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ABSTRACT 

Abstract of thesis entitled: Robust optimal design of district cooling systems and 

individual cooling systems considering uncertainty and 

reliability 

Submitted by:                       GANG Wenjie 

For the degree of:                 Doctor of Philosophy 

at The Hong Kong Polytechnic University in September, 2015 

 

This thesis attempts to answer the following questions which are not well answered in 

existing studies:  

 Are district cooling systems energy efficient when compared with conventional 

individual cooling systems and what is the performance of district cooling systems 

coupled with different technologies in subtropical areas?  

 How to obtain a cooling system (either district cooling system or individual 

cooling system) that can offer the best performance under uncertainty?  

 How to obtain a cooling system (either district cooling system or individual 

cooling system) that can offer the best performance when uncertainty or failures 

of equipment arise? 

District cooling system is widely used but its performance is rarely reported. The 

system performance compared with the individual cooling system determines its 

future application. Performance assessment of district cooling systems is conducted 

by comparing with individual cooling systems in subtropical areas. Characteristics of 

district cooling systems are summarized after quantitative energy performance 
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analysis. Measures to handle the additional peak electricity load due to developing a 

new area and using district cooling systems are assessed. Application of ice storage 

systems in the district cooling system is evaluated under different tariffs and design 

strategies. The performance of the district cooling system integrated with PHES is 

analyzed. The operation costs of the district cooling system with and without 

combined cooling, heating and power system are compared. Comments and 

suggestions are summarized for the application of district cooling systems in the 

subtropical area. 

Information or data used in the system design at planning and design stages are often 

very different from that when the system is in operation. Such difference is taken as 

uncertainty. Uncertainty exists widely in the design process of district cooling systems 

and individual cooling systems. It will affect the design options but is not sufficiently 

investigated yet. To ensure that the cooling systems perform well in operation 

eventually, uncertainty-based optimal design methods are proposed. The performance 

of the cooling systems using the proposed methods is compared with that using the 

conventional design method. 

An optimal design method concerning uncertainty is developed based on mini-max 

regret theory. It achieves the optimal design considering uncertainty. Without the 

needs of probability distribution assumptions and introducing new models, this 

method can determine the uncertainty-based optimal cooling systems very effectively. 

By comparing the regrets of each design option, the uncertainty-based optimal cooling 

system can be identified, which is associated with the minimum maximum regret. The 

method is demonstrated in the design of the chiller plant and chilled water system of 

a building.  
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By quantifying the uncertainty at planning and design stages, an uncertainty-based 

optimal design method is proposed and its application steps are introduced. 

Uncertainties in the outdoor weather, building design/construction and indoor 

conditions are concerned. Strategies to deal with the variables containing uncertainties 

are introduced. Based on the peak cooling load distribution, the capacity of the cooling 

systems can be determined with quantified risks. Based on the distribution of the 

annual energy consumption or cost, the configuration of the cooling systems can be 

selected with quantified confidence. The uncertainty-based optimal method is 

implemented in a district cooling system and an individual cooling system in Hong 

Kong respectively. By using the uncertainty-based optimal design method, stake 

holders can make decisions with quantified confidence. 

The components or sub-systems in a cooling system cannot be always available due 

to failures or maintenance. A robust optimal design method considering both 

uncertainty and reliability is proposed. The robust optimal design can maintain the 

good performance under uncertainty or failures of components in the cooling system. 

Steps to realize the robust optimal design method are presented. The availability risk 

cost is introduced to account for the losses caused by the unmet cooling load. By taking 

the total annual cost including the capital cost, operation cost and availability risk cost 

as the objective, the robust optimal cooling system can be achieved. The proposed 

method is demonstrated in both the district cooling system and individual cooling 

system. Performance of the cooling systems using the robust optimal design is 

compared with that using the conventional design method, uncertainty-based design 

method and reliability-based design method.  
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The impacts of uncertainty on the design of district cooling systems and individual 

cooling system are compared. The influential factors for cooling loads of the district 

cooling system and individual cooling system are identified. Similarities and 

differences are summarized. Then the impacts of both uncertainty and reliability on 

the design of the district cooling system and individual cooling system are also 

assessed and compared. 

  



 
VI 

PUBLICATIONS ARISING FROM THIS THESIS 

Journal papers published 

[1] Wenjie Gang, Shengwei Wang, Dian-ce Gao, Fu Xiao. Performance 

assessment of district cooling systems for a new development district at 

planning stage. Applied Energy 2015; 140: 33-43. 

[2] Wenjie Gang, Shengwei Wang, Kui Shan, Dian-ce Gao. Impacts of cooling 

load calculation uncertainties on the design optimization of building cooling 

systems. Energy and Buildings 2015; 94:1-9. 

[3] Wenjie Gang, Shengwei Wang, Chengchu Yan, Fu Xiao. Robust optimal 

design of building cooling systems concerning uncertainties using mini-max 

regret theory. Science and Technology for the Built Environment 2015; 21(6): 

789-799. 

[4] Wenjie Gang, Shengwei Wang, Fu Xiao, Dian-ce Gao. Robust optimal design 

of building cooling systems considering cooling load uncertainty and 

equipment reliability. Applied Energy 2015; 159: 265-275. 

[5] Wenjie Gang, Shengwei Wang, Fu Xiao, Dian-ce Gao. District cooling 

systems: technology integration, system optimization, challenges and 

opportunities for applications. Renewable & Sustainable Energy Reviews  

2016; 53: 253-264. 

[6] Wenjie Gang, Godfried Augenbroe, Shengwei Wang, Cheng Fan, Fu Xiao. 

An uncertainty-based design optimization method for district cooling systems. 

Energy. (Accepted). 

[7] Wenjie Gang, Shengwei Wang, Godfried Augenbroe, Fu Xiao. Robust 



 
VII 

optimal design of district cooling systems and the impacts of uncertainty and 

reliability. Energy and Buildings. (Under review). 

[8] Wenjie Gang, Shengwei Wang, Dian-ce Gao, Fu Xiao. Energy and economic 

analysis of district cooling system with sustainable energy technologies in 

subtropical areas. Applied Energy. (Under review). 

Journal papers in preparation 

[1] Wenjie Gang, Shengwei Wang, Godfried Augenbroe, Fu Xiao. Robust optimal 

design of district cooling systems and the impacts of uncertainty and reliability in 

comparison with individual cooling systems. To be submitted to Energy and 

Buildings. 

Conference papers 

[1] Wenjie Gang, Shengwei Wang, Dian-ce Gao. Impact of Uncertainties on the 

Application of District Cooling Systems and Individual Cooling Systems. The 9th 

International Symposium on Heating Ventilation and Air Conditioning-the 3nd 

International Conference on Building Energy and Environment. July 12-15 2015, 

Tianjin, China. 

[2] Wenjie Gang, Shengwei Wang, Fu Xiao, Dian-ce Gao. Performance Assessment 

of District Cooling System Coupled with Different Energy Technologies in 

Subtropical Area. The 7th International Conference on Applied Energy. March 28-

31 2015, Abu Dhabi, United Arab Emirates. 

[3] Wenjie Gang, Shengwei Wang, Fu Xiao, Dian-ce Gao, Chengchu Yan. 

Performance Assessment of District Cooling Systems Based on Uncertainty 

Analysis at Plan and Design Stage. The 2nd International Conference on 



 
VIII 

Sustainable Urbanization. January 7-9 2015, Hong Kong. 

[4] Dian-ce Gao, Shengwei Wang, Kui Shan, Wenjie Gang. On-site evaluation of 

fault-tolerant control approaches for enhanced operation and energy 

performance of building HVAC systems. The 2nd International Conference on 

Sustainable Urbanization. January 7-9 2015, Hong Kong. 

[5] Wenjie Gang, Shengwei Wang, Fu Xiao, Dian-ce Gao. Feasibility study of the 

application of district cooling system in subtropical area with various energy 

resources. The 13th International Conference on Sustainable Energy Technologies. 

August 25-28 2014, Geneva, Switzerland. 

  



 
IX 

ACKNOWLEDGEMETNS 

 

This thesis would have been not completed timely without help and support from many 

people. 

First and foremost, I want to express my deepest thanks to my supervisor, Professor 

Shengwei Wang, for his patient guidance and continuous help during my PhD study. 

He sets a very good model for me in my future career by being earnest, foresighted 

and smart-working. I am very grateful to my co-supervisor, Dr. Fu Xiao. I learn a lot 

from her to own a successful career and a happy family simultaneously as a young 

female scholar.  

My sincerest gratitude also goes to Professor Godfried Augenbroe, who is so nice and 

offers me generous help, patient and valuable instructions during my exchange study 

in Georgia Institute of Technology. Weekly meeting and discussing with him is joyful 

and benefits me a lot. 

I want to thank all my colleagues in IB&BA group. Specially, Dr. Gao Dian-ce always 

gives me very useful suggestions. Dr. Zhao Yang, Dr. Shan Kui, Dr. Yan Chengchu 

and Dr. Xue Xue provide very good ideas.  

I want to express my heartfelt appreciation to my friends. Ms. Zhang Xuedan always 

encourages me when I am not confident about my study and life. Ms. Luo Yimo is 

always ready to help and shares experiences. Miss Zhang Yuna is so caring and 

friendly during my study in USA. 



 
X 

In addition, I would like to thank the Hong Kong Polytechnic University and Hong 

Kong SAR government, funding me with the Hong Kong PhD Fellowship. Without 

their financial support, I cannot complete my study and attend the attachment program. 

Finally, I would like to express my gratitude to my family. Thank my parents so much 

for their love and support. They always give me the best with whatever they have. 

Thank my brother and sister for care and encouragement. I would like to give my 

special thanks to my boyfriend. His suffering from my complaint and stress can almost 

win him a PhD degree. Thank him for accompanying, understanding and supporting 

in the past five years.  

  



 
XI 

TABLE OF CONTENTS 

Page  

CERTIFICATE OF ORIGINALITY ........................................................................... I 

ABSTRACT ................................................................................................................ II 

PUBLICATIONS ARISING FROM THIS THESIS ................................................. VI 

ACKNOWLEDGEMETNS ....................................................................................... IX 

TABLE OF CONTENTS ........................................................................................... XI 

LIST OF FIGURES .............................................................................................. XVII 

LIST OF TABLES ................................................................................................ XXII 

NOMENCLATURE ............................................................................................. XXIV 

CHAPTER 1 INTRODUCTION ................................................................................. 1 

1.1 Motivation .......................................................................................................... 1 

1.2 Aim and objectives ............................................................................................. 5 

1.3 Organization of this thesis .................................................................................. 6 

CHAPTER 2 LITERATURE REVIEW .................................................................... 11 

2.1 Overview .......................................................................................................... 11 

2.2 District cooling systems ................................................................................... 11 

2.2.1 History and development .......................................................................... 11 

2.2.2 Integration with sustainable energy technologies ..................................... 13 

2.2.3 Optimization of DCS in planning, design and operation .......................... 21 

2.2.4 Conclusive remarks ................................................................................... 29 



 
XII 

2.3 Uncertainty and sensitivity analysis in building energy systems ..................... 30 

2.3.1 Performance assessment of building energy systems ............................... 31 

2.3.2 Uncertainty in modelling of building energy systems .............................. 32 

2.3.3 Design of building energy systems ........................................................... 32 

2.3.4 Cooling/heating load prediction ................................................................ 33 

2.3.5 Conclusive remarks ................................................................................... 34 

2.4 Reliability assessment of building energy systems .......................................... 35 

2.5 Summary .......................................................................................................... 36 

CHAPTER 3 DCS FOR A NEW DEVELOPMENT AREA AND PRELIMINARY 

PERFORMANCE ANALYSIS ................................................................................. 38 

3.1 New development areas of North East New Territories .................................. 38 

3.2 Users and cooling load prediction of the DCS ................................................. 40 

3.3 Performance analysis of the DCS with multiple energy technologies ............. 44 

3.4 DCS with thermal storage system .................................................................... 46 

3.4.1 Costs of DCS with full ice storage system ................................................ 50 

3.4.2 Costs of DCS with partial ice storage system for demand limiting .......... 51 

3.5 DCS with PHES vs. DCS with thermal storage system ................................... 52 

3.6 DCS with CCHP system .................................................................................. 57 

3.6.1 Energy performance analysis .................................................................... 58 

3.6.2 Economic performance analysis ............................................................... 60 

3.7 Summary .......................................................................................................... 63 



 
XIII 

CHAPTER 4 MODELING AND PERFORMANCE ASSESSMENT OF DCS AND 

ICS ............................................................................................................................. 65 

4.1 Performance assessment and comparison approaches ..................................... 65 

4.2 Preliminary design of the DCS and ICSs for a new development area ........... 67 

4.3 Models for the DCS and ICS ........................................................................... 70 

4.3.1 Chiller model ............................................................................................. 70 

4.3.2 AHU model ............................................................................................... 71 

4.3.3 Pump model .............................................................................................. 71 

4.3.4 Models of supplementary components ..................................................... 72 

4.3.5 Control strategies for pumps and chillers ................................................. 72 

4.4 Performance analysis of the DCS and ICS ...................................................... 73 

4.4.1 Comparisons between the DCS and ICS — constant primary-only (CP) . 73 

4.4.2 Comparison between the DCS and ICS — constant primary and variable 

secondary (CPVS) .............................................................................................. 77 

4.4.3 Comparisons between the DCS and ICS — variable primary only (VP) . 79 

4.4.4 Sensitivity study of cooling loads during night time ................................ 81 

4.4.5 Economic analysis of the DCS and ICS .................................................... 83 

4.5 Discussions on factors affecting energy and economic performance .............. 84 

4.6 Summary .......................................................................................................... 84 

CHAPTER 5 DESIGN OPTIMIZATION METHODS ............................................. 86 

5.1 Concept and performance of robust optimal design for cooling systems ........ 86 

5.1.1 Robust optimal design considering uncertainty only - uncertainty-based 

optimal design .................................................................................................... 86 



 
XIV 

5.1.2 Robust optimal design considering uncertainty and reliability ................. 88 

5.2 Uncertainty-based optimal design based on mini-max regret theory ............... 89 

5.3 Uncertainty-based optimal design based on uncertainty quantification .......... 93 

5.3.1 Outline of the method ............................................................................... 93 

5.3.2 Classification of variables with uncertainties ........................................... 95 

5.3.3 Detailed steps of the proposed method ..................................................... 96 

5.4 Robust optimal design considering uncertainty and reliability ........................ 97 

5.4.1 Overview of the robust optimal design method ........................................ 97 

5.4.2 Quantification of component reliability in operation ................................ 99 

5.4.3 Optimization objectives .......................................................................... 101 

5.5 Summary ........................................................................................................ 103 

CHAPTER 6OPTIMAL DESIGN BASED ON MINI-MAX REGRET THEORY 

CONSIDERING UNCERTAINTY ......................................................................... 104 

6.1 System introduction ....................................................................................... 104 

6.2 Performance of systems with different combinations of chillers ................... 110 

6.2.1 Combinations of two chillers .................................................................. 110 

6.2.2 Combinations of three chillers ................................................................ 112 

6.2.3 Combinations of four chillers ................................................................. 115 

6.3 Systems with different configurations of chilled water pumps ...................... 118 

6.4 Discussions ..................................................................................................... 122 

6.5 Summary ........................................................................................................ 124 



 
XV 

CHAPTER 7 OPTIMIZED DESIGNS OF ICS AND THEIR PERFORMANCE 

CONSIDERING UNCERTAINTY AND RELIABILITY ...................................... 126 

7.1. Introduction of the ICS .................................................................................. 126 

7.2 Uncertainty quantification of cooling loads ................................................... 128 

7.2.1 Peak cooling load distribution of a building ........................................... 128 

7.2.2 Annual cooling load distribution of a building ....................................... 131 

7.3 Uncertainty-based optimal design of the ICS ................................................ 133 

7.3.1 Optimal sizing of the ICS ........................................................................ 133 

7.3.2 Optimal configuration of the ICS ............................................................ 136 

7.3.3 Conclusive remarks ................................................................................. 138 

7.4 Robust optimal design of the ICS considering uncertainty and reliability .... 139 

7.4.1 System description .................................................................................. 139 

7.4.2 Performance of the ICS designed based on different methods ............... 141 

7.4.3 Discussions .............................................................................................. 147 

7.4.4 Conclusive remarks ................................................................................. 149 

7.5 Summary ........................................................................................................ 149 

CHAPTER 8 OPTIMIZED DESIGNS OF DCS AND THEIR PERFORMANCE 

CONSIDERING UNCERTAINTY AND RELIABILITY ...................................... 151 

8.1 Introduction of the DCS ................................................................................. 151 

8.2 Uncertainty quantification of cooling loads ................................................... 155 

8.2.1 Peak cooling load distribution of the district .......................................... 156 

8.2.2 Annual cooling load distribution of the district ...................................... 157 



 
XVI 

8.3 Uncertainty-based optimal design of the DCS ............................................... 160 

8.3.1 Performance assessment of the DCS ...................................................... 160 

8.3.2 Optimal sizing of the DCS ...................................................................... 162 

8.3.3 Optimal configuration of the DCS .......................................................... 163 

8.4 Robust optimal design of the DCS considering uncertainty and reliability ... 166 

8.5 Summary ........................................................................................................ 168 

CHAPTER 9 IMPACTS OF UNCERTAINTY AND RELIABILITY ON THE 

DESIGN OF DCS AND ICS ................................................................................... 170 

9.1 Introduction .................................................................................................... 170 

9.2 Impacts of uncertainty on cooling loads of the DCS and ICS ....................... 172 

9.3 Sensitivity analysis for identification of influential factors ........................... 176 

9.4 Impacts of uncertainty on the design optimization of the DCS and ICS ....... 183 

9.5 Impacts of uncertainty and reliability on the design optimization of the DCS and 

ICS........................................................................................................................ 185 

9.6 Summary ........................................................................................................ 187 

CHAPTER 10 CONCLUSIONS AND FUTURE WORK ...................................... 189 

10.1 Main Contributions of this study.................................................................. 189 

10.2 Conclusions .................................................................................................. 190 

10.3 Recommendations for future work............................................................... 195 

REFERENCES ......................................................................................................... 198 

 

  



 
XVII 

LIST OF FIGURES 

Page 

Fig. 1.1 Outline of this study ........................................................................................ 7 

Fig. 2.1 Schematic diagram of a typical DCS ............................................................ 12 

Fig. 2.2 Schematic diagram of DCS integrated with CCHP system .......................... 16 

Fig. 2.3 Schematic diagram of DCS integrated with thermal storage system............ 19 

Fig. 2.4 DCS optimization in system planning, design, control and operation.......... 21 

Fig. 2.5 Combination of buildings with different functions in a DCS ....................... 22 

Fig. 2.6 Layout of a chilled water system connecting the DCS plant and users ........ 25 

Fig. 3.1 Location of the new development areas (colored areas) ............................... 39 

Fig. 3.2 District plan of Kwu Tung North .................................................................. 40 

Fig. 3.3 Cooling loads of typical buildings in a typical week in summer .................. 42 

Fig. 3.4 Annual hourly cooling load of Kwu Tung North district ............................. 43 

Fig. 3.5 Annual hourly total electricity load of the 37 buildings in the new development 

area ............................................................................................................................. 43 

Fig. 3.6 Feasibility study of DCSs with different technologies ................................. 44 

Fig. 3.7 Monthly operation cost saving of the DCS with partial ice storage system for 

demand limiting ......................................................................................................... 52 

Fig. 3.8 Schematic diagram of a PHES ...................................................................... 53 

Fig. 3.9 Energy flow for PHES and thermal storage system ..................................... 54 

Fig. 3.10 Energy saving of DCS with CCHP system under different hot water demands

 .................................................................................................................................... 60 



 
XVIII 

Fig. 4.1 Flowchart of the method used to assess the performance of a DCS ............. 67 

Fig. 4.2 Schematic diagram of systems with different chilled water systems ........... 67 

Fig. 4.3 Schematic diagram of a DCS with indirect connection with the end users .. 68 

Fig. 4.4 Schematic diagram of an ICS with primary only chilled water system........ 68 

Fig. 4.5 Performance curve of chillers ....................................................................... 70 

Fig. 4.6 DCS and ICS monthly energy consumptions — CP system ........................ 74 

Fig. 4.7 DCS and ICS energy consumptions vs. cooling load ratio — CP system .... 76 

Fig. 4.8 DCS and ICS monthly energy consumptions — CPSV system ................... 78 

Fig. 4.9 DCS and ICS energy consumptions vs. cooling load ratio — CPSV system

 .................................................................................................................................... 79 

Fig. 4.10 DCS and ICS monthly energy consumptions — VP system ...................... 80 

Fig. 4.11 DCS and ICS energy consumptions vs. cooling load ratio — VP system .. 81 

Fig. 4.12 Comparison between the DCS and ICS energy consumptions under different 

percentages of building floor area air-conditioned during night time........................ 82 

Fig. 5.1 Illustration of the performance of uncertainty-based optimal design ........... 87 

Fig. 5.2 Illustration of the performance of robust optimal design ............................. 88 

Fig. 5.3 Conventional design method vs. uncertainty-based optimal design method 

based on mini-max regret theory................................................................................ 91 

Fig. 5.4 Conventional design method vs. uncertainty-based optimal design method 94 

Fig. 5.5 Steps of the uncertainty-based optimal design method ................................ 97 

Fig. 5.6 Steps of robust optimal design method ......................................................... 98 

Fig. 5.7 States of a three-chiller cooling system and possible transitions................ 100 

Fig. 5.8 Cost of the cooling system vs. system reliability ....................................... 102 



 
XIX 

Fig. 6.1 Annual hourly cooling load of the building in the reference case .............. 105 

Fig. 6.2 Cooling loads of typical weeks in three different seasons .......................... 109 

Fig. 6.3 Regrets for the cooling systems with different combinations of two chillers

 .................................................................................................................................. 111 

Fig. 6.4 Comparison between energy consumptions of System C2-1 and C2-4 ..... 112 

Fig. 6.5 Regrets for the cooling systems with different combinations of three chillers

 .................................................................................................................................. 114 

Fig. 6.6 Comparison between energy consumptions of System C3-1 and C3-3 ..... 115 

Fig. 6.7 Regrets for the cooling systems with different combinations of four chillers

 .................................................................................................................................. 117 

Fig. 6.8 Comparison between energy consumptions of System C4-1 and C4-6 ..... 117 

Fig. 6.9 Regrets of five chilled water pump configurations at different resistances 120 

Fig. 7.1 Annual hourly cooling loads of the office building without uncertainty .... 127 

Fig. 7.2 Q-Q plot of the cooling loads at the peak hour vs. standard normal distribution

 .................................................................................................................................. 129 

Fig. 7.3 Distribution of cooling loads at the peak hour ............................................ 130 

Fig. 7.4 Annual average cooling load distribution ................................................... 131 

Fig. 7.5 Annual cooling load distribution considering uncertainty .......................... 132 

Fig. 7.6 Cumulative distribution profiles of representative annual cooling loads ... 132 

Fig. 7.7 Distribution of cooling loads at the 35th hour in each year (descending sort 

order of the cooling loads) ....................................................................................... 134 

Fig. 7.8 Cooling load distribution vs. the number of annual unmet hours ............... 135 

Fig. 7.9 Capital cost distribution vs. number of annual unmet hours ...................... 136 



 
XX 

Fig. 7.10 Distribution of relative difference between energy consumptions of two ICSs

 .................................................................................................................................. 137 

Fig. 7.11 Capital cost of chillers of different capacities .......................................... 140 

Fig. 7.12 Mean steady-state (expected) capacities of the ICS at different ratios (failure 

rate/repair rate) ......................................................................................................... 142 

Fig. 7.13 Annual costs of the ICS of different capacities ........................................ 143 

Fig. 7.14 Capacities of the ICS under different availability risk price ratios........... 145 

Fig. 7.15 Total annual costs of ICS under different availability risk price ratios .... 146 

Fig. 7.16 Capacities of the ICS under different unmet hours................................... 146 

Fig. 7.17 Typical failure rate distribution with time ................................................ 148 

Fig. 8.1 Steps of the DCS design method considering uncertainty .......................... 155 

Fig. 8.2 Actual weather data in Hong Kong from 1979 to 2007 vs. data of TMY .. 156 

Fig. 8.3 Distribution of the peak cooling load of the DCS ...................................... 157 

Fig. 8.4 Q-Q plot of annual average cooling loads .................................................. 158 

Fig. 8.5 Distribution of annual average cooling loads of the DCS .......................... 158 

Fig. 8.6 Annual hourly cooling load distribution ..................................................... 159 

Fig. 8.7 Peak cooling load distribution .................................................................... 160 

Fig. 8.8 Distributions of the energy consumption of the DCS considering uncertainty

 .................................................................................................................................. 161 

Fig. 8.9 Design cooling loads of DCS at different risks vs. the number of unmet hours

 .................................................................................................................................. 162 

Fig. 8.10 Energy consumption ratio of two DCS designs with different chiller 

configurations ........................................................................................................... 164 



 
XXI 

Fig. 8.11 Distribution of the annual operation cost of the DCS integrated with ice 

storage system considering uncertainty ................................................................... 165 

Fig. 8.12 Optimal capacity of the DCS using different methods ............................. 167 

Fig. 8.13 Optimal total annual cost of the DCS using different methods ................ 167 

Fig. 9.1 Annual hourly cooling load of the DCS and ICS in the reference case...... 171 

Fig. 9.2 Nominal COPs of chillers of different capacities for the DCS and ICS ..... 171 

Fig. 9.3 Capital costs for the ICS and DCS of different capacities .......................... 172 

Fig. 9.4 Peak cooling load distribution of the DCS and ICS ................................... 173 

Fig. 9.5 Annual average cooling loads of the DCS and ICS .................................... 175 

Fig. 9.6 Ranking of impacts of input variables on the annual average cooling load179 

Fig. 9.7 Ranking of impacts of input variables on the peak cooling load ................ 180 

Fig. 9.8 Ranking of impacts of input variables on annual average cooling loads using 

random forests .......................................................................................................... 181 

Fig. 9.9 Ranking of impacts of input variables on peak cooling loads using random 

forests ....................................................................................................................... 182 

Fig. 9.10 Energy saving distributions of the DCS and ICS using chillers of different 

capacities .................................................................................................................. 184 

Fig. 9.11 Cost savings of DCS and ICS using chillers of different capacities ......... 186 

Fig. 9.12 Optimal capacities and total annual costs at different ARPRs - DCS ...... 186 

Fig. 9.13 Optimal capacities and total annual costs at different ARPRs - ICS ........ 187 

 



 
XXII 

LIST OF TABLES 

Page 

Table 3.1 Cooling load indices for 37 buildings connected to the DCS in the district

 .................................................................................................................................... 41 

Table 3.2 Parameters for models used in the simulation ........................................... 46 

Table 3.3 Tariff for different users in Hong Kong ..................................................... 48 

Table 3.4 Tariff for different users in Guangzhou ..................................................... 49 

Table 3.5 Annual operation costs of the DCS with and without full ice storage system 

under Hong Kong tariff .............................................................................................. 50 

Table 3.6 Annual operation costs for the DCS with and without ice storage system 

under Guangzhou tariff .............................................................................................. 51 

Table 3.7 Cooling prodcution difference between the systems using PHES and thermal 

storage system using unitary primary energy............................................................. 56 

Table 3.8 Energy consumption for the DCS with and without CCHP system .......... 59 

Table 3.9 Economic analysis of the DCSs with and without CCHP system ............. 61 

Table 4.1 Cooling water pumps and chilled water pumps for different systems ....... 69 

Table 4.2 Annual energy consumption of DCS-CP and ICS-CP ............................... 74 

Table 4.3 Annual energy consumption of DCS-CPVS and ICS-CPVS..................... 77 

Table 4.4 Annual energy consumptions of DCS-VP and ICS-VP ............................. 79 

Table 4.5 Costs of the DCS and ICS under different tariffs ...................................... 83 

Table 6.1 Combinations of chillers for the cooling system ..................................... 107 

Table 6.2 Parameters of the chilled water pumps for the reference case and 

uncertainty-based cases ............................................................................................ 108 



 
XXIII 

Table 6.3 Energy consumption (106 kWh) of the cooling systems under different 

uncertainty factors of the cooling load - Two chillers.............................................. 111 

Table 6.4 Energy consumption (106 kWh) of the cooling systems under different 

uncertainty factors of the cooling load - Three chillers ........................................... 113 

Table 6.5 Energy consumption (106 kWh) of the cooling systems under different 

uncertainty factors of the cooling load - Four chillers ............................................ 116 

Table 6.6 Energy consumption (103 kWh) of chilled water pumps at different pipeline 

resistances in the three typical weeks....................................................................... 119 

Table 7.1 Factors and their distributions concerned in uncertainty analysis of ICS 127 

Table 8.1 Factors and their distributions concerned in uncertainty analysis of the DCS

 .................................................................................................................................. 153 

 

  



 
XXIV 

NOMENCLATURE 

A transition intensity matrix 

aij transition intensity from state i to state j 

AHU air handling unit 

ARPR availability risk price ratio 

Ca capacity flowrate of air (kW/K) 

Car availability risk cost of a cooling system ($) 

Cc overall thermal capacity of the coil (kW/K) 

Ccpt annual capital cost of a cooling system ($) 

Cop annual operation cost of a cooling system ($) 

Ctotal total annual cost of the life cycle ($) 

Cw capacity flowrate of water (kW/K) 

CAP capacity of a cooling system (kW) 

CAPa, available capacity of a cooling system (kW) 

CCHP combined cooling, heat and power 

CDF cumulative distribution function 

CHP combined heat and power 

COP coefficient of performance 

COPabs COP of absorption chillers 

COPb COP of normal electrical chillers 

COPice COP of ice storage system 

COPtes COP of thermal storage system  

CostCAP capital cost of a CCHP system 

CostCCHP annual operation cost of DCS with CCHP system 



 
XXV 

Costgrid annual operation cost of DCS fully depending on the grid 

CP chilled water system with constant primary-only flowrate 

CPVS 

chilled water system with constant primary & variable 

secondary flowrate 

DCHS district cooling and heating system 

DCS district cooling system 

DHS district heating system 

Ecool energy percent for absorption chillers in a CCHP system 

Eele energy percent for electricity generation in a CCHP system 

Egrid efficiency of electricity generation for the grid 

Eheat energy percent for heating/hot water in a CCHP system 

Eloss energy loss percent in a CCHP system 

𝐸∞ mean steady-state performance of the system 

ECtotal total electricity charge ($) 

ECdemand electricity charge for the electricity demand  

ECenergy electricity charge for the electricity usage 

ECfuel   electricity charge for the fuel clause 

F1
opt, F

2
opt,...F

j
opt optimal results at each uncertainty factor (1,2,…j)  

f frequency 

G distribution for samples 

g gravitational acceleration (m/s2) 

H hydraulic head of pumps (m) 

HVAC heating, ventilation and air conditioning 

ICS individual cooling system 

k number of states for a system 



 
XXVI 

LHS Latin Hypercube Sampling 

Load annual cooling demand (kW) 

MTTF mean time to failure 

MTTR mean time to repair 

N pump power (kW) 

Par availability risk price ($/kWh) 

Pgas price of natural gas 

Pb payback period of CCHP system 

PCM phase change material 

PHE plate heat exchangers 

PHES pumped hydro energy storage 

PID proportional-integral-derivative 

P(P1,P2,….Pi) available design plans 

PR(t) probability vector of system states at time t 

pri probability of a system at state i 

Q water flowrate (m3/s) 

R2 coefficient of determination 

R1 overall heat transfer resistance at air side (K/kW) 

R2 overall heat transfer resistance at water side (K/kW) 

Rij regrets of plan i at uncertainty factor j 

Ri
max maximum regret of plan i under every uncertainty factor 

Rminmax minimum maximum regret 

SI sensitivity index 

SSE sum of squared error 

SSR sum of squared regression 



 
XXVII 

SST sum of squared total 

ta,in inlet temperature of air to the AHU (℃) 

ta,out outlet temperature of air from the AHU (℃) 

tc mean temperature of the coil (℃) 

tw,in inlet temperature of chilled water to AHU (℃) 

tw,out outlet temperature of chilled water from the AHU (℃) 

TMY typical meteorological year 

VP chilled water system with variable primary flowrate 

WWR window wall ratio 

x1, a pre-assumed design condition and noise for it 

x1,x2,x3…xn inputs for the cooling load 

Y output of modelling 

yi system performance at state i 

yr number of years of a life cycle 

λ failure rate 

µ repair rate 

ρ water density (kg/m3) 

η pump efficiency 

ηele electricity generation efficiency from the primary energy 

ηPHES efficiency of the pumped hydro energy storage 

ηtran electricity transportation efficiency 

ηdist electricity distribution efficiency 

  



 
1 

CHAPTER 1 INTRODUCTION 

 

1.1 Motivation 

Electricity used by buildings occupies about 90% of the total electricity usage in Hong 

Kong. Space air conditioning systems contribute about 40% of the total electricity 

consumption of buildings (EMSD 2014). Effective measures to reduce the energy 

consumption of air conditioning systems are vital for alleviating the energy shortage 

and reducing the greenhouse gas emissions. 

Two ways can be used to reduce the energy consumption of the air conditioning 

systems. One is to decrease the cooling demand by improving the building designs or 

adjusting the indoor conditions such as the temperature set-points. The other is to use 

energy-efficient air conditioning systems which can meet the thermal comfort 

requirement with less energy usage. District cooling system (DCS) is introduced for 

areas with a high density of buildings due to high efficiency and easy integration with 

local energy resources. The DCS is defined as a system that distributes thermal energy 

in the form of chilled water from a central source to residential, commercial, 

institutional, and/or industrial consumers for use in space cooling and 

dehumidification (ASHRAE 2013). 

Performance assessment of DCSs is necessary for a new district at planning and design 

stages, especially before the choice is made between the DCS and individual cooling 

system (ICS) which refers to the ‘one-building-one-cooling-plant’ system. A district 

cooling and heating system (DCHS) was compared with the coal-fired heating system 

& conventional air conditioning system (Li et al. 2007; Shu et al. 2010). Results show 
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that the DCHS has a lower annual cost, considerable energy saving and environmental 

benefits. A feasibility study of a DCS in Hong Kong was conducted by Chow et al. 

(2004; 2004) and results show that the DCS has a good potential. Although DCSs are 

widely used, very limited studies can be found to compare the performance of DCSs 

and ICSs. The operation characteristics, energy consumption and costs of these two 

systems in subtropical areas are still not studied in detail. Comprehensive study on the 

performance of DCSs at different working conditions is essentially needed. 

Developing a new district and installing a new DCS will increase the peak electricity 

load of the entire city/area and the existing power stations. Measures to deal with the 

peak electricity load need to be evaluated. The performance of a DCS with ice storage 

system in subtropical areas was studied and results show that the cost saving is not 

attractive (Chan et al. 2006). However, the conclusion highly depends on that how the 

DCS with ice storage system is designed and controlled under the local tariff. In 

available studies, DCSs integrated with combined heating and power (CHP) systems 

are usually used in the heating dominated areas and DCSs serve as supplemental 

systems to meet the cooling demand of the area. In the cooling dominated areas, 

application of the integrated system is rarely reported. Further research is necessary to 

study the performance of DCSs in subtropical areas with different technologies such 

as thermal storage systems, pumped hydro energy storage (PHES) and combined 

cooling, heating and power (CCHP) systems. 

Design optimization of DCSs needs to be investigated after performance assessment 

and feasibility study. Appropriate design of cooling systems is significant because it 

does not only relate to the capital cost, but also will affect the operation cost 

throughout the life cycle. Three methods are often used to calculate the cooling load 
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and determine the size and configuration of the cooling system (ASHRAE 2009; Lu 

2008; Rudoy and Cuba 1979): 

1) The simplest way is to estimate the cooling load based on an index for a typical 

building in typical climate zones. With the gross floor area and the index, the 

maximum cooling load can be determined and the capacity of the cooling system 

can be obtained. 

2) The cooling load of one design day or one hour is calculated, where the outdoor 

weather data are selected based on the statistic outdoor weather condition and 

maximum values are assigned for variables representing the internal heat sources 

such as the occupants, lighting, plug-in equipment, etc. 

3) Professional platforms are employed like EnergyPlus (2015), DOE-2 (2009), 

TRNSYS (2015), DeST (2011), etc., to get the annual cooling load based on 

typical meteorological year (TMY) data and schedules of the occupants, lighting 

and plug-in equipment. TMY data for typical regions are used. Based on the peak 

cooling load and the partial load distribution, the capacity and configuration of the 

cooling system can be determined. 

The cooling loads obtained from the above three methods are all deterministic. Even 

for the third method, parameters used in the calculation are constants for each time 

step, like the density of the occupants and lighting, etc. However, these parameters in 

the operation of the cooling system will differ from those used in the design calculation, 

which will cause the cooling load to deviate from the expected values. To 

accommodate the uncertainties and ensure the system to supply sufficient cooling, the 

conventional method is to multiply the peak cooling load by a safety factor as the 

capacity of the cooling system. Such a method may be reasonable but not necessarily 

efficient. Without quantifying the uncertainty, the cooling system cannot be 
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appropriately sized or configured. The problems of system oversizing have been 

reported in literature (Djunaedy et al. 2011; Woradechjumroen et al. 2014).  

Reliability is another important issue in the design of DCSs and ICSs besides 

uncertainty. In the conventional design optimization method, the components or 

subsystems in DCSs and ICSs are assumed to be always available. However, they can 

be unavailable due to maintenance or failures. Failure of one component may result in 

malfunction or damage of other components and bring losses to users. The common 

way is to install backup systems in addition to the basic working systems to ensure 

sufficient cooling/heating supply in case of equipment failure or performance 

deterioration (ASHRAE 2012). Such a method is reasonable but not necessarily 

optimal. Without quantifying the uncertainty and reliability, the empirical method may 

result in large performance deviation and/or serious oversize problem.  

Uncertainties in the cooling load of ICSs are investigated widely but few studies use 

the results to improve the design of central cooling plants. For DCSs, uncertainties in 

the cooling load are not studied yet and corresponding design optimization is far from 

sufficient. The reliability is important for the design of both systems but is not 

quantified and involved in the design process. It is therefore necessary to develop a 

new design method, considering uncertainty and reliability, to obtain the appropriately 

sized and configured cooling systems (DCSs or ICSs). The system can always achieve 

good performance even when the working conditions change largely from that used at 

planning and design stages or some component fails in operation. That is called 

“robust optimal cooling system”. The impacts of uncertainty and reliability on the 

design of DCSs and ICSs need to be investigated and compared.  
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1.2 Aim and objectives 

The aim of this study is to investigate the application of DCSs in subtropical areas and, 

particularly, to develop robust optimal design methods for DCSs and ICSs. The new 

methods should render the cooling systems to maintain good performance when 

uncertainty or failures occur in operation. 

The objectives of this study can be summarized as follows: 

1) To assess the performance of the DCS compared with the ICS. Energy 

consumption of both systems for a new district will be evaluated. Operational 

characteristics of the DCSs and the ICS will be analyzed. Primary factors affecting 

the comparative performance will be identified.  

 

2) To investigate the performance of DCSs coupled with different energy 

technologies in subtropical areas, aiming to deal with the peak electricity demand. 

The economic and energy performance of DCSs with thermal storage systems, 

PHES and CCHP is evaluated. 

 

3) To quantify the uncertainty of the cooling loads for both DCSs and ICSs. Factors 

that contain uncertainty are classified and quantified. The peak cooling load 

distribution and annual cooling load profile are analyzed.  

 

4) To develop and evaluate optimized design methods considering uncertainty at 

planning and design stages. By using the proposed design methods, the capacity 

and configuration of cooling systems can be determined based on quantified risk 

and benefit analysis. 

 



 
6 

5) To develop a robust optimal design method considering both uncertainty at design 

stage and reliability of subsystems in operation. This will obtain a cooling system 

that is robust to uncertainty of information used in design and failures in operation. 

 

6) To compare the impacts of uncertainty and reliability on the design of DCSs and 

ICSs. Similarities and differences will be summarized by analyzing the 

performance distributions of DCSs and ICSs under similar uncertainty and 

reliability. 

1.3 Organization of this thesis 

The outline of this study and primary contents are illustrated as Fig. 1.1 on the basis 

of an ongoing project in Hong Kong.  According to the planning information of the 

government, the DCS is designed. The performance of the DCS is assessed and 

compared with that of ICSs. Feasibility study on the DCS with different technologies 

is also conducted. By considering uncertainty, the uncertainty-based optimal design 

methods for DCSs and ICSs are developed. By considering both uncertainty and 

reliability, the performance of the robust optimal designs for DCSs and ICSs is 

assessed. Then the impacts of uncertainty and reliability on the design optimization of 

DCSs and ICSs are compared.  
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Fig. 1.1 Outline of this study 

The organization of this thesis is as follows: 

Chapter 1: The motivation of this study is presented, which is to optimize the design 

of DCSs and ICSs considering uncertainty and reliability after assessing and 

comparing their performance. To implement the new methods, uncertainty study and 

reliability assessment are conducted on DCSs and ICSs. The aim/objectives and thesis 

organization are presented. 

Chapter 2: Studies and applications of DCSs are reviewed and categorized. 

Applications of uncertainty study and reliability assessment in building energy 

systems are summarized. Studies that involve uncertainty and reliability in the design 

DCS planning

Performance assessment of 

DCS compared with ICS

DCS with different 

technologies

Uncertainty-based optimal 

design of DCS

Uncertainty-based optimal 

design of ICS

Robust optimal design of 

DCS considering uncertainty

and reliability

Robust optimal design of ICS 

considering uncertainty and 

reliability

Comparison of impacts on the 

design of DCS and ICS caused 

by uncertainty and reliability
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process of building energy systems are presented. Problems and research gaps are then 

summarized. 

Chapter 3: A DCS in a new development area in Hong Kong is introduced. The 

project and planning information is described. Feasibility study on the DCS with 

different technologies is presented. Costs of the DCS with ice storage systems using 

different design methods are evaluated. Performance of the DCS with PHES is also 

evaluated and compared with that using thermal storage. Energy and economic 

performance of the DCS with and without CCHP is presented. 

Chapter 4: Performance of the DCS in the new district is analyzed and compared with 

ICSs. The DCS and ICSs are designed based on planning information from the 

government. Energy and economic performance of both systems with different chilled 

water systems is analyzed from different viewpoints. The operational characteristics 

of the DCS are analyzed. 

Chapter 5: The concept of robust optimal design used in cooling systems is presented, 

when only uncertainty is concerned, and both uncertainty and reliability are considered. 

The optimal design method based on mini-max regret theory is presented which does 

not need to quantify the uncertainty. Then the uncertainty-based optimal design 

method based on uncertainty quantification is introduced. The robust optimal design 

method is then introduced concerning and quantifying both uncertainty and reliability. 

Steps and main technologies of the methods are explained. 

Chapter 6: Considering uncertainty, the optimal design method based on mini-max 

regret theory is investigated. By implementing this method in an ICS, the design of 

the ICS can be optimized. Two issues are considered: the combination of chillers with 

different numbers and capacities, and the configuration of chilled water system. 
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Uncertainties in cooling loads and chilled water network resistance are considered. 

Performance of the cooling system using the proposed method is compared with that 

using conventional design method.  

Chapter 7: Uncertainties in the cooling load of an ICS are quantified. Capacity and 

configuration of the ICS is optimized based on the performance distribution at 

different risks. Performance of the ICS using the uncertainty-based optimal design 

method is analyzed and compared with that using the conventional method. Robust 

optimal design of the ICS considering both uncertainty and reliability is achieved by 

minimizing the total annual cost. Performance of the ICS designed using the robust 

optimal design method is analyzed and compared with that using the conventional 

method, the method concerning uncertainty only and the design method concerning 

reliability only.  

Chapter 8: Cooling load distributions of the DCSs are analyzed considering 

uncertainty at planning and design stages. Uncertainties in the outdoor weather, 

building design/construction and indoor conditions are considered. Application of the 

uncertainty-based optimal design method in the DCS is investigated. The robust 

optimal design of the DCS is obtained considering both uncertainty and reliability. 

Performance of the DCS designed using the robust optimal method is compared with 

that using other methods. 

Chapter 9: Impacts of uncertainties on the cooling load distribution of DCSs and ICSs 

are evaluated and compared. Sensitivity analysis is conducted to identify important 

variables for the cooling loads. Impacts of implementing the robust optimal design 

method in DCSs and ICSs are also assessed and compared. 
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Chapter 10: Main conclusions and contributions are summarized. Shortcomings of 

this study and recommendations for the future study are presented. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Overview 

Since this study attempts to assess the performance of DCSs, quantify uncertainties in 

the design of DCSs and ICSs and develop robust optimal design methods considering 

uncertainty and reliability, previous research efforts on DCSs, uncertainty study and 

reliability assessment in building energy systems are reviewed. 

Section 2.2 presents the history and development of DCSs. Existing studies on DCSs 

are presented by classifying them into several categories: the integration of DCSs with 

different technologies, the design optimization and control optimization of DCSs. In 

Section 2.3, applications of uncertainty analysis in building energy systems are 

reviewed, especially in the system design. In Section 2.4, reliability assessment and 

its application in building energy systems are reviewed. In Section 2.5, research on the 

above three sections is summarized. Limitations of existing studies and challenges for 

future work are also presented.  

2.2 District cooling systems 

2.2.1 History and development 

DCS is defined as a system that distributes thermal energy in the form of chilled water 

from a central source to residential, commercial, institutional, and/or industrial 

consumers for use in space cooling and dehumidification (ASHRAE 2013). It typically 

consists of four parts: the heat rejection system, the central chiller plant, the 

distribution system and the end users as shown in Fig. 2.1 
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Fig. 2.1 Schematic diagram of a typical DCS 

The first known DCS began to work at Denver's Colorado Automatic Refrigerator 

Company in 1889. In 1930s, large DCSs were used for Rockefeller Centre in New 

York City (Empower 2014). Approximately 20 cities and towns adopted DCSs till 

1996 in US (Seeley 1996). The earliest DCS in Europe appeared in Paris in 1960s. 

After that it began to be widely used in Germany, Italy, Sweden, Finland, etc. DCS 

began to be used in Japan since 1970 and then it has been developing very fast. The 

Japanese government encourages the development of DCS for its high efficiency and 

low pollution emissions. More than 154 DCHSs in Japan had been in use by 2005 (Ma 

and Long 2009). The DCS was introduced in United Arab Emirates in 1999 and now 

it accounts for 10% of the cooling market (Hilotin 2011). In China, the DCS is a 

relatively new system. The first well-known DCS located in Beijing and began to work 

since 2004. After that, several large DCSs began to appear such as the DCS in 

Guangzhou University Town. A general introduction of the DCS including its 

advantage and disadvantage, subsystems, classifications, environment and economic 

effects can be found in the references (ASHRAE 2013; Booz & Company 2012; 

EMSD 2011; Rezaie and Rosen 2012; Shimoda et al. 2008).  
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2.2.2 Integration with sustainable energy technologies 

1) Integration with renewable energy resources and use of waste cold energy 

Usually the renewable energy resources include the energy from the surface water 

(such as the sea, river and lake), geothermal energy, solar energy, wind energy, 

biomass, etc. (Dincer I. 2000; Panwar et al. 2011). The integration of DCSs with 

renewable energy resources is summarized as follows. 

Energy from surface water is frequently used in DCSs among all the renewable energy 

resources. A DCHS using seawater heat pumps was installed in the north of China (Li 

et al. 2007). Another DCHS with seawater heat pumps was studied and the results 

indicate that the economic performance of the system highly depends on the local tariff 

and policy (Shu et al. 2010). A DCS using seawater was installed in Hong Kong to 

supply cooling for a new development area (Chow et al. 2004; Chow et al. 2004; Yik 

et al. 2001). The DCS in Stockholm of Sweden is one of the largest DCSs in the world. 

The fast development of this project is encouraged by the political decision to phase 

out CFC and HCFC-based products, which were used as refrigerants and extremely 

aggressive to the ozone layer (IEA DHC|CHP 2013). By sending the cold seawater 

from the Baltic Sea to the heat pump units, the DCS can supply cooling to the users. 

Up to 2009, the cooling system serves over 600 buildings including offices, hospitals 

and universities, etc. (GNS Science 2009). Cold energy stored in the riverwater can 

also be used in DCSs. For a DCS in Paris, seven chiller plants are used, of which four 

plants use cooling towers and the other three use water from Seine to produce cooling. 

When the water temperature is below 8℃, water from the Seine is used directly for 

cooling (Poeuf et al. 2010). 
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Geothermal energy is another important cold source for the cooling system (Ampofo 

et al. 2006; Rybach and Sanner 2000), which mainly refers to energy from aquifer or 

groundwater. It is regarded to conserve about 90%~95% of energy for a DCS (Paksoy 

et al. 2000). One of the largest groundwater reservoirs in Norway is used to serve the 

Gardermoen Airport as a complemental heat sink and source for the DCHS (Eggen 

and Vangsnes 2006). During cooling period, chilled water is pre-cooled by the 

groundwater with a cooling capacity of 3 MW. It is then post-cooled by a combined 

heat pump/refrigeration plant with a cooling capacity of 6 MW.  

Solar energy can be used in DCSs. A DCS using solar energy in a hospital district was 

studied in Italy (Buonomano et al. 2014). The solar energy is collected by thermal 

collectors and converted into hot water. The hot water exchanges heat with circulating 

water from the absorption chillers for cooling and district heating network for heating.  

A DCS driven by thermal heat from municipal solid waste-fired power plant was 

studied in Thailand (Udomsri et al. 2011) . Instead of landfilling, the waste 

incineration is coupled with the power plant and heat is recovered for absorption 

chillers. The system offers a great opportunity for primary energy saving, greenhouse 

gas reduction and contributions to biomass-based energy production. Rentizelas et al. 

(2009) presented an optimization study for a place with multi-biomass. The 

optimization was condcuted to get the optimal bioenergy supply chain and conversion 

facility with a financial aim. Where, the biomass was used for a trigeneration plant 

which connected with a DCHS.  

By coupling with renewable energy resources, the DCHS can achieve energy saving 

and greengas emission reduction (Ortiga et al. 2013). The renewable energy has been 

widely used in the district heating system (DHS). Solar energy is widely used in DHSs 
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(Buoro et al. 2014; Hassine and Eicker 2013; Lindenberger et al. 2000) and the benefit 

is promising. Geothermal energy is used by DHSs to supply the users heating by 

pumping hot fluid from the underground (Ozgener et al. 2005; Ozgener et al. 2006). 

Biamass is often used as a heating source in DHSs (Wetterlund and Söderström 2010). 

14 % of gross energy consumption is met by straw in 2003 in Denmark. The biamass 

is used as the energy resource of a CHP plant, where the electricity and heat are 

supplied to surounding households (Euroheat and Power 2007). However, the 

application of solar energy, geothermal energy and biomass in DCSs is not as popular 

as that in DHSs. The main reason may be that all the above energy resources can be 

used for heating with high efficiency. For cooling purpose, however, the renewable 

energy has to be converted into heat firstly and the heat is then transferred into 

electricity. Alternatively, the heat energy is convered into cold energy by absorption 

chillers. The efficiency for cooling applications is much lower compared with the 

heating applications, due to the heat loss and conversion efficiency.  

2) Integration with CCHP systems 

DCSs are often combined with CCHP systems as shown in Fig. 2.2, which supply 

cooling, heating and power simultaneously to users. Wu and Wang (2006) presented 

a literature review on CCHP systems. The work on the system configuration, operation 

and performance of DCSs integrated with CCHP is summarized in this section.  
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Fig. 2.2 Schematic diagram of DCS integrated with CCHP system 

For DCSs integrated with CCHP, thermal driven chillers are usually employed to use 

the low grade heat from the CCHP system. Detailed review about the chillers can be 

found in the paper (Deng et al. 2011). Lozano et al. (2010) studied a CCHP system 

connected with a DCS in Spain, which aimed to optimize the design of the system. 

The system serves 500 apartments in a district. Mixed integer linear programming 

method was used to find the optimal design of CCHP with thermal storage system. 

The integrated DCS and CCHP system using absorption chillers only may not be able 

to meet the cooling demand and electricity demand simultaneously. When the cooling 

demand is very high, the cooling produced by absorption chillers may be not sufficient 

and electrical (compression) chillers are required. Rodriguez-Aumente et al. (2013) 

studied the economic performance of a DCHS coupled with a tri-generation plant 

under different pricing and using patterns. Absorption chillers are used as the basic 

units and back up with compression chillers and boilers. In CCHP systems, absorption 

chillers can only use saturated steam with the pressure of 0.4 MPa~0.8 MPa (Zhang et 

al. 2012). However, the steam produced by the power generator is usually superheated. 

A DCS integrated with CCHP was studied by Zhang et al. (2012), which uses an 
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industrial turbine, driving the compression chillers, to cool down the superheated 

steam. Where, a combined compression refrigeration and absorption refrigeration 

system is adopted, which saves a large amount of steam consumption to meet the same 

amount of cooling demand. 

For the hot water supplied to absorption chillers in the DCS with CCHP, there is 

optimal supply and return temperatures with the objective of the lowest primary 

energy consumption of the chillers and pumps (Fu et al. 2001). Nagae et al. (2011) 

pointed out that the energy efficiency of DCSs integrated with CCHP systems could 

be improved by increasing the maximum chilled water flow rate of absorption chillers 

and compression chillers, decreasing the chilled water flow rate through the bypass 

between the supply and return pipes, and increasing the return chilled water 

temperature. Energy recovered from a coal-fired power plant can be used by DCHSs 

as reported by Erdem et al. (2010). The authors also evaluated the energy saving 

potentials of using the heat from the condenser, stack gases, extracted steams for feed 

water heater and low-pressure turbine inlet steam.  

Both energy and exergy efficiency were used to assess the performance of DCSs with 

CCHP systems (Pak and Suzuki 1997; Rosen et al. 2005). Three DCSs integrated with 

CCHP systems were compared, which use electrical chillers, single-effect absorption 

chillers and double-effect absorption chillers respectively. Results show that it is 

necessary to conduct exergy analysis to assess and compare the three options since the 

electricity, heating and cooling produced from three systems have different natures 

and qualities. Hart and Rosen (1996) compared the health and environment effects 

caused by the DCHS integrated with CCHP system.  
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From the above studies, it can be observed that DCSs integrated with CCHP systems 

usually couple with DHSs to meet the heating and cooling demand of the users. The 

integrated system is often used in the heating dominated areas, while the DCS serves 

as a supplemental system to meet the cooling demand of the area (Li et al. 2007; Shu 

et al. 2010). In the cooling dominated areas, the application of DCSs with CCHP 

systems is rarely reported. One reason might be that the energy efficiency of CCHP 

systems is not high when the primary aim is to meet the cooling demand. However, 

there is limited quantitative and detailed study in the performance of DCSs integrated 

with CCHP system in cooling dominated areas. Further study on this aspect is 

necessary. 

3) Integration with thermal storage system 

To reduce the operation cost and limit the power demand of the system at peak hours, 

DCSs are integrated with thermal storage systems. The integrated systems with 

different configurations are shown in Fig. 2.3. The concept of cool storage systems is 

defined by the Design Guide for Cool Thermal Storage: Cool storage systems store 

cold energy during periods of low cooling demand. The stored cooling is later used to 

meet the air-conditioning cooling load (ASHRAE 1993). By using the thermal storage 

system, the power utilities benefit from the reduction of the peak electricity generation 

and consumers benefit from lower electricity bills, by taking advantage of the lower 

off-peak rates and reducing peak demand billing charges (Chan et al. 2006). 
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(a) serial connection with chillers upstream; (b) serial connection with chillers 

downstream; (c) parallel connection 

Fig. 2.3 Schematic diagram of DCS integrated with thermal storage system  

Water is used for thermal storage due to its low cost and high thermal capacity. The 

temperature of the water storage system is compatible with evaporation temperature 

of conventional chillers, making it easier to be connected with DCSs. Typical water-

storage tanks stratify to a water temperature of 4℃ (Seeley 1996), at which the water 

density is at its maximum. Majid and Waluyo (2010) studied the temperature 

distribution at different depths of the stratified thermal energy storage tank during 

charging process. Thermocline thickness was evaluated for two cases with different 

water flow rates. Tanaka et al. (2000) investigated a DCHS using water tanks for daily 

thermal storage and seasonal water thermal storage. Where, the daily heat and cold 

storage charges were realized by a heat pump. One DCS with aquifer thermal energy 

storage was studied by Andersson (2007). The storage system was used to increase the 

capacity of the DCS plant aiming to connect more customers. It stores cooling at night 

and recovers during the daytime. Results show that the aquifer storage system has very 

good economic performance.  

Ice stores cooling in the form of latent heat. It fits best in tight downtown areas because 

it requires smaller storage volume. The DCS with ice storage system has been used in 
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many projects, which are summarized in the reference (ASHRAE 2013). A DCS in 

Paris uses both water and ice storage systems (Poeuf et al. 2010). Three cold storage 

units having a capacity of 140 MWh are used, of which two are ice storage units and 

one is chilled water storage unit. In China, most of the DCS projects are integrated 

with ice storage systems. Chan et al. (2006) conducted a parametric study to evaluate 

the performance of a DCS with ice storage system at different partial storage capacities, 

control strategies, and tariff structures in Hong Kong. Results show that the DCS with 

ice storage system is not economic feasible because the local tariff has trivial 

electricity price difference between the peak time and off-peak time.  

Phase change material (PCM) is another popular group of cool storage medium. Most 

of PCMs for cool storage are inorganic salt hydrates or mixtures of them. They are 

used due to their high latent heat during phase change, high density and low cost. A 

commercial salt hydrate PCM is used in a DCS with a phase change temperature of 

13°C (Chiu et al. 2009). The performance of the storage system was compared with 

systems with auxiliary chillers and stratified chilled water storage system. Results 

show that the latent heat thermal storage system is more economically viable. The 

major problem in using salt hydrates is that most of them melt incongruently. It is 

because they have poor nucleating properties resulting in super cooling of the liquid 

salt hydrate prior to freezing. Another problem is corrosion, which leads to short 

service life, high packing and maintenance costs. Paraffin wax can also be used for 

cool storage for DCS application. Bo et al. (1999) attempted to determine the thermal 

properties of paraffin waxes and their binary mixtures to demonstrate the potential of 

using these materials for cool storage. The experimental results indicate that 

laboratory-scale tetradecane and hexadecane and their mixtures could be used as 

PCMs for cool storage.  
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The use of thermal storage system is based on electricity price policy, i.e. different 

electricity prices at different time of the day. For example, the current tariff structure 

in Hong Kong is not so advantageous for using thermal storage system. To reduce the 

peak electricity demand and connect more users, promotion of appropriate electricity 

price is necessary. The existing literature only mentioned the use of thermal storage 

system in DCSs but few addressed the design and control optimization of the 

integrated system. Problems including the sequence control of the basic load chillers 

and the storage system, the optimal design of the storage system, the amount of energy 

to be stored, etc., need to be further investigated. 

2.2.3 Optimization of DCS in planning, design and operation 

DCSs can perform well only when the system is well planned, designed and operated. 

The work in the planning, design and operation of DCSs is categorized in Fig. 2.4 and 

reviewed in this section.  

 

Fig. 2.4 DCS optimization in system planning, design, control and operation 

A. Planning of buildings in a district  

Generally, DCSs are financially beneficial for densely populated urban areas, high-

density building clusters and industrial complexes. For low-density areas, the 
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economic advantage is less apparent because of the cold transportation loss (Rezaie 

and Rosen 2012). Buildings served by a DCS may have different functions, as shown 

in Fig. 2.5. The combination of different types of buildings in a district will affect the 

performance of the DCS. A more uniform cooling load profile was regarded to be 

suitable for DCSs because it would minimize the start and stop counts of chillers and 

ensure the system to work with a high stability. Chow et al. (2004) conducted a study 

to find the optimal percentage shares of different types of buildings in a DCS, aiming 

to get the most uniform cooling load profile. The performance of DCSs is not only 

related to the load profile but also the system design. The optimal combination should 

be obtained by taking the efficiency of the DCS as the objective, especially when 

compared with the ICSs at planning stage. 

 

Fig. 2.5 Combination of buildings with different functions in a DCS 

In Eastern Asian countries like China and Japan, most users of DCSs are commercial 

and public buildings. In Middle East, residential buildings are included because DCSs 

usually serve entire resort areas (Zafar 2014; Qatar cool 2010). For European countries 

Hotels

Schools

Shopping 

malls

Office 

buildings

Retail 

shops

Public facilities

Residential 

buildings



 
23 

and US, both commercial buildings and residential buildings are involved as the users 

and DCSs couple with DHSs to supply both cooling and heating to the entire districts 

or cities. Actually residential buildings and commercial buildings can complement 

each other and combination of these two types of buildings may achieve better 

performance. The performance of DCSs with and without the residential buildings 

needs to be assessed and compared. The main barriers and corresponding solutions to 

include the residential buildings need to be figured out. It is easy to understand that 

DCSs can be used in the areas where the climate is hot and the cooling load is 

dominated, especially in tropical and subtropical areas. However, many well-known 

DCSs are developed in European countries where the climate is cold. The performance 

of DCSs in different climate areas needs to be studied and compared with the 

traditional cooling systems.  

B. DCS design 

The design optimization of DCSs is reviewed in this section from two viewpoints: the 

global system design optimization and the subsystem optimization. The global 

optimization aims to optimize the DCS overall system configuration. The subsystem 

optimization aims to improve the performance of some component or subsystem.  

Global system design optimization 

For the system selection, Li et al. (2007) conducted performance comparisons of 

cooling and heating systems using different energy resources. A DCHS using seawater 

heat pumps was compared with the coal-fired heating system and conventional air 

conditioning system in the north of China. After the system scheme is determined, 

design optimization of the subsystems needs to be done to get the optimal global 

performance. Söderman et al. (2006; 2007) used a mixed integer linear programming 
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model to optimize the DCS design in an urban area. The concerned issues included 

the location of cooling plants, the cooling capacity of the plants, the cold storage 

location, the storage capacity, the routing of distribution pipe-lines to individual 

consumers, optimal operation of cooling plants in different periods of the year, the 

charge and discharge of the storages and the cold medium flow rates in the district 

cooling pipelines. 

Subsystem design optimization 

Most existing studies on DCS subsystem design optimization address chilled water 

distribution networks. The central plants and the users are connected by the chilled 

water networks. The connection can be direct or indirect by isolating with heat 

exchangers (Skagestad and Mildenstein 2002). For systems using direct connection, 

chilled water is pumped from the central plant to the in-building air-conditioning 

systems. The direct connection is more economic efficient due to the elimination of 

heat exchangers and associated equipment, water treatment systems and equipment 

maintenance (ASHRAE 2013). The main limitation is that it is easy to get cross-

contamination between different users. For systems using indirect connection, the 

cross-contamination can be avoided and the responsibilities of different parties are 

clear. However, the efficiency becomes lower and the capital cost is increased because 

of the heat exchangers.  

The chilled water network can be organized in radial and/or tree shaped networks, as 

illustrated in Fig. 2.6. Genetic algorithm is frequently used to get the optimal layout 

and size of the chilled water network (Chan et al 2007; Feng and Long 2008; Li et al. 

2010). The objective can be the piping cost plus pumping energy cost (Chan et al. 

2007), or annual equivalent cost including the overall investment, annual operating 
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cost, maintenance and amortization expense, and annual cooling loss cost (Feng and 

Long 2008; Li et al. 2010). Sometimes the depreciation cost of the pumps and pipes is 

also included (Liu et al. 2004; Liu et al. 2006). The selection of pipe material should 

consider the pipe strength, durability, corrosion resistance and cost (Chow et al. 2004). 

The placement of the pipes was studied by Babus'Haq et al. (1986; 1987; 1990). The 

recommended configuration for both the DCS and DHS is to place the two pipelines 

one above the other in the trench with the hotter pipe being the upper one. This differs 

radically from the traditional arrangement (the pipes being placed side by side) and 

leads to at least 4% additional energy saving. Narrower trenches would be required 

and the cost would also be lower eventually. 

 

Fig. 2.6 Layout of a chilled water system connecting the DCS plant and users  

The design of DCSs is important because it affects the performance of DCSs over the 

entire life cycle. The study on DCS design optimization is not sufficient yet, such as 

the chiller capacity and combinations considering partial cooling load, pump 

connection, the number and location of the chiller plants, etc. In addition, the DCS 
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installation is usually separated into several stages. Corresponding design considering 

multiple stages should be further studied.  

C. DCS operation and control  

The operation and control of DCSs is more complicated compared with ICSs. The 

considerable energy consumption requires stricter management and better operation.  

Operation and optimization of DCS plants 

To improve the energy performance of DCSs, many efforts have been paid on various 

aspects of DCSs, including the cooling load prediction, the optimization of system 

operation, the waste heat recovery, the optimization of chilled water systems etc.  

Cooling load prediction is necessary for the control of DCSs, especially for the 

systems with thermal storage. Artificial neural networks were used to predict the 

cooling load of the buildings by Sakawa et al. (2001), where a three-layer artificial 

neural network model was used to predict the cooling load of next day using latest 

data available. Results show that this method can predict the cooling load accurately. 

Several types of buildings were surveyed including the office buildings, retail shops, 

restaurants and hotels (Yik et al. 2001). The surveying ratios of occupancy, lighting 

and fresh air supply at different time of a day were obtained, which were used in 

cooling load perdition using HKDLC, HTB2 and BECON as the tool. Results show 

that the sum of loads for each type of buildings can be predicted accurately but for 

each individual building, the prediction is not accurate.  

Many optimization techniques have been used in DCHSs, which was reviewed by 

Ortiga et al. (2007). The common approaches used for DCHSs were mathematical 

programming, genetic algorithms, neural networks and fuzzy logic systems. Multi-
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criteria optimization was used because of conflicting and non-comparable criteria 

existed in optimization. Sakawa et al. have done a lot of work on the optimization of 

DCSs. In their early work, the operational planning problem of district cooling and 

heating plants was regarded as a mixed 0–1 linear programming problem and it 

involved hundreds of variables (Sakawa et al. 2001; Sakawa et al. 2002). Genetic 

algorithm was adopted to get the optimal result. In their later work, the operation 

optimization was regarded as nonlinear 0-1 programming problems (Sakawa et al. 

2003). An interactive fuzzy satisfying method through genetic algorithms was adopted. 

Considering the state of the components in DCHSs as continuous operating ratio 

instead of just on-off, the operation problem of an actual district cooling and heating 

plant was taken as a nonlinear programming problem in their latest work (Sakawa and 

Matsui 2013). To reduce the energy consumption and minimize the operation cost, a 

multi-objective nonlinear programming formulation was used. An interactive fuzzy 

satisfying method through particle swarm optimization was introduced. The feasibility 

and efficiency of the proposed method was tested on an actual district cooling and 

heating plant in Tokyo. 

The use of energy efficiency measures helps to improve the benefits to the operators 

of DCSs when the users pay fixed amount of money for the cooling received (Uno and 

Shimoda 2012). Results show the following measures are effective for reducing the 

energy consumption of DCSs: 1) to circulate the chilled water with a large differential 

temperature; 2) to use the outdoor air directly for free cooling when the outdoor 

temperature is even lower; 3) to reduce the outdoor air intake based on ventilation 

demand; 4) to reset the indoor temperature set-point.  

Operation and control optimization of chilled water distribution systems 
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Cold loss is a very important factor resulting in bad performance of the DCS. It 

consists of two parts: the transportation loss and the cold loss resulting from the pumps. 

Research shows that the transportation cold loss can be controlled within 1% if the 

insulation and construction of pipes is good. The main cold loss is caused by the 

secondary chilled water pumps (Kang and Zuo 2009). To reduce the energy 

consumption of the chilled water pumps, available methods are classified as follows: 

1) To reduce the resistance of the pipelines. Specific surfactants in DCHSs could 

reduce the friction attributed to a formation of an additional viscous sub-layer 

along the pipe internal surfaces (Chou 1991). Some additives were tested and could 

be used in the DCHS without serious technical problems. However, slight toxicity 

limited the application and they could only be used in primary systems.  

2) To increase the thermal capacity of the fluid in the chilled water network. A DCHS 

coupled with dynamic-type ice storage system was proposed (Kozawa et al. 2005; 

Hamaoka et al. 1996; Torikoshi et al. 1992). The ice-slurry is transported to the 

substations from the ice storage tanks at the central plant. The aim is to reduce the 

transportation power and the costs of pipelines. By adding 25% volume of 

pentadecane into the chilled water, the volumetric thermal capacity of heat transfer 

fluid undergoing at the temperature difference of 15℃ is increased by almost 40%. 

With a larger thermal capacity, the flow rate and pump energy consumption can 

be decreased significantly (Choi et al. 1992).  

3) To limit the pipe distance and enlarge the difference between the supply and return 

chilled water temperatures. Shou and Chen (2003) suggested that the load density 

(average cooling load carried by one meter of pipeline) should be over 14 kW/m 

for DCSs. The difference between the supply and return chilled water temperatures 
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should be about 8~10℃ and 10℃ for the system with thermal storage system. The 

chilled water network radius should be around 1~2 km considering the heat 

transportation loss. Kang et al. (2010) also studied the optimal distance using 

DCSs considering the cooling load density and differential temperature between 

the supply and return chilled water. Results show that the distance for economic 

cooling could be longer for areas with higher cooling load density. The supply and 

return differential temperature should not be less than 5℃.  

In most of the operation studies, the central plants and the users (cooling systems in 

buildings) are operated separately, which is the result of separate management. The 

coordinated operation of users and central plants will benefit both sides. In the 

operation optimization of chilled water system, the dynamic performance is usually 

neglected such as the response delay caused by the chilled water network of long 

distance. Control optimization of the entire chilled water systems including DCSs and 

users, considering the dynamic character and interactions, needs to be studied. 

2.2.4 Conclusive remarks 

DCSs have been widely used due to outstanding advantages compared with the 

traditional cooling systems. However, there is still much work to be done for the 

systems to achieve the expected or optimal performance.  

Various uncertainties exist in the data used at planning and design stages. These 

uncertainties will cause the system performance to deviate from the expected. For 

example, the capital cost of one DCS project in Hong Kong has to be increased again 

and again because the installation cost of chilled water pipelines is much higher than 

that of the original budget. There are also some DCSs that are oversized too much 
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caused by the large difference of actual cooling load and estimated cooling load. All 

these are caused by the uncertainties existing in information and data used at planning 

and design stages. How to handle these uncertainties and ensure the system to perform 

well is vital. 

2.3 Uncertainty and sensitivity analysis in building energy systems 

Uncertainty can be defined as being any departure from the unachievable ideal of 

complete determinism (Walker et al. 2003). It is often divided into two categories: 

aleatory and epistemic (Paté-Cornell 1996). Aleatory uncertainty arises due to natural 

unpredictable variation in the system. It stems from variability in known populations, 

which cannot be reduced by the knowledge of experts although the knowledge can 

help quantify the uncertainty. Therefore, aleatory uncertainty sometimes is regarded 

as irreducible uncertainty. Epistemic uncertainty is because of a lack of knowledge 

about the system. It can be eliminated with sufficient study (Hora 1996).  

Uncertainty exists generally in building energy systems. The sources of uncertainty in 

building energy systems were grouped into five levels, including meteorology, urban, 

building, systems, and occupants (Sun 2014). When the study is conducted based on 

the simulation, uncertainties exist in both the inputs and the processing methods or 

platforms. Uncertainty study can be used to address issues including the model 

accuracy, the accuracy of the input variables, effects of assumptions on the outputs, 

the performance of different options, etc. (Macdonald 2002). By considering and 

quantifying the uncertainty, the decision can be made with confidence. Plenty of 

research has been done regarding the uncertainty and sensitivity analysis of building 

energy systems, which is reviewed in this section.  
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2.3.1 Performance assessment of building energy systems  

Uncertainties in building physical parameters are recommended to be taken into 

consideration when designing building energy systems or assessing the performance 

of the systems (Brohus et al. 2012; Eisenhower et al. 2011; Heiselberg et al. 2009; 

Hopfe et al. 2013; Zhang et al. 2013). The most important factors were identified. 

Performance distributions of buildings with uncertainty were obtained in terms of 

energy consumption, thermal comfort, and monetary cost. Uncertainty and sensitivity 

analysis method was adopted to rate the energy performance of a family house in Italy 

(Corrado and Mechri 2009). The 129 input data were identified and grouped into three 

sets, including climatic data, envelope data, and building use data. Less than 10 input 

data were proved to have a significant influence on the energy rating uncertainties. 

Energy consumption of dwellings considering uncertainties in the climate, building 

construction and inhabitants was studied by Pettersen (1994). Results show that the 

energy consumption can be varied with an uncertainty of ± 25-40%. The source of 

uncertainties in a housing stock model was studied and method to handle the 

uncertainties was proposed (Booth et al. 2012).  

Uncertainty analysis can be used to assess the performance of retrofit of building 

energy systems. Lee et al. (2013) proposed a method to conduct probabilistic risk 

assessment of the energy saving in energy performance contracting projects. 

Uncertainties in weather conditions, occupancy, operating hours, thermostat set-point, 

etc. were considered. Possible energy saving was obtained with quantified confidence. 

Menassa (2011) presented a quantitative approach to determine the investment value 

in sustainable retrofits for existing buildings considering different uncertainties 

associated with the life cycle costs and perceived benefits of the investment. The 
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proposed methodology provided the decision maker with managerial flexibility to 

determine, prioritize and evaluate the required retrofits over time. Uncertainty analysis 

was conducted by Eisenhower et al. (2011) in the energy consumption of one normal 

building and one high performance building, which was similar to the normal building 

but with better envelopes and equipment. It involved uncertainties in the 

heating/cooling source and equipment, primary movers of air loop and water loop, 

terminal units, external and internal parameters of buildings, zone set-points and sizing 

parameters. Sensitivity analysis was implemented to find important parameters. 

Results show that the high performance building is more robust to uncertainty. 

2.3.2 Uncertainty in modelling of building energy systems 

When a study is conducted based on simulation, uncertainties exist in both the inputs 

and embodied methods or sub-processes. Eisenhower et al. (2011) conducted 

uncertainty study in the intermediate process by performing decomposition, which 

aimed to find the most important subsystem in modelling. O’Neill and Eisenhower 

(2013) used measured data to conduct model calibration and the uncertainty study was 

implemented to tune the models. The necessity to decouple uncertainties in HVAC 

systems and building models was investigated by Augenbroe et al (2013). The coupled 

simulation method usually requires a higher level of expertise of system modeling and 

can be computationally intensive. Results show that for a given building the monthly 

energy difference using two methods was seldom more than 20%, which was 

acceptable for most of purposes.  

2.3.3 Design of building energy systems 

Uncertainty can be involved in the design optimization of building energy systems. 

Uncertainties in the peak load prediction are investigated (Huang et al. 2015), which 
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is the basis of capacity selection for the heating, ventilation and air conditioning 

(HVAC) system. Multi-criteria optimization is conducted including the energy 

consumption, initial cost and failure time. The uncertainties in the building 

performance evaluations were addressed by De Wit and Augenbroe (2002) and their 

potential impact on design decisions was assessed. Results show that considering the 

uncertainties can change the decision maker’s choice for the same project. Zhang and 

Augenbroe (2014) investigated that how to right-size a photovoltaic system. 

Uncertainties in the building’s physical properties, solar irradiance, efficiency and 

degradation rates of PV panels are considered. A method was proposed to estimate 

building energy performance in early design decisions (Rezaee et al. 2014). Design 

evolution uncertainties in early design were quantified and their impact on design 

decisions was examined. Results using different models or software indicate different 

solutions. It indicates that uncertainties in the models have to be fully addressed. Sun 

et al. (2014) proposed a new design method considering uncertainty in the 

cooling/heating load. Results recommend that using actual weather data in the load 

calculation helps to alleviate the oversize problem in the cooling/heating system 

design. 

2.3.4 Cooling/heating load prediction 

Many variables are used in the cooling load prediction and most of them contain 

uncertainties (Li et al. 2003; Prada et al. 2014; Sun et al. 2014; Yıldız and Arsan 2011). 

The impact that furniture and contents (i.e. internal mass) have on zone peak cooling 

loads is investigated (Raftery et al. 2014), which is not accounted in traditional 

simulations. Results show that involving internal mass can change the peak cooling 

load by a median value of −2.28% (−5.45% and −0.67% lower and upper quartiles 
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respectively). Climatic effect on cooling loads in subtropical regions was studied by 

Li et al. (2003). Weather data from 1979 to 2000 were used in the cooling load 

calculation and results were compared with that using the design conditions 

recommended by local building design practice. It showed that the common method 

can oversize the air conditioning plant due to larger peak cooling load prediction. The 

weather data should be examined closely so that appropriate external design 

conditions can be selected according to different applications and acceptable risk 

levels. Weather data, which represent the boundary conditions in energy simulation, 

can affect the model outcomes significantly. Uncertainty of the meteorological 

conditions therefore should be involved in the design process. Lee et al. (2012) 

developed a framework which generated stochastic meteorological years using 

historical meteorological data for any given location. This was realized by stochastic 

modeling of meteorological data as a Vector Auto-Regressive process with seasonal 

non-stationarity. The annual cooling and heating load considering the physical, design 

and scenario uncertainties was investigated by Hopfe (2009). The distribution of the 

annual heating/cooling load, weighted overheating and under-heating hours related to 

the thermal comfort was analyzed. The peak cooling load considering the uncertainties 

of design parameters was studied (Domínguez-Muñoz et al. 2010). Influential factors 

for the peak cooling load were identified.  

2.3.5 Conclusive remarks 

From the above review it can be found that research on building energy systems 

considering uncertainty mainly aims to present the result distribution, compare with 

the deterministic results, find the most important factors, and calibrate models. Even 

for the design of building energy systems, studies are mainly about the energy systems 



 
35 

in buildings. For large centralized cooling plants or DCSs, the design considering 

uncertainties is rarely studied.  

2.4 Reliability assessment of building energy systems 

Reliability can be defined as the probability of successful operation or performance of 

systems and their related equipment, with minimum risk of loss or disaster (Stapelberg 

2009). Reliability design has been widely used and studied in the fields such as 

structure, industrial manufacture, power system, computer science, etc. (Frangopoulos 

and Dimopoulos 2004; Heising 1991). Redundancy is usually adopted to improve the 

reliability of systems. Redundancy can be active where the additional components may 

also work under normal conditions, or passive where these components only are 

switched on during abnormal conditions or failure occurrence (Aguilar et al. 2008). 

Usually passive redundancy is used in building cooling systems. For example, four 

chillers may be installed for a cooling system, of which three chillers are the basic 

chillers to meet the cooling demand and another one serves as a backup and keeps off 

under normal operation conditions.  

Reliability analysis or assessment is necessary to avoid/reduce losses caused by the 

failure of components/systems. It is also used in building energy systems. Chinese et 

al. (2011) used a multi-criteria approach to select the space heating system for an 

industrial building, where the criteria included reliability, operation cost, comfort, etc. 

Kwak et al. (2004) proposed a method to predict an optimal inspection period for 

condition-based preventive maintenance based on reliability assessment of air-

conditioning facilities in office buildings. The expected profit produced by the method 

was also analyzed. Myrefelt (2004) used actual data collected from buildings 

belonging to seven large real estate operators to analyze the reliability of the HVAC 
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system. Reliability assessment is usually used to improve the system design, which 

has been reported in fields such as power system, chemical process, etc. However, its 

application in building energy systems (especially the large centralized cooling 

systems) is very limited. 

From the above review, it shows that very limited studies are done considering 

reliability of equipment/systems in the design process of HVAC systems. 

Comprehensive design optimization considering both demand uncertainty and 

equipment reliability is far from sufficient.  

2.5 Summary 

This chapter presents a review on the application of DCSs, uncertainty study and 

reliability assessment in building energy systems. From the above review, the 

following gaps can be summarized: 

i. Performance assessment of DCSs compared with ICSs in subtropical areas 

needs further study. Performance of DCSs with different sustainable energy 

technologies needs to be estimated; 

ii. Studies are not sufficient yet on the design optimization of the central cooling 

plant in both DCSs and ICSs considering uncertainty. Uncertainties in the 

cooling load of DCSs are not studied yet, which can affect the design 

optimization of DCSs.  

iii. Reliability assessment is rarely considered in the design optimization of both 

DCSs and ICSs; 
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Therefore, this study attempts to improve the design of DCSs and ICSs after 

performance assessment and comparison. Improved design methods will be proposed 

for both DCSs and ICSs by involving uncertainty and reliability.  
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CHAPTER 3 DCS FOR A NEW DEVELOPMENT AREA 

AND PRELIMINARY PERFORMANCE ANALYSIS 

 

This chapter introduces a DCS project for a new development area in Hong Kong. The 

planning information from the government is presented. The DCS is designed based 

on the planning and hypothesis. A feasibility study is conducted to investigate the 

performance of the DCS with different technologies, which aims to deal with the 

excessive peak electricity demand after adding the new district. Three technologies 

are studied, including the thermal storage system, PHES and CCHP system. 

3.1 New development areas of North East New Territories  

Developing new areas is one of the ten major infrastructure projects in Hong Kong, 

which aims to address the long-term housing demand and provide employment 

opportunities. The new development area in the district of North East New Territories 

includes Kwu Tung North, Fanling North and Ping Che/Ta Kwu Ling (CEDD 2015), 

as shown in Fig. 3.1. The new development area locates at the border between Hong 

Kong and another city, Shenzhen. 

The new development area concerned covers a total area of 787 ha (1ha=10000m2) 

and is proposed to accommodate a population of about 152,000 and to provide new 

job opportunities of more than 52,000 after full development. The development is 

intended to address the long-term housing demand and provide employment for the 

next 20 to 30 years. The new development area will be developed for multiple 

purposes, including housing, education and community facilities, improvement of the 

rural environment, better protection of resources of high conservation value and timely 
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development of land for special industries with clean industrial processes (ARUP 

2015). The district of Kwu Tung North is investigated in this study. The DCS is 

planned to supply cooling for this new area. 

 

Fig. 3.1 Location of the new development areas (colored areas) 

The initial planning from the government is shown in Fig. 3.2. It shows that various 

buildings will be planned, including:  

1) Residential zones and public rental housing; 

2) Public facilities such as the green belt, petrol filling station, refuse collection point, 

hospitals, schools, metro stations, post offices;  

3) Commercial buildings like hotels, commercial centers, shops, administration 

buildings, immigration buildings, banks, etc. 
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Fig. 3.2 District plan of Kwu Tung North 

3.2 Users and cooling load prediction of the DCS 

Although both residential and commercial buildings are to be constructed in this area, 

only public and commercial buildings will be connected to the DCS. Users of the DCS 

include hospitals, schools, metro stations, hotels, research centers, shops, post offices, 

administration buildings, immigration buildings, banks, commercial centers, etc. 

Totally 37 buildings are involved. The cooling loads of all these buildings are 

estimated using a Transient System Simulation program (TRNSYS). The cooling load 

index for each building is shown in Table 3.1, which is calculated by dividing the peak 

cooling load with the floor area of each building. 
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Table 3.1 Cooling load indices for 37 buildings connected to the DCS in the district 

No. Building Name 
Building 

Area 

(m2) 

Cooling 

Load Index 

(W/m2) 

No. Building Name 
Building 

Area 

(m2) 

Cooling 

Load Index 

(W/m2) 

1 Sickroom Building 38100 127.45 20 Shops 5032 256.57 

2 Doctor's Building 18900 200.38 21 Research Building 17136 147.74 

3 
Operation 

Building 
21600 211.51 22 Hotel 26180 174.95 

4 Sickroom Building 12240 189.96 23 Research Building 25056 226.85 

5 Health Center 27360 321.63 24 Post Office 4160 139.63 

6 Primary School 12672 194.93 25 Bank Building 9216 140.13 

7 Teacher's Office 1248 221.72 26 Office Building 17664 148.61 

8 Library 2496 300.01 27 Office Building 65600 141.57 

9 Classroom 9984 136.96 28 Gym 11000 317.31 

10 Teacher's Office 1872 182.81 
29 

Immigration 

Building 
10176 163.32 

11 Library 1872 345.02 

12 Secondary School 12528 194.84 
30 

Commercial 

Building 
24964 329.60 

13 Teacher's Office 2808 149.71 

14 Library 2106 210.27 31 Office building 35616 144.28 

15 
Children and 

Youth Center 
9720 257.74 32 

Commercial 

Building 
24696 281.96 

16 District Library 15540 237.59 33 Research Building 26000 137.76 

17 Family Center 15080 199.40 34 Hotel 117552 153.79 

18 
Commercial 

Building 
64800 237.51 35 

Administrative 

Building 
62496 164.79 

19 
Commercial 

Building 
25200 306.27 

36 Railway Station 8400 310.77 

37 Railway Station 6800 307.16 
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For a typical week in summer, the cooling loads for typical buildings are shown in Fig. 

3.3. It shows that the cooling loads of office buildings during weekends are lower than 

that during weekdays. However, for hotels and commercial centers, the cooling loads 

during weekends are larger due to higher occupant density. For most of the buildings, 

the cooling loads at night are lower than that at daytime while the hotels have higher 

loads during night time because they have more occupants at night.  

 

Fig. 3.3 Cooling loads of typical buildings in a typical week in summer 

The cooling load of the entire new development district is shown in Fig. 3.4. It shows 

that buildings need cooling almost all the year because of the subtropical climate. The 

maximum cooling load is 107224 kW. Based on the peak cooling load, a DCS can be 

designed. The electricity load is also calculated and shown in Fig. 3.5. Performance of 

the DCS with different technologies can be obtained.  
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Fig. 3.4 Annual hourly cooling load of Kwu Tung North district  

 

Fig. 3.5 Annual hourly total electricity load of the 37 buildings in the new 

development area 
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3.3 Performance analysis of the DCS with multiple energy technologies 

By adding a new district accompanying with increasing population, the electricity 

demand of the entire city will be largely increased due to new buildings and facilities. 

It definitely will result in the increased load to the existing power station. Three ways 

can be used to deal with the peak demand of the grid, including thermal storage system, 

PHES and CCHP system. Performance assessment and comparison of the DCS with 

different technologies are shown in Fig. 3.6. Parameters used are shown in Table 3.2. 

 

Fig. 3.6 Feasibility study of DCSs with different technologies 

1) DCS with and without thermal storage systems 

Using thermal storage system can help users to reduce the operation costs and the 

utility company will benefit from obtaining a more leveling demand profile. For the 

central cooling system, energy can be stored using ice or chilled water. Chilled water 

storage system requires much more space than the ice storage system. Thus, the ice 

storage system is used in this study.  

Three methods can be used to design the ice storage system (ASHRAE 1993). One is 

full storage, which means all the cooling load during peak time is fully met by the ice 

storage system. The second is partial storage for load leveling. The basic chillers run 
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with a full capacity for 24 hours on the design day and the excessive cooling load is 

met by the ice storage system. The third one is partial storage for demand limiting. In 

such a system, the basic chillers work at a reduced capacity during the peak time. In 

this section, two methods are evaluated: full storage and partial storage for demand 

limiting.  

2) DCS with pumped hydro energy storage vs. DCS with thermal storage system 

PHES helps the power plant to generate electricity during the peak time while thermal 

storage system helps transfer the thermal demand during peak time to the off-peak 

time. Both are very effective in addressing the peak load issues. The one with higher 

efficiency should be preferred if the government wants to reduce the primary energy 

consumption or achieve low carbon district/city. Primary energy consumptions of the 

PHES and thermal storage system are compared and analyzed. A sensitivity study on 

the efficiencies of both systems is conducted. 

3) DCS with and without combined cooling, heat and power system 

DCS with CCHP supplies the district cooling, heat and electricity simultaneously. 

Two ways can be used to size the CCHP system, both of which are considered in this 

study. One is based on the thermal demand, where the plant should supply sufficient 

heating/cooling to the users. In this study, the cooling demand should be met firstly. 

If there is surplus electricity, CCHP system can send to the grid. If the electricity 

cannot meet the demand of the district, electricity should be drawn from the grid. The 

other is based on the electricity demand, where the system is sized to meet the 

electricity demand of the district. If the cooling produced by absorption chillers cannot 

meet the cooling demand, electricity-driven chillers should be started.  
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The efficiencies of the DCS with and without CCHP system used in the cooling 

dominated areas are compared. Primary energy consumptions of both systems to 

supply the same amount of cooling, heat and power are compared. Costs of the DCS 

with CCHP system at different prices of the primary energy are assessed and the 

payback periods are calculated.  

Table 3.2 Parameters for models used in the simulation 

Parameters Values 

Thermal storage system  

COP of the ice storage system COPice 3 

PHES  

Electricity generation efficiency ηele 0.38 

Transportation efficiency of electricity from power plants to users ηtran 0.93 

Electricity distribution efficiency ηPHES 0.95 

CCHP  

Efficiency for electricity generation Eele 0.3 

Percentage of heat used for absorption chillers Ecool 0.4 

Percentage of heat used for heating/hot water Eheat 0.2 

Percentage of heat loss Eloss 0.1 

COP for absorption chillers COPabs 1.1 

Electricity generation efficiency for DCS without CCHP Egrid 3.5 

3.4 DCS with thermal storage system 

Two tariffs are used in the economic performance assessment of the DCS with thermal 

storage system. One is a tariff in Hong Kong (CLP 2014), where the utility company 

gives special incentive for users using ice storage system, as shown Table 3.3. It can 

be seen that the total charge (ECtotal) includes the demand charge (ECdemand), energy 
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usage charge (ECenergy) and fuel clause (ECfuel), as shown in Eq. (3-1). The second is 

a tariff in Guangzhou, which is a city of similar climate and close to Hong Kong. The 

utility company in Guangzhou (China Southern Power Grid, 2015) also has a special 

tariff to reduce the peak load of the grid, as shown in Table 3.4. For commercial 

buildings with ice storage system, the tariff of residential buildings is used. Here the 

tariff for commercial and residential users is listed. It can be seen that the cost is 

determined by the energy usage and the time of the day. Costs under the tariff in 

Guangzhou are also calculated to investigate the effects of tariffs.  

ECtotal = ECdemand + ECenergy + ECfuel                                         (3-1) 
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Table 3.3 Tariff for different users in Hong Kong 

Tariff type 

Item 

Demand charge ($/kVA) Energy charge ($/kWh) 
Fuel 

clause($/kWh) 

peak period off-peak period peak period 
off-peak 

period 
all the time 

General Service 

Tariff 
0 0 

0.124 (first 5000 kWh) 

0.123 (exceeding part) 
0 0.029 

Bulk Tariff 

(monthly no less 

than 20,000 

kWh) 

8.41 (first 650) 
0  (less than the on-peak 

peak) 
0.086 (first 200,000) 

0.077 0. 029 
 8.03 (exceeding 

part)   

3.29 (larger than the on-

peak peak) 
0.084 (exceeding part) 

Large Power 

Tariff(monthly 

no less than 

3000 kVA) 

14.79 (first 5000) 
0.0 (less than the on-peak 

peak)  
0.065(first 200 kWh/kVA) 

0.053 0. 029 
14.17 (exceeding 

part) 
4.17 (exceeding part) 0.0625 (exceeding part)  

Ice-Storage Air-

Conditioning 

Tariff 

8.41 (first 650) 
0 (less than the on-peak 

peak) 
0.086 (first 200,000) 

0.077 0. 029 
 8.03 (exceeding 

part)  

3.29 (larger than the on-

peak peak) 
0.084 (exceeding part) 

Note: Off-peak time: Monday-Saturday: 9:00 pm-9:00 am next day, Sunday and Public Holiday 

          Peak time: Rest time excluding off-peak time 
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Table 3.4 Tariff for different users in Guangzhou 

 

Note: Peak time: 14:00-17:00, 19:0-22:00; Intermediate-peak time: 8:00-14:00, 17:00-19:00, 22:00-24:00; Off-peak time: 0:00-8:00  

Base 

price

Renewable 

energy 

surcharge 

City 

construction 

surcharge

Large water 

conservation 

project fund

Reservoir 

tranfer 

fund

Total

15.7 0.2 0.24 0.1 0.1 16.4

15.3 0.2 0.24 0.1 0.1 16.0

15.2 0.2 0.24 0.1 0.1 15.9

14.9 0.2 0.24 0.1 0.1 15.6

First step 9.4 - 0.24 0.1 0.1 9.8

Second step 10.2 - 0.24 0.1 0.1 10.6

Thrid step 14.2 - 0.24 0.1 0.1 14.7

Peak time 15.5 - 0.24 0.1 0.1 15.9

Intermediate-peak time 9.4 - 0.24 0.1 0.1 9.8

Off-peak time 4.7 - 0.24 0.1 0.1 5.2

Price(Cent/kWh)

Residential user

Multi-step

Time of use

Users Limitation

Commercial user 

<1000kv

1-10kv

20kv

>=35kv
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3.4.1 Costs of DCS with full ice storage system  

In the DCS with full ice storage system, chilled water pumps are the only components 

that consume electricity during the peak time. Costs of the system under Hong Kong 

tariff are shown in Table 3.5. It can be seen that the demand charge decreases 

significantly while the energy charge increases largely for the DCS with full ice 

storage system. The unitary cost decreases from 0.13 to 0.12 ($/kWh) due to the lower 

electricity price during the off-peak time. The total annual operation cost increases by 

27.4%. It indicates that the full ice storage system is not economic efficient under the 

current tariff in Hong Kong. The investment on the full ice storage system cannot be 

paid back. 

Table 3.5 Annual operation costs of the DCS with and without full ice storage 

system under Hong Kong tariff 

 
Demand 

(×106$) 

Energy 

(×106$) 

Fuel 

(×106$) 

Total 

(×106$) 

Average cost 

($/kWh) 

DCS without 

ice storage 
3.25 5.09 2.46 10.81 0.13 

DCS with 

full ice 

storage 

1.49 8.93 3.35 13.77 0.12 

The operation costs under Guangzhou tariff are shown in Table 3.6. It can be seen that 

the operation cost for DCS with ice storage system is largely reduced. When the 

cooling during the peak time is met by the ice storage system, the operation cost is 

about 18% less than that without ice storage system. If the cooling at both peak time 

and intermediate-peak time is met by the ice storage system, the annual cost is about 

22% less than that without ice storage system. It shows that the DCS with ice storage 

system under Guangzhou tariff is very beneficial. The incentive is not so attractive for 

using ice storage system in Hong Kong. If the utility company wants to reduce the 
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peak load of the power plant significantly, current tariff should be revised and the 

difference between electricity prices during the peak time and the off-peak time should 

be enlarged.  

Table 3.6 Annual operation costs for the DCS with and without ice storage system 

under Guangzhou tariff 

 
Peak time 

(×106$) 

 Intermediate 

–peak time 

(×106$) 

Off-peak 

time 

(×106$) 

Total 

(×106$) 

Average 

cost 

($/kWh) 

No storage 0.80 3.85 4.17 8.82 0.10 

Ice storage for peak 

time 
2.65 3.85 0.75 7.25 0.07 

Ice storage for peak 

and intermediate- 

peak time 

5.43 0.69 0.75 6.87 0.05 

 

3.4.2 Costs of DCS with partial ice storage system for demand limiting 

The charge for electricity consumption is calculated monthly in Hong Kong. The aim 

of using ice storage system therefore is to reduce the monthly operation cost. Firstly 

the cooling load profile of next month is predicted based on modelling. The maximum 

operation chillers can be obtained based on the predicted cooling load. Several chillers 

will be switched off during the peak time to reduce the peak electricity demand. Exact 

number of chillers to be off is determined by checking the load profile of the month, 

which can be taken as the profile of numbers of operating chillers. The best is to reduce 

the peak electricity demand largely without consuming too much extra energy. Results 

of the DCS with ice storage system for demand limiting are shown in Fig. 3.7. 
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Fig. 3.7 Monthly operation cost saving of the DCS with partial ice storage system for 

demand limiting  

Fig. 3.7 shows that more cost saving is achieved during January, February, March, 

April, October and December. All these months are in the mild seasons of a year when 

the cooling load is relatively low. During the hot summer, the cost saving is not very 

high. It is because the cooling load keeps high in the summer. The duration requiring 

more running chillers is long. Much more energy is consumed to store cooling during 

the off-peak time to meet the cooling need during the peak time. The saving is 

compensated by the extra energy charge. The annual cost saving of the DCS with 

partial ice storage for demand limiting is about 4%, which is much more promising 

compared with the DCS with full ice storage system.  

3.5 DCS with PHES vs. DCS with thermal storage system 

Part of electricity in Hong Kong is supplied from a nuclear power station. The PHES 

plant locating in a nearby city helps coordinate the mismatch of the electricity demand 

and supply. The schematic diagram of a PHES is shown in Fig. 3.8 (Wikipedia 2015). 

The energy flow for a typical PHES can be illustrated in Fig. 3.9. The primary energy 
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is transferred into electricity with an efficiency of ηele. During the off-peak time, water 

is pumped from a lower reservoir and to the higher one. During the peak time, water 

is released to drive the turbines. The PHES can generate electricity with an efficiency 

of ηPHES. Then the electricity is transported and distributed to users from the power 

plant with a transportation efficiency ηtran and a distribution efficiency ηdist. After that, 

electricity is used to produce cooling by driving normal electrical chillers with a COP 

COPb. For the thermal storage system, the processes are similar excluding the PHES 

part. The COP of thermal storage system COPtes differs from that of normal cooling 

systems. Parameters used in this study are listed in Table 3.2. The ηPHES and COPtes 

play an important role in determining the priority of both systems so sensitivity study 

is conducted on both parameters. 

 

Fig. 3.8 Schematic diagram of a PHES 
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Fig. 3.9 Energy flow for PHES and thermal storage system 

The performance of DCS with PHES and thermal storage system is obtained based on 

the energy flow in Fig. 3.9 and parameters in Table 3.2. Previous research shows that 

the system with thermal storage is much more efficient than the system with PHES 

and it can produce more cooling (MacCracken 2010). When the efficiency of PHES 

is 70% and the overall COP of the thermal storage system is 3.5, the system with 

thermal storage produced 1.24 kWh cooling while the system with PHES produced 

0.91 kWh cooling, using 1 kWh heat from the primary energy. The efficiency of the 

system with PHES and that with thermal storage are important to determine priority 

of both systems. Sensitivity study on the performance of the systems using PHES and 

thermal storage is conducted by changing the efficiencies of both systems.  

The difference between cooling energy produced by DCS with PHES and DCS with 

thermal storage using unitary primary energy is shown in Table 3.7. The negative 

values mean that the DCS with thermal storage system can produce more cooling than 

that with PHES. The positive value means that the DCS with PHES can produce more 

cooling. It shows that if the COP of the DCS with thermal storage is lower than 2.3, 

the DCS with PHES will always be more efficient. When such a COP is 3 (which is 

often used in literature) and the efficiency of PHES is 0.75 (which is also often used 

in literature), the system with thermal storage is hardly efficient compared with the 
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system with PHES. This conclusion is significantly different from that of previous 

research.  

With such a table, the choice between PHES and thermal storage can be made if the 

primary aim is to reduce the energy consumption. For the PHES, the capital cost is 

very high and the project can be very large. However, once it is constructed, it will be 

very beneficial for users. For thermal storage system, its scale is much smaller and it 

can be installed very flexibly. 
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Table 3.7 Cooling prodcution difference between the systems using PHES and thermal storage system using unitary primary energy 

 

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

0.6 0.098 0.063 0.027 -0.008 -0.044 -0.079 -0.114 -0.150 -0.185 -0.220 -0.256 -0.291 -0.327 -0.362 -0.397 -0.433

0.62 0.125 0.090 0.054 0.019 -0.017 -0.052 -0.087 -0.123 -0.158 -0.194 -0.229 -0.264 -0.300 -0.335 -0.371 -0.406

0.64 0.152 0.116 0.081 0.046 0.010 -0.025 -0.061 -0.096 -0.131 -0.167 -0.202 -0.237 -0.273 -0.308 -0.344 -0.379

0.66 0.179 0.143 0.108 0.072 0.037 0.002 -0.034 -0.069 -0.104 -0.140 -0.175 -0.211 -0.246 -0.281 -0.317 -0.352

0.68 0.205 0.170 0.135 0.099 0.064 0.029 -0.007 -0.042 -0.078 -0.113 -0.148 -0.184 -0.219 -0.255 -0.290 -0.325

0.7 0.232 0.197 0.162 0.126 0.091 0.055 0.020 -0.015 -0.051 -0.086 -0.122 -0.157 -0.192 -0.228 -0.263 -0.298

0.72 0.259 0.224 0.188 0.153 0.118 0.082 0.047 0.011 -0.024 -0.059 -0.095 -0.130 -0.165 -0.201 -0.236 -0.272

0.74 0.286 0.251 0.215 0.180 0.145 0.109 0.074 0.038 0.003 -0.032 -0.068 -0.103 -0.139 -0.174 -0.209 -0.245

0.76 0.313 0.278 0.242 0.207 0.171 0.136 0.101 0.065 0.030 -0.006 -0.041 -0.076 -0.112 -0.147 -0.182 -0.218

0.78 0.340 0.304 0.269 0.234 0.198 0.163 0.127 0.092 0.057 0.021 -0.014 -0.049 -0.085 -0.120 -0.156 -0.191

0.8 0.367 0.331 0.296 0.260 0.225 0.190 0.154 0.119 0.084 0.048 0.013 -0.023 -0.058 -0.093 -0.129 -0.164

0.82 0.393 0.358 0.323 0.287 0.252 0.217 0.181 0.146 0.110 0.075 0.040 0.004 -0.031 -0.067 -0.102 -0.137

0.84 0.420 0.385 0.350 0.314 0.279 0.243 0.208 0.173 0.137 0.102 0.066 0.031 -0.004 -0.040 -0.075 -0.110

0.86 0.447 0.412 0.376 0.341 0.306 0.270 0.235 0.200 0.164 0.129 0.093 0.058 0.023 -0.013 -0.048 -0.084

0.88 0.474 0.439 0.403 0.368 0.333 0.297 0.262 0.226 0.191 0.156 0.120 0.085 0.049 0.014 -0.021 -0.057

0.9 0.501 0.466 0.430 0.395 0.359 0.324 0.289 0.253 0.218 0.182 0.147 0.112 0.076 0.041 0.006 -0.030

COP of ice storage system

Effciency 
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3.6 DCS with CCHP system 

DCS with CCHP system supplies cooling, heat and power to the users in the district. 

Heat produced by the primary energy is used in four means, as shown in Eq. (3-2~5). 

The actual values of coefficients used in this study are shown in Table 3.2 and they 

meet the constraint given by Eq. (3-6). Absorption chillers are used to generate cooling 

with waste heat after electricity generation. The COP of absorption chillers (Eq. (3-7)) 

is assumed to be 1.1.  

Eele=
Heat for generating electricity

Total heat of the primary energy
                                                (3-2) 

Ecool= 
Heat for absorption chillers

Total heat of the primary energy
                                              (3-3) 

 Eheat=
Heat for heating or hot water

Total heat of the primary energy
                                               (3-4) 

Eloss=
Heat loss of the CCHP system

Total heat of the primary energy
                                                (3-5) 

Eele
 + Ecool + Eheat + Eloss = 1                                               (3-6) 

COPabs =
Cooling energy produced

Heat used by absorption chillers
                                           (3-7) 

The comparison of DCS with and without CCHP system is conducted on two aspects: 

energy efficiency and cost. Therefore, the electricity generation efficiency of DCS 

without CCHP system (Egrid) is required and assumed to be 3.5. Primary energy 

consumptions of both systems to supply the same amount of cooling, heating and 

electricity are evaluated. The operation costs for DCS with and without CCHP system 

(CostCCHP, Costgrid) are determined by the prices of primary energy (Pgas) (which is 

natural gas in this study). Costs for electricity from the grid are calculated based on 

primary energy used by the power plant when generating the electricity. The payback 
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period (Pb) of the DCS with CCHP system can be obtained using Eq. (3-8), where 

CostCAP is the capital cost of the CCHP system. 

Pb=
CostCAP

Costgrid - CostCCHP
                                                 (3-8) 

3.6.1 Energy performance analysis 

Performance of DCS with CCHP system compared with the DCS fully depending on 

the grid is shown in Table 3.8. It can be seen that when the DCS integrated with CCHP 

system is designed based on thermal demand, the integrated system saves 8.5% of the 

primary energy, if no hot water is required in this district. 8.1% of primary energy is 

saved if the integrated system is designed based on the electricity demand. When the 

DCS integrated with CCHP system and the DCS fully depending on the grid produce 

the same amount of cooling, hot water and electricity, the primary energy saving for 

the integrated system can be more than 17%. It indicates that the CCHP system is very 

energy efficient when it is used in the cooling dominated areas. 

Table 3.8 shows that the energy saving changes largely when the use of hot water 

changes. A sensitivity study therefore is conducted to investigate the effects of hot 

water use on the energy saving potential of DCS with CCHP. The annual energy of 

hot water produced by the DCS with CCHP system designed based on thermal demand 

is 83(106 kWh). The actual required heat for water can be lower or higher than that. 

Energy saving of the integrated system is investigated when the required amount of 

hot water changes and the results are shown in Fig. 3.10. For the DCS without CCHP 

system, the hot water is obtained directly using water heater with a primary energy 

efficiency of 0.8. Fig. 3.10 shows that the energy saving of the DCS with CCHP 
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system increases with the increased hot water demand. The saving is up to 18%. If the 

hot water demand is higher than that produced from the CCHP, the saving decreases.  

Table 3.8 Energy consumption for the DCS with and without CCHP system 

 DCS with CCHP 
DCS fully depending 

on grid 

 

Thermal 

demand 

based 

Electricity 

demand 

based 

Thermal 

demand 

based 

Electricity 

demand 

based 

Electricity generated by CCHP (106 

kWh) 
250 202 / / 

Surplus electricity (106 kWh) 47 / / / 

Electricity from grid (106 kWh) 0 13  271 

Hot water (106 kWh) 83 67 / / 

Gas used by CCHP to meet the 

cooling and electricity demand (106 

m3) 

83 67 / / 

Gas used by grid to meet the cooling 

and electricity demand (106 m3) 
/ 3.7 77 77 

Gas used by grid to supply the same 

amount of cooling and electricity 

(106m3) 

  91 77 

Gas used by CCHP to produce 

equivalent cooling, hot water and 

electricity (106m3) 

83 71 / / 

Gas used by the grid to produce 

equivalent cooling, hot water and 

electricity (106m3) 

/ / 101 86 

Primary energy saving to meet the 

cooling and electricity demand 
8.5% 8.1% / / 

Primary energy saving to produce 

equivalent cooling, hot water and 

electricity 

18% 17% / / 
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Fig. 3.10 Energy saving of DCS with CCHP system under different hot water 

demands  

3.6.2 Economic performance analysis 

The economic performance of the DCS with CCHP system is evaluated and compared 

with the DCS without CCHP, as shown in Table 3.9. The capital cost of CCHP 

(CostCAP), is calculated using a price of 1600 $/kW. The capital cost of the CCHP for 

the district designed based on thermal energy demand is much larger than that 

designed based on electricity demand. When hot water is not used in the district (which 

is the most unfavorable scenario), operation costs and payback periods are calculated. 

When the cost is evaluated under the natural gas price in Hong Kong, the investment 

costs on the integrated system designed based on electricity demand and thermal 

energy demand are paid back in 9.7 and 14.7 years respectively. The economic 

performance of the integrated system under the lower natural gas price in Guangzhou 

is also assessed. The investment costs are paid back in 18.1 years and 27.5 years 

respectively for the DCS with CCHP system designed based on electricity demand 

and thermal demand respectively.  
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Table 3.9 Economic analysis of the DCSs with and without CCHP system 

Items 

No hot water 

Equivalent hot 

water for DCS with 

and without CCHP 

Electricity 

demand 

based 

Thermal 

demand 

based 

Electricity 

demand 

based 

Thermal 

demand 

based 

Capital cost of CCHP CostCAP (106$) 65.4 122.6 65.4 123.0 

Capital cost of extra power plant 

(106$) 
24.5 46.4 24.5 46.4 

H
o
n
g
 K

o
n

g
 

Gas price Pgas ($/MJ) 0.03 0.03 0.03 0.03 

Annual operation cost of 

DCS with CCHP CostCCHP 

(106$) 
76.9 84.2 76.9 84.2 

Annual operation cost of 

DCS without CCHP Costgrid 

(106$) 
83.6 83.6 92.7 109.4 

Payback period Pb (year) 9.7 14.7 4.1 6.3 

Payback period concerning 

power plant cost (year) 
6.0 9.2 2.6 3.9 

G
u
an

g
zh

o
u

 

Gas price ($/MJ) 0.016 0.016 0.016 0.016 

Annual operation cost of 

DCS with CCHP CostCCHP 

(106$) 
40.9 40.3 40.9 40.3 

Annual operation cost of 

DCS without CCHP Costgrid ( 

(106$) 
44.6 44.6 49.5 58.4 

Payback period Pb (year) 18.1 27.5 7.7 11.7 

Payback period concerning 

power plant cost (year) 
11.3 17.2 4.8 7.3 

 

When the hot water produced by the CCHP system is fully used by the district (which 

is the most favorable scenario), under the price in Hong Kong, the investment costs of 

DCS with CCHP system are paid back in 4.1 and 6.3 years based on electricity demand 

and thermal demand respectively. Under the price in Guangzhou, the investment costs 

of DCS with CCHP are paid back in 7.7 and 11.7 years for the same systems 
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respectively. The payback periods are much shorter than that with no hot water 

demand.  

One extra advantage of using CCHP system is that the need of power plant expansion 

is avoided. It can save the utility company considerable capital investment on power 

plant expansion. Further economic assessment is made by assuming the capital cost 

for the power plant of the utility as 600 $/kW. The capital cost of extra power plant 

for the district is obtained and the payback periods of the CCHP system when capital 

costs of extra power plant are concerned are shown in Table 3.9 as well. Under the 

natural gas price in Hong Kong, the payback period ranges from 2.6 to 6 years for the 

system design based on electricity demand. It ranges from 3.9 to 9.2 years for the 

system designed based on thermal demand. Under the natural gas price in Guangzhou, 

the payback period ranges from 4.8 to 11.3 years for the system design based on 

electricity demand. It ranges from 7.3 to 17.2 years for the system designed based on 

thermal demand. 

The above analysis shows that the DCS with CCHP system is also economic feasible 

under the current natural gas price in Hong Kong. The DCS with CCHP designed 

based on electricity demand is recommended due to its shorter payback period. It 

should be noticed that, when estimating the payback period for DCS with CCHP 

system, the operation costs of both the CCHP system and utility power plant are 

calculated using the consumptions of the same primary energy (i.e. natural gas) in this 

study. It is practically reasonable in Hong Kong as the utility companies are requested 

to use more natural gas for electricity generation. In fact, if coal is used by the power 

plant for electricity generation, which is very cheap now, the investment for CCHP 

system (using natural gas) is very hard to be paid back.  
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3.7 Summary 

The performance of DCS is assessed in this chapter on the basis of a DCS project in 

Hong Kong. The DCS is designed based on the planning information from the 

government. Performance of the DCS with three technologies is evaluated when the 

peak demand by adding a new district is of concern. Thermal storage system is 

introduced to reduce the peak demand during the peak time. PHES can also be used to 

meet the peak demand of the entire city by producing electricity at the supply side. 

Results are compared with the thermal storage system. The results are very sensitive 

to the efficiency of both storage systems. Performance of the DCS with CCHP system 

is calculated and compared with the DCS fully depending on the grid. The following 

conclusions can be made: 

i. Full ice storage system is not beneficial under current Hong Kong tariff because 

of much higher annual operation cost. It is very beneficial under Guangzhou’s 

tariff The Hong Kong tariff should be revised and the difference of electricity 

prices at peak time and off peak time should be increased to promote the use of 

full ice storage system. 

ii. The DCS with partial ice storage system for demand limiting can save around 

4% of the annual operation cost, which is recommended in the application. 

iii. The priority of the PHES and thermal storage system depends on the efficiencies 

of both systems. It is hard to conclude which one is better, which is different 

from the conclusion of former researchers. Detailed comparison and assessment 

are strongly recommended before the decision is made.  
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iv. The DCS integrated with CCHP system is more efficient than that fully 

depending on the power grid. The energy saving ranges between 8% and 18%. 

Hot water demand affects the energy saving and payback periods significantly. 

The integrated system designed based on electricity demand is recommended 

due to its short payback period. 
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CHAPTER 4 MODELING AND PERFORMANCE 

ASSESSMENT OF DCS AND ICS 

 

This chapter aims to assess the performance of DCSs by comparing with ICSs for the 

new development area. Models used to simulate the DCS and ICS are introduced. 

Three types of DCSs and ICSs with different chilled water systems are studied. The 

performance of DCSs and ICSs is analyzed under different load ratios and weather 

conditions. Energy consumption and operation costs of two systems are compared on 

the basis of the local electricity tariff. Furthermore, the energy saving potential of 

DCSs at different partial loads during night time is also studied.  

4.1 Performance assessment and comparison approaches 

The DCS performance assessment method and steps are illustrated by the flowchart 

shown in Fig. 4.1. The assessment involves three major tasks, including system design, 

system modeling and result analysis. The detailed steps are listed as follows.  

System design 

 Collect the district plan information, including the building numbers, building 

heights and floors, building functions, envelop materials, etc. 

 Plan the DCS based on the geography and geology of the district, including the 

numbers and locations of the central plants. 

 Calculate the cooling loads of the buildings. Various types of buildings are 

involved and the cooling loads should reflect the typical characters of different 

buildings. Differences are introduced for the settings of buildings with similar 

functions. The DCSs and ICSs are designed based on common design practice. 
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The numbers and capacities of the cooling equipment are selected based on the 

cooling load.  

System modelling: 

 Each DCS and ICS consists of chillers, pumps, air handling units (AHU), cooling 

towers, etc. Models for main components are built based on the physical models 

or by fitting with data from manufactures. Models for the supplemental equipment 

are from the TRNSYS toolkit.  

 Models of the entire systems are built by connecting and integrating all the 

components. Many sets of cooling equipment are selected in the ICSs. The 

parameters may vary for different buildings, like the nominal coefficient of 

performance (COP) of the chillers, the pump heads, the efficiencies of the pumps 

and the nominal powers of the cooling towers. The models in this study contain 

and embody such divergence.  

Result analysis 

 Analyze the results from the local and global views. Annual operation performance 

data are obtained from the virtual system. Global analysis is conducted including 

the energy and economic performance of the entire year and whole system.  

 Local analysis is carried out by decomposing the data into several categories at the 

seasonal level, cooling load level and component level. 
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Fig. 4.1 Flowchart of the method used to assess the performance of a DCS 

4.2 Preliminary design of the DCS and ICSs for a new development area 

Three kinds of systems with different chilled water pump schemes are simulated and 

compared: constant primary flow chilled water system (CP), constant primary & 

variable secondary flow chilled water system (CPVS) and variable primary flow 

chilled water system (VP). The schematic diagram is shown in Fig. 4.2. The three 

different types of DCSs and ICSs are marked as DCS-CP, ICS-CP, DCS-CPVS, ICS-

CPVS, DCS-VP, and ICS-VP for short.  

 

Fig. 4.2 Schematic diagram of systems with different chilled water systems 
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Fig. 4.3 Schematic diagram of a DCS with indirect connection with the end users 

 

Fig. 4.4 Schematic diagram of an ICS with primary only chilled water system 

According to the preliminary plan, cooling towers are adopted for heat rejection. In 

this study, all the DCSs and ICSs use water cooled chillers with cooling towers. The 

chillers are sized based on the maximum of the cooling load sum of all buildings in 

the district multiplied by a factor of 1.2 considering uncertainty in the climate and 

system design. For the DCS, 10 chillers with an individual capacity of 3400 tons are 

selected, together with 10 cooling water pumps, 10 cooling towers and 10 sets of 

chilled water pumps. For the ICSs, the chiller number ranges from 2 to 4 and one 

chiller corresponds to one cooling water pump, one cooling tower and one set of 

chilled water pumps. The chiller capacity ranges from 432 kW to 4900 kW. Constant 

speed cooling water pumps are selected. For the chilled water network, the buildings 
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in the new district are organized in tree shaped networks. The distance from the remote 

user to the central plant is about 1.2 km. The design supply and return temperatures 

are 7 ℃ /12℃ . Based on the location of buildings, the cooling load, the design 

temperature, the size of the pipes and resistance of the network can be determined. 

The pump head is selected based on the manual (ASHRAE 2012) and the detailed 

calculations details can be found in the manual. The detailed parameters for the pumps 

selected are shown in Table 4.1. The schematic diagram of the DCS and ICS is shown 

in Fig. 4.3 and Fig. 4.4. 

Table 4.1 Cooling water pumps and chilled water pumps for different systems 

System Pump CP VP CPVS 

DCS 

Primary chilled water 

pump head 
55m 55m 15m 

Secondary chilled water 

pump head  
N/A N/A 45m 

Cooling water pump 

head  
23m 23m 23m 

ICS 

Primary chilled water 

pump head 
40~45 40~45 12~15m 

Secondary chilled water 

pump head  
N/A N/A 30~35m 

Cooling water pump 

head  
18~20m 18~20m 18~20m 
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4.3 Models for the DCS and ICS 

4.3.1 Chiller model 

Centrifugal chillers are used in the systems. Their performance is simulated under 

different working conditions based on impeller tip speed, impeller exhaust area, 

impeller blade angle and other coefficients/constants, which are available from chiller 

technical data or identified using chiller performance data. Detailed modeling 

processes can be found in the reference (Wang 1998). Chillers with different capacities 

are selected and modelled. All the chillers are selected based on the given data from a 

major manufacturer. The nominal coefficient of performance (COP) may differ. For 

chillers with the capacity of over 1400 kW, the nominal COP is between 5.0 and 6.0. 

For chillers with medium capacity (between 500 kW and 1400 kW), the nominal COP 

is between 4.5 and 5.0. For small chillers with a capacity of below 500 kW, the 

nominal COP is about 4. Detailed parameters are not introduced one by one. The 

performance curve of the chillers in DCS is presented here as an example, as shown 

in Fig. 4.5. It can be found that the COP increases gradually with the increase of part 

load ratio and it reaches the maximum of 6.0 at around 80%.  

 

Fig. 4.5 Performance curve of chillers 
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4.3.2 AHU model 

The model here is to simulate the performance of AHUs in the buildings as the end-

users. The inputs of the AHU model are the chilled water supply temperature, water 

flow rate, inlet air temperature and air flow rate. The outputs of the AHU model are 

the outlet chilled water temperature and the outlet air temperature. The model was 

developed by an author (Wang 1998). A first-order differential equation, as shown in 

Eq. (4-1), is used to represent the dynamics of a coil with lumped thermal mass. The 

dynamic equation ensures that the energy is conserved. The supply air temperature 

and return water temperature (ta,out, tw,out) is computed using Eq. (4-2) and Eq. (4-3), 

respectively, based on the energy balance in both the air side and the water side. The 

heat transfer calculation is based on the classical number of transfer units and heat 

transfer effectiveness methods. The classical method to calculate the effect of the fins 

in the air side on the thermal resistance is used. 

2
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4.3.3 Pump model 

Both constant and variable speed pumps are used in the systems. For the constant 

speed pump it is easy to get the energy consumption. For the variable speed pumps, 

performance curves are fit based on the data from a manufacturer. The pump size 
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changes to match the capacity of chillers. The equation of pump power is shown as 

Eq. (4-4) (Bernier and Bourret 1999).  

N=H*Q*ρ*g/(1000* η)                                       (4-4) 

4.3.4 Models of supplementary components  

Cooling towers are used in DCSs and ICSs. The capacity of the cooling towers 

corresponds to that of the chillers. The model for cooling towers is Type 51b in 

TRNSYS. Indirect connection between the central plants and the users is adopted to 

clear the management delineation and avoid cross influence between different users. 

Plate heat exchangers (PHEs) are used to isolate the central chiller plant equipment 

and the users. The model for PHEs used in the simulation is Type91 in TRNSYS, 

which needs to set the heat exchanger efficiency.  

4.3.5 Control strategies for pumps and chillers 

As shown in the schematic diagrams of the DCS and ICS (Fig. 4.3 and Fig. 4.4), the 

DCS has at least one more group of chilled water pumps compared with the ICS. For 

each system, the following control strategies are adopted. 

I. DCS-CP and ICS-CP: The chillers are controlled based on the cooling load and 

the chiller capacity. When the cooling load is larger than the capacity of all the 

running chillers, turn on one more chiller including its associated chilled water 

pump and cooling water pump. When one running chiller is turned off and the 

capacity of remaining chillers is still not less than the current cooling load, turn 

off one chiller including its associated chilled water pump and cooling water 

pump.  
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II. DCS-VP and ICS-VP: The control strategy for chillers and cooling pumps is 

the same as that in CP system. For the chilled water pump in DCSs, the 

frequency of the pump is controlled by a proportional-integral-derivative (PID) 

controller to keep the differential pressure across the most remote PHE as 

constant. For the chilled water pump in ICSs, the frequency of the pump is 

controlled by a PID controller to keep the pressure drop across the remote 

branch of the AHU as constant. 

III. DCS-CPVS and ICS-CPVS: The control strategy for the chillers, cooling pumps 

and primary chilled water pumps is the same as that in CP system. The control 

strategy for the variable speed secondary chilled water pumps is similar to that 

in the VP systems. 

All the systems are simulated on the TRNSYS platform. The TRNSYS building model 

is used for the annual cooling load calculation. Models of the primary components are 

developed and used on the TRNSYS platform. Outlines of the primary component 

models are given here below. 

4.4 Performance analysis of the DCS and ICS 

4.4.1 Comparisons between the DCS and ICS — constant primary-only (CP) 

The results of DCS-CP and ICS-CP are shown in Table 4.2. It can be observed that 

the DCS-CP consumes 9.7% less energy compared with ICS-CP. Almost all the 

subsystems of DCS-CP consume less energy except the chilled water pumps. It is 

because the DCS has one more group of chilled water pumps compared with the ICS. 

Chillers in the DCS-CP are the main subsystem that consumes less energy compared 
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with ICS-CP. Therefore, it is very important to reduce the energy consumption of the 

chilled water system in order to enhance the advantages of DCS-CP. 

Table 4.2 Annual energy consumption of DCS-CP and ICS-CP 

 Chiller 

Chilled 

water 

pump 

Cooling 

water 

pump 

Cooling 

tower 
Total  

DCS (×106 kWh) 61.50 32.12 7.68 2.32 103.61 

ICS (×106 kWh) 85.05 18.50 8.65 3.90 116.11 

Energy saving (%) 26.7 -73.6 11.2 40.5 9.7 

 

Fig. 4.6 DCS and ICS monthly energy consumptions — CP system 

The monthly energy consumptions of main subsystems of DCS-CP and ICS-CP are 

shown in Fig. 4.6. It can be found that DCS-CP can hardly save energy in June, July 

and August while it consumes much less energy during other months in the year. The 

chillers of DCS-CP consume less energy throughout the year. Although the absolute 

differences between the energy consumptions of the chillers in DCS and ICS are rather 
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constant, the relative values are much higher in the cold months when the buildings 

have lower cooling demand. The chilled water system energy consumption of DCS-

CP is higher throughout the year and the difference is very large in the summer time. 

It is because more chilled water pumps work in summer and the difference due to 

operating one extra group of chilled water pumps is large. The cooling water pumps 

of DCS-CP consume less energy compared with ICS-CP only in the winter period. In 

summer, the energy consumptions are almost the same.  

To further understand the energy performance of DCS-CP and ICS-CP, their energy 

consumptions and the savings at different load ratios are shown in Fig. 4.7. The value 

of the energy consumption stands for the sum of the energy consumption 

corresponding to a cooling load ratio with an interval of 5% (e.g. 15% stands for the 

range between 10% and 15%). The saving stands for the percentage of energy saved 

by the DCS compared with the ICS. Fig. 4.7 shows that the percentage of energy 

saving is lower when load ratio is higher. It indicates that the energy saving potential 

of DCS-CP becomes lower with the increased load ratio. The energy saving of the 

chillers is over 10% and up to 60%. It indicates that the chillers in DCS-CP always 

save energy. For the chilled water pumps, all the energy ratios are negative which 

indicates that the chilled water pumps in the DCS-CP consume more energy than that 

in the ICS-CP at all load ratios. The absolute difference between chilled water system 

energy consumptions in the DCS-CP and ICS-CP is very large when the load ratio is 

between 30% and 80%. It is because most of the time in the year the load ratio is within 

the range between 30% and 80%. The relative energy saving of chilled water pumps 

is low when the load ratio is large. It indicates that more extra energy is consumed by 

the chilled water system in DCS-CP. The cooling water pumps in the DCS-CP 

consume less energy only when the load ratio is below 50%. 



 
76 

 

Fig. 4.7 DCS and ICS energy consumptions vs. cooling load ratio — CP system 

The system energy is actually saved by the DCS (i.e., saving is positive) only when 

the load ratio is below 60%. It is because when the load ratio is low, chillers have to 

run to meet the cooling demand with low COPs in ICS-CP. Particularly during night 

time, it is very common that one chiller runs with low partial load, together with one 

chilled water pump and one cooling water pump. However, this can be avoided in the 

DCS-CP. Even if cooling loads of all the buildings are very low, the total cooling load 

of all buildings may be suitable for one or two chillers to work with high COPs in 

DCS-CP. This can be considered as the load concentration effect (Shimoda et al. 2008). 

When the load ratio is very high, the chillers in the ICS-CP also have high COPs in 

spite of the capacity of chillers. At this condition, although chillers of DCS-CP work 

at high COPs, it is very hard for DCS-CP to compensate the energy consumption of 

the extra group of chilled water pumps. Thus, it is reasonable that energy saving of 

DCS mainly appears at low load ratio.  
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4.4.2 Comparison between the DCS and ICS — constant primary and variable 

secondary (CPVS) 

The results of DCS-CPVS and ICS-CPVS are summarized in Table 4.3. Table 4.3 

shows that the DCS-CPVS consumes 14% less energy compared with ICS-CPVS. 

Chillers of the DCS-CPVS are the main subsystem that consumes less energy 

compared with ICS-CPVS. Almost all the subsystems of DCS-CPVS consume less 

energy except the chilled water pumps. It is because the DCS-CPVS has two more 

groups of chilled water pumps. Therefore, it is very important to decrease the energy 

consumption of chilled water system to enhance the advantage of DCS-CPVS. 

Table 4.3 Annual energy consumption of DCS-CPVS and ICS-CPVS  

 Chiller 
Chilled water 

pump 

Cooling 

water pump 

Cooling 

tower 
Total 

DCS (×106 kWh) 63.00 17.78 7.73 2.32 90.84 

ICS (×106 kWh) 83.47 9.98 8.71 3.90 106.06 

Energy Saving (%) 24.52 -78.15 11.19 40.54 14.35 

 The monthly energy consumptions of main subsystems in the DCS-CPVS and ICS-

CPVS are shown in Fig. 4.8. It can be found that the energy consumption trend is 

similar to that of the CP system. For the entire system, the DCS-CPVS can save the 

energy all the year, which is different from the CP system. It is because the energy 

consumption of the extra chilled water pumps in the DCS-CPVS is much lower than 

that in the DCS-CP. The energy saving of other subsystems in DCS-CPVS can fully 

compensate the energy consumption of extra chilled water pumps. The chillers in 

DCS-CPVS consume less energy throughout the year. The energy saving of DCS-

CPVS is high in cold months. The energy consumption of the chilled water system in 

DCS-CPVS is higher than that in ICS-CPVS all the year, especially in summer. The 
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energy consumption of the cooling water pumps in the DCS-CPVS is lower than that 

in the ICS-CPVS except the summer period. 

 

Fig. 4.8 DCS and ICS monthly energy consumptions — CPSV system 

The energy consumptions of the DCS-CPVS and ICS-CPVS at different load ratios 

are shown in Fig. 4.9. Similar to the case of constant primary systems, the energy 

saving is lower when load ratio is higher. It shows that DCS-CPVS is more energy 

efficient compared with the ICS-CPVS most time over the year due to the load 

concentration effect and therefore higher COPs of chillers. The DCS-CPVS energy 

saving is positive only when the load ratio is below 80%. The energy savings of 

chillers are over 6% and up to 64% which confirms again the chillers in DCS-CPVS 

can always save energy. The savings of chilled water pumps are negative, indicating 

more energy consumption. The absolute difference between chilled water system 

energy consumptions in the DCS-CPVS and ICS-CPVS is also very large when the 

load ratio is between 30% and 80%. The cooling water pumps of the DCS-CPVS 

consume less energy only also when the load ratio is below 50%. 
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Fig. 4.9 DCS and ICS energy consumptions vs. cooling load ratio — CPSV system  

4.4.3 Comparisons between the DCS and ICS — variable primary only (VP) 

The energy consumptions of DCS-VP and ICS-VP are summarized in Table 4.4. It 

can be seen that the DCS-VP consumes 15% less energy compared with the ICS-VP. 

The chilled water pumps in the DCS-VP are also the only part that consumes more 

energy.  

Table 4.4 Annual energy consumptions of DCS-VP and ICS-VP 

 Chiller  

Chilled 

water 

pump 

Cooling 

water pump 

Cooling 

tower 
System 

DCS(×106 kWh) 61.57 15.94 7.73 2.32 87.56 

ICS(×106 kWh) 83.32 7.44 8.60 3.90 103.26 

Energy Saving (%) 26 -114 10 41 15 
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Fig. 4.10 DCS and ICS monthly energy consumptions — VP system 

The monthly energy consumptions of main subsystems of the DCS-VP and ICS-VP 

are shown in Fig. 4.10. The trend is also similar to that in the CP system and CPVS 

system. For the entire system, the DCS-VP can save energy all the year, which is 

similar to the case of the DCS-CPVS. The chillers of the DCS-VP consume less energy 

than that in the ICS-VP all the year. The energy saving of DCS-VP is also larger in 

the cold months. The chilled water system energy consumption of the DCS-VP is 

higher than that of the ICS-VP all the year, particularly during the summer period. The 

energy consumption of cooling water pumps in the DCS-VP is lower than that in the 

ICS-VP almost all the year except in summer.  

Energy consumptions of DCS-VP and ICS-VP at different load ratios are shown in 

Fig. 4.11. Similar to the previous two cases, the energy saving is lower when load ratio 

is higher. The DCS-VP energy saving is positive only when the load ratio is below 

90%. It shows that DCS-VP is more energy efficient compared with the ICS-VP most 
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time over the year due to the concentration effect and therefore higher COPs of chillers. 

The energy savings of chillers in DCS-VP are between 10% and 64%. The savings of 

chilled water pumps are negative, indicating more energy consumption. The cooling 

water pumps of the DCS-VP consume less energy only also when the load ratio is 

below 50%. 

 

Fig. 4.11 DCS and ICS energy consumptions vs. cooling load ratio — VP system 

4.4.4 Sensitivity study of cooling loads during night time 

As discussed in the above three sections, the energy saving potential for DCS is mainly 

at the time when the load ratio is not very high. To assess the effect of part load ratio 

on the efficiency of DCS, sensitivity study is conducted by changing the cooling load 

percentages of buildings during night time. The chilled water pump scheme used in 

the test is VP. Results are shown in Fig. 4.12. 
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Fig. 4.12 Comparison between the DCS and ICS energy consumptions under 

different percentages of building floor area air-conditioned during night time 

It can be found that with the increase of the cooling need during night time, the 

difference between energy consumptions of the DCS and the ICS increases gradually. 

At the same time the energy saving percentage of the DCS is also increased and can 

be as high as 15%. However, the lowest saving of the DCS occurs when there is only 

10% (instead of 0%) of buildings with cooling load during night time. It is because 

when most buildings do not have cooling demand during night time, all the cooling 

equipment in these buildings is shut down. However, in the case of the DCS, at least 

one set of central cooling equipment has to work even if only one building needs 

cooling. If the energy saving of the DCS, due to system efficiency and concentration 

effect, cannot compensate the energy reduction of the ICS due to shutting down 

cooling plants, the energy saving of the DCS decreases. When all the buildings do not 

have cooling load at night, the DCS is also shut down. This avoids the DCS to work 

at low partial loads and COPs. Thus, it is reasonable that the DCS shows a little higher 

saving potential at 0% compared with the cases of 10% and 20% air-conditioned floor 
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area at night. In the test, at least 7% of energy can be saved by the DCS, no matter 

how much percent of buildings have cooling demand during night time. 

4.4.5 Economic analysis of the DCS and ICS 

The operation costs of the DCS and ICS were calculated based on electricity tariffs in 

Hong Kong (Table 3.3). Both the “large power tariff” and the “bulk tariff” are 

applicable for the DCS and ICS. These two tariffs are used to calculate the electricity 

bill of the DCS and ICS. 

Only the electricity bills for the DCS-VP and ICS-VP are calculated. Detailed cost 

items under “Bulk Tariff” and “Large Power Tariff” are shown in Table 4.5. It can be 

observed that even for one identical system, the difference between costs under 

different tariffs is very large. Operators or managers should select the proper one in 

practice. The energy cost of the DCS is over 10% lower than that of the ICS, indicating 

that DCS is very efficient economically. The cost saving mainly lies in the energy 

charge part. 

Table 4.5 Costs of the DCS and ICS under different tariffs 

System Tariff 

Demand 

charge 

(×106$) 

Energy 

charge 

(×106$) 

Fuel clause 

(×106$) 

Total 

(×106$) 

DCS 

Bulk tariff 1.83 6.90 2.46 11.19 

Large power 

tariff 
3.25 5.10 2.46 10.81 

ICS 

Bulk tariff 1.85 12.83 2.88 12.72 

Large power 

tariff 
3.29 5.88 2.88 12.04 
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4.5 Discussions on factors affecting energy and economic performance 

By comparing the three systems we find that the CP system consumes more energy 

than the other two systems. The VP system is the most energy efficient. The main 

difference lies in the chilled water pumps. However, the control strategy for the chilled 

water system is not optimized.  

In the simulation tests, the cold losses of the DCS chilled water network, due to DCS 

chilled water pumps and heat exchange with the surrounding environment, are not 

taken into consideration. Previous research shows that the cold loss caused by the heat 

exchange with the environment is only about 1%, which can be ignorable. Both the 

DCS and ICS experience the cold loss due to the pumps in the chilled water system. 

The DCS has at least one more group of pumps which may cause more cold loss 

compared with the ICS. However, the pump efficiency can be high to 90%. That means 

only less than 10% of the pump energy is released into the chilled water. As the chilled 

water pumps occupy about 20% of the overall system energy consumption, it can be 

predicted that around 2% of extra cold loss will be rejected into the chilled water in 

the DCS. From the above results it can be seen that about 15% of energy can be saved 

by the DCS. Consequently, the DCS can still achieve energy saving of about 13% even 

after counting the cold losses.  

4.6 Summary 

Performance of the DCS in the new district of Hong Kong is assessed and compared 

with conventional ICSs. Models for the systems are presented. Performance of DCSs 

and ICSs with different chilled water system configurations is studied and compared. 

After detailed analysis and comparison, the following conclusions can be made: 
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i. The DCS is an energy efficient cooling system for the new development area 

in the subtropical area. It consumes around 15% less energy compared with 

traditional ICS. 

ii. The DCS shows energy saving potential all the year, especially in the cold 

months when the buildings have low cooling demands. The DCS shows high 

energy saving at partial loads, especially when the load ratio is below 50%. 

iii. Chillers are the main subsystem that saves energy in the DCS. It is due to the 

load concentration effect which allows the chillers to work at high COPs, 

especially when the load ratio for individual building is low.  

iv. The chilled water system is the only subsystem that consumes more energy in 

the DCS because the DCS has at least one extra group of pumps compared with 

the ICS. Thus, reducing the energy consumption of chilled water system in the 

central plant is the important to enhance the advantage of DCSs. 

v. The DCS can save at least 7% of energy comparing with the ICS, no matter 

how much percent of buildings have cooling loads during night time.  

vi. The annual operation cost of the DCS is 10% lower compared with the ICS 

under the electrical tariffs of Hong Kong. 
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CHAPTER 5 DESIGN OPTIMIZATION METHODS 

 

Design optimization methods for DCSs and ICSs are presented in this chapter. The 

concepts of robust optimal design methods considering uncertainty, and concerning 

both uncertainty and reliability are explained respectively. The expected performance 

of the cooling systems designed using proposed methods is illustrated by comparison. 

The strategies and steps for implementing the robust optimal design methods are 

introduced.  

5.1 Concept and performance of robust optimal design for cooling 

systems  

The concept of robust design is defined as “A product or process is said to be robust 

when it is insensitive to the effects of sources of variability, even though the sources 

themselves have not been eliminated” (Fowlkes and Creveling 1995; Zang et al. 2005). 

It is widely used to improve the quality and reliability of products in industrial 

engineering. Methods to realize the robust optimal design are reviewed by Park et al. 

(2006). However, studies and applications of the robust optimal design in cooling and 

air-conditioning systems are still not sufficient. The concept and expected outputs of 

robust optimal design, proposed in this study, for cooling systems are explained in this 

section. 

5.1.1 Robust optimal design considering uncertainty only - uncertainty-based 

optimal design 

When only uncertainty is involved, the robust optimal design is regarded as 

uncertainty-based optimal design in this thesis. The main purpose is to distinguish it 
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with the design method considering both uncertainty and reliability. The performance 

of uncertainty-based optimal design is illustrated in Fig. 5.1. The performance indices 

shown by the Y-axis may refer to the thermal comfort, the energy consumption or the 

total monetary cost of the design.  

 

Fig. 5.1 Illustration of the performance of uncertainty-based optimal design 

(x1 is the pre-assumed design condition; a is the noise for x1) 

For Design A, the performance is very good at the design condition x1 but the design 

is not robust. When the inputs or conditions change due to the uncertainties or noises, 

the performance of Design A will decrease sharply. For Design B, its performance may 

not be as good as Design A but it is robust. Even when the inputs or conditions change, 

the performance of Design B keeps stable and insensitive to uncertainty. For Design 

C, the performance is good and it can keep stable even though the inputs deviate from 

the pre-assumed value. That is the uncertainty-based optimal design, which is the 

targeted design of this method.  
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5.1.2 Robust optimal design considering uncertainty and reliability 

When both uncertainty and reliability are concerned, the performance of robust 

optimal design compared with other methods is illustrated by Fig. 5.2.  

 

Fig. 5.2 Illustration of the performance of robust optimal design 

(x1 is the pre-assumed design condition; a is the noise for x1. The solid line refers the 

performance of systems under normal working conditions; The dotted line refers the 

performance of systems when failures or faults arise.) 

Under normal condition (solid line): System A using the conventional method can 

achieve good performance at the pre-assumed condition but the performance may drop 

abruptly in the presence of uncertainty (optimal but not robust); System B is insensitive 

to uncertainty while its performance is not good (robust but not optimal); Performance 

of System C and System D keeps good and stable even when uncertainty appears 

(robust and optimal). Under abnormal condition when damage or failure happens 

(dotted line): Performances of all these designs may drop while System D can still 
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achieve good and stable performance. System D is the final robust optimal system, 

which is the target system of this method.  

5.2 Uncertainty-based optimal design based on mini-max regret theory  

Many methods can be used to achieve the robust design (Park et al. 2006; Zang et al. 

2005). Considering uncertainty, the probability distribution is required while it is not 

easy to obtain accurate distribution. In addition, the time can be very limited for 

designers to conduct a considerable amount of repeat calculations to get the probability 

distribution of outputs. A simple but effective method is necessary to get the 

uncertainty-based optimal design considering uncertainty. Therefore, the uncertainty-

based optimal design method based on mini-max regret theory is developed. 

Mini-max theory is used in this study due to its simplicity and efficiency. The mini-

max theory was originated by Wald (1949). The uncertainty in the social, economic, 

environmental, technical and political factors was considered. It is regarded as a 

reasonable solution for the problem when the priori-distribution of the uncertainty 

factors is unknown. It is widely used in many fields to select the robust optimal 

decision considering uncertainty or risks (Aissi et al. 2009; Averbakh 2000; Nguyen 

et al. 2014; Pascoal and Resende 2014). In the energy field, it was used to get the 

robust optimal design of a cogeneration system under the uncertainty of energy 

demand (Yokoyama and Ito 2002; Yokoyama et al. 2014). The mini-max regret 

method was also coupled with interval parameter programming to support long-term 

planning of greenhouse gas mitigation in an energy supply system (Li et al. 2011).  

The proposed uncertainty-based optimal design method and the conventional design 

method are illustrated in Fig. 5.3. The conventional method usually determines the 

optimal design scheme under certain conditions. The steps are introduced as follows: 
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i. List the available design schemes or plans P(P1,P2,….Pi). Regarding the design 

of building cooling systems, many plans are available. For example, the system 

can use the surface water, air or the underground soil as the cooling source. After 

the cooling source is determined, the numbers and capacities of chillers can be 

organized in many ways. The chilled water systems can also be primary only 

variable flow system, primary constant & secondary variable flow system and so 

on. 

ii. Estimate the performance of each plan under certain or pre-assumed conditions. 

The performance can be energy consumption, cost and/or thermal comfort. It can 

be obtained with the predicted cooling load of the buildings, the performance of 

chillers and pumps, etc.  

iii. Compare the performance of each plan and the optimal cooling system can be 

selected with the lowest energy consumption/cost, the shortest payback period or 

the best thermal comfort. 
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Fig. 5.3 Conventional design method vs. uncertainty-based optimal design 

method based on mini-max regret theory 

The mini-max regret theory is used to get the uncertainty-based optimal design of the 

cooling system in this study. Steps to realize the method are explained bellow in detail, 

including: 

i. List all the available design schemes or plans P(P1,P2,….Pi), which is similar 

to that in the conventional method. 

ii. Determine the uncertainty factor and its possible values X(x1, x2… xj). One 

apparent advantage of the mini-max regret method is that no detailed prior-

distribution is required for the factors containing uncertainties. Only the range 

is needed, which can be divided into several intervals. Actually it is almost 
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impossible to get accurate distributions for the factors containing uncertainties. 

The assumed distribution may also bring variations to the outcomes. Such 

variations can be avoided in the optimal method based on mini-max regret 

theory. 

iii. Estimate the performance of each available plan at each value of the uncertainty 

factor Y(Pi, xj). For the design of the cooling system, the performance can be 

energy consumption, thermal comfort or cost.  

iv. Compare the performances of all the plans at each value of the uncertainty 

factor and select the optimal plan (F1
opt，F2

opt,...F
j
opt). The optimal option with 

the lowest energy consumption/cost may change at different values of the 

uncertainty factor. . 

v. Calculate the regrets Rij between other plans and the optimal plan at each value 

of the uncertainty factor. Here the regret means the difference between the 

result of the optimal plan and that of all the left plans. It can be the energy 

consumption difference or cost difference. 

vi. Find the maximum regret Ri
max for each plan at all the values of the uncertainty 

factor. The maximum regret for each plan refers to the maximum difference of 

the plan compared with the optimal ones at all the uncertainty values. To some 

extent, it can be regarded as a metric of robustness of the system. The smaller 

the maximum regret of the system is, the higher the robustness of the system 

is. Therefore, the aim is to get the system with the highest robustness with the 

smallest maximum regret. 

vii. Compare all the maximum regrets of each plan and select the minimum one 

Rminmax.  
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viii. Determine the uncertainty-based optimal plan based on the result from step 7, 

which has the mini-max regrets. The mini-max regret indicates that the 

sensitivity of the plan is the lowest to all the possible uncertainty factors. 

From the above explanation, it can be seen that the method is easy to be implemented 

and no new models or complicated methods are involved. This makes the method 

convenient to be used by the engineers or designers.  

5.3 Uncertainty-based optimal design based on uncertainty quantification 

The method based on mini-max regret theory described above can obtain the 

uncertainty-based optimal cooling system very quickly. It is very effective but cannot 

provide decision makers quantified risks about certain design option. The method in 

this section is therefore further developed to fill the gap by quantifying uncertainties 

at planning and design stages. With performance distribution at different probabilities, 

the design can be determined with quantified confidence. 

5.3.1 Outline of the method 

The proposed new design method considering uncertainty is illustrated in Fig. 5.4, in 

comparison with traditional design methods. Compared with conventional design 

method, uncertainties in the cooling load are considered in the new method. Instead of 

deterministic results, performance of different cooling system designs and 

corresponding possibility distributions are presented.  
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Fig. 5.4 Conventional design method vs. uncertainty-based optimal design method 

For the conventional method, the inputs 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛  (such as the outdoor 

temperature, ventilation rate…) are imported into the models with specified or certain 

values. Then the output y (such as cooling load, energy consumption, cost, etc.) can 

be obtained as shown in Eq. (5-1). With this only value, the cooling system can be 

designed. For the proposed method, uncertainties in the inputs are considered. The 

calculation is expressed with Eq. (5-2). Each variable considering uncertainties can be 

expressed with Eq. (5-3). The uncertainty of one variable may fit some distribution 

function G, as shown in Eq. (5-4). By importing these samples into the models, the 

output Y can be obtained. By analyzing the distribution of Y, appropriate cooling 

scheme can be obtained. 
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𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛)                                           (5-1) 

𝑌 = (𝑦1, 𝑦2 … 𝑦𝑘)𝑇 = 𝑓(𝑋1, 𝑋2 … 𝑋𝑛)                              (5-2) 

𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2 … 𝑥𝑖𝑘]𝑇                                              (5-3) 

𝑋𝑖~𝐺𝑖                                                             (5-4) 

5.3.2 Classification of variables with uncertainties  

Many variables used in the cooling load calculation contain uncertainties. All these 

uncertainties can be classified into three groups based on the physical location of these 

variables. 

1) Outdoor weather 

In the traditional method, weather data of the typical meteorological year (TMY) are 

used in the cooling/heating load calculation. However, the actual weather data can be 

very different. That is regarded as uncertainties in the weather data. Cooling/heating 

loads can be over-estimated or under-estimated by using the TMY data.  

2) Building design/construction 

At planning stage, limited information about buildings is available, such as the gross 

floor area, the number of floors or the orientation. Even for these parameters, data used 

at planning stage are very hard to be the same with that actually used when the 

buildings are constructed. By meeting the requirements of developers or governments, 

the building designs are hard to be the same for different architects. For example, the 

shape of the buildings or the material used for building envelopes can vary for different 

designers or architects. All these differences will affect the cooling loads and then 
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cause energy consumption deviation. These are regarded as uncertainties in the 

building design/construction.  

3) Indoor conditions 

Internal heat gain from occupants, lighting and plug-in equipment is a primary source 

of the cooling load. In the design calculation, variables representing the internal heat 

gain sources are usually determined according to design guidelines or manuals. 

However, actual values of these variables will vary from that used at planning and 

design stages. In addition, the indoor temperature and relative humidity set-points 

keep constant in the conventional cooling load calculation method. Actually the set-

points may differ randomly from room to room, based on the users’ preferences. All 

these differences are regarded as uncertainties in the indoor conditions.  

5.3.3 Detailed steps of the proposed method 

Steps to implement the new design method are illustrated in Fig. 5.5. Detailed 

explanations are introduced as follows. 

1) The input variables that have uncertainties are selected and samples are generated 

for these variables. Many distributions can be used when conducting uncertainty 

study in building energy systems.  

2) Samples are imported into the cooling load calculation software. For a DCS, many 

buildings with different functions are involved. Each building needs to be 

simulated. For each building, uncertainties of the cooling loads result from the 

uncertainties in the three groups of input variables.  

3) The cooling load profile of the DCS and ICS can be obtained. The cooling loads 

of ICSs can be calculated by importing samples into the cooling load calculation 
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platform. By summing the cooling loads of all individual buildings in a DCS, the 

cooling load distribution of DCSs can be obtained.  

4) The distribution of peak cooling load and annual cooling load profile are analyzed.  

5) Based on the peak cooling load distribution, the optimal capacity of the DCS and 

ICS can be determined considering quantified risks. Based on the annual cooling 

load distribution, the performance of the DCS and ICS options with different 

configurations is obtained and the optimal system configuration therefore can be 

determined. 

 

Fig. 5.5 Steps of the uncertainty-based optimal design method 

5.4 Robust optimal design considering uncertainty and reliability 

5.4.1 Overview of the robust optimal design method 

The processes and steps of the robust optimal design method are illustrated in Fig. 5.6. 

The method to quantify the uncertainties is similar to that used in the uncertainty-based 
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optimal design method in Section 5.3. It will be not repeated here. Uncertainties in 

cooling load calculation are considered. By importing the samples of related 

parameters into the calculation, the distribution of the cooling load can be obtained.  

 

Fig. 5.6 Steps of robust optimal design method  

The difference between the robust optimal method and the uncertainty-based optimal 

method lies in the reliability assessment of components or subsystems. Reliability 

assessment in the design optimization is conducted using Markov method. By 

assessing the reliability of the cooling system, the expected performance of the system 

can be obtained. By taking the total annual cost as the objective, the robust optimal 

cooling system can be achieved. 
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5.4.2 Quantification of component reliability in operation 

A cooling system can be comprised by many components or sub-systems in 

parallel/serial, which can be regarded as a multi-state system. These components and 

subsystems are connected with multiple interactions and functional dependencies. 

Failure of one component may result in malfunction or damage of other components 

and bring losses to users. Therefore, reliability has to be in consideration at the design 

stage. Both qualitative and quantitative methods can be used to conduct the reliability 

analysis. One common method for qualitative analysis is failure modes and effects 

analysis. For quantitative reliability analysis, three methods are widely used including 

fault tree analysis, reliability block diagrams and Markov analysis. The Markov 

method is selected for its wide application in reliability analysis of multi-state systems 

(Lisnianski and Levitin 2003).  

The aim of Markov method is to obtain the probability of each state of a multi-state 

system at a specific period and then the system performance can be estimated. The 

basic theory for the Markov method is that the state at the next time point only relates 

to that of current time point. The system either keeps current state or transfers to other 

states at the next time point. Several steps are required using the Markov method, 

including: 

I. List all the possible states of the cooling system; 

II. Determine the state transition density matrix; 

III. Obtain the probability of each state of the cooling system; 

IV. Calculate the mean steady-state performance of the cooling system.  

The detained processes are explained using an example of a three-chiller cooling 

system as follows.  
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Totally the cooling system may have eight states considering the reliability of chillers, 

as shown in Fig. 5.7. It is assumed that the chiller only has two states: normal (1) and 

failure (0). The cooling system may transfer from one state to another due to failure 

and repair actions at a given period. The transfer is determined by a state transition 

density matrix A (Eq. (5-5)), which only relates to the repair rate and failure rate of 

chillers (Lisnianski and Levitin 2003). Probability distribution of the system at each 

state at time t can be expressed with a vector PR(t) (Eq. (5-6)). It can be deduced from 

the initial state by Eq. (5-7) and Eq. (5-8). When the time approaches infinity, PR(∞) 

will keep stable (Eq. (5-9)). Then the steady-state state probabilities can be obtained 

by solving the linear algebraic equations (Eq. (5-10) and Eq. (5-11)). The mean steady-

state performance thus can be obtained (Eq. (5-12)) and the deficiency caused by 

failures can also be calculated. The mean steady-state system performance represents 

the average performance of the system considering failures. 

 

Fig. 5.7 States of a three-chiller cooling system and possible transitions 
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A= [

a11 a12 ⋯ a1k
a21 a22 ⋯ a2k

⋮ ⋮ ⋱ ⋮
ak1 ak2 ⋯ akk

]                                                        (5-5) 

PR(t)=[pr
1
(t), pr

2
(t)…pr

k
(t)]

T
                                               (5-6) 

PR(1)=PR(0)A                                                            (5-7) 

PR(m)=PR(m-1)A = PR(0)A
m

                                            (5-8) 

PR(∞)=PR(∞-1)A = PR(∞)A                                              (5-9) 

PR(∞)(A-I)=0                                                         (5-10) 

∑ pr
i
(∞)k

i=1 =1                                                               (5-11) 

E∞= ∑ y
i
pr

i
k
i=1                                                                 (5-12) 

The key issue for using the Markov method is to determine the transition density 

matrix A. As mentioned above, it only relates to the failure rate and repair rate of the 

component. When the repair rate and failure rate are regarded as time-independent, 

these two variables can be obtained by Eq. (5-13) and Eq. (5-14) (Lisnianski and 

Levitin 2003). 

λ =1/MTTF                                                        (5-13) 

μ=1/MTTR                                                        (5-14) 

5.4.3 Optimization objectives 

For sizing the cooling systems, higher reliability usually corresponds to larger capacity, 

accompanying with larger capital cost and operation cost, as shown in Fig. 5.8. The 
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robust optimal design method balances the reliability and cost by minimizing the total 

annual cost (Eq. (5-15)).  

 

Fig. 5.8 Cost of the cooling system vs. system reliability  

The total annual cost (Ctoal) is the sum of the annual capital cost, operation cost (Cop) 

and availability risk cost (Car). The capital cost (Ccpt) is determined by the system 

capacity (CAP). The operation cost (Cop) is estimated based on the annual energy 

consumption of the cooling system. Availability risk cost is introduced to account for 

the loss caused by the cooling demand that the system does not satisfy, which is called 

penalty cost in other field (Stapelberg 2009). It is calculated based on the cooling load 

and the available capacity (CAPa) of the cooling system at specific time, as shown in 

Eq. (5-16). If the cooling demand is met, the availability risk cost will be zero. From 

Fig. 5.8 it can be found that with the increase of system reliability (capacity), the 

availability risk cost decreases. The total annual cost decreases firstly and then 

increases after it reaches the minimum at point O, which is the target system. Eq. (5-

15) indicates that the total annual cost is determined by the cooling system capacity 
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(CAP). Therefore, the aim is transferred to obtain the optimal capacity of the cooling 

system with the lowest annual total cost. 

Ctoal(CAP,Load)=Ccpt(CAP)/yr+Cop(CAP,Load)+Car(CAP,Load)                             (5-15) 

Car= ∑ (Par×max(0, Load(i)-CAPa(i)))8760
i=1                             (5-16) 

5.5 Summary 

Design optimization methods considering uncertainty, both uncertainty and reliability 

are developed for DCSs and ICSs. Processes for uncertainty quantification and 

reliability assessment are described and the steps to implement the methods are 

explained. The optimal design method based on mini-max regret theory is introduced, 

which determines the robust cooling systems in a simple and effective way. By 

quantifying uncertainties, the uncertainty-based optimal design method is realized and 

the optimized design can be achieved. By quantifying uncertainty and reliability, the 

robust optimal design with the lowest total annual cost can be achieved. 
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CHAPTER 6  OPTIMAL DESIGN BASED ON MINI-

MAX REGRET THEORY CONSIDERING 

UNCERTAINTY 

 

Considering the uncertainty at planning and design stages, the optimal cooling system 

can be achieved based on mini-max regret theory without probability assumptions. 

The method is demonstrated in this chapter through a case study. Chillers and chilled 

water pumps of cooling systems are two primary energy consuming sub-systems. 

Appropriate design of these two components is very important for achieving high 

system efficiency. Therefore, the optimal design method based on mini-max regret 

theory is implemented in the design optimization of chiller combination and chilled 

water pump configuration in this chapter. 

6.1 System introduction 

The cooling system of an office building in the new district described in Chapter 4 is 

selected to test and evaluate the new method. The annual hourly cooling load is 

calculated with the weather data of TMY in Hong Kong by TRNSYS, which is shown 

in Fig. 6.1. It shows that the cooling is required almost all the year due to the 

subtropical climate. The maximum cooling load is 5746 kW, which is the basis for 

sizing the cooling system. The design scheme of the cooling system using the 

conventional method is taken as the reference case. 
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Fig. 6.1 Annual hourly cooling load of the building in the reference case 

The aim of the proposed optimal design method is to obtain the optimal design of the 

cooling system considering uncertainty during the design process. It is implemented 

in the two major aspects of the cooling system: the combinations of chillers with 

different numbers and capacities, and the configurations of chilled water pumps. For 

the design optimization of chiller combinations, uncertainty in the cooling load 

calculation is concerned. For the design optimization of chilled water pump 

configurations, uncertainty in the resistance of the chilled water pipeline is concerned.  

A) Combination of chillers 

When determining the numbers and capacities of chillers, the conventional approach 

is to select several identical chillers because of simplicity, easy control and convenient 

maintenance. However, this may not be the efficient way considering the partial load. 

Even though the optimal combination can be selected based on the cooling load in the 

reference case, it may not be the uncertainty-based optimal one in consideration of 
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uncertainty. Here the mini-max regret method is used to obtain the uncertainty-based 

optimal combination of chillers considering uncertainty in the cooling load calculation. 

To obtain the uncertainty-based optimal cooling system based on the mini-max regret 

theory, the following assumptions are made: 

 The uncertainty in the cooling load is quantified by multiplying the cooling load 

by a factor ranging from 0.5~1.5 with an interval of 0.1. 

 The chiller number ranges from 2 to 4. For each number, many combinations are 

available. The chiller capacity is discrete with an interval of 10% of the total 

capacity of the cooling systems. 

 The performance curve of all the chillers with different capacities is assumed to be 

the same, which aims to avoid the deviation caused by the performance uncertainty 

of the chillers. 

 All the cooling water pumps and chilled water pumps are constant speed pumps. 

Cooling systems with different numbers of chillers are designed using the maximum 

cooling load. For each option of chillers, the available combinations are listed in Table 

6.1. The value in the table is the ratio of each individual chiller capacity to the total 

capacity of the cooling plant. The performance curve of the chillers is shown in Fig. 

4.5. The hydraulic heads are 20m (1m equals to 104 Pa) and 40m for the cooling water 

pumps and the chilled water pumps respectively. The power of the pumps is calculated 

with Eq. (4-4).  
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Table 6.1 Combinations of chillers for the cooling system 

2 chillers 3 chillers 4 chillers 

No. Combinations No. Combinations No. Combinations 

C2-1 2 identical chillers C3-1 3 identical chillers C4-1 4 identical chillers 

C2-2 0.1+0.9 C3-2 0.1+0.45+0.45 C4-2 0.1+0.1+0.1+0.7 

C2-3 0.2+0.8 C3-3 0.2+0.4+0.4 C4-3 0.1+0.1+0.2+0.6 

C2-4 0.3+0.7 C3-4 0.3+0.35+0.35 C4-4 0.1+0.1+0.3+0.5 

C2-5 0.4+0.6 C3-5 0.4+0.3+0.3 C4-5 0.1+0.1+0.4+0.4 

  C3-6 0.5+0.25+0.25 C4-6 0.1+0.2+0.2+0.5 

  C3-7 0.6+0.2+0.2 C4-7 0.1+0.3+0.3+0.3 

  C3-8 0.7+0.15+0.15 C4-8 0.2+0.2+0.2+0.4 

  C3-9 0.8+0.1+0.1 C4-9 0.2+0.2+0.3+0.3 

 

2) Configurations of chilled water pumps 

The chilled water system can be organized in different configurations. In this case 

study, chilled water systems with five different configurations are considered. The 

resistance of the chilled water pipeline is the main factor affecting the energy 

consumption of pumps in operation. Therefore, uncertainty in the chilled water 

pipeline resistance is concerned. The resistance is expressed as the required hydraulic 

head (m). The parameters of these five chilled water systems used in the reference 

cases and the uncertainty-based cases considering uncertainty are shown in Table 6.2.  
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Table 6.2 Parameters of the chilled water pumps for the reference case and 

uncertainty-based cases 

 Pump configuration 

Pump head (m) 

Reference case Uncertainty-based case 

Primary 

pumps 

Secondary 

pumps 

Primary 

pumps 

Secondary 

pumps 

CP3 
3 constant-speed 

primary pumps 
45 N/A 35~55 N/A 

CP3VS3 

3 constant-speed 

primary pumps & 3 

variable-speed 

secondary pumps 

15 30 15 20~40 

VP3 
3 variable speed 

primary pumps 
45 N/A 35~55 N/A 

CP3VS4 

3 constant-speed 

primary pumps &4 

variable-speed 

secondary pumps 

15 30 15 20~40 

VP4 
4 variable speed 

primary pumps 
45 N/A 35~55 N/A 

The cooling systems with three identical chillers are selected to study the 

configurations of the chilled water systems considering the uncertainty of the pipeline 

resistance. Therefore, three constant speed pumps are designed for the primary pumps. 

The primary pumps operate following the sequence of the chillers they serve. The 

variable speed pumps (in the primary constant & secondary variable flow chilled water 

systems and primary only variable flow chilled water systems) are controlled by PID 

controllers. The controller is used to maintain the pressure drop across the most remote 

terminal user as a constant. The efficiency of the pumps for all the constant speed 

pumps is assumed to be the same as a constant.  
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Fig. 6.2 Cooling loads of typical weeks in three different seasons 

To simplify the calculation and reduce the tuning work of the PID controller, the 

energy consumptions of the cooling systems under the cooling loads of three typical 

weeks (instead of the whole year) are calculated. The cooling loads of these three 

weeks are taken from the hot season, the intermediate season and the cold season 

respectively, as shown in Fig. 6.2. It shows that the cooling load in the hot week is 

much higher than that in other two weeks. The cooling load in the cold week is very 

low and sometimes the cooling system will be shut down. The performances of the 

cooling systems with different combinations of chillers and configurations of chilled 

water pumps is presented in the following section. The energy consumption is used as 

the criterion to select the uncertainty-based optimal cooling system.  
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6.2 Performance of systems with different combinations of chillers 

6.2.1 Combinations of two chillers 

The energy performance of cooling systems with different combinations of two 

chillers is shown in Table 6.3. It shows that, for all the systems, the energy 

consumption increases with the increase of the uncertainty factor. For different 

systems under the same uncertainty factor, the energy consumption can be very 

different. With the energy consumption of each system at each uncertainty factor, the 

optimal systems with the lowest energy consumption at different uncertainty factors 

can be obtained. The regrets for each system can be calculated. 

The regrets for the cooling systems with two chillers at different uncertainty factors 

are shown in Fig. 6.3. It shows that the System C2-2 has the largest regrets at all the 

different uncertainty factors, indicating that it has the largest deviation from the 

optimal design. System C2-4 and C2-5 have smaller regrets. The maximum regrets for 

each system at different uncertainty factors can be determined. The mini-max regret 

can also be determined. It is 0.0095 kWh which is from System C2-4. Therefore, 

System C2-4 is the uncertainty-based optimal cooling system when two chillers are 

selected. The capacities of the two chillers are 0.3 and 0.7 of the total capacity of the 

cooling system respectively. 
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Table 6.3 Energy consumption (106 kWh) of the cooling systems under different 

uncertainty factors of the cooling load - Two chillers 

System 

Uncertain- 

ty factor 

C2-1 C2-2 C2-3 C2-4 C2-5 

0.50 2.48 3.08 2.41 2.16 2.25 

0.60 2.83 3.40 2.84 2.51 2.56 

0.70 3.18 3.69 3.20 2.87 2.91 

0.80 3.50 3.98 3.53 3.24 3.26 

0.90 3.83 4.29 3.85 3.61 3.61 

1.00 4.16 4.60 4.16 3.96 3.95 

1.10 4.51 4.91 4.48 4.30 4.30 

1.20 4.84 5.21 4.78 4.62 4.63 

1.30 5.14 5.48 5.05 4.90 4.93 

1.40 5.41 5.72 5.29 5.16 5.20 

1.50 5.65 5.94 5.52 5.40 5.46 

 

 

Fig. 6.3 Regrets for the cooling systems with different combinations of two chillers 
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Fig. 6.4 Comparison between energy consumptions of System C2-1 and C2-4 

The comparison between the energy consumptions of System C2-4 and C2-1 is shown 

in Fig. 6.4. The energy saving of System C2-4 is also shown in the figure. It can be 

found that the uncertainty-based optimal system always consumes less energy 

compared with System C2-1. The energy saving is up to 13%. The saving increases 

with the decrease of the cooling load uncertainty factors. It indicates that if the cooling 

load of the building decreases in the future, the advantage of the uncertainty-based 

optimal cooling system will become more apparent.  

6.2.2 Combinations of three chillers 

The energy performance of cooling systems with different combinations of three 

chillers is shown in Table 6.4. It shows similar trend as the cases of two chillers (Table 

6.3). The energy consumption of all the systems increases with the increase of the 

uncertainty factors. For different systems under the same uncertainty factor, the energy 

consumption is also very different. The energy consumption of System C3-3 and 

System C3-7 is lower at each cooling load uncertainty factor. Actually the energy 
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consumptions of System C3-3 and System C3-7 are similar. That is due to the identical 

cooling load interval that can be used by the sequence control of the chillers in these 

two systems (i.e. 0.2 of the cooling system capacity). The optimal cooling system with 

the lowest energy consumption at each uncertainty factor can be obtained based on the 

data shown in Table 6.4. 

Table 6.4 Energy consumption (106 kWh) of the cooling systems under different 

uncertainty factors of the cooling load - Three chillers 

System 

Uncer- 

tainty factor 

C3-1 C3-2 C3-3 C3-4 C3-5 C3-6 C3-7 C3-8 C3-9 

0.50 2.17 2.13 1.95 2.08 2.05 2.01 1.95 2.00 2.34 

0.60 2.50 2.45 2.31 2.42 2.38 2.38 2.31 2.37 2.77 

0.70 2.85 2.80 2.67 2.77 2.73 2.74 2.67 2.74 3.14 

0.80 3.22 3.14 3.02 3.13 3.09 3.10 3.02 3.11 3.47 

0.90 3.58 3.48 3.37 3.50 3.45 3.45 3.37 3.48 3.80 

1.00 3.93 3.84 3.73 3.86 3.80 3.80 3.73 3.84 4.11 

1.10 4.28 4.19 4.08 4.21 4.16 4.15 4.08 4.18 4.44 

1.20 4.60 4.53 4.42 4.54 4.49 4.48 4.42 4.50 4.74 

1.30 4.89 4.84 4.72 4.83 4.79 4.78 4.72 4.79 5.01 

1.40 5.16 5.12 4.99 5.10 5.06 5.05 4.99 5.06 5.26 

1.50 5.40 5.38 5.25 5.35 5.31 5.30 5.25 5.31 5.49 

The regrets for all the systems at different uncertainty factors are shown in Fig 6.5. It 

can be found that the System C3-9 has the largest regrets at all uncertainty factors, 

indicating that it has the largest deviation from the optimal system. System C3-3 and 

C3-7 has the lowest deviation, which is 0. That is because the energy consumptions of 
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the System C3-3 and C3-7 are the lowest at every uncertainty factor. Having the 

regrets, the maximum regrets for each system at all the uncertainty factors can be 

determined. Accordingly, the mini-max regret can also be obtained. In this study, the 

mini-max regret is 0 which is from the System C3-3 and C3-7. It indicates that the 

System C3-3 and C3-7 are the uncertainty-based optimal cooling systems among all 

the design options. The capacity of three chillers is 0.2, 0.2, 0.6 or 0.4, 0.4, 0.2 of the 

total cooling system capacity. 

 

Fig. 6.5 Regrets for the cooling systems with different combinations of three chillers 
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Fig. 6.6 Comparison between energy consumptions of System C3-1 and C3-3 

The energy consumption comparison of System C3-1 and C3-3 is illustrated in Fig. 

6.6. The energy saving of System C3-3 is also shown in the figure. It can be seen that 

the uncertainty-based optimal system can always consume less energy compared with 

System C3-1. At least 2.8% of energy can be saved by the uncertainty-based optimal 

cooling system. The energy saving ratio can be up to 10%. The saving increases with 

the decrease of the cooling load uncertainty factors. It indicates that if the cooling load 

of the building decreases in the future, the advantage of the uncertainty-based optimal 

cooling system will become more apparent.  

6.2.3 Combinations of four chillers 

The energy performances of the cooling systems with combinations of four chillers 

are shown in Table 6.5. It has the similar trend as that for the previous two cases shown 

in Table 6.3 and Table 6.4. The energy consumptions of all the systems increase with 

the increase of the uncertainty factors. For different systems under the same 

uncertainty factor, the energy consumption is very different. Having the energy 
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consumption of each system at each uncertainty factor, the optimal systems with the 

lowest energy consumption at different uncertainty factors can be obtained. The 

regrets can also be calculated. 

Table 6.5 Energy consumption (106 kWh) of the cooling systems under different 

uncertainty factors of the cooling load - Four chillers 

System 

Uncerta- 

inty factor 

C4-1 C4-2 C4-3 C4-4 C4-5 C4-6 C4-7 C4-8 C4-9 

0.50 2.01 1.95 1.84 1.82 1.87 1.82 1.91 1.95 1.89 

0.60 2.38 2.32 2.20 2.19 2.24 2.19 2.25 2.31 2.25 

0.70 2.74 2.70 2.56 2.55 2.60 2.55 2.60 2.67 2.61 

0.80 3.10 3.08 2.92 2.91 2.95 2.91 2.96 3.02 2.97 

0.90 3.45 3.45 3.29 3.28 3.31 3.27 3.33 3.37 3.33 

1.00 3.80 3.81 3.65 3.64 3.66 3.64 3.69 3.73 3.68 

1.10 4.15 4.17 4.02 4.01 4.03 4.00 4.06 4.09 4.05 

1.20 4.48 4.52 4.39 4.38 4.40 4.37 4.43 4.46 4.42 

1.30 4.78 4.87 4.76 4.75 4.76 4.74 4.80 4.82 4.78 

1.40 5.05 5.22 5.11 5.11 5.12 5.10 5.16 5.17 5.14 

1.50 5.30 5.56 5.47 5.47 5.48 5.46 5.51 5.53 5.49 

The regrets for the cooling systems with combinations of four chillers at different 

uncertainty factors are shown in Fig. 6.7. It can be seen that the energy consumptions 

of System C4-3, C4-4 and C4-6 are lower than that of other systems. System C4-1, 

which is commonly used, has lower energy consumption when the uncertainty factor 

is large. However, the regrets are the largest when the uncertainty factor is less than 1, 

indicating that it has the largest deviation from the optimal design. The maximum 

regrets for each system at different uncertainty factors can be determined. The mini-
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max regret can also be determined. It is 0.16 (106 kWh), which is from System C4-6. 

Therefore, System C4-6 is the uncertainty-based optimal cooling system when four 

chillers are selected. The capacity of four chillers in System C4-6 is 0.1, 02, 0.2 and 

0.5 times the cooling system capacity. 

 

Fig. 6.7 Regrets for the cooling systems with different combinations of four chillers 

 

Fig. 6.8 Comparison between energy consumptions of System C4-1 and C4-6 
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The comparison between energy consumptions of System C4-1 and C4-6 is shown in 

Fig. 6.8. The energy saving of System C4-6 is also shown in the figure. The trend is 

different from the other two previous cases. The cooling system selected using the 

uncertainty-based optimal design method is not always the most efficient. When the 

uncertainty factor is more than 1.2, the energy consumption of System C4-6 is larger 

than that of System C4-1. System C4-6 can save up to 8% of energy compared with 

System C4-1. The saving increases with the decrease of the uncertainty factor. It 

indicates that, if the cooling load of the building decreases in the future, the advantage 

of the uncertainty-based optimal cooling system will become more apparent.  

The cooling system designed using the uncertainty-based optimal method can be more 

energy efficient among most of the cases when the cooling load varies. The energy 

saving can be high to 12% compared to the system determined by the commonly used 

method. The designer can use this method to determine the uncertainty-based optimal 

combinations of chillers. 

6.3 Systems with different configurations of chilled water pumps 

The results for different configurations of chilled water pumps considering uncertainty 

in the pipeline resistance are presented in this section. The energy consumptions of the 

chilled water pumps in three typical weeks at different resistances are summarized in 

Table 6.6.
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Table 6.6 Energy consumption (103 kWh) of chilled water pumps at different pipeline resistances in the three typical weeks 

 

  Head (m) 

 

Config- 

uration 

35 37 39 41 43 45 47 49 51 53 55 

Hot week 

CP3 12.51 13.22 13.94 14.65 15.37 16.08 16.80 17.51 18.23 18.94 19.66 

CPVS3 10.51 10.69 10.89 11.11 11.36 11.59 11.83 12.09 12.37 12.68 13.09 

CPVS4 10.25 10.37 10.51 10.67 10.84 11.02 11.26 11.45 11.66 11.88 12.21 

VP3 6.49 6.65 6.82 6.98 7.16 7.33 7.55 7.76 7.95 8.15 8.36 

VP4 6.15 6.27 6.40 6.52 6.66 6.81 6.96 7.13 7.28 7.45 7.63 

Intermediate 

week 

CP3 5.65 5.97 6.29 6.62 6.94 7.26 7.58 7.91 8.23 8.55 8.88 

CPVS3 4.54 4.57 4.59 4.62 4.64 4.67 4.69 4.72 4.74 4.77 4.80 

CPVS4 4.31 4.33 4.34 4.37 4.39 4.41 4.43 4.46 4.48 4.50 4.52 

VP3 2.45 2.47 2.50 2.52 2.54 2.57 2.59 2.62 2.64 2.66 2.69 

VP4 2.12 2.12 2.13 2.14 2.15 2.17 2.18 2.20 2.21 2.23 2.25 

Cold week 

CP3 2.61 2.76 2.91 3.05 3.20 3.35 3.50 3.65 3.80 3.95 4.10 

CPVS3 2.35 2.37 2.39 2.40 2.42 2.43 2.45 2.47 2.48 2.50 2.52 

CPVS4 2.19 2.21 2.22 2.23 2.25 2.26 2.27 2.28 2.29 2.30 2.31 

VP3 1.54 1.55 1.56 1.57 1.58 1.59 1.59 1.61 1.62 1.63 1.64 

VP4 1.25 1.26 1.27 1.27 1.28 1.27 1.27 1.27 1.28 1.29 1.30 
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Fig. 6.9 Regrets of five chilled water pump configurations at different resistances
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From Table 6.6, it can be observed that the energy consumption of the chilled water 

systems increases with the increase of the total resistance of the chilled water network. 

For each chilled water pump configuration, the energy consumption is the largest in 

the hot week and the lowest in the cold week, due to the cooling load difference. At 

the same cooling load and the pipeline resistance, the energy consumption of the 

configuration with constant speed primary pumps is much higher than that of the other 

two types of configurations. The configuration with variable speed primary pumps has 

the lowest energy consumption. It indicates that the chilled water system with variable 

speed primary pumps is more efficient than other systems. Compared with the 

configuration with constant speed primary only pumps, the configuration with variable 

speed primary only pumps can save 50%~60% of energy in the hot week at different 

resistances. In the intermediate week, the configuration with variable speed primary 

only pumps can save 62%~75% of energy, which is higher than that in the hot week. 

The advantage of the configuration with variable speed primary only pumps is more 

apparent when the cooling load is low. In the cold weeks, the chillers and pumps are 

shut down when the cooling load is too low. The energy saving for the configuration 

with variable speed primary only pumps is about 52%~68%. In all these three weeks, 

the energy saving for the configuration with variable speed primary only pumps 

increases with the increase of resistance. 

The regrets for each chilled water pump configuration at different resistances in the 

three typical weeks are shown in Fig. 6.9. It can be seen that the trend is similar for 

the five different chilled water pump configurations in different weeks. The absolute 

regrets are the highest in the hot week and the lowest in the cold week. The regrets for 

VP4 system are 0 at all the resistances in the three weeks. It means that VP4 system is 

always the optimal system, no matter how the resistance changes in the range between 
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35m and 55m. The regrets for CP3 system are always higher than other systems at 

different resistances. It means that the configuration with constant speed primary-only 

pumps is always energy consuming, which should be avoided during the cooling 

system design. The configuration with constant primary & variable secondary pumps 

is better than that with constant speed primary-only pumps but worse than that with 

variable speed primary-only pumps. In addition, the system with more pumps has 

lower regrets when the means of pump connection is the same. It shows that the 

cooling system with more pumps in a given means of pump connection is more 

efficient. 

The maximum regrets of the five chilled water pump configurations at all the 

resistances can be obtained. From Fig. 6.9 it can be seen that the maximum regrets 

locate at the end of each curve. The mini-max regret can be calculated by comparing 

the maximum regrets. It is 0 kWh in this case, which is from the VP4 system. It 

indicates that the VP4 system is the uncertainty-based optimal system among all the 

chilled water pump system options. 

6.4 Discussions 

The uncertainty-based optimal design of the cooling system can be obtained using the 

proposed method. The advantage of this method is that it is easy to realize the design 

optimization. No additional complex methods or models are introduced when 

selecting the uncertainty-based optimal cooling system. The uncertainty-based 

optimal design is determined by repeating the original methods a few more times. This 

is very beneficial for practical applications as it is usually difficult or impossible for 

consultants or designers to optimize the design by learning new and complicated 

methods due to limited time and efforts. Such a method will help them to obtain the 

uncertainty-based optimal design effectively. 
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Usually there are many factors that have uncertainty in the design of cooling systems, 

only two of which are studied in this section. Uncertainty-based optimal design of the 

cooling systems considering other uncertainty factors is worth to be investigated in 

further study. More efforts are needed on optimizing the cooling system design by 

considering uncertainty at both design and operation stages. 

The chiller capacity changes with an interval of 10% of the cooling system capacity 

in this paper. In actual applications, the interval may be smaller and more cases can be 

obtained and compared. The uncertainty-based optimal chiller combinations are 

selected without considering backup system. The decision is just made based on 

energy performance of cooling systems. For practical applications, uncertainty-based 

optimal design of cooling systems needs to consider the reliability of components and 

backup system.  

The annual energy consumption of the chilled water pumps is not estimated in this 

study. However, three typical weeks are selected from the hot season, intermediate 

season and cold season. The trend of pump energy consumption in these three weeks 

keeps consistent. Thus, the conclusions can be made based on the performance of five 

chilled water pump configurations in these three weeks. 

The mini-max regret of the uncertainty-based optimal chilled water pump 

configuration is 0 kWh in this study. It means that the configuration of VP4 is always 

the best considering uncertainty in the pipeline resistance. Even without considering 

the uncertainty, Configuration VP4 may also be selected due to lower energy 

consumption. Coincidentally the optimal design is also the uncertainty-based optimal 

design. However, this may not be the general case when optimizing the cooling system 

design. Usually the mini-max regret is not 0, as shown in the study of chiller 
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combinations. A trade-off may exist in the robustness and performance. The proposed 

method mainly contributes at such situation. It helps to select the uncertainty-based 

optimal system by compromising the robustness and optimum.   

6.5 Summary 

An improved design method for cooling systems is proposed based on mini-max regret 

theory. The method is easy to be implemented and no complicated models or 

computation are involved. It is very beneficial for practical applications. 

The uncertainty-based optimal cooling system with different numbers of chillers can 

be obtained using the proposed method. If two chillers are selected, the uncertainty-

based optimal combination of chillers is the option with individual chiller capacities 

of 0.3 and 0.7 of the total cooling system capacity. It can save up to 12% of energy 

compared with the commonly used system (equally sized). If three chillers are selected, 

the uncertainty-based optimal chiller combination is the option with 0.2, 0.2 and 0.6 

or 0.4, 0.4 and 0.2 of the total cooling system capacity. The energy saving can be up 

to 10%. The uncertainty-based optimal combination of four chillers is the option with 

individual capacities of 0.1, 0.2, 0.2 and 0.5 of the total cooling system capacity. The 

energy saving can be up to 10%.  

The results of the study on five types of chilled water pump systems show similar 

energy consumption trend under different cooling loads. The configuration with 

constant speed primary-only pumps is always the most energy-consuming, which is 

recommended to be avoided in practical applications. The chilled water configuration 

with variable speed primary-only pumps is the uncertainty-based optimal one, 

considering uncertainty in the resistance of the pipeline. The energy consumption can 

be reduced by 50% in the case of the uncertainty-based optimal configuration. For the 
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configurations with similar connection way of chilled water pumps, the option with 

smaller pumps is more efficient.  

The probability distribution of uncertainty factors is not considered in this uncertainty-

based optimal design method based on mini-max regret theory. Design optimization 

with uncertainty quantification is investigated in the following section.  
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CHAPTER 7 OPTIMIZED DESIGNS OF ICS AND 

THEIR PERFORMANCE CONSIDERING 

UNCERTAINTY AND RELIABILITY 

 

Optimal design methods for ICSs are investigated based on uncertainty quantification 

at planning and design stages. Results of the uncertainty-based optimal design are 

analyzed and compared with that using the conventional design method. Then the 

performance of ICSs designed using the robust optimal design, considering both 

uncertainty and reliability, is analyzed and compared with that using the conventional 

method, uncertainty-based optimal design method and reliability-based optimal design 

method.  

7.1. Introduction of the ICS 

An office building of eight floors is selected to test the use of the new design methods. 

The surface to volume ratio is about 0.1. The envelope material is concrete blocks. 

The total floor area is about 36,000 m2
. The building is simulated using TRNSYS, and 

the cooling loads with and without uncertainty are calculated with a time step of one 

hour. The calculated cooling load without uncertainty is shown in Fig. 7.1 and taken 

as the reference case. The peak cooling load is 5,014 kW (140W/m2). It appears at the 

4,554th hour of the whole year. Therefore, the 4554th hour is marked as the peak hour. 

In the conventional design process, the capacity of the cooling system will be 

determined based on this peak cooling load. 
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Fig. 7.1 Annual hourly cooling loads of the office building without uncertainty 

Table 7.1 Factors and their distributions concerned in uncertainty analysis of ICS 

Factor 
Reference 

Case 

Uncertainty analysis 

Distribution Value 

Outdoor temperature (℃) TMY 

Normal 

distribution 

 

u: TMY; 𝜎: 1 

Outdoor relative humidity (%) TMY u: TMY; 𝜎: 4 

Radiation (W/m2) TMY u: TMY; 𝜎: 40 

Indoor air temperature(℃) 25 u: 25; 𝜎: 0.6 

Indoor relative humidity (%) 55 u: 55; 𝜎:4 

Ventilation rate (1/h) 1.5 

Triangular 

distribution 

 

1.5* triangular (0.3, 1.2, 0.9) 

Occupant (m2/person) 6 6* triangular (0.3, 1.2, 0.9) 

Lighting (W/m2) 12 12* triangular (0.3, 1.2, 0.9) 

Equipment (W/m2) 19 19* triangular (0.3, 1.2, 0.9) 

Note: In the normal distribution, u refers to the mean value and 𝜎  refers to the 

standard deviation. For a triangular (a,b,c), a, b and c refer to the lower limit, upper 

limit and mode respectively.  

Uncertainties of nine factors are considered in this chapter, as shown in Table 7.1. 

Uncertainties in the building design/construction are not considered. The sampling 
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methods are explained as follows. 1020 trials are conducted for the uncertainty 

analysis of the cooling load. 

 For the outdoor weather condition, three most important factors affecting the 

cooling load are concerned, including the outdoor dry-bulb temperature, relative 

humidity and solar radiation. The samples of these three factors are assumed to fit 

normal distributions. The weather data of TMY are taken as the mean of these 

factors at each time step.  

 For the internal heat sources, the parameter settings in the simulation are usually 

the possible maximum values. The most important factors regarding the internal 

heat gain sources include the occupant density, ventilation rate, lighting density 

and equipment density. The actual values for these four factors are most likely 

lower than that. Coefficients are assigned to the values used in the reference case 

and assumed to fit triangular distributions. The mode, upper limit and lower limit 

of these coefficients are chosen as 0.9, 1.2 and 0.3 respectively.  

 The indoor temperature and relative humidity set-points keep constant in the 

reference case. Actually the set-points may differ randomly from room to room, 

based on the preferences of users. It can range from 22℃ to 28℃ actually, instead 

of 25℃ in the reference case. The indoor relative humidity is not controlled in 

many projects. Therefore, uncertainties of the indoor temperature and relative 

humidity set-points are assumed to fit normal distributions.  

7.2 Uncertainty quantification of cooling loads 

7.2.1 Peak cooling load distribution of a building 

By considering uncertainties of nine operation factors used in design, the cooling load 

distribution at the peak hour (4554th hour) can be obtained. To check whether the 
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cooling load of a building fits a normal distribution, the commonly-used Q-Q plot is 

used to compare the cooling load distribution at the peak hour with the standard normal 

distribution, as shown in Fig. 7.2. Note, if all the data locate closely along the solid 

line, the data are proven to fit a normal distribution.  

 

Fig. 7.2 Q-Q plot of the cooling loads at the peak hour vs. standard normal 

distribution  

Fig. 7.2 shows that the cooling loads at the middle are very close to the solid line while 

data at two ends deviate significantly from the solid line. It indicates that the cooling 

loads do not exactly fit a normal distribution. The frequency and cumulative 

distribution function (CDF) of the cooling loads at the peak hour are illustrated in Fig. 

7.3. The peak cooling load in the reference case and that times 1.2 are also marked in 

the figure as dotted lines. The mean cooling load at the peak hour is 4103 kW, which 

is about 24% lower than the peak cooling load of the reference case. Fig. 7.3 shows 

that the peak cooling load of the reference case locates at the cumulative probability 

of 90%. It means that the cooling load at the peak hour has a probability of 90% to be 
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lower than the peak cooling load of the reference case, which also indicates that the 

cooling system designed using the conventional method is very possible to be 

oversized. If a safety factor of 1.2 is used (which is often used in current design 

practice), the cumulative probability is about 99.5%. It means that the cooling load at 

the peak hour has a probability of 99.5% to be less than the peak cooling load times 

1.2. The cooling system sized based on this load has a probability of 99.5% to be 

oversized. The value around 4200 kW has high frequency and the most possible peak 

cooling load is around 4200 kW. From the analysis, it shows that the cooling system 

designed based on the peak cooling load without considering uncertainty has strong 

probability to be oversized. The probability will be much stronger if a safety factor is 

assigned.  

 

Fig. 7.3 Distribution of cooling loads at the peak hour 
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7.2.2 Annual cooling load distribution of a building 

The annual cooling loads play a key role in the selection of the system configuration, 

such as the chiller combinations. The distribution of the annual average cooling load 

is shown in Fig. 7.4, considering uncertainties of inputs in the design calculation. The 

annual average cooling load in the reference case is also presented in the figure with 

dotted line. It shows that the annual average cooling load has a possibility of over 80% 

to be lower than that of the reference case. Without considering uncertainties, it may 

lead to overestimate the energy consumption when assessing the building performance. 

The most possible annual average cooling load is around 900kW, which is about 18% 

lower than that of the reference case.  

 

Fig. 7.4 Annual average cooling load distribution 
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in Fig. 7.5. Each curve shows the proportions of time corresponding to different 
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Both the maximum and minimum values are from the extreme cases in the uncertainty 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

C
u

m
u

la
ti

v
e

 
d
is

tr
ib

u
ti

o
n

fu
n

c
ti

o
n

F
re

q
u

e
n

c
y

Annual average cooling  load [kW]

Frequency

Cumulative

distribution function

A

Average cooling load 
of reference case



 
132 

study, which may happen but the probability is very low. Several representative curves 

are extracted as shown in Fig. 7.6. 

 

Fig. 7.5 Annual cooling load distribution considering uncertainty 

 

Fig. 7.6 Cumulative distribution profiles of representative annual cooling loads 
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The curves marked as min, max and mean refer to the load distribution profiles of the 

lowest, the highest and average cooling loads respectively among the 1020 trials at 

each hour in a year. The data on the 95%-upper limit curves refer to the loads of the 

upper limit of the 95% confidence interval among 1020 trials at each hour in a year. 

Fig. 7.6 shows that the cooling load varies in a big range between the min and max 

curves at the same cumulative proportion. It indicates that for any value of the 

cumulative proportion, the cooling load varies largely when uncertainties of these nine 

factors are concerned. The mean values still represent the most possible cooling loads 

at each hour in the year. It can be seen that, at the same value of cumulative probability, 

the cooling load of the reference case is larger than that the mean value. It confirms 

again that the cooling systems sized using the cooling loads of the reference case have 

strong probability to be oversized.  

7.3 Uncertainty-based optimal design of the ICS 

Based on the uncertainty quantification, the design of the ICS can be optimized. The 

capacity and optimal configuration of the ICS can be determined based on the 

performance distribution at different risks. 

7.3.1 Optimal sizing of the ICS 

As mentioned in the literature, annual 0.4% cooling design day can be used to size the 

cooling systems. The hourly dry bulb temperatures of several years are sorted in 

descending order. The value of dry-bulb temperature at the 0.4% percentile 

corresponds to the 0.4% cooling design day. It locates at the 35th hour when scaled to 

one year. The cooling load distribution at the 35th hour is shown in Fig. 7.7. The 

cooling load at the 35th hour of the reference case is also illustrated in the figure and 

highlighted with dotted line. It can be seen that by considering uncertainty, the most 
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possible cooling load at the 35th hour is around 4660 kW while in the reference case 

the cooling load is 4770 kW. The difference is not as large as that for the peak cooling 

load. It indicates that, if the ICS is designed based on the annual 0.4% cooling design 

day, the probability of oversizing is much lower than that designed based on the exact 

peak cooling load.  

 

Fig. 7.7 Distribution of cooling loads at the 35th hour in each year (descending sort 

order of the cooling loads) 

The distribution of cooling loads with the numbers of hours when the cooling demand 

cannot be met (marked as unmet hours) is presented in Fig. 7.8. The mean cooling 

loads of the 1020 trials are calculated and shown in the figure. Although the mean 
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upper limit). It is apparent that all these three types of cooling loads decrease with the 

increase of unmet hours. The mean cooling load of cases with uncertainty is much 

lower compared with the cooling load of the reference case. The ratio (mean cooling 

load divided by the cooling load of the reference case) increases with the increase of 

the number of unmet hours. The decision makers can size the ICS based on their 

specific requirement. For example, if the number of unmet hours should be no more 

than 50, the ICS can be sized based on the load of 4730 kW, 5155 kW and 3890 kW. 

Larger cooling load can be selected (such as 5155 kW) if the requirement is very strict. 

Otherwise, lower ones can be used.  

 

Fig. 7.8 Cooling load distribution vs. the number of annual unmet hours 
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select the corresponding cooling load with quantified risk and potential cost. If the 

primary objective is to meet the cooling demand, the cooling load on the 95% upper 

limit curve can be used to determine the capacity of the ICS. If the requirement for 

thermal comfort is not very strict and the budget is quite limited, lower cooling load 

can be used such as that on the mean cooling load curve. No matter which is selected 

as the capacity of the cooling system, the decision can be made with quantified 

confidence and cost. 

 

Fig. 7.9 Capital cost distribution vs. number of annual unmet hours 
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The peak cooling load of the reference case is 5040 kW, which is used as the design 

capacity of the ICS as an example. Three chillers are selected with a total capacity of 

5100kW. Chillers with two common configurations are compared: three identical 

chillers with an individual capacity of 1700kW (marked as Sics1) and two chillers with 

an individual capacity of 2000kW & one chiller with a capacity of 1100kW (marked 

as Sics2). Energy consumptions of Sics1 and Sics2 are 1,732,736 kWh and 1,672,506 kWh 

in the reference case. The energy consumption of Sics2 is 3.5% lower than that of Sics1. 

Considering the difference of energy consumptions without concerning uncertainty, 

the decision maker may easily choose Sics2 due to lower energy consumption. However, 

at practical operation, the chosen configuration in the reference case may not be as 

efficient as expected. By considering uncertainty in the cooling load, the relative 

energy consumption difference of both configurations is shown in Fig. 7.10. 

 

Fig. 7.10 Distribution of relative difference between energy consumptions of two 

ICSs  
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Fig. 7.10 shows that such difference varies from 0 to 6%. It means that sometimes the 

energy consumptions of both configurations show large difference and sometimes the 

difference can be ignorable. It can be therefore risky to make the decision without 

considering uncertainty. The cumulative probability of the difference at 3.5% is less 

than 0.1. It means that the difference has over 90% probability to be lower than that. 

Values around 2.5% have the highest frequency, indicating that it is very possible to 

be around 2~2.5%. Although Sics2 is still more efficient, its advantage is not as apparent 

as that in the reference case. In addition, the purchase, installation, operation and 

management of Sics2 are more complicated compared with Sics1. If the efficiency 

difference of both configurations is not very large, the decision maker may change his 

mind and choose Sics2. No matter which configuration is selected, the decision can be 

made with quantified risk and benefit as shown in the figure. That is the main 

contribution by considering uncertainty in the design process.  

7.3.3 Conclusive remarks 

In this section, a new method to optimize the ICS design is proposed by considering 

uncertainties of operation factors affecting the cooling load design calculation. The 

impacts of the operation factors including the outdoor weather, internal heat sources 

and indoor set-points are studied. A case study is given as an example to demonstrate 

the use of proposed method. The oversizing problem is explained from the viewpoint 

of uncertainty. The sizing and configuration of the ICS based on the risk and benefit 

analysis are presented. Conclusions can be made as follows: 

i. The peak cooling load varies largely by considering uncertainties of operation 

factors. If the capacity of an ICS is based on the cooling load without considering 
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uncertainty, it has high probability to be oversized. If a safety factor is assigned, 

the oversize probability will be greatly increased. 

ii. By showing the distribution of unmet hours and capital costs, the proposed 

design optimization method offers decision makers quantified risk and benefit. 

The decision makers can size the ICS based their specific concerns with more 

confidence.  

iii. The annual average cooling loads varies largely considering uncertainty. The 

annual cumulative cooling load is usually over estimated using the conventional 

method. That may affect the building performance assessment. 

iv. The configuration of the ICS can be selected according to quantified risk and 

benefit when considering uncertainty. The selected configuration may not 

perform as well as expected and its efficiency is most likely overqualified.  

7.4 Robust optimal design of the ICS considering uncertainty and 

reliability 

Both uncertainty of design inputs and reliability of components are quantified and used 

in enhancing the optimal design. The method of uncertainty quantification is similar 

to that described in Section 7.2. The performance of the ICS designed using the robust 

optimal method is presented in the following section compared with other design 

methods.  

7.4.1 System description 

The system design is different from that in Section 7.2 since the reliability of the ICS 

is considered. In the conventional method, backup systems are used to consider the 

possible system failures or faults. The peak cooling load of the ICS, shown in Fig. 7.1, 
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is 5014 kW (140 W/m2). With a safety factor of 1.2 and one more group of backup 

systems, three identical chillers with an individual capacity of 2000 kW are selected 

as basic working chillers and another identical chiller is selected as the standby. 

Totally four identical chillers are selected, together with four groups of chilled water 

pumps and cooling water pumps, which is taken as the reference case.  

The reliability of the ICS is considered in this section besides uncertainty. The 

following assumptions are therefore made to quantify the system reliability and 

achieve the robust optimal ICS: 

 The chillers of the ICS are repairable; 

 The repair rate and failure rate of the chillers is time-independent; 

 The COP of the chillers of different capacities is identical and follow similar 

performance curves. 

 

Fig. 7.11 Capital cost of chillers of different capacities 
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The failure rate of 0.0001 (1/hour) and repair rate of 0.002 (1/hour) are used. Annual 

total cost is taken as the objective for optimization. The capital cost including the 

purchase and installation of chillers and pumps is calculated with a derivative equation 

based on data from manufacturers, as shown in Fig. 7.11. It can be seen that the price 

(per kW) of chillers decreases with the increase of the capacity. The life cycle of the 

ICS is assumed to be 20 years. Therefore, the annual capital cost is obtained by 

dividing the capital cost with 20. The operation cost is calculated with the annual 

electricity consumption times the electricity price, which is 0.15$/kWh. The 

availability risk cost is calculated based on the unmet cooling demand that is the 

difference between the actual cooling load and available system capacity. The 

availability risk “price” will affect the final optimal result, which depends very much 

on the preference of stakeholders and the business/clients served. A sensitivity study 

is conducted on the availability risk price to show its effect on the optimal capacity of 

the ICS.  

7.4.2 Performance of the ICS designed based on different methods 

Considering the reliability of chillers, the mean steady-state capacity (see the 

description in Section 5.4.2) of the four-chiller ICS with a total capacity of 8000 kW 

can be calculated. It depends on the failure rate and repair rate of chillers. Actually it 

only correlates with the ratio of the failure rate divided by the repair rate. The mean 

steady-state capacities at different ratios are shown in Fig. 7.12. It shows that the mean 

steady-state capacity of the ICS reduces if the ratio increases. It decreases from 7960 

kW to 4000 kW when the ratio increases from 0.005 to 1. When the ratio changes from 

0.005 to 0.05, the mean steady-state capacity is reduced by 341 kW, which is about 

4.3% of the nominal cooling system capacity. When the chiller has the equal failure 
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rate and repair rate (where the ratio is 1), the mean steady-state capacity of the ICS is 

almost half of the nominal capacity. Larger mean steady-state capacity corresponds to 

stronger ability to meet the cooling demand. It shows that the ratio of failure rate and 

repair rate plays an important role in determining the mean steady-state capacity of 

the ICS.  

 

Fig. 7.12 Mean steady-state (expected) capacities of the ICS at different ratios 

(failure rate/repair rate) 

Usually the failure rate is much lower than the repair rate and the ratio can be very 

low. However, the failure rate will rise with the working time due to aging or wearing 
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an availability risk price of 1.5 $/kWh (10 times of the electricity price) are shown in 

Fig. 7.13.  

 

Fig. 7.13 Annual costs of the ICS of different capacities 

From Fig. 7.13, it can be seen that the total annual cost of the ICS decreases firstly and 

then increases with the capacity increase. The decrease mainly results from the rapidly 
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uncertainty of the cooling load and reliability of chillers. Compared with the capacity 

of 8000 kW in the reference case, around 25% of the installation capacity can be 

reduced.  

0

0.5

1

1.5

2

2.5

3

2000 3000 4000 5000 6000 7000 8000 9000 10000

C
o
st

 [
1
0

6
$

]

Capacity [kW]

Total cost

Capital cost

Operation cost

Availability risk cost



 
144 

The optimal capacity of the ICS depends on the difference between the electricity price 

and the availability risk price. Therefore, a sensitivity study is conducted to show the 

effect of the availability risk price on the optimal capacity of the ICS and the results 

are shown in Fig. 7.14. The horizontal axis is the availability risk price ratio (ARPR), 

which is the availability risk price divided by the electricity price. The capacities of 

the ICS obtained from four different methods are presented, including the 

conventional method (marked as reference-case), the method only considering the 

reliability of chillers (marked as reliability-only), the method only considering the 

uncertainty of the cooling load (marked as uncertainty-only) and the robust optimal 

method considering both uncertainty and reliability (marked as robust optimal 

method).  

From Fig. 7.14, it can be seen that the ICS capacity based on the conventional design 

method is not affected by the availability risk price and it keeps constant. For the ICS 

based on other three methods, the optimal capacity increases with the increase of the 

ARPRs. The optimal capacities of the ICS designed using the uncertainty-only method 

are the lowest. The capacities of the ICS designed using the robust optimal method are 

larger than that designed using the uncertainty-only method and smaller than that 

designed using the reliability-only method. That is because the cooling load has high 

probability to be overestimated considering uncertainties in the inputs used in the 

calculation, as proven in Section 7.2. When the ARPR approaches 20, the capacities 

of the ICS based on the robust optimal method and the reliability-only method are very 

close. Fig.7.14 also shows that even when the ARPR is 20, the capacity of the ICS 

using the conventional method is still 19% higher than that using the robust optimal 

method. By quantifying the uncertainty of the cooling load and the reliability of 
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chillers, the proposed method can reduce the installation capacity of the ICS. That also 

means that the robust optimal method helps to moderate the oversizing problem.  

 

Fig. 7.14 Capacities of the ICS under different availability risk price ratios 

The total annual costs of the ICS with different capacities using the four methods are 

shown in Fig. 7.15. It can be seen that the costs of the reference case almost keep 

constant at different ARPRs. The total annual costs of the ICS designed using the other 

three methods increase with the increases of the ARPRs. Costs of the ICS using the 

uncertainty-only method rise rapidly. The ICS designed using the robust optimal 

method can always have the lowest cost under different ARPRs. Compared with the 

conventional method, the proposed robust optimal method can save about 4%~15% of 

the total annual cost. It shows that the ICS designed using the proposed robust optimal 

method has high robustness and can always be cost efficient. When the ARPR 

approaches 20, the costs of the ICS based on the robust optimal method and reliability-
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Fig. 7.15 Total annual costs of ICS under different availability risk price ratios 
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method and robust optimal method are much larger than that of the systems designed 

using the other two methods. When the number unmet hours is 0, the capacity of the 

ICS designed using the robust optimal method is even higher than that of the reference 

case. It indicates that the capacity obtained using the conventional method may fail to 

meet the need if the thermal comfort requirement is extremely high. When the number 

of unmet hours increases, the capacities of the ICS designed using both the reliability-

only method and the robust optimal method decrease dramatically and are lower than 

that designed using the conventional method. When the number of unmet hours 

exceeds 25, the capacity of the ICS designed using the robust optimal method will be 

larger than that designed using the uncertainty-only method and smaller than that 

designed using both the reliability-only method and the conventional method. The 

trend is similar to that in Fig. 7.14. Having the capacity distribution in Fig. 7.16, users 

can determine the capacity of the ICS based on their specific requirement and priority. 

7.4.3 Discussions 

The reliability of the ICS is concerned in the design optimization in this study. The 

repair rate and failure rate of the chiller are assumed to be constant. However, it is 

obvious that the failure rate usually is not constant. It may follow the bathtub curve, 

as shown in Fig. 7.17. The failure rate is large at the beginning of its life cycle due to 

installation and commissioning errors. At the late phase of its life cycle, the failure 

rate increases due to aging and wearing problems. It keeps almost constant during the 

middle of its life cycle. Design optimization considering reliability is more valuable 

and necessary when the failure rate is high. Therefore, higher failure rate is selected 

in this study. In the future study, time-dependent failure rates could be considered to 

get more practically meaningful results. 
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Fig. 7.17 Typical failure rate distribution with time 

Availability risk cost is introduced in this study for the design optimization. It is 

calculated based on the cooling load that the ICS cannot meet due to cooling load 

calculation deviation and failure of chillers. It is used to quantify the loss and 

compensation caused by the unmet cooling load. Actually the availability risk price 

represents the importance of the thermal comfort in practical cases. A high availability 

risk price corresponds to stricter requirement on the thermal comfort. When the price 

reaches 18 $/kWh (120 times of the electricity price) the optimal capacity of the ICS 

designed using the robust optimal method will exceed 8000 kW in this study. It 

inversely proves that when the requirement on the thermal comfort is extremely strict, 

the conventional design method might also fail to meet the requirement and the robust 

optimal method can make the guarantee. The concept of the availability risk cost is 
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careful and throughout study. 
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7.4.4 Conclusive remarks 

A robust optimal design is developed considering both the uncertainty of the cooling 

load and reliability of primary components in ICSs. With the objective of the total 

annual cost including the capital cost, operation cost and availability risk cost, the 

optimal capacity of the ICS can be obtained. Performance of the ICS using the new 

method is analyzed. The following conclusions can be summarized: 

i. The proposed method can properly determine the optimal capacity of the ICS by 

quantifying cooling load uncertainty and assessing the reliability of the ICS. The 

optimal capacity is affected by the availability risk price. The optimal capacity 

becomes larger at a higher price. When the price is 20 times of the electricity price, 

the capacity is still about 20% lower than that designed using the conventional 

method.  

ii. The optimal capacity of the ICS determined using the proposed method is lower 

than that designed only considering the reliability of chillers, and higher than that 

designed considering the uncertainty of the cooling load only.  

iii. The total annual cost of the ICS designed based on the robust optimal method can 

be reduced by 4%~15% compared with the conventional method. 

7.5 Summary 

This chapter presents results of ICSs designed using the uncertainty-based optimal 

design method and robust optimal design method. When the uncertainty at planning 

and design stages is quantified, the cooling loads of the ICS can be obtained at 

different probabilities. Through the comparison and analysis, it shows that the cooling 
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load using the conventional calculation method has high probability to be over-

estimated. 

By quantifying the uncertainty of cooling loads of the ICS, the system can be designed 

with quantified risks. According to the peak cooling load distribution, the capacity of 

the ICS can be determined based on the number of unmet hours and the risks. 

According to the energy saving distribution of different design options, the optimal 

configuration of the ICS is determined and its performance can be estimated with 

quantified confidence. 

By concerning both uncertainty and reliability, the robust optimal cooling system can 

be achieved with the lowest total annual cost. By introducing the availability risk cost, 

the losses caused by unmet cooling demands can be evaluated. By minimizing the total 

annual cost (including the capital cost, operation cost and availability risk cost), the 

robust optimal ICS can be achieved. The capacities and costs of the ICS at different 

availability risk prices are presented. A larger capacity is required under a higher 

availability risk price, which corresponds to the relative importance of the thermal 

comfort requirement to users.    
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CHAPTER 8 OPTIMIZED DESIGNS OF DCS AND 

THEIR PERFORMANCE CONSIDERING 

UNCERTAINTY AND RELIABILITY 

 

The DCSs obtained using two design optimization methods and their performance are 

presented in this chapter. The cooling loads of the DCS are quantified considering 

uncertainty at planning and design stages. Different strategies are used to address the 

uncertainties of the three groups of variables used in the design calculation. The 

uncertainty-based optimal design method is applied in the DCS and the performance 

of the DCS delivered is compared with that using the conventional design method. 

Concerning both uncertainty and reliability, the robust optimal DCS is achieved and 

its performance is evaluated.  

8.1 Introduction of the DCS 

A new building energy simulation tool EPC (Energy Performance Coefficient 

Calculator) (Quan et al. 2015) is used to predict the cooling load of the DCS. The tool 

is developed by the High Performance Building Group in Georgia Institute of 

Technology. It is a modified version of a reduced-order building energy model, which 

is based on ISO 13790:2008 standard. The underlying model of the EPC is much 

smaller than other tools such as EnergyPlus, offering a faster computational speed. 

The assumptions and simplifications in EPC were calibrated on a large collection of 

different buildings. It is very useful when there are many buildings involved and the 

information for individual buildings is limited. Therefore, it is very suitable to be used 

in this study. In addition, it can involve the uncertainties in building 
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design/construction such as the overall heat transfer coefficient of the building 

envelope, window wall ratio, shape of the building, etc.  

The way to address the uncertainties is different from that used in Chapter 7. For the 

outdoor weather data, the actual measured data of Hong Kong from 1979 to 2007 are 

used, which is proved to be a better way to account for uncertainties in the weather. 

For the building design/construction, the number of floors and the building size are 

based on the initial plan. The range of the thermal properties of building materials can 

be found in the design manual for hot summer and warm winter area of China (which 

is the climate of Hong Kong). Uniform distributions in the ranges are adopted to 

account for uncertainties in the building materials. For the indoor conditions, relative 

normal distributions are assigned to those values obtained from the design manuals or 

guidelines. Detailed information for inputs used in the reference case and the 

uncertainty study is shown Table 8.1.  
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Table 8.1 Factors and their distributions concerned in uncertainty analysis of the DCS 

Group Abbreviation Parameter Reference case 
Uncertainty study 

Distribution Value (Mean, St.) 

O
u
td

o
o
r 

w
ea

th
er

 

Drybulb temp 
Dry-bulb temperature of 

outdoor air 
TMY Actual data:1979~2007 

Humidity Humidity of outdoor air 

Radiation Global radiation 

B
u

il
d
in

g
 d

es
ig

n
/ 

co
n
st

ru
ct

io
n

 

Building floor Building floor Based on the plan 
Relative 

normal 
(1,0.04) 

Building 

length 
Building length Based on the plan 

Relative 

normal 
(1,0.04) 

WWR Window wall ratio 0.5 Uniform (0.3,0.7) 

Uwall 
Conductivity of wall 

(W/(m2.K) 
1.5 Uniform (1,1.5) 

Uwindow 
Conductivity of window 

(W/(m2.K) 
3 Uniform (1.5,3) 

Uroof 
Conductivity of roof 

(W/(m2.K) 
0.9 Uniform (0.4~0.9) 

Wallabsp Wall absorption coefficient 0.9 Uniform (0.4~0.9) 

Roofabs Roof absorption coefficient 0.8 Uniform (0.4~0.8) 

Wintran Window solar transmittance 0.8 Uniform (0.4~0.8) 

In
d
o
o
r 

co
n

d
it

io
n
 Occupant Occupant density 

Ranging from 4~15 m2/person 

for different buildings 

Relative 

normal 
(1,0.04) 

Lighting Lighting density 
Ranging from 10~20 W/m2 for 

different buildings 

Relative 

normal 
(1,0.04) 

Equipment 
Plug-in equipment power 

density 

Ranging from 8~20 W/m2 for 

different buildings 

Relative 

normal 
(1,0.04) 

Ventilation 

rate 
Ventilation rate 

Ranging from 1~4 ACH for 

different buildings 

Relative 

normal 
(1,0.04) 
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The steps to implement the new design method are illustrated in Fig. 8.1. Totally 580 

trials are conducted for the uncertainty study. Detailed explanations are introduced as 

follows: 

i. The input variables that have uncertainties are selected and samples are 

generated for these variables. For the normal distributions, Latin Hypercube 

Sampling (LHS) method is used to improve the calculation efficiency (Iman 

2008).  

ii. Samples are imported into the cooling load calculation program. For a DCS, 

many buildings with different functions are involved. Each building is simulated.  

iii. The cooling load profile of the DCS is obtained, by summing the cooling loads 

of all individual buildings.  

iv. The distributions of the peak cooling load and annual cooling load of the DCS 

are analyzed. 

v. Based on the peak cooling load distribution, the optimized capacity of the DCS 

is determined considering the quantified risks. Based on the annual cooling load 

distribution, the performance of the DCS options of different configurations 

(different chiller combinations, with or without thermal storage systems, etc.) is 

obtained and the optimized DCS configuration is therefore determined. 
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Fig. 8.1 Steps of the DCS design method considering uncertainty 

8.2 Uncertainty quantification of cooling loads 

Strategies to quantify the uncertainties in DCS design are different from that used in 

Chapter 7 for the ICS design. By importing samples into EPC, the cooling load 

distributions considering uncertainty are obtained. Energy performance of DCSs at 

different probability levels is then calculated. The performance of DCSs at different 

capacities and configurations is also estimated. Before the cooling load and design 

results are presented, actual weather data from 1979 to 2007 are compared with that 

of TMY, as shown in Fig. 8.2. It can be seen that the actual data of some periods 

distribute evenly around the TMY data and the TMY data can be taken as the mean. 

During the left periods (most of the time), the actual data can be much larger or smaller 

than the TMY data. If the cooling loads are calculated based on the weather data of 

TMY, the cooling load can be estimated inaccurately. The comparison shows again 

that it is necessary to consider uncertainty in the DCS design optimization.  
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Fig. 8.2 Actual weather data in Hong Kong from 1979 to 2007 vs. data of TMY 

8.2.1 Peak cooling load distribution of the district 

The peak cooling load distribution of the district (described in Section 3.2) is shown 

in Fig. 8.3. It shows the peak cooling load varies between 86 MW and 119MW. The 

frequency of the peak load is high between 98 MW and 104 MW, which indicates that 

it has high probability to fall in such a range. The peak cooling load of the reference 

case is 109 MW, with a CDF of over 90%. It indicates that, in consideration of 

uncertainty, the peak cooling load has a probability of 90% to be less that of the 

reference case.  

Weather data from 1979~2007

Weather data of TMY

Dry-bulb temperature Radiation

Humidity
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Fig. 8.3 Distribution of the peak cooling load of the DCS 

8.2.2 Annual cooling load distribution of the district 

The annual cooling loads are the basis for energy consumption estimation of DCSs. 

Considering uncertainty at planning and design stage, the annual average cooling loads 

are obtained. To check whether the annual average cooling loads fit a normal 

distribution, the Q-Q plot is used and results are shown in Fig. 8.4. If all the data are 

on or very close to the red line, the data fit a normal distribution. Fig. 8.4 shows that 

almost all the data are on the red line. The annual average cooling loads therefore 

almost fit a normal distribution. 
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Fig. 8.4 Q-Q plot of annual average cooling loads 

 

Fig. 8.5 Distribution of annual average cooling loads of the DCS 

The distribution of the annual average cooling loads of the DCS are shown in Fig. 8.5. 

The annual average cooling load of the reference case is also presented for comparison. 

It can be seen that the annual average cooling load varies between 25.5 MW and 

34MW, which is 0.84 and 1.12 times of that in the reference case. The frequency for 
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the load between 28.5 MW and 30 MW is high, which indicates that the annual average 

cooling load has high probability to fall into such a range. The annual average cooling 

load of the reference case is 30.4 MW, which responds to about 80% of the CDF. It 

indicates that the annual average cooling loads involving uncertainty have a 

probability of 80% to be less that of the reference case if the cooling load is calculated 

using the similar settings. At the same time, the annual average cooling loads can also 

be larger than that of the reference case, with a chance of less than 20%.  

 

Fig. 8.6 Annual hourly cooling load distribution 

The distribution of annual hourly cooling load for each trial is shown in Fig. 8.6. The 

cooling loads of the reference case are highlighted in red. It can be seen that at the 

same CDF, the cooling loads of the reference case are larger than the mean of cases 

with uncertainty. This is consistent to the results in Fig. 8.5.  
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Fig. 8.7 Peak cooling load distribution 
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electricity will be required by building this new district and whether the existing grid 

has enough capability. The investors need to know how long the investment can be 

paid back. For users, the annual energy consumption relates closely to the bills to pay.  

 

Fig. 8.8 Distributions of the energy consumption of the DCS considering uncertainty 

By quantifying the uncertainty in the annual cooling load calculation, the distribution 

of energy consumption of the DCS at different risks is obtained and shown in Fig. 8.8. 

It can be seen that the energy consumption of the DCS varies between 47 × 106 (kWh) 

and × 106 (kWh). Frequency of the energy consumption between 51.8× 106 (kWh) 

and 55 × 106 (kWh) is high, which means it has strong probability to be in this range. 

The energy consumption of the reference case is also marked in Fig. 8.8 for 

comparison, which corresponds to the CDF of about 80%. It shows that the annual 

energy consumption of the DCS considering uncertainty has a probability of 80% to 

be lower than that of the reference case. In other words, the energy consumption of 

the DCS can also be under-estimated with a chance of 20%. By quantifying the 

uncertainties, the stake holders can make decisions using the energy consumption 

distribution and corresponding quantified risks.  
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8.3.2 Optimal sizing of the DCS  

One important task of the DCS design is to obtain the system capacity. The capacity 

is determined by the peak cooling loads. By involving the uncertainties into the design, 

the DCS is sized with quantified confidence. The distribution of the peak cooling load 

at different quantified risks is shown in Fig. 8.9.  

 

Fig. 8.9 Design cooling loads of DCS at different risks vs. the number of unmet 

hours 

Fig. 8.9 shows that the design cooling load of the DCS reduces with the increase of 
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unmet hours is set to 10, the risk that the number exceeds 10 can be reduce to 0 if the 

capacity of the DCS is no less than107MW. If designers want to keep the risk to be 

lower than 10%, the capacity should be not less than 101 MW. By involving the 

uncertainty in the design process, the DCS is sized based on specified and quantified 

risk/comfort requirements. In contrast, the conventional method can tell nothing more 

except giving the certain design capacities.   

8.3.3 Optimal configuration of the DCS  

Another important task of the design optimization is to select the configuration of the 

DCS. The configuration relates to the operation cost of the DCS in the life cycle. In 

this section, two types of configurations are studied, aiming to answer two questions:  

 Is it necessary to install chillers of different capacities in the DCS? 

 Is it cost effective to install an ice storage system in the DCS? 

 

A.  DCSs with different configurations of chillers 

It is often suggested to install chillers of different capacities in ICSs, which aims to 

improve the energy efficiency of the system at partial load. The capacity of DCSs can 

be much larger than that of ICSs and much more chillers will be installed. By 

considering uncertainty, the necessity to use chillers of different capacities in the DCS 

is investigated by comparing with the conventional design method. In the DCS of this 

study, totally seven chillers are selected. This is referred to a DCS project in Hong 

Kong, which has a similar capacity. For comparison, performance of this DCS using 

seven identical chillers with an individual capacity of 15000 kW is also investigated, 

marked as Sdcs1. Five chillers with an individual capacity of 17500 kW and two chillers 

with an individual capacity of 8750 kW are selected, which is marked as Sdcs2. The 
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energy consumption ratios (annual energy consumption of Sdcs1 divided by that of Sdcs2) 

are shown in Fig. 8.10. 

 

Fig. 8.10 Energy consumption ratio of two DCS designs with different chiller 

configurations 

From Fig. 8.10, it can be seen that the ratio is 0.984 in the reference case and Sdcs2 

consumes 1.6% less energy than Sdcs1. No further information can be obtained from 

the conventional design method. However, by considering uncertainty, the distribution 

of the energy consumption ratios at different risks can be obtained. Fig. 8.10 shows 
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1.2% and 2.5%, which is not very promising and it is hard to be over 2.5%. 

Considering more complicated control and maintenance, Sdcs2 may be not preferable 

in the DCS. The curve of CDF shows that the energy consumption ratio can be higher 

than that of the reference case with a chance of about 20%. By using the design method 

considering uncertainty and results in Fig. 8.10, the decision makers can select 

appropriate design schemes with quantified risks. 
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DCSs are often integrated with ice storage systems to reduce the operation cost and 

the peak electricity load of the local grid. Accurate estimation on the cost saving of 

the integrated system is very important for investors, which determines the payback 

period of the investment. By using the conventional design method, the cost saving is 

estimated without quantitative risks. The cost can be under-estimated or over-

estimated. The improved design method can avoid such problems by offering the cost 

distribution at different risk levels. The performance of the DCS integrated with the 

ice storage system is investigated to illustrate the new design method. The COP of the 

ice storage system is assumed to be 3. The peak period is between 8 a.m. and 8 p.m. 

from Monday to Friday and the rest of time is off-peak period. A simplified tariff 

based on the tariff in Guangzhou (Table 3.4) is used. The electricity price is 0.16 

$/kWh for the peak time and 0.08 $/kWh for the off-peak period. The distribution of 

the annual operation cost of the DCS with the ice storage system is shown in Fig. 8.11. 

 

Fig. 8.11 Distribution of the annual operation cost of the DCS integrated with ice 

storage system considering uncertainty 
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From Fig. 8.11 it can be seen that the annual operation cost of the DCS with the ice 

storage systems varies in a quite large range, i.e. between 5.4 × 106 ($) and 7.2 × 106 

($). The frequency of the cost between 6 × 106 ($) and 6.5 × 106 ($) is high, which 

means that the annual operation cost of the DCS has strong probability to be in this 

range. The annual operation cost of the reference case is also illustrated in Fig. 8.11, 

corresponding to the CDF of about 80%. It means that the annual operation cost of the 

DCS with the ice storage system has a probability of 80% to be lower than that of the 

reference case. Without quantifying the uncertainty at the design stage, the annual 

operation cost has high possibility to be over-estimated.  

8.4 Robust optimal design of the DCS considering uncertainty and 

reliability 

Performance of the DCS designed using the robust optimal design method is evaluated 

in this section. It is compared with that obtained using the conventional method, 

uncertainty-only method, reliability-only method. As proved in Section 8.3, using 

chillers of different capacities in the DCS makes no big impact on energy or cost 

efficiency so the DCS with identical chillers is investigated here. 

The capacities of the DCS determined using different design methods are shown in 

Fig. 8.12. The capacity obtained using the conventional method is determined by 

multiplying the peak cooling load of the reference case by 1.1. It can be seen that the 

optimal capacity of the DCS increases with the increase of ARPRs when the design of 

DCS is optimized using the uncertainty-only method, reliability-only method and 

robust optimal method. The capacity of the DCS using robust optimal method is larger 

than that using uncertainty-only method, and smaller than that using reliability-only 

method. When the ARPR exceeds 10, the capacity of the DCS using the robust optimal 
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method is larger than that using the conventional method. It demonstrates that if the 

availability risk price is very high, or the requirement for the thermal comfort is very 

strict, the capacity of the DCS determined using the conventional method is still not 

enough.  

 

Fig. 8.12 Optimal capacity of the DCS using different methods 

 

Fig. 8.13 Optimal total annual cost of the DCS using different methods 
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The total annual costs of the DCS designed using four methods are shown in Fig. 8.13. 

It can be seen that the cost of the DCS designed using the uncertainty-only method 

increases largely. It results from the lower capacity obtained at the design stage and 

the higher insufficient capacity in operation. For the other three methods, the total 

annual costs are close to each other. That is because that the capital cost contributes a 

very small portion of the total annual cost. Even if a larger capacity is used, the total 

annual cost increase is not obvious.  

8.5 Summary  

In this chapter, the uncertainty in the cooling load calculation of the DCS is quantified. 

Actual measured weather data are used to account for uncertainties in the outdoor 

weather. By involving uncertainty into system design and assessment processes, the 

performance of the DCS at different risks is obtained and analyzed. The robust optimal 

DCS can be obtained by quantifying uncertainty and reliability. After the above study, 

the following conclusions can be made: 

i. The annual average cooling load of the DCS varies between 0.84 and 1.12 times 

of that of the case without considering uncertainty. It almost fits the normal 

distribution. With the distribution of the annual cooling load, the energy 

performance of different DCS options and their corresponding risks can be 

obtained. The stake holders can make decisions and choices with quantified 

confidence by considering uncertainty. 

ii. The peak cooling loads of the DCS at different risk levels are obtained using the 

proposed design method. With the distribution of the number of unmet hours and 

cooling loads at different risks, the DCS can be properly sized based on specific 

risks (which a designer would like to take) and the indoor comfort requirements. 
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iii. The configuration of DCSs can be selected based on quantified risks and benefits 

using the improved design method. The energy saving potential of the DCS using 

chillers of different capacities is not very promising, which is not recommended 

considering control and maintenance issues. Annual cost saving of the DCS with 

ice storage system varies significantly when considering uncertainty in the 

cooling load. Appropriate designs of DCSs and the corresponding performance 

can be ensured by using the new design method.  

iv. The robust optimal design of the DCS with the lowest total annual cost is obtained. 

With the increase of the availability risk price ratio, the optimal capacity increases. 

When the ratio is high enough, the capacity using the robust optimal design 

method is larger than that using the conventional method.  

v. The capacities of the DCS, based on the robust optimal method considering both 

uncertainty and reliability, are smaller than that based on the reliability-only 

method. Systems that designed using the uncertainty-only method have the 

smallest capacities and the largest total annual cost. 
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CHAPTER 9 IMPACTS OF UNCERTAINTY AND 

RELIABILITY ON THE DESIGN OF DCS AND ICS 

 

In this chapter, the impacts of uncertainty and reliability on the design optimization of 

DCSs and ICSs are assessed and compared. Firstly the cooling load distributions of 

the DCS and the ICS are analyzed when uncertainties of variables fit similar 

distributions. Sensitivity analysis is conducted to identify the influential factors for the 

actual cooling loads of the DCS and ICS. Then the impacts of uncertainty on the design 

of the DCS and ICS are evaluated and compared. When both uncertainty and reliability 

are concerned in the design process, the performance of the DCS and ICS is analyzed 

and compared. The impacts of implementing the robust optimal design method on the 

two systems are then summarized.  

9.1 Introduction 

The cooling loads of the DCS used here are based on the results in Chapter 8. For 

comparison, one office building with eight floors is selected from the district and the 

ICS for this building is designed. Annual hourly cooling loads of the DCS and ICS 

without considering uncertainty (marked as the reference case) are shown in Fig. 9.1. 

For both DCS and ICS, chilled water systems with primary constant speed pumps are 

designed. Chillers of different capacities are used in both systems. Chillers with larger 

capacities usually have higher nominal COPs. Fig. 9.2 shows the nominal COPs used 

in this study for chillers with different capacities in the DCS and ICS. The COP of a 

chiller at different part load ratios is shown in Fig. 4.5. The nominal COP may be 

different for different chillers and the same curve then moves vertically.  
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Fig. 9.1 Annual hourly cooling load of the DCS and ICS in the reference case 

 

Fig. 9.2 Nominal COPs of chillers of different capacities for the DCS and ICS 

Capital costs of the DCS and ICS of different capacities can be estimated based on the 

empirical relation shown in Fig. 9.3, which is obtained based on the cost information 

of major suppliers in the market. It shows that the unitary cost decreases with the 

increase of the system capacity. The operation cost is estimated based on the local 

electricity price, which is about 0.15 $/kWh in Hong Kong. The availability risk cost 

is estimated using the introduced availability risk price, which is up to the preference 

of the actual stakeholders of a project. The difference between the availability risk 

price and the electricity price affects the optimization results. Therefore, the total 

annual costs for the DCS and ICS at different availability risk prices are estimated and 

analyzed. 
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Fig. 9.3 Capital costs for the ICS and DCS of different capacities 

9.2 Impacts of uncertainty on cooling loads of the DCS and ICS 

The peak cooling load is used to determine the capacity of cooling systems. The annual 
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The distribution of the peak cooling load of the DCS is shown in Fig. 9.4a. The peak 

cooling load of the DCS varies between 87 MW and 120 MW. It corresponds to a 

relative difference between -21% and 9% compared with the peak cooling load in the 

reference case. The peak cooling load has high frequency between 98 MW and 105 

MW. The peak cooling load of the reference case locates at over 90% of the CDF. It 

shows that, if the cooling load is calculated using data in the reference case and without 

considering uncertainty, the peak cooling load can be over-estimated with a 

probability of 90%.  

 

Fig. 9.4 Peak cooling load distribution of the DCS and ICS 
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As shown in Fig. 9.4b, the peak cooling load of the ICS varies between 3100 kW and 

7000 kW. It corresponds to a relative difference between -44% and 30% compared 

with the peak cooling load in the reference case. The peak cooling load has high 

frequency between 4600 kW and 5500 kW. Fig. 9.4 shows that the peak cooling load 

of the ICS varies much more significantly than that of the DCS when uncertainties of 

input variables have similar distributions. It means that the uncertainty has even larger 

impacts on the cooling load of the ICS. Involving uncertainty in the design of ICSs is 

therefore more important. It also demonstrates that DCSs have higher capability to 

accommodate uncertainties compared with ICSs. That is because multiple buildings 

are connected to a DCS and the cooling load of the DCS is the sum of all individual 

buildings. The variation caused by uncertainty is reduced by summing cooling loads 

of all the buildings due to averaging facts. It can be expected that, if the number of 

buildings keeps increasing, uncertainty will have limited impact on the cooling loads 

of DCSs. 

The distribution of the annual average cooling load of the DCS is shown in Fig. 9.5a. 

It can be seen that the annual average cooling load of the DCS varies between 25.5 

MW and 34 MW. It corresponds to a relative difference between -16% and 12% 

compared with the annual average cooling load in the reference case. The cooling load 

has high frequency between 28 MW and 30.5 MW. The annual average cooling load 

of the reference case locates at around 80% of the CDF. It can be over-estimated with 

a probability of 80% when uncertainty is not considered.  
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Fig. 9.5 Annual average cooling loads of the DCS and ICS 

Fig. 9.5b shows that the annual average cooling load of the ICS varies between 900 

kW and 1700 kW. It corresponds to a relative difference between -36% and 30% 

compared with the annual average cooling load in the reference case. The annual 

average cooling load has high frequency between 1150 kW and 1300 kW, indicating 

high probability in this range. Fig. 9.5 shows that the annual average cooling load of 

the ICS varies more significantly than that of the DCS when uncertainties of input 

variables have similar distributions. It proves again that the uncertainty has larger 

impacts on ICSs and involving uncertainty in the design of ICSs is more important. 
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9.3 Sensitivity analysis for identification of influential factors 

The primary purpose of sensitivity analysis is to find the most important input factors 

for outputs such as the energy consumption, the cooling/heating load, etc. By ranking 

the importance of input factors, important variables can be obtained and measures can 

be followed up to reduce the variation of the design outcomes. Many methods can be 

used to conduct sensitivity analysis, which can be grouped into local and global 

methods. Global method is adopted in this study due to its ability to handle the 

interaction of inputs (Tian 2013).  

The sensitivity analysis contains three primary steps: 1) To obtain the regression 

model representing the relationship of all the inputs and outputs; 2) To select 

significant input variables out of all the inputs using parameter screening methods; 3) 

To rank the sensitivity of selected variables based on some reasonable sensitivity index 

(SI). The regression model can be expressed with Eq. (9-1). Parameter screening is 

necessary to remove insignificant input variables. This is especially important when 

the samples or trials are limited while the number of input variables is large. The 

“Lasso” method is used (Tibshirani 1996), which is regarded as a very effective 

screening method. It can always choose the most correlated parameters to enter the 

model. Where, y is the output. x1, x2 …xn are the input variables. a1, a2 … an are the 

regression coefficients. 

y
1
=a1xi1+a2xi2……+anxin                                               (9-1) 

The importance or sensitivity index are calculated using ANalysis of VAriance 

(ANOVA) as shown in Eq. (9-2) and Eq. (9-3). The sum of squared total (SST) 

indicates the uncertainty associated with the outputs. SST is consisted with two parts: 
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the sum of squared regression (SSR) and the sum of squared error (SSE). The ratio of 

SSR to SST (R2) indicates the accuracy of regression model. The uncertainty in the 

outputs caused by variable j can be calculated by decomposing SSR, which is 

expressed as SSj. The SI can be obtained using Eq. (9-3). A larger SI indicates higher 

sensitivity of a parameter for the output. Detailed processes and explanations can be 

found in the reference (Sun et al. 2014).  

R2=
SSR

SST
                                                                 (9-2) 

SIj =
SSj

SST
× 100%                                                  (9-3) 

For the purpose of comparison, another method random forest is also used, which is 

frequently used to rank the importance of variables. Random forests are a very popular 

and efficient ensemble learning method for classification, regression and other tasks 

based on model aggregation ideas, which is introduced by Breiman (2001). A 

multitude of decision trees are constructed considering two randomization processes, 

i.e., random selection of training samples and features for tree development. A certain 

unification scheme will be used to generate the final outcome, e.g., the majority votes 

for classification tasks and mean aggregation for regression tasks. One advantage of 

random forests is that it can avoid over-fitting by using the out-of-bag observations 

for validation. The quantification of the variable importance is one of the common 

applications of random forests. The principle is to test the increase of the mean error 

or mean square error when input variables are randomly permuted. Detailed processes 

and explanations can be found in (Breiman 2001). 

Results of the sensitivity analysis on the annual average cooling loads are shown in 

Fig. 9.6. Fig. 9.6a indicates that variables representing the indoor conditions (the 

occupant density, lighting density, plug-in load density and ventilation rate) are the 
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most important for the annual average cooling load of the DCS. Uncertainties in 

building design/construction are the least important compared with the other two 

groups of variables. Among the variables of building design/construction, the most 

important ones are the window wall ratio (WWR) and transmittance of windows. It 

shows that windows have to be designed carefully if one wants to get green buildings 

or low energy buildings in Hong Kong climate. For the annual average cooling load 

of the ICS, the ranking is similar. Variables based on the descending sequence of 

importance are also that representing the indoor conditions, outdoor weather and 

building design/construction.  

The ranking of variables for the peak cooling load calculation can also be obtained 

using the similar method, as shown in Fig. 9.7. It can be seen that, for the peak cooling 

load of the DCS and ICS, the most important variable is the ventilation rate of the 

outdoor fresh air. The uncertainties in the weather play a more important role in the 

peak cooling load of the DCS than that of the ICS. The rankings of the outdoor dry-

bulb temperature and humidity are very high concerning that impacts on the peak 

cooling load calculation of the DCS, which is very different for that of the ICS. That 

is because the outdoor weather data are identical at one trial (i.e. one year) for each 

building, which is the same in the cooling load calculation of the ICS. However, 

variables representing the building design/construction and indoor conditions are 

random for all the 37 buildings in the district. The cooling load of the DCS is the sum 

of the cooling loads of all individual buildings, which may average the random values 

for individual variables. The uncertainties in variables representing the building 

design/construction are also not important for the cooling loads compared with that 

representing the indoor and outdoor environment.  
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(a) Annual average cooling load of the DCS 

 

(b) Annual average cooling load of the ICS 

Fig. 9.6 Ranking of impacts of input variables on the annual average cooling load
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(a) Peak cooling load of the DCS 

 

(b) Peak cooling load of the ICS 

Fig. 9.7 Ranking of impacts of input variables on the peak cooling load 
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(a) Annual average cooling load of the DCS 

 
(b) Annual average cooling load of the ICS 

Fig. 9.8 Ranking of impacts of input variables on annual average cooling loads using 

random forests 
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(a) Peak cooling load of the DCS 

 
(b) Peak cooling load of the ICS 

Fig. 9.9 Ranking of impacts of input variables on peak cooling loads using random 

forests 
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Results of the sensitivity analysis using random forests are shown in Fig. 9.8 and Fig. 

9.9. The values of the horizontal axis are the increase in mean squared errors when the 

variables are permuted randomly. Variables with larger values mean the greater 

importance for the outputs. In general, uncertainties in the outdoor weather and indoor 

conditions have more impacts in both the annual average cooling load and peak 

cooling load, compared with that in building design/construction. Uncertainties in the 

weather play a more important role in the cooling load of the DCS compared with that 

of the ICS. All these results are similar to that using ANOVA method. Detailed 

ranking for an individual variable may be different due to working mechanisms of 

these two methods.  

9.4 Impacts of uncertainty on the design optimization of the DCS and ICS 

The impacts of the uncertainty on the design optimization of the DCS and ICS are 

assessed and compared. 

Performance of the DCS and ICS using chillers of different capacities is compared. 

The capacities of the DCS and ICS are determined by limiting the unmet hours to 35 

with a probability of 100%. It is 10,500 kW for the DCS and 6,300 kW for the ICS. 

For the DCS, 7 chillers are selected which is referred to a real DCS project with a 

similar capacity. The DCS with 7 identical chillers is named as Sdcs1. The system with 

6 large chillers and one small chiller is named as Sdcs2 (the capacity of the small one is 

half of that of the large one). For the ICS, the system with 3 identical chillers is named 

as Sics1. The system with 2 large chillers and 1 small chiller is named as Sics2 (the 

capacity of the small one is half of that of the large one). Considering uncertainty, 

energy saving by systems using chillers of different capacities in both the DCS and 

ICS is shown in Fig. 9.10. 
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Fig. 9.10 Energy saving distributions of the DCS and ICS using chillers of different 

capacities 
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different capacities in DCSs makes no big difference from the viewpoint of energy 

saving.  

9.5 Impacts of uncertainty and reliability on the design optimization of the 

DCS and ICS 

When both uncertainty and reliability are considered in the design stage, cost saving 

of the DCS and ICS using chillers of different capacities is shown in Fig. 9.11. The 

availability risk price (see Chapter 7) is assumed as 1.5 $/kWh, which is 10 times of 

the electricity price. It shows that the cost saving of Sdcs2 varies between 0.8 % and 

2.2%. The percentage is less than that of energy saving. It indicates that, considering 

reliability, the advantage of systems using chillers of different capacities becomes less. 

Cost saving of Sics2 ranges from 3% to 12.5%, which is also lower than the percentage 

of energy saving.  

The difference between the electricity price and availability risk price affects the 

results. Therefore, capacities and total annual costs at different availability risk prices 

are calculated as shown in Fig. 9.12 and Fig. 9.13. It can be seen that, with the increase 

of ARPRs, the optimal capacity and the annual total cost of the DCS increase. At the 

same ARPR, the optimal capacity of Sdcs1 is about 3% less than that of Sdcs2 while the 

cost is 2% higher. The relative cost saving decreases with the increase of ARPRs. The 

optimal capacity and the annual total cost for the ICS are shown in Fig. 9.13. The trend 

is similar to that of the DCS. Both the capacity and cost increase with the increase of 

ARPRs. At the same ARPR, the capacity of Sics2 is about 9% higher than that of Sics1 

while the cost is about 7% lower. It proves that, even considering reliability, using 

chillers of different capacities in ICSs is still preferred due to the lower cost. Fig. 9.12 
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and Fig. 9.13 shows that the impacts of uncertainty and reliability on the design of 

DCSs are much smaller compared with ICSs. 

 

Fig. 9.11 Cost savings of DCS and ICS using chillers of different capacities 

 

Fig. 9.12 Optimal capacities and total annual costs at different ARPRs - DCS 
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Fig. 9.13 Optimal capacities and total annual costs at different ARPRs - ICS 

9.6 Summary 

Impacts of uncertainty and reliability on the design of DCSs and ICSs are compared. 

The following conclusions can be made through the analysis and discussions: 

i. Uncertainty at the design stage affects the cooling load prediction of DCSs and 

ICSs significantly. The cooling load variation of DCSs is much smaller than that 

of ICSs when the uncertainties of input variables fit similar distributions. It is 

therefore more important to consider uncertainty in the design of ICSs. DCSs have 

higher capability to accommodate uncertainty. 

ii. Uncertainties in the indoor conditions are the most influential for both the annual 

cooling load and peak cooling load of the DCS and ICS. Uncertainties in building 

design/construction have the least impact on the cooling loads of the DCS and ICS, 

among which the uncertainties in windows are the most influential. Uncertainties 

in the weather condition are more important for the cooling load of the DCS 

compared with that of the ICS. 

iii. DCSs and ICSs using chillers of different capacities are more energy and cost 

efficient. Energy saving of DCSs using chillers of different capacities is not as 

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12 14 16 18 20

C
a

p
a

c
it

y
 [

k
W

]

Availability risk price ratio

Sics1 Sics2

0.4

0.45

0.5

0.55

0.6

0 2 4 6 8 10 12 14 16 18 20

T
o

ta
l 

a
n

n
u

a
l 

c
o

s
t 
[1

0
6

$
]

Availability risk price ratio

Sics1 Sics2



 
188 

large as that of ICSs at the same arrangement. It is not recommended to use chillers 

of different capacities in DCSs. 

iv. Considering reliability, systems using chillers of different capacities are still 

preferred for both the DCS and ICS but the advantage in the DCS is less significant. 

The cost saving is smaller than energy saving.  

v. The impact of uncertainty and reliability on the design of DCSs is smaller than 

that on the design of ICSs. 
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CHAPTER 10 CONCLUSIONS AND FUTURE WORK 

 

In this chapter, main contributions of this thesis are summarized. Conclusions are 

made based on the above studies. Recommendations for future work are presented. 

10.1 Main Contributions of this study 

This study investigates the performance of DCSs and conducts design optimization 

for DCSs and ICSs considering uncertainty of cooling loads and system reliability. 

Main contributions are summarized as follows: 

i. Detailed performance assessment of the DCS in the subtropical area is 

conducted by comparing it with ICSs. Energy performance of the DCS under 

different seasons and part load ratios is analyzed. Energy and economic 

performance of the DCS coupled with different technologies to handle the peak 

electricity load is quantified and analyzed in the subtropical area. 

ii. Detailed literature review on the studies of DCSs and their applications is 

presented. Studies involving uncertainty and reliability quantification in 

building energy systems are summarized and classified. 

iii. Uncertainties at planning and design stages of DCSs and ICSs are quantified. 

The uncertainty-based optimal design methods for DCSs and ICSs are 

developed. Performance of the cooling systems using the proposed methods is 

analyzed and compared with that using the conventional design method. 

iv. The robust optimal design methods considering both uncertainty and reliability 

are developed and implemented in DCSs and ICSs. Performance of the cooling 
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systems using the robust optimal design method is evaluated and compared 

with that using the conventional method, uncertainty-only method and 

reliability-only method. 

v. The impacts of uncertainty and reliability on the design optimization of DCSs 

and ICSs are evaluated and compared. 

10.2 Conclusions 

Conclusions from the performance assessment of the DCS compared with ICSs 

i. The DCS is an energy efficient cooling system for the new development area 

in the subtropical area. It can save around 15% energy compared with the 

traditional ICS. 

ii. The DCS shows high energy saving potential all the year, especially in the cold 

months when the buildings have low cooling demands. The DCS shows high 

energy saving potential when the load ratio is below 50%. 

iii. Chillers are the major contributor to energy saving in DCSs compared with 

ICSs. It is due to the load concentration effect which allows the chillers to work 

at high COPs, especially when the load ratio for individual buildings is low.  

iv. The chilled water system is the only subsystem that consumes more energy in 

the DCS compared with the ICS. It is because the DCS has at least one extra 

group of pumps compared with ICSs. Reducing the energy consumption of 

chilled water systems is important to enhance the advantage of DCSs. 



 
191 

v. The DCS can save at least 7% of energy compared with the ICS in the 

conditions studied, no matter how much percent of buildings have cooling 

loads during night time.  

vi. The annual operation cost of the DCS is 10% lower than that of the ICS under 

the current tariff in Hong Kong. 

Conclusions from the performance analysis of the DCS with different technologies 

i. The DCS with full ice storage system is not cost-efficient under current Hong 

Kong tariff because of much more annual operation cost. The DCS with partial 

ice storage system for demand limiting can save around 4% of the annual 

operation cost, which is recommended in the design of the DCS. 

ii. The priority of the DCS with PHES and the DCS with thermal storage system 

depends on the efficiency of both systems. Detailed comparison is strongly 

recommended before the decision is made.  

iii. The DCS integrated with CCHP system is more energy efficient than that fully 

depending on the local grid. The energy saving ranges between 8% and 18%. 

Hot water demand affects the energy saving and payback periods significantly. 

The integrated system designed based on electricity demand is recommended 

due to a short payback period (2.6 to 6 years). 

Conclusions from the design method based on mini-max regret theory 

i. The optimal design method based on mini-max regret theory is easy to be 

implemented. It can achieve the uncertainty-based optimal cooling system very 

effectively. No complicated models or methods are involved. 
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ii. The uncertainty-based optimal combination of two chillers is the option with 

individual chiller capacities of 0.3 and 0.7 of the system capacity. It can save 

up to 12% of energy compared with that with equal-size chillers. The 

uncertainty-based optimal combination of three chiller is the option with 0.2, 

0.2 and 0.6, or 0.4, 0.4 and 0.2 of the system capacity. The energy saving can 

be up to 10%. The uncertainty-based optimal combination of four chillers is 

the option with individual capacities of 0.1, 0.2, 0.2 and 0.5 of the system 

capacity. The energy saving can be up to 10%.  

iii. Five types of chilled water pump systems are studied. The primary-only chilled 

water system with constant-speed pumps is always the most energy-consuming. 

It is recommended to avoid the use of such a system in practical applications. 

The primary-only chilled water configuration with variable-speed pumps is the 

uncertainty-based optimal, considering the uncertainty in the pipeline 

resistance. Such a chilled water system consumes about 50% less of energy. 

For the chilled water system of a similar connection way, the option with 

smaller pumps is more efficient.  

Conclusions from the design optimization of ICSs 

i. The uncertainty-based optimal design method is developed. The peak cooling 

load of the ICS varies largely by considering uncertainties at design stage. If 

the ICS is sized using the conventional method, it has a high probability to be 

oversized. With the distribution of unmet hours and capital costs at different 

risk levels, decision makers can determine an ICS based on their specific 

concerns with quantified confidence.  
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ii. The annual average cooling load varies significantly considering uncertainty. 

The performance of the ICS with different configurations at different risk 

levels is obtained when considering uncertainty. The selected configuration 

using the conventional method cannot perform as well as expected and the 

efficiency is most likely overqualified.  

iii. By quantifying the cooling load uncertainty and assessing the reliability of the 

ICS, the robust optimal design of the ICS is achieved. The optimal capacity of 

the ICS determined using the robust optimal method is lower than that using 

the reliability-only method, and higher than that using the uncertainty-only 

method.  

Conclusions from the design optimization of DCSs 

i. The annual average cooling load of the DCS considering uncertainties varies 

between 0.84 and 1.12 times of that without considering uncertainty. It almost 

fits a normal distribution when the uncertainties of input variables are 

quantified using the method of this study. Based on the distribution of the 

annual cooling load, the energy performance of different DCS options at 

different risks can be obtained. 

ii. The peak cooling load at different risk levels is obtained based on uncertainty 

quantification. With the number of unmet hours and cooling loads at different 

risks, the DCS can be properly sized under certain risk and thermal comfort 

requirement. 

iii. The configuration of the DCS can be selected based on quantified risks and 

benefits based on the uncertainty-based optimal design. The energy saving of 
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the DCS using chillers of different capacities is not promising. It is not 

recommended considering control and maintenance issues. Annual cost saving 

of the DCS with ice storage system varies significantly when considering 

uncertainty in the cooling load.  

iv. The robust optimal design of the DCS with the lowest total annual cost is 

achieved. With the increase of the availability risk price, the optimal capacity 

increases. When the availability risk price is high enough, the capacity of the 

DCS using the robust optimal design method is larger than that using the 

conventional method.  

v. The capacity of the DCS obtained using the robust optimal method is smaller 

than that using the reliability-only method. When only uncertainty is 

considered, the capacity of the DCS is smaller but the total annual cost is higher. 

Conclusions from the comparison of DCSs and ICSs 

i. The cooling load variation of the ICS is larger than that of the DCS when the 

uncertainties of input variables fit similar distributions. The uncertainty has 

larger impact on the cooling load of ICSs and it is more essential to involve it 

in the design process. DCSs have a stronger capability to accommodate 

uncertainties. 

ii. Uncertainties in the indoor conditions are the most influential for both the 

annual cooling load and peak cooling load of the DCS and ICS. Uncertainties 

in building design/construction have the least impact on the cooling loads of 

DCSs and ICSs, among which uncertainties in windows are the most 
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influential. Uncertainties in the weather condition play a more important role 

in DCSs compared with ICSs. 

iii. Cooling systems using chillers of different capacities are more energy efficient, 

which is consistent in both DCSs and ICSs. However, the energy saving is 

larger in ICSs. There is no significant benefit to use chillers of different 

capacities in DCSs from the viewpoint of energy saving. 

iv. Considering reliability, systems that using chillers of different capacities are 

still preferred for both DCSs and ICSs but the advantage is decreased. The cost 

saving is not as high as the energy saving.  

10.3 Recommendations for future work 

This thesis answers several important questions about the DCSs and ICSs but many 

other problems still need to be solved. Following points are recommended for further 

studies: 

i. Uncertainties in the performance of components in the cooling systems (such 

as chillers, pumps, valves, etc.) are rarely considered at design stage. These 

uncertainties will affect the operation performance of the cooling systems. 

Comprehensive optimization method considering uncertainty at planning, 

design and operation stages needs to be developed.  

ii. Effective and accessible tools are necessary to implement the proposed design 

methods considering uncertainty and reliability. It will be much more helpful 

if such tools can be integrated with popular building energy simulation tools 

such as EnergyPlus, TRNSYS, etc. Similar tools for building energy systems 
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are available such as GURA-Workbench. However, for the central cooling 

plant, such tools are still needed to be developed. 

iii. Probability density functions to quantify uncertainties of input variables 

(except that representing the weather condition) in this study are mostly 

determined based on experiences or assumptions. It is necessary and important 

to develop more reliable methods to obtain probability density functions as 

reasonable/accurate as possible.  

iv. It is usually very calculation-intensive and time-consuming to model a large 

DCS serving many buildings, or an energy system at urban scale. Effective and 

reliable tools to simulate the performance of energy systems at large scale are 

worth to be developed. It will be much more valuable if the tools can involve 

the dynamic characteristics of the energy systems. 

v. One characteristic of the DCS is that it has multiple buildings as users. If taking 

each building as an agent, the multi-agent concept can be implemented in the 

DCS to optimize the operation of the DCS. Multi-agent has been widely used 

in the building energy system (Huberman and Clearwater 1995; Klein et al. 

2012; Zhao et al. 2013). Its application in DCSs is worth to be studied. 

vi. With the development of smart grid, new concepts are emerging such as smart 

poly-generation micro-grid, smart energy network, and smart thermal grid 

(Bracco et al. 2014; Chai et al. 2013; Lund et al. 2014). Buildings play an 

important role in the smart grid because building energy systems contribute a 

large percent of the total electricity consumption in urban areas (Wang et al. 

2014; Xue et al. 2014). This results in the necessity to develop smart DCSs to 
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be integrated with smart grid. The technologies to integrate DCSs with smart 

grid and potential problems need to be investigated.  
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