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Abstract 

 

Nowadays, urban areas keep growing as a result of rapid economic development, 

technological advances and population migration. Recognition of an urban area means 

the identification of the spatial extent of the urban area. It is important to recognize 

the urban areas of cities, because it provides a basis for classifying urban and rural 

populations, monitoring and analyzing urban growth, and making governmental 

decisions and policies. In recent years, increasing availability of remotely sensed data 

and processing techniques facilitate the development of new approaches to studying 

urban issues. Remote sensing based approaches have been widely developed for urban 

land cover / land use classification, urban object extraction and urban landscape 

analysis. Some efforts have been made to recognize urban areas from remote sensing 

images, but these methods consider urban area as a thematic class and identify urban 

areas through a per-pixel classification. These methods do not recognize an urban area 

as a geographical entity. This research aims to develop an algorithm to recognize 

urban areas using remote sensing data and techniques. It reviews currently definitions 

of urban areas to identify common urban characteristics and urban-rural differences 

from them. Based on the urban-rural differences, relevant information and processes 

are selected to compose the algorithm. 

 

Four urban characteristics are identified through a review of current urban definitions. 

They are a) urban areas contain large and dense built-up areas; b) urban areas contain 

heterogeneous elements; c) urban areas are dominant by non-agricultural activities; 

and d) urban areas are distinguishable from their surrounding rural areas. Eight remote 

sensing image features are related to the urban characteristics, they are, the four 
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proportions of vegetation, impervious surface, soil and water / shade, and the four 

textural features including angular second moment, inverse difference moment, 

contrast and entropy. They correspond to two types of information. Four proportional 

features correspond to land cover composition, and four textural features correspond 

to land cover configuration. The experiment results show that the combination of the 

eight features is valid for characterizing different kinds of areas and effective for 

distinguishing between urban and rural areas. The multi-resolution image 

segmentation algorithm is suitable for dividing a city region into homogeneous 

sub-regions that accord with the physical landscape. In the experiment of the 

algorithm with Landsat TM data, all the seven spectral bands show a decrease in the 

average grey-level range along a continuous region splitting process performed for all 

administrative regions of the study area. The average grey-level ranges in six of the 

seven bands are further reduced by removing the administrative boundary constraint. 

An urban area is successfully recognized through an iterative clustering and merging 

process, performed on the homogeneous regions output from the image segmentation 

process with the eight proportional and textual features. An experiment shows that the 

iterative clustering and identification is able to identify an area that can be definitely 

labelled as urban. Another experiment shows that the iterative merging process is able 

to identify the urban and rural areas of a city region with the maximum distance 

between them in the feature space. The resulting urban area is evaluated by a fact 

consistency checking. By overlapping the resulting urban area with some referenced 

data, it is verified that all the facts identified about the study area are satisfied by the 

recognition result. 
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Chapter 1 Introduction 

 

An urban area is a concentration of human beings and activities. Nowadays, urban 

areas keep growing as a result of rapid economic development, technological 

advances, and population migration (Brockerhoff, 2000). Urban areas are spreading 

into their surrounding landscapes, sucking food, energy, water and resources from the 

natural environment (Netzband and Jurgens, 2008). The process of turning rural 

places into urban areas is called urbanization, which can be reflected by the growth of 

urban population. The world urban population increased from less than 30% by 1950 

to over 50% by 2011. It is predicted that it is going to increase by 72% from 3.6 

billion in 2011 to 6.3 billion in 2050 (United Nations, 2012). As urban problems are 

closely related to human life, a range of disciplines related to urban areas have been 

established, including Urban Geography, Urban Sociology, Urban Economics, Urban 

Ecology, Urban Anthropology, Urban Morphology and Urban Planning. In recent 

years, increasing availability of remotely sensed data and processing techniques 

facilitate the development of new tools and approaches for urban studies. 

 

1.1 Importance of Urban Area Recognition 

 

Recognition of urban areas is a primary step in analyzing natural and human 

phenomena and processes, such as transformation of landscapes and change in 

population structure. Results are important for making governmental decisions or 

policies. For example, the United States Census Bureau began defining and 

identifying urban and rural areas in 1880. It states in its documentations of Urban and 

Rural Classification that “the Census Bureau delineates urban and rural areas for 
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statistical purposes; that is, to tabulate and present data for the urban and rural 

population, housing, and territory within the United States, Puerto Rico, and the 

Island Areas” and that “the urban and rural classification provides an important 

baseline for analyzing changes in the distribution and characteristics of urban and 

rural populations…also supports the Office of Management and Budget's delineation 

of metropolitan and micropolitan statistical areas”. Specifically, the following use of 

urban area data are mentioned (US Census Bureau, 2015). 

 

a) The National Center for Education Statistics uses the urban and rural definitions 

in its locale codes classification. 

b) The US Department of Agriculture uses the urban-rural classification as the basis 

for various urban and rural classifications used to analyze and report on 

demographic and economic patterns in rural areas. 

c) Federal Highways Administration uses the urbanized areas to qualify 

Metropolitan Planning Organizations. 

d) Other government agencies use the urban and rural definitions to determine 

program eligibility and funding formulas for making the grants. 

e) Data users and researchers analyze the urban and rural areas and data tabulated 

for those areas for urban and rural population and housing. 

f) Analysts use urban area data to study patterns of urbanization, suburban growth 

and development, and urban/rural land area change. 

 

The recognition of urban areas is an important process. Many findings or decisions 

made by governmental, commercial and research organizations are based on it. 
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1.2 Automated Urban Area Recognition: State-of-the-Art 

 

An urban area is a concentration of human beings and activities. Recognition of an 

urban area means the identification of the spatial extent of the urban area. This section 

describes how an urban area is represented in a data form that supports the 

applications and analyses mentioned in Section 1.1, and existing methods for 

producing the urban area data. 

 

1.2.1 Representations of Urban Areas 

 

An urban area is a geographical entity, with spatial information, thus it is represented 

as spatial data of the object model, comprise a number of literal attributes, e.g. its 

name and size, and a spatial attribute, i.e. a geometry representing its spatial extent. 

This kind of spatial data is stored in vector data formats, for use in Geographic 

Information Systems (GIS). For example, Figure 1.1 shows a part of the urban area 

data produced by the U.S. Census Bureau. To clarify the locations of the urban areas, 

a Google Map layer is laid beneath the data layer. The urban areas are displayed in 

light red, in order to make a clear contrast with the base map. 
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Figure 1.1 Representation of Urban Areas as Polygons 

 

Geometrically, each urban area is represented as a polygon. A clear boundary is drawn 

for the urban area. Figure 1.2 indicates the urban boundary of Washington 

DC-VA-MD. It can be seen from this urban area that the U.S. Census Bureau 

considers some parts of three districts, i.e. Washington DC, VA and MD, as a single 

urban area. Also, it can be seen that the urban area contains some holes, which means 

that single-connectedness is not required in U.S. Census Bureau‟s realization of an 

urban area. 
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Figure 1.2 The Urban Boundary of Washington DC-VA-MD 

 

Besides vector data, urban areas can also be found represented as binary images. Each 

image pixel is of one of the two possible values, i.e. urban (foreground) or non-urban 

(background). Figure 1.3 shows a raster image of urban areas in Beijing, produced 

using the urban area extraction method of Zha et al. (2003). The black line delineates 

the administrative boundary of Beijing. The image background is white and urban 

pixels are displayed in red. This kind of representation results from image 

classification methods, in which urban area is not conceptualized as a geographical 

entity but a thematic class. The classification process determines whether the area 

covered by the pixel is urban or not. 
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Figure 1.3 Binary Image Representation of Urban Areas 

 

1.2.2 Recognition of Urban Areas 

 

Recognition of an urban area means the identification of the spatial extent of the 

urban area. In other words, an urban-rural boundary can be drawn to delineate an 

urban area as a geographical entity, as shown in Figure 1.2. Traditionally, it is done by 

censuses and surveys. Census and survey data provide most of the knowledge of the 

social environment of places. However, it is recognized that there is a spatial 

mismatch in census data, as people are enumerated at their places of residence, who 

typically work in a different location during the daytime. Moreover, the cost of 

generating and maintaining census and survey data is enormous. Furthermore, the 

urban and rural areas classification using census and survey data is not efficient. In 
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recent years, increasing availability of remotely sensed data and processing techniques 

facilitate the development of new approaches to studying urban issues. Some methods 

have been developed to recognize urban areas using remote sensing images and 

techniques. Due to the raster nature of image data, these methods are classification 

approaches. The per-pixel classification process determines whether the area covered 

by the pixel is urban or not, but no boundary is drawn to delineate an urban area. The 

urban area is not conceptualized as a geographical entity but a thematic class. Hence, 

these classification based methods do not really identify a geographical entity, but 

produce a raster representation of the environment, as shown in Figure 1.3. An 

approach to recognize urban areas as geographical entities using remote sensing 

images and techniques is still needed to be developed. 

 

1.3 Aim and Objectives 

 

This research aims to develop an algorithm for urban area recognition by extracting 

urban areas as geographical entities with distinct boundaries. In order to achieve this 

aim, the following objectives need to be fulfilled: 

a) To identify urban features from images for rural-urban separation; 

b) To develop an algorithm for automating the identification of the boundary of an 

urban area. 

 

1.4 Thesis Outline 

 

Apart from this introductory chapter, the rest of this thesis is organized as follows. 
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Chapter 2 reviews current definitions of urban area, including census definitions used 

by different countries and urban scholars‟ definitions adopted in urban studies. 

Common characteristics of an urban area are identified from those definitions. It then 

reviews some remote sensing techniques that are widely used in urban studies. Both 

traditional and remote sensing based methods for urban area recognition and their 

problems are discussed. 

 

Chapter 3 describes a new strategy for recognizing urban areas using remote sensing 

images and techniques. Firstly, the urban-rural differences are formulated by 

summarizing the urban characteristics identified in Chapter 2. Secondly, based on the 

urban-rural differences, relevant information and processes are identified to develop 

an algorithm for urban area recognition. The proposed algorithm comprises four steps, 

i.e. zoning, clustering, identification and merging. Finally, the study area used 

throughout the research is described in detail. 

 

Chapter 4 identifies eight remote sensing image features that are related to the urban 

characteristics. The eight features correspond to two types of information. Four 

proportional features correspond to land cover composition, and four textural features 

correspond to land cover configuration. Experiments are conducted to evaluate if the 

eight features are effective to characterize urban and rural areas. The eight features are 

extracted from Landsat TM data for the sixteen administrative regions of the study 

area. K-means clustering algorithm is applied to classify the regions into two, three 

and four groups respectively. By comparing the clustering results with the reference 

divisions, the eight features show a pattern that is consistent with the referenced data. 

 

Chapter 5 discusses the zoning method for the approach. The multi-resolution 
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segmentation algorithm is used to divide a city region into homogeneous sub-regions 

that accord with the physical landscape. An experiment is conducted to compare the 

homogeneous division with the administrative division. A continuous region splitting 

process is developed to observe the change of the average grey-level ranges in all 

image bands. The administrative boundary constraint is further removed to see if the 

resulting regions become more homogeneous. 

 

Chapter 6 proposes an iterative clustering and merging algorithm for urban area 

recognition, which is applied on the output regions of the zoning step, with the eight 

proportional and textural features. A clustering analysis is made for observing the 

change of output clusters along a series of clustering operations. A merging analysis is 

then made for observing the change of the distance between urban and rural areas in 

the feature space along a series of merging steps. The result shows that the proposed 

algorithm recognizes the urban area successfully. The recognized urban area is 

evaluated by overlapping it with referenced data to check if it satisfies the facts about 

the study area. 

 

Finally, Chapter 7 concludes the thesis. A summary and the main conclusions of the 

research are presented. Limitations are explained and future work is proposed. 
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Chapter 2 Remote Sensing Based Urban Area 

Recognition: A Review 

 

This chapter firstly reviews current definitions of urban area, including census 

definitions used by different countries, and urban scholars‟ definitions adopted in 

urban studies. It then reviews remote sensing techniques that are widely used in urban 

studies, including urban land cover / land use classification, urban object extraction 

and urban landscape analysis. Both traditional and remote sensing based methods for 

urban area recognition and their problems are discussed. 

 

2.1 Definitions of an Urban Area 

 

The Oxford English Dictionary defines „urban‟ as „relating to, situated or occurring in, 

or characteristic of, a town or city, esp. as opposed to the countryside‟ (Oxford 

University Press, 1989). The word „urban‟ is in itself adjectival and needs to be allied 

with another word, such as population or area. The strongest contemporary research 

focus is less concerned with defining urban as a quality than with defining urban areas 

as entities, i.e. cities in the literature (Herbert and Thomas, 1990). Most people 

recognize a city easily when they see one, but no one finds a way to define it easily. It 

is undoubtful that no single definition can apply to all cities or even to the same city at 

different times. For census purpose, many countries or regions have developed their 

own quantitative criteria to classify cities or urban areas. For analytical purpose in 

urban studies, qualitative definitions are of greater interest, which identify the unique 

nature of human activities and way of life that make a place a distinct urban character. 

This section reviews urban definitions by these two types, and identifies the common 
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urban characteristics implied in these definitions. 

 

2.1.1 Census Definitions (Quantitative Definitions) 

 

For census purpose, quantitative definitions are of interest as they affect the estimate 

of urban population. The criteria for defining an urban area vary from one country or 

region to the other. Of the 228 countries tracked by the United Nations, 36% use 

strictly administrative division, 25% use population size and 11% have no definitive 

criteria (Beall and Fox, 2009). A list of urban definitions of 124 countries can be 

found in the latest available United Nations Demographic Yearbook (UNDESA, 2013). 

From those national definitions used for demographic estimates and projections, some 

common criteria are identified and summarized in Table 2.1. The current census 

definitions of urban area are based on one or more criteria. 

 

Table 2.1 Common Criteria in Census Definitions of Urban Area 

(Example definitions are taken from (UNDESA, 2013)) 

Criterion Example 

population size Iceland: Localities of 200 or more inhabitants. 

population density 
Canada: Places of 1,000 or more inhabitants, having a 

population density of 400 or more per square kilometer. 

building density 

France: Communes containing an agglomeration of more 

than 2,000 inhabitants living in contiguous houses or with 

not more than 200 meters between houses, also communes 

of which the major portion of the population is part of a 

multi-communal agglomeration of this nature. 

dominant type of 

economic activity 

Netherlands: Urban: Municipalities with a population of 

2,000 and more inhabitants. Semi-urban: Municipalities 

with a population of less than 2,000 but with not more than 

20 per cent of their economically active male population 

engaged in agriculture, and specific residential 
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municipalities of commuters. 

conformity to legal or 

administrative status 

Egypt: Governorates of Cairo, Alexandria, Port Said, 

Ismailia, Suez, frontier governorates and capitals of other 

governorates, as well as district capitals (Markaz). 

urban characteristics 

Panama: Localities 1,500 or more inhabitants with such 

urban characteristics as streets, water supply systems, 

sewerage systems and electric light. 

 

The use of single criterion of population size is the most popular, which is adopted by 

more than 50 countries. This is because it is technically simple and the information 

base of statistics is readily available. Over 30 countries use only administrative 

divisions. Many countries adopt more than one criterion. For example, India uses a 

combination of four criteria to define an urban area. It can be seen that the definitions 

differ significantly, though some criteria are common. Large differences can also be 

found in each single criterion type. For example, Denmark and Sweden use a 

population size criterion of a minimum of 200 inhabitants, while Japan uses 50,000. 

 

The United Nations accepts each country's definition for calculating urban population 

estimates and projections based on the assumption that governments know best what 

features distinguish urban from rural places in their own countries (Brockerhoff, 

2000). Nevertheless, it pointed out that there are shortcomings in using those census 

definitions. Not only do the definitions differ from one country to the other, but they 

may also no longer reflect the original intention for distinguishing urban from rural. 

The urban areas that are defined based on administrative divisions become fixed and 

resistant to change. Comparisons of time-series data of those areas are not useful. 
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In china, the National Bureau of Statistics of the People's Republic of China defines 

an urban area based on administrative division and some census criteria. That is to say, 

urban areas are classified from administrative districts, and urban boundaries are in 

accordance with administrative boundaries. Such a kind of urban definition gives rise 

to two problems. Firstly, the urban boundaries are fixed, and the urban areas do not 

necessarily accord with the physical extents of the urban landscape. Secondly, the 

urban areas change according to administrative and governmental policies, rather than 

to the urbanization process that transforms the physical environment. During 1980s, 

the government took a number of administrative actions to turn countries into cities, 

resulting in a dramatic increase of the number of cities and towns. The proportion of 

urban population increased from 20.6% in the third national census in 1982 to 51.7% 

in 1989, of which 63.5% are agricultural population. Up to then, the urban and rural 

concepts made no sense at all. Due to such a fact, some international organizations, 

e.g. United Nations and World Bank, did not accept the population statistics of China 

after 1982. Thereafter, the fourth national census in 1990 amended the criteria for the 

urban-rural division to fix the problem. The proportion of urban population fell back 

to 26.23% (Xu et al., 1997). Figure 3.1 shows the administrative division of Beijing, 

China. Correspondingly, Table 2.2 shows the population data of those administrative 

districts of Beijing, which were collected by the fifth and the sixth national censuses 

in 2000 and 2010 respectively (National Bureau of Statistics PRC, 2001; 2012). 

According to the population density criterion of a minimum of 1,500 people per 

square kilometers in the Regulation on the Division of Urban and Rural Areas in 

Statistics published by the National Bureau of Statistics in 1999, the urban area of 

Beijing is indicated in Figure 2.1. The urban area includes six administrative districts 

(districts 1 to 6 in Figure 2.1). 
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Figure 2.1 Administrative Regions of Beijing, China 

 

Table 2.2 Population Distribution of Beijing in 2000 and 2010 

 (National Bureau of Statistics PRC, 2001; 2012) 

District 

Name 

Area 

(km
2
) 

Population 

in 2000 

(people) 

Population 

Density in 

2000 

(people/km
2
) 

Population 

in 2010 

(people) 

Population 

Density in 

2010 

(people/km
2
) 

Dongcheng 42.0  882,000  21,000  919,000  21,881  

Xicheng 51.0  1,233,000  24,176  1,243,000  24,373  

Chaoyang 470.8  2,290,000  4,864  3,545,000  7,530  

Fengtai 304.2  1,369,000  4,500  2,112,000  6,943  

Shijingshan 89.8  489,000  5,445  616,000  6,860  

Haidian 426.0  2,240,000  5,258  3,281,000  7,702  

Mentougou 1,331.3  267,000  201  290,000  218  

Fangshan 1,866.7  814,000  436  945,000  506  
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Tongzhou 870.0  674,000  775  1,184,000  1,361  

Shunyi 980.0  637,000  650  877,000  895  

Changping 1,430.0  615,000  430  1,661,000  1,162  

Daxing 1,012.0  672,000  664  1,365,000  1,349  

Huairou 2,557.3  397,000  155  373,000  146  

Pinggu 1,075.0  296,000  275  416,000  387  

Miyun 2,335.6  420,000  180  468,000  200  

Yanqing 1,980.0  275,000  139  317,000  160  

 

From Table 2.2, the total population of Beijing in 2010 was 19,612 thousands. 

Compared to 13,570 thousands in 2000, it increased by 44.5%. The population of the 

six districts that comprise the urban area increased by 34.7%, from 6,263 thousands to 

8,435 thousands. However, if using the criteria of population density, the urban area 

was unchanged, which did not reflect the evident urban growth over ten years as 

reflected by the increase of population. In fact, the National Bureau of Statistics 

recognized the problems resulted from the use of the population density criterion. In 

the amended Regulation on the Division of Urban and Rural Areas in Statistics that 

has been effective since 2008, it abolished the use of the population density criterion, 

and defined the basis of the division of urban and rural areas as built facilities, which 

were further defined as public facilities, residential facilities and other facilities that 

were built up or under construction (National Bureau of Statistics PRC, 2006; Qiu, 

2012). It is reflected in this definition that the physical environment, instead of people, 

characterizes a place. Urban areas are geographical entities that are determined by its 

physical landscape rather than by administrative designation. Such a kind of view is 

of more interest by urban scholars. The urban scholars‟ definitions are reviewed in the 

next section. 
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2.1.2 Urban Scholars’ Definitions (Qualitative Definitions) 

 

Different from the census definitions, which are simply and technically used for 

estimates of urban populations, scholars in urban studies are more interested in those 

qualitative definitions that reflect the relationship between man and environment. 

Scholars from a number of disciplines are interested in urban phenomena, including 

geographers, sociologists, historians and philosophers. They made an effort to define 

an urban area, i.e. a city in the literature, some of which are widely accepted and used 

in urban studies. Table 2.3 lists several famous urban scholars‟ definitions that are 

widely cited in Urban Geography and Sociology books (e.g. Johnson, 1972; Berger, 

1978; Herbert and Thomas, 1990; Paddison, 2001; Kaplan et al., 2004; Lorinc, 2008; 

Beall and Fox, 2009; Knox and McCarthy, 2012; Harding and Blokland, 2014). 

 

Table 2.3 Urban Scholars‟ Definitions of Urban Area 

Author Definition 

Maunier (1910) 

A city is a complex community of which the geographic 

localization is especially limited in relation to the city's 

size, of which the amount of territory is relatively small 

with reference to the number of human beings 

Mumford (1937) 

The essential physical meanings of a city existence are the 

fixed site, the durable shelter, the permanent facilities for 

assembly, interchange, and storage; the essential social 

meanings are the social division of labor, which serves not 

merely the economic life but the cultural processes. The 

city in its complete sense, then, is a geographical plexus, an 

economic organization, an institutional process, a theater of 

social action, and an aesthetic symbol of collective unity. 

Wirth (1938) 
A city is a relatively large, dense, and permanent settlement 

of socially heterogeneous individuals 
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Childe (1950) 

A city is defined with 10 general metrics: 

Size and density of the population should be above normal. 

Differentiation of the population. Not all residents grow 

their own food, leading to specialists. 

Payment of taxes to a deity or king. 

Monumental public buildings. 

Those not producing their own food are supported by the 

king. 

Systems of recording and practical science. 

A system of writing. 

Development of symbolic art. 

Trade and import of raw materials. 

Specialist craftsmen from outside the kin-group. 

Sjoberg (1965) 

A city is a community of substantial size and population 

density that shelters a variety of non-agricultural 

specialists, including a literate elite. 

Wheatley (1969) 

particular set of functionally integrated institutions which 

were first devised some five thousand years ago to mediate 

the transformation of relatively egalitarian, ascriptive, 

kin-oriented groups into socially stratified, politically 

organized, territorial based societies, and which have since 

progressively extended both the scope and autonomy of 

their institutional spheres so that today they mold the 

actions and aspirations of vastly the larger proportion of 

mankind 

 

It can be seen from those definitions that urban scholars pay more attentions than 

census definitions to the social, economic, political and cultural aspects that make 

urban places different from rural ones. Among those scholars, Louis Wirth was a 

well-known sociologist of the Chicago School. His article Urbanism as a Way of Life 

is a classic in the study of urbanism (Wirth, 1938). His definition of a city (see Table 

2.3) has been regarded as one of the most basic and enduring definitions by urban 

geographers (Beall and Fox, 2009). He argued that these conditions, i.e. size, density, 

and heterogeneity, create a distinctly urban way of life and an identifiable urban 
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personality. 

 

Lewis Mumford, who is known as one of the greatest urban scholars of the twentieth 

century, defined a city in terms of its physical and social aspects (see Table 2.3). His 

definition highlights the spatial dynamics of a built environment that serves as a 

'theater' of human interactions as well as a reflection of social relations. Similar to 

Wirth's view, Mumford also paid an attention to the fundamental influences of size 

and density in his article What is a City (Mumford, 1937). Although many urban 

scholars have sought to define or redefine a city, the definitions offered by Wirth and 

Mumford are cited as fundamental and universal ones by contemporary scholars, as 

they are defining characteristics of urban agglomerations over time and everywhere 

(Beall and Fox, 2009).  

 

2.1.3 Common Urban Characteristics 

 

From the current definitions of urban area, two facts can be drawn. Firstly, there is no 

universal, determinate and stable definition of an urban area. Census statisticians 

recognize that no international standard definition appears to be possible. Likewise, 

urban scholars argue that current various approaches to urban definition have not 

given rise to any consensus view, and will inevitably be inconclusive, because an 

urban area is a complicated phenomenon, and the meaning of urban varies 

considerably over both space and time. Secondly, however, some characteristics are 

common. No matter when and where, for census or urban studies, urban is used to 

distinguish people or places from rural counterparts. This section identifies those 

characteristics that are commonly used for or implied in various definitions of urban 

area, which are discussed in the following sub-sections. 
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2.1.3.1 Large Size and Density of Built-up Areas 

 

Obviously, size and density are important and widely used criteria in urban definitions. 

Such measures can be applied to describe either people or places. In census 

definitions, they are mostly applied to population. In urban scholars‟ definitions, some 

apply them to population, e.g. Childe‟s, while the others apply them to settlement, e.g. 

Wirth‟s. Size and density of population and those of settlement are related. Large and 

dense population requires large and dense built-up space to accommodate it. Recent 

research pointed out that the use of population to define an urban area resulted in a 

bias in the classification of a place, as people are enumerated at their place of 

residence, while urban residents typically work in a different location from where they 

live (Weeks, 2008). This view is also reflected by the latest census definition of urban 

area of China, which abolished the use of the population density criterion, and 

classifies urban and rural areas based on built facilities instead, as reviewed in Section 

2.1.1. Even if the size and density are used to describe population or built-up space in 

different definitions, a common view shared by those definitions is that they are large 

in urban areas. All census definitions that use the criterion of population size or 

density apply a minimum threshold of it, but a maximum threshold never exists. Also, 

urban studies share the same view in all time. However, how large they should be for 

defining urban is impossible to conclude. Census definitions adopt various and 

varying minimum thresholds. Urban scholars‟ definitions are more indeterminate in 

qualifying size and density, such as „relatively large‟ in Wirth‟s definition, „above 

normal‟ in Childe‟s, „substantial‟ in Sjoberg‟s (see Table 2.3). From the above 

discussion, the first common urban characteristic implied in those definitions is that 

urban and rural areas are distinguishable by the size and density of built-up areas 

where human beings and activities concentrate. An urban area is identifiable at a 
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certain point along the size and density continuum. 

 

2.1.3.2 Composition and Configuration of Heterogeneous Elements 

 

Wirth (1938) argued that no definition based on size alone would be adequate. 

Definitions based on population density give rise to the same objections, as people 

come to a place to work during the day and leave at night, reducing both the size and 

density of population below that observed elsewhere. Wirth included a third condition 

for defining and identifying an urban area, i.e. heterogeneity. This condition implies 

that an urban area must be composed of different elements. This can be found in urban 

scholars‟ definitions, such as „a community‟ in Sjoberg‟s definition, „a complex 

community‟ in Maunier‟s, „a geographical plexus‟ in Mumford‟s, „systems‟ in 

Childe‟s, „particular set of functionally integrated institutions‟ in Wheatley‟s. An 

urban area as a complex system results in a composition of heterogeneous elements in 

its physical environment, as human activities decide the construction, organization 

and use of space. The second common urban characteristic is that an urban area is a 

composition and configuration of heterogeneous elements. In contrast, a rural area 

appears more homogeneous. 

 

2.1.3.3 Dominance of Non-Agricultural Activities 

 

Another distinct common view easily found in the current definitions of urban area is 

that „urban‟ implies „non-agricultural‟. From those census definitions that employ the 

criterion of dominant type of economic activity, it can be seen that no specific kinds 

of activities are explicitly required for an urban area, but agricultural activity is 

excluded, e.g. Netherland, India and Israel. This can also be seen in the definitions of 
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urban scholars, e.g. Childe‟s „not all residents grow their own food, leading to 

specialists‟ and Sjoberg‟s „a variety of non-agricultural specialists‟. Urban 

geographers have provided the explanation of the requirement of dominance of 

non-agricultural activities for defining an urban area. This urban characteristic is 

related to urban origins. There are a number of theories of urban origins, one of which 

is agricultural surplus (Childe, 1950; Woolley, 1963; Johnston, 1980). Earlier farmers 

produced enough food to feed themselves and their family. They became better to 

produce more food than needed for them. Such an agricultural surplus allowed for a 

social surplus. It freed up resources so that not every person had to farm, who was 

then able to pursue non-agricultural work, which resulted in an early division of labor 

between farmers and non-agricultural specialists, and in later stratified social 

structures and institutions that created the urban way of life. An early argument on the 

urban origin in terms of the need of non-agricultural specialists was identified in 

Plato‟s The Republic (Herbert and Thomas, 1990). This became a common view 

shared along the history of urban studies. Urban scholars considered non-agricultural 

„specialist‟ and „elite‟ as essential when they attempted to define an urban area. From 

the above discussion, the third common urban characteristic is identified, that is, an 

urban area is a place dominant by non-agricultural activities. 

 

2.1.3.4 Distinction from Surrounding Area 

 

A recent trend of the definitional arguments is based on the concept of urbanism, 

which was developed by Wirth (1938). Urbanism is defined as “the way of life unique 

to habitation in a city”. Urban scholars acknowledge that the unique nature of the 

social, political, economic and cultural life of cities, i.e. urbanism, makes urban a 

distinct character. An urban area is a district in which the urban way of life is clearly 
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present. Also, from the first three common urban characteristics discussed above, it 

can be seen that though urban scholars failed to quantify the features they selected to 

define an urban area, it is a consensus view that urban is distinguishable and 

identifiable quality. Therefore, the fourth common urban characteristic implied in 

urban definitions is that an urban area is an area that is clearly distinguishable from its 

surrounding area. 

 

In conclusion, an urban area can be defined by integrating the four urban 

characteristics as an area that is composed of large and dense built-up areas, of 

heterogeneous elements, where non-agricultural activities take place, and is clearly 

distinguishable from its surrounding area. These characteristics can be measured and 

analyzed using remote sensing techniques. 

 

2.2 Remote Sensing for Urban Studies 

 

Remotely sensed data are increasingly available in a digital form. Powerful image 

processing methods are developed to extract information of various objects and 

phenomena on the earth surface in a computer-aided or fully automated manner. 

Remote sensing techniques have been widely used in urban studies for classifying 

urban land cover and land use, extracting urban objects and analyzing urban landscape. 

This section reviews the remote sensing techniques that are widely used in urban 

studies. 

 

2.2.1 The Vegetation-Impervious Surface-Soil (V-I-S) Model 
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The Vegetation-Impervious Surface-Soil (V-I-S) model was developed as a theoretical 

foundation for characterizing urban environment universally and for comparing urban 

morphology within or between cities (Ridd, 1995). It has been suggested that the great 

variety of urban land cover can be grouped into three general categories (Figure 2.2): 

green vegetation, impervious surface (e.g. roads and building roofs), and soil, since 

they exhibit highly contrasting influences on the two most important factors in an 

ecosystem: energy and moisture flux. Variations in each category can be further 

recognized by identifying sub-categories of vegetation, impervious surfaces, and soil. 

Each place is viewed as a linear composition of the three land cover types. An area 

composed entirely of vegetation would be a dense forest, grassland or field of crops, 

whereas an area containing a large proportion of bare soil would be characteristic of 

desert wilderness, both of which mostly exist in natural or rural environment. A high 

percentage of surfaces impervious to water usually indicate an area of building blocks, 

driveways or parking lots, which is highly relevant to artificial or urbanized 

environment. 
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Figure 2.2 The V-I-S Model of Land Cover Composition (Ridd, 1995) 

 

The composition of the three cover types differs between urban and rural environment, 

as well as among various kinds of urban environment. The change in composition 

reveals the change in environment, which can be used to describe the process of 

urbanization. The V-I-S model is capable of capturing such environmental differences 

and changes, as illustrated in the following figures. 
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(a) V-I-S transitions from green landscapes to urban features 

 

(b) V-I-S transitions from dry landscapes to urban features 

Figure 2.3 Environmental Changes and Differences in V-I-S Composition (Ridd, 

1995) 
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The V-I-S model can be applied on various scales of observation. V-I-S composition 

can be calculated within a pixel, a group of pixels covering a certain range or an entire 

urban region. 

 

The fourth component, i.e. water or shade, was suggested for improving the model in 

settings outside the United States (Ward et al., 2000). When combined with 

impervious surfaces in urban areas, it becomes a measure of building height based on 

the shadows cast by buildings. When combined with vegetation, it provides a measure 

of the amount of water in soil and the shade cast by tall vegetation. In combination 

with bare soil, it is largely a measure of shadows cast by trees, although there can be 

some components of shade from large buildings in heavy industrial areas (Weeks et al., 

2005). Shades are hardly to be separated from water bodies, since the two kinds have 

similar spectral signatures that record low reflectance of energy. 

 

To sum up, the V-I-S model suggests that the four components (i.e. vegetation, 

impervious surfaces, soil, and water/shade), are a basic division of land cover, and 

each of them can be further divided into sub-classes. Although there are more than 

three basic classes in the model, and usually many sub-classes in different 

classification schemes extending the model, it is still referred to as the V-I-S model.  

The V-I-S model is widely used in urban remote sensing research as a classification 

scheme for deriving compositional information (e.g. Chen, 1996; Ward et al., 2000; 

Madhaven et al., 2001; Hung, 2003; Kaya et al., 2004; Weeks et al., 2005; Gluch et al., 

2006; Qiao et al., 2009; Tang et al., 2012; Deng and Wu, 2013; Zhang et al., 2014). 

 

2.2.2 Remote Sensing Image Features for Urban Studies 
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2.2.2.1 Spectral Features 

 

Spectral indices are a kind of widely used numerical indictors of various land cover 

types. Normalized difference spectral indices are a group of spectral indices whose 

values are normalized to a range from -1 to 1. They were created for discrimination of 

specific land cover types from others. Usually, when creating an index, a spectral 

band in which a target cover type shows strong reflectance and is distinct from others 

and a spectral band showing distinguishably weak reflectance are identified, and then 

the difference or ratio value of these two bands is calculated to enhance the spectral 

characteristic of the cover type. Spectral indices can be calculated in different ways. 

Normalized difference spectral indices are the most common way in which they are 

created, which are in a form as follows: 

 

𝑏𝑎𝑛𝑑𝑠𝑡𝑟𝑜𝑛𝑔 − 𝑏𝑎𝑛𝑑𝑤𝑒𝑎𝑘

𝑏𝑎𝑛𝑑𝑠𝑡𝑟𝑜𝑛𝑔 + 𝑏𝑎𝑛𝑑𝑤𝑒𝑎𝑘
 

 

This kind of index ranges from -1 (bandweak far exceeds bandstrong, with measured 

spectra violating cover spectra) to 1 (measured spectra equal cover spectra). Pixels 

with an index over 0 are thought to be containing an amount of land cover, meaning 

that a higher index contains a larger amount. A number of normalized difference 

spectral indices have been developed for discriminating specific land cover types from 

remotely sensed imagery. The Normalized Difference Vegetation Index (NDVI) is the 

earliest one for measuring vegetation, which has been widely used in forest and 

agricultural assessment (Rouse et al., 1973). 

 

                                                          𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
                                                  (2.1) 
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where NIR and Red represent near-infrared and red bands respectively. 

 

A Soil-Adjusted Vegetation Index (SAVI) was developed to minimize soil brightness 

influences on canopy spectra by incorporating a soil adjustment factor into the NDVI 

(Huete, 1988). 

 

                                                          𝑆𝐴𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
(1 + 𝐿)                             (2.2) 

 

where L is a soil adjustment factor. Also, Huete (1988) found that the use of a constant 

L = 0.5 could reduce soil noise effectively through a wide range of vegetation 

amounts. 

 

Following this improvement, Qi et al. (1994) developed a self-adjustable 

functional L factor, which is able to automatically optimize its value without prior 

knowledge of vegetation amounts. A Modified Soil Adjusted Vegetation Index 

(MSAVI) is then induced. 

 

                     𝑀𝑆𝐴𝑉𝐼 =
2𝑁𝐼𝑅 + 1 − √(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

2
                     (2.3) 

 

Almost at the same time, two kinds of Normalized Difference Water Index (NDWI) 

were developed (i.e. NDWIMcFeeters and NDWIGao)for detecting open water bodies 

(McFeeters, 1996) and estimating vegetation moisture (Gao, 1996). NDWIMcFeeters was 

afterwards modified to remove built-up land noise, known as the Modified 

Normalized Difference Water Index (MNDWI) (Xu, 2006), so it is considered more 

suitable for extracting water information in urban environment. 
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                                             𝑁𝐷𝑊𝐼𝑀𝑐𝐹𝑒𝑒𝑡𝑒𝑟𝑠 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
                                         (2.4) 

 

                                                      𝑁𝐷𝑊𝐼𝐺𝑎𝑜 =
𝑁𝐼𝑅 − 𝑀𝐼𝑅

𝑁𝐼𝑅 + 𝑀𝐼𝑅
                                              (2.5) 

 

                                                      𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑀𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑀𝐼𝑅
                                            (2.6) 

 

where Green, NIR and MIR represent green, near-infrared and mid-infrared bands 

respectively. 

 

The Normalized Difference Snow Index (NDSI) was devised to estimate and map 

snow cover (Salomonson and Appel, 2004), and uses Bands 4 and 6 of Moderate 

Resolution Imaging Spectroradiometer (MODIS) data to define and compute the 

NDSI, corresponding to green and mid-infrared spectral bands respectively. As a 

result, the NDSI has the same form as the MNDWI. 

 

                                                         𝑁𝐷𝑆𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑀𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑀𝐼𝑅
                                              (2.7) 

 

where Green and MIR represent green and mid-infrared bands respectively. 

 

The Normalized Difference Built-up Index (NDBI) was developed for mapping 

built-up areas (Zha et al., 2003), and was referred to as the Normalized Difference 

Soil Index (also called NDSI) in some other kinds of literature (Rogers and Kearney, 

2004). The built-up areas identified by the NDBI reflect only the local understanding 



Chapter 2 Remote Sensing Based Urban Area Recognition: A Review 

30 

 

of built-up areas of the authors, according to the sample spectra used in their own 

research. 

 

                                                       𝑁𝐷𝐵𝐼 =
𝑀𝐼𝑅 − 𝑁𝐼𝑅

𝑀𝐼𝑅 + 𝑁𝐼𝑅
                                                 (2.8) 

 

where NIR and MIR represent near-infrared and mid-infrared bands respectively. 

 

The Normalized Difference Bareness Index (NDBaI) was developed for 

distinguishing bare soil (Zhao and Chen, 2005). 

 

                                                      𝑁𝐷𝐵𝑎𝐼 =
𝑀𝐼𝑅 − 𝑇𝐼𝑅

𝑀𝐼𝑅 + 𝑇𝐼𝑅
                                                (2.9) 

 

where MIR and TIR represent mid-infrared and thermal-infrared bands respectively. 

 

Spectral indices can be calculated for every pixel or for groups of pixels, i.e. image 

segments or objects, as object features. These spectral indices are widely used in 

urban remote sensing studies (e.g. Ward et al., 2000; De Kok et al., 2003; Zha et al., 

2003; Yuan and Bauer, 2007; Xu, 2008; Zhou and Troy, 2008; Chen et al., 2009; Lu 

and Weng, 2009; Zhou and Troy, 2009; Zhou et al., 2009; He et al., 2010; Taubenbock 

et al., 2010; Mhangara et al, 2011; Zhang et al., 2014; Shanmukha Rao et al., 2015). 

 

2.2.2.2 Textural Features 

 

Texture is one of the most important characteristics used for interpretation of remote 

sensing images (Tempfli et al., 2009). Haralick et al. (1973) proposed a computational 
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approach to examining and characterizing image texture. This approach is based on 

the gray-level co-occurrence matrices (GLCM), which were called gray-tone 

spatial-dependence matrices when they were initially presented by Haralick et al. 

(1973; 1979). A gray-level co-occurrence matrix is a matrix of adjacency frequencies. 

It is square with dimension Ng, which is expressed as 

 

                               𝑮 =

[
 
 
 

𝑝(1, 1) 𝑝(1, 2)
𝑝(2, 1) 𝑝(2, 2)

⋯ 𝑝(1,𝑁𝑔)

⋯ 𝑝(2, 𝑁𝑔)

⋮ ⋮
𝑝(𝑁𝑔, 1) 𝑝(𝑁𝑔, 2)

⋱ ⋮
⋯ 𝑝(𝑁𝑔, 𝑁𝑔)]

 
 
 

                                 (2.10) 

 

where Ng is the number of grey levels in the image. Element p(i, j) of the matrix is 

generated by counting the number of times a pixel with value i is adjacent to a pixel 

with value j, and then dividing the entire matrix by the total number of such 

comparisons made. Each entry is therefore considered to be the probability that a 

pixel with value i will be found adjacent to a pixel of value j. Since adjacency can be 

defined to occur in each of the four directions in a two-dimensional image, e.g. 

horizontal, vertical, left and right diagonals, four such matrices can be generated. 

After creating the gray-level co-occurrence matrices, some statistical features can be 

derived from them. Haralick (1973) derived fourteen features from the gray-level 

co-occurrence matrices with the intent of characterizing texture of images. Of 

Haralick‟s fourteen features, angular second moment f1, inverse difference moment f2, 

contrast f3 and entropy f4 were further evaluated by Gotlieb and Kreyszig (1990) and 

considered as optimal texture classifiers, which are expressed as follows. 

 

                                                       𝑓1 = ∑∑*𝑝(𝑖, 𝑗)+2

𝑗𝑖

                                                 (2.11) 
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                                                   𝑓2 = ∑ ∑
𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2
                                               (2.12)

𝑗𝑖

 

                                       𝑓3 = ∑ 𝑛2 {∑∑𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

} ,

𝑁𝑔−1

𝑛=0

 |𝑖 − 𝑗| = 𝑛                           (2.13) 

                                             𝑓4 = −∑∑ 𝑝(𝑖, 𝑗) log 𝑝(𝑖, 𝑗)

𝑗𝑖

                                         (2.14) 

 

The f1 and f2 are measures of homogeneity. Their values are high if the image is 

locally homogeneous. The f3 is a measure of contrast or the amount of local variations 

in the image. The f4 is a measure of chaos, whose value is high if the elements of the 

gray-level co-occurrence matrix are distributed equally. These textural features are 

found implemented in remote sensing software and used in urban remote sensing 

studies (e.g. Trias-Sanz et al., 2004; Zhou et al., 2006; Taubenbock et al., 2010; Dong 

et al., 2011; Mhangara et al, 2011; Han et al., 2012; Mhangara and Odindi, 2013; Yue 

et al., 2013; Pradhan et al., 2014; Tang and Dai, 2014; Shanmukha Rao et al., 2015). 

 

2.2.3 Linear Spectral Unmixing 

 

In remotely sensed imagery, it is very unlikely that an entire pixel captures only the 

energy from one kind of material. Because of the spatial resolution of a sensor, 

disparate materials can jointly occupy an area that is covered by a single pixel, giving 

rise to spectral measurement that is a composite of the individual spectra. The values 

of most pixels result from a mixture of signals received from more than one distinct 

substance. Spectral unmixing is a process of decomposing a mixed pixel into a set of 

fractional abundances that indicate the proportion of each kind of material. It is 

widely used in urban remote sensing studies (e.g. Mathieu-Marni et al., 1996; Kressler 
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et al., 2000; Roessner et al., 2001; Small, 2001; Phinn et al., 2002; Wu and Murray, 

2003; Lu and Weng, 2004; Weeks et al., 2005; Lu et al., 2008; Wei et al., 2008; Zoran 

et al., 2008; Zhao et al., 2010). 

 

The basic physical assumption underlying linear spectral unmixing is that each field 

within a ground pixel contributes an amount to a received signal at the sensor which is 

characteristic of the cover type in that field and proportional to the area covered 

(Adams et al., 1986; 1990; Quarmby et al., 1992). Under this assumption, the energy 

recorded in each image pixel is regarded as a linear composition of the one received 

from spectrally pure cover types, which is called endmembers. Accordingly, the linear 

spectral mixture model can be expressed as follows: 

 

                                   𝑅𝑖 = ∑𝑓𝑗𝑅𝑖𝑗 + 𝜀𝑖

𝑛

𝑗=1

  (𝑖 = 1 to number of bands)                   (2.15) 

 

where Ri is the spectral reflectance of band i of a pixel; n is the number of 

endmembers (i.e. the land cover types of interest in the analysis); fj is the 

proportion/fraction of endmember j within a pixel; Rij is the spectral reflectance of 

endmember j on band i; and εi is the noise/error term in band i.  

 

The simultaneous equations (Expression 2.15) are expressed in a matrix form as 

follows: 

 

                                                                 𝑹 = 𝑺𝒇 + 𝜺                                                      (2.16) 

 

where R is the vector of pixel values in all bands; S is the matrix representing the 
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spectra of all endmembers; f is the vector of the fractions of the endmembers, which is 

to be estimated; ε is the vector of additive noise in all bands, and satisfying the 

expectation 𝐸(𝜺) = 0. 

 

Linear spectral unmixing aims at decomposing each image pixel into spectrally pure 

and distinct endmembers, which can be achieved by solving simultaneous equations 

of the linear spectral mixture model for each fj. In order to construct and solve the 

equations, the following conditions must be satisfied: 

 

a) selected endmembers should be independent of each other; 

b) selected spectral bands should not be correlated; 

c) the number of endmembers should not exceed the number of spectral bands used. 

 

For example, in Landsat TM/ETM+ data, except the band 6 (i.e. the thermal band) 

with an inconsistent spatial resolution to other multi-spectral bands, and the 

panchromatic band available since the use of ETM+ sensor on Landsat 7, there are 6 

spectral bands in total can be used in unmixing procedures. According to Condition 

(c), no more than 6 endmembers can be distinguished by linear spectral unmixing 

with raw TM/ETM+ data. However, this number is further depleted by considering 

Condition (b). The spectral bands of raw TM/ETM+ data do not satisfy this condition, 

and thus need to be transformed to new non-correlated bands, thus leading to less 

usable bands for analysis.  

 

The unmixing problem can be decomposed into three consecutive procedures. A 

number of research works have been done to develop techniques for resolving the 

problems, which are described in detail as follows. 
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2.2.4.1 Decorrelation and Dimension Reduction 

 

As a common condition of a linear composition in which components must be linearly 

independent so that each component cannot be linearly combined by other 

components and thus are eliminated, the linear spectral mixture model requires that 

the spectral bands selected for the model should not be correlated. However, remotely 

sensed data do not always satisfy this condition. For example, it is found that Landsat 

TM/ETM+ data are highly correlated between adjacent spectral wavebands (Barnsley, 

1999). Therefore, the use of TM/ETM+ imagery in linear spectral unmixing does not 

produce reasonable results of land cover fractions. Decorrelation is needed to 

transform raw TM/ETM+ data for calculating the fractions of land cover types of 

interest. In remote sensing, two techniques are well developed and widely used for 

this purpose, namely Principle Component Analysis (PCA) and Minimum Noise 

Fraction (MNF). 

 

Principle Component Analysis was developed by Pearson (1901) for transforming a 

number of possibly correlated variables into a number of uncorrelated variables called 

principal components. It is a rotation of the coordinate system of data space so the 

greatest variance by any projection of data comes to lie on the first coordinate (i.e. the 

first principal component) of the new coordinate system, and the second greatest 

variance on the second coordinate, and so on. After the transformation, the resultant 

spectral bands called principle components are uncorrelated. The first principle 

component contains most useful information, and less information is contained in 

higher dimensions of PCA space, and the last principle component contains most 

noise. By segregating noise, PCA is also used for data compression, which is not 

useful to this research and will not be further discussed. 
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Alternatively, Minimum Noise Fraction is a recent method developed on PCA, and 

serves the same purposes as PCA (Boardman and Kruse, 1994). As a two-step 

combination of PCA, it firstly decorrelates and rescales data noise based on an 

estimated noise covariance matrix, producing transformed data in which noise has 

unit variance and not band-to-band correlations, and then implements a standard PCA 

of noise-whitened data. Hence, MNF results have the same characteristics as those of 

PCA. Previous studies showed that MNF produced better results than PCA. 

 

2.2.4.2 Endmember Selection 

 

In order to construct equations of the linear spectral mixture model, Rij in each 

equation (i.e. the spectral reflectance of endmember j on band i) must be determined 

by endmember selection (i.e. selecting pixels containing pure land cover types of 

interest as representative pixels of those types). Endmember selection is traditionally 

and still prevalently performed through human-computer interaction (i.e. manual 

selection). In manual endmember selection, scatter diagrams of two data bands are 

used. Previous research revealed that when pixel distribution in scatter diagrams 

appears triangular in general, pixels become purer when they are closer to triangle 

vertices. This has been widely accepted as the basis of endmember selection, and thus 

pure endmembers are usually selected near triangle vertices from scatter diagrams, 

and associated with land cover types of interest by selectors using their expert 

knowledge (Figure 2.4). Such manual selection is a subjective process, relying on the 

experience of the performer, and his/her prior knowledge about land cover types as 

well as the map area to be analyzed. 
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Figure 2.4 Manual Endmember Selection using Scatter Diagram 

(Red circles highlight the parts of data distribution where potential endmembers are 

located.) 

A method for automated identification of pure pixels called the Pixel Purity Index 

(PPI) is developed by Boardman et al. (1995). The PPI algorithm repeatedly projects 

pixels in data space onto random unit vectors, and extreme pixels in each projection 

are noted. The times each pixel is found to be extreme is related to pixel purity via a 

convex geometry argument (Boardman, 1993), and thus used as an index of pixel 

purity. PPI can be used to identify the purest pixels in the map area automatically and 

rapidly. However, those pixels are thought to be spectrally pure with respect to data 

space in which they are calculated, but not with respect to any known cover types. 

According to the theoretical basis and computation algorithm of PPI, “pure pixels” or 

endmembers it produced are a subset of convex hull vertices that encloses data. 

 

The separability of the selected endmembers can be evaluated prior to the unmixing 

impervious surface 

water vegetation 
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process, using the Jeffries-Matusita and Transformed Divergence separability 

measures (Richards and Jia, 2006). The Jeffries-Matusita distance is a function of 

separability that directly relates to the probability of how good the resultant estimation 

or classification will be (Wacker, 1971). The Jeffries-Matusita distance between a pair 

of classes i and j is defined as 

 

                                                                  𝐽𝑖𝑗 = 2(1 − 𝑒−𝐵)                                               (2.17) 

 

in which 

 

              𝐵 =
1

8
(𝑚𝑖 − 𝑚𝑗)

𝑇
{
𝛴𝑖 + 𝛴j

2
}
−1

(𝑚𝑖 − 𝑚𝑗) +
1

2
ln{

|(𝛴𝑖 + 𝛴j)/2|

|𝛴𝑖|
1
2|𝛴𝑗|

1
2

}         (2.18) 

 

where Σi and Σj are the covariance matrices of the spectral signatures of classes i and j 

respectively, mi and mj are the mean vectors of the spectral signatures of classes i and j 

respectively. The Expression 2.18 is referred to as the Bhattacharyya distance (Kailath, 

1967). The transformed divergence of a pair of classes i and j is defined as  

 

                                                             𝑑𝑖𝑗
𝑇 = 2(1 − 𝑒

−𝑑𝑖𝑗

8 )                                                (2.19) 

 

in which 

 

𝑑𝑖𝑗 =
1

2
𝑇𝑟{(𝛴𝑖 − 𝛴𝑗)(𝛴𝑖

−1 − 𝛴𝑗
−1)} +

1

2
𝑇𝑟 {(𝛴𝑖

−1 + 𝛴𝑗
−1)(𝑚𝑖 − 𝑚𝑗)(𝑚𝑖 − 𝑚𝑗)

𝑇
} 

                                                                                                                                                   (2.20) 
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where Tr{} denotes the trace of a matrix, Σi, Σj, mi and mj are the same as in 

Expression 2.18 (Swain and Davis, 1978). Both the measures range from 0 to 2 and 

indicate how well the pairs of selected endmembers of two land cover classes are 

statistically separable. Values greater than 1.9 indicate good separability. 

 

2.2.4.3 Inversion 

 

The process of inversion estimates the fractional abundances of each mixed pixel 

from its spectrum and the endmember spectra. The class of inversion algorithms based 

on minimizing squared-error start from the simplest form of least squares inversion 

and increase in complexity as further assumptions and parametric structure are 

imposed on the problem. Variations of the least squares concept have been adopted to 

solve problems associated with linear mixture models (Keshava and Mustard, 2002). 

The least squares solution to the equation in Expression 2.16 is expressed as follows. 

 

                                                            𝒇̂ = (𝑺𝑇𝑺)−1𝑺𝑇𝑹                                                    (2.21) 

 

The least squares solution in Expression 2.21 is unconstrained. The proportional 

abundance of each endmember in the linear mixture model must satisfy two physical 

constraints, namely, full additivity, which is an equality constraint (Expression 2.22), 

and non-negativity, which is an inequality constraint (Expression 2.23). 

 

                                                                      ∑𝑓𝑖 = 1                                                      

𝑛

=1

 (2.22) 

 

                                                             𝑓𝑖 ≥ 0  (𝑖 = 1,… , 𝑛)                                              (2.23) 
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Least squares with equality constraints can be easily processed, which is described by 

Kay (1993). The least squares solution with full addicativiy of the equation in 

Expression 2.16 can be calculated as follows: 

 

                           𝒇̂𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 = 𝒇̂ − (𝑺𝑇𝑺)𝟏,𝟏𝑇(𝑺𝑇𝑺)−1𝟏-−1(𝟏𝑇𝒇̂ − 𝟏)                 (2.24) 

 

Least squares problems with inequality constraints are a constrained quadratic 

programming problem, which is more complicated than the one with equality 

constraints. Methods have been developed to address this problem (Haskell and 

Hanson, 1981; Portugal et al., 1994; Bro and Sidiropoulos, 1998). The algorithm for 

Problem NNLS (Nonnegative Least Squares) by Lawson and Hanson (1974) can be 

used to obtain a non-negatively constrained least squares solution to the equation in 

Expression 2.16. 

 

2.2.4.4 Evaluation 

 

There are three ways to evaluate the results of spectral unmixing, also the goodness of 

fit of the linear mixture model constructed. The first method is visual evaluation. 

Visual evaluation relies on the expertise and experience of the analyst to determine 

whether the unmixed land cover fractions are consistent with other information 

existing about the study area. If the pattern of the unmixed fractions accords well with 

the additional information obtained from ground truth or other sources, then the 

model can be accepted. The second method is the calculation of the root mean square 

(RMS) error (Adams et al., 1989). The RMS error is calculated for every pixel 

individually, as the square root of the arithmetic mean of the squares of the error terms 
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of all image bands. It is calculated as follows. 

 

                                                           𝜀𝑅𝑀𝑆 = √
∑ 𝜀𝑖

2𝑛
𝑖=1

𝑛
                                                     (2.25) 

 

where n is the number of bands, and εi is the error term in band i. A small RMS error 

indicates that the linear mixture model constructed is mathematically good, while a 

high RMS error indicates that the model is not good enough for unmixing the image 

(Gong and Zhang, 1999; Hope, 1999; Kressler et al., 2000; Small, 2001; Foppa et al., 

2002; Lu et al., 2008; Zhao et al., 2010). The third method is comparing the unmixing 

result with a traditional hard classification data as a reference. To do so, the unmixed 

land cover fractions are used to produce a hard classification for comparison, by 

assigning each pixel to the land cover type with the highest proportion in the pixel 

(Kressler et al., 2000; Weeks et al., 2005; Raymaekers et al., 2005). 

 

2.2.4 Multi-Resolution Image Segmentation 

 

Baatz and Schape (2000) developed a multi-resolution image segmentation method 

that is based on homogeneity definition in combination with local and global 

optimization techniques. The multi-resolution segmentation is a bottom up region 

merging technique. It starts with individual pixels, which form the smallest segments. 

In numerous subsequent steps, pairs of image segments are merged into larger ones. 

The merging decision is based on local homogeneity criteria, describing the similarity 

of adjacent image segments. Throughout the merging process, the underlying 

optimization procedure minimizes the weighted heterogeneity of resulting segments, 

which is defined by the size of a segment and a parameter of heterogeneity. In each 
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step, the pair of adjacent segments that results in the smallest growth of the defined 

heterogeneity is merged. The process stops when the smallest growth exceeds the 

threshold defined by a scale parameter. The procedure simulates the simultaneous 

growth of segments over a scene in each step to achieve adjacent image segments of 

similar size and thus comparable scale. 

 

The increase of heterogeneity is defined as 

 

                                  ∆ℎ = 𝑤𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 ∙ ∆ℎ𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 + 𝑤𝑠ℎ𝑎𝑝𝑒 ∙ ∆ℎ𝑠ℎ𝑎𝑝𝑒                        (2.26) 

                      𝑤𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 ∈ ,0,1-,  𝑤𝑠ℎ𝑎𝑝𝑒 ∈ ,0,1-,  𝑤𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 + 𝑤𝑠ℎ𝑎𝑝𝑒 = 1               (2.27) 

 

where wspectral and wshape are weight parameters; Δhspectral and Δhshape are changes of 

spectral heterogeneity and shape heterogeneity. 

 

The spectral heterogeneity allows multi-variant segmentation by adding a weight to 

each image channel. The difference in spectral heterogeneity Δhspectral is defined as 

 

                      ∆ℎ𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 = ∑𝑤𝑐,𝑛𝑚 ∙ 𝜎𝑐,𝑚 − (𝑛1 ∙ 𝜎𝑐,1 + 𝑛2 ∙ 𝜎𝑐,2)-                     (2.28)

𝑐

 

 

where wc is the weight of an image channel c; nm, n1 and n2 are the number of pixels 

of the merged segment, and the two segments before the merge respectively; σc,m, σc,1 

and σc,2 are the standard deviations of the pixel values in channel c of the merged 

segment, and the two segments before the merge respectively. 

 

The difference in shape heterogeneity Δhshape describes the improvement of the shape 
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with regard to smoothness and compactness of a segment‟s shape. It is expressed as 

 

                              ∆ℎ𝑠ℎ𝑎𝑝𝑒 = 𝑤𝑠𝑚𝑜𝑜𝑡ℎ ∙ ∆ℎ𝑠𝑚𝑜𝑜𝑡ℎ + 𝑤𝑐𝑜𝑚𝑝𝑡 ∙ ∆ℎ𝑐𝑜𝑚𝑝𝑡                     (2.29) 

 

where wsmooth and wcompt are the weights of Δhsmooth and Δhcompt respectivley, which are 

defined as 

 

                                      ∆ℎ𝑠𝑚𝑜𝑜𝑡ℎ = 𝑛𝑚 ∙
𝑙𝑚
𝑏𝑚

− (𝑛1 ∙
𝑙1
𝑏1

+ 𝑛2 ∙
𝑙2
𝑏2

)                              (2.30) 

                                   ∆ℎ𝑐𝑜𝑚𝑝𝑡 = 𝑛𝑚 ∙
𝑙𝑚

√𝑛𝑚

− (𝑛1 ∙
𝑙1

√𝑛1

+ 𝑛2 ∙
𝑙2

√𝑛2

)                         (2.31) 

 

where lm, l1 and l2 are the perimeters of the merged segment, and the two segments 

before the merge respectively; bm, b1 and b2 are the perimeters of the bounding box of 

the merged segment, and the two segments before the merge respectively; nm, n1 and 

n2 are the same as used in the expression of Δhshape. 

 

The stop criterion for the optimization procedure is an input scale parameter. Prior to 

the merge of two segments, the resulting increase of heterogeneity Δh is calculated. If 

the resulting increase exceeds threshold determined by the scale parameter, then the 

merge is not performed and the segmentation process stops (Baatz and Schape, 2000; 

Benz et al., 2004).  

 

The multi-resolution image segmentation has been widely used in urban remote 

sensing studies, e.g. for urban land cover classification (Gitas et al. 2004; Brennan 

and Webster, 2006; Zhou and Wang, 2008; Zhou and Troy, 2009; Zhou et al., 2009; 

Hu and Weng, 2011), for urban object extraction (Hofmann, 2001a; Hofmann, 2001b; 
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Marangoz et al., 2002; Miliaresis and Kokkas, 2007, Chen et al., 2009; Ali Rizvi and 

Krishna Mohan, 2010; Yu et al., 2010; Mhangara et al, 2011), and for urban landscape 

analysis (De Kok et al., 2003; Zhou et al., 2006; Zhou and Troy, 2008; Zhou et al., 

2008; Mhangara and Odindi, 2013). 

 

2.3 Traditional Methods for Urban Area Recognition 

 

Recognition of an urban area means the identification of the spatial extent of the 

urban area. Traditionally, it is done by censuses and surveys. Countries have different 

ways to carry out censuses and maintain survey data about the built environment. In 

the United States, the Census Bureau defines and identifies urban and rural areas to 

support decision making and analyses of government agencies and research 

organizations. The Census Bureau‟s urban areas comprise a densely settled core of 

census tracts and/or census blocks that meet minimum population density 

requirements, along with adjacent territory containing non-residential urban land uses 

as well as territory with low population density included to link outlying densely 

settled territory with the densely settled core (U.S. Census Bureau, 2015). Census 

blocks provide the building blocks for measuring population density and delineating 

urban areas. A census is taken every ten years. The decennial census has been 

conducted since 1790. The first decennial census counted approximately four million 

people for the purpose of apportioning the U.S. House of Representatives. In the 2010 

census, one million enumerators were sent to count more than three hundred million 

of the nation's inhabitants. On the other hand, the Census Bureau created a database 

for documenting geographical and cartographical information, including the 

boundaries of geographical entities. It is the U.S. Census Bureau's Master Address 
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File/Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) 

database. Initially, the Census Bureau used the U.S. Geological Survey (USGS) 

1:100,000-scale Digital Line Graph (DLG), USGS 1:24,000-scale quadrangles, the 

Census Bureau‟s 1980 geographic base files (GBF/DIME Files), and a variety of 

miscellaneous maps for selected areas outside the contiguous 48 states to create the 

TIGER database (predecessor to the current MAF/TIGER database). The Census 

Bureau continually makes additions and corrections to its database, mainly through 

partner supplied data, the use of aerial imagery and fieldwork. The Census Bureau has 

numerous partner programs where federal, state, and local government partners‟ 

supply updates to boundaries, features and addresses (U.S. Census Bureau, 2014). 

 

There are three problems in census and survey data for the recognition of urban areas. 

Firstly, Weeks (2008) pointed out that there is a spatial mismatch that has the potential 

to produce a bias in the classification of a place, as people are enumerated at their 

place of residence, and urban residents typically work in a different location from 

where they live. An example is a central business district (CBD), which has only a 

small residential population. Secondly, the cost of generating and maintaining census 

and survey data is enormous. The 2010 census of the U.S. involved one million 

enumerators. The update of the boundaries, features and addresses of geographical 

entities involves numerous partner programs and various partner supplied data. Lastly, 

the urban and rural areas classification using census and survey data is not efficient. 

The Census Bureau reviews and updates urbanized area and urban cluster boundaries 

every ten years, following the decennial census. Because population estimates and 

survey data are not available at the census block level between censuses, there is no 

nationally consistent set of population data at the level of geographic detail needed to 

delineate urban areas between censuses (U.S. Census Bureau, 2014). 
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2.4 Remote Sensing Based Urban Area Recognition 

 

Increasing availability of remotely sensed data and processing techniques facilitates 

the development of new approaches to studying urban issues. The advantages of 

remote sensing data include their broad spatial coverage, capacity for routine and 

unobtrusive updating and ability to provide self-consistent measurements of critical 

physical properties that are difficult or expensive to obtain in situ (Miller and Small., 

2003). Weeks (2008) pointed out that remote sensing data offer indirect ways to 

classify a place regardless of who resides in it. Section 2.2 reviews the remote sensing 

techniques that are widely used in urban studies, including urban land cover / land use 

(LCLU) classification, urban objects extraction and urban landscape analysis. Besides 

these urban studies, some attempts have been made to recognize urban areas using 

various kinds of remote sensing data, including areal images (Gamba et al., 2007; 

Sirmacek and Unsalan, 2009; Sirmacek and Unsalan, 2010; Kovacs and Sziranyi, 

2013), multi-spectral data (Baraldi and Parmiggiani, 1990; Bessettes and Desachy, 

1998; Yu et al., 1999; Lorette et al., 2000; Ward et al., 2000; Bianchin and Foramiti, 

2001; Zha et al., 2003; Zhong and Wang, 2007; Qiao et al., 2009; Schneider et al., 

2009; Schneider et al., 2010; Angiuli and Trianni, 2014; Stathakis and Faraslis, 2014; 

Hu et al., 2015; Shi et al., 2015; Wan et al., 2015), synthetic aperture radar (SAR) data 

(Dekker, 2003; Grey and Luckman, 2003; Moriyama et al., 2004; He et al., 2006; 

Yang et al., 2008; Corbane et al., 2009; Gamba et al., 2011; Kayabol and Zerubia, 

2012; Aghababaee et al., 2013; Gamba and Lisini, 2013; Kajimoto and Susaki, 2013; 

Ban et al., 2015; Chen et al., 2015; Susaki and Mishimoto, 2015), night-time light 

(NLT) data (Imhoff et al., 1997; Henderson et al., 2003; Small et al., 2005; Zhou et al., 

2014; Zhou et al., 2015), and combinations of these types (Schneider et al., 2003; 
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Gomez-Chova et al., 2006; Kasimu and Tateishi, 2008; Cao et al., 2009; Zhang et al., 

2014; Duan et al., 2015; Jing et al., 2015; Salentinig and Gamba, 2015). The existing 

methods utilized various image features to classify urban and non-urban pixels on the 

images, based on the assumption that those features present some difference between 

urban and non-urban areas. These image features include geometrical, spectral and 

textural features. 

 

The methods based on geometrical features assume that urban areas are dominated by 

objects with regular shapes, such as buildings, which can be extracted from high 

resolution areal images. Accordingly, corner or edge detectors are applied first to 

detect some feature points of regular shapes, which are considered the most urban 

points in the images. A surface is then constructed according to the distance to those 

feature points. Finally, a threshold is performed to separate urban and rural areas. This 

kind of methods includes the ones developed by Gamba et al. (2007), Sirmacek and 

Unsalan (2010), Kovacs and Sziranyi (2013) and Shi et al. (2015). 

 

Most of the existing methods are based on spectral features, including spectral indices 

that are used to indicate certain kinds of land cover, such as normalized difference 

vegetation index (NDVI) and built-up index (NDBI). These methods apply various 

kinds of classifiers to separate urban and non-urban classes. For example, Ward et al. 

(2000) developed a hierarchical unsupervised image classification scheme applicable 

to Landsat Thematic Mapper (TM) data for identifying urban areas. Figure 2.5 shows 

this hierarchical image classification scheme. The first stage of the unsupervised 

classification process divides the image into vegetation, water and soil-impervious 

surface classes. NDVI, as reviewed in Section 2.2.2, band 5 and band 3 of the input 

TM data are used for vegetation classification. The unsupervised classification applies 



Chapter 2 Remote Sensing Based Urban Area Recognition: A Review 

48 

 

the Iterative Self-Organizing Data Analysis Technique (ISODATA) algorithm to a 

composite of the above three image layers to produce 20 classes. The vegetation class 

is further separated into woody and non-woody components. Composite images 

comprising band ratios associated with mineral and hydrothermal alteration properties 

are then created for further classifying the soil-impervious surface component. Finally, 

these classes are combined into four primary land cover types, including water, forest, 

cleared and urban areas. 

 

 

Figure 2.5 Hierarchical Image Classification Scheme for Urban Area Recognition 

(Source: Ward et al., 2000) 

 

Zha et al. (2003) developed a method for automatically mapping urban areas based on 

the NDVI and NDBI, as reviewed in Section 2.2.2. Zha et al.‟s method identifies 

urban areas through logical and arithmetic manipulations of the red, near-infrared and 

mid-infrared bands of multi-spectral images such as Landsat TM and SPOT images. 

Figure 2.6 shows an example of applying this method to a set of Landsat TM data to 
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classify urban areas. 

 

Figure 2.6 Urban Area Recognition using NDVI and NDBI Developed by Zha et al. 

(2003) 

 

NDVI and NDBI images are firstly derived from the input TM image (Figure 2.6(b, 

c)). They are then recoded into binary images by assigning a certain positive value to 

pixels with positive values, and assigning 0 to other pixels. Subsequently, an image is 

(a) Landsat TM image (d) urban areas 

(b) NDVI (c) NDBI 
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produced by subtracting the recoded NDVI from the recoded NDBI to further exclude 

vegetated areas. In the output image, only pixels of built-up and barren areas have a 

positive value (Figure 2.6(d)). The advantage of this method is that the manipulations 

involved are quite simple and quick. It also maps urban areas quickly. When mapping 

large-scale areas (e.g. a full scene of Landsat TM data), its high efficiency is 

noticeable. However, when monitoring land cover change or urban growth, such 

high-speed data processing is not useful or relevant to its applications. Some 

disadvantages are found though. Firstly, it is unable to separate barren lands from 

urban areas. Even though it is used for mapping urban areas, its output urban areas 

still include barren lands, which usually appear in crop fields at the early stage of their 

growth. Secondly, it determines the extent of urbanization in each pixel by taking into 

consideration only each pixel‟s own spectral values and ignores the spatial 

configuration of pixels. According to the method, small vegetated areas in a city can 

result in rural holes in output urban areas. As a result, urban and non-urban pixels are 

widely mixed in its output. Thirdly, it requires the use of a spectral band of mid 

infrared, which is available in some satellite images (e.g. Landsat TM data band 5 and 

SPOT data band 4). But most mid infrared bands are not supported in higher 

resolution data (e.g. IKONOS, WorldView and QuickBird data), thus leading to the 

method‟s limited application to low or moderate resolution data. 

 

Qiao et al. (2009) developed a decision tree model for extracting urban areas from 

both TM and SPOT data. This method is based on the V-I-S model, which classifies 

image pixels into four land cover types, namely vegetation, impervious surface, soil, 

and water. The V-I-S model is reviewed in Section 2.2.1. The method of Qiao et al. 

(2009) directly considers impervious surface as urban area. This method adopts an 

exclusion approach and extracts pixels of urban areas by removing pixels of the other 
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three types one by one. The criterion for rejecting pixels relies on a spectral index 

related representatively to that land cover type. A threshold cut manipulation of index 

values is performed to decide whether a pixel should be excluded. Pixels with an 

index value over a given threshold are regarded as highly related to the corresponding 

type of vegetation, water, or soil, and thus rejected as non-urban. This logic is 

represented as a decision tree in Figure 2.7. After rejecting pixels of the other three 

types, the remaining pixels are considered as urban areas. 

 

Figure 2.7 Decision Tree Model for Extracting Urban Areas developed by Qiao et al. 

(2009) 

 

When extracting urban areas from TM data, the indices used as indicators for 

rejection at bifurcation points in the decision tree are the Soil Adjusted Vegetation 

Index (SAVI), Modified Normalized Difference Water Index (MNDWI), and 
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Normalized Difference Built-up Index (NDBI) respectively, which are reviewed in 

Section 2.2.2. In cases using SPOT data, due to a lack of mid-infrared bands, the 

MNDWI and NDBI cannot be applied. Instead, the Normalized Difference Water 

Index (NDWI) and a homogeneity index, which captures textural characteristics, are 

selected as water and soil indices respectively for rejecting pixels of those types. 

Compared with Zha et al.‟s method, this method applies more spectral indices so that 

more information is utilized to form recognition rules. Combining several indices can 

produce more accurate results than relying on a single index. However, there are 

problems and limitations in this method. Theoretically, this method simply considers 

impervious surfaces equivalent to urban areas, and treats pixels of vegetation, soil and 

water as non-urban. This is an improper understanding of the concept of urban areas. 

Impervious surfaces, vegetation, soil, and water are land cover, which refer to 

physical materials distributed on the land surface. The extent of urbanization of a 

place should be determined by composition and configuration of various kinds of land 

cover in that place. Although urban areas are highly related to impervious surfaces, 

there must be pixels of impervious surfaces not representing urban areas, and pixels of 

the other three types not representing rural areas. Technically, this method is not fully 

automated or objective. Threshold values for deciding rejection of pixels of the other 

types (i.e. T1, T2, and T3) at bifurcation points in the decision tree (Figure 2.7) are 

determined by human experts, thus making the task highly difficult and subjective. In 

addition, the same as the method of Zha et al. (2003), it determines the extent of 

urbanization of each single pixel depending on the information from the pixel itself, 

and ignores its configuration with surrounding pixels, which gives rise to the same 

problem of the method of Zha et al. (2003), where urban and rural areas are heavily 

entwined in the results. Besides these methods, other classifiers and machine learning 

techniques are also applied in the methods based on spectral features, such as neutral 
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network (Gamba et al., 2007), support vector machine (Cao et al., 2009) and random 

forests (Jing et al., 2015). 

 

Textural features are also widely used to classify urban areas on remote sensing 

images, based on the fact that regular buildings present a unique texture that is 

different from the natural environment. The same as using spectral features, the 

principle is to classify each pixel of the image into urban or non-urban class. For 

example, the methods developed by Lorette et al. (2000), Dekker (2003), Corbane et 

al. (2009), Kayabol and Zerubia (2012), Aghababaee et al. (2013) and Chen et al. 

(2015) are of this type. In addition, some other existing methods utilized a 

combination of spectral and textural features, making use of both characteristics 

(Duan et al., 2015; Salentinig and Gamba, 2015). 

 

The advantages in remote sensing based methods are obvious. As those methods are 

fully or semi-automated, they are more economical and efficient compared to 

traditional methods that rely on census and survey data. However, some disadvantages 

are found. Firstly, the existing methods reflect their local understanding of an urban 

area, which results in very different urban extents from the existing methods. It was 

reported by Potere et al. (2009) that the estimated global urban extent ranged from 

276,000 to 3,532,000 km
2
, by comparing eight global urban maps that were created 

using remotely sensed and census data. Secondly, the existing methods are 

pixel-based classification in nature. The classification process determines whether the 

area covered by the pixel is urban or not. However, an urban area should be a 

continuous space. Even those pixels of vegetation or water may be part of an urban 

area. Therefore, in order to use remote sensing images and techniques to recognize 

urban areas, there is still a gap between the current remote sensing based method and 
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urban areas that are represented as geographical entities. 
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Chapter 3 Remote Sensing Based Automated Urban 

Area Recognition: A New Strategy 

 

The chapter describes a new strategy to develop an algorithm for automated 

recognition of urban areas using remote sensing data and techniques. Firstly, the 

urban-rural differences are formulated by summarizing the four urban characteristics 

identified in Section 2.1.3. Secondly, based on the urban-rural differences, relevant 

information and processes are selected for composing the algorithm. Finally, the study 

area used throughout the research is described in detail. 

 

3.1 Urban-Rural Differences 

 

In Section 2.1.3, four urban characteristics are identified by analyzing the current 

definitions of urban area. They are: 1) urban areas contain large and dense built-up 

areas; 2) urban areas contain heterogeneous elements; 3) urban areas are dominant by 

non-agricultural activities; and 4) urban areas are distinguishable from their 

surrounding rural areas. These four characteristics are true for describing urban areas. 

The goal is not only to describe urban areas, but to distinguish between urban and 

rural areas. Hence, these four urban characteristics are further revised in the following 

manner, to present the differences between urban and rural areas. They are 1) urban 

areas are composed of large and dense built-up areas, providing space for 

non-agricultural human activities, while rural areas are mainly composed of 

agricultural or natural lands, i.e. vegetated areas; 2) the physical elements of urban 

areas are more heterogeneous, while the ones of rural areas are more homogeneous; 

and 3) these differences are observable. These characteristics and differences are 
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general and qualitative. In other to apply them to identify the extent of an urban area, 

they need to be described in a quantitative and measurable way. 

 

3.2 Information and Processes for Characterizing 

Urban-Rural Differences 

 

In order to develop an algorithm to urban area recognition as described in Section 3.2, 

two questions need to be answered: 1) what kinds of information, and 2) what kinds 

of processes are needed for characterizing the urban-rural difference. Information and 

processes are the two types of elements that are necessary for composing an 

algorithm. 

 

3.2.1 Information for Representing Urban-Rural Differences 

 

The urban-rural differences described in Section 3.1 are general and qualitative. In 

order to apply them to identify the extent of an urban area, they need to be described 

in a quantitative and measurable way. The first difference between urban and rural 

areas has been well realized and a well-known land cover composition model, i.e. the 

V-I-S model, has been developed to describe this urban-rural difference (Ridd, 1995; 

Ward et al., 2000). The V-I-S model is reviewed in Section 2.2.1. The proportional 

abundance of four types of land cover elements, i.e. vegetation, impervious surface, 

soil and water / shade, provides one kind of information for characterizing a place, 

which is referred to as land cover composition. The second difference can also be 

quantitatively described based on land cover. The distribution pattern of land cover 

can be observed as textures. Texture refers to the arrangement and frequency of tonal 
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variation in particular areas of an image. Smooth textures are often the result of 

uniform and even surfaces, such as fields, asphalt or grasslands (Tempfli et al., 2009). 

A target with a rough surface and irregular structure results in a rough textured 

appearance. This kind of information is referred to as land cover configuration. These 

two kinds of information, i.e. land cover composition and configuration, can be 

derived from remote sensing data. Chapter 4 studies the use of eight remote sensing 

image features for characterizing urban and rural areas. Four proportional features 

correspond to land cover composition. Four textural features correspond to land cover 

configuration. 

 

3.2.2 Process Chain for Urban Area Recognition 

 

From the current urban definitions for census purpose, the whole process of urban 

recognition can be summarized as two steps, i.e. division and classification. The 

division is on the administrative basis. Administrative boundaries are imposed to 

divide a territory into administrative regions. All the administrative regions are then 

classified into urban and rural areas according to the census criteria. To automate such 

a process, four steps are proposed, they are, zoning, clustering, identification and 

merging. The construction of the four steps is based the urban characteristics extracted. 

The four steps are described as follows. 

 

1) Zoning. It divides a territory into smaller regions. Different from administrative 

division, which is made with administrative decisions, the regions created by this 

process should reflect the urban characteristics. According to the fourth urban 

characteristic, an urban area is clearly distinguishable from its surrounding rural area, 

which means that the difference of the landscape between urban and rural areas, 
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implied by the other three urban characteristics, is observable. Hence, the zoning 

process is expected to divide a territory into regions that are different in the landscape. 

 

2) Clustering. It clusters the divided regions into a number of groups according to a 

set of features. These groups are of no thematic meanings. Likewise, according to the 

fourth urban characteristic, these groups should be in such a manner that the similarity 

between groups is minimized and the similarity within groups is maximized. The 

features for characterizing regions should be identified based on the other three urban 

characteristics. 

 

3) Identification. It identifies a group of regions that is certainly urban. Since the 

groups created by the clustering process are of no thematic meanings, a set of rules 

are needed for assigning the urban meaning to the group that is the most relevant to be 

urban. If such a group fails to be identified, then the process flow goes back to the 

clustering process, which should be adjusted and run again for the next identification. 

As a result, the clustering and identification loop until an urban group is successfully 

found. The expected rule set should also be based on the urban characteristics. 

 

4) Merging. It merges all the regions into two areas, one of which is urban, and 

another is rural. According to the urban characteristics, the two areas should be 

different in the features related to those characteristics, and such a difference should 

be observable. Therefore, the dissimilarity of the two areas should be maximized. 

 

An image segmentation algorithm is used for the zoning task, substituting the 

administrative partition, which is described in Chapter 5. Chapter 6 develops an 

iterative region clustering and merging algorithm to achieve the remaining three steps 
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of the approach. 

 

3.3 Study Area 

 

The study area of this research is Beijing, the capital city of China. It ranges from 

115°25 É to 117°30 É and from 39°26 Ń to 41°3 Ń. It covers an area of 16,410.54 

km
2
 (Ministry of Commerce PRC, 2007). Beijing is a city with a long history of over 

three thousand years, and is one of the largest world cities at present, ranking the 

eighth by Global Cities Index in 2014 (A.T. Kearney, 2014). Administratively, Beijing 

is divided into sixteen regions, including fourteen urban and suburban districts and 

two rural counties (Figure 3.1). Previously, there were eighteen administrative regions. 

Since 1
st
 July 2010, Chongwen and Xuanwu Districts have been merged into 

Dongcheng and Xicheng Districts respectively (regions 1 and 2 in Figure 3.1). 
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Figure 3.1 Administrative Division of Beijing 

 

This spatial extent of Beijing has been formed since 1958. The administrative division 

and the administrative levels of the regions within this extent changed several times. 

The two urban districts, i.e. Dongcheng and Xicheng (regions 1 and 2 in Figure 3.1), 

form the urban core of Beijing, which occupy the old city region enclosed by city 

walls in the Qing Dynasty. After the foundation of the People's Republic of China, the 

accelerative urbanization process resulted in an increase of population and the city 

extent. The four neighboring regions to the two urban core regions, i.e. Chaoyang, 

Fengtai, Shijingshan and Haidian (regions 3-6 in Figure 3.1), have become suburban 

districts. These six regions together (regions 1-6 in Figure 3.1) are generally referred 

to as the urban area of Beijing (Tian et al., 2010). The other regions cover the most 
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rural areas in Beijing. However, because of the urbanization process and urban 

planning purpose, the administrative levels of eight regions, i.e. Mentougou, 

Fangshan, Tongzhou, Shunyi, Changping, Daxing, Huanrou and Pinggu (regions 7-14 

in Figure 3.1), has been upgraded from rural countries to municipal districts 

successively (Table 3.1). The other two regions, i.e. Miyun and Yanqing (regions 15 

and 16 in Figure 3.1), are still rural countries in the administrative division. Hence, 

there are fourteen urban and suburban districts and two rural counties in the current 

administrative division of Beijing. 

 

Table 3.1 Year of Administrative Upgrade of Beijing Regions 

Reference No. Region Name Year of Administrative Upgrade 

7 Mentougou 1958 

8 Fangshan 1987 

9 Tongzhou 1997 

10 Shunyi 1998 

11 Changping 1999 

12 Daxing 2001 

13 Huairou 2001 

14 Pinggu 2001 

 

Compared with population density data acquired in the sixth national census in 2010 

(see Table 2.2), the population densities of the fourteen municipal districts range from 

146 to 24,373 people/km
2
, with a mean of 5808 people/km

2
, and a standard deviation 

of 7933 people/km
2
. This distribution shows that the population densities of municipal 

districts are dramatically different. Some districts, e.g. Huairou and Penggu, are more 

similar to rural countries than urban districts in population density, even if their 

administrative level has been upgraded. The comparison of population density ranges 

between municipal districts and countries is visualized in Figure 3.2. Consequently, 
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the administrative division of Beijing does not reflect the realistic distinction between 

urban and rural areas. Some municipal districts include rural landscape and the 

realistic urban extent is smaller than the extent indicated by the administrative 

boundaries. 

 

 

Figure 3.2 Population Ranges of District and Country of Beijing 

 

In the main functional area planning of Beijing approved on 25
th

 July 2012 by the 

Beijing government, the sixteen administrative regions are classified into four types 

according to their functional positioning, i.e. capital function core area, urban function 

expansion area, urban development new area and ecological conservation area (Figure 

3.3) (Beijing Government, 2012). 
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Figure 3.3 Functional Division of Beijing 

 

The capital function core area comprises Dongcheng and Xicheng districts (regions 1 

and 2 in Figure 3.3), which are fully urbanized areas. The main function of this type is 

optimization of development. The urban function expansion area is constituted of 

Chaoyang, Haidian, Fengtai and Shijingshan districts (regions 3-6 in Figure 3.3), 

which are highly but not fully urbanized areas. The main function of this type is high 

priority of development. The urban development new area is composed of Fangshan, 

Tongzhou, Shunyi, Changping and Daxing districts (regions 8-12 in Figure 3.3), 

which are of large potential to be developed. The main function of this type is 

development of new suburban areas. The ecological conservation area consists of 

Mentougou, Huairou and Pinggu districts, as well as Miyun and Yanqing countries 
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(regions 7, 14-16 in Figure 3.3), which are of importance in natural resource 

conservation. The main function of this type is restriction of development (Beijing 

Government, 2012). It can be seen from such a functional division that the capital 

function core area and the urban function expansion area constitute the general 

urbanized area of Beijing; the urban development new area accounts for the 

urbanizing area of Beijing, surrounding the urbanized area, which shows a urban 

sprawl from the urbanized area into its surrounding environment; and the ecological 

conservation area is of importance in natural resource conservation, where strong 

urbanization is not allowed. This functional division accords with the pattern of 

population distribution in Beijing. Compared with population density data acquired in 

the sixth national census in 2010 (see Table 2.2), the two districts of the capital 

function core area have the highest population densities in Beijing, which are 21,881 

and 24,373 people/km
2
 respectively. The districts of the urban function expansion area 

are of relatively high population densities, from 6,860 to 7,702 people/km
2
. The 

population densities in the urban development new area are considerably lower than 

the former two areas, from 506 to 1,361 people/km
2
. In the ecological conservation 

area, population densities are evidently low, from 146 to 387 people/km
2
. This 

comparison of population density ranges between the four types of areas is visualized 

in Figure 3.4. 
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Figure 3.4 Population Ranges of Functional Areas of Beijing 

 

Using the population data acquired from the fifth and sixth national censuses in 2000 

and 2010 respectively, population densities in 2000 and 2010 are calculated for the 

four areas, as well as the absolute increase and increase rate between these two years, 

which are shown in Table 3.2. 

 

Table 3.2 Population Density of Functional Areas of Beijing 

Functional Type 

Population 

Density in 

2000 

Population 

Density in 

2010 

Increase of 

Population 

Density 

Increase 

Rate 

capital function core area 22,742 23,247 505 2.22% 

urban function expansion area 4,949 7,402 2,453 49.57% 

urban development new area 554 979 425 76.71% 

ecological conservation area 178 201 23 12.92% 

 

The increase rates of the four areas show that the increase of population density in the 

capital function core area is the slowest (2.22%), due to the fact that this area has been 

highly urbanized; the urban function expansion area has a medium level of increase 
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rate (49.57%), which reflects that this area is still under urbanization; the urban 

development new area presents the highest increase rate (76.71%), which indicates 

that the urbanization process is expanding to this area and it has a large potential to be 

further developed. The increase rate of the ecological conservation area is relatively 

low (12.92%), as it accounts for the rural area in Beijing, where the urbanization 

process is restricted and thus slow. Compared to the administrative division, this 

functional division by urban planners differentiates better between urbanized, 

urbanizing and rural areas. 

 

Urban scholars, on the other hand, divide Beijing into four areas, i.e. inner center, 

outer center, inner periphery and outer periphery, according to the administrative 

boundaries and the underlying patterns (Tian et al., 2010). As shown in Figure 3.5, the 

inner center comprises Dongcheng and Xicheng districts (regions 1 and 2 in Figure 

3.5), which equals the area inside the old walled city. Though the city walls no longer 

stand, they continue to retain geographical significance. Streets that once traversed the 

walls are still named “nei” (inner) or “wai” (outer) in relationship to whether the street 

sections are inside or outside the walls. The boundary of the inner city lies between 

the Second Ring Road and the Third Ring Road. The outer city encloses the inner city, 

comprising Chaoyang, Fengtai, Shijingshan and Haidian districts (regions 3-6 in 

Figure 3.5). It approximates the area between the Second Ring Road and the Fifth 

Ring Road. The inner periphery surrounds the outer city, composed of Mentougou, 

Fangshan, Tongzhou, Shunyi, Changping and Daxing districts (regions 7-12 in Figure 

3.5). These districts are linked by the Sixth Ring Road. The outer periphery includes 

Penggu and Huairou districts, as well as Miyun and Yanqing countries (regions 14-16 

in Figure 3.5). It is farther away from the inner and outer city regions. 
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Figure 3.5 Analytical Division of Beijing 

 

Compared with the functional division, the inner city equals the capital function core 

area; the outer city corresponds to the urban function expansion area; five of the six 

regions of the inner periphery compose the same area as the urban development new 

area; and the outer periphery is equivalent to four of the five regions of the ecological 

conservation area. The only difference is that in the functional division, Miyun district 

is regarded more similar to the other four areas of the ecological conservation area, 

even if it is not connected to them, while in the urban scholars‟ view, it is more close 

to the other five areas of the inner periphery, as they are spatially connected and 

enclose together the inner and outer city regions. The common view shared by urban 

planners and scholars is that the six districts, i.e. Dongcheng, Xicheng, Chaoyang, 
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Fengtai, Shijingshan and Haidian compose the urban area of Beijing, based on the 

administrative boundaries. 

 

Tian et al. (2010) proposed a new zoning method for Beijing based on the ring road 

system. The major road system, with ring roads and radial arteries, is a primary 

determinant of the urban spatial structure of Beijing. The ring roads and radial roads 

that have been developed over the past several decades give rise to the underlying 

pattern of urban growth of Beijing. The major road around the Forbidden City is 

named the first ring road. The concentric major roads beyond the first ring road are 

called the second, third, fourth, fifth and sixth ring roads in the order of the radial 

distance from the center of the city. Nowadays, the name of the first ring road is not 

used. Maps of Beijing do not indicate the first ring road (Figure 3.7). Only the names 

of the second to sixth ring roads are formally used. These five ring roads are depicted 

in yellow in Figure 3.6, on a base satellite image of Beijing. From inner to outer, the 

five rings correspond to the second to sixth ring roads. Tian et al. (2010) showed that 

these concentric ring roads provide a basic framework for the city‟s overall spatial 

pattern. They divided Beijing into five zones according to the ring road system. The 

first zone is the area inside the third ring road, which is regarded as the central 

business district (CBD) of Beijing. The second zone is the area between the third and 

fourth ring roads, which is dominant by office buildings, residential structures and 

commercial facilities. The third zone is the area between the fourth and fifth ring 

roads, regarded as manufacture-residence zone. The fourth zone is the area between 

the fifth and sixth ring roads, regarded as residence-manufacture zone. Compared with 

the third zone, more companies are located in the third zone while more residential 

areas are in the fourth zone. The fifth zone is the area outside the six ring roads, which 

includes suburbs and satellite cities. This zoning method does not attempt to draw a 
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boundary between urban and rural areas, but it points out that the ring road order 

approximates the „footprints‟ of urban growth, and the ring roads roughly indicates the 

location and extent of the urban area of Beijing. 

 

 

Figure 3.6 The Ring Road System of Beijing 

 

This is consistent with the map of the urban area of Beijing in the Alas of Beijing, 

which was published by SinoMaps Press and audited by the Beijing Institute of 

Surveying and Mapping in 2008 (SinoMaps Press, 2008). SinoMaps Press is a public 

institution under the direct jurisdiction of the State Bureau of Surveying and Mapping. 
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It is the only national map publisher in China. The atlas contains a map of the urban 

area of Beijing (Figure 3.7). It does not indicate a definite extent of the urban area. It 

covers an area around from 116°3 É, 39°45 Ń to 116°44 É, 40°7 Ń. Such an area 

includes entire Dongcheng, Xicheng, ChaoYang, Fengtai, Shijingshan Districts and 

part of Haidian, Mentougou, Fangshan, Tongzhou, Shunyi, Changping, Daxing 

Districts. That is to say, it includes the entire inner center, almost the whole outer 

center and the inner part of the inner periphery. The four regions of the outer 

periphery are entirely outside the map extent. From the map‟s point of view, the urban 

area of Beijing is within such an extent. Moreover, consistent with the view of Tian et 

al. (2010), the concentric ring roads are located in the center of the map area. The 

second to fifth ring roads are entirely included and the sixth ring road is partly 

included. 

 

Figure 3.7 The Map of the Urban Area of Beijing 

(Source: SinoMaps Press, 2008)

(Urban Area of Beijing) 
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Chapter 4 Evaluating Image Features for 

Characterizing Urban and Rural Areas 

 

As discussed in Chapter 3, land cover composition and configuration can be used to 

characterize urban and rural areas, which can be described using a range of features 

derived from remote sensing images. This chapter introduces such a set of image 

features and evaluates if it presents a significant difference between urban and rural 

areas. 

 

4.1 Remote Sensing Image Features Related to Urban 

Characteristics 

 

A set of features is expected to represent two types of information, i.e. compositional 

and configurational information. The features for compositional information are 

straightforward. The V-I-S model presented that the composition of four types of land 

cover characterize different kinds of environment (Ridd, 1995). Based on the V-I-S 

model, a combination of the proportions of the four land cover types is used as the 

features for representing land cover composition. The four land cover types are 

vegetation, impervious surface, soil and water / shade. The features for 

configurational information are not so intuitive. The spatial distribution of land cover 

can be observed as textures. Texture is one of the key elements used for image 

interpretation (Tempfli et al., 2009). Texture refers to the arrangement and frequency 

of tonal variation in particular areas of an image. Smooth textures are often the result 

of uniform and even surfaces, such as fields, asphalt or grasslands. A target with a 
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rough surface and irregular structure results in a rough textured appearance. Texture is 

a kind of structural information, which can be easily recognized by human eyes. As 

reviewed in Section 2.2.2.2, a set of image features has been developed for 

characterizing texture in a computational way, based on the so-called gray-level 

co-occurrence matrices (GLCM) (Haralick, 1973). Four of the GLCM textural 

features were further identified as optimal texture classifiers (Gotlieb and Kreyszig, 

1990). This research uses these four textural features for representing land cover 

configuration. Altogether, a set of eight features is used to describe land cover. An 

analysis is made to evaluate if this feature set shows a significant difference between 

urban and rural environments and thus can be used to distinguish between urban and 

rural areas. 

 

4.2 Experiments for Evaluation 

 

Experiments are designed to test if the proposed eight features are effective to 

distinguish between urban and rural areas. As discussed in Section 3.3, based on the 

administrative boundaries of the study area, different urban-rural classifications are 

made by administrators, urban planners and scholars. Although differences are found 

in some regions, there are common urban and rural areas in the three divisions. 

Therefore, these three kinds of urban-rural division are used as reference data. The 

eight features are hence also calculated on an administrative division basis. They are 

calculated for all the sixteen administrative regions. Clustering analysis is performed 

to see if the eight features show a pattern that is consistent with the referenced data. 

The data and steps involved are described in detail as follows. 
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4.2.1 Data Sources 

 

Two sets of Landsat-5 Thematic Mapper (TM) images of the study area are used in 

this study, which contain seven multi-spectral bands. The data are created by the U.S. 

Geological Survey (USGS) and stored in Geographic Tagged Image-File Format 

(GeoTIFF). They are downloaded from the Earth Science Data Interface (ESDI) at the 

Global Land Cover Facility (GLCF) of the University of Maryland. Landsat data are 

referenced using a Worldwide Reference System (WRS). In the WRS-2 of Landsat-5, 

the whole world is divided into 233 paths and 122 rows. Image data covering any 

portion of the world can be identified using the path and row numbers. The two sets of 

data used in this study are of path 123, row 32 and path 123, row 33 respectively. The 

combination of these two ranges covers the whole study area (the boundary of the 

study is delineated in yellow in Figure 4.1). Both of the two data sets were acquired 

on 22
nd

 September 2009. A geo-referenced mosaicking is performed to combine the 

two sets of images. Figure 4.1 shows the image data in a false-color synthesis, by 

assigning the values of near-inferred, red and green bands to the red, green and blue 

channels respectively. The boundary of the study is delineated in yellow. The sensed 

energy intensity is recorded in 8-bit data, that is, there are 256 grey levels in each 

band of the image. 
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Figure 4.1 The Source Landsat TM Image Data 

 

Another data set used in this study is the set of administrative boundaries of the study 

area, which is stored in a vector data format. It is downloaded from the GADM 

database of Global Administrative Areas. The administrative regions of Beijing are 
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selected to be used, as shown in Figure 4.2. 

 

 

Figure 4.2 The Source Vector Data of Administrative Boundaries 

 

By overlaying the vector data set on the image data set, the specific area of the image 

data corresponding to the study area is masked for later processing and analysis 

(Figure 4.3). The image area outside the study area is ignored in later processing and 

analysis. Figure 4.3 shows the masked image area in a false-color synthesis, by 

assigning the values of near-inferred, red and green bands to the red, green and blue 

channels respectively. 
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Figure 4.3 The Prepared Data of the Study Area for Analysis 

 

4.2.2 Extraction of the Eight Features 

 

In urban remote sensing, linear spectral unmixing is widely used to extract the 

proportions of land cover in each image pixel. As reviewed in Section 2.2.3, this 

process involves a selection of representative pixels of each land cover type, which 

are called endmembers. In this study, endmembers are selected manually from the 

image. Vegetation endmembers are selected from vegetated hillsides exposed to sun 
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light. Impervious surface endmembers are selected from large building roofs, road 

crosses and airport runways. Soil endmembers are selected from bare farm lands. 

Water endmembers are selected from lakes. The separability of the selected 

endmembers can be evaluated prior to the unmixing process, using the 

Jeffries-Matusita and Transformed Divergence separability measures (Richards and 

Jia, 2005). Both the measures range from 0 to 2 and indicate how well the pairs of 

endmembers of any two of the four land cover types are statistically separable. Values 

greater than 1.9 indicate good separability. The endmembers with good separability 

are then used to unmix each image pixel. Four proportions, corresponding to the four 

land cover types, are calculated for every pixel. Before the unmixing results are used 

to extract the eight features, they are evaluated in three ways. Firstly, the four 

proportions are visualized as grey-level images to see if the proportion distribution 

pattern is consistent with the prior knowledge about the study area. Secondly, the root 

mean square (RMS) error is calculated for every pixel. A small RMS error indicates 

that the linear mixture model constructed is mathematically good. Lastly, the unmixed 

land cover fractions are used to produce a hard classification for comparison, by 

assigning each pixel to the land cover type with the highest proportion in the pixel. 

The confusion matrix is then produced. 

 

After obtaining the per-pixel unmixing results, the eight features can be extracted for 

each administrative region. The proportions of the four land cover classes in a region 

are calculated by averaging the proportions in the pixels in that region. The textural 

features are calculated from the hard classification produced from the unmixing 

results. Summarily, the eight features are calculated for the sixteen administrative 

regions of the study area, they are: 
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𝑓1: the proportion of vegetation 

𝑓2: the proportion of impervious surface 

𝑓3: the proportion of soil 

𝑓4: the proportion of water/shade 

𝑓5: angular second moment 

𝑓6: inverse difference moment 

𝑓7: constrast 

𝑓8: entropy 

 

The following analysis verifies if the combination of these eight features is effective 

to characterize urban and rural areas. 

 

4.2.3 A Clustering Analysis of the Eight Features 

 

The purpose of this analysis is to test if the proposed eight features are effective to 

characterize urban and rural areas. Urban and rural areas are expected to show a 

difference in the feature space composed of the eight features. In order to detect and 

determine if a difference exists, this study utilizes an automated clustering algorithm. 

A k-means clustering is performed to classify the sixteen regions in the feature space 

(MacQueen, 1967). The clustering is a process that groups a set of data such that the 

similarity within classes is maximized and the similarity between classes is minimized. 

If two regions are similar with regard to the eight features, they are put to the same 

class. Otherwise, if two regions are distant in the feature space, they are separated into 

different classes. According to the three referenced divisions of the study area, 

numbers of classes of 2, 3 and 4 are tested. In addition, in order to see if the spatial 

locations of the regions influence the classification, the clustering process is 
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performed twice for each test. At the first time, only the eight features are taken as 

input to the process, while at the second time, the spatial locations of the regions, 

represented by their geometrical centroids, are also input to the process. The 

clustering results are then compared with the referenced divisions. If the clustering 

results show a pattern consistent with the reference divisions, then the eight features 

are verified to be useful to characterize different kinds of areas. The results are 

presented in the next section. 

 

4.3 Results and Analysis 

 

The results of linear spectral unmixing of Landsat TM multi-spectral data of the study 

area are shown in Figure 4.4. Each pixel of the image is unmixed into four 

proportions, of vegetation, impervious surface, soil and water / shade respectively. 

These proportions are visualized as images in Figure 4.4. Brighter pixels indicates 

higher proportions of the corresponding land cover types. Visually, the distribution of 

the four types of land cover is consistent with the prior knowledge of the study area. 

Vegetation is mainly distributed in hills and farm lands. The proportions of vegetation 

are obviously low in the urban area, around the six city regions of the study area 

(Figure 4.4a). The distribution of impervious surface shows a clear pattern that the 

proportions are high in the urban area and low in the hill areas. The distinction is 

easily observed (Figure 4.4b). Soil dose not present such an apparent distinction as 

vegetation and impervious surface. But it can still be seen that higher proportions are 

distributed in rural places (Figure 4.4c). High proportions of water / shade correspond 

to rivers, lakes and building shades (Figure 4.4d). 



Chapter 4 Evaluating Image Features for Characterizing Urban and Rural Areas 

80 

 

 

Figure 4.4 Land Cover Proportion Images of the Unmixing Result 

 

The RMS error is calculated for every pixel individually. Some statistics of all RMS 

errors are computed. The min, max, mean and standard deviation are 0, 5.56, 0.03 and 

0.06 respectively. Compared to the 256 grey levels, the RMS errors are small. In 

addition, 99.9% of the RMS errors are below 0.55. The RMS errors show that the 

linear mixture model constructed is mathematically good. A hard classification is then 

produced from the unmixing results, which shown in Figure 4.5. Vegetation, 

(a) vegetation (b) impervious surface 

(c) soil (d) water / shade 
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impervious surface, soil and water are indicated in green, red, yellow and blue 

respectively. 

 

 

Figure 4.5 Land Cover Classification of the Study Area 

 

The classification accuracy is assessed by comparing the classification data with the 

visual interpretation of a number of sample pixels. As a rule of thumb, Congalton 

(1991) suggested at least 50 samples per class, and at least 75-100 samples per class if 

the area exceeds 500 km
2
 or the number of classes is more than 12. This coincides 

with those suggested by Hay (1979) and Fenstermaker (1991). In this study, 500 

samples are randomly selected from the study area. The confusion matrix is presented 

in Table 4.1, including the producer‟s accuracy, user‟s accuracy of each class, overall 
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accuracy and kappa coefficient. 

 

Table 4.1 Accuracy Report of the Classification Result 

  

Reference Data 

  

  

V I S W Σ user's acc. 

Classified 

Data 

V 159 5 3 5 172 92.40% 

I 8 144 5 0 157 91.70% 

S 10 8 77 1 96 80.20% 

W 1 2 1 71 75 94.70% 

 

Σ 178 159 86 77 500 

 

 

prod. acc. 89.30% 90.60% 89.50% 92.20% 

  

 

overall accuracy 90.2% kappa coefficient 0.86 

  

4.3.1 The Eight Features 

 

Based on the unmixing results, the four proportional features, i.e. f1 – f4 described in 

Section 4.2.2, are extracted for the sixteen administrative regions of the study area. 

The results are shown in Table 4.2. The reference numbers of the regions corresponds 

to the numbers in Figure 3.2. 

 

Table 4.2 The Proportional Features of the Sixteen Administrative Regions 

Ref. No. 
Proportion of 

Vegetation 

Proportion of 

Impervious 

Surface 

Proportion of 

Soil 

Proportion of 

Water / Shade 

1 0.00881 0.74873 0.22155 0.02091 

2 0.01317 0.76361 0.21492 0.00830 

3 0.05841 0.56468 0.37305 0.00386 

4 0.09036 0.59532 0.31338 0.00095 

5 0.32072 0.42957 0.24791 0.00179 

6 0.27448 0.35485 0.36358 0.00708 

7 0.79712 0.04134 0.15040 0.01115 

8 0.51963 0.13291 0.33219 0.01527 
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9 0.23060 0.25642 0.50313 0.00985 

10 0.36041 0.19605 0.44067 0.00287 

11 0.48841 0.16751 0.33702 0.00706 

12 0.26014 0.28652 0.45314 0.00020 

13 0.67076 0.03600 0.28597 0.00727 

14 0.75477 0.05479 0.18296 0.00748 

15 0.61936 0.05003 0.28802 0.04259 

16 0.55277 0.03627 0.40462 0.00634 

 

It can be seen that the lowest proportions of vegetation appear in regions 1 and 2, 

which are around 1%. At the same time, these two regions have the highest 

proportions of impervious surface, which are over 70%. These two regions are 

Dongcheng and Xicheng districts, which are the most urbanized area of the study area. 

In the functional division, they compose the capital function core area (Figure 3.4). In 

the analytical division, they are the inner center of the study area (Figure 3.6). The 

lowest proportions of impervious surface appear in regions 7, 13 – 16, which are 

below 10%. These regions also contain the highest proportions of vegetation, which 

are above 60%. These regions equal to the ecological conservations area in the 

function division, which are the most rural regions of the study area (Figure 3.4). The 

regions 3 – 6 have proportions of impervious surface between 30% and 60%, which 

correspond to the urban function expansion area in the functional division and outer 

center in the analytical division (Figures 3.4 and 3.6). Regions 8 – 12 take up the 

proportions of impervious surface between 10% and 30%, which constitute the same 

area as the urban development new area in the functional division (Figure 3.6). For 

the ease of observing the pattern, the land cover proportions of the sixteen regions are 

visualized in Figure 4.6. Brighter colors indicates higher proportions. Comparing to 

the divisions of the study area from both urban planners and scholars (Figure 3.4 and 

3.6), it can be seen that the proportions of vegetation and impervious show a clear 
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pattern that distinguishes between urban and rural areas (Figure 4.6(a, b)). 

 

 

Figure 4.6 Comparison of Proportional Features between Administrative Regions 

 

Based on the classification, the four textural features, i.e. f5 – f8 described in Section 

4.2.2, are extracted for the sixteen administrative regions of the study area. The results 

are shown in Table 4.3. The reference numbers of the regions corresponds to the 

numbers in Figure 4.7. 

(a) vegetation (b) impervious surface 

(c) soil (d) water 
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Table 4.3 The Textural Features of the Sixteen Administrative Regions 

Ref. No. 

Angular 

Second 

Moment 

Inverse 

Difference 

Moment 

Contrast Entropy 

1 0.44188 0.90117 0.19767 1.05758 

2 0.42838 0.88247 0.23506 1.08669 

3 0.33336 0.88852 0.22296 1.21524 

4 0.34404 0.89108 0.21783 1.19871 

5 0.35384 0.90468 0.19064 1.17020 

6 0.36904 0.89596 0.20809 1.16104 

7 0.84831 0.97341 0.05319 0.36710 

8 0.64173 0.94448 0.11105 0.73362 

9 0.45683 0.91404 0.17191 1.02570 

10 0.53044 0.92491 0.15018 0.91346 

11 0.59391 0.94213 0.11574 0.80578 

12 0.42406 0.90731 0.18537 1.07660 

13 0.87546 0.98012 0.03977 0.31188 

14 0.81486 0.96931 0.06138 0.43160 

15 0.82704 0.97094 0.05811 0.40846 

16 0.85646 0.97313 0.05374 0.35055 

 

It can be seen that the lowest values of angular second moment appears in regions 1 – 

6, which are between 0.33 and 0.44. The highest values appear in regions 7, 13 – 16, 

which are between 0.81 and 0.88. The other regions 8 – 12 take up the values between 

0.42 and 0.64. Similarly, these three groups of regions hold the values of inverse 

difference moment of different and not overlapping ranges, between 0.88 and 0.90, 

0.97 and 0.98, 0.91 and 0.94 respectively. On the contrary, the regions 1 – 6 show the 

highest values of both contrast and entropy, from 0.19 to 0.24 and from 1.06 to 1.22 

respectively. The medium levels of contrast and entropy appear in regions 8 – 12, 

which are between 0.11 and 0.19, 0.73 and 1.08 respectively. The lowest ranges 

appear in regions 7, 13 – 16, which are from 0.04 to 0.06 and from 0.31 to 0.43 

respectively. The four textural features of the sixteen regions are visualized in Figure 
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4.7. Brighter colors indicate higher values. It can be seen that all the four features 

show a good accordance with the functional division of the study area (Figure 3.4). 

 

 

Figure 4.7 Comparison of Textural Features between Administrative Regions 

 

4.3.2 Clustering Results and Analysis 

 

A clustering analysis is then made to test if the difference between the sixteen regions 

(a) angular second moment (b) inverse difference moment 

(c) contrast (d) entropy 
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in the feature space can be identified in an automated manner. The sixteen regions are 

clustered into two, three and four classes. The clustering process is performed twice 

for each. The first time only the eight features are used as input, referred to as 

non-spatial clustering, while the second time the spatial locations of the regions are 

also considered, referred to as spatial clustering. All the classes identified are of no 

thematic meaning. The purpose is to observe their spatial patterns and the patterns 

characterized by the eight features. The results are presented as follows. 

 

Figure 4.8 shows the results of clustering of the sixteen regions into two classes. 

Figure 4.8(a) shows the clustering result by the eight features. The result shows that 

one class, indicated in yellow, includes the whole center area and half of the inner 

periphery area, while the other class, indicated in orange, includes the whole outer 

periphery and half of the inner periphery, as compared to the Figure 3.6. Taking the 

spatial locations into consideration, as shown in Figure 4.8(b), the result accords well 

with the functional division (Figure 3.4). The yellow class includes exactly the capital 

function core area and the urban function expansion area. The orange class includes 

exactly the urban development new area and the ecological conservation area.  
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Figure 4.8 Clustering of Administrative Regions into Two Groups 

 

According to Tables 4.2 and 4.3, the same difference between the two classes in the 

feature space is found in both non-spatial and spatial clustering results. The yellow 

regions have the proportions of vegetation and values of contrast and entropy that are 

higher than those of the orange regions. Also, the yellow regions have the proportions 

of impervious surface and values of angular second moment and inverse difference 

moment that are lower than those of the orange regions. 

 

Figure 4.9 shows the results of clustering of the sixteen regions into three classes. 

Compared with the Figure 4.9(a) shows that the non-spatial clustering identifies three 

classes that approximate the functional division of the study area (Figure 3.4). The 

spatial clustering result fits the functional division better (Figure 4.9(b)). The green 

regions equal to the ecological conservation area. The orange regions are identical to 

the urban development new area. The yellow regions include exactly the capital 

function core area and the urban function expansion area in the functional division 

(a) non-spatial (b) spatial 
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(Figure 3.4), which are equivalent to the inner and outer center areas in the urban 

scholar‟s division (Figure 3.6). According to Table 4.2, the yellow regions have the 

highest proportions of impervious and lowest proportions of vegetation. On the 

contrary, the green regions have the lowest proportion of impervious and the highest 

proportions of vegetation. 

 

Figure 4.9 Clustering of Administrative Regions into Three Groups 

 

Figure 4.10 shows the results of clustering of the sixteen regions into four classes. 

Figure 4.10(a) shows that the non-spatial clustering identifies almost the same 

classification as the functional division (Figure 3.4). The yellow regions equal to the 

capital function core area. The orange regions are identical to the urban function 

expansion area. The blue regions include five of the six regions of the urban 

development new area. The green regions include the whole ecological conservation 

area and one region of the urban development new area. The spatial clustering also 

identifies a very similar pattern corresponding the functional division (Figure 4.10(b)). 

The green regions include exactly the regions of ecological conservation area. The 

(a) non-spatial (b) spatial 



Chapter 4 Evaluating Image Features for Characterizing Urban and Rural Areas 

90 

 

blue regions are exactly the urban development new area. The yellow regions include 

the whole capital function core area. Two regions of the urban function expansion area 

are included in the yellow class by the spatial clustering, because they are closer in 

their locations. 

 

 

Figure 4.10 Clustering of Administrative Regions into Four Groups 

 

According to Table 4.2 , the yellow regions have the highest proportions of 

impervious and lowest proportions of vegetation. On the contrary, the green regions 

have the lowest proportion of impervious and the highest proportions of vegetation. 

Also, the yellow regions have lower values of angular second moment and inverse 

difference moment and higher values of constrast and entropy than green regions 

(Table 4.3). 

 

As discussed in Section 3.3, the common urban areas of the three referenced divisions 

include the regions 1 – 6 in Figure 3.2. The common rural areas include the regions 15 

(a) non-spatial (b) spatial 
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and 16 in Figure 3.2. By comparing the clustering results the common urban and rural 

areas in the referenced divisions, it can be seen that urban and rural areas are 

successfully differentiated by all the clustering processes. 

 

Two conclusions are drawn from the analysis. Firstly, the combination of the eight 

features is valid for characterizing different kinds of areas, they are, the four 

proportions of vegetation, impervious surface, soil and water / shade, and the four 

textural features including angular second moment, inverse difference moment, 

contrast and entropy. Urban and rural areas present a distinction in these features. The 

combination of these features is effective for distinguishing between urban and rural 

areas. Secondly, urban areas present higher proportions of impervious surface and 

lower proportions of vegetation than rural areas. These two proportional features are 

useful for assigning thematic meanings to the classes of the regions. 
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5 Division of a City Region for Urban-Rural 

Classification 

 

From the current urban definitions for census purpose, the whole process of urban 

recognition can be summarized as two steps, i.e. division and classification. The 

division is on the administrative basis. Administrative boundaries are imposed to 

divide a territory into administrative regions. All the administrative regions are then 

classified into urban and rural areas according to the census criteria. Likewise, other 

classification schemes can be applied. For administrative purpose, the regions are 

classified into municipal district and country. For planning purpose, the regions are 

classified into capital function core area, urban function expansion area, urban 

development new area and ecological conservation area. For analytical purpose, the 

regions are classified into inner center, outer center, inner periphery and outer 

periphery. All these classifications are made on the regions that are divided by 

administrative boundaries. Before an urban-rural classification can be made, a 

territory must be divided into smaller regions, as the spatial unit for assigning a 

thematic meaning, e.g. urban and rural. One kind of division is the administrative 

division. However, administrative boundaries do not accord with the boundaries of 

physical landscape, and they are fixed and do not change according to the 

urbanization process. Therefore, a zoning method is needed to divide a territory into 

smaller regions. These regions should be divided by boundaries that reflect the 

boundaries of landscape. This study addresses the zoning issue. 
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5.1 Division of a City Region: Administrative vs 

Homogeneous 

 

A city region per se is an administrative region. Municipal districts and countries are 

sub-regions at a lower administrative level than the city region. There are two 

problems of classification of urban and rural areas based on an administrative division. 

Firstly, administrative boundaries do not accord with the boundaries of physical 

landscape. Secondly, administrative boundaries do not change according to the change 

of physical landscape. Cities are sprawling into their surrounding landscapes. The 

process of urbanization keeps transforming the natural and agricultural environments 

into built environments. As a result, urban boundaries keep moving outwards. Hence, 

the fixed administrative division is not appropriate for dividing urban and rural areas. 

Instead, a zoning method is needed for divide a city region into sub-regions that 

accord with the physical landscape. This can be achieved using remote sensing data 

and techniques. 

 

According to the fourth urban characteristic, an urban area is clearly distinguishable 

from its surrounding rural area, which means that the difference of the landscape 

between urban and rural areas, implied by the other three urban characteristics, is 

observable. Hence, the zoning process is expected to divide a territory into regions 

that are different in the landscape. The multi-resolution image segmentation technique, 

which is reviewed in Section 3.2.2, fits the requirement of the zoning task. This 

algorithm is an optimization procedure that minimizes the average heterogeneity and 

maximizes the respective homogeneity of resulting segments. As reviewed in Section 

2.2.4, the stop criterion for the optimization procedure is an input scale parameter. 
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Prior to the merge of two segments, the resulting increase of a defined heterogeneity 

is calculated. If the resulting increase exceeds threshold determined by the scale 

parameter, then the merge is not performed and the segmentation process stops. The 

scale parameter is an abstract term that determines the maximum allowed 

heterogeneity for the resulting image segments. By changing its value, the sizes of 

resulting segments can be varied. However, it is more useful to control the 

segmentation process by a parameter with physical meaning, e.g. the average area of 

the resulting segments. The administrative division can be used as a reference. The 

segmentation is performed to produce such sub-regions that their average area is the 

closest to area of the smallest administrative region. The resulting regions are referred 

to as homogeneous regions. An experiment is designed to test if this method can 

better separate different landscapes than the administrative division. 

 

5.2 Experimental Design for Comparing Administrative and 

Homogeneous Divisions 

 

The experiment is designed to see how remote sensing data and techniques can be 

used to achieve a division of a city region, and how it differs from the administrative 

division. 

 

5.2.1 Data Sources 

 

The source data is the same as the ones used in the experiments described in Chapter 

4. Two sets of Landsat-5 Thematic Mapper (TM) images of the study area are used in 

this study, which contain seven multi-spectral bands. The sensed energy intensity is 
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recorded in 8-bit data, that is, there are 256 grey levels in each band of the image. 

Another data set used in this study is the set of administrative boundaries of the study 

area, which is stored in a vector data format. A geo-referenced mosaicking is 

performed to combine the two sets of images. By overlaying the vector data set on the 

image data set, the specific area of the image data corresponding to the study area is 

masked for later processing and analysis. 

 

5.2.2 A Continuous Region Splitting Analysis 

 

The multi-resolution segmentation is a bottom-up region merging technique. It starts 

with individual pixels, which form the smallest segments. In subsequent steps, pairs 

of image segments are merged into larger regions by minimizing the defined weighted 

heterogeneity of resulting regions. The process stops when the smallest growth 

exceeds the threshold specified by a scale parameter. By increasing the scale 

parameter, more times of merge are allowed to produce larger segments. The largest 

possible segment is the whole input image region. However, in order to observe how a 

region is continuously divided into sub-regions, a top-down region split process is 

used to create a series of segmentation results. Each step can be viewed as a further 

split than the previous step. 

 

The TM data of the study area are input to the segmentation process. The vector data 

of the administrative boundaries of the study area are also input as a constraint. By 

imposing the administrative boundary constraint, the input image is firstly split 

according to the administrative boundaries, so at least sixteen regions must be output 

from the segmentation process. By decreasing the scale parameter, changes of output 

segments are found. Each time of change can be viewed as a further split of the 
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previous segmentation result, and is referred to as a splitting step. The splitting 

process stops when the average size of the resulting regions becomes lower than the 

smallest administrative region. 

 

The purpose of the segmentation process is to identify homogenous regions. If a 

region includes homogenous landscape, its grey-level variation in the image channels 

is relatively small. The grey-level variation of a region in a spectral band is measured 

by the range of the grey-level of the region. The grey-level range is calculated as the 

difference between the maximum and the minimum grey-level values. If a region is 

split into several homogenous sub-regions, the average grey-level range of the 

sub-regions should be lower than their super-region. Otherwise, the region is split into 

sub-regions that are not more homogeneous than it. The average grey-level ranges of 

all regions in the seven multi-spectral bands all calculated for each step, in order to 

see if a decrease of the average ranges occurs along the continuous splitting. 

 

5.2.3 Homogeneous Division without Administrative Boundary 

Constraint 

 

The administrative boundaries are imposed as a constraint for the observation of the 

splitting process. The purpose of a zoning method is to divide a territory into regions 

according to the physical landscape rather than the administrative consideration. 

Therefore, the segmentation is performed with the same input but removing the 

administrative boundary constraint. The expected result is that the segmentation 

produces more homogeneous regions than those produced with the administrative 

boundary constraint. 
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5.3 Results and Analysis 

 

This section presents the experiment results. 

 

5.3.1 Splitting Results and Analysis 

 

The results of the continuous splitting process are shown in Figure 5.1. At the 

beginning, the input image is split into sixteen regions according to the administrative 

boundaries. No new segment is produced, as large growth of heterogeneity is allowed. 

This administrative division of the input image is regarded as the source status of the 

subsequent splitting steps (Figure 5.1(a)). The regions produced in the subsequent 

steps are sub-regions of the sixteen administrative regions. The areas of the sixteen 

administrative regions range from 42 km
2
 to 2557.3 km

2
. By reducing the scale 

parameter, smaller sub-regions are produced. Each change of the segmentation result 

is recorded as a step. The number of regions increases along the splitting steps (Figure 

5.1(b-j)). The splitting process stops when the average size of the resulting regions 

becomes lower than the smallest administrative region. At the ninth change of the 

segmentation result, a total of 373 regions are produced, with an average area of 39.7 

km
2
 (Figure 5.1(j)). The numbers of the sub-regions of the sixteen administrative 

regions produced in the splitting steps are listed in Table 5.1. The reference numbers 

of the sixteen administrative are the same as those in Table 3.2. It can be seen that the 

earliest splits occur in regions 6, 13, 15 and 16, which means that these regions 

contain different landscapes that are the most distinguishable. Regions 1 and 2 keep 

unchanged until the steps 7 and 8 respectively, which means they contain a 

homogeneous landscape. 
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Figure 5.1 Splitting Process using Multi-Resolution Image Segmentation 

 

(a) source (b) step 1 

(c) step 2 (d) step 3 
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Figure 5.1 Splitting Process using Multi-Resolution Image Segmentation (cont‟d) 

 

 

(e) step 4 (f) step 5 

(g) step 6 (h) step 7 
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Figure 5.1 Splitting Process using Multi-Resolution Image Segmentation (cont‟d) 

Table 5.1 Number of Resulting Sub-Regions in Administrative Regions 

 
number of resulting sub-regions 

ref. no. step 1 step 2 step 3 step 4 step 5 step 6 step 7  step 8 step 9 

1 1 1 1 1 1 1 1 2 2 

2 1 1 1 1 1 1 1 1 2 

3 1 1 1 1 1 3 4 4 8 

4 1 1 1 1 1 2 4 5 9 

5 1 1 1 1 2 2 2 2 2 

6 2 2 2 2 3 4 6 10 11 

7 1 1 2 2 3 5 6 19 34 

8 1 2 2 2 3 4 6 20 45 

9 1 1 1 2 2 2 4 8 20 

10 1 2 2 2 2 2 3 5 17 

11 1 2 2 2 2 5 7 15 33 

12 1 1 1 2 2 2 3 7 20 

13 2 2 2 2 3 6 12 20 48 

14 1 1 2 3 3 3 7 13 21 

15 3 3 4 7 8 8 19 31 57 

16 4 4 4 5 6 8 10 20 44 

Σ 23 26 29 36 43 58 95 182 373 

mean area 

(km
2
) 

643.2 569 510.1 410.9 344 255.1 155.7 81.3 39.7 

(i) step 8 (j) step 9 
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The average grey-level ranges of the seven spectral bands are calculated for the 

segmentation results, which are listed in Table 5.2. The changes of the average 

grey-level ranges are visualized in Figure 5.2. It can be seen that all the seven spectral 

bands show a decrease in the average grey-level range. In each step, the segmentation 

algorithm produces sub-regions that are more homogeneous than their super-regions. 

 

Table 5.2 Change of Average Grey-Level Ranges in Spectral Bands 

 
average grey-level range 

step band 1 band 2 band 3 band 4 band 5 band 6 band 7 

source 174.38  128.06  163.38  162.81  239.00  54.19  239.06  

1 149.39  106.57  138.43  142.52  214.70  47.48  203.43  

2 147.23  103.50  135.31  138.73  212.23  46.65  202.65  

3 146.72  101.07  132.55  136.72  212.03  44.69  201.66  

4 132.78  90.89  120.28  129.39  198.17  40.36  185.03  

5 130.63  89.51  117.77  128.09  195.02  38.88  179.98  

6 122.48  83.26  110.59  119.22  188.53  37.02  165.00  

7 109.25  72.80  98.20  109.03  181.03  33.68  159.38  

8 102.04  66.67  90.80  101.93  172.18  31.65  146.53  

9 89.39  57.95  80.46  92.88  158.50  29.83  128.97  

 

 

Figure 5.2 Change of Average Grey-Level Ranges in Spectral Bands 
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5.3.2 Homogeneous Division of a City Region for Urban-Rural 

Classification 

 

The same input as in the ninth step is used to split the image of the study area into 

sub-regions, but the input of the administrative boundaries is removed. The 

segmentation is made according only the grey-level variation of the image. As a result, 

the output is different from that produced with the administrative boundary constraint 

(Figure 5.3). To compare this result with the one produced with the administrative 

boundary constraint and the administrative division, the average grey-level ranges of 

the seven bands of these three kinds of division are listed in Table 5.3. 

 

 

Figure 5.3 Homogeneous Division without Administrative Boundary Constraint 
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Table 5.3 Comparison of Average Grey-Level Ranges 

 
average grey-level range 

 
band 1 band 2 band 3 band 4 band 5 band 6 band 7 

administrative 174.38  128.06  163.38  162.81  239.00  54.19  239.06  

constrained 89.39  57.95  80.46  92.88  158.50  29.83  128.97  

unconstrained 88.64  57.80  80.23  93.03  158.47  29.59  128.22  

 

Except the band 4, the average grey-level ranges in the other six bands are further 

reduced by removing the administrative boundary constraint. It is concluded that the 

multi-resolution segmentation algorithm is able to divide a territory into regions that 

are different in the landscape. Therefore, it is appropriate to be used as the zoning 

method for the proposed approach to urban area recognition. 
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Chapter 6 An Iterative Clustering and Merging 

Algorithm for Urban Area Recognition 

 

Chapter 4 evaluates the eight features for characterizing different kinds of areas. 

Chapter 5 describes the multi-resolution segmentation as the zoning method for 

dividing a territory according to the physical landscape. These two chapters address 

the issue about what kinds of data are used. This addresses the issue about what kinds 

of processes are needed for urban area recognition. 

 

6.1 From Urban Characteristics to an Iterative Clustering 

and Merging Algorithm 

 

The purpose of the algorithm is to separate a city region into two sub-regions. One 

corresponds to the urban area, and the other corresponds to the rural area. Chapter 3 

proposes a four-step approach to the recognition of urban areas. The first step is 

addressed in Chapter 5. The algorithm described in this Chapter is developed for 

achieving the remaining three steps, i.e. clustering, identification and merging. 

Clustering and identification are achieved by an iterative clustering analysis. Merging 

is achieved by an iterative merging analysis. These two sub-processes are described in 

the following sub-sections respectively. 

 

6.1.1 Iterative Clustering for Identifying an Urban Area 

 

According the first three urban characteristics, urban and rural areas are different in 
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land cover composition and configuration. A set of compositional and configurational 

features is identified for characterizing places, which is described in Chapter 4. 

According to the fourth urban characteristic, the difference between urban and rural 

areas is observable. Consequently, a clustering process should be able to distinguish 

between different kinds of areas using those features. The resulting groups of an 

automated clustering process are of no thematic meanings. Hence, an identification 

step is needed to find a group of the urban meaning from the clustering result. This 

group should satisfy some conditions that reflect the urban characteristics. Firstly, an 

urban area is a single connected area, rather than a union of several scattered regions. 

Even if there are some satellite suburbs in many cities, there must be a main urban 

area of the cities. Secondly, according to the first two urban characteristics, urban 

areas are composed of large and dense built-up areas, providing space for 

non-agricultural human activities, while rural areas are mainly composed of 

agricultural or natural lands, i.e. vegetated areas. Reflected by the compositional 

features, an urban area should be high in the proportion of impervious surface and low 

in the proportion of vegetation, compared with other non-urban areas. 

 

Accordingly, the clustering and identification process adopts an iterative strategy. The 

input number of cluster is adjusted and the clustering is repeated until the expected 

area appears. At the beginning, the input regions are clustered into two groups. One 

group must be higher in the proportion of impervious surface and lower in the 

proportion of vegetation than the other one. It should contain the expected urban area. 

However, it also includes some regions that are not very urban, as the group size is 

large. Also, the condition of connectedness is usually not satisfied. The spatial 

locations of the regions can be used as additional input, so that the regions in each 

cluster are also close in spatial distance, but this does not guarantee that the regions 
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within clusters are adjacent. If the expected area is not identified in a clustering result, 

the number of clusters is increased by one and input regions are re-clustered. Different 

kinds of landscapes are further separated. The similarity within each group is 

increased. A series of results are produced. Without a stop condition, the maximum 

number of clusters equals to the number of input regions. This is the most separated 

case that each input region forms a cluster. The expected area should appear at a 

certain step in the result series before the end is reached. The expected area should 

also be stable, keeping unchanged for some steps after it appears. If it is not stable, it 

still includes not similar elements. The steps after the expected area is identified are 

not useful, as the regions are over separated. Hence, a stop condition should be 

imposed. The overall steps of the iterative clustering process are described as follows. 

 

1) Begin the process by clustering the input regions into two groups; 

2) Check if the stop condition is satisfied. If satisfied go to step 4, otherwise go to step 

3; 

3) Increase the number of clusters by one, and re-cluster the input regions, and go to 

step 2; 

4) Remove the holes of the output area if there is any. 

 

The stop condition of the process is that such an area is found that satisfies the 

following: 

 

1) It is a single connected area; 

2) It is of the highest proportion of impervious surface among the areas satisfying (1); 

3) It is of the lowest proportion of vegetation among the areas satisfying (1). 

4) It is unchanged in more than three following steps. 
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5) If an area that satisfies (2) – (4) but not satisfies (1), the largest connected 

component of the area is selected as the expected output. 

 

After the clustering and identification process, a set of regions are identified to form 

an area that can be determinately labelled as urban, but the remaining regions are still 

unclassified. 

 

6.1.2 Iterative Merging for an Urban-Rural Division 

 

The final step of the proposed approach to urban area recognition is merging. It 

merges all the regions into two areas, one of which is urban, and another is rural. The 

urban and rural areas form an urban-rural division of the city extent. The output of the 

previous step is a connected area comprising a cluster of regions that are determined 

as urban. In the real world, there is no physical boundary between urban and rural 

areas. There is a transition of landscape between urban and rural areas. Accordingly, 

the remaining regions that are not determined as urban are also not definitely rural. 

Some regions close to the urban area are more possible to be classified as urban as 

well. According to the first three urban characteristics, the urban and rural areas are 

different in the features related to those characteristics. According to the fourth urban 

characteristic, such a difference should be observable. Hence, the dissimilarity of the 

resulting urban and rural areas should be maximized. In other to find such an 

urban-rural division, an iterative merging strategy is adopted. The merging process is 

described as follows. 

 

1) At the beginning, the output urban regions from the clustering and identification 

process are merged as an urban area. The features of the merged area are calculated as 
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the means of the features of its region components. In other words, in the feature 

space, the merged area is represented by the mean center of its components. 

2) From the remaining regions, the one that is adjacent to the merged area and is the 

closest to the merged area in the feature space, i.e. the nearest neighbor, is merged into 

the urban area. As a result, the resulting area is expanded, and its mean center is 

changed. 

3) The step 2 is repeated until all the regions are merged as one area. If there are n 

regions produced by the segmentation process, and a cluster of m regions is output by 

the clustering and identification process, then there are n–m+1 merging steps. 

4) In each merging step, the remaining regions are also merged in to an area, 

representing a rural area. As a result, two areas are formed. The distance between the 

mean centers of these two areas in the feature space is calculated. The distance 

changes along the merging steps. The urban area in the step of the largest distance is 

identified as the final output, because in that step the urban and rural areas are in the 

most dissimilar status. In other to see if the proposed iterative clustering and merging 

algorithm works as expected, experiments are designed to test the algorithm. 

 

6.2 Experimental Design for Testing the Algorithm 

 

This section describes the data and processes for testing the proposed iterative 

clustering and merging algorithm. 

 

6.2.1 Data Input 

 

The input of the iterative clustering process is the output regions from the 
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segmentation process described in Chapter 5. The regions are represented by the eight 

proportional and textural features described in Chapter 4. Totally 379 regions are 

produced by the segmentation process. The eight features are calculated for all regions. 

The regions are visualized as thematic maps using the eight features respectively. 

Figure 6.1 shows the four proportional features of the regions respectively, and Figure 

6.2 shows the four textural features of the regions respectively. In both figures, 

brighter tones indicate higher values of the corresponding features. 

 

Figure 6.1 Visualization of Input Regions with Proportional Features 

(a) vegetation (b) impervious surface 

(c) soil (d) water 
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Figure 6.2 Visualization of Input Regions with Textural Features 

 

6.2.2 A Clustering Analysis 

 

An experiment is designed for observing the change of output clusters along a series 

of clustering operations, in order to see if the expected urban area can be identified 

during the clustering. The k-means clustering algorithm is applied. The input number 

of expected clusters is initiated as 2. The number is increased by one in each 

(a) angular second moment (b) inverse difference moment 

(c) contrast (d) entropy 
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following clustering, until it reaches the maximum of the total number of the input 

regions. There are 379 input regions, so from 2 to 379 there are totally 378 times of 

clustering to be performed. Each time of clustering is referred to as a step of the 

iterative clustering process. In each time of clustering, the regions of each output 

cluster are united as one region. For each united region, the eight features, the mean 

center of the united region in the feature space, the mean and standard deviation of the 

distances of the compositional regions to the united region in the feature space, and 

the number of connected components are computed. In each time of clustering, a new 

cluster is produced, which means that some existing clusters are further split and 

become smaller, but some may remain unchanged if their internal similarity is large 

enough. The expected result is that a cluster satisfying the conditions described in 

Section 6.1.1 is found during the clustering process. 

 

6.2.3 A Merging Analysis 

 

The second experiment is designed to test the iterative merging process. The input of 

the merging process is the output of the clustering process, including the expected 

cluster of urban regions, and the remaining unclassified regions. The merging begins 

with the cluster of urban regions, which are merged into an urban area as a starting 

point. In the successive merges, the nearest neighbor of the existing urban area is 

selected from the remaining unclassified regions, and merged into the existing urban 

area. The remaining unmerged regions are then united as a rural region. Hence, in 

each merge, all regions are merged into two areas, one of which represents an urban 

area, and the other one presents a rural area. The eight proportional and textural 

features, the mean center in the feature space, the mean and standard deviation of the 

distances of the compositional regions to the merged area in the feature space are 
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computed for both the areas. Also, the distance between the mean centers of the two 

areas in the feature space is computed. If the output urban cluster of the clustering 

process contains n regions, there are totally 379-n+1 times of merge. Each time of 

merge is referred to as an iterative merging step. Along the merging steps, the 

resulting urban area become larger, while the rural area become smaller, until all the 

regions are merged into one urban area. The change of the distance between the mean 

centers of the two areas is visualized using a scatter plot graph. It is expected a 

maximum of the distance between the two mean centers exists during the merging 

process. The change of the distance is expected to present one of the two possible 

patterns. If the output urban cluster of the clustering process already includes the 

whole urban area, the distance between the urban area and the rural area comprising 

the remaining regions is already the largest. The successive merging process keeps 

merging the rural regions into the urban area, which reduces their distance as they 

become similar (Figure 6.3(a)). If the clustering output only contains the very urban 

part of the urban area, the merging process then finds more regions that are better to 

be merged into the urban area than to be classified as rural. These merging steps give 

rise to an increase of the distance between the urban and rural areas. After the whole 

urban area is produced, the successive merging steps go on merging the remaining 

regions that are better to be merged into the rural area instead. As a result, the distance 

decreases after it reaches a peak (Figure 6.3(b)). According to the urban 

characteristics, urban and rural areas are best differentiated when their dissimilarity is 

maximized. Therefore, the final result of the urban area is identified at the step where 

the maximum of urban-rural distance appears. 
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Figure 6.3 Expected Pattern of Distance Change 

 

6.3 Results and Analysis 

 

This section presents the results of the experiments described in Section 6.2. 

 

6.3.1 Clustering Analysis Results 

 

As described in Section 6.2.2, there are 378 times of clustering until all the regions are 

totally separated. From all the clustering results, a subset is selected to present here. 

According to the conditions that the expected urban cluster should satisfied, as 

described in Section 6.1.1, the cluster with the highest proportion of impervious 

surface and lowest proportion of vegetation is traced. The results presented here 

include those key steps at which such a target cluster changes, until the stop 

conditions are satisfied. The steps where no change of the target cluster is observed 

and the steps after the stop conditions are satisfied are omitted. As a result, the results 

of 12 key steps are presented in Table 6.1, in which the reference number is used to be 

referred to by Figure 3.2, the columns f1 to f8 show the values of the eight 

proportional and textural features described in Chapter 4. The column of n-connected 

indicates the number of connected components of a cluster. The columns of mean and 

distance 

step 

distance 

step 

(a) decrease pattern (b) peak pattern 
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standard deviation show the mean and standard deviation of the distances of the 

regions to the mean center of the cluster in the feature space. The maximum of the 

reference number is the number of clusters produced in those steps. It is used to 

number the steps. Step n refers to the step at which n clusters are generated. 
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Table 6.1 The Results of the Key Steps of the Iterative Clustering Process 

(a) step 2 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.7176  0.0219  0.2430  0.0175  0.9100  0.9823  0.0354  0.2227  7 0.3248  0.1781  

2 0.2325  0.3090  0.4533  0.0053  0.4791  0.9071  0.1857  0.9948  4 0.3327  0.1406  

(b) step 3 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.4025  0.1019  0.4873  0.0082  0.6915  0.9439  0.1121  0.6447  17 0.2900  0.1099  

2 0.1456  0.4185  0.4300  0.0059  0.3952  0.8921  0.2157  1.1273  5 0.2310  0.1004  

3 0.7916  0.0128  0.1769  0.0187  0.9412  0.9881  0.0239  0.1575  4 0.2328  0.1580  

(c) step 4 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.4539  0.0686  0.4620  0.0155  0.7684  0.9573  0.0854  0.5081  23 0.2783  0.1257  

2 0.0877  0.5305  0.3773  0.0045  0.3547  0.8837  0.2325  1.1896  3 0.1713  0.0862  

3 0.8148  0.0112  0.1572  0.0168  0.9480  0.9895  0.0211  0.1426  4 0.2058  0.1463  

4 0.2848  0.2002  0.5095  0.0054  0.5139  0.9137  0.1726  0.9425  11 0.1995  0.0816  
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(d) step 6 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.4114  0.0319  0.5210  0.0357  0.8677  0.9735  0.0531  0.3171  9 0.3263  0.1935  

2 0.0811  0.5496  0.3657  0.0037  0.3520  0.8817  0.2365  1.1949  3 0.1693  0.0867  

3 0.8220  0.0099  0.1560  0.0121  0.9561  0.9915  0.0170  0.1235  7 0.1746  0.0772  

4 0.2699  0.2130  0.5110  0.0061  0.5014  0.9124  0.1752  0.9612  8 0.1969  0.0777  

5 0.8406  0.0162  0.1285  0.0147  0.9217  0.9833  0.0335  0.2011  3 0.1837  0.0892  

6 0.4816  0.0975  0.4128  0.0081  0.6990  0.9471  0.1059  0.6366  21 0.2145  0.0888  

(e) step 8 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.2486  0.0875  0.6563  0.0076  0.7025  0.9409  0.1183  0.6298  6 0.2227  0.0926  

2 0.0767  0.5615  0.3581  0.0038  0.3512  0.8810  0.2380  1.1966  3 0.1624  0.0846  

3 0.5229  0.0116  0.4200  0.0455  0.9397  0.9869  0.0262  0.1645  7 0.3176  0.1816  

4 0.2451  0.2397  0.5085  0.0068  0.4698  0.9079  0.1842  1.0106  13 0.1666  0.0712  

5 0.8287  0.0194  0.1368  0.0150  0.9117  0.9817  0.0366  0.2231  3 0.1868  0.0948  

6 0.4527  0.1178  0.4237  0.0057  0.6569  0.9400  0.1199  0.7072  15 0.2173  0.0954  

7 0.5861  0.0475  0.3482  0.0182  0.8297  0.9694  0.0612  0.3972  13 0.2328  0.0893  

8 0.8713  0.0083  0.1135  0.0070  0.9634  0.9930  0.0141  0.1053  10 0.1248  0.0613  
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(f) step 9 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.2499  0.0887  0.6559  0.0054  0.6990  0.9401  0.1198  0.6362  5 0.2190  0.0939  

2 0.0767  0.5615  0.3581  0.0038  0.3512  0.8810  0.2380  1.1966  3 0.1624  0.0846  

3 0.3292  0.0219  0.5678  0.0811  0.9024  0.9802  0.0397  0.2457  7 0.3815  0.1671  

4 0.2451  0.2397  0.5085  0.0068  0.4698  0.9079  0.1842  1.0106  13 0.1666  0.0712  

5 0.8287  0.0194  0.1368  0.0150  0.9117  0.9817  0.0366  0.2231  3 0.1868  0.0948  

6 0.4546  0.1164  0.4231  0.0059  0.6611  0.9410  0.1180  0.6999  15 0.2188  0.0937  

7 0.6697  0.0380  0.2773  0.0150  0.8582  0.9740  0.0520  0.3402  8 0.2225  0.0850  

8 0.9001  0.0054  0.0871  0.0073  0.9745  0.9950  0.0101  0.0778  12 0.0947  0.0448  

9 0.6363  0.0098  0.3345  0.0194  0.9496  0.9892  0.0215  0.1421  9 0.1389  0.0919  

(g) step 10 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.2552  0.0728  0.6660  0.0059  0.7378  0.9478  0.1044  0.5684  3 0.2023  0.0883  

2 0.0448  0.6284  0.3232  0.0036  0.3598  0.8807  0.2386  1.1848  3 0.1390  0.0749  

3 0.3263  0.0215  0.5668  0.0854  0.9043  0.9806  0.0387  0.2413  6 0.3923  0.1586  

4 0.3232  0.1749  0.4974  0.0046  0.5511  0.9213  0.1575  0.8837  12 0.1580  0.0659  

5 0.8322  0.0172  0.1351  0.0155  0.9173  0.9824  0.0352  0.2118  2 0.1833  0.0914  

6 0.4780  0.1082  0.4063  0.0075  0.6808  0.9444  0.1112  0.6648  12 0.2207  0.0915  

7 0.6697  0.0380  0.2773  0.0150  0.8582  0.9740  0.0520  0.3402  8 0.2225  0.0850  
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8 0.9001  0.0054  0.0871  0.0073  0.9745  0.9950  0.0101  0.0778  12 0.0947  0.0448  

9 0.6363  0.0098  0.3345  0.0194  0.9496  0.9892  0.0215  0.1421  9 0.1389  0.0919  

10 0.1732  0.3442  0.4762  0.0064  0.3775  0.8909  0.2181  1.1526  11 0.1442  0.0555  

(h) step 12 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.2369  0.0839  0.6727  0.0064  0.7097  0.9428  0.1144  0.6198  1 0.1788  0.0636  

2 0.0486  0.6270  0.3204  0.0039  0.3597  0.8806  0.2389  1.1850  4 0.1398  0.0751  

3 0.3259  0.0042  0.1661  0.5038  0.9863  0.9981  0.0037  0.0417  1 0.2575  0.1257  

4 0.2655  0.2170  0.5104  0.0072  0.4941  0.9120  0.1761  0.9734  12 0.1720  0.0778  

5 0.8058  0.0252  0.1525  0.0165  0.8920  0.9782  0.0436  0.2660  2 0.1893  0.1024  

6 0.4187  0.1220  0.4520  0.0073  0.6450  0.9363  0.1275  0.7260  10 0.2243  0.0958  

7 0.8443  0.0124  0.1334  0.0098  0.9459  0.9896  0.0208  0.1493  4 0.1481  0.0566  

8 0.9027  0.0042  0.0890  0.0041  0.9795  0.9959  0.0083  0.0647  9 0.0844  0.0446  

9 0.6429  0.0131  0.3392  0.0048  0.9387  0.9876  0.0249  0.1673  10 0.1373  0.0793  

10 0.1591  0.3637  0.4729  0.0044  0.3663  0.8893  0.2215  1.1693  9 0.1431  0.0677  

11 0.5090  0.0988  0.3773  0.0149  0.6941  0.9458  0.1084  0.6466  5 0.1826  0.0686  

12 0.3815  0.0345  0.5752  0.0088  0.8621  0.9735  0.0531  0.3322  13 0.1716  0.898  
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(i) step 17 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.1531  0.1206  0.7254  0.0009  0.6186  0.9244  0.1512  0.7777  2 0.0710  0.0352  

2 0.0268  0.6946  0.2749  0.0036  0.3928  0.8876  0.2249  1.1336  2 0.1155  0.0695  

3 0.3259  0.0042  0.1661  0.5038  0.9863  0.9981  0.0037  0.0417  1 0.2575  0.1257  

4 0.1993  0.2888  0.5016  0.0103  0.4231  0.9014  0.1971  1.0804  10 0.1477  0.0808  

5 0.8789  0.0128  0.0968  0.0115  0.9357  0.9862  0.0275  0.1722  1 0.1334  0.0561  

6 0.2720  0.0680  0.6521  0.0079  0.7506  0.9506  0.0987  0.5469  1 0.1714  0.0823  

7 0.8656  0.0081  0.1154  0.0109  0.9616  0.9923  0.0154  0.1118  6 0.1174  0.0554  

8 0.8957  0.0043  0.0958  0.0042  0.9795  0.9959  0.0081  0.0649  5 0.0832  0.0402  

9 0.6388  0.0095  0.3469  0.0049  0.9499  0.9892  0.0217  0.1417  9 0.1173  0.0712  

10 0.2233  0.2537  0.5184  0.0046  0.4379  0.8959  0.2081  1.0640  7 0.1537  0.0568  

11 0.5057  0.0995  0.3798  0.0151  0.6926  0.9456  0.1089  0.6494  5 0.1725  0.0602  

12 0.3607  0.0295  0.6026  0.0072  0.8743  0.9747  0.0506  0.3069  7 0.1807  0.0756  

13 0.7442  0.0281  0.2219  0.0059  0.8908  0.9804  0.0391  0.2787  10 0.1025  0.0537  

14 0.6448  0.0557  0.2789  0.0206  0.7967  0.9615  0.0771  0.4572  9 0.1964  0.0622  

15 0.3847  0.0792  0.5242  0.0119  0.7335  0.9507  0.0985  0.5775  6 0.1470  0.0615  

16 0.3456  0.1743  0.4772  0.0030  0.5527  0.9230  0.1540  0.8803  13 0.1274  0.0721  

17 0.1007  0.4839  0.4114  0.0040  0.3206  0.8750  0.2499  1.2439  9 0.1030  0.0406  
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(j) step 21 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.1531  0.1206  0.7254  0.0009  0.6186  0.9244  0.1512  0.7777  2 0.0710  0.0352  

2 0.0259  0.7009  0.2694  0.0038  0.3952  0.8872  0.2256  1.1306  3 0.1084  0.0675  

3 0.6455  0.0122  0.3155  0.0267  0.9427  0.9885  0.0231  0.1601  7 0.1326  0.0898  

4 0.1340  0.4077  0.4536  0.0048  0.3504  0.8916  0.2167  1.1892  8 0.1048  0.0459  

5 0.8715  0.0142  0.1013  0.0130  0.9291  0.9849  0.0303  0.1883  1 0.1322  0.0542  

6 0.2720  0.0680  0.6521  0.0079  0.7506  0.9506  0.0987  0.5469  1 0.1714  0.0823  

7 0.9090  0.0061  0.0707  0.0142  0.9716  0.9944  0.0112  0.0868  7 0.0953  0.0431  

8 0.8928  0.0053  0.0985  0.0033  0.9749  0.9950  0.0099  0.0774  5 0.0853  0.0360  

9 0.9019  0.0036  0.0886  0.0058  0.9811  0.9960  0.0080  0.0600  3 0.0792  0.0427  

10 0.2678  0.2042  0.5234  0.0046  0.4951  0.9049  0.1903  0.9747  6 0.1670  0.0489  

11 0.4960  0.0953  0.3921  0.0167  0.7031  0.9474  0.1052  0.6307  7 0.1930  0.0832  

12 0.3607  0.0295  0.6026  0.0072  0.8743  0.9747  0.0506  0.3069  7 0.1807  0.0756  

13 0.7878  0.0234  0.1822  0.0066  0.9044  0.9823  0.0355  0.2490  4 0.0936  0.0453  

14 0.6603  0.0536  0.2630  0.0232  0.8067  0.9643  0.0713  0.4390  10 0.1768  0.0469  

15 0.4339  0.1134  0.4470  0.0058  0.6659  0.9407  0.1186  0.6890  10 0.2061  0.0961  

16 0.3132  0.1815  0.5023  0.0029  0.5401  0.9207  0.1585  0.9020  10 0.1113  0.0601  

17 0.0846  0.5096  0.4007  0.0051  0.3154  0.8704  0.2592  1.2548  7 0.0903  0.0359  

18 0.6146  0.0092  0.3685  0.0078  0.9483  0.9883  0.0233  0.1441  6 0.1283  0.0588  

19 0.1541  0.0061  0.2148  0.6250  0.9812  0.9977  0.0047  0.0527  1 0.2114  0.0926  
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20 0.7239  0.0261  0.2427  0.0072  0.8978  0.9816  0.0369  0.2617  3 0.1007  0.0382  

21 0.2250  0.2578  0.5071  0.0101  0.4440  0.9020  0.1961  1.0512  14 0.1410  0.0792  

(k) step 23 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.1488  0.1059  0.7442  0.0011  0.6515  0.9301  0.1398  0.7204  1 0.1429  0.0826  

2 0.0250  0.7069  0.2641  0.0040  0.3969  0.8860  0.2280  1.1294  3 0.1012  0.0690  

3 0.6842  0.0118  0.2675  0.0364  0.9456  0.9892  0.0216  0.1527  7 0.1338  0.0855  

4 0.1159  0.4195  0.4572  0.0074  0.3626  0.9000  0.2000  1.1645  7 0.1092  0.0438  

5 0.8745  0.0134  0.0984  0.0136  0.9314  0.9852  0.0295  0.1835  3 0.1156  0.0463  

6 0.3048  0.1089  0.5643  0.0219  0.6579  0.9363  0.1274  0.7113  3 0.1093  0.0479  

7 0.9168  0.0061  0.0685  0.0086  0.9714  0.9944  0.0113  0.0870  6 0.0852  0.0295  

8 0.8974  0.0045  0.0937  0.0045  0.9787  0.9958  0.0084  0.0674  1 0.0840  0.0358  

9 0.8878  0.0052  0.1009  0.0061  0.9737  0.9945  0.0110  0.0799  2 0.0838  0.0482  

10 0.1946  0.3180  0.4865  0.0010  0.3870  0.8860  0.2279  1.1432  5 0.1482  0.0471  

11 0.4931  0.0616  0.4212  0.0242  0.7819  0.9600  0.0800  0.4912  8 0.2201  0.0985  

12 0.3398  0.0526  0.5990  0.0086  0.8002  0.9617  0.0766  0.4563  7 0.1796  0.0647  

13 0.8004  0.0269  0.1658  0.0069  0.8934  0.9806  0.0388  0.2736  3 0.0884  0.0425  

14 0.6862  0.0501  0.2410  0.0227  0.8137  0.9647  0.0705  0.4254  9 0.1690  0.0551  

15 0.4219  0.0894  0.4817  0.0070  0.7128  0.9478  0.1043  0.6092  10 0.1720  0.0880  

16 0.3810  0.1425  0.4737  0.0029  0.6017  0.9293  0.1413  0.8031  8 0.1499  0.0869  

17 0.0888  0.5011  0.4055  0.0046  0.3168  0.8722  0.2557  1.2514  7 0.0970  0.0414  
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18 0.5083  0.0128  0.4735  0.0054  0.9316  0.9849  0.0302  0.1845  6 0.1798  0.0738  

19 0.1541  0.0061  0.2148  0.6250  0.9812  0.9977  0.0047  0.0527  1 0.2114  0.0926  

20 0.7134  0.0226  0.2575  0.0065  0.9094  0.9834  0.0333  0.2357  3 0.1066  0.0378  

21 0.2233  0.2686  0.4971  0.0110  0.4323  0.9014  0.1973  1.0695  11 0.1214  0.0460  

22 0.9133  0.0033  0.0804  0.0030  0.9827  0.9964  0.0073  0.0550  6 0.0756  0.0493  

23 0.3403  0.1820  0.4737  0.0040  0.5393  0.9197  0.1606  0.9016  6 0.1790  0.0912  

(l) step 32 

ref. no. f1 f2 f3 f4 f5 f6 f7 f8 
n 

connected 
mean 

standard 

deviation  

1 0.1488  0.1059  0.7442  0.0011  0.6515  0.9301  0.1398  0.7204  1 0.1429  0.0826  

2 0.0268  0.6952  0.2746  0.0033  0.3938  0.8880  0.2240  1.1318  1 0.1172  0.0701  

3 0.6975  0.0129  0.2415  0.0481  0.9421  0.9887  0.0226  0.1608  5 0.1463  0.0897  

4 0.1431  0.3693  0.4795  0.0081  0.3727  0.9010  0.1981  1.1504  6 0.0799  0.0323  

5 0.8683  0.0146  0.1038  0.0133  0.9271  0.9844  0.0311  0.1936  1 0.1239  0.0471  

6 0.2931  0.1015  0.5824  0.0230  0.6710  0.9379  0.1241  0.6896  1 0.0602  0.0238  

7 0.9191  0.0069  0.0656  0.0083  0.9681  0.9938  0.0125  0.0950  5 0.0873  0.0367  

8 0.9085  0.0048  0.0791  0.0076  0.9756  0.9949  0.0102  0.0744  3 0.0754  0.0368  

9 0.8917  0.0049  0.0997  0.0037  0.9770  0.9955  0.0090  0.0722  1 0.0852  0.0308  

10 0.1951  0.3238  0.4801  0.0010  0.3824  0.8855  0.2289  1.1500  4 0.1413  0.0476  

11 0.5947  0.0714  0.2889  0.0449  0.7592  0.9571  0.0858  0.5335  5 0.1629  0.0656  

12 0.3519  0.0539  0.5895  0.0047  0.7972  0.9613  0.0773  0.4622  5 0.1715  0.0558  

13 0.7737  0.0252  0.1799  0.0212  0.8914  0.9786  0.0428  0.2762  2 0.0992  0.0260  
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14 0.6834  0.0477  0.2451  0.0238  0.8176  0.9649  0.0703  0.4182  10 0.1635  0.0487  

15 0.4614  0.0918  0.4337  0.0131  0.7117  0.9485  0.1030  0.6088  7 0.2094  0.0938  

16 0.2485  0.1902  0.5586  0.0027  0.5224  0.9158  0.1684  0.9302  4 0.1049  0.0256  

17 0.1126  0.4456  0.4337  0.0082  0.3231  0.8784  0.2433  1.2382  4 0.0905  0.0535  

18 0.6504  0.0086  0.3368  0.0042  0.9549  0.9903  0.0193  0.1302  6 0.0952  0.0480  

19 0.3988  0.0543  0.5364  0.0105  0.7972  0.9615  0.0769  0.4628  2 0.1559  0.0583  

20 0.7729  0.0304  0.1924  0.0043  0.8859  0.9802  0.0396  0.2896  4 0.0795  0.0336  

21 0.2224  0.2604  0.5008  0.0163  0.4439  0.9061  0.1879  1.0498  10 0.1075  0.0371  

22 0.6951  0.0147  0.2862  0.0040  0.9328  0.9865  0.0269  0.1831  3 0.1157  0.0595  

23 0.3901  0.1570  0.4504  0.0025  0.5720  0.9226  0.1548  0.8496  5 0.1711  0.1199  

24 0.1541  0.0061  0.2148  0.6250  0.9812  0.9977  0.0047  0.0527  1 0.2114  0.0926  

25 0.3408  0.1958  0.4604  0.0030  0.5267  0.9218  0.1564  0.9207  4 0.1039  0.0476  

26 0.9411  0.0020  0.0535  0.0034  0.9880  0.9973  0.0055  0.0393  7 0.0591  0.0351  

27 0.3930  0.0413  0.5386  0.0271  0.8477  0.9728  0.0544  0.3649  2 0.1745  0.0541  

28 0.4078  0.0940  0.4900  0.0082  0.6991  0.9459  0.1082  0.6406  3 0.1060  0.0411  

29 0.2290  0.3004  0.4679  0.0027  0.3915  0.8859  0.2283  1.1375  3 0.1492  0.0992  

30 0.3761  0.0161  0.6024  0.0055  0.9138  0.9807  0.0385  0.2244  4 0.1466  0.0833  

31 0.4282  0.1348  0.4354  0.0016  0.6171  0.9328  0.1343  0.7786  4 0.1001  0.0380  

32 0.0684  0.5419  0.3862  0.0035  0.3149  0.8703  0.2595  1.2554  7 0.0733  0.0327  
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In table 6.1(a), all the regions are clustered into 2 groups. One has a higher proportion 

of impervious surface (30.9%), a lower proportion of vegetation (23.3%) and more 

heterogeneous texture than the other. The expected urban regions are contained in this 

cluster (ref. no. = 2). The other cluster contains more rural regions. In the following 

step shown in Table 6.1(b), both the regions are further split and a new cluster is 

generated. The shrunk urban cluster has a higher proportion of impervious surface and 

a lower proportion of vegetation than in the previous step. In the steps shown in Table 

6.1(c-l), more different kinds of landscapes are differentiated. An increase of 

impervious surface proportion and a decrease of vegetation proportion are observed. 

In Table 6.1(l), the impervious surface and vegetation proportions of the target cluster 

become 69.5% and 2.7% respectively (still ref. no. = 2). Moreover, the target cluster 

becomes a connected area at this step. That is to say, the conditions of connectedness, 

highest proportion of impervious surface and lowest proportion of vegetation are 

satisfied. By observing the successive steps, it is found that this cluster remains 

unchanged in the following 13 steps until the number of clusters increases to 46. This 

means the condition of stability is also satisfied. As a result, the cluster of the 

reference number 2 is the expected output of the iterative clustering and identification 

process, which contains 23 regions that are definitely labelled as urban. The clustering 

results in those key steps are visualized in Figure 6.4. Clusters are indicated using 

different colors. Regions of the same color belong to the same cluster. Figure 6.4(m) 

shows the color-reference number mapping, in which the reference number is used to 

refer to the clusters in Table 6.1. The color scheme is used throughout the steps in 

Figure 6.4(a-l). 
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Figure 6.4 Key Steps of the Iterative Clustering Process 

(a) step 2 (b) step 3 

(c) step 4 (d) step 6 

(e) step 8 (f) step 9 
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Figure 6.4 Key Steps of the Iterative Clustering Process (cont‟d) 

(g) step 10 (h) step 12 

(i) step 17 (j) step 21 

(k) step 23 (l) step 32 
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Figure 6.4 Key Steps of the Iterative Clustering Process (cont‟d) 

 

6.3.2 Merging Analysis Results 

 

The output urban cluster of the clustering process contains 23 regions, so there are 

379-23+1=357 times of merge until all regions are merged into one area. All the 

merging steps are performed. From all the steps, a subset is selected to present here 

according to the change of the distance between the merged urban and rural areas in 

the feature space. All the extrema are selected to represent the change of the distance 

(Figure 6.5). The data produced at the corresponding steps are shown in Table 6.2. 

The column of step indicates which step the data are produced. The columns starting 

with mean or standard deviation show the mean or standard deviation of the distances 

between all merging regions to the mean center of the merged area. The columns 

ending with urban and rural means the statistics are about the urban and rural areas 

respectively. The column of distance indicates the distance between the mean centers 

of urban and rural areas in the feature space. To visualize the merging process, among 

the 49 extremum steps, there are 25 steps of peak extrema, out of which 18 steps are 

further selected to show in Figure 6.5. These steps are selected based on a criterion 

that no another peak step appears within five steps. 

(m) color-reference number mapping 
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Figure 6.5 Key Steps of the Iterative Merging Process 

(a) beginning (b) step 18 

(c) step 39 (d) step 45 

(e) step 52 (f) step 69 
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Figure 6.5 Key Steps of the Iterative Merging Process (cont‟d) 

(g) step 80 (h) step 100 

(i) step 107 (j) step 116 

(k) step 153 (l) step 220 
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Figure 6.5 Key Steps of the Iterative Merging Process (cont‟d) 

(m) step 234 (n) step 246 

(o) step 258 (p) step 283 

(q) step 298 (r) step 309 
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Table 6.2 The Results of the Key Steps of the Iterative Merging Process 

step 
mean 

urban 

std. dev. 

urban 

mean 

rural 

std. dev. 

rural 
distance 

beginning 0.118117 0.071206 0.595828 0.257933 1.071758 

18 0.147322 0.072001 0.565198 0.242987 1.106673 

19 0.148766 0.072033 0.563775 0.242723 1.105467 

21 0.146596 0.070774 0.559846 0.241747 1.112449 

22 0.147473 0.070809 0.558232 0.24144 1.111985 

36 0.153423 0.07681 0.530935 0.228324 1.132284 

37 0.154742 0.07725 0.529186 0.227628 1.132154 

39 0.157253 0.078599 0.525251 0.226438 1.132856 

43 0.164578 0.080283 0.517464 0.226794 1.130012 

45 0.167434 0.081039 0.513765 0.223874 1.130856 

51 0.180007 0.083852 0.503814 0.221779 1.125689 

52 0.181736 0.084647 0.501947 0.219938 1.125832 

53 0.183766 0.085001 0.500194 0.219597 1.125015 

54 0.185532 0.085784 0.49848 0.218239 1.125059 

55 0.188089 0.086756 0.49697 0.218065 1.123516 

56 0.190494 0.087761 0.494674 0.217739 1.123657 

62 0.204243 0.090282 0.484304 0.21589 1.116654 

69 0.203227 0.08957 0.467341 0.202941 1.130475 

79 0.227968 0.092605 0.444852 0.204461 1.114516 

80 0.229258 0.092986 0.442747 0.203009 1.115078 

96 0.270791 0.109131 0.417278 0.209114 1.092179 

100 0.271703 0.108184 0.408453 0.202584 1.094749 

106 0.282269 0.111878 0.399646 0.202233 1.091288 

107 0.283159 0.111827 0.397313 0.200436 1.091832 

109 0.289172 0.113329 0.3936 0.202801 1.085277 

111 0.290838 0.113226 0.389006 0.201058 1.086778 

115 0.30798 0.118987 0.379945 0.210045 1.067751 

116 0.308601 0.118792 0.37769 0.207979 1.068291 

152 0.403536 0.173371 0.351147 0.234156 0.997775 

153 0.404264 0.17285 0.349354 0.233946 0.998196 

202 0.518046 0.212806 0.39495 0.244215 0.814716 

220 0.513489 0.2121 0.295884 0.203338 0.885313 

225 0.522126 0.212911 0.299103 0.20581 0.863531 

234 0.521155 0.211732 0.248799 0.191214 0.903198 
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245 0.536455 0.215737 0.252951 0.1969 0.881436 

246 0.537597 0.216149 0.248662 0.193329 0.88148 

247 0.539531 0.216626 0.24776 0.195342 0.873061 

258 0.548273 0.21982 0.167127 0.204283 0.911346 

260 0.550317 0.220486 0.162573 0.207127 0.910349 

261 0.550883 0.220376 0.160337 0.207764 0.91064 

282 0.573129 0.229283 0.159636 0.235327 0.87525 

283 0.57329 0.228962 0.157501 0.236325 0.875607 

297 0.586028 0.235226 0.17206 0.258071 0.849929 

298 0.586892 0.235695 0.160726 0.263517 0.851585 

300 0.588527 0.236539 0.164171 0.267537 0.84823 

301 0.588948 0.236409 0.160557 0.269525 0.848786 

308 0.594898 0.241556 0.173329 0.285834 0.829628 

309 0.595576 0.241643 0.154013 0.27627 0.83418 

343 0.617359 0.253795 0.52965 0.114201 0.722058 

 

 

Figure 6.6 Change of Distance between Urban and Rural Areas in Feature Space 

 

From Table 6.2 and Figure 6.6, it can be seen that the maximum of the urban-rural 

distance appears at the step 39, which is shown in Figure 6.5(c). The resulting urban 

and rural areas of this step are the most distinguishable according to the eight 

proportional and textural features. They form an urban-rural division of the study area, 

which is shown in Figure 6.7. The urban area is shown in yellow, and the surrounding 

rural area is shown in green. The results show that an urban area is identified through 
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the iterative merging process. The urban area is taken as the final output of the whole 

urban recognition process. 

 

 

Figure 6.7 The Result of Urban Area Recognition 

 

6.4 Evaluation of the Recognized Urban Area 

 

Different from other urban objects with physical boundaries, e.g. roads and buildings, 

urban areas are of no distinct visible boundaries. The sampling method used to 

evaluate the accuracy of land cover / land use (LCLU) classification or object 

extraction is not appropriate to be used to evaluate the recognized urban area of the 

proposed approach, because no physical boundary in the reality can be used to 
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determine if a sample point is inside the urban area. Therefore, a qualitative approach 

is adopted, based on some facts about the study area. If the recognition result is 

consistent with the existing facts about the study area, then the result is accepted. 

According to the description of the study area in Section 3.3, some facts are 

summarized from the referenced materials as follows. 

 

1) The urban area is within the municipal districts of Beijing. A region of municipal 

district level does not mean that the whole region is urbanized. Many places of a 

municipal district are rural, but the upgrade of administrative level reflects that the 

region is going to be developed towards an urban area. Hence, the realistic urban 

extent should be smaller than the entire extent of the municipal districts, and should 

not include rural countries. 

2) The urban area contains the entire Dongcheng and Xicheng districts. In the 

functional division, they are the capital function core area. In the analytical division, 

they are the inner center. They are inside the third ring road. In the map of Beijing‟s 

urban area in the atlas of Beijing, these two districts are entirely inside the map. 

Hence, these two districts are definitely urban. 

3) The urban area contains some parts of Chaoyang, Fengtai, Shijingshan and Haidian 

districts. In the functional division, they are the urban function expansion area. In the 

analytical division, they are the outer center. They lie between the second and sixth 

ring roads. Small parts of Fengtai and Haidian are beyond the sixth ring road. In the 

map of Beijing‟s urban area in the atlas of Beijing, most of Haidian is inside the map, 

and the other three districts are entirely within the map. Thus these four districts are 

not fully but partly urbanized. 

4) The urban area contains small parts of Mentougou, Fangshan, Tongzhou, Shunyi, 

Changping and Daxing districts, among which Mentougou contributes the smallest 
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part. These regions are linked by the sixth ring road. In the map of Beijing‟s urban 

area in the atlas of Beijing, these districts are partly inside the map. In the analytical 

division, they are the inner periphery. In the functional division, except Mentougou 

districts, the other five districts are the urban development new area, which means 

they are newly urbanizing regions. The exclusion of Mentougou from the urban 

development new area reflects that it is less urbanized than the other five regions. 

5) The urban area does not include Huairou and Pinggu districts, and Miyun and 

Yanqing countries. In the functional division, they are the ecological conservation 

area. In the analytical division, they are the outer periphery. Moreover, no ring road is 

built across these regions. Furthermore, in the map of Beijing‟s urban area in the atlas 

of Beijing, these four regions are entirely outside the map. 

6) The location and extent of the urban area are approximately consistent with those 

of the ring road system. As pointed out by urban scholars, the ring roads constitute the 

underlying pattern of urban growth in Beijing. Accordingly, the outmost ring road, i.e. 

the sixth ring road, encloses most of the urban area. Almost all the urban area is 

enclosed by the fifth ring road, as it is entirely inside the map of Beijing‟s urban area. 

 

The consistency of the recognized urban area with these facts is checked by 

overlaying the recognition result on the referenced data (Figure 6.8). By overlaying 

the administrative boundaries on the recognition result, it is verified that the facts 1-5 

are satisfied (Figure 6.8(a)). By overlaying the recognized urban area on the 

administrative division, it can be easily seen that the urban area is within the 

municipal districts and does not overlap the rural countries (Figure 6.8(b)). By 

overlaying the recognized urban area on the functional and analytical divisions, it can 

be easily seen that the urban area accords well with the underlying patterns of them 

(Figure 6.8(c,d)). 
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Figure 6.8 Overlap of Recognition Result with Referenced Data 

 

The percentages of the overlapping areas of the recognized urban area and the sixteen 

administrative regions are calculated and shown in Table 6.3. It can be seen that 

Dongcheng and Xicheng districts are 100% overlapping the urban area, which is 

consistent with the fact 2. The overlapping percentages of the outer center regions 

range from 40.9% to 84.7%, satisfying the fact 3. Except Mentougou, which overlaps 

the urban area by only 1.9%, the overlapping percentages of the other five inner 

(a) administrative boundaries (b) administrative division 

(c) functional division (d) analytical division 
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periphery regions range from 11.2% to 31.7%, satisfying the fact 4. The four outer 

periphery regions contains on urban area, consistent with the fact 5. 

 

Table 6.3 Overlapping Percentage of Urban Area with Administrative Regions 

Ref. No. Name Percentage 

1 Dongcheng 100% 

2 Xicheng 100% 

3 Chaoyang 84.7% 

4 Fengtai 83.5% 

5 Shijingshan 60.5% 

6 Haidian 40.9% 

7 Mentougou 1.9% 

8 Fangshan 11.6% 

9 Tongzhou 12.3% 

10 Shunyi 11.2% 

11 Changping 19.8% 

12 Daxing 31.7% 

13 Huairou 0% 

14 Pinggu 0% 

15 Miyun 0% 

16 Yanqing 0% 

 

By overlaying the ring roads on the recognition result, it can be seen that the location 

and extent of the urban area are approximately consistent with those of the ring road 

system (Figure 6.9). The intersection of the region enclosed by each ring road and the 

urban area is computed. The percentage of the intersection area by the total area of the 

enclosed region is then calculated and listed in Table 6.4. The regions enclosed by the 

second to fourth ring roads are entirely urban. 98.2% of the region enclosed by the 

fifth ring road is urban area. Within the sixth ring road, the urban area takes up 73.1% 

of the region. The data show that the recognition result satisfies the fact 6. 

 



Chapter 6 An Iterative Clustering and Merging Algorithm for Urban Area Recognition 

 

138 

 

 

Figure 6.9 Overlap of Recognition Result with Concentric Ring Roads 

 

Table 6.4 Overlapping Percentage of Urban Area with Ring Road Enclosed Regions 

Ring Road Percentage 

2nd 100% 

3rd 100% 

4th 100% 

5th 98.2% 

6th 73.1% 
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Chapter 7 Conclusions and Recommendations 

 

This thesis proposes an urban recognition approach using remote sensing data. A 

summery is given first, followed by a statement of the main conclusions. The 

limitations of the proposed approach are discussed next. Future work is recommended 

at the end. 

 

7.1 Summary 

 

An urban area is a concentration of human beings and activities. Recognition of an 

urban area means the identification of the spatial extent of the urban area. In other 

words, an urban-rural boundary can be drawn to delineate an urban area as a 

geographical entity. Traditionally, it is done by censuses and surveys. It is recognized 

that there is a spatial mismatch in census data. The cost of generating and maintaining 

census and survey data is enormous. The urban and rural areas classification using 

census and survey data is not efficient. Increasing availability of remotely sensed data 

and processing techniques facilitates the development of new approaches to studying 

urban issues. Some methods have been developed to recognize urban areas using 

remote sensing images and techniques. Due to the raster nature of image data, these 

methods are classification based approaches. The per-pixel classification process 

determines whether the area covered by the pixel is urban or not, but no boundary is 

drawn to delineate an urban area as a geographical entity. This research adopts a new 

strategy to develop an urban area recognition approach using remote sensing data. It 

firstly reviews current definitions of urban area, including census definitions used by 

different countries, and urban scholars‟ definitions adopted in urban studies. From 
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those definitions, some characteristics inherent in urban areas are extracted, which is 

discussed in Chapter 2. Urban-rural differences are further identified and discussed in 

Chapter 3. Then based on the urban-rural differences, relevant information and 

processes that constitute an urban area recognition algorithm are identified. The 

proposed algorithm comprises four steps, i.e. zoning, clustering, identification and 

merging. According to the urban characteristics, places can be characterized by land 

cover composition and configuration, which can be represented using eight 

proportional and textural features and extracted from remote sensing images. Chapter 

4 evaluates if the eight features are effective to characterize urban and rural areas 

through a clustering analysis. Chapter 5 discusses the zoning method for the approach. 

It compares homogeneous division with the administrative division of a city region by 

observing the change of the average grey-level ranges in all image bands through a 

continuous region splitting process. Chapter 6 develops an iterative clustering and 

merging algorithm for the remaining steps of the proposed approach. A clustering 

analysis is made for observing the change of output clusters along a series of 

clustering operations. A merging analysis is then made for observing the change of the 

distance between urban and rural areas in the feature space along a series of merging 

steps. The result shows that the proposed algorithm recognizes the urban area 

successfully. The recognized urban area is evaluated by overlapping it with referenced 

data to check if it satisfies the facts about the study area. 

 

7.2 Conclusions 

 

The key conclusions of this thesis are drawn as follows. 
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1) Four urban characteristics are identified from current definitions of an urban area. 

They are a) urban areas contain large and dense built-up areas; b) urban areas contain 

heterogeneous elements; c) urban areas are dominant by non-agricultural activities; 

and d) urban areas are distinguishable from their surrounding rural areas. To 

distinguish between urban and rural areas, these urban characteristics can be 

expressed in the following manner, to present the differences between urban and rural 

areas. They are a) urban areas are composed of large and dense built-up areas, 

providing space for non-agricultural human activities, while rural areas are mainly 

composed of agricultural or natural lands, i.e. vegetated areas; b) the physical 

elements of urban areas are more heterogeneous, while the ones of rural areas are 

more homogeneous; and c) these differences are observable. 

 

2) Eight remote sensing image features are related to the urban characteristics, they 

are, the four proportions of vegetation, impervious surface, soil and water / shade, and 

the four textural features including angular second moment, inverse difference 

moment, contrast and entropy. They correspond to two types of information. Four 

proportional features correspond to land cover composition, and four textural features 

correspond to land cover configuration. The experiment results show that the 

combination of the eight features is valid for characterizing different kinds of areas 

and effective for distinguishing between urban and rural areas. 

 

3) The multi-resolution image segmentation algorithm is suitable for dividing a city 

region into homogeneous sub-regions that accord with the physical landscape. In the 

experiment of the algorithm with Landsat TM data, all the seven spectral bands show 

a decrease in the average grey-level range along a continuous region splitting process 

performed for all administrative regions of the study area. The average grey-level 
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ranges in six of the seven bands are further reduced by removing the administrative 

boundary constraint. 

 

4) An urban area is successfully recognized through an iterative clustering and 

merging process, performed on the homogeneous regions output from the image 

segmentation process with the eight proportional and textual features. An experiment 

shows that the iterative clustering and identification is able to identify an area that can 

be definitely labelled as urban. This area satisfies a) single-connectedness, b) the 

highest proportion of impervious surface, c) the lowest proportion of vegetation and d) 

unchanged in more than three following steps. Another experiment shows that the 

iterative merging process is able to identify the urban and rural areas of a city region 

with the maximum distance between them in the feature space. 

 

5) The resulting urban area is evaluated by a fact consistency checking. Different from 

other urban objects with physical boundaries, urban areas are of no distinct visible 

boundaries. The sampling method used to evaluate the accuracy of land cover / land 

use (LCLU) classification or object extraction is not appropriate for evaluating the 

resulting urban area, because no physical boundary in the reality can be used to 

determine whether a sample point is inside the urban area or not. Hence, a qualitative 

approach is adopted, based on some facts about the study area. By overlapping the 

resulting urban area with some referenced data, it is verified that all the facts about the 

study area are satisfied by the recognition result. Therefore, the result is accepted. 

 

7.3 Limitations and Future Work 
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One of the limitations of the proposed approach is that it is not fully automated yet. 

The whole recognition process is created by chaining a number of sub-processes. 

Most of these sub-processes are achieved in a fully automated manner, except the 

extraction of the four proportional features. The technique of linear spectral unmixing 

is used to extract the proportions of the four V-I-S land cover types. The unmixing 

process involves an endmember selection step, which requires expert knowledge and 

human-computer interaction. Hence, the whole process cannot be achieved without 

human intervention. Future study of a fully automated method for extracting these 

features is of interest. A recommendation is studying if spectral indices, as reviewed 

in Section 2.2.2, can be used to substitute the proportions for representing land cover 

composition. The spectral indices corresponding to the four land cover types could be 

NDVI, SAVI or MSAVI for vegetation, NDBI for impervious surface, NDBaI for soil, 

NDWI or MNDWI for water / shade. The choice of spectral indices depends on the 

availability of the required spectral bands. The second limitation is that it is only 

based on the information of land cover, derived from remote sensing data. However, 

as seen in the urban definitions discussed in Section 2.1, besides the built environment, 

the social and economic aspects are often considered in defining an urban area. Hence, 

a future effort can be made to incorporate social and economic data into the proposed 

method to see if it can better recognize an urban area. 

 

Moreover, another trend of the definitional argument about urban and rural areas 

revolves the concept of urban-rural continuum. Weeks et al. (2005) and Weeks (2008) 

argued that urban and rural are not really representing a dichotomy, but are ends of a 

continuum. A place on urban fringe that cannot be determined as absolutely urban or 

rural can be considered as “urban to some extent”. The discussion of urban-rural 

continuum dates back to 1950s, as Bertrand‟s (1958) observation that “proponents of 
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the continuum theory feel that rural-urban differences occur in a relative degree in a 

range extending between two polar extremes of rural and urban”. Nowadays, the 

concept of urban-rural continuum is widely discussed and adopted by international 

organizations, such as the United Nations and the World Bank (Siechiping et al., 2015; 

Ulrike et al., 2015; UN-Habitat, 2015). It is considered that an urban-rural continuum 

is more useful in social science research than an urban-rural dichotomy (Hugo et al., 

2001; Weeks et al., 2005). This research, correspondingly, can be extended to 

construct an urban-rural continuum, according to the change of urban-rural distance 

described in Section 6.3.2. Between the two ends of the urban-rural continuum, 

corresponding to peri-urban or sub-urban areas, places belong to an urban area with a 

certain probability or confidence level, instead of being classified as absolutely urban 

or rural. A distinct boundary, or a boundary as a fuzzy zone, can be derived from the 

continuum when it is necessary. This may lead to more possible approaches to 

studying the issues of urban-rural boundaries and urbanization process. 

 

Furthermore, the proposed approach recognizes the main urban area of a city. In the 

real world, there usually exist satellite cities, i.e. disconnected urban areas, which 

means the urban area of a city is not necessarily single connected. It is interested to 

study if the proposed approach can be extended to identify satellite cities as well. In 

the iterative merging process, each merge results in a change of urban-rural distance 

in the feature space. Satellite cities may be found during the change. Another 

extension of this study can be applying the proposed algorithm to remote sensing data 

of a city in different times. Recognition of urban areas using data in some years may 

lead to a method for modelling and monitoring urban growth. 
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