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Abstract  

Neural Network River Forecasting (NNRF) entails the use of Artificial Neural 

Networks (ANNs) for the prediction of streamflow quantities. Despite the amount of 

research on the subject, NNRF still struggle to move from the academic context to the 

operational context due to a number of unresolved issues. Major problems of NNRF 

methodologies include a) difficulties in quantifying the uncertainty of model predictions, 

b) the lack of standardized methodologies for identifying optimal predictors and suitable 

functional forms of the underlying data-driven model, and c) concerns with the black-box 

nature of NNRF models which drive practitioners to favour physically-based alternatives.  

The main contribution of this thesis is to show that these issues, albeit very 

different in nature, can all be addressed by developing NNRF models using Global 

Optimization. In particular, this work introduces three new Particle Swarm Optimization 

(PSO) variants which are employed to devise novel ad-hoc applications aimed at solving 

each particular issue.  These algorithms are the Multi-Objective Fully Informed Particle 

Swarm (MOFIPS) optimization, the Binary-coded Fully Informed Particle Swarm 

(BFIPS), and its multi-objective generalization (MBFIPS). Testing these new techniques 

will also provide insights on the real effectiveness of PSO for data-driven hydrological 

modelling, a task which has been only partially accomplished by the research community. 

In addition, this thesis advocates the use of Extreme Learning Machines (ELMs) as 

alternative NNRF models. Although research in other fields has shown that ELMs 

provides better accuracy at much faster speed compared to ANNs, at the time of writing, 

they have never been employed for NNRF modeling.  
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There are four applications at the core of this thesis.  In a first application it is 

demonstrated that better deterministic PSO-trained NNRF models can be obtained by 

formulating cross validation as a bi-objective optimization problem using MOFIPS to 

perform ANN calibration. The benefits of bi-objective optimization are also shown for 

the construction of NNRF prediction intervals. This is done in a second application where 

MOFIPS and the Lower Upper Bound Estimation method are employed for fast and 

straightforward development of interval-based models. 

 In a third study, a novel approach for model and Input Variable Selection (IVS) 

that employs BFIPS and MBIFPS along with the ELMs is presented. A comparison with 

4 existing techniques, done using the tools of a comprehensive framework, suggests that 

the developed ELM-based models are more accurate in performing the IVS task for data-

driven hydrological modelling.   

 Lastly, BFIPS, MBFIPS and ELMs are employed to investigate whether more 

accurate prediction of streamflow discharges can be achieved by including expert 

knowledge in NNRF model development. In particular, total streamflow predictive 

accuracy of modular models (MM) trained to perform an implicit baseflow separation is 

compared against that of global models (GM). The results for 9 different watersheds in 

northern United States show that MMs underperform GMs in predicting the total flow. In 

addition, the study demonstrates that greater accuracy in baseflow separation usually 

corresponds to worse total flow predictions, suggesting that these two objectives are 

conflicting, rather than compatible. 
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1. Introduction 

 

1.1. Neural Network River Forecasting (NNRF) 

In the past twenty years, Artificial Neural Networks (ANNs) have been 

successfully employed as data-driven modelling tools in many hydrological and water 

resources contexts.  The main reasons behind the popularity of these heuristics lie in 

their ability to cope with the non-linear, non-stationary and non-Gaussian behaviors 

typical of hydrological processes (Govindaraju, 2000a, 2000b; Maier and Dandy, 2000; 

Maier et al., 2010). Common examples of ANN applications range from the estimation 

of precipitation (Tomassetti et al., 2009; Toth et al., 2000; Wu and Chau, 2013; Wu et 

al., 2010), and groundwater modelling (Adamowski and Chan, 2011; Coulibaly et al., 

2001; Trichakis et al., 2009), to water quality modelling (Chang et al., 2010; Muttil and 

Chau, 2007, 2006; Wu et al., 2014) and reservoir operations (Chaves and Chang, 2008; 

Labadie, 2004; Raman and Chandramouli, 1996).  However, most applications deal with 

the rainfall-runoff process and the prediction of streamflow quantities (Dawson and 

Wilby, 1998, 2001; Kişi, 2004; Minns and Hall, 1996; Shamseldin, 1997; Thirumalaiah 

and Deo, 1998; Tokar and Johnson, 1999; Tokar and Markus, 2000; Toth, 2009; Wu and 

Chau, 2011; Wu et al., 2009). Such applications have been collectively termed Neural 

Network River Forecasting (NNRF) in a recent paper by several prominent authors of 

the field (Abrahart et al., 2012), and this work positions itself within this area of 

research. While most NNRF applications regard ANNs and its variants, the term also 

applies to a wider range of models including hybrid-ANN techniques such as neuro-

fuzzy (Chau et al., 2005; Pramanik and Panda, 2009; Sanikhani and Kisi, 2012) and 
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neuro-wavelet solutions (Adamowski and Sun, 2010; Danandeh Mehr et al., 2013; Kişi, 

2009), as well as Radial Basis Functions (RBF) (Fernando and Shamseldin, 2009; 

Jayawardena and Fernando, 1998; Senthil Kumar et al., 2005) and Support Vector 

Machines (SVM) (Lin et al., 2006; Nourani et al., 2014, 2009).   

Although NNRF models are known to perform favourably against conceptual 

models (Carcano et al., 2008; Nayak et al., 2013; Tokar and Markus, 2000), these 

solutions are seldom applied for operational purposes in real-world contexts. The 

limited appeal of NNRF to practitioners has to be attributed to some unresolved issues 

which have been identified in previous research but are still far away from being solved 

(Abrahart et al., 2012). For instance, the great majority of examples in the literature are 

concerned only with the development of NNRF models producing deterministic point 

predictions. This strongly contradicts with the fact that hydrological forecasts can be 

employed only if a measure of their reliability is attached to each predicted value 

(Krzysztofowicz, 2001). Indeed, there only a few studies that try to quantify the 

uncertainty of NNRF outputs, and the proposed solutions are usually complicated 

(Alvisi and Franchini, 2011; Khan and Coulibaly, 2006; Kingston et al., 2005; Sharma 

and Tiwari, 2009; Shrestha and Solomatine, 2006; Tiwari and Chatterjee, 2010; Zhang 

et al., 2009).  

Furthermore, while researchers have focused on ad-hoc modifications and 

incremental refinement of existing techniques, which contributed little to the 

advancement of the field, NNRF still lacks standardized methodologies for identifying 

optimal predictors among available inputs, or for selecting the functional form of the 

underlying data-driven model automatically. The Input Variable Selection (IVS) 
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framework recently introduced by Galelli et al. (2014) certainly represents a major step 

forward in this direction. The framework provides a comprehensive set of evaluation 

criteria and datasets that allow for a thorough assessment of the effectiveness of IVS 

techniques for data-driven hydrological modelling. While there exist fast and accurate 

model-free IVS techniques (Fernando et al., 2009; Galelli and Castelletti, 2013; May et 

al., 2008), model-based alternatives are usually very slow as they entail time-consuming 

iterative processes requiring the training of a vast number of potential models (May et 

al., 2011).  This is unfortunate since model-based IVS approaches account for the actual 

gain in model performances given by each selected variable, as well as for the 

contribution of individually irrelevant candidates with high combined explanatory 

power (Guyon and Elisseeff, 2003; Kohavi and John, 1997). In addition, these methods 

could be generalised so that they can also return the optimal model structure and the set 

of parameters maximizing NNRF model performances (Abrahart et al., 1999; Chen and 

Chang, 2009; Dawson et al., 2006).  

Regardless of NNRF model accuracy in reproducing the hydrograph, there are 

still widespread criticisms on their black-box nature and cautions against their use in 

real-world problems in favor of physically plausible alternatives. To overcome this issue, 

recent efforts have been made to explain the internal workings of ANN, and link the 

processes taking place within the network to the processes in the watershed (Fernando 

and Shamseldin, 2009; Jain and Kumar, 2009; Jain et al., 2004; Wilby et al., 2003). 

Others have focused on the incorporation of expert knowledge into NNRF models in 

order to improve their hydrological plausibility and overall performances (Corzo and 

Solomatine, 2007a, 2007b; Jain and Srinivasulu, 2006; Parasuraman et al., 2006; 
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Srinivasulu and Jain, 2009; Toth, 2009; Zhang and Govindaraju, 2000). While these 

studies certainly provided insightful guidance and paved the way for future explorations, 

it is understood that much work is needed to fully address this issue (Abrahart et al., 

2012) 

 

1.2. NNRF model development with swarm optimization 

At the core of this thesis is the idea that, despite their intrinsic differences, the 

problems highlighted in the previous paragraphs can be addressed by combining ANN 

with real- and binary-coded Global Optimization (GO) techniques. GO techniques, and 

nature-inspired heuristics such as Genetic Algorithms in particular, have been used in 

several NNRF and sister applications usually in order to 1) perform ANN training via 

single- (Chau et al., 2005; Jain and Srinivasulu, 2004; Sedki et al., 2009; Wu and Chau, 

2006) and multi-objective optimization (de Vos and Rientjes, 2008, 2007) ; 2) optimize 

NNRF model structures (Abrahart et al., 1999; Chen and Chang, 2009; Corzo and 

Solomatine, 2007a, 2007b); 3) determine the optimal set of model parameters and ANN 

architecture (Abrahart et al., 2007; Dawson et al., 2006; Leahy et al., 2008); and 4) 

perform the IVS task (Bowden et al., 2005a, 2005b).  

This thesis work will be focused on the use of Particle Swarm Optimization 

(PSO), a population-based GO technique devised to mimic natural phenomena such as 

bird flocking or fish schooling (Kennedy and Eberhart, 1995). Like other GO methods, 

PSO can be used to find the global optima of non-differentiable objective functions and 

can be easily adapted to work in discrete search spaces (Kennedy and Eberhart, 1997). 

Although the intuition behind the algorithm is simple, PSO compares favorably against 
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other GO methods both in terms of speed and accuracy (Poli et al., 2007). In addition, 

the implementation of the PSO is straightforward, and the algorithm lends itself 

extremely well to parallelization and multi-objective generalization. Despite such 

advantages, there are very few applications of PSO for NNRF model development. 

These initial studies were only limited to the use of PSO as an alternative to gradient-

based techniques for model calibration, and they report contradictory results on PSO 

efficacy (Chau, 2007, 2006; Piotrowski and Napiorkowski, 2011). In addition, due to 

the lack of research in this area, many of the improvements made over the years to the 

original algorithm have been overlooked.  

Part of this research has been thus dedicated to devise new variants of the PSO 

algorithm to be employed for NNRF model development. These new methods are all 

based on the Fully Informed Particle Swarm (FIPS) variant of swarm optimization 

(Mendes et al., 2004) ,which is known to outperform canonical PSO. The algorithms 

have been named the Multi-Objective Fully Informed Particle Swarm (MOFIPS) 

optimization algorithm, the discrete Binary-coded Fully Informed Particle Swarm 

(BFIPS) optimization algorithm, and its multi-objective generalization (MBFIPS).  

 

1.3. Thesis objectives 

The main goal of this thesis is to employ these original techniques in novel 

applications that can contribute to the field of data-driven hydrological modeling by 

directly addressing some of the major issues concerning NNRF. Although a secondary 

objective of this work is to provide insights on the real effectiveness of swarm 

optimization, it is important to note that the findings of the presented thesis work could 
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be extended to other GO algorithms. Some of the applications reported here employ 

Extreme Learning Machines (ELM) (Huang et al., 2011, 2006, 2004) as the underlying 

NNRF models. ELMs are three-layered ANNs constructed by randomly assigning the 

input weights and hidden biases. This operation reduces the ANN to a linear system, and 

allows for the analytical determination of the output weights using common least-

squares. These simplifications drastically increase the speed of the learning process, 

which was also found to grant better generalization compared with traditional ANNs 

and other techniques such as SVMs. It was also shown that ELMs are universal 

approximators that can work with a broad type of activation functions, as long as they 

are bounded non-constant piecewise continuous. Recently, it was demonstrated that 

ELMs actually represent a simple unified learning framework for ANNs, polynomial 

networks, RBFs and SVMs which can be applied to both regression and multiclass 

classification problems (Huang et al., 2012). Despite these advantages, at the time of 

this writing ELMs have never been used as NNRF models, thus demonstrating their 

suitability in modeling streamflow quantities represents another objective of this thesis 

work.  

Featured applications 

In a first application for the Shenandoah River watershed, Virginia (US), it is 

argued that superior PSO-trained NNRF models can be obtained by treating cross-

validation as a multi-objective optimization problem. The study shows that common 

single-objective cross-validation hinders the search performed by the PSO. Accordingly, 

employing the MOFIPS paradigm results in better performing models with respect to 
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those obtained with both single-objective PSO as well as some of the most advanced 

gradient-based optimization algorithms.  

 MOFIPS optimization can also benefit the generation of interval-based forecasts, 

as demonstrated in a second application concerning streamflow modeling in the 

Susquehanna and Nehalem rivers, US. In this innovative application, prediction 

intervals (PIs) of future streamflow are estimated using the Lower Upper Bound 

Estimation (LUBE) method (Khosravi et al., 2011). The LUBE method constructs an 

ANN with two output neurons that directly approximate the lower and upper bounds of 

the PIs. The training is carried out by minimizing a Coverage Width-based Criterion 

(CWC), which is a highly nonlinear and non-differentiable function accounting for both 

coverage probability and interval width. Even for this case, substantial improvements 

are obtained by using MOFIPS instead of single-objective PSO with cross-validation 

(Quan et al., 2014). Most importantly, the proposed MOFIPS-based LUBE ANN 

represents a fast and straightforward model for interval-based NNRF.  

 In another study, a novel approach for model structure and Input Variable 

Selection that employs BFIPS and MBIFPS along with the ELMs is presented. The 

algorithms are utilized to develop fast and accurate ELM-based IVS techniques by 

encoding the subset of selected inputs and ELM structural characteristics in a binary 

string. The performances of these methods are assessed using the criteria and the 

datasets provided by the IVS evaluation framework for environmental modeling (Galelli 

et al., 2014). From a comparison with 4 major IVS techniques, it emerges that, on 

average, the proposed methods substantially outperform the other methods in terms of 

selection accuracy. In particular, the MBFIPS-ELM wrapper was found to be the best 
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performer overall, reaching an almost perfect specification of the optimal input subset 

for a partially synthetic rainfall-runoff experiment devised for the Kentucky River basin 

(US).  

 Lastly, BFIPS, MBFIPS and ELMs are employed to investigate whether more 

accurate prediction of total streamflow could be achieved by including expert 

knowledge in the development of data-driven rainfall-runoff models. In particular, the 

effectiveness of modular models (MM) trained to perform an implicit baseflow 

separation is put to the test and compared against that of global models (GM) for 9 

different gaging stations in northern United States. The ELM modules fit separately the 

base flow (BF) and excess flow (EF) components as obtained by a digital filter, and the 

MM reconstructs the total flow (TF) by adding these two signals at the output. BFIPS is 

employed for the identification of filter parameters and model structure by minimizing a 

weighted function of the errors of the TF, BF, and EF. On the other hand, the selection 

of the most relevant inputs is done using MBIPS-ELM. The results show that there is no 

evidence that MMs outperform GMs for predicting the TF. In addition, the baseflow 

produced by the MM largely underestimates the actual baseflow component expected 

for most of the considered gages. This occurs because the values of the filter parameters 

maximizing overall accuracy do not reflect the geological characteristics of the river 

basins. Indeed, setting the filter parameters according to expert knowledge results in 

accurate baseflow separation but lower accuracy of TF predictions, suggesting that these 

two objectives are intrinsically conflicting rather than compatible. 
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1.4.  Structure of the thesis 

This thesis is organized as follows. Part II provides the necessary background on 

the methods employed in this work. In particular, Chapter 2 presents the models used, 

i.e. ANNs and ELMs, while Chapter 3 briefly reviews GO, PSO and FIPS before 

introducing the BFIPS, MOFIPS and MBFIPS algorithms. These are presented in 

Section 3.6, 3.7.2, and 3.7.4 respectively. The four applications summarized in the 

previous section are described in details in Chapters 4 to 7 which constitute Part III of 

this manuscript. The last part of this work will contain a summary of the thesis, along 

with additional conclusions and a brief outline of possible future developments. 



PART II. METHODS
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2. Data-driven models 

 

2.1. Artificial Neural Networks 

2.1.1. Introduction 

Artificial Neural Networks (ANNs) are biologically inspired mathematical 

models that are able to map an unknown input-output relationship relying on data 

samples gathered from the system under examination. Such models have been proven to 

approximate any differential function to a chosen degree of accuracy (Hornik et al., 

1989), provided the number of parameters incorporated in the model is large enough. 

The simplest, yet more popular ANN, is the multi-layered Feed-forward Neural 

Network (FNN), which has been widely employed by hydrologists end engineers due to 

its ability to model nonlinear, non-stationary and non-Gaussian processes like those 

encountered in water resources contexts (Govindaraju, 2000; Haykin, 2008; Maier and 

Dandy, 2000; Maier et al., 2010). FNNs can be represented as a graph where a number 

of processing units, or neurons, are arranged in layers and linked by synaptic 

connections (Fig. 2.1). In FFNs, the information is allowed to flow from one layer to the 

next one only in a single direction, which goes from the input layer to the output layer. 

The nonlinear processing takes place in all the neurons between the input and the output 

layer, which are called hidden neurons and are grouped in one or more hidden layers. 

No processing is done in the input neurons, while the output neurons usually perform a 

linear rescaling to match the range of the output variable that has to be estimated. The 

hidden units in the network receive their inputs through the synaptic connections, whose 
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strength is identified by scalar synaptic weights. The inputs are multiplied by the 

weights associated to each synapse to form the exciting field entering the receiving 

neuron. In the neuron, a nonlinear activation function, usually of sigmoidal shape, 

transforms the received field in the output activation value for the neuron. This 

procedure is carried out in all the hidden layers in the network, until the output units 

compute the final response for the input pattern that has been presented to the network. 

The mapping of the desired input-output relationship through a FNN is then obtained by 

tuning the synaptic weights of the network, usually by means of deterministic iterative 

algorithms that minimize an error function of the residuals between the observed output 

of the system and the response produced by the model. After the training is finished, the 

neural network model can be validated to check for its generalization ability, i.e. its 

performances on data which has not seen during the training process, and then employed 

on new data for the task it has been devised to accomplish. 

 

Figure 2.1. Feed-forward Neural Network 
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2.1.2. Single-hidden Layer Feed-forward neural Network 

In Fig. 2.2 the three-layered FNN with one output neuron is shown. These FNNs 

are also known as Single-hidden Layer Feed-forward neural Networks (SLFNs), and 

represent the most widely used data-driven model among hydrologist (Maier and Dandy, 

2000; Maier et al., 2010). This SLFN can be expressed in mathematical terms as a 

nonlinear parametrical model of the form 

         

 

   

    
          (2.1) 

where   is an input vector of p variables which is fed to the network at a given time; 

      is the output returned by the SLFN in response to  ;    is the set of synaptic 

weights for the connections going from the input layer the i-th hidden neuron;    is the 

connection weight between the i-th hidden neuron and the output neuron; and L is the 

total number of hidden neurons. All the bi terms are called biases, and are additional 

parameters that improve the quality of the mapping by shifting the activations functions 

in the processing units. The biases can be represented as weights of synapses leaving 

dummy units which have a constant output equal to one (see Fig. 2.2).      indicates the 

activation functions in the hidden units, which are generally of the same form across the 

entire layer. The activation functions are usually chosen as the logistic sigmoid (2.2a) or 

the hyperbolic tangent (2.2b) 

     
 

           
 (2.2a) 

     
          

          
 (2.2b) 
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Both functions are smooth and differentiable, and have very similar graphs. The major 

difference between the two functions lies in the fact that the output of the logistic 

sigmoid ranges from 0 to 1, while that of the hyperbolic tangent ranges from -1 to 1 (Fig. 

2.3). The parameters s and t identify the steepness and threshold of the sigmoidal 

functions. The steepness is the slope of the linear portion of the sigmoid, while the 

threshold is a scalar that pushes the center of the activation function away from zero. 

The thresholds actually correspond to the biases b in (2.1) when these functions are 

employed as ANN activation functions. While the steepness is usually set equal to one, 

the thresholds are adjusted along with the synaptic weights during the ANN calibration 

process. Although it is generally understood that one hidden layer is usually sufficient to 

achieve good performances in hydrological applications (Coulibaly et al., 2000), some 

studies have shown that additional hidden layers may result in better performances 

(Chen and Chang, 2009; Tomassetti et al., 2009; Trichakis et al., 2009). However, 

adding hidden layers to a network model may result in an error surface with more local 

minima that complicates the calibration of the network parameters (Masters, 1993). 

 

 

 

 Figure 2.2. Single-hidden Layer Feed-forward neural Network  
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2.1.3. Neural network training 

The optimization of the SLFN parameters, also known as learning or training in 

ANN jargon, is carried out to achieve the best approximation of the system output on a 

set of N input-output pairs                        . This nonlinear optimization is 

usually performed by solving a minimization problem of the form 

                          
 

   

 (2.3) 

where      is the real output of the system under study at time t;         is the output of 

the SLFN in (2.1), which for a given input data pattern      is a function of the set of 

network weights and biases          .     is the estimation of   that minimizes the 

error function on the N input-output patterns of the training dataset. There is no 

analytical solution for (2.3); hence the minimization has to be done through a numerical 

search procedure. First or second order local search techniques, such as the standard 

back-propagation, the conjugate gradient, or the Levenberg-Marquardt (LM) method are 

employed to carry out the training process (Haykin, 2008; Masters, 1995, 1993), 

although global search methods such as Particle Swarm Optimization can also be used 

(Chau, 2007, 2006), as it will be described in the next Chapter. The following 

paragraphs will instead provide a short description of the LM algorithm, which has 

proven to be one of the most efficient training algorithms, and the algorithm of choice 

for ANN-based hydrological applications (Coulibaly et al., 2000; Nayak et al., 2013; 

Piotrowski and Napiorkowski, 2011; Sahoo et al., 2006). 



15 

 

 

 

 

 Figure 2.3. Graph of the hyperbolic tangent activation function  

 

2.1.4. The Levenberg-Marquardt algorithm 

The nonlinear least squares problem in (2.3) can be expressed as a sum of 

squared residuals 

     
 

 
   

    

 

   

 (2.4) 

For each time t,         , the residuals   
     are given by the difference between 

the real output      and the SLFN predicted output         in (2.3) 

                     (2.5) 

The residual functions    can be assembled to form a residual vector         , 

defined as                           , where n is the number of SLFN parameters 

and N is the length of the training dataset. Using the residual vector, the function      

in (2.4) can be rewritten as  
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         (2.6) 

and its derivatives are given by the Jacobian matrix J computed with respect to   

     
   
   

 (2.7) 

where      , and      . From the Jacobian matrix, the gradient and the 

Hessian of      can be obtained as follows 

                  

 

   

            (2.8) 

                                

 

   

 (2.9) 

If the residuals are small, or at least the value of their second derivatives is negligible, 

the Hessian H can be written as  

                   (2.10) 

which is the common approximation of near-linearity of the residuals near the solution. 

The LM algorithm can be defined as a blend of vanilla gradient descend and the Gauss-

Newton method, and employs the information of both first and second order derivatives. 

Vanilla gradient descent is the simplest and most intuitive method to find minima in a 

function. The parameter vector is updated by just subtracting the gradient at each step 

after multiplying it for a scaling coefficient   

               (2.11) 

This technique suffers from big convergence problems. Where the error surface has a 

slight slope, the search point is far from the minima. In these cases the method takes 

small steps and fails to hasten towards the solution. On the other hand, the method 
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accelerates where the gradient is high, rattling out of the minima while approaching. 

This is clearly the opposite of what is expected from a good optimization technique. 

Another problem is that the curvature of the error surface may not be the same in all 

directions; therefore the search may be misdirected by gradient information only. This 

issue can be tackled by using curvature information, namely the second order 

derivatives or the Hessian matrix. The gradient       in (2.8) can be expanded using a 

Taylor series around the current state   , which yields  

                   
 
        

                             
 (2.12) 

If      is supposed to be quadratic around   , the higher order terms may be neglected 

and the value of   is obtained by setting the left side of (2.12) equal to zero. This 

operation yields the update rule for the Newton’s method  

                 
  

       (2.13) 

where the generic   has been replaced with     . The Newton’s method uses the 

approximation (2.10) for Hessian computation because of the implicit quadratic 

assumption that leads to (2.13) from (2.12). Although this technique shows rapid 

convergence, it is highly dependent on the linearity around the starting location, thus 

needs to be improved. This improvement lies in the observation that the gradient descent 

and the Gauss-Newton iteration are complementary in the advantages they provide. 

Levenberg (1944) therefore proposed a blend of them as a superior update rule, which 

can be written as 

                       (2.14) 
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where   is the Hessian matrix evaluated at   . The algorithm operates by first updating 

the weights according to (2.14) and measuring the error associated with the new 

parameter vector     . If the error gets smaller with respect to the previous one, the 

near-linearity condition is strengthened, and the parameter   is reduced before 

performing the next update. When the opposite occurs, the last update is erased and 

another step from    is taken after increasing   of some significant factor. The 

algorithm can still be refined by using second order derivatives even when   is large. By 

scaling each component of the gradient according to the curvature, larger movement will 

result along those directions where the gradient is smaller thus solving the biggest issue 

related to the gradient descent algorithm. This insight has been provided by Marquardt 

(1963), and as a consequence the final Levenberg-Marquardt parameter update rule can 

be written as 

                              (2.15) 

The LM algorithm has proven to work extremely well in practice. The only 

disadvantage compared to other gradient based methods, such as the conjugate gradient, 

lies in the matrix inversion which has to be performed at each update and can require 

long time for computation. One problem that this method shares with other gradient 

based techniques is that it tends to get stuck in areas of local minima which can be far 

away from the global optimum. That is why several algorithm restarts should be carried 

out when employing such techniques for ANN training  (Piotrowski and Napiorkowski, 

2011). 
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2.1.5. ANN generalization 

ANN generalization refers to the ability of the neural network to reproduce the 

behavior of the system under study in situations which are not represented in the 

training dataset (Anctil and Lauzon, 2004). Failing to reach good minima of the error 

function      may lead to poor generalization due to underfitting, i.e. the model failing 

to emulate the system because it was not able to capture the underlying relationship 

training dataset. While the chances of underfitting can be reduced with multiple 

algorithm restarts, this event will always occur when the input set lacks meaningful 

predictors, or when excessively simple models are used. On the other hand, overfitting 

happens when the model is too complex, or when the calibration process is over-

extended causing the ANN to fit the random noise in the training dataset. While both 

phenomena lead to poor generalization, overfitting is the most common in hydrological 

data-driven applications. Hereby follows a description of the techniques usually 

employed to prevent overfitting and grant ANN generalization. 

 

 Early stopping. This method is the most widely used in hydrology and water 

resources, where it is also referred to as stop training or cross-validation (ASCE Task 

Committee, 2000; Cannon and Whitfield, 2002; Coulibaly et al., 2001, 2000; Leahy et 

al., 2008; Piotrowski and Napiorkowski, 2013). The early stopping criterion entails 

splitting the training data set in two parts to form a completely disjoint validation dataset. 

The calibration of ANN parameters is carried out on the reduced training dataset, but 

now the model prediction error on the validation dataset is constantly monitored, so that 

the training process is interrupted when this error start to increase, as shown in Fig. 2.4. 
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 K-fold cross-validation. Although not as popular as early stopping, multifold 

cross-validation can also be employed to grant model generalization, especially when 

data is scarce (Chang et al., 2010; Piotrowski and Napiorkowski, 2013). This variant is 

usually referred to as k-fold cross-validation (Kohavi, 1995), where k is the number of 

folds in which the training dataset is divided before model calibration is initiated. The 

learning process is performed a total of k times, and at each time a different fold is used 

for validation while the remaining k – 1 folds are used for training. Values of k = 5 or 10 

are typically used in data-driven hydrological applications (Galelli and Castelletti, 2013a, 

2013b). This approach allows for a better exploitation of the available data, and should 

theoretically provide a better estimate of the real generalization error. However, the 

multiple runs of optimization involved in k-fold cross-validation may severely slow 

down the overall ANN learning process compared to early stopping. In addition, while 

early stopping returns a single ANN which can be used for predictions on new data, k-

fold cross-validation requires ensembling operations to obtain a single output from the 

multiple ANNs available (Cannon and Whitfield, 2002).     

  

 Regularization. This approach reduces the chance of overfitting by preventing 

the values of the ANN parameters to get large during the calibration process (Anctil et 

al., 2004). In this way, the ANN produces a smoother response which is less susceptible 

to noise in the data. Regularization is implemented by modifying the objective function 

of the nonlinear least square problem to include an additional term which penalizes large 

synaptic weights. A common form of the modified objective function can be written by 

adding the squared    norm of the parameters   to (2.4), which yields 
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  (2.16) 

where the hyper parameter   controls the strength of the regularization. Setting the 

optimal value for   is a problem of this approach, which can be overcome by resorting 

to Bayesian regularization (Foresee and Hagan, 1997; Khan and Coulibaly, 2006). 

 

 

 

 Figure 2.4. The early stopping criterion  

 

2.2. Extreme Learning Machines 

The Extreme Learning Machines (ELM) paradigm was initially proposed as a 

training algorithm for SLFNs in which the input weights and hidden biases are 

randomly assigned. This operation reduces the SLFNs to a linear system, and allows for 

the analytical determination of the output weights using common least-squares (Huang 

et al., 2006b, 2004). These simplifications drastically increase the speed of the learning 

process, which was also found to grant ELMs better generalization than traditional 
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SLFNs trained with gradient-based algorithms or Support Vector Machines (SVM). It 

was successively shown that ELMs are universal approximators that can work with a 

broad type of activation functions, as long as they are bounded non-constant piecewise 

continuous (Huang et al., 2011, 2006a). Recently, it was demonstrated that ELMs 

actually represent a simple unified learning framework for SLFNs, polynomial networks, 

SVMs and other data-driven techniques which can be applied to both regression and 

multiclass classification problems (Huang et al., 2012). In addition, ELMs do not 

require any scheme for improving their generalization capability, since the solution 

returned by this learning paradigm is not only the one with the smallest training error, 

but also the one minimizing the norm of output weights (see Section 2.1.5). K-fold 

cross-validation can be employed to obtain a more accurate estimate of the 

generalization error. Despite their considerable advantages, there exists only a handful 

of ELM applications in hydrology and related fields. Acharya et al. (2013) tested ELM 

for building multi-model ensembles from the products of general circulation models 

developed to estimate the northeast monsoon rainfall over the southern India. The 

findings showed that ELM outperformed standard ensembling methods according to 

several skill metrics. Ortiz-García et al. (2014) used ELMs, as well as several other data-

driven techniques, in a problem of daily precipitation prediction formulated as a 

classification problem. Deo and Şahin (2015) showed that ELMs could substantially 

outperform ANN models trained with LM backpropagation for predicting future 

droughts in eastern Australia. The improvements were obtained both in terms of better 

performance metrics, as well as considerably faster training speeds. In this work, ELM 

will be employed as a fast and accurate alternative to ANN whenever the task at hand 
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does not require the use of GO methods to fine tune the neural network parameters. 

Indeed, an ELM is topologically equal to a SLFN with no biases in the output layer, 

such as shown in Fig. 2.5 for an ELM with one output neuron. Therefore, when GO is 

employed as the learning paradigm, it makes no difference whether the underlying 

model is an ELM or a SLFN. 

 

 

 

 Figure 2.5. Extreme Learning Machine with one output neuron  

 

For a given pattern   of p input variables     , the output of an ELM with L 

hidden nodes and q output nodes is given by 

                   

 

   

 (2.17) 

where      ,     ,      , and          are respectively the input weights, 

bias, output weights, and activation function of the i-th hidden node. For a dataset of N 
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input-output patterns              , the parameters   of the ELM can be estimated 

by solving the following linear system with ordinary least squares (Huang et al., 2011) 

     (2.18) 

where 

   
     

 
     

   
                       

   
                       

 

   

 

(2.19) 
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  is called the hidden layer output matrix of the ELM and can be computed after 

randomly assigning the hidden node parameters        . The smallest norm least-square 

solution    of (2.18) can be thus found as 

        (2.20) 

where   is the Moore-Penrose generalized inverse of  , which has to be used instead 

of the inverse, since generally L<<N. A better and stabler solution than (2.20) can be 

obtained through ridge regression theory (Huang et al., 2012) 

       
 

 
     

  

  (2.21) 

where     is a positive value added to the diagonal of    . In case     is singular, an 

alternative version of (2.21) has to be used for the estimation of     

     
 

 
     

  

    (2.22) 

The overall complexity m of an ELM is given by the sum of input layer         

and hidden layer ( ) parameters, which for an ELM with one output neuron is equal to 
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           . After the output weights have been determined, the ELM can be 

employed for prediction on a test dataset. The ELM algorithm can be summarized as 

follows (Huang et al., 2011):  

ALGORITHM I. ELM training 

Given a dataset of N input output pairs               , for an ELM with L hidden 

nodes and activation functions           :  

1.  

1. Assign random values to the connection weights and biases entering the hidden 

layer        , i=1,…,L 

2. Construct the hidden layer output matrix   according to (2.19) 

3. Calculate the output weight vector    by employing either (2.21) or (2.22) 
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3. Swarm Optimization 

This chapter illustrates the BFIPS, MOFIPS and MBFIPS algorithms which have 

been devised to develop the NNRF applications at the core of this thesis work. These 

methods are presented after some relevant context has been provided. Apart from 

containing the necessary background on Swarm Optimization, these preliminary 

sections briefly describe global optimization and how it can be employed to construct 

NNRF models. 

 

3.1. Introduction to global optimization 

Global optimization (GO) entails the minimization, or maximization, of an 

objective function through a multipoint search on the error surface. Among the most 

successful techniques, we have purely stochastic search methods, such as Simulated 

Annealing  (Leahy et al., 2008; Masters, 1993) and Pattern Search (Corzo and 

Solomatine, 2007a, 2007b), as well as heuristic strategies that are usually nature-

inspired algorithms. In the last decades, nature-inspired computation has witnessed a 

tremendous growth, with successful applications in most fields of science and 

engineering (Brownlee, 2012; Yang, 2014). Many of these techniques have been widely 

used also in water resources science and engineering, especially those belonging to the 

families of Evolutionary Computation (EC) and Swarm Intelligence (SI). Genetic 

Algorithms (GA) is the most well-known EC technique, and arguably the most popular 

heuristics among hydrologists (Abrahart et al., 1999; Bowden et al., 2005a, 2005b; Chen 

and Chang, 2009; Dawson et al., 2006; de Vos and Rientjes, 2008; Goldberg, 1989; Jain 

and Srinivasulu, 2004; Mohan and Vijayalakshmi, 2009; Mohan, 1997; Prasad and Park, 
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2004; Sedki et al., 2009; Wu et al., 2012; Yapo et al., 1998). Other notable EC examples, 

that have found applications in hydrology and related fields, are Genetic and 

Evolutionary Programming (Dawson et al., 2006; Nourani et al., 2012; Parasuraman et 

al., 2007; Savic et al., 1999), and, more recently, Differential Evolution (Kişi, 2010; 

Piotrowski and Napiorkowski, 2011; Piotrowski et al., 2012a, 2012b; Storn and Price, 

1997). In EC algorithms an initial population of candidate solutions evolves through 

time following rules adapted from evolutionary biology and Darwin’s theory of the 

survival of the fittest. Successive generations of the initial population are created in 

order to maximize the overall fitness, i.e. minimize or maximize the objective function 

of the problem at hand. Typical updating rules for EC algorithms are recombination, or 

crossover, mutation and selection. On the other hand, the optimization of SI heuristics is 

carried out through the interaction of a population of agents mimicking the collective 

behavior of natural systems, such as ant colonies, fish schooling and bird flocking. 

Individuals in the population strive to improve themselves by imitating traits found in 

their successful peers. Examples of SI algorithms are Ant Colony Optimization (Afshar, 

2007; Dorigo et al., 1996; Kumar and Reddy, 2006), Artificial Bee Colony (Karaboga 

and Basturk, 2007; Kisi et al., 2012), and Particle Swarm Optimization (PSO), which 

has probably been the most successful due to its computational efficiency and inherent 

simplicity (Kennedy and Eberhart, 1995; Poli et al., 2007). Typical applications of PSO 

in the field of water resources range from soil moisture estimation (Gill et al., 2006; Lü 

et al., 2011) and the optimization of conceptual rainfall-runoff models (Jiang et al., 2007; 

Li et al., 2009; Tada and Beven, 2012), to reservoir operations (Gaur et al., 2011; Li and 
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Zhang, 2009; Reddy and Kumar, 2007a) and supporting decision making in water 

resources management (Gaur et al., 2011; Guo et al., 2012; Reddy and Kumar, 2007b).  

 

3.2. ANN development with global optimization techniques 

When employed for NNRF development, GO techniques perform a parallel 

multipoint search on the error surface in which each point represents a hypothesis on : 1) 

the set of ANN model parameters (Chau, 2007, 2006; Chau et al., 2005; de Vos and 

Rientjes, 2008, 2007; Jain and Srinivasulu, 2004; Kisi et al., 2012; Piotrowski and 

Napiorkowski, 2011; Sedki et al., 2009; Wu and Chau, 2006); 2) a subset of model 

inputs to be selected in a pool of candidates (Bowden et al., 2005a, 2005b); 3) some 

details of the ANN architecture or its connectivity (Abrahart et al., 1999; Chen and 

Chang, 2009; Corzo and Solomatine, 2007a, 2007b); or 4) the set of model parameters 

along with network connectivity (Abrahart et al., 2007; Dawson et al., 2006; Leahy et al., 

2008; Yao, 1999).  

 

 

 

 Figure 3.1. Real-valued encoding of a SLFN wih one output neuron  
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Since these heuristics do not employ derivatives in their optimization process, they 

can operate on search spaces which are not continuous or differentiable, and can 

optimize a much wider range of objective functions than the sum of errors in (2.3). Each 

potential solution of the ANN model is coded on a numerical string, or genotype, which 

constitutes a population member of the global search algorithm. In contrast, the 

extended mathematical form coded in the string and the relative ANN graph are defined 

as the phenotype. Though these terms belong to EC jargon, they are also employed in 

the SI context. If the optimization is carried out for the calibration of ANN model 

parameters, i.e. the synaptic weights and biases, then the genotype is usually made of 

real values, as shown in Fig. 3.1 for a SLFN with one output neuron. On the other hand, 

if the optimization process is aimed at input selection and/or network connectivity 

optimization, the genotype is a binary string, where 1 represents that a connection is 

established between 2 different nodes of the ANN. Fig. 3.2 shows an example of binary 

encoding for a SLFN with three inputs and four hidden units. In this particular ANN 

realization one of the inputs has not been selected and some of the connections between 

the different layers are missing. When GO techniques are used for the concurrent 

optimization of model parameters and network connectivity, hybrid real-binary 

encoding schemes can be employed, although binary codification could be extended 

also to synaptic weights. In this case the values of the model parameters are obtained by 

decoding the bits assigned to each of them in the binary string. Regardless of the 

encoding scheme adopted, the NNRF optimization process is carried out by updated the 

genotypes according to the rules of the particular algorithm employed. At each iteration, 

the fitness of population members is assessed by first decoding the genotype into the 
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phenotype, and then computing the ANN output according to the mathematical form 

corresponding to the phenotype. The process is usually stopped when a defined number 

of iterations has been reached. Other common choices are to stop the algorithm if no 

improvement in the fitness is witnessed over a certain number of iterations, or when an 

exit criterion on the fitness function has been met. 

 

 

 

 Figure 3.2. Binary encoding of a SLFN wih one output neuron  

 

3.3. The canonical Particle Swarm Optimization algorithm 

Recently, the Particle Swarm Optimization (Kennedy and Eberhart, 1995) 

method has gained popularity due to its computational efficiency and relative ease of 

implementation compared to other GO approaches. PSO performs its search by 

exploiting cooperation within a population (swarm) of potential solutions (particles).  

The swarm flies across the error surface defined by the objective function, and at each 

time particles are identified by their position and velocity, which are vectors of the same 
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number of elements as the number of problem dimension d. Particle positions are the 

PSO equivalent to the genotypes of EC algorithms. They represent the hypotheses on 

the solution of the optimization problem, and each of them is characterized by a 

different fitness value. At each iteration, a particle flies to a new position according to 

its velocity, which in the original version of the PSO algorithm is a function of the 

historical best position achieved by the particle and the historical best position found 

among all the particles in its neighborhood (see Fig. 3.3). If    is the position of the i-th 

particle,    is its velocity,    its personal best, and   the overall best position in the 

particle neighborhood, the PSO algorithm is defined by the following equations for 

velocity and position update (Poli et al., 2007) : 

                                        (3.1) 

         (3.2) 

where   identifies point-wise multiplication;         is a vector of d of uniformly 

distributed random numbers between 0 and a positive real number;           

and  

  
 

          
 (3.3) 

Eq. (3.1 – 3.3) above represent Clerc’s constriction formulation of canonical PSO (Clerc 

and Kennedy, 2002). A common choice that guarantees convergence is to set       

with acceleration constants           . This yields a value of          for the 

constriction coefficient. Although these settings force particle convergence and prevent 

the PSO algorithm from exploding, a better approach is to limit particle positions within 

an interval             that depends on the problem, and then constrain particle 

velocities within             where           and           (Eberhart and Shi, 
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2000). This results in a PSO algorithm with no problem-specific parameters, which is 

known as the canonical PSO algorithm (Poli et al., 2007), and can be summarized as 

follows: 

ALGORITHM II. Particle Swarm Optimization 

1. Randomly initialize particle positions, best positions, velocities, and 

fitness values. 

2. Loop for t = 2 up to a maximum number of iterations. 

3. Update particle velocities according to (3.1). 

4. Update particle positions according to (3.2) (see Fig. 3.3). 

5. Compute particles fitness values for the new positions. 

6. Compare fitness values at time t with those at time t-1. Update personal bests 

where needed. 

7. If additional termination criteria are met, exit the loop. 

8. Return to step 2. 

 

Part ic le  X
i
 moves along the veloci ty  V

i
 to  reach the updated posi t ion.  The veloci ty is  

computed based on i ts  previous value,  the par t icle  best  posi t ion P
i
 and the global  best  

found in i ts  neighborhood G.  In  th is  example the error  sur face is  a  funct ion of  only two 

parameters w
1
 and w

2
.  

Figure 3.3. Vectorial representation of particle position update. 
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3.4. Fully Informed Particle Swarm (FIPS) optimization 

In canonical PSO only the positions of the neighborhood historical best and 

personal best are taken into account to update the velocity of each particle. Further 

studies have argued that discarding all the other information provided by the remaining 

individuals may actually be detrimental to the whole optimization process, both in terms 

of reduced convergence speed and final outcome of the search process (Kennedy and 

Mendes, 2002; Kennedy, 1999; Mendes, 2004; Mendes et al., 2003). This lead to the 

development of the Fully Informed Particle Swarm (FIPS) optimization method 

(Mendes et al., 2004), where the term fully informed indicates that each particle 

neighbor contributes in modifying its trajectory. The velocity update equation for the 

FIPS is a generalization of (3.1), which can be defined as follows (Poli et al., 2007): 

        
 

  
       

  

   

       
      (3.4) 

where    is the number of neighbors for particle i, and      identifies i’s j-th 

neighbor. It can be seen that this version corresponds to (3.1) if      for each particle 

with          , and         . It is important to note that, contrary to canonical PSO, 

neighborhoods in the FIPS paradigm may or may not include the best position of the i-th 

particle itself.  Although the FIPS algorithm was found to outperform canonical PSO on 

benchmark case studies (Mendes, 2004; Mendes et al., 2004), its performances depend 

more on the chosen swarm topology, i.e. the graph defining how particles are arranged 

and interconnected in the swarm to form neighborhoods and perform the collective 

search.  
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Alternative FIPS formulation  

All the FIPS variants introduced in this thesis work will employ an alternative 

version of (3.4) for particle velocity update. In particular, the velocity update equation in 

(3.4) is simplified as follows: 

    

 

 
 
              

  

   

     

 

 
 

 (3.5) 

In (3.5) the contribution of each neighbor is weighted using a normalized random 

coefficient    which is the same for each particle dimension, and is defined as 

    
  

   
                     (3.6) 

where        identifies a uniform random number between 0 and 1. This version allows 

for faster computation of particle velocities since only a single uniform random number 

has to be generated for each neighbor particle instead of one for each problem 

dimension. In addition, early preliminary trials have shown that this simplification may 

improve search performances over both PSO and FIPS. The pseudo-code for this 

alternative FIPS algorithm is equal to ALGORITHM II, with the only difference that 

equation (3.5) and (3.6) are employed for the particle velocity update in step 3.   

 

3.5. Swarm topologies 

The population topology introduced with the original version of the PSO was the 

fully connected sphere in Fig. 3.4a. The configuration of this graph shows that there is 

only one neighborhood that comprises all the particles in the swarm, which are 

influenced by a single global-best performer when updating their search direction. This 
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topology therefore converges rapidly towards a minimum which, however, has good 

chances of being only a local one. Other topologies were introduced to overcome this 

problem, and find different balances between the exploration and exploitation phase of 

the search (Kennedy and Eberhart, 1997; Kennedy and Mendes, 2002; Mendes, 2004; 

Mendes et al., 2004, 2003; Poli et al., 2007). Here by exploitation we intend the 

convergence of the swarm toward a local minimum by sharing information among the 

particles; while exploration entails free roaming of particles and groups of particles to 

search for lower minima of the error surface. Some of these alternative topologies are 

shown in Fig. 3.4b-g. The first alternative topology that was introduced is the ring 

topology in Fig. 3.4b, where each particle has only two neighbors influencing its 

movements. This entails that if a particle ends up in a good local minimum, it will take 

time for particles on the opposite end of the ring to receive such information. These 

particles will have more time to explore thoroughly there area of the error surface before 

being influenced. The ring topology therefore favors exploration towards exploitation, 

and results have shown that it outperforms the sphere when searching for the global 

minimum (Kennedy, 1999). The number of neighbors in the ring-structure can be 

increased to speed up convergence while maintaining a tendency for superior 

exploration over the sphere, such as shown in Fig. 3.4c for a ring topology with 4 

neighbors. Another alternative topology which has been introduced early on is the wheel 

in Fig. 3.4d, where one particle is connected to all the swarm while the remaining 

particles cannot communicate between them. In Fig. 3.4e a topology made of four 

interconnected clusters is depicted. In this arrangement, sharing of information is 

immediate within each cluster, while communications between different clusters is 
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granted by connector particles. Other configurations are multi-dimensional lattices (Fig. 

3.4f), or resemble 3-D shapes, such as the pyramid of Fig. 3.4f, or the Von Neumann 

geometry in Fig. 3.4g. The latter one, in which particles are connected to neighbors 

above, below and on each side of a bi-dimensional lattice, has shown very promising 

results on a test-bed of well-known functions for nonlinear optimization (Kennedy and 

Mendes, 2002).  

 

 

 

 Figure 3.4. Example of swarm topologies: (a) sphere; (b) ring with 2 neighbors;  (c) ring with 4 

neighbors; (d) wheel; (e) topology with 4 clusters and connectors; (f) bi-dimensional lattice; (g) 

pyramid; (h) Von Neumann topology. 
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The implementation of different topologies can be done through binary square 

adjacency matrices in which a 1 defines an existing connection between 2 particles. In 

Fig. 3.5 a random topology with 6 particles is shown for reference. The ones along the 

matrix diagonal indicate that the neighborhood of each particle in this topology also 

includes the particle historical personal best. Since neighborhood relationships are 

assumed to be reciprocal, the connections between particles are depicted as non-

directional, and the resulting adjacency matrix is symmetric. However, in the context of 

fully informed swarms, it has been pointed out that successful particles can benefit from 

removing links with the least performing ones in their neighborhood, thus limiting the 

flow of misguiding information (Mendes, 2004). In this case the matrix representing the 

topology is asymmetric.  

 

 

 

 Figure 3.5. Matricial encoding of a swarm topology with reciprocal connections.  

 

3.6. Binary-coded Swarm Optimization: the BFIPS algorithm 

A paradigm for discrete Binary-coded PSO (BPSO) was devised by Kennedy 

and Eberhart (1997) shortly after the introduction of the original real-coded PSO. In the 

BPSO algorithm the trajectories represent changes in the probability that a particular 

coordinate (bit) will take on a value of zero or one. Although the particle positions are 
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now binary strings, the equation for velocity update remains unchanged. Particle 

velocities are still vectors of real values which, in order to express a probability, are 

constrained in the continuous range [0 1] using a logistic transformation. If        

 

   
    

 is larger than a uniform random number drawn between 0 and 1, the j-th bit of 

the position array of the i-th particle     is set to 1;     is set to 0 otherwise. The discrete 

Binary-coded version of the FIPS (BFIPS) is thus obtained by substituting this rule to 

the equation employed for particle position update in (3.2), while still employing 

equations (3.5) and (3.6) to perform the velocity update.  

According to the binary update rule, a digit in the j-th dimension can 

theoretically change unless     is either equal to     or   , for which     will have a 

fixed value of 0 or 1, respectively. This implies that the choice of      and      

regulates the possibility of further exploration when approaching convergence. Contrary 

to what happens in real-coded swarm optimization, the logistic transformation in 

discrete swarms entails that narrow             ranges will allow for more exploration 

across the error surface. This range is usually set to [-6, +6] which limits the 

probabilities        between 0.0025 and 0.9975, thus preventing the algorithm to stall 

by always allowing for a minimum chance of discovery. To further foster diversity in 

the BFIPS, a bit-flipping mutation operator is included after particle positions are 

updated. This operator is implemented by first selecting m particles in the swarm with 

uniform probability. A random uniform number between 0 and 1 is then drawn for each 

bit of each particle, and the bit is flipped if this number is lower than a preselected scalar 

known as the mutation rate μ, μ   [0 1]. The complete BFIPS optimization algorithm 

can be thus summarized as follows: 
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ALGORITHM III. Binary-coded Fully Informed Particle Swarm (BFIPS) 

1. Randomly initialize particle positions, best positions, velocities, and 

fitness values. 

2. Loop for t = 2 up to a maximum number of iterations. 

3. Update particle velocities according to (3.5-3.6). 

4. Constrain velocities with the logistic transformation. 

5. Update particle positions based on particle velocities. 

6. Compute particles fitness values for the new positions. 

7. Compare fitness values at time t with those at time t-1. Update personal 

bests where needed. 

8. Select m particles and perform bit-flipping mutation with mutation rate μ. 

9. If additional termination criteria are met, exit the loop. 

10. Return to step 2. 

 

3.7. Multi-objective Swarm Optimization: the MOFIPS and MBFIPS 

algorithms 

3.7.1. Pareto-based multi-objective optimization 

In Multi-objective Optimization (MO) problems, several conflicting objective 

functions have to be minimized concurrently (Deb, 2009). The most common strategy 

employed to solve MO problems is that of Pareto-optimality (Gill et al., 2006; Reddy 

and Kumar, 2009). Due to the existence of multiple objective functions, the final 

outcome returned by a Pareto-based algorithm is not a unique solution, but a set of 

equally good candidates presenting different trade-offs with respect to the objectives. 

These solutions are said to be non-dominated, or Pareto-efficient, meaning that there is 

no other candidate showing simultaneously a higher fitness value in all the objective 

functions defining the problem. When plotting the values of the objective functions 

against each other, the set of non-dominated solutions describe a frontier known as the 
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Pareto-front, which is displayed in Fig. 3.6 for a bi-objective problem. The MO 

algorithm returns an approximation of the optimal, or true, Pareto-front, which generally 

cannot be analytically determined from the problem at hand, and is known only for a 

restricted number of case-studies usually employed as test functions for MO techniques.   

A successful MO algorithm should return a large set of solutions which are close to the 

true Pareto-front, and equally distributed along the frontier. MO generalizations of the 

PSO (MOPSO) algorithm usually implement the Pareto-based approach by maintaining 

a set of non-dominated particle positions with respect to the swarm, known as leading or 

guiding particles (Coello Coello and Reyes-Sierra, 2006). The positions of these 

particles are stored separately for reference, and the archive is updated constantly by 

including new non-dominated solutions, and excluding those which end up being 

dominated after each optimization step. When the archive grows too big, clustering and 

trimming operations are carried out to retain those representative solutions offering the 

most uniform spread along the Pareto-front. The other particles in the swarm can access 

the archive and direct their search by picking up appropriate leaders through a variety of 

selection schemes.  

 

 

 

 Figure 3.6. Pareto-front of bi-objective optimization problem.  
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3.7.2. The MOFIPS algorithm 

The FIPS paradigm lends itself well for a generalization over multiple objective 

functions. For the purposes of this thesis work, a novel Multi-objective FIPS (MOFIPS) 

is introduced based on the alternative FIPS formulation in (3.5-3.6). In MOFIPS,  

the leading particles constituting the Pareto-front are added to all the neighborhoods in 

the original swarm topology instead of being stored separately in an archive. This is 

shown in Fig. 3.7 for the augmented topology of a swarm with four particles and one 

leader L. The directed connections originating from L indicate that the particles in the 

Pareto-front are not subjected to the influence of the other particles, therefore they will 

not move during the optimization step and their velocity is set to zero. Leading particles 

are simply instances of the non-dominated positions found during the search, acting as 

guides, or centers of attraction, for the entire swarm.  

 

 

 

 Figure 3.7. Matricial encoding of a MOFIPS swarm topology with one leader.  

 

The Pareto-front is updated at each iteration by including new non-dominated 

positions until a maximum size M of the front is reached. After this maximum is reached, 

the update is be carried out by taking into account the crowding distance associated with 

each non-dominated position. The crowding distance is a measure of the density of non-

dominated positions in a certain area of the objective function space. It has been firstly 
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introduced as part of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to 

foster diversity among possible solutions (Deb et al., 2002). The MOFIPS promotes 

diversity in the Pareto-optimal set by retaining only the M solutions with the highest 

crowding distances, and discarding the others. To improve swarm convergence and 

prevent local minima entrapment, a turbulence factor is introduced in the form of a 

polynomial mutation operator (Deb and Deb, 2012; Deb, 2009). Subject to polynomial 

mutation, the j-th coordinate of particle    may change as follows: 

      
                                  

                                     
  (3.7) 

where   is a uniform random number in the [0,1], and   is a parameter that depends on 

  and the parameter    governing the shape of the polynomial probability distribution. 

In particular, the value of     is computed as 

    
                                             

                                         
  (3.8) 

This mutation operator can also be applied to all the particles in the Pareto-front. In this 

case, the frontier is updated by considering the mutated Pareto-front solutions along 

with the original ones and the updated particle positions   . The MOFIPS algorithm 

here described requires the specification of three more parameters with respect to the 

single-objective version presented in Section 3.4.1. These parameters are: 1) the 

maximum number M of particles in the Pareto-front; 2) the percentage    of particles 

coordinates subjected to turbulence; and 3) the shape parameter    controlling the 

probability distribution of the polynomial operator. The pseudo-code for MOFIPS 

implementation can be written as follows: 
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ALGORITHM IV. Multi-Objective Fully Informed Particle Swarm (MOFIPS) 

1. Initialize particle positions, best positions, velocities, fitness values, 

and starting Pareto-front. 

2. Loop for t = 2 up to a maximum number of iterations. 

3. Include Pareto-front positions in all particles neighborhoods. 

4. Update particle velocities according to (3.5-3.6). 

5. Update particle positions according to (3.2). 

6. Compute particles fitness values for the new positions. 

7. Compare particles fitness values at time t with those at time t-1 according 

to non-dominance criterion. Update personal bests where needed. 

8. Mutate particles particle according to    and (3.7 – 3.8). 

9. Mutate all the solutions in the Pareto-front as in point 8. 

10. Update Pareto-front by considering new particles bests and mutated Pareto-

front positions. 

11. If needed, remove exceeding non-dominated solutions according to their 

crowding distance. 

12. If additional termination criteria are met, exit the loop. 

13. Return to step 2 

 

3.7.3. MOFIPS performances on benchmark tests 

MOFIPS performances were assessed on the benchmark functions employed by 

Deb et al. (2002) to test the NSGA-II algorithm, which is arguably the most widely used 

MO Evolutionary Algorithm (MOEA). In their work, the authors compare the real and 

binary-coded version of the NSGA-II against two other common MOEAs, namely the 

Pareto-Archived Evolution Strategy (PAES) (Knowles and Corne, 1999) and the 

Strength Pareto-Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 1999). The 

comparison is carried out on a set of both unconstrained test problems for which the 

Pareto-optimal set is known. In particular, the MOFIPS algorithm was tested for the 

SCH, FON, ZDT1, ZDT2, ZDT3 and ZDT6 mathematical problems, which are reported 
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in APPENDIX A for reference. The performances were estimated using the same two 

performance measures employed in Deb et al. (2002), which are particularly effective in 

directly evaluating both the convergence to a known Pareto-optimal set, and the spread 

across the solutions returned by the algorithm. These two measures are the the 

convergence metric  , and the diversity metric  . A value of zero of   entails perfect 

convergence of the algorithm solutions to a chosen subset of points in the optimal 

Pareto-front. Accordingly, a zero value for the diversity metric   will identify that a set 

of solutions spans uniformly the entire Pareto-front, including the extremes. The reader 

is referred to the original NSGA-II paper for information on how these two metrics are 

actually computed. For fair comparison with the results reported in the study, the same 

maximum of 25,000 function evaluations is set as the termination criterion for the 

MOFIPS simulation runs. In Tables 3.1 and 3.2, the mean and variance of the two 

performance measures are reported for NSGA-II, SPEA and PAES as featured in the 

work of Deb et al., (2002). The statistics for 20 runs of a successful MOFIPS 

configuration are also displayed for comparison. The configuration represents a ring-

structured swarm with 20 particles, two neighbors per particle, a maximum size of the 

Pareto-front M of 20 particles, with turbulence parameters    and    of 0.2 and 20, 

respectively. From the analysis of the results in the tables, it can be seen that MOFIPS 

compares extremely well against all the MOEAs. The MOFIPS consistently 

outperforms every other algorithm in terms of the diversity metric Δ for each of the 

benchmark problems. Significant improvements are not only recorded with respect to  

the less performing PAES and SPEA, but also with respect to both versions of the 

NSGA-II. Results are also very promising when the convergence metric   is considered. 
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The MOFIPS shows best convergence in half of the benchmarks problems (FON, ZDT3 

and ZDT6), with PAES coming first once (SCH), and the binary version of the NSGA-II 

twice (ZDT1 and ZDT2). In addition, the MOFIPS appears to be the most balanced 

among all the algorithms, showing good performances for all benchmarks. 

TABLE 3.1. MEAN (FIRST ROW) AND VARIANCE (SECOND ROW) OF THE CONVERGENCE METRIC    

(IN BOLD THE BEST VALUE RECORDED FOR EACH TEST PROBLEM) 

       

 

SCH FON ZDT1 ZDT2 ZDT3 ZDT6 

NSGA-II 0.003391 0.001931 0.033482 0.072391 0.114500 0.296564 

  0.000000 0.000000 0.004750 0.031689 0.007940 0.013100 

NSGA-II (binary) 0.002833 0.002571 0.000894 0.000824 0.043411 7.806798 

  0.000001 0.000000 0.000000 0.000000 0.000042 0.001667 

SPEA 
0.003403 0.125692 0.001799 0.001339 0.047517 0.221138 

0.000000 0.000038 0.000001 0.000000 0.000047 0.000449 

PAES 
0.001313 0.151263 0.082085 1.126276 0.023872 0.085469 

0.000003 0.000905 0.008679 0.036877 0.000010 0.006664 

MOFIPS 
0.003167 0.001055 0.003840 0.002237 0.003925 0.011751 

0.000000 0.000000 0.000002 0.000001 0.000000 0.000818 

 

TABLE 3.2. MEAN (FIRST ROW) AND VARIANCE (SECOND ROW) OF THE DIVERSITY METRIC    

(IN BOLD THE BEST VALUE RECORDED FOR EACH TEST PROBLEM) 

       

 

SCH FON ZDT1 ZDT2 ZDT3 ZDT6 

NSGA-II 0.477899 0.378065 0.390307 0.430776 0.738540 0.668025 

  0.003471 0.000639 0.001876 0.004721 0.019706 0.009923 

NSGA-II (binary) 0.449265 0.395131 0.463292 0.435112 0.575606 0.644477 

  0.002062 0.001314 0.041622 0.024607 0.005078 0.035042 

SPEA 
1.021110 0.792352 0.784525 0.755148 0.672938 0.849389 

0.004372 0.005546 0.004440 0.004521 0.003587 0.002713 

PAES 
1.063288 1.162528 1.229794 1.165942 0.789920 1.153052 

0.002868 0.008945 0.004839 0.007682 0.001653 0.003916 

MOFIPS 
0.254751 0.373575 0.382408 0.375675 0.498458 0.432655 

0.003146 0.006032 0.004072 0.004741 0.002196 0.050052 

3.7.4. The MBFIPS algorithm  

A binary-coded variant of MO Swarm Optimization can be obtained by merging 

the MOFIPS algorithm with the BFIPS algorithm presented in Section 3.6. This is done 
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by employing the binary rule of the BFIPS instead of (3.2) for updating particle 

positions. In the same way, MOFIPS polynomial mutation is substituted with the bit-

flipping mutation operator of the BFIPS. The generalization to the MO case is granted 

by adopting the mechanism of the MOFIPS for 1) selecting leading particles via the 

Pareto-based non-dominance criterion; 2) adding leaders to particles neighborhoods to 

form augmented topologies; and 3) discarding exceeding non-dominated solutions 

according to their crowding distance. These adaptations lead to the Multi-objective 

Binary-coded Fully Informed Particle Swarm (MBFIPS) optimization algorithm, which 

can be summarized as follows: 

 

ALGORITHM V. Multi-objective Binary-code Fully Informed Particle Swarm (MBFIPS) 

1. Initialize particle positions, best positions, velocities, fitness values, 

and starting Pareto-front. 

2. Loop for t = 2 up to a maximum number of iterations. 

3. Include Pareto-front positions in all particles neighborhoods. 

4. Update particle velocities according to (3.5-3.6). 

5. Constrain velocities with the logistic transformation. 

6. Update particle positions based on particle velocities. 

7. Compute particles fitness values for the new positions. 

8. Compare particles fitness values at time t with those at time t-1 according 

to non-dominance criterion. Update personal bests where needed. 

9. Select m particles and perform bit-flipping mutation with mutation rate μ. 

10. Mutate all the solutions in the Pareto-front as in point 9. 

11. Update Pareto-front by considering new particles bests and mutated Pareto-

front positions. 

12. If needed, remove exceeding non-dominated solutions according to their 

crowding distance. 

13. If additional termination criteria are met, exit the loop. 

14. Return to step 2 

 



PART III. APPLICATIONS
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4. Training NNRF models with MOFIPS 

In this first application, swarm optimization algorithms are employed to develop 

ANN-based NNRF models with better generalization performances than those 

developed using gradient-based search algorithms. This is done by addressing the cross-

validation scheme commonly employed for ANN training (see Section 2.1.5) as a true 

multi-objective problem. In particular, the calibration dataset is split into two subsets, 

and the MOFIPS algorithm is employed to tune ANN parameters by concurrently 

minimizing the residuals on both subsets. The results for the prediction of daily 

streamflow discharges of the Shenandoah River (US) show that MOFIPS-trained NNRF 

outperform those developed using standard PSO, as well as advanced gradient-based 

optimization techniques. 

 

4.1. Introduction 

Although extremely fast, even the most advanced local search methods such as 

the LM algorithm (see Section 2.1.4) are prone to being trapped in local minima, 

especially in complex problems with a rough error surface and many local optima. This 

is the main reason why GO algorithms have been tested as alternatives for the 

development of NNRF models (Maier et al., 2010). Although there exists many 

applications concerning the use of GA for developing NNRF solutions (Abrahart et al., 

1999; Chen and Chang, 2009; Corzo and Solomatine, 2007a, 2007b; Jain and 

Srinivasulu, 2004; Sedki et al., 2009), only few examples regarding the use of swarm 

optimization are available in the literature, presenting results which are limited and 

somewhat contradictory. Chau (2007, 2006) employed PSO-trained SLFNs for real-time 
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prediction of the water stage in the Shing Mun River, Hong Kong. The results showed 

that tuning the ANN parameters using the PSO resulted in more accurate NNRF models 

than those obtained via standard back-propagation or the LM algorithm. In addition, the 

author proposed the combination of PSO and LM in a split step approach (Chau, 2007). 

This paradigm combines the advantages of global search capability of PSO algorithm in 

the first step, and local fast convergence of the LM algorithm in the second step. The 

mixed approach was able to attain a higher accuracy than the two algorithms on their 

own. Although these initial studies suggested that the PSO is able to perform better 

model parameters calibration compared to local search techniques, the opposite 

conclusions were drawn by Piotrowski and Napiorkowski (2011) for a case study 

involving streamflow discharge forecasting in the Annapolis River catchment, Nova 

Scotia (Canada). In their work, the authors show that LM training yielded more accurate 

FNN models in much less time with respect to several global optimization techniques, 

including two advanced variants of the PSO which are known to outperform the 

standard version of the algorithm on benchmark tests. The authors therefore strongly 

advocate for the use of local search techniques to develop NNRF models by means of 

differentiable objective functions, as long as a multi-start approach is implemented to 

reduce the chances of getting stuck in poor minima. 

Due to the limited number of reported applications, this first study is an attempt 

to shed a light on the real effectiveness of swarm optimization techniques for calibrating 

the synaptic weights and biases of NNRF models. In particular, we focus on how 

generalization is ensured in PSO-trained neural networks, an aspect which has been 

overlooked so far, and that could possibly explain the poorer performances of swarm 
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optimization in some applications. In the aforementioned studies, the cross-validation 

approach was employed to prevent the PSO-trained NNRF models from overfitting and 

improve their generalization capability on a validation dataset (see Section 2.1.5). This 

scheme is implemented by allowing particle position updates only if fitness 

improvements are concurrently recorded on both the training and the validation dataset 

(Piotrowski and Napiorkowski, 2011), in similarity with early stopping. We argue that 

this approach is wrong in two respects. In the first place, it is entirely possible for a 

particle to move to a location characterized by better generalization while temporarily 

underperforming on the validation dataset. This can be easily seen by running the PSO 

to minimize only the training errors while recording the evolution of the validation 

performances at the same time, as done in Fig. 4.1 for a given particle in a trial 

experiment. The figure shows how the validation error decreases in the long run 

although it goes up several times during the optimization process. Therefore, it is likely 

that preventing those trajectories resulting in temporary deterioration of validation 

performances might severely hinder the optimization process, especially in the early 

stages. Most importantly, unlike stopped training, there is no effective difference in how 

the training and the validation datasets are used in PSO-ANN calibration. Indeed, since 

the acceptance rule for particle position update employs the objective functions defined 

on both datasets, the implementation of cross-validated training should be addressed as a 

multi-objective (MO) optimization problem. The main goal of this first application is 

thus to employ the MOFIPS algorithm to calibrate NNRF models by concurrently 

minimizing the error on the training and validation datasets according to the Pareto 

dominance criterion. The effectiveness of this approach is tested for the prediction of 
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future streamflow discharges in the North Fork of the Shenandoah River, Virginia (US). 

The MOFIPS-trained NNRF are compared with those developed using standard cross-

validation in conjunction with five other algorithms, comprising the canonical PSO (see 

Section 3.3), as well as four advanced gradient-based optimization techniques. These are 

the Scaled Conjugate Gradient (SCG), the Conjugate Gradient with Fletcher-Reeves 

updates (CGF), the Conjugate Gradient with Polak-Ribiére updates (CGP), and the LM 

algorithm (Adamowski and Karapataki, 2010; Chen and Chang, 2009; Hamed et al., 

2004).  

 

 

 

 Figure 4.1. Training and validation errors in non-cross-validated PSO-ANN training.  

 

4.2. Case Study 

The Shenandoah River is a flood-prone river in Virginia, US, and is the principal 

tributary of the Potomac River. The Shenandoah River is originated by the confluence 

of two tributaries, the South Fork and the North Fork, which join their courses northeast 

of the city of Front Royal in Warren County (Fig. 4.2). In this work we are concerned 
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with 1-day ahead forecasting of river discharge in the North Fork of the Shenandoah 

river, a fifth order stream of 169 kilometers that drains an area of around 6930 square 

kilometers of north eastern Virginia. Daily river discharge observations are available 

from a gauging station in Strasburg, while daily precipitation data are collected from a 

meteorological station in Waterloo sited around 35 kilometers upstream from the 

gauging station. Around 9,000 observations of river discharge and rainfall were 

retrieved from the US Geological Survey database, ranging from May 1985 to the end of 

December 2009. A sample of the recorded times series is given in Fig. 4.3.   

 

 

 

 Figure 4.2. Location of the Shenandoah River.  
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4.3. Input and model selection 

The original time series are initially pre-processed to remove outliers and form 

additional inputs formed by means of aggregating operators. In particular, 3-days and 7-

days moving average of flow observations, as well as 3-days and 7-days cumulated 

precipitation are employed to form a total of 6 input variables. Lagged time series up to 

3 days were considered so that the total set of inputs comprises a total of 18 potential 

candidates. The input and output variables are rescaled in the [-1,1] range to facilitate 

ANN training, and the dataset is then split into a training (40% of available dates), a 

validation (40% of available dates), and a test dataset (20% of available dates). A 

constructive forward selection (CFS) scheme (Maier et al., 2010; May et al., 2011) is 

then implemented to select the optimal number of hidden neurons of the SLFNs, as well 

as the optimal combination of inputs among all candidates. The CFS entails an 

incremental trial-and-error strategy where an initial ANN with minimal complexity is 

trained n times separately, each time having only one of the n candidate variables as the 

sole input. The most significant input is chosen according to an optimality criterion, and 

the search continues by looking for the next input among the remaining n - 1 candidates 

to add to the model. This procedure is repeated iteratively until the inclusion of further 

inputs does not yield any improvement of the optimality criterion. When this event 

occurs, the SLFN is first augmented with an additional neuron to its hidden layer, and 

the search for new inputs is resumed from where it had stopped. The search continues if 

adding a new input to the augmented model results in improved performances, 

otherwise the CFS process is terminated and the model obtained at the previous step is 

returned. To improve the reliability of the CFS scheme, the optimality criterion is 
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chosen as the median value of the validation Root Mean Square Error (RMSE, see 

Appendix B) obtained by training each SLFN model with 100 restarts. Due to the 

computational effort needed to perform the CFS, the SLFNs are trained using the LM 

method, which is the fastest training technique considered in this work. The results 

obtained for the LM are then extended to the cases where the other algorithms are 

employed. The optimal model returned by the CFS scheme has 6 hidden neurons and 5 

input variables, namely the streamflow discharges up to three days ahead (t-1, t-2, t-3), 

the rainfall measured the previous day (t-1), and the 3-days cumulated rainfall computed 

at time t-3. The total number of weights (including ANN biases) in the optimal model is 

43. 

 

 

 

 Figure 4.3. Sample of recorded total precipitation and streamflow discharge.  
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4.4. Comparison of PSO and MOFIPS performances 

A first batch of experiments are run to check whether addressing cross-validated 

ANN training as a MO problem results in improved performances of the NNRF model.  

This is done by training the optimal model architecture returned by the CFS with both 

cross-validated single-objective canonical PSO, as well as with the MOFIPS algorithm. 

4.4.1. Experimental setup  

The comparison is carried out using four different particle arrangements in order 

to assess the impact of different topologies on the quality of the developed NNRF 

models. The employed topologies are made of 30 particles which are disposed to form 1) 

a sphere with 30 neighbors, 2) a ring of 30 particles with 2 neighbors each, 3) a 

clustered arrangement with 5 niches of 6 particles each, and 4) a 6-by-5 bi-dimensional 

lattice. The reader is referred to Fig. 3.4 a, b, e, and f for a graphical representation of 

these arrangements. The first topology was chosen since is the original one proposed for 

the PSO algorithm, while the remaining three are known to be valid alternatives when 

the FIPS paradigm is employed (Mendes et al., 2004). For the MOFIPS case, these 

topologies are tested with or without including each particle in its own neighborhood. 

These cases are respectively identified as MOFIPS-w and MOFIPS-wo for the 

remaining of the discussion.  The maximum number M of Pareto-front particles and the 

parameter    controlling the turbulence probability distribution are set to 30, while the 

percentage of particle dimensions subjected to turbulence is set to 

   
 

                 
     . Each PSO/MOFIPS case is run a total of 20 times for 

1,000 iterations, and a distribution of the performances on each dataset is obtained by 
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extracting the best performing particle of each run. All the experiments are run using the 

Matlab® computing environment and programming language. 

4.4.2. Selection of optimal solutions 

The best performing solution for each PSO run is obtained by selecting the 

particle with the best validation performances. On the other hand, a strategy has to be 

developed to select a solution from the Pareto-front returned by each MOFIPS run. Each 

solution in the Pareto-front is by definition equally efficient with respect to the 

objectives, however the solution at extremes of the frontier are more likely to over-fit 

one of the two datasets. Although more sophisticated selection schemes could be 

implemented, in this work the optimal solution of each MOFIPS run was chosen as the 

one located at the knee of the Pareto-front (Branke et al., 2004), i.e. that solution along 

the frontier after which a small improvement in one objective leads to a large 

deterioration in the other (Fig. 4.4).  

 

 

 

 Figure 4.4. Selection of MOFIPS optimal solution.  
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4.4.3. Results and discussion 

The statistical comparison of PSO and MOFIPS performances is reported in 

Table 4.1 for each employed topology in terms of the Nash-Sutcliffe Coefficient of 

Efficiency (CE, see Appendix B). Other goodness-of-fit measures were employed for 

the comparison, but these results were not reported since they do not provide further 

insights to the analysis. From a first glance at Table 4.1, it appears that the NNRF 

models trained with the MOFIPS algorithm clearly outperform than those obtained with 

standard PSO. With exception of one topology, the median values of the CE are around 

5% higher on the training and validation datasets, and over 11% higher on the test 

dataset. These figures suggest that the multi-objective approach develops NNRF models 

with better generalization capability. The analysis of the results for each topology shows 

that the efficiency of both PSO and MOFIPS depends on the adopted swarm 

arrangement. In particular, the PSO seems to be more efficient when the ball topology is 

employed. This could be attributed to the higher convergence speed provided by this 

arrangement under the PSO framework with respect to the other topologies. On the 

other hand, the excessive flow of information among neighbors penalizes the ball 

topology for both the MOFIPS cases. These results are consistent with those obtained by 

comparing the PSO and FIPS algorithms on benchmark trials (Mendes et al., 2004), 

although the MOFIPS employs an alternative formulation of the fully informed velocity 

update (see Section 3.4.1). All the other candidate topologies are more or less successful, 

and there are no significant differences between the MOFIPS-w and MOFIPS-wo cases. 

However, the MOFIPS-wo lattice combination is arguably the one providing the best 

results overall, with the MOFIPS-wo clustered geometry coming a close second.    
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4.5. Comparison of MOFIPS and gradient-based algorithms 

performances 

After assessing the superiority of the MOFIPS parading over canonical cross-

validated PSO for NNRF development, a second batch of experiments is carried out to 

assess how the proposed MO approach compares against four of the most advanced 

local search algorithms, i.e. the SCG, CGF, CGP and LM. 

4.5.1. Experimental setup  

The four gradient-based algorithms are implemented in MATLAB® using the 

Neural Network Toolbox®. In addition, the setup of the parameters for each method is 

chosen based on the suggestions provided along with the employed computing suite. In 

each case, standard cross-validation (see Section 2.1.5) is employed for improving 

model generalization, while 100 restarts are used to prevent poor minima entrapment. 

The best NNRF models developed using each algorithm are selected from the 100 

restarts as the ones with the lowest validation error.     

4.5.2. Results and discussion 

Table 4.2 presents the performances of the NNRF models for the prediction of 

the Shenandoah River streamflow discharges. The results are given in terms of CE, 

RMSE, and the ratio of the RMSE to the standard deviation (RMSE/STDEV). The 

second column of Table 4.2 reports the overall computational time needed by each 
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TABLE 4.1. PERFORMANCE COMPARISON OF PSO- AND MOFIPS-TRAINED NNRF MODELS 

                
 

TRAINING VALIDATION TEST 

  Coefficient of Efficiency Coefficient of Efficiency Coefficient of Efficiency 

  BEST WORST MEDIAN MEAN STDEV BEST WORST MEDIAN MEAN STDEV BEST WORST MEDIAN MEAN STDEV 

PSO 
    

  
    

  
    

  

ball 0.791 0.666 0.757 0.75 0.033 0.788 0.663 0.777 0.767 0.032 0.722 0.432 0.663 0.649 0.068 

ring 0.768 0.633 0.728 0.725 0.034 0.787 0.648 0.741 0.737 0.032 0.697 0.432 0.615 0.61 0.066 

lattice 0.785 0.704 0.746 0.744 0.021 0.784 0.724 0.753 0.753 0.018 0.714 0.531 0.637 0.629 0.045 

clustered 0.778 0.696 0.749 0.746 0.023 0.793 0.697 0.764 0.758 0.025 0.719 0.526 0.646 0.633 0.047 

  
    

  
    

  
    

  

MOFIPS-w 
    

  
    

  
    

  

ball 0.771 -0.025 0.753 0.714 0.174 0.772 -0.001 0.757 0.719 0.17 0.678 -0.008 0.634 0.604 0.145 

ring 0.805 0.754 0.784 0.783 0.012 0.792 0.765 0.782 0.781 0.008 0.741 0.662 0.704 0.704 0.021 

lattice 0.802 -0.029 0.783 0.743 0.182 0.795 -0.001 0.782 0.743 0.175 0.734 -0.004 0.708 0.67 0.16 

clustered 0.795 0.761 0.784 0.781 0.011 0.793 0.768 0.782 0.782 0.006 0.73 0.655 0.697 0.696 0.021 

  
    

  
    

  
    

  

MOFIPS-wo 
    

  
    

  
    

  

ball 0.773 -0.022 0.753 0.716 0.174 0.779 -0.003 0.755 0.719 0.17 0.678 -0.004 0.637 0.607 0.146 

ring 0.79 0.748 0.777 0.775 0.011 0.794 0.754 0.78 0.779 0.01 0.732 0.629 0.686 0.688 0.027 

lattice 0.802 0.752 0.787 0.782 0.015 0.793 0.757 0.784 0.779 0.01 0.732 0.609 0.717 0.702 0.033 

clustered 0.803 0.762 0.786 0.784 0.012 0.798 0.76 0.78 0.781 0.009 0.731 0.645 0.71 0.699 0.028 
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algorithm to perform all the restarts. It can be seen that the model obtained with the LM 

algorithm outperforms those obtained with the remaining local search methods for each 

dataset, except for the CGF-trained ANN that shows basically the same performances on 

the test dataset.  Nonetheless, while the LM is the fastest algorithm, the CGF is the 

slowest and it needs a much longer computational time to develop a NNRF model with 

similar  accuracy. The superiority of the LM over conjugate gradient methods was also 

reported in other studies (Adamowski and Karapataki, 2010; Hamed et al., 2004). The 

last row of Table 4.2 shows the performances of a MOFIPS run for comparison. The 

results pertain to a model obtained with the MOFIPS-wo lattice configuration, after the 

algorithm was left to run for 4,000 iterations to ensure convergence. The optimal 

MOFIPS solution was selected according to the scheme presented in Section 4.4.2. 

From the analysis of the results it emerges that the MOFIPS algorithm compares well 

against the gradient-based methods both in terms of overall run-time and model 

accuracy. Although slower than the LM, the MOFIPS is able to provide the NNRF with 

best generalization ability in one-third to one-half of the time required by the conjugate 

gradient algorithms to perform 100 restarts. The improvements provided by the 

MOFIPS on the test dataset range from a minimum of 2% for the LM to a maximum of 

10% for the CGP, which is the worst performing algorithm. More insights on the 

relative NNRF performances can be obtained through a visual inspection of the 

reconstructed hydrographs, as done in Fig. 4.5 for a sample of the training dataset. It can 

be seen that the NNRF model obtained by the MOFIPS and the LM tend to better 

approximate the peaks in streamflow discharge due to rainfall. On the other hand, all the 

models seem to perform equally well in predicting the falling limbs of the hydrographs 
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after a storm event. The CGP-trained model seems to suffer from timing errors in 

predicting the streamflow peaks. This is more likely to happen when there is an 

excessive imbalance in the relative importance of past streamflow input features over 

rainfall ones, suggesting that 100 restarts were not sufficient for the CPG algorithm to 

escape poor minima.  

TABLE 4.2. PERFORMANCE COMPARISON OF GRADIENT-BASED AND MOFIPS-TRAINED NNRF MODELS 

 

TRAINING 

ALGORITHM 

TIME 

(s) 

RMSE (m
3
/s) RMSE/STDEV CE 

training validation test training validation test training validation test 

LM 541 12.283 12.917 9.091 0.418 0.475 0.520 0.810 0.800 0.729 

SCG 2344 12.919 13.26 9.316 0.440 0.488 0.533 0.790 0.789 0.716 

CGP 2387 14.233 13.789 9.989 0.484 0.507 0.572 0.745 0.772 0.673 

CGF 3075 12.865 13.138 9.145 0.438 0.483 0.523 0.792 0.793 0.726 

MOFIPS 956 12.232 13.147 8.822 0.416 0.484 0.505 0.812 0.793 0.745 

 

 

 Figure 4.5. Comparison of model predictions.  
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4.6. Conclusions 

In this study we proposed a multi-objective (MO) approach for cross-validated 

swarm optimization training of ANN to be used for streamflow forecasting purposes. 

The rationale justifying the use of this paradigm lies in the consideration that developing 

cross-validated NNRF models with single-objective PSO hinders the optimization 

process performed by the swarm by penalizing the exploratory behavior of the algorithm. 

In addition, the specification of two different objective functions in the acceptance rule 

for particle position update renders the optimization problem intrinsically multi-

objective, thus it should be treated as such. Indeed, the experiments run for Shenandoah 

River watershed demonstrated that the MO approach implemented using the MOFIPS 

algorithm provides more accurate NNRF models with respect to canonical PSO. In 

addition, the NNRF model produced by the MOFIPS algorithm is found to outperform 

those built with the SCG, CGF, CGP and LM methods. With the exclusion of the LM, 

such improvements are obtained with a significant reduction in the computational costs, 

especially in comparison to the slower methods of the conjugate gradient family. 

Although further research is needed to thoroughly assess the effectiveness of the 

proposed MO training scheme for NNRF development, the findings of this work are 

certainly encouraging with respect to some results remarking the inferiority of single-

objective swarm optimization (Piotrowski and Napiorkowski, 2011).  
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5. NNRF interval forecasting using the Lower Upper 

Bound Estimation (LUBE) method and MOFIPS 

In the previous Chapter it was shown how the MOFIPS algorithm can be 

employed to improve the performances of NNRF models developed for deterministic 

predictions. This chapter demonstrates how MOFIPS can be used to facilitate the 

estimation of accurate ANN-based Prediction Intervals (PIs), a major issue of NNRF 

models which limits their use for operational streamflow forecasting. In particular, the 

MOFIPS algorithm is used in conjunction with the Lower Upper Bound Estimation 

(LUBE) method, a recent technique that is found to outperform traditional methods for 

ANN-based PI estimation. The LUBE method construct ANNs with two output neurons 

that directly approximate the lower and upper bounds of the PIs. The training is 

performed by minimizing a Coverage Width-based Criterion (CWC), which is a 

compound, highly nonlinear and discontinuous function. In this work, we test the 

suitability of the MOFIPS-based LUBE approach in producing PIs at different 

confidence levels (CL) for the 6-hours ahead streamflow discharges of the Susquehanna 

and Nehalem Rivers, US. Due to the success of single-objective swarm optimization in 

other LUBE engineering applications, the PSO and FIPS algorithms are employed for 

comparison.  

 

5.1. Introduction 

Despite the number of successful applications reported in the scientific literature, 

NNRF solutions still struggle to move from research grade to operational grade level 

due to a number of unresolved issues that still need to be addressed. A major obstacle is 
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represented by the difficulties in estimating the uncertainty of the predicted values 

produced by a NNRF model (Maier and Dandy, 2000). Indeed, the vast majority of 

NNRF applications so far have been only concerned with providing deterministic 

forecasts of the modeled hydrological variable, without estimating the degree of 

confidence associated with them. This is peculiar since hydrological forecasts can be 

employed for water resource management and natural hazards prevention only if a 

measure of their reliability is attached to each predicted value (Krzysztofowicz, 2001). 

The uncertainty characterizing NNRF point forecasts can be overcome by resorting to 

interval forecasts, or prediction intervals (PIs). A PI is a range of values in which the 

realization of a predicted random variable is expected to fall with a predefined coverage 

probability, known as the confidence level (CL). The width of the interval conveys 

information regarding the uncertainty of the forecast, so that for a given coverage 

probability, narrower widths entail higher accuracy. PIs are similar to confidence 

intervals (CIs), with the distinction that CIs are associated to the uncertainty in the 

prediction of an unknown but fixed value, whereas PIs are assigned to a random variable 

yet to be observed (De Gooijer and Hyndman, 2006). Since they also account for model 

misspecification and noise variance, by definition PIs enclose CIs of corresponding CLs. 

Although deterministic forecasts dominate the field of NNRF, there have been a few 

noteworthy applications of PI-based streamflow forecasting. The preferred methods 

involve the use of Bayesian Neural Networks (BNNs), resampling and ensemble 

techniques, as well as experiments that involve fuzzy theory. BNNs (Khan and 

Coulibaly, 2006; Kingston et al., 2005; Zhang et al., 2009) are able to return error bars 

along with their predictions, and have strong probabilistic theory backing them up. 
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However, they require the computation of the Hessian matrix at each iteration, which in 

turn causes singularity problems that may harm the quality of the PIs as well as heavy 

computational costs. Bootstrapping and ensemble modeling (Dawson et al., 2002; 

Sharma and Tiwari, 2009; Tiwari and Chatterjee, 2010) are also very time consuming as 

the number of ANN models to be trained has to be large in order to avoid biased 

estimates of total error variance. Computational costs can be abated with the use of 

fuzzy-based techniques such as the Local Uncertainty Estimation Model (LUEM) 

proposed by Shrestha and Solomatine (2006), which is based on fuzzy c-means 

clustering; or the approach of Alvisi and Franchini (2011) that employs fuzzy ANNs. 

Despite their differences, methods used in hydrology to estimate of ANN-based PIs 

usually require complex implementations that may have prevented their widespread 

application. Therefore, it is likely that resorting to less complicated, faster and yet 

effective techniques may favor a shift from deterministic NNRF models to more reliable 

solutions based on prediction intervals. Most importantly, all the aforementioned 

techniques share a common methodological weakness since they build the PIs indirectly 

from deterministic point predictions. Indeed, it would be more appropriate to generate 

the PIs directly through a mechanism that that considers both coverage probability and 

interval width criteria. This is the main premise that lead to the development of the 

Lower Upper Bound Estimation (LUBE) method proposed by Khosravi et al. (2011) to 

generate ANN-based PIs. This technique was found to outperform classic PIs 

construction techniques such as the delta method, Bayesian methods, and bootstrapping 

on both synthetic experiments as well as real world regression problems (Khosravi et al., 

2011a; Quan et al., 2014a, 2014b, 2014c). The LUBE method constructs an ANN with 
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two output neurons that directly approximate the lower and upper bounds of the PIs. The 

training is performed by minimizing a coverage width-based criterion (CWC), which is 

a compound PI-based objective function accounting for both coverage probability and 

interval width. The CWC is a highly nonlinear and discontinuous function that requires 

global optimization techniques for its minimization. In particular, the PSO algorithm has 

proven very efficient in generating high quality PIs (Quan et al., 2014a). The main 

objective of this study is to test the suitability of PSO-based LUBE as a straightforward 

approach to predict streamflow discharges with uncertainty. This is done by producing 

90%, 95% and 99% CL PIs for the 6 hours ahead streamflow discharge of the 

Susquehanna and Nehalem rivers, US. In addition, this work will assess whether PSO-

based LUBE can benefit from a multi-objective formulation, as done here using the 

MOFIPS algorithm. Since. as shown in Chapter 4. MOFIPS-trained NNRF models can 

substantially outperform those developed using single-objective swarm optimization, 

similar improvements could be expected for NNRF models producing interval based 

predictions. This hypothesis is assessed by comparing the performances of MOFIPS-

based LUBE NNRF-models against those obtained with single-objective PSO and 

single-objective FIPS optimization.  

The remaining of this chapter is structured as follows: Section 5.2 will discuss 

the LUBE method and how it is employed in conjunction with swarm-optimization 

techniques. Section 5.3 will introduce the case studies and the datasets employed for the 

application. Section 5.4 will discuss the results of the experiments and present a 

thorough comparison of the LUBE PIs obtained with each of the considered swarm 

optimization techniques. Conclusions are given at the end of the chapter. 
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 Figure 5.1. LUBE Neural Network model.  

 

5.2. Estimation of ANN-based PIs with LUBE and swarm 

optimization 

5.2.1. Prediction intervals 

Prediction intervals (PIs) are random intervals constructed from historical 

observations that enclose a future observation within a certain range with a given 

probability, known as the confidence level (CL). If   and   are the lower and upper 

bounds delimiting the PI, and        is the CL attached to it, for a future unknown 

observation       of the predicted variable   we can write          such that      

           . Unlike deterministic forecasts, PIs carry information about the 

accuracy of the prediction, a fundamental requirement for planning, risk assessment and 

decision making. For valid PIs at a given confidence level, narrower intervals should of 

course be preferred since they entail less uncertainty and convey more information. 

Despite the superiority of PIs over point predictions, the latter constitute by far the most 
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common approach employed when forecasting water resource variables, especially 

when data-driven methods are chosen as the modeling tool for the hydrological process.  

 

5.2.2. The Lower Upper Bound Estimation method and PI evaluation indices 

The Lower Upper Bound Estimation (LUBE) method is a straightforward and 

efficient technique to produce high quality PIs for ANNs. The LUBE was found to 

outperform classic PIs construction techniques such as the delta method, Bayesian 

methods, and bootstrapping on both synthetic experiments as well as real world 

regression problems (Khosravi et al., 2011a, 2011b; Quan et al., 2014a, 2014b, 2014c). 

The LUBE method constructs an ANN with two output neurons that directly 

approximate the lower and upper bounds of the PIs, as depicted in Fig. 5.1. Each actual 

value of the predicted variable is enclosed in the interval between the two ANN outputs 

with         probability. This ANN is trained using historical observations of both 

the predicted variable and a set of relevant inputs. The training is performed by 

minimizing a Coverage Width-based Criterion (CWC), which is a compound PI-based 

objective function that accounts for both coverage probability and interval width 

(Khosravi et al., 2011a). The CWC is defined as a combination of two indices, namely 

the Prediction Interval Coverage Probability (PICP) (Khosravi et al., 2010) and the 

Prediction Interval Normalized Root-mean-square Width (PINRW)  (Quan et al., 2014a). 

The value of these indices, including the CWC, can also be expressed in terms of 

percentages. PICP measures the percentage of target observations which are enclosed in 

the intervals, and is defined as follows:  
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 (5.1) 

where   is the number of observations,    is equal to one if the observation           , 

and zero otherwise. The interval         is the range of values delimited by the two 

outputs produced by the ANN (Fig. 5.1). PINRW provides an estimate of the overall PI 

width, and is defined as the ratio of the 2-norm of the width of the PIs to the range R of 

the observed variable: 

      
 

 
 
 

 
           
 

   

  (5.2) 

The CWC cost function is a nonlinear combination of (5.1) and (5.2) defined as (Quan 

et al., 2014a): 

                                (5.3) 

where         is set equal to 1 during model calibration, while it becomes a step 

function of PIPC on test dataset 

         
             
             

   (5.4) 

The value of         is forced to 1 during training in order to allow for the 

construction of more conservative PIs and reduce the risk of violating the CL constraints 

during test (Khosravi et al., 2011b).  The parameters   and   are two constants used to 

define the penalty term controlling the balance between coverage probability and width 

of the developed PIs. The penalty term is needed to synthesize these two conflicting 

objectives in a single-objective cost function. In particular, the CWC is designed so that 

the optimization process will first search for valid PIs for which            holds; 
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then the search is refined by gradually giving more importance to the PINRW term in 

(5.3), so that narrower PIs are constructed. To ensure the calibration is carried out in this 

way   is set to      , while literature suggests 80 as an appropriate value for   (Quan 

et al., 2014a). For a simpler assessment of the width of the developed PIs, the Prediction 

Interval Normalized Average Width (PINAW) is usually employed instead of PINRW. 

PINAW is defined as the ratio of the average width of the prediction intervals to the 

range R of the observed variable: 

      
 

  
          

 

   

  

 

5.2.3. PSO-based and FIPS-based LUBE for constructing streamflow PIs  

In the following section the major steps regarding the construction PSO-based 

LUBE streamflow forecasting models are be discussed according to the general version 

of the method proposed by Quan et al. (2014b). Although the following steps refer to the 

PSO algorithm, they are implemented likewise when the FIPS is employed. 

 

Dataset creation 

Provided the set of hydrological and meteorological inputs has been already 

identified, all the input-output patterns are first normalized in the [-0.9,+0.9] range to 

facilitate model training and avoid saturation of the ANN activation functions. The 

whole dataset is then divided to form training and a test datasets. 

 

Search for optimal PSO-LUBE model structure 
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The training dataset is further divided into k subsets to perform k-fold cross-

validation (see Section 2.1.5). This procedure is carried out in order to find an optimal 

ANN structure that will prevent over-fitting and maximize performances. ANN models 

of increasing complexity, i.e. increasing size of the hidden layer, are trained k times 

using at each repetition a different subset for validation and the remaining k-1 subsets 

for model training. The median of the k CWC indices computed for the validation 

dataset is later used to select the optimal LUBE model.  

 

Training with swarm optimization 

The PSO method is used to train an ANN model for each considered model 

structure and for each repetition entailed by the k-fold cross-validation procedure. The 

algorithm is first initialized by setting the parameters governing its search, selecting the 

number of particles in the swarm, and choosing the swarm topology. Particle position 

and velocity arrays are also initialized before the optimization is started. Each position 

occupied by the particles during the search process represents a different configuration 

of synaptic weights and biases of the LUBE ANN model. Particle fitness values are 

computed based on the CWC of the corresponding LUBE ANN model on the training 

dataset (        ). The PSO looks for the position in the search space for which 

         of the corresponding ANN configuration is the overall lowest. 

 

Gaussian mutation operator 

Due to the complexity of the CWC cost function, it is beneficial to include a 

mutation operator to boost PSO search and facilitate local minima escape. In PSO-based 
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LUBE, Gaussian mutation is performed after each particle has moved to a new position 

(Higashi and Iba, 2003; Quan et al., 2014a). If     identifies the j-th component of the i-

th particle position array at time t, its new value after mutation will be 

                     

where             is a random number from a Gaussian distribution with zero mean 

and a standard deviation which in the original PSO-based LUBE is set to 10% of the 

absolute value of    . The effects of the mutation operator are also set to decrease 

exponentially with time. 

 

Training termination and model evaluation 

The PSO training is stopped when a maximum number of iterations has been 

reached, or when the algorithm stalls for a preset number of iterations. When the 

algorithm exits, a LUBE ANN model is built from the particle with the highest fitness, 

then the PIs of this model are estimated for the validation dataset and the relative value 

of CWC (      ) is computed. Once the        for all the k subsets of the cross-

validation procedure have been obtained, the median value is computed and stored for 

comparison with those of other model structures. 

 

Selection of optimal model structure and PIs construction on the test dataset 

When the cross-validated training procedure has been performed for all the 

considered model structures, the optimal model structure is selected as the one with the 

lowest median       . The k trained instances of the optimal structure are then used as 
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an ensemble to build the final PIs for the test dataset by averaging their lower bounds 

and the upper bounds outputs. 

 

 

 

 Figure 5.2. Flowchart of the MOFIPS-based LUBE method.  
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5.2.4. The MOFIPS-based LUBE method 

A LUBE technique based on MOFIPS is devised in similarity with the bi-

objective procedure employed for deterministic NNRFs presented in Chapter 4. The 

flowchart in in Fig. 5.2 shows how MOFIPS-based LUBE is implemented, with 

reference to ALGORITHM IV presented in Chapter 3. In MOFIPS-based LUBE the 

dataset is first split to form separate training and a test datasets. The training dataset is in 

turn divided in two complementary parts of similar length to create the two subsets of 

the bi-objective problem. The MOFIPS algorithm is initialized by selecting its 

parameters, defining the topology to use, and assigning random starting values to 

particle positions and velocities. Initial PIs are estimated after using the starting particles 

positions to build the LUBE models. The CWC values are then computed and the 

starting Pareto-front is generated. If      and      denote the values of CWC for the 

two training subsets, an example of the MOFIPS Pareto-front at a given iteration can be 

illustrated as done in Fig. 5.3. After the initialization, the MOFIPS starts its iterative 

process to search for better LUBE solutions. According to the MOFIPS paradigm, the 

non-dominated positions of the Pareto-front are included in particles neighborhoods, and 

particle velocities are computed based on this augmented set of neighbors. Particles then 

fly to new positions according to their velocities, and the mutation operator is applied 

after they have landed. The Pareto-front is then updated and if the updated frontier is 

larger than a predefined maximum size, the set of solutions is trimmed down to this 

maximum size by discarding the solutions with lowest crowding distance. The iterative 

process is terminated either when a maximum number of iterations has been reached, or 
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when a desired fitness value has been obtained for both objective functions, or when the 

Pareto-front has not been updated for a given number of consecutive iterations. 

 

 

 

 Figure 5.3. Example of MOFIPS Pareto-front for LUBE model development.  

 

5.2.5. Selecting optimal MOFIPS-based LUBE solutions 

After the optimization process has been completed, an optimal solution has to be 

extracted from the Pareto-front and employed to build streamflow PIs on the test dataset. 

Theoretically, all the non-dominated solutions forming the final Pareto-front are equally 

good with respect to the chosen CWC objective functions, meaning that none of them 

outperforms the others on both parts of the training dataset (see Fig. 5.3). However, 

practical optimal solutions can be identified based on the final goal of the application 

that is obtaining high quality PIs for the test dataset. A first requirement is that the 

selected solutions do not overfit either part of the training dataset. This can be 

reasonably ensured by considering only those solutions which provide valid PIs on both 

training subsets, thus respecting the constraint            for a given confidence 
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level. On top of this, two different criteria based on the PICP and PINRW indices are 

proposed to select respectively a Most Precautionary (MP) and a Narrowest Interval (NI) 

solution. The MP solution is the point on the      vs      Pareto-front characterized 

by highest PICP on the training datasets with respect to the medians. This solution is 

most precautionary in the sense that having the largest coverage probability will 

increase the odds of future unknown streamflow observations to fall within the PIs built 

by the LUBE model (Khosravi et al., 2011b). We therefore expect the MP solution to 

have higher chances of producing valid, although wider, PIs for the test dataset. Given a 

Pareto-front made of m solutions, if         and         identify the PICP values of the 

i-th solution on the two training subsets, the MP solution is chosen as 

                                                            (5.5) 

where          . The        operator indicates that the MP solution is the member 

of the Pareto-front maximizing the sum of the differences between the PICP values in 

the two sets and the respective median values computed from all the points in the 

frontier. On the other hand, the NI solution is the one generating valid PIs on the 

training datasets having narrowest widths with respect to the medians. Similarly to (5.5), 

the NI selecting criterion can be written as  

                                                               (5.6) 

where          and          are the PINRW values of the i-th solution on the two 

training subsets. This time the        operator indicates that the solution is the point 

minimizing the sum of the differences between the PINRW values in the two sets and 

the respective median values computed from all the points in the frontier. Compared to 
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the MP solution, the NI solution should likely generate narrower PIs for the test dataset 

although they might not satisfy the validity condition for the given confidence level. It is 

important to note that the differences in (5.5) and (5.6) should be normalized with 

respect to the respective medians if the distributions of the indices vary substantially 

between the two subsets.  

 

5.3. Case studies 

5.3.1. The Susquehanna River 

At around 750 km long and with a watershed of over 70,000 km
2
, the 

Susquehanna River is one of the longest rivers in the United States, draining southern 

New York State (NY), half of Pennsylvania State (PA) and emptying into the 

Chesapeake Bay in Maryland. For this case study, streamflow discharges PIs with a lead 

time of 6 hours are produced for the US Geological Survey (USGS) gauging station in 

Meshoppen, PA, which monitors a catchment area of 22585 km
2
. The PIs at Meshoppen 

are developed using a set of input variables observed at 5 other stations located 

elsewhere in the area. In particular, hourly rainfall near the cities of Milan, Towanda, 

Dushore and Montrose, as well as previous hourly streamflow discharges in Towanda 

are employed. Details regarding these stations are reported in Table 5.1 for reference. 

Five additional aggregated time series were added to the working dataset by including 6-

hours cumulated precipitation (SUM6) at each rainfall station as well as 6-hours moving 

average streamflow discharges (AVG6) at Towanda. Lag times from a minimum of 6 to 

a maximum of 11 hours were considered for each raw and aggregated time series. In 

other words, if t indicates the actual time of the prediction, lagged time series from t-6 
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up to t-11 are employed as inputs, providing a forecasting lead time of 6 hours. The 

working dataset for the Susquehanna River thus contains 60 inputs, and after removal of 

invalid observations, a total of 26555 input/output patterns spanning from January 2004 

to April 2008. 

TABLE 5.1. DETAILS OF GAUGING AND METEOROLOGICAL STATIONS 

 
     

Dataset Name Observed variable WGS84 Coordinates 
Distance   

(km) 

 
  

Latitude Longitude 
 

Susquehanna 

Meshoppen Flow discharge 41.61 -76.05 --- 

Towanda Flow discharge 41.77 -76.44 35 

Towanda Rainfall 41.75 -76.42 35 

Milan Rainfall 41.93 -76.52 53 

Dushore Rainfall 41.53 -76.4 31 

Montrose Rainfall 41.83 -75.87 29 

      

Nehalem 

Foss Flow discharge 45.70 -123.75 --- 

Nehalem Rainfall 45.71 -123.9 53 

Jewell  Rainfall 45.94 -123.53 31 

Vernonia Rainfall 45.87 -123.19 29 

 

5.3.2. The Nehalem River 

The Nehalem River originates in the Northern Oregon Coast Range near the city 

of Portland, and it ends its 192 Km course in the Pacific Ocean. For this river, PIs with a 

forecasting lead time of 6 hours ahead are produced for the USGS gauging station near 

Foss in Tillamook County, OR. The drainage area of this station is of 1728 km
2
, which 

amounts to around 80% of the overall watershed area of 2210 km
2
. The input time series 

for this case study were chosen as the previous streamflow values measured at Foss, 

plus the hourly rainfall recorded in the meteorological stations of Nehalem, Jewell 

Wildlife Meadows, and Vernonia (Table 5.1). As done for the first dataset, AVG6 and 

SUM6 aggregated time series were computed for the streamflow and rainfall inputs, 
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respectively, and lag times of 6 to 11 hours were considered. The Nehalem River dataset 

consists of 48 inputs, with 20577 input/output samples recorded between October 2007 

and December 2013. 

 

5.4. Results and discussion 

5.4.1. Input selection 

An optimal set of input features has to be selected from the available candidates 

of both datasets described in the previous section. In lack of a standard methodology for 

input selection to develop ANN-based PIs, we resort to the Constructive Forward 

Selection (CFS) wrapper technique devised for deterministic NNRF models (see 

Chapter 4). In particular, the CFS is used to determine an optimal set of inputs for 

NNRF models performing 6 hours ahead point predictions of streamflow discharges for 

both case studies. These input features are then used to develop LUBE models under the 

hypothesis that they represent a good approximation of the optimal input set required to 

develop ANN-based PIs. This assumption is legitimate if one considers that good 

quality PIs of hydrological variables have been obtained by bootstrapping and 

ensembling deterministic NNRF models (Dawson et al., 2002; Sharma and Tiwari, 2009; 

Tiwari and Chatterjee, 2010). Before launching the CFS algorithm, the datasets are first 

normalized in the [-0.9,0.9]  range, and divided in training (40%), validation (40%) and 

test (20%) subsets as shown in Table 5.2. The Levenberg-Marquardt algorithm with 

early stopping was employed as the ANN training algorithm, using 50 restarts to prevent 

local minima entrapment. The CFS method returned an optimal model with 5 hidden 

neurons and 7 inputs for the Susquehanna dataset, while the best ANN for the Nehalem 
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River was found to have 3 hidden neurons and 5 inputs. The details of the selected 

inputs for both case studies are reported in Table 5.3, along with the performances on 

each dataset expressed in terms of Root Mean Square Error (RMSE) and Nash-Sutcliffe 

Coefficient f Efficiency (CE) (see APPENDIX B). The high performances shown by the 

CFS optimal architecture suggest that the selected features are suitable for modeling 

future streamflow discharges. They will be employed for LUBE model development 

following the premise made earlier in this section.   

 

TABLE 5.2. DATASETS SUBDIVISION 

  
      

Dataset Subset Intial datetime Ending datetime Number of 
observations 

Streamflow statistics  
[m3s-1] [mm/dd/yyyy HH:MM] [mm/dd/yyyy HH:MM] 

  Min Max Mean 

Susquehanna 

Training 01/01/2004 11:00 11/23/2005 02:00 10653 42 5324 604 

Validation 11/23/2005 14:00 04/21/2007 06:00 10582 78 4616 585 

Test 04/21/2007 18:00 05/01/2008 00:00 5320 135 3313 670 

        

Nehalem 

Training 10/01/2007 17:00 03/22/2010 18:00 8230 2 1481 108 

Validation 03/22/2010 19:00 06/19/2012 08:00 8231 4 784 121 

Test 06/19/2012 09:00 12/02/2013 17:00 4116 3 580 108 

 

 

TABLE 5.3. DETERMINISTIC ANN INPUTS AND MODEL PERFORMANCES 

 
       

 

SELECTED INPUTS 
 

MODEL PEFORMANCES 

Dataset Station Input type Lag 
 

Subset 
RMSE 

[m3s-1] 
CE 

Susquehanna 

Towanda Flow RAW t-6, t-7 
 

Training 50.7 0.994 

Towanda Flow AVG6 t-8, t-11 
 

Validation 69.7 0.985 

Montrose Rainfall RAW t-6 
 

Test 70.3 0.983 

Montrose Rainfall SUM6 t-8, t-9 
    

        

Nehalem 

Foss Flow RAW t-6, t-7 
 

Training 11.1 0.993 

Vernonia Rainfall RAW t-6 
 

Validation 12.5 0.99 

Jewell Rainfall RAW t-6 
 

Test 13.8 0.985 

Jewell Rainfall SUM6 t-6 
    

5.4.2. Development of swarm optimization-based LUBE models 
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After having identified the model inputs, LUBE neural networks can be 

developed to generate PIs for the 6-hours ahead streamflow discharge for both rivers. 

For the PSO and FIPS-based LUBE a 10-fold cross-validation procedure is carried out 

after joining the training and validation subsets in Table 5.2, and dividing the resulting 

dataset in 10 equal chunks. The two original subsets are left separated when employing 

the MOFIPS algorithm, where they are regarded as Part 1 and Part 2 of the overall 

training dataset used for the optimization. PIs with CL of 90%, 95% and 99% are 

considered for LUBE model development, therefore the values of   in (5.3) was set to 

0.9, 0.95 and 0.99 respectively. The value of   was set to 80 for each confidence level. 

In order to reduce the computational burden of the experiments, the search for optimal 

model complexity and swarm topology was performed only for the 90% case, with the 

results being extended to the other two cases. The search for optimal model structure 

was carried out trying LUBE models with 3 to 10 hidden neurons for each algorithm 

employed. For the Susquehanna River the best performances were obtained using ANNs 

with 6 hidden neurons (62 model parameters), irrespective of the training algorithm. On 

the other hand, all algorithms provided best results when 4 hidden neurons (34 model 

parameters) were used for the Nehalem River dataset. For the sake of brevity, full 

details on algorithms setup are reported in Table 5.4, along with the appropriate 

references for their implementation. Contrary to PSO- and FIPS-based LUBE, which 

require 10 runs to implement the k-fold cross-validation, MOFIPS is able to produce PIs 

at the end of a single run. Due to the similarity in the workings of the three algorithms, 

MOFIPS might therefore require only 1/10 of the computational time of its single-

objectives counterparts. However, since MOFIPS entails augmented swarm topologies 
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and the additional calculation of the Pareto-fronts, this speed-up could be partially 

reduced. After these considerations, 5 restarts are performed for the MOFIPS technique 

for fairer comparison. The overall Pareto-frontier obtained from these restarts is 

considered for the extraction of optimal LUBE solutions according to the MP and NI 

criteria reported in Section 5.2.5.  

TABLE 5.4. DETAILS OF THE SWARM OPTIMIZATION ALGORITHMS EMPLOYED 

 
   

 
PSO FIPS MOFIPS 

Algorithm formulation 
PSO Type 1" constriction 

(Clerc and Kennedy, 2002; 
see Section 3.3) 

FIPS Type 1" constriction  
(Mendes et al., 2004; see 

Section 3.4) 
see Section 3.7.2 

Number of particles 
30 particles 

 

topology 

Von Neumann with "self" 
included  

(Mendes et al., 2004; see 
Section 3.5) 

Von Neumann with "self" excluded  
(Mendes et al., 2004; see Section 3.5) 

minimum and maximum 
position 

-3,+3 

minimum and maximum 
velocity 

-0.5,+0.5 

termination criteria 1000 iterations 

mutation type 
Gaussian mutation with exponential decay  

(Quan et al., 2014a) 

Polynomial mutation  

(Deb and Deb, 2012; Deb, 
2009, see Section 3.7.2) 

mutation details 
Gaussian mean is set to 0, and standard deviation is set to 

10% of the absolute value of the ANN parameter 

Probability distribution 
parameter is set to 30, and 

percentage of particles 

subjected to mutation is set to 
1/num. of ANN parameters 

5.4.3. Comparison of generated PIs 

Due to the different dataset arrangements employed for the single-objective and 

multi-objective training, a direct comparison of the PIs generated with the three 

algorithms can be done only for the test dataset which is the same for each case. 
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Furthermore, while the optimal MOFIPS-based LUBE models can be univocally 

identified on the Pareto-front using the MP and NI criteria, PSO and FIPS-based LUBE 

require the construction of an ensemble from 10 different models. Averaging is thus 

necessary to produce the final PIs of these ensembles, while the indices employed for 

the comparison against the MOFIPS solutions are given in terms of medians, as 

suggested in literature (Khosravi et al., 2011b; Quan et al., 2014a). Table 5.5 reports the 

comparison of the 90%, 95% and 99% PIs constructed for the 6 hours ahead streamflow 

discharge of the Susquehanna River at the Meshoppen gauging station, while the results 

for the Nehalem River at Foss are given in Table 5.6. All the indices described in 

Section 5.2.2 are shown for comparison, but the discussion is better carried out in terms 

of PICP and PINAW. From a cursory analysis of the results, it clearly emerges that the 

MOFIPS solutions substantially outperform the LUBE models built with single 

objective swarm optimization. For both case studies, the best performer at each 

confidence level, i.e. the LUBE models providing the narrowest yet valid PIs, is 

obtained from the MOFIPS Pareto-fronts. It can be seen that the NI models are 

unsurprisingly those returning the narrowest PIs, with PINAW of around 7.01%, 8.00%, 

and 12.50% for the Susquehanna River and 8.76%, 11.20% and 14.91% for the 

Nehalem River. However, the corresponding PICP values of 91.32%, 92.59% and 97.80% 

for the Susquehanna and of 91.21%, 94.87% and 98.98% for the Nehalem imply that NI 

solutions return strictly valid PIs only for the 90% case.  On the other hand, the models 

identified by the MP criterion are able to generate valid PIs for all the examined cases. 

PINAW of 7.9%, 10.7%, and 13% of the streamflow discharge range are slightly greater 

than those of the NI models, indicating that the MP solutions are the overall best for the 
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Susquehanna case. Similar conclusions cannot be drawn as easily for the Nehalem case 

study. Indeed, while the NI solutions fail to ensure the required coverage probability for 

the 95% and 99% cases, they fall short of only 0.13% and 0.02% with respect to the 

target CL, and could be regarded as valid. On the other hand, the MP solutions provide 

PIs which are likely too precautionary for this case, with PICPs considerably larger than 

the correspondent target CL. Consequently, the PIs of MP solutions are 18% to 45% 

wider than the NI ones as shown by the PINAW values in Table 5.6. Although the PSO-

based LUBE provides valid PIs at each confidence level for both case studies, the 

produced intervals are too wide for any real practical application. The FIPS-based 

LUBE shows usually better performances, but it still compares badly against the optimal 

models returned by the MOFIPS algorithm. This is particularly true the 99% CL case, 

where the median PICP of the FIPS-based LUBE models is below the requested target 

for both cases. The results in the last columns of Table 5.5 and 5.6 show that MOFIPS-

based LUBE generates better PIs while at the same time providing remarkable speedups. 

Indeed, despite the 5 restarts, MOFIPS computational times are 40% to 50% smaller 

than those required by single-objective swarm optimization, indicating that the overhead 

associated with using augmented swarm topologies and Pareto-fronts calculation is 

fairly negligible (see end of Section 5.4.2). The superiority of MOFIPS solutions can be 

also verified from a visual comparison of the PIs generated for the three confidence 

levels considered, such as shown in Fig. 5.4-5.6 for the last part of the test dataset of the 

Susquehanna River. It appears that most of the improvements provided by MOFIPS are 

reflected into a better positioning of the Lower Bound of the PIs, and a more accurate 

bracketing of peak streamflow discharges. In this regards, of particular interest is Fig. 
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5.5 showing the PIs at confidence level 95%. For this case, all the algorithms return 

valid PIs which are also found to comprise the peak discharges for the major storm 

event occurring on the night of the 21
st
 of March 2008, with a peak flow of 2483 m

3
s

-1
. 

The interval generated by the MP solution for the peak observation is [2426 ,2724] m
3
s

-1
, 

which has a width of 298 m
3
s

-1
 corresponding to around 12% of the peak discharge itself. 

On the other hand, the PI of the FIPS-based LUBE is over three times larger including 

discharges anywhere in the [2005, 2957] m
3
s

-1
 range. The accuracy of the PSO-based 

LUBE models is even worst, with a PI of [772, 3365] m
3
s

-1
 which is almost nine times 

wider than that of the optimal MOFIPS solution, and represents 104% of the peak flow 

rate.  

 

TABLE 5.5. PERFORMANCES OF LUBE MODELS ON THE TEST DATASET FOR THE 

SUSQUEHANNA RIVER AND REQUIRED COMPUTATIONAL TIME 

      
 

  
PICP CWC PINRW PINAW 

Total 

computational 

time [s] 

90% 

confidence 

level 

MOFIPS-based LUBE (NI) 0.9132 0.0719 0.0719 0.0701 
3105.2 

MOFIPS-based LUBE (MP) 0.9175 0.0803 0.0803 0.079 

PSO-based LUBE 0.9143 0.2275 0.2275 0.1992 6132.7 

FIPS-based LUBE 0.913 0.1324 0.1173 0.1129 5952.4 

 
 

     

 
 

PICP CWC PINRW PINAW 
 

95% 

confidence 

level 

MOFIPS-based LUBE (NI) 0.9259 0.641 0.0816 0.08 
3164.6 

MOFIPS-based LUBE (MP) 0.9686 0.1078 0.1078 0.1073 

PSO-based LUBE 0.9644 0.3757 0.3215 0.2896 6145.1 

FIPS-based LUBE 0.9523 0.1953 0.15 0.1434 5914.1 

 
 

     

 
 

PICP CWC PINRW PINAW 
 

99% 

confidence 

level 

MOFIPS-based LUBE (NI) 0.978 0.4836 0.134 0.125 
3197.3 

MOFIPS-based LUBE (MP) 0.9901 0.1445 0.1445 0.1298 

PSO-based LUBE 0.9903 0.6947 0.42 0.3628 6181.9 

FIPS-based LUBE 0.9791 0.7377 0.2312 0.205 5879.5 
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TABLE 5.6. PERFORMANCES OF LUBE MODELS ON THE TEST DATASET FOR THE NEHALEM 

RIVER AND REQUIRED COMPUTATION TIME 

      
 

  
PICP CWC PINRW PINAW 

Total 

computational 

time [s] 

90% 

confidence 

level 

MOFIPS-based LUBE (NI) 0.9121 0.0901 0.0901 0.0876 
2126.5 

MOFIPS-based LUBE (MP) 0.9208 0.1127 0.1127 0.1033 

PSO-based LUBE 0.9187 0.2509 0.2509 0.2209 3775.8 

FIPS-based LUBE 0.9175 0.2333 0.2333 0.2106 3743.4 

 
 

     

 
 

PICP CWC PINRW PINAW 
 

95% 

confidence 

level 

MOFIPS-based LUBE (NI) 0.9487 0.249 0.1182 0.112 
2136.7 

MOFIPS-based LUBE (MP) 0.9823 0.1667 0.1667 0.1581 

PSO-based LUBE 0.9666 0.3189 0.3189 0.2458 4214.8 

FIPS-based LUBE 0.958 0.2399 0.2356 0.2213 3731.1 

 
 

     

 
 

PICP CWC PINRW PINAW 
 

99% 

confidence 

level 

MOFIPS-based LUBE (NI) 0.9898 0.3444 0.1708 0.1491 
2097 

MOFIPS-based LUBE (MP) 0.9947 0.2477 0.2477 0.2158 

PSO-based LUBE 0.9934 0.4733 0.4088 0.3645 3871 

FIPS-based LUBE 0.9883 0.5783 0.3006 0.2628 3543.1 

 

5.4.4. Wet season vs dry season performances 

Further insights on the performances of the MOFIPS-based LUBE methodology 

can be obtained by decomposing the overall performance indices into those relative to 

the wet and dry seasons. From an analysis of historical records, it emerges that for both 

case studies the wet season goes from November to May, while the dry season 

comprises the remaining 5 months. However, due to the lack of sufficient data samples 

in the dry season for the test dataset of the Susquehanna River, the analysis will be 

carried out only for the Nehalem River. The test dataset of the Nehalem River is made 

for 1/3 by samples recorded during the dry months, while the remaining 2/3 pertains to 

the wet season. Fig. 5.7 reports the decomposition of the overall test PICP (left) and 

PINAW (right) indices of the NI solutions for the three CLs. The results shown for the 

PICP suggest that there are no major differences in the coverage probability across the  
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Figure 5.4. LUBE generated prediction intervals at 90% confidence level for the Susquehanna River. 

 

 

Figure 5.5. LUBE generated prediction intervals at 95% confidence level for the Susquehanna River. 
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Figure 5.6. LUBE generated prediction intervals at 99% confidence level for the Susquehanna River. 

 

two seasons. On the other hand, the PINAW values are generally lower during the dry 

season for all the three considered CLs. These results are better examined by taking into 

account the average flows which are 52.1 and 134.2 m
3
s

-1
 for the dry and wet season, 

respectively. It is interesting to note that, although the average flow during the dry 

season is 61.2% smaller than that of the wet season, the PINAW values for the dry 

seasons are at most 16.8% smaller than those of the wet season. This particular value is 

recorded for the 99% CL case, where the overall PINAW of 14.91% is decomposed into 

a wet season component of 15.77% and a dry season component equal to 13.13%. The 

contrast between the difference of these components and that of the seasonal average 

flows suggests that the width of the PIs is mostly determined by the higher variability of 

the wet season, which is driven by more frequent and intense rainfall events. This higher 
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variability forces the LUBE method to widen the PIs in order to increase coverage 

probability and meet the validity requirement set by the CL. However, since the same 

ANN model is used for both seasons, the PIs produced during the dry season, albeit 

narrower than those of the wet season, are wider than what could be expected by 

analyzing the average flows. 

 

Figure 5.7. Decomposition of test PICP and PINAW for the Nehalem River. 

 

5.5. Conclusions 

This study dealt with the application of the LUBE method for the construction of 

ANN-based PIs of streamflow discharges at 90%, 95% and 99% confidence levels. 

Single–objective and multi-objective swarm optimization has been employed to develop 

LUBE models for the prediction of 6 hours ahead streamflow discharges of the for the 

Susquehanna and Nehalem rivers, US. A novel methodology involving the MOFIPS 

algorithm was found to provide valid PIs that are substantially narrower than those 

obtained with single-objective swarm optimization. With average PI widths ranging 
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from a minimum of 7% to a maximum of 15% of the range of the streamflow data in the 

test datasets, MOFIPS-based LUBE could be employed for straightforward design of 

more reliable interval-based streamflow forecasting models.  Although the quality of the 

PIs was found to be significantly affected by the algorithm employed for model 

development, future studies should be focused on finding more appropriate input 

selection techniques for interval based hydrological prediction models. In addition, the 

seasonal decomposition of the overall performance indices encourages seeking for 

further improvements, which could be obtained, for instance, by resorting to a modular 

approach where the PIs are produced separately for the dry and wet seasons and joined 

subsequently. 
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6. Data-driven input variable selection for rainfall-runoff 

modeling using binary-coded particle swarm 

optimization and ELMs 

Selecting an adequate set of inputs is a critical step for successful NNRF 

modeling. In this study, we present a novel approach for Input Variable Selection (IVS) 

that employs Binary-coded discrete Fully Informed Particle Swarm optimization (BFIPS) 

and Extreme Learning Machines (ELM) to develop fast and accurate IVS algorithms. A 

scheme is employed to encode the subset of selected inputs and ELM specifications into 

the binary particles, which are evolved using single objective and multi-objective BFIPS 

optimization (MBFIPS). The performances of these ELM-based methods are assessed 

using the evaluation criteria and the datasets included in the comprehensive IVS 

evaluation framework proposed by Galelli et al. (2014). From a comparison with 4 

major IVS techniques used in their original study it emerges that the proposed methods 

compare very well in terms of selection accuracy. The best performers were found to be 

1) a MBFIPS-ELM algorithm based on the concurrent minimization of an error function 

and the number of selected inputs, and 2) a BFIPS-ELM algorithm based on the 

minimization of a variant of the Akaike Information Criterion (AIC). The first technique 

is arguably the most accurate overall, and is able to reach an almost perfect specification 

of the optimal input subset for a partially synthetic rainfall-runoff experiment devised 

for the Kentucky River basin. In addition, MBFIPS-ELM allows for the determination 

of the relative importance of the selected inputs.  On the other hand, the BFIPS-ELM is 

found to consistently reach high accuracy scores while being considerably faster. By 
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extrapolating the results obtained on the IVS test-bed, it can be concluded that the 

proposed techniques are particularly suited for NNRF modeling applications 

characterized by high nonlinearity in the catchment dynamics. 

 

6.1. Introduction 

6.1.1. Input variable selection (IVS) techniques 

One of the main issues encountered when developing NNRF applications is 

represented by the difficulties in identifying the set of inputs to employ for modeling a 

given hydrological process (Maier and Dandy, 2000; Maier et al., 2010). This task is 

usually referred to as Input Variable Selection (IVS) (Galelli et al., 2014; Guyon and 

Elisseeff, 2003; May et al., 2011), and entails the identification of a possibly small set of 

predictors able to explain the behavior of the output variable. Exclusion of meaningful 

predictors results in building inaccurate models, no matter how well the other model 

development steps are carried out. On the other hand, inclusion of irrelevant or 

redundant inputs hinders the subsequent calibration process by adding more local 

minima to the error surface defined by the objective function used for ANN training. In 

addition, unnecessary large input sets result in longer computational time for model 

development, and undermine post-processing efforts for knowledge discovery and rule 

extraction (Jain and Kumar, 2009). 

6.1.2. Filters, wrappers and embedded IVS techniques 

 IVS techniques can be broadly divided into model-free and model-based 

approaches according to whether or not the selection process is carried out 

independently from the chosen model (Maier et al., 2010; May et al., 2011). Model-free 
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approaches are usually known as filters, since the significance of the relationship 

between the output variable and each input candidate is filtered as a preprocessing step, 

independently of the model employed (Kohavi and John, 1997). Input relevance is 

estimated through a statistical measure, such as cross-correlation (Coulibaly et al., 2000; 

Imrie et al., 2000) or Mutual Information (MI) (Bhattacharya and Solomatine, 2005). To 

prevent redundancy among the selected candidates, partial significance measures can be 

evaluated by removing the effects of the predictors which have already been selected.  

This notion is at the core of efficient automatic filter techniques such as the 

Partial Correlation Input Selection (PCIS) method (May et al., 2008) and the Partial 

Mutual Information (PMI) based method (Bowden et al., 2005a; Fernando et al., 2009; 

May et al., 2008; Sharma, 2000). Another successful approach is that of the Iterative 

Input variable Selection (IIS) method recently proposed by Galelli and Castelletti 

(2013a), which employs a ranking scheme based on extremely randomized trees (Galelli 

and Castelletti, 2013b) to estimate the partial dependence between candidate inputs and 

the output. Other notable examples of filter techniques developed for hydrological 

applications may involve dimensionality reduction, stepwise regression, the gamma test, 

and information theoretic approaches (Noori et al., 2011; Sharma and Mehrotra, 2014; 

Ssegane et al., 2012; Wan Jaafar et al., 2011). Filter techniques are characterized by 

good generalization capability since they are not tuned to the specific interaction 

between the selected inputs and a chosen data-driven model. The lack of an underlying 

model to be trained also grants them high computational efficiency, and facilitates the 

physical interpretation of the selected variables. However, these advantages are obtained 

at the expense of not considering the actual gain in model performances given by each 
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selected variable. In addition, filters usually treat each candidate variable separately, and 

therefore do not take into account the information that could be gained by individually 

irrelevant candidates with high combined explanatory power.  

These issues can be overcome by resorting to model-based approaches, which are 

generally divided into wrapper and embedded methods (Blum and Langley, 1997; 

Guyon and Elisseeff, 2003; Kohavi and John, 1997). The difference between these two 

classes lies in the fact that the latter techniques perform the IVS task along with model 

calibration, while the former treat the model as a pure black-box, whose accuracy is 

maximized by searching for an optimal subset of inputs (Guyon and Elisseeff, 2003). 

However, the line separating these two classes is not always easy to draw, especially 

when the most common approach of using global optimization (GO) techniques is 

adopted to perform the search (May et al., 2011). With reference to Section 3.2, using 

GO will result in a wrapper technique if the algorithm searches for the optimal set of 

inputs and, at most, some large scale properties of the ANN model (i.e. number the 

number of hidden layers and number of units for each hidden layers) (Abrahart et al., 

1999; Bowden et al., 2005a, 2005b; Chen and Chang, 2009). On the other hand, the 

method can be classified as embedded if the EA performs the optimization of ANN 

weights along with the IVS process (Leahy et al., 2008; Yao, 1999). The distinction is 

less clear when the EA is employed to directly manipulate links and nodes within the 

ANN topology but another learning algorithm is used to estimate the value of the 

synaptic weights (Leahy et al., 2008). It is understood that embedded algorithms are 

more computationally efficient as they focus on the development of a single final model. 

However, the increased complexity of the search process may outweigh the benefits of 
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reduced computational costs, which even for the leanest techniques are usually orders of 

magnitudes greater than those of the fastest model-free techniques. 

6.1.3. Development of wrapper techniques with ELM and binary-coded FIPS 

The speed gap between model-based and model-free techniques can be reduced 

by resorting to fast training algorithms, such as the Extreme Learning Machines (ELM) 

paradigm introduced in Section 2.2 (Huang et al., 2011, 2006, 2004). Despite their 

advantages over traditional ANNs and similar techniques, to our best knowledge ELMs 

have never been employed for NNRF applications at the time of this writing. It is 

therefore the purpose of this study to explore the potential of ELMs by exploiting their 

computational efficiency and enhanced generalization capability to develop fast and 

accurate IVS algorithms. In particular, the proposed techniques are wrappers built by 

pairing ELMs with the BFIPS and MBFIPS algorithms presented in Section 3.6 and 

3.7.4, respectively. BFIPS-ELM wrappers are built using the Root Mean Square Error 

(RMSE) and several variants of the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) as the objective functions to minimize. The different 

metrics are employed to check whether penalizing model complexity grants better 

performances by preventing over-fitting that may occur due to the inclusion of irrelevant 

or redundant variables. This is a known issue of wrapper methods (Galelli et al., 2014) 

that could be aggravated when employing ELMs, whose training process may suffer in 

presence of irrelevant or correlated variables (Miche et al., 2010). This problem is 

directly addressed when developing MBIFPS-ELM wrappers, since the number of 

inputs is concurrently minimized with the RMSE through a bi-objective Pareto-based 

optimization (Xue et al., 2013).  
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The suitability of the proposed methods is assessed using the evaluation criteria and 

datasets of the comprehensive evaluation framework proposed by Galelli et al. (2014). 

In particular, the algorithms are run on 19 fully synthetic datasets that account for a 

range of properties typical of hydrological data (e.g. nonlinear, non-Gaussian, 

redundant), as well as on a partially synthetic rainfall-runoff dataset based on the 

Kentucky River basin. As entailed by the IVS framework, quantitative evaluation of the 

proposed wrappers is done in terms of input selection accuracy and computational times. 

In the same way, the criteria defined for explanation capability, flexibility, ease of use 

and robustness are used to evaluate the techniques from a qualitative point of view. For 

a thorough assessment of the methods, a comparison with the PMI, PCIS, IIS and GA-

ANN techniques tested in the original paper presenting the framework is also carried out. 

The Chapter is organized as follows. Section 6.2 presents the ELM-based wrapper 

methods and how they are developed. Section 6.3 briefly describes the IVS framework, 

while the results of the experiments are shown and discussed in Section 6.4. 

Conclusions are drawn in Section 6.5.  

 

6.2. ELM-based wrapper development using BFIPS and MBFIPS 

6.2.1. Binary particle encoding 

As discussed in Section 3.2, when GO techniques are employed to identify the 

optimal inputs for an ANN, the subsets of selected inputs are encoded in binary strings 

of the same length of the total number of candidate predictors (Bowden et al., 2005a, 

2005b). The i-th bit of the string is set to 1 if the i-th input has been selected by the 

searching algorithm, and it is set to 0 otherwise. The selected predictors are then fed to 
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the ANN, which is first trained and then evaluated to provide a measure of its 

performances. The characteristics of the data-driven models may be chosen beforehand 

and remain fixed during the search process, but wrapper performances could be 

improved by evolving some model specifics along with the input selection (Chen and 

Chang, 2009). In this work we decided to include the number of hidden neurons of the 

ELM, the type of the activation function, as well as the value of the parameter   in the 

search process (see Section 2.2). The automatic tuning of the first two variables is 

expected to produce flexible wrappers that can adjust their complexity and functional 

form to better capture the underlying relationship in the data. In addition, including   in 

the encoded parameters will allow using the solutions in (2.21-2.22) to determine the 

output weights of the ELM more accurately, enhancing its performances. If the BFIPS 

and MBFIPS algorithms are chosen to develop the ELM-based wrapper, we have that 

the position vector of a particle is a binary string as the one depicted in Fig. 6.1, where 

        is the number of bits used to directly encode the selected subset of inputs, 

                                        ;        is the number of bits used to 

encode the number of hidden neurons between a maximum (     ) and a minimum 

value (      ),                           ; and      is the number of bits 

needed to encode the type activation function used, 

                                      . The number of bits    needed to encode the 

parameter   is given by              , where M is a positive integer so that the value 

of   can be defined by increasing powers of 2,                 . The     

brackets employed in the previous lines identify the ceiling function which maps a real 

number to the smallest following integer. 
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Figure 6.1. Binary encoding scheme for the ELM-based wrappers. 

 

6.2.2. BFIPS-ELM wrappers 

The encoding described in the previous paragraphs is used to build different 

BFIPS-ELM wrappers depending on the objective function chosen to assess ELM 

accuracy. In particular, this study employs the Root Mean Square Error (RMSE), as well 

as generalized versions of the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC) (Qi and Zhang, 2001). While the version with RMSE 

represents the basic form of the algorithm, the latter criteria are used to apply different 

penalties to model complexity in order to obtain parsimonious models. Indeed, this is a 

prominent issue when developing wrapper methods which are prone to over-fitting due 

to the inclusion of redundant/irrelevant inputs (Galelli et al., 2014). In addition, ELM 

are known to have problems when the training dataset presents irrelevant or correlated 

variables (Miche et al., 2010). If    is the i-th observed value of the output variable,     

the model predicted value, and N is the total number of observations, the Mean Squared 

Error (MSE) can be defined as 

    
         

  
   

 
   

The expression of the three criteria can be obtained from the MSE  
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         , (6.1) 

             
   

 
, (6.2) 

             
        

 
, (6.3) 

where m is the model complexity, defined at the end of Section 2.2 for an ELM model, 

and g is an exponent that can be adjusted to assign different penalties to m. For equal 

values of the exponent g, the BIC criterion always applies a heavier penalty to model 

complexity. Notwithstanding the objective function that is minimized during the 

optimization process, the BFIPS-ELM chosen is always the particle with the lowest 

value of the employed criterion. 

6.2.3. MBFIPS-ELM wrapper 

The issue of selecting irrelevant and redundant inputs can be directly tackled by 

considering the number of inputs as an additional objective function to minimize (Xue et 

al., 2013). This is done by the MBFIPS-ELM wrapper proposed in this study, where the 

number of selected inputs, i.e. cardinality, and RMSE are the two objective functions 

employed for the Pareto-based optimization. This approach is expected to 1) force the 

identification of the most meaningful inputs for each possible subset dimension, since 

only one non-dominated solution for each cardinality will be at most included in the 

Pareto-front; and 2) limit the exploration of unnecessarily large subsets, since non-

dominant solutions characterized by greater subset dimensions will be included in the 

Pareto-front only if they have lower RMSE. Since all the solutions in the Pareto-front 

are equally optimal, a criterion is necessary to select the final wrapper at the end of the 

optimization process. Ideally, the non-dominant solution with the largest number of 
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inputs (lowest RMSE) should be chosen, since including more inputs than the real ones 

should result in lower performances (higher RMSE). However, due to the random 

component in ELM training, and the problems in identifying an optimal value of the 

ridge regression constant, it is possible that training a model with a dataset including 

other inputs besides the real ones might result in lower RMSEs. A simple workaround 

can be implemented by choosing a cutoff percentage ρ, and then selecting the Pareto-

optimal solution with the lowest cardinality for which the following inequality still 

holds 

 
             

       
      (6.4) 

where       is the RMSE value of the selected solution, while         is the lowest 

of the Pareto-optimal solutions. Setting ρ = 0% will simply return the boundary solution 

with        , while ρ > 0%  might select an inward solution with higher RMSE but 

smaller subset dimension, as illustrated in Fig. 6.2. The shaded area in Fig. 6.2 

represents the region of the Pareto-front where (6.4) holds. 

 

Figure 6.2. Selection of optimal solution for the MBFIPS-ELM. 
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6.3. The Input Variable Selection evaluation framework 

The performances of the wrapper techniques described in the previous section are 

assessed using the Input Variable Selection (IVS) framework proposed by Galelli et al. 

(2014). The framework was developed to facilitate the objective evaluation and 

comparison of IVS algorithms for environmental data-driven modeling. The authors 

provide a comprehensive test-bed of 26 datasets, as well as several criteria to assess the 

accuracy and suitability of IVS techniques from both a quantitative and a qualitative 

point of view.  

6.3.1. Benchmark datasets 

The test-bed is made of 19 fully synthetic and 7 partially synthetic datasets that 

account for a comprehensive range of properties typical of environmental data. In 

addition, 30 replicates of each benchmark dataset are provided to strengthen the 

statistical significance of the obtained results. Since the focus of this paper is on the 

development of IVS techniques for hydrological modeling, the study will not employ 

the 6 benchmark datasets made available for water quality modeling. The test-bed thus 

comprises the whole set of 19 fully synthetic datasets, as well as a partially synthetic 

rainfall-runoff experiment designed for the Kentucky River basin. The characteristics of 

the 20 benchmark datasets employed in this work are summarized in Table 6.1, where 

the number of observations N, number of relevant inputs K, and total number of 

candidate inputs P are also given. The ratio of the number of observations over the total 

number of candidates N/P is also highlighted due to its importance in determining the 

likelihood of the IVS technique to over-fit the data by selecting irrelevant or redundant 

inputs. Small values of N/P denote greater risks of over-fitting, and the risk increases 
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with increasing correlation between the candidate inputs. The set of comprehensive 

features of real hydrological data reflected in the test-bed are: non-Gaussian output, high 

nonlinearity in the input-output relationship, high noise in the data, high collinearity 

among input variables, inter-dependency of the candidate inputs, and incomplete 

information in the dataset. Further details on the benchmark datasets could be found in 

the original paper of Galelli et al. (2014), and on the website of the IVS framework 

(http://ivs4em.deib.polimi.it/).  

 

TABLE 6.1. CHARACTERISTICS OF THE BENCHMARK DATASETS OF THE IVS FRAMEWORK 

           
Dataset N K P N/P 

Non-

Gaussian 

output 

Highly 

nonlinear 

High 

noise 

High 

collinearity 

Inter-

dependency 

Incomplete 

information 

1. AR1 500 1 15 33.3 
  

X X 
  

2. AR9_500 500 3 15 33.3 
  

X X 
  

3. AR9_70 70 3 15 4.7 
  

X X 
  

4. TAR1 500 1 15 33.3 
  

X X 
  

5. TAR2 500 2 15 33.3 
  

X X 
  

6. NL_500 500 3 15 33.3 X X 
    

7. NL_70 70 3 15 4.7 X X 
    

8. NL2 500 3 15 33.3 X X X X 
  

9. Bank_fm 400 8 32 12.5 X 
    

X 

10. Bank_fh 400 8 32 12.5 X 
 

X 
  

X 

11. Bank_nm 400 8 32 12.5 X X 
   

X 

12. Bank_nh 400 8 32 12.5 X X X 
  

X 

13. Friedman_c0_10_m 250 5 10 25 
 

X 
    

14. Friedman_c0_10_h 250 5 10 25 
 

X X 
   

15. Friedman_c0_50_m 250 5 50 5 
 

X 
    

16. Friedman_c0_50_h 250 5 50 5 
 

X X 
   

17. Friedman_c25_10_m 250 5 10 25 
 

X 
 

X 
  

18. Friedman_c25_10_h 250 5 10 25 
 

X X X 
  

25. Kentucky 4739 4 21 225.7 X 
  

X 
  

26. Miller 200 2 3 66.7 X       X   

 

 

http://ivs4em.deib.polimi.it/
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6.3.2. Selection accuracy criteria 

The Selection Accuracy (SA) score is the metric recommended for the quantitative 

assessment of the effectiveness of an IVS algorithm 

                 (6.5) 

where 

     
 

 
  

       
 

   
   

    is the ratio of correct input that have been selection k over the total number of 

correct inputs K. On the other hand,     is based on the proportion of extraneous inputs 

that have been retained p with respect to the total number of extraneous inputs in the 

dataset    . The parameter   ranges from 0 to 1 and is a tradeoff value weighting the 

relative importance of the two components. The value of the    score can range from 0 

to 1, where      denotes a correctly specified model, while      corresponds to a 

completely misspecified model, with no relevant inputs and all extraneous inputs 

selected. The values of     and     are also bounded in the [0,1] range. Apart from the 

case of perfect specification (                 ), we also have that of over-

specification of extraneous inputs (     ) and/or under-specification of relevant 

inputs (     ) may occur. 

6.3.3. Other evaluation criteria 

Apart from the use of the SA metrics defined in the previous section, Galelli et al. 

recommend a thorough investigation of IVS techniques using other criteria that assess 

the algorithm 1) computational efficiency, 2) ease of use and robustness, 3) explanation 



103 

 

capability and 4) flexibility. While computational efficiency still entails the estimation 

of quantitative measures, the remaining three criteria are qualitative in nature. 

Computational efficiency is a key aspect in determining the success of an algorithm 

since very accurate but slow techniques might be of no practical use. The analytical 

determination of the algorithm computational complexity as a function of N and P 

would be ideal for determining its computational efficiency, allowing for the preemptive 

estimation of the time required to process a given case study. However, such theoretical 

solutions are not available for heuristics such as GA and PSO. Therefore total run-time, 

which depends on software implementation and employed hardware, has to be used in 

these cases. Ease of use and robustness are essentially related to the number of 

parameters that need to be set before running the IVS algorithm, the expertise needed by 

the user to set them appropriately, and how well the algorithm performs using a set of 

default parameters. The explanation capability of an IVS technique mostly concerns its 

ability to determine the relevance of each selected input with respect to the others, while 

its flexibility refers to the ease with which the algorithm components can be 

interchanged with other methods. 

 

TABLE 6.2. OVERALL MEAN AND MEDIAN SELECTION ACCURACY SCORES OF THE BEST 

PERFORMING ELM-BASED WRAPPERS 

  
         

Type of 

wrapper 

Objective 

function(s) 

Complexity 

penalty 

  Overall mean selection 

accuracy score 
  Overall median selection 

accuracy score 

  SAc SAe SA   SAc SAe SA 

BFIPS-ELM 

RMSE --- 
 

0.896 0.817 0.872 
 

0.948 0.815 0.912 

AIC logarithmic 
 

0.888 0.857 0.879 
 

0.939 0.888 0.927 

BIC logarithmic   0.870 0.879 0.873   0.930 0.919 0.909 

MBFIPS-ELM 
RMSE,  

num. of inputs 
---   0.833 0.98 0.877   0.932 0.988 0.936 
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6.4. Results and Discussion 

6.4.1. Experimental setup 

The accuracy and suitability of the proposed ELM-based wrappers are assessed using 

the IVS framework criteria summarized in the previous chapter. The parameter γ 

regulating the tradeoff between the selection of relevant inputs and the exclusion of 

extraneous one was set to 0.7, as suggested by Galelli et al., (2014). Therefore more 

weight is given to the inclusion of correct inputs when computing the value of SA for 

each experiment according to (6.5). All the experiments were carried out using 

MATLAB
®
 on a 2.20 GHz Intel i7-3632QM CPU with 8 GB RAM. 

Type of wrappers tested. A total of 10 different configurations are tested using the 

benchmark datasets. These are 9 BFIPS-ELMs with different objective functions and 1 

MBFIPS-ELM. The objective functions for the BFIPS-ELMs are the RMSE (6.1), as 

well as 4 AIC and 4 BIC criteria that were derived from (6.2-6.3) using different types 

of complexity penalty. The penalties applied are, in increasing order of penalty, 

logarithmic, square root, linear, and quadratic, which are obtained by setting the 

exponent g in (6.2-6.3) to logm(log(m)), 0.5,1 and 2 respectively. As described in 

Section 6.2.3, the MBFIPS-ELM wrappers are developed by concurrently minimizing 

the RMSE and number of selected inputs using a Pareto-based approach. Values of 

ρ=0%, 1%, 2.5% and 5% were tested to select the optimal model at the end of the 

MBFIPS optimization process. Five-fold cross-validation is employed to estimate the 

value of the RMSE and all the AIC/BIC objective functions employed.  

Algorithm setup. Both the BFIPS and MBFIPS algorithms are stopped after 1000 

iterations, or if no improvements are obtained for 30 consecutive iterations. The swarms 
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are made of 30 particles arranged to form a lattice topology, such as the one shown in 

Fig. 3.4f. The mutation rate is set to       , with a maximum of M = 5 randomly 

selected particles undergoing mutation at each iteration (see Sections 3.6 and 3.7.4). The 

maximum number of particles in the MBFIPS Pareto-front is set equal to the total 

number of inputs of each case study. 

Binary encoding. The number of ELM hidden nodes is allowed to vary between 

NHmin = 1 and NHmax = 250, so that lnodes = 8 bits are required for the encoding. Four 

different types of activation functions (lact = 2) are considered for the hidden units, 

namely linear, log-sigmoid (logsig), hyperbolic tangent sigmoid (tansig), and radial 

basis function (rbf). The number of bits needed to encode the ridge regression parameter 

is set to lλ = 6 , so that λ can take any value in the increasing power-of-two sequence 

going from 2
-31

 = 4.657E-10 to 2
32

=4.295E09. A total of 16 bits plus linputs = P are 

therefore required to encode the wrapper models for each benchmark dataset, with the 

binary string length varying from a minimum of 19 bits for Miller case to a maximum of 

66 bits for the largest Friedman datasets. 

 

6.4.2. Quantitative assessment of wrapper performances 

6.4.2.1.Comparison of overall selection accuracy 

The overall mean and median selection accuracy scores are reported in Table 6.2, as 

obtained from the mean SA, SAc and SAe scores of the 30 repetitions of all the 20 

benchmark datasets. Only values for the best BFIPS-ELM configurations employing the 

AIC and BIC criteria are reported, which are obtained in both cases using the 

logarithmic complexity penalty. On the other hand, the overall best MBFIPS-ELM 
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performances are recorded when the cutoff parameter ρ is set to 1%. The overall mean 

SA scores are almost equivalent for the reported techniques, with a maximum of 0.879 

for the BFIPS-ELM obtained minimizing the AIC. However similar in terms of value, 

these mean SA scores correspond to different combinations of the SAc and SAe scores. 

It emerges that the BFIPS-ELM obtained without any penalty term, i.e. with the RMSE 

objective function, is on average the most successful in identifying the relevant inputs 

with SAc = 0.896, but the least effective in excluding redundant/irrelevant variables with 

SAe = 0.817. Introducing increasing penalty terms results in the exclusion of some 

relevant variables to the advantage of retaining fewer extraneous ones, as shown for the 

BFIPS-ELM obtained with the AIC and BIC criteria. A similar but more pronounced 

effect is noticed for the MBFIPS-ELM wrapper, for which the lowest mean SAc of 0.833 

and highest mean SAe of 0.980 are recorded. Fig. 6.3 shows how varying the exponent g 

in (6.2-6.3) affects the selection accuracy of the wrappers. It can be seen that increasing 

penalties produce a raise in SAe but a very steep decline in SAc that substantially 

reduces the wrapper effectiveness for g > 0.5. These findings suggests that, opposite to 

ANN modeling where the original AIC and BIC criteria are usually employed (g = 1) 

(Dawson and Wilby, 2001; May et al., 2008), lower penalties should be applied to 

reduce model complexity when employing ELM. This is reasonable if one considers that 

the input weights of ELM are randomly assigned, thus the model requires more 

parameters to capture the underlying relationship in the data. This might represent a 

problem when using AIC and BIC to build ELM-based IVS techniques, as they penalize 

overall model complexity rather than the number of inputs directly. Fig. 6.4 shows that 

similar trends in the change of the SAc and SAe scores are also noticed by varying the 
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cutoff parameter ρ used to determine the final MBFIPS-ELM models. However, the 

raise in SAe with increasing values of ρ correspond only to a mild decrease of SAc, so 

that the values of SA do not drop as much as seen for the BFIPS-ELM wrappers 

developed using AIC/BIC. 

 

Figure 6.3. Overall mean selection accuracy of BFIPS-ELM for different complexity penalties. 

 

 

Figure 6.4. Overall mean selection accuracy of MBFIPS-ELM for different values of ρ. 
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A better comparison of the effectiveness of the wrapper methods in Table 6.2 

can be done by considering the overall median selection accuracy scores, which are less 

sensitive to possible outliers due to particularly weak (or strong) performances in some 

case studies. Indeed, the median accuracy scores suggest that the MBFIPS-ELM is the 

overall best performer, with a median SA score of 0.936. The very high values of both 

mean and median SAe scores indicate that the MBFIPS-ELM is generally very effective 

in preventing the over-specification of extraneous inputs. On the other hand, the larger 

difference between mean SAc and median SAc suggest that the MBFIPS-ELM might be 

sensitive to under-specification of relevant inputs in some particular cases. With a 

median SA of 0.927, the BFIPS-ELM obtained with AIC comes a close second in terms 

of overall accuracy, representing the best wrapper among those obtained with single-

objective swarm optimization. The performances of this technique along with those of 

the MBFIPS-ELM will be discussed in detail in the following paragraphs to highlight 

their strengths and weaknesses of the two approaches on each dataset. For the sake of 

conciseness, the BFIPS-ELM obtained with AIC will be referred to simply as BFIPS-

ELM hereafter, unless otherwise specified. 

6.4.2.2.Comparison of selection accuracy on each dataset 

The mean selection accuracy scores of the BFIPS-ELM and MBFIPS-ELM as 

computed from the 30 repetitions of each case study are reported in Table 6.3. 

Furthermore, Table 6.4 shows the total number of times that the final model employed a 

certain type of activation function, where logsig and tansig have been grouped as 

sigmoid functions without any loss of generality. The information provided by this table 

will facilitate the analysis of wrapper performances on each case study.  
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TABLE 6.3. MEAN SELECTION ACCURACY SCORES OF BFIPS-ELM AND  

MBFIPS-ELM FOR EACH BENCHMARK DATASET 

 

TABLE 6.4. TYPE OF ACTIVATION FUNCTIONS OF THE OPTIMAL MODELS 

           
 

     
Dataset 

BFIPS-ELM   MBFIPS-ELM 

 
Dataset 

BFIPS-ELM   MBFIPS-ELM 

SAc SAe SA   SAc SAe SA 

 

sigmoid linear rbf   sigmoid linear rbf 

1. AR1 1.000 0.938 0.981 
 

1.000 0.988 0.996 

 

1. AR1 11 18 1 
 

14 13 3 

2. AR9_500 1.000 0.847 0.954 
 

1.000 0.992 0.998 

 

2. AR9_500 2 28 0 
 

12 18 0 

3. AR9_70 0.944 0.833 0.911 
 

0.944 0.858 0.919 

 

3. AR9_70 3 27 0 
 

12 18 0 

4. TAR1 1.000 0.895 0.969 
 

1.000 0.988 0.996 

 

4. TAR1 19 3 8 
 

17 0 13 

5. TAR2 1.000 0.918 0.975 
 

1.000 0.987 0.996 

 

5. TAR2 24 1 5 
 

23 1 6 

6. NL_500 1.000 1.000 1.000 
 

1.000 1.000 1.000 

 

6. NL_500 5 0 25 
 

13 0 17 

7. NL_70 1.000 1.000 1.000 
 

0.956 1.000 0.969 

 

7. NL_70 27 0 3 
 

20 0 10 

8. NL2 0.767 0.911 0.810 
 

0.678 0.981 0.769 

 

8. NL2 28 0 2 
 

24 0 6 

9. Bank_fm 0.750 0.714 0.739 
 

0.429 0.994 0.599 

 

9. Bank_fm 0 30 0 
 

22 0 8 

10. Bank_fh 0.613 0.760 0.657 
 

0.371 0.976 0.553 

 

10. Bank_fh 0 30 0 
 

20 1 9 

11. Bank_nm 0.796 0.754 0.783 
 

0.683 0.988 0.775 

 

11. Bank_nm 13 17 0 
 

27 0 3 

12. Bank_nh 0.733 0.726 0.731 
 

0.608 0.961 0.714 

 

12. Bank_nh 2 28 0 
 

27 2 1 

13. Friedman_c0_10_m 1.000 1.000 1.000 
 

0.993 1.000 0.995 

 

13. Friedman_c0_10_m 30 0 0 
 

26 0 4 

14. Friedman_c0_10_h 0.933 0.967 0.943 
 

0.907 0.987 0.931 

 

14. Friedman_c0_10_h 28 1 1 
 

27 0 3 

15. Friedman_c0_50_m 0.853 0.684 0.803 
 

0.920 0.989 0.941 

 

15. Friedman_c0_50_m 0 30 0 
 

25 0 5 

16. Friedman_c0_50_h 0.867 0.682 0.811 
 

0.813 0.956 0.856 

 

16. Friedman_c0_50_h 0 30 0 
 

19 5 6 

17. Friedman_c25_10_m 0.933 0.980 0.947 
 

0.873 1.000 0.911 

 

17. Friedman_c25_10_m 25 0 5 
 

24 0 6 

18. Friedman_c25_10_h 0.573 0.940 0.683 
 

0.500 0.973 0.642 

 

18. Friedman_c25_10_h 25 0 5 
 

20 0 10 

25. Kentucky 1.000 0.880 0.964 
 

0.975 0.990 0.980 

 

25. Kentucky 28 0 2 
 

20 0 10 

26. Miller 1.000 0.700 0.910   1.000 1.000 1.000 

 

26. Miller 0 30 0   2 28 0 
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AR1 and AR9 datasets. These three datasets are obtained from linear autoregressive 

models of order 1 and 9, respectively. Despite the high noise and collinearity, the high 

ratio of observations to number of candidate inputs N/P allows both techniques to 

correctly identify the relevant inputs (SAc = 1) for the AR1 and AR9_500 cases. 

However, the MBFIPS-ELM is more efficient in avoiding the selection of extraneous 

inputs thus obtaining a SA score very close to 1. Albeit a drop in accuracy is noticed for 

the AR9_70 dataset, both techniques still record SA scores of over 0.91, thus being able 

to perform the IVS task satisfactorily even when considerably less observations are 

available. From Table 6. 4 it can be seen that there is a prevalence of linear ELM models, 

showing that the wrapper techniques can recognize the linear relationship adequately 

even for the AR9_70 case.  

TAR datasets. The TAR datasets are obtained from a threshold autoregressive 

model. The nonlinearity in the dataset is recognized by both wrapper techniques as the 

vast majority of the final models are nonlinear. The performances on the these datasets 

are very similar to that of the AR cases, with the high N/P ratio granting the correct 

specification of relevant inputs, and the MBFIPS wrapper being more efficient in 

avoiding the over-specification of extraneous ones.   

NL datasets. The high nonlinearity in the input-output relationship of these 

dataset is reflected in the total absence of linear models among the optimal ones found 

for each repetition of each case study. Both wrappers achieve SA = 1 for the NL_500 

case, with the BFIPS-ELM providing perfect input specification also for the NL_70 

dataset. Adding high noise and high collinearity in the data is found to reduce the 

accuracy of the algorithms for the NL2 case. However, the performances of the two 
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techniques, and of the BFIPS-ELM in particular (SA = 0.81), are still remarkably high if 

one considers the complexity of this case study. This suggests that the proposed 

wrappers are well suited for handling highly nonlinear datasets. 

Bank datasets. These datasets are representative of cases where there is incomplete 

information about the output data, which has been obtained from a Bank simulator that 

used a total of 32 variables of which only 8 are available in the datasets. The original 

time series of the remaining 24 inputs were randomly shuffled so that they have to be 

considered as irrelevant. The behavior of the two wrappers is very different for these 

datasets. The MBFIPS-ELM is generally very accurate in selecting only relevant 

variables with SAe close to 1 in most cases, but is prone to under-specification. On the 

other hand, the BFIPS-ELM is more able to identify the relevant inputs, but it tends to 

retain some of the irrelevant variables. Overall, the BFIPS-ELM performs better on 

these benchmark datasets, especially for the linear instances (Bank_fm, Bank_fh) where 

the MBFIPS-ELM selects on average less than half of the relevant inputs. From the 

numbers in Table 6.4, it appears that this difference in the performances is due to the 

fact that the MBFIPS algorithm returns only nonlinear ELM models for these cases, 

while the BFIPS-ELM final solutions are always linear, thus more appropriate for 

modeling the linear instances of the dataset. If these two experiments are rerun by 

forcing the MBFIPS to select only linear activation functions, the values of SA raise to 

0.743 for the Bank_fm and to 0.605 for the Bank_fh, showing that for these particular 

cases the original MBFIPS fails to match the underlying functional form of the dataset. 

This does not seem to happen for the nonlinear cases where the performances of the two 

wrappers are similar.  
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Friedman datasets. These datasets have been generated using the Friedman 

regression function, which has a highly nonlinear functional form. The BFIPS-ELM 

method obtains SA = 1 for the case with no collinearity, moderate noise and 10 inputs 

(Friedman_c0_10_m), with the MBFIPS-ELM also showing a near to perfect score. 

Adding high noise to this dataset (Friedman_c0_10_h) lowers the accuracy of both 

techniques which however are still well above 0.9. Good performances are also 

witnessed in presence of high collinearity (Friedman_c25_10_m), but a consistent drop 

is noticed when both high collinearity and high noise are present (Friedman_c25_10_h). 

Albeit the BFIPS-ELM outperforms its multi-objective counterpart in all these examples, 

it scores noticeably lower for the cases with 50 inputs (Friedman_c0_50_m, 

Friedman_c0_50_h) due to over-specification. In addition, despite the problem being 

highly nonlinear, the BFIPS selects linear models for all the repetitions of these datasets, 

suggesting that single-objective optimization may struggle to obtain high accuracy in 

these cases. The fact that even the performances of BFIPS-ELM built with other 

objective function are always substantially lower than those of the MBFIPS-ELM 

suggest that the latter algorithm might perform better for larger numbers of candidate 

inputs.   

 Kentucky dataset. This partially synthetic dataset was created using real streamflow 

and effective rainfall data from a gauging station and several meteorological stations in 

the Kentucky River basin. Although this dataset alone cannot represent the wide 

spectrum of different hydrological scenarios typical of rainfall-runoff modeling 

applications, it is unlikely that techniques scoring poorly on this benchmark would 

perform the IVS task accurately for other cases. The predictand for this dataset is the 
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streamflow discharge Qt reconstructed by a SLFN for a gaging station along the 

Kentucky River. The set of candidate variables is given by effective rainfall ER 

measured at time steps t, t-1, …, t-10, as well as previous streamflow discharges at time 

steps  t-1, t-2, …, t-10. Of the 21 inputs constituting the candidate pool, only 4 have 

been used as inputs for the SLFN, namely Qt-1, Qt-2 , ERt and ERt-1, therefore 

                            (6.6) 

where      represents the SLFN, and   a random noise component. The 30 replicates of 

this dataset were built by reshuffling the original 4739 samples, and regenerating the 

random noise component  . As it emerges from Table 6.3, both the proposed techniques 

are able to achieve very high scores on this dataset, with the MBFIPS-ELM reaching 

almost perfect input variable specification. Therefore, these ELM-based wrappers show 

a great potential as IVS methods for rainfall-runoff modeling and NNRF applications. 

Their consistency is also reflected in the fact that they select only sigmoid and radial 

basis functions, which are known to provide better performances over linear transfer 

functions in NNRF applications. As it will be shown later in Section 6.4.3, the analysis 

of the Pareto-fronts returned by the MOFIPS-ELM allows for the determination of the 

relative importance of each input variable. It emerges that the order of importance, from 

the most relevant to the least relevant, is Qt-1, Qt-2 , ERt then ERt-1. The increment in 

predictive accuracy given by including these variables in order of importance is shown 

in the scatter plots of Fig. 6.5 a-d for the first replicate of the dataset, along with the 

corresponding values of the coefficient of determination R
2
 (see APPENDIX B). 

Miller dataset. This dataset was devised as an example where 2 highly correlated 

variables, with little or no predictive value of their own, have great explanatory power 
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when combined. A third variable is also present which is highly correlated with the 

output, but totally irrelevant for its determination. Contrary to other IVS techniques that 

select one input at a time, wrapper techniques that check the explanatory power of 

subsets should be able to select the optimal inputs. Indeed, the MBFIPS-ELM reaches 

perfect specification for all the repetitions, while the BFIPS-ELM, although always able 

to select the two relevant variables, over-specifies the extraneous input in 30% of the 

cases. As noted in the previous paragraph, such over-specification problems are due to 

the fact that the AIC (or the BIC) criterion penalizes model complexity, and not the 

number of inputs directly. Table 6.4 shows that both techniques are able to recognize the 

underlying linear input-output relationship. 

 

Figure 6.5. Scatter plots of Kentucky River streamflow vs ELM model output  

for progressively better-specified input subsets. 
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6.4.2.3.Computational efficiency 

An accurate IVS algorithm might be of no practical use if it requires too much time 

for processing a dataset. This is usually a major drawback of wrapper techniques which 

explore a very large number of feasible solutions before reaching convergence. The 

average run-time of the two methods for each dataset is shown in Table 6.5, along with 

the average number of iterations and the average number of hidden units of the final 

models. It appears that, thanks to the fast convergence of swarm optimization and to the 

exceptional reduction in training time provided by the ELM, both methods can be 

employed in practical IVS applications. With average run-time of around 2 minutes over 

the synthetic datasets and of 40 minutes for the Kentucky dataset, the BFIPS-ELM is the 

fastest between the two proposed techniques. These figures go up respectively to 5 

minutes and 70 minutes for the MBFIPS-ELM, due to the increased number of iterations 

needed to reach convergence as well as to larger size of the final models. This was 

expected since multi-objective problems are generally more complex and require more 

iterations to converge, and since the MBFIPS-ELM are developed by minimizing the 

number of inputs directly, rather than model complexity. The computational times of 

both techniques can be reduced by limiting the maximum number NHmax of hidden 

neurons of the ELM. Fig. 6.6 show how the wrappers overall mean accuracy scores and 

average run-time change when reducing NHmax to 30, 60 and 120 units. It can be seen 

that the performances on the whole test-bed are basically unchanged for the BFIPS-

ELM, unless the minimum value of NHmax is considered. Most importantly, these similar 

performances are obtained at much lower run-times, which are found to vary linearly 

with NHmax. Lower computational requirements are also witnessed for the MBFIPS-
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ELM, albeit the average performances decrease much quicker for this wrapper.  Fig. 6.7 

shows the details for the Kentucky dataset. It can be seen that what happens for the 

overall accuracy is reflected on this dataset, with the MBFIPS-ELM underperforming 

the BFIPS-ELM for all cases apart from NHmax = 250, where it reaches the highest SA 

score.  

 

TABLE 6.5. AVERAGES AND STANDARD DEVIATIONS OF NUMBER OF HIDDEN UNITS, NUMBER OF ITERATIONS 

AND RUN-TIMES. 

  
 

    
Dataset 

Average num. of hidden units Average num. of iterations Run-time [sec] 

BFIPS-ELM MBFIPS-ELM BFIPS-ELM MBFIPS-ELM BFIPS-ELM MBFIPS-ELM 

1. AR1 6.7 ± 6.7 98.8 ± 67.7 140.5 ± 31.3 190.6 ± 74.0 99.8 ± 20.6 277.7 ± 147.2 

2. AR9_500 8.4 ± 4.9 136.9 ± 87.4 128.7 ± 34.6 292.2 ± 95.8 92.8 ± 19.9 438.4 ± 178.0 

3. AR9_70 7.4 ± 2.5 79.0 ± 74.8 138.1 ± 25.9 304.8 ± 91.8 39.0 ± 7.3 155.1 ± 58.7 

4. TAR1 13.3 ± 8.6 108.0 ± 79.0 134.9 ± 35.7 175.8 ± 56.6 106.4 ± 31.5 266.6 ± 105.7 

5. TAR2 32.0 ± 35.7 113.0 ± 83.7 138.0 ± 39.5 187.1 ± 57.5 109.7 ± 35.8 267.7 ± 108.8 

6. NL_500 219.6 ± 27.8 205.5 ± 35.1 146.2 ± 38.5 215.9 ± 52.5 309.6 ± 78.0 393.9 ± 121.9 

7. NL_70 183.6 ± 57.2 137.9 ± 60.0 136.5 ± 27.4 188.7 ± 41.2 92.4 ± 19.4 109.0 ± 29.5 

8. NL2 87.5 ± 61.1 121.9 ± 66.6 134.7 ± 36.7 201.1 ± 62.5 200.8 ± 49.9 312.4 ± 130.2 

9. Bank_fm 23.3 ± 10.3 133.8 ± 71.8 151.3 ± 37.3 366.2 ± 97.3 124.8 ± 29.8 472.9 ± 171.4 

10. Bank_fh 20.0 ± 8.9 136.1 ± 76.2 142.1 ± 36.8 409.2 ± 140.3 106.7 ± 23.2 567.0 ± 239.3 

11. Bank_nm 69.5 ± 68.3 167.8 ± 70.2 155.2 ± 37.7 424.2 ± 84.8 135.7 ± 33.7 644.1 ± 188.6 

12. Bank_nh 29.2 ± 35.5 138.1 ± 75.4 147.9 ± 31.9 483.4 ± 116.2 121.2 ± 25.3 727.7 ± 228.1 

13. Friedman_c0_10_m 185.7 ± 51.5 172.9 ± 65.0 144.6 ± 28.0 239.4 ± 50.1 150.9 ± 36.8 238.0 ± 64.6 

14. Friedman_c0_10_h 102.9 ± 67.8 157.2 ± 61.7 137.2 ± 37.4 242.5 ± 48.2 93.2 ± 31.7 246.5 ± 65.2 

15. Friedman_c0_50_m 43.9 ± 31.7 169.0 ± 79.2 149.9 ± 40.2 513.6 ± 135.0 112.6 ± 27.1 534.3 ± 184.1 

16. Friedman_c0_50_h 61.4 ± 35.6 139.5 ± 92.1 141.2 ± 29.3 730.0 ± 167.6 106.7 ± 20.5 797.4 ± 236.2 

17. Friedman_c25_10_m 112.4 ± 49.0 128.9 ± 68.8 122.0 ± 29.5 228.6 ± 56.6 126.5 ± 31.4 228.5 ± 73.4 

18. Friedman_c25_10_h 24.2 ± 18.2 111.1 ± 72.0 122.3 ± 37.1 176.4 ± 47.2 90.2 ± 23.7 162.1 ± 72.3 

25. Kentucky 222.6 ± 28.4 205.4 ± 43.3 145.2 ± 45.3 258.9 ± 71.5 2458.9 ± 874.1 4168.1 ± 1655.5 

26. Miller 117.0 ± 89.5 157.9 ± 85.6 110.6 ± 25.0 166.8 ± 37.2 104.5 ± 25.7 158.2 ± 37.4 
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Figure 6.6. Overall mean selection accuracy for different values of NHmax. 

 

 

Figure 6.7. Mean selection accuracy in the Kentucky dataset for different values of NHmax. 
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6.4.2.4.Comparison with other IVS techniques  

A more thorough evaluation of the effectiveness of the BFIPS-ELM and MBFIPS-

ELM can be done by comparing their performances against those of the 4 IVS 

techniques tested in the original work of Galelli et el. (2014). The reader is referred to 

their paper and references therein for further information on these techniques and their 

implementation. The mean SA scores reported in Table 6.6 were retrieved from the 

website (http://ivs4em.deib.polimi.it) included in the IVS framework. These figures can 

be reliably compared against those in this study since they are computed using the same 

value of 0.7 for γ. On the other hand, the analysis regarding the average run-times is 

only approximative since the experiments were carried out on different software 

environments and hardware. From a comparison with Table 6.2-6.3, it can be seen that 

the proposed wrappers generally provide higher accuracy than these methods, with 

increases of overall SA that goes from a minimum of 11.1% to a maximum of 15.8% for 

the mean scores, and from 13.4% to 20.6% for the median scores. These improvements 

tend to occur when the dataset is characterized by high nonlinearities, non-Gaussian 

output, reduced number of observations, and inter-dependency of the input variables 

(see Table 6.1). Although each technique has its merits and drawbacks, the measure of 

these improvements suggests that BFIPS-ELM and MBFIPS-ELM are very good 

candidates for carrying out the IVS task, especially if one considers the high accuracy 

and reduced computational costs of the ELM-based wrappers obtained with lower NHmax, 

as shown in Fig. 6.6-6.7. Furthermore, even with all the caution due to the different 

implementations, the proposed techniques appear to be much faster than the GA-ANN 

wrapper. Indeed, the average 30 hours of run-time needed by the GA-ANN to process 

http://ivs4em.deib.polimi.it/
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the Kentucky dataset drop to 70 minutes for the largest MBFIPS-ELM and to less than 3 

minutes for the BFIPS-ELM with NHmax = 30, which still outperforms the GA-ANN 

with a SA of 0.922. The speedups provided by ELM training over backpropagation are 

even more significant if one considers that this particular GA-ANN was built around an 

ANN with one single hidden-neuron. Similarly, from the good results of smaller ELMs 

on the Kentucky dataset (Fig. 6.7) it appears that the PMIS and IIS might lose their 

computational speed advantage for long datasets such as those typically employed in 

data-driven streamflow forecasting applications. With the exception of the PCIS that 

achieves high accuracy in very short computational times for the Kentucky dataset, there 

are strong indications that the proposed methods are superior in carrying out the IVS 

task for NNRF applications. In addition, if one considers the poor results on the NL 

benchmarks, it is likely that PCIS accuracy could substantially decrease for applications 

in highly nonlinear watersheds, such as those of arid and semi-arid regions, mountainous 

regions, and areas with high climate variability (Borga et al., 2007; Ye et al., 1997). 

These nonlinearities are particularly severe during storm events, thus IVS techniques 

based on linear correlation measures might not be suitable for the development of flood 

forecasting and warning systems. On the other hand, the extrapolation of the benchmark 

results suggests that employing the ELM-based wrappers should provide additional 

benefits for applications in poorly-gauged watershed, characterized by short datasets 

with higher noise. Similarly, the remarkable performances on the Miller benchmark 

suggest that the proposed techniques might offer consistent advantages when processing 

input variables which are truly informative only when considered together. This latter 

case is particularly relevant for those applications where hydro-meteorological 
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parameters are used to estimate evapotranspiration in order to model the evolution of 

soil moisture content affecting runoff generation (Zanetti et al., 2007).  

 

TABLE 6.6. MEAN SA SCORES AND AVERAGE RUN-TIME OF PMIS, IIS, PCIS AND GA-ANN  

(TAKEN FROM GALELLI ET EL., 2014) 

 
Datasets 

Mean selection accuracy SA   Average run-time [sec] 

PMIS IIS PCIS GA-ANN PMIS IIS PCIS GA-ANN 

1. AR1 0.999 0.994 0.999 1.000   16.80 ± 2.87 9.49 ± 2.70 0.16 ± 0.05 1491.2 ± 560.2 

2. AR9_500 0.999 0.985 0.998 1.000   38.84 ± 3.29 26.73 ± 6.64 0.38 ± 0.13 1973.3 ± 864.3 

3. AR9_70 0.823 0.696 0.937 0.851   2.22 ± 0.43 3.39 ± 0.91 0.38 ± 0.13 378.4 ± 199.7 

4. TAR1 1.000 0.992 0.998 1.000   14.02 ± 1.22 11.66 ± 3.92 0.23 ± 0.09 841.7 ± 330.9 

5. TAR2 0.999 0.999 0.986 0.953   26.13 ± 3.46 8.08 ± 0.16 0.40 ± 0.27 1630.4 ± 860.6 

6. NL_500 0.743 0.983 0.575 0.576   23.41 ± 3.72 24.51 ± 3.39 0.20 ± 0.08 878.6 ± 272.3 

7. NL_70 0.743 0.729 0.536 0.520   1.82 ± 0.66 4.93 ± 1.79 0.25 ± 0.25 185.8 ± 117.4 

8. NL2 0.681 0.671 0.450 0.558   24.26 ± 4.94 15.66 ± 5.02 0.33 ± 0.15 850.2 ± 467.0 

9. Bank_fm 0.484 0.475 0.743 0.752   31.03 ± 6.18 44.41 ± 6.22 1.23 ± 0.36 1544.4 ± 341.9 

10. Bank_fh 0.498 0.480 0.589 0.548   35.07 ± 7.45 25.52 ± 4.08 0.99 ± 0.27 1754.1 ± 775.6 

11. Bank_nm 0.606 0.681 0.785 0.762   48.33 ± 17.61 41.94 ± 2.12 1.55 ± 0.50 1732.6 ± 288.6 

12. Bank_nh 0.504 0.580 0.728 0.619   34.50 ± 12.82 30.59 ± 3.65 1.29 ± 0.37 1667.8 ± 634.6 

13. Friedman_c0_10_m 0.995 0.986 0.859 0.860   13.36 ± 1.10 9.64 ± 0.45 0.31 ± 0.07 609.9 ± 215.7 

14. Friedman_c0_10_h 0.865 0.891 0.850 0.851   10.79 ± 1.41 6.68 ± 0.44 0.56 ± 0.58 710.5 ± 332.0 

15. Friedman_c0_50_m 0.995 1.000 0.856 0.860   46.61 ± 3.42 60.59 ± 4.85 1.26 ± 0.35 2074.7 ± 564.2 

16. Friedman_c0_50_h 0.860 0.888 0.851 0.855   38.72 ± 6.58 57.39 ± 6.45 1.33 ± 0.55 1832.8 ± 593.0 

17. Friedman_c25_10_m 0.832 0.720 0.647 0.627   10.31 ± 2.62 10.40 ± 2.47 0.26 ± 0.18 325.5 ± 87.3 

18. Friedman_c25_10_h 0.660 0.594 0.577 0.571   7.78 ± 1.87 3.17 ± 0.56 0.22 ± 0.05 303.4 ± 146.6 

25. Kentucky 0.650 0.822 0.944 0.915   
1860.37 ± 

107.22 

800.58 ± 

92.86 
7.65 ± 1.88 

106,725.6 ± 

27,214.6 

26. Miller 0.350 0.618 0.280 0.710   2.65 ± 0.27 0.98 ± 0.55 0.14 ± 0.08 
5664.9 ± 

1561.8 

Overall mean SA 0.783 0.776 0.818 0.806 
     

Overall median SA 0.764 0.789 0.759 0.769 
     

 

6.4.3. Qualitative assessment of the proposed wrappers 

The qualitative criteria proposed in the IVS framework and briefly described in 

Section 6.3.3 are employed to perform a final step of evaluation on the BFIPS-ELM and 

MBFIPS-ELM techniques. 
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Ease of use and robustness. The proposed techniques require the specifications of 

several parameters that 1) govern the swarm optimization process, 2) determine the 

binary encoding of the wrappers, and 3) define the optimization function used or the 

selection of the final models. However, the optimal choices for most of these parameters 

have already been investigated in previous studies or have been examined in the detail in 

this one. For instance, employing 30 particles for the swarm has been a standard for 

most applications regarding the use of PSO, and as mentioned earlier in text, the use of 

von Neumann topologies has been advocated in several studies. We suggest setting the 

maximum number of particles in the MBFIPS Pareto-front as the number of input 

candidates so that all of them could be selected in case they are all relevant. Although a 

thorough investigation on the effect of mutation has not been carried out in this study, 

the values reported for the mutation parameters seemed to be most appropriate after 

some preliminary runs (results not shown here). The parameters linputs and lact defining 

encoding scheme are directly determined by the size of the candidate pool and the 

number of different activation function that one wants to test. As emerges from Section 

6.4.2.3, appropriate values of NHmax can be set to around 100 for the BFIPS-ELM and 

250 for the MBFIPS-ELM. Run-time could be shortened at the expense of slightly lower 

performances by reducing the maximum number of hidden units to around 50 for the 

BFIPS-ELM. On the other hand, values of NHmax below 100 should not be employed for 

the MBFIPS-ELM. Is important to allow the ridge regression constant λ to take a wide 

variety of possible values, therefore we suggest to use 6 or 7 bits for lλ. More bits could 

be assigned for the coding of λ, however an alternative method to the power-of-two 

sequence employed here will be needed to fully exploit the denser discretization. As 
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shown in the previous sections, the best results for the BFIPS-ELM were obtained using 

the AIC criterion with a logarithmic penalty. The use of this objective function is 

therefore suggested for the development of ELM-based wrappers. A square root penalty 

could be preferred if more importance is given to the exclusion of extraneous inputs. On 

the other hand, the RMSE might be preferred if one wants to avoid under-specification 

of meaningful inputs. In the same way, the value of ρ could be changed to obtain similar 

effects for the MBFIPS-ELM case, taking into account that ρ=1% provided the best 

tradeoff for the test-bed employed in this study. 

Explanation capability. While filters technique such as the PMIS, IIS and PCIS 

directly provide information about the relative importance of each selected input, 

wrapper methods usually require post-processing analysis for such information to be 

retrieved. Although the BFIPS-ELM is no exception to this rule, the set of Pareto-

particles returned by MBFIPS-ELM could be extremely informative with respect to the 

relative importance of the selected inputs. As a consequence of the optimization 

approach employed for the MBFIPS-ELM, the variable defining the subset for the 

Pareto solution with cardinality = 1 is overall the most relevant. In the same way, the 

variable added to form the subset of the solution with cardinality = 2 is the second most 

informative. Similar steps can be performed until the actual final solution selected with 

the criterion in (6.4) is considered, and the last variable added is regarded the least 

informative. For this procedure to be fully informative the Pareto-front has to be 

consistent, meaning that variables included in subsets with lower cardinalities should 

always be part of those with greater cardinalities. Although the analysis of relative 

variable importance for the fully synthetic datasets is beyond the scope of this study, an 
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in-depth analysis is carried out for the Kentucky dataset. The input selected at each 

cardinality for the 30 replicates of the Kentucky dataset are shown in the selection 

matrix of Fig. 6.8. Darker colors in the matrix identify inputs which have been selected 

at lower cardinalities and always retained at higher cardinalities. The selection matrix 

shows that all the returned Pareto-fronts are consistent, even when the MBFIPS-ELM 

under-specifies (row 9, 25 and 30) or over-specifies (row 6, 11, 17, and 18) the optimal 

subset. Furthermore, there is a remarkable uniformity across the replicates, since Qt-1 is 

always selected at cardinality 1, Qt-2 at cardinality 2, ERt at cardinality 3, and lastly ERt-1 

at cardinality 4 or 5 when the Pareto-front does not include a solution with 4 inputs (row 

11). It is also interesting to note that all the under-specifications concern this latter input, 

which is the least relevant.  

Flexibility. The optimization algorithms and reference model of the proposed 

wrappers can be easily interchanged with other suitable alternatives, provided the binary 

encoding is modified accordingly in the latter case. However, it is important to underline 

the intrinsic flexibility of the ELM-wrappers presented in this study, where models with 

different complexity and different types of activation functions are concurrently 

developed to match the underlying relationship in the datasets. In addition, the 

convenient formulation of the BFIPS allows for a straightforward implementation of its 

multi-objective generalization.  
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Figure 6.8. Selection matrix for the Kentucky River dataset. 

 

6.5. Conclusions 

Fast and accurate wrapper IVS techniques for application in rainfall-runoff data-

driven modeling were developed using ELM and binary-coded discrete swarm 

optimization. The effectiveness of the proposed methods was assessed using the criteria 

and datasets of a comprehensive IVS evaluation framework, and compared with that of 

4 existing IVS methods. The results obtained showed that the proposed wrapper 

techniques provided overall best performances at run-times which are comparable with 

those of some fast model-free approaches, such as PMIS and IIS. The best performers 

were found to be 1) the MBFIPS-ELM algorithm developed based on the concurrent 
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minimization of an error function and the number of selected inputs, and 2) the BFIPS-

ELM algorithm based on the minimization of the AIC variant with logarithmic 

complexity penalty. The first technique was arguably the most accurate overall, and was 

able to reach an almost perfect specification of the optimal input subset on a partially 

synthetic rainfall-runoff experiment. These high performances are obtained at the 

expense of longer run-times, since the MBFIPS-ELM requires larger underlying ELM 

models. However, the analysis of the returned Pareto-fronts allows for the determination 

of the relative importance of the selected inputs, which is usually unattainable with other 

wrapper methods such as the BFIPS-ELM. On the other hand, the latter technique is 

found to consistently reach high accuracy scores while being considerably faster as it 

performs well even with small ELM models. Further studies should verify whether these 

techniques could provide additional benefits when employed in real-world applications 

characterized by high nonlinearity in the catchment dynamics, as suggested by the 

extrapolation of the results obtained on the synthetic datasets. Improved performances 

over other IVS techniques should also be expected for applications in poorly-gauged 

watershed or when there is significant inter-dependence among the input variables 

forming the candidate pool. 
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7. Neural Network River Forecasting through baseflow 

separation and binary-coded swarm optimization 

The inclusion of expert knowledge in NNRF applications is expected to yield 

better performances in modeling and more reliable estimates of river quantities. Modular 

techniques designed to work on different flow regimes and hydrological conditions are 

preferred ways to incorporate such hydrological knowledge in data-driven models. 

Previous studies have suggested that more accurate prediction of total streamflow could 

be achieved through modular ANNs trained to perform an implicit baseflow separation. 

These models fit separately the BaseFlow (BF) and Excess Flow (EF) components as 

obtained by a digital filter, and reconstruct the Total Flow (TF) by adding these two 

signals at the output. The optimization of the filter parameters and ANN architectures is 

carried out through global search techniques that minimize a weighted function of the 

errors of the TF, BF, and EF components. Despite the favorable premises, the real 

effectiveness of these modular models (MM) has been tested only on a few case studies, 

and the quality of the baseflow separation performed by this technique has never been 

thoroughly assessed. In this study, we compare the performance of MM against global 

models (GM) for nine different gaging stations in the northern United States. Binary-

coded swarm optimization is employed for the identification of filter parameters and 

model structure, while ELMs, instead of ANN, are used to drastically reduce the large 

computational times required to perform the experiments. The results show that there is 

no evidence that MMs outperform global GMs for predicting the TF. In addition, the 

baseflow produced by the MM largely underestimates the actual baseflow component 

expected for most of the considered gages. This occurs because the values of the filter 
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parameters maximizing overall accuracy do not reflect the geological characteristics of 

the river basins. The results indeed show that setting the filter parameters according to 

expert knowledge results in accurate baseflow separation but lower accuracy of TF 

predictions, suggesting that these two objectives are intrinsically conflicting rather than 

compatible. 

 

7.1. Introduction 

The black-box nature of NNRF models is a target for widespread criticism, and 

likely the major reason why many hydrologists advise against their use in real-world 

problems in favor of physically sound conceptual models. To overcome this issue, 

recent efforts have been made by the research community to explain the internal 

workings of NNRF models, and link the processes taking place within the network to 

the processes in the watershed (Fernando and Shamseldin, 2009; Jain and Kumar, 2009; 

Jain et al., 2004; Wilby et al., 2003). Others studies have focused on the incorporation of 

expert knowledge into data-driven models in order to improve their hydrological 

plausibility and overall modeling performances with respect to those of a single global 

model (GM). A preferred track is represented by the use of modular models (MM) 

designed to work on different flow regimes, specific parts of the hydrograph, as well as 

different hydrological conditions. Zhang and Govindaraju (2000) employed Bayesian 

concepts and a committee of three specialized ANN responsible for the forecasting of 

low-, medium-, and high-runoff events for three medium watersheds in Kansas, US. An 

additional gating-network was delegated to weigh the output of these three expert 

modules depending on the hydro-meteorological conditions. A similar approach was 
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later devised by Parasuraman et al. (2006), where only one of the ANN modules was 

selected at a time by an embedded spiking layer developed with unsupervised learning, 

i.e. either trained by competitive learning or represented by a Self-Organizing Map 

(SOM). Another example combining unsupervised learning and MM was proposed by 

Toth (2009) for the Sieve watershed, Italy. Clustering of data with similar hydrological 

and meteorological conditions was first performed using SOM, and an ANN was 

subsequently trained for each cluster. Clusters’ association obtained by exploiting SOM 

indications on the similarity between classes later resulted in remarkable performance 

improvements of the MM over the GM used for comparison. 

Jain and Srinivasulu (2006) proposed an integrated approach where the flow hydrograph 

was decomposed into different segments based on physical concepts in a catchment, and 

each segment was modeled using different ANN and/or conceptual techniques. 

Application of this hybrid MM approach to the Kentucky River, US, catchment showed 

that it was able to outperform the GM made of a single ANN. Further improvements 

were later obtained for the same case study with a similar approach that employed 

Genetic Algorithms (GA) for training the ANN modules of the integrated system 

(Srinivasulu and Jain, 2009). Corzo and Solomatine (2007a, 2007b, 2006) proposed a 

more process-based approach where the BaseFlow (BF) and Excess Flow (EF) 

components of the Total Flow (TF) are first separated using the Eckhardt digital filter 

(Eckhardt, 2005), and then modeled separately by two ANNs. This Baseflow 

Separation-based MM (BS-MM) reconstructs the TF by summing the output produced 

by the two modules trained to fit the BF and EF components through the LM method. 

The unknown filter parameters are optimized along with the number of hidden neurons 
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of the two ANNs using GA and Generalized Pattern Search (GPS) to minimize a 

weighted sum of the errors of the TF, BF and EF predictions. Although this technique 

was reported to outperform the GM and other modular techniques on three different 

watersheds, the study did not thoroughly assess how well the BF and EF sub-processes 

were actually reproduced by the two modules. Indeed, the physical plausibility of this 

approach would be greatly enhanced if the two specialized modules were found to 

correctly fit the BF and EF components, making the BS-MM a strong candidate for real-

world operational purposes. 

To our knowledge, these important propositions have not been verified and, 

hence, filling this gap remains a largely unexplored area of research. This provides the 

motivation for the present study to test the BS-MM approach for separation of BF and 

EF. To improve the statistical significance of our study, we test the BS-MM nine 

watersheds with porous aquifers sited in the northern United States. Reliable estimates 

of the BaseFlow Index (BFI) and the optimal Eckhardt filter parameters are already 

available for each employed gage (Eckhardt, 2008). The availability of these values 

allows verifying whether the implicit baseflow separation performed by the modular 

approach is consistent with expert findings, as well as check if using the recommended 

values for the filter parameters will yield improved performances. The BS-MM 

approach will also be tested against the GM built for each of the nine gages, so as to 

provide a more statistically-robust comparison of these two different approaches. Due to 

the large computational costs required to develop the models for each case study, the 

Extreme Learning Machine (ELM) paradigm is used instead gradient-based ANN 

training. In addition, the BFIPS algorithm is employed to perform the search of optimal 
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model structures and values of the filter parameters, while the automatic selection of the 

optimal set of inputs is done using the MBFIPS as shown in Chapter 6. 

The rest of this Chapter is organized as follows. Section 7.2 presents the 

necessary background information on the BS-MM technique and offers a detailed 

description of the models used for the experiments. Section 7.3 describes the employed 

case studies and the experimental setup. The results of the experiments are reported and 

discussed in section 7.4. Conclusions are drawn in Section 7.5. 

 

 

Figure 7.1. The BS-MM model of Corzo and Solomatine. 

 

7.2. Baseflow Separation-based Modular Models (BS-MM) 

7.2.1. Original BS-MM 

The BS-MM proposed by Corzo and Solomatine (2007a, 2007b, 2006) is 

displayed in Fig. 7.1. The Eckhardt baseflow filter produces the baseflow        and 

excess flow        components from the observed total flow     . These signals are 

used as targets for the training of the two specialized ANN modules, whose outputs 

         and         are added up to give the estimation of the total flow      . Since the 
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base- and excess-flow components are initially unknown, the most relevant inputs are 

selected with respect to the observed TF using correlation and mutual information 

analysis. A GO algorithm, the GA and GPS in their original works, is employed to 

optimize the number of hidden neurons of both ANN modules NH1 and NH2, as well as 

the values of the filter parameters. These are: 1) the initial baseflow value     ; 2) the 

recession constant a; and 3) the maximum value BFImax of the baseflow index BFI, 

which is the long-term ratio of baseflow to total streamflow. The value of        given 

by the Eckhardt filter can be thus written as 

        
                                   

         
 (7.1) 

subject to            . The value of        is obtained by subtracting the results of 

(7.1) from     . The parameters composing the filter are supposed to be unknown, and 

the GO algorithm finds them along with NH1 and NH2 by minimizing a weighted sum of 

the Root Mean Square Errors (RMSE) computed for the total flow RMSETF, and for the 

predictions of two branches of the modular model RMSEBF and RMSEEF, respectively. 

Since the BS-MM technique was originally devised for operational purposes in flood 

prediction, Corzo and Solomatine (2007a, 2007b) reasonably assigned greater weights to 

the overall and excess flow terms, resulting in the objective function in (7.2) for the GO 

algorithm 

                                  (7.2) 

Although the three weights could be also subject to optimization, the same    objective 

function is also employed in the present study. 
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7.2.2. Modifications to the BS-MM 

This work features some modifications to the original BS-MM, mostly in order 

to increase its speed and automation, which would facilitate the analysis across several 

case studies. In the first place, ELMs are used, instead of ANNs, for both GM and MM 

model development. As reported in Section 2.2, this recently introduced class of neural 

models is known to be more accurate than ANN while at the same time providing 

remarkable speedups during the training process. Secondly, the BFIPS algorithm is 

employed, instead of GA and GPS, for the determination of optimal ELM properties and 

values of the filter parameters. However, the value of the recession constant a is not 

searched during the optimization process but determined beforehand through recession 

analysis, which can be easily performed and provides more reliable results (Eckhardt, 

2012, 2008; Li et al., 2014). The selection of optimal model predictors is automatized 

using a wrapper based on the MBFIPS algorithm, which according to the results 

presented in Chapter 6 has been found to outperform other input variable selection 

techniques for NNRF applications.  

7.2.3. Models employed  

The analysis presented in this study concerns three different model typologies. 

These are: 1) an overall global model built using a single ELM (GM); 2) a BS-MM 

derived from the original model (Corzo and Solomatine, 2007a, 2007b) after the 

modifications described in the previous section have been applied (BS-MM1); and 3) a 

variant of BS-MM1, where all the filter parameters are determined beforehand 

according to expert-knowledge (BS-MM2). The analysis on the latter model allows 

checking whether the inclusion of expert-knowledge in BS-MM development results in 
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better discharge predictions independently from failures in the filter parameters’ 

optimization process. 

 

GM. This model consists of a single ELM, as shown in Fig. 7.2. The MBFIPS is 

used to determine the optimal subset of inputs, as well as the optimal number of hidden 

neurons NH of the ELM model, and the value of the ridge regression constant λ. The 

value of the constant ρ used to select the final model is set to 1%.   

 

BS-MM1. The modified version of the BS-MM is displayed in Fig. 7.3. The 

inputs fed to the two ELM modules are those obtained for the GM using the MBFIPS. 

The BFIPS is employed to search for the optimal number of hidden neurons NH1 and 

NH2 of the two ELMs, the respective ridge regression constants λ1 and λ2, as well as the 

values of the baseflow filter parameters BFImax and QBF0. As mentioned before, the 

recession constant a will be instead determined through recession analysis. The BFIPS 

performs the optimization by minimizing the weighted error function in (7.2). 

 

BS-MM2. This model (Fig. 7.4) differs from the BS-MM1, as the baseflow 

separation is performed in advance using fixed filter parameters. In particular, the value 

of BFImax is assigned based on the geologic characteristics of the watershed, while QBF0 

is set equal to the total streamflow discharge observed at the beginning of the time series. 

This latter simplification is justified, since it is known from sensitivity analysis that QBF0 

has little impact on the quality of the baseflow separation performed by the Eckhardt 

filter, especially for long data series (Eckhardt, 2012). Performing the baseflow 
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separation in advance allows determining the inputs for the BF and TF modules 

separately using the MBFIPS-based wrapper as done for the GM. Once this pre-

processing step has been completed, the BFIPS is employed to optimize the ELM 

structure of the final BS-MM2 model by minimizing (7.2). 

 

Figure 7.2. The Global Model (GM). 

 

 

Figure 7.3. The BS-MM1 model. 

 

 

Figure 7.4. The BS-MM2 model. 
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7.3. Experimental setup 

7.3.1. Working datasets 

The models presented in the previous section are now tested on nine different 

small- to medium-sized watersheds in the northern United States. Table 7.1 reports the 

details of these case studies, including their location, the USGS gaging station ID, the 

drainage area at the station, the average streamflow in the considered period, as well as 

the values of the filter parameters a and BFImax. As mentioned before, the recession 

constant is obtained through recession analysis of the streamflow discharge (Eckhardt, 

2008). On the other hand, the reported values of BFImax are those recommended based 

on empirical results and on the geologic characteristics of the watersheds (Eckhardt, 

2012, 2008, 2005). The value of 0.8 is thus used for all the gaging stations, as the cases 

examined are all relative to perennial streams with porous aquifers. Table 7.1 also shows 

the BFI estimates as computed with the Eckhardt filter using the reported values of the 

parameters. These estimates will be later employed along with goodness-of-fit measures 

to assess the quality of the baseflow separation performed by the BS-MMs. The 

candidate modelling inputs for each case were obtained from 1 up to a maximum of 3 

nearby stations of NOAA’s National Climatic Data Center (NCDC). The type of 

variables available are identified as RAIN (rainfall), SNOW (snowfall), SNWD (snow 

depth), TMAX (maximum temperature) and TMIN (minimum temperature), 

respectively. The datasets are divided into training, validation and test subsets, 

accounting for 50%, 25% and 25% of the observations, respectively. The observations 

are shuffled in order to grant statistical similarity of streamflow across the three subsets, 

while at the same time including the highest peak in the training dataset to improve 
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model generalization. Data shuffling requires reconstructing the flow series sequentially 

in time before applying the baseflow filter. The BF and EF signals obtained from the 

filter are then reordered to match the initial shuffled arrangement before being used as 

target data for the ELM modules. Five lagged predictors are employed for both 

autoregressive (FLOW) and exogenous inputs. In particular, discharges up to 5 days 

ahead are considered for streamflow observations, while lags from 0 to 4 days ahead are 

used for the meteorological variables. 

7.3.2. Algorithm setup 

The same setup is employed for each of the nine case studies. Both the BFIPS 

and the MBFIPS algorithms are run for a maximum of 200 iterations, or stopped earlier 

if no improvement in the search is witnessed for over 30 consecutive iterations. In both 

cases, the search is performed using 30 particles arranged to form a von Neumann 

topology (Fig. 3.4h). The number of maximum particles in the MBFIPS Pareto-frontier 

is also set to 30, while the bit-flipping mutation probability is set to 5% and a maximum 

of 5 particles are allowed to undergo mutation at each iteration. In order to reduce the 

chance of bad optimization minima, 30 different runs of the algorithms are carried out 

for each case study and each model typology. The optimal models for the BS-MM cases 

are thus chosen as the ones corresponding to the lowest value of ET on the validation 

dataset, while the final GM models are identified on the overall Pareto-front computed 

from the frontiers of the 30 runs by setting the cutoff parameter ρ = 1%.  

7.3.3. Binary particle encoding 

Since binary-coded swarm optimization is used to evolve ELM model structures, 

determine the value of problem-specific parameters and identify the optimal set of 
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inputs, the encoding scheme described in Section 6.2.1 is employed for particle 

positions. For those cases where inputs are to be selected using the MBFIPS one bit is 

used for each potential input, with a value of 1 indicating a selected predictor and 0 

otherwise. Seven bits are allocated for the number of hidden neurons of each modular 

ELM, whose complexity could therefore range between 1 and 128 hidden neurons. On 

the other hand, 8 bits are allotted for the GM-ELM so that the maximum possible size of 

the three model topologies would be the same. Six bits are destined for the values of the 

ridge regression constants λ, which are allowed to vary within a series of increasing 

powers of 2 between 2
-31

 and 2
32

. Eight bits (256 steps) are used to code each of the two 

filter parameters, with the value of QBF0 going from 0 to the maximum value of the 

observed Q, while BFImax is allowed to vary between 0.25 and 0.8. These values are 

chosen as they are the suggested extremes for Eckhardt filter implementation, with 0.25 

corresponding to the case of perennial stream with rocky aquifer and 0.8 being the 

recommended value for the case of perennial stream with porous aquifer. 

7.3.4. Evaluation metrics 

For a thorough assessment of model prediction accuracy, five evaluation metrics 

are employed: the Root Mean Square Error (RMSE), the Coefficient of Efficiency (CE), 

the Median Absolute Percentage Error (MdAPE), the Fourth Root Mean Quadrupled 

Error (R4MS4E), and the Mean Squared Logarithmic Error (MSLE). As reported in 

APPENDIX B, these 5 metrics evaluate model performances with respect to overall 

goodness-of-fit of the predictions (RMSE, CE and MdAPE), as well as during low flow 

(MSLE, and in second place MdAPE) and high flow (R4MS4E) sections of the 

hydrographs.  
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TABLE 7.1. CASE STUDIES DETAILS 
      

        

USGS ID Latitude Longitude 

Drainage 

Area 
Mean 

Discharge 

(cumecs) 

Period investigated 
Total observations 

(used observations) 
a BFImax BFI Variables available 

(sq. km) 

04015475 47°31'38" 92°07'21" 259 2.33 19-09-78 to 30-09-82 1473 (1468) 0.971 0.8 0.69 RAIN, SNOW, SNWD, TMAX, TMIN 

04067958 45°23'16" 88°18'18" 1157.7 8.8  01-06-98 to 31-12-13 5693 (4225) 0.977 0.8 0.76 RAIN, SNOW 

04069416 45°08'36" 87°48'02" 2641.8 19.37  01-06-98 to 31-12-13 5693 (5000) 0.976 0.8 0.74 RAIN, SNOW, SNWD 

04072150 44°32'00" 88°07'47" 279.7 1.76  01-01-01 to 31-12-13 4748 (2068) 0.970 0.8 0.57 RAIN, SNOW, TMAX, TMIN 

04085395 44°01'29" 88°07'05" 282.3 1.44  01-07-93 to 30-09-05 4475 (4214) 0.970 0.8 0.71 RAIN, SNOW, SNWD, TMAX, TMIN 

04232046 43°06'22" 77°27'43" 71.5 0.37  01-12-87 to 21-02-90 814 (809) 0.967 0.8 0.66 RAIN, SNOW 

01333000 42°42'32" 73°11'50" 110.3 2.86  01-01-00 to 31-12-13 5114 (4378) 0.972 0.8 0.69 RAIN, SNOW, TMAX, TMIN 

01101000 42°45'10" 70°56'46" 55.2 1.07  01-01-94 to 31-12-13 7305 (4060) 0.974 0.8 0.69 RAIN, SNOW, SNWD, TMAX, TMIN 

01176000 42°10'56" 72°15'51" 388.5 7.04  01-01-94 to 31-12-13 7305 (4065) 0.977 0.8 0.75 RAIN, SNOW, SNWD, TMAX, TMIN 

 

TABLE 7.2. PERFORMANCE METRICS FOR TF PREDICTIONS ON THE TEST DATASET 

                  
 

GM 
 

BS-MM1 BS-MM2 

USGS ID RMSE CE MdAPE R4MS4E MSLE    RMSE CE MdAPE R4MS4E MSLE   RMSE CE MdAPE R4MS4E MSLE 

04015475 0.3658 0.9935 7.3176 0.9504 0.0336 
 

0.3615 0.9936 7.7244 0.9319 0.0556 
 

0.6855 0.9770 11.7335 2.3141 0.1442 

04067958 0.7372 0.9895 2.3360 1.5086 0.0042 
 

0.8323 0.9866 2.5477 2.0231 0.0043 
 

0.7638 0.9887 2.7890 1.5607 0.0043 

04069416 2.9265 0.9633 7.2930 5.9245 0.0183 
 

3.0311 0.9606 7.4488 7.1715 0.0188 
 

3.0759 0.9594 7.2002 7.5334 0.0181 

04072150 1.7978 0.8574 41.6663 4.5282 0.4749 
 

1.8428 0.8502 67.9088 4.7429 0.7259 
 

1.8428 0.8502 54.8926 4.8468 0.5011 

04085395 0.3939 0.9731 9.2608 1.0862 0.0737 
 

0.3976 0.9726 9.7810 1.0145 0.0671 
 

0.4144 0.9702 8.2725 1.0160 0.0564 

04232046 0.1719 0.8797 12.4469 0.3356 0.1151 
 

0.1751 0.8753 14.2391 0.3436 0.1037 
 

0.1875 0.8569 15.8467 0.3688 0.1034 

01333000 1.4232 0.8254 11.3982 3.3494 0.0938 
 

1.4782 0.8117 13.9758 3.7272 0.1216 
 

1.6167 0.7747 13.3884 4.0191 0.1000 

01101000 0.2434 0.9804 6.4697 0.8253 0.0493 
 

0.1629 0.9912 7.7400 0.3551 0.0566 
 

0.1826 0.9890 8.6668 0.5303 0.0561 

01176000 0.8524 0.9856 4.0211 1.8848 0.0153   0.8470 0.9858 4.4233 1.7395 0.0125   0.8361 0.9861 4.6431 1.8183 0.0176 

MEAN 0.9902 0.9386 11.3566 2.2659 0.0976 
 

1.0143 0.9364 15.0877 2.4499 0.1296 
 

1.0673 0.9280 14.1592 2.6675 0.1112 

MEDIAN 0.7372 0.9731 7.3176 1.5086 0.0493 
 

0.8323 0.9726 7.7400 1.7395 0.0566 
 

0.7638 0.9702 8.6668 1.8183 0.0564 
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Figure 7.5. Comparison of BF signals produced by modular models for each watershed 
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7.4. Results and discussion 

7.4.1. Total streamflow prediction 

Table 7.2 reports the values of the evaluation metrics as computed for the test 

datasets of each watershed. The results show no evidence that BS-MM approaches 

outperform the GM for total streamflow prediction. The opposite is more likely to be 

true, as global solutions show better performances on most of the watersheds employed 

for the comparison. The GM models are the only ones that concurrently rank the highest 

with respect to all the metrics for a given watershed, as it happens for the gaging stations 

#04067958, #04072150 and #01333000. If one considers each metric separately, the 

GM models score the best on six out of nine cases according to RMSE and CE, seven 

cases for MdAPE, five cases  for R4MS4E, and 4 cases for MSLE. Similar conclusions 

could be drawn by looking at the mean and median values for the nine watersheds, also 

reported in Table 7.2. Although these values should be taken with a grain of salt since 

they are relative to basins in different hydro-meteorological conditions, they strongly 

suggest that modular solutions perform worse than global ones for TF prediction. This is 

particularly true for the BS-MM2 models, which, despite being built to perform 

baseflow separation according to expert-knowledge (BFImax = 0.8), are arguably the 

worst performers in terms of overall goodness-of-fit of the modeled TF signal. This 

conclusion seems more likely if one considers that all the streams examined have a 

strong BF component, which should in theory favor the BS-MM approaches over GM 

(Corzo and Solomatine, 2007a, 2007b). On the contrary, the GM models appear to have 

better performances also for the low-flow component of the hydrographs, as indicated 
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by lower values of MSLE. This is somewhat unexpected, as low-flow is mainly BF 

which is directly modeled in modular solutions.  

 

 

Figure 7.6. Selection frequency for each type of variable with respect to modeled signal. 

 

 

 

Figure 7.7. Selected variables for each watershed. 
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7.4.2. Analysis of baseflow separation 

Table 7.3 reports the optimal values of QBF0 and BFImax parameters of the BS-

MM1 models developed for each stream. It emerges that the values of BFImax returned 

by the optimization algorithm are substantially smaller than the recommended value of 

0.8 for most of the watersheds, and very close to the lower bound of 0.25. Consequently, 

the BF signals are very different from those returned by the Eckhardt filter with BFImax = 

0.8 (BFref), as shown by the poor values of the CE metric computed using these two time 

series. In the same way, the BFI estimated for BS-MM1 on the test datasets are 

generally much lower than the reference values reported in Table I. On the other hand, 

the estimated BFIs of BS-MM2 are consistent with the values in Table I, suggesting that 

this approach is more physically-based than BS-MM1. Indeed, although one could 

question whether 0.8 is the best choice of BFImax for all the analyzed cases, most of the 

BFIs estimated from BS-MM1 predictions are too low for perennial streams with porous 

aquifers. The lack of hydrological significance of the BF signals from the BS-MM1 

models can be also evaluated graphically, as done in Fig. 7.5, where the BF produced by 

the two modular solutions are compared with BFref on part of the dataset of each 

watershed. The figures show that while the BF signals from the BS-MM2 models 

closely resemble that of the reference baseflow, the BS-MM1 solutions significantly 

underestimate BFref for all the gaging stations except for #04072150 (Fig. 7.5d) and 

#04232046 (Fig. 7.5f). This behavior may depend on the coefficients of the ET  objective 

function in (7.2) used to develop the modular models, which weigh more the errors of 

the EF component than those of the BF component. This may lead the optimization 

process for BS-MM1 development to maximize EF by reducing BFImax, and minimize 



143 

 

RMSEET while disregarding the damped BF signal. In these cases, the values of BFImax 

corresponding to better minima of ET will not reflect the hydrological processes taking 

place in the river basins. It is interesting to note that, according to the results in Table 

7.2, the BS-MM1 models underperforms GM models for TF predictions even when they 

produce a well-grounded baseflow separation.  

TABLE 7.3. BASEFLOW SEPARATION OF THE BS-MM MODELS 

        
 

BS-MM1 
 

BS-MM2 

USGS ID QBF0 [cumecs] BFImax Estimated BFI Baseflow CE   Estimated BFI Baseflow CE 

4015475 54.00 0.265 0.245 0.0711 
 

0.693 0.9865 

4067958 3.40 0.254 0.255 -0.8064 
 

0.758 0.9600 

4069416 7.20 0.252 0.253 -0.6367 
 

0.733 0.9620 

4072150 11.90 0.738 0.502 0.9064 
 

0.573 0.9576 

4085395 21.10 0.252 0.256 0.1566 
 

0.714 0.9807 

4232046 1.90 0.794 0.667 0.9789 
 

0.671 0.9708 

1333000 40.40 0.592 0.527 0.7152 
 

0.69 0.9515 

1101000 0.00 0.256 0.238 0.0643 
 

0.694 0.9704 

1176000 4.20 0.25 0.253 -0.1537 
 

0.748 0.9689 

 

7.4.3. Analysis of selected inputs 

A final analysis is carried out to check for similarities and differences in the 

optimal subset of inputs selected for modeling the TF, BF and EF time series. This is 

done by comparing the predictors selected by the MBFIPS for the GM and BS-MM2 

models. For the sake of conciseness, results are presented only for the type of variables 

rather than for each lagged predictor itself. In particular, Fig. 7.6 shows the frequency 

with which each type of variable is selected with respect to the total number of times 

this variable is available across the datasets (see Table 7.1), while the variable selection 

matrices in Fig. 7.7 present the details for each watershed. As expected, it emerges that 

past streamflow data (FLOW) and RAIN are the most important inputs of the lot. 
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FLOW variables are selected for all the watersheds and for both TF and its components. 

RAIN seems to be less important for modeling the BF, but is still selected in five out of 

the nine cases, indicating that this variable should also be fed to the BF module, unless 

proven differently by detailed pre-processing analysis. Indeed, groundwater is displaced 

by precipitation during a rainfall event and generates baseflow by flowing into the 

stream. SNOW also seems to carry explanatory power for both TF and its components, 

however is the least relevant among the meteorological variables. It also appears that, 

whenever SNWD is available, SNOW predictors are less likely to be selected, 

suggesting that the former variable carries more information than the latter. This can be 

observed especially for TF (Fig. 7.7a) and BF (Fig. 7.7b), where for the 5 cases in which 

both SNWD and SNOW are available, the former is selected in three cases, while the 

latter only once. It is interesting to note the contrast between TMAX and TMIN for the 

BF and EF components, with TMAX being substantially more relevant for EF and vice 

versa. While it can be argued that TMAX is more likely to explain snowmelt, which 

affects mostly the EF component, the high correlation between these two variables 

would require further studies to shed light on this matter. 

 

7.5. Conclusions 

In this study, we investigated the effectiveness of data-driven Baseflow 

Separation-based Modular Models (BS-MM) in predicting total streamflow discharge as 

well as its baseflow and excess flow components. These models estimate the TF by 

adding the predictions of the BF and EF components. Two different modular solutions 

were developed and compared against a global model used for reference. The BS-MM1 
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model consisted of two ELM trained to fit the BF and EF signals produced by a 

baseflow filter whose parameters were optimized during model development. On the 

other hand, the BS-MM2 was developed using a filter whose parameters were fixed 

according to the geological characteristics of the watershed. Contrary to previous studies, 

experiments run for nine perennial streams in porous aquifers in the northern United 

States show significant evidence of modular models underperforming global ones for 

predicting overall streamflow discharge. In addition, the baseflow separation performed 

by the BS-MM1 was not consistent with the partitioning expected for most of the 

streams due to substantial underestimation of the baseflow component. The BS-MM2 

was found to be more physically grounded, with BFI estimates close to the expected 

ones and satisfactory reconstruction of the BF signal. However, this model was arguably 

the worst in predicting overall streamflow discharge, suggesting that this objective and 

that of performing an accurate baseflow separation might be conflicting rather than 

compatible. Further studies could probe whether a different formulation of the objective 

function that weights differently the errors of the TF, BF and EF predictions might solve 

this issue. Another future line of work could extend the analysis to watersheds with 

intermittent streamflow, although the difficulties in performing the baseflow separation 

for this class of streams might hinder the development of the modular models (Aksoy 

and Wittenberg, 2011).  

 



PART IV. CONCLUSIONS
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8. Conclusive remarks and future developments 

This thesis has dealt with the use of data-driven techniques for the prediction of 

water quantities, a field now known also as Neural Network River Forecasting (NNRF).  

Despite the considerable amount of research on these methods, the existence of several 

unresolved issues has hindered the adoption of NNRF in operational real-world contexts. 

The work done in this thesis contributed towards addressing some of these problems by 

harnessing real- and binary-coded variants of PSO, a flexible and efficient nature-

inspired optimization technique which has been only marginally used in data-driven 

hydrological modelling. In particular, three new PSO variants have been introduced in 

this manuscript, namely the MOFIPS, BFIPS and MBFIPS optimization algorithms, 

which have all been derived from the Fully Informed Particle Swarm (FIPS) paradigm. 

These algorithms have been employed to devise novel applications aimed at 

investigating the feasibility of  

i. developing efficient interval-based NNRF models,  

ii. producing a fast and accurate scheme for the automatic selection of 

optimal inputs and NNRF model structure,  

iii. improving NNRF model performances by embedding expert-knowledge 

to enhance their physical plausibility.     

The applications presented in Part III of this manuscript provided concrete solutions to 

the first two issues highlighted above. In Chapter 5 it was demonstrated that accurate 

and fast estimation of streamflow prediction intervals can be obtained with the 

MOFIPS-based LUBE methodology, as shown for the case studies of the Susquehanna 

and Nehalem rivers. Improvements over the original PSO-based LUBE models were 
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gained using the bi-objective optimization paradigm illustrated in Chapter 4 for 

deterministic point predictions.  

On the other hand, the BFIPS- and MBFIPS-ELM wrappers presented in 

Chapter 6 are two examples of successful automatic input and model structure selection 

techniques. The underlying ELM models grant these methods enhanced speed and great 

flexibility, suggesting that ELMs are ideal candidates for NNRF applications and should 

be taken into account by the research community. However, their partially-randomized 

and extremely distributed nature severely compromise any effort of tracing back the 

internal workings of the ELM to the processes occurring in the watersheds, as done for 

other NNRF models (Fernando and Shamseldin, 2009; Jain and Kumar, 2009; Sudheer 

and Jain, 2004; Wilby et al., 2003). This could hinder their adoption by practitioners 

who might still prefer less performant but more physically-sound models. Further 

concerns could arise from the results in Chapter 7, which highlighted the difficulties of 

including expert-knowledge directly into the modular NNRF models performing 

implicit baseflow separation. However, it is certainly worth exploring whether ELM 

could amplify the benefits of other modular approaches which have been devised to 

increase the physical-plausibility of NNRF (Jain and Srinivasulu, 2006; Srinivasulu and 

Jain, 2009; Toth, 2009) .  

In addition, practitioners might be willing to downplay the lack of physical 

interpretation of pure black-box NNRF solutions in case workable and consistent 

methodologies are implemented for estimating the uncertainty of the predictions. In this 

regard, it is important to note that ELM may substantially increase the computational 

efficiency of time demanding bootstrap approaches for estimating prediction intervals 
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(Sharma and Tiwari, 2009; Tiwari and Chatterjee, 2010), especially if one resorts to 

parallel computing (He et al., 2013). It will be interesting to assess how these ELM-

based solutions compare with MOFIPS-LUBE both in terms of quality of the produced 

predictive intervals and computational demands. 

A final remark concerning the work presented in this manuscript is that, although 

all the presented applications involve novel PSO variants, the presented techniques are 

non-specific with respect to the Global Optimization (GO) algorithm employed. The 

PSO algorithm was chosen due to its flexibility and ease of implementation of both real- 

and binary-coded problems, involving one or more objective functions. Although this 

certainly facilitated the development of ad-hoc techniques targeted to address different 

NNRF issues, it is entirely possible that other GO techniques might outperform the 

MOFIPS, BFIPS and MBFIPS algorithms introduced in this work. Further studies could 

be thus directed towards redeveloping the proposed methodologies using other GO 

algorithms, such as Borg (Hadka and Reed, 2012; Reed et al., 2013) and variants 

Differential Evolution (Das and Suganthan, 2011; Piotrowski and Napiorkowski, 2011; 

Piotrowski et al., 2012), which have proven very successful in other water resources and 

environmental modelling applications.  
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APPENDIX A. Benchmark functions  

The following functions taken from Deb et al. (2002) have been employed to test the 

performances of the MOFIPS algorithm in 3.7.3.  
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APPENDIX B. Statistical metrics for assessment of 

hydrological models 

The following statistical metrics have been employed for the assessment of the 

proposed NNRF models. These are (Dawson et al., 2010, 2007): the root mean square 

error (RMSE), the coefficient of efficiency (CE), the median absolute percentage error 

(MdAPE), fourth root mean quadrupled error (R4MS4E), and mean squared logarithmic 

error (MSLE), given by: 
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where      is the observed discharge value,        is the modeled discharge value,       

is the median observed value, and N is the total number of observations. The first three 

evaluation metrics are used to assess the level of overall agreement between the 

observed and modeled output variables. The root mean square error is a non-negative 

metric expressed in real units with no upper bound and equal to 0 for a perfect model. 

On the other hand, the coefficient of efficiency is dimensionless with a value of 1 for a 

perfect model and no lower bound. The median absolute percentage error is a 

dimensionless non-negative ratio, which is equal to 0 for a perfect model and has no 
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upper bound. Although less popular than RMSE and CE, the MdAPE, based on the 

median of the absolute residuals, is less affected by skewed error distributions and less 

sensitive to the larger errors that occur at high flows (Dawson et al., 2007). The fourth 

root mean quadrupled error is used to better evaluate model goodness-of-fit on peak and 

high flows. It is a non-negative metric expressed in real units that has no upper bound 

and is equal to 0 for a perfect model. Somewhat complementary to the R4MS4E is the 

mean squared logarithmic error, which, due to the logarithmic transformations involved 

in its computation, is a preferred measure for assessing model performances when 

predicting low flows. MSLE is non-negative and takes a value of 0 for a perfect model. 
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