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Abstract

This research focuses on the fast learning and extraction of knowledge from

data. The particular technique that we adopt in this research is called extreme

learning machine (ELM), which is a fast learning algorithm for single layer feed-

forward network (SLFN). The ELM theories show that all the hidden nodes can

be independent from training samples and do not need to be tuned. In this

case, training a SLFN is simply equivalent to finding a least-square solution of a

linear system, which can be achieved fast and accurately by using the generalized

inverse technique. In this research, several extended ELM-based architectures

and techniques are developed for fast learning from data. The contributions of

this work can be summarized into three aspects: (i) ELM mapping and modeling,

(ii) ELM architecture selection, and (iii) input data compression for ELM.

Focus on the ELM mapping and modeling aspect, a generalized framework

named fuzzy ELM (FELM), is developed for fast learning of feature interaction

from data. In order to solve the problem of high complexity in determining fuzzy

measure, FELM extends the original ELM structure based on the subset selec-

tion concept of fuzzy measure. The main contribution is a new set selection

algorithm, which transfers the input samples from the original feature space to

a higher dimensional feature space for fuzzy measure representation. Then, the

fuzzy measure can be obtained using the related fuzzy integral in this high dimen-

sional feature space. The subset selection scheme in FELM is feasible for many
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kinds of fuzzy integrals such as Choquet integral, Sugeno integral, Mean-based

fuzzy integral and Order-based fuzzy integral. Compared with traditional genetic

algorithm (GA) and particle swarm optimization (PSO) algorithm for determin-

ing fuzzy measure, FELM achieves faster learning speed and smaller testing error

on both simulated data and real data from computer game.

Focus on the ELM architecture selection aspect, an architecture selection

algorithm for ELM is developed. This algorithm uses the multi-criteria decision

making (MCDM) model in selecting the optimal number of hidden neurons, it

ranks the alternatives by measuring the closeness of their criteria. The major

contribution is made by introducing a tolerance concept to evaluate a model’s

generalization capability in approximating unseen samples. Two trade-off criteria,

training accuracy and Q-value which is estimated by the localized generalization

error model (LGEM), are used. The training accuracy reflects the generalization

ability of the model on training samples, and the Q-value estimated by LGEM

reflects the generalization ability of the model on unseen samples. Compared

with k-fold cross validation (CV) and LGEM, our method achieves better testing

accuracy on most of the data datasets with shorter time.

Focus on the data compression aspect, a learning model named interval ELM

is developed for large-scale data classification. Two contributions are made for

selecting representative samples and removing data redundancy. The first is a

newly developed discretization method based on uncertainty reduction inspired

by the traditional decision tree (DT) induction algorithm. The second is a new

concept named class label fuzzification, which is performed on the class labels of

the compressed intervals. The fuzzified class labels can represent the dependency

among different classes. Experimental comparison are conducted among basic

ELM and Interval ELM with four different kinds of discretization methods. We

have achieved a better and more promising result.
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Chapter 1

Introduction

In this chapter, we present the motivations, objectives, and methodologies of the

proposed works, and give an overview of the thesis.

1.1 Motivations and Objectives

Machine learning is an important topic in artificial intelligence, which is regarded

as the problem of learning knowledge models from data, for the purpose of future

predictions on unseen data. In many real world applications, a simple, flexible

and efficient learning technique is required for problem solving. Unfortunately,

many existing popular learning techniques, such as genetic algorithm (GA), par-

ticle swarm optimization (PSO), and artificial neural network (ANN), are time

consuming. The training process of these methods involves a large number of

iterations in tuning the model parameters, i.e., learning rate, stopping criteria,

and inertia weight, etc [36], which adds certain difficulties to their applications.

Thus, the development of fast and efficient learning techniques are crucial for

both research evolution and industrial problem solving, which is also the major

motivation of this research.
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Over the past decades, single hidden layer feedforward neural networks (SLFN-

s) have been thoroughly studied by researchers. Supported by the universal ap-

proximation theory, a SLFN with enough number of neurons is proved to be

capable of approximating continuous functions on compact subsets of Rn (n is

any positive integer), which adopts a weak assumption on the activation func-

tion [73]. This special property demonstrates the great potential of SLFN in

knowledge extraction and pattern recognition. However, existing learning algo-

rithms for SLFNs are usually suffered from the problems of slow convergence and

local minimum. This is because the development of these algorithms are mostly

based on the delta rule [80], which is a gradient descent learning rule for updat-

ing weights of different neurons. The most popular algorithm for training SLFNs

is back-propagation (BP). The impact of BP algorithm on the neural network

research is enormous, however, it is also widely realized that this algorithm is

suffered from high complexity, due to the large number of training iterations.

In [24], Huang et al. proposed a new learning system for SLFNs with fast train-

ing speed, which is named extreme learning machine (ELM). The ELM theories

indicate that SLFNs with piecewise continuous activation function can maintain

the generalization capability when the weights of input neurons are randomly

generated. Under this condition, the parameters of the output layer can be esti-

mated by applying the generalized inverse technique. Compared with traditional

BP algorithm, ELM is proved to be capable of achieving better generalization

ability and faster learning speed in many applications. This research is to study

ELM-based methods for fast learning, in the context of feature interaction and

intervals from data. Moreover, an effective architecture selection technique is also

2



Chapter 1 Introduction

provided for reducing unimportant nodes in a neural network.

In particular, this research is also motivated by the following open issues on

ELM:

• Fast and accurate representation of interacted data: Feature in-

teractions among different attributes are usually complicated and hard to

explain. Traditional learning techniques are difficult to solve this highly

non-additive measurement problem. Thus, the development of fast and

effective technique for learning feature interaction from data has attracted

considerable interests over the past decade. Developing ELM-based method

for learning interacted data should be a worth studying topic.

• Optimal architecture selection for SLFNs: The number of hidden

nodes is a critical factor in applying ELM to problem solving, which needs

to be set by users. In theory, the expected performance of an estimator in

predicting new observations should be good when its model structure “best

fits” the data. However, how to automatically determine the number of

hidden nodes for a given task is still an unsolved problem.

• Fast classification method for large-scale data: Choosing representa-

tive samples and removing data redundancy are two key issues in learning

from large-scale data. Due to the fast learning speed, ELM has a great

potential for solving these problems. However, how to reduce the high de-

mand on time and space for matrix calculation in ELM is still a challenging

issue.

3
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1.2 Problems and Methodologies

In order to achieve the above objectives, several extended ELM-based architec-

tures and techniques are proposed in this thesis. The research problems and their

corresponding methodologies are listed as follows.

• ELM-based fuzzy measure determination. Due to the non-additive

and non-linear characteristics, fuzzy measure and fuzzy integral are com-

monly used in describing the feature interactions among different attributes.

In this part, a fast learning model named fuzzy ELM (FELM) is developed

as a generalized framework for fuzzy measure determination. The model

structure is developed based on the set selection concept of fuzzy integral,

which transfers the fuzzy measure determination to the problem of finding

the least-square solution of a linear system. A subset selection scheme is

developed for different kinds of fuzzy integrals, in order to represent the

relationship among different layers. Afterwards, the fuzzy measure are ana-

lytically determined according to the output weights of ELM. Compared to

existing methods for fuzzy measure determination such as genetic algorithm

(GA) [75] and particle swarm optimization (PSO) [77], FELM achieves a

faster learning speed and a higher testing accuracy.

• Architecture selection for SLFNs trained by ELM. How to select an

appropriate number of hidden nodes (network architecture) is an important

problem for designing a neural network. This architecture selection process

could be treated as a decision making problem, which evaluates and makes

choices from a finite set of candidate architectures. Multi-criteria deci-

4



Chapter 1 Introduction

sion making (MCDM) model is a widely known branch of decision making,

which evaluates the alternatives on the basis of multiple criteria. In this

part, an architecture selection method with MCDM model is proposed. In

this model, the optimal number of hidden nodes is selected by achieving a

trade-off between the generalization ability on training samples and unseen

samples. Two conflicting criteria, training accuracy and Q-value (i.e., the

union size of input perturbations) estimated by the localized generalization

error model (LGEM), are adopted in decision making. The most satisfacto-

ry architecture is sought by making compromise between these two criteria.

• Large-scale data compression for fast classification using ELM.

Selecting representative samples and removing data redundancy are two

key issues in learning from large-scale data. This part proposes a new

model, named interval ELM (IELM), for classification on large-scale da-

ta with continuous-valued attributes. This model is constructed with two

techniques, i.e., discretization of conditional attributes and fuzzification of

output labels. First, each attribute is discretized into a number of inter-

vals based on uncertainty reduction measurement. Then, the samples with

the same interval value with regard to all the attributes are merged as one

record, and a fuzzification process is performed on their class labels. Final-

ly, the original data set can be reduced into a smaller one with fuzzy labels,

which can represent the dependency among different classes. As a result,

the IELM model is developed.

5
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1.3 Structure of the Thesis

The structure of this thesis is summarized in Fig. 1.1.

Figure 1.1: The extended ELM-based techniques and architectures developed in
this research

The remainder of this thesis is organized as follows. Chapter 2 gives a detailed

literature review, which provides preliminary knowledge on the proposed works.

Chapter 3 develops the FELM model for fast determination of signed efficiency

measure. Chapter 4 provides a LGEM based architecture selection method with

6



Chapter 1 Introduction

MCDM model. Chapter 5 presents the IELM for big data learning problem.

Conclusion and future works are given in Chapter 6.
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Chapter 2

Literature Review

This chapter firstly provides a brief review on the learning theory of ELM, followed

by some background knowledge on fuzzy measure and fuzzy integral. Secondly,

the basic techniques used in architecture selection and data compression are also

discussed.

2.1 Learning Theories of ELM

SLFN is a simple form of ANN, which consists of three layers, i.e., one input

layer for information collection, one output layer for sending message to external

environment, and one hidden layer for feature mapping [30]. As point out in [30],

there are three commonly used approaches for training SLFNs: 1) standard op-

timization based method [62] (e.g., support vector network); 2) gradient descent

based method (e.g., BP), and 3) least-square based method [50] (e.g., radial ba-

sis function (RBF)). It is commonly known that the above learning techniques

suffer from several challenging issues, such as slow learning speed, large number

of parameters, and poor computational scalability.

ELMs can be regarded as “generalized” SLFNs, which even does not need to

9
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be neuron like [30]. Huang et al. [24] state that ELM have three major char-

acteristics: 1) the weights of hidden neurons can be randomly assigned, which

could be independent of the inputs; 2) the weights connecting the hidden layer

and the output layer could be determined by the least-square method; and 3) the

training error will be the smallest and the norm of the output weights obtained

is also the smallest. A typical ELM model is shown in Fig. 2.1. The standard

feedforward neural network used by ELM is efficient in regression, classification

and clustering [30]. Moreover, the random hidden neurons need not be algebraic

sum based.

Figure 2.1: Generalized ELM architecture

10
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The research on function approximation capabilities of feedforward neural net-

works has been concentrated on two aspects: universal approximation capability

and interpolation capability. In the past two decades, researchers have investi-

gated these two capabilities of standard multilayer feedforward neural networks

thoroughly. Hornik [22] proved that a neural network can approximate continuous

mapping over compact input data if its activation function is continuous, bounded

and non-constant. Leshno [42] further proved that feedforward neural networks

with non-polynomial activation function is capable to approximate continuous

functions. Based on the above important theorems, Huang and Babri [25] proved

that a SLFN with (at most) N hidden nodes can learn any N arbitrary distinct

samples with zero error in case the activation function is piecewise continuous.

The commonly used activation functions (such as sigmoid function, threshold

function, and RBF) can satisfy this requirement. The interpolation capability

and universal approximation capability of ELM [30] are detailed in the following

section.

2.1.1 Interpolation Theorem

Given a training set X that contains N distinct samples with n input features

and m output classes, i.e., X = {(xi, ti)}Ni=1 where xi = [xi1, . . . , xin], ti =

[ti1, . . . , tim], and tik ∈ {0, 1}, k = 1, . . . ,m, the SLFN with L hidden nodes

and activation function g(x) is formulated as:

L∑
j=1

βjg(wj · xi + bj) = oi, i = 1, . . . , N, (2.1)

11
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where wj = [wj1, . . . , wjn]
T is the weight vector connecting the input nodes and

the j-th hidden node, bj is the bias of the j-th hidden node, and βj is the weight

connecting the j-th hidden node and the output nodes, and oi is the network

output of xi.

It is proved that the SLFN can approximate the training samples with zero

error [30], thus we have

L∑
j=1

βjg(wj · xi + bj) = ti, i = 1, . . . , N. (2.2)

Eq. (2.2) can be rewritten into a matrix form, i.e.,

H · β = T, (2.3)

where H is the hidden layer output matrix, i,e.,

H(wj, bj,xi)

=

⎡
⎢⎣

g(w1 · x1 + b1) . . . g(wL · x1 + bM)
...

. . .
...

g(w1 · xN + b1) . . . g(wL · xN + bM)

⎤
⎥⎦

N×L

,
(2.4)

T = [t1, . . . , tN ]
T
N×m is the target output of the training samples, and β =

[β1, . . . , βL]
T
L×m is the output weight.

In the hidden layer output matrix H, each column indicates the output value

of the corresponding hidden node [1, 31], which satisfy the following theorems.

Theorem 2.1.1. [30] Given a standard SLFN with N hidden nodes and acti-

vation function g : R → R that is infinitely differentiable in any interval, for N

arbitrary distinct samples {(xi, ti)}Ni=1 ∈ Rn×Rm, for any {(wj, bj)}Lj=1 random-

ly generated from any interval of Rn×R, according to any continuous probability

12



Chapter 2 Background and Literature Review

distribution, with probability one, we have ‖HN×N · βN×m −TN×m‖ = 0

Theorem 2.1.2. [30] Given any small positive value ε > 0 and activation

function g : R → R that is infinitely differentiable in any interval, there exist-

s L ≤ N such that for N arbitrary distinct samples {(xi, ti)}Ni=1 ∈ Rn × Rm,

for any {(wj, bj)}Lj=1 randomly generated from any interval of Rn × R, accord-

ing to any continuous probability distribution, with probability one, we have

‖HN×L · βL×m −TN×m‖ < ε

Theorem 2.1.1 and Theorem 2.1.2 can be extended to any kind of nonlinear

piecewise continuous function [30]. Such function including threshold function,

even though it is not differentiable [30].

2.1.2 Universal Approximation Theorem

Definition 2.1.3. [30] A function g(x) : R → R is considered to be piecewise

continuous if it has only a finite number of discontinuities in any interval and its

left and right limits are defined (not necessarily equal) at discontinuity.

Definition 2.1.4. [30] A node is named a random node if its parameters (wj, bj)

are randomly generated based on a continuous sampling distribution probability.

The adoption of random nodes is the typical feature of ELM. Moreover, all

the parameters (wj, bj) can be generated independently.

Definition 2.1.5. [30] Let L2(X) be a space of function f on a compact subset

X in the n-dimensional Euclidean space Rn, such that ‖f‖2 are integrable and∫
X
|f(x)|2dx < ∞. Denote L2(X) as L2, for u, v ∈ L2 the inner product < u, v >

is defined by 〈u, v〉 =
∫
X
u(x)v(x)dx

13
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In this case, L2(X) in the form of Eq. (2.5) is used to measure the distance

between the network function fL and the target function f , where ‖·‖ represents

the norm in L2(X) space, i.e.,

‖fL − f‖ =

[∫
X

|fL(x)− f(x)|2dx
]1/2

(2.5)

Lemma 2.1.6. [42] Given g : R → R, span{g(w · x + b) : (w, b) ∈ Rn ×R} is

dense in R = Lp for every p ∈ [1,∞) , if and only if g is not polynomial (almost

everywhere).

Lemma 2.1.7. [30] Let g : Rn → R be an integrable bounded function such

that g is continuous (almost everywhere) and
∫ n
R g(x)dx 	= 0. Then span{g(x−w

b
) :

(w, b) ∈ Rn ×R+} is dense in Lp for every p ∈ [1,∞).

Lemma 2.1.6 and Lemma 2.1.7 state that feedforward neural networks with

additive or RBF nodes can approximate any continuous target function with

appropriate parameters (wj, bj). Based on these results, Huang et al. [30] further

proved that SLFNs which randomly assigned hidden nodes can still approximate

arbitrary target function. The related theorems are listed as follows.

Theorem 2.1.8. [28] Given any bounded nonconsatant piecewise continuous

function g : R → R for additive nodes or any integrable piecewise continuous

function g : R → R and
∫
R g(x)dx 	= 0 for RBF nodes, for any continuous target

function f and any randomly generated function sequence gL, lim
L→∞

‖f − fL‖ = 0

holds with probability one if

β
(j)
L =

〈
e
(j)
L−1, gL

〉
‖gL‖2

, k = 1, ...,m, (2.6)

14
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where β
(j)
L denotes the output weight connecting the L-th hidden node and the

j-th output node, and e
(j)
L ≡ f (j) − f

(j)
L is the residual error function of the j-th

output node with L hidden nodes where j = 1, ...,m, f ∈ L2(X) is the target

function, fL = [f
(1)
L , ..., f

(m)
L ]T is the output function where m is the number of

output nodes.

Theorem 2.1.8 is proved to be functional on generalized SLFNs, such as sig-

moid network, trigonometric network, RBF network, threshold network, fully

complex neural network, etc [28]. Huang [30] further stated that the input pa-

rameters for the hidden nodes can be randomly assigned, which is the foundation

of ELM.

Theorem 2.1.9. [26, 27] Given g : R → R, span{g(w · x + b) : (w, b) ∈

Rn × R} is dense in L2, for any continuous target function f and any function

sequence gL randomly generated based on any continuous sampling distribution,∫
R g(x)dx 	= 0 holds with probability one if the output weights βj are determined

by ordinary least square to minimize ‖f(x)−∑L
j=1 βjg(w · x+ b)‖.

Theorem 2.1.9 proved that ELM can be a universal approximator, whose

weights of the hidden layer can be randomly assigned and the output weights can

be determined by ordinary least square method [30]. The only requirement is

that the activation function g is nonconstant piecewise and span{g(w · x + b) :

(w, b) ∈ Rn ×R} is dense in L2.

Theorem 2.1.10. [29] Given any bounded function G(x) in R which has limits

and limx→−∞G(x) 	= limx→+∞G(x), then all linear combinations
∑L

i=1 βiG(ai, bi, x)

are dense in C(M), where M is a compact set of Rn, βi ∈ R1, wi ∈ Rn and wi · x
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is the inner product of wi and x. Then an SLFN with such activation function

G(x) and with enough hidden units can separate any arbitrary disjoint regions

with any shapes.

Theorem 2.1.11. [29] An SLFN with any continuous bounded non-constant

activation function g(x) and with enough hidden units can separate any arbitrary

disjoint regions with any shapes.

Theorem 2.1.10 and 2.1.11 state that ELMs can form decision regions of arbi-

trary shapes. In other word, if there exists sufficient hidden nodes, ELMs are able

to approximate almost any complex decision boundary in a classification problem

as Fig. 2.2.

Figure 2.2: Classification ability comparison between two-layers network and
three layers network

2.1.3 ELM Algorithm

Training an SLFN is equivalent to find a least-square solution β̂ of the linear

system H · β = T:

16
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||H · β̂ −T|| = minβ ||H · β −T|| (2.7)

According to Theorem 2.1.1, if the number of hidden nodes is equal to the

number of distinct training samples, the standard SLFNs are proved to be capable

of approximating these N samples with zero error. However, the number of hidden

nodes is usually much smaller than the number of training samples. In this

case, the smallest norm least-square solution of the above linear system can be

calculated directly with the Moore-Penrose generalized inverse of matrix H [59,

65]. Thus, ELM can be described as Algorithm 2.1.

Algorithm 2.1 Extreme Learning Machine
Input:

Training set X = {(xi, ti)}Ni=1;
Activation function g(x);
Number of hidden node L.

1: Randomly assign input weight wj and bias bj where j = 1, . . . , L;
2: Calculate the hidden layer output matrix H by Eq. (2.4);
3: Calculate the output weight β by

β = H†T

where H† is the Moore-Penrose generalized inverse of H.
Output:

Input weights wj and biases bj, output weight β.

There are various methods to calculate the Moore-Penrose generalized inverse

of a matrix, such as orthogonal projection method, iterative method and singular

value decomposition (SVD). In practice, SVD could be applied in all cases no

matter HTH is singular or not.

As concluded in [24], ELM have the following important properties:

• Smallest training error. The output of ELM is refers to the solution of
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β̂ = H†T, which is one of the least-squares solutions of a general linear

system:

||Hβ̂ −T|| = ||HH†T−T|| = minβ ||Hβ −T||. (2.8)

• Smallest norm of weights. Based on the theory ofMoore-Penrose generalized

inverse, the solution of β̂ = H†T is considered to be the minimum norm

least-squares solutions of Hβ = T:

||β̂|| = ||H†T|| ≤ ||β||, ∀β ∈
{
β : ||Hβ −T|| ≤ ||Hz −T||, ∀z ∈ RL×N

}
.

(2.9)

• Unique solution. The solution calculated by β̂ = H†T is unique, which can

be regarded as the optimal solution of the linear system.

The essence of ELM can be summarized as [30]:

• The input weights and biases can be randomly assigned.

• Both the training error ‖H · β −T‖ and the norm of weights ‖β‖ of SLFNs

are minimized [1].

• The activation function has to satisfy the bounded non-constant piecewise

continuous condition (Theorem 2.1.8 and Theorem 2.1.9).

2.2 Fuzzy Measure and Fuzzy Integral

Fuzzymeasure is a non-negative andmonotonic set function, which can be regard-

ed as a generalization of the classical probability measure by removing additivity
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property [53]. It is able to describe three kinds of interactions: positive, negative

and additive, which are defined as super-additive, sub-additive and additive mea-

sures. This versatility of fuzzy measure leads to numerous related works from

both theoretical and practical aspects. For example, fuzzy measure has been

successfully applied to multicentric decision making and evaluation of coopera-

tive games. In the former case, fuzzy measure [16] introduces vetoes and favors

in models based on the representation ability of dependent data. In cooperative

games domain, fuzzy measure represents the strength of player coalitions [51] and

effectiveness of unit combination strategies [54]. Other fields related to fuzzymea-

sure include information fusion [2], feature selection [23] and classification based

on non-additive and non-linear characteristic [43]. Furthermore, fuzzy integrals

are developed with respect to non-additive set functions. Due to the non-linearity,

fuzzy integral is proved to be a suitable way of integrating information. For in-

stance, Choquet integral (CI) is a powerful nonlinear aggregation function which

has been successfully used in information fusion and data mining [32]. In this

section, we will introduce the concepts of most commonly used fuzzy measures

and fuzzy integrals.

2.2.1 Fuzzy Measure

Definition 2.2.1. Let (X,F ) be a measurable space. A fuzzy measure is a real-

valued set function μ : F → (−∞,+∞) by satisfying the following criteria:

(C1) μ(∅) = 0;

(C2) μ(A) ≥ 0 for every A ∈ F ;

(C3) μ(A) ≥ μ(B) whenever A ∈ F,B ∈ F,A ⊆ B.
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Set function μ is called efficiency measure [79] if it only satisfies conditions

(C1) and (C2). Furthermore, μ is a signed efficiency measure if it only satis-

fies condition (C1). Both of them are called non-additive fuzzy measures [79].

Any fuzzy measure satisfies condition (C3) can be regarded as monotonic fuzzy

measure.

In [53], Murofushi and Sugeno provided an interesting example to explain the

difference between monotonic fuzzy measure and non-monotonic fuzzy measure.

Let X be the set of workers, A ⊂ X and B ⊂ X are two different subsets

of X. Each group can work in various ways (together or separately). Let μ(A)

and μ(B) be the numbers of products made by groups A and B in an hour,

respectively. In this situation, the productivity of the coupled groups A and B

may have several different results.

Suppose we add a monotonic condition to this problem, “every group works

in the most efficient way”. In this case, the more workers, the higher the produc-

tivity. The most efficient way of working is to kick out the “troublemakers” in

each group and make μ(A ∪B) ≥ μ(A) and μ(A ∪B) ≥ μ(B).

Non-monotonic condition is to remove the monotonicity assumption. Suppose

that the two groups interact with each other, there would be three different

situations: 1) if they work separately, their productivity would be μ(A ∪ B) =

μ(A) + μ(B), which is an additive case; 2) good cooperation of members from A

and B yields the productivity of μ(A ∪ B) ≥ μ(A) + μ(B), which is a supper-

additive case; 3) bad cooperation of members from A and B yields a productivity

of μ(A ∪B) ≤ μ(A) + μ(B), which is a sub-additive case.
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2.2.2 λ-Fuzzy Measure

When |X| = n, there will be 2n subsets in total. We have to define n singleton

sets and the rest subsets can be defined by additive property. In fuzzy measure,

we need to define 2n coefficients, which will be a difficult task when n is large. In

order to simplify this case, researchers introduced an additive property called λ

law [53].

Theorem 2.2.2. Let X = {x1, x2, . . . , xn} be a finite set and λ ∈ (−1,∞). A

normalized set function gλ defined on 2X to [0, 1] is called a λ-fuzzy measure on

X if for every pair of disjoint subsets A and B of X:

gλ(A ∪B) = gλ(A) + gλ(B) + λgλ(A)gλ(B). (2.10)

The value of g at a singleton set xi is called a density and is denoted by

gi = g(xi). In addition, λ satisfies the following condition.

Theorem 2.2.3. The λ in holomorphic gλ fuzzy measure is defined by the fol-

lowing equation:

n∏
i=1

(1 + λgi) = 1 + λ, (2.11)

1. when
n∑

i=1

gi < 1, λ > 0, gλ is super-additive;

2. when
n∑

i=1

gi = 1, λ = 0, gλ is additive and become a classical measure;

3. when
n∑

i=1

gi > 1, λ > 0, gλ is sub-additive.
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2.2.3 Choquet Integral

Choquet integral is an expansion of ordinary integral (Lebesgure Integral) and

can be regarded as the most natural fuzzy integral.

Theorem 2.2.4. Suppose X = {x1, x2, . . . , xn} where x1 ≤ x2 ≤ . . . ≤ xn, given

a fuzzy measure μ(X) : P (X) → [0, 1] (where P (X) is the power set of X and

μ(∅) = 0) and a function f(x), Choquet integral is defined as

(c)

∫
f(x) · μ(X) =

∑n

i=1
(xi − xi−1) · μ(x|f(x) ≥ xi), (2.12)

where x0 = 0.

Choquet integral has the following properties:

1. (c)
∫
1Adμ = μ(A);

2. If μ is a fuzzy measure and f ≤ g then (c)
∫
fdμ ≤ (c)

∫
gdμ;

3. (c)
∫
(af + b)dμ = a · (c)

∫
fdμ+ b · μ(X);

4. (c)
∫
(−f)dμ = −(c)

∫
fdμ;

5. (c)
∫
(−f)dμ = −(c)

∫
fdμ;

6. (c)
∫
fdμ = (c)

∫
f+dμ− (c)

∫
f−dμ;

7. (c)
∫
fd(a · μ) = a(c)

∫
fdμ;

8. (c)
∫
fdμ ≤ (c)

∫
fdν;

9. (c)
∫
fdμ = (c)gdμ.
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2.2.4 Sugeno Integral

Sugeno integral is a special kind of fuzzy integral which is only for the function

h : X → [0, 1] and normalized fuzzy measures.

Theorem 2.2.5. [53] Suppose μ is a normalized fuzzy measure on X and f is

a function on X within the range a1, a2, . . . , an, where 0 ≤ a1 ≤ a2 ≤ . . . an ≤ 1.

The Sugeno integral is defined as

(s)

∫
f(x) · μ(X) =

n∨
i=1

[ai ∧ μ({x |f(x) ≥ ai})] (2.13)

Sugeno integral has the following properties:

1. (c)
∫
1Adμ = μ(A);

2. If f ≤ g then (s)
∫
fdμ ≤ (s)

∫
gdμ;

3. (s)
∫
(a ∨ f)·μ = a ∨ ((s)

∫
f · μ)

4.
∣∣(s) ∫ f · μ− (c)

∫
fdμ
∣∣ ≤ 1

4

5. If μ is a fuzzy measure in range [0, 1], then (s)
∫
f · μ = (c)

∫
fdμ

6. If μ ≤ ν, then (s)
∫
f · μ ≤ (s)

∫
f · ν

7. (s)
∫
f · (μ ∨ ν) = ((s)

∫
f · μ) ∨ ((s)

∫
f · ν)

8. If N is a null set and f(x) = g(x) for all x /∈ N , then (s)
∫
f · μ = (s)

∫
g · μ
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2.3 Architecture Selection

The most commonly used technique for architecture selection is cross valida-

tion (CV), which evaluates the results from a statistical point of view [19]. The

main idea of CV is to test the model architectures with different data partition-

s, estimate the generalization capability, and find out the optimal architecture.

Commonly used CV methods are listed as follows:

1. Leave-p-out CV (LpO CV): This method adopts p observations as the

validation set and the rest observations as the training set. In order to go

through all combinations of validation sets and training sets, Cn
p (i.e., n is

the number of observations in data set) iterations need to be conducted.

Thus, when n is very large, LpO CV may become impractical.

2. K-fold CV: This method involves k-fold partition of the given data set,

where k is an integer ≥ 2. A model is constructed based on k − 1 subsets

(named the training set), and is validated on the remaining subset (named

the validation set or testing set). This process is performed k times using

different subsets, and the average result is recorded. The k-fold CV is

experimentation-driven and is easy to implement, but the time complexity

is high.

2.4 Techniques for Handling Large-Scale Data

2.4.1 Discretization of Continuous-Valued Attributes

Discrete and continuous are two classical ordinal data types with orders among

the values. Generally, the number of discrete values for an attribute is finite and
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sometimes even only a few, while the number of continuous values can be infinite-

ly many. This property of discrete value makes it easier to use and comprehend

in data analysis. For example, when a decision tree is induced, the continuous

attribute may make the tree reach a pure state quickly but with a bad perfor-

mance (all the instances in a leaf node belong to a specific class) [37], while a

discrete attribute may clearly divide a node into several branches. There are

many other advantages of using discrete values. For instance, it is mentioned

in [64, 69] that discrete attributes have a closer knowledge-level representation

than continuous ones. Thus, in many problems, there is a need to make discret-

zations on continuous-valued attributes. Given a continuous-valued attribute,

two important terms should be introduced firstly, i.e., cut-point and arity [48].

• Cut-point: This term, also known as split-point, refers to a real value within

the range of the given attribute that divides the range into two intervals,

one is less than or equal to the cut-point and the other is greater than the

cut-point [39]. For instance, a continuous interval [a, b] is split into [a, c]

and (c, b], where c ∈ (a, b) is a cut-point.

• Arity: This term represents the number of intervals divided for the at-

tribute. Suppose the arity is d, then the number of cut-points for this

attribute is d− 1. There always exist a trade-off between the arity and its

impact on the accuracy [48].

The evaluation of discretization is a complex issue that largely depends on the

problem to be solved. Based on [39], three important dimensions are introduced:

(1) simplicity: with enough representation ability, the fewer the cut-points, the
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better the discretization result; (2) consistency: the inconsistency after discretiza-

tion should not be much higher than that before discretization (two instances are

considered as inconsistent when they have the same attribute values and differ-

ent class labels); (3) accuracy: a good discretization should be able to reduce the

data volume and maintain or even improve the accuracy. Obviously, in order to

achieve these objectives, the most important step is the selecting part, i.e., how

to evaluate the cut-points and select the best ones.

A typical discretization process on the attribute broadly consists three steps:

• Sorting: Sort the values of the given attribute in either descending or as-

cending order.

• Selecting: Get all the available cut-points and select the d− 1 ones using a

certain evaluation method.

• Splitting: Split the attribute into d intervals according to the d−1 selected

cut-points.

Two commonly used discretization methods [39] are listed as follows:

• Equal-width discretization: This is a simple and commonly usedmethod

for discretization. First, the minimum and maximum values of the related

attributes are determined. Then the value of different attributes are divided

into the predefined number of equal width discrete intervals. However, if

the observations is not evenly distributed, then important information may

be lost after discretization.
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• Equal-frequency discretization: Different from equal-width method,

the intervals generated with equal-frequency method contain the same num-

ber of observations. First, the minimum and maximum values of discretized

attributes are determined. Then, all values in the current attribute are sort-

ed in ascending order and divided into a numbers of intervals.

2.4.2 Center and Range

In [11], Diday introduced the concept of symbolic data, which includes intervals,

lists, histograms and so on. It is known that, classical data type with single-

value data point is easy to represent and analyze. However, symbolic data is

usually difficult to analyze by traditional learning techniques. Focus on interval-

valued data, there is a need to improve the existing learning technique for further

data processing. In what follows, two existing popular methods for interval data

are briefly introduced. Other methods could also be found from the literatures

[15, 38, 47].

• Center method (CM): This method can be regarded as a classical tech-

nique to model interval-valued data [3]. The main idea is to build up a

regression model using center points of the observed intervals. The model

coefficients are applied to the lower and upper bounds of the regressors to

predict bounds for the dependent features. In practice, CM could avoid

the disturbance of the variation in intervals and is applicable in real-world

scenarios.

• Center and range method (CRM): Later, Linma and de Carvalho [46]

argued that the prediction on interval data will be more accurate when
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both the center and range information are used. In CRM, two independent

regressors are trained on the center and range values, and the lower and

upper bounds are calculated by combining them.

2.4.3 Feature Selection

Feature selection, also called variable elimination, is proved to be effective in re-

ducing computational complexity, understanding data structure and improving

the predictor performance [9]. Generally, the feature selection methods can be

classified into two categories: filter and wrapper. Filter methods act as prepro-

cessing to rank the features and then selecting the highly ranked ones. The filter

methods are computationally light and do not rely on the learning algorithms [9].

Forman developed twelve feature selection metrics for a text classification prob-

lem [14]. Besides, a new ranking criterion based on class densities for binary data

is introduced in [34], and a ranking principle based on Gram-Schmidt orthogo-

nalization is proposed in [70]. Wrapper methods use the predictor performance

to evaluate the variable subsets. A number of search algorithms were developed

to find a suboptimal subset of features which gives the highest performance. For

instance, a mathematic programming method is presented to minimize a concave

function on a polyhedral set [5], and an extra term is used to penalize the size of

a subset in order to find the optimal feature subset [4].

The correlation-based feature selection (CFS) [18] is one of themost commonly

used methods. This method evaluates the feature subsets by considering the

usefulness of individual features for predicting the class labels along with the

degree of redundancy among them. It claims that a good feature subset should
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contain features highly correlated with the class and uncorrelated with each other.

As a famous multivariate filter, CFS formulates the heuristic as Eq. (2.14):

Gs =
n̂rci√

n̂+ n̂(n̂+ 1)rii′
, (2.14)

where n̂ is the number of features in the subset, rci is the mean feature correlation

with the class, rii′ is the average feature intercolumniation.
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Chapter 3

ELM-based Fuzzy Measure
Determination

In this chapter, we focus on ELM mapping and modeling of fuzzy measure, and

develop the fuzzy ELM (FELM) model for fast fuzzy measure determination.

More specifically, we first introduce the concept of set selection, then list several

newly developed fuzzy integrals. Afterwards, we propose the detailed structure

of FELM. Finally, we conduct some experimental comparisons among GA, PSO,

and FELM for fuzzy measure determination. Furthermore, an application of

FELM on real time strategy (RTS) game evaluation is also conducted. Five real

data sets extracted from games are used to test the effectiveness of FELM.

3.1 Introduction

Due to the highly non-additive and non-linear characteristics of fuzzy measure

and fuzzy integral, they are successfully applied in describing the importance of

each individual attributes as well as the feature interaction among them [77].

When using fuzzy integral for solving real world problems, the corresponding

fuzzy measures should be known in advance. Thus, the determination of fuzzy
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measure is the fundamental task in using these methods. However, there are

three main difficulties of applying fuzzy measure and fuzzy integral to represent

interacting features:

1. High complexity of fuzzy measure. Fuzzy measures are defined on the

power set of all predictive features. In order to define a fuzzymeasure, 2n−1

coefficients need to be determined. This high computational complexity

made the task of determining fuzzy measures difficult.

2. Complex subset selection rule in fuzzy integrals. A fuzzy integral

can be regarded as an integration tool by selecting different fuzzy measure

subsets based on certain learning principle. However, the relations among

different subsets are usually nonlinear and hard to be represented by tradi-

tional polynomial function. There is still a lack of generalized formulation

to represent set selection in different fuzzy integrals.

3. Difficult to select appropriate fuzzy integral. In general, the interac-

tion among different features are unknown. Thus, it is difficult to choose a

suitable fuzzy integral for integrating the importance of these interaction-

s. A fast and generalized fuzzy measure determination method could help

user to understand better fuzzy measures and select the appropriate fuzzy

model.

Several attempts have been made to reduce the complexity by imposing ad-

ditional constraints on measures such as k-additive fuzzy measure [16, 51] and

Sugeno − λ fuzzy measure [71]. However, both of them sacrifice certain degree
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of representation ability. Wang et al. [75] proposed a genetic algorithm (GA)

based method for fuzzy measure determination. However, the chromosomes are

long since there are too many unknown parameters to determine. Later, Gra-

bisch et al. [17] proposed a gradient descent (GD) algorithm to determine the

fuzzy measure by solving a quadratic problem, and Wang et al. [73] proposed a

neural network (NN) based method for the case that the objective function is not

differentiable, e.g., the nonlinear multi-regressions of Choquet integral. These

methods have fast convergence but are easy to stuck at local minimum. Thus,

it is necessary to develop a new computational technique for determining fuzzy

measures with a fast learning speed and a high accuracy.

As discussed in last chapter, ELM has good learning ability, low computational

complexity, and is ease for implementation. Recent studies revealed that ELM

can be well applied to the areas of pattern searching [8], classification [81], image

quality assessment [72], fuzzy rule learning [35], and fuzzy integral determination

[76]. How to use FELM to determine signed efficiency measure is explained in

this chapter.

The rest of this chapter is organized as follows. Section 3.2 presents the prob-

lem statement of determining signed efficiency measure from data. Then a detail

explanation of the set selection algorithm in our model is provided in section 3.3.

We present our ELM based methodology to determine signed efficiency measures

from data in section 3.4. This is followed by some experimental comparison-

s among GA, PSO and FELM. The result is given in section 3.5. Finally, we

conclude this chapter in section 3.6.
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3.2 Determining Signed Efficiency Measure from

Data

As stated in [73], the fuzzy integral
∫
fdμ on X = {x1, x2, . . . , xn} can be re-

garded as a multi-input single output system. The input is a vector of values

f : (f1, f2, . . . , fn), and the output is y =
∫
fdμ. The matrix of input-output

data with sample size m is shown as follows:

x1 x2 · · · xn y
f11 f12 · · · f1n y1
f21 f22 · · · f2n y2
...

...
. . .

...
...

fm1 fm2 · · · fmn ym

where fij is the i-th attribute of source xj, yi is the i-th object value.

Now, we want to find a fuzzy measure μ on a measureable space (X, 2x)

such that y =
∫
f (i)dμ, ∀i = 1, 2, ...,m, where f (i)(xj) = fij, j = 1, 2, . . . , n, i =

1, 2, . . . ,m. Thus, the problem is transformed to a constrained optimization prob-

lem as e =
√

1
m

∑m
i=1(yi − ŷi)2, where ŷi . A result of e = 0 means that a precise

solution is found.

3.3 Set Selection Algorithm for Fuzzy Integrals

The set selection in a fuzzy integral is to identify the related fuzzy measure subset

for each information source. However, it is complicated and difficult to represent

this process as a function. In [73], Wang et al. presented an neural network

based learning system for fuzzy measure determination with regard to Choquet

integral, and a nonlinear function is provided to represent the set selection process.

The value of fuzzy integral is expressed as a linear function, which explains the
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relationship between each individual information source and the corresponding

fuzzy measure subset.

Actually, the set selection can be considered as finding the corresponding

weight for each fuzzy measure subset. In this chapter, each δi represents the

weight of corresponding fuzzy measure subset, where i = 1, 2, . . . , N , N is the

number of fuzzy measure subset. The calculation of δi contains two steps. The

first step is to generate all the subsets of information sources Ki, as well as their

corresponding complementary Ki. The second step is to calculate the value of

δi for each fuzzy measure subset by some operation between its subset Ki and

complementary Ki.

First, we explain how to generate all the subsets of a given information source.

Based on the definition of signed efficiency measure, the combinations of a set of

information sources include all the nonempty subsets. Given a set f = {f1, f2, f3}

with three elements, it could have 23 − 1 = 7 nonempty subsets, which can be

represented using 3-digit binary code from 001 to 111 as follows:

βN = μ({x1, x2, x3}),
β1 = μ({x1}),
β2 = μ({x2}),
β3 = μ({x1, x2}),
β4 = μ({x3}),
β5 = μ({x1, x3}),
β6 = μ({x2, x3}),
β7 = μ({x1, x2, x3}),

→

a = {1, 2, 3},
001 = {1},
010 = {2},
011 = {1, 2},
100 = {3},
101 = {1, 3},
110 = {2, 3},
111 = {1, 2, 3}.

The subsets are generated according to the binary codes of their indices. For

example, the index of the first subset is 1, by transforming it to the binary form,

we get the binary code 001. Further assume that the first, second and third

coding digits are corresponding to elements x3, x2 and x1. In this case, each
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digit is connected to a particular element in the set, an element is included if

the corresponding digit is 1 and not included if it is 0. Subsequently, the first

subset is composed of x1. Using this representation, the nonempty subsets can be

generated by going through all the possible variations, each step output the subset

with the elements whose related digits are not zero. To determine the decimal

representation of a binary number, we can take the sum of the products of the

binary digits and the powers of 2 that they represent. For example, (1011)2 =

1× 23+0× 22+1× 21+1× 20 = 11. Based on above consideration, Wang et. al

developed a set selection algorithm to represent this process mathematically [73].

In each step, whether a digit is zero or not can be judged according to the digit

weight described in Eq. (3.1), i.e.,

Kj =
{
k : j

2k
−
⌊

j
2k

⌋
≥ 0.5, 1 ≤ k ≤ n

}
, j = 1, 2, ..., N,

Kj = {1, 2, · · · , n} −Kj,
(3.1)

where
⌊

j
2k

⌋
denotes the integer part of a nonnegative real number j

2k
. Then, the

set selection in different fuzzy integrals can be easily solve by selecting suitable

Kj and Kj.

3.3.1 Fuzzy Integrals

Although choquet integral has been widely used for feature interaction repre-

sentation in many real world applications, there is still a need for new fuzzy

integrals with different set selection principles. We developed two new fuzzy

integrals, Mean-based Fuzzy integral (Mean-based FI) and Order-based Fuzzy

Integral (Order-based FI) are proposed in this part.

Mean-based FI, as given in Definition 3.3.1, is designed by involving all the
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fuzzy measures with regard to the current information source. Based on its

design principle, the effectiveness of an ensemble should consider all possible

combinations that involve the current information source. Since we have no prior

knowledge on how each individual interacts with each other, all the combinations

are expected to have similar probability to contribute to the ensemble. According

to this consideration, a simple averaging mechanism is applied. Mean based FI

could give a better accuracy than CI, but suffers from the high time complexity.

In this research, we overcome this problem by using it with ELM-based learing.

Definition 3.3.1. Given a fuzzymeasure μ on x. The discrete Mean-based Fuzzy

Integral of a function f : X → � can be defined as:

(m)

∫
f(x) · μ(X) =

n∑
j=1

xj · (
mj∑
k=1

μ(Sjl)

|Sjl|
), (3.2)

where X = {x1, x2, . . . , xn}, xj (j = 1, . . . , n) is the j-th element in X, mj is the

number of subsets of X that contain xj, Sjl is the l-th subset for xj, and |Sjl| is

the number of elements in Sjl.

Order-based FI, as given in Definition 3.3.2, is developed by considering the

production sequence inmany real world applications. In general, it is a reasonable

assumption that the resource needed of producing an advanced product should be

higher than that of a less advanced one (i.e., the resource weighting for producing

a tank should be higher than that for producing a bike). Usually, the produc-

tion of an advanced product is an important objective in industrial development,

which should be considered having more interaction with other byproducts or

components. Order-based FI focuses on the information source with the highest
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proportion first, and calculates their interactions with all the others. There are t-

wo differences between the set selection schemes for CI and Order-based FI. First,

the one for Order-based FI does not apply substraction between two information

sources. Second, Order-based FI realizes the set selection process by considering

the fact that information source with the highest proportion should dominate the

ensemble. In fact, the scheme for Order-based FI is an inverse version of the one

for CI.

Definition 3.3.2. Given a fuzzy measure μ on x. The discrete Order-based

Fuzzy Integral of a function f : X → � can be defined as:

(o)

∫
f(x) · μ(X) =

n∑
j=1

aj·μ(x|{0 < f(x) ≤ aj}), (3.3)

where X = {x1, x2, . . . , xn}, xj (j = 1, . . . , n) is the j-th element in X, a1 ≥ ... ≥

an−1 ≥ an is the descending order of f(x1), f(x2), . . . , f(x)n.

An illustrative example indicating the differences among CI, Mean-based FI,

and Order-based FI is shown in Figure. 3.1. From a geometry point of view,

the interactions among different feature can be represented by area. CI has a

substraction on information source and it just considers specific fuzzy measure

subsets. Thus, CI’s area is the smallest of the three. Order-based FI considers

a inverse set selection principle of CI but has no substraction on information

source. It covers a larger area than CI and may has overlap when using efficiency

measure. Mean-based FI adopts an average strategy in set selection which covers

all the fuzzy measure subsets in calculation. This made it having the largest area

of the three.
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With the power set generated by Eq. 3.3, the set selection scheme for fuzzy

integrals (i.e., Sugeno integral, Mean-based fuzzy integral and Order-based fuzzy

integral) are listed in Table 3.1.

(a) Choquet Integral

(b) Mean-based Fuzzy Integral

(c) Order-based Fuzzy Integral

Figure 3.1: Comparison among CI, Mean-based FI and Order-based FI.
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Table 3.1: Set selection of different fuzzy integrals

Choquet integral

Original definition:
(c)
∫
f(x) · μ(X) =

∑n
j=1 (aj − aj−1) · μ(x|f(x) ≥ aj)

a1 ≤ ... ≤ an−1 ≤ an is the ascending order of f(x1), f(x2), . . . , f(xn)
Set selection:

δij =

⎧⎨
⎩

min
k∈Kj

f (i)(xk)−max
k∈K̄j

f (i)(xk), min
k∈Kj

f (i)(xk) > max
k∈K̄j

f (i)(xk)

0, min
k∈Kj

f (i)(xk) ≤ max
k∈K̄j

f (i)(xk)

Sugeno integral

Original definition:

(s)
∫
f(x) · μ(X) =

n∨
j=1

[aj ∧ μ({x |f(x) ≥ aj})]
where 0 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ 1
Set selection:

δij =

⎧⎨
⎩

min
k∈Kj

f (i)(xk), min
k∈Kj

f (i)(xk) > max
k∈K̄j

f (i)(xk)

0, min
k∈Kj

f (i)(xk) ≤ max
k∈K̄j

f (i)(xk)

Mean-based FI

Original definition:

(m)
∫
f(x) · μ(X) =

n∑
j=1

xj · (
mj∑
l=1

μ(Sjl)

|Sjl| )

mj is the number of subsets of X that contain xj,and |Sjl| is the
number of elements in Sjl, Sjl is the l-th subset for xj

Set selection:
δij = avg

k∈Kj

f (i)(xk)

Order-based FI

Original definition:

(o)
∫
f(x) · μ(X) =

n∑
j=1

aj·μ(x|{0 < f(x) ≤ aj})

a1 ≥ ... ≥ an−1 ≥ an is the descending order of f(x1), f(x2), . . . , f(x)n
Set selection:

δij =

⎧⎨
⎩

max
k∈Kj

f (i)(xk), max
k∈Kj

f (i)(xk) < min
k∈K̄j

f (i)(xk)

0, max
k∈Kj

f (i)(xk) ≥ min
k∈K̄j

f (i)(xk)

Note that suppose X = {x1, x2, . . . , xn}, μ(X) : P (X) → [0, 1] is a fuzzy measure (where P (X) is
the power set of X and μ(∅) = 0), f(x) is a function.
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3.4 Design of ELM

Suppose the values of information sources and the integrals are set as f(x) and

d respectively, then with unknown fuzzy measure value, we could represent them

by the following linear equations:

⎡
⎢⎢⎢⎣

g(f1, {x1}) g(f1, {x2}) g(f1, {x1, x2}) . . . g(f1, X)
g(f2, {x1}) g(f2, {x2}) g(f2, {x1, x2}) . . . g(f2, X)

...
...

...
. . .

...
g(fm, {x1}) g(fm, {x2}) g(fm, {x1, x2}) . . . g(fm, X)

⎤
⎥⎥⎥⎦·
⎡
⎢⎢⎢⎢⎢⎣

μ({x1})
μ({x2})

μ({x1, x2})
...

μ(X)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d1
d2
...
dm

⎤
⎥⎥⎥⎦ .

Figure 3.2: ELM-based architecture for describing fuzzy integrals

The g(fi, Aj) is a function which value is directly related to δij, where fi =

[fi1, fi2, . . . , fin] represents the i sample, i = 1, 2, . . . ,m, m is the number of sam-

ples, n is the number of feature. A = μ(1)(x1), μ
(2)(x2), μ

(3)(x1, x2), . . . , μ
(2n−1)(X)

represents all the fuzzy measure subsets related to the information source.
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Based on the above linear equations, we design an ELM model as shown in

Fig. 3.2 to describe different fuzzy integrals. The learning process of our ELM

algorithm can be separated into two stages, i.e., set selection stage and learning

stage. The complete learning processes are shown as follows:

Stage 1: Set selection

In this stage, the input data is converted a suitable form for ELM based on

the selection algorithm developed by [73], as shown in Eq. (3.1). Then, the set

selection mechanisms described in Table. 3.1, are used respectively. As a result,

the m×n sample matrix can be converted to a m×2n−1 input matrix as follows:

g =

⎡
⎢⎢⎢⎣

g(f1, {x1}) g(f1, {x2}) g(f1, {x1x,2}) . . . g(f1, X)
g(f2, {x1}) g(f2, {x2}) g(f2, {x1x,2}) . . . g(f2, X)

...
...

...
. . .

...
g(fm, {x1}) g(fm, {x2}) g(fm, {x1x,2}) . . . g(fm, X)

⎤
⎥⎥⎥⎦
m×(2n−1)

.

Stage 2: Learning the fuzzy measure

Step 1: Randomly assign input weight wi = {wi1, wi2, . . . , wij}, where i =

1, . . . ,m and j = 1, . . . , 2n − 1;
Step 2: Calculate the hidden layer output matrix H using Eq. (3.4):

H =

⎡
⎢⎢⎢⎣

w1 · g(f1, {x1}) w2 · g(f1, {x2}) w3 · g(f1, {x1, x2}) . . . wN · g(f1, {xA})
w1 · g(f2, {x1}) w2 · g(f2, {x2}) w3 · g(f2, {x1, x2}) . . . wN · g(f2, {xA})

...
...

...
. . .

...
w1 · g(fm, {x1}) w2 · g(fm, {x2}) w3 · g(fm, {x1, x2}) . . . wN · g(fm, {xA})

⎤
⎥⎥⎥⎦ ;

(3.4)

Step 3: Calculate the output weight vector β = H†T ;

Step 4: The learned fuzzy measure value could be calculated using Eq. (3.5):
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⎡
⎢⎢⎢⎢⎢⎣

μ({x1})
μ({x2})

μ({x1, x2})
...

μ(X)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

w1 · β1

w2 · β2

w3 · β3
...

w2n−1 · β2n−1

⎤
⎥⎥⎥⎥⎥⎦ . (3.5)

3.4.1 Characteristics of the FELM

The determination of fuzzy measure by using FELM can be considered as solving

a minimum-norm least square error problem on a general linear system Hβ = T .

The characteristics of FELM are as follows:

• Universal approximation capability of FELM: Theoretically, the u-

niversal approximation capability of ANN is built on the possibility of in-

creasable and sufficient hidden nodes. FELM cannot fullfill this condition

for adopting a hidden layer with fixed number of hidden nodes. Thus, it can-

not be regarded as a universal approximator. However, the fuzzy measure

determined by FELM is relying on the output weight vector of FELM, which

is the minimum-norm least square error solutions of a linear system. In the

ideal case, suppose there are N arbitrary distinct and linear independent

samples (xi, yi), where xi ∈ Rn and yi ∈ R, if N = 2n − 1 and the hidden

layer output matrix H of the SLFN is invertible, then ‖Hβ − T‖ = 0.

• Feature mapping in FELM: The hidden layer in ANN is serving as a

mapping tool for input samples. The addition of hidden neurons map the

input data to a higher dimension, which allows the ANN approximating the

target function withmore coefficients and resulting a better training accura-

cy. The reason of why FELM maps the input data to a higher dimension is
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because the original feature space cannot cover the range of fuzzy measures.

From the function approximation point of view, the 2n− 1 dimension space

may not be the best one to approximate the target function. However, this

is the only choice to determine fuzzy measure.

• Sign of the output weight in SLFN: It is noteworthy that the output

weight vectors of FELM could be negative and can not guarantee of mono-

tonic, which do not satisfy the definition of monotonic fuzzy measure and

efficiency measure (as section 2.2.1). Thus, we just focus on signed efficien-

cy measure determination in this research. Moreover, Sugeno integral is

defined for the functions included in [0, 1] and the normalized fuzzy mea-

sures [53]. Thus, it cannot be applied to the determination of sign efficiency

measure from data.

3.5 Experimental Comparisons

In this section, we conduct some experimental comparisons to show the feasibility

and effectiveness of our proposed FELM model.

3.5.1 Methods of Comparison

Three learning methods are listed in this section for performance comparison.

Each one is used to learn fuzzy measure values by employing different FIs.

Genetic Algorithm (GA): In GA, each chromosome consists 2n − 1 fuzzy

measures with n attributes. The fitness function is based on the average differ-

ences between the real scores and the estimated scores. Roulette wheel selection

and one-point crossover are applied for chromosomes evolution. Mutation prob-
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ability is set to 0.01 and the population of each generation is set to 50. Detail

settings of GA could be found from [45].

Particle Swarm Optimization (PSO): [77] proposed several methods by

using PSO to determine fuzzymeasure values. Other than the basic PSO, they in-

troduced a new method named generalized PSO (GPSO) by adopting a nonlinear

decreasing strategy of inertia weight, sigmoid function and velocity mutation.

Fuzzy Extreme Learning Machine (FELM): Our proposed method is

realized.

All the simulations of our proposed methods are performed under MATLAB,

and conducted on a computer with an Intel Pentium 4 2.3GHz CPU and 2GB

Ram. In each test, 70% cases are selected for training and the rest 30% are used

for testing.

3.5.2 Description of Type-II Data

According to the literature, [77] classified the training data into three different

types, which are Type-I Data, Type-II Data and Type-III Data. Type-I Data

is given by the experts. Considering its high time complexity, this should not

be a good way to collect a large dataset. Type-III Data allows users to identify

fuzzy measures using a smaller dataset without loss of any information. However,

its collection procedure is difficult to understand. Type-II Data can be collected

based on some strategies with the predefined fuzzy measure values. The gener-

ation process is simple and the collection of large scale data is easy. Therefore,

in this experiment, we focus on comparing the performances of different learning

algorithms on Type-II data, with the following construction strategies.
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Table 3.2: The Original Fuzzy Measure for Constructing Type-II Data
Measure Value Measure Value
μ(x1) 0.040930607 μ(x2, x4) -0.668111735
μ(x2) -0.508966883 μ(x3, x4) -0.725450167
μ(x3) 0.273797321 μ(x1, x2, x3) 0.094048031
μ(x4) -0.848041926 μ(x1, x2, x4) 0.602738412
μ(x1, x2) 0.873263465 μ(x1, x3, x4) -0.226069563
μ(x1, x3) 0.672351011 μ(x2, x3, x4) 0.246414918
μ(x1, x4) -0.045030226 μ(x1, x2, x3, x4) 0.963704525
μ(x2, x3) 0.260854265

Strategy I:

1. Generate a fuzzy measure as shown in Table 3.2.

2. Construct the information sources following the uniform distribution, which

are between [0, 1].

3. Calculate the fuzzy integral values according the related fuzzy measures

and information sources.

Strategy II:

1. Generate a fuzzy measure as shown in Table 3.2.

2. Construct the information sources with a generator which randomly selects

value from set 0, 0.5, 1.

3. Calculate the fuzzy integral values as output.

We construct three datasets based on strategy I and another three datasets

based on strategy II with different sizes. The sizes of the six datasets are 32, 120,

300, 152, 452, and 1200, respectively. For convenience, we only list the detailed

information for dataset 2 as in Table 3.3.
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Table 3.3: Detailed Information of Data Set 2
i fi1 fi2 fi3 fi4 yi
1 9.14E-01 2.19E-01 4.62E-01 5.74E-01 9.54E-02
2 4.95E-01 1.99E-02 1.64E-01 7.85E-01 -1.59E-01
3 3.98E-01 2.13E-01 9.47E-01 6.68E-01 8.98E-02
4 6.37E-03 4.47E-01 1.91E-01 6.34E-01 -8.50E-02
5 6.64E-01 2.51E-01 5.06E-01 1.66E-01 3.84E-01
6 7.43E-01 7.50E-01 8.88E-01 2.40E-01 9.55E-02
7 3.81E-01 8.79E-01 8.30E-01 3.62E-01 6.26E-01
8 8.87E-01 5.97E-01 5.15E-01 7.70E-01 3.93E-01

Furthermore, two methods presented by [77] are adopted to add perturbations

in order to generate noisy data. More specifically, a set of random variables

normally distributed in interval [−0.5ρ, 0.5ρ] are generated, where ρ represents the

diverse strength, and these random perturbations are added to the data generated

by strategy I; besides, Gaussian noise with variance σ2 is directly added to the

data generated by strategy II. Based on these methods, eight noisy datasets with

the same size of 100 are generated. Three datasets are generated by strategy

I, where the value of ρ is set as 0, 0.0001 and 0.001 respectively. The other

five datasets are generated by strategy II, where the value of σ2 is set as 0,

0.00096, 0.00125, 0.00625 and 0.0125 respectively. The information sources are

set according to Table 3.2, and the related FIs are used to calculate the output

values. These datasets are used to test whether the actual outputs of our proposed

FELM algorithm is capable to maintain a certain level of accuracy when noise

exists.

3.5.3 Performance Comparison on Type-II Data

From Figures 3.3 and 3.4, we have the following observations.
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Figure 3.3: Performance Comparison of Different Methods on Type-II data sets:
C=CI, M=Mean-based FI, and O=Order-based FI

• FELM demonstrates an obvious advantage in training speed. Its training

time is about 200 times faster than GA and PSO. Besides, it seems that

GA spends a lot of time in training Mean-based FI. This is because GA

needs to traverse all the related fuzzy measure subsets and take average in

each generation, which is a time consuming process. The ELM model with

set selection algorithm is able to overcome the high complexity problem of

random search-based learning techniques in fuzzy measure determination.
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Figure 3.4: Performance Comparison of Different Methods on the Noisy data
sets: C=CI, M=Mean-based FI, and O=Order-based FI

• It can be seen from Figure 3.3 that the training and testing errors of FELM

are very close to zero. As there are no perturbation in data sets 1 to 6,

FELM can guarantee the success of finding the minimum norm least-square

solution of SLFNs. On the other hand, the presence of local minima may

decrease the accuracy of GA and PSO.

• Although some literatures state that ELM model may be sensitive to the

perturbations in data, we found no strong evidence on this statement in our
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experiments. FELM still achieve the best training and testing accuracies

on all 8 noisy data sets with fast speed. PSO is in general more stable with

noisy data and also has an acceptable training speed, while the performance

of GA is bad with a very slow training speed. The perturbations in data

and the complex set selection of FIs may make it stuck to the local minima.

3.5.4 Description of Warcraft III Data

In our previous research, [44] have successfully applied fuzzy measure and Fuzzy

Integral (FI) to describe the uncertain information in the evaluation of computer

game unit combination strategy in RTS game. Unit refers to some game charac-

ters, resources and playable elements, such as soldiers, horses, machines, castles

and the like. A strategy in game is referred to as arranging the army with ap-

propriate unit combination, which is able to gain massive destroy power against

opponent enemy. The definition of a strategy case is given as

Strategy Case = {Goal, Situation, Score},

where “Goal” is the creation of suitable unit combination with certain proportion,

e.g. 10% peasants, 30% footman and 60% rifleman; “Situation” is defined as

what circumstance the player is dealing with; and “Score” is the evaluation point

provided by the game system. Usually, strategy cases are clustered into several

groups based on different races and unit combinations, and “Score” is used in

learning the fuzzy measures.

In this experiment, Warcraft III is used as our testing platform, which is a

famous RTS games with over 7 million copies sold. We colleted 2,649 game files
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Table 3.4: Nature of Testing Data Set
Data Set 1 2 3 4 5

Player race Undead Undead Orc Orc Elf
Enemy unit Fm, P Dr, Fm, P Pr, So, Sb, P Fm, P Fm, P
No. of Case 162 65 1004 549 869
No. of Combination 23 16 60 31 31

of professional one-versus-one competitions from the internet, with three types

of data: (1) player unit production statistics, (2) enemy unit type, and (3) per-

formance scores. The player unit production statistics involves the number of

different unit types, which are used as the values of information sources. Perfor-

mance scores is considered as the real fuzzy integral value. Five datasets based

on different enemy unit types are collected as shown in Table 3.4.

3.5.5 Performance Comparison on Warcraft III Data

The training time, training error, and testing error are shown in Figure 3.5. From

the results, we have the following observations.

• FELM achieves a faster learning speed on most of the data sets except data

set 3. Its training time is in the range of 1 to 30 seconds. In this case, FELM

can meet the requirement for real-time evaluation of game strategies.

• In general, the training and testing errors of FELM, GA and PSO are

similar. Focusing on data set 3, we could see that GA and PSO get a bad

result with CI. Data set 3 not only has the largest number of instances

(i.e. 1004 instances) but also has the biggest variety of unit types (i.e.,

11 kinds of unit types). We can concluded that having many unit types

increase the difficulty in fuzzy measure determination. Although FELM is
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Table 3.5: Fuzzy Measure Subsets (n ≤ 2) in Data Set 1
Fuzzy Measure CI Mean-based FI Order-based FI
{1} -2.5510E-10 -5.1177E-02 1.9448E-08
{2} 4.8580E-01 2.5587E-02 -4.1983E-09
{3} 6.3657E-01 -1.7308E-02 -7.3512E-10
{4} 5.4350E-01 2.7944E-02 2.8518E-10
{5} 3.5784E-01 -1.4135E-02 2.6719E-09
{6} 8.9122E-01 3.0005E-02 6.3940E-10
{7} 1.3612E+00 1.9998E-03 -1.5170E-09
{8} 4.3797E-01 5.2121E-02 -7.6184E-10
{1,2} -9.6410E-11 -5.7313E-04 -1.1408E-12
{1,3} 1.2293E+00 4.2360E-02 -2.7748E-09
{2,3} 1.5141E+00 8.4990E-03 2.4204E-09
{1,4} 4.8388E-10 4.5402E-02 1.1167E-09
{2,4} -6.3387E-11 9.6199E-03 -5.2911E+00
{3,4} 6.0379E-11 4.0877E-02 5.5367E-10
{1,5} -2.9677E-10 1.7695E-02 1.5606E-10
{2,5} 1.0689E+00 2.1717E-04 -2.0453E-09
{3,5} -1.0553E-09 -2.5216E-02 2.3160E-09
{1,6} 1.0691E+00 1.6874E-02 -2.8561E-09
{2,6} 5.6947E-11 -6.5893E-03 -4.8743E-10
{3,6} -5.2444E+00 1.4251E-02 2.5410E-09
{4,6} 4.4615E-11 -9.6180E-03 -1.3406E-10
{1,7} -4.0740E-02 2.7849E-02 3.7575E-11
{4,7} 3.9682E+00 -1.6872E-05 1.0694E-10
{1,8} -2.1809E-10 2.4679E-02 -5.6514E-11
{2,8} -1.6716E-10 -2.8243E-03 1.8370E+00
{4,8} 2.1075E+00 2.6293E-02 -5.5740E-11
Note: The fuzzy measure of which combination contains positive interaction
(i.e., μ{x1, x2} ≥ μ{x1}+ μ{x2}) is in bold face.
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Figure 3.5: Performance Comparison of Different Methods on Warcraft III data
sets: C=CI, M=Mean-based FI, and O=Order-based FI

able to maintain the performance on this data sets, the training time is

not satisfactory. This is because the over many feature in samples highly

increase the dimension of fuzzy measure. In this case, the time complexity

in calculating the pseudo-inverse of the hidden layer output matrix is highly

increased. How to deal with the massive data with high dimensionality in

ELM training is still a challenge problem.
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• In our previous research, we found that Mean-based FI could achieve a

higher accuracy than CI and Order-based FI but is time consuming using

GA. The newly designed set selection scheme for Mean-based FI in FELM

significantly reduces the complexity. The experimental result shows that

the combination of Mean-based FI and ELM not only reaches the best

accuracy but also achieves the fastest learning speed.

• In order to demonstrate the usefulness of fuzzy measure in feature interac-

tion description, we list some learned fuzzy measure subsets of data set 1

in Table 3.5. For convenience, we only list the subsets with no more than

2 elements. By using fuzzy measure, we could easily find out the relation

among different unit types. For example, the fuzzy measure values for unit

types 2 and 3 are 4.8580E − 01 and 6.3657E − 01 respectively, while the

fuzzy measure value for their combination is 1.5141E + 00, which is larg-

er than the summation of their individual values. In this case, we could

conclude that unit types 2 and 3 have a positive interaction.

3.6 Conclusion

In this chapter, we have presented a fast learning method for fuzzy measure

determination named FELM, and have tested using some data sets including the

unit combination strategy evaluation in RTS game. Different from GA and PSO,

FELM has several special features.

• It has a very fast learning speed, which has been shown in the experiment.

Since the efficiencies of the classical learning techniques, such as GA and
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PSO, are usually low, FELM appears to be a suitable choice for real-time

evaluation of applications of such as unit combination strategies in RTS

game.

• Many classical learning algorithms usually have the local minima and over

fitting problems. Overcoming these problems may further increase the time

complexity of the model. FELM can avoid such problems effectively with

a simple learning structure, which requires no parameter to be tuned.

• The proposed FELM performs better than GA and PSO in most cases.

Besides, there is no strong evidence to indicate that FELM is sensitive to

noisy data.
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Chapter 4

Architecture Selection for SLFNs
with MCDM Model

This chapter presents a novel architecture selection method for ELM. It is able

to estimate the generalization ability of the selected architecture with input da-

ta perturbations. Some fundamental concepts, such as multi-criteria decision

making (MCDM) and localized generalized error model (LGEM) will be intro-

duced, and a LGEM-based architecture selection method with MCDM model is

developed.

4.1 Introduction

As discussed in [40,84], the number of hidden nodes will affect the generalization

ability of SLFNs. Thus, architecture selection is a necessary step before training

the final model. The commonly used cross validation (CV) method is effective

but it is time consuming because of too many iteration in estimating the best

model structure. Moreover, it focuses on estimating the expected generalization

error instead of its bound [84], which means that it cannot guarantee a good

generalization ability of the selected classifier. On the other hand, error bound
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models attempt to find an upper bound of the error between the target function

and the trained model in the entire input space [49,55,57,83]. The advantage of

using these models is that the estimated error bound is effective for all unseen

samples.

In [84], Yeung et al. proposed a localized generalization error model (LGEM)

for architecture selection for radial basis function neural networks (RBFNNs).

It bounds the generalization error for unseen samples located within a prede-

fined neighborhood of the training samples. Later, Wang et al. [81] proposed an

extended LGEM for ELM with sigmoid activation function. The error bound

generated by LGEM is an upper bound of the mean square error (MSE) for un-

seen samples within a certain area. Theoretically, this bound is better than the

error bound that is determined without considering the statistical characteristics

of the training samples.

In this part, the architecture selection process is considered as a decision

making problem, which evaluates a set of alternative architectures and selects

the best. MCDM [67] is a widely known branch of decision making, which eval-

uates the alternatives on the basis of multiple criteria. Typical tasks of MCDM

include sorting the alternatives into a preference preorder and selecting the best

alternative from a set of candidates. With some predefined assumptions, the de-

cision maker is required to indicate the priority among several alternatives with

respect to each criteria [74]. MCDM has been widely used in various domains,

such as knowledge discovery, preference modeling, and multi-objective optimiza-

tion [10,12,13].

In this chapter, an LGEM based architecture selection method for ELM with
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MCDM system is proposed. Two criteria, i.e. the training accuracy of an clas-

sifier and the estimated Q-value from LGEM, are selected to evaluate the ELM

architecture. By investigating the priority of architectures, a preference preorder

for each criteria could be determined. Then, the dominated indices and dominat-

ing indices of an architecture in the preference preorders are computed to reflect

its informativeness. This strategy is likely to provide accurate priority informa-

tion, since the preference preorders are evaluated uniformly and independently.

Finally, the architecture with the maximum value of informativeness is selected.

The rest of this chapter is organized as follows: Section 4.2 lists some back-

ground knowledge on LGEM and MCDM system. In Section 4.3, the LGEM

based architecture selection with MCDM system for SLFNs trained with ELM is

derived in detail. In Section 4.4, extensive experiments are conducted to show

the effectiveness of the proposed model. Section 4.5 concludes this chapter.

4.2 Localized Generalization Error Model

In this section, we will present some background knowledge generalization error

and LGEM.

4.2.1 Generalization Error of Classifier

Classification problem can be regarded as building a classifier fθ to simulate the

unknown input-outputmapping function f , where θ is a set of parameters selected

from a specific domain [84]. Given an input space T , the generalization error for

unseen samples in T is defined as:
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Rtrue =

∫
T
(fθ(x)− f(x))2p(x)dx, (4.1)

where x is the input sample, and p(x) is the true unknown probability density

function of x.

Given a training set X with N distinct samples, i.e., X = {(xb, f(xb))}Nb=1, the

empirical error Remp of classifier fθ over X can be defined as:

Remp =
1

N

N∑
b=1

(fθ(xb)− f(xb))
2. (4.2)

The objective is to find a fθ that can correctly classify unseen samples and min-

imize the generalization error. Since the target output and the distribution of

the unseen samples are unknown, the generalization error cannot be calculated

directly.

4.2.2 LGEM

The LGEM was proposed by Yeung et al. [84], and is used to measure the gen-

eralization error for unseen samples within a predefined neighborhood (i.e., Q-

neighborhood) of the training data.

For every training sample xb ∈ X, suppose there exists a set of samples with

each sample x fulfills 0 < |Δxi| < Q, ∀i = 1, ..., n, where n is the number of input

features, Δx = [Δx1, ...,Δxn]
T = x− xb, and Q is a given value. In classification

problem, each unseen sample has the same chance to appear since one usually

has no prior knowledge about the distribution of the true input space. Thus,

Δx can be considered as the input perturbation randomly chosen from a uniform

distribution with zeromean. The Q-neighborhood of training sample xb is defined
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as:

SQ(xb) = {x|x = xb +Δx; 0 < |Δxi| ≤ Q, ∀i = 1, ..., n}. (4.3)

All the samples in SQ(xb) are considered as unseen samples except xb. Let SQ

be the union of all SQ(xb), which is named Q-union. For 0 ≤ Q1 ≤ ... ≤ Qk ≤ ∞,

the following relationship holds:

X ⊆ SQ1 ⊆ ... ⊆ SQk
⊆ T . (4.4)

It is noteworthy that the Q-neighborhood could be a hypercube or other shapes.

In LGEM, the stochastic sensitivity measure (ST-SM) is used to measure

the output perturbations (Δy) of the classifier with unseen samples. In general,

the unseen samples could be selected from various distributions. Moreover, the

unseen samples located far away from the training samples have no effect on the

learning model. Thus, we ignore the generalization for unseen samples that are

out of SQ. According to Eq. (4.1), the localized generalization error is defined as:

RSM(Q) =

∫
SQ

(fθ(x)− f(x))2p(x)dx. (4.5)

By the Hoeffding’s inequality [21], with a probability of 1− η, we have:

RSM(Q) =
∫
SQ

(fθ(x)− f(x))2p(x)dx

≤
(√

ESQ
((Δy)2) +

√
Remp + A

)2

+ ε

= R∗
SM(Q),

(4.6)

where Δy = fθ(x)−fθ(xb), ε = B
√
ln η/(−2N), Remp =

1
N

∑N
b=1 (fθ(xb)− f(xb))

2,

ESQ
((Δy)2) denotes the stochastic sensitivity measure (SSM), A, B and η are the
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difference between the maximum and minimum value of the target outputs, the

possible maximum value of the MSE and the confidence of the bound, respective-

ly. With a given data set, A and B can be fixed. In this case, the upper bound

of RSM(Q) is defined as R∗
SM(Q).

Based on the definitions in [56,78], the SSM measures the output perturbation

of the classifier when the input value changes. With no prior knowledge about

the distribution of unseen data, Wang et al. [81] assume that the training samples

are all independent. Moreover, the input perturbation of the i-th input feature

is a random variable with a uniform distribution having the mean μΔxi
= 0 and

the variance σ2
Δxi

= (2Q)2/12 = Q2/3. According to the basic ELM structure,

SLFNs with sigmoid activation function could be described as

fθ(x) =
M∑
j=1

βjg(wj · x+ bj)

=
M∑
j=1

βj

1+exp(−(wj ·x+bj))
,

(4.7)

where M is the number of hidden nodes.

According to Taylor’s series expansion and central limit theorem, Wang et

al. [81] has the derivation of the SSM for SLFNs with sigmoid activation function

as:

ESQ
((Δy)2) =

Q2

3

M∑
j=1

β2
j

n∑
k=1

w2
jk, (4.8)

where Q is a given real value, βj is the output weight for the j-th hidden node,

and wjk is the weight connecting the j-th hidden node and the k-th input node.

The SSM evaluates the sensitivity of the network output to the change of

input. Theoretically, a classifier yielding good generalization capability should
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be able to minimize both the training error and the SSM or achieve a good

balance between them [81]. Here, Eq. (4.8) measures the output fluctuations

of the classifier. A classifier that has high output fluctuation yields high SSM

because its output value changes dramatically when the input value changes.

Thus, we should try to minimize it when constructing a neural network.

4.2.3 Architecture Selection Based on LGEM for ELM

In order to compare the performance of two classifiers, we can either compare their

Q values by fixing R∗
SM(Q), or compare their R∗

SM(Q) values by fixing Q [84].

Considering the first method, suppose two classifiers f1 and f2 have the same

value of R∗
SM(Q), i.e., R∗

SM(Q1) = R∗
SM(Q2) = a. Obviously, the one with larger

Q value has a better generalization performance, since it covers more unseen

samples with the same error bound. In order to get the best network structure,

we can select the largest Q that satisfies R∗
SM(Q) = a

Based on the above statements, Wang et al. [81] formulate the architecture

selection problem as an optimization problem:

maxQ R∗
SM(Q) ≤ a. (4.9)

Based on Eqs. (4.6) and (4.8), the R∗
SM for SLFNs with sigmoid activation func-

tion is described as:

R∗
SM ≈

⎛
⎝
√√√√Q2

3

M∑
j=1

β2
j

n∑
k=1

w2
jk +
√
Remp + A

⎞
⎠

2

+ ε. (4.10)

Let R∗
SM(Q) = a, we have
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Algorithm 4.1 Architecture Selection Based on LGEM for ELM (ASLGEM-
ELM)

Input:
Training set X;
A set of available model parameters M = {M1, . . . ,Mn}.

1: for each available model parameter Mi(i = 1, . . . , n) do
2: Train an ELM model based on X;
3: Get the Q-value using Eq. (4.11), denoted as Qi;
4: Calculate h(Mi, Qi) based on Eq. (4.12);
5: end for
6: Select the model parameter M∗ with the maximum value of h(Mi, Qi), i.e.

M∗ = argmaxMi∈M h(Mi, Qi);
Output:

Selected model parameter M∗.

Q2

M∑
j=1

β2
j

n∑
k=1

w2
jk − 3(

√
a− ε−

√
Remp − A)2 = 0. (4.11)

Eq. (4.11) is a quadratic equation for Q which has two solutions. Let Q∗ be the

positive real solution of the quadratic equation, then we have:

h(M,Q∗) =

{
0, Remp ≥ a
Q∗, else

. (4.12)

Finally, the architecture selection algorithm based on LGEM for ELM (ASLGEM-

ELM) is described as Algorithm 4.1.

4.3 LGEM Based Architecture Selection with

MCDM Model

In this section, we will present a LGEM-based architecture selection model with

MCDM model.
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4.3.1 Trade-off Between Training Accuracy and Q-Neighborhood

In practice, an ideal classifier is supposed to yield a good generalization ability

on both training samples and unseen samples [84]. A higher training accuracy

represents a better performance on the training samples, and a larger Q-value

represents a better generalization performance on unseen samples. Unfortunately,

there is a conflict between these two criteria. A higher training accuracy will lead

to a smaller Q-value. In order to select a better network structure, it is necessary

to achieve a balance between these two terms. Thus, a MCDM model is used

to achieve a balance between Q-neighbourhood and training accuracy to perform

architecture selection for ELM. The reasons are listed as follows.

1. Importance of training accuracy: LGEM adopts the training error as a

key component to model the generalization ability of an classifier. Themain

consideration is that a classifier could be constructed by minimizing the

classification error over the training set. Training accuracy is an important

criteria to estimate the effectiveness of a classifier. It directly affects the

empirical error of a classifier.

2. Tradeoff between training accuracy and Q-value: A larger Q-value

means that more unseen samples have been included into the localized gen-

eralization error bound calculation. However, thismay result in a decreasing

of the training accuracy in practice.
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4.3.2 MCDM Model

MCDM is a branch of decision makings. It evaluates a finite number of alterna-

tives based on two or more conflicting criteria. Generally, there are two important

phases in a MCDM model: [82]: (1) information input and construction; (2) ag-

gregation and exploitation.

Suppose there are n distinct alternativesM1, . . . ,Mn andm criteria Cr1, . . . , Crm,

where Crk(Mi) is the level of achievement of Mi(i = 1, . . . , n) with regard to

Crk(k = 1, . . . ,m). In order to select the best one, we have to evaluate the

informativeness of these alternatives. In the first phase, the problem can be

mathematically modeled as a decision matrix [7, 20], i.e.,

⎡
⎢⎢⎢⎣

Cr1(M1) Cr2(M1) . . . Crm(M1)
Cr1(M2) Cr2(M2) . . . Crm(M2)

...
...

. . .
...

Cr1(Mn) Cr2(Mn) . . . Crm(Mn)

⎤
⎥⎥⎥⎦ .

In the second phase, the system will aggregate the elements in the decision

matrix, and exploit the preference relations of the alternatives. For preference

modeling, the elements of the decision matrix are usually represented by ordi-

nal numbers. As an examples, four relations are defined for a pair of distinct

alternatives Mi,Mj:

1. Mi � Mj: Mi is preferred to Mj;

2. Mi ≺ Mj: Mj is preferred to Mi;

3. Mi?Mj: Mi is incomparable to Mj;

4. Mi ≈ Mj: Mi is indifferent to Mj.
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Then, the system is required to determine that which of the four relations holds

for any Mi,Mj with regard to each criterion Crk. After the relations between

any two distinct alternatives have been exploited, all the alternatives could be

arranged into some preference preorders as defined in Definition 4.3.1.

Definition 4.3.1. (preference preorder) Given a MCDM problem with n distinct

alternatives M1, . . . ,Mn and m criteria Cr1, . . . , Crm, where the level of achieve-

ment ofMi(i = 1, . . . , n) with regard to Crk(k = 1, . . . ,m) is denoted by Crk(Mi).

If for Crk there exists Crk(M
∗
1 ) �≈ Crk(M

∗
2 ) �≈ . . . �≈ Crk(M

∗
n), where

M∗
1 	= M∗

2 	= . . . 	= M∗
n ∈ {M1,M2, . . . ,Mn}, then the order M∗

1 ,M
∗
2 , . . . ,M

∗
n is

called a preference preorder of M1,M2, . . . ,Mn with regard to Crk, denoted by

Pk.

Obviously, the decision maker tends to select the anterior alternative in Pk

with regard to Crk. In the following, we further introduce some definitions based

on preference preorders.

Definition 4.3.2. (k-th dominated index and k-th dominating index) Given that

Pk is a preference preorder of alternatives M1, . . . ,Mn with regard to Crk(k =

1, . . . ,m), then the k-th dominated index and k-th dominating index of Mi(i =

1, . . . , n), denoted by ψ�
k (Mi) and ψ≺

k (Mi), are respectively defined as

ψ�
k (Mi) =

∑
j=1,...,n,j �=i

d(�, R
(k)
ij ), (4.13)

and

ψ≺
k (Mi) =

∑
j=1,...,n,j �=i

d(≺, R
(k)
ij ). (4.14)
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where d(·, ·) is a distance metric, R
(k)
ij ∈ {�,≺,≈, ?} is the relation of Mi and Mj

with regard to Crk.

Definition 4.3.3. (dominated index and dominating index) Given that P1, . . . ,Pm

are the preference preorders of alternativesM1, . . . ,Mn with regard to Cr1, . . . , Crm,

then the dominated index and dominating index of Mi(i = 1, . . . , n), denoted by

ψ�(Mi) and ψ≺(Mi), are respectively defined as

φ�(Mi) =
m∑
k=1

wkψ
�
k (Mi), (4.15)

and

φ≺(Mi) =
m∑
k=1

wkψ
≺
k (Mi), (4.16)

where wk is the weight of Crk.

The dominated index and dominating index of Mi respectively reflect the

degrees of Mi being dominated by others and dominating others in P1, . . . ,Pm,

respectively. In a MCDM problem, an alternative with lower dominated index

and higher dominating index is preferred.

In is noteworthy that in order to make Eqs. (4.13)∼(4.16) concrete, we have to

define the distance metric d(R,R′), where R,R′ ∈ {�,≺, ?,≈}. As demonstrated

in [33, 61], there are several conditions for d(R,R′) to be a real-valued metric

measure:

1. d(�, ?) = d(≺, ?) and d(�,≈) = d(≺,≈).

2. d(�,≈) + d(≈,≺) = d(�,≺).
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3. d(�, ?) ≥ d(≈, ?).

4. d(≈, ?) ≥ d(≈,�).

5. d(�,≺) = max{d(R,R′) | R,R′ ∈ {�,≺,≈, ?}}.

6. d(R,R′) > 0, if R 	= R′ and d(R,R′) = 0 if R = R′.

7. d(�,≺)− d(�, ?) = d(�, ?)− d(≈, ?) = d(≈, ?)− d(≈,�).

Finally, the distances are derived as in Table 4.1, where a is a positive real number.

Table 4.1: Distances between relations.
d(·, ·) Mi � Mp Mi ≺ Mp Mi?Mp Mi ≈ Mp

Mi � Mp 0 2d (5/3)d d
Mi ≺ Mp 2d 0 (5/3)d d
Mi?Mp (5/3)d (5/3)d 0 (4/3)d
Mi ≈ Mp d d (4/3)d 0

According to the distance metrics in Table 4.1 and Definitions 4.3.2∼4.3.3, the

dominated index and dominating index of each alternative could be calculated

easily. Since the criteria used in this work are real-valued criteria, the preference

preorders determined by these criteria are complete preorders (the relation of ?

does not exist). In this case, two issues need to be resolved for each criterion [74]:

1. How to define the relation of ≈.

2. How to design the weight w.

As for the first issue, we design a threshold Tk between the relations ≈ and ≺

or �. If the difference of Crk between two alternatives is smaller than Tk, they

are taken as indifferent regarding the k-th criterion. As for the second issue, we
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Algorithm 4.2 Architecture Selection for ELM with MCDM Model
Input:

Training set X;
A set of available model parameters M = {M1, . . . ,Mn};
Control parameter a, threshold parameters TA and TQ, and weight parameter
w.

1: for each available model parameter Mi(i = 1, . . . , n) do
2: Train an ELM model based on X;
3: Get the training error and Q-value, denoted as Rempi and Qi;
4: Let Qi = 0 if Rempi ≥ a;
5: end for
6: Based on TA and TQ, get the relations between any two ELMmodels regarding

training accuracy and Q-value from {�,≺,≈}.
7: Fix the preference preorders of {M1, . . . ,Mn} regarding training accuracy and

Q-value;
8: Compute the dominated index and dominating index of each Mi based on

Eqs. (4.15) and (4.16), i.e., φ�(Mi) = wψ�
A(Mi) + (1 − w)ψ�

Q(Mi) and
φ≺(Mi) = wψ≺

A(Mi) + (1− w)ψ≺
Q(Mi);

9: Calculate the informativeness of each Mi, i.e., info(Mi) = φ≺(Mi)−φ�(Mi);
10: Select the model parameter M∗ with the maximum value of info(Mi), i.e.

M∗ = argmaxMi∈M info(Mi);
Output:

Selected model parameter M∗.

assign the importance of the criteria from a set of feasible weights W such that

wk ∈ W and
∑m

k=1 wk = 1.

4.3.3 Proposed Architecture Selection Algorithm

By integrating the Q-value in Eq. (4.12), the training accuracy of ELM, and the

MCDM model described in Section 4.3.2, the LGEM based architecture selection

for ELM with MCDM model is described as Algorithm 4.2.
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4.4 Experimental Comparisons

In this section, we will conduct some experiments to show the feasibility and

effectiveness of the proposed algorithm.

4.4.1 Methods of Comparison

Three methods are listed in this section for performance comparison:

• ASLGEM-ELM: This is a method proposed by Wang et al. [81] for ELM

architecture selection based on LGEM with sigmoid activation function.

Similar to the proposed method, it fixes the value of R∗
SM(Q) and to find

the maximum Q value. The learning process is described as Algorithm 4.1.

• Cross Validation (CV): 2-fold CV, 5-fold CV and 10-fold CV are adopted

in the experiments. In a k-fold CV, the data set is divided into k partitions,

and k classifiers are trained. In training each classifier, k − 1 partitions

are taken as the training set, and the rest one partition is selected as the

validation set. Finally, the parameter with the lowest CV error is selected.

• Architecture Selection with MCDM System: Algorithm 4.2 is used.

4.4.2 Experimental Setting

The three methods are conducted on 16 benchmark classification data sets as

shown in Table 5.1. For each data set, 70% data are randomly selected as the

training set, and the rest 30% are selected as the testing set. The experiments

are conducted 50 trials for each data set. Finally, the average value and standard

deviation are recorded. The simulations are carried out under MATLAB 7.9.0
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Table 4.2: Selected Datasets for Performance Comparison
Dataset #Example #Attribute #Class Class Distribution

SPECTF 267 44 2 212/55
Cancer 699 9 2 458/241
Bupa 345 6 2 145/200
German 1000 24 2 700/300
Haberman 306 3 2 225/81
Pima 768 8 2 268/500
Wdbc 569 30 2 212/357
Wpbc 198 33 2 47/151
Chart 600 60 6 100×6
Cotton 356 21 6 55/49/30/118/77/27
Dermatology 366 34 6 112/61/72/49/52/20
Glass 214 10 6 70/76/17/13/9/29
Libras 360 90 15 24×15
Vowel 990 10 11 90×11
Yeast 1484 6 10 244/429/463/44/51/163/35/30/20/5
Soybean 683 35 19 20×9/88/44×2/92/91×2/15/14/16/8

environment in a PC with a 3.16-GHz Intel Core Duo CPU, a 4-GB memory, and

64-bit windows 7 system.

The parameter setting for ASLEGEM-ELM is described as follows. According

to Eq. (4.11), the difference between the maximum and minimum values of target

output A and the number of training samples N can be obtained once the training

data is given. The maximum possible value of the MSE B and the confidence

level of the R∗
SM can be preselected before training the classifier. Furthermore,

a sample with square error larger than 0.25 is considered to be incorrect. Thus,

the constant a is set as 0.25.

The proposed method adopts the same setting as ASLGEM-ELM to calculate

the Q-value. Moreover, the thresholds for both training accuracy TA and Q-value

TQ are set as 0.01. The weight for the criteria are tuned as {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9}. Theoretically, the maximum number of hidden nodes for ELM

should be equal to the number of training samples. However, it is time consuming
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and unnecessary. Thus, for both ASLGEM-ELM and the proposed method, 25 d-

ifferent numbers of hidden nodes are tested, i.e., M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15,

20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150}.

4.4.3 Experimental Analysis

Table 4.3 reports the average number of hidden nodes and testing accuracy of

the methods over 50 trials. It can be seen that in 5-fold CV and 10-fold CV, the

proposed method achieves the highest testing accuracy. Moreover, the proposed

method not only gets the smallest variance but also obtains the best classification

accuracy on 6 data sets out of 17. Compared with ASLGEM, the testing accuracy

of our method is better on most data sets. This indicates that the combination of

Q-value and training accuracy is effective in improving the generalization ability

of SLFN.

As seen in Table 4.3, the proposed method tends to recommend a relatively

larger number of hidden nodes. The average number of hidden nodes selected

by the proposed method is even larger than that selected by 10-fold CV. Even

though a large number of hidden nodes may cause overfitting, the architecture

can better represent the underlying function. The high testing accuracy gives

an evidence that the architecture selected by our method does not suffer from

overfitting much.

Table 4.4 reports the average execution time of the five methods on different

data sets. The learning speeds of ASLGEM and the proposed method are similar.

Both of them are about 4 times faster than 5-fold CV and 8 times faster than

10-fold CV. With k-fold CV conducted L times, k × L classifiers are required to
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be trained, which is definitely time consuming. While in the proposed method,

the computation on SSM does not relate on the number of training samples N .

However, the selection on R∗
SM requires to train a classifier, which will dominate

the total execution time of the architecture selection. If using traditional back-

propagation neural network (BPNN) or multilayer perceptron neural network

(MLPNN), the time complexity will be very high. Fortunately, ELM is capable

to train the SLFN with fast speed, which guarantees a high efficiency of the

proposed method. The time complexity of decision making by using MCDM is

low thus can be ignored in the learning process.

It is observed from Table 4.3 that all the methods have achieved a poor result

on data set Yeast. This data set is typically imbalanced, i.e., 76% samples are

included in 3 classes and the rest are included in 7 classes. The classes with a

small number of training samples are called minority classes. On this data set,

ASLGEM demonstrates the worst performance. Moreover, the optimal number

of hidden nodes selected by ASLGEM is 1, which indicates that it fails to perform

an effective search in the space. Themajor reason could be that ASLGEM focuses

on minimizing the overall error that selects MSE as the key component in Q-value

determination. However, it is adverse to the minority classes, since these classes

have trivial contribution to the overall error. On the other hand, the proposed

method achieves an accuracy 22% higher than ASLGEM. Based on this strategy,

the selected number of hidden nodes is more convincing.
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Table 4.3: Comparisons of Different Model Selection Methods: Average Number
of Nodes and Testing Accuracy for 50 Trials

Datasets 2-fold CV 5-fold CV 10-fold CV ASLGEM Proposed
Nodes Accuracy Nodes Accuracy Nodes Accuracy Nodes Accuracy Nodes Accuracy

SPECTF 4.80 79.63±3.76 8.14 78.98±3.45 11.78 78.63±4.72 1.76 79.63±3.75 1.76 79.63±3.75

Cancer 17.62 96.14±1.51 23.70 96.35±1.39 24.70 96.48±1.33 4.50 91.73±6.80 88.14 95.07±1.73↑
Bupa 19.06 70.08±4.42 27.40 69.81±3.91 20.04 70.25±4.07 23.20 70.54±4.21 23.80 70.69±4.16↑
German 36.30 74.14±2.47 56.80 74.57±2.66 57.60 74.49±2.33 20.82 72.93±2.98 41.90 74.35±2.99↑
Haberman 8.38 74.28±3.72 9.34 74.28±3.80 10.16 73.28±3.46 6.48 74.46±4.01 9.14 74.41±3.86�
Pima 19.06 76.26±2.31 19.94 76.45±2.36 22.20 76.37±2.14 7.52 74.43±3.98 34.40 76.10±3.07↑
Wdbc 24.04 95.50±1.63 40.46 95.54±1.75 37.28 95.68±1.48 4.62 86.16±9.71 91.20 95.22±1.52↑
Wpbc 8.68 76.71±4.72 18.94 76.03±5.54 21.20 75.93±5.99 2.80 76.44±4.03 2.80 76.44±4.03

Chart 79.80 90.82±2.63 117.20 92.53±2.12 116.40 92.01±2.04 18.90 74.19±6.94 134.80 92.68±2.11↑
Cotton 47.40 90.02±2.45 67.00 91.03±2.92 66.80 91.08±2.64 13.18 75.08±6.36 89.00 91.20±2.42↑
Dermatology40.80 96.75±1.89 63.60 97.02±1.62 63.60 96.96±1.69 7.36 77.04±7.65 115.60 96.96±1.25↑
Glass 28.00 82.00±5.65 39.80 84.13±4.81 43.60 85.72±5.28 10.22 70.72±7.18 34.20 84.97±4.28↑
Libras 54.00 72.70±4.42 76.60 74.74±3.89 86.60 75.24±4.38 35.40 67.57±6.03 120.40 74.13±4.36↑
Vowel 136.00 86.02±2.36 145.00 87.29±2.13 143.40 86.80±2.50 43.40 67.51±4.62 146.80 87.43±2.00↑
Yeast 35.90 58.95±2.34 44.90 58.77±2.51 47.20 59.28±2.36 1.00 30.53±2.51 134.60 57.96±2.38↑
Soybean 76.40 93.67±1.38 102.00 94.06±1.55 107.80 94.12±1.37 20.40 77.35±5.82 110.60 94.41±1.42↑
Avg. 39.77 82.10±2.98 53.80 82.60±2.90 55.02 82.64±2.99 13.85 72.89±5.41 73.70 82.60±2.83↑
Note: For each dataset, the highest testing accuracy is in bold face. For method Proposed, ↑ and � respectively
represent that compared with method ASLGEM, the testing accuracy of the selected model is improved or not.

4.4.4 Trade-off Analysis

Fig. 4.1 demonstrates the mean and standard deviation of training accuracy and

Q-value of 20 ELM trials. It can be observed that on all the data sets, the training

accuracy and the Q-value are trade-offs. When the training accuracy increases,

the Q-value decreases. Although the increasing amplitude differs a lot on different

data sets, the overall trends are roughly consistent. A larger Q-value represents

that more unseen samples are included into the training process. As a result, it

is more difficult for a classifier to correctly classify the training samples. Thus,

it is necessary to achieve a trade-off between the training accuracy and Q-value.

This observation strongly supports the motivation of adopting MCDM model in

selecting ELM architecture.
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Figure 4.1: Mean and standard deviation of training accuracy and Q-value of 20
ELM trials.
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Table 4.4: Comparisons of Different Model Selection Methods: Average Valida-
tion Time for 50 Trials
Datasets 2-fold CV 5-fold CV 10-fold CV ASLGEM Proposed

SPECTF 1.9300 7.0693 15.4722 1.7110 1.7110
Cancer 3.7631 13.4969 29.5853 3.3830 3.3837
Bupa 2.2174 7.7479 16.7152 1.8112 1.8112
German 5.6132 19.5794 42.5299 4.7331 4.7331
Haberman 1.9241 6.7620 14.5097 1.5912 1.5925
Pima 4.0548 14.6291 32.4217 3.7347 3.7353
Wdbc 3.5749 12.4932 27.2203 3.0283 3.0283
Wpbc 1.4939 5.3555 11.5793 1.2318 1.2324
Chart 3.8351 13.4326 28.9366 3.2227 3.2239
Cotton 2.2951 8.2259 18.0758 2.0636 2.0642
Dermatology 2.4913 9.1651 20.0533 2.2093 2.2105
Glass 1.5088 5.5159 11.7356 1.2767 1.2786
Libras 2.6330 9.1910 19.5117 2.1803 2.1809
Vowel 5.0688 19.5943 42.5630 4.7658 4.7677
Yeast 7.4740 27.4222 59.7796 6.5776 6.5783
Soybean 4.1999 14.5262 32.1540 3.5403 3.5403

Avg. 3.3798 12.1379 26.4277 2.9413 2.9420

4.5 Conclusion

In this chapter, a LGEM based architecture selection method with MCDM mod-

el for ELM is proposed, which measures the informativeness of architectures by

their dominated and dominating indices. Focusing on finding the optimal number

of hidden nodes for ELM, a trade-off between generalization ability and classi-

fication accuracy is determined by the MCDM model. Experiments on 16 data

sets demonstrate the feasibility and the effectiveness of the proposed method.

Compared with CV and ASLGEM-ELM, our method not only gives a higher

classification accuracy, but also provides a faster learning speed.
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Chapter 5

Interval ELM for Large-scale
Data Based on Uncertainty
Reduction

In the previous chapters, we have addressed the fuzzy measure representation

and architecture selection problem of ELM. In this chapter, we focus on da-

ta compression, which can further reduce the computation complexity of ELM.

We propose some discretization methods to convert continuous-valued attributes

into intervals, and introduce a new concept of class label fuzzification to repre-

sent the dependency among different classes. Then, the classification problem

is transformed into a regression problem on interval data, which largely reduces

the computation complexity. Sixteen real-life data sets are used in experimental

testing to demonstrate the effectiveness of our approach.

5.1 Introduction

Classification is useful for extractingmeaningful information from large-scale data

set. Traditional classification techniques include Artificial Neural Network (AN-

N), Decision Tree (DT), Support Vector Machine (SVM), etc. Practically, the
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classification accuracy is related to three characteristics, i.e., sample size, number

of attributes, and classification model [60]. Although a positive causality between

data volume and classification accuracy can usually be found, the model accuracy

may or may not improve while increasing data volume [41]. Furthermore, huge

amount of data (like hundreds of gigabytes of data) is difficult to fit into the

memory of computers and causing serious problems in learning.

Training ELM on massive data with high dimensionality is still a very chal-

lenging problem. It is noted that the main time complexity of training an ELM

is in calculating the pseudo-inverse of the hidden layer output matrix, especially

if the size of the matrix is large. We believe that, this problem can be partially

solved by some data compression techniques. Discretization [37], is a common

method for quantizing continuous attributes. Motivated by the above situation,

we propose an interval ELM model for large-scale data classification. First, each

conditional attribute is discretized into a number of intervals based on uncertain-

ty reduction. Then, the center and range of each interval are represented by the

mean and standard deviation. Afterwards, the samples in the same intervals with

regard to all the conditional attributes are merged as one record, and a fuzzifi-

cation process is performed on the class labels. Finally, the original data set is

compressed into a smaller one with fuzzy classes, and the interval ELM model is

built up on the compressed data.

The rest of this chapter is organized as follows: in section 5.2, a brief intro-

duction of our work is given. In section 5.3, we present a framework for attribute

discretization and class fuzzification. In section 5.4, we apply the attribute dis-

cretization framework to ELM and propose the interval ELM model. In section
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5.5, we present some experimental results to show the feasibility and effectiveness

of the propose model. Finally, Section 5.6 presents the conclusions.

5.2 Challenges in Learning from Large-Scale Da-

ta for ELM

Applying ELM to large-scale data classification is a challenging problem. Several

alternatives are listed in the following for handling this problem.

1. Sequential learning: the large-scale data set can be divided into small

subsets, then the training instances are sequentially presented to the learn-

ing algorithm.

2. Divide-and-conquer strategy: the data matrix is divided into a number

of small sub-matrices, then a learner is trained for each sub-matrix, and the

results are integrated based on some techniques in linear algebra.

3. Sample and feature selection: perform both feature selection and sam-

ple selection on the large-scale data set in order to refine the samples and

remove data redundancy, then a learner is trained on the refined data.

In this chapter, another approach is proposed, i.e., discretization of condi-

tional attributes and fuzzification of decision labels. When all attributes are

continuous, it is hard to find samples with exactly the same values. As a result,

similar samples are treated as entirely different with each other, which lead to

data redundancy. On the contrary, with discrete attributes, the data set can be

made more compact and short, hence the learning is more effective and efficien-

t. However, discretization may sometimes become intractable due to the heavy
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matrix and integral operations involved. For example, the discretization process

will be time consuming when there are too many training attributes. Moreover,

error always exists after discretization, thus a tradeoff between accuracy and

compression rate should be considered in real applications.

In order to handle large-scale data, we also fuzzify class labels by learning

a set of memberships. In decision theory, membership could be considered as a

kind of capacity, which weakens the probability axiom of countability. In other

words, it reflects the likelihood of a conditional event. Finally, the fuzzification

of class labels could be realized by computing the mean of the decision labels in

the same conditional group.

5.3 Discretization of Conditional Attributes and

Fuzzification of Decision Label

In this section, some uncertainty measurements are introduced firstly , then the

attribute discretization framework and the label fuzzification model are proposed.

For simplicity, only the binary classification problem is considered.

5.3.1 Uncertainty Measurement

The most widely used uncertaintymeasurements are information entropy [66] and

Gini-index [6]. Suppose S is a labeled sample set with L classes, the information

entropy and Gini-index of set S are respectively defined as:

f(S) = −
L∑
l=1

pl log2 pl, (5.1)

and
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f(S) = 1−
L∑
l=1

p2l , (5.2)

where pl is the probability of class l in S. Clearly, a more balanced probability

distribution will lead to a larger value of these two measures. When all the

samples are from the same class, i.e. pl = 1 for a certain l ∈ {1, . . . , L}, they

reach their minimum, which lead to the smallest uncertainty. When the numbers

of samples from all the classes are equivalent, i.e., pl = 1/L for l = 1, . . . , L, they

reach their maximum, which lead to the largest uncertainty.

5.3.2 Discretization of Conditional Attributes Based on
Uncertainty Reduction

It is noteworthy that for a continuous-valued attribute, the number of available

cut-points is infinite. In order to tackle this problem, a feasible solution for

attribute discretization is proposed. As preliminaries, some basic concepts will

be introduced firstly. Several notations are adopted in this section, i.e., X =

{(xi, yi)|xi = [xi1, . . . , xin]
T ∈ Rn, yi ∈ {1, . . . , L}, i = 1, . . . , N} is a training set

that contains N labeled samples with n input attributes and L possible labels,

and all the attributes are continuous ones.

Definition 1. (candidate cut-point) Let Aj be the j-th attribute for the sam-

ple set X. Suppose the values of all the samples in X with regard to Aj are

ranked by ascending order, i.e., x∗
1j ≤ x∗

2j ≤ . . . ≤ x∗
Nj, where x∗

1j, x
∗
2j, . . . , x

∗
Nj ∈

{x1j, x2j, . . . , xNj}. The midpoint of any two adjacent values in this order is

considered as a candidate cut-point of attribute Aj with respect to X.

Obviously, there are N − 1 candidate cut-points for each attribute. Sup-
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pose the set of candidate cut-points for Aj as Cj, then Cj = {x̂ij|x̂ij = (x∗
ij +

x∗
i+1,j)/2, i = 1, . . . , N − 1}. Suppose Aj is split into two intervals by a candidate

cut-point x̂, accordingly, X is divided into two sets, i.e., X1 = {xi ∈ X|xij ≥ x̂}

and X2 = {xi ∈ X|xij < x̂}. The splitting performance of x̂ is then computed as:

SP (X, x̂) = f(X)−
2∑

k=1

|Xk|
|X| f(Xk), (5.3)

where |X| is the cardinality of set X.

By adopting the uncertainty measurement of information entropy, a more

effective performance evaluation model is given as [58]:

SP (X, x̂) =
f(X)−∑2

k=1
|Xk|
|X| f(Xk)

−∑2
k=1

|Xk|
|X| log2

|Xk|
|X|

, (5.4)

where f(X) is given in Eq. (5.1). Then, our attribute discretization framework is

described as Algorithm 5.1.

As a result, Algorithm 5.1 returns a number of cut-points of attribute Aj for

sample set X. Suppose this number is d− 1, then attribute Aj is discretized into

d intervals, which divide X into d subsets. By performing the above-mentioned

processes on all Aj, j = 1, . . . , n, the discretization process is finished.

5.3.3 Fuzzification of Decision Label

The inconsistency of class labels in the same conditional group, i.e., same con-

ditional attributes but different class labels, will affect the final classification

accuracy. We proposed a label fuzzification method for solving this problem by

transferring the training samples’ attributes to approximate interval values. For

example, suppose there is a continuous attribute ranging from a to b. After dis-
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Algorithm 5.1 Attribute Discretization Based on Uncertainty Reduction
Input:

A continuous-valued attribute Aj; sample set X; purity threshold θ ∈ (0, 1],
and number threshold N∗.

Output:
A set of selected candidate cut-points Ĉj for Aj.

1: Initialize Ω = {X}, and Ĉj = ∅;
2: while Ω is not empty do
3: Select a sample set from Ω, denoted by X

∗;
4: if |X∗| < N∗ or maxl=i,...,L pl > θ then
5: Continue;
6: else
7: Sort the samples in X

∗ with ascending values of Aj;
8: Get all the available candidate cut-points of Aj in X

∗ , i.e., Cj;
9: Calculate the splitting performance of each candidate cut-point in Cj

based on Eq. (5.4);
10: Select the candidate cut-point x̂ with the highest splitting performance;
11: Split X∗ into two sets X1 and X2 by x̂;
12: Delete X

∗ form Ω, add X1 and X2 into Ω, and let Ĉj = Ĉj ∪ x̂;
13: end if
14: end while
15: return Ĉj
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cretizatation with 4 arities, and three cut-points as x̂1, x̂2, and x̂3. This attribute

is discretized into 4 intervals, i.e., [a, x̂1), [x̂1, x̂2), [x̂2, x̂3) and [x̂3, b], respectively.

There are many ways to represent each interval. A sensible way is to compute

the center and range of each interval as the mean and standard deviation of the

samples.

Finally, by performing the discretization on all the n attributes and computing

the mean value for each of their intervals, the samples with the same attribute

values are considered as belong to the same conditional group. However, these

samples may have different class labels. In this case, the frequencies of different

class labels are recorded and used. And this process is the so-called fuzzification

of class labels. The whole fuzzification process is described as Algorithm 5.2.

Algorithm 5.2 Fuzzification of Class Labels
Input:

Training set X = {(xi, yi)|xi = [xi1, . . . , xin]
T ∈ Rn, yi ∈ {0, 1}, i = 1, . . . , N},

purity threshold θ ∈ (0, 1], and number threshold N∗.
Output:

Two compressed data sets: center matrix X̂c and range matrix X̂r.
1: Let X̂c = X and X̂r = X;
2: for j = 1, . . . , n do
3: Call Algorithm 5.1 on X and Aj with θ and N∗, suppose the number of

arities is dj and the cut-points are x̂1, . . . , x̂dj−1;
4: for k = 1, . . . ,dj do
5: Let Xk = {xi ∈ X|xij ∈ [x̂k−1, x̂k)}, where x̂0 and x̂dj

are the lower and
upper bounds of Aj;

6: Let x̄kj =
∑

xi∈Xk
xij/|Xk|, and sdkj = std({xij|xi ∈ Xk});

7: ∀xi ∈ Xk, set xij = x̄kj in X̂c and xij = sdkj in X̂r;
8: end for
9: end for
10: For X̂c and X̂r, merge the same samples as one record, compute its class label

as the mean of the original labels in X̂c and standard deviation of the original
labels in X̂r;

11: return X̂c and X̂r.
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When Algorithm 5.2 is uesed on a training set, the number of samples will

become smaller, and some of the class labels will become fuzzy class labels. As

a result, both X̂c and X̂r are compressed compared with X. Usually, X̂c can be

directly used to train the learning model, and X̂r can be used to evaluate the bias

of X̂c. It depends on the problem that whether X̂r is useful or not.

When the number of features in a data set is large, the samples are difficult

to have same attribute values, which may make the discretization process useless.

In order to discover compact representations of high-dimensional data before the

discretization process, the correlation-based feature selection (CFS) method [18]

is adopted to remove redundant or irrelevant features. CFS has threemain advan-

tages [63]: 1) it can model the feature dependencies in data; 2) it is independent

of the base classifiers, and 3) it has lower computational complexity than other

methods.

5.4 Interval Extreme Learning Machine

In this section, the interval ELM model is developed based on the previous dis-

cretization and fuzzfication results, followed by an illustrative example.

With the fuzzification of class labels, a binary classification problem is turned

into a regression problem with interval data. However, in many real world ap-

plications, there exists dependency [52] in data, which causes undue increase in

width of results and makes them less useful in real applications. For simplicity,

only the center information of the interval data is being used. Center method

(CM) is combined with ELM to develop a fast regression model.

Let X̂c = {(xc
i , y

c
i )}N̂i=1 be the center matrix of X compressed by Algorithm 5.2.
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Then, each sample is represented as (xc
i , y

c
i ), where x

c
i = [xc

i1, . . . , x
c
in]

T ∈ Rn, and

yci ∈ [0, 1], i = 1, . . . , N̂ . The SLFN on X̂c is modeled as

Ñ∑
j=1

βc
jg(w

c
j · xc

i + bcj) = yci , i = 1, . . . , N̂ . (5.5)

By taking it as a regression problem, basic ELM is conducted on X̂c. Finally we

can get

βc = Hc† ·Yc, (5.6)

where Yc = [yc1, . . . , y
c
N̂
]T , and Hc is the corresponding hidden layer output ma-

trix. The entire learning process is shown as follows:

• Step 1: Perform a feature selection process (i.e., CFS method described in

chapter 2) on the training set, and obtain the selected data set i.e., X.

• Step 2: Apply Algorithm 5.2 on X, get the center matrix X
c.

• Step 3: Apply basic ELM algorithm on X
c, which produces the ELM model

parameters .

• Step 4: Given a binary testing sample x∗, if the output value of the ELM

model falls in [0,0.5], it is considered as negative, otherwise is considered as

positive.

Fig. 5.1 describes the flow of the whole process.
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Figure 5.1: Learning structure of IELM: Gs is the heuristic calculated by CFS

5.5 Experimental Comparisons

In this section, some experimental comparisons are presented to show the feasi-

bility and effectiveness of the proposed method.

5.5.1 Methods of Comparison

Five methods are listed in this section for performance comparison.

Basic ELM: The basic ELM algorithm is directly performed on the training

samples.

Interval ELM with Equal Width Discretization: This method, denoted by

IELM+EWD in short, applies equal width discretization to the conditional at-

tributes. For each attribute, the whole range is divided into a fixed number of

intervals with equal width.
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Interval ELM with IDE3: This method, denoted by IELM+IDE3 in short,

adopts the same framework of the proposed method. However, the splitting

performance of a CCP is measured by Eq. (5.3) rather than Eq. (5.4), and the

frequency measure is by Eq. (5.1). The heuristic is the same with the IDE3 DT

induction method.

Interval ELM with CART: This method, denoted by IELM+CART in short,

also adopts the same framework of the proposed method. The splitting per-

formance of a CCP is measured by Eq. (5.3), and the frequency measure is by

Eq. (5.2). The heuristic is the same with the CART DT induction method.

Interval ELM with Uncertainty Reduction (proposed): The proposed method

is applied.

5.5.2 Experimental Design

The five methods are first conducted on 15 small UCI benchmark data sets as

shown in Table 5.1. Then, the Basic-ELM, IELM+IDE3, IELM+CART and the

proposed methods are compared on a large-scale data set named Skin, which

contains 163, 371 training samples and 81, 686 testing samples with 3 conditional

features. The equal-width method for this data set is omitted since the number of

intervals to be discretized is hard to decide, which may lead to an incomparable

result.

Different parameters on the 15 small data sets are tested in order to inves-

tigate the changing trends of the results produced by the compared methods.

For equal-width discretization, 5 different numbers of intervals have been tried,

i.e., {80, 40, 20, 10, 5}. For the IELM+IDE3, IELM+CART and the proposed
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method, 5 different values of N∗, i.e., {25, 20, 15, 10, 5}, and 5 different values

of θ, i.e., {0.75, 0.8, 0.85, 0.9, 0.95} have been tested, which result in 25 different

pairs of (N∗, θ). As for the large-scale data set, only one parameter setting, i.e.,

(N∗, θ) = (10, 0.9) is applied.

Sigmoid activation function is adopted in ELM. In order to eliminate the

random effect, two-fold cross validation is conducted 50 times for each data set.

Finally, 100 results are derived and the average value is observed.

The feature selection process is first carried out with the machine learning

toolbox WEKA 3.7. Then, the algorithms are carried out under MATLAB 7.9.0

environment in a PC with a 3.16-GHz Intel Core Duo CPU, a 4GB memory, and

64-bit windows 7 system.

5.5.3 Performance Comparison on Small UCI Benchmark
Data

The performance of the proposed method is sensitive to the parameter combi-

nation of (N∗, θ), where N∗ indicates the minimum number of instances in an

interval and θ measures the purity of the instances in it. That is to say, the

splitting on a subset will be terminated when the number of instances in it is a

smaller than N∗ or the class purity of the instances is larger than θ. Theoretically,

a bigger θ and smaller N∗ will lead to a higher accuracy and a worse compression

rate, where the compression rate is defined as

Compressin rate

= Number of samples in the reduced data set
Number of samples in the original data set

.
(5.7)

Fig. 5.2 and Fig. 5.3 respectively show the testing accuracy and compression
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rate of the proposed method with different parameter settings of (N∗, θ). From

Fig. 5.2, it can be seen that on most of the data sets, the testing accuracy will

increase with the increase of θ and decrease of N∗. Although the increasing ampli-

tude differs a lot on different data sets, the overall trends are roughly consistent.

Similar trends could also be found on the compression rate in Fig. 5.3, which

clearly demonstrate that the data set can be compressed to a great extend with

a larger N∗ and smaller θ. However, a highly compressed data set will lead to

a poor testing accuracy, thus, it is necessary to achieve a trade-off between the

testing accuracy and compression rate.

The optimal parameters of the methods are given in Table 5.2. With these

parameters, Table 5.4 shows the best performance of the methods and the cor-

responding compression rate. It can be seen that the proposed method achieves

the highest average testing accuracy. Besides, it gives the best performances on

7 data sets out of 15. On the other hand, highly compressed data can enable

opportunities for significant performance improvement by reducing redundancies

in the original data. This effect is visible in data sets German, Haberman, and

Wdbc, where the proposed method not only achieves the best accuracy but also

the best compression performance (i.e. 50.10%, 42.48% and 77.5%, respectively).

Moreover, the accuracy of the proposed method and the basic ELM are more or

less similar.

In addition, some observations and analyses on several special cases are given

as follows.

Result on data set Australian: It is observed from Fig. 5.3(c) that the compres-

sion performance of the proposed method on this data set is mainly influenced by
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parameter N∗ and is insensitive to θ. Besides, as shown in Fig. 5.2(c), the change

of testing accuracy is trivial with different parameter settings. This observation

demonstrates a possibility of achieving a good compression while maintaining a

high accuracy.

Result on data set Sonar : It is observed from Fig. 5.3(l) that this data set can-

not be compressed. This observation might be caused by two reasons: 1) during

the discretization process, the numbers of arities are large, and 2) compared with

other data sets, the number of attributes is large. In this case, samples are hard

to have same attribute values and cannot be merged together. Accordingly, as

shown in Fig. 5.2(l), the accuracy has no obvious change. Two solutions can be

considered for handling this case: 1) set larger value for N∗ and smaller value

for θ, and 2) further reduce the number of attributes by other feature selection

method.

Result on data sets SPECTF and Wpbc : It can be seen from Fig. 5.3(b) and

Fig. 5.3(o) that the compression rates of these two data sets are dropping sharply

when N∗ = 25. One major reason is the high similarity among the samples,

which generates very limited number of arities during the discretization process.

In practice, smaller number of arities gives a higher chance of merging different

samples. However, as shown in Fig. 5.2(b) and Fig. 5.2(o), the proposed method

can maintain the accuracy with highly compressed data on SPECTF but is failed

on Wpbc. Thus, it is necessary to distinguish the samples with different class

labels but with very close attribute values.

Finally, paired Wilcoxon signed rank tests are conducted on the results given

in Table 5.4, where the p-values are listed in Table 5.5. In the tests, the p-value
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is the probability of whether the null hypothesis is true [68]. The significance

level of 0.05 is adopted, which indicates that the two referred methods are s-

tatistically different when the p-value is small than 0.05. It can be seen that

the proposed method is significantly different from all the other methods, which

strongly testifies its effectiveness on small data sets.

5.5.4 Performance Comparison on Large-Scale Data

The performance comparison of Basic-ELM, IELM+IDE3, IELM+CART and

the proposed method on the large-scale data set Skin are shown in Table 5.6.

It is observed that the result of IELM+IDE3, IELM+CART and the proposed

method are similar, where the proposed method is slightly better than the other

two. Although the IELM based methods have a worse accuracy than Basic ELM

(average 8% worse), they demonstrate a faster learning speed (average 5 times

faster). Moreover, they show a comparable result when the number of hidden

nodes is large. For example, the proposedmethod achieves the accuracy of 96.08±

4.11 with 100 hidden nodes, which is only 3% lower than Basic ELM. Considering

the execution time, this level of tradeoff is acceptable.

Table 5.3 shows the compression rate of data set Skin. The proposed method

gives the best compression rate of 11.46% where the others are around 10%. This

observation gives a conclusion that the proposed method has potential for solving

large-scale data classification problems.

5.5.5 Performance Comparison with SVM and KNN

We further compare the proposed method with the state-of-the-art classification

models, i.e., support vector machine (SVM) and k-nearest neighbor (KNN). It
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Table 5.1: Selected Small Binary Data Sets for Performance Comparison
Data Set #

Attributes (o-
riginal)

#
Attributes
(reduced)

#
Samples

#
Hidden Nodes

CT 36 4 221 10
SPECTF 44 7 267 10
Australian 7 4 690 20
Bupa 6 4 345 5
Cancer 9 5 683 10
German 3 2 1000 10
Haberman 3 2 306 20
Heart 5 3 270 10
Ionosphere 32 4 351 20
Pima 8 5 768 5
Plrx 12 4 182 5
Sonar 60 9 208 10
Transfusion 4 2 748 10
Wdbc 30 6 569 20
Wpbc 33 3 198 10

Table 5.2: Optimal Parameter Settings of Different Methods on the Selected
Small Data Sets

Data Set IELM+EWD IELM+IDE3 IELM+CART Proposed
# inter-
vals

θ N∗ θ N∗ θ N∗

CT 40 0.95 5 0.95 5 0.95 10
SPECTF 10 0.9 25 0.9 10 0.8 10
Australian 40 0.8 10 0.8 25 0.8 25
Bupa 80 0.75 15 0.75 15 0.75 25
Cancer 5 0.9 25 0.95 25 0.95 10
German 40 0.8 15 0.8 10 0.8 5
Haberman 20 0.95 5 0.9 5 0.85 20
Heart 20 0.85 15 0.8 5 0.9 25
Ionosphere 80 0.9 10 0.85 5 0.9 5
Pima 40 0.9 10 0.95 25 0.95 20
Plrx 10 0.8 25 0.95 25 0.8 25
Sonar 10 0.95 15 0.95 25 0.9 5
Transfusion 80 0.95 10 0.95 10 0.95 5
Wdbc 20 0.85 20 0.85 15 0.85 5
Wpbc 80 0.8 5 0.95 10 0.8 5

Table 5.3: Compression Rate (%) of the large-scale data Set Skin
IELM+IDE3 IELM+CART Proposed

# Original Data 163371 163371 163371
# Reduced Data 17870 16995 18722
Compression Rate 10.94 10.40 11.46
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Table 5.4: Performance Comparisons of Different Methods on the Selected Small
Data Sets: Testing Accuracy (%) and Compression Rate (%)

Data Set Basic ELM IELM+EWD IELM+IDE3 IELM+CART Proposed
Accuracy Accuracy Rate Accuracy Rate Accuracy Rate Accuracy Rate

CT 90.96±1.34 90.77±1.32 100.00 90.64±1.34 81.90 90.89±1.19 81.45 90.93±1.31 83.71
SPECTF 79.21±1.16 79.27±1.27 100.00 79.43±1.35 94.76 79.34±1.43 94.38 79.45±1.41 94.76
Australian 78.47±1.03 76.52±0.82 61.16 78.61±1.11 82.75 78.69±1.12 77.83 78.67±1.06 85.94
Bupa 61.12±1.58 61.56±1.19 99.71 61.53±1.79 97.39 61.23±1.63 97.39 62.16±1.55 97.97
Cancer 96.58±0.56 97.04±0.67 61.64 96.95±0.40 77.89 96.82±0.37 70.57 96.97±0.35 74.96
German 70.67±0.52 36.60±5.06 17.20 70.51±1.04 47.40 69.40±1.13 45.40 70.83±1.22 50.10
Haberman 73.92±1.66 63.52±11.36 21.24 65.83±13.68 39.22 64.20±14.67 37.25 75.90±1.51 42.48
Heart 72.71±2.02 73.19±2.76 92.96 72.72±2.06 82.96 72.87±1.95 82.96 73.99±3.23 92.96
Ionosphere 87.91±2.64 85.18±2.51 80.91 86.03±3.83 58.12 85.29±4.47 50.71 86.38±3.88 56.13
Pima 76.27±1.69 76.28±1.75 99.61 76.61±2.20 99.74 77.02±2.12 99.74 77.01±1.74 99.74
Plrx 71.31±0.49 71.38±0.22 96.15 71.43±0.00 94.51 71.33±0.50 93.96 71.40±0.24 97.80
Sonar 77.38±3.99 77.55±4.48 100.00 77.15±4.30 100.00 77.57±4.23 100.00 77.62±4.36 100.00
Transfusion 76.56±0.95 44.94±15.74 11.63 75.72±2.65 33.42 75.93±2.06 33.42 76.44±1.35 33.56
Wdbc 95.72±0.97 95.92±0.92 100.00 96.08±0.95 77.15 96.08±0.86 75.57 96.10±0.88 77.50
Wpbc 78.83±1.88 79.00±2.16 90.40 78.89±2.15 72.22 78.28±3.49 61.11 78.87±1.98 84.34
Avg. 79.17±1.50 73.92±3.48 75.51 78.54±2.59 75.96 78.33±2.75 73.45 79.51±1.74 78.13

Note: For each data set, the highest accuracy is in bold face.

Table 5.5: Paired Wilcoxon’s Signed Rank Tests of Testing Accuracies (p Values)
Method IELM

+EWD
IELM
+IDE3

IELM
+CART

Proposed

Basic ELM 0.5614 0.9341 0.8040 0.0181†
IELM+EWD —— 0.1205 0.2078 0.0012†
IELM+IDE3 —— —— 0.4212 0.0012†
IELM+CART —— —— —— 0.0003†

Note: For each test, † represent that the two referred methods are sig-
nificantly different with the significance level 0.05.

Table 5.6: Comparative Results on the large-scale data Set Skin: Testing Accu-
racy (%) and Training Time (seconds)

Method Basic ELM IELM+IDE3 IELM+CART Proposed
# Hidden N-
odes

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

20 97.38±0.31 0.7612 88.68±7.25 0.1046 86.65±7.08 0.0900 88.54±7.79 0.1050
40 98.68±0.13 1.8924 88.33±6.68 0.2462 88.08±6.83 0.2208 88.92±6.34 0.2668
60 99.01±0.08 2.7126 89.82±6.92 0.3504 91.70±5.84 0.3536 91.72±6.30 0.4080
80 99.26±0.04 3.9768 93.04±6.41 0.6008 91.57±6.73 0.5844 92.89±6.43 0.6670
100 99.37±0.04 5.3236 94.51±5.14 0.8358 93.04±6.30 0.8540 96.08±4.11 0.9190

is noteworthy that SVM and KNN are conducted on the data sets only with

continuous valued attributes. For SVM, the slack variable C is fixed as 100, and

gaussian radial basis function (RBF) kernel K(x,xi) = exp(− ||x−xi||
2σ2 ) is selected
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Table 5.7: Performance Comparison of the Proposed Method with SVM and KNN
on the Selected Small Data Sets

Data Set Proposed SVM KNN
CT 90.93±1.31 90.45±1.38 88.57±1.17

SPECTF 79.45±1.41 80.69±1.29 74.52±1.58

Australian 78.67±1.06 78.53±0.81 70.98±1.47

Bupa 62.16±1.55 58.74±2.01 47.37±1.99

Cancer 96.97±0.35 96.32±0.54 96.17±0.32

German 70.83±1.22 69.93±0.21 66.15±1.12

Haberman 75.90±1.51 73.71±0.64 71.06±1.44

Heart 73.99±3.23 71.87±1.17 64.69±1.94

Ionosphere 86.38±3.88 92.34±0.92 85.56±1.22

Pima 77.01±1.74 76.34±0.68 70.11±0.99

Plrx 71.40±0.24 70.16±1.52 63.98±2.39

Sonar 77.62±4.36 74.21±2.18 73.00±1.61

Transfusion 76.44±1.35 76.62±0.33 69.59±1.75

Wdbc 96.10±0.88 96.83±0.50 95.53±0.38

Wpbc 78.87±1.98 78.98±1.50 74.02±1.85

Avg. 79.51±1.74 79.05±1.05 74.09±1.41

Note: For each data set, the highest accuracy is in bold face.

consistently with kernel parameter σ = 1. For KNN, the number of nearest

neighbors k is set as 10. We repeat two-fold cross-validation 50 times for both

SVM and KNN, then observe the average accuracy and standard deviation. The

performance comparison is shown in Table 5.7. It is clear that the proposed

method has achieved the best performance on 10 data sets out of 15, which

demonstrates a great potential of it in solving various classification problems.

Finally, for the big data set skin, SVM has achieved an accuracy of 99.89%

with the training time of 21.37 seconds. Although the performance of SVM is

better than that achieved by the proposed method, its execution time is much

higher, which demonstrates a low efficiency. Besides, when conducting KNN on

this data set, a memory overflow happens due to the large number of samples.

Thus, KNN is not an efficientmethod on big data under our problem environment.
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5.6 Conclusions

In this chapter, an interval ELM model was developed for large-scale binary

classification problems. This model is built up with two techniques, i.e., dis-

cretization of conditional attributes and fuzzifcation of class labels. Experimental

comparisons demonstrate that the proposed method is not only able to improve

generalization capability, but is also effective to compress data of large volume.
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Figure 5.2: Testing accuracy with different settings of parameters N∗ and θ of
the proposed method.
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Figure 5.3: Percentage of the compressed data size to the original data size with
different settings of parameters N∗ and θ.
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Chapter 6

Conclusions and Future Works

In this thesis, several ELM-based techniques have been developed with different

motivations. We also applied FELM to perform fast unit combination strategy

evaluation in RTS game. In this chapter, we conclude our works and provide

future research directions. Section 6.1 presents a qualitative evaluation of each

developed technique. An analysis is conducted to detail the speciality and limi-

tation of each technique. 6.2 lists the possible research directions in the future.

6.1 Evaluation on the Developed ELM Techiniques

6.1.1 Fuzzy Extreme Learning Machine

Compared with other gradient descent techniques, the advantage of using FELM

for fuzzy measure determination is that the iterative learning mechanism can be

removed without losing accuracy. In this model, the learning process of fuzzy

measure determination can be regarded as solving a linear system with 2n − 1

variables, where each variable represents a subset of fuzzy measure. The devel-

oped set selection algorithm is able to locate the related fuzzy measure subset for

each information source efficiently.
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This algorithm is suitable to be used by different kinds of fuzzy integrals. Two

new fuzzy integrals are proposed tomodel the interaction among features in game,

i.e., mean-based fuzzy integral and order-based fuzzy integral. Mean-based fuzzy

integral considers all the interactions that involve current information sources in

fuzzy measure and then takes an average. Order-based fuzzy integral focuses

on the highest proportion information sources, which considers the information

source with highest resources first and estimates the interactions with all the

other and so on. Compared with CI, these two new developed fuzzy integrals

could achieve a better performance.

According to the experimental result, FELM is proved to be able to achieve

faster learning speed and higher testing accuracy than traditional GA and P-

SO. In addition, FELM is applied to the unit combination strategy evaluation

problem in RTS game. Fuzzy measure and fuzzy integral are adopted to learn

the performance of unit combination. The value of each fuzzy measure subset

could be learned with the values of different fuzzy integrals. As the value of each

subset is fully observed, the model is able to evaluated the unknown situation in

the complicated game environment and assign a performance score to the strate-

gy. Furthermore, fuzzy measure could represent super-additive and sub-additive

situation among features, which is able to optimize the strategy planning model.

The main disadvantage of FELM is the sign of the learned output weight is

determined by data, which hindering the way to extend FELM to other kinds

of fuzzy measures, such as efficiency measure. Furthermore, the size of hidden

layer output matrix may increases exponentially with the number of information

source, which results a high computational burden in learning the network.
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6.1.2 LGEM based Architecture Selection for ELM with
MCDM Model

The extended localized generalization error model (LGEM) aims to find an upper

bound of the error between the target function and the learned function. The

extended LGEM is able to provide useful guidelines for architecture selection in

order to improve the generalization ability of SLFNs trained by ELM. In this

part, we propose a new architecture selection method with MCDM model. The

superiority of MCDM is that it can provide accurate priority information of the

architectures with regard to different criteria independently. We incorporate t-

wo conflicting criteria, i.e., training accuracy and Q-value estimated by LGEM.

The determination of Q-value depends on three components, i.e., training error,

stochastic sensitivity measure (SSM), and a constant value.

There are four advantages of the proposed model:

1. The error bound provided by LGEM is effective, even for some special cases,

i.e., Q → ∞, SQ → T , and Q → 0, SQ → D;

2. The model could be extended to other learning techniques;

3. The model has low time complexity, i.e., O(Mn);

4. A trade-off between training accuracy and Q-value can control the number

of hidden nodes to a reasonable range.

However, there is a major disadvantage of the model, i.e., the training samples

are assumed to be uniformly distributed. When the distribution is not uniform,

a new localized generalization error bound has to be derived.
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6.1.3 Interval Extreme Learning Machine

Interval extreme learning machine (IELM) is developed for large-scale data clas-

sification with continuous-valued attributes. The interval ELM model is built up

based on two techniques, i.e., discretization of conditional attributes and fuzzifi-

cation of class labels. First, inspired by the traditional decision tree (DT) induc-

tion algorithm, each conditional attribute is discretized into a number of intervals

based on uncertainty reduction scheme. Then, the center and range of each inter-

val are calculated as the mean and standard deviation of the values. Afterwards,

the samples in the same intervals with regard to all the conditional attributes are

merged as one record, and a fuzzification process is performed on the class label-

s. As a result, the original data set is transferred into a smaller one with fuzzy

classes, and the interval ELM model is developed. Experimental comparisons

demonstrate the feasibility and effectiveness of the proposed approach.

The model design principle is to combine different data compression tech-

niques, i.e., discretization, feature selection and class label fuzzification. Dis-

cretization is able to transfer a continuous attribute to discrete one, which sig-

nificantly reduce the number of values for each attribute. The fuzzificated class

label reflects the frequency of different classes, which reduces the inconsistency

after discretization. Furthermore, feature selection is used to reduce redundant

attribute and increase the chance of merging different samples. The experiments

show that the proposed method achieves the highest average testing accuracy on

7 data sets out of 15. This phenomenon indicates that the highly compressed data

can enable opportunities for performance improvement by reducing redundancies
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in the original data.

However, the main disadvantage of our model is that the compression process

is sensitive to the number of attributes. Generally, large number of attributes

may decrease the probability in merging samples. According to the experimental

result, the model is unable to achieve a satisfactory compression rate if the at-

tribute number is larger than 9. It is necessary to develop an effective attribute

reduction method to improve the model effectiveness. Moreover, how to use the

range information of interval and how to extend the current model to multiclass

classification problems are two major directions regarding this work in the future.

6.2 Future Works

This section briefly discuses the possible future works, which aim to overcome

the limitations mentioned in Section 6.1.

The future work regarding fuzzy ELM may focus on two directions. First, we

try to design different ELM structures to determine various types of fuzzy mea-

sures such as efficiency measure. An important problem for this topic is to control

the sign of the output weights of the hidden layer output matrix. In order to learn

efficiency measure, we wise to keep all the learned output weights are positive.

Second, we try to improve the robustness of ELM algorithm, especially find out

how to deal with the situation with insufficient valid data. On the other hand,

regarding the application on RTS game, we will try to develop an autonomous

real-time system that is capable of generating appropriate unit movement based

on the current strategy evaluation model.

The future work regarding interval ELM may focus on tree directions. First, it
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is necessary to develop amore effective attribute reductionmethod and discretiza-

tion heuristic to support the learning process. Second, it might be interesting to

extend the work to multi-class classification problems. Third, it will be useful to

discuss how to make use of the range information.

Finally, the further research on architecture selection of ELM may concentrate

on developing heuristic method to determine the weights of different criteria.

Moreover, we would like to apply our method to game research problem such as

technology development strategy selection in RTS game.
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Appendix A.

A..1 Derivation of the Stochastic Sensitivity Mea-

sure for Single-Layer Feedforward Network

with Sigmoid Function

As described in [81], SLFNs with sigmoid activation function could be described

as

fθ(x) =
M∑
j=1

βjg(wjx+ bj) =
M∑
j=1

βj
1

1 + exp(−(wjx+ bj))
(A..1)

According to Taylor’s series expansion: 1
1+x

=
∞∑
t=0

(−1)txt(−1 < x < 1), we

have

fθ(x) =
M∑
j=1

βj

∞∑
t=0

(−1)t(exp(−(wjx+ bj)))
t, (0 < exp(−(wjx+ bj)) < 1) (A..2)

Ignoring the terms which larger than 1, we have:

fθ(x) ≈
M∑
j=1

βj(1− exp(−(wjx+ bj)) (A..3)

Suppose that Sj =
n∑

i=1

(wijxi + bij) and S∗
j =

n∑
i=1

(wij(xi +Δxi) + bij). Then

we have

107



Thesis:Extended ELM-Based Architectures and Techniques for Fast Learning of
Feature Interaction and Intervals from Data

ESQ
((Δy)2)

= ESQ

⎛
⎝( M∑

j=1

βj(1− exp(−S∗
j ))−

M∑
j=1

βj(1− exp(−Sj))

)2
⎞
⎠

= ESQ

⎛
⎝( M∑

j=1

βj

(
exp(−Sj)− exp(−S∗

j )
))2
⎞
⎠

(A..4)

Let Vj = exp(−sj)− exp(−s∗j), then we have:

ESQ
((Δy)2) =

M∑
j=1

M∑
i=1

βiβjESQ
(ViVj) (A..5)

Based on it, we have:

ESQ
(ViVj) = ESQ

(exp(−Si − Sj))− ESQ
(exp(−Si − S∗

j ))
−ESQ

(exp(−S∗
i − Sj)) + ESQ

(exp(−S∗
i − S∗

j ))
(A..6)

According to the central limit theorem, exp(Sj) and exp(S∗
j ) have a log-normal

distribution. Thus

ESQ
(exp(−S∗

i − S∗
j )) = exp

(
V ar(S∗

i +S∗
j )

2
− E(S∗

i + S∗
j )
)

≈ 1 +
V ar(S∗

i +S∗
j )

2
− E(S∗

i + S∗
j )

(A..7)

Then,

ESQ
(ViVj) =

1
2

(
V ar(S∗

i + S∗
j ) + V ar(Si + Sj)

−V ar(S∗
i + Sj)− V ar(Si + S∗

j )
) (A..8)

Because:

V ar(S∗
i + S∗

j ) = V ar

(
n∑

k=1

(wki(xk +Δxk) + bki) +
n∑

k=1

(wkj(xk +Δxk) + bkj)

)
=

n∑
k=1

(wki + wkj)
2V ar(xk) +

Q2

3

n∑
k=1

(wki + wkj)
2

(A..9)
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Finally, we have:

ESQ
((Δy)2) =

Q2

3

M∑
j=1

β2
j

n∑
k=1

w2
kj (A..10)

109



Thesis:Extended ELM-Based Architectures and Techniques for Fast Learning of
Feature Interaction and Intervals from Data

110



Bibliography

[1] P. L. Bartlett. The sample complexity of pattern classification with neural

networks: the size of the weights is more important than the size of the

network. IEEE Transactions on Information Theory,, 44(2):525–536, 1998.

[2] B. Biggio, G. Fumera, and F. Roli. Multiple classifier systems for robust clas-

sifier design in adversarial environments. International Journal of Machine

Learning and Cybernetics, 1(1):27–41, 2010.

[3] L. Billard and E. Diday. Regression analysis for interval-valued data. In Data

Analysis, Classification, and Related Methods, pages 369–374. Springer, 2000.

[4] P. Bradley and O. Mangasarian. Feature selection via concave minimiza-

tion and support vector machines. In International Conference on Machine

Learning, volume 98, pages 82–90, 1998.

[5] P. Bradley, O. Mangasarian, and W. Street. Feature selection via math-

ematical programming. INFORMS Journal on Computing, 10(2):209–217,

1998.

[6] L. Breiman, L. H. Friedman, R. A. Olshen, and C. J. Stone. Classification

and regression trees. Wadsworth International Group, 1984.

[7] G. Campanella and R. Ribeiro. A framework for dynamic multiple-criteria

decision making. Decision Support Systems, 52(1):52–60, 2011.

111



Thesis:Extended ELM-Based Architectures and Techniques for Fast Learning of
Feature Interaction and Intervals from Data

[8] B. Chacko, V. Vimal Krishnan, G. Raju, and P. Babu Anto. Handwritten

character recognition using wavelet energy and extreme learning machine.

International Journal of Machine Learning and Cybernetics, 3(2):149–161,

2012.

[9] G. Chandrashekar and F. Sahin. A survey on feature selection methods.

Computers & Electrical Engineering, 40(1):16–28, 2014.

[10] T.-H. Chang and T.-C. Wang. Using the fuzzy multi-criteria decision making

approach for measuring the possibility of successful knowledge management.

Information Sciences, 179(4):355–370, 2009.

[11] E. Diday. Introduction l’approche symbolique en analyse des donnes.

RAIRO - Operations Research - Recherche Oprationnelle, 23(2):193–236,

1989.

[12] J. Figueira, S. Greco, and M. Ehrgott. Multiple criteria decision analysis:

state of the art surveys. Springer Verlag, 2005.

[13] C. Fonseca, P. Fleming, et al. Genetic algorithms for multiobjective opti-

mization: formulation, discussion and generalization. In Proceedings. 5th

International Conference on Genetic Algorithms, volume 1, page 416. San

Mateo, California, 1993.

[14] G. Forman. An extensive empirical study of feature selection metrics for

text classification. The Journal of Machine Learning Research, 3:1289–1305,

2003.

[15] F. Gioia and C. Lauro. Basic statistical methods for interval data. Statistica

Applicata, 17(1), 2005.

112



Bibliography

[16] M. Grabisch. k-order additive discrete fuzzy measures and their representa-

tion. Fuzzy Sets and Systems, 92(2):167–189, 1997.

[17] M. Grabisch and J. Nicolas. Classification by fuzzy integral: performance

and tests. Fuzzy sets and systems, 65(2):255–271, 1994.

[18] M. Hall and L. Smith. Practical feature subset selection formachine learning.

In Proceedings of the 21st Australasian Computer Science Conference, pages

181–198. Springer, 1998.

[19] S. Haykin and N. Network. A comprehensive foundation. Neural Networks,

2(2004), 2004.

[20] K. Hipel, K. Radford, and L. Fang. Multiple participant-multiple criteria

decision making. IEEE Transactions on Systems, Man and Cybernetics,

23(4):1184–1189, 1993.

[21] W. Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American statistical association, 58(301):13–30, 1963.

[22] K. Hornik. Approximation capabilities of multilayer feedforward networks.

Neural networks, 4(2):251–257, 1991.

[23] Q. Hu, W. Pan, S. An, P. Ma, and J. Wei. An efficient gene selection tech-

nique for cancer recognition based on neighborhood mutual information. In-

ternational Journal of Machine Learning and Cybernetics, 1(1):63–74, 2010.

[24] G. Huang, Q. Zhu, and C. Siew. Extreme learning machine: theory and

applications. Neurocomputing, 70(1):489–501, 2006.

113



Thesis:Extended ELM-Based Architectures and Techniques for Fast Learning of
Feature Interaction and Intervals from Data

[25] G.-B. Huang and H. A. Babri. Upper bounds on the number of hidden

neurons in feedforward networks with arbitrary bounded nonlinear activation

functions. IEEE Transactions on Neural Networks,, 9(1):224–229, 1998.

[26] G.-B. Huang and L. Chen. Convex incremental extreme learning machine.

Neurocomputing, 70(16):3056–3062, 2007.

[27] G.-B. Huang and L. Chen. Enhanced random search based incremental

extreme learning machine. Neurocomputing, 71(16):3460–3468, 2008.

[28] G.-B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incre-

mental constructive feedforward networks with random hidden nodes. IEEE

Transactions on Neural Networks,, 17(4):879–892, 2006.

[29] G.-B. Huang, Y.-Q. Chen, and H. A. Babri. Classification ability of single

hidden layer feedforward neural networks. Neural Networks, IEEE Transac-

tions on, 11(3):799–801, 2000.

[30] G. B. Huang, D. H. Wang, and Y. Lan. Extreme learningmachines: a survey.

International Journal of Machine Learning and Cybernetics, 2(2):107–122,

2011.

[31] S.-C. Huang and Y.-F. Huang. Bounds on the number of hidden neurons in

multilayer perceptrons. IEEE Transactions on Neural Networks,, 2(1):47–55,

1991.

[32] K. Ishii and M. Sugeno. A model of human evaluation process using fuzzy

measure. International Journal of Man-Machine Studies, 22(1):19–38, 1985.
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