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Abstract

Nowadays, location-based services are ubiquitous in our daily life. Many mobile

applications recommend nearby restaurants, transportations or new places based on

user’s profile. However, considering the privacy protection, customers are less will-

ing to provide detailed information, such as age, status, habits etc.. Only moving

trajectories may be accessible by telecom service providers. Mining in trajecto-

ries is one of strategies to understand customer’s behaviors. Therefore, how to

discover user’s mobility patterns as well as making accurate mobility prediction be-

come two critical issues for location based services. Moreover, trajectories that are

updated frequently from massive people behave as streaming data, which require

pattern mining and prediction algorithms to be efficient as well. In this thesis, we

introduce our methods to conquer the above challenges. Our first work is to find

atomic mobility patterns from trajectories. Since moving trajectory usually consists

of many tandem repeats, the proposed pattern mining algorithm is able to perform

repeating sub-sequence mining and tandem structure detection concurrently. With

a pipeline framework, we can discover various patterns in an online manner. Next,

we transform a location sequence to a novel pattern-based network by connecting

all discovered patterns. The pattern network models user’s historical movements

from location level to pattern level, which not only provides a graph presentation

for investigating user’s mobility, but also serves as a mobility model for better pre-

diction. Our pattern network model is trained by three steps including prediction,

verification and weight propagation. Through online tunning the parameters of pat-

tern network, user’s next location can be predicted in real time. Finally, we focus

on the mobility prediction of unusual behavior. The motivation is that many loca-
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tions in our daily life are visited infrequently or only once. Usually, these locations

are hard to be predicted successfully by traditional methods. We introduce the con-

cept of mobility change, called Point of Change (POC), to describe people’s new

and unusual mobility behaviors. Our pattern network model is extended to include

spatial-temporal information for learning and predicting possible POCs in a user’s

trajectory. In general, our experiments show that the pattern network model outper-

formed other Markov models on location prediction and unusual mobility predic-

tion. Moreover, people’s mobility behaviors can be further analyzed according to

the structure of pattern network.
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Chapter: 1 Introduction

Mobility is ubiquitous in people’s daily life. Every day, we move from home to

work, from office to restaurant, from living room to garden. In recent years, cost

of GPS and cellular network positioning have become lower and lower. Various

wearable devices, such as smart phones, wristbands and glasses, incorporate posi-

tioning module as their standard component. Additionally, new techniques, such as

WLAN and on-boarded accelerometer, supplement GPS and cellular network for

the precise of indoor positioning. With such modern techniques, people’s moving

trajectories can be readily recorded anywhere at anytime. Popularity of positioning

techniques opens a floodgate to new researches, and launch an era of smart life and

smart city.

Figure 1.1 shows a part of visited locations of a smartphone user at Seoul, Ko-

rea, which are highlighted by red dots. During a two-month tracking, thousands

of locations were visited by a graduate student [9]. These locations were scattered

in different areas of a city, however, most places were distributed near university.

These trajectories portrait a life map of a student. We can infer his status of college

student easily. Since moving trajectory usually contains spatial and temporal infor-

mation, mining the mobility behaviors of users can benefit traditional marketing or
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Figure 1.1: Visited Locations of a Smartphone User

urban planning greatly. In marketing, answering the questions like, what time, or

where does a customer come from, and where he or she is going to, can characterize

a customer from the following aspects:

• transportation mode (e.g. by bus, metro, taxi or walk);

• status (e.g. student, office worker, senior);

• hobbies (e.g. sport fans, book worm, music lover);

• life mode (e.g. walking after dinner, getting up early, traveling at weekend);

• favorite places (e.g. library, park, supermarket).

As we can see, many features of an individual user can be profiled from his or her

historical trajectories. Thus, enterprises can deliver proper advertisements to their

target customers after knowing customers’ profiles. Similarly, in urban planning,

trajectories collected from a large amount of citizens can help government to man-

age a city through understanding:

• traffic status (e.g. traffic jam happens at transportation hub);
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• population distribution (e.g. most people live at downtown);

• emerging commercial district (e.g. many stores open at a new metro station);

• region functions (e.g. education, business, residence);

• regular events (e.g. football match every week).

Based on aggregated citizens’ trajectories, government can discover problematic

areas, traffic bottlenecks, group incidents etc., and make effective administrative

measures.

Historical trajectories reveal regular and periodic movements of users in the past.

On the other hand, people’s future movements attract the attentions of enterprises

and governments as well. If a user’s next location can be known in advance, recom-

mendations of nearby restaurants, shops, and transportations can be suggested to

the user. The chances that a user will buy products at his or her next visiting place

will be increased. Also, if government can foresee a large-scale activity that will

be taken place at downtown, human resources and public transportation services

can be re-allocated. Prediction of people’s next movements not only contains great

commercial values in business, but also is a priority on urban management, e.g.

prediction of traffic flow. Therefore, analyzing, mining and especially predicting

people’s daily trajectories are of usefulness reaching every aspect of our life.

In this thesis, we will focus on the prediction of mobility, and present our ap-

proaches to predict individual’s next location as well as unusual mobility change.

1.1 Motivations

(1) Mining Mobility Patterns
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Modeling of people’s mobility behavior requires to discover patterns from their tra-

jectories. For example, user’s morning and evening commutes have strong patterns

including residence place, working place, transportations and regular mobility be-

havior on working days. However, discovering meaningful patterns and modeling

mobility behavior are quite challenging. Sufficient prior knowledge and feature en-

gineering work are necessary, which cost huge human efforts and computational

resources. Moreover, mobility pattern discovery is usually based on many assump-

tions. Some assumptions may only fit to a part of people in a particular country. For

example, most people use public transportations at Hong Kong every day. Passen-

gers will be brought to different shopping malls along the line of metro, even they

do not have the plan for shopping. Oppositely, trajectories of private car users are

more straightforward. Every visited location reflects their real intentions. Due to

the different culture backgrounds, it is hard to apply a knowledge-based model to

understand all people’s movements. Therefore, instead of putting great efforts on

feature engineering, our motivation is to find out patterns from trajectory as many

as possible, and build a generalized model based on these patterns.

(2) Predicting Next Location

One strong motivation that drives the research of mobility prediction is recommen-

dation service. Nowadays, recommendation system plays an important role in many

domains and works in our multi-faceted lives. For example, many online malls, on-

line book stores, hotel booking websites, have adopted recommendation systems

to infer user’s purchasing preference. Based on browsing content, searching key-

words or even friends’ purchased records, a recommendation system will list rele-

vant products in the welcome page and attract users to click.
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With the quick development of mobile computing, recommendation services are not

only limited in online marketing, but also extended to our physical world. An ob-

servation is that people usually need assistance in unfamiliar places, such as which

hotel is the cheapest, where is the transportation hub. Even in a residential commu-

nity, a user may still have no chance to try all local dinning places. Under such cir-

cumstances, location-based recommendation services have a great market on guid-

ing and assisting users in their mobile lives. Binding with a physical location, a

recommendation system can suggest nearby restaurants, transportations, activities,

friends etc., which cater to user’s preference. Therefore, prediction is a way to know

which place a user is going to visit next. It is the most important prerequisite for

guaranteeing the accuracy of location-based recommendation services.

(3) Predicting Unusual Mobilities

Prediction of next location is based on user’s historical trajectories. Finding regular

patterns and frequent visited places are main ways to infer user’s possible move-

ment. However, in many occasions, people may detour from their normal mobility

behaviors, e.g.,traveling to new places or via a new route. In such circumstances,

previous mobility patterns are useless, and the well-trained location-based system

will be incapable to capture our real intention. Hence, an alternative strategy is to

let the recommendation system interact with users and ask their destinations instead

of shooting in the dark. Necessary interactions between users and the system in-

stantly not only improve the recommendation, but also fit the real needs of users.

Therefore, the ability to predict new and unusual mobility patterns is unique.

In addition to the recommendation scenario, prediction of new and unusual mobil-

ity patterns is also useful for the scheduling of mobile phone system. We studied
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smartphone’s battery consumption and screen activity at the locations of mobility

change, and found battery consumption and screen activity increased 20% when

people arrived at a new place, or changed from their past mobility patterns. Map

searching, photo shooting, finding favorite restaurants nearby, checking-in social

networks are the possible actions that are likely to happen. For mobile phone sys-

tem, pre-loading of relevant apps and data is an effective way to ensure a smooth

user experience. With the capability to predict unusual places, our smartphone can

• pre-load possible mobile apps;

• synchronize necessary files from cloud server in case of unstable network at

new places;

• report possible mobility change of children to their guardians;

• reschedule regular system work on cell phone.

In view of above motivations, we believe mobility prediction is an important re-

search work in the emergence of mobile computing. Successfully predicting next

or new place that a user is going to visit has great benefits to recommendation sys-

tem and mobile operation system.

In general, the research problems in this thesis are to discuss how to build an effi-

cient mobility model from pattern mining level to model training level. In order to

make accurate mobility prediction, it is not easy to build a mobility model without

considering user’s moving behaviors in real application. Also, high quality training

datasets, meaningful patterns are essential for building and training a robust mo-

bility model. Therefore, our motivation starts from mining useful atomic mobility

patterns. Then, we can evaluate the quality of datasets by analyzing the number

of patterns discovered, and build different mobility models by modeling the ap-
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pearance of patterns. From the view of real applications, we need to improve the

efficiency of pattern mining and mobility modeling as well. The methods proposed

in this thesis consider the distributed environment so that location-based service

providers are able to analyze and provide accurate predictions for millions of users

in real time. Moreover, various interesting applications can be motivated by pro-

posed pattern network model, which connects all sequential patterns into a graph

model, such as next location prediction, unusual mobility behavior prediction or

user classification by analyzing their pattern networks.

1.2 Contributions

This section provides an overview of the scientific contributions of this thesis to the

mobility prediction.

(1) Contributions to Mobility Pattern Mining

Typically, a trajectory is represented by a discrete sequence of locations. With the

growth of moving distance, more and more locations will be appended. Since the

frequently updated trajectory behaves as a streaming data, predicting user’s move-

ment becomes an online task. The next location should be predicted according to

all locations on and before the current time. Mining mobility patterns is necessary

for prediction.

(a). In this thesis, we proposed to formulate mobility pattern in terms of repeating

sub-sequences, precisely, a near-supermaximal repeat and tandem unit. The obser-

vation is that in an individual trajectory, it is unlikely that a path would be visited
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twice or more only due to chance. Since a location sequence can be viewed as a

string, well-developed notions in string processing can be employed in our work.

(b). We proposed an online pattern mining algorithm to discover various near-

supermaximal repeats as atomic patterns. Traditional algorithms are only able

to discover tandem repeats and near-supermaximal repeats separately. However,

there is no algorithm which can handle the detection of both tandem and near-

supermaxial repeat in an incremental manner. Facilitated by Ukkonen’s suffix

tree construction algorithm, a new sequence can compare with any historical sub-

sequences incrementally. Our contribution is the development of multiple pipelines

to maintain any repeats. Each pipeline is corresponding to a branch of suffix tree

and caches one of suffixes of a repeat. Once the next element can not be a part

of repeating sequence any more, the caching process will be stopped. Among

all pipelines, the near-supermaxial repeat can be discovered by finding the longest

cached pipeline. Besides, during the caching process, tandem structure of sequence

will be detected as well. If a shorter pipeline contains the same content as in a

longer pipeline, a tandem structure must exist in this longer pipeline. Thus, caching

process will be stopped and the shorter pipeline contains a non-tandem repeat. Uti-

lizing pipeline framework, near-supermaxial and tandem repeats can be discovered

concurrently.

The overall time and space complexity of our algorithm is linear to the length of a

sequence, and time complexity of each incremental step is linear to the length of

the longest cache. With a multi-pipeline computational framework, each pipeline

can be computed separately, which allows the parallel executing for extreme big

dataset.
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(2) Contributions to Next Location Prediction.

Traditionally, Markov model is regarded as the first choice for trajectory modeling.

The assumption is that the next location is only dependent on limited previous loca-

tions. Usually, 1-order or 2-order Markov chain is a popular configuration for such

model. However, due to the complex of people’s mobility behaviors, fixed length

order may not be sufficient to differentiate various cases.

(a). In this thesis, we proposed a pattern network model to predict possible next

location based on discovered mobility patterns. Our intuition is that a location

sequence can be composed by many nested mobility patterns along the time. We

can infer a user’s next location by comparing his or her recent traveling path with

all historical patterns. Since the lengths of mobility patterns are different, pattern

network can be viewed as a variable-order Markov model. Hence, training based

on patterns with various lengths enhances our model to predict in some extreme

situations.

(b). Additionally, if a pattern occurred recently, other successive patterns in history

may likely to happen afterwards. Therefore, when we construct the relationship

between discovered patterns, the pattern network carries all transition information

of locations as well as patterns. It is a new presentation of location sequences.

Through tunning the weight of patterns on the network, our model is able to learn

the features of mobility trace and adapt to the recent trajectory.

(3) Contributions to Unusual Mobility Prediction
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Traditional location-based service profiles user’s traits by looking for patterns in

historical mobility behaviors. Yet, from time to time, people are adventurous and

would often like to go to unvisited places, or follow new transition paths. At that

time, their next movements will be inconsistent with any previous patterns, making

location-based recommendations inaccurate and irrelevant.

(a). In this thesis, we defined the next location as a Point of Change (POC) if

it no longer matches the earliest on-going pattern. The POC can be regarded as

a mobility change departing from a regular pattern. Furthermore, to investigate

what causes a mobility change, we differentiate POC into three types including new

point, new follower, and new breaker. New point is a place that has not been visited

before. New follower is a visited place but the transition from previous location is

new. A new breaker is a visited place arrived via a traveled path. The advantage of

classifying three types of POC is that the content of recommendation can be refined

in terms of respective situations.

(b). To predict POCs, we further extended the pattern network to the spatial-

temporal mobility model, called ST-Pattern Network. With the consideration of

both spatial and temporal aspects, the likelihood of POCs can be learnt accord-

ing to the regularity of patterns. Our assumption is that under a strong regularity

pattern, the chance of POC occurrence will be small, and vice versa. Therefore,

we utilized different mobility patterns as many as possible from historical location

sequence. By computing the variations of patterns, our model can predict future

POCs as well as adapt to new trajectory via a pattern network.

(c). Furthermore, we investigated the relationship between unusual mobility behav-

iors and smartphone usage behaviors. We found the average battery consumption
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of smartphone increases 21% on POC locations. Similarly, the times of screen ac-

tivated and duration increase 19% and 20% respectively. These results proved that

people utilize their smartphones more intensively under unusual situations. Hence,

the ability to predict POC is useful for the optimization of smartphone utilization.

1.3 Outline of Thesis

In this thesis, a systematical study of various techniques on mobility prediction will

be presented. In Chapter 2, we first introduce the background of trajectory analysis,

mobility pattern mining, location prediction. Furthermore, we review some recent

literatures on location-based recommendation systems. In Chapter 3, we demon-

strate our novel online approach for discovering non-tandem near-supermaximal

repeats. A framework of pipelines for maintaining and discovering patterns will

be studied in details. In Chapter 4, discovered mobility patterns will be utilized

for predicting next location. Construction of pattern network and the training of

pattern network model will be demonstrated also. In Chapter 5, we include spa-

tial and temporal information of mobility patterns to enhance the pattern network

model for unusual mobility prediction. Definitions of Point of Change (POC) will

be described in detail, and algorithms of POC learning will be presented afterwards.

Lastly, we conclude our work and further work in Chapter 6.
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Chapter: 2 Background

In this chapter, we will give an overview of the related works on trajectory analysis,

location prediction, unusual mobility prediction and location-based recommenda-

tion system. Recent advances in data mining enhanced the capability of pattern

recognition and knowledge discovery from huge amounts of trajectories. These

knowledges enable us to have a deeper understanding of people’s preference and

behaviors from the view of mobility.

2.1 Trajectory Presentation

What is a moving trajectory? In different research areas and applications, the def-

inition and data presentation of trajectory could be different. According to their

underlying formats, we categorize a moving trajectory into four types, pixel-based

sequence, real-world coordinate-based sequence, location-based sequence, and

semantic-based sequence. Figure 2.1 shows four examples of moving trajectories

in different domains.

(1) Pixel-based Sequence
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(c) Location Sequence [4]

Home (A) 

Bus Station (G) 

Metro Station (C) 

University (D) 

Park (B) 

Library (E) 

Restaurant (F) 

(d) Semantic Sequence

Figure 2.1: Categories of Trajectory

Figure 2.1(a) draws a bunch of lines to represent pedestrians’ motions at central

station [10]. The trajectory of a pedestrian’s motion in a video sequence is for-

malized by a set of 2 dimensional pixels (px, py). By extracting these pixel-based

sequences, researchers aim to model motions, interactions or abnormal behaviors

of moving objects automatically for surveillance purpose [12], [13], [10]. The main

property of pixel-based sequences is that trajectory only covers a specific scene,

such as street, station or shopping mall, during a short time period.

(2) Real-world Coordinate-based Sequence

Figure 2.1(b) demonstrates movements of thousands of taxis in Beijing [11]. A

taxi’s position at each time point is recorded by a real-world coordinate pair via

GPS, i.e. (longitude, latitude). In terms of sampling frequency, coordinates can be
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acquired secondly, minutely or hourly. The sequence of coordinate pairs is regarded

as a trajectory. The coordinate-based sequences can be generated when tracking

people, animals or vehicles. By partitioning or clustering these trajectories, many

researches have mined people’s transportation modes or periods of animal migra-

tion successfully.

(3) Location-based Sequence

Figure 2.1(c) plots a series of connected discrete points [4]. Each green point S

is a coordinate and each shaded circle C is a location. Different from pixel-based

and coordinate-based sequence, location sequence is a collection of abstracted stay

points sorted in time order, which is usually represented by

S1:n =< η1, t1 >,. . . ,< ηn, tn >, (2.1)

where ηn represents the name or ID of a physical location, and tn is the arrival

timestamp of location ηn. The stay point can be extracted by various methods, such

as clustering nearby coordinates, filtering through stay duration or velocity etc. [4],

[9]. Location sequence is a high level transformation of pixel-based or coordinate-

based sequence, which is one of the most common presentations. In many appli-

cations, rather than dealing with exact coordinates, location-based sequence can be

processed by many string processing algorithms for pattern mining and prediction.

(4) Semantic-based Sequence

Figure 2.1(d) plots a user’s visited locations in day time, and each location is an-

notated by a semantic label. Instead of using location ID, a trajectory can also be
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presented by a sequence of semantic labels sorted in time order. For example, a

transition between two locations “A” and “B” in Figure 2.1(d) can be transformed

as a move from “Home” to “Park” by incorporating geographic knowledge. The

semantic sequence is easy to be understood and interpreted. Especially, we can

compare two person’s trajectories according to their semantic labels, although they

are not in the same city.

According to the definitions above, we can find real-world coordinate-based se-

quence, location-based sequence and semantic-based sequence can be converted

each other. By grouping nearby coordinates, we can obtain a location sequence.

And, a location sequence can be further transformed to a semantic-based sequence

by labeling the meaning of each place. In our work, we focus on location sequence,

because our target applications are location-based services. The recommendation is

based on a place a user visited. The location sequence is very similar to a character

stream, because each element in the discrete sequence is a location ID. Therefore, it

is very convenient for us to process location sequence by existing string processing

methods, such as suffix tree and suffix array.

In this thesis, our datasets are collected from two sources, location-based social

networks and smartphone records. Location sequence is the major data format we

need to handle for pattern discovery and location prediction.

2.2 Sequential Pattern Mining

As discussed above, both location-based and semantic-based sequences are pop-

ular data presentations in mobile applications. One advantage of using location

sequence is that many traditional sequential pattern mining algorithms can be ap-
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plied to discover interesting patterns directly. Kumar et al. compared and classified

lots of well-known approaches in their work [14]. Here, we list some of them as

follows:

• Apriori Based Method (e.g. GSP: Generalized Sequential Patterns);

• Vertical Format Based Method (e.g. SPADE: Sequential PAttern Discovery

using Equivalent Class);

• Pattern Growth Based Method (e.g. FreeSpan, PrefixSpan);

• Constraint Based Method (e.g. SPIRIT: Sequential pattern mining with regu-

lar expression constraints);

• Closed Sequential Pattern Mining (e.g. CloSpan);

• Sequential Pattern Mining in Data Streams (e.g. SS-BE, SS-MB);

• Mining Incremental Patterns (e.g. IncSpan: Incremental Mining of Sequen-

tial Patterns);

• Multidimensional Sequential Pattern Mining (e.g. UNISEQ);

• Mining Closed Repetitive Gapped sub-sequences.

The above methods consider a general problem to find the complete set of frequent

items (sub-sequences) when given a set of sequences. Typical applications of se-

quential pattern mining can be found in the analysis of supermarket transactions,

web click stream, DNA sequence etc.. Next, we briefly introduce two representa-

tive algorithms, GSP:Generalized Sequential Patterns and PrefixSpan.

(1) GSP: Generalized Sequential Patterns

GSP (Generalized Sequential Patterns) is an Apriori-based method proposed by

Proposed by R. Srikant and R. Agrawal in their early works [15]. In a sequence
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Figure 2.2: Candidate Generation using GSP

database, GSP mines frequent patterns in a level-wise fashion. The principle is that

if a sequence S is not frequent, none of the super-sequences of S can be frequent.

A super-sequence is the one that contains S. And, the frequency is quantified by

a support count, which is the number of times S appears in different records. For

example, if a sequence < a,b > does not appear more than once, all its super-

sequence like < a,b,c >, < a,b,d > is not possible to occur twice.

After specifying a minimum support threshold, GSP starts to find all length-1 se-

quences in the database. In the next level, the algorithm uses length-1 candidates

as seeds to search longer candidate sequences with corresponding support counts.

This process is repeated until no frequent sequence can be found. Figure 2.2 shows
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a diagram of candidate generation in different levels. Candidates in dark circles are

infrequent sequences. Using Apriori, these candidates are pruned since they cannot

pass support threshold, which save the cost for database search.

However, the drawbacks are (1) a large set of candidates will be generated at each

level, and (2) database need to be scanned many times. Therefore, Apriori-based

algorithm is inefficient for mining long sequences.

(2) PrefixSpan

To avoid huge number of generated candidates in Apriori-based algorithm, a pat-

tern growth based method, PrefixSpan [1], is designed for efficient search. Instead

of considering a super-sequence, pattern growth method utilizes the fact that any

frequent sub-sequence can always be found by growing a frequent prefix. There-

fore, PrefixSpan works by examining only the frequent prefixes of sub-sequences

and projecting their corresponding postfixes into projected datasets. A sequence

database is projected into a set of smaller databases recursively, and patterns can be

mined from each projected database.

Figure 2.3 shows an example of PrefixSpan algorithm. At the beginning, it finds

all length-1 sequences like < a >,< b >,. . . ,< f > as prefixes, and groups the

corresponding postfixes into 6 subsets. To further narrow down the search space,

for example, all sub-sequences in the < a >-projected database will be partitioned

into the following 6 subsets having prefixes < aa >,< ab >,. . . ,< a f >. The par-

tition will continue recursively until no more sub-sequence satisfying the minimum

support threshold. The advantages of PrefixSpan are (1) no candidate needs to be
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Figure 2.3: Example of PrefixSpan [1]

generated, and (2) the projected databases to be searched keep shrinking. The Pre-

fixSpan is much suitable to mine large sequence database.

The data handled by the algorithms above is a list of transactions ordered in time.

Each transaction contains a set of items. Unfortunately, a trajectory is usually a long

location sequence. Arbitrary sampling of a sequence in terms of hour, day or week

may lead to information loss. Therefore, string processing algorithms are better to

discover interesting patterns from a location sequence directly, for example, finding

the maximal repeats. Here, we review two main data structures that support various

string processing algorithms, suffix tree and suffix array.

(3) Suffix Tree

Suffix tree is a mature data structure that allows many string matching problems to

be solved quickly, e.g. finding the longest common substring and maximal repeat

[16]. For a sequence of length n, it can be constructed in O(nlogn) time and requires
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abcabxa$ (1) 
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Suffixes of Sequence: !

a b c a b x a $  
1 2 3 4 5 6 7 8  

Sequence: !

Figure 2.4: Structure of Suffix Tree

only O(n) space by Ukkonen’s online algorithm [17]. With a compact tree structure,

all suffixes of a sequence can be stored completely.

Figure 2.4 demonstrates a suffix tree that stores a string S = “abcabxa$′′, where $ is

a terminal symbol. All 8 suffixes of sequence S are stored along the paths starting

from the root to a leaf node. The start position of every suffix in a sequence is

labeled at each corresponding leaf node. Due to the compact structure, an edge in-

between two internal nodes (or root and internal node) may share a common prefix

of multiple suffixes. For the suffix tree of a n-length sequence, there are total n leaf

nodes. All internal nodes, except the root, have at least two children, and the suffix

tree can have at most n internal nodes. With the tree structure, string matching can

be performed by comparing characters from the root to a leaf.

To find out all maximal repeats in a sequence, D. Gusfield [18] proposed an algo-

rithm to search maximal repeats on the nodes of suffix tree. He defined the left

character which is the character left to the character at position i in a string S. Also,
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Figure 2.5: An Example of Suffix Array

a node v of suffix tree is called left diverse if at least two leaves in v′s subtree have

different left characters. The algorithm goes through every node v from the bottom

to the top, and marks all nodes with left diverse by distinguishing different left char-

acters of node v. D. Gusfield proved that finding the left diverse nodes is sufficient

to find all maximal repeats.

(4) Suffix Array

In addition to the tree structure, storage of suffixes can also be implemented in an

array. Suffix array [19] is a lexicographically sorted array. Each suffix in this array

is represented by its starting position in the sequence S.

Figure 2.5 shows the same string example of Figure 2.4, but in the form of suffix

array. Firstly, all suffixes are rearranged according to their alphabetic characters

from left to right. Secondly, the numbers of suffixes’ start positions are filled into

the array with the same order. For a substring search, if the substring occurs in

S, then all its occurrences are consecutive in the suffix array. A binary search can
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be used to locate the substring in the array quickly, and string counting can be

completed by counting the consecutive entries.

Comparing with Figure 2.4, the ordering of start positions in suffix array is the

same as the ordering of leaf nodes in suffix tree (leaf nodes from top to bottom).

This observation implies suffix array can be deduced from suffix trees. Any of the

linear time suffix tree construction algorithms can not only be used for suffix arrays,

but achieve the economy of space by only storing an array. Therefore, many string

processing problems can be solved on suffix array as well [20].

In this thesis, we mainly use suffix tree to perform pattern discovery from location

sequence.

2.3 Pattern Discovery in Trajectory

What is the pattern of people’s mobility? How can we mine such patterns from a

moving trajectory? Apart from sequential patterns, many researches have defined

different types of spatial-temporal patterns to investigate regularities in trajectory.

Here, we give some typical approaches.

(1) Periodic Pattern

A periodic pattern can be considered as the repeating activities at certain locations

with regular time intervals. It is a non-trivial movement characteristics that can pro-

vide an insight to understand people’s historical movement. Li et al. answered two

questions in their early works [2], how to detect the periods in complex movement,

and how to mine periodic movement behaviors. First, they identified that multiple
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Raw data of David’s movement

2009−02−05 09:14 (811, 60)

2009−02−05 10:58 (810, 55)

2009−02−05 14:29 (820, 100)

...

...

...

2009−06−12 09:56 (110, 98)

2009−06−12 11:20 (101, 65)

2009−06−12 20:08 (20, 97)

2009−06−12 22:19 (15, 100)

2009−02−05 07:01 (601, 254)

  20:00−8:00 in the dorm
  9:00−18:00 in the office

  14:00−16:00 Tues. and Thurs. in the gym

Periodic Behavior #1

Periodic Behavior #3 
  (Period: week; Time span: Sept. − May)

  (Period: day; Time span: Sept. − May)

  20:00−7:30 in the apartment
  8:00−18:00 in the company
  (Period: day; Time span: June − Aug.)
Periodic Behavior #2 

  13:00−15:00 Mon. and Wed. in the classroom

Periodic behaviors

Figure 2.6: An Example of Periodic Behaviors [2]

periods like week or day usually co-exist, and it is hard to set a unified threshold

to determine hourly, daily, and yearly period. Many traditional techniques, such

as Fourier transform and autocorrelation, are failed to catch the periods in spatial-

temporal data. Due to the noisy and variation of people’s movements, an activity

may not happen exactly at the same location and at the same time point. Secondly,

they showed that people can have different periodic behaviors even the time period

is the same. An example shown in Figure 2.6 was used to justify their claim about

this possible case. In the figure, it shows that David’s daily behaviors were different

from September to May and from June to August.

To solve the above problems, they assumed that multiple interleaved periodic be-

haviors usually occur when associated with certain reference locations. The refer-

ence location is defined as a dense area that is frequently visited in the movement,

called a reference spot. A two-stage algorithm, Periodica, was proposed to mine

these periodic movements. At the first stage, all possible periods were detected di-

rectly from the raw data. They partitioned a space into different grids and used a

kernel method to estimate density regions as reference spots. Then, for each refer-

ence spot, they transformed a spatial sequence to a binary sequence. A binary value

of 1 will be assigned to i-th bit if an object visited this reference spot at time i.
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Finally, they combined Fourier transform and autocorrelation to obtain all periods

from each binary sequence.

Since within the same period, different behaviors may exist, at the second stage,

they needed to find out all periodic behaviors for all periods. A hierarchical cluster-

ing method was used to cluster different behaviors in the same period, and a gen-

erative model was applied to measure the distance between two periodic behaviors.

After clustering, each cluster represents a type of periodic behavior. For example,

in Figure 2.6, “School days” is one behavior and “Summer days” is another one.

In their later works [21], they extended the problem of mining event periodicity

from incomplete observations by a probabilistic measurement.

(2) Spatial-Temporal Patterns

Besides looking for the periodicity, patterns in trajectory can also be frequent in

spatial and temporal aspects. Cao et al. [3] observed that locations are not always

repeated exactly in every instance of a movement pattern. A better way is to enlarge

the spatial area of comparison, and transform a location sequence to a series of large

regions. Figure 2.7 demonstrates a circular movement pattern, but is composed by

different locations and regions.

However, the definition of region could be arbitrary and loss information of underly-

ing movements. To conquer such problem, they used a line segmentation technique

to transform a spatial-temporal sequence into a list of directed line segments. Simi-

lar lines were merged to a mean line segment by minimizing their errors. After that,

the region could be formed by finding two vertical and two horizontal mean lines
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run 1

run 2

run 3
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run 1

run 2

run 3

(a) (b)

Figure 2.7: An Example of Object Movement [3]

around it as shown in Figure 2.7(b). Finally, through a substring tree in a heuris-

tic way, they mined the frequent spatial-temporal patterns as a series of frequent

regions that satisfy a minimum support threshold.

Their work solved the spatial trajectory mining problem in a coordinate level, which

compensated some limitations of sequential pattern mining. However, their ap-

proach did not consider temporal information or more geo-knowledges.

(3) Life Patterns

On the other hand, Ye et al. [4] considered the trajectory mining problem in a

higher knowledge level. They defined and summarized a life pattern from different

properties:

• Temporal Granularity and Condition (e.g. an hour, a day, a week, on Monday,

on work days);

• Significant Places (e.g. School, Company, Hospital);

• Sequentiality (e.g. Transitions: “Home”→ “Bus Station”→ “University”);

• Timestamp-Annotation and Timespan-Annotation (e.g. arrival, departure

time, stay duration);
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Figure 2.8: Architechture of LP-Mine [4]

• Conditional Life Pattern (e.g. “If Tom goes to school, 80% times he arrives

at school before 9AM.”);

• Life Associate Rule (e.g. “When Tom goes to school, 60% time he will visit

convenient store.”).

In their definitions, a significant place is a place that can reflect his or her major

activities, and can be regarded as an atomic pattern. A normal form of life pattern

(LP-normal form) was defined by combining different atomic patterns to compli-

cated ones using above properties.
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Figure 2.8 illustrates an architecture of life pattern mining framework called LP-

Mine. The framework contains two stages, data pre-processing and life pattern

mining. The pre-processing stage mainly serves for the transformation of a raw GPS

log to a historical location sequence. To mine life patterns in location sequences,

four modules are necessary to ensure finding out above six properties:

(A) Temporal sampling and partitioning: This module divides a location sequence

into many sub-sequences according to the temporal granularity like “day”, “week”,

etc. And, these sub-sequences are stored into a life sequence dataset.

(B) Mining non-temporal life patterns: This module focuses on spatial information

only. On one hand, the module treats each sub-sequence as a set of independent sig-

nificant places. Transition between two places were ignored. A closet+ algorithm

is applied to retrieve frequent closed set of places across all sub-sequences. On

the other hand, considering the ordering property of a sub-sequence, the CloSpan

algorithm is used to mine sequential life patterns in the sequence database.

(C) Mining temporal-life patterns: This module further retrieves the corresponding

arrival, departure timestamps and stay durations of each non-temporal life pattern.

Then, temporal-annotated and temporal-knowledge life patterns can be mined using

a geometric approximation through corsets.

(D) Mining conditional life patterns and life associate rules: This module retrieves

all sub-sequences that contains a particular non-conditional life pattern initially.

Then, it uses a projection-and-mining step to project conditional life patterns by

deleting elements corresponding to the non-conditional life pattern from the re-

trieved sub-sequences.
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Life pattern involves in multi-faceted patterns in our daily life, which is a domain

specific definition. By discovering various life patterns, recommendation systems

can suggest contents not only according to single spatial-temporal pattern, but also

from pattern combinations.

2.4 Location Prediction

Location prediction is an important task in many applications including cellular net-

works [22], ad hoc wireless networks [23] [24], transportation recommender sys-

tems [25], smartphone energy optimization [26], etc. With the emergence of mobile

computing, extensive researches have been made on human mobility prediction [5]

[27].

In general, location predictors can be classified into two categories, domain-

independent predictor and domain-dependent predictor. For a domain-independent

predictor, prediction of next location is only based on spatial and temporal infor-

mation. Usually, these predictors can be performed in an online manner, which

summarize historical trajectory, extract current context, and predict next location

incrementally. On the other hand, domain-dependent predictors may consider

more information beyond spatial-temporal trajectories. For example, check-in on

location-based social network, or friend’s visiting records of social network can be

integrated into a location predictor as well.

There are two popular domain-independent predictors, order-k Markov scheme and

Lempel-Ziv scheme. Song, et al. [5] evaluated the performance of Markov model

family and LZ family in their work respectively. Here, we briefly introduce two

approaches.
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(1) Order-k Markov

Markov model is a well-known predictor that has been applied in many applications

[28][29]. In a location sequence S1:N = η1, . . . ,ηN , the order-k (or “O(k)”) Markov

predictor predicts the next location ηN+1 based on the information from k most

recent contexts of locations ηN−k+1, . . . ,ηN−1,ηN in history. It models each context

η (e.g. location ID, name) as a state, and a location as a random variable X . Let

A be the set of all historical location contexts, ηN+1 ∈ A, and n = 1, . . . ,N. The

order-k Markov model can be presented as follows,

P(XN+1 = ηN+1|XN = ηN ,XN−1 = ηN−1, . . . ,X1 = η1)

= P(XN+1 = ηN+1|XN = ηN ,XN−1 = ηN−1, . . . ,XN−k+1 = ηN−k+1)

= P(Xn+1 = ηn+1|Xn = ηn,Xn−1 = ηn−1, . . . ,Xn−k+1 = ηn−k+1). (2.2)

In Eq. 2.2, for the location in time n, if the contexts of k recent locations are the

same, the probability of next location will be the same. That shows the stationary

distribution of probabilities from history to the current. In a Markov model, the

probabilities of location transitions can be represented by a transition probability

matrix for O(1) Markov model, or a transition cube for a O(2) Markov model. For

example, in the transition matrix of an O(1) Markov model, each row or column is

a location context belonging to A. The probability from location ηn to ηn+1 can be

represented by P(Xn+1 = ηn+1|Xn = ηn).

To build the transition matrix, we need to estimate each probability of location tran-

sition from historical location sequence S1:N . Let sn−k+1:n = ηn−k+1,ηn−1, . . . ,ηn

be a k-length sub-sequence. The probability estimation of an O(k) Markov model
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can be calculated as follows:

P̂(Xn+1 = ηn+1|Xn = ηn,Xn−1 = ηn−1, . . . ,Xn−k+1 = ηn−k+1)

=
N(sn−k+1:n,ηn+1|S1:N)

N(sn−k+1:n|S1:N)
, (2.3)

where N(sn−k+1:n,ηn+1|S1:N) denotes the number of times the sub-sequence

ηn−k+1,ηn−1, . . . ,ηn+1 occurred in the location sequence S1:N .

Given a location sub-sequence ending at time N, s′N−k+1:N = ηN−k+1,ηN−1, . . . ,ηN ,

we can predict the context of next location ηN+1 by finding the maximum probabil-

ity of location transition from the following equation:

ηN+1 = argmax( P̂(XN+1 = η |XN−k+1:N = s′N−k+1:N ), η ∈ A′, (2.4)

where A′ is a small set of locations that followed the contexts of sequence s′N−k+1:N

before, and XN−k+1:N is a series of random variables from time N− k+ 1 to N. If

A′ is empty, the Markov model makes no prediction.

According to the properties mentioned above, a Markov model has the following

advantages:

• Implementation of model is easy. Only a transition matrix is needed to be

maintained;

• The model is straightforward and easy to be understood;

• Only one transition probability is required to be updated after moving to the

next location;

• An online prediction is supported.
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However, the weakness of O(k) Markov model is that the order-k has to be de-

termined before training. Usually, the best k is hard to be selected in different

applications.

(2) Lempel-Ziv Predictor

Lempel-Ziv predictor is derived from an incremental parsing algorithm, which is

originally used for text compression. Let γ be an empty sequence. For a long

sequence S, the LZ algorithm partitions the sequence into multiple distinct sub-

sequences s0,s1, . . . ,sm, and makes γ = s0. In the sequence S, suppose there are

two sub-sequences si and s j, where 0≤ i < j. The prefix of s j without its last char-

acter is equal to si. According to this property, partitioning of a sequence is done

sequentially from beginning to end. Later sub-sequence s j is extended from earlier

sub-sequence si by one character each time. For example, a string gbdcbgce f bdbde

can be incrementally parsed as multiple sub-sequence γ,g,b,d,c,bg,ce, f ,bd,bde.

As discussed above, every later sub-sequence is necessary to be compared with all

earlier sub-sequences to determine its distinctness. To facilitate the string compari-

son, LZ algorithm constructs a LZ tree dynamically associating with the incremen-

tal parsing process. Figure 2.9 shows the structure of LZ tree. A sub-sequence si is

inserted into the tree from the root node γ to a leaf node. Each node of the tree is

labeled with a character of a particular sub-sequence. If two sub-sequences have the

same prefix, common nodes will be shared from the root. To indicate the number

of occurrences of each sub-sequence, a counter value is stored in each node as well.

Initially, a pointer refers to the root γ of the LZ tree. For a new character, insert

a new node under the root and set its counter as 1. Exam a sequence from left to

right. Suppose an examining character matches with one node of LZ tree. If its next
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γ

g:2
b:4

d:3

c:2

f:1

g:1 e:1

s = gbdcbgcefbdbde

si = γ, g, b, d, c, bg, e, ce, f, bd, de, bde

d:2

e:1

e:1

e:2

Figure 3. Example LZP parsing tree

Figure 2.9: LZ Tree [5]

character also matches a child node of the current node, move down to that child

node and increase its counter. If not, add a new child under the current node and

reset the pointer to the root. Through parsing a sequence, a complete LZ tree can

be constructed with statistics of each sub-sequence.

Similar to the O(k) Markov model, the probability that a location context ηn+1 will

happen next can also be estimated by a conditional probability as follow:

P̂(Xn+1 = ηn+1|Ẍ = s̈) =
N(s̈,ηn+1|s)

N(s̈|s)
, (2.5)

where s̈ is a prefix of a sub-sequence s parsed by LZ algorithm, Ẍ is a series random

variables for s̈. To predict the next location, we select the location context that is
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transited from prefix s̈ with the maximum probability as follow:

ηN+1 = argmax( P̂(XN+1 = η |Ẍ = s̈ ), η ∈ A′, (2.6)

where A′ is a finite set of location contexts that followed a prefix s̈ of a sub-

sequences before. In a real implement, it matches a path from the root γ to a current

node. The next possible location can be determined by selecting one of child nodes

that has the maximum counter. If the current node is a leaf, the LZ predictor makes

no prediction. LZ predictor requires to maintain a LZ tree and can be executed in

an online manner as well.

LZ predictor relaxes the condition of fixed order in Markov model by utilizing

finite-length sub-sequences. However, it also has some limitations. (1). As sub-

sequences are adjacent each other; any possible pattern that is across two parsed

sub-sequences is lost. (2). Also, a possible pattern that is contained within sub-

sequence is lost as well. Therefore, LZ predictor improves the fixed order limitation

of Markov model, but still has information loss over the entire sequence.

(3) Domain-dependent Predictors

Besides spatial information, is it possible to predict next location from other domain

knowledge? Nowadays, location-based social network (LBSN) integrates location

tags into the contents of social networks, and brings more variates to new business

model. The location tags in LBSN can be provided by user’s check-in action or

recognized from mobile phone’s locations. Cho et al. [30] proposed a human mo-

bility model based on friendships in social network. This interesting work found

that short-ranged travel is periodic both spatially and temporally and not effected
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by the social network structure, while long-distance travel is more influenced by

social network ties. They collected users’ friendship information and check-in se-

quences from location-based social networks. By applying their Periodic Mobility

Model (PMM) model, they showed a reliable prediction of locations and dynamics

of future human movement.

Meanwhile, Ye et al. [31] solved the same prediction problem by a two-stage

method. As the check-in data from social network contains millions of distinct

locations, it is difficult to predict the next location directly. They proposed a mixed

HMM to predict a type of user activity first, and then estimate the possible exact

location belonging to this activity. Their method reduced the prediction space and

reached better prediction accuracy.

In addition to successful prediction, semantic interpretation of place is especially

important, because it can help user to understand the properties of location. Simi-

larly, social network, such as Foursquare, Facebook or Twitter, are also useful chan-

nels that offers semantic information. By extracting semantic meaning from tags,

text description, comments or even Twitter messages, we are able to annotate the

related places. Usually, topic modeling method [32] and classification method [33]

are two popular ways in semantic annotation. Topic modeling method considers

a location as a document, semantic meanings as topics, and properties of location

as key words. Through LDA algorithms, different semantic labels will obtain dif-

ferent probabilities that indicate the correlation to the place. Classification method

treats all characteristics of location as a feature vector. By learning a large amount

of feature vectors with labeled places, the classifier has the capability to identify
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unlabeled places. Furthermore, [34] used crowdsourcing to label the places, which

could get more accuracy than machine learning methods.

In this thesis, we will adopt several location predictor mentioned above as our

benchmarks for performance evaluations.

2.5 Unusual Mobility Prediction

Most of times people follow their multi-faceted routines every day. However, due to

emergency situations or vacations, people may change their mobility patterns tem-

porarily. In this section, we will review some works about detection and prediction

of mobility change.

(1) Detection of Mobility Change

Detection of mobility change or outliers has been researched in many works [35]

[36] [37]. These works considered to mine abnormal trajectory from a data level. A

trajectory can be partitioned into many line segments. It is relatively easy to com-

pare trajectories based on different line segments using distance-based and density-

based approaches. Thus, outliers can be detected from comparisons or clustering.

Also, many spatial-temporal features can be extracted from a long trajectory. These

features is formalized as a feature vector, inputed into traditional classifiers. By

learning the features of trajectories and their labeled categories, future suspicious

movements can be detected quickly via classification.
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Figure 2.10: Modeling Trajectory by Hidden Markov Model [6]

In [6], the author attempted to detect trajectory changes from a model level. Fig-

ure 2.10 shows an illustration of trajectory modeling by hidden Markov model

(HMM). He first clustered a user’s trajectory coordinates into many density regions,

notated as R. These regions may represent a home, a working place or an university

in which a user visited frequently. Secondly, he partitioned a 2-D space into many

grids O using grid-based discretization. Thus, a trajectory can be mapped into a

discrete grid-based sequence. Then, a hidden Markov model was established by

assuming each density region R as a hidden state, and each grid as an observation

O. Using Baumwelch algorithm, parameters including state transition probabilities,

emission probabilities can be learnt from training trajectory. Finally, the mobility

change can be found by finding significant changes of these probability parameters

via several detection algorithms [38] [39].
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However, due to a model based method, parameters of HMM reflect a user’s long-

term mobility in statistics. Real-time mobility change may not be able to detect

immediately, which is not suitable for some online location-based recommendation

systems.

(2) Prediction of Mobility Change

Detection of mobility change is straightforward, but is it possible to predict such

changes? In practice, many applications require the prediction of mobility change

so that recommendations and resource allocation can be prepared in advance. So

far, most popular mobility researches utilize regularity of movement and behavior

pattern to predict known location. However, few literatures describe the irregularity

of mobility trace and the prediction of mobility change. To our best knowledge,

only one work [7] attempted to predict the temporary departures from routine.

In their solutions, they first proposed an instantaneous entropy as metric to measure

the changeability of an individual mobility. They observed that Shannon entropy

can only be used to measure the variety of locations within a periodic time slot.

For example, measure the entropy of locations, such as home, school and library,

which appear during 13:00-18:00 on Sunday with a probability 60%, 30%, 10%

respectively. However, Shannon entropy can not be used to indicate the variety

of next location based on all historical locations across different time slots. An

alternative way is to formalize the location sequence as a series of random variables

X = X0,X1, . . . ,XN , and compute an entropy rate over all variables. The entropy rate
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can be expressed as follow:

H(X) = lim
N→+∞

H(XN |XN−1, . . . ,X2,X1) =− ∑
x1,...,xN

p(x1, . . . ,xN) log2
p(x1, . . . ,xN)

p(x1, . . . ,xN−1)
,

(2.7)

where x1, . . . ,xN are the observed value of random variable X1, . . . ,XN . To calcu-

late this conditional entropy, N should be sufficiently large, and the probability

p(x1, . . . ,xN) exists. In practice, location sequence may not be long enough during

several months sampling. Therefore, the entropy rate can only be estimated from a

Lempel-Ziv estimator. The Lempel-Ziv estimator is defined as:

ĤN = (
1

N−1

N

∑
i=2

Λi

log2(i)
)−1, (2.8)

where Λi is the length of the shortest sub-sequence starting at position i that is not

in the sequence x1, . . . ,xi−1. The advantage of Lempel-Ziv estimator is that it can

converge to the true entropy rate rapidly.

The entropy rate is a single value that reflects the change of overall sequence. But

it can not answer the question like whether an individual is behaving unpredictably

at a position i. In order to do so, they modified the Lempel-Ziv estimator to a real-

time entropy estimator. An instantaneous entropy can be calculated to indicate the

entropy rate of a per time slot, which is defined as:

H̃i =
log2(i)

Γi
, (2.9)

where Γi is the length of the shortest sub-sequence ending at position i, which never

occurred from sequence x1, . . . ,xi−Γi . It is worth to note that Γ is a sub-sequence on
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Figure 2.11: Predicting the Break of Habit Using Hidden Markov Model [7]

and before position i, and Λ is a sub-sequence starting at position i. The reason is

that the entropy rate can be obtained at position i immediately after calculating the

Γ, rather than waiting for the shortest sub-sequence appearing in the future.

In their second work, they used a Bayesian framework to model and predict possible

departures in the future mobility. Figure 2.11 shows the Bayesian model. In this

model, the departure from routine is regarded as a binary latent state, which is

denoted as z. While, xn is an observation representing the location a user visited at

time n. As a spatial-temporal model, context at time d is also considered, which

indicates a specific time or calendar.

On spatial aspect, the model is implemented in a fashion of order-1 Markov model,

where the probability distribution of the next location is only dependent to the cur-
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Figure 2.12: Experiments for Predicting the Break of Habit [7]

rent location, p(xn|xn−1,xn−2, . . . ,x1) = p(xn|xn−1). In the transition matrix, the

probabilities p(xn|xn−1) from location xn−1 to xn are governed by a multinomial

distribution with Dirichlet priors µ , and α is a hyper-parameter of the Dirichlet dis-

tribution. Additionally, the latent state z follows the Markov property as well. r is a

2*2 transition matrix and δ is a hyper-parameter.

On temporal aspect, they assumed the temporal information dn only depends on one

location xn at at time n. The dependency probabilities p(dn|xn) are also controlled

by another Dirichlet distribution, where ω is the Dirichlet prior and β is the hyper-

parameter of the Dirichlet distribution.

Finally, they assumed the independence of spatial and temporal variables. There-

fore, conditional probability of the Bayesian can be calculated by

p(xn,dn|xn−1,µ,ω,α,β ) = p(xn|xn−1,µ,α)p(dn|xn,ω,β ). (2.10)

To infer all parameters of Bayesian model, they adopted an Expectation-

Maximisation (EM) method, specifically the forward-backward algorithm, to
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Figure 2.13: Concept of Location-Based Social Network [8]

train the model from historical observation data X. Figure 2.12 shows their ex-

periment settings of training and predicting process. By iteratively updating the

posterior distribution of µ,ω and r, the model can be trained for future prediction

of habit breaking.

However, in their works, they did not give a formal definition on what is departure

from routine. They treated a location which received wrong predictions from dif-

ferent location predictors as a departure place. Using this method, they labeled the

ground truth of their experiments, which made their model hard to be interpreted as

well as increase the difficulty for result evaluation.

2.6 Location-based Recommendation System

Location-based recommendation is one of important applications for mobility pre-

diction. Bao et al. [8] compared and categorized various recommendations from
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three aspects including objectives, methodologies and data sources. In this section,

we briefly list these categories. Figure 2.13 illustrates a structure of a location-based

social network. Users can be connected each other according to their friendships,

or linked in terms of a common location visited before.

(1) Recommendation Objectives

According to the recommendation objectives, there are four types of information

that can be recommended:

• Locations or Sequential locations (e.g. POIs, best travel paths);

• Users (e.g. experts, friends, communities);

• Activities (e.g. sport match, concert, promotions);

• Social media (e.g. photo of attractions, travel guide video).

Integrating mobility prediction into a recommendation system, activities, social me-

dia can be recommended to smartphone users by knowing their next place in ad-

vance. Especially, friends can also be suggested once their predicted locations are

close, which may increase the opportunities for the meeting of two old friends. Pre-

dicting unusual mobility behavior can also be used for location recommendation.

For example, knowing a user is planing to travel in the coming weekend, informa-

tion of new travel destinations can be delivered to users for references.

(2) Recommendation Methodologies

To realize various recommendations, methods can be classified into the following

three groups:
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• Content based (e.g. user’s age, gender, preference);

• Link analysis based (e.g. use hypertext induced topic search (HITS), PageR-

ank to analyze links among users and locations as shown in Figure 2.13);

• Collaborative filtering (CF) (e.g. inference based on similar users with similar

preference).

(3) Data Sources

Recommendation system can utilize various heterogeneous data to infer user’s pref-

erence, which are listed as follows:

• User profiles (e.g. user’s age, gender, interests, preference)

• User geo-located content (e.g. ratings, geo-tags, check-ins on social net-

work);

• User trajectories (CF) (e.g. location sequence obtained from GPS on smart-

phone).

In this thesis, our experiment datasets for mobility prediction are mainly collected

from the check-ins on location-based social networks, and the location sequences

recorded by smartphones.
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Chapter: 3 Incremental Sequential Pat-

tern Mining for Mobility

Building an accurate mobility prediction model relies on mining useful patterns

from historical visiting locations. The frequent questions are: what constitutes a

pattern for mobility, and how can we discover patterns efficiently? We can use

sequential patterns to represent a user’s spatial transitions in history. These patterns

can be regarded as building bricks for a mobility model.

Many definitions and mining algorithms of sequential patterns have been proposed

in the past decades [18][14]. However, some limitations make traditional works not

ideal for applying in mobility scenario. Types of patterns and efficiency of mining

algorithms are two major concerns when designing mobility model. The following

are some of the examples:

(1) In gene and protein sequence, motifs are the basic components of a DNA se-

quence [40]. But, motifs are usually found according to the known length and

structure. Algorithms for recognizing fixed motif are not suitable for mining mo-

bility patterns with variable lengths.
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(2) As discussed in Chapter 2.4, the Lempel-Ziv algorithm has the property to dis-

cover non-overlapping sub-sequences [41] [42]. However, these sub-sequences be-

ing parsed do not contain any semantic meaning, which makes the interpretation

of mobility patterns difficult. Furthermore, any possible patterns across two parsed

sub-sequences are ignored.

(3) Finding maximal repeats from a location sequence may be of benefit to explain-

ing user’s frequent routines. However, existing algorithms in string processing can

not cope with the discovery of the family of maximal repeats in an incremental way.

At the same time, the efficiency problem of sequential pattern mining should be

considered in mobility scenario. One of the biggest location-based social networks,

Foursquare, has more than 33 million registered users and 3.5 billion check-ins

till 2013 reported by the company [43]. About 3 million check-ins on average

are generated per day. The workload of servers will be very heavy if a location

sequence needs to be re-scanned every time for a new check-in reported in order

to find a new mobility pattern. Therefore, deploying an incremental algorithm to

discover and maintain patterns becomes a must for mobility service providers.

In this chapter, we will first introduce a set of sequential patterns that aim at han-

dling the special characteristics of location sequences. Secondly, we will present

our sequential pattern mining algorithm via pipeline framework, called PipeMi-

ning, to discover the corresponding patterns efficiently. Finally, experiments will

be demonstrated to evaluate the performance of our algorithm.
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3.1 Sequential Pattern for Mobility

Different from text documents such as new articles and books, mobile location se-

quences have three prominent characteristics.

• (A). Many repeating sub-sequences are contained in a long historical se-

quence, which may be caused by the visiting of frequent routines; An in-

cremental method is necessary to match and maintain all discovered patterns

rather than detecting repeats simply.

• (B). Same location or short sub-sequence may appear consecutively, which

make a maximal repeat contain many trivial sub-repeats. Due to the instabil-

ity of phone signal, miscounting or noise records are inevitable to cause such

tandem structure. For example, a user could be recognized as re-entering into

the same place multiple times, even he does not move. The following shows

a typical example of tandem structure from the real dataset in [9]. Each num-

ber in the angle brackets represents a location ID; Location “1845” and short

sub-sequence“1845,1847” are tandem together. Mobility data contains more

noisy information that need to be recognized and removed.

s =< 1845 >< 1845 >< 1847 >< 1845 >< 1847 >< 1926 >< 1845 >.

• (C). Location sequence can be viewed as a streaming data, which needs to be

updated frequently. A distributed method requires to be considered for a big

data scenario.
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Hence, many new issues arisen from location sequence are different with traditional

text processing. We need to consider pattern matching, noisy data and high volume

of updating. Mining maximal repeats can be an appropriate strategy to interpret a

user’s mobility behaviors, because a repeating sub-sequence should be non-trivial

and longest possible. Furthermore, tandem sub-sequences should be detected con-

currently in order to classify different types of patterns. Considering the efficiency

of mining algorithm, maximal repeat and tandem sub-sequence need to be discov-

ered incrementally.

3.1.1 Family of Maximal Repeats

In this section we will discuss the family of maximal repeats, and formalize the

definition of mobility pattern for our mobility scenario. An observation is that a

path may be visited once by chance, but it is less likely to be visited more than

once. We thus propose to formulate a mobility pattern in terms of repeating sub-

sequences (i.e. sub-sequence occurs more than once). Since a location sequence

can be viewed as a string, and well-developed notions in string processing can then

be employed for our work [18]. Here, we give three definitions in the family of

maximal repeat and discuss their properties separately,

DEFINITION 1 (Maximal Repeat) In a sequence S with L elements, maximal re-

peat occurs in a pair of identical sub-sequences β1 and β2 such that the element to

the immediate right (left) of β1 is different from the element to the immediate right

(left) of β2.

DEFINITION 2 (Supermaximal Repeat) A supermaximal repeat is a maximal

repeat that never occurs as a sub-sequence of any other maximal repeat.
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•  Maximal Repeats:  

(1). “ab” 

(2). “abc” 

(3). “abd” 

(4). “abcabd” 

Sequence: S1 = “xa bc abd y abc zabd p abc abd q”  

•  Supermaximal Repeats:  

(1). “abcabd” 

•  Near-supermaximal Repeats:  

(1). “abc” 

(2). “abd” 

(3). “abcabd” 

Sequence: S2 = “xabc abc yzabc abc m”  

•  Full-tandem Near-supermaximal Repeats:  

(1). “abcabc” 

•  Tandem Repeats:  

(1). “abc” 

Sequence: S3 = “xabc abc a yzabc abc amxab n”  

•  Semi-Tandem Near-supermaximal Repeats:  

(1). “abcabca” 

•  Tandem Repeats:  

(1). “abc” 

•  Non-Tandem Near-supermaximal Repeats:  

(1). “xab” 

Figure 3.1: Patterns Discovered in a Sequence

DEFINITION 3 (Near-supermaximal Repeat) A near-supermaximal repeat is a

maximal repeat that occurs at least once in a sequence where it is not contained in

another maximal repeat.

(1) Maximal Repeat

Figure 3.1 shows various patterns discovered in terms of three definitions. First, let

us look at the example of maximal repeat. In string S1, we can find a pair of sub-

sequences which have the structures like “xβ1c” and “cβ2d”, where β1 = β2 =“ab”.

If we extend both β1 and β2 to the left and right directions, the new pair “xabc”

and “cabd” will be not identical. Thus, the maximal condition is fulfilled and sub-

sequence “ab” is a maximal repeat. Similarly, sub-sequences “abc”, “abd” and
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“abcabd” are maximal repeats as well. Note that one mobility pattern may have

multiple instances distributed in an individual trajectory at different times. In S1,

pattern “ab” has 6 instances. Both pattern “abc” and “abd” appear 3 times, and

pattern “abcabd” occurs 2 times respectively.

(2) Supermaximal Repeat

Supermaximal repeat is one of the variants of maximal repeat, which emphasizes a

maximal repeat of interest should not be contained in other maximal repeats. That

is, if a maximal repeat appears k times, all k instances need to be independent.

According to this independent condition, in Figure 3.1, “ab” is not a supermaximal

repeat, because it is contained in both “abc” and “abd” 3 times. While, “abc”

and “abd” do not fulfill the independent condition as well, since they belong to

“abcabd” once. Only “abcabd” is a supermaximal repeat. Therefore, the inclusion

impose a strong restriction on the maximal repeat. Many potential patterns could

be unqualified.

(3) Near-supermaximal Repeat

If a maximal repeat is always embedded in others, like “ab”, it appears to be in-

significant and redundant. Near-supermaximal repeat is another variant that relaxes

the constraint of independent condition. Near-supermaximal condition allows a

pattern to be contained, but at least 1 instance should be independent. Thus, more

interesting patterns have chances to be discovered. One advantage is that sequen-

tial information in-between two patterns can be preserved. For the example of S1,

pattern “abcabd” covers both “abc” and “abd”. In the meantime, pattern“abc” and
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“abd” are near-supermaximal repeats because sub-sequences “yabcz” and “zabdp”

are not repeats.

In general, near-supermaximal repeat is more suitable to be used to define an atomic

pattern. Compared with the sub-subsequences parsed by LZ algorithm arbitrarily,

the near-supermaximal repeat makes our understanding of a mobility pattern more

straightforward and meaningful. Its properties can be summarized as follows:

• The maximal condition ensures a sub-sequence is non-trivial;

• Near-supermaximal definition allows the inclusion of patterns. Each pattern

can be an sub-pattern of others;

• Any consecutive patterns that occur more than once is a pattern as well, which

minimizes the information loss of trajectory.

3.1.2 Tandem Repeats

Near-supermaximal repeat satisfies our expectation for finding atomic patterns.

Nevertheless, there is one exceptional case which can lead a near-supermaximal

repeat being non-atomic. That is, tandem repeats are contained in a near-

supermaximal repeat. The definition of tandem repeat is given as below:

DEFINITION 4 (k-TANDEM REPEAT) A tandem repeat is a sequence that is

composed of k consecutive copies of identical sub-sequences β . It can be repre-

sented in the form of β1, . . . ,βk, where β1 = β2 = . . .= βk.

According to the number of tandem repeats, we can further classify a near-

supermaximal repeat into three combinations: full-tandem near-supermaxial,
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semi-tandem near-supermaxial and non-tandem near-supermaxial, which are

defined next:

DEFINITION 5 (Full-tandem Near-supermaximal Repeat) A full-tandem

near-supermaximal repeat is a near-supermaximal repeat, which is completely

composed of k consecutive copies of identical sub-sequences.

DEFINITION 6 (Semi-tandem Near-supermaximal Repeat) A semi-tandem

near-supermaximal repeat is a near-supermaximal repeat, which is partially

composed of k consecutive copies of identical sub-sequences.

DEFINITION 7 (Non-tandem Near-supermaximal Repeat) A non-tandem

near-supermaximal repeat is a near-supermaximal repeat, in which there is no

consecutive copy of identical sub-sequences.

Let us take the following two sequences to illustrate above cases.

S2 = “xabcabcyzabcabcm”;

S3 = “xabcabcayzabcabcamxabn”.

In string S2, the repeat “abcabc” is a near-supermaxial repeat. Note that it can be

further partitioned into two consecutive identical repeats “abc”. Thus, “abcabc”

becomes a full-tandem near-supermaximal repeat, and “abc” is called a tandem

unit. For the purpose of keeping pattern irredundant, “abc” should be accepted

as an atomic pattern, because the longer sequence “abcabc” can be regarded as a

combination of duplicate sub-sequences.
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In string S3, repeat “abcabca” contains an extra element “a” at the end, which

makes the near-supermaximal repeat not completely tandem. We call this pattern as

a semi-tandem near-supermaximal repeat. Semi-tandem near-supermaximal repeat

can also be significant if the proportion of tandem part is much smaller than the

rest. Among all patterns, only “xab” is a non-tandem near-supermaximal repeat.

Detecting tandem structure is as important as mining near-supermaximal repeat,

because we can further refine a near-supermaximal repeat into an atomic pattern.

Also, removing tandem sub-sequence can reduce the noise to the mobility model.

For mobility modeling, if we want to keep pattern atomic completely, we can only

use the non-tandem near-supermaximal repeat as pattern to avoid some exceptional

cases. If we allow some tolerances for the precision model, semi-tandem near-

supermaximal repeat can be a better choice, because more patterns have chances to

be discovered. Moreover, for any mis-recognized location, it is hard to be included

in high frequent patterns since it will not appear frequently. By selecting appropriate

mobility patterns, we can control the influence of noisy data to the precision of

mobility model.

In the rest of this chapter, we need to solve the following problems. Given a location

sequence S1:N = η1, . . . ,ηN ,

• how to discover all near-supermaximal repeats from η1 to ηN incrementally;

• how to discover all tandem repeats in the near-supermaximal repeats concur-

rently.

Table 3.1 lists the key notations used in this chapter.
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Table 3.1. Notations Used in Chapter 3

Notation Description
S1:N Location sequence from time t1 to time tN
ηN N-th location in S1:N
β Mobility pattern
γ Repeating sequence

P = {p1, . . . , p j, . . . , pL} Pipeline framework
ν Cache position on suffix tree

3.2 Data Structure for Repeat Discovery

Repeat discovery requires many comparisons of sequences. In order to speed up

searching, we adopt suffix tree as an underlying data structure. In this section, we

will briefly introduce the online construction of suffix tree.

A suffix tree can be constructed in many ways. One intuitive method is to extract N

suffixes of a N-length sequence, and insert them into a trie tree respectively. This

method requires O(N2) time, and can not be executed incrementally.

As discussed above, online pattern discovery is a necessity for our mobility sce-

nario. Fortunately, Ukkonen [17] provided a linear time algorithm for the online

construction. He transformed a suffix tree to a more compact structure called im-

plicit suffix tree denoted by I(S). Compared with suffix tree, the implicit suffix tree

can be transformed by three operations,

• removing all terminal symbols “$”;

• removing all edges without label;

• removing all nodes that do not have at least two children.
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Figure 3.2: Converting Suffix Tree to Implicit Suffix Tree

An example of this transformation is shown in Figure 3.2. The implicit structure is

reflected on the compact edges. In a suffix tree, each suffix has a unique path and is

corresponding to one leaf node. However, in the implicit suffix tree, several suffixes

may share a common edge and have fewer leaf nodes. An edge does not need to be

split only if one of edge’s characters has different following characters. It can be

proved that the implicit suffix tree will equal to a suffix tree once a unique terminal

symbol “$” is inserted at the end of sequence.

The implicit suffix tree displays an intermediate state of a suffix tree. It can be built

by scanning a sequence from η1 to ηN . Figure 3.3 demonstrates the evolution of

implicit suffix tree. Given a string S = “abcabxa”, the Ukkonens algorithm grows
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Figure 3.3: Implicit Suffix Tree after Insertion

an implicit suffix tree from I(S1:n) to I(S1:n+1) by inserting an element ηn+1. Each

insertion phase can be imagined as appending an element ηn+1 to all suffixes of S1:n.

Since the same prefix of suffixes is stored in a common edge, if any sub-sequence

before the element ηn+1 matches with a particular prefix, ηn+1 only needs to be

inserted after this prefix. Meanwhile, other edges of leaf nodes need to be grown

by ηn+1 as well.

In order to indicate the position that an element needs to be inserted after the

matched prefix, triple variables, ν(active node O,active edge E,active index j), are

introduced. Each variable represents a specified node, edge and index. For ex-

ample, variable ν(“root”,“a”,1) specifies that the insertion position is the edge

starting with “a” under the root node, and the index of element in edge is 1. If the
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insertion position already has an element E( j), we need to compare the element

E( j) with inserting element ηn+1, where 1≤ j ≤ |E| and |E| is length of edge.

During the process of insertion, three cases are considered.

• Case 1: If ηn+1 is a new element that never appears in S1:n, a new edge with

initial element ηn+1 will be created under the root. Meanwhile, other edges

of leaf nodes will be extended by adding ηn+1. In Figure 3.3, phase 1-3 show

the case of simple extension;

• Case 2: If ηn+1 exists and is the same as E( j), the edge creation is skipped.

We only append ηn+1 into all edges of leaf nodes, and move the insertion

position to the next element E( j + 1) of this edge. Meanwhile, we use a

counter to memorize the number of total skips. Phase 4 shows the insertion

of “a” at the position (“root”,“a”,1). Because the first element “a” on

the edge “abc” is matched, edge creation is not necessary. The counter is

increased to 1. Phase 5 repeats the same situation;

• Case 3: If ηn+1 exists and is different with E( j), an edge creation is necessary.

The current edge is split from the insertion position, and a new edge with

initial element ηn+1 is linked to an internal node. Meanwhile, append ηn+1

into other edges of leaf nodes. Phase 6 shows the split of edge “abcab” at

position 3. The reason is that “ab” will be followed by two distinct charters,

“c” and “x” after inserting “x”. Moreover, the split of edge “abcab” will

cause a cascade of splits of other edges, e.g. edge “bcab”. The value of

counter in Case 2 specifies the number of splits required in this phase. After

all splits, the counter is deducted to zero and the insertion position is reset to

the root.
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So far, the incremental insertion of implicit suffix tree is not linear to the length of

sequence. Because all edges of leaf node need to be extended at each phase and

edge split is a cascade process. It will be a huge cost if traversing each leaf node

from the root every time. Ukkonenn [17] solved this problem by introducing suffix

links in-between internal nodes, which is illustrated as a dash line in Figure 3.3.

Thus, all leaf nodes can be visited via suffix links directly as well as the cascade of

splits can follow the suffix links to find other edges. Moreover, for the storage of

suffix tree, we use a pair of pointers (start, end) to represent the position of edge in

S instead of storing an actual sub-sequence content on the disk. By applying these

tricks, Ukkonen’s algorithm can be realized in linear time and space.

3.3 Mining Near-supermaximal Patterns

Mobility patterns can be discovered by looking for near-supermaximal repeats and

detecting tandem structure. Although similar algorithms [44] [45] have been de-

veloped, no algorithm can simultaneously discover near-supermaximal repeat and

tandem structure in an incremental way. In this section, we introduce our method

for mining near-supermaximal repeats via a pipeline framework. We name it as

PipeMining.

3.3.1 Pipeline Framework

As discussed in Sub-section 3.2, the construction of implicit suffix tree requires the

comparison of inserting element with the element on a corresponding edge. If they

are matched, no edge split is required, and the insertion position will be moved to

the next. A repeating sequence can be revealed during the continuous comparisons.
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Figure 3.4: Pipeline Framework

In order to discover a maximal repeat, our intuitive idea is to use a pipeline p to

cache the repeating sequence γ , which is denoted by γ ∈ p.

However, repeats may be embedded in each other. One pipeline is not sufficient

to contain all repeats. Hence, we introduce a collection of pipelines to cache all

suffixes of a repeating sequence. For a L-length repeating sequence γ , each pipeline

p j stores one of its suffixes γ j:L, where 1 ≤ j ≤ L. The cached suffix γ j:L is a

sequence that can be exactly found from the root to the insertion position. We name

the insertion position as cache position, and store it in each pipeline. The pipeline

framework can be represented by P = {p1, . . . , p j, . . . , pL}, and sorted from the

longest pipeline to the shortest. Figure 3.4 shows the status of three pipelines before

inserting “x”. The pipeline caches a repeating sequence “ab” as well as its suffix

“b”.

In general, when importing a new element ηn+1, the pipeline framework will be

performed as follows:
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• Create a new pipeline and append it to pipeline framework;

• Pick the longest pipeline and read the memorized cache position;

• Compare the element ηn+1 with the element E( j) on cache position;

• If ηn+1 is the same as E( j), append ηn+1 to pipeline;

• If ηn+1 is different with E( j), destroy the corresponding pipeline;

• Pick the next pipeline.

In the next section, we will explain why these steps are sufficient to verify the major

conditions of near-supermaximal repeats.

3.3.2 Online Detection of Near-supermaximal Repeats

Now, we take the longest pipeline as an example to describe how to detect the near-

supermaximal repeat. The definition of near-supermaximal repeat in Section 3.1.1

states two conditions, (1) maximal condition, (2) independent condition.

(1) Maximal Condition

The maximal condition states that at least there is a pair of identical sub-sequences

β , for which the immediate right (left) element to one β should be different from the

elements of another. However, before reaching the end of sequence, it is impossible

to have all pairs in hands in an online environment. Therefore, we have to check the

maximal condition each time when reading a repeating sub-sequence. Fortunately,

the maximal repeat can be determined immediately when the right element ηn+1

following β is different with the previous one at the first time. The reason is that

β is completely recorded on the suffix tree after its first appearance. The repeating

β will be cached into pipelines as well as compared on the edge of suffix tree. If
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the new right element ηn+1 of β does not continue to be a repeating element, the

caching processing is stopped, and the cached longest sub-sequence is the maximal

repeat.

So far, the difference of right elements can be detected during the comparison on

suffix tree. However, the suffix tree does not record any prefix of a sub-sequence.

To guarantee the left elements are different as well, we have the following lemma.

LEMMA 1 For the longest repeating sequence that is cached in a pipeline, the

current immediate left element of the repeating sequence must be different from its

previous one.

PROOF. Suppose a pipeline caches the longest repeating sequence γ ∈ p, and γ

has two left elements ηl and η ′l in previous sequence. If ηl is the same as η ′l , the

pipeline p will cache a sub-sequence {η ′l ,γ} ∈ p instead of γ ∈ p. Because {η ′l ,γ}

itself is a repeating sub-sequence, it will correspond to another branch starting from

the root of suffix tree. �

Lemma 1 allows us to skip the comparison of left element. Therefore, we only

need to check the right element ηn+1 when a repeating sub-sequence is appending

to the pipeline framework. If the right element is found to be different with the

corresponding one on the edge of suffix tree, the left element must be different as

well. Thus, the maximal condition can be fulfilled, and the longest repeating sub-

sequence cached in pipeline is a maximal repeat. Figure 3.5 shows the pipeline

status after inserting “x”. As “ab” is detected as a maximal repeat, pipelines con-

taining “ab” and its suffix “b” are required to be destroyed. A new pipeline will be

created at phase 7.
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Figure 3.5: Pipeline Destroyed after Maximal Repeat Detected

(2) Independent Condition

For the near-supermaximal repeat, an additional condition is applied, which re-

quires at least one instance should not be included in others. Similarly, checking the

independent condition will cost many position comparisons for all repeats, which

is not practical for online processing. Our solution is to count the occurrences of

immediate left (right) elements to a maximal repeat β . If there is no combination of

left (right) elements (ηl , ηr) that makes sub-sequence “ηlβηr” unique, we can con-

clude that β is always included in other maximal repeats. To verify this solution,

the following lemma need to be proved:
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LEMMA 2 If there is a combination of left (right) elements (ηl , ηr) that makes

sub-sequence “ηlβηr” appears only once, the maximal repeat β is a near-

supermaximal repeat.

PROOF. In a sequence, any sub-sequence that occurs more than once must be a

maximal repeat or a part of maximal repeat. If the sub-sequence “ηlβηr” occurs

only once in the entire sequence, there is no chance that any longer maximal repeat

will contain “ηlβηr” completely. Hence, the β in-between the elements (ηl , ηr) is

an independence instance. �

Therefore, for m combinations of left (right) elements of β , we keep m counters.

When reading the sequence, we count the appearances of all combinations. Once

all values of m counters are greater than 1, the repeat β must be contained in other

repeats thoroughly, and can not be a near-supermaximal repeat any more. Lemma

1 and Lemma 2 guarantee that the near-supermaximal repeats can be discovered

incrementally using pipelines and suffix tree.

Figure 3.6 illustrates the entire flow of inserting string “abcabxa” into the suffix tree

and the pipeline framework at each phase. From phase 1 to 3, since element “a”,

“b” and “c” are not repeats, pipelines p1, p2 and p3 are destroyed. At phase 4 and 5,

pipelines p4 and p5 are remained because a previous sub-sequence “ab” is matched

consecutively. However, the caching process is stopped when element “x” makes

“b” have two different followers “x” and “c”. Pipelines containing all suffixes of

“ab” are destroyed and “ab” is recognized as a maximal repeat. At phase 7, the

cache position is reset to the root, and growth of pipeline framework continues.
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3.4 Mining Patterns with Tandem Structure

For a location sequence, it has a great chance that tandem structure appears in a

near-supermaximal repeat, where shorter identical sub-sequences are linked con-

secutively. To further refine a sequential pattern, in this section, we will describe

how to detect the tandem structure concurrently via our pipeline framework.

3.4.1 Online Detection of Tandem Structure

According to the Definition 4, a k-tandem repeat behaves as the connection of k

tandem units like β1, . . . ,βk, where all β s represent tandem units with the same

context. In addition to differentiating the type of near-supermaximal repeat based

on the number of tandem units, we also want to utilize the tandem unit as a single

sequential pattern, because it is atomic. Therefore, the tandem unit is expected to

be discovered incrementally as well. As discussed in Section 3.3.1, each pipeline

maintains a cache position. Our strategy is to match these cache positions on the

suffix tree in order to find out tandem structure incrementally. There are two situ-

ations we need to deal with during the growth of suffix tree, comparison case and

estimation case.

(1) Comparison Case

The comparison case will be illustrated via the following string:

S = “abcababa”.
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Comparison case occurs when a tandem structure can be detected by only compar-

ing the cache positions of relevant pipelines. Figure 3.7 demonstrates an example

of comparison case. In each pipeline, a cache position ν indicates the position on

suffix tree where an element is supposed to be inserted. According to the properties

of pipeline and suffix tree, we can have the following observations:

• The longer distance from the root to a cache position is, the more characters

are cached in a pipeline;

• If repeating sequences cached in pipelines have the same initial element, their

cache positions will start from the same branch under the root.

• If the next element is a part of repeat as well, the cache position of this

pipeline will move to the next.
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Based on the above observations, we know the cache positions ν1, . . . ,νk of

β1, . . . ,βk will follow the same branch under the root, because all tandem unit β s

have the same initial element. Our solution to detect tandem structure is to check

whether a later cache position will move to the same position that an earlier cache

position has been visited before. If so, the later pipeline must contain a tandem unit

β that the earlier pipeline has already. During the growth of the later pipeline, β is

also appended to the earlier pipeline. Therefore, the earlier pipeline will have two

successive β s. To realize this idea, the following operations need to be performed

when a new pipeline containing the initial element ηn+1 is created:

• Find all existing pipelines p1, . . . , pL that has the same initial element with

ηn+1 as reference pipelines;

• Store the cache positions of all reference pipelines in the new created pipeline

pL+1 as reference positions;

• When reading the later characters ηn+2,ηn+3, . . ., compare the current cache

position of pL+1 with all reference positions;

• If one of reference positions is the same as the current cache position of pL+1,

that reference pipeline contains a tandem structure.

In Figure 3.7, a pipeline p4 is found as the only reference to the new pipeline

p6 at phase 6. The reference position ν4(r,“a”,2) is marked in p6. After grow-

ing to phase 8, the cache position of pipeline p6 moves the reference position

ν4(e,“a”,2). Thus, a tandem sequence “abab” can be determined in pipeline p4,

and sub-sequence “ab” will be outputted as a tandem unit.

(2) Estimation Case
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In the comparison case, finding the reference pipeline is necessary. For a tandem

structure β1, . . . ,βk, however, the reference pipeline does not exist when the first

tandem unit β1 is not a repeating sub-sequence. It is possible that the entire β1 is

new or the last element of β1 is new. For example, in string “abcxyzxyzx”, “xyz”

is not a repeat. Or in string “abcabdabeabea”, “e” is not a repeating element for

“abe”. In such a case, pipelines of β1 have already been destroyed before the arrival

of next tandem β2. It is hard to know the initial element and the cache position of

β1. No reference pipeline can be found for the later pipelines. Hence, the method

in comparison case is invalid. Fortunately, without reference pipelines, we still can

detect the tandem structure by estimating a virtual cache position of β1. The idea

assumes β1 is a repeating sequence. The virtual cache position is the position after

the last element of β1 is inserted.

Figure 3.8(a) illustrate the estimation case by taking an example of the string:

S = “ababa...”.

An important observation is that the virtual cache position of β1 always stays on

the same edge in suffix tree, no matter how many identical tandem subsequences

are inserted later. And, this edge is an edge of leaf node. In our example, “ab” is a

tandem unit and the virtual cache position of β1 is on the edge Er:1. This situation

can be verified by proving the following lemma.

LEMMA 3 For a tandem structure β1, . . . ,βk, if β1 is not a repeat, all successive

tandems β2, . . . ,βk are appended to the same edge of the last element of β1. This

edge is an edge of leaf node in the implicit suffix tree.
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PROOF. Since β1 is not a repeat, a path that exactly labels β1 can be found from

the root to a leaf node. The last element of β1 is at the edge Elea f of the leaf node.

According to the property of implicit suffix tree, if the successive sub-sequence is

a repeat, this sub-sequence will be appended to suffix tree directly, and no edge

split will be happened. The structure of implicit suffix tree can remain unchanged.

Because the successive tandems β2, . . . ,βk are the repeating sequences of β1, they

will be appended to the same edge Elea f directly. �

According to Lemma 3, the following facts can be inferred:

• Because the pipeline p′ containing β2 has the same initial element as the

pipeline p containing β1, the cache position of p′ will traverse the same path

as p;

• The cache position of p′ will move to the edge Elea f of β1 eventually;

• The edge Elea f will be grown by appending the content of β2, and will not be

splitted;

• The length of Elea f will be increased by the length of β2.

Based on the above facts, after processing β2, we can estimate the virtual cache

position of β1 by deducting the length of β2 from the length of edge Elea f . For a

cache position ν(active node O,active edge E,active index j), since the active node

and edge are the same for both β1 and β2, we only need to compute the index j by

the equation:

j = |Elea f |− |β2|. (3.1)
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Table 3.2. Recognition of Different Repeats

Pattern Conditions
Maximal Repeat Two different right elements ηr.
Supermaximal Repeat All types of left (right) elements ηl (ηr) that occur

only once.
Near-supermaximal
Repeat

At least a pair of left (right) elements ηl (ηr) that
occurs only once.

Tandem Unit The cache position ν of successive pipeline moving
to the cache position νre f of reference pipeline.

Full-tandem Near-
supermaximal Repeat

Having near-supermaximal repeat βmax and tandem
unit βtan with the length βmax = kβtan

Semi-tandem Near-
supermaximal Repeat

Having near-supermaximal repeat βmax and tandem
unit βtan with the length βmax > kβtan

Non-tandem Near-
supermaximal Repeat

No tandem units found.

If the cache position of p′ equals to the virtual cache position of p, a tandem struc-

ture can be discovered. The pipeline p′ containing β2 will be outputted as a tandem

unit. Figure 3.8(b) shows the case of estimation on the leaf edge Er:1.

Through the comparison and estimation of cache positions, our PipeMining algo-

rithm can support the detection of tandem structure incrementally.

3.4.2 Recognition of Various Sequential Patterns

In Section 3.3.2 and 3.4.1, we have proposed different techniques to discover near-

supermaximal repeat and tandem unit incrementally. The questions are how many

kinds of sequential patterns that can be recognized by applying these techniques,

and what are the conditions for detecting these patterns? We summarize different

patterns with their recognition conditions in Table 3.1.
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As discussed in Section 3.1, near-supermaximal has a more general definition and

meaningful interpretation for mobility pattern. Our pattern recognition is based

on the near-supermaximal repeat. Furthermore, considering the noise of sequence

and abnormal mobility pattern, we further filter the near-supermaximal repeat in

terms of the number of tandem units contained. Thus, patterns outputted from

pipeline framework can be classified into different types, such as semi-tandem near-

supermaximal repeat or non-tandem near-supermaximal repeat, to fulfill different

application needs.

3.5 Maintenance of Pipelines and Patterns

In the pipeline framework, multiple pipelines are used to cache all suffixes of re-

peating sequence at the same time. So far, we only use the longest pipeline to

discuss the detection of near-supermaximal repeat and tandem unit. For the rest of

pipelines, we need to manage them as well. Moreover, during an incremental pro-

cess, patterns need to be discovered, updated or deleted. In this section, we discuss

the maintenance of pipelines and patterns.

3.5.1 Pipeline Maintenance

The life-cycle of a pipeline involves three stages: creating, appending and destroy-

ing. Creating and appending of a pipeline is simple. A pipeline is created when a

new element is read from sequence. If this element is a part of repeat, it will be

appended to all existing pipelines. However, the destruction of pipelines need to be

considered case by case. Here, we discuss the destroying stage of pipeline.

(1) Destruction of Pipeline
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In a pipeline framework, the pipeline on the top contains the longest repeating se-

quence γ . And, the rest of pipelines have the suffixes of γ respectively, as shown in

Figure 3.6. Since repeats are usually contained or overlapped each other, for a new

element ηn+1, it may not continue to be a repeat for the longest pipeline, but is still

a part of repeat for other pipelines. For example, in a string

S = “xabcyabczcdemcdenabcdef”,

sub-sequences “abc” and “cde” are two different near-supermaximal repeats. When

reading the last sub-sequence “abcdef ”, its suffixes “abc”, “bc” and “c” are cached

in pipelines. After adding the element “d”, sub-sequences “abcd” and “bcd”are re-

peats any more. Their corresponding caching processes need to be stopped. How-

ever, the pipeline containing “cd” can be reserved, because it is still a repeat match-

ing the sub-sequence “cde”. Therefore, the destruction of pipeline should be con-

sidered separately. Only when the next element can not be appended to a pipeline,

the corresponding pipeline need to be destroyed.

(2) Output of Near-supermaximal Repeat from Pipeline

Multiple pipelines may stop caching concurrently, if the next element is not a part

of repeat. However, only the longest sub-sequence cached in the top pipeline is

necessary to output, because we only look for the near-supermaximal repeat. The

rest of shorter pipelines can be destroyed safely without any outputting. Therefore,

we need to pass an ordering message to all pipelines before they start. Thus, each

pipeline can know its position in the entire framework. For example, the pipeline

on the top will receive a message with ordering number 1, and its successor will get

the ordering number 2. At each round, the entire flow can be described as follows:
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Figure 3.9: Message Passing for Maximal Repeat Detection

• Reset the ordering message to 1;

• Pass the ordering message to a pipeline on the top of pipeline framework;

• If this pipeline can not be appended and its ordering is 1, output its content

as a near-supermaximal repeat directly;

• Increase the ordering number and pass the message to the successor pipelines;

• If the successor pipelines are also stopped and their ordering numbers are

greater than 1, destroy these pipelines;

• If the successor pipelines can continue to be appended, keep them in the

pipeline framework;

Figure 3.9 show the passing of ordering message through the pipeline framework.

By doing so, we can make sure only one pattern will be outputted at each round.

(3) Output of Tandem Repeat from Pipeline
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Once a tandem unit is detected, pipelines do not require to be destroyed. How-

ever, a cascade phenomenon exists in a tandem structure. For example, in a tandem

sequence S=“abababab”, “ab” is a tandem unit. Meanwhile, “ba” could be consid-

ered as a tandem unit as well. In such a case, only the first repeating sub-sequence

is treated as a pattern, and the cascaded tandem units should be skipped. Here, we

give a definition of cascaded tandem unit.

DEFINITION 8 (Cascaded Tandem Unit) For a tandem unit β1, . . . ,βk, a sub-

sequence is a cascaded tandem unit if it is overlap with two tandem units β , and

has the same length of β .

To avoid the mis-recognition of cascaded tandem unit as a pattern, another message

passing mechanism is deployed during the tandem detection. The entire flow can

be described as follows:

• If the first tandem unit is recognized in a pipeline, output this tandem unit as

a pattern;

• Set a message to 1, and pass it to one successor pipeline;

• At the next round, if the successor pipeline also contains a tandem unit and

the message received is 1, no output will be generated and pass a message

with 1 to its successor;

• If the successor pipeline does not have tandem unit, pass a message with 0 to

its successor;

• Wait for the next round.
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Figure 3.10 show the message passing at 3 phases of tandem structure detection.

Since only one tandem unit will be generated when reading a new coming element,

the message is only passed to one successor pipeline at each round.

3.5.2 Pattern Maintenance

Ukkonen’s algorithm only makes the suffix tree be constructed incrementally so

that it allows us to discover patterns in online environment. However, a pattern may

not appear only once. It may have more instances in the later part of sequence.

Hence, the matching of discovered pattern should also be implemented in an online

fashion. Thus, we can recognize, update or delete a pattern incrementally.

(1) Structure of Suffix Pattern Tree

As a sequential pattern itself is a sequence as well, we can re-use the implicit suffix

tree to maintain all discovered patterns. Our idea is to mark the length of pattern
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on the corresponding edges that are labeled the same content. We name this hybrid

index structure as a suffix pattern tree. The suffix pattern tree is composed by three

components, implicit suffix tree, pattern entry and pattern set table. Figure 3.11

illustrates the connection of implicit suffix tree and pattern set table via pattern

entries. Pattern set table maintains all information about a pattern, such as pattern

ID, content, length, frequency, position, etc.. Pattern entry contains three pieces of

information, pattern ID, remaining length, and a pointer. The pointer refers to a

corresponding record on the pattern set table.
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In order to mark a pattern on suffix pattern tree, we need store a pattern entry

on every corresponding edge that forms the pattern. The pattern entries are dis-

tributed from the root to the successive matched edges until no more element can

be matched. In every pattern entry, the remaining length specifies how many char-

acters are matched on the current edge as well as under its sub-tree. It can be

calculated by deducting the accumulated length of its parent edges from the pattern

length. For example, in Figure 3.11, pattern “ab” (ID=1) has 2 matched charac-

ters remained on edge Er:8 and on the successive edge E8:4 in the sub-tree. When

traversing to the edge E8:4, pattern “ab” remains only one element “b” on this edge.

(2) Matching and Deleting Patterns on Suffix Pattern Tree

When a repeating sub-sequence is cached into a pipeline, its caching position is also

moving on the corresponding edges of suffix pattern tree. Once a caching position

enters an edge, all pattern entries stored on this edge will be retrieved. We will

deduct each remaining length of a pattern entry one by one along the moving of

caching position. If a remaining length is reduced to zero finally, the corresponding

pattern is matched.

In addition to the matching of pattern, we also keep counters for the pairs of left

(right) elements. If the matched pattern does not satisfy the independent condition

of the near-supermaximal repeat any more, this pattern should be removed from the

pattern set table as well as the suffix pattern tree. With the facilitate of suffix pattern

tree, discovery and maintenance of sequential patterns can be realized in an online

manner.
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3.6 Analysis of Time and Space Complexity

So far, we have introduced the techniques of detecting near-supermaximal repeat

and tandem structure. Here, we are also interested to know how efficient our method

can be. In this section, we will analyze the time and space complexity of our PipeM-

ining algorithm.

3.6.1 Time and space complexity

Algorithm 3.1 shows the flow for the detection of near-supermaximal and tandem

structure in PipeMining. Each time when a new element ηN+1 is read, all pipelines

need to be computed. As noted, the major workload of our algorithm is on the

processing of pipelines. The question is how many pipelines need to be handled at

each round. Since pipelines are responsible for caching all suffixes of a repeating

sequence, the number of pipelines equals to the length of a repeating sequence. For

a L-length repeating sequence, L pipelines require to be processed at each round,

and time complexity is O(L).

Detection of near-supermaximal repeat requires counting all right and left elements

in order to verify the independent condition of near-supermaximal repeat. The num-

ber of left and right elements could be large, if a particular pattern appears many

times in the entire sequence. Matching left (right) will increase the time complexity.

A solution is to deploy a hash map on the right and left elements so that searching

of right and left element can be completed in a constant time O(1). Besides, pattern

matching can be completed within O(1) time complexity, as we deploy the pattern

entries on the suffix pattern tree. Therefore, in general, the time complexity at each
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Algorithm 3.1 PipeMining
Input: Next element: ηN+1, Suffix pattern tree: T , Pattern set table: β, New Pat-

tern: βnew, Pipeline framework: P , Ordering Message: Morder, Message of
Tandem Repeat: Mtan,

Output: Collection of patterns returned: βret
1: pN+1← AllocateNewPipeline(N +1)
2: νre f ← FindReferenceCachePosition(P )
3: P ← AddToPipelineFramework(pN+1)
4: Morder← 1
5: for each p j ∈ P do
6: Morder,Mtan←GetMessages(p j)
7: isrepeat ← IsRepeatingElement(T,ηN+1)
8: if isrepeat == true then
9: p j← AppendToPipeline(ηN+1)

10: else if isrepeat == f alse AND Morder == 1 then
11: βnew← p j
12: βret ← βnew
13: DestroyPipeline(p j)
14: else
15: DestroyPipeline(p j)
16: end if
17: ν j←GetCachePosition(p j)
18: istandem← TandemDetection(ν j,νre f )
19: if istandem == true AND Mtan == 0 then
20: βret ← p j
21: Mtan← 1
22: end if
23: βold ← SearchExistingPattern(ν j,T )
24: βret ← UpdateMatchedPattern(βold,ηN+1)
25: UpdateMessages(Mtan)
26: Morder += 1
27: end for
28: T ← InsertToSuffixTree(ηN+1)
29: return βret
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incremental step is O(L), and the overall time complexity for a N-length sequence

is O(LN). Normally, in most cases, L is much smaller than N in a long sequence.

Thus, PipeMining is linear to the time.

Sequence and patterns are stored in the suffix pattern tree and pattern set table re-

spectively. As proved in [17], a suffix tree can be constructed in linear time and lin-

ear space with respect to the length of sequence. Pattern set table mainly stores the

information of a pattern such as start position, left element, right element. There-

fore, pattern set table is increased linear to the number of discovered patterns.

3.6.2 Parallel Execution

For huge customer based service providers, the mobility datasets they collect can be

huge. To work on big dataset, it is better if PipeMining can be executed in a parallel

environment in order to improve the processing efficiency. To realize the parallel

execution, we need to consider both shared resources and programming logic. The

shared resources are suffix pattern tree and pattern set table. They will be accessed

by multiple pipelines, when comparing repeating sequence and existing patterns.

However, the pipeline does not need to write on these shared resources immediately

if any patterns are discovered. The updates of patterns can be written back to pattern

set table after all pipelines are completed. Only read lock is sufficient to guarantee

the synchronization.

From the aspect of programming logic, as shown in Algorithm 3.1, each pipeline

can handle the near-supermaximal repeat detection, tandem structure detection, pat-

tern matching and pattern maintenance independently. There is no dependency of

other pipelines required during the comparison of caching position for checking the
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maximal condition, independent condition and reference positions. The only inter-

action among pipelines is the message passing for tandem detection as discussed

in Sub-section 3.5.1. Fortunately, the message passing is an asynchronous process.

During the batch processing of pipelines, it does not need to be passed to another

pipeline immediately after it is returned from one pipeline. We can save the mes-

sage and deliver it to successor pipeline at the next round. Pipeline does not need

to wait for any message while others are running.

Algorithm 3.2 Parallel Execution of PipeMining
Input: Next element: ηN+1, Suffix pattern tree: T , Pattern set table: β, New Pat-

tern: βnew, Pipeline framework: P , Ordering Message: Morder, Message of
Tandem Repeat: Mtan,

Output: Collection of patterns returned: βret
1: pN+1← AllocateNewPipeline(N +1)
2: νre f ← FindReferenceCachePosition(P )
3: P ← AddToPipelineFramework(pN+1)
4: Morder← 1
5: for each p j ∈ P do
6: Morder,Mtan←GetMessages(p j)
7: CreateThread(p j,Morder,Mtan)
8: Morder += 1
9: end for

10: βnew,βold,Mtan← CollectResultFromPipeline(P )
11: UpdateMessages(Mtan)
12: βret ← UpdatePatterns(βnew,βold)
13: T ← InsertToSuffixTree(ηN+1)
14: return βret

Therefore, our algorithm can be partitioned into two stages. In the first stage, we

create threads for all pipelines to be executed concurrently. In the second stage, after

all pipelines are completed, we update all discovered patterns to the pattern set table,

and maintain the message of tandem detection for the next round. Algorithm 3.2

shows the flow of parallel execution, which demonstrates that our pattern mining

algorithm can run in parallel in nature.
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3.7 Experiments

To demonstrate the performance of PipeMining, in this section, we will introduce

our conducted experiments. Our experiments were divided into two parts. The first

part was to evaluate the time and storage performance of pipeline framework and

suffix pattern tree. The second part was to further investigate various discovered

patterns from amounts of moving trajectories.

3.7.1 Performance Evaluation

(1) Datasets and Experiment Settings

Running time and storage consumption are two important factors to evaluate an al-

gorithm. Normally, the length of testing sequence should be long enough so that

the performance of algorithm could be observed clearly. However, long location

sequence (e.g. more than 100000 locations) is usually not available from the public

as well as difficult to be collected. Therefore, in order to measure the performance,

we used 11 pure-text English documents as our testing sequences [46]. The length

of these sequences vary from 745 to 616041 characters. By removing all punctu-

ations from these documents, the sequences only have 26 kinds of English char-

acters. Detailed information of 11 text documents is listed in the following table.

To compare the efficiency of PipeMining, we implemented a traditional algorithm

proposed in [18]. The traditional algorithm supports mining maximal repeats and

near-supermaximal repeats. However, as the algorithm searches maximal repeats

on suffix tree directly, it does not support the incremental mining. Therefore, when

reading a new coming element from sequence, the suffix tree was grown incremen-
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Table 3.3. Lengths of Text Files

File pg21782A pg21782B pg21782C pg21782D pg21782E pg21782F
Length 746 934 1865 4221 8556 17623

File pg21782G pg0766A pg0766B pg0766C pg0766D
Length 39298 75045 150663 305058 616042

tally using Ukkonen’s algorithm, but the traditional algorithm need to be performed

again to find any new maximal repeat.

Since pipeline framework can be executed parallelly, we also implemented PipeMi-

ning by multi-threads mode to simulate a parallel environment. As illustrated above,

when a repeating sequence was read, it was cached into multiple pipelines. Each

pipeline was then put into a new allocated thread for execution. Multiple threads

were destroyed together after all pipelines completed their works. Afterwards, the

discovered patterns from pipelines were collected and filtered. In this experiment,

we controlled the number of threads that could run concurrently. Through tunning

the number of threads, we wanted to understand how many threads to use could

reach the best performance in parallel environment. All algorithms in our experi-

ments were implemented in C++, and executed on MacOS X 10.10 with 2.3 GHz

Intel Core i7 CPU and 16GB memory.

(2) Results

All repeats discovered from PipeMining were the same as the traditional algorithm

proposed in [18]. Based on the same results, we then need to evaluate the efficiency

of our algorithm. Firstly, we compare the running time of three settings including

pipeline framework, pipeline framework using 5 threads and traditional algorithm.

Table 3.4 lists three sets of time spent on processing 11 text documents respectively.
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Table 3.4. Running Time Comparison

Length Time (Pipeline) Time (Pipeline-5Threads) Time (Traditional Algo)
746 0.051s 0.15s 0.104s
934 0.053s 0.179s 0.171s

1865 0.118s 0.326s 0.679s
4221 0.337s 1.097s 3.867s
8556 0.682s 1.85s 14.69s

17623 1.541s 4.384s 56.469s
39298 4.088s 11.203s 296.049s
75045 8.04s 20.216s 1420.91s

150663 16.679s 42.773s 6153.79s
305058 35.984s 93.395s 26167.9s
616042 78.055s 202.148s 112855s

Figure 3.12 plots three curves for these experiment settings. The time axis of the

figure is shown in log scale. According to this experiment result, we can find our

method of pipeline framework outperformed the traditional algorithm of mining

maximal repeats. Our algorithm achieved 2-1445 times faster than the traditional

one. The longer the sequence length was, the more advantages our algorithm could

demonstrate. However, the pipeline framework running in multi-thread mode (5

threads) was slower than normal settings by 2-3 times. The main reason is that the

efficiency of pipeline processing was high enough in our C++ implementation. The

time required for thread creation and mutual exclusive locking on shared resources

could be more than the time spent on pipeline processing. Therefore, multi-thread

mode increased additional time cost in our single machine deployment. It is possi-

ble that the multi-thread mode will be effective, if the pipeline framework is imple-

mented in other high-level languages such as Java or Python.
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Figure 3.12: Running Time Comparison

Figure 3.13 also plots three sub-figures that demonstrate the running time on the

largest text document “pg0766D” by three settings. The time axises of these sub-

figures are shown in linear scale. It is obvious that the time required by our pipeline

framework was linear to the length of sequence in both normal and multi-thread

mode as shown in Figure 3.13(a) and Figure 3.13(b). This conclusion can be de-

rived from the analysis in Section 3.6, which justifies the time complexity of PipeM-

ining is O(LN), where N is the length of a sequence and L is the average length of

patterns. However, Figure 3.13(c) shows the traditional algorithm need exponential

growth of the time with respect to the increase of sequence length. It is because the

size of suffix tree became bigger when more elements were read from sequence.

Time of searching suffix tree was increased as well. Therefore, it is impractical to

adopt tradition algorithm to discover sequential patterns in a dynamic application.

Additionally, Table 3.5 and Figure 3.14 demonstrate the number of nodes in suf-

fix tree, the number of patterns, the memory consumption and the average pattern

length over 11 text documents. Since suffix pattern tree maintains all information
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Figure 3.13: Test of Running Time on File pg0766D

Table 3.5. Running Performance with Sequence Length

Length Node(s) Memory Pattern(s) Pattern Length (Avg.)
746 1113 3.0 MB 168 7.407
934 1299 3.4 MB 263 2.65

1865 2687 5.7 MB 512 3.022
4221 6146 12.1 MB 1050 3.386
8556 12567 22.5 MB 2029 3.949

17623 25834 43.9 MB 4003 4.12
39298 58142 97.3 MB 7982 4.743
75045 110939 183.1 MB 16656 4.977

150663 222538 354.3 MB 32609 5.241
305058 451433 717.3 MB 63850 5.905
616042 911822 1474.6 MB 125968 6.404
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of sequence and patterns, the memory consumption depends on the size of suf-

fix tree as well as the number of patterns discovered. From Figure 3.14(a) and

Figure 3.14(b) we can find both the size of suffix tree and the number of patterns

achieve linear growth to the sequence length. Therefore, memory consumption can

be controlled in a linear range as well.
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Figure 3.14: Running Performance with Sequence Length

Finally, we explored how many threads to be allocated was the best for the effi-

ciency of our pipeline framework. Figure 3.15 shows the change of running time

with respect to the increase of the number of threads. We can find the pipeline

framework work slowest in a single thread setting. With more threads joined, the

running time began to decrease until 5 threads were created concurrently. It is obvi-

ous that multiple pipelines to be processed concurrently does benefit to the improve-

ment of efficiency. However, as shown in this experiment, the number of threads
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should be controlled. Too many threads to be used may increase the time for thread

creation as well as have more chances to spend time on waiting for the unlocking of

shared resources. We found an appropriate number of threads should be close to the

average length of patterns. The average pattern length in file “pg0766D” was 6.404,

which means around 6 pipelines were executed concurrently most times. Therefore,

the advantage of multiple threads could be taken sufficiently. Note that the single

thread in thread mode is different with the normal mode mentioned above, because

the normal mode does not require any operation for maintaining thread pool in the

real implementation.
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Figure 3.15: Running Time to the Number of Threads

3.7.2 Analysis of Mobility Patterns

(1) Datasets

In addition to the testing of computational performance, we are also interested in

knowing how many and what kinds of mobility patterns can be discovered from

real moving trajectories. To investigate the mobility patterns contained in people’s
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daily life, we adopted two sets of location datasets, LBSN check-in sequences and

smartphone GPS sequences. LBSN check-ins were generated from two different

location based social networks, including Gowalla [30] and Foursquare [47]. Each

dataset contains more than ten thousand users, and cover around one year period.

Each record contains the information of user ID, latitude, longitude, time and loca-

tion ID. The location ID specifies a particular place where a user made a check-in,

e.g. a restaurant, a hotel or a university.

It is possible that the check-ins may not include user’s entire movements in a day,

as they are reported by users actively. Hence, we also tested PipeMining on the

smartphone GPS data. The real mobile dataset we used is available on CRAWDAD

research communities [48] and provided by the research team of Yohan Chon et

al [9]. 68 smartphone data donators participated in this project from November

2010 to August 2012. The average collection period was 94 days, and the median

was 60 days. A mobile application, “Life Map”, was deployed on smartphone

to detect GPS, WiFi fingerprints, and smartphone usages (e.g., application, screen

status, network traffic and battery level). In their pre-processing stage, they grouped

nearby coordinates to a series of locations. The stay duration on a location was

more than 10 minutes. We treated each individual trajectory as a location sequence

with assigned location IDs, arrival and departure timestamps, and smartphone usage

features. Detailed dataset information is listed in Table 3.6.

Each dataset contains various number of users. However, the fact is that not every

user has sufficient long location sequence. If a user’s trajectory is too short, few

patterns will be discovered and they are trivial to our experiment results. Therefore,

to guarantee the dataset quality, we filtered out all users who has less than 100
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Table 3.6. Statistical Information of Mobility Datasets

Dataset Total
Users

Remained
Users

Sequence
Length
(Avg.)

Sequence
Length
(Max.)

Period

Foursquare 11326 4417 244.20 2575 1 / 2011 -
7 / 2011

Gowalla 107092 12746 270.90 2175 2 / 2009 -
10 / 2010

Lifemap 68 68 521.96 3272 11 / 2010
- 8 / 2012

locations. We focused on the remained users after filtering. From Table 3.6, we can

find dataset “Life Map” has the best data quality as the average sequence length is

around 521, and every data donor has more than 100 locations.

(2) Results

To investigate the mobility pattern, we are interested in two aspects, pattern type

and pattern length. The pattern type tells us whether a discovered pattern is full-

tandem, semi-tandem, non-tandem, or is a tandem unit. Non-tandem pattern is the

most important for us to understand a user’s particular routine. Because every loca-

tion in this routine is non-trivial, it represents a routine from one place to another.

However, if a pattern is full-tandem, it implies this pattern may contain noisy infor-

mation and the pattern itself is trivial. Secondly, the pattern length can tell us the

reliability of a pattern. The longer a pattern is, the more reliable this pattern can

reflect a user’s real motivation. There is less chance that a long pattern can repeat

many times. Therefore, through analyzing the pattern type and length, we can de-

termine the reliability of a pattern, which will facilitate our understand of a user’s

real mobility behaviors.
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Table 3.7. Number of Patterns Discovered per User (Avg.)

Dataset Total Pat-
terns

Full-
tandem

Semi-
tandem

Non-
tandem

Tandem
Unit

Foursquare 51.71 7.38 10.38 33.95 13.43
Gowalla 43.63 1.39 1.13 41.12 4.12
Lifemap 103.13 4.88 14.25 84.00 11.81

Table 3.8. Pattern Lengths of Different Pattern Types (Avg.)

Dataset Length Full-
tandem

Semi-
tandem

Non-
tandem

Tandem
Unit

Foursquare 244.20 3.50 4.22 1.47 1.49
Gowalla 270.90 2.49 3.74 1.36 1.22
Lifemap 521.96 3.16 4.41 2.37 1.65

Table 3.7 shows the average number of patterns for each user. First, we can observe

the dataset “Life Map” contains the most patterns. Because this dataset have the

longest average sequence length (avg. sequence length is 521), it makes sense that

more patterns are likely to be mined. Secondly, among three datasets, full-tandem

patterns only take a small proportion. The proportion in dataset “Foursquare” is

the highest and is around 14%. For other datasets, only 2%-4% patterns are full-

tandem. We can conclude dataset “Life Map” has the best data quality and dataset

“Foursquare” contains more noisy data. Thirdly, we calculated a ratio between the

number of non-tandem patterns and the sequence length. The ratio for “Foursquare”

is 33.95/244.2 = 13.9%, the ratio for “Gowalla” is 41.12/270.9 = 15.17% and the

ratio for “Life Map” is 84/521.96 = 16.1%. By comparing three ratios, we can find

smartphone records contain more pattern information than check-in datasets. It is

possible that for a social network user, he or she would like to check in if this place

is the first time to be visited. Therefore, many check-ins are unique and there is no

chance to generate patterns from unique locations.
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Table 3.9. Pattern Lengths of Different Pattern Types (Max.)

Dataset Length Full-
tandem

Semi-
tandem

Non-
tandem

Tandem
Unit

Foursquare 2575 7.04 5.19 2.94 3.39
Gowalla 2175 1.81 1.28 2.95 1.52
Lifemap 3272 4.81 5.59 5.75 3.16
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Figure 3.16: Distribution of Pattern Length on Foursquare Dataset

Table 3.8 lists the average pattern length with respect to different pattern types, and

Table 3.9 lists the corresponding maximum pattern length. Similarly, we focused

on the non-tandem patterns. According to the above tables, we can observe in “Life

Map” dataset the average length of non-tandem pattern was 2.37 and maximum

pattern length was 5.75. Generally speaking, a user may require to visit 2-5 loca-

tions to reach his or her destination. This observation matches our life experience in

daily morning or evening commute. However, the length of non-tandem pattern in

“Foursquare” and “Gowalla” was relatively short. It makes sense that people have

less chance to check-in at the same consecutive locations. Figure 3.16, Figure 3.17

and Figure 3.18 show the distribution of pattern lengths for non-tandem and semi-

tandem patterns. By comparing three datasets, we can find the length distribution

of non-tandem patterns in “Foursquare” and “Gowalla” datasets are biased on 1
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Figure 3.17: Distribution of Pattern Length on Gowalla Dataset
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Figure 3.18: Distribution of Pattern Length on Lifemap Dataset

location. And, the length distribution of most semi-tandem patterns is biased on

4 locations. However, the pattern lengths of “Life Map” dataset are more equally

distributed.

Therefore, based on above analysis, we can conclude that,

• More mobility patterns can be discovered in long location sequence. The

longer location sequence we have, the better it is for building mobility model;
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• Full-tandem pattern only take a small proportion in a sequence. They are

trivial to our understand of people’s mobility behaviors and can be discarded;

• People’s mobility pattern usually contains 2-5 locations. A higher-order mo-

bility model is suggested to describe the complicated mobility patterns.

• Check-in datasets have relatively few patterns and short pattern length.

Smartphone records are more suitable to be the training data for mobility

modeling and location prediction.

In general, mining sequential pattern in an incremental way is very important for

mobility application. Through our experiments, we verified various mobility pat-

terns exist in people’s daily life. Especially, the non-tandem near-supermaximal

patterns take a large proportion in all patterns. More patterns will be generated

with the accumulation of more trajectories. Obviously, it is low efficiency to dis-

cover a new pattern if we need to re-scan all historical trajectories every time. Our

algorithm provides 1000 times the speed of the traditional algorithm in mining non-

tandem near-supermaximal patterns, which saves the time cost of building mobility

model on smartphone side or server side. Furthermore, with the ability of pattern

processing in parallel, our algorithm benefits to the location-based service providers

in analyzing mobility behaviors of millions of users. Real-time recommendation

system can be built based on discovering most frequent patterns, and can update

analyzing result incrementally.

3.8 Conclusion

Finding atomic patterns are crucial for us to understand people’s mobility behav-

iors as well as support mobility modeling and prediction. In this chapter, we have
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proposed an incremental pattern mining algorithm for location sequence, named

PipeMining. PipeMining is the first algorithm to mine near-supermaximal repeat

and tandem structure concurrently in an incremental manner. By an incremental

pattern discovery method, we can differentiate various pattern types including, full-

tandem pattern, semi-tandem pattern and non-tandem pattern. With the knowledge

of these pattern types, we can remove trivial and noisy patterns as well as investigate

people’s meaningful mobility patterns.

PipeMining realizes the pattern discovery via a pipeline method. Through experi-

ments, we have verified that the running time and storage of our algorithm is linear

to the length of sequence. It provides a possibility to scale up PipeMining to a

big data scenario. Additionally, we also examined the mobility patterns discovered

from three real datasets, including check-ins and smartphone records. We found

people’s mobility pattern usually contains 2-5 locations, and check-in datasets have

relatively few patterns and short pattern length. Therefore, a higher-order mobil-

ity model is suggested to describe complicated mobility patterns, and smartphone

records can be a good dataset for mobility model training.
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Chapter: 4 Predicting Next Movement

Location

An accurate mobility prediction model is the requisite for many location-based ap-

plications. For a private user, knowing his or her next visiting location can facilitate

smartphone to estimate traveling time, or recommend popular restaurants around

user’s destination. For traffic management bureau, predicting next movement of

collectives makes crowd control easier by setting up emergency measure in advance

before big events.

Usually, a location service provider has millions of registered users. People’s mov-

ing behaviors can be totally diverse. It is hard to develop different predictors based

on different moving habits. Therefore, a general learning model is required, which

aims to extract unique characteristic behind each user as well as reduce the work

of feature engineering. The trained mobility model can be used to predict user’s

next movement. Secondly, people’s moving paths may change from time to time

during different days or months. A mobility model should adapt to the change of

user’s moving patterns quickly. Thirdly, in Chapter 2, we have reviewed several

popular methods on the modeling of mobility behaviors, such as order-k Markov
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model, Lempel-Ziv prediction model and hidden Markov model. The advantages

of order-k Markov model are that it is efficient, and easy to be implemented. It

does not require any complicated assumption, like domain knowledge and feature

engineering work. However, the disadvantages are obvious as well. The parameter

k is hard to be selected in different applications. Moreover, setting a parameter k ar-

bitrarily may lose higher-order location dependency, which leads a mobility model

inaccurate. Without considering any possible meaning of parsed sub-sequence, the

predictor works as a black box and is hard to be interpreted from the view of mo-

bility.

Considering the above limitations of traditional approaches, we propose a novel

mobility model that has the following features:

• Less hyper-parameter setting and tunning;

• Online training and predicting supported;

• Quick adaption to the change of trajectory;

• Keeping original trajectory information as much as possible;

• Trained mobility model that can be further analyzed and interpreted.

To illustrate the model, our problem can be formalized as follow, and Table 4.1 lists

the key notations used in this chapter.

PROBLEM 1 (Location Prediction) Given a historical location sequence S1:N

from time t1 to tN , predict the next location ηN+1.
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Table 4.1. Notations Used in Chapter 4

Notation Description
S1:N Location sequence from time t1 to time tN
ηN N-th location in S1:N
β Mobility pattern
γ Recent traveling path
M Pattern network model
β Mobility pattern set
G Pattern network
ω Pattern weight
θ Connection strength

βact Active pattern
ή Location in mobility pattern

ηcan Candidate predicted location
σ Confidence of candidate location
ξ Location uncertainty

4.1 Pattern Network

Our proposed method, called pattern network, is a general mobility model. The

Pattern network can be used to learn features of moving trajectory and predict the

next location. It works by discovering all atomic patterns from a location sequence

incrementally, and connecting them as a network. Each pattern is represented as a

node, and the occurrence order of two patterns determines their relation. Parameters

of nodes and edges indicate the weight of individual pattern and connection strength

in-between patterns. In this section, we will describe what kind of patterns are

necessary, and how to construct a pattern network.
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4.1.1 Partition of Location Sequence

The intuitive idea to model a user’s mobility behavior is to find a series of

motivations that drive his or her movements. For example, a short sub-

sequence (“Home” → “Bus Station” → “Office”) may represent the action of

“Going to work”. If a user’s motivation can be determined, his or her next move-

ment location can be inferred easily. The question is how can we find these

motivations? Our assumption is that if a path is being visited repetitively, the

appearance of this path may not be a coincidence. It may be related to a certain

motivation. In other words, a path may be visited once by chance, but it is less

likely to be visited more than once. Therefore, our strategy is to discover all

repetitive sub-sequences and treat them as different motivations. In order to do

so, we need to partition a location sequence into many sequential patterns using

sequence mining method.

(1) Pattern of Near-supermaximal Repeat

A possible observation of above example is that the motivation of going to work

may consist of more concrete motivations such as going to the bus station, reaching

the destination and walking into the office. Our expected motivation to be inferred

should be atomic but non-trivial. Then, what can be the most appropriate sequential

pattern to reflect a user’s motivation? Chapter 3 has introduced different defini-

tions of sequential patterns for mobility. We choose the near-supermaximal repeat,

because the longest repetitive traveling path can quantify a motivation maximally.
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As introduced in Chapter 3, near-supermaximal repeat can be further classified

into three types, full-tandem near-supermaximal repeat, semi-tandem near-

supermaximal repeat and non-tandem near-supermaximal repeat. Since people

may repeat a same routine continuously in a while, a near-supermaximal repeat will

contain many tandem units, which makes it non-atomic. Differentiation of these

repeats allows us to refine mobility patterns and choose suitable one in different

scenarios. Usually, non-tandem near-supermaximal repeat is an essential pattern

for building pattern network. If a particular sequence has lots of tandem structures,

tandem unit will also be considered as one of mobility patterns. It is atomic

as well as keeps the core component of full-tandem near-supermaximal repeat.

Additionally, semi-tandem near-supermaximal repeat is interesting to be explored

in pattern network. Although semi-tandem near-supermaximal repeat contains a

tandem structure, it has an atomic presentation, and allows some tolerances as long

as the major part of sub-sequence is non-tandem.

(2) Pattern Candidate

Besides repeating sub-sequences, we may have some fresh sub-sequences that ap-

pear only once so far. Especially, at the beginning of a location sequence, every

location is new to the model. If these sub-sequences are ignored, we will lose some

information of the original trajectory. In such a case, we treat a first-time visited

path as a pattern candidate, which is defined as follow:

DEFINITION 9 (PATTERN CANDIDATE) There is a pair of elements ηle f t

and ηright . Both ηle f t and ηright have already appeared more than once. If there is

a sub-sequence α in-between ηle f t and ηright that occurs only once, α is a pattern

candidate.
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If any locations of pattern candidate are visited again in the later stage, these lo-

cations must be included in certain repeats. Thus, we should remove them from

their belonging pattern candidate. Initially, a pattern candidate could be long. With

more and more locations visited, the pattern candidate will shrink until no more

one-time visited locations exist. All locations in the pattern candidate migrate to

other near-supermaximal repeats.

By introducing pattern candidate and other near-supermaximal repeats, the entire

location sequence can be partitioned as a chain of patterns. Since all patterns are

connected end by end, it is easy for us to specify the relationship of a pair of patterns

according to their relative positions. To conclude the pattern selection, we choose

non-tandem near-supermaximal repeat, semi-tandem near-supermaximal repeat,

tandem unit and pattern candidate as our building bricks for the construction of

pattern network.

Figure 4.1 demonstrates an example of pattern discovery from a location sequence.

We can find that a mobility pattern may contain multiple locations, and a particular

location may belong to multiple mobility patterns as well. Each pattern is regarded

as a hidden motivation that leads to a user’s particular movement. Different with

the arbitrary segmentation of sequence by Markov or LZ model, our method makes

the parsed sub-sequence more meaningful.

4.1.2 Construction of Pattern Network

Usually, people’s motivations do not stand alone. We can infer the relation-

ship in-between successive mobility patterns. If a user is about to travel

at weekend, several actions may be involved in his or her entire movement
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Figure 4.1: Discovery of Mobility Patterns from Location Sequence

in a day, such as “Leaving home for car park”, “Driving to a restaurant”,

“Driving to railway station” and so on. As shown in Figure 4.1, a location

sequence can be decomposed by the connections of many mobility patterns.

Therefore, we can use a network structure to profile the relations of different

patterns.

According to the occurrence order of pattern instances in history, connection of two

patterns, (βa,βb), can be categorized into three major relations, inclusion, overlap

and adjacency. Here, we will illustrate each connection respectively.

(1) Inclusion

If all elements of βa appear in βb with the same order, we call βa is contained in βb.

Meanwhile, the length of βa must be smaller than βb, where|βa| < |βb|. Also, we
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Figure 4.2: Relations of Patterns in a Pattern Network

can say βb has βa. In Figure 4.2, we can find an example that the pattern “abc” has

the pattern “ab” at position 1-3, and 5-7 respectively.

(2) Overlap

Overlap specifies that two patterns share a common sub-sequence. According to the

relative positions of βa and βb, overlap can be further classified as forward overlap

and backward overlap. If βb appears on the right side of βa, βa is forward overlap

to βb. While, we can also say βb is backward overlap to βa. At the position 9, 10,

11 in Figure 4.2, pattern “ab” is forward overlap to pattern “bx”, and pattern “bx”

is backward overlap to pattern “ab”. Both pattern “ab” and “bx” share a common

element “b”.

(3) Adjacency
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Adjacency denotes the conjunction of two patterns. There is no gap or overlap

in-between βa and βb. The adjacency can also be classified as forward adjacency

and backward adjacency in terms of pattern’s relative positions. If βb appears on

the right side of βa, and the first element of βb is right to the last element of βa,

βa is forward adjacency to βb. We can also say βb is backward adjacency to βa.

In Figure 4.2, pattern “e” is backward adjacency to pattern “abc”, and is forward

adjacency to pattern “ab” at position 8. It is worth to note two patterns “bx” are

tandem together along with the positions 10-13.

Figure 4.2 illustrates a pattern network G. Different patterns are denoted by dif-

ferent line styles, which are discovered from a location sequence. The edge with

arrow indicates the direction of two patterns, and each edge is labeled with a type

of relation. Since we are interested in the prediction of next movement location,

contained, forward overlap and forward adjacency are three main relation types

that will be used to build pattern network.

Algorithm 4.1 shows the stages for mobility pattern discovery and pattern network

construction. The construction of pattern network can be implemented in an incre-

mental way. Every time when a pattern β is discovered, we only need to fetch all

neighbor patterns which have the relations of contained, forward overlap or forward

adjacency to β . A B+-Tree can be deployed on pattern’s start and end positions to

facilitate the neighbor search in O(logN).
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Algorithm 4.1 Online Pattern Network Construction
Input: Location: ηi, Pattern network: G, Pattern set: β
Output: Updated G

β ← DiscoverMobilityPattern(ηi)
if β exists then
βneighbors← SearchNeighbors(β ,β)
for each β j ∈ βneighbors do

relation← ComputePatternRelation(β j,β )
G← CreateEdge(β j,β ,relation)

end for
end if
return G

4.1.3 Advantages of Pattern Network

Pattern network is a graph presentation of a location sequence. It connects all mo-

bility patterns in history. Several advantages of pattern network can be summarized

as follows:

• A pattern network models a mobility from location level to pattern level;

• A pattern network records all transitions of mobility patterns;

• A pattern network keeps original trajectory information as much as possible;

• A pattern network behaviors as a variable-order Markov model.

Figure 4.3 shows the relationships between locations and patterns. A pattern net-

work models a trajectory from location level to pattern level. In the location level,

every location is dependent on all previous locations inside its pattern. Obviously,

the location transition inside a pattern is deterministic. The fixed sequential order

determines which location is the next one. On the other hand, in the pattern net-

work, one pattern connects to many neighbor patterns. The shift in-between two

patterns can only be described in probability. We can not exactly tell which suc-
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Figure 4.3: Markov Property in Pattern Network

cessive pattern must appear due to the lacking of completed ordering information.

Ideally, if a model can remember all past information, it will be perfect for predic-

tion. However, the computational and storage cost will be extremely high as well.

The pattern network balances the prediction performance and modeling cost. For

the aspect of storage, we limit the memorizing of location transitions within the

length of a pattern. For the aspect of computation, only shift of patterns need to be

estimated by calculating the probability. Normally, the amount of patterns is much

smaller than the length of sequences, which reduces the complexity of computation.

Once a successive pattern is inferred, the next location can be determined quickly

by checking the sequential order in the next pattern.

Despite pattern network only presents the shift between two patterns, we still have

chance to find a super-pattern that memorizes the successive shifts of multiple

patterns. For example, if multiple successive patterns appear more than once, a

new mobility pattern that contains these patterns will be generated as well. Inside

this new pattern, all locations belonging to these patterns are recorded completely.
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Therefore, the pattern network can store all sequential information over multiple

patterns, and keep original trajectory information as much as possible.

To predict the next location, patterns are utilized to provide possible locations for

inference. Since locations in a pattern follow a fixed sequential order, if a pattern

is matched partially, the location next to the matched part has large chances to be

happened. Since the lengths of patterns are different, the matched length can be

variable. Therefore, when using these patterns for prediction, our pattern network

model behaviors as a variable-order Markov model. The prediction is based on

the variable number of previous locations, which overcomes the limitation of fixed

order Markov model.

According to these advantages, pattern network models a location sequence from

location level to pattern level, and has less information loss.

4.2 Training of Pattern Network

The pattern network transforms a location sequence to a network topology. In order

to infer the next possible pattern, we need to know how important a mobility pattern

is, and how likely it will shift to another. Therefore, we introduce two types of

parameters, pattern weight ω and connection strength θ , as the attribute of node and

edge respectively. With these parameters, we are able to learn features of location

sequence. In this section, we will describe how to calculate these parameters and

train our pattern network model.
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Figure 4.4: Pattern Network Model

4.2.1 Overview

A pattern network model consists of three major components, mobility pattern set

β, network structure G and network parameters. The network parameters indicate

the weights on all nodes and edges, named as pattern weight ω and connection

strength θ respectively. Figure 4.4 shows an example of pattern network model

M(β,G,ω,θ). It can be constructed incrementally through the following steps:

• A mobility pattern βnew is discovered from a location sequence;

• The new pattern βnew will be linked to existing patterns that contain, overlap

or have adjacency to it;

• A pattern weight ω will be assigned to the new pattern;

• For each edge connecting with β , it will be assigned a connection strength θ .
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What are the usages of pattern weight and connection strength? To evaluate the

importance of node and edge, one naive method, like Markov or LZ model, is to

count the appearances of a pattern, or the number of times a pattern shifting to

another in history. However, simple statistic can not reflect the change of move-

ment habit in time. For example, routine (“Home”→ “University”) is a frequent

pattern for a student, but after graduation, routine (“Home”→ “Company”) will

dominate a office worker’s daily traveling. User’s history records will affect cur-

rent prediction greatly. Obviously, simple counting is not an effective way to model

a dynamic problem. Therefore, besides counting, we introduce additional factors,

pattern weight ω and connection strength θ , to indicate the current state of pattern

and pattern shift. The pattern weight is a real number that will be increased or de-

creased if the locations of patterns are matched or not. Similarly, the connection

strength, quantified as a percentage value, will be adjusted dynamically. Details of

parameter computing and application will be introduced in the following sections.

To learn features of a trajectory, our model is trained by a feedback procedure in-

cluding three stages: prediction, verification, and propagation. Firstly, if some

patterns are matched with recent traveling path γ , these patterns will propose their

next locations, and the final predicted location will be determined via a majority

voting mechanism. In the verification stage, by knowing the actual next location

ηn+1, pattern’s prediction will be verified. Corresponding pattern’s weight or con-

nection strength will be increased if a correct prediction is made. Usually, people’s

mobility patterns are overlapped and nested. If a pattern happened recently, other

connected patterns in history may have more chances to happen afterwards. Based

on this observation, a portion of adjusted weights will be propagated to the neigh-

bors of active pattern. The propagation stage make our pattern network adapt to the
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Figure 4.5: Overview of Training Pattern Network

recent trajectory quickly. Figure 4.5 shows the training flow of a pattern network

via prediction, verification and propagation.

4.2.2 Prediction of Next Location

How to predict the next location ηn+1 in pattern network? Consider a location

sequence,

S1:n = η1, . . . ,ηm, . . . ,ηn, 1≤ m≤ n. (4.1)

Before a user reaching the next location ηn+1, if a recent traveling path fits a mobil-

ity pattern, we call this mobility pattern is an active pattern. Here, we give a formal

definition as follow:
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DEFINITION 10 (ACTIVE PATTERN) For a mobility pattern and a location

sequence, if a prefix of the mobility pattern β is exactly the same as a suffix of

location sequence S1:N , this pattern is an active pattern, denoted as βact .

In Chapter 3, mobility patterns are discovered and recognized via suffix pattern tree

and pipeline framework. During an online pattern mining, multiple patterns are

possible to be recognized if their prefixes are matched with a suffix of location se-

quence S1:N . Therefore, multiple active patterns can be activated concurrently, and

the matched sub-sequence can be viewed as a recent traveling path γ . To differenti-

ate the location name in the historical sequence and in a mobility pattern, we use η

to represent a location of sequence S, and ή to represent a location in pattern β .

(1) Candidate Location

The idea for prediction is that if majority active patterns are followed by the same

location ηn+1, this location ηn+1 has the highest chance to be visited next. In our al-

gorithm, each active pattern need to nominate a candidate location ήcan, and assign

a confidence value σ . A majority voting procedure will select the final predicted

location from this pool of candidate locations. The question is how can we choose

a candidate location, and what is the confidence value?

There are two situations for choosing candidates according to how many loca-

tions are matched in an active pattern. Suppose there is a L-length active pattern

βact [ή
act
1 . . . ήact

j ήact
j+1 . . . ή

act
L ] whose prefix is matched with a recent sub-sequence,

which can be denoted as β [ήact
1 . . . ήact

j ] = Sm:n[ηm . . .ηn].
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• SITUATION 1: If 1 ≤ j < L, the next location ήact
j+1 can be nominated as a

candidate, because the sequential order inside a pattern is fixed.

• SITUATION 2: If j = L, the current location is the end of a active pattern.

At this time, there is no successive location inside a pattern can be proposed.

Fortunately, pattern network provides the information to choose candidate

from neighbor patterns that have adjacency, overlap or inclusion relations

with the active pattern. If an active pattern has multiple neighbors, multiple

candidates will be nominated. Table. 4.2 gives a detailed scheme of candidate

selection from neighbor patterns, where β [ή1 . . . ήi . . .] represents a neighbor

pattern.

Table 4.2. Selection of Candidate Location from Neighbor Patterns

ήcan Relation Neighbor Pattern Condition

ή
ad j
1 Adjacency βad j[ή

ad j
1 . . .] ή

ad j
1 is right to ήact

L

ήover
i+1 Overlap βover[ή

over
1 . . . ήover

i . . .] βover[ή
over
1 . . . ήover

i ] = βact [ή
act
j . . . ήact

L ]

ή incl
i+1 Inclusion βincl[ή

incl
1 . . . ή incl

i . . .] βincl[ή
incl
1 . . . ή incl

i ] = βact [ή
act
1 . . . ήact

j ]

(2) Confidence Value

Besides choosing the candidate location ήcan, each candidate will carry a confi-

dence value σ to specify how much confidence ήcan will be the next. For situation

1, the confidence value is calculated from three aspects of active pattern, the num-

ber of historical pattern appearances Cβ , pattern weight ωβ and matched ratio Rβ .

The matched ratio quantifies the proportion of a pattern matched with the recent
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traveling path, which can be expressed as below,

Rβ =
Number o f matched locations

Length o f pattern
. (4.2)

Similarly, for situation 2, the confidence value considers the number of historical

pattern shifts Cβ ,βneighbor
, connection strength θβ ,βneighbor

and pattern shift percentage

Rβ ,βneighbor
. The pattern shift percentage specifies how many times the shift hap-

pened between a pair of patterns over all neighbor patterns as shown below,

Rβ ,βneighbor
=

Number o f shi f ts f rom β to βneighbor

Total pattern shi f ts f rom β
. (4.3)

Eq. 4.4 shows the calculation of confidence value for two situations, where

sigmod() is a sigmoid funciton, and pow() represents R is the exponent of C. Let

us take the situation 1 as example. The confidence value is based on the counting

of pattern. However, as we discussed above, simple statistic is hard to describe a

dynamic model. Therefore, we use a sigmoid function as threshold to control the

influence of pattern counting. The output of sigmoid function ranges from zero to

one, which depends on the scale of pattern weight. Since the pattern weight will be

adjusted from time to time, the confidence value is able to reflect the popularity of

a pattern in recent time. Furthermore, we assume the higher matched ratio an active

pattern has, the more chances a proposed candidate location will be visited next.

Pattern with higher matched ratio should have higher predictability. Hence, the

popularity and the matched ratio of pattern are integrated with counting to become
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a confidence value for a candidate location.

σ =

 sigmoid(ωβ )∗ pow(Cβ ,Rβ ) if ήcan ∈ β

sigmoid(θβ ,βneighbor
)∗ pow(Cβ ,βneighbor

,Rβ ,βneighbor
) if ήcan ∈ βneighbor

(4.4)

(3) Majority Voting

After nomination, we group all candidates with the same location together. Sup-

pose we can obtain X candidate groups for different types of candidates, and each

group has Y identical candidates. How can we predict which type of candidate is

more likely to be occurred next? A majority voting procedure is deployed to select

the predicted location from a pool of candidates. Our strategy is to average the con-

fidence value of candidates in the same group as group confidence, and select the

group with the highest group confidence. Thus, our problem of location prediction

can be solved by Eq. 4.5 and Eq. 4.6, where x ∈ [1,X ],y ∈ [1,Y ].

σ
group
x =

∑
Y
y=1 σxy

Y
(4.5)

ηn+1 = ή
can
x = argmaxx(σ

group
x ), ξ ∈ [1,X ] (4.6)

(4) Prediction Uncertainty

Besides predicting the next location, we are also interested to know how reliable

a prediction is. By grouping candidates and computing group confidence, a dis-
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tribution of group confidence over X groups can be obtained. We can utilize this

distribution to compute an uncertainty value ξ , which can help us to justify the

performance of current prediction and tune the parameters of our model. The way

to compute the prediction uncertainty can be derived from the entropy value of

group confidence distribution. According to this distribution, the probability of a

candidate group can be estimated by dividing its group confidence over the total

confidence received from all candidates, as shown in Eq. 4.7.

P(ηn+1 = ή
can
x ) =

σ
group
x

∑
X
x=1 σ

group
x

(4.7)

Then, we use a normalized entropy ξ to describe the distribution of group confi-

dence, which can be computed as follow:

ξ =
−∑X P(ηn+1 = ήcan

x ) lnP(ηn+1 = ήcan
x )

lnX
ξ ∈ [0,1] (4.8)

We can find the entropy value ξ is an ideal indicator to evaluate the uncertainty

of prediction as well as to indicate the changeability of next location. If many

candidates can be found from active patterns and they have similar confidence, it

implies the next location is highly changeable in history. In this case, the entropy

value ξ will be close to 1, which means the current prediction is highly uncertain.

On the other hand, if the selection of candidates has only a few options, our model

will have high confidence. At this time, the entropy value ξ is close to 0. The reason

we introduce a normalized entropy is that the number of X candidate groups may

vary at each prediction. In order to make prediction uncertainty comparable, the

entropy value is required to be normalized by lnX so that the range of ξ is between

0 and 1. Therefore, we use the normalized entropy value as a prediction uncertainty.

Algorithm of prediction step is listed in Algorithm 4.2.
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Algorithm 4.2 Location Prediction
Input: Location: ηn, Pattern set: β, Pattern Network: G
Output: Predicted next location: ηn+1, Prediction Uncertainty: ξ

1: βact ← FindActivePatterns(ηn,β)
2: for each βact ∈ βact do
3: if Candidate in Active Pattern then
4: (ήcan,σ)← NominateCandidateInPattern(βact)
5: else
6: βneighbors← SearchNeighbors(βact ,β,G)
7: (ήcan,σ)← NominateCandidateFromNeighbors(βact ,βneighbors)
8: end if
9: Groupx← PushIntoGroup(ήcan,σ)

10: end for
11: σgroup

x = ComputeGroupConfidence(Group1, . . . ,GroupX)
12: ήcan

x ← argmaxx(σ
group
x )

13: ηn+1← ήcan
x

14: ξ ← ComputePredictionUncertainty(Group1, . . . ,GroupX)
15: return ηn+1,ξ

4.2.3 Verification

After reaching the next location ηn+1, a verification stage is necessary to adjust

active pattern’s weight or connection strength in terms of its proposed candidate lo-

cation. Usually, many active patterns will be activated in the prediction stage. How

can we make correct ones to be outstanding and receive more weights relatively?

By doing so, user’s recent moving habits can be reflect on those popular patterns.

The pattern weight ω and connection strength θ can be updated by the adjustment

weight ∆σ as follows:

∆σ =


ξ

P(ήcan) if ήcan is correct

−1∗ 1−ξ

1−P(ήcan) if ήcan is incorrect
(4.9)
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 ωβact = ωβact +∆σ if ήcan is f rom active pattern

θβact ,βneighbor
= θβact ,βneighbor

+∆σ if ήcan is f rom neighbor pattern
(4.10)

Since the candidate location with the highest confidence value is the final predicted

location, our purpose is to award or punish the predicted location. Thus, we espe-

cially introduce the prediction uncertainty ξ to tune the pattern. If an active pattern

has great confidence, it will dominate the confidence distribution and ξ approaches

to 0. For a correct prediction, there is no need to change the current distribution by

highlighting any pattern. However, if the prediction of dominating pattern is wrong,

we need to punish it by deducting more weights so that the original distribution can

be changed. Therefore, the numerator is set to 1− ξ . Similarly, if there is no ac-

tive pattern dominating the distribution obviously, ξ is near to 1. Giving additional

weight ξ to a correct pattern can increase its confidence on majority voting later.

For a wrong prediction, as we are not fully sure which pattern will be popular, we

can only change the distribution slightly. Thus, the value of numerator is small.

In our strategy, the verification procedure will compare every candidate location

ήcan with the actual one ηn+1. The denominator P(ήcan) have the similar effect to

accelerate the adjustment. Especially for the pattern that takes small proportion in

the distribution, its pattern weight will be increased or decreased heavily. Therefore,

the verification stage can accelerate a low frequent pattern to become popular, if this

pattern appears successively. Better than a simple statistical counting, introducing

prediction uncertainty can not only reflect changeability of mobility trace, but also

be used to tune mobility model appropriately.
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4.2.4 Propagation

Location prediction is a dynamic process. How can we make the recent patterns

become more important than earlier ones? Selecting patterns in a sliding window,

or applying a decay function on pattern weights are traditional approaches to deal

with a dynamic problem. However, these approaches rely on setting a fixed window

length or an arbitrary decay parameter, which are inflexible when facing different

mobility traces.

Note that people’s mobility patterns are usually overlapped and nested. If a pat-

tern happened recently, other connected patterns in history may have more chances

to happen afterwards. In our model, pattern’s weight can be further adjusted by a

propagation step. After verification, we propagate the adjustment weight ∆σ to ac-

tive pattern’s neighbors via pattern network so that the weights of neighbor patterns

can be adjusted as well. The advantages of weight propagation are that a pattern

network model can adapt to the recent trajectory as quickly as possible, and the

prorogation does not require any parameter.

The question is how many weights should be passed to neighbors? Our method is

to use the connection strength θ with sigmoid function to control the proportion

of propagation at each round. Eq. 4.11 shows the connection strength θβa,βb
from

pattern βa to βb. A stronger connection strength means shifts between two patterns

happened many times in recent time, and this connected pattern is more likely to

happen next. As shown in Eq. 4.11, strong connected neighbors will receive more
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weights and increase its confidence on future location prediction.

ωβb
= ωβb

+∆σβa · sigmoid(θβa,βb
), (4.11)

Weight is allowed to be propagated to neighbors’ neighbors. The adjustment weight

∆σ can be propagated on the entire pattern network until ∆σ vanishes, or only

propagate to 2-3 levels of neighbors. Algorithm of weight propagation is listed in

Algorithm 4.3. Through prediction, verification and propagation, a pattern network

model M(β,G,ω,θ) is able to learn user’s mobility features, make prediction as

well as adapt recent trajectory effectively.

Algorithm 4.3 Weight Propagation

Input: Pattern: β , Adjustment weight: ∆σβ , Pattern set: β, Pattern network: G
Output: Updated pattern set: β

1: βneighbors← SearchNeighbors(β ,β,G)
2: for each β j ∈ βneighbors do
3: θβ ,β j ←GetConnectionStrength(β ,β j)
4: ωβ j+= ∆σβ · sigmoid(θβ ,β j)
5: ∆σβ j ← ∆σβ · sigmoid(θβ ,β j)
6: β← UpdatePatternWeight(β j,ωβ j)
7: if ∆σβ j! = 0 then
8: WeightPropagation(β j,∆σβ j ,β,G)
9: end if

10: end for
11: return β

4.3 Experiments

In this section, we will compare the prediction accuracies of pattern network with

other benchmark models, and investigate the properties of pattern network.
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4.3.1 Datasets

To evaluate the performance of pattern network, we need to predict the next location

of mobility trace. The dataset “Life Map” introduced in Chapter 3 is one of real mo-

bility datasets that was contributed by 67 smartphone users. Besides, we also tested

our model on another mobility dataset named “Reality Mining” [49]. The “Reality

Mining” dataset was collected from 94 mobile phone users using Nokia 6600. This

study was conducted by MIT Media Laboratory between September 2004 and June

2005. Among 94 data donators, 68 were colleagues working in the same building

on campus, and the remaining 26 subjects were incoming students at the business

school of university. We believed both “Life Map” and “Reality Mining” datasets

were good samples for us to test different mobility models, because they records

users’ daily movements completely.

4.3.2 Experiment Settings

In our experiment settings, we introduced six models as baselines. These methods

includes fixed-order and variable-order Markov models, in literature [24], which

were used to evaluate the location prediction from WiFi data. Here, we briefly

describe each method.

• (1) Order-1 Markov Model. In order-1 Markov model, one transition ma-

trix is maintained, which contains the probabilities of transitions from one

location to another. The probability is obtained by counting the appearances

of the next location over all appearances of the current location. For a predic-
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tion, the next location to be predicted is the one that has the highest transition

probability;

• (2) Order-2 Markov Model. Order-2 Markov model works in the same way

as order-1 Markov model. However, the location dependency is not only

based on the current location but also considers one more previous location.

Therefore, the predicted is the one with the highest transition probability de-

pendent on previous and current locations;

• (3) Decayed order-1 Markov Model. To put more confidences on the recent

learnt location transitions, we applied an exponential decay function on the

order-1 Markov model. Transition probability will be adjusted by the follow-

ing equation,

P′n = Pne−λ (n−n′) (4.12)

, where P is the transition probability, n′ is the current time and n is the last

time when the same location transition appeared.

• (4) Decayed order-2 Markov Model. Decayed order-2 Markov model works

in the same way as order-2 Markov model, but is applied an exponential decay

function as well;

• (5) Lempel-Ziv 78 (LZ78). The LZ78 is a variable-order predictor. It parses

a sequence by extending one symbol from existing phrases at each step. If

the extended phrase is new, this phrase will be added into a trie tree. Finally,

a sequence is partitioned into many non-overlapping adjacent phrases. For

the prediction, the algorithm will start from the root and traverse the tree

according the matched phrases. Upon the completion of traverse, the next

node with the maximum counts becomes the predicted location.
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• (6) Prediction by Partial Match (PPM). PPM is a variable-order predictor

like LZ78. But different to LZ78, PPM requires to set an upper bound k. It

maintains all previous occurrences of context at each level of k in a trie tree

with associated probability values for each context. The prediction of PPM is

similar to LZ78, and can handle the zero frequency problem with escape and

exclusion mechanisms especially.

• (7) Predictability Test. Since the characteristic of mobility datasets can be

totally different, some datasets can be predicted easily and some are difficult.

To compare the performance of our model with ideal prediction result, we test

the predictability for each dataset. The predictability test is based on order-1

Markov model. Give the current location, if the next location can be found in

the historical transition recorded previously, we assume the next location is

predictable.

In our experiment, each model was required to predict the ID of next location based

on the current location ID or more previous ones. The performances of all models

were evaluated in terms of their prediction accuracies, which can be calculated by:

Accuracy =
Number o f Correct Predictions
Number o f Total Predictions

. (4.13)

Additionally, since the decayed Markov model was a parameterized method, we

tuned the parameter λ from 0.2 to 1 to compare different prediction performances.

4.3.3 Performance Evaluation

Table. 4.3 and Figure 4.6 show the average location prediction accuracies over 68

users in “Life Map” dataset, and the best prediction accuracies of decayed O(1)
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Table 4.3. Comparison of Prediction Accuracies on “Life Map”

Models Total Predictions Correct Predictions Accuracy
Predictability Test 35425 15445 0.436
Pattern Network 35425 12147 0.343

LZ78 35425 10394 0.278
O(1) Markov 35425 9675 0.273

PPM 35425 9962 0.262
Decayed O(1) Markov 35425 8670 0.245

O(2) Markov 35425 7093 0.200
Decayed O(2) Markov 35425 6214 0.175

Table 4.4. Comparison of Prediction Accuracies on “Reality Mining”

Models Total Predictions Correct Predictions Accuracy
Predictability Test 2901748 2588359 0.892
Pattern Network 2901748 1714570 0.600

O(1) Markov 2901748 1488166 0.524
PPM 2901748 1486886 0.510

O(2) Markov 2901748 1459303 0.503
LZ78 2901748 1346764 0.474

Decayed O(1) Markov 2901748 1323745 0.456
Decayed O(2) Markov 2901748 1307005 0.450
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Figure 4.6: Comparison of Prediction Accuracies on “Life Map”
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Figure 4.7: Comparison of Prediction Accuracies on “Reality Mining”

and O(2) Markov models are listed in the table. By comparing the accuracies over

seven models, we can find our pattern network outperformed other Markov models

by 7% on average. However, the absolute prediction accuracies of seven models

are not very high. Only around 20%-30% locations could be predicted success-

fully. When referring to the result of predictability test listed the table, we can

find the “Life Map” dataset is hard to be predicted. Even the ideal result is only

43.6% accuracies. It is possible that people’s movements changed frequently or

many locations were only visited once, which increased the difficulty for predic-

tion. Table. 4.4 and Figure 4.7 show the comparison of prediction accuracies on the

dataset “Reality Mining”. In general, our pattern network model is still better than

others by 8%. Note that the absolute prediction accuracies are higher. The reason

is that this dataset contains more repetitive sequences in trajectory, especially more

tandem sequences such as S =< 1 >< 2 >< 1 >< 2 >< 1 >< 2 >. Since our

pattern network model is able to detect tandem repeats, these tandem units can be

used for better prediction.
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Surprisingly, when comparing order-1 Markov model with order-2 Markov model

in two datasets, we can observe that the order-1 Markov model is slightly better than

the order-2 Markov model. It is possible that the predicted location from order-2

model is also the most frequent location recorded by order-1 model. Oppositely,

the most frequent location in order-1 model may not be the frequent location in

order-2 model. The reason is that the condition of order-2 dependency narrows

down the searching range. Possible predicted location could be missed and incur

a wrong prediction. Our pattern network model works in a variable-order fashion.

The prediction of next location is based on multiple active patterns with various

pattern lengths. Most frequent next location in order-1 Markov model can be found

in the pattern network model. Meanwhile, some long patterns in the extreme case

can also be captured. It overcomes the limitations of order-1 and order-2 model.

Furthermore, although we introduced two variable-order models, LZ78 and PPM,

their performances are not as good as we expect. Overall, for these benchmark

models, no one is able to guarantee a good performance across different datasets.

Additionally, we found the performance of Markov models without decay function

were better than the performance of decayed Markov model. According to the Fig-

ure 4.8, we can observe the prediction accuracies were decreased when increasing

the value of λ from 0.2 - 1.0. The disadvantage of applying decay function is that

for a location transition that appeared long time ago, its probability could be re-

duced to a very small value. Even the original probability is high enough, it will be

decreased quickly so that the information historical transitions could be lost. While,

our pattern network model realizes the weight adjustment by propagating weights

to the neighbors of pattern, which are highly possible to appear in the near future.
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Figure 4.8: Prediction Accuracies of Decayed Markov Models on “Life Map”

Therefore, the strategy of weight propagation can not only make model adapt to the

recent mobility, but also remains all historical transitions.

4.3.4 Pattern Network Analysis

In addition to the testing of prediction accuracy, we can also obtained a pattern net-

work structure after model training. We are interested to know how large a pattern

network can be generated for every user, and what is the proportion of different

pattern relations. Here, we especially take the dataset “Life Map” as an example to

investigate.

Table 4.5. Statistical Analysis of a Node in the Pattern Network (Avg.)

Num. of Nodes in Network Frequency Pattern Weight

159.54 5.34 24.80

Num. of Neighbor Nodes Num. of Relations Num. of Node Shifts

10.07 10.83 2.41
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Table. 4.5 lists the statistical results of a node in the pattern network. For each user,

he or she could have a pattern network that contains 159.54 nodes on average. For

each node in a network, it appeared 5.34 times, and the average pattern weight is

24.80 after weight propagation. Furthermore, each node has around 10 connected

neighbor nodes and the average number of relations is 10.83. We can find the

number of relations is slightly larger than the number of connected nodes. The

reason is that for the same neighbor node, it can be connected by different relations.

For example, a pattern could be forward adjacency to another pattern as well as

it can be contained in that pattern. Different instances of a pattern may generate

different relations with respects to its neighbors. Finally, we can find the number of

node shifts from one pattern to another is 2.41 on average.

Table 4.6. Statistical Analysis of an Edge in the Pattern Network (Avg.)

Num. of Edges in Network Frequency Connection Strength

1727.46 2.41 0.27

Num. of Contained Num. of Forward Adj. Num. of Forward Overlap

20.30% 51.27% 28.43%

Table. 4.6 shows the statistical results of an edge in the pattern network. On aver-

age, a pattern network includes total 1727.46 edges. Each edge, i.e. a pattern shift,

appears 2.41 times, and the connection strength is 0.27. Among all relations, “For-

ward Adjacency” takes the largest proportion. It is possible that many patterns only

contain 1-2 locations. Thus, the adjacency would be the most common relation of

two short patterns. Also, we can find the relation “Contained” and “Overlap” have

nearly 50% chances to be occurred. It proves that people’s mobility patterns are
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!

Figure 4.9: A Pattern Network of a Real Smartphone User

usually nested each other, which reflects the complexity of a moving trajectory. An

example of a real user’s pattern network is demonstrated in Figure 4.9.

4.4 Conclusions

High performance location predictor can facilitate many location-based services to

recommend useful contents to smartphone users. In this chapter, we proposed a

novel location predictor named pattern network. Pattern network is constructed by

connecting repeating sub-sequences in a location sequence. The advantages are

that (1) the location dependency are variable according to the different lengths of

patterns; (2) Since each pattern is atomic and non-trivial, the pattern may implicit

a meaningful path; (3) Besides memorizing location transition, the pattern network

keeps information of pattern transition in higher level. This unique insight can not

be identified in other methods, because Markov and LZ models only partition a

sequence in location level.
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When a location prediction is required, a set of candidate locations can be retrieved

from the pattern network. The predicted location is selected by a majority voting

among the candidates. Meanwhile, a location uncertainty value can be generated,

which reflects the uncertainty of prediction at each step. By integrating the location

uncertainty into a weight propagation procedure, our model can be trained to have

better adaptability.

Our experiments show the pattern network model outperformed other fixed order

or variable order models. Especially, the pattern network structure can help us to

analyze a user’s mobility behaviors. However, through our experiments, we also

find there are still a large portion of locations that can not be well predicted, be-

cause they are so called zero frequency. Therefore, a location predictor should also

consider the prediction of new or unusual locations.
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Chapter: 5 Predicting New and Unusual

Mobility Behavior

In many occasions, people may deviate from their normal mobility patterns from

time to time, e.g.traveling to new places, going to hospital. In such circumstances, if

a predictor still treats a high frequent visiting location as a person’s next movement,

obviously this prediction will be wrong. There are three main factors that make

traditional predictors hard to support unusual mobility behavior prediction.

• Unusual mobility information is not contained in traditional predictors. Pre-

dictors only maintain frequent location transitions or patterns. They do not

have additional records on exceptional cases, which makes the unusual mo-

bility prediction difficult.

• Traditional predictors usually focus on how frequent a pattern happens, but

they do not consider how regular a pattern is. Some patterns may occur many

time, but also they are easy to be broken. For example, there is little chance

for a office worker to change his or her routine on the way to company in

the morning. If such a routine is detected, traditional predictors should work

well, because a morning commute pattern has higher regularity. However,
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office workers may have a habit for shopping at weekend, and will have great

chances to go for traveling as well. In this scenario, prediction based on

frequency may not be accurate.

• Some works [35] [36] [37] partition trajectory into multiple line segments.

Based on special distance calculation, they group similar trajectories together

and the outlier line segments are considered as unusual mobility behavior, be-

cause these segments are rare and sparse. Nevertheless, these methods do not

consider any mobility pattern and the frequency of the pattern appearance.

Outliers in space may not be caused from the breaking of patterns. Another

method proposed in [6] uses hidden Markov model to train a discretized loca-

tion sequence. By detecting a significant parameter change in HMM training,

it recognizes this trajectory as an unusual behavior. However, these methods

need to train a model by scanning historical data many times, which may not

be suitable for online training and detection. Moreover, the method proposed

in [7] treats a location of wrong predictions as a mobility change. But, this

method is hard to be evaluated and interpreted. There is no solid definition of

unusual mobility in traditional work.

In order to support unusual mobility prediction, we need to develop a novel predic-

tor to conquer these limitations.

5.1 Definitions of Unusual Mobility Behavior

A good definition is important for our understanding of unusual mobility behavior

as well as performance evaluation later. Firstly, in this section, we will give a formal

definition about what is the unusual mobility behavior. Consider a user’s moving
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trajectory that consists of a series of time-ordered triples,

S1:N =< η1, t1,F1 >,. . . ,< ηN , tN ,FN > (5.1)

where η represents the name (ID) of a physical location, t is the timestamp and

F is the meta feature. In this location sequence, various sequential repeats can be

discovered as described in Chapter 4. These mobility patterns describe people’s

mobility behaviors including the daily routines of work, shopping, entertainment,

etc. We have introduced many definitions of mobility patterns and online discovery

methods in Chapter 3 or 4. Intuitively, if a pattern is matched at the beginning,

but failed to be followed afterwards, it may indicate an unusual mobility behavior

happening. When the next location is different from the earliest on-going pattern,

we define it as a Point of Change.

DEFINITION 11 (Point of Change) The next location is a Point of Change

(POC) if it no longer matches the earliest on-going pattern.

By this definition, a POC can be regarded as a place that leads to a pattern break.

The question is why choose the earliest on-going pattern? As we have discussed in

previous chapters, people’s mobility patterns are usually overlapped or contained.

A hidden motivation can be composed of many successive sub-motivations. The

earliest on-going pattern represents the initial motivation in a person’s mind. This

motivation can be lasted for a long time, and may contain other patterns concur-

rently. If the earliest pattern is broken, we assume a user changed his mind from his

or her initial motivation.
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Figure 5.1: Three Types of Point of Change

Additionally, it is also interesting to find out what causes the pattern break. Is the

next location a new place, or a visited place? Based on historical location sequence

S1:N , if the next location ηN+1 never appears before, ηN+1 is a new place. In another

case, ηN+1 may be a visited place but arrived via a new transition. Specifically, we

can further differentiate POCs into three types, as follows:

DEFINITION 12 (New Point) ηN+1 is a new point, if ηN+1 never appears in his-

torical location sequence S1:N .

DEFINITION 13 (New Follower) ηN+1 is a new follower, if ηN+1 is a visited

place but the transition from previous location ηN is new.

DEFINITION 14 (New Breaker) ηN+1 is a new breaker, if ηN+1 is a visited place

and the transition from previous location ηN is happened before.
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Figure 5.1 illustrates three cases of Point of Change.

• Case (1): Tom is at “Office” at time t1, an on-going pattern β1 is matched,

because a prefix of β1, “Office”, is the same as current location. It implies

Tom may follow this pattern to return home as usual. However, at lunch time,

if Tom’s next destination is an unvisited “Restaurant” instead of “Canteen”,

this restaurant breaks Tom’s usual pattern. The unvisited restaurant is a new

point.

• Case (2): If Tom goes to “Hospital” from office for the first time, it implies an

urgent issue makes Tom break his evening commute. The “Hospital”, which

is not the first visit, becomes a new follower at time t4.

• Case (3): It is possible that multiple patterns are matched concurrently as

shown at time t4− t5. If Tom follows a pattern β2 to the “Airport”, it breaks

his earliest on-going pattern β1. Due to the pattern β2 occurred before, the

“Airport” at time t6 is a new breaker. It is worth noting that a POC only breaks

the earliest on-going pattern. If β2 starts from “Office” at time t1, “Airport”

is not a POC.

The advantages of the definition of POC are that (1) POC is easy to be understood.

It fulfills people’s normal cognition of pattern break and unusual mobility behav-

ior. (2) POC is easy to be detected. By finding all repeats in historical location

sequence, we are able to detect POCs based on patterns. (3) POC allows different

location predictors to be evaluated in terms of a common ground truth. Because the

definition of POC is objective and it is not derived from the prediction result of any

predictor, a location sequence has only one unique POC label sequence to indicate

the status of each location at each time. According to our definitions, we can find
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new point, new follower and new breaker are mutually exclusive. By defining three

types of POC, we are able to apply different location-based services in different

situations.

In our mobility prediction scenario, we focus on building a user-specific model that

has the capability to answer the following question:

PROBLEM 2 (POC Prediction) Given a historical location sequence S1:N from

time t1 to tN , predict whether the next location ηN+1 is a Point of Change (POC). If

it is, what is the type of POC, new point, new follower or new breaker?

Table 5.1 lists the key notations used in this chapter. In the rest of this chapter, we

will present our solutions to the above problem.
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Table 5.1. Notations Used in Chapter 5

Notation Description

S1:N Location sequence from time t1 to time tN

ηN N-th location in S1:N

tN Arrival timestamp on ηN

τN Stay duration on ηN

FN Meta feature vector on ηN

β Mobility pattern

γ Recent traveling path

M ST-Pattern Network Model

β Mobility pattern set

G Pattern network

ω Pattern weight

θ Connection strength

5.2 Regularity of Mobility Pattern

The regularity of a pattern is very important for us to infer how many possibilities

a user will change his or her mobility under the current circumstance. It is found

in previous studies [50, 51] that there is a strong transition regularity in people’s

mobility behaviors. This suggests that if the current traveling path follows some

strong regular patterns, the chance of POC occurrence in the next move may be

small. Thus, our strategy to predict POC is to match mobility patterns as many as

possible from historical location sequence, and evaluate their regularities. In this

section, we will introduce how to calculate the regularity of a mobility pattern.
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5.2.1 Mobility Patterns for POC Detection

The prediction of POC is to utilize mobility patterns to estimate the changeability of

a person’s movement. Studies [50, 51] suggests that spatial patterns are more robust

than temporal patterns. Thus, the first step is to look for any spatial pattern from a

location sequence, and then verify its regularity based on temporal information.

In Chapter 3, we have introduced different mobility patterns as well as their on-

line discovery methods. Different mobility patterns can be used to fulfill different

requirements of applications. In Chapter 4, mobility patterns are found as semi-

tandem near-supermaximal repeat, tandem unit and pattern candidate. In order to

improve prediction accuracy, we need to portrait a user’s movement by every pos-

sible cases and keep sufficient trajectory information. However, requirements for

POC prediction are slightly different. Here, we make a comparison between two

applications.

• We do not need to consider the sub-sequence that occurs only once. Be-

cause every location is new, there is no pattern break inside this sub-sequence.

Therefore, pattern candidate is not required in POC prediction.

• Individual tandem unit is not necessary. In POC prediction, we are only in-

terested in the break of the earliest mobility pattern. A tandem unit must be

contained in other longer patterns. If a long pattern is broken, its tandem unit

will be broken as well. Therefore, tandem unit is redundant in this case.

• We hope the conditions of mobility pattern should be as simple as possible so

that POC can be detected easily.
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S1:40={A,B,C,D,E,D,C,F,A,B,F,A,C,D,H,A,G,D,E,D,I,D,C,A,B,C,D,E,D,C,F,A,J,A,J,K,L,A,A,A} 

Location Sequence: 

β1 !

β2 ! β3 !

β4 !

β5 !

β6 !

β2 !

β6 !

β3 !

β4 !

β5 !

β1 !

β7 ! β7 !
β2 ! β3 !

β4 !

β5 !

β6 !

β2={A,B}  β3={C,D}  

β4={D,E,D}  

β5={D,C}  

β6={F,A}  β1={A,B,C,D,E,D,C,F,A} 

β7={A,J} 

Mobility Patterns: 

β8={A} 

β9={C} 

β10={D} 

Home (A) 

7-11 Store 

(B) 

Metro (C) 

Office (D) 

Book Store (H) 

Post Office 

 (G) 

Library (L) 

Mall (I) 

Park (J) 

Supermarket (F) 

Canteen (E) 

Church (K) 

Trajectory: 

Figure 5.2: Mobility Patterns

Considering above reasons, we only choose the near-supermaximal repeat as mo-

bility pattern in the scenario of POC prediction. Definition of POC and our POC

prediction model will be implemented based on the near-supermaximal repeat.

Figure 5.2 shows one individual’s mobility trajectory for several days. For example,

the routine for work β1 consists of multiple near-supermaximal repeats including

β2 = (Home→ 7-11 Store);

β3 = (Metro→ Office);

β4 = (Office→ Canteen→ Office);

β5 = (Office→Metro);

β6 = (Supermarket→ Home).
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Note that the above mobility patterns β2−β6 are not only contained in β1, but also

have other independent instances. It is worth noting some mobility patterns consist

of a single location such as β8,β9,β10. In the next sub-sections, we will introduce

how to evaluate the regularity of mobility pattern from spatial and temporal aspects.

5.2.2 Spatial Likelihood

As demonstrated in Figure 5.2, a location sequence can be composed by many

nested mobility patterns. However, when a user is traveling from the current loca-

tion ηN to the next ηN+1, how can a system know which pattern a user is intended

to follow? To answer this question, we compute the spatial and temporal similarity

between recent traveling path and previous mobility patterns to infer its likelihood.

Here, we give the definition of recent traveling path γ .

DEFINITION 15 (Recent Traveling Path) A recent location sequence [ηi, . . . ,ηN ]

is called a recent traveling path, if it matches the prefix of a mobility pattern.

At location ηN , it may have multiple mobility patterns that are matched concur-

rently. These recent traveling paths need to be compared with their corresponding

matched patterns respectively. From the spatial aspect, the likelihood that a par-

ticular pattern β is being followed can be estimated based on its matched path γ .

Since the sequential order of a pattern is fixed, the spatial likelihood can be simply

computed by the length of recent path:

Ps(β |γ) =
|γ|
|β |

. (5.2)
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If Ps(β |γ) = 1, it means that an instance of pattern β is fully observed, and thus we

are ensure the user is following a mobility pattern β .

5.2.3 Temporal Likelihood

Temporal similarity is another aspect we can use to infer the likelihood of an on-

going pattern. The time a user arrives at a location and the period he stays at that

location are two basic temporal features of his/her mobility behavior. In a sequential

pattern, a stay duration may be dependent on its previous locations. Also, start time

of a pattern may vary from time to time. For example, Tom arrives office at 10AM

this morning rather than 9AM as usual, but his one-hour lunch time is fixed from

12AM to 1PM at canteen. To guarantee 8 hours working, his stay duration at office

in the afternoon will be 6 hours instead of 5 hours. Therefore, it is necessary to set

up a temporal model for each mobility pattern so that temporal likelihood can be

calculated.

(1) Stay Duration

To model the time dependence, we derive stay duration τ of a location from its

arrival and departure timestamps. Additionally, in-transit duration between two

consecutive locations can be obtained as well. For a fixed length mobility pattern

β , durations can be represented by a 2|β |−1 dimensional random duration vector,

τβ = [τ1, . . . ,τ2|β |−1], where |β | is the length of the pattern β . Stay durations and

in-transit durations in a vector are interleaved with the same sequential order of

mobility pattern.
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We believe if a pattern is highly regular on time, the stay and in-transit duration

should be consistent each time. Therefore, the duration vector τβ is modeled by a

multivariate Gaussian distribution, P(τβ )∼ N2|β |−1(µβ ,Σβ ):

P(τβ ) =

1√
(2π)2|β |−1|Σβ |

exp
(
−1

2
(τβ −µβ )

>Σβ
−1(τβ −µβ )

)
. (5.3)

Eq. 5.3 is the probability density function for the multivariate Gaussian distribution

of duration vector. Parameter µβ is a mean vector of variables τ , where µβ =

[E(τ1), . . . ,E(τ2|β |−1)]
>. Parameter Σβ is a symmetric covariation matrix in which

the entry in the i-th row and j-th column expresses the covariation between random

variable τi and τ j, i.e. Σβ = Cov(τi,τ j), i, j = 1 . . .2|β |− 1. Once an instance of

β is identified, the mean vector µβ and covariation matrix Σβ need to be updated

correspondingly.

Given the duration vector τγ of a recent path γ , temporal likelihood of on-going pat-

tern β can be computed according to the multivariate Gaussian model. However, the

recent path γ may only match with β partially, durations beyond matched part are

empty values. Therefore, we only need to consider a 2|γ|−1 length duration vector

instead of 2|β |−1, where |γ| is the length of recent path and |γ| ≤ |β |. To calculate

P(τγ), the original multivariate Gaussian distribution needs to be marginalized out

over these empty variables τ2|γ|, . . . ,τ2|β |−1. The calculation of marginal probability
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is illustrated in follows,

P(τγ) =
∫

p(τ1, . . . ,τ2|γ|−1)dτ2|γ| . . .dτ2|γ|−1 =

1√
(2π)2|γ|−1|Σ̂β |

exp
(
−1

2
(τγ − µ̂β )

>Σ̂−1
β
(τγ − µ̂β )

)
. (5.4)

where µ̂β = [µ1, . . . ,µ2|γ|−1]
> is the marginalized mean vector of β , and Σ̂β (i, j) =

Cov(τi,τ j), i, j = 1 . . .2|γ|−1 is the marginalized covariation matrix of β . Eq. 5.4

shows the marginal distribution of a multivariate Gaussian is also a Gaussian distri-

bution. We only need to re-compute the trained mean vector and covariation matrix

of pattern β by the length of 2|γ|−1.

(2) Start Time

If a pattern is regular, does it start at a fixed time? To better infer the temporal like-

lihood, we choose the arrival time of the first location as a pattern’s start time. The

random variable tγ is used to represent the start time of γ . However, a single Gaus-

sian distribution may not be sufficient to characterize the distribution of arrival time

in 24 hours. For example, location “Metro” may be visited twice during morning

and evening commute in a working day. Therefore, we use a histogram to model

possible multiple peaks of the visiting at different times per day. The frequency

density is calculated by Eq. 5.5,

P(tγ) =
histo(tγ)

TotalHisto
(5.5)

where histo(tγ) is the frequency of bin that tγ belongs to, and the time interval is

set to 30 minutes in our scenario. Due to the sparsity of pattern instances, some
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bins may be empty. To estimate the frequency density of empty bin, we make a

linear interpolation from two nearest valued bins, which are earlier and later than

bin histo(tβ ) respectively.

As we assume the arrival time is independent on stay durations, the overall tem-

poral likelihood of start time and stay duration can be computed as the product of

frequency density P(tγ) and probability density P(τγ):

Pt(β |γ) = P(tγ) ·P(τγ). (5.6)

Finally, to verified whether a mobility pattern is on-going can be computed by its

spatial and temporal likelihood with the recent traveling path. We can also use the

likelihood value to compute the regularity of a pattern. If the likelihood of every

pattern instance is high, this pattern has strong regularity.

5.3 The POC Prediction Model

In Chapter 4, we have proposed a novel model called pattern network to predict

next location. In this section, we extend the pattern network to learn the historical

occurrences of POCs, which is called a ST-Pattern Network. There are three major

improvements:

• Temporal information is integrated into ST-Pattern Network;

• Pattern weight is calculated based on the regularity of pattern.

• ST-Pattern Network is able to support multi-class prediction.
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Next, we will describe our method for the training ST-Pattern Network. The spatial

and temporal likelihood introduced above will be used to compute the chance of

POC occurrence and the pattern weight on pattern network.

5.3.1 POC Training

An observation of mobility change is that under a strong regularity pattern, the

chance of POC occurrence will be small. For example, morning commute “Home”

→ “Office” in a working day is less likely to be broken. On the contrary, routine

“Office”→ “Home” may be likely to change since people may go to pub or party

after work. Therefore, the idea of model training is to learn under what kinds of

mobility patterns POCs are most likely to happen. Our method is to enumerate

different mobility patterns, and train related on-going patterns in terms of historical

POC occurrences.

(1) Model Training

Every time when a user is moving, his/her trajectory will be updated incrementally.

How can we train a model efficiently and deploy an online prediction? Let us look

at an example in Figure 5.3. Figure 5.3 has the same trajectory as in Figure 5.2,

and assumes a user is at location “Office(D)” at time tN . Hence, prefixes of patterns

β1, β4, β5 and β10 are matched with recent paths. These on-going patterns are only

a part of patterns that are activated during user’s movement, which are denoted as

βon. Therefore, at each location we only need focus on these on-going patterns. If

a POC happens, we mark the corresponding positions on on-going patterns.
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Figure 5.3: POC Matrix

For each mobility pattern, it maintains a POC matrix C to record the possible po-

sitions of POC occurrences. Figure 5.3 shows the structure of POC matrix Cβ1 for

the pattern β1. Each row represents a pattern sequence and each column contains

four 4 types including new point, new follower, new breaker and not-POC. An en-

try of a matrix indicates whether the next location is the POC or not. For example,

if a new follower happens after location ‘A’, a value will be credited on the entry

Cβ1[New Follower,A].

Naturally, an entry can be filled by a counting value. However, on-going patterns

may be partially matched as shown in Figure 5.3. We can not exactly tell which

pattern a user is intended to follow based on observed recent paths. Therefore, our

strategy is to add a spatial-temporal likelihood value on the corresponding entry of

POC matrix.
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Given the start time tγ , duration vector τγ and matched length |γ| of a recent path γ ,

the spatial-temporal likelihood can be computed as follows:

P(βon|γ) = Ps(βon|γ) ·Pt(βon|γ). (5.7)

We assume the spatial and temporal likelihoods are independent. The value of entry

is accumulated as Eq. 5.8, where c∈{New point,New follower,New breaker,not-POC}:

Cβon[c, |γ|] = ∑P(βon|γ). (5.8)

Thus, we can train POC matrices of all patterns from the historical location se-

quence, which will be used for future POC prediction.

(2) Pattern Weight Calculation

Furthermore, we can check the regularity of a mobility pattern. A regular pattern

should have a large weight value on POC prediction, because the likelihood of its

POC matrix is more reliable. Here, we measure a pattern’s weight ω by its spatial-

temporal likelihood:

ωβ = ωβ +∑Pt(βon|γ). (5.9)

Pattern weight is accumulated only when its instance is completely observed. Thus,

we can ensure a pattern is happening, and its regularity can be updated by its new

spatial-temporal likelihood. Note that for a pattern being fully observed, the spa-
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tial similarity is 1. The algorithm of online POC learning is summarized in Algo-

rithm 5.1.

Algorithm 5.1 Online POC Training
Input: Location: ηi, POC type: ci+1, Pattern set: β
Output: Updated β

1: (γ,βon)← FindRecentPaths(ηi,β)
2: for each γ ∈ γ do
3: P(βon|γ)← Ps(βon|γ) ·Pt(βon|γ)
4: Cβon ←GetPOCMatrix(βon)
5: ωβon ←GetPatternWeight(βon)
6: Cβon[ci+1, |γ]+ = P(βon|γ)
7: if |βon|== |γ| then
8: ωβon+= P(βon|γ)
9: end if

10: β← UpdatePatternWeightandPOCMatrix(βon,Cβon,ωβon)
11: end for
12: return β

(3) Weight Propagation

The idea of weight propagation is based on the assumption that if a pattern hap-

pened recently, other connected patterns may have more chances to happen after-

wards. Similarly, in POC prediction, we hope the POC matrices of possible next

patterns have more impacts on the future prediction. The weight propagation is also

implemented in ST-Pattern Network model.

Figure 5.4 illustrates a ST-Pattern Network G, which records partial pattern connec-

tions (β1−β7) from S1:40 in Figure 5.2. The network is constructed incrementally

according to the historical occurrences of two patterns. After that, once a mobility

pattern is fully observed again, the pattern’s weight will be increased by the current

spatial-temporal similarity. Meanwhile, this spatial-temporal similarity need to be

propagate to pattern’s neighbors as well as neighbor’s neighbors until the variation
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Figure 5.4: A ST-Pattern Network

is vanished. Same as in Chapter 4 we use the connection strength θ to control the

proportion of propagation at each round. After weight propagation, the ST-Pattern

Network is ready for POC prediction next.

5.3.2 POC Prediction

Given a trained ST-Pattern Network model, we want to know whether the next

location ηN+1 will be a Point of Change. If it is, what is the type of this POC?

Therefore, we pose a POC prediction as a binary classification problem and the

POC type prediction as a multi-class problem.

At time tN , suppose K recent paths γi and corresponding on-going patterns β i
on are

found, where i = 1, . . . ,K. Each on-going pattern maintains a trained POC matrix

Cβ i
on

. To predict whether the next location is a POC or not, we take the following

operations. Suppose the length of a recent path is |γi|. Firstly, we extract a column
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vector from the |γi|-th column of POC matrix Cβ i
on

. There are total K column vectors

needed to be extracted from K POC matrices. Secondly, we group these K vectors

to form a 4 ∗K prediction matrix D. Finally, we transform the prediction matrix

D to a 2 ∗K matrix Dbinary by summing the rows of new point, new follower and

new breaker. Now prediction matrix Dbinary can only be used to predict POC and

not-POC.

Besides the matrix Dbinary, we also consider the weights of all on-going patterns

and their current spatial-temporal likelihoods. If a recent path is very similar to an

on-going pattern and the weight of this pattern is high, this pattern will greatly dom-

inate final POC prediction. Therefore, we put weights of on-going patterns into a K

length column weight vector W . Similarly, all current spatial-temporal likelihoods

are grouped into a K length column likelihood vector L. Now, we can combine

prediction matrix Dbinary, weight vector W and likelihood vector L to predict POC

as follows:

Vbinary = Dbinary · (W> ·L). (5.10)

Finally, POC of the next location can be predicted by finding the class label of

entry in Vbinary that contains the maximum value, as shown in Eq. 5.11, where

cbinary ∈ {POC,not-POC}:

cbinary = argmax j(Vbinary[ j]), j = 1 . . . |Vbinary|. (5.11)
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Similarly, to further predict the type of POC, we only need to remove the row of

not-POC in prediction matrix D, and obtain a 3∗K prediction matrix Dmulti. Same

as Eq. 5.10 and Eq. 5.11, we combine the prediction matrix Dmulti, weight vector W

and likelihood vector L to predict the type of POC (New point, New follower and

New breaker). The algorithm of POC prediction is listed in Algorithm 5.2.

Algorithm 5.2 POC Prediction
Input: Location: ηN , Pattern set: β
Output: POC of next location: cN+1

1: (γ,βon)← FindRecentPaths(ηi,β)
2: for each γ ∈ γ do
3: Cβon ←GetPOCMatrix(βon)
4: ωβon ←GetPatternWeight(βon)
5: P(βon|γ)← Ps(βon|γ) ·Pt(βon|γ)
6: D← InsertColumnToMatrix Cβon.column(|γ|)
7: W ← InsertElementToVector ωβon

8: L← InsertElementToVector P(βon|γ)
9: end for

10: Dbinary← TransformToBinaryPrediction(D)

11: Vbinary← Dbinary · (W> ·L)
12: cN+1← argmax j(Vbinary[ j])
13: if cN+1 is POC then
14: Dmulti← TransformToMulticlassPrediction(D)
15: Vmulti← Dmulti(W>L)
16: cN+1← argmax j(Vmulti[ j])
17: end if
18: return cN+1

5.4 Experiments

In this section, we will evaluate our ST-Pattern Network model proposed in this

chapter. Several traditional Markov models are used as benchmarks to compare

POC prediction performances. Additionally, we further investigate the smartphone

usages on or before POC location to see whether people’s mobility change will

affect their smartphone usage behaviors.
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5.4.1 Dataset

For our experiments, the real mobile dataset “Life Map” is used to predict the un-

usual mobility behaviors in a moving trajectory, since this dataset contains times-

tamps for each visited location. As shown in previous chapters, “Life Map” is a

high quality dataset that records all movements of 68 data donators. However, the

dataset does not have any information about mobility change and POCs. To la-

bel the ground truth of POCs, firstly, we discovered near-supermaximal repeats as

patterns from individual sequence. Secondly, according to the definitions Def. 11-

Def. 14, if an earliest on-going pattern can not be followed, we labeled the next

location as POC, and determined its type, e.g. “New Point”, “New Follower”, or

“New Breaker”. For all matched locations inside a pattern, they are labeled as “not-

POC”. It is possible that at the beginning of sequence no near-supermaximal repeat

is formed. For those locations that are not covered by any pattern, we labeled them

as “Out-Pattern”, which would not be predicted in our experiments. Features of the

dataset are listed in Table 5.2. From Table 5.2, we can find during two-month pe-

riod each smartphone user visited 522 locations on average. The number of POCs

is greater than the number of not-POCs by two times. That means that people’s mo-

bility patterns are frequently changed in their daily life. Predicting unusual mobility

change is necessary for the improvement of recommendation system.

Table 5.2. POCs Labelled in Dataset

Num. of Samples Avg. Seq Length Num. of Locations
68 522 35493

Num. of POCs Num. of not-POCs Num. of Out-Patterns
15202 8795 11496

Num. of New Points Num. of New Followers Num. of New Breakers
4361 2406 8435
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5.4.2 Experiment Settings

To evaluate the performance of our ST-Pattern Network model, we used several

popular approaches in mobility prediction as benchmarks. Here, we briefly de-

scribe each method.

(1) Pure temporal model. Pure temporal model is based on the assumption that

people’s mobility behavior will happen at a particular time. For example, people

may go out for travel only at weekend. To configure the temporal model, we par-

tition a week into 7*48 time slots with each 30-minute time granularity. For each

time slot, we count all categories of locations that happened in this time slot. To

predict the future POC, we find the time slot that the arrival time belongs to, and

select the category with the maximum count as the possible category for the next

location.

(2) 1-order spatial model. 1-order spatial model is a 1-order Markov chain that

assumes the property of next location is only dependent on one previous location.

For each particular location, we count the category of its next location every time.

Thus, in terms of current location, we can predict the category of next location by

finding category with the maximum count.

(3) 1-order ST model. 1-order ST model is a mixed model of pure temporal and

1-order spatial model. Training of temporal and spatial models is separated. The

prediction is made by a majority voting mechanism. This model considers both

space and time of mobility change concurrently.

(4) 2-order spatial model. Similar with 1-order spatial model, we extended 1-order

Markov chain to a 2-order fashion. Due to the complex of mobility behavior, statis-

tics on one location may not be sufficient to differentiate various cases. Therefore,
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Figure 5.5: Accuracy on Binary POC Prediction

a 2-order Markov chain was deployed to refine a spatial model.

(5) 2-order ST model. Additionally, we also extended a 1-order ST model to a

2-order ST model.

The performances of all models in our experiment were mainly evaluated in terms

of accuracy and F-measurement, which can be measured by:

Accuracy =
T P+T N

T P+T N +FP+FN
, (5.12)

F = 2 · precision · recall
precision+ recall

=
2T P

2T P+FP+FN
, (5.13)

where TP is true positive, TN is true negative, FP is false positive and FN is false

negative.
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5.4.3 POC Prediction Performance

Table 5.3. Comparison of Binary POC Prediction

Model Precision Recall F-measure Accuracy

Pure Temporal 0.682 0.643 0.662 0.584

1-Order Spatial 0.732 0.791 0.761 0.684

1-Order ST 0.723 0.823 0.770 0.688

2-Order Spatial 0.730 0.640 0.682 0.622

2-Order ST 0.720 0.773 0.745 0.666

ST-Pattern Network 0.739 0.867 0.798 0.721

When performing POC prediction, we first predict whether the next location is a

POC or not-POC. Table 5.3 lists the performances of five benchmark models and

our ST-Pattern Network model on a binary POC prediction, including precision,

recall, F-measure and Accuracy. Also, accuracies of six models are shown in Fig-

ure 5.5. In general, pure temporal performs the worst among total six models. It

shows only time information is not sufficient to infer the occurrence of POC, be-

cause mobility change may vary across different time slots. Secondly, we found

models in 2-order fashion are not better than 1-order models, which decreases 6%

prediction accuracy. It is possible that having additional location dependence in-

curred the overfitness of model. Finally, our ST-Pattern Network model performs

better than other benchmark models and has 4%-14% improvement on prediction

accuracy. The main reason is that we discovered all possible mobility patterns to

train people’s mobility change under different cases. For a long pattern, it can be

viewed as a high-order Markov chain and guarantees to capture POC occurrence
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in some extreme cases. On the other side, deploying on-going patterns as many as

possible to learn the POCs can capture more general cases and avoid the overfitness

of model in some rare situations, which is the major problem of 2-order model.

Therefore, our ST-Pattern Network model balances two issues and yields a better

performance.

Table 5.4. Comparison of Multiclass POC Prediction

Model Precision Recall F-measure Accuracy
Pure Temporal 0.432 0.304 0.343 0.533
1-Order Spatial 0.506 0.359 0.400 0.600

1-Order ST 0.482 0.335 0.380 0.574
2-Order Spatial 0.474 0.351 0.387 0.601

2-Order ST 0.461 0.324 0.366 0.564
ST-PatternNetwork 0.496 0.353 0.388 0.582

If the next location was predicted as a POC, we further predict its type. Table 5.4

lists the average performances on multi-class POC prediction. The overall accuracy

is lower than in binary case probably due to the higher complexity of multi-class

prediction than binary prediction. To differentiate the type of POC, our model is

close to 1-order and 2-order spatial model. It shows the type of POC, new point,

new follower and new breaker, does not have strong difference on spatial and tem-

poral aspects in this dataset.

5.4.4 Patterns for POC Analysis

Besides the performance of model, we were also interested to know how the mo-

bility patterns involve in our life. In our experiment, we discovered all patterns in

our dataset, and summarized their properties in Table 5.5. In terms of our near-

supermaximal repeat definition, total 7847 patterns were found. On average, each

user generated 115 patterns over 522 locations in 2 months. The number of mobility
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Figure 5.6: Distribution of Patterns with Respect to Pattern Length

Table 5.5. Mobility Patterns in the Dataset

Total Num. of Patterns Num. of Patterns per User POCs on Pattern (Avg.)
7847 115 63

Max. Pattern Length Avg. Pattern Length Frequency of Pattern (Avg.)
13 3 7.5

patterns generated is relatively high compared with the length of location sequence.

It proves our trajectory usually consists of many patterns. Among 7847 patterns, the

longest pattern contains 13 different locations, and the average pattern length is 3.

Figure 5.6 shows the distribution of all patterns with respect to their pattern lengths.

Most of our patterns are comprised by 2-3 locations. The number of patterns is dra-

matically decreased when the pattern length increases. It can be understood that

long patterns are rare in our daily life. We may get to a destination through only 2-3

location transitions. Each pattern appears 7.5 times in a 2-month trajectory, which

may indicate that most patterns would occur as least once in a week.

How many times a pattern is broken or not followed by next location? Surprisingly,

we found each pattern was broken 63 times due to POCs on average. Figure 5.7

displays the POC distribution with respect to the pattern length. We can see 7-length
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Figure 5.7: Distribution of Occurred POCs with Respect to Pattern Length

pattern has most possibility to be broken. The longer pattern is, the more difficult

a pattern can be followed always. For the pattern with more than 7 locations, the

number of POCs are decreased. The reason is that a long pattern has less chances

to happen as well, which is proved in Figure 5.6.

5.4.5 Smartphone Usage Analysis

Our dataset not only has spatial-temporal information, but also contains smartphone

usage records. In our experiment, we further investigate how people’s mobility

change will affect their smartphone usage behaviors. Real-time smartphone’s bat-

tery consumptions, screen activities, were recorded completely by deployed mobile

apps. We compared the volumes of battery consumption and the screen on and off

at POC locations.

Table 5.6 shows three features, i.e. battery consumption, on screen count and on

screen duration. The battery consumption was calculated by battery level (0%-

100%) decrease over a minute. The on screen duration recorded the time duration

157



Table 5.6. Smartphone Usages on POC / not-POC locations

Usages Battery (per min) On Screen Count On Screen Duration
New Point 0.148% 0.209 15.84s

New Follower 0.109% 0.166 21.40s
New Breaker 0.105% 0.168 13.99s

not-POC 0.099% 0.153 14.31s

between on and off screen. We found on average the battery consumption increased

21% on POC locations. Similarly, the on screen count and the duration increased

19% and 20% respectively. These features proved that people may be intended

to use their smartphones more frequently on unusual situations. Based on these

observations, in our future work, we can merge these meta features to improve the

prediction of POC.

5.5 Conclusions

Breaking previous mobility patterns and forming new patterns are taking place in

people’s daily life from time to time. These mobility changes will bring difficulties

for traditional location predictors and recommendation systems to estimate a user’s

next movement and profile personal life mode accurately. If unusual mobility be-

havior can be predicted, it will provide traditional systems a new way to understand

people’s real intentions, e.g. asking heuristic question in advance instead of recom-

mending blindly.

In this chapter, we first give a formal definition of mobility change, called Point

of Change (POC), to describe people’s new and unusual mobility behaviors. POC

indicates a location that a user may move to the next location that is different with

his or her previous path. Detecting POC is very useful in our real life, because when
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a user is in an unfamiliar path, he or she has more chances to use navigation, search

Internet by smartphone. If a smartphone system can predict POC, it can pre-load

information of map, nearby famous spots or transportation. Moreover, it is possible

that in an unfamiliar place, a user may lose Internet connection. Smartphone can

pre-load or backup important information in advance.

POCs can be learned by discovering the pattern breaking from all mobility patterns

in historical trajectory. Our ST-Pattern Network model can online predict future

POCs and adapt to recent trajectory via a pattern based network. Finally, our exper-

iments show the POC prediction accuracies can be significantly improved by our

model over traditional Markov models. Additionally, our results indicated people

use smartphones more frequently on POC locations. We expect future recommen-

dation system provides more assistances for people once a POC is predicted.
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Chapter: 6 Conclusions

Although user’s various behaviors can be recorded by smartphone, only moving

trajectories can be accessed easily due to the privacy issue. Without additional

information, how to mine a user’s behaviors and predict his or her next movements

are two crucial problems for the location-based service providers. Additionally,

considering the huge volume of trajectories generated by mass of users, pattern

mining and prediction algorithms should be efficient. In this thesis, we have shown

our systematical works to solve above challenges on mobility pattern mining, next

location prediction and unusual mobility prediction.

In Chapter 2, we have reviewed many existing works related to the mobility predic-

tion. Firstly, we categorized different presentations of moving trajectory. Normally,

real-world coordinate-based sequence and location-based sequence are two popular

presentations when we collect trajectories from smartphone or location-based so-

cial networks. Several sequential pattern mining algorithms, e.g. GSP and PrefixS-

pan, have been reviewed, which allow to discover frequent item set from multiple

sequential transactions efficiently. However, a user’s moving trajectory is usually

continuous. Arbitrary partitioning of a trajectory may lead to the loss of potential

mobility patterns. While, sequence mining algorithms based on suffix tree or suffix
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array are able to discover repeats on a whole sequence. Besides sequence analysis,

many other mobility patterns are expected to be detected in different applications

such as periodic patterns, spatial-temporal patterns or knowledge-based patterns.

Nevertheless, defining and mining these patterns require lots of domain knowledges

and feature engineering works. People with different culture background or living

in different countries may have completely different habits. Knowledge-based pat-

terns may not work for many general scenarios. For the location prediction, we

examined Markov based predictor and Lempel-Ziv predictor. Both of them have

their advantages and limitations. Markov based predictor works very efficiently but

has strong assumption on the number of dependent previous locations. The order of

Markov model is fixed and requires to be specified in advance. While, Lempel-Ziv

predictor realizes the location prediction based on variable-length sub-sequences,

but any possible pattern across two parsed sub-sequences is lost. Furthermore, pre-

diction of unusual mobility pattern is a new challenge for location-based services.

People may only have the demands of recommendations when they arrive a new

place or change their regular behaviors. However, only [7] attempted to predict

the temporary departures from routine, but they did not provide a formal defini-

tion of unusual mobility behavior, which leaves the room for us to achieve unusual

mobility prediction.

In Chapter 3, we first proposed a set of definitions for discovering mobility pat-

tern from a location sequence. By comparing the family of maximal repeats, near-

supermaximal repeat is selected as an atomic pattern, as we expect a mobility pat-

tern should be non-trivial and longest possible. Furthermore, due to the noise of

trajectory or abnormal mobility behavior, a tandem structure may be contained in

a near-supermaximal repeat. To differentiate the patterns with different tandem
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structure, we classify a mobility pattern into three categories, including full-tandem

pattern, semi-tandem pattern and non-tandem pattern. By removing the full-tandem

patterns, noisy information can be filtered out and guarantee the quality of patterns.

So far, no algorithm can support the discovery of near-supermaximal repeat and

the detection of tandem structure concurrently. Our work achieved the online dis-

covery of various patterns via a pipeline method. Every pipeline caches a suffix of

a repeating sequence. The near-supermaximal repeat and tandem structure can be

detected quickly by comparing the caching positions of pipelines on the suffix tree.

Through our experiments, we have verified that the running time and the storage

of our algorithm is linear to the length of sequence. Such performance allows our

pattern mining algorithm to support a big data scenario.

In Chapter 4, we utilized various discovered patterns as atomic patterns to train

our mobility model for the location prediction. As we observed that people’s mo-

bility patterns are usually contained or overlapped each other, all patterns can be

connected into a pattern network as long as two patterns appear together in history.

Our pattern network model works by three steps, prediction, verification and weight

propagation. Location prediction can be achieved by selecting the active patterns

and looking for a set of candidate locations from the pattern network. For the can-

didate with the highest confidence, it is treated as the next predicted location. In

the verification step, all active patterns that nominated the correct candidate will

be rewarded, and the increased pattern weight will be propagate to their neighbors

via the network. Through above steps, the pattern network model can adapt to the

recent trajectory as well as remain all historical location transition information. Our

experiments shows the pattern network model outperformed other fixed order and
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variable order Markov models. Meanwhile, the generated pattern network could be

a very useful tool for us to analyze user’s mobility behaviors.

In Chapter 5, we gave a formal definition of mobility change, called Point of Change

(POC), to describe people’s new and unusual mobility behaviors. Our motivation

to predicting POCs is that a large portion of locations in a trajectory are unique or

do not appear in a pattern. Usually, these locations can not be successfully pre-

dicted by traditional methods. Therefore, we extended the pattern network to the

spatial-temporal version so that the unusual mobility behaviors can be learnt and

predicted. Based on the advantages of pattern network, our ST-Pattern Network

model can predict future POCs incrementally and adapt to recent trajectory via a

weight propagation step. Our experiments show the POC prediction accuracies

can be improved by our model over traditional Markov models. Additionally, we

analyzed the smartphone usages on POC locations, our results indicated people uti-

lize their smartphones more intensively on the POC locations. This observation

suggests that future recommendation systems can provide more assistances for the

people in unusual case.

6.1 Future Works

Our works can be extended to three directions in the future.

(1) Investigating Recurrent Neural Network for mobility prediction

Recently, application of recurrent neural network (RNN) becomes a hot topic in

natural language processing. RNN has the ability to memorize long-term historical

information with a cell unit called LSTM [52]. By connecting LSTMs to form a
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neural network, RNN is able to predict a sequence or value at a particular time

point. Therefore, RNN provides a new prospective for mobility prediction as well.

To use RNN for mobility prediction, we design three layers network including input

layer, hidden layer with LSTM units and output layer. At each time point, an index

of location is inputted into the input layer until the entire sequence or pattern is

read. For model training, the next location of the inputted sequence can be used as

its label. With more and more sequences or patterns being learned, the RNN is able

to memorize various location transitions from short-time to long-term dependency.

To predict the next location, we can simply input the current location sequence, and

the corresponding output at the last time stamp is our expected prediction result.

To compare the RNN with our pattern network model, we find the RNN is not

only suitable to predict the next location, but also can be used to predict near-future

location. We can simply use near-future location as the training label. Moreover,

the RNN is easier to cope to uncertainty data, because neural network contains

more parameters to memorize the probability of location transition, and the output is

generated by triggering the threshold of certain hidden units. Oppositely, the pattern

network uses explicit sequential patterns to build a mobility model. Therefore, the

prediction is limited on existing patterns, and has less ability to handle uncertainty

data.

However, to achieve high prediction accuracy, RNN requires huge volume of data

for model training, and the training processing is very time-consuming even work-

ing on distributed system. The model training brings new challenges for applying

RNN in mobility scenario, because people’s trajectories are updated frequently. In-

cluding any new trajectory requires the model to be trained until it is converged
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again. Fortunately, the strategy of training pattern network model is by propagating

the pattern weights to patterns’ neighbors. Hence, it does not need many iterations,

and deep propagation, which makes our pattern network model more efficient.

Considering the power of neural network and deep learning, it is worth to investi-

gate how to modify RNN into a spatial-temporal model by incorporating people’s

movement information.

(2) Discovering and maintaining multiple users’ patterns on one suffix pattern

tree

Currently, a suffix pattern tree is only constructed from an individual trajectory.

Pattern discovery and maintenance are achieved on a single suffix tree. However, in

a big data scenario, the amount of users to be managed could be million. If every

user is required to maintain a suffix pattern tree, the overall workloads of comput-

ing and storage consumption will be significantly increased. A better strategy is

to merge multiple suffix pattern trees into one tree. It will be great if the online

near-supermaximal repeat discovery and tandem structure detection could also be

achieved on this hybrid suffix pattern tree. Fortunately, a generalized suffix tree [53]

has been proposed, which is able to manage a set of strings and can be constructed

in linear time with linear storage requirement. Therefore, one possible future work

is to explore how to realize the online pattern discovery on the generalized suffix

tree. Moreover, since multiple users will access the suffix tree concurrently, it is

possible for us to find a group of users who are visiting the same place at the same

time. Thus, group behaviors are likely to be detected.
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(3) Applying graph algorithms on the pattern network to investigate user’s

mobility behaviors

Pattern network transforms the trajectory from a sequence to a graph. It contains

complete historical information of location transitions and pattern shifts. The graph

presentation of trajectory provides an opportunity for us to investigate people’s mo-

bilities via many graph algorithms. We may use community detection algorithm to

find a set of connected nodes to represent a user’s compound life pattern. Or, we

can use PageRank algorithm to find the most important pattern. The locations in-

side this pattern may be the residence place or working place for a user. Moreover,

it is impossible to measure the trajectory similarity of two users if they are living in

different cities. Because the locations in both trajectories are totally different, direct

comparison of two sequences can not be performed. However, pattern network pro-

vides a way to compare two users based on their pattern network topologies. It is

possible that similar users may have the similar mobility behaviors, and these char-

acteristics can be reflected on their pattern networks. Therefore, pattern network

could be a powerful tool to analyze and compare multiple users’ mobility behaviors

in the future.
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