation (via Algorithm 4.1-4.2). The results above 

can greatly facilitate the analysis and design of linear parameters.  

Remark 4.6: The computation of the coefficients via (4.16) is available for 

various inputs, for example, harmonic inputs, multiple inputs, random inputs. 

Remark 4.7: The nonlinear characteristic output spectrum (nCOS) built in (4.15) 

is a polynomial function of those linear parameters of interest (to design) and is 

an important extension of the method established in [92, 95, 113, 115]. 
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4.2.3 Examples and discussion 

Example 4.1: Effects of linear parameters of interest on the nth-order 

GFRFs.  

In Fig. 4.1, a current source with conductance 1 𝑅𝑠⁄  and susceptance 1 𝑗𝜔𝐿⁄  

acts on a common-gate amplifier. The drain current iout  can be modelled as 

2 3

1 2 3out gs gs gsy i g v g v g v     

where vgs is the gate-to-source voltage. A capacitor is introduced to suppress the 

harmonic distortion of the amplifier. vgs=-vs, and denote x=vs, which is governed 

by 

2

1 2 3

1 1 1
( ) 2 3 0gs

s s

C x g x x u g xx g x x Cx
R L R

         

where 𝑐̂1,0(2) = 𝐶𝑔𝑠 , 𝑐̂1,0(1) = 1 𝑅𝑠 + 𝑔1⁄ , 𝑐̂1,0(0) = 1 𝐿⁄ , 𝑐̂0,1(1) = − 1 𝑅𝑠⁄ , 

𝑐2̅0(0,1) = −2𝑔2 , and 𝑐3̅,0(0,0,1) = 3𝑔3 . Only one linear parameter is of 

interest in this case study, i.e., 𝑐1,0(2) = 𝐶.  
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Figure 4.1 The equivalent circuit model of a common-gate amplifier 

 

In the following, the parameters are borrowed from [7] with a 65nm CMOS 

process as, Cgs=500 fF, g1=7.3 mS, g2=0.0598 S/V, g3=0.2628 S/V2, Rs=50 Ω, 

L=4 μH, u(t)=Usin(2πft),and f=5 MHz. 

In this case study, only the linear parameter 𝑐1,0(2), the capacitance, is of 

interest as an example to show the results, so that 𝛂 = [00𝛼2], 𝜷 = 𝟎. For 

convenience in the following study, the notation 𝜶, 𝜷 is simplified as 𝛼2, where 

𝛼2 denotes the nonlinear order of the linear parameter 𝑐1,0(2).  

Following Algorithm 4.1, 𝜑𝑛
𝜶,𝟎(𝝎𝒏) and 𝜑𝑛

𝟎,𝟎(𝝎𝒏) should be calculated first. 

According to (4.8),  

𝜑1
0(𝜔1) = 𝑐̂1,0(2)(𝑗𝜔1)2 + 𝑐̂1,0(1)(𝑗𝜔1) + 𝑐̂1,0(0).  

From (4.7),   

  𝜑1
1(𝜔1) = −1 × (𝜑1

0(𝜔1))
2

(𝑗𝜔1)2, 

sR
( )

s

u t

R





L

outy i

sx v

gsC gs sv v 





C
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 𝜑1
2(𝜔1) = (𝜑1

0(𝜔1))
3

(𝑗𝜔1)4, 

 𝜑1
3(𝜔1) = −1 × (𝜑1

0(𝜔1))
4

(𝑗𝜔1)6, and 

 𝐿1
−1(𝜔1) = 𝜑1

0(𝜔1) + 𝜑1
1(𝜔1)𝑐1,0(2) + 𝜑1

2(𝜔1) (𝑐1,0(2))
2

 +⋯ 

For the first-order GFRF, according to (4.10),  

𝜃1
0(𝜔1) = −𝜑1

0(𝜔1)𝑐̂1,0(1)(𝑗𝜔1),  

𝜃1
1(𝜔1) = −𝜑1

1(𝜔1)𝑐̂1,0(1)(𝑗𝜔1),  

𝜃1
2(𝜔1) = −𝜑1

2(𝜔1)𝑐̂1,0(1)(𝑗𝜔1), ⋯  

From (4.9), 

𝐻1(𝜔1) = 𝜃1
0(𝜔1) + 𝜃1

1(𝜔1)𝑐1,0(2) + 𝜃1
2(𝜔1) (𝑐1,0(2))

2

+ ⋯  

 

Table 4.1 Coefficients  2 6

1 1 1at 2 5 10 / srad         

𝛼2 𝜃1
𝛼2(𝜔1) 𝛼2 𝜃1

𝛼2(𝜔1) 

0 0.6748   +0.1961i 1 4.1561e+08  -6.5479e+08i 

2 −5.6602e+17 −6.4217e+17i 3 -8.5496e+26 +4.0215e+26i 

4 1.6293e+35 +1.0300e+36i  
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Figure 4.2 Validation of Proposition 4.2 with 𝑐1,0(2)=C=63pF. 63pF is adopted here because it is 

the optimal value for the suppression of the harmonic distortion in example 2.  

 

 
Figure 4.3 Magnitude of 

1 1( )H   with different capacitance values at 6

1 2 5 10 / srad     

 

Fig. 4.2 shows the first-order GFRF, i.e., 𝐻1(𝜔1), with different frequency 

variables, and Fig. 4.3 presents 𝐻1(𝜔1) with different introduced capacitance C 

values, having the coefficients calculated at 𝜔1 = 2𝜋 × 5 × 106rad/s shown in 
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table 4.1. From these two figures, it can be observed that as the truncated order of 

capacitance C increases, 𝐻1(𝜔1) calculated by (4.9) quickly converges to that 

by direct application of the existed result via (4.5), which verifies the 

effectiveness of the results in Proposition 4.2. From the above calculation, the 

advantage shown in Remark 4.2 can be observed, that is, the coefficients 

𝜃1
1(𝜔1), 𝜃1

2(𝜔1), ⋯ are independent of the linear parameters of interest.  Those 

advantages in Remark 4.3 and Remark 4.4 will be more obvious when 

higher-order GFRFs are considered, for example, 𝐻3(𝜔1, 𝜔2, 𝜔3). 

For the third-order GFRF, 𝐻3(𝜔1, 𝜔2, 𝜔3), according to step 3 in Algorithm 

4.1, 𝑑3,2
𝛼2 (𝝎𝟑) and 𝑑3,3

𝛼2 (𝝎𝟑) should be calculated first.  

𝑑3,2
0 (𝝎𝟑) = (𝑗𝜔2 + 𝑗𝜔3)𝜃1

0(𝜔1)𝜃2
0(𝜔2, 𝜔3) + (𝑗𝜔3) 𝜃2

0(𝜔1, 𝜔2)𝜃1
0(𝜔3),  

𝑑3,2
1 (𝝎𝟑) = (𝑗𝜔2 + 𝑗𝜔3)𝜃1

0(𝜔1)𝜃2
1(𝜔2, 𝜔3) + (𝑗𝜔2 + 𝑗𝜔3) 𝜃1

1(𝜔1)𝜃2
0(𝜔2, 𝜔3) +

                      (𝑗𝜔3)𝜃2
0(𝜔1, 𝜔2)𝜃1

1(𝜔3)+(𝑗𝜔3) 𝜃2
1(𝜔1, 𝜔2)𝜃1

0(𝜔3), 

𝑑3,2
2 (𝝎𝟑) = (𝑗𝜔2 + 𝑗𝜔3)𝜃1

0(𝜔1)𝜃2
2(𝜔2, 𝜔3) + (𝑗𝜔2 + 𝑗𝜔3) × 𝜃1

2(𝜔1)𝜃2
0(𝜔2, 𝜔3) +

                      (𝑗𝜔2 + 𝑗𝜔3)𝜃1
1(𝜔1)𝜃2

1(𝜔2, 𝜔3) + (𝑗𝜔3)𝜃2
0(𝜔1, 𝜔2)𝜃1

2(𝜔3) +

                      (𝑗𝜔3)𝜃2
2(𝜔1, 𝜔2)𝜃1

0(𝜔3) + (𝑗𝜔3)𝜃2
1(𝜔1, 𝜔2)𝜃1

1(𝜔3),  

⋯ 

Similarly, according to (4.14), 

 𝑑3,3
0 (𝝎𝟑) = (𝑗𝜔3)𝜃1

0(𝜔1)𝜃1
0(𝜔2)𝜃1

0(𝜔3), 

𝑑3,3
1 (𝝎𝟑) = (𝑗𝜔3)𝜃1

1(𝜔1)𝜃1
0(𝜔2)𝜃1

0(𝜔3) + (𝑗𝜔3)𝜃1
0(𝜔1) × 𝜃1

1(𝜔2)𝜃1
0(𝜔3) +

                        (𝑗𝜔3)𝜃1
0(𝜔1)𝜃1

0(𝜔2)𝜃1
1(𝜔3),  

 𝑑3,3
2 (𝝎𝟑) = (𝑗𝜔3)𝜃1

2(𝜔1)𝜃1
0(𝜔2)𝜃1

0(𝜔3) + (𝑗𝜔3)𝜃1
0(𝜔1)𝜃1

2(𝜔2)𝜃1
0(𝜔3) +
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                      (𝑗𝜔3)𝜃1
0(𝜔1)𝜃1

0(𝜔2)𝜃1
2(𝜔3) + (𝑗𝜔3)𝜃1

1(𝜔1)𝜃1
1(𝜔2)𝜃1

0(𝜔3) +

                      (𝑗𝜔3)𝜃1
1(𝜔1)𝜃1

0(𝜔2)𝜃1
1(𝜔3) +    (𝑗𝜔3)𝜃1

0(𝜔1)𝜃1
1(𝜔2)𝜃1

1(𝜔3) ⋯.  

Then 𝑏3
𝛼2(𝝎𝟑)can be calculated according to (4.13) as, 

𝑏3
0(𝝎𝟑) = −𝑐2̅,0(0,1)𝑑3,2

0 (𝝎𝟑)  − 𝑐3̅,0(0,0,1)𝑑3,3
0 (𝝎𝟑),  

𝑏3
1(𝝎𝟑) = −𝑐2̅,0(0,1)𝑑3,2

1 (𝝎𝟑)  − 𝑐3̅,0(0,0,1)𝑑3,3
1 (𝝎𝟑), ⋯ 

Finally, the coefficients 𝜃𝑛
𝜶,𝜷(𝝎𝒏) can be calculated in a straightforward manner 

according to (4.12) as  

𝜃3
0(𝝎𝟑) = 𝜑3

0(𝝎𝟑)𝑏3
0(𝝎𝟑), 

𝜃3
1(𝝎𝟑) = 𝜑3

0(𝝎𝟑)𝑏3
1(𝝎𝟑) + 𝜑3

1(𝝎𝟑)𝑏3
0(𝝎𝟑), 

𝜃3
2(𝝎𝟑) = 𝜑3

0(𝝎𝟑)𝑏3
2(𝝎𝟑) + 𝜑3

1(𝝎𝟑)𝑏3
1(𝝎𝟑) + 𝜑3

2(𝝎𝟑)𝑏3
0(𝝎𝟑) ⋯ 

and  

𝐻3(𝝎𝟑) = 𝜃3
0(𝝎𝟑) + 𝜃3

1(𝝎𝟑)𝑐1,0(2) + 𝜃3
2(𝝎𝟑) (𝑐1,0(2))

2

+⋯ 

 

Table 4.2 Coefficients of  2
3 3

    

𝛼2 𝜃3
𝛼2(𝝎𝟑) 𝛼2 𝜃3

𝛼2(𝝎𝟑) 

0 -0.4280   +0.2060i 1 7.8371e+09  +5.9585e+08i 

2 3.2996e+18 −6.7376e+19i 3 -3.7399e+29 -5.3968e+28i 

4 -4.4446e+38 +1.6680e+39i  

 

From the computation of the third-order GFRF, 𝐻3(𝜔1, 𝜔2, 𝜔3), above, it is 

clear that the coefficients of the polynomial function in (4.11), 𝜃3
𝛼2(𝝎𝟑), are 

independent of the linear parameter of interest  𝑐1,0(2) = 𝐶. Thus, once the 
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coefficients 𝜃3
𝛼2(𝝎𝟑)  have been calculated, 𝐻3(𝜔1, 𝜔2, 𝜔3)  with different 

linear parameters of interest can all be obtained, and no additional recursive 

calculation is required (each of the coefficients require only one calculation), 

which shows an obvious advantage over that by recursive calculation via (4.2)

-(4.4). In the latter case, once the linear parameter of interest changes, new 

recursive computations are required. The recursive calculation in (4.2)-(4.4) not 

only makes the computation of higher-order GFRFs less efficient but also causes 

an inexplicit relationship between the higher-order GFRF and the linear 

parameters of interest. The relationship built in (4.11) in the form of a power 

series is more straightforward and explicit. The coefficients 𝜃3
𝛼2(𝝎𝟑) are shown 

in table 4.2, and from Fig. 4.4 it can be observed that the 4th truncation order is 

enough for the characteristic relationship between the nth-order GFRF and the 

linear parameters of interest. 

 



 
 

132 
 

 

Figure 4.4 Magnitude of 
3 1 2 3( , , )H     with different capacitance values at

6

1 2 3 2 5 10 / srad          

 

 

Figure 4.5    1

1 1 1 1L̂     and    1

3 3 3 3L̂     

 

The validation of Proposition 4.1-4.3 in Fig. 4.2-4.4 requires that 

|𝐿̂𝑛
−1(𝝎𝒏)𝛿(𝝎𝒏)| < 1 holds. For the first-order GFRF and the third-order GFRF, 
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it is shown in Fig. 4.5 that the linear parameter of interest satisfies this condition.  

 

Example 4.2: Optimal suppression of the harmonic distortion of the 

common-gate amplifier. 

The third-order harmonic distortion is defined as 𝐻𝐷3 = |𝑌(3Ω)| |𝑌(Ω)|⁄ , 

where 𝑌(Ω)  and 𝑌(3Ω)  are the output spectra at frequencies Ω  and 3Ω , 

respectively. First, the response of the voltage 𝑥 = 𝑣𝑠 is required. According to 

Proposition 4.2, the output spectrum can be calculated in the form of a 

polynomial function as 𝑋(𝜔) = 𝛹𝑥
0(𝜔) + 𝛹𝑥

1(𝜔)𝑐1,0(2) + 𝛹𝑥
2(𝜔) (𝑐1,0(2))

2

+

⋯, with the coefficients 𝛹𝑥
𝛼2(𝜔) independent of the linear parameters of interest. 

Similar to the case in example 4.1, the notation 𝜶, 𝜷is simplified as 𝛼2 for 

convenience. Then, the output spectrum of the current 𝑦 = 𝑖𝑜𝑢𝑡can be computed 

as 

𝑌(𝜔) = 𝛹𝑦
0(ω) + 𝛹𝑦

1(ω)𝑐1,0(2) + 𝛹𝑦
2(ω) (𝑐1,0(2))

2

+ ⋯ 

where 𝛹𝑦
0(ω) = 𝑈(𝜔)/𝑅𝑠 + (𝑗𝜔𝐶𝑔𝑠 + 1 𝑗𝜔𝐿⁄ + 1 𝑅𝑠⁄ )𝛹𝑥

0(ω) , 𝛹𝑦
𝛼2(ω) =

(𝑗𝜔𝐶𝑔𝑠 + 1 𝑗𝜔𝐿⁄ + 1 𝑅𝑠⁄ )𝛹𝑥
𝛼2(ω) + (𝑗𝜔)𝛹𝑥

𝛼2−1(ω), 𝛼2 > 1.  

Once the coefficients 𝛹𝑦
𝛼2(ω) have been calculated as shown above, the 

study of the harmonic distortion can be conducted with the following 

straightforward and explicit expression 

 

 
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3
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1,0 1,0

(3 ) (3 ) (2) (3 ) (2)(3 )

( ) ( ) ( ) (2) ( ) (2)

N
N

y y y

N
N

y y y
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Y c c
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       
 

        
  (4.17) 

From (4.17), how the linear parameter of interest 𝑐1,0(2), the capacitance, 
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affects the harmonic distortion is ready for study. All of the coefficients in (4.17) 

can be symbolically calculated, as shown in Table 4.3 (computed with the model 

parameters given in example 4.1).  

 

Table 4.3 Coefficients of (4.17) 

𝛼2 𝛹𝑦
𝛼2(Ω) 𝛹𝑦

𝛼2(3Ω) 

0 -7.4217e-06+2.1565e-06i -2.7079e-11+1.7670e-11i 

1 -4.5714e+03+7.2021e+03i 0.4687e-00-0.1648e-00i 

2 6.2256e+12+7.0633e+12i -5.5927e+08-2.0840e+09i 

3 9.4037e+21-4.4233e+21i -4.2874e+18+6.9534e+17i 

4 -1.7921e+30-1.1329e+31i 1.8328e+27-2.4603e+27i 

 

Table 4.3 shows the coefficients in (4.17), which are constant and thus 

independent of the introduced capacitance. With these calculated coefficients, the 

third-order harmonic distortion can be freely analysed and optimized with 

different introduced capacitance C values. From Fig. 4.6-4.8, it can be observed 

that the output spectra (Y(Ω) and Y(3Ω)) and the third-order harmonic distortion 

HD3 given in the coefficients of (4.17) all have good agreement with those 

obtained by numerical simulation (ode 45 and Fourier transform), and as the 

truncation order increases (up to the fourth-order in Fig. 4.6-4.8), the output 

spectrum and harmonic distortion by (4.17) converge quickly to those obtained 

by the recursive computation of the Volterra series using (4.2)-(4.5), which 

shows the effectiveness of the third-order harmonic distortion given in (4.17) and 
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also the new nCOS relationship developed in (4.15). 

 

 

Figure 4.6 Third-order harmonic distortion with different parameters of interest 

 

It is obvious in Fig. 4.6 that the third-order harmonic distortion has a 

minimum value when the introduced capacitance equals 63pF, and from Fig 

4.7-4.8, it can be observed that this optimal value can greatly reduce the 

third-order output component 𝑌(3Ω) without deteriorating the first-order output 

component 𝑌(Ω), so a good suppression of harmonic distortion is achieved. 

0 20 40 60 80 100

-140

-130

-120

-110

 HD
3 
by recursive calculation 

         with Volterra series using (4.2)-(4.4)

 HD
3
 by numerical simulation

 HD
3
 by (4.17) up to C

2

 HD
3
 by (4.17) up to C

4

C (pF)

 

 

H
D

3
 (

d
B

)

designed capacitance



 
 

136 
 

 
Figure 4.7 Output spectrum with different parameters of interest at Ω 

 

For the output spectrum and harmonic distortion by pure numerical simulation 

(ode45) or the direct application of the Volterra series via (4.2)-(4.5), once the 

introduced capacitance C changes, a new numerical simulation or a new 

recursive calculation via (4.2)-(4.5) is required. Clearly, the expression in (4.17) 

in the form of a polynomial function with the calculated coefficients in table 4.3 

is more efficient because each coefficient requires only one calculation (resulting 

from the characteristic that the coefficients are independent of those linear 

parameters of interest). The efficiency of the relationship developed in (4.17) 

would be more obvious in the cases where there is more than one linear 

parameters of interest, if a higher nonlinear order is considered for higher 

accuracy of the nonlinear output spectrum, or if a system with a multi-tone 

harmonic input or wideband-modulated signal input is investigated. Moreover, a 

pure numerical simulation method or direct application of the Volterra series via 
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(4.2)-(4.5) (involves recursive computation) cannot provide the straightforward, 

analytical, and explicit relationship shown in (4.17) for facilitating the analysis 

and design of the linear parameters of interest with consideration of the system’s 

inherent nonlinearity. 

 

Figure 4.8 Output spectrum with different parameters of interest at 3Ω 

 

Remark 4.8: Linearization is frequently used in radio frequency (RF) circuit 

design, and various reports have studied harmonic distortion and intermodulation 

distortion. For those results with the direct application of the Volterra series [7, 

11, 171-177], Taylor series expansion [178], harmonic balance [179], or 

perturbation method[180], usually a system having only up to third-order 

nonlinearity together with a single-tone or double-tone harmonic input can be 

considered. The results often fail to study the wideband modulated signal in the 

real world [181-183] and also cannot be used to investigate those scenarios when 

a higher nonlinear order is required [181]. Even for those cases with third-order 
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nonlinearity and single-tone or double-tone harmonic inputs, the results may still 

be complicated because of the recursive computation of the Volterra series, as 

shown in(4.2)-(4.5). Some assumptions are thus required for simplifying the 

analysis [7, 172-177], which strongly depends on the engineer’s experience, and 

the results are only available for those specific cases.  

The proposed results of this study are developed for a wide class of nonlinear 

systems governed by the SISO NDE, which provides a straightforward, efficient 

and explicit relationship between the nonlinear output spectrum and those linear 

parameters of interest (see (4.15) also an example in (4.17)). This can greatly 

facilitate the analysis and design of nonlinear systems with only linear feedback 

control or linear components.  
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4.3 The new nCOS function based linear feedback design for MIMO 

nonlinear systems 

4.3.1 The system under consideration  

Consider the following nonlinear multiple-input multiple-output (MIMO) 

plant: 

 ( , )   1 2x Ax B w P x w B u   (4.18) 

 y = Cx + Dw + Q(x,w)   (4.19) 

where x∈ℛr×1, y∈ℛs×1, w∈ℛv×1, and u∈ℛt×1 are the state vector, output vector, 

system external input, and control input, respectively. A, B1, B2, C, D are nonzero 

real matrices with proper dimensions. For convenience in practical application, it 

is supposed that only a linear state feedback controller is expected to be designed 

for the nonlinear plant as  

  u Kx   (4.20) 

K∈ℛt×r is the linear feedback gain to design. Denote as 𝑥𝑗, 𝑦𝜂, and 𝑤𝜇 the jth 

element of x, the ηth element of y, and the μth element of w, respectively. P(x,w) 

and Q(x,w) are vectors with dimensions r×1 and s×1, respectively. The ith 

element in P(x,w) and the ηth element in Q(x,w) are given as 

 
1 1

1 1

,

2 , , , , , 0 1 1
,

( , ) ( , ; )
P

r v

r v

N r v
j

i p q j

n p q j
p q

P c i x w 


    
   

     
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 
  

 
   x w     (4.21) 

 
1 1

1 1

0,

2 , , , , , 0 1 1

( , ) ( , )
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r v

r v

N r v
j

n j

n j
n

Q d x w 

 
    
   


   

     

 
  

 
   x w     (4.22) 

where 1≤i≤r and 1≤𝜂≤s. 𝛼=𝛼1𝛼2⋯𝛼v, and 𝛃=β1β2⋯βr in (4.21) and (4.22) 

denote the nonlinear degrees of the system external inputs w1,⋯,wμ and the state 
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variables x1,⋯,xr, respectively. , ( , ; )p qc i   in (4.21) is the nonlinear model 

parameter in the ith element of P(x,w) corresponding to the nonlinear term which 

has p order in terms of state variable 𝑥𝑗with nonlinear degree βj and q order in 

terms of external input 𝑤𝜇with nonlinear degree αμ.  0, ( , )nd    in (4.22) 

indicates the nth-order nonlinear parameter in the 𝜂th element of Q(x,w) of a 

nonlinear term having βj terms of 𝑥𝑗  and αμ terms of 𝑤𝜇. NP and NQ are the 

maximum nonlinear degree in P(x,w) and Q(x,w).  An example is given to 

illustrate the notations in (4.21) and (4.22).       

Example 4.3: A nonlinear model with one external disturbance w, one output y, 

one control input u, and two state variables is considered here: 

 

2

1 1 2 1 21 2111 12 11

2
21 22 122 22 3 1 2      

e x e x x wx ba a b
w u

a a bx b e x x

       
           

         

x   (4.23) 

   1

11 12 11 4 1 2

2

 
x

y c c d w e x x w
x

 
   

 
  (4.24) 

The model parameters (e1 to e4) can be represented as 

 2,0 1 2,1 2 3,0 3 0,3 4(0,20;1) ,  (1,11;1) , (0,21;2) ,  (1,11;1)c e c e c e d e       

Remark 4.9: The system under consideration, i.e., (4.18)-(4.20), is a general 

nonlinear system. Many practical nonlinear vibration systems can be modelled or 

identified into such a nonlinear differential equation model. A vehicle suspension 

system in section IV will show in detail how to describe a real engineering 

problem with equations (4.18)-(4.20).  

Remark 4.10: This study focuses on the design of the linear state feedback gain 

K. For those unobservable systems, an observer can be constructed to estimate 
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the state variables. Moreover, it can be easily shown that all of the conclusions 

for the design of K also hold for the design of the matrices A and B2. That is, the 

method developed here is applicable for the design of all model parameters of the 

linear dynamics of the system. 

Remark 4.11: It is supposed that the nonlinear dynamics of the system (4.18)

-(4.19) with the linear feedback control in (4.20) is overall Volterra-type and thus 

allows a convergent Volterra series expansion of the input-output relationship. 

The parameter ranges to guarantee the Volterra series expansion can be 

determined with the methods in [138, 139].  

This paper aims at providing an explicit and analytic relationship between the 

system output y and the system linear dynamics (K, A, and B2) and developing a 

straightforward method, i.e., the new nCOS function, to facilitate the analysis 

and design of the system linear dynamics (K, A, and B2) with full consideration 

of the system’s inherent nonlinearity (P(x,w) and Q(x,w)). 

4.3.2 Nonlinear output spectrum  

The nonlinear output spectrum of MIMO nonlinear systems can follow those 

for SISO nonlinear systems in [70, 95, 113, 115]. The nonlinear output spectrum 

of the 𝜂th output 𝑦𝜂 in (4.19), i.e.,𝑌𝜂(𝛺), can be computed as, 
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  (4.25) 



 
 

142 
 

where 1( , ; , , )n nG     is the nth-order generalized frequency response 

function (GFRF) of the 𝜂th output in equation (4.19), and N the truncation order. 

𝛼=𝛼1𝛼2⋯𝛼v, and 𝛃=β1β2⋯βr are the numbers of 𝑊1(𝜔), ⋯ , 𝑊𝑣(𝜔)  and 

𝑋1(𝜔), ⋯ , 𝑋𝑟(𝜔)  appearing in the n-dimensional convolution, respectively. 

𝑋𝑗(𝜔) and 𝑊𝜇(𝜔) are the Fourier transforms of the state variable 𝑥𝑗  and 

external input 𝑤𝜇, respectively. 𝑛𝑋𝑗 = 𝛽1 + ⋯ + 𝛽𝑗−1, 𝑛𝑋1 = 0, 𝑛𝑊𝜇 = 𝑛𝑋𝑟 +

𝛼1 + ⋯ + 𝛼𝜇−1.  

Given that the output equation (4.19) has pure input nonlinearity (considering 

that the spectrum of state vector X(ω) can be computed by equation (4.18)), the 

generalized frequency response function (GFRF) in (4.25) can then be computed 

as (see also discussion in [59, 65, 115]), 

 1 0,( , ; , , ) ( , ; )n n nG d         (4.26) 

 1 1( , ; ) ( , )G   0 D   (4.27) 

 1 1( , ; ) ( , )G j  0 j C   (4.28) 

where 1 1( , ; )G 0 and 1 1( , ; )G 0 j are the first-order transfer function of the 

ηth output with respect to the μth external input 𝑤𝜇 and the jth state variable 

𝑥𝑗 , respectively. C(𝜂, 𝑗) is the element of C in the 𝜂th row and jth column, and 

𝐷(𝜂, 𝜇) indicates the element of D in the 𝜂th row and 𝜇th column. 𝛼𝛍=0⋯1⋯0, 

which means that only the μth element equals 1 and all of the other elements are 

0. 𝜷j has the same meaning. 

Example 4.4: Taking the system in (4.23) and (4.24) as an example, the output 

spectrum can be computed according to (4.25) as 
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where X1(Ω) and X2(Ω) are the spectra of state variable x1 and x2, respectively, 

and  

 1 1 1 1

1 11 1 12 1 11 3 1 2 3 4(0,10; ) , (0,01; ) , (1,00; ) , 1,11; , ,G c G c G d G e          

Considering the jth state variable 𝑥𝑗 as an output of (4.18), the spectrum of the 

state variable can be calculated as 
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  (4.29) 

where 𝑛𝑊𝑖 = 𝛼̃1 + ⋯ + 𝛼̃𝑖−1  and 𝑛𝑊1 = 0 . 𝜶̃ = 𝛼̃1𝛼̃2 ⋯ 𝛼̃𝑣  means that 𝛼̃𝜇 

terms of external input 𝑊𝜇(𝜔) are involved in the convolution for μ=1,⋯,v. 

 1; , ,j

n nH   is the nth-order generalized frequency response function 

(GFRF) for the jth state vector xj with respect to external input 𝜶̃ , which can be 

computed as 
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where i is the imaginary unit, and the elements in Vn can be computed following 

the methods demonstrated in [59, 65, 115],  
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where the first part considers the pure input nonlinearity and the second part 

involves the cross input-output nonlinearity and pure output nonlinearity, 𝛼̃𝜇 −

𝛼𝜇, 𝜇 = 1, ⋯ , 𝑣, in which 𝜶̃ − 𝜶  means that 𝛼𝜇 terms of external input 𝑤𝜇 

have already been considered with the input nonlinearity, and   
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where 𝜎𝑣
𝑗𝑧

+ 𝜎𝑣−1
𝑗𝑧

+ ⋯ + 𝜎1
𝑗𝑧

= 𝛾𝑗𝑧 , 𝝈𝒋𝒛 = 𝜎1
𝑗𝑧

𝜎2
𝑗𝑧

⋯ 𝜎𝑣
𝑗𝑧

. Denote ∏ (∙)0
𝑖=1 =

1. 𝐻𝛾𝑗𝑧

𝑗
stands for the 𝛾𝑗𝑧th-order GFRF of the jth state variable 𝑥𝑗 with respect 

to the external input having 𝜎𝜇
𝑗𝑧

 terms of 𝑤𝜇  , μ=1,2,⋯,v. ∑ 𝛾𝑗𝑧 = 𝑛 − 𝑞 

indicates that the multiplication ∏ ∏ (∙)
𝛽𝑗

𝑧=1
𝑟
𝑗=1  results in a (n-q)th-order GFRF. 

𝛾𝑗𝑧  is a positive integer that is smaller than n-q. It is thus clear that a 

higher-order GFRF can be recursively computed from lower-order GFRFs. 𝛽1 +

⋯ + 𝛽𝑟 = 𝑝  indicates that there are overall p terms of 𝐻𝛾𝑗𝑧

𝑗
in the product 

∏ ∏ (∙)
𝛽𝑗

𝑧=1
𝑟
𝑗=1 . 

Example 4.5: For the system in (4.23) and (4.24), 𝑉𝑗,𝑛(𝜶̃) can be computed 

according to (4.31) and (4.32) as 

1 1

1,2 2,0 2,2 1 2 1 1 1 1 2

1,3 2,0 3,2 1 2 3 2,1 2,2 1 2

1 1 1 1 1 2

1 1 1 2 2 3 2 1 2 1 3 2 1 1 1 2

2,3

(2) (0,20;1) (2,20; , ) (1; ) (1; ),

(3) (0,20;1) (3,20; , , ) (1,11;1) (2,11; , )

         ( ) ( , ) ( , ) ( ) ( ) ( ),

(

V c H e H H

V c H c H

e H H H H e H H

V

   

    

       

 

 

    
1 1 2

3,0 3,3 1 2 3 3 1 1 1 2 1 33) (0,21;2) (3,21; , , ) ( ) ( ) ( )c H e H H H      

 

The first-order generalized frequency response function (GFRF) can be directly 

obtained, 
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      

1

1 1

2
11 1 1

1 2 1 1 1 1

1 1

( ; )

( ; )
( )

        

( ; )r

H

H
i

H




 



 

 
 
 

        
 
 
 

1 μH I A B K B E L B E





 










 (4.33) 

where I is the identity matrix, i is the imaginary unit, and 𝑬𝝁  is a v×1 column 

vector with the μth element equals 1 and all other elements 0. 𝜶𝝁is the same as 

that in (4.27).  

4.3.3 The nCOS function with respect to the linear feedback gain K 

Let 𝑳̃𝑛
−1(𝜔1, ⋯ , 𝜔𝑛) , 𝑯̃𝒏(𝜶, 𝜷; 𝜔1, ⋯ , 𝜔𝑛)  𝑮̃𝒏(𝜶, 𝜷;  𝜔1, ⋯ , 𝜔𝑛)  and 𝒀̃(Ω) 

be the 𝑳𝒏
−𝟏matrix, nth-order GFRF of state equations (4.18), nth-order GFRF of 

output equations (4.19), and output spectrum with the open loop case, i.e., linear 

feedback gain matrix K=0, respectively, where the Ln matrix is defined in (4.30).  

Lemma 4.1: If the inequality 𝜌(𝑲𝑳̃1
−1𝑩𝟐) < 1 holds, the first-order GFRF of 

the state equation (4.18) can be computed using the feedback gain matrix K as a 

perturbation on the open-loop transfer function a 

    1 1; ; χ  1 1H H     (4.34) 

where  𝜌(𝑲𝑳̃1
−1𝑩𝟐)  is the spectral radius of 𝑲𝑳̃1

−1𝑩𝟐 ,  𝝌 = 𝜹𝑩𝟏𝑬𝝁 , 𝜹 =

∑ [(−1)𝑖𝑳̃𝟏
−1𝑩𝟐𝜺𝑖𝑲𝑳̃𝟏

−1]
∞
𝑖=0 , 𝜺 = 𝑲𝑳̃𝟏

−1𝑩𝟐, and 𝑳̃𝟏
−1 = ((j𝜔1)𝑰 − 𝑨)

−1
. 𝝌 is an 

r×1 vector with the element 𝜒𝑖, 1≤i≤r, as 

  1,1 1,2 ,

1,1 ,

1,1 ,

, , 1,1 1,2 ,

1

t r

t r

t r

i t r

l l

k k k
  

 
 

 


   

    (4.35) 

where 𝑘𝑖,𝑗 is the element of K, 𝜏𝑖,𝑗 is the order of 𝑘𝑖,𝑗, and 𝜏𝑖,𝑗 ∈ 𝒩, 0 ≤ 𝑖 ≤

𝑡, 0 ≤ 𝑗 ≤ 𝑟. 𝜑𝜏1,1⋯𝜏𝑡,𝑟
 is a scalar independent of 𝑘𝑖,𝑗.  
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Proof: See Appendix 4.2. 

Remark 4.13: The perturbation 𝝌 in Lemma 4.1 can be theoretically computed 

with symbolic manipulations, which then provides an explicit analytical 

expression for the first-order GFRF based on the open loop transfer function.  

Proposition 4.5: The nth-order GFRF of state equation (4.18) can be regarded as 

a perturbation on the open loop nth-order GFRF as, 

 
( )( ( χ   n

n nH H    (4.36) 

when the spectral radius 𝜌(𝑲𝑳̃1
−1𝑩𝟐) < 1  holds, and 𝝌(𝒏)is an r×1 vector with 

elements having coefficient 𝜑𝜏1,1⋯𝜏𝑡,𝑟

(𝑛)
, 

  1,1 1,2 ,

1,1 ,

1,1 ,

( ) ( )

, , 1,1 1,2 ,

1

t r

t r

t r

n n

i t r

l l

k k k
  

 
 

 


   

    (4.37) 

where 𝜏𝑖,𝑗 ∈ 𝒩; 𝑖 ∈ [0, 𝑡], 𝑗 ∈ [0, 𝑟]; 𝜑𝜏1,1⋯𝜏𝑡,𝑟

(𝑛)
 is independent of 𝑘𝑖,𝑗.  

Proof: See Appendix 4.3.  

Proposition 4.6: When the spectral radius 𝜌(𝑲𝑳̃1
−1𝑩𝟐) < 1  holds , the 

spectrum of state variable 𝑥𝑗 in (4.18) at any frequency Ω of interest can be 

computed as a perturbation on the open loop spectrum, so the perturbation can be 

given as a polynomial function with respect to the elements of the feedback gain 

K.  

  1,1 1,2 ,

1,1 ,

1,1 ,

, , 1,1 1,2 ,

1

( ) ( ) j t r

t r

t r

x

j j t r

l l

X X k k k
  

 
 




   

       (4.38) 

where 𝑋̃𝑗(Ω) is the open loop output spectrum of the jth state variable, and 

𝜑𝜏1,1⋯𝜏𝑡,𝑟

𝑥𝑗
 is the coefficient independent of the feedback gain matrix K.   

Proof: See Appendix 4.4.  
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Corollary 4.1: The spectrum of the output at any frequency Ω can be computed 

via a correction (which can be given as a polynomial function with respect to the 

elements of the feedback gain matrix K) on the open loop output spectrum, 

  1,1 1,2 ,

1,1 ,

1,1 ,

, , 1,1 1,2 ,

1

( ) ( ) t r

t r

t r

y

t r

l l

Y Y k k k   

   
 




   

       (4.39) 

where 𝑌̃𝜂(Ω) is the open loop output spectrum, and 𝜑𝜏1,1⋯𝜏𝑡,𝑟

𝑦𝜂
 is a coefficient 

that is independent of K.   

Proof: The output equation (4.19) has only pure input nonlinearity. Thus, 

substituting (4.38) into (4.25), the result in Corollary 4.1 is straightforward. This 

completes the proof.   

Remark 4.14: Coefficient 𝜑𝜏1,1⋯𝜏𝑡,𝑟

𝑦𝜂
 in Corollary 4.1 is independent of the 

elements of matrix K. If 𝜑𝜏1,1⋯𝜏𝑡,𝑟

𝑦𝜂
 is determined, the output spectrum of the 

system (4.18)-(4.20) can then be freely analysed and designed via (4.39) with a 

different feedback gain matrix K. The nonlinear output spectrum in (4.39) is 

referred to as the new nCOS function with respect to the linear model parameters 

of interest, which explicitly unveils for the first time the analytical relationship 

between the system output spectrum and the linear feedback gain matrix K. This 

is a significant extension of the previous results on the nCOS method for 

nonlinear analysis and design in the frequency domain [92, 95, 113, 115]. 

Remark 4.15: Alternatively, the output spectrum, (Ω)Y , could also be simply 

expanded with respect to the elements of the feedback gain matrix K using Taylor 

series. However, the coefficients of the resulting Taylor series are still functions 

of the elements of K, and thus the analytical relationship between the nonlinear 
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output spectrum and linear feedback gain cannot be revealed as clearly as that via 

(4.39).  

Remark 4.16: In (4.39), the coefficient  𝜑𝜏1,1⋯𝜏𝑡,𝑟

𝑦𝜂  also describes the sensitivity 

(influence) of the elements of matrix K to the output spectrum, which can then 

help to determine the dominant elements of matrix K and thus reduce the design 

complexity. This will greatly facilitate the analysis and design of feedback gain 

matrix K, especially when K has large dimensions.   

The coefficient 𝜑𝜏1,1⋯𝜏𝑡,𝑟

𝑦𝜂
 in (4.39) can be symbolically calculated, but the 

calculation could be computationally intensive. To overcome this weak point and 

to facillitate practical application, a numerical algorithm is given to estimate the 

coefficient 𝜑𝜏1,1⋯𝜏𝑡,𝑟

𝑦𝜂
 as follows (Algorithm 4.3):  

 

           

           

1,1 1,2 ,

1,1 1,2 ,

1,1 ,

1 0 0
(1) (1) (1) (1) (1) (1)

1,0, ,0 1,1 1,2 , 1,1 1,2 ,

0,1, ,0

1 0 0
( ) ( ) ( ) ( ) ( ) ( )

1,1 1,2 , 1,1 1,2 ,

, ,

( )

1    

     1

t r

t r

t r

m m my

t r t r

y

m m m
M M M M M M

t r t r
y

m m

Y

k k k k k k

k k k k k k















 
   
  
    
  
  
 
 

(1)1

(2)

( )

( )

( )

      

( )M

Y

Y

Y







  
   
 
 
   

   (4.40) 

where 𝑚𝑖,𝑗  is the truncation order with respect to 𝑘𝑖,𝑗 , 𝑘1,1
(1)

𝑘1,2
(1)

⋯ 𝑘𝑡,𝑟
(1)

 to 

𝑘1,1
(𝑀̅)

𝑘1,2
(𝑀̅)

⋯ 𝑘𝑡,𝑟
(𝑀̅)

 are 𝑀̅ different sets of elements in K, and 
( ) ( )iY  is the output 

spectrum with the ith feedback gain matrix K (i.e., 𝑘1,1
(𝑖)

𝑘1,2
(𝑖)

⋯ 𝑘𝑡,𝑟
(𝑖)

). Clearly, 

𝑀̅ = (1 + 𝑚1,1) × ⋯ × (1 + 𝑚𝑡,𝑟).  

The 𝑀̅ different feedback gain matrix K should be properly chosen such that 

the inverse of the matrix in (4.40) exists (e.g., nonsingular).  
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Remark 4.17: If the spectral radius 𝜌(𝑲𝑳̃1
−1𝑩𝟐) is close to 0, a small truncation 

order 𝑙=̅m1,1+m1,2+⋯+mt,r can provide a good approximation of (4.39), where 

mi,j in (4.40) is the truncation order of τi,j in (4.39), while a large truncation order 

𝑙 ̅ is required if spectral radius 𝜌(𝑲𝑳̃1
−1𝑩𝟐) is more close to 1.  

Remark 4.18: There also exist some other control methods for system (4.18)

-(4.19), for example, feedback linearization [45], which requires full knowledge 

of the system   and is not so easy to implement because the controller is 

nonlinear. Moreover, not all nonlinear systems in (4.18)-(4.19) can be linearized, 

and the linearization method may sometimes lose sight of the potential benefits 

of the underlying nonlinear dynamics in vibration control [7,9]. The proposed 

method in this paper has the following advantages: 1) ease of implementation 

because of the simple linear feedback controller adopted; 2) full consideration of 

the nonlinear influence on system response; 3) convenience in practical 

application with Algorithm 4.3, with which the coefficient  𝜑𝜏1,1⋯𝜏𝑡,𝑟

𝑦𝜂
 in the new 

nCOS function (4.39) can be identified with input-output data, without a full 

knowledge of model (4.18)-(4.19).   

4.3.4 A case study on vehicle suspension control 

Active control of vehicle suspension systems is a very hot topic in the 

literature [140, 142, 184, 185]. To illustrate the design of a simple linear 

feedback controller for a nonlinear system for performance improvement via the 

proposed new nCOS function, a suspension system with nonlinear stiffness is 
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studied in this section. 

The governing equation of the system in Fig. 4.9 is 

 1

1

( ) ( ) ( )

( )

t t t t t t s s s t

s s s s s t

m x k w x c w x f c x x u

m x f c x x u

        


    

  (4.41) 

where 𝑓𝑠 = 𝑘𝑠1(𝑥𝑠 − 𝑥𝑡) + 𝑘𝑠2(𝑥𝑠 − 𝑥𝑡)2 + 𝑘𝑠3(𝑥𝑠 − 𝑥𝑡)3  is the nonlinear 

spring force, 𝑤̅ is the road disturbance, and u is the control. The model actually 

is identified from the Hyundai Elantra front suspension with parameters [1]: 

𝑚𝑠 =240 kg, 𝑚𝑡 =25 kg, 𝑘𝑡 =160 kN/m, 𝑐𝑡 =10 N/m∙s-1, 𝑐𝑠 =1385 N/m∙s-1, 

𝑘𝑠1=12 kN/m, 𝑘𝑠2=−73696 N/m2, and 𝑘𝑠3=3170400 N/m3.  

 

Figure 4.9 A nonlinear vehicle suspension system 

The governing equation in (4.41) can be transferred into state space equations 

by using 𝑥1 = 𝑥𝑠 − 𝑥𝑡, 𝑥2 = 𝑥𝑡 − 𝑤̅, 𝑥3 = 𝑥̇𝑠, 𝑥4 = 𝑥̇𝑡, and 𝑤 = 𝑤̇̅ as 
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   (4.42) 
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where the linear state feedback controller is defined as 𝑢 = −𝑲𝒙 =

−[𝑘1 𝑘2 𝑘3 𝑘4]𝒙. k3 and k4 in the feedback gain matrix corresponds to x3=𝑥̇s, and 

x4=𝑥̇t , which can be observed as the damping coefficients in vibration control 

and thus are more important. For convenience in analysis, parameters k1 and k2 

are supposed to be already known, i.e., k1=k2=0. According to 

ISO/TC108/SC2N67, the C level road profile corresponds to the average road 

profile, so it is considered here as the external road disturbance 𝑤̅ with a vehicle 

velocity 15 m/s. 

There are three indictors for evaluating the performance of a suspension 

system, i.e., the body acceleration (relates to ride comfort), the relative tire load 

(corresponds to vehicle handling ability), and the suspension stroke (describes 

the deflection of the suspension). To apply the nCOS function based method with 

(4.39) for the analysis and design of the state feedback controller, these three 

indictors are first presented as three outputs as 

 

2 31 1 1 2 3
1 3 1 1

2 2

3 1

1
0  

/ ( )

s s s s s
s

s s s s s s

t s t

k c c k k
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y x

 
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 

 



x

  (4.43) 

From Corollary 4.1, the output spectrum Yi(Ω) can be expressed as an 

analytical polynomial with respect to the elements of the feedback gain matrix K. 

The nCOS function can be obtained according to (4.39) (with truncation order 2) 

as, 

 
2 2

0,0,1,0 3 0,0,0,1 4 0,0,2,0 3 0,0,1,1 3 4 0,0,0,2 4(j ) (j ) i i i i iy y y y y

i iY Y k k k k k k              (4.44) 

where 𝑌̃𝑖(jΩ) is the output spectrum with the open loop system. The coefficients 
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of variables k3 and k4 can be estimated by the following procedure (Note that all 

of parameters k1, k2, k3, and k4 can be considered together in (4.39) with the same 

procedure, but only k3 and k4 are focused on here for convenience in illustration).  

 

Algorithm 4.4: 

Step 1. Calculate the matrices 𝑳̃𝟏
−1(defined in Lemma 1) and B2.  

Step 2. Choose the first value set for k3 and k4, and make sure that 

𝜌(𝑲𝑳̃1
−1𝑩𝟐) < 1 holds. Simulate the system with ode45, and then take 

the Fourier transform. Denote the output spectrum as Y(1)(Ω).  

Step 3. Given the other 5 sets of k3 and k4, repeat step 2. 

Step 4. Check if the inverse of the matrix in (4.45) exists; if not, try another set 

of k3 and k4.  

Step 5. Identify the associated coefficients by (4.45). 
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  (4.45) 

With the estimated coefficients 𝜑•
𝑦𝑖 in (4.45), the nCOS function (4.44) can 

then be freely used for the analysis and design of the controller.  

The three outputs above are then combined together to form a multiple-object 

function as a performance output for the design of the linear feedback gain 
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matrix K, 
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 (4.46) 

where 𝑌̃𝑖(jΩ) and  𝑌𝑖(jΩ) are the output spectra for the open loop case and 

closed loop case, respectively. μi, i=1,2,3 are weights for the three indicators with 

μ1+μ2+μ3=1. 𝑌4(jΩ) stands for the performance improvement of the feedback 

control suspension in the open loop case with full consideration of the vehicle 

body acceleration, the relative tire load, and the suspension stroke.  

If system (4.41) possesses Volterra-type nonlinearity, nonlinear phenomena 

such as jump phenomena, bifurcation, and chaos will not exist, so that the 

following four frequencies can successfully describe the characteristics of the 

system outputs and then be seen as frequencies of interest, i.e., the first and 

second resonant frequencies (Ω1 and Ω2 ), the frequencies between the two 

resonant frequencies (Ω3), and the frequencies larger than the second resonant 

frequency (Ω4 ). In the following discussion, these frequencies are chosen: 

Ω1=2π×1.2 rad/s, Ω2=2π×13 rad/s, Ω3=2π×7 rad/s, and Ω4=2π×25 rad/s. 

Following the procedure above, given (k3,k4) as: (37,89), (137, 280), (23, 490), 

(167, 680), (42, 890), and (183, 1080), the associated independent coefficients 

for the three indicators, y1, y2, and y3 at all four frequencies of interest can be 

estimated by (4.45) and are given in table 4.4. Because the ISO C level road 

profile involves all of the frequency components, all of the independent 
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associated coefficients in table 4.4 can be identified with only 6 numerical 

simulations (ode45 and the corresponding Fourier transform), which shows the 

efficiency of the proposed theoretical results.  

With the independent coefficients obtained in table 4.4, all the three indicators 

y1, y2, and y3, can be freely analysed with different feedback gain parameters, i.e., 

(k3, k4), via (4.45). Fig. 4.10 presents the estimated acceleration by nCOS at all 

four frequencies of interest with different k3 and k4. It can be observed that the 

accelerations by numerical simulation (Fourier transform of the output by ode45) 

are in good agreement with those predicted via the nCOS function (4.44), which 

shows the effectiveness of the proposed results. The nCOS functions for y2 and y3 

also work well but are omitted here for space limitations. The spectral radius 

𝜌(𝑲𝑳̃1
−1𝑩𝟐) < 1 holds for all frequencies of interest, and only the case of Ω3 is 

presented in Fig. 4.11 for space limitations.   

Note that with the nCOS function given in (4.44), only 6 simulations are 

needed for the estimation of the associated independent coefficients. Taking Fig. 

4.10 as an example, when the parameter step is 10, then k3 has 21 points, and k4 

has 101 numbers, so that more than 2000 simulations are needed for ode 45 if 

using a pure simulation-based method. The efficiency of the proposed results can 

then be demonstrated. The proposed results with (4.44) and (4.46) can provide an 

explicit analytical relationship between the output (performance objective 

function) and the linear feedback gain matrix, which will greatly facilitate the 

analysis and design of the linear feedback controller. 
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Table 4.4 Estimation of Parameters of Interest-Independent Part 

 𝒀̃𝒊(jΩ) 𝝋𝟎,𝟎,𝟏,𝟎
𝒚𝒊  𝝋𝟎,𝟎,𝟎,𝟏

𝒚𝒊  𝝋𝟎,𝟎,𝟐,𝟎
𝒚𝒊  𝝋𝟎,𝟎,𝟏,𝟏

𝒚𝒊  𝝋𝟎,𝟎,𝟎,𝟐
𝒚𝒊  

𝒀𝟏(𝐣𝛀𝟏) 
0.0180 

+0.0281i 

-1.488e-5 

-2.090e-5i 

3.243e-6 

-1.766e-5i 

7.617e-9 

+3.841e-9i 

-3.401e-10 

+1.304e-8i 

2.914e-10 

+2.331e-9i 

𝒀𝟏(𝐣𝛀𝟐) 
0.0120 

-0.0141i 

1.746e-6 

-3.378e-7i 

-5.003e-6 

+1.080e-5i 

-1.537e-9 

+7.272e-9i 

-4.953e-10 

-6.306e-10i 

-3.409e-9 

-2.686e-9i 

𝒀𝟏(𝐣𝛀𝟑) 
0.0163 

+0.0168i 

-4.946e-7 

-8.201e-7i 

-1.568e-6 

+5.622e-7i 

-1.947e-9 

+5.728e-9i 

4.195e-9 

-1.881e-9i 

4.011e-9 

-2.700e-9i 

𝒀𝟏(𝐣𝛀𝟒) 
-0.0037 

-0.0004i 

-5.871e-8 

-1.905e-7i 

2.097e-6 

+1.684e-6i 

8.100e-10 

+7.736e-10i 

-1.172e-10 

-4.596e-10i 

5.430e-10 

-8.527e-10i 

𝒀𝟐(𝐣𝛀𝟏) 
0.0016 

+0.0028i 

-1.394e-6 

-1.947e-6i 

2.978e-7 

-1.649e-6i 

7.402e-10 

+3.480e-10i 

-2.999e-11 

+1.218e-9i 

2.420e-11 

+2.208e-10i 

𝒀𝟐(𝐣𝛀𝟐) 
0.0020 

-0.0004i 

2.230e-7 

-3.265e-8i 

-6.621e-7 

+1.418e-6i 

-1.560e-10 

+8.825e-10i 

-6.460e-11 

-6.665e-11i 

-4.577e-10 

-3.249e-10i 

𝒀𝟐(𝐣𝛀𝟑) 
-0.0013 

+0.0038i 

1.038e-6 

+1.514e-6i 

3.500e-6 

-3.427e-7i 

4.574e-9 

-9.434e-9i 

-9.424e-9 

+2.431e-9i 

-9.087e-9 

+3.897e-9i 

𝒀𝟐(𝐣𝛀𝟒) 
-0.0002 

-0.0010i 

4.709e-9 

-5.1108e-9i 

-6.746e-8 

-4.190e-8i 

4.230e-11 

+4.557e-11i 

4.580e-12 

-2.128e-13i 

-1.453e-11 

+2.276e-12i 

𝒀𝟑(𝐣𝛀𝟏) 
-4.444e-4 

-1.429e-4i 

2.471e-7 

+3.353e-7i 

-5.133e-8 

+2.872e-7i 

-1.244e-10 

-6.146e-11i 

2.889e-12 

-2.121e-10i 

-3.918e-12 

-3.765e-11i 

𝒀𝟑(𝐣𝛀𝟐) 
4.123e-5 

+5.726e-5i 

2.954e-9 

-4.885e-10 

-8.147e-9 

+1.800e-8i 

-1.812e-12 

+1.064e-11i 

-8.601e-13 

-1.175e-12i 

-5.642e-12 

-3.925e-12i 

𝒀𝟑(𝐣𝛀𝟑) 
-4.481e-5 

+3.137e-5i 

1.700e-8 

+2.462e-8i 

5.704e-8 

-5.342e-9i 

7.451e-11 

-1.540e-10i 

-1.536e-10 

+3.951e-11i 

-1.481e-10 

+6.364e-11i 

𝒀𝟑(𝐣𝛀𝟒) 
7.103e-7 

-4.005e-6i 

1.001e-10 

-1.125e-10i 

-1.904e-9 

-5.91e-10i 

-7.267e-13 

+7.298e-13i 

8.233e-14 

-1.028e-13i 

-2.551e-13 

+6.041e-14i 

 

The performance function (4.46) fully considers all three indicators 

(acceleration y1, relative tire load y2, and suspension stroke y3) at the four 

frequencies of interest and is thus seen as an objective function for feedback 

design. Consider the controller as a ride comfort oriented controller and give the 

weights as 𝜇1=0.75, 𝜇2=0.15, 𝜇3=0.1. The performance function with different 

feedback gain parameters is presented in Fig. 4.12, from which the optimal 

performance can be achieved with parameters (k3, k4) = (140,940).  
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Figure 4.10 The estimated nCOS function by (4.44) with different sets of k3 and k4 at the four 

frequencies of interest. The symbols (ball, star, cubic, and tetrahedron) stand for the accelerations 

at the corresponding frequencies and the parameters by numerical simulation. The red balls 

represent the accelerations with the design parameters. 

 

Figure 4.11 The value of 1

1  2KL B   



 
 

157 
 

 

Figure 4.12 Performance function (4.46) with different feedback gain parameters. The red ball is 

the performance with the optimal design parameters. 

For comparison, a recently developed ride comfort oriented control, i.e., the 

mixed skyhook and acceleration driven damper (ADD) method [164], is adopted 

here, which is given by 

 

2 2 2

max

2 2 2

2 2 2

min

( )       ( - ) 0 ( ) 0

                            ( - ) 0 ( ) 0

( )        ( - ) 0 ( ) 0

                            (

in s s s s t

s s s s t

in s s s s t

c t c x x x x x

x x x x x

c t c x x x x x
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      

      

 2 2 2- ) 0 ( ) 0s s s s tx x x x x









      

  

where cin(t) is the required damping coefficient, and α=11, β=30, cmin=300, 

cmax=4000 [164]. The actual damping coefficient c(t) is followed by 

( ) ( ) ( )inc t c t c t    .  
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Figure 4.13 Comparison of the performance with/without controller when subjected to ISO C 

level road profile.  

 

 
Figure 4.14 (a) Comparison of the accelerations when subjected to ISO C level road profile in the 

time domain. (b) Comparison of the active force in the time domain. 

 

Comparisons are conducted between the proposed nCOS-based method and 

the mixed skyhook and ADD method under very close active forces (with K=[0 0 
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140 940]). It is well known that a large damping in the open loop case, for 

example, cs=2000 N/m∙s-1, will deteriorate the performance in the frequencies 

between the two resonant frequencies and also the frequencies larger than the 

second resonant frequency, while a smaller damping coefficient, for example, 

600 N/m∙s-1, leads to a performance deterioration around the first and second 

resonant frequencies. Both controllers have better performance than the open 

loop case, but the proposed one provides much better performance in the 

frequencies between the two resonant frequencies and also at high frequencies 

(larger than the second resonant frequency), as is presented in Fig. 5. In Fig. 6, 

the high-frequency components can be clearly observed in both accelerations and 

active force with the ADD method, which again verifies the better performance 

at frequencies larger than the second resonant frequency with the proposed 

nCOS-based method in Fig. 4.13. 

The following procedure is summarized to help understand the proposed new 

nCOS function for a MIMO nonlinear system and to facilitate the application of 

the new nCOS function to the analysis and design of those linear parameters of 

interest.  

Algorithm 4.5 (Application of the new nCOS function to the design of linear 

feedback controller) 

Step 1. Construct the system output and performance objective function; 

examples can be seen in (4.43) and (4.46).  

Step 2. Estimate the associated independent coefficients in (4.39) with Algorithm 
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4.3; an example can be seen in (4.44) with Algorithm 4.4.  

Step 3. Determine the feedback gain matrix with the performance objective 

function via the nCOS method; examples can be seen with (4.46) and Fig. 

4.12.   
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4.4 Conclusions 

In this chapter, a new nCOS function is developed for those linear parameters 

of interest in nonlinear systems as a useful extension of the existing nCOS 

function (which is only available for nonlinear parameters of interest). The new 

nCOS function is analytically developed for SISO nonlinear systems, and a 

numerical algorithm for estimating the nCOS function is proposed for MIMO 

nonlinear systems. Two examples, i.e., linear component design in a nonlinear 

circuit and linear feedback design for a vehicle suspension system, are given to 

illustrate the proposed new nCOS function. Note that the linear parameter of 

interest can be a linear component or a linear controller in engineering practice, 

so the proposed new nCOS function is thus of great significance. 
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5 An extension to exponential type nonlinear 

systems 

 

5.1 Introduction 

Many of the nonlinear systems can be described with an exponential-type 

nonlinearity (nonlinearity described by ( )fe ), and examples can be seen in the 

input-output relationship of the bipolar/CMOS amplifier [11, 178], the clearance 

nonlinearity in mechanical engineering or controller design [186], the saturation 

problem in an actuator [140, 161], and the basis function in a neural network 

[187]. To study this exponential-type nonlinearity via the Volterra series 

associated method,  the exponential-type nonlinearity should first be 

approximated with a Taylor series expansion to transform the exponential-type 

nonlinearity into a polynomial-type nonlinearity. This is because the algorithms 

for calculating the generalized frequency response function (GFRF) are only 

developed for polynomial nonlinearities in the literature. The Taylor series 

approximation requires a large truncation order for a high-approximation 

accuracy, so a large number of parameters are involved in the nonlinear analysis. 

The method of transforming the exponential nonlinearity into a 

polynomial-type nonlinearity in the Volterra series based analysis and design 

results in two problems: low computational efficiency and high analysis 

complexity. To overcome these two problems, a low truncation order is usually 
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used in practical application, for example, a third-order approximation in 

amplifier dynamics modelling [6, 7]. This simplification obviously leads to a 

description of system dynamics with less accuracy, and can even miss some 

interesting results [181]. An effective and efficient method for the analysis and 

design of an exponential-type nonlinear system is thus of great significance.  

In this chapter, a new algorithm for calculating the generalized frequency 

response function (GFRF) is first proposed for an exponential-type nonlinearity. 

Compared with the method using a Taylor series approximation discussed above, 

the proposed algorithm can calculate GFRFs with many fewer parameters, and 

the advantages of the proposed algorithm, for example, its high computational 

efficiency and being straightforward and easy to implement, can then be 

demonstrated. Based on the proposed algorithm for calculating the GFRFs, the 

nCOS method can be applied to analyse and design the exponential-type 

nonlinear systems. Two examples, the suppression of harmonic distortion in an 

amplifier and the analysis of a radial-basis function neural network, are given to 

illustrate the proposed results. It is shown that the proposed algorithm in section 

5.2.1 can effectively calculate the GFRFs for exponential-type nonlinear systems 

with many fewer parameters and thereby greatly facilitate the analysis and design 

of exponential-type nonlinear systems with the new nCOS function.    
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5.2 Calculation of the GFRFs and the nCOS-based analysis of 

exponential-type nonlinear systems 

The following exponential-type nonlinear system is considered, 

 1 2( , ) ( )

1 2 3

0

( , ) ( , ) ( , )
lL

f f

l
l

d u
g g e g e

dt

  x u u
x u x u x u   (5.1) 

where 1 2 3 1( , ), ( , ), ( , ), ( , )g g g fx u x u x u x u  are polynomial functions of system 

output x  and system input u , and 2 ( )f u  is a polynomial function of u  . 

l  denotes the differential order with a maximum order L  . 

1 2

1 2
, , , ,

L

L

d x d x d x
x

dt dt dt

 
 
 

x = , and 
1 2

1 2
, , , ,

L

L

d u d u d u
u

dt dt dt

 
 
 

u = . When  

2 3( , ) ( , ) 0g g x u x u  , system  (5.1) reduces to a polynomial nonlinear system, 

which has been studied in [59].  

The following comes to develop a new algorithm for calculating the 

generalized frequency response function (GFRF) for an exponential-type 

nonlinear system (5.1).  

5.2.1 Algorithm for Calculating Generalized Frequency Response 

Functions (GFRF) 

Proposition 5.1: The exponential-type nonlinear system (5.1) can be analytically 

transformed into the following polynomial nonlinear system as, 

 

1 2 2 3 3

0

1
2 2

2
3 3

( , ) ( , ) ( , )

( , )

( )
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l
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d u
g g x g x

dt
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x x

dt
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x x
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

x u x u x u

x u

u

  (5.2) 
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Proof: Denote 1 ( , )

2

fx e x u
, and take the derivative with respect to the time 

variable of both sides, and the following equation can be obtained 

 1 ( , ) 1
2

( , )f df
x e

dt


x u x u
  

It is easy to see that the second equation in (5.2) holds. By denoting 2 ( )

3

fx e u
, 

the third equation in (5.2) is also straightforward. Note that 1( , )f x u  and 2 ( )f u  

are polynomial nonlinear functions, so that model (5.2) is a polynomial nonlinear 

system. This completes the proof.  

Remark 5.1: By introducing these two auxiliary equations, the nonlinear system 

described by an exponential nonlinearity can be analytically transformed into a 

single-input three-output polynomial nonlinear system. The problem between the 

approximation accuracy and the truncation order in the Taylor series expansion 

can thus be overcome.  

Denote as 1 2 3 1 2, , , ,g g g f fM M M M M  the number of coefficients in 

1 2( , ), ( , ),g gx u x u 3 1( , ), ( , ),g fx u x u  and 2 ( )f u , respectively. Denote as 1fN  

and 2fN  the truncation orders of the Taylor series expansions of 1 ( , )fe x u and 

2 ( )fe u in (5.1), respectively.  

Remark 5.2: The transformation in Proposition 5.1 results in 

1 2 3 1 22 3g g g f fM M M M M L       coefficients of interest, while the direct 

Taylor series expansion of 1 ( , )f x ue and 2 ( )f ue in (5.1) leads to 

1

1 2 1 3 2

1

2

f

g g f g f

N
M M N M N L


      coefficients of interest. The polynomial 

nonlinear system in Proposition 5.1 thus with many fewer coefficients than that 

by Taylor series expansion. This advantage will be more obvious when a large 
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truncation order 1fN  or 2fN is required.  

The polynomial nonlinear system (5.2) can be rearranged as the following 

single-input three-output polynomial equations as 
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   (5.3) 

where ix is the ith output, i=1,2,3. N is the maximum nonlinear order in terms of 

output x and input u. 1 2 3

, 1( , , ; )
s s s

p q p qc l l j  is the model parameter of the 

corresponding term 
1 2 31 1 2

1 1 2

31 2

1 1 1 1

ii i i

i i i i

s s s ls s sl l lp q

l l l l
i i s i s s i p

d xd x d x d u
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  

       

    in the jth equation, 

which has a nonlinear degree p+q (p order in terms of the outputs 1 2 3
, ,x x x , and 

q order in terms of the input u ), and li is the differential order, with the 

maximum order L. 1 2 3
, ,s s s   , which are the nonlinear degrees of 1 2 3

, ,x x x  

in the nonlinear term 
1 2 31 1 2

1 1 2

31 2

1 1 1 1

ii i i

i i i i

s s s ls s sl l lp q

l l l l
i i s i s s i p
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  

       

    , respectively. 

Denote  
1

1
s

i s 

  when 1 1 20, ,s s s s   holds.   

Remark 5.3: The equilibrium of the exponential-type nonlinear system is not 

zero, which means that there exist constant terms (i.e., dc components) when the 

input u  is zero, so that the results in [65] derived for multiple-input 
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multiple-output nonlinear differential equations are not applicable for system 

(5.3). 

Proposition 5.2: Denote as 
1 2 3

0 0 0
, ,H H H  the equilibria of 1 2 3

, ,x x x in (5.3), 

respectively. The nth-order generalized frequency response function (GFRF) can 

be calculated as 
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0
i

 , and
' ' '

1 1 1 2 2 2 3 3 3, ,t s t t s t t s t      .  The recursion in (5.7) 

ends when 1p   holds, i.e.,  
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For the first-order GFRF, 
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Proof: See Appendix 5.1. 

The n
L  matrix in (5.4) can be singular when 1

0
n

     holds (which 

means that the GFRFs are calculated at dc components). For this case, the 

following algorithm is proposed for an approximation of the inverse matrix 
1

n
L

: 
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Algorithm 5.1: 

Step 1. For the nth-order GFRF, approximate i
  by 

i i
n

     for 

1,2, ,i n  , where  is a small perturbation close to 0 which makes the 

inverse matrix 
1 1

1
( ) ( )

n n n
L j j L j       exist. 

Step 2. Approximate 1
( , , )i

n n
H   with 1

( , , )i

n n
H    .  

Remark 5.4: The point 1
( , , )

n
   is chosen in the normal direction of the 

hyperplane 1
0

n
    with a distance d

n
  to the frequencies 

1
( , , )

n
  . After  is chosen, 

1( )
n

L j
will be the same for a different order n, 

that is, 
1 1

1 2
( ) ( )L j L j   . Note that the distance d decreases as the order n 

increases, so the approximation of 1
( , , )i

n n
H   with 1

( , , )i

n n
H    would 

thus be more accurate as the order n increases.  

 

To illustrate the theoretical results above, the following example is given and 

discussed. 

Example 5.1 Pure input nonlinearity 

Consider the exponential nonlinear system described by 

aux e   

where u  is the system input and x  is the system output. This exponential 

nonlinearity can be expanded with a Taylor series as 

 
2 2 3 3

1
2! 3!

a u a u
x au       (5.10) 

When the nonlinear equation is truncated to 3u  , there are 4 parameters to 

analyse. The GFRFs can be computed as 
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  (5.11) 

With the results in Proposition 5.1, the exponential nonlinearity aux e can 

be analytically transformed into the following single-input single-output 

polynomial nonlinear system 

 x axu   (5.12) 

In (5.12), there exists only one coefficient a . The GFRFs can then be 

computed with Proposition 5.2 as 
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  (5.13) 

The GFRFs in (5.13) are asymmetrical, but can be symmetrized as, 

  
2 3

0 1 1 2 1 2 3 1 2 3
1, ( ) , ( , ) , ( , , )

2! 3!

sym sym sym syma a
H H a H H           (5.14) 

The GFRFs in (5.14) are the same as those in (5.11), thereby verifying the 

effectiveness of the result in Proposition 5.2. It is clear that the polynomial 

nonlinear system in (5.12) has many fewer parameters (only one parameter) than 

that by the Taylor series expansion in (5.10) (4 parameters). The other advantages 

of the proposed algorithm, for example, its high computational efficiency and 

being straightforward and easy to implement, will be more obvious for pure output 



 
 

171 
 

nonlinear systems or cross input-output nonlinear systems, which will be 

illustrated and discussed in the next section.    

 

5.2.2 The nCOS-based analysis and design for exponential-type nonlinear 

systems 

It has been shown in Chapter 3 and Chapter 4 that the output spectrum of a 

nonlinear system can be expressed as a polynomial function with respect to those 

parameters of interest, referred to as nCOS functions for nonlinear parameters of 

interest in Chapter 3 and new nCOS functions for linear parameters of interest in 

Chapter 4.   

Assuming that there are 3 parameters of interest, denoted as 1 2 3, ,c c c  , the 

output spectrum can then be given as 
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  (5.15) 

where 
 
      is the coefficient of the polynomial function, which is 

independent of the parameters of interest, i.e., 1 2 3, ,c c c . When the nCOS function 

in (5.15) is truncated by up to third-order, there are 39 coefficients for calculation. 

The problem would be even worse when a higher truncation order is required or 

more parameters are of interest in the nonlinear analysis and design.  

The proposed new algorithm in section 5.2.1 can calculate the GFRFs of an 

exponential-type nonlinearity with many fewer parameters, which will 

significantly facilitate the analysis and design of an exponential-type nonlinear 
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system via the new nCOS function. An example for studying the harmonic 

distortion of a bipolar amplifier is discussed in the following. 

 

Example 5.2 Suppression of harmonic distortion via the new nCOS function 

 

Figure 5.1 Equivalent model of bipolar amplifier 

 

The input-output dynamics of the common emitter amplifier are governed by 

the exponential-type nonlinearity as 

 (e 1)T

x

V

BQ

u x
Cx I

R


     (5.16) 

 (e 1)T

x

V

BQ
y I     (5.17) 

where sinu U t , and BQ
I  is the reverse saturation current, which always 

varies with temperature. It is thus necessary and of great interest to study how the 

amplifier performance, for example, the linearity described by the harmonic 

distortion, is affected by this reverse saturation current.  

In the literature, the exponential-type nonlinearity is often approximated by a 

third-order Taylor series expansion as 
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From (5.18), it can be seen that BQ
I is involved in all 3 parameters, so that the 

number of parameters to analyse via the Volterra series associated method is 3.   

Denote 
1

2
(e 1)T

x

V

BQ
x I   , and take the derivative with respect to time of both 

sides, and 
2 1 1 2

1BQ

T T

I
x x x x

V V
   will hold. (5.17) can then be given as 2

y x  . 

(5.16) can be rearranged into a single-input double-output set of equations as 
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  (5.19) 

The GFRFs can then be computed according to Proposition 5.2 as 
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 

The calculation of the GFRFs for (5.19) is more efficient and straightforward 

than that by the Taylor series expansion in (5.18) because there exists only one 

nonlinear parameter, 
1

T
V

, in (5.19), while at least two nonlinear parameters, 
BQ

T

I

V

and 
22

BQ

T

I

V
, are involved in the calculation of GFRFs for the system 

approximated by the Taylor series expansion (5.18).  

In (5.19), it is clear that only one parameter, 
BQ

T

I

V
 , is of interest to analyse. 

Denote 
BQ

T

I
c

V
   for ease of notation in the following illustration. According to 

the new nCOS function developed in Chapter 4 for the analysis and design of those 

linear parameters of interest, the output spectrum can be expressed as a polynomial 

function of linear parameter c  as 

 
2 3 4

0 1 2 3 4( ) ( ) ( ) ( ) ( ) ( )Y c c c c                  (5.23) 

where the coefficients 0 1( ), ( )    are independent of the linear parameter c  . 

The third-order harmonic distortion can then be calculated as 

 
2 3 4

0 1 2 3 4
3 2 3 4

0 1 2 3 4

(3Ω) (3Ω) (3Ω) (3Ω) (3Ω)

(Ω) (Ω) (Ω) (Ω) (Ω)

c c c c
HD

c c c c

    

    

    


    
  (5.24) 

where 0 1(3Ω), (3Ω),  are coefficients at the third-order harmonic frequency, 

and 0 1(Ω), (Ω),  are coefficients at frequency Ω .  
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The application of the new nCOS function is under the assumption that the 

input-output relationship of the nonlinear system allows a convergent Volterra 

series expansion. Given the model parameters of 26mV, 180, 100Ω,TV R    

10pFC  , and input frequency 62 5 10 / srad    , the input magnitude bound 

is 42mV according to the results in section 2.4. 

 

Figure 5.2 Comparison of third-order harmonic distortion with different methods  

 

Linearization is a hot topic in the literatures for the analysis and design of 

amplifier [6-11, 180]. Usually, a third-order Taylor series expansion is used to 

approximate the exponential nonlinearity. The Taylor series is truncated up to the 

third-order to simplify the analysis and design (as only three parameters are 

involved in the analysis and design). This simplification may leads to an 

inaccurate or wrong result. In Figure 5.2, the harmonic distortion by the 

third-order Taylor series expansion is quite different from that by numerical 

simulation. To improve the accuracy of the result, the exponential nonlinearity 
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should be approximated with a higher-order Taylor series expansion, but in this 

case, the number of parameters to analyse and design would increase, which will 

greatly complicate the analysis and also reduce the computational efficiency. In 

Proposition 5.1, the exponential-type nonlinear system can be analytically 

transformed into a polynomial nonlinear system. This transformation produces 

many fewer parameters to analyse and design (only one linear parameter 
BQ

T

I

V
  in 

this example), which will significantly facilitate the analysis and design of the 

nonlinear system described by the exponential nonlinearity. From Figure 5.2, it 

can be observed that based on the analytical transformation in Proposition 5.1, the 

harmonic distortion via the new nCOS function has good agreement with that by 

numerical simulation. As a comparison, the harmonic distortion by the 

perturbation method proposed in [180] is also presented in Figure 5.2, which is 

also quite different from that by numerical simulation.  

   

Example 5.3 nCOS-based analysis of neural network 

Artificial neural networks are a hot topic in the literature for system modelling, 

identification, and control. The study of neural networks can also be conducted in 

the frequency domain. In [188, 189], the basis functions of the neural network 

were first approximated with a truncated Taylor series expansion to transform the 

basis functions from exponential-type nonlinearities into polynomial-type 

nonlinearities, so that the generalized frequency response functions of the neural 

network can be computed, and the Volterra series associated methods can be 



 
 

177 
 

applied to the analysis of the neural network. The Taylor series expansion of the 

exponential-type basis functions results in too many parameters (including linear 

parameters and nonlinear parameters) to analyse and design, which greatly 

complicates the Volterra series based study in the frequency domain. In the 

following, it will be shown that the proposed algorithm in section 5.2.1 can 

calculate the GFRFs of the neural network with many fewer parameters of interest 

and to facilitate the analysis and design of the neural network with the 

nCOS-based method.  

 

Figure 5.3 A three-layer radial-basis function neural network  

In Figure 5.3, a three-layer radial-basis function neural network is shown. 

1 2,w w  are weight values, and 1 2,h h  are radial-basis functions  

 

 
2

22
( ) , 1,2.

i

i

u c

b

ih u e i




    (5.25) 

where ic  and ib  are the centre point and the width of the Gaussian function, 

respectively. u is the network input.   

The following comes to study the effects of the parameters ic  and ib  on 

the neural network output y . With the results in [188, 189], the basis function 
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in (5.25) should be expanded with a truncated Taylor series as 

 
2 3
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where   
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From (5.26), it can be observed that the parameters of interest, i.e., ic  and 

ib , are involved in all of the coefficients 0 1 2 3, , ,i i i ia a a a . Obviously, a large 

number of coefficients in (5.26) would complicate the analysis of the neural 

network in Figure 5.3.  

Denote ( )i ix h u  , and take the derivative with respect to time of both sides, 

and the following equation holds 

 2 2

1 i
i i i

i i

c
x x uu x u

b b
   .   (5.27) 

In (5.27), obviously only two parameters are of interest, i.e., 2

1

ib
 and 2

i

i

c

b
. The 

GFRFs can be calculated according to Proposition 5.2 as 

 

2

22

0

i

i

c

biH e


   (5.28) 

and 
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, ,

i

n i n i nH L A   (5.29) 

where 
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Denote 2

1
i

i

f
b

  and 2

i
i

i

c
g

b
 , and the calculated GFRFs can then be given in 

the form of characteristic functions as 
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  (5.32) 

The output spectrum can then be given as 
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and  

 1 2( ) ( ) ( )Y X X      (5.34) 

which are nCOS functions, and the coefficients   are independent of those 



 
 

180 
 

parameters of interest, i.e., if and ig .    

 

Figure 5.4 Amplitude of X1(3Ω) via different methods 

 

Figure 5.5 Amplitude of X2(3Ω) via different methods 
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Figure 5.6 Amplitude of Y(3Ω) with different parameters of interest 

Given  0.5sin 2 20u t   , and 1 20.6, 0.4b b  , the spectra of 1( )X   

and 2 ( )X   with different parameters of interest can be obtained via (5.33). The 

coefficients   in (5.33) can be analytically calculated. Both Figure 5.4 and 

Figure 5.5 show that the spectrum via the nCOS method has good agreement 

with that by numerical simulation, but the third-order Taylor series 

approximation of the radial-basis function in (5.26) leads to an inaccurate result. 

To improve the accuracy of the result by Taylor series expansion, a higher 

truncation order is therefore required, which will of course introduce more 

parameters to the nonlinear analysis and complicate the analysis. The output 

spectrum Y(3Ω) can then be easily calculated with different parameters of interest, 

as is shown in Figure 5.6. It can be observed that the proposed results in section 

5.2.1 can calculate the GFRFs of the radial-basis neural network with many fewer 

parameters of interest and thereby greatly facilitate the analysis of the neural 
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network via the nCOS method in the frequency domain. The nCOS method 

provides an effective and straightforward way to analyse the neural networks.  
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5.3 Conclusion 

In this chapter, the nCOS method is extended for the analysis and design of 

nonlinear systems described by exponential nonlinearities. First, the 

exponential-type nonlinear system is analytically transformed into a polynomial 

nonlinear system, which results in many fewer parameters to analyse and design 

when compared with that by a Taylor series approximation. Then, a new 

algorithm is developed to calculate the generalized frequency response functions 

(GFRFs) of the targeted polynomial nonlinear system with dc terms (with 

non-zero equilibria). This new algorithm greatly facilitates the nCOS-based 

analysis and design of the exponential-type nonlinear system because many 

fewer parameters are involved in the nonlinear analysis and design.  
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6 Conclusions and future work 

6.1 Conclusions 

The Volterra series and its associated methods for nonlinear analysis and 

design have been extensively studied and well applied to various engineering 

practices. This thesis addresses several issues of the Volterra series associated 

method raised in practical applications. 

In Chapter 2, the convergence bound of the Volterra series expansion is 

studied for a wide class of nonlinear systems described by a nonlinear 

auto-regressive with exogenous input (NARX) model. The proposed parametric 

bound of convergence (PBoC) can be easily computed with the proposed 

algorithms and can provide a very useful guidance for the parameter optimization 

and/or system design of nonlinear systems for any characteristic parameters 

(including the model parameters, input magnitude, and frequency variable). The 

parametric convergence margin (PCM) is proposed to evaluate the extent of a 

given nonlinear system to which the system has a convergent Volterra series 

expansion. The result of PBoC is then extended to the NARX model with a 

general input and also to the single-input multiple-output (SIMO) NARX model. 

The results in this chapter are great extensions of those convergent results in the 

literatures, where the convergence bound is only studied for the input magnitude.  

In Chapter 3, the applications of the nonlinear characteristic output spectrum 

(nCOS) method involves two parts. First, a nonlinear damping defined as a 
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function of both position and velocity is proposed to tackle the dilemma relating 

to linear damping. The performance of the nonlinear damping is derived using 

the nCOS method, and the proposed nonlinear damping shows advantages under 

both force excitation and base excitation. Then, the multiple-object optimization 

problem in vibration control is investigated. The multiple-object function is first 

cast into a nonlinear characteristic output spectrum function, which can then be 

freely analysed and designed within the parametric convergence region computed 

with the results in Chapter 2. A nonlinear vehicle suspension system is given for 

illustration.   

The nCOS method in Chapter 3 is only applicable to those nonlinear 

parameters of interest. In Chapter 4, the new nCOS function is developed for 

those linear parameters of interest in nonlinear systems. This extension is of great 

significance because the linear component or linear controller is usually easy to 

implement. First, the generalized frequency response function (GFRF) is 

expressed as a polynomial function of linear parameters of interest. The 

coefficients of the polynomial function is independent of those linear parameters 

of interest and can be symbolically determined with the proposed procedures. 

The new nCOS function is then developed, which shows great advantages such 

as high computational efficiency and straightforward insight into understanding 

nonlinear systems. For nonlinear state equations (which can be observed as 

multiple-input multiple-output system) in control design, the symbolical 

determination of the coefficients in the new nCOS function may be complicated, 
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so a numerical identification method is developed for facilitating the application 

of the extended nCOS method in practical engineering problems.   

Finally, in Chapter 5, the nCOS method is extended to those nonlinear systems 

with exponential-type nonlinearity. A novel algorithm is developed for 

calculating the generalized frequency response function (GFRF) for 

exponential-type nonlinear systems. The proposed algorithm transforms the 

exponential-type nonlinearity into a polynomial-type nonlinearity by introducing 

two auxiliary equations. Compared with that by directly approximating the 

exponential-type nonlinearity with a Taylor series expansion, the proposed 

algorithm results in many fewer parameters to analyse and design, which greatly 

facilitates the application of the nCOS method. This chapter provides a powerful 

tool for the analysis and design of those systems involving exponential-type 

nonlinearities.  

6.2 Future work 

1. The concept of the parametric convergence margin (PCM) is developed as 

an indicator to quantitatively evaluate whether or not a given nonlinear 

system has a convergent Volterra series expansion. A controller to transfer 

a system with strong nonlinearity into a mild nonlinear system can thus be 

developed using the concept of PCM. This would be of interest because in 

some circumstances, complex phenomena such as jump phenomena are 

not likely to exist in the designed or optimized system.   
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2. With the novel algorithm for calculating the GFRFs for exponential-type 

nonlinearities, a controller with full consideration of the actuator 

saturation or clearance nonlinearity can be analysed and designed in the 

frequency domain with the nCOS method to provide a straightforward 

insight into the analysis and design of the controller.   

3. The exponential-type nonlinearity is an important basis function in neural 

networks and fuzzy systems. The results in Chapter 5 provide a useful and 

fundamental basis for developing training methods or controllers with 

neural networks or fuzzy methods in the frequency domain.  
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7 Appendix 

Appendix 2.1: Proof of Proposition 2.1 
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then, the following equation holds for  2p q   
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1

( , ) ( ) ( , , ) n

n n

n

x U Y U H j j U  




  , and rearrange (A-1), (2.17)

can be obtained. The result in (2.18) is straightforward according to (2.17). This 

completes the proof.□  
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Appendix 2.2: Proof of Proposition 2.2 

When the input amplitude U  increases with the model parameters fixed, the 

upper bound of the nonlinear output spectrum 1
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increases. When any nonlinear model parameter increases with the other model 

parameters and the input amplitude U fixed, according to (2.14), the bound of 

the thn order GFRF 
1( , , )n nH j j   also increases. Therefore, the upper 

bound of the nonlinear output spectrum x  increases accordingly. Both these 

cases make the function  increase. 

It is clear that 0   when the input amplitude 0U   or all of the nonlinear 

model parameters are zero ( ( , ) 0C p q  ). When the Volterra series expansion is 
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  holds. Because   is a continuous and 

monotonically increasing function with respect to the input amplitude U or any 

nonlinear model parameter, then 1   exists for some U  and ( , )C p q .  

According to (2.11)-(2.13), it is clear that ( )L  , 1( )H j , and ( , )C p q are no 

functions of the input amplitude U. When the model parameters are given, the 

upper bound of the nonlinear output spectrum is only a function of the input 

magnitude U. Calculate the derivative with respect to U in (2.17), the following 
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equation holds, 
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pM

q p

p q

C p q U px L 




 

 holds. Because ( )L  , 1( )H j , 

( , )C p q and U are nonnegative, thus the denominator is always larger than 0, and 

then 0
dU

dx
  holds.  

According to the Analytic Inversion Lemma in [137]: An analytic function 

locally admits an analytic inverse near any point where its first derivative is 

non-zero. However, a function cannot be analytically inverted in a 

neighbourhood of a point where its first derivative vanishes. Because the output 

bound 1

1

( , , ) n

n n

n

x H j j U 




 is a power series of input amplitude U , and it 

is known that the power series is analytic in the convergence region, which 

means that there does not exist singularity in the convergence region.  

From the discussion above, when 0 1  , 0
dU

dx
 holds, which means 

that no singularity exists in this region, thus x (described by an infinite power 

series 1

1

( , , ) n

n n

n

x H j j U 




 ) is convergent in this region. When 1  , the 

output bound x  is divergent. Because  increases as the input amplitude U
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increases or the nonlinear model parameters function ( , )C p q  increases, so when 

1  , there exists a smaller input amplitude U  or smaller function ( , )C p q  

which can bring   back to 1  , clear indicating that the output bound x  is 

divergent for 1  . This completes the proof.□ 
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Appendix 2.3: Proof of Proposition 2.3 

The upper bound of the nonlinear output spectrum x reaches the convergent 

bound when Γ=1 holds. In the case that the NARX model does not only involve 

the type of nonlinear term with index 1p   or together with the pure input 

nonlinear term, the following condition holds, 

 
1

1 0

( , ) ( ),         2,
pM

q p

p q

p C p q U x L p q




 

 
   

 
            (C-1) 

By substituting (C-1) into (2.17), it can be obtained that 

 
1

1 0 2

( 1) ( , ) ( ) ( ) (0, ) ,      2,
pM

q p m

p q m

p C p q U x L H j U C m U p q 
 

  

 
     

 
      

  (C-2) 

Define the formal function 1 0( ) n

nf x a x a x a    , and

1 0( ) m

mg x b x b x b     . The Sylvester matrix of ( )f x  and ( )g x  is defined 

as, 

 

0

0

0

0 ( ) ( )

 

( , )

 

n

n

m

m m n m n

a a

m rows

a a
Syl f g

b b

n rows

b b
  

  
  
  
  

  
  
  

    

    (C-3) 

The sufficient and necessary condition for the existence of a solution to the 

equations  

( ) 0

( ) 0

f x

g x





 is that the Sylvester Resultant equals to 0 [190], that is,  

 ( , ) det( ( , )) 0Res f g Syl f g                    (C-4) 

where det( )  means the determinant of the matrix, and ( )Res means the 
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Sylvester Resultant of the functions. Equation (C-1) and (C-2) are rewritten as 

 

1

1 0 2

1

1 0

( 1) ( , ) ( ) ( ) (0, )

,    2,

( , ) ( )

p

p

M

q p m

p q m

M

q p

p q

p C p q U x L H j U C m U

p q

p C p q U x L

 



 

  




 

  
    

  
 

 
 

 

  

 

   

  (C-5) 

Equation (2.17) always holds no matter whether x is convergent or divergent. If 

there exists a (C(p, q), U, L(ω), x) that satisfies (C-1), it also satisfies (2.17), and 

thus (C-2) holds for this (C(p, q), U, L(ω), x). Therefore, there exists an x  that 

satisfies (C-5). Then according to the analysis above, (C-4) holds (the Sylvester 

Resultant is equal to 0 in this case). According to (C-5), the Sylvester matrix in 

(C-3) and (C-4) can be obtained by defining the elements in (2.21)-(2.24).  

For the case that the NARX model only involves the type of nonlinear terms 

with 1p   and the pure input nonlinear term, the result in (2.25) is 

straightforward. 

This completes the proof.□ 
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Appendix 2.4: Proof of Proposition 2.4 

Rearrange (2.19), the following equation holds, 

 1

1 0

( , ) ( ) 0,    2,
pM

q p

p q

p C p q U x L p q 




 

 
    

 
              (D-1) 

If there is a (C(p, q), U, L(ω), x, Γ) that satisfies (D-1), the corresponding part, 

i.e., (C(p, q), U, L(ω), x) also satisfies (2.17). Thus there exists a solution for x in 

the following equations,   

1

1 0 2

1

1 0

( , ) ( ) ( ) ( ) (0, ) 0

,   2

( , ) ( ) 0

p

p

M

q p m

p q m

M

q p

p q

C p q U x L x L H j U C m U

p q

p C p q U x L

  

 

 

  




 

  
     

  
 

 
  

 

  

 

  

  (D-2) 

which means that the Sylvester Resultant of equations (D-2) is equal to 0, and 

then similarly to Appendix 2.3, (2.20) and (2.27)-(2.31) hold.  

For the case of the NARX model with only the type of nonlinear terms with 

index 1p   or together with pure input nonlinearity, the result is 

straightforward. This completes the proof.□ 

  



 
 

195 
 

Appendix 2.5 Proof of Lemma 2.3 

Considering an infinite order, i.e., N=∞,  

 
1

( ) ( )      n

n

Y j Y j 




   (E-1) 

 

1 11

1

1 1 1 11

1

1
( ) d d

(2 )

1
             ( , , , ) d d  

(2 )

n nn

n

n n n nn

n

Y j

H U j j j

   


    


 

  



 

   







 

 

  (E-2) 

1 1 1 1

1

1 1 1 1 1 1

1

1 1 1 1

1

( , , , ) d d

= ( ) ( ) ( ) d d  

( ) ( ) d d                         

n n n

n

n

n n n n

n

n

n n

n

U j j j

U j U j U j j j

U j U j 

    

       

    

 

 
 



 

  
 



 

 
 



  



 

 

 

  (E-3) 

where 
1 1| ( ) |nU j j j      ≤1 is used in (E-3). From (E-2) and (E-3), it can 

be derived that 

 

1 1 1 11

1

1

1 11

1

1 11 0

( ) ( ) ( ) d d
(2 )

( ) d
(2 )

2 ( ) d
(2 )

1
                                                            

n

n n n nn

n

n n

n n

n n

n n

n

n

Y j H U j U j

H U j

H U j

H

 






    




 




 






 

   






 








 
  

 
  



 





                         

  (E-4) 

From (E-1) and (E-4), (2.57) can be obtained. From Lemma 1 in [97], for n≥2, 

1

1

1 1 1 1

2 1 1
0 ,

1
( , , , ( )) ( , )

i

p

i

pn q pn

n n n n r

m p q m r r iR
p q m r n q

H j j j H C p q H
L



    
  

 

    
   

 
 

      
 
 

     

Then, it can be further obtained from (2.57) that 
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1

1

1

1

1

2 2 1 1
0 ,

1

1

2 2 1 1
0 ,

1

1 1

1
( ) ( , )( )

1
( , )( )

1
( , ) (

i

p

i

i

p

i

i

p

i

pn q pn
n

r

n m p q m r r iR
p q m r n q

pn q pn
n

r

n m p q m r r iR
p q m r n q

pn q p

r

r r iR

r n q

Y j Y Y H C p q H
L

H C p q H
L

H C p q H
L







    

 



  

     
   

  

     
   

  

 

 

   



 



 



    

   



1

1

2
0 ,

1

1

2 1 1
0 ,

)

1
( , ) ( )

i

p

i

n

m p q m n m
p q m

pn q p
n q q

r

m p q m n m r r iR
p q m r n q

H C p q H
L





  

 

   
 

   


     
   

 



   

    

  (E-5) 

Also from (2.57), 
1 2

1

1

1 1

( )
p

p

i

p p
p i

i r r r

i p r r

r

Y H H H H








 
  

  



 
  
 



   . Take 

n q   , it gives 

 
1 2

1

1

1 1

( )
p

p

i

p n q p
p i n q

i r r r

i n p q r r

r n q

Y H H H H 
   



   

 

 
  
 



      (E-6) 

Substitute (E-6) into (E-5), it gives 

 1

2
0 ,

1
( , ) p q

m p q mR
p q m

Y H C p q Y
L



 


  
 

      

Considering the maximum nonlinear degree, i.e., m≤M, it gives (2.58). Similar 

results can be derived for multi-tone input, which is omitted here. Moreover, for 

a single-tone input, from [98] the bound of |Hn(.)| can be written as 

 0 1 1 1( ) ( ) ( ) ( )
n

n n nH H a a H j a H j          

where ai for i=0,1,…,n can be referred to [97, 98].  Therefore, 
1H can be 

replaced by 1( )H j  in (2.57) and (2.58), and 
nH in (2.57) can be replaced by

( )nH  . This completes the proof. □  
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Appendix 2.6: Proof of Lemma 2.4 

According to (2.68), the following inequality holds,  

 1( , , )n n n nH L j j A   (F-1) 

that is,  

( )

1 1 , ,

1 1 1

( , , ) ( , , ) ( ) .k

k k

k k k

M M M
j

n n n n j n j n

j j j

H j j L j j A L A    
  

     

According to (2.70)-(2.73), 

 

1

1 2 1 1 1 1

1 1 1 11

, 0, 1

2 1 1 , , 0 , , 0

( )

, 1 , 1

( , , ; )

            + ( , , ; ) ( , , )

n

i i

i

k

p p p q p q

q

n q i p i
p p p pi

n m M M M K K j k

j n n n k

m p j j j j j k k k k

j k
j j j j j j

p q p q k n q p n q

A c k k j e

c k k j e H j j





 



  

  
 



      



  

 
 
 
 

 
 

 

   

1 1

1 2 1 1 1

1 2 1 11

(0, ; ) , 1

2 1 1 , , 0

1
( )

1

11, , 1,

          ( , , ; )

              ( , , )  

p p

k

p p p q

i

i i

p pp i

n m M M M K
j j j

n j p q p q k

m p j j j j j k k

pn p M M M
j

r X X r

j j j j jir r r n

C c k k j

H j j 



 





     

 

 

   






 


 
  

  

  

  

1 1

1

2 1

1
( )

(0, ; ) ( , ; ) 1

1, , 1,

                 ( , , )p p i

k k i i

p i

n m

m p

pn p
j j j j

n j p q j r X X r

ir r r n

C C H j j 

 

 

 

 

  
      



 

 (F-2) 

By substituting (F-2) into (F-1), (2.80) can be obtained. When n=1,  (2.81) is 

straightforward. When turns to the upper bound of the nonlinear output spectrum 

of the jkth subsystem at Ω=kω, for k∈ℕ+, 

2( 1)
( ) ( )

2( 1) 12( 1)
1 1

1

2( 1) ( ) 2( 1)

2( 1) 1 2( 1)2( 1) 1
1

2
( ) ( , , ) ( )

2

             ( , , ) .
2

k k

k

k n
j j

k k n n ik n
n k i
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k n j k n

k n k nk n
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Y U H j A
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H j j U

 
 

  

 

 

   
  


   

     


  
   

  

 
   

 

  



 

For k=0, the result is straightforward. This completes the proof.□ 
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Appendix 2.7: Proof of Lemma 2.6 

Denote Ljk as the jkth row of Ln(jω1,⋯,jωn). According to (2.68), 

( )

1( , , )j

n nH j j   can be seen as the column vector An projects on to the vector 

Lj, and ( )

1( , , )j

n n j nH j j L A    . When ( )

1( , , )j

n nH j j   diverges as order n 

increases, in this case, because ( ) ( )jL L     , thus ||An||→∞ as n→∞, 

then ∀jk=1,⋯,M, ( )

1( , , )kj

n nH j j    as n→∞. Then Lemma 2.6 is 

straightforward. This completes the proof.□ 

Appendix 2.8: Proof of Lemma 2.7 
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This completes the proof.□ 
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Appendix 2.9: Proof of Proposition 2.6 

The solution of nonlinear differential equations or nonlinear difference 

equations can be seen as the perturbation of the solution of the corresponding 

linear equations [39], thus assume that   

 
( ) ( ) ( )

1 1

( ) ( ) ( )

1 1

( ) ( ) ( )
,1 ,

( ) ( ) ( )

k k k

i i i

j j j

k ij j j

Y U H U H
j j M

Y U H U H





 

 
      (I-1) 

Substitute (I-1) into (2.83) in Lemma 2.7, the following equation holds, 
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  (I-2) 

Based on the results in Lemma 2.6, the superscript j in (I-2) can be any value 

where 1≤j≤M. Denote ( ) ( )jx Y U  , which is an infinite power series. In the 

convergence region, the infinite power series is analytic, which means that there 

does not exist any singularity. When there exists some values  1 1

( , ; ) , ,p pj j j

p q jC U   

which make the infinite power series singular, the closest point  1 1

( , ; ) , ,p pj j j

p q jC U 

to the expanded center can then be seen as the divergence bound, thus the 

divergence condition of the infinite power series can be equivalent to the 

singularity condition (finding the closest singular point to the expanded center).  

According to the Analytic Inversion Lemma in [137], the singular condition of 

( ) ( )jx Y U  is dU/dx=0. 1 1

( , ; )
p pj j j

p q jC   and ( )L   are all independent of input 

magnitude U,  thus take the derivative with respect to U in both sides of (I-2), 

dx/dU can be obtained, then the derivative of inverse function U(x) can be given 

as 
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 (I-3) 

When the nominator of (I-3) is equal to 0, that is,  

 
1 1

1 2 1 1

( ) ( )
11 1

( , ; ) ( ) ( )
1 2 1 1 11 1 1

( ) ( )
( ) 0

( ) ( )

i k

p p

k

k p p k

j jpM m M M M M
j j jq p

p q j j j
j m p j j j j j ji

H H
L U C px

H H

 


 







      

  
    

  
    (I-4) 

dU/dx=0 holds because 1 1

( , ; ), , ( ),p pj j j

p q jU C L x  are all positive and the denominator 

is also positive. The nominator of  (I-2) decreases when increasing 1 1

( , ; )
p pj j j

p q jC    

or U. When any  1 1

( , ; ) , ,p pj j j

p q jC U    makes dU/dx>0 holds, no singularity exists, 

and thus the upper bound of the nonlinear output spectrum 

( ( ) ( )
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x Y U H j j U  




   ) is analytic and convergent; when 

increase 1 1

( , ; )
p pj j j

p q jC    or U making dU/dx=0 holds, the upper bound of the 

nonlinear output spectrum of the jth subsystem diverges because some 

singularity exist in this case; when  dU/dx is smaller than 0, there exists some 

smaller values of  1 1

( , ; ) , ,p pj j j

p q jC U    which can bring back to dU/dx=0, and thus 

the infinite power series ( ) ( )

11
( ) ( , , )j j n

n nn
Y U H j j U  




  also diverges.  

When a set  1 1

( , ; ) , ,p pj j j

p q jC U   makes the nonlinear system reaches the 

parametric bound of convergence (PBoC), (I-2) and (I-4) hold, following the 

proof in Appendix 2.3, the result is straightforward. This completes the proof.□  
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Appendix 3.1  

𝐻𝑛
𝐽(𝑗𝜔1, ⋯ , 𝑗𝜔𝑛) can be obtained as: 
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Appendix 3.2: Proof of Proposition 3.1 

(I) 𝑃𝑛(𝑗𝛺) can be calculated as,      
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So the conclusion (I) of Proposition 3.1 holds. 

(II) The proof is given in theorem 3 in Ref. [79]. 
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Appendix 3.3: Proof of Proposition 3.2 

𝑃𝑛(𝑗𝛺) for the force transmissibility under base displacement excitation can 

be calculated as,  
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 (III)The proof is given in [79]. 

This completes the proof.   
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Appendix 3.4: Proof of Proposition 3.4 

Similar to the proof in Appendix 3.3, 𝑃𝑛(𝑗𝛺) for the absolute transmissibility 

under base displacement excitation approaches 0 when Ω 1 or Ω 1.  
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This completes the proof.  
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Appendix 4.1: Proof of Proposition 4.3 

Suppose that Proposition 4.3 holds for all of the nth-order GFRF with n<n0, 

the following then comes to prove that it also holds for n=n0. It is clear from (4.4) 

that 𝐻𝑛0−𝑞,𝑝(𝝎𝒏𝟎−𝒒) can be computed with lower-order GFRF, i.e., 𝛾1+ ⋯ +

𝛾𝑝 = 𝑛0 − 𝑞 and 1 ≤ 𝛾1, ⋯ , 𝛾𝑝 ≤ 𝑛0 − 𝑞 − 𝑝 + 1. Thus substitute (4.11) Into 

(4.4), the following equation holds, 
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r r ki

r q

l sq

n

n

n

n

p rp

Xi k r

r r ki s

r q s r

H H

c






   



 
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where 𝑐𝜶,𝜷 = ∏ 𝑐1,0
𝛼𝑙𝐿

𝑙=0 (𝑙)𝑐0,1
𝛽𝑙 (𝑙)  and 𝑑𝑛0−𝑞,𝑝

𝜶,𝜷
(𝝎𝒏𝟎−𝒒) is the corresponding  

coefficient of 𝑐𝜶,𝜷. From the above, 𝑑𝑛−𝑞,𝑝
𝜶,𝜷

(𝝎𝒏−𝒒)  in (4.14) holds. 

From (4.2),  
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Thus 𝑏𝑛
𝜶,𝜷(𝝎𝒏) in (4.13) holds. Substitute (4.6) into the above equation, 
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𝜃𝑛
𝜶,𝜷(𝝎𝒏) in (4.12) thus holds, and the nth-order GFRF in (4.11) is then 

straightforward. This completes the proof.   
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Appendix 4.2. Proof of Lemma 4.1 

According to the Woodbury formula[191], the L1 matrix in (4.33) can be 

computed as 

  
11

1 1 1 1 1 1

1 1 2 1 1 2 1 2 1 1 


             L L B K L L B I KL B KL L   (K-1) 

It is clear from (K-1) that the close loop 𝑳𝟏
−1can be seen as a perturbation on the 

open loop matrix 𝑳̃𝟏
−1 . Based on this, the first-order GFRF in (4.33), i.e., 

𝑯𝟏(𝜶̃𝝁) = 𝑳𝟏
−1𝑩𝟏𝑬𝝁 = (𝑳̃𝟏

−1 − 𝜹)𝑩𝟏𝑬𝝁 = 𝑯̃𝟏(𝜶̃𝝁) − 𝜹𝑩𝟏𝑬𝝁can also be seen as 

a perturbation on the open loop transfer function 𝑯̃𝟏(𝜶̃𝝁).  

Denote 𝜺 = 𝑲𝑳̃𝟏
−1𝑩𝟐, in which the element can be seen as linear combination 

of the element of K, i.e., 𝜀𝑚,𝑛 = ∑ 𝜑𝑚𝑖,𝑛𝑗
𝑘𝑖,𝑗𝑖,𝑗 , then the element of the lth-order 

matrix 𝜺𝒍  can be given as 𝜀𝑚,𝑛
(𝑙)

= ∑ 𝜑𝜏1,1⋯𝜏𝑡,𝑟

(𝑚,𝑛)
𝑘1,1

𝜏1,1𝑘1,2

𝜏1,2 ⋯ 𝑘𝑡,𝑟

𝜏𝑡,𝑟
𝜏1,1+⋯+𝜏𝑡,𝑟=𝑙 , 

which is thus a lth-order nonlinear polynomial with respect to 𝑘𝑖,𝑗. 

Denote 𝝑 = 𝑰 + 𝑲𝑳̃𝟏
−1𝑩𝟐 = 𝑰 + 𝜺 . Then 𝝑−1 = (𝑰 + 𝜺)−1 = ∑ (−1)𝑖𝜺𝑖∞

𝑖=0  

converges if the spectral radius 𝜌(𝜺) < 1 holds.   

    
11 1 1 1

1 2 1 1 2 1

0

1
i i

i

  


   



    
 L B I KL L B KL   (K-2) 

From(K-2), the element of δ can then be given as the sum of infinite series 

with respect to the elements of linear feedback gain matrix K, 

  1,1 1,2 ,

1,1 ,

1,1 ,

, , , 1,1 1,2 ,

1

t r

t r

t r

m n t r

l l

k k k
  

 
 

 


   

    (K-3) 

The result in Lemma 4.1 is then straightforward. This completes the proof.   
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Appendix 4.3. Proof of Proposition 4.5 

Assuming that Proposition 4.5 holds for all n<n0, the following then comes to 

prove that it still holds for n=n0.  

From (4.31) and (4.32), the nth-order GFRF can be recursively calculated with 

lower-order GFRF. From the assumption above, Proposition 1 holds for all 

lower-order GFRF, i.e., 𝐻𝛾
𝑗
(𝜶; 𝜔1, ⋯ , 𝜔𝛾) = 𝐻̃𝛾

𝑗
(𝜶; 𝜔1, ⋯ , 𝜔𝛾) + 𝜒𝑗

(𝛾)
, 𝛾 < 𝑛0 . 

Substitute these equations into (4.32),     

    
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jz jz

jz jz jz
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H H H

  
 
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 

 

 

     

 

   

  
     
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  

   

jz jz jz   ξ

ξ ξ

 (K-3) 

where   1 11 1
,

j

jz

j

j j jzj z
H p



 

    
 

         , which is the sum 

of monomials obtained by multiplication of 𝑝 − 𝜏 terms lower-order GFRF.  

Substitute (K-3) into (4.31) and (4.32), and considering that the inverse of Ln 

matrix in (4.30) can be given as 𝑳𝒏
−1 = 𝑳̃𝒏

−1 − 𝜹 , where 𝜹 =

∑ [(−1)𝑖𝑳̃𝒏
−1𝑩𝟐𝜺𝑖𝑲𝑳̃𝒏

−1]
∞
𝑖=0 , and 𝜺 = 𝑲𝑳̃𝒏

−1𝑩𝟐 . Proposition is straightforward 

according to (4.30).  This completes the proof.    
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Appendix 4.4. Proof of Proposition 4.6 

From Proposition 4.5, 𝐻𝑛
𝑗(𝜶; 𝜔1, ⋯ , 𝜔𝑛) = 𝐻̃𝑛

𝑗(𝜶; 𝜔1, ⋯ , 𝜔𝑛) + 𝜒𝑗
(𝑛)

.  

Substituting these equations into (4.29) 
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   

1

11

1,1 1,2 ,

1,1 ,

1,1 ,

( )

1

1 , , 0 1 1

( )

, , 1,1 1,2 ,
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



   


  





      

 
   

 

   
     

    

    

     



 1,1 1,2 ,

1,1 ,

1,1 ,

1,1 1,2 ,

1,1 ,

1,1 ,

1

( )

1,1 1,2 , , , 1

1 1 1 1

, , 1,1 1,2 ,

1
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( )     

r r

r r i

r r

j t r

t r
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n

vN
n
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x
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 

 

 
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 





      



   

  
         

 

     
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This completes the proof.   
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Appendix 5.1: Proof of Proposition 5.2. 

For the first-order GFRF, assuming that the input is given as 1j tu e   , the 

output of system (5.3) can be expressed as  

 
  1

0 1 1 , 1,2,3.
j ti i

ix H H e i
  

  (L-1) 

Substituting (L-1) into (5.3) and equating the coefficients of 1j te   to zero, the 

results are straightforward.   

For nth-order GFRF, giving the input as 1 nj t j t
u e

  
 , the output can then be 

given as 

   

 

1 1 2

1 1 2 1 2

1 2 3

1

0 1 1 2 1 2

   
 of  in   of ( , )  of ( , ) in 

3 1 2 3

 
 of ( ,

,

    , ,

i i i

i i i i i

i i i

i

j t j t j ti i i

i i i i

all combinations all permutations all combinations

j t j t j ti

i i i

all combinations

x H H e H e

H e

  

    

  

 

  

  



 

  



  
 

 
1 2 3 2 3

1

1 1

 
 of ( , , ) , ) in 

1

  
 of ( , , )  of ( , , ) in 

    + , ,

i i i i i

i in

i in i in

all permutations

j t j ti

n i in

all permutations all combinations

H e

   

 

   

   

 

 





 (L-2) 

where  1, , n   . Substituting (L-2) into (5.3) and equating the 

coefficients of 1 nj t j t
e

   to zero, the results in Proposition 5.2 can then be 

obtained. This completes the proof.  
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