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Abstract

Recent years have witnessed the unprecedented growth of the adoption of sensor-rich

devices such as smartphone and smartwatch, along with the large scale deployment of

a variety of sensor networks in ambient environments. With the help of those ambient

sensors, a large amount of users’ digital traces can be collected, which opens up new

opportunities for user behaviour modeling, recognition and analytics. User behaviour

modeling, recognition and analytics are one of the key components in pervasive com-

puting, which underpins a variety of significant applications: smart healthcare, business

intelligence, context-aware applications, etc. Although a significant amount of research

effort has been devoted in this topic, how to effectively model, recognize and analyze

user behaviour still remains an open problem.

In this thesis, we focus on two major research topics. First topic is how to accurately

model and recognize certain categories of user behaviours based on ambient sensor

data. In particular, we focus on the study of three kinds of behaviours which play critical

roles in both physical and psychological heath, including: sitting posture, eating habit

and social interaction. Second topic is how to identify and exploit the correlation be-

tween user behaviours and other user states such as emotion. Specifically, we conduct

correlation analytics between mobility and social circle, stress and sitting posture, and

exploit the correlation relationship to build up new recognition model. The details are

as follows.

Firstly, we aim to classify people’s sitting posture based on pressure sensors-embedded
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seat cushion. Due to intrusiveness, high cost or low generalization accuracy, current

solutions for siting posture recognition are impractical. In this work, we design Posture-

ware, an accurate, low-cost and non-intrusive sitting posture recognition system. In par-

ticular, Postureware incorporates very thin pressure sensors to offer non-intrusive ex-

perience, an effective sensor placement solution to reduce cost, a set of user-invariant

features and an ensemble learning classifier to improve generalization ability. The re-

sults show that Postureware can achieve 99.6% ten-fold cross validation accuracy and

84.7% generalization accuracy only with 10 sensors. In addition, we further evaluate

the system utility by developing three applications, including unhealthy sitting posture

monitoring, sitting posture-based game interface and wheelchair control.

Secondly, we study the problem of recognizing people’s eating behaviour using off-

the-shelf smartwatch and smartphone. However, very few works have been developed

for long-term eating behaviour monitoring by means of a noninvasive platform. In par-

ticular, we exploit the accelerometer of smartwatch to derive user’s eating behaviour,

including: eating schedule, food cuisine and food item. Besides, we leverage the col-

laboration between smartwatch and smartphone to reduce the energy consumption of

smartwatch, and thus enabling long-term monitoring. More specifically, we propose a

context-aware data collection method to conserve energy, a novel set of accelerometer

features that are able to capture key characteristics of eating behaviour patterns, and

a light-weight decision tree-based classification algorithm. We evaluate our approach

using real-world traces and the experimental results demonstrate our work is able to

monitor individual’s eating behaviour in a non-invasive and energy-efficient manner.

Thirdly, we aim to model and recognize social activity based on the sensor data col-

lected from smartphone. Most of the existing works in social activity recognition are

based on the patterns of individual user such as location pattern, vocal pattern, etc.

However, we observe that social activity is associated with certain group, which inher-

ently exhibits the patterns with respect to multiple users. In this work, we introduce

the concept of social circle, which reveals the behaviour pattern associated with mul-
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tiple users in social activities. Here, a social circle refers to a set of users frequently

gathering to conduct certain social activities. Based on the social circle concept, we

present CircleSense, an accurate and efficient smartphone-based system for social

activity recognition. In particular, social circle is extracted from the social proximity

information obtained by Bluetooth device discovery. To further improve the system ac-

curacy, we apply metric learning technique to extract social circle from social proximity

information. To evaluate the system performance, we conduct extensive experiment

based on the dataset collected in real world from 16 subjects. The experiment result

shows that CircleSense outperforms the existing methods in terms of the recognition

accuracy.

In addition to user behaviour modelling and recognition, we study the problem of cor-

relation analytics between user behaviours and other user states such as emotion. We

find that there exists correlation between human mobility and social circle, as well as

stress and sitting behaviour. By leveraging the correlation relationships, we improve

the accuracy of human mobility prediction and stress measurement. In particular, we

study the problem of human mobility prediction based on social context. We first con-

duct correlation analytics on 10-day Wi-Fi traces collected from 111K devices in a large

shopping mall. We found that dwell time of repeat visitor exhibits a low degree of varia-

tion. Interestingly, visitor dwell time is positively correlated with the size of social group

during the visit. By exploiting the above findings, this work presents an accurate user

dwell time prediction model that incorporates time and social context, dwell time and

leave time history. Evaluation results show that the proposed model is able to provide

high accuracy of predicting user dwell time and outperform the baseline methods. Last

but not least, we aim to measure stress based on seating pressure distribution on the

chair. In particular, we collect seating pressure data from 15 participants using a seat

cushion which is deployed with 20 pressure sensors. Through correlation analysis,

we identify a number of seating pressure features that are associated with stress, in-

cluding: average seating pressure, pressure imbalance, etc. Based on the associated
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features, we build up a stress detection framework to classify whether participants are

stressed or not. The result show that the stress detection framework can achieve 86%

accuracy using kNN classifier.
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Chapter 1

Introduction

1.1 Pervasive Computing

The vision of pervasive computing described by Mark Weiser in the seminal paper

[Wei99] is "The most profound technologies are those that disappear. They weave

themselves into the fabric of everyday life until they are indistinguishable from it."

Specifically, a pervasive computing environment is characterized as a place which is

saturated with computing and communication capability, yet gracefully integrated with

users. In essence, the disappearance of technologies in pervasive computing indicate

the minimal user consciousness.

To raise the minimal user consciousness, it is of great importance to understand and

leverage context to anticipate users’ needs and to act in advance. Context can be

divided into four categories: computing context, user context, physical context and

time context [CK00]. In particular, user context includes user’s profile, location and

behaviour etc. In this thesis, we focus on understanding user behaviour, which is one of

most important user context. Specifically, user behaviour understanding encompasses

the modelling, recognition and analytics of user behaviour.
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Understanding user behaviour opens up a lot of novel opportunities for healthcare,

business intelligence and internet of things applications, which is drawing increasing

attention from both academy and industry. For example, according to world health

organization, more than 1.9 billion adults are overweight and over 600 million of them

are obese by 2014 [WHO15]. Obesity mainly results from unhealthy life style: unhealthy

eating behaviour and sedentary behaviour. Recognizing and monitoring eating and

sitting behaviour not only helps raise people’s awareness, but also offer behaviour logs

to medical staff for diagnosis. Furthermore, analysing the association among different

behaviours can provide insight for behaviour intervention and behaviour modeling.

1.2 Understanding User Behaviour

User behaviour understanding encompasses the modelling, recognition and analyt-

ics of user behaviour. User behaviour modelling and recognition focuses on accurate

recognition of user behaviour based on a carefully designed behaviour model. User be-

haviour analytics focuses on identifying the patterns of behaviour and the association

between behaviours.

1.2.1 User Behaviour Modelling and Recognition

The objective of user behaviour modelling and recognition is to first model user be-

haviour using a set of features and then recognize the user behaviour with reasoning

techniques.

How to model user behaviour depends on the understanding of the behaviour. Each

behaviour can be characterized using different set of features. For instance, social

activity could be featured using location and time. However, spatial or temporal features

might not be adequate to represent social activities. Therefore, social activity can be

2



1.2. Understanding User Behaviour

modeled based on social circle and time. Here, social circle refers to a set of people

that appear together frequently in a social activity. User behaviour modelling is critical

to the performance of behaviour recognition. If the user behaviour can be modelled in

a robust and effective way, then use behaviour recognition can achieve high accuracy

with very simple reasoning techniques.

Based on the behaviour model, behaviour recognition uses inference techniques to

derive high-level behaviour context from the low-level sensor data. Generally, be-

haviour recognition can be performed by two techniques: data-based technique and

knowledge-based technique. Data-based technique recognizes user behaviour via

learning of dataset. Data-based technique can be further divided into generative learn-

ing, discriminative learning and heuristic approach. Knowledge-based technique takes

advantages of domain knowledge to infer user’s behaviour. Knowledge-based ap-

proach consists of three categories, including mining-based, logic-based and ontology-

based.

Both data-based and knowledge-based techniques have pros and cons. Data-based

technique is good at handling uncertainty and temporal information. However, it re-

quires large amount of datasets for learning, and does not support scalability and

reusability. Rather than counting on data, knowledge-based technique is based on

rules or patterns extracted from domain experience. As a result, it can be easy to start

without dataset, and supports reusability and scalability. But it cannot handle uncer-

tainty and temporal information. In this thesis, we adopt data-based techniques as our

recognition techniques, due to their advantages on dealing with uncertainty.

1.2.2 Behaviour Analytics

User behaviour analytics focuses on identifying the patterns of behaviour and the as-

sociation between behaviours. On one hand, user behaviour analytics aim to find out

the patterns of behaviour in time, space or frequency domain. On the other hand, use
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behaviour analytics conduct association analysis to measure the correlation between

different behaviours. In this thesis, we focus on correlation analytics among behaviours

and other user states such as stress. Take stress detection as an example. First, we

conduct correlation analytics between stress and seating behaviour. Then we identify

some seating pressure features that can reveal user’s stress state. Finally, we construct

a stress classification model that can automatically identify whether user is stressed or

not. Ultimately, behaviour analytics is used to refine the behaviour model and recogni-

tion process.

1.3 Motivation of the Thesis

We argue that a practical user behaviour modelling, recognition and analytics system

should meet the following requirements in terms of model effectiveness, system cost

and user experience, etc.

• High-accuracy. First and foremost, the system should be able to accurately infer

user behaviour based on the sensor data. The accuracy of system depends on

the feature extraction and model selection. Thus, how to extract user-invariant

features and how to select appropriate model require further investigation.

• Non-intrusive. Last but not last, the system should be non-intrusive to let users

feel comfortable. Otherwise, the system with bad user experience will be dis-

carded.

• Energy-efficient. Since most of the user behaviour recognition systems are

based on energy-limited mobile platforms such as smartphone and smartwatch,

they are expected to be energy-efficient to enable long-term monitoring.

• Low-cost. The system should be affordable, so that most of the people can

benefit from it.
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• Real-time. Some system need to be real-time to support certain applications.

However, challenges arise due to the conflicts between the above requirements. For ex-

ample, high accuracy usually indicates high energy consumption and high cost. Thus,

to design a practical user behaviour modelling, recognition and analytics system, we

need to strike the balance among the system accuracy, energy consumption and sys-

tem cost.

First, we focus on modelling and recognising three particular kinds of behaviour: sitting

posture, eating habit and social activity. Here, we aim to optimise the balance between

accuracy, cost and energy consumption.

In sitting posture recognition problem, we focus on arbitrating the conflicts between

accuracy and cost. Current solutions based on wearable sensors or camera for siting

posture recognition, however, are impractical due to intrusiveness, high cost or low ac-

curacy. To achieve a non-intrusive and privacy-preserving solution, researchers have

deployed pressure sensors on the chair to infer sitting posture [XLH+11][TSP01]. But

the main limitation of these solutions are the high cost (around 3000 USD), since they

rely on high-fidelity pressure sensor array with more than two hundred sensors [Tek].

Note that paper [MKF+07] presents an idea to use 19 pressure sensors for sitting pos-

ture recognition. However, it only achieves 78% accuracy. The objective of this work is

to enable a practical sitting posture recognition technique that is accurate, low-cost and

non-intrusive and real-time. We introduce Postureware, a sitting posture recognition

system that can identify ten common sitting postures accurately in real-time using ten

pressure sensors that are deployed inside a seat cushion.

We aim to resolve the conflicts between system accuracy and energy-consumption in

eating behaviour inference. Monitoring eating behaviour has great potential for helping

people controlling weights and improving health conditions, and thus drawing increas-

ing attention from both industry and research communities. However, very few works

have been developed for long-term eating behaviour monitoring by means of a non-
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invasive platform. In particular, we exploit the accelerometer of smartwatch to derive

user’s eating behaviour, including: eating schedule, food cuisine and food item. Be-

sides, we leverage the collaboration between smartwatch and smartphone to reduce

the energy consumption of smartwatch, and thus enabling long-term monitoring. More

specifically, we propose a context-aware data collection method to conserve energy,

a novel set of accelerometer features that are able to capture key characteristics of

eating behaviour patterns, and a light-weight decision tree-based classification algo-

rithm. We evaluate our approach using real-world traces and the experimental results

demonstrate our work is able to monitor individual’s eating behaviour in a non-invasive

and energy-efficient manner.

We study the problem of social activity recognition and focus on improving the system

accuracy. A fair amount of research efforts have been devoted to activity recognition

based on various sensors embedded in smartphone. Some studies utilize accelerom-

eter to measure user’s locomotion state and then derives his/her physical activities

based on locomotion patterns [ZLC+08][MLEC07]. In addition to locomotion pattern,

location pattern has been extracted to infer certain kinds of social activities. In papers

[EP06][ZY11], authors use smartphone to obtain the location of users based on Wi-

Fi/GPS, and then identify the social activities based on the context of location. However,

the aforementioned approaches only consider the behaviour patterns of an individual

user. We observe that social activity is associated with a community, which inherently

exhibit the behaviour patterns with respect to multiple users rather than individual users.

Thus, in this work, we propose a social circle-based social activity recognition model.

Second, we study the correlation analytics between behaviours and other user states,

and then exploit the correlation relationship to build up better models. By exploiting the

correlation relationship between behaviours and other user states, we can improve the

system accuracy and non-intrusiveness. In this part, we aim to optimise the accuracy

and non-intrusiveness.
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We aim to improve the accuracy of user dwell time prediction model by exploiting social

context. Note that predicting the dwell time of users based on some contextual informa-

tion is not novel (e.g., arrival time, past dwell time). Works [MSCN13][VDN11] [DGP12],

have all studied such cases. However, none of the previous works have tried to quan-

tify the influence of fundamental factors upon user dwell time. It is worth emphasising

that quantifying the influences of factors towards user dwell time is significant. On one

hand, it advances the understanding of user movement behaviour. On the other hand,

it provides guidelines for the design of dwell time prediction model. Moreover, social

context which does impact user mobility behaviour, has not been considered into the

previous dwell time prediction models. Thus, we conduct the correlation analytics and

propose social circle-based user dwell time prediction model.

We are interested to explore the possibility of detecting stress based on the seating

pressure distribution on a chair, in the attempt to strike the balance between sys-

tem accuracy and non-intrusiveness. Several technologies have been developed to

measure stress, including surveys, physiological signal measurement (blood pressure

[VvDdG00], heart rate variability [DNG+00], skin conductance [HMP11] [SAS+10], cor-

tisol [DK04] [vEBNS96]). However, these methods are intrusive, which require the cog-

nitive attention of the users. We argue that an ideal stress detection system for long-

term monitoring should be unobtrusive, without posing additional stress upon people. A

less intrusive approach to measure stress is analysing the user behaviours such as typ-

ing pattern [HPRC14] and mobile phone usage [LLLZ13], which correlate with stress.

Our idea is motivated by the embodied theory of cognition [Cla97], which indicates that

affective states of people are manifested in their posture channels. Specifically, this

work seeks to measure stress based on seating pressure patterns.

In this thesis, we will elaborate the aforementioned problems in detail and design the

solutions to tackle them.
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1.4 Contributions of the Thesis

The contributions of this thesis mainly lie in modeling, recognition and analytics of user

behaviour in pervasive environment. Fig 1.1 shows the framework of this thesis. In par-

ticular, the main body of the thesis consists of two parts: user behaviour modeling and

recognition, correlation analytics. The first part focuses on how to accurately model

and recognize certain categories of user behaviours based on ambient sensor data. In

particular, we study three kinds of behaviours which play critical roles in both physical

and psychological heath, including: sitting posture, eating habit and social interaction.

Second part aims to identify and exploit the correlation between user behaviours and

other user states such as emotion. Specifically, we conduct correlation analytics be-

tween mobility and social circle, stress and sitting posture, and exploit the correlation

relationship to build up new recognition model. In the following, we will present the

contributions of this thesis in detail.

1.4.1 Contributions in User Behaviour Modeling and Recognition

In user behaviour modeling and recognition, we focus on three kinds of behaviours

including: sitting posture, eating habit and social interaction. 1) Current solutions for

siting posture recognition, however, are impractical due to intrusiveness, high cost or

low generalization accuracy. In this work, we design Postureware, an accurate, low-cost

and non-intrusive sitting posture recognition system. We design and implement a non-

intrusive system for sitting posture recognition, which can accurately recognize sitting

posture in real-time (8Hz) with low cost (150USD). We then propose an information-

theoretic sensor placement solution, enabling the system to achieve the same recog-

nition accuracy using much fewer number of sensors. Specifically, the system can

recognize 10 categories of sitting postures with 99.6% ten-fold cross validation accu-

racy with 10 sensors. Furthermore, we design an accurate sitting posture recognition
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Sitting Posture Eating Habit Social Interaction

Figure 1.1: The outline of the thesis

model, which incorporates pre-processing, user-invariant feature extraction and Ad-

aBoost classification, being able to resolve the challenges posed by user diversity and

thus improving generalization accuracy. The system can achieve 84.7% generaliza-

tion accuracy with 10 sensors. Finally, we implement a prototype system and develop

two applications to evaluate the system utility. Unhealthy sitting posture recognition

application can achieve 99.9% precision accuracy from the offline dataset. In second

application, more than 80% of the users can finish the racing game smoothly using

sitting posture.

2) We study the problem of monitoring an individual’s eating behaviour using off-the-

shelf smartwatch and smartphone. However, very few works have been developed for

long-term eating behaviour monitoring by means of a noninvasive platform. The pri-

mary contributions of this paper are as follows. We first present a context-aware data
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collection method to conserve energy based on the collaboration between smartwatch

and smartphone. We then introduce a new set of accelerometer features that can cap-

ture key characteristics of eating behaviours. To further reduce the energy consumption

of the system, we present a light-weight classification algorithm for eating event classifi-

cation. We evaluate our approach using real-world traces and the experimental results

demonstrate our work is able to monitor individual’s eating behaviour in a non-invasive

and energy-efficient manner.

3) Most of the existing work in social activity recognition are based on the patterns of

individual user such as location pattern, vocal pattern, etc. However, we observe that

social activity is associated with a community, which inherently exhibits the patterns

with respect to multiple users. In this work, we introduce the concept social circle to

identify a distinctive behaviour pattern of social activities. Compare with other patterns

extracted from individual user, social circle is able to characterize social activities more

accurately. Based on social circle, we develop a practical smartphone-based system

called CircleSense for recognition of a generic categories of social activities. Finally, we

evaluate the system with a 16-participant dataset which is collected from the deployed

android phones. The experimental results demonstrate that CircleSense outperforms

the existing methods.

1.4.2 Contributions in Behaviour Correlation Analytics

In the second part of the framework, we study the problem of correlation analytics

among behaviours. In particular, we find that there exists correlation between human

mobility and social circle, as well as stress and sitting behaviour. Furthermore, by

leveraging the correlation relationships, we improve the accuracy of human mobility

prediction and stress measurement.

First, we study the problem of user dwell time prediction by exploiting social context.

We design StayPredictor, a system to predict user dwell time at a shopping mall based

10
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on Wi-Fi traces. Our solution is evaluated on 10-day WiFi traces collected from 111K

devices, and being able to achieve 32.6% relative error. We propose a correlation

analytics framework to quantify the impact of factors towards user dwell time. Specif-

ically, this framework can measure the linear and non-linear dependency relationship

between dwell time and other factors. To our knowledge, this is the first work to identify

and quantify the impact of social context towards user dwell time. We believe that the

findings could provide new insights for human mobility modelling. Moreover, we present

an ensemble method for dwell time prediction. By incorporating multiple models that

are built from different context information, the proposed ensemble method is able to

achieve higher prediction accuracy over single models.

Next, We are interested to explore the possibility of detecting stress by analysing the

seating pressure distribution on the chair. In particular, we collect seating pressure data

from 15 participants using a seat cushion which is deployed with 20 pressure sensors.

Through correlation analysis, we identify a set of effective seating pressure features in

both temporal and spatial domain that are associated with stress, including: average

seating pressure, pressure imbalance, etc. Based on the associated features, we build

up a stress detection framework to classify whether participants are stressed or not.

The result show that the stress detection framework can achieve 86% accuracy using

kNN classifier.

1.5 Organization of the Thesis

The structure of this thesis is shown in Fig.1.1. Chapter 1 presents the introduction of

the thesis. Background and related work is presented in Chapter 2. The main body of

the thesis is covered from Chapter 3 to Chapter 7. In particular, the main body can be

divided into two parts: user behaviour recognition and correlation analytics.

In the first part, we present our work in user behaviour recognition. In Chapter 3,
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we study the problem of sitting posture recognition based on pressure sensors. We

propose an accurate, low-cost and non-intrusive solution, Postureware, which incor-

porates very thin pressure sensors, an effective sensor placement solution, a set of

user-invariant features and an ensemble learning classifier. In Chapter 4, we study the

problem of eating behaviour recognition using smartwatch and smartphone. In particu-

lar, we design a context-aware data collection method to conserve energy, a novel set of

accelerometer features that are able to capture key characteristics of eating behaviour

patterns, and a light-weight decision tree-based classification algorithm. We study the

problem of social activity recognition in Chapter 5. We introduce the concept of social

circle, which reveals the behaviour pattern associated with multiple users in social ac-

tivities. Based on the social circle concept, we present CircleSense, an accurate and

efficient smartphone-based system for social activity recognition.

In the second part, we present our work in behaviour correlation analytics. In Chap-

ter 6, we study the correlation between human mobility and social circle. We found

there exists correlation between user dwell time and the size of social group during the

visit. By exploiting the above findings, this work presents an accurate user dwell time

prediction model that incorporates time and social context, dwell time and leave time

history.

We examine the correlation between stress and sitting posture patterns in Chapter 7.

Through correlation analysis, we identify a number of seating pressure features that

are associated with stress, including: average seating pressure, pressure imbalance,

etc. Based on the associated features, we build up a stress detection framework to

classify whether participants are stressed or not.

Finally, Chapter 8 concludes the thesis and discusses the future work.
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Literature Review

In this chapter, we present the literatures review on user behaviour modeling, recogni-

tion and analytics. In user behaviour modeling and recognition, we focus on three user

behaviours: sitting posture, eating habit and social activity. In the following, we present

the state of the art in sitting posture recognition in Section 2.1, eating behaviour mon-

itoring in Section 2.2 and activity recognition in Section 2.3. Next, we focus on corre-

lation analytics between behaviours and other user states such as stress and mobility.

The related works of human mobility analytics and stress detection are presented in

Section 2.4 and Section 2.5 respectively.

2.1 Sitting Posture Recognition

Sitting posture recognition has received significant attention due to the miniaturiza-

tion of sensors and the a wide spectrum of applications including: healthcare, human-

computer interaction, etc. In the following, we focus on discussing how different sensors

have been applied to detect user’s sitting postures.

Wearable Sensor-based. Wearable sensor has been used to detect user’s sitting
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posture. In [KBA+07], the acceleration sensors are attached to the human body to

recognize a set of posture including sitting, walking and standing. The acceleration

data are collected and then the sitting posture can be identified using threshold-based

decision rule. In another research work [SP13], Dunne et al. examine the use of

clothing augmented with plastic optimal fibre to monitor the seated spinal posture. The

proposed method is to first collect inertial data from fibre sensor and apply J48 decision

tree learning algorithm to build up the recognition model. However, wearable sensor-

based solution exhibits two drawbacks. First, the system is prone to error due to the

sensor position drift. Second, it introduces intrusiveness and bring discomfort to users.

In contrast, Postureware leverages pressure sensors to collect data associated with

sitting postures, which are very thin (0.208 mm thick) and enable non-intrusive user

experience.

Vision-based. Vision-based solution depends on visual sensors for sitting posture

recognition. Authors in [BBT05] present the study to recognize human postures based

on video sequences. Their approach combines the 2-D and 3-D model such that

posture can be inferred independent of the camera viewpoint. Alternatively, some re-

searchers in [Cam11] turn to use depth camera (Kinect) for sitting posture recognition.

The main idea is to track the human skeleton first using depth camera, and then recog-

nize the sitting posture based on the relative positions among shoulder, hip and knee.

However, vision-based approach is easily compromised by the lighting level and raises

serious privacy concerns. Furthermore, it requires line of sight condition, which may

not applicable to some scenarios due to user’s mobility. Postureware, however, can

work in non-line-of-sight scenarios, and yet preserve user’s privacy.

Pressure Sensor-based. This category of works focuses on exploring pressure sen-

sors to detect user’s sitting posture. Most of the research works [XLH+11] [KKNT08]

[TSP01] [LA06] [FMGK12] [MAST10] rely on high-fidelity pressure sensor. Wenyao et

al.[XLH+11] develop a system called e-cushion which mainly tackle the issues caused

by sensor crosstalk. They first conduct data-preprocessing to mitigate the effect of
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crosstalk, and apply dynamic time warping technique to classify different sitting pos-

ture. Paper [ZMT03] focuses on tackling the issues posed by offset, rotation and scal-

ing of pressure distribution due to users’ sitting habit and size. A data-preprocessing

method is proposed to crop the posture area and resize the pressure distribution into a

standard metric. A lot of research efforts have also been devoted to explore a variety

of features to represent the sitting posture, including: Principle Component Analysis

(PCA) [TSP01]; mean value, center value, peak value, the percentage of contact area

and contour shape [LA06]; sum of sensor values, number of active sensors, longitu-

dinal, lateral center of pressure, variance of sensor value [FMGK12]. However, above

mentioned works rely on expensive high-fidelity sensor array and thus impeding the

widespread adoption. The only attempt which we are aware of that uses a few number

of pressure sensors (19 sensors) to perform sitting posture recognition is made by Bilge

et al. in [MKF+07]. Nevertheless, this system only achieves a (ten-fold cross-validated)

classification accuracy of 78%, which is not adequate to support many applications.

In summary, most of previous work either use intrusive wearable/visual sensors or re-

lies on expensive high-resolution pressure sensor array for sitting posture recognition.

Different from existing research, the proposed Postureware is a sitting posture recog-

nition system that is accurate, low-cost and non-intrusive. Specifically, Postureware is

based on a few number of pressure sensors and able to achieve high accuracy with

respect to a diversity of users in terms of weight, sitting habit, yet providing comfortable

and privacy-preserving user experience.

2.2 Eating Behaviour Monitoring

Eating behaviour monitoring can be considered as a subfield of human activity analy-

sis. Eating behaviour monitoring has a lot of potential to help people lose weight and

keep healthy, which is drawing increasing attention from both industry and research
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communities.

To perform eating behaviour monitoring, the simplest way is dietary recall method,

which relies on the users to manually provide eating behaviour information by the end

of each day. However, this approach suffers from several limitations. First, it is very

burdensome to users, since they are required to consciously record what they eat each

day. Second, it is erroneous due to the fact that some people like the elderly fail to

recall the exact food they have eaten. Therefore, dietary recall method is not feasible

for long-term eating behaviour monitoring.

To enable long-term eating behaviour monitoring, both industry and research commu-

nity have been seeking ways to automatically monitor people’s eating behaviour by

exploiting various kinds of sensors. One straightforward method is to design a spe-

cialised utensil which user will use for meals. HAPIfork [for14] is an electronic fork to

monitor and track eating habits. Specifically, it is able to measure the eating speed and

trigger the alerts once user are eating too fast, since eating too fast gives rise to se-

vere negative effects such as weight gain and digestive problems. However, the main

limitation of HAPIfork is that it requires the user to use it during each meal. First, this

is very inconvenient, since the user needs to bring it every day. Second, fork may not

be a suitable utensil in some cuisines such as eastern cuisine. Azusa et al. [KLT+14]

design and implement a sensing fork to track the eating behaviour of children. The

sensing fork contains several sensors: three-electrode conductive probe, six-axis mo-

tion sensor and single pixel RGB colour sensor. In particular, the sensing fork is able

to detect the eating actions: at-rest, holding, poking and biting. Besides, a number of

preselected foods can be classified with the help of colour sensor. However, it exhibits

the same limitations of HAPIfork.

Rather than monitoring the utensil, researchers turn to track the wrist motion of users

to infer eating behaviour. Dong et al. [DHM09] proposes a system called BitCounter

to count the bite of food taken. The system is based on a gyroscope sensor embed-

ded in a wrist-worn device to collect signals associated with user’s eating behaviour.
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Through analysing the motion signal of the user’s wrist, BitCounter can achieve 91%

accuracy in detecting the bites of food taken. But there are several limitations of this

work. First, the device requires the user to turn on the system during eating, which

brings about inconvenience. Second, it is very energy-consuming since it collects data

from gyroscope. Third, this work does not consider cuisine and food item detection. In

[DSW+14], authors proposes a system to classify the eating and non-eating activities.

The system is based on the accelerometer and gyroscope of a smartphone which is

placed on wrist. Although fitness trackers such as fitbit [fit14] are wrist-worn devices

and have been very popular, it is only limited to count steps, measure calories burned

and etc.

In addition to wrist motion signal, acoustic signal has also been exploited to derive

eating behaviour. Paper [PWF12] leverages acoustical signals collected by ear micro-

phone to infer food intake activities and classify different kinds of food. More recently,

a crowdfunding project BitBite [Bit14] proposes the similar idea to track and analyze

eating habits with a smart ear clip. BitBite makes use of a microphone and additional

sensors to track the eating activities based on the incoming sounds. BitBite is able

to quantify the chewing rates, chewing qualities and eating schedule, etc. However, it

requires the user to wear the device whenever they have meals, which is quite obtru-

sive. In [AKT07], authors present a system to infer eating and drinking activities as well

as food category. However, the system requires users to wear an ear microphone, a

collar-worn sensors and four inertial sensors on both upper and lower arms, which is

very cumbersome and invasive.

Some research works have also utilised sensors such as piezoelectric sensors and

camera for eating behaviour monitoring. Paper [KAS14] proposes a smart necklace

which is based on an embedded piezoelectric sensor to estimate the volume of food

intake. Furthermore, the system is capable of classifying three different kinds of food:

sandwich, chips and water. Authors in [KY13] proposes a mobile food recognition

system based on smartphone. The system is able to estimate calorie and nutritious of
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foods based on food image taken by the smartphone camera. However, this system

requires the user to take the picture of food each time.

Different from previous work, we propose iEat, the first non-invasive system that is

based on smartwatch and smartphone to automatically record people’s eating be-

haviour, including: eating schedule, food cuisine and food item. In particular, iEat is

able to perform continuous and accurate eating behaviour monitoring in an energy-

efficient manner.

2.3 Activity Recognition

2.3.1 Phone-based Activity Recognition

In general, existing phone-based activity recognition models can fall into three main

categories: location-based model, motion-based model and hybrid model.

Location-based model. The location-based model attempts to infer the activity based

on location pattern. In the Reality mining Project [EP06], Eagle et al. makes use of

the GSM data obtained by mobile phones to determine users’ three simple activity

states: home, work or elsewhere. Some researchers [ZY11] propose the WiFi-based

activity recognition model, using WiFi access points as location signatures to train the

recognition model. However, the location-based model merely considers location and

temporal patterns, but fails to recognize some activities that are held in unplanned and

impromptu places. Furthermore, in practice, it is not always possible to have dense

WiFi access points deployment for accurate indoor localization.

Motion-based model. Significant research effort have also been devoted to utilize the

locomotion pattern captured by accelerometer embedded in the mobile phone for social

activity recognition. In [MLEC07][MLF+08], Emiliano et al. leverages the accelerometer

data to infer users’ four simple physical activities: sitting, standing, walking or running.

18



2.3. Activity Recognition

In the paper [KWM11], the author targets a larger set of activities including walking,

jogging, climbing stairs, sitting and standing. Users’ transportation activity recognition:

bike, bus, walk or driving has also been investigated in another study. Paper [ZLC+08]

studies the use of GPS trace to recognize user’s transportation activity. They applies

the supervised learning approach to train the recognition model based on the traces. In

paper [MLEC07], authors builds up the transportation activity recognition model using

phones’ GSM signal. However, the motion-based model is susceptible to the noise

interference and varies between different users, thus making it difficult to establish a

general recognition model. Moreover, the method tends to capture coarse activities,

which makes it difficult to recognize complex activities such as social activities with

varying locomotion state.

Hybrid model. In this model, hybrid collection of sensors including GPS, microphone,

accelerometer are used [LXL+11] to obtain location, vocal and locomotion pattern to

recognize a set of activities. The activities are comprised of both simple activities such

as walk, run, stationary and complex activities such as meeting, studying, exercising,

socializing. Noticeably, their work only covers a small set of social activities and is easily

compromised by environmental noise. Moreover, the model is energy-consuming that

makes it unamenable to operate on smartphones with limited battery capacity.

Although some patterns of individual user including location or vocal patterns have

shown their potential in recognizing complex activities including meeting, classes, ex-

ercising. Different from previous work, our approach relies on social circle to extract the

social patterns of multiple users involved in a generic set of social activities and takes

advantage of temporal pattern of social activities, to recognize a representative set of

social activities, without any infrastructure support.
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2.3.2 Social Context Recognition

Social context modelling and recognition [LCLH14] has drawn a lot of attention in ubiq-

uitous computing community. In general, social context refers to a set of information

that characterizes multiple users such as social tie, social group or group dynamics. By

exploiting social context information, a variety of social context-aware applications are

made possible and have the potential to create a tremendous amount of economic and

social value. Social context recognition study can be roughly divided into three cate-

gories: social tie inference [MCY+14] [YPT+11], group detection [SLJ+14] and group

context inference [BGA+08] [RKL+12].

Social tie inference infers the social link between a pair of users based on similarity

measurement in predefined metrics such as location [MCY+14], interest [ZMH+11].

Group detection focuses on clustering users. Paper [SLJ+14] presents GruMon, a

group detection system by fusing location data and smartphone sensor data from the

accelerometer, compass and barometer. They focus on identifying which individuals

are traveling together without identifying their relationships. In particular, they use the

correlations between the sensor and semantic data of different individuals to determine

if they belongs to the same group.

After group detection, different groups can be identified. Then group context manage-

ment models and recognizes the context that associates with a group such as group

activities, interaction and group dynamics. T. Gu et al. [GWC+11] studies the activities

of multiple users using a wireless body sensor network, including watching TV, making

pasta, etc. They exploit a discriminative knowledge pattern which indicates significant

changes among activity classes to conduct activity recogniser. In paper [LMH+13],

Youngki Lee et al. propose SocioPhone, a face-to-face interaction monitoring plat-

form based on multi-phone sensor fusion. In particular, their work identifies a number

of meta-linguistic contexts of conversation, such as turn-takings, prosodic features, a

dominant participant, and pace. In paper [LC13], authors present SocialWeaver, a
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smartphone-based system which is able to perform conversation clustering and con-

struct conversation networks among the users. The main idea is to conduct speaker

classification by collaboratively sharing information within the proximity group.

This work focuses on the recognition of social activity which is a particular kind of social

context associated with a group of people.

2.4 Human Mobility Analytics

Behaviour Analytics from Wi-Fi Probes Traces. Recently, customer intelligence

based on Wi-Fi probe data analytics is drawing a substantial amount of attention, as it

has great potential to uncover customer insights. A lot of retailers show great interests

in understanding the visitor behaviour, their shopping patterns, and store performance

metrics through analysing the collected Wi-Fi probe traces. In particular, using statisti-

cal techniques, the overall foot traffic, location of people within a store, dwell times and

more can be obtained. However, existing commercial solutions to Wi-Fi probe mining

[Euc14] [Tur13] focus on descriptive analytics rather than predictive analytics. Some

researchers in academic community have analysing user behaviours and social sta-

tuses from Wi-Fi probe data. Paper [ME12] studies the problem of user spatio-temporal

trajectory estimation, given the probe data collected from a set of sparsely deployed

monitors. Researchers in [QZLS13] explores Wi-Fi probe dat to identify different user

activities. Marco et al. [BEM+13] discovers the social structure of a large crowd and

its socioeconomic status from smartphone probe information, including: topological

properties of the social networks, homophily and social influence in vendor adoption

and demographics of brand penetration, etc. Potential social relationship can also be

identified by leveraging the WiFi probes [CMC+12]. Different from above works, the

objective of this work is to understand and predict user dwell time in a place.

Human Mobility Prediction. Predicting human mobility has been a hot topic since the
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location data of people becomes available due to the high penetration rate of mobile

phones. Specifically, human mobility prediction mainly focus on studying three prob-

lems: where will user go next [SKJH06]; how long will user stay in a location [SMM+11];

how likely will a user stay in location given a certain time [KB11]. Our focus is on the

second problem. Long Vu et al. [VDN11] propose a framework called Jyotish to pre-

dictive human movement based on Wi-Fi/Bluetooth traces. In particular, to predict the

user duration in a location, Jyotish merely relies on the duration distribution obtained

from the historical data. Researchers in [DGP12] present a probabilistic model for hu-

man mobility prediction. Specifically, the model for duration prediction incorporates the

historical duration distribution and the leave time distribution. More recently, a frame-

work for dwell prediction is designed in paper [MSCN13] by leveraging sensor data in

smartphone. This framework requires the mobile devices to periodically upload the

sensor data to the access points such as accelerometer, compass and light. Based

on the collected sensor readings, the dwell prediction can be predicted using machine

learning algorithm. Note that previous predictive models for dwell time are evaluated

on the dataset collected mainly from campus students. Thus, those dataset may not

reflect the real-world human movement.

Different from previous works, our work proposes a correlation analytics framework

to quantify the influences of fundamental factors upon user dwell time, which is very

critical to the performance of predictive model. Besides, our work is the first to identify

and quantify the impact of social context towards user dwell time. Furthermore, our

proposed model is evaluated on a 10-day Wi-Fi traces collected from 111K devices.

2.5 Stress Detection

This section provides an overview of previous methods for stress measurement and

the related research on posture-based affection detection.
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2.5.1 Stress Measurement

The most straightforward method of stress measurement is based on surveys. For

instance, perceived stress scale (PSS) [CKM83] is developed to measure the degree

to which situations someone feels stressful. The daily stress inventory [BWJR87] can

measure the stress experienced by people by counting the number and intensity of

stressful events. However, survey-based methods are very subjective, and demand the

cognitive attention of users.

An alternative method to assess stress is to measure the physiological signals that re-

lated to stress, including: heart rate variability, skin conductance, temperature, respira-

tion, blood pressure. However, physiological-based method is intrusive, which requires

people carry the sensors all the time, which may not appropriate for long-term monitor-

ing. Voice is also considered as a signal that reveals the stress states of people. Hong

Lu et al. [LFR+12] presents a system that can detect stress of 14 participants with the

accuracies of 81% and 76% for indoor and outdoor environments, respectively. In par-

ticular, eight acoustic features for stress have been extracted such as pitch deviation,

spectral centroid and MFCCs, etc. The main drawback of this approach is that it poses

privacy issue, since it requires recording the human speech.

A less intrusive approach is to measure stress through analysing the behaviours that

correlate with the stress. Javier et al. [HPRC14] uses pressure-sensitive keyboard and

a capacitive mouse to distinguish between stressful and relaxed conditions in a labora-

tory setting. The study shows that increased levels of stress significantly associate with

the increasing typing pressure and amount of mouse contact. MoodScope is presented

in paper [LLLZ13], which can infer the daily mood of a user by analysing communication

history and application usage patterns of a mobile phone. Stress can also be measured

based on the body movement and mobile phone usage. In paper [SP13], body move-

ment can be quantified using a wrist sensor (accelerometer, skin conductance), while

mobile phone usage includes: call, short message service, screen on/off, etc.

23



Chapter 2. Literature Review

2.5.2 Affection Detection based on Posture

A fair amount of research works have studied the association between body language

and affection. One of the underlying theories is called embodied theory of cognition

[Cla97], which indicates that the affective states of people are manifested in their body

movement and positions. Thus, the posture dynamics can provide the behavioural

information about the affective state of the user.

Inspired by this theory, Sidney et al. [DCG07] developed a system that monitored the

postures of 28 undergraduate students using the pressure mat mounted on the back

and seat of the chair, and were able to differentiate between the boredom and flow

states with accuracy of 47%. The main finding of their work is that the affective state

of flow associates with heightened pressure posed on the seat of chair, while the bore-

dom is manifested through a rapid change in pressure on the seat. In another study,

Selene et al. [MP03] found evidence to support a relationship between the postural

behaviour patterns and interest level of children who are working a computer-based

learning task. In particular, through analysing the temporal posture sequence patterns

of 10 children, their work can recognise three states related to a child’s level of interest,

with the accuracy of 82.3%.

To further identify more affective states, posture patterns combined with other modal-

ities have been explored. For instance, Ashish et al. [KBP07] presented a system to

detect the frustration state of people who are involved in the problem-solving activi-

ties in a computer, using multiple modalities including: face, postural movement, skin

conductance and pressure on the mouse. Specifically, their work can recognise the

frustration state of 24 participants with 79% accuracy. Specifically, our work focuses on

analysing seating pressure of people in the context of stress detection.

Most similar work is done by Arnrich et al [ASLM+10], which exploits seating pressure

to detect stress. However, our work is different from theirs in terms of the analytics

framework, seating pressure features and results. Our analytics framework is more
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open than Arnrich et al’s framework in terms of the candidate features and classifiers.

In Arnrich et al’s work, the features are limited to the spectra of the norm of the center

of pressure, and only a single classifier called self-organizing map is evaluated. In

our framework, a larger set of features in both time-domain and spatial-domain are

extracted, and different types of classifiers are evaluated. Moreover, Arnrich et al’s

work does not conduct feature selection. We conduct correlation analysis and select

the features with high correlation with stress. Feature selection is important, since it is

able to filter out the random factors and thus improving the system generality. Our work

can attain 86% accuracy, while Arnrich et al’s work achieves 74% accuracy. Compared

with Arnich et al’s work, our method is more accurate and provides new understandings

on how stress can be revealed by seating pressure.
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Accurate Sitting Posture Recognition

with Low-cost Pressure Sensors

We study the problem of sitting posture recognition based on pressure sensors. Sec-

tion 3.1 presents the overview of this work. We describe the design considerations in

Section 3.2. In Section 3.3 and 3.4, we present the system overview and framework

respectively. Evaluation is presented in Section 3.5. To evaluate the system utility, we

develop three applications in Section 3.6. We discuss some research issues in Section

3.7 and conclude this work in Section 3.8.

3.1 Overview

In modern lifestyle, many people spend prolonged periods of time sitting. Research

shows that long periods of physical inactivity raise the risk of heart disease, diabetes,

cancer, and obesity. Moreover, poor sitting postures such as leaning forward cause up-

per limb and neck pain [Wik13]. To reduce risky sitting behaviours, monitoring people’s

sitting posture is greatly needed, which can raise people’s awareness of sitting be-

haviours. In addition, the rehabilitation prognosis of stroke patients can be conducted
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by measuring the sitting imbalance [SS90].

In addition to healthcare, sitting posture recognition also plays a vital role in human

computer interaction. Sitting posture, along with sitting posture recognition techniques,

can be extended as a human-computer interface. For example, people with disabilities

can play games or control a wheelchair via sitting postures. Affective states can be

further recognized based on the pattern of sitting posture [SK12]. Driver’s drowsiness

level and attention, can be inferred based on sitting posture information. Student’s

interest level towards a subject can be identified based on sitting posture along with

other sensory inputs, which can facilitate learning [KMP01].

Current solutions for siting posture recognition, however, are impractical due to intru-

siveness, high cost or low accuracy. A wearable sensor-based method attaches an

inertial sensors on a user’s back to collect motion data and identify the sitting posture

[SP13]. This approach is intrusive and brings discomfort to users, since users are

required to wear or attach those sensors. Vision-based methods use cameras to cap-

ture user sitting postures [Cam11]. Such method requires line-of-sight condition and

may raise privacy concerns. To achieve a non-intrusive and privacy-preserving solu-

tion, researchers have deployed pressure sensors on the chair to infer sitting posture

[XLH+11][TSP01]. But the main limitation of these solutions are the high cost (around

3000 USD), since they rely on high-fidelity pressure sensor array with more than two

hundred sensors [Tek]. Note that paper [MKF+07] presents an idea to use 19 pressure

sensors for sitting posture recognition. However, it only achieves 78% accuracy.

The objective of this work is to enable a practical sitting posture recognition technique

that is accurate, non-intrusive, low-cost and real-time. We introduce Postureware, a

sitting posture recognition system that can identify ten common sitting postures accu-

rately in real-time using ten pressure sensors that are deployed inside a seat cushion.

During the design of the system, we address two main challenges: (i) How to place the

minimum number of sensors to achieve the required recognition accuracy and cost. To
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Figure 3.1: Sitting posture data from different users

address this challenge, we propose an information-theoretic metric to measure the sen-

sor placement performance and then carry on a greedy algorithm to output the place-

ment solution. This sensor placement solution is able to extract informative sensors yet

with low computation cost. (ii) How to design an accurate sitting posture recognition

model for different users. User diversity widens the intra-class differences and makes

classification more challenging. Figure 1 visualizes the difference of sitting upright data

samples from 15 people. We plot the first two PCA components on each axis of the

figure based on the original data. It is surprising to see those sitting upright data sam-

ples are scattered distinctively. To this end, we propose a user-invariant sitting posture

recognition framework, aiming to narrow the intra-class differences and widen the inter-

class differences. Specifically, we conduct preprocessing to standardize the data; then

use a set of user-invariant and distinctive features to model sitting postures; and finally

use AdaBoost, an ensemble learning model to classify sitting posture.

The main contributions of this work are as follows:

• We design and implement a non-intrusive system for sitting posture recognition,

which can accurately recognize sitting posture in real-time (8Hz) with low cost

(150USD).
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• We propose an information-theoretic sensor placement solution, enabling the

system to achieve the same recognition accuracy using much fewer number of

sensors. Specifically, the system can recognize 10 categories of sitting postures

with 99.6% ten-fold cross validation accuracy with 10 sensors.

• We design an accurate sitting posture recognition model, which incorporates pre-

processing, user-invariant feature extraction and AdaBoost classification, being

able to resolve the challenges posed by user diversity and thus improving gener-

alization accuracy. The system can achieve 84.7% generalization accuracy with

10 sensors.

• Finally, we implement a prototype system and develop two applications to eval-

uate the system utility. Unhealthy sitting posture recognition application can

achieve 99.9% precision accuracy from the offline dataset. In second applica-

tion, more than 80% of the users can finish the racing game smoothly using

sitting posture.

3.2 Design Considerations

This section discusses the technical considerations that underpins the design of Pos-

tureware. Specially, the considerations include sitting posture set and system require-

ment.

3.2.1 Sitting Posture Set

The key function of Postureware is to identify a set of predefined sitting postures per-

formed by people. In particular, Postureware focuses on ten of the most typical sitting

postures found in office environment [Lue94], including: sitting upright; slouching; lean-

ing back; leaning forward; leaning left; leaning right; left leg crossed; right leg crossed;
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left leg crossed, leaning right; right leg crossed, leaning left (as shown in Figure 2). An-

other main reason to include those postures is because not just are they related to our

demonstrative applications presented in the later section, but also chosen in previous

works [MKF+07][TSP01], providing a benchmark for performance comparison of our

system and previous works.

Due to diverse sitting habits, however, people sit differently even for the same posture.

Take right leg crossed as an example, one may crosse right knee over left knee or

cross their right ankle over the left knee. In order to make the selected sitting posture

set more general, we consider several variant postures performed by people for certain

posture. In our case, right leg crossed includes one crosses right knee over left knee;

one crosses right ankle over the left knee.

Specifically, we target at fifteen sitting postures performed by the subjects, including:

(1) sitting upright; (2) slouching; (3) leaning back; (4) leaning forward (angle<30 de-

grees); (5) leaning forward (angle>45 degrees); (6) leaning left (angle<10 degrees); (7)

leaning left (angle>20 degrees); (8) leaning right (angle<10 degrees); (9) leaning right

(angle>20 degrees); (10) left leg crossed in ankle; (11) left leg crossed in knee; (12)

right leg crossed in ankle; (13) right leg crossed in knee; (14) left leg crossed, leaning

right; (15) right leg crossed, leaning left.

Compared with the posture set in previous works [MKF+07][TSP01], the siting posture

set in this work is more general and representative. As a result, it is more challenging

to conduct the sitting posture classification.

3.2.2 System Requirement

To make it practical, we think the system should be able to provide effective function-

alities and good user experience at a reasonable cost. Particularly, we highlight the

following stringent requirements:
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Figure 3.2: Sitting posture set: (a) sitting upright; (b) slouching; (c) leaning back; (d)

leaning forward; (e) leaning left; (f) leaning right; (g) left leg crossed; (h) right leg

crossed; (i) left leg crossed, leaning right; (j) right leg crossed, leaning left

• Accurate: the system should be able to recognize sitting postures performed

by diverse users accurately. Accuracy should be the top priority among all the

system performance metrics.

• Real-time: the system should be able to recognize people sitting posture in real-

time, so that a variety of applications such as human computer interaction can be

supported.

• Non-intrusive: the system should provide comfortable experience for users. Since

a normal user usually spends a lot of time seating every day, it is of great impor-

tance to make it non-intrusive.

• Low-cost : the cost of the system should be low and afforded by most users for

widespread adoption.
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Pressure distribution

Pressure sensor

Postureware: a smart cushion

Figure 3.3: Postureware overview

3.3 System Overview

3.3.1 System Architecture

The delivery of Postureware system is a sensing mat that can recognize user’s sitting

posture. The sensing mat leverages the pressure sensors, as shown in Figure 3, to

obtain the pressure distribution on top of the chair. Then the sitting posture can be in-

ferred based on the distinctive pressure distribution pattern. Postureware contains four

components: pressure sensors, sensor placement, sitting posture recognition model

and application, which is shown in Figure 4. On top of sitting posture recognition, we

develop three applications: first application is to monitor unhealthy sitting posture, sec-

ond one is to use sitting posture to play a car racing game and the last application is to

control wheelchair by changing sitting posture. In particular, Postureware contains two

key components: (1) sensor placement; (2) sitting posture recognition model.

Sensor placement. To reduce system cost, we need to place as fewer number of sen-
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Sensor placement

Sitting posture recognition model

pre-processing classification

Applications

Unhealthy sitting 
posture monitoring

Game Playing

Feature
extraction

Wheelchair Control

Sensor data collection 

Figure 3.4: Postureware architecture

sors as possible, as each pressure sensor costs around 15 USD [Tek]. This component

is designed to output a number of positions on the chair top to place sensors, aiming

to minimize the number of deployed sensors while achieving the required recognition

accuracy.

Sitting posture recognition model. Given the original pressure sensor data, a sitting

posture recognition model is designed to infer the sitting posture accurately. Specifi-

cally, sitting posture recognition model consists of three components: pre-processing,

feature extraction and classification. The first two components aim to represent sitting

posture using distinctive and user-invariant patterns, whereas classification component

is used to train the classifier to identify the posture based on features.

3.3.2 Problem Formulation

In this work, the research problem can be stated as follow: given a set of users, a set

of predefined sitting postures, a number of pressure sensors to be deployed on top of
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a chair, a required recognition accuracy; the objective is how to deploy the sensors and

analyze the sensory data such that the sitting posture of the users can be recognized

with the required recognition accuracy. More specifically, we formulate the problem

from the supervised learning perspective.

Given:

• A set of users U , varying in weight, age, sitting habit (center of contact area).

• A set of pre-defined sitting postures P .

• N number of pressure sensors array S placed on top of chair.

• Dataset D collected from sensor array S, when all the users ∀ui ∈ U sits in all

the postures ∀pj ∈ P .

• Data sample from D is in the format of (x, y), where x is a N -dimension vector,

denoting the sensor data from S; y ∈ P is the corresponding sitting posture label.

Objective:

How to deploy given number N pressure sensors and construct a recognition function

f(x) : x → y from D such that while user sitting on the chair, the sitting posture of user

from U can be accurately recognized based on f(x).

3.4 Postureware Framework

3.4.1 Sensor Placement

Sensor placement focuses on deploying as fewer number of sensors as possible to

obtain the required accuracy of recognition. More specifically, the sensor placement

problem is how to select a few number of sensors from the densely deployed sensor

34



3.4. Postureware Framework

grid. This problem has been studied in literature [MKF+07]. The evaluation metric

for placement solution is how fit the placed sensors can reconstruct the features that

are computed from high-fidelity sensor array. Generally, sensors on the boundary of

contact area are preferred to select under this evaluation metric, since most of the

selected features are related to the shape of contact area (e.g., size, position, center of

contact area, distance of contact area to the edges of the chair).

Algorithm 1: Information-theoretic sensor placement algorithm

1 input:

2 dataset D = 〈(s1, y1), ..., (sm, ym)〉 with sensor data vector si and corresponding

posture labels yi ∈ Y = {1, ..., n}.

3 total sensor set S.

4 deployed sensor number N .

5 output:

6 selected sensor set t SS.

7 Initialization:

8 selected sensor set SS = ∅;

9 unselected sensor set SU = S;

10 for t = 1, ..., N do

11 for si ∈ SU do

12 H(D) = −∑
i

P (Di) logP (Di);

13 compute H(D, si) = H(D)−H(D|si);
14 end

15 sm = argmax
si

H(D, si);

16 SS = SS ∪ {sm};

17 SU = SU\{sm};

18 end

However, we argue that this sensor placement solution can be further improved due to
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the following reasons. First, due to diversity of people, features such as position and

size of contact area between people and the chair varies, making the system difficult to

generalize. Second, we found that discriminative sensors are normally located inside

rather than on the boundary of contact area through observing the pressure distribution

of sitting postures (see Figure 5). This observation implies that an effective sensor

placement solution does not necessarily reconstruct the features well.

In order to place sensors in the positions that capture the distinctive data, we design an

information-theoretic sensor placement algorithm. At a high level, this algorithm works

like a greedy algorithm. First, it evaluates the performance of all the unselected sensors

based on the information gain [Wik14]. Information gain of a sensor is measured by

the mutual information between its sensory data and the data from all the unselected

sensors. Then the algorithm will include the sensor with the highest information gain

into the final sensor placement solution. The details of the algorithm is presented in

algorithm 1. The rationale of this method is that larger information gain of a sensor

indicates it contains more distinctive information, and thus improving the classification

accuracy. This placement solution has two advantages: first, it is fast to compute;

second, it is able to extract informative sensors, which is independent of the selected

features and classification algorithms.

3.4.2 Pre-processing

Pre-processing is the first module of sitting posture recognition model. Once the pres-

sure sensors are deployed, the pressure sensor data will be collected. However, the

original data cannot be directly used for learning due to three main reasons. Firstly, the

data is not calibrated, since the initial value of pressure sensor changes when no force

is applied. Secondly, the data may not reflect user’s sitting posture because user might

not sit on top of all the deployed sensors. Thirdly, the data value varies due to user’s

diverse weight. In order to address the above issues, we design a pre-processing
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module, aiming to calibrate, extract and standardize the original data.

Data calibration. To calibrate the sensor data, we first record the initial value of sensors

when no force is applied. Then data can be calibrated simply by using the sensor data

to subtract the initial value of corresponding sensor.

Contact area data extraction. Contact area data refers to the data of sensors that are

activated by users while sitting on top of the chair. Contact area data extraction is to

crop the sensors where covers all the data from the contact area between the subject

and the chair. To extract contact area data, we adopt a threshold-based method that

determines the sensors contacted by users.

Data normalization. Data needs to be further nomalized to mitigate the effect caused

by various weights of users. In this work, we transform the data into standard normal

distribution.

3.4.3 Feature Extraction

Feature extraction is to extract a set of features from the sensor data to represent sitting

posture, which is critical to the recognition accuracy. Most of the features proposed in

previous works [TSP01][MKF+07][LA06] are user-dependent, as they are measured

in an absolute manner. For example, features such as the position and size of the

bounding box of the pressure area, differers by people’s sitting habit and weight.

The novelty of feature extraction in this work is that a set of both user-independent and

distinctive features are proposed. Our philosophy of feature extraction is based on two

principles. First principle is that feature should be computed in a relative manner. The

insight of this principle is to enable the features to be user-invariant. For instance, the

positions of top-k sensors will be considered as the relative positions of top-k sensors

with respect to a reference point. Second principle requires the feature to indicate the

pressure redistribution triggered by the sitting posture. This principle is inspired by
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.5: Pressure distribution of different sitting postures: (a) sitting upright; (b)

slouching; (c) leaning back; (d) leaning forward; (e) leaning left; (f) leaning right; (g) left

leg crossed in ankle; (h) left leg crossed in knee; (i) right leg crossed in ankle; (j) right

leg crossed in knee; (k) left leg crossed, leaning right; (l) right leg crossed, leaning left

the observation from Figure 5: different postures in essence results in the pressure

redistribution of sensors covered by human body.

Our features mainly represent two kinds of information(see Figure 6): (1) position-

based feature, which represents the relative position of certain points. (2) ratio-based

feature, which measures the pressure ratio between regions of points. To make the

analysis more convenient, the seat cushion is considered as a two-dimension Cartesian

coordinate system with x, y axes. The center of seat cushion is considered as origin,

while the direction of y axis is set to the front direction of chair. If the location (x, y) has

been deployed with a sensor, then it is denoted as s(x, y) = 1, and the corresponding

sensor value is represented as d(x, y). In particular, position-based feature include the

following features.
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Position-based Feature Ratio-based Feature

Figure 3.6: Feature extraction: each circle denotes a sensor and the number denotes

the pressure value

Reference point. To make features user-independent, we need to set up a reference

point and thus enabling the relative measurement with respect to the reference point.

In our case, the center of sensor positions (ox, oy) is selected as the reference point. It

can be calculated as follows:

ox = (
∑

∀s(x,y)=1

x)/(
∑

∀s(x,y)=1

1) (3.1)

oy = (
∑

∀s(x,y)=1

y)/(
∑

∀s(x,y)=1

1) (3.2)

Gravity. It refers to the center of pressure distribution on sensors. We denote the

pressure data in position (x, y) as d(x, y). Then the position of gravity (gx, gy) can be

calculated based on the following equations:

gx = (
∑

∀s(x,y)=1

x · d(x, y))/(
∑

∀s(x,y)=1

d(x, y))− ox (3.3)

gy = (
∑

∀s(x,y)=1

y · d(x, y))/(
∑

∀s(x,y)=1

d(x, y))− oy (3.4)

Top-k sensors. Top-k sensors refer to k sensors with the highest pressure value. In

particular, It extract three kinds of features: the center, the positions and variance of
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positions of top-k sensors. The center of top-k sensors can be computed using the

same equations of gravity. The variance of positions can be measured by summing up

the variance of top-k sensor positions along x-axis and y-axis.

Bottom-k sensors. Bottom-k sensors means k sensors with the lowest pressure value.

Similar to top-k sensors, three kinds of features are extracted from bottom-k sensors:

the center, the positions and variance of positions.

Another category of features are ratio-based feature, which includes features as below:

X-axis ratio. This set of features Rx mainly measures the pressure difference along

x-axis direction. Specifically, we measure the average value ratio among sensor blocks

along with x-axis (vertical to chair front direction).

Rx = {rx|mx+n/mx, ∀xmx 	= 0}n = 1, 2, ... (3.5)

mx = (
∑

∀y,s(x,y)=1

d(x, y))/(
∑

∀y,s(x,y)=1

1) (3.6)

where mx represents the average pressure in the xth sensor row along x-axis direction.

Y-axis ratio. Similar to X-axis ratio, this set of features measure the pressure difference

along y-axis direction.

After feature extraction, however, some features may be redundant or even ineffective.

Therefore, we need to select a set of distinctive features to best represent the posture.

To perform feature selection, we adopt one commonly used method called information

gain [MBN02], which is independent of classification algorithm. The information gain

of each feature with respect to the sitting posture will be calculated and feature with

the highest value will be selected. Then keep repeatedly conduct previous step for the

unselected features until classification accuracy has not increased.
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…

weak classifier 1 weak classifier 2 weak classifier n

final composite classifier 

Figure 3.7: AdaBoost classification algorithm

3.4.4 Classification

The first two modules of sitting posture recognition model aim to construct represen-

tative features, while classification module is designed to train a classifier to identify

the sitting posture based on the features. To further improve the generalization ability

of the classifier, we adopt AdaBoost [FS96] as our classification algorithm. The main

advantage of AdaBoost is that the error on the training dataset can be arbitrarily small

and yet the generalization error is low.

Primarily, AdaBoost is an ensemble method, as shown in Figure 7, which combines

a number of different classifiers. The main insight of AdaBoost is repeatedly running

a given weak learning algorithm on various distributions over the training data, and

then combine the classifiers trained in each turn into a single classifier. In this work,

the input of AdaBoost algorithm is a training dataset 〈(x1, y1), ..., (xm, ym)〉 with feature

vector xi ∈ X and corresponding posture labels yi ∈ Y = {1, ..., n}; the output of the

AdaBoost algorithm is a composite classifier cf (x). The details of AdaBoost algorithm

is presented in Algorithm 2.

The selection of weak classifier algorithm is very critical to the performance of Ad-

aBoost. We will evaluate the performances of several commonly used weak classifier
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Algorithm 2: AdaBoost-based sitting posture classification algorithm

1 input:

2 Training dataset 〈(x1, y1), ..., (xm, ym)〉 with feature vector xi ∈ X and

corresponding posture labels yi ∈ Y = {1, ..., n};

3 Weak learning algorithm WL;

4 Iteration number T .

5 output:

6 Final classifier: cf (x) = arg max
y∈Y

∑
t:ct(x)=y

log 1
εt(1−εt)

.

7 Initialization:

8 D1(i) = 1/m for all i, meaning all the data will be treated equally.

9 for t = 1, ..., T do

10 1. Call WL and train the classifier ct : X → Y , given the data distribution Dt.

11 2. Calculate classification error εt: εt =
∑

i:ct(xi) �=yi

Dt(i);

12 If εt > 1/2, then set T = t− 1 and abort the loop.

13 3. Calculate the distribution at round t+ 1:

Dt+1(i) =
Dt(i)
Zt

∗
⎧⎨
⎩ εt/(1− εt) if ct(xi) = yi

1 otherwise
, where Zt is the

normalization factor.
14 end

algorithms including decision stump, naive Bayes and C4.5. The performance of differ-

ent weak learning algorithms will be evaluated in the evaluation section.

• Decision stump. Decision stump is a learning model that is a one-level decision

tree.

• Naive Bayes. Naive Bayes is a parametric classifier based on Bayesian Theorem

with assumption that all features are independent.

• C4.5. C4.5 is a decision tree algorithm which is commonly used as a weak clas-
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Pressure sensor Data Sampling Unit Data Processing Board

…

…

Figure 3.8: Sitting posture recognition hardware and dataflow

sifier in AdaBoost.

3.5 Evaluation

3.5.1 System Implementation

Postureware incorporates three main hardware components as illustrated in Figure 8:

a pressure sensor array, a data sampling module and a data processing board. As

discussed earlier, the pressure sensor array is used to obtain sensor value, whereas

a sampling module is used to collect data with certain frequency. After receiving data

from the data sampling module, the data processing board executes the algorithms of

sitting posture recognition and delivers the identified sitting posture to applications.

Initially, pressure sensors is deployed in 5*8 grid and the distance between neighbour-

ing sensor is 4cm vertical to the chair front direction and 6cm along the chair front

direction. FlexiForce A201 [Tek] is chosen as our pressure sensor, because it’s very

thin (0.208 mm thick) and very stable (less than 3% linearity error), which can provide

non-intrusive user experience. In data sampling unit, the pressure data is encoded as a

16-bit digital value and the data sampling rate is set as 15Hz. The sensors are equally

divided into four groups. At each sampling period, we will sample one sensor in each

group simultaneously. Data processing board is essentially an arm development board
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(EBD2410), where runs the sitting posture recognition algorithms and then output the

recognized sitting posture. We implement the algorithms using c++ language. The

communication between the development board and other devices is done with socket

programming.

3.5.2 Experiment Setup

We run a pilot study to evaluate the performance of Postureware. We have 15 people

to be our experiment subjects, including 13 males and 2 females. The weight of those

subjects ranges from 45kg to 85kg, while the height is between 150cm to 180cm. The

diversity of subjects in terms of sex, weight and height makes the dataset representative

and enables the system to have good generalizability.

All subjects are instructed to perform ten categories of sitting postures as shown in

Figure 2. As discussed previously, people sit differently even for the same posture.

Then subjects will perform the predefined fifteen sitting postures discussed in section

II. Note that the subjects are intervened to conduct predefined set of postures, because

we find that some of users can not perform some postures accurately such as sitting

upright. We argue that intervention is necessary when instructing user to hold some

postures, mainly because subjects may not know what a standard healthy posture looks

like.

In order to measure the performance, we use three widely used evaluation metrics:

precision, recall and F-measure. Let us consider a sample of activity A1 in the test

dataset. If the predicted activity is A1, it will be counted as a true positive (TP). Other-

wise, assume the predicted activity is A2, then it would be counted as a false positive

(FP). In addition, activity A1 will be counted as a false negative (FN) since it is missing

in the prediction. F-measure reflects the overall effect of both precision and recall. The

metrics can be computed based on the following equations.
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Precision =
TP

TP + FP
(3.7)

Recall =
TP

TP + FN
(3.8)

F = 2
precision× recall

precision+ recall
(3.9)

To evaluate the system performance, we first divide the dataset into two parts: 10

percent of data will be used for training, and the rest 90 percent will be used for testing.

We use 10-fold cross validation to measure the performances of classification models.

In order to demonstrate the effectiveness of the proposed methods, we compare the

performance of proposed methods against a set of benchmarks. The benchmarks of

sitting posture recognition includes the widely adopted classifier approaches such as

Naive Bayes, Support Vector Machine [B+06]. Those classifiers are implemented in

open source machine learning software Weka 3.6 [HFH+09].

3.5.3 System Performance

This section presents the evaluation results of sensor placement solution, feature se-

lection, sitting posture recognition and the system real-timeness.

Sensor Placement We are interested in figuring out the effective solutions for sensor

placement. We first deploy 40 pressures sensors in 5*8 gird and then run the proposed

sensor placement algorithm to select a number of sensors. Figure 9 shows the sensor

placement solutions given different number of sensors. Specifically, we plot the sensor

placement results when number of deployed sensors equals 5, 10, 15, 20. Interestingly,

with the more sensors deployed, two areas will become denser: one is close to the

front boundary of a chair, while the other is on the region around the center of the chair.
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n= 5 n= 10

n= 15 n= 20

Figure 3.9: Sensor placement solution: all users

The results are reasonable because the pressure distribution in front boundary of chair

provide more distinctive information to differentiate postures like left legs crossed in

knees and left legs crossed in ankle. On the other hand, the region around the center

of chair is mainly covered by the hip, offering distinctive information for different sitting

postures.

Note that the sensor solution is unsymmetrical. We think the asymmetricity of place-

ment could be attributed to three factors: posture set asymmetricity, subject diversity

and sensor reading noise. First, those symmetrical sitting posture pairs are not per-

formed in a symmetrical manner. For instance, a symmetrical posture pairs leaning

left and leaning right, would exhibit asymmetrical sensor readings because it is very

difficult for subjects to lean at a given angle. Second, the experiment subjects varies in

weight and sitting habit, so that the sensor readings are asymmetrical. As a result, the

sensor solution is unsymmetrical. Third, sensory data is noisy, which will impact the

sensor placement solution.

To gain further insight, we also evaluate the impact of user weight towards sitting sen-

sor placement. As shown in Figure 10 and Figure 11, it is interesting to find that the
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n= 5 n= 10

n= 15 n= 20

Figure 3.10: Sensor placement solution: users within (75kg, 85kg)

placement solution for user with weight (75kg, 85kg) prefers the region in the entire 6th

row (close to chair back); while the solution for user with weight (45kg, 55kg) tends to

deploy sensors on the region around the center of chair. According to the above obser-

vation, we find that the sensor placement depends on the weight of user. The rationale

is that the pressure distribution on a chair top exhibits different patterns when users

with different weights sit. More specifically, for a user with weight (45kg, 55kg), the

pressure distribution on the hip area is more informative to differentiate different pos-

tures, whereas for a user with weight (75kg, 85kg), pressure distribution on the thigh

area is more discriminative.

We also want to evaluate the impact of sensor number towards the recognition accu-

racy. Figure 10 plots the recognition accuracy of sitting postures as a function of the

sensor number. As shown in the figure, with 10 sensors placed using the proposed

method, it can achieve 99.6% ten-fold cross validation accuracy for 15 sitting postures.

Furthermore, increasing sensor number significantly improve the recognition accuracy

when the sensor number is less than 5.

In addition, Figure 12 also shows the comparison between the proposed method and
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n= 5 n= 10

n= 15 n= 20

Figure 3.11: Sensor placement solution: users within (45kg, 55kg)
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Figure 3.12: Sensor placement solution with respect to sensor number
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Figure 3.13: The impact of feature dimension on classification accuracy

the uniform method. The uniform sensor placement solution is obtained based on the

uniformly generated random value ranging from 1 to 40, which indicates the deployed

location. The key takeaway from the results is as follows: when the number of deployed

sensors is small, the proposed method achieve much higher accuracy than the uniform

method. However, the gap between the proposed method and the uniform method

narrows as the number of sensors increase. The intuition behind this observation is that

the more sensors are deployed, the more both solutions overlap in terms of sensors.

Feature Selection The objectives of feature selection experiment are two-folds: first

objective is to rank the features in terms of the information gain metric; second objective

is to evaluate the impact of feature number towards recognition accuracy. Based on

information gain method, the gravity feature is considered as the most important feature

out of 65 features, whereas the following four top-5 features all belong to ratio-based

features, indicating the pressure ratio between the left side and right side of the chair. It

is because that different sitting postures essentially results in the pressure redistribution

on the chair top, which can be reflected by gravity feature and ratio-based features.

We will further evaluate the impact of feature number to the recognition accuracy. Fig-

ure 13 plots the recognition accuracy with respect to number of features when sensor
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Figure 3.14: Generalization accuracy

number is 15. Note that the recognition accuracy generally improves when the feature

number increases. Specifically, when the number of features is 5, the proposed method

can achieve 91.4% ten-fold cross validation accuracy. The high recognition accuracy

with a few number of features demonstrates that the extracted features are distinctive

and user invariant, which can be used to differentiate different sitting postures effec-

tively.

Sitting posture recognition result The main objective of the this experiment is to

evaluate the performance of the proposed sitting posture classification algorithm. Sup-

port vector machine and naive Bayes act as the baseline methods. Table I summarizes

the results when the number of deployed sensors are 10. AdaBoost with C4.5 weak

classifier achieves the best performance with 99.6% precision accuracy and 99.6%

recall accuracy, while AdaBoost with decision stump weak classifier has a very inac-

curate performance. It is worth emphasizing that extracted features in this work are in

essence discriminative such as the relative position and the pressure ratio, which gen-

erally prefers discriminative models like support vector machine than generative model

like naive Bayes.

Generalization performance is a very important metric on how well the classification
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Table 3.1: Sitting posture recognition confusion matrix

Classification Algorithm Precision Recall F-measure

Naive Bayes 0.59 0.544 0.566

Support Vector Machine 0.88 0.864 0.868

AdaBoost(Naive Bayes) 0.616 0.568 0.566

AdaBoost(Decision stump) 0.026 0.14 0.042

AdaBoost(C4.5) 0.996 0.996 0.996

model can be applied to different users. To measure the generalization performance,

we first train a classification model based on data of 14 subjects, and use the data of a

new subject to evaluate the recognition performance. Figure 14 plots the generalization

accuracy given different sensor number. When the sensor number is larger than 10,

the generalization accuracy is quite high with precision larger than 84.7% and recall

larger than 85.7%.

Table II shows the confusion matrix of generalization test. Surprisingly, the bottleneck

of the recognition model lies the classification of sitting upright and leaning back. Most

of the sitting upright postures are misclassified as leaning back. The main reason is

that sitting upright is quite similar to leaning back in term of pressure distribution on

chair top, as both postures result in a balanced pressure distribution. The main differ-

ence between theses postures may be the gravity of pressure distribution. However,

sometimes the difference may not be evident because some people sit very close to the

chair back, making sitting upright and leaning back very similar. The possible remedy

could be adding a pressure cushion on the backrest, which can help differentiate the

sitting upright and leaning back.

Real-time performance This experiment is to evaluate the real-time performance of

system. Real-time performance is of critical importance to applications such as using

sitting posture to control game or wheelchair. Postureware can recognize sitting posture

in 8 Hz, which is able to support sitting posture monitoring since user’s posture switch
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Table 3.2: Generalization test confusion matrix. (SU) sitting upright; (SL) slouching;

(LB) leaning back; (LF) leaning forward; (LL) leaning left; (LR) leaning right; (LC) left

leg crossed; (RC) right leg crossed; (LCR) left leg crossed, leaning right; (RCL) right

leg crossed, leaning left

SU SL LB LF LL LR LC RC LCR RCL

SU 0 1 167 0 0 0 0 0 0 0

SL 0 158 0 7 0 0 2 0 0 0

LB 90 0 59 21 0 2 0 0 0 0

LF 0 0 0 340 0 0 0 0 0 0

LL 0 0 0 0 316 0 0 0 0 0

LR 0 0 0 0 0 341 0 0 0 0

LC 0 0 0 0 0 0 257 0 0 0

RC 0 0 0 0 0 0 0 401 0 0

LCR 0 0 0 0 0 0 58 0 123 0

RCL 0 0 0 0 0 0 0 15 0 176

frequency is much lower than 8 Hz. Besides, it can also enable good user experience

for sitting posture-based interaction, because we found that it takes more than 0.2s for

most subjects to switch to another posture. In Postureware, the delay of sitting posture

recognition is subject to the sensor sampling rate, because the execution of recognition

can be done within a sampling interval (125 ms). Therefore, the real-time performance

can be further improved with increased data sampling rate.

3.6 Applications

To further evaluate the system utility, we build three prototype applications, consisting

of unhealthy posture monitoring and posture-based interaction [?].
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3.6.1 Unhealthy Sitting Posture Monitoring

According to a report from Mayfieldclinic [May09], only sitting upright is considered

a healthy posture, while the rest of 9 postures may potentially harm our health. To

help promote healthy sitting behaviours, we develop an application that can monitor

the unhealthy postures. Technically, the task is reduced to a two class classification

problem.

Table III shows the confusion matrix of unhealthy posture recognition based on the

dataset. Specifically, unhealthy postures can be identified with 99.9% and 99.8%. The

reason why such high accuracy could be achieved is that the user has been involved

in the training phases. One of the limitations in this application is that only the static

posture is identified. In fact, a temporal sequence of postures deserves more attention,

as it can capture fine-grained sitting behaviour which associates more with the health.
Table 3.3: Unhealthy sitting posture classification confusion matrix

Healthy Posture Unhealthy Posture Recall

Healthy Posture 199 4 0.98

Unhealthy Posture 5 2825 0.998

Precision 0.975 0.999

3.6.2 Posture-based Game Interaction

This application aims to use user’s sitting posture to play games (as shown in Figure

15). In particular, we select the racing game named Need for Speed 4. In order to

provide good user experience, we have imposed two conditions to use sitting posture

to represent commands: (1) the sitting postures must be intuitive and simple so that

human can easily perform it; (2) the sitting postures must be distinctive to be classi-

fied with high accuracy. Therefore, we associate certain postures with different control

commands as follows: leaning left or right will turn the car left and right, while leaning
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forward accelerate the car and leaning back decelerate or reverse the car.

Figure 3.15: Using sitting posture to control the racing game

The application has been demonstrated on the information day for undergraduate ad-

missions 2014. Over 40 visitors try the prototype system and more than 80% of them

can finish the game smoothly. To further quantify the utility of sitting posture-based

interaction, we evaluate the interaction cost of sitting posture. The interaction cost of

a given posture is measured by the time it takes to switch from sitting upright to the

given posture and then switch back. Table IV summarizes the interaction cost when

the leaning angle of those postures are set to 10 degrees. Leg/right leg crossed has

the lowest interaction cost (0.8s), while leaning back has the highest interaction cost

(1.2s). Note that there is a tradeoff between interaction cost and recognition accuracy.

Low interaction cost means that the movement for posture switch is subtle, making it

difficult for recognition.

Table 3.4: Sitting posture-based interaction cost

Leaning for-

ward

Leaning

back

Leaning

left/right

Leg/right leg

crossed

Time 1s 1.2s 1.1s 0.8s
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3.6.3 Posture-based Wheelchair Control

Second application takes the scenario of wheelchair control. This application will demon-

strate how user can control the wheelchair naturally using sitting posture. (See Fig.16).

To make posture-based control practical, we think two stringent requirements should

be met: (1) the chosen sitting postures should be classified with a high accuracy; (2)

the sitting postures can be performed by the users easily for a long time. To align with

the above-mentioned requirement, we associate certain postures with different con-

trol commands as follows: sitting upright will stop the wheelchair, while sitting forward

will trigger the movement of the wheelchair. Leaning left and leaning right will control

the left and right turn of wheelchair respectively. Particularly, since a wheelchair holds

being motionless for most of the time, sitting upright which is the normal state of a

wheelchair seater, is selected to stop the wheelchair.

Figure 3.16: Using sitting posture to control the wheelchair

Two lessons have been learned after the pivot study of using postures to control the

wheelchair. First lesson is that we should minimise the time for switching between

different postures, given a certain chair speed and a required classification accuracy.

Wheelchair control application is safety-critical, the time for different command switch-

ing should be stringently constrained. Otherwise, the seater is in great danger, as the
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Table 3.5: System requirements for different application areas

Application area Accuracy Realtimeness Posture set

Health care Median Median Small

Safety-critical High High Median

Game High High Large

wheelchair may hit the obstacles if it takes a long time to switch from walking to stop-

ping. Another lesson we have learned is the recognition system should be robust to

handle unexpected postures. Unexpected postures usually occur when a user switch

from a predefined posture to another one. Without a robust mechanism to deal with

those unexpected postures, the system will become very unstable.

3.7 Discussion

Postureware shows that user’s static sitting posture can be accurately recognized based

on pressure sensors deployed on the chair top. However, some open problems still re-

main to be resolved.

System requirements vs Application areas. Application area actually determines the

posture recognition system requirements including: accuracy, realtimeness and pos-

ture set. According to the Table, game applications demands the highest system re-

quirements. Usually a computer game requires a user to input a sequence of various

control commands accurately and timely. Therefore, to enable sitting posture as an

input for game application, the system should be able to identify a large set of postures

with high accuracy and high realtimeness. Healthcare application focuses on moni-

toring the unhealthy postures and sedentary behaviours. In practise, only a limited

number of postures are considered to be appropriate such as sitting upright, so that a

small set of postures need to be differentiated. Note that what harms the seater the

most is holding inappropriate sitting postures for a prolonged time. Therefore, long-
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term monitoring is expected in the system, rather than real-time monitoring. For some

safety-critical applications like using sitting posture control wheelchair, high accuracy

and realtimeness should be guaranteed in the system.

Robustness. In a real setting, people may hold a posture that does not belong to any of

the defined postures, particularly while switching postures. For example, when people

change from leaning forward to crossed legs, the posture they hold before crossing

legs is not part of the posture set. The question is how to handle those postures that

does not belong to the defined posture set. One straightforward approach is to smooth

the recognition result and thus eliminating the unexpected results. The smoothing can

be done using majority vote method to make final decision from classifier result during

a fixed time window. However, there is a tradeoff between fault-tolerance and real-time

performance. When the time window is set to a large value, the unexpected results

can be more tolerated, but delay of the recognition increases. How to achieve the best

balance between robustness and real-time performance requires further investigations.

Training Dataset. Training dataset is needed in current machine learning-based ap-

proach to determine the recognition model. However, training dataset collection is bur-

densome to users. Moreover, in some case, it is difficult for people to hold a predefined

posture. Therefore, a better solution is to get rid of training dataset, which will aid the

wider adoption of system. In order to achieve it, one possible way is to leverage the

domain knowledge in human body to model sitting posture. We can simulate different

human bodies and then come up with a general model which is able to map differ-

ent pressure distribution to corresponding postures. Further exploration is required to

understand the feasibility of this idea.

Transfer Learning. Another question is whether we can apply the recognition model

learned in a particular chair to another chair. In our experiment, the chair top is made

of clothes and soft. We think it is feasible to transfer the training model to new chair as

long as it is within the same application domain. (e.g., same user and same posture

set.) However, people may exhibit different sitting habits across various chairs, resulting
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in different pressure distribution. Therefore, further studies are needed to understand

the impact of different chairs towards learning models.

3.8 Summary

In this work, we present Postureware, a practical solution for sitting posture recogni-

tion based on pressure sensor array. To reduce system cost, we propose an effective

sensor placement solution that can achieve 99.6% ten-fold cross validation accuracy

based on 10 pressure sensors. To ensure the system generalization capability, we de-

velop a robust sitting posture recognition framework, including user-invariant features

and an ensemble learning classification model. Our system can achieve 84.7% gen-

eralization accuracy with 10 sensors. Finally, we present three prototype applications

that demonstrates the system enables unhealthy sitting posture monitoring and sitting

posture-based interaction.

In future work, we plan to extend the sitting posture recognition system to perform

inter-disciplinary researches. In particular, we are interested in three directions: af-

fection recognition, rehabilitation and self-improvement. First, we will investigate the

correlation relationship among sitting behaviours with human emotion. By leveraging

the correlation relationship, we can develop a sitting posture-based prediction model to

recognize user emotion. Second direction is rehabilitation, which can help people with

chronic spinal cord or traumatic brain injuries, to recover the sitting balance via game-

based exercise. The third direction is self-improvement, which can provide feedback

for dancers or meditators to maintain a good posture.
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Chapter 4

An Unobtrusive Eating Behaviour

Monitoring System using Smartwatch

and Smartphone

In this chapter, we study the problem of eating behaviour recognition based on smart-

watch and smartphone. Section 4.1 presents the overview of the thesis. In Section

4.2, system requirements and challenges are described. Section 4.3 and 4.4 describe

the system framework and system design respectively. The details of system imple-

mentation are presented in Section 4.5 and evaluation results are described in Section

4.6. Finally, we discuss the research issues in Section 4.7 and conclude this work in

Section 4.8.

4.1 Overview

Eating behaviour plays a critical role in people’s health. Clinical studies suggest that

eating patterns such as eating frequency, the temporal distribution of eating events

during a day, breakfast skipping, and eating fast food, are related to obesity [MGW+12]
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[GGAAB+13]. According to world health organization, more than 1.9 billion adults are

overweight and over 600 million of them are obese by 2014 [WHO15]. The centre for

disease control believes that the best way for prevention and treatment of such prob-

lems is to monitor behaviour and environment settings. Thus, monitoring eating be-

haviour has great potential for helping people controlling weights and improving health

conditions, and thus drawing increasing attention from both industry and research com-

munities.

Several recent attempts include HAPIfork [for14] and sensing fork [KLT+14]. They are

electronic forks which rely on the motion sensors such as accelerometer and gyroscope

to measure eating speed and eating schedule, etc. However, they require users to

use those electronic utensils in each meal, which is impractical and brings a lot of

inconvenience. Rather than tracking the utensil, another research aspect for eating

behaviour monitoring is to measure the wrist motion. Dong et al. [DHM09] propose

BitCounter, a system to detect and count bites of food taken based on a gyroscope

sensor embedded in a wrist-worn device. However, there are several limitations of this

work. First, the device requires the user to turn on the system during eating, which

brings about inconvenience. Second, it is very energy-consuming since it collects data

from gyroscope. Third, this work does not consider cuisine and food type detection.

This work presents iEat, a practical system to monitor an individual’s eating behaviour

using off-the-shelf smartwatch and smartphone. iEat is truly non-obtrusive: users just

need to wear it on the dominant hand and the eating behaviour can be automatically de-

tected and recorded. Besides, iEat is a customised eating behaviour monitoring system

since different people have different ways of eating the same food. In particular, iEat

uses the built-in accelerometer of the smartwatch to detect the eating events, including

eating schedule, food cuisine and food item. The reason why we focus on accelerome-

ter is that accelerometer has very low power consumption (10% power consumption of

gyroscope), and thus enabling long-term monitoring. By providing the detailed eating

behaviour information, iEat could be a promising platform for the analysis of eating pat-
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tern and eating diagnosis. In particular, iEat enables the user to be aware of their eating

habits, which has great potential to control weights and improve health conditions. Fur-

thermore, iEat can provide eating behaviour data over a long period of time, which

allows behaviour research to examine the relationship between eating behaviours and

other behaviours.

During the design of iEat, we need to address two major challenges. First challenge is

how to enable continuous eating behaviour monitoring given the energy constraint of

smartwatch and smartphone. To resolve this challenge, our main idea is to reduce data

collection time and data analysis computation. First, we present a context-aware data

collection method which allows the smartphone to trigger the data collection of smart-

watch based on user’s environmental and behavioural context (e.g., inside a restau-

rant), so as to reduce energy consumption. Compared with smartwatch, smartphone is

more sufficient in battery capacity and is able to support context detection. Second, we

adopt a light-weight decision tree-based classification algorithm to further reduce the

energy consumption of the system. Second challenge lies in how to accurately clas-

sify different eating events such as eating and non-eating, food cuisine and item based

on wrist acceleration signals. We extract fragment-based, event-based and segment-

based features which can effectively characterise the eating behaviour patterns.

The primary contributions of this work are as follows.

• We present a context-aware data collection method to conserve energy based on

the collaboration between smartwatch and smartphone.

• We introduce a new set of accelerometer features that can capture key charac-

teristics of eating behaviours.

• To further reduce the energy consumption of the system, we present a light-

weight classification algorithm for eating event classification.
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Motion
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Figure 4.1: The architecture of iEat system

4.2 System Requirements and Challenges

iEat is designed to provide a long-term fine-grained eating behaviour monitoring. Specif-

ically, we think iEat should meet the following requirements: (1) iEat needs to provide

fine-grained eating behaviour information, including: eating schedule, cuisine, food

items, etc. (2) The system should be energy-efficient due to the energy constraint

of smartwatch and smartphone.

To meet the above mentioned requirements, two major research issues requires to be

addressed. First, iEat needs to accurately distinguish eating and non-eating activities,

classify different cuisines and food items solely based on the wrist acceleration sig-

nals. However, people behave differently at different time even having the same food.

Thus, it is nontrivial to capture the effective features that characterize the eating motion

patterns.

Second challenge lies in how to enable long-term monitoring given the energy con-

straint of smartwatch and smartphone. In our experiment, continuously collecting ac-

celerometer data from smartwatch (Moto 360 Smart Watch) in 5 Hz for one hour will

consume around 20 percent of battery life. Therefore, iEat is expected to have an

energy-efficient data collection method and a light-weight data analysis algorithm.
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4.3 System Framework

The primary objective of iEat is to build a system for long-term eating behaviour mon-

itoring, which is able to detect fine-grained eating-related events. The architecture of

iEat system is shown in Figure 5.2. The system relies on the coordination between

smartwatch and smartphone. Smartwatch is responsible for collecting data from ac-

celerometer and send to the smartphone. Smartphone accounts for triggering the start

and the end of data collection of smartwatch and performing eating behaviour detec-

tion.

Context-aware data collection. To enable long-term monitoring, energy-efficient data

collection is indispensable. In this work, we propose a context-aware data collection

method. The main idea is to trigger data collection of smartwatch according to the

environmental and behaviour context of users. For example, only when people are

detected to be still and inside a dining place, will the data collection of smartwatch be

turned on.

Eating behaviour detection. This is the major component of the system. Figure 4.2

illustrates the eating behaviour detection framework. First, the acceleration signal is

sampled at the frequency of 25 Hz from the accelerometer of smartwatch. Second,

the acceleration signal is fed to the preprocessing module. Preprocessing module will

divide the signal into a series of frames and segments. Then the frame will be fed

into feature extraction module, where different categories of features will be extracted.

Finally, the extracted features will be fed to eating event detection module where the

eating-related events will be detected.

iEat, as a portable platform for long-term eating behaviour monitoring, has the poten-

tial to help user improve their health and lose weight. For example, by providing the

detailed eating habit information, iEat enables the user to be aware of their unhealthy

eating habit and irregular eating schedule, so as to eat slow and at regular intervals.

Furthermore, iEat can provide people’s eating behaviour data over a long period of
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Figure 4.2: The framework of eating behaviour detection

time, which allows behaviour researchers to examine the association between eating

behaviours and other behaviours.

4.4 System Design

4.4.1 Context-aware data collection

Our study shows that around 20 percent of the battery capacity is consumed after

collecting accelerometer data from smartwatch (Moto 360 Smart Watch) in 5 Hz for

one hour. Thus, if accelerometer is continuously sampled all day long, the battery of

smartwatch will be depleted very soon, which compromises the usability of the system.

In order to enable long-term eating behaviour monitoring with smartwatch, an energy-

efficient data collection method is of great necessity. The ideal scenario is that the data

collection is turned on when user is eating, and turned off when user finishes eating.

However, the challenge lies in how can we detect whether user is eating or not without

collecting the accelerometer data from smartwatch. To tackle the above-mentioned

challenge, we propose a context-aware data collection algorithm which triggers the

data collection of smartwatch through smartphone according to user’s behavioural and

environmental context. We observe that during eating events, most people are sitting

either in the restaurant or at home. Therefore, in the proposed context-aware data

collection algorithm, only when people are detected to be still and inside a dining place,

will the data collection of smartwatch be turned on.
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Algorithm 3: Context-aware data collection algorithm

1 l: current GPS location

2 Lr: a set of dining places

3 while True do

4 if Walking == True then

5 Turn on GPS of smartphone;

6 Turn off data collection of smartwatch;

7 else

8 Turn off GPS of smartphone;

9 if l ∈ Lr then

10 Turn on data collection of smartwatch;

11 end

12 end

13 end

However, how to detect whether people are still or inside a dining place using smart-

phone? The naive way is to turn on the GPS of smartphone all the time and detect

whether user is in a restaurant or not. However, sampling GPS data is very energy-

consuming. To conserve energy, we synergize both step detector and GPS of smart-

phone to infer user’s behavioural and spatial context. The key idea is to turn on GPS

only if people is walking.

The proposed context-aware data collection method is summarised in Algorithm 3. To

detect whether people is walking or not, we make use of the step detector embedded

in smartphone (Nexus 5), which is very energy-efficient. Once the people is detected

to be walking, the system will turn on the GPS of smartphone to attain the location.

Meanwhile, the data collection of smartwatch will be turned off. If the people is detected

to be still, then the GPS sensor will be turned off. In this case, if the current location of

people belongs to one of the dinning places, then the data collection of smartwatch is

activated.
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4.4.2 Preprocessing

The objective of preprocessing is to divide the time series of data signal into frames

and segments. Each frame or segment is a fraction of the original signal in a time

window, which enables effective feature extraction. To extract frame and segment, we

use a non-overlapping sliding window with a duration of 2 seconds, 30 seconds. At

a sampling frequency of 25Hz, a single frame contains around 50 data samples and

a single segment has 750 seconds. In particular, frame can capture the short-term

motion patterns, while segment can capture the long-term motion patterns. In fact, the

window length of a frame affects the performance of feature extraction and ultimately

influences the system accuracy[PGK+09]. If the window length of a frame is too short,

then a frame contains less distinctive information. The value of window length will be

discussed in the evaluation section.

4.4.3 Feature Extraction

After the sensor data has been pre-processed, we then extract features from frames

or segments, so as to capture the behaviour patterns of different eating activities. In

particular, we extract features based on three levels of granularity: frame-based, event-

based and segment-based. In the following, we will present the details of three cate-

gories of features.

Frame-based Features

The frame-based features are extracted from a single frame. For each frame, we will ex-

tract 36 kinds of features from three-axis acceleration data and the total number of fea-

tures of each frame is 108. The frame-based features include heuristic features (e.g.,

SMA, RMS and mean rectified value), time-domain features (e.g., interquartile range,

integral and zero-crossing rates), frequency-domain features (e.g., five first FFT com-
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Figure 4.3: Wrist acceleration signals of eating and non-eating activities

ponents, energy and spectrum peak position) and wavelet-based features (e.g., DWT,

Haar and wavelet magnitude). The frame-based features are able to capture charac-

teristics of short-term wrist motion patterns of different eating activities. As shown in

Fig. 4.3, non-eating activities such as walking and using computer have higher and

positive acceleration in the x-axis direction of smartwatch, which indicates that mean

value of x-axis acceleration is a discriminative feature to classify eating and non-eating

activities.

Event-based Features

In addition to frame-based features, we extract event-based features that characterize

the patterns of each eating cycle. In this work, one eating cycle includes picking up

the food towards the mouth and then putting the hand down. We have discovered that

when the food is being picked up, the wrist acceleration value will decease. Conversely,

when the hand is lowered, the wrist acceleration value will increase. Thus, an eating
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Figure 4.4: Wrist acceleration of using different utensils

cycle can be defined as an event that contains an interval of decreasing acceleration

followed by an interval of increasing acceleration (see Fig. 4.4 and 4.5).

To capture the eating event-based features, we identify the valley area that associates

with an eating cycle. We extract the valley areas by using a stream-based event de-

tection algorithm to identify the significant changes in three-axis acceleration. Once a

significant decrease has been detected, the corresponding time instant will be marked

as the starting boundary of the valley area. We buffer the subsequent sensor signals

until a significant increase in the three-axis acceleration is observed, and the corre-

sponding time instant will be marked as the end boundary of the valley area. Currently

we set the threshold to be 2 m/s2 for identifying the significant changes. The value

of significant change threshold will be discussed in the evaluation section. Once the

starting and ending boundaries have been identified, we extract a set of statistical fea-

tures that characterize the valley area, including: volume, intensity, length, kurtosis and

skewness. Note that, there exists more than one eating cycles within a single segment.

Thus, we average the value of each even-based feature within a segment.
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Figure 4.5: Wrist acceleration of eating different foods

Segment-based Features

On top of event-based features, we extract segment-based features that characterize

the patterns of eating cycles over the segment. The segment-based features include

the frequency and variance of individual event-based features. In total, we consider

12 segment-based features. From Figure 4.4 and 4.5, we can observe that holding

different utensils or having different food items results in different patterns of event-

based features. For example, having rice combo shows a more frequent occurrence of

eating cycle than having noodle and hamburger.

In summary, we extract 108 frame features, 15 peak features and 12 segment features,

resulting in an overall feature space consisting of 135 features. All the features are

shown in Table 4.1.
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Domain Features

Heuristic signal magnitude area, root mean square, mean rectified value

Time max, min, mean, median, variance, std, skewness, kurtois, in-

terquartile range, integral, mean-crossing rate, mean absolute

deviation, correlation of each pair of axes

Frequency FFT coefficient 1,2,3,4,5 HZ, spectral energy, spectral entropy,

spectrum peak position, magnitude of FFT (first five compo-

nent), DCT

Wavelet DWT, Haar, wavelet entropy, wavelet magnitude

Event volume, intensity, length, kurtosis, skewness

Segment variance and frequency of event-based features

Table 4.1: Full feature list

Feature selection

Features extracted in the previous section could be redundant or irrelevant, which might

degrade the system accuracy. Thus, to select the most effective features is of great ne-

cessity to improve the system accuracy. Here, we apply recursive feature elimination

(RFE) [GWBV02] to conduct feature selection, since RFE can provide good perfor-

mance with moderate computational efforts. The goal of recursive feature elimination

is to select features by recursively considering smaller sets of features given an exter-

nal estimator that assigns weights to features. The weights of features can be assigned

with the coefficients of an estimator (e.g., linear model). First, the whole set of features

will be trained using the estimator and then the weights will be assigned to each of

them. Then, the feature with the smallest absolute weight will be pruned from the cur-

rent set of features. The above procedure will be repeated recursively until it reaches

the desired number of features to select.
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4.4.4 Eating behaviour detection

Classifier

After the original signals have been transformed into the feature space, we need to

train a classifier to separate the data of different classes. Different classifiers have pros

and cons. Here, we choose decision tree as our main classifier due to its simplicity and

high interpretability. In our evaluation section, we will compare decision tree with other

popular classifiers such as naive bayes, support vector machine and adaboost ,etc.

Decision tree is a supervised learning classification model that is based on a set of

decision rules for inference. Given the training set, a set of if-then-else decision rules

can be learned to predict the value of a target variable. In general, the complexity of

the model is associated with the depth of the tree. Decision tree model is very easy to

implement and the algorithm complexity is linear to the depth of the tree.

Frame-based and Segment-based Classification

For eating and non-eating classification,we conduct classification on the basis of a

frame. This is because a frame-based classification enables us to capture the start

time and the end time of eating accurately and timely.

For cuisine and food classification, we conduct segment-based classification. In partic-

ular, we have two classifiers: frame-based and segment-based. Frame-based classifier

is trained using frame-based features, while segment-based classifier is learned using

event-based and segment-based features. Given a test segment, it will be first labeled

using the segment-based classifier. Next, this segment will be divided into a number

of frames and each frame will be labeled using the frame-based classifier. Finally, the

final classification result is attained by averaging the results of the two outputs.

71



Chapter 4. An Unobtrusive Eating Behaviour Monitoring System using Smartwatch
and Smartphone

Domain Features

Dominant

hand

average rectified value, median, std, zero cross rate, mean

absolute deviation, spectral entropy

Non-dominant

hand

sma, integral, DWT(’haar’)

Table 4.2: Informative frame-based features for eating and non-eating classification

Eating and Non-eating Classification

The primary task of the eating and non-eating classification is to distinguish eating

and non-eating activity on the basis of a frame. On top of the classification result, we

can infer the start time and the end time of an eating activity. Intuitively, the signals

are more informative when the smartwatch is worn in the dominant hand than non-

dominant hand. However, we observe some interesting facts that allows us to leverage

the wrist motion signals to identify eating activity even when the smartwatch is worn in

people’s non-dominant hand. There are two observations. First, people normally use

domain hand to use phone, but they will use non-dominant hand to use phone while

eating. Second, they tend to put the non-dominant hands under the table while eating.

The effective features after feature selection are listed in Table 4.2. In particular, we

classify the features into two categories: dominant hand and non-dominant hand. The

most informative dominant hand features include: average rectified value, median, std,

zero cross rate, mean absolute deviation, spectral entropy. This is due to the signifi-

cant changes of acceleration and deceleration of wrist signal while eating. The non-

dominant hand features consist of sma, integral, DWT(haar), which is able to capture

the motion patterns of non-dominant hand during eating activities.

To better convey the intuition, we plot the data points in feature space (see Fig.4.6).

In particular, mean x value, mean x square value and variance of x value are selected

as the main features. Obviously, eating and non-eating data points are very separable
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Figure 4.6: Eating and non-eating data points in three-dimension frame-based feature

space

even under three-dimension feature space, which indicates that eating and non-eating

classification can achieve high accuracy using simple classifier.

Cusine Classification

The cuisine classifier aims to distinguish different cuisines based on the frame-based,

event-based and segment-based features. In particular, we focus on the classification

of eastern cuisine, western cuisine and fast food. The intuition behind the cuisine

classification is that we hold different utensils when we have different kinds of cuisines,

which results in different patterns of the wrist motion. Here, we transform the cuisine

classification into utensil classification problem. In particular, we classify three kinds of
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utensils: chopsticks, fork, spoon and hand.

Domain Features

Frame-based variance, root mean square, average rectified value, std, zero

cross rate

Event-based volume, intensity, skewness

Segment-

based

variance of event-based features in volume, intensity, skew-

ness

Table 4.3: Discriminative features for cuisine classification

Table 4.3 lists the selected features which have the highest discriminative capability

for cuisine classification. The effective frame-based features are variance, root mean

square, average rectified value, std and zero cross rate. The selected frame-based

features mainly characterize the variance and intensity of the wrist acceleration signal.

The key event-based features include volume, intensity, skewness of the valley area,

while the main segment-based features cover the variance of area features in volume,

intensity, skewness. Fig. 4.7 shows how data points scatter in the feature space when

the volume, intensity, skewnes of valley area are selected as major features. Clearly,

the data within the same classes are close to each other, while the data from different

classes are very separable.

Food Item Classification

The objective of food item classifier is to identify a predefined set of food items. Cur-

rently, the classifier supports recognising seven common food items: noodle, rice

combo, dim sum, congee, steak, hamburger, fries. The food items are selected based

on the survey from campus students.

Table 4.4 lists the most important features that can distinguish different categories of

foods. The key frame-based features are variance, root mean square, average recti-

fied value, std and mean absolute deviation. Obviously, the variance and intensity are
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Figure 4.7: Utensil data points in three-dimension event-based feature space

effective to separate different kinds of foods. Similar to cuisine classification, the event-

based features include volume, intensity and skewness, while segment-based features

include variance of event-based features in volume, intensity, skewness.

To illustrate the discriminative capability of selected segment-based features, we plot

the data samples over three dimension feature space as shown in Fig. 4.8. The vari-

ance of volume, intensity and skewness are selected as the major features. We can

observe from the figure that data from eating congee and noodle are quite scattered,

while data from fries, steak and rice combo are very close to the data of the same label.

It is worth emphasizing that he data of different classes will be more separable when

frame-based, event-based and segment-based features are combined. The detailed

system performance will be shown in the evaluation section.
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Domain Features

Frame-based variance, root mean square, average rectified value, std, mean

absolute deviation

Event-based volume, intensity, skewness

Segment-

based

variance of event-based features in volume, intensity, skew-

ness

Table 4.4: Effective features for food item classification

4.5 Implementation

iEat is implemented on both smartwatch (Moto 360) and smartphone (Nexus 5). The

android version of the smartphone is 5.0.1. The smartphone keeps monitoring the

user’s behaviour context. Once the user is detected to walk and get closer to the

dinning place, and then the data collection of smartwatch will be triggered. The built-in

accelerometer sensor of smartwatch is sampled at 25 Hz.

The samples are buffered and segmented into frames with the duration of 2 seconds.

According to the features extracted from the signals, iEat classifies the eating-related

activities, including: non-eating and eating classification, cuisine classification and food

item detection.

4.6 Evaluation

In this section, we evaluate the performance of iEat by conducting extensive exper-

iments. Our primary results demonstrate that iEat is able to accurately monitor the

user’s eating behaviours in an energy-efficient manner.
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Figure 4.8: Food item data points in three-dimension segment-based feature space

4.6.1 Datasets

To evaluate the system performance, we have collected data from two subjects. All

the experiment subjects come from the local university. During the data collection,

each subject wears the Moto 360 smartwatch and the smartwatch is paired up with a

Nexus 5 smartphone. To evaluate the difference between wearing smartwatch on the

dominant and non-dominant hand, the subjects are asked to wear the smartwatch on

both dominant hand and non-dominant hand.

In particular, we have collected the following datasets. First, we have collected the

accelerometer data of smartwatch when individuals have different types of food in a

natural setting for two weeks. Each subject will eat eastern food, western food and fast

food. Specifically, eastern food includes: rice combo, noodle, congee, dim sum; while
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western food includes steak and fast food includes french fries and hamburger. The

ground truth annotations were made by the subject. In addition, to evaluate the perfor-

mance of eating and non-eating classification, we also collect the accelerometer data

of smartwatch when people perform non-eating activities. We focus on nine common

non-eating activities: drinking, using computer, using phone, reading, writing, walking,

downstair and upstair, etc.

Moreover, the experiment subjects are required to record the start time and end time of

eating events, so that we can measure the effectiveness of the proposed data collection

method. The data collection in this work is more like a software testing rather than

human subject study. The dataset does not involve any privacy issues. Besides, all the

subjects are volunteered to test the system.

4.6.2 Experimental Setting

To evaluate the performance of eating behaviour detection, we use leave-one-out cross-

validation as the accuracy metric. Here, 50% of dataset will be used for training and

the rest 50% will be used for test. The comparison among different classifiers is based

on computation results from scikit-learn [sci15].

4.6.3 Performance evaluation

We consider three aspects in our evaluation: system accuracy, energy efficiency and

micro-benchmarks. With regard to system accuracy, we focus on evaluating the accu-

racy of eating and non-eating classification, accuracy of cuisine classification, accuracy

of food item classification as well as the generalization performance of classifiers. En-

ergy efficiency evaluation consists of energy consumption of data collection in both

smartwatch and smartphone, and the effectiveness of data collection method. Finally,

we present a set of micro-benchmarks, which evaluate the impact of features, window
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Classifier Dominant hand Non-dominant hand

Decision Tree 0.95 0.97

Naive Bayes 0.59 0.94

SVM(linear) 0.92 0.84

SVM(rbf) 0.95 0.78

Adaboost 0.87 0.64

Table 4.5: Comparison among different classifiers in eating and non-eating classifica-

tion

length of a frame, sampling rate and the threshold for eating cycle detection towards

system performance.

System Accuracy

Accuracy of eating and non-eating classification The objective of this experiment

is to measure the accuracy of classifying eating and non-eating activities based on the

wrist motion signal. In this experiment, the eating dataset includes the data collected

from two subjects who tried out eight types of food: rice combo, noodle, congee, dim

sum, steak, french fries and hamburger. The non-eating dataset consists of eight non-

eating activities, including: drinking, using phone, using computer, writing, reading,

walking, upstair, downstair, etc.

Precision Recall F1-score

Eating (dominant hand) 0.95 0.95 0.95

Eating (non-dominant hand) 0.97 1 0.97

Table 4.6: Eating and non-eating classification performance

The results of this evaluation are shown in Table 4.5. We compare decision tree with

other popular classifiers such as Naive Bayes, SVM (linear kernel), SVM (rbf ker-

nel) and Adaboost. Despite its simplicity, decision tree achieves the highest accuracy

among all the candidate classifiers. Specifically, eating and non-eating classification
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can achieve 95% accuracy when the smartwatch is worn on the dominant hand and

97% accuracy when the smartwatch is worn on the non-dominant hand. The best

baseline classifier is SVM (linear), which attains 92% precision and 84% recall.

Table 4.6 shows that the precision, recall and F1-score of eating and non-eating classi-

fication based on decision tree classifier. The result demonstrates that the eating and

non-eating frames can be accurately distinguished. To our surprise, the classification

accuracy can be over 95% even when the smartwatch is worn on the non-dominant

hand. The result reveals that the wrist motion signal of non-dominant hand is very

informative and can be exploited to derive eating activities.

Precision Recall F1-score

Decision Tree 0.96 0.96 0.96

Naive Bayes 0.72 0.82 0.76

SVM (linear) 0.96 0.96 0.96

SVM (rbf) 0.94 0.94 0.94

Adaboost 0.90 0.90 0.90

Table 4.7: Comparison among different classifiers in utensil classification

Accuracy of cuisine classification We examine the performance of cuisine classi-

fication in this section. Since different cuisines usually associate with using different

utensils, we transform the cuisine classification problem into utensil classification. We

compare the performance of decision tree against other classifiers (see Table 4.7). The

result shows that both decision tree and SVM (linear) achieve 96% accuracy. Figure 4.9

illustrates the classification performances of different utensils. Using hand and chop-

sticks can be recognized with 100% recall rate. Fork and spoon can be detected with

a high precision rate but with a comparatively low recall rate.

Figure 4.10 presents the confusion matrix of utensil classification. From the confu-

sion matrix we can find that the most challenging classification task is to distinguish

chopstick from fork and spoon. The challenge is caused by the close similarity of the

features for using these utensils.
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Figure 4.9: Classification performances of different utensils

Precision Recall F1-score

Decision Tree 0.93 0.92 0.92

Naive Bayes 0.55 0.57 0.53

SVM (linear) 0.92 0.92 0.91

SVM (rbf) 0.92 0.92 0.91

Adaboost 0.56 0.47 0.43

Table 4.8: Food classification accuracy with different classifiers

Accuracy of food item classification This section presents the evaluation results of

food item classification. The food classification accuracy together with a comparison

against the solutions using other classifiers are illustrated in Table 4.8. The proposed

solution based on decision tree classifier attains the highest accuracy with 93% preci-

sion and 92% recall. The best baselines are SVM (linear) and SVM (bf), which achieve

slightly lower accuracy. As shown in Table 4.9, eating hamburger and fries can be

recognised with very high precision and recall rate. However, rice combo, noodle and

steak can be misclassified. Figure 4.11 shows the confusion matrix of food item classi-

fication. From the figure we can observe that eating dim sum, rice combo and noodle

exhibit high similarity and misclassification among them occurs frequently. In particular,

eating dim sum can be easily misclassified as eating noodle, and only 50% recall rate
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Figure 4.10: confusion matrix of utensil classification

is achieved.

Precision Recall F1-score

Hamburger 1 1 1

fries 1 1 1

dim sum 1 0.50 0.67

rice combo 0.89 1 0.94

noodle 0.89 0.80 0.84

steak 1 0.83 0.91

congee 0.80 1 0.89

Table 4.9: Detailed classification accuracy of food classification

Generalization performance of classifiers We then demonstrate that the generaliz-

abiliy of the proposed solution across different people. In this experiment, all the clas-

sifiers are first trained using the data from a particular user and then evaluated using

the data from a new user. Table 4.10 shows the results of this evaluation. Based on the

results, we can observe that the eating and non-eating classification is well generalized
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Figure 4.11: confusion matrix of food item classification

to new users, achieving 100% precision and 61% recall rate. However, the recall rate

is low, which may not able to capture the start time and the end time of eating events

accurately.

The results also reveal that the cuisine and food item classification achieve poor per-

formances for new user. Specifically, cuisine classification achieves 81% precision and

43% recall rate, while food item classification achieves only 72% precision and 11% re-

call rate. The results demonstrate that people exhibits the similar wrist motion pattern

for each eating cycle. The rationale behind this observation is that for most people, one

eating cycle contains two actions: picking up the food towards the mouth and putting

the hand down. However, different people might have different ways of eating certain

food item. Thus, the misclassification rate is high when the system is used for new peo-
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ple. But the good news is that it is a customized system and the system performance

will improve by collecting more data from people.

Precision Recall F1-score

eating and non-eating classification 1 0.61 0.76

cuisine classification 0.81 0.43 0.34

food item classification 0.72 0.11 0.14

Table 4.10: Generalization performance of the system

Energy Consumption

The objective of iEat is to enable long-term eating behaviour monitoring of an individual.

Thus, energy consumption is a critical factor. Currently, iEat relies on a smartwatch and

a smartphone. For smartwatch, the battery capacity is very limited. Here, we evaluate

energy consumption of smartwatch based on the battery usage. Since the screen is

turned off, accelerometer sampling and data transmission are the major sources of

energy consumption of smartwatch.

Table 4.11 shows that energy consumption of accelerometer data collection and tran-

simission in a smartwatch under different sampling frequency. We can find that continu-

ously collecting accelerometer data for 30 minutes under 5 Hz can consume around 9%

battery lifetime of smartwatch. When the sampling frequency comes to 25Hz, around

27% battery lifetime is depleted within half an hour. The above results show that con-

tinuously collecting accelerometer data from a smartwatch even under very low sam-

pling frequency (5Hz) will deplete the energy very soon. Therefore, an energy-efficient

method perform data collection is of great necessity.

In addition to smartwatch, iEat relies on smartphone for user context detection and data

processing. Table 4.12 lists the sensors of smartphone that are used in our system. It

shows that step detector only consumes around 2mW, which can used for long-term

monitoring. For data processing, very low power is consumed due to the light-weight
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decision-tree based classifier.

We evaluate the efficiency of the proposed context-aware data collection method. In

this work, the dining places are limited to restaurants, since the experimental subjects

do not eat at home. In the current system, GPS locations of all the restaurants within

the campus area are collected manually. In the future, we will turn to the third party

geographical information. Table 4.13 shows the comparison of the actual eating time

and the sensor sampling time. On average, experiment subjects spend around 11

minutes on eating per meal. During each eating event, the accelerometer sampling

time of smartwatch is around 25 minutes. The gap between actual eating time and

data collection time is mainly caused by the fact that people waits for the food inside

the restaurant. The GPS sampling time is 36 minutes between two consecutive meals.

The data collection time is expected to increase when subjects eat at home, because

being at home does not associate with eating activity only. The above results show that

the proposed context-aware method can significantly conserve the energy consumption

of system.

Time (min) frequency (5Hz) frequency (25Hz)

10 3% 9%

20 6% 18%

30 9% 27%

Table 4.11: Energy consumption of accelerometer sampling in smartwatch

Sensor Power (mW)

step detector 2 mW

GPS 250 mW

Table 4.12: Energy consumption of sensors in smartphone
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Time (mins)

Actual eating time 11

Accelerometer sampling time 25

GPS sampling time 36

Table 4.13: Comparison of actual eating time and sensor sampling time

Micro-benchmarks

This section presents a set of micro-benchmarks that evaluate the performance of iEat

under various feature sets, sliding window lengths, sampling rates and hands.

Impact of features This section presents the evaluation results of how the feature

set impacts the classification accuracy. Figure 4.12 and 4.15 plot the eating and non-

eating classification accuracy with respect to number of features when the smartwatch

is worn on dominant hand and non-dominant hand respectively. From the figures we

can observe that the combination of more feature does not necessarily improve the

system accuracy. This is caused by the classification process of the decision tree

classifier. For decision tree, the more discriminative features will be used in the decision

rules earlier, while the less discriminative features will be discarded. Specifically, when

the number of features is 10, the proposed method can achieve over 90% accuracy.

The high classification accuracy given a few number of features demonstrates that the

extracted features are distinctive. Moreover, the energy consumption of system can be

reduced by extracting a few number of features.

Figure 4.18 and 4.19 plot the impact of feature sets towards cuisine and food item clas-

sification. Compared with segment-based features, the combination of frame-based

features and segment-based features can significantly improve the system accuracy.

The intuition is that segment-based features are able to capture the long-term motion

pattern, while frame-based features capture the short-term motion pattern. Therefore,

the combination of both features are better to characterize the eating behaviour pat-

terns.
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Figure 4.12: Impact of feature number

on eating and non-eating classification

(dominant hand)

Figure 4.13: Impact of window size

on eating and non-eating classification

(dominant hand)

Figure 4.14: Impact of sampling rate

on eating and non-eating classification

(dominant hand)

Figure 4.15: Impact of feature number

on eating and non-eating classification

(non-dominant hand)

Figure 4.16: Impact of window size

on eating and non-eating classification

(non-dominant hand)

Figure 4.17: Impact of sampling rate

on eating and non-eating classification

(non-dominant hand)
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Figure 4.18: The impact of features towards cuisine classification

Impact of frame size This experiment aims to examine the impact of window size of

a frame towards the system accuracy. The evaluation is conducted by setting different

window sizes. Figure 4.13 and 4.16 show the result of system accuracy with respect

to different frame sizes. In particular, the frame size is changed to 12, 25, 50, 75,

100 and 125. When the window size is 50, the eating and non-eating classification

achieves the highest accuracy. This is due to two reasons. First, a frame with short

window size contains insufficient information, and thus resulting in a degraded system

accuracy. Second, the features extracted from a frame with large window size could

become less distinctive. Given the sampling frequency of 25Hz, 50 data samples are

equal to a 2-second signal.

Impact of sampling rate This experiment aims to examine the impact of sampling rate

of the data collection towards the system accuracy. The evaluation is conducted by

choosing different sampling rates. In particular, we set the sampling rate to be 5, 10,

15, 20 and 25 (Hz) respectively and evaluate the corresponding system accuracy.

Figure 4.14 and 4.17 show the result of eating and non-eating accuracy with respect to

different sample rates. Figure 4.20 plots the accuracy of cuisine and food classification

given different sampling rates. From above three figures, we can observe that increas-

ing sampling rate leads to an improved system accuracy in general. In particular, the
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Figure 4.19: The impact of features towards food item classification

system performances under 15 Hz and 25 Hz sampling rate are very close. This is due

to the fact that the wrist motion during eating is low-frequency and thus higher sampling

rate does not necessarily increase the system accuracy. The results suggest that sam-

pling rate of the accelerometer can be set as 15 Hz, which can achieve the satisfactory

system accuracy and reserve energy.

Impact of threshold in eating cycle detection This experiment aims to examine the

impact of change threshold in event-based feature extraction. In particular, we set the

change threshold from 1 to 5 (m/s2) and evaluate the corresponding system accuracy.

In order to obtain the optimal threshold, we evaluate the system accuracy only based

on event and segment-based features. Figure 4.21 shows the result of cuisine and

food classification given different change thresholds. We can observe that when the

change threshold is set as 2 m/s2, both cuisine and food classification achieve the

best performance. If the change threshold is too small, then the extracted features can

not capture the motion patterns. However, when the change threshold is too large, a

lot of distinctive information will be discarded.
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Figure 4.20: Impact of sampling rate towards cuisine and food classification

4.7 Discussion

The present work has introduced a practical system for eating behaviour monitoring

based on smartwatch and smartphone. Evaluations based on the extensive experi-

ments demonstrate that, our solution is able to achieve high accuracy of eating activity

recognition such as eating and non-eating classification, cuisine and food item identi-

fication, while greatly reducing the energy consumption of the system. However, this

work still has some limitations. In the following, we focus on discussing three main

issues: dataset, specialty and generalisability along with integration with other devices.

Large-scale dataset Note that this work is based on a small scale of datasets. In par-

ticular, we focus on a few kinds of cuisine types: American cuisine, Chinese cuisine

and fast food. Moreover, all the dataset is collected inside the restaurant, which means

that some home-cooked food are not considered. In the future, we plan to collect a

wider categories of datasets. Specifically, we will include the dataset when people is

cooking. The intuition is that cooking different kinds of food will result in discriminative

wrist motion patterns. Thus, the system accuracy is expected to increase by incorpo-

rating the motion signals from both cooking and eating. Furthermore, we will recruit
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Figure 4.21: Impact of significant change threshold in eating cycle detection

more individuals for data collection.

Specialty and generalisability Due to the personal preference and culture difference,

people performs eating activity in different ways. Thus, the wrist acceleration signals

should be expected to be different when they are collected from a teenager and an

elderly who eat the same food. In general, an eating behaviour detection model could

be either general or specific to a particular user. However, it is a tradeoff between

generalizability and accuracy. Usually higher generalizability results in lower system

accuracy. But low generalisability compromises the usability of the system. We believe

that to make the most of both worlds, group-specific classifiers can be designed, which

are tailored to particular groups of individuals according to age, gender and nationality.

Integration with other smart devices The ultimate goal of this work is to offer fine-

grained eating behaviour monitoring. However, this work is still on the early stage

and only supports identifying a small set of food. Due to the limitation of accelerome-

ter sensor, the current system cannot identify what kind of meat people is eating. To

enable fine-grained eating behaviour monitoring, we might need to incorporate more

information from other modalities. We plan to integrate google glass into the system.
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Our preliminary study shows that there exists acceleration patterns of head movement

when people are eating. Besides, we can make use of the camera of google glass to

take pictures and conduct image processing to obtain more detailed information about

the food.

4.8 Summary

This work presents iEat, a practical system to monitor an individual’s eating behaviour

using off-the-shelf smartwatch and smartphone. iEat exploits the accelerometer data

collected from smartwatch to derive user’s eating schedule, cuisine and food item. The

primary contributions of our work include a context-aware data collection method to

conserve energy, a novel set of accelerometer features that are able to capture key

characteristics of eating motion patterns, and a light-weight eating activity detection

algorithm. We evaluate our approach using real-world traces and the experimental re-

sults demonstrate iEat is able to monitor individual’s eating behaviour in a non-invasive

and energy-efficient manner.

By providing the detailed eating behaviour information, iEat could be a promising plat-

form for the analysis of eating pattern and eating diagnosis. In particular, iEat enables

the user to be aware of their eating habits, which has great potential to control weights

and improve health conditions. Furthermore, iEat can provide eating behaviour data

over a long period of time, which allows behaviour research to examine the relationship

between eating behaviours and other behaviours.
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Accurate and Energy-Efficient Social

Activity Recognition based on

Smartphones

In this chapter, we study the problem of social activity recognition. This chapter is

organised as follows. Section 5.1 presents the overview of this work. Section 5.2

and 5.3 describe the motivating scenarios and preliminaries respectively. Section 5.4

presents the system design. In section 5.5, we provide the evaluation details and

results. We discuss the limitations and other issues in Section 5.6 and conclude this

chapter in Section 5.7.

5.1 Overview

Social activities play a critical role in human’s well beings. The imbalance of human’s

social activities may give rise to the problem of autism [Vit07] and social relationship

[ELFB00]. A first step towards preventing this type of condition consists in being able

to automatically recognize and record someone’s social activities. For example, the
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recognition of social activity enables the automatic logs of users’ social activities, which

can be used for the elderly to overcome cognitive decline [PBC+03] or delivering health

intervention to motivate user behaviour change [KP11]. In addition, social activity

recognition provides the support for data-driven social science research by automat-

ically measuring the patterns of social activities. Moreover, mobile applications like

phone interruption management [RDV11] can be augmented with the awareness of

user’s current social activity to provide seamless service.

A fair amount of research efforts have been devoted to activity recognition based on

various sensors embedded in smartphone. Some studies utilize accelerometer to mea-

sure user’s locomotion state and then derives his/her physical activities based on loco-

motion patterns [ZLC+08][MLEC07]. In addition to locomotion pattern, location pattern

has been extracted to infer certain kinds of social activities. In papers [EP06][ZY11],

authors use smartphone to obtain the location of users based on Wi-Fi/GPS, and then

identify the social activities based on the context of location. However, the aforemen-

tioned approaches only consider the behaviour patterns of an individual user.

We observe that social activity is associated with a community, which inherently exhibit

the behaviour patterns with respect to multiple users rather than individual users. As

illustrated in Fig.1, we observe that an individual user performs certain social activity

with a certain set of people, and different social activities usually involve distinctive

sets of people. The observation inspires us that social proximity can be exploited as a

discriminative feature for social activity recognition, which is anticipated to improve the

accuracy of social activity recognition.

Based on the above observation, this work presents CircleSense, an accurate and

energy-efficient Smartphone-based system to recognize social activities by exploiting

the social proximity information. We focus on four categories of social activity, includ-

ing: work, play, develop and connect (e.g. meeting, seminar, religion service, dating,

etc.). In particular, we introduce a concept called social circle, which is defined as a set

of users frequently gathering to conduct certain social activities. The main idea of the
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Figure 5.1: One people engaged in different social circles

system is that we first extract social circle information from the social proximity infor-

mation which is captured by Bluetooth scan, and then we incorporate both social circle

and time information to infer social activities. The inference of social activities is based

on the social circle model which is constructed using machine learning techniques.

The design of CircleSense entails two major challenges. The first challenge is how

to accurately extract social circle from proximity information. Social circle extraction

is non-trivial due to two inherent properties of social circle: (1) members in certain

social circle are dynamic; (2) different social circles overlap in members. The first prop-

erty makes it difficult to extract members in certain social circle. The second property

influences the accuracy of social circle classification, since overlapping in members in-

creases the misclassification rate. To improve the accuracy of social circle extraction,

we apply metric learning technique to develop a social circle classification model.

The second challenge is how to achieve low energy consumption. The system needs to

use Bluetooth module embedded in smartphone to scan the Bluetooth-enabled devices

to obtain the proximity information. However, frequently using Bluetooth to conduct de-

95



Chapter 5. Accurate and Energy-Efficient Social Activity Recognition based on
Smartphones

vice scanning consumes a significant amount of energy, which affects the applicability

of the system. Therefore, we propose an energy-efficient algorithm which adaptively

performs Bluetooth scanning based on the current social activity context.

In summary, our work has the following contributions:

1) We introduce the concept social circle to identify a distinctive behaviour pattern of

social activities. Compare with other patterns extracted from individual user, social

circle is able to characterize social activities more accurately.

2) Based on social circle, we develop a practical smartphone-based system called

CircleSense for recognition of a generic categories of social activities.

3) We evaluate the system with a 16-participant dataset which is collected from the

deployed android phones. The experimental results demonstrate that CircleSense out-

performs the existing methods.

5.2 Motivating Scenarios

Social activity recognition opens up many opportunities for novel applications. In the

following, we will discuss three motivating applications: automatic social activity log,

real-time shared calendar and context-aware phone interruption.

Automatic Social Activity Log: Social activity recognition is able to automatically

record users’ social activities. Therefore, it allows users to have a reflection on how

much time they have spent on different social activities, and thus being able to better

control and manage their life towards a balanced lifestyle. For instance, the system

can remind the user to spend more time with friends if the user spends most of time

alone. Besides, automatic activity log can help the elderly to overcome cognitive de-

cline. Furthermore, the social activity log provides the support for data-driven social

science research. Compared with commercial software [Stu12], our work can automat-
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ically and accurately record the activities without any human intervention.

Real Time Shared Calendar: As pointed out in [LOIP10], social activities in the shared

calendar does not always occur due to different factors. Social activity recognition is

able to record the social activity of a user in a real time manner. By combining the

output of social activity recognition system and the original shared calendar, a real time

shared calendar can be provided, which can potentially increase the effectiveness of

collaboration among colleagues.

Socially-aware Applications: Social activity recognition can support many novel socially-

aware applications such as context-aware phone interruption management [RDV11].

For example, a phone can automatically turn to the silent mode or choose the corre-

sponding volume when identifying certain social activity is going on, so to avoid the

embarrassing phone interruption.

5.3 Preliminaries

In this section, we first introduce several important concepts including: social activity,

social circle and social proximity. Next, we formulate the problem of social activity

recognition.

5.3.1 Social Activity

We give our formal definition of social activity and discuss some of the inherent prop-

erties as below.

Definition 1. A social activity is an event triggered by a set of users gathering on

purpose and interacting in a place.

Based on our definition, some of the activities are excluded from social activities like
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Table 5.1: Summary of terms and their definitions

Term Definition

ai a social activity

A a set of social activities

ci a social circle i

di the time span of the activity i

Ds scan duration

ei the mobile device of user i

f the proximity information of a certain user

F a set of proximity information

Ih high scan interval

Il low scan interval

La a set of historical duration of activity a

ri the reference fingerprint of social circle ci

t current time stamp

T a set of time stamp

ui a certain user i

U a set of users

Ui a set of users who are involved in the activity i

V variance threshold of activity duration

opportunistic chatting, since the focus of our work is on the long term repetitive social

activities.

Specifically, we formulate a social activity ai for an individual user as ai = (Ui, di), in

which Ui = {ui
1, ..., u

i
j} is a set of users who is involved in the activity ai, and di =<

tis, t
i
e > denotes the time span of the activity starting at time tis and ending at time tie.

In this work, we targets at a generic set of social activities A = {a1, a2, ...an}, including

meeting, seminar, classes, sports, religion service, dating, family time, etc. The details

of the experimental setting are presented in section 5.
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5.3.2 Social Circle

As we discuss previously, an individual user performs certain social activity with a cer-

tain set of people, and different social activities usually involve distinctive sets of people.

Here, we introduce the concept of social circle to characterise social activities. We give

the formal definition of social circle as below:

Definition 2. A social circle refers to a set of people who frequently participate in

certain social activity together.

For example, the colleagues in a research lab considered as a social circle, since they

frequently engage in research meetings together. Particularly, we identify two inherent

properties of social circle.

1) Dynamic. Members in certain social circle are dynamic over time. Take research

lab colleagues as an example, new students will be employed and become the new

members of this social circle. Likewise, some people might leave the lab and no longer

belongs to the research lab circle.

2) Overlapping. Different social circles overlap in members. For example, some stu-

dents might participate in the same research meeting, while playing basketball together.

Thus, they are both the members of two social circles.

5.3.3 Social Proximity

In order to model social activity, we need to extract the social circle information. In

this work, we take advantage of user’s proximity information to extract social circles.

Specifically, the proximity information is obtained by scanning the nearby Bluetooth

modules using smartphones. The advantages of using Bluetooth discovery to obtain

social proximity are three-fold. First, the discovery range of Bluetooth module usually is

within a radius of 30 feet, which implies that those discovered Bluetooth module are in
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the proximity of each other. Second, since Bluetooth module has a unique address and

could be used to represent different user. Third, Bluetooth module is energy-efficient

and available on off-the-shelf smartphone.

For a user s, the proximity information is the list of the MAC address of Bluetooth-

module in smartphone in proximity of his/her smartphone. The proximity information is

represented in the format of f = [e1, e2, ..., em], where ek = 1 indicates the device of uk

has been detected, while ek = 0 means the device of uk did not appear during the data

collection.

5.3.4 Problem Formulation

Given a training dataset D =< U,A, F, T > collected from multiple users, in which a

data record indicates a user ui ∈ U is involved in a social activity ai ∈ A at time t ∈ T

and T means a set of time, while his/her proximity information is f ∈ F and F is a

set of proximity information. We assume users bring their phones, indicating that when

user ui’s phone is detected, he/she is in the proximity. Our objective is to construct

an accurate social activity recognition model through using the provided dataset, such

that given a user’s proximity data at certain time, we are able to recognize the social

activities that he/she is engaged in. This problem is a classification problem and we will

leverage supervised learning approach to tackle it.

5.4 System Design

In this section, we first describe the system overview of CircleSense. Second, we

present the energy-efficient device discovery algorithm. Next, we describe how to con-

struct social circle recognition model to identify social circle from proximity information.

Finally, we discuss the details how to incorporate social circle and time information to
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infer social activity.

5.4.1 System Overview

In order to underpin applications in real world, a social activity recognition system which

is based on smartphone has to achieve high accuracy and low energy consumption,

due to the limited battery life of smartphone. Thus, the objective of this work is to de-

sign an accurate and efficient smartphone-based system for social activity recognition.

To meet the above-mentioned system requirements, we design two key system compo-

nents: integration of social and time, energy-efficient data collection. In the following,

we will convey the intuition of our ideas.

Integration of social circle and time. In order to accurately recognize social activities,

the key lies in figuring out the informative feature that is able to characterise social

activities. We observe that a social activity is closely associated with a certain set of

people. Furthermore, due to the routine nature of human behaviour, social activity is

also correlated with temporal information. Thus, based on the above observations, the

social activity recognition model in this system incorporates social circle and time for

social activity recognition under Bayesian framework.

Energy-efficient data collection. Due to the limited energy capability of smartphone,

the system has to conserve energy. Collecting data especially conducting device dis-

covery accounts for the majority of energy consumption, therefore, we focus on opti-

mizing the strategy for Bluetooth device discovery. There is a key observation that the

user engages in the same social activity for a certain amount of time and his/her social

activity context remains the same during that period. Thus, it is a waste of energy to

keep collecting data in a fixed scan interval during the social activities, since the user’s

state does not change at all. Our idea is that we first estimate the end time of current

social activity, and then reduce the Bluetooth scan frequency before the end of the

activity due to the fact that user will involve in the same activity at that period.
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Figure 5.2: Social activity recognition architecture

As illustrated in Fig. 5.2, the system is composed of two modules: offline learning and

online inference. In the offline learning module, social activity recognition model is con-

structed based on the collected dataset, while online inference module is responsible

for deriving social activity based on the data collected in realtime from smartphone.

Offline learning module contains four major components: dataset, social circle extrac-

tion, time extraction and social activity recognition. The dataset includes bluetooth scan

list, time and the corresponding social activity label. Social circle extraction is to classify

different social circles based on the proximity information obtained from Bluetooth scan

list. Time extraction focus on segmenting and transforming the time stamp into discrete

time slots. Finally, social activity recognition model is developed with the output from

social circle extraction and time extraction as well as the corresponding social activity

label using supervised learning technique.

Online inference mainly includes four components: energy-efficient data collection, so-

cial circle inference, time segmentation and social activity inference. Energy-efficient

data collection is collecting both Bluetooth scan list and the associated time stamp us-
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ing Bluetooth module embedded in smartphone. After collecting the data, social circle

inference will derive the corresponding social circle based on the proximity information

obtained from the Bluetooth scan list, while time segmentation will transform the time

stamp into a time slot. Finally, based on the social circle and time slot information, the

social activity inference component will output the label of the associated social activity.

5.4.2 Energy-efficient Device Discovery

To capture social circle, the first step is to conduct device discovery. During the device

discovery, the Bluetooth module sends out inquiry messages periodically and waits

the response from the other scanning devices. Once the scanning device receive the

inquiry message, it will sends back the response to the inquiring device.

The Bluetooth device discovery usually consists of an inquiry scan (1̃60 mW), page

scan (2̃10 mW) and no-scan (1̃10mW). Although Bluetooth Low Energy (BLE) has been

used a low power mechanism to for device discovery, the experiment [SLJ+14] shows

that only 15 - 20 mW is saved with a Samsung Galaxy S4 running on Android 4.3, as

BLE shares the same radio and antenna as regular Bluetooth. Therefore, frequently

performing Bluetooth scan will consume a significant amount of energy. The simple

strategy for device discovery is a periodic scheme with constant scan duration and

interval. However, scan interval needs to be short enough to ensure the practicality of

the system. Otherwise, long scan interval will give rise to low recall rate, since some of

activities might occur within the scan interval. However, a periodic scheme with short

scan interval causes a significant amount of energy consumption for a smartphone.

Thus, to reduce the energy consumption of smartphone and ensure system accuracy,

we present an energy-efficient activity duration-aware device discovery algorithm which

adaptively changes the Bluetooth inquiry interval. Our solution is based on a key ob-

servation that the user engages in the same social activity for a certain amount of time

and his/her social activity context remains the same during that period. It indicates that
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there is no need to perform device discovery during the activities. Our basic idea is that

we first estimate the end time of current social activity, and then increase the Bluetooth

scan interval before the end of the activity. In other cases, the device discovery is con-

ducted with short scan interval. Therefore, this algorithm can strike a balance between

high accuracy and energy efficiency.

The next question is how to accurately estimate the end time of a social activity. Our

method leverages the historical data to estimate the duration of social activities. To

guarantee the accuracy of estimating the end time of social activity, we only consider

only those activities which is highly predictable in terms of duration. Specifically, only

those activities with low duration variance on previous dataset are considered.

Algorithm 4: Energy-efficient activity duration-aware device discovery algorithm

1 if (at = at−1) or (var(Lat) > V ) then

2 scan nearby device with scan duration Ds and scan interval Il ;

3 else

4 from t to t+min(Lat
):

5 scan nearby device with scan duration Ds

6 and scan interval Ih;

7 end

The energy-efficient device discovery algorithm is presented in Algorithm 4. There are

two key parameters in Algorithm 4: scan interval and variance threshold V . Smaller

variance threshold and shorter scan interval will lead to aggressive device discovery,

and thus consuming more energy. We initialise scan duration Ds to be 10 seconds.

Low scan interval is set to 10 minutes and high scan interval is set to 20 minutes. In

Algorithm 1, at is denoted as the label of current social activity detected by the system

at t, while Lat refers to a set of historical duration data of at activity.

After each round of social activity recognition, we adapt the values of scan interval

based on the variance of historical duration data of detected activity at and the com-

parison with previous detection result. If the variance of the detected activity duration
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La is larger than V or the detection result at is the same as the previous detection result

at−1, we keep conducting device discovery with scan duration Ds and low scan interval

Dl. If current detection result at is different from the previous result at−1, it indicates that

time t is very close to the start time of activity at. And the condition that La is smaller

than V is also satisfied, then we conduct device discovery with scan duration Ds and

long scan interval Dh from time t to the time t+min(Lat). Here, we use min(Lat) as a

conservative estimation of the duration of activity at.

5.4.3 Social Circle Extraction

This section presents the details of social circle extraction. The function of social circle

extraction is to output the label of social circle given the social proximity information. We

first extract reference fingerprints of different social circles from proximity information,

and then adopt metric learning technique to construct accurate social circle classifica-

tion.

Reference Fingerprint

In essence, reference fingerprint of a social circle is a set of users who can characterize

this social circle. Reference fingerprints of different social circles will be used in the later

social circle classification. Reference fingerprints are extracted based on the proximity

information obtained from Bluetooth device discovery during different social activities.

To obtain reference fingerprint of a social circle, we need to extract the members of the

social circle. In order to do that, we first define the degree of membership of a user

with regard to a specific social circle. And then users with high membership to a social

circle will be grouped together as the reference fingerprint.

In particular, the membership degree of user uj to social circle ci, denoted as mji is

measured by frequency of attendance in activity ai, which is computed as follows.
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mji =
c(uj, ai)

c(ai)
, ∀uj ∈ U, ∀ai ∈ A (5.1)

where c(uj, ai) is the number of records of activity ai which involves user uj , while

c(ai) is the number of record of activity ai.

Then, a user will be added to a social circle only if his/her membership degree to the

associated activity is above a certain threshold. For a social circle ci, its reference

fingerprint ri can be obtained by:

ri = {uj|mji > β, ∀uj ∈ U} (5.2)

The setting of threshold β will be discussed in the evaluation part. If the value β is set

too high, a lot of members belonging to a social circle will be mistakenly filtered out. If

it is set too low, then the noise will be included.

Metric Learning-based Social Circle Classification Problem Formulation

As we discuss previously, social circle exhibits dynamic and overlapping properties,

which makes different social circles difficult to be distinguished based on social proxim-

ity information. Regarding these properties of social circle, we apply the metric learning

method to construct social circle classification model in order to improve the accuracy.

The key idea of metric learning [NB11] is to learn a new distance measurement to make

the data records of the same labels more similar while making the data records of dif-

ferent labels more distinguished. The rationale behind metric learning in our context is

that discriminative features can be obtained based on the new distance measurement,

so as to circumvent the dynamic and overlapping properties of social circles.

In order to classify social circle from proximity information, we first choose cosine sim-

ilarity [NB11] as distance measurement between proximity data and the reference fin-
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gerprint of a particular social circle. The cosine similarity is chosen to measure dis-

tance, because it is always within the range [-1, 1], leading to a simple and effective

objective function for problem formulation. Here, both proximity and reference finger-

print of social circle are represented as a vector. Then the distance between proximity

data sample x and reference fingerprint of social circle y based on cosine similarity

with transformation matrix W is denoted as:

D(x, y,W ) = 1− (Wx)T (Wy)

||Wx|| · ||Wy|| (5.3)

The problem of metric learning in our context can be formulated as below: given a

training dataset Df =< U,A, F >. The proximity data records of social activity ai are

denoted as F i = {fi1, fi2, ..., fiN} and the corresponding social circle is represented

as ci. C = [c1, c2, ..., cn] is the total set of social circles. W is the diagonal transfor-

mation matrix which we aim at learning. The objective is to maximize the classification

accuracy by maximizing the margin [GBNT04]. Margin of a data record fij means the

distance between fij and the nearest social circle reference fingerprint rj(j 	= i) minus

the distance between fij and the corresponding social circle reference fingerprint ri.

The objective function is formulated as:

max
∑

∀fij∈F i,F i∈Df

(D(rne, fij,W )−D(ri, fij,W ))

s.t.∀i �=j,Wij = 0

(5.4)

where D(rne, fij,W ) = min
k �=i

D(rk, fij,W ) means the Euclidean distance of fij to the

nearest social circle reference fingerprint of different social activity and D(ri, fij,W )

denotes the distance to corresponding social circle.

Social Circle Classification Algorithm Design

In this section, we need to compute the transformation matrix W to optimize the objec-

tive function of the problem given the training dataset. Since cosine similarity is used
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as the distance measurement, we can use a fast and simple gradient-based algorithm

to obtain the optimal value of W .

Recall that the objective function is represented as:

f(W ) =
∑

∀fij∈F i,F i∈Df

(D(rne, fij,W )−D(ri, fij,W )) (5.5)

And the gradient of objective function can be computed as

∂f(W )

W
=

∑
∀fij∈F i,F i∈Df

(
∂D(rne, fij,W )

∂W
−∂D(ri, fij,W )

∂W
) (5.6)

In order to compute the gradient of the objective function, without loss of generality, we

redefine

D(x, y,W ) =
u(W )

v(W )
(5.7)

Then we have

∂D(x, y,W )

∂W
=

1

v(W )

∂u(W )

∂W
− u(W )

v(W )2
∂v(W )

∂W
(5.8)

We further obtain ∂u(W )
W

and ∂v(W )
W

based on the following equations:

∂u(W )

∂W
= W (xyT + yxT ) (5.9)

∂v(W )

∂W
=

√
yTW TWy√
xTW TWx

WxxT +

√
xTW TWx√
yTW TWy

WyyT (5.10)

As shown in Algorithm 5, we use gradient ascent method to obtain the optimal value of

W such that the objective function is maximized.
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Algorithm 5: A gradient-based algorithm for learning parameter W

1 δ denotes a small positive number close to 0;

2 while h > δ do

3 Compute h = ∂f(W )
∂W with dataset Dtr;

4 W → W + h;

5 end

6 Return W;

The complexity of the computing gradient of the objective function is O(s ·m ·m), where

s is the total number of data record in D and and m denotes the total number of users.

Therefore, the complexity of the solution for the optimization algorithm is O(r ·s ·m ·m),

where r is the number of iteration.

Social Circle Classification

The classification of social circle is very similar to nearest neighbours algorithm. First,

we measure the distance between the proximity data and the reference fingerprint of

each social circle. Then, the social circle label of the proximity data will be assigned as

the label of nearest neighbour.

Given the proximity information f and a set of social circle reference fingerprints, then

the label of f will assigned as ci only if f has the minimum distance with ri among all

the reference fingerprints. The decision rule for social circle recognition is described as

below:

ci =

⎧⎨
⎩

argmin
i

D(ci, f,W ) if D(ci, f,W ) < ε

Unknown oterhwise
(5.11)

where ε denotes the distance threshold for decision. When the minimum distance is

above the threshold, it would be treated as noise and discarded to reduce the recogni-

tion error. We will analyze the impact of setting ε in the evaluation session.
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5.4.4 Time Information Extraction

In this section, we will incorporate temporal information into social activity recognition

to improve the system accuracy. Although social circle has been extracted in previous

section, it might not be adequate to identify some social activities due to the fact that

people in a social circle can engage in more than one social activities.

Take religion circle as an example, they can have worship, scripture sharing or other

social activities together at different time (seen in Fig. 3). Another motivating example

would be on Wednesday from 9 a.m. to 10 a.m., a user engages in a team meeting with

colleagues and go to play basketball with colleagues on Friday afternoon. Therefore,

we want to include the temporal information to better recognize users’s social activities.

The underlying rationale of exploiting temporal information is that social activities exhibit

a temporal pattern.

Time Segmentation

To associate time with social activities, we first segment the time of a week into slots.

The critical thing is to select the appropriate length for each time slot. If the length of

the time slot is too large or two small, then the correlation between time and social

activities might not be obvious. For instance, if we set the length of a time slot to be

two hours, then several activities might happen during the same time slot, making the

temporal information less discriminative than it should be.

In particular, we set the length of each time as 30 minutes. The first 30 minutes of

Sunday is referred as time slot 1 and the last 30 minutes of Saturday is referred as time

slot 336. The time segmentation seg(t) is defined as below.

seg(t) = weekday(t) · 48 + hour(t) · 2 + [minute(t)/30] + 1 (5.12)
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Figure 5.3: Temporal patterns of different social activities

Given time t, the corresponding segmented slot tk can be computed by the following

equation.

tk = seg(t) (5.13)

5.4.5 Social Circle and Time-based Activity Recognition

After the extraction of both corresponding social circle and time slot, we adopt the naive

bayesian framework to combine both social circle and time slot to derive social activity.

First, we need to obtain the conditional probability of social circle or time slot given

particular social activity.

The conditional probability of the occurrence of social circle ck under the social activity

ai is computed as below.

P (ck|ai) = c(ck, ai)

c(ai)
(5.14)

where c(ck, ai) is denoted as the number of data record of activity ai that is conducted

by people in social circle ck, and c(ai) denotes the total number of data record of activity

111



Chapter 5. Accurate and Energy-Efficient Social Activity Recognition based on
Smartphones

ai.

The conditional probability of the time slot tk under the social activity ai is computed as

below.

P (tk|ai) = c(tk, ai)

c(ai)
(5.15)

where c(tk, ai) represents the number of data record of activity ai at time slot tk.

However, the probability P (tk|ai) might be 0 if a social activity occurs in a time slot

different from before. As a consequence, it cancels out the information of social circle

and thus increasing the false negative rate. To avoid this scenario and better make

use of temporal information, we apply the additive smoothing technologies to refine the

equation.[Wik12]

P (tk|ai) = c(tk, ai) + 1

c(ai) + μ
(5.16)

In above equation, μ will be set as 1/10 of c(ai). Adding μ means we consider all the

possible time slots in the calculation. With the refinement, we will hold P (tk|ai) 	= 0 for

all tk.

Then the conditional probability of social activity given both social circle and time can

be computed as below.

P (ai|ck, tk) = P (ck, tk|ai)P (ai) (5.17)

Since we adopt naive baysian framework, which assumes social circle and time are

conditionally independent with respect to social activity. Then we have:

P (ck, tk|ai)P (ai) = P (ck|ai)P (tk|ai)P (ai) (5.18)

Finally, based on maximum a posteriori decision rule, the activity will be derived as
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a = argmax
ai

{P (ck|ai)P (tk|ai)P (ai)} (5.19)

In summary, the social activity recognition can be conducted based on the algorithm 6.

Algorithm 6: social activity recognition algorithm
Input : the proximity information f and time t

Output: the label of social activity as a

1 Step 1: social circle recognition fromf

2

ck =

⎧⎨
⎩

argmin
k

D(rk, f,W ) if D(rk, f,W ) < ε

Unknown oterhwise

3 Step 2: time segmentation from t

tk = seg(t)

4 Step 3: social activity recognition result

5

a = argmax
ai

{P (ck|ai)P (tk|ai)P (ai)}

5.5 Evaluation

In this section, we present the evaluation methodologies and results of our proposed

methods. We start by discussing the experiment setup including dataset, benchmarks

and evaluation methods. Then, we present a detailed evaluation result of the system.

5.5.1 Implementation

To collect users’ social activities, we develop a prototype application (see Fig. 5.4)

that can run on Android-based smartphones. Both Android 2.3 and 4.0 platforms are
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(a) Screenshot of Prototype Software (b) Some Deployed Android Phones

Figure 5.4: Experiment deployment

supported.The application is composed of two main components: the first component is

responsible for obtaining the list of nearby Bluetooth-enabled devices and WiFi access

points data. The reason why we collect WiFi access points data is to conduct the

evaluation of the baseline location-based method. The second module provides a user

interface for users to manually label the social activity.

We initialise Bluetooth device scan duration Ds to be 10 seconds. Low scan interval is

set to 10 minutes and high scan interval is set to 20 minutes.

5.5.2 Trace Collection

To the best of our knowledge, there are no standard datasets available for evaluating

social activity recognition. Henceforth, we collect the annotated users’ social activities

trace by ourselves.

To have a reasonable and representative dataset, we select four categories of social

activity (as shown in Table 5.2), including: work, play, develop and connect. Those

activities are selected based on the survey from local students and cover most of the

social activities that one campus student might conduct. We recruit subjects from a
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local university to collect the dataset. Each day, the subject will carrie the cell phone

that is deployed with the prototype software and participate different social activities.

After that, data trace will be collected and each subject need to label the data with the

related social activity.

Category Specific activities

Work
Meeting: research meeting.

Seminar: Networking seminar.

Play Sports: frisbee, basketball.

Develop
Classes: mobile computing.

Religion service: worship, prayer

Connect
family time

Dating

Table 5.2: Target social activities

In total, we have collected two datasets. The first dataset is contributed by seven

people from May to June, 2012. Three of them are undergraduates, three are graduate

students and one is a company employee. The data record format is illustrated in Table

5.3. The data is recorded in a format of <time, location, social activity, proximity >. In

some cases, there is not WiFi access points or the nearby users does not open their

Bluetooth-modules, the experimental subjects will record the nearby users’ names and

the location manually.

The second dataset is collected from four research students in Computing Department

of PolyU in a 10-minute period for two weeks. Each of these students are distributed

one deployed Android-based smartphone and the rest five lab colleagues are equipped

with smartphones that open the embedded Bluetooth Modules periodically. The data

format is the same as the one in the first dataset.
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Scan Time Location Proximity Social Activity

09:00 22/03/2012 AP1, AP2 u1, u3, u4, u6 Meeting

11:00 22/03/2012 PQ703 u1, u2, u3u5 Seminar

19:00 24/03/2012 AP3 u4 Dating

Table 5.3: Collected data format

5.5.3 Methodology

We examine the proposed methods based on the collected dataset. In order to evaluate

the recognition performance, we use Leave-one-out validation technique. We first spilt

the collected dataset into two subsets in a time order. The first subset serves as the

training set and the second subset is used as the test set. To evaluate the impact of

training dataset towards the system accuracy, we extract training datasets with different

data amount. Specifically, the first 30%, 50% and 70% of the overall dataset will be

used as three training datasets respectively.

In order to measure the performance, we use three widely used evaluation metrics:

precision, recall and F-measure. Let us consider a data sample of activity A1 in the

test dataset. If the predicted result is A1, it will be counted as a true positive (TP).

Otherwise, assume the predicted result is A2, then it would be counted as a false

positive (FP). In addition, activity A1 will be counted as a false negative (FN) since it

is missing in the prediction. F-measure reflects the overall effect of both precision and

recall. The metrics can be computed based on the following equations.

Precision =
TP

TP + FP
(5.20)

Recall =
TP

TP + FN
(5.21)

F = 2
precision× recall

precision+ recall
(5.22)
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5.5.4 Benchmarks

In order to demonstrate the effectiveness of the proposed methods, we compare the

performance of proposed methods against a number of benchmarks. We have two

kinds of benchmarks with respect to social circle classification and social activity recog-

nition respectively. The benchmarks of social circle classification include the popular

classification approaches widely adopted in activity recognition such as Naive Bayes,

kNN and Support Vector Machine. Those classification approaches are implemented

in the open source machine learning software Weka 3.6 [?]. The benchmarks of so-

cial activity recognition contain the existing time-based, location-based, location and

time-based models.

5.5.5 Results

Social Circle Classifier Performance

The objective of the first experiment is to evaluate the social circle classification per-

formance of the proposed metric learning method with respect to different training

datasets. As illustrated in Figure 5.5 and 5.6, given 30% of overall data for training, the

proposed metric learning is able to classify different social circles with 90% in precision

and 97% in recall. In general, when the amount of training dataset increases, the social

circle classification accuracy improves. When using 70% of overall dataset to train the

model, the proposed metric learning can achieve 100% accuracy in both precision and

recall. The main reason is that training dataset covers the test dataset, and thus the

model that is learned based on the training dataset shows a good generalisability on

the test dataset.

Next, we compare the proposed metric learning method with the typical classification

techniques given different amount of training dataset. Here, the typical classification

techniques includes kNN, naive bayes and support vector machine. On average, the
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Figure 5.5: Social circle classification precision comparison given different amount of

training dataset

proposed method achieve 17% higher precision rate and 5% higher recall rate over

the baseline classification techniques. When the amount of training dataset increases,

the gap between the metric learning method and other baseline methods in terms of

performance reduces. Given a comparatively small amount (30%) of training data, the

metric learning approach is able to achieve a quite high precision rate (90%), while the

baseline methods only achieve 62% precision rate on average. In particular, it shows

that SVM performs slightly better than other two benchmarks given 30% of overall data

for training. The above experimental results demonstrate that the proposed method

that leverages metric learning technique is able to classify the overlapped and dynamic

social circles accurately.

Parameter Analysis

This session aims at analyzing the effects of two main parameters β and ε to the system

performance. The first experiment tries to figure out the effect of parameter β on the
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Figure 5.6: Social circle classification recall comparison given different amount of train-

ing dataset

accuracy of the social circle classification. Parameter β is the threshold of membership

degree to determine whether a user should be considered as a member of a social

circle. As seen in Figure 5.7, when the 30% of overall dataset is used as training data,

the optimal value of β is 0.5. If the value of β is set above 0.5, the accuracy of social

circle classification will decrease. The explanation for this scenario is that when the

value of β is set too high, some members of the social circle will be excluded. As a

consequence, the extracted members in each social circle are inadequate to be the

reference of the actual social circles, and thus degrading the classification accuracy.

Interestingly, when we use 50% of overall dataset as training data, we find that the

value of β does not affect the classification accuracy. The reason for that is when the

amount of training data is considerable, the members in each social circle with high

discriminative ability are included regardless of the value of β. Although some noisy

information might be included when the value of β is set too low, the metric learning

approach is able to filter out the noise by adjusting the transformation matrix.
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Figure 5.7: The Impact of Parameter β in social circle classification

The second experiment focuses on analyzing the effect of parameter ε. Parameter ε is

the threshold of distance measurement for decision making in social circle classifica-

tion. Figure 5.8 shows that given 30% amount of overall dataset as training data, the

optimal value of ε is 0.63. The optimal value ε should be set to 0.65 when 50% amount

of overall dataset is used for training. The Figure 5.8 reveals that when the value of ε

increases, the precision rate and recall rate of social circle classification will decrease

and increase respectively. It is mainly due to two reasons. First, when the value of ε is

large, many scenarios other than social activities will be mistakenly recognized as some

social activities. Consequently, it leads to a high false positive rate and then degrades

the precision rate. Second, when the parameter ε is set with a small value, some social

activities would be treated as unknown events and falsely discarded, resulting in a high

false negative rate and then a low recall rate.

It is worth emphasizing that there is a tradeoff between false positive and false negative

rate. Tuning the value of parameter ε affects false positive rate and false negative rate

in social circle classification. Obviously, the the optimal value of parameter ε varies by

different datasets.
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Figure 5.8: The Impact of Parameter ε in social circle classification

Social Activity Recognition Performance

The objective of this experiment is to evaluate the social activity recognition perfor-

mance of the proposed social circle-based method. In this experiment, The first 50% of

the overall dataset will be used as training dataset, and the rest of the 50% dataset will

be used for test. Table 5.4 shows that the proposed social circle-based model is able to

classify the target social activities with 100% in accuracy, 99% in recall and 99% in F1

score. Compared with other models, social circle-based model is able to improve the

performance against the best baseline method by 15% in precision, 20% in recall and

18% in F-measure. Among the three baseline models, location+ time model achieves

the best performance with 85% in precision and 79% in recall. Surprisingly, the model

that merely based on temporal information is able to obtain 59% accuracy, which im-

plies that users’ social activities exhibit temporal patterns due to routine lifestyle.

Figure 5.9 and 5.10 show the detailed performance of different models in recognizing

different social activities. Figure 5.9 shows that social circle-based model outperforms
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Methodologies Precision Recall F-measure

Time 0.59 0.57 0.57

Location 0.64 0.58 0.60

Location + Time 0.85 0.79 0.81

Social Circle + Time 1 0.99 0.99

Table 5.4: Social activity recognition performance summary

other baseline models in identifying different social activities. In particular, the second

best model which is based on location and time performs poorly in recognizing dating

activities. The result is reasonable, since the dating activities are quite dynamic in terms

of location and can occur in new places that training dataset does not cover. Location

and time model achieves a comparatively low accuracy in identifying sports activities,

because different kinds of sport activities can be conducted in the same sports centre

so that location is not a good feature to distinguish different sport activities.
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Figure 5.9: Precision rate of different social activities

Figure 5.10 shows the recall rate of different models. Location and time based model

only achieves around 72% recall rate in recognizing the class activity. The poor perfor-

mance is attributed to the occurence of make-up classes. Make-up classes are usually
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rescheduled in different places and different time, so that the model built upon the his-

torical location and time does not work.
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Figure 5.10: Recall rate of different social activities

In summary, the above results reveals some insights. First, the proposed social circle-

based model outperforms the baseline methods, particularly in identifying the activities

with dynamic spatial and temporal patterns. Second, a considerable amount of social

activities such as meeting and seminar show a repetitive pattern in location and time.

Third, most of the social activities exhibit a strong social circle pattern, which enables

the proposed social circle-based model to achieve high accuracy.

Robustness of the Algorithm

We evaluate the robustness of our social activity recognition algorithm by introducing

the noise into the dataset. Specifically, we add noise into the discovered device list. To

generate noise, we insert a random number ranging from 1 to 9 of new devices into the

scanned device list of both training and testing dataset. When the noise is added into

the training dataset, the noise will be eliminated in the reference fingerprint extraction
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due to the low membership degree to the associated activity. Therefore, it does not

affect the online inference.

Recall that the proximity information is represented in the format of f = [e1, e2, ..., em],

where ek = 1 indicates device ek has been detected, while ek = 0 means user ek did

not appear during the data collection. Note that the device set e1, e2, ..., emis based on

training dataset and fixed. Hence, introducing noisy devices into the testing dataset will

not affect the the representation of the original proximity information, since the noisy

devices do not belong to the device set. Thus, the proposed algorithm is robust and

able to tolerate random noise in the dataset.

Impact of the Penetration Rate

The objective of this experiment is to evaluate the impact of penetration rate of the ac-

tive Bluetooth devices towards the system accuracy. The penetration rate is measured

by the percentage of active Bluetooth devices among all the Bluetooth devices in our

dataset. Figure.5.11 depicts how the accuracy of social activity recognition varies with

respect to different penetration rates. Generally, higher penetration rate will lead to

higher system accuracy. In particular, the accuracy of social activity recognition will still

be 100% even when the penetration rate drops to 75%. When the penetration rate is

50%, the system accuracy will be 78%. In this case, still seven out of nine categories

of social activity can be accurately recognized.

Given a comparatively low penetration rate, the system can still achieve high accuracy.

This scenario occurs due to two reasons. First, different social circles overlap in mem-

bers. Hence, even those overlapping members are missing, the system accuracy will

not be influenced due to their low contributions to differentiating different social activi-

ties. Second, there are some social circles that do not share any members with rest of

other social circles. For those social circles, there exist redundant members to distin-

guish with other social circles. Thus, the system is resilient to the fluctuated penetration
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rate of active Bluetooth devices.
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Figure 5.11: System accuracy with respect to different active bluetooth device penetra-

tion rate

System Overhead

In this section, we conduct experiment to evaluate the effectiveness of the energy-

efficient algorithm for data collection. The proposed algorithm is able to reduce the

scanning frequency only when the duration of the on-going social activities is pre-

dictable. Thus, only those social activities with small variance in duration are consid-

ered. In this work, the value of threshold V is 20 (mins). After the statistical analysis,

social activities with duration variance under given threshold V include: meeting, sem-

inar, class and religion. Therefore, if the users conduct one of those social activities,

then our algorithm will be able to conserve energy consumption caused by Bluetooth

device discovery.

Based on the above the analysis, the effectiveness of energy conservation algorithm
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varies and depends on users’ social lifestyles. Therefore, we compare the proposed

energy-saving data collection algorithm with the baseline periodic data collection method

with respect to users in different social statues (undergraduate student, graduate stu-

dent). Here, we believe different social statues implies different social lifestyles. To

estimate the energy consumption, we measure how many times that smartphone con-

ducts Bluetooth device discovery, since the energy consumption caused by one device

discovery is quite fixed. The Bluetooth device discovery usually consists of an inquiry

scan (1̃60 mW), page scan (2̃10 mW) and no-scan (1̃10mW). In particular, we compare

the proposed data collection method with the baseline data collection method in terms

of device discovery count within a weekday (9am - 9pm). The baseline data collection

method will periodically conduct inquiry scan with an interval of 10 minutes.
Table 5.5: Energy consumption comparison between the baseline and the proposed

data collection method

User Device discovery

count (periodic)

Device discovery

count (proposed)

Energy

saving

Undergrad 84 69 18%

Graduate 84 75 10%

Table 5.5 shows the comparison between the proposed data collection method and the

periodic data collection method based on the social activity traces of undergraduate

and graduate student respectively. It reveals that the proposed data collection method

can save up to 18% of the counts to conduct device discovery than the basline one

given the social activity trace of undergraduate student. 10% of the counts to conduct

device discovery can be saved given the social activity trace of graduate student. The

explanation for the scenario is that compared with graduate student, undergraduate

students have a more active social life and spend a considerable amount of time in

taking classes and seminars. Therefore, our energy-efficient data collection algorithm

works better for those users with active and routine social activities.

There is a tradeoff between energy efficiency and system accuracy. To guarantee the
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system accuracy, we adopt a mild energy conservative scheme. Note that, the system

keeps collecting data with a low frequency even the user is anticipated to involve in the

same social activities for a significant amount of time. In fact, a more aggressive energy

efficient scheme could be stopping data collection when user is anticipated to involve in

the same social activities until the end of the activities. However, the more aggressive

the energy efficient scheme is, the higher the error rate will become, since activities

might end earlier than expected and different activities occur during that period. So

our energy efficient scheme is able to strike a balance between energy efficiency and

system accuracy.

5.6 Discussion

The evaluation result demonstrates that the CircleSense is effective to perform social

activity recognition. However, some of the issues still remain further investigation. In

this section, we present the limitation of our work and future research direction.

5.6.1 Limitations

The major limitation of our work is that the algorithm is only evaluated on a small-

scale dataset collected by ten volunteers in campus. Therefore, the generalizability

of the system is not thoroughly validated. We are planning to collect a large-scale

dataset with the help of the advanced indoor localisation technology. Besides, our work

assumes that the members in social circles are fixed within a significant amount of time

and does not tackle the issues brought by the dynamic nature of social circle. Social

circle by nature is dynamic in the sense that some members might leave and some new

members join in. To enable long-term monitoring, it is essential to adaptively update

the members of social circles.

127



Chapter 5. Accurate and Energy-Efficient Social Activity Recognition based on
Smartphones

5.6.2 Finer Activity Granularity

Although a set of social activities can be accurately recognized by CircleSense, they

are still not fine-grained enough with regard to some applications. Dating, for example,

could be interpreted as many different finer-grained activities like watching a movie,

shopping or just walking in the park. Apparently, those finer-grained activities can be

differentiated by the locations (theatres, shopping malls and park). Therefore, we plan

to extract the finer-grained social activities by leveraging the opportunistic location in-

formation from WiFi access point or GPS when users are using wireless service, which

is energy-efficient.

Social circle does not indicate the activity always. For example, Bob and Alice are

lovers. Bob is playing a table tennis with Alice now. Would you detect it as "Dating" or

"Sports"? The currently proposed scheme may detect as "Dating" but real benefit of

activity detection comes from a more detailed description of the activity such as "playing

table tennis". Social circle may be one of strong indicators for potential activities, but

cannot replace many other sensory information to detect a more detailed activity.

5.6.3 Feasibility

Our system requires a considerable amount of users to use the proposed prototype

software, since this work is based on the Bluetooth device discovery to extract social

circle information. One of the major obstacles to the adoption of this software is the

energy consumption. Thanks to the low energy consumption of the Bluetooth module

and the proposed energy-efficient data collection algorithm, the proposed system is

energy efficient, yet achieving high accuracy.

To bootstrap the system, a suitable incentive mechanism needs to be designed to en-

able the collective sensing, which is considered in our future research plan. Besides,

the system also needs to tackle the issue when only a small portion of users turn on
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bluetooth module of their smartphones.

It is worth emphasising that the main idea of this work is to extract the social circle

pattern to identify user’s social activities. Bluetooth device discovery is just one way

to obtain user’s social circle information. With the advance of the sensing technolo-

gies, this work can be generalised into the new platform that are based on speaker

recognition, indoor localisation, etc.

5.6.4 Privacy

The system needs to collect the social proximity information of users, which by nature

is sensitive. In particular, the proposed system requires the user to allow Bluetooth

module to be discovered, which might comprise user privacy as the Bluetooth mac

address is unique and can be associated with the user. To avoid being scanned by the

malicious party, one remedy is to leverage the pair-up mechanism of Bluetooth such

that only the pair-up devices are visible to each other, but invisible to other devices.

In addition, since all the data is collected locally from the smartphone and the social

activity recognition is performed on the smartphone, which can protect the user privacy.

5.7 Summary

This work presents the study of using mobile phone to obtain social proximity infor-

mation for social activity recognition. We first introduce the concept of social circle,

which is defined as a set of users frequently gathering to conduct certain social activi-

ties. Based on the social circle and temporal information, we develop a system called

CircleSense for recognizing a generic set of social activities. In particular, the system

leverages the metric learning technique to train a classification model for social circle

recognition. The result demonstrates that CircleSense achieves better accuracy than
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other baseline methods in recognizing a variety of social activities.

As an initial study, we demonstrate the effectiveness of exploiting social circle and tem-

poral information to derive different social activities. Although the result is promising,

the design and functionalities of the system are premature. In the future, we plan to

work on the following directions. First, we will leverage more sensor modalities such

as accelerometer and microphone to infer more fine-grained social activities. Second,

we will conduct a large-scale dataset to evaluate of the effectiveness of social circle

information to distinguish different social activities. Third, we will investigate the mech-

anism that could adaptively update the members in a social circle, which enables the

long term monitoring.
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Chapter 6

Social Context-based Human Mobility

Prediction based on Large-scale Wi-Fi

Traces

In this chapter, we study the problem of human dwell time prediction. The rest of this

chapter is organised as follows. Section 6.1 presents the overview of this chapter.

In section 6.2, we introduce the Wi-Fi probe request mechanism, Wi-Fi probe collec-

tion system and the statistical details of dataset. Section 6.3 provides an overview of

our StayPredictor system and the problem formulation. In section 6.4, we present the

details of system design, including the pre-processing, feature extraction, correlation

analytics and predictive model. We evaluate our solution in section 6.5. Section 6.6

concludes this chapter.

6.1 Overview

Understanding and predicting human mobility underpins a variety of applications. By

exploiting the information of user movement, systems such as cloud computing, location-
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based recommendations [ZZXM09] and content-based delivery networks [Lei09] can

further improve its performance. In particular, knowing the dwell time of users in a place

gives marketing and network administration a big advantage [MSCN13]. For example,

marketing agencies can conduct promotional campaigns through delivering customised

coupons to attract rushed shoppers, or they can also offer entertainment packages for

those who stay longer. Network administrators could also prioritize bandwidth for users

with short dwell time to maximize the networking service utility by meeting the network

access needs of the maximum number of users.

Recently, we have witnessed the explosive growth in Wi-Fi-enabled mobile devices

such as smartphones or tablets. To offload high data demands, those devices would

connect to Wi-Fi networks whenever possible. To search for available networks, these

mobile devices would periodically scan the Wi-Fi band for access points by transmitting

probe messages. Note that each probe message contains a unique device identifier

(MAC address) that could be associated with an individual. Therefore, through collect-

ing and analysing those Wi-Fi probe traces, human mobility patterns could be further

revealed.

The goal of our work is to understand and predict the dwell time of users at a location

based on large-scale Wi-Fi probe traces. In particular, we seek to identify the funda-

mental factors that influence the user dwell time and quantify the influences. We then

aim to construct a predictive model for user dwell time by incorporating the influence

factors. Note that predicting the dwell time of users based on some contextual informa-

tion is not novel (e.g., arrival time, past dwell time). Works [MSCN13][VDN11] [DGP12],

have all studied such cases. However, none of the previous works have tried to quan-

tify the influence of fundamental factors upon user dwell time. It is worth emphasising

that quantifying the influences of factors towards user dwell time is significant. On one

hand, it advances the understanding of user movement behaviour. On the other hand,

it provides guidelines for the design of dwell time prediction model. Moreover, social

context which does impact user mobility behaviour, has not been considered into the
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previous dwell time prediction models. To achieve our goal, we need to answer the

following research questions.

First, how to identity and quantify fundamental factors of user dwell time? Al-

though human movement has a certain degree of variation, they also exhibit structural

patterns due to routine life style and social influence [CML11]. Therefore, we identify

three factors that may impact user dwell time: arrival time context, social context and

historical context (e.g., previous dwell time). To quantify the influence of those factors,

a number of techniques have been adopted. First, we apply Pearson correlation co-

efficient [ZTS03] and Spearman’s rank correlation coefficient [Ken48] to measure the

linear and monotonic relationship between social context and dwell time. Besides, mu-

tual information is used to assess the dependency between time context and dwell

time. We also adopt standard deviation as a metric to quantify the routine degree of

user dwell time and leave time.

Second, how to develop an accurate user dwell time prediction model that effec-

tively incorporates influence factors? Instead of exploiting all the influence factors in

a single model, we propose an ensemble model which combines multiple single mod-

els which are built on different factors. The rationale of using ensemble model is that

it improves the prediction accuracy via reducing the variance. In particular, we first

build up three single prediction models: time and social context based model, histori-

cal dwell time model and historical leave time model, and then integrate them under a

linear framework.

We analyze the Wi-Fi trace dataset collected from 111K devices in a large shopping

mall for 10 days. We find that: (i) Repeat visitors exhibit a high degree of repetition in

dwell time and leave time. (ii) Dwell time of visitors is positively correlated with the size

of social group during the visit. (iii) Surprisingly, dwell time of repeat visitor is negatively

correlated with the amount of co-located users.

The primary contribution of this work is as follows:
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• We design StayPredictor, a system to predict user dwell time at a shopping mall

based on Wi-Fi traces. Our solution is evaluated on 10-day WiFi traces collected

from 111K devices, and being able to achieve 32.6% relative error.

• We propose a correlation analytics framework to quantify the impact of factors

towards user dwell time. Specifically, this framework can measure the linear and

non-linear dependency relationship between dwell time and other factors.

• To our knowledge, this is the first work to identify and quantify the impact of social

context towards user dwell time. We believe that the findings could provide new

insights for human mobility modelling.

• We present an ensemble method for dwell time prediction. By incorporating mul-

tiple models that are built from different context information, the proposed ensem-

ble method is able to achieve higher prediction accuracy over single models.

6.2 Preliminary

6.2.1 Wi-Fi Probe Request Mechanism

To detect known and unknown Wi-Fi networks, client devices usually scan the Wi-Fi

band by actively sending probe request message according to the 802.11 standard

[Soc12]. After receiving a probe request, the access point that associates with the

probe message will reply with a probe response, allowing the client devices such as

smartphones to initiate a connection. Sending probe request message is an efficient

way to provide a transparent connection for the known Wi-Fi networks. Additionally, it

enables the connection to the networks whose access points do not broadcast Beacons

that contain the SSID.
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6.2.2 Wi-Fi Probe Collection

In order to collect real-world Wi-Fi probe messages, we deploy a Wi-Fi probe collection

system in the region of interest. As illustrated in Figure 6.1, the Wi-Fi probe collection

system consists of several monitors that are based on off-the-shelf routers for data

acquisition, and a central server for data storage. As the users with mobile devices pass

along the region of interest, the probe request message will be snipped and collected

by the deployed monitors, and then sent to the central server. Technically, whenever

the Wi-Fi interface of a device is on, the Wi-Fi probe collection system is able to track

the device.

device movement device movement

Wi-Fi probe monitor

Central Server

Device Trajetory

Figure 6.1: Overview of the Wi-Fi probe collection system

Device Mac Address AP ID Start Time End time Dwell Time

ff:ff:ff:ff:ff:ff 1 1388569044 1388569844 800

Table 6.1: Example of a single data record
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Figure 6.2: Dwell time distribution in the collected dataset

6.2.3 Details of Dataset

The dataset used in the work is collected in one of the biggest shopping mall in Shen-

zhen, China. The data is collected from 1 Jan, 2014 to 10 Jan, 2014. During that

period, many families and friends will hang out to celebrate the new year, indicating

that the dataset is quite informative and thus enabling us to study the impact of factors

such as social context towards human mobility. As shown in Table 6.1, a single data

record contains five attributes, including: the mac address of the device, the associ-

ated access point ID, start time and end time of being detected, and the dwell time.

Specifically, the Unix time is used to record time stamp of the data.

In total, the dataset has 396772 records, and contains 111411 devices with unique mac

address. Among all the monitored devices, 21260 devices are detected for at least two

days, whose user is called repeat visitor, while 90151 devices are recorded in only

one day, whose user is called first-time visitor. In this work, we assume each device

is associated with a user. Therefore, we use device and user interchangeably in the

work. Figure 6.2 shows the dwell time distribution of all the users. Particularly, most of

the user dwell time is less than one hour. Among repeat visitors, around 10 percent of

them stay for more than 8 hours. One possible explanation could be that those repeat
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Figure 6.3: Leave time distribution in the collected dataset

visitors work in that place. The leave time distribution of users is presented in Figure

6.3. We observe that most of users will leave the place starting from 9 am to 12 pm.

6.3 System Overview

StayPredictor systems is based on Wi-Fi traces collected from mobile devices and

able to predict dwell time of a given user in a place. Wi-Fi traces include the Wi-Fi

probe request message and Wi-Fi connection information. As shown in Figure 6.4,

StayPredictor system has four modules.

1. Data pre-processing: since the collection of Wi-Fi probe or connection data is

not continuous in time domain, the function of this module is to conduct data

aggregation to combine the discrete data records into a continuous one.

2. Feature extraction: this module is responsible for extracting a set of candidate

features (factors) that may impact the dwell time of users. Because dwell time

prediction task is a learning problem, we use the term feature to represent factor

that associates with the dwell time. This work include three categories of features:

time context, social context, dwell time and leave time history.
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Figure 6.4: System architecture

3. Correlation analytics: after feature extraction, this module will quantify the de-

pendency between features and user dwell time. Specifically, we adopt a variety

of metrics such as Pearson correlation coefficient, Spearman’s rank correlation

coefficient, mutual information and standard deviation to measure the correlation.

4. Dwell time prediction model: this module is to output the predicted result of

dwell time. In particular, the proposed dwell time prediction model is an ensem-

ble model that integrates three individual models: time and social context based

model, historical dwell time model and historical leave time model.

The problem of dwell time prediction can be formulated as finding a mapping function

f : x → y, where x is the feature space and y is the dwell time. In our case, feature

space covers that factors that influence the dwell time. The rationale of identifying and

quantifying the influence factors of dwell time is that it helps to improve the generality

of the mapping function, as it filters out the non-related features.
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6.4 System Design

6.4.1 Pre-processing

Data preprocessing focuses on data aggregation, which aims to combine the seg-

mented data records of a give user. The reason for data aggregation is that although

human movement is continuous, it may not be reflected by the collected Wi-Fi traces.

First, the collection of Wi-Fi probe message is executed in a periodical manner. Sec-

ond, the Wi-Fi interface of devices may not be on all the time. As a result, even though

a user keeps staying in the same place, the collected data records are segmented.

To aggregate the segmented data records, we design a data aggregation algorithm.

The algorithm is based on a simple assumption that: for a specific device at a certain

spot, if the difference between the end time of a given record and the start time of the

next record is less than a threshold, we consider the device keep staying in the spot

from the start time of the given record to the end time of the next record. Here, the

threshold is set as 0.5 hour. The details of the aggregation algorithm are presented in

algorithm 7.

6.4.2 Feature Extraction

The objective of feature extraction is to extract a number of features that may associate

with the user dwell time. Since human mobility is largely determined by daily routine

and social relationship [CML11], we extract three feature categories including: arrival

time context, social context, historical dwell time and historical leave time.
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Algorithm 7: Data-aggregation algorithm

1 input:

2 Wi-Fi probe dataset collected at a specific hotspot

D =< d1 = (u1, ts1, te1), ..., dn = (un,tsn, ten) >, where ui denotes user

ID, tsi and tei denote start time and end time respectively.

3 The total amount of record in D is N .

4 output:

5 Aggregated dataset AD.

6 Initialization:

7 Aggregation threshold δ;

8 Aggregated dataset AD = ∅;

9 Sort dataset D based on item ui;

10 for t = 1, ..., N − 1 do

11 if ui == ui+1&&tsi+1 − tei < δ then

12 di+1 = (ui+1, tsi, tei+1)

13 end

14 AD = AD ∪ {di+1}.

15 end

Arrival time context

In fact, when human arrives at a certain place might correlate with the stay duration.

The intuition behind this statement is that different arrival time may indicate different

activities and different activities could lead to different lengths of stay. For example, if a

user arrive a place at 9am in the weekday, he/she probably goes to the working place.

Thus, he/she will stay until the end of working hours. In another case, if a user arrive at

12am, he/she may go to have lunch and the stay duration could be around one hour.

Three arrival time contexts are identified: hour of the day; day of the week; week-

day/weekend indicator. First, we need to transform the time contexts into numeric

variables, which can be incorporated into the prediction model. Hour of the day is rep-

resented by using a slot number ranging from 1 to 24. Slot number 1 means the time
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interval [00:00, 01:00), while 24 means the time interval [23:00-24:00). Day of the week

is represented with a number ranging from 1 to 7, where number 1 means Monday and

number 7 means Sunday. Weekday/weekend indicator is a binary variable to differen-

tiate weekday or weekend. In this work, 0 is used to represent workday and 1 is used

to represent weekend.

Social context

According to sociology research [Pre12], human behaviour is influenced by social cir-

cle. Specifically, we focus on the two types of social circle, including: co-located users

and social group. At the very beginning, we segment the data collection period into

consecutive time intervals with the same length. In our experiment, the length is set as

100 seconds. The start time of first time interval uses the earliest start time among all

the data traces.

For a given user, the co-located users refer to those who are being detected by the

same monitor as him/her within the same time interval. Since the dataset does not

have the ground truth for the explicit social group relationship, we need to make some

assumptions. Here, a social group is defined as a set of users that exhibit two char-

acteristics: first, they arrive at the place within the same time interval; second, the

pairwise similarity of their dwell times is large than a threshold. The details of the algo-

rithm are shown in algorithm 8. In particular, we are interested in extracting the amount

of co-located user and the size of social group as the features for dwell time prediction

model.

Historical dwell time

In addition to time and social context, human behaviour could be governed by the

routine life. Therefore, we consider historical dwell time as a feature, as it may correlate

141



Chapter 6. Social Context-based Human Mobility Prediction based on Large-scale
Wi-Fi Traces

Algorithm 8: Social context extraction algorithm

1 input:

2 Wi-Fi probe dataset collected at a specific hotspot

D =< d1 = (u1, ts1, te1, l1), ..., dn = (un,tsn, ten, ln) >, where ui

denotes user ID, tsi and tei denote start time and end time. li denotes

the dwell time.

3 The total amount of record in D is N .

4 A user ui who arrives at time tsi.

5 output:

6 The amount of co-located user ci of user ui.

7 The size of social group gi of user ui.

8 Initialization:

9 Set the length of time interval as L.

10 Set the social group threshold as tH .

11 Te = max(∀itei).
12 Ts = min(∀itsi).
13 M = (Te− Ts)/L+ 1.

14 Initiate M empty sets S1, ..., SM .

15 Initiate M empty sets T1, ..., TM .

16 for t = 1, ..., N do

17 a = (tst − Ts)/L

18 Sa = Sa ∪ ut

19 Ta = Ta ∪ lt

20 end

21 forall the lk ∈ Tb do

22 if |lk − lb|/max(lk, lb) < tH then

23 Ga = Ga ∪ uk

24 end

25 end

26 b = (tsi − Ts)/L

27 ci = |Sb|
28 gi = |Ga|
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with the dwell time the future. For example, some users will go to a place for lunch

regularly during the lunch time, and they will stay there for 1.5 hour. When they arrive

next time, the potential dwell time will be considered as 1.5 hour.

Historical leave time

We can also predict the dwell time by estimating the leave time as the arrival time is

known. The rationale of considering leave time is that compared with the dwell time,

the leave time may not vary too much. For instance, a user normally leave a place at

10pm; if this time he arrives at 1pm, then the potential dwell time is 9 hours.

6.4.3 Features and Dwell time Correlation Analytics

We apply different techniques to measure the influence of features towards the dwell

time. Since both social context and dwell time are continuous variables, Pearson cor-

relation coefficient [ZTS03] and Spearman’s rank correlation coefficient [Ken48] are

adopted to quantify the linear and monotonic correlation relationship receptively. In

addition, mutual information [Pre07] is used to measure the correlation among time

context and dwell time, because time context belongs to categorial variable. Finally, we

use standard deviation to assess the routine degree of dwell time and leave time. In

the following, we will discuss the details of used techniques.

Pearson correlation coefficient

It is a measure of the degree of linear dependence between two continuous variables

X and Y, where 1 indicates total positive correlation, 0 means no correlation, and -1

means total negative correlation.
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ρX,Y =
cov(X, Y )

σXσY

=
E[(X − μX)(Y − μY )]

σXσY

(6.1)

where σX denotes the mean of X and μX refers to the standard deviation of X.

Spearman’s rank correlation coefficient

It is a metric to assess how well two variables can be described using a monotonic

function, where +1 or -1 indicates there is a perfect monotone function to incorporate

both two variables. For a dataset of size n, the raw data Xi and Yi are first transformed

into ranks xi and yi. Spearman’s rank correlation coefficient ρ is computed based on

the following equation:

ρ = 1− 6
∑

d2i
n(n2 − 1)

(6.2)

where di = xi − yi denotes the difference between ranks.

Mutual information

The mutual information of two variables is a measure of the mutual dependence among

variables. For variable X and Y , mutual information could be calculated as follows:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
) (6.3)

where p(x, y) refers to the joint probability of x and y; p(x) and p(y) denote the proba-

bility of x and y respectively.

Note that dwell time is a continuous variable, it needs to be transformed as a categorial

variable to fit the mutual information measurement. Therefore, we cluster dwell time

by using k-mean clustering. Given the predefined number of clusters and the data,
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k-mean algorithm will automatically assign the data samples into different clusters. In

the evaluation section, different number of clusters are chosen.

Standard deviation

This is a metric to measure the degree of variation from the average. A high standard

deviation indicates a low degree of repetition. We apply standard deviation to measure

the routine degree of dwell time and leave time of users. Before the measuring standard

deviation, we will normalize the dwell time data based on feature scaling, to make this

metric equal for users with long dwell time and short dwell time.

6.4.4 Dwell Time Prediction Model

Time and social context based model

Time and social context based model is a single prediction model for user dwell time,

based on the features extracted from arrival time context and social context. In particu-

lar, among social contexts, only co-located users is considered in this model. The main

reason is that social group may not be captured when a user arrives, since it requires

the complete visit traces of users.

This predictive model is based on a linear ridge regression model. Different from tra-

ditional linear regression model, linear ridge model imposes a penalty on the size of

coefficients, which is able to mitigate the effect of linearity among factors. Within the

linear ridge regression model, only the weight vector w = [w1, w2, ..., wi] of different

features needs to be learned from the training dataset, Basically, the parameter w can

be determined by minimising the linear least squares between the predicted result Xw

and the ground truth dwell time y with l2 regularization. The objective function of learn-

ing the parameter w is shown as below:
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min
w

||Xw − y||22 + α||w||22 (6.4)

where α is a complexity parameter to control the amount of shrinkage. In this work, α

is set to 5. The learning algorithm has a cost of O(np2), given X a matrix of size (n, p)

and assuming n ≥ p.

Since the regression model may give the negative value, which contradicts with the

reality. Therefore, we proposed a contrained time and social context based prediction

algorithm, which is shown in algorithm 9. The basic idea is that if the result of linear

ridge regression model is positive, then the dwell time is estimated as d1 = Xw, where

X is the features extracted from the arrival time context and social context. Otherwise,

the dwell time is estimated using the average dwell time in the past.

Algorithm 9: Constrained time and social context based pre-

diction algorithm

1 input:

2 Features extracted from time and social context: X.

3 Pre-trained parameter w.

4 Average dwell time in the past m.

5 output:

6 Predicted dwell time dt.

7 if Xw > 0 then

8 dt = Xw

9 else

10 dt = m

11 end

Historical dwell time model

The main idea of this model is to exploit the dwell time data in the past to predict

their dwell time in a place in the future. Specifically, we use a normal distribution for
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modelling the conditional distribution of dwell time y under context xk as follows:

P (y|xk) =
1√

2πσx
2
exp(−(y − μx)

2

2σ2
x

) (6.5)

where μx and σx are the mean and standard deviation of the historical dwell time data

of a particular user. Then when a user arrive, dwell time will estimated with a value that

has the highest likelihood under the context xk, that is d2 = max
y

P (y|xk).

Historical leave time model

To predict the dwell time of a user, we could estimate his/her leave time indirectly. His-

torical leave time model is to estimate the leave time in the future based on the historical

leave time distribution. Similar to historical dwell time, we adopt normal distribution to

model the conditional distribution of dwell time y given context xj as follows:

P (k|xj) =
1√
2πσj

2
exp(−(k − μj)

2

2σ2
j

) (6.6)

where μj and σj are the mean and standard deviation of the historical dwell time data

of a particular user. Suppose a user arrive at time tj , leave time will estimated with a

value that has the highest likelihood of the historical leave time distribution under the

context xj and then the dwell time can be calculated with leave time minus arrival time:

d3 = max
k

P (k|xj)− tj .

Ensemble model

The key idea of ensemble model is to incorporate several individual models, in order to

improve the predictive performance. Here, we combine three single prediction models:

time and social context based model, historical dwell time model and historical leave

time model, to build up an ensemble model. The ensemble model is developed via
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integrating three single models linearly with a weight vector w as follows.

D =
∑

i=1,2,3

widi (6.7)

The strategy of weight estimation is to assign more weight to models that are more

accurate. In practise, the weight w can be learned based on the training dataset. In

this work, we simply assign the equal weight to each model. The details of the model

performance are presented in the evaluation section.

6.5 Experimental Evaluation

In the following section, we are interested in evaluating the performance of our pro-

posed prediction model for user dwell time. Specifically, we will present the details of

the the evaluation metrics, the baseline methods and the experimental results.

6.5.1 Evaluation Metrics

To compare the effectiveness of different models, we propose a measurement metric:

relative error. The relative error is measured by the ratio of the absolute difference

between the prediction result and ground truth to maximum value among the prediction

result and ground truth. For prediction result list X and ground truth list Y , the relative

error [DGP12] can be calculated based on the following equation.

error(X, Y ) = (
∑

∀xi∈X,yi∈Y

|xi − yi|
max(xi, yi)

)

/
|X| (6.8)

Compare to the absolute error, the relative error is able to exhibit equality to perfor-

mance evaluation in visitors with long dwell time and short dwell time.
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Figure 6.5: Mutual information among time context and dwell time for first-time visitor

6.5.2 Baselines

We consider two non-trivial baseline methods for comparison. The first baseline is time

and social context model, which is based on linear regression model, which inputs the

time and social context and outputs the predicted dwell time.

The second baseline is the historical dwell time model. The main idea of this model

is to leverage the average dwell time of a certain user in the past to predict his/her

future dwell time. Despite its simplicity, this model is a very strong baseline. Assume

a user’s dwell time follows Gaussian distribution, then the average dwell time of a user

in the past lies very close to the peak of the distribution. It indicates that the output of

historical dwell time model presents a higher probability to get close to the ground truth

and it is a preferable model without any other prior information.

6.5.3 Understanding the Impact of Features towards Dwell Time

This section presents the quantitative measurement for the correlation among the pro-

posed features and dwell time.
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Time context vs dwell time. We begin by investigating the effect of time context on

human dwell time at a given place. One way to quantify the dependency between the

time context and the dwell time is to measure their mutual information which stems

from information theory. The lower the mutual information score, the less they are cor-

related. The score 1 indicates perfect correlation, while score 0 means no correlation.

Specifically, Figure 5 plots the mutual information between time context and first-time

visitor dwell time given different cluster number for dwell time clustering. Specifically,

the dwell time is clustered based on different cluster numbers ranging from 3 to 8. For

repeat visitor, the mutual information between time context and dwell time is illustrated

in Table II. The results show that for both first-time visitor and repeat visitor, hour of

the day feature has much more mutual information with dwell time compared with day

of the week and weekday/weekend indicator. One explanation could be different hour

slot means different activities in a place. For example, if a user arrives at 12 am, which

means he will probably go for a lunch and will stay for a short time.

Cluster Number Weekday/Weekend

Indicator

Day of the week Hour

3 0.000048 0.000954 0.097421

4 0.000058 0.001030 0.111517

5 0.000247 0.001294 0.121165

6 0.000237 0.001359 0.126000

7 0.000223 0.001423 0.132192

8 0.000233 0.001514 0.132962

Table 6.2: Mutual information among time context and dwell time for repeat visitor

Social context vs dwell time. The objective of this experiment is to evaluate the impact

of social context upon the dwell time of first-time visitor and repeat visitor. In order to

quantify the impact, we use Pearson correlation coefficient and Spearman’s rank corre-

lation coefficient as the metrics, which can measure degree of the linear and monotonic

dependency respectively. The correlation coefficient 1 or -1 indicates perfect correla-

tion, while score 0 means no correlation. To evaluate the correlation between social
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context and dwell time, we set the segmented length of time L = 100, and the social

group threshold tH to be 0.2, 0.4 and 0.6.
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Figure 6.6: Correlation between social context and dwell time

From Figure 6, we observe that generally the dwell time of a user is positively correlated

with the size of social group during the visit. This means that if a user go for a visit with

more people, the longer he/she will stay in that place. Interestingly, the dwell time of

first-visitor is more correlated with the size of the social group, whereas the dwell time

of repeat-visitor is more correlated with the amount of co-located users. In particular,

the dwell time of repeat visitor is negatively correlated with the amount of co-located

user at the arrival time. Above observations reveal that social context does influence

human movement behaviour.

Routine degree of dwell time. We now turn our attention to study the routine factors

that affect the dwell time of repeat visitors. We are interested to understand the rou-

tine degree of dwell time of different repeat visitors with respect to visit frequency. In

this case, we use standard deviation (SD) to measure the routine degree. A low stan-
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Figure 6.7: Routine degree measurement of dwell time

dard deviation indicates that the dwell time exhibit a high degree of repetition, while a

high standard deviation means that the dwell time varies and spreads out over a large

range of values. As illustrated in Figure 7, we first classify the repeat visitor into four

categories according to visit times during the data collection period, including: [2,3],

[4,5], [6,7], [8, ). The result reveals that the more frequent a user visit a place, his/her

dwell time will exhibits a higher routine degree. This result conforms to our common

sense because users with a high visiting frequency probably work in that place or reg-

ularly come for dining. Due to the routine working hour, their dwell times present a high

degree of repetition.

Routine degree of leave time. Given the arrival time, the dwell time of user can be

predicted if the leave time could be approximated. If the leave time of user exhibit a

high routine degree, we can leverage the past leave time and the current arrival time to

estimate the user dwell time. This experiment is to measure the routine degree of user

leave time. Similar to the evaluation on the routine degree of user dwell time, we focus

on exploring the routine degree of leave time of different repeat visitors. We first classify

the repeat visitor into four categories according to visit times during the data collection

period, including: [2,3], [4,5], [6,7], [8, ). The evaluation result shown in Figure 8 shows
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Figure 6.8: Routine degree measurement of leave time

that with a higher visit frequency, the dwell time of a user will present a lower standard

deviation and thus indicating a higher routine degree.

6.5.4 Dwell Time Prediction Results

Dwell time prediction model Error

Time and social context based model (linear regression) 0.414

Time and social context based model (linear lasso) 0.406

Time and social context based model (linear ridge) 0.390

Historical dwell time model 0.392

Historical leave time model 0.360

Ensemble model 0.346

Table 6.3: Dwell time prediction performance of different models

Prediction accuracy comparison on different models. First, we compare the perfor-

mance of the proposed model with the performance of the baselines. In the following,

in order to make the regression model converge, we only select the data of repeat vis-

itors with at least 6 visit times during the data collection period. By default, 50% of

the dataset will be used for training and the rest 50% is used for test. Table III shows

153



Chapter 6. Social Context-based Human Mobility Prediction based on Large-scale
Wi-Fi Traces

the prediction error of five models. The first baseline time and social context model

based on linear regression achieves 0.406 error and the second baseline historical

dwell time model achieves a better performance with 0.393 error. Our proposed time

and social context model based on linear ridge regression gives 0.356 error. Among

all the individual model, the historical leave time model achieves the best performance,

giving 0.334 error. Compared to all the other individual model, the ensemble model

which combines linearly three best individual models, exhibits the best performance

with 0.326 prediction error.
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Figure 6.9: Dwell time prediction model performance in the different user datasets

Besides, we study the average error for different repeat visitors with different visit times

within the data collection period. The repeat visitor dataset will be filtered based on

different minimum visit times: including: 4, 6 and 8. For example, by setting minimum

visit times to be 4, only those users appearing in the place for at least 4 times will

be included in the dataset. The prediction algorithm will be evaluated on above three

datasets. Figure 9 shows that for all the models, the prediction error for users with high

visit frequency is lower than those with low visit frequency. The results provides an

insight that users with high visit frequency is easier to be predicted. This conclusion
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also matches the observation in routine degree measurement of dwell time and leave

time, that is, the dwell time and leave time of a user with a higher visit frequency present

a lower standard deviation.

Impact of training dataset on prediction accuracy. Finally, we evaluate how the percent-

age of training dataset impacts the prediction performance. From the result shown in

Figure 10, we can see that the performance of prediction model gets better with more

training set. Specifically, when the 70% of data is used for training, the prediction er-

ror of linear ridge model is 0.364, historical dwell time model and historical leave time

model achieves 0.372 and 0.327 error respectively. The ensemble model gives the

lowest error 0.310.
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Figure 6.10: Dwell time prediction model performances with different amount of training

data
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Chapter 6. Social Context-based Human Mobility Prediction based on Large-scale
Wi-Fi Traces

6.6 Summary

In this work, we aim to identify the fundamental factors that influence user dwell time in

a place and then quantify the influences. Quantifying the influences of factors towards

dwell time not only advances our understandings of user behaviour, but also offers

guidelines for accurate dwell time prediction. Based on correlation analytics of 10-day

Wi-Fi traces collected from 111K devices in a large shopping mall, we found that the

visitor dwell time was positively correlated with the size of social group during the visit.

Interestingly, the dwell time of repeat visitors was negatively associated with the size

of co-located user. Furthermore, repeat visitors exhibited a high degree of repetition

in dwell time and leave time. We believe those findings could provide new insights for

human mobility analytics.

To our knowledge, this is first work to identify and evaluate the impact of social context

towards user dwell time, and incorporate social context into the dwell time prediction

model. Evaluation results demonstrate that the proposed ensemble model is able to

achieve higher accuracy of predicting the dwell time of users over single models. In

the future, we will extend the proposed framework to predict future user trace inside a

shopping mall.
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Chapter 7

Non-intrusive Stress Detection Based

on Seating Pressure

In this chapter, we study the problem of stress detection based on seating pressure

patterns. This chapter is organised as follows. In Section 7.1, the overview of the thesis

is presented. Next, we provide the detailed information about the experiment design

in Section 7.2. In Section 7.3, we describe the stress detection framework including:

feature extraction, correlation analysis and stress classification. The experiment results

are presented in Section 7.4. We discuss the limitations of this work in Section 7.5 and

we conclude the thesis in Section 7.6.

7.1 Overview

Stress is one of the major problems in modern society. Studies have found that stress

can cause many health problems such as depression, anxiety and cardiovascular dis-

eases [CKG97]. Stress detection can help people gain more awareness of their stress

levels and the associated factors, and thus being able to reduce stress. For instance,

if a person experienced more stress when s/he excised less, which can motivate user
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to conduct more physical exercise to relieve stress. Furthermore, stress detection en-

ables computer to be more user friendly in the context of human-computer interaction.

When a user is detected to be stressed, for instance, then the computer could perform

some soothing interventions such as playing music.

Several technologies have been developed to measure stress, including surveys, physi-

ological signal measurement (blood pressure [VvDdG00], heart rate variability [DNG+00],

skin conductance [HMP11] [SAS+10], cortisol [DK04] [vEBNS96]). However, these

methods are intrusive, which require the cognitive attention of the users. We argue

that an ideal stress detection system for long-term monitoring should be unobtrusive,

without posing additional stress upon people. A less intrusive approach to measure

stress is analysing the user behaviours such as typing pattern [HPRC14] and mobile

phone usage [LLLZ13], which correlate with stress.

In this work, we explore the possibility of detecting stress based on the seating pressure

distribution on a chair. Our idea is motivated by the embodied theory of cognition

[Cla97], which indicates that affective states of people are manifested in their posture

channels. Specifically, this work seeks to answer two research questions. First, what

seating pressure features differ between stressed and relaxed states? Second, can

stressed and relaxed states be classified using machine learning methods?

In particular, we conduct a laboratory study to collect seating pressure data from 15

participants using a seat cushion which is deployed with 20 pressure sensors. Through

correlation analysis, we identify a number of seating pressure features that are as-

sociated with stress, including: average seating pressure, pressure imbalance, etc.

Moreover, we build up a stress detection framework based on the associated features.

The evaluation result shows that the proposed stress detection framework can achieve

86% accuracy.

The primary contributions of this work is as follows.

• We present a set of effective seating pressure features in both temporal and
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spatial domain, which are able to distinguish user’s stressed and relaxed states.

• We find that stressed subjects reveal higher average seating pressure, pressure

deviation and seating imbalance.

• Based on the selected seating pressure features, the proposed stress detection

framework can achieve 86% accuracy using kNN classifier,

7.2 Experimental Procedure and Data Collection

The goal of this work is to study the feasibility of using pressure sensor-based cush-

ion to capture the manifestation of stress. Thus, we design several tasks that are

conducted by participants under stressed and relaxed situations. In the following, we

present the details of data collection, experiment tasks and procedure.

Pressure distribution

Pressure sensor

Cushion

Figure 7.1: Pressure sensor-based cushion
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7.2.1 Participants

Fifteen participants (15 males) are recruited in this study. The average age of the

participants is 26 with a standard deviation of 3.17. The minimum age is 23 and the

maximum age is 35. The weight (kg) of the participants ranges from 50 to 87, with the

average weight of 65 and a standard deviation of 10.84. The highest education levels

for the participants include: bachelor degree (9), master degree (3) and doctor degree

(3).

7.2.2 Seating pressure data collection

To enable long-term stress monitoring, stress measurement needs to be unobtrusive.

In this study, we aim to identify stress of users from their seating pressure information,

which can be captured by a pressure sensor-based cushion mounted on a chair.

The pressure sensor-based cushion used in this work (see Figure 7.1) is a pressure

sensor array, consisting of 4-by-5 array of pressure sensors distributed over an area

of 40*40 centimeters. In particular, FlexiForce A201 [Tek] is chosen as our pressure

sensor, because it’s very thin (0.208 mm thick) and very stable (less than 3% linearity

error), which can provide non-intrusive user experience. The pressure sensor reading

is encoded as a 16-bit digital value and the sampling rate is 15Hz. The sensors are

equally divided into four groups. At each sampling period, we will sample one sensor

in each group simultaneously.

7.2.3 Experimental Tasks

We design some experiment tasks which induces both stressful and relaxed states, so

that we can examine whether people exhibit different seating pressure patterns under

different affective states. Since cognitive load is the most frequent stressor during daily
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activity, we include two stressors that induce cognitive stress including: Stroop color-

word test and mental arithmetic task.

Stroop Color-word Test: The Stroop test [Gol78] has been widely used as a cognitive

stressor. In this test, a set of words describing colour are first shown on the screen, then

the participants are required to type in the first letter of font colour of the words. During

the test, participants will experience Stroop effect which has been demonstrated to elicit

mental stress. Particularly, a ticking clock sound is played during the task. Furthermore,

the amount of remaining time is notified every ten seconds. The duration of the test is

sixty seconds.

Mental Arithmetic Task: This task [KMY11] introduces cognitive stress via performing

a series of arithmetic operation. In this study, the participants are requested to carry

out arithmetic subtraction. The arithmetic subtraction contains a series of subtraction

from 1029 by using number 7. The correct answers will be informed to the subjects

once the miscalculation occurs. After being informed the miscalculation, the subject

will continue the task until the task time is due. During the mental arithmetic task, a

number of stressors are further introduced to mimic highly stressful environment. First,

participants are required to finish the task as soon as possible. Second, remaining

amount of time is notified every ten seconds during the task. Third, a loud traffic noise

is played throughout the task. The duration of the task is sixty seconds.

Very unpleasant Very pleasant

Low energy (calm, arousal) Very energetic (awake, high arousal)

Very stressed Not stressed at all

Figure 7.2: Stress, valence and arousal level survey after task

Neutral Task: In addition to capture the stressed states, we collect data when partic-

ipants are relaxed. In this task, participants will listen to the soothing music for sixty

seconds.
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7.2.4 Stress Measurment

Although several experimental tasks are designed for participants to perform, it is still

unknown whether those tasks elicit the intended emotions or not. Thus, after the com-

pletion of each task, participants are required to report their valence, arousal and stress

levels on a 7-point Likert scale (see Figure 7.2).

7.2.5 Protocol

In order to examine the seating pressure differences between stressed and relaxed

conditions, we perform a laboratory study. The procedure is shown in Figure 7.3. First,

a briefing session will be held to introduce the participants the purpose and procedures

of the experiments. After providing the written consent, participants are requested to

fill out some demographic information. Next, participants go through a training session,

so as to reduce the novelty effects of experimental conditions and procedures. During

the training session, they have a short tutorial on how to conduct Stroop color-word test

and mental arithmetic task.

Briefing Training

Neutral 
Task

Debriefing

Stroop Color-
word Test

Mental Arithmetic 
Task

Stroop Color-
word Test

Mental Arithmetic 
Task

Neutral 
Task

1

2

Figure 7.3: Experimental Procedure for Participants

After the training session, participants perform three tasks: two stressed tasks and

one neutral task. The participants are seated on a height-adjusted spinning chair. In

particular, the ordering of stressed tasks and neutral task are counterbalanced. Half of

the participants will start with the stressed tasks, and continue with the neutral tasks.

The other half start with the neutral tasks and then continue with the stressed tasks.

After the completion of each task, participants are required to report their valence,

arousal and stress levels. Finally, a debriefing session is conducted. Participants will
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Display

Keyboard

Adjustable chair

Sensing 
cushion

Figure 7.4: Experimental setup

be informed about the purpose of this experiment, and provide feedback and comments

about the experiment.

Figure 7.4 shows the setup of the experiment. The same pressure sensor-based cush-

ion will be used to collect sitting pressure data of all the participants. The lighting

conditions are also the same for all the participants.

7.3 Stress Detection Framework

7.3.1 Feature Extraction

In order to identify the association between stress and seating pressure, we need to

extract a number of seating pressure features. Feature extraction is necessary since

the original seating pressure signal is a sequence of 20-dimensional data points, while

the stress measurement is only conducted after the completion of the tasks. As a con-

sequence, it does not work when directly applying the correlation analysis techniques
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Figure 7.5: Pressure sensor placement in the cushion

to analyse seating pressure and stress data. In the following, we use di,t to represent

the ith sensor data in time t. The ordering of sensors are illustrated in Figure 7.5. A

sampling interval is denoted as T .

Since human movement while sitting is very low-frequency, the information that can

be obtained from frequency domain is fewer than time or spatial domain. Thus, we

extract seating pressure features in both time domain and spatial domain, rather than

frequency-domain features. In our work, time-domain features include pressure vari-

ance and spatial-domain features include pressure std, pressure imbalance, etc.

Average pressure. It refers to the mean value of all the pressure sensor data. During

the task section, a sequence of average pressure data can be extracted. In order to

enable the correlation analysis, we compute the mean value of the sequence of data,

which reduce a time series to a single data point. Average pressure can be computed

based on the following equation, where nT refers to the time length of data.

f1 =

∑
t=T,...,nT

((
20∑
i=1

di,t)/20)

n
(7.1)

Pressure std. It represents the standard deviation of all the pressure sensor data.
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Similar to the process of average pressure feature, pressure std can be calculated

using below equation.

f2 =

∑
t=T,...,nT

(

√
20∑
i=1

(di,t − di,t)
2
/20)

n
(7.2)

Max pressure. It means the maximum value of sensor data. This feature can be com-

puted using the equation as follows.

f3 =

∑
t=T,...,nT

(max( ∀
i=1−20

di,t))

n
(7.3)

Pressure variance. It measures the sum of the standard deviation of each sensor data

within a time interval. Pressure variance can be computed as follows.

f4 =

20∑
i=1

(

√
nT∑
t=T

(di,t − di,t)
2
/n)

20
(7.4)

Pressure imbalance. It measures the difference between the sum of sensor data in the

left block and the one in the right block. It can be calculated with the following equation.

f5 =

∑
t=T,...,nT

(max(
∑
i∈L

di,j/
∑
i∈R

di,j,
∑
i∈R

di,j/
∑
i∈L

di,j))

n
(7.5)

Where L = [1, 2, 5, 6, 9, 10, 13, 14, 17, 18] represents the index set of sensors in the left

block, while R = [3, 4, 7, 8, 11, 12, 15, 16, 19, 20] denotes the index set of sensors in the

right block.

Top-k percentage. It means the ratio of the sum of top-k (k=1-10) sensor data to the

sum of all the sensor data.
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f6 =

∑
t=T,...,nT

(
∑
i∈K

di,j/
20∑
i=1

di,j)

n
(7.6)

where K represents the index set of top-k (k=1-20) sensors.

7.3.2 Correlation Analytics

To measure the correlation between seating pressure features and stress, Pearson

correlation coefficient [ZTS03] and Spearman’s rank correlation coefficient [Ken48] are

adopted to quantify the linear and monotonic correlation relationship receptively.

Pearson correlation coefficient is a measure of the degree of linear dependence be-

tween two continuous variables X and Y, where 1 indicates total positive correlation, 0

means no correlation, and -1 means total negative correlation.

Spearman’s rank correlation coefficient is a metric to assess how well two variables can

be described using a monotonic function, where +1 or -1 indicates there is a perfect

monotone function to incorporate both two variables.

7.3.3 Classification

After feature extraction and correlation analytics, a number of highly correlated features

can be obtained. In this section, we need to design a classification model that can

differentiate whether participants are stressed or relaxed based on seating pressure

features. For simplicity, the states of stressed group and control group are labeled as

stressed and relaxed respectively.

In this study, the classification model adopts the one-size-fits-all paradigm, where a

single stress detection classifier is trained for all the participants. The advantage of

training a classifier for all the participants is that it can improve the generality of the
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model. However, the drawback is that it may not achieve the best performance for

a particular participants. Specifically, two classifiers K-nearest neighbors (kNN) and

support vector machine (SVM) are adopted in this work.
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Figure 7.6: Average and standard error of self-reported stress
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Figure 7.7: Average and standard error of self-reported valence

7.4 Results

In this section, we first evaluate the effectiveness of the tasks to induce the intended

states. Second, we analyse the correlation between different seating pressure features
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Figure 7.8: Average and standard error of self-reported arousal

and stress. Finally, we present the performance of stress detection based on the sitting

pressure features.

Wilcoxon Rank Sum test is used to test whether significant difference exhibits between

two distributions. The advantage of Wilcoxon Rank Sum test is that it is applicable

to both normal and non-normal distributions. Two distributions are considered to be

significantly different if p < 0.05.

7.4.1 The effectiveness of the tasks

The purpose of the three tasks is expected to elicit specific emotions, including relaxed

and stressed states. To check whether the tasks have induced the expected emotions

or not, we measure the stress of participants via self-reports.

The average mean and standard error of the self-reported stress is shown in Figure 7.6.

Clearly, the self-reported stress is significantly higher for Stroop color-word test and

mental arithmetic task than neutral task. This result indicates that the participants react

to the stressors induced in the experiment. Particularly, mental arithmetic task induces

more stress to participants than Stroop color-word test. As expected, Figure 7.7 shows

that participants show significantly higher valence during the relaxed conditions, and
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significantly higher arousal during the stressed conditions (see Figure 7.8).

7.4.2 Correlation among seating pressure features and stress

Table 7.1: Correlation among features and stress

Feature Pearson correlation coeffi-

cient

Rank correlation coefficient

Average pressure 0.18 0.10

Pressure variance 0.01 -0.08

Max pressure -0.08 -0.04

Pressure std 0.20 0.01

Pressure imbalance 0.27 0.14

Top-1 percentage 0.22 0.08

Top-2 percentage 0.15 -0.01

Top-3 percentage 0.13 -0.06

Table 7.1 shows that correlation coefficient result of different features. Particularly,

average pressure, pressure variance, pressure imbalance and top-k (k=1,2,3) are pos-

itively correlated with stress. One possible interpretation is that stress might influence

the muscle activities. As a result, the changes in the muscle activities could be revealed

in the seating pressure.

We further conduct Wilcoxon Rank Sum Test to evaluate whether significant difference

exhibits between the stressed and relaxed conditions in terms of those correlated fea-

tures. Participants show higher average pressure in the stressed conditions than the

relaxed conditions, although it is not significant (Z = 1.56, p = 0.120). No significant dif-

ferences are found between the stressed and relaxed conditions in terms of pressure

variance, pressure imbalance and top-k (k=1,2,3).

169



Chapter 7. Non-intrusive Stress Detection Based on Seating Pressure

12 24 36 48
0.1

0.15

0.2

0.25

0.3

Time length of data for feature extraction (seconds)

Li
ne

ar
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

 

 

 

f1
f2
f3
f4
f5
f6

Figure 7.9: Impact of time length of data towards feature extraction (f1= Average pres-

sure, f2 = Pressure variance, f3 = Pressure imbalance, f4 = Top-1 percentage, f5 =

Top-2 percentage, f6 = Top-3 percentage)

To study the impact of time length of data towards feature, we select different time

length nT to be 12s, 24s, 32s and 48s. Figure 7.9 plots the linear correlation coeffi-

cients of different features under different time length. Note that the correlation coeffi-

cient of seating pressure feature generally increases when the time length increases.

This result shows that the features become more discriminate for the stressed and

relaxed conditions with a larger time length.

7.4.3 Stress classification performance

The main objective of the this experiment is to evaluate the performance of stress clas-

sification. First, we segment the original data according to a fixed interval (3 seconds).

Then the feature extraction is conducted on each data segment. Note four features

with high correlation coefficient are included in the classification: average pressure,

pressure std, pressure imbalance and top-1 percentage. In this study, 50% data will be

used for training and the rest 50% data is used for test.
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The confusion matrix of the classification is shown in Table 7.2. The true positives

(stressed) are 133, and the true negatives (relaxed) are 60. False positives are 9 and

false negatives are 23. There are more stressed data samples, since we collect data

from two stressed tasks and one neutral task. Interestingly, although the individual

feature does not show significance, a combination of features can still have high dis-

criminative ability because some of features are complimentary to each other.

Table 7.3 summarises the classification result of three classifiers. kNN classifier (k=2)

achieves the best performance with 86% test accuracy, while 69% test accuracy is

obtained by SVM (linear kernel) classifier.
Table 7.2: Stress classification confusion matrix

stressed

(predicted)

relaxed

(predicted)

stressed

(actual)
133 23

relaxed

(actual)
9 60

Table 7.3: Stress classification accuracy (training dataset amount = 50%)

Classifier Training accuracy Test accuracy

SVM (linear kernel) 0.64 0.69

SVM (rbf kernel) 0.83 0.83

kNN 0.96 0.86

We will further evaluate the impact of feature number to the stress classification ac-

curacy. Figure 7.10 plots the recognition accuracy with respect to number of features.

Note that the recognition accuracy generally improves when the feature number in-

creases. The high recognition accuracy with a few number of features demonstrates

that the extracted features are distinctive.
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Figure 7.10: Impact of feature number towards classification performance

Finally, we evaluate how the percentage of training dataset impacts the classification

performance. From the result shown in Figure 7.11, we can see that the performance

of classification model gets better with more training set. Specifically, when the 50% of

data is used for training, the classification error of kNN classifier is 0.79, SVM (linear

kernel) and SVM (rbf kernel) achieves 0.68 and 0.75 error respectively.

7.5 Discussion

Although some interesting findings have been revealed, we need to consider the limi-

tations of this work.

First, the stress is measured via self-reports in this work. The definition and measure-

ment of stress remains an open challenge. Some of participants say it is difficult to

accurately report the stress using 7-point Likert scale. Therefore, the reported stress

level may not linearly reflect the real stress intensity. Note that some physiological

sensors have been used to quantify the stress level based on skin temperature, elec-

trodermal activities, etc. In order to obtain more accurate stress measurement, our

future work will include different physiological sensors.
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Figure 7.11: Impact of training dataset towards classification performance

The second limitation of this work is only cognitive stress have been induced during the

experiment. In addition to cognitive stress, however, people experience other types of

stress elicited by physical or psychosocial stressors. Considering other types of stres-

sors can give us more understandings on the association between seating pressure

and stress. In the future, we plan to collect more data from participants in real-life

scenarios.

After correlation analysis, we find that participants show increased average seating

pressure, larger variance among sensor data and increased seating imbalance under

the stressful conditions. However, those seating pressure features are not significantly

different between stressed and relaxed states. Besides, it is important to understand

why those seating pressure features relate to the stress. Therefore, future research will

incorporate additional wearable and physiological sensors to monitor both the physical

and muscle activities, in an attempt to provide more insights about how stress influ-

ences the seating pressure.

Even under the same condition, the stress response of different participants varies. It

suggests that the stress detection model should be user-specific. Note that all the par-

ticipants are male in this work. Thus, our further study will involve female participants
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to conduct the experiment.

7.6 Summary

This work presents a stress detection system based on seating pressure signals that

are collected from non-intrusive pressure sensors in a seat cushion. The result reveals

that during the stressful conditions, participants show increased average seating pres-

sure, larger variance among sensor data and increased seating imbalance. Besides,

the proposed stress detection system is able to achieve 86% accuracy using four seat-

ing pressure features.

Although the results are preliminary, which are based on limited number of participants

and stressors, it reveals that seating pressure distribution is related to stress level. In

the future, we will collect larger datasets and introduce some physiological sensors to

quantify the stress level. Furthermore, we will incorporate other sensing modalities to

improve the stress detection accuracy. We believe that the findings of this work will

create new opportunities for designing a less unobtrusive stress monitoring system.
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Chapter 8

Conclusions and Future Research

In this chapter, we summarize this thesis in section 8.1 and point out the future research

direction in section 8.2.

8.1 Conclusions

Understanding user behaviour opens up a lot of novel opportunities for healthcare,

business intelligence and internet of things applications, which is drawing increasing

attention from both academy and industry. Specifically, user behaviour understanding

encompasses the modeling, recognition and analytics of user behaviour.

This thesis focuses on two research directions: user behaviour modeling and recog-

nition, correlation analytics. The first part focuses on how to accurately model and

recognize certain categories of user behaviours based on ambient sensor data. In

particular, we study three kinds of behaviours which play critical roles in both physical

and psychological heath, including: sitting posture, eating habit and social interaction.

Second part aims to identify and exploit the correlation between user behaviours and

other user states such as emotion. Specifically, we conduct correlation analytics be-
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tween mobility and social circle, stress and sitting posture, and exploit the correlation

relationship to build up new recognition model.

First, we focus on the modelling and recognition of three important user behaviours,

including: sitting posture, eating habit and social interaction. 1) Current solutions for

siting posture recognition, however, are impractical due to intrusiveness, high cost or

low generalization accuracy. In this work, we design Postureware, an accurate, low-

cost and non-intrusive sitting posture recognition system. In particular, Postureware

incorporates very thin pressure sensors to offer non-intrusive experience, an effec-

tive sensor placement solution to reduce cost, a set of user-invariant features and an

ensemble learning classifier to improve generalization ability. The results show that

Postureware can achieve 99.6% ten-fold cross validation accuracy and 84.7% general-

ization accuracy only with 10 sensors. In addition, we further evaluate the system utility

by developing three applications, including unhealthy sitting posture monitoring, sitting

posture-based game playing and wheelchair control.

2) We study the problem of monitoring an individual’s eating behaviour using off-the-

shelf smartwatch and smartphone. However, very few works have been developed for

long-term eating behaviour monitoring by means of a noninvasive platform. In par-

ticular, we exploit the accelerometer of smartwatch to derive user’s eating behaviour,

including: eating schedule, food cuisine and food item. Besides, we leverage the col-

laboration between smartwatch and smartphone to reduce the energy consumption

of smartwatch, and thus enabling long-term monitoring. The primary contributions of

our work include a context-aware data collection method to conserve energy, a novel

set of accelerometer features that are able to capture key characteristics of eating be-

haviour patterns, and a light-weight decision tree-based classification algorithm. We

evaluate our approach using real-world traces and the experimental results demon-

strate our work is able to monitor individual’s eating behaviour in a non-invasive and

energy-efficient manner.

3) Most of the existing work in social activity recognition are based on the patterns of
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individual user such as location pattern, vocal pattern, etc. However, we observe that

social activity is associated with a community, which inherently exhibits the patterns

with respect to multiple users. Thus, by exploiting the information from multiple users,

we are able to improve the accuracy of social activity recognition. In this paper, we

introduce the concept of social circle, which reveals the behaviour pattern associated

with multiple users in social activities. Here, a social circle refers to a set of users

frequently gathering to conduct certain social activities. Based on the social circle con-

cept, we present CircleSense, an accurate and efficient smartphone-based system for

social activity recognition. The main idea is to derive social activity by integrating both

social circle and time information. In particular, social circle is extracted from the social

proximity information obtained by Bluetooth device discovery. To further improve the

system accuracy, we apply metric learning technique to extract social circle from so-

cial proximity information. To evaluate the system performance, we conduct extensive

experiment based on the dataset collected in real world from 16 subjects. The exper-

iment result shows that CircleSense outperforms the existing methods in terms of the

recognition accuracy.

Second, we study the problem of correlation analytics among behaviours. In particular,

we find that there exists correlation between human mobility and social circle, as well as

stress and sitting behaviour. Furthermore, by leveraging the correlation relationships,

we improve the accuracy of human mobility prediction and stress measurement. To

identify the correlation between human mobility and social circle, we conduct correla-

tion analytics on 10-day Wi-Fi traces collected from 111K devices in a large shopping

mall. We found that dwell time of repeat visitor exhibits a low degree of variation. In-

terestingly, visitor dwell time is positively correlated with the size of social group during

the visit. By exploiting the above findings, this work presents an accurate user dwell

time prediction model that incorporates time and social context, dwell time and leave

time history. Evaluation results show that the proposed model is able to provide high

accuracy of predicting user dwell time and outperform the baseline methods.
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Next, We are interested to explore the possibility of detecting stress by analysing the

seating pressure distribution on the chair. In particular, we collect seating pressure data

from 15 participants using a seat cushion which is deployed with 20 pressure sensors.

Through correlation analysis, we identify a number of seating pressure features that are

associated with stress, including: average seating pressure, pressure imbalance, etc.

Based on the associated features, we build up a stress detection framework to classify

whether participants are stressed or not. The result show that the stress detection

framework can achieve 86% accuracy using kNN classifier.

8.2 Future Research

In this section, we highlight some future directions for our research works.

First, we study sitting posture recognition problem based on pressure sensors in Chap-

ter 3. In future work, we plan to extend the sitting posture recognition system to per-

form inter-disciplinary researches. In particular, we are interested in three directions:

affection recognition, rehabilitation and self-improvement. First, we will investigate the

correlation relationship among sitting behaviours with human emotion. By leveraging

the correlation relationship, we can develop a sitting posture-based prediction model to

recognize user emotion. Second direction is rehabilitation, which can help people with

chronic spinal cord or traumatic brain injuries, to recover the sitting balance via game-

based exercise. The third direction is self-improvement, which can provide feedback

for dancers or meditators to maintain a good posture.

Second, we develop an eating behaviour detection system based on smartwatch and

smartphone in Chapter 4. Note that this work is based on a small scale of datasets. In

particular, we focus on a few kinds of cuisine types: American cuisine, Chinese cuisine

and fast food. Moreover, all the dataset is collected inside the restaurant, which means

that some home-cooked food are not considered. In the future, we plan to collect a
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wider categories of datasets. Specifically, we will include the dataset when people

is cooking. The intuition is that cooking different kinds of food will result in discrimi-

native wrist motion patterns. Thus, the system accuracy is expected to increase by

incorporating the motion signals from both cooking and eating. Furthermore, we will

recruit more individuals for data collection. Besides, due to the limitation of accelerom-

eter sensor, the current system cannot identify what kind of meat people is eating. To

enable fine-grained eating behaviour monitoring, we might need to incorporate more

information from other modalities. One of the future directions is to integrate google

glass into the system. Our preliminary study shows that there exists acceleration pat-

terns of head movement when people are eating. Besides, we can make use of the

camera of google glass to take pictures and conduct image processing to obtain more

detailed information about the food.

In Chapter 5, we study social activity recognition problem based on smartphone. As

an initial study, we demonstrate the effectiveness of exploiting social circle and tem-

poral information to derive different social activities. Although the result is promising,

the design and functionalities of the system are premature. In the future, we plan to

work on the following directions. First, we will leverage more sensor modalities such

as accelerometer and microphone to infer more fine-grained social activities. Second,

we will conduct a large-scale dataset to evaluate of the effectiveness of social circle

information to distinguish different social activities. Third, we will investigate the mech-

anism that could adaptively update the members in a social circle, which enables the

long term monitoring.

In Chapter 6, we identify the correlation relationship between social group and dwell

time and construct a user dwell time prediction model based on social context. To our

knowledge, this is first work to identify and evaluate the impact of social context towards

user dwell time, and incorporate social context into the dwell time prediction model. In

the future, we will extend the proposed framework to predict future user trace inside a

shopping mall.
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Finally, in Chapter 7, we study the association between seating behaviour and stress,

and then build up a stress measure model based on seating pressure features. Al-

though the results are preliminary, which are based on limited number of participants

and stressors, it reveals that seating pressure distribution is related to stress level. In

the future, we will collect larger datasets and introduce some physiological sensors to

quantify the stress level. Furthermore, we will incorporate other sensing modalities to

improve the stress detection accuracy. We believe that the findings of this work will

create new opportunities for designing a less unobtrusive stress monitoring system.
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