

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

IMPROVING NEURAL NETWORK

RIVER FORECASTING WITH

SWARM-BASED OPTIMIZATION

ALGORITHMS

RICCARDO TAORMINA

Ph.D

The Hong Kong Polytechnic University

2016

The Hong Kong Polytechnic University

Department of Civil and Environmental Engineering

Improving Neural Network River

Forecasting with Swarm-based

Optimization Algorithms

Riccardo Taormina

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

July 2015

i

Abstract

Neural Network River Forecasting (NNRF) entails the use of Artificial Neural

Networks (ANNs) for the prediction of streamflow quantities. Despite the amount of

research on the subject, NNRF still struggle to move from the academic context to the

operational context due to a number of unresolved issues. Major problems of NNRF

methodologies include a) difficulties in quantifying the uncertainty of model predictions,

b) the lack of standardized methodologies for identifying optimal predictors and suitable

functional forms of the underlying data-driven model, and c) concerns with the black-box

nature of NNRF models which drive practitioners to favour physically-based alternatives.

The main contribution of this thesis is to show that these issues, albeit very

different in nature, can all be addressed by developing NNRF models using Global

Optimization. In particular, this work introduces three new Particle Swarm Optimization

(PSO) variants which are employed to devise novel ad-hoc applications aimed at solving

each particular issue. These algorithms are the Multi-Objective Fully Informed Particle

Swarm (MOFIPS) optimization, the Binary-coded Fully Informed Particle Swarm

(BFIPS), and its multi-objective generalization (MBFIPS). Testing these new techniques

will also provide insights on the real effectiveness of PSO for data-driven hydrological

modelling, a task which has been only partially accomplished by the research community.

In addition, this thesis advocates the use of Extreme Learning Machines (ELMs) as

alternative NNRF models. Although research in other fields has shown that ELMs

provides better accuracy at much faster speed compared to ANNs, at the time of writing,

they have never been employed for NNRF modeling.

ii

There are four applications at the core of this thesis. In a first application it is

demonstrated that better deterministic PSO-trained NNRF models can be obtained by

formulating cross validation as a bi-objective optimization problem using MOFIPS to

perform ANN calibration. The benefits of bi-objective optimization are also shown for

the construction of NNRF prediction intervals. This is done in a second application where

MOFIPS and the Lower Upper Bound Estimation method are employed for fast and

straightforward development of interval-based models.

 In a third study, a novel approach for model and Input Variable Selection (IVS)

that employs BFIPS and MBIFPS along with the ELMs is presented. A comparison with

4 existing techniques, done using the tools of a comprehensive framework, suggests that

the developed ELM-based models are more accurate in performing the IVS task for data-

driven hydrological modelling.

 Lastly, BFIPS, MBFIPS and ELMs are employed to investigate whether more

accurate prediction of streamflow discharges can be achieved by including expert

knowledge in NNRF model development. In particular, total streamflow predictive

accuracy of modular models (MM) trained to perform an implicit baseflow separation is

compared against that of global models (GM). The results for 9 different watersheds in

northern United States show that MMs underperform GMs in predicting the total flow. In

addition, the study demonstrates that greater accuracy in baseflow separation usually

corresponds to worse total flow predictions, suggesting that these two objectives are

conflicting, rather than compatible.

iii

Publications

Articles in Journals

Taormina, R., Chau, K. W., & Sivakumar B. (2015). Neural network river forecasting through

baseflow separation and binary-coded swarm optimization. Journal of Hydrology, 529, 1788-

1797.doi:10.1016/j.jhydrol.2015.08.008

Taormina, R., & Chau, K. W. (2015). Data-driven input variable selection for rainfall-runoff

modeling using binary-coded particle swarm optimization and Extreme Learning Machines.

Journal of Hydrology, 529, 1617-1632. doi:10.1016/j.jhydrol.2015.08.022

Taormina, R., & Chau, K. W. (2015). ANN-based interval forecasting of streamflow discharges

using the LUBE method and MOFIPS. Engineering Applications of Artificial Intelligence, 45,

429-440. doi:10.1016/j.engappai.2015.07.019

Taormina, R., & Chau, K. W. (2015). Neural network river forecasting with multi-objective

fully informed particle swarm optimization. Journal of Hydroinformatics, 17, 99–112.

doi:10.2166/hydro.2014.116

Taormina, R., Chau, K. W., & Sethi, R. (2012). Artificial neural network simulation of hourly

groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications

of Artificial Intelligence, 25, 1670–1676. doi:10.1016/j.engappai.2012.02.009

Conference Posters

Taormina, R., Chau, K. W., & Galelli. S. (2015). Comparison of ANN and ELM for Data-

Driven Streamflow Prediction Applications. Asia Oceania Geosciences Society (AOGS) 12th

Annual Meeting - AOGS 2015. August 2015. Singapore

iv

Acknowledgments

First of all, I would like to thank my supervisor, Prof. K.W. Chau, and the

Research Grants Council of Hong Kong for the opportunity they gave me to pursue my

Ph.D. research at the Department of Civil and Environmental Engineering of the Hong

Kong Polytechnic University, under the prestigious Hong Kong Ph.D. Fellowship

Scheme.

Secondly, I would like to thank my family and friends scattered around the world

for the support they gave me through all these years, regardless of the distance that

separated us. A special thank goes to the STF group in Hong Kong, for probably the best

Tuesdays (and Mondays sometimes) I had in my life.

Then I would like to thank all the Faculty members and researchers with whom I

had the honor to work during my Ph.D. studies. In particular, I wish to thank Prof.

Rajandrea Sethi at Politecnico di Torino, with whom I started my research career; Prof.

Bellie Sivakumar, that gave me the chance to work under his supervision at the

University of New South Wales; and Prof. Stefano Galelli, with whom I have the

pleasure to continue my research duties at the Singapore University of Technology and

Design.

Lastly, I am deeply in debt with the cities of Hong Kong, Sydney and Singapore for

being my home during all the time of my life as a Ph.D. Student, and a continuous

source of inspiration for becoming a better researcher, and a better man.

Thanks!

ix

Table of Contents

Certificate of Originality.. i

Abstract ... ii

Publications .. iv

Acknowledgments ... v

Abbreviations ... I

Symbols ... IV

List of Figures ... IX

List of Tables ... XI

1. Introduction .. 1

1.1. Neural Network River Forecasting ... 1

1.2. NNRF model development with swarm optimization .. 4

1.3. Thesis objectives .. 5

1.4. Structure of the thesis ... 9

 2. Data-driven models... 10

2.1. Artificial Neural Networks ... 10

2.1.1. Introduction .. 10

2.1.2. Single-hidden Layer Feed-forward neural Network ... 12

2.1.3. Neural network training .. 14

2.1.4. The Levenberg-Marquardt algorithm ... 15

2.1.5. ANN generalization .. 19

2.2. Extreme Learning Machines ... 21

3. Swarm Optimization .. 26

3.1. Introduction to global optimization ... 26

3.2. ANN development with global optimization techniques ... 28

3.3. The canonical Particle Swarm Optimization algorithm ... 30

3.4. Fully Informed Particle Swarm optimization .. 33

3.5. Swarm topologies... 34

3.6. Binary-coded Swarm Optimization: the BFIPS algorithm ... 37

3.7. Multi-objective Swarm Optimization: the MOFIPS and MBFIPS algorithms 39

3.7.1. Pareto-based multi-objective optimization ... 39

3.7.2. The MOFIPS algorithm ... 41

x

3.7.3. MOFIPS performances on benchmark tests ..43

3.7.4. The MBFIPS algorithm ...45

4. Training NNRF models with MOFIPS ...47

4.1. Introduction ..47

4.2. Case Study ...50

4.3. Input and model selection ...52

4.4. Comparison of PSO and MOFIPS performances ...54

4.4.1. Experimental setup ..54

4.4.2. Selection of optimal solutions ..55

4.4.3. Results and discussion ...56

4.5. Comparison of MOFIPS and gradient-based algorithms performances57

4.5.1. Experimental setup ..57

4.5.2. Results and discussion ...57

4.6. Conclusions ..61

5. NNRF interval forecasting using the LUBE method and MOFIPS62

5.1. Introduction ..62

5.2. Estimation of ANN-based PIs with LUBE and swarm optimization66

5.2.1. Prediction intervals ..66

5.2.2. The Lower Upper Bound Estimation method and PI evaluation indices67

5.2.3. PSO-based and FIPS-based LUBE for constructing streamflow PIs........................69

5.2.4. The MOFIPS-based LUBE method ..73

5.2.5. Selecting optimal MOFIPS-based LUBE solutions ..74

5.3. Case studies ..76

5.3.1. The Susquehanna River ...76

5.3.2. The Nehalem River..77

5.4. Results and discussion ..78

5.4.1. Input selection ...78

5.4.2. Development of swarm optimization-based LUBE models80

5.4.3. Comparison of generated PIs ...81

5.4.4. Wet season vs dry season performances ...85

5.5. Conclusions ..88

xi

6. Data-driven input variable selection for rainfall-runoff modeling using binary-coded

particle swarm optimization and ELMs ... 90

6.1. Introduction ... 91

6.1.1. Input variable selection (IVS) techniques .. 91

6.1.2. Filters, wrappers and embedded IVS techniques .. 91

6.1.3. Development of wrapper techniques with ELM and binary-coded FIPS 94

6.2. ELM-based wrapper development using BFIPS and MBFIPS 95

6.2.1. Binary particle encoding ... 95

6.2.2. BFIPS-ELM wrappers ... 97

6.2.3. MBFIPS-ELM wrapper ... 98

6.3. The Input Variable Selection evaluation framework ... 100

6.3.1. Benchmark datasets... 100

6.3.2. Selection accuracy criteria ... 102

6.3.3. Other evaluation criteria .. 102

6.4. Results and Discussion ... 104

6.4.1. Experimental setup.. 104

6.4.2. Quantitative assessment of wrapper performances ... 105

 6.4.2.1. Comparison of overall selection accuracy ... 105

 6.4.2.2. Comparison of selection accuracy on each dataset 108

 6.4.2.3. Computational efficiency .. 115

 6.4.2.4. Comparison with other IVS techniques ... 118

6.4.3. Qualitative assessment of the proposed wrappers ... 120

6.5. Conclusions ... 124

7. NNRF through baseflow separation and binary-coded swarm optimization 126

7.1. Introduction ... 127

7.2. Baseflow Separation-based Modular Models (BS-MM) .. 130

7.2.1. Original BS-MM ... 130

7.2.2. Modifications to the BS-MM... 132

7.2.3. Models employed .. 132

7.3. Experimental setup ... 135

7.3.1. Working datasets... 135

7.3.2. Algorithm setup .. 136

xii

7.3.3. Binary particle encoding .. 136

7.3.4. Evaluation metrics ... 137

7.4. Results and discussion .. 140

7.4.1. Total streamflow prediction ... 140

7.4.2. Analysis of baseflow separation ... 142

7.4.3. Analysis of selected inputs ... 143

7.5. Conclusions .. 144

8. Conclusive remarks and future developments ... 146

APPENDIX A. Benchmark functions ... 149

APPENDIX B. Statistical metrics for assessment of hydrological models 150

Bibliography .. 152

I

Abbreviations

AIC Akaike Information Criterion

ANN Artificial Neural Networks

BF BaseFlow

BFI BaseFlow Index

BFIPS Binary-coded Fully Informed Particle Swarm

BIC Bayesian Information Criterion

BNN Bayesian Neural Network

BS Base-flow Separation

BS-MM Baseflow Separation-based Modular Model

CE Coefficient of Efficiency

CFS Constructive Forward Selection

CGF Conjugate Gradient with Fletcher-Reeves updates

CGP Conjugate Gradient with Polak-Ribiére updates

CI Confidence Interval

CL Confidence Level

CWC Coverage Width-based Criterion

EC Evolutionary Computation

EF Excess Flow

ELM Extreme Learning Machines

FIPS Fully Informed Particle Swarm

GA Genetic Algorithm

II

GM Global Model

GO Global Optimization

GPS Generalized Pattern Search

IIS Iterative Input Selection

IVS Input Variable Selection

LM Levenberg-Marquardt

LUBE Lower Upper Bound Estimation

LUEM Local Uncertainty Estimation Model

MBFIPS Multi-objective Binary-coded Fully Informed Particle Swarm

MdAPE Median Absolute Percentage Error

MI Mutual Information

MM Modular Model

MOEA Multi-Objective Evolutionary Algorithm

MOFIPS Multi-Objective Fully Informed Particle Swarm

MP Most Precautionary (referred to MOFIPS-based LUBE solutions)

MSLE Mean Squared Logarithmic Error

NI Narrowest Interval (referred to MOFIPS-based LUBE solutions)

NNRF Neural Network River Forecasting

NSGA-

II

Non-dominated Sorting Genetic Algorithm II

PAES Pareto-Archived Evolution Strategy

PCIS Partial Correlation Input Selection

PI Prediction Interval

III

PICP Prediction Interval Coverage Probability

PINAW Prediction Interval Normalized Average Width

PINRW Prediction Interval Normalized Root-mean-square Width

PMI Partial Mutual Information

PSO Particle Swarm Optimization

R4MS4

E

Fourth Root Mean Quadrupled Error

RBF Radial Basis Functions

RMSE Root Mean Squared Error

SA Selection Accuracy

SCG Scaled Conjugate Gradient

SI Swarm Intelligence

SLFN Single-hidden Layer Feed-forward neural Networks

SOM Self-Organizing Map

SPEA Strength Pareto-Evolutionary Algorithm

STDEV STandard DEViation

SVM Support Vector Machines

TF Total Flow

IV

Symbols

Chapter 2

𝒙 ANN inputs

𝑦 Observed output

𝑦̂(𝒙) ANN output

𝑝 Number of input variables

L Number of hidden neurons

𝒂𝑖 Hidden layer connection weights for i-th hidden neuron

𝛽𝑖 Output layer connection weights for i-th hidden neuron

bi ANN bias

𝐺(∙) ANN activation function

𝑒 Natural exponential function

s Steepness of sigmoidal function

t Threshold of sigmoidal function

𝜽 Set of ANN parameters

𝜽̂𝑁 Estimated set of ANN parameters

𝑟𝑗(𝜽) ANN residuals

𝐹(𝜽) Sum of squared residuals

𝑁 Total number of observations

𝑱 Jacobian matrix

𝑯 (Section 2.1) Hessian matrix

𝜗 Scaling coefficient for LM training

V

k Number of folds

𝜆 (Section 2.1) Regularization parameter

𝑓𝐿(𝒙) ELM output

q Number of ELM output nodes

ℝ Set of real numbers

𝒙𝑗 j-th input pattern

𝒕𝑗 j-th output pattern

𝑻 Array of output patterns

𝑯 (Section 2.2) Hidden layer output matrix

𝑯+ Moore-Penrose generalize inverse of 𝑯

𝜷 ̂ Estimated hidden layer parameters

𝜆 (Section 2.2) Ridge regression constant

m ELM model complexity

Chapter 3

𝑑 Problem dimension (particle size)

𝑿𝑖 Position of i-th particle

𝑽𝑖 Velocity of i-th particle

𝑷𝑖 Personal best of i-th particle

𝑮 Overall best position in the neighborhood

⊗ Point-wise multiplication

𝑼(0,∙) Vector of uniformly distributed random numbers between 0 and a

positive real number

VI

𝜒 Constriction coefficient

𝜑, 𝜑1,𝜑2 Acceleration constants

𝑋𝑀𝐼𝑁, 𝑋𝑀𝐴𝑋 Minimum and maximum value for particle positions

𝑉𝑀𝐼𝑁, 𝑉𝑀𝐴𝑋 Minimum and maximum value for particle velocity

𝑷𝑛𝑏𝑟𝑗
 Particle’s j-th neighbor

𝐾𝑖 Number of neighbors of particle i

𝑎𝑗 Weighting coefficient

𝑆(∙) Logistic function

m Number of particles subject to bit-flipping mutation

μ Mutation rate

𝑳 MOFIPS leading particle

M Maximum size of MOFIPS Pareto-front

𝑢 Uniform random number in [0,1]

𝜂𝑚 Polynomial probability distribution shape parameter

𝛿 Polynomial mutation parameter

𝜌𝑚 Percentage of particles subjected to polynomial mutation

Υ Convergence metric

Δ Diversity metric

Chapter 5

𝑙, 𝑢 Lower and upper bound of prediction interval

n Number of observations

VII

𝑅 Range of the observed variable

𝑁(0, 𝜎) Random number from Gaussian distribution with mean 0 and

standard deviation 𝜎

Chapter 6

𝑙𝑖𝑛𝑝𝑢𝑡𝑠 Number of bits needed to encode the selected subset of inputs

𝑙𝑛𝑜𝑑𝑒𝑠 Number of bits needed to encode the number of hidden neurons

𝑙𝑎𝑐𝑡 Number of bits needed to encode the type activation function

𝑙𝜆 Number of bits needed to encode the ridge regression constant

𝑁𝐻𝑚𝑖𝑛 , 𝑁𝐻𝑚𝑎𝑥 Minimum and maximum number of hidden neurons

g Exponent for AIC and BIC complexity penalty

ρ Cutoff percentage for selecting solution on the MBFIPS Pareto-

front

𝑅𝑀𝑆𝐸∗ RMSE value of the selected solution on the MBFIPS Pareto-front

𝑅𝑀𝑆𝐸𝑀𝐼𝑁 Minimum value of RMSE on the MBFIPS Pareto-front

K Number of relevant inputs

P Total number of candidate inputs

k Number of relevant inputs selected

p Number of extraneous inputs retained

𝑆𝐴, 𝑆𝐴𝑐, 𝑆𝐴𝑒 Selection accuracy scores

𝛾 Weighting factor for 𝑆𝐴 computation

Q Flow data

ER Effective rainfall

VIII

Chapter 7

𝑄(𝑡), 𝑄̃(𝑡) Observed and estimated total flow at time t

𝑄𝐵𝐹(𝑡), 𝑄̃𝐵𝐹 (𝑡) Observed and estimated baseflow at time t

𝑄𝐸𝐹(𝑡), 𝑄̃𝐸𝐹(𝑡) Observed and estimated excess flow at time t

𝑄𝐵𝐹0 Initial baseflow value

a Recession constant

BFImax Maximum value of BFI

NH1, NH2 Number of hidden neurons of the BS-MM

𝑅𝑀𝑆𝐸𝑇𝐹 RMSE for total flow predictions

𝑅𝑀𝑆𝐸𝐵𝐹 RMSE for baseflow predictions

𝑅𝑀𝑆𝐸𝐸𝐹 RMSE for excess flow predictions

ET Total error function to minimize for BS-MM training

FLOW Flow input variables

RAIN Rainfall input variables

SNOW Snowfall input variables

SNWD Snow depth input variables

TMIN, TMAX Minimum and maximum temperature input variables

IX

List of Figures

Figure 2.1. Feed-forward Neural Network ... 11

Figure 2.2. Single-hidden Layer Feed-forward neural Network .. 13

Figure 2.3. Graph of the hyperbolic tangent activation function ... 15

Figure 2.4. The early stopping criterion ... 21

Figure 2.5. Extreme Learning Machine with one output neuron ... 23

Figure 3.1. Real-valued encoding of a SLFN wih one output neuron .. 28

Figure 3.2. Binary encoding of a SLFN wih one output neuron .. 30

Figure 3.3. Vectorial representation of particle position update. ... 32

Figure 3.4. Example of swarm topologies. ... 36

Figure 3.5. Matricial encoding of a swarm topology with reciprocal connections. 37

Figure 3.6. Pareto-front of bi-objective optimization problem. ... 40

Figure 3.7. Matricial encoding of a MOFIPS swarm topology with one leader. 41

Figure 4.1. Training and validation errors in non-cross-validated PSO-ANN training. 50

Figure 4.2. Location of the Shenandoah River. .. 51

Figure 4.3. Sample of recorded total precipitation and streamflow discharge............................ 53

Figure 4.4. Selection of MOFIPS optimal solution. .. 55

Figure 4.5. Comparison of model predictions. ... 60

Figure 5.1. LUBE Neural Network model.. 66

Figure 5.2. Flowchart of the MOFIPS-based LUBE method. ... 72

Figure 5.3. Example of MOFIPS Pareto-front for LUBE model development. 74

Figure 5.4. LUBE generated PIs at 90% confidence level for the Susquehanna River. 86

Figure 5.5. LUBE generated PIs at 95% confidence level for the Susquehanna River. 86

Figure 5.6. LUBE generated PIs at 99% confidence level for the Susquehanna River. 87

Figure 5.7. Decomposition of test PICP and PINAW for the Nehalem River. 88

Figure 6.1. Binary encoding scheme for the ELM-based wrappers. .. 97

X

Figure 6.2. Selection of optimal solution for the MBFIPS-ELM. ..99

Figure 6.3. Overall mean SA of BFIPS-ELM for different complexity penalties. 107

Figure 6.4. Overall mean selection accuracy of MBFIPS-ELM for different values of ρ. 107

Figure 6.5. Scatter plots of Kentucky River streamflow vs ELM model output for progressively

better-specified input subsets. .. 114

Figure 6.6. Overall mean selection accuracy for different values of NHmax. 117

Figure 6.7. Mean selection accuracy in the Kentucky dataset for different values of NHmax. 117

Figure 6.8. Selection matrix for the Kentucky River dataset. .. 124

Figure 7.1. The BS-MM model of Corzo and Solomatine. .. 130

Figure 7.2. The Global Model (GM). ... 134

Figure 7.3. The BS-MM1 model. ... 134

Figure 7.4. The BS-MM2 model. ... 134

Figure 7.5. Comparison of BF signals produced by modular models for each watershed......... 139

Figure 7.6. Selection frequency for each type of variable with respect to modeled signal. 141

Figure 7.7. Selected variables for each watershed... 141

XI

List of Tables

Table 3.1. Mean and Variance of the convergence metric Υ ... 45

Table 3.2. Mean and Variance of the diversity metric ∆ .. 45

Table 4.1. Performance comparison of PSO- and MOFIPS-trained NNRF models 58

Table 4.2. Performance comparison of gradient-based and MOFIPS-trained NNRF models 60

Table 5.1. Details of gauging and meteorological stations .. 77

Table 5.2. Datasets subdivision ... 79

Table 5.3. Deterministic ANN inputs and model performances .. 79

Table 5.4. Details of the swarm optimization algorithms employed .. 81

Table 5.5. Performances of LUBE models on the test dataset for the Susquehanna River and

required computational time .. 84

Table 5.6. Performances of LUBE models on the test dataset for the Nehalem River and required

computation time .. 85

Table 6.1. Characteristics of the benchmark datasets of the IVS framework 101

Table 6.2. Overall mean and median SA scores of the best performing ELM-based wrappers 103

Table 6.3. Mean SA scores of BFIPS-ELM and MBFIPS-ELM for each benchmark dataset . 109

Table 6.4. Type of activation functions of the optimal models ... 109

Table 6.5. Averages and standard deviations of number of hidden units, number of iterations and

run-times. .. 116

Table 6.6. Mean SA scores and average run-time of PMIS, IIS, PCIS and GA-ANN 120

Table 7.1. Case studies details ... 138

Table 7.2. Performance metrics for TF predictions on the test dataset 138

Table 7.3. Baseflow separation of the BS-MM models .. 143

PART I. INTRODUCTION

1

1. Introduction

1.1. Neural Network River Forecasting (NNRF)

In the past twenty years, Artificial Neural Networks (ANNs) have been

successfully employed as data-driven modelling tools in many hydrological and water

resources contexts. The main reasons behind the popularity of these heuristics lie in

their ability to cope with the non-linear, non-stationary and non-Gaussian behaviors

typical of hydrological processes (Govindaraju, 2000a, 2000b; Maier and Dandy, 2000;

Maier et al., 2010). Common examples of ANN applications range from the estimation

of precipitation (Tomassetti et al., 2009; Toth et al., 2000; Wu and Chau, 2013; Wu et

al., 2010), and groundwater modelling (Adamowski and Chan, 2011; Coulibaly et al.,

2001; Trichakis et al., 2009), to water quality modelling (Chang et al., 2010; Muttil and

Chau, 2007, 2006; Wu et al., 2014) and reservoir operations (Chaves and Chang, 2008;

Labadie, 2004; Raman and Chandramouli, 1996). However, most applications deal with

the rainfall-runoff process and the prediction of streamflow quantities (Dawson and

Wilby, 1998, 2001; Kişi, 2004; Minns and Hall, 1996; Shamseldin, 1997; Thirumalaiah

and Deo, 1998; Tokar and Johnson, 1999; Tokar and Markus, 2000; Toth, 2009; Wu and

Chau, 2011; Wu et al., 2009). Such applications have been collectively termed Neural

Network River Forecasting (NNRF) in a recent paper by several prominent authors of

the field (Abrahart et al., 2012), and this work positions itself within this area of

research. While most NNRF applications regard ANNs and its variants, the term also

applies to a wider range of models including hybrid-ANN techniques such as neuro-

fuzzy (Chau et al., 2005; Pramanik and Panda, 2009; Sanikhani and Kisi, 2012) and

2

neuro-wavelet solutions (Adamowski and Sun, 2010; Danandeh Mehr et al., 2013; Kişi,

2009), as well as Radial Basis Functions (RBF) (Fernando and Shamseldin, 2009;

Jayawardena and Fernando, 1998; Senthil Kumar et al., 2005) and Support Vector

Machines (SVM) (Lin et al., 2006; Nourani et al., 2014, 2009).

Although NNRF models are known to perform favourably against conceptual

models (Carcano et al., 2008; Nayak et al., 2013; Tokar and Markus, 2000), these

solutions are seldom applied for operational purposes in real-world contexts. The

limited appeal of NNRF to practitioners has to be attributed to some unresolved issues

which have been identified in previous research but are still far away from being solved

(Abrahart et al., 2012). For instance, the great majority of examples in the literature are

concerned only with the development of NNRF models producing deterministic point

predictions. This strongly contradicts with the fact that hydrological forecasts can be

employed only if a measure of their reliability is attached to each predicted value

(Krzysztofowicz, 2001). Indeed, there only a few studies that try to quantify the

uncertainty of NNRF outputs, and the proposed solutions are usually complicated

(Alvisi and Franchini, 2011; Khan and Coulibaly, 2006; Kingston et al., 2005; Sharma

and Tiwari, 2009; Shrestha and Solomatine, 2006; Tiwari and Chatterjee, 2010; Zhang

et al., 2009).

Furthermore, while researchers have focused on ad-hoc modifications and

incremental refinement of existing techniques, which contributed little to the

advancement of the field, NNRF still lacks standardized methodologies for identifying

optimal predictors among available inputs, or for selecting the functional form of the

underlying data-driven model automatically. The Input Variable Selection (IVS)

3

framework recently introduced by Galelli et al. (2014) certainly represents a major step

forward in this direction. The framework provides a comprehensive set of evaluation

criteria and datasets that allow for a thorough assessment of the effectiveness of IVS

techniques for data-driven hydrological modelling. While there exist fast and accurate

model-free IVS techniques (Fernando et al., 2009; Galelli and Castelletti, 2013; May et

al., 2008), model-based alternatives are usually very slow as they entail time-consuming

iterative processes requiring the training of a vast number of potential models (May et

al., 2011). This is unfortunate since model-based IVS approaches account for the actual

gain in model performances given by each selected variable, as well as for the

contribution of individually irrelevant candidates with high combined explanatory

power (Guyon and Elisseeff, 2003; Kohavi and John, 1997). In addition, these methods

could be generalised so that they can also return the optimal model structure and the set

of parameters maximizing NNRF model performances (Abrahart et al., 1999; Chen and

Chang, 2009; Dawson et al., 2006).

Regardless of NNRF model accuracy in reproducing the hydrograph, there are

still widespread criticisms on their black-box nature and cautions against their use in

real-world problems in favor of physically plausible alternatives. To overcome this issue,

recent efforts have been made to explain the internal workings of ANN, and link the

processes taking place within the network to the processes in the watershed (Fernando

and Shamseldin, 2009; Jain and Kumar, 2009; Jain et al., 2004; Wilby et al., 2003).

Others have focused on the incorporation of expert knowledge into NNRF models in

order to improve their hydrological plausibility and overall performances (Corzo and

Solomatine, 2007a, 2007b; Jain and Srinivasulu, 2006; Parasuraman et al., 2006;

4

Srinivasulu and Jain, 2009; Toth, 2009; Zhang and Govindaraju, 2000). While these

studies certainly provided insightful guidance and paved the way for future explorations,

it is understood that much work is needed to fully address this issue (Abrahart et al.,

2012)

1.2. NNRF model development with swarm optimization

At the core of this thesis is the idea that, despite their intrinsic differences, the

problems highlighted in the previous paragraphs can be addressed by combining ANN

with real- and binary-coded Global Optimization (GO) techniques. GO techniques, and

nature-inspired heuristics such as Genetic Algorithms in particular, have been used in

several NNRF and sister applications usually in order to 1) perform ANN training via

single- (Chau et al., 2005; Jain and Srinivasulu, 2004; Sedki et al., 2009; Wu and Chau,

2006) and multi-objective optimization (de Vos and Rientjes, 2008, 2007) ; 2) optimize

NNRF model structures (Abrahart et al., 1999; Chen and Chang, 2009; Corzo and

Solomatine, 2007a, 2007b); 3) determine the optimal set of model parameters and ANN

architecture (Abrahart et al., 2007; Dawson et al., 2006; Leahy et al., 2008); and 4)

perform the IVS task (Bowden et al., 2005a, 2005b).

This thesis work will be focused on the use of Particle Swarm Optimization

(PSO), a population-based GO technique devised to mimic natural phenomena such as

bird flocking or fish schooling (Kennedy and Eberhart, 1995). Like other GO methods,

PSO can be used to find the global optima of non-differentiable objective functions and

can be easily adapted to work in discrete search spaces (Kennedy and Eberhart, 1997).

Although the intuition behind the algorithm is simple, PSO compares favorably against

5

other GO methods both in terms of speed and accuracy (Poli et al., 2007). In addition,

the implementation of the PSO is straightforward, and the algorithm lends itself

extremely well to parallelization and multi-objective generalization. Despite such

advantages, there are very few applications of PSO for NNRF model development.

These initial studies were only limited to the use of PSO as an alternative to gradient-

based techniques for model calibration, and they report contradictory results on PSO

efficacy (Chau, 2007, 2006; Piotrowski and Napiorkowski, 2011). In addition, due to

the lack of research in this area, many of the improvements made over the years to the

original algorithm have been overlooked.

Part of this research has been thus dedicated to devise new variants of the PSO

algorithm to be employed for NNRF model development. These new methods are all

based on the Fully Informed Particle Swarm (FIPS) variant of swarm optimization

(Mendes et al., 2004) ,which is known to outperform canonical PSO. The algorithms

have been named the Multi-Objective Fully Informed Particle Swarm (MOFIPS)

optimization algorithm, the discrete Binary-coded Fully Informed Particle Swarm

(BFIPS) optimization algorithm, and its multi-objective generalization (MBFIPS).

1.3. Thesis objectives

The main goal of this thesis is to employ these original techniques in novel

applications that can contribute to the field of data-driven hydrological modeling by

directly addressing some of the major issues concerning NNRF. Although a secondary

objective of this work is to provide insights on the real effectiveness of swarm

optimization, it is important to note that the findings of the presented thesis work could

6

be extended to other GO algorithms. Some of the applications reported here employ

Extreme Learning Machines (ELM) (Huang et al., 2011, 2006, 2004) as the underlying

NNRF models. ELMs are three-layered ANNs constructed by randomly assigning the

input weights and hidden biases. This operation reduces the ANN to a linear system, and

allows for the analytical determination of the output weights using common least-

squares. These simplifications drastically increase the speed of the learning process,

which was also found to grant better generalization compared with traditional ANNs

and other techniques such as SVMs. It was also shown that ELMs are universal

approximators that can work with a broad type of activation functions, as long as they

are bounded non-constant piecewise continuous. Recently, it was demonstrated that

ELMs actually represent a simple unified learning framework for ANNs, polynomial

networks, RBFs and SVMs which can be applied to both regression and multiclass

classification problems (Huang et al., 2012). Despite these advantages, at the time of

this writing ELMs have never been used as NNRF models, thus demonstrating their

suitability in modeling streamflow quantities represents another objective of this thesis

work.

Featured applications

In a first application for the Shenandoah River watershed, Virginia (US), it is

argued that superior PSO-trained NNRF models can be obtained by treating cross-

validation as a multi-objective optimization problem. The study shows that common

single-objective cross-validation hinders the search performed by the PSO. Accordingly,

employing the MOFIPS paradigm results in better performing models with respect to

7

those obtained with both single-objective PSO as well as some of the most advanced

gradient-based optimization algorithms.

 MOFIPS optimization can also benefit the generation of interval-based forecasts,

as demonstrated in a second application concerning streamflow modeling in the

Susquehanna and Nehalem rivers, US. In this innovative application, prediction

intervals (PIs) of future streamflow are estimated using the Lower Upper Bound

Estimation (LUBE) method (Khosravi et al., 2011). The LUBE method constructs an

ANN with two output neurons that directly approximate the lower and upper bounds of

the PIs. The training is carried out by minimizing a Coverage Width-based Criterion

(CWC), which is a highly nonlinear and non-differentiable function accounting for both

coverage probability and interval width. Even for this case, substantial improvements

are obtained by using MOFIPS instead of single-objective PSO with cross-validation

(Quan et al., 2014). Most importantly, the proposed MOFIPS-based LUBE ANN

represents a fast and straightforward model for interval-based NNRF.

 In another study, a novel approach for model structure and Input Variable

Selection that employs BFIPS and MBIFPS along with the ELMs is presented. The

algorithms are utilized to develop fast and accurate ELM-based IVS techniques by

encoding the subset of selected inputs and ELM structural characteristics in a binary

string. The performances of these methods are assessed using the criteria and the

datasets provided by the IVS evaluation framework for environmental modeling (Galelli

et al., 2014). From a comparison with 4 major IVS techniques, it emerges that, on

average, the proposed methods substantially outperform the other methods in terms of

selection accuracy. In particular, the MBFIPS-ELM wrapper was found to be the best

8

performer overall, reaching an almost perfect specification of the optimal input subset

for a partially synthetic rainfall-runoff experiment devised for the Kentucky River basin

(US).

 Lastly, BFIPS, MBFIPS and ELMs are employed to investigate whether more

accurate prediction of total streamflow could be achieved by including expert

knowledge in the development of data-driven rainfall-runoff models. In particular, the

effectiveness of modular models (MM) trained to perform an implicit baseflow

separation is put to the test and compared against that of global models (GM) for 9

different gaging stations in northern United States. The ELM modules fit separately the

base flow (BF) and excess flow (EF) components as obtained by a digital filter, and the

MM reconstructs the total flow (TF) by adding these two signals at the output. BFIPS is

employed for the identification of filter parameters and model structure by minimizing a

weighted function of the errors of the TF, BF, and EF. On the other hand, the selection

of the most relevant inputs is done using MBIPS-ELM. The results show that there is no

evidence that MMs outperform GMs for predicting the TF. In addition, the baseflow

produced by the MM largely underestimates the actual baseflow component expected

for most of the considered gages. This occurs because the values of the filter parameters

maximizing overall accuracy do not reflect the geological characteristics of the river

basins. Indeed, setting the filter parameters according to expert knowledge results in

accurate baseflow separation but lower accuracy of TF predictions, suggesting that these

two objectives are intrinsically conflicting rather than compatible.

9

1.4. Structure of the thesis

This thesis is organized as follows. Part II provides the necessary background on

the methods employed in this work. In particular, Chapter 2 presents the models used,

i.e. ANNs and ELMs, while Chapter 3 briefly reviews GO, PSO and FIPS before

introducing the BFIPS, MOFIPS and MBFIPS algorithms. These are presented in

Section 3.6, 3.7.2, and 3.7.4 respectively. The four applications summarized in the

previous section are described in details in Chapters 4 to 7 which constitute Part III of

this manuscript. The last part of this work will contain a summary of the thesis, along

with additional conclusions and a brief outline of possible future developments.

PART II. METHODS

10

2. Data-driven models

2.1. Artificial Neural Networks

2.1.1. Introduction

Artificial Neural Networks (ANNs) are biologically inspired mathematical

models that are able to map an unknown input-output relationship relying on data

samples gathered from the system under examination. Such models have been proven to

approximate any differential function to a chosen degree of accuracy (Hornik et al.,

1989), provided the number of parameters incorporated in the model is large enough.

The simplest, yet more popular ANN, is the multi-layered Feed-forward Neural

Network (FNN), which has been widely employed by hydrologists end engineers due to

its ability to model nonlinear, non-stationary and non-Gaussian processes like those

encountered in water resources contexts (Govindaraju, 2000; Haykin, 2008; Maier and

Dandy, 2000; Maier et al., 2010). FNNs can be represented as a graph where a number

of processing units, or neurons, are arranged in layers and linked by synaptic

connections (Fig. 2.1). In FFNs, the information is allowed to flow from one layer to the

next one only in a single direction, which goes from the input layer to the output layer.

The nonlinear processing takes place in all the neurons between the input and the output

layer, which are called hidden neurons and are grouped in one or more hidden layers.

No processing is done in the input neurons, while the output neurons usually perform a

linear rescaling to match the range of the output variable that has to be estimated. The

hidden units in the network receive their inputs through the synaptic connections, whose

11

strength is identified by scalar synaptic weights. The inputs are multiplied by the

weights associated to each synapse to form the exciting field entering the receiving

neuron. In the neuron, a nonlinear activation function, usually of sigmoidal shape,

transforms the received field in the output activation value for the neuron. This

procedure is carried out in all the hidden layers in the network, until the output units

compute the final response for the input pattern that has been presented to the network.

The mapping of the desired input-output relationship through a FNN is then obtained by

tuning the synaptic weights of the network, usually by means of deterministic iterative

algorithms that minimize an error function of the residuals between the observed output

of the system and the response produced by the model. After the training is finished, the

neural network model can be validated to check for its generalization ability, i.e. its

performances on data which has not seen during the training process, and then employed

on new data for the task it has been devised to accomplish.

Figure 2.1. Feed-forward Neural Network

12

2.1.2. Single-hidden Layer Feed-forward neural Network

In Fig. 2.2 the three-layered FNN with one output neuron is shown. These FNNs

are also known as Single-hidden Layer Feed-forward neural Networks (SLFNs), and

represent the most widely used data-driven model among hydrologist (Maier and Dandy,

2000; Maier et al., 2010). This SLFN can be expressed in mathematical terms as a

nonlinear parametrical model of the form

 (2.1)

where is an input vector of p variables which is fed to the network at a given time;

 is the output returned by the SLFN in response to ; is the set of synaptic

weights for the connections going from the input layer the i-th hidden neuron; is the

connection weight between the i-th hidden neuron and the output neuron; and L is the

total number of hidden neurons. All the bi terms are called biases, and are additional

parameters that improve the quality of the mapping by shifting the activations functions

in the processing units. The biases can be represented as weights of synapses leaving

dummy units which have a constant output equal to one (see Fig. 2.2). indicates the

activation functions in the hidden units, which are generally of the same form across the

entire layer. The activation functions are usually chosen as the logistic sigmoid (2.2a) or

the hyperbolic tangent (2.2b)

 (2.2a)

 (2.2b)

13

Both functions are smooth and differentiable, and have very similar graphs. The major

difference between the two functions lies in the fact that the output of the logistic

sigmoid ranges from 0 to 1, while that of the hyperbolic tangent ranges from -1 to 1 (Fig.

2.3). The parameters s and t identify the steepness and threshold of the sigmoidal

functions. The steepness is the slope of the linear portion of the sigmoid, while the

threshold is a scalar that pushes the center of the activation function away from zero.

The thresholds actually correspond to the biases b in (2.1) when these functions are

employed as ANN activation functions. While the steepness is usually set equal to one,

the thresholds are adjusted along with the synaptic weights during the ANN calibration

process. Although it is generally understood that one hidden layer is usually sufficient to

achieve good performances in hydrological applications (Coulibaly et al., 2000), some

studies have shown that additional hidden layers may result in better performances

(Chen and Chang, 2009; Tomassetti et al., 2009; Trichakis et al., 2009). However,

adding hidden layers to a network model may result in an error surface with more local

minima that complicates the calibration of the network parameters (Masters, 1993).

 Figure 2.2. Single-hidden Layer Feed-forward neural Network

14

2.1.3. Neural network training

The optimization of the SLFN parameters, also known as learning or training in

ANN jargon, is carried out to achieve the best approximation of the system output on a

set of N input-output pairs . This nonlinear optimization is

usually performed by solving a minimization problem of the form

 (2.3)

where is the real output of the system under study at time t; is the output of

the SLFN in (2.1), which for a given input data pattern is a function of the set of

network weights and biases . is the estimation of that minimizes the

error function on the N input-output patterns of the training dataset. There is no

analytical solution for (2.3); hence the minimization has to be done through a numerical

search procedure. First or second order local search techniques, such as the standard

back-propagation, the conjugate gradient, or the Levenberg-Marquardt (LM) method are

employed to carry out the training process (Haykin, 2008; Masters, 1995, 1993),

although global search methods such as Particle Swarm Optimization can also be used

(Chau, 2007, 2006), as it will be described in the next Chapter. The following

paragraphs will instead provide a short description of the LM algorithm, which has

proven to be one of the most efficient training algorithms, and the algorithm of choice

for ANN-based hydrological applications (Coulibaly et al., 2000; Nayak et al., 2013;

Piotrowski and Napiorkowski, 2011; Sahoo et al., 2006).

15

 Figure 2.3. Graph of the hyperbolic tangent activation function

2.1.4. The Levenberg-Marquardt algorithm

The nonlinear least squares problem in (2.3) can be expressed as a sum of

squared residuals

 (2.4)

For each time t, , the residuals
 are given by the difference between

the real output and the SLFN predicted output in (2.3)

 (2.5)

The residual functions can be assembled to form a residual vector ,

defined as , where n is the number of SLFN parameters

and N is the length of the training dataset. Using the residual vector, the function

in (2.4) can be rewritten as

16

 (2.6)

and its derivatives are given by the Jacobian matrix J computed with respect to

 (2.7)

where , and . From the Jacobian matrix, the gradient and the

Hessian of can be obtained as follows

 (2.8)

 (2.9)

If the residuals are small, or at least the value of their second derivatives is negligible,

the Hessian H can be written as

 (2.10)

which is the common approximation of near-linearity of the residuals near the solution.

The LM algorithm can be defined as a blend of vanilla gradient descend and the Gauss-

Newton method, and employs the information of both first and second order derivatives.

Vanilla gradient descent is the simplest and most intuitive method to find minima in a

function. The parameter vector is updated by just subtracting the gradient at each step

after multiplying it for a scaling coefficient

 (2.11)

This technique suffers from big convergence problems. Where the error surface has a

slight slope, the search point is far from the minima. In these cases the method takes

small steps and fails to hasten towards the solution. On the other hand, the method

17

accelerates where the gradient is high, rattling out of the minima while approaching.

This is clearly the opposite of what is expected from a good optimization technique.

Another problem is that the curvature of the error surface may not be the same in all

directions; therefore the search may be misdirected by gradient information only. This

issue can be tackled by using curvature information, namely the second order

derivatives or the Hessian matrix. The gradient in (2.8) can be expanded using a

Taylor series around the current state , which yields

 (2.12)

If is supposed to be quadratic around , the higher order terms may be neglected

and the value of is obtained by setting the left side of (2.12) equal to zero. This

operation yields the update rule for the Newton’s method

 (2.13)

where the generic has been replaced with . The Newton’s method uses the

approximation (2.10) for Hessian computation because of the implicit quadratic

assumption that leads to (2.13) from (2.12). Although this technique shows rapid

convergence, it is highly dependent on the linearity around the starting location, thus

needs to be improved. This improvement lies in the observation that the gradient descent

and the Gauss-Newton iteration are complementary in the advantages they provide.

Levenberg (1944) therefore proposed a blend of them as a superior update rule, which

can be written as

 (2.14)

18

where is the Hessian matrix evaluated at . The algorithm operates by first updating

the weights according to (2.14) and measuring the error associated with the new

parameter vector . If the error gets smaller with respect to the previous one, the

near-linearity condition is strengthened, and the parameter is reduced before

performing the next update. When the opposite occurs, the last update is erased and

another step from is taken after increasing of some significant factor. The

algorithm can still be refined by using second order derivatives even when is large. By

scaling each component of the gradient according to the curvature, larger movement will

result along those directions where the gradient is smaller thus solving the biggest issue

related to the gradient descent algorithm. This insight has been provided by Marquardt

(1963), and as a consequence the final Levenberg-Marquardt parameter update rule can

be written as

 (2.15)

The LM algorithm has proven to work extremely well in practice. The only

disadvantage compared to other gradient based methods, such as the conjugate gradient,

lies in the matrix inversion which has to be performed at each update and can require

long time for computation. One problem that this method shares with other gradient

based techniques is that it tends to get stuck in areas of local minima which can be far

away from the global optimum. That is why several algorithm restarts should be carried

out when employing such techniques for ANN training (Piotrowski and Napiorkowski,

2011).

19

2.1.5. ANN generalization

ANN generalization refers to the ability of the neural network to reproduce the

behavior of the system under study in situations which are not represented in the

training dataset (Anctil and Lauzon, 2004). Failing to reach good minima of the error

function may lead to poor generalization due to underfitting, i.e. the model failing

to emulate the system because it was not able to capture the underlying relationship

training dataset. While the chances of underfitting can be reduced with multiple

algorithm restarts, this event will always occur when the input set lacks meaningful

predictors, or when excessively simple models are used. On the other hand, overfitting

happens when the model is too complex, or when the calibration process is over-

extended causing the ANN to fit the random noise in the training dataset. While both

phenomena lead to poor generalization, overfitting is the most common in hydrological

data-driven applications. Hereby follows a description of the techniques usually

employed to prevent overfitting and grant ANN generalization.

 Early stopping. This method is the most widely used in hydrology and water

resources, where it is also referred to as stop training or cross-validation (ASCE Task

Committee, 2000; Cannon and Whitfield, 2002; Coulibaly et al., 2001, 2000; Leahy et

al., 2008; Piotrowski and Napiorkowski, 2013). The early stopping criterion entails

splitting the training data set in two parts to form a completely disjoint validation dataset.

The calibration of ANN parameters is carried out on the reduced training dataset, but

now the model prediction error on the validation dataset is constantly monitored, so that

the training process is interrupted when this error start to increase, as shown in Fig. 2.4.

20

 K-fold cross-validation. Although not as popular as early stopping, multifold

cross-validation can also be employed to grant model generalization, especially when

data is scarce (Chang et al., 2010; Piotrowski and Napiorkowski, 2013). This variant is

usually referred to as k-fold cross-validation (Kohavi, 1995), where k is the number of

folds in which the training dataset is divided before model calibration is initiated. The

learning process is performed a total of k times, and at each time a different fold is used

for validation while the remaining k – 1 folds are used for training. Values of k = 5 or 10

are typically used in data-driven hydrological applications (Galelli and Castelletti, 2013a,

2013b). This approach allows for a better exploitation of the available data, and should

theoretically provide a better estimate of the real generalization error. However, the

multiple runs of optimization involved in k-fold cross-validation may severely slow

down the overall ANN learning process compared to early stopping. In addition, while

early stopping returns a single ANN which can be used for predictions on new data, k-

fold cross-validation requires ensembling operations to obtain a single output from the

multiple ANNs available (Cannon and Whitfield, 2002).

 Regularization. This approach reduces the chance of overfitting by preventing

the values of the ANN parameters to get large during the calibration process (Anctil et

al., 2004). In this way, the ANN produces a smoother response which is less susceptible

to noise in the data. Regularization is implemented by modifying the objective function

of the nonlinear least square problem to include an additional term which penalizes large

synaptic weights. A common form of the modified objective function can be written by

adding the squared norm of the parameters to (2.4), which yields

21

 (2.16)

where the hyper parameter controls the strength of the regularization. Setting the

optimal value for is a problem of this approach, which can be overcome by resorting

to Bayesian regularization (Foresee and Hagan, 1997; Khan and Coulibaly, 2006).

 Figure 2.4. The early stopping criterion

2.2. Extreme Learning Machines

The Extreme Learning Machines (ELM) paradigm was initially proposed as a

training algorithm for SLFNs in which the input weights and hidden biases are

randomly assigned. This operation reduces the SLFNs to a linear system, and allows for

the analytical determination of the output weights using common least-squares (Huang

et al., 2006b, 2004). These simplifications drastically increase the speed of the learning

process, which was also found to grant ELMs better generalization than traditional

22

SLFNs trained with gradient-based algorithms or Support Vector Machines (SVM). It

was successively shown that ELMs are universal approximators that can work with a

broad type of activation functions, as long as they are bounded non-constant piecewise

continuous (Huang et al., 2011, 2006a). Recently, it was demonstrated that ELMs

actually represent a simple unified learning framework for SLFNs, polynomial networks,

SVMs and other data-driven techniques which can be applied to both regression and

multiclass classification problems (Huang et al., 2012). In addition, ELMs do not

require any scheme for improving their generalization capability, since the solution

returned by this learning paradigm is not only the one with the smallest training error,

but also the one minimizing the norm of output weights (see Section 2.1.5). K-fold

cross-validation can be employed to obtain a more accurate estimate of the

generalization error. Despite their considerable advantages, there exists only a handful

of ELM applications in hydrology and related fields. Acharya et al. (2013) tested ELM

for building multi-model ensembles from the products of general circulation models

developed to estimate the northeast monsoon rainfall over the southern India. The

findings showed that ELM outperformed standard ensembling methods according to

several skill metrics. Ortiz-García et al. (2014) used ELMs, as well as several other data-

driven techniques, in a problem of daily precipitation prediction formulated as a

classification problem. Deo and Şahin (2015) showed that ELMs could substantially

outperform ANN models trained with LM backpropagation for predicting future

droughts in eastern Australia. The improvements were obtained both in terms of better

performance metrics, as well as considerably faster training speeds. In this work, ELM

will be employed as a fast and accurate alternative to ANN whenever the task at hand

23

does not require the use of GO methods to fine tune the neural network parameters.

Indeed, an ELM is topologically equal to a SLFN with no biases in the output layer,

such as shown in Fig. 2.5 for an ELM with one output neuron. Therefore, when GO is

employed as the learning paradigm, it makes no difference whether the underlying

model is an ELM or a SLFN.

 Figure 2.5. Extreme Learning Machine with one output neuron

For a given pattern of p input variables , the output of an ELM with L

hidden nodes and q output nodes is given by

 (2.17)

where , , , and are respectively the input weights,

bias, output weights, and activation function of the i-th hidden node. For a dataset of N

24

input-output patterns , the parameters of the ELM can be estimated

by solving the following linear system with ordinary least squares (Huang et al., 2011)

 (2.18)

where

(2.19)

,

 is called the hidden layer output matrix of the ELM and can be computed after

randomly assigning the hidden node parameters . The smallest norm least-square

solution of (2.18) can be thus found as

 (2.20)

where is the Moore-Penrose generalized inverse of , which has to be used instead

of the inverse, since generally L<<N. A better and stabler solution than (2.20) can be

obtained through ridge regression theory (Huang et al., 2012)

 (2.21)

where is a positive value added to the diagonal of . In case is singular, an

alternative version of (2.21) has to be used for the estimation of

 (2.22)

The overall complexity m of an ELM is given by the sum of input layer

and hidden layer () parameters, which for an ELM with one output neuron is equal to

25

 . After the output weights have been determined, the ELM can be

employed for prediction on a test dataset. The ELM algorithm can be summarized as

follows (Huang et al., 2011):

ALGORITHM I. ELM training

Given a dataset of N input output pairs , for an ELM with L hidden

nodes and activation functions :

1.

1. Assign random values to the connection weights and biases entering the hidden

layer , i=1,…,L

2. Construct the hidden layer output matrix according to (2.19)

3. Calculate the output weight vector by employing either (2.21) or (2.22)

26

3. Swarm Optimization

This chapter illustrates the BFIPS, MOFIPS and MBFIPS algorithms which have

been devised to develop the NNRF applications at the core of this thesis work. These

methods are presented after some relevant context has been provided. Apart from

containing the necessary background on Swarm Optimization, these preliminary

sections briefly describe global optimization and how it can be employed to construct

NNRF models.

3.1. Introduction to global optimization

Global optimization (GO) entails the minimization, or maximization, of an

objective function through a multipoint search on the error surface. Among the most

successful techniques, we have purely stochastic search methods, such as Simulated

Annealing (Leahy et al., 2008; Masters, 1993) and Pattern Search (Corzo and

Solomatine, 2007a, 2007b), as well as heuristic strategies that are usually nature-

inspired algorithms. In the last decades, nature-inspired computation has witnessed a

tremendous growth, with successful applications in most fields of science and

engineering (Brownlee, 2012; Yang, 2014). Many of these techniques have been widely

used also in water resources science and engineering, especially those belonging to the

families of Evolutionary Computation (EC) and Swarm Intelligence (SI). Genetic

Algorithms (GA) is the most well-known EC technique, and arguably the most popular

heuristics among hydrologists (Abrahart et al., 1999; Bowden et al., 2005a, 2005b; Chen

and Chang, 2009; Dawson et al., 2006; de Vos and Rientjes, 2008; Goldberg, 1989; Jain

and Srinivasulu, 2004; Mohan and Vijayalakshmi, 2009; Mohan, 1997; Prasad and Park,

27

2004; Sedki et al., 2009; Wu et al., 2012; Yapo et al., 1998). Other notable EC examples,

that have found applications in hydrology and related fields, are Genetic and

Evolutionary Programming (Dawson et al., 2006; Nourani et al., 2012; Parasuraman et

al., 2007; Savic et al., 1999), and, more recently, Differential Evolution (Kişi, 2010;

Piotrowski and Napiorkowski, 2011; Piotrowski et al., 2012a, 2012b; Storn and Price,

1997). In EC algorithms an initial population of candidate solutions evolves through

time following rules adapted from evolutionary biology and Darwin’s theory of the

survival of the fittest. Successive generations of the initial population are created in

order to maximize the overall fitness, i.e. minimize or maximize the objective function

of the problem at hand. Typical updating rules for EC algorithms are recombination, or

crossover, mutation and selection. On the other hand, the optimization of SI heuristics is

carried out through the interaction of a population of agents mimicking the collective

behavior of natural systems, such as ant colonies, fish schooling and bird flocking.

Individuals in the population strive to improve themselves by imitating traits found in

their successful peers. Examples of SI algorithms are Ant Colony Optimization (Afshar,

2007; Dorigo et al., 1996; Kumar and Reddy, 2006), Artificial Bee Colony (Karaboga

and Basturk, 2007; Kisi et al., 2012), and Particle Swarm Optimization (PSO), which

has probably been the most successful due to its computational efficiency and inherent

simplicity (Kennedy and Eberhart, 1995; Poli et al., 2007). Typical applications of PSO

in the field of water resources range from soil moisture estimation (Gill et al., 2006; Lü

et al., 2011) and the optimization of conceptual rainfall-runoff models (Jiang et al., 2007;

Li et al., 2009; Tada and Beven, 2012), to reservoir operations (Gaur et al., 2011; Li and

28

Zhang, 2009; Reddy and Kumar, 2007a) and supporting decision making in water

resources management (Gaur et al., 2011; Guo et al., 2012; Reddy and Kumar, 2007b).

3.2. ANN development with global optimization techniques

When employed for NNRF development, GO techniques perform a parallel

multipoint search on the error surface in which each point represents a hypothesis on : 1)

the set of ANN model parameters (Chau, 2007, 2006; Chau et al., 2005; de Vos and

Rientjes, 2008, 2007; Jain and Srinivasulu, 2004; Kisi et al., 2012; Piotrowski and

Napiorkowski, 2011; Sedki et al., 2009; Wu and Chau, 2006); 2) a subset of model

inputs to be selected in a pool of candidates (Bowden et al., 2005a, 2005b); 3) some

details of the ANN architecture or its connectivity (Abrahart et al., 1999; Chen and

Chang, 2009; Corzo and Solomatine, 2007a, 2007b); or 4) the set of model parameters

along with network connectivity (Abrahart et al., 2007; Dawson et al., 2006; Leahy et al.,

2008; Yao, 1999).

 Figure 3.1. Real-valued encoding of a SLFN wih one output neuron

29

Since these heuristics do not employ derivatives in their optimization process, they

can operate on search spaces which are not continuous or differentiable, and can

optimize a much wider range of objective functions than the sum of errors in (2.3). Each

potential solution of the ANN model is coded on a numerical string, or genotype, which

constitutes a population member of the global search algorithm. In contrast, the

extended mathematical form coded in the string and the relative ANN graph are defined

as the phenotype. Though these terms belong to EC jargon, they are also employed in

the SI context. If the optimization is carried out for the calibration of ANN model

parameters, i.e. the synaptic weights and biases, then the genotype is usually made of

real values, as shown in Fig. 3.1 for a SLFN with one output neuron. On the other hand,

if the optimization process is aimed at input selection and/or network connectivity

optimization, the genotype is a binary string, where 1 represents that a connection is

established between 2 different nodes of the ANN. Fig. 3.2 shows an example of binary

encoding for a SLFN with three inputs and four hidden units. In this particular ANN

realization one of the inputs has not been selected and some of the connections between

the different layers are missing. When GO techniques are used for the concurrent

optimization of model parameters and network connectivity, hybrid real-binary

encoding schemes can be employed, although binary codification could be extended

also to synaptic weights. In this case the values of the model parameters are obtained by

decoding the bits assigned to each of them in the binary string. Regardless of the

encoding scheme adopted, the NNRF optimization process is carried out by updated the

genotypes according to the rules of the particular algorithm employed. At each iteration,

the fitness of population members is assessed by first decoding the genotype into the

30

phenotype, and then computing the ANN output according to the mathematical form

corresponding to the phenotype. The process is usually stopped when a defined number

of iterations has been reached. Other common choices are to stop the algorithm if no

improvement in the fitness is witnessed over a certain number of iterations, or when an

exit criterion on the fitness function has been met.

 Figure 3.2. Binary encoding of a SLFN wih one output neuron

3.3. The canonical Particle Swarm Optimization algorithm

Recently, the Particle Swarm Optimization (Kennedy and Eberhart, 1995)

method has gained popularity due to its computational efficiency and relative ease of

implementation compared to other GO approaches. PSO performs its search by

exploiting cooperation within a population (swarm) of potential solutions (particles).

The swarm flies across the error surface defined by the objective function, and at each

time particles are identified by their position and velocity, which are vectors of the same

31

number of elements as the number of problem dimension d. Particle positions are the

PSO equivalent to the genotypes of EC algorithms. They represent the hypotheses on

the solution of the optimization problem, and each of them is characterized by a

different fitness value. At each iteration, a particle flies to a new position according to

its velocity, which in the original version of the PSO algorithm is a function of the

historical best position achieved by the particle and the historical best position found

among all the particles in its neighborhood (see Fig. 3.3). If is the position of the i-th

particle, is its velocity, its personal best, and the overall best position in the

particle neighborhood, the PSO algorithm is defined by the following equations for

velocity and position update (Poli et al., 2007) :

 (3.1)

 (3.2)

where identifies point-wise multiplication; is a vector of d of uniformly

distributed random numbers between 0 and a positive real number;

and

 (3.3)

Eq. (3.1 – 3.3) above represent Clerc’s constriction formulation of canonical PSO (Clerc

and Kennedy, 2002). A common choice that guarantees convergence is to set

with acceleration constants . This yields a value of for the

constriction coefficient. Although these settings force particle convergence and prevent

the PSO algorithm from exploding, a better approach is to limit particle positions within

an interval that depends on the problem, and then constrain particle

velocities within where and (Eberhart and Shi,

32

2000). This results in a PSO algorithm with no problem-specific parameters, which is

known as the canonical PSO algorithm (Poli et al., 2007), and can be summarized as

follows:

ALGORITHM II. Particle Swarm Optimization

1. Randomly initialize particle positions, best positions, velocities, and

fitness values.

2. Loop for t = 2 up to a maximum number of iterations.

3. Update particle velocities according to (3.1).

4. Update particle positions according to (3.2) (see Fig. 3.3).

5. Compute particles fitness values for the new positions.

6. Compare fitness values at time t with those at time t-1. Update personal bests

where needed.

7. If additional termination criteria are met, exit the loop.

8. Return to step 2.

Part ic le X
i
 moves along the veloci ty V

i
 to reach the updated posi t ion. The veloci ty is

computed based on i ts previous value, the par t icle best posi t ion P
i
 and the global best

found in i ts neighborhood G. In th is example the error sur face is a funct ion of only two

parameters w
1
 and w

2
.

Figure 3.3. Vectorial representation of particle position update.

33

3.4. Fully Informed Particle Swarm (FIPS) optimization

In canonical PSO only the positions of the neighborhood historical best and

personal best are taken into account to update the velocity of each particle. Further

studies have argued that discarding all the other information provided by the remaining

individuals may actually be detrimental to the whole optimization process, both in terms

of reduced convergence speed and final outcome of the search process (Kennedy and

Mendes, 2002; Kennedy, 1999; Mendes, 2004; Mendes et al., 2003). This lead to the

development of the Fully Informed Particle Swarm (FIPS) optimization method

(Mendes et al., 2004), where the term fully informed indicates that each particle

neighbor contributes in modifying its trajectory. The velocity update equation for the

FIPS is a generalization of (3.1), which can be defined as follows (Poli et al., 2007):

 (3.4)

where is the number of neighbors for particle i, and identifies i’s j-th

neighbor. It can be seen that this version corresponds to (3.1) if for each particle

with , and . It is important to note that, contrary to canonical PSO,

neighborhoods in the FIPS paradigm may or may not include the best position of the i-th

particle itself. Although the FIPS algorithm was found to outperform canonical PSO on

benchmark case studies (Mendes, 2004; Mendes et al., 2004), its performances depend

more on the chosen swarm topology, i.e. the graph defining how particles are arranged

and interconnected in the swarm to form neighborhoods and perform the collective

search.

34

Alternative FIPS formulation

All the FIPS variants introduced in this thesis work will employ an alternative

version of (3.4) for particle velocity update. In particular, the velocity update equation in

(3.4) is simplified as follows:

 (3.5)

In (3.5) the contribution of each neighbor is weighted using a normalized random

coefficient which is the same for each particle dimension, and is defined as

 (3.6)

where identifies a uniform random number between 0 and 1. This version allows

for faster computation of particle velocities since only a single uniform random number

has to be generated for each neighbor particle instead of one for each problem

dimension. In addition, early preliminary trials have shown that this simplification may

improve search performances over both PSO and FIPS. The pseudo-code for this

alternative FIPS algorithm is equal to ALGORITHM II, with the only difference that

equation (3.5) and (3.6) are employed for the particle velocity update in step 3.

3.5. Swarm topologies

The population topology introduced with the original version of the PSO was the

fully connected sphere in Fig. 3.4a. The configuration of this graph shows that there is

only one neighborhood that comprises all the particles in the swarm, which are

influenced by a single global-best performer when updating their search direction. This

35

topology therefore converges rapidly towards a minimum which, however, has good

chances of being only a local one. Other topologies were introduced to overcome this

problem, and find different balances between the exploration and exploitation phase of

the search (Kennedy and Eberhart, 1997; Kennedy and Mendes, 2002; Mendes, 2004;

Mendes et al., 2004, 2003; Poli et al., 2007). Here by exploitation we intend the

convergence of the swarm toward a local minimum by sharing information among the

particles; while exploration entails free roaming of particles and groups of particles to

search for lower minima of the error surface. Some of these alternative topologies are

shown in Fig. 3.4b-g. The first alternative topology that was introduced is the ring

topology in Fig. 3.4b, where each particle has only two neighbors influencing its

movements. This entails that if a particle ends up in a good local minimum, it will take

time for particles on the opposite end of the ring to receive such information. These

particles will have more time to explore thoroughly there area of the error surface before

being influenced. The ring topology therefore favors exploration towards exploitation,

and results have shown that it outperforms the sphere when searching for the global

minimum (Kennedy, 1999). The number of neighbors in the ring-structure can be

increased to speed up convergence while maintaining a tendency for superior

exploration over the sphere, such as shown in Fig. 3.4c for a ring topology with 4

neighbors. Another alternative topology which has been introduced early on is the wheel

in Fig. 3.4d, where one particle is connected to all the swarm while the remaining

particles cannot communicate between them. In Fig. 3.4e a topology made of four

interconnected clusters is depicted. In this arrangement, sharing of information is

immediate within each cluster, while communications between different clusters is

36

granted by connector particles. Other configurations are multi-dimensional lattices (Fig.

3.4f), or resemble 3-D shapes, such as the pyramid of Fig. 3.4f, or the Von Neumann

geometry in Fig. 3.4g. The latter one, in which particles are connected to neighbors

above, below and on each side of a bi-dimensional lattice, has shown very promising

results on a test-bed of well-known functions for nonlinear optimization (Kennedy and

Mendes, 2002).

 Figure 3.4. Example of swarm topologies: (a) sphere; (b) ring with 2 neighbors; (c) ring with 4

neighbors; (d) wheel; (e) topology with 4 clusters and connectors; (f) bi-dimensional lattice; (g)

pyramid; (h) Von Neumann topology.

37

The implementation of different topologies can be done through binary square

adjacency matrices in which a 1 defines an existing connection between 2 particles. In

Fig. 3.5 a random topology with 6 particles is shown for reference. The ones along the

matrix diagonal indicate that the neighborhood of each particle in this topology also

includes the particle historical personal best. Since neighborhood relationships are

assumed to be reciprocal, the connections between particles are depicted as non-

directional, and the resulting adjacency matrix is symmetric. However, in the context of

fully informed swarms, it has been pointed out that successful particles can benefit from

removing links with the least performing ones in their neighborhood, thus limiting the

flow of misguiding information (Mendes, 2004). In this case the matrix representing the

topology is asymmetric.

 Figure 3.5. Matricial encoding of a swarm topology with reciprocal connections.

3.6. Binary-coded Swarm Optimization: the BFIPS algorithm

A paradigm for discrete Binary-coded PSO (BPSO) was devised by Kennedy

and Eberhart (1997) shortly after the introduction of the original real-coded PSO. In the

BPSO algorithm the trajectories represent changes in the probability that a particular

coordinate (bit) will take on a value of zero or one. Although the particle positions are

38

now binary strings, the equation for velocity update remains unchanged. Particle

velocities are still vectors of real values which, in order to express a probability, are

constrained in the continuous range [0 1] using a logistic transformation. If

 is larger than a uniform random number drawn between 0 and 1, the j-th bit of

the position array of the i-th particle is set to 1; is set to 0 otherwise. The discrete

Binary-coded version of the FIPS (BFIPS) is thus obtained by substituting this rule to

the equation employed for particle position update in (3.2), while still employing

equations (3.5) and (3.6) to perform the velocity update.

According to the binary update rule, a digit in the j-th dimension can

theoretically change unless is either equal to or , for which will have a

fixed value of 0 or 1, respectively. This implies that the choice of and

regulates the possibility of further exploration when approaching convergence. Contrary

to what happens in real-coded swarm optimization, the logistic transformation in

discrete swarms entails that narrow ranges will allow for more exploration

across the error surface. This range is usually set to [-6, +6] which limits the

probabilities between 0.0025 and 0.9975, thus preventing the algorithm to stall

by always allowing for a minimum chance of discovery. To further foster diversity in

the BFIPS, a bit-flipping mutation operator is included after particle positions are

updated. This operator is implemented by first selecting m particles in the swarm with

uniform probability. A random uniform number between 0 and 1 is then drawn for each

bit of each particle, and the bit is flipped if this number is lower than a preselected scalar

known as the mutation rate μ, μ [0 1]. The complete BFIPS optimization algorithm

can be thus summarized as follows:

39

ALGORITHM III. Binary-coded Fully Informed Particle Swarm (BFIPS)

1. Randomly initialize particle positions, best positions, velocities, and

fitness values.

2. Loop for t = 2 up to a maximum number of iterations.

3. Update particle velocities according to (3.5-3.6).

4. Constrain velocities with the logistic transformation.

5. Update particle positions based on particle velocities.

6. Compute particles fitness values for the new positions.

7. Compare fitness values at time t with those at time t-1. Update personal

bests where needed.

8. Select m particles and perform bit-flipping mutation with mutation rate μ.

9. If additional termination criteria are met, exit the loop.

10. Return to step 2.

3.7. Multi-objective Swarm Optimization: the MOFIPS and MBFIPS

algorithms

3.7.1. Pareto-based multi-objective optimization

In Multi-objective Optimization (MO) problems, several conflicting objective

functions have to be minimized concurrently (Deb, 2009). The most common strategy

employed to solve MO problems is that of Pareto-optimality (Gill et al., 2006; Reddy

and Kumar, 2009). Due to the existence of multiple objective functions, the final

outcome returned by a Pareto-based algorithm is not a unique solution, but a set of

equally good candidates presenting different trade-offs with respect to the objectives.

These solutions are said to be non-dominated, or Pareto-efficient, meaning that there is

no other candidate showing simultaneously a higher fitness value in all the objective

functions defining the problem. When plotting the values of the objective functions

against each other, the set of non-dominated solutions describe a frontier known as the

40

Pareto-front, which is displayed in Fig. 3.6 for a bi-objective problem. The MO

algorithm returns an approximation of the optimal, or true, Pareto-front, which generally

cannot be analytically determined from the problem at hand, and is known only for a

restricted number of case-studies usually employed as test functions for MO techniques.

A successful MO algorithm should return a large set of solutions which are close to the

true Pareto-front, and equally distributed along the frontier. MO generalizations of the

PSO (MOPSO) algorithm usually implement the Pareto-based approach by maintaining

a set of non-dominated particle positions with respect to the swarm, known as leading or

guiding particles (Coello Coello and Reyes-Sierra, 2006). The positions of these

particles are stored separately for reference, and the archive is updated constantly by

including new non-dominated solutions, and excluding those which end up being

dominated after each optimization step. When the archive grows too big, clustering and

trimming operations are carried out to retain those representative solutions offering the

most uniform spread along the Pareto-front. The other particles in the swarm can access

the archive and direct their search by picking up appropriate leaders through a variety of

selection schemes.

 Figure 3.6. Pareto-front of bi-objective optimization problem.

41

3.7.2. The MOFIPS algorithm

The FIPS paradigm lends itself well for a generalization over multiple objective

functions. For the purposes of this thesis work, a novel Multi-objective FIPS (MOFIPS)

is introduced based on the alternative FIPS formulation in (3.5-3.6). In MOFIPS,

the leading particles constituting the Pareto-front are added to all the neighborhoods in

the original swarm topology instead of being stored separately in an archive. This is

shown in Fig. 3.7 for the augmented topology of a swarm with four particles and one

leader L. The directed connections originating from L indicate that the particles in the

Pareto-front are not subjected to the influence of the other particles, therefore they will

not move during the optimization step and their velocity is set to zero. Leading particles

are simply instances of the non-dominated positions found during the search, acting as

guides, or centers of attraction, for the entire swarm.

 Figure 3.7. Matricial encoding of a MOFIPS swarm topology with one leader.

The Pareto-front is updated at each iteration by including new non-dominated

positions until a maximum size M of the front is reached. After this maximum is reached,

the update is be carried out by taking into account the crowding distance associated with

each non-dominated position. The crowding distance is a measure of the density of non-

dominated positions in a certain area of the objective function space. It has been firstly

42

introduced as part of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to

foster diversity among possible solutions (Deb et al., 2002). The MOFIPS promotes

diversity in the Pareto-optimal set by retaining only the M solutions with the highest

crowding distances, and discarding the others. To improve swarm convergence and

prevent local minima entrapment, a turbulence factor is introduced in the form of a

polynomial mutation operator (Deb and Deb, 2012; Deb, 2009). Subject to polynomial

mutation, the j-th coordinate of particle may change as follows:

 (3.7)

where is a uniform random number in the [0,1], and is a parameter that depends on

 and the parameter governing the shape of the polynomial probability distribution.

In particular, the value of is computed as

 (3.8)

This mutation operator can also be applied to all the particles in the Pareto-front. In this

case, the frontier is updated by considering the mutated Pareto-front solutions along

with the original ones and the updated particle positions . The MOFIPS algorithm

here described requires the specification of three more parameters with respect to the

single-objective version presented in Section 3.4.1. These parameters are: 1) the

maximum number M of particles in the Pareto-front; 2) the percentage of particles

coordinates subjected to turbulence; and 3) the shape parameter controlling the

probability distribution of the polynomial operator. The pseudo-code for MOFIPS

implementation can be written as follows:

43

ALGORITHM IV. Multi-Objective Fully Informed Particle Swarm (MOFIPS)

1. Initialize particle positions, best positions, velocities, fitness values,

and starting Pareto-front.

2. Loop for t = 2 up to a maximum number of iterations.

3. Include Pareto-front positions in all particles neighborhoods.

4. Update particle velocities according to (3.5-3.6).

5. Update particle positions according to (3.2).

6. Compute particles fitness values for the new positions.

7. Compare particles fitness values at time t with those at time t-1 according

to non-dominance criterion. Update personal bests where needed.

8. Mutate particles particle according to and (3.7 – 3.8).

9. Mutate all the solutions in the Pareto-front as in point 8.

10. Update Pareto-front by considering new particles bests and mutated Pareto-

front positions.

11. If needed, remove exceeding non-dominated solutions according to their

crowding distance.

12. If additional termination criteria are met, exit the loop.

13. Return to step 2

3.7.3. MOFIPS performances on benchmark tests

MOFIPS performances were assessed on the benchmark functions employed by

Deb et al. (2002) to test the NSGA-II algorithm, which is arguably the most widely used

MO Evolutionary Algorithm (MOEA). In their work, the authors compare the real and

binary-coded version of the NSGA-II against two other common MOEAs, namely the

Pareto-Archived Evolution Strategy (PAES) (Knowles and Corne, 1999) and the

Strength Pareto-Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 1999). The

comparison is carried out on a set of both unconstrained test problems for which the

Pareto-optimal set is known. In particular, the MOFIPS algorithm was tested for the

SCH, FON, ZDT1, ZDT2, ZDT3 and ZDT6 mathematical problems, which are reported

44

in APPENDIX A for reference. The performances were estimated using the same two

performance measures employed in Deb et al. (2002), which are particularly effective in

directly evaluating both the convergence to a known Pareto-optimal set, and the spread

across the solutions returned by the algorithm. These two measures are the the

convergence metric , and the diversity metric . A value of zero of entails perfect

convergence of the algorithm solutions to a chosen subset of points in the optimal

Pareto-front. Accordingly, a zero value for the diversity metric will identify that a set

of solutions spans uniformly the entire Pareto-front, including the extremes. The reader

is referred to the original NSGA-II paper for information on how these two metrics are

actually computed. For fair comparison with the results reported in the study, the same

maximum of 25,000 function evaluations is set as the termination criterion for the

MOFIPS simulation runs. In Tables 3.1 and 3.2, the mean and variance of the two

performance measures are reported for NSGA-II, SPEA and PAES as featured in the

work of Deb et al., (2002). The statistics for 20 runs of a successful MOFIPS

configuration are also displayed for comparison. The configuration represents a ring-

structured swarm with 20 particles, two neighbors per particle, a maximum size of the

Pareto-front M of 20 particles, with turbulence parameters and of 0.2 and 20,

respectively. From the analysis of the results in the tables, it can be seen that MOFIPS

compares extremely well against all the MOEAs. The MOFIPS consistently

outperforms every other algorithm in terms of the diversity metric Δ for each of the

benchmark problems. Significant improvements are not only recorded with respect to

the less performing PAES and SPEA, but also with respect to both versions of the

NSGA-II. Results are also very promising when the convergence metric is considered.

45

The MOFIPS shows best convergence in half of the benchmarks problems (FON, ZDT3

and ZDT6), with PAES coming first once (SCH), and the binary version of the NSGA-II

twice (ZDT1 and ZDT2). In addition, the MOFIPS appears to be the most balanced

among all the algorithms, showing good performances for all benchmarks.

TABLE 3.1. MEAN (FIRST ROW) AND VARIANCE (SECOND ROW) OF THE CONVERGENCE METRIC

(IN BOLD THE BEST VALUE RECORDED FOR EACH TEST PROBLEM)

SCH FON ZDT1 ZDT2 ZDT3 ZDT6

NSGA-II 0.003391 0.001931 0.033482 0.072391 0.114500 0.296564

 0.000000 0.000000 0.004750 0.031689 0.007940 0.013100

NSGA-II (binary) 0.002833 0.002571 0.000894 0.000824 0.043411 7.806798

 0.000001 0.000000 0.000000 0.000000 0.000042 0.001667

SPEA
0.003403 0.125692 0.001799 0.001339 0.047517 0.221138

0.000000 0.000038 0.000001 0.000000 0.000047 0.000449

PAES
0.001313 0.151263 0.082085 1.126276 0.023872 0.085469

0.000003 0.000905 0.008679 0.036877 0.000010 0.006664

MOFIPS
0.003167 0.001055 0.003840 0.002237 0.003925 0.011751

0.000000 0.000000 0.000002 0.000001 0.000000 0.000818

TABLE 3.2. MEAN (FIRST ROW) AND VARIANCE (SECOND ROW) OF THE DIVERSITY METRIC

(IN BOLD THE BEST VALUE RECORDED FOR EACH TEST PROBLEM)

SCH FON ZDT1 ZDT2 ZDT3 ZDT6

NSGA-II 0.477899 0.378065 0.390307 0.430776 0.738540 0.668025

 0.003471 0.000639 0.001876 0.004721 0.019706 0.009923

NSGA-II (binary) 0.449265 0.395131 0.463292 0.435112 0.575606 0.644477

 0.002062 0.001314 0.041622 0.024607 0.005078 0.035042

SPEA
1.021110 0.792352 0.784525 0.755148 0.672938 0.849389

0.004372 0.005546 0.004440 0.004521 0.003587 0.002713

PAES
1.063288 1.162528 1.229794 1.165942 0.789920 1.153052

0.002868 0.008945 0.004839 0.007682 0.001653 0.003916

MOFIPS
0.254751 0.373575 0.382408 0.375675 0.498458 0.432655

0.003146 0.006032 0.004072 0.004741 0.002196 0.050052

3.7.4. The MBFIPS algorithm

A binary-coded variant of MO Swarm Optimization can be obtained by merging

the MOFIPS algorithm with the BFIPS algorithm presented in Section 3.6. This is done

46

by employing the binary rule of the BFIPS instead of (3.2) for updating particle

positions. In the same way, MOFIPS polynomial mutation is substituted with the bit-

flipping mutation operator of the BFIPS. The generalization to the MO case is granted

by adopting the mechanism of the MOFIPS for 1) selecting leading particles via the

Pareto-based non-dominance criterion; 2) adding leaders to particles neighborhoods to

form augmented topologies; and 3) discarding exceeding non-dominated solutions

according to their crowding distance. These adaptations lead to the Multi-objective

Binary-coded Fully Informed Particle Swarm (MBFIPS) optimization algorithm, which

can be summarized as follows:

ALGORITHM V. Multi-objective Binary-code Fully Informed Particle Swarm (MBFIPS)

1. Initialize particle positions, best positions, velocities, fitness values,

and starting Pareto-front.

2. Loop for t = 2 up to a maximum number of iterations.

3. Include Pareto-front positions in all particles neighborhoods.

4. Update particle velocities according to (3.5-3.6).

5. Constrain velocities with the logistic transformation.

6. Update particle positions based on particle velocities.

7. Compute particles fitness values for the new positions.

8. Compare particles fitness values at time t with those at time t-1 according

to non-dominance criterion. Update personal bests where needed.

9. Select m particles and perform bit-flipping mutation with mutation rate μ.

10. Mutate all the solutions in the Pareto-front as in point 9.

11. Update Pareto-front by considering new particles bests and mutated Pareto-

front positions.

12. If needed, remove exceeding non-dominated solutions according to their

crowding distance.

13. If additional termination criteria are met, exit the loop.

14. Return to step 2

PART III. APPLICATIONS

47

4. Training NNRF models with MOFIPS

In this first application, swarm optimization algorithms are employed to develop

ANN-based NNRF models with better generalization performances than those

developed using gradient-based search algorithms. This is done by addressing the cross-

validation scheme commonly employed for ANN training (see Section 2.1.5) as a true

multi-objective problem. In particular, the calibration dataset is split into two subsets,

and the MOFIPS algorithm is employed to tune ANN parameters by concurrently

minimizing the residuals on both subsets. The results for the prediction of daily

streamflow discharges of the Shenandoah River (US) show that MOFIPS-trained NNRF

outperform those developed using standard PSO, as well as advanced gradient-based

optimization techniques.

4.1. Introduction

Although extremely fast, even the most advanced local search methods such as

the LM algorithm (see Section 2.1.4) are prone to being trapped in local minima,

especially in complex problems with a rough error surface and many local optima. This

is the main reason why GO algorithms have been tested as alternatives for the

development of NNRF models (Maier et al., 2010). Although there exists many

applications concerning the use of GA for developing NNRF solutions (Abrahart et al.,

1999; Chen and Chang, 2009; Corzo and Solomatine, 2007a, 2007b; Jain and

Srinivasulu, 2004; Sedki et al., 2009), only few examples regarding the use of swarm

optimization are available in the literature, presenting results which are limited and

somewhat contradictory. Chau (2007, 2006) employed PSO-trained SLFNs for real-time

48

prediction of the water stage in the Shing Mun River, Hong Kong. The results showed

that tuning the ANN parameters using the PSO resulted in more accurate NNRF models

than those obtained via standard back-propagation or the LM algorithm. In addition, the

author proposed the combination of PSO and LM in a split step approach (Chau, 2007).

This paradigm combines the advantages of global search capability of PSO algorithm in

the first step, and local fast convergence of the LM algorithm in the second step. The

mixed approach was able to attain a higher accuracy than the two algorithms on their

own. Although these initial studies suggested that the PSO is able to perform better

model parameters calibration compared to local search techniques, the opposite

conclusions were drawn by Piotrowski and Napiorkowski (2011) for a case study

involving streamflow discharge forecasting in the Annapolis River catchment, Nova

Scotia (Canada). In their work, the authors show that LM training yielded more accurate

FNN models in much less time with respect to several global optimization techniques,

including two advanced variants of the PSO which are known to outperform the

standard version of the algorithm on benchmark tests. The authors therefore strongly

advocate for the use of local search techniques to develop NNRF models by means of

differentiable objective functions, as long as a multi-start approach is implemented to

reduce the chances of getting stuck in poor minima.

Due to the limited number of reported applications, this first study is an attempt

to shed a light on the real effectiveness of swarm optimization techniques for calibrating

the synaptic weights and biases of NNRF models. In particular, we focus on how

generalization is ensured in PSO-trained neural networks, an aspect which has been

overlooked so far, and that could possibly explain the poorer performances of swarm

49

optimization in some applications. In the aforementioned studies, the cross-validation

approach was employed to prevent the PSO-trained NNRF models from overfitting and

improve their generalization capability on a validation dataset (see Section 2.1.5). This

scheme is implemented by allowing particle position updates only if fitness

improvements are concurrently recorded on both the training and the validation dataset

(Piotrowski and Napiorkowski, 2011), in similarity with early stopping. We argue that

this approach is wrong in two respects. In the first place, it is entirely possible for a

particle to move to a location characterized by better generalization while temporarily

underperforming on the validation dataset. This can be easily seen by running the PSO

to minimize only the training errors while recording the evolution of the validation

performances at the same time, as done in Fig. 4.1 for a given particle in a trial

experiment. The figure shows how the validation error decreases in the long run

although it goes up several times during the optimization process. Therefore, it is likely

that preventing those trajectories resulting in temporary deterioration of validation

performances might severely hinder the optimization process, especially in the early

stages. Most importantly, unlike stopped training, there is no effective difference in how

the training and the validation datasets are used in PSO-ANN calibration. Indeed, since

the acceptance rule for particle position update employs the objective functions defined

on both datasets, the implementation of cross-validated training should be addressed as a

multi-objective (MO) optimization problem. The main goal of this first application is

thus to employ the MOFIPS algorithm to calibrate NNRF models by concurrently

minimizing the error on the training and validation datasets according to the Pareto

dominance criterion. The effectiveness of this approach is tested for the prediction of

50

future streamflow discharges in the North Fork of the Shenandoah River, Virginia (US).

The MOFIPS-trained NNRF are compared with those developed using standard cross-

validation in conjunction with five other algorithms, comprising the canonical PSO (see

Section 3.3), as well as four advanced gradient-based optimization techniques. These are

the Scaled Conjugate Gradient (SCG), the Conjugate Gradient with Fletcher-Reeves

updates (CGF), the Conjugate Gradient with Polak-Ribiére updates (CGP), and the LM

algorithm (Adamowski and Karapataki, 2010; Chen and Chang, 2009; Hamed et al.,

2004).

 Figure 4.1. Training and validation errors in non-cross-validated PSO-ANN training.

4.2. Case Study

The Shenandoah River is a flood-prone river in Virginia, US, and is the principal

tributary of the Potomac River. The Shenandoah River is originated by the confluence

of two tributaries, the South Fork and the North Fork, which join their courses northeast

of the city of Front Royal in Warren County (Fig. 4.2). In this work we are concerned

0 20 40 60 80 100

Er
ro

r

Iteration

training

validation

51

with 1-day ahead forecasting of river discharge in the North Fork of the Shenandoah

river, a fifth order stream of 169 kilometers that drains an area of around 6930 square

kilometers of north eastern Virginia. Daily river discharge observations are available

from a gauging station in Strasburg, while daily precipitation data are collected from a

meteorological station in Waterloo sited around 35 kilometers upstream from the

gauging station. Around 9,000 observations of river discharge and rainfall were

retrieved from the US Geological Survey database, ranging from May 1985 to the end of

December 2009. A sample of the recorded times series is given in Fig. 4.3.

 Figure 4.2. Location of the Shenandoah River.

52

4.3. Input and model selection

The original time series are initially pre-processed to remove outliers and form

additional inputs formed by means of aggregating operators. In particular, 3-days and 7-

days moving average of flow observations, as well as 3-days and 7-days cumulated

precipitation are employed to form a total of 6 input variables. Lagged time series up to

3 days were considered so that the total set of inputs comprises a total of 18 potential

candidates. The input and output variables are rescaled in the [-1,1] range to facilitate

ANN training, and the dataset is then split into a training (40% of available dates), a

validation (40% of available dates), and a test dataset (20% of available dates). A

constructive forward selection (CFS) scheme (Maier et al., 2010; May et al., 2011) is

then implemented to select the optimal number of hidden neurons of the SLFNs, as well

as the optimal combination of inputs among all candidates. The CFS entails an

incremental trial-and-error strategy where an initial ANN with minimal complexity is

trained n times separately, each time having only one of the n candidate variables as the

sole input. The most significant input is chosen according to an optimality criterion, and

the search continues by looking for the next input among the remaining n - 1 candidates

to add to the model. This procedure is repeated iteratively until the inclusion of further

inputs does not yield any improvement of the optimality criterion. When this event

occurs, the SLFN is first augmented with an additional neuron to its hidden layer, and

the search for new inputs is resumed from where it had stopped. The search continues if

adding a new input to the augmented model results in improved performances,

otherwise the CFS process is terminated and the model obtained at the previous step is

returned. To improve the reliability of the CFS scheme, the optimality criterion is

53

chosen as the median value of the validation Root Mean Square Error (RMSE, see

Appendix B) obtained by training each SLFN model with 100 restarts. Due to the

computational effort needed to perform the CFS, the SLFNs are trained using the LM

method, which is the fastest training technique considered in this work. The results

obtained for the LM are then extended to the cases where the other algorithms are

employed. The optimal model returned by the CFS scheme has 6 hidden neurons and 5

input variables, namely the streamflow discharges up to three days ahead (t-1, t-2, t-3),

the rainfall measured the previous day (t-1), and the 3-days cumulated rainfall computed

at time t-3. The total number of weights (including ANN biases) in the optimal model is

43.

 Figure 4.3. Sample of recorded total precipitation and streamflow discharge.

0

50

100

150

200

250

300 0

50

100

150

200

250

300

D
ai

ly
 p

re
ci

p
it

at
io

n
 (m

m
)

St
re

am
fl

o
w

 D
is

ch
ar

ge
 (m

3 /
s)

54

4.4. Comparison of PSO and MOFIPS performances

A first batch of experiments are run to check whether addressing cross-validated

ANN training as a MO problem results in improved performances of the NNRF model.

This is done by training the optimal model architecture returned by the CFS with both

cross-validated single-objective canonical PSO, as well as with the MOFIPS algorithm.

4.4.1. Experimental setup

The comparison is carried out using four different particle arrangements in order

to assess the impact of different topologies on the quality of the developed NNRF

models. The employed topologies are made of 30 particles which are disposed to form 1)

a sphere with 30 neighbors, 2) a ring of 30 particles with 2 neighbors each, 3) a

clustered arrangement with 5 niches of 6 particles each, and 4) a 6-by-5 bi-dimensional

lattice. The reader is referred to Fig. 3.4 a, b, e, and f for a graphical representation of

these arrangements. The first topology was chosen since is the original one proposed for

the PSO algorithm, while the remaining three are known to be valid alternatives when

the FIPS paradigm is employed (Mendes et al., 2004). For the MOFIPS case, these

topologies are tested with or without including each particle in its own neighborhood.

These cases are respectively identified as MOFIPS-w and MOFIPS-wo for the

remaining of the discussion. The maximum number M of Pareto-front particles and the

parameter controlling the turbulence probability distribution are set to 30, while the

percentage of particle dimensions subjected to turbulence is set to

 . Each PSO/MOFIPS case is run a total of 20 times for

1,000 iterations, and a distribution of the performances on each dataset is obtained by

55

extracting the best performing particle of each run. All the experiments are run using the

Matlab® computing environment and programming language.

4.4.2. Selection of optimal solutions

The best performing solution for each PSO run is obtained by selecting the

particle with the best validation performances. On the other hand, a strategy has to be

developed to select a solution from the Pareto-front returned by each MOFIPS run. Each

solution in the Pareto-front is by definition equally efficient with respect to the

objectives, however the solution at extremes of the frontier are more likely to over-fit

one of the two datasets. Although more sophisticated selection schemes could be

implemented, in this work the optimal solution of each MOFIPS run was chosen as the

one located at the knee of the Pareto-front (Branke et al., 2004), i.e. that solution along

the frontier after which a small improvement in one objective leads to a large

deterioration in the other (Fig. 4.4).

 Figure 4.4. Selection of MOFIPS optimal solution.

56

4.4.3. Results and discussion

The statistical comparison of PSO and MOFIPS performances is reported in

Table 4.1 for each employed topology in terms of the Nash-Sutcliffe Coefficient of

Efficiency (CE, see Appendix B). Other goodness-of-fit measures were employed for

the comparison, but these results were not reported since they do not provide further

insights to the analysis. From a first glance at Table 4.1, it appears that the NNRF

models trained with the MOFIPS algorithm clearly outperform than those obtained with

standard PSO. With exception of one topology, the median values of the CE are around

5% higher on the training and validation datasets, and over 11% higher on the test

dataset. These figures suggest that the multi-objective approach develops NNRF models

with better generalization capability. The analysis of the results for each topology shows

that the efficiency of both PSO and MOFIPS depends on the adopted swarm

arrangement. In particular, the PSO seems to be more efficient when the ball topology is

employed. This could be attributed to the higher convergence speed provided by this

arrangement under the PSO framework with respect to the other topologies. On the

other hand, the excessive flow of information among neighbors penalizes the ball

topology for both the MOFIPS cases. These results are consistent with those obtained by

comparing the PSO and FIPS algorithms on benchmark trials (Mendes et al., 2004),

although the MOFIPS employs an alternative formulation of the fully informed velocity

update (see Section 3.4.1). All the other candidate topologies are more or less successful,

and there are no significant differences between the MOFIPS-w and MOFIPS-wo cases.

However, the MOFIPS-wo lattice combination is arguably the one providing the best

results overall, with the MOFIPS-wo clustered geometry coming a close second.

57

4.5. Comparison of MOFIPS and gradient-based algorithms

performances

After assessing the superiority of the MOFIPS parading over canonical cross-

validated PSO for NNRF development, a second batch of experiments is carried out to

assess how the proposed MO approach compares against four of the most advanced

local search algorithms, i.e. the SCG, CGF, CGP and LM.

4.5.1. Experimental setup

The four gradient-based algorithms are implemented in MATLAB® using the

Neural Network Toolbox®. In addition, the setup of the parameters for each method is

chosen based on the suggestions provided along with the employed computing suite. In

each case, standard cross-validation (see Section 2.1.5) is employed for improving

model generalization, while 100 restarts are used to prevent poor minima entrapment.

The best NNRF models developed using each algorithm are selected from the 100

restarts as the ones with the lowest validation error.

4.5.2. Results and discussion

Table 4.2 presents the performances of the NNRF models for the prediction of

the Shenandoah River streamflow discharges. The results are given in terms of CE,

RMSE, and the ratio of the RMSE to the standard deviation (RMSE/STDEV). The

second column of Table 4.2 reports the overall computational time needed by each

58

TABLE 4.1. PERFORMANCE COMPARISON OF PSO- AND MOFIPS-TRAINED NNRF MODELS

TRAINING VALIDATION TEST

 Coefficient of Efficiency Coefficient of Efficiency Coefficient of Efficiency

 BEST WORST MEDIAN MEAN STDEV BEST WORST MEDIAN MEAN STDEV BEST WORST MEDIAN MEAN STDEV

PSO

ball 0.791 0.666 0.757 0.75 0.033 0.788 0.663 0.777 0.767 0.032 0.722 0.432 0.663 0.649 0.068

ring 0.768 0.633 0.728 0.725 0.034 0.787 0.648 0.741 0.737 0.032 0.697 0.432 0.615 0.61 0.066

lattice 0.785 0.704 0.746 0.744 0.021 0.784 0.724 0.753 0.753 0.018 0.714 0.531 0.637 0.629 0.045

clustered 0.778 0.696 0.749 0.746 0.023 0.793 0.697 0.764 0.758 0.025 0.719 0.526 0.646 0.633 0.047

MOFIPS-w

ball 0.771 -0.025 0.753 0.714 0.174 0.772 -0.001 0.757 0.719 0.17 0.678 -0.008 0.634 0.604 0.145

ring 0.805 0.754 0.784 0.783 0.012 0.792 0.765 0.782 0.781 0.008 0.741 0.662 0.704 0.704 0.021

lattice 0.802 -0.029 0.783 0.743 0.182 0.795 -0.001 0.782 0.743 0.175 0.734 -0.004 0.708 0.67 0.16

clustered 0.795 0.761 0.784 0.781 0.011 0.793 0.768 0.782 0.782 0.006 0.73 0.655 0.697 0.696 0.021

MOFIPS-wo

ball 0.773 -0.022 0.753 0.716 0.174 0.779 -0.003 0.755 0.719 0.17 0.678 -0.004 0.637 0.607 0.146

ring 0.79 0.748 0.777 0.775 0.011 0.794 0.754 0.78 0.779 0.01 0.732 0.629 0.686 0.688 0.027

lattice 0.802 0.752 0.787 0.782 0.015 0.793 0.757 0.784 0.779 0.01 0.732 0.609 0.717 0.702 0.033

clustered 0.803 0.762 0.786 0.784 0.012 0.798 0.76 0.78 0.781 0.009 0.731 0.645 0.71 0.699 0.028

59

algorithm to perform all the restarts. It can be seen that the model obtained with the LM

algorithm outperforms those obtained with the remaining local search methods for each

dataset, except for the CGF-trained ANN that shows basically the same performances on

the test dataset. Nonetheless, while the LM is the fastest algorithm, the CGF is the

slowest and it needs a much longer computational time to develop a NNRF model with

similar accuracy. The superiority of the LM over conjugate gradient methods was also

reported in other studies (Adamowski and Karapataki, 2010; Hamed et al., 2004). The

last row of Table 4.2 shows the performances of a MOFIPS run for comparison. The

results pertain to a model obtained with the MOFIPS-wo lattice configuration, after the

algorithm was left to run for 4,000 iterations to ensure convergence. The optimal

MOFIPS solution was selected according to the scheme presented in Section 4.4.2.

From the analysis of the results it emerges that the MOFIPS algorithm compares well

against the gradient-based methods both in terms of overall run-time and model

accuracy. Although slower than the LM, the MOFIPS is able to provide the NNRF with

best generalization ability in one-third to one-half of the time required by the conjugate

gradient algorithms to perform 100 restarts. The improvements provided by the

MOFIPS on the test dataset range from a minimum of 2% for the LM to a maximum of

10% for the CGP, which is the worst performing algorithm. More insights on the

relative NNRF performances can be obtained through a visual inspection of the

reconstructed hydrographs, as done in Fig. 4.5 for a sample of the training dataset. It can

be seen that the NNRF model obtained by the MOFIPS and the LM tend to better

approximate the peaks in streamflow discharge due to rainfall. On the other hand, all the

models seem to perform equally well in predicting the falling limbs of the hydrographs

60

after a storm event. The CGP-trained model seems to suffer from timing errors in

predicting the streamflow peaks. This is more likely to happen when there is an

excessive imbalance in the relative importance of past streamflow input features over

rainfall ones, suggesting that 100 restarts were not sufficient for the CPG algorithm to

escape poor minima.

TABLE 4.2. PERFORMANCE COMPARISON OF GRADIENT-BASED AND MOFIPS-TRAINED NNRF MODELS

TRAINING

ALGORITHM

TIME

(s)

RMSE (m
3
/s) RMSE/STDEV CE

training validation test training validation test training validation test

LM 541 12.283 12.917 9.091 0.418 0.475 0.520 0.810 0.800 0.729

SCG 2344 12.919 13.26 9.316 0.440 0.488 0.533 0.790 0.789 0.716

CGP 2387 14.233 13.789 9.989 0.484 0.507 0.572 0.745 0.772 0.673

CGF 3075 12.865 13.138 9.145 0.438 0.483 0.523 0.792 0.793 0.726

MOFIPS 956 12.232 13.147 8.822 0.416 0.484 0.505 0.812 0.793 0.745

 Figure 4.5. Comparison of model predictions.

0

20

40

60

80

100

120

St
re

am
fl

o
w

 d
is

ch
ar

ge
 (

m
3
/s

)

observed data
MOFIPS
SCG
LM
CGP
CGF

61

4.6. Conclusions

In this study we proposed a multi-objective (MO) approach for cross-validated

swarm optimization training of ANN to be used for streamflow forecasting purposes.

The rationale justifying the use of this paradigm lies in the consideration that developing

cross-validated NNRF models with single-objective PSO hinders the optimization

process performed by the swarm by penalizing the exploratory behavior of the algorithm.

In addition, the specification of two different objective functions in the acceptance rule

for particle position update renders the optimization problem intrinsically multi-

objective, thus it should be treated as such. Indeed, the experiments run for Shenandoah

River watershed demonstrated that the MO approach implemented using the MOFIPS

algorithm provides more accurate NNRF models with respect to canonical PSO. In

addition, the NNRF model produced by the MOFIPS algorithm is found to outperform

those built with the SCG, CGF, CGP and LM methods. With the exclusion of the LM,

such improvements are obtained with a significant reduction in the computational costs,

especially in comparison to the slower methods of the conjugate gradient family.

Although further research is needed to thoroughly assess the effectiveness of the

proposed MO training scheme for NNRF development, the findings of this work are

certainly encouraging with respect to some results remarking the inferiority of single-

objective swarm optimization (Piotrowski and Napiorkowski, 2011).

62

5. NNRF interval forecasting using the Lower Upper

Bound Estimation (LUBE) method and MOFIPS

In the previous Chapter it was shown how the MOFIPS algorithm can be

employed to improve the performances of NNRF models developed for deterministic

predictions. This chapter demonstrates how MOFIPS can be used to facilitate the

estimation of accurate ANN-based Prediction Intervals (PIs), a major issue of NNRF

models which limits their use for operational streamflow forecasting. In particular, the

MOFIPS algorithm is used in conjunction with the Lower Upper Bound Estimation

(LUBE) method, a recent technique that is found to outperform traditional methods for

ANN-based PI estimation. The LUBE method construct ANNs with two output neurons

that directly approximate the lower and upper bounds of the PIs. The training is

performed by minimizing a Coverage Width-based Criterion (CWC), which is a

compound, highly nonlinear and discontinuous function. In this work, we test the

suitability of the MOFIPS-based LUBE approach in producing PIs at different

confidence levels (CL) for the 6-hours ahead streamflow discharges of the Susquehanna

and Nehalem Rivers, US. Due to the success of single-objective swarm optimization in

other LUBE engineering applications, the PSO and FIPS algorithms are employed for

comparison.

5.1. Introduction

Despite the number of successful applications reported in the scientific literature,

NNRF solutions still struggle to move from research grade to operational grade level

due to a number of unresolved issues that still need to be addressed. A major obstacle is

63

represented by the difficulties in estimating the uncertainty of the predicted values

produced by a NNRF model (Maier and Dandy, 2000). Indeed, the vast majority of

NNRF applications so far have been only concerned with providing deterministic

forecasts of the modeled hydrological variable, without estimating the degree of

confidence associated with them. This is peculiar since hydrological forecasts can be

employed for water resource management and natural hazards prevention only if a

measure of their reliability is attached to each predicted value (Krzysztofowicz, 2001).

The uncertainty characterizing NNRF point forecasts can be overcome by resorting to

interval forecasts, or prediction intervals (PIs). A PI is a range of values in which the

realization of a predicted random variable is expected to fall with a predefined coverage

probability, known as the confidence level (CL). The width of the interval conveys

information regarding the uncertainty of the forecast, so that for a given coverage

probability, narrower widths entail higher accuracy. PIs are similar to confidence

intervals (CIs), with the distinction that CIs are associated to the uncertainty in the

prediction of an unknown but fixed value, whereas PIs are assigned to a random variable

yet to be observed (De Gooijer and Hyndman, 2006). Since they also account for model

misspecification and noise variance, by definition PIs enclose CIs of corresponding CLs.

Although deterministic forecasts dominate the field of NNRF, there have been a few

noteworthy applications of PI-based streamflow forecasting. The preferred methods

involve the use of Bayesian Neural Networks (BNNs), resampling and ensemble

techniques, as well as experiments that involve fuzzy theory. BNNs (Khan and

Coulibaly, 2006; Kingston et al., 2005; Zhang et al., 2009) are able to return error bars

along with their predictions, and have strong probabilistic theory backing them up.

64

However, they require the computation of the Hessian matrix at each iteration, which in

turn causes singularity problems that may harm the quality of the PIs as well as heavy

computational costs. Bootstrapping and ensemble modeling (Dawson et al., 2002;

Sharma and Tiwari, 2009; Tiwari and Chatterjee, 2010) are also very time consuming as

the number of ANN models to be trained has to be large in order to avoid biased

estimates of total error variance. Computational costs can be abated with the use of

fuzzy-based techniques such as the Local Uncertainty Estimation Model (LUEM)

proposed by Shrestha and Solomatine (2006), which is based on fuzzy c-means

clustering; or the approach of Alvisi and Franchini (2011) that employs fuzzy ANNs.

Despite their differences, methods used in hydrology to estimate of ANN-based PIs

usually require complex implementations that may have prevented their widespread

application. Therefore, it is likely that resorting to less complicated, faster and yet

effective techniques may favor a shift from deterministic NNRF models to more reliable

solutions based on prediction intervals. Most importantly, all the aforementioned

techniques share a common methodological weakness since they build the PIs indirectly

from deterministic point predictions. Indeed, it would be more appropriate to generate

the PIs directly through a mechanism that that considers both coverage probability and

interval width criteria. This is the main premise that lead to the development of the

Lower Upper Bound Estimation (LUBE) method proposed by Khosravi et al. (2011) to

generate ANN-based PIs. This technique was found to outperform classic PIs

construction techniques such as the delta method, Bayesian methods, and bootstrapping

on both synthetic experiments as well as real world regression problems (Khosravi et al.,

2011a; Quan et al., 2014a, 2014b, 2014c). The LUBE method constructs an ANN with

65

two output neurons that directly approximate the lower and upper bounds of the PIs. The

training is performed by minimizing a coverage width-based criterion (CWC), which is

a compound PI-based objective function accounting for both coverage probability and

interval width. The CWC is a highly nonlinear and discontinuous function that requires

global optimization techniques for its minimization. In particular, the PSO algorithm has

proven very efficient in generating high quality PIs (Quan et al., 2014a). The main

objective of this study is to test the suitability of PSO-based LUBE as a straightforward

approach to predict streamflow discharges with uncertainty. This is done by producing

90%, 95% and 99% CL PIs for the 6 hours ahead streamflow discharge of the

Susquehanna and Nehalem rivers, US. In addition, this work will assess whether PSO-

based LUBE can benefit from a multi-objective formulation, as done here using the

MOFIPS algorithm. Since. as shown in Chapter 4. MOFIPS-trained NNRF models can

substantially outperform those developed using single-objective swarm optimization,

similar improvements could be expected for NNRF models producing interval based

predictions. This hypothesis is assessed by comparing the performances of MOFIPS-

based LUBE NNRF-models against those obtained with single-objective PSO and

single-objective FIPS optimization.

The remaining of this chapter is structured as follows: Section 5.2 will discuss

the LUBE method and how it is employed in conjunction with swarm-optimization

techniques. Section 5.3 will introduce the case studies and the datasets employed for the

application. Section 5.4 will discuss the results of the experiments and present a

thorough comparison of the LUBE PIs obtained with each of the considered swarm

optimization techniques. Conclusions are given at the end of the chapter.

66

 Figure 5.1. LUBE Neural Network model.

5.2. Estimation of ANN-based PIs with LUBE and swarm

optimization

5.2.1. Prediction intervals

Prediction intervals (PIs) are random intervals constructed from historical

observations that enclose a future observation within a certain range with a given

probability, known as the confidence level (CL). If and are the lower and upper

bounds delimiting the PI, and is the CL attached to it, for a future unknown

observation of the predicted variable we can write such that

 . Unlike deterministic forecasts, PIs carry information about the

accuracy of the prediction, a fundamental requirement for planning, risk assessment and

decision making. For valid PIs at a given confidence level, narrower intervals should of

course be preferred since they entail less uncertainty and convey more information.

Despite the superiority of PIs over point predictions, the latter constitute by far the most

67

common approach employed when forecasting water resource variables, especially

when data-driven methods are chosen as the modeling tool for the hydrological process.

5.2.2. The Lower Upper Bound Estimation method and PI evaluation indices

The Lower Upper Bound Estimation (LUBE) method is a straightforward and

efficient technique to produce high quality PIs for ANNs. The LUBE was found to

outperform classic PIs construction techniques such as the delta method, Bayesian

methods, and bootstrapping on both synthetic experiments as well as real world

regression problems (Khosravi et al., 2011a, 2011b; Quan et al., 2014a, 2014b, 2014c).

The LUBE method constructs an ANN with two output neurons that directly

approximate the lower and upper bounds of the PIs, as depicted in Fig. 5.1. Each actual

value of the predicted variable is enclosed in the interval between the two ANN outputs

with probability. This ANN is trained using historical observations of both

the predicted variable and a set of relevant inputs. The training is performed by

minimizing a Coverage Width-based Criterion (CWC), which is a compound PI-based

objective function that accounts for both coverage probability and interval width

(Khosravi et al., 2011a). The CWC is defined as a combination of two indices, namely

the Prediction Interval Coverage Probability (PICP) (Khosravi et al., 2010) and the

Prediction Interval Normalized Root-mean-square Width (PINRW) (Quan et al., 2014a).

The value of these indices, including the CWC, can also be expressed in terms of

percentages. PICP measures the percentage of target observations which are enclosed in

the intervals, and is defined as follows:

68

 (5.1)

where is the number of observations, is equal to one if the observation ,

and zero otherwise. The interval is the range of values delimited by the two

outputs produced by the ANN (Fig. 5.1). PINRW provides an estimate of the overall PI

width, and is defined as the ratio of the 2-norm of the width of the PIs to the range R of

the observed variable:

 (5.2)

The CWC cost function is a nonlinear combination of (5.1) and (5.2) defined as (Quan

et al., 2014a):

 (5.3)

where is set equal to 1 during model calibration, while it becomes a step

function of PIPC on test dataset

 (5.4)

The value of is forced to 1 during training in order to allow for the

construction of more conservative PIs and reduce the risk of violating the CL constraints

during test (Khosravi et al., 2011b). The parameters and are two constants used to

define the penalty term controlling the balance between coverage probability and width

of the developed PIs. The penalty term is needed to synthesize these two conflicting

objectives in a single-objective cost function. In particular, the CWC is designed so that

the optimization process will first search for valid PIs for which holds;

69

then the search is refined by gradually giving more importance to the PINRW term in

(5.3), so that narrower PIs are constructed. To ensure the calibration is carried out in this

way is set to , while literature suggests 80 as an appropriate value for (Quan

et al., 2014a). For a simpler assessment of the width of the developed PIs, the Prediction

Interval Normalized Average Width (PINAW) is usually employed instead of PINRW.

PINAW is defined as the ratio of the average width of the prediction intervals to the

range R of the observed variable:

5.2.3. PSO-based and FIPS-based LUBE for constructing streamflow PIs

In the following section the major steps regarding the construction PSO-based

LUBE streamflow forecasting models are be discussed according to the general version

of the method proposed by Quan et al. (2014b). Although the following steps refer to the

PSO algorithm, they are implemented likewise when the FIPS is employed.

Dataset creation

Provided the set of hydrological and meteorological inputs has been already

identified, all the input-output patterns are first normalized in the [-0.9,+0.9] range to

facilitate model training and avoid saturation of the ANN activation functions. The

whole dataset is then divided to form training and a test datasets.

Search for optimal PSO-LUBE model structure

70

The training dataset is further divided into k subsets to perform k-fold cross-

validation (see Section 2.1.5). This procedure is carried out in order to find an optimal

ANN structure that will prevent over-fitting and maximize performances. ANN models

of increasing complexity, i.e. increasing size of the hidden layer, are trained k times

using at each repetition a different subset for validation and the remaining k-1 subsets

for model training. The median of the k CWC indices computed for the validation

dataset is later used to select the optimal LUBE model.

Training with swarm optimization

The PSO method is used to train an ANN model for each considered model

structure and for each repetition entailed by the k-fold cross-validation procedure. The

algorithm is first initialized by setting the parameters governing its search, selecting the

number of particles in the swarm, and choosing the swarm topology. Particle position

and velocity arrays are also initialized before the optimization is started. Each position

occupied by the particles during the search process represents a different configuration

of synaptic weights and biases of the LUBE ANN model. Particle fitness values are

computed based on the CWC of the corresponding LUBE ANN model on the training

dataset (). The PSO looks for the position in the search space for which

 of the corresponding ANN configuration is the overall lowest.

Gaussian mutation operator

Due to the complexity of the CWC cost function, it is beneficial to include a

mutation operator to boost PSO search and facilitate local minima escape. In PSO-based

71

LUBE, Gaussian mutation is performed after each particle has moved to a new position

(Higashi and Iba, 2003; Quan et al., 2014a). If identifies the j-th component of the i-

th particle position array at time t, its new value after mutation will be

where is a random number from a Gaussian distribution with zero mean

and a standard deviation which in the original PSO-based LUBE is set to 10% of the

absolute value of . The effects of the mutation operator are also set to decrease

exponentially with time.

Training termination and model evaluation

The PSO training is stopped when a maximum number of iterations has been

reached, or when the algorithm stalls for a preset number of iterations. When the

algorithm exits, a LUBE ANN model is built from the particle with the highest fitness,

then the PIs of this model are estimated for the validation dataset and the relative value

of CWC () is computed. Once the for all the k subsets of the cross-

validation procedure have been obtained, the median value is computed and stored for

comparison with those of other model structures.

Selection of optimal model structure and PIs construction on the test dataset

When the cross-validated training procedure has been performed for all the

considered model structures, the optimal model structure is selected as the one with the

lowest median . The k trained instances of the optimal structure are then used as

72

an ensemble to build the final PIs for the test dataset by averaging their lower bounds

and the upper bounds outputs.

 Figure 5.2. Flowchart of the MOFIPS-based LUBE method.

73

5.2.4. The MOFIPS-based LUBE method

A LUBE technique based on MOFIPS is devised in similarity with the bi-

objective procedure employed for deterministic NNRFs presented in Chapter 4. The

flowchart in in Fig. 5.2 shows how MOFIPS-based LUBE is implemented, with

reference to ALGORITHM IV presented in Chapter 3. In MOFIPS-based LUBE the

dataset is first split to form separate training and a test datasets. The training dataset is in

turn divided in two complementary parts of similar length to create the two subsets of

the bi-objective problem. The MOFIPS algorithm is initialized by selecting its

parameters, defining the topology to use, and assigning random starting values to

particle positions and velocities. Initial PIs are estimated after using the starting particles

positions to build the LUBE models. The CWC values are then computed and the

starting Pareto-front is generated. If and denote the values of CWC for the

two training subsets, an example of the MOFIPS Pareto-front at a given iteration can be

illustrated as done in Fig. 5.3. After the initialization, the MOFIPS starts its iterative

process to search for better LUBE solutions. According to the MOFIPS paradigm, the

non-dominated positions of the Pareto-front are included in particles neighborhoods, and

particle velocities are computed based on this augmented set of neighbors. Particles then

fly to new positions according to their velocities, and the mutation operator is applied

after they have landed. The Pareto-front is then updated and if the updated frontier is

larger than a predefined maximum size, the set of solutions is trimmed down to this

maximum size by discarding the solutions with lowest crowding distance. The iterative

process is terminated either when a maximum number of iterations has been reached, or

74

when a desired fitness value has been obtained for both objective functions, or when the

Pareto-front has not been updated for a given number of consecutive iterations.

 Figure 5.3. Example of MOFIPS Pareto-front for LUBE model development.

5.2.5. Selecting optimal MOFIPS-based LUBE solutions

After the optimization process has been completed, an optimal solution has to be

extracted from the Pareto-front and employed to build streamflow PIs on the test dataset.

Theoretically, all the non-dominated solutions forming the final Pareto-front are equally

good with respect to the chosen CWC objective functions, meaning that none of them

outperforms the others on both parts of the training dataset (see Fig. 5.3). However,

practical optimal solutions can be identified based on the final goal of the application

that is obtaining high quality PIs for the test dataset. A first requirement is that the

selected solutions do not overfit either part of the training dataset. This can be

reasonably ensured by considering only those solutions which provide valid PIs on both

training subsets, thus respecting the constraint for a given confidence

75

level. On top of this, two different criteria based on the PICP and PINRW indices are

proposed to select respectively a Most Precautionary (MP) and a Narrowest Interval (NI)

solution. The MP solution is the point on the vs Pareto-front characterized

by highest PICP on the training datasets with respect to the medians. This solution is

most precautionary in the sense that having the largest coverage probability will

increase the odds of future unknown streamflow observations to fall within the PIs built

by the LUBE model (Khosravi et al., 2011b). We therefore expect the MP solution to

have higher chances of producing valid, although wider, PIs for the test dataset. Given a

Pareto-front made of m solutions, if and identify the PICP values of the

i-th solution on the two training subsets, the MP solution is chosen as

 (5.5)

where . The operator indicates that the MP solution is the member

of the Pareto-front maximizing the sum of the differences between the PICP values in

the two sets and the respective median values computed from all the points in the

frontier. On the other hand, the NI solution is the one generating valid PIs on the

training datasets having narrowest widths with respect to the medians. Similarly to (5.5),

the NI selecting criterion can be written as

 (5.6)

where and are the PINRW values of the i-th solution on the two

training subsets. This time the operator indicates that the solution is the point

minimizing the sum of the differences between the PINRW values in the two sets and

the respective median values computed from all the points in the frontier. Compared to

76

the MP solution, the NI solution should likely generate narrower PIs for the test dataset

although they might not satisfy the validity condition for the given confidence level. It is

important to note that the differences in (5.5) and (5.6) should be normalized with

respect to the respective medians if the distributions of the indices vary substantially

between the two subsets.

5.3. Case studies

5.3.1. The Susquehanna River

At around 750 km long and with a watershed of over 70,000 km
2
, the

Susquehanna River is one of the longest rivers in the United States, draining southern

New York State (NY), half of Pennsylvania State (PA) and emptying into the

Chesapeake Bay in Maryland. For this case study, streamflow discharges PIs with a lead

time of 6 hours are produced for the US Geological Survey (USGS) gauging station in

Meshoppen, PA, which monitors a catchment area of 22585 km
2
. The PIs at Meshoppen

are developed using a set of input variables observed at 5 other stations located

elsewhere in the area. In particular, hourly rainfall near the cities of Milan, Towanda,

Dushore and Montrose, as well as previous hourly streamflow discharges in Towanda

are employed. Details regarding these stations are reported in Table 5.1 for reference.

Five additional aggregated time series were added to the working dataset by including 6-

hours cumulated precipitation (SUM6) at each rainfall station as well as 6-hours moving

average streamflow discharges (AVG6) at Towanda. Lag times from a minimum of 6 to

a maximum of 11 hours were considered for each raw and aggregated time series. In

other words, if t indicates the actual time of the prediction, lagged time series from t-6

77

up to t-11 are employed as inputs, providing a forecasting lead time of 6 hours. The

working dataset for the Susquehanna River thus contains 60 inputs, and after removal of

invalid observations, a total of 26555 input/output patterns spanning from January 2004

to April 2008.

TABLE 5.1. DETAILS OF GAUGING AND METEOROLOGICAL STATIONS

Dataset Name Observed variable WGS84 Coordinates
Distance

(km)

Latitude Longitude

Susquehanna

Meshoppen Flow discharge 41.61 -76.05 ---

Towanda Flow discharge 41.77 -76.44 35

Towanda Rainfall 41.75 -76.42 35

Milan Rainfall 41.93 -76.52 53

Dushore Rainfall 41.53 -76.4 31

Montrose Rainfall 41.83 -75.87 29

Nehalem

Foss Flow discharge 45.70 -123.75 ---

Nehalem Rainfall 45.71 -123.9 53

Jewell Rainfall 45.94 -123.53 31

Vernonia Rainfall 45.87 -123.19 29

5.3.2. The Nehalem River

The Nehalem River originates in the Northern Oregon Coast Range near the city

of Portland, and it ends its 192 Km course in the Pacific Ocean. For this river, PIs with a

forecasting lead time of 6 hours ahead are produced for the USGS gauging station near

Foss in Tillamook County, OR. The drainage area of this station is of 1728 km
2
, which

amounts to around 80% of the overall watershed area of 2210 km
2
. The input time series

for this case study were chosen as the previous streamflow values measured at Foss,

plus the hourly rainfall recorded in the meteorological stations of Nehalem, Jewell

Wildlife Meadows, and Vernonia (Table 5.1). As done for the first dataset, AVG6 and

SUM6 aggregated time series were computed for the streamflow and rainfall inputs,

78

respectively, and lag times of 6 to 11 hours were considered. The Nehalem River dataset

consists of 48 inputs, with 20577 input/output samples recorded between October 2007

and December 2013.

5.4. Results and discussion

5.4.1. Input selection

An optimal set of input features has to be selected from the available candidates

of both datasets described in the previous section. In lack of a standard methodology for

input selection to develop ANN-based PIs, we resort to the Constructive Forward

Selection (CFS) wrapper technique devised for deterministic NNRF models (see

Chapter 4). In particular, the CFS is used to determine an optimal set of inputs for

NNRF models performing 6 hours ahead point predictions of streamflow discharges for

both case studies. These input features are then used to develop LUBE models under the

hypothesis that they represent a good approximation of the optimal input set required to

develop ANN-based PIs. This assumption is legitimate if one considers that good

quality PIs of hydrological variables have been obtained by bootstrapping and

ensembling deterministic NNRF models (Dawson et al., 2002; Sharma and Tiwari, 2009;

Tiwari and Chatterjee, 2010). Before launching the CFS algorithm, the datasets are first

normalized in the [-0.9,0.9] range, and divided in training (40%), validation (40%) and

test (20%) subsets as shown in Table 5.2. The Levenberg-Marquardt algorithm with

early stopping was employed as the ANN training algorithm, using 50 restarts to prevent

local minima entrapment. The CFS method returned an optimal model with 5 hidden

neurons and 7 inputs for the Susquehanna dataset, while the best ANN for the Nehalem

79

River was found to have 3 hidden neurons and 5 inputs. The details of the selected

inputs for both case studies are reported in Table 5.3, along with the performances on

each dataset expressed in terms of Root Mean Square Error (RMSE) and Nash-Sutcliffe

Coefficient f Efficiency (CE) (see APPENDIX B). The high performances shown by the

CFS optimal architecture suggest that the selected features are suitable for modeling

future streamflow discharges. They will be employed for LUBE model development

following the premise made earlier in this section.

TABLE 5.2. DATASETS SUBDIVISION

Dataset Subset Intial datetime Ending datetime Number of
observations

Streamflow statistics
[m3s-1] [mm/dd/yyyy HH:MM] [mm/dd/yyyy HH:MM]

 Min Max Mean

Susquehanna

Training 01/01/2004 11:00 11/23/2005 02:00 10653 42 5324 604

Validation 11/23/2005 14:00 04/21/2007 06:00 10582 78 4616 585

Test 04/21/2007 18:00 05/01/2008 00:00 5320 135 3313 670

Nehalem

Training 10/01/2007 17:00 03/22/2010 18:00 8230 2 1481 108

Validation 03/22/2010 19:00 06/19/2012 08:00 8231 4 784 121

Test 06/19/2012 09:00 12/02/2013 17:00 4116 3 580 108

TABLE 5.3. DETERMINISTIC ANN INPUTS AND MODEL PERFORMANCES

SELECTED INPUTS

MODEL PEFORMANCES

Dataset Station Input type Lag

Subset
RMSE

[m3s-1]
CE

Susquehanna

Towanda Flow RAW t-6, t-7

Training 50.7 0.994

Towanda Flow AVG6 t-8, t-11

Validation 69.7 0.985

Montrose Rainfall RAW t-6

Test 70.3 0.983

Montrose Rainfall SUM6 t-8, t-9

Nehalem

Foss Flow RAW t-6, t-7

Training 11.1 0.993

Vernonia Rainfall RAW t-6

Validation 12.5 0.99

Jewell Rainfall RAW t-6

Test 13.8 0.985

Jewell Rainfall SUM6 t-6

5.4.2. Development of swarm optimization-based LUBE models

80

After having identified the model inputs, LUBE neural networks can be

developed to generate PIs for the 6-hours ahead streamflow discharge for both rivers.

For the PSO and FIPS-based LUBE a 10-fold cross-validation procedure is carried out

after joining the training and validation subsets in Table 5.2, and dividing the resulting

dataset in 10 equal chunks. The two original subsets are left separated when employing

the MOFIPS algorithm, where they are regarded as Part 1 and Part 2 of the overall

training dataset used for the optimization. PIs with CL of 90%, 95% and 99% are

considered for LUBE model development, therefore the values of in (5.3) was set to

0.9, 0.95 and 0.99 respectively. The value of was set to 80 for each confidence level.

In order to reduce the computational burden of the experiments, the search for optimal

model complexity and swarm topology was performed only for the 90% case, with the

results being extended to the other two cases. The search for optimal model structure

was carried out trying LUBE models with 3 to 10 hidden neurons for each algorithm

employed. For the Susquehanna River the best performances were obtained using ANNs

with 6 hidden neurons (62 model parameters), irrespective of the training algorithm. On

the other hand, all algorithms provided best results when 4 hidden neurons (34 model

parameters) were used for the Nehalem River dataset. For the sake of brevity, full

details on algorithms setup are reported in Table 5.4, along with the appropriate

references for their implementation. Contrary to PSO- and FIPS-based LUBE, which

require 10 runs to implement the k-fold cross-validation, MOFIPS is able to produce PIs

at the end of a single run. Due to the similarity in the workings of the three algorithms,

MOFIPS might therefore require only 1/10 of the computational time of its single-

objectives counterparts. However, since MOFIPS entails augmented swarm topologies

81

and the additional calculation of the Pareto-fronts, this speed-up could be partially

reduced. After these considerations, 5 restarts are performed for the MOFIPS technique

for fairer comparison. The overall Pareto-frontier obtained from these restarts is

considered for the extraction of optimal LUBE solutions according to the MP and NI

criteria reported in Section 5.2.5.

TABLE 5.4. DETAILS OF THE SWARM OPTIMIZATION ALGORITHMS EMPLOYED

PSO FIPS MOFIPS

Algorithm formulation
PSO Type 1" constriction

(Clerc and Kennedy, 2002;
see Section 3.3)

FIPS Type 1" constriction
(Mendes et al., 2004; see

Section 3.4)
see Section 3.7.2

Number of particles
30 particles

topology

Von Neumann with "self"
included

(Mendes et al., 2004; see
Section 3.5)

Von Neumann with "self" excluded
(Mendes et al., 2004; see Section 3.5)

minimum and maximum
position

-3,+3

minimum and maximum
velocity

-0.5,+0.5

termination criteria 1000 iterations

mutation type
Gaussian mutation with exponential decay

(Quan et al., 2014a)

Polynomial mutation

(Deb and Deb, 2012; Deb,
2009, see Section 3.7.2)

mutation details
Gaussian mean is set to 0, and standard deviation is set to

10% of the absolute value of the ANN parameter

Probability distribution
parameter is set to 30, and

percentage of particles

subjected to mutation is set to
1/num. of ANN parameters

5.4.3. Comparison of generated PIs

Due to the different dataset arrangements employed for the single-objective and

multi-objective training, a direct comparison of the PIs generated with the three

algorithms can be done only for the test dataset which is the same for each case.

82

Furthermore, while the optimal MOFIPS-based LUBE models can be univocally

identified on the Pareto-front using the MP and NI criteria, PSO and FIPS-based LUBE

require the construction of an ensemble from 10 different models. Averaging is thus

necessary to produce the final PIs of these ensembles, while the indices employed for

the comparison against the MOFIPS solutions are given in terms of medians, as

suggested in literature (Khosravi et al., 2011b; Quan et al., 2014a). Table 5.5 reports the

comparison of the 90%, 95% and 99% PIs constructed for the 6 hours ahead streamflow

discharge of the Susquehanna River at the Meshoppen gauging station, while the results

for the Nehalem River at Foss are given in Table 5.6. All the indices described in

Section 5.2.2 are shown for comparison, but the discussion is better carried out in terms

of PICP and PINAW. From a cursory analysis of the results, it clearly emerges that the

MOFIPS solutions substantially outperform the LUBE models built with single

objective swarm optimization. For both case studies, the best performer at each

confidence level, i.e. the LUBE models providing the narrowest yet valid PIs, is

obtained from the MOFIPS Pareto-fronts. It can be seen that the NI models are

unsurprisingly those returning the narrowest PIs, with PINAW of around 7.01%, 8.00%,

and 12.50% for the Susquehanna River and 8.76%, 11.20% and 14.91% for the

Nehalem River. However, the corresponding PICP values of 91.32%, 92.59% and 97.80%

for the Susquehanna and of 91.21%, 94.87% and 98.98% for the Nehalem imply that NI

solutions return strictly valid PIs only for the 90% case. On the other hand, the models

identified by the MP criterion are able to generate valid PIs for all the examined cases.

PINAW of 7.9%, 10.7%, and 13% of the streamflow discharge range are slightly greater

than those of the NI models, indicating that the MP solutions are the overall best for the

83

Susquehanna case. Similar conclusions cannot be drawn as easily for the Nehalem case

study. Indeed, while the NI solutions fail to ensure the required coverage probability for

the 95% and 99% cases, they fall short of only 0.13% and 0.02% with respect to the

target CL, and could be regarded as valid. On the other hand, the MP solutions provide

PIs which are likely too precautionary for this case, with PICPs considerably larger than

the correspondent target CL. Consequently, the PIs of MP solutions are 18% to 45%

wider than the NI ones as shown by the PINAW values in Table 5.6. Although the PSO-

based LUBE provides valid PIs at each confidence level for both case studies, the

produced intervals are too wide for any real practical application. The FIPS-based

LUBE shows usually better performances, but it still compares badly against the optimal

models returned by the MOFIPS algorithm. This is particularly true the 99% CL case,

where the median PICP of the FIPS-based LUBE models is below the requested target

for both cases. The results in the last columns of Table 5.5 and 5.6 show that MOFIPS-

based LUBE generates better PIs while at the same time providing remarkable speedups.

Indeed, despite the 5 restarts, MOFIPS computational times are 40% to 50% smaller

than those required by single-objective swarm optimization, indicating that the overhead

associated with using augmented swarm topologies and Pareto-fronts calculation is

fairly negligible (see end of Section 5.4.2). The superiority of MOFIPS solutions can be

also verified from a visual comparison of the PIs generated for the three confidence

levels considered, such as shown in Fig. 5.4-5.6 for the last part of the test dataset of the

Susquehanna River. It appears that most of the improvements provided by MOFIPS are

reflected into a better positioning of the Lower Bound of the PIs, and a more accurate

bracketing of peak streamflow discharges. In this regards, of particular interest is Fig.

84

5.5 showing the PIs at confidence level 95%. For this case, all the algorithms return

valid PIs which are also found to comprise the peak discharges for the major storm

event occurring on the night of the 21
st
 of March 2008, with a peak flow of 2483 m

3
s

-1
.

The interval generated by the MP solution for the peak observation is [2426 ,2724] m
3
s

-1
,

which has a width of 298 m
3
s

-1
 corresponding to around 12% of the peak discharge itself.

On the other hand, the PI of the FIPS-based LUBE is over three times larger including

discharges anywhere in the [2005, 2957] m
3
s

-1
 range. The accuracy of the PSO-based

LUBE models is even worst, with a PI of [772, 3365] m
3
s

-1
 which is almost nine times

wider than that of the optimal MOFIPS solution, and represents 104% of the peak flow

rate.

TABLE 5.5. PERFORMANCES OF LUBE MODELS ON THE TEST DATASET FOR THE

SUSQUEHANNA RIVER AND REQUIRED COMPUTATIONAL TIME

PICP CWC PINRW PINAW

Total

computational

time [s]

90%

confidence

level

MOFIPS-based LUBE (NI) 0.9132 0.0719 0.0719 0.0701
3105.2

MOFIPS-based LUBE (MP) 0.9175 0.0803 0.0803 0.079

PSO-based LUBE 0.9143 0.2275 0.2275 0.1992 6132.7

FIPS-based LUBE 0.913 0.1324 0.1173 0.1129 5952.4

PICP CWC PINRW PINAW

95%

confidence

level

MOFIPS-based LUBE (NI) 0.9259 0.641 0.0816 0.08
3164.6

MOFIPS-based LUBE (MP) 0.9686 0.1078 0.1078 0.1073

PSO-based LUBE 0.9644 0.3757 0.3215 0.2896 6145.1

FIPS-based LUBE 0.9523 0.1953 0.15 0.1434 5914.1

PICP CWC PINRW PINAW

99%

confidence

level

MOFIPS-based LUBE (NI) 0.978 0.4836 0.134 0.125
3197.3

MOFIPS-based LUBE (MP) 0.9901 0.1445 0.1445 0.1298

PSO-based LUBE 0.9903 0.6947 0.42 0.3628 6181.9

FIPS-based LUBE 0.9791 0.7377 0.2312 0.205 5879.5

85

TABLE 5.6. PERFORMANCES OF LUBE MODELS ON THE TEST DATASET FOR THE NEHALEM

RIVER AND REQUIRED COMPUTATION TIME

PICP CWC PINRW PINAW

Total

computational

time [s]

90%

confidence

level

MOFIPS-based LUBE (NI) 0.9121 0.0901 0.0901 0.0876
2126.5

MOFIPS-based LUBE (MP) 0.9208 0.1127 0.1127 0.1033

PSO-based LUBE 0.9187 0.2509 0.2509 0.2209 3775.8

FIPS-based LUBE 0.9175 0.2333 0.2333 0.2106 3743.4

PICP CWC PINRW PINAW

95%

confidence

level

MOFIPS-based LUBE (NI) 0.9487 0.249 0.1182 0.112
2136.7

MOFIPS-based LUBE (MP) 0.9823 0.1667 0.1667 0.1581

PSO-based LUBE 0.9666 0.3189 0.3189 0.2458 4214.8

FIPS-based LUBE 0.958 0.2399 0.2356 0.2213 3731.1

PICP CWC PINRW PINAW

99%

confidence

level

MOFIPS-based LUBE (NI) 0.9898 0.3444 0.1708 0.1491
2097

MOFIPS-based LUBE (MP) 0.9947 0.2477 0.2477 0.2158

PSO-based LUBE 0.9934 0.4733 0.4088 0.3645 3871

FIPS-based LUBE 0.9883 0.5783 0.3006 0.2628 3543.1

5.4.4. Wet season vs dry season performances

Further insights on the performances of the MOFIPS-based LUBE methodology

can be obtained by decomposing the overall performance indices into those relative to

the wet and dry seasons. From an analysis of historical records, it emerges that for both

case studies the wet season goes from November to May, while the dry season

comprises the remaining 5 months. However, due to the lack of sufficient data samples

in the dry season for the test dataset of the Susquehanna River, the analysis will be

carried out only for the Nehalem River. The test dataset of the Nehalem River is made

for 1/3 by samples recorded during the dry months, while the remaining 2/3 pertains to

the wet season. Fig. 5.7 reports the decomposition of the overall test PICP (left) and

PINAW (right) indices of the NI solutions for the three CLs. The results shown for the

PICP suggest that there are no major differences in the coverage probability across the

86

Figure 5.4. LUBE generated prediction intervals at 90% confidence level for the Susquehanna River.

Figure 5.5. LUBE generated prediction intervals at 95% confidence level for the Susquehanna River.

87

Figure 5.6. LUBE generated prediction intervals at 99% confidence level for the Susquehanna River.

two seasons. On the other hand, the PINAW values are generally lower during the dry

season for all the three considered CLs. These results are better examined by taking into

account the average flows which are 52.1 and 134.2 m
3
s

-1
 for the dry and wet season,

respectively. It is interesting to note that, although the average flow during the dry

season is 61.2% smaller than that of the wet season, the PINAW values for the dry

seasons are at most 16.8% smaller than those of the wet season. This particular value is

recorded for the 99% CL case, where the overall PINAW of 14.91% is decomposed into

a wet season component of 15.77% and a dry season component equal to 13.13%. The

contrast between the difference of these components and that of the seasonal average

flows suggests that the width of the PIs is mostly determined by the higher variability of

the wet season, which is driven by more frequent and intense rainfall events. This higher

88

variability forces the LUBE method to widen the PIs in order to increase coverage

probability and meet the validity requirement set by the CL. However, since the same

ANN model is used for both seasons, the PIs produced during the dry season, albeit

narrower than those of the wet season, are wider than what could be expected by

analyzing the average flows.

Figure 5.7. Decomposition of test PICP and PINAW for the Nehalem River.

5.5. Conclusions

This study dealt with the application of the LUBE method for the construction of

ANN-based PIs of streamflow discharges at 90%, 95% and 99% confidence levels.

Single–objective and multi-objective swarm optimization has been employed to develop

LUBE models for the prediction of 6 hours ahead streamflow discharges of the for the

Susquehanna and Nehalem rivers, US. A novel methodology involving the MOFIPS

algorithm was found to provide valid PIs that are substantially narrower than those

obtained with single-objective swarm optimization. With average PI widths ranging

89

from a minimum of 7% to a maximum of 15% of the range of the streamflow data in the

test datasets, MOFIPS-based LUBE could be employed for straightforward design of

more reliable interval-based streamflow forecasting models. Although the quality of the

PIs was found to be significantly affected by the algorithm employed for model

development, future studies should be focused on finding more appropriate input

selection techniques for interval based hydrological prediction models. In addition, the

seasonal decomposition of the overall performance indices encourages seeking for

further improvements, which could be obtained, for instance, by resorting to a modular

approach where the PIs are produced separately for the dry and wet seasons and joined

subsequently.

90

6. Data-driven input variable selection for rainfall-runoff

modeling using binary-coded particle swarm

optimization and ELMs

Selecting an adequate set of inputs is a critical step for successful NNRF

modeling. In this study, we present a novel approach for Input Variable Selection (IVS)

that employs Binary-coded discrete Fully Informed Particle Swarm optimization (BFIPS)

and Extreme Learning Machines (ELM) to develop fast and accurate IVS algorithms. A

scheme is employed to encode the subset of selected inputs and ELM specifications into

the binary particles, which are evolved using single objective and multi-objective BFIPS

optimization (MBFIPS). The performances of these ELM-based methods are assessed

using the evaluation criteria and the datasets included in the comprehensive IVS

evaluation framework proposed by Galelli et al. (2014). From a comparison with 4

major IVS techniques used in their original study it emerges that the proposed methods

compare very well in terms of selection accuracy. The best performers were found to be

1) a MBFIPS-ELM algorithm based on the concurrent minimization of an error function

and the number of selected inputs, and 2) a BFIPS-ELM algorithm based on the

minimization of a variant of the Akaike Information Criterion (AIC). The first technique

is arguably the most accurate overall, and is able to reach an almost perfect specification

of the optimal input subset for a partially synthetic rainfall-runoff experiment devised

for the Kentucky River basin. In addition, MBFIPS-ELM allows for the determination

of the relative importance of the selected inputs. On the other hand, the BFIPS-ELM is

found to consistently reach high accuracy scores while being considerably faster. By

91

extrapolating the results obtained on the IVS test-bed, it can be concluded that the

proposed techniques are particularly suited for NNRF modeling applications

characterized by high nonlinearity in the catchment dynamics.

6.1. Introduction

6.1.1. Input variable selection (IVS) techniques

One of the main issues encountered when developing NNRF applications is

represented by the difficulties in identifying the set of inputs to employ for modeling a

given hydrological process (Maier and Dandy, 2000; Maier et al., 2010). This task is

usually referred to as Input Variable Selection (IVS) (Galelli et al., 2014; Guyon and

Elisseeff, 2003; May et al., 2011), and entails the identification of a possibly small set of

predictors able to explain the behavior of the output variable. Exclusion of meaningful

predictors results in building inaccurate models, no matter how well the other model

development steps are carried out. On the other hand, inclusion of irrelevant or

redundant inputs hinders the subsequent calibration process by adding more local

minima to the error surface defined by the objective function used for ANN training. In

addition, unnecessary large input sets result in longer computational time for model

development, and undermine post-processing efforts for knowledge discovery and rule

extraction (Jain and Kumar, 2009).

6.1.2. Filters, wrappers and embedded IVS techniques

 IVS techniques can be broadly divided into model-free and model-based

approaches according to whether or not the selection process is carried out

independently from the chosen model (Maier et al., 2010; May et al., 2011). Model-free

92

approaches are usually known as filters, since the significance of the relationship

between the output variable and each input candidate is filtered as a preprocessing step,

independently of the model employed (Kohavi and John, 1997). Input relevance is

estimated through a statistical measure, such as cross-correlation (Coulibaly et al., 2000;

Imrie et al., 2000) or Mutual Information (MI) (Bhattacharya and Solomatine, 2005). To

prevent redundancy among the selected candidates, partial significance measures can be

evaluated by removing the effects of the predictors which have already been selected.

This notion is at the core of efficient automatic filter techniques such as the

Partial Correlation Input Selection (PCIS) method (May et al., 2008) and the Partial

Mutual Information (PMI) based method (Bowden et al., 2005a; Fernando et al., 2009;

May et al., 2008; Sharma, 2000). Another successful approach is that of the Iterative

Input variable Selection (IIS) method recently proposed by Galelli and Castelletti

(2013a), which employs a ranking scheme based on extremely randomized trees (Galelli

and Castelletti, 2013b) to estimate the partial dependence between candidate inputs and

the output. Other notable examples of filter techniques developed for hydrological

applications may involve dimensionality reduction, stepwise regression, the gamma test,

and information theoretic approaches (Noori et al., 2011; Sharma and Mehrotra, 2014;

Ssegane et al., 2012; Wan Jaafar et al., 2011). Filter techniques are characterized by

good generalization capability since they are not tuned to the specific interaction

between the selected inputs and a chosen data-driven model. The lack of an underlying

model to be trained also grants them high computational efficiency, and facilitates the

physical interpretation of the selected variables. However, these advantages are obtained

at the expense of not considering the actual gain in model performances given by each

93

selected variable. In addition, filters usually treat each candidate variable separately, and

therefore do not take into account the information that could be gained by individually

irrelevant candidates with high combined explanatory power.

These issues can be overcome by resorting to model-based approaches, which are

generally divided into wrapper and embedded methods (Blum and Langley, 1997;

Guyon and Elisseeff, 2003; Kohavi and John, 1997). The difference between these two

classes lies in the fact that the latter techniques perform the IVS task along with model

calibration, while the former treat the model as a pure black-box, whose accuracy is

maximized by searching for an optimal subset of inputs (Guyon and Elisseeff, 2003).

However, the line separating these two classes is not always easy to draw, especially

when the most common approach of using global optimization (GO) techniques is

adopted to perform the search (May et al., 2011). With reference to Section 3.2, using

GO will result in a wrapper technique if the algorithm searches for the optimal set of

inputs and, at most, some large scale properties of the ANN model (i.e. number the

number of hidden layers and number of units for each hidden layers) (Abrahart et al.,

1999; Bowden et al., 2005a, 2005b; Chen and Chang, 2009). On the other hand, the

method can be classified as embedded if the EA performs the optimization of ANN

weights along with the IVS process (Leahy et al., 2008; Yao, 1999). The distinction is

less clear when the EA is employed to directly manipulate links and nodes within the

ANN topology but another learning algorithm is used to estimate the value of the

synaptic weights (Leahy et al., 2008). It is understood that embedded algorithms are

more computationally efficient as they focus on the development of a single final model.

However, the increased complexity of the search process may outweigh the benefits of

94

reduced computational costs, which even for the leanest techniques are usually orders of

magnitudes greater than those of the fastest model-free techniques.

6.1.3. Development of wrapper techniques with ELM and binary-coded FIPS

The speed gap between model-based and model-free techniques can be reduced

by resorting to fast training algorithms, such as the Extreme Learning Machines (ELM)

paradigm introduced in Section 2.2 (Huang et al., 2011, 2006, 2004). Despite their

advantages over traditional ANNs and similar techniques, to our best knowledge ELMs

have never been employed for NNRF applications at the time of this writing. It is

therefore the purpose of this study to explore the potential of ELMs by exploiting their

computational efficiency and enhanced generalization capability to develop fast and

accurate IVS algorithms. In particular, the proposed techniques are wrappers built by

pairing ELMs with the BFIPS and MBFIPS algorithms presented in Section 3.6 and

3.7.4, respectively. BFIPS-ELM wrappers are built using the Root Mean Square Error

(RMSE) and several variants of the Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC) as the objective functions to minimize. The different

metrics are employed to check whether penalizing model complexity grants better

performances by preventing over-fitting that may occur due to the inclusion of irrelevant

or redundant variables. This is a known issue of wrapper methods (Galelli et al., 2014)

that could be aggravated when employing ELMs, whose training process may suffer in

presence of irrelevant or correlated variables (Miche et al., 2010). This problem is

directly addressed when developing MBIFPS-ELM wrappers, since the number of

inputs is concurrently minimized with the RMSE through a bi-objective Pareto-based

optimization (Xue et al., 2013).

95

The suitability of the proposed methods is assessed using the evaluation criteria and

datasets of the comprehensive evaluation framework proposed by Galelli et al. (2014).

In particular, the algorithms are run on 19 fully synthetic datasets that account for a

range of properties typical of hydrological data (e.g. nonlinear, non-Gaussian,

redundant), as well as on a partially synthetic rainfall-runoff dataset based on the

Kentucky River basin. As entailed by the IVS framework, quantitative evaluation of the

proposed wrappers is done in terms of input selection accuracy and computational times.

In the same way, the criteria defined for explanation capability, flexibility, ease of use

and robustness are used to evaluate the techniques from a qualitative point of view. For

a thorough assessment of the methods, a comparison with the PMI, PCIS, IIS and GA-

ANN techniques tested in the original paper presenting the framework is also carried out.

The Chapter is organized as follows. Section 6.2 presents the ELM-based wrapper

methods and how they are developed. Section 6.3 briefly describes the IVS framework,

while the results of the experiments are shown and discussed in Section 6.4.

Conclusions are drawn in Section 6.5.

6.2. ELM-based wrapper development using BFIPS and MBFIPS

6.2.1. Binary particle encoding

As discussed in Section 3.2, when GO techniques are employed to identify the

optimal inputs for an ANN, the subsets of selected inputs are encoded in binary strings

of the same length of the total number of candidate predictors (Bowden et al., 2005a,

2005b). The i-th bit of the string is set to 1 if the i-th input has been selected by the

searching algorithm, and it is set to 0 otherwise. The selected predictors are then fed to

96

the ANN, which is first trained and then evaluated to provide a measure of its

performances. The characteristics of the data-driven models may be chosen beforehand

and remain fixed during the search process, but wrapper performances could be

improved by evolving some model specifics along with the input selection (Chen and

Chang, 2009). In this work we decided to include the number of hidden neurons of the

ELM, the type of the activation function, as well as the value of the parameter in the

search process (see Section 2.2). The automatic tuning of the first two variables is

expected to produce flexible wrappers that can adjust their complexity and functional

form to better capture the underlying relationship in the data. In addition, including in

the encoded parameters will allow using the solutions in (2.21-2.22) to determine the

output weights of the ELM more accurately, enhancing its performances. If the BFIPS

and MBFIPS algorithms are chosen to develop the ELM-based wrapper, we have that

the position vector of a particle is a binary string as the one depicted in Fig. 6.1, where

 is the number of bits used to directly encode the selected subset of inputs,

 ; is the number of bits used to

encode the number of hidden neurons between a maximum () and a minimum

value (), ; and is the number of bits

needed to encode the type activation function used,

 . The number of bits needed to encode the

parameter is given by , where M is a positive integer so that the value

of can be defined by increasing powers of 2, . The

brackets employed in the previous lines identify the ceiling function which maps a real

number to the smallest following integer.

97

Figure 6.1. Binary encoding scheme for the ELM-based wrappers.

6.2.2. BFIPS-ELM wrappers

The encoding described in the previous paragraphs is used to build different

BFIPS-ELM wrappers depending on the objective function chosen to assess ELM

accuracy. In particular, this study employs the Root Mean Square Error (RMSE), as well

as generalized versions of the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC) (Qi and Zhang, 2001). While the version with RMSE

represents the basic form of the algorithm, the latter criteria are used to apply different

penalties to model complexity in order to obtain parsimonious models. Indeed, this is a

prominent issue when developing wrapper methods which are prone to over-fitting due

to the inclusion of redundant/irrelevant inputs (Galelli et al., 2014). In addition, ELM

are known to have problems when the training dataset presents irrelevant or correlated

variables (Miche et al., 2010). If is the i-th observed value of the output variable,

the model predicted value, and N is the total number of observations, the Mean Squared

Error (MSE) can be defined as

The expression of the three criteria can be obtained from the MSE

98

 , (6.1)

, (6.2)

, (6.3)

where m is the model complexity, defined at the end of Section 2.2 for an ELM model,

and g is an exponent that can be adjusted to assign different penalties to m. For equal

values of the exponent g, the BIC criterion always applies a heavier penalty to model

complexity. Notwithstanding the objective function that is minimized during the

optimization process, the BFIPS-ELM chosen is always the particle with the lowest

value of the employed criterion.

6.2.3. MBFIPS-ELM wrapper

The issue of selecting irrelevant and redundant inputs can be directly tackled by

considering the number of inputs as an additional objective function to minimize (Xue et

al., 2013). This is done by the MBFIPS-ELM wrapper proposed in this study, where the

number of selected inputs, i.e. cardinality, and RMSE are the two objective functions

employed for the Pareto-based optimization. This approach is expected to 1) force the

identification of the most meaningful inputs for each possible subset dimension, since

only one non-dominated solution for each cardinality will be at most included in the

Pareto-front; and 2) limit the exploration of unnecessarily large subsets, since non-

dominant solutions characterized by greater subset dimensions will be included in the

Pareto-front only if they have lower RMSE. Since all the solutions in the Pareto-front

are equally optimal, a criterion is necessary to select the final wrapper at the end of the

optimization process. Ideally, the non-dominant solution with the largest number of

99

inputs (lowest RMSE) should be chosen, since including more inputs than the real ones

should result in lower performances (higher RMSE). However, due to the random

component in ELM training, and the problems in identifying an optimal value of the

ridge regression constant, it is possible that training a model with a dataset including

other inputs besides the real ones might result in lower RMSEs. A simple workaround

can be implemented by choosing a cutoff percentage ρ, and then selecting the Pareto-

optimal solution with the lowest cardinality for which the following inequality still

holds

 (6.4)

where is the RMSE value of the selected solution, while is the lowest

of the Pareto-optimal solutions. Setting ρ = 0% will simply return the boundary solution

with , while ρ > 0% might select an inward solution with higher RMSE but

smaller subset dimension, as illustrated in Fig. 6.2. The shaded area in Fig. 6.2

represents the region of the Pareto-front where (6.4) holds.

Figure 6.2. Selection of optimal solution for the MBFIPS-ELM.

100

6.3. The Input Variable Selection evaluation framework

The performances of the wrapper techniques described in the previous section are

assessed using the Input Variable Selection (IVS) framework proposed by Galelli et al.

(2014). The framework was developed to facilitate the objective evaluation and

comparison of IVS algorithms for environmental data-driven modeling. The authors

provide a comprehensive test-bed of 26 datasets, as well as several criteria to assess the

accuracy and suitability of IVS techniques from both a quantitative and a qualitative

point of view.

6.3.1. Benchmark datasets

The test-bed is made of 19 fully synthetic and 7 partially synthetic datasets that

account for a comprehensive range of properties typical of environmental data. In

addition, 30 replicates of each benchmark dataset are provided to strengthen the

statistical significance of the obtained results. Since the focus of this paper is on the

development of IVS techniques for hydrological modeling, the study will not employ

the 6 benchmark datasets made available for water quality modeling. The test-bed thus

comprises the whole set of 19 fully synthetic datasets, as well as a partially synthetic

rainfall-runoff experiment designed for the Kentucky River basin. The characteristics of

the 20 benchmark datasets employed in this work are summarized in Table 6.1, where

the number of observations N, number of relevant inputs K, and total number of

candidate inputs P are also given. The ratio of the number of observations over the total

number of candidates N/P is also highlighted due to its importance in determining the

likelihood of the IVS technique to over-fit the data by selecting irrelevant or redundant

inputs. Small values of N/P denote greater risks of over-fitting, and the risk increases

101

with increasing correlation between the candidate inputs. The set of comprehensive

features of real hydrological data reflected in the test-bed are: non-Gaussian output, high

nonlinearity in the input-output relationship, high noise in the data, high collinearity

among input variables, inter-dependency of the candidate inputs, and incomplete

information in the dataset. Further details on the benchmark datasets could be found in

the original paper of Galelli et al. (2014), and on the website of the IVS framework

(http://ivs4em.deib.polimi.it/).

TABLE 6.1. CHARACTERISTICS OF THE BENCHMARK DATASETS OF THE IVS FRAMEWORK

Dataset N K P N/P

Non-

Gaussian

output

Highly

nonlinear

High

noise

High

collinearity

Inter-

dependency

Incomplete

information

1. AR1 500 1 15 33.3

X X

2. AR9_500 500 3 15 33.3

X X

3. AR9_70 70 3 15 4.7

X X

4. TAR1 500 1 15 33.3

X X

5. TAR2 500 2 15 33.3

X X

6. NL_500 500 3 15 33.3 X X

7. NL_70 70 3 15 4.7 X X

8. NL2 500 3 15 33.3 X X X X

9. Bank_fm 400 8 32 12.5 X

X

10. Bank_fh 400 8 32 12.5 X

X

X

11. Bank_nm 400 8 32 12.5 X X

X

12. Bank_nh 400 8 32 12.5 X X X

X

13. Friedman_c0_10_m 250 5 10 25

X

14. Friedman_c0_10_h 250 5 10 25

X X

15. Friedman_c0_50_m 250 5 50 5

X

16. Friedman_c0_50_h 250 5 50 5

X X

17. Friedman_c25_10_m 250 5 10 25

X

X

18. Friedman_c25_10_h 250 5 10 25

X X X

25. Kentucky 4739 4 21 225.7 X

X

26. Miller 200 2 3 66.7 X X

http://ivs4em.deib.polimi.it/

102

6.3.2. Selection accuracy criteria

The Selection Accuracy (SA) score is the metric recommended for the quantitative

assessment of the effectiveness of an IVS algorithm

 (6.5)

where

 is the ratio of correct input that have been selection k over the total number of

correct inputs K. On the other hand, is based on the proportion of extraneous inputs

that have been retained p with respect to the total number of extraneous inputs in the

dataset . The parameter ranges from 0 to 1 and is a tradeoff value weighting the

relative importance of the two components. The value of the score can range from 0

to 1, where denotes a correctly specified model, while corresponds to a

completely misspecified model, with no relevant inputs and all extraneous inputs

selected. The values of and are also bounded in the [0,1] range. Apart from the

case of perfect specification (), we also have that of over-

specification of extraneous inputs () and/or under-specification of relevant

inputs () may occur.

6.3.3. Other evaluation criteria

Apart from the use of the SA metrics defined in the previous section, Galelli et al.

recommend a thorough investigation of IVS techniques using other criteria that assess

the algorithm 1) computational efficiency, 2) ease of use and robustness, 3) explanation

103

capability and 4) flexibility. While computational efficiency still entails the estimation

of quantitative measures, the remaining three criteria are qualitative in nature.

Computational efficiency is a key aspect in determining the success of an algorithm

since very accurate but slow techniques might be of no practical use. The analytical

determination of the algorithm computational complexity as a function of N and P

would be ideal for determining its computational efficiency, allowing for the preemptive

estimation of the time required to process a given case study. However, such theoretical

solutions are not available for heuristics such as GA and PSO. Therefore total run-time,

which depends on software implementation and employed hardware, has to be used in

these cases. Ease of use and robustness are essentially related to the number of

parameters that need to be set before running the IVS algorithm, the expertise needed by

the user to set them appropriately, and how well the algorithm performs using a set of

default parameters. The explanation capability of an IVS technique mostly concerns its

ability to determine the relevance of each selected input with respect to the others, while

its flexibility refers to the ease with which the algorithm components can be

interchanged with other methods.

TABLE 6.2. OVERALL MEAN AND MEDIAN SELECTION ACCURACY SCORES OF THE BEST

PERFORMING ELM-BASED WRAPPERS

Type of

wrapper

Objective

function(s)

Complexity

penalty

 Overall mean selection

accuracy score
 Overall median selection

accuracy score

 SAc SAe SA SAc SAe SA

BFIPS-ELM

RMSE ---

0.896 0.817 0.872

0.948 0.815 0.912

AIC logarithmic

0.888 0.857 0.879

0.939 0.888 0.927

BIC logarithmic 0.870 0.879 0.873 0.930 0.919 0.909

MBFIPS-ELM
RMSE,

num. of inputs
--- 0.833 0.98 0.877 0.932 0.988 0.936

104

6.4. Results and Discussion

6.4.1. Experimental setup

The accuracy and suitability of the proposed ELM-based wrappers are assessed using

the IVS framework criteria summarized in the previous chapter. The parameter γ

regulating the tradeoff between the selection of relevant inputs and the exclusion of

extraneous one was set to 0.7, as suggested by Galelli et al., (2014). Therefore more

weight is given to the inclusion of correct inputs when computing the value of SA for

each experiment according to (6.5). All the experiments were carried out using

MATLAB
®
 on a 2.20 GHz Intel i7-3632QM CPU with 8 GB RAM.

Type of wrappers tested. A total of 10 different configurations are tested using the

benchmark datasets. These are 9 BFIPS-ELMs with different objective functions and 1

MBFIPS-ELM. The objective functions for the BFIPS-ELMs are the RMSE (6.1), as

well as 4 AIC and 4 BIC criteria that were derived from (6.2-6.3) using different types

of complexity penalty. The penalties applied are, in increasing order of penalty,

logarithmic, square root, linear, and quadratic, which are obtained by setting the

exponent g in (6.2-6.3) to logm(log(m)), 0.5,1 and 2 respectively. As described in

Section 6.2.3, the MBFIPS-ELM wrappers are developed by concurrently minimizing

the RMSE and number of selected inputs using a Pareto-based approach. Values of

ρ=0%, 1%, 2.5% and 5% were tested to select the optimal model at the end of the

MBFIPS optimization process. Five-fold cross-validation is employed to estimate the

value of the RMSE and all the AIC/BIC objective functions employed.

Algorithm setup. Both the BFIPS and MBFIPS algorithms are stopped after 1000

iterations, or if no improvements are obtained for 30 consecutive iterations. The swarms

105

are made of 30 particles arranged to form a lattice topology, such as the one shown in

Fig. 3.4f. The mutation rate is set to , with a maximum of M = 5 randomly

selected particles undergoing mutation at each iteration (see Sections 3.6 and 3.7.4). The

maximum number of particles in the MBFIPS Pareto-front is set equal to the total

number of inputs of each case study.

Binary encoding. The number of ELM hidden nodes is allowed to vary between

NHmin = 1 and NHmax = 250, so that lnodes = 8 bits are required for the encoding. Four

different types of activation functions (lact = 2) are considered for the hidden units,

namely linear, log-sigmoid (logsig), hyperbolic tangent sigmoid (tansig), and radial

basis function (rbf). The number of bits needed to encode the ridge regression parameter

is set to lλ = 6 , so that λ can take any value in the increasing power-of-two sequence

going from 2
-31

 = 4.657E-10 to 2
32

=4.295E09. A total of 16 bits plus linputs = P are

therefore required to encode the wrapper models for each benchmark dataset, with the

binary string length varying from a minimum of 19 bits for Miller case to a maximum of

66 bits for the largest Friedman datasets.

6.4.2. Quantitative assessment of wrapper performances

6.4.2.1.Comparison of overall selection accuracy

The overall mean and median selection accuracy scores are reported in Table 6.2, as

obtained from the mean SA, SAc and SAe scores of the 30 repetitions of all the 20

benchmark datasets. Only values for the best BFIPS-ELM configurations employing the

AIC and BIC criteria are reported, which are obtained in both cases using the

logarithmic complexity penalty. On the other hand, the overall best MBFIPS-ELM

106

performances are recorded when the cutoff parameter ρ is set to 1%. The overall mean

SA scores are almost equivalent for the reported techniques, with a maximum of 0.879

for the BFIPS-ELM obtained minimizing the AIC. However similar in terms of value,

these mean SA scores correspond to different combinations of the SAc and SAe scores.

It emerges that the BFIPS-ELM obtained without any penalty term, i.e. with the RMSE

objective function, is on average the most successful in identifying the relevant inputs

with SAc = 0.896, but the least effective in excluding redundant/irrelevant variables with

SAe = 0.817. Introducing increasing penalty terms results in the exclusion of some

relevant variables to the advantage of retaining fewer extraneous ones, as shown for the

BFIPS-ELM obtained with the AIC and BIC criteria. A similar but more pronounced

effect is noticed for the MBFIPS-ELM wrapper, for which the lowest mean SAc of 0.833

and highest mean SAe of 0.980 are recorded. Fig. 6.3 shows how varying the exponent g

in (6.2-6.3) affects the selection accuracy of the wrappers. It can be seen that increasing

penalties produce a raise in SAe but a very steep decline in SAc that substantially

reduces the wrapper effectiveness for g > 0.5. These findings suggests that, opposite to

ANN modeling where the original AIC and BIC criteria are usually employed (g = 1)

(Dawson and Wilby, 2001; May et al., 2008), lower penalties should be applied to

reduce model complexity when employing ELM. This is reasonable if one considers that

the input weights of ELM are randomly assigned, thus the model requires more

parameters to capture the underlying relationship in the data. This might represent a

problem when using AIC and BIC to build ELM-based IVS techniques, as they penalize

overall model complexity rather than the number of inputs directly. Fig. 6.4 shows that

similar trends in the change of the SAc and SAe scores are also noticed by varying the

107

cutoff parameter ρ used to determine the final MBFIPS-ELM models. However, the

raise in SAe with increasing values of ρ correspond only to a mild decrease of SAc, so

that the values of SA do not drop as much as seen for the BFIPS-ELM wrappers

developed using AIC/BIC.

Figure 6.3. Overall mean selection accuracy of BFIPS-ELM for different complexity penalties.

Figure 6.4. Overall mean selection accuracy of MBFIPS-ELM for different values of ρ.

108

A better comparison of the effectiveness of the wrapper methods in Table 6.2

can be done by considering the overall median selection accuracy scores, which are less

sensitive to possible outliers due to particularly weak (or strong) performances in some

case studies. Indeed, the median accuracy scores suggest that the MBFIPS-ELM is the

overall best performer, with a median SA score of 0.936. The very high values of both

mean and median SAe scores indicate that the MBFIPS-ELM is generally very effective

in preventing the over-specification of extraneous inputs. On the other hand, the larger

difference between mean SAc and median SAc suggest that the MBFIPS-ELM might be

sensitive to under-specification of relevant inputs in some particular cases. With a

median SA of 0.927, the BFIPS-ELM obtained with AIC comes a close second in terms

of overall accuracy, representing the best wrapper among those obtained with single-

objective swarm optimization. The performances of this technique along with those of

the MBFIPS-ELM will be discussed in detail in the following paragraphs to highlight

their strengths and weaknesses of the two approaches on each dataset. For the sake of

conciseness, the BFIPS-ELM obtained with AIC will be referred to simply as BFIPS-

ELM hereafter, unless otherwise specified.

6.4.2.2.Comparison of selection accuracy on each dataset

The mean selection accuracy scores of the BFIPS-ELM and MBFIPS-ELM as

computed from the 30 repetitions of each case study are reported in Table 6.3.

Furthermore, Table 6.4 shows the total number of times that the final model employed a

certain type of activation function, where logsig and tansig have been grouped as

sigmoid functions without any loss of generality. The information provided by this table

will facilitate the analysis of wrapper performances on each case study.

109

TABLE 6.3. MEAN SELECTION ACCURACY SCORES OF BFIPS-ELM AND

MBFIPS-ELM FOR EACH BENCHMARK DATASET

TABLE 6.4. TYPE OF ACTIVATION FUNCTIONS OF THE OPTIMAL MODELS

Dataset

BFIPS-ELM MBFIPS-ELM

Dataset

BFIPS-ELM MBFIPS-ELM

SAc SAe SA SAc SAe SA

sigmoid linear rbf sigmoid linear rbf

1. AR1 1.000 0.938 0.981

1.000 0.988 0.996

1. AR1 11 18 1

14 13 3

2. AR9_500 1.000 0.847 0.954

1.000 0.992 0.998

2. AR9_500 2 28 0

12 18 0

3. AR9_70 0.944 0.833 0.911

0.944 0.858 0.919

3. AR9_70 3 27 0

12 18 0

4. TAR1 1.000 0.895 0.969

1.000 0.988 0.996

4. TAR1 19 3 8

17 0 13

5. TAR2 1.000 0.918 0.975

1.000 0.987 0.996

5. TAR2 24 1 5

23 1 6

6. NL_500 1.000 1.000 1.000

1.000 1.000 1.000

6. NL_500 5 0 25

13 0 17

7. NL_70 1.000 1.000 1.000

0.956 1.000 0.969

7. NL_70 27 0 3

20 0 10

8. NL2 0.767 0.911 0.810

0.678 0.981 0.769

8. NL2 28 0 2

24 0 6

9. Bank_fm 0.750 0.714 0.739

0.429 0.994 0.599

9. Bank_fm 0 30 0

22 0 8

10. Bank_fh 0.613 0.760 0.657

0.371 0.976 0.553

10. Bank_fh 0 30 0

20 1 9

11. Bank_nm 0.796 0.754 0.783

0.683 0.988 0.775

11. Bank_nm 13 17 0

27 0 3

12. Bank_nh 0.733 0.726 0.731

0.608 0.961 0.714

12. Bank_nh 2 28 0

27 2 1

13. Friedman_c0_10_m 1.000 1.000 1.000

0.993 1.000 0.995

13. Friedman_c0_10_m 30 0 0

26 0 4

14. Friedman_c0_10_h 0.933 0.967 0.943

0.907 0.987 0.931

14. Friedman_c0_10_h 28 1 1

27 0 3

15. Friedman_c0_50_m 0.853 0.684 0.803

0.920 0.989 0.941

15. Friedman_c0_50_m 0 30 0

25 0 5

16. Friedman_c0_50_h 0.867 0.682 0.811

0.813 0.956 0.856

16. Friedman_c0_50_h 0 30 0

19 5 6

17. Friedman_c25_10_m 0.933 0.980 0.947

0.873 1.000 0.911

17. Friedman_c25_10_m 25 0 5

24 0 6

18. Friedman_c25_10_h 0.573 0.940 0.683

0.500 0.973 0.642

18. Friedman_c25_10_h 25 0 5

20 0 10

25. Kentucky 1.000 0.880 0.964

0.975 0.990 0.980

25. Kentucky 28 0 2

20 0 10

26. Miller 1.000 0.700 0.910 1.000 1.000 1.000

26. Miller 0 30 0 2 28 0

110

AR1 and AR9 datasets. These three datasets are obtained from linear autoregressive

models of order 1 and 9, respectively. Despite the high noise and collinearity, the high

ratio of observations to number of candidate inputs N/P allows both techniques to

correctly identify the relevant inputs (SAc = 1) for the AR1 and AR9_500 cases.

However, the MBFIPS-ELM is more efficient in avoiding the selection of extraneous

inputs thus obtaining a SA score very close to 1. Albeit a drop in accuracy is noticed for

the AR9_70 dataset, both techniques still record SA scores of over 0.91, thus being able

to perform the IVS task satisfactorily even when considerably less observations are

available. From Table 6. 4 it can be seen that there is a prevalence of linear ELM models,

showing that the wrapper techniques can recognize the linear relationship adequately

even for the AR9_70 case.

TAR datasets. The TAR datasets are obtained from a threshold autoregressive

model. The nonlinearity in the dataset is recognized by both wrapper techniques as the

vast majority of the final models are nonlinear. The performances on the these datasets

are very similar to that of the AR cases, with the high N/P ratio granting the correct

specification of relevant inputs, and the MBFIPS wrapper being more efficient in

avoiding the over-specification of extraneous ones.

NL datasets. The high nonlinearity in the input-output relationship of these

dataset is reflected in the total absence of linear models among the optimal ones found

for each repetition of each case study. Both wrappers achieve SA = 1 for the NL_500

case, with the BFIPS-ELM providing perfect input specification also for the NL_70

dataset. Adding high noise and high collinearity in the data is found to reduce the

accuracy of the algorithms for the NL2 case. However, the performances of the two

111

techniques, and of the BFIPS-ELM in particular (SA = 0.81), are still remarkably high if

one considers the complexity of this case study. This suggests that the proposed

wrappers are well suited for handling highly nonlinear datasets.

Bank datasets. These datasets are representative of cases where there is incomplete

information about the output data, which has been obtained from a Bank simulator that

used a total of 32 variables of which only 8 are available in the datasets. The original

time series of the remaining 24 inputs were randomly shuffled so that they have to be

considered as irrelevant. The behavior of the two wrappers is very different for these

datasets. The MBFIPS-ELM is generally very accurate in selecting only relevant

variables with SAe close to 1 in most cases, but is prone to under-specification. On the

other hand, the BFIPS-ELM is more able to identify the relevant inputs, but it tends to

retain some of the irrelevant variables. Overall, the BFIPS-ELM performs better on

these benchmark datasets, especially for the linear instances (Bank_fm, Bank_fh) where

the MBFIPS-ELM selects on average less than half of the relevant inputs. From the

numbers in Table 6.4, it appears that this difference in the performances is due to the

fact that the MBFIPS algorithm returns only nonlinear ELM models for these cases,

while the BFIPS-ELM final solutions are always linear, thus more appropriate for

modeling the linear instances of the dataset. If these two experiments are rerun by

forcing the MBFIPS to select only linear activation functions, the values of SA raise to

0.743 for the Bank_fm and to 0.605 for the Bank_fh, showing that for these particular

cases the original MBFIPS fails to match the underlying functional form of the dataset.

This does not seem to happen for the nonlinear cases where the performances of the two

wrappers are similar.

112

Friedman datasets. These datasets have been generated using the Friedman

regression function, which has a highly nonlinear functional form. The BFIPS-ELM

method obtains SA = 1 for the case with no collinearity, moderate noise and 10 inputs

(Friedman_c0_10_m), with the MBFIPS-ELM also showing a near to perfect score.

Adding high noise to this dataset (Friedman_c0_10_h) lowers the accuracy of both

techniques which however are still well above 0.9. Good performances are also

witnessed in presence of high collinearity (Friedman_c25_10_m), but a consistent drop

is noticed when both high collinearity and high noise are present (Friedman_c25_10_h).

Albeit the BFIPS-ELM outperforms its multi-objective counterpart in all these examples,

it scores noticeably lower for the cases with 50 inputs (Friedman_c0_50_m,

Friedman_c0_50_h) due to over-specification. In addition, despite the problem being

highly nonlinear, the BFIPS selects linear models for all the repetitions of these datasets,

suggesting that single-objective optimization may struggle to obtain high accuracy in

these cases. The fact that even the performances of BFIPS-ELM built with other

objective function are always substantially lower than those of the MBFIPS-ELM

suggest that the latter algorithm might perform better for larger numbers of candidate

inputs.

 Kentucky dataset. This partially synthetic dataset was created using real streamflow

and effective rainfall data from a gauging station and several meteorological stations in

the Kentucky River basin. Although this dataset alone cannot represent the wide

spectrum of different hydrological scenarios typical of rainfall-runoff modeling

applications, it is unlikely that techniques scoring poorly on this benchmark would

perform the IVS task accurately for other cases. The predictand for this dataset is the

113

streamflow discharge Qt reconstructed by a SLFN for a gaging station along the

Kentucky River. The set of candidate variables is given by effective rainfall ER

measured at time steps t, t-1, …, t-10, as well as previous streamflow discharges at time

steps t-1, t-2, …, t-10. Of the 21 inputs constituting the candidate pool, only 4 have

been used as inputs for the SLFN, namely Qt-1, Qt-2 , ERt and ERt-1, therefore

 (6.6)

where represents the SLFN, and a random noise component. The 30 replicates of

this dataset were built by reshuffling the original 4739 samples, and regenerating the

random noise component . As it emerges from Table 6.3, both the proposed techniques

are able to achieve very high scores on this dataset, with the MBFIPS-ELM reaching

almost perfect input variable specification. Therefore, these ELM-based wrappers show

a great potential as IVS methods for rainfall-runoff modeling and NNRF applications.

Their consistency is also reflected in the fact that they select only sigmoid and radial

basis functions, which are known to provide better performances over linear transfer

functions in NNRF applications. As it will be shown later in Section 6.4.3, the analysis

of the Pareto-fronts returned by the MOFIPS-ELM allows for the determination of the

relative importance of each input variable. It emerges that the order of importance, from

the most relevant to the least relevant, is Qt-1, Qt-2 , ERt then ERt-1. The increment in

predictive accuracy given by including these variables in order of importance is shown

in the scatter plots of Fig. 6.5 a-d for the first replicate of the dataset, along with the

corresponding values of the coefficient of determination R
2
 (see APPENDIX B).

Miller dataset. This dataset was devised as an example where 2 highly correlated

variables, with little or no predictive value of their own, have great explanatory power

114

when combined. A third variable is also present which is highly correlated with the

output, but totally irrelevant for its determination. Contrary to other IVS techniques that

select one input at a time, wrapper techniques that check the explanatory power of

subsets should be able to select the optimal inputs. Indeed, the MBFIPS-ELM reaches

perfect specification for all the repetitions, while the BFIPS-ELM, although always able

to select the two relevant variables, over-specifies the extraneous input in 30% of the

cases. As noted in the previous paragraph, such over-specification problems are due to

the fact that the AIC (or the BIC) criterion penalizes model complexity, and not the

number of inputs directly. Table 6.4 shows that both techniques are able to recognize the

underlying linear input-output relationship.

Figure 6.5. Scatter plots of Kentucky River streamflow vs ELM model output

for progressively better-specified input subsets.

115

6.4.2.3.Computational efficiency

An accurate IVS algorithm might be of no practical use if it requires too much time

for processing a dataset. This is usually a major drawback of wrapper techniques which

explore a very large number of feasible solutions before reaching convergence. The

average run-time of the two methods for each dataset is shown in Table 6.5, along with

the average number of iterations and the average number of hidden units of the final

models. It appears that, thanks to the fast convergence of swarm optimization and to the

exceptional reduction in training time provided by the ELM, both methods can be

employed in practical IVS applications. With average run-time of around 2 minutes over

the synthetic datasets and of 40 minutes for the Kentucky dataset, the BFIPS-ELM is the

fastest between the two proposed techniques. These figures go up respectively to 5

minutes and 70 minutes for the MBFIPS-ELM, due to the increased number of iterations

needed to reach convergence as well as to larger size of the final models. This was

expected since multi-objective problems are generally more complex and require more

iterations to converge, and since the MBFIPS-ELM are developed by minimizing the

number of inputs directly, rather than model complexity. The computational times of

both techniques can be reduced by limiting the maximum number NHmax of hidden

neurons of the ELM. Fig. 6.6 show how the wrappers overall mean accuracy scores and

average run-time change when reducing NHmax to 30, 60 and 120 units. It can be seen

that the performances on the whole test-bed are basically unchanged for the BFIPS-

ELM, unless the minimum value of NHmax is considered. Most importantly, these similar

performances are obtained at much lower run-times, which are found to vary linearly

with NHmax. Lower computational requirements are also witnessed for the MBFIPS-

116

ELM, albeit the average performances decrease much quicker for this wrapper. Fig. 6.7

shows the details for the Kentucky dataset. It can be seen that what happens for the

overall accuracy is reflected on this dataset, with the MBFIPS-ELM underperforming

the BFIPS-ELM for all cases apart from NHmax = 250, where it reaches the highest SA

score.

TABLE 6.5. AVERAGES AND STANDARD DEVIATIONS OF NUMBER OF HIDDEN UNITS, NUMBER OF ITERATIONS

AND RUN-TIMES.

Dataset

Average num. of hidden units Average num. of iterations Run-time [sec]

BFIPS-ELM MBFIPS-ELM BFIPS-ELM MBFIPS-ELM BFIPS-ELM MBFIPS-ELM

1. AR1 6.7 ± 6.7 98.8 ± 67.7 140.5 ± 31.3 190.6 ± 74.0 99.8 ± 20.6 277.7 ± 147.2

2. AR9_500 8.4 ± 4.9 136.9 ± 87.4 128.7 ± 34.6 292.2 ± 95.8 92.8 ± 19.9 438.4 ± 178.0

3. AR9_70 7.4 ± 2.5 79.0 ± 74.8 138.1 ± 25.9 304.8 ± 91.8 39.0 ± 7.3 155.1 ± 58.7

4. TAR1 13.3 ± 8.6 108.0 ± 79.0 134.9 ± 35.7 175.8 ± 56.6 106.4 ± 31.5 266.6 ± 105.7

5. TAR2 32.0 ± 35.7 113.0 ± 83.7 138.0 ± 39.5 187.1 ± 57.5 109.7 ± 35.8 267.7 ± 108.8

6. NL_500 219.6 ± 27.8 205.5 ± 35.1 146.2 ± 38.5 215.9 ± 52.5 309.6 ± 78.0 393.9 ± 121.9

7. NL_70 183.6 ± 57.2 137.9 ± 60.0 136.5 ± 27.4 188.7 ± 41.2 92.4 ± 19.4 109.0 ± 29.5

8. NL2 87.5 ± 61.1 121.9 ± 66.6 134.7 ± 36.7 201.1 ± 62.5 200.8 ± 49.9 312.4 ± 130.2

9. Bank_fm 23.3 ± 10.3 133.8 ± 71.8 151.3 ± 37.3 366.2 ± 97.3 124.8 ± 29.8 472.9 ± 171.4

10. Bank_fh 20.0 ± 8.9 136.1 ± 76.2 142.1 ± 36.8 409.2 ± 140.3 106.7 ± 23.2 567.0 ± 239.3

11. Bank_nm 69.5 ± 68.3 167.8 ± 70.2 155.2 ± 37.7 424.2 ± 84.8 135.7 ± 33.7 644.1 ± 188.6

12. Bank_nh 29.2 ± 35.5 138.1 ± 75.4 147.9 ± 31.9 483.4 ± 116.2 121.2 ± 25.3 727.7 ± 228.1

13. Friedman_c0_10_m 185.7 ± 51.5 172.9 ± 65.0 144.6 ± 28.0 239.4 ± 50.1 150.9 ± 36.8 238.0 ± 64.6

14. Friedman_c0_10_h 102.9 ± 67.8 157.2 ± 61.7 137.2 ± 37.4 242.5 ± 48.2 93.2 ± 31.7 246.5 ± 65.2

15. Friedman_c0_50_m 43.9 ± 31.7 169.0 ± 79.2 149.9 ± 40.2 513.6 ± 135.0 112.6 ± 27.1 534.3 ± 184.1

16. Friedman_c0_50_h 61.4 ± 35.6 139.5 ± 92.1 141.2 ± 29.3 730.0 ± 167.6 106.7 ± 20.5 797.4 ± 236.2

17. Friedman_c25_10_m 112.4 ± 49.0 128.9 ± 68.8 122.0 ± 29.5 228.6 ± 56.6 126.5 ± 31.4 228.5 ± 73.4

18. Friedman_c25_10_h 24.2 ± 18.2 111.1 ± 72.0 122.3 ± 37.1 176.4 ± 47.2 90.2 ± 23.7 162.1 ± 72.3

25. Kentucky 222.6 ± 28.4 205.4 ± 43.3 145.2 ± 45.3 258.9 ± 71.5 2458.9 ± 874.1 4168.1 ± 1655.5

26. Miller 117.0 ± 89.5 157.9 ± 85.6 110.6 ± 25.0 166.8 ± 37.2 104.5 ± 25.7 158.2 ± 37.4

117

Figure 6.6. Overall mean selection accuracy for different values of NHmax.

Figure 6.7. Mean selection accuracy in the Kentucky dataset for different values of NHmax.

118

6.4.2.4.Comparison with other IVS techniques

A more thorough evaluation of the effectiveness of the BFIPS-ELM and MBFIPS-

ELM can be done by comparing their performances against those of the 4 IVS

techniques tested in the original work of Galelli et el. (2014). The reader is referred to

their paper and references therein for further information on these techniques and their

implementation. The mean SA scores reported in Table 6.6 were retrieved from the

website (http://ivs4em.deib.polimi.it) included in the IVS framework. These figures can

be reliably compared against those in this study since they are computed using the same

value of 0.7 for γ. On the other hand, the analysis regarding the average run-times is

only approximative since the experiments were carried out on different software

environments and hardware. From a comparison with Table 6.2-6.3, it can be seen that

the proposed wrappers generally provide higher accuracy than these methods, with

increases of overall SA that goes from a minimum of 11.1% to a maximum of 15.8% for

the mean scores, and from 13.4% to 20.6% for the median scores. These improvements

tend to occur when the dataset is characterized by high nonlinearities, non-Gaussian

output, reduced number of observations, and inter-dependency of the input variables

(see Table 6.1). Although each technique has its merits and drawbacks, the measure of

these improvements suggests that BFIPS-ELM and MBFIPS-ELM are very good

candidates for carrying out the IVS task, especially if one considers the high accuracy

and reduced computational costs of the ELM-based wrappers obtained with lower NHmax,

as shown in Fig. 6.6-6.7. Furthermore, even with all the caution due to the different

implementations, the proposed techniques appear to be much faster than the GA-ANN

wrapper. Indeed, the average 30 hours of run-time needed by the GA-ANN to process

http://ivs4em.deib.polimi.it/

119

the Kentucky dataset drop to 70 minutes for the largest MBFIPS-ELM and to less than 3

minutes for the BFIPS-ELM with NHmax = 30, which still outperforms the GA-ANN

with a SA of 0.922. The speedups provided by ELM training over backpropagation are

even more significant if one considers that this particular GA-ANN was built around an

ANN with one single hidden-neuron. Similarly, from the good results of smaller ELMs

on the Kentucky dataset (Fig. 6.7) it appears that the PMIS and IIS might lose their

computational speed advantage for long datasets such as those typically employed in

data-driven streamflow forecasting applications. With the exception of the PCIS that

achieves high accuracy in very short computational times for the Kentucky dataset, there

are strong indications that the proposed methods are superior in carrying out the IVS

task for NNRF applications. In addition, if one considers the poor results on the NL

benchmarks, it is likely that PCIS accuracy could substantially decrease for applications

in highly nonlinear watersheds, such as those of arid and semi-arid regions, mountainous

regions, and areas with high climate variability (Borga et al., 2007; Ye et al., 1997).

These nonlinearities are particularly severe during storm events, thus IVS techniques

based on linear correlation measures might not be suitable for the development of flood

forecasting and warning systems. On the other hand, the extrapolation of the benchmark

results suggests that employing the ELM-based wrappers should provide additional

benefits for applications in poorly-gauged watershed, characterized by short datasets

with higher noise. Similarly, the remarkable performances on the Miller benchmark

suggest that the proposed techniques might offer consistent advantages when processing

input variables which are truly informative only when considered together. This latter

case is particularly relevant for those applications where hydro-meteorological

120

parameters are used to estimate evapotranspiration in order to model the evolution of

soil moisture content affecting runoff generation (Zanetti et al., 2007).

TABLE 6.6. MEAN SA SCORES AND AVERAGE RUN-TIME OF PMIS, IIS, PCIS AND GA-ANN

(TAKEN FROM GALELLI ET EL., 2014)

Datasets

Mean selection accuracy SA Average run-time [sec]

PMIS IIS PCIS GA-ANN PMIS IIS PCIS GA-ANN

1. AR1 0.999 0.994 0.999 1.000 16.80 ± 2.87 9.49 ± 2.70 0.16 ± 0.05 1491.2 ± 560.2

2. AR9_500 0.999 0.985 0.998 1.000 38.84 ± 3.29 26.73 ± 6.64 0.38 ± 0.13 1973.3 ± 864.3

3. AR9_70 0.823 0.696 0.937 0.851 2.22 ± 0.43 3.39 ± 0.91 0.38 ± 0.13 378.4 ± 199.7

4. TAR1 1.000 0.992 0.998 1.000 14.02 ± 1.22 11.66 ± 3.92 0.23 ± 0.09 841.7 ± 330.9

5. TAR2 0.999 0.999 0.986 0.953 26.13 ± 3.46 8.08 ± 0.16 0.40 ± 0.27 1630.4 ± 860.6

6. NL_500 0.743 0.983 0.575 0.576 23.41 ± 3.72 24.51 ± 3.39 0.20 ± 0.08 878.6 ± 272.3

7. NL_70 0.743 0.729 0.536 0.520 1.82 ± 0.66 4.93 ± 1.79 0.25 ± 0.25 185.8 ± 117.4

8. NL2 0.681 0.671 0.450 0.558 24.26 ± 4.94 15.66 ± 5.02 0.33 ± 0.15 850.2 ± 467.0

9. Bank_fm 0.484 0.475 0.743 0.752 31.03 ± 6.18 44.41 ± 6.22 1.23 ± 0.36 1544.4 ± 341.9

10. Bank_fh 0.498 0.480 0.589 0.548 35.07 ± 7.45 25.52 ± 4.08 0.99 ± 0.27 1754.1 ± 775.6

11. Bank_nm 0.606 0.681 0.785 0.762 48.33 ± 17.61 41.94 ± 2.12 1.55 ± 0.50 1732.6 ± 288.6

12. Bank_nh 0.504 0.580 0.728 0.619 34.50 ± 12.82 30.59 ± 3.65 1.29 ± 0.37 1667.8 ± 634.6

13. Friedman_c0_10_m 0.995 0.986 0.859 0.860 13.36 ± 1.10 9.64 ± 0.45 0.31 ± 0.07 609.9 ± 215.7

14. Friedman_c0_10_h 0.865 0.891 0.850 0.851 10.79 ± 1.41 6.68 ± 0.44 0.56 ± 0.58 710.5 ± 332.0

15. Friedman_c0_50_m 0.995 1.000 0.856 0.860 46.61 ± 3.42 60.59 ± 4.85 1.26 ± 0.35 2074.7 ± 564.2

16. Friedman_c0_50_h 0.860 0.888 0.851 0.855 38.72 ± 6.58 57.39 ± 6.45 1.33 ± 0.55 1832.8 ± 593.0

17. Friedman_c25_10_m 0.832 0.720 0.647 0.627 10.31 ± 2.62 10.40 ± 2.47 0.26 ± 0.18 325.5 ± 87.3

18. Friedman_c25_10_h 0.660 0.594 0.577 0.571 7.78 ± 1.87 3.17 ± 0.56 0.22 ± 0.05 303.4 ± 146.6

25. Kentucky 0.650 0.822 0.944 0.915
1860.37 ±

107.22

800.58 ±

92.86
7.65 ± 1.88

106,725.6 ±

27,214.6

26. Miller 0.350 0.618 0.280 0.710 2.65 ± 0.27 0.98 ± 0.55 0.14 ± 0.08
5664.9 ±

1561.8

Overall mean SA 0.783 0.776 0.818 0.806

Overall median SA 0.764 0.789 0.759 0.769

6.4.3. Qualitative assessment of the proposed wrappers

The qualitative criteria proposed in the IVS framework and briefly described in

Section 6.3.3 are employed to perform a final step of evaluation on the BFIPS-ELM and

MBFIPS-ELM techniques.

121

Ease of use and robustness. The proposed techniques require the specifications of

several parameters that 1) govern the swarm optimization process, 2) determine the

binary encoding of the wrappers, and 3) define the optimization function used or the

selection of the final models. However, the optimal choices for most of these parameters

have already been investigated in previous studies or have been examined in the detail in

this one. For instance, employing 30 particles for the swarm has been a standard for

most applications regarding the use of PSO, and as mentioned earlier in text, the use of

von Neumann topologies has been advocated in several studies. We suggest setting the

maximum number of particles in the MBFIPS Pareto-front as the number of input

candidates so that all of them could be selected in case they are all relevant. Although a

thorough investigation on the effect of mutation has not been carried out in this study,

the values reported for the mutation parameters seemed to be most appropriate after

some preliminary runs (results not shown here). The parameters linputs and lact defining

encoding scheme are directly determined by the size of the candidate pool and the

number of different activation function that one wants to test. As emerges from Section

6.4.2.3, appropriate values of NHmax can be set to around 100 for the BFIPS-ELM and

250 for the MBFIPS-ELM. Run-time could be shortened at the expense of slightly lower

performances by reducing the maximum number of hidden units to around 50 for the

BFIPS-ELM. On the other hand, values of NHmax below 100 should not be employed for

the MBFIPS-ELM. Is important to allow the ridge regression constant λ to take a wide

variety of possible values, therefore we suggest to use 6 or 7 bits for lλ. More bits could

be assigned for the coding of λ, however an alternative method to the power-of-two

sequence employed here will be needed to fully exploit the denser discretization. As

122

shown in the previous sections, the best results for the BFIPS-ELM were obtained using

the AIC criterion with a logarithmic penalty. The use of this objective function is

therefore suggested for the development of ELM-based wrappers. A square root penalty

could be preferred if more importance is given to the exclusion of extraneous inputs. On

the other hand, the RMSE might be preferred if one wants to avoid under-specification

of meaningful inputs. In the same way, the value of ρ could be changed to obtain similar

effects for the MBFIPS-ELM case, taking into account that ρ=1% provided the best

tradeoff for the test-bed employed in this study.

Explanation capability. While filters technique such as the PMIS, IIS and PCIS

directly provide information about the relative importance of each selected input,

wrapper methods usually require post-processing analysis for such information to be

retrieved. Although the BFIPS-ELM is no exception to this rule, the set of Pareto-

particles returned by MBFIPS-ELM could be extremely informative with respect to the

relative importance of the selected inputs. As a consequence of the optimization

approach employed for the MBFIPS-ELM, the variable defining the subset for the

Pareto solution with cardinality = 1 is overall the most relevant. In the same way, the

variable added to form the subset of the solution with cardinality = 2 is the second most

informative. Similar steps can be performed until the actual final solution selected with

the criterion in (6.4) is considered, and the last variable added is regarded the least

informative. For this procedure to be fully informative the Pareto-front has to be

consistent, meaning that variables included in subsets with lower cardinalities should

always be part of those with greater cardinalities. Although the analysis of relative

variable importance for the fully synthetic datasets is beyond the scope of this study, an

123

in-depth analysis is carried out for the Kentucky dataset. The input selected at each

cardinality for the 30 replicates of the Kentucky dataset are shown in the selection

matrix of Fig. 6.8. Darker colors in the matrix identify inputs which have been selected

at lower cardinalities and always retained at higher cardinalities. The selection matrix

shows that all the returned Pareto-fronts are consistent, even when the MBFIPS-ELM

under-specifies (row 9, 25 and 30) or over-specifies (row 6, 11, 17, and 18) the optimal

subset. Furthermore, there is a remarkable uniformity across the replicates, since Qt-1 is

always selected at cardinality 1, Qt-2 at cardinality 2, ERt at cardinality 3, and lastly ERt-1

at cardinality 4 or 5 when the Pareto-front does not include a solution with 4 inputs (row

11). It is also interesting to note that all the under-specifications concern this latter input,

which is the least relevant.

Flexibility. The optimization algorithms and reference model of the proposed

wrappers can be easily interchanged with other suitable alternatives, provided the binary

encoding is modified accordingly in the latter case. However, it is important to underline

the intrinsic flexibility of the ELM-wrappers presented in this study, where models with

different complexity and different types of activation functions are concurrently

developed to match the underlying relationship in the datasets. In addition, the

convenient formulation of the BFIPS allows for a straightforward implementation of its

multi-objective generalization.

124

Figure 6.8. Selection matrix for the Kentucky River dataset.

6.5. Conclusions

Fast and accurate wrapper IVS techniques for application in rainfall-runoff data-

driven modeling were developed using ELM and binary-coded discrete swarm

optimization. The effectiveness of the proposed methods was assessed using the criteria

and datasets of a comprehensive IVS evaluation framework, and compared with that of

4 existing IVS methods. The results obtained showed that the proposed wrapper

techniques provided overall best performances at run-times which are comparable with

those of some fast model-free approaches, such as PMIS and IIS. The best performers

were found to be 1) the MBFIPS-ELM algorithm developed based on the concurrent

125

minimization of an error function and the number of selected inputs, and 2) the BFIPS-

ELM algorithm based on the minimization of the AIC variant with logarithmic

complexity penalty. The first technique was arguably the most accurate overall, and was

able to reach an almost perfect specification of the optimal input subset on a partially

synthetic rainfall-runoff experiment. These high performances are obtained at the

expense of longer run-times, since the MBFIPS-ELM requires larger underlying ELM

models. However, the analysis of the returned Pareto-fronts allows for the determination

of the relative importance of the selected inputs, which is usually unattainable with other

wrapper methods such as the BFIPS-ELM. On the other hand, the latter technique is

found to consistently reach high accuracy scores while being considerably faster as it

performs well even with small ELM models. Further studies should verify whether these

techniques could provide additional benefits when employed in real-world applications

characterized by high nonlinearity in the catchment dynamics, as suggested by the

extrapolation of the results obtained on the synthetic datasets. Improved performances

over other IVS techniques should also be expected for applications in poorly-gauged

watershed or when there is significant inter-dependence among the input variables

forming the candidate pool.

126

7. Neural Network River Forecasting through baseflow

separation and binary-coded swarm optimization

The inclusion of expert knowledge in NNRF applications is expected to yield

better performances in modeling and more reliable estimates of river quantities. Modular

techniques designed to work on different flow regimes and hydrological conditions are

preferred ways to incorporate such hydrological knowledge in data-driven models.

Previous studies have suggested that more accurate prediction of total streamflow could

be achieved through modular ANNs trained to perform an implicit baseflow separation.

These models fit separately the BaseFlow (BF) and Excess Flow (EF) components as

obtained by a digital filter, and reconstruct the Total Flow (TF) by adding these two

signals at the output. The optimization of the filter parameters and ANN architectures is

carried out through global search techniques that minimize a weighted function of the

errors of the TF, BF, and EF components. Despite the favorable premises, the real

effectiveness of these modular models (MM) has been tested only on a few case studies,

and the quality of the baseflow separation performed by this technique has never been

thoroughly assessed. In this study, we compare the performance of MM against global

models (GM) for nine different gaging stations in the northern United States. Binary-

coded swarm optimization is employed for the identification of filter parameters and

model structure, while ELMs, instead of ANN, are used to drastically reduce the large

computational times required to perform the experiments. The results show that there is

no evidence that MMs outperform global GMs for predicting the TF. In addition, the

baseflow produced by the MM largely underestimates the actual baseflow component

expected for most of the considered gages. This occurs because the values of the filter

127

parameters maximizing overall accuracy do not reflect the geological characteristics of

the river basins. The results indeed show that setting the filter parameters according to

expert knowledge results in accurate baseflow separation but lower accuracy of TF

predictions, suggesting that these two objectives are intrinsically conflicting rather than

compatible.

7.1. Introduction

The black-box nature of NNRF models is a target for widespread criticism, and

likely the major reason why many hydrologists advise against their use in real-world

problems in favor of physically sound conceptual models. To overcome this issue,

recent efforts have been made by the research community to explain the internal

workings of NNRF models, and link the processes taking place within the network to

the processes in the watershed (Fernando and Shamseldin, 2009; Jain and Kumar, 2009;

Jain et al., 2004; Wilby et al., 2003). Others studies have focused on the incorporation of

expert knowledge into data-driven models in order to improve their hydrological

plausibility and overall modeling performances with respect to those of a single global

model (GM). A preferred track is represented by the use of modular models (MM)

designed to work on different flow regimes, specific parts of the hydrograph, as well as

different hydrological conditions. Zhang and Govindaraju (2000) employed Bayesian

concepts and a committee of three specialized ANN responsible for the forecasting of

low-, medium-, and high-runoff events for three medium watersheds in Kansas, US. An

additional gating-network was delegated to weigh the output of these three expert

modules depending on the hydro-meteorological conditions. A similar approach was

128

later devised by Parasuraman et al. (2006), where only one of the ANN modules was

selected at a time by an embedded spiking layer developed with unsupervised learning,

i.e. either trained by competitive learning or represented by a Self-Organizing Map

(SOM). Another example combining unsupervised learning and MM was proposed by

Toth (2009) for the Sieve watershed, Italy. Clustering of data with similar hydrological

and meteorological conditions was first performed using SOM, and an ANN was

subsequently trained for each cluster. Clusters’ association obtained by exploiting SOM

indications on the similarity between classes later resulted in remarkable performance

improvements of the MM over the GM used for comparison.

Jain and Srinivasulu (2006) proposed an integrated approach where the flow hydrograph

was decomposed into different segments based on physical concepts in a catchment, and

each segment was modeled using different ANN and/or conceptual techniques.

Application of this hybrid MM approach to the Kentucky River, US, catchment showed

that it was able to outperform the GM made of a single ANN. Further improvements

were later obtained for the same case study with a similar approach that employed

Genetic Algorithms (GA) for training the ANN modules of the integrated system

(Srinivasulu and Jain, 2009). Corzo and Solomatine (2007a, 2007b, 2006) proposed a

more process-based approach where the BaseFlow (BF) and Excess Flow (EF)

components of the Total Flow (TF) are first separated using the Eckhardt digital filter

(Eckhardt, 2005), and then modeled separately by two ANNs. This Baseflow

Separation-based MM (BS-MM) reconstructs the TF by summing the output produced

by the two modules trained to fit the BF and EF components through the LM method.

The unknown filter parameters are optimized along with the number of hidden neurons

129

of the two ANNs using GA and Generalized Pattern Search (GPS) to minimize a

weighted sum of the errors of the TF, BF and EF predictions. Although this technique

was reported to outperform the GM and other modular techniques on three different

watersheds, the study did not thoroughly assess how well the BF and EF sub-processes

were actually reproduced by the two modules. Indeed, the physical plausibility of this

approach would be greatly enhanced if the two specialized modules were found to

correctly fit the BF and EF components, making the BS-MM a strong candidate for real-

world operational purposes.

To our knowledge, these important propositions have not been verified and,

hence, filling this gap remains a largely unexplored area of research. This provides the

motivation for the present study to test the BS-MM approach for separation of BF and

EF. To improve the statistical significance of our study, we test the BS-MM nine

watersheds with porous aquifers sited in the northern United States. Reliable estimates

of the BaseFlow Index (BFI) and the optimal Eckhardt filter parameters are already

available for each employed gage (Eckhardt, 2008). The availability of these values

allows verifying whether the implicit baseflow separation performed by the modular

approach is consistent with expert findings, as well as check if using the recommended

values for the filter parameters will yield improved performances. The BS-MM

approach will also be tested against the GM built for each of the nine gages, so as to

provide a more statistically-robust comparison of these two different approaches. Due to

the large computational costs required to develop the models for each case study, the

Extreme Learning Machine (ELM) paradigm is used instead gradient-based ANN

training. In addition, the BFIPS algorithm is employed to perform the search of optimal

130

model structures and values of the filter parameters, while the automatic selection of the

optimal set of inputs is done using the MBFIPS as shown in Chapter 6.

The rest of this Chapter is organized as follows. Section 7.2 presents the

necessary background information on the BS-MM technique and offers a detailed

description of the models used for the experiments. Section 7.3 describes the employed

case studies and the experimental setup. The results of the experiments are reported and

discussed in section 7.4. Conclusions are drawn in Section 7.5.

Figure 7.1. The BS-MM model of Corzo and Solomatine.

7.2. Baseflow Separation-based Modular Models (BS-MM)

7.2.1. Original BS-MM

The BS-MM proposed by Corzo and Solomatine (2007a, 2007b, 2006) is

displayed in Fig. 7.1. The Eckhardt baseflow filter produces the baseflow and

excess flow components from the observed total flow . These signals are

used as targets for the training of the two specialized ANN modules, whose outputs

 and are added up to give the estimation of the total flow . Since the

131

base- and excess-flow components are initially unknown, the most relevant inputs are

selected with respect to the observed TF using correlation and mutual information

analysis. A GO algorithm, the GA and GPS in their original works, is employed to

optimize the number of hidden neurons of both ANN modules NH1 and NH2, as well as

the values of the filter parameters. These are: 1) the initial baseflow value ; 2) the

recession constant a; and 3) the maximum value BFImax of the baseflow index BFI,

which is the long-term ratio of baseflow to total streamflow. The value of given

by the Eckhardt filter can be thus written as

 (7.1)

subject to . The value of is obtained by subtracting the results of

(7.1) from . The parameters composing the filter are supposed to be unknown, and

the GO algorithm finds them along with NH1 and NH2 by minimizing a weighted sum of

the Root Mean Square Errors (RMSE) computed for the total flow RMSETF, and for the

predictions of two branches of the modular model RMSEBF and RMSEEF, respectively.

Since the BS-MM technique was originally devised for operational purposes in flood

prediction, Corzo and Solomatine (2007a, 2007b) reasonably assigned greater weights to

the overall and excess flow terms, resulting in the objective function in (7.2) for the GO

algorithm

 (7.2)

Although the three weights could be also subject to optimization, the same objective

function is also employed in the present study.

132

7.2.2. Modifications to the BS-MM

This work features some modifications to the original BS-MM, mostly in order

to increase its speed and automation, which would facilitate the analysis across several

case studies. In the first place, ELMs are used, instead of ANNs, for both GM and MM

model development. As reported in Section 2.2, this recently introduced class of neural

models is known to be more accurate than ANN while at the same time providing

remarkable speedups during the training process. Secondly, the BFIPS algorithm is

employed, instead of GA and GPS, for the determination of optimal ELM properties and

values of the filter parameters. However, the value of the recession constant a is not

searched during the optimization process but determined beforehand through recession

analysis, which can be easily performed and provides more reliable results (Eckhardt,

2012, 2008; Li et al., 2014). The selection of optimal model predictors is automatized

using a wrapper based on the MBFIPS algorithm, which according to the results

presented in Chapter 6 has been found to outperform other input variable selection

techniques for NNRF applications.

7.2.3. Models employed

The analysis presented in this study concerns three different model typologies.

These are: 1) an overall global model built using a single ELM (GM); 2) a BS-MM

derived from the original model (Corzo and Solomatine, 2007a, 2007b) after the

modifications described in the previous section have been applied (BS-MM1); and 3) a

variant of BS-MM1, where all the filter parameters are determined beforehand

according to expert-knowledge (BS-MM2). The analysis on the latter model allows

checking whether the inclusion of expert-knowledge in BS-MM development results in

133

better discharge predictions independently from failures in the filter parameters’

optimization process.

GM. This model consists of a single ELM, as shown in Fig. 7.2. The MBFIPS is

used to determine the optimal subset of inputs, as well as the optimal number of hidden

neurons NH of the ELM model, and the value of the ridge regression constant λ. The

value of the constant ρ used to select the final model is set to 1%.

BS-MM1. The modified version of the BS-MM is displayed in Fig. 7.3. The

inputs fed to the two ELM modules are those obtained for the GM using the MBFIPS.

The BFIPS is employed to search for the optimal number of hidden neurons NH1 and

NH2 of the two ELMs, the respective ridge regression constants λ1 and λ2, as well as the

values of the baseflow filter parameters BFImax and QBF0. As mentioned before, the

recession constant a will be instead determined through recession analysis. The BFIPS

performs the optimization by minimizing the weighted error function in (7.2).

BS-MM2. This model (Fig. 7.4) differs from the BS-MM1, as the baseflow

separation is performed in advance using fixed filter parameters. In particular, the value

of BFImax is assigned based on the geologic characteristics of the watershed, while QBF0

is set equal to the total streamflow discharge observed at the beginning of the time series.

This latter simplification is justified, since it is known from sensitivity analysis that QBF0

has little impact on the quality of the baseflow separation performed by the Eckhardt

filter, especially for long data series (Eckhardt, 2012). Performing the baseflow

134

separation in advance allows determining the inputs for the BF and TF modules

separately using the MBFIPS-based wrapper as done for the GM. Once this pre-

processing step has been completed, the BFIPS is employed to optimize the ELM

structure of the final BS-MM2 model by minimizing (7.2).

Figure 7.2. The Global Model (GM).

Figure 7.3. The BS-MM1 model.

Figure 7.4. The BS-MM2 model.

135

7.3. Experimental setup

7.3.1. Working datasets

The models presented in the previous section are now tested on nine different

small- to medium-sized watersheds in the northern United States. Table 7.1 reports the

details of these case studies, including their location, the USGS gaging station ID, the

drainage area at the station, the average streamflow in the considered period, as well as

the values of the filter parameters a and BFImax. As mentioned before, the recession

constant is obtained through recession analysis of the streamflow discharge (Eckhardt,

2008). On the other hand, the reported values of BFImax are those recommended based

on empirical results and on the geologic characteristics of the watersheds (Eckhardt,

2012, 2008, 2005). The value of 0.8 is thus used for all the gaging stations, as the cases

examined are all relative to perennial streams with porous aquifers. Table 7.1 also shows

the BFI estimates as computed with the Eckhardt filter using the reported values of the

parameters. These estimates will be later employed along with goodness-of-fit measures

to assess the quality of the baseflow separation performed by the BS-MMs. The

candidate modelling inputs for each case were obtained from 1 up to a maximum of 3

nearby stations of NOAA’s National Climatic Data Center (NCDC). The type of

variables available are identified as RAIN (rainfall), SNOW (snowfall), SNWD (snow

depth), TMAX (maximum temperature) and TMIN (minimum temperature),

respectively. The datasets are divided into training, validation and test subsets,

accounting for 50%, 25% and 25% of the observations, respectively. The observations

are shuffled in order to grant statistical similarity of streamflow across the three subsets,

while at the same time including the highest peak in the training dataset to improve

136

model generalization. Data shuffling requires reconstructing the flow series sequentially

in time before applying the baseflow filter. The BF and EF signals obtained from the

filter are then reordered to match the initial shuffled arrangement before being used as

target data for the ELM modules. Five lagged predictors are employed for both

autoregressive (FLOW) and exogenous inputs. In particular, discharges up to 5 days

ahead are considered for streamflow observations, while lags from 0 to 4 days ahead are

used for the meteorological variables.

7.3.2. Algorithm setup

The same setup is employed for each of the nine case studies. Both the BFIPS

and the MBFIPS algorithms are run for a maximum of 200 iterations, or stopped earlier

if no improvement in the search is witnessed for over 30 consecutive iterations. In both

cases, the search is performed using 30 particles arranged to form a von Neumann

topology (Fig. 3.4h). The number of maximum particles in the MBFIPS Pareto-frontier

is also set to 30, while the bit-flipping mutation probability is set to 5% and a maximum

of 5 particles are allowed to undergo mutation at each iteration. In order to reduce the

chance of bad optimization minima, 30 different runs of the algorithms are carried out

for each case study and each model typology. The optimal models for the BS-MM cases

are thus chosen as the ones corresponding to the lowest value of ET on the validation

dataset, while the final GM models are identified on the overall Pareto-front computed

from the frontiers of the 30 runs by setting the cutoff parameter ρ = 1%.

7.3.3. Binary particle encoding

Since binary-coded swarm optimization is used to evolve ELM model structures,

determine the value of problem-specific parameters and identify the optimal set of

137

inputs, the encoding scheme described in Section 6.2.1 is employed for particle

positions. For those cases where inputs are to be selected using the MBFIPS one bit is

used for each potential input, with a value of 1 indicating a selected predictor and 0

otherwise. Seven bits are allocated for the number of hidden neurons of each modular

ELM, whose complexity could therefore range between 1 and 128 hidden neurons. On

the other hand, 8 bits are allotted for the GM-ELM so that the maximum possible size of

the three model topologies would be the same. Six bits are destined for the values of the

ridge regression constants λ, which are allowed to vary within a series of increasing

powers of 2 between 2
-31

 and 2
32

. Eight bits (256 steps) are used to code each of the two

filter parameters, with the value of QBF0 going from 0 to the maximum value of the

observed Q, while BFImax is allowed to vary between 0.25 and 0.8. These values are

chosen as they are the suggested extremes for Eckhardt filter implementation, with 0.25

corresponding to the case of perennial stream with rocky aquifer and 0.8 being the

recommended value for the case of perennial stream with porous aquifer.

7.3.4. Evaluation metrics

For a thorough assessment of model prediction accuracy, five evaluation metrics

are employed: the Root Mean Square Error (RMSE), the Coefficient of Efficiency (CE),

the Median Absolute Percentage Error (MdAPE), the Fourth Root Mean Quadrupled

Error (R4MS4E), and the Mean Squared Logarithmic Error (MSLE). As reported in

APPENDIX B, these 5 metrics evaluate model performances with respect to overall

goodness-of-fit of the predictions (RMSE, CE and MdAPE), as well as during low flow

(MSLE, and in second place MdAPE) and high flow (R4MS4E) sections of the

hydrographs.

138

TABLE 7.1. CASE STUDIES DETAILS

USGS ID Latitude Longitude

Drainage

Area
Mean

Discharge

(cumecs)

Period investigated
Total observations

(used observations)
a BFImax BFI Variables available

(sq. km)

04015475 47°31'38" 92°07'21" 259 2.33 19-09-78 to 30-09-82 1473 (1468) 0.971 0.8 0.69 RAIN, SNOW, SNWD, TMAX, TMIN

04067958 45°23'16" 88°18'18" 1157.7 8.8 01-06-98 to 31-12-13 5693 (4225) 0.977 0.8 0.76 RAIN, SNOW

04069416 45°08'36" 87°48'02" 2641.8 19.37 01-06-98 to 31-12-13 5693 (5000) 0.976 0.8 0.74 RAIN, SNOW, SNWD

04072150 44°32'00" 88°07'47" 279.7 1.76 01-01-01 to 31-12-13 4748 (2068) 0.970 0.8 0.57 RAIN, SNOW, TMAX, TMIN

04085395 44°01'29" 88°07'05" 282.3 1.44 01-07-93 to 30-09-05 4475 (4214) 0.970 0.8 0.71 RAIN, SNOW, SNWD, TMAX, TMIN

04232046 43°06'22" 77°27'43" 71.5 0.37 01-12-87 to 21-02-90 814 (809) 0.967 0.8 0.66 RAIN, SNOW

01333000 42°42'32" 73°11'50" 110.3 2.86 01-01-00 to 31-12-13 5114 (4378) 0.972 0.8 0.69 RAIN, SNOW, TMAX, TMIN

01101000 42°45'10" 70°56'46" 55.2 1.07 01-01-94 to 31-12-13 7305 (4060) 0.974 0.8 0.69 RAIN, SNOW, SNWD, TMAX, TMIN

01176000 42°10'56" 72°15'51" 388.5 7.04 01-01-94 to 31-12-13 7305 (4065) 0.977 0.8 0.75 RAIN, SNOW, SNWD, TMAX, TMIN

TABLE 7.2. PERFORMANCE METRICS FOR TF PREDICTIONS ON THE TEST DATASET

GM

BS-MM1 BS-MM2

USGS ID RMSE CE MdAPE R4MS4E MSLE RMSE CE MdAPE R4MS4E MSLE RMSE CE MdAPE R4MS4E MSLE

04015475 0.3658 0.9935 7.3176 0.9504 0.0336

0.3615 0.9936 7.7244 0.9319 0.0556

0.6855 0.9770 11.7335 2.3141 0.1442

04067958 0.7372 0.9895 2.3360 1.5086 0.0042

0.8323 0.9866 2.5477 2.0231 0.0043

0.7638 0.9887 2.7890 1.5607 0.0043

04069416 2.9265 0.9633 7.2930 5.9245 0.0183

3.0311 0.9606 7.4488 7.1715 0.0188

3.0759 0.9594 7.2002 7.5334 0.0181

04072150 1.7978 0.8574 41.6663 4.5282 0.4749

1.8428 0.8502 67.9088 4.7429 0.7259

1.8428 0.8502 54.8926 4.8468 0.5011

04085395 0.3939 0.9731 9.2608 1.0862 0.0737

0.3976 0.9726 9.7810 1.0145 0.0671

0.4144 0.9702 8.2725 1.0160 0.0564

04232046 0.1719 0.8797 12.4469 0.3356 0.1151

0.1751 0.8753 14.2391 0.3436 0.1037

0.1875 0.8569 15.8467 0.3688 0.1034

01333000 1.4232 0.8254 11.3982 3.3494 0.0938

1.4782 0.8117 13.9758 3.7272 0.1216

1.6167 0.7747 13.3884 4.0191 0.1000

01101000 0.2434 0.9804 6.4697 0.8253 0.0493

0.1629 0.9912 7.7400 0.3551 0.0566

0.1826 0.9890 8.6668 0.5303 0.0561

01176000 0.8524 0.9856 4.0211 1.8848 0.0153 0.8470 0.9858 4.4233 1.7395 0.0125 0.8361 0.9861 4.6431 1.8183 0.0176

MEAN 0.9902 0.9386 11.3566 2.2659 0.0976

1.0143 0.9364 15.0877 2.4499 0.1296

1.0673 0.9280 14.1592 2.6675 0.1112

MEDIAN 0.7372 0.9731 7.3176 1.5086 0.0493

0.8323 0.9726 7.7400 1.7395 0.0566

0.7638 0.9702 8.6668 1.8183 0.0564

139

Figure 7.5. Comparison of BF signals produced by modular models for each watershed

140

7.4. Results and discussion

7.4.1. Total streamflow prediction

Table 7.2 reports the values of the evaluation metrics as computed for the test

datasets of each watershed. The results show no evidence that BS-MM approaches

outperform the GM for total streamflow prediction. The opposite is more likely to be

true, as global solutions show better performances on most of the watersheds employed

for the comparison. The GM models are the only ones that concurrently rank the highest

with respect to all the metrics for a given watershed, as it happens for the gaging stations

#04067958, #04072150 and #01333000. If one considers each metric separately, the

GM models score the best on six out of nine cases according to RMSE and CE, seven

cases for MdAPE, five cases for R4MS4E, and 4 cases for MSLE. Similar conclusions

could be drawn by looking at the mean and median values for the nine watersheds, also

reported in Table 7.2. Although these values should be taken with a grain of salt since

they are relative to basins in different hydro-meteorological conditions, they strongly

suggest that modular solutions perform worse than global ones for TF prediction. This is

particularly true for the BS-MM2 models, which, despite being built to perform

baseflow separation according to expert-knowledge (BFImax = 0.8), are arguably the

worst performers in terms of overall goodness-of-fit of the modeled TF signal. This

conclusion seems more likely if one considers that all the streams examined have a

strong BF component, which should in theory favor the BS-MM approaches over GM

(Corzo and Solomatine, 2007a, 2007b). On the contrary, the GM models appear to have

better performances also for the low-flow component of the hydrographs, as indicated

141

by lower values of MSLE. This is somewhat unexpected, as low-flow is mainly BF

which is directly modeled in modular solutions.

Figure 7.6. Selection frequency for each type of variable with respect to modeled signal.

Figure 7.7. Selected variables for each watershed.

142

7.4.2. Analysis of baseflow separation

Table 7.3 reports the optimal values of QBF0 and BFImax parameters of the BS-

MM1 models developed for each stream. It emerges that the values of BFImax returned

by the optimization algorithm are substantially smaller than the recommended value of

0.8 for most of the watersheds, and very close to the lower bound of 0.25. Consequently,

the BF signals are very different from those returned by the Eckhardt filter with BFImax =

0.8 (BFref), as shown by the poor values of the CE metric computed using these two time

series. In the same way, the BFI estimated for BS-MM1 on the test datasets are

generally much lower than the reference values reported in Table I. On the other hand,

the estimated BFIs of BS-MM2 are consistent with the values in Table I, suggesting that

this approach is more physically-based than BS-MM1. Indeed, although one could

question whether 0.8 is the best choice of BFImax for all the analyzed cases, most of the

BFIs estimated from BS-MM1 predictions are too low for perennial streams with porous

aquifers. The lack of hydrological significance of the BF signals from the BS-MM1

models can be also evaluated graphically, as done in Fig. 7.5, where the BF produced by

the two modular solutions are compared with BFref on part of the dataset of each

watershed. The figures show that while the BF signals from the BS-MM2 models

closely resemble that of the reference baseflow, the BS-MM1 solutions significantly

underestimate BFref for all the gaging stations except for #04072150 (Fig. 7.5d) and

#04232046 (Fig. 7.5f). This behavior may depend on the coefficients of the ET objective

function in (7.2) used to develop the modular models, which weigh more the errors of

the EF component than those of the BF component. This may lead the optimization

process for BS-MM1 development to maximize EF by reducing BFImax, and minimize

143

RMSEET while disregarding the damped BF signal. In these cases, the values of BFImax

corresponding to better minima of ET will not reflect the hydrological processes taking

place in the river basins. It is interesting to note that, according to the results in Table

7.2, the BS-MM1 models underperforms GM models for TF predictions even when they

produce a well-grounded baseflow separation.

TABLE 7.3. BASEFLOW SEPARATION OF THE BS-MM MODELS

BS-MM1

BS-MM2

USGS ID QBF0 [cumecs] BFImax Estimated BFI Baseflow CE Estimated BFI Baseflow CE

4015475 54.00 0.265 0.245 0.0711

0.693 0.9865

4067958 3.40 0.254 0.255 -0.8064

0.758 0.9600

4069416 7.20 0.252 0.253 -0.6367

0.733 0.9620

4072150 11.90 0.738 0.502 0.9064

0.573 0.9576

4085395 21.10 0.252 0.256 0.1566

0.714 0.9807

4232046 1.90 0.794 0.667 0.9789

0.671 0.9708

1333000 40.40 0.592 0.527 0.7152

0.69 0.9515

1101000 0.00 0.256 0.238 0.0643

0.694 0.9704

1176000 4.20 0.25 0.253 -0.1537

0.748 0.9689

7.4.3. Analysis of selected inputs

A final analysis is carried out to check for similarities and differences in the

optimal subset of inputs selected for modeling the TF, BF and EF time series. This is

done by comparing the predictors selected by the MBFIPS for the GM and BS-MM2

models. For the sake of conciseness, results are presented only for the type of variables

rather than for each lagged predictor itself. In particular, Fig. 7.6 shows the frequency

with which each type of variable is selected with respect to the total number of times

this variable is available across the datasets (see Table 7.1), while the variable selection

matrices in Fig. 7.7 present the details for each watershed. As expected, it emerges that

past streamflow data (FLOW) and RAIN are the most important inputs of the lot.

144

FLOW variables are selected for all the watersheds and for both TF and its components.

RAIN seems to be less important for modeling the BF, but is still selected in five out of

the nine cases, indicating that this variable should also be fed to the BF module, unless

proven differently by detailed pre-processing analysis. Indeed, groundwater is displaced

by precipitation during a rainfall event and generates baseflow by flowing into the

stream. SNOW also seems to carry explanatory power for both TF and its components,

however is the least relevant among the meteorological variables. It also appears that,

whenever SNWD is available, SNOW predictors are less likely to be selected,

suggesting that the former variable carries more information than the latter. This can be

observed especially for TF (Fig. 7.7a) and BF (Fig. 7.7b), where for the 5 cases in which

both SNWD and SNOW are available, the former is selected in three cases, while the

latter only once. It is interesting to note the contrast between TMAX and TMIN for the

BF and EF components, with TMAX being substantially more relevant for EF and vice

versa. While it can be argued that TMAX is more likely to explain snowmelt, which

affects mostly the EF component, the high correlation between these two variables

would require further studies to shed light on this matter.

7.5. Conclusions

In this study, we investigated the effectiveness of data-driven Baseflow

Separation-based Modular Models (BS-MM) in predicting total streamflow discharge as

well as its baseflow and excess flow components. These models estimate the TF by

adding the predictions of the BF and EF components. Two different modular solutions

were developed and compared against a global model used for reference. The BS-MM1

145

model consisted of two ELM trained to fit the BF and EF signals produced by a

baseflow filter whose parameters were optimized during model development. On the

other hand, the BS-MM2 was developed using a filter whose parameters were fixed

according to the geological characteristics of the watershed. Contrary to previous studies,

experiments run for nine perennial streams in porous aquifers in the northern United

States show significant evidence of modular models underperforming global ones for

predicting overall streamflow discharge. In addition, the baseflow separation performed

by the BS-MM1 was not consistent with the partitioning expected for most of the

streams due to substantial underestimation of the baseflow component. The BS-MM2

was found to be more physically grounded, with BFI estimates close to the expected

ones and satisfactory reconstruction of the BF signal. However, this model was arguably

the worst in predicting overall streamflow discharge, suggesting that this objective and

that of performing an accurate baseflow separation might be conflicting rather than

compatible. Further studies could probe whether a different formulation of the objective

function that weights differently the errors of the TF, BF and EF predictions might solve

this issue. Another future line of work could extend the analysis to watersheds with

intermittent streamflow, although the difficulties in performing the baseflow separation

for this class of streams might hinder the development of the modular models (Aksoy

and Wittenberg, 2011).

PART IV. CONCLUSIONS

146

8. Conclusive remarks and future developments

This thesis has dealt with the use of data-driven techniques for the prediction of

water quantities, a field now known also as Neural Network River Forecasting (NNRF).

Despite the considerable amount of research on these methods, the existence of several

unresolved issues has hindered the adoption of NNRF in operational real-world contexts.

The work done in this thesis contributed towards addressing some of these problems by

harnessing real- and binary-coded variants of PSO, a flexible and efficient nature-

inspired optimization technique which has been only marginally used in data-driven

hydrological modelling. In particular, three new PSO variants have been introduced in

this manuscript, namely the MOFIPS, BFIPS and MBFIPS optimization algorithms,

which have all been derived from the Fully Informed Particle Swarm (FIPS) paradigm.

These algorithms have been employed to devise novel applications aimed at

investigating the feasibility of

i. developing efficient interval-based NNRF models,

ii. producing a fast and accurate scheme for the automatic selection of

optimal inputs and NNRF model structure,

iii. improving NNRF model performances by embedding expert-knowledge

to enhance their physical plausibility.

The applications presented in Part III of this manuscript provided concrete solutions to

the first two issues highlighted above. In Chapter 5 it was demonstrated that accurate

and fast estimation of streamflow prediction intervals can be obtained with the

MOFIPS-based LUBE methodology, as shown for the case studies of the Susquehanna

and Nehalem rivers. Improvements over the original PSO-based LUBE models were

147

gained using the bi-objective optimization paradigm illustrated in Chapter 4 for

deterministic point predictions.

On the other hand, the BFIPS- and MBFIPS-ELM wrappers presented in

Chapter 6 are two examples of successful automatic input and model structure selection

techniques. The underlying ELM models grant these methods enhanced speed and great

flexibility, suggesting that ELMs are ideal candidates for NNRF applications and should

be taken into account by the research community. However, their partially-randomized

and extremely distributed nature severely compromise any effort of tracing back the

internal workings of the ELM to the processes occurring in the watersheds, as done for

other NNRF models (Fernando and Shamseldin, 2009; Jain and Kumar, 2009; Sudheer

and Jain, 2004; Wilby et al., 2003). This could hinder their adoption by practitioners

who might still prefer less performant but more physically-sound models. Further

concerns could arise from the results in Chapter 7, which highlighted the difficulties of

including expert-knowledge directly into the modular NNRF models performing

implicit baseflow separation. However, it is certainly worth exploring whether ELM

could amplify the benefits of other modular approaches which have been devised to

increase the physical-plausibility of NNRF (Jain and Srinivasulu, 2006; Srinivasulu and

Jain, 2009; Toth, 2009) .

In addition, practitioners might be willing to downplay the lack of physical

interpretation of pure black-box NNRF solutions in case workable and consistent

methodologies are implemented for estimating the uncertainty of the predictions. In this

regard, it is important to note that ELM may substantially increase the computational

efficiency of time demanding bootstrap approaches for estimating prediction intervals

148

(Sharma and Tiwari, 2009; Tiwari and Chatterjee, 2010), especially if one resorts to

parallel computing (He et al., 2013). It will be interesting to assess how these ELM-

based solutions compare with MOFIPS-LUBE both in terms of quality of the produced

predictive intervals and computational demands.

A final remark concerning the work presented in this manuscript is that, although

all the presented applications involve novel PSO variants, the presented techniques are

non-specific with respect to the Global Optimization (GO) algorithm employed. The

PSO algorithm was chosen due to its flexibility and ease of implementation of both real-

and binary-coded problems, involving one or more objective functions. Although this

certainly facilitated the development of ad-hoc techniques targeted to address different

NNRF issues, it is entirely possible that other GO techniques might outperform the

MOFIPS, BFIPS and MBFIPS algorithms introduced in this work. Further studies could

be thus directed towards redeveloping the proposed methodologies using other GO

algorithms, such as Borg (Hadka and Reed, 2012; Reed et al., 2013) and variants

Differential Evolution (Das and Suganthan, 2011; Piotrowski and Napiorkowski, 2011;

Piotrowski et al., 2012), which have proven very successful in other water resources and

environmental modelling applications.

149

APPENDIX A. Benchmark functions

The following functions taken from Deb et al. (2002) have been employed to test the

performances of the MOFIPS algorithm in 3.7.3.

150

APPENDIX B. Statistical metrics for assessment of

hydrological models

The following statistical metrics have been employed for the assessment of the

proposed NNRF models. These are (Dawson et al., 2010, 2007): the root mean square

error (RMSE), the coefficient of efficiency (CE), the median absolute percentage error

(MdAPE), fourth root mean quadrupled error (R4MS4E), and mean squared logarithmic

error (MSLE), given by:

 ,

 ,

 ,

,

 .

where is the observed discharge value, is the modeled discharge value,

is the median observed value, and N is the total number of observations. The first three

evaluation metrics are used to assess the level of overall agreement between the

observed and modeled output variables. The root mean square error is a non-negative

metric expressed in real units with no upper bound and equal to 0 for a perfect model.

On the other hand, the coefficient of efficiency is dimensionless with a value of 1 for a

perfect model and no lower bound. The median absolute percentage error is a

dimensionless non-negative ratio, which is equal to 0 for a perfect model and has no

151

upper bound. Although less popular than RMSE and CE, the MdAPE, based on the

median of the absolute residuals, is less affected by skewed error distributions and less

sensitive to the larger errors that occur at high flows (Dawson et al., 2007). The fourth

root mean quadrupled error is used to better evaluate model goodness-of-fit on peak and

high flows. It is a non-negative metric expressed in real units that has no upper bound

and is equal to 0 for a perfect model. Somewhat complementary to the R4MS4E is the

mean squared logarithmic error, which, due to the logarithmic transformations involved

in its computation, is a preferred measure for assessing model performances when

predicting low flows. MSLE is non-negative and takes a value of 0 for a perfect model.

152

Bibliography

Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., …

Wilby, R. L. (2012). Two decades of anarchy? Emerging themes and outstanding

challenges for neural network river forecasting. Progress in Physical Geography,

36(4), 480–513. doi:10.1177/0309133312444943

Abrahart, R. J., Heppenstall, A. J., & See, L. M. (2007). Timing error correction

procedure applied to neural network rainfall—runoff modelling. Hydrological

Sciences Journal, 52(3), 414–431. doi:10.1623/hysj.52.3.414

Abrahart, R. J., See, L. M., & Kneale, P. E. (1999). Using pruning algorithms and

genetic algorithms to optimise network architectures and forecasting inputs in a

neural network rainfall-runoff model. Journal of Hydroinformatics, 1(2), 103–114.

Acharya, N., Shrivastava, N. A., Panigrahi, B. K., & Mohanty, U. C. (2013).

Development of an artificial neural network based multi-model ensemble to

estimate the northeast monsoon rainfall over south peninsular India: an application

of extreme learning machine. Climate Dynamics, 43(5-6), 1303–1310.

doi:10.1007/s00382-013-1942-2

Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for

groundwater level forecasting. Journal of Hydrology, 407(1-4), 28–40.

doi:10.1016/j.jhydrol.2011.06.013

Adamowski, J., & Karapataki, C. (2010). Comparison of multivariate regression and

artificial neural networks for peak urban water-demand forecasting: Evaluation of

different ANN learning algorithms. Journal of Hydrologic Engineering, 15(10),

729–743. doi:10.1061/(ASCE)HE.1943-5584.0000245

Adamowski, J., & Sun, K. (2010). Development of a coupled wavelet transform and

neural network method for flow forecasting of non-perennial rivers in semi-arid

watersheds. Journal of Hydrology, 390(1-2), 85–91.

doi:10.1016/j.jhydrol.2010.06.033

Afshar, M. H. (2007). Partially constrained ant colony optimization algorithm for the

solution of constrained optimization problems: Application to storm water network

design. Advances in Water Resources, 30(4), 954–965.

doi:10.1016/j.advwatres.2006.08.004

Aksoy, H., & Wittenberg, H. (2011). Nonlinear baseflow recession analysis in

watersheds with intermittent streamflow. Hydrological Sciences Journal, 56(2),

226–237. doi:10.1080/02626667.2011.553614

153

Alvisi, S., & Franchini, M. (2011). Fuzzy neural networks for water level and discharge

forecasting with uncertainty. Environmental Modelling & Software, 26(4), 523–

537. doi:10.1016/j.envsoft.2010.10.016

Anctil, F., & Lauzon, N. (2004). Generalisation for neural networks through data

sampling and training procedures, with applications to streamflow predictions.

Hydrology and Earth System Sciences, 8(5), 940–958. doi:10.5194/hess-8-940-

2004

Anctil, F., Perrin, C., & Andréassian, V. (2004). Impact of the length of observed

records on the performance of ANN and of conceptual parsimonious rainfall-runoff

forecasting models. Environmental Modelling & Software, 19(4), 357–368.

doi:10.1016/S1364-8152(03)00135-X

Bhattacharya, B., & Solomatine, D. P. (2005). Neural networks and M5 model trees in

modelling water level–discharge relationship. Neurocomputing, 63, 381–396.

doi:10.1016/j.neucom.2004.04.016

Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in

machine. Artificial Intelligence, 97, 245–271.

Borga, M., Boscolo, P., Zanon, F., & Sangati, M. (2007). Hydrometeorological Analysis

of the 29 August 2003 Flash Flood in the Eastern Italian Alps. Journal of

Hydrometeorology, 8(5), 1049–1067. doi:10.1175/JHM593.1

Bowden, G. J., Dandy, G. C., & Maier, H. R. (2005). Input determination for neural

network models in water resources applications. Part 1—background and

methodology. Journal of Hydrology, 301(1-4), 75–92.

doi:10.1016/j.jhydrol.2004.06.021

Bowden, G. J., Maier, H. R., & Dandy, G. C. (2005). Input determination for neural

network models in water resources applications. Part 2. Case study: forecasting

salinity in a river. Journal of Hydrology, 301(1-4), 93–107.

doi:10.1016/j.jhydrol.2004.06.020

Branke, J., Deb, K., Dierolf, H., & Osswald, M. (2004). Finding knees in multi-

objective optimization. In Parallel Problem Solving from Nature-PPSN VIII (pp.

722–731). Springer. doi:10.1007/b100601

Brownlee, J. (2012). Clever Algorithms: Nature-Inspired Programming Recipes.

Cannon, A. J., & Whitfield, P. H. (2002). Downscaling recent streamflow conditions in

British Columbia , Canada using ensemble neural network models. Journal of

Hydrology, 259, 136–151.

154

Carcano, E. C., Bartolini, P., Muselli, M., & Piroddi, L. (2008). Jordan recurrent neural

network versus IHACRES in modelling daily streamflows. Journal of Hydrology,

362(3-4), 291–307. doi:10.1016/j.jhydrol.2008.08.026

Chang, F. J., Kao, L. S., Kuo, Y. M., & Liu, C. W. (2010). Artificial neural networks for

estimating regional arsenic concentrations in a blackfoot disease area in Taiwan.

Journal of Hydrology, 388(1-2), 65–76. doi:10.1016/j.jhydrol.2010.04.029

Chau, K. W. (2006). Particle swarm optimization training algorithm for ANNs in stage

prediction of Shing Mun River. Journal of Hydrology, 329(3-4), 363–367.

doi:10.1016/j.jhydrol.2006.02.025

Chau, K. W. (2007). A split-step particle swarm optimization algorithm in river stage

forecasting. Journal of Hydrology, 346(3-4), 131–135.

doi:10.1016/j.jhydrol.2007.09.004

Chau, K.W., Wu, C. L., & Li, Y. S. (2005). Comparison of Several Flood Forecasting

Models in Yangtze River. Journal of Hydrologic Engineering, 10(6) 485–491.

doi:10.1061/(ASCE)1084-0699(2005)10:6(485)

Chaves, P., & Chang, F.J. (2008). Intelligent reservoir operation system based on

evolving artificial neural networks. Advances in Water Resources, 31(6), 926–936.

doi:10.1016/j.advwatres.2008.03.002

Chen, Y., & Chang, F.J. (2009). Evolutionary artificial neural networks for hydrological

systems forecasting. Journal of Hydrology, 367(1-2), 125–137.

doi:10.1016/j.jhydrol.2009.01.009

Clerc, M., & Kennedy, J. (2002). The particle swarm - explosion, stability, and

convergence in a multidimensional complex space. IEEE Transactions on

Evolutionary Computation, 6(1), 58–73. doi:10.1109/4235.985692

Coello Coello, C. A., & Reyes-Sierra, M. (2006). Multi-Objective Particle Swarm

Optimizers: A Survey of the State-of-the-Art. International Journal of

Computational Intelligence Research, 2(3), 287–308. doi:10.5019/j.ijcir.2006.68

Corzo, G. A., & Solomatine, D. P. (2006). Optimization of base flow separation

algorithm for modular data-driven hydrologic models. In Proceedings of the 7th

International Conference on Hydroinformatics. Nice, France.

Corzo, G., & Solomatine, D. (2007a). Baseflow separation techniques for modular

artificial neural network modelling in flow forecasting. Hydrological Sciences

Journal, 52(3), 491–507. doi:10.1623/hysj.52.3.491

155

Corzo, G., & Solomatine, D. (2007b). Knowledge-based modularization and global

optimization of artificial neural network models in hydrological forecasting. Neural

Networks, 20(4), 528–36. doi:10.1016/j.neunet.2007.04.019

Coulibaly, P., Anctil, F., Aravena, R., & Bobde, B. (2001). Artificial neural network

modeling of water table depth fluctuations, Water Resources Research 37(4), 885–

896. doi:10.1029/2000WR900368

Coulibaly, P., Anctil, F., & Bobée, B. (2000). Daily reservoir inflow forecasting using

artificial neural networks with stopped training approach. Journal of Hydrology,

230(3-4), 244–257. doi:10.1016/S0022-1694(00)00214-6

Danandeh Mehr, A., Kahya, E., & Olyaie, E. (2013). Streamflow prediction using linear

genetic programming in comparison with a neuro-wavelet technique. Journal of

Hydrology, 505, 240–249. doi:10.1016/j.jhydrol.2013.10.003

Das, S., & Suganthan, P. N. (2011). Differential Evolution : A Survey of the State-of-

the-Art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.

Dawson, C. W., Abrahart, R. J., & See, L. M. (2007). HydroTest: A web-based toolbox

of evaluation metrics for the standardised assessment of hydrological forecasts.

Environmental Modelling & Software, 22(7), 1034–1052.

doi:10.1016/j.envsoft.2006.06.008

Dawson, C. W., Abrahart, R. J., & See, L. M. (2010). HydroTest: Further development

of a web resource for the standardised assessment of hydrological models.

Environmental Modelling & Software, 25(11), 1481–1482.

doi:10.1016/j.envsoft.2009.01.001

Dawson, C. W., Harpham, C., Wilby, R. L., & Chen, Y. (2002). Evaluation of artificial

neural network techniques for flow forecasting in the River Yangtze, China.

Hydrology and Earth System Sciences, 6(4), 619–626. doi:10.5194/hess-6-619-

2002

Dawson, C. W., See, L. M., Abrahart, R. J., & Heppenstall, A. J. (2006). Symbiotic

adaptive neuro-evolution applied to rainfall-runoff modelling in northern England.

Neural Networks, 19(2), 236–47. doi:10.1016/j.neunet.2006.01.009

Dawson, C. W., & Wilby, R. (1998). An artificial neural network approach to rainfall-

runoff modelling. Hydrological Sciences Journal, 43(1), 47–66.

doi:10.1080/02626669809492102

Dawson, C. W., & Wilby, R. L. (2001). Hydrological modelling using artificial neural

networks. Progress in Physical Geography, 25(1), 80–108.

doi:10.1191/030913301674775671

156

De Gooijer, J. G., & Hyndman, R. J. (2006). 25 Years of Time Series Forecasting.

International Journal of Forecasting, 22(3), 443–473.

doi:10.1016/j.ijforecast.2006.01.001

De Vos, N. J., & Rientjes, T. H. M. (2007). Multi-objective performance comparison of

an artificial neural network and a conceptual rainfall—runoff model. Hydrological

Sciences Journal, 52(3), 397–413. doi:10.1623/hysj.52.3.397

De Vos, N. J., & Rientjes, T. H. M. (2008). Multiobjective training of artificial neural

networks for rainfall-runoff modeling. Water Resources Research, 44(8), W08434.

doi:10.1029/2007WR006734

Deb, K. (2009). Multi-objective optimization using evolutionary algorithms. New York:

John Wiley & Sons.

Deb, K., & Deb, D. (2012). Analyzing Mutation Schemes for Real-Parameter Genetic

Algorithms. KanGAL, Report No. 2012016.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A Fast and Elitist

Multiobjective Genetic Algorithm. IEEE Transactions on Evolutionary

Computation, 6(2), 182–197. doi:10.1109/4235.996017

Deo, R. C., & Şahin, M. (2015). Application of the extreme learning machine algorithm

for the prediction of monthly Effective Drought Index in eastern Australia.

Atmospheric Research, 153, 512–525. doi:10.1016/j.atmosres.2014.10.016

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant systems: optimization by a

colony of cooperative agents. IEEE Transactions on Man, Machine and

Cybernetics-Part B, 26(1), 29 – 41.

Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors in

particle swarm optimization. Proceedings of the 2000 IEEE Congress on

Evolutionary Computation - CEC’00, 84–88.

Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation.

Hydrological Processes, 19(2), 507–515. doi:10.1002/hyp.5675

Eckhardt, K. (2008). A comparison of baseflow indices, which were calculated with

seven different baseflow separation methods. Journal of Hydrology, 352(1-2), 168–

173. doi:10.1016/j.jhydrol.2008.01.005

Eckhardt, K. (2012). Technical Note: Analytical sensitivity analysis of a two parameter

recursive digital baseflow separation filter. Hydrology and Earth System Sciences,

16(2), 451–455. doi:10.5194/hess-16-451-2012

157

Fernando, D. A. K., & Shamseldin, A. Y. (2009). Investigation of Internal Functioning

of the Radial-Basis-Function Neural Network River Flow Forecasting Models.

Journal of Hydrologic Engineering, 14(3), 286–292. doi: 10.1061/(ASCE)1084-

0699(2009)14:3(286)

Fernando, T. M. K. G., Maier, H. R., & Dandy, G. C. (2009). Selection of input

variables for data driven models: An average shifted histogram partial mutual

information estimator approach. Journal of Hydrology, 367(3-4), 165–176.

doi:10.1016/j.jhydrol.2008.10.019

Foresee, F. D., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian

learning. In 1997 International Joint Conferenence on Neural Networks (pp. 1930–

1935).

Galelli, S., & Castelletti, A. (2013a). Assessing the predictive capability of randomized

tree-based ensembles in streamflow modelling. Hydrology and Earth System

Sciences Discussions, 10(2), 1617–1655. doi:10.5194/hessd-10-1617-2013

Galelli, S., & Castelletti, A. (2013b). Tree-based iterative input variable selection for

hydrological modeling. Water Resources Research, 49(7), 4295–4310.

doi:10.1002/wrcr.20339

Galelli, S., Humphrey, G. B., Maier, H. R., Castelletti, A., Dandy, G. C., & Gibbs, M. S.

(2014). An evaluation framework for input variable selection algorithms for

environmental data-driven models. Environmental Modelling & Software, 62, 33–

51. doi:10.1016/j.envsoft.2014.08.015

Gaur, S., Chahar, B. R., & Graillot, D. (2011). Analytic elements method and particle

swarm optimization based simulation-optimization model for groundwater

management. Journal of Hydrology, 402(3-4), 217–227.

doi:10.1016/j.jhydrol.2011.03.016

Gill, M. K., Kaheil, Y. H., Khalil, A., McKee, M., & Bastidas, L. (2006). Multiobjective

particle swarm optimization for parameter estimation in hydrology. Water

Resources Research, 42(7), W07417. doi:10.1029/2005WR004528

Goldberg, D. E. (1989). Genetic Algorithms in Search , Optimization , and Machine

Learning. Addison-wesley.

Govindaraju, R. S. (2000a). Artificial Neural Networks in Hydrology. I: Preliminary

Concepts. Journal of Hydrologic Engineering, 5(2), 115–123.

Govindaraju, R. S. (2000b). Artificial Neural Networks in Hydrology. II: Hydrologic

Applications. Journal of Hydrologic Engineering, 5(2), 124–137.

158

Guo, X., Hu, T., Zhang, T., & Lv, Y. (2012). Bilevel model for multi-reservoir

operating policy in inter-basin water transfer-supply project. Journal of Hydrology,

424-425, 252–263. doi:10.1016/j.jhydrol.2012.01.006

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of Machine Learning Research, 3, 1157–1182.

Hadka, D., & Reed, P. (2012). Borg: An Auto-Adaptive Many-Objective Evolutionary

Computing Framework. Evolutionary Computation, 21(2), 1–30.

doi:10.1162/EVCO_a_00075

Hamed, M. M., Khalafallah, M. G., & Hassanien, E. a. (2004). Prediction of wastewater

treatment plant performance using artificial neural networks. Environmental

Modelling Software, 19(10), 919–928. doi:10.1016/j.envsoft.2003.10.005

Haykin, S. (2008). Neural Networks and Learning Machines (3rd ed.). Prentice Hall.

He, Q., Shang, T., Zhuang, F., & Shi, Z. (2013). Parallel extreme learning machine for

regression based on MapReduce. Neurocomputing, 102, 52–58.

doi:10.1016/j.neucom.2012.01.040

Higashi, N., & Iba, H. (2003). Particle swarm optimization with Gaussian mutation. In

Proceedings of the 2003 Swarm Intelligence Symposium - SIS’03 (pp. 72–79).

IEEE.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5), 359 – 366.

Huang, G.B., Chen, L., & Siew, C. (2006). Universal Approximation Using Incremental

Constructive Feedforward Networks With Random Hidden Nodes. IEEE

Transactions on Neural Networks, 17(4), 879–892.

Huang, G.B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: a survey.

International Journal of Machine Learning and Cybernetics, 2(2), 107–122.

doi:10.1007/s13042-011-0019-y

Huang, G.B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme Learning Machine for

Regression and Multiclass Classification. IEEE Transactions on Systems, Man, and

Cybernetics. Part B, Cybernetics, 42(2), 513–529.

Huang, G.B., Zhu, Q.Y., & Siew, C.K. (2004). Extreme learning machine: a new

learning scheme of feedforward neural networks. In IEEE (Ed.), Neural Networks,

2004. Proceedings. 2004 IEEE International Joint Conference on (Vol. 2) (pp.

985–990). doi:http://dx.doi.org/10.1109/IJCNN.2004.1380068

159

Huang, G.B., Zhu, Q.Y., & Siew, C.K. (2006). Extreme learning machine: Theory and

applications. Neurocomputing, 70(1-3), 489–501.

doi:10.1016/j.neucom.2005.12.126

Imrie, C. E., Durucan, S., & Korre, A. (2000). River flow prediction using artificial

neural networks: generalisation beyond the calibration range. Journal of Hydrology,

233, 138–153. doi:10.1016/S0022-1694(00)00228-6

Jain, A., & Kumar, S. (2009). Dissection of trained neural network hydrologic models

for knowledge extraction. Water Resources Research, 45(7), W07420.

doi:10.1029/2008WR007194

Jain, A., & Srinivasulu, S. (2004). Development of effective and efficient rainfall-runoff

models using integration of deterministic, real-coded genetic algorithms and

artificial neural network techniques. Water Resources Research, 40(4), W04302.

doi:10.1029/2003WR002355

Jain, A., & Srinivasulu, S. (2006). Integrated approach to model decomposed flow

hydrograph using artificial neural network and conceptual techniques. Journal of

Hydrology, 317(3-4), 291–306. doi:10.1016/j.jhydrol.2005.05.022

Jain, A., Sudheer, K. P., & Srinivasulu, S. (2004). Identification of physical processes

inherent in artificial neural network rainfall runoff models. Hydrological Processes,

18(3), 571–581. doi:10.1002/hyp.5502

Jayawardena, A. W., & Fernando, D. A. K. (1998). Use of Radial Basis Function Type

Artificial Neural Networks for Runoff Simulation. Computer-Aided Civil and

Infrastructure Engineering, 13(2), 91–99. doi:10.1111/0885-9507.00089

Jiang, Y., Hu, T., Huang, C., & Wu, X. (2007). An improved particle swarm

optimization algorithm. Applied Mathematics and Computation, 193(1), 231–239.

doi:10.1016/j.amc.2007.03.047

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical

function optimization: Artificial bee colony (ABC) algorithm. Journal of Global

Optimization, 39(3), 459–471. doi:10.1007/s10898-007-9149-x

Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on

particle swarm performance. Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99, 1931–1938. doi:10.1109/CEC.1999.785509

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of

ICNN’95 - International Conference on Neural Networks, 4(2), 1942–1948.

doi:10.1109/ICNN.1995.488968

160

Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm

algorithm. IEEE International Conference on Systems, Man, and Cybernetics.

Computational Cybernetics and Simulation., 5, 4104 –4108.

Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance.

Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02., 2,

1671–1676. doi:10.1109/CEC.2002.1004493

Khan, M. S., & Coulibaly, P. (2006). Bayesian neural network for rainfall-runoff

modeling. Water Resources Research, 42(7). W07409.

doi:10.1029/2005WR003971

Khosravi, A., Nahavandi, S., & Creighton, D. (2010). Construction of Optimal

Prediction Intervals for Load Forecasting Problems. IEEE Transactions on Power

Systems, 25(3), 1496–1503.

Khosravi, A., Nahavandi, S., & Creighton, D. (2011). Prediction interval construction

and optimization for adaptive neurofuzzy inference systems. IEEE Transactions on

Fuzzy Systems, 19(5), 983–988.

Khosravi, A., Nahavandi, S., Creighton, D., & Atiya, A. F. (2011). Lower upper bound

estimation method for construction of neural network-based prediction intervals.

IEEE Transactions on Neural Networks, 22(3), 337–46.

doi:10.1109/TNN.2010.2096824

Kingston, G. B., Lambert, M. F., & Maier, H. R. (2005). Bayesian training of artificial

neural networks used for water resources modeling. Water Resources Research,

41(12), W04419. doi:10.1029/2005WR004152

Kişi, Ö. (2004). River Flow Modeling Using Artificial Neural Networks. Journal of

Hydrologic Engineering, 9(1), 60–63. doi:10.1061/(ASCE)1084-0699(2004)9:1(60)

Kişi, Ö. (2009). Neural Networks and Wavelet Conjunction Model for Intermittent

Streamflow Forecasting. Journal of Hydrologic Engineering, 14(8), 773–782.

doi:10.1061/(ASCE)HE.1943-5584.0000053

Kişi, Ö. (2010). River suspended sediment concentration modeling using a neural

differential evolution approach. Journal of Hydrology, 389(1-2), 227–235.

doi:10.1016/j.jhydrol.2010.06.003

Kisi, O., Ozkan, C., & Akay, B. (2012). Modeling discharge–sediment relationship

using neural networks with artificial bee colony algorithm. Journal of Hydrology,

428-429, 94–103. doi:10.1016/j.jhydrol.2012.01.026

Knowles, J., & Corne, D. (1999). The Pareto archived evolution strategy: A new

baseline algorithm for Pareto multiobjective optimisation. Proceedings of the 1999

161

Congress on Evolutionary Computation, CEC 1999, 1, 98–105.

doi:10.1109/CEC.1999.781913

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation

and Model Selection. International Joint Conference on Artificial Intelligence,

14(12), 1137–1143. doi:10.1067/mod.2000.109031

Kohavi, R., & John, H. (1997). Wrappers for feature subset selection. Artificial

Intelligence, 97, 273–324.

Krzysztofowicz, R. (2001). The case for probabilistic forecasting in hydrology. Journal

of Hydrology, 249(1-4), 2–9. doi:10.1016/S0022-1694(01)00420-6

Kumar, D. N., & Reddy, M. J. (2006). Ant Colony Optimization for Multi-Purpose

Reservoir Operation. Water Resources Management, 20(6), 879–898.

Labadie, J. W. (2004). Optimal Operation of Multireservoir Systems: State-of-the-Art

Review. Journal of Water Resources Planning and Management, 130(2), 93–111.

doi:10.1061/(ASCE)0733-9496(2004)130:2(93)

Leahy, P., Kiely, G., & Corcoran, G. (2008). Structural optimisation and input selection

of an artificial neural network for river level prediction. Journal of Hydrology,

355(1-4), 192–201. doi:10.1016/j.jhydrol.2008.03.017

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least

squares. Quarterly of Applied Mathematics, 2, 164–168.

Li, H., & Zhang, Q. (2009). Multiobjective Optimization Problems With Complicated

Pareto Sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary

Computation, 13(2), 284–302. doi: 10.1109/TEVC.2008.925798

Li, H., Zhang, Y., Chiew, F. H. S., & Xu, S. (2009). Predicting runoff in ungauged

catchments by using Xinanjiang model with MODIS leaf area index. Journal of

Hydrology, 370(1-4), 155–162. doi:10.1016/j.jhydrol.2009.03.003

Li, L., Maier, H. R., Partington, D., Lambert, M. F., & Simmons, C. T. (2014).

Performance assessment and improvement of recursive digital baseflow filters for

catchments with different physical characteristics and hydrological inputs.

Environmental Modelling & Software, 54, 39–52.

doi:10.1016/j.envsoft.2013.12.011

Lin, J.Y., Cheng, C.T., & Chau, K.W. (2006). Using support vector machines for long-

term discharge prediction. Hydrological Sciences Journal, 51(4), 599–612.

doi:10.1623/hysj.51.4.599

162

Lü, H., Yu, Z., Zhu, Y., Drake, S., Hao, Z., & Sudicky, E. A. (2011). Dual state-

parameter estimation of root zone soil moisture by optimal parameter estimation

and extended Kalman filter data assimilation. Advances in Water Resources, 34(3),

395–406. doi:10.1016/j.advwatres.2010.12.005

Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting

of water resources variables: a review of modelling issues and applications.

Environmental Modelling & Software, 15(1), 101–124. doi:10.1016/S1364-

8152(99)00007-9

Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the

development of neural networks for the prediction of water resource variables in

river systems: Current status and future directions. Environmental Modelling &

Software, 25(8), 891–909. doi:10.1016/j.envsoft.2010.02.003

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear

parameters. Journal of the Society for Industrial & Applied Mathematics, 11(2),

431–441.

Masters, T. (1993). Practical Neural Networks Recipes C++. San Diego: Academic

Press.

Masters, T. (1995). Advanced Algorithms for Neural Networks. New York: Wiley.

May, R., Dandy, G., & Maier, H. (2011). Review of Input Variable Selection Methods

for Artificial Neural Networks. Artificial Neural Networks—methodological

Advances and Biomedical Applications, pp. 19–44.

May, R. J., Maier, H. R., Dandy, G. C., & Fernando, T. M. K. G. (2008). Non-linear

variable selection for artificial neural networks using partial mutual information.

Environmental Modelling & Software, 23(10-11), 1312–1326.

doi:10.1016/j.envsoft.2008.03.007

Mendes, R. (2004). Population Topologies and Their Influence in Particle Swarm

Performance (Doctoral dissertation, Universidade do Minho).

Mendes, R., Kennedy, J., & Neves, J. (2003). Watch thy neighbor or how the swarm can

learn from its environment. Proceedings of the 2003 IEEE Swarm Intelligence

Symposium - SIS’03, 88–94. doi:10.1109/SIS.2003.1202252

Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm:

simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8(3),

204–210. doi: 10.1109/TEVC.2004.826074

163

Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., & Lendasse, A. (2010). OP-

ELM : Optimally Pruned Extreme Learning Machine. IEEE Transactions on

Neural Networks, 21(1), 158–162.

Minns, A. W., & Hall, M. J. (1996). Artificial neural networks as rainfall-runoff models.

Hydrological Sciences Journal, 41(3), 399–417. doi:10.1080/02626669609491511

Mohan, S. (1997). Parameter Estimation of Nonlinear Muskingum Models Using

Genetic Algorithm. Journal of Hydraulic Engineering, 123(2), 137–142.

Mohan, S., & Vijayalakshmi, D. P. (2009). Genetic Algorithm Applications in Water

Resources. ISH Journal of Hydraulic Engineering, 15(sup1), 97–128.

doi:10.1080/09715010.2009.10514971

Muttil, N., & Chau, K. W. (2006). Neural network and genetic programming for

modelling coastal algal blooms. International Journal of Environment and

Pollution, 28(3/4), 223. doi:10.1504/IJEP.2006.011208

Muttil, N., & Chau, K. W. (2007). Machine-learning paradigms for selecting

ecologically significant input variables. Engineering Applications of Artificial

Intelligence, 20(6), 735–744. doi:10.1016/j.engappai.2006.11.016

Nayak, P. C., Venkatesh, B., Krishna, B., & Jain, S. K. (2013a). Rainfall-runoff

modeling using conceptual, data driven, and wavelet based computing approach.

Journal of Hydrology, 493, 57–67. doi:10.1016/j.jhydrol.2013.04.016

Nayak, P. C., Venkatesh, B., Krishna, B., & Jain, S. K. (2013b). Rainfall-runoff

modeling using conceptual, data driven, and wavelet based computing approach.

Journal of Hydrology, 493, 57–67. doi:10.1016/j.jhydrol.2013.04.016

Noori, R., Karbassi, A. R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M. H.,

Farokhnia, a., & Gousheh, M. G. (2011). Assessment of input variables

determination on the SVM model performance using PCA, Gamma test, and

forward selection techniques for monthly stream flow prediction. Journal of

Hydrology, 401(3-4), 177–189. doi:10.1016/j.jhydrol.2011.02.021

Nourani, V., Hosseini Baghanam, A., Adamowski, J., & Kisi, O. (2014). Applications of

hybrid wavelet-Artificial Intelligence models in hydrology: A review. Journal of

Hydrology, 514, 358–377. doi:10.1016/j.jhydrol.2014.03.057

Nourani, V., Komasi, M., & Alami, M. T. (2012). Hybrid Wavelet – Genetic

Programming Approach to Optimize ANN Modeling of Rainfall – Runoff Process.

Journal of Hydrologic Engineering, 17(6), 724–741.

doi:10.1061/(ASCE)HE.1943-5584.0000506.

164

Nourani, V., Komasi, M., & Mano, A. (2009). A Multivariate ANN-Wavelet Approach

for Rainfall–Runoff Modeling. Water Resources Management, 23(14), 2877–2894.

doi:10.1007/s11269-009-9414-5

Ortiz-García, E. G., Salcedo-Sanz, S., & Casanova-Mateo, C. (2014). Accurate

precipitation prediction with support vector classifiers: A study including novel

predictive variables and observational data. Atmospheric Research, 139, 128–136.

doi:10.1016/j.atmosres.2014.01.012

Parasuraman, K., Elshorbagy, A., & Carey, S. K. (2006). Spiking modular neural

networks: A neural network modeling approach for hydrological processes. Water

Resources Research, 42(5), W05412. doi:10.1029/2005WR004317

Parasuraman, K., Elshorbagy, A., & Carey, S. K. (2007). Modelling the dynamics of the

evapotranspiration process using genetic programming. Hydrological Sciences

Journal, 52(3), 563–578. doi:10.1623/hysj.52.3.563

Piotrowski, A. P., & Napiorkowski, J. J. (2011). Optimizing neural networks for river

flow forecasting – Evolutionary Computation methods versus the Levenberg–

Marquardt approach. Journal of Hydrology, 407(1-4), 12–27.

doi:10.1016/j.jhydrol.2011.06.019

Piotrowski, A. P., & Napiorkowski, J. J. (2013). A comparison of methods to avoid

overfitting in neural networks training in the case of catchment runoff modelling.

Journal of Hydrology, 476, 97–111. doi:10.1016/j.jhydrol.2012.10.019

Piotrowski, A. P., Rowinski, P. M., & Napiorkowski, J. J. (2012a). Comparison of

evolutionary computation techniques for noise injected neural network training to

estimate longitudinal dispersion coefficients in rivers. Expert Systems with

Applications, 39(1), 1354–1361. doi:10.1016/j.eswa.2011.08.016

Piotrowski, A. P., Rowinski, P. M., & Napiorkowski, J. J. (2012b). Expert Systems with

Applications Comparison of evolutionary computation techniques for noise

injected neural network training to estimate longitudinal dispersion coefficients in

rivers. Expert Systems With Applications, 39(1), 1354–1361.

doi:10.1016/j.eswa.2011.08.016

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm

Intelligence, 1(1), 33–57. doi:10.1007/s11721-007-0002-0

Pramanik, N., & Panda, R. K. (2009). Application of neural network and adaptive

neuro-fuzzy inference systems for river flow prediction. Hydrological Sciences

Journal, 54(2), 247–260. doi:10.1623/hysj.54.2.247

165

Prasad, T. D., & Park, N.-S. (2004). Multiobjective Genetic Algorithms for Design of

Water Distribution Networks. Journal of Water Resources Planning and

Management, 130(1), 73–82. doi:10.1061/(ASCE)0733-9496(2004)130:1(73)

Qi, M., & Zhang, G. P. (2001). An investigation of model selection criteria for neural

network time series forecasting. European Journal of Operational Research, 132,

668-680.

Quan, H., Srinivasan, D., & Khosravi, A. (2014a). Particle swarm optimization for

construction of neural network-based prediction intervals. Neurocomputing, 127,

172–180. doi:10.1016/j.neucom.2013.08.020

Quan, H., Srinivasan, D., & Khosravi, A. (2014b). Short-term load and wind power

forecasting using neural network-based prediction intervals. IEEE Transactions on

Neural Networks and Learning Systems, 25(2), 303–15.

doi:10.1109/TNNLS.2013.2276053

Quan, H., Srinivasan, D., & Khosravi, A. (2014c). Uncertainty handling using neural

network-based prediction intervals for electrical load forecasting. Energy, 73, 916–

925. doi:10.1016/j.energy.2014.06.104

Raman, H., & Chandramouli, V. (1996). Deriving a General Operating Policy for

Reservoirs Using Neural Network. Journal of Water Resources Planning and

Management, 122(5), 342–347.

Reddy, M. J., & Kumar, D. N. (2007a). Multi-objective particle swarm optimization for

generating optimal trade-offs in reservoir operation. Hydrological Processes,

21(21), 2897–2909. doi:10.1002/hyp

Reddy, M. J., & Kumar, D. N. (2007b). Optimal reservoir operation for irrigation of

multiple crops using elitist-mutated particle swarm optimization. Hydrological

Sciences Journal-Journal Des Sciences Hydrologiques, 52(4), 686–701.

doi:10.1623/hysj.52.4.686

Reddy, M. J., & Kumar, D. N. (2009). Performance evaluation of elitist-mutated multi-

objective particle swarm optimization for integrated water resources management.

Journal of Hydroinformatics, 11(1), 79. doi:10.2166/hydro.2009.042

Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R., & Kollat, J. B. (2013).

Evolutionary multiobjective optimization in water resources: The past, present, and

future. Advances in Water Resources, 51, 438–456.

doi:10.1016/j.advwatres.2012.01.005

Sahoo, G. B., Ray, C., & De Carlo, E. H. (2006). Use of neural network to predict flash

flood and attendant water qualities of a mountainous stream on Oahu, Hawaii.

Journal of Hydrology, 327(3-4), 525–538. doi:10.1016/j.jhydrol.2005.11.059

166

Sanikhani, H., & Kisi, O. (2012). River Flow Estimation and Forecasting by Using Two

Different Adaptive Neuro-Fuzzy Approaches. Water Resources Management,

26(6), 1715–1729. doi:10.1007/s11269-012-9982-7

Savic, D. A., Walters, G. A., & Davidson, J. W. (1999). A Genetic Programming

Approach to Rainfall-Runoff Modelling. Water Resources Management, 13, 219–

231.

Sedki, A., Ouazar, D., & El Mazoudi, E. (2009). Evolving neural network using real

coded genetic algorithm for daily rainfall–runoff forecasting. Expert Systems with

Applications, 36(3), 4523–4527. doi:10.1016/j.eswa.2008.05.024

Senthil Kumar, A. R., Sudheer, K. P., Jain, S. K., & Agarwal, P. K. (2005). Rainfall-

runoff modelling using artificial neural networks: comparison of network types.

Hydrological Processes, 19(6), 1277–1291. doi:10.1002/hyp.5581

Shamseldin, A. Y. (1997). Application of a neural network technique to rainfall-runoff

modelling. Journal of Hydrology, 199(3-4), 272–294. doi:10.1016/S0022-

1694(96)03330-6

Sharma, A. (2000). Seasonal to interannual rainfall probabilistic forecasts for improved

water supply management: Part 1 — A strategy for system predictor identification.

Journal of Hydrology, 239(1-4), 232–239. doi:10.1016/S0022-1694(00)00346-2

Sharma, A., & Mehrotra, R. (2014). An information theoretic alternative to model a

natural system using observational information alone. Water Resources Research,

50(1), 650–660. doi:10.1002/2013WR013845

Sharma, S. K., & Tiwari, K. N. (2009). Bootstrap based artificial neural network

(BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar

Valley Catchment. Journal of Hydrology, 374(3-4), 209–222.

doi:10.1016/j.jhydrol.2009.06.003

Shrestha, D. L., & Solomatine, D. P. (2006). Machine learning approaches for

estimation of prediction interval for the model output. Neural Networks, 19(2),

225–35. doi:10.1016/j.neunet.2006.01.012

Srinivasulu, S., & Jain, A. (2009). River Flow Prediction Using an Integrated Approach.

Journal of Hydrologic Engineering, 14(1), 75–83. doi: 10.1061/(ASCE)1084-

0699(2009)14:1(75)

Ssegane, H., Tollner, E. W., Mohamoud, Y. M., Rasmussen, T. C., & Dowd, J. F.

(2012). Advances in variable selection methods I: Causal selection methods versus

stepwise regression and principal component analysis on data of known and

unknown functional relationships. Journal of Hydrology, 438-439, 16–25.

doi:10.1016/j.jhydrol.2012.01.008

167

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic

for Global Optimization over Continuous Spaces. Journal of Global Optimization,

11(3), 341–359.

Sudheer, K. P., & Jain, A. (2004). Explaining the internal behaviour of artificial neural

network river flow models. Hydrological Processes, 18(4), 833–844.

doi:10.1002/hyp.5517

Tada, T., & Beven, K. J. (2012). Hydrological model calibration using a short period of

observations. Hydrological Processes, 26(6), 883–892. doi:10.1002/hyp.8302

Thirumalaiah, K., & Deo, M. C. (1998). River Stage Forecasting Using Artificial Neural

Networks. Journal of Hydrologic Engineering, 3(1), 26–32.

Tiwari, M. K., & Chatterjee, C. (2010). Uncertainty assessment and ensemble flood

forecasting using bootstrap based artificial neural networks (BANNs). Journal of

Hydrology, 382(1-4), 20–33. doi:10.1016/j.jhydrol.2009.12.013

Tokar, A. S., & Johnson, P. A. (1999). Rainfall-Runoff Modeling Using Artificial

Neural Networks. Journal of Hydrologic Engineering, 4(3), 232–239.

Tokar, A. S., & Markus, M. (2000). Precipitation-Runoff Modeling Using Artificial

Neural Networks and Conceptual Models. Journal of Hydrologic Engineering,

(April), 156–161.

Tomassetti, B., Verdecchia, M., & Giorgi, F. (2009). NN5: A neural network based

approach for the downscaling of precipitation fields - Model description and

preliminary results. Journal of Hydrology, 367(1-2), 14–26.

doi:10.1016/j.jhydrol.2008.12.017

Toth, E. (2009). Classification of hydro-meteorological conditions and multiple artificial

neural networks for streamflow forecasting. Hydrology and Earth System Sciences,

13, 1555–1566.

Toth, E., Brath, A., & Montanari, A. (2000). Comparison of short-term rainfall

prediction models for real-time flood forecasting. Journal of Hydrology, 239, 132–

147.

Trichakis, I. C., Nikolos, I. K., & Karatzas, G. P. (2009). Optimal selection of artificial

neural network parameters for the prediction of a karstic aquifer’s response.

Hydrological Processes, 23(20), 2956–2969.

Wan Jaafar, W. Z., Liu, J., & Han, D. (2011). Input variable selection for median flood

regionalization. Water Resources Research, 47(7). doi:10.1029/2011WR010436

168

Wilby, R. L., Abrahart, R. J., & Dawson, C. W. (2003). Detection of conceptual model

rainfall-runoff processes inside an artificial neural network. Hydrological Sciences

JournalJournal Des Sciences Hydrologiques, 48(2), 163–181.

Wu, C. L., & Chau, K. W. (2006). A flood forecasting neural network model with

genetic algorithm. International Journal of Environment and Pollution, 28(3/4),

261. doi:10.1504/IJEP.2006.011211

Wu, C. L., & Chau, K. W. (2011). Rainfall–runoff modeling using artificial neural

network coupled with singular spectrum analysis. Journal of Hydrology, 399(3-4),

394–409. doi:10.1016/j.jhydrol.2011.01.017

Wu, C. L., & Chau, K. W. (2013). Prediction of rainfall time series using modular soft

computing methods. Engineering Applications of Artificial Intelligence, 26(3),

997–1007. doi:10.1016/j.engappai.2012.05.023

Wu, C. L., Chau, K. W., & Fan, C. (2010). Prediction of rainfall time series using

modular artificial neural networks coupled with data-preprocessing techniques.

Journal of Hydrology, 389(1-2), 146–167. doi:10.1016/j.jhydrol.2010.05.040

Wu, C. L., Chau, K. W., & Li, Y. S. (2009). Predicting monthly streamflow using data-

driven models coupled with data-preprocessing techniques. Water Resources

Research, 45(8), W08432. doi:10.1029/2007WR006737

Wu, S.J., Lien, H.C., & Chang, C.-H. (2012). Calibration of a conceptual rainfall–runoff

model using a genetic algorithm integrated with runoff estimation sensitivity to

parameters. Journal of Hydroinformatics, 14(2), 497 – 511.

doi:10.2166/hydro.2011.010

Wu, W., Dandy, G. C., & Maier, H. R. (2014). Protocol for developing ANN models

and its application to the assessment of the quality of the ANN model development

process in drinking water quality modelling. Environmental Modelling & Software,

54, 108–127. doi:10.1016/j.envsoft.2013.12.016

Xue, B., Zhang, M., Member, S., & Browne, W. N. (2013). Particle Swarm

Optimization for Feature Selection in Classification : A Multi-Objective Approach.

IEEE Transactions on Cybernetics, 43(6), 1656–1671.

Yang, X.-S. (2014). Nature-Inspired Optimization Algorithms. Elsevier.

Yao, X. (1999). Evolving Artificial Neural Networks. Proocedings of the IEEE, 87(9),

1423–1447.

Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1998). Multi-objective global optimization

for hydrologic models. Journal of Hydrology, 204(1-4), 83–97.

doi:10.1016/S0022-1694(97)00107-8

169

Ye, W., Bates, B. C., Viney, N. R., & Sivapalan, M. (1997). Performance of conceptual

rainfall-runoff models in low-yielding ephemeral catchments. Water Resources

Research, 33(1), 153–166.

Zanetti, S. S., Sousa, E. F., Oliveira, V. P. S., Almeida, F. T., & Bernardo, S. (2007).

Estimating Evapotranspiration Using Artificial Neural Network and Minimum

Climatological Data. Journal of Irrigation and Drainage Engineering, 133(2), 83–

89.

Zhang, B., & Govindaraju, R. S. (2000). Prediction of watershed runoff using Bayesian

concepts networks. Water Resources Research, 36(3), 753–762.

Zhang, X., Liang, F., Srinivasan, R., & Van Liew, M. (2009). Estimating uncertainty of

streamflow simulation using Bayesian neural networks. Water Resources Research,

45(2). doi:10.1029/2008WR007030

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative

case study and the strength Pareto approach. Evolutionary Computation, IEEE

Transactions on, 3(4), 257–271. doi:10.1109/4235.797969

