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ABSTRACT	

Construction	 equipment	 plays	 an	 important	 role	 in	 civil	 engineering	 works,	

particularly	 in	 infrastructure	 projects	 such	 as	 railways	 and	 bridge	 construction.	

Unexpected	 failures	 of	 equipment	 can	 cause	 serious	 consequences	 such	 as	 increased	

cost,	 project	 period	 extension,	 or	 even	 safety	 issues	 in	 some	 cases.	 Even	 though	

different	 maintenance	 and	 reliability	 prediction	 methods	 have	 been	 applied	 by	

contractors	 on	 site,	 a	 significant	 proportion	 of	 equipment	 repairs	 still	 follow	

unexpected	failures.		

To	 bridge	 the	 gap	 between	 failure	 and	 preventive	 maintenance,	 it	 is	 important	 to	

discover	scientific	and	precise	methods	for	analyzing	and	predicting	the	failures	before	

they	happen.		

Traditionally,	there	are	a	number	of	standard	distribution	functions	which	can	be	used	

for	reliability	analysis.	However,	a	number	of	books	and	papers	have	stressed	that	the	

usual	 non‐repairable	 reliability	 methodologies,	 such	 as	 the	Weibull	 distribution,	 are	

not	appropriate	for	repairable	system	reliability	analyses	and	have	suggested	the	use	of	

Non‐homogeneous	Poisson	Process	(NHPP)	models.	Most	construction	equipment	and	

their	components	are	considered	to	be	in	the	category	of	repairable	system.	

Apart	 from	 the	 traditional	 distributions	 introduced	 above,	 researchers	 have	 applied	

more	sophisticated	data	mining	methods	to	equipment	reliability	analysis.	Time	series	

modeling	 is	 one	 of	 the	more	 advanced	 techniques	which	 this	 research	 is	 focused	 on.	

Time	series	analysis	can	be	used	to	describe	and	model	the	historical	data,	and	forecast	

the	future	values	of	the	series	based	on	the	past	values.	Construction	equipment	failure	

follows	the	time	series	pattern,	and	thus	it	can	be	adopted.	

The	aim	of	this	research	is	to	study	the	possible	methods	which	can	be	used	to	analyze	

reliability	and	predict	the	failures	of	construction	equipment	in	order	to	bridge	the	gap	

between	preventive	maintenance	and	repairs	and	help	 to	make	managerial	decisions	

on	equipment	allocation	and	maintenance.	The	objectives	are:		

a) To	increase	the	understanding	of	the	nature	of	failure	patterns	of	the	selected	

construction	equipment;	

b) To	estimate	the	reliability	characteristics	of	construction	equipment	in	precise	

quantitative	terms	by	using	power	law	models	and	time	series	models;	
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c) Compare	the	advantages	and	disadvantages	of	the	traditional	power	law	

models	with	those	of	time	series	models	in	construction	equipment	reliability	

analysis;	

d) To	give	recommendations	on	construction	equipment	management	and	

maintenance	based	on	the	research	findings.	

The	major	works	for	this	research	comprise	of	 literature	review,	data	collection,	data	

preparation,	 quantitative	 analysis,	 time	 series	 prediction	 and	 case	 studies.	 A	

comprehensive	literature	review	on	the	fields	of	reliability	and	construction	equipment	

has	been	conducted.	Quantitative	analysis	is	used	in	this	study	including	data	collection,	

modelling	 and	validation	with	 the	 aid	of	 computer	 software	packages.	Time	 series	 is	

the	 main	 method	 adopted	 for	 reliability	 analysis	 and	 failure	 prediction	 while	

traditional	 power	 law	models	 are	 used	 as	 baseline	 for	 comparison.	 Case	 studies	 are	

employed	 to	 study	 the	 reliability	 of	 construction	 equipment	 with	 real	 maintenance	

data	collected	from	construction	site.	

The	 major	 findings	 of	 the	 research	 include:	 the	 investigation	 and	 analysis	 of	 the	

importance	 of	 reliability	 and	 failure	 prediction	 for	 construction	 equipment	 from	 the	

aspects	of	cost,	time	and	safety;	testing	the	traditional	power	law	model	and	time	series	

model	 on	 failure	 prediction	 for	 construction	 equipment	 based	 on	 real	 industry	 data;	

studying	the	construction	equipment	reliability	and	failure	from	both	the	systems	and	

subsystems	 levels;	 taking	 related	 factors	 into	 consideration	 and	 evaluating	 the	

importance	of	these	factors	(e.g.	impact	from	Time	to	Repair)	in	the	modelling	process	

of	failure	prediction;	comparing	the	advantages	and	disadvantages	of	power	law	model	

and	 time	 series	model.	 Based	 on	 the	 results	 and	 findings	 of	 the	 data	modelling	 and	

analysis	 in	 this	 research,	 advice	 is	 given	 for	 managerial	 decisions	 on	 construction	

equipment	maintenance	to	promote	the	practice	of	repair	before	failures.	
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CHAPTER	1	 INTRODUCTION	

This	chapter	contains	six	sections.	Section	1.1	introduces	the	background	of	this	

research	such	as	the	general	research	area	and	reviews	of	previous	research	in	

the	area	of	construction	equipment	reliability;	Section	1.2	 indicates	 the	gap	 in	

the	 previous	 research	 and	 identifies	 the	 problem;	 Section	 1.3	 outlines	 the	

purposes	 and	 aims	 of	 this	 thesis;	 Section	 1.4	 states	 the	 significance	 of	 the	

research;	Section	1.5	describes	the	methods	used	in	the	study;	and	Section	1.6	

indicates	 the	 structure	 of	 the	 thesis	 and	 provides	 the	 mini‐synopses	 of	 each	

chapter.	

1.1	 BACKGROUND	OF	THE	RESEARCH	

Construction	 equipment	 is	 a	 key	 resource	 in	 all	 building	 and	 construction	

projects.	 Contractors	 owning	 a	 large	 equipment	 fleet	 or	 plant	 owners	 should	

take	 all	 necessary	measures	 to	maximize	 equipment	 utilization	 and	minimize	

equipment	 failures.	 Although	 different	 maintenance	 methods	 such	 as	

preventive	 maintenance	 and	 repairs	 have	 been	 adopted	 for	 construction	

equipment,	unexpected	breakdown	is	usually	difficult	to	predict.	According	to	a	

survey	 in	 the	US,	approximately	46%	of	major	equipment	repairs	 followed	an	

unexpected	 failure	 (Fan,	 2012).	 Therefore,	 predicting	 failures	 and	 repairing	

equipment	before	it	breaks	down	is	essential	for	effective	cost	management	of	

construction	equipment	and	the	project	as	a	whole.		

Repairs	are	often	easy,	but	 the	collateral	damage	caused	by	 the	breakdown	 is	

more	 severe.	For	example,	 a	$100	hose	 can	cause	a	$2,000	 loss	 in	production	

and	 a	 $500	 bearing	 can	 ruin	 a	 $7,000	 transmission	 (Vorster,	 2004).	 The	 cost	

reports	 usually	 do	 not	 comprise	 collateral	 costs	 so	 that	 it	 is	 very	 difficult	 to	

measure	 and	 the	 costs	 are	 easily	 disregarded.	 However,	 if	 completing	

construction	 on	 time	 and	 on	 budget	 is	 required,	 then	 the	 collateral	 cost	 of	

equipment	failures	in	the	field	cannot	be	simply	covered	without	question.	The	

frequency	of	 failures	and	 influence	 that	breakdowns	have	on	projects	are	key	

elements	in	managing	construction	equipment	or	the	whole	fleet.	
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Therefore,	 “prevention	 is	 better	 than	 cure”	 is	 the	 principle	 that	 equipment	

managers	 should	 adhere	 to	 in	 construction	 equipment	 management	 and	

maintenance.	 Good	 managers	 understand	 that	 maintenance	 actions	 taken	

before	failure	are	more	cost‐effective,	less	disruptive,	and	easier	to	manage	than	

repair	actions	 taken	after	 the	machine	has	broken	down	and	defined	both	 the	

time	and	place	 for	 the	urgently	required	repair	action.	Many	contractors	have	

taken	such	measures	as	monitoring	and	tracking	of	the	condition	of	equipment	

to	 identify	 signs	 of	 failure	 or	 near‐failure	 and	 conducting	 repairs	 or	

replacements	 of	 some	 components	 based	 on	 the	 manufacturer’s	

recommendations	 or	 on	 industrial	 benchmarks	 of	 the	 expected	 life	 of	

equipment	 components.	 However	 the	 effectiveness	 of	 such	 strategies	 is	 still	

unsatisfactory	as	large	numbers	of	unexpected	failures	still	occur.		

There	 has	 been	 some	 research	 undertaken	 in	 the	 area	 of	 construction	

equipment	 reliability	 and	 maintenance	 but	 mostly	 in	 qualitative	 terms;	 few	

have	been	interpreted	on	a	quantitative	level	with	reasonable	accuracy.	Vorster	

(2005)	 used	 an	 impending	 failure	matrix	 to	 demonstrate	 strategies	 to	 bridge	

the	 gap	 between	 preventive	 maintenance	 and	 repair.	 Steward	 (2006)	

performed	 lifecycle	 research	 on	 several	 construction	 equipment	 pieces	

(excavator,	 wheel‐loader	 life,	 crawler‐bulldozer,	 backhoe‐loader,	 and	

articulated‐dump‐truck)	by	dividing	the	equipment	life	into	B20,	B50	and	B80.	

Fan	 (2012)	 carried	 out	 a	 comparative	 study	 on	 construction	 equipment	

reliability	with	power	law	model	and	time	series	model,	although	it	was	focused	

on	the	comparison	of	the	two	research	methods.	

It	 is	essential	 to	 find	a	more	scientific	and	precise	way	to	analyze	and	predict	

construction	 equipment	 failures	 before	 they	 happen.	 Some	 researchers	 have	

done	 relevant	 research	 on	 construction	 equipment	maintenance	 but	 yet	 have	

not	 developed	 quantitative	 measures	 for	 predicting	 failures	 with	 reasonable	

accuracy.	As	computer	technology	has	developed	rapidly	in	the	last	few	decades,	

we	believe	that	with	the	aid	of	advanced	computational	tools	and	mathematical	

concepts	such	time	series	forecast,	the	problem	can	be	resolved	more	effectively.		
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1.2	 PROBLEM	STATEMENT	

The	 unexpected	 failure	 of	 construction	 equipment	 usually	 causes	 large	 repair	

cost	 and	 even	 more	 severe	 collateral	 costs.	 Repair	 after	 breakdown	 and	

preventive	maintenance	are	easy,	 like	work	is	set	 in	a	maintenance	check,	etc.	

Based	 on	 a	 preventive	 maintenance	 program,	 a	 piece	 of	 equipment	 can	 be	

allowed	to	run	to	failure	before	any	extra	measure	is	taken.	However,	this	kind	

of	behavior	neglects	the	disrupted	operations,	increased	repair	costs,	collateral	

cost	of	lost	production,	and	crisis	management.		

Therefore,	predicting	equipment	failures	is	necessary	to	reduce	repair	cost	and	

manage	 project	 and	 equipment	 costs.	 There	 are	 some	 articles	 stressing	 the	

importance	 of	 repair	 before	 failure,	 however,	 few	 present	 effective	 ways	 of	

predicting	 failures	 accurately	 (Steward,	 2006;	 Steward,	 2005;	 Vorster,	 2005).	

This	 is	 a	 motivating	 factor	 for	 the	 aim	 of	 this	 research,	 i.e.	 quantify	 the	

equipment	 reliability	 and	 failure	 indicators	 to	 minimize	 unexpected	 failures.	

This	 research	adopts	 two	different	 reliability	modelling	approaches	 to	predict	

equipment	 failures	 and	 to	 bridge	 the	 preventive	 maintenance	 and	 repairs,	

which	is	also	known	as	predictive	maintenance.		

Models	and	 rules	based	on	power	 law	and	 time	series	 techniques	are	 studied	

and	 tested.	 The	 results	 obtained	 from	 these	 studies	 could	 possibly	 tell	

equipment	 managers	 what	 must	 be	 done,	 when	 it	 must	 be	 done	 and	 so	 on	

before	 a	 failure	happens.	Questions	 such	 as	 “what	 is	 the	 time	 remaining	until	

the	next	major	failure	for	this	piece	of	equipment?”,	“what	are	the	failures	which	

occur	frequently,	and	what	are	the	prevailing	conditions	associated	with	these	

failures?”	 can	 perhaps	 be	 answered.	 Actions	 could	 be	 taken	 before	 the	

equipment	failures	actually	happen.	The	findings	from	this	research	will	benefit	

the	entire	construction	and	building	industry	by	facilitating	improved	proactive	

equipment	maintenance	management.			

Traditional	methods	 for	 equipment	 reliability	 analysis	 are	 power	 law	models	

and	Weibull	distribution.	However,	we	find	that	time	series	forecast	can	be	used	

for	 failure	 prediction	 and	 postulate	 it	 would	 be	 more	 accurate	 than	 those	

traditional	 methods.	 A	 time	 series	 is	 a	 set	 of	 observations	 measured	
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sequentially	through	time	(Chatfield,	2000).	Time	series	analysis	can	be	used	to	

describe	 and	 model	 the	 selected	 data,	 and	 forecast	 the	 future	 values	 of	 the	

series	based	on	the	past	values.	Construction	equipment	failure	follows	the	time	

series	 analysis	 pattern.	 Particularly	 the	 highly	 popularized	 Box‐Jenkins	

autoregressive	 integrated	 moving	 average	 (ARIMA)	 model	 has	 been	

successfully	applied	in	not	only	economic	time	series	forecasting,	but	also	as	a	

promising	 tool	 for	 modeling	 the	 empirical	 dependencies	 between	 successive	

times	 between	 failures	 (Walls	 &	 Bendell,	 1987).	 	 This	 research	 adopts	 time	

series	 techniques	 to	extract	 rules	and	patterns	 from	 large	amounts	of	data	on	

equipment	 failures	 collected	 from	 the	 contractors	 for	 construction	equipment	

failure	analysis	 and	prediction.	The	 results	 from	 these	 two	different	modeling	

approaches	are	analyzed	and	compared	in	the	research.		

In	 this	 project,	 both	 descriptive	 and	 predictive	 models	 of	 construction	

equipment	 failures	 are	developed	 through	applying	 time	 series	 techniques	on	

the	failure	events.	The	goal	is	to	have	zero	on‐shift	failures	and	we	believe	that	

this	research	can	help	researchers,	contractors	and	equipment	managers	move	

closer	 to	 that	 target.	 The	 study	 also	 reveals	 that	 reliability	 analysis	 for	

construction	 equipment	 can	 be	 used	 for	 designing	 a	 predictive	 maintenance	

program.	

1.3	 RESEARCH	OBJECTIVES	

This	research	aims	to	find	a	way	to	analyze	and	predict	construction	equipment	

failures	to	reduce	the	cost	caused	by	emergency	repairs.	The	objectives	are:	

a) To	increase	the	understanding	of	the	nature	of	failure	patterns	of	the	

selected	construction	equipment;	

b) To	estimate	the	reliability	characteristics	of	construction	equipment	in	

precise	quantitative	terms	by	using	power	law	models	and	time	series	

models;	

c) Compare	the	advantages	and	disadvantages	of	the	traditional	power	law	

models	with	those	of	time	series	models	in	construction	equipment	

reliability	analysis;	
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d) To	give	recommendations	on	construction	equipment	management	and	

maintenance	based	on	the	research	findings.	

Methodologies	 and	 methods	 adopted	 for	 achieving	 these	 objectives	 are	

presented	in	the	Section	1.5.	

1.4	 SIGNIFICANCE	OF	THE	RESEARCH	

This	 research	 has	 both	 theoretical	 and	 practical	 values	 which	 are	 elaborated	

below.	

There	 is	 presently	 a	 lack	 of	 existing	 research	 on	 construction	 equipment	

reliability	 analysis	 and	 failure	 prediction,	 especially	 utilizing	 quantitative	

methods.	 Most	 research	 on	 construction	 equipment	 management	 and	

maintenance	 are	 performed	 using	 qualitative	 methodologies	 (Steward,	 2007;	

Vorster	2007).		

Although	 there	 are	 some	 published	 works	 on	 the	 reliability	 of	 plants	 or	

equipment	using	quantitative	methods	 in	other	 industries	 such	as	mining	and	

the	 aviation	 industries,	 little	 research	 has	 been	 done	 in	 the	 building	

construction	 industry	 (Barabady	 &	 Kumar,	 2008;	 Weckman,	 et	 al,	 2001).	

Furthermore,	 most	 of	 these	 researchers	 used	 traditional	 reliability	 methods	

such	as	Weibull	distribution;	the	most	common	probability	distributions	will	be	

introduced	 briefly	 in	 Chapter	 2.	 Data	 mining	 methods	 such	 as	 time	 series	

analysis	prediction	are	relatively	new	for	reliability	analysis.	These	techniques	

are	still	under	development	in	reliability	engineering,	especially	in	the	building	

construction	industry.	

The	 contribution	 and	 uniqueness	 of	 this	 research	 is	 that	 we	 adopted	 both	

traditional	 probability	 distribution	 methods	 and	 more	 advanced	 data	 mining	

methods	such	as	time	series	 for	reliability	analysis	of	construction	equipment.	

Comparison	of	the	two	methods	is	also	made	at	the	end	of	the	thesis.	Moreover,	

case	 studies	 are	 conducted	 in	 this	 research	 so	 that	 real	 life	 cases	 about	 the	

failure	and	maintenance	of	construction	equipment	provide	strong	supporting	

evidence	to	the	theoretical	framework.		
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1.5	 RESEARCH	METHODOLOGY	

The	 selection	 of	 appropriate	 research	 method	 depends	 on	 the	 research	

objectives	 and	 questions.	 Appropriate	 research	 methods	 help	 to	 logically	

underpin	 the	 design	 of	 research	 questions,	 data	 collection,	 data	 analysis	 and	

conclusions.	 The	 major	 research	 work	 in	 this	 research	 includes	 literature	

review,	 data	 collection,	 data	 preparation,	 quantitative	 analysis,	 time	 series	

prediction	and	case	study.	The	details	of	these	methods	are	described	as	follows:	

Literature	review	

A	comprehensive	literature	review	has	been	conducted	in	this	thesis.	It	builds	a	

solid	 theoretical	 understanding	 of	 the	 topic	 by	 reviewing	 previous	 relevant	

research	work	 to	 justify	 the	originality	of	 this	 research.	Literature	 review	 is	a	

critical	endeavor	for	this	research.	As	opined	by	previous	researchers,	there	is	a	

necessity	to	uncover	what	is	already	known	in	the	body	of	knowledge	prior	to	

initiating	 any	 research	 study.	 In	 this	 research,	 literature	 including	 books,	

journals,	conference	papers,	on‐line	sources	and	others	which	have	covered	the	

topic	of	 reliability	engineering	and	 construction	equipment	maintenance	have	

been	reviewed	and	studied.		

Quantitative	analysis	

Quantitative	 research	 refers	 to	 the	 systematic	 empirical	 investigation	 of	

quantitative	 properties	 and	 phenomena	 and	 their	 relationships.	 Quantitative	

analysis	 includes	 developing	 or	 employing	 mathematical	 models,	 theories	 or	

hypotheses	 pertaining	 to	 phenomena.	 Quantitative	 analysis	 in	 this	 study	

includes	 data	 collection,	 modelling,	 validation	 and	 employment	 by	 using	

computer	 software	 such	 as	Microsoft	 Excel,	 RGA	 (ReliaSoft,	 2010),	 JMP	 (SAS,	

2012),	and	DTREG	(Sherrod,	2003).	Data	analysis	includes	descriptive	analysis	

and	 predictive	 analysis,	 and	 the	 latter	 is	 conducted	 in	 this	 research.	 The	

modelling	 approaches	 are	 comprised	 of	 traditional	 statistical	 analysis	 Non‐

homogeneous	Poisson	Process	(NHPP)	and	time	series	prediction.	

Time	Series	analysis	and	forecast	
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Time	series	is	used	for	reliability	analysis	and	failure	prediction	of	construction	

equipment	in	this	research.	ARIMA	modelling	has	been	studied	and	used	in	this	

case	and	the	results	are	compared	with	the	ones	obtained	from	the	traditional	

Power	 Law	 models.	 The	 three	 main	 stages	 are	 model	 identification,	 model	

fitting	and	model	checking	and	have	been	rigorously	implemented	and	repeated	

to	achieve	the	objectives	of	this	study.	The	concept	of	time	series	analysis	and	

forecast	is	introduced	in	Chapter	3.	

Case	Study	

Case	 study	 is	 an	 important	 research	 strategy	 employed	 in	 this	 project	 for	

studying	the	reliability	of	the	construction	equipment.	Real	data	collected	from	

construction	sites	are	screened	and	analyzed	by	using	the	selected	data	mining	

algorithms.	Results	such	as	equipment	failure	patterns	and	prototype	decision	

support	 module	 are	 directed	 and	 validated.	 For	 eight	 groups	 of	 different	

construction	equipment	(i.e.,	bulldozer,	scraper),	 failure	and	maintenance	data	

have	been	obtained	from	a	Canadian	contractor.	Discussions	and	comparisons	

are	presented	after	the	presentation	of	the	result	 from	the	analysis	of	 the	real	

data.		

Factors	affecting	equipment	failures	are	also	quantified	for	future	construction	

equipment	management	and	maintenance.	

1.6	 OUTLINE	OF	THE	THESIS	

This	thesis	consists	of	seven	chapters	which	are	explained	as	follows.	

Chapter	1	introduces	the	background	of	the	research,	problem	statement,	scope	

of	the	research,	aims	and	objectives,	research	methodology,	significance	of	the	

research,	and	outline	of	the	thesis.	

Chapter	 2	 presents	 a	 comprehensive	 literature	 review	 for	 this	 research.	

Fundamental	 theories	 of	 reliability	 engineering	 such	 as	 the	 definition	 and	

characteristics	of	reliability	are	explained.	Literature	on	reliability	engineering	

in	 the	 construction	 industry	 and	 other	 relevant	 industries	 (i.e.,	 mining,	

manufacture)	 is	 reviewed	 and	 analyzed.	 Basic	 construction	 equipment	
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maintenance	methods	are	explored	with	focus	on	the	optimum	preventive	and	

predictive	maintenance.	

Chapter	 3	 examines	 the	 reliability	 modelling	 approach	 which	 includes	

traditional	statistical	methods	and	data	mining	methods.	Power	Law	Model	and	

time	series	prediction	is	studied	in	depth	and	introduced	for	the	application	in	

the	case	study	in	the	next	chapter.	

Chapter	 4	 demonstrates	 the	 reliability	 analysis	 and	 failure	 prediction	 of	

construction	 equipment	 based	 on	 real	 industry	 data	 through	 case	 study.	 The	

presentation	 is	 made	 in	 the	 order	 of	 data	 modelling	 process,	 which	 is:	 data	

preparation,	data	analysis/modelling,	model	validation	and	model	deployment.	

Chapter	 5	 contains	 a	 reliability	 analysis	 of	 the	 critical	 subsystems	 of	 some	

construction	equipment.	This	research	not	only	focuses	on	the	systems,	but	also	

explores	the	equipment	from	the	lower	level	of	subsystems.	Pareto	analysis	and	

other	 methods	 were	 employed	 to	 identify	 the	 critical	 components	 for	

construction	 equipment.	 Attributes	 being	 considered	 include	 the	 counts	 of	

failures,	TBF	and	TTR.	Reliability	 importance	analysis	 is	 important	because	by	

identifying	 the	 critical	 (weakest)	 components	 of	 a	 system	 and	 implementing	

appropriate	measures,	the	system	reliability	can	be	improved.	

Chapter	 6	 presents	 the	 findings	 from	 literature	 review,	 case	 study	 and	 data	

analysis.	 There	 are	 six	major	 findings	 summarized	 in	 this	 thesis.	 Comparison	

between	 the	 Power	 Law	 Model	 and	 time	 series	 analysis	 is	 made	 with	

discussions	in	this	chapter.	

Chapter	 7	 concludes	 the	 research	 works	 and	 the	 thesis	 as	 well	 as	 gives	

suggestions	on	future	research.	
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CHAPTER	2	 LITERATURE	REVIEW	

This	 chapter	 introduces	 the	 basic	 concepts	 and	 theories	 of	 construction	

equipment,	 maintenance,	 and	 reliability	 engineering	 obtained	 from	 literature	

review.	 Section	 2.1	 presents	 the	 introduction	 of	 construction	 equipment	 and	

common	maintenance	methods.	This	section	also	examines	and	summarizes	the	

importance	 of	 conducting	 reliability	 analysis	 for	 construction	 equipment.	

Section	2.2	introduces	the	fundamental	theory	of	reliability,	which	includes	the	

definitions	of	reliability	and	failure,	characteristics	of	reliability,	availability	and	

maintainability,	and	probability	distributions	 for	reliability	evaluation.	Section	

2.3	 shows	 the	 review	 of	 the	 past	 research	 on	 reliability	 engineering	 in	

construction	industry	and	other	relevant	industries.				

2.1	 CONSTRUCTION	EQUIPMENT	RELIABILITY	AND	MAINTENANCE	

2.1.1	 CONSTRUCTION	EQUIPMENT	

Construction	 processes	 require	 many	 different	 types	 of	 equipment.	 Some	

equipment	 is	 designed	 for	 specific	 purposes	 or	 projects	 and	 might	 be	

considered	 custom	 made.	 However,	 most	 construction	 equipment	 will	 serve	

with	flexibility	in	a	variety	of	projects	or	jobs.	

Common	construction	equipment/plants	include:	bulldozers,	scrapers,	graders,	

tractor	 shovels,	 excavators,	 transport	 vehicles,	 excavators,	 transport	 vehicles,	

hoists,	cranes,	and	concreting	plant	and	so	on.		

Importance	of	Construction	Equipment/Plant	

Items	 of	 builder’s	 plant	 ranging	 from	 small	 hand	 held	 power	 tools	 to	 larger	

pieces	 of	 plant	 such	 as	 mechanical	 excavators	 and	 tower	 cranes	 can	 be	

considered	for	use	for	one	or	more	of	the	following	reasons:	

o Increased	production;	

o Reduction	in	overall	construction	costs;	
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o Eliminate	 heavy	 manual	 work	 thus	 reducing	 fatigue	 and	 as	 a	

consequence	of	increasing	productivity;	

o Maintain	 the	 high	 standards	 required	 particularly	 in	 the	 context	 of	

structural	engineering	and	foundation	works.	

	

Trucks	(240H_075)	 Scrapers	(631E_016)	

	

Wheel	loaders	(988B_034)	 Bulldozers	(D11_107)	

	

Grader	(GRAD_035)	 Tractor	(HYCR_035)	
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Shovel	(SHOVEL~1)	 	

Figure	2.1	Examples	of	Construction	Equipment	

Productivity	of	a	Plant	

From	the	economic	consideration,	an	economic	plant	must	be	fully	utilized	and	

not	 left	standing	 idle	since	 the	plant,	whether	hired	or	owned,	will	have	 to	be	

paid	 for	 even	 if	 it	 is	 non‐productive.	 Full	 utilization	 of	 plant	 is	 usually	

considered	to	be	in	the	region	of	85%	of	on‐site	time	(Chudley	&	Greeno,	2006).	

Thus,	 to	 maintain	 a	 high	 productivity	 of	 construction	 equipment	 and	 not	 to	

disrupt	 the	 construction	 programme,	 making	 an	 allowance	 for	 routine,	 daily	

and	planned	maintenance	and	avoiding	the	unexpected	breakdowns	is	essential.		

The	 factors	affecting	 the	productivity	of	a	plant	may	 include	 task	efficiency	of	

the	 machine,	 operator’s	 efficiency,	 and	 for	 some	 special	 equipment	 such	 as	

excavators	may	also	take	type	of	soil	into	consideration.	Some	research	articles	

have	pointed	out	that	machines	are	often	traded	or	replaced	at	some	multiple	of	

the	 engine	 life,	 with	 transmissions,	 hydraulic	 pumps,	 and	 undercarriage	

influencing	 the	decision	 to	various	degrees	depending	on	 the	 type	of	machine	

and	working	conditions	(Kannan,	2011;	Steward,	2004).	

2.1.2	 SIGNIFICANCE	OF	CONSTRUCTION	EQUIPMENT	RELIABILITY		

The	 unexpected	 failures	 of	 construction	 equipment	 usually	 cause	 a	 large	

amount	 of	 repair	 costs	 and	 even	 more	 severe	 collateral	 costs.	 Taking	 repair	

after	breakdown	and	preventive	maintenance	is	an	easy	strategy,	as	time	is	set	

by	the	maintenance	cycle,	task	is	arranged	in	a	maintenance	check,	and	work	is	

performed	 in	 agreement	with	operations.	Based	on	a	preventive	maintenance	

program,	a	piece	of	equipment	can	be	allowed	to	run	to	failure	before	any	extra	
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measure	 is	 taken.	 However,	 this	 kind	 of	 behavior	 disregard	 the	 disrupted	

operations,	 increased	repair	costs,	collateral	cost	of	 lost	production,	and	crisis	

management.		

The	importance	of	construction	equipment	reliability	analysis	and	its	effects	on	

construction	 projects	 can	 be	 explored	 from	 the	 following	 three	 aspects:	 cost,	

time	and	safety	(Figure	2.2).		

	

Figure	2.2	Importance	of	construction	equipment	reliability		

Equipment	Failure	Cost	

Equipment	 costs	 can	normally	be	divided	 into	 three	 categories:	owning	 costs,	

operating	costs,	and	consequential	costs.	Owning	costs	covers	transactions	such	

as	 purchase,	 finance	 and	 resale;	 operating	 costs	 includes	 fuel,	 consumables,	

repair,	 and	 maintenance.	 The	 third	 category,	 consequential	 costs	 is	 widely	

acknowledged	 but	 often	 disregarded.	 They	 may	 cover	 the	 intangible	 costs	

arising	from	the	fact	that	equipment	often	performs	less	well	than	expected	and	

thereby	impacts	on	many	aspects	of	the	production	process.	

Many	authors	have	mentioned	consequential	costs	in	their	research.	The	basic	

premise	 is	 that	 equipment	 failure	 forces	 construction	 supervisors	 to	 change	



13	
	

previously	laid	and	presumably	optimal	construction	plans,	and	these	changes	

sequentially	cause	consequential	costs.		

Project	Schedule	

From	 the	 perspective	 of	 project	 schedule,	 unexpected	 breakdown	 of	

construction	equipment	may	 terminate	an	aspect	of	 the	work	and	 this	 in	 turn	

may	delay	the	pace	of	the	project.	

Safety	Issues	

Safety	 is	another	noticeable	 issue	in	construction	equipment	management	and	

maintenance.		In	1968	(H.M.)	over	200	men	lost	their	lives	and	a	further	40,000	

were	 injured	 on	 construction	 sites.	 These	 figures	 reflect	 human	 suffering	 and	

significant	material	 loss,	 and	 it	 should	be	 everyone’s	 concern	 to	 try	 to	 reduce	

them.		

The	 unreliability	 of	 equipment	 can	 cause	 serious	 accidents.	 The	 reasons	may	

include	 machines	 being	 overloaded,	 continuous	 strain	 on	 a	 machine	 or	 part,	

machines	 used	 incorrectly,	 bad	 or	 lack	 of	maintenance,	 etc.	 any	 of	 the	 above	

misbehavior	 may	 lead	 to	 a	 dangerous	 occurrence,	 and	 it	 is	 only	 when	 an	

accident	(an	unplanned	event	resulting	in	personnel	injury)	results	that	people	

get	really	concerned.	

2.1.3	 CONSTRUCTION	EQUIPMENT	RELIABILITY	AND	MAINTENANCE	

Construction	 equipment,	 like	 any	 other	 machine,	 can	 be	 expected	 to	 break	

down	during	 its	working	 life.	 This	may	be	due	 to	 normal	wear	 and	 tear,	 or	 a	

sudden	 failure	 or	 a	 component	 part.	 The	 primary	 purpose	 of	 providing	

maintenance	is	to	reduce	the	incidence	of	failure,	by	either	replacement,	repair	

or	 servicing,	 in	 order	 to	 achieve	 an	 economical	 level	 of	 utilization	 during	 the	

working	life	of	the	machine	(Vorster,	1987).		

For	 the	majority	manufacturing	or	production	plants,	maintenance	costs	are	a	

significant	part	 of	 the	 total	 operating	 costs.	 In	 some	 cases,	maintenance	 costs	

can	 account	 for	 between	 15%	 and	 60%	 of	 the	 total	 cost	 of	 production.	

According	 to	a	 recent	 survey,	 it	 seems	 that	one‐third	of	 all	maintenance	 costs	
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are	due	to	unnecessary	or	improperly	carried	out	maintenance.	For	an	instance,	

the	 U.S.	 construction	 industry	 spends	 more	 than	 $200	 billion	 each	 year	 on	

maintenance	 of	 plant	 equipment,	 which	 proves	 the	 importance	 of	 proper	

maintenance	operations	(Mobley,	2002).	

The	general	opinion	has	been	“Maintenance	is	a	necessary	evil”	or	“Nothing	can	

be	done	to	improve	maintenance	costs”	 in	the	past	few	decades.	However,	 the	

development	of	 computer‐based	 instrumentation	 that	 can	be	used	 to	monitor	

the	 operating	 condition	 of	 plant	 equipment,	 machinery	 and	 systems,	 has	

provided	the	means	to	manage	maintenance	operations.	Main	functions	include	

reducing	or	eliminating	unnecessary	repairs,	and	prevent	catastrophic	machine	

failures.	

The	maintenance	 options	 are	 shown	 in	 Figure	 2.3.	 There	 are	 generally	 three	

recommended	 types	 of	 maintenance	 for	 equipment	 or	 plant,	 which	 are:	

maintenance	 improvement,	 corrective	 maintenance,	 and	 preventive	

maintenance.	 Maintenance	 improvement	 is	 the	 first	 and	 most	 valuable	 one	

which	endeavors	to	reduce	or	remove	the	need	for	maintenance.		

Corrective	 maintenance	 deals	 with	 the	 emergency,	 repair,	 remedial	 and	

unscheduled	events.	Repairs	are	always	needed.	At	present,	most	maintenance	

is	corrective.	 	However,	 there	 is	a	need	of	detecting	 incipient	problems	before	

they	cause	serious	failures	as	well	as	correcting	the	defects	at	the	most	efficient	

cost.	This	demand	lead	the	focus	to	the	third	type	of	maintenance	–	preventive	

maintenance.	
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Figure	2.3	Traditional	construction	equipment	maintenance	options	(Harris	and	

McCaffer,	1991)	

	There	 are	 three	 types	 of	 preventive	 maintenance:	 reactive,	 condition	

monitoring,	and	scheduled.		

The	purpose	of	preventive	maintenance	is	to	prevent	unscheduled	breakdown	

of	 construction	 equipment	 and	 early	 equipment	 damage	 that	 would	 lead	 to	

corrective	maintenance	or	other	repair	activities.	

Schedules	 of	 equipment	 repairs	 in	 preventive	 maintenance	 management	 are	

mostly	 based	 on	 the	MTTF	 statistic.	 The	MTTF	 or	 bathtub	 curve	 (Figure	 2.4)	

indicates	that	a	new	machine	has	a	high	probability	of	failure	at	the	beginning.	

After	 that	 the	 probability	 of	 failure	 is	 basically	 stable	 for	 a	 period	 and	 will	

increase	at	the	end	of	the	machine	life.	

The	 actual	 programs	 of	 preventive	maintenance	 implementation	 can	 be	 very	

different	depends	on	the	situation.	Some	simple	programs	might	comprise	only	

minor	 adjustments	 and	 lubrication.	 On	 the	 other	 hand,	 comprehensive	

preventive	maintenance	 programs	 usually	 comprise	 not	 only	 lubrication,	 but	

also	repairs,	adjustments,	and	machine	rebuilds	for	all	critical	plant	machinery.	
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Nevertheless,	the	common	determinant	for	all	of	these	preventive	maintenance	

programs	is	–	time.	

Overall,	 preventive	 maintenance	 has	 many	 advantages	 compared	 with	

corrective	or	 other	maintenance.	Use	of	 on‐condition	or	 condition‐monitoring	

techniques	is	usually	better	than	fixed	intervals.	

2.1.4	 PREDICTIVE	MAINTENANCE	

The	 common	premise	of	predictive	maintenance	 is	 that	 regular	monitoring	of	

the	actual	mechanical	condition,	operating	efficiency,	and	other	indicators	of	the	

operating	 condition	 of	 machine‐trains	 and	 process	 systems	 will	 provide	 the	

data	 required	 to	ensure	 the	maximum	 interval	between	 repairs	and	minimize	

the	number	and	cost	of	unscheduled	outages	created	by	machine‐train	failures.	

Predictive	maintenance	is	a	philosophy	or	attitude	that,	simply	stated,	uses	the	

actual	 operating	 condition	 of	 plant	 equipment	 and	 systems	 to	 optimize	 total	

plant	 operation.	 A	 comprehensive	 predictive	 maintenance	 management	

program	 uses	 the	 most	 cost‐effective	 tools	 to	 secure	 the	 actual	 operating	

condition	 of	 critical	 components/	 subsystems	 and	 based	 on	 these	 real	 data	

plans	all	the	necessary	maintenance	activities.		

Predictive	maintenance	is	a	condition‐driven	preventive	maintenance	program.	

Instead	 of	 relying	 on	 industrial	 or	 in‐plant	 average‐life	 statistics	 to	 schedule	

maintenance	 activities,	 predictive	 maintenance	 uses	 direct	 monitoring	 of	 the	

mechanical	condition,	system	efficiency,	and	other	 indicators	to	determine	the	

actual	MTTF	or	loss	of	efficiency	for	the	equipment.	

Significance	of	Predictive	Maintenance	

Predictive	maintenance	is	not	a	substitute	for	the	more	traditional	maintenance	

management	methods.	 It	 is,	however,	a	valuable	addition	 to	a	 comprehensive,	

total‐plant	maintenance	program.	Where	traditional	maintenance	management	

programs	 rely	 on	 routine	 servicing	 of	 all	 machinery	 and	 fast	 response	 to	

unexpected	 failures,	 a	 predictive	 maintenance	 program	 schedules	 specific	

maintenance	tasks	as	they	are	actually	required	by	plant	equipment.	Predictive	
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maintenance	can	provide	a	more	reliable	scheduling	tool	for	routine	preventive	

maintenance	 programs	 and	 diminish	 the	 number	 of	 unexpected	 failures.	 This	

research	 aims	 to	 predict	 the	 failures	 based	 on	 reliability	 analysis	 and	 the	

experiment	results	can	be	used	to	plan	predictive	maintenance.	

2.2.	 INTRODUCTION	TO	RELIABILITY	ENGINEERING	

2.2.1	 DEFINITIONS	OF	RELIABILITY	

The	definition	of	Reliability	given	in	BS4778	is	“The	ability	of	an	item	to	perform	

a	required	function	under	stated	conditions	for	a	stated	period	of	time”.	The	usual	

engineering	 definition	 of	 Reliability	 stated	 in	 O’Conner	 (2002)’s	 book	 is	 “The	

probability	 that	an	 item	will	perform	a	 required	 function	without	 failure	under	

stated	conditions	for	a	stated	period	of	time”.		

Reliability	 can	 also	 be	 expressed	 as	 the	 number	 of	 failures	 over	 a	 period.	

Mathematically,	 reliability	 can	 be	 defined	 as	 shown	 in	 Formula	 2.1,	 which	

represents	the	likelihood	of	a	given	system	being	operational	during	the	project	

time.		

R(t)	=	P	(T	>	t),	 t	≥	0	

	 	 	 	 		[2.1]	

T	 is	a	random	variable	representing	the	time	to	failure,	and	t	the	mission	time.	

Reliability	is	the	probability	that	a	system	will	be	successfully	operating	during	

the	mission	time	(Bauer,	2009).	

The	definition	of	Failure	given	in	BS4778	is	“The	termination	of	the	ability	of	an	

item	to	perform	a	required	function”.	Mathematically,	probability	of	failure,	often	

denoted	as	F(t),	is	the	probability	that	the	system	will	fail	by	time	t:	

F(t)	=	P	(T	≤	t),	 t	≥	0	

	 	 	 	 	[2.2]	
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F(t)	 is	 also	 called	 the	 failure	 distribution	 function,	 or	 the	 cumulative	 failure	

distribution	function.	The	relationship	of	reliability	and	failure	is	defined	as:		

R(t)	=	1	–	F(t)															 	 	 	 [2.3]	

The	failure	density	function,	f(t),	which	is	equivalent	to	the	probability	density	

function,	is	derivative	of	F(t).			

	 	 																		[2.4]	

When	reliabilities	are	being	computed,	it	is	the	function	R(t)	which	is	normally	

used.	 When	 failure	 probabilities	 are	 being	 computed,	 it	 is	 the	 function	 F(t)	

which	 is	 normally	 used.	 In	 addition,	 the	 diagram	 of	 the	 probability	 density	

function	(PDF)	provides	a	visual	representation	of	the	failure	distribution.	

When	measuring	or	predicting	reliability,	it	is	necessary	to	distinguish	between	

repairable	and	non‐repairable	equipment.	

Non‐repairable	 equipment	 can	 be	 systems	 comprised	 of	 many	 parts	 or	

individual	 parts.	When	a	part	 fails,	 the	 system	usually	 fails	 and	 therefore,	 the	

system	 reliability	 is	 a	 function	 of	 the	 time	 to	 the	 first	 part	 failure.	 For	 non‐

repairable	equipment,	during	the	item’s	life	the	instantaneous	probability	of	the	

first	and	only	failure	is	called	the	hazard	rate.	

For	 repairable	 equipment,	 reliability	 is	 the	 probability	 that	 more	 than	 one	

failure	can	occur	in	the	period	of	interest.	This	differs	from	hazard	rate	for	non‐

repairable	 items,	 and	 can	 be	 described	 as	 the	 failure	 rate	 or	 the	 rate	 of	

occurrence	of	 failures	 (ROCOF).	Construction	equipment	 is	usually	 considered	

to	be	in	the	category	of	repairable	systems.	

2.2.2	 CHARACTERISTICS	OF	RELIABILITY	

There	are	quite	a	few	indices	existing	for	quantifying	the	reliability	of	a	product,	

which	are	described	as	follows.	

For	non‐repairable	items:	
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Mean	time	to	failure	(MTTF)	‐	The	definition	of	MTTF	given	in	BS4778	is	“For	a	

stated	period	in	the	life	of	an	item,	the	ratio	of	the	cumulative	time	for	a	sample	

to	 the	 total	 number	 of	 failures	 in	 the	 sample	 during	 the	 period	 under	 stated	

conditions”.	

For	repairable	items:	

Failure	rate	 (Hazard	rate)	 ‐	The	mean	number	of	 failures	 in	a	given	 time.	The	

definition	of	observed	failure	rate	given	in	BS4778	is	“For	a	stated	period	in	the	

life	 of	 an	 item,	 the	 ratio	 of	 the	 total	 number	 of	 failures	 in	 a	 sample	 to	 the	

cumulative	 observed	 time	 on	 that	 sample”.	 The	 observed	 failure	 rate	 is	 to	 be	

associated	with	particular	and	stated	time	intervals	(or	summation	of	intervals)	

in	the	life	of	the	item,	and	under	stated	conditions.	

Mean	time	between	failures	(MTBF)	‐	The	definition	of	MTBF	given	in	BS4778	is	

“For	a	stated	period	in	the	life	of	an	item,	the	mean	value	of	the	length	of	time	

between	consecutive	failures	computed	as	the	ratio	of	the	cumulative	observed	

time	to	the	number	of	failures	under	stated	conditions”.	For	repaired	items,	it	is	

often	assumed	 that	 failures	occur	 at	 a	 constant	 rate,	 in	which	 case	 the	 failure	

rate	λ=	(MTBF)‐1.	

Failure	Rate	(Hazard	Rate)	

In	 terms	 of	 failure,	 the	 failure	 rate	 is	 a	measure	 of	 the	 rate	 at	which	 failures	

occur.		

The	failure	rate	can	be	defined	as	

																								 		 	 [2.5]	

The	hazard	function	h(t)	is	the	instantaneous	failure	rate,	which	can	be	defined	

as	 the	 limit	of	 the	 failure	rate	as	 the	 interval	approaches	zero	as	expressed	 in	

the	following	formula:	
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	 	 	 									[2.6]	

For	both	repairable	and	non‐repairable	items,	failures	vary	with	time,	while	the	

failure	 rate	 (hazard	 rate)	 can	either	be	decreasing,	 increasing,	 or	be	 constant.	

The	pattern	of	failures	with	time	can	be	illustrated	by	use	of	the	bathtub	curve	

(Figure	 2.4).	 It	 shows	 an	 initial	 infant	 mortality	 period	 with	 a	 decreasing	

hazard/failure	 rate,	 an	 intermediate	 useful	 life	 period	 and	 a	 final	 wear	 out	

period.	

	

Figure	2.4	The	‘bathtub’	curve	(O’Conner,	2002)	

Mean	Time	to	Failure	(MTTF)	

Mean	 time	 to	 failure	 (MTTF)	 is	 the	 expected	 average	 time	 that	 the	 system	 is	

likely	to	operate	successfully	before	a	failure	occurs.	The	MTTF	function	is:	

			 				 		 	[2.7]	

Mean	Time	between	Failure	(MTBF)	
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The	 definition	 of	 MTBF	 given	 in	 BS4778	 has	 been	 introduced	 earlier.	 It	 is	

basically	the	mean	value	of	the	length	of	time	between	consecutive	failures.	For	

repaired	 items,	 it	 is	 often	 assumed	 that	 failures	 occur	 at	 a	 constant	 rate,	 in	

which	case	the	failure	rate	λ=	(MTBF)‐1.	

Mathematically,	

MTBF	=	MTTF	+	MTTR	 	 	 [2.8]	

MTTR	symbolizes	mean	time	to	repair.	The	relationship	between	MTBF,	MTTF	

and	MTTR	are	shown	in	Figure	2.5.	

The	 utilization	 of	 equipment/plant	 is	 directly	 related	 to	 the	 average	 value	 of	

two	indicators,	namely	MTBF	and	MTTR,	for	all	the	subsystems	and	delays.	

The	effect	of	the	maintenance	plan,	operating	conditions	during	excavation	such	

as	 water	 inflow,	 and	 reliability	 functions	 of	 the	 components,	 directly	 affects	

MTBF	of	the	overall	construction	equipment	system	and	its	back‐up	system.		

According	to	Regattieri,	et	al	(2010),	the	factors	affecting	MTTR	of	construction	

equipment	 may	 include:	 the	 competence	 of	 the	 equipment	 crew,	 inventory	

system	 of	 spare	 parts,	 production	 of	 works,	 the	 level	 of	 the	 ongoing	

geotechnical	 investigation	 and	 monitoring	 during	 excavation,	 the	 response	

speed	of	the	crew	to	changing	ground	conditions,	and	level	of	preparation	of	the	

on‐site	management	for	contingencies	(such	as	high	water	inflow).	

	

Figure	2.5	MTTR,	MTBF,	and	MTTF	(Bauer,	2009)	
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2.2.3	 RELIABILITY,	AVAILABILITY	AND	MAINTAINABILITY	

Effectiveness	 of	 construction	 equipment	 is	 principally	 influenced	 by	 the	

reliability,	 availability,	 and	maintainability	 of	 the	 system,	 and	 its	 capability	 to	

perform	as	expected.	

Availability	is	defined	as	the	probability	that	the	system	is	in	normal	operation.	

In	 other	 words,	 it	 means	 a	 measure	 that	 allows	 for	 a	 system	 to	 be	 repaired	

when	 failures	 occur.	 For	 repairable	 systems,	 availability	 (A)	 is	 a	 measure	 of	

successful	operation	for	repairable	systems.		

Reliability	and	maintainability	are	often	related	to	availability	by	the	formula:	

      [2.9] 

where	 MTTR	 is	 the	 mean	 time	 to	 repair.	 This	 is	 the	 simplest	 steady‐state	

situation.	 It	 is	 clear	 that	 availability	 improvements	 can	 be	 achieved	 by	

improving	either	MTBF	or	MTTR.	

2.3	 RELIABILITY	ENGINEERING	IN	CONSTRUCTION	AND	RELEVANT	

INDUSTRIES	

2.3.1	 THE	DEVELOPMENT	OF	RELIABILITY	ENGINEERING	

Reliability	 engineering,	 originated	 in	 the	 United	 States	 during	 the	 1950s,	 is	 a	

distinct	 engineering	 discipline.	 As	 the	 increasing	 complexity	 of	 military	

electronic	 systems	 which	 was	 generating	 failure	 rates	 greatly	 reduced	

availability	 and	 increased	 costs,	 the	 US	 Department	 of	 Defense	 and	 the	

electronics	 industry	 jointly	 set	 up	 the	 Advisory	 Group	 on	 Reliability	 of	

Electronic	Equipment	(AGREE)	in	1952.		

In	 the	 1980s,	 the	 UK	 government	 built	 Defence	 Standard	 00‐40,	 The	

Management	 of	 Reliability	 and	 Maintainability.	 The	 British	 Standards	

Institution	further	issued	BS5760	–	Guide	on	Reliability	of	Systems,	Equipment	

and	Components.	
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At	 the	 meantime,	 the	 principles	 of	 ‘Total	 quality	 management’	 (TQM)	 and	

continuous	 improvement	 were	 brought	 forward	 by	 Japanese	 and	 American	

pioneers.	These	 ideas	 led	 to	great	 increases	 in	productivity	and	quality.	 Items	

such	 as	 electronic	 systems	 and	 components,	 automobiles	 and	 machine	 tools	

reached	levels	of	reliability	far	beyond	previous	experience.	

Increasingly	sophisticated	statistical	methods	have	also	aided	the	development	

of	 reliability	 engineering.	 Much	 research	 and	 literature	 has	 focused	 on	 this	

subject.	 	 However,	 random	 variations	 often	 render	 quantitative	 approaches	

difficult	or	 invalid.	 	Therefore,	our	research	will	not	only	cover	 the	 traditional	

statistical	methods	but	will	also	investigate	new	mathematical	techniques	such	

as	data	mining	for	reliability	analysis.	

2.3.2	 RELIABILITY	RESEARCH	IN	OTHER	INDUSTRIES	

No	one	disputes	 the	need	 for	 equipment	 to	be	 reliable.	Organizations	 such	 as	

airlines,	 the	military	and	public	utilities	are	aware	of	the	costs	of	unreliability.	

As	 such,	 reliability	 analysis	 techniques	have	been	 increasingly	utilized	 for	 the	

planning	and	operation	of	automatic	and	complex	systems	 in	some	industries.	

Since	failure	cannot	be	prevented	entirely,	 it	 is	 important	to	minimize	both	its	

probability	 of	 occurrence	 and	 the	 impact	 of	 failures	 when	 they	 do	 occur	

(Blischke,	2003).	

Roberts	and	Mann	(1993)	suggested	in	their	paper	that	the	Crow	model	(Crow,	

1990),	 or	 power	 law	Non‐homogenous	 Poisson	Process	 (NHPP)	 is	 recognized	

by	 the	 reliability	 community	 as	 being	 one	 of	 the	 best	 models	 for	 repairable	

systems.	 However,	 a	 continuous	 distribution	 such	 as	 the	 Weibull	 is	 more	

valuable	 in	 that	 they	 give	 failure	 prediction	 results	 that	 can	 be	 traced	 to	

individual	components.	They	used	the	Crow	model	to	predict	when	the	overall	

system	 will	 be	 down,	 and	 then	 the	 Monte	 Carlo	 simulation	 which	 utilizes	

Weibull	parameters	to	predict	the	number	of	failures	from	each	of	the	included	

components.	

Aircraft	 system	 such	 as	 jet	 engine	 in	 the	 aviation	 industry	 is	 an	 example	 of	 a	

complex	 repairable	 system	 (Downing,	 2011).	 Some	 papers	 discussed	 the	
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reliability	 analysis	 and	 failure	 prediction	 of	 such	 systems	 by	 using	 statistical	

methods	 and	 data	 mining	 methods	 (Weckman,	 etc.,	 2001;	 Letourneau,	 etc.,	

1999).	 Weckman	 etc.	 (2001)	 discussed	 how	 the	 Weibull	 process,	 a	 non‐

homogenous	Poisson	 (NHPP)	process	 can	be	 used	 in	modeling	 jet	 engine	 life.	

The	overall	capability	of	the	model	is	measured	by	examining	both	data	fit	and	

forecasting	 accuracy.	 	 The	Weibull	 process	 can	 also	 be	 referred	 as	 the	 Power	

Law	process,	Weibull	restoration	process,	NHPP	with	Weibull	intensity	function,	

Weibull	Poisson	process,	and	more	recently	as	the	Power	Law	NHPP.	There	are	

also	 some	 research	 have	 adopted	 time	 series	 models	 and	 other	 advanced	

methods	 such	 as	 neural	 networks	 for	 reliability	 analysis	 and	 forecast	 of	

repairable	 systems	 in	manufacture	 industry	 (Ho	&	Xie,	 1998;	 Xu,	 et	 al.,	 2003;	

Chen,	2007).	For	example,	Ho,	et	al	 (2002)	carried	out	a	comparative	study	of	

neural	network	and	ARIMA	modelling	 in	 time	 series	prediction	 for	 repairable	

system	failure	analysis.		

2.3.3	 RELIABILITY	RESEARCH	IN	CONSTRUCTION	AND	MINING	INDUSTRY	

Much	 research	 has	 been	 carried	 on	 reliability	 analysis	 of	 mining	 equipment	

such	as	load‐haul‐dump	machines	(Samanta,	etc,	2004;	Kumar	and	Klefsjo,	1992;	

Kumar,	et	al,	1989).	The	function	of	Load‐haul‐dump	machines	is	to	pick	up	ore	

from	 the	 mining	 points	 and	 dump	 it	 into	 either	 trucks	 or	 other	 equipment.	

Reliability	 assessments	 of	 repairable	mining	machines	 have	 been	 reported	 in	

these	 papers	 with	 probability	 distributions	 fitted	 for	 the	 characterization	 of	

failure	 data.	 Other	 mining	 equipment	 such	 as	 longwall	 face	 equipment	 and	

crushing	 plant	 have	 also	 been	 studied	 for	 reliability	 analysis	 (Mandal,	 1996;	

Barabady,	 2005;	 Barabady	 and	Kumar,	 2008).	 Reliability	 characteristics	 Time	

between	 failures	 (TBF)	 and	 Time	 to	 repair	 (TTR)	 were	 analyzed	 for	 a	

complicated	crushing	plant.	With	 the	aid	of	computer	software,	parameters	of	

some	probability	distributions	 like	Lognormal	 and	Weibull	 distributions	were	

estimated.	More	sophisticated	mathematic	methods	have	also	been	investigated	

and	 applied	 to	 mining	 equipment	 reliability	 assessment	 such	 as	 genetic	

algorithms	(Vagenas	&	Nuziale,	2001;	Vayenas	&	Yuriy,	2007;	Peng	&Vayenas,	

2014).	
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There	 are	 books	 and	 papers	 involving	 the	 reliability	 analysis	 of	 building	

components	 and	 civil	 engineering	 systems	 such	 as	 bridge	 and	 substructure	

(Blischke	&	Murthy,	2003).	However,	not	much	research	have	been	conducted	

on	 the	 reliability	 analysis	 of	 construction	 equipment	 or	 plant	 (Nepal	 &	 Park,	

2004).	 Vorster	 (2005)	 used	 an	 impending	 failure	 matrix	 to	 demonstrate	 the	

strategies	 to	 bridge	 the	 gap	 between	 preventive	 maintenance	 and	 repair.	

Steward	 (2006)	 had	 a	 lifecycle	 research	 on	 several	 construction	 equipment	

types	 (excavator,	 wheel‐loader	 life,	 crawler‐bulldozer,	 backhoe‐loader,	 and	

articulated‐dump‐truck)	by	dividing	the	equipment	life	into	B20,	B50	and	B80.	Fan	

(2012)	 did	 a	 comparative	 analysis	 of	 construction	 equipment	 (D11	 bulldozer	

system)	failures	using	the	classical	power	law	models	and	the	new	time	series	

models.	 He	 found	 out	 that	 the	 power	 law	models	 are	 easy	 to	 apply	 and	 are	

capable	of	predicting	reliability	metrics	at	both	the	system	and	subsystem	levels	

with	 faire	 results,	 while	 time	 series	 models	 based	 on	 predictive	 data	 mining	

algorithms	 are	 more	 flexible,	 comprehensive,	 and	 accurate	 by	 taking	 various	

influencing	factors	into	account.	
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CHAPTER	3	 RELIABILITY	MODELING	APPROCH	

3.1	 INTRODUCTION		

In	 this	 chapter,	 some	basic	 approaches	 for	 reliability	 analysis	 are	 going	 to	 be	

introduced	and	discussed.	The	 focus	 is	on	 the	methods	which	are	 suitable	 for	

repairable	 systems	 rather	 than	 non‐repairable	 systems,	 as	 construction	

equipment	 is	 mostly	 considered	 to	 consist	 of	 repairable	 systems.	 The	 two	

reliability	modelling	approaches	used	in	this	research	are	traditional	statistical	

method	named	power	law	model	and	more	sophisticated	time	series	models.		

The	definition	of	a	time	series	is	a	set	of	attribute	values	over	a	period	of	time.	

As	the	past	values	have	impact	on	the	current	and	future	behavior,	the	historical	

time	series	plot	can	be	used	to	predict	future	failures	in	the	case	of	construction	

equipment	reliability	study.	It	is	worth	mentioning	here	that	the	Markov	model,	

which	 has	 been	 considered	 by	 many	 researchers	 as	 a	 powerful	 tool	 for	

reliability	analysis,	is	not	adopted.	The	reason	it	is	not	adopted	in	this	research	

is	that	in	the	Markov	model	the	future	values	depend	only	on	the	present	state	

and	 is	 independent	 of	 history,	 which	 does	 not	 accord	with	 the	 situation	 of	 a	

construction	equipment	failure.		

3.2	 STATISTICAL	METHODS		

Commonly	 used	 statistical	 models	 for	 reliability	 analysis	 include:	 binomial	

distribution,	 exponential	 distribution	 and	 Poisson	 distribution,	 normal	

distribution	and	 lognormal	distribution,	and	Weibull	distribution.	Some	of	 the	

common	ones	are	introduced	in	Chapter	2.	In	this	chapter,	power	law	model	is	

introduced	 and	 further	 applied	 to	 the	 research.	 It	 is	 also	 called	 the	 Weibull	

process	which	differs	from	the	concept	of	Weilbull	distribution	as	explained	in	

Chapter	2.	
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3.2.1	 RELIABILITY	ANALYSIS	PROCESS	

The	classical	reliability	analysis	process	of	a	repairable	system	is	illustrated	in	

Figure	3.1,	which	explains	from	the	first	step	of	data	collection	to	the	last	step	of	

reliability	analysis	by	Ascher	and	Feingold	(1984)		The	sources	of	data	in	a	piece	

of	 construction	 equipment	 may	 include	 operational	 and	 maintenance	

information,	maintenance	reports,	and	data	from	sensors	on	equipment.	

A	test	for	independence	can	be	performed	by	using	serial	correlation	test	which	

will	detect	 the	presence	of	dependent	data	 (Kumar	and	Klefjso,	1992).	 In	 this	

test,	the	Time	to	Failure	data	is	plotted	against	a	one	lag	time	data.	If	the	data	is	

randomly	 scattered,	 it	 can	 be	 concluded	 that	 one	 failure	 to	 the	 next	 was	

Independence.	 In	other	words,	 the	current	 failure	does	not	have	any	influence	

over	immediate	subsequent	failure.	

	

Figure	3.1	Reliability	analysis	process	of	a	repairable	system	(Ascher	and	Feingold,	

1984)	
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For	the	use	of	time	series,	the	data	series	should	be	dependent.	This	is	the	case	

with	 failure	 data,	 i.e.,	 the	 current	 failure	 have	 influences	 over	 the	 immediate	

subsequent	failure.		

Usually	the	first	step	in	reliability	analysis	of	a	repairable	system	is	to	collecting,	

sorting	 and	 classifying	 significant	 data.	 The	 second	 step	 is	 component	 failure	

frequency	analysis.	Pareto	chart	statistics	is	a	common	method	to	find	out	those	

important	subsystems.	It	is	often	found	that	a	majority	of	failure	in	a	product	is	

a	result	of	a	minority	of	potential	causes.	

The	next	step	is	to	check	if	the	data	has	a	trend	or	not.	If	the	answer	is	yes,	then	

a	 Nonhomogeneous	 Poisson	 Process	 or	 so	 named	 power	 law	 process	 can	 be	

adopted	for	data	modelling.	If	there	is	no	trend	and	the	data	has	no	correlation,	

then	 the	 data	 is	 assumed	 to	 be	 independent	 and	 identically	 distributed	 (iid).	

Two	 common	methods	 used	 to	 validate	 the	 iid	 assumption	 are	 the	 trend	 test	

and	 the	 serial	 correlation	 test	 and	 is	 described	 by	 practical	 example	 in	 Refs	

(Kumar	and	Klefsjo,	1992;	Ascher	and	Feingold,	1984).	The	techniques	involved	

fitting	 a	 distribution	 function	 to	 an	 iid	 variable	 is	 very	 different	 from	 the	

approach	 for	 fitting	 an	 NHPP	 to	 non‐stationary	 data.	 For	 repairable	 systems	

such	 as	 construction	 equipment,	 the	 most	 commonly	 applied	 method	 is	 the	

NHPP	model	which	based	on	the	power	law	process.	After	the	validation	of	the	

stationary	 of	 the	 data,	 the	 next	 step	 is	 parameter	 valuation	 and	 followed	 by	

reliability	and	maintainability	analysis.	

A	 number	 of	 books	 and	 papers	 have	 stressed	 that	 the	 usual	 non‐repairable	

reliability	methodologies,	such	as	the	Weibull	distribution,	are	not	appropriate	

for	 repairable	 system	 reliability	 analyses	 and	 have	 suggested	 the	 use	 of	Non‐

homogeneous	 Poisson	 Process	 (NHPP)	 models	 (Crow,	 1900;	 Ascher	 and	

Feingold,	1984).	Table	3.1	gives	a	summary	of	the	statistical	methods	used	for	

reliability	analysis	and	respective	software.	
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Table	 3.1	 Statistical	 methods	 for	 reliability	 analysis	 of	 repairable	 multi‐

component	systems	

	 Reliability	

Characteristics	

Statistical	

Methods	

Software Maintenance	

System	 Give	failure	

rate	of	the	

system	

	

Determine	

when	the	

overall	system	

down	

The	Crow	

model	(NHPP)	

	

Exponential/	

Lognormal/	

Normal/	

Weibull		

distribution	

	

Weilbull	

analysis	(i.e.,	

Monte	Carlo	

simulation)	

ReliaSoft’s	

RGA7;	

	

Weibull	

++6	

Optimum	

preventive	

maintenance	

	

Predictive	

maintenance	

Components/	

Subsystems	

Predict	the	

frequency	of	

failures	of	each	

component	

	

Identify	the	

critical	

subsystems	or	

component	

	

3.2.2	 CLASSICAL	STATISTICAL	TECHNIQUES	

There	 are	 a	 number	 of	 widely	 used	 standard	 distribution	 functions,	 include	

binomial,	 Poisson,	 Weibull,	 normal,	 exponential,	 lognormal,	 gamma,	 and	

Rayleigh,	etc.	The	detailed	 introduction	to	these	probability	models	have	been	

presented	in	many	literature.	This	section	only	gives	a	brief	introduction	to	the	

distributions	which	are	related	to	this	research.		

Poisson	distribution	

Poisson	distributions,	 similar	 to	 some	other	distributions,	 are	used	 to	analyze	

discrete	random	events.	The	major	difference	 is	 that	 in	a	Poisson	distribution,	
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only	the	occurrence	of	an	event	is	counted,	and	its	nonoccurrence	is	not	counted.		

The	followings	are	some	examples	of	a	Poisson	distribution:	

 The	number	of	calls	in	a	given	period		

 The	number	of	people	coming	to	a	bus	stop	

 The	number	of	failures	of	a	system	

The	probability	 of	 having	x	failures	 by	 time	 t	of	 a	Poisson	distribution	 can	be	

calculated	as	follows:	

	 	 	 for	x	=	0,	1,	2…	 	 				[3.1]	

Where	λ	is	the	average	failure	rate	of	a	system,	and	x	 is	the	number	of	failures	

by	time	t.	

The	 mean	 and	 the	 variance	 of	 a	 Poisson	 distribution	 can	 be	 calculated	

separately	as	follows:	

E(X)	=	λt																																																				[3.2]	

And		

V(X)	=	λt			 		 	 	 [3.3]	

Weibull	distribution	

In	 probability	 theory	 and	 statistics,	 the	 Weibull	 distribution	 is	 a	 continuous	

probability	distribution.	It	is	named	after	Waloddi	Weibull,	who	described	it	in	

detail	in	1951.	

Compared	with	 the	exponential	distribution	which	 is	 limited	 in	 its	application	

due	to	the	memoryless	property,	the	Weibull	distribution	is	a	generalization	of	

the	 exponential	 distribution.	 As	 Weibull	 distribution	 has	 no	 specific	

characteristic	shape,	it	can	be	shaped	to	represent	many	different	distributions,	

depending	on	what	the	values	of	the	parameters	are	in	its	reliability	function.	It	

also	can	be	shaped	to	fit	to	experimental	data	that	cannot	be	characterized	as	a	

particular	distribution.	
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3.2.3	 POWER	LAW	NHPP	(WEIBULL	PROCESS)		

A	 power	 law	model	 indicates	 that	 the	 failures	 of	 a	 complex	 system	 are	 time	

dependent	and	 follow	 the	NHPP.	The	power	 law	model	was	 first	proposed	by	

Duane	 (1964)	 to	 describe	 the	 failures	 of	 a	 complex	 system	 at	 the	 stage	 of	

development.		

For	 a	 unit	 of	 construction	machine	 under	 the	 policy	 of	minimum	 repair	 (just	

conduct	 minimum	 repair	 to	 bring	 the	 machine	 back	 to	 working	 order),	 the	

system	 failure	 intensity	 function	 can	 be	 expressed	 by	 a	 power	 law	model	 as	

follows:	

u(t)	=	λβtβ‐1,				t>0																																															[3.4]	

	

Figure	3.2	Power	Law	Modelling	Process	

where	 λ	 is	 the	 failure	 rate	 and	 t	 is	 the	 age	 of	 the	 system.	 When	 β	 =	 1,	 the	

instantaneous	failure	intensity	is	a	constant,	the	equipment	has	stable	reliability;	
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when	β	>	1,	the	equipment	is	in	the	wear‐out	stage;	when	β	<	1,	the	equipment	

is	in	the	burn‐in	stage.	It	shows	that	the	power	law	model	can	well	describe	the	

“bathtub”	 curve	 which	 construction	 equipment	 follows.	 Figure	 3.2	 shows	 an	

example	of	 the	modelling	process	using	power	 law	model	on	RGA	7	platform.	

The	parameters	lambda	and	beta	are	calculated	and	presented	in	the	figure.	

3.3	 TIME	SERIES	ANALYSIS	AND	PREDICTION	

3.3.1	 INTRODUCTION	

A	time	series	is	a	set	of	attribute	values	over	a	period	of	time.	The	definition	is	

given	as	follows	(Dunham,	2003):	

“Given	an	attribute,	A,	a	time	series	is	a	set	of	n	values:	{<t1,	a1>,	<t2,	a2>,	…,	

<tn,an}>}.	Here	there	are	n	time	values	and	for	each	a	corresponding	value	

of	A.	Often	the	values	are	identified	for	specific	well‐defined	points	in	time,	

in	which	case	the	values	may	be	viewed	as	a	vector	<	a1,	a2,	…,	an>.”	

The	mathematical	equation	of	a	time	series	could	be:	

Yt	=	f	(Yt‐1,	Yt‐2,	Yt‐3,…,	Yt‐n)	+	et								 		 	 [3.5]	

Where	Yt	 is	 the	value	of	Y	at	the	corresponding	time	t,	Yt‐1	to	Yt‐n	represent	the	

previous	value	of	Y,	and	et	stands	for	noise	that	does	not	obey	the	predictable	

pattern.			

Time	 series	 analysis	 may	 be	 viewed	 as	 finding	 patterns	 in	 the	 data	 and	

predicting	future	values.	The	values	usually	are	obtained	as	evenly	spaced	time	

points	(daily,	weekly,	hourly,	etc.).	There	are	three	basic	functions	performed	in	

time	 series	 analysis:	 distance	 measurements	 are	 used	 to	 determine	 the	

similarity	between	different	time	series;	the	structure	of	the	line	is	examined	to	

determine	 (and	 perhaps	 classify)	 its	 behavior;	 the	 historical	 time	 series	 plot	

used	to	predict	future	values.	In	this	research,	the	third	function	is	performed	in	

time	series	analysis	to	predict	the	future	failures	based	on	historical	failures	of	

construction	 equipment.	Normally	 time	 series	 follows	 the	 one	 or	more	 of	 the	

following	four	patterns,	which	are	(Tiao,	2001):		
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 Trends	 ‐	 a	 trend	 can	 be	 viewed	 as	 systematic	 nonrepetitive	 changes	

(linear	or	nonlinear)	to	the	attribute	values	over	time.		

 Cycles	‐	means	the	observed	behavior	is	cyclic.	

 Seasonal	 ‐	 means	 the	 detected	 patterns	 are	 based	 on	 time	 of	 year	 or	

month	or	day.	

 Outliers	 ‐	 means	 irregular	 fluctuations.	 Various	 approaches	 may	 be	

applied	to	remove	or	reduce	the	impact	of	outliers	and	to	assist	pattern	

detection.	

Models	 for	 time	 series	 data	 can	 have	 many	 forms	 and	 represent	 different	

stochastic	processes.	When	modeling	variations	in	the	level	of	a	process,	three	

broad	classes	of	practical	 importance	are	 the	autoregressive	 (AR)	models,	 the	

integrated	(I)	models,	and	the	moving	average	(MA)	models.	These	three	classes	

depend	linearly	on	previous	data	points.	Combinations	of	these	models	produce	

autoregressive	moving	average	(ARMA)	and	autoregressive	 integrated	moving	

average	(ARIMA)	models.		

ARIMA	models	

ARIMA	 (p,d,q)	 is	 short	 for	 autoregressive	 integrated	 moving	 average	 model	

where	parameters	p,	d,	and	q	refer	to	the	order	of	the	autoregressive,	integrated,	

and	 moving	 average	 parts	 of	 the	 model	 respectively.	 Parameter	 p,	 d,	 and	 q	

should	 be	 non‐negative	 integers.	 In	 Box‐Jenkins	 approach	 to	 time‐series	

modelling,	ARIMA	models	is	an	important	constitute	(Box,	et	al,	1994).	

Autoregressive	(AR)	processes	‐	a	time	series	{Xt}	is	said	to	be	an	autoregressive	

process	of	order	p	(abbreviated	AR	(P))	if	it	is	a	weighted	linear	sum	of	the	past	

p	values	plus	a	random	shock.	

Moving	 average	 (MA)	 processes	 ‐	 a	 time	 series	 {Xt}	 is	 said	 to	 be	 a	 moving	

average	process	of	order	1	(abbreviated	MA	(q))	if	it	is	a	weighted	linear	sum	of	

the	last	q	random	shocks.	
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ARMA	 is	a	mixed	autoregressive	moving	average	model	with	p	autoregressive	

terms	 and	 q	 moving	 average	 terms.	 	 	 The	 mathematical	 function	 can	 be	

expressed	as:	

                                              [3.6] 

where		∅	ሺܤሻ,  ,		ߠ	ሺܤሻ 	are	polynomials	in	B	of	finite	order	p,	q,	respectively.	

In	 reality,	 many	 time	 series	 are	 non‐stationary	 so	 that	 stationary	 AR,	 MA	 or	

ARMA	processes	cannot	be	applied	directly.	There	are	several	methods	to	solve	

this	problem	and	one	of	 them	is	 to	apply	differencing	 to	make	the	 time	series	

stationary.	 An	 ARIMA	 (p,d,q)	 process	 means	 a	 time	 series	 that	 has	 been	

differenced	d	 times	 before	 fitting	 an	ARMA	 (p,q)	 process	where	d	 symbolizes	

the	 number	 of	 differences	 taken	 and	 the	 letter	 “I”	 stands	 for	 integrated.	

Mathematically,	

                                [3.7] 

Similarly,	 a	 seasonal	model	 can	 be	 represented	 as	 ARIMA	 (p,d,q)(P,D,Q).	 The	

Microsoft	time	series	algorithm	(SQL	Server,	2014)	discovered	that	the	ARIMA	

algorithm	 is	optimized	 for	 long‐term	prediction	and	 their	ARTXP	algorithm	 is	

optimized	for	short‐term	predictions	in	SQL	Server.	Maia	et	al.	(2008)	believes	

that	 it	 is	 advantageous	 to	model	 linear	 and	non‐linear	 patterns	 separately	 by	

using	different	models	and	 then	combine	 the	 forecasts	 to	 improve	 the	overall	

modeling	and	forecasting	performance.	

3.3.2	 MODELING	PROCESS	

The	original	Box‐Jenkins	model	(1976)	takes	an	iterative	three‐stage	modeling	

approach,	 which	 are:	 model	 identification	 or	 model	 selection,	 parameter	

estimation,	and	model	checking.	

The	first	step	of	the	Box‐Jenkins	modelling	process	is	model	identification	or	so‐

called	 model	 selection,	 which	 is	 ensuring	 that	 variables	 are	 stationary	 and	

identifying	 seasonality	 in	 the	 dependent	 series.	 Plots	 of	 the	 autocorrelation	

(ACF)	and	partial	autocorrelation	functions	(PACF)	of	the	dependent	time	series	
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are	used	to	decide	which	(if	any)	autoregressive	or	moving	average	component	

should	be	used	in	the	model.	

The	 second	 step	 is	 parameter	 estimation	which	 generate	 the	 coefficients	 that	

best	 fit	 the	selected	ARIMA	model	by	using	computation	algorithms.	The	most	

common	methods	include	maximum	likelihood	estimation	and	non‐linear	least‐

squares	estimation.	

The	 third	 step	 is	 model	 checking	 which	 tests	 whether	 the	 estimated	 model	

conforms	to	the	specifications	of	a	stationary	univariate	process.	 In	particular,	

the	 residuals	 should	 be	 independent	 of	 each	 other	 and	 constant	 in	mean	 and	

variance	over	time.	It	is	helpful	to	identify	misspecification	by	plotting	the	mean	

and	 variance,	 or	 ACF	 and	 PACF	 of	 the	 residuals.	 At	 the	 end,	 if	 the	 result	 is	

inadequate,	 it	 is	 required	 to	 return	 to	 step	one	 and	build	 a	more	 appropriate	

model.	

Most	 statistical	 time	 series	 model	 building	 have	 the	 following	 three	 major	

stages,	which	are	similar	to	the	original	Box‐Jenkins	model:	

 Model	specification/	identification/	selection	

 Model	fitting/	parameter	estimation	

 Model	verification/	checking	

Chatfield	 (2000)	 has	 provided	 explicit	 explanation	 to	 these	 tree	 stages	 for	

building	a	statistical	time	series	model.	

Trend	removal	and	stationary	time	series	

A	time	series	is	said	to	be	stationary	if	both	its	mean	(the	value	about	which	it	is	

oscillating),	 and	 its	 variance	 (amplitude)	 remain	 constant	 through	 time.	

Classical	 Box‐Jenkins	 ARMA	 models	 only	 work	 satisfactorily	 with	 stationary	

time	 series,	 so	 for	 those	 types	 of	 models	 it	 is	 essential	 to	 perform	

transformations	on	the	series	to	make	it	stationary.	Usually	time	series	do	not	

present	a	fixed	mean,	therefore,	removing	trends	from	time	series	and	adjusting	

the	 amplitude	 are	 usually	 required	 before	 modeling	 the	 data.	 The	 software	

DTREG	includes	facilities	that	can	automatically	identify	and	remove	the	trend	
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and	it	uses	regression	to	fit	either	a	 linear	or	exponential	 function	to	the	data.	

However,	 not	 all	 software	has	 this	 function,	 in	 some	 cases	manual	 operations	

may	be	necessary.	

There	 are	 several	 ways	 to	 remove	 the	 trend,	 or	 so‐called	 detrending.	

Differencing	 and	 log	 transformation	 are	 two	 common	 ways,	 and	 in	 the	 case	

study	 of	 this	 thesis,	 log	 transformation	 is	 used	 to	 stabilize	 the	 mean	 and	

variance.	The	meaning	of	differencing	is	to	calculate	the	difference	between	two		

observed	 values	 at	 fixed	 time	 interval.	 For	 example,	 a	 difference	 of	 one	 time	

interval	apart	is	calculated	by	subtracting	value	1	from	value	2,	then	2	from	3,	

and	on,	and	plotting	that	data	to	determine	if	the	mean	is	zero	and	the	variance	

is	constant	or	not.	If	differencing	of	one	does	not	detrend	the	data,	then	repeat	

the	process	 if	 necessary	 to	 stabilize	 the	mean	and	variance.	The	advantage	of	

differencing	 is	 ease	 of	 use	 and	 simplicity,	 while	 the	 disadvantage	 is	 over‐

correcting	for	trends,	which	skews	the	correlations	in	a	negative	direction.	

The	differenced	series	is	given	by	

																																										[3.8]	

Where	t	denotes	time	and	B	is	the	backshift	operator	defined	by	Byt	=	yt‐1.	Other	

symbols	 D	 is	 the	 seasonal	 differencing	 order,	 d	 represents	 the	 nonseasonal	

differencing	order,	and	s	is	the	number	of	periods	per	season.	If	the	value	of	the	

differencing	order	is	zero	that	means	there	is	no	differencing	of	that	kind.	

Another	method	can	be	used	to	remove	trends	is	ordinary	least	squares	analysis.		

Trend	 removal	 is	 almost	 always	 beneficial;	 however,	 variance	 stabilization	

(amplitude	adjustment)	is	beneficial	about	20%	of	the	time	and	harmful	about	

80%	of	the	time	based	on	experiments	(Senter,	2008).		

Autocorrelations	(ACF)	and	Partial	Autocorrelations	(PACF)	

Usually,	 Autocorrelations	 Functions	 (ACF)	 and	 Partial	 Autocorrelations	

Functions	 (PACF)	 are	 used	 to	 describe	 how	and	 to	what	 degree	 each	point	 is	

correlated	with	previous	values	in	the	series	(as	shown	in	Figure	3.3).		
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The	 correlation	 between	 all	 the	 pairs	 of	 points	 in	 the	 time	 series	 can	 be	

described	by	autocorrelation	graph	with	a	 specified	 separation	 in	 time	or	 lag.	

The	autocorrelation	for	the	kth	lag	is	

																							[3.9]	

Where	 t	 denotes	 time,	 k	 is	 the	 number	 of	 lags,	 and 	is	 the	 mean	 of	 the	 N	

nonmissing	points	in	the	time	series.		

Other	graphs	such	as	variograms	(a	characterization	of	process	disturbances),	

autoregressive	(AR)	coefficients,	and	spectral	density	plots	can	also	be	used	to	

identify	 the	 type	 of	 model	 appropriate	 for	 describing	 and	 predicting	 the	

evolution	of	the	time	series	(SAS,	2012).		

	

Figure	3.3	Examples	of	Autocorrelation	and	Partial	Correlation	Plots	
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3.3.3	 MODEL	FITTING	CRITERION	

There	 are	 several	 different	 metrics	 for	 evaluating	 the	 fitness	 of	 a	 model.	 By	

comparing	the	values	of	 these	metrics,	 the	best	 fit	model	can	be	found.	Figure	

3.4	shows	an	example	of	the	criterions	used	in	software	JMP,	which	contains	DF,	

sum	of	squared	errors,	variance	estimate,	standard	deviation,	AIC,	BIC,	RSquare,	

RSquare	Adj,	MAPE,	MAE,	‐2LogLikelihood	and	so	on.	

	

Figure	3.4	Example	of	Model	Fitting	Criterion		

RSquare,	can	also	be	wrote	as	R2,	measures	the	proportion	of	the	total	variation	

explained	 by	 the	 model.	 It	 usually	 increases	 as	 the	 number	 of	 parameters	

increases.	If	the	model	fits	the	series	well,	then	the	model	error	sum	of	squares	

(SSE)	is	smaller	than	the	total	sum	of	the	squares	(SST).	However,	if	the	model	

fits	 the	 series	 badly,	 the	 SSE	 might	 be	 larger	 than	 the	 SST.	 A	 similar	 fitting	

criterion	called	adjusted‐R2,	makes	some	attempt	to	take	account	of	the	number	

of	parameters	fitted.		

The	most	 commonly	 used	 fitting	 criterion	 for	 time	 series	models	 is	 so‐called	

Akaike”s	Information	Criterion	(AIC),	since	more	sophisticated	model‐selection	

statistics	 are	 generally	 preferred.	 The	 mathematical	 function	 is	 expressed	 as	

follows:	

AIC	=	‐2	ln	(max.	likelihood)	+	2p																														[3.10]	

Where	 p	 denotes	 the	 number	 of	 independent	 parameters	 estimated	 in	 the	

model.	AIC	essentially	chooses	the	model	with	the	best	fit,	as	measured	by	the	
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likelihood	function,	provided	a	penalty	term	that	increases	with	the	number	of	

parameters	fitted	in	the	model.	Therefore,	it	should	prevent	overfitting.	

In	addition	to	AIC,	another	widely	used	fitting	criterion	for	time	series	models	is	

the	Bayesian	Information	Criterion	(BIC).	BIC	essentially	replaces	the	term	2p	in	

the	AIC	with	the	expression	p	+	p	InN.	The	BIC	is	similar	to	the	AIC	but	penalizes	

the	addition	of	extra	parameters	more	severely	than	the	AIC.	When	the	number	

of	model	parameters	is	high	compared	with	the	number	of	observations	in	time	

series	analysis,	BIC	is	considered	to	be	more	suitable	than	the	ordinary	AIC.	

Other	metrics	can	be	used	to	evaluate	the	fitness	of	a	model	 include	degree	of	

freedom	(DF),	sum	of	squared	errors	(SSE),	variance,	standard	deviation,	MAPE,	

MAE,	‐2LogLikelihood.	MAPE	is	the	mean	absolute	percentage	error	and	MAE	is	

the	mean	absolute	error.	‐2LogLikelihood	is	minus	two	times	the	natural	log	of	

the	likelihood	function	evaluated	at	the	best‐fit	parameter	estimates.	The	theory	

is	that	the	smaller	of	the	value,		the	better	of	the	fitness	of	a	model.	
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CHAPTER	4	 CASE	STUDIES	ON	RELIABILITY	

MODELLING	

In	 previous	 chapters,	 the	 concept	 of	 reliability	 engineering	 and	 several	

reliability	 modelling	 approaches	 have	 been	 introduced	 and	 discussed.	 This	

chapter	 is	 going	 to	 apply	 these	 methods	 to	 real	 cases	 by	 analyzing	 the	 data	

collected	 from	 the	 construction	 industry	 with	 the	 aid	 of	 computer	 software.	

Section	 4.1	 introduces	 the	 background	 of	 the	 case	 study	 and	 Section	 4.2	

presents	 the	data	preparation	 stage	 in	 the	 reliability	 analysis	process.	 Section	

4.3	 and	 4.4	 demonstrate	 the	 modelling	 process	 and	 results	 using	 power	 law	

models	 and	 time	 series	 models	 respectively.	 Section	 4.5	 summaries	 the	

outcomes	of	this	chapter	and	raises	discussions	of	the	methods	and	findings.	

4.1	BACKGROUND	

Several	 papers	 have	 emphasized	 that	 equipment	 mangers	 should	 focus	 on	

repair	 before	 equipment	 breakdown	 and	 effort	 to	 bridge	 the	 gap	 between	

preventive	 maintenance	 and	 repair	 (Vorster,	 2004).	 To	 achieve	 this	 goal,	

reliable	machine	 information	 such	 as	 component	 lives	 and	machine	history	 is	

needed.	

The	data	used	in	the	case	study	are	from	a	contractor’s	equipment	fleet	which	is	

working	 on	 an	 oil	 sand	 project	 on	 a	 3‐shift	 schedule.	 Among	 the	 pieces	 of	

equipment	 in	 this	 fleet	 are	 bulldozers,	 graders,	 trucks,	 backhoes,	 etc.	 The	

contractor	has	a	team	of	operators,	superintendents,	project	managers	working	

on	 the	 jobsite	 and	 keeping	 full	 working	 records	 of	 downtime,	 uptime,	 failure	

events,	and	repair	details	on	each	unit.	Apart	from	the	preventive	maintenance	

and	 scheduled	 overhauls,	 there	 are	 unscheduled	 random	 failures	 on	 each	

equipment	unit.	The	contractor	is	keen	to	predict	the	reliability	of	each	unit	so	

that	 better	 decisions	 on	 allocations	 of	 equipment	 and	maintenance	 resources	

can	be	made	for	scheduling	purpose.		

	



41	
	

Although	traditional	reliability	theory	can	be	applied	to	the	heavy	equipment	in	

service,	 there	 are	 practical	 obstacles	 which	 make	 it	 difficult	 to	 apply	 these	

reliability	 modeling	 techniques	 originally	 developed	 from	 the	 manufacturing	

industry.	 The	 construction	 environment	 is	 highly	 uncontrollable	 with	

constantly	changing	weather	conditions,	job	natures,	and	operating	conditions,	

all	 of	 which	 have	 an	 impact	 on	 the	 equipment	 reliability.	 Each	 unscheduled	

critical	 failure	 leads	 to	 an	 emergency	 repair	 and	 causes	 interruptions	 to	

construction	works	with	 varying	 financial	 impact;	 under	 some	 critical	 failure	

circumstances,	 the	 equipment	 cannot	 be	 repaired	 on	 the	 jobsite	 and	must	 be	

brought	to	a	distant	shop	for	extensive	repairs.		

The	maintenance	and	repair	details	were	written	down	in	the	records	and	the	

useful	 information	 has	 been	 reorganized	 for	 reliability	 analysis	 and	 failure	

prediction.	A	sample	of	this	is	shown	in	Table	4.1.	Construction	equipment	is	a	

complex	 system	 comprising	 of	 various	 subsystems:	 engine,	 braking	 system,	

hydraulic	 system,	undercarriage,	 etc.,	 these	 subsystems	and	 components	have	

different	 economic	 lives	 and	 different	 reliability	 metrics.	 They	 are	 not	

completely	 independent	and	must	be	kept	 in	working	 conditions	and	work	 in	

coordination	for	the	equipment	to	function	properly.		

For	 each	 equipment	 unit,	 the	 contractor	 is	 interested	 in	 predicting	 the	

equipment	 reliability	 metrics	 for	 use	 in	 the	 planning	 period,	 such	 as	 rate	 of	

failures,	 reliability	 level	 for	 the	 scheduled	mission,	 availability,	 time	 between	

failures	(TBF),	time	to	repair	(TTR),	and	length	of	uninterrupted	working	hours	

without	 failure	 given	 a	 minimum	 reliability	 level.	 Predictions	 at	 both	 system	

level	 and	 subsystem	 levels	 are	 desired	 for	 management	 decisions	 for	 the	

upcoming	planning	periods.	
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Table	4.1	Sample	reliability	data	of	bulldozer	obtained	from	the	field	
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4.2	 DATA	PREPARATION	

Three	 basic	 steps	 have	 been	 taken	 at	 the	 initially	 for	 determining	 reliability	

characteristics:	 data	 collection,	 data	 sorting	 and	 data	 classification	 (i.e.,	 total	

working	 hours,	 total	 breakdown	 hours,	 total	 maintenance	 hours,	 TBF,	 TTR,	

failure	frequency,	etc.).		As	mentioned	earlier,	there	are	several	data	sources	in	a	

construction	 equipment	 that	 can	 be	 used	 for	 reliability	modeling.	 In	 this	 case	

study,	 data	 for	 modelling	 is	 extracted	 from	 the	 maintenance	 records	 of	 a	

contractor’s	company.	

Whenever	 the	 risks	 or	 costs	 of	 failure	 are	 high,	 then	 a	 formal	 reliability	

programme	 is	 required.	 When	 the	 system	 is	 more	 complex,	 or	 have	 more	

components,	 the	 risks	 of	 failure	 usually	 also	 increase.	 Thus,	 reliability	

programmes	 are	 required	 for	 any	 equipment	 whose	 complexity	 leads	 to	 an	

appreciable	risk.		

The	 basic	 steps	 taken	 for	 determining	 reliability	 characteristics	 are	 shown	 in	

the	 following	 diagram	 (Figure	 4.1).	 The	 data	 collection	 and	 estimation	

processes	 continue	 through	 all	 the	 phases,	 and	 there	 are	 several	 mini	 steps	

under	 each	 big	 step.	 Throughout	 the	 building	 construction	 lifecycle,	 the	

reliability	is	assessed.	The	whole	process	includes	the	initial	predictions	based	

on	 the	 past	 failure	 data,	 and	 then	 the	 validation	 of	 forecast	 results	 and	

subsequently	 the	 building	 up	 of	 a	 predictive	 maintenance	 plan	 based	 on	 the	

predictions.	 This	 reliability	 analysis	 process	 of	 construction	 equipment	 is	

accomplished	by	using	power	 law	models	and	time	series	models	respectively	

in	the	following	sections.	

Table	4.2	show	a	sample	of	reorganized	data	of	construction	equipment	failures	

with	 information	 of	 time	 between	 failures	 (TBF)	 and	 time	 to	 repair	 (TTR)	 as	

well	as	cumulative	TBF	and	TTR	presented.	
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Figure	4.1	Reliability	analysis	process	of	construction	equipment		

Table	4.2	Sample	of	TBF	and	TTR	data	set	of	a	piece	of	construction	equipment	

Index	 Cumulative	TBF TBF Cumulative	TTR	 TTR	

1	 142.00 142.00 3.20	 3.20	

2	 194.03 52.03 14.78	 11.58	

3	 471.00 276.97 53.15	 38.37	

4	 621.00 150.00 54.98	 1.83	

5	 766.00 145.00 61.50	 6.52	

6	 993.00 227.00 88.93	 27.43	

7	 1151.00 158.00 104.87	 15.93	

8	 1190.00 39.00 105.88	 1.02	

9	 1436.50 246.50 106.38	 0.50	

10	 1525.28 88.78 113.63	 7.25	

11	 1829.00 303.72 114.80	 1.17	

12	 1910.00 81.00 142.20	 27.40	

13	 2040.50 130.50 235.10	 92.90	

14	 2285.50 245.00 297.87	 62.77	

15	 2459.50 174.00 298.20	 0.33	

16	 2664.00 204.50 298.53	 0.33	

17	 2799.50 135.50 299.48	 0.95	

18	 2948.33 148.83 308.07	 8.58	

19	 3141.00 192.67 309.07	 1.00	

20	 3141.00 0.00 309.07	 0.00	

21	 3359.42 218.42 309.57	 0.50	

Data 
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•Data 
collection

•Data Sorting

•Data 
Classfication

Data  Analysis

•Pareto chart

•Trend test and 
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correlation

•Analysis of 
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•System 
reliability
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22	 3536.02 176.60 323.40	 13.83	

23	 3751.75 215.73 325.12	 1.72	

24	 3958.02 206.27 335.37	 10.25	

25	 4082.00 123.98 340.62	 5.25	

26	 4315.50 233.50 380.63	 40.02	

27	 4521.58 206.08 412.57	 31.93	

28	 4688.02 166.43 500.83	 88.27	

29	 4824.00 135.98 501.33	 0.50	

30	 4974.37 150.37 505.68	 4.35	

	

4.3	 MODELLING	PROCESS	OF	POWER	LAW	MODELS	(NHPP)	

4.3.1	 DATA	MODELLING	

After	the	data	have	been	reorganized	and	cleaned,	the	next	step	is	to	choose	the	

suitable	modeling	method	for	reliability	analysis.		

The	Crow	model,	or	power	law	non‐homogenous	Poisson	process,	is	recognized	

by	 the	 reliability	 community	 as	 being	 one	 of	 the	 best	 models	 for	 repairable	

systems.	 It	 can	 determine	 when	 the	 overall	 system	 will	 be	 down,	 while	 the	

Monte	 Carlo	 simulation	 that	 utilizes	 Weibull	 parameters	 could	 predicts	 the	

frequency	of	failures	of	each	component	in	a	specific	time	frame.	By	identifying	

the	critical	components	or	subsystems,	the	information	can	be	used	to	assist	in	

deciding	maintenance	intervals	to	design	an	optimum	preventive	or	predictive	

maintenance	program.		

The	construction	equipment	used	for	modelling	and	demonstration	in	this	case	

study	 is	 the	bulldozer.	Figure	4.2	 shows	a	 software	platform	named	RGA7	 for	

power	law	modeling	and	calculating	the	parameters	of	the	model.	 In	this	case,	

429	 data	 points	 are	 used	 for	 reliability	 analysis	 and	 the	 results	 show	 that	

lambda	equals	to	0.0044	and	beta	is	1.1758,	which	implies	that	the	equipment	

is	 at	 the	 wear‐out	 stage	 according	 to	 the	 bathtub	 curve	 which	 has	 been	

introduced	in	Chapter	2.	Plots	and	tables	of	MTBF	vs.	time	are	presented	in	the	

next	section.	
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Figure	4.2	Reliability	analysis	of	construction	equipment	bulldozer	by	using	NHPP	

model	in	RGA	7	

4.3.2	 RESULTS	FROM	POWER	LAW	MODELS	

With	the	aid	of	computer	software	RGA7,	the	relation	of	MTBF	with	time	can	be	

derived	 (Figure	 4.3).	 	 So	 is	 the	 relationship	 of	 cumulative	 number	 of	 failures	

with	time	(Figure	4.4).	It	can	be	observed	from	the	diagram	that	the	MTBF	has	a	

slight	 trend	of	decreasing	as	 the	 time	goes	on	with	 the	 cumulative	number	of	

failures	increases	with	time.		 	Although	a	straight	line	can	be	used	to	fit	failure	
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data	at	the	system	level,	some	noisy	data	exists	due	to	influences	on	the	arrival	

pattern	of	equipment	failures	from	some	external	factors.		

	

Figure	4.3	MTBF	vs.	Time		
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Figure	4.4	Cumulative	numbers	of	failures	vs.	time		

Apart	 from	 the	 diagram	 showing	 the	 relationships	 of	 MTBF	 with	 time	 and	

cumulative	 number	 of	 failures	 with	 time,	 several	 reliability	 metrics	 can	 be	

derived	 from	 the	 power	 law	 model.	 For	 example,	 the	 instantaneous	 MTBF	
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(IMTBF)	at	a	specific	time	can	be	calculated.	Figure	4.5	presents	the	IMTBF	to	

be	 34.53hr	 at	 the	 time	 of	 18000hr	 with	 the	 upper	 bound	 to	 be	 38.92hr	 and	

lower	 bound	 to	 be	 31.06hr	when	 the	 confidence	 level	 is	 set	 to	 be	 0.9.	 Other	

reliability	metrics	 such	 as	 cumulative	MTBF,	 cumulative	 failure	 intensity	 and	

instantaneous	 failure	 intensity	 can	 also	 be	 generated	 from	power	 law	models	

with	the	aid	of	RGA7.	

	

Figure	4.5	Calculation	of	IMTBF	

Another	case	study	being	presented	here	is	the	research	results	for	the	truck.	A	

sample	size	of	305	data	points	have	been	extracted	for	reliability	analysis	and	

failure	 prediction	 in	 the	 truck	 by	 both	 power	 law	 models	 and	 time	 series	

analysis	for	comparison.	Table	4.3	shows	the	predictions	of	the	MTBF	between	

Intervals#	294	and	305	by	using	the	Power	Law	Models.	The	values	of	the	same	

intervals	(294	to	305)	by	using	time	series	models	are	predicted	and	presented	

in	 the	 next	 section	 for	 comparison.	 The	 predicted	 MTBF	 is	 presented	 in	 the	

table	as	well	 the	original	values.	The	upper	and	lower	bounds	of	MTBF	with	a	

confidence	interval	of	90%	are	also	shown	in	the	same	table.	It	can	be	seen	that	

the	 IMTBF	 is	 decreasing	 as	 time	 goes	 on,	 which	 is	 the	 same	 as	 Figure	 4.3	

illustrates.	Thus,	it	is	found	that	this	construction	equipment	bulldozer	is	at	the	

wear‐out	stage.	Special	attention	should	be	paid	to	this	piece	of	equipment	and	

change	of	new	equipment	should	be	implemented	when	it	is	suitable.	
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Table	4.3	Instantaneous	MTBF	predicted	in	RGA7	with	two‐sided	confidence	level	

of	0.9							

		

4.4	 TIME	SERIES	MODELLING	PROCESS	

4.4.1	 DATA	ANALYSIS/	MODELING		

Apart	from	power	law	models,	time	series	models	are	also	built	for	construction	

equipment	 reliability	 analysis	 with	 the	 aid	 of	 computer	 software	 named	 JMP	

and	 DTREG	 (SAS,	 2012;	 Sherrod,	 2003).	 As	 can	 be	 seen	 from	 the	 software	

platform,	 two	 options	 could	 be	 selected:	 generate	 a	 normal	 predictive	model	

and	generate	a	time	series	forecasting	model.	What	we	chose	is	the	latter	option.	

Again	there	are	many	types	of	model	which	can	be	built	in	DTREG	(Figure	4.6),	

and	here	we	use	“linear	regression”	as	the	simplest	method.	This	is	because	of	

the	 concept	 of	 “parsimony”.	We	 have	 seen	 that	 the	mathematical	 models	 we	

need	to	employ	contain	certain	constants	or	parameters	whose	values	must	be	

estimated	from	the	data.	It	is	important,	in	practice,	that	we	employ	the	smallest	

possible	number	of	parameters	for	adequate	representations.		

No TBF (Hr) Cumulative TBF (Hr) Upper Bound (0.95) IMTBF(t=8748Hr) Lower Bound (0.05)

294 15.75 8510.57 Upper Bound (0.95) = 33.6393 Hr IMTBF(t=8748 Hr) = 29.4884 Hr Lower Bound (0.05) = 25.6108 Hr

295 15.43 8526.00 Upper Bound (0.95) = 33.4060 Hr IMTBF(t=8748 Hr) = 29.2903 Hr Lower Bound (0.05) = 25.4451 Hr

296 2.33 8528.33 Upper Bound (0.95) = 33.1749 Hr IMTBF(t=8748 Hr) = 29.0940 Hr Lower Bound (0.05) = 25.2808 Hr

297 33.33 8561.67 Upper Bound (0.95) = 32.9462 Hr IMTBF(t=8748 Hr) = 28.8996 Hr Lower Bound (0.05) = 25.1181 Hr

298 15.25 8576.92 Upper Bound (0.95) = 32.7193 Hr IMTBF(t=8748 Hr) = 28.7068 Hr Lower Bound (0.05) = 24.9567 Hr

299 49.92 8626.83 Upper Bound (0.95) = 32.4947 Hr IMTBF(t=8748 Hr) = 28.5158 Hr Lower Bound (0.05) = 24.7967 Hr

300 15.43 8642.27 Upper Bound (0.95) = 32.2717 Hr IMTBF(t=8748 Hr) = 28.3261 Hr Lower Bound (0.05) = 24.6377 Hr

301 4.58 8646.85 Upper Bound (0.95) = 32.0508 Hr IMTBF(t=8748 Hr) = 28.1381 Hr Lower Bound (0.05) = 24.4801 Hr

302 29.15 8676.00 Upper Bound (0.95) = 31.8320 Hr IMTBF(t=8748 Hr) = 27.9520 Hr Lower Bound (0.05) = 24.3240 Hr

303 2.50 8678.50 Upper Bound (0.95) = 31.6152 Hr IMTBF(t=8748 Hr) = 27.7674 Hr Lower Bound (0.05) = 24.1692 Hr

304 17.42 8695.92 Upper Bound (0.95) = 31.4005 Hr IMTBF(t=8748 Hr) = 27.5845 Hr Lower Bound (0.05) = 24.0157 Hr

305 52.00 8747.92 Upper Bound (0.95) = 31.1877 Hr IMTBF(t=8748 Hr) = 27.4033 Hr Lower Bound (0.05) = 23.8636 Hr
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Figure	4.6	Time	Series	Modelling	Process	

In	Figure	4.6,	 there	are	 two	variables	 indicated	 for	 the	 time	series	prediction,	

namely	 time	between	 failures	 (TBF)	and	 time	 to	 repair	 (TTR).	Where	 there	 is	

word	“log”	behind	the	TBF	and	TTR,	it	means	that	both	series	of	data	have	been	

transformed	 by	 using	 logarithm	 function.	 At	 the	 bottom	part	 of	 the	 interface,	

“validate	prediction	for	end	of	series”	and	“forecast	future	values	beyond	end	of	

series”	are	ticked	and	a	number	of	12	are	inputted	for	both	cases	for	the	reason	

of	seasonal	effects.		

The	 third	 stage	 “model	 estimation”	 is	 presented	 with	 the	 predicted	 results	

obtained	in	the	next	section.	
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Figure	4.7	Types	of	model	can	be	built	for	time	series	prediction	in	DTREG	

4.4.2	 MODEL	EVALUATION	

As	explained	earlier	in	Chapter	3,	there	are	several	metrics	that	could	be	used	

for	evaluating	the	fitness	of	a	model	(Figure	3.4).	 	Different	software	packages	

may	 provide	 slightly	 different	 metrics	 for	 evaluating	 the	 fitness.	 Figure	 4.8	

presents	the	criterions	being	used	in	the	software	DTREG	which	is	adopted	for	

time	series	analysis	 in	this	case.	Among	the	various	metrics,	 the	proportion	of	

variance	 (R^2)	 and	 correlation	 between	 actual	 and	 predicted	 are	 the	 most	

important	metrics.	In	this	case,	the	figures	for	these	two	criterions	are	0.10790	

and	0.330022	respectively.	The	causes	of	the	low	values	could	be	the	irregular	

fluctuations	or	outliers	are	too	high	in	the	case.	

	

Figure	4.8	Evaluation	of	the	fitness	of	the	time	series	model	
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4.4.3	 RESULTS	FROM	TIME	SERIES	MODELS	

As	 discussed	 earlier,	 for	 system	 reliability	 analysis,	 the	 deliverables	 from	

modelling	may	include:	expected	number	of	failures,	conditional	reliability	and	

unreliability,	MTBF	or	failure	intensity,	and	system	operation	plot.	The	system	

operation	 plot	 of	 a	 construction	 equipment	 is	 presented	 in	 the	 next	 chapter	

with	 the	 illustration	 of	 Figure	 5.12.	 In	 this	 case	 study,	 the	 reliability	 metrics	

have	 been	 procured	 include	 the	 number	 of	 failures	 and	 TBF	with	 confidence	

levels.	 TTR	 is	 also	 taken	 into	 consideration	 in	 time	 series	 analysis	 while	

predicting	 TBF.	 Table	 4.4	 shows	 an	 example	 of	 the	 prediction	 of	 numbers	 of	

failures	per	interval	by	using	time	series	models.	Time	series	models	generally	

can	detect	changes	in	the	failure	pattern	and	respond	well	enough.	

Table	4.4	Prediction	of	numbers	of	failures	per	interval	by	time	series	models	

Failure	

Interval	

Actual	

Failures	

Predicted	

Failures	

Absolute	

Error	

25	 1 1.62 ‐0.62	

26	 2 1.61 0.39

27	 5 1.60 3.40

28	 4 1.58 2.40

29	 1 1.57 0.57

30	 2 1.55 0.45

	

Table	 4.5	 &	 4.6	 present	 the	 results	 of	 the	 predictions	 of	 TBF	 per	 interval	

(weekly)	of	the	construction	equipment	truck,	which	can	be	compared	with	the	

results	 obtained	 from	 power	 law	 models	 as	 shown	 in	 Table	 4.3.The	 same	

number	of	data	points	(305)	were	used	in	the	data	modelling.	A	summary	of	the	

predictive	errors	in	absolute	error	is	also	presented	in	the	table.	By	comparing	

the	 forecast	 with	 the	 actual	 numbers	 of	 failures	 (“Absolute	 error”),	 it	 can	 be	

noted	 that	 time	 series	 models	 can	 give	 more	 satisfactory	 predictions	 than	

power	law	models.			

Table	 4.5	 shows	 the	 predicted	 TBF	 as	 compared	 with	 the	 actual	 TBF	 of	 a	

construction	 equipment	 truck	 (240H_075).	 The	 data	 in	 Table	 4.6	 has	 been	
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modified	using	logarithm	and	the	results	appears	better	than	the	one	on	the	left	

which	not	been	modified.	The	error	percentages	are	mostly	within	50%	which	

indicates	that	the	results	from	the	time	series	modeling	are	quite	satisfactory.	

The	statistics	calculated	from	time	series	model	are	summarized	as	follows:	

Exponential	trend:		

TBF	(log)	=	1.162166	+	0.163911*exp	(‐0.034805*row)	

And	the	variance	explained	by	trend	equals	0.301%.	

Table	4.5	Validation	results	of	time	series	analysis		

Row	 Actual Predicted Error

294	 15.750000 16.735053 ‐0.985053	

295	 15.430000 12.918207 2.511793	

296	 2.330000 14.819318 ‐12.489318	

297	 33.330000 22.148179 11.181821	

298	 15.250000 16.843528 ‐1.593528	

299	 49.920000 14.548194 35.371806	

300	 15.430000 15.336325 0.093675	

301	 4.580000 24.255259 ‐19.675259	

302	 29.150000 23.409228 5.592087	

303	 2.50000 22.409228 ‐19.909228	

304	 17.420000 20.152580 ‐2.732580	

305	 52.0000 19.305280 32.694720	

	

Table	 4.6	 Validation	 results	 of	 time	 series	 analysis	 after	 logarithmic	

transformation		

Row	 Actual Predicted Error

294	 1.1973000 1.0092817 0.1880183	

295	 1.1885000 0.9902672 0.1982328	

296	 0.3680000 0.9574823 ‐0.5894823	

297	 1.5229000 0.7814389 0.7414611	

298	 1.1833000 0.7893086 0.3939914	

299	 1.6982000 0.9986845 0.6995155	
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300	 1.1885000 1.0403445 0.1481555	

301	 0.6612000 1.0187228 ‐0.3575228	

302	 1.4646000 1.1203957 0.3442043	

303	 0.3979000 1.0455107 ‐0.6476107	

304	 1.2410000 1.1410082 0.0999918	

305	 1.7160000 1.1042755 0.6117245	

	

Figure	4.9	shows	the	time	series	trend	for	TBF	after	logarithmic	transformation	

while	 the	 black	 squares	 represent	 the	 actual	 failure	 intervals	 and	 the	 red	

triangles	 represent	 the	 forecasted	 failure	 intervals.	The	blue	 trend	 line	 shows	

TBF	over	time	and	in	this	case	shows	a	slight	downwards	trend,	which	suggests	

that	 the	 equipment	 is	 entering	 the	 wear	 out	 stage.	 	 Figure	 4.10	 is	 similar	 to	

Figure	 4.9	 and	 shows	 the	 time	 series	 values	 for	 TBF	 afther	 logarithmic	

transformation.	The	black	 squares	and	 red	 triangles	have	 the	 same	meanings,	

while	 the	green	points	represent	 the	predicted	values	and	blue	points	are	 the	

validation	values	which	fall	in	the	time	interval	of	294	and	305	in	this	case	study.		

	

	

Figure	4.9	Time	series	trend	for	TBF	(after	logarithmic	transformation)	
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Figure	 4.10	 Time	 series	 analysis	 and	 prediction	 for	 TBF	 (after	 logarithmic	

transformation)	
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Table	 4.7	 presents	 the	ARIMA	 time	 series	 prediction	 of	 TBF	with	 95%	upper	

and	lower	confidence	levels.	

Table	4.7	Time	series	prediction	of	TBF	with	upper	and	lower	confidence	levels	

Row Actual TBF Predicted TBF 
Upper CL (0.95) 

TBF 

Lower CL (0.95) 

TBF 
Residual TBF 

25 356.50 338.38 473.02 203.74 18.12 

26 226.00 226.04 360.68 91.40 -0.04 

27 315.50 243.51 378.15 108.87 71.99 

28 160.90 174.04 308.68 39.40 -13.14 

29 297.10 256.16 390.80 121.51 40.94 

30 287.17 203.89 338.53 69.24 83.28 

31 30.33 162.87 297.51 28.23 -132.54 

32 424.42 371.86 506.50 237.22 52.56 

33 247.60 192.50 327.14 57.86 55.10 

34 234.48 189.98 324.63 55.34 44.50 

35 270.52 200.24 334.88 65.60 70.28 

36 204.00 175.14 309.78 40.50 28.86 

	

Model	validation:	 the	model	was	validated	by	comparing	 the	predicted	 failure	

data	 to	 the	 actual	 system	 failure	 data.	 The	 results	 in	 Table	 4.6	 show	 the	

predicted	failure	time	based	on	mean	time	between	failures	(MTBF)	compared	

with	 the	 actual	 occurrence	 of	 failure.	 In	 the	 JMP	 software,	 several	 validation	

options	 are	 provided	 for	model	 selection,	which	 include	AIC,	 SBC,	R‐Square,	 ‐

2LogLikelihood	 (‐2LogLH).	By	 comparing	 these	options,	 it	 is	 found	 the	MA(1)	

model	is	the	most	suitable	one	in	this	case	(Figure	4.11).		

	

Figure	4.11	Model	comparison	

Time	between	failures	(TBF)	and	time	to	repair	(TTR)	are	the	most	commonly	

used	 reliability	 metrics	 which	 need	 to	 be	 predicted.	 TTR	 measures	 the	 time	

needed	to	fix	a	failure.	In	this	case,	we	not	only	predict	the	number	of	failures	of	
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a	piece	of	construction	equipment,	but	also	perform	a	forecast	of	the	TBF	with	

TTR	contributed	as	a	predictor	time	series	(Table	4.8	&	4.9).	

The	utilization	of	the	equipment	 is	directly	related	to	two	parameters,	namely	

TBF	 and	 TTR,	 for	 all	 the	 systems	 and	 subsystems.	 Time	 to	 repair	 (TTR),	 is	 a	

crucial	parameter,	 indicating	 that	equipment	parts	will	 soon	return	 to	normal	

and	have	a	great	impact	on	the	overall	stability	of	the	system.	Table	4.9	presents	

the	prediction	of	the	Cumulative	TBF	based	two	parameters:	TBF	as	well	as	TTR.	

It	 is	 apparent	 that	 adding	 TTR	 as	 a	 parameter	 in	 time	 series	 forecast	 gives	

different	 result	 than	 the	 one	 using	 TBF	 as	 the	 only	 time	 series.	 From	 the	

experiment	results	we	noticed	that	the	time	spend	on	repairing	the	equipment	

(i.e.,	TTR)	has	 impact	on	 the	occurrence	of	next	 failure	 (TBF).	Therefore,	TTR	

can	be	taken	into	consideration	when	conducting	reliability	analysis	and	failure	

forecast	of	construction	equipment.		

Table	4.8	Time	series	prediction	using	TBF	as	the	only	parameter	
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Table	4.9	Time	series	prediction	using	both	TBF	and	TTR	as	parameters	

	

4.5	 SUMMARY	AND	DISCUSSIONS	

To	 summarize,	 there	 are	 basically	 two	undertakings	 in	 this	 case	 study,	which	

are:	 the	 comparison	of	 the	 two	different	 reliability	modelling	 approaches	 and	

their	applications	 to	construction	equipment,	 the	 findings	and	their	 impact	on	

equipment	management	decisions.	The	following	will	discuss	these	two	aspects	

respectively.	

4.5.1	 COMPARISON	OF	TIME	SERIES	WITH	POWER	LAW	MODEL	

From	the	aspect	of	the	methodology	chosen	for	system	and	subsystem	analysis,	

a	 comparative	 study	 between	 power	 law	 models	 and	 time	 series	 models	 is	

made	for	reliability	analysis	and	forecasting	failures	of	construction	equipment,	

with	 emphasis	 on	 their	 predictive	 performance.	 It	 can	 be	 noticed	 that	 time	

series	forecast	techniques	will	be	a	suitable	alternative	in	modeling	the	failure	

patterns	of	construction	equipment.	By	iteratively	adjusting	the	weights	in	the	

time	series	models,	better	estimates	can	be	obtained.	By	comparing	the	results	

obtained	 from	 time	series	models	and	power	 law	models,	 the	advantages	and	

disadvantages	of	the	two	models	are	found	out.	
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Time	 series	 models	 usually	 require	 a	 sample	 size	 of	 at	 least	 50	 for	 analysis	

while	power	law	model	requires	less	data.	The	assumption	of	power	law	models	

is	Non‐homogenous	Poisson	process	(NHPP)	which	is	a	random	failure	process	

with	different	intensities	at	different	stages	of	equipment	life.	On	the	other	hand,	

time	series	models	use	very	few	assumptions	and	are	very	flexible.	Data	series	

with	underlying	patterns	are	caused	by	both	randomness	and	a	large	number	of	

external	and	internal	influencing	factors.	In	Chapter	5,	the	applications	of	these	

two	 models	 to	 subsystems	 will	 be	 compared	 and	 discussed.	 The	 combined	

comparison	made	 in	 these	 two	 chapters	 is	 summarized	 in	Chapter	6	with	 the	

illustrations	in	Table	6.1.	

Apart	 from	 the	 contributions	 to	 construction	 equipment	 maintenance	 and	

management	decisions,	this	research	also	demonstrates	that	the	ARIMA	model	

is	 a	 viable	 alternative	 that	 gives	 satisfactory	 results	 in	 terms	 of	 its	 predictive	

performance.	The	result	 is	valuable	in	planning	a	system	shutdown	depending	

on	the	organization’s	reliability	target.	

4.5.2	 IMPACT	ON	MANAGEMENT	DECISIONS	

The	reliability	assessment	of	construction	equipment	can	affect	decision	making	

in	 selecting	 the	 right	maintenance	and	utilization	 strategy	 in	 civil	 engineering	

projects.		

As	 introduced	 earlier	 in	 Chapter	 2,	 traditional	 construction	 equipment	

maintenance	 options	 are	 not	 sufficient	 and	 there	 is	 a	 need	 for	 implementing	

predictive	 maintenance.	 Predictive	 maintenance	 is	 able	 to	 maximize	 the	

intervals	 between	 repairs	 and	 decrease	 the	 number	 of	 unscheduled	

breakdowns	and	more	cost	effective.	However,	this	measure	requires	indicators	

to	determine	the	actual	MTTF	or	loss	of	efficiency	of	the	equipment.	

The	results	obtained	from	the	models	and	analysis	in	this	chapter	are	valuable	

indicators	for	predictive	maintenance.	By	analyzing	the	reliability	of	a	particular	

piece	 of	 construction	 equipment,	 trends	 of	 failures	 of	 this	 equipment	 can	 be	

detected;	furthermore,	the	numbers	of	failures	and	the	MTBF	for	a	fixed	interval	

can	 be	 predicted,	 as	 illustrated	 earlier.	 Based	 on	 this	 information,	 the	
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equipment	 manager	 can	 recognize	 the	 status	 of	 the	 equipment	 and	 make	

adequate	maintenance	service	accordingly.	

Apart	 from	 arranging	 predictive	 maintenance	 for	 a	 particular	 piece	 of	

equipment,	 the	 allocation	 of	 equipment	 can	 also	 be	 judged	 by	 the	 reliability	

analysis.	From	the	case	study,	the	status	of	a	piece	of	equipment	can	be	detected,	

whether	in	the	infant	mortality	stage,	useful	life	or	wear	out	stage	of	a	bathtub	

curve.	 The	 example	 used	 in	 this	 case,	 the	 bulldozer,	 is	 found	 out	 to	 be	 at	 the	

wear	 out	 stage	 by	 using	 power	 law	 models	 and	 time	 series	 models,	 which	

means	 this	 particular	 equipment	 is	 getting	 deteriorated	 and	 unreliable.	

Allocation	of	unreliable	and	aged	equipment	should	be	cautious	because	of	 its	

low	 working	 efficiency	 and	 the	 reality	 that	 spare	 parts	 are	 often	 not	 easily	

available	 in	 local	 markets.	 Equipment	 managers	 should	 replace	 this	 kind	 of	

equipment	with	the	ones	having	higher	availability	or	assign	these	machines	to	

operations	where	they	do	not	work	alone,	or	with	backup	plan.		
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CHAPTER	5	 CONSTRUCTION	EQUIPMENT	SUBSYSTEMS	

5.1	 SUBSYSTEMS	RELIABILITY	

A	complex	system	may	include	many	components	and	interfaces,	such	as	cars,	

aircrafts,	 and	 construction	 equipment.	 Typical	 construction	 equipment	 has	

around	20	subsystems/components	which	 should	be	 taken	 into	 consideration	

in	 failure	 analysis.	 In	 this	 chapter,	 the	 data	 analysis	 and	modelling	 process	 is	

applied	 to	 the	 equipment	 subsystems	and	 the	 critical	 components	 to	 examine	

the	equipment	failures	at	a	subsystem	level.	

Systems,	 like	cars,	aircrafts	and	construction	equipment,	usually	 include	many	

components	and	interfaces.	Components	can	be	divided	into	two	groups,	which	

are:	 intrinsically	 reliable	 components	and	 intrinsically	unreliable	 components.	

Intrinsically	reliable	components	refer	to	those	that	have	high	margins	between	

their	 strength	 and	 stresses	 that	 could	 cause	 failure,	 as	 well	 as	 not	 wear	 out	

within	 their	 practicable	 lifetime.	 On	 the	 other	 hand,	 intrinsically	 unreliable	

components	are	those	with	low	design	margins	or	which	wear	out	within	their	

practicable	life	time.	Examples	include	badly	applied	components	and	parts	that	

move	in	contact	with	others,	such	as	power	drive	belts,	bearings	and	gears.		

For	 a	 non‐repairable	 item,	 when	 a	 part	 fails	 in	 a	 non‐repairable	 system,	 the	

system	 usually	 fails	 and	 the	 system	 reliability	 is,	 therefore,	 a	 function	 of	 the	

time	to	the	first	part	failure.	For	a	repairable	item,	reliability	is	the	probability	

that	failure	will	not	occur	in	the	period	of	interest,	when	more	than	one	failure	

can	occur.	Most	construction	equipment	types	are	considered	to	be	repairable	

systems.	

Reliability	is	the	ability	of	an	item	to	perform	a	required	function	under	stated	

conditions	for	a	stated	period	of	time.	One	of	the	purposes	of	system	reliability	

analysis	 is	 to	 identify	 the	weakness	 in	a	 system	and	 to	quantify	 the	 impact	of	

component	 failures.	 The	 so‐called	 “reliability	 importance”	 is	 used	 for	 this	

purpose.	 These	 importance	measures	 provide	 a	 numerical	 rank	 to	 determine	

which	 components	 are	more	 important	 to	 system	 reliability	 improvement	 or	

more	critical	to	system	failure.	
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5.1.1	 SERIAL	AND	PARALLEL	CONFIGURATIONS	

In	 analyzing	a	 complex	 system,	 a	particular	 failure	 law	may	be	 applied	 to	 the	

entire	 system.	 However,	 an	 alternative	 approach	 is	 to	 apply	 reliability	

modelling	 on	 the	 important	 components	 of	 the	 system,	 and	 base	 on	 the	

components	reliability	to	calculate	the	reliability	of	the	system.		

There	are	two	different	ways	for	components	of	a	system	to	be	connected	to	one	

another:	in	either	a	serial	or	a	parallel	configuration.	In	series	configuration,	if	a	

system	need	to	function,	then	all	components	are	required	to	function;	however,	

in	 a	 parallel	 configuration,	 if	 a	 system	 need	 to	 function,	 then	 at	 least	 one	

component	 must	 function.	 In	 the	 following	 discussions,	 all	 components	 are	

considered	critical	 in	a	sense	 that	 their	 functions	must	be	performed	 in	order	

for	 the	 system	 to	 continue	 to	 perform.	 Under	 this	 concept,	 if	 either	 of	 two	

serially	related	components	fails,	the	system	will	fail.	The	series	relationship	is	

represented	by	the	reliability	block	diagram	of	Figure	5.1.	

	

Figure	5.1	Reliability	block	diagram	for	components	in	series	

Since	 reliability	 is	 a	 probability,	 the	 system	 reliability	 Rs	may	 be	 determined	

from	the	component	reliabilities	in	the	following	way.	

The	system	reliability	is	given	by		

	 	 				 	 [5.1]	

Majority	 of	 construction	 equipment	 design	 follows	 the	 pattern	 of	 serial	

configuration.	 The	 details	 of	 some	 construction	 equipment	 are	 presented	 and	

illustrated	in	the	next	section.		

In	 parallel	 configuration,	 two	 or	 more	 components	 can	 be	 in	 parallel,	 or	

redundant.	If	one	or	more	units	operate,	the	system	continues	to	operate.	Only	

1	 	2 	n



64	
	

when	 all	 the	 components	 in	 parallel	 fail,	 the	 system	 fails.	 Reliability	 block	

diagram	for	components	in	parallel	is	illustrated	in	Figure	5.2.	

	

Figure	5.2	Reliability	block	diagram	for	components	in	parallel	

The	function	for	system	reliability	of	n	parallel	and	independent	components	is	

presented	 as	 Formula	 5.2.	 The	 system	 reliability	 is	 the	 deduction	 of	 the	

probability	 that	 all	 n	 components	 fail	 from	 integer	 “1”.	 On	 other	 words,	 the	

system	 reliability	 is	 the	probability	 that	 at	 least	 one	 component	does	not	 fail.	

The	equation	is,	

	 	 	 [5.2]	

Though	 some	 electrical	 system	 in	 an	 equipment	 may	 be	 in	 parallel,	 it	 is	

generally	 considered	 that	 subsystems	 in	 a	 construction	 equipment	 to	 be	 in	

series	configuration.	

5.1.2	 CONSTRUCTION	EQUIPMENT	COMPONENTS	

There	 are	 a	 number	 of	 construction	 equipment	 categories	 based	 on	 the	

classification	 of	 their	 functions,	 which	 include	 excavating	 equipment,	 hauling	

equipment,	 loading	 equipment,	 grading	 equipment,	 hoisting	 equipment,	

concrete	equipment.	The	data	we	used	 in	this	research	are	extracted	 from	the	

following	eight	construction	equipment	categories,	 i.e.,	 trucks,	 scrapers,	wheel	

loaders,	 two	 bulldozers,	 graders,	 and	 tractors.	 Among	 them,	 the	 shovel	 is	

excavating	equipment,	 the	bulldozers	and	scraper	are	 loading	equipment,	 and	

truck	is	hauling	equipment.		

1

	2

	n
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In	 this	 research,	 six	different	 types	of	 construction	equipment	were	examined	

for	 subsystem	 reliability	 analysis	 as	 there	 are	 relevant	 maintenance	 records	

available.		These	six	construction	equipment	pieces	are:	scrapers,	wheel	loaders,	

two	different	bulldozers,	graders,	and	tractors.	

	

Figure	5.3	Typical	bulldozer	details	(Harris	and	McCaffer,	1991)	

Bulldozer	 is	 a	 multifunctional	 piece	 of	 engineering	 equipment,	 which	 is	

applicable	 for	 work	 including	 excavation,	 short	 distance	 transport	 and	

unloading.	 It	 consists	 of	 a	 track	 or	 wheel	mounted	 power	 unit	with	 a	mould	

blade	at	the	front	which	is	controlled	by	hydraulic	rams.	Many	bulldozers	have	

the	 capacity	 to	 adjust	 the	mould	 blade	 to	 form	 an	 angle.	 A	 bulldozer	 and	 its	

capacity	to	tilt	the	mould	blade	about	a	central	swivel	point	are	shown	in	Figure	

5.3.		

A	 bulldozer	 can	perform	 functions	 such	 as	 shallow	 excavations	 up	 to	 300mm	

deep	 both	 on	 level	 ground	 and	 sidehill	 cutting.	 Other	 major	 functions	 may	

include	 clearance	 of	 shrubs	 and	 small	 trees	 by	 using	 raised	mould	blade	 as	 a	
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pusher	 arm;	 acting	 as	 a	 pusher	 to	 scraper	 machine	 and	 acting	 as	 a	 towing	

tractor.	

Similar	to	bulldozers,	graders	also	have	a	long	slender	adjustable	mould	blade,	

which	is	usually	slung	under	the	centre	of	the	machine	(Figure	5.4).		

The	main	function	of	a	grader	is	to	finish	or	grade	the	upper	surface	of	a	large	

area,	 normally	 after	 the	 operation	 of	 bulldozing	 or	 scraping.	 Different	 from	

bulldozer	 which	 is	 suitable	 for	 site	 excavation	 work	 because	 of	 the	 power,	

grader,	 however,	 can	produce	 a	 fine	 and	 accurate	 finish.	The	basic	 formats	 of	

most	graders	available	are	four	wheeled	and	six	wheeled.	The	first	type	has	all	

the	four	wheels	driven	and	steered,	which	gives	the	machine	the	ability	to	offset	

and	crab	along	its	direction	of	travel;	while	six	wheeled	graders	have	4	wheels	

in	tandem	drive	at	the	rear	and	2	front	tilting	idler	wheels	giving	it	the	ability	to	

counteract	side	thrust.	

	

Figure	5.4	Typical	grader	details	(Harris	and	McCaffer,	1991)	

A	scraper	contains	a	lowered	scraper	bowl	for	cutting	and	collecting	soil	where	

sites	 require	work	 involving	 large	 volume	 of	 earth	 (Figure	 5.5).	 The	working	

theory	of	a	scraper	 is	 that	when	the	bowl	 is	 full	 the	apron	at	 the	cutting	edge	

will	be	closed	to	retain	 the	earth.	Then	the	bowl	 is	raised	 for	 travelling	 to	 the	

disposal	area.	On	arrival	the	scraper	bowl	is	lowered,	the	apron	will	be	opened	

and	the	soil	pushed	out	by	the	tailgate	as	 the	machine	moves	 forwards.	There	
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are	 three	 types	 of	 scrapers	 available,	 which	 are:	 towed	 scrapers,	 two	 axle	

scrapers	and	three	axle	scrapers.	

Scrapers	 are	 suggested	 to	 operate	 downhill	 if	 possible	 and	 on	 smooth	 haul	

roads	 in	order	 to	obtain	maximum	efficiency.	Hard	surfaces	should	be	broken	

up	before	scraping	and	be	assisted	over	the	last	few	metres	by	a	pushing	vehicle	

such	as	a	bulldozer.	

	

Figure	5.5	Typical	scraper	details	(Harris	and	McCaffer,	1991)	

Some	basic	components	are	common	to	many	types	of	construction	equipment	‐	

these	include	power	sources,	power	transfer	from	engine	to	wheels	or	crawler	

tracks,	kinds	of	mountings,	and	means	of	propulsion.	

Power	sources	of	construction	equipment	usually	contain	 internal	combustion	

engines,	electric	generators	and	motors,	compressed	air,	and	hydraulic	systems.	

Some	 equipment	 uses	 more	 than	 one	 power	 source.	 For	 example,	 large	 off‐

highway	 trucks	 may	 be	 driven	 by	 electrical	 wheels,	 the	 electricity	 being	

generated	 by	 an	 on‐board	 diesel‐powered	 generator;	 scrapers	 are	 driven	 by	

diesel	 engines	 and	 operating	 parts	 of	 the	machine	 are	 operated	 by	 hydraulic	

cylinders.	

Crawlers	and	wheel	mountings	are	common	to	tractors,	excavators,	cranes,	and	

material‐handling	and	paving	equipment.	
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5.2	 IDENTIFY	CRITICAL	COMPONENTS	

One	of	the	objectives	in	this	research	is	to	identify	the	critical	components	in	an	

equipment	system.	Further	improvements	to	these	critical	components	such	as	

effective	 maintenance	 policies	 will	 be	 required	 to	 improve	 the	 operational	

reliability	and	availability.	

For	 any	 machine	 component	 failures	 directly	 affecting	 the	 productivity,	

construction	quality	and	safety,	reduction	of	downtime	therefore	becomes	one	

of	 the	 major	 goals.	 The	 research	 tasks	 include:	 1)	 identify	 the	 critical	

components	 that	 cause	 predominant	 machine	 failures	 and	 improve	 their	

reliability;	2)	develop	a	maintenance	policy	based	on	the	lifetime	of	 individual	

components	so	that	maintenance	policy	will	be	focused	and		cost	effective.	

Subsystems	 are	 key	 parts	 of	 a	 system	 because	 the	 critical	

subsystems/components	 with	 lower	 reliability	 determine	 the	 whole	 system’s	

reliability.	The	importance	of	critical	component	in	reliability	analysis	has	been	

noticed	by	many	researchers	 (Lin	&	Titmuss,	1995).	Some	even	only	 focus	on	

the	 reliability	 analysis	 of	 a	 particular	 critical	 component	 in	 a	 system,	 such	 as	

engine	reliability	(Hong,	2006).			

Component	 importance	 analysis	 is	 significant	 for	 system	 reliability	 analysis,	

which	 enables	 the	 critical	 components	 (or	 weakest	 areas)	 of	 a	 system	 to	 be	

identified	 and	 suggests	modifications	 that	 will	 enhance	 the	 system	 reliability	

(Besson	and	Andrews,	2003).		

The	component	reliability	importance	measure	is	defined	as	the	probability	that	

component	 i	 is	 critical	 to	 system	 failure.	 The	 reliability	 importance,	 I,	 of	

component	i	in	a	system	of	n	subsystems	can	be	calculated	as:	
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 	 	 	 	 	 [5.3]	

Where	 Ri(t)	 	 is	 the	 subsystem/component	 reliability	 and	Rs(t)	 is	 the	 system	

reliability.	If	the	reliability	of	a	system	needs	to	be	improved,	then	efforts	should	



69	
	

first	 be	 spent	 on	 improving	 the	 component	 reliability	 which	 has	 the	 biggest	

effect	on	system	reliability.	

As	 construction	 equipment	 usually	 is	 in	 a	 series	 configuration,	 it	means	 only	

when	all	the	subsystems	are	operating	well,	then	the	whole	system	can	function	

well.	The	reliability	of	the	system	(Rs)	is	given	by:	





n

i
is RR

1

			 			 	 															 [5.4]	

Where		Ri	is	the	reliability	of	the	different	subsystems.	

With	 the	 parameters	 of	 the	 best‐fit	 distribution	 derived	 from	 computer	

software,	the	theoretical	reliabilities	for	the	subsystems	at	the	end	of	different	

time	 intervals	 can	 be	 computed.	 The	 possible	 probability	 distributions	 for	

reliability	analysis	include	Weibull,	Exponential,	and	Lognormal	distributions.	

Pareto	analysis	is	used	in	this	research	to	identify	the	critical	components	of	a	

construction	equipment	system.	Historical	data	was	obtained	from	maintenance	

records	 and	 analyzed.	 Table	 5.1	 shows	 an	 example	 of	 a	 piece	 of	 equipment	

(bulldozer),	 in	 which	 the	 components	 have	 been	 divided	 into	 three	 different	

groups	 “ABC”	 indicating	 their	 different	 degree	 of	 importance.	 The	 cumulative	

percentage	falls	under	60%	is	categories	into	Group	“A”;	between	60%	and	85%	

is	put	into	Group	“B”	and	above	85%	is	put	into	Group	“C”.	Group	“A”	items	are	

considered	to	be	the	more	critical	components	that	affect	the	breakdown	of	the	

whole	system	more	severely	while	Group	“B”	and	“C”	items	can	be	neglected	in	

the	analysis.	The	 full	 set	of	 classifications	 is	attached	 in	Appendix	3.	 It	 can	be	

observed	 that	 there	 are	 five	 critical	 components	 for	 the	 bulldozer,	which	 are:	

undercarriage,	 ripper	 teeth,	 repair	 light,	 cab,	 and	 electrical.	 Among	 these,	

undercarriage	is	the	most	critical	component.		
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Table	5.1	Critical	components	of	the	bulldozer	based	on	numbers	of	failures	

Components 
Count of 

failures 
%  Cumulative % Category 

         0.00%    

Undercarriage  67  20.55%  20.55%  A 

Ripper Teeth  35  10.74%  31.29%  A 

Repair Light  27  8.28%  39.57%  A 

Cab  25  7.67%  47.24%  A 

Electrical  21  6.44%  53.68%  A 

Float  21  6.44%  60.12%  B 

Hydraulic System  21  6.44%  66.56%  B 

Cooling Systems  13  3.99%  70.55%  B 

Drive System  13  3.99%  74.54%  B 

Engine  12  3.68%  78.22%  B 

Air Conditioning  11  3.37%  81.60%  B 

Welding  11  3.37%  84.97%  B 

Blade  10  3.07%  88.04%  C 

Air System  9  2.76%  90.80%  C 

Cutting Edge  7  2.15%  92.94%  C 

Grease System  4  1.23%  94.17%  C 

Ice Lugging  3  0.92%  95.09%  C 

Oil Leak  3  0.92%  96.01%  C 

Steering System  3  0.92%  96.93%  C 

Fuel System  2  0.61%  97.55%  C 

Oil Sample  2  0.61%  98.16%  C 

Starting System  2  0.61%  98.77%  C 

Equalizer  1  0.31%  99.08%  C 

Heating System  1  0.31%  99.39%  C 

Low Power  1  0.31%  99.69%  C 

Torque  1  0.31%  100.00%  C 
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Figure	5.6	Pareto	chart	of	bulldozer	subsystems	based	on	numbers	of	failures	

The	failure	of	the	component	“undercarriage”	was	the	number	one	cause	of	loss	

of	production	time	in	the	bulldozer,	which	means	the	undercarriage	is	the	most	

critical	component	 in	this	situation.	By	analyzing	and	improving	the	reliability	

of	this	component,	the	reliability	of	the	system	could	also	be	improved.		

Figure	5.6	shows	the	Pareto	analysis	of	the	subsystems	of	the	bulldozer.	It	can	

be	 observed	 that	 “undercarriage”	 and	 “ripper	 teeth”	 are	 most	 critical.	 Then	

efforts	 should	 first	 be	 dedicated	 to	 improve	 the	 reliability	 of	 these	 two	

subsystems,	as	they	have	the	biggest	effect	on	system	reliability.	

Count	of	failures	is	one	method	for	identifying	the	critical	components;	however,	

number	 of	 failures	 is	 not	 the	 only	 contributory	 parameter;	 time	 between	

failures	 (TBF)	 and	 time	 to	 repair	 (TTR)	 may	 also	 affect	 how	 important	 a	

subsystem	 to	 the	 system.	 Table	 5.2	 shows	 the	 identification	 of	 the	 critical	

components	 of	 a	 bulldozer	 by	 analyzing	 the	 TBF	 of	 each	 component	 through	

Pareto	analysis.Only	those	components	which	fell	into	category	A	are	presented	

here;	 the	 full	 table	 is	 shown	 in	 the	Appendix	Table	A3.3b.	The	 identified	 four	

most	 important	 components	 are	 the	 same	 as	 the	 ones	 based	 on	 counts	 of	

failures;	except	for	one	component	“electrical”	which	falls	into	category	B	with	a	

cumulative	percentage	of	68.94%.	
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Table	5.2	Critical	components	of	the	bulldozer	based	on	TBF	

Components  TBF  %  Cumulative %  Category 

     0.00%   

Undercarriage  3204.03 22.60% 22.60%  A 

Ripper Teeth  1704.27 12.02% 34.62%  A 

Repair Light  1636.70 11.54% 46.17%  A 

Cab  1181.20 8.33% 54.50%  A 

	

Table	5.3	presents	the	results	of	Pareto	analysis	based	on	the	analysis	of	TTR	of	

each	component.	The	top	component	is	still	“undercarriage”;	however,	the	other	

three	 are	 different	 from	 the	 previous	 results	 based	 on	 counts	 of	 failures	 and	

TBF,	which	are:		air	system,	hydraulic	system	and	cooling	systems.		The	reason	

for	 this	difference	 is	 that	some	sub‐system	may	break	down	often	but	may	be	

easy	to	repair;	however,	on	the	other	hand,	other	sub‐systems	may	break	down	

rarely	but	take	long	time	to	repair,	such	as	the	“air	system”.	Based	on	different	

standards,	 either	 time	 between	 failures	 or	 time	 to	 repair,	 the	 critical	

components	 identified	 can	vary.	Therefore,	both	 the	 frequency	of	 failures	and	

the	impact	of	the	failures	should	both	be	considered	in	identification	of	critical	

components.	

Table	5.3	Critical	components	of	bulldozer	based	on	TTR	

		 TTR	 %	 Cumulative	
%	

Category	

		 0.00 		 		 		
Undercarriage	 618.50 27.34% 27.34%	 A	
Air	System	 362.37 16.02% 43.36%	 A	
Hydraulic	
System	

181.55 8.03% 51.39%	 A	

Cooling	Systems	 157.38 6.96% 58.35%	 A	
Electrical	 134.22 5.93% 64.28%	 B	
Welding	 129.65 5.73% 70.01%	 B	
Engine	 98.23 4.34% 74.35%	 B	
Blade	 88.98 3.93% 78.29%	 B	
Drive	System	 80.12 3.54% 81.83%	 B	
Float	 73.25 3.24% 85.07%	 C	
Equalizer	 72.80 3.22% 88.29%	 C	
Cutting	Edge	 52.22 2.31% 90.59%	 C	
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Ice	Lugging	 43.92 1.94% 92.54%	 C	
Repair	Light	 38.38 1.70% 94.23%	 C	
Cab	 31.83 1.41% 95.64%	 C	
Grease	System	 24.43 1.08% 96.72%	 C	
Oil	Leak	 20.52 0.91% 97.63%	 C	
Torque	 18.03 0.80% 98.42%	 C	
Air	Conditioning	 14.93 0.66% 99.08%	 C	
Ripper	Teeth	 13.98 0.62% 99.70%	 C	
Steering	System	 3.20 0.14% 99.84%	 C	
Starting	System	 1.52 0.07% 99.91%	 C	
Fuel	System	 1.08 0.05% 99.96%	 C	
Oil	Sample	 0.67 0.03% 99.99%	 C	
Low	Power	 0.17 0.01% 100.00%	 C	
Heating	System	 0.08 0.00% 100.00%	 C	

	

5.3	 POWER	LAW	MODELLING	OF	SUBSYSTEMS	

After	the	critical	components	in	a	system	have	been	identified,	the	next	step	is	

to	 analyze	 the	 reliability	 of	 these	 components.	 Reliability	 attributes	 include	

reliability	(R),	failure	intensity,	numbers	of	failures,	MTBF,	MTTF	and	MTTR,	etc.	

The	 two	 different	 models,	 i.e.,	 power	 law	 model	 and	 time	 series	 model,	 are	

adopted	 for	 subsystem	 analysis,	 to	 analyze	 reliability	 characteristics.	 A	

comparison	of	the	two	methods	is	also	conducted	and	summarized	at	the	end	of	

this	chapter	to	show	the	strengths	and	weaknesses	of	each	method.				

Reliasoft’s	 RGA	 7	 is	 chosen	 to	 aid	 the	 modelling	 and	 analysis	 process.	 The	

reliability	 of	 the	 bulldozer	 and	 its	 subsystems	 is	 analyzed	 and	 presented	 in	

Table	5.4.		

The	 reliability	 of	 the	 bulldozer	 and	 the	 five	 most	 critical	 subsystems	 is	

calculated	 and	 tabulated	 in	 Figure	 5.7.	 The	 Crow‐AMSAA	 (NHPP)	 model	 was	

selected	in	the	process.	The	parameters	such	as	beta	and	lambda	of	the	system	

were	 generated	 automatically	 by	 the	 program.	 Parameters	 of	 each	 critical	

component	 are	 also	 generated	 in	 the	 standard	 folio,	 as	 well	 as	 the	 statistical	

tests	 of	 Cramer‐von	Mises	 (CVM)	 and	 Laplace	 trend.	 As	 can	 be	 observed,	 the	

component	 undercarriage	 has	 passed	 the	 CVM	 test	 and	 the	 Laplace	 trend	 is	

deteriorating.	 It	 is	 identical	 to	 the	 trend	of	 cumulative	number	of	 failures	and	
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MTBF	 that	will	 be	 illustrated	 in	 the	next	 section.	The	 statistical	 tests	 of	 other	

bulldozer	critical	components	are	summarized	in	Table	5.3.	

	

Figure	 5.7	 Reliability	 analysis	 of	 construction	 equipment	 component	 by	 using	

NHPP	model	

Table	5.4	Statistical	tests	report	of	the	system	and	subsystems	of	bulldozer	

  Result Lower 
Test 

Value Upper 

Equivalent System

Cramér-von Mises Failed - 0.2773 0.173

Laplace Trend No Trend -1.6449 1.5138 1.6449

Common Beta Hypothesis Passed 1.0636 5.3575 7.7794

Undercarriage

Cramér-von Mises Passed - 0.0858 0.173

Laplace Trend Deteriorating -1.6449 2.1706 1.6449
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Ripper teeth

Cramér-von Mises Failed - 0.295 0.1721

Laplace Trend No Trend -1.6449 1.3687 1.6449

Repair light

Cramér-von Mises Passed - 0.0685 0.172

Laplace Trend No Trend -1.6449 0.5128 1.6449

Cab

Cramér-von Mises Failed - 0.1806 0.172

Laplace Trend No Trend -1.6449 -0.4093 1.6449

Electrical

Cramér-von Mises Failed - 0.2446 0.172

Laplace Trend Improving -1.6449 -1.8017 1.6449

	

From	Table	5.4,	it	can	be	observed	that	three	of	the	critical	components	have	no	

trend:	 ripper	 teeth,	 repair	 light	 and	 cab,	 while	 the	 undercarriage	 has	 a	

deteriorating	 trend	 and	 electrical	 system	has	 an	 improving	 trend.	This	 shows	

that	 undercarriage	 is	 at	 wear	 out	 stage	 and	 should	 be	 replaced	 by	 new	

component	 as	 soon	 as	 possible;	 however,	 electrical	 system	 is	 relatively	 new	

compared	with	other	four	components.		

Figure	 5.8	 shows	 the	 trend	 of	 the	 cumulative	 number	 of	 failures	 of	 the	

undercarriage	component.	It	can	be	observed	that	there	are	more	failures	with	

the	time	go	on.	An	analysis	of	the	other	four	critical	components,	namely,	ripper	

teeth,	repair	light,	cab	and	electrical	system,	have	been	also	been	conducted	in	

this	 research.	 The	 results	 include	 cumulative	 number	 of	 failures,	 MTBF	 and	

failure	intensity	vs.	time.	The	results	are	attached	in	Appendix	4.	

The	relationship	between	MTBF	and	 time	 for	 the	undercarriage	component	 is	

shown	in	Figure	5.9.	As	time	goes	on,	the	mean	time	between	failures	decreases.	

Figure	5.10	presents	the	relationship	of	failure	intensity	with	time,	which	shows	

an	increase	over	time.	This	behavior	is	consistent	with	the	trend	of	cumulative	

number	of	failures.	All	of	these	three	figures	suggest	that	the	undercarriage	is	in	

the	third	stage	of	the	bathtub	curve,	which	is	the	wear	out	stage.		The	reliability	

analysis	results	of	the	other	four	critical	components	(ripper	teeth,	repair	light,	

cab	and	electrical)	by	power	 law	modelling	are	presented	 in	Appendix	4,	with	
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the	 figures	 of	 MTBF	 vs.	 time,	 cumulative	 number	 of	 failures,	 as	 well	 as	 the	

failure	intensity	vs.	time.	

	

Figure	5.8	Cumulative	numbers	of	failures	of	the	undercarriage	analyzed	in	RGA7	
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Figure	5.9	MTBF	vs.	Time	of	undercarriage	analyzed	in	RGA7	
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Figure	5.10	Failure	intensity	vs.	Time	of	the	undercarriage	analyzed	in	RGA7	

An	instantaneous	MTBF	can	be	calculated	at	a	specified	time	in	the	power	law	

model.	 For	 example,	 when	 the	 time	 is	 set	 to	 be	 17512.15hr,	 the	 calculated	

IMTBF	 is	 183.83hr.	With	 a	 two‐sided	 confidence	 level	 of	 0.95,	 the	 upper	 and	

lower	bound	of	 IMTBF	are	also	generated	 in	 the	analysis,	which	are	251.89hr	

and	126.46hr	respectively	(Figure	5.11).		

	

Figure	5.11	Calculation	of	IMTBF	of	undercarriage	
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Figure	5.12	shows	the	system	operation	analysis	of	the	five	critical	subsystems,	

and	each	subsystem	has	its	own	specific	failure	pattern.			

	

Figure	5.12	System	operation	of	the	equipment	bulldozer	
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5.4	 TIME	SERIES	MODELLING	OF	SUBSYSTEMS	

Table	5.5	shows	the	time	series	analysis	results	of	this	component	and	presents	

the	 predicted	 counts	 of	 failures	 comparing	 with	 the	 actual	 numbers	 of	 the	

number	one	critical	component	“undercarriage”	of	the	construction	equipment	

bulldozer.	

Table	 5.5	 Time	 series	 analysis	 and	 prediction	 of	 the	 number	 of	 failures	 of	 the	

critical	component	“undercarriage”	of	bulldozer	 		

	

The	first	column	“Row”	of	the	table	represents	the	working	weeks.	In	this	case,	

the	validation	data	is	from	week	94	to	week	105,	and	the	forecast	data	is	from	
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106	to	117.	The	actual	numbers	of	 failures	 in	every	week	 is	between	0	and	2,	

which	means	in	some	weeks	the	undercarriage	experienced	a	breakdown	once	

or	 twice	 in	 each	week,	 but	 in	 some	weeks	no	 failure	 occurred.	 The	 predicted	

values	vary	 from	0.51	 to	1.31,	which	 is	very	close	 to	 the	real	values	and	even	

has	 a	 smaller	 range.	 It	 can	be	 interpreted	 as	 follows:	 if	 the	predicted	 value	 is	

higher	 than	1.0,	 it	would	very	 likely	have	 failures	 in	 that	week,	and	 there	 is	a	

good	chance	that	breakdowns	may	occur	more	than	once.	If	the	predicted	value	

is	between	0.5	and	1.0,	the	chance	of	having	failures	increases	when	the	value	is	

closer	to	1.0.					

In	 addition	 to	 the	 most	 critical	 component	 “undercarriage”	 other	 critical	

components	of	 the	bulldozer	are	also	 studied	and	analyzed.	Table	5.6	and	5.7	

are	examples	of	time	series	forecast	of	the	critical	component	“ripper	teeth”	and	

“repair	 light”.	 Due	 to	 the	 fact	 that	 the	 size	 of	 datasets	 for	 these	 critical	

components	 in	 each	 interval	 are	 generally	 smaller	 compared	 with	

“undercarriage”	and	the	system	 itself,	 the	 forecast	 results	are	 less	satisfactory	

than	the	previous	ones,	as	can	be	observed	from	the	tables.	The	figures	of	time	

series	trend	of	the	selected	critical	components	are	attached	in	Appendix	5.			

Table	 5.6	 Time	 series	 analysis	 and	 prediction	 of	 the	 number	 of	 failures	 of	 the	

critical	component	“Ripper	Teeth”	
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Table	5.7	Time	series	analysis	and	prediction	of	the	number	of	failures	of	the	

critical	component	“Repair	Light”	

	 		 	

Figure	 5.13	 shows	 the	 trend	 of	 the	 failures	 of	 the	 critical	 component	

“undercarriage”	 of	 the	 bulldozer	 and	 it	 can	 be	 observed	 that	 the	 straight	 line	

shows	a	trend	of	increasing	numbers	of	failures	over	time.		

	

Figure	 5.13	 Time	 series	 trend	 of	 the	 numbers	 of	 failures	 of	 “Undercarriage”	 in	

bulldozer	(D11_107)	
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Figure	 5.14	 Time	 series	 trend	 of	 the	 numbers	 of	 failures	 of	 “Ripper	 Teeth”	 in	

bulldozer	(D11_107)	
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Figure	 5.15	 Time	 series	 trend	 of	 the	 numbers	 of	 failures	 of	 “Repair	 Light”	 in	

bulldozer	
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The	other	five	critical	components	have	also	been	modelled	and	analyzed	using	

time	 series	 analysis	 models	 (Figure	 5.14	 &	 5.15).	 More	 figures	 of	 number	 of	

failures	trend	are	presented	in	Appendix	5.	

Table	5.8	shows	 the	 forecasting	results	 for	 the	expected	number	of	 failures	of	

the	 bulldozer	 by	 using	 time	 series	 modelling	 with	 a	 data	 size	 of	 106.	 The	

comparison	of	the	actual	failures	and	predicted	values	is	presented	in	terms	of	

absolute	 error	 in	 the	 table	 and	 it	 can	 be	 noted	 that	 the	 predicted	 values	 are	

reasonably	close	to	the	actual	value	and	error	is	acceptable.	As	the	size	of	data	is	

relatively	 small	 for	 subsystems	 compared	 with	 systems,	 the	 error	 between	

predicted	values	and	actual	values	might	be	larger	 in	this	case.	The	prediction	

on	 the	 number	 of	 failures	 is	 shown	 in	 Figure	 5.16	 and	 there	 is	 trend	 of	 a	

nonlinear	increasing	of	failures	as	the	time	goes	on	in	this	case.	After	comparing	

the	 system	 with	 the	 critical	 subsystems,	 it	 can	 be	 concluded	 that	 each	

component	 has	 its	 own	 unique	 reliability	 growth.	 By	 combining	 these	 five	

critical	 subsystems,	 the	 reliability	 of	 the	 system	 “bulldozer”	 can	 be	 delivered.	

This	 result	 will	 be	 different	 from	 the	 system	 reliability	 calculated	 without	

identifying	 the	 critical	 components,	 and	 the	 former	 result	 is	 supposed	 to	 be	

more	accurate.	

Table	 5.8	 Time	 series	 analysis	 and	 prediction	 of	 the	 number	 of	 failures	 of	 the	

bulldozer	 	
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Figure	5.16	Time	series	trend	of	the	numbers	of	failures	of	the	bulldozer	(D11_107)	
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TBF	is	another	important	measure	of	system	and	subsystem	reliability.		In	Table	

5.9,	 time	between	 failures	 from	weeks	94	 to	105	 is	used	as	validation	data	 in	

time	 series	 modelling.	 The	 predicted	 values	 are	 compared	 with	 the	 actual	

values	 with	 error	 and	 error	 percentages	 shown	 in	 the	 table.	 TBF	 of	 periods	

between	106	and	117	are	forecasted	in	advance.		

Table	 5.9	Time	 series	 analysis	 and	 prediction	 of	TBF	 of	 the	 critical	 component	

“undercarriage”	of	bulldozer		 	
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5.5	 SUMMARY	&	DISCUSSIONS	

The	 reliability	 of	 subsystems	 and	 the	 relationship	 between	 systems	 and	

subsystems	 of	 construction	 equipment	 are	 studied	 in	 this	 research.	 Both	

traditional	power	law	models	and	time	series	models	are	adopted	and	applied	

to	 the	 analysis;	 comparison	 of	 these	 two	methods	 is	 analyzed	 and	 presented	

below.	

5.5.1	 COMPARISON	OF	POWER	LAW	MODELS	AND	TIME	SERIES	MODELS	

The	 conceptual	 comparison	 of	 the	 two	 types	 of	 models	 has	 already	 been	

discussed	in	Chapter	4.	In	this	chapter,	both	power	law	models	and	time	series	

models	have	been	applied	to	the	reliability	analysis	of	construction	equipment	

subsystems,	as	well	the	results	have	been	presented	respectively.	It	is	observed	

that	time	series	models	are	more	complex	to	operate	on	subsystems	than	power	

law	models.	On	the	other	hand,	time	series	models	are	more	flexible	then	power	

law	 models	 as	 the	 former	 one	 can	 better	 detect	 the	 change	 of	 the	 failure	

patterns.	 However,	 the	 error	 rate	 may	 be	 high	 for	 subsystems	 reliability	

analysis	 because	 of	 less	 data	 compared	 with	 the	 system	 level	 in	 time	 series	

modelling.	The	summary	of	the	comparisons	is	presented	in	Chapter	6	with	the	

illustration	in	Table	6.1.	

5.5.2	 CRITICAL	COMPONENTS	OF	CONSTRUCTION	EQUIPMENT	

With	 the	 aid	 of	 Pareto	 analysis,	 the	 critical	 components	 of	 the	 selected	

construction	 equipment	 pieces	 are	 identified	 in	 the	 research.	 The	 results	 are	

summarized	in	Table	5.10.		In	this	research,	the	bulldozer	is	chosen	for	study	on	

reliability	 analysis	 of	 construction	 equipment	 at	 a	 subsystem	 level	 as	 the	

maintenance	 data	 are	 abundant	 and	 balanced	 in	 representing	 subsystem	

reliability.		
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Table	5.10	Critical	components	of	different	construction	equipment		

Construction	equipment	 Critical	components	

Scrapers	 Engine,	air	system,	braking	system,	cutting	edge,	

drive	system	

Wheel	loaders	 Hydraulic	system,	engine,	repair	light,	electrical	

Bulldozers	 Undercarriage,	 ripper	 teeth,	 repair	 light,	 cab,	

electrical*	

Graders	 Cutting	edge,	drive	system,	repair	light,	engine	

Tractors	 Misc.,	engine,	hydraulic	system	

Bulldozers	2	 Electrical,	 undercarriage,	 repair	 light,	 engine,	

drive	system,	cab	

	

By	modelling	and	analyzing	 the	 reliability	of	an	 individual	 critical	 component,	

its	failure	pattern	can	be	observed.	For	example,	the	component	undercarriage	

exhibits	 a	 trend	 of	 an	 increasing	 number	 of	 failures	 over	 time;	 however,	 the	

component	 ripper	 teeth	 does	 not	 show	 any	 trend.	 Figure	 5.17	 illustrates	 the	

critical	components	of	a	bulldozer	with	criticality	information	while	the	darker	

colors	 indicate	 more	 critical	 components.	 Based	 on	 their	 different	 failure	

patterns,	different	maintenance	decisions	can	be	made.	Replacement,	repair	or	

other	actions	can	be	implemented	based	on	these	reliability	analysis	results.	

	

Figure	5.17	Critical	components	of	a	bulldozer	in	reliability	
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Another	issue	to	address	is	the	root	causes	of	the	system	and	subsystem	failures.	

By	 analyzing	 the	 data	 from	 the	maintenance	 records,	 the	 common	 reasons	 of	

undercarriage	 breakdown	 are	 shown	 to	 be	 as	 follows:	 tracks	 need	 adjusting,	

broken	 roller	 bolts,	 undercarriage	 to	 finning,	 charging	 problem,	 etc.	 (Table	

5.11).	

Table	5.11	Common	reasons	of	bulldozers	critical	components	breakdown	

Bulldozer	critical		

components	

Common	reasons	of	breakdown	

Undercarriage	 Tracks	 need	 adjusting;	 broken	 roller	 bolts,	

undercarriage	to	finning,	charging	problem,	etc.	

	

	

5.5.3	 MAINTENANCE	AND	REPLACEMENT	STRATEGY	

From	the	point	of	view	of	construction	equipment	allocation	and	maintenance	

management,	 the	 results	 from	 the	 subsystems	 reliability	 analysis	 are	 very	

helpful	 in	optimizing	maintenance	 intervals.	An	age	replacement	policy	can	be	

applied	which	suggests	a	component	is	either	replaced	at	the	time	of	failure	or	T	

units	of	time	after	installation,	whichever	comes	first.	

From	 Table	 5.10,	 it	 is	 observed	 that	 some	 of	 the	 critical	 components	 appear	

several	 times	 in	 different	 categories	 of	 construction	 equipment.	 For	 example,	

the	component	engine	appeared	in	three	different	construction	equipment	to	be	

critical.	 It	 indicates	 that	 engine	 can	 be	 a	 critical	 component	 for	 many	

construction	equipment	and	perhaps	requires	special	attention	in	maintenance	

management.	 Also,	 the	 repair	 light,	 electrical	 and	 drive	 system	 items	 appear	

more	 often	 than	 other	 critical	 components.	 Figure	 5.18	 divides	 these	 critical	

subsystems	 into	 three	 different	 categories,	 namely	 high,	 middle	 and	 low	

occurrence.	 Those	 components	 presented	 in	 the	 high	 occurrence	 category	

should	 be	 given	 a	 high	 priority	 in	 equipment	 maintenance	 to	 reduce	 the	

unexpected	failures	in	site	operations.	
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Figure	5.18	Common	critical	components	of	analyzed	construction	equipment	
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CHAPTER	6	 FINDINGS	AND	DISCUSSIONS	

6.1	INTRODUCTION	

This	 chapter	 presents	 the	 findings	 from	 this	 research.	 In	 previous	 chapters,	

power	 law	 model	 (NHPP)	 and	 time	 series	 prediction	 have	 been	 adopted	 for	

reliability	analysis	and	failure	prediction	based	on	real	construction	equipment	

failure	 and	 maintenance	 data	 at	 the	 system	 and	 subsystem	 levels.	 In	 this	

chapter,	the	major	findings	of	this	research	are	summarized	and	discussed.		

6.2	FINDINGS	&	DICUSSIONS	

There	 are	 several	 findings	 from	 this	 project.	 First	 of	 all,	 the	 importance	 of	

construction	 equipment	 reliability	 analysis	 and	 failure	prediction	was	 studied	

in	 a	 literature	 review.	 It	 is	 observed	 that	 unexpected	 failures	 and	 unreliable	

equipment	may	 affect	 the	 construction	project	 by	 increasing	 the	maintenance	

cost	 and	collateral	 cost,	 or	extending	 the	project	period,	and	 leading	 to	 safety	

problems.	These	arguments	have	been	elaborated	in	Chapter	2.				

Calculation	of	reliability	metrics	

Common	reliability	metrics	including	number	of	failures,	time	between	failures	

(TBF)	 and	 time	 to	 repair	 (TTR)	 were	 analyzed	 and	 predicted	 by	 using	 both	

power	law	models	and	time	series	models.	The	predicted	values	are	compared	

with	 the	actual	values	and	 the	errors	between	 them	are	also	presented	 in	 the	

tables.	Most	of	the	results	are	satisfactory.	 	For	time	series	modelling,	the	best	

fitted	models	are	 selected	under	 the	 comparison	of	 the	 criterions	 such	as	AIC	

and	 BIC,	 in	 order	 to	 achieve	 the	 more	 accurate	 forecasts.	 The	 obtained	

reliability	metrics	can	be	used	to	help	construction	equipment	maintenance	and	

allocation	decisions,	which	will	be	discussed	in	the	following	context.	

Furthermore,	this	research	not	only	predicted	the	number	of	failures	of	a	piece	

of	 construction	 equipment,	 but	 also	 performed	 forecast	 on	 the	TBF	with	TTR	

contributed	 as	 a	 predictor	 or	 leading	 variable.	 TTR,	 is	 a	 crucial	 parameter,	

indicating	 that	 equipment	 parts	will	 soon	 return	 to	 normal	 and	 have	 a	 great	
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impact	on	the	overall	stability	of	the	system.	From	the	experimental	results,	it	is	

noticed	that	the	time	spend	on	repairing	the	equipment	has	some	impact	on	the	

occurrence	of	the	next	failure	(TBF).	Therefore,	TTR	is	suggested	to	be	taken	in	

consideration	 when	 operating	 reliability	 analysis	 and	 failure	 forecast	 of	

construction	equipment.	

Comparison	of	power	law	model	and	time	series	model	

The	 traditional	power	 law	models	 and	more	 sophisticated	 time	 series	models	

have	been	used	and	compared	in	the	research.	Their	strengths	and	weaknesses	

are	 identified	and	presented	 in	Table	6.1.	 It	was	 found	out	 that	both	methods	

are	capable	of	analyzing	and	predicting	the	failures	of	construction	equipment	

but	with	different	degrees	of	accuracy	and	interpretability.		

As	the	results	show,	both	power	law	models	and	time	series	models	can	be	used	

for	 forecasting	of	reliability	metrics	of	construction	equipment;	however,	both	

have	advantages	and	disadvantages.	ARIMA	time	series	models	make	very	little	

assumption	and	are	very	flexible.	It	is	theoretically	and	statistically	sound	in	its	

foundation	 and	 no	 a	 priori	 postulation	 of	models	 is	 required	when	 analyzing	

failure	data.	It	can	be	observed	that	the	ARIMA	model	is	a	viable	alternative	that	

gives	satisfactory	results	in	terms	of	its	predictive	performance.		

Identifying	critical	components	of	construction	equipment	

Another	major	contribution	is	that	this	research	not	only	focuses	on	the	system	

itself,	 but	 also	 examined	 the	 relationship	 between	 system	 and	 subsystems.	

Effort	 was	 spent	 in	 identifying	 the	 critical	 components	 of	 a	 system	 so	 that	

special	treatment	could	be	arranged	for	these	critical	parts.	

Methods	 have	 been	 studied	 to	 identify	 the	 critical	 components	 and	 reliability	

analysis	on	these	critical	components	has	been	conducted.		

Category	 A	 components	 are	 identified	 and	 considered	 as	 the	 important	

subsystems	 for	 a	 piece	 of	 equipment.	 For	 bulldozer,	 the	 following	 five	

components	are	the	critical	ones,	which	are:	undercarriage,	reaper	teeth,	repair	

light,	cab	and	electrical.	
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Table	6.1	Comparison	of	power	law	models	and	time	series	models		

Comparison Power	Law	Models Time	Series	Models	

Data	

requirements	

>30	 >	50

Theory		 Non	Homogenous	Poisson	

Process	(NHPP)	

ARIMA	and	other	

predictive	models	

	

Data	 Times	to	failure Fixed	intervals	but	can	be	

expanded	to	interval‐based		

data	

Flexibility	

	

No		 Able	to	detect	the	change	of	

failure	pattern	

Subsystems	

analysis	

Easy	 Difficult

Complexity	of	

model	

Low	 Medium to	high	

Accuracy	 Moderate	 Higher

Other		 	 Seasonal	effect	

	

Impact	on	management	decisions	

Based	 on	 the	 results	 and	 findings	 of	 the	 data	 modelling	 and	 analysis	 in	 this	

research,	 advices	 are	 given	 for	 managerial	 decision	 on	 future	 construction	

equipment	maintenance	and	promote	repairs	before	breakdown.	

The	reliability	assessment	of	construction	equipment	can	affect	the	decision	in	

selecting	 the	 right	 maintenance	 strategy	 in	 civil	 engineering	 project.	 In	 the	

previous	chapters,	by	analyzing	the	reliability	of	a	particular	piece	of	equipment	

(bulldozer),	trend	of	failures	is	detected,	and	the	number	of	failures	and	MTBF	

for	a	fixed	interval	can	be	predicted.	The	result	 is	valuable	 in	planning	system	

maintenance	 and	 repairs.	 Based	 on	 this	 information,	 the	 equipment	manager	

will	 be	 able	 to	 recognize	 the	 status	 of	 the	 equipment	 and	 make	 proactive	

maintenance	 services	 accordingly.	 The	 details	 have	 been	 elaborated	 in	 the	

summary	section	of	Chapter	4	and	5	respectively.	
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6.3	 LIMITATIONS	AND	FUTURE	RESEARCH	

No	research	can	be	perfect,	there	are	always	some	shortcomings	in	any	research.	

One	of	the	limitations	of	this	research	is	the	data	size	for	subsystem	reliability	

analysis.	 For	 both	 power	 law	 models	 and	 time	 series	 models,	 there	 are	

requirements	for	a	minimum	size	of	data,	which	are	30	for	the	former	one	and	

50	 for	 the	 latter.	 In	 this	 research,	 all	 the	 data	 modelling	 have	 fulfilled	 the	

requirements;	however,	the	accuracy	of	prediction	results	might	be	improved	if	

a	bigger	sized	of	data	is	used,	as	the	theory	is	that	the	larger	the	size	of	data,	the	

more	accurate	forecast	will	be.	 If	more	data	on	subsystems	breakdown	can	be	

tracked	and	obtained	 in	 future	research,	 the	accuracy	of	 the	modelling	results	

should	be	improved	to	some	extent.	

Another	limitation	is	still	about	data.	It	might	be	noticed	that	the	maintenance	

records	obtained	from	industry	are	not	very	updated.	It	is	not	obvious	that	if	it	

will	 affect	 the	 result	 and	 accuracy	 of	 the	 analysis;	 however,	 more	 updated	

maintenance	 records	 and	 newer	 equipment	 probably	 do	 will	 derive	 some	

different	 results	 for	 the	 research.	 In	 the	 research	 process,	 we	 have	 tried	 to	

negotiate	with	the	staff	in	the	government	department	and	companies,	but	did	

not	 get	 the	 information	 we	 need.	 We	 can	 maybe	 try	 to	 contact	 other	

departments/companies	 for	 newer	 construction	 equipment	 data	 in	 future	

research.		

Moreover,	 in	 this	 research,	 basically	 only	 time	 series	 ARIMA	model	 has	 been	

investigated	and	applied	to	the	case	studies.	In	future	research,	we	would	like	to	

involve	 other	 sophisticated	 reliability	 analysis	 methods,	 such	 as	 Genetic	

Algorithm,	PNN/GRNN	neural	network.	

Apart	 from	 the	above	 limitations,	 there	also	are	 some	common	errors	usually	

existing	in	most	research	or	studies,	such	as	human	errors	and	randomness.	

Human	error:	human	errors	can	occur	during	the	data	collection	and	modelling	

process.	Firstly,	there	might	be	mistakes	and	errors	existing	in	the	maintenance	

sheet	 recorded	 by	 site	 workers.	 Secondly,	 the	 models	 are	 not	 perfect	 and	

parameters	can	always	be	fine‐tuned	in	the	modelling	process.	
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Randomness:	it	is	the	largest	contributing	factor	to	the	errors	of	prediction	due	

to	random	nature	of	system	failures.	To	minimize	the	errors	of	prediction	and	

improve	the	accuracy,	effort	can	be	put	into	increasing	the	size	of	data,	reducing	

possible	 human	 error,	 as	well	 as	 further	 optimizing	 the	models	 for	 reliability	

analysis.	
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CHAPTER	7	 CONCLUSIONS	

This	 research	 investigates	 the	 reliability	 of	 construction	 equipment	 and	 the	

different	methods	for	modeling	and	analyzing	the	reliability	metrics	at	system	

and	subsystem	levels.	

Construction	 equipment	 is	 an	 important	 resource	 in	 construction	 projects,	

particularly	 in	 civil	 engineering	 and	 infrastructure	 projects.	 Although	 regular	

maintenance	 is	 implemented	 by	most	 contractors	 on	 site,	 still	 a	 considerable	

amount	 of	 equipment	 repairs	 follow	 unexpected	 failures.	 These	 unexpected	

equipment	 failures	can	cause	serious	consequences	such	as	extra	cost,	project	

period	 extension,	 and	 safety	 issues.	 Therefore,	 it	 is	 necessary	 to	 study	 and	

understand	the	reliability	of	the	construction	equipment	as	well	as	predict	the	

pending	failures	before	the	breakdown.	

This	research	aims	to	investigate	the	possible	methods	that	can	be	adopted	for	

analysing	 the	 equipment	 reliability	 and	 predicting	 the	 failures	 as	 well	 as	 the	

application	of	the	experimental	results	to	construction	equipment	maintenance	

and	management.		

Several	methodologies	have	been	employed	in	this	research,	which	comprises	a	

comprehensive	 literature	 review	 of	 reliability	 theories,	 and	 related	 research	

work,	 reliability	 analysis	 approaches,	 case	 study,	 data	modelling	 and	 analysis.	

Two	descriptive	and	predictive	models	are	studied	and	adopted	in	the	process,	

which	 are	 the	 traditional	 power	 law	 model	 and	 more	 advanced	 time	 series	

models.	 There	 are	 a	 number	 of	 probability	 distributions	 commonly	 used	 in	

reliability	 engineering;	 however,	 time‐dependent	 power	 law	 models,	 also	

named	 Non‐homogeneous	 Poisson	 Process	 (NHPP)	 models,	 are	 universally	

agreed	 as	 most	 suitable	 method	 for	 repairable	 systems	 such	 as	 construction	

equipment.	Time	series	modelling	 is	one	of	the	more	sophisticated	techniques	

that	can	be	used	to	describe	and	model	the	selected	data,	and	forecast	the	future	

values	 of	 the	 maintenance	 series	 based	 on	 the	 past	 values.	 Construction	

equipment	failure	follows	the	time	series	features	and	patterns,	and	this	makes	

the	time	series	models	suitable	for	application	in	this	research.	Both	of	the	two	
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methods	 are	 applied	 and	 models	 are	 built	 to	 analyse	 the	 characteristics	 of	

reliability	 like	 numbers	 of	 failures,	 time	 between	 failures	 (TBF)	 and	 time	 to	

repair	 (TTR).	 Comparison	 of	 the	 two	 methods	 is	 also	 performed	 with	 their	

strengths	and	weaknesses	 summarized	 in	 the	 thesis.	Failure	and	maintenance	

data	on	eight	types	of	construction	equipment	were	collected	from	construction	

site	 and	 modelled	 in	 the	 case	 study,	 to	 validate	 and	 compare	 the	 prediction	

results.	

Furthermore,	the	research	not	only	focuses	on	construction	equipment	systems,	

it	also	explores	the	equipment	from	the	level	of	subsystems.	Pareto	analysis	and	

other	methods	are	used	to	identify	the	critical	components	for	the	construction	

equipment.	Attributes	being	considered	include	the	counts	of	failures,	TBF	and	

TTR.	Reliability	 importance	analysis	 is	significant	 in	system	reliability	analysis	

from	the	subsystem	level.	By	identifying	the	critical	components	and	suggesting	

modifications,	 system	 reliability	 can	 then	 be	 calculated	 and	 the	 maintenance	

focus	can	be	put	on	these	critical	areas.			

The	major	findings	of	this	project	include:	1)	conducted	a	critical	review	on	the	

reliability	analysis	and	failure	prediction	of	construction	equipment,	identifying	

the	reliability	metrics,	reliability	modelling	approaches	and	needs	for	predictive	

analysis	 in	 support	 of	 construction	 equipment	maintenance	management	 and	

utilization.;	 	 2)	 applied	 the	 traditional	 power	 law	 models	 and	 more	

sophisticated	 time	 series	 models	 and	 found	 that	 both	 are	 suitable	 for	

construction	 equipment	 reliability	 analysis,	 however,	 each	 has	 its	 own	

advantages	 and	 disadvantages;	 3)	 critical	 components	 are	 identified	 and	 the	

reliability	of	subsystems	is	analysed	to	give	an	insight	into	the	research	on	the	

systems;	4)	benefits	of	 this	research	 in	 improving	the	decisions	on	equipment	

management	 are	 discussed	 based	 on	 the	 results	 and	 findings	 from	 	 data	

modelling	and	experimental	analysis.	

Based	on	the	results	of	 the	research	and	case	studies,	some	recommendations	

can	be	given	to	the	maintenance	and	management	of	construction	equipment.	

First	 of	 all,	 it	 is	 recommended	 that	 predictive	 maintenance	 is	 more	

advantageous	 than	 other	 common	 maintenance	 options	 for	 construction	
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equipment.	The	principle	of	predictive	maintenance	is	to	repair	the	equipment	

before	 the	 failures	 occur,	 so	 that	 it	 can	 reduce	 the	 unscheduled	 outages	 and	

unexpected	 cost.	 In	 order	 to	 implement	 predictive	 maintenance,	 reliability	

elements	such	as	MTBF,	numbers	of	failures	should	be	available	for	the	analysis	

and	 prediction.	 In	 this	 research,	 by	 applying	 power	 law	 modelling	 and	 time	

series	 modelling	 on	 data	 of	 failures,	 the	 mentioned	 reliability	 elements	 have	

been	derived	and	presented	in	previous	chapters.	

Apart	from	predictive	maintenance,	there	are	also	some	advice	on	construction	

equipment	allocations.	As	shown	in	the	chapter	of	cases	studies,	the	status	of	a	

particular	 construction	 equipment	 can	 be	 detected,	 either	 in	 the	 infant	

mortality	 stage,	 useful	 life,	 or	 wear	 out	 stage	 of	 the	 bathtub	 curve.	 If	 the	

equipment	is	in	the	wear	out	stage,	equipment	managers	should	replace	it	with	

the	one	having	higher	availability,	or	with	backup	plan.	

Last	 but	not	 least,	 recommendations	 are	 given	 to	 the	 construction	 equipment	

subsystems	maintenance	 and	 replacement	 policies.	 In	 chapter	 5,	 the	 research	

has	 been	 focused	 on	 identifying	 the	 critical	 components	 and	 their	 reliability	

analysis.	Five	types	of	construction	equipment	have	been	investigated	and	their	

respective	critical	components	have	been	recognized,	which	require	particular	

attention	 in	maintenance	process.	 It	 is	summarized	that	 for	most	construction	

equipment,	the	most	critical	components	include	engine,	repair	light,	electrical	

and	 drive	 system,	 and	 the	 second	 tier	 include	 cutting	 edge,	 hydraulic	 system,	

cab	and	undercarriage,	etc.	Again,	reliability	analysis	and	failure	prediction	have	

been	 conducted	 on	 the	 critical	 components.	Depending	 on	 the	 status	 of	 these	

components	 separately,	 an	 age	 replacement	 policy	 should	 be	 implemented	

whether	the	component	will	be	repaired	or	replaced	before	breakdown,	so	that	

maintenance	cost	effective	can	be	achieved.	
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APPENDIX	1	–	MAINTENANCE	RECORDS	OF	SELECTED	

CONSTRUCTION	EQUIPMENT	

Table	A1	–	Sample	of	maintenance	records	of	the	bulldozer	(D11_107)	
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APPENDIX	2	–	CLEANED	AND	REORGANIZED	DATA	

Table	A2.1	–	Summary	of	the	failures	of	all	the	equipment	

   1  2 3 4 

Systems  Trucks  Scrapers Wheel loaders Bulldozers

File Name  240H_075  631E_016 988B_034 D11_107

Data No.  305  108 135 430 

Subsystems  ‐  20 21 30 

1 

  

Air System 8 Air Conditioning 5  Air Conditioning 11

2  Braking System 5 Air System 2  Air System  9

3  Cab 3 Braking System 5  Blade  10

4  Cooling Systems 2 Cab 6  Cab  25

5  Cutting Edge 5 Cooling System 1  Cooling Systems 13

6  Drive System 5 Drive System 5  Cutting Edge  7

7  Electrical 5 Electrical 7  Drive System  13

8  Engine 16 Engine 15  Electrical  21

9  Field Service 5 Field Service 1  Engine  12

10  Fuel System 5 Fuel System 5  Equalizer  1

11  Hydraulic System 5 Grease System 1  Field Service  14

12  Low Power 1 Heating System 1  Float  21

13  Miscl  2 
Hydraulic 

System 
22  Fuel System  2 

14  Oil Sample 2 Low Power 1  Grease System 4

15  Service 12 Miscl 4  Heating System 1

16  Starting System  1  Oil Sample  2 
Hydraulic 

System 
21 

17  Steam 13 Repair Light 9  Ice Lugging  3

18  Torque 1 Steam 23  Low Power  1

19  Wait 10 Steering System 1  Oil Leak  3

20  Welding 2 Wait 13  Oil Sample  2

21 

  

Welding 6  Repair Light  27

22 

  

Ripper Teeth  35

23  Service  32

24  Starting System 2

25  Steam  42

26  Steering System 3
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27  Torque  1

28  Undercarriage 67

29  Wait  16

30  Welding  11

31 
  

32 

	

Table	A2.1	–	Summary	of	the	failures	of	all	the	equipment	(Con’t)	

Systems  5  6 7 8 

File Name  Graders  Tractors Shovels Bulldozers 2

Data No.  GRAD_035  HYCR_035 SHOVEL~1 TLNGSDOZ

Subsystems  275  63 277 612 

1  29  19 ‐ 32 

2  Air Conditioning  5 Air System 4

  

Air Conditioning 4

3  Air System  8 Axle 1 Air System  16

4  Axle  5 Braking System 2 Blade  10

5  Blade  6 Cab 2 Braking System 4

6  Braking System  5 Drive System 1 Cab  18

7  Cab  12  Electrical  4 
Component 

Change Out 
2 

8  Cooling Systems  6 Engine 9 Cooling Systems 18

9  Cutting Edge  71 Heating System 1 Cutting Edge  1

10  Drive System  19 
Hydraulic 

System 
6  Drive System  20 

11  Electrical  14 Miscl 12 Electrical  40

12  Engine  15 Oil Sample 2 Engine  25

13  Field Service  2 Repair Light 1 Equalizer  1

14  Float  1 Service 8 Field Service  15

15  Frame  2 Starting System 1 Float  17

16  Fuel System  1 Steam 3 Fuel System  8

17  Grease System  6  Steering System  1 
Hard Nose / 

Grill 
1 

18 
Hydraulic 

System 
7  Wait  2  Heating System  4 

19  Miscl  7 Welding 2 Hydraulic  7
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System 

20  Oil Sample  5 Wheels 1 Low Power  4

21  Repair Light  17

  

Miscl  11

22  Ripper Teeth  2 Oil Sample  1

23  Sensor  2 Repair Light  26

24  Service  13 Service  185

25  Starting System  1 Starting System 2

26  Steam  21 Steam  84

27  Steering System  3 Steering System 2

28  Tandem  3 Sunk  1

29  Tire  1 Training  1

30  Wait  15 Undercarriage  30

31 

  

Wait  44

32  Welding  8

  Winch  2
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Table	A2.2.1	–	Summary	of	number	of	failures	of	scrapers	(631E_016)	

Weeks  Number of 

failures 

Weeks (Con’t)	 Number of 

failures (Con’t)	

1  4  19	 2	

2  1  20	 6	

3  5  21	 3	

4  5  22	 4	

5  2  23	 1	

6  4  24	 1	

7  2  25	 4	

8  1  26	 4	

9  4  27	 7	

10  2  28	 7	

11  6  29	 1	

12  1  30	 2	

13  3  31	 3	

14  1  32	 1	

15  2  33	 2	

16  2  34	 2	

17  2  35	 7	

18  1  36	 3	
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Table	A2.2.2	–	Summary	of	number	of	failures	of	bulldozers	(D11_107)	

Weeks Number of 

failures 

Weeks 

(Con’t) 

Number of 

failures 

1 2 54 8 

2 2 55 2 

3 0 56 3 

4 4 57 1 

5 4 58 3 

6 4 59 2 

7 2 60 6 

8 1 61 4 

9 8 62 5 

10 0 63 7 

11 1 64 6 

12 6 65 6 

13 6 66 5 

14 1 67 1 

15 6 68 5 

16 5 69 2 

17 2 70 7 

18 0 71 4 

19 3 72 3 

20 4 73 1 

21 4 74 11 

22 3 75 5 

23 5 76 3 

24 5 77 1 

25 6 78 6 

26 5 79 5 

27 5 80 4 

28 0 81 2 

29 7 82 6 

30 3 83 4 

31 6 84 2 

32 1 85 5 

33 4 86 6 

34 2 87 1 

35 4 88 6 
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36 4 89 1 

37 5 90 6 

38 3 91 10 

39 4 92 3 

40 5 93 5 

41 0 94 6 

42 5 95 5 

43 4 96 6 

44 3 97 4 

45 4 98 5 

46 5 99 6 

47 0 100 2 

48 5 101 9 

49 5 102 5 

50 4 103 3 

51 7 104 2 

52 4 105 9 

53 2 106 9 

	

Table	A2.3.1	–	Summary	of	TBF	and	TTR	of	trucks	(240H_075)	

Weeks Cumulative 

TBF

TBF Cumulative 

TTR

TTR 

1 131.75 131.75 16.72 16.72 

2 245.83 114.08 34.97 18.25 

3 475.83 230.00 43.75 8.78 

4 624.33 148.50 85.67 41.92 

5 766.78 142.45 94.77 9.10 

6 979.83 213.05 101.48 6.72 

7 1076.25 96.42 104.98 3.50 

8 1304.17 227.92 167.18 62.20 

9 1376.58 72.42 168.02 0.83 

10 1639.83 263.25 206.65 38.63 

11 1795.62 155.78 224.87 18.22 

12 1981.23 185.62 264.25 39.38 

13 2146.08 164.85 269.10 4.85 

14 2302.50 156.42 278.90 9.80 

15 2470.85 168.35 310.45 31.55 
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16 2600.10 129.25 360.12 49.67 

17 2801.33 201.23 362.12 2.00 

18 2942.58 141.25 365.20 3.08 

19 3155.58 213.00 383.52 18.32 

20 3328.33 172.75 413.72 30.20 

21 3488.47 160.13 423.97 10.25 

22 3657.83 169.37 430.90 6.93 

23 3800.08 142.25 431.75 0.85 

24 3946.77 146.68 446.70 14.95 

25 4068.33 121.57 447.08 0.38 

26 4336.93 268.60 456.93 9.85 

27 4507.83 170.90 469.02 12.08 

28 4634.60 126.77 506.62 37.60 

29 4831.85 197.25 534.02 27.40 

30 4982.83 150.98 538.27 4.25 

31 5098.33 115.50 542.52 4.25 

32 5306.85 208.52 587.52 45.00 

33 5486.42 179.57 608.05 20.53 

34 5655.75 169.33 650.32 42.27 

35 5845.92 190.17 665.78 15.47 

36 6019.83 173.92 684.43 18.65 

37 6106.33 86.50 686.10 1.67 

38 6315.25 208.92 696.30 10.20 

39 6522.38 207.13 699.22 2.92 

40 6667.00 144.62 727.45 28.23 

41 6848.50 181.50 757.18 29.73 

42 6976.10 127.60 768.35 11.17 

43 7193.33 217.23 770.60 2.25 

44 7347.83 154.50 801.68 31.08 

45 7519.33 171.50 817.23 15.55 

46 7681.33 162.00 873.85 56.62 

47 7830.80 149.47 875.80 1.95 

48 7986.83 156.03 896.20 20.40 

49 8202.58 215.75 898.53 2.33 

50 8344.33 141.75 901.37 2.83 

51 8528.33 184.00 953.77 52.40 

52 8695.92 167.58 970.10 16.33 
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Table	A2.3.2	–	Summary	of	TBF	and	TTR	of	scrapers	(631E_016)	

Weeks Cumulative 

TBF

TBF Cumulative 

TTR

TTR 

1 142.00 142.00 3.20 3.20 

2 194.03 52.03 14.78 11.58 

3 471.00 276.97 53.15 38.37 

4 621.00 150.00 54.98 1.83 

5 766.00 145.00 61.50 6.52 

6 993.00 227.00 88.93 27.43 

7 1151.00 158.00 104.87 15.93 

8 1190.00 39.00 105.88 1.02 

9 1436.50 246.50 106.38 0.50 

10 1525.28 88.78 113.63 7.25 

11 1829.00 303.72 114.80 1.17 

12 1910.00 81.00 142.20 27.40 

13 2040.50 130.50 235.10 92.90 

14 2285.50 245.00 297.87 62.77 

15 2459.50 174.00 298.20 0.33 

16 2664.00 204.50 298.53 0.33 

17 2799.50 135.50 299.48 0.95 

18 2948.33 148.83 308.07 8.58 

19 3141.00 192.67 309.07 1.00 

20 3141.00 0.00 309.07 0.00 

21 3359.42 218.42 309.57 0.50 

22 3536.02 176.60 323.40 13.83 

23 3751.75 215.73 325.12 1.72 

24 3958.02 206.27 335.37 10.25 

25 4082.00 123.98 340.62 5.25 

26 4315.50 233.50 380.63 40.02 

27 4521.58 206.08 412.57 31.93 

28 4688.02 166.43 500.83 88.27 

29 4824.00 135.98 501.33 0.50 

30 4974.37 150.37 505.68 4.35 
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Table	A2.3.4	–	Summary	of	TBF	and	TTR	of	bulldozers	(D11_107)	

Weeks Cumulative 

TBF

TBF Cumulative 

TTR

TTR 

 3.35 3.35 

0 3.37 3.37 8.12 4.77 

1 67.98 64.62 9.75 1.63 

2 67.98 0.00 9.75 0.00 

3 440.98 373.00 13.82 4.07 

4 682.82 241.83 51.33 37.52 

5 848.40 165.58 54.73 3.40 

6 1029.98 181.58 55.40 0.67 

7 1089.98 60.00 55.90 0.50 

8 1360.18 270.20 78.93 23.03 

9 1360.18 0.00 78.93 0.00 

10 1565.98 205.80 87.23 8.30 

11 1848.98 283.00 121.92 34.68 

12 2023.53 174.55 132.23 10.32 

13 2128.82 105.28 132.57 0.33 

14 2363.98 235.17 146.93 14.37 

15 2548.15 184.17 155.18 8.25 

16 2695.48 147.33 166.37 11.18 

17 2695.48 0.00 166.37 0.00 

18 3009.42 313.93 196.65 30.28 

19 3196.02 186.60 227.68 31.03 

20 3391.43 195.42 257.28 29.60 

21 3530.98 139.55 279.63 22.35 

22 3700.23 169.25 293.20 13.57 

23 3897.98 197.75 296.12 2.92 

24 4052.82 154.83 332.60 36.48 

25 4195.98 143.17 393.15 60.55 

26 4408.48 212.50 439.00 45.85 

27 4408.48 0.00 439.00 0.00 

28 4741.15 332.67 484.45 45.45 

29 4846.65 105.50 526.13 41.68 

30 5069.48 222.83 565.62 39.48 

31 5196.98 127.50 565.87 0.25 

32 5381.98 185.00 617.55 51.68 

33 5547.98 166.00 665.70 48.15 
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34 5719.15 171.17 676.68 10.98 

35 5896.73 177.58 686.08 9.40 

36 6077.32 180.58 703.27 17.18 

37 6202.40 125.08 736.00 32.73 

38 6415.00 212.60 738.50 2.50 

39 6496.23 81.23 758.28 19.78 

40 6496.23 0.00 758.28 0.00 

41 6917.67 421.43 1062.48 304.20 

42 7065.48 147.82 1081.98 19.50 

43 7218.82 153.33 1087.80 5.82 

44 7398.30 179.48 1172.13 84.33 

45 7526.95 128.65 1197.75 25.62 

46 7526.95 0.00 1197.75 0.00 

47 7739.23 212.28 1199.92 2.17 

48 7851.98 112.75 1232.55 32.63 

49 8066.73 214.75 1270.13 37.58 

50 8273.65 206.92 1317.72 47.58 

51 8409.50 135.85 1306.10 -11.62 

52 8584.40 174.90 1383.15 77.05 

53 8776.07 191.67 1439.93 56.78 

54 8899.07 123.00 1440.70 0.77 

55 9061.00 161.93 1497.92 57.22 

56 9153.57 92.57 1500.25 2.33 

57 9420.65 267.08 1535.28 35.03 

58 9545.23 124.58 1536.92 1.63 

59 9778.00 232.77 1549.42 12.50 

60 9893.15 115.15 1558.08 8.67 

61 10106.73 213.58 1583.10 25.02 

62 10253.50 146.77 1664.53 81.43 

63 10424.98 171.48 1724.15 59.62 

64 10611.98 187.00 1760.65 36.50 

65 10761.17 149.18 1787.43 26.78 

66 10876.98 115.82 1787.68 0.25 

67 11128.65 251.67 1790.85 3.17 

68 11252.98 124.33 1791.35 0.50 

69 11437.32 184.33 1821.35 30.00 

70 11608.23 170.92 1827.52 6.17 

71 11674.98 66.75 1849.93 22.42 

72 11884.82 209.83 1850.50 0.57 
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73 12107.15 222.33 1937.85 87.35 

74 12279.48 172.33 1955.90 18.05 

75 12467.58 188.10 1961.47 5.57 

76 12590.98 123.40 1962.47 1.00 

77 12786.50 195.52 2016.27 53.80 

78 12965.75 179.25 2109.88 93.62 

79 13123.15 157.40 2124.68 14.80 

80 13288.32 165.17 2137.68 13.00 

81 13462.50 174.18 2176.95 39.27 

82 13566.98 104.48 2273.83 96.88 

83 13736.15 169.17 2278.83 5.00 

84 13904.73 168.58 2298.40 19.57 

85 14143.00 238.27 2352.58 54.18 

86 14214.98 71.98 2360.18 7.60 

87 14476.98 262.00 2379.62 19.43 

88 14518.82 41.83 2379.78 0.17 

89 14790.57 271.75 2402.37 22.58 

90 14987.50 196.93 2455.43 53.07 

91 15157.27 169.77 2468.15 12.72 

92 15303.72 146.45 2472.87 4.72 

93 15468.50 164.78 2506.88 34.02 

94 15663.28 194.78 2541.75 34.87 

95 15832.98 169.70 2576.98 35.23 

96 15987.08 154.10 2578.92 1.93 

97 16157.38 170.30 2592.70 13.78 

98 16258.95 101.57 2601.68 8.98 

99 16493.57 234.62 2602.68 1.00 

100 16672.37 178.80 2610.62 7.93 

101 16785.37 113.00 2673.80 63.18 

102 16999.23 213.87 2721.92 48.12 

103 17042.98 43.75 2723.50 1.58 

104 17336.22 293.23 2766.32 42.82 

105 17511.98 175.77 2799.58 33.27 
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APPENDIX	3	–	PARETO	ANALYSIS	FOR	IDENTIFYING	CRITICAL	

COMPONENTS	

Table	A3.1	–	Pareto	analysis	of	scrapers	(631E_016)	

Components	
Count	of

Failures	
% Cumulative	%	 Category

     0.00%   

Engine  16  23.53% 23.53%  A

Air System  8  11.76% 35.29%  A

Braking System  5  7.35% 42.65%  A

Cutting Edge  5  7.35% 50.00%  A

Drive System  5  7.35% 57.35%  A

Electrical  5  7.35% 64.71%  B

Fuel System  5  7.35% 72.06%  B

Hydraulic System  5  7.35% 79.41%  B

Cab  3  4.41% 83.82%  B

Cooling Systems  2  2.94% 86.76%  C

Miscl  2  2.94% 89.71%  C

Oil Sample  2  2.94% 92.65%  C

Welding  2  2.94% 95.59%  C

Low Power  1  1.47% 97.06%  C

Starting System  1  1.47% 98.53%  C

Torque  1  1.47% 100.00%  C
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Figure	A3.1	–	Pareto	chart	of	scrapers	(631E_016)	

Table	A3.2	–	Pareto	analysis	of	wheel	loaders	(988b_034)	

Components	
Count	of	

Failures	
% cumulative	%	 Category

     0.00%   

Hydraulic System  22  22.45% 22.45%  A

Engine  15  15.31% 37.76%  A

Repair Light  9  9.18% 46.94%  A

Electrical  7  7.14% 54.08%  A

Welding  6  6.12% 60.20%  B

Cab  6  6.12% 66.33%  B

Fuel System  5  5.10% 71.43%  B

Drive System  5  5.10% 76.53%  B

Braking System  5  5.10% 81.63%  B

Air Conditioning  5  5.10% 86.73%  C

Miscl  4  4.08% 90.82%  C

Oil Sample  2  2.04% 92.86%  C

Air System  2  2.04% 94.90%  C
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Steering System  1  1.02% 95.92%  C

Low Power  1  1.02% 96.94%  C

Heating System  1  1.02% 97.96%  C

Grease System  1  1.02% 98.98%  C

Cooling System  1  1.02% 100.00%  C

	

	

Figure	A3.2	–	Pareto	chart	of	wheel	loaders	(988b_034)	

Table	A3.3	–	Pareto	analysis	of	bulldozers	(D11_107)	

Components	 Count	of	

Failures	

% cumulative	

%	

Category	

       0.00%    

Undercarriage  67  20.55% 20.55%  A 

Ripper Teeth  35  10.74% 31.29%  A 

Repair Light  27  8.28% 39.57%  A 

Cab  25  7.67% 47.24%  A 

Electrical  21  6.44% 53.68%  A 

Float  21  6.44% 60.12%  B 

Hydraulic System  21  6.44% 66.56%  B 
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Cooling Systems  13  3.99% 70.55%  B 

Drive System  13  3.99% 74.54%  B 

Engine  12  3.68% 78.22%  B 

Air Conditioning  11  3.37% 81.60%  B 

Welding  11  3.37% 84.97%  B 

Blade  10  3.07% 88.04%  C 

Air System  9  2.76% 90.80%  C 

Cutting Edge  7  2.15% 92.94%  C 

Grease System  4  1.23% 94.17%  C 

Ice Lugging  3  0.92% 95.09%  C 

Oil Leak  3  0.92% 96.01%  C 

Steering System  3  0.92% 96.93%  C 

Fuel System  2  0.61% 97.55%  C 

Oil Sample  2  0.61% 98.16%  C 

Starting System  2  0.61% 98.77%  C 

Equalizer  1  0.31% 99.08%  C 

Heating System  1  0.31% 99.39%  C 

Low Power  1  0.31% 99.69%  C 

Torque  1  0.31% 100.00%  C 
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Figure	A3.3	–	Pareto	chart	of	bulldozers	(D11_107)	

Table	A3.3b	–	Pareto	analysis	of	bulldozers	based	on	TBF	(D11_107)	

Components	 TBF % Cumulative	%	 Category

     0.00%   

Undercarriage  3204.03 22.60% 22.60%  A

Ripper Teeth  1704.27 12.02% 34.62%  A

Repair Light  1636.70 11.54% 46.17%  A

Cab  1181.20 8.33% 54.50%  A

Float  1131.13 7.98% 62.48%  B

Electrical  916.07 6.46% 68.94%  B

Hydraulic System  650.43 4.59% 73.53%  B

Engine  534.72 3.77% 77.30%  B

Drive System  486.98 3.43% 80.73%  B

Air Conditioning  415.72 2.93% 83.66%  B

Blade  381.67 2.69% 86.36%  C

Cooling Systems  342.45 2.42% 88.77%  C

Welding  290.67 2.05% 90.82%  C

Ice Lugging  240.85 1.70% 92.52%  C
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Fuel System  170.98 1.21% 93.73%  C

Oil Leak  143.50 1.01% 94.74%  C

Cutting Edge  129.90 0.92% 95.66%  C

Low Power  123.98 0.87% 96.53%  C

Oil Sample  103.25 0.73% 97.26%  C

Grease System  101.62 0.72% 97.98%  C

Heating System  86.52 0.61% 98.59%  C

Air System  78.35 0.55% 99.14%  C

Steering System  60.95 0.43% 99.57%  C

Starting System  54.45 0.38% 99.95%  C

Equalizer  6.28 0.04% 100.00%  C

Torque  0.52 0.00% 100.00%  C

	

Table	A3.4	–	Pareto	analysis	of	graders	(GRAD_035)	

Components	
Count	of	

Failures	
% cumulative	%	 Category	

     0.00%    

Cutting Edge  71  31.70% 31.70%  A 

Drive System  19  8.48% 40.18%  A 

Repair Light  17  7.59% 47.77%  A 

Engine  15  6.70% 54.46%  A 

Electrical  14  6.25% 60.71%  B 

Cab  12  5.36% 66.07%  B 

Air System  8  3.57% 69.64%  B 

Hydraulic System  7  3.13% 72.77%  B 

Miscl  7  3.13% 75.89%  B 

Blade  6  2.68% 78.57%  B 

Cooling Systems  6  2.68% 81.25%  B 

Grease System  6  2.68% 83.93%  B 

Air Conditioning  5  2.23% 86.16%  C 

Axle  5  2.23% 88.39%  C 

Braking System  5  2.23% 90.63%  C 
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Oil Sample  5  2.23% 92.86%  C 

Steering System  3  1.34% 94.20%  C 

Tandem  3  1.34% 95.54%  C 

Frame  2  0.89% 96.43%  C 

Ripper Teeth  2  0.89% 97.32%  C 

Sensor  2  0.89% 98.21%  C 

Float  1  0.45% 98.66%  C 

Fuel System  1  0.45% 99.11%  C 

Starting System  1  0.45% 99.55%  C 

Tire  1  0.45% 100.00%  C 

	

	

Figure	A3.4	–	Pareto	chart	of	graders	(GRAD_035)	
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Table	A3.5	–	Pareto	analysis	of	tractors	(HYCR_035)		

Components	
Count	of	

Failures	
% cumulative	%	 Category	

     0.00%    

Miscl  12  24.00% 24.00%  A 

Engine  9  18.00% 42.00%  A 

Hydraulic System  6  12.00% 54.00%  A 

Air System  4  8.00% 62.00%  B 

Electrical  4  8.00% 70.00%  B 

Braking System  2  4.00% 74.00%  B 

Cab  2  4.00% 78.00%  B 

Oil Sample  2  4.00% 82.00%  B 

Welding  2  4.00% 86.00%  C 

Axle  1  2.00% 88.00%  C 

Drive System  1  2.00% 90.00%  C 

Heating System  1  2.00% 92.00%  C 

Repair Light  1  2.00% 94.00%  C 

Starting System  1  2.00% 96.00%  C 

Steering System  1  2.00% 98.00%  C 

Wheels  1  2.00% 100.00%  C 
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Figure	A3.5	–	Pareto	chart	of	tractors	(HYCR_035)	

Table	A3.6	–	Pareto	analysis	of	bulldozers	2	(TLNGDOZ)	

Components	
Count	of	

Failures	
%	 cumulative	%	 Category

      0.00%   

Electrical  40  14.08% 14.08%  A

Undercarriage  30  10.56% 24.65%  A

Repair Light  26  9.15% 33.80%  A

Engine  25  8.80% 42.61%  A

Drive System  20  7.04% 49.65%  A

Cab  18  6.34% 55.99%  A

Cooling Systems  18  6.34% 62.32%  B

Float  17  5.99% 68.31%  B

Air System  16  5.63% 73.94%  B

Miscl  11  3.87% 77.82%  B

Blade  10  3.52% 81.34%  B

Fuel System  8  2.82% 84.15%  B

Welding  8  2.82% 86.97%  C
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Hydraulic System  7  2.46% 89.44%  C

Air Conditioning  4  1.41% 90.85%  C

Braking System  4  1.41% 92.25%  C

Heating System  4  1.41% 93.66%  C

Low Power  4  1.41% 95.07%  C

Component Change 

Out 
2 

0.70% 95.77%  C

Starting System  2  0.70% 96.48%  C

Steering System  2  0.70% 97.18%  C

Winch  2  0.70% 97.89%  C

Cutting Edge  1  0.35% 98.24%  C

Equalizer  1  0.35% 98.59%  C

Hard Nose / Grill  1  0.35% 98.94%  C

Oil Sample  1  0.35% 99.30%  C

Sunk  1  0.35% 99.65%  C

Training  1  0.35% 100.00%  C
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Figure	A3.6	–	Pareto	chart	of	bulldozers	2	(TLNGDOZ)	
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APPENDIX	4	–	POWER	LAW	ANALYSIS	OF	CRITICAL	COMPONENTS		

	

Figure	A4.1.1	–	Cumulative	number	of	failures	of	bulldozer	critical	component	

“undercarriage”	
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Figure	A4.1.2	–	MTBF	vs.	time	of	bulldozer	critical	component	“undercarriage”	
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Figure	A4.2.3	–	Failure	intensity	vs.	time	of	bulldozer	critical	component	“ripper	teeth”	
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Figure	A4.2.1	–	Cumulative	number	of	failures	of	bulldozer	critical	component	“ripper	

teeth”	
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Figure	A4.2.2	–	MTBF	vs.	time	of	bulldozer	critical	component	“ripper	teeth”	
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Figure	A4.2.3	–	Failure	intensity	vs.	time	of	bulldozer	critical	component	“ripper	teeth”	
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Figure	A4.3.1	–	Cumulative	number	of	failures	of	bulldozer	critical	component	“repair	

light”	



131	
	

	

Figure	A4.3.2	–	MTBF	vs.	time	of	bulldozer	critical	component	“repair	light”	
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Figure	A4.3.3	–	Failure	intensity	vs.	time	of	bulldozer	critical	component	“repair	light”	
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Figure	A4.4.1	–	Cumulative	number	of	failures	of	bulldozer	critical	component	“cab”	
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Figure	A4.4.2	–	MTBF	vs.	time	of	bulldozer	critical	component	“cab”	
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Figure	A4.4.3	–	Failure	intensity	vs.	time	of	bulldozer	critical	component	“cab”	
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Figure	A4.1.2	–	Cumulative	number	of	failures	of	bulldozer	critical	component	

“electrical”	



137	
	

	

Figure	A4.5.2	–	MTBF	vs.	time	of	bulldozer	critical	component	“electrical”	



138	
	

	

Figure	A4.5.3	–	Failure	intensity	vs.	time	of	bulldozer	critical	component	“electrical”	
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Figure	A4.5	–	System	operation	of	construction	equipment	bulldozer	
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APPENDIX	5	–	TIME	SERIES	ANALYSIS	OF	CRITICAL	COMPONENTS		

	

Figure	A5.1	–	Prediction	of	number	of	failures	of	the	critical	component	undercarriage	

of	construction	equipment	bulldozer			
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Figure	A5.2	–	Prediction	of	number	of	failures	of	the	critical	component	ripper	teeth	of	

construction	equipment	bulldozer			
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Figure	A5.3	–	Prediction	of	number	of	failures	of	the	critical	component	repair	light	of	

construction	equipment	bulldozer			
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APPENDIX	6	–	POWER	LAW	MODELS	OF	RELIABILITY	METRICS	

	

Figure	A6.4.1	–	Cumulative	number	of	failures	of	construction	equipment	bulldozer		



144	
	

	

Figure	A6.4.2	–	MTBF	vs.	time	of	construction	equipment	bulldozer		
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Figure	A6.4.3	–	Failure	intensity	vs.	time	of	construction	equipment	bulldozer		
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APPENDIX	7	–	TIME	SERIES	MODELS	OF	RELIABILITY	METRICS	

	

Figure	A7.4.1	–	Prediction	of	numbers	of	failures	of	construction	equipment	bulldozer		
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Figure	A7.4.2	–	Prediction	of	TBF	of	construction	equipment	bulldozer		
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