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Abstract

Navier-Stokes equations are basic equations in fluid dynamic. The problem is impor-

tant both in practice and theory. As it is difficult to find their accuracy solutions,

numerical simulations and experimentations have become important approaches to

solve the problem. Variational multiscale finite element method is one of most use-

ful methods. In order to guarantee the effectiveness, adaptive algorithm has been

developed, which makes use of the solutions in the progress to automatically control

the computing progress. In this thesis we first present an adaptive variational mul-

tiscale method for the Stokes equations. Then we develop two kinds of variational

multiscale method based on the partition of unity for the Navier-Stokes equations.

First, we propose some a posterior error indicators for the variational multiscale

method for the Stokes equations and prove the equivalence between the indicators

and the error of the finite element discretization. Some numerical experiments are

presented to show their efficiency on constructing adaptive meshes and controlling

the error.
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Secondly, a parallel variational multiscale method based on the partition of uni-

ty is proposed for incompressible flows. Based on two-grid method, this algorithm

localizes the global residual problem of variational multiscale method into a series of

local linearized residual problems. To decrease the undesirable effect of the artificial

homogeneous Dirichlet boundary condition of local sub-problems, an oversampling

technique is also introduced. The globally continuous finite element solutions are

constructed by assembling all local solutions together using the partition of unity

functions. Especially, we add an artificial stabilization term in the local and paral-

lel procedure by considering the residual as a subgrid value, which keeps the sub-

problems stable. We present the theoretical analysis of the method and numerical

simulations demonstrate the high efficiency and flexibility of the new algorithm.

Another a partition of unity parallel variational multiscale method is proposed.

The main difference lies in that in this algorithm we propose two kinds of refinement

method. It is difficult to obtain the theoretical result as the above method. However,

the numerical simulations show that the error of this algorithm decays exponentially

with respect to the oversampling parameter.
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Chapter 1

Introduction

1.1 Background

The variational multiscale method was proposed to solve multiscale problems by

Hughes and co-workers in [42, 44]. They defined a projection of the large scales

in Large Eddy Simulation method into appropriate subspaces. Since then much

attention has been paid in this field. For example, John and Kaya [46] gave the finite

element analysis of a variational multiscale method for the Navier-Stokes equations.

Gravemeier et al. [33] also presented the three-level variational multiscale method.

Zheng et al. improved the finite element variational multiscale method by introducing

two Gauss integration method [89] and adaptive technique [90]. Zhang et al. [88], Yu

et al. [86], Shan et al. [64] presented subgrid model, projection basis and modular

type to improve the variational multiscale methods, respectively.
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Based on the observation that in numerical simulations low frequency components

can be approximated well by the relative coarse grid and high frequency components

can be computed on a fine grid by some local and parallel procedure, the parallel finite

element computations have been widely used [83, 12, 36, 71]. Combining the partition

of unity method [59, 6] and the parallel adaptive algorithm from [12], Holst [38, 39]

constructed the parallel partition of unity method (PPUM). Zheng et al. [87, 91]

developed some local and parallel finite element algorithms based on the partition of

unity. Song et al. [73] presented an adaptive local postprocessing technique based on

the partition of unity method for the Navier-Stokes equations. There are also some

papers improving the variational multiscale methods by combining with two-grid

method or local and parallel techniques [52, 66].

It is natural to consider to add the local parallel method to the variational mul-

tiscale method in order to retain the best features of both methods and overcome

many of their defects. In particular, we use the variational multiscle method based on

two local Gauss integrations [89] since it avoids constructing the projection operator,

keeps the same efficiency and does not need extra storage compared with common

VMS method. Comparing with the parallel method in [66], we add an artificial

stabilization term in the local and parallel procedure by considering the residual

as a subgrid value, which keeps the sub-problems stable. Then, an oversampling
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technique is introduced in order to overcome the undesirable effect of the artificial

homogeneous Dirichlet boundary conditions of local sub-problems. The interesting

points in this algorithm lie in: firstly, a class of partition of unity is derived by a

given triangulation, which guides the domain decomposition; secondly, the series of

local linearized residual problems are implemented in parallel, and they require less

communication between each other; finally, the globally continuous finite element

solution is obtained by assembling all local solutions together via the partition of

unity functions.

1.2 Literature review

1.2.1 Navier-Stokes equations

The Navier-Stokes equations describe the motion of fluid substances in physics. They

are named after Claude-Louis Navier(1785-1863) and George Gabriel Stokes(1981-

1903). Assuming that the fluid stress is the sum of a diffusing viscous term and a

pressure term, we can derive these equations by applying Newton’s second law to

fluid motion. Exactly, we can get the equations from the conservation of mass and

conservation of momentum [57].

Because the equations describe the physics of many things of academic and e-

conomic interest they have a lot of applications. In many fields, such as petroleum
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industry, plasma physics, the Navier-Stokes equations appear alone or coupled with

other equations. For example coupled with Maxwell’s equations they can be used to

model and study magnetohydrodynamics.

In a purely mathematical sense the Navier-Stokes equations are also of great

interest. However, although people have studied the equations since the 19th century

mathematicians have not yet proven the existence and smoothness of the solutions

of the equations in three dimensions, which are called as existence and smoothness

problems of Navier-Stokes equations. Since May 2000 the Clay Mathematics Institute

has offered a 1,000,000 dollar prize for people who can make substantial progress in

mathematical theory to help people understand the equations, which has been called

this one of the seven most important open problems in mathematic.

It is difficult to find the accurate solutions of the Navier-Stokes equations. People

have found only more than one hundred particular solutions. That’s one of the

reasons that numerical simulations are introduced to solve the problem. The finite

difference method, finite volume method and finite element method are the three

most commonly used methods to solve partial differential equations.
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1.2.2 Variational multiscale method

Variational multiscale method proposed by Hughes [42, 44] offers a new perspective

for the stabilized methods. They defined the large scales in Large Eddy Simulation

method a projection into appropriate subspaces. In the method, they decomposed

the solution into fine scales and coarse scales u “ uc ` uf , determined the fine scale

solution uf analytically, eliminated it from the coarse equation and then solved the

coarse scale solution uc numerically. Based on the idea [42], [43], people proposed

several variational multiscale methods [44], [45], [47]. In [47], John and Kaya gave

the finite element analysis of a variational multiscale method for the Navier-Stokes

equations. In [54], Liu et al. presented a new variational multiscale method for the

Stokes problem by using the infinite Green’s function to derive the fine scale velocity

and pressure analytically.

Gravemeier et al. [33] also presented the three-level variational multiscale method.

Zheng et al. improved the finite element variational multiscale method by introduc-

ing two Gauss integration method [89] and adaptive technique [90]. Zhang et al.

[88], Yu et al. [86], Shan et al. [64] et al. presented subgrid model, projection basis

and modular type to improve the variational multiscale methods, respectively.
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1.2.3 Adaptive technique

With the development of computers, numerical computation plays a more and more

important role in our research and practice. Not only can they simulate a lot of phys-

ical phenomenon, but also can prove the reliability of theoretical analysis. However,

no matter how complex the mathematical model is, there still exists numerical error

which could influence the effectiveness of the method. In order to guarantee the ef-

fectiveness, scientist build mathematical theory to estimate the discretization error.

Furthermore, the discretization error also provides us with important information to

use the adaptive algorithm to get better numerical solutions.

Adaptive algorithm uses the solutions in the progress to automatically control

the computing progress to solve the problems. It can first compute the mesh by

the solutions in the progress and then choose the best discretization pattern, thus it

can adapt the error to the needed accuracy step by step. The method can use less

amount of calculation to achieve the needed accuracy. Adaptive analysis consists of

two parts: reliable error estimate and powerful automatical mesh division technology.

Thus the a posteriori error analysis is the essential part in the adaptive algorithm.

The a posteriori error estimates for finite element methods was first proposed

in the pioneering work of Babuška and Rheinboldt in 1978 [8] when they presented

a posteriori error estimates of finite element solutions of linear elliptic problems in
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one dimension. Then some other results were presented [9, 10, 7]. These results

formed the foundation of adaptive algorithm. In the early 1980s, based on prior

error estimate or difference value people derived lots of a posteriori error estimators,

which were still rough but very efficient for the adaptive algorithm. Zienkiewicz

and Zhu proposed a simple error estimation technology which could be used for the

finite element method for many classical problems [63], [92]. In 1990s the basic

technic of a posteriori error estimation was built and had been used to the classical

problems, such as Stokes equations, Navier-Stokes equations, hyperbolic problems

and parabolic problems. Ainsworth and Oden [2],[3] Stewart and Hughes [74, 75]

and many other scientists did much work in this area. Now the theory of a posteriori

error estimation has been mature and the key point of the research has turned to

test the effectiveness of the a posteriori error estimators and their limitations in

computing.

Especially for the Stokes and Navier-Stokes equations, R.Verfürth gave a poste-

riori error analysis of the finite element method for Stokes equations [80]. The main

contribution was that he proposed a posteriori error estimator for the mini-element

discretization of the Stokes equations and proved the equivalence between the esti-

mator and the discretization error by using the property of Bubble function. Then

the method was applied to non-confirming element discretization of Stokes equations

7



and Navier-Stokes equations [81, 82],.

Larson and Målqvist developed two adaptive variational multiscale method for

elliptic problem in [50, 51]. They decoupled and solved the fine scale equation-

s approximately on patches, derived a posteriori error estimate to control a linear

functional of the error or got a posteriori error estimate of the error in the energy nor-

m. Then they got the adaptive algorithms based on the a posteriori error estimators.

In [35] they derived an explicit a posteriori error estimator using the approximation

of the Green’s function. John and Kindl developed a method which could choose

the large scale space adaptively in [48]. It extended the projection-based variational

multiscale finite element method. In [90] the authors gave an adaptive variational

multiscale method in which the error estimators could be computed by two local

Gauss integrations at the element method.

1.2.4 The partition of unity method

In the beginning people only used the polynomial basis functions in the trial space

of the standard FEM. The idea of adding non-polynomial basis functions into the

trail space of the FEM started in the 1970s [15, 16, 28].

Duarte and Oden [25, 26, 53, 61, 24] developed a new meshless method called

h-p clouds, the basic idea of which is to multiply a partition of unity by polynomials

8



or other appropriate class of functions. Both a priori and a posterior error esti-

mate were analyzed and the implementation of the method using objective oriented

programming was discussed.

In [5] Babuška and co-authors proposed three Special FEM to solve second or-

der problems with rough coefficients. In particular, the shape functions used in the

Special FEM 73 have compact supports and are products of piecewise linear FE

hat-functions and a non-polynomial function that mimic the special features of the

unknown solution. Melenk [58] further generalized the method with detailed math-

ematical theory and applications in his Ph.D dissertation. He also showed that the

hat-functions could be replaced by any PU (with compact support).

Then Babuška and Melenk referred to the method as the partition of unity finite

element method(PUFEM) in [59, 6]. They explained the mathematical foundation of

the PUFEM and discussed some of its features, for example, the ability to include a

priori knowledge about the local behavior of the solution in the finite element space,

the ability to construct finite element spaces of any desired regularity. They also

showed how to use the PUFEM to employ the sructure of the differential equation

under consideration to construct effective and robust methods. Some classes of non-

standard problems which can profit highly from the advantages of the PUFEM were

presented.
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A lot of attention has been paid on the method to the method. Two approach-

es are the Generalized Finite Element Method(GFEM) which are proposed by S-

touboulis [76, 77, 78] and Duarte [61, 24, 27] and the Extended Finite Element

Method(XFEM), which are raised by Belytschko and co-atuthors [13, 60, 21, 14, 22].

Recently it was recognized that these two methods are same and were referred to as

XFEM/GFEM [30].

Huang and Xu [40] first applied a partition of unity method to homogenization

problems. They made use of the advantage that the partition of unity method could

flexibly localize the approximation and keep the global continuity and showed that

the partition of unity method was a powerful tool for handling a large variation of

problems efficiently. Then they [41] proposed a finite element method for nonmatch-

ing overlapping grids considering both overlapping and nonoverlapping cases.

Bank and Holst [11, 12] presented the parallel partition of unity method (PPUM)

by combining the local and parallel method and the partition of unity method. Then

Holst described a variant of the algorithm in [38, 39]. Global error estimates for

PPUM were derived and a duality-based variant of PPUM was also discussed.
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1.2.5 Local and parallel finite element algorithm

The finite element method was proposed by R. Courant in 1943 [20]. However, peo-

ple didn’t notice the contribution of the method until the engineers independently

re-invented the method in the 1950s [4, 79]. R. Clough proposed the name in 1960

[18]. It has become one of the major tools for numerically solving partial differen-

tial equations based on the advantages that it can relatively easily handle general

boundary conditions, complex geometry, and variable material properties. Also, it is

possible for people to develop flexible and general purpose software for application

based on the clear structure and versatility of the method. Moreover, a solid theo-

retical foundation makes it possible to obtain concrete error estimates of the finite

element solutions in many situations.

When we use finite element method to solve the Navier-Stokes equations we will

meet two difficult problems [23]. First, due to the discretization of the nonlinear

convective terms we have to use stabilized finite element formulations to treat high

Reynolds number flows. Secondly, it is difficult to numerically handle the saddle-

point problem will arise from the variational form of the incompressible problem with

the pressure acting as a Lagrangian multiplier of the incompressibility constraint. A

lot of work have been done to overcome these difficulties, such as, the penalty method

[42], pressure gradient method [19], projection method, and so on.
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Xu and Zhou prosposed some new local and parallel discretization and adaptive

finite element algorithms for elliptic boundary value problems in [83]. They use a

coarse grid to capture the global component of the approximate solution and then

parallelize the major computation in a much fine grid. The local error estimate for

finite element approximations is one important technical tool in this idea. Then they

applied the similar method to nonlinear elliptic boundary value problems in both two

and three dimensions [84]. The method is also useful for the eigenvalue problems

[85, 72]. Bank and Holst [11, 12] presented a similar approach and implemented in

detail.

Based on two-grid discretizations, He et al. [37, 36] developed some new local

and parallel finite element algorithms for the Stokes problems and the stationary

incompressible Navier-Stokes problem. They also obtained some local a prior error

estimates for the finite element solutions on general shape-regular grids. Ma et al.

applied the method to the stream function form of Navier-Stokes equations [56] and

steady Navier-Stokes equations [55].

Shang et al. have published many papers in this topic. They proposed and

analyzed the method for the d-dimensional (d=2, 3) transient Stokes equations [69].

Several different kinds of local and parallel finite element algorithms for the Navier-

Stokes equations were presented in succession [67, 71, 70, 65]. Based on two-grid
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discretizations and domain decomposition, a parallel Oseen-linearized finite element

algorithm for the stationary Navier-Stokes equations with moderate or large viscosity

parameter was proposed and analyzed in [68]. They also proposed a new method

by combining the two-grid discretization approach with a finite element variational

multiscale algorithm for simulation of the incompressible Navier-Stokes equations

[66].

1.3 Summary of contributions of the thesis

The original contributions of this thesis are as follows:

• We propose some a posterior error indicators for the variational multiscale

method for the Stokes equations and prove the equivalence between the in-

dicators and the error of the finite element discretization. Some numerical

experiments are presented to show their efficiency on constructing adaptive

meshes and controlling the error.

• A parallel variational multiscale method based on the partition of unity is

proposed for incompressible flows. Based on two-grid method, this algorithm

localizes the global residual problem of variational multiscale method into a se-

ries of local linearized residual problems. To decrease the undesirable effect of

the artificial homogeneous Dirichlet boundary condition of local sub-problems,

13



an oversampling technique is also introduced. The globally continuous finite el-

ement solutions are constructed by assembling all local solutions together using

the partition of unity functions. Especially, we add an artificial stabilization

term in the local and parallel procedure by considering the residual as a subgrid

value, which keeps the sub-problems stable. We present the theoretical analysis

of the method and numerical simulations demonstrate the high efficiency and

flexibility of the new algorithm.

Another a partition of unity parallel variational multiscale method is proposed.

The main difference lies in that in this algorithm we propose two kinds of re-

finement method. It is difficult to obtain the theoretical result as the above

method. However, the numerical simulations show that the error of this algo-

rithm decays exponentially with respect to the oversampling parameter.

1.4 Organization of the thesis

The thesis is structured as follows.

• Chap. 2 reviews the preliminary knowledge of Navier-Stokes and Stokes equa-

tions. Some notations and properties are introduced.

• Chap. 3 presents some a posterior error indicators for the variational multi-

scale method for the Stokes equations and proves the equivalence between the
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indicators and the error of the finite element discretization. Some numerical

experiments are presented to show their efficiency on constructing adaptive

meshes and controlling the error.

• Chap. 4 proposes two kinds of parallel variational multiscale methods based

on the partition of unity for incompressible flows. Based on two-grid method,

the algorithms localizes the global residual problem of variational multiscale

method into a series of local linearized residual problems.

In the first method, to decrease the undesirable effect of the artificial homo-

geneous Dirichlet boundary condition of local sub-problems, an oversampling

technique is also introduced. The globally continuous finite element solutions

are constructed by assembling all local solutions together using the partition

of unity functions. Especially, we add an artificial stabilization term in the

local and parallel procedure by considering the residual as a subgrid value,

which keeps the sub-problems stable. We present the theoretical analysis of

the method and numerical simulations demonstrate the high efficiency and

flexibility of the new algorithm.

Another a partition of unity parallel variational multiscale method is then

proposed. The main difference lies in that in this algorithm we propose two

kinds of refinement methods. It is difficult to obtain the theoretical result as the
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above method. However, the numerical simulations show that the error of this

algorithm decays exponentially with respect to the oversampling parameter.

• Chap. 5 concludes the whole thesis and lists our plans in the future work.
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Chapter 2

Preliminaries

2.1 Navier-Stokes equations

We consider the following incompressible flows

´ν∆u` pu ¨∇qu`∇p “ f in Ω,

∇ ¨ u “ 0 in Ω, (2.1)

u “ 0 on BΩ,

where Ω represents a polyhedral domain in Rd (d “2, 3) with boundary BΩ, u, p, f

and ν ą 0 represent the velocity vector, pressure, prescribed body force, kinematic

viscosity respectively. And ν is inversely proportional to the Reynolds number Re.

For sub-domains D Ă G Ă Ω, D ĂĂ G means that distpBDzBΩ, BGzBΩq ą 0.

Throughout the thesis we use C to denote a generic positive constant whose value
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may change from place to place but remains independent of the mesh parameter h.

In order to describe the variational form of the equations we give some notations.

For a bounded domain Ω Ă Rd, we use the standard notations for Sobolev spaces

W s,kpΩq and their associated norms [1, 17]. Especially when k “ 2, HspΩq “ W s,2pΩq

denotes the usual Soblev space, } ¨ }s,Ω “ } ¨ }s,2,Ω denotes standard Soblev norm,

p¨, ¨qs denotes the inner product in L2pΩq or its vector value version. We introduce

the following spaces,

H1
0 pΩq “ tϕ P H1

pΩq;ϕ “ 0 on Γu,

L2
0pΩq “ tϕ P L2

pΩq;

ż

Ω

ϕ “ 0u.

Let X “ pH1
0 pΩqq

2, Y “ L2pΩq2, M “ L2
0pΩq. H

´1pΩq is the dual space of H1
0 pΩq.

In the following we will denote the spaces consisting of vector-valued functions in

boldface.

Then we define the bilinear terms ap¨, ¨q, dp¨, ¨q and trilinear term bp¨, ¨, ¨q as follows

apu,vq “ νp∇u,∇vq,

bpu,v,wq “ 1
2
ppu ¨∇qv,wq ´ 1

2
ppu ¨∇qw,vq,

dpv, qq “ p∇ ¨ v, qq, @ u,v,w P X, q PM,
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With the above notations, the standard variational formulation of (2.1) reads:

find pu, pq P pX,Mq such that

apu,vq ` bpu,u,vq ´ dpv, pq ` dpu, qq “ pf ,vq, @ pv, qq P pX,Mq. (2.2)

Here are some properties of apu,vq, bpu,v,wq, dpv, pq.

(1) ap¨, ¨q is symmetric, continuous and X coercive.

apu,vq “ apv,uq, @u,v P X;

|apu,vq| ď λ|u|1|v|1, @u,v P X;

apu,uq “ λ|u|21, @u P X.

(2) bp¨, ¨, ¨q has the following properties:

bpu,v,wq “ bpu,w,vq, @u,v,w P X;

|bpu,v,wq| ď N}u}}v}}w}, @u,v,w P X;

|bpu,v,wq| ď Cp}u}}v}
1
2 |v|

1
2 ` }v}}u}

1
2 |u|

1
2 q}w}

1
2 |w|

1
2 , @u,v,w P X;

|bpu,v,wq| ď Cp}v}}w}
1
2 |w|

1
2 ` }w}}v}

1
2 |v|

1
2 q}u}

1
2 |u|

1
2 , @u,v,w P X.

19



(3) dp¨, ¨q is continuous and satisfy the inf-sup condition.

sup
vPX

dpv, qq

|v|1
ě β}q}0, @q PM

Then we give the following classicla existence and uniqueness of solution of (2.2),

see [32, 34].

Theorem 2.1. Given f P X1, there exists at least a solution pair pu, pq P pX,Mq

which satisfies (2.2) and

||∇u||0,Ω ď ν´1
||f ||´1,Ω, ||f ||´1,Ω “ sup

vPX

pf ,vq

||∇v||0,Ω
,

and if ν and f satisfy the following uniqueness condition:

1´ ν´2N ||f ||´1,Ω ě 0, (2.3)

then the solution pair pu, pq of problem (2.2) is unique.

2.2 Variational multiscale method for Navier-Stokes

equations

Let τh be a regular triangulation of the domain Ω, and h denote the maximum

diameter of the elements in τh. We use P2 ´ P1 elements in this paper, which
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means that Xh and Mh contain piecewise polynomials of degree 2 and 1 respectively.

pXH ,MHq is defined in the same way but on τH with coarser mesh size H where

H ą h. Set pXh
0 ,M

h
0 q “ pX

h,Mhq
Ş

pX,Mq.

It is known that the standard Galerkin finite element discretization of (2.2) is

unstable in the case of high Reynolds number (or smaller viscosity). Therefore,

we consider the finite element variational multiscale method [89]: find puh, phq P

pXh
0 ,M

h
0 q satisfying

νapuh,vq` bpuh,uh,vq´dpv, phq`dpuh, qq`Gpuh,vq “ pf ,vq @pv, qq P pXh
0 ,M

h
0 q,

(2.4)

where Gpuh,vq “ αppI´Πhq∇uh, pI´Πhq∇vq. Let L “ L2pΩqdˆd and Πh : LÑ Lh

be the orthogonal projection operator with the following properties:

ppI ´ Πhqr,ghq “ 0, @r P L, gh P Lh, (2.5)

}Πr}0 ď C}r}0, @r P L, (2.6)

}pI ´ Πhqr}0 ď Ch}r}1, @r P LXH1
pΩqdˆd, (2.7)

where I is the identify operator.

According to [89], we can use the equivalent formulation of G based on two local

21



Gauss integrations as follows,

Gpuh,vq “ α
ÿ

ΩePτh

t

ż

Ωe,s

∇uh∇vdx´

ż

Ωe,1

∇uh∇vdxu @uh, v P Xh,

where
ş

Ωe,i
gpxqdx denotes an appropriate Gauss integral over Ωe which is exact for

polynomials of degree i, i “ 1, 2. For all test functions v P Xh, ∇uh must be

piecewise constant when i “ 1. And set α “ Oph2q in order to keep the rates of

convergence.

In [66] Shang proved the following theorem.

Theorem 2.2. Assume that pu, pq is a nonsingular solution to the Navier-Stokes

equations satisfying pu, pq P pH3pΩqn
Ş

H1
0 pΩq

nq ˆ pH2pΩq
Ş

L2
0pΩqq, and α tends to

zero as h tends to zero. Then the solution puh, phq computed by the numerical scheme

(2.4) satisfies

}u´ uh}1,Ω ` }p´ ph}0,Ω ď ch2
` cα, (2.8)

}u´ uh}0,Ω ` }p´ ph}´1,Ω ď chph2
` αq ` cα2. (2.9)

22



Chapter 3

Adaptive variational multiscale

method for the Stokes equations

3.1 Variational multiscale finite element method

for Stokes equations

We give the variational form of Stokes equations: find pu, pq P V ˆM satisfied

$

’

&

’

%

apu,vq ` dpv, pq “ pf ,vq, @v P V,

dpu, qq “ 0, @q PM.
(3.1)

Define X “ V ˆ M , then the variational form is equivalent to the following

equality:

Lpu, p; v, qq “ apu,vq ` dpv, pq ` dpu, qq “ pf ,vq, @pv, qq P X, (3.2)

23



In the following we present the variational multiscale formulation of the problem.

First we split the space X into two subspaces: the coarse space Xc and the fine space

Xf which satisfy:

X “ Xc ‘Xf “ Vc ˆMc ‘ Vf ˆMf ,

where V “ Vc‘Vf and M “Mc‘Mf . Thus we can get the following decomposition

u “ uc ‘ uf ,v “ vc ‘ vf ,

p “ pc ‘ pf , q “ qc ‘ qf .

Then the problem can be divided into two sub problems as follows,

Lpuc, pc; vc, qcq ` Lpuf , pf ; vc, qcq “ pf ,vcq, @pvc, qcq P Xc, (3.3)

Lpuc, pc; vf , qf q ` Lpuf , pf ; vf , qf q “ pf ,vf q, @pvf , qf q P Xf , (3.4)

We define the residual R : X Ñ Xf as follows

Rppv, qq, pw, tqq “ pf ,wq ´ Lpv, q; w, tq, @pw, tq P X.

Thus the fine scale solution can be driven by the residual of the coarse scale solution
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as follows,

Lpuf , pf ; vf , qf q “ Rppuc, pcq, pvf , qf qq, @pvf , qf q P Xf . (3.5)

Denote uf “ F1Rpuc, pcq, qf “ F2Rpuc, pcq then we can derive the modified coarse

scale equation,

Lpuc, pc; vc, qcq`LpF1Rpuc, pcq, F2Rpuc, pcq; vc, qcq “ pf ,vcq, @pvc, qcq P Xc. (3.6)

Here the second term is the effect of the fine scales on the coarse scales.

In the following, we present the localized problems to solve the fine scale equation.

First we introduce the triangulations of Ω: Jh which satisfies

• the intersection of two different elements is at most a vertex or a whole edge,

• the ratio of the diameter of any element in Jh to the diameter of its inscribed

circle is bounded by a constant independent of h.

Let T present the element in Jh with diameter hT and N be the set of nodes in

Jh. Now we present how to choose the local domain. Denote tφiuiPN to be a set of

Lagrange basis function in Xc. We know that tφiuiPN is a partition of unity with

support on the elements sharing the nodes i. Based on this we make choice of the

local domain. Let S1
i be the set of the elements which have one corner in node i
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and Ski “
ř

jPSk´1
i

Sj1 and we call it the kth layer of node i. We choose the local

domain ωi to be Ski pk “ 1, 2, 3 ¨ ¨ ¨ q. In Fig 3.1 we present Ski pk “ 1, 2, 3q and the fine

h-refinement meshes for them.

Figure 3.1: 1st layer(left), 2nd layer, and 3rd layer(right)

Thus we can approximate the fine scale equation by constructing an algorithm

using a set of decoupled localized problems. The fine scale solution can be written

as uf “
ř

iPN uf,i, pf “
ř

iPN pf,i, where

Lpuf,i, pf,i; vf , qf q “ φiRppuc, pcq, pvf , qf qq, @pvf , qf q P Xf . (3.7)

We introduce this into (3.4), then the Stokes problem becomes: find puc, pcq P Xc
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and uf “
ř

iPN uf,i P Vf , pf “
ř

iPN pf,i PMf such that

Lpuc, pc; vc, qcq ` Lpuf , pf ; vc, qcq “ pf ,vcq, @pvc, qcq P Xc, (3.8)

Lpuf,i, pf,i; vf , qf q “ φiRppuc, pcq, pvf , qf qq, @pvf , qf q P Xf . (3.9)

Then we use finite element method to solve this problem. First we choose the

finite element spaces XH and Xh to approximate the coarse space Xc and Xf re-

spectively. Let P1 and P2 denote the space of linear polynomials and quadratic

polynomials. Put

P1 “ tϕ P CpΩq : @T P JH , ϕ|T P P1u,

P2 “ tϕ P CpΩq : @T P JH , ϕ|T P P2u,

VH “ tP2 XH
1
0 pΩqu

2, MH “ P1 X L
2
0pΩq.

There are several choices of the fine scale space. In our computing, we choose to use

standard piecewise polynomials to discrete Xf on the fine mesh as that of the coarse

mesh.

Then the discretization form of the problem is: find pUc, Pcq P XH and Uf “
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ř

iPN Uf,i P Vh, Pf “
ř

iPN Pf,i PMh such that

LpUc, Pc; vc, qcq ` LpUf , Pf ; vc, qcq “ pf ,vcq, @pvc, qcq P XH , (3.10)

LpUf,i, pf,i; vf , qf q “ φiRppUc, Pcq, pvf , qf qq, @pvf , qf q P Xhpωiqandi P N.(3.11)

Obviously, U “ Uc ` Uf and P “ Pc ` Pf are continuous because in Xhpωiq the

functions are equal to zero on the boundary Bωi. In our computing, we only choose

some nodes to solve the local problems. Thus we denote F as a set of the nodes

where the local problems need to be solved and C as the set of other nodes

3.2 A posteriori error analysis for variational mul-

tiscale FEM for Stokes equations

In this section we define two kinds of a posteriori error estimators to estimate the

discretization error. The first kind is based on a quasi-dual problem and the second

one computes suitable norms of the residual.

Denote e “ u´U and ε “ p´P to be the error. It’s obvious that the errors can

be divided into two parts: the coarse scale error ec “ uc ´Uc, εc “ pc ´ Pc and the

fine scale error ef “
ř

iPN ef,i “
ř

iPNpuf,i´Uf,iq, εf “
ř

iPN εf,i “
ř

iPNppf,i´Pf,iq.

Now we derive some properties of the error. Subtracting (3.10) from (3.3) we can
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get the Galerkin orthogonality of the coarse scale error

Lpec, εc; vc, qcq ` Lpef , εf ; vc, qcq “ 0, @pvc, qcq P XH . (3.12)

And the Galerkin orthogonality of the fine scale error can be derived by subtracting

(3.11) from (3.4):

Lpef,i, εf ; vf , qf q “ ´Lpec, εc;φivf , φiqf q, @pvf , qf q P Xh. (3.13)

We first define for any T P Jh,

ηC,T “ tchT }P0f ´∆Uc ´∇Pc}20,T ` ch
1
2
E}r
BUc

Bn
´ Pc ¨ nsJ}

2
0,E ` }∇ ¨ uh}20,T u

1
2 (3.14)

and for any T P F ,

ηF,T “ tchT }∆Uc `∇Pc}20,T ` ch
1
2
E}r
BUc

Bn
´ Pc ¨ nsJ}

2
0,E ` }∇ ¨ uh}20,T u

1
2 (3.15)

where the r¨sJ denotes the jump of p¨q across E.
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Theorem 3.1. The a posteriori error estimate

|e|1 ` }ε}0 ď ctt
ÿ

TPC

pη2
C,T ` h

2
T }f ´ P0f}

2
0,T qu

1
2

`t
ÿ

TPF

pη2
C,T ` h

2
T }f ´ P0f}

2
0,T ` η

2
F,T qu

1
2 u (3.16)

holds, where c only depends on Ω and the smallest angle in the triangulation Jh.

Proof. It’s known that the P2-P1 velocity-pressure finite element space X “

XH ‘Xh satisfies the inf-sup condition, that is there exist β ą 0 such that

inf
pu,pqPX

sup
pv,qqPX

Lpu, p; v, qq
p|u|1 ` }p}0qp|v|1 ` }q}0q

ě β.

In the proof we have to use the following two inequalities[80] for all T P Jh and all

edges E of T,

}v ´ Ihv}0,T ď ChT |v|1,T ,

and

}v ´ Ihv}0,E ď Ch
1
2
T |v|1,E.

Here Ihv is the standard pointwise interpolation operator by the finite elements.
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Lpe, ε; v, qq

“ Lpe, ε; vf ´ Ihvf , qf q

“ Lpu´ Uc, p´ Pc; vf ´ Ihvf , qf q ´ LpUf , Pf ; vf ´ Ihvf , qf q

“
ÿ

iPC

tpf ´∆Uc ´∇Pc,vf ´ Ihvf qT ` pqf ,∇ ¨UcqT `
1

2

ÿ

EĂBTXΩ

pr
BUc

Bn
´ Pc ¨ nsJ ,

vf ´ Ihvf qEu `
ÿ

iPF

tpf ´∆Uc ´∇Pc,vf ´ Ihvf qT ` pqf ,∇ ¨UcqT

`
1

2

ÿ

EĂBTXΩ

pr
BUc

Bn
´ Pc ¨ nsJ ,vf ´ Ihvf qE ´ pp´∆Uf ´∇Pf ,vf ´ Ihvf qT

`pqf ,∇ ¨Uf qT `
1

2

ÿ

EĂBTXΩ

pr
BUf

Bn
´ Pf ¨ nsJ ,vf ´ Ihvf qEqu

ď
ÿ

TPC

tchT }P0f ´∆Uc ´∇Pc}0,T |vf |1 ` ch
1
2
E}r
BUc

Bn
´ Pc ¨ nsJ}0,E|vf |1

`chT }f ´ P0f}0,T |vf |1 ` }∇ ¨ uh}0,T }qf}0,T u `
ÿ

TPF

tchT }P0f ´∆Uc

´∇Pc}0,T |vf |1 ` ch
1
2
E}r
BUc

Bn
´ Pc ¨ nsJ}0,E|vf |1 ` chT }f ´ P0f}0,T |vf |1

`}∇ ¨Uc}0,T }qf}0,T ` pchT }∆Uf `∇Pf}0,T |vf |1 ` ch
1
2
E}r
BUf

Bn

´Pf ¨ nsJ}0,E|vf |1 ` }∇ ¨Uf}0,T }qf}0,T qu

ď ctt
ÿ

TPC

pη2
C,T ` h

2
T }f ´ P0f}

2
0,T qu

1
2 ` t

ÿ

TPF

pη2
C,T ` h

2
T }f ´ P0f}

2
0,T

`η2
F,T quu

1
2 t|v|1,T ` }q}0,T u.
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Thus we can get the conclusion.l

As the adaptive algorithm based on the second error estimator is very similar to

that based on the first one, we also denote Ci “ ηC,T and Fi “ pη
2
C,T ` η

2
F,T q

1
2 .

3.3 Numerical experiments

An adaptive algorithm usually has four steps:

solve Ñ estimate Ñ remark Ñ refine

The algorithms based on the two kinds of a posteriori error estimator are similar,

thus we present an adaptive algorithm as follows.

• Step 1. Give an initial mesh J0 with no node in F.

• Step 2. Solve the Stokes problem (3.1) on the mesh Ji.

• Step 3. Calculate Ci for each coarse node.

• Step 4. Solve the local problems where Ci is large and then we can get the new

Uf and Uc.

• Step 5. Calculate Ci and Fi. If Ci is large, solve the local problems; if Fi is

large, we choose to increase the number of layers for the local problem. Based
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on Ci and Fi generate mesh Ji`1 by the refinement strategy in [29]. Stop if we

get the desired tolerance or go back to Step 2.

Then we present two examples to show the efficiency of our error estimators in

the process of constructing self-adaptive meshes and in estimating the discretization

errors.

Example 3.1 We consider a driven cavity problem in the domain Ω “ p0, 1q ˆ

p0, 1q. It means that ux “ 1, uy “ 0 on the upper side and u “ 0 on the other three

sides. Fig 3.2 presents the problem. It’s obvious that the solution is not continuous

on the two vertices of the upper boundary.

Figure 3.2: Driven cavity problem

We begin our calculation from the initial mesh in Fig 3.3, Fig 3.4 and Fig 3.5
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Figure 3.3: initial mesh

Figure 3.4: mesh after 1 refinement
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Figure 3.5: mesh after 3 refinements

present the mesh we get after one refinement and three refinements respectively.

From these pictures we can see clearly that at the two top corners there are more

triangles than other areas. In Fig 3.8 and Fig 3.9 we present the velocity field in

uniform mesh and adaptive form mesh after 2 steps in Fig 3.6 and Fig 3.7 with nearly

the same number of triangles. From these figures we can see that the solution using

the a posteriori error analysis is more closer to the real situation.

Example 3.2 We consider a problem with a smooth solutions which are given
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Figure 3.6: mesh after 2 refinements Figure 3.7: uniform mesh

IsoValue
-1655.45
-1470.76
-1286.07
-1101.38
-916.689
-731.999
-547.309
-362.619
-177.929
6.76149
191.452
376.142
560.832
745.522
930.212
1114.9
1299.59
1484.28
1668.97
1853.66

Figure 3.8: P on mesh after 2 refinements

IsoValue
-644.091
-574.916
-505.741
-436.566
-367.39
-298.215
-229.04
-159.865
-90.6893
-21.5141
47.6612
116.836
186.012
255.187
324.362
393.537
462.713
531.888
601.063
670.238

Figure 3.9: P on uniform mesh

by

ux “ 1.5r1{2
pcosp0.5θq ´ cosp1.5θqq,

uy “ 1.5r1{2
p3sinp0.5θq ´ sinp1.5θqq,

p “ ´6{r1{2cosp0.5θq,
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in a circular domain with radius 1 and angle 2π and with a non-homogeneous Dirich-

let boundary conditions on the curved part of the boundary and homogeneous Dirich-

let boundary conditions on the straight part of the boundary. We start the strategies

from the initial triangulations J 0
h as in Fig 3.10 and refine 2 times to get the meshes

J 1
h and J 2

h shown in the following two figures. We can see that in the noncontinuous

area there are much more elements than these in the continuous area. Fig 3.13 -Fig

3.18 present the pressure level line with Galerkin method and VMS method on the

above three meshes. It can be seen clearly that the pressure based on VMS method

is more smooth. From the result we can obviously see the advantage of our method.

Figure 3.10: initial mesh
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Figure 3.11: mesh after 1 refinement

Figure 3.12: mesh after 2 refinements
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IsoValue
-10.3824
-8.90058
-7.41872
-5.93686
-4.455
-2.97315
-1.49129
-0.00942726
1.47243
2.95429
4.43615
5.91801
7.39987
8.88173
10.3636
11.8454
13.3273
14.8092
16.291
17.7729

Figure 3.13: pressure level line with Galerkin method on J 0
h

IsoValue
-139.866
-111.735
-83.6034
-55.4721
-27.3408
0.790541
28.9219
57.0532
85.1845
113.316
141.447
169.578
197.71
225.841
253.972
282.104
310.235
338.366
366.498
394.629

Figure 3.14: pressure level line with VMS method on J 0
h
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IsoValue
-18.9428
-14.7471
-10.5515
-6.3558
-2.16015
2.0355
6.23116
10.4268
14.6225
18.8181
23.0138
27.2094
31.4051
35.6007
39.7964
43.992
48.1877
52.3833
56.579
60.7746

Figure 3.15: pressure level line with Galerkin method on J 1
h

IsoValue
-539.021
-444.766
-350.512
-256.258
-162.003
-67.7489
26.5054
120.76
215.014
309.268
403.523
497.777
592.031
686.286
780.54
874.794
969.049
1063.3
1157.56
1251.81

Figure 3.16: pressure level line with VMS method on J 1
h
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IsoValue
-34.3921
-20.7001
-7.00814
6.68385
20.3758
34.0678
47.7598
61.4518
75.1438
88.8358
102.528
116.22
129.912
143.604
157.296
170.988
184.68
198.372
212.064
225.756

Figure 3.17: pressure level line with Galerkin method on J 2
h

IsoValue
-1137.25
-919.767
-702.283
-484.799
-267.315
-49.8304
167.654
385.138
602.622
820.107
1037.59
1255.08
1472.56
1690.04
1907.53
2125.01
2342.5
2559.98
2777.46
2994.95

Figure 3.18: pressure level line with VMS method on J 2
h
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Chapter 4

A parallel variational multiscale

methods for Navier-Sotkes

equations based on the partition of

unity

4.1 The parallel variational multiscale method based

on the partition of unity

4.1.1 Analysis and algorithm

In this section, we will derive a partition of unity based on a given triangulation, and

propose a framework for domain decomposition.

First, choose a regular conforming triangulation τHp for Ω. For each node xi P
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τHp , i “ 1, 2, ¨ ¨ ¨ , N, (here N is the number of nodes on τHp), define associate

continuous linear Lagrange basis function ϕi, such that ϕipxmq “ δi,m. Let ωi “

suppϕi X Ω, i “ 1, 2, ¨ ¨ ¨ , N denote the local subdomain.

Then, we denote ωi,0 “ ωi, which means the local domain without oversampling.

To enlarge this domain we introduce one layer oversampling ωi,1, which is the union of

the supports of ϕi and one layer of its neighbors, and also multiple layers oversampling

ωi,s:

ωi,1 “
ď

xmPωi,0

ωm,

ωi,s “
ď

xmPωi,s´1

ωm.

Fig4.1 would help us to understand the definition of oversampling.

It’s easy to check that, for any given s, tωi,suN1 is an open cover of Ω and tϕiu
N
1

is a partition of unity subordinate to the cover tωi,suN1 which satisfying

suppϕi Ă ωi,s, @i. (4.1)

ÿ

i

ϕi ” 1 on Ω. (4.2)

||ϕi||L8pRnq ď C8. (4.3)

||∇ϕi||L8pRnq ď
CG
Hp

. (4.4)
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Figure 4.1: Local domain with oversampling. ωi,0=blue region, ωi,1=blue and red
regions, ωi,2=blue, red and green regions.

where C8, CG are two constants.

Based on above special partition of unity, we develop a new local and parallel

variational mutiscale method as follows.

ALGORITHM PVMS-PU:

Step 1. Using the variational multiscale method to find a globally coarse grid

solution puH , pHq P pX
H
0 ,M

H
0 q such that

νapuH ,vq ` bpuH ,uH ,vq ´ dpv, pHq ` dpuH , qq `GpuH ,vq “ pf ,vq,

@pv, qq P pXH
0 ,M

H
0 q.

(4.5)
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Step 2. For a given τHp , fix s ě 1, correct the residue pei, εiq on a fine grid of

each overlapping subdomain ωi,s of τHp in parallel, pei, εiq P pXh
0pω

i,sq,Mh
0 pω

i,sqq, i “

1, 2, ¨ ¨ ¨ , N, such that

νapei,vq ` bpei,uH,vq ` bpuH, e
i,vq ´ dpv, εiq ` dpei,qq ` βp∇ei,∇vq

“ pRpuH,pHq,vq, @pv,qq P pXh
0pω

i,s
q,Mh

0pω
i,s
qq,

(4.6)

where pRpuH,pHq,vq “ pf ,vq´νpuH,vq´bpuH,uH,vq`dpv,pHq´dpuH,qq. Here

Xh
0pω

i,s
q :“ tv P Xh

pΩq : supp v ĂĂ ωi,su,

Mh
0 pω

i,s
q :“ tq PMh

pΩq : supp q ĂĂ ωi,sand

ż

ωi,s

qdx “ 0u.

Step 3. Update: pui, piq “ puH , pHq ` pe
i, εiq in ωi,s.

Step 4. Obtain the finite element solution uh “
N
ř

i“1

ϕiu
i, ph “

N
ř

i“1

ϕip
i.

In order to get the error estimate of this algorithm we first introduce a lemma

and regularity property from [36] and we list as two lemmas here.

Lemma 4.1. Suppose that g P H´1pΩqn,0 ă H ď h̄0 and S ĂĂ Ω0 Ă Ω. Then

pw, rq P XhpΩq ˆMhpΩqdefined by

νapw,vq ` puh,w,vq ` bpw,uH,vq ´ dpv, rq ` dpw,qq “ pg,vq,

@pv,qq P Xh
0pΩ0q ˆMh

0pΩ0q

(4.7)
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satisfies

}w}1,D ` }r}0,D ď Cp}w}0,Ω0 ` }r}´1,Ω0 ` }g}´1,Ω0q. (4.8)

Lemma 4.2. There exists a unique pΨh,Ψhq P X
0
hpΩq ˆM0

hpΩq satisfying the dual

problem:

pν ` βqapv,Φhq ` bpuh,v,Φhq ` bpv,uh,Φhq ` dpv,Ψhq ´ dpΦh,qq

“ pψ,vq ` pφ,qq, @pv,qq P H1
0pΩq ˆ L2

0pΩq

(4.9)

and has the following estimates

}Φ´ Φh}1,Ω ` }Ψ´Ψh}0,Ω ď Chp}φ}0,Ω ` }ψ}1,Ωq,

}Φh}1,Ω ` }Ψh}0,Ω ď Cp}φ}0,Ω ` }ψ}1,Ωq.

We also need the following lemma which can be proved easily so that we don’t

show the details here.

Lemma 4.3. Let C0 ą 0 be a constant, and tϕiu
N
1 be the partition of unity based

on τHp with Hp ě C0. Then there exist constant C1, C2, C3, C4 independent of N
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satisfying the following inequalities which will be used in the proof of next theorem.

}

N
ÿ

i“1

ϕiv}1,Ω ď C1

N
ÿ

i“1

}ϕiv}1,Ω, @ P H1
pΩq, (4.10)

}

N
ÿ

i“1

ϕiq}0,Ω ď C2

N
ÿ

i“1

}ϕiq}0,Ω, @q P L2
pΩq, (4.11)

}v}21,Ω ` }q}
2
0,Ω ď C3p

N
ÿ

i“1

p}ϕiv}
2
1,Ω ` }ϕiq}

2
0,Ωqq, (4.12)

}ϕiv}
2
1,Ω ` }ϕiq}

2
1,Ω ď C4p}v}

2
1,ωi ` }q}

2
1,ωiq. (4.13)

Then we can prove the following theorem.

Theorem 4.1. Assume that the conditions of Theorem 2.2 hold, 0 ă h ď H, for

a given Hp ě C0 and s ě 1, the solution puh,phq defined by Algorithm PVMS-PU

satisfies

}uh ´ uh
}1,Ω ` }ph ´ ph

}0,Ω ď CpH3
`HαH ` α

2
H ` βpH

2
` αHqq. (4.14)

Proof. Step1. In order to get the final result, let D “ ωi, Ω0 “ Ωi,s, then, first

estimate }ei}0,Ω0 ` }ε
i}´1,Ω0 . From (2.4) and (4.23) we can easily get the equality:

νapuh ´ uH,ΦHq ` bpuh ´ uH,uH,ΦHq ` bpuH,uh ´ uH,ΦHq

` bpuh ´ uH,uh ´ uH,ΦHq ´ dpΦH,ph ´ pHq ` dpuh ´ uH,ΨHq

`Gpuh, ,ΦHq ´GpuH,ΦHq “ 0.

(4.15)
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From (2.4) and (4.24) we can obtain that

pν ` βqapei,vq ` bpei,uH,vq ` bpuH, e
i,vq ´ dpv, εiq ` dpei,qq

“ νapuh ´ uH,vq ` bpuh ´ uH,uH,vq ` bpuH,uh ´ uH,vq

` bpuh ´ uH,uh ´ uH,vq ´ dpv,ph ´ pHq ` dpuh ´ uH,qq `Gpuh,vq.

(4.16)

We can get the following dual problem:

pφ, ei
q ` pψ, εiq

“ pν ` βqapei,Φhq ` bpuh, e
i,Φhq ` bpei,uH,Φhq ` dpei,Ψhq ´ dpΦh, ε

i
q

“ νapuh ´ uH,Φhq ` bpuh ´ uH,uH,Φhq ` bpuH,uh ´ uH,Φhq

` bpuh ´ uH,uh ´ uH,Φhq ´ dpΦh,ph ´ pHq ` dpuh ´ uH,Ψhq `Gpuh,Φhq

“ νapuh ´ uH,Φh ´ΦHq ` bpuh ´ uH,uH,Φh ´ΦHq

` bpuH,uh ´ uH,Φh ´ΦHq ` bpuh ´ uH,uh ´ uH,Φh ´ΦHq

´ dpΦh ´ ΦH , ph ´ pHq ` dpuh ´ uH,Ψh ´ΨHq

`Gpuh,Φh ´ΦHq `GpuH,ΦHq.

(4.17)

Bound every item by using the properties of apu,vq, bpu,v,wq, dpv, pq in 2.1 and
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Lemma 4.2:

νapuh ´ uH,Φh ´ΦHq ď CH}uh ´ uH}1,Ω0p}φ}0,Ω0 ` }ψ}1,Ω0q,

bpuh ´ uH,uH,Φh ´ΦHq ` bpuH,uh ´ uH,Φh ´ΦHq

ď CH}uh ´ uH}1,Ω0p}φ}0,Ω0 ` }ψ}1,Ω0q,

bpuh ´ uH,uh ´ uH,Φh ´ΦHq ď CH}uh ´ uH}
2
1,Ω0

p}φ}0,Ω0 ` }ψ}1,Ω0q,

dpΦh ´ ΦH , ph ´ pHq ď CH}ph ´ pH}0,Ω0p}φ}0,Ω0 ` }ψ}1,Ω0q,

dpuh ´ uH,Ψh ´ΨHq ď CH}uh ´ uH}1,Ω0p}φ}0,Ω0 ` }ψ}1,Ω0q,

Gpuh,Φh ´ΦHq ď Cαhp}u´ uh}1,Ω0 ` h}u}2,Ω0qp}φ}0,Ω0 ` }ψ}1,Ω0q,

GpuH,ΦHq ď CαHp}u´ uH}1,Ω0 `H}u}2,Ω0qp}φ}0,Ω0 ` }ψ}1,Ω0q.

Thanks to the above inequalities we can get

pφ, ei
q ` pψ, εiq

ď CpH}uh ´ uH}1,Ω0 `H}uh ´ uH}
2
1,Ω0

`H}ph ´ pH}0,Ω0 ` αh}u´ uh}1,Ω0

` αH}u´ uH}1,Ω0 ` pαhh` αHHq}u}2,Ω0qp}φ}0,Ω0 ` }ψ}1,Ω0q.

(4.18)
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Thus the following conclusion can be obtained:

}ei
}0,Ω0 ` }ε

i
}´1,Ω0

ď CpH}uh ´ uH}1,Ω0 `H}ph ´ pH}0,Ω0 `H3
}u}2,Ω0q.

(4.19)

Step2. From (2.4) and the Algorithm we can get the following equality:

pν ` βqapuh ´ uh,vq ` bpuh ´ uh,uH,vq ` bpuH,uh ´ uh,vq ´ dpv,ph ´ ph
q

` dpuh ´ uh,qq “ ´Gpuh,vq ` βapuh ´ uH,vq ´ bpuh ´ uH,uh ´ uH,vq.

Then using Lemma 4.1 and (4.19) we can obtain:

}uh ´ ui
}1,D ` }ph ´ pi

}0,D

ď Cp}uh ´ ui
}0,Ω0 ` }ph ´ pi

}´1,Ω0 ` }uh ´ uH}
2
1,Ω0

` β}uh ´ uH}1,Ω0

` αh}uh}1,Ω0q

ď Cp}uh ´ uH}0,Ω0 ` }ph ´ pH}´1,Ω0 ` }e
i
}0,Ω0 ` }ε

i
}´1,Ω0 ` }uh ´ uH}

2
1,Ω0

` β}uh ´ uH}1,Ω0 ` αh}uh}1,Ω0q

ď Cp}uh ´ uH}0,Ω0 ` }ph ´ pH}´1,Ω0 ` }uh ´ uH}
2
1,Ω0

`H}uh ´ uH}1,Ω0

`H}ph ´ pH}0,Ω0 `H
3
}u}2,Ω0 ` β}uh ´ uH}1,Ω0 ` αh}uh}1,Ω0q.

(4.20)

Thus, the inequality (4.20) stands for every D “ ωi,Ω0 “ ωi,s, i “ 1, 2, ¨ ¨ ¨ , N.
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We then get the global error estimate by using Theorem 1 and Lemma 2:

}uh ´ uh
}1,Ω ` }ph ´ ph

}0,Ω

“ }

N
ÿ

i“1

ϕipuh ´ ui
q}1,Ω ` }

N
ÿ

i“1

ϕipph ´ pi
q}0,Ω

ď Cp
N
ÿ

i“1

}ϕipuh ´ ui
q}

2
1,Ω `

N
ÿ

i“1

}ϕipph ´ pi
q}

2
0,Ωq

1
2

ď Cp
N
ÿ

i“1

}ϕipuh ´ ui
q}

2
1,ωi `

N
ÿ

i“1

}ϕipph ´ pi
q}

2
0,ωiq

1
2

ď Cp
N
ÿ

i“1

}uh ´ ui
}
2
1,ωi `

N
ÿ

i“1

}ph ´ pi
}
2
0,ωiq

1
2

ď Cp
N
ÿ

i“1

p}uh ´ uH}
2
0,ωi,s ` }ph ´ pH}

2
´1,ωi,s ` }uh ´ uH}

4
1,ωi,s

`H2
}uh ´ uH}

2
1,ωi,s `H2

}ph ´ pH}
2
0,ωi,s `H6

}u}22,ωi,s

` β2
}uh ´ uH}

2
1,ωi,s ` α

2
h}uh}

2
1,ωi,sqq

1
2

ď Cp
N
ÿ

i“1

ÿ

EiPωi,s

p}uh ´ uH}
2
0,Ei

` }ph ´ pH}
2
´1,Ei

` }uh ´ uH}
4
1,Ei

`H2
}uh ´ uH}

2
1,Ei

`H2
}ph ´ pH}

2
0,Ei

`H6
}u}22,Ei

` β2
}uh ´ uH}

2
1,Ei

` α2
h}uh}

2
1,Ei
qq

1
2

ď CCovp}uh ´ uH}
2
0,Ω ` }ph ´ pH}

2
´1,Ω ` }uh ´ uH}

4
1,Ω `H2

}uh ´ uH}
2
1,Ω

`H2
}ph ´ pH}

2
0,Ω `H

6
}u}22,Ω ` β

2
}uh ´ uH}

2
1,Ω ` α

2
h}uh}

2
1,Ωq

1
2

ď CpH3
`HαH ` α

2
H ` βpH

2
` αHqq.

(4.21)
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Here, Cov is a finite integer defined as the maximal number of elements Ej con-

tained in each subdomain ωi,s. It is determined by the layer index s, the minimum

angle of the regular triangulation τHp , and is independent of N.

Remark 4.1. It has been mentioned in [89] that α should been chosen as Oph2q in

the computation. Thus we can make a conclusion that β only needs to be OpHq to

keep the rate of convergence.

Using the triangle inequality we can get the following theorem directly from

theorem 1 and theorem 2.

Theorem 4.2. Assume that the conditions of Theorem 2.2 hold, 0 ă h ď H, for

a given Hp ě C0 and s ě 1, choose αH “ OpH2q, β “ OpHq, then, the solution

puh,phq defined by Algorithm PVMS-PU satisfies

}u´ uh
}1,Ω ` }p´ ph

}0,Ω ď Cph2
`H3

q. (4.22)

4.1.2 Numerical tests

The algorithm in all experiments is implemented by the public finite element soft-

ware Freefem++ [29]. All simulations were performed on a dawning parallel cluster

composed of 32 nodes, each with eight-core 2.0 GHz CPU, 2 GB ˆ 8 DRAM, and

connected together by 20Gbps InfiniBand. The message-passing is supported by
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MPICH.

Implementation

To verify the analysis results, we consider 2D numerical examples. Dividing Ω into

sub-squares with equal sizes h (or H, Hp), and drawing the diagonal in each sub-

square, we obtain the regular triangulation τh (or τH , τHp).

For convenience of presentation, we introduce the following notations:

SFEM means the standard finite element method. Namely, the nonlinear systems

are solved by Newton iteration.

GVMS means the finite element variational multiscale method based on two local

Gauss integrations (2.4).

PVMS-PU means ALGORITHM PVMS-PU.

Rates of convergence study

Let Ω “ r0, 1sˆr0, 1s and the exact solution of the stationary Navier-Stokes equations

(2.1) be given by pu “ pu1, u2q, pq:

u1 “ 10x2
px´ 1q2ypy ´ 1qp2y ´ 1q,

u2 “ ´10xpx´ 1qp2x´ 1qy2
py ´ 1q2,

p “ 10p2x´ 1qp2y ´ 1q,
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here, ν “ 1.0 for simplicity, f and the boundary conditions are set by pu “ pu1, u2q, pq.

To get the optimal orders for H1-norm of velocity and L2-norm of pressure, we

should choose H and h such that h „ H
3
2 . In this example, we compute the finite

element solutions by PVMS-PU with coarse mesh sizes H “ 1
12n

(n=1, 2, 3, 4) and

the corresponding fine mesh sizes h “ H{m (m=4, 5, 6, 7). Besides, according to

Theorem 2.2and 4.2, we choose αH “ 0.1H2, β “ 0.1H. The corresponding linear

algebraic system is solved by LU factorization. Convergence of the Newton iteration

is achieved when the relative H1-error of successive iterative velocities is within a

fixed tolerance of 10´6, i.e., the following condition is satisfied:

||un`1
µ ´ unµ||1,Ω

||un`1
µ ||1,Ω

ď 10´6,

where unµ (µ could be h, H) is the nth Newton iterative solution.

For PVMS-PU, we fix P1-PU on τHp , Hp “ 1{12, s “ 1, thus, N “ 169, all

simulations are implemented with 32 processors.

Table 4.1: The errors of GVMS

h ||u´ ūh||1,Ω Order ||p´ p̄h||0,Ω Order CPU
1{48 0.000365636 - 0.00112071 - 3.62
1{120 5.89085e-05 1.9943 0.00017977 1.99814 33.46
1{216 1.92045e-05 1.99225 5.68389e-05 1.98735 153.99
1{336 - - - - -

To further test our PVMS-PU, we also consider another problem (referred as
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Table 4.2: The errors of PVMS-PU

H h ||u´ uh||1,Ω Order ||p´ ph||0,Ω Order Wall time
1/12 1{48 0.00102771 - 0.00118434 - 2.85
1/24 1{120 0.000126349 2.05336 0.00018409 1.99975 12.17
1/36 1{216 3.57543e-05 2.11658 5.64822e-05 2.01571 50.62
1/48 1{336 1.47535e-05 2.05336 2.35785e-05 1.99975 182.75

Solution 2) with exact solution u “ pu1, u2q

u1 “ sinpπxq2 sinp2πyq,

u2 ““ ´ sinp2πxq sinpπyq2,

p “ cospπxq cospπyq.

In present computations, the same parameters h, H and s for PVMS-PU are chosen

as Solution 1. The results are tabulated in Tables 4.3 and 4.4. From these two tables,

we can observe similar phenomena and draw same conclusion as found from Tables

4.10 and 4.2.

Table 4.3: Solution 2, the errors of GVMS

h ||u´ ūh||1,Ω Order ||p´ p̄h||0,Ω Order Wall time
1{48 0.00566745 - 0.000179236 - 3.32
1{120 0.00090770 1.99891 2.86259e-05 2.00198 29.82
1{216 0.000280193 1.99977 9.00352e-06 1.96788 153.65
1{336 - - - - -
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Table 4.4: Solution 2, the errors of PVMS-PU

H h ||u´ uh||1,Ω Order ||p´ ph||0,Ω Order Wall time
1/12 1{48 0.00809542 - 0.00283574 - 5.82
1/24 1{120 0.000937267 2.35306 0.00019754 2.9075 13.33
1/36 1{216 0.000284110 2.03068 4.44115e-05 2.53909 51.48
1/48 1{336 0.000116765 2.01252 1.56627e-05 2.35885 193.94

The driven cavity flow

A popular benchmark problem for testing numerical schemes is the ’fluid driven cavi-

ty’. This problem is chosen because some benchmark data is available for comparison.

In this problem, computations are carried out in the domain Ω “ r0, 1sˆ r0, 1s. Flow

is driven by the tangential velocity field applied to the top boundary in the absence

of other body forces. On the top side tpx, 1q : 0 ă x ă 1u, the velocity is equal to

u “ p1, 0q, and zero Dirichlet conditions are imposed on the rest of the boundary.

Based on PVMS-PU with P1-PU on τHp , Hp “ 1{12, s “ 1, we compute for

Reynolds numbers Re “ 5000 with fixed H “ 1{48, h “ 96 and Re “ 10000 with

fixed H “ 1{60, h “ 120, and αH “ 0.1H, β “ 0.1H. the computational results are

shown in Fig 4.2, 4.3 and 4.4, 4.5, comparing with the results of Ghia, Ghia, and

Shin [31]. Ghia et al.’s algorithm is based on the time dependent stream function

using the coupled implicit and multigrid methods.

For different Reynolds numbers, the x component of velocity along the vertical

centerline and y component of velocity along the horizontal centerlines by PUPVMS
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are drawn in Fig 4.2, 4.3 and 4.4, 4.5. The accuracy of the computed solutions by

PUPVMS has good agreements with the benchmark data of Ghia et al. [31].
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Figure 4.2: PUPVMS for Re “ 5000, x component of velocity along the vertical centerline

.
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Figure 4.3: PUPVMS for Re “ 5000, y component of velocity along the horizontal centerline.
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Figure 4.4: PUPVMS for Re “ 10000, x component of velocity along the vertical
centerline.
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Figure 4.5: PUPVMS for Re “ 10000, y component of velocity along the horizontal
centerline.

4.2 Partition of unity parallel variational multi-

scale method

4.2.1 Algorithm

We develop a new local and parallel variational multiscale method as follows.

ALGORITHM PUPVMS:

Step 1. Using the variational multiscale method to find a global coarse grid

solution puH , pHq P pX
H
0 ,M

H
0 q such that

CpuH , pH ; v, qq ` bpuH ,uH ,vq `GpuH ,vq “ pf ,vq @pv, qq P pXH
0 ,M

H
0 q. (4.23)
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Step 2. Correct the residue pei, εiq on a fine grid of each overlapping subdomain

ωi,s in parallel, pei, εiq P pXh
0pω

i,sq,Mh
0 pω

i,sqq, i “ 1, 2, ¨ ¨ ¨ , N, such that

Cpei, εi; v, qq ` bpei,uH ,vq ` bpuH , ei,vq `Gpei,vq

“ pf ,vq ´ CpuH , pH ; v, qq ´ bpuH ,uH ,vq @pv, qq P pXh
0pω

i,s
q,Mh

0 pω
i,s
qq.

(4.24)

Step 4. Obtain the globally residue eh “
N
ř

i“1

φie
i, εh “

N
ř

i“1

φiε
i.

Step 5. Update and yield the globally finite element solution puh, phq “ puH , pHq`

peh, εhq.

Remark 1: Based on the above algorithm we have two ways to refine the local

domains.

Refinement 1

For any i, s, straightly uniform refine the sub-domain ωi,s with meshsize h, see

the up figure of Fig 4.6, 4.7.

Refinement 2

Noting that, in Step 4, eh “
N
ř

i“1

φie
i, εh “

N
ř

i“1

φiε
i, and suppφi Ă ωi,0, which

means that we only use ei, εi in ωi,0 finally, therefore, different from Refinement 1,

for any i, s, we only refine ωi,0 with meshsize h uniformly, and using the coarser

mesh for the oversampling parts, the further away from ωi,0, the coarser the mesh.
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Of course, here, we need refine somewhere close to ωi,0 to avoid the hang nodes, see

the down figure of Fig 4.6, 4.7.

Remark 2: Here

Xh
0pω

i,s
q :“ tv P Xh

pΩq : v|Ωzωi,s“0u,

Mh
0 pω

i,s
q :“ tq PMh

pΩq :

ż

ωi,s

qdx “ 0 and q “ 0 on Bωi,szBΩ and outside ωi,su.

Note that, we enforce zero Dirichlet boundary condition for both pressure and ve-

locity. Such restriction won’t lead to singular problems since the zero mean-value

constraint for the pressure enforces a unique solution. This treatment will yields a

better accuracy than that with the traditional local pressure space

Mh
0 pω

i,s
q :“ tq PMh

pΩq :

ż

ωi,s

qdx “ 0 and p has support in ωi,su.

The similar boundary conditions are used and discussed in [71, 49, 62].

Remark 3: Note that, the sub-problems only depend on the global coarse grid

solution, and are independent of each other. Thus they can be carried out in parallel

perfectly.

Remark 4: In order to diminish the undesirable effect by the artificial homo-

geneous boundary conditions for the local subproblems, we usually ask for some

oversampling, namely, require the index s ě 1 of ωi,s.
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Figure 4.6: Up: Refinement 1 for ωi,1; down, Refinement 2 for ωi,1.
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Figure 4.7: Up: Refinement 1 for ωi,2; down, Refinement 2 for ωi,2.
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4.2.2 Numerical tests

The algorithm in all experiments is implemented by the public finite element soft-

ware Freefem++ [29]. All simulations were performed on a dawning parallel cluster

composed of 32 nodes, each with eight-core 2.0 GHz CPU, 2 GB ˆ 8 DRAM, and

connected together by 20Gbps InfiniBand. The message-passing is supported by

MPICH.

Implementation

To verify the analysis results, we consider 2D numerical examples. Dividing Ω into

sub-squares with equal sizes h (or H), and drawing the diagonal in each sub-square,

we obtain the regular triangulation τh (or τH). The stable Taylor-Hood finite ele-

ments (P2 ´ P1) are used to solve the Navier-Stokes equations.

Thanks to [89], by P2 ´ P1, we will use the equivalent formulation of (2.4), the

finite element variational multiscale method based on two local Gauss integrations

(which is more efficient) as follows: find pūh, p̄hq P pX
h
0 ,M

h
0 q such that

Cpūh, p̄h; v, qq ` bpūh, ūh,vq `Gpūh,vq “ pf ,vq @pv, qq P pXh
0 ,M

h
0 q. (4.25)
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where,

Gpūh,vq “ α
ÿ

ΩePτh

t

ż

Ωe,m

∇ūh∇vdx´

ż

Ωe,1

∇ūh∇vdxu @ūh, v P Xh.

Here
ş

Ωe,i
gpxqdx denotes an appropriate Gauss integral over Ωe which is exact for

polynomials of degree i, i “ 1,mpm ą 1q. For all test functions v P Xh, ∇ūh must

be piecewise constant when i “ 1.

The corresponding linear algebraic system is solved by LU factorization. Conver-

gence of the Newton iteration is achieved when the relative H1-error of successive

iterative velocities is within a fixed tolerance of 10´6, i.e., the following condition is

satisfied:

||un`1
µ ´ unµ||1,Ω

||un`1
µ ||1,Ω

ď 10´6,

where unµ (µ could be h, H) is the nth Newton iterative solution.

For convenience of presentation, we introduce the following notations:

SFEM means the standard finite element method. Namely, the nonlinear systems

are solved by Newton iteration.

GVMS means the finite element variational multiscale method based on two local

Gauss integrations (4.25).

Two-GVMS means the two-grid finite element variational multiscale method
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based on two local Gauss integrations [52].

PUPVMS means ALGORITHM PUPVMS.

Local time means the CPU time of only solving sub-problems.

SwapData time means the CPU time for data communication in Step 4.

Wall time means the CPU time of solving coarse globally problem in Step 1 plus

Local time and Swapdata time.

Problem 1

The first test problem is a problem in Ω “ r0, 1s ˆ r0, 1s, where the exact solution of

the stationary Navier-Stokes equations (2.1) is given by pu “ pu1, u2q, pq:

u1 “ 10x2
px´ 1q2ypy ´ 1qp2y ´ 1q,

u2 “ ´10xpx´ 1qp2x´ 1qy2
py ´ 1q2,

p “ 10p2x´ 1qp2y ´ 1q.

Here, ν “ 1.0. For simplicity, f and the boundary conditions are set by pu “

pu1, u2q, pq. Note that, for ν “ 1.0, this ia a laminar case, which does not require

stabilized method. We just use this very simple example to test some properties of

PUPVMS.

Firstly, we examine the effect of the oversampling for PUPVMS. Table 4.5, 4.6
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show the errors of PUPVMS with fixed H, h and processors, with different layers of

oversampling at Refinement 1 and Refinement 2 respectively, and α “ 0.1µ2, µ “ H

in Step 1, µ “ h in Step 2. From this two tables, we know that, PUPVMS without

oversampling does not yield the acceptable accuracies usually by the effect of the

artificial boundary conditions, when oversampling is introduced, s ě 1, the accuracies

get better. Compare PUPVMS at Refinement 1 with PUPVMS at Refinement 2,

they obtain the similar accuracies with same s, when s ě 2, the improvement becomes

slowly. However, the latter one cost less local time than the former. The local time

for PUPVMS at Refinement 1 increases quickly with the oversampling parameter s,

however, the time for PUPVMS at Refinement 2 increases slowly, since PUPVMS

at Refinement 2 uses coarse mesh outside of ωi,0, and introduces less variables than

that of Refinement 1.

Table 4.5: The errors of PUPVMS at Refinement 1 with different oversampling,
H “ 32, h “ 128, 32 processors

s ||u´ uh||1,Ω ||p´ ph||0,Ω Local time
0 0.000531367 0.000454854 2.53
1 0.000223261 0.000259422 7.4
2 0.000217938 0.000258164 15.98
3 0.000216099 0.000257963 30.91
4 0.000214664 0.000257889 47.52
5 0.000213509 0.000257848 70.34
6 0.000212574 0.00025782 100.03

Secondly, we will test the parallel efficiency of PUPVMS. The performance of a
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Table 4.6: The errors of PUPVMS at Refinement 2 with different oversampling,
H “ 32, h “ 128, 32 processors

s ||u´ uh||1,Ω ||p´ ph||0,Ω Local time
0 0.000531367 0.000454854 2.53
1 0.000277955 0.000348831 3.86
2 0.000212182 0.000264358 4.28
3 0.000210285 0.000264576 5.06
4 0.000200008 0.000260023 7.68
5 0.000199918 0.000259997 8.64
6 0.000199911 0.000259983 9.8

parallel algorithm in a homogeneous parallel environment is measured by speedup

and parallel efficiency which is commonly calculated by

Sp “
T pn1q

T pn2q
, Ep “

n1 ˆ T pn1q

n2 ˆ T pn2q
, (4.26)

where T pn1q and T pn2q (n1 ă n2) are the wall time of the parallel program using n1

and n2 processor, respectively.

Table 4.7 reports the wall time of PUPVMS at both Refinement 1 and Refine-

ment 2 with h “ H{4 and s “ 1, the corresponding speedup and parallel efficiency

computed with n1 “ 2 in (4.26). Figure 4.8, 4.9, 4.10 describe the evolution of the

speedup, parallel efficiency and Wall time of PUPVMS with the number of proces-

sors respectively. Both Table 4.7 and Figure 4.8, 4.9, 4.10 demonstrate PUPVMS

has a good parallel performance. Although, for the speedup and parallel efficiency,

PUPVMS at Refinement 1 is a little better than that of Refinement 2, however, from
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the view of Wall time, the latter one is better.

Table 4.7: Wall time T pJq in seconds, speedup Sp and parallel efficiency Ep of
PUPVMS, H “ 1{32, h “ 1{128, s “ 1.

J 2 4 8 16 32
Refinement1

T pJq 118.95 61.06 32.73 18.29 11.55

Sp “
T p2q
T pJq

1 1.94808 3.63428 6.50355 10.2987

Ep “
2ˆT p2q
JˆT pJq

1 0.974042 0.90857 0.812944 0.643669

Refinement2
T pJq 65.2 36.66 22.01 13.53 7.69

Sp “
T p2q
T pJq

1 1.77851 2.96229 4.81892 8.47854

Ep “
2ˆT p2q
JˆT pJq

1 0.889253 0.740572 0.602365 0.529909
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Figure 4.8: The evolution of the speedup of PUPVMS, H “ 1{32, h “ 1{128, s “ 1.

Then, we consider the case of H “ 1{32, h “ 1{256, s “ 2. The corresponding

results are shown in Table 4.8 and Figure 4.11, 4.12, 4.13. For this case, we also
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Figure 4.9: The evolution of the parallel efficiency of PUPVMS, H “ 1{32, h “
1{128, s “ 1.
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Figure 4.10: The evolution of Wall time of PUPVMS, H “ 1{32, h “ 1{128, s “ 1.
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obtain that PUPVMS has a good parallel performance. Moreover, the speedup and

parallel efficiency in this case are much better than PUPVMS at the case ofH “ 1{32,

h “ 1{128, s “ 1, since at this time, the computation size of the sub-problems are

larger, and Local time will dominate Wall time, the effect of the cpu time for coarse

problem and data communication decrease.

Table 4.8: Wall time T pJq in seconds, speedup Sp and parallel efficiency Ep of
PUPVMS, H “ 1{32, h “ 1{256, s “ 2.

J 2 4 8 16 32
Refinement1

T pJq 1302.29 658.12 333.22 171.36 101.53

Sp “
T p2q
T pJq

1 1.9788 3.9082 7.59973 12.8267

Ep “
2ˆT p2q
JˆT pJq

1 0.989402 0.97705 0.949966 0.801666

Refinement2
T pJq 366.89 187.55 92.35 53.41 33.03

Sp “
T p2q
T pJq

1 1.95623 3.97282 6.86931 11.1078

Ep “
2ˆT p2q
JˆT pJq

1 0.978113 0.993205 0.858664 0.694236

Finally, we will check the convergence properties of PUPVMS. To get the optimal

orders for H1-norm of velocity and L2-norm of pressure, we should choose H and

h satisfying h „ H
3
2 . In this example, we compute the finite element solutions by

PUPVMS with coarse mesh sizes H “ 1{p16nq (n=1, 2, 3) and the corresponding

fine mesh sizes h “ H{4 and h{8 for simplicity.

All SFEM, GVMS and Two-GVMS are computed with the same fine mesh

sizes on a single processor, see Table 4.9-4.11. For PUPVMS at both Refinemen-
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Figure 4.11: The evolution of the speedup of PUPVMS, H “ 1{32, h “ 1{256,
s “ 2.

t 1 and Refinement 2, the simulations are implemented with 32 processors, for

H “ 1{16, 1{32, 1{48. For the case of h “ H{4, we fix s “ 0, s “ 1, all com-

putational results are given in Tables 4.12-4.14.

Comparing Table 4.9-4.14, we can see that all three methods reach the optimal

convergence orders. The differences are, SFEM, GVMS and Two-GVMS obtain the

similar accuracy, and SFEM, GVMS cost the similar CPU time, Two-GVMS are

much more efficient than GVMS. Our PUPVMS has the highest efficiency, when

s “ 0, the accuracies are not good enough, which means oversampling are necessary.

While s “ 1, PUPVMS with both Refinement 1 and Refinement 2 can yield the

approximate solutions with an accuracy comparable to that of SFEM, GVMS and
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Figure 4.12: The evolution of the parallel efficiency of PUPVMS, H “ 1{32, h “
1{256, s “ 2.
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Figure 4.13: The evolution of Wall time of PUPVMS, H “ 1{32, h “ 1{256, s “ 2.
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Two-GVMS with the very a little Wall time. PUPVMS with Refinement 2 is just a

little better than that on Refinement 2, the advantage is not obvious.

Table 4.9: The errors of SFEM

h ||u´ uh||1,Ω Order ||p´ ph||0,Ω Order Wall time
1{64 0.000816817 z 0.00103003 z 8.37
1{128 0.000205013 1.9943 0.00025784 1.99814 41.23
1{192 9.14038e´05 1.99225 0.000115185 1.98735 120.54

Table 4.10: The errors of GVMS

h ||u´ ūh||1,Ω Order ||p´ p̄h||0,Ω Order Wall time
1{64 0.000816623 z 0.00103003 z 9.95
1{128 0.000205001 1.99404 0.000257841 1.99813 47.58
1{192 9.14014e´05 1.99217 0.000115185 1.98736 133.67

Table 4.11: The errors of Two-GVMS

H h ||u´ ūh||1,Ω Order ||p´ p̄h||0,Ω Order Wall time
1/16 1{64 0.000816778 z 0.0010299 z 5.81
1/32 1{128 0.00020491 1.99495 0.0002575 1.99986 27.74
1/48 1{192 9.11727e´05 1.99725 0.000114446 1.99997 77.73

Table 4.12: The errors of PUPVMS without oversampling, h “ H{4, s “ 0

H h ||u´ uh||1,Ω Order ||p´ ph||0,Ω Order Wall time SwapData time
1/16 1{64 0.00213003 z 0.00186634 z 1.86 0.68
1/32 1{128 0.000531367 2.00309 0.000454854 2.03674 6.12 1.03
1/48 1{192 0.000235956 2.00216 0.000200202 2.02397 14.25 2.39

Table 4.13: The errors of PUPVMS at Refinement1, h “ H{4, s “ 1

H h ||u´ uh||1,Ω Order ||p´ ph||0,Ω Order Wall time SwapData time
1/16 1{64 0.000945121 z 0.00104396 z 3.01 0.85
1/32 1{128 0.000223261 2.08177 0.000259422 2.00869 11.55 1.71
1/48 1{192 9.71595e´05 2.05193 0.00011531 1.99976 25.74 2.51
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Table 4.14: The errors of PUPVMS at Refinement2, h “ H{4, s “ 1

H h ||u´ uh||1,Ω Order ||p´ ph||0,Ω Order Wall time SwapData time
1/16 1{64 0.000975335 z 0.00108129 z 2.87 0.55
1/32 1{128 0.000226273 2.10783 0.00026851 2.0171 9.38 1.01
1/48 1{192 9.98711e´05 2.00971 0.000119235 2.00212 24.6 2.15

Then, we consider another case, h “ H{8. In this case, all SFEM, GVMS and

Two-GVMS can not work with h “ 1{256, 1{384. When PUPVMS without oversam-

pling (s “ 0 in Table 4.15), the accuracies are not good enough although it obtains

the optimal convergence order. Then, we fix PUPVMS at both Refinement 1 and

Refinement 2 with two layers oversampling (s “ 2 in Table 4.16, 4.17), the accura-

cies are much better, and keep the optimal convergence orders. Compare PUPVMS

at Refinement 1 with that at Refinement 2, we find that although they obtain the

similar accuracies, and SwapData time are spent nearly the same, however, the lat-

ter one cost less Wall time than the former one. In fact, PUPVMS at Refinement

2 with two layers oversampling cost the similar Wall time and SwapData time with

PUPVMS without oversampling, but with much better accuracies.

Table 4.15: The errors of PUPVMS without oversampling, h “ H{8, s “ 0

H h ||u´ uh||1,Ω Order ||p´ ph||0,Ω Order Wall time SwapData time
1/16 1{128 0.0014182 z 0.00116701 z 5.4 1.34
1/32 1{256 0.000350384 2.01705 0.000274489 2.088 27.45 6.92
1/48 1{384 0.000155032 2.01102 0.000119035 2.06058 52.98 15.12

In summary, PUPVMS is stable and has the high efficiency, especially, PUPVMS

at Refinement 2 is much better, and usually, two layers oversampling (s “ 2) is good
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Table 4.16: The errors of PUPVMS at Refinement1, h “ H{8, s “ 2

H h ||u´ uh||1,Ω Order ||p´ ph||0,Ω Order Wall time SwapData time
1/16 1{128 0.000320561 z 0.000270283 z 22.75 3
1/32 1{256 6.92789e´05 2.21011 6.6329e´05 2.02676 101.53 14.61
1/48 1{384 2.91541e´05 2.1347 2.99437e´05 1.96147 215.99 17.95

Table 4.17: The errors of PUPVMS at Refinement2, h “ H{8, s “ 2

H h ||u´ uh||1,Ω Order ||p´ ph||0,Ω Order Wall time SwapData time
1/16 1{128 0.000348141 z 0.000293127 z 7.63 2.73
1/32 1{256 8.49523e´05 2.03495 7.18985e´05 2.02749 33.03 11.8
1/48 1{384 3.54307e´05 2.15681 3.18908e´05 2.00495 59.65 16.71

enough for PUPVMS.

To further test our PUPVMS, we also consider another smooth problem in the

same domain (referred as problem 2) with exact solution u “ pu1, u2q,

u1 “ sinpπxq2 sinp2πyq,

u2 ““ ´ sinp2πxq sinpπyq2,

p “ cospπxq cospπyq,

and ν “ 1.0 for simplicity. In present computation, we just use PUPVMS at Refine-

ment 2, set the same parameters H, and fix h “ H{8, 32 processors. The oversam-

pling parameter s “ 2 is chosen according to the above conclusion. The results are

tabulated in Table 4.18. From this table, we can observe the good convergency and

high efficient of PUPVMS Refinement 2 again.
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Table 4.18: Problem 2, the errors of PUPVMS at Refinement 2, h “ H{8, s “ 2

H h ||u´ uh||1,Ω Order ||p´ ph||0,Ω Order Wall time SwapData time
1/16 1{128 0.00215143 z 0.000691436 z 7.66 2.88
1/32 1{256 0.000516957 2.05718 0.000148109 2.22294 38.01 12.17
1/48 1{384 0.000178728 2.61945 5.08963e´05 2.6344 63.3 18.35

The driven cavity flow

A popular benchmark problem for testing numerical schemes is the ’lid driven cavity’.

This problem is chosen because some benchmark data is available for comparison.

In this problem, computations are carried out in the domain Ω “ r0, 1sˆ r0, 1s. Flow

is driven by the tangential velocity field applied to the top boundary in the absence

of other body forces. On the top side tpx, 1q : 0 ă x ă 1u, the velocity is equal to

u “ p1, 0q, and zero Dirichlet conditions are imposed on the rest of the boundary.

Based on the discussion in the above subsection, we will use PUPVMS at Re-

finement 2 with two layers oversampling to test this model. Without confusion, we

just name PUPVMS for simplicity. Here, we consider the high Reynolds numbers

Re “5000, 10000 with fixed H “ 1{64, h “ 128, for PUPVMS, we choose α “ 0.1H

in Step 1 and α “ 0.1h in Step 2. The computational results are shown in Figures

4.14-4.15, comparing with the results of Ghia, Ghia, and Shin [31]. Ghia et al.’s

algorithm is based on the time dependent stream function using the coupled implicit

and multigrid methods. We shall note that with such meshes and Reynolds number-

s, SFEM cannot yield a numerical solution because the nonlinear iterations on the
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coarse grid fail to converge, and GVMS is stable but asks for a lot of CPU time.

For different Reynolds numbers, the x component of velocity along the vertical

centerline and y component of velocity along the horizontal centerlines by PUPVMS

are drawn in Fig4.14, 4.15. The accuracy of the computed solutions by PUPVMS

have good agreements with the benchmark data of Ghia et al. [31].

Besides, in order to show the stability of PUPVMS, we present the streamlines

and the pressure contours of the cavity flows at different Reynolds numbers in Figures

4.16-4.17. As we know, there will appear one main vortex as Reynolds number

increases, and it will move to the center of the cavity. Then additional second vortex

may appear in the right bottom corner of the cavity, and a third vortex appears in

the lower left corner, then the fourth vortex in the up left corner and the fifth smaller

vortex in the right bottom corner. Note that, all the streamlines and pressures are

constructed by assembling all the local solutions together using the partition of unity

functions, which are globally continuous. These results fit to those of Ghia et al. [31].

This test further illustrates the effectiveness of PUPVMS.
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Figure 4.14: PUPVMS for Re “ 5000. Up, x component of velocity along the vertical
centerline; down, y component of velocity along the horizontal centerline
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Figure 4.15: PUPVMS for Re “ 10000. Up, x component of velocity along the
vertical centerline; down, y component of velocity along the horizontal centerline.
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Chapter 5

Conclusions and future work

This chapter draws conclusions on the thesis, and points out some possible research

directions related to the work done in this thesis.

5.1 Conclusions

The focus of the thesis has been placed on . Specifically, two research problems have

been investigated in detail.

• We propose some a posterior error indicators for the variational multiscale

method for the Stokes equations and prove the equivalence between the in-

dicators and the error of the finite element discretization. Some numerical

experiments are presented to show their efficiency on constructing adaptive

meshes and controlling the error.
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• A parallel variational multiscale method based on the partition of unity is

proposed for incompressible flows. Based on two-grid method, this algorithm

localizes the global residual problem of variational multiscale method into a se-

ries of local linearized residual problems. To decrease the undesirable effect of

the artificial homogeneous Dirichlet boundary condition of local sub-problems,

an oversampling technique is also introduced. The globally continuous finite el-

ement solutions are constructed by assembling all local solutions together using

the partition of unity functions. Especially, we add an artificial stabilization

term in the local and parallel procedure by considering the residual as a subgrid

value, which keeps the sub-problems stable. We present the theoretical analysis

of the method and numerical simulations demonstrate the high efficiency and

flexibility of the new algorithm.

Another a partition of unity parallel variational multiscale method is proposed.

The main difference lies in that in this algorithm we propose two kinds of re-

finement method. It is difficult to obtain the theoretical result as the above

method. However, the numerical simulations show that the error of this algo-

rithm decays exponentially with respect to the oversampling parameter.
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5.2 Future work

Related topics for the future research work are listed below.

1. First, we want to apply the method in Chapter 3 to Navier-Stokes equations,

especially with large Reynolds number and time-dependent problems. We can

also do a posteriori error estimation for other variational multiscale methods,

such as those with Bubble functions. Besides, when simulating multiphase

flow in porous media we often use the variational multiscale method. Thus we

intend to study these problems using this approach.

2. We will try to get the theoretical result of the second method in Chapter

4 thus we can obtain the convergence analysis, which will make the method

more convincing. We are also very interested in the extension of PUPVMS to

time-dependent problems and more extensive testing for 3D fluid flows.

3. Another aim is to develop some adaptive strategies for oversampling and re-

finements.
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