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Abstract 

 

The use of multiple mufflers is often a way used to improve the sound attenuation 

performance of the mufflers. When the mufflers are periodically mounted on the duct, 

the transmission loss of the periodic mufflers is determined by the characteristics of 

both the muffler itself and the periodic structure. This thesis therefore provides a 

systematic investigation of the effect of the periodic arrangement on the transmission 

loss of the mufflers including the simple expansion chamber muffler and the micro-

perforated muffler. The study on the wave propagation in such periodic structures 

provides how the periodic structure influences the performance of the mufflers which 

can contribute to the design of the periodic mufflers. 

 

The theory of various mufflers is investigated. For resonator mufflers, the resonance 

frequency is mainly determined by its physical parameters. In order to adapt to the 

changes, a semi-active resonator via the control of the termination impedance of the 

resonator is used. A theoretical study is conducted to investigate the effect of flow on 

the semi active Helmholtz resonator in a low Mach number flow duct. To improve the 

attenuation of the Helmholtz resonator at lower frequencies, a Helmholtz resonator 

with a spiral neck is proposed and the theoretical results show that the resonance 

frequency can be effectively lowered by incorporating the spiral neck which have 

potential application of tonal noise control within a limited space. 



IV 

The expansion chamber muffler is an effective device for noise reduction in duct 

systems. The transmission loss of the single expansion muffler has a periodic character 

that is often used for the periodic noise control. The Bloch wave theory and the transfer 

matrix method are used to study the wave propagation in periodic expansion chamber 

mufflers and the dispersion characteristics are examined. The theory is validated 

against finite element method simulation. Compared to a single expansion chamber 

muffler, the stopbands of the finite periodic structure is mainly due to its dispersion 

characteristics. With different configuration, the results indicate that the periodic 

structure can enhance the transmission loss within a narrower frequency range or 

change effective noise control frequency ranges with different distance between 

mufflers. 

 

Because of the high acoustic resistance and low mass reactance due to the sub-

millimeter perforation, the micro-perforated muffler can provide considerable sound 

attenuation of duct noise. The wave propagation in periodic micro-perforated mufflers 

is studied theoretically, numerically and experimentally. This study indicates that the 

combination of the Bragg reflection due to the periodic structure and the resonance of 

the micro-perforated muffler can result in different transmission loss. The proposed 

periodic placement of micro-perforated mufflers can provide lower frequency noise 

control within a broader frequency range or enhance transmission loss around the 

resonant frequency. 
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Chapter 1  

Introduction 

1.1 Duct noise control methods 

In modern buildings, a ductwork system is an essential part of the Heating Ventilation 

and Air Conditioning (HVAC) system and the ductwork system is mainly used for air 

exchange and heat transfer. The ducts bring in fresh air and give out warm exhaust in 

order to provide a comfortable environment for building users and also the equipment. 

However, the air conditioning units such as fans produce air-borne sound and the 

sound propagates along the ducts and finally emits as noise into the indoor 

environment. Besides, the ducts itself also generate noise when air flow passes through 

especially when the flow speed is high.  

 

As the widely application of air conditioning system in modern buildings, the noise 

problem is of great concern as it imposes a detrimental impact on the occupants and 

machines in the buildings. Therefore, various noise control methods have been 

developed to eliminate the noise throughout the sound propagation path. The control 

methods can be categorized into three types: passive noise control, active noise control 

and semi-active control.  
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1.1.1 Passive noise control 

Passive noise control can be classified as dissipative noise control or reactive noise 

control based on whether the energy is dissipated into heat or the sound is reflected 

due to acoustic impedance mismatch. In practice, combination of the dissipative noise 

control and the reactive noise control is often used in the design of the mufflers. 

A. Dissipative noise control 

The dissipative noise control devices generally attenuate the noise with sound 

absorbing materials lined within the duct where the sound waves propagates. The 

friction between the sound waves and the porous absorptive materials degrades the 

energy by converting the sound energy into heat. The dissipative mufflers usually can 

effectively attenuate medium to high frequency noise1.  

 

The performance of the dissipative mufflers is governed by the cross dimensions of 

the duct, lining thickness and the physical properties of the absorptive materials such 

as porosity, flow resistivity and thermal characteristics. The theory of the lined duct 

was started by Morse2 in 1939. He presented an exact solution for the transmission 

loss of sound inside a rectangular lined duct with no flow. Scott3 analyzed the acoustic 

attenuation in infinite rectangular and circular lined ducts in terms of bulk-reacting 

model. Davis et al.4 conducted a systematic study on the evaluation of the mufflers 

with no flow to predict muffler characteristics. Later, a number of studies were 

conducted on the performance of the dissipative mufflers in flow ducts. Ko5 
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investigated the sound transmission loss in acoustically lined flow ducts separated by 

porous splitters. Nilsson and brander6 presented a theoretical model of wave 

propagation in cylindrical ducts with mean flow and bulk-reacting lining and the 

effects of a perforate screen was examined. Cummings and Chang7 investigated a 

finite-length dissipative muffler and studied the effect of the mean flow on the 

performance of the dissipative devices in circular ducts. Peat8 obtained the transfer 

matrix for a dissipative muffler for evaluating the acoustical performance with a low 

frequency approximation method. Wang9 developed a de-coupling method based on 

the plane wave propagation to study the performance of a resonator with absorbent 

material. Finite element method10, 11 and boundary element method12, 13 were also 

developed to evaluate the acoustic behavior of the dissipative noise control.  

 

B. Reactive noise control 

Reactive noise control, also called reflective noise control, suppresses the noise by 

reflecting sound waves as a result of the impedance mismatches. A reactive muffler is 

composed of the acoustical element with different impedance such as a side branch 

resonator or a duct with different transverse areas. The impedance mismatch at the 

discontinuity junction reflects the acoustic energy back to the source.  

 

A simple expansion chamber muffler is the most basic reactive muffler. It consists of 

an expansion chamber of larger cross sectional area than that of the main duct. The 
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sound attenuation performance of the expansion chamber muffler can be described in 

terms of expansion ratio (the ration of the across sectional area of the expansion 

chamber to that of the duct) and the length of the muffler. The transmission loss is a 

periodic function with frequency. When the length of the muffler is an odd multiple of 

quarter-wavelengths, the transmission loss of the muffler reaches maximum14. 

 

Another type of the reactive muffler is the side branch resonator muffler. The resonator 

is placed as a side branch of the main duct. It functions by providing a very low 

impedance in parallel with the impedance of the main duct at the point where the 

resonator is placed. The side branch resonator can attenuate sound effectively around 

its resonance frequencies and this type of muffler usually works over very small 

frequency ranges which can be used to control tonal noise in practice. The side branch 

resonator may take the form of a short length of pipe15 or a Helmholtz resonator (HR)16. 

At resonance frequencies, the input impedance of the side branch tends to be minimal 

which makes the branch element act as a short circuit to the sound wave at the junction 

and the sound energy is reflected back to upstream. 

 

Stewart investigated the transmission loss of a duct with a branch line in 192517. He 

presented a theory of acoustic transmission in a duct with a side branch. Next year he 

extended the theory to the case of Helmholtz resonator as a side branch18 and 

concluded that the Helmholtz resonator could provide large acoustic transmission loss 

when the frequency of the noise source is near its resonance frequency. A typical 
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Helmholtz resonator is composed of a connecting neck and a backing volume cavity. 

The Helmholtz resonator is widely used in the control of duct noise due to its high 

sound absorption property at resonance frequency. Due to the radiation reactance at 

the end of resonator, an effective length of the resonator neck is taken into account 

when calculating the resonance frequency instead of the original physical length. 

Ingard19 derived the interior end correction for different orifices. Alster20 extended the 

classical formulation for calculating the resonance frequencies and increased the 

accuracy of the classical model. He took the effects of motion of mass in the resonator 

and found resonance frequencies also depended on the shape of the resonator. 

However, his theory was only applicable for the known resonator shape function. The 

classical analysis of resonator was made by lumped parameter method under the 

assumption that the wavelength is much bigger than the dimension. Tang and 

Sirignano21 did not regard the resonator as lumped parameter and built up a model 

based on the one-dimensional wave propagation inside both the neck and the cavity. 

They did not consider the end correction and the result indicated that the theory 

worked well for resonators with a deep cavity or a long neck. Panton and Miller22 

presented a simple method to analysis cylindrical resonator for length much larger 

than classical model. They demonstrated that the classical model was valid only when 

length of resonator was less than 1/16 of the wave length. A different formula was 

proposed to calculate the resonant frequency based on one dimension propagation in 

the cavity. Chanaud23 developed new equations for interior and external end 

corrections for calculation of the resonance frequency. He applied the formula to a 
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rectangular parallelepiped cavity with a symmetrically placed orifice which was 

circular, rectangular or cross-shaped and. His model gave good predictions for the 

resonators with extreme cavity dimensions. Later, Chanaud24 derived another formula 

for end corrections of resonator with cylindrical cavity. Experiments for both kinds of 

cavity were performed in the reference and agreed well with the simulation results. 

 

1.1.2 Active noise control 

It is known that the passive noise control method does not usually perform well at low 

frequencies and it is bulky and costly for low frequency noise control. In recent years, 

much work has been conducted on developing the active noise control (ANC) system 

since it has advantages over the traditional passive noise system. Active noise control 

uses a secondary source generating an anti-noise sound field to cancel noise from the 

primary source. Active noise control systems are more effective at low frequency and 

usually smaller than passive control system .With the use of adaptive algorithm the 

ANC system could follow up with the changes of the sources. 

 

The principal of active cancellation of sound was first proposed by Lueg25 in a 1936 

US patent. He proposed to cancel sound by destructive interference and the system 

consisted of an upstream microphone detecting the plane wave propagating in the duct, 

a downstream loudspeaker producing an inverted wave to cancel the primary noise 

and a control system to generate proper drive signal for the loudspeaker. In 1953, 
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Olson and May26 introduced a different system which did not need the prior knowledge 

of the primary field and called feedback control. Conover27 originally introduced 

harmonic control in 1956. He proposed to achieve best performance by adjusting the 

amplitude and phase of the individual harmonic manually. However, there was a long 

time before the widely application of ANC. The control system needs fast real time 

processing to follow up with the changes of the noise sources and the implementation 

of the technique came to a reality until 1980s with the development of low-cost fast 

digital signal processors (DSP). 

 

In Lueg system, it is obvious that the secondary loudspeaker propagates both upwards 

and downwards and consequently the detect sensor would inevitably sense the sound 

from secondary loudspeaker which called acoustical feedback. The acoustical 

feedback badly contaminates the reference signal and deteriorates the system 

performance seriously. Many researchers tried to eliminate the influence of acoustical 

feedback. Based on Chelsea’s work, Eghtesadi and Leventhall28 developed a system 

which employed two secondary loudspeakers powered in antiphase. The microphone 

was located centrally between the two secondary source and isolated from the upwards 

of the secondary source by subtracting contributes of the standing wave between the 

two sources. Swinbanks29 proposed to generate a directional secondary source with 

the use of a pair of monopole sources. He showed that if the delay between the two 

sources was set properly there will be no radiation downwards. However, this method 

is only applied to limited bandwidth and the frequency response match of two speakers 
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is also difficult in practice. Jessel, Mangiante and Canevet30, 31 developed the JMC 

method to produce zero upstream radiation at all frequency. The method used a 

combination of monopole and dipole sources to generate unidirectional secondary 

source and hence there was no upstream sound from the secondary source.  

 

Adaptive filter are used in ANC system to make the system response quickly to the 

changes of the system. The noise source is usually time-varying and non-stationary. 

Changes of environment such as wind, temperature also influence the property of the 

source. A little change of the noise source will lead to significant system performance 

deterioration. Therefore, the controller needs to be adaptive to deal with the variations. 

Adaptive filter was first used in digital signal processing to cancel the electric noise 

component and Widrow et.al.32 presented the concept of adaptive noise cancelling 

based on previous work in 1975. Later, Burgess33 applied the adaptive digital filters to 

active noise control. His simulation implied that the use of adaptive algorithm could 

significantly improve the performance of the system. Chaplin and Smith34 developed 

a control strategy called “waveform synthesis” to adapt to the variations of the system. 

His method only applied to the periodic noise. Roure35 described an adaptive active 

noise control system for an air-conditioning duct with help of the programmable 

digital filter. Eriksson36 proposed to solve with the acoustical feedback taken account 

into the FLMS algorithm. He used an IIR adaptive filter to cancel the unwanted noise 

and meantime to cancel the influence of the feedback. 
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1.1.3 Semi-active noise control 

Although active noise control is efficient at low frequency and small, it is more costly 

and requires external power supply such as amplifiers and loudspeakers systems. The 

electronic equipment usually has a limit lifetime and is less stable than the passive 

noise control system. Furthermore, the complex control system also implies the 

potential instability. 

 

An emerging solution is semi-active control. Semi-active noise control method 

combines both passive and active elements for noise control. The method takes use of 

the active control to adapt parameters of the passive control system in order to follow 

the changes of the operating conditions. Less power is needed in the strategy and 

therefore less instability than the fully active control. Adaptive algorithms can be used 

to tune the resonant frequency of some adjustable passive resonators for the 

suppression of transmission noise. 

 

The study on semi active control has been increasing in the past years. Resonators 

such as quarter-wavelength resonator and Helmholtz resonator are the most common 

element used in semi active control. It is well known that the resonance frequency of 

resonator is mainly determined by physical parameters of the resonators. The natural 

frequency of a Helmholtz resonator can be changed by adjusting the cavity volume 

and the opening area. Therefore, the resonators could be tuned to reduce noise of 
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different frequency. In a semi-active control system, the resonators are adjusted by 

control schemes in order to control the time varying noise.  

 

Neise and Koopmann37 used a quarter-wavelength resonator to reduce the dynamic 

noise produced by a centrifugal blower. They tuned the resonator by changing the 

length via a movable end plug in order to achieve better reduction. Lamancusa38 

proposed the use of tuned Helmholtz resonators instead of expansion chamber 

mufflers in automobiles. He changed the resonator volume by a movable piston and 

closable partitions in the cavity. He suggested tuning the resonator according to the 

engine speed and his manually adjust showed good reduction performance. Izumi39 

also presented a tunable resonator by changing the volume of the resonator. The 

adjustable volume usually was bulky. In order to reduce the volume variable resonator, 

Izumi40 later investigated a compacted adjustable Helmholtz resonator. Unlike 

constructing a volume adjustable resonator he tuned the resonator by varying the 

opening area. However, the resonator was only applicable to sinusoidal source and the 

effective bandwidth was narrow.  

 

These resonators were usually controlled manually and no control algorithms were 

given to achieve optimal tuning. Matsuhisa et al.41, 42 introduced an automatically 

control strategy. They investigated noise reduction by a tunable resonator as a side 

branch in a duct. The experiment showed significantly reduction with the auto 

adjusting resonator. deBedout et al.43 developed an adaptive algorithm based on 
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feedback control. The resonator was tuned by the signal detected in duct downstream 

of the resonator. Optimal tuning was achieved with a gradient descent approach. In 

order to reducing high frequency noise, Nagaya et al.44 suggested a new silencer 

consisting of a two stage Helmholtz resonator: one for low frequency noise attenuation 

and another for high frequency. Esteve et al.45 used adaptive Helmholtz resonator to 

control broadband noise into a rocket payload fairing.  

 

In these studies of active tuning the resonator, the adjustable functional frequency is 

still mainly around the natural frequency and the effective bandwidth is still narrow. 

Hence, it is hard to achieve satisfied performance for a wide bandwidth noise. Besides, 

the tunable mechanical structure is significantly complex and bulky for practical use. 

Okamoto et al.46 investigated active noise control via a side branch resonator. The 

secondary source was mounted at the end of the side branch resonator and less power 

was required than mounted directly on the duct wall. Radcliffe and Birdsong47 

suggested changing the response of the resonator through the active control rather than 

tuning the structure. A secondary source was mounted at the end of the resonator to 

tuning the resonator resonance with a feedback approach. Utsumi48 theoretically 

studied the possibility of broad band noise control through modifying the terminator 

impedance of the resonator. He derived the controller transfer function and 

demonstrated the efficiency of the method by computer simulation. Yuan49 proposed 

an electrically tuned Helmholtz resonator with positive real impedance. The control 

strategy made the system more reliable and robust. Multiple resonators were used by 
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Zhao50 to control multiple noise modes simultaneously. He developed algorithms for 

identifying the characteristics of all modes and tuning the neck areas of the Helmholtz 

resonators. 

 

These adaptive algorithm usually tuned resonators by sensing pressure in the 

downstream duct and the detected signals were often contaminated by the exhaust and 

other noise. Singh51 developed a control transfer function based on the phase 

relationship between the pressure at the top of the closed end of the cavity and the 

pressure at the neck wall. This method did not detect pressure in ducts and hence 

eliminated the influence of contamination by exhaust and other unrelated noise. 

Kook52 used active control to suppress the associated unwanted noise. He also used a 

feedback control to adapt to varying flow conditions. 

1.2 Periodic structure 

Multiple mufflers are often used to enhance the sound attenuation performance. When 

the mufflers are distributed periodically in a duct, the periodic structure can produce 

peculiar dispersion characteristics in the overall transmission loss. Acoustic wave 

propagation in periodic waveguides involves two types of periodic waveguides53: 

waveguides with periodically nonuniform boundaries and uniform waveguides which 

including periodically scattering inclusions. The solutions of wave propagation in 

these two types of periodic waveguides were Bloch wave functions.  
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Many studies have investigated sound propagation in a spatial periodic structure. 

When the mufflers are distributed periodically in a duct, the periodic structure can 

produce peculiar dispersion characteristics in the overall transmission loss. At certain 

frequencies the Bloch wave cannot transmit through the structure which is called 

stopbands and at certain frequencies the Bloch wave can propagate freely through the 

periodic structure which is called passbands.  

 

Bradley53, 54 investigated the time-harmonic acoustic wave propagation in periodic 

waveguides both theoretically and experimentally. His work showed that the Bloch 

wave functions were solutions to a broad class of periodic acoustic waveguide. 

Sugimoto and Horioka55 examined the dispersion characteristics of waves propagation 

in a tunnel with an array of Helmholtz resonators and the band structures exhibited as 

a result of the side branch resonance and the Bragg reflections. Wang and Mak56, 57 

investigated the attenuation performance of the periodic Helmholtz resonators array 

in a duct system. Owing to the coupling of the periodic structure and the resonator, it 

was found that the periodic Helmholtz resonators can provide a much broader sound 

attenuation than a single resonator. 

 

The periodic structure may contain defects sometimes. The defects includes the 

disorder in the periodic distance and the characteristics of the periodic scattering 

inclusions. Mead58 investigated wave propagation through a mono-coupled periodic 

system with a single disorder. He introduced three types of disorder and found that the 
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introduced disorder resulted in reduced transmission when the frequency is in the 

passbands of the periodic system. Munday et al.59 examined a simple one-dimensional 

acoustic band gap system which is made of a diameter-modulated periodic waveguide 

theoretically and experimentally. Their results showed that the defects leaded to 

narrow frequency transmission bands within the stopbands of the periodic waveguide. 

Wang and Mak60 discussed the effect of disorder in a periodic Helmholtz resonators 

array. It was found that the periodic system was sensitive to defects in the periodic 

distance and might bring significant gaps to the perfect periodic system. However, 

disorder in geometries of Helmholtz resonators with the periodic distance unchanged 

did not influence the main attenuation band of the original periodic structure. 

 

1.3 Objective and Scope of Research 

This thesis aims to study the effect of the periodic arrangement on the transmission 

loss of the mufflers. When the mufflers are periodically mounted on the duct, the sound 

attenuation of the periodic mufflers is determined by the characteristics of both the 

muffler itself and the periodic structure. This thesis therefore provides a systematic 

investigation of the effect of the periodic arrangement on the transmission loss of the 

mufflers including the simple expansion chamber muffler and the micro-perforated 

muffler. 

 

The first objective of this thesis is to examine the theory of various mufflers including 
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the side branch resonator, the expansion chamber muffler and the micro-perforated 

muffler. To improve the performance of the side branch Helmholtz resonator, a 

Helmholtz resonator with a spiral neck is proposed to lower the resonance frequency 

within a limited space. Besides, in order to adapt to the changes, a semi-active 

resonator via the control of the termination impedance of the resonator is used. A 

theoretical study is conducted to investigate the effect of flow on the semi active 

Helmholtz resonator in a low Mach number flow duct. 

 

The second objective of this thesis is to investigate the wave propagation in a periodic 

array of expansion chamber mufflers. Although multiple expansion chamber mufflers 

have been used to improve the sound attenuation performance, there is little works on 

the transmission loss of the periodic expansion chamber mufflers. The specific 

objectives are list below: 

1) To understand the wave propagation in the periodic expansion chamber 

mufflers based on transfer matrix method and the Bloch wave theory 

2) To evaluate the effect of the periodic structure on the transmission loss of the 

periodic expansion chamber mufflers 

 

The third objective of this thesis is to investigate the micro-perforated muffler and the 

transmission loss of an array of periodic micro-perforated mufflers. The development 

of the acoustic Bloch wave motivates us to combine it with the micro-perforated tube 

muffler. The specific objectives are list below: 
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1) To understand the underlying physics related to the micro-perforation and its 

impact on the muffler performance; 

2) To study the wave propagation in the periodic micro-perforated mufflers and 

obtain the transfer matrix of the micro-perforated muffler in the periodic 

structure; 

3) To investigate the dispersion relation of the periodic micro-perforated 

mufflers and evaluate the effect of the periodic structure on the transmission 

loss of the micro-perforated mufflers 

 

1.4 Outline 

The thesis is divided into six chapters. Chapter 1 introduces the background of the 

present work. Literature of related previous work is reviewed and the motivations as 

well as the objectives of this study are presented. 

 

In Chapter 2, the transmission loss of the side Helmholtz resonator was investigated 

theoretically and numerically. In order to adapt to the environmental changes, a semi-

active resonator via the control of the termination impedance of the resonator is used. 

A theoretical study is conducted to investigate the effect of flow on the semi active 

Helmholtz resonator in a low Mach number flow duct. 

 

In Chapter 3, the Helmholtz resonator with a spiral neck is proposed in order to 
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improve the attenuation performance of the Helmholtz resonator at lower frequencies. 

The transmission loss of the proposed Helmholtz resonator is studied theoretically 

based on the equivalent of the curved duct. The performance derived from the 

theoretical prediction are compared with finite element method for validation. 

 

In Chapter 4, a theoretical study of the acoustic attenuation of periodic expansion 

chamber mufflers is conducted. The transfer matrix of the periodic structure is derived 

to determine the Bloch wave in periodic expansion chamber mufflers. The dispersion 

characteristics of periodic mufflers is examined. Periodic expansion chamber mufflers 

have different transmission loss than a single expansion chamber muffler, which may 

have potential applications in muffler design. 

 

In Chapter 5, the wave propagation in a periodic array of micro-perforated tube 

mufflers is investigated theoretically, numerically and experimentally. Because of the 

high acoustic resistance and low mass reactance due to the sub-millimeter perforation, 

the micro-perforated muffler can provide considerable sound attenuation of duct noise. 

The Bloch wave theory and the transfer matrix method are used to study the wave 

propagation in periodic micro-perforated tube mufflers and the dispersion 

characteristics of periodic micro-perforated mufflers are examined. The results 

predicted by the theory are compared with finite element method simulation and the 

experimental results. 
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Chapter 6 summarizes the investigation of the present study and together provides 

suggestions of improving the work for further investigations. 
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Chapter 2  

The Side Branch Resonator Muffler 

 

Side branch elements attached to ducts are very useful devices for suppressing tonal 

noise in a ductwork system. At the junction, the sound energy is distributed among the 

duct and the side branch depending on the relative impedances of the junctions. The 

side branch resonator functions at the frequencies where the impedance of the side 

branch is relatively low and the side branch is equivalent to a short circuit which 

suppresses the sound power transmitted to the downstream duct. 

 

2.1 The Side Branch Helmholtz Resonator 

2.1.1 Transmission Loss of the side branch 
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Figure 2-1 A duct with a side branch: (a) acoustical system; (b) equivalent analogous circuit 

 

The configuration of a duct with a side branch is shown in Figure 2-1 and the duct 

ends in an anechoic termination. Assuming only plane waves propagate in the duct. 

The cross-sectional area of the duct is S. The junction where the side branch joins the 

duct is set as x = 0. The acoustic pressure upstream of the junction is p1 and the acoustic 

pressure downstream of the junction is p2. The acoustic pressures and the particle 

velocities can be expressed as follows: 
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where ρ0, c0 are the density and the sound speed in air,  ω is the angular frequency and 

k is the wave number. 

 

The acoustic pressure of the side branch at the junction is pb = Abejωt. As indicated in 

Figure 2-1, the acoustic pressure pb is the same as the acoustic pressure in the duct at 

the junction (x = 0) and the volume velocity is continuous.  

 1 2(0) (0) bp p p= =   (2.5) 

 ( ) ( )1 20 0 bSu Su U= +   (2.6) 

 b
b

b

pU
Z

=   (2.7) 

where Zb is the acoustic impedance of the side branch at the junction and Ub is the 

volume velocity of the side branch at the junction. Substituting Eq. (2.1) to (2.4) into 

Eq. (2.5) and Eq. (2.6), yields 
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By eliminating B1, the relation between AI and AT can be expressed as 
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The transmission loss is defined as the ratio of the incident acoustic power and the 

transmitted acoustic power. The transmission loss of the side branch can be obtained 
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For a side branch resonator muffler, the transmission loss is determined by the acoustic 
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impedance of the side branch,  

2.1.2 Impedance of the Helmholtz resonator 

 

 

Figure 2-2 (a) The side branch Helmholtz resonator, (b) equivalent analogous circuit of the HR 

 

The Helmholtz resonator consists of a narrow neck and a cavity volume. As shown in 

Figure 2-2, the side branch is a circular concentric Helmholtz resonator with 

neck/radius rn/rc, circular cross sectional area Sn/Sc, and length Ln/Lc respectively. The 

Helmholtz resonator is mounted on a rectangular duct with cross sectional area S. 

When the wave length is much greater than the dimensions of the Helmholtz resonator, 

the modeling of a Helmholtz resonator can be simplified as a lumped model. The 

Helmholtz resonator is analogous to a mass-spring system. The air in the neck of the 
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resonator is modeled as a lumped mass element and the air compacted in the cavity 

volume is modeled as an acoustic compliance. The thermos-viscous losses at the neck 

walls and the sound radiation at the neck can be modeled as an acoustic resistance. 

Thus, the impedance of the Helmholtz resonator at the junction is made up of a 

resistance term, an inertance term and a compliance term: 

 1
HR HR HR

HR

Z R j M
C

ω
ω

 
= + − 

 
  (2.12) 

The acoustic mass is given by 
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=   (2.13) 

where Ln is the length of the neck of the resonator and Sn is the cross sectional area of 

the resonator. ∆L is the sum of the end correction at the inner and outer neck ends. The 

end correction is given as19: 
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where rn and rc are the radius of the neck and the cavity.  

 

The acoustic compliance is derived based on assuming a uniform pressure throughout 

the whole cavity and an isentropic compression process. 

 2
0 0

HR
VC
cρ

=   (2.15) 

where V = ScLc is the cavity volume and Sc and Lc are the cross sectional area and the 

length of the cavity. 
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At low frequencies, the resistance of the Helmholtz resonator can be represented as 

below19 

 
2

0 0

2HR
c kR ρ
π

=   (2.16) 

where k = ω/c0 is the wave number. ρ0, c0 are the density and the sound speed in the 

air. The acoustic impedance of the Helmholtz resonator can be expressed as 
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2.1.3 Transmission Loss of the side branch Helmholtz resonator 

According to Eq. (2.11), the transmission loss of a side branch can be given if the 

impedance of the side branch at the junction is known. Therefore, with the impedance 

of the side branch Helmholtz resonator of Eq. (2.17), the transmission loss of a side 

branch Helmholtz resonator can be calculated. 
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The resonance frequency of the Helmholtz resonator is the frequency at which the 

reactance of the impedance is zero. 
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The resonance frequency is f0 
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It can be seen from the Eq. (2.20), the resonance frequency is determined by the 

geometries of the Helmholtz resonator.  

 

Let the geometries of the Helmholtz resonator be: rn = 0.01 m, Ln = 0.02 m, rc = 0.06 

m, Lc = 0.1 m. The cross sectional area of the duct is set as 0.12 m*0.12 m. The 

transmission loss of the side branch Helmholtz resonator according to Eq. (2.18) is 

plotted in Figure 2-3. The resonance frequency is 153 Hz. It is seen that the side branch 

resonator can effectively attenuate noise over a narrow frequency range around its 

resonance frequency.  

 

Figure 2-3 Transmission loss of the Helmholtz resonator by theoretical analysis 
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Figure 2-4 The side branch Helmholtz resonator in FEM simulation 

 

To compare with the theoretical results, a three dimensional finite element method 

(FEM) is used to simulate the side branch Helmholtz resonator. The numerical model 

consists of a duct with a side branch Helmholtz resonator and an excitation from an 

oscillating sound pressure at fixed magnitude P0 = 1 at the inlet of the duct. The end 

termination was set to be anechoic. The configuration of the FEM model is illustrated 

in Figure 2-4 and the geometries is the same as the theoretical model.  
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Figure 2-5 Transmission Loss calculated by FEM simulation 

 

Figure 2-5 shows the transmission loss of the side branch Helmholtz resonator based 

on the FEM method. It is seen that the FEM results is identical with the theoretical 

results in Figure 2-3. In the FEM results, the resonance frequency is 156 Hz which is 

a little different from that of the theoretical results shown in Figure 2-3. The difference 

is due to the end corrections of the length of the Helmholtz resonator is different from 

the three dimensional FEM simulation. 

 

2.2 Semi-Active Helmholtz Resonator 

This study aims at studying the effect of flow on the semi active Helmholtz resonator 

for duct noise control. First the plane wave propagation in a flow duct is introduced 

and the discontinuity condition is analytically derived. Then, the control controller 
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transfer function under flow condition is then proposed. 

2.2.1 Wave propagates in a mean flow duct 

When a plane wave propagates in a mean flow duct, the wave equation is 61: 

 ( )
2

2 2
21 2 0p pM k p jkM

x x
∂ ∂

− + − =
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  (2.21) 

M denotes the Mach number M = u0/c. The solution to the wave equation is: 
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Eq. (2.22) presents superposition of two progressive waves moving in opposite 

directions. 

 

When there is a side branch Helmholtz resonator along the flow duct as shown in 

Figure 2-6. A side-branch Helmholtz resonator is mounted on the side wall of an 

infinitely duct and the plane wave propagates along the duct. The cross-sectional area 

of the duct is S. The mean flow in the duct is U0. The dotted area indicates the pressure 

discontinuity due to the mean flow. At the connection, the upstream pressure is p1 and 

the downstream pressure is p2. The pressure at the neck of the Helmholtz resonator is 

p3 and is assumed to be equal to the upstream pressure at the junction. 



29 

 

Figure 2-6 A side branch Helmholtz resonator in a grazing flow duct 

 

At the junction, according to Eq. (2.22) the sound pressure can be expressed as follows: 

 

 ( )1
I Rik x ik x i tp Ie Re e ω−= +   (2.23) 

 2  Tik x i tp Te e ω=   (2.24) 

 

0 0

0

,  ,
1 1

1

I R

T

c ck k
M M
ck
M

ω ω

ω

= =
+ −

=
+

  (2.25) 

The fluid particle velocities satisfy the following equation: 
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The propagation of the wave can be characterized by the following equations 62: 
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where P0 is the equilibrium pressure, U0 is the mean flow velocity and ρ0 is the 

equilibrium density. Eq. (2.27) and Eq. (2.28) respectively indicates conservation of 
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momentum and flow mass at the junction. Substituting Eqs. (2.21)-(2.25) into Eq. 

(2.27) and Eq. (2.28) 

 ( ) ( ) ( )2 2 21 1 1M I M R M T+ + − = +   (2.29) 

 ( ) ( ) ( )
0 0

1 1 1

HR

M C I M C R M T
C c SZρ

+ − − + + = +

=
  (2.30) 

R is eliminated from the Eq. (2.29) and Eq. (2.30). Thus, T is indicated with I as 

follows: 
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Eq. (2.31) shows the relationship between transmission wave and incident wave in a 

grazing flow duct. 

2.2.2 Flow effect on acoustic impedance of Helmholtz resonator 

As shown in Eq. (2.31), the transmission loss performance of the Helmholtz resonator 

is mainly determined by the acoustic impedance and the Mach number. The acoustic 

impedance of Helmholtz resonator can be expressed as below: 

 1
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RHR and XHR are respectively the acoustic resistance and the acoustic reactance of the 

Helmholtz resonator. The resonance frequency 0 1 HR HR efff M C S l V= =  (leff is the 

effective length of the neck) of Helmholtz resonator is determined by the reactance. 

The acoustic reactance reaches minimum when resonance occurs. 
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A lot of studies have been conducted on the acoustics impedance of a HR in a grazing 

flow duct. Although there is no unified model to indicate the flow effect on acoustic 

impedance of the HR, it is agreed that the flow mainly influence the resistance and the 

effective length of Helmholtz resonator. Many experimental work shows that acoustic 

resistance increases linearly and the effective length of the neck decrease as the flow 

velocity increased. Cummings 63 proposed an empirical impedance model: 
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d and t are respectively diameter and the length of the neck of the Helmholtz resonator. 

Rf  denotes resistance introduced by flow.  δ is the end correction of the neck with 

grazing mean flow, δ0 is the end correction without flow, c0 is the sound speed in air. 

u* is friction velocity at the boundary surface. With Cummings’ model, the effect of 

various flow speeds on a Helmholtz resonator is show in Figure 2-7. 
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Figure 2-7 Transmission loss of a Helmholtz resonator under different flow condition. 

 

In Figure 2-7, the geometries of the Helmholtz resonator are: cross sectional area of 

duct Sd = 0.0144 m2, resonator orifice area Sn = 0.0004 m2, length of the resonator neck 

is Ln = 0.03 m, the cavity of the resonator V = 0.0014 m3. From the result shown in 

Figure 2-7, the transmission loss is influenced in the items of the resonant frequency 

and the transmission loss amplitude at resonant frequency. As the mean flow speed 

increased, the resonance occurs at a higher frequency and the transmission loss 

performance decreased at the higher frequency. 

 

In a practical exhaust ductwork system, the Mach number is normally less than 0.3. In 

that case, the convective flow effects in the duct can be neglected64. The mainly 

important effect of mean flow is on the acoustic impedance of Helmholtz resonator. 

The transmission loss is below: 
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This equation indicates that the transmission loss reach a peak when the reactance 

approaching to zero and the resistance significantly influence the sound reduction 

performance at the resonance frequency. At resonance frequency, the acoustic 

reactance is close to zero, therefore the transmission loss will be: 
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2
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  (2.36) 

 

Transmission loss will decrease as the resistance increases. It is known that acoustic 

resistance increases linearly and the effective length of the neck decrease as the flow 

velocity increased. Therefore, the flow influences the attenuation performance of 

Helmholtz resonator in two ways: the resistance at the orifice and the effective length 

of the neck. The decrease in length end correction results in resonance frequency shifts 

to a higher frequency and the increased resistance leads to lower transmission loss 

amplitude at resonance frequency. 

 

2.2.3 Termination impedance control 

This formula (2.31) indicates the discontinuity condition due to the mean flow and 

the flow will reduce the transmission loss performance of Helmholtz resonator. An 

emerging solution aims to adapt to the changes of the environment is semi active 

control system. Semi active control method using active noise control strategy 

adaptively changes the passive resonator to follow the environmental variation. 
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However, controlling low frequency makes the system bulky and costly. The concept 

of semi-active control is to control noise by changing the acoustic impedance of 

Helmholtz resonator. Here we control the acoustic impedance of Helmholtz through 

controlling end termination impedance instead of physical geometries.  

 

After the discontinuity condition where the main duct joins the side branch Helmholtz 

resonator is formulated, it is possible to consider reducing the noise via termination 

impedance control of the side branch Helmholtz resonator. 

 

 

Figure 2-8 Control system model 

 

The system configuration is shown in Figure 2-8. The side Helmholtz resonator is 

ended by a control source. The termination impedance is controlled by detecting the 

sound pressure near the resonator neck and the controller function is defined as H(ω). 

The acoustic circuit of the semi active Helmholtz resonator is shown in Figure 2-9. 

The RHR, MHR, and CHR are the acoustic resistance, acoustic inertance, and acoustic 

compliance of the Helmholtz resonator under flow condition. 
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Figure 2-9 Acoustic circuit of the semi active Helmholtz resonator 

 

According to the acoustic circuit, the pressure p3 can be readily expressed as: 

 ( ) ( )3 3
3 3 HR HR

HR

U H p
p U j M R

j C
ω

ω
ω

−
= + +   (2.37) 

Thus, the impedance of the semi active Helmholtz resonator is: 
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Substituting Eq. (2.38) to Eq. (2.31) we can obtain the transmission coefficient with 

the termination impedance control: 
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  (2.39) 

To suppress the transmitted wave means to let transmission coefficient approach to 

minimum. Thus, the controller function should be determined such that the Eq. (2.39) 

equal to zero. Thus, we obtain 

 ( ) ( )( )( )2
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2HR HR HR HR
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c M
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The controller function is related to impedance of the Helmholtz resonator and the 
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mean flow velocity. Adjusting the controller function could reach maximum 

transmission loss over a wider frequency range. The mean flow significantly 

influences the acoustic impedance of the Helmholtz resonator and there is no a unify 

model to predict the effect of flow on the acoustic impedance of the Helmholtz 

resonator and it will be determined by investigating the lumped parameters under 

different air flow velocities experimentally. 

 

2.3 Summary 

 

The side branch resonator muffler is investigated. For a side branch Helmholtz 

resonator, the resonance frequency is mainly determined by the physical parameters 

of the resonator. The side branch resonator can effectively attenuate noise over a 

narrow frequency range around its resonance frequency. The transmission loss of the 

side Helmholtz resonator was investigated theoretically and numerically. 

 

The performance of the Helmholtz resonator is fixed once the resonator is made. In 

order to adapt to the environmental changes, a semi-active resonator via the control of 

the termination impedance of the resonator is used. A theoretical study is conducted to 

investigate the effect of flow on the semi active Helmholtz resonator in a low Mach 

number flow duct.  
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Chapter 3  

Helmholtz Resonator with a spiral neck 

 

To improve the sound attenuation performance of a HR at low frequencies, much work 

has been conducted on making them as small as possible while keeping the effective 

resonance frequency low enough. Selamet and Lee65 extended the neck into the cavity 

and find that this shifted the resonance frequency down within it. Later, Selamet et 

al.66 presented another approach to lowering the resonance frequency of a HR by lining 

it with fibrous material. This was found to lower the resonance frequency and peak 

transmission loss without changing the cavity dimensions.  

 

Apart from improving the passive control system, researchers have also used active 

control methods to shift the efficient frequency range of the HR. Radcliffe and 

Birdsong47 proposed a means to control the acoustic impedance of the HR by mounting 

a loudspeaker at the end. The control source was stimulated by a closed-loop adaptive 

control strategy to change the resonance frequency. Utsumi48 also investigated a side 

branch HR with dynamic termination impedance and explored the possibility of broad 

band noise control through varying the termination impedance.  

 

This chapter focuses on improving the noise reduction performance of HR at low 
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frequency within a limited space. In order to make the neck as long as possible, a spiral 

duct takes the place of the traditional short neck of the HR. The curved structure 

lengthens the neck without requiring a large space. The wave propagation in the spiral 

duct neck is analyzed and the acoustic impedance formulated based on the transfer 

matrix method. The results show that the resonance frequency of the HR can be 

reduced by using the spiral neck, which has potential applications in tonal noise 

control in a limited space. 

 

3.1 Wave propagation in the spiral neck 

 

 

Figure 3-1 The Helmholtz resonator with a spiral neck 

 

Figure 3-1 illustrates a Helmholtz resonator mounted on a rectangular duct with cross-

sectional area Sd. Unlike the traditional straight duct neck, the neck considered in this 

study is a spiral duct of circular cross-sectional area Sn. The cavity of the Helmholtz 
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resonator is a circular duct of cross-sectional area Sc and length Lc. 

 

 

Figure 3-2 The spiral neck with three turns 

 

As shown in Figure 3-2, the spiral neck can be divided into three parts: straight duct I 

of length LI, spiral duct II of length LII measured at the midline, and straight duct III 

of length LIII. The spiral neck has three turns and compacts the long neck within a 

smaller space. The spiral duct has a circular cross section of radius r0 and its midline 

has a curvature radius R0 as shown in Figure 3-3.  
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Figure 3-3 A section of the curved duct 

 

The spiral duct takes N turns and the length LII is N*2π*R0. From Newton’s Second 

Law, the particle velocity along the toroidal axis is: 

 ( )
0

1 1, p pv R
j R R

φ
ωρ φ

 − ∂ ∂
= + ∂ ∂ 

  (3.1) 

where p is the pressure, ω is the angular frequency, ρ0 is the medium density, φ is the 

curvature angle, and R is the distance from the point to the curvature center. 

Nederveen67 assumed the radial dependence of the pressure is small at low frequency 

which meant the pressure is the same over the cross section; this is valid for the 

frequency range discussed in this study. Therefore, the particle velocity is: 

 ( )
0

1 1, pv R
j R

φ
ωρ φ
− ∂

=
∂

  (3.2) 

 

The volume velocity in the duct in terms of the axial pressure gradient at the midline 

and the volume velocity in the bent duct is expressed: 
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The ratio κ = r0/R0 indicates the abruptness of the bend and the factor F represents the 

flow change as a result of the curvature in the duct. The effect of the curvature is 

described as a change in the input impedance of the duct. For a spiral duct of cross-

sectional area Sn and length LII measured at the midline, the input impedance of the 

spiral duct can be written as a straight circular duct with cross-sectional area SB and 

length LB: 

 
/B n

B II

S S F

L L F

=

=
  (3.4) 

 

This means the spiral duct can be seen as an equivalent straight tube with cross area 

SB and length LB. According to Eq. (3.3), the factor F is always less than 1. The 

equivalent circular duct is wider and shorter than the original spiral duct. Therefore, 

the spiral neck can be equivalent to the combination of three connected straight ducts 

as shown in Figure 3-4 and it is obviously that the spiral neck is different from a 

straight duct neck with the same length as a result of the curvature effect of the bend 

duct.  
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Figure 3-4 The equivalent of the spiral neck 

 

3.2 Impedance of the spiral HR 

The transfer matrix for a straight circular duct of area S and length L is given by 

Munjal1: 
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  (3.5) 

pin, Uin and pout, Uout are the acoustic pressures and volume velocities at the input and 

output ends of the duct, respectively. L is the effective length of the duct which 

includes two end corrections at each side. 

 

Figure 3-1 illustrates a duct system with a side branch Helmholtz resonator. The 

impedance of the HR can be calculated by the transfer matrix between the inlet of the 
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neck and the end of the cavity. As shown in Figure 3-2, the neck section can be divided 

into three parts; straight duct I, equivalent straight duct II, and straight duct III. TI, TII, 

and TIII are respectively the transfer matrices of the three parts. Tc is the transfer matrix 

of the cavity. According to Eq. (3.5), theses transfer matrices can be expressed as 

follows 
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Therefore, the pressure and the volume velocity between the inlet of the neck and the 

end of the cavity can be written as 

 1 2 2

1 2 2
I II III c

p p pA B
U U C D U
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where p1, U1 and p2, U2 are the acoustic pressures and volume velocities at the neck 

and the end of the cavity of the Helmholtz resonator, respectively. LIe and LIIIe are the 
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effective length of the straight duct I and straight duct III which including the end 

correction effects. Eq. (3.10) gives the overall transfer matrix of the Helmholtz 

resonator.  

 

Assuming the wall of the cavity is rigid, which means that the volume velocity at the 

end of the cavity is zero U2 = 0, the Eq. (3.10) will be 

 1 2p Ap=   (3.11) 

 1 2U Cp=   (3.12) 

 

Therefore, the input impedance of the HR can be expressed as: 

 1

1
in

p AZ
U C

= =   (3.13) 

Once the input impedance of the Helmholtz resonator determined, the transmission 

loss of a side HR can be described as1: 

 0 0
10

/ 220log d in

in

c S ZTL
Z

ρ +
=   (3.14) 

 

3.3 Results and discussion 

3.3.1 Validation of the FEM model 

 

The three-dimensional finite element method (FEM) is used to enable comparison 
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with the theoretical analysis. Firstly, a duct with a bent portion is calculated. The model 

described in Figure 3-5 is the same as given in the literature68 and consists of two 

straight circular and one bent duct. The geometries are illustrated in Figure 3-5. The 

sound source is located at the beginning of the duct and the output end is set as rigidly 

closed.  

 

 

Figure 3-5 A curved duct with a close end 

 

Figure 3-6 shows the model of the curved duct with a close end in FEM simulation. 

The geometries are set the same as shown in Figure 3-5. The boundaries of the duct 

are set as rigid. The duct at left side is the inlet and the duct at the right side is the 

outlet. The inlet of the curved duct is set as the plane wave radiation boundary 

condition and the outlet of the duct is set as a rigid wall.  

 

A probe is located at the center of the inlet of the curved duct to measure the sound 

pressure and the particle velocity. Then the non-dimensional input impedance can be 
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evaluated with the measured sound pressure and the particle velocity. 

 
0 0

1
in

pz
c vρ

=   (3.15) 

 

Figure 3-6 The curved duct in FEM simulation 

 

The input impedance of the curved duct is calculated with FEM simulation and the 

result is shown in Figure 3-7. The modulus of the input impedance of the curved duct 

gives a result identical with the theoretical and experimental results in the reference68. 

It can be concluded that the FEM simulation is an effective approach to evaluate the 

effect of the curvature of the bend duct. 
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Figure 3-7 Input impedance (modulus) calculated by FEM. 

 

3.3.2 FEM Simulation of the HR with a spiral neck 

 

As the Finite Element Method has been proved an effective way to simulate the curved 

duct in last section, it is used here to simulate the Helmholtz resonator with a spiral 

neck.  

 

As shown in Figure 3-8, the numerical model is composed of a rectangular duct with 

a side branch Helmholtz resonator. The geometries of the duct system are the same as 

defined in Figure 3-1 and are set as follows; Sc = 36π cm2, Lc = 10 cm, Sd = 144 cm2, 

Ld = 100 cm, Sn = π cm2, LI = 3 cm, LIII = 3 cm, R0 = 1.2 cm, and r0 = 1 cm. The mesh 

divides the duct-HR system into more than 2200 triangular elements and the minimum 

element size is 1.8 cm.  
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Figure 3-8 The Helmholtz resonator with a spiral neck in FEM simulation 

 

The left end of the rectangular duct is the inlet and the right end of the duct is the outlet. 

The inlet boundary is set as a plane wave radiation boundary condition and the incident 

pressure is p0 = 1 Pa. The outlet boundary is also set as a plane wave radiation 

boundary condition with no incident pressure which means the outlet boundary of the 

duct is set to be anechoic. A probe is set at the center of the outlet of the duct to measure 

the transmitted sound pressure and then to be used to calculate the transmission loss 

of the Helmholtz resonator. 

 

The FEM simulation of the transmission loss of the duct-HR system is compared with 

the theoretical prediction described in Section 3.2. The number of turns N of the spiral 

neck is set from 1 to 4. Figure 3.9 shows the transmission loss of a side branch HR 

with a spiral neck. In Figure 3-9 the solid lines represent the theoretical results of the 
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transmission loss and the dashed lines represent the FEM simulation results. 

Comparing the solid lines to the dashed lines, the theoretical prediction agrees well 

with the FEM calculations.  

 

 

 

Figure 3-9 Transmission loss of the HR with a spiral neck (solid lines represent the results of 

theoretical prediction and dashed lines those of the FEM simulation). 

 

For a traditional Helmholtz resonator, the maximum length of the neck as considered 

in Figure 3-1 will be the sum of the length of straight ducts I and III, which is 6 cm in 

the FEM simulation. The resonance frequency of the traditional HR will be f0 = 105 

Hz. For the HR with a spiral neck, the resonance occurs at 76 Hz, 61 Hz, 54 Hz, and 

48 Hz for the turns of the spiral duct N = 1, 2, 3, and 4 as shown in Figure 3-9(a)-(d). 
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It is apparent that the spiral neck substantially downshifts the resonance frequency 

without requiring a lot of space compared to the traditional Helmholtz resonator, and 

that giving the spiral neck more turns results in a much lower resonance frequency of 

the proposed Helmholtz resonator.  

 

3.3.3 High frequency modes of the HR 

 

The Helmholtz resonator with a spiral neck is different to the traditional Helmholtz 

resonator. When there are large turns, the dimension of the neck may be comparable 

with the sound wavelength being considered. It is therefore necessary to investigate 

the effect of the spiral neck on the transmission loss at high frequencies.  

 

Figure 3-10 illustrates the transmission loss of the Helmholtz resonator when the 

number of turns of the spiral neck is set to be 3. 
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Figure 3-10 Transmission loss of the HR with a spiral neck at higher frequencies (solid lines 

represent the results of theoretical prediction and dashed lines those of the FEM simulation). 

 

As shown in Figure 3-10, resonance occurs at more than one frequency. These higher 

modes are generated by the long neck of the Helmholtz resonator. When the frequency 

is high, the side branch HR can be modelled as a long tube, similar to the quarter wave 

resonator, which has more resonance frequencies. Therefore, the spiral neck not only 

lowers the resonance of the HR but also gives more resonance at higher frequencies. 

This is very useful in practice, especially when the noise source contains more than 

one frequency to be controlled. Fan noise is a good example, where the frequency is 

determined by the speed of the fan rotation. Traditional HR only work at one frequency 

and so cannot respond to changes in fan speed. With the help of the spiral neck, the 

HR can be designed to control the different tonal noise. 
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3.4 Summary 

To improve the attenuation of the Helmholtz resonator at lower frequencies, a 

Helmholtz resonator with a spiral neck is proposed. The transmission loss of the 

proposed Helmholtz resonator is studied theoretically based on the equivalent of the 

curved duct. 

 

The Finite element method is used to simulate the Helmholtz resonator with a spiral 

neck and the turns of the spiral neck is set as different to investigate its effect. The 

theoretical results agree well with the FEM simulation results. The results show that 

the resonance frequency of the Helmholtz resonator can be effectively lowered by 

incorporating the spiral neck and larger number of the turns of the spiral neck results 

in lower resonance frequency of the Helmholtz resonator, which have potential 

application of tonal noise control within a limited space. 

 

Additionally, the effect of the higher modes of the Helmholtz resonator is investigated 

and the results show that the spiral neck not only lowers the resonance of the HR but 

also gives more resonance at higher frequencies. This is very useful in practice, 

especially when the noise source contains more than one frequency to be controlled. 
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Chapter 4  

Periodic Expansion Chamber Mufflers 

 

The expansion chamber muffler is an effective noise reduction device for duct systems. 

The transmission loss of a single expansion muffler has a periodic character that is 

often used for the control of periodic noise. Combining several mufflers is a way to 

improve performance.69, 70 

 

When mufflers are periodically loaded along a duct, this periodic structure can produce 

peculiar dispersion characteristics in overall transmission loss. Bloch waves were 

introduced to explain the wave propagation in periodic waveguides. Bradley53, 54 

investigated acoustic Bloch waves in periodic waveguides theoretically and 

experimentally and proved that Bloch waves were the solution to infinite, semi-infinite, 

and finite periodic waveguides. Sugimoto and Horioka55 examined the dispersion 

characteristics of wave propagation in a tunnel with an array of Helmholtz resonators. 

Wang and Mak56, 57 found that periodic Helmholtz resonators can provide a much 

broader sound attenuation than a single resonator.  

 

This Chapter aims to investigate wave propagation in periodic expansion chamber 

mufflers. The transfer matrix of the periodic structure is derived to determine the Bloch 
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wave in periodic expansion chamber mufflers. The dispersion characteristics of 

periodic mufflers is examined. Periodic expansion chamber mufflers have different 

transmission loss than a single expansion chamber muffler, which may have potential 

applications in muffler design. 

 

4.1 Single Expansion Chamber Muffler 

4.1.1 Transmission Loss of the single expansion chamber 

The single expansion chamber is a common device for attenuating noise in ductwork 

systems. The single expansion chamber is composed of one expansion chamber to 

provide an acoustic impedance mismatch. The acoustic energy is reflected by the 

expansion chamber at effective frequencies and the expansion chamber muffler is a 

reactive noise control device. 

 

 

Figure 4-1 The configuration of the single expansion chamber muffler 
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As shown in Figure 4-1, the diameter of the circular duct is d1 and the diameter of the 

single expansion chamber is d2. The length of the muffler is L. Assuming that only 

plane waves propagate in the duct and the expansion chamber muffler. The incident 

wave and the reflected wave in the inlet duct can be represented as: 
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where ρ0 and c0 are the density and the speed of sound in air. Similarly, the sound 

pressure in the expansion chamber can also be represented by the combination of the 

incident plane wave piec and the reflected plane wave prec. 
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Assuming the outlet duct is end with anechoic termination, the sound pressure and the 

particle velocity at the outlet duct can be expressed as: 
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At the junction of the duct and the expansion chamber muffler, the pressures and the 

volume velocities are continuous. At the inlet of the muffler, the instantaneous acoustic 

pressure in the inlet duct and in the expansion chamber are equal and at the outlet of 

the muffler, the instantaneous acoustic pressure in the expansion chamber equals to 
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that in the outlet duct. The instantaneous volume velocities are equal on each side of 

the inlet and outlet junction of the expansion chamber. 

 

At the junction of the inlet of the expansion chamber muffler (x = 0), the sound 

pressure and the volume velocity are continuous. 

 ( ) ( ) ( ) ( )0 0 0 0i r iec recp p p p+ = +   (4.6) 

 ( ) ( ) ( ) ( )1 1 2 20 0 0 0i r iec recS u S u S u S u+ = +   (4.7) 

where S1 and S2 are the cross sectional area of the main duct and the expansion chamber. 

 

Similarly, at the junction of the outlet of the expansion chamber muffler (x = L), he 

sound pressure and the volume velocity are continuous. 

 ( ) ( ) ( )iec rec tp L p L p L+ =   (4.8) 

 ( ) ( ) ( )2 2 1iec rec tS u L S u L S u L+ =   (4.9) 

Substituting Eqs. (4.1) to (4.5) into Eqs. (4.6) to (4.9) 

 i r iec recA A A A+ = +   (4.10) 

 ( ) ( )1 2i r iec recS A A S A A− = −   (4.11) 
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Eliminating Ar , the Eq (4.10) and Eq. (4.11) yield 

 ( ) ( )1 1 2 1 22 i iec recS A S S A S S A= + + −   (4.14) 

According to Eq. (4.12) and Eq. (4.13), the incident wave and the reflected wave in 

the expansion chamber can be expressed as 
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Substituting Eq. (4.15) and Eq. (4.16) into Eq. (4.14) 
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Let m = S2/S1 be the area ratio of the expansion chamber and the duct.  
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The transmission loss of the single expansion chamber is 
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  (4.19) 

 

4.1.2 Transfer matrix of the single expansion chamber 

The transfer matrix method has been used for evaluating the performance of the 

muffler for a long time. Transfer matrix is usually suitable for one-dimensional 

systems such as the mufflers. The performance of the muffler can be evaluated in terms 

of the transfer matrix of the system. The transfer matrix relates the variables on the 
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two side of the element as shown in Figure 4-2.  

 

 

Figure 4-2 General representation of an element for transfer matrix 

 

The variables on the two sides of the element can be related by its transfer matrix as 

follows: 
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where pin uin are sound pressure and particle velocity at the inlet of the element and 

pout uout are sound pressure and particle velocity at the inlet of the element. The transfer 

matrix of the element is denoted as T. 

 

In order to evaluate the transmission loss of the element in terms of the transfer matrix, 

the outlet of the element is assumed to be anechoic. The pressures and the particle 

velocities at the inlet junction and the outlet junction of the element is expressed as 

follows 
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where Ai, Ar are the amplitudes of the incident wave and the reflected wave at the inlet 

junction, At is the amplitude of the incident wave at the outlet junction. 
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Eliminating Ar, the relation between Ai and At can be expressed as: 
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Therefore, the transmission loss of the element is expressed in terms of the transfer 

matrix. 

 [ ]
2

0 0
10 10 11 12 21 22 102

0 0

2 110log 20log 10log
2 2

in i in

out t out

S A c STL T T T T
S A c S

ρ
ρ

= = + + + +  

 (4.24) 

where Sin and Sout are the cross-sectional area of the inlet and the outlet. 

 

For a straight duct with length L shown in Figure 4-3, the wave in the straight duct can 

be expressed as the combination of the incident wave and the reflected wave. 

 ( ) ( ) ( )j t kx j t kxp x Ie Reω ω− += +   (4.25) 

and the particle velocity is 

 ( ) ( ) ( )

0 0 0 0

j t kx j t kxI Ru x e e
c c

ω ω

ρ ρ
− += −   (4.26) 

where S is the cross sectional area of the straight duct, ρ,c are the density and speed of 

sound in the air. 
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Figure 4-3 A straight duct with length L 

 

 ( ) [ ]0 j tp I R e ω= +   (4.27) 

 ( ) [ ]
0 0

10 j tu I R e
c

ω

ρ
= −   (4.28) 

 
( )

[ ] [ ]cos sin

jkL jkL j t

j t j t

p L Ie Re e

kL I R e j kL I R e

ω

ω ω

− = + 
= + − −

  (4.29) 

 
( )

0 0

0 0 0 0

1

cos sin[ ] [ ]

jkL jkL j t

j t j t

u L Ie Re e
c

kL j kLI R e I R e
c c

ω

ω ω

ρ

ρ ρ

− = − 

= − − +

  (4.30) 

Eq. (4.29) and (4.30) can be rewritten in the matrix form 

 
( )

( )
( )

( )0 0 0 0

0cos sin
0sin cos

p L pkL j kL
c u L c uj kL kLρ ρ

   − 
=    −    

  (4.31) 

and the transfer matrix can be obtained by inverting the Eq. (4.31) 

 
( )

( )
( )

( )0 0 0 0

0 cos sin
0 sin cos

p p LkL j kL
c u c u Lj kL kLρ ρ

    
=    

    
  (4.32) 

Therefore, the transfer matrix T of a straight duct with cross sectional area S and length 

L can be expressed as: 

 
cos sin
sin cos

kL j kL
j kL kL

 
=  

 
T   (4.33) 

 

For the expansion chamber as shown in Figure 4-1, the sound pressure and the particle 
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velocity in the inlet straight duct, the expansion chamber and the outlet straight duct 

are pin/uin, pec/uec, pout/uout respectively. At the inlet junction of the muffler, the sound 

pressures and the particle velocities in the inlet duct and the expansion chamber can 

be related as: 

 
( )

( )2
0 0 0 0

1

1 0
0

0 0
in ec

in ec

p p
S

c u c u
S

ρ ρ

 
    =          

  (4.34) 

Similarly, at the outlet junction of the muffler, the sound pressures and the particle 

velocities in the expansion chamber and the outlet duct can be related as follows: 

 
( )

( ) 1
0 0 0 0

2

1 0

0
ec out

ec out

p L p
S

c u L c u
S

ρ ρ

 
    =          

  (4.35) 

Now the transfer matrix of the expansion chamber can be obtained with Eq. (4.34) 

and Eq. (4.35) 

 

2 1
0 0 0 0

1 2

0 0

1 0 1 0
cos sin

0 0sin cos

sincos

sin cos

in out

in out

out

out

p pkL j kL
S S

c u c uj kL kL
S S

kL pkL j
m

c ujm kL kL

ρ ρ

ρ

   
       =                 

    =      

  (4.36) 

where m is the area ratio of the expansion chamber and the duct defined as in section 

3.1.1. Therefore, the transfer matrix of the single expansion chamber can be expressed 

as: 

 
sincos

sin cos
ec

kLkL j
m

jm kL kL

 
 =
 
 

T   (4.37) 

According to Eq. (4.24), the transmission loss of the single expansion chamber 
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muffler can be expressed as: 

 

10

2
2 2

10

2
2

10

sin 120log cos
2

1 110log cos sin
4

1 110log 1 sin
4

j kLTL kL m
m

kL m kL
m

m kL
m

 = + + 
 

  = + +     
  = + −     

  (4.38) 

which is the same as Eq. (4.19) 

4.1.3 Simulation 

 

 

Figure 4-4 The geometries of the model 

 

As shown in Figure 4-4, let the geometries of the expansion chamber be: the diameter 

of the circular duct d1 = 1.375 in, the diameter of the expansion chamber d2 = 6.035 

in, and the length of the expansion chamber L = 8 inch (the geometry is the same as 

the model used by Tao71).  
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Figure 4-5 Transmission Loss of a single expansion chamber of 1D theoretical analysis 

 

The transmission loss of the expansion chamber muffler according to Eq. (4.38) is 

plotted in Figure 4-5. The 1D theoretical results are based on the plane wave 

assumption. It is seen that the transmission loss of the single expansion chamber 

muffler is a periodic function. As indicated in Eq. (4.38), the transmission loss is a 

periodic function of kL. When sin kL = 0, the transmission loss is zero which means 

the element has no sound attenuation at these frequencies. When sin kL = 1, the 

transmission loss reaches maximum. The sound attenuation performance of the 

expansion chamber is determined by the area ratio and the length of the expansion 

chamber. The larger of the area ration, the larger of the transmission at frequencies 

when sin kL = 1.  

 

To compare with the theoretical results, a 2D axisymmetric finite element method 

(FEM) is used to simulate the expansion chamber muffler. The numerical model is 
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composed of a circular duct with expansion chamber and an excitation from an 

oscillating sound pressure at fixed magnitude P0 = 1 at the inlet of the duct. The end 

termination is set to be anechoic. The configuration of the FEM model is illustrated in 

Figure 4-6. The geometries is the same as the theoretical model. 

 

 

Figure 4-6 The FEM model of the expansion chamber 

 

As shown in Figure 4-6, the beginning and the end of the main duct are set as a plane 

wave radiation boundary condition. The plane wave radiation boundary condition 

means the boundary allow an outgoing wave to leave the domain with minimal 

reflections. At the beginning of the duct, the plane wave radiation boundary, the 

incident pressure is set as 1 Pa which is the incident wave of the expansion chamber. 

At the end of the main duct the plane wave boundary is associate with no incident 



65 

pressure and thus the boundary is identical to anechoic termination. A probe is set at 

the center of the end boundary of the termination to measure the transmitted sound 

wave. Therefore, the transmission loss in FEM model can be calculated with the 

incident wave and the transmitted wave. 

 

Figure 4-7 Transmission loss of the single expansion chamber by FEM 

 

Figure 4-7 gives the transmission loss of the single expansion chamber muffler 

calculated with FEM model. The result agrees well with the experiment data measured 

by Tao and Seybert71. However, the FEM result is different from the predicted by 1D 

plane wave theory shown in Figure 4-5. The difference occurs at higher frequencies 

where the plane wave assumption is no longer suitable for the model and the higher 

modes exists in the expansion chamber and the main duct.  
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4.2 Periodic Expansion Chamber Mufflers 

4.2.1 Transfer matrix of the periodic expansion chamber 

 

Figure 4-8 (a) Infinite periodic expansion chamber mufflers; (b) Finite periodic expansion 

chamber mufflers with anechoic termination. 

 

Figure 4-8(a) shows an infinite array of periodic expansion chamber mufflers loaded 

periodically along a circular duct and Figure 4-8(b) shows a finite array of periodic 

expansion chamber mufflers. The diameters of the duct and the expansion chamber 

are d1 and d2 respectively. A typical periodic cell consists of a uniform duct of length 

d and an expansion chamber of length L. The length of a periodic cell is: h = L+d. 

 

Assume that only planar waves propagate both in the duct and the mufflers and that 

the time-harmonic disturbance takes the form e−jωt. The sound wave propagation in a 



67 

spatially periodic structure has been examined by Bradley,53, 54 who found that Bloch 

wave functions are the solution for a periodic waveguide. For the Bloch waves, the 

relation between waves in two adjacent periodic cells is: 

 1 11 12

1 21 22

n n njqh

n n n

I I I T T
e

R R R T T
+ −

+

       
= = =       

      
T T   (4.39) 

where the transfer matrix T relates to the sound fields at the center of the uniform duct 

in the nth periodic cell and that in the n+1th periodic cell, h is the length of a periodic 

cell and q is called the Bloch wave number. In the nth periodic cell shown in Figure 

4-8(a), the Bloch wave in the uniform duct is composed of two conventional plane 

waves traveling in opposite directions, associated with the amplitudes In and Rn. In a 

periodic waveguide, the Bloch waves in the n+1th cell are related to ones in the nth cell 

with e−jqh. Finding the solution of the Bloch waves requires determining the transfer 

matrix T of the periodic structure and its eigenvalue problem: 

 11 12

21 22

I Ijqh

R R

T T v v
e

T T v v
−     

=     
     

  (4.40) 

where e-jqh and v are, respectively, the eigenvalue and the corresponding eigenvector 

of the transfer matrix T of the periodic expansion chamber mufflers. 

 

In the nth periodic cell, the sound pressure can be expressed as: 

 ( ) ( ) ( )n njk x x jk x x
n n np x I e R e− − −= +   (4.41) 

Let the sound pressures and the particle velocities at the inlet and outlet of the 

expansion chamber muffler in the nth cell be pin, uin and pout, uout respectively: 
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/2 /2 /2 /2

1 1
/2 /2 /2 /2

0 0 0 0 1 1

jkd jkd jkd jkd
in n n out n n

jkd jkd jkd jkd
in n n out n n

p I e R e p I e R e
c u I e R e c u I e R eρ ρ

− −
+ +

− −
+ +

= + = +
= − = −

  (4.42) 

Eq. (4.42) can be rewritten in the form of matrices: 

 
/2 /2

/2 /2
0 0

jkd jkd
in n

jkd jkd
in n

p Ie e
c u Re eρ

−

−

    
=     −    

  (4.43) 

 
/2 /2

1
/2 /2

1 0 0

0.5 0.5
0.5 0.5

jkd jkd
n out

jkd jkd
n out

I pe e
R c ue e ρ

− −
+

+

    
=     −    

  (4.44) 

pout, uout and pin, uin can be related by transfer matrix method:72 

 
0 0 0 01 2 2 1

0 0

1 0 1 0cos sin
0 0sin cos

cos sin
sin cos

out in

out in

in

in

p pkL j kL
c u c uS S S Sj kL kL

pkL jm kL
c uj kL m kL

ρ ρ

ρ

−       
=       −       

−   
=   −   

  (4.45) 

where m = S2/S1. S1 and S2 are the cross-sectional areas of the duct and the expansion 

chamber respectively. Combining Eqs. (4.43), (4.44), and (4.45) yields: 

 

/2 /2

/2 /2
1

/2 /2/2 /2
1

cos sin
2 2

sin cos
2 2

jkd jkd

jkd jkd
n n

jkd jkdjkd jkd
n n

e e kL jm kLI Ie e
kLR Rj kL e ee e

m

− −

−
+

−
+

 
−         =      − −     −    

 

 (4.46) 

Therefore, the transfer matrix T is: 

 

1 12cos sin sin
2 2

1 1sin 2cos sin
2 2

jkd

jkd

e jkL j m kL m kL
m m

j em kL kL j m kL
m m

−     − + −     
     =       − + +    

      

T  

 (4.47) 
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4.2.2 Eigen problem of the periodic transfer matrix 

The Bloch wave number q determine the transmission character of the Bloch waves 

and this can be solved by solving the characteristic Equation of the eigenvalues of 

transfer matrix T: 

 ( ) ( )
2

11 12
11 22

21 22

0
jqh

qh jqh
jqh

T e T
e T T e

T T e

−
− −

−

−
= − + + =

−
T   (4.48) 

According to the principle of reciprocity, the determinant of the matrix T is unity53. 

The two solutions of Eq. (4.48) are q1 and q2 respectively. The solutions must satisfy 

the relations as follows: 

 1 2 1jq h jq he e− − =   (4.49) 

 1 2
11 22

jq h jq he e T T− −+ = +   (4.50) 

According to Eqs. (4.40) and (4.47), the dispersion relation of the periodic structure 

can be expressed as:53 

 ( ) ( )1 11 22
1 1 1cos cos cos sin sin
2 2

q h T T kL kd m kL kd
m

 = + = − + 
 

  (4.51) 

 

The solution of q is multivalued due to the inverse cosine function. When the absolute 

value of the term on the right side of Eq. (4.51) is no more than unity, the solution of 

q is real and the waves traveling through each periodic cell are only changed with a 

phase delay of e−jqh. These spectral regions under this condition are known as 

passbands, where waves propagate through the structure with no amplitude attenuation. 

When the solution of q is complex, the coefficient e−jqh can be expressed as: 
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 ( )r i i rj q jq h q h jq hjqhe e e e− + −− = =   (4.52) 

where qi and qr are the real part and the imaginary part of q, respectively. In these 

spectral regions, the amplitudes of the waves propagating through each periodic cell 

are attenuated by iq he . When the number of periodic cells is large enough, the waves 

are eliminated and cannot transmit through the whole periodic structure; such 

frequency regions are referred as stopbands of the periodic structure. 

 

Eq. (4.40) can be rewritten by eliminating e−jqh: 

 ( )
2

21 22 11 12 0I I

R R

v vT T T T
v v

 
+ − − = 

 
  (4.53) 

where [ , ]I Rv v T  is the solution of the Bloch waves and represents the linear 

combination of the conventional plane waves and has two solutions. When 1I Rv v > , 

the magnitude of the incident wave is larger than that of the reflected wave in the 

periodic cell, which indicates that the total energy is transported in the direction of the 

propagation (+x direction) and this type of Bloch wave is categorized as a forward-

traveling Bloch wave. When 1I Rv v < , the reflected wave dominates in each periodic 

cell and the total energy of the Bloch wave is transported in the opposite direction to 

the propagation; this is called a backward-traveling Bloch wave. 

 

4.2.3 Finite periodic expansion chamber mufflers 

In the case of a finite periodic structure, Bradley54 has proven that forward- and 
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backward-traveling Bloch wave functions are also solutions to the finite periodic 

waveguide and the combination of two types of Bloch wave functions are able to 

produce an arbitrary termination impedance. Figure 4-8(b) shows a duct loaded 

periodically with n expansion chambers mufflers at an identical distance. A 

loudspeaker is mounted at the beginning of the duct and the termination is assumed to 

be anechoic. The waves in the first periodic cell can be described as a combination of 

forward- and backward-traveling Bloch waves: 

 1 1 2

1 1 2

I I

R R

I v v
a b

R v v
     

= +     
     

  (4.54) 

where 1 1[ , ]I Rv v T  and 2 2[ , ]I Rv v T are forward- and backward-traveling Bloch waves 

associated with Bloch numbers q1 and q2 respectively. a and b are arbitrary constants 

determined by the boundary conditions. Therefore, the waves after the nth cell are: 

 1 21 1 2 1 2

1 1 2 1 2

n I I I Ijq hn jq hnn n

n R R R R

I v v v v
a b e a e b

R v v v v
+ − −

+

         
= + = +         

        
T T   (4.55) 

 

When the duct ends with anechoic termination, there is no reflection in the last cell, 

which means that Rn+1 is equal to zero. 

 1 2
1 1 2 0jq hn jq hn

n R RR e av e bv− −
+ = + =   (4.56) 

Then the ratio of the forward- and backward-traveling Bloch waves can be expressed 

as: 

 
1

2

1

2

jq hn
R

jq hn
R

veb a
e v

−

−= −   (4.57) 

The incident wave and the transmitted wave of the n periodic expansion chamber 
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mufflers are I1 and In+1 respectively. The transmission loss of the finite periodic 

structure can be calculated by: 

 
1 2

1 1 2
10 10

1 1 2

20 log 20log I I
jq hn jq hn

n I I

I v b a vTL
I e v b a e v− −

+

+
= =

+
  (4.58) 

 

In an infinite periodic waveguide, the transmission loss of n mufflers can be easily 

calculated as ( )inf 10 1 120 log jqhn
I ITL av e av−= . When the number of finite periodic 

mufflers is large enough, the ratio b/a reaches zero and the transmission loss will be 

similar to that in an infinite periodic waveguide. Figure 4-9 and Figure 4-10 show the 

comparison of averaged transmission loss (TL/n) of n expansion chamber mufflers in 

a finite and an infinite periodic waveguide. 

 

Figure 4-9 The averaged transmission loss (TL/n) of n expansion chamber mufflers in a finite 

waveguide (dashed-dotted lines: n = 1; dotted lines: n = 3; dashed lines: n = 5) and in an infinite 

periodic waveguide (solid lines). L = 0.4m, d = 0.4m 
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Figure 4-10 The averaged transmission loss (TL/n) of n expansion chamber mufflers in a finite 

waveguide (dashed-dotted lines: n = 1; dotted lines: n = 3; dashed lines: n = 5) and in an infinite 

periodic waveguide (solid lines). L = 0.4m, d = 0.3m. 

 

In Figure 4-9 the length of the muffler equals to the distance between the mufflers (L 

= 0.4 m, d = 0.4 m) and in Figure 4-10 the length of the muffler is different from the 

distance between mufflers (L = 0.4 m, d = 0.3 m). It is seen from Figure 4-9 and Figure 

4-10 that as the number of finite periodic mufflers increases, the averaged transmission 

loss of n finite expansion chamber mufflers approaches that in the infinite periodic 

waveguide no matter the length of the muffler equals to the distance between mufflers 

or not. The stopbands and passbands of the finite expansion mufflers are similar to 

those in a perfect infinite system. Therefore, the dispersion characteristics determined 

by Eq. (4.51) can be used with the finite periodic expansion chamber mufflers to 
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predict their stopbands. 

 

4.3 Theoretical Results and discussion 

The finite element method (FEM) is used to verify the theoretical analysis of periodic 

expansion chamber mufflers. The wave propagation is governed by the Helmholtz 

equation in the inner duct and the expansion chamber.  

 

 

Figure 4-11 The periodic expansion chamber mufflers in FEM simulation 

 

Figure 4-11 shows the periodic expansion chamber muffler in FEM simulation. As the 

structure considered here is structurally symmetric, a 2D axisymmetric model is 

selected to simulate the periodic expansion chamber. The numerical model consists of 
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a circular duct with three periodic expansion chamber mufflers. The beginning of the 

duct is modeled with a plane wave radiation boundary condition with amplitude p0 = 

1 and the end is modeled with a no-reflection boundary. In the simulation, the 

temperature and the air pressure are 20 degrees Celsius and 1 atmosphere respectively. 

The geometries of the periodic structure in the analysis below are set as: the diameter 

of the duct d1 is 0.05m and the diameter of the expansion chamber d2 is 0.1m. 

 

When the length of the expansion chamber L is equal to the distance d between two 

mufflers, Eq. (4.51) will be 

 
( ) 2 2

2

1 1cos cos sin
2

1 11 1 sin
2

qh kL m kL
m

m kL
m

 = − + 
 

  = − + +    

  (4.59) 

The term on the right side of Eq. (4.59) is a periodic function and consequently the 

solution of Bloch number q is also a periodic function in kL. This is identical to the 

character of the transmission loss of a single expansion chamber muffler.  
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Figure 4-12 The transmission loss of three finite periodic expansion chamber mufflers with L = 

0.4m, d = 0.4m (the solid line represents the results of theoretical prediction and the dashed-

dotted lines those of the FEM simulation). 

 

Figure 4-12 shows the transmission loss of three finite periodic expansion chamber 

mufflers. L and d are set as 0.4 m. The solid line and dashed-dotted line respectively 

represent the theoretical result and the FEM simulation result. It is seen that the FEM 

simulation fits well with the theoretical results. When frequencies are relatively high, 

there are some discrepancies between the theoretical and FEM results. This is mainly 

due to the differences between the one-dimensional theoretical model and the three-

dimensional FEM simulation. The plane wave assumption is not valid at higher 

frequencies. Figure 4-12 demonstrates that when the length of the expansion chamber 

L is equal to the distance d between two mufflers, the transmission loss of the finite 

expansion chamber mufflers is periodic with the same period of transmission loss as a 
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single expansion chamber. The periodic expansion chamber mufflers can offer 

significant improvement in transmission loss within a narrowed frequency range 

compared to the single expansion chamber muffler. 

 

 

Figure 4-13 The transmission loss of three finite periodic expansion chamber mufflers with L = 

0.4m and d = 0.2m (dashed-dotted line), 0.3m (dotted line), 0.4m (solid line) respectively. 

 

Figure 4-13 shows the comparison of the transmission loss of three finite periodic 

expansion chamber mufflers with different distances d between two mufflers. The 

transmission loss is obtained from the FEM simulation. The length of the expansion 

chamber L is set as 0.4m and the distance d is set as 0.4m (solid line), 0.3m (dotted 

line), and 0.2m (dotted-dashed line). As shown in Figure 4-13, when the length of the 

expansion chamber muffler L is not equal to the distance d between mufflers, the 

periodic character of the transmission loss changes. The peak of the periodic mufflers’ 
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transmission loss is no longer identical to that of the single expansion chamber muffler 

and shifts in different ways with different distances between periodic mufflers. The 

stopbands of the periodic expansion chamber mufflers can be predicted by Eq. (4.51), 

which has a potential application in changing the effective control frequency ranges. 

This should be avoided in the design of periodic expansion chamber mufflers when 

the controlled noise is periodic. 

 

4.4 Summary 

 

This Chapter presents a theoretical study of the acoustic attenuation of periodic 

expansion chamber mufflers. The theoretical results fit well with the FEM simulation. 

The stopbands and passbands of finite expansion mufflers are similar to those in a 

perfect infinite system.  

 

Investigation of the influence of the distance between periodic mufflers has revealed 

that when the distance between mufflers is the same as the length of the expansion 

chamber (d = L), the transmission loss of periodic expansion chamber mufflers has the 

same period in frequencies and is largely enhanced within a narrowed frequency range. 

For other cases (d ≠ L), the transmission loss of periodic expansion chamber mufflers 

is no longer a periodic function in kL and the frequencies of peak transmission loss 

change with different d. In general, unlike with a single expansion chamber muffler, 
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the stopbands of the periodic structure are mainly due to the dispersion characteristics 

of the Bloch waves. A different configuration can enhance the transmission loss within 

a narrow frequency range or shift the stopbands. 
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Chapter 5  

Periodic Micro-perforated Mufflers 

A micro-perforated panel (MPP) is composed of a thin plate across whose surface are 

distributed holes of sub-millimetric size. Maa73 initially proposed an approximate 

theory to predict the impedance of an MPP, which revealed that the panel itself can 

provide high acoustic resistance and low mass reactance, making the structure an 

efficient sound absorber. The MPP was introduced as an alternative to conventional 

porous absorbers avoiding the problems of bacterial contamination and small particle 

discharge. Many studies have since been conducted on the application of MPPs in 

fields such as room acoustics74-78 and environmental noise control79. 

 

In addition to its application in the field of room acoustics, the MPP has also been used 

to attenuate noise in duct systems80, 81. The micro-perforated tube muffler consists of 

micro-perforated tubes backed by air cavities. This kind of muffler is similar to 

conventional silencers except for its sub-millimeter perforation and the absence of 

porous material in the cavities. Because there is no fibrous material, the muffler can 

be used in situations where there are concerns about hygiene and health problems, 

such as hospitals and food industries. Although many studies have been done on the 

performance of perforated mufflers82-84, the perforated screen is usually used to retain 

fibrous material and the perforation diameter of such mufflers is usually greater than 
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a millimeter, unlike the micro-perforated tube mufflers. Wu80 first presented a 

preliminary study evaluating the sound attenuation of MPP silencers and discussed the 

effect of geometric parameters on silencer performance. Allam and Åbom85 found that 

the micro-perforated muffler had minima at higher frequencies. These minima 

occurred due to the resonances in the outer chamber and were reduced by introducing 

an uneven split to the outer chamber. Wang et al.86 introduced micro perforation to a 

light plate silencer to broaden the effective frequency range of noise control. The 

vibration of the light micro-perforated plate was taken into account and the proposed 

hybrid silencer provided wider stopbands. Multiple MPP absorbers were used to 

achieve a broader frequency range of noise control and attenuate duct noise87. These 

devices comprised an MPP back with different cavities and the proposed silencer can 

offer wider stopbands than the single-plate silencer. 

 

Because of the high acoustic resistance and low mass reactance due to the sub-

millimeter perforation, the micro-perforated muffler can provide considerable sound 

attenuation of duct noise. Multiple mufflers are often used to enhance attenuation 

performance. When mufflers are distributed periodically in a duct, the periodic 

structure produces peculiar dispersion characteristics in the overall sound transmission 

loss. The Bloch wave theory and the transfer matrix method are used to study the wave 

propagation in periodic micro-perforated tube mufflers and the dispersion 

characteristics of periodic micro-perforated mufflers are examined. The results 

predicted by the theory are validated against finite element method simulation and the 
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experimental results. The results indicate that periodic structure can influence the 

performance of micro-perforated mufflers. With different periodic distances, the 

combination of periodic structure and the micro-perforated tube muffler can contribute 

to the control of lower frequency noise with a broader frequency range or improvement 

of the peak transmission loss around the resonant frequency. 

5.1 Theory 

5.1.1 Bloch waves in the periodic structure 

 

 

Figure 5-1 A periodic array of micro-perforated mufflers. 

 

As shown in Figure 5-1, an array of micro-perforated mufflers are distributed 

periodically along a circular duct. Each periodic cell here consists of a uniform duct 

and a micro-perforated muffler. The diameter of the inner duct of the muffler is 

identical with the uniform duct. The length of the micro-perforated muffler is L and 

the distance between two adjacent mufflers is d. The length of a periodic cell is: h = 

L+d. 
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Assume that only planar waves propagate in the duct and the mufflers the time-

harmonic disturbance takes the form exp(−jωt). The sound wave propagating in a 

spatially periodic structure has been examined by Bradley 53, 54 and the solution wave 

functions of the periodic waveguide are Bloch wave functions which can be expressed 

as: 

 1 11 12

1 21 22

n n njqh

n n n

I I I T T
e

R R R T T
+ −

+

       
= = =       

      
T T   (5.1) 

where the transfer matrix T relates the sound fields at the center of the uniform duct 

in the nth periodic cell and that in the (n+1)th periodic cell, h is the length of a periodic 

cell and q is called the Bloch wave number. In the nth periodic cell shown in Figure 

5-1, the Bloch wave in the uniform duct is composed of two conventional plane waves 

traveling in opposite directions associated with the amplitudes In and Rn. In a periodic 

waveguide, the waves in the (n+1)th cell are related to ones in the nth cell with e-jqh. 

Finding the solution of the Bloch waves falls into determining the transfer matrix T 

and its eigenvalue problem: 

 11 12

21 22

jqhT T
e

T T
− 

= 
 

v v   (5.2) 

where e-jqh and v are the eigenvalue and the corresponding eigenvector of the transfer 

matrix T of the periodic mufflers. 
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5.1.2 The transfer matrix T of the periodic structure 

The sound pressure pn and the velocities un in the nth periodic cell can be expressed as: 

 
( ) ( ) ( )

( ) ( ) ( )
0 0

n n

n n

jk x x jk x x
n n n

jk x x jk x x
n n n

p x I e R e

c u x I e R eρ

− − −

− − −

= +

= −
  (5.3) 

where xn is at the center of the uniform duct in the nth periodic cell, ρ0 and c0 are the 

density and the sound speed in the air. 

 

In the nth periodic cell of Figure 5-1, let the sound pressures and the particle velocities 

at the inlet (x = xn+d/2) and the outlet (x = xn+1−d/2) of the micro-perforated muffler 

be pin, uin and pout, uout which can be expressed with (5.3): 

 

( )

( )

( )

( )

1 1

/2 /2 /2 /2
1 1

0 0 0 0 0 0 0 0 1 1

/2 /2 /2 /2
1 1

/ 2 / 2

/ 2 / 2
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jkd jkd jkd jkd
n n n n

in n n out n n

jkd jkd jkd jkd
n n n n

p p x d p p x d

I e R e I e R e
c u c u x d c u c u x d

I e R e I e R e

ρ ρ ρ ρ

+ +

− −
+ +

+ +

− −
+ +

= + = −

= + = +

= + = −

= − = −

  (5.4) 

 

Define the transfer matrix C of sound pressures and particle velocities between the 

inlet and outlet of the inner duct of the micro-perforated muffler, the sound pressure 

and particle velocity at the outlet of the micro-perforated muffler in the nth periodic 

cell can be expressed as: 

 out in

out in

p p
u u

   
=   

   
C   (5.5) 

Eq. (5.4) can be rewritten in the form of matrices: 

 
/2 /2

/2 /2
0 0

jkd jkd
in n

jkd jkd
in n

p Ie e
c u Re eρ

−

−

    
=     −    

  (5.6) 
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/2 /2

1
/2 /2

1 0 0
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0.5 0.5

jkd jkd
n out
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    
=     −    

  (5.7) 

Combing Eqs. (5.5), (5.6) and (5.7) yields: 

 
/2 /2 /2 /2

1
/2 /2 /2 /2

1

0.5 0.5
0.5 0.5

jkd jkd jkd jkd
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+
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C   (5.8) 

According to the Eq. (5.1), the periodic transfer matrix T can be expressed as: 

 
/2 /2 /2 /2

11 12
/2 /2 /2 /2

21 22

0.5 0.5
0.5 0.5

jkd jkd jkd jkd

jkd jkd jkd jkd
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−

    
= =      − −     

T C   (5.9) 

 

The transfer matrix T can be determined when the transfer matrix C of the micro-

perforated muffler is known. In order to get the transfer matrix C, the nth periodic cell 

is depicted in Figure 5-2. The micro-perforated muffler is composed of a micro-

perforated inner duct of the diameter d1 and an outer chamber of diameter d2. The 

length of the muffler is L. 

 

 

Figure 5-2 The nth periodic cell of the periodic micro-perforated mufflers. 
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Assume that only harmonic planar waves propagate in both the micro-perforated inner 

duct and the outer chamber (Figure 5-2), and that the continuity and momentum 

Equations yield. In the absence of mean flow, the coupled wave Equations in the inner 

duct and the outer chamber are expressed as follows 13: 

 
2

21
1 22

1 1

4 4 0d p ik ikk p p
dx d z d z

   
+ − + =   

   
  (5.10) 
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22 1 1
1 22 2 2 2 2

2 1 2 1

4 4 0d p d dik ikp k p
dx d d z d d z

   
+ + − =   − −   

  (5.11) 

where k is the wave number, p1 and p2 represent the sound pressures in the inner duct 

and outer chamber, respectively. z is the non-dimensional acoustic impedance of the 

micro perforation.  

 

According to Maa’s model 78, the non-dimensional acoustic impedance z can be 

expressed as: 

 
2 2

2
2

0 0 0

32 21 1 1 3 0.85
232 32

h h

h

d dt K t Kz K j
c d t c t
η ω

σρ σ

   
= + + + + + +   

     
 

 (5.12) 

where η is the viscosity of air, σ, dh and t are the porosity (the ratio of the micro-

perforated area to the area of the panel), the hole diameter and the thickness of the 

micro perforation, 0 4hK d ωρ η= . 

 

Eq. (5.10) and Eq. (5.11) can be rewritten in the form of matrix: 
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( )′ denotes the derivative with respect to x. The relation between the acoustic pressure 

and the particle velocity is: 
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ρ
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∂
∂

= −
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  (5.14) 

where u1 and u2 are the sound particle velocities in the inner duct and outer chamber, 

respectively. Substituting Eq. (5.14) into Eq. (5.13) gives: 
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The matrix A satisfies the equation below 
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where λn is the eigenvalue of the matrix A and Ψ is the modal matrix whose columns 
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are the eigenvectors of the matrix A. Both sides of Eq. (5.16) multiplied by Ψ-1 yields: 

 1* * −=A Ψ D Ψ   (5.17) 

Eq. (5.15) becomes: 
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Both sides of Eq. (5.18) are multiplied by Ψ-1 from the left side: 
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Ψ-1 is independent from x; Eq. (5.19) may be expressed as: 
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Eq. (5.20) can be solved readily and the solution is: 
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where c1, c2, c3 and c4 are arbitrary constants. Then the sound pressure and particle 

velocity are obtained as follows: 
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where 
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The acoustic pressures and particle velocities at the inlet and outlet of the muffler can 

be related by 
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 ( )( ) ( )1
0 L

−
=B Φ Φ   (5.25) 

where B is the transfer matrix which relates the sound pressures and particle velocities 

of both the inner duct and the outer chamber at the inlet and outlet of the micro-

perforated muffler. 

 

Assuming that the wall of the outer chamber is rigid and the boundary condition of the 

outer chamber is that the velocities at the wall are zero. 
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  (5.26) 

Then Eq. (5.24) will be: 
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where 
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Equations (5.27) and (5.28) gives the transfer matrix C of sound pressures and 

particle velocities between the inlet and outlet of the inner duct of the micro-perforated 

muffler. The matrix relates the sound pressure and particle velocity at both ends of the 

muffler and now the periodic transfer matrix T is obtained according to Eq. (5.9). 

 

5.1.3 Eigenvectors and eigenvalues of the periodic transfer 

matrix T 

The transfer matrix T has two eigenvectors, [ ]1 1 1
T

I Rv v v= and [ ]2 2 2
T

I Rv v v= , 

associated with the eigenvalues: exp(−q1h) and exp(−q2h). The eigenvectors indicate 

the conventional component makeup of the Bloch waves. Take the eigenvalue v1, for 

example, when the plane waves ( ) ( )
1 1

n njk x x jk x x
I Rv e v e− − −+  propagate in the nth periodic 

cell, the plane wave in the next cell will be ( ) ( )1 11
1 1

n njk x x jk x xjq h
I Re v e v e+ +− − −−  +  . The 

combining of the incident and reflected wave with the ratio 1 1 2 2 or I R I Rv v v v  is 

called the Bloch wave. The Eq. (5.2) can be rewritten as below: 
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  (5.29) 
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Eliminating e-jqh, Eq. (5.29) can be rewritten as: 

 ( )
2

21 22 11 12 0I I

R R

v vT T T T
v v

 
+ − − = 

 
  (5.30) 

The ratio I Rv v  will be calculated from Eq.(5.30). When the ratio 1I Rv v > , that 

means the magnitude of the incident wave is larger than that of the reflected wave in 

the periodic cell, which indicates that the total energy is transported in the direction of 

the propagation (+x direction) and this Bloch wave is categorized as a forward-going 

Bloch wave. For the other case, when the ratio 1I Rv v < , the reflected wave 

dominates in each periodic cell and the total energy of the Bloch wave is transported 

in the opposite direction to the propagation (−x direction); this is called a backward-

going Bloch wave. 

 

As the definition of the Bloch wave in Eq. (5.1), the Bloch wave number q determine 

the transmission character of the Bloch waves and this can be solved by solving the 

characteristic Equation of the eigenvalues of transfer matrix T: 

 ( ) ( )
2

11 12
11 22

21 22

0
jqh

qh jqh
jqh

T e T
e T T e

T T e

−
− −

−

−
= − + + =

−
T   (5.31) 

According to the principle of reciprocity, the determinant of the matrix T is unity53. 

The two solutions of Eq. (5.31) are q1 and q2 respectively. The solutions must satisfy 

the relations as follows: 

 1 2 1jq h jq he e− − =   (5.32) 

 1 2
11 22

jq h jq he e T T− −+ = +   (5.33) 

Substituting the Eq. (5.32) into Eq. (5.33) gives 
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 ( ) ( )1 11 22
1cos
2

q h T T= +   (5.34) 

This is the Bloch dispersion relation of the periodic structure. The solution of q is 

multivalued due to the inverse cosine function. q is real for the term on the right side 

of Eq. (5.34) is a real number and the absolute value is less than or equal to unity, or 

q is complex under other conditions. The waves in the (n+1)th cell are related to ones 

in the nth with e-jqh. When the solution of q is real, the waves traveling through a 

periodic cell are only changed with a phase delay. These spectral regions under this 

condition are known as pass bands, where waves propagate through the structure with 

no amplitude attenuation. In the other case when the solution of q is complex, the 

waves in the (n+1)th are that in nth cell multiplied by exp(−j(qr+jqi)h) = 

exp(−jqrh)exp(qih). The coefficient exp(qih) is necessarily less than or equal to unity 

according to the energy conservation theorem, otherwise the waves will become larger 

and larger through each periodic cell, which is not reasonable. In the spectral regions 

where qih is less than zero, the Bloch waves are attenuated by exp(qih) through each 

periodic cell. When the number of periodic cells is large enough, the waves are 

eliminated and cannot transmit through the whole periodic structure; such frequency 

regions are called stopbands. 

 

5.1.4 Finite periodic micro-perforated mufflers 

In the preceding sections the periodic waveguide is infinite and the downstream 

boundary condition is different with that in finite periodic structure. Bradley 54 also 
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investigated the wave propagation in a periodic waveguide of semi-infinite or finite. 

He proved that forward and backward traveling Bloch wave functions were also the 

solutions of the finite periodic waveguide. 

 

For finite periodic micro-perforated mufflers with N cells, the waves in the nth cell can 

be expressed as: 

 1 2 12 1

1 2 1

n n n n

n n n

I I I I
R R R R

− − −

− −

       
= = =       

      
T T T

  (5.35) 

Waves in the finite periodic structure consist of both forward-going and backward-

going Bloch waves. The makeup of the Bloch waves is determine by the boundary 

conditions at the beginning and end of the periodic duct. 

 

For a finite periodic array of n micro-perforated mufflers, the waves in the first cell 

can be expressed as the linear superposition of the two types of Bloch wave: 

 1 1 2

1 1 2

I I

R R

I v v
a b

R v v
     

= +     
     

  (5.36) 

where a and b are arbitrary constants and can be solved with the boundary conditions. 

 

The waves in the nth cell of the periodic micro-perforated mufflers are: 

 
( ) ( )1 2

1 21 1

1 2

1 11 2

1 2

n I In n

n R R
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a b
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e a e b
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− −

− − − −

     
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    
   

= +   
   

T T

  (5.37) 

When the finite periodic micro-perforated mufflers end with anechoic termination, the 
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incident wave in the first cell is I1 and the transmitted wave in the last cell is In. The 

transmission loss of the n micro-perforated mufflers can be calculated as: 

 ( ) ( )1 2

1 1 2
10 10 1 1

1 2

20 log 20log I I
jq d n jq d n

n I I

I av bvTL
I e av e bv− − − −

+
= =

+
  (5.38) 

 

Anechoic termination means that there is no reflection in the last cell. The reflected 

wave in the last cell is zero: 

 ( ) ( )1 21 1
1 2 0jq h n jq h n

n R RR e av e bv− − − −= + =   (5.39) 

and 
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− −
= −   (5.40) 

Substituting Eq. (5.40) for Eq. (5.38), the transmission loss of the finite periodic 

micro-perforated mufflers is then obtained. 
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95 

5.2 Experiment 

5.2.1 Configuration of the experiment 

In line with the theoretical analysis and FEM simulation, an experimental setup is 

established for comparison with the theoretical study. The configuration of the 

experimental setup is shown in Figure 5-4. The dimensions of the duct and the 

configuration of the micro-perforated muffler are shown in Table 5.1. 

 

Table 5.1 The configuration of the micro-perforated muffler 

Property Value 

The inner diameter d1 = 94 mm 

The outer diameter d2 = 154 mm 

The length of the micro-perforated tube L = 100 mm 

The hole diameter of the micro perforation dh = 1 mm 

The thickness of the micro perforation t = 3 mm 

The porosity of the micro perforation σ = 0.0085 

Temperature 20 ℃ 

Pressure 1 atm 

Viscosity in air 1.8⋅10-5 Pa⋅s 
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Figure 5-3 The micro-perforated muffler 

 

Figure 5-3 shows the micro-perforated muffler used in the experiment. The walls of 

the inner duct and the expansion chamber are made of 3-mm-thick acrylic. Figure 5-4 

and Figure 5-5 show the experimental setup for measuring the transmission loss of the 

periodic micro-perforated mufflers. The periodic mufflers consists of a duct with three 

micro-perforated mufflers. The distance between periodic micro-perforated mufflers 

is set to be 0.30 m and therefore the periodic distance h (h = L+d) is 0.40 m. The testing 

apparatus consists of a loudspeaker, four Brüel & Kjær microphones Type 4935 

(Figure 5-6), Brüel & Kjær LAN-XI acquisition hardware Type 3160-B-042 (Figure 

5-7), and Brüel & Kjær power amplifier Type 2706 (Figure 5-8).  
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Figure 5-4 The schematic of the experimental setup 

 

 

 

 

 

Figure 5-5 The experimental setup 
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Figure 5-6 Brüel & Kjær microphones Type 4935 

 

 

 

 

Figure 5-7 Brüel & Kjær LAN-XI acquisition hardware Type 3160-B-042 
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Figure 5-8 Brüel & Kjær power amplifier Type 2706 

 

5.2.2 Two-Load Method 

In order to measure accurately the transmission loss of the periodic structure, the two-

load method is applied in the experiment to measure the transfer matrix of the 

apparatus under test 88. The two-load method means that the experiment is carried out 

with two different duct terminations and then the transfer matrix of the structure could 

be calculated by the measured sound pressure levels under the two different 

termination conditions. Once the matrix of the finite periodic micro-perforated muffler 

is measured, then the transmission loss of the muffler can be calculated based on the 

transfer matrix. 
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Figure 5-9 Transfer matrix representation of a system 

 

The two-load method is based on the transfer matrix approach. As shown in Figure 

5-9, an acoustical element can be represented by its transfer matrix (or called four-

pole parameters). 

 in out

in out

p pA B
u uC D

    
=    

    
  (5.42) 

where pin and pout are the sound pressure at the inlet and outlet of the element, 

respectively; uin and uout are particle velocity at the inlet and outlet of the element, 

respectively. A, B, C and D are the so-called four-pole parameters of the system.  

 

In Eq. (5.42) there are four unknown variables but only two equations. In order to get 

two additional equations, changing the termination boundary condition is a way as 

shown in Figure 5-10. The measurement is carried out with two different end condition 

and four equations can be obtained for the four unknown variables. It should be noticed 

that the two load cannot be very similar which will result in unstable results.  
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Figure 5-10 Setup of two-load method 

 

In Eq. (5.42), pin, uin and pout, uout are measured in experiment. The sound pressure pin 

and pout can be measured directly with microphones while the particle velocities cannot 

be obtained with the microphones. The working frequency range of the two-load 

method is below the cut-off frequency88 of the duct which means only plane waves are 

assumed propagate in the duct. Two microphones at both sides of the acoustic element 

are used to determine the particle velocity on both sides of the acoustic element. 

 

For load a shown in Figure 5-10, the transfer matrix of the acoustic element is 

expressed below 

 2 3

2 3

a a

a a

p pA B
u uC D

    
=    

    
  (5.43) 

where the sound pressures p2a and p3a are directly measured with the microphones at 

location 2 and location 3.  
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The sound pressures and the particle velocities at locations 1 and 2 can be related by 

the transfer matrix as below: 

 1 212 12

1 212 12

a a

a a

p pA B
u uC D

    
=    

    
  (5.44) 

Therefore, the particle velocity u2a at the location of the microphone 2 can be 

calculated as 

 ( )2 1 12 2
12

1
a a au p A p

B
= −   (5.45) 

Similarly, the sound pressures and the particle velocities at locations 3 and 4 can be 

related by the transfer matrix as below: 

 3 34 34 4

3 34 34 4

a a

a a

p A B p
u C D u

     
=     

     
  (5.46) 

and the particle velocity u3a at the location 3 can be calculated as 

 3 34 4
3 34 4 34

34

a a
a a

p A pu C p D
B

 −
= +  

 
  (5.47) 

 

Substituting Eq. (5.45) and (5.47) into Eq. (5.43) 

 ( )

32

3 34 4
1 12 2 34 4 34

12 34

1
aa

a a
a a a

pp
A B

p A pp A p C p DC D
B B

  
     =  −    − +          

  (5.48) 

 

The transfer matrix between locations 1 and 2 is known as the transfer matrix of a 

straight duct with length l12.  
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12 12

12 12
12

1212 12
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sin cos

kl j c kl
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j kl klC D
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ρ

 
   =       

  (5.49) 

Similarly, the transfer matrix between locations 3 and 4 is known as the transfer matrix 

of a straight duct with length l34. 

 
34 34

34 34
34

3434 34

cos sin
sin cos

kl j c kl
A B

j kl klC D
c

ρ

ρ

 
   =       

  (5.50) 

 

For load b shown in Figure 5-10, the transfer matrix of the acoustic element is 

expressed below 

 2 3

2 3

b b

b b

p pA B
u uC D

    
=    

    
  (5.51) 

where the sound pressures p2b and p3b can be directly measured with the microphones 

at location 2 and location 3.  

 

The sound pressures and the particle velocities at locations 1 and 2 can be related by 

the transfer matrix as below: 

 1 212 12

212 12

b b

b b

p pA B
u uC D

    
=    

    
  (5.52) 

Therefore, the particle velocity u2b at the location of the microphone 2 can be 

calculated as 

 ( )2 1 12 2
12

1
b b bu p A p

B
= −   (5.53) 

Similarly, the sound pressures and the particle velocities at locations 3 and 4 can be 
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related by the transfer matrix as below: 

 3 34 34 4

3 34 34 4

b b

b b

p A B p
u C D u

     
=     

     
  (5.54) 

and the particle velocity u3b at the location 3 can be calculated as 

 3 34 4
3 34 4 34

34

b b
b b

p A pu C p D
B

 −
= +  

 
  (5.55) 

 

Substituting Eq. (5.53) and (5.55) into Eq. (5.52) 

 ( )

32

3 34 4
1 12 2 34 4 34

12 34

1
bb

b b
b b b

pp
A B

p A pp A p C p DC D
B B
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     =  −    − +          

  (5.56) 

 

Now Eq. (5.48) and (5.56) contains four equations for the unknown pole parameters 

A, B, C and D. Thus, the four-pole parameters can be calculated as 

 ( ) ( )
( )

34 32 34 32 34 34 32 32

34 34 34

a a b a b a

b a

H H H H D H H
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H H
∆ − + −

=
∆ −

  (5.57) 

 ( )
( )

34 32 32

34 34 34

a b

b a

B H H
B

H H
−

=
∆ −

  (5.58) 
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H A H H D H A H H D
C

B H H
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 (5.59) 

 ( ) ( )
( )

31 31 12 32 32
34

12 34 34 34

a b b a

b a

H H A H H
D B

B H H
− + −

=
∆ −

  (5.60) 

where 12 12 12 12 12A D B C∆ = − , 34 34 34 34 34A D B C∆ = −  and ij i jH p p=  which can be 

measured readily with two-channel frequency analyzer. 

 

Once the transfer matrix of the sound pressure and particle velocity between the inlet 
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and outlet of the tested element is determined, the transmission loss can then be 

expressed in terms of the four-pole parameters. 

 10 0 0 10
0 0

120log 10log
2

in

out

SBTL A c C D
c S

ρ
ρ

   
= + + + +       

  (5.61) 

where Sin and Sout are the cross-sectional area of the inlet and the outlet. 

 

5.3 Results and discussion 

5.3.1 FEM simulation 

As the periodic structure in this study is structurally symmetric around the axis, a 2D 

axisymmetric finite element method (FEM) was used to verify the one dimensional 

theoretical analysis of the finite micro-perforated mufflers in the previous sections and 

then is also verified itself by experimental results in the next section. 

 

The wave propagation is governed by the Helmholtz Equation in the inner duct and 

the outer chamber of the muffler. The numerical model is composed of a circular duct 

with three micro-perforated mufflers. The sound source is located at the beginning of 

the duct and modeled with the plane wave radiation boundary condition with 

amplitude p0 = 1 which is the incident wave to the periodic micro-perforated mufflers. 

The main duct is ended with anechoic termination modeled with a non-reflective 

boundary condition and a probe at the termination boundary is used to measure the 

transmitted wave pressure. Therefore the transmission loss of the finite periodic micro-
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perforated muffler can be easily obtained with the transmitted pressure at the 

termination boundary and the incident wave pressure. 

 

 

 

Figure 5-11 The periodic micro-perforated mufflers in FEM simulation 

 

Figure 5-11 shows the periodic micro-perforated mufflers in FEM simulation. In the 

simulation, the temperature and the pressure in air are 20 degrees Celsius and 1 

atmosphere respectively. The dimensions of the finite periodic micro-perforated 

muffler are the same as indicated in Table 1 of section 5.2.1. 

 

As shown in Figure 5-11, the blue lines represents the micro-perforation boundaries 

which are modeled by the interior impedance boundary condition. The interior 
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impedance relates the acoustic pressures in the inner duct and the muffler chamber 

through the boundary. Here the impedance of the micro-perforation is defined 

according to Maa’s model as Eq.(5.12).  

 

5.3.2 Results 

The FEM model simulates a periodic array of three micro-perforated mufflers (the 

periodic distance h is set as 0.40 m). The simulation results are compared with the one 

dimensional theoretical analysis.  

 

Figure 5-12 shows that the transmission loss predicted by the theoretical model agrees 

well with the simulation result obtained using the FEM method for the three periodic 

micro-perforated mufflers. Here the differences between the FEM and the theoretical 

model is very small, this is reasonable because both the FEM and the theoretical model 

use the Maa’s impedance model to simulate the micro-perforation and assume only 

plane waves propagating in the ducts. 
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Figure 5-12 A comparison of transmission loss of the three periodic micro-perforated mufflers 

between theory, FEM simulation and experiment result (the distance between mufflers d = 0.30 

m). 

 

Figure 5-12 shows the comparison of the transmission loss between the theory, the 

FEM simulation and the experiments for a periodic array of three micro-perforated 

mufflers when the distance between periodic mufflers is set as 0.30 m. It can be seen 

that the experimental data agree well with the theoretical results and the FEM 

simulation. A periodic array of three micro-perforated mufflers can provide more than 

15 dB noise attenuation from 300 Hz to 580 Hz. The results verify that, with 

appropriate periodic distance, micro-perforated mufflers can attenuate noise over a 

wider frequency range. It can also be noted from Figure 5-12 that there is a gap at 

around 430 Hz. This occurs due to the interaction between the Bragg reflection and 

the resonance of the micro-perforated tube. At the cost of such a gap, the effective 
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noise control frequency range is extended and shifted to a lower frequency range. 

 

The difference in magnitude between the experiment and the theoretical study is 

mainly due to the discrepancies between the one dimensional theoretical modal and 

the three dimensional experiment. It is assumed in the theoretical model and the FEM 

that only planar wave propagates in the inner duct and the outer chamber. However, 

the higher order modes below the cut-off frequencies are evanescent and cannot decay 

sufficiently if the muffler is not long enough. These higher order modes are different 

from the planar wave assumption of the theory and FEM. In addition, it is a fact that 

the acoustic impedance of the micro-perforation used in previous studies is a 

simplified model and does not consider the holes interactions that also contribute to 

the differences between the experiment and the theory. 

 

Eq. (5.34) reveals the dispersion characteristic of the periodic micro-perforated 

muffler. The dispersion relation is determined by the characteristics of the micro-

perforated muffler and the periodic structure. Here the effect of the periodic distance 

on the transmission loss is investigated. 

 

Figure 5-13 shows a comparison of the transmission loss of three periodic micro-

perforated mufflers with no space and 0.46 m between each other. The dimensions of 

the mufflers are the same as shown in Table 1. The distance between two mufflers d is 

set as 0 and 0.46 m respectively. The solid line indicates the three mufflers connected 
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directly and the dotted line indicates the mufflers are distributed periodically at a 

distance of 0.46 m. 

 

Figure 5-13 Transmission loss of a duct with three periodic micro-perforated mufflers. The 

distance between two mufflers is set at 0 (solid line) and 0.46 m (dotted line). 

 

It can be seen from Figure 5-13 that the periodic placement of mufflers results in a 

different transmission loss from that of the mufflers connected directly. For d = 0.46 

m (periodic distance h = 0.56 m), the maximum transmission loss is increased around 

resonant frequency but the effective attenuation frequency range is narrowed. In 

addition to the resonant frequency of the micro-perforated muffler, other stopbands 

occur at around 300 Hz and 640 Hz. These stopbands occur as a result of coupling 

between the resonance of the muffler itself and the Bragg reflection in the periodic 

structure 53. For a periodic cell of length h, the Bragg stopbands occur around the 

Bragg frequency: ( )2  1,2,Bf nc h n= =  . 
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For the case in Figure 5-13, the periodic distance h = 0.56 m and the first Bragg 

frequency is 306 Hz. In order to investigate the coupling of the Bragg reflection and 

the resonance of the micro-perforated mufflers, Figure 5-14 shows the imaginary part 

of qh in this case. As analyzed in section 2, the frequencies in Figure 5-14, where an 

imaginary part of qh is less than zero, means that the Bloch waves are attenuated by 

exp(Im(qh)) and these spectral regions are referred as stopbands. 

 

 

Figure 5-14 Imaginary part of qh. 

 

As shown in Figure 5-14, the shape of the transmission loss of the periodic mufflers is 

more compressed than that of the directly connected mufflers. The control frequency 

range is narrowed but the maximum transmission loss is increased.  
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Since the Bragg resonance can narrow the frequency range, it may influence the 

performance of the muffler in another way, by adjusting the periodic distance. In 

Figure 5-15 the distance between two mufflers d is set as 0.30 m and the corresponding 

periodic distance h is 0.40 m. The first two Bragg frequencies are 429 Hz and 860 Hz. 

In this case, although the peak of the transmission loss is decreased compared to that 

of the directly connected mufflers, the transmission loss is increased at lower 

frequencies and the efficient frequency range is widened, which has potential 

implications for lower frequency noise control. 

 

 

Figure 5-15 Transmission loss of a duct with three periodic micro-perforated mufflers. The 

distance between two mufflers d is set at 0 (solid line) and 0.3 m (dotted line). 

 

The above predicted transmission loss at different periodic distance demonstrates that 

the Bragg resonance as a result of the periodic structure has a modulation effect on the 
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transmission loss of the micro-perforated muffler. The characteristics of the periodic 

structure are very useful for the design of the periodic micro-perforated mufflers. By 

selecting an appropriate periodic distance, these characteristics can contribute to the 

control of lower frequency noise within a broader frequency range and achieve higher 

transmission loss around the resonant frequency. 

 

 

5.4 Summary 

 

This chapter presents a detailed examination of the acoustic attenuation of a periodic 

array of micro-perforated tube mufflers. Owing to its sub-millimeter perforation, the 

micro-perforated muffler can provide considerable sound attenuation for duct noise 

without using absorptive materials. When such mufflers are loaded periodically in a 

duct, the periodic structure produces peculiar dispersion characteristics in the overall 

transmission loss. 

 

The periodic distance has an important effect on the sound attenuation performance. 

The combination of the Bragg reflection due to the periodic structure and the 

resonance of the micro-perforated muffler can result in different transmission loss. The 

theoretical results fit well with the FEM simulation and the experimental data. This 

study indicates that the length of the periodic cell can influence the sound attenuation 
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performance of micro-perforated mufflers.  

 

Compared to a single micro-perforated muffler, the proposed periodic placement of 

micro-perforated mufflers can provide lower frequency noise control within a broader 

frequency range or enhance transmission loss around the resonant frequency. The 

periodic structure provides a way of modifying the transmission loss of the single 

micro-perforated muffler by inserting uniform ducts provided that the space is not 

limited and has a potential application in muffler design. 
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Chapter 6  

Conclusion and Suggestions for Future 
Work 

6.1 Conclusion 

The effects of the periodic arrangement on the transmission loss of the mufflers 

including the simple expansion chamber muffler and the micro-perforated muffler 

have been investigated in this thesis. The attenuation performance of the periodic 

mufflers is different from the single muffler and the effects of the distance between 

periodic mufflers has a potential application in muffler design. The theoretical study 

has been validated with finite element method and experiments carried out at The 

Hong Kong Polytechnic University.  

 

First of all, the side branch resonator muffler has been investigated. The side branch 

elements attached to ducts are very common devices for suppressing tonal noise in 

ductwork system. The sound energy is conserved and the energy is distributed among 

the duct and the side branch depending on the relative impedances of the junctions. 

The side branch resonator functions at the frequencies where the impedance of the side 

branch is relatively low and the side branch is equivalent to a short circuit which 

suppressing the sound power transmitted to the downstream duct. The performance of 

the side branch Helmholtz resonator is given with the lumped-parameter model from 
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the existing literature. The performance of the resonator is fixed once the resonator is 

made. In order to adapt to the environmental changes, a semi-active resonator via the 

control of the termination impedance of the resonator is used. A theoretical study is 

conducted to investigate the effect of flow on the semi active Helmholtz resonator in 

a low Mach number flow duct. 

 

Secondly, a Helmholtz resonator with a spiral neck is proposed. The performance of 

the Helmholtz resonator is restricted with its geometries including the cross sectional 

area and the length of the neck and the volume of the cavity. The resonator will be 

bulky when the lower frequency noise is required to be controlled. In order to make 

the neck as long as possible, a spiral duct takes the place of the traditional short neck 

of the HR. The curved structure lengthens the neck without requiring a large space. 

The wave propagation in the spiral duct neck is analyzed and the acoustic impedance 

formulated based on the transfer matrix method. The results show that the resonance 

frequency of the HR can be reduced by using the spiral neck, which has potential 

applications in tonal noise control in a limited space. More turns for the spiral neck 

can shift the resonance frequency much lower. Apart from its low-frequency 

performance, the proposed resonator also has several resonance frequencies at higher 

frequencies because of its long neck. 

 

Thirdly, a theoretical study of the acoustic attenuation of periodic expansion chamber 

mufflers has been conducted. The expansion chamber muffler is an effective device 
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for noise reduction in duct systems. The transmission loss of the single expansion 

muffler has a periodic character that is often used for the periodic noise control. The 

use of multiple mufflers is often a way used to improve the sound attenuation 

performance of the mufflers. When the mufflers are periodically mounted on the duct, 

the transmission loss of the periodic mufflers is determined by the characteristics of 

both the muffler itself and the periodic structure. The Bloch wave theory and the 

transfer matrix method are used to study the wave propagation in periodic expansion 

chamber mufflers and the dispersion characteristics of periodic expansion chamber 

mufflers. The influence of the distance between periodic expansion chamber mufflers 

has been investigated. The theory is validated against finite element method simulation. 

Compared to a single expansion chamber muffler, the stopbands of the finite periodic 

structure is mainly due to its dispersion characteristics of the Bloch wave. With 

different configuration, the results indicate that the periodic structure can enhance the 

transmission loss within a narrower frequency range or change effective noise control 

frequency ranges with different distance between mufflers. Investigation of the 

influence of the distance between periodic mufflers has revealed that when the 

distance between mufflers is the same as the length of the expansion chamber, the 

transmission loss of periodic expansion chamber mufflers has the same period in 

frequencies and is largely enhanced within a narrowed frequency range. For other 

cases, the transmission loss of periodic expansion chamber mufflers is no longer a 

periodic function and the frequencies of peak transmission loss change with different 

distance between periodic mufflers. In general, unlike with a single expansion 
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chamber muffler, the stopbands of the periodic structure are mainly due to the 

dispersion characteristics of the Bloch waves. A different configuration can enhance 

the transmission loss within a narrow frequency range or shift the stopbands. The study 

on the wave propagation in such periodic structures provides how the periodic 

structure influences the performance of the mufflers which can contribute to the design 

of the periodic mufflers. 

 

Finally, the wave propagation in the periodic micro-perforated mufflers has been 

investigated. Because of the high acoustic resistance and low mass reactance due to 

the sub-millimeter perforation, the micro-perforated muffler can provide considerable 

sound attenuation of duct noise. The wave propagation in periodic micro-perforated 

mufflers is studied theoretically, numerically and experimentally. The periodic 

distance has an important effect on the sound attenuation performance. The micro-

perforation is studied based on the plane wave assumption in both the duct and the 

outer chamber. The impedance model proposed by Maa is used to relate the sound 

pressure between the two sides of the micro-perforation and then the transfer matrix 

of the periodic micro-perforated muffler is derived. The theoretical results agree well 

with the FEM simulation and the experiment. In the experiment. the transmission loss 

of the three periodic micro-perforated mufflers was measured with the two-load 

method. This study indicates that the combination of the Bragg reflection due to the 

periodic structure and the resonance of the micro-perforated muffler can result in 

different transmission loss. The proposed periodic placement of micro-perforated 
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mufflers can provide lower frequency noise control within a broader frequency range 

or enhance transmission loss around the resonant frequency. The periodic structure 

provides a way of modifying the transmission loss of the single micro-perforated 

muffler by inserting uniform ducts provided that the space is not limited and has a 

potential application in muffler design. 

 

6.2 Suggestions for Future Work 

On the basis of the present studies, future theoretical and experimental work are 

recommended as follows: 

 

1. The chapter on the Helmholtz resonator with a spiral neck could develop a more 

accurate model of the spiral neck. In the present work, the spiral neck is modeled 

as a straight duct with equivalent cross sectional area and length and it is effective 

when the plane wave assumption is satisfied. In other cases, if the wave in the 

spiral neck is not a plane wave, the present model is not applicable. Besides, an 

experimental work is required to be compared with the theory and the FEM 

simulation. 

 

2. This thesis only provides a study of the effect of periodic arrangement on the 

mufflers under plane wave assumption. However, in practice, higher-order modes 

effect cannot be neglected. Because of the larger cross sectional area than the inlet 
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duct, the higher-order modes can be excited at the expansion chamber even the 

frequency is below the cut-off frequency of the inlet duct. Therefore, the wave 

propagation in the periodic mufflers should take into account the higher-order 

mode effects.  

 

3. Flow effect should be considered to investigate the effect of the periodic 

arrangement of the mufflers. Flow is inevitable in heating, ventilating and air 

conditioning system. Therefore, wave propagation of the periodic mufflers under 

flow condition can be investigated and compared with that under no flow 

condition. 

 

4. This thesis has only considered the periodic arrangement of one type muffler such 

as the expansion chamber muffler of the micro-perforated muffler. A study of the 

periodic arrangement of two or more types mufflers may be considered in future 

work. 
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