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Abstract

The thesis is concerned with the linear quadratic (LQ) mean field games (MFGs)
involving forward-backward stochastic differential equations (FBSDEs). Five topics

are under consideration:
1. The large-population dynamic optimization in forward-backward setting.
2. The backward LQ games of stochastic large-population systems.
3. The large-population systems in major-minor framework.

4. The combination problems of leader-follower and major-minor large-population

systems.

5. The dynamic optimization of large-population systems with partial informa-

tion.

For the first topic, a class of dynamic optimization problems of large-population are
formulated. The most significant feature in this setup is the dynamics of individual
agents follow the FBSDEs in which the forward and backward states are coupled
at the terminal time. The related LQMFG, in its forward-backward sense, is also
formulated to seek the decentralized strategies. Unlike the forward case, the consis-
tency conditions of the forward-backward MFGs involve six Riccati and force rate
equations. Moreover, their initial and terminal conditions are mixed which requires

some special decoupling technique. The e-Nash equilibrium property of the derived
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decentralized strategies is also verified. To this end, some estimates to backward
stochastic system are employed. In addition, due to the adaptiveness requirement to
forward-backward system, all arguments here are not parallel to those in its forward
case.

For the second topic, the backward LQMFGs of weakly coupled stochastic large-
population system are studied. In contrast to the well-studied forward LQMFGs,
the individual state in this large-population system follows the backward stochastic
differential equation (BSDE) whose terminal instead of initial condition should be
prescribed. The individual agents of large-population system are weakly coupled in
their state dynamics and the full information is accessible to all agents. The explicit
form of the limiting process and e-Nash equilibrium of the decentralized control
strategy are investigated. To this end, some estimates to BSDE, are presented in the
large-population setting.

For the third topic, the backward-forward L(Q games with major and minor play-
ers are investigated. In this topic, the dynamics of major player is given by a BSDE;
while dynamics of minor players are described by (forward) SDEs. A backward-
forward stochastic differential equation (BFSDE) system is established in which a
large number of negligible agents are coupled in their dynamics via state average.
The problem when major player takes into account the relative performance by com-
parison to minor players is under consideration. Some auxiliary mean field (MF)
SDEs and a 3 x 2 mixed FBSDE system are considered and analyzed instead of in-
volving the fixed-point analysis. The decentralized strategies are derived, which are
also shown to satisfy the e-Nash equilibrium property.

For the fourth topic, the combination problems of leader-follower and major-
minor large-population systems are proposed. In the entire system, the major and
minor agents are together regarded as the leaders, which are called major-leader
and minor-leaders, respectively. The major-leader tracks a convex combination of
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the centroid of the minor-leaders and the followers; the minor-leaders track a convex
combination of their own centroid and the major-leader’s dynamics; and the followers
track a convex combination of their own centroid and the centroid of the minor-
leaders or a convex combination of the centroid of the minor-leaders and the major-
leader’s dynamics. As the applications of leader-follower and major-minor theory,
the analysis of this problem is only presented as a framework and three consistency
condition systems are obtained.

For the fifth topic, the dynamic optimization of large-population systems with
partial information is considered. In this topic, the individual agents can only access
the filtration generated by one observable component of the underlying Brownian
motion. The state-average limit in this setup turns out to be some stochastic pro-
cess driven by the common Brownian motion. Two classes of MFGs are proposed
in this framework: one is governed by forward dynamics, and the other involves the
backward one. In the forward case, the associated MFG is formulated and its consis-
tency condition is equivalent to the wellposedness of some Riccati equation system.
In the backward case, the explicit forms of the decentralized strategies and some
BSDE (satisfied by the limiting process) are obtained. In both cases, the e-Nash

equilibrium properties are presented.
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Chapter 1

Introduction

1.1 Background

Game theory is the study of strategic decision making. Generally speaking, it is the
study of mathematical models of cooperation and conflict among intelligent rational
decision-makers. It is mainly used in economics, political science, psychology, logic,
computer science, biology, etc. The subject first addresses zero-sum games, in which
one person’s gains exactly equal net losses of the other participant or participants.
Today, however, game theory applies to a wide range of behavioral relations, and
has developed into an umbrella term for the logical side of decision science. In many
social, economic and engineering models, the individuals or agents involved have
conflicting objectives. Therefore it is more appropriate to consider the optimization
problem based upon individual payoffs or costs. This gives rise to noncooperative
game theoretic approaches partly based upon the vast corpus of relevant work within
economics, social sciences, etc.

In the literature, studies of stochastic dynamic games and team problems may be
traced to the 1960s (see e.g.,[1, 2, 3, 4]). The optimal control context weakly inter-
connected systems were studied in [5], and in a two player noncooperative nonlinear
dynamic games setting Nash equilibria were analyzed in [6]. In recent years, the

controlled stochastic large-population (also called multi-agent) system is evidently



of importance due to its wide range of appearance in these areas. Afterwards, the
dynamic optimization or control of this kind of system has attracted consistent and
intense attentions by research communities. The most special feature of controlled
large-population system lies in the existence of considerable insignificant agents who
are individually negligible but their collective behaviors will impose some significant
impact on all agents. This feature can be captured by the weakly-coupling structure
in the individual dynamics and (or) cost functionals via the state-average across the
whole population. In this way, the individual behaviors of all agents in micro-scale,
can be connected to their mass effects in the macro-scale. This kind of weak-coupling
in both dynamics and costs is used to model the mutual impact of agents during com-
petitive decision-making. In particular, the dynamic coupling specifies the impact of
the environment on an individual’s decision-making, and the underlying model takes
the form of weakly coupled diffusion subject to individual controls.

It is remarkable that the classical strategies by consolidating all agent’s exact
states, turn out to be infeasible and ineffective due to the highly complicated coupling
structure in large-population system. Alternatively, it is more tractable and effective
to study the related strategies by considering its own individual state and some
off-line quantities only. For large-population stochastic dynamic games with MF
couplings, Nash certainty equivalence theory was originally developed in a series of
papers by Huang togeter with Caines and Malhamé. The optimization of large-scale
linear control systems wherein many agents are coupled with each other via their
individual dynamics and the costs are in an “individual to the mass” form, was
presented in [7]. Then a general formulation of nonlinear McKean-Vlasov Markov
process models was developed in [8, 9, 10].

This thesis mainly focuses on the study of large-population system in its LQ) case
where the state equations are linear in the state with nonhomogeneous terms, and
the cost functionals are quadratic. Recall the linear system and its related LQ control
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have already been extensively investigated. Such a control problem is called a linear
quadratic optimal control problem. Readers can refer to [11] for some classic results
of deterministic LQ problems. For the stochastic case, the problems were addressed
in [12, 13]. One systematic introduction of stochastic L.Q optimal control problem can
be found in the monograph [14] and the references therein. Other related literature
includes [15, 16, 17], etc. Due to the nice structure of LQ problem, there is also
rich literature on large-population problem modeled by LQ system. LQ games in
large-population systems where the agents evolve according to nonuniform dynamics
were considered and an e-Nash equilibrium property was proved in [18]. In [19], the
author solved an Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Plank equations
and found explicit Nash equilibria in the form of linear feedbacks. [20] aimed to study
a class of LQ control problems with N decision makers, where the basic objective is
to minimize a social cost as the sum of NV individual costs containing MF coupling.
Later on, [21] provided a comprehensive study of a general class of MF games in the
LQ framework. For more literature about L@ problem with large-population, see
22, 23, 24] etc.

As a new branch of game theory, MFGs arises from variety of areas, such as
particle physics, economics, etc. In many situations of particle physics, it is possible
to construct an excellent approximation to the situation by introducing one or more
“mean fields” that serve as mediators for describing inter-particle interactions. In
this kind of model, one describes the contribution of each particle to the creation of
a mean field and the effect of the mean field on each particle, by conceiving each
particle as infinitesimal, i.e. by carrying out a kind of limit process on the number N
of particles (N — 400). In game theory, from a mathematical standpoint it involves
of studying the limit of a large class of N-player games when N tends to infinity.
Usually, differential games with N-players turn out to be untractable. Fortunately
things are simplified, as least for a wide range of games that are symmetrical as far
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as players are concerned, as the number of players increases. Indeed, interindividual
complex strategies can no longer be implemented by the players, for each player
is progressively lost in the crowd in the eyes of other players when the number of
players increases.

During the last few decades, there is a growing literature to the study of MFGs
and their applications. For this class of game problems a closely related approach
was independently developed in [25, 26, 27|. Based on these, considerable research
attention has been drawn along this research line. Some recent literature include
28, 29, 30, 31] for recent progress in MFG theory. Introductions and some models
to MFGs were given in [28]. In [29], the authors provided a complete probabilistic
analysis of a large class of stochastic differential games with MF interactions. [30] was
devoted to discussing and comparing two investigation methods of the asymptotic
regime of stochastic differential games with a finite number of players as the number
of players tends to the infinity. In addition, in [31], a model of inter-bank borrowing
and lending was proposed, and systemic risk was analyzed.

MF type control has also been extensively studied recently. In [32], the authors
obtained MF BSDEs associated with a MF SDE as a limit of a high dimensional sys-
tem of forward and backward SDEs, corresponding to a large number of agents. Later
on, [33] deepened the investigation of such MF BSDEs with general coefficients and
presented the related partial differential equations. Based upon these, [34] and [35]
independently studied the optimal control of a SDE of MF type when the action space
is convex, which was a partial result of [36]. Moreover, [37] provided an existence
result for the solution of fully coupled FBSDEs of the MF type. For more literature
about MF games and controls, see [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50],
etc. It is worth pointing out that there are differences between MFG and MF type
control. Generally speaking, as addressed in [29, 30, 31|, the MFG and MF type con-
trol are essentially different in their methods applied and the equilibriums derived.
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To be precise, the method of MFG will be “asynchronous”-styled. It will first fix
or freeze the state-average z\") (in its linear case) or empirical measure p,, (in its
nonlinear case) to reduce the initial problem into some standard problem but param-
eterized by such frozen term. Note that such frozen term is still undetermined in this
step. Next, this parameterized standard problem can be solved and the optimal state
can be obtained. This can be called the decentralized control. With this in hand, the
frozen state-average or empirical measure can be further determined through some
fixed-point analysis and consistency condition concerning the obtained optimality
system. In this sense, the state-average (or, empirical measure) and the underlying

control in MFG will change “asynchronously”.

By contrast, in MF type control problems, the state-average (i.e., the expectation

Ex; = limy_ o :EEN)) or empirical measure will not be fixed or frozen beforehand.
Actually, they will change depending on the underlying control applied. In this way,
the state-average term and state itself will be treated in “synchronous” style. More-
over, the equilibrium derived in MF type control will be the franchised equilibrium
(see [31]) whereas the equilibrium from MFG will be in the “e-Nash sense” (see [29]).
These two equilibriums are both approximating equilibriums to handle the large-
population systems but as discussed in [31], they are very different in their dynamic
properties.

It is remarkable that all agents in above literature are comparably negligible
in that they are not able to affect the whole population in separable manner. By
contrast, their impacts are imposed in a unified manner through the population
state-average. In this sense, all agents can be viewed as peers. One real example
is the market price formation in which there are considerable producers or firms to
produce the same type product. Each firm is so small thus its individual production

behavior can’t affect its peers’ states. However, the average production of all firms



will determine the market price of this product. All small firms are price-takers
thus they are further interacted and coupled via such price formation mechanism.
The above discussion assumes all agents are equally participating in the market
price formation. However, in reality we point out the status and roles of agents
may illustrate significant differences in various realistic situations. For instance, the
decision making of small individuals are always influenced by some “leading” agent or
“dominated” institutions. In our price formation example, such “leading” agent can
be interpreted as some monopoly firm which takes considerable production capacity
thus imposes more significant affects to the price formation. As to the “dominated”
institution, it can be viewed as the local government as its industrial policy will
greatly affect the production behaviors of all firms. Conversely, the small firms
will also affect the local government through the market price. One channel is the
production tax revenue, an important factor to calibrate the local government’s state,
will depend on the formulated market price.

The above discussion suggests the so-called major-minor agent models. To be
more precise, let us figure out the following oil production example. In the crude
oil exploration, each individual oil production company aims to explore more oil
and thus pursue more profits. In this sense, their production plans always intend
to take less account of some macro-factors such as the limited oil resources, the
possible environmental costs as well as the long-term benefits in their exploration.
On the other hand, these factors are mainly the concerns of relevant supervisory
department or local government. Unlike the individual oil company, they are more
concerned about the factors such as sustainable development, and the overall benefit
of oil sector. Thus, they will always execute some macro-control policy by assuming
the responsibility of major agent. All small firms (as the minor agents) should
obey the policies when the production plan is making. Consequently, the set of all
individual small producers consists of our minor-agent part, and it is further coupled
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with the local government (the major agent) via their state-average. The major-
minor large-population system and related MFGs are extensively studied. Looking
back to previous work, [51] discussed large-population systems with major and minor
players by analyzing the case in an infinite set where the minor players are from a
total of K classes. Later on, [52] considered a LQ problem with major and minor
players by directly treating the mean field z in the population limit as a random
process with random coefficients. Recently, [53] studied large-population dynamic
games involving nonlinear stochastic dynamical systems with a major agent and a
population of N minor agents and derived the ey-Nash equilibrium property where
ey = O(1/+/N). In addition, [54] derived a game problem in a weak formulation; this
means in particular that the game was of the type “feedback control against feedback
control”. Then payoff/cost functional was defined through a controlled BSDE, for
which the driving coefficient was assumed to satisfy strict concavity-convexity with
respect to the control parameters.

In addition, [55] investigated a leader-follower hierarchical game. The feature of
this kind of game is as follows. For any choice us of the leader, the follower would like
to choose a strategy u; to minimize his/her cost. Knowing the follower would take
such an optimal strategy @; (supposing it exist, which depends on the choice uy of
the leader, in general), the leader would like to choose some 5 to minimize his/her
cost, in which the strategy of the follower (u;) is already optimal. Based on some
discussions of stochastic Riccati equations, the author obtained an open-loop solu-
tion of the leader-follower differential game. For the approach of the large-population
leader-follower model, [56] was devoted to developing a general model and presenting
the main adaptation result of the uniform cost coupling model in the case that the
leaders’ costs are based on a tradeoff between a certain reference trajectory and the
centroid of themselves, while the followers “only” track the centroid of the leaders. In

[57], the authors completely analyzed a more general scenario where the followers are
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tracking a convex combination of their own centroid and the centroid of the leaders.
Besides, in [57], the leaders observe no one and the followers have limited observations
on the leaders. [58] is concerned with a leader-follower stochastic differential game
with asymmetric information. Stochastic maximum principles and verification theo-
rems with partial information are obtained, to represent the Stackelberg equilibrium.
It is also realistic to consider the combinations of major-minor and leader-follower
manners. Take the above production model for example. As referred, the “leading”
agent that can be viewed as the local government or supervisory department, will
greatly affect the production behaviors of all firms. Conversely, the small firms will
also affect the local government through some factor like the market price. Howev-
er, in this industry chain, there may also exist the downstream industry which can
be viewed as the suppliers of raw material or manufacturers of primary commodity.
There is no doubt that the behaviors of suppliers or manufacturers (downstream
industry) are affected directly by that of all small firms (upstream industry). And
when making the industrial policy, the “leading” agent should also consider the price
of raw materials or productions of primary commodities sufficiently. Therefore, the
behaviors of suppliers or manufacturers (downstream industry) will affect the policy
making by the “leading” agent. In addition, in many practical cases, the government
or supervisory will also make some policies about the raw material or primary com-
modity by considering the resource factor, environmental factor, etc. In this way,
the “leading” agent imposes the impacts to the suppliers of raw material and manu-
facturers of primary commodity directly. Consequently, the leader-follower involving
major-minor models are proposed to characterize this kind of problem.

In most control problems, the information is assumed to be completely observed.
However, it may be not reasonable in reality. It turns out that various stochastic
control problems fit into the partial information framework due to the factors such

as finite datum, latent process or noisy observation, etc. An extensive review of
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stochastic control with partial information was provided in [59]. There is other rich
literature on partially observed stochastic control systems (see e.g. [60, 61, 62, 63,
64, 65, 66, 67] for previous work and [68, 69, 70, 71, 72, 73, 74, 75, 76, 77| for
recent work). For the literature on partially observed stochastic games, please refer
to [78, 79, 80] and references therein. Remark that a class of LQMFGs with noisy
observations was also addressed in [81] but defined on an infinite-time horizon so the
algebra Riccati equations were involved. Moreover, the limiting state-average in [81]
was deterministic as there was no common noise.

It is worth pointing out in all above works involving large-population system,
all agents’ states are formulated by (forward) SDEs with the initial conditions as
a priori. As a sequel, the agents’ objectives are minimizations of cost functionals
involving their terminal states. As the BSDE are well-defined stochastic systems
with broad-range applications, it is very natural to study its dynamic optimization
in large-population setup. Indeed, the dynamic optimization of backward large-
population system is inspired by a variety of scenarios. For example, the dynamic
economic models for which the participants are of some recursive utilities or nonlin-
ear expectations, or some production planning problems with some tracking terminal
objectives but affected by the market price via production average. Another example
arises from the risk management when considering the relative or comparable crite-
ria based on the average performance of all other peers through the whole sector.
This is the case for a given pension fund to evaluate its own performance by setting
the average performance (say, average hedging cost or initial deposit, surplus) as its
benchmark. In addition, the controlled forward large-population systems, which are
subjected to some terminal constraints, can be reformulated by some backward large-
population systems, as motivated by [82]. Different to SDE, the terminal instead of
initial condition of BSDE should be specified as the priori. As a consequence, the
BSDE will admit one adapted solution pair (y;, z;) where the second solution com-
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ponent z; (it is also called the diffusion component) is naturally presented here due
to the martingale representation and the adaptiveness requirement. It is remarkable
that there exist rich literature concerning the theories and applications of BSDE. The
linear BSDEs were first introduced by [83] when studying stochastic optimal control
problems. [84] first proved the existence and uniqueness of solution for nonlinear
BSDESs, which have been extensively used in stochastic control and mathematical fi-
nance. Independently, [85] presented a stochastic differential recursive utility, which
is a generalization of a standard additive utility with an instantaneous utility de-
pending not only on an instantaneous consumption rate, but also on a future utility.
As found by [86], the utility process can be regarded as a solution of a special BSDE.
[86] also gave the formulations of recursive utilities and their properties from the
point of view of BSDE. A BSDE coupled with a SDE in their terminal condition for-
mulates the FBSDE. The forward-backward large-population dynamic optimization
problems arise naturally in many practical situations. A typical situation is from the
large-population system with constrained terminal condition (see e.g., [87]). In this
situation, the standard forward stochastic control problem can be well approximated
by some forward-backward stochastic control problem.

In the last few decades, FBSDE has been well studied. There are several meth-
ods to solve FBSDE. The method of contraction mapping was first used by [88] and
later detailed by [89]. It works well when the duration T is relatively small. Anoth-
er method called the “four step scheme” ([90]) was the first solution method that
removed restriction on the time duration for Markovian FBSDEs. The third is the
method of continuation. This is a method that can treat non-Markovian FBSDEs
with arbitrary duration, initiated by [91] and [92], and later developed by [93] and
[94]. Please refer to the book [95] for the detailed accounts for all the three meth-
ods. Recently, in [96] the authors find a unified scheme which combines all existing

methodology, and overcome some fundamental difficulties that have been longstand-
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ing problems for non-Markovian FBSDEs. For more theoretical and practical results
on FBSDE, please refer to [97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110] and references therein. Due to the interdependence of the states, FBSDE
can be divided into two kinds: the partially-coupled FBSDE and fully-coupled FB-
SDE. The former means that the backward state component y; depends explicitly
on the forward z;, but x; doesn’t explicitly depend on the backward (y, z;), which
is more accepted to represent the recursive utility or nonlinear expectation (see, e.g.
[87, 72, 41]). In fact, the forward state z; usually represents the dynamics of some
underlying asset, the backward state y; stands for the nonlinear expectation or recur-
sive utility of decision maker. Thus it is reasonable and natural that the recursively
utility will depend on the underlying state. But conversely, the forward underlying
state will not be affected by the recursive utility adopted. Mathematically, there’s
great value to formulate and study the fully-coupled FBSDE (namely, the forward

state also depends on the backward state).

1.2 Contributions and Organization of the Thesis

As the novelty, this thesis mainly considers the LQMFGs in forward-backward frame-

work. Details can be summarized as follows.

e The large-population dynamic optimization in forward-backward setting is for-
mulated and the related LQMFGs for partially-coupled FBSDESs are investigat-
ed in Chapter 2. The optimal control of auxiliary track system is studied. The
decoupling procedure of the Hamiltonian system (due to its two-dimensional
feature) will involve six Riccati equations or ordinary differential equations
(ODEs). Moreover, the decentralized control strategies are derived from the
consistency condition and approximation scheme. In addition, the e-Nash equi-

librium property of our original problem is also verified based on some FBSDE
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estimates.

The backward LQ games of large-population systems are studied, for which
the individual states follow some BSDEs. Chapter 3 focuses on this problem.
This feature makes the setting very different to the existing works of LQMFGs
wherein the individual states evolve by some SDEs. The individual state dy-
namics are weakly coupled through the state-average and the full information
structure is assumed thus the individual agent can access the central informa-
tion of all other agents. The explicit form of the limiting process and e-Nash

equilibrium of the decentralized control strategy are investigated.

The large-population system in major-minor framework is considered in Chap-
ter 4, in which the major agent’s dynamics is characterized by some BSDE with
prescribed terminal condition while the minor agents’ dynamics are governed by
SDEs with prescribed initial condition. In this way, the major agent’s objective
turns to minimize the cost functional depending on initial state and the minor
agents want to minimize the cost functionals depending on terminal states.
The problem when major player takes into account the relative performance
by comparison to minor players is under consideration. The related LQMFGs
are discussed and the decentralized strategies are derived. A stochastic pro-
cess which relates to the state of major player is introduced here to be the
approximation of the state-average process. An auxiliary MF SDE and a 3 x 2
FBSDE system are considered and analyzed. Here, the 3 x 2 FBSDE, which is
also called a triple FBSDE (TFBSDE), is composed by three forward and three
backward equations. With the help of the monotonic method in [92] and [108],
the wellposedness of this FBSDE is obtained. Finally, the e-Nash equilibrium

property of decentralized control strategy is derived with e = O(1/v/N).
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e In Chapter 5, the combination problems of leader-follower and major-minor
large-population systems are proposed. In the entire system, the major and
minor agents are together regarded as the leaders, which are called major-leader
and minor-leaders, respectively. The major-leader tracks a convex combination
of the centroid of the minor-leaders and the followers; the minor-leaders track
a convex combination of their own centroid and the major-leader’s dynamics;
and the followers track a convex combination of their own centroid and the
centroid of the minor-leaders or a convex combination of the centroid of the
minor-leaders and the major-leader’s dynamics. Although the analysis of this
problem in this chapter is only presented as a framework, it is divided into three
topics due to the tracking structure and processing ways. Three consistency

condition systems are obtained for all the topics.

e Chapter 6 is devoted to the dynamic optimizations of large-population systems
with partial information structure. Here, the individual agents can only access
the filtration generated by one observable component of underlying Brownian
motion. The state-average limit in this setup turns out to be some stochastic
process driven by the common Brownian motion. Two classes of MFGs are
proposed in this framework: one is governed by forward dynamics, and the
other involves the backward one. In the forward case, the associated MFG
and some Riccati equation system are formulated. In the backward case, the
explicit forms of the decentralized strategies and some BSDE (satisfied by the
limiting process) are obtained. In both cases, the e-Nash equilibrium properties

are presented.

e Chapter 7 concludes the whole thesis and plans for the future work.
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Chapter 2

LQMFGs of FBSDEs

This chapter studies a new class of dynamic optimization problems of large-population
system. The most significant feature in this setup is the dynamics of individual agents
follow the FBSDESs in which the forward and backward states are coupled at the ter-
minal time. This work is hence different to most existing large-population literature
where the individual states are typically modeled by the SDEs only including the
forward state ([8, 18, 20], etc.). The associated LQMFG, in its forward-backward
sense, is also formulated to seek the decentralized strategies. Unlike the forward
case, the consistency conditions of the forward-backward MFGs involve six Riccati
and force rate equations. Moreover, their initial and terminal conditions are mixed
thus some special decoupling technique is applied here. The fixed-point analysis
and the asymptotic near-optimality property (namely, e-Nash equilibrium) of the
derived decentralized strategies are also investigated. To this end, some estimates to
forward-backward stochastic systems are employed. In addition, due to the adaptive-
ness requirement to forward-backward system, the arguments here are not parallel
to those in its forward case. Anyway, for notational simplicity, in this chapter and
the following chapters we focus on the cases where all processes are 1-dimensional.
Actually, for higher dimensional we can also derive the corresponding results in the

same way.
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2.1 Problem Formulation

Suppose (2, F, {F:}o<i<r, P) is a complete filtered probability space on which a
standard N-dimensional Brownian motion {W;(t), 1 < i < N}ox<r is defined.
Denote by {F;" }o<i<r the filtration generated by {W;(s),0 < s < t} but augmented
by all P-null sets.

Consider a large-population system with NV individual agents, denoted by {A4;}1<i<n-
The dynamics for individual agent involves three components. The forward compo-
nents {7;}1<i<n of {Aib1<icn satisfy

di(t) = [A:ci(t) + Bui(t) + Fa™ (t)]dt + o (t)dWi(t),
(2.1)

where {z;0}Y, are initial conditions of the forward system (2.1), and the backward
states are

N

—dyi(t) =| Cyit) + Dui(t) + Ha(t) + L (1) |dt = 3 25 (1)aw;(0),

j=1 (2.2)

yi(T) =Kx;(T)

M=

where (V) (t) = % x;(t) is the (forward) state-average. Here, A, B, F,C, D, H, L,
i=1

K, o are scalar constants. Equation (2.1) and (2.2) together become a partially-
coupled FBSDE. By “partially-coupled”, we mean the dynamics of forward state
does not depend on the backward components. Introduce F; := o{W;(s),x;;0 <
s <t,1 <i < N} as the full information accessible to the large-population system up

to time t. Different to forward large-population system, the backward diffusion term

N
>, 2z (t)dW;(t) driving by all Brownian motions (not WW; only), should be introduced
j=1

in the dynamics of A; by considering 2™ (t) € F, (even through Eq.(2.1), the forward
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state of A; is only driven by W; only). Let U;, i = 1,2,..., N be subsets of R. The

admissible control u; € U; where the admissible control set Uf; is defined as
U; = {ul}u,(t) eU,0<t<T; u-) e L;t(O,T;R)}, 1<i<N.

Let u = (uq,...,uy) denote the set of control strategies of all N agents; u_; =

(u1,...,Ui_1, Uit1, - . ., uy) the control strategies except i*" agent A;. The individual
cost functional is given by

m<ui<~>,ui<~>>=1E{

2 JT [Q(mi(t)—(Sx(N)(t)+17)>2+Ru12(t)] dt+N0y§(o)} (2.3)

0

where S, 7 are scalar constants and ) = 0, R > 0, Ny = 0.

It is worthy pointing out that the system (2.1)-(2.2) is well motivated by various
real examples in decision making or mathematical finance, such as the recursive util-
ity optimization or the principle-agent problem, etc. For illustration, let us consider
the following recursive utility optimization in large-population system built on the

model of ([111], [72]).

Example 2.1. (Recursive Utility Optimization) Suppose there is an economy or
market which consists of N individual participants. Fach participant has its own

individual underlying state (asset) with dynamics z;(-) as follows:

dzi(t) = [Alxi(t) + Aomi(t) + Aga:(N)(t)]dt + 8dWi(t),

ZEl(O) = ;0 > 0.

=

Here, ™M) (-) = L % x,(-) is the asset-average which represents some common econ-
=1

1

omy primitive (e.g., the price indez); Ay, Aa, Ag, 0 are constants; Wi(+), i=1,...,N
are standard Brownian motions; m;(-) € R is regarded as some idiosyncratic economic
factor such as the individual investment strategies.

Now we consider the given participant may consume continuously from 0 to T.

Let ¢;(+), i = 1,..., N be continuous consumption rate processes and suppose that

17



there exist terminal rewards Kxz;(T) at time T. By [86], the recursive utility of the

Ciy T

investor is a solution of a BSDE, which is denoted by y;"™ (-). We assume it satisfies
N
—dy;(t) = [Blyi(t) + Baci(t) + B3$(N)(t)]dt - 2 2i5()dW; (1),

7j=1

yi(T) = Kai(T).

Define F; := o{W;(s);0 < s < t, 1 < i < N}. In this setting, to select a Fi-

Ciy T

adapted process (¢;(-),7;(+)) such that y{"™(0) = max y

max (0) is recognized as a
recursive optimal control problem. Based on this motivation, we formulate the large-
population LQ) system (2.1)-(2.3) in FBSDE setting. For more applications, please

refer [112, 110, 41], etc.

Remark 2.1. As referred before, unlike the forward large-population literature, the
new term of backward state Noy?(0) is introduced in (2.3) to denote some recursive
evaluation or nonlinear expectation. Another practical meaning of it is the initial
hedging deposits in the pension fund industry. In addition, one explanation of above
forward-backward system (2.1) and (2.2) is as follows: the forward state x; in (2.1)
represents some underlying asset/product dynamics while the state-average x™)(t)
denotes some average market index on it; the control u; stands for a economic factor
(for example, a dividend rate, a consumption rate, a tax rate); and the backward
state y; denotes the dynamics of some derivative asset on x; (for example, the option
on real product such as crude oil). In this case, (2.3) implies the minimization of
the average deviation from market price, and the initial hedging cost for some future

commitment at the same time.

We introduce the following assumption:

(H2.1) {z4}Y, are independent and identically distributed (i.i.d) with E|z;|*> <

+00, and also independent of {W;,1 <i < N}.
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Now, we formulate the large-population dynamic optimization problem of forward-

backward stochastic system.

Problem (FB-MFG). Find a control strategy set @ = (uy, ..., uy) which sat-

isfies
Jilui(-),u-i () = mf Fi(ui(-), u-i())
where u_; represents (Uy, ..., U1, Uit1, .-, Uy).

2.2 The Limiting Control Problem

To study Problem (FB-MFG), one efficient approach is to discuss the associated

MFGs via limiting problem when the agent number N tends to infinity. To obtain the

feedback control and the desired results, we assume U; = R for i = 1,2, ..

N — 400, suppose (V)

Z and introduce the following auxiliary (forward) state dynamics

¢mw:p%@+BW@+Faﬂﬁ+mmmmqm

and

—dwﬂ:k@®+Dm@+H@@+Lﬂﬂﬁ—%@wW&

The associated limiting cost functional becomes

2o

Hw() =58 {

Thus, we formulate the limiting LQ game (L-FB-MFGQG) as follows.

J:r lQ (m(t) — (Sz(t) + n))2 + Ru?(t)] dt + Noyf(O)} .

L N. As

can be approximated by a deterministic continuous function

(2.5)

(2.6)

Problem (L-FB-MFGQG). For the i'" agent A;, i = 1,2,..., N, find u4; € U,

satisfying
J(() = inf Ji(ui(-).

”Ll,iEZ/[i
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u; satisfying (2.7) is called an optimal control for (L-FB-MFG). Applying the s-

tandard variational method, we have:
Lemma 2.1. Under (H2.1), the optimal control for Problem (L-FB-MFQG) is given
by
wi(t) = R Dhi(t) = Bin(0)| (28)
where the adjoint process (l%i,ﬁi,cji) and the optimal trajectory (&;, i, 2;) satisfy the
SDE
di(t) =| Adi(t) + R™ BDRi(t) = R™ B*i(t) + Fa()|dt + od,(t)aw;(),
dk;(t) =Cl;(t)dt, (2.9)
#(0) =zi0,  ki(0) = —Nogi(0)
and BSDE
(—dgit) =[Cg)i(t) + RID%(t) — R™1BDp;(t) + Hau(t) + L:E(t)]dt
— Zi(t)dW;(t),
1 —dpi(t) = [Aﬁi(t) — Hk;(t) + Qa;(t) — QSZ(t) — Qn + gqi(t)]dt (2.10)
— Gi(t)dWi(t),

~

0i(T) =K2:(T), pi(T)=—Kki(T).

The proof is similar to that of [108]. In the following, we aim to decouple the
FBSDE system (2.9)-(2.10). Let 8(t) be the unique solution of the Riccati equation

dp(t) (24 + 0%)B(t) — R B23*(t) + Q = 0,
dt (2.11)
B(T) =0,

a(t) the unique solution of the ordinary differential equation (ODE)

4ot) (44— RUB2B(1))alt) + RBDA(E) — H =0,
o (2.12)
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() the unique solution of the ODE

{ ) 4 (4+ - RB2B() () — (R BDB() — H) = 0,
= (2.13)
¢(T) = K,

and &(¢) the unique solution of the ODE

de(t) +20€(t) + (R'BD — R™'B?a(t))¢(t) + R"'D* — R™'BDa(t) = 0,
dt (2.14)
&(T) = 0.
Introduce
pi(t) = a()k;(t) + B)E;(t) + (b, (2.15)
and
Gi(t) = EWki(t) + C(£)a:(t) + (1) (2.16)

where v(t) and 7(t) are to be determined. By It6’s formula, it follows that (2.10) is

equivalent to the following BSDEs

—dy(t) =| (A= RT'B2B(®)7() + (FB(E) - QS) (1) — Qn]dt

— [ast) — o8B0 |awice), (2.17)

(1) =0
and
—dr(t) :[cf(t) — (R™\B2((t) + R'BD)~(t) + (FC(t) + L)i:(t)]dt

- &) = oce) [awice), (2.18)

7(T) =0.

In terms of the existence and uniqueness of solutions of BSDEs (see [84]), (2.17)-
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(2.18) are equivalent to the following equations

PO L (A= R BB0)1(1) + (FBD) — QS)#(1) — Qn =0,
o (2.19)

W) | or(t) — (B B2() + RBD)A(t) + (FC(t) + L)z(t) = 0,
dat (2.20)
7(T) =0,
G;(t) = op(t)a:(t) (2.21)
and
2i(t) = aC(t)24(t). (2.22)

Note that both (2.19) and (2.20) are the ODEs. Letting ¢t = 0 in (2.16), we have
3:(0) = £(0)k;(0) + (0)2:(0) + 7(0). (2.23)
From (2.9), we know that
ki(0) = —Noy;(0) and 2;(0) = 2. (2.24)
Supposing 1 + £(0)Ny # 0 and substituting (2.24) into (2.23) yield

C(0)zio + 7(0)

5:(0) = : 2.25
i) = P (2.25)
Then computing k;(t) in (2.9), we obtain the unique solution
A No(¢(0)xi0 + 7(0)) e
Fi(t) = — 0(¢(O)io + 7(0)) e (2.26)

1+ £(0)Ng

Based on (2.8), (2.15) and (2.26), we can rewrite (2.8) and the first equation in (2.9)

as

(R™'Ba(t) — R7'D)No(¢(0)zi0 + 7(0))e

— _ _ p-1 T
ui(t) = — R~ BB(t)#:(t) + 1+ £(0)Ny (2.27)

—R7'By(1)
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and

(R*lBQa(t) - R*lBD> No(C(0)io + 7(0))eCt
1+ &(0)Ny

di;(t) = [(A — R7'B?B(t))2:(t) +

(2.28)
—R'B*y(t) + F:T:(t)] dt + o2 (t)dW;(t),

.’2‘1(0) =XT;0-

Equation (2.28) admits a unique solution Z;(-), which together with (2.26) in turn
determines unique solutions p;(-) and g;(+) of equations (2.15) and (2.16), respectively.

Meanwhile, ¢;(-) and Z;() are uniquely determined by (2.21) and (2.22), respectively.

Remark 2.2. From (2.11)-(2.14), (2.19)-(2.20), it follows that (B, «,(,&) is inde-

pendent of the undetermined limiting state-average T whereas (v, 7) depends on T.

Remark 2.3. [t is required that 1 + £(0) Ny # 0. One special case is that Ny = 0,
and in this case, our problem is reduced to the forward large-population problem by

considering system (2.28) only. On the other hand, a direct calculation implies
T T )

£(0) = J ?“R™Y(— 2BDa(v) + B*a*(v) + D?)dv = f e?® R (Ba(v) — D) dv = 0.
0 0

Therefore, 1 + £(0)Ng # 0 whenever Ny > 0. In summary, 1 + £(0)Ny # 0 is always

true provided Ny = 0.
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2.3 The Consistency Condition System

For simplicity of presentation, we introduce the following notations

A(t):= A— R'B?B(t), T!:= eSZA(’")dT, t>s, I:= esg |A(r)ldr

(R™'B2a(s) — R"'BD) Ny

O1(s) := T 0N , ©(s) == —(R™'B*((s) + R™'BD),
Os(s) := FA(s) — QS, ©4(s) 1= F((s) + L, (2.29)
Os(s) = (B Bal) = RTIDINo o pippacs) -,

1+ E(O)NO ’

- T
0; = f |©i(s)|ds, i =1,...,4.
0

Note that the terms defined in (2.29) are not dependent on z(-). We present the

following result.

Proposition 2.1. Assume A, B,Q are nonzero, then ©;,i = 1,...,4 is bounded.

o2 B
A+Q2 ARUz),and)\z\/(A—l—%z)2+B;Q as
- T T 2

the positive eigenvalue of A. Then we have

(01 )B'At<(1)>=21)\[()\—A—022>6)\t+<)\+14+0;>6)‘t]>0.

According to [95], we get the explicit expression of §(t) as follows

B(t):—[(o 1)e«“(T—t><?)}_l(o 1)eA(T—t><(1)>

= Q(eZA(Tft) _1)[()\_A_‘72>62A(Tt) i (A+A+i)]_l

Proof. Denote by A = (

(2.30)
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and we can see §'(t) <0, ¢t € [0,T]. Thus, for V ¢ € [0,T]

Q( 20T 1) _ Q(eZ)\T _ 1)

0<At) <50) = A—A—Z)ePT L A+ A+ %) (A—|A+ Z)(AT +1)

Q R o2 R R

S S A 2o St (14 a2
A At ? B?( * +2‘)<B2 g+ )

=Q+ —[1+ (A+ 502)2].

Then we get

1
sup |A(t)| = sup. |A— R 'B*3(t)] <1+ |A] + (A + 502)2 + R'B%Q

o<t<T 0<t<

and

D _ Al _ 1141+ (a+ie?2 R BT

Based on (2.30), we can directly solve the ODEs (2.12)-(2.14) as follows

T
at) = =K1t —i—f eIV O6(v)d,
t

q S() = —al?), (2.31)

T
£(t) = f e2C(=1) [(R*BD — R™'B2a(v))¢(v) + R'D? - R*lBDa(u)]dv.
\ t
Thus, we obtain

sup_|a(t)| = sup |¢(t)|
0<t<T 0<t<T

<[1x] +T(’Bg|Q ||ZB)‘ [+ (A+ 10 2]+ )]

) (2.32)
Cl1HAl+(a+ 10?2 +[Cl+ R B2Q|T

)

T
R(1+&(0)No) = R+ NOL e*“*(Ba(v) — D)%dv.
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In addition, we get

) JT No|B||Ba(s) - D|
0, =

T ds,
0 R+ No§, €2V (Ba(v) — D)2dv

0y = JT |B||Ba§;) — D|d5,
< 0 (2.33)
T
0; = JO |FB(s) — QS|ds < T (\F!Q + ’FBLR[l + (A + 302)2] + QIS\> :

T
Oy = J |Fa(s) — L|ds
\ 0

which yields the boundness of ©;,7 = 1, ..., 4. The proof is completed. |
For the given deterministic continuous function z defined on [0, T], solving the
ODEs (2.19) and (2.20),

-

T
A(t) = f I (©3(0)2(v) — Qn)dv,

! ) = ft " -0, ( J ' I (@5(w)a(v) - Qn>dv> dr (2.34)

r

T
+f eCr=D0,(r)z(r)dr.
t
Now we can introduce the decentralized feedback strategy for A; as follows:
u;(t) = —R'BB(t)x;(t) + (C(O)xio + 7'(0))@5(t)eCt — R7'By(t). (2.35)

Applying the decentralized control law (2.35) to \A;, its realized closed-loop state

becomes

di(t) = [A(t)xi(t) + (C(0)zio + 7(0))O1 ()eCt — R B2y(t) + Fa™ (t)]dt
+ ox;i(t)dW;(t), (2.36)

Z; (0) = XT;0
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and

(—dyi(t) =|Cyi(t) + (H = R BDB(®))i(t) + D(C(0)aio + (0)) O (1)

X — R'BDy(t) + La™ (t)]dt — N 2 (AW (1), (2.37)

N
=1

J

Taking summation of the above N equations of (2.36) and dividing by N, we get

az™ (1) =[ A0z (1) + (0 + 7(0))O1 (e — BT B(1)

3 + Fz™) (t)]dt + % i oz (£)dW;(t), (2.38)

i=1

[ +™(0) =af

M=

% Zi0- On the other hand, by Ito’s isometry

N o
where 2M(t) = L % z(t), g ) =
i=1 %

1

and basic theory of stochastic process, we have

E Ut ozi(s)dWi(s) - Jt axj(s)dwj(s)> _ { Efy oz} (s)ds, j=1;

0 0 0, J # .

Thus, it follows that

E|- ) fo o Wi(s)| = i Efo at(e)ds = 0 ()

Then we get

N ¢
1
lim N ZJ ox;(s)dWi(s) =0, in L% (0,T;R).
i=10

N—+00

Letting N — +o and replacing ™) by Z, we obtain the following limiting system

dz(t) = [(A(t) + F)a(t) + (C(0)xo + 7(0)) Oy (£)et — R‘ley(t)]dt, )
z(0) = .
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We call (2.34) and (2.39) the consistency condition system by which the limiting
state-average process can be determined through the fixed-point analysis, as dis-
cussed below. Solving the ODE (2.39) directly and noting (2.31) and (2.34), we

have
t
T(t) =zoThe™ + J el =9 200, (s)e’® - KT e ds
0

t T
- J It el =9 100, (s)eds - f e“rTh O (r)dr
0 0

0 r

+ Jt [Pt (s)e“ds - JOT e“TO(r) ( JT L, (@3(0)92(0) - Qn) dv) ar (2.40)

¢ T
+ f el =90, (s)e“ds - J e“rO4(r)Z(r)dr
0 0

- f: It eFt—s) =132 <JT I (@3@):5@) - Qn> dv> ds
=(Tz)(t).

To apply the contraction mapping, hereafter we introduce the following assumption:

(H2.2) cCICHIFITT20,6,8, + c2ICHIFITE,0, 1 (FIT R B2TT?6, < 1.

Then the following theorem is obtained.

Theorem 2.1. Under (H2.2), the map T : C(0,T;R) — C(0,T;R) described by
(2.40) has a unique fized point. Moreover, the decentralized feedback strategy u;, 1 <

i < N in (2.35) is uniquely determined .
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Proof. For any x,y € C(0,T;R), we have

[(Tz = Ty) )],

0 0 r

t T T
J el =90, (s)e“ds - f eCTGQ(T)[f rgeg(u)(x(v)—y(v))dv]dr

¢ T
+ JO F’;eF(t_S)@l(s)ecsds . L ecr@4(r) (x(r) - y(r))dr (2.41)

_ Lt PgeF(tfs)RleQ (JT 1“593(@)(;1;(1)) — y(v))dv) ds

S

o0

<[z — y,, (¢BCHFITT26,0,04 + AIHIFITEG, 8, + elF TR~ BATT26;).

From (H2.2), 7 defined by (2.40) is a contraction and has a unique fixed point
z € C(0,T;R) which is equivalently given by (2.39) and in turn uniquely determines =y
and 7 in (2.34). Meanwhile, the solutions v and 7 to (2.19) and (2.20) are equivalently
given by (2.34), respectively. Then @; is uniquely determined, which completes the
proof. ]

Remark 2.4. (1) From Theorem 2.1, there exists a unique deterministic function
z in C(0,T;R) to approximate the state-average of forward system. In next section,
we specify more details of their difference when applying the system (2.39).

(2) The limit process T in forward equation (2.39) only involves 7(0) and ~(t).
On the other hand, (2.34) satisfies the backward system (2.19) and (2.20) which ac-
tually depends on . Thus (2.39) and (2.34) constitute a forward-backward ordinary
differential equation (FBODE) system. Here, we focus on the fized point analysis in
Theorem 2.1 which provides one sufficient condition for the well-posedness of FBODE
system (2.39) and (2.34).

Remark 2.5. By Proposition 2.1, if R is large enough and |F| is small enough (it
corresponds to the weak-coupling of state-average, see e.g., [8]), we get that ©,0,0s,
0,0, and R71O©3 should be small enough hence (H2.2) follows.
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Remark 2.6. (1) One interesting special case is when Ny = 0 which corresponds to

the forward large-population problem only. In this case, we have ©1 = 0, and (H2.2)

reads as below:
(H2.2)’ FTR1B2TT20;3 < 1

which is similar to that of [18] but noting our diffusion term in (2.1) depends on state
itself while in [18] the diffusion term is constant. In addition, different to (H2.2),
(H2.2)" does not depend on C. This is because the dynamic system in this case is

irrelevant with the backward one.

(2) Another interesting special case is when Ny > 0 but Q = 0. In this case, the

cost functional becomes

T
Tty ui) =3E{ [ Raear + No?(0)

which takes into account the initial hedging cost via Noy?(0), and we have B(t) = 0
and thus ©3 = 0. Now (H2.2) reads as follows

(H2.2)”? CICHIFITTO,0, < 1.

To get a more clear result, further assume H = K =0, AC # 0,A+ C # 0. In this
case, we have A(t) = A, It = eAt=9) T = el 04(t) = 0 and a(t) = 0. Then we

obtain

fT e2Cv (Ba(v) — D)de = D—2(62CT - 1),

0 2C
5. 2C|B||D|NoT

"7 2CR + DZNy(e2°T — 1)
Oy = |L|T.

Thus, (H2.2)” implies

2C|B||D||L|NoT? LMAF2ICIHENT _
5CR + DNy (e2CT — 1)
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If, in system (2.1)-(2.3), we fix

[A,B,C,D,F,H,L,K,Q,R,NO] = [1, ,%,1,1,0, ,0,0,350,100]

N | —
N =

and T =1, (H2.2) implies

cRICHIFITE2G, 6,8, + CIOHFITEG, G, + JFIT R B2TT26,

20|B||D||L| NoT?

= [Al+2[C1+|F)T
2CR + D2N0(620T — 1)

6(

e3

" 4e+ 10

which is obviously less than 1. Thus, the fiz-point assumption (H2.2) [(H2.2)”] holds.

2.4 e-Nash Equilibrium Analysis for (FB-MFG)

In above sections, we obtained the optimal control @;(-),1 < i < N of Problem (L-
FB-MFG) through the consistency condition system. Now we turn to verify the
e-Nash equilibrium of Problem (FB-MFG). Due to its own forward-backward struc-
ture, our analysis here is not simple extension of that in the forward large-population
system. More details are as follows. To start, we first present the definition of e-Nash

equilibrium.

Definition 2.1. A set of controls ug(-) € Uy, 1 < k < N, for N agents is called an
e-Nash equilibrium with respect to the costs J, 1 < k < N, if there exists € = 0 such

that for any fired 1 <i < N, we have
Ti(ui,u_y) < Ji(ub,uy) + € (2.42)
when any alternative control uj(-) € U; is applied by A;.

Now, we state the following result and its proof will be given later.
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Theorem 2.2. Under (H2.1)-(H2.2), (4, ds,...,ayx) in Problem (FB-MFG) sat-

isfies the e-Nash equilibrium where, for 1 <i < N, ; is given by
Bi(t) = —RUBBOF®) + (CO)m + 7(0)Os()eC — RBy(t)  (2.43)
for z;(+) satisfying (2.36), the decentralized state trajectory for A;.

The proof of above theorem needs several lemmas which are presented later. We

first introduce the optimal control and state of auxiliary limiting system as
u;(t) = —R'BB(t)2;(t) + (C(0)zio + 7(0))Os(1)e — R By(2).

Note that {u;(-)}, are different from {u@;(-)},, as Z;(+) differs from #;(-) which
is the decentralized state of auxiliary system. Applying 4,(-) for A;, we have the

following close-loop system

dzi(t) =| AT (1) + (CO)wio + 7(0)O1 (D) — R B2(t) + F3™ (1) at

+ o ()dWi(t), (2.44)
2i(0) =zig
and
[ —dy(t) = [C’gj,;(t) + (H — R'BDB(t))#:(t) + D(¢(0)xi0 + 7(0))Os(t)e”
] — R7'BDy(t) + L&) (t)]dt - jzvj i () dW;(t), (2.45)
i
§i(T) = Kai(T)

\

with the cost functional

JT [Q (ii(t) —(SEM () +1) > 2 +Rﬂ?(t)] dt+Noj2 (0) } (2.46)

0

%(ﬂi('),@—i(')):% {
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N
where (M (t) = % > Z;(t). The auxiliary system (of limiting problem) is given by

d:(1) :[A(t):%i(t) + (C(0)zio + 7(0))O1 ()t — R B2 (t) + F:E(t)]dt

+ o (1) dWi(1), (2.47)
2i(0) =zio
and
—dgi(t) = [cgi(t) + (H = RBDB(t))a:(t) + D(C(0)zio + 7(0))Os(£)e
4 — R'BDy(t) + Li(t)]dt — () dW;i(t), (2.48)
5i(T) = K&;(T)

\

with the cost functional

T(()) =3E { f ) [Q(a:(6) ~ (52() + )" + Ra2(n)]at + No@$<o>} o (249)

We have

Lemma 2.2.

OigTE)a:«(m(t) - x(t)r - 0(%). (2.50)

Proof. By (2.44), we have

dit™ (1) =| (A®) + F)i™ (1) + (C(0)af" +7(0) 01 (1) — R B>(t) |at

N
1 _
3 + % ; o & (1) dW; (),
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where z{") is given in (2.38). Noting (2.39), we get

FM(t) — 97:(15)‘2 <3‘IgN) — xor + 6t f; (’A(s) + Fﬁj(zv)(s) — 7(s)

+ \¢(0)91(3>ecs

By (H2.1), we have

2 1 X 2 1
i=1

d(;zUV) (t) — f(t)) -
1 N
3 + 5 21 o & (t)dWi(t),
M (0) — z(0) =" — a,.

2 W 2 t1 N
‘xo —IIZ'()‘ >d3+3‘f —Zaii(s)dVVi
0 Ni=1

Noting sup EZ?(t) < +o0, we have
0<t<T
TN 2
E fo N;aii(s)dw}(s)

Thus, (2.50) follows by Gronwall’s inequality.

[(A(t) + F) (M (1) = 2(t)) + ¢(0)0: (1) (™) — xg)]dt

N

~o(})

(s)] -

(2.51)

‘ 2

[

Considering the difference between the decentralized and centralized states and

controls, we have the following estimates:

Lemma 2.3.

sup

sup E

1<i<N |o<t<T

sup

1<i<N [o<t<T

sup

sup E|u

1<i<N |o<t<T

sup E|y

(2.52)

(2.53)

(2.54)



Proof. For ¥ 1 <1 < N, by (2.44) and (2.47), we get

2 T 2
sup E|d(t) :%i(t)‘ <3[T\|A(t)|\§o + 02] J E|7;(s) — ii(s)‘ ds
o<t<T 0

T 2
+3T\F!2J E[#V)(s) — #(s)| ds.
0

Then (2.52) follows from Lemma 2.2. Noting the difference between ;(-) and @;(-),
(2.53) is obtained by (2.52). From (2.45) and (2.48), we have

(= a(5) - 5:(0) = [C@®) — 5:() + (H — R BDB®) (#:(t) - #:(1))

3 +L(£(N)(t)—a’:(t))]dt— (Zi(t) — 2:(0)dWi(t) — > Z(t)dW;(t), (2:55)

N
17

7j=1

5i(T) — 9:(T) = K (%:(T) — :(T)).
Applying the basic estimate of BSDE, we get

z%(t)—zi(t)fdﬁ i EJT zij(t)fdt

j=lj#i 0

Eﬂ[ sup |7i(t) _@i(t)‘z] +EfoT

o<t<T

2 2

<C {E +ELT‘H—R_1BDB(t)’25:i(t) (o) an

#:(T) — :Ei(T)‘

+E LT [#) - i(t)’th} ,

where C} is a positive constant. Thus, we get (2.54) by Lemma 2.2 and (2.52). [

Lemma 2.4. ForV1<i<N,

Jits, i) — Ji(t;) (2.56)

o)

Proof. For ¥ 1 <i < N, by (2.39) and (2.47), we easily get
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sup E|2;(t) — (SZ(t) + n) ‘2 < 4o0. Applying Cauchy-Schwarz inequality, we have

o<t<T

sup E

o<t<T

|7:(t) — (S2™) (1) + )| —

wi(t) — (Sa() + 7))

< sup E|E(t) — (SN () + 1) — 2:(t) + (S2(t) + )|

o<t<T

+2 sup ]E[]:%Z-(t) — (Sz(t) +n)||7:(t) — (SEM() + 1) — @:(t) + (S2(t) + n)|]

0<t<T

< sup E|Z(t) — &(t) — S(j(N) (t) — j(t))|2

o<si<T

N

+2( sup E|#i(t) — (S:i(t)+77)]2)§( sup E]a}i(t)—ii(t)—S(aE(N)(t)—j(t))f)

0<t<T 0<t<T

sup ]E’fz(t) - fi(t)_s(f(m (t) — z(t)) |2

0<t<T

<2 sup E|#(t) — (1)) + 2% sup E[zM(t) — z(t)[

0<t<T 0<t<T

and Lemma 2.2, 2.3. Similarly, by (2.53) and (2.54), we get

s Ellaof = [ - o).
and
sup B ) - l@i(t)ﬂ - O(\/LN)'
Further,
E@@F—@@ﬂ:o@%)
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Then

1
+R‘af(t) - a?(t)” dt + 5 NoE

7(0) = 32(0)|

1
o)
VN
which completes the proof. O
Now, we already present some estimates of states and costs corresponding to
control u; and u;,1 < i < N. Our next work is to prove that the control strategies set
(Ty, Ug, ..., Uy) is an e-Nash equilibrium for (FB-MFG). For any fixed i, 1 <i < N,

consider a perturbed control u; € U; for A; and introduce

dl;(t) = [Az,-(t) + Bu(t) + FI (t)]dt + ol (H)dWi(t),

(2.57)
ll(O) =0
whereas other agents keep the control 4;,1 < j < N,j # i, ie.,
(1) =[ AL () + (CO)zj0 + 7(0))O1 ()™ = R7B(t) + FIN (1) |t
+ ol (H)dW;(t), (2.58)

1;(0) =z o

N
where [V () = + 3 [;(¢). Similar to the forward system, the backward system is
k=1

introduced as
N
—dmy(t) = [Cmi (t) + Dug(t) + Hl;(t) + LIV (t)]dt 3 na (AW (8),
k=1 (2.59)

mi(T) =K1;(T)
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while for j # 1,

-

—dm;(t) =[ij(t) + (H — R_IBDB(t))lj(t) + D(¢(0)zjo + T(O))®5(t)eCt

N
4 ~ R'BDA(t) + LI (t)]dt — S () dWi(t), (2.60)
k=1

m;j(T) =KI;(T).
If w;, 1 <i< N is an e-Nash equilibrium with respect to cost J;, it holds that

Ti(t, t_q) = inf Ji(us, i) = T, i) — €.

uieui

Then, when making the perturbation, we just need to consider u; € U; such that

Ji(ui,u_;) < Ji(u;, a_;), which implies

T
%EJ Ru (t)dt < Ji(u;, i—;) < Ti(t, i;) = J;(t;) + 0(
0

1
)

ie.,

T
EJ ul(t)dt < Cy (2.61)
0

where Cy is a positive constant which is independent of N. Then we have the

following proposition.
Proposition 2.2. sup lsup E|lj(t)|2] is bounded.

1<j<N lo<t<T

Proof. By (2.57) and (2.58), it holds that

k

t
1
L(t)[* <Cs {moF +f (1) + hus(s)? + ~
0 1

=
=
S
)
| S
QL
»
+
o~
3,
o
S—
=
=
V)
S—
[\
——

and for j # 1,

0 k=1

2 2 ! 2 ~ 2 1 al 2 2
() <cg{\mjor [ [P+ R+ 5 YR+ | [ atdwies) }
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where (C} is a positive constant. Thus,

N N , t N N )
B[ () ]\cs{E[kzlmko] j[guk WA+ 3 o)

N ) N t 2
+k§_jluk<s>\ ]ds+;1E\ fo ol (3)AWk(s) }
{ZE|xko| +j[ ZEUk )12+ Elus(s)]?

N t N
+ ) E|ak(s)|2]ds +J N Bl (s)[2ds p -
k=1k#i 0 k=1
By (2.61), we can see that u;(-) is L?>-bounded. Besides, the decentralized optimal

controls (), k # i are L2>-bounded. Then by Gronwall’s inequality, it follows that

= O(N),
o<t<T

N
sup E [Z Uk ()

and for any 1 < j < N, sup E|;(¢)* is bounded. O

0<t<T
Correspondingly, the system for agent 4; under control w; in (L-FB-MFG) is

as follows

di0(t) = [Al?(t) + Buy(t) + F:z«(t)]dt + ol0(t)dWi(t),

(2.62)
1(0) =g
and for agent A;, j # 1,
dij(t) =| AWI(1) + (CO0)zj0 + 7(0))O1()e — R By(1) + Fa(t) ] d
+ al;(t)dW;(t), (2.63)
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coupled with the backward systems

—dm(t) =|Cm{ () + Dug(t) + HI (1) + La()|dt — nf(£)dWi (o),
(2.64)
ml(T) =Ki9(T)
for j # 1,

-

—dii (t) =| Cri(t) + (H = R7'BDB®)1;(1) + D(C(0)j0 + 7(0)) O5(1)e”

— R7BDA(t) + L:z(t)]dt — i (H)dW (L), (2.65)

[ y(T) =KI;(T).

In order to give necessary estimates in Problem (FB-MFG) and (L-FB-MFG),
we introduce the intermediate states as

dlz(t) = [Al;(t) + Buz(t) + N]\; 1

FIN-1 (t)] dt + ol (t)dW;(t),

(2.66)
1i(0) =i
and for j # i,
(1) =[ AL () + (CO)zj0 + 7(0)) O1 ()™ — R B>(1)
] + MBI ()] e+ o (1)1 1), (2.67)
[ 1;(0) =0

3 N
where (VD (1) = L=
and (2.67), we get

[ V-1 () =
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and

a0 (1) =[ (A1) + TP 0) + (C0)Y Y+ 7(0)) O (1)
1 N
-1 2 i
X ~R'B 'y(t)]dt+ T oLdwi), (2.69)
J=1,7%#1
[(N—l)(o) _ (()Nfl)
N-1 N
where xé = w5 > xjo. We have the following estimates on these states.
=150
Proposition 2.3.
y 2 1
sup E|IV-D(#) — (VD) = 0(—), (2.70)
0<t<T N
2 1
sup E|IM (1) — 1¥-Dp)| = (—) (2.71)
0<t<T N
sup E|i1(r) — x(t)f _ o(l>. (2.72)
0<t<T N
Proof. By (2.68)-(2.69), we have
( . N-—-1 . F
(N=1) 4y _ [(N-1) - o (N=1) 4y _ [(N=1) iy
d(l (t) — 1 (t)) [(A(t) + ——F) (V@) IV V@) + Nll(t)]dt
1 ;
+ >, o(l;(t) = () dW; (1),
J=1j#i
IN=D0) — IN=D(0) =o0.

N

Then by Proposition 2.2 and Gronwall’s inequality, the assertion (2.70) holds. (2.71)
follows from assumption (H2.2) and the L*-boundness of controls u;(-) and a;(-), j #

i. From (2.39) and (2.69), we get

N -1

a(i™= @) - 2()) = [(A(t) + = F) (Y00 — 2(1) ~ %fﬁ(t)
N
+C(0)( gN*LmO)@l(t)eCf] dt + Nl_ S oli(t)aw;(t)
Jj=1lj#i



with {¥=D(0) — 2(0) = 2" — z,. Thus, (2.72) is obtained. ]

In addition, based on Proposition 2.3, we have

Lemma 2.5.

sup B0 —a(0)] - 0(5). (2.73)
s Bl 00| = 0(5). (2.74)
sup Bllm (o) =m0 - 0( ). (2.75)
T i) = )| = 0( ). (2.76)

Proof. (2.73) follows from Proposition 2.3 directly. By (2.57), (2.62), and using
(2.73), we get (2.74). Noting (2.59) and (2.64), we have

(—d(mi(t) ~ m0®)) =[C(mu(t) = ml®) + H (1)~ £0) + LAV () - 2(0) |t

] — (nia(t) = nd()AWi(t) = D mag(t)dWi (o),

N
k=1,

k#i

mi(T) —m{(T) =K (I;(T) — I (T)).

1

Applying the estimate of BSDE, we get

2 N T 2
ni®) = nd®)[ at+ B[ na(o)] dr
k=1k=i Y0

E[ sup ’mz‘(t) _mg(t)‘z] +ELT

0<t<T

<Cy {E ' Li(t) — l?(t)rdt + EJOT ‘Z(N)(t) — az(t)fdt} :

L) ()| +EL

Then by (2.73) and (2.74), we have

E [ sup |ma(t) —mg(t)ﬂ _ o(%).

o<t<T
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We can see that both sup E[m(t)|? and sup E[I9(t) — (Sz(t) + n) ‘2 are bounded.

0<t<T o<t<T

Similar to the proof in Lemma 2.4, we get

sup_E|[mi(t)|* — [m} (1)

o<st<T

< sup Elmi(t) = ml(t)* +2( sup Elml(t))*( sup Elmi(t) - m(t)?)*

o<t<T 0<t<T 0<t<T
1
:O(«/N)’

which is (2.75). Further, we have

E|jmi(0)] - Im? ()| = o(

4

Moreover,

OZ?ETE ‘ (li(t) — (S1™M(#) + 77))2 - (l?(t) — (Sz(t) + n)>2
< sup E[li(t) ~ 19(0) ~ S(1V(0) — 2(1))
o<t<T

o=

( sup Efut) ~12(t) - S0 —f<t>)}2);

o<t<T

T 2( sup E[1P(t) — (Sz(t) + 77)’2>

o<t<T
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which implies (2.76). O
Proof of Theorem 2.2: Now, we consider the e-Nash equilibrium for A;. Combin-

ing Lemma 2.4 and 2.5, we have

= Ji(ui,uy) + O<\/LN>

Thus, Theorem 2.2 follows by taking e = O <\/Lﬁ> O
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Chapter 3

LQMFGs of BSDEs

This chapter focuses on the backward LQMFGs of weakly coupled stochastic large-
population system. In contrast to the well-studied forward LQMFGs, the individual
state in this large-population system follows the BSDE whose terminal instead of
initial condition should be prescribed. This work also differs from that in Chapter
2, because there are neither forward dynamics nor Riccati equations to be derived.
In this chapter, to get the explicit forms, the individual agents of large-population
system are assumed to be weakly coupled in their state dynamics. Some estimates
to BSDE are presented in the large-population setting. In the end, the e-Nash

equilibrium property of decentralized strategies is verified.

3.1 Problem Formulation

Let (Q, F, {Fi}o<i<r, P) be the complete probability space on which a standard N-
dimensional Brownian motion {W;(t), 1 < i < N}o<i<r is defined. We denote
by F; = Uf\il F"* the full information of large-population system where F;”" :=
o{W;(s);0 < s < t} is the natural filtration generated by i'® Brownian motion W;
but augmented by all P-null sets. Now we are ready to formulate our backward
LQMFGs.

Now, we first introduce the backward LQMFGs in which the large-population
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system is weakly-coupled in the states of individual agents. For short, the problem

is given by
( —dy;(t) = [Ay;(t) + Buy(t) + Cy™(t)|dt —z; (t)dW;(t)
(B-MFG) | state : —jzjz\;# 25 (1)dW; (1),
yi(T) = &,
cost functional : J; (u;(+), u—;()) = E [Sg Ru?(t)dt + Hy?(())] .

(3.1)
Here, we assume the full information (hence (B-MFG) for short) structure. That
is, each agent can access the states of all other agents; the dynamics of agent A; is
denoted by y; which satisfies the above controlled linear backward stochastic differen-
tial equation (LBSDE). It is remarkable that (z;, 2;;,1 < j < N, j # i) is also part of

our solution of (3.1) which are introduced here to enable y; to satisfy the adaptation
N

requirement; A, B, C' are scalar constants, R > 0, H > 0; y™)(t) = % > yi(t) is the
i=1

state average across the whole population. It stands for the global population effects
in macro-scale. & € Fr, ¢ = 1,2,..., N, are the terminal conditions for individual
agents which stand for the future objective or tracking target. Let U;, i = 1,2,..., N
be subsets of R. The admissible control u; € U; where the admissible control set U;

is defined as
U; = {uz}uz(t) eU;,0<t<T; u()e L;_-t(O,T;R)}, 1<i<N.

Let v = (ug,...,u;,...,uy) denote the set of control strategies of all N agents;
u_y = (u1,...,Ui_1, Uis1,...,uy) the control strategies except the i agent A;.
Here, we write the cost functional as J;(u;, u_;) to emphasize that it depends on
both u; and u_; due to the weakly coupling structure in dynamics.

In full information structure, we make the following assumption:

(H3) The terminal conditions {&;}¥, are independent identically distributed (i.i.d)
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It follows that under (H3), the state equation in (3.1) admits a unique solution for

all u; € U;. In fact, if we denote by

Z1 212 - Z1L,N-1 ZIN

Y1 Uy %]
_ _ 291 22 't Z9N-1 Z2N - .
Y = U = : , 4= . W = ,
YN un Whn
ZN1 ZN2 *'° ZN,N—-1 2N
&1 1 1
E= oI =| :
I3 1 .. 1

Then the state equation in (3.1) can be rewritten as

(1]

—dY (t) = [AY(t) + BU(t) + %JNY(t)]dt — Z@)dW(t), Y(T)=

which is a LBSDE of vector value and admits a unique solution (Y, Z) € L%(0, T; RY) x
LZ(0, T; RY*N) for U € L%(0,T;RY), (see [84]). Thus, for any 1 < i < N, the state
equation in (3.1) admits a unique solution (y;,z;, 2;;(j # i)) € L%(0,T;R) x --- x
L2(0,T;R).

Remark 3.1. (1) We now give some remarks to the real meaning of system (3.1).
In reality, the LBSDE in (3.1) stands for the dynamics of some investment behaviors
such as in stocks and bonds in a self-financed market, that is, there is no infusion or
withdrawal of funds over [0,T]. In recursive or hedging problems (finance, optimal
control, etc.), the BSDE dynamics have been deeply studied in the existing literature,
such as [86], [T2] and so on. The cost used to be applied in some terminal hedging
problems with possible nonlinear expectation, taking mean variance model as an ex-
ample. In particular, the initial state y;(0) in our cost can be viewed as the initial
hedging cost (or, cash surplus), which aim to reach some future payoff or obligation

target & at given time T'. Besides, the constrained forward L) control problem with
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state average coupling in state dynamics can also be transferred to the backward LQ)
control with state given by the linear BSDE, as given in (3.1).

(2) For simplicity of analysis, the state average in system (3.1) is coupled in
dynamics only. Actually, our analysis can be extended to the problem with coupling in
cost functional. Applying similar procedures, we can obtain the corresponding optimal
control and fized point principle, and analyze the properties of e-Nash equilibrium.

(8) In this system, there are N individual agents coupled together to be investigat-
ed for the hedging strategies. Actually, problems to get optimal strategies in forward
setup with small players have been well studied by the existing literature, including
[113], [18], [20], [8], etc. In this setting, we analyze the limit when the number of
players N goes to infinity where the situation considerably simplifies in the spirit of

MFGs, see [27].

3.2 The Optimal Control of (L-B-MFG)

Now, we study the problem (B-MFG): the backward LQMFGs with full information
(B-MFG). A key component in our analysis is to study the associated LQMFGs via
limiting state average, as the number of agents tends to infinity. To obtain the

feedback control and the desired results, we suppose U; = R for i =1,2,..., N.

(N)

We assume yV) is approximated by a deterministic continuous function 1° satis-

fying

—dy’(t) = [At)y"(t) + m(1)]dt,
(3.2)

y(T) = &
where & is some deterministic constant, A(t) and m(t) are some continuous func-

tions to be determined. Actually, by (H3) and strong law of large numbers (LLN),

lim &) exists and & is determined by
N—+0

&= lim &N =Eg, as., i=1,2,---,N (3.3)

N—+00
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N
where ¢V) = % > &;. Now, we introduce the limiting full-information system
i=1
N
—dyi(t) =[Ay;(t) + Bui(t) + Cy°(t)]dt — z()dWi(t) — > 25 (£)dW;(t),
J=1,j#i (3.4)
yi(T) =&
with the cost functional
T
Ji(us() = E [ f Ru2(t)dt + Hy2(0) (3.5)
0

where 3°(-) is given by (3.2).

Now we formulate the limiting backward full information (L-B-MFG) problem of

our large-population system as follows.
Problem (L-B-MFG). For the i agent, i = 1,2,..., N, find @; € U; satisfying

uiEUi

Then @; is called the optimal control for problem (L-B-MFG).
In the following, we apply the variational method to get the optimal control ;.

First, introduce the variational equation
N

—d¢;(t) = [AG(t) + Bou(t)]dt — 6;(t)dW;(t) — Z 0,;(t)dW;(t),
j=Lj#i (3.6)

where (;(t) € L%, (0,T;R), 0u;(-) denotes the variation of @;(-). Then the following

proposition holds true.

Proposition 3.1. Let (H3) hold. Then the optimal control of (L-B-MFQG) is

u;(t) = —R ' Bp;(t)
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where p;(t) € L*(0,T;R) satisfies the following ordinary differential equation (ODE):

dp(t) = Api(t)dt,
(3.7)
pi(0) = Hy;(0), 1 =1,2,..., N.

Proof. Suppose (;, Zi, Zij(j # 1), 4;) is an optimal solution. Then for any variation

du; of u;, the associated first order variation of cost functional J;(u;) satisfies

0— %M(m) _E [ J Rows(#)as (t)dt + H(,;(O)gi(o)] | (3.8)

0

Applying It6’s formula, we have
d(&i(t)pi(t))

N
:{ — [AC’L(t) + Béul(t)]dt + el(t)dI/V,L(t) + Z Hij (t)dW] (t) }pi(t) + ¢ (t)Api(t)dt

= — B5ui(t)pi(t)dt + pi(t) [Oz(t)dVVZ (t) + Z 91']' (t)dWJ (t)] .

Combining this identity with (;(7") = 0 and p;(0) = Hy;(0) yields

T

E[G(0)H:(0)] - EL Bou(t)pi(t)dt (3.9)

It follows from (3.8)-(3.9) that for any du;(-) € L%w, (0, T;R),

E J ' (Réui(t)ﬂi(t) + Béui(t)pi(t)>dt ~0.

0

This implies that @;(t) = —R™'Bp;(t). On the other hand, the sufficiency of optimal

control can also be obtained via the convexity of J;(-). ]
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3.3 The Explicit Representation

Now, we aim to study the properties of the given function y°(-). For V 1 < i < N,
solving ODE (3.7) directly, we have

Thus, the optimal control u;(t) is given by
u;(t) = —R'BHy;(0)e™, (3.10)

Applying the decentralized control law (3.10) for the it agent A;, the closed-loop

state in system (3.1) becomes

—dyi(t) =| Ayi(t) = BP R Hyi(0)e + Cy™) (1) |dt — ()W ()

! Z e (3.11)

N N
where y™(t) = L 3 y;(t). Denote by g™ (0) = + Z ;(0). Summing the above N

)

I
,_.

1=1

equations of (3.11) and dividing by N, we get

-

™) :[ Ay (1) — BERV AN (0) 1 Oy (t)]dt

N N
X Z[ ) + 2 it ] (3.12)

= \

Letting N — +o0, replacing ™) (™) by 3° and noting (3.3), we obtain the fol-

lowing limiting system

—dy(t) = [(A +C)y(t) — B2R™ He™ 0(0)]dt,
(3.13)

?JO(T) = &o-
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Comparing the coefficients with (3.2), we have

Aty = A+ C,

m(t) = —B*R™"He™°(0).

Solving the ODE (3.2), we get

- T -
yO(t) = foeStT Als)ds J m(s)elt AWdugg.
¢

Taking ¢ = 0 and noting (3.14), we have

T
1°(0) = geATOT —i—f m(s)eA+O3 s,
0

Thus, m(t) in (3.14) has the following expression:

T
m(t) = —B*R™" He &7 — BQRlﬂeAtJ m(s)etOsds,
0

(3.14)

(3.15)

We have the following explicit representation of m(t). As a sequel, ¢°(-) in (3.2) can

be determined.

Proposition 3.2. m(-) can be explicitly solved as

BQH(QA + C)&)eAt+(A+C)T FoA 1O 0.
" R(2A + C) + B2H (eA+OT 1)’ F24+C20,
_ B’H[R + B*H(T —1)]§e” "

R(R + B2HT) ’

m(t) =

if 24+ C = 0.

(3.16)

Proof. Denote K := Sg m(s)eA*)5ds, which is a constant depending on 7. Then

(3.15) can be rewritten as

m(t) = —B*R T He e AT — BPRIHeMK.
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Multiplying with e+ on both sides and taking integral from 0 to T w.r.t t, we

have
T
K =J m(t)eA gt
0
T T
_ —BZR_IHfoe(A+C)T J 6(2A+C)tdt o B2R_1HK f 6(2A+C)tdt.
0 0
Then we get
B2 HEeA+OIT (2A+O)T _ 1)
_ , if2A+C #0;
k-1 RRA+C)+BH(eAOT 1)
BHGe 7 if 24+C =0
— 1 = U.
R+ B?HT’
Thus, (3.16) is obtained. Noting (3.14), 3°(-) is also determined. O

Remark 3.2. (1) By Proposition 3.2, it follows that there exists a unique determin-

(N) . Applying the

istic function y° in C(0,T;R) to approximate the state average y
limiting function y°, we get the optimal control for (L-B-MFG), which plays an
important role in obtaining the decentralized control and analyzing the properties of
e-Nash equilibrium.

(2) Actually, in (3.16) if 2A + C > 0(< 0), e@A+*OT — 1 > (< 0). Noting
R>0,H >0, we get R(2A + C) + B*H (e®ATOT — 1) > 0(< 0). Meanwhile, we

have R(R + B?*HT) > 0. Thus, the representation (3.16) is meaningful.

3.4 e-Nash Equilibrium Analysis for (B-MFG)

In previous sections, we obtained the optimal control @;(-),1 < ¢ < N of (L-B-
MFG). In this section, we analyze the asymptotic property of the decentralized
control strategies and verify the e-Nash equilibrium property for (B-MFG).

We state one main result of this paper and its proof will be given later.
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Theorem 3.1. Let (H3) hold. Then (uy,us, ..., uy) satisfies the e-Nash equilibrium
of (B-MFG), with € is of order 1/5/N. Here, for 1 <i < N, u; is given by

u;(t) = —R'BHy°(0)e™. (3.17)

Before proving the theorem, some analysis is needed. Applying the optimal con-

trol (3.10) to (3.4), we have

—dgi(t) =| Ai(t) = BERT Hpi(0)eM + Cy () |db — z(D)dwi(e 2 E (AW,
yi(T) =&;.
Taking expectation and solving the corresponding backward ODE, we get
i) = &7 — [ [BRT BHG O — 0y (9|4 Nas.
t

Taking ¢ = 0 and noting 7;(0) = Eg;(0), we obtain

(] g o]
v [1 + DA (24T 1)] [éoeAT +Cfr yO(S)eAsds]v if A #0.

Thus, 7;(0) is a constant which can be determined by y°(-) and &. Further, we
have 7;(0) = °(0), 4 = 1,2,..., N. For simplicity, we use the notation y°(0) in ;(-)

instead of ;(0) hereafter. Now, we formulate the dynamic systems as follows

—dy;(t) = [Ayi (t) —BQR_lHyO(O)eAt + Cy(N) (t)] dt—z;(t 2 zz]

yi(T) =&
(3.18)
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and

—dgi(t) = [Agi(t) — B2R™VH(0)e —|—C’y0(t)] dt—z(OdWi(t)— Y z()dw; (),

Then we have

Lemma 3.1.

sup By (1) —5°(0)| = 0(5).

o<t<T N

sup | sup E
1<i<N Lo<t<T

Proof. By (3.18) and (3.13), we have

(—d(y™ ) ="(1) =[(A+ N () =y @) at

3 —

=

Jj=

1 N
> [zi(t)dWi(t) +
=1

N
1,5

J#u

yMU(T) = (1) =™ — &.

wi) -5 | = o(5)

DT zi(t)dW;

(3.19)

(3.20)

(3.21)

]7 (3.22)

Introduce a 1-dimensional dual process X (s,t) for (3.22), which satisfies

{ dX(s,t) =(A+ C)X(s,t)ds,

X(t,t)=1,t<s<T.

X (s,t) is deterministic and belongs to L*(0, T;R). Applying Itd’s formula to

<y(N)(3> - y0<8)7 X(87 t)>> we get
yM(t) = (1) =X (T, E (™ — &|F).

By (H3), we have

e of =51 S ef =o(L).
i=1
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Then (3.20) follows. Noting (3.18) and (3.19), applying the similar method, we can
get (3.21). O

Lemma 3.2. ForV1<i:< N,

Ji(t, ) — Ji(u;)

Proof. For V1 < ¢ < N, by (3.19), we get sup E|y;(t > < +o. Applyin
y g Y ymng

o<st<T

Cauchy-Schwarz inequality and noting (3.21), we have

sup Bl = 0] = 0( ).

Further,
1
. 2 _ |7 2| _ L
Bl (0) ~ 130 = 0( )
Then
W:. U 7 2 —2 1
Ji(u;,u_y) — Ji(u;)| < HE|y; (0) — 4; (0)‘ = O(\/_N)’

which completes the proof. O

Now, we have addressed some estimates of states and costs corresponding to
control 4;,1 < i < N. Our remaining analysis is to prove the control strategies set
(@, ug, ..., uy) is an e-Nash equilibrium for (B-MFGQG). For any fixed i, 1 <i < N,

consider an admissible alternative control u; € U; for A; and introduce the dynamics

N
—dai(t) =| Azi(t) + Bui(t) + Ca™ () |dt — g ()dWit) = Y] qun(t)dW(D),
k=1,k#i (3.23)

ri(T) =¢&;
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whereas other agents keep the control @;,1 < j < N,j # 1, i.e.,
—da;(t) = [ij(t) — B2R'H (0)eM + 0™ (t)]dt — g (£)dW; (1)

N
< Z g (t)dWi(t (3.24)
k=1,k#j

[ 2i(T) =¢;

where z(V ()z%% 5(2).

If u;, 1 <i< N is an e-Nash equilibrium with respect to the cost J;, we have

Ji(t;,u_y) = inf Ti(u;,u_y) = Ti(u;,u_y) — €.

u; €U;

Then, when making the perturbation, we just need to consider u; € U; such that

Ji(ui, u_y) < Ji(;, a_;), which implies

T
1
E | Ruf(t)dt < Ji(u,u_;) < Fi(ug, i) = Ji(w) + O —=),
| Redtein < T < T = A+ 0()

ie.,

T
Ef ui(t)dt < Cy, (3.25)

0

where Cj is a positive constant which is independent of N.

Proposition 3.3. sup [ sup E\wz(t)|2] is bounded.

1<i<N Lose<T

Proof. Similar to the proof of Proposition 2.2, by (3.23) and (3.24), it holds that

<01{E

where (] is a positive constant. By (3.25), we can see u;(t) is L?>-bounded. Besides,

N
E[ PNEAGIE
k=1

N N
ZW]HE f [22% PP+ Y] |ak<s>|2]ds}
k=1 #1

k=1,k#1

the optimal controls @ (t), k # i are L*>-bounded. Then by Gronwall’s inequality, we
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get

2 is bounded. ]

and for any 1 <i < N, sup E|z;(t)
0st<T

For the i'* agent A;, consider the perturbation in (L-B-MFG) and introduce a

new system

k=1,k=#i (3.26)

and for the j™ agent A;, j # i,
( —d.fj(t) = [Af] (t) — B2R_1Hy0(0)e‘4t + C’yo(t)]dt —qj (t)dW](t)

$ 2 ]k £) AWy (¢ (3.27)

In order to obtain necessary estimates for (B-MFG) and (L-B-MFG), we need

introduce some intermediate states as follows

—di;(t) = [A:f:i(t) + Bu;(t) + N ]; 10:2:(N_1)(t)] dt — Gi(t)dWi(t)
< i G (D) AW () (3.28)
k=1,k#i
j'z(T) _gz
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and for j # 1,

—di;(t) = [A:ej(t) — B2R7 Hy(0)e + N1 1Cf(N1)(t)] dt
3 B B LA (3.29)
GOAW;() = D0 gr(t)dWi(t),
k=1,k+#j

N N
where VD () = &= > &;(t). Denote 2V V(t) = <& X a;(t), by (3.24)

and (3.29), we get

—da NI (1) = [(A + NA_[ 10) 2V (t) — B2RT Hy (0)e + f[xi(t)] dt
15 3 3.30
< -~ X [q](t)de(t) _ qjk(t)de(t)] , (3.30)
Jj=1,j#1 k=1,k#j
L2 (T) =Y
and
N N
1
< - Y awamm+ Y |, 63D
Jj=Lj#i k=1,k+#j
j-(N_l)(T) —¢(N=1)
1 N
where (V7D = L 4
Jj=1j#i

We have the following estimates.
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Proposition 3.4.

2 1
sup ElzV V@) — 2™V =0(—=), 3.32
s (t) 0 =0(53) (3.32)
sup ElzM (1) — 2NV (1) _ <l), (3.33)
0<t<T N

2 1

sup ElzN-D@) — 0 =0(—). 3.34
s -] =0(+) (3.34)

Proof. By (3.30) and (3.31), we have

—d(x(N_l)(t) _ in(N—l)(t)) _ (A " N — 10) (Z‘(Nil)(t) o j(Nfl)(t)) + %xl(t) dt
1 ol N
-¥7 X [(%‘ )= gG®)daw;t) + >, (alt) — qjk(t))dwk(t)l,
J=1j#i k=1,k#j
£E(N_1)(T) _ .%(N_l)(T) = 0.

By the estimates of BSDE, Proposition 3.3, and Gronwall’s inequality, the assertion
(3.32) holds. (3.33) follows from assumption (H3) and the L?-boundness of controls
w;(+) and @;(-), 7 # i. By (3.13) and (3.31), making similar analysis, we get (3.34). [

In addition, based on Proposition 3.4, we obtain more direct estimates to prove

Theorem 3.1.

Lemma 3.3.

s Elln(0F = 1280 - 0(5): (3.35)
Ti(ug, u_y) — Ji(u;)| = O(%) (3.36)

2
Proof. By Proposition 3.4, we get sup E‘x(N) (t) — yo(t)‘ = O(%) Besides, by

o<st<T

(3.23) and (3.26), we obtain sup E

o<t<T

2
a:i(t)—:c?(t)‘ _ o(%). Noting sup E[z0(t)]> <

o<t<T

+0, applying Cauchy-Schwarz inequality, we have (3.35). Further, it follows

[l — 200 = 0(—=)-
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Thus, (3.36) is obtained. 0
Proof of Theorem 3.1: Now, we consider the e-Nash equilibrium of A; for (B-
MFG). Combining Lemma 3.2 and 3.3, we have
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Chapter 4

Backward-Forward LQMFGs with
Major and Minor Agents

This chapter aims to investigate the backward-forward LQ games of large-population
systems with major and minor agents (players). In the last few years, there is some
great work to study the large-population systems with major and minor players, like
[51, 52, 53], etc. It is remarkable that in above works, all agents’ states are formulated
by (forward) SDEs. As the novelty, this chapter turns to consider the major-minor
framework in which the major agent’s dynamics is characterized by some BSDE
with prescribed terminal condition; while dynamics of minor players are described
by SDEs. In this way, a BFSDE system is established in which a large number
of negligible agents are coupled in their dynamics via state average. The problem
when major player takes into account the relative performance by comparison to
minor players is also under consideration. Some auxiliary MF SDEs and a 3 x 2
mixed FBSDE system are considered and analyzed instead of involving the fixed-
point analysis as in Chapter 2. The decentralized strategies are derived, which are

also shown to satisfy the e-Nash equilibrium property.
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4.1 Problem Formulation

Throughout this chapter, suppose (Q, F, { F; }o<i<t, P) is a complete filtered probabil-
ity space on which a standard (1+ N )-dimensional Brownian motion {Wy(t), W;(t), 1 <
i < N}o<ier is defined. F;™ 1= o{Wy(s),0 < s < t}, F" := o{W;(s),0 < s < t},
Fi = a{Wy(s),Wi(s);0 < s < t}. Here, {F;"}o<i<r stands for the information of
the major player; while {F;"}o<i<r the individual information of i** minor player.
Consider a large-population system with (1 + N) individual agents, denoted by
Ay and {A;}1<i<n, where Ay stands for the major player, while A; stands for 7t

minor player. The dynamics of Ay is given by a BSDE as follows:
d&?o(t) :[ono(t) + Bo'LLO(t) + C(]Zo(t):ldt + Zo(t)dWO(t>,

zo(T) =

(4.1)

where £ € F;° satisfies E[£]? < +o0. The state of minor player A; is a SDE satisfying

dzi(t) = [Aq:i(t) + Buy(t) + Da™(t) + axo(t)]dt + odWi(t),
(4.2)

ZT; (O) =T;0

M=

where 2V (t) = + 3] x;(t) is the state-average of minor players; z;o is the initial
i

Il
_

value of A;. Here, Ay, By, Cy, A, B, D, «, 0 are scalar constants. Assume that F; is
the augmentation of o{Wy(s), W;(s),z;0;0 < s <t,1 <i < N} by all the P-null sets
of F, which is the full information accessible to the large-population system up to
time t. Let U;, © = 0,1,2,..., N be subsets of R. The admissible control strategy

ug € Uy, u; € U; where
Z/{() = {Uo"do(t) € Uo,o <t < T; UO() € L_27_-two (O7T; R)}a

and
U = {uz}uz(t) eU;,0<t<T; u()e L;_-t(O,T;R)}, 1<i<N.
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Let u = (ug,us,...,uy) denote the set of control strategies of all (1 + N) agents;
u_g = (uy,us,...,uy) the control strategies except Ag; u_; = (ug,us,...,ui_1,
Uir1,- ., uy) the control strategies except i'" agent A;,1 < i < N. The cost func-

tional for Ay is given by

0

Jo(uo(-), ufo(-))Z%E UT {Qo (xo(t)—x(N) (t))2+Qx3(t)+Rou3(t)] dt+H0:U(2)(0)} (4.3)

where Qo = 0,Q > 0, Ry > 0, Hy > 0. The individual cost functional for A;,1 < i <

N, is

Ji(ui(-); u—i(+)) %E UT [Q(ﬂ:i(t) — ) (t)>2 + Ru?(t)} dt + ng(T)} (4.4)

0
where Q > 0, R > 0, H > 0.

Remark 4.1. Unlike [51, 52, 53], the dynamics of major agent in our work is a
BSDE with terminal condition as a priori. The term Hyz2(0) is thus introduced in
(4.3) to represent some recursive evaluation. One of its practical meanings is the
initial hedging deposits in pension fund industry. For sake of simplicity, behaviors of
magjor agent (e.g., the government, as presented in our above example) affect the state
of minor agents (which can be understood as considerable individual and negligible
firms or producers). Moreover, the major and minor agents are further coupled via

the state-average.

Remark 4.2. The cost functional (4.3) takes some linear combination weighted by
Qo and Q Regarding this point, (4.3) enables us to represent some trade-off between
the absolute quadratic cost x3(t) and relative quadratic deviation <x0(t) — ) (t))z.

This functional combination can be interpreted as some balance between the mini-
mazation of its own cost and the benchmark index tracking to minor agents’ average.
Moreover, such tracking can be framed into the relative performance setting. Simi-

lar works can be found in [85] where the relative performance is formulated by some
2
convexr combination A(a:i(t) — ) (t)) + (1= N)z3(t), Ae [0,1].
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We introduce the following assumption:

(H4.1) {z,}¥, are independent and identically distributed (i.i.d) with Ex;y = =,

E|z;|*> < +o0, and also independent of {W,, W;,1 < i< N}.

It follows that (4.1) admits a unique solution for all uy € Uy, (see [84]). It is also well
known that under (H4.1), (4.2) admits a unique solution for all u; € U;, 1 < i < N.

Now, we formulate the large-population dynamic optimization problem.

Problem (BF-MM). Find a control strategies set @ = (g, u1, ..., uy) which

satisfies
Tl () = inf (), a-,()), 0<i< N
where u_g represents (y, g, . .., uy) and 4_; represents (g, Uy, - - -, Ui—1, Uit1s - - -, UN),

for 1 <i< N.

4.2 The Limiting Optimal Control and NCE E-
quation System

To study Problem (BF-MM), one efficient approach is to discuss the associated
MFGs via limiting problem when the agent number N tends to infinity. The key
ingredient in this approach is to specify some suitable representation of state-average
limit. With such limit representation, we can figure out a family of approximating
problems and the decentralized strategies of individual agents can be derived based
on them. Now we present some straightforward analysis to determine the limit
representation in our current work. To start, we first recall the standard procedures
of MFGs. As discussed in [29] and [53], the implementation of MFGs breaks into the

following main steps:
e (i) Fix or freeze the limit state-average by a given process, say  which maybe
deterministic or random.

N)

e (ii) Solve the standard stochastic control problem by replacing 2™ using z.
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e (iii) Determine the frozen term z such that the the resulting optimal states

will replicate our state limit.

Due to the major-minor agent feature, Step (ii) can be further divided into two

sub-steps:

e (ii-a) Solve the decentralized standard stochastic control problem of major

agent, by replacing V) using Z. We can obtain the decentralized optimal

control and state of major agent.

e (ii-b) Given the decentralized optimal state and control of major agent, solve
the stochastic control problem facing by the minor agents. Here, the state is
augmented by consisting the individual minor agent’s state, the derived optimal

state of major agent, as well as the limiting state-average.

We have the following basic observation by noting the above MFG procedures
and our backward major’s state. First, as addressed in (i), the limit state average
of minor agents will be frozen and denoted by z. Then, by (ii-a), the optimal state
of major agent will be characterized by some BFSDE. This is because the state of
major agent is some BSDE, thus its adjoint process will be some forward SDE but
these two equations will be further coupled in the initial condition. Therefore, we
will get some BFSDE instead the classical FBSDE. Next, by (ii-b), the given minor
agent will solve some standard stochastic control problem with the augmented state:
its own state, the limiting state-average, the optimal state of major agent from (ii-a)
which is a BFSDE. The minor’s optimal control should involve some feedback of this
augmented state. In this way, the minor’s optimal state will be represented through
some coupled system of its own state, the major’s agent, the limiting state-average
as well as one forcing state equation (which is another BSDE because the limit state-
average depends on major’s agent thus it should be a random process in general).
Last, as specified in (iii), we need to make summation of all individual minor agents’
states, take average and send it to limit. This will enable us to replicate the limiting

state-average frozen in (i). In sending limit step, the equations of forward SDE (the
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minor’s state) and the limiting state-average will reduce to the same one. Combining
with the major’s state and forcing equation (BSDE with null terminal condition),
we naturally have the following formulation of limit representation. To obtain the
feedback control and the desired results, we assume U; = R for ¢ =0,1,2,..., N.
Suppose V) (-) is approximated by #(-) as N — +oo. Introduce the following

auxiliary dynamics of major and minor players, still denoted by zo(-), z;(-) respec-

tively:
dl'o [ono + B()UO( ) + Cozo(t):ldt + Zo(t)dWo(t),
zo(T) =&,
dz(t) = [A(t)z(t) + B(t)xo(t) + C(t)k(t)]dt,
X (4.5)
z(0) =z,
dk(t) = [A@®)k(t) + B(t)z(t) + C(t)zo(t)]dt + O(t)dWo(2),
| K(T) =0
and

dz;(t) =[Az;(t) + Buy(t) + DT(t) + axo(t)|dt + odW;(t),
(4.6)
z;(0) =x0.

Note that the coefficients (A(-), B(-),C(-), A(), B(-),C()) € L*(0,T;R®) are still to

be determined. The associated limiting cost functionals become

h(unl) =24 [

JT [Qo (xo(t) - a:(t))2 +Quj(t) + Roug(t)] dt+H0xg(o)} (4.7)

and

B () =58

! JT lQ (:m(t) - a‘c(t))2 + Ru?(t)] dt + Hx?(T)} _ (4.8)

0

Thus, we formulate the limiting L.QQ game as follows.
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Problem (L-BF-MM). For it" agent A;, i = 0,1,2,..., N, find @; € U; satisfying

Ji(@(-) = inf Ji(u(-)). (4.9)

uiGZ/[i

u; satisfying (4.9) is called an optimal control for (L-BF-MM).

Remark 4.3. Since Z(t) is regarded as the approximated process of state average
+M(t), we replace 2™ (t) by z(t) in Problem (L-BF-MM). In what follows, (L-
BF-MM) is called the limiting problem of (BF-MM) as N — +oo. As referred
at the beginning of this section, we are going to deal with this limiting problem first.
Then, we will focus on the e—Nash equilibrium between (BF-MM) and (L-BF-
MM), which is the biggest difference with the usual Nash equilibrium problem.

Remark 4.4. By noting that each minor player’s state xz;(t) in (4.2) depends on
the major player’s state xo(t) explicitly, we claim that the limiting process Z(t) also
depends on xo(t) explicitly. In fact, the third process k(t) is also meaningful, which
1s a stochastic process introduced in decoupling the Hamilton system. Hereinafter we

will show it.

Remark 4.5. Since the state-average of minor players appears only in the cost func-
tional of major player, the first equation in (4.5) has the same form with (4.1) actu-

ally. However, for reqularity, we still write it out.

To get the optimal control of Problem (L-BF-MM), we should obtain the opti-

mal control of Ay first. We have the following lemma.

Lemma 4.1. Corresponding to the forward-backward system (4.5) and (4.7), the
optimal control of Ay for (L-BF-MM) is given by

uo(t) = —BoRy ' po(t) (4.10)

where the adjoint process po(-) and the corresponding optimal trajectory (Zo(+), Zo(+))
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satisfy the following Hamilton system
dio(t) = [AoZo(t) — B§Ry 'po(t) + Cozo(t)]dt + 2o(t)dWo(2),
dz(t) = [A(t)z(t) + B(t)Zo(t) + C(t)k(t)]dt,

dk(t) = [A@t)k(t) + B(t)z(t) + C(t)@o(t)]dt + 0(t)dWo (1),

— Copo(t)dWo(t),
dp(t) = [ — A(t)p(t) + Qo(Zo(t) — Z(t)) — B(t)q(t)]dt + O(t)dWy(t),

dq(t) = (= A(t)q(t) — C(t)p(t))dt,

where 0(-),0(-) € L2, (0, T; R).

dpo(t) = [ = Aopo(t) — Qo(&o(t) — Z(t)) — Qio(t) — B(t)p(t) — C(t)q(t)]dt

[ 2o(T) = ¢, 2(0) =z, k(T) =0, po(0) = —HoZo(0), p(T) =0, ¢(0) =0

Proof. For the variation of control dug(-) € L%u, (0, T; R), introduce the following

variational equations:

doz(t) = [A(t)6Z(t) + B(t)dzo(t) + C(t)ok(t)]dt,

| 520(T) = 0, 67(0) = 0, 5k(T) = 0.

( d5$0(t) = [A05$0(t) + B05U0(t) + CoéZo(t)]dt + 520(t)dW0(t),

dk(t) = [A(t)Sk(t) + B(t)oz(t) + C(t)dwo(t)]dt + 60(t)dWo(t),

(4.12)

Applying It6’s formula to po(t)dxo(t) +p(t)dz(t) +q(t)dk(t) and noting the associated

first order variation of cost functional :

T
0=06J(ao) =E{ L [QO (20(t) — (1)) (dzo(t) — 02(t)) + Qio(t)dmo(t) + Roao(t)éuo(t)] dt

+ Hoio(o)(sfﬁo(o)},

we obtain the optimal control (4.10). Combining all state equations and adjoint

equations, and applying ug(-) to Ay, we get Hamilton system (4.11).
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After obtaining the optimal control of major player Ay, in what follows we aim to

get the optimal control u; of minor player A;, with corresponding optimal trajectory
Lemma 4.2. Under (H4.1), the optimal control of A; for (L-BF-MM) is

ui(t) = —BR™'pi(t) (4.13)

where the adjoint process p;(-) and the corresponding optimal trajectory z;(-) satisfy

BSDE

dp;(t) = — Api(t) — Q(&:(t) — (1)) |dt + Oo(t)dWo(t) + 0;(t)dW; (1),

(4.14)
pi(T) =Hi;(T)
and SDFE
d;(t) =[Az;(t) — B*R™'pi(t) + Dz(t) + ado(t)]dt + o(t)dW;(t),
(4.15)

Here 6y(-),0;(-) € L%(O,T; R); #o(-) and Z(-) are given by (4.11). The proof is

similar to that of Lemma 4.1 and omitted. For the coupled BFSDE (4.14) and (4.15),
we are going to decouple it and trying to derive the Nash certainty equivalence (NCE)

system satisfied by the decentralized control policy. Then we have

Lemma 4.3. Suppose P(-) is the unique solution of the following Riccati equation

system

P(t) + 2AP(t) — B2R™'P(t) + Q = 0,
(4.16)
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then we obtain the following Hamilton system:

(dio(t) = [Aodo(t) — BiRgy 'po(t) + Cozo(t)]dt + 20(t)dWo (),
dz(t) = [(A+ D — B*R™'P(t))z(t) — B*R'k(t) + ado(t)]dt,
dk(t) = [(— A+ B*R7'P())k(t) + (Q — DP(t))Z(t) — aP(t)do(t)]dt
+ 0o (1) dWo(t),
dpo(t) = [ — Aopo(t) — Qo(io(t) — Z(t)) — Qo(t) — ap(t) + aP(t)q(t)]dt
~ Copolt)dWo(t), 1
dp(t) = [~ (A+ D — B*R'P(t))p(t) + Qo(Z0(t) — Z(t))
— (Q — DP(t))q(t)]dt + 0(t)dWo(t),

dq(t) = [(A— B*R™'P(t))q(t) + B*’R™'p(t)]dt,

20(T) =&, 2(0) = =, k(T) =0, po(0) = —Hodo(0), p(T) =0, ¢(0) =0
which is a 3 x 2 FBSDE (TFBSDE).

Proof. Suppose
pi(t) = P(t)z;(t) + fi(t), 1<i<N

where Pj(-), f;(-) are to be determined. The terminal condition p;(T) = Hz;(T)
implies that

Applying It6’s formula to P;(¢)Z;(t) + f;(t), we have

dpi(t) =[Pi(t) + AP;(t) — B2R™'PA(t)]2,(t)dt

+ [DP(t)z(t) — B> R™'Pi(t) fi(t) + aPi(t)Zo(t)]|dt + df;(t) + o Pi(t)dWi(t).

Comparing the coefficients with (4.14), we get 0;(t) = o P;(t),

(4.18)

Py(t) + 2AR(t) - B°R™'P} (1) + Q = 0,
P(T)=H
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and
dfi(t) =[(— A+ B*R™'P,(1)) fi(t) + (Q — DPy(1))3(t) — aPy(t)io(t)]dt
+ 00()dW (b), (4.19)
fi(T) =0.
Noting that Riccati equation (4.18) is symmetric, it is well known that (4.18) admits
a unique nonnegative bounded solution P;(-) (see [95]). Further we get that Pi(-) =

Py(-) = -+ = Py(-) := P(-). Thus, (4.18) coincides with (4.16). Besides, for
given Z(-),Zo(-) € L2 (0,T;R), LBSDE (4.19) admits a unique solution fi(-) €

Lin(O,T; R). We denote f;(-) := f(-),i=1,2,...,N.
Therefore, the decentralized feedback strategy for A;,1 < i < N is written as

ui(t) = =BR™' (P(t)zi(t) + f(1)) (4.20)

where ;(-) is the state of minor player A;. Plugging (4.20) into (4.2) implies the

centralized closed-loop state:

di(t) =| (A= BR7'P()2:(t)~ B*R™ £ (1) + D™ (0) + o (1) [d+ oaWWi (1),
(4.21)
QTZ(O) =T;0-
Taking summation, dividing by N and letting N — +00, we get
dz(t) =[(A+ D — B°R™'P(t))z(t) — B°R™'f(t) + axo(t)]dt,
(4.22)

z(0) =x.
Comparing the coefficients with the second equation of (4.5), we have
A()=A+D—-B*R'P(), B(:)=a, C(-)=-B*R™", k()= f(-).
Then we obtain

{ dk(t) =[(— A+ B*R™'P())k(t) + (Q — DP(t))Z(t) — aP(t)zo(t)]dt + Oo(t)dWo(t),
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Noting the third equation of (4.5), it follows that
A()=—-A+B’R'P(-), B()=Q—DP(), C()=—aP(:), 0()=6().
Then (4.17) is obtained, which completes the proof. 0

Remark 4.6. The proof of Lemma 4.3 implies that k(-) = f(-). Thus, k(-), which is
first introduced in (4.5) has some specific meanings that it is indeed a force function

when decoupling (4.14) and (4.15).

To get the wellposedness of (4.17), we give the following assumption.
(H4.2) By #0, Hy >0, Q > 0.
Theorem 4.1. Under (H4.2), TFBSDE (4.17) is uniquely solvable.

Proof. Uniqueness.

It is easy checked that (4.16) admits a unique nonnegative bounded solution
(see [95]). For sake of notation convenience, in (4.17) we denote by b(¢),o(¢) the
coefficients of drift and diffusion terms respectively, for ¢ = pg, Z, ¢; denote by f(1))
the generator for ¢ = g, p, k.

Define A := (po, 7, q, 20, p, k, 20,0, 6y). Similar to the notations in [92], we denote
by

A(t,8) 1= (= f(20), —F (), —F (k). b(po). (@), bla). o (p0). (%), o(a)).
which implies A(t, A) = (Aoﬁzo — B2Ry'po + Coko, —(A+ D — B2R1P())p + Qoldo —
) — (Q — DP(t))q, (— A+ B2R-'P(t))k + (Q — DP(t)) — aP(t)i0, —Aopo — Qolio —
) — Qi — ap + aP(t)q, (A + D — B2R'P(t))& — B2R 'k + aiy, (A — B2R™LP(t))q +
B2R'p, —Copo, 0, o) .

Then for any A* = (p}, 7%, ¢*, 24, p', k¥, 25, 0°,68),i = 1,2, we have
CA(t, AY) — AL, A2), Al — A2)
= — B3Ry (b —p3)* — Qo[ (&' — ) — (&6 — 38)]" — Q(ap — 43)°

< — BiRy (ph — p})* — Qi — 38)? := —Bi(po — pg)? — Ba(df — 23)°
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In the following, firstly we are going to show that (4.17) admits at most one
adapted solution. Suppose A and A’ = (ph, ', ¢, 24, ', k', 24, 0', 0})) are two solutions
of (4.17). Setting A = (po, &, 4, &0, p, k. 20, 0,00) = (po — Dy & — ', q — ¢ o — &), p —
P k—k, 5—2,,0—0" 0, —0}) and applying Ito’s formula to (o, Zo) + (Z, ) +(§, k),

we have

T
_E(po(0), 5o (0)) = EL (A(s, A) — A(s, A), Adds

T T

(pols) — p(s))2ds — o f (0(5) — &)(s))2ds.

0

<-pE

0

It follows that

2
f<o

T T
BiE [ lin()Pds + B8 | fiols)|"ds + HE]3(0)

0 0
By (H4.2) we get 81 > 0 and S8 > 0. Then po(s) = 0, &o(s) = 0. Further Zy(s) = 0.
Applying the basic technique to Z(s) and l%(s), and using Gronwall’s inequality, we
obtain Z(s) = 0, k(s) = 0 and 6y(s) = 0. Similarly, we have G(s) = 0, p(s) = 0 and

5(5) = (. Therefore, (4.17) admits at most one adapted solution.
Ezistence. In order to prove the existence of the solution we first consider the

following family of FBSDEs parameterized by v € [0, 1]:

dpy(t) = [ = (L =& () B2 + vb(0d) + ¢ |dt + [vo(pg) + Ae]dWo(t),

did(t) = [ = (L= y)pd(t)B1 — vf (&) + &t |dt + 23 (£)dWo(t),
(4.23)

p3(0) = —(1 = 7)23(0) — vHoig(0) + a, &g(T) =€, z7(0) = 7z,

p’(T)=0,¢(0)=0, K7(T) =0
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where (o1, 0%, @* A\ kY k% %) € L%(0,T;R7), a € L*(Q, Fo, P;R). Clearly, when
v = 1, the existence of (4.23) implies that of (4.17). When v = 0, it is easy to get
that (4.23) admits a unique solution (see [92] and [105] for details).

If, a priori, for each (o', p? ¢* A\ k' k% K*) € LEL(0,T;R"), a 7o € [0,1) there

exists a unique tuple (pg°, 770, ¢7°, #3°, p°, k70, 20°, 670, 63°) of (4.23), then for each

= (pg(s),f(s),q(s),io(s),p(s),k(s),ég(s),é(s),é’o(s)) € L?FS(O,T; R?),

there exists a unique tuple Uy = (Py(s), X (s), Q(s), Xo(s), P(s), K(s), Zo(s), O(s), Oo(s))
€ L% (0,T;R?) satisfying the following FBSDEs

(dPy(t) = [ = (1 = 70)Xo(t)B2 +70b(Fo) + 8(&0(t)B2 + b(po)) + i |dt
+ [0 (Po) + A |dWo(t),
dXo(t) = [ = (1 =70)Po(t)B1 — 20/ (Xo) + 6(po(t) 1 — f(&0)) + w¢]dt
+ Zo(t)dWy(t),
= [10b(X) + 6b(Z) + ¢ dt,
X (4.24)
= [ —1f(P) —df(p) + Ki]dt + O(t)dWy(2),
= [10b(Q) + db(q) + ¥} ]dt,
= [ =0 f(K) = 0f(k) + K} ]dt + Oo(t)dWy (1),

Py(0) = —(1 — ~0)X0(0) — v HoX0(0) + 6(1 — Hp)#o(0) + a,

Xo(T) = 7€ + 8¢, X(0) = oz + 6z, P(T) =0, Q(0) =0, K(T) = 0.
In the following we aim to prove that the mapping defined by
Lyys(u x #(0)) = U x Xo(0) : L%(0, T;R%) x L2(Q, Fo, P) — L%(0,T;R%) x L*(Q, Fo, P)

1s a contraction.
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Introduce v’ = (pf), 7', ¢, &4, 0, k', 24,0, 04) € L%(0,T;R), U’xXé(O) = Ls(u'x
24(0)) and set
U= (ﬁ()a'%a(i%()ypal%aéméa é())
= po—p’,a’:—a’:/,q—q’,ﬁo—:%’,p—p',k—k:’,éo—2’,@—@’,90—9/
0 0 0 0
(7 = (p07)?7QA7X07P7K7207é7®0>

— (P -P,X-X,Q-Q ,Xo—X,,P-P . K—-K' Zy— 2,0 —6,0, — 0)).
Applying It6’s formula to (Py, Xo) + <)§', P) +(Q, K), we have

(’YOHO +(1- 70))E

2 2 T A 2 N 2
%O +E [ (BRG] + %) )ds
0
(4.25)
T . . 2
<501]EJ <|as|2 + |US|2)ds+5(Jl]E‘£O(O)‘ .

0

On the other hand, since Py and Bj are solutions of SDEs with It6’s type, applying

the usual technique, the estimate for the difference By=P— Py is obtained by

T T
EJ |Py(s)|?ds < (JlTéEf 4s|*ds + C,TE
0 0

2 2 ~ 2
XO(O)‘ + ClTéE‘fco(O)‘

(4.26)

T

+ ClTIEf

(1K X+ PO + 1@ ds

Similarly, estimates for the difference X=X - X and Q = Q — Q' are given by

sup E|)?(s)\2 < Cl(SEJ |15 *ds + ClEJ (yf((s)\? + yf(o(s)\?)ds (4.27)
0<s<r 0 0
and
sup E|Q(s)‘2 < Cl(SIEJ s |*ds + C’lEJ (]K(s)\z + ]p(s)\z)ds (4.28)
<s<r 0 0
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respectively, for V 0 < r < 7. In the same way, for the difference of the solutions
(X0, Zo) = (Xo— X4, Zo—28),(P,©) = (P—P',0—0') and (K, 0,) = (K—K',0,—
©(), applying the usual technique to the BSDEs, we have

T N N T T
EJQ&@Fﬂ%@§@<qm1mﬁw+mﬂﬁ%@w& (4.29)
0 0

0

E£<mgﬁ+@ﬂﬁ@
A (4.30)
(IXo()? + X ()2 + [ Q(s) ) ds

r

< Cl(SEJ ‘ﬁSPdS + ClEJ
0

and
B[ (1RGP +100(s)F)ds

’ (4.31)

<qmjmﬁ¢+aﬁfoﬁ@ﬁﬂﬁ@ﬂw
0 0

for V.0 < r < T. Here the constant C; depends on the coefficients of (4.1)-(4.2),
P(-), p1, B and T. voHy + (1 — ) = p, = min(1, Hy) > 0.
Under (H4.2), combining (4.25), (4.27)-(4.28), (4.30)-(4.31) and applying Gron-

wall’s inequality, we obtain

EJTEH%S+@éMmF<C@%EJTm£ Qmﬂﬁ
0 0

where C5 depends on C}, p and T. Choosing 9y = we get that for each fixed

2C’

d € [0, d0], the mapping I, is a contraction in sense that

2 2 1
(O)) <3 J || ds—i—E’xo )| )
Then it follows that there exists a unique fixed point

+6 _ Y0+ yo+d +6 y0+6 +6 +5 Zv+6 Av+d oyvo+o
o —(P() , X000 aXo , proto o aZ() ,em ’@0 )
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which is the solution of (4.23) for v = vy + J. Since &y depends only on (Cy, u,T'),
we can repeat this process for N times with 1 < Ndg < 1 + 9.

Then it follows that, in particular, as 7 = 1 corresponding to ¢! =0, \; =0, s} =
0,a=0(i=1,2,3), (4.23) admits a unique solution, which implies the wellposedness
of (4.17) (also (4.11)). The proof is complete. O

Remark 4.7. In what follows (4.17) is called the Nash certainty equivalence (NCE)
equation system (see [51, 18, 20, 8]). By Theorem 4.1 we know that there exists a
unique 9-tuple solution (po, T, q, &0, p, k, 20, 0, 00) which can be obtained off-line. Thus
it is equivalent with the fized point principle. To our best knowledge, it is the first
time to focus on the wellposedness of TFBSDE in large-population problems. It is of

great feature and meaningful.

4.3 e-Nash Equilibrium Analysis for (BF-MM)

In above sections, we obtained the optimal control @;(-),0 < i < N of Problem
(L-BF-MM) through the consistency condition system. Now we turn to verify the
e-Nash equilibrium of Problem (BF-MM). To start, we first present the definition

of e-Nash equilibrium for (N + 1) agents.

Definition 4.1. A set of controls ux € Uy, 0 < k < N, for (N + 1) agents is called
an e-Nash equilibrium with respect to the costs Ji, 0 < k < N, if there exists € = 0

such that for any fized 0 <1 < N, we have
Ti(wi,ui) < Ji(uj,us) + ¢ (4.32)
when any alternative control w, € U; is applied by A;.

Now, we state the main result of this paper and its proof will be given later.
Theorem 4.2. Under (H4.1)-(H4.2), (dg, @1, Uo, ..., Uyn) satisfies the e-Nash equi-
librium of (BF-MM). Here, g is given by

Uo(t) = —Bo Ry 'po(t) (4.33)
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where po(-) is obtained outline by (4.17); while for 1 <i < N, 1; is
w;(t) = —BR'P(t)%;(t) — BR'k(t) (4.34)
where T;(-), the state trajectory for A;, satisfies (4.21).

The proof of above theorem needs several lemmas which are presented later.
Denote by (Zo(+), Zo(+)) the centralized state trajectory; (Zo(-), Z0(+)) the decentralized
one. Applying ug(-) to Ay and using the notations above, it is easy to know that
(o), 20()) = (Fo(-), Z0(-)). Further, (z(), k(-))ay = (5(:), K(-))ap. Hereafter, for any
hi(-) € L%(0,T;R),j = 1,2,3, denote by (hi(-), ha(-))n, the stochastic process pair
(h1(+), h2(+)) which is determined by hs(-). The cost functionals for (BF-MM) and
(L-BF-MM) are given by

100).1-00) =38 [ |@a 300~ 200)" + Qa0 + Roido)| ar + oz}
(4.35)

and

Jo(to(+)) %E { f ' [Qo <:%0(t) — a-:(t)jo)2 + Q1) + Roag(t)] dt + H@%(O)} (4.36)

0

respectively. For A;,1 < i < N, we have the following close-loop system

dzi(t)=| (A= B2 R P(£)&i(t)~ B2R ™ k(t)aq + DE™(8) + ao (1) |de-+ Wi (1),
(4.37)

:i’Z(O) =XT;0

with the cost functional

T
Ti(@i (), a—i (")) :%E {f [Q <5:7;(t) — &M (t)>2 + Raf(t)] dt + H@?(T)} (4.38)
0
N
where (M (t) = % Z Z;(t). The auxiliary system (limiting problem) is given by

Il
—

)

dz;(t) :[(A—BQR_lP(t))fci(t)—BQR_lk(t)@o +DE(t), +a550(t)]dt+adWi(t),
(4.39)

@z(O) =XT;0
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with the cost functional

H() 55

! r [Q (:f:z»(t) - x(t)i(])Q + Ruf(t)] dt + Hif(T)} (4.40)

0
where (Z(t)z,, k(t)s,) satisfies (4.17). We have

Lemma 4.4.

SN — 20 = o~
oi?ETE V() — 2(t)z| = O(N), (4.41)
’.70(@0, o) — Jo@o)) = O(%) (4.42)
Proof. By (4.37), we have
N
Az (1) = [(A+D—B2R—1P(t))az<N> ()= B2R (1)1, —i—aa?o(t)]dt—l—% 3 odWi(t),
im1

#M)(0) =2V

(M) _ 15
where x5/ = + 3 ;0. Noting that
i=1

2

o)

2
E‘xéN) - gc’ ~E

t]_ N
- O'dWiS
fNZ (s)

by (4.17) and Gronwall’s inequality, we obtain (4.41).

It is easily got that sup E}:ﬁo(t) - :E(t)io‘2 < 4. Applying Cauchy-Schwarz

0<t<T

inequality, we have

sup E“jo(t) — M) -

0<t<T

olt) — #(t)z, | =

O(\/LN) (4.43)

In addition, by (4.10) and (4.33), we have @g(-) = Gg(+). Thus (4.42) is obtained. [J

For minor players, we have
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Lemma 4.5.

s [ ) -0 | = 0(5), ”
12ity [oi?fT “i(t)‘z] = O(%) (4.45)
Ji(ts, t—q) — Ji(U;)| = O(%), 1<i<N. (4.46)

Proof. For ¥ 1 < i < N, applying Gronwall’s inequality, we get (4.44) from (4.41).
(4.45) follows from (4.44) obviously. Using the same technique as (4.43) and noting

sup E|2;(t) _fz(t>;i-0‘2 < 400, sup IE‘ﬂl(t)‘2 < 400, sup E‘i,(t)f < 400, we obtain
0<t<T 0<t<T 0<t<T

(4.46). ]
Until now, we have addressed some estimates of states and costs corresponding
to control u; and u;,0 < i < N. Next we will focus on the e-Nash equilibrium for

(BF-MM). Consider a perturbed control uy € Uy for Ay and introduce the dynamics

dlo(t) =| Aolo(t) + Bouo(t) + Coao(t) |t + ao(t)dWo(®),

(4.47)
zo(T) =¢
whereas minor players keep the control u;,1 <i < N, i.e.,
dl;(t) = [(A—BZR_IP(t))li(t) — B2R(t), + DI (t) +alo(t)]dt+adWi(t),
(4.48)
11(0) =T;0
N
where [V (t) = L+ 3 1,(t); k(t);, associated with [y satisfies
k=1
dk(t), = [( — A+ B2RT'P))k(t), + (Q — DP(£))Z(t), — aP(t)lo(t)]dt
+ Ho(t)lOdWQ(t),
(4.49)

dz(t);, = [(A + D — BXR7'P())5(t), — B2Rk(t), + alo(t)]dt,
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And for any fixed 7, 1 < ¢ < N, consider a perturbed control u; € U; for A;, whereas
the major and other minor players keep the control 4;,0 < j < N,j # 4. Introduce

the dynamics

dm;(t) = [Ami(t) + Bui(t) + Dm™(t) + aff;o(t)]dt + odWi(t),

(4.50)
mZ(O) =0
and for 1 < j < N, j #1,
dmj(t)z[(A—B2R_1P(t))mj (t)~B*R~'k(t)z,+Dm™ (t)+a5co(t)]dt+o—dWi(t),
(4.51)

m;(0) =xjo

M=

where mM () = + 3 my(t); k(t)z, satisfies (4.17) due to Zo() = &o(-).
k=1

If u;, 0 < j < N is an e-Nash equilibrium with respect to cost J;, it holds that

Ji(ty,0-;) = inf Fj(uj, i) = Jj(t,0-;) — €
’LLjGZ/{j

Then, when making the perturbation, we just need to consider u; € U; such that

Ji(uj,u_j) < J;(Uj, u_;), which implies

1 (" N o . 1
§EL Ruj(t)dt < Jj(ui, i) < Ty, -j) = Jj(t;) + O<\/_N>

In the limiting cost functional J;, by the optimality of (z;,u;), we get that (z;,u;)

is L?-bounded. Then we obtain the boundedness of J;(u;), i.e.,

T
EL wi(t)dt < Cs, 0<j<N (4.52)

where (3 is a positive constant and independent of N. Then we have the following

proposition.
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Proposition 4.1. sup E‘lo(t) 2, sup [sup E‘lk(t)| ], sup [sup E‘mk(t)|2] are
0<t<T 1<k<N|o<t<T 1<k<N|o<t<T

bounded.

Proof. By (4.52), applying the usual technique of BSDE, we get the boundedness

of sup E’lo(t)‘z. It follows from (4.48) that

0<t<T
<Cy {E

o[

N
> |5L“k0|2 J [Z |1k(8)I? + N{E(s)io[* + Nllo(s)[* | ds
k=1

0

+ i E JtUde(s)r}.

From (4.50) and (4.51), it holds that

N N
E [Z Imk(t)|2] < { [Z Il‘ko!2] +EJ [Z ()] + ()P + D Ji(s)]?
k=1 k=1 ki

+N|Zo(s) ds + Z E‘ f odWy(s }

Here, C, and C5 are both positive constants. Since sup I[-Il\lo(t)‘2 is bounded, we get
0<t<T

the boundedness of sup E]k(t)lof by (4.49). Tt follows from (4.52) that E|u;(-)|?

0<t<T
is bounded. Besides, the optimal controls @x(-),k # 4 is L?-bounded. Then by

Gronwall’s inequality, it follows that

N
supE[2|zk<t>|]~ sup IZrmk - O(N).
k=1

o<t<T o<t<T

Thus, for any 1 < k < N, sup E|[l,(#)]*> and sup E|my(t)|? are bounded. Hence the
0<t<T 0<t<T

result. ]
Correspondingly, the dynamics for agent Ay under control uy for (L-BF-MM)
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is as follows

{ dlo(t) =[Aolo(t) + Bouo(t) + Cogy(t)]dt + qo(t)dWo(t),
(4.53)
2o(T) =¢
and for agent A;,1 <i< N,
{ dii(t) =[(A — B*R™"P())i;(t) — B*R™"k(t)y, + DE(t)y + alg(t)]dt + odWi(t),
(4.54)
ZZ(O) =T;0-
where (k(t)y,%(t)y) associated with [j satisfying
(dk(t), = [(— A+ B*R'P())k(t)y + (Q — DP(t))Z(t)y, — aP(t)ly(t)]dt
+ 6o (1), dWo (1),
X (4.55)
dz(t)y = [(A+ D — B*R™'P(t))x(t)y — B°R™k(t);, + aly(t)]dt,
L k(T)% = 0, E(O)lé = X.
Then we have
Lemma 4.6.
2 1
Bl — 20, = o = 4.56
e, B0 —20| = 0(5). (456)
1
| Foluo, o) — Jo(uo)| = O(TN). (4.57)

Proof. From (4.47) and (4.53), by the existence and uniqueness of BSDE, for
the same perturbed control ug(-) we have (I}, ¢;) = (lo, o). Further, noting FBSDE
(4.49) and (4.55), we get (k(t)y,Z(t)y) = ()i, T()y)-

It follows from (4.48) that

N
AN (1) = [(A + D — B2R'P(t))I™)(t) — BA R k(t),, + alo(t)]dt + % 3 odwi(t),
i=1

1M (0) =M.
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Noting (4.55) and

2

E‘x(()N) — xor ~E = O(%)a

and applying Gronwall’s inequality, we get (4.56). Using the same technique as

t 1 N
- UdWZ'(S)
Ll

Lemma 4.4 and noting sup E|[Ij(t) — Z(t)y ? < 40, we obtain (4.57). O

RS

Now, we will focus on the difference of states and cost functionals for the per-
turbed control and optimal control of minor players. Given the system of A; under

control u; for (L-BF-MM)

{ dmi(t) =[Amj(t) + Bu;(t) + DZ(t)z, + ado(t)]dt + cdW;(t),
(4.58)
m;(O) =T;0
and for agent A;, 1 <j <N, j #1,
{ diin(t)=[(A=B* R~ P(t))in;(t)=B* R~ 'k(t)z, + DI (t), + ao(t) | dt+odW;(t),
(4.59)
m;(0) =0

where (Z(t)z,, k(t)s,) satisfies (4.17).
In order to give necessary estimates in (BF-MM) and (L-BF-MM), we need

to introduce some intermediate states as

dmg(t) = [Ami(t) + Bu;(t) + N - 1Dm<N*1>(t) + ai;o(t)] dt + odW;(t),
(4.60)
77%(0) =T;0
and for 1 < j < N, j #1,
(. 2 p—1 . 2 p—1 N—-1__(nv-1
din (1) :[(A ~B’R P(t))mj(t) — B*R7k(t)z, + Din™=D(t)
) + a:i'o(t)]dt + odW;(1), (4.61)
1 (0) =xjo

Y
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where VY (t) = = 3 (1),

1 < (N-1) 1 &
Define mW=Y(¢) := 2 3 my(t), g = w—= 2, Tjo. By (4.51) and

(4.61), we get

m(N—l) (0) :xéNfl)

and

Then we have the following proposition.
Proposition 4.2.

sup E m(N_l)(t) — er(N_l)(t)‘2 = O<L>,

0<t<T

sup Elm®™(t) — m(N_l)(t)‘2 = O(—),

o<t<T

sup Ejm ™ (t) - 2(t)s

o<st<T

amND(t) =| (A - BAR7'P(t) + A 1D)’”(N_l)(t) B2 R k(t)a,
N
D 1
{ T ~ M /
+ ado(t) + milt)|dt + ~— j_lz;‘-# adW(t),

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

Proof. From (4.62)-(4.63), applying Proposition 4.1 and Gronwall’s inequali-

ty, the assertion (4.64) holds. (4.65) follows from (H4.1) and the L?*-boundness of

controls u;(-) and @;(+),j # i. From (4.63) and (4.17), noting (Z(t)z,, k(t)z,, To) =
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(i‘(t)jjo, k(t)io, i‘o), we get

d(m(N’l)(t)f:c(t) ): N D (™D () -2(t)s,) — 2w ()a, | dit~ i odW;(t)
o N Zo N To N — P 7 9
MmN =D(0) = 2(0)5, =2V — 2
Therefore (4.66) is obtained. [

Based on Proposition 4.2, we obtain more direct estimates to prove Theorem 4.2.

Lemma 4.7. For fized i,1 <i < N, we have

oiltlgTE m™(t) — (D), - O(%} (4.67)
OZI;ETIE m;(t) — m;(t)‘z = O(%), (4.68)
iluirtt) = Jilus)| = 0(\/%). (4.69)

Proof. (4.67) follows from Proposition 4.2 directly. From (4.50) and (4.58), we get

(4.68) by applying (4.67). Further, sup E ]mi(t)|2—|m§(t)|2‘ = O(ﬁ) In addition,

0<t<T

sup E |(mi(1) - m®™ ()% — (mi(t) — f(t)iO)Q‘ - 0(#). Then (4.69) follows. [

Proof of Theorem 4.2: Combining (4.42) and (4.57), we have
L _ 1 1
Jo(tio, i) = Jo(to) + O(ﬁ) < Jo(uo) + O(\/—N)

= Jo(uo,t—o) + O<\/1N>

It follows from (4.46) and (4.69) that

i) = H(i) + 0( ) < Jiw) +0( )
1

= Ji(uj, t—) + O(—)

Thus, Theorem 4.2 follows by taking e = O <\/LN> ]
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Chapter 5

Leader-Follower LQMFGs
Involving Major and Minor Agents

This chapter investigates the combination problems of leader-follower and major-
minor systems, where the large scale population is also under consideration. In
the entire system, the major and minor agents are together regarded as the lead-
ers, which are called major-leader and minor-leaders respectively. This chapter is
devoted to giving the frameworks and processing methods of three topics. In the
first topic (“Serial-Parallel Coupling”—Case I), the optimization problems of follow-
ers are solved firstly, and the left is a classic major-minor problem and solved in the
way of [51]. The major-leader imposes some direct impacts to the followers in the
second topic (“Serial-Parallel Coupling”—Case II). The processing way is similar to
the first topic, but the corresponding variation mode is different. In the third top-
ic (“Serial Coupling”), motivated by [55], the problem, which is seemed as “major
leader—minor leader—follower” model, is investigated in the “anticipating” manner
and solved from back to front. In all three topics, the agents track different convex
combinations of the centroid and dynamics of agents. In the end, three consistency

condition systems are obtained.
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5.1 “Serial-Parallel Coupling”—Case 1

(Q,F,P) is a complete probability space on which a standard (1 + N + Npg)-
dimensional Brownian motion {Wy(t), W;(t), W/j(t), 1 <i< Np, 1<j< Nrplo<t<r
is defined. Here, N; and Ny stands for the population size of minor-leaders and
followers respectively. We define the filtration Fp := o{Wy(s),0 < s < t}, F} :=
o {Wo(s), Wi(s),0 < s < t}, for 1 <i < Ny, G/ := U{WO(S),MN/j(s),O < s < t}, for
1<j < Np, Fy = o{Wo(s), Wi(s), W;(s),0 < s <t; 1 <i< N, 1<j<Np}

We consider a large-population system with (1 + N, + Ng) individual agents,
including the major-leader (the government or supervisory, denoted by .Ap), the
minor-leaders (firms, denoted by A;, 1 < i < Np) and the followers (suppliers of raw

material or manufacturers of primary commodity, denoted by B;,1 < j < Np). The

dynamics of Ay, A;, B; are given as follows:

dxo(t) = [Ao(t)zo(t) + Bo(t)uo(t)]dt + Do(t)dWo(t),
{ 20(0) = o, (5.1)
dai(t) = [A(t)zs(t) + B(t)u;(t)]dt + D(t)dWi(t) + C(t)dWo(t),
{wz<0) =z, i=1,2,...,Np, (5.2)
and
dy; () = [A(t)y;(t) + B(t)v; ()]t + D(£)dW;(t) + C(£)dWo(t),
{yj(o) =y, j=1,2,...,Np. (53)

Here, W;, W/] denote the individual random noise while Wj denotes the random noise
of the major-leader. The admissible controls ug € Uy, w; € U;, v; € V; where the
admissible control set Uy, U; and V; are defined as

Up = {uolu()(-) € L%:to(O,T; R)}v U = {uz\uz() € L%(O,T;R)}, 1<i< N,

Vj = {vj|vj(-) € Lég(O,T;R)}, 1<j < Np.
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Let (ug,u,v) = (ug,u1,...,Un,,V1,...,Un,) denote the set of control strategies of

all (1 4+ N + Np) agents; u = (uq,...,u;,...,uy, ) the set of control strategies of

all Ny major-leader agents; v = (vy,...,v;,...,0n,) the set of control strategies of
all Ny follower agents; u_; = (u1,...,ui—1, Uit1,...,uy,) the control strategy set
of major-leader agents except the i one A;; v_; = (v1,...,vj_1, Vj41,...,Vn,) the

control strategy set of follower agents except the j follower agent B;. Introduce the

following cost functional

T 2

To(u, u,v) =%E{ L | Qot) (w0(t) = (Aoe™(t) + (1 = 20}y ™) (1)) -

+ Ro(t)u? (t)]dt v Hoxg(T)},

for Ay;

for A;, 1 <i< Nyp; and

T
TF (o, v3,0-5) =5B{ | [0 (w0 - (™) + (1= D))
0 (5.6)
+ R(t)vj?(t)]dt + Hyg(T)},
Ny, Np
for Bj, 1 < j < Np. Here, z™Vo)(t) = L 3 2,(¢) and yVF)(t) = % > y;(t) are
i=1 i=1

state-average.

For the coefficients of (5.1)-(5.6), we set the following assumptions:
(H5.1) Ao(), Bo(+), Do(-) € L*(0,T;R), z9 € R, Qo(+), Ro(-) € L*(0,T;R),
Qo() =0, Ro() = 50, for 50 > (), )\0, Hy = 0.
(H5.2) A(), B(),C(), D() € I*(0,T:R), z € R, Q(-), R() € L*(0, T: R),
Q()=0,R(-) =4, for § >0, \,H > 0.
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(H5.3) A(-), B(-),C(-),D(-) e L*(0,T;R),y € R,Q(-), R(-) € L*(0,T;R),
Q()=0,R(-) =0, for 6 >0, \,H > 0.

Now, we formulate the large-population LQ games with leader-followers and major-

minors (LF-MFG) as follows.

Problem (LF-MFG). Find a control strategy set (ug, @, ) = (4g, U1, .., Un,,
U1, ...,Un,) which satisfies

Jo(ag, u,v) = inf Jy(uo,w,0),

uo€Uy

T (o, w3, ) = inf T (1o, us, 1), 1 <i< Ny,

w; €U;
@F(ﬁo,ﬂ,ﬁj,ﬁ,j) = v1161£ j ('Lbo,ﬂ,vj,@,j), 1 < j < NF
J J
where u_; represents (1, ..., Ui_1, Ui+1, - - ., Un, ), and U_; represents (Uy,...,0j_1,
Ujs1s - UNg)-

To study (LF-MFG), one efficient approach is to discuss the associated MFGs via
limiting problem when the agent number N;, and N tends to infinity. As N, Np —
400, suppose M) and yNF) can be approximated by FP-measurable functions T
and ¥, respectively.

Introduce the following auxiliary cost functionals as

2

Jofuo) =3B | [@o(6)(0(0) = (ztt) + (1= 20)5(0)) + Roftyi (0

(5.7)
+ Hoaf(1)},
for A();
T
T (ug, 1) =%E{ f Q) (i) — (3(t) + (1= Na(0)) ) + R0y ()]t
0 (5.8)

+ ng(T)},
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for A;, 1 <i< Np; and

(5.9)

for B;, 1 < j < Np. Now we formulate the following limiting LQ) games.

Problem (L-LF-MFG). For Ay, A;,i =1,2,...,Ny, and B;,j = 1,2,..., Np,
find (o, w;, vj) € Uy x U; x V; satistying

Jo('L_LQ) = inf Jo(Uo),

ug€EUy

JiL(ﬁ'O’ai) = inf JiL(ﬁ'U?ui)a I<i< NL;

uiEZ/{i
Then (1, @;, v;) is called an optimal control for Problem (L-LF-MFG). In this top-
ic, we use three steps to solve Problem (L-LF-MFG). The entire system is seemed
as the “leaders-followers” manner and (Z(-),y(:)) are supposed two fixed stochastic
process. Firstly, the optimization problems of the followers are solved, and the left
is a classic major-minor problem. With the help of ideas in [51], the MF problem
of the major-leader is processed in the second step. And then in the last step, the

optimization problems of minor-leaders are considered.
Step 1. Mean-field games of followers.

Applying the standard variational method, we have:

Lemma 5.1. Under (H5.3), the optimal control for the follower of Problem (L-LF-
MFG) is given by

9;(t) = =R () B(t)p;(1) (5.10)
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where the optimal trajectory y;(t) and the adjoint process p;(t) satisfy the FBSDE
g (t) = [ A7) — B0 R (0)ps (1)) dt + D()dV; (1) + CaWi(h),
dp;(t) = ~| Ay (t) + Q) (5(6) = (Aa(t) + (1= N)y(0) ) | at

(5.11)
+q; () AW (t) + qo(t)dWo (1),

By the terminal condition of (5.11), we suppose p;(t) = P(t)y;(t)+ ®(¢), for some
P(:) e L*(0,T;R) and ®(-) € L%,(0,T;R) with terminal conditions

P(T) = H, &(T) = 0.

Applying It6’s formula to P(t)y;(t) + ©(¢), noting (5.11) and comparing coefficients,

we obtain
P(t) + 2A(t)P(t) — B2(t)R™I(t) P2(t) + Q(t) =
(5.12)
{Hﬂﬁ
and
Ao (1) = [— (At)— B2 R (1) P(1)) B () +Q(t) (Az(t)+ (1 — X)g(t))]dt + k(£)dWo(2),
o(T) = 0.

(5.13)

Note that the optimal state g;(¢) can be represented by
dy;(t) =| A@g(t) — BEORT (0 (P@)3;(1) + ©(1)) | dt + D(0)AW; (1) + C(0)aWo o)
Therefore the state-average satisfies:

dguwa(ﬂ::[@4@)_.B2Q)R*1Q)me)gqut)—aé2@)é’1@)¢(ﬂ]dt

1 N
NZ (t)dWo(t).



Let Ngp — +o0, the limiting process 7(t) is given by

dyj(t) :[(A(t) —BX6)R7N (&) P(t))3(t) —BQ(t)R_l(t)CD(t)]dt + C()dWo(t). (5.14)

Noting (5.12), P(t) can be computed off-line. Then it follows from (5.13) and (5.14)
that

dy(t) = [ (A) = BAORT () P®)3(t) - BAOR™ O)@(0)|dt + C0)awo(v),

o (t) = [_ (A(t) — BX )R (t)P(1))®(t) + Q(t) (Az(t) + (1 — A)y(t))]dt (5.15)

+ k(t)dWy(t),

(9(0) =y, ®(T) =0

where Z(+) is to be determined.
Step 2. Mean-field games of major-leader.

Similar to Step 1, applying the standard variational method, we have:

Lemma 5.2. Under (H5.1), the optimal control for the major-leader of Problem
(L-LF-MFGQG) is

to(t) = =Ry (t) Bo(t)(Po(t)Zo(t) + Po(t)) (5.16)
and the decoupled system implies

o (1)=] (Ao(t)-B3(t) Ry (1) Polt)) 7o(t)-BE(1) Ry (1) Bo (1) | - Do (1)W1,

a0 (t)=| — (Ao(t)-B3(6)R5 (1) Po(1)) Do (£)+Qo(t) (Mo (1)+(1=20)5(1)) |t

(5.17)
+ ko (£)dWo (1),
70(0) = w0, @o(T) =0
where Py(-) satisfies
{ Po(t) + 2A0(t) Po(t) — B3 (£) Ry ' (1) P3 () + Qo(t) = 0, 518
Po(T) = Hy
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Step 3. Mean-field games of minor-leaders.
In the same way, we get

Lemma 5.3. Under (H5.2), the optimal control for the minor-leader of Problem
(L-LF-MFGQ) has the following form

(1) = =R () B(t) (K (t)Z:(t) + V(1)) (5.19)
where the optimal trajectory T;(t) satisfies
dz:(1) z[A(t)j:i(t) ~ BYOR)(K()7:(t) + \I/(t))]dt + D(O)AW;(t) + C()dWo(t)
and the decoupled system is
dz(t) = [(A(t) —B* R (K (1))Z(t) — Bz(t)R_l(t)\lf(t)]dt + C(t)dWy(t),

aw(t) = | - (A() - BAORT(OK®)U(E) + Q1) (a(t) + (1 - Nao(t)) |t

4 (5.20)
+ k' (t)dWy (1),
#0) = 2, W(T) = 0
Here, K(-) satisfies the following Riccati equation
K(t) + 2A()K(t) — B* ()R (1) K*(t) + Q(t) = 0,
(5.21)
K(T) = H.

Combining (5.15), (5.17) and (5.20), we derive the following consistency condition

96



=
Ng]
—
~
N—
[
| —
—
:BI
)
~
N—
|
oy
[\]
~—~
~
N—
=
L
—~
~
S—
!
~—~
~
N—
N—
N
VS
=
S—
|
oy
[\&]
S
~
SN—
T

—l(t)q>(t)]dt + O dWo (1),
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dao(t) = | (Ao(t) = BRWRG (H)Fo(t)) 20(t) — BE(OR () @o(t) |t
+ Do(t)dWo(t),

ddo(t) = [— (Ao(t) — B(t)Ry ' (£) Po(1)) @o(t) + Qo(t) (Mo (2) (5.22)
T (11— )\O)g(t))]dt + ko(t)dWo (1),

dz(t) = [(A(t) — B*R (K (1))Z(t) — Bz(t)R_l(t)\IJ(t)]dt + C(t)dWy(t),

aw(t) = | = (A1) = BEOR (OK®) W () + Q1) Aa(t) + (1 = Mo (1)) |at

5.2 “Serial-Parallel Coupling”—Case 11

In this topic, a case that the major-leader imposes some direct impacts to the follow-

ers is under considerable. The impacts are reflected in the coupling in the followers’

cost functionals. The processing sequence coincides with “Serial-Parallel Coupling”—

Case I, but the corresponding variational technique is different.

Because the states of all agents and the cost functionals of major-leader and

minor-leaders stay the same with that in “Serial-Parallel Coupling”—Case I, the cost

functionals of followers are only given out. Introduce the following cost functional

T 2

75 (un,u05) =3B [ [Q0) (1500 = (aD0) + (1 = Dpao(t) )

0 (5.23)

- R(t)vf-(t)]dt + nyf(T)},
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for Bj, 1 < j < Np. Here, Vi) (t) = + > 2,(t) is the state-average of minor-leaders.

@
Il
—

Now, we formulate the large-population LQ games with leader-followers and major-

minors as follows.

Problem (LF-MFG’). Find a control strategy set (4o, @,v) = (g, U1, . .., Un,,

U1, ...,Un,) which satisfies

%(ﬂmﬂ,@) = inf \70(“07'&71_])7
UOGMO

L/i— — _ . L/— _ .
k7z' (u()?uiJu*Z‘) = Hellg \71 (U07Ui,U,Z’), I<i< NL7
Uq i

Fro - — . F/o - .
\7j (UO,U,UJ‘) = legl]f}‘ \73 (UO,U,UJ'), 1<j<Nr
€V

where J; and J* are given by (5.4) and (5.5), respectively. 2(V2) and y™Vr) are still
supposed to be approximated by FP-measurable functions Z and ¥, as Nz, Np — +c0.

Introduce the following auxiliary cost functional

TF o)) =5B{ | [0 (w50 - (o) + (1 - Do)’ + Rty (0)]as
0 (5.24)

+ HyA(D)},
for B;, 1 < j < Np. Now we formulate the following limiting LQ games.

Problem (L-LF-MFG’). For Aj, A;,i =1,2,..., N, and B;,j =1,2,..., Np,
find (ﬂg,’ai, T_}j) € Z/{O X Z/{Z X Vj satisfying

Jo(ﬂo) = inf Jo(uO),

'u,oEZ/lo

JiL(amﬂi) = HEIZE Jill(ﬂ()?ui)? I<i< NL’
u €U;

J]-F(Q_L(),’l_)j) = inf J]-F(Q_L(),’Uj), 1 S‘] < NF

’U]'GVJ'

Then (1o, 4;,7;) is called an optimal control for Problem (L-LF-MFG’).

98



Step 1. Mean-field games of followers.

Similar to Step 1 of “Serial-Parallel Coupling”—Case I, applying the standard

variational method, we get

dy(t) = | (A1) = B R () P®)5(t) — BAOR ()(1) |dt + C0)awo (1),

() = [ - (40) - BOROPO)20 + Q0 (w0 + (- Do)

+ k(t)dWo(t),

(5(0) =y, ®(T) =0
where P(-) also satisfies (5.12), and Z(-), Zo(-) are to be determined.
Step 2. Mean-field games of major-leader.
In the following, we define
A(t) :== A(t) — BXt)RY(t)P(t), B(t) := B*(t)R™(¢). (5.26)
Then we have the following state equation system
dg(t) = | AWF(t) - BO®(®)|dt + C(t)awu(e),
dd(t) = [ —A)2@t) + Q(t)(Mz(t) + (1 — Z\)azo(t))]dt + k(t)dWy(t),

(5.27)
dzo(t) = [Ao(t)Zo(t) + Bo(t)uo(t)]dt + Do(t)dWo(t),

5(0) =y, ®(T) =0, z0(0) = =

and variational equation system

[ dn(t) = | A@m() - B)g®)|ar.

ag(t) = | = AWER) + Q)(1 = o (1) |dt + Sk(t)aWo (1),

(5.28)
dno(t) = [Ao(t)no(t) + Bo(t)duo(t)]dt,

[ 7(0) =0, &(T) = 0, 10(0) = 0.
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Then we obtain

Lemma 5.4. Under (H5.1), the optimal control for the major-leader of Problem
(L-LF-MFG?’) is given by

io(t) = —Ry ' () Bo(t)po(t) (5.29)

and the adjoint equation is given by

[ dpo(t) = —[ Ao(®)po () + Qo(t) (T0(t) = Aoz (1) + (1 = X0)3(1)))

L)1 — A)S(t)]dt + qo(H)dWo(t),

ap(t) = | = AP + (1= 20)Q(®) (20(t) — (Aoz(t) + (1= 20)y(1)) ) |t

) (5.30)
+q(t)dWo(t),
dS(t) = [A(t)g(t) + B(t)p(t)]dt,
| po(T) = HoZo(T), p(T) =0, S(0) = 0.
Proof. The variation of cost functional is
- 5J§£ZO) & { LT [Qo(t> <:Eg(t) — (hoz(t) + (1 — )\O)gj(t))> .

- (mlt) = (1 = Mo)n(t)) + Ro(t)io(t)duo(t) |t + Hozo(T)no(T) }.

Applying 1td’s formula to po(t)no(t) + p(t)n(t) + S(¢)&(t), the results are easily ob-
tained. ]

100



Then the following coupled system follows

[ dzo(t) = [ Ao(®)70(t) ~ BRORG (Dpo(t)|dt + Do(t)dWo(b),
ay(t) = | Ayt — BOD() |dt + C)awo (o),

do(t) = [ — A2 + Q) (Mz(t) + (1 — Z\):f:o(t))]dt + k(t)dWo(t),

dpo(t) = — [ Ao(hpo(t) + Qo(t) (To(t) — (Moz(t) + (1= 20)5(1)) )

< + Q1= NS(®)|dt + ao(B)awp(t),

(5.32)
dp(t) = | = A@®p() + (1 = 20)Qo() (70(t) = (o2 (t) + (1 = X)5(1)) ) |dt
+q(t)dWo(t),

dS(t) = [A(t)g(t) + B(t)p(t)]dt,

L jO(O) = Zo, g(o) =Y, (I)(T) = 07 pO(T) = H()iO(T)a p(T) = 07 S(O) =0
where A(t) and B(t) are given by (5.26), and Z(-) is to be determined.
Step 3. Mean-field games of minor-leaders.

Same to Step 3 of “Serial-Parallel Coupling”—Case I, the decoupled system is
derived (same to (5.20))

dz(t) = [(A(t) — BX)R (K (1))E(t) — BZ(t)R_l(t)‘I/(t)]dt + C(t)dWo(t),
dU(t) = [ — (A(t) = B2 )R YO K(6)W(t) + Q(t) (Az(t) + (1 — A)jo(t))]dt

(5.33)
+ K (t)dWo(t),

where K (-) satisfies (5.21).

101



Combining (5.32) and (5.33) implies the following consistency condition system
[ dao(t) = [Ao()ao(t) — BE()R5 ™ (t)po(t) |dt + Do()awo(v),

ay(t) = [ A@W)(t) - BO®()|dt + C(t)aWo(b),

4o () = [ — A)®(t) + Qt) Az (t) + (1 — X)fo(t))]dt + k()dWo (1),

dpo(t) = ~| Ao(t)po(t) + Qo(H)(F(t) — (Aa(H) + (1 = X3 (1))

+ QU= N)S(0)|dt + ao()aWo o),

dp(t) = | = A®p(t) + (1= 20)Q(t) (70(1) — Moz (t) + (1= 20)5(1)) ) |at

(5.34)
+ q(t)dWO (t)a

dz(t) = [(A(t) — BX(t)R™ (1)K (1)) 3 (t) — Bz(t)R’l(t)\I'(t)]dt + C(6)dWo(t),
dU(t) = [ — (A(t) = BXOR' WK 1)U () + Q) (Aa(t) + (1 — )\):fo(t))]dt

+ k' (t)dWo(t),

where A(t) and B(t) are given by (5.26).

5.3 “Serial Coupling”

The model implied in this topic is the same to “Serial-Parallel Coupling”—Case I.
However, in this topic, another method is under considerable. Motivated by [55],
this problem is seemed as “major leader-minor leader-follower”, which can be view
as a “Serial Coupling”. It is solved from back to front and the variational technique is
used widely. We also suppose (V%) and yV*) can be approximated by FC-measurable

functions z and ¥, as Np, Np — +00.
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Step 1. Mean-field games of followers.

This step is same to Step 1 of “Serial-Parallel Coupling”—Case I. And the following

system is obtained (same to (5.15))

ay(t) = | (A1) = B R () PW)g(t) — BAOR ()(1) |dt + C(0)awy (2),

ao(t) = | = (A(t) = BAORT' (OP0) (1) + Q) (Na(t) + (1= N)y(1)) |at (5.35)

Here, P(-) satisfies (5.12) and z(-) is to be determined.

Step 2. Mean-field games of minor-leaders.

Because the minor-leaders do not “dominate” the behaviors of the major-leader,

the variational technique is out of use for xq(-). Therefore, this step is same to Step

3 of “Serial-Parallel Coupling”—Case I and the decoupled system is derived (same to
(5.20))

dz(t) = [(A(t) — BXO)RM (K (1))a(t) — BZ(t)R_l(t)\I/(t)]dt + C()dWo(t),

du(t) = |~ (A() - BX )R OK @) (0) + Q(t)(Ax(t) + (1~ Nzo() | (5.36)

where K (-) satisfies (5.21) and Zy(-) is to be determined.

Step 3. Mean-field games of major-leader.
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In the following, we define

A(t) = Alt) — BAOR™ (0K (1),
B(t) .= B*(t)R™'(t),
4 (5.37)
C(t) == A(t) - BA)R™ (1) P(1)
D(t) := B*(t)R™1(t)
Introduce the following variational equation system
((dno(t) = [Ao(t)no(t) + Bo(t)duo(t)]dt,
ag(t) = [Ane(t) - Bow) |a,
ab(t) = | = AWOW) + QUY(AE®) + (1= Nmo(1)) |de + oK' (1)aWo (1),
] (5.38)
ac(t) = [0t - DA |at,
4B(t) = | = COBE) + QW (A& + (1 = N)(8) | dt + ok(8)dWo (2),
m0(0) =0, £(0) =0, 6(T) = 0, ¢(0) =0, 5(T) =0

Then we have

Lemma 5.5. Under (H5.1), the optimal control for the major-leader of Problem

(L-LF-MFGQ) is given by

o (t) = — Ry ' () Bo(t)po(t)

(5.39)
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and the adjoint equation satisfies

[ dpo(t) = =[Ao(®)po(t) + QEIM(B)(1 = N) + Qo(t) (30(t) = (Noa(®
(1= No)j )]dt+q0( )dWo(t),
dp(t) = | = AWp(t) — AQWUE) — AQWM() + 2oQo(t) (70(t) — (o (®
(1= o)7 )]dt+q () dWo(t),
< dm(t) = [A(t)m(t) + B(t)p(t)]dt, (5.40)
dn(t) = | = C@OR) — (1= NABIE) + (1= 20)Q0(t) (20(t) — (Mo (1)
+ (1= o)yt )))]dt +r(t)dWo (1),

di(t) = [C(t)l(t) + D(t)n(t)]dt,

\p0(T> = HOQ_ZO(T)’ p(T) =0, m(O) =0, TL(T) =0, Z(O) = 0.
Proof. The variation of cost functional is

0— dJo(uo) _ E{ JOT [Qo(t) (Eg(t) . ()\Oa_c(t) +(1— )\o)y(t))>

5UO

(5.41)
- (m0(t) = (Mg (®) + (1= X0)C(8)) ) + Rolt)ito(£)5uo(t) | dt + Hozo(T)no(T)}.

Applying It6’s formula to po(t)no(t) + p(t)E(t) + m(¢)0(t) + n(t)C(t) + 1(t)B(t), hence
the results. [
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From (5.35), (5.36) and (5.40), the consistency condition system is given as follows
do(t) = [ Ao(t)70(t) = BE(ORG (Dhpo(t)]dt + Do(t)dWo (1),

dz(t) = [A(t)f(t) - B(t)\Il(t)]dt + O AW (1),

dU(t) = [ — A®(E) + Q) (M\r(t) + (1 — A)gﬁo(t))]dt + K () dWo(2),

dy(t) = [CWF(t) — DOD®)|dt + C&)aws (1),

dd(t) = [ —C(H2(t) + Q(t)y(\a(t) + (1 — i)g(t))]dt + k(t)dWy(t),

dpo(t) = Ma>m QM1 (1 = X) + Qo(t) (w0(t) — (Ao (1)

—~
—
|
>
O
v

0))]dt + a0 (1)Wo 1),
@@=[ﬂﬂ>u Xo<>Am><wmwwM%mfu@@ (5.42)

]dt+q YdWo (1),

dn(t) = | = COn() = (1 = DO + (1= M)Qo(t) (To(t) = (Aot
+ (L= 20)(1)) |dt +r(B)awo (o),
di(t) = [C(t)l(t) + D(t)n(t)]dt,

Z0(0) = w0, 2(0) =z, W(T) =0, §(0) =y, ®(T) =0, po(T) = HoTo(T),

p(T) =0, m(0) =0, n(T") =0, 1(0) =0

where A(t), B(t),C(t) and D(t) are given by (5.37).

Remark 5.1. To conclude this chapter, we give some remarks concerning the solu-
tions of Riccati equations and consistency condition systems.

(1) The sufficient conditions for the existence and uniqueness of P(-), Py(-), K ()
(solutions of (5.12), (5.18), (5.21)) are given in [95]. In addition, with the help
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of the sufficient condtions, the explicit forms of P(-), Po(:), K(-) can be obtained as
nonnegative functions, respectively.

(2) Based on P(-), Py(+), K(-), the following work is to seek the wellposedness of
the consistency condition systems (5.22), (5.34) and (5.42), which are all coupled
FBSDEs. Though there is some classical literature for wellposedness of FBSDE (see
/88, 90, 92, 96], etc.), it is still challenging due to the complicated coupled structures
of (5.22), (5.34) and (5.42). If the wellposedness of the consistency condition system-
s is obtained, the decentralized strategies and the corresponding e-Nash equilibrium

properties will be studied.

107



108



Chapter 6

LQMFGs with Partial Information
— An FBSDE Representation

The purpose of this chapter is to consider the dynamic optimization of large-population
system with partial information structure. In this framework, the individual agents
can only access the filtration generated by one observable component of the underly-
ing Brownian motion. The most significant feature is that the limiting state average
in this setup turns out to be some stochastic process driven by the common Brownian
motion.

Two classes of large-population systems are proposed in this chapter: one class is
characterized by forward dynamics, and the other class is governed by backward one.
In the first class, the LQ system is proposed, the limiting state average is represented
by a MF SDE and its consistency condition is equivalent to the wellposedness of
some common Riccati equation system. This case differs from [81] because in [81]
an infinite-time horizon was defined, as a result the algebra Riccati equations were
involved. Moreover, the limiting state average in [81] was deterministic as there was
no common noise. In the backward class, the explicit forms of the decentralized
strategies and some BSDE satisfied by the limiting process are obtained. In both
cases, with the help of estimates to SDE and BSDE, the e-Nash equilibrium properties

are presented.
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6.1 Problem Formulation

The information structure of our large-population system can be described as follows.
First, introduce (2, F,{F;}o<i<r, P) as the complete probability space on which a
standard (1 + NN)-dimensional Brownian motion {W(t), W;(t), 1 < i < N}o<i<r i
defined. Depending on which problems to be addressed, we have different setup
to the information structure. In case of forward partial information problem, we
denote by {F;" }o<i<r the filtration generated by the component W;; {F"}o<i<r the
filtration generated by the component W. Here, {F," }o<;<7 stands for the individual
information owning by the " agent; {F“}o<i<r the information of some macro
process imposing on all agents (firms) due to the common external economic factors
which can’t be directly observed by our agents (say, some latent marco-economic
process, or hidden action process). Fi := F“ | JF¥. G := |J~,F denotes the
complete information of system. In case of backward partial information problem,
we let F = Ufil F" denote the information accessible to all agents. Actually, in

this case Gy = F;|J F}* denotes the complete information of large-population system.

6.1.1 Forward LQMFGs with partial information

Now, we first consider the forward large-population system with N individual agents
{A;}1<i<n in partial information structure. The state z; for A; satisfies the following

controlled linear stochastic system:
di;(t) = [A(t)xi(t) + B(t)ui(t) + az™(t) + m(t)]dt + o (H)dWi(t)

+ (L) dW (t), (6.1)

z;(0) =x

M=

where (™) (t) = L > z;(t) is the state-average, & € R denotes the coupling con-
i=1

stant which maybe positive or negative. In (6.1), W; denotes the individual random
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noise while W denotes the common random noise. Other work discussing the large-
population system with common noise W includes [43]. Thus, the admissible control

u; € U; where the admissible control set U; is defined by
Ui = {ui‘ui(-) e L2, (0, T; ]R)}, 1 <i<N.

Denote u_; = (uy, ..., ui_1, Uir1,...uy) the strategies of all agents except A;. The

cost functional of A; is

Ji(ui(+),u_i(-)) = E lj Q) (zi(t) — 2™ (#))* + R(t)uZ(t)) dt + Ga(T)|. (6.2)

0

Moreover, we have the following assumption:

(H6.1) A(), B(),m(:),0(:),0(),Q(), R() € L*(0,T;R),c e R, Q(-) = 0,
R(-) =4, for 6 >0, G = 0.

Now, we formulate the forward large-population LQ games with partial filtration

(F-PI).
Problem (F-PI). Find a control strategies set @ = (uy, g, . .., uy) which satis-
fies
) 140) = int T (), 5-i0)
where u_; represents (g, ..., U1, Uit1, .-, Uy)-

6.1.2 Backward MFGs with partial information

In some case, it is very natural to consider the backward MFGs. To this end, we
formulate the following backward MFGs in which the large-population system is
weakly-coupled in the cost functional :

State - { —dy;(t) = [Ayi(t) + Bui(t)|dt — 2 (t)dWi(t) — Z(t)dW (),

(L) = 4,
(B-PI) { cost functioga(l )Z (Zz()a “—%(» o

—E [gg’ Ru2(t)dt + 2y;(0) (o — By™ (0))] .
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Here, we assume A, B are scalar constants, R > 0,a = 0,8 = 0; n; € Fh, i =
N

1,2,---, N, are the terminal conditions for individual agents; 3™ (t) = % > yi(t) is
i=1

the state average, y™)(0) is its initial value. The admissible control u; € V; is defined

as

V= {uilui() € L2 (0. TiR) ), 1< i< N,
t
In partial information structure, we make the following assumption:

(H6.2) {n;}Y, are identically conditional distributed w.r.t. F¥ with E|p;|* < 4o0.

Moreover, the distribution of each 7; is not depending on ¢ and N.

It follows that under (H6.2), the state equation in (6.3) admits a unique solution
(Yir 2, Zi) € L5%:(0,T;R) x L%,(0,T;R) x L%,(0,T;R) for all u; € V;. In fact, the
uniqueness is obtained by [84] directly in partial information framework. Noting
the identically conditional distributions of {n;}Y¥, in (H6.2), it is easy to obtain that
E(m|Fy) = -+ = E(ny|Fy), which is denoted by n € Fi. Then applying the results

N
of [114], we get that conditionally on F¥, & Z; n; — 1, a.s.,as N — +oo. It is worth
pointing out that if n; has the following linear or nonlinear structure, {n;}¥, satisfy
(H6.2) easily: n; = a;+p or n; = ¢(ay, ), where a; € F7* with identical distribution,

BeFY Ela? <+, E|f]> < 400,i=1,--- , N, and ¢(-) is a measurable function.

N
And Z:lm- — Eay + B or E(¢(au, B)|FF) a.s., as N — +o.

Remark 6.1. (1) We now present some remarks to the real meaning of system
(6.3). In reality, the LQ) BSDE system stands for the benchmark tracking problem
with portfolio selection in financial market. If a given portfolio strateqy emphasizes
one aspect or one product, it will be adjusted by considering the whole behaviors
throughout the market.

(2) In this system, the state average is not coupled in dynamics. There are two

reasons. The first reason is from practical point: the coupling in cost functional arise
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naturally when we consider the relative (investment) performance (see e.g., [113]).
In particular, the penalty over the initial average or states enables us to consider the
relative or comparable criteria based on the average performance of all other peers
through the whole sector (industry). The second reason is more technical: in partial
information structure, the optimal control involves filtering equations and this always
leads to considerable interrelated and complicated filter estimations. It is difficult to
get similar estimated results as in the full information problem. Thus, we consider

the coupled cost functional in (6.3) due to its financial meanings.

6.2 (F-PI): Forward LQMFGs with Partial Infor-
mation

To study (F-PI), one efficient protocol is the LQMFGs which bridges the “central-
ized” LQ problems via the limiting state-average, as the number of agents tends to

infinity.

6.2.1 The limiting control of (L-F-PI)

Due to partial filtration structure, it is natural to set the following feedback control

on filters

wi(t) = —a(®E(z;(H)|F7) + ), a £)|F5) + b(t) (6.4)

Jj=Llj#i

where the coefficients a(-), a(-) and b(-) are deterministic functions and a(-) = O(%).

Inserting (6.4) into state equation (6.1), we get the following realized state dynamics
N
da; (t) =[A(t)xi(t) — B(t)a(t)E(x;(t)|F;") + Bt)a(t) >, Ez;(8)F") + B()b()

J=1,5#i (6.5)

+az™M (1) + m(t)]dt +o(t)dWi(t) +a(t)dW(t), 1 <i< N.
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Take summation of the above N equations and divide by IV,

- > 3 - N Wi (N)
d(ﬁ ;xi(w) —|Aw) (O~ ; alt) % ; (s (B F2) + BOb(E) + az™ (£) + m(t)
1 N N 1
65 . Z Z ()| 77 ]dt +a(t) Z AW;(t) + & (t)dW (t).

Letting N — 400, we obtain the following limiting process which is a MF SDE:

dao(t) = (A1) + a)zolt) — &(t)Eao(t) + b(t)|dt + G(H)aw (z), oo
2o(0) = x

where the functions &(-),b(-) are to be determined. Now, we introduce an auxiliary

state:
dzi(t) = [A(t) i(1) + B(H)ui(t) + azo(t) + m(t)]dt + o) dWi(t) + 6(£)dW (1),
2i(0) = o

with the auxiliary cost functional

Ji(ui)) = E [ [ @O0 ot + Rz dr+ Gx?(T)] (6.9

0

where z(+) is given by (6.6). Note that (6.7) and (6.8) are obtained from (6.1) and
(6.2) with (™) (-) replaced by xo(-). Thus, we formulate the following limiting for-
ward partial information (L-F-PI) LQ game.

Problem (L-F-PI). For the i*" agent, i = 1,2,..., N, find @,(-) € U; satisfying

Ji(ui(+)) = u&fu Ji(ui(-)-

Then ;(-) is called an optimal control for Problem (L-F-PI). Applying the varia-
tional method (similar to Proposition 3.1), we have the following result to the optimal

control of (L-F-PI).
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Proposition 6.1. Let (H6.1) hold. Suppose there exists an optimal control u;(-) of
Problem (L-F-PI) and z;(-) is the corresponding optimal state, then there exists an

adjoint process p;(-) € L5;(0,T;R) satisfying the following BSDE for some ((-) and

p):
dpi(t) =| = AWPpi(t) = Q1) @:(t) — mo(1) | dt + BWAW() + BE)aW (1), oo
6.9
pi(T) =Gz;(T), i = 1,2,...,N
such that

w(t) = =R~ () B()E(pi(t)|F")
where the conditional expectation is defined in its optional projection version.

6.2.2 The consistency condition

With the results above, consequently, we get the following Hamiltonian system for
Aii

[ dao(t) = [(A(t) +a)ao(t) — a(t)Exo(t) + B(t)]dt +E(t)dW (),
dzi(t) =| A@®)zi(t) = B R OB (pi(0)|F) + awo(t) + m(t) |t

1 + o(t)dW;(t) + 6 (t)dW (¢), (6.10)

dpi(t) =| = AWpi() = Q) @:(t) — mo() | dt + BWAW() + BE)aW (1),

20(0) =7;(0) =z, p;(T) = G{Z‘Z'(T), i1=1,2,...,N.

After obtaining &(-), b(-) in Theorem 6.1 (see below), by the monotonic conditions of
FBSDE (see [92]), it is easy to see that (6.10) admits a unique solution (xq(-), Z;(+), pi(+))
€ L5u(0, T5R) x L%(O, T;R) x L2f§(0, T;R). Note that in system (6.10), the forward
optimal state Z;(-) depends on the backward adjoint process p;(-) through its filter-
ing state E(p;(t)|F;""). In this sense, (6.10) becomes a filtered FBSDE system and
its decoupling should be proceeded through some FBSDE that involves the filtering
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state only. To this end, we introduce the following filter notations

7i(t) = B[z ()| 7], pit) = E[pi(t)|[ 7]
where the conditional expectations to the partial filtration F;" should be understood
in the version of optional projection. Then we reach a FBSDE system involving the

state filters only:

d3i(1) = [A(t):%i(t) ~ BYXO)R()pi(t) + aExo(t) + m(t)]dt +o(t)dWi(t),

%Z(O) =T,
) (6.11)

dpi(t) =] — A()pi(t) — Q(E) (Fi(t) — Ba (1)) | dt + BE)AWi(t),

pi(T) =G&4(T), i =1,2,...,N.

Note that system (6.11) is driven by W; only so it becomes observable to agent A;.
It can be viewed a filtering system of (6.10) that is unobservable as driven by W;
and W both. Taking expectation on (6.6),

dEzo(t) = [(A(t) +a — a(t))Eao(t) + b(t)]dt,
(6.12)
Exz((0) =z

where a(-), b(-) are functions to be determined. One key step in MFG is to analyze
the related consistency condition (which is also called Nash certainty equivalence

(NCE) principle, see [81], [18], etc).

Remark 6.2. To intuitively explain the consistency condition, we give some remarks.
(1) Unlike most literature on MFGSs, there is no fized-point argument involved here
(e.g., some contraction mapping based on the datum of our problem) to characterize

the consistency condition. Instead, our consistency condition is transformed into the

wellposedness of Riccati equation system (6.13) (see below). Actually, (P(-), ®(.))
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depend on (&(-),b(-)), thus (6.18) (see below) can be rewritten by

|

In this sense, (6.13) can be understood as the consistency condition of (L-F-PI).

joN
I

T1(&) := B’R™Y(P + P(a)),

(ol
Il

T2(b) := —B2R™'®(@&,b) + m.

(2) The advantages of handling the consistency condition of (a(-),b(-)) are as

follows. The consistency condition imposed on (a(-),b(-)) is equivalent to the well-
posedness of Riccati equation (6.13) (see below) which can be ensured in an arbitrary
time interval. On the other hand, as addressed in [37], the fixed-point analysis on x

will preferably lead to the consistency condition only on a small time interval.
Now we first state the following result.
Theorem 6.1. Suppose (H6.1) hold true and the following Riccati equation system
II(t) + (2A(t) + a)II(t) — BX(t)R™(t)I1%(t) = 0,
B(1) + [A(t) — BAO)R™ (OT(L)] (1) + m(DTI(t) = 0, (6.13)

I(T) = G, ®(T) =0

admits unique solution (I1(-), ®(-)), then (&(-), b(-)) can be uniquely determined by

a(t) = BX(t)R™H()IL(1),
(6.14)
{ b(t) = —B2*(t)R™(t)®(t) + m(t).
Proof. By the terminal condition of (6.10) or (6.11), we suppose
pi(t) = P()z;(t) + P(t)Exo(t) + B(t) (6.15)

for some P(-), P(-) € L®(0,T;R) and ®(t) € L*(0,T;R) with terminal conditions



Applying 1t6’s formula to (6.15) and noting (6.10), we have

dpi(t) = (P() + P()A®) — BAOR () P2(1) ) (1)t
+(P(t) + P(t)(A(t) + a — a(t)) — P(t)B2(t)R™L(t) P(t) + aP(t))]Exo(t)dt

+(®(t) — P(t)B2(t)R™1(t)®(t) + P(t)m(t) + P(t )B(t))dt + P(t)o(t)dW;(t)

[ (—Q() = AWP(E) 3:(0) + (Q) — AW PE)Exo(t) — AW |dt + BE)AWi(1).

Comparing coefficients, we obtain

P(t) + P()A(t) — B* ()R () P2(t) = —Q(t) — A(t)P(1),

ﬁ(t) + P(t)(A(t) + o — a(t)) — P()B2 ()R (£) P(t) + aP(t) = Q(t) — A(t)P(t), 016
1 6.16

Note that the above Riccati equations are parameterized by the undetermined func-
tions (&(t), b(t)) which are to be specified below. To this end, note that the optimal

state z;(t) can be represented by

dz;(t) =[A(t)z;(t) — B* ()R (t)(P(t)Z(t) + P(t)IExg(t) + ®(t)) + axo(t) + m(t)]dt

+ o (t)dW;(t) + a(t)dW (t).
Therefore the state-average satisfies:

N
ax™ (1) =[ A0z (1) - B ()R % )+ P(t)
=1

1

-Exo(t) + (1)) + awo(t) + m(t)]dt + ot )N dWi(t) +E)dW (1),

||Mz

Let N — 400, the limiting process z is given by

dao(t) =[(A(t) + a)o(t) = BAOR (O)(P(t) + P(t))Eao(t)
(6.17)
~ BRI (1)D() + m(t)]dt + &AW ().
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Comparing the coefficients with (6.10), we have

{ a(t) = BX(t)R™'(t)(P(t) + P(t)),
(6.18)

b(t) = —B2(t)R™(t)®(t) + m(t).
Thus we rewrite (6.16) as
P(t) + 2A(t)P(t) — BX(t)R™(t)P%(t) + Q(t) = 0,

ﬁ(t) + P(t)[24(t) + a — B2 ()R (t)(P(t) + P(t)) — B2(t)R™ (t)P(t)] + aP(t) — Q(t) = 0,

(1) + [A(t) — (P(t) + P(0)B* ()R (1)](1) + (P(t) + P(t))m(t) = 0,

P(T) =G, P(T) = &(T) = 0.

Letting II(t) = P(t) + P(t), we get

II(t) + (2A(t) + a)II(t) — BX(t)R™1(t)[12(t) = 0,
(6.19)
{ (T) = G
This completes the proof. O
Moreover, the filtering system (6.11) can be decoupled as
di(t) = [ (A() = BX R (O P(®))5:(1) + (o — BX )R )(11(1) - P(1)))
-Exo(t) — BXt) R (t)®(t) + m(t)]dt + o (t)dWi(t),
X (6.20)
pit) = P(t)zi(t) + (I(t) — P(t))Exo(t) + 2(t),
zi(0) = 2;(0), pi(T) = Gzi(T).
Taking average of all and sending N — 400, we regenerate
{ dEzo(t) = [(A(t) +a — BX)R(O)II(t))Exo(t) — BXH)R(£)®(t) + m(t)]dt,
(6.21)
Exzo(0) = .

Remark 6.3. 7To conclude this section, we give some remarks concerning Theorem

6.1.
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(1) The sufficient conditions for the existence and uniqueness of P(-) and II(-)
can be found in [95] hence the solvability of ]5() follows directly by noting
II(t) = P(t) + P(t). In addition, the solvability of ®(-) follows from that of TI(-).
(2) As referred in Remark 6.2, in [37] the fized-point analysis on x preferably leads
to the consistency condition defined only on a small time interval. This finding also
corresponds to the standard result in FBSDE theory: as discussed in [88], the usual

contraction mapping on forward-backward system will always lead to its existence and

uniqueness in a very small time interval.
6.2.3 e-Nash equilibrium for (F-PI)
Now we show that (uy, s, ..., uy) satisfies the e-Nash equilibrium for (F-PI).

Theorem 6.2. Let (H6.1) hold and (6.13) admit a solution (I1, ®), then (uy, ug, . .., Uy)
satisfies the e-Nash equilibrium of Problem (F-PI). Here, for 1 <i < N, 4; is given
by

@(t) = —RL(t)B(1) [P(t):a(t) + (IL(t) — P(t))Eao(t) + CID(t)] (6.22)

where T; and Exq satisfy (6.20) and (6.21) respectively.

As preliminaries of proving the theorem, several lemmas are presented to produce
some estimates on the state and cost difference between Problem (F-PI)) and (L-

F-PI) and the proofs are available upon request. Recall that
d7;(1) = [A(t)ii(t) — BYH)R7(t) (P(t)ii(t) + P(t)Exo(t) + <I>(t)) + azo(t)
+ m(t)]dt + o () dWi(t) + G(4)dW (¢),
< daa() =[<A(t) - B?(t)R—l(t)p(t))@(t) n <a . B2(t)R_1(t)]5(t)>Exo(t) (6.23)

~ BXORY D)D) + m(t)]dt + o (t)dWi(t),

120



and denote

i(t).

S

1 & 1 &
F(N)(4) = — E 7 SN (1) = — E
x (t) - N = T (t)7 T (t) - N ~

Here, zV)(t) denotes the average of state [in (L-F-PI)] while 2™ denotes the average
of filtered states. Note that z;(¢) is driven by W; only thus it is observable to the
individual agent A;. It enters the state dynamics (6.23) as an input process when

applying the optimal strategy. Some estimates are as follows.

Lemma 6.1.

. 2 1
sup E|ZNM(t) — Exo(t)| = O(—), 6.24
0<t£T () O( )} (N) ( )
2 1
sup E|zM (@) —2o(t)] = O(—=). 6.25
sup BJ# (1) — o | =o(%) (6.25)

Proof. By (6.20) and (6.23), we have

d(ém (t) — Exg(t)) - (A(t) . Bz(t)R’l(t)P(t)> (;%UV) (t) — Exg(t)>dt

Thus

2

K>

(N) () — Emo(s)‘QdS + 3‘ Lt %g(s) ]Z\fl sz‘(S)‘
i1

By the independence of {W;(t)}i=0,1 <i < N, we have



So (6.24) follows by Gronwall’s inequality. Combining with (6.24), the assertion
(6.25) can be proved in a similar way. O
Denote y;,1 < i < N, the state of A; to the control u;,1 < i < N in Problem

(F-PI), namely,
[ day(t) =[A@wi(t) — BAOR O (PO7:(0) + POEwo(t) + 9(1))

) +ayM(t) + m(t)]dt + o(t)dW;(t) + G()dW (¢), (6.26)

L %i(0) =z(0)

N
where y™(t) = + >} y;(t). By the difference of states related to @; in (F-PI) and
j=1

(L-F-PI), we have the following estimates:

Lemma 6.2.

2 1

sup Ely™M (1) — z0(t)| =0(=), 6.27
o B0 -z = 0() (627)

2 1
Ely;(t) —2:(t)| | =O0(—+ ) 6.28
| muo —wof | = o) (0.9
1
Elly:(t)? — |70 | = 0 —=). 6.29
LieN LZIET )~ 1a:()] ” (\/N> (6:29)

Proof. By (6.26) and (6.20), the estimate (6.27) can be verified by the same
method in Lemma 6.1. According to (6.26) and (6.23), we have

a(w(t) — 3(6)) = [AD:(0) - 7:(8) + aly™ (1) - wo(t)) |at,
vi(0) — z;(0) = 0.

Thus, (6.28) follows from (6.27). Since sup E|7;(t)[*> < 400, applying Cauchy-
0<t<T
Schwarz inequality, it follows
sup Ellu(0f? — 2.0 = 0(—)
0<t<T VN
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which completes the proof. ]

As to the difference of cost functionals, it holds

Lemma 6.3. ForV1<i:<N,

o _ 1
Proof. Similar to the proof of Lemma 6.2, combining with the fact that
sup E|z;(t) — zo(t)|* < 400, we obtain
o<st<T
1
E|lyi(¢) — y™M ()2 = |2:(¢) — 20 (®)?] = O — ).
s Ellyi(®) =y ™0 ~ |(6) - 20| = 0 <)
Thus,
Ji(ti, u—;) — Ji(u;)
T
<E [ [@)) 90 = QU)(@(t) oot + E|GHT) - GaXT)
_ (L)
VN
The assertion (6.30) follows. ]

After addressing the above estimates of states and costs corresponding to control
u;, 1 < i < N, given by (6.22), our goal is to prove that the control strategies set
(@1, ...,uy) is an e-Nash equilibrium for Problem (F-PI). For any fixed i, 1 <i < N,
consider an admissible control u; € U; for A; and denote z; the corresponding state

process in Problem (F-PI), that is

dz(t) = [A(t)zi(t) + B(t)ui(t) + az™(t) + m(t)]dt + o (t)dWi(t)
+G(1)dW (), (6.31)
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whereas other agents keep the control @;,1 < j < N,j # 1, i.e.,

(dz(t) =| AWz (0) = BAOR (@) (P03 + P(O)Eo(t) + (1))

\ -Hmwww+m@ﬂﬁ+a@uw%w+a@mV@, (6.32)

L 2;(0) =2;(0)

1=

where 2N (t) = L+ 3 2;(t) and Z;(¢) is given by (6.23). If 4;, 1 < i < N is an e-Nash
1

J

equilibrium with respect to cost J;, it holds that

%(ﬁi,afl) > inf Z(uw z) = Z(ﬂha*i) — &

u; €U;

Then, when making the perturbation, we just need to consider u; € U; such that

Ji(ug, u_y) < Ji(u;, u_;), which implies

ELT R(tyui(t)dt < Ti(us, i) < Fi(wi, u) = J;(u;) + O(\/Lﬁ)

In the limiting cost functional, by the optimality of (Z;,u;), we get that (z;,u;) is
L*-bounded. Then we obtain the boundedness of J;(u;), i.e.,

EFMW%W<Q (6.33)

(]
0
where (] is a positive constant, independent of V. Thus we have

Proposition 6.2. For any fized i,1 <i < N, sup E|z(t)[* is bounded.

0<t<T
Proof. By (6.31) and (6.32), it holds that
N N ¢ N
E[ 3 as(t)?] <4B[ 3 lan(0)?] +402Ef 2 2@+ + 3 e
k=1 k=1 k=1 k=1,k#i

+ Nlm(s) ds+4ZEU $)dWi(s +4NIEU $)dW (s )]2
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where (5 = max t) + t)) + a“. By (6.33), we can see that E|u;(?)|” 1s
h C A? B? 2. By (6.33 hat E 2

0<t<T
bounded. Besides, the optimal controls u(t), k # ¢ are L?>-bounded. Then by Gron-

N
wall’s inequality, it follows that sup E[ > |zk(t)|2] = O(N), and sup E|z(t)]* is
k=1

0<t<T o<t<T
bounded. ]

Correspondingly, the state process z? for agent A; under control u; in Problem

(L-F-PI) satisfies

azl(t) = AW (®) + B(O)ui(t) + awo(t) + m(t) |dt + o (D)aWi(t) + 5(1)dW (1),

(6.34)
77(0) =;(0)
and for agent A;, j # i,
(dz;(t) =[A(t)£j (1) — B2(H)R™1(t) (P(t)fcj(t) + P(t)Eao(t) + ‘D(t)) + azo(t)
\ + m(t)]dt + o(B)dW;(t) + &) dW (1), (6.35)
[ %;(0) =;(0)

where Z; and z; are given in (6.20).
In order to give necessary estimates of perturbed states and costs in Problem
(F-PI) and (L-F-PI), we introduce some intermediate states and present some of

their properties. Denote

1 & 1 &
20 () = N1 Z (1), FI() = N1 Z ().
Jj=1ljg#i Jj=1,j#1

Then by (6.32), we have

[ 2:0-0() :[(A(t) + ~ L)1 t) - B2 ()R (1) (P(t);%(N_l)(t) + P(t)Exo(t)
N
< F0(0)) + D) + (o) |a + Nl_ - jzlz’;#ia(t)de(t) - S (1),

125



where z(V"1(0) = <& Z;VZL#Z. x;(0). Besides, we introduce

N -1

d%(t) =[A(t)éi(t) + B(b)ui(t) +
+E)dW (),
z;(0) =z;(0)

and for j # i,

N
where sV D(t) = L= Y 5(1).
We have the following estimates on these states.

Proposition 6.3.

sup E[# (1) — Eao(0)] = 0(5).

o<t<T

2
sup ElzM (@) —N"Dp)| = O(%),

0<t<T

sup EzV-D(t) — z(Nfl)(t)‘Q = O(L)

o<t<T

sup EzV-D(t) — ;Uo(t)‘2 = O( ! ),

0<t<T

sup E|z(t) — z‘i(t))z = O<L>,

0<t<T

sup E|(z;(t) — ;E?(t)r = O(%)

o<t<T
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az V=D ¢ m(t)]dt + o (t)dWi(t)

az;(t) =| A@)%(t) = BAOR™ ) (P(0)3; (1) + PO)Eao(t) + (1))

{ + N]\; 1ag(N—1)(t) + m(t)]dt + o (t)dW;(t) + () dW (),

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)



Proof. From (6.37), it follows that

[ az0t) = [(a) + T

a)zNV(t) — BAt)R™L(t) (P(t)aﬁc(Nfl)(t)
1 N
N1 X odwi) +a(ndw (), (6:44)
J=Llg#i

\ + P(t)Exo(t) + (ID(t)) + m(t)]dt +

sN=D(0) = z(V=1(0).

Then we have

d(z‘(N’l)(t) - z(Nfl)(t)) - [(A(t) +

sN=D () — z(N=D(0) = 0.

By the L?*boundness of z;(t) and Gronwall’s inequality, the assertions (6.39) and
(6.40) hold. And by (6.24), we can get (6.38). Besides, it follows that

sup E‘é(N_I)(t) — :100(15)‘2 = O(i>

0<t<T N

from (6.44), (6.20) and (6.38). Then (6.34), (6.36) and (6.41) imply that

2 1
sup E|5(t) - f?(t)‘ — 0(—).
0<t<T N
Finally, by Proposition 6.2, we easily get (6.42). ]

Further, more direct estimates about states and costs of Problem (F-PI) and (L-

F-PI) under perturbed controls can be obtained, which enable us to prove Theorem

6.2.
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Lemma 6.4.

s Efi(0) - aﬁ?(t)(2 - O(%), (6.45)
sup B|Z(0) - ”30(’5)’2 = O(%)’ (6.46)
s E|J=i (1) - CORE 0(\/%), (6.47)
il i) = Jifus)| = O<\/1N>‘ (6.48)

Proof. (6.45) and (6.46) follow from Proposition 6.3 directly. By Proposition 6.2,

we get that both sup E|z9(¢)|? and sup E|z%(t) — x¢(t)|* are bounded. Similar to

o<t<T 0<t<

the proof of Lemma 6.2, (6.47) holds. Besides,

sup E

o<t<T

) = =0 = 720 ~ 200 = 0( 7).

then

Ji(ui, u—;) — Ji(u;)

T
gEJ;) ‘Q(t)(zz(t) - z(N)(t)>2 _ Q(t)(j?(t) — xo(t))Qldt 4 E‘GZ?(T) _ G(CE?(T))Z

1
~0(7%);
which implies (6.48). O

Proof of Theorem 6.2: Consider the e-Nash equilibrium for 4;. Combining Lem-

ma 6.3 and 6.4, we have



: _ 1
Thus, Theorem 6.2 follows by taking € = O(ﬁ) ]

6.3 (B-PI): Backward MFGs with Partial Infor-
mation

Now, we turn to study the backward MFGs with partial information (B-PI). Similar

to above, we need also introduce and study the associated MFGs via limiting state

average.

6.3.1 The limiting control of (L-B-PI)

Considering the large-population system with partial information structure, suppose

the feedback control for A; takes the following feedback form on the state filters

N
wit) = —aE(w@|F) + D a ()| F) + b(t) (6.49)
Jj=1,7%#1

where the regulator coefficients a(-),a(-),b(-) € L*(0,T;R) and a(-) = O(). Insert-

ing (6.49) into the state equation in (6.3), we have

N
—dyi(t) =| Ayi(t) — BaE (i ()| F*) + Ba(t) Y, E(y;(0)\F") + Bo() |dt
a=1m (6.50)

— () dWi(t) — Z()dW (1), 1 <i < N.

Then consider the state average, we get

XN
_d<N¢—Z1yi(t)> =

. 1 N N 1 N 1 N
By 3 3T B0 i 3 D) - D)

i=1j=1ji i=1

1 & 1 X
A z._Zlyi(lﬁ) — Ba(t)w ;E(yi(t)w”i) + Bb(t)

—_
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Thus, we assume there exists a limiting process (y*(t),2*(t)), which satisfies the

following BSDE

—dy*(t) = [Ay*(t) + B(t)Ey*(t) + r(t)]dt — 2*(t)dW (t),
(6.51)

v (T)=n

where 7 € F¥ is obtained by (H6.2), B(-) and r(-) € L?(0, T; R) are to be determined.

Now, we introduce the limiting partial-information system

—dyi(t) =[Ay(t) + Buy(t)]dt — z(H)dWi(t) — Z,()dW (¢),

(6.52)
yi(T) =n;
with the cost functional
) = E| [ Rue)ie + 200)a - 597(0)| (659

where y*(+) is given by (6.51).
Now, we formulate the limiting backward partial information (L-B-PI) games.
Problem (L-B-PI). For the i*" agent, i = 1,2,..., N, find @; € V; satisfying

uieVi
Then 4; is called an optimal control of problem (L-B-PI). Further we have
Proposition 6.4. Let (H6.2) hold. Then the optimal control of (L-B-PI) is
a;(t) = —R ' Bhy(t)
where h;(t) € L*(0,T;R) satisfies the following ODE:

dh;(t) = Ah;(t)dt,
(6.54)
hi(0) = a— py*(0), i =1,2,...,N.
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6.3.2 The explicit representation

For ¥ 1 <i < N, solving ODE (6.54) directly, we have
hi(t) = (a — By*(0))e™.
Thus, the optimal control u,(t) is given by
@;(t) = =R 'B(a — By*(0))e™. (6.55)

Applying the control law (6.55) for i*" agent A;, the closed-loop system (6.3) becomes

—dyi(t) = [Ayz-(t) ~ B2R (a- ﬁy*(O))eAt]dt — Z(OdWi(t) — Z(H)dW (1),

(6.56)
yi(T) =n;.
Summing the above N equations of (6.56) and dividing by N, we get
N
—dy(N)(t) =[Ay(N)( ) — B2R ( — By( ] Z
) (6.57)

N 8
where n™) = L 37 ;. Taking N — +c0 and noting (6.51), we have B(t) = 0 and

r(t) = =B*R™(a — By*(0))e™. (6.58)
Then we rewrite (6.51) as
—dy*(t) = [Ay*(t) + r(t)]dt — 2*(t)dW (¢),

y*(T) =n.

(6.59)

Taking expectation and solving the corresponding backward ODE, we get

T
Ey*(t) = noe @1 4 J r(s)eA(s_t)ds

t
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where 79 := En. Thus,

Further we have
T
r(t) = —BQR_leAt{a - B[noeAT + J r(s)eAsds] }
0

Then we have the following proposition.

Proposition 6.5. r(-) can be explicitly solved as

_24B%% (O‘_B"(’GAT) ; P2 2AT .
2AR—B2B<62AT—1> i A#0,24R- B 5(6 1) # 0;

r(t) =14 0, 2 if A#0, 2AR — B?B(e** — 1) = 0; (6.60)
- Bl if A=0, R— B*BT + 0;
0, if A=0, R— B?BT = 0.

Moreover, y*(-) in (6.59) can be determined based on r(-).

Proof. The proof is similar to that of Proposition 3.2 and omitted. ]
Remark 6.4. By Proposition 6.5 it follows that there exists a unique bounded contin-
uous functionr(-). Then (6.59) admits a unique solution (y*(~), z*()), in which y*(-)

is approzimated by the state average yN). Applying y*(-), we get the optimal control
for (L-B-PI), which is important to analyze the properties of e-Nash equilibrium.

6.3.3 ¢-Nash equilibrium for (B-PI)

In this section, we analyze the asymptotic property of the decentralized control
strategies and verify the e-Nash equilibrium property for (B-PI). To begin with, we
state the main result.

Theorem 6.3. Let (H6.2) hold. Then the strategy set (ty,Us,...,Uy) satisfies the
e-Nash equilibrium of (B-PI), with € is of order 1/v/N.
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Let y; denote the state process corresponding to @; for (B-PI), g; denote the
state process corresponding to u; for (L-B-PI). Note that in partial information

structure, state average is coupled in cost only therefore applying ;, y; is same to

Gi,i=1,2...,N.

Lemma 6.5.

sonl® AL
sw By 0] =0(5). (6.61)
il i) — Ji(as)| = O(Tlﬁ>’ V1<i<A. (6.62)
Proof. By (6.57) and (6.59), we have
1 1
Ay Oy ()=l Oy O Y = <t>dwi<t>+[z*<t>—N > w] aw (o),

y (T — y*(T) =n™) — .

Introducing a 1-dimensional dual process X (s, t), which satisfies

dX (s,t) =AX(s,t)ds,

X(tt) =1, t<s<T,
and applying [t0’s formula, we get
y(N) (t) — y*(t) = X(T, t)]E(n(N) — n}gt).

It is easy to obtain that

m; —n)z - %ZE(m —n) (n; — ).

W P_ Ly
B[y~ = 5 2E
=1

2 N
m; —n| < 40, we have 17 >, E
i=1

2
Since E i — T]‘ = O(%) Besides, it follows that

E(n; —n)(n —n) = E[E[(m =) (n; — n)\f”%”]] = E[E[nmj!f%”] - ”2]'
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Under (H6.2), applying the results of [114, 115, 116, 117], we can derive that
E[nim| F7] = E[m| 77 [E[n;| F7'] = .

2
Thus, ]E‘n(N) —17) = O(%) and (6.61) follows. In addition, note that the state equa-

tion of (B-PI) coincides with its limiting equation (6.52), since the state equation

in (6.3) does not contain the state-average term yWN) . Therefore, after applying the

optimal control @; in (6.55), we get that y; = ¢; P-a.s.. Thus, we have

i, 4—) — Ji(;)

<25E[\gi(o)\|y(m(0) - y*<0)|] = O<\/LN>

where the last equality follows by Hoélder’s inequality and (6.61). ]
For any fixed i, 1 < i < N, consider an admissible alternative control u; € V; for

the " agent A; and denote the corresponding state as

—dki(t) = [Aki(t) + Bui(t)]dt —n;()dWi(t) — 7i(t)dW (t),

(6.64)
ki(T) = n;
while all other agents keep the control 4;,1 < j < N,j # 1, i.e.,
—dh () =[ Ak (1) — B2R! (o = By* (0))e™ |t — my(5)aAWV;(t) — s ()W (1),
(6.65)
ki (T) =n;
with the cost functional
T
Ji(ui(-) (1)) = E U Ru?(t)dt + 2k;(0)(a — 5/&”(0))] (6.66)
0

N N
where KM (t) = L % k;(t), k™(0) = & X k;(0) is its initial value.
i=1 i=1

If 4;, 1 <i< N is an e-Nash equilibrium with respect to the cost J;, we have
Ti(Ui, U_;) = ulfel£ Ji(ui, i) = Ji(ts, 1) — €.
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Then, when making the perturbation, we just need to consider w; € V; such that
Ti(ug, t—y) < Ji(4;,0-;). Besides, by (6.64) (6.65) and applying the estimates of

BSDE, we obtain the L? boundness of k;, j # i and the following inequality

T
sup Blk(t)? < CalL+E | Jus(s) s
0

0<t<T
where (3 is a positive constant. For the cost functional (6.66), we have

Proposition 6.6. J; (u;(-), @i—;(+)) is strictly convex and coercive with respect to u;(-),

if N is large enough. Specially, a bound is given as N > MTTeQWT.
Proof. (6.66) can be rewritten as
g 26 < 25
(). G () = 2 . _cF A alady
Ji(ui(-), () = B fo Ru2(£)dt + k;(0) (2a ~ j_g‘-# k](O)) HOIE
Applying the dual method of BSDE, (6.64) satisfies
T
ki(0) = eng + EJ ey (s)ds.
0
Plugging k;(0) into Z(ul(), ﬁ,i(-)), we obtain
T T 2
Filu). i) =E [ R -2 (B [ M)
0 N 0

N
+ (2a - % | Z 'kj(O) — 4ﬁeATno)IELT e (t)dt

28 & 2
+ (2a ~ N 2 kj(O))eATno - WeQATng.

To prove the strict convexity of J;, we consider u;(-),v;(-) € V; such that (Leb ®
P)(Qp) > 0 and X € (0,1). Here, Qq is defined as Qg = {(t,w) € [0,T] x Q|u;(t,w) #
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v;(t, w)} Then by Holder’s inequality, we have
ji()\ui + (1 - )\)vi) — ATi(u;) — (1 = N)Ti(vy)

A1 - /\){ R EJT (uz(t) — Ui<t))2dt + %(E JT 6At(ui(t) — U¢<t))dt>2}

0 0

<A1 - A)( — R+ %TTGQIAIT>ELT (ui(t) — vi(t))2dt.

If N is large enough, specially N > MTTeQWT, ji()\ui +(1-— )\)vi) < ANTi(w;) + (1 —

A)Ji(v;). The strict convexity of J; is obtained. Similarly, if N > 4’%62““”, we get

T N
Ti(wi(-), ai () >—EJ uF(t)dt — ‘204 - % | Z k;(0) — %eATUO‘eV"TT%

T 3 28 & 28
: (EJ u?(t)dt) + <2a - N Z kj(0)>eAT770 — WeZATnS.
0 J=1,j#i
Then J;(u;(-), 4—i(+)) tends to +o0 as Egg u?(t)dt — +o0. Hence the coercive prop-
erty. []

It follows from Lemma 6.5 that (i, a_;)(= Ji(as) + O(ﬁ)) is bounded by
noting u; is already optimal for J;. Therefore, by Proposition 6.6, when making the
perturbation we need only consider the control u; which is L? bounded, otherwise

ji(ui, ﬁ_i) will tend to 4+00. Thus we have

T
Ef uf(t)dt < Cy (6.67)
0

where (' is a positive constant which is independent of N. Further, we can get the

boundness of sup E|k;()]?.

0<t<T

Remark 6.5. Note that Cy is independent of N. Actually, we should first get

Egg uZ(t)dt < Cy for some Cy containing the terms ~ and \/LN due to the terms
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kN and O(\/LN) However, they will vanish in asymptotic sense as N 1is large

enough. Thus, we can obtain some Cy, which is independent of N.

For the i'* agent A;, consider the perturbation in (L-B-PI) and introduce some

auxiliary system

—dk)(t) = [AKD(t) + Bu;(t)]dt — nd(t)dW;(t) — @l (¢)dW (¢),
(6.68)
{ KAT) = mi
and for j # 1,
—dl;(t) = [Akj () — B*R (o — By*(o))eAt]dt — iy ()W (t) — 7y ()W (),
(6.69)
]%] (T) =1
with the cost functional
T
Ji(ui(-)) =E UO Ru? (t)dt + 2k9(0) (o — ,By*(O))] : (6.70)

Noting (6.64) and (6.68), we can see that (k;, n;,7;) is same to (k?,n? n). Besides,

1) 7 3

by (6.64) and (6.65), we have

N N
~ak(0) = | AN @) + o (wn+ D (t))] dt — % > ni(6)dW;(t)
J=1,j#i J=1
N 6.71
< - DA (), o
j=1

where 4;(t) = —BR™! (04 — By* (O))eAt, j # 4. Then we have the following lemma.

Lemma 6.6.

oiltlgT]E‘k(N) (1) - y*(t)r - O(%)’ (6.72)
Ti(ui, i) — Ji(w;)| = O(%) (6.73)

137



Proof. By (6.59) and (6.71), we have

N
(k) - (1) = AR @)~ " 0) 4 5 (Bus(0) - 1) | - Xm0

Noting (6.67) (6.58) and applying the estimates of BSDE, we obtain (6.72). Thus,

we have

%(Ui7 ﬁ—i) - Jz(uz)

1
<2ﬁE[\ki(0)Hk(N)(0) - y*(O)\] - O(\/—N>
which completes the proof. O

Proof of Theorem 6.3: Consider the e-Nash equilibrium of A; for (B-PI). Com-

bining Lemma 6.5 and 6.6, we have

il i) = Jili) + 0(\%) <Ji(us) + 0(\/%

1
( ) VN
: _ 1
Thus, Theorem 6.3 follows by taking e = O(ﬁ) ]

6.3.4 Extensions

Now, we present some possible extensions based on our previous analysis. The first

extension is to consider the following cost functional

Ji (wiyu—i) = E U

0

T
Ru2(t)dt + 2y;(0) (a + y(Nf (0))} (6.74)

where «, 8 are nonnegative constants. Such cost functional characterizes the so-

called bench-mark performance criteria in investment. To be more precise, suppose
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there has a large-population system which consists of considerable small investors
who aim to achieve (or, hedge) some terminal targets n; by portfolio selection. The

()

term yv )(0) denotes the average hedging cost for all investors while yfyf%(o) denotes

the relative hedging costs for i*" investor, and 3 denotes its weight. In case 3 = 0, it
is reduced to the classical individual own performance. In case 5 > 0, the investor
should get some balance between its own individual performance and the average
population performance. In other words, the investor aims to minimize its initial
hedging cost by taking account of the average cost of the whole market participants.
In this case, we aim to minimize the weighted cost functional J!.

Another extension is to consider the so-called convex portfolio selection. In this
case, the given individual investor will take into account their relative performance
by comparison to their peers in convex combination. In accordance with [113], in
which the security writers aim to maximize the utility function of terminal wealth.
Here, we aim to minimize the following initial hedging cost

1 (T
F(uwu-i) = B[ [ RO+ 0= A0 V@) | 67)
where A € [0,1] is the parameter of relative interest.

For above two extensions, following the similar arguments to our previous anal-

ysis, we can get the corresponding optimal decentralized controls as

u;(t)=— R 'Bla b et
e B< ' y1(0)> | (6.76)
u;(t) = — R™'Be

7

where y'(0) is the initial value of the limiting process of state average. Besides,
the fixed points principle and the e-Nash equilibrium properties for J}!, J? are ob-
tained respectively. Since there are some other financial models in the form of large-
population with partial information structure, our theoretical results may have po-

tential applications in finance and economics.
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Chapter 7

Conclusions and Future Work

This chapter draws conclusions on the thesis, and points out some possible research

directions related to the work done in this thesis.

7.1 Conclusions

The focus of the thesis has been placed on the LQMFGs of FBSDE sysems. Specifi-

cally, five research problems have been investigated in detail.

1. The large-population LQ games with forward-backward structure are discussed.
Unlike the forward case, the consistency conditions of the forward-backward
MFGs involve six Riccati and force rate equations. The decentralized control is
derived based on the consistency conditions. The e-Nash equilibrium property
is also verified with the help of the estimates of forward-backward stochastic

systems.

2. The backward LQMFGs are introduced. Different to the well-studied forward
LQMFGs, the terminal conditions of individual players are specified here as a
priori and as a result, the decentralized control and consistency condition are
determined in backward manner. The e-Nash equilibrium is verified using the

estimates of BSDE and its limiting equation.
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3. The LQMFGs with major and minor agents but in backward-forward setup
are studied. The state dynamics of major agent satisfies some BSDE while the
minor agents are modeled by some SDEs. To derive the decentralized strategies,
the MFG is formulated in backward-forward and major-minor framework. An
auxiliary MF SDE and a mixed BFSDE are thus introduced and analyzed.
The consistency condition is not directly analyzed via the fixed-point analysis
and contraction mapping. Instead, it is connected to the well-posedness of the
mixed BFSDE system and is obtained under some weak monotonic conditions.
The decentralized strategies are also verified to satisfy the e-Nash equilibrium

property. For this purpose, some estimates to BFSDE is applied.

4. The combination problems of leader-follower and major-minor systems in-
volving large-population are investigated. The frameworks and processing
methods are mainly presented in three different manners. For “Serial-Parallel
Coupling”—Case I, the optimization problems of followers are solved firstly, and
then a classic major-minor problem. For “Serial-Parallel Coupling”-Case II,
the major-leader imposes some direct impacts to the followers, and the corre-
sponding variation method is different to the first one. As to “Serial Coupling”,
the problem is investigated in the “anticipating” manner and solved from back
to front. In all the topics, the agents track different convex combinations of
the centroid and dynamics of agents, and three consistency condition systems

are obtained.

5. The dynamic optimization of large-population systems with partial information
is considered. Due to the information structure, the state-average limit in this
setup turns out to be some stochastic process driven by the common Brownian
motion. The large-population systems are driven by SDEs and BSDEs. The

associated MFGs are formulated and studied. In addition, the decentralized
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strategies and the e-Nash equilibrium properties are presented.

7.2 Future Work

Related topics for the future research work are listed below.

1. The large-population dynamic optimization problems investigated in Chapter
2 are driven by partially-coupled FBSDEs. One possible direction is to investi-
gate the fully-coupled forward-backward LQMFGs for more theoretical results
where the forward dynamics also involves the backward one. In the future,
seeking for the auxiliary systems and decentralized strategies is also challeng-

ing if the backward state-average is involved.

2. In Chapter 3, the individual agents of large-population system are only weak-
ly coupled in their state dynamics. It suggests to include the first solution
component y;(-) and its average y)(-) into the running cost to be minimized.
This brings additional technical difficulty as the decoupling method via Riccati
equation is not workable for backward setup and the explicit solution can’t be
obtained (because the adjoint equation becomes a SDE). Another direction is
to introduce the second component z;(-) into the state or cost functional. It is

worth discussing them in the future work.

3. As to major-minor problem, in the future, one possible direction is that state-
average appears in dynamics of major player, which may bring lots of trouble in
proving the e-Nash equilibrium property. Wellposedness of the corresponding
3 x 2 mixed FBSDE system is also worth considering. Another direction is
that dynamics of minor players are formulated by BSDEs. In this case, the
consistent condition analysis may be more complicated and some technical

difficulties may arise.
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4. In Chapter 5, three consistency condition systems are obtained. Actually, it
is challenging to seek the wellposedness of the systems due to the complicat-
ed coupled structures. After getting it, the decentralized strategies and the

corresponding e-Nash equilibrium properties will be studied.

5. The dynamic optimization of large-population systems with partial informa-
tion is considered in Chapter 6, in which the individual agents can only ac-
cess the partial filtration. One possible research direction is to study a more
complicated—partial observed case. More filter theory should be applied to
derive the optimal strategies. As to the backward formulation, the second
point above can be also extended to partial information or partial observed

structures.
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