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Abstract 

 

Since the Bronze Age, the search for strong-and-ductile metals has been one of the 

central themes in all kinds of tool-making activities. After centuries of dedicated efforts, 

plasticity in crystalline metals has now been well understood; however, it still remains 

unclear in many fundamental aspects for amorphous metals, i.e. metallic-glasses. 

Despite the absence of microstructural features, metallic glasses (MGs) could display 

size-dependent hardness at the submicron scale. While most early studies attributed this 

size effect to Weibull statistics, here I proposed a shear-band nucleation controlled 

mechanism giving rise to a deterministic indentation size effect in MGs. In line with 

this mechanism, an explicit relation is derived linking the size dependency of hardness 

to a critical shear-band nucleation length in MGs. Through a series of carefully designed 

spherical indentation tests, this mechanism is experimentally justified, from which we 

are able to extract the shear-band nucleation lengths for a Zr-based MG at different 

indentation strain rates. On the basis of the combined theoretical/experimental efforts, 

our current work provides quantitative insights into the shear-band nucleation 

mechanism in MGs. 

 

    Then spherical indentation was also conducted on the bent MG samples to study 

the effect of residual stress on the shear band nucleation. The Young‘s modulus was 
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measured via the Joslin-Oliver based Berkovich nanoindentation approach. It is shown 

that the elastic modulus keeps at a constant while its hardness drops more significantly 

in the compression region than that in the tension region. The trend of indentation size 

effect for varies residual stress was found. It is obvious that the shear band nucleation 

in the Zr-based MG influenced by the presence of compression or tension residual stress, 

which can be rationalized by the different shear softening rate in MGs. Spherical 

indentation was further carried out on the ribbon and annealed MG samples to explore 

the thermal history effect on shear band nucleation. The hardness increases with 

annealing time and the ribbon one lower than the other three, demonstrating that denser 

structure has a higher hardness. Meanwhile, with the increasing annealing time, the 

Young’s modulus increases. We can found that thermal history effect on the nucleation 

length which is not caused by the significantly change the softening rate, but the 

variation of Young’s modulus.  

 

    At last, various MGs with nine different spherical indenters were studies by 

spherical nanoindentation. The size effect is same as previous findings for large 

indenters while the reverse size effect was found for smaller ones. And the changing 

point is different for different MGs. Also the shear band nucleation length is correlated 

with the fragility and Poisson’s ratio. The MGs with a higher fragility and Poisson’s 

ratio represent a higher possibility for a BMG to have better plasticity and to form shear 

band. 
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1 Introduction and literature review 

1.1 Introduction of metallic glass 

Metallic glass is a type of non-crystalline (amorphous, disordered) metallic alloys 

lacking long-range periodicity of the atomic arrangement. The first metallic glass, 

produced over fifty years ago by Pol Duwez(W. Klement 1960, Willens 1963) at the 

California Institute of Technology , was discovered by rapid quenching of Au- Si binary 

metallic melts at a very high cooling rate (approximately 106K/s ). As atoms don’t have 

enough time to rearrange for crystal nucleation, the liquid reaches the glass transition 

temperature, Tg, and solidifies as a metallic glass. The metallic glass so obtained is less 

brittle than oxide glass and looks like a metal. Its amorphous structure was metastable 

and could be converted into crystalline phase after annealing. 

 

Early glass-forming alloys had to be cooled extremely rapidly to avoid 

crystallization. An important drawback of this was that metallic glasses could only be 

fabricated in the forms of thin sheets or ribbons of micron size. In the 1970’s, 

Chen(Chen 1974) demonstrated the casting of millimeter diameter rods of Pd-Cu-Si 

alloy at significantly low cooling rates in the range of 103
 K/s. In the 1990s, however, 

new alloys were developed that form glasses at cooling rates as low as 1 K/s(Inoue and 

Takeuchi 2002, Johnson 1999)，enabling the metallic glasses cast into parts of up to 

several centimeters in thickness while remaining an amorphous structure. 
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The amorphous atomic structure of metallic glasses provides many outstanding 

mechanical properties compared to crystalline counterparts. It is of current interest and 

significance in several fields, such as physics, materials science and chemistry because 

of its unique disordered structural and superb mechanical, applicable physical and 

chemical properties(Greer 1993, Loffler 2003). Metallic glasses also provide new 

insights into our fundamental understanding of liquids and glasses. The combination of 

the unique mechanical properties(Byrne and Eldrup 2008, Cheng and Johnson 1987, 

Spaepen 1987, Dyre 2008, Greer 1993, Loffler 2003) with easy shaping provides the 

potential for next generation of structural materials in a variety of industries including 

aerospace and aeronautics, high-performance sports equipment, armor and 

microelectromechanical systems devices, biomedical, and conventional structural 

applications(Johnson 2002). 

 

Metallic glass absorbs less energy upon stress induced deformation through 

damping and returns more by rebounding elastically to its initial shape. With no crystal 

defects, metallic glasses have very high yield strength and very high elastic limit. The 

elastic strain of metallic glass can support in tension or in bending is almost double that 

of a commercially available crystalline material. Metallic glasses are premier spring 

materials. They have very high fracture strength coupled with 2-3% of elastic strain. 

Conventional aluminum, titanium alloys and steels can sustain 1-2% of elastic strain. 

The high corrosion resistance of metallic glasses is contrary to expectation, as they are 

in a higher energy state. The absence of grain boundaries and defects and their chemical 

http://en.wikipedia.org/wiki/Microelectromechanical_systems
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homogeneity confer on them high corrosion resistance. The composition of the glass 

plays an important role. Cr, Mo and P can enhance corrosion resistance as has been 

revealed in many early studies on melt spun ribbons. High electrical resistivity leads to 

low eddy current losses. Easy magnetization and demagnetization allows lower losses 

in applications. 

 

Unlike their crystalline counterparts, metallic glasses typically exhibit limited 

ductility and essentially no work hardening. Unconstrained deformation modes such as 

tension typically produce fracture immediately upon reaching the yield stress in nearly 

all metallic glasses via the initiation and propagation of highly localized deformation 

zones (i.e., shear bands) with minimum thickness of tens of nanometers. Understanding 

shear band initiation and propagation, therefore, is of great importance in advancing 

our knowledge of deformation in non-crystalline materials in general, while the 

application of metallic glasses will require careful control and manipulation of this 

deformation mechanism.  

 

1.2 Fabrication of metallic glasses 

 

Bulk metallic glasses can be synthesized by solidification or by solid state processing, 

a drastic change from the rapid solidification techniques previously employed for 
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synthesis of conventional alloys. At first, the technique in solidification route is water-

quenching. In this method the alloy is melted in a vacuum-sealed quartz tube and is 

then water-quenched. Cooling rate available in this technique generally varies in the 

range of 10-100Ks−1. Because of the free flow of the liquid metal under pressure, the 

cross section of the solidified metal layer obtained by the gun technique of rapid 

solidification is not uniform because of the free flow of the liquid metal under pressure. 

To overcome this drawback, a number of other ways were developed to improve the 

uniformity of the cross section of the solidified layers. The most significant milestone 

in this direction was the development of the chill block melt-spinning technique in the 

1970s and several of its variants. With the introduction of these techniques, there was 

a rapid progress in this field, and the technology of rapid solidification processing has 

come to stay as an important branch of materials science and engineering. It will be 

difficult to describe all the different techniques that were developed to achieve high 

solidification rates in metallic melts, so here I will describe only the melt-spinning 

technique. This has been the most popular technique of rapid solidification processing 

used by a number of researchers all over the world. Its main advantages are that (1) it 

will be possible to produce ribbons of uniform cross section, (2) its process parameters 

have been optimized, and (3) melt spinners are commercially available. Modern 

techniques of preparing bulk metallic glasses involve unidirectional zone melting, arc 

melting and then injection molding or suction casting in a copper mold. This process 

has got many variants. The melt can be electromagnetically levitated and then cast into 

copper mold. Conner et al(Conner, Dandliker and Johnson 1998) have reported the 
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synthesis of bulk metallic glass composites by introducing tungsten, steel and silicon 

carbide fiber or particles into amorphous matrix. The reinforcements do not act as 

heterogeneous nucleation sites and mechanical properties of the composite are better 

than those of the bulk glass. 

 

Die casting is a common method to produce different types of castings in the 

industry. Compared with the conventional sand-casting methods, die casting methods 

offer higher solidification rates (because heat is extracted more rapidly by the metal 

mold) and more complex shapes can also be produced. Therefore, this method has been 

used by several researchers to synthesize BMGs in different alloy systems. 

 

1.3 Atomic structures in metallic glasses 

 

The physical properties of amorphous alloys are determined by the short-range atomic 

arrangement which cannot be easily determined experimentally (cite the work of Prof. 

Chen M.W. in Nat Mater and Science here). To determine the amorphous structure of 

metallic glasses, a lot of models were proposed by different method. Three models (Free 

volume conception, dense random packing of hard sphere model, Miracle’s model) are 

discussed here. There are also many other models such as tight-bond cluster model(Fan, 

Liaw and Liu 2009) and core-shell model(Ye et al. 2010a) etc.  
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1.3.1 Free volume 

The concept of free-volume goes back a long time. For polymer materials, it was 

presumed that the viscosity of a material was strongly related to its free volume. The 

idea of free volume for metallic glass was proposed by Cohen(Cohen 1980) and 

Turnbull(Turnbull 1961). The key point of this conception was the viscosity of a liquid 

highly correlates to its volume. The total volume of a metallic glass can be separated 

into the space occupied by the dense atomic clusters and the empty space among these 

atomic clusters due to packing frustrations. Different from a gas, a liquid is a densely 

packed matter in which an atom is located in the “cage” constituted by the neighboring 

atoms. Most of the time, an atom that is fixed in the “cage” cannot move from one place 

to another Only if it gets enough space, larger than a critical volume v*, next to the 

atom, the atom can jump into this space (or free volume), shown in Figure 1.1. 

 

The diffusivity is given by [63] 

      







 


*

f

*
** expDp

*








dDD              (1.1) 

where p(v) is the probability distribution of space between atoms, γ is a constant of 

order of unity and νf is the total free volume.  
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Figure 1.1 Schematic of free-volume for an atom to move into 

 

 

 

For most of molecular liquids, the magnitude of v* is around 80% of the atomic 

volume, close to the atomic volume itself, but it is only about 10% for metallic glass. 

For crystal materials, the lattice structure will not be changed while the volume expands 

only due to the vibration of atoms during heating while no phase transformation 
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occurred. By contrast, the structure and volume of a liquid shows significant 

temperature dependence. There is some difference in the structure change at different 

temperatures. At the temperature higher than Tg, the slope of volume change as a 

function of temperature is steeper than the one of the temperature lower than Tg, which 

reflects that above Tg the changes in the structure with temperature change occur 

quickly while below Tg, however, the kinetics of changes slows down. Below a certain 

temperature, the change becomes so sluggish that the structure appears to be frozen 

because of “kinetic arrest.” While the metallic glass annealed below Tg, the structure 

will be slowly relaxed from an energetically higher metastable state towards an 

energetically lower metastable state(Chen 1980) with a decrease of free volume and 

correlated changes in topological and chemical short-range order (SRO). 

 

The free volume theory was also used to explain plastic flow during deformation 

(Spaepen 1977a, Steif, Spaepen and Hutchinson 1982). However, free volume cannot 

induce shear deformation by itself, although atoms could move because of diffusion. 

The basic conception is that shear bands need free space to operate. Therefore, the free 

volume controls shear flow. However, the assumption is only for hard-sphere models, 

and elastic bodies can undergo local shear without volume changes. Furthermore, 

plastic deformation induces free volume in the shear bands(Yang et al. 2005). 
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1.3.2  Dense random packing and Bernal’s model 

The dense random packing model was proposed by Bernal(Bernal 1960), The atomic 

arrangement is determined by purely geometrical sphere packing, the atomic structure 

was determined based on the dense random packing which is restricted by the principle 

that two atoms cannot come closer than one atomic diameter using ratios of atomic radii. 

Bernal’s idea can result in a satisfactory model for monatomic metals and alloys in 

which constituent species have comparable atomic sizes the atomic arrangement of a 

simple liquid is determined by volume exclusion.  

 

Glasses are not truly a random distribution of atoms because no two atoms can be 

closer than a typical bonding distance or farther apart than a few nearest neighbors. This 

distribution of atoms gives rise to a diffuse intensity peak in X-ray, neutron and electron 

scattering experiments. However, glasses still exhibit some short-range order of the 

atoms. Structural information on short-range order is typically obtained from the pair 

correlation function.  
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Figure 1.2 A laboratory-constructed random close packing of hard-spheres shows no lattice 

ordering 

 

The random close packing model structure is illustrated in Figure 1.2. It is obvious 

that the structure reveals no crystallinity. Although it is simple, this model demonstrated 

many of the structure features of simple liquids, and provided excellent explanation of 

super cooling, nucleation, melting, fluidity and diffusion. Bernal’s model is satisfied 

for monatomic metals and alloys in which constituent species have comparable atomic 

sizes. But the drawback is that there is no deep insight into the short-range and medium-

range ordering which is important for this kind of material. Moreover, this model fails 

to describe metal-metalloid-based alloys in which the chemical SRO is pronounced.  

 

The random close packing model was further developed by Finney(Finney 1970) 

who made a large model with 7994 atoms. 
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1.3.3  Miracle’s model 

Miracle (Miracle and Senkov 2003a, Miracle and Senkov 2003b, Sheng et al. 2008) 

reported an atomic structure model for metallic glasses which is based on a new sphere-

packing scheme -the dense packing of atomic clusters. Random positioning of solvent 

atoms and medium-range atomic order of solute atoms are combined to reproduce 

diffraction data successfully over radial distances up to ~1 nm. The model describes a 

structural model for metallic glasses that extends well beyond the nearest- neighbor 

shell. 

 

The primary atomic cluster is constituted by the largest, primary solute atom α 

wrapped by the solvent atoms Ω. The preferred size of primary clusters is determined 

by using the discrete solute to solvent radius ratio R’ which satisfies an efficient solute 

centered packing in the local cluster. The cluster ordering provides two additional 

topological species, which is a secondary solute β sitting in an octahedral cavity and a 

tertiary solute γ sitting in a tetrahedral interstice. This means that only three 

topologically distinct solutes are contained in a metallic glass. All solutes satisfying the 

ratio R’ (solute radius/solvent radius) can be efficiently packed in the first coordination 

shell. Hence, only in the first coordination shell, the clusters are densely packed to form 

a structure of overlapping clusters. If the difference of atomic radius between two 

solutes is within ±2%, these two solutes can be considered as topologically equivalent. 

This model presents not only the short-range order; medium-range atomic order up to 
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~1 nm can also be explained. 

 

    The dense cluster-packing model includes both size and chemical effects, and is 

summarized by these features: (i) efficiently packed solute-centered atomic clusters 

with solvent atoms only in the first coordination shell are densely packed to form a 

structure of overlapping clusters; (ii) three topologically distinct solutes exist: primary 

cluster-forming solutes (α), cluster-octahedral solutes (β) and cluster-tetrahedral solutes 

(γ); (iii) all solutes possess radius ratios relative to the solvent, R*, that enable efficient 

atomic packing in the first coordination shell; (iv) face-sharing of adjacent clusters is 

preferred to minimize volume, but edge- and vertex-sharing may exist to reduce internal 

strains; (v) solutes with atomic radii within ±2% of one another are considered 

topologically equivalent; and (vi) no orientational order exists between clusters. The 

dense cluster-packing model is consistent with the full range of phenomenological 

guidelines established for metallic glasses. 
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1.4 Mechanical behavior of metallic glass 

 

1.4.1 The mechanical properties of metallic glasses  

Despite their very high strength, hardness and elastic limit, monolithic metallic glasses 

(MGs) rarely show macroscopically observable tensile ductility at room temperature 

owing to the severe plastic strain location in a narrow region called the shear band. The 

resultant catastrophic and instantaneous brittle failure extremely impedes their 

exploitation as structural engineering material. However, several research groups(Guo 

et al. 2007b, Jang and Greer 2010, Wu, Zhang and Mao 2009a, Greer and De Hosson 

2011) recently reported that when the sample dimensions are brought into sub-

micrometer or nanometer range, the strength, tensile plasticity and even the deformation 

mode can be remarkably changed, offering another promising way to utilize feature size 

as a design parameter in attaining superior mechanical properties for MGs.  

   

In the recent work by Wu and Li et al (Wu et al. 2009), tensile tests were carried 

out on micrometer sized Co based amorphous wires. It was found that nonlinear 

deformation with appreciable elongation takes place during tensile testing. These 

investigators believed that the deviation from linear deformation after the apparent yield 

could be attributed to the formation of sub-nanometer voids agglomerated from flow 

defects. Furthermore, they reported that amorphous wires with smaller diameters 

exhibit a lower apparent yield stress, which might be caused by smaller STZ (shear 
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transformation zone) energy barriers due to faster cooling rates applied in thinner 

amorphous wires.  

 

Meanwhile, the works of Zberg and coworkers(Zberg et al. 2009) demonstrated 

that Mg based glassy wires reveal significant amounts of homogeneous plastic 

deformation in tension before final necking of the fracture zone and inhomogeneous 

plastic deformation occur, which was explained by a combination of small diameter, 

high axial symmetry and high free volume content of the rapidly solidified metallic 

glassy wires. In fact, the Weibull analysis of tensile property reliability showed a 

surprisingly high Weill modulus of 20.58 at a characteristic strength of 817 MPa. The 

correlation of the Weibull statistics was better for size correction proportional to the 

surface area, indicating that surface defects are the more crucial defects. Therefore, the 

extended amount of homogenous plastic deformation can be assigned to the circular 

geometry and flawless surface quality of the specimens and the high Weibull modulus 

is related to the plastic behavior and necking in the tensile tests. 

 

The above observations suggest that the sample size might strongly affect the 

deformation mechanism and thus the tensile mechanical properties of small-volume 

metallic glasses. 

 

Using in-situ tensile straining tests in a transmission electron microscope, Guo et 
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al(Guo et al. 2007b) observed the entire sequence of deformation stages of several 

monolithic Zr52.5Cu17.9Al10Ni14.6Ti5 metallic-glass samples with dimensions of the order 

of 100nm. Notably, they found qualitatively different behavior in small-volume 

metallic glasses, including significant uniform elongation with large tensile ductility in 

the range of 23-45% and extensive necking or stable shear, as illustrated Figure 1.3. 

Moreover, this large plasticity did not result from the branching/deflection of shear 

bands or the presence of nanocrystals, suggesting that monolithic glassy alloys can 

deform plastically like their crystalline counterparts, via inhomogeneous or 

homogeneous flow without catastrophic failure. An possible explanation of such 

sample size-effect matters is that nanometer sized samples may contain fewer flaws, 

which reduces the probability of localized shear bands forming and thus enables 

multiple atomic-level shear events to occur throughout the sample. In addition, 

catastrophic crack propagation cannot happen, as there is an associated critical length-

scale for brittle failure that is much larger than the sample. In other words, sample-size 

effects can suppress catastrophic localization and failure in small-volume specimens. 
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Figure 1.3 Sample at various stages of tensile elongation during the in situ TEM experiment 

(Guo, et al. 2007a). The straight gauge section is marked with dashed white lines (average strain 

rate: ~ 5×10−4s−1) a, the virgin sample before testing. b -e, Up to a strain of 15%, sample was 

uniformly elongated, then non-uniform deformation occurs, with a significant elongation in the 

necked region indicated by the white arrow. The total tensile strain reached 45%. 

 

More recently, Jiang and Greer (Greer and De Hosson 2011) examined the size-

dependent mechanical properties of a Zr35Ti30Co6Be29 metallic glass under tension 

through transmission electronic microscopy. The in-situ tensile tests were carried out 

on fabricated in non-tapered, free standing specimens. It was found that the tensile yield 

strength increases by 50% upon reducing the sample size down to 500nm, below which 

it remains at a constant value of 2.25GPa. Additionally, when sample size approaches 

100nm, a highly localized to homogeneous deformation mode change occurs without 

any change in the yield strength (see Figure 1.4). Interestingly, it was therefore 

demonstrated that strength and ability to carry plasticity are decoupled at the nanoscale, 

as indicated by the separate and distinct critical sizes for maximum strength and for the 

brittle-to-ductile transition. These phenomena may be understood by considering two 

competing process: crack-like shear-band propagation versus homogeneous flow and 



 

17 

 

the contribution of each process to the overall deformation at different sample sizes. 

 

 

 

    Figure 1.4 Monotonic nanotension results for the 100-nm-diameter specimen. a, SEM 

image of a typical as-fabricated 100-nm-diameter tensile sample.b–f, Images captured from a 

movie recorded during an in situ tension test at "E of 0 (b), 0.04 (c), 0.06 (d), 0.07 (e) and the 

final fracture (f). The square in e indicates the region where a neck is formed. The engineering 

(g) and true (h) stress–strain curves of the nanotension test. True stresses and strains after 

necking were obtained by directly measuring the diameter in the necked region. The error bars 

in h reflect the uncertainty in measuring pillar dimensions on the captured images of the movie. 

The value of strain in g and h has no units. 
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Figure 1.5 Illustration of the crack size as a function of shear offset, showing the three stages 

in the tensile fracture processes of the Zr52.5Cu17.9Al10Ni14.6Ti5 metallic glass: region I, the 

multiplication of free volume; region II, the coalescence of free volume; region II, the 

coalescence of free volume and formation of void; region III, the final fast propagation of shear 

crack.(Wu, Zhang and Mao 2009) 

 

    In fact, the size-dependent shear fracture and plasticity have also been investigated 

by Wu et al(Wu et al. 2009a), who performed experiments in tension on a 

Zr52.5Cu17.9Al10Ni14.6Ti5 metallic glass. These authors demonstrated that the tensile 

ductility depends strongly on the critical shear offset. Moreover, the tensile fracture 

process can be divided into three stages: multiplication and coalescence of the free 
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volume, formation of voids, and the final fast propagation of a shear crack (see Figure 

1.5). Accordingly, the size effect on the tensile shear deformation processes of metallic 

glass can be well understood: with decreasing specimen size smaller than the equivalent 

critical shear offset, the shear deformation of metallic glass is changed from unstable 

to stable, which leads to a transition from global brittleness on the macroscale to large 

global plasticity or even necking on the microscale, as illustrated in Figure 1.6. 

 

Figure 1.6 Illustration of the size effect on the tensile plasticity or brittleness of metallic glass: 

region I, the unstable shear region (inset is the optical image of tensile specimen of metallic 

glass with large dimension(Pampillo 1975)); region II, the stable shear region (insets are the 

typical stable shear and necking of the TEM in situ tensile specimen with a gauge dimension 

of ~100 nm×100 nm×250 nm(Guo et al. 2007a)).  
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1.4.2 Deformation mechanism 

1.4.2.1 Free volume theory 

 

Free volume model, which was developed by Turnbull and Spaepen(Turnbull 1961, 

Spaepen 1977a)., views plastic deformation as a series of discrete atomic jumps in the 

glass, similar as diffusion, these jumps are obviously favored near sites of loose packed 

region which can more readily accommodate inelastic deformation. Some activation 

energy of atom jump motion ΔGm must be supplied. If there is no force applied, the 

number of atom jumps across the energy barrier caused by the thermal fluctuations is 

equal in both directions at room temperature. When an external force is applied to the 

system, the atomic jumps are biased in the direction of the force and the number of 

forward jumps larger than the number of backward ones, which enables the 

macroscopic flow.  

 

    The steady-state deformation in metallic glasses is a competition between the free 

volume created by the stress-driven process and diffusive annihilation. The energy 

necessary to squeeze an atom with volume v* into a smaller hole of volume can be 

approximated by the elastic distortion energy required to squeeze a sphere with volume 

v* into a spherical hole with volume v in matrix of the same material. At low 

temperatures, at which the diffusion process of such activation dilatation caused by the 

plastic deformation may be very slow, the shear regions can sustain a large amount of 

shear induced excess free volume. This leads to lowering the deformation resistance, 
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and thus shear-softening. 

 

    The general flow equation is described as 

𝛾̇ = 2𝜈𝛥𝑓exp (−
𝛼𝜈∗

𝜈𝑓
) exp (−

𝛥𝐺𝑚

𝑘𝑇
) sin (−

𝜏𝛺

𝑘𝑇
)             (1.2) 

where Δf is the volume fraction, f is the frequency of atomic vibration (~Debye 

frequency), k is the Boltzmann constant, T is the temperature, 𝛼 is a geometrical factor 

between 1 and 0.5, Ω is the atomic volume and νf is the average free volume of an atom. 
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Figure 1.7 A pictorial representation of the free volume flow process 

 

    The free volume theory provides simple and clear explanations of the strain 

softening and thereby heterogeneous deformation behavior of metallic glasses. The 

theory widely cited to study various mechanical behaviors of metallic glasses. However, 

they are unable to quantitatively describe the strength and ductility of BMGs.  
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1.4.2.2 Shear transformation zone model 

 

The shear transformation zone (STZ) originally proposed by Argon(Argon 1979a). It 

has been accepted as a flow unit, which underlies the deformation of metallic glasses. 

The STZ is essentially a local cluster of atoms that undergoes an inelastic shear 

distortion from one relatively low energy configuration to another low-energy 

configuration, crossing an activation barrier. Generally, thermally activated STZs 

initiate around free-volume sites under an applied shear stress because high elastic 

strain at free-volume sites energetically promotes STZ formation. This STZ activation 

involves a redistribution of free volume within the atomic cluster. This free volume 

redistribution is a transient process, which is believed to involve local, permanent 

changes to the excess free volume. The accumulation of excess free volume is believed 

to facilitate shear localization through local softening in the vicinity of previously 

deformed regions. 

 

    Derived from the energy landscape theory and Frenkel’s work for the shear 

deformation of defect-free crystals, Johnson and Samwer proposed a cooperative 

shearing model (CSM) for STZs (Johnson and Samwer 2005a). The Johnson-Samwer 

model was originally introduced to illustrate the relationship between the temperature 

and yield strength in the form of T2/3, it provides an effective interpretation of ductility 

and strength of BMGs. The CSM model gave us new quantitative insights into the 

atomic-scale mechanisms responsible for the mechanical properties of BMGs. This 
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model correlates the structure of metallic glasses with their energetics and thus allows 

one to interpret their deformation in combination with STZs. According to the CSM, 

the potential-energy barrier to a mechanical instability of a STZ is biased by an applied 

shear stress and approaches zero as a benchmark of occurrence of yielding. This 

statistically averaged barrier is dependent on a state variable, i.e., the volumes of STZs, 

in addition to traditional stress and strain. Following this model, energetic 

considerations and molecular dynamics simulations more recently conducted have 

quantitatively evaluated the volume of STZs, which are associated with the 

configuration entropy and deformability of metallic glasses(Yang, Wadsworth and Nieh 

2007, Mayr 2006, Zink et al. 2006). The STZ size is somewhat coincident with the 

predicted size of MRO of 1-1.5 nm(Sheng et al. 2006, Miracle 2004), Although the 

significance of this should not be overestimated, this dimensional coincidence may 

imply a potential intrinsic correlation between STZs and the MRO clusters(Zhang and 

Greer 2006a). By linking the cooperative shear model with classical deformation 

thermo dynamics through the variable of the activation volume, the STZ volume is 

derived as a function of strain rate sensitivity and strength of metallic glasses, which 

are measurable by mechanical testing(Pan et al. 2008b). The measured STZ volumes of 

BMGs vary from 2.5 to 6.6 nm3. According to the dense packing hard-sphere model of 

metallic glasses, the STZs are estimated to include about 200-700 atoms, consistent 

with large-scale MD simulations. Moreover, the STZ volumes show an interesting 

correlation with the ductility of metallic glasses. The ductile BMGs possess large STZ 

volume (Pan et al. 2008b), which is similar to the relationship between ductility and 
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dislocation cores in fcc metals, in which ductile metals have wide dislocation cores. 

 

1.4.3 Shear band initiation and propagation 

 

The above theories describe the plastic flow and deformation behavior of metallic 

glasses. But what is the consequence of the localized distortion of the surrounding 

material created by STZ? Under an applied stress, accommodation of shear strain in 

metallic glasses is believed to occur via atom rearrangements around free volume 

regions, unlike dislocation in crystalline counterpart. The strain-accommodating local 

rearrangement theory proposed by Argon(Argon 1979a) considers two modes of 

thermally-activated shear transformation. Delineating the boundary between 

homogeneous and inhomogeneous plastic flow, Argon(Argon 1979a) proposed that the 

transformation involves diffuse rearrangements with small shear strain in spherical 

regions of 5 atom diameters at temperatures of 0.6Tg < T < Tg. Below 0.6Tg the 

transformation occurs in a narrow disk-shaped volume element called the “shear 

transformation zone”, in a manner similar to dislocation loop formation.  

 

    The fundamental unit of plasticity during inhomogeneous deformation of metallic 

glasses can be the shear transformation zone or the free-volume for local diffusive 

jumps. The STZ is a small cluster of closely-packed atoms that spontaneously and 

cooperatively rearrange to accommodate the applied shear strain.(Lund and Schuh 2004, 
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Spaepen 1977a, Argon 1979a) The STZ involves a localized cluster of atoms that 

undergo intense distortion from an initial to final equilibrium position through an 

intermediate activated state of high-energy and large-volume. The continued 

propagation of this applied shear strain occurs when one STZ creates a localized 

distortion of the surrounding material, which triggers the formation of large planar 

bands of STZs, or so-called “shear bands”. It should be noted that the STZ is not a 

defect in the glass structure, but rather a transient state whose operation is influenced 

by local atomic arrangements. 

 

    According to the free volume model developed by Turnbull and Spaepen(Turnbull 

1961, Spaepen 1977a), plastic flow is triggered by jumps of atoms squeezed into 

neighboring positions of equal space. When the neighboring atomic site is of a smaller 

size, the diffusing atom will create free volume by making the jump. This can lead to 

work softening during plastic deformation due to a macroscopic decrease in viscosity. 

The generation of free volume during the shearing of small groups of atoms (Li et al. 

2003, Donovan 1989, Liu et al. 2005) is assumed to be the reason for the formation of 

localized shear band, which causes a decrease in the viscosity of the glass. The 

formation of free volume weakens the specimen locally by decreasing the cross-

sectional area, and subsequently induces local softening of the material until fracture 

occurs along the plane of the shear bands(Spaepen 1977a). Another explanation for the 

formation of shear bands is that local adiabatic heating makes the temperature exceed 

the glass transition temperature, thus decreasing the viscosity locally (Liu et al. 1998, 
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Leamy, Chen and Wang 1972, Chen et al. 1994). A vein-like pattern characteristically 

forms on the fracture surface of metallic glass. This pattern is the consequence of 

adiabatic heating in the shear band which causes softening of the BMGs(Pampillo and 

Reimschu.Ac 1974). The vein-like pattern shows that the material within a shear band 

behaves like a liquid layer of reduced viscosity due to local dilatation of the glass in 

regions of high tensile stress. It is likely that STZs lead to free volume creation and 

thermal softening jointly promotes the formation of shear bands in BMGs (Dai and Bai 

2008, Li and Li 2006). Dai and Bai(Dai and Bai 2008) have shown that (1) instabilities 

governed by free volume creation become unstable leading to shear band formation if 

the compound volume creation rate exceeds the free volume diffusion rate; (2) 

instabilities governed by thermal softening become unstable provided B >KP0𝜏0/ρCνQ0, 

where B is a dimensionless number reflecting the competition between thermal 

softening, P0, and strain hardening, 𝜏0 is shear stress, Q0, K is the Taylor-Quinney 

coefficient (~0.9), ρ is density, and Cν is specific heat at constant volume; and (3) 

deformation with coupled thermal effects and free volume creation is jointly initiated, 

which accelerates the instability growth, but the compound free volume creation 

appears to govern the instability growth when B~1. Jiang and Dai(Jiang and Dai 2009) 

have shown that shear-banding instability is free volume by origin. They explain that 

totally different mechanisms are responsible for shear-banding instability due to free-

volume softening and classical thermal softening. Shear-banding instability begins with 

strains responding elastically to applied stress until the yield point is reached, at which 

inelastic/plastic flow is activated in a locally free-volume perturbed region. A mismatch 
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in strain rate between the perturbed (shear band) and unperturbed (matrix) zone occurs 

and continues to become exacerbated, leading to a large strain in the perturbed zone 

and then shear band appears. Jiang and Dai (Jiang and Dai 2009) further explained that 

the dynamic plastic strain rate in the shear-band region causes instantaneous local 

temperature increase, which speeds up the net creation of free volume and facilitates 

shear-banding instability originated from local free-volume perturbation. 

 

1.5   Research objectives and issues 

 

Since the Bronze Age, the search for strong-and-ductile metals has been one of the 

central themes in all kinds of tool-making activities. After centuries of dedicated efforts, 

plasticity in crystalline metals has now been well understood; however, it still remains 

unclear in many fundamental aspects for amorphous metals, i.e. metallic-glasses. Since 

the first reported by Klement (W. Klement 1960) in 1960, bulk metallic glasses (BMGs) 

have attracted extensive interest because of their exclusive properties such as very high 

strength, hardness, elastic limit as well as good corrosion resistance(Byrne and Eldrup 

2008, Cheng and Johnson 1987, Spaepen 1987, Dyre 2008, Greer 1993, Loffler 2003). 

However, their main drawback is their catastrophic brittle failure under uniaxial loading, 

initiating from severe plastic-strain localization in a narrow region called the shear 

band(Schuh, Hufnagel and Ramamurty 2007b). Shear band formation is generally 

recognized as a direct consequence of yielding or the onset of the plastic deformation. 

They instantaneously propagate through samples and cause fracture. So the full 
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understanding of the nature and behavior of the shear bands is of supreme important to 

the research of metallic glasses.  

 

Several research groups have tried to figure that at what size metallic-glasses could 

become both strong and ductile without shear-banding. Different reports are 

inconsistent and controversial with both theoretical and experimental ways. From the 

theoretical approach, there are different theoretical estimations of the critical length 

scale. Li(Li and Li 2007) and Shi(Shi 2010) identified the critical length scales for 

nucleating a shear band is around 10-20 nm. On the other hand, several researchers 

reported the correlation between the reduced size and the deformation mode transition. 

However, these experimental results are also inconsistent. Volkert(Volkert, Donohue 

and Spaepen 2008) et al., who conducted a study on Pd77Si23 BMGs, showed that for 

pillars below ~400 nm plasticity is entirely homogeneous. Guo(Guo et al. 2007b) and 

Jang(Jang and Greer 2010) report that inhomogeneous to homogeneous deformation 

mode change occurs at 100nm diameter with their tension test. Meanwhile, an 

interesting finding by Chen(Chen, Pei and De Hosson 2010) is that a switch from highly 

inhomogeneous to fully homogeneous deformation is observed at an experimentally 

accessible size regime near 200 nm by micro-bending.  

These inconsistencies caused by the test method itself from several aspects. Firstly, 

most of the experiments fabricated with focused ion beam (FIB). Because of the non-

uniform stress distributions along the imperfectly tapered pillar down to submicrometer 

scale and the stress concentration induced by friction between the flat punch and pillar 
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top in the micro compression test with diameters. Shear bands may preferentially 

nucleate at the corner of sample and punch. On the other hand, surfaces strongly 

influence the strain localization behavior. At the same time, the compressive stress 

introduced by the surface could delay the nucleation of shear band in the sample at 

smaller scales. 

 

    Based on the reasons above, my research will focus on the critical length 

controlling homogeneous shear-band nucleation. In chapter 3, through a series of 

carefully designed spherical indentation tests, we are able to extract the shear-band 

nucleation lengths for a Zr-based MG at different indentation strain rates. In chapter 4, 

residual stresses were introduced in the sample through plastic bending. The effect of 

residual stress on the shear band nucleation was discussed. In chapter 5, as-cast sample 

and annealed sample with different temperature were studied. The effect of thermal 

history on the shear band nucleation was compared and discussed. In chapter 6, based 

on different types of MG, the relationship between the intrinsic physical properties and 

critical length controlling homogeneous shear-band nucleation was systematically 

studied. Finally in Chapter 7, the results of this thesis are summarized and the 

perspectives for future research are suggested. 
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2 Research methodology 

 

Nanoindentation has become the standard technique used for nanomechanical 

characterization of materials. A nanoindentation test is performed by applying and 

removing a load to a sample in a controlled manner with a geometrically well-defined 

probe. During the nanoindentation, a force is applied by the transducer and the resulting 

displacement is observed to produce a traditional force versus displacement curve. 

Nanoindentation measures the force and displacement of the nanoindentation probe 

with a unique patented three-plate capacitive transducer design. This transducer design 

provides an unsurpassed noise floor and ultra-low working force. 

 

 

 Figure 2.1 TriboIndenter (Hysitron, Inc., Minneapolis, MN) 
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The tightly controlled construction and calibration standards used for the 

capacitive transducer in combination with the precisely machined, rigid 

nanoindentation probes produce quantifiable, reliable measurement on any material. 

The mechanical properties of the sample obtained from the analysis of the measured 

force versus displacement curve (particularly the unloading segment). Values typically 

obtained from nanoindentation testing are reduced modulus and hardness. However 

other information such as fracture toughness, stiffness, and delamination force and film 

thickness can also be obtained. With the help of various types of indenter, different 

mechanical properties can be obtained from the nanoindentation data. We can perform 

different testing mode with designed indenter on metallic glass: flat-ended indenter for 

compression tests; wedge-like cylindrical indenter for bending experiments  

 

Nanoindentation from Hysitron is designed for maximum versatility. Standard 

with all Hysitron nanoindentation systems and equipped with a standard maximum 

force up to 10 μN and a noise floor of less than 30 nN, quasistatic nanoindentation 

covers a large range of sample testing possibilities. Other specifications of the 

transducers in low-load and high-load systems are listed in Table 2.1 
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Table 2.1 Specifications of Z-axis of the transducer in nanoindentation system 

 

 

 

 

 Low load System High Load System 

Maximum force 10 mN 10N 

Load resolution 1 nN 100 nN 

Load Noise floor <30 nN 50 μN 

Maximum displacement 5 μm 80 μm 

Displacement resolution 0.02 nm 0.1 nm 

Displacement noise floor 0.2 nm 1 nm 

Thermal drift Data < 0.05 nm/sec < 1 nm/sec 

Acquisition rate up to 30 kHz 60 Points/sec 
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Figure 2.2 (A) Force versus displacement curve on fused quartz showing typical response of 

elastic-plastic material.(B) Resulting in-situ SPM image of quartz surface after nanoindentation 

showing residual indent impression. 

 

    To study the shear band nucleation behavior in different MGs, nanoindentation 

tests were performed on small polished disks. Indentation strain control mode was used. 

The maximum load was varied for different based metallic glass. For a systematic 

investigation, the following tip radii were used in the spherical indentation tests: 2m, 

5m, 10m, 20m, 25m, 30m and 35m. In order to keep a constant strain rate, 

dP/dt/P was set to be a constant, where dP/dt is the indentation loading rate and P the 

indentation load. This leads to an exponential increase of P with the time. For simplicity, 

unloading was programed to follow a constant unloading rate. At least 10 indents were 

performed on each sample. 
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3 Shear Band Nucleation and Indentation Size Effect in 

Metallic Glass 

 

3.1 Introduction 

Hardness is an important material attribute that has long been used to characterize the 

mechanical strength of materials (Tabor 2000). Physically, hardness of materials is 

derived not only from an atomic bonding strength but also from microstructural details, 

such as atomic plane orientation and defect concentration, which is directly probed by 

an indenter (Cheng and Cheng 2004, Nix and Gao 1998). For crystalline metals, their 

hardness is material dependent and also varies with an indentation size, viz., as the 

indentation size decreases, the hardness of crystalline metals usually increases (Nix and 

Gao 1998, Swadener, George and Pharr 2002, Begley and Hutchinson 1998). This 

phenomenon is known as the ‘indentation size effect’ (ISE) and has been investigated 

extensively over the past decades (Cheng and Cheng 2004, Nix and Gao 1998, 

Swadener et al. 2002, Begley and Hutchinson 1998).  

 

In principle, the origin of ISE in crystalline metals can be simply explained as the 

interplay between a material internal length scale Lint, such as dislocation size or 

spacing(Evans and Hutchinson 2009) that can be related to the material local yielding, 

and an external length scale Lext that can be related to the applied indentation stress field, 

such as indentation depth or indenter tip radius. From a theoretical viewpoint, ISE arises 
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when Lext approaches Lint and vanishes when Lext >> Lint. Therefore, it is expected that 

a material would not exhibit an ISE behavior for its internal length scale being much 

smaller than the external length scale derived from an indentation stress field. 

 

Metallic glasses (MGs) are one such kind of materials that does not show any 

internal structural length scales merely above a few nanometers (Chen 2008, Wagner et 

al. 2011, Ye et al. 2010b, Liu et al. 2011, Zeng et al. 2014, Yang et al. 2012). Being 

amorphous, MGs are lack of long-range translational symmetry and, hence, there are 

no crystalline-like defects in them. This view has been invoked often to explain why 

MGs usually appear much stronger than their crystalline counterparts(Chen 2008, Yang 

et al. 2010a, Wu, Li and Schuh 2007, Johnson and Samwer 2005b, Ashby and Greer 

2006). Therefore, it was once believed that the strength of MGs should be size 

independent unless the Weibull statistics came into play in small-scale mechanical 

testing (Lee et al. 2010, Schuster et al. 2008, Packard et al. 2010a, Ye et al. 2010c). In 

general, a Weibull size effect may appear due to a material inhomogeneity introduced 

during alloy casting (Lee et al. 2010). According to the prior work (Chen 2008, Wagner 

et al. 2011, Ye et al. 2010b, Liu et al. 2011, Zeng et al. 2014, Yang et al. 2012), the 

length scales characterizing the mechanical inhomogeneity in MGs could range from 1 

to 10 nm. In such a case, one might expect size-independent hardness if the 

characteristic size of an indentation stress field applied to a MG goes beyond ~10 nm. 

However, contrary to this thinking, it was recently reported by different groups that a 

significant size effect could be observed in different MGs at the submicron scale or 
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even above (Jang et al. 2011, Choi et al. 2012, Yang et al. 2010a, Lee et al. 2010, Jang 

and Greer 2010, Tian et al. 2012, Wang et al. 2012). Some of them proposed that this 

unexpected size effect could be traced back to the activation of the fundamental flow 

units in MGs, such as shear transformation zones (STZs) (Jang et al. 2011, Choi et al. 

2012). However, this proposal needs further clarification because the size of these ‘flow 

units’ is very mall (~1-2 nm) (Pan et al. 2008a, Yang et al. 2012) as compared to the 

external length scales (~100 -1000 nm) over which the ISE behavior was witnessed 

(Jang et al. 2011, Choi et al. 2012). 

 

Here, we propose an alternative mechanism to quantitatively explain the ISE 

behavior of MGs. This mechanism is based on the notion that yielding in MGs is caused 

by the clustering of liquid-like sites or STZs, which subsequently result in shear-band 

nucleation. In such a case, here comes a length scale, LSB, that is derived from the 

critical size of shear-band nuclei in MG; therefore, an ISE behavior arises if the applied 

indentation stress field could possess an external length scale Lext ~ LSB. In what follows, 

we will first develop a theoretical model which directly incorporates LSB into the 

otherwise size-independent yielding criterion for MGs, such as the well-established 

Drucker-Prager yielding criterion (Sun, Jiang and Dai 2010). This is followed by a 

series of indentation experiments particularly designed for justifying our modeling and 

the ISE behavior in a Zr-based MG. Afterwards, we will show that, through the 

indentation size effect, LSB can be extracted for different indentation strain rates. Finally, 

we will discuss the origin of shear-band nucleation based on our combined 
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theoretical/experimental work. 

 

3.2 Theories and Modeling 

3.2.1 The Proposed Mechanism of Size Controlled Yielding 

Let us begin our theoretical analysis by assuming that the overall yielding strength of 

MGs is directly related to a critical shear-band nucleation length LSB. Before reaching 

this critical length, a stressed MG may also undergo rather localized structural 

rearrangements which are manifested to be the typical local shear transformation (ST) 

events (Argon 1979b, Huo et al. 2013, Ye et al. 2010b, Liu, Yang and Liu 2013); 

however, the longstanding notion is that, only after these local liquid-like sites 

undergoing ST events coalesce into a critical size, does their surrounding elastic ‘cage’ 

break down, thereby leading to overall yielding and inhomogeneous plastic flow in 

MGs (Schuh, Hufnagel and Ramamurty 2007a, Yang and Liu 2012, Shimizu, Ogata 

and Li 2006, Greer, Cheng and Ma 2013). Should this scenario of size-controlled 

yielding hold, one may use a spherical indentation approach to probe the process of 

shear band nucleation in MGs, as described below.  
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Figure 3.1 The schematic illustration of the tip radius effect on the size of the local plastic zone 

formed underneath the spherical indenter. 

 

As illustrated in Fig. 3.1, in a spherical indentation test, the maximum shear stress 

occurs at a distance below the tip-surface contact due to the finite tip radius of the 

spherical indenter. Owing to the stress gradient of the indentation stress field, it could 

be envisaged that the localized ST events produce a local plastic zone (LPZ), the size 

of which expands outwards with the indentation load. Before this local plastic zone 

extends to the surface, it is engulfed by an elastic ‘cage’. Therefore, if unloading occurs, 

the loading/unloading curves would overlap giving rise to an apparent elastic 

deformation behavior (Huo et al. 2013, Yang et al. 2010b, Ye et al. 2010b, Packard, 

Witmer and Schuh 2008). Overall yielding then takes place once the size of the local 

plastic zone, DLPZ, reaches the critical length, LSB, which triggers the break-down of the 

elastic matrix and thus results in shear instability. In a simple word, local yielding in 

MGs is stress controlled according to the classic micromechanical models (Schuh, Lund 
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and Nieh 2004, Argon 1979b, Spaepen 1977b), while overall yielding is herein treated 

to be size controlled.   

 

From the dimensional consideration, DLPZ scales with the tip radius, R, of the 

spherical indenter for a given indentation mean pressure pm. In that regard, a size effect 

arises if different sized indenters are used to deform the same MG. For large sized 

indenters, the overall and local yielding points tend to overlap with each other because 

DLPZ could be already sufficient to cause shear instability at the moment of local 

yielding. In this size regime, the strength or hardness of MGs can be effectively 

attributed to the activation of local plasticity events, as in the classic models such as 

free-volume (Spaepen 1977b) and shear transformation zone model (Argon 1979b), and 

the recent models based on structural heterogeneity (Liu et al. 2013, Huo et al. 2013).  

However, for small-sized indenters, overall yielding could be much delayed if DLPZ < 

LSB at the onset of local yielding. For the latter case, subcritical growth of the local 

plastic zone is needed to trigger shear instability. As a result, the hardness may appear 

greater as the indenter tip radius becomes smaller. 

 

3.2.2 Dimensional Analysis and Theoretical Modeling 

 

In line with the above thinking, the critical load, Pc, leading to the overall yielding in 

MGs under spherical indentation can be expressed as: 
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  ,,E,R,LfP crSBc                          (3.1) 

where f is a continuous function; Er is the reduced modulus; c is the classic and scale-

independent yield strength as commonly defined in the literature (Johnson and Samwer 

2005b, Schuster et al. 2008, Sun et al. 2010) and  is the dimensionless pressure 

sensitivity that defines the pressure dependency of yielding in MGs (Sun et al. 2010). 

Note that c and  are two phenomenological parameters that are inherently rate and 

temperature dependent. Their functional forms could be derived according to the classic 

yielding models, such as the cooperative shear model (CSM), as demonstrated in 

Ref.(Johnson and Samwer 2005b).  

 

Following the Buckingham theorem (Barenblatt 2009), Eq. (3.1) can be simplified 

to the dimensionless form: 
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where  is a dimensionless function whose form is yet to be determined, and cp is the 

indentation mean pressure or hardness corresponding to Pc. By assuming that the local 

yielding process follows the modified CSM criterion (Johnson and Samwer 2005b) or 

the Drucker-Prager yielding criterion, as derived by Sun et al. (Sun et al. 2010), the 

functional form of could be fitted out for typical Zr-based MGs using the finite 

element (FE) simulations. The details are described in Appendix A and omitted here 
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for brevity. With the extensive FE simulations, we finally obtain the following 

functional form for Eq. (3.2): 

1C

SB
r00c

R

L
ECpp 








                         (3.3) 

where p0 is the scale-free hardness or the mean pressure at the overall yielding point; 

C0 and C1 are two terms derived from the simulation results. Note that these three terms 

are all functions of c, Er and , however, once the power law function as in (3) was 

adopted, the values of C0 and C1 were found to be insensitive to the choice of the 

independent variables (c, Er, . According to our simulations, C0 = 0.5 and C11.45; 

therefore, Eq. (3) can be also written as  1.45

SBr0c RL0.5Epp  . Evidently, pc ~ p0 

for R >> LSB while pc increases with the decreasing R when R ~ LSB. 

 

Figure 3.2 X-ray diffraction pattern of the bulk metallic glass Zr52.5Cu17.9Ni14.6Al10Ti5 
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Figure 3.3 (a) The programmed indentation load function for a constant strain-rate indentation 

test, (b) the typical indentation P-h curve (the black curve) in comparison with the Hertzian 

theory (the red curve) (inset = the enlarged view of the departure of the P-h curve from the 

Hertzian curve), (c) the typical P-h3/2 curve used to measure the critical indentation load Pc 

(inset = the enlarged view of the elasto-plastic transition manifested by the switch from the 

Herztian to the non-Hertzian deformation regime), and (d) the hardness data measured as a 

function of the indenter tip radius at the given indentation strain rate= 0.2 s-1 confirming the 

ISE behavior of the Zr-based MG. Note that the data point corresponding to R = 200 m is 

taken from Ref.(Tang, Li and Zeng 2004). 
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3.3 Experiments  

 

To verify the above theory, we chose a Zr-based MG as the model material, which has 

the chemical composition of Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) (in atomic %). Before 

the indentation experiment, the amorphous structure of this MG was confirmed by X-

ray diffraction (as shown in Figure3.2) and the sample surface was mechanically 

polished to a mirror finish. The spherical nanoindentation experiments were 

subsequently carried out at strain control on the Hysitron™ Nanoindentation System 

(Hysitron Inc, Minneapolis, MN, USA). For a systematic investigation, the following 

tip radii were used in the spherical indentation tests: 2m, 5m, 10m, 20m, 25m, 

30m and 35m. Note that the above tip radii of the spherical indenters were obtained 

after tip shape calibration (please see Appendix B for details). In order to keep a 

constant strain rate, dP/dt/P was set to be a constant, where dP/dt is the indentation 

loading rate and P the indentation load. This leads to an exponential increase of P with 

the time, t, in the loading segment, as shown in Fig. 3.3(a). For simplicity, unloading 

was programed to follow a constant unloading rate. In our experiments, three 

indentation strains were used, i.e. 
dt

dP

P2

1
 = 0.2 s-1, 2 s-1 and 20 s-1. 
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3.4 Results and Discussions 

3.4.1 Indentation Load-Displacement Curve 

 

Figure 3.3(b) shows a typical load-displacement (P-h) curve obtained from the as-cast 

sample for  = 0.2s-1 and R = 20m. According to the Hertzian theory, P = 

(4ErR
1/2/3)h3/2 for elastic indentation. Therefore, we can extract Er by fitting the initial 

linear portion of the P-h3/2 curve, as shown in Fig. 3.3(c), to the Hertzian curve. In 

principle, one may define the overall yielding point at the departure of the P-h curve 

from the Hertzian theory. However, directly matching the P-h curve with the Hertzian 

theory could lead to ambiguity in locating the overall yielding point. As shown by the 

inset of Fig. 3.3(b), the apparent departure point may look shifting towards a low value 

if the plots are magnified. To avoid this ambiguity, we fit the high-load portion of the 

P-h3/2 curve starting from the same indentation load and then back extrapolate it to 

intercept the Hertzian fit. The interception defines the turning point which signifies the 

elasto-plastic transition on the P-h3/2 curve. The critical yielding load Pc is then defined 

at the turning point, as shown in Fig. 3.3(c). In this way, all critical yielding load Pc can 

be obtained irrespective of how detailed the departure point would be inspected. In this 

study, we trying to addressing the gradually transition of deformation behavior which 

is from elastic regime to a regime dominated by multiple shear banding. The load- 

displacement curve for different indenter sizes are shown on Fig. 3.4 and we can found 

that the departure from the Hertzian prediction to the distributed plasticity by multiple 

shear bands is well below the pop-in event. In previous studies(Liu et al. 2009, Packard 
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et al. 2010b), before the emergence of first pop-in (or displacement burst/load drop), 

the load- displace curve already shows the gradually departure from elastic region from 

compression and micro compression test. Also in simulated nanoindentation(Packard 

et al. 2010b), they found that the load-displacement curve initially follows the elastic 

curve exactly, but at a certain depth begins to noticeably depart from the elastic curve 

as plastic flow sets in while no pop-in events examined in the curve. So the scenario 

may as follows: Physically, yielding in a MG is initiated via a local ‘de-caging’ process, 

this can be interpreted as the breakdown of the local elastic confinement that 

encapsulate the individual ‘flow unit’. At a critical load, the local ‘de-caging’ effect 

spreads out with the flow units percolating though the elastic matrix, causing the 

deviation of P-h curve from the Hertzian solution by multiple shear banding. In such a 

case, the pop-in event is only an after-effect of this percolation process. The pop-in 

event and the onset of departure from Hertzian solution indeed correspond to different 

stages of the structural evolution process in a MG. In Cheng’s work (Cheng and Ma 

2011b) , he also mentioned that the local high stress does not necessarily lead to shear 

banding, the activated STZ, while local stress close to intrinsic strength, may not form 

a shear band if no viable plan is ready, but may still cause a pop-in in nanoindentation.    
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Figure 3.4 The typical indentation P-h curve (the black curve) in comparison with the Hertzian 

theory (the red curve) for different indenter size 
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3.4.2 Indentation Size Effect and Shear-Band Nucleation Length 

Following the above methods, the reduced modulus Er of the Zr-based MG was 

extracted, which shows an average value of 100 GPa, independent of the tip radius and 

consistent with the measurement via the classic Berkovich nanoindentation. On the 

other hand, the critical mean pressure, pc, or hardness can be obtained at the critical 

load Pc via the equation
3

1

23

2

rc
c

Rπ

E6P
p 








 . Note that at least 10 indentation tests were 

carried out at the random sites on the MG surface for each tip radius. This ensures the 

repeatability of our experimental data. As shown in Fig. 3.3(d), the measured pc exhibits 

a sharp ISE behavior for R < 20 m, which is similar to what was reported in the 

previous work (Jang et al. 2011, Choi et al. 2012). However, as R is increased to be 

greater than 20 m, pc remains at a constant value of ~5.4GPa, which is very close to 

the mean pressure previously measured by Tang et al. using the spherical indenter of R 

= 200 m (Tang et al. 2004).  

 

With the data shown in Fig. 3.3(d), our theoretical model can be verified. 

According to Fig. 3.3(d), p0 can be taken as 5.4 GPa for Vit105 [Fig. 3.3(d)]. Since 

Equation (3.3) predicts that pc-p0 should scale with 1/R to the power of 1.45, we can 

now compare the experimental data to this scaling relation. As seen in Fig. 3.5(a), it is 

evident that the trend of the experimental data is captured very well by the theoretical 

model. Furthermore, the critical length LSB can be extracted by fitting the experimental 



 

56 

 

data to the theory. With Er ~ 100 GPa, we obtain LSB = 536  34 nm for the indentation 

strain rate of 0.2 s-1. Following the same procedure, we can extract LSB for the other two 

indentation strain rates. Interestingly, as shown in Fig. 3.5(b), there is a very small but 

detectable increase in LSB with the indentation strain rates. The resulting rate sensitivity, 

defined as    lndLlndm SB , is ~ 0.01.  
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Figure 3.5 (a) The comparison of the experimental data of pc-p0 versus 1/R with the theoretical 

predicted scaling ration, and (b) the variation of the extracted LSB with the indentation strain 

rates. 
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    Compared to the previous experimental studies (Jang and Greer 2010, Guo et al. 

2007b, Chen et al. 2010, Tian et al. 2012, Volkert et al. 2008, Ye et al. 2012, Yavari et 

al. 2010, Ye et al. 2009b), particularly the nano-scale uniaxial tension, in which the 

critical shear-band nucleation length was estimated to be ~100 nm for Zr-based MGs, 

our extracted shear-band nucleation length seems relatively high (~500 nm). The 

discrepancy could be explained as follows. As pointed out by Shimizu et el. (Shimizu 

et al. 2006) and Cheng et al. (Cheng and Ma 2011a), shear bands tend to nucleate from 

surface ‘defects’ of a MG sample in a uniaxial test. This is analogous to the scenario of 

heterogeneous nucleation and contrasts the sub-surface shear-band nucleation within a 

gradient indentation stress field. The latter case is close to the scenario of homogeneous 

nucleation and therefore, it is reasonable for the ISE-derived shear-band nucleation 

length to be longer than the prior estimates from uniaxial tests.  

 

To further look into this issue, Fig. 3.6 summarizes the recently obtained shear-

band nucleation lengths though different experimental methods, including micro- and 

nano-compression, micro-bending and nano-tension. As seen in Fig. 3.6, the estimated 

shear band nucleation length, LSB, appears to be shorter under tension while longer 

under compression. As suggested by Liu et al. (Liu et al. 2012), Chen et al. (Chen, Pei 

and De Hosson 2012) and Ye et al. (Ye et al. 2012), external confinements, such as 

hydrostatic pressure or those encountered during compressive loading, could slow 

down the STZ dynamics, thereby delaying the process of shear-band nucleation (Ye et 
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al. 2012). In that regard, the presence of hydrostatic pressure in the indentation stress 

field may further increase the shear-band nucleation length.  

 

 

 

 

Figure 3.6 Comparison of the shear-band nucleation length obtained from the current study 

with those estimated previously for the variety of MGs from different experiments. Note that 

the experimental data are taken from the work of Guo et al (Guo et al. 2007b), Jang et al (Jang 

and Greer 2010), Chen et al (Chen et al. 2010), Bharathula et al (Bharathula 2010), Yavari et al 

(Yavari et al. 2010), Ye et al (Ye et al. 2012) and Volkert et al (Volkert et al. 2008).  
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3.4.3 The Theoretical Estimate of Shear-Band Nucleation Length  

 

In the MG literature, there are few theoretical models available for the prediction of the 

shear-band nucleation length for MGs. For example, Schuh et al. (Schuh et al. 2004) 

predicted a shear-band nucleation length on the order of 100 nm by comparing the 

frequency of a critical shear-band embryo with that of a STZ. In a similar way, Nieh et 

al. (Nieh and Wadsworth 2008) however estimated a nucleation length of ~10 nm. On 

the other hand, according to the MD simulations, Shimizu et al. (Shimizu et al. 2006) 

developed a shear-band nucleation model by assuming that shear instability occurs once 

the local temperature in the process zone ahead of a shear-band embryo reaches the 

glass transition temperature (Cheng and Ma 2011a). Their prediction of the shear-band 

nucleation length ranges from ~10 to ~100 nm depending on the thermo-mechanical 

properties of the material. Note that the theoretical base of Shimizu’s model is the 

thermo-softening induced shear-band nucleation, which, however, contradicts many 

experimental studies showing that there is only limited temperature rise during shear-

band nucleation and propagation in MGs, particularly for small samples (Greer et al. 

2013, Ye et al. 2009a, Nieh et al. 2012, Cheng et al. 2009, Miracle et al. 2011). In 

general, the previous theoretical predictions of LSB (10-100 nm) agree qualitatively with 

the experimental findings, as shown in Fig. 3.6. However, further efforts are still needed 

to explain our experimental data, particularly, the rate dependence of LSB as shown in 

Fig. 3.5(b). In the following section, we will turn to a general mechanistic model which 

could be used to rationalize our experimental finding. 
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3.4.4 The General Shear-Band Nucleation Model 

 

Regardless of the atomic-scale softening mechanism, the process of shear-band 

nucleation can be described as following. As a shear-band embryo grows in size, 

mechanical softening occurs to the bonding strength of the atoms which are just being 

‘absorbed’ into its growing front. Mechanistically, the subcritical growth of the shear-

band embryo is sustainable only when the local external stress transmitted from the far-

field stress can be balanced by its internal resistance. As the local external stress keeps 

increasing, the residual strength left in the embryo however becomes ‘worn’ out with 

further shearing or sliding. When the internal strength becomes incapable of balancing 

the increasing external stress, the shear-band embryo turns into a runaway defect and, 

thus, shear instability occurs. In principle, the above-mentioned mechanism of ‘shear-

softening-induced-instability’ applies not only to shear banding in MGs but also to a 

similar defect nucleation process in many other types of materials, such as earthquake 

nucleation in the earth’s crust. 
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Figure 3.7 The schematic of the subcritical growth behavior of a shear-band embryo in a MG. 

Based on the above considerations, Uenishi and Rice(Uenishi and Rice 2003) 

developed a theoretical model to account for such a process of shear softening induced 

instability. According to these authors (Uenishi and Rice 2003), the critical length of 

the shear-band embryo depends mainly on two factors. One is the elastic modulus of 

the surrounding media that confines the subcritical growth of the embryo, and the other 

is the softening rate that characterizes the strength loss in the shear-banding embryonic 
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zone. At the present time, we are not aware of any studies to characterize the softening 

behavior of shear-band embryos. Therefore, for the sake of simplicity, we simply treat 

the material softening in the shear-band embryo to be a linear softening process, which 

is characterized by the local yield stress c and the linear softening rate, as shown in 

Fig. 3.7. Furthermore, in line with the molecular dynamics (MD) simulation results 

shown later, we also assume a steady-state residual strength r that remains after the 

initial softening within the embryonic zone. For the linear softening law as shown in 

Fig.3.7, the critical shear-band nucleation length can be derived as(Uenishi and Rice 

2003): 

 




G
LSB                               (3.5) 

 

where  is a dimensionless factor roughly equal to ~1.16 and G is the shear modulus of 

the MG. Since    /rc  , where  is the critical shear displacement at which 

the initial softening process is completed, Eq.(3.5) can be re-cast into the following 

form:  

 

  W

G
t

G
tL SB

crc

SBSB 


 


                       (3.6) 

 

in which tSB is the shear-band thickness (10-20 nm), c is the critical shear strain (=/tSB) 

and W is the linear softening rate measured in terms of the strength loss per unit shear 
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strain (= (c - r)/c). Taking LSB ~ 500 nm,  ~ 1, tSB ~ 20 nm and G ~ 30 GPa, the 

linear softening rate W can be then estimated to be ~1.2 GPa per unit strain for the Zr-

based MG under investigation.    

 

3.4.5  The Rate Dependence of Shear Softening 

According to Eq. (3.6), any change in G, tSB or W could result in the variation in LSB. 

For our experiments, G remains unaltered while tSB should be a constant according to 

Ref.(Zhang and Greer 2006b). In such a case, we are left with no choice but the shear 

softening rate W to explain the rate dependence of LSB. According to Fig. 3.5(b), it can 

be inferred that a rise in LSB must correspond to a drop in W with an increasing shear 

rate. To verify this, we turn to molecular dynamics (MD) simulations and theoretical 

modeling. Before getting into the details, it should be emphasized that, given the 

assumptions made in deriving Eq.(3.5) and (3.6), the following MD simulations and 

theoretical modeling are only meant for checking the validity of the trend shown by our 

experimental data.  
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Figure 3.8 (a) The compressive stress-strain curves obtained from the MD simulation of a 

Zr50Cu50 MG for the different strain rates (the dashed lines indicate the level of the steady-state 

residual strength remaining after the initial fast softening), (b) the linear softening rate W 

derived from (a) and (c) the shear stress-strain curves obtained from the classic free-volume 

model for the different strain rates. 
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To carry out the MD simulations, we chose a model system of Cu50Zr50 MG 

which contains 50000 atoms built upon the realistic embedded-atom method potential 

(Mendelev et al. 2009) and has the dimensions of ~95.6 nm × ~95.6 nm × ~95.6 nm. 

To prepare the MG, the system was virtually equilibrated at the temperature T = 2000 

K for 100 ps and then quenched to 100 K at the cooling rate of 1011 K·s-1. To simulate 

the compressive behavior of the MG, periodic boundary conditions were applied to all 

three sample dimensions and compressive loading was then applied using the Nose-

Hoover chain method (Mundy et al. 2007, Tuckerman and Martyna 1999) under the 

NPT condition. The simulation results are expected to shed light on the possible rate 

effect on the stress-induced softening behavior of MGs. 

 

Figure 3.8(a) displays the compressive stress-strain curves obtained respectively 

for the strain rates of 2 x 10-5 ps-1, 2 x 10-4 ps-1 and 2 x 10-3 ps-1. To facilitate the 

comparison, the baselines shown in Fig. 3.7(a) indicate the level of the steady-state flow 

stress, r, at the corresponding strain rate. Evidently, r increases with the increasing 

strain rate. According to the definition of W, we can thus compute W for the three strain 

rates, as indicated in Fig. 3.8(a). As shown in Fig. 3.8(b), W reduces as the strain rate 

increases, which agrees with what our experimental data imply. To further check if the 

trend revealed in Fig. 3.8(b) is generic to various kinds of MGs, we also performed a 

numerical simulation of the shear softening behavior in MGs using the classic free-

volume model (please see Appendix C for details). From Fig. 3.8(c), it can be seen that 

the critical strain, at which the residual strength reduces to the steady state value, 



 

67 

 

increases significantly with the increasing strain rate, indicative of a more sluggish 

shear softening at a higher rate than at a lower rate. Again, this rate-dependent shear 

softening behavior is in line with our experimental data. 

 

3.5   Implication 

 

Before conclusion, let us discuss briefly one important implication of our current work. 

Recently, Tian et al. (Tian et al. 2012) proposed that the elastic limit of MG would 

approach an ideal value of ~8% when one could manage to reduce the size of a MG 

specimen without causing heterogeneous shear-band nucleation. Indeed, if one takes 

pc~3y (Ye et al. 2012), where y represents the yield strength of a MG, it can be 

inferred from our experiments [Fig. 3.3(d)] that the elastic limit of our MG sample 

simply increases from ~2% to ~5%, which is very close to what Tian et al. previously 

reported(Tian et al. 2012). Furthermore, should the concept of ideal elastic limit still 

hold (Tian et al. 2012), one can infer that there is still space for us to further increase 

the hardness of the MG by using a smaller indenter. Nevertheless, with further reduction 

in the tip radius, one may enter the size regime where structural heterogeneity and 

Weibull statistics plays an important role. In that case, it becomes possible that the size 

effect law proposed in the current work may need revision by taking into account the 

effect of structural heterogeneity in MGs. 
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3.6 Conclusions 

To conclude, we develop a theoretical model based on the notion of size-controlled 

shear-band nucleation to account for the indentation size effect in MGs. Through 

carefully designed experiments, this model prediction is justified on the Zr-based MG. 

By fitting the experimental data to the theory, we are able to extract the shear-band 

nucleation length from the trend of indentation size effect for different indentation strain 

rates. Our results show that shear band nucleation in the Zr-based MG exhibits slight 

rate dependence, which can be rationalized by the rate-affected shear softening 

behavior in MGs. Finally, it is worth pointing out that the experimental/theoretical 

framework herein established is rather general and should be applicable to other MG 

alloys or even other types of glassy materials, as long as an appropriate constitutive 

relation is available for describing the local yielding of the glassy material.  
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3.7 Appendix A 

To fit out the functional form of Eq.(2), we need to simulate the growth of the local 

plastic zone with the applied indentation load P, as shown in Fig.1. Generally, the size 

of the local plastic zone DLPZ can be expressed as: 

  ,,E,R,PgD 0rLPZ                       (A1) 

where Er is the reduced modulus, 0 and  define the following pressure-dependent 

Drucker-Prager (DP) yield criterion: 

m0e                              (A2) 

in which e is the effective stress and m is the mean or hydrostatic stress. 

     Converting (A1) to the dimensionless form gives: 
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where 2aPpm  is the indentation mean pressure and a is the contact diameter which 

can be expressed in terms of P, R, and Er. 

     Table S1 lists the tensile (t) and compressive (c) strengths measured for various 

Zr-based MGs. According to the DP model [Eq.(A2)], 
ct

ct
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3

2
0  and 

ct

tc









 3 . Therefore, according to the available experimental data listed in Table 

S1, it is seen that the dimensionless factor  would range from 0.01 to 0.1 while 0/Er 

should be around 0.01 if Er~100 GPa. As such, the values of the dimensionless factors 

 and 0/Er were selected for the FE simulations in such a way that the available 

experimental data are covered. 
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Figure A1. (a) The comparison of the typical elastic and elasto-plastic load-displacement curves 

obtained from the finite element (FE) simulations (insets: the simulated local plastic zones at 

the different indentation loads), (b) the typical curves of DLPZ/R versus pm/Er at the different 

values of  and 0 for R = 1 m, and (c) the typical curves of DLPZ/R versus pm/Er at different 

R’s for 0/Er = 0.008 and  = 0.06. 

 

Figure A1(a) displays two typical load (P) – displacement (h) curves obtained 

respectively from the simulated elastic and elasto-plastic indentations. On the same plot 

also shown are the series of the simulated local plastic zones under the spherical 

indenter at the different loads. Note that the deformation behavior of each single 

element was monitored during the FE simulation and the number of locally yielded 
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elements was counted at any stress levels for the different combination of the material 

parameters. To simplify our analysis, the size of the local plastic zone is defined as the 

diameter of the sphere that has the same volume as the real local plastic zone. To explore 

the dependence of the local plastic zone size, DLPZ on , 0/Er and R, is varied from 

0.01 to 0.3 and 0/Er from 0.006 to 0.012 for R = 0.5 m, 1 m and 5 m.   

For the purpose of clarity, only part of the simulation results is shown in Fig. A1(b) 

and (c). After compiling all the simulation data, we found that the following functional 

form fits the simulated zone size DLPZ very well: 

B

r

0mLPZ

E

pp
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D
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 
                        (A4) 

where p0 is the critical indentation mean pressure whose value depends on both 0/Er 

and  , while A = 1.55 and B = 0.69 are the other two fitting parameters whose values 

are insensitive to the choice of 0 and for DLPZ/R < 0.1. Rearranging (A4) gives: 
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Taking A=1.55, B=0.69, LSB = DLPZ and pc = pm, we then obtain: 
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3.8 Appendix B 

The nominal tip radii of the currently used spherical indenters, as provided by the 

manufacturer, are 2 m, 5 m, 10 m, 20 m, 40 m, 60 m and 80 m. Before the 

indentation tests, the indenter tip shapes were all calibrated according to the following 

procedure. Firstly the reduced modulus of the Zr-based MG was determined by the 

classic Oliver-Pharr based nanoindentation method, which was 100  8 GPa. After that, 

we fit out the real tip radii of the spherical indenters by equating the reduced modulus, 

as predicted by the Hertzian theory, to the measured one from the classic 

nanoindentation test. The experimental results showed that the real tip radii of the 

spherical indenters were consistent with the nominal ones for the small indenters while 

much smaller than the nominal ones for the big indenters.  
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Figure A2 (a) The measured reduced modulus Er and (b) the critical mean pressure or hardness 

pc of fused quartz remaining constant for the different indenter tip radii after tip shape 

calibration. 
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    To double check the validity of the above method, we also performed a series of 

spherical indentation tests on fused quartz with the calibrated spherical indenters. As 

shown in Fig. A2 (a), with the corrected tip radius, the reduced modulus of the fused 

quartz was measured to be a constant of 69.6  3.5 GPa, which is in excellent 

agreement with the standard value and independent of the indenter tip radius. 

Furthermore, we also measured the critical mean pressure or hardness pc of the fused 

quartz using our approach. In contrast to the Zr-based MG, the experimental results 

show that the hardness of the fused quartz keeps nearly to a constant of 9.25  0.93 

GPa [Fig. A2(b)], which implies that yielding of the fused quartz appears size 

insensitive with regard to the indenter tips we used.  
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3.9 Appendix C 

According to the classic free-volume theory(Steif et al. 1982), the flow equations for 

MGs can be written as:  
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Where f  is the average free volume per atom,  is the geometrical factor of the 

order of 1, * is the critical volume, v is the frequency of atom vibration, mG is the 

activation energy for atom jump, G is the shear modulus,  is the shear stress, k is the 

Boltzmann constant,   is the atomic volume,   is the external strain rate. 

Introducing the following dimensionless variables: 

*/ ff         kT2/   

tRt               kTGG 2/  
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Equations of (A7) and (A8) then become: 
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To obtain Fig. 6(c), the following values were used for solving Eqs. (A9) and (A10): 

vf =0.04, τ=0 and α=1; =1; G=80; γ’=210-4, 210-5, 210-6, 210-7, 210-4. 
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4 Residual Stress Effect on Nucleation of Shear-Band 

Instability 

 

 

4.1  Introduction 

Since the first report by Klement(W. Klement 1960) in 1960, bulk metallic glasses 

(BMGs) have attracted extensive interest because of their exclusive properties such as 

very high strength, hardness, elastic limit as well as good corrosion resistance (Byrne 

and Eldrup 2008, Cheng and Johnson 1987, Spaepen 1987, Dyre 2008, Greer 1993, 

Loffler 2003). However, their main drawback is their catastrophic brittle failure under 

uniaxial loading, initiating from severe plastic-strain localization in a narrow region 

called shear band (Schuh, Hufnagel and Ramamurty 2007). Shear band formation is 

generally recognized as a direct consequence of yielding or the onset of the plastic 

deformation. They instantaneously propagate through sample and cause fracture, 

thereby leading to limited ductility under uniaxial loadings or even under bending for 

some cases. In recent years, numerous studies were proposed to the stabilization of 

shear band propagation. Some of them were focused on incorporating second phases 

into BMG matrix (Kim et al. 2005), which show much better plasticity. Also BMGs 

show increased plasticity in bending and in compression after shot-peening (Zhang, 

Wang and Greer 2006, Wang et al. 2011). In Wang’s work (Wang et al. 2011), the 
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hardness of BMG sample is affected by the present of residual stress. In other’s work 

(Scudino et al. 2011), surface treatment effectively enhanced the tensile plastic 

deformability of BMGs due to the existence of residual stress, which confined the 

propagation of shear band. In this chapter, we use nanoindentation with spherical 

indenter to study the effect of residual stress on the nucleation of shear band instability. 

 

4.2 Experiment 

 

For this study, we chose a Zr-based bulk metallic glass as the model material, which 

has the chemical composition Zr47Cu46Al7 (in atomic %). The structure of the BMG 

samples was examined by X-ray diffractometry (XRD, Co radiation) before and after 

the plastic bending. The XRD patterns, as shown in Fig. 4.1, only display a broad 

diffraction maximum without any detectable sharp Bragg peaks, indicative of an overall 

amorphous structure even after the plastic deformation. 

 

    We designed a plastic bending test which enables us to easily apply a severe plastic 

deformation in BMGs. After the plastic bending, the local mechanical properties were 

first measured on the Hysitron™ NanoIndenter system (Hysitron Inc, Minneapolis, MN) 

with a Berkovich diamond tip. Then the spherical nanoindentation experiments were 

subsequently carried out at strain control. For a systematic investigation, the following 

tip radii were used in the spherical indentation tests: 2m, 5m, 10m and 20m. In 

order to keep a constant strain rate, dP/dt/P was set to be a constant, where dP/dt is the 
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indentation loading rate and P the indentation load. This leads to an exponential 

increase of P with the time, t, in the loading segment. For simplicity, unloading was 

programed to follow a constant unloading rate. 

 

 

Figure 4.1 X-ray diffraction pattern of the bent slice and as-cast sample 

 

4.3 Results and discussion 

 

For the bending experiments, two bending samples (or slices) with the dimension of 

10mm×3mm×0.42mm were prepared through the sectioning from a same BMG plate. 

Before bending, the top surfaces (10mm×3mm) of the slices were mechanically 

polished down to 10nm. Once one end fixed, the slices were subsequently bent at the 



 

86 

 

free end around the mandrels with different diameters, as shown in Fig 4.2. This 

experimental set-up can readily lead to a severe plastic deformation of the slices which 

is different from the conventional three- or four-point bending experiments.  

 

Figure 4.2 The sketch of the experimental set-up 

 

    To systematically study the residual stress effect, the two BMG slices were 

plastically bent to different curvatures without fracture. Next we measured the local 

mechanical properties with a Berkovich diamond tip. To ensure data reproducibility, 

the tests were set 30μm apart between indentation marks. Since the standard Oliver-

Pharr method is no longer applicable for the indentations made in the region near the 

both-side edges(Oliver and Pharr 1992), the Joslin-Oliver method (Jakes et al. 2009) 
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was employed here for data analysis. Unlike the method of Oliver-Pharr(Oliver and 

Pharr 1992), which is based on three implicit assumptions: the sample has rigid support, 

it fills a half-space and it is homogeneous, the Joslin-Oliver method can remove the 

artifacts induced by edge effect. 

 

    Based on the Joslin-Oliver method(Jakes et al. 2009), the local hardness and 

Young’s Modulus (the Poisson’s ratio used for calculating the Young’s modulus is 0.365) 

of the both BMG bent slices were measured by nanoindentation. The local hardness 

remains more or less at a constant of ~ 6 GPa for sample 1 while shows slightly increase 

from compression to tension site for sample 2. In contrast, there is no significant change 

in the measured local Young’s Modulus. Regardless of the surface plastic strain, their 

values fluctuate around the average of 110 GPa. 

 

    In order to extract the residual stress for both bending sample, we firstly measured 

the shear offsets of each shear band on both tension and compression side and defined 

the maximum plastic strain with the following equation. 

 

S

cosS
SO

N

i
i 




 1              (4.1) 

 

Where, ΔSi is the length of i-th shear offset, NSO is the number of shear offset, θ is tilt 
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angle of shear offset, S is the arc length of neutral axis. If we use the average length of 

shear offset, the Eq.4.1 can be further simplified. Because NSO/S is equal to the shear 

offset density (ρ), the simplified plastic strain is  coss  and s  is the average 

length of shear offset. Based on the above definition, we calculated both the maximum 

tension and compression plastic strain of two different samples. Then, according to Ye 

et al.(J. C. Ye, J. P. Chu et al. 2012) , the residual stresses on the compression sides were 

extracted, and all of them are listed in Table. 4.1. 

 

Table 4.1 The maximum plastic strain on both tension and compression side of the two samples, 

and residual stress on compression side of all two samples 

 εT εC σy(GPa) σo(GPa) σr(GPa) 

DP model MC model 

Sample 01 0.02 0.02 2.0 2.0 -- -- 

Sample 02 0.05 0.03 2.1 1.9 0.174 0.156 

Note: the subscripts T and C of plastic strain donate tension and compression. 
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Figure 4.3 The programmed indentation load function for a constant strain-rate indentation test 
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Figure 4.4 The typical indentation P-h curve (the black curve) in comparison with the Hertzian 

theory (the red curve) (inset = the enlarged view of the departure of the P-h curve from the 

Hertzian curve) 

 

 

    As shown in Fig 4.3, a load function with constant strain rate was employed. 

Figure 4.4 shows a typical load-displacement (P-h) curve of the sample 01 obtained at 

 = 0.5s-1 and R = 20m. According to the Hertzian theory, P = (4ErR
1/2/3)h3/2 for elastic 

indentation, where Er denotes the reduced elastic modulus. In order to measure Er 

reliably, same as the method in chapter 3, the experimental P-h curve was first 

converted to the P-h3/2 curve and, subsequently, the linear portion of the latter was 
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utilized to fit out Er via linear regression, as shown in Fig. 4.6. In this way, we can 

obtain Er from the linear fitting with a high correlation coefficient. Afterwards, the real 

modulus, E, of the MG can be readily extracted from Er by assuming a Poisson’s ratio 

of ~0.365.  
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Figure 4.5 (a) The load-displacement (P-h) curve at   = 0.5s-1 and R = 20m on different site 

of sample 01(b) and sample 02 
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    Figure 4.5 display the typical load displacement curves obtained from indenting 

the sample 01 at   = 0.5s-1 and R = 20m. From Fig. 4.5 (a), it is evident that all 

loading curves of sample 01 overlap for compression, middle and tension site. In 

contrast, the loading curves deviate significantly for different site of sample 02 which 

are shown in Fig. 4.5 (b). Afterwards, we compare the experimental P-h curve and the 

elastic Hertzian solution. Physically, yielding in a MG is initiated via a local ‘de-caging’ 

process. This can be interpreted as the break-down of the local elastic confinement that 

encapsulates the individual ‘flow units’ and thus local yielding amenable to the 

cooperative shear modeling. At a critical load, the local ‘de-caging’ effect spreads out 

with the flow units percolating through the elastic ‘matrix’. Once a shear-band embryo 

can reach the critical nucleation length at yielding, resulting the global yielding. Here, 

it is worth emphasizing that the pop-in event is not corresponding to the activation of 

flow units.  

 

    The local elastic confinement firstly breakdown and the flow units start to 

percolate through local confinement. Once the critical length of the shear band reached, 

the whole system will undergo global yielding. Since our system has the displacement 

resolution of ~1 nm and force resolution of ~1N, here the local yielding event is 

impossible to capture. Also the selection of the starting point of the global yielding will 

be an arbitrary process. So in our data analysis, as shown in Fig.4.6, we fit two parts of 

the curve, elastic and plastic process, respectively. The meeting point Pc represents the 

load at which a mature shear band is nucleated, corresponding to the global yielding of 
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metallic glasses in spherical indentation. 

 

 

Figure 4.6 The linear fitting of the elastic portion (red curve) and the global plastic portion (blue 

curve) of the P-h3/2 curve.   

   

According to the Hertzian theory, the maximum pressure under the indenter is 

given by 
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Figure 4.7 The strength size effect of the mean pressure in the different tip radius of 

compression, middle and tension site for (a) sample 01 and (b) sample 02 
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    For each sample, we conducted around 10 nanoindentation tests on the sample 

surface of the compression, middle and tensile sites. Regardless of the different sample 

and sites, the measured E is around 110 GPa which is roughly same with the result from 

the Berkovich result. As shown in Fig. 4.7, the measured pc exhibits a sharp strength 

size effect on both the samples with different residual stress, which increased 

dramatically with the decrease of the tip radius. In Chapter 3, it is obviously shows that 

the pc remains at a constant value as the increased R which is equal to the hardness 

results from the classic Berkovich nanoindentation. So we can use hardness as p0 which 

is the size-independent mean pressure.  

 

    According to 
1C

SB
r00c

R

L
ECpp 








 in Chapter 3 which predicts that pc-p0 

should scale with 1/R to the power of 1.45, we can now compare the experimental data 

to this scaling relation. As seen in Fig. 4.8, it can be seen that the prediction captures 

the experimental data very well for both sample 1 and 2. Furthermore, the shear band 

nucleation length LSB can be extracted by fitting the experimental data to the theory. For 

sample 1, we obtain LSB = 493±13 nm which is roughly the same for different sites. 

But the critical lengths are found to vary small but detectable increase from the 

compression to tension site. It indicates that compressive residual stress tends to slightly 

increase the nucleation size for shear band instability.  
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Figure 4.8 The comparison of the experimental data of pc-p0 of (a) sample 1 and (b) sample 2 

versus 1/R with the theoretical predicted scaling ration. 
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Figure 4.9 The variation of the extracted LSB for (a) sample 1 and (b) sample 2 with the different 

residual stress state. 
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    Based on the mechanism of shear-softening induced shear banding in MGs, 

Uenishi and Rice(Uenishi and Rice 2003) proposed a theoretical model for the shear 

softening induced instability. According to these authors (Uenishi and Rice 2003), the 

critical length of the shear-band embryo depends mainly on the elastic modulus of the 

elastic confinement and the that characterizes the strength loss in the shear-banding 

embryonic zone. Same as Chapter 3, for the sake of simplicity, there are some 

assumptions: (a) the material softening in the shear-band embryo to be a linear softening 

process, which is characterized by the local yield stress c and the linear softening rate; 

(b) we assume a steady-state residual strength r that remains after the initial softening 

within the embryonic zone. So the critical shear-band nucleation length can be derived 

as: 

 


  W
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αt

εσσ
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
 (4.3)

 

where  is a dimensionless factor roughly equal to ~1.16 and G is the shear modulus of 

the MG. Since    /rc  , where  is the critical shear displacement at which 

the initial softening process is completed, tSB is the shear-band thickness (10-20 nm), c 

is the critical shear strain (=/tSB) and W is the linear softening rate measured in terms 

of the strength loss per unit shear strain (= (c - r)/c). Taking  ~ 1, tSB ~ 20 nm and 

G ~ 37 GPa, the linear softening rate W can be then extracted in Table 4.2.  
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Table 4.2 The critical length and softening rate for sample 2 

Sample 02 Compression Middle Tension 

LSB (nm) ~447 ~461 ~467 

W (GPa/Strain) ~1.66 ~1.60 ~1.58 

 

In previous studies, Scudino et al.(Scudino et al. 2011) found that imprinting can 

improve the plasticity of BMGs. They pressed a parallel-ridged template into the 

surfaces of Zr-based BMG specimen. The imprinting leads to a marked inhomogeneity: 

softening under the imprinted troughs and hardening between them, associated with 

plastic flow and with, respectively, tensile and compressive residual stresses. The 

imprinting leads to more diffuse yielding and distinctly improved ductility of up to 

0.9%. Scudino et al. attributed the improved ductility to the easy initiation of shear 

bands in the soft regions and the blocking of potentially catastrophic shear-band 

propagation by the hard regions. Also from the work of Wang (Wang et al. 2011), 

compressive surface stresses can be induced by shot-peening in metallic glasses. They 

found that compressive residual stresses at surfaces constrain plastic deformation. From 

the theoretical model proposed by Uenish and Rice, we can be attributed the increase 

of the critical length to the following two factors: the increment of the elastic 

confinement and the decrease of the softening rate of the shear band embryo. From 

Table 4.2, we can found that the present of the compressive residual stress reduced the 

softening rate of the shear band embryo while the softening rate increased with the 
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presence of the tensile residual stress. The results confirm our speculation. At the 

meantime, the present of the compressive residual stress plays the same role of the 

increase of the elastic matrix for the growth of the shear band embryo. Therefore, the 

critical length for shear band nucleation under compressive residual stress will be 

increase due to the increased elastic confinement and the decrease of the shear softening 

rate. 

  

4.4 Conclusion 

In summary, through the nanoindentation study, we can extract the mechanical 

properties from the compressive to tensile site, it is shown that the elastic modulus of 

the material keeps at a constant while its hardness drops more significantly in the 

compression region than that in the tension region. Also, the experiment results confirm 

the theoretical model based on the notion of size-controlled shear-band nucleation. We 

are able to extract the shear-band nucleation length from the trend of indentation size 

effect for varies residual stress. Our results show that shear band nucleation in the Zr-

based MG is influenced by the presence of compressive or tension residual stress, which 

can be rationalized by the different elastic confinement and shear softening rate in MGs. 

It indicates that compressive residual stress tends to slightly increase the nucleation size 

for shear band instability. 
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5 Thermal Effect on Nucleation of Shear-Band Instability 

5.1 Introduction 

 

Metallic glasses (MGs) have exclusive properties such as high strength, high elastic 

limit and good corrosion resistance (Byrne and Eldrup 2008, Cheng and Johnson 1987, 

Spaepen 1987, Dyre 2008, Greer 1993, Loffler 2003). Unlike crystalline metals, of 

which the physical/mechanical properties can be derived from the interplay between 

their microstructures and crystalline defects, such as dislocations, MGs do not possess 

any ‘microstructures’ of long-range translational periodicity. Due to this structural 

amorphousness, it was a common notion, although being criticized recently(Egami 

2011), that one has to nucleate or activate a flow ‘defect’, such as free-volume(Spaepen 

1977) or shear transformation zone(Argon 1979), in order to trigger a plastic flow in 

MGs, which is similar to the case of defect nucleation/growth in an elastic solid. Once 

the surrounding elastic confinement break down, the flow ‘defect’ percolates through 

the elastic confinement. The shear-band embryo reaches the critical nucleation length 

at yielding, resulting the formation of shear band. Metallic glasses undergo plastic 

deformation by the nucleation and propagation of shear bands. Some studies made 

mechanical treatments studies on MGs, such as loading at stresses well below those for 

the onset of instantaneous yielding. Lee et al.(Lee et al. 2008) showed that pre-loading 

makes remarkable increases in compressive plasticity, from essentially 0 in as-cast 

samples to 5.2% in pre-loaded samples. It seems that the loading induces structural 
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rejuvenation in the samples, which is the opposite of the structural relaxation induced 

by thermal annealing. In contrast to the rejuvenation noted for pre-loading, Packard et 

al.(Packard et al. 2010) measured the yield load after applying loading and unloading 

cycles (as for the static loading, in the nominally elastic regime), which shows a clear 

hardening effect. Packard proposed that the metallic glass might thus reach highly 

compact states inaccessible by thermal annealing. These studies suggest the effect of 

the mechanical annealing on the initiation of shear bands; it remains to be studied 

whether or not shear-band propagation would be affected by annealing or thermal 

history. With carefully designed nanoindentation test, we study the thermal historic 

effect on the formation of shear band. 

5.2 Experiment 

    A typical Zr-based BMG with the nominal composition of 

Zr52.5Ti5Cu17.9Ni14.6Al10 (Vit105) was selected as the model material. The as-cast 

specimens were annealed at 653K for 61h and 256h, respectively. Then the samples 

were taken out from the furnace and cooled in air down to room temperature. The glassy 

ribbon was prepared by rapid quenching method with a cooling rate of 105 K/ s. The 

structure of the BMG samples was examined by X-ray diffractometry (XRD, Co 

radiation) before testing as shown in Figure 5.1. The XRD patterns only display a broad 

diffraction maximum without any detectable sharp Bragg peaks, indicative of an overall 

amorphous structure. 
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   Figure 5.1 X-ray diffraction pattern of the samples with different thermal history 

 

    The local mechanical properties were first measured on the Hysitron™ 

NanoIndenter system (Hysitron Inc, Minneapolis, MN) with a Berkovich diamond tip. 

Then the spherical nanoindentation experiments were subsequently carried out at strain 

control on the Hysitron™ Nanoindentation System. For a systematic investigation, the 

following tip radii were used in the spherical indentation tests: 2m, 5m, 10m and 

20m. In order to keep a constant strain rate, dP/dt/P was fixed to be 0.2s-1, where dP/dt 

is the indentation loading rate and P the indentation load. This leads to an exponential 

increase of P with the time, t, in the loading segment. For simplicity, unloading was 

programed to follow a constant unloading rate. 
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5.3 Results and Discussion 

 

    The hardness and modulus (the Poisson’s ratio used for calculating the Young’s 

modulus is 0.365) of the four samples were first measured with a Berkovich diamond 

tip. To ensure data reproducibility, adjacent indentation marks were set 30μm apart. 

With the method of Oliver-Pharr(Oliver and Pharr 1992), the most widely used method 

for extraction of hardness and modulus by Berkovich nanoindentation. The measured 

hardness values for the four MG samples, including ribbon, as-cast, annealing after 61h 

and 256h, are 5.5GPa, 5.7GPa, 6.0GPa and 6.4GPa respectively, which show the 

dependence of thermal history. Accordingly, the hardness rises with increase of 

annealing time, while the ribbon one lower than the other three, demonstrating that 

denser structure has a higher hardness. Meanwhile, the measured Young’s modulus of 

the ribbon and as-cast samples are ~92 and ~102GPa. With the increasing annealing 

time, the Young’s modulus increase substantially from ~107 to ~112GPa. This trend is 

consistent with the previous finding(Lewandowski, Wang and Greer 2005). Annealing 

a metallic glass can trigger structural relaxation and affect elastic behavior. Although it 

is difficult to characterize the structural change precisely, irreversible relaxation is often 

associated with the changes of the topological short range order. Also the results show 

an increase in density with a corresponding increase in elastic modulus. Furthermore, 

due to both the inter-atomic spacing decreases and the topological changes, the anelastic 

internal rearrangement is more difficult. 

 



108 

 

 

Figure 5.2 The programmed indentation load function for a constant strain-rate indentation test 

 

Figure 5.3 The typical indentation P-h curve (the black curve) in comparison with the Hertzian 

theory (the red curve) (inset = the enlarged view of the departure of the P-h curve from the 

Hertzian curve) 
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    As shown in Fig 5.2, a load function with constant strain rate was employed. 

Figure 5.3 shows a typical load-displacement (P-h) curve of the specimen annealed for 

256h, which is obtained at  = 0.5s-1 and R = 20m. According to the Hertzian theory, 

P = (4ErR
1/2/3)h3/2 for elastic indentation, where Er denotes the reduced elastic modulus. 

In order to measure Er reliably, same as the method in chapter 3, the experimental P-h 

curve was first converted to the P-h3/2 curve and, subsequently, the linear portion of the 

latter was utilized to fit out Er via linear regression, as shown in Fig. 5.4. In this way, 

we can obtain Er from the linear fitting with a high correlation coefficient. Afterwards, 

the real modulus, E, of the MG can be readily extracted from Er by assuming a Poisson’s 

ratio of ~0.365.  
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Figure 5.4 The linear fitting of the elastic portion (red curve) and the global plastic 

portion (blue curve) of the P-h3/2 curve.   
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Figure 5.5 The load-displacement (P-h) curve at   = 0.5s-1 and R = 20m for the samples 

with various thermal history. 

 

    Figure 5.5 displays the typical load-displacement curves obtained from indenting 

the four samples at   = 0.5s-1 and R = 20m. obviously, the loading curves deviate 

significantly for different thermal history. The experimental finding clearly 

demonstrates that varying thermal history can affect the material’s mechanical behavior 

measured from the nanoindentation. Afterwards, we compare the experimental P-h 

curve and the elastic Hertzian solution. Here, the selection of the starting point of the 

global yielding will be an arbitrary process. So in our data analysis, as shown in Fig.5.4, 

we fit two parts of the curve, elastic and plastic process, respectively. The meeting point 

Pc represents the load at which a mature shear band is nucleated, corresponding to the 

global yielding of metallic glasses in spherical indentation. 
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     According to the Hertzian theory, the maximum pressure under the indenter is 

given by 
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Figure 5.6 The strength size effect of the mean pressure in the different tip radius for different 

specimen 

 

    Figure 5.6 shows the pc at different tip radius. For each sample, we conducted 
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around 10 nanoindentation tests on the sample surface. Regardless of different sample 

and thermal history, the measured E is roughly the same with the results from the 

Berkovich indentation. As shown in Fig. 5.6, the measured pc exhibits a sharp strength 

size effect on both the samples with different thermal history, which increased 

dramatically with the decrease of the tip radius. In Chapter 3, it is obviously shows that 

the pc remains at a constant value as the increased R which is equal to the hardness 

results from the classic Berkovich nanoindentation. So we can use hardness as p0 which 

is size-independent mean pressure. According to 
1C
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 in Chapter 3, 

which predicts that pc-p0 should scale with 1/R to the power of 1.45, we can now 

compare the experimental data to this scaling relation. As seen in Fig. 5.7, it can be seen 

that the prediction captures the experimental data very well for both samples. 

Furthermore, the shear band nucleation length LSB can be extracted by fitting the 

experimental data to the theory. Fig. 5.8 shows a comparison of the LSB, as a function 

of the Young’s modulus E. It can be seen that LSB decreases with E, which indicates the 

thermal history influences the nucleation size for shear band instability.  
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Figure 5.7 The comparison of the experimental data of pc-p0 of different specimens versus 1/R 

with the theoretical predicted scaling ration 

 

Figure 5.8 The variation of the extracted LSB for four samples. 
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    In the study of Lewandowski et al. (Lewandowski et al. 2005), it is shows that the 

plasticity or brittleness of metallic glass correlates with the ratio of the elastic shear 

modulus to bulk modulus. Annealing-induced embrittlement of metallic glasses was 

found, which linked to several property changes associated with structural relaxation. 

That is strong evidence that the embrittlement is most closely connected to the changes 

in elastic modulus. It has been shown that annealing-induced varies in modulus can be 

reversed by plastic deformation. Also Zhang(Zhang, Liu and Zhang 2006) found that 

fracture toughness of Pd-based thin-film metallic glass decreased with increasing 

annealing time. He suggests that this trend results from the gradual suppression of shear 

banding at the crack tip and the increase of Young’s modulus with an increase of 

annealing time, which may lead to the decrease in the free volume required for 

increasing the viscosity in the shear band. So is there any relationship between the shear 

band formation and thermal history for metallic glass is still a question.  

 

    Based on the mechanism of shear-softening induced shear banding in MGs, 

Uenishi and Rice(Uenishi and Rice 2003) proposed a theoretical model for the shear 

softening induced instability. According to these authors (Uenishi and Rice 2003), the 

critical length of the shear-band embryo depends mainly on the elastic modulus of the 

elastic confinement and the that characterizes the strength loss in the shear-banding 

embryonic zone. The critical shear-band nucleation length can be derived as 
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where  is a dimensionless factor roughly equal to ~1.16 and G is the shear modulus of 

the MG. Since    /rc  , where  is the critical shear displacement at which 

the initial softening process is completed, tSB is the shear-band thickness (10-20 nm) 

(Zhang and Greer 2006), c is the critical shear strain (=/tSB) and W is the linear 

softening rate measured in terms of the strength loss per unit shear strain (= (c - r)/c). 

Taking  ~ 1, tSB ~ 20 nm, with different shear modulus for samples, the linear softening 

rate W can be extracted and we found that thermal history did not significantly change 

the softening rate. So the increment of critical length is mainly cause by the change of 

shear modulus. In previous work(Ye et al. 2010, Huo et al. 2013), their results have 

indicated that the structure of MGs is intrinsically heterogeneous which composed of 

liquid-like and solid-like regions in nanoscale. As shown in Figure 5.9, the solid-like 

regions (blue spheres) form an elastic matrix as the “back bone” of the MG while the 

liquid like regions (red spheres) encaged as flow units. It should be emphasized here 

that it should not be misunderstood as the real composite structure of MGs. There is no 

physical boundary between the liquid-like and solid-like regions. The purple spheres in 

Figure 5.9 are try to illustrate that there is a continuous distribution of atom packing 

and the whole structure is still amorphous. Compared with the solid-like region, the 

liquid-like region exhibits a lower packing density and local modulus. The quasi-static 
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shear modulus G=G∞-GII=G∞(1-α)(Huo et al. 2013), here G is the unrelaxed shear 

modulus, GII represents a modulus mainly from the liquid-like region and  scales with 

volume fraction of the liquid-like region. According to the equation above, G could 

increase by thermal annealing because the liquid-like regions can be reduced as shown 

in Figure 5.9. It shows that the liquid-like regions turns to solid-like regions after 

annealing. The increment of solid-like region means the increasing confinement of the 

elastic matrix that encapsulates the individual ‘flow units’ will suppress the propagation 

of the shear band nucleation and the critical length will be larger than the same 

composition which is not annealed. This variation of the critical length is mainly caused 

by the increment of the elastic matrix bonding. This result provides reasonable 

explanation for the previous studies. In Zhang’s work(Zhang et al. 2006), he found the 

diminishing of the noticeable shear bands in the annealed sample, which indicates that 

a longer time annealing would potentially suppress shear banding. In my research, we 

found that the thermal history changes the shear band instability. With the increase of 

Young’s modulus, the shear band will hard to form, which leads to the brittleness of 

metallic glass. 
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Figure 5.9 Schematic illustrations of the structure evolution of MGs (red sphere= loosely 

packed atom, purple sphere=less densely packed atom, blue sphere= densely packed atom) 

 

Table 5.1 The critical length and softening rate for sample 2 

Sample 02 Ribbon As-cast Annealing-

61h 

Annealing-

256h 

LSB (nm) ~444 ~474 ~521 ~535 

5.4 Conclusion 

To conclude, we extract the mechanical properties of the samples with different thermal 

history. It is shown that both the hardness and Young’s modulus rises with increase of 

annealing time, while the ribbon one lower than the other three. Meanwhile, the 

experiment results confirm the theoretical model based on the notion of size-controlled 

shear-band nucleation. The shear band nucleation length extracted from the indentation 

size effect. The increment of solid-like region, which is caused by annealing, results in  

the increasing confinement of the elastic matrix that encapsulates the individual ‘flow 

units’ will suppress the propagation of the shear band nucleation and the critical length 
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will be larger than the same composition which is not annealed. 
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6 A Critical Length Scale Controlling Homogeneous 

Nucleation of Shear Band for different BMGs 

6.1 Introduction 

Since the advent of metallic glasses (MGs)(W. Klement 1960) in the 1960s, they have 

been attracting extensive research interest owing to their exclusive properties such as 

superb strength and hardness, excellent elastic limit as well as good corrosion 

resistance(Byrne and Eldrup 2008, Cheng and Johnson 1987, Spaepen 1987, Dyre 2008, 

Greer 1993, Loffler 2003). In particular, the superior strength of MGs, as witnessed 

across different chemical compositions, has been taken as their hallmark. In comparison 

to that of crystalline metals, the high strength in MGs is commonly attributed to the 

lack of crystalline-like defects. By comparison, the strength of crystalline metals varies 

as their microstructure is tuned or their size is reduced. This strength size effect, known 

for crystalline metals, could be generally ascribed to the interplay between the external 

sizes, such as sample dimension or deformation field, and the internal sizes, such as 

grain size and dislocation spacing. Interestingly, MGs also exhibit a similar size effect 

despite the lack of any internal microstructural features. To rationalize this size effect, 

a number of theories have been proposed in the literature, including the early theory of 

Weibull statistics(Lai 2008) and the recent one entailing the nucleation energetics of 

shear banding(Yang, Liu and Nieh 2006). Particularly, the recent molecular dynamics 

(MD) simulations clearly indicate that, as the sample size reduces to the nanometer 

scale, the shear strength of a MG could rise up from the macroscopic value of ~G/50 to 
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the intrinsic strength limit of ~G/10, where G denotes the MG shear modulus.   

 

    Should the MG strength be governed by shear band nucleation, the next question 

is at what size a bona-fide shear band would be formed out of an embryo. Unfortunately, 

as of today, there is still no definitive answer to this question. According to the atomistic 

simulations, Li et al.(Li and Li 2007) and Shi(Shi 2010) estimated that the critical size 

for shear-band nucleation should be around 10-20 nm or even less. On the other hand, 

if the shear-band nucleation size was taken to equal the sample dimension at which the 

MG deformation mode transits from a localized to a distributed or even homogeneous 

plastic deformation, several researchers reported that the shear-band nucleation size 

could range from ~100 nm to ~400 nm. Noticing the large difference among the claimed 

shear-band nucleation sizes, one can only conclude that, at the present time, the problem 

of shear band nucleation in MGs is not yet fully understood. Nevertheless, there are a 

few issues coming to our attention, which may partially explain the aforementioned 

data discrepancy. 

 

    First, in most of the small-scale experiments, focused-ion-beam (FIB) fabricated 

micropillars were used to study the size effect. Because of the FIB damage and the non-

uniform stress distribution along the micropillar, shear bands may preferentially 

nucleate at the sample surface or from the interface between the micropillar and the 

compressing platen. This scenario of heterogeneous nucleation may cause a large 

variation in the strength measurement, thus affecting the estimated shear-band 
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nucleation size. Second, the parameters used for sample preparation and testing, such 

as the quenching rates, applied strain or stress rate and the temperature, also vary from 

experiment to experiment, which may also influence shear-band nucleation. 

Nevertheless, how such external and internal parameters change the shear-band 

nucleation scenario is still largely unknown. In our current study, we aim to provide a 

comprehensive study of shear band nucleation in MGs.  

 

6.2 Experiment 

 

The nominal chemical compositions of the five BMGs are La60Al25Ni15, 

Au49Ag5.5Pd2.3Cu26.9Si16.3, Pd40Cu30P20Ni10, Fe60Cr10Mo9C13B6Er2, 

Fe60Cr10Mo9C13B6Er2 and Zr52.5Ti5Cu17.9Ni14.6Al10 (in at.%).  For brevity, descriptions 

of the fabrication process are omitted here. The structure of the BMG samples was 

examined by X-ray diffractometry (XRD, Co radiation) before testing. The XRD 

patterns only display a broad diffraction maximum without any detectable sharp Bragg 

peaks, indicative of an overall amorphous structure. Fragility index (m) was 

investigated using differential scanning calorimetry (DSC) (Perkin Elmer, Waltham, 

MA; DSC 7). The local mechanical properties were first measured on the Hysitron™ 

NanoIndenter system (Hysitron Inc, Minneapolis, MN) with a Berkovich diamond tip. 

Then the spherical nanoindentation experiments were subsequently carried out at strain 

control on the Hysitron™ Nanoindentation System. For a systematic investigation, the 

following tip radii were used in the spherical indentation tests: 0.1m, 0.4m, 2m, 
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5m, 10m, 20m. In order to keep a constant strain rate, dP/dt/P was set to be a 

constant, where dP/dt is the indentation loading rate and P the indentation load. This 

leads to an exponential increase of P with the time, t, in the loading segment. For 

simplicity, unloading was programed to follow a constant unloading rate. 

6.3 Results and discussion 

The hardness and modulus of five samples were first measured with a Berkovich 

diamond tip. To ensure data reproducibility, adjacent indentation marks were set 30μm 

apart. With the method of Oliver-Pharr(Oliver and Pharr 1992), the most widely used 

method for the extraction of hardness and modulus by Berkovich nanoindentation, the 

local hardness and Young‘s Modulus of all the BMG samples were measured by 

nanoindentation. The measured modulus and hardness values for all MG samples listed 

in the Table 6.1. 

 

Table 6.1The modulus and hardness values for all MG samples 

 La-based Au-based Pd-based Fe-based-

01 

Fe-based-

02 

E(GPa) 44±4 90±5 ~101±4 192±13 248±11.3 

H(GPa) 2.7±0.3 3.8±0.3 5.7±0.4 11.9±1.5 9.9±1.3 
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Figure 6.1 The programmed indentation load function for a constant strain-rate indentation test 
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Figure 6.2 The typical indentation P-h curve of Pd-based sample (the black curve) in 

comparison with the Hertzian theory (the red curve) (inset = the enlarged view of the departure 

of the P-h curve from the Hertzian curve) 

 

As shown in Fig 6.1, a load function with constant strain rate was employed. 

Figure 6.2 shows a typical load-displacement (P-h) curve of the Pd-based specimen at 

 = 0.2s-1 and R = 20m. According to the Hertzian theory, P = (4ErR
1/2/3)h3/2 for elastic 

indentation, where Er denotes the reduced elastic modulus. In order to measure Er 

reliably, the experimental P-h curve was first converted to the P-h3/2 curve and, 

subsequently, the linear portion of the latter was utilized to fit out Er via linear 

regression, as shown in Fig. 6.3. In this way, we can obtain Er from the linear fitting 



127 

 

with a high correlation coefficient (> 98%). Afterwards, the real modulus, E, of the MG 

can be extracted from Er by assuming a Poisson’s ratio of ~0.397.  

 

   Once Er is obtained, it appears that we may ‘conceptually’ determine the global 

yielding load as the departure of the experimental P-h curve from the elastic Hertzian 

solution. However, from the experimental viewpoint, it needs to point out that 

pinpointing the yielding loading Pc by examining and matching two nonlinear curves 

is not easy and sometimes lack of consistency. Most often, the value of Pc so obtained 

depends on how close you look into the details of the two curves and how many data 

are available near the point of cross-over Alternatively, we can extrapolate the 

experimental data already bypassing the yielding point backward, and the interception 

of the extrapolation with the elastic Hertzian solution then determines an effective 

yielding load Pc, as shown in Fig. 6.3. Compared to the previous method, the yielding 

load Pc determined this way is insensitive to the data acquisition rate and the local 

curvatures of the experimental curves. Here, it is worth emphasizing that the pop-in 

event is not corresponding to the activation of STZs. The local elastic confinement 

firstly breakdown and the liquid-like zone start to percolate through local confinement. 

Once the critical length of the shear band reached, the whole system will be global 

yielding. But the pop- in event is just the shear band which is though the surface of the 

sample.  



128 

 

 

Figure 6.3 The linear fitting of the elastic portion (red curve) and the global plastic portion (blue 

curve) of the P-h3/2 curve.   
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Figure 6.4 The strength size effect reverse size effect of the mean pressure in the different tip 

radius of different specimen 

 

According to the Hertzian theory, the maximum pressure under the indenter is 

given by 
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Figure 6.4 shows the pc at different tip radius. For each sample, we conducted 

around 10 nanoindentation tests were on the sample surface. Regardless of the different 

sample, the measured E is roughly same with the result from the Berkovich result as 
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shown in Table 6.1. But the different with the previous chapters is that here we 

employed 0.1μm and 0.4μm spherical indenters. We found the size effect which is same 

as previous findings when the tip radius larger than 2μm for La-， Au- and Pd-based 

metallic glass. In contrast, the reverse size effect was found for the tip radius at 0.1μm 

and 0.4μm. For the two Fe-based samples, we also found the maximum mean pressure 

Pc at R= 10μm. The tendency of pc changing with R is roughly the same for all these 

samples. Previous research (Bei, Lu and George 2004, Wright, Saha and Nix 2001) 

studied the theoretical strength of metallic glasses with spherical indenter, resulting in 

high values of the extracted yield stress. Bei et al. (Bei et al. 2004) reported yield 

stresses over 3 times the actual shear strength for Zr-based glasses. At the same time, 

Wright et al.(Wright et al. 2001) also found that the yield stresses around 3 times the 

shear yielding stress for different Zr- based glass. Compared with relatively large testing 

volume for conventional experiment, they attribute the discrepancy to the small probing 

volume in nanoindentation experiments, which are likely to be defect free. In other’s 

work (Bei et al. 2010), it is found that maximum shear stress decreases with increasing 

indenter radius. This is a possible consequence of the increased probability of finding 

defects in the highly stressed zone underneath the indenter which increases with 

increasing indenter size. In the study of Packard(Packard and Schuh 2007), he found a 

reverse size effect, in which smaller indentations return somewhat lower yield strengths. 

So the reason for these conflicts should be uncovered. From the dimensional 

consideration, the plastic zone size scales with the tip radius, R, of the spherical indenter 

for a given indentation mean pressure pc. In that regard, a size effect arises if different 



131 

 

sized indenters are used to deform the same MG. For large sized indenters, the overall 

and local yielding points roughly the same with each other because plastic zone size 

could be already sufficient to initiate shear instability. In this size regime, the strength 

or hardness of MGs can be effectively attributed to the activation of local plasticity 

events for either the models such as free-volume (Spaepen 1977) and shear 

transformation zone model (Argon 1979), and the recent models based on structural 

heterogeneity (Liu, Yang and Liu 2013, Huo et al. 2013). However, for small-sized 

indenters, we must consider the size different with plastic zone and the critical length. 

The subcritical growth of such small local plastic zone which needed to trigger shear 

instability is easily touching the surface boundary. As a result, the mean pressure pc will 

show a reverse size effect once the indenter size near or lower than the critical length. 

At the same time, we also should consider the surface imperfections, which play an 

important role if the yield occurs not in the bulk beneath the indentation, but via a shear 

band that actually connects with the surface. As the indentation size is reduced, the 

relative importance of surface irregularities increases, and lower measured strengths 

could be expected. For the indenter size of 0.1μm and 0.4μm, like a berkovich indenter, 

the plastic deformation is easily formed even the indent force is extremely small.  

 

In Chapter 3, it is obviously shows that the pc remains at a constant value as the 

increased R which is equal to the hardness results from the classic Berkovich 

nanoindentation. So we can use hardness as p0 which is size-free mean pressure. We fit 

the LSB with the part of the pc decrease with the increase of the tip radius. According to 
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the power of 1.45, we can now compare the experimental data to this scaling relation. 

It should be noticed that we use the size effect part to fit the LSB. The prediction captures 

the experimental data very well for both samples. Furthermore, the shear band 

nucleation length LSB can be extracted by fitting the experimental data to the theory. Fig. 

6.5 shows a comparison of the LSB for various MGs.  

  

Figure 6.5 The comparison of LSB for six different samples 
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Figure 6.6The relationship between critical length LSB and E/m 
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Figure 6.7 The relationship between critical length LSB and E/m 

 

In Table 6.2, we summarized the fragility m and passion ratio for all the samples, 

including the Zr-based which we have discussed in previous chapter. The fragility of 

metallic glass has been extensively studied to link the liquid dynamics and the property. 

Fragility of liquids is defined as the change of viscosity, η, with the temperature 

approaching Tg of glass forming liquids. (Angell 1985) 

 

d(Tg/T)

ηlog10d

 TT

m

g

                 (6.2) 

 

The strong glass is one which viscosity obeying Arrhenius law, such as SiO2, while 

fragile glasses deviate from Arrhenius. Most of BMG alloys are classified into 
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intermediate glass. Novikov(Novikov and Sokolov 2004) reported a correlation 

between fragility m and ν for a variety of glass-forming systems, showing fragility m 

increasing with ν. So in the following part we are trying to link the shear band 

nucleation with the fragility and Poisson’s ratio. In previous chapter we have discussed 

the process of shear band nucleation with the atomic-scale softening mechanism. In 

principle, the mechanism of ‘shear-softening-induced-instability’ applies not only to 

shear banding in MGs but also to a similar defect nucleation process in many other 

types of materials 

Table 6.2 The fragility and Poisson’s ratio values for all MG samples 

 La- based Au- based Pd- based Zr- based Fe-based-01 Fe-based-02 

m 27 70 52 45 34 34 

ν 0.33 0.406 0.404 0.37 0.309 0.3 

 

Based on the theoretical model of Uenishi and Rice(Uenishi and Rice 2003) , the critical 

length of the shear-band embryo depends mainly on two factors. One is the elastic 

modulus of the surrounding media that confines the subcritical growth of the embryo, 

and the other is the softening rate that characterizes the strength loss in the shear-

banding embryonic zone. So from the equation
Θ

G
αLSB  , we can found that any 

change in modulus G or softening rate could result in the variation in LSB. We focus 

on relationship between the softening rate, fragility and Poisson’s ratio. Figures 6.6 and 

6.7 shows the relationship between the LSB , E , m and ν. It could be found that several 

BMGs exhibits a linear correlation between LSB and E/m, and the correlation between 
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LSB and E/m shows the same tendency. We know that the large plastic bulk metallic 

glasses BMGs usually have larger Poisson’s ratio. From the energy aspect, the 

activation energy barrier is relatively lower for operation of a small cluster of randomly 

close-packed atoms. From the atomic viewpoint, due to the weak atomic bonding, 

fragile MGs needs less de-bonding energy which creates a localized distortion of the 

surrounding atoms and triggers the formation of shear band embryo. For a fragile MG 

with higher Poisson’s ratio and fragility m, it comprises more loose-packed regions for 

triggering the activation of STZs. This means lowering activation energy compared 

with that of strong BMGs. So the nucleation length for fragile BMG is relatively smaller 

than that of the strong one and better plasticity expected. In Egami’s(Egami 2006) work, 

he assumes that the local heating within the shear band embryo is enough to make the 

temperature in the band exceeding the glass transition temperature. For the fragile MGs 

with larger Poisson’s ratio, the viscosity of liquid will quickly decrease. The softening 

rate in the shear band embryonic zone is relatively high for fragile MGs. And this high 

strength loss will results in the smaller shear band nucleation length. At the same time, 

the STZ volumes of plastic flow of BMGs are also found to increase with Poisson’s 

ratio ν(Pan et al. 2008). This means that a larger STZ volume compared with small one 

enables a lesser number of STZs to be activated for nucleation of a shear band. Thus 

STZ with a large size reinforce the shear capability of the metallic glass and promote 

the formation of multiple shear bands. So the MGs with a higher fragility and Poisson’s 

ratio represent a higher possibility for a BMG to have better plasticity and to form shear 

band.  
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7 Conclusion and future work 

The objective of this thesis was to provide quantitative insights into the shear-band 

nucleation mechanism in different glassy alloy systems. I was conducted carefully 

designed nanoindentation test with different tip radius. Various factors, such as strain 

rate, residual stress and thermal history, were studied. I try to figure out their effects on 

the shear band nucleation.  

 

    Firstly, I try to develop a theoretical model based on the notion of size-controlled 

shear-band nucleation to account for the indentation size effect in MGs. Through 

carefully designed experiments, this model prediction is justified on the Zr-based MG. 

By fitting the experimental data to the theory, we are able to extract the shear-band 

nucleation length from the trend of indentation size effect for different indentation strain 

rates. Our results show that shear band nucleation in the Zr-based MG exhibits slight 

rate dependence, which can be rationalized by the rate-affected shear softening 

behavior in MGs. It is worth pointing out that the experimental/theoretical framework 

herein established is rather general and should be applicable to other MG alloys or even 

other types of glassy materials, as long as an appropriate constitutive relation is 

available for describing the local yielding of the glassy material.   

 

For the residual stress effect, we can extract the mechanical properties from the 

compressive to tensile site, it is shown that the material’s elastic modulus keeps at a 



140 

 

constant while its hardness drops more significantly in the compression region than that 

in the tension region. The trend of indentation size effect for varies residual stress was 

found. Our results show that shear band nucleation in the Zr-based MG influenced by 

the presence of compression or tension residual stress, which can be rationalized by the 

different shear softening rate in MGs. It indicates that compressive residual stress tends 

to slightly increase the nucleation size for shear band instability. 

 

For the thermally history effect, the hardness increases with annealing time and the 

ribbon one lower than the other three, demonstrating that denser structure has a higher 

hardness. Meanwhile, with the increasing annealing time, the Young’s modulus 

increases. We can found that thermal history effect on the nucleation length which is 

not caused by the significantly change of the softening rate, but the variation of Young’s 

modulus.   

 

At last, I conduct nanoindentation test on various MGs with nine different spherical 

indenters. I found the size effect which is same as previous findings for large indenters 

while the reverse size effect was found for smaller one. And the changing point is 

different for different MGs. Also I found the shear band nucleation length is related 

with the fragility and Poisson’s ratio. The MGs with a higher fragility and Poisson’s 

ratio represent a higher possibility for a BMG to have better plasticity and to form shear 

band. 
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Because of the limitation of period and instruments, our recent studies are only focused 

on the shear band nucleation mechanism at room temperature. It is expected that, by 

raising experimental temperature, especially approaching the glass transition 

temperature, the shear band nucleation length may change significantly. Secondly, the 

structural heterogeneity can be depicted as a nano-scale composite-like structure, which 

consists of loose- and dense-packing regions. What happens to MGs if these flow units 

are repeatedly activated in the apparent ‘elastic’ regime. Should the MGs be weakened, 

we will be facing a problem similar to fatigue nucleation; or, on the contrary, we might 

find that the MGs can be strengthened by the repeatedly motion of the flow units. At 

last, if I applied the electrical signal on spherical indenter, it may help me to study the 

nucleation behavior more clearly. The resolution for the displacement is extremely high 

compare to the conventional equipment. With nanoECR, the current will be change 

when the voltage keeps constant. I will analysis the change of the current curve and try 

to figure out the behavior of the nucleation of shear band and find more details. 




