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ABSTRACT

Construction equipment plays an important role in civil engineering works,
particularly in infrastructure projects such as railways and bridge construction.
Unexpected failures of equipment can cause serious consequences such as increased
cost, project period extension, or even safety issues in some cases. Even though
different maintenance and reliability prediction methods have been applied by
contractors on site, a significant proportion of equipment repairs still follow

unexpected failures.

To bridge the gap between failure and preventive maintenance, it is important to
discover scientific and precise methods for analyzing and predicting the failures before

they happen.

Traditionally, there are a number of standard distribution functions which can be used
for reliability analysis. However, a number of books and papers have stressed that the
usual non-repairable reliability methodologies, such as the Weibull distribution, are
not appropriate for repairable system reliability analyses and have suggested the use of
Non-homogeneous Poisson Process (NHPP) models. Most construction equipment and

their components are considered to be in the category of repairable system.

Apart from the traditional distributions introduced above, researchers have applied
more sophisticated data mining methods to equipment reliability analysis. Time series
modeling is one of the more advanced techniques which this research is focused on.
Time series analysis can be used to describe and model the historical data, and forecast
the future values of the series based on the past values. Construction equipment failure

follows the time series pattern, and thus it can be adopted.

The aim of this research is to study the possible methods which can be used to analyze
reliability and predict the failures of construction equipment in order to bridge the gap
between preventive maintenance and repairs and help to make managerial decisions

on equipment allocation and maintenance. The objectives are:

a) Toincrease the understanding of the nature of failure patterns of the selected
construction equipment;
b) To estimate the reliability characteristics of construction equipment in precise

quantitative terms by using power law models and time series models;
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c) Compare the advantages and disadvantages of the traditional power law
models with those of time series models in construction equipment reliability
analysis;

d) To give recommendations on construction equipment management and
maintenance based on the research findings.

The major works for this research comprise of literature review, data collection, data
preparation, quantitative analysis, time series prediction and case studies. A
comprehensive literature review on the fields of reliability and construction equipment
has been conducted. Quantitative analysis is used in this study including data collection,
modelling and validation with the aid of computer software packages. Time series is
the main method adopted for reliability analysis and failure prediction while
traditional power law models are used as baseline for comparison. Case studies are
employed to study the reliability of construction equipment with real maintenance

data collected from construction site.

The major findings of the research include: the investigation and analysis of the
importance of reliability and failure prediction for construction equipment from the
aspects of cost, time and safety; testing the traditional power law model and time series
model on failure prediction for construction equipment based on real industry data;
studying the construction equipment reliability and failure from both the systems and
subsystems levels; taking related factors into consideration and evaluating the
importance of these factors (e.g. impact from Time to Repair) in the modelling process
of failure prediction; comparing the advantages and disadvantages of power law model
and time series model. Based on the results and findings of the data modelling and
analysis in this research, advice is given for managerial decisions on construction

equipment maintenance to promote the practice of repair before failures.
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CHAPTER 1 INTRODUCTION

This chapter contains six sections. Section 1.1 introduces the background of this
research such as the general research area and reviews of previous research in
the area of construction equipment reliability; Section 1.2 indicates the gap in
the previous research and identifies the problem; Section 1.3 outlines the
purposes and aims of this thesis; Section 1.4 states the significance of the
research; Section 1.5 describes the methods used in the study; and Section 1.6
indicates the structure of the thesis and provides the mini-synopses of each

chapter.

1.1 BACKGROUND OF THE RESEARCH

Construction equipment is a key resource in all building and construction
projects. Contractors owning a large equipment fleet or plant owners should
take all necessary measures to maximize equipment utilization and minimize
equipment failures. Although different maintenance methods such as
preventive maintenance and repairs have been adopted for construction
equipment, unexpected breakdown is usually difficult to predict. According to a
survey in the US, approximately 46% of major equipment repairs followed an
unexpected failure (Fan, 2012). Therefore, predicting failures and repairing
equipment before it breaks down is essential for effective cost management of

construction equipment and the project as a whole.

Repairs are often easy, but the collateral damage caused by the breakdown is
more severe. For example, a $100 hose can cause a $2,000 loss in production
and a $500 bearing can ruin a $7,000 transmission (Vorster, 2004). The cost
reports usually do not comprise collateral costs so that it is very difficult to
measure and the costs are easily disregarded. However, if completing
construction on time and on budget is required, then the collateral cost of
equipment failures in the field cannot be simply covered without question. The
frequency of failures and influence that breakdowns have on projects are key

elements in managing construction equipment or the whole fleet.



Therefore, “prevention is better than cure” is the principle that equipment
managers should adhere to in construction equipment management and
maintenance. Good managers understand that maintenance actions taken
before failure are more cost-effective, less disruptive, and easier to manage than
repair actions taken after the machine has broken down and defined both the
time and place for the urgently required repair action. Many contractors have
taken such measures as monitoring and tracking of the condition of equipment
to identify signs of failure or near-failure and conducting repairs or
replacements of some components based on the manufacturer’s
recommendations or on industrial benchmarks of the expected life of
equipment components. However the effectiveness of such strategies is still

unsatisfactory as large numbers of unexpected failures still occur.

There has been some research undertaken in the area of construction
equipment reliability and maintenance but mostly in qualitative terms; few
have been interpreted on a quantitative level with reasonable accuracy. Vorster
(2005) used an impending failure matrix to demonstrate strategies to bridge
the gap between preventive maintenance and repair. Steward (2006)
performed lifecycle research on several construction equipment pieces
(excavator, wheel-loader life, crawler-bulldozer, backhoe-loader, and
articulated-dump-truck) by dividing the equipment life into B20, B50 and B80.
Fan (2012) carried out a comparative study on construction equipment
reliability with power law model and time series model, although it was focused

on the comparison of the two research methods.

[t is essential to find a more scientific and precise way to analyze and predict
construction equipment failures before they happen. Some researchers have
done relevant research on construction equipment maintenance but yet have
not developed quantitative measures for predicting failures with reasonable
accuracy. As computer technology has developed rapidly in the last few decades,
we believe that with the aid of advanced computational tools and mathematical

concepts such time series forecast, the problem can be resolved more effectively.



1.2 PROBLEM STATEMENT

The unexpected failure of construction equipment usually causes large repair
cost and even more severe collateral costs. Repair after breakdown and
preventive maintenance are easy, like work is set in a maintenance check, etc.
Based on a preventive maintenance program, a piece of equipment can be
allowed to run to failure before any extra measure is taken. However, this kind
of behavior neglects the disrupted operations, increased repair costs, collateral

cost of lost production, and crisis management.

Therefore, predicting equipment failures is necessary to reduce repair cost and
manage project and equipment costs. There are some articles stressing the
importance of repair before failure, however, few present effective ways of
predicting failures accurately (Steward, 2006; Steward, 2005; Vorster, 2005).
This is a motivating factor for the aim of this research, i.e. quantify the
equipment reliability and failure indicators to minimize unexpected failures.
This research adopts two different reliability modelling approaches to predict
equipment failures and to bridge the preventive maintenance and repairs,

which is also known as predictive maintenance.

Models and rules based on power law and time series techniques are studied
and tested. The results obtained from these studies could possibly tell
equipment managers what must be done, when it must be done and so on
before a failure happens. Questions such as “what is the time remaining until
the next major failure for this piece of equipment?”, “what are the failures which
occur frequently, and what are the prevailing conditions associated with these
failures?” can perhaps be answered. Actions could be taken before the
equipment failures actually happen. The findings from this research will benefit
the entire construction and building industry by facilitating improved proactive

equipment maintenance management.

Traditional methods for equipment reliability analysis are power law models
and Weibull distribution. However, we find that time series forecast can be used
for failure prediction and postulate it would be more accurate than those

traditional methods. A time series is a set of observations measured



sequentially through time (Chatfield, 2000). Time series analysis can be used to
describe and model the selected data, and forecast the future values of the
series based on the past values. Construction equipment failure follows the time
series analysis pattern. Particularly the highly popularized Box-]Jenkins
autoregressive integrated moving average (ARIMA) model has been
successfully applied in not only economic time series forecasting, but also as a
promising tool for modeling the empirical dependencies between successive
times between failures (Walls & Bendell, 1987). This research adopts time
series techniques to extract rules and patterns from large amounts of data on
equipment failures collected from the contractors for construction equipment
failure analysis and prediction. The results from these two different modeling

approaches are analyzed and compared in the research.

In this project, both descriptive and predictive models of construction
equipment failures are developed through applying time series techniques on
the failure events. The goal is to have zero on-shift failures and we believe that
this research can help researchers, contractors and equipment managers move
closer to that target. The study also reveals that reliability analysis for
construction equipment can be used for designing a predictive maintenance

program.

1.3 RESEARCH OBJECTIVES

This research aims to find a way to analyze and predict construction equipment

failures to reduce the cost caused by emergency repairs. The objectives are:

a) To increase the understanding of the nature of failure patterns of the
selected construction equipment;

b) To estimate the reliability characteristics of construction equipment in
precise quantitative terms by using power law models and time series
models;

c) Compare the advantages and disadvantages of the traditional power law
models with those of time series models in construction equipment

reliability analysis;



d) To give recommendations on construction equipment management and
maintenance based on the research findings.
Methodologies and methods adopted for achieving these objectives are

presented in the Section 1.5.

1.4  SIGNIFICANCE OF THE RESEARCH

This research has both theoretical and practical values which are elaborated

below.

There is presently a lack of existing research on construction equipment
reliability analysis and failure prediction, especially utilizing quantitative
methods. Most research on construction equipment management and
maintenance are performed using qualitative methodologies (Steward, 2007;

Vorster 2007).

Although there are some published works on the reliability of plants or
equipment using quantitative methods in other industries such as mining and
the aviation industries, little research has been done in the building
construction industry (Barabady & Kumar, 2008; Weckman, et al, 2001).
Furthermore, most of these researchers used traditional reliability methods
such as Weibull distribution; the most common probability distributions will be
introduced briefly in Chapter 2. Data mining methods such as time series
analysis prediction are relatively new for reliability analysis. These techniques
are still under development in reliability engineering, especially in the building

construction industry.

The contribution and uniqueness of this research is that we adopted both
traditional probability distribution methods and more advanced data mining
methods such as time series for reliability analysis of construction equipment.
Comparison of the two methods is also made at the end of the thesis. Moreover,
case studies are conducted in this research so that real life cases about the
failure and maintenance of construction equipment provide strong supporting

evidence to the theoretical framework.



1.5 RESEARCH METHODOLOGY

The selection of appropriate research method depends on the research
objectives and questions. Appropriate research methods help to logically
underpin the design of research questions, data collection, data analysis and
conclusions. The major research work in this research includes literature
review, data collection, data preparation, quantitative analysis, time series

prediction and case study. The details of these methods are described as follows:

Literature review

A comprehensive literature review has been conducted in this thesis. It builds a
solid theoretical understanding of the topic by reviewing previous relevant
research work to justify the originality of this research. Literature review is a
critical endeavor for this research. As opined by previous researchers, there is a
necessity to uncover what is already known in the body of knowledge prior to
initiating any research study. In this research, literature including books,
journals, conference papers, on-line sources and others which have covered the
topic of reliability engineering and construction equipment maintenance have

been reviewed and studied.

Quantitative analysis

Quantitative research refers to the systematic empirical investigation of
quantitative properties and phenomena and their relationships. Quantitative
analysis includes developing or employing mathematical models, theories or
hypotheses pertaining to phenomena. Quantitative analysis in this study
includes data collection, modelling, validation and employment by using
computer software such as Microsoft Excel, RGA (ReliaSoft, 2010), JMP (SAS,
2012), and DTREG (Sherrod, 2003). Data analysis includes descriptive analysis
and predictive analysis, and the latter is conducted in this research. The
modelling approaches are comprised of traditional statistical analysis Non-

homogeneous Poisson Process (NHPP) and time series prediction.

Time Series analysis and forecast




Time series is used for reliability analysis and failure prediction of construction
equipment in this research. ARIMA modelling has been studied and used in this
case and the results are compared with the ones obtained from the traditional
Power Law models. The three main stages are model identification, model
fitting and model checking and have been rigorously implemented and repeated
to achieve the objectives of this study. The concept of time series analysis and

forecast is introduced in Chapter 3.

Case Study

Case study is an important research strategy employed in this project for
studying the reliability of the construction equipment. Real data collected from
construction sites are screened and analyzed by using the selected data mining
algorithms. Results such as equipment failure patterns and prototype decision
support module are directed and validated. For eight groups of different
construction equipment (i.e., bulldozer, scraper), failure and maintenance data
have been obtained from a Canadian contractor. Discussions and comparisons
are presented after the presentation of the result from the analysis of the real

data.

Factors affecting equipment failures are also quantified for future construction

equipment management and maintenance.

1.6 OUTLINE OF THE THESIS

This thesis consists of seven chapters which are explained as follows.

Chapter 1 introduces the background of the research, problem statement, scope
of the research, aims and objectives, research methodology, significance of the

research, and outline of the thesis.

Chapter 2 presents a comprehensive literature review for this research.
Fundamental theories of reliability engineering such as the definition and
characteristics of reliability are explained. Literature on reliability engineering
in the construction industry and other relevant industries (i.e., mining,

manufacture) is reviewed and analyzed. Basic construction equipment



maintenance methods are explored with focus on the optimum preventive and

predictive maintenance.

Chapter 3 examines the reliability modelling approach which includes
traditional statistical methods and data mining methods. Power Law Model and
time series prediction is studied in depth and introduced for the application in

the case study in the next chapter.

Chapter 4 demonstrates the reliability analysis and failure prediction of
construction equipment based on real industry data through case study. The
presentation is made in the order of data modelling process, which is: data

preparation, data analysis/modelling, model validation and model deployment.

Chapter 5 contains a reliability analysis of the critical subsystems of some
construction equipment. This research not only focuses on the systems, but also
explores the equipment from the lower level of subsystems. Pareto analysis and
other methods were employed to identify the critical components for
construction equipment. Attributes being considered include the counts of
failures, TBF and TTR. Reliability importance analysis is important because by
identifying the critical (weakest) components of a system and implementing

appropriate measures, the system reliability can be improved.

Chapter 6 presents the findings from literature review, case study and data
analysis. There are six major findings summarized in this thesis. Comparison
between the Power Law Model and time series analysis is made with

discussions in this chapter.

Chapter 7 concludes the research works and the thesis as well as gives

suggestions on future research.



CHAPTER 2 LITERATURE REVIEW

This chapter introduces the basic concepts and theories of construction
equipment, maintenance, and reliability engineering obtained from literature
review. Section 2.1 presents the introduction of construction equipment and
common maintenance methods. This section also examines and summarizes the
importance of conducting reliability analysis for construction equipment.
Section 2.2 introduces the fundamental theory of reliability, which includes the
definitions of reliability and failure, characteristics of reliability, availability and
maintainability, and probability distributions for reliability evaluation. Section
2.3 shows the review of the past research on reliability engineering in

construction industry and other relevant industries.

2.1 CONSTRUCTION EQUIPMENT RELIABILITY AND MAINTENANCE

2.1.1 CONSTRUCTION EQUIPMENT

Construction processes require many different types of equipment. Some
equipment is designed for specific purposes or projects and might be
considered custom made. However, most construction equipment will serve

with flexibility in a variety of projects or jobs.

Common construction equipment/plants include: bulldozers, scrapers, graders,
tractor shovels, excavators, transport vehicles, excavators, transport vehicles,

hoists, cranes, and concreting plant and so on.

Importance of Construction Equipment/Plant

Items of builder’s plant ranging from small hand held power tools to larger
pieces of plant such as mechanical excavators and tower cranes can be

considered for use for one or more of the following reasons:
0 Increased production;

0 Reduction in overall construction costs;



O Eliminate heavy manual work thus reducing fatigue and as a

consequence of increasing productivity;

O Maintain the high standards required particularly in the context of

structural engineering and foundation works.

Trucks (240H_075) Scrapers (631E_016)

Wheel loaders (988B_034) Bulldozers (D11_107)

Grader (GRAD_035) Tractor (HYCR_035)
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Shovel (SHOVEL~1)

Figure 2.1 Examples of Construction Equipment

Productivity of a Plant

From the economic consideration, an economic plant must be fully utilized and
not left standing idle since the plant, whether hired or owned, will have to be
paid for even if it is non-productive. Full utilization of plant is usually
considered to be in the region of 85% of on-site time (Chudley & Greeno, 2006).
Thus, to maintain a high productivity of construction equipment and not to
disrupt the construction programme, making an allowance for routine, daily

and planned maintenance and avoiding the unexpected breakdowns is essential.

The factors affecting the productivity of a plant may include task efficiency of
the machine, operator’s efficiency, and for some special equipment such as
excavators may also take type of soil into consideration. Some research articles
have pointed out that machines are often traded or replaced at some multiple of
the engine life, with transmissions, hydraulic pumps, and undercarriage
influencing the decision to various degrees depending on the type of machine

and working conditions (Kannan, 2011; Steward, 2004).

2.1.2 SIGNIFICANCE OF CONSTRUCTION EQUIPMENT RELIABILITY

The unexpected failures of construction equipment usually cause a large
amount of repair costs and even more severe collateral costs. Taking repair
after breakdown and preventive maintenance is an easy strategy, as time is set
by the maintenance cycle, task is arranged in a maintenance check, and work is
performed in agreement with operations. Based on a preventive maintenance

program, a piece of equipment can be allowed to run to failure before any extra
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measure is taken. However, this kind of behavior disregard the disrupted
operations, increased repair costs, collateral cost of lost production, and crisis

management.

The importance of construction equipment reliability analysis and its effects on
construction projects can be explored from the following three aspects: cost,

time and safety (Figure 2.2).

Equipment
Reliability

Figure 2.2 Importance of construction equipment reliability

Equipment Failure Cost

Equipment costs can normally be divided into three categories: owning costs,
operating costs, and consequential costs. Owning costs covers transactions such
as purchase, finance and resale; operating costs includes fuel, consumables,
repair, and maintenance. The third category, consequential costs is widely
acknowledged but often disregarded. They may cover the intangible costs
arising from the fact that equipment often performs less well than expected and

thereby impacts on many aspects of the production process.

Many authors have mentioned consequential costs in their research. The basic

premise is that equipment failure forces construction supervisors to change
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previously laid and presumably optimal construction plans, and these changes

sequentially cause consequential costs.

Project Schedule

From the perspective of project schedule, unexpected breakdown of
construction equipment may terminate an aspect of the work and this in turn

may delay the pace of the project.

Safety Issues

Safety is another noticeable issue in construction equipment management and
maintenance. In 1968 (H.M.) over 200 men lost their lives and a further 40,000
were injured on construction sites. These figures reflect human suffering and
significant material loss, and it should be everyone’s concern to try to reduce

them.

The unreliability of equipment can cause serious accidents. The reasons may
include machines being overloaded, continuous strain on a machine or part,
machines used incorrectly, bad or lack of maintenance, etc. any of the above
misbehavior may lead to a dangerous occurrence, and it is only when an
accident (an unplanned event resulting in personnel injury) results that people

get really concerned.

2.1.3 CONSTRUCTION EQUIPMENT RELIABILITY AND MAINTENANCE

Construction equipment, like any other machine, can be expected to break
down during its working life. This may be due to normal wear and tear, or a
sudden failure or a component part. The primary purpose of providing
maintenance is to reduce the incidence of failure, by either replacement, repair
or servicing, in order to achieve an economical level of utilization during the

working life of the machine (Vorster, 1987).

For the majority manufacturing or production plants, maintenance costs are a
significant part of the total operating costs. In some cases, maintenance costs
can account for between 15% and 60% of the total cost of production.

According to a recent survey, it seems that one-third of all maintenance costs
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are due to unnecessary or improperly carried out maintenance. For an instance,
the U.S. construction industry spends more than $200 billion each year on
maintenance of plant equipment, which proves the importance of proper

maintenance operations (Mobley, 2002).

The general opinion has been “Maintenance is a necessary evil” or “Nothing can
be done to improve maintenance costs” in the past few decades. However, the
development of computer-based instrumentation that can be used to monitor
the operating condition of plant equipment, machinery and systems, has
provided the means to manage maintenance operations. Main functions include
reducing or eliminating unnecessary repairs, and prevent catastrophic machine

failures.

The maintenance options are shown in Figure 2.3. There are generally three
recommended types of maintenance for equipment or plant, which are:
maintenance improvement, corrective maintenance, and preventive
maintenance. Maintenance improvement is the first and most valuable one

which endeavors to reduce or remove the need for maintenance.

Corrective maintenance deals with the emergency, repair, remedial and
unscheduled events. Repairs are always needed. At present, most maintenance
is corrective. However, there is a need of detecting incipient problems before
they cause serious failures as well as correcting the defects at the most efficient
cost. This demand lead the focus to the third type of maintenance - preventive

maintenance.
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Maintenance

Planned Unolanned
Preventive Corrective On-site Maintenance
maintenance maintenance breakdown in workshop

| | maintenance

| |

On-site On-site Replacement
running breakdown
maintenance maintenance

Maintenance
in workshop

Figure 2.3 Traditional construction equipment maintenance options (Harris and

McCaffer, 1991)

There are three types of preventive maintenance: reactive, condition

monitoring, and scheduled.

The purpose of preventive maintenance is to prevent unscheduled breakdown
of construction equipment and early equipment damage that would lead to

corrective maintenance or other repair activities.

Schedules of equipment repairs in preventive maintenance management are
mostly based on the MTTF statistic. The MTTF or bathtub curve (Figure 2.4)
indicates that a new machine has a high probability of failure at the beginning.
After that the probability of failure is basically stable for a period and will

increase at the end of the machine life.

The actual programs of preventive maintenance implementation can be very
different depends on the situation. Some simple programs might comprise only
minor adjustments and lubrication. On the other hand, comprehensive
preventive maintenance programs usually comprise not only lubrication, but

also repairs, adjustments, and machine rebuilds for all critical plant machinery.
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Nevertheless, the common determinant for all of these preventive maintenance

programs is - time.

Overall, preventive maintenance has many advantages compared with
corrective or other maintenance. Use of on-condition or condition-monitoring

techniques is usually better than fixed intervals.

2.1.4 PREDICTIVE MAINTENANCE

The common premise of predictive maintenance is that regular monitoring of
the actual mechanical condition, operating efficiency, and other indicators of the
operating condition of machine-trains and process systems will provide the
data required to ensure the maximum interval between repairs and minimize

the number and cost of unscheduled outages created by machine-train failures.

Predictive maintenance is a philosophy or attitude that, simply stated, uses the
actual operating condition of plant equipment and systems to optimize total
plant operation. A comprehensive predictive maintenance management
program uses the most cost-effective tools to secure the actual operating
condition of critical components/ subsystems and based on these real data

plans all the necessary maintenance activities.

Predictive maintenance is a condition-driven preventive maintenance program.
Instead of relying on industrial or in-plant average-life statistics to schedule
maintenance activities, predictive maintenance uses direct monitoring of the
mechanical condition, system efficiency, and other indicators to determine the

actual MTTF or loss of efficiency for the equipment.

Significance of Predictive Maintenance

Predictive maintenance is not a substitute for the more traditional maintenance
management methods. It is, however, a valuable addition to a comprehensive,
total-plant maintenance program. Where traditional maintenance management
programs rely on routine servicing of all machinery and fast response to
unexpected failures, a predictive maintenance program schedules specific

maintenance tasks as they are actually required by plant equipment. Predictive
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maintenance can provide a more reliable scheduling tool for routine preventive
maintenance programs and diminish the number of unexpected failures. This
research aims to predict the failures based on reliability analysis and the

experiment results can be used to plan predictive maintenance.

2.2. INTRODUCTION TO RELIABILITY ENGINEERING

2.2.1 DEFINITIONS OF RELIABILITY

The definition of Reliability given in BS4778 is “The ability of an item to perform
a required function under stated conditions for a stated period of time”. The usual
engineering definition of Reliability stated in O’Conner (2002)’s book is “The
probability that an item will perform a required function without failure under

stated conditions for a stated period of time”.

Reliability can also be expressed as the number of failures over a period.
Mathematically, reliability can be defined as shown in Formula 2.1, which
represents the likelihood of a given system being operational during the project

time.
R(t)=P(T>%t), t=0

R RE =0 2.1]

T is a random variable representing the time to failure, and t the mission time.
Reliability is the probability that a system will be successfully operating during

the mission time (Bauer, 2009).

The definition of Failure given in BS4778 is “The termination of the ability of an
item to perform a required function”. Mathematically, probability of failure, often

denoted as F(t), is the probability that the system will fail by time t:
F(t)=P(Tst), t=0
lim F(t) =1
t—oo [22]
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F(t) is also called the failure distribution function, or the cumulative failure

distribution function. The relationship of reliability and failure is defined as:

R(t)=1-F(t) [2.3]

The failure density function, f(t), which is equivalent to the probability density

function, is derivative of F(t).

daF(t) _

fo)y =——=-

dR(t)
dt [2.4]

When reliabilities are being computed, it is the function R(t) which is normally
used. When failure probabilities are being computed, it is the function F(t)
which is normally used. In addition, the diagram of the probability density

function (PDF) provides a visual representation of the failure distribution.

When measuring or predicting reliability, it is necessary to distinguish between

repairable and non-repairable equipment.

Non-repairable equipment can be systems comprised of many parts or
individual parts. When a part fails, the system usually fails and therefore, the
system reliability is a function of the time to the first part failure. For non-
repairable equipment, during the item’s life the instantaneous probability of the

first and only failure is called the hazard rate.

For repairable equipment, reliability is the probability that more than one
failure can occur in the period of interest. This differs from hazard rate for non-
repairable items, and can be described as the failure rate or the rate of
occurrence of failures (ROCOF). Construction equipment is usually considered

to be in the category of repairable systems.

2.2.2 CHARACTERISTICS OF RELIABILITY

There are quite a few indices existing for quantifying the reliability of a product,

which are described as follows.

For non-repairable items:
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Mean time to failure (MTTF) - The definition of MTTF given in BS4778 is “For a
stated period in the life of an item, the ratio of the cumulative time for a sample
to the total number of failures in the sample during the period under stated

conditions”.
For repairable items:

Failure rate (Hazard rate) - The mean number of failures in a given time. The
definition of observed failure rate given in BS4778 is “For a stated period in the
life of an item, the ratio of the total number of failures in a sample to the
cumulative observed time on that sample”. The observed failure rate is to be
associated with particular and stated time intervals (or summation of intervals)

in the life of the item, and under stated conditions.

Mean time between failures (MTBF) - The definition of MTBF given in BS4778 is
“For a stated period in the life of an item, the mean value of the length of time
between consecutive failures computed as the ratio of the cumulative observed
time to the number of failures under stated conditions”. For repaired items, it is

often assumed that failures occur at a constant rate, in which case the failure

rate A= (MTBF)-L

Failure Rate (Hazard Rate)

In terms of failure, the failure rate is a measure of the rate at which failures

ocCcur.

The failure rate can be defined as

R(t)-R(t+At)
AtR(t) [2.5]

The hazard function h(t) is the instantaneous failure rate, which can be defined
as the limit of the failure rate as the interval approaches zero as expressed in

the following formula:
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_q.. R()—R(t+At)
h(9) = fim =@

_ —dR(t)
T R(H)dt [2.6]

For both repairable and non-repairable items, failures vary with time, while the
failure rate (hazard rate) can either be decreasing, increasing, or be constant.
The pattern of failures with time can be illustrated by use of the bathtub curve
(Figure 2.4). It shows an initial infant mortality period with a decreasing

hazard/failure rate, an intermediate useful life period and a final wear out

period.
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+ Failure Failure Failure
Rate Rate Rate

Observed Failure

3
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Figure 2.4 The ‘bathtub’ curve (O’Conner, 2002)

Mean Time to Failure (MTTF)

Mean time to failure (MTTF) is the expected average time that the system is

likely to operate successfully before a failure occurs. The MTTF function is:
MTTF = [ 7 tf (t)dt

= [[7R(t)dt

Mean Time between Failure (MTBF)
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The definition of MTBF given in BS4778 has been introduced earlier. It is
basically the mean value of the length of time between consecutive failures. For

repaired items, it is often assumed that failures occur at a constant rate, in

which case the failure rate A= (MTBF)-L.
Mathematically,
MTBF = MTTF + MTTR [2.8]

MTTR symbolizes mean time to repair. The relationship between MTBF, MTTF
and MTTR are shown in Figure 2.5.

The utilization of equipment/plant is directly related to the average value of

two indicators, namely MTBF and MTTR, for all the subsystems and delays.

The effect of the maintenance plan, operating conditions during excavation such
as water inflow, and reliability functions of the components, directly affects

MTBF of the overall construction equipment system and its back-up system.

According to Regattieri, et al (2010), the factors affecting MTTR of construction
equipment may include: the competence of the equipment crew, inventory
system of spare parts, production of works, the level of the ongoing
geotechnical investigation and monitoring during excavation, the response
speed of the crew to changing ground conditions, and level of preparation of the

on-site management for contingencies (such as high water inflow).

20d Failure Occurs
Repair Completed
Failure f}ccurs\ \

System State

=

MTBI

MTTE MTTRJ ., MTTI

Daswiy

Time

Figure 2.5 MTTR, MTBF, and MTTF (Bauer, 2009)
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2.2.3 RELIABILITY, AVAILABILITY AND MAINTAINABILITY

Effectiveness of construction equipment is principally influenced by the
reliability, availability, and maintainability of the system, and its capability to

perform as expected.

Availability is defined as the probability that the system is in normal operation.
In other words, it means a measure that allows for a system to be repaired
when failures occur. For repairable systems, availability (A) is a measure of

successful operation for repairable systems.

Reliability and maintainability are often related to availability by the formula:

MTTF

Availability = ————-—0 [2.9]

where MTTR is the mean time to repair. This is the simplest steady-state
situation. It is clear that availability improvements can be achieved by

improving either MTBF or MTTR.

2.3 RELIABILITY ENGINEERING IN CONSTRUCTION AND RELEVANT
INDUSTRIES

2.3.1 THE DEVELOPMENT OF RELIABILITY ENGINEERING

Reliability engineering, originated in the United States during the 1950s, is a
distinct engineering discipline. As the increasing complexity of military
electronic systems which was generating failure rates greatly reduced
availability and increased costs, the US Department of Defense and the
electronics industry jointly set up the Advisory Group on Reliability of

Electronic Equipment (AGREE) in 1952.

In the 1980s, the UK government built Defence Standard 00-40, The
Management of Reliability and Maintainability. The British Standards
Institution further issued BS5760 - Guide on Reliability of Systems, Equipment

and Components.
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At the meantime, the principles of ‘Total quality management’ (TQM) and
continuous improvement were brought forward by Japanese and American
pioneers. These ideas led to great increases in productivity and quality. [tems
such as electronic systems and components, automobiles and machine tools

reached levels of reliability far beyond previous experience.

Increasingly sophisticated statistical methods have also aided the development
of reliability engineering. Much research and literature has focused on this
subject. However, random variations often render quantitative approaches
difficult or invalid. Therefore, our research will not only cover the traditional
statistical methods but will also investigate new mathematical techniques such

as data mining for reliability analysis.

2.3.2 RELIABILITY RESEARCH IN OTHER INDUSTRIES

No one disputes the need for equipment to be reliable. Organizations such as
airlines, the military and public utilities are aware of the costs of unreliability.
As such, reliability analysis techniques have been increasingly utilized for the
planning and operation of automatic and complex systems in some industries.
Since failure cannot be prevented entirely, it is important to minimize both its
probability of occurrence and the impact of failures when they do occur

(Blischke, 2003).

Roberts and Mann (1993) suggested in their paper that the Crow model (Crow,
1990), or power law Non-homogenous Poisson Process (NHPP) is recognized
by the reliability community as being one of the best models for repairable
systems. However, a continuous distribution such as the Weibull is more
valuable in that they give failure prediction results that can be traced to
individual components. They used the Crow model to predict when the overall
system will be down, and then the Monte Carlo simulation which utilizes
Weibull parameters to predict the number of failures from each of the included

components.

Aircraft system such as jet engine in the aviation industry is an example of a

complex repairable system (Downing, 2011). Some papers discussed the
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reliability analysis and failure prediction of such systems by using statistical
methods and data mining methods (Weckman, etc., 2001; Letourneau, etc.,
1999). Weckman etc. (2001) discussed how the Weibull process, a non-
homogenous Poisson (NHPP) process can be used in modeling jet engine life.
The overall capability of the model is measured by examining both data fit and
forecasting accuracy. The Weibull process can also be referred as the Power
Law process, Weibull restoration process, NHPP with Weibull intensity function,
Weibull Poisson process, and more recently as the Power Law NHPP. There are
also some research have adopted time series models and other advanced
methods such as neural networks for reliability analysis and forecast of
repairable systems in manufacture industry (Ho & Xie, 1998; Xu, et al.,, 2003;
Chen, 2007). For example, Ho, et al (2002) carried out a comparative study of
neural network and ARIMA modelling in time series prediction for repairable

system failure analysis.

2.3.3 RELIABILITY RESEARCH IN CONSTRUCTION AND MINING INDUSTRY

Much research has been carried on reliability analysis of mining equipment
such as load-haul-dump machines (Samanta, etc, 2004; Kumar and Klefsjo, 1992;
Kumar, et al, 1989). The function of Load-haul-dump machines is to pick up ore
from the mining points and dump it into either trucks or other equipment.
Reliability assessments of repairable mining machines have been reported in
these papers with probability distributions fitted for the characterization of
failure data. Other mining equipment such as longwall face equipment and
crushing plant have also been studied for reliability analysis (Mandal, 1996;
Barabady, 2005; Barabady and Kumar, 2008). Reliability characteristics Time
between failures (TBF) and Time to repair (TTR) were analyzed for a
complicated crushing plant. With the aid of computer software, parameters of
some probability distributions like Lognormal and Weibull distributions were
estimated. More sophisticated mathematic methods have also been investigated
and applied to mining equipment reliability assessment such as genetic
algorithms (Vagenas & Nuziale, 2001; Vayenas & Yuriy, 2007; Peng &Vayenas,
2014).
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There are books and papers involving the reliability analysis of building
components and civil engineering systems such as bridge and substructure
(Blischke & Murthy, 2003). However, not much research have been conducted
on the reliability analysis of construction equipment or plant (Nepal & Park,
2004). Vorster (2005) used an impending failure matrix to demonstrate the
strategies to bridge the gap between preventive maintenance and repair.
Steward (2006) had a lifecycle research on several construction equipment
types (excavator, wheel-loader life, crawler-bulldozer, backhoe-loader, and
articulated-dump-truck) by dividing the equipment life into Bzo, Bso and Bso. Fan
(2012) did a comparative analysis of construction equipment (D11 bulldozer
system) failures using the classical power law models and the new time series
models. He found out that the power law models are easy to apply and are
capable of predicting reliability metrics at both the system and subsystem levels
with faire results, while time series models based on predictive data mining
algorithms are more flexible, comprehensive, and accurate by taking various

influencing factors into account.
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CHAPTER 3 RELIABILITY MODELING APPROCH

3.1 INTRODUCTION

In this chapter, some basic approaches for reliability analysis are going to be
introduced and discussed. The focus is on the methods which are suitable for
repairable systems rather than non-repairable systems, as construction
equipment is mostly considered to consist of repairable systems. The two
reliability modelling approaches used in this research are traditional statistical

method named power law model and more sophisticated time series models.

The definition of a time series is a set of attribute values over a period of time.
As the past values have impact on the current and future behavior, the historical
time series plot can be used to predict future failures in the case of construction
equipment reliability study. It is worth mentioning here that the Markov model,
which has been considered by many researchers as a powerful tool for
reliability analysis, is not adopted. The reason it is not adopted in this research
is that in the Markov model the future values depend only on the present state
and is independent of history, which does not accord with the situation of a

construction equipment failure.

3.2 STATISTICAL METHODS

Commonly used statistical models for reliability analysis include: binomial
distribution, exponential distribution and Poisson distribution, normal
distribution and lognormal distribution, and Weibull distribution. Some of the
common ones are introduced in Chapter 2. In this chapter, power law model is
introduced and further applied to the research. It is also called the Weibull
process which differs from the concept of Weilbull distribution as explained in

Chapter 2.
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3.2.1 RELIABILITY ANALYSIS PROCESS

The classical reliability analysis process of a repairable system is illustrated in
Figure 3.1, which explains from the first step of data collection to the last step of
reliability analysis by Ascher and Feingold (1984) The sources of data in a piece
of construction equipment may include operational and maintenance

information, maintenance reports, and data from sensors on equipment.

A test for independence can be performed by using serial correlation test which
will detect the presence of dependent data (Kumar and Klefjso, 1992). In this
test, the Time to Failure data is plotted against a one lag time data. If the data is
randomly scattered, it can be concluded that one failure to the next was
Independence. In other words, the current failure does not have any influence

over immediate subsequent failure.

[Mata Collection

[rata Collection [Mata Sorting
* [rata Classification
Component failure Pareto chart statistics
frequency analysis Stop and no action if the frequency is very low
—"Does the data ——_ Yes

. have atrend?

Ea

Yoy
" Does the data
~-have a correlation?.—
Branching Poison Process -'-Nl‘l Monhomogenous Poison Process
or other similar models e e { Power Law Process)
[rata are fid distributed

Best-1it distribution

¥
= Parameter evaluation -
Reliability Imporfance Measures Y
Imterval Inspection Reliability and

Identify Critical Subsystem | maintainability analysis
Availability Analysis

Figure 3.1 Reliability analysis process of a repairable system (Ascher and Feingold,
1984)
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For the use of time series, the data series should be dependent. This is the case
with failure data, i.e., the current failure have influences over the immediate

subsequent failure.

Usually the first step in reliability analysis of a repairable system is to collecting,
sorting and classifying significant data. The second step is component failure
frequency analysis. Pareto chart statistics is a common method to find out those
important subsystems. It is often found that a majority of failure in a product is

a result of a minority of potential causes.

The next step is to check if the data has a trend or not. If the answer is yes, then
a Nonhomogeneous Poisson Process or so named power law process can be
adopted for data modelling. If there is no trend and the data has no correlation,
then the data is assumed to be independent and identically distributed (iid).
Two common methods used to validate the iid assumption are the trend test
and the serial correlation test and is described by practical example in Refs
(Kumar and Klefsjo, 1992; Ascher and Feingold, 1984). The techniques involved
fitting a distribution function to an iid variable is very different from the
approach for fitting an NHPP to non-stationary data. For repairable systems
such as construction equipment, the most commonly applied method is the
NHPP model which based on the power law process. After the validation of the
stationary of the data, the next step is parameter valuation and followed by

reliability and maintainability analysis.

A number of books and papers have stressed that the usual non-repairable
reliability methodologies, such as the Weibull distribution, are not appropriate
for repairable system reliability analyses and have suggested the use of Non-
homogeneous Poisson Process (NHPP) models (Crow, 1900; Ascher and
Feingold, 1984). Table 3.1 gives a summary of the statistical methods used for

reliability analysis and respective software.
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Table 3.1 Statistical methods for reliability analysis of repairable multi-

component systems

Reliability Statistical Software Maintenance
Characteristics Methods

System Give failure The Crow ReliaSoft’s  Optimum
rate of the model (NHPP)  RGA7; preventive
system maintenance

Exponential/ Weibull

Determine Lognormal/ ++6 Predictive
when the Normal/ maintenance
overall system  Weibull
down distribution

Components/ Predict the

Subsystems frequency of Weilbull

failures of each

analysis (i.e.,

component Monte Carlo
simulation)

Identify the

critical

subsystems or

component

3.2.2 CLASSICAL STATISTICAL TECHNIQUES

There are a number of widely used standard distribution functions, include
binomial, Poisson, Weibull, normal, exponential, lognormal, gamma, and
Rayleigh, etc. The detailed introduction to these probability models have been
presented in many literature. This section only gives a brief introduction to the

distributions which are related to this research.
Poisson distribution

Poisson distributions, similar to some other distributions, are used to analyze

discrete random events. The major difference is that in a Poisson distribution,
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only the occurrence of an event is counted, and its nonoccurrence is not counted.

The followings are some examples of a Poisson distribution:
* The number of calls in a given period
* The number of people coming to a bus stop
» The number of failures of a system

The probability of having x failures by time t of a Poisson distribution can be

calculated as follows:

(kt)xe_kt

Pr(X =x) = 22
X =0 =7 forx=0,1,2.. [3.1]

Where A is the average failure rate of a system, and x is the number of failures

by time t.

The mean and the variance of a Poisson distribution can be calculated

separately as follows:

E(X) = At [3.2]
And

V(X) = At [3.3]
Weibull distribution

In probability theory and statistics, the Weibull distribution is a continuous
probability distribution. It is named after Waloddi Weibull, who described it in
detail in 1951.

Compared with the exponential distribution which is limited in its application
due to the memoryless property, the Weibull distribution is a generalization of
the exponential distribution. As Weibull distribution has no specific
characteristic shape, it can be shaped to represent many different distributions,
depending on what the values of the parameters are in its reliability function. It
also can be shaped to fit to experimental data that cannot be characterized as a

particular distribution.
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3.2.3 POWER LAW NHPP (WEIBULL PROCESS)

A power law model indicates that the failures of a complex system are time
dependent and follow the NHPP. The power law model was first proposed by
Duane (1964) to describe the failures of a complex system at the stage of

development.

For a unit of construction machine under the policy of minimum repair (just
conduct minimum repair to bring the machine back to working order), the
system failure intensity function can be expressed by a power law model as

follows:

u(t) = ABtEL, >0 [3.4]

s

Main

(B0 AL

STANDARD FOLIO

Model T

Fielded Repairable
MLE Crow

o=
E=)

RN

::"'-

Results
Parameters
Beta 1.0570
Lambda {Hr) 0.0207
Statistical Tests
Significance Level 0.1

¢ ° & F3IC e Bt 5

VM Passed

CBH MWaotavailable

Other

Termination Time (Hr): 8747.9200

Systems: 1f1
System 1

Parameters

Beta 1.0570

Lambda {Hr) 0.0207

Statistical Tests

CWVM Passed

Laplace Mo Trend

Figure 3.2 Power Law Modelling Process

where A is the failure rate and t is the age of the system. When 3 = 1, the

instantaneous failure intensity is a constant, the equipment has stable reliability;
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when (3 > 1, the equipment is in the wear-out stage; when 3 < 1, the equipment
is in the burn-in stage. It shows that the power law model can well describe the
“bathtub” curve which construction equipment follows. Figure 3.2 shows an
example of the modelling process using power law model on RGA 7 platform.

The parameters lambda and beta are calculated and presented in the figure.

3.3 TIME SERIES ANALYSIS AND PREDICTION

3.3.1 INTRODUCTION

A time series is a set of attribute values over a period of time. The definition is

given as follows (Dunham, 2003):

“Given an attribute, A, a time series is a set of n values: {<t1, ai1>, <tz, az>, ...,
<tn,an}>}. Here there are n time values and for each a corresponding value
of A. Often the values are identified for specific well-defined points in time,

”

in which case the values may be viewed as a vector < ai, az, ..., an>.
The mathematical equation of a time series could be:
Ye =f (Ye1, Ye2, Ye3,.., Yen) + €t [3.5]

Where Yt is the value of Y at the corresponding time t, Yt1to Yenrepresent the
previous value of Y, and et stands for noise that does not obey the predictable

pattern.

Time series analysis may be viewed as finding patterns in the data and
predicting future values. The values usually are obtained as evenly spaced time
points (daily, weekly, hourly, etc.). There are three basic functions performed in
time series analysis: distance measurements are used to determine the
similarity between different time series; the structure of the line is examined to
determine (and perhaps classify) its behavior; the historical time series plot
used to predict future values. In this research, the third function is performed in
time series analysis to predict the future failures based on historical failures of
construction equipment. Normally time series follows the one or more of the

following four patterns, which are (Tiao, 2001):

32



e Trends - a trend can be viewed as systematic nonrepetitive changes

(linear or nonlinear) to the attribute values over time.
e (ycles - means the observed behavior is cyclic.

e Seasonal - means the detected patterns are based on time of year or

month or day.

e OQutliers - means irregular fluctuations. Various approaches may be
applied to remove or reduce the impact of outliers and to assist pattern

detection.

Models for time series data can have many forms and represent different
stochastic processes. When modeling variations in the level of a process, three
broad classes of practical importance are the autoregressive (AR) models, the
integrated (I) models, and the moving average (MA) models. These three classes
depend linearly on previous data points. Combinations of these models produce
autoregressive moving average (ARMA) and autoregressive integrated moving

average (ARIMA) models.

ARIMA models

ARIMA (p,d,q) is short for autoregressive integrated moving average model
where parameters p, d, and q refer to the order of the autoregressive, integrated,
and moving average parts of the model respectively. Parameter p, d, and q
should be non-negative integers. In Box-Jenkins approach to time-series

modelling, ARIMA models is an important constitute (Box, et al, 1994).

Autoregressive (AR) processes - a time series {Xt} is said to be an autoregressive
process of order p (abbreviated AR (P)) if it is a weighted linear sum of the past

p values plus a random shock.

Moving average (MA) processes - a time series {X:} is said to be a moving
average process of order 1 (abbreviated MA (q)) if it is a weighted linear sum of

the last g random shocks.
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ARMA is a mixed autoregressive moving average model with p autoregressive
terms and g moving average terms. The mathematical function can be

expressed as:
0 (B)X, = 6 (B)Z, [3.6]

where @ (B), , 6 (B) are polynomials in B of finite order p, g, respectively.

In reality, many time series are non-stationary so that stationary AR, MA or
ARMA processes cannot be applied directly. There are several methods to solve
this problem and one of them is to apply differencing to make the time series
stationary. An ARIMA (p,d,q) process means a time series that has been
differenced d times before fitting an ARMA (p,q) process where d symbolizes
the number of differences taken and the letter “I” stands for integrated.

Mathematically,
@ (B)(1 - B)*X, = 6 (B)Z, [3.7]

Similarly, a seasonal model can be represented as ARIMA (p,d,q)(P,D,Q). The
Microsoft time series algorithm (SQL Server, 2014) discovered that the ARIMA
algorithm is optimized for long-term prediction and their ARTXP algorithm is
optimized for short-term predictions in SQL Server. Maia et al. (2008) believes
that it is advantageous to model linear and non-linear patterns separately by
using different models and then combine the forecasts to improve the overall

modeling and forecasting performance.

3.3.2 MODELING PROCESS

The original Box-Jenkins model (1976) takes an iterative three-stage modeling
approach, which are: model identification or model selection, parameter

estimation, and model checking.

The first step of the Box-Jenkins modelling process is model identification or so-
called model selection, which is ensuring that variables are stationary and
identifying seasonality in the dependent series. Plots of the autocorrelation

(ACF) and partial autocorrelation functions (PACF) of the dependent time series
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are used to decide which (if any) autoregressive or moving average component

should be used in the model.

The second step is parameter estimation which generate the coefficients that
best fit the selected ARIMA model by using computation algorithms. The most
common methods include maximum likelihood estimation and non-linear least-

squares estimation.

The third step is model checking which tests whether the estimated model
conforms to the specifications of a stationary univariate process. In particular,
the residuals should be independent of each other and constant in mean and
variance over time. It is helpful to identify misspecification by plotting the mean
and variance, or ACF and PACF of the residuals. At the end, if the result is
inadequate, it is required to return to step one and build a more appropriate

model.

Most statistical time series model building have the following three major

stages, which are similar to the original Box-Jenkins model:
e Model specification/ identification/ selection
e Model fitting/ parameter estimation
e Model verification/ checking

Chatfield (2000) has provided explicit explanation to these tree stages for

building a statistical time series model.

Trend removal and stationary time series

A time series is said to be stationary if both its mean (the value about which it is
oscillating), and its variance (amplitude) remain constant through time.
Classical Box-Jenkins ARMA models only work satisfactorily with stationary
time series, so for those types of models it is essential to perform
transformations on the series to make it stationary. Usually time series do not
present a fixed mean, therefore, removing trends from time series and adjusting
the amplitude are usually required before modeling the data. The software

DTREG includes facilities that can automatically identify and remove the trend
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and it uses regression to fit either a linear or exponential function to the data.
However, not all software has this function, in some cases manual operations

may be necessary.

There are several ways to remove the trend, or so-called detrending.
Differencing and log transformation are two common ways, and in the case
study of this thesis, log transformation is used to stabilize the mean and
variance. The meaning of differencing is to calculate the difference between two
observed values at fixed time interval. For example, a difference of one time
interval apart is calculated by subtracting value 1 from value 2, then 2 from 3,
and on, and plotting that data to determine if the mean is zero and the variance
is constant or not. If differencing of one does not detrend the data, then repeat
the process if necessary to stabilize the mean and variance. The advantage of
differencing is ease of use and simplicity, while the disadvantage is over-

correcting for trends, which skews the correlations in a negative direction.
The differenced series is given by

d s D
w =(1-B) (1-B) y,
' ' [3.8]
Where t denotes time and B is the backshift operator defined by Byt = yt.1. Other
symbols D is the seasonal differencing order, d represents the nonseasonal

differencing order, and s is the number of periods per season. If the value of the

differencing order is zero that means there is no differencing of that kind.
Another method can be used to remove trends is ordinary least squares analysis.

Trend removal is almost always beneficial; however, variance stabilization
(amplitude adjustment) is beneficial about 20% of the time and harmful about

80% of the time based on experiments (Senter, 2008).

Autocorrelations (ACF) and Partial Autocorrelations (PACF)

Usually, Autocorrelations Functions (ACF) and Partial Autocorrelations
Functions (PACF) are used to describe how and to what degree each point is

correlated with previous values in the series (as shown in Figure 3.3).
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The correlation between all the pairs of points in the time series can be
described by autocorrelation graph with a specified separation in time or lag.
The autocorrelation for the kth lag is

Y, =—
Co

1 _ _
Ck = ;Eif\;k"'l(yt - y)(yt—k - y) [3 9]
Where t denotes time, k is the number of lags, andf is the mean of the N

nonmissing points in the time series.

Other graphs such as variograms (a characterization of process disturbances),
autoregressive (AR) coefficients, and spectral density plots can also be used to
identify the type of model appropriate for describing and predicting the
evolution of the time series (SAS, 2012).

============== fQutocorrelations and Partial Autocorrelations ==============

————————————————————————————— Autocorrelations —---——-————-——mmmmmmmm e
Lag Correlation Std.Err. t -19876545321012345678291
1 -0.03983188 0.057543 8.692 | . |
2 -0.02553715 0.057634 0.443 | | |
3 -0.06519376 0.057672 1.130 | | |
4 -0.04279580 0.057915 8.739 | | - |
5 0.067932120 0.058020 1.367 | | %% |
6 -0.01368337 0.058378 0.234 | - |
7 -0.110085582 0.058389 1.885 | -*| |
8 -0.00668735 0.059072 0.113 | - Il
9 -0.11614995 0.059074 1.966 | -*| |
10 0.02308963 0.085982% 0.386 | | |
11 -0.07125172 0.059855 1.190 | | |
12 -0.04980398 0.060135 8.828 | | |

————————————————————————— Partial Autocorrelations ----------------——-—-—--—-

Lag Correlation Std.Err. t -1987654321012345678291
1 -0.03983188 0.057260 0.696 A |
2 -0.02716684 0.857260 0.474% | -] - |
3 -0.06747747 0.0857260 1.178 | e | » |
4 -0.04937367 0.0857260 0.862 | -] - |
5 0.07222886 0.057260 1.261 | - % |
6 -0.01433504% 0.0857260 8.250 | -] - |
7 -0.11485300 0.0857260 2.0806 | % . |
8 -0.00901908 0.857260 8.158 | e | - |
9 -0.12017815 0.0857260 2.0899 | % . |

10 -0.01063010 ©0.057260 0.186 | e | « |
11 -0.08986090 0.0857260 1.569 | %] . |
12 -0.086166693 0.057260 1.877 | e | - |

Figure 3.3 Examples of Autocorrelation and Partial Correlation Plots
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3.3.3 MODEL FITTING CRITERION

There are several different metrics for evaluating the fitness of a model. By
comparing the values of these metrics, the best fit model can be found. Figure
3.4 shows an example of the criterions used in software JMP, which contains DF,
sum of squared errors, variance estimate, standard deviation, AIC, BIC, RSquare,

RSquare Adj, MAPE, MAE, -2LogLikelihood and so on.

4 '~/ Model: ARIMA(1, 1, 1)
4 Model Summary

DF 140 Stahle  Yes
Sum of Squared Errors 137052119 Invettible Yes
Variance Estimate 978.943704
Standard Deviation 31.2880761

Akaike's 'A' Infarmation Criterion  1394.12154
Schwarz's Bayesian Criterion 1403.01008

RSquare 0.93245111
RSquare Adj 0.93148612
MAPE 8.68705796
MAE 243641658
-2LogLikelihood 1388.12154

Figure 3.4 Example of Model Fitting Criterion

RSquare, can also be wrote as RZ, measures the proportion of the total variation
explained by the model. It usually increases as the number of parameters
increases. If the model fits the series well, then the model error sum of squares
(SSE) is smaller than the total sum of the squares (SST). However, if the model
fits the series badly, the SSE might be larger than the SST. A similar fitting
criterion called adjusted-RZ% makes some attempt to take account of the number

of parameters fitted.

The most commonly used fitting criterion for time series models is so-called
Akaike”s Information Criterion (AIC), since more sophisticated model-selection
statistics are generally preferred. The mathematical function is expressed as

follows:
AIC = -2 In (max. likelihood) + 2p [3.10]

Where p denotes the number of independent parameters estimated in the

model. AIC essentially chooses the model with the best fit, as measured by the
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likelihood function, provided a penalty term that increases with the number of

parameters fitted in the model. Therefore, it should prevent overfitting.

In addition to AIC, another widely used fitting criterion for time series models is
the Bayesian Information Criterion (BIC). BIC essentially replaces the term 2p in
the AIC with the expression p + p InN. The BIC is similar to the AIC but penalizes
the addition of extra parameters more severely than the AIC. When the number
of model parameters is high compared with the number of observations in time

series analysis, BIC is considered to be more suitable than the ordinary AIC.

Other metrics can be used to evaluate the fitness of a model include degree of
freedom (DF), sum of squared errors (SSE), variance, standard deviation, MAPE,
MAE, -2LogLikelihood. MAPE is the mean absolute percentage error and MAE is
the mean absolute error. -2LogLikelihood is minus two times the natural log of
the likelihood function evaluated at the best-fit parameter estimates. The theory

is that the smaller of the value, the better of the fitness of a model.
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CHAPTER 4 CASE STUDIES ON RELIABILITY
MODELLING

In previous chapters, the concept of reliability engineering and several
reliability modelling approaches have been introduced and discussed. This
chapter is going to apply these methods to real cases by analyzing the data
collected from the construction industry with the aid of computer software.
Section 4.1 introduces the background of the case study and Section 4.2
presents the data preparation stage in the reliability analysis process. Section
4.3 and 4.4 demonstrate the modelling process and results using power law
models and time series models respectively. Section 4.5 summaries the

outcomes of this chapter and raises discussions of the methods and findings.

4.1 BACKGROUND

Several papers have emphasized that equipment mangers should focus on
repair before equipment breakdown and effort to bridge the gap between
preventive maintenance and repair (Vorster, 2004). To achieve this goal,
reliable machine information such as component lives and machine history is

needed.

The data used in the case study are from a contractor’s equipment fleet which is
working on an oil sand project on a 3-shift schedule. Among the pieces of
equipment in this fleet are bulldozers, graders, trucks, backhoes, etc. The
contractor has a team of operators, superintendents, project managers working
on the jobsite and keeping full working records of downtime, uptime, failure
events, and repair details on each unit. Apart from the preventive maintenance
and scheduled overhauls, there are unscheduled random failures on each
equipment unit. The contractor is keen to predict the reliability of each unit so
that better decisions on allocations of equipment and maintenance resources

can be made for scheduling purpose.
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Although traditional reliability theory can be applied to the heavy equipment in
service, there are practical obstacles which make it difficult to apply these
reliability modeling techniques originally developed from the manufacturing
industry. The construction environment is highly uncontrollable with
constantly changing weather conditions, job natures, and operating conditions,
all of which have an impact on the equipment reliability. Each unscheduled
critical failure leads to an emergency repair and causes interruptions to
construction works with varying financial impact; under some critical failure
circumstances, the equipment cannot be repaired on the jobsite and must be

brought to a distant shop for extensive repairs.

The maintenance and repair details were written down in the records and the
useful information has been reorganized for reliability analysis and failure
prediction. A sample of this is shown in Table 4.1. Construction equipment is a
complex system comprising of various subsystems: engine, braking system,
hydraulic system, undercarriage, etc., these subsystems and components have
different economic lives and different reliability metrics. They are not
completely independent and must be kept in working conditions and work in

coordination for the equipment to function properly.

For each equipment unit, the contractor is interested in predicting the
equipment reliability metrics for use in the planning period, such as rate of
failures, reliability level for the scheduled mission, availability, time between
failures (TBF), time to repair (TTR), and length of uninterrupted working hours
without failure given a minimum reliability level. Predictions at both system
level and subsystem levels are desired for management decisions for the

upcoming planning periods.
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Table 4.1 Sample reliability data of bulldozer obtained from the field
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4.2 DATA PREPARATION

Three basic steps have been taken at the initially for determining reliability
characteristics: data collection, data sorting and data classification (i.e., total
working hours, total breakdown hours, total maintenance hours, TBF, TTR,
failure frequency, etc.). As mentioned earlier, there are several data sources in a
construction equipment that can be used for reliability modeling. In this case
study, data for modelling is extracted from the maintenance records of a

contractor’s company.

Whenever the risks or costs of failure are high, then a formal reliability
programme is required. When the system is more complex, or have more
components, the risks of failure usually also increase. Thus, reliability
programmes are required for any equipment whose complexity leads to an

appreciable risk.

The basic steps taken for determining reliability characteristics are shown in
the following diagram (Figure 4.1). The data collection and estimation
processes continue through all the phases, and there are several mini steps
under each big step. Throughout the building construction lifecycle, the
reliability is assessed. The whole process includes the initial predictions based
on the past failure data, and then the validation of forecast results and
subsequently the building up of a predictive maintenance plan based on the
predictions. This reliability analysis process of construction equipment is
accomplished by using power law models and time series models respectively

in the following sections.

Table 4.2 show a sample of reorganized data of construction equipment failures
with information of time between failures (TBF) and time to repair (TTR) as

well as cumulative TBF and TTR presented.
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Figure 4.1 Reliability analysis process of construction equipment

Table 4.2 Sample of TBF and TTR data set of a piece of construction equipment

Index Cumulative TBF TBF Cumulative TTR TTR
1 142.00  142.00 320 3.20
2 194.03 52.03 14.78 11.58
3 471.00 27697 53.15 38.37
4 621.00  150.00 5498 1.83
5 766.00  145.00 61.50 6.52
6 993.00  227.00 88.93 27.43
7 1151.00  158.00 104.87 15.93
8 1190.00 39.00 105.88 1.02
9 1436.50  246.50 106.38  0.50

10 1525.28 88.78 113.63  7.25
11 1829.00  303.72 114.80 1.17
12 1910.00 81.00 142.20 27.40
13 2040.50  130.50 235.10 92.90
14 2285.50  245.00 297.87 62.77
15 2459.50  174.00 29820 0.33
16 2664.00  204.50 29853 0.33
17 2799.50  135.50 29948 095
18 2948.33  148.83 308.07 8.58
19 3141.00 192.67 309.07 1.00
20 3141.00 0.00 309.07 0.00
21 3359.42 21842 309.57 0.50
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22 3536.02 176.60 323.40 13.83

23 3751.75 215.73 32512  1.72
24 3958.02 206.27 335.37 10.25
25 4082.00 123.98 340.62 5.25
26 4315.50 233.50 380.63 40.02
27 4521.58 206.08 412.57 31.93
28 4688.02 166.43 500.83 88.27
29 4824.00 135.98 501.33  0.50
30 4974.37 150.37 505.68 4.35

4.3 MODELLING PROCESS OF POWER LAW MODELS (NHPP)

4.3.1 DATA MODELLING

After the data have been reorganized and cleaned, the next step is to choose the

suitable modeling method for reliability analysis.

The Crow model, or power law non-homogenous Poisson process, is recognized
by the reliability community as being one of the best models for repairable
systems. It can determine when the overall system will be down, while the
Monte Carlo simulation that utilizes Weibull parameters could predicts the
frequency of failures of each component in a specific time frame. By identifying
the critical components or subsystems, the information can be used to assist in
deciding maintenance intervals to design an optimum preventive or predictive

maintenance program.

The construction equipment used for modelling and demonstration in this case
study is the bulldozer. Figure 4.2 shows a software platform named RGA7 for
power law modeling and calculating the parameters of the model. In this case,
429 data points are used for reliability analysis and the results show that
lambda equals to 0.0044 and beta is 1.1758, which implies that the equipment
is at the wear-out stage according to the bathtub curve which has been
introduced in Chapter 2. Plots and tables of MTBF vs. time are presented in the

next section.
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Figure 4.2 Reliability analysis of construction equipment bulldozer by using NHPP

model in RGA 7
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4.3.2 RESULTS FROM POWER LAW MODELS

With the aid of computer software RGA7, the relation of MTBF with time can be

derived (Figure 4.3). So is the relationship of cumulative number of failures

with time (Figure 4.4). It can be observed from the diagram that the MTBF has a

slight trend of decreasing as the time goes on with the cumulative number of

failures increases with time.
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Although a straight line can be used to fit failure




data at the system level, some noisy data exists due to influences on the arrival

pattern of equipment failures from some external factors.
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Figure 4.3 MTBF vs. Time
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Figure 4.4 Cumulative numbers of failures vs. time

Apart from the diagram showing the relationships of MTBF with time and
cumulative number of failures with time, several reliability metrics can be

derived from the power law model. For example, the instantaneous MTBF
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(IMTBF) at a specific time can be calculated. Figure 4.5 presents the IMTBF to
be 34.53hr at the time of 18000hr with the upper bound to be 38.92hr and
lower bound to be 31.06hr when the confidence level is set to be 0.9. Other
reliability metrics such as cumulative MTBF, cumulative failure intensity and
instantaneous failure intensity can also be generated from power law models

with the aid of RGA?7.

. gl::i QUICK CALCULATION PAD

Units > Bounds o |

Cumulative | | MTBF | | FailureIntensity | [IMPUE-
tntantaneous | (WITBF % | Fallre Intensity i ) [ sa000]
| Time Given: Confidence Level :_ 0.9
e Folio1\Data 1
| e Instantaneous MTBF
Fail Number of Failures Upper Bound (0.95) = 38,9203 Hr
Tzl IMTBF(t=18000 Hr) = 34.5492 Hr
Bounds Parameter Bounds Lower Bound (0.05) = 31.0608 Hr
Report
Calculate ———
Close

Figure 4.5 Calculation of IMTBF

Another case study being presented here is the research results for the truck. A
sample size of 305 data points have been extracted for reliability analysis and
failure prediction in the truck by both power law models and time series
analysis for comparison. Table 4.3 shows the predictions of the MTBF between
Intervals# 294 and 305 by using the Power Law Models. The values of the same
intervals (294 to 305) by using time series models are predicted and presented
in the next section for comparison. The predicted MTBF is presented in the
table as well the original values. The upper and lower bounds of MTBF with a
confidence interval of 90% are also shown in the same table. It can be seen that
the IMTBF is decreasing as time goes on, which is the same as Figure 4.3
illustrates. Thus, it is found that this construction equipment bulldozer is at the
wear-out stage. Special attention should be paid to this piece of equipment and

change of new equipment should be implemented when it is suitable.
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Table 4.3 Instantaneous MTBF predicted in RGA7 with two-sided confidence level

of 0.9

NoBd 7BF (HB  Cumulative TBF () B UpperBound (095 B IMTBF(=8748H) B LowerBound (0.05)

4 1875 8510.57 Upper Bound (0.95) = 33,6393 Hr  IMTBF(t=8748 H) = 29.4884 Hr  Lower Bound (0.05) = 25.6108 Hr
25 B4 8526.00 Upper Bound (0.95) = 33.4080 Hr  IMTBF(t=8748 Hr) = 20.2903 Hr  Lower Bound (0.05) = 25.4451 Hr
2 23 8528.33 Upper Bound (0.95) = 33,1749 Hr  IMTBF(t=8748 Hr) = 29.0940 Hr  Lower Bound (0.05) = 25.2808 Hr
a7 B3 8561.67 Upper Bound (0.95) = 32.0462 Hr  IMTBF(t=6748 Hr) = 28.8996 Hr  Lower Bound (0.05) = 25.1181 Hr
28 1525 8576.92 Upper Bound (0.95)= 327193 Hr  IMTBF(t=8748 Hr) = 28.7068 Hr  Lower Bound (0.05) = 24.9567 Hr
29 499 8626.83 Upper Bound (0.95) = 32.4947 Hr  IMTBF(t=8748 Hr) = 285158 Hr  Lower Bound (0.05) = 24.7967 Hr
30 1543 8642.27 Upper Bound (0.95) = 32.2717 Hr IMTBF(t=8748 Hr) = 28.3261 Hr  Lower Bound (0.05) = 24.6377 Hr
o1 458 8646.85 Upper Bound (0.95) = 32.0508 Hr  IMTBF(t=8748 H) = 28.1381 Hr  Lower Bound (0.05) = 24.4801 Hr
2 215 8676.00 Upper Bound (0.95)= 31.8320 Hr  IMTBF(t=8748 Hr) = 27.9520 Hr  Lower Bound (0.05) = 24.3240 Hr
03 2% 867850 Upper Bound (0.95)= 31.6152 Hr  IMTBF(t=8748 Hr) = 27.7674 Hr  Lower Bound (0.05) = 24.1692 Hr
4 14 8695.92 Upper Bound (0.95) = 31.4005 Hr  IMTBF(t=8748 Hr) = 27.5845 H  Lower Bound (0.05) = 24,0157 Hr
305 5200 §747.92 Upper Bound (0.95)= 31.1877 Hr  IMTBF(t=8748 Hr) = 274033 Hr  Lower Bound (0.05) = 23.8636 Hr

4.4 TIME SERIES MODELLING PROCESS

441 DATA ANALYSIS/ MODELING

Apart from power law models, time series models are also built for construction
equipment reliability analysis with the aid of computer software named JMP
and DTREG (SAS, 2012; Sherrod, 2003). As can be seen from the software
platform, two options could be selected: generate a normal predictive model
and generate a time series forecasting model. What we chose is the latter option.
Again there are many types of model which can be built in DTREG (Figure 4.6),
and here we use “linear regression” as the simplest method. This is because of
the concept of “parsimony”. We have seen that the mathematical models we
need to employ contain certain constants or parameters whose values must be
estimated from the data. It is important, in practice, that we employ the smallest

possible number of parameters for adequate representations.
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Model

X5

PNN/GRNN | REF Network | GMDH | Cascade Comelation | Discrimant Analysis | K-Means Clustering | Linear Regression | Logistic Regression |
Factor Analysis | Class labels | Initial split | Category weights | Misclassification | Missing data | Variable weights | DTL | Scoring | Translate | Misc. |
Design | Encryption | Data | Wariables | Validation ~Time series | Decision Tree | TreeBoost | Decision Tree Forest | SVM | GEP | Muttilzyer Perceptron |

Time series or normal predictive model
"~ Generate a nomal predictive model

{» Generate a time series forecasting model

Range of lag values to generate

Minimum lag: |1 Maxdmum lag: |12

Lag. moving average and other generated variables

Type of model to build

| Linear regression -

Automatic removal of trend
" None " Linear
(v Automatic " Bxponential

[~ Stabilize variance

Validation of forward predictions
|v Validate predictions for end of series

MNumber of values to use for validation: |12

[¥ Prirt validation values and forecasts

ariable lag | SMA | LMA | EMA | Deta | LTrend | Slope
TBF log 5] O O O O O
TTRlog O O O O O O

Forecast future values

|¥ Forecast future values beyond end of series
Mumber of values to forecast: |12

[ Print future forecast values

I~ Wiite forecast to file

Cancel

Figure 4.6 Time Series Modelling Process

In Figure 4.6, there are two variables indicated for the time series prediction,
namely time between failures (TBF) and time to repair (TTR). Where there is
word “log” behind the TBF and TTR, it means that both series of data have been
transformed by using logarithm function. At the bottom part of the interface,
“validate prediction for end of series” and “forecast future values beyond end of

series” are ticked and a number of 12 are inputted for both cases for the reason

of seasonal effects.

The third stage “model estimation” is presented with the predicted results

obtained in the next section.
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Type of madel to build

Linear regression -

Single decision tree
TreeBoost

Multilayer Perceptran
PHMN/GRNN neural netwark
RBF netwark

GMOH pohmomial netwaork
Cascade comelation

Support Vector Machine

Gene Expression Programming
Linear regression

Figure 4.7 Types of model can be built for time series prediction in DTREG

4.4.2 MODEL EVALUATION

As explained earlier in Chapter 3, there are several metrics that could be used

for evaluating the fitness of a model (Figure 3.4). Different software packages

may provide slightly different metrics for evaluating the fitness. Figure 4.8

presents the criterions being used in the software DTREG which is adopted for

time series analysis in this case. Among the various metrics, the proportion of

variance (R”2) and correlation between actual and predicted are the most

important metrics. In this case, the figures for these two criterions are 0.10790

and 0.330022 respectively. The causes of the low values could be the irregular

fluctuations or outliers are too high in the case.

Mean target value for input data = 1.1785188
Mean target value for predicted values = 1.1760815

Variance in input data = 0.3373394
Residual (unexplained) variance after model fit
Proportion of variance explained by model (R"2)

0.30089392
0.10790 (10.790%)

Coefficient of variation (CU) = 0.465482
Normalized mean square error (NMSE) = 0.892096
Correlation between actual and predicted = 0.330022

Maximum error = 1.6895153

RMSE (Root Mean Squared Error) = 0.5485792

MSE (Mean Squared Error) = 0.3009392

MAE (Mean Absolute Error) = 0.4383436

MAPE (Mean Absolute Percentage Error) = 183.5211

Figure 4.8 Evaluation of the fitness of the time series model
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4.4.3 RESULTS FROM TIME SERIES MODELS

As discussed earlier, for system reliability analysis, the deliverables from
modelling may include: expected number of failures, conditional reliability and
unreliability, MTBF or failure intensity, and system operation plot. The system
operation plot of a construction equipment is presented in the next chapter
with the illustration of Figure 5.12. In this case study, the reliability metrics
have been procured include the number of failures and TBF with confidence
levels. TTR is also taken into consideration in time series analysis while
predicting TBF. Table 4.4 shows an example of the prediction of numbers of
failures per interval by using time series models. Time series models generally

can detect changes in the failure pattern and respond well enough.

Table 4.4 Prediction of numbers of failures per interval by time series models

Failure Actual Predicted Absolute
Interval Failures Failures Error

25 1 1.62 -0.62

26 2 1.61 0.39

27 5 1.60 3.40

28 4 1.58 2.40

29 1 1.57 0.57

30 2 1.55 0.45

Table 4.5 & 4.6 present the results of the predictions of TBF per interval
(weekly) of the construction equipment truck, which can be compared with the
results obtained from power law models as shown in Table 4.3.The same
number of data points (305) were used in the data modelling. A summary of the
predictive errors in absolute error is also presented in the table. By comparing
the forecast with the actual numbers of failures (“Absolute error”), it can be
noted that time series models can give more satisfactory predictions than

power law models.

Table 4.5 shows the predicted TBF as compared with the actual TBF of a
construction equipment truck (240H_075). The data in Table 4.6 has been
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modified using logarithm and the results appears better than the one on the left
which not been modified. The error percentages are mostly within 50% which

indicates that the results from the time series modeling are quite satisfactory.
The statistics calculated from time series model are summarized as follows:
Exponential trend:

TBF (log) = 1.162166 + 0.163911*exp (-0.034805*row)
And the variance explained by trend equals 0.301%.

Table 4.5 Validation results of time series analysis

Row Actual Predicted Error

294 15.750000 16.735053 -0.985053
295 15.430000 12.918207 2.511793
296 2.330000 14.819318 -12.489318
297 33.330000 22.148179 11.181821
298 15.250000 16.843528 -1.593528
299 49.920000 14.548194 35.371806
300 15.430000 15.336325 0.093675
301 4.580000 24.255259 -19.675259
302 29.150000 23.409228 5.592087
303 2.50000 22.409228 -19.909228
304 17.420000 20.152580 -2.732580
305 52.0000 19.305280 32.694720

Table 4.6 Validation results of time series analysis after logarithmic

transformation

Row Actual Predicted Error

294 1.1973000 1.0092817 0.1880183
295 1.1885000 0.9902672 0.1982328
296 0.3680000 0.9574823 -0.5894823
297 1.5229000 0.7814389 0.7414611
298 1.1833000 0.7893086 0.3939914
299 1.6982000 0.9986845 0.6995155
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300 1.1885000 1.0403445 0.1481555
301 0.6612000 1.0187228 -0.3575228
302 1.4646000 1.1203957 0.3442043
303 0.3979000 1.0455107 -0.6476107
304 1.2410000 1.1410082 0.0999918
305 1.7160000 1.1042755 0.6117245

Figure 4.9 shows the time series trend for TBF after logarithmic transformation

while the black squares represent the actual failure intervals and the red

triangles represent the forecasted failure intervals. The blue trend line shows

TBF over time and in this case shows a slight downwards trend, which suggests

that the equipment is entering the wear out stage. Figure 4.10 is similar to

Figure 4.9 and shows the time series values for TBF afther logarithmic

transformation. The black squares and red triangles have the same meanings,

while the green points represent the predicted values and blue points are the

validation values which fall in the time interval of 294 and 305 in this case study.

Time Series Trend for TBF log

Rt i h)r iy s
) | I |

Observation Number

Figure 4.9 Time series trend for TBF (after logarithmic transformation)
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Table 4.7 presents the ARIMA time series prediction of TBF with 95% upper

and lower confidence levels.

Table 4.7 Time series prediction of TBF with upper and lower confidence levels

Row Actual TBF Predicted TBE | "0 CL (@93)Lower CL (0.95) Residual TBF
TBF TBF

25 356.50 338.38 473.02 203.74 18.12
26 226.00 226.04 360.68 91.40 -0.04
27 315.50 24351 378.15 108.87 71.99
28 160.90 174.04 308.68 39.40 -13.14
29 297.10 256.16 390.80 121.51 40.94
30 287.17 203.89 338.53 69.24 83.28
31 30.33 162.87 29751 28.23 -132.54
32 424.42 371.86 506.50 237.22 52.56
33 247.60 192.50 327.14 57.86 55.10
34 234.48 189.98 324.63 55.34 44.50
35 270.52 200.24 334.88 65.60 70.28
36 204.00 175.14 309.78 40.50 28.86

Model validation: the model was validated by comparing the predicted failure
data to the actual system failure data. The results in Table 4.6 show the
predicted failure time based on mean time between failures (MTBF) compared
with the actual occurrence of failure. In the JMP software, several validation
options are provided for model selection, which include AIC, SBC, R-Square, -
2LogLikelihood (-2LogLH). By comparing these options, it is found the MA(1)

model is the most suitable one in this case (Figure 4.11).

4 Model Comparison

Report Graph  Model DF Variance AC SBC RSquare -2LoglH  Weights 24 6.8 MAPE MAE
* vl ] = W) 34 47191123 41225417 41542121 0455 40825417 0697041| | | 46.912188 58502592
v v ] = ARMA1, 1) 33 48223991 41409458 41884514 0457 40809458 0277726| | 46251422 57849199
vV [ —ARIMA(1,1,1) 32 74755320 41906263 42372868  0.108 41305%3 0.023164 54027829 71517867
vV [0 =aR(1) 34 71463323 42389406 42706109 0277 41989406 0.002069 53339868 67149779

Figure 4.11 Model comparison

Time between failures (TBF) and time to repair (TTR) are the most commonly
used reliability metrics which need to be predicted. TTR measures the time

needed to fix a failure. In this case, we not only predict the number of failures of
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a piece of construction equipment, but also perform a forecast of the TBF with

TTR contributed as a predictor time series (Table 4.8 & 4.9).

The utilization of the equipment is directly related to two parameters, namely
TBF and TTR, for all the systems and subsystems. Time to repair (TTR), is a
crucial parameter, indicating that equipment parts will soon return to normal
and have a great impact on the overall stability of the system. Table 4.9 presents
the prediction of the Cumulative TBF based two parameters: TBF as well as TTR.
It is apparent that adding TTR as a parameter in time series forecast gives
different result than the one using TBF as the only time series. From the
experiment results we noticed that the time spend on repairing the equipment
(i.e,, TTR) has impact on the occurrence of next failure (TBF). Therefore, TTR
can be taken into consideration when conducting reliability analysis and failure

forecast of construction equipment.

Table 4.8 Time series prediction using TBF as the only parameter

--- Jalidation Time Series Ualues ---

Row Actual Predicted Error Error %

31 38.33800 195._.42118 -165.09118 544 316
32 42442860 291.43612 132.98388 31.333

33 247.60080 243.31995 4.280085 1.729
34 234.48000 245.41212 -18.93212 4.662
35  278.52880 278.65061 -8.13861 B.0848

36 204.000800 247.18309 -43.18389 21.129

-—- Forecast Time Series Ualues ——-

Row Predicted
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Table 4.9 Time series prediction using both TBF and TTR as parameters

-=-= Ualidation Time Series Ualues ---

Row fictual Predicted Error Error %
31 30.33000 196.45928 -166.12928 547.739
32 424.42000 267.49719 156.92281 36.973
33 247.60000 260.94599 -13.34599 5.390
34 234.48000 249.07135 -14.59135 6.223
35 270.52000 245.85686 24.66314 9.117
36 204.00000 259.71238 -55.71238 27.310

--=- Forecast Time Series Values ---

Row Predicted

37 370.79594
38 237.u5276
39 271.81419
4O 293.55519
h1 276.96399
h2 277.00491

4.5 SUMMARY AND DISCUSSIONS

To summarize, there are basically two undertakings in this case study, which
are: the comparison of the two different reliability modelling approaches and
their applications to construction equipment, the findings and their impact on
equipment management decisions. The following will discuss these two aspects

respectively.

4.5.1 COMPARISON OF TIME SERIES WITH POWER LAW MODEL

From the aspect of the methodology chosen for system and subsystem analysis,
a comparative study between power law models and time series models is
made for reliability analysis and forecasting failures of construction equipment,
with emphasis on their predictive performance. It can be noticed that time
series forecast techniques will be a suitable alternative in modeling the failure
patterns of construction equipment. By iteratively adjusting the weights in the
time series models, better estimates can be obtained. By comparing the results
obtained from time series models and power law models, the advantages and

disadvantages of the two models are found out.
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Time series models usually require a sample size of at least 50 for analysis
while power law model requires less data. The assumption of power law models
is Non-homogenous Poisson process (NHPP) which is a random failure process
with different intensities at different stages of equipment life. On the other hand,
time series models use very few assumptions and are very flexible. Data series
with underlying patterns are caused by both randomness and a large number of
external and internal influencing factors. In Chapter 5, the applications of these
two models to subsystems will be compared and discussed. The combined
comparison made in these two chapters is summarized in Chapter 6 with the

illustrations in Table 6.1.

Apart from the contributions to construction equipment maintenance and
management decisions, this research also demonstrates that the ARIMA model
is a viable alternative that gives satisfactory results in terms of its predictive
performance. The result is valuable in planning a system shutdown depending

on the organization’s reliability target.

4,5.2 IMPACT ON MANAGEMENT DECISIONS

The reliability assessment of construction equipment can affect decision making
in selecting the right maintenance and utilization strategy in civil engineering

projects.

As introduced earlier in Chapter 2, traditional construction equipment
maintenance options are not sufficient and there is a need for implementing
predictive maintenance. Predictive maintenance is able to maximize the
intervals between repairs and decrease the number of unscheduled
breakdowns and more cost effective. However, this measure requires indicators

to determine the actual MTTF or loss of efficiency of the equipment.

The results obtained from the models and analysis in this chapter are valuable
indicators for predictive maintenance. By analyzing the reliability of a particular
piece of construction equipment, trends of failures of this equipment can be
detected; furthermore, the numbers of failures and the MTBF for a fixed interval

can be predicted, as illustrated earlier. Based on this information, the
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equipment manager can recognize the status of the equipment and make

adequate maintenance service accordingly.

Apart from arranging predictive maintenance for a particular piece of
equipment, the allocation of equipment can also be judged by the reliability
analysis. From the case study, the status of a piece of equipment can be detected,
whether in the infant mortality stage, useful life or wear out stage of a bathtub
curve. The example used in this case, the bulldozer, is found out to be at the
wear out stage by using power law models and time series models, which
means this particular equipment is getting deteriorated and unreliable.
Allocation of unreliable and aged equipment should be cautious because of its
low working efficiency and the reality that spare parts are often not easily
available in local markets. Equipment managers should replace this kind of
equipment with the ones having higher availability or assign these machines to

operations where they do not work alone, or with backup plan.
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CHAPTER 5 CONSTRUCTION EQUIPMENT SUBSYSTEMS

5.1 SUBSYSTEMS RELIABILITY

A complex system may include many components and interfaces, such as cars,
aircrafts, and construction equipment. Typical construction equipment has
around 20 subsystems/components which should be taken into consideration
in failure analysis. In this chapter, the data analysis and modelling process is
applied to the equipment subsystems and the critical components to examine

the equipment failures at a subsystem level.

Systems, like cars, aircrafts and construction equipment, usually include many
components and interfaces. Components can be divided into two groups, which
are: intrinsically reliable components and intrinsically unreliable components.
Intrinsically reliable components refer to those that have high margins between
their strength and stresses that could cause failure, as well as not wear out
within their practicable lifetime. On the other hand, intrinsically unreliable
components are those with low design margins or which wear out within their
practicable life time. Examples include badly applied components and parts that

move in contact with others, such as power drive belts, bearings and gears.

For a non-repairable item, when a part fails in a non-repairable system, the
system usually fails and the system reliability is, therefore, a function of the
time to the first part failure. For a repairable item, reliability is the probability
that failure will not occur in the period of interest, when more than one failure
can occur. Most construction equipment types are considered to be repairable

systems.

Reliability is the ability of an item to perform a required function under stated
conditions for a stated period of time. One of the purposes of system reliability
analysis is to identify the weakness in a system and to quantify the impact of
component failures. The so-called “reliability importance” is used for this
purpose. These importance measures provide a numerical rank to determine
which components are more important to system reliability improvement or

more critical to system failure.
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5.1.1 SERIAL AND PARALLEL CONFIGURATIONS

In analyzing a complex system, a particular failure law may be applied to the
entire system. However, an alternative approach is to apply reliability
modelling on the important components of the system, and base on the

components reliability to calculate the reliability of the system.

There are two different ways for components of a system to be connected to one
another: in either a serial or a parallel configuration. In series configuration, if a
system need to function, then all components are required to function; however,
in a parallel configuration, if a system need to function, then at least one
component must function. In the following discussions, all components are
considered critical in a sense that their functions must be performed in order
for the system to continue to perform. Under this concept, if either of two
serially related components fails, the system will fail. The series relationship is

represented by the reliability block diagram of Figure 5.1.

000

Figure 5.1 Reliability block diagram for components in series

Since reliability is a probability, the system reliability Rsmay be determined

from the component reliabilities in the following way.

The system reliability is given by
R;() = [[iL, R:(D) [5.1]

Majority of construction equipment design follows the pattern of serial
configuration. The details of some construction equipment are presented and

illustrated in the next section.

In parallel configuration, two or more components can be in parallel, or

redundant. If one or more units operate, the system continues to operate. Only
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when all the components in parallel fail, the system fails. Reliability block

diagram for components in parallel is illustrated in Figure 5.2.

(- X - X -]

Figure 5.2 Reliability block diagram for components in parallel

The function for system reliability of n parallel and independent components is
presented as Formula 5.2. The system reliability is the deduction of the
probability that all n components fail from integer “1”. On other words, the
system reliability is the probability that at least one component does not fail.

The equation is,

R,(®) =1 - [IL,[1 - R;(D)] [5.2]

Though some electrical system in an equipment may be in parallel, it is
generally considered that subsystems in a construction equipment to be in

series configuration.

5.1.2 CONSTRUCTION EQUIPMENT COMPONENTS

There are a number of construction equipment categories based on the
classification of their functions, which include excavating equipment, hauling
equipment, loading equipment, grading equipment, hoisting equipment,
concrete equipment. The data we used in this research are extracted from the
following eight construction equipment categories, i.e., trucks, scrapers, wheel
loaders, two bulldozers, graders, and tractors. Among them, the shovel is
excavating equipment, the bulldozers and scraper are loading equipment, and

truck is hauling equipment.
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In this research, six different types of construction equipment were examined
for subsystem reliability analysis as there are relevant maintenance records
available. These six construction equipment pieces are: scrapers, wheel loaders,

two different bulldozers, graders, and tractors.

Typiccl Bulldozer Details ~
roteclive cab and exhaust pi
roll bar g
4 cylinder diesel
— engine
; typical maximum
fuel tank g 5 speeds in km/h -
& ¥ forward gears - 11
I _T‘_ iy { reverse gear - 7
» e — o] mould blade
towing E T TR ———— with tilt
hook — = e —————a e — and angle
| EEtas — — = - capacity -
Ly =X ] — - = maximum
steel — diggin
irock Q —_ f\ : : : \ depth 3
shogs e —— :

Figure 5.3 Typical bulldozer details (Harris and McCaffer, 1991)

Bulldozer is a multifunctional piece of engineering equipment, which is
applicable for work including excavation, short distance transport and
unloading. It consists of a track or wheel mounted power unit with a mould
blade at the front which is controlled by hydraulic rams. Many bulldozers have
the capacity to adjust the mould blade to form an angle. A bulldozer and its

capacity to tilt the mould blade about a central swivel point are shown in Figure

5.3.

A bulldozer can perform functions such as shallow excavations up to 300mm
deep both on level ground and sidehill cutting. Other major functions may

include clearance of shrubs and small trees by using raised mould blade as a
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pusher arm; acting as a pusher to scraper machine and acting as a towing

tractor.

Similar to bulldozers, graders also have a long slender adjustable mould blade,

which is usually slung under the centre of the machine (Figure 5.4).

The main function of a grader is to finish or grade the upper surface of a large
area, normally after the operation of bulldozing or scraping. Different from
bulldozer which is suitable for site excavation work because of the power,
grader, however, can produce a fine and accurate finish. The basic formats of
most graders available are four wheeled and six wheeled. The first type has all
the four wheels driven and steered, which gives the machine the ability to offset
and crab along its direction of travel; while six wheeled graders have 4 wheels
in tandem drive at the rear and 2 front tilting idler wheels giving it the ability to

counteract side thrust.

Typical Grader Details ~

diesel

driving cab _____,..é engine
—front 1 |
tilting — hydraulic ! :
idler rams ‘ i

wheels - = M S : 1 = =3

; «-{ mould blade B= . -5
> O carriage . O O

mould blade

L_tandem drive
rear wheels

Figure 5.4 Typical grader details (Harris and McCaffer, 1991)

A scraper contains a lowered scraper bowl for cutting and collecting soil where
sites require work involving large volume of earth (Figure 5.5). The working
theory of a scraper is that when the bowl is full the apron at the cutting edge
will be closed to retain the earth. Then the bowl is raised for travelling to the
disposal area. On arrival the scraper bowl is lowered, the apron will be opened

and the soil pushed out by the tailgate as the machine moves forwards. There
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are three types of scrapers available, which are: towed scrapers, two axle

scrapers and three axle scrapers.

Scrapers are suggested to operate downhill if possible and on smooth haul
roads in order to obtain maximum efficiency. Hard surfaces should be broken
up before scraping and be assisted over the last few metres by a pushing vehicle

such as a bulldozer.

Typical Scraper Details ~

scraper bowl 5 g cylinder diesel engine
struck capacity 14 m3 ottached power unit with
heaped capacity 20m a top forward speed of

width of cut 3:000 45km/h
depth of cut 450mm max.

pusher A
block for I .
bulldozer

Figure 5.5 Typical scraper details (Harris and McCaffer, 1991)

Some basic components are common to many types of construction equipment -
these include power sources, power transfer from engine to wheels or crawler

tracks, kinds of mountings, and means of propulsion.

Power sources of construction equipment usually contain internal combustion
engines, electric generators and motors, compressed air, and hydraulic systems.
Some equipment uses more than one power source. For example, large off-
highway trucks may be driven by electrical wheels, the electricity being
generated by an on-board diesel-powered generator; scrapers are driven by
diesel engines and operating parts of the machine are operated by hydraulic

cylinders.

Crawlers and wheel mountings are common to tractors, excavators, cranes, and

material-handling and paving equipment.
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5.2 IDENTIFY CRITICAL COMPONENTS

One of the objectives in this research is to identify the critical components in an
equipment system. Further improvements to these critical components such as
effective maintenance policies will be required to improve the operational

reliability and availability.

For any machine component failures directly affecting the productivity,
construction quality and safety, reduction of downtime therefore becomes one
of the major goals. The research tasks include: 1) identify the critical
components that cause predominant machine failures and improve their
reliability; 2) develop a maintenance policy based on the lifetime of individual

components so that maintenance policy will be focused and cost effective.

Subsystems are key parts of a system because the critical
subsystems/components with lower reliability determine the whole system’s
reliability. The importance of critical component in reliability analysis has been
noticed by many researchers (Lin & Titmuss, 1995). Some even only focus on
the reliability analysis of a particular critical component in a system, such as

engine reliability (Hong, 2006).

Component importance analysis is significant for system reliability analysis,
which enables the critical components (or weakest areas) of a system to be
identified and suggests modifications that will enhance the system reliability

(Besson and Andrews, 2003).

The component reliability importance measure is defined as the probability that
component i is critical to system failure. The reliability importance, I, of

componentiin a system of n subsystems can be calculated as:

_R()

O~ ®Rw

[5.3]

Where Ri(t) is the subsystem/component reliability and Rs(t) is the system
reliability. If the reliability of a system needs to be improved, then efforts should
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first be spent on improving the component reliability which has the biggest

effect on system reliability.

As construction equipment usually is in a series configuration, it means only
when all the subsystems are operating well, then the whole system can function

well. The reliability of the system (Rs) is given by:
n
R=]1IR [5.4]
i=1

Where Riis the reliability of the different subsystems.

With the parameters of the best-fit distribution derived from computer
software, the theoretical reliabilities for the subsystems at the end of different
time intervals can be computed. The possible probability distributions for

reliability analysis include Weibull, Exponential, and Lognormal distributions.

Pareto analysis is used in this research to identify the critical components of a
construction equipment system. Historical data was obtained from maintenance
records and analyzed. Table 5.1 shows an example of a piece of equipment
(bulldozer), in which the components have been divided into three different
groups “ABC” indicating their different degree of importance. The cumulative
percentage falls under 60% is categories into Group “A”; between 60% and 85%
is put into Group “B” and above 85% is put into Group “C”. Group “A” items are
considered to be the more critical components that affect the breakdown of the
whole system more severely while Group “B” and “C” items can be neglected in
the analysis. The full set of classifications is attached in Appendix 3. It can be
observed that there are five critical components for the bulldozer, which are:
undercarriage, ripper teeth, repair light, cab, and electrical. Among these,

undercarriage is the most critical component.
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Table 5.1 Critical components of the bulldozer based on numbers of failures

Count of
Components % Cumulative % | Category
failures
0.00%
Undercarriage 67 20.55% 20.55% A
Ripper Teeth 35 10.74% 31.29% A
Repair Light 27 8.28% 39.57% A
Cab 25 7.67% 47.24% A
Electrical 21 6.44% 53.68% A
Float 21 6.44% 60.12% B
Hydraulic System 21 6.44% 66.56% B
Cooling Systems 13 3.99% 70.55% B
Drive System 13 3.99% 74.54% B
Engine 12 3.68% 78.22% B
Air Conditioning 11 3.37% 81.60% B
Welding 11 3.37% 84.97% B
Blade 10 3.07% 88.04% C
Air System 9 2.76% 90.80% C
Cutting Edge 7 2.15% 92.94% C
Grease System 4 1.23% 94.17% C
Ice Lugging 3 0.92% 95.09% C
Oil Leak 3 0.92% 96.01% C
Steering System 3 0.92% 96.93% C
Fuel System 2 0.61% 97.55% C
Oil Sample 2 0.61% 98.16% C
Starting System 2 0.61% 98.77% C
Equalizer 1 0.31% 99.08% C
Heating System 1 0.31% 99.39% C
Low Power 1 0.31% 99.69% C
Torque 1 0.31% 100.00% C
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Pareto Chart of Bulldozer
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Figure 5.6 Pareto chart of bulldozer subsystems based on numbers of failures

The failure of the component “undercarriage” was the number one cause of loss
of production time in the bulldozer, which means the undercarriage is the most
critical component in this situation. By analyzing and improving the reliability

of this component, the reliability of the system could also be improved.

Figure 5.6 shows the Pareto analysis of the subsystems of the bulldozer. It can
be observed that “undercarriage” and “ripper teeth” are most critical. Then
efforts should first be dedicated to improve the reliability of these two

subsystems, as they have the biggest effect on system reliability.

Count of failures is one method for identifying the critical components; however,
number of failures is not the only contributory parameter; time between
failures (TBF) and time to repair (TTR) may also affect how important a
subsystem to the system. Table 5.2 shows the identification of the critical
components of a bulldozer by analyzing the TBF of each component through
Pareto analysis.Only those components which fell into category A are presented
here; the full table is shown in the Appendix Table A3.3b. The identified four
most important components are the same as the ones based on counts of
failures; except for one component “electrical” which falls into category B with a

cumulative percentage of 68.94%.
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Table 5.2 Critical components of the bulldozer based on TBF

Components TBF % Cumulative % Category
0.00%
Undercarriage 3204.03 22.60% 22.60% A
Ripper Teeth 1704.27 12.02% 34.62% A
Repair Light 1636.70 11.54% 46.17% A
Cab 1181.20 8.33% 54.50% A

Table 5.3 presents the results of Pareto analysis based on the analysis of TTR of
each component. The top component is still “undercarriage”; however, the other
three are different from the previous results based on counts of failures and
TBF, which are: air system, hydraulic system and cooling systems. The reason
for this difference is that some sub-system may break down often but may be
easy to repair; however, on the other hand, other sub-systems may break down
rarely but take long time to repair, such as the “air system”. Based on different
standards, either time between failures or time to repair, the critical
components identified can vary. Therefore, both the frequency of failures and
the impact of the failures should both be considered in identification of critical

components.

Table 5.3 Critical components of bulldozer based on TTR

TTR % Cumulative = Category
%
0.00

Undercarriage 618.50 27.34% 27.34% A
Air System 362.37 16.02% 43.36% A
Hydraulic 181.55 8.03% 51.39% A
System

Cooling Systems 157.38 6.96% 58.35% A
Electrical 134.22 5.93% 64.28% B
Welding 129.65 5.73% 70.01% B
Engine 98.23 4.34% 74.35% B
Blade 88.98 3.93% 78.29% B
Drive System 80.12 3.54% 81.83% B
Float 73.25 3.24% 85.07% C
Equalizer 72.80 3.22% 88.29% C
Cutting Edge 52.22 2.31% 90.59% C
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Ice Lugging 43.92 1.94% 92.54% C
Repair Light 38.38 1.70% 94.23% C
Cab 31.83 1.41% 95.64% C
Grease System 24.43 1.08% 96.72% C
Oil Leak 20.52 0.91% 97.63% C
Torque 18.03 0.80% 98.42% C
Air Conditioning 14.93 0.66% 99.08% C
Ripper Teeth 13.98 0.62% 99.70% C
Steering System 3.20 0.14% 99.84% C
Starting System 1.52 0.07% 99.91% C
Fuel System 1.08 0.05% 99.96% C
0il Sample 0.67 0.03% 99.99% C
Low Power 0.17 0.01% 100.00% C
Heating System 0.08 0.00% 100.00% C

5.3 POWER LAW MODELLING OF SUBSYSTEMS

After the critical components in a system have been identified, the next step is
to analyze the reliability of these components. Reliability attributes include
reliability (R), failure intensity, numbers of failures, MTBF, MTTF and MTTR, etc.
The two different models, i.e,, power law model and time series model, are
adopted for subsystem analysis, to analyze reliability characteristics. A
comparison of the two methods is also conducted and summarized at the end of

this chapter to show the strengths and weaknesses of each method.

Reliasoft’'s RGA 7 is chosen to aid the modelling and analysis process. The
reliability of the bulldozer and its subsystems is analyzed and presented in

Table 5.4.

The reliability of the bulldozer and the five most critical subsystems is
calculated and tabulated in Figure 5.7. The Crow-AMSAA (NHPP) model was
selected in the process. The parameters such as beta and lambda of the system
were generated automatically by the program. Parameters of each critical
component are also generated in the standard folio, as well as the statistical
tests of Cramer-von Mises (CVM) and Laplace trend. As can be observed, the
component undercarriage has passed the CVM test and the Laplace trend is

deteriorating. It is identical to the trend of cumulative number of failures and
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MTBF that will be illustrated in the next section. The statistical tests of other

bulldozer critical components are summarized in Table 5.3.
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Figure 5.7 Reliability analysis of construction equipment component by using

NHPP model

Table 5.4 Statistical tests report of the system and subsystems of bulldozer

Test
Result Lower Value Upper
Equivalent System
Cramér-von Mises Failed - 0.2773 0.173
Laplace Trend No Trend -1.6449 1.5138 1.6449
Common Beta Hypothesis Passed 1.0636 5.3575 7.7794
Undercarriage
Cramér-von Mises Passed - 0.0858 0.173
Laplace Trend | Deteriorating | -1.6449 2.1706 1.6449
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Ripper teeth
Cramér-von Mises Failed - 0.295 0.1721
Laplace Trend No Trend -1.6449 1.3687 1.6449
Repair light
Cramér-von Mises Passed - 0.0685 0.172
Laplace Trend No Trend -1.6449 0.5128 1.6449
Cab
Cramér-von Mises Failed - 0.1806 0.172
Laplace Trend No Trend -1.6449 -0.4093 1.6449
Electrical
Cramér-von Mises Failed - 0.2446 0.172
Laplace Trend Improving -1.6449 -1.8017 1.6449

From Table 5.4, it can be observed that three of the critical components have no
trend: ripper teeth, repair light and cab, while the undercarriage has a
deteriorating trend and electrical system has an improving trend. This shows
that undercarriage is at wear out stage and should be replaced by new
component as soon as possible; however, electrical system is relatively new

compared with other four components.

Figure 5.8 shows the trend of the cumulative number of failures of the
undercarriage component. It can be observed that there are more failures with
the time go on. An analysis of the other four critical components, namely, ripper
teeth, repair light, cab and electrical system, have been also been conducted in
this research. The results include cumulative number of failures, MTBF and

failure intensity vs. time. The results are attached in Appendix 4.

The relationship between MTBF and time for the undercarriage component is
shown in Figure 5.9. As time goes on, the mean time between failures decreases.
Figure 5.10 presents the relationship of failure intensity with time, which shows
an increase over time. This behavior is consistent with the trend of cumulative
number of failures. All of these three figures suggest that the undercarriage is in
the third stage of the bathtub curve, which is the wear out stage. The reliability
analysis results of the other four critical components (ripper teeth, repair light,

cab and electrical) by power law modelling are presented in Appendix 4, with
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the figures of MTBF vs. time, cumulative number of failures, as well as the

failure intensity vs. time.
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Figure 5.8 Cumulative numbers of failures of the undercarriage analyzed in RGA7
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Figure 5.9 MTBF vs. Time of undercarriage analyzed in RGA7
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Figure 5.10 Failure intensity vs. Time of the undercarriage analyzed in RGA7

An instantaneous MTBF can be calculated at a specified time in the power law
model. For example, when the time is set to be 17512.15hr, the calculated
IMTBF is 183.83hr. With a two-sided confidence level of 0.95, the upper and

lower bound of IMTBF are also generated in the analysis, which are 251.89hr

and 126.46hr respectively (Figure 5.11).
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Figure 5.11 Calculation of IMTBF of undercarriage
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Figure 5.12 shows the system operation analysis of the five critical subsystems,

and each subsystem has its own specific failure pattern.
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5.4

TIME SERIES MODELLING OF SUBSYSTEMS

Table 5.5 shows the time series analysis results of this component and presents
the predicted counts of failures comparing with the actual numbers of the

number one critical component “undercarriage” of the construction equipment

bulldozer.

Table 5.5 Time series analysis and prediction of the number of failures of the

critical component “undercarriage” of bulldozer

1808
181
182
183
184
185

Row

Actual
2.00800008
2.0800088
8. 00080088
0.00000808
2.0800088
8. 00080088
0. 00000808
1.0880088
0. 0000008
1.08000808
1.08800888
1.00000088

Predicted
A8.61108358
B.7026749
A.8029839
1.68168993
8.9793711
1.2215998
1.8592241
8.8921138
A.9388482
A 9248247
1.8429345
1.1228080084

Predicted
1.8569368
1.3115465
11708758
1.8826758
1.8788338
A.5095497
B.7955536
A8.7189988
B_8213883
1.1371088
A.8400329
B_8353495

-—- Ualidation Time Series Values -——

8.9438632
B.6884535
-1.1788758
-1.80826758
8.9211678
-8.5895497
-B8.7955536
8.2818812
-8.8213883
-8.13710068
8.15994671
8.1646585

-—- Forecast Time Series Values -—-

The first column “Row” of the table represents the working weeks. In this case,

the validation data is from week 94 to week 105, and the forecast data is from
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106 to 117. The actual numbers of failures in every week is between 0 and 2,
which means in some weeks the undercarriage experienced a breakdown once
or twice in each week, but in some weeks no failure occurred. The predicted
values vary from 0.51 to 1.31, which is very close to the real values and even
has a smaller range. It can be interpreted as follows: if the predicted value is
higher than 1.0, it would very likely have failures in that week, and there is a
good chance that breakdowns may occur more than once. If the predicted value
is between 0.5 and 1.0, the chance of having failures increases when the value is

closer to 1.0.

In addition to the most critical component “undercarriage” other critical
components of the bulldozer are also studied and analyzed. Table 5.6 and 5.7
are examples of time series forecast of the critical component “ripper teeth” and
“repair light”. Due to the fact that the size of datasets for these critical
components in each interval are generally smaller compared with
“undercarriage” and the system itself, the forecast results are less satisfactory
than the previous ones, as can be observed from the tables. The figures of time

series trend of the selected critical components are attached in Appendix 5.

Table 5.6 Time series analysis and prediction of the number of failures of the

critical component “Ripper Teeth”

-—- Ualidation Time Series Ualues —-—-
Row Actual Predicted Error
95 3.0000888 -9.1973277 31973277
96 8.0800040088 B.4895169 -8.4895169
Q7 1.060000800 B.6122650 B.3877350
o8 A.00008808 -8.89914884 8.6899148084
99 1.0808000008 B.1238339 B.8761601
188 8.0800040088 1.81714648 —-1.8171464
181 A.0000000 B.180140 -0.18041456
1682 A.00000808 8.1785983 -8.1785983
183 8.00000008 08.3502830 -08.35082036
184 8.0800040088 B8.15393607 -8.15392367
18% A.0000000 B.6203849 -0.6203849
184 A8.006008808 -8.15478084 B.1547804
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Table 5.7 Time series analysis and prediction of the number of failures of the

critical component “Repair Light”

-—— Validation Time Series Ualues ——-

Rouw Actual Predicted Error
oy g.068068888 -1.23%52868 1.23528468
95 1.088088088 B.1516286 B.8483794
96 1.088080808 A.860818Y4 B.1399816
a7 f.00060060 1.2183510 -1.21835%16
o8 g.008068888 -A8.4998561 B.49985%461
99 A.080068888 -A8.6351522 B.6351522
1848 8. 88080808 B.4756684 -8.4750684
181 f.00060060 B_.4501988 -0.4591988
182 1.08680880808 A.8887443 8.9912557
183 8. 880680808 B.19237664 -8.1937664
184 1.088080808 08.9924332 B.80875668
185 f.00060060 8.3044511 -0.3044511

Figure 5.13 shows the trend of the failures of the critical component
“undercarriage” of the bulldozer and it can be observed that the straight line

shows a trend of increasing numbers of failures over time.

Time Series Trend for Count

Count

| .,_7;;“
r £

* T T T T * T - T + T T > A T t
n 1 o g » E] £l n 7 a0 [ @ o 100

5 w o
Observation Number

Figure 5.13 Time series trend of the numbers of failures of “Undercarriage” in

bulldozer (D11_107)
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Figure 5.14 Time series trend of the numbers of failures of “Ripper Teeth” in
bulldozer (D11_107)
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Figure 5.15 Time series trend of the numbers of failures of “Repair Light” in

bulldozer
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The other five critical components have also been modelled and analyzed using
time series analysis models (Figure 5.14 & 5.15). More figures of number of

failures trend are presented in Appendix 5.

Table 5.8 shows the forecasting results for the expected number of failures of
the bulldozer by using time series modelling with a data size of 106. The
comparison of the actual failures and predicted values is presented in terms of
absolute error in the table and it can be noted that the predicted values are
reasonably close to the actual value and error is acceptable. As the size of data is
relatively small for subsystems compared with systems, the error between
predicted values and actual values might be larger in this case. The prediction
on the number of failures is shown in Figure 5.16 and there is trend of a
nonlinear increasing of failures as the time goes on in this case. After comparing
the system with the critical subsystems, it can be concluded that each
component has its own unique reliability growth. By combining these five
critical subsystems, the reliability of the system “bulldozer” can be delivered.
This result will be different from the system reliability calculated without
identifying the critical components, and the former result is supposed to be

more accurate.

Table 5.8 Time series analysis and prediction of the number of failures of the

bulldozer
-—— Ualidation Time Series WValues ———
Row Actual Predicted Error
0L L _Pf00pgee 7 .56080328 2 -2.5600328
06 o6.80000680 4. 7259117 1.2740883
97 L_Bg8868e 5.3177368 -1.3177360
98 S.0008680 1.9024547 3.8975453
99 6.0000680 8.94893%0 -Z2.948935%6
188 2.000008688 46.4596874 -4 450468T7Y
161 9.00006008 3.3693709 L.6386291
162 L.d008008 6.5575511 -1.LL7LE11
163 3.0006008 7.3623148 -4.3623140
164 2.00008008 4 7921760 -2.7921760
1685 9.00046808 7_4634221 1.5365779
186 9.0000808 4_5718%06 L 42814348

85



15

Actual
& | Forecast

Observation Number

Time Series Trend for Counts

"

Figure 5.16 Time series trend of the numbers of failures of the bulldozer (D11_107)
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TBF is another important measure of system and subsystem reliability. In Table
5.9, time between failures from weeks 94 to 105 is used as validation data in
time series modelling. The predicted values are compared with the actual
values with error and error percentages shown in the table. TBF of periods

between 106 and 117 are forecasted in advance.

Table 5.9 Time series analysis and prediction of TBF of the critical component

“undercarriage” of bulldozer

--- Forecast Time

Rouw Predicted
186 -25.959M
187 -31.38514
108 -L2_B5315
189 -34.99124
118 -h9 22139
111 -7y . 35522
112 -01.8839%
113 -139.33671
114 -153.78172
M5 -173.69239
116 -236.82495
117 -3P8.38516

--- Ualidation Time Series Ualues --—-

Row Actual Predicted Error
oy 26.858808 -14_254315 48.384315
95 29 _558008 24 922561 4_627439
96 8.a68008A 23.535551 -23.535551
97 8.A08840A F.24B077 -7.24B977
o8 22 6800088 15 412496 7.267584
99 8.a68008A 2179171 -2 179171

188 8.A08840A 21478117 21 478117
181 4y 630008 7.317586 37.312u14
182 8.Aa88ABR -28.223017 28.223017
183 6.580088 16.118215 -9.618215
184 12 188888 -22_854518 34._234518
185 14.280888 -51.811892 65%.291892

Series Ualues —-—-
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5.5 SUMMARY & DISCUSSIONS

The reliability of subsystems and the relationship between systems and
subsystems of construction equipment are studied in this research. Both
traditional power law models and time series models are adopted and applied
to the analysis; comparison of these two methods is analyzed and presented

below.

5.5.1 COMPARISON OF POWER LAW MODELS AND TIME SERIES MODELS

The conceptual comparison of the two types of models has already been
discussed in Chapter 4. In this chapter, both power law models and time series
models have been applied to the reliability analysis of construction equipment
subsystems, as well the results have been presented respectively. It is observed
that time series models are more complex to operate on subsystems than power
law models. On the other hand, time series models are more flexible then power
law models as the former one can better detect the change of the failure
patterns. However, the error rate may be high for subsystems reliability
analysis because of less data compared with the system level in time series
modelling. The summary of the comparisons is presented in Chapter 6 with the

illustration in Table 6.1.

5.5.2 CRITICAL COMPONENTS OF CONSTRUCTION EQUIPMENT

With the aid of Pareto analysis, the critical components of the selected
construction equipment pieces are identified in the research. The results are
summarized in Table 5.10. In this research, the bulldozer is chosen for study on
reliability analysis of construction equipment at a subsystem level as the
maintenance data are abundant and balanced in representing subsystem

reliability.
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Table 5.10 Critical components of different construction equipment

Construction equipment Critical components
Scrapers Engine, air system, braking system, cutting edge,

drive system

Wheel loaders Hydraulic system, engine, repair light, electrical

Bulldozers Undercarriage, ripper teeth, repair light, cab,
electrical*

Graders Cutting edge, drive system, repair light, engine

Tractors Misc., engine, hydraulic system

Bulldozers 2 Electrical, undercarriage, repair light, engine,

drive system, cab

By modelling and analyzing the reliability of an individual critical component,
its failure pattern can be observed. For example, the component undercarriage
exhibits a trend of an increasing number of failures over time; however, the
component ripper teeth does not show any trend. Figure 5.17 illustrates the
critical components of a bulldozer with criticality information while the darker
colors indicate more critical components. Based on their different failure
patterns, different maintenance decisions can be made. Replacement, repair or

other actions can be implemented based on these reliability analysis results.

Undercar
riage

~
Bulldozer

/N

Figure 5.17 Critical components of a bulldozer in reliability
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Another issue to address is the root causes of the system and subsystem failures.
By analyzing the data from the maintenance records, the common reasons of
undercarriage breakdown are shown to be as follows: tracks need adjusting,

broken roller bolts, undercarriage to finning, charging problem, etc. (Table

5.11).
Table 5.11 Common reasons of bulldozers critical components breakdown

Bulldozer critical Common reasons of breakdown

components

Undercarriage Tracks need adjusting; broken roller bolts,

undercarriage to finning, charging problem, etc.

5.5.3 MAINTENANCE AND REPLACEMENT STRATEGY

From the point of view of construction equipment allocation and maintenance
management, the results from the subsystems reliability analysis are very
helpful in optimizing maintenance intervals. An age replacement policy can be
applied which suggests a component is either replaced at the time of failure or T

units of time after installation, whichever comes first.

From Table 5.10, it is observed that some of the critical components appear
several times in different categories of construction equipment. For example,
the component engine appeared in three different construction equipment to be
critical. It indicates that engine can be a critical component for many
construction equipment and perhaps requires special attention in maintenance
management. Also, the repair light, electrical and drive system items appear
more often than other critical components. Figure 5.18 divides these critical
subsystems into three different categories, namely high, middle and low
occurrence. Those components presented in the high occurrence category
should be given a high priority in equipment maintenance to reduce the

unexpected failures in site operations.
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Figure 5.18 Common critical components of analyzed construction equipment
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CHAPTER 6 FINDINGS AND DISCUSSIONS

6.1 INTRODUCTION

This chapter presents the findings from this research. In previous chapters,
power law model (NHPP) and time series prediction have been adopted for
reliability analysis and failure prediction based on real construction equipment
failure and maintenance data at the system and subsystem levels. In this

chapter, the major findings of this research are summarized and discussed.

6.2 FINDINGS & DICUSSIONS

There are several findings from this project. First of all, the importance of
construction equipment reliability analysis and failure prediction was studied
in a literature review. It is observed that unexpected failures and unreliable
equipment may affect the construction project by increasing the maintenance
cost and collateral cost, or extending the project period, and leading to safety

problems. These arguments have been elaborated in Chapter 2.

Calculation of reliability metrics

Common reliability metrics including number of failures, time between failures
(TBF) and time to repair (TTR) were analyzed and predicted by using both
power law models and time series models. The predicted values are compared
with the actual values and the errors between them are also presented in the
tables. Most of the results are satisfactory. For time series modelling, the best
fitted models are selected under the comparison of the criterions such as AIC
and BIC, in order to achieve the more accurate forecasts. The obtained
reliability metrics can be used to help construction equipment maintenance and

allocation decisions, which will be discussed in the following context.

Furthermore, this research not only predicted the number of failures of a piece
of construction equipment, but also performed forecast on the TBF with TTR
contributed as a predictor or leading variable. TTR, is a crucial parameter,

indicating that equipment parts will soon return to normal and have a great
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impact on the overall stability of the system. From the experimental results, it is
noticed that the time spend on repairing the equipment has some impact on the
occurrence of the next failure (TBF). Therefore, TTR is suggested to be taken in
consideration when operating reliability analysis and failure forecast of

construction equipment.

Comparison of power law model and time series model

The traditional power law models and more sophisticated time series models
have been used and compared in the research. Their strengths and weaknesses
are identified and presented in Table 6.1. It was found out that both methods
are capable of analyzing and predicting the failures of construction equipment

but with different degrees of accuracy and interpretability.

As the results show, both power law models and time series models can be used
for forecasting of reliability metrics of construction equipment; however, both
have advantages and disadvantages. ARIMA time series models make very little
assumption and are very flexible. It is theoretically and statistically sound in its
foundation and no a priori postulation of models is required when analyzing
failure data. It can be observed that the ARIMA model is a viable alternative that

gives satisfactory results in terms of its predictive performance.

Identifying critical components of construction equipment

Another major contribution is that this research not only focuses on the system
itself, but also examined the relationship between system and subsystems.
Effort was spent in identifying the critical components of a system so that

special treatment could be arranged for these critical parts.

Methods have been studied to identify the critical components and reliability

analysis on these critical components has been conducted.

Category A components are identified and considered as the important
subsystems for a piece of equipment. For bulldozer, the following five
components are the critical ones, which are: undercarriage, reaper teeth, repair

light, cab and electrical.
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Table 6.1 Comparison of power law models and time series models

Comparison Power Law Models Time Series Models
Data >30 > 50
requirements
Theory Non Homogenous Poisson =~ ARIMA and other
Process (NHPP) predictive models
Data Times to failure Fixed intervals but can be

expanded to interval-based

data

Flexibility No Able to detect the change of
failure pattern

Subsystems Easy Difficult

analysis

Complexity of Low Medium to high

model

Accuracy Moderate Higher

Other Seasonal effect

Impact on management decisions

Based on the results and findings of the data modelling and analysis in this
research, advices are given for managerial decision on future construction

equipment maintenance and promote repairs before breakdown.

The reliability assessment of construction equipment can affect the decision in
selecting the right maintenance strategy in civil engineering project. In the
previous chapters, by analyzing the reliability of a particular piece of equipment
(bulldozer), trend of failures is detected, and the number of failures and MTBF
for a fixed interval can be predicted. The result is valuable in planning system
maintenance and repairs. Based on this information, the equipment manager
will be able to recognize the status of the equipment and make proactive
maintenance services accordingly. The details have been elaborated in the

summary section of Chapter 4 and 5 respectively.
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6.3 LIMITATIONS AND FUTURE RESEARCH

No research can be perfect, there are always some shortcomings in any research.
One of the limitations of this research is the data size for subsystem reliability
analysis. For both power law models and time series models, there are
requirements for a minimum size of data, which are 30 for the former one and
50 for the latter. In this research, all the data modelling have fulfilled the
requirements; however, the accuracy of prediction results might be improved if
a bigger sized of data is used, as the theory is that the larger the size of data, the
more accurate forecast will be. If more data on subsystems breakdown can be
tracked and obtained in future research, the accuracy of the modelling results

should be improved to some extent.

Another limitation is still about data. It might be noticed that the maintenance
records obtained from industry are not very updated. It is not obvious that if it
will affect the result and accuracy of the analysis; however, more updated
maintenance records and newer equipment probably do will derive some
different results for the research. In the research process, we have tried to
negotiate with the staff in the government department and companies, but did
not get the information we need. We can maybe try to contact other
departments/companies for newer construction equipment data in future

research.

Moreover, in this research, basically only time series ARIMA model has been
investigated and applied to the case studies. In future research, we would like to
involve other sophisticated reliability analysis methods, such as Genetic

Algorithm, PNN/GRNN neural network.

Apart from the above limitations, there also are some common errors usually

existing in most research or studies, such as human errors and randomness.

Human error: human errors can occur during the data collection and modelling
process. Firstly, there might be mistakes and errors existing in the maintenance
sheet recorded by site workers. Secondly, the models are not perfect and

parameters can always be fine-tuned in the modelling process.
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Randomness: it is the largest contributing factor to the errors of prediction due
to random nature of system failures. To minimize the errors of prediction and
improve the accuracy, effort can be put into increasing the size of data, reducing
possible human error, as well as further optimizing the models for reliability

analysis.
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CHAPTER 7 CONCLUSIONS

This research investigates the reliability of construction equipment and the
different methods for modeling and analyzing the reliability metrics at system

and subsystem levels.

Construction equipment is an important resource in construction projects,
particularly in civil engineering and infrastructure projects. Although regular
maintenance is implemented by most contractors on site, still a considerable
amount of equipment repairs follow unexpected failures. These unexpected
equipment failures can cause serious consequences such as extra cost, project
period extension, and safety issues. Therefore, it is necessary to study and
understand the reliability of the construction equipment as well as predict the

pending failures before the breakdown.

This research aims to investigate the possible methods that can be adopted for
analysing the equipment reliability and predicting the failures as well as the
application of the experimental results to construction equipment maintenance

and management.

Several methodologies have been employed in this research, which comprises a
comprehensive literature review of reliability theories, and related research
work, reliability analysis approaches, case study, data modelling and analysis.
Two descriptive and predictive models are studied and adopted in the process,
which are the traditional power law model and more advanced time series
models. There are a number of probability distributions commonly used in
reliability engineering; however, time-dependent power law models, also
named Non-homogeneous Poisson Process (NHPP) models, are universally
agreed as most suitable method for repairable systems such as construction
equipment. Time series modelling is one of the more sophisticated techniques
that can be used to describe and model the selected data, and forecast the future
values of the maintenance series based on the past values. Construction
equipment failure follows the time series features and patterns, and this makes

the time series models suitable for application in this research. Both of the two
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methods are applied and models are built to analyse the characteristics of
reliability like numbers of failures, time between failures (TBF) and time to
repair (TTR). Comparison of the two methods is also performed with their
strengths and weaknesses summarized in the thesis. Failure and maintenance
data on eight types of construction equipment were collected from construction
site and modelled in the case study, to validate and compare the prediction

results.

Furthermore, the research not only focuses on construction equipment systems,
it also explores the equipment from the level of subsystems. Pareto analysis and
other methods are used to identify the critical components for the construction
equipment. Attributes being considered include the counts of failures, TBF and
TTR. Reliability importance analysis is significant in system reliability analysis
from the subsystem level. By identifying the critical components and suggesting
modifications, system reliability can then be calculated and the maintenance

focus can be put on these critical areas.

The major findings of this project include: 1) conducted a critical review on the
reliability analysis and failure prediction of construction equipment, identifying
the reliability metrics, reliability modelling approaches and needs for predictive
analysis in support of construction equipment maintenance management and
utilization.;  2) applied the traditional power law models and more
sophisticated time series models and found that both are suitable for
construction equipment reliability analysis, however, each has its own
advantages and disadvantages; 3) critical components are identified and the
reliability of subsystems is analysed to give an insight into the research on the
systems; 4) benefits of this research in improving the decisions on equipment
management are discussed based on the results and findings from data

modelling and experimental analysis.

Based on the results of the research and case studies, some recommendations

can be given to the maintenance and management of construction equipment.

First of all, it is recommended that predictive maintenance is more

advantageous than other common maintenance options for construction
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equipment. The principle of predictive maintenance is to repair the equipment
before the failures occur, so that it can reduce the unscheduled outages and
unexpected cost. In order to implement predictive maintenance, reliability
elements such as MTBF, numbers of failures should be available for the analysis
and prediction. In this research, by applying power law modelling and time
series modelling on data of failures, the mentioned reliability elements have

been derived and presented in previous chapters.

Apart from predictive maintenance, there are also some advice on construction
equipment allocations. As shown in the chapter of cases studies, the status of a
particular construction equipment can be detected, either in the infant
mortality stage, useful life, or wear out stage of the bathtub curve. If the
equipment is in the wear out stage, equipment managers should replace it with

the one having higher availability, or with backup plan.

Last but not least, recommendations are given to the construction equipment
subsystems maintenance and replacement policies. In chapter 5, the research
has been focused on identifying the critical components and their reliability
analysis. Five types of construction equipment have been investigated and their
respective critical components have been recognized, which require particular
attention in maintenance process. It is summarized that for most construction
equipment, the most critical components include engine, repair light, electrical
and drive system, and the second tier include cutting edge, hydraulic system,
cab and undercarriage, etc. Again, reliability analysis and failure prediction have
been conducted on the critical components. Depending on the status of these
components separately, an age replacement policy should be implemented
whether the component will be repaired or replaced before breakdown, so that

maintenance cost effective can be achieved.
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APPENDIX 1 - MAINTENANCE RECORDS OF SELECTED

CONSTRUCTION EQUIPMENT

Table Al - Sample of maintenance records of the bulldozer (D11_107)
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APPENDIX 2 - CLEANED AND REORGANIZED DATA

Table A2.1 - Summary of the failures of all the equipment

1 2 3 4
Systems Trucks Scrapers Wheel loaders Bulldozers
File Name 240H_075 631E_016 988B_034 D11 107
Data No. 305 108 135 430
Subsystems - 20 21 30
1 Air System 8 | Air Conditioning | 5 | Air Conditioning | 11
2 Braking System 5 | Air System 2 | Air System 9
3 Cab 3 | Braking System 5 | Blade 10
4 Cooling Systems 2 | Cab 6 | Cab 25
5 Cutting Edge 5 | Cooling System 1 | Cooling Systems | 13
6 Drive System 5 | Drive System 5 | Cutting Edge 7
7 Electrical 5 | Electrical 7 | Drive System 13
8 Engine 16 | Engine 15 | Electrical 21
9 Field Service 5 | Field Service 1 | Engine 12
10 Fuel System 5 | Fuel System 5 | Equalizer 1
11 Hydraulic System 5 | Grease System 1 | Field Service 14
12 Low Power 1 | Heating System 1 | Float 21
Hydraulic
13 Miscl 2 22 | Fuel System 2
System
14 Oil Sample 2 | Low Power 1 | Grease System 4
15 Service 12 | Miscl 4 | Heating System 1
Hydraulic
16 Starting System 1 | Oil Sample 2 21
System
17 Steam 13 | Repair Light 9 | Ice Lugging 3
18 Torque 1 | Steam 23 | Low Power 1
19 Wait 10 | Steering System | 1 | Oil Leak 3
20 Welding 2 | Wait 13 | Qil Sample 2
21 Welding 6 | Repair Light 27
22 Ripper Teeth 35
23 Service 32
24 Starting System 2
25 Steam 42
26 Steering System 3
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27 Torque 1
28 Undercarriage 67
29 Wait 16
30 Welding 11
31
32
Table A2.1 - Summary of the failures of all the equipment (Con’t)
Systems 5 6 7 8
File Name Graders Tractors Shovels Bulldozers 2
Data No. GRAD_035 HYCR_035 SHOVEL~1 TLNGSDOZ
Subsystems 275 63 277 612
1 29 19 - 32
2 Air Conditioning | 5 | Air System 4 Air Conditioning 4
3 Air System 8 | Axle 1 Air System 16
4 Axle 5 | Braking System 2 Blade 10
5 Blade 6 | Cab 2 Braking System 4
6 Braking System 5 | Drive System 1 Cab 18
Component
7 Cab 12 | Electrical 4 2
Change Out
8 Cooling Systems | 6 | Engine 9 Cooling Systems | 18
9 Cutting Edge 71 | Heating System 1 Cutting Edge 1
Hydraulic
10 Drive System 19 6 Drive System 20
System
11 Electrical 14 | Miscl 12 Electrical 40
12 Engine 15 | Oil Sample 2 Engine 25
13 Field Service 2 | Repair Light 1 Equalizer 1
14 Float 1 | Service 8 Field Service 15
15 Frame 2 | Starting System 1 Float 17
16 Fuel System 1 | Steam 3 Fuel System 8
Hard Nose /
17 Grease System 6 | Steering System 1 1
Grill
Hydraulic
18 7 | Wait 2 Heating System 4
System
19 Miscl 7 | Welding 2 Hydraulic 7
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System

20 Oil Sample 5 | Wheels
21 Repair Light 17
22 Ripper Teeth 2
23 Sensor 2
24 Service 13
25 Starting System 1
26 Steam 21
27 Steering System 3
28 Tandem 3
29 Tire 1
30 Wait 15
31

32

Low Power 4
Miscl 11
Qil Sample 1
Repair Light 26
Service 185
Starting System 2
Steam 84
Steering System 2
Sunk 1
Training 1
Undercarriage 30
Wait 44
Welding 8
Winch 2

104




Table A2.2.1 - Summary of number of failures of scrapers (631E_016)

Weeks Number of Weeks (Con’t) Number of
failures failures (Con’t)
1 4 19 2
2 1 20 6
3 5 21 3
4 5 22 4
5 2 23 1
6 4 24 1
7 2 25 4
8 1 26 4
9 4 27 7
10 2 28 7
11 6 29 1
12 1 30 2
13 3 31 3
14 1 32 1
15 2 33 2
16 2 34 2
17 2 35 7
18 1 36 3
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Table A2.2.2 - Summary of number of failures of bulldozers (D11_107)

Weeks Number of Weeks Number of
failures (Con'’t) failures
1 2 54 8
2 2 55 2
3 0 56 3
4 4 57 1
5 4 58 3
6 4 59 2
7 2 60 6
8 1 61 4
9 8 62 5
10 0 63 7
11 1 64 6
12 6 65 6
13 6 66 5
14 1 67 1
15 6 68 5
16 5 69 2
17 2 70 7
18 0 71 4
19 3 72 3
20 4 73 1
21 4 74 11
22 3 75 5
23 5 76 3
24 5 77 1
25 6 78 6
26 5 79 5
27 5 80 4
28 0 81 2
29 7 82 6
30 3 83 4
31 6 84 2
32 1 85 5
33 4 86 6
34 2 87 1
35 4 88 6
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36 4 89 1
37 5 90 6
38 3 91 10
39 4 92 3
40 5 93 5
41 0 94 6
42 5 95 5
43 4 96 6
44 3 97 4
45 4 98 5
46 5 99 6
47 0 100 2
48 5 101 9
49 5 102 5
50 4 103 3
51 7 104 2
52 4 105 9
53 2 106 9

Table A2.3.1 - Summary of TBF and TTR of trucks (240H_075)

Weeks Cumulative TBF | Cumulative TTR
TBF TTR
1 131.75 131.75 16.72 16.72
2 245.83 114.08 34.97 18.25
3 475.83 230.00 43.75 8.78
4 624.33 148.50 85.67 41.92
5 766.78 142.45 94.77 9.10
6 979.83 213.05 101.48 6.72
7 1076.25 96.42 104.98 3.50
8 1304.17 227.92 167.18 62.20
9 1376.58 72.42 168.02 0.83
10 1639.83 263.25 206.65 38.63
11 1795.62 155.78 224.87 18.22
12 1981.23 185.62 264.25 39.38
13 2146.08 164.85 269.10 4.85
14 2302.50 156.42 278.90 9.80
15 2470.85 168.35 310.45 31.55

107



16 2600.10 129.25 360.12 49.67
17 2801.33 201.23 362.12 2.00
18 2942.58 141.25 365.20 3.08
19 3155.58 213.00 383.52 18.32
20 3328.33 172.75 413.72 30.20
21 3488.47 160.13 423.97 10.25
22 3657.83 169.37 430.90 6.93
23 3800.08 142.25 431.75 0.85
24 3946.77 146.68 446.70 14.95
25 4068.33 121.57 447.08 0.38
26 4336.93 268.60 456.93 9.85
27 4507.83 170.90 469.02 12.08
28 4634.60 126.77 506.62 37.60
29 4831.85 197.25 534.02 27.40
30 4982.83 150.98 538.27 4.25
31 5098.33 115.50 542.52 4.25
32 5306.85 208.52 587.52 45.00
33 5486.42 179.57 608.05 20.53
34 5655.75 169.33 650.32 42.27
35 5845.92 190.17 665.78 15.47
36 6019.83 173.92 684.43 18.65
37 6106.33 86.50 686.10 1.67
38 6315.25 208.92 696.30 10.20
39 6522.38 207.13 699.22 2.92
40 6667.00 144.62 727.45 28.23
41 6848.50 181.50 757.18 29.73
42 6976.10 127.60 768.35 11.17
43 7193.33 217.23 770.60 2.25
44 7347.83 154.50 801.68 31.08
45 7519.33 171.50 817.23 15.55
46 7681.33 162.00 873.85 56.62
47 7830.80 149.47 875.80 1.95
48 7986.83 156.03 896.20 20.40
49 8202.58 215.75 898.53 2.33
50 8344.33 141.75 901.37 2.83
51 8528.33 184.00 9583.77 52.40
52 8695.92 167.58 970.10 16.33
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Table A2.3.2 - Summary of TBF and TTR of scrapers (631E_016)

Weeks | Cumulative TBF | Cumulative TTR
TBF TTR
1 142.00 142.00 3.20 3.20
2 194.03 52.03 14.78 11.58
3 471.00 276.97 53.15 38.37
4 621.00 150.00 54.98 1.83
5 766.00 145.00 61.50 6.52
6 993.00 227.00 88.93 27.43
7 1151.00 158.00 104.87 15.93
8 1190.00 39.00 105.88 1.02
9 1436.50 246.50 106.38 0.50
10 1525.28 88.78 113.63 7.25
11 1829.00 303.72 114.80 1.17
12 1910.00 81.00 142.20 27.40
13 2040.50 130.50 235.10 92.90
14 2285.50 245.00 297.87 62.77
15 2459.50 174.00 298.20 0.33
16 2664.00 204.50 298.53 0.33
17 2799.50 135.50 299.48 0.95
18 2948.33 148.83 308.07 8.58
19 3141.00 192.67 309.07 1.00
20 3141.00 0.00 309.07 0.00
21 3359.42 218.42 309.57 0.50
22 3536.02 176.60 323.40 13.83
23 3751.75 215.73 325.12 1.72
24 3958.02 206.27 335.37 10.25
25 4082.00 123.98 340.62 5.25
26 4315.50 233.50 380.63 40.02
27 4521.58 206.08 412.57 31.93
28 4688.02 166.43 500.83 88.27
29 4824.00 135.98 501.33 0.50
30 4974.37 150.37 505.68 4.35
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Table A2.3.4 - Summary of TBF and TTR of bulldozers (D11_107)

Weeks | Cumulative TBF | Cumulative TTR
TBF TTR

3.35 3.35

0 3.37 3.37 8.12 4.77
1 67.98 64.62 9.75 1.63
2 67.98 0.00 9.75 0.00
3 440.98 373.00 13.82 4.07
4 682.82 241.83 51.33 37.52
5 848.40 165.58 54.73 3.40
6 1029.98 181.58 55.40 0.67
7 1089.98 60.00 55.90 0.50
8 1360.18 270.20 78.93 23.03
9 1360.18 0.00 78.93 0.00
10 1565.98 205.80 87.23 8.30
11 1848.98 283.00 121.92 34.68
12 2023.53 174.55 132.23 10.32
13 2128.82 105.28 132.57 0.33
14 2363.98 235.17 146.93 14.37
15 2548.15 184.17 155.18 8.25
16 2695.48 147.33 166.37 11.18
17 2695.48 0.00 166.37 0.00
18 3009.42 313.93 196.65 30.28
19 3196.02 186.60 227.68 31.03
20 3391.43 195.42 257.28 29.60
21 3530.98 139.55 279.63 22.35
22 3700.23 169.25 293.20 13.57
23 3897.98 197.75 296.12 2.92
24 4052.82 154.83 332.60 36.48
25 4195.98 143.17 393.15 60.55
26 4408.48 212.50 439.00 45.85
27 4408.48 0.00 439.00 0.00
28 474115 332.67 484.45 45.45
29 4846.65 105.50 526.13 41.68
30 5069.48 222.83 565.62 39.48
31 5196.98 127.50 565.87 0.25
32 5381.98 185.00 617.55 51.68
33 5547.98 166.00 665.70 48.15
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34 5719.15 17117 676.68 10.98
35 5896.73 177.58 686.08 9.40
36 6077.32 180.58 703.27 17.18
37 6202.40 125.08 736.00 32.73
38 6415.00 212.60 738.50 2.50
39 6496.23 81.23 758.28 19.78
40 6496.23 0.00 758.28 0.00
41 6917.67 421.43 1062.48 304.20
42 7065.48 147.82 1081.98 19.50
43 7218.82 153.33 1087.80 5.82
44 7398.30 179.48 1172.13 84.33
45 7526.95 128.65 1197.75 25.62
46 7526.95 0.00 1197.75 0.00
47 7739.23 212.28 1199.92 217
48 7851.98 112.75 1232.55 32.63
49 8066.73 214.75 1270.13 37.58
50 8273.65 206.92 1317.72 47.58
51 8409.50 135.85 1306.10 -11.62
52 8584.40 174.90 1383.15 77.05
53 8776.07 191.67 1439.93 56.78
54 8899.07 123.00 1440.70 0.77
55 9061.00 161.93 1497.92 57.22
56 9153.57 92.57 1500.25 2.33
57 9420.65 267.08 1535.28 35.03
58 9545.23 124.58 1536.92 1.63
59 9778.00 232.77 1549.42 12.50
60 9893.15 115.15 1558.08 8.67
61 10106.73 213.58 1583.10 25.02
62 10253.50 146.77 1664.53 81.43
63 10424.98 171.48 1724.15 59.62
64 10611.98 187.00 1760.65 36.50
65 10761.17 149.18 1787.43 26.78
66 10876.98 115.82 1787.68 0.25
67 11128.65 251.67 1790.85 3.17
68 11252.98 124.33 1791.35 0.50
69 11437.32 184.33 1821.35 30.00
70 11608.23 170.92 1827.52 6.17
71 11674.98 66.75 1849.93 22.42
72 11884.82 209.83 1850.50 0.57
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73 12107.15 222.33 1937.85 87.35
74 12279.48 172.33 1955.90 18.05
75 12467.58 188.10 1961.47 5.57
76 12590.98 123.40 1962.47 1.00
77 12786.50 195.52 2016.27 53.80
78 12965.75 179.25 2109.88 93.62
79 13123.15 157.40 2124.68 14.80
80 13288.32 165.17 2137.68 13.00
81 13462.50 174.18 2176.95 39.27
82 13566.98 104.48 2273.83 96.88
83 13736.15 169.17 2278.83 5.00
84 13904.73 168.58 2298.40 19.57
85 14143.00 238.27 2352.58 54.18
86 14214.98 71.98 2360.18 7.60
87 14476.98 262.00 2379.62 19.43
88 14518.82 41.83 2379.78 0.17
89 14790.57 271.75 2402.37 22.58
90 14987.50 196.93 2455.43 53.07
91 15167.27 169.77 2468.15 12.72
92 15303.72 146.45 2472.87 4.72
93 15468.50 164.78 2506.88 34.02
94 15663.28 194.78 2541.75 34.87
95 15832.98 169.70 2576.98 35.23
96 15987.08 154.10 2578.92 1.93
97 16157.38 170.30 2592.70 13.78
98 16258.95 101.57 2601.68 8.98
99 16493.57 234.62 2602.68 1.00
100 16672.37 178.80 2610.62 7.93
101 16785.37 113.00 2673.80 63.18
102 16999.23 213.87 2721.92 48.12
103 17042.98 43.75 2723.50 1.58
104 17336.22 293.23 2766.32 42.82
105 17511.98 175.77 2799.58 33.27
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APPENDIX 3 - PARETO ANALYSIS FOR IDENTIFYING CRITICAL
COMPONENTS

Table A3.1 - Pareto analysis of scrapers (631E_016)

Count of
Components Failures % Cumulative % | Category
0.00%
Engine 16 23.53% 23.53% A
Air System 8 11.76% 35.29% A
Braking System 5 7.35% 42.65% A
Cutting Edge 5 7.35% 50.00% A
Drive System 5 7.35% 57.35% A
Electrical 5 7.35% 64.71% B
Fuel System 5 7.35% 72.06% B
Hydraulic System 5 7.35% 79.41% B
Cab 3 4.41% 83.82% B
Cooling Systems 2 2.94% 86.76% C
Miscl 2 2.94% 89.71% C
Oil Sample 2 2.94% 92.65% C
Welding 2 2.94% 95.59% C
Low Power 1 1.47% 97.06% C
Starting System 1 1.47% 98.53% C
Torque 1 1.47% 100.00% C
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Pareto chart of scrapers
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Figure A3.1 - Pareto chart of scrapers (631E_016)
Table A3.2 - Pareto analysis of wheel loaders (988b_034)
Count of
Components % | cumulative % | Category
Failures
0.00%
Hydraulic System 22 22.45% 22.45% A
Engine 15 15.31% 37.76% A
Repair Light 9 9.18% 46.94% A
Electrical 7 7.14% 54.08% A
Welding 6 6.12% 60.20% B
Cab 6 6.12% 66.33% B
Fuel System 5 5.10% 71.43% B
Drive System 5 5.10% 76.53% B
Braking System 5 5.10% 81.63% B
Air Conditioning 5 5.10% 86.73% C
Miscl 4 4.08% 90.82% C
Oil Sample 2 2.04% 92.86% C
Air System 2 2.04% 94.90% C
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Steering System 1 1.02% 95.92% C
Low Power 1 1.02% 96.94% c
Heating System 1 1.02% 97.96% C
Grease System 1 1.02% 98.98% C
Cooling System 1 1.02% 100.00% C

Pareto chart of wheel loaders
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Figure A3.2 - Pareto chart of wheel loaders (988b_034)
Table A3.3 - Pareto analysis of bulldozers (D11_107)
Components Count of % | cumulative | Category
Failures %
0.00%
Undercarriage 67 20.55% 20.55% A
Ripper Teeth 35 10.74% 31.29% A
Repair Light 27 8.28% 39.57% A
Cab 25 7.67% 47.24% A
Electrical 21 6.44% 53.68% A
Float 21 6.44% 60.12% B
Hydraulic System 21 6.44% 66.56% B
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Cooling Systems 13 3.99% 70.55% B
Drive System 13 3.99% 74.54% B
Engine 12 3.68% 78.22% B
Air Conditioning 11 3.37% 81.60% B
Welding 11 3.37% 84.97% B
Blade 10 3.07% 88.04% C
Air System 9 2.76% 90.80% C
Cutting Edge 7 2.15% 92.94% C
Grease System 4 1.23% 94.17% C
Ice Lugging 3 0.92% 95.09% C
Oil Leak 3 0.92% 96.01% C
Steering System 3 0.92% 96.93% C
Fuel System 2 0.61% 97.55% C
Oil Sample 2 0.61% 98.16% C
Starting System 2 0.61% 98.77% C
Equalizer 1 0.31% 99.08% C
Heating System 1 0.31% 99.39% C
Low Power 1 0.31% 99.69% c
Torque 1 0.31% 100.00% C
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Pareto chart of bulldozers
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Figure A3.3 - Pareto chart of bulldozers (D11_107)
Table A3.3b - Pareto analysis of bulldozers based on TBF (D11_107)
Components TBF % | Cumulative % Category
0.00%
Undercarriage 3204.03 22.60% 22.60% A
Ripper Teeth 1704.27 12.02% 34.62% A
Repair Light 1636.70 11.54% 46.17% A
Cab 1181.20 8.33% 54.50% A
Float 1131.13 7.98% 62.48% B
Electrical 916.07 6.46% 68.94% B
Hydraulic System 650.43 4.59% 73.53% B
Engine 534.72 3.77% 77.30% B
Drive System 486.98 3.43% 80.73% B
Air Conditioning 415.72 2.93% 83.66% B
Blade 381.67 2.69% 86.36% C
Cooling Systems 342.45 2.42% 88.77% C
Welding 290.67 2.05% 90.82% C
Ice Lugging 240.85 1.70% 92.52% C
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Fuel System 170.98 1.21% 93.73% C
Oil Leak 143.50 1.01% 94.74% C
Cutting Edge 129.90 0.92% 95.66% C
Low Power 123.98 0.87% 96.53% c
Oil Sample 103.25 0.73% 97.26% C
Grease System 101.62 0.72% 97.98% C
Heating System 86.52 0.61% 98.59% C
Air System 78.35 0.55% 99.14% C
Steering System 60.95 0.43% 99.57% C
Starting System 54.45 0.38% 99.95% C
Equalizer 6.28 0.04% 100.00% C
Torque 0.52 0.00% 100.00% C

Table A3.4 - Pareto analysis of graders (GRAD_035)

Count of
Components Failures % | cumulative % | Category
0.00%
Cutting Edge 71 31.70% 31.70% A
Drive System 19 8.48% 40.18% A
Repair Light 17 7.59% 47.77% A
Engine 15 6.70% 54.46% A
Electrical 14 6.25% 60.71% B
Cab 12 5.36% 66.07% B
Air System 8 3.57% 69.64% B
Hydraulic System 7 3.13% 72.77% B
Miscl 7 3.13% 75.89% B
Blade 6 2.68% 78.57% B
Cooling Systems 6 2.68% 81.25% B
Grease System 6 2.68% 83.93% B
Air Conditioning 5 2.23% 86.16% C
Axle 5 2.23% 88.39% C
Braking System 5 2.23% 90.63% C
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Oil Sample 5 2.23% 92.86% C
Steering System 3 1.34% 94.20% C
Tandem 3 1.34% 95.54% C
Frame 2 0.89% 96.43% C
Ripper Teeth 2 0.89% 97.32% C
Sensor 2 0.89% 98.21% C
Float 1 0.45% 98.66% C
Fuel System 1 0.45% 99.11% C
Starting System 1 0.45% 99.55% C
Tire 1 0.45% 100.00% C
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Table A3.5 - Pareto analysis of tractors (HYCR_035)

Count of
Components % | cumulative % | Category
Failures
0.00%
Miscl 12 24.00% 24.00% A
Engine 9 18.00% 42.00% A
Hydraulic System 6 12.00% 54.00% A
Air System 4 8.00% 62.00% B
Electrical 4 8.00% 70.00% B
Braking System 2 4.00% 74.00% B
Cab 2 4.00% 78.00% B
Oil Sample 2 4.00% 82.00% B
Welding 2 4.00% 86.00% C
Axle 1 2.00% 88.00% C
Drive System 1 2.00% 90.00% C
Heating System 1 2.00% 92.00% C
Repair Light 1 2.00% 94.00% C
Starting System 1 2.00% 96.00% C
Steering System 1 2.00% 98.00% C
Wheels 1 2.00% 100.00% C
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Figure A3.5 - Pareto chart of tractors (HYCR_035)
Table A3.6 - Pareto analysis of bulldozers 2 (TLNGDOZ)
Count of
Components Fail % cumulative % | Category
ailures
0.00%
Electrical 40 14.08% 14.08% A
Undercarriage 30 10.56% 24.65% A
Repair Light 26 9.15% 33.80% A
Engine 25 8.80% 42.61% A
Drive System 20 7.04% 49.65% A
Cab 18 6.34% 55.99% A
Cooling Systems 18 6.34% 62.32% B
Float 17 5.99% 68.31% B
Air System 16 5.63% 73.94% B
Miscl 11 3.87% 77.82% B
Blade 10 3.52% 81.34% B
Fuel System 8 2.82% 84.15% B
Welding 8 2.82% 86.97% C
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Hydraulic System 7 2.46% 89.44% C
Air Conditioning 4 1.41% 90.85% C
Braking System 4 1.41% 92.25% C
Heating System 4 1.41% 93.66% C
Low Power 4 1.41% 95.07% c
Component Change

Out ? 0.70% 95.77% C
Starting System 2 0.70% 96.48% C
Steering System 2 0.70% 97.18% C
Winch 2 0.70% 97.89% C
Cutting Edge 1 0.35% 98.24% C
Equalizer 1 0.35% 98.59% C
Hard Nose / Grill 1 0.35% 98.94% C
Oil Sample 1 0.35% 99.30% C
Sunk 1 0.35% 99.65% C
Training 1 0.35% 100.00% C
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Figure A3.6 - Pareto chart of bulldozers 2 (TLNGDOZ)
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APPENDIX 4 - POWER LAW ANALYSIS OF CRITICAL COMPONENTS
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Figure A4.2.3 - Failure intensity vs. time of bulldozer critical component “ripper teeth”
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Figure A4.2.1 - Cumulative number of failures of bulldozer critical component “ripper

teeth”
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Figure A4.2.2 - MTBF vs. time of bulldozer critical component “ripper teeth”
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Figure A4.2.3 - Failure intensity vs. time of bulldozer critical component “ripper teeth”
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Figure A4.3.1 - Cumulative number of failures of bulldozer critical component “repair

light”
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Figure A4.3.2 - MTBF vs. time of bulldozer critical component “repair light
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Figure A4.3.3 - Failure intensity vs. time of bulldozer critical component “repair light”
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Figure A4.4.1 - Cumulative number of failures of bulldozer critical component “cab”
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Figure A4.4.2 - MTBF vs. time of bulldozer critical component “cab”
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Figure A4.4.3 - Failure intensity vs. time of bulldozer critical component “cab”
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Figure A4.5.2 - MTBF vs. time of bulldozer critical component “electrical”
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Figure A4.5.3 - Failure intensity vs. time of bulldozer critical component “electrical”
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Figure A4.5 - System operation of construction equipment bulldozer



APPENDIX 5 - TIME SERIES ANALYSIS OF CRITICAL COMPONENTS
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Figure A5.1 - Prediction of number of failures of the critical component undercarriage

of construction equipment bulldozer
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Figure A5.2 - Prediction of number of failures of the critical component ripper teeth of

construction equipment bulldozer
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Figure A5.3 - Prediction of number of failures of the critical component repair light of

construction equipment bulldozer
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Figure A6.4.1 — Cumulative number of failures of construction equipment bulldozer
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Figure A6.4.2 - MTBF vs. time of construction equipment bulldozer
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Figure A6.4.3 - Failure intensity vs. time of construction equipment bulldozer
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APPENDIX 7 - TIME SERIES MODELS OF RELIABILITY METRICS
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Figure A7.4.1 - Prediction of numbers of failures of construction equipment bulldozer
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Time Series Values of TBF
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