

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

NEW APPROACHES TO SOLVE THE LOCAL MINIMUM

PROBLEM AND IMPROVE THE CLASSIFICATION ABILITY OF

LEARNING ALGORITHMS IN MULTI-LAYER FEED-FORWARD

NEURAL NETWORKS

XU SHENSHENG

M.Phil

The Hong Kong Polytechnic University

2016

The Hong Kong Polytechnic University

Department of Electronic and Information Engineering

New Approaches to Solve the Local Minimum Problem and Improve the

Classification Ability of Learning Algorithms in Multi-Layer

Feed-Forward Neural Networks

XU Shensheng

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Philosophy

July 2015

i

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material that

has been accepted for the award of any other degree or diploma, except where due

acknowledgement has been made in the text.

XU Shensheng

ii

To the memory of my grandfathers, XU Mingqin and LI Peiyuan

iii

Abstract:

This thesis proposes two new algorithms. They are Wrong Output Modification

(WOM) and Threshold of Output Differences (TOD). WOM is used to solve the local

minimum problem in training a multi-layer feed-forward network while TOD is used

to improve the classification ability in training a multi-layer feed-forward network.

When a searching to find a global minimum is trapped by a local minimum, the

change of weights could be zero or extremely small. Thus, the mean square error

cannot be further reduced while its value is still so large that the searching cannot find

the global minimum. In this circumstance, WOM locates the wrong output values and

moves them closer to their corresponding target output values. Thus neuron weights

are modified accordingly, and hence the searching can escape from such local

minimum. WOM can be applied in different learning algorithms. Our performance

investigation shows that learning with WOM can always escape from local minima

and converge to a global minimum. Moreover, it obtains better classification ability

after training.

TOD monitors the difference of each output value and its corresponding target

output value. All differences are used to identify whether a searching finds a global

minimum or not. TOD can be applied in different learning algorithms. Our

performance investigation shows that by using TOD, a multi-layer feed-forward

neural network can be trained in a better way so that its classification ability is better.

This improvement is very significant if all features in testing data can be found in

training data.

iv

Publications

 Some preliminary results and parts of this thesis have been published and have

appeared in conference proceedings while some submitted papers are still under

review.

 C. C. Cheung, Sean Shensheng Xu and S. C. Ng, “A Systematic Approach to Find

a Global Solution in Training a Feed-Forward Neural Network”, will be submitted

to IEEE Transaction on Neural Networks and Learning Systems, 2015.

 Sean Shensheng Xu, C. C. Cheung and S. C. Ng, “A new algorithm to speed up the

convergence rate and the classification ability in Training a Feed-Forward Neural

Networks”, will be submitted to IJCNN 2016, 2016.

 Sean Shensheng Xu and C. C. Cheung, “A New Terminating Condition to Identify

the Convergence of the Learning Process in Multi-Layer Feed-Forward Neural

Networks”, Proceedings of IJCNN 2015, Killarney, Ireland, July 2015.

 C. C. Cheung, S. C. Ng, A. K. Lui and Sean Shensheng Xu, "Further

Enhancements in WOM Algorithm to Solve the Local Minimum and Flat-Spot

Problem in Feed-Forward Neural Networks", Proceedings of IJCNN 2014, Beijing,

China, July 2014.

 C. C. Cheung, S. C. Ng, A. K. Lui and Sean Shensheng Xu, "Solving the Local

Minimum and Flat-Spot Problem by Modifying Wrong Outputs for Feed-Forward

Neural Networks", Proceedings of IJCNN 2013, Dallas, TX, USA, August 2013.

v

Acknowledgements

 I would like to take this opportunity to express my most sincere gratitude to my

supervisor, Dr. Lawrence Chi-Chung Cheung, not only for the scientific guidance he

has given to me throughout this research study, but also for his constant support in

making some research projects possible during these years.

 Dr. Cheung inspired my interest in the field of Artificial Intelligence, and he has

guided me throughout the learning of Neural Networks. He has given me constructive

advice and suggestions when I got stuck in some research problems. He also has

given me a lot of guidance, assistance and encouragement in terms of thesis writing

and oral presentation.

 I would thank Dr. Vanessa Sin-Chun Ng in School of Science and Technology,

The Open University of Hong Kong, for her ideas and resources throughout my

research development. I also thank Dr. Rex G. Sharman for his proof-reading of this

thesis.

Finally, I would like to thank my family for supporting me and giving me a lot of

encouragement throughout the years. Without them, I would never have thought of

completing my studies.

vi

Table of Contents

CERTIFICATE OF ORIGINALITY ………………………………………………………………... i

Dedication………………………………………………………………………………………………ii

Abstract: ……………………………………………………………………………………………....iii

Publications …………………………………………………………………………………………... iv

Acknowledgements …………………………………………………………………………………… v

List of Figures ………………………………………………………………………………………..viii

List of Tables ………………………………………………………………………………………….ix

Chapter 1 Introduction 1

1.1 Artificial Neural Networks ……………………………………………………………... 1

1.2 Multi-Layer Feed-Forward Neural Networks ………………………………………….. 2

1.3 Back-Propagation Algorithm …………………………………………………………... 4

1.4 Terminating Condition and Misclassification Rate ……………………………………...8

1.5 Thesis Organization …………………………………………………………………... 10

Chapter 2 Background 11

2.1 Other Learning Algorithms …………………………………………………………… 11

 2.1.1 Back-propagation with Magnified Gradient Function ……………………... 11

 2.1.2 Quickprop …………………………………………………………………... 13

 2.1.3 Resilient Back-propagation ………………………………………………… 14

 2.1.4 Levenberg-Marquardt Algorithm …………………………………………... 17

 2.1.5 Enhanced Two-Phase Method ……………………………………………… 19

 2.1.6 Fast Learning Algorithm with Promising Convergence Capability ………. 21

vii

2.2 Limitations ……………………………………………………………………………. 23

Chapter 3 Wong Output Modification (WOM) Algorithm 24

3.1 Motivations ………………….. 24

3.2 Proposed Algorithm: Wrong Output Modification ……………………….................... 26

Chapter 4 Threshold of Output Difference (TOD) 43

4.1 Motivations ………………….. 43

4.2 New Terminating Condition: Threshold of Output Differences ……………………… 44

4.3 Examples ……………………………………………………………………………… 47

Chapter 5 Numerical Results 48

5.1 Introduction …………………………………………………….................................... 48

5.2 Learning Problems ……………………………………………………………………. 48

5.3 Simulation Environment ……………………………………………………………… 50

5.4 The Effect of the Procedure to Re-generate Initial Weights ………………………….. 51

5.5 Performance Comparison between WOM (initial version) and WOM (final version)…54

5.6 Full performance comparison (Part A): Convergence Rate and Capability…………….56

5.7 Full Performance Comparison (Part B): Classification Ability……………………….. 60

5.8 The Performance of WOM in Neural Networks with Multi Hidden Layers………….. 68

5.9 The Performance Comparison of WOM and Random Method………………………... 69

Chapter 6 Conclusions and Future Work 71

6.1 Conclusions ………………………………………………………………………….... 71

6.2 Future Work …………………………………………………………………………… 73

References 74

viii

List of Figures

Fig. 1.1 A feed-forward neural network

Fig. 1.2 BP is applied in the Five-Bit Counting learning problem

Fig. 1.3 Flat-spot area and local minimum

Fig. 1.4 Early stopping

Fig. 2.1 MGF algorithm

Fig. 2.2 Quickprop algorithm

Fig. 2.3 RPROP algorithm

Fig. 2.4 LM algorithm

Fig. 2.5 E2P algorithm

Fig. 2.6 PCC algorithm

Fig. 3.1 RPROP is trapped by a local minimum in Five-bit Counting problem

Fig. 3.2 Mean square error is unchanged

Fig. 3.3 The WOM algorithm (initial version)

Fig. 3.4 RPROP jumps out of the local minimum by using WOM

Fig. 3.5 The WOM algorithm (final version)

Fig. 3.6 The procedure Escape

Fig. 3.7 The procedure FastChecking

Fig. 4.1 Implementation of TOD

Fig. 5.1 The MSEs in training and validation

Fig. 5.2 Over-fitting (RPROP with WOM in Iris)

Fig. 5.3 The training is trapped by a local minimum

Fig. 5.4 The training can escape from such local minimum by using WOM

ix

List of Tables

Table 5.1 Learning problems (descriptions)

Table 5.2 Learning problems (parameter setting)

Table 5.3 Difference of neuron weights in different cases

Table 5.4 The performance of Quickprop with different versions of WOM in three

learning problems

Table 5.5 Performance comparisons in BP (Part A)

Table 5.6 Performance comparisons in MGF (Part A)

Table 5.7 Performance comparisons in Quickprop (Part A)

Table 5.8 Performance comparisons in RPROP (Part A)

Table 5.9 Performance comparisons in LM (Part A)

Table 5.10 Performance comparisons in BP (Part B)

Table 5.11 Performance comparisons in MGF (Part B)

Table 5.12 Performance comparisons in Quickprop (Part B)

Table 5.13 Performance comparisons in RPROP (Part B)

Table 5.14 Performance comparisons in LM (Part B)

Table 5.15 Performance comparisons of neural networks with two hidden layers

using BP in Breast Cancer

Table 5.16 Performance comparisons of neural networks with two hidden layers

using BP in Iris

Table 5.17 Performance comparisons of WOM and random method in Breast

Cancer

1

Chapter 1 Introduction

1.1 Artificial Neural Networks

Artificial Intelligence (AI) is a branch of computer science that is related to

intelligent automation. John McCarthy [1], as the father of AI, coined the concept of

intelligence in 1955 and defined it as "the science and engineering of making

intelligent machines" [2] in 2007. Many Artificial Intelligence techniques have been

proposed to develop different forms of AI. In soft computing [3], the most popular AI

techniques are Artificial Neural Networks (ANNs), Fuzzy Logic (FL) and

Evolutionary Algorithm (EA). This thesis focuses on ANNs.

 ANNs [4] are biologically inspired networks that consist of processing neurons.

The neurons are connected with each other and are capable of receiving and sending

signals. The connections can be considered as a function of network weights, and the

value of weights represents the strength of connections. The term artificial neural

networks can be shortened to neural networks. The main contribution of neural

networks is their ability to capture hidden information from known data, and this

capturing process is called learning or training of neural networks. Neural networks

have been successfully used in many applications, such as classification and

clustering [5], pattern recognition [6], signal processing [7], clinical medicine [8],

food science [9], chemical engineering [10], and energy systems [11], among others.

Three types of learning can be found in neural networks: Supervised Learning,

Unsupervised Learning and Reinforcement Learning. Supervised learning means the

2

desired output of each input pattern is known. A neural network keeps adjusting

weights according to the error signals, so that the actual output can approach its

corresponding desired output. Unsupervised learning means the desired output is not

known. Thus, no error signals exist to evaluate the actual output and the neural

network just tries to get hidden information from the input data. Reinforcement

learning can be seen between supervised learning and unsupervised learning. The

learning process has to rely on trial-and-error interactions with a dynamic

environment.

My research is concerned with multi-layer feed-forward neural networks in

supervised learning, because supervised learning in multi-layer feed-forward neural

networks is one of the most popular neural network applications. These applications

are applied in a wide variety of fields, especially in chemistry related problems [12,

13].

1.2 Multi-Layer Feed-Forward Neural Networks

In a multi-layer feed-forward neural network, neurons are ordered into layers.

The network consists of an input layer, one or more hidden layers and an output layer.

Fig. 1.1 shows a fully connected feed-forward neural network with one hidden layer.

My research is focused on this network structure.

3

Fig. 1.1 A feed-forward neural network

There are N input neurons, K hidden neurons and M output neurons in the

network. From input to output, each neuron (node) is connected to its neighbors. Let

pky and pmo be the outputs of the hidden node and the output node from the input

pattern p (p = 1, 2…, P, where P is the number of input patterns) respectively.

Moreover, pnx is the input value in the input node n for the input pattern p, pmt is

its corresponding desired target which can be found in the training data set, nkω is

the network weight for the input node n and the hidden node k, and kmω is the

network weight for the hidden node k and the output node m. The system error of the

network (E) at the i-th iteration is defined as [14]:

∑∑
= =

−=
P

p

M

m
pmpm iotiE

1 1

2)]([
2
1)(. (1.1)

Compared with E, the mean square error (MSE) is used to determine the convergence

4

of the learning. The value of E is expected to be not very small since it is used for the

computation in neural networks (this computation will be described later in this

chapter) and the computation will not be effective if E is too small. On the other hand,

the mean square error is an indicator to determine whether the learning converges or

not. Sometimes it may be very small when the learning is close to converge. Thus it

should not be used in the computation. The definition of the mean square error at the

i-th iteration is shown below:

∑ ∑ −=
= =

P

p

M

m
pmpm iot

PM
iMSE

1 1

2)]([1)(. (1.2)

1.3 Back-Propagation Algorithm

Back-Propagation (BP) [14] is the most popular supervised learning algorithm

widely used in training multi-layer feed-forward neural networks. BP employs the

gradient descent method [15] to minimize the mean square error by calculating the

gradient of a loss function with respect to all weights in the network. Based on Fig.

1.1, the implementation of the standard BP algorithm is shown below:

1) Before Training: initialization and parameter setting.

The weights of the network need to be initialized. The learning rate μ and the

momentum factor α are set to small positive values. The error threshold is set to a

very small positive value (0.001 is used as the default error threshold in my thesis),

and the iteration number i is equal to 0. The definitions of these parameters will be

described later in this section.

5

2) Forward Pass: calculate the network output pmo and the mean square error.

For an input pattern px (]....[1 pNpp xxx =),

))(()(1∑= =
N
n pnnkpk xifiy ω (1.3)

and))()(()(1 iyifio K
k pkkmpm ∑= = ω . (1.4)

Sigmoid functions are used as the activation functions for both the hidden and

output layers. The mean square error is obtained from Equation (1.2). If it is less than

the error threshold, the learning process is terminated and the convergence is met;

otherwise, Backward Pass operation is processed. Note that the error threshold can be

considered as a terminating condition in learning, and it will be discussed later.

3) Backward Pass: calculate weight-update kmωΔ and nkωΔ for the next iteration.

The partial derivative of E(i) with respect to the weights between hidden neuron

and output neuron)(ikmω can be expressed as:

)(
)(

)(
)(

)(
)(

i
io

io
iE

i
iE

km

pm

pmkm ωω ∂

∂
⋅

∂
∂

=
∂
∂ (1.5)

where

)(
)(

)(iot
io

iE
pmpm

pm

−=
∂
∂ (1.6)

and)())(1)((
)(
)(

iyioio
i
io

pkpmpm
km

pm −=
∂

∂

ω
. (1.7)

The partial derivative of E(i) with respect to the weights between hidden neuron and

input neuron)(inkω can be expressed as:

)(

)(
)(
)(

)(
)(

)(
)(

1 i

iy
iy
io

io
iE

i
iE

nk

pk

pk

pmM
m

pmnk ωω ∂

∂
⋅

∂

∂
⋅∑

∂
∂

=
∂
∂

= (1.8)

where

6

)())(1(
)(
)(

iioo
iy
io

kmpmpm
pk

pm ω−=
∂

∂
 (1.9)

and pnpkpk
nk

pk xyiy
i

iy
)1)((

)(

)(
−=

∂

∂

ω
. (1.10)

The weight-update for the (i+1)-th iteration can be expressed as:

)()()(

)(
)(

)()1(

1 iiyi

i
i

iEi

kmpk
P
p pm

km
km

km

ωαδμ

ωα
ω

μω

Δ+⋅∑⋅=

Δ+
∂
∂

−=+Δ

=

 (1.11)

and
)()(

)(
)(

)()1(

1 ixi

i
i

iEi

nkpn
P
p pk

nk
nk

nk

ωαδμ

ωα
ω

μω

Δ+⋅∑⋅=

Δ+
∂
∂

−=+Δ

=

 (1.12)

where

))(1)(())(()(ioioioti pmpmpmpmpm −−=δ (1.13)

and)()())(1)(()(1 iiiyiyi km
M
m pmpkpkpk ωδδ ∑−= = . (1.14)

So

)1()()1(+Δ+=+ iii kmkmkm ωωω (1.15)

and)1()()1(+Δ+=+ iii nknknk ωωω . (1.16)

The weights of the network have been updated. Then set i = i + 1 and process

Forward Pass.

The main advantages of BP are its simplicity and low computational complexity.

However, BP cannot overcome two limitations. First, the mean square error surface

may have many local minima, and BP may converge to one of them since it calculates

the gradient of a loss function. BP cannot escape from a local minimum once it is

trapped, and therefore the learning process cannot converge to the global minimum.

Second, the convergence rate of BP may be very slow because of the “flat-spot”

7

problem [16 – 19]. If BP is trapped into a flat-spot area, the change of weights

becomes very slow so the change of the mean square error becomes very small. BP

has to spend many iterations escaping from a flat-spot area, thereby leading to its slow

convergence.

 Fig. 1.2 shows the relationship between the mean square error (Vertical Axis) and

the iterations (Horizontal Axis) when the BP algorithm is applied in the Five-Bit

Counting problem. This Five-Bit Counting problem will be briefly described in

Chapter 5. In Fig. 1.2, the mean square error drops quickly at the beginning: it is

reduced from 0.3 to 0.015 within 200 iterations. BP can dramatically reduce the mean

square error in this problem. However, the convergence rate is slow after the first 200

iterations, with hardly any changes after 1000 iterations because the learning process

is trapped (a) into a flat-spot area, and then (b) by a local minimum. The change of the

mean square error is shown in Fig. 1.3 by adjusting the scale of Vertical and

Horizontal Axis in Fig. 1.2. Since the nature of these local minimum and flat-spot

problems are very similar and later our proposed algorithm can solve both problems,

for simplicity, these two problems are combined into one and it is called local

minimum problem in rest of the thesis.

8

Fig. 1.2 BP is applied in the Five-Bit Counting learning problem

Fig. 1.3 Flat-spot area and local minimum

1.4 Terminating Condition and Misclassification Rate

The initialization of the training of a neural network generates a set of initial

weights and sets the error threshold at 0.001. Note that error threshold can be seen as

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000 1200 1400 1600

m
ea
n
sq
ua

re
 e
rr
or

iterations

0.00525

0.00526

0.00527

0.00528

0.00529

0.0053

1300 1350 1400 1450 1500 1550 1600

m
ea
n
sq
ua

re
 e
rr
or

iterations

flat‐spot area

local minimum

9

the terminating condition of learning. Further investigation on this terminating

condition does not occur because it is a simple and direct way to estimate the

differences between outputs and targets. When the mean square error is less than the

error threshold, that means the terminating condition is satisfied, the learning process

is completed successfully and the weights of neural network are trained well. It is

expected that this trained network should classify all training data correctly.

 Using validation sets is another way to terminate the learning and there are two

approaches to using them. One is called early stopping. It divides the training data

into two sets: for training and validating. The validation error is calculated

periodically during training. Training is terminated when the validation error begins to

go up (see Fig. 1.4). Early stopping is fast and is the most common way for avoiding

error over-fitting (i.e., a neural network trains in too many iterations so that the

classification ability of the neural network after training is worse than the optimum

one). The other approach is called cross-validation. It divides the data into k subsets of

equal size. The network is trained k times and one subset is used each time for

validation. Training is terminated when the subset with the smallest validation error is

found. The biggest problem with using validation sets is how to split the training data,

especially in cases where the size of training data may not be large enough. The split

sample cannot contain all the features of the entire data for both training and

validation. Moreover, using validation sets as the terminating condition cannot tell

whether the learning is trapped by a local minimum or not.

10

Fig. 1.4 Early stopping

1.5 Thesis Organization

The thesis is organized as follows: Chapter 2 introduces some learning algorithms

dealing with aspects of convergence rate and convergence capability to overcome the

limitations of the standard BP algorithm. Chapter 3 describes a new algorithm called

Wrong Output Modification (WOM) which is used to solve the local minimum

problem. Chapter 4 describes another new algorithm called Threshold of Output

Difference (TOD) which is used to improve the classification ability. Chapter 5 shows

the performance of the proposed algorithms through simulation results and

performance comparisons with different learning algorithms in different learning

problems. Conclusions are drawn in Chapter 6.

Validation error

Training error

Iteration

MSE

0

Stop here

11

Chapter 2 Background

This thesis proposes (a) a new algorithm to solve the local minimum problem and

(b) a new terminating condition to improve the classification capability of a learning

algorithm. They can be applied to different learning algorithms in different learning

problems. This Chapter briefly describes some popular existing learning algorithms

for reference, and also describes some existing algorithms that have been proposed to

solve the local minimum problem.

2.1 Other Learning Algorithms

Back-propagation (BP) is simple to apply in different learning problems but it is

sometimes slow and easily trapped by a local minimum or into a flat-spot area. Many

modifications have been proposed to speed up the learning process or improve the

convergence capability of learning algorithms such as Back-propagation using

Magnified Gradient Function [20], Quickprop [21], Resilient Back-propagation [22],

Levenberg-Marquardt Algorithm [23], Enhanced Two-Phase Method [24] and Fast

Learning Algorithm with Promising Convergence Capability [25]. This section

introduces the principle(s) of the above learning algorithms and their limitations.

2.1.1 Back-propagation with Magnified Gradient Function

In the standard BP, when the output values of the output layer)(io pm or the

hidden layer)(iy pk approach their extreme binary values (i.e., 0 or 1), the factors

12

))(1)((ioio pmpm − and))(1)((iyiy pkpk − cannot reflect the true error))((iot pmpm −

(as shown in Equations (1.13) and (1.14)), and the neuron weights adjustment

becomes insignificant or even unchanged. This is why the learning rate of BP is very

slow when output values approach their target output values. On the other hand, when

output values go to other extremes, the neuron weights adjustment also becomes

insignificant. Thus the learning rate of the BP is also very slow but this time the

learning is trapped by a local minimum.

Back-propagation with Magnified Gradient Function (MGF) magnifies the

factors))(1)((ioio pmpm − and))(1)((iyiy pkpk − by using a power factor (1/S), where

S is a positive real number larger than 1. The original factors are replaced by

S
pmpm ioio

1

))](1)(([− and S
pkpk iyiy

1

))](1)(([− . Thus, in Equation (1.13) and (1.14),

)(ipmδ and)(ipkδ can have larger increments when the output values approach 0 or

1, and the change of neuron weights is also larger. The weight-update in MGF can be

presented as:

∑ =
Δ+⋅⋅=+Δ

P

p kmpk
MGF
pmkm iiyii

1
)()()()1(ωαδμω (2.1)

)()()1(1 ixii nkpn
P
p

MGF
pknk ωαδμω Δ+⋅∑⋅=+Δ = (2.2)

where

S
pmpmpmpm

MGF
pm ioioioti

1

))](1)(())[(()(−−=δ (2.3)

and)()())](1)(([)(1

1

iiiyiyi km
M
m

MGF
pm

S
pkpk

MGF
pk ωδδ ∑−= = (2.4)

Based on the above modification, Fig. 2.1 shows how MGF is implemented in the

backward pass phase of BP.

13

 For all neuron weights,

S
pmpmpmpm

MGF
pm ioioioti

1

))](1)(())[(()(−−=δ

∑ =
Δ+⋅⋅=+Δ

P

p kmpk
MGF
pmkm iiyii

1
)()()()1(ωαδμω

)()())](1)(([)(
1

1

iiiyiyi km
M

m
MGF
pm

S
pkpk

MGF
pk ωδδ ∑ =

−=

)()()1(1 ixii nkpn
P
p

MGF
pknk ωαδμω Δ+⋅∑⋅=+Δ =

Fig. 2.1 MGF algorithm

MGF improves the performance of the standard BP in terms of the convergence

rate. However, the error overshoot problem (the error signal)(iMGF
pmδ or)(i

MGF
pkδ is

too large so that it overshoots the system error and thus takes more iterations to

converge to a global solution) occurs if the magnification is too aggressive; therefore

the learning process has to spend more time converging. Finally, the convergence

capability of MGF is better than BP through magnifying the true error signal but it

cannot totally solve the local minimum problem.

2.1.2 Quickprop

Quickprop is a popular learning algorithm based on BP. In BP, the weight-update

is calculated by the partial derivative of the system error with respect to the neuron

weights. Quickprop assumes that the relationship between the system error and the

change of neuron weights can be approximated by an arms open upward parabola.

This parabola is determined by measuring the previous gradient of the error surface

(ω∂−∂)1(iE) and the current one (ω∂∂)(iE). Note that the weight-update for each

weight is independent. It can be obtained as follows [21]:

14

)1(
)()1(

)()(−Δ
∂∂−∂−∂

∂∂
=Δ i

iEiE
iEi ω

ωω
ωω (2.5)

Fig. 2.2 shows how Quickprop is implemented in the backward pass phase of BP.

 For all weights and biases

))(1)(())(()(ioioioti pmpmpmpmpm −−=δ

 ∑ =
⋅=∂∂

P

p pkpmkm iyiiE
1

)()()(δω

)()())(1)(()(
1

iiiyiyi km
M

m pmpkpkpk ωδδ ∑ =
−=

pnpk

P

pnk xiiE ⋅=∂∂ ∑ =
)()(

1
δω

)1(
)()1(

)(
)(−Δ

∂∂−∂−∂
∂∂

=Δ i
iEiE

iE
i km

kmkm

km
km ω

ωω
ω

ω

)1(
)()1(

)(
)(−Δ

∂∂−∂−∂
∂∂

=Δ i
iEiE

iE
i nk

nknk

nk
nk ω

ωω
ω

ω

Fig. 2.2 Quickprop algorithm

It is expected that the curve would move directly towards the minimum point of

the parabola in the process of modifying the weights. However, once the mean square

error reaches a minimum, and that minimum is not the global minimum, the learning

will be trapped there and will most probably never escape from it. Compared with BP,

the convergence rate of Quickprop is much faster, but the probability that the learning

is trapped by a local minimum using Quickprop is higher than that by using BP. Thus

the convergence capability of Quickprop is poor.

2.1.3 Resilient Back-propagation

Resilient back-propagation is another popular learning algorithm because it is one

of the fastest learning algorithms. In RPROP, each network weight has its individual

15

update-value (i.e.,)(iΔ , i is the number of iterations). Unlike other fast learning

algorithms, calculating an update-value does not include the partial derivative of the

system error with respect to the weights (ω∂∂E); calculation is based on changes of

the partial derivative sign. If the sign does not change in successive iterations (i.e.,

0)()1(>∂∂⋅∂−∂ ωω iEiE), the update-value will be increased by an increasing

factor (+η) to take a bigger step than last time and move faster; otherwise (i.e.,

0)()1(<∂∂⋅∂−∂ ωω iEiE), the update-value will be decreased by a decreasing

factor (−η) to take a smaller step next time and get closer to the minimum of the error

surface. The update-value is adapted as below [22]:

⎪
⎩

⎪
⎨

⎧

−Δ
<∂∂⋅∂−∂−Δ
>∂∂⋅∂−∂−Δ

=Δ −

+

else),1(
0)()1(if),1(
0)()1(if),1(

)(
i

iEiEi
iEiEi

i ωωη
ωωη

 (2.6)

After that, the weight-update can be calculated by the update-value by using

Equation (2.7). If the derivative is positive, the weight will be decreased by its

update-value; otherwise, the weight will be increased. The rules of weight-update are

shown below [22]:

⎪
⎩

⎪
⎨

⎧
<∂∂Δ+
>∂∂Δ−

=Δ
else,0

0)(if),(
0)(if),(

)(ω
ω

ω iEi
iEi

i (2.7)

Fig. 2.3 shows the implementation of RPROP.

16

 Repeat

 Calculate the MSE

 Computer the gradient ω∂∂)(iE

 For all weights and biases

If 0)()1(>∂∂⋅∂−∂ ωω iEiE

)1()(−Δ=Δ + ii η

)())(()(iiEsigni Δ⋅∂∂−=Δ ωω

)()()1(iti ωωω Δ+=+

 ωω ∂∂=∂−∂)()1(iEiE

 Else if 0)()1(<∂∂⋅∂−∂ ωω iEiE

)1()(−Δ=Δ − ii η

 0/)1(=∂−∂ ωiE

 Else

)()/)(()(iiEsigni Δ⋅∂∂−=Δ ωω

)()()1(iti ωωω Δ+=+

 ωω ∂∂=∂−∂)()1(iEiE

 Until (converged)

Fig. 2.3 RPROP algorithm

RPROP is very fast since it has an effective variable step size mechanism to

modify the weights. Moreover, RPROP is robust compared with BP; it does not

require specifying any parameters (e.g., learning rate or momentum) for different

learning problems. However, the rule of weight-update is still based on derivatives of

17

the system error. Thus, RPROP always converges to the first minimum, but that may

not be the global minimum. Therefore, it still suffers from the local minimum

problem.

2.1.4 Levenberg-Marquardt Algorithm

Levenberg–Marquardt algorithm (LM) is well known as one of the most efficient

learning algorithms. It combines the speed of the Gauss–Newton algorithm with the

stability of the gradient descent algorithm. The weight-update of LM is:

[] eJIJJ TT 1−
+=Δ μω (2.8)

where

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

N

PMPMPM

N

PPP

N

MMM

N

EEE

EEE

EEE

EEE

J

ωωω

ωωω

ωωω

ωωω

K

KKKK

K

KKKK

K

KKKK

K

21

1

2

1

1

1

1

2

1

1

1

11

2

11

1

11

, (2.9)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100

000

010

001

K

KKKK

K

KKKK

K

KKKK

K

I (2.10)

18

and

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

PM

P

M

E

E

E

E

e

K

K

K

1

1

11

. (2.11)

Note that µ is a small positive real number called combination coefficient that is

defined as 0.1 here. J is the Jacobian matrix, JT is the transpose of the Jacobian matrix,

I is the identity matrix and e is the error vector for all the training patterns.

During the learning, if the current MSE is decreased because of the updated

weights, the combination coefficient µ is decreased by a factor of 10 (i.e., µ/10) for

the next update to speed up the learning rate (the Gauss–Newton algorithm is obtained

when µ is zero). If the current MSE is increased because of the updated weights, the

combination coefficient µ is increased gradually (i.e., µ*10) to avoid causing the error

overshoot problem (the gradient-descent method is obtained when the µ approaches

positive infinity). The implementation of LM is shown in Fig. 2.4:

19

 Repeat

 Calculate the MSE(i)

 Computer change of weights and update the weights

 eJIJJ TT 1][−+=Δ μω

 ωωω Δ+=

 Calculated the MSE(i+1)

 If MSE(i+1)< MSE(i)

 10÷= μμ

 Else

 10⋅= μμ

 Until (converged)

Fig. 2.4 LM algorithm

LM is an efficient learning algorithm for small-sized networks. If the network

size is large, the memory cost for the Jacobian matrix will become huge. Thus it

spends a lot of computation time computing the weight-updates, so the convergence

process of LM is sometimes even slower than the standard BP. Moreover, LM also

suffers from the local minimum problem since the Gauss–Newton algorithm or

gradient descent method is not capable of jumping out of a local minimum.

2.1.5 Enhanced Two-Phase Method

The idea of the Enhanced Two-Phase Method (E2P) is to apply two different

algorithms in two learning phases respectively. When the learning is trapped by a

20

local minimum, it switches to another learning algorithm and hopes that this new

learning algorithm can escape from the local minimum. In E2P, the change of mean

square error (MSEΔ) is used to identify the existence of the local minimum, and

another learning algorithm will be applied if MSEΔ is not changed (e.g., MSEΔ = 0)

or decreases very slowly (e.g., MSEΔ is less than 0.001 within 1000 iterations). It is

expected that the conversion could adjust weights of the network and help the

learning escape from the local minimum, and then the original learning algorithm will

be re-applied. The E2P algorithm is shown in Fig. 2.5 [24].

 Repeat

 Learning Algorithm = Method 1

 Calculate the MSEΔ

 If the learning is trapped

 Learning Algorithm = Method 2

 Else

 Learning Algorithm = Method 1

 Until (converged)

Fig. 2.5 E2P algorithm

From the simulation results shown in [24], the performance of E2P is much better

than some existing popular learning algorithms. E2P not only speeds up the

convergence rate but also improves the global convergence capability. However, the

21

percentage of converged runs over 100 different runs with different initial weights

cannot reach 100% (94% and 93% for the Five-bit Counting problem and Wine

problem respectively [24]). It means that E2P can partially solve the local minimum

problem.

2.1.6 Fast Learning Algorithm with Promising Convergence

Capability

To solve the local minimum problem completely, a systematic approach called

Fast Learning Algorithm with Promising Convergence Capability (PCC) is proposed

in [25]. The motivation is the drawback of E2P. Using E2P, it is still possible that the

learning is trapped by a local minimum because neither learning algorithm may

escape from the local minimum. Moreover, the switched learning algorithm may

make the learning move to another local minimum. Two learning algorithms are

simply not good enough to handle all local minima.

PCC keeps trying to escape from local minima. The learning process is regarded

as particular stages according to the different learning algorithms. This is because that

each learning algorithm has its own characteristics to speed up convergence and its

own path to jump out of the local minima (e.g., RPROP is quite fast but easily trapped

by local minima, while MGF is slow but has a better convergence capability). The

PCC algorithm is shown in Fig. 2.6 [25].

22

Begin

 MGF = MGF (S=2)

 Use Method RPROP, First = true, TempE = 0

 Repeat

 Calculate the MSEΔ

 If)0(1 ≤Δ≤ MSET and (First is true) // Trapped first time

 Restore the initial weights

 Use Method MGF

 Count = 0, First = false

 If)0(2 ≤Δ≤ MSET and (First is true) and (Method = MGF)

 Use Method RPROP, TempE = MSE

 If)0(3 ≤Δ≤ MSET and (First is true) and (Method = RPROP)

 Restore the new initial weights

 If (Count < 2)

 Use Method MGF, Count = Count + 1

 Else

 Use Method MGF (S=5), Restore the initial weights

 If (Method = RPROP) and (First is false) and (MSE < TempE – 10-5)

 Record the current weights, TempE = 0

 Until (converged)

End

Fig. 2.6 PCC algorithm

23

Note that three different thresholds (T1, T2, T3) are used in the PCC algorithm to

identify the existence of local minima. The values of these thresholds are highly

related to the learning problem and the chosen learning algorithm. From the

simulation results in [25], PCC was faster than the original learning algorithm and

could always solve the local minimum problem in the Iris and Breast Cancer

problems. However, it did not show that PCC can work in other learning problems.

2.2 Limitations

MGF, Quickprop, RPROP and LM mainly focus on the flat-spot problem. They

speed up the learning process and their convergence rates are faster than the standard

BP. However, the learning is still easily trapped by a local minimum and their global

convergence capabilities are still poor.

E2P and PCC can partially solve both flat-spot and local minimum problems.

Their global convergence capabilities are much better than some existing learning

algorithms, but they still have their own limitations. E2P cannot solve the local

minimum problem totally. The biggest problem with PCC is that its parameter setting

is highly related to the characteristics of the specific learning problem. Thus it is

difficult to determine suitable parameters for different problems.

24

Chapter 3 Wong Output Modification (WOM) Algorithm

3.1 Motivations

When learning is trapped by a local minimum, the change of weights is zero or

extremely small, and the mean square error cannot be further reduced but its value is

greater than the fixed error threshold (FET). In this thesis, FET is defined as Tε which

is usually a very small positive real number (default is 0.001), i.e.,

T

P

p

M

m
pmpm iot

PM
iMSE ε>−= ∑∑

= =1 1

2)]([1)((3.1)

The performance investigation revealed that some output values of training

patterns are close or equal to other extremes compared with their corresponding target

output values. Such output values make the mean square error larger than Tε . Note

that the range of an output value is 0 to 1 since the sigmoid function is used as the

activation function for both the hidden and output layers. For example: an output

value is close to 1 (e.g., 0.95) but its corresponding target value is 0, and vice versa.

Such output values are declared as wrong output values. Note that it is normal that

some output values sometimes move in the opposite direction in training. Ultimately

they will move back to their corresponding target output values when the learning is

about to converge. However, if they never move back, the mean square error cannot

be further decreased to be less than Tε .

Fig. 3.1 shows the learning process trained by RPROP is trapped by a local

minimum in the Five-bit Counting problem (described later in Chapter 5). The mean

square error drops quickly at the beginning of the learning. However, the convergence

25

rate decreases significantly after 200 iterations. After that, the convergence rate

becomes very slow. Finally, the convergence rate is very close to zero (after 500

iterations), which means the mean square error cannot decrease further (see Fig. 3.2).

In this situation, the 5th target output value in the first pattern and the second target

output value in the 32nd pattern are both one but their corresponding output values are

very close to zero. Wrong output values are found in these two patterns. Thus, the

mean square error equals 0.010417 which is larger than the error threshold, whereby

the learning is trapped by the local minimum.

Based on this observation that wrong outputs exist when the learning is trapped

by a local minimum, we wondered if the local minimum problem could be solved if

wrong outputs could be removed.

Fig. 3.1 RPROP is trapped by a local minimum in Five-bit Counting

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500 2000 2500

m
ea
n
sq
ua

re
 e
rr
or

iteration

26

Fig. 3.2 Mean square error is unchanged

3.2 Proposed Algorithm: Wrong Output Modification

Based on the above findings, we intend to locate wrong output values and modify

them according to their corresponding target output values, so as to guide them in the

right direction(s) [26].

Theorem 1: The learning is declared to be trapped by a local minimum if the

change of the mean square error is very close to zero but the mean square error is

larger than the error threshold.

Proof: Typically the input-output relationship of a neural network is

)),(()()(p
mmpm Xiio ΩΦ= (3.2)

where)(imΩ is the set of neuron weights related to the output m at the ith

iteration,)(p
mX is the set of input values related to the output m and pattern p, and Φ

is a complicated real function. By using (3.1) and (3.2), we know that

))(()(ihiMSE Ω= (3.3)

0.01

0.0101

0.0102

0.0103

0.0104

0.0105

0.0106

0.0107

500 1000 1500 2000 2500

m
ea
n
sq
ua

re
 e
rr
or

iteration

27

where h is a real function. Moreover, MSE(i) and)(iΩ are the mean square

error and the set of all neuron weights at the ith iteration (i.e.,)()(iim Ω⊂Ω)

respectively. [24] shows that if)(* iΩ is a local minimum of h, it has two properties:

))(*()()(ihh g Ω<Ω (3.4)

and 0))(*(=Ω∇ ih (3.5)

where)(gΩ is a global minimum of h and))(*(ih Ω∇ is the gradient of h at

)(* iΩ . Since the system error is zero when the learning converges to a global

solution, by using Equations (3.4) and (3.5) there are two conditions to identify the

existence of a local minimum:

Condition 1: Usually a threshold (i.e., an error threshold — it should be a very

small positive real number) is used to identify whether the learning converges to a

global solution or not. By considering Equation (3.4), the same threshold can be used

to identify a local minimum. If the learning converges to a minimum but the

minimum is greater than the threshold, the minimum is declared to be a local

minimum.

Condition 2: In Equation (3.5), it is found that the change of the mean square

error is zero when the learning is trapped by a local or global minimum. Thus, the

change of the mean square error can signal the existence of a local minimum. When

the change of the mean square error is less than a very small threshold (e.g, 10-6), it

signals that the learning has converged to a minimum. Note that the change of the

mean square error is zero when the learning converges to a local or global minimum.

Thus, a minimum is declared to be local only if both conditions (Condition 1 and

28

Condition 2) are met.

 Theorem 2: When the learning is trapped into a local minimum, the values of

neuron weights that generate wrong output values are not equal to those of the same

neuron weights when the learning converges to a global minimum.

From Equation (3.2), we have

),()()()(p
m

l
m

l
pm Xo ΩΦ= (3.6)

where)(l
pmo and)(l

mΩ are the output value of output m with pattern p and the set

of neuron weights related to output m, respectively, when the learning is trapped into a

local minimum. On the other hand, when the learning converges to a global solution,

we have

)),(()()()(p
m

g
mpm

g
pm Xkto ΩΦ== (3.7)

where)(g
pmo and)(g

mΩ are the desired output value of output m with pattern p

and is the set of neuron weights related to output m respectively when the learning

converges to the kth global solution. Note that

},2,1),({)()()()(K=Ω=Ω∈Ω kkk g
m

G
m

g
m (3.8)

where)(G
mΩ is the set of global solutions related to output m. According to

Theorem 2,

)()()()(G
m

l
m

g
pm

l
pm oo Ω∉Ω⇒≠ . (3.9)

Suppose that)()()()(but G
m

l
m

g
pm

l
pm oo Ω∈Ω≠ . This means k exists such that

)()()(kg
m

l
m Ω=Ω .

However,)()()()()()()),((),(g
pm

p
m

g
m

p
m

l
m

l
pm oXkXo =ΩΦ=ΩΦ= . Thus, contradiction

occurs.

29

It is proved that when the learning is trapped into a local minimum, the values of

neuron weights that generate wrong output values do not equal those of the same

neuron weights when the learning converges to a global minimum. Through

modifying outputs, the changes in such neuron weights may help the learning to

escape from the local minimum. Thus, wrong output values should be modified to

change such neuron weights. However, wrong outputs cannot be simply moved to

their desired output values because this may violate the trend of the original learning

process significantly and thus the learning may become very unstable. Therefore the

modification should be small but sufficient so that the weight update equations

gradually move the neuron weight back to their appropriate values through the

modification. If that works, the learning can escape from the local minimum. Note

that the modification will be made once when the learning is trapped by a local

minimum. Thus, the stability of the learning can still be maintained.

Based on this idea, a new algorithm is proposed as shown in Fig. 3.3 [26]. In this

algorithm, ΔMSE is the difference of the mean square error within 10 iterations.

Based on Theorem 1, a local minimum is declared if ΔMSE is less than 10-8 or less

than 10-5 within 1,000 iterations.

Initialization:

WOT_1 = 0.95, WOT_0 = 0.05

AOV_1 = 0.9, AOV_0 = 0.1

Repeat

30

 If (tpm = 0) and (opm ≥ WOT_1) then opm = AOV_1

 If (tpm = 1) and (opm ≤ WOT_0) then opm = AOV_0

 Process the selected fast learning algorithm

 For all patterns p

 Calculate the change of the mean square error, ΔMSE

 If it is trapped by a local minimum

 Check the past history

 If it is a new local minimum

 AOV_1 = WOT_1 – 0.05

 AOV_0 = WOT_0 + 0.05

 Else // it has been visited before

 AOV_1 = AOV_1 – 0.1

 If (AOV_1 = 0.1)

 then WOT_1 = WOT_1 – 0.1

 AOV_1 = WOT_1 – 0.05

 If (WOT_1 = 0.55)

 then WOT _1 = 0.95

 AOV_1 = WOT_1 – 0.05

 AOV_0 = AOV_0 + 0.1

 If (AOV_0 = 0.9)

 then WOT_0 = WOT_0 + 0.1

 AOV_0 = WOT_0 + 0.05

31

 If (WOT_0 = 0.45)

 then WOT_0 = 0.05

 AOV_0 = WOT_0 + 0.05

 Update the corresponding weights

Until converge

Fig. 3.3 The WOM algorithm (initial version) [26]

In Fig. 3.3, AOV_0 and AOV_1 are assigned output values for the output close to

0 and 1 respectively. Moreover, WOT_0 and WOT_1 are wrong output thresholds for

the output close to 0 and 1 respectively. In this additive procedure, some output values

that are very close to another extreme (i.e., WOT_0 and WOT_1 are close to 0 and 1

at the beginning respectively) will be modified and a small modification is expected

to be enough to escape from a local minimum. If the learning cannot escape from such

local minimum, the wrong output thresholds will be adjusted (i.e., WOT_0 increases

and WOT_1 decreases) so that more output values are considered as wrong outputs

and the modification will be further increased.

Fig. 3.4 shows the effect of WOM when applied in the case that RPROP is

trapped by a local minimum in Fig. 3.1. The mean square error cannot be further

reduced at the 311st iteration, and a local minimum is identified here. The mean square

error changes obviously when the WOM is applied. The learning escapes from the

local minimum, and finally converges at the 502nd iteration (i.e., the mean square

error is less than 0.001).

32

Fig. 3.4 RPROP jumps out of the local minimum by using WOM

The performance investigation using WOM demonstrated that it can significantly

improve the global convergence capability of a learning algorithm. The detailed

description of the performance investigation is included in Chapter 5. However, the

local minimum problem cannot be totally solved because of several limitations:

1. The setting to declare wrong output values is too conservative: In Fig. 3.3, the

upper bound of WOT_0 is 0.45 while the lower bound of WOT_1 is 0.55. It

means an output cannot be considered as a wrong output if the difference

between the output value and its corresponding target output value is less than

0.55 (an output can be declared as a wrong output if the difference is more

than 0.5). This setting is too conservative so that, occasionally in some cases,

the learning cannot escape from a local minimum because some wrong

outputs cannot be included in the modification process.

2. The modification of wrong output values does not adapt to the current status

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500 2000 2500

m
ea
n
sq
ua

re
 e
rr
or

iteration

33

of the learning process: The modification of wrong output values is fixed in

the above WOM algorithm, but modification(s) should be related to the

stability of the learning. When the modified output value is far away from its

corresponding target output value but the learning cannot escape from a local

minimum, stability is not a critical issue and thus modification should be

increased significantly so that the modified output value gets closer to the

target output value. It is hoped that the chance to escape from the local

minimum can be significantly increased. When the modified output value is

close to its corresponding target output value but the learning still cannot

escape from a local minimum, stability now becomes critical (the learning

may become unstable) and thus the modification should be increased slightly

to maintain stability.

3. The number of modifications is limited: Since the modification is linearly

additive, the number of modifications is limited. In [26], the number of

modifications is limited to 16 times.

4. Modifications occasionally cannot help the learning to escape from a local

minimum: In our performance investigation, WOM helped the learning escape

from a local minimum (using different learning algorithms in different

learning problems) most of the time. Occasionally, however, the learning

cannot escape from a local minimum no matter how we modified wrong

output values. We studied such special cases very carefully and found that it

happens because the global solutions are far away from the local minimum

34

and the local minimum is always more attractive than all global solutions. The

investigation of this part is described in Chapter 5.

5. Too many iterations are required to confirm that the learning cannot escape

from a local minimum: When the learning is trying unsuccessfully to escape

from a local minimum, our algorithm takes many iterations to confirm that it

reverts to the local minimum. Thus, even if the learning finally escapes from

the local minimum after trying a number of times, the convergence rate will

have dropped significantly.

The WOM algorithm has been improved to overcome the above limitations [27,

28]. The improved algorithm is shown in Fig. 3.5, Fig. 3.6 and Fig. 3.7. In Fig. 3.6, Γ

and k are set to 0.95 and 0.9 respectively while εk and εΓ are set to 0.9. The

performance investigation shows that these parameter settings are robust for the

algorithm to perform effectively. They are adequate if they are not close to zero so

that stability of the learning can be maintained.

Repeat

Process the selected fast learning algorithm

Calculate the change of the mean square error, ΔMSE

If it is trapped by a local minimum,

 Process the procedure Escape to escape from the local minimum.

If the procedure Escape was processed,

Process the procedure FastChecking to identify whether the learning

35

goes back to the previous local minimum or not.

Update the corresponding weights.

Until converge

Fig. 3.5 The WOM algorithm (final version) [27, 28]

Procedure Escape

Begin

 If it is the first time to be trapped by a local minimum,

 For all output values,

 Δ = |Wrong output value – Desired output value|

 If (Δ > Γ)

 Δ ← k × Δ where 0 < k < 1.

 New output value = |Desired output value – Δ|

Endfor

 Endif

Else

If it is still trapped by the local minimum,

 // Move closer to desired outputs

k ← k × εk where 0 < εk < 1.

 For all output values,

 Δ = |Wrong output value – Desired output value|

 If (Δ > Γ)

36

 Δ ← k × Δ

 New output value = |Desired output value – Δ|

Endfor

Endif

Else

If it is still trapped by the local minimum and Δ is too small,

 // Involve more outputs

Γ ← Γ × εΓ where 0 < εΓ < 1.

 For all output values,

 Δ = |Wrong output value – Desired output value|

 If (Δ > Γ)

 Δ ← k × Δ

 New output value = |Desired output value – Δ|

Endfor

Endif

Else

If it is still trapped by the local minimum

and Δ is sufficiently small

 and all possible wrong output values are involved,

Generate a new set of initial weights but the region of

weights that is trapped by the local minimum is excluded.

 Re-start the learning.

37

Endif

End

Fig. 3.6 The procedure Escape

Procedure FastChecking

Begin

 After each β iterations,

 For k = 1, 2, …, K, // number of local minima

 Count ← 0;

 For l = 1, 2, …, L, // number of neural weights

 If ()()(k
lll ωωω β >>) or ()()(k

lll ωωω β <<),

// this weight approaches to kth local minimum

Count = Count + 1;

 Endfor

 If (Count ≥ Ψ), // confirm to approach, Ψ = 0.8L

 Process the procedure Escape.

 Endfor

End

Fig. 3.7 The procedure FastChecking

38

The following improvements have been made in this updated algorithm:

1. All possible wrong output values can be modified: In Fig. 3.5, only some

extreme wrong output values will be considered at the beginning in order to

maintain stability of learning. If the learning cannot escape from a local

minimum, more wrong output values will be involved until all possible wrong

output values are involved.

2. The modification of wrong output values adapts to the current status of the

learning process: In Fig. 3.5, a multiplication modification is used in the

algorithm. Thus the change of the modification is large at the beginning so

that the change of the learning is large and it has a high probability of

escaping from a local minimum. When the modified output value is closer to

its target output value, the change is smaller to maintain stability of the

learning.

3. The number of modifications is extended significantly: Since the modification

is changed by multiplying a factor, the number of modifications is much

greater than the previous algorithm. In [27], the modification can be made 73

times before the procedure to re-generate initial weights proceeds (this

procedure will be described later).

4. A procedure to re-generate initial weights is introduced occasionally if the

learning cannot escape from a local minimum using WOM: When all wrong

output values have been involved and modified so that they are close to their

corresponding output values but the learning still cannot escape from a local

39

minimum, we concede that the local minimum is too far away from all global

solutions and thus WOM cannot effectively help the learning. Thus we

re-generate all initial weights and hope that the learning can escape from such

a local minimum. Note that the previous region of neuron weights is excluded

to avoid the new initial weights leading the learning to such a local minimum

again.

Theorem 3. If the learning re-starts with a new set of initial weights which is

re-generated excluding the region of weights that is trapped by the local minimum, the

probability that the learning converges to a global solution this time is higher than the

probability that the learning converges to a global solution with a set of

randomly-generated initial weights.

Proof. Let)(I
iω and)'(I

iω be the initial values of ωi when it is generated at the

beginning and when the learning re-starts. Let ui ,ω and li ,ω be the upper and lower

bounds of)(I
iω . Then,

}:{ ,,
)(

liiuii
I

i ωωωωω ≥≥∈

and
}),min(

or),max(:{

,
)()(

)()(
,

)(

lii
L

i
I

i

L
i

I
iiuii

I
i

ωωωω
ωωωωωω

≥≥
≥≥∈

. (3.10)

Let iR and iR′ be the valid ranges of iω when it is randomly generated at the

beginning and when the learning re-starts. Moreover, let)(
,
G
jiR be the range of iω

such that the learning converges to the jth global solution. Then, we have

40

liuiiR ,, ωω −= , (3.11)

and)()(
,,

L
i

I
iliuiiR ωωωω −−−=′ . (3.12)

Let p and p′ be the probabilities that the learning converges to a global solution

at the beginning and after the learning re-starts, respectively. Then,

∑
∑∏

=

i
i

j i

G
ji

R

R
p

)(
,

 (3.13)

and
∑

∑∏
′

=′

i
i

j i

G
ji

R

R
p

)(
,

. (3.14)

Based on Equations (3.13) and (3.14), we know ii RR ′> for all weights and

therefore pp >′ .

Theorem 4. This algorithm can finally converge to a global solution, if it exists.

Proof. Let)(np be the probability that the learning converges to a global solution

after the learning re-starts the nth time. Through theorem 3, we know

)()1(nn pp >+ . (3.15)

Let fp be the probability that the learning finally converges to a global solution,

then we have

n

n

n
f ppp)1(1)1(1

0

)(−−>−−= ∏
=

. (3.16)

When n → ∞, .1=fp

The above theorems demonstrate that the procedure of re-generating initial

weights can guarantee the learning can finally converge to a global solution. Actually,

during performance investigation, this procedure was executed at most once and the

learning could converge to a global solution quickly after that.

41

5. A fast checking procedure to identify whether the learning goes back to the

local minimum is introduced to speed up the convergence rate: The idea

underlying this procedure is to check the tendency of each neural weight

rather than the mean square error. This fast checking procedure can speed up

checking by monitoring the change of neuron weights; that is, whether they

have a trend (e.g., over 80% of neuron weights) to any of the existing local

minima (i.e., local minima that have been visited before). If the trend is

confirmed, it means the learning may revisit such a local minimum in the near

future. The escape procedure should be processed in advance and not wait for

the learning to be trapped by the local minimum again. Fig. 3.7 shows the fast

checking procedure. Note that β is a small positive integer (e.g., 10), K is the

number of local minima, L is the total number of neuron weights, and Ψ is the

number of neuron weights approaching a local minimum.

Theorem 5. If most of neuron weights are approaching a local minimum, the

probability that the learning will be trapped by this local minimum is very high.

Proof. Consider a simplified model to calculate the probability. Assume that

the probability of a neuron weight approaching a local minimum is 0.5 (either

approach it or not). Moreover, it is assumed that a weight must approach this local

minimum if all other weights are approaching it. Finally, assume that the

relationship between this probability and the number of neuron weights

approaching the local minimum is linear. Then, given that Nw is the number of

neuron weights approaching a local minimum, the probability that the learning

42

finally converges to such minimum is

 ∏
−

=
⎟
⎠
⎞

⎜
⎝
⎛

−
+

1

1
1

2
1L

Nx w
L

x (3.17)

where L is the total number of neuron weights. If L = 10 and 80% of neuron

weights are approaching a local minimum (i.e., Nw = 8), the probability that the

learning converges to this local minimum is 0.9444. If L = 40, the probability is

reduced to 0.69, which is still a high probability. Additionally, the changes of

neuron weights inside a neural network are usually highly correlated and thus this

probability is even higher than in the above simplified model.

Therefore, this checking approach is very promising. The performance

investigation showed that Nw is sufficiently large if it is set to 80% of the total

number of neuron weights for all learning algorithms in all learning problems. The

performance investigation found that the number of iterations for checking is

significantly reduced and hence the convergence rate of a learning algorithm with

this procedure is similar to the original learning algorithm.

43

Chapter 4 Threshold of Output Difference (TOD)

4.1 Motivations

Classification is an important contribution of a neural network. During training,

the learning will be terminated when the mean square error is less than the fixed error

threshold. That means this learning is declared to converge to a global minimum and

the network has been well trained. It is expected that this network should classify the

training data perfectly, and the network can be used to classify new data. That is why

a neural network can act as a universal approximator [30 – 32], so many applications

use neural networks for classification or prediction. However, our experiments found

that the original training data sometimes cannot be correctly classified by the trained

network. The problem is the terminating condition in the algorithm.

Consider the following example: RPROP is applied to the Breast Cancer learning

problem (explained in Chapter 5). Note that the number of training patterns in the

Breast Cancer problem is 699, Tε is 0.001, and the maximum number of iterations is

5000. After 5000 iterations, RPROP still cannot converge to a global minimum. The

mean square error is larger than 0.001. After training, all training patterns have been

used for testing in this network. In this case, five out of 699 patterns are misclassified

— the misclassification rate (MCR) is 0.7153%. The result is reasonable because the

learning does not converge to a global minimum.

RPROP with WOM was applied to the same case. WOM solved the local

minimum problem, and the mean square error was less than 0.001 after 2,049

44

iterations. That means the learning process converged to a global minimum this time.

Thus, it is expected that a well trained network can classify all training patterns

correctly. However, one out of 699 patterns was still misclassified — the MCR was

0.1431% which is not equal to zero.

From Equation (1.2), it is known that the mean square error is related to the size

of the training data (P) and the number of output nodes (M). It is calculated by the

sum of the entire training patterns. Note that P and M may be very different for

different learning problems, but the error threshold is fixed (i.e., 001.0=Tε) for all

learning problems. Thus, there is a problem: Tε may be too tough to meet if P and

M are small. The learning has to spend unnecessary iterations to meet the criteria

(make sure MSE < Tε) when all outputs in all training patterns are already very close

to their corresponding target outputs. On the other hand, Tε may be too easy to meet

if P and M are large; the setting of Tε is not small enough so that several outputs in

training patterns may not be trained completely, but the terminating condition is still

met (i.e., MSE < Tε). Thus, we conclude that using a fixed error threshold as a

terminating condition may not be good enough to measure whether the learning

converges to a global minimum or not, and whether the trained network may be

suitable or not for classifying testing data.

4.2 New Terminating Condition: Threshold of Output Differences

Classification is one of the most important applications of neural networks. In the

classification process, if the difference between a real output and its corresponding

45

target output is less than 0.5, it is declared that this output is correctly classified. For

example, if a target output is one and its corresponding real output is 0.55, it is

declared that 0.55 is equal to one and this output is correctly classified. The value of a

real output is not required to be very close to one (e.g., 0.9).

Based on this principle of classification, a new termination condition called

Threshold of Output Differences (TOD) is proposed to identify whether the learning

converges to a global minimum or not [29]. TOD is:

5.0<− pmpm ot (4.1)

where

 p = 1, 2, …, P and m = 1, 2, …, M.

It is claimed that the learning converges to a global minimum if the difference

between each training pattern output and its corresponding target output is less than

0.5, which means all training patterns can be classified correctly. TOD is dynamic

compared with the traditional termination condition (i.e., FET), and that is suitable for

different learning problems. If P and M are small, this new termination condition (i.e.,

TOD) is easily satisfied and its convergence rate is faster. If P and M are large, this

new termination condition may be difficult to satisfy but the trained network will

perform better in classification.

TOD is implemented as shown in Fig. 4.1. Note that TOD can be applied in

different learning algorithms since its implementation is independent of the operations

of a learning algorithm.

46

Initialization:

Initialize all weights kmω , nkω and set Count = 0.

Repeat

For p = 1, 2, …, P

For m = 1, 2, …, M

))(()(1∑= =
N
n pnnkpk xifiy ω

))()(()(1 iyifio K
k pkkmpm ∑= = ω

If 5.0<− pmpm ot

 Count = Count + 1

 Else

 Count = 0

 End For

 End For

If Count = P × M,

The training is completed and the convergence is declared to be

satisfied.

Else

Compute the changes of the weights for the next iteration by

using a learning algorithm (e.g., BP, Quickprop).

Then update all weights.

Until converge

Fig. 4.1 Implementation of TOD

47

Note that a smaller threshold (e.g., 0.4 or 0.3) in training may not improve the

classification rate in testing because of the existence of the over-fitting problem in

neural networks.

4.3 Examples

Consider the same case used in Section 4.1. TOD is used as the terminating

condition instead of the traditional FET. RPROP with TOD cannot converge within

5000 iterations, and the MCR is still 0.7153% (five out of 699 are misclassified). The

MCR is not improved because of the limitation of RPROP (i.e., the local minimum

problem), not TOD.

RPROP with WOM and TOD converges after 2,063 iterations. In this case, the

convergence rate is a little bit slower than RPROP with WOM and FET. However, the

MCR is equal to zero. Under the new terminating condition, all training patterns can

be classified correctly (i.e., MCR = 0) by this trained network.

48

Chapter 5 Numerical Results

5.1 Introduction

This chapter describes the Wrong Output Modification (WOM) and Threshold of

Output Differences (TOD) algorithms in detail with examples. Their performance

with different learning algorithms in different learning problems (applications) is also

described in this chapter.

In this chapter, five popular learning algorithms (BP, MGF, Quickprop, RPROP

and LM, all of which were introduced in Chapter 2) were applied to six different

benchmark learning problems to investigate how WOM and TOD performed. These

benchmark learning problems are XOR, Three-bit Parity, Five-bit Counting, Iris,

Wine, and Breast Cancer. These data sets can be found in the UCI Machine Learning

Repository [33], which is a famous database for testing the performance of learning

algorithms.

5.2 Learning Problems

Brief descriptions of the learning problems and their network configurations are

shown in Table 5.1 and 5.2, where N, K, and M represent the number of input, hidden,

and output nodes, and μ and α are the learning rate and the momentum of BP for

those learning problems. Note that all these parameters are optimized in the different

learning problems. They are found by using trial-and-error. Based on the number of

training patterns, these six learning problems can be classified into two sets: simple

49

problems (i.e., XOR, Three-bit Parity and Five-bit Counting) and difficult problems

(i.e., Iris, Wine and Breast Cancer).

Learning Problem Description

XOR “Give two binary inputs a and b, and output a⊕b.” [33]

Three-bit Parity “Give three binary inputs and output the odd parity of all
inputs.” [33]

Five-bit Counting “Count the number of 1s from the five input units.” [33]

Iris “The data set contains 3 classes of 50 instances each,
where each class refers to a type of iris plant.” [33]

Wine

“These data are the results of a chemical analysis of
wines grown in the same region in Italy but derived from
three different cultivars. The analysis determined the
quantities of 13 constituents found in each of the three
types of wines.” [33]

Breast Cancer

“These data were obtained from the University of
Wisconsin Hospitals, Madison, from Dr. William H.
Wolberg. The databases reflect this chronological
grouping of the data.” [33]

Table 5.1 Learning problems (descriptions)

Learning Problem
Network

Architecture
N-K-M

Parameter
Setting
(μ, α)

Number of
Training
Patterns

Problem
Difficulty

XOR 2-2-1 (0.5, 0.7) 4 Low
Three-bit Parity 3-3-1 (0.6, 0.9) 8 Low

Five-bit Counting 5-12-6 (0.1, 0.7) 32 Low
Iris 4-15-3 (0.02, 0.05) 150 High

Wine 13-10-3 (10-8, 0.1) 178 High
Breast Cancer 9-20-1 (0.005, 0.03) 699 High

Table 5.2 Learning problems (parameter setting)

50

5.3 Simulation Environment

The simulation programs were written in C and MATLAB, and integrated

development environments were Visual Studio 2010 and MATLAB 6.5 respectively.

All experiments were processed in a personal computer with Windows 7.

Neural Network Toolbox is an important component in MATLAB, and it is easy

to create, train, and simulate neural networks. It not only supports supervised learning

with multi-layer feed-forward networks, but also provides many popular network

training functions (e.g., Levenberg-Marquardt algorithm) for modeling complex

nonlinear systems. In other words, LM can be called directly without dealing with

complex matrix operations. In our experiments, LM with and without WOM were

implemented in the Wine and Breast Cancer problems under a MATLAB environment.

However, the training function and the terminating condition are packaged in

MATLAB, and the FET acts as the terminating condition. Only the value of this

threshold can be adjusted (i.e., 001.0=Tε) before training. Thus, our proposed

terminating condition (i.e., TOD) was not applied in LM under a MATLAB

environment.

 The performance investigations were divided into two parts: Part A focuses on the

convergence rate (CR) and the convergence capability (CC). CR is the number of

iterations spent to meet the terminating condition; while CC is the probability that the

terminating condition is met in training. Part B focuses on the classification ability.

The average percentage of misclassified patterns in testing patterns (MCR) is used as

the performance measure. Note that the sets of initial weights were randomly

51

generated between -0.3 and 0.3. The maximum number of iterations was 1,000,000

for each run, which means the training was declared not to converge if the terminating

condition cannot be met within 1,000,000 iterations.

We focus on one hidden layer network in my experiments since usually the

structure is good enough to solve learning applications [34]. Usually it is less than 15%

of applications need two hidden layers. Actually, we have already applied the

proposed algorithm WOM and TOD to neural networks with two hidden layers (see

section 5.8 in the thesis). The results are promising. Moreover, the numbers of hidden

nodes used in the performance investigation are optimized by using trial-and-error in

different learning applications.

5.4 The Effect of the Procedure to Re-generate Initial Weights

As mentioned in Chapter 3, WOM occasionally cannot escape from a local

minimum and thus it is essential to re-generate the set of initial weights. This

subsection shows some numerical results to explain why it is necessary to re-generate

the set of initial weights.

In the escape procedure, if all wrong outputs are included but the training still

cannot escape from the local minimum, the initial weights will be re-generated and

the training will be re-started. This is because such a local minimum is very far away

from all global minima. Let DW(i) be the difference of neuron weights between the ith

local minimum and the global minimum that the learning finally converges to:

52

∑ =

−
=

B

b GM
b

GM
b

LM
b i

B
iDW

1

)(1)(
ω

ωω
 (5.1)

Note that B is the number of neuron weights. Its value is related to the structure of

learning problems. Let)(iLM
bω be neuron weights when the training is trapped by

the ith local minimum, and GM
bω be neuron weights when the training converges to

the global minimum.

Consider some learning algorithms with WOM applied to the three difficult

learning problems (i.e., Breast Cancer, Wine, and Iris). All trainings converge to a

global minimum at the end since the local minimum problem can be solved by WOM.

The comparisons of DW(i) are shown in Table 5.3. In the first seven cases, all local

minima are close to the global minimum (DW(i) ≤ 1.27) and thus WOM can

effectively escape from all local minima and finally converge to a global solution. In

the last three cases, the procedure to re-generate initial weights was implemented and

the learning finally converged to a global minimum. The data show that all local

minima were far away from the global minimum (DW(i) ≥ 7.95 and the difference can

be up to 261.31) and thus we need this procedure to escape from local minima. Note

that this procedure was executed once only when it happened, after which the learning

could converge to a global minimum.

53

Case
Fast

Learning
Algorithm

Learning
Problem

Number of
local minima

visited
Re-generate? DW(i)

1 RPROP Breast
Cancer 1 No DW(1) = 0.88

2 RPROP Breast
Cancer 2 No DW(1) = 0.97

DW(2) = 0.43

3 BP Breast
Cancer 1 No DW(1) = 1.16

4 Quickprop Wine 1 No DW(1) = 0.21
5 RPROP Wine 1 No DW(1) = 0.04

6 RPROP Iris 4 No

DW(1) = 1.27
DW(2) = 1.17
DW(3) = 0.84
DW(4) = 0.10

7 Quickprop Iris 4 No

DW(1) = 0.98
DW(2) = 0.96
DW(3) = 1.01
DW(4) = 0.05

8 Quickprop Wine 3 Yes
DW(1) = 89.38
DW(2) = 261.31*
DW(3) = 0.02

9 RPROP Wine 4 Yes

DW(1) = 7.95
DW(2) = 8.77
DW(3) = 9.34
DW(4) = 8.81*

10 Quickprop Iris 5 Yes

DW(1) = 26.31
DW(2) = 26.26*
DW(3) = 1.91
DW(4) = 0.47
DW(5) = 0.083

Table 5.3 Difference of neuron weights in different cases

*: The procedure to re-generate the initial weights was implemented.

54

5.5 Performance Comparison between WOM (initial version) and

WOM (final version)

As mentioned in Chapter 3, the initial version of WOM was not good enough [26]

and thus WOM has been significantly improved in [27] and [28]. In this subsection,

some numerical results are shown to illustrate its improved performance in terms of

convergence rate and global convergence capability. The performance comparison is

shown in Table 5.4.

In this table, the first row shows different versions of WOM. The first column

shows different algorithms applied to the learning algorithm. “Original” represents the

original Quickprop. The two numbers inside a cell show the performance of a learning

algorithm in a learning problem: the upper one is the average number of iterations that

the learning takes to converge to a global minimum (i.e., CR) while the lower one is

the percentage that the learning converges to a global minimum in 100 runs (i.e., CC).

For example, in this table, the third cell of the second row shows that the average

number of iterations to converge to a global minimum is 985 (i.e., CR = 985) and the

percentage that the learning converges using Quickprop is 38% (i.e., CC = 38%). The

second cell of the second row shows CR = null and CC = 0%. This means that

learning with the corresponding learning algorithm cannot converge to a global

minimum in any of 100 runs. That does not mean that such a learning algorithm

cannot help the learning to converge but the probability that the learning converges to

a global minimum is so small that it cannot be found in 100 runs. It is found that

Quickprop has fast convergence rates in Wine and Breast Cancer but very poor global

55

convergence capability in all three learning problems. WOM (initial version) can

improve the global convergence capability significantly but it cannot totally solve the

local minimum problem. The procedure Escape can further improve the global

convergence capability and they are close to 100%. But the local minimum problem

cannot be completely solved. The procedure FastChecking can significantly reduce

the number of iterations to check whether it goes back to the previous local minimum

or not and thus the convergence rate becomes similar to the original algorithm. The

final version of WOM can totally solve the local minimum problem with similar

convergence rate(s) to the original algorithm. Note the results in this table and also in

the rest of the tables are slightly different from those shown in [27] because the

procedure to re-generate initial weights was not implemented in [27] and the

parameter setting was also slight different to [27] due to maintaining the stability of

the learning of some learning algorithms in some learning problems.

Quickprop Iris Wine Breast Cancer

Original null
0%

985
38%

2,366
4%

With WOM (initial version) 30,264
56%

1,399
87%

3,283
100%

With WOM (initial version) +
Procedure Escape (see Fig. 3.6)

26,007
95%

4,560
96%

3,518
100%

With WOM (initial version) +
Procedure FastChecking (see Fig. 3.7)

13,776
64%

756
87%

3,024
100%

With WOM (final version) 132,669
100%

7,378
100%

3,221
100%

Table 5.4 The performance of Quickprop with different versions of WOM in three

learning problems

56

5.6 Full performance comparison (Part A): Convergence Rate

and Capability

In Part A, each learning problem (application) was carried out 100 times with 100

different sets of initial weights, and all data (patterns) were used for training. The

performance comparisons of BP, MGF, Quickprop, RPROP and LM in different

learning problems are shown in Tables 5.5 to 5.9.

In these tables, the cell on the upper left corner of a table identifies the learning

algorithm used in training. The first row shows different learning problems. The first

column shows different algorithms applied to the learning algorithm. “Original”

represents the original learning algorithm with the traditional terminating condition

FET (001.0=Tε). “TOD” represents the original learning algorithm with TOD.

“WOM” represents the original learning algorithm with WOM and the traditional

terminating condition FET. “WOM + TOD” represents the original learning algorithm

with WOM and TOD. There are two numbers inside a cell to show the performance of

a learning algorithm in a learning problem: the upper one is the average number of

iterations to converge to a global minimum (i.e., CR); while the lower one is the

percentage the learning converged to a global minimum in 100 runs (i.e., CC).

For example, in Table 5.5, the second cell of the last row shows that the average

number of iterations for the learning to converge to a global minimum using

Backpropagation (BP) algorithm with WOM and TOD is 2,078 (i.e., CR = 2,078) and

the percentage the learning converges using BP with WOM and TOD is 100% (i.e.,

CC = 100% - the learning converges to a global minimum in all runs). Finally, some

57

cells reveal that CR = null and CC = 0%. This means that learning with the

corresponding learning algorithm cannot converge to a global minimum in any of the

100 runs. It does not mean that this learning algorithm cannot help the learning to

converge but the probability that learning converges to a global minimum is so small

that it cannot be found in 100 runs. This happens because the learning rate of the

learning algorithm is too small when the learning is close to a global minimum that it

finally stops before it arrives at the global minimum. Note that WOM and TOD

cannot help in such cases because this issue is related to the nature of the learning

algorithms but not the local minimum problem and classification ability.

Compared to the “Original” and the “WOM”, their convergence rates are similar,

except Quickprop or RPROP in XOR, and RPROP in Iris. For the XOR problem,

Quickprop or RPROP are so aggressive that they overshoot the system error and thus

the training takes many number of iterations before it converges to the global

minimum. For the Iris problem, many local minima exist during the training and

WOM spends many number of iterations escaping them. Note that “WOM” always

makes the learning meet the terminating condition (i.e., TMSE ε<) for all these

learning problems. This means that by using WOM, learning always converges to a

global minimum. Their convergence capabilities are improved significantly.

Compared to “Original” and “TOD”, without affecting the convergence capability,

“TOD” always gives a faster convergence rate. It can also be found in the comparison

between “WOM” and “WOM + TOD” because TOD dynamically adapts to the nature

of learning problems and thus the training can be terminated precisely.

58

BP XOR Three-bit
Parity

Five-bit
Counting Iris Wine Breast

Cancer

Original 2,581
98%

356
100%

null
0%

559,337
14%

null
0%

130,513
47%

TOD 1,665
98%

271
100%

null
0%

548,918
13%

null
0%

129,985
47%

WOM 2,993
100%

356
100%

2,390
100%

129,891
100%

null
0%

12,477
100%

WOM
+ TOD

2,078
100%

271
100%

2,017
100%

118,119
100%

null
0%

9,860
100%

Table 5.5 Performance comparisons in BP (Part A)

MGF XOR Three-bit
Parity

Five-bit
Counting Iris Wine Breast

Cancer

Original 1,152
99%

228
100%

10,176
100%

39,159
100%

null
0%

7,829
99%

TOD 987
99%

207
100%

10,136
100%

33,448
100%

null
0%

7,827
99%

WOM 1,233
100%

228
100%

793
100%

44,210
100%

null
0%

8,619
100%

WOM
+ TOD

1,069
100%

207
100%

752
100%

38,379
100%

null
0%

8,523
100%

Table 5.6 Performance comparisons in MGF (Part A)

59

Quickprop XOR Three-bit
Parity

Five-bit
Counting Iris Wine Breast

Cancer

Original 60
50%

87
100%

480
63%

null
0%

846
38%

2,366
4%

TOD 40
50%

41
100%

467
65%

null
0%

809
38%

2,301
4%

WOM 18,160
100%

87
100%

465
100%

132,669
100%

7,378
100%

3,221
100%

WOM
+ TOD

18,138
100%

41
100%

442
100%

91,769
100%

7,347
100%

3,067
100%

Table 5.7 Performance comparisons in Quickprop (Part A)

RPROP XOR Three-bit
Parity

Five-bit
Counting Iris Wine Breast

Cancer

Original 79
42%

105
89%

707
5%

4,046
22%

1,453
60%

2,151
2%

TOD 57
42%

80
89%

681
5%

2,758
22%

1,460
61%

2,092
2%

WOM 9,045
100%

1,308
100%

494
100%

24,274
100%

1,966
100%

1,742
100%

WOM
+ TOD

8,753
100%

1,282
100%

482
100%

21,417
100%

1,962
100%

1,731
100%

Table 5.8 Performance comparisons in RPROP (Part A)

LM Wine Breast Cancer

Original 30
52%

1,321
27%

WOM 203
100%

1,085
100%

Table 5.9 Performance comparisons in LM (Part A)

60

5.7 Full Performance Comparison (Part B): Classification Ability

In Part B, the classification abilities of different learning algorithms in different

learning problems were investigated. The performance measure is the

mis-classification rate (MCR, in %). In this part, only difficult learning problems (i.e.,

Iris, Wine and Breast Cancer) were considered because they had enough training

patterns for training and testing. Two approaches were used to investigate

classification ability. The first approach is more commonly used: 70% of the data

patterns are randomly selected for training and the rest are used for testing. It is

possible that some features in the testing data are not represented in the training data.

Thus, even though a learning algorithm can capture all features from the training data,

its MCR (in %) would not be small. Using this approach, each application was

performed with 50 different sets of initial weights and each set of initial weights

worked with 10 random sets of training and testing data. Thus, each application was

performed 500 times in total.

The second approach uses all data patterns for both training and testing .

Compared with the first approach, the second approach can capture all features from

the training data and the MCR of this learning algorithm using this approach could be

zero or close to zero (i.e., no patterns or very few patterns are misclassified) if the

learning algorithm is good in classification. Thus, this approach can effectively

demonstrate the classification ability of a learning algorithm. Each application was

performed 100 times with 100 different sets of initial weights. Note that “null” means

the learning cannot converge to a global minimum in any of runs and so their

61

classification ability is not used in comparison.

 For convenience, the MCRs using the first and the second approaches are named

MCR1 and MCR2 respectively. The classification performance of the five learning

algorithms in different learning problems is shown in Tables 5.10 to 5.14.

BP Iris Wine Breast
Cancer

Original
MCR1 5.36 null 4.85
MCR2 5.67 null 0.13

TOD
MCR1 5.28 null 4.82
MCR2 0.57 null 0.09

WOM
MCR1 5.73 null 5.09
MCR2 0 null 0.13

WOM
+ TOD

MCR1 5.73 null 4.93
MCR2 0 null 0

Table 5.10 Performance comparisons in BP (Part B)

MGF Iris Wine Breast
Cancer

Original
MCR1 5.55 null 5.02
MCR2 0 null 0.03

TOD
MCR1 5.72 null 4.97
MCR2 0 null 0

WOM
MCR1 5.33 null 5.02
MCR2 0 null 0

WOM
+ TOD

MCR1 5.53 null 4.94
MCR2 0 null 0

Table 5.11 Performance comparisons in MGF (Part B)

62

Quickprop Iris Wine Breast
Cancer

Original
MCR1 31.00 11.75 5.25
MCR2 38.31 7.51 1.57

TOD
MCR1 28.58 11.82 5.24
MCR2 38.25 7.48 1.57

WOM
MCR1 5.69 7.89 5.58
MCR2 0.01 0.11 0.03

WOM
+ TOD

MCR1 5.70 7.98 5.56
MCR2 0 0 0

Table 5.12 Performance comparisons in Quickprop (Part B)

RPROP Iris Wine Breast
Cancer

Original
MCR1 5.48 9.85 5.13
MCR2 0.93 0.55 0.70

TOD
MCR1 5.48 9.85 5.13
MCR2 0.93 0.43 0.69

WOM
MCR1 5.54 8.64 5.49
MCR2 0 0.15 0

WOM
+ TOD

MCR1 5.48 8.71 5.45
MCR2 0 0 0

Table 5.13 Performance comparisons in RPROP (Part B)

LM Wine Breast
Cancer

Original MCR2 0.589 0.167
WOM MCR2 0.054 0.024

Table 5.14 Performance comparisons in LM (Part B)

MCR1 shows that the results of “Original” and “TOD” are very similar. “WOM”

is usually better than the “Original” but there are some exceptions. The same

condition can be found in “TOD” and “WOM + TOD”. As mentioned before, some

63

features of the testing data cannot be captured in training and thus the classification

ability cannot be identified clearly using the first approach.

MCR2 shows that “WOM” is always better than “Original”. “TOD” is usually

better than “Original”. It is not as good as “WOM” because the training sometimes

cannot be completed without WOM. This means that a learning algorithm with WOM

is always better than one without WOM, and the improvement is relatively significant.

WOM can help a learning algorithm converge to a global solution and it performs

well in classification because the training completely captures all features of the

training data and thus classifies new data more precisely. Furthermore, results of

“WOM+TOD” are perfect (i.e., zero). It means that if the training can always be

completed, the classification is always perfect.

 From the Table 5.9 and Table 5.14, though LM with WOM can solve the local

minimum problem, learning can always converge to a global minimum (i.e., CC =

100%), and all data patterns were used for both training and testing, the MCRs were

not equal to zero. Since TOD was not applied in these cases, they also proved the

limitations of the traditional terminating condition (i.e., FET).

We used the whole patterns of a learning problem as training data to investigate

the convergence rate and the convergence capability, and found that the MCR of all

these training data sometimes is still not equal to zero though the terminating

condition is satisfied. Thus in part B, the whole patterns are used for training and

testing, and we declare the misclassification rate as MCR2. Compared with an

original learning algorithm with ET, the MCR of this original learning algorithm with

64

WOM and TOD is perfect, and the trained neural network can classify all patterns

correctly because the features of the training patterns are fully captured.

Sometimes the MCR1 of some learning algorithms with WOM or/and TOD is

worse than the original one. It is because that the over-fitting problem is occurred

during neural network training. The error of the training set becomes small after

training. However, when testing data is classified by the trained network, its error is

large. It is found that the network has memorized the training data but the

generalization is bad. To investigate the over-fitting problem, we used a set of

validation data to check the generalization.

Fig. 5.1 shows the learning curve. It shows the change of the mean square error.

Note that TR and VA are the mean square error in training and validation respectively.

We can see that, after around 80 iterations, the MSE of training data decreases but the

MSE of validation data increases.

Fig. 5.1 The MSEs in training and validation

0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300 400

M
SE

iteration

TR

VA

65

 In my experiments, MCR is calculated after the training, and the terminating

conditions of training are FET or TOD. Thus, the well trained network that meets FET

or TOD may not be good for the validation data or testing data. For validation data or

testing data, it is possible that the best solution is found before the training process is

trapped by a local minimum.

 Here is another example (see Fig. 5.2); RPROP with WOM is applied to the Iris

problem. Because of WOM, the training can escape from a local minimum, and note

that the terminating condition is satisfied at last. But for validation data or testing data,

the performance of this “well” trained network in terms of the MCR is bad because of

the over-fitting problem. That is reason why sometimes the MCR1 of some learning

algorithms with WOM or/and TOD is worse than the original ones. The terminating

condition is perfect for training data, but just for that data.

Fig. 5.2 Over-fitting (RPROP with WOM in Iris)

0

0.01

0.02

0.03

0.04

0.05

0 2000 4000 6000 8000 10000

M
SE

iteration

TR

VA

66

 In order to avoid over-fitting problem, early stopping is used to identify the

convergence in my experiments. The whole training data is divided into three sets: a

training set, a validation set and a testing set. The validation error is also computed

during training. The set of neuron weights will be saved when the validation error

starts to go up. After that, if the change of validation error is small and still far away

from the training error over a number of iterations, we declare that the training is

trapped by a local minimum, and WOM will be applied to solve this problem.

Otherwise, the training is supposed to be stopped at the pervious valley point, and the

corresponding neuron weights are used to do the classification for testing data.

 Thus if there has local minimum problem during the training, the MCR of a

learning algorithm WOM always can be better than the original one. Consider that

RPROP is applied to the Iris problem without WOM. The Iris data (total number of

patterns is 150, P = 150) is randomly divided into three sets: Training (60%, P = 90),

Validation (20%, P = 30) and Testing (20%, P = 30).

Fig. 5.3 shows the learning curve. It shows the change of the mean square error.

We can see the over-fitting problem is happened. To overcome it, the training should

be stopped after 50 iterations. After training, the trained network is used to do the

classification for testing data. Its MCR is 2 out of 30. It means for the testing data,

two patterns cannot be classified correctly in total 30 patterns.

67

Fig. 5.3 The training is trapped by a local minimum

Now RPROP with WOM is applied to the same case (see Fig. 5.4). The training

is escaped from the previous local minimum and the MSE of training data can be

further reduced to 0.001 after 13000 iterations. Moreover, this time, the global

minimum of validation error comes out after 5800 iterations. The trained network is

used to do the classification for testing data. Its MCR is 0. It means all testing data

can be classified correctly.

0

0.01

0.02

0.03

0.04

0.05

20 40 60 80 100

M
SE

iteration

TR

VA

68

Fig. 5.4 The training can escape from such local minimum by using WOM

5.8 The Performance of WOM in Neural Networks with Multi

Hidden Layers

The proposed WOM and TOD algorithms can be applied into neural networks

with more than one hidden layer. This subsection describes the performance of neural

networks with two hidden layers with different learning algorithms in different

learning problems.

BP was applied in this subsection in the Breast Cancer and Iris learning problems.

The network structures for these two problems are 9-20-20-1 and 4-15-15-3

respectively. The rest of parameter settings are unchanged (i.e., the learning rates and

the momentum). The learning problem was carried out 100 times with 100 different

sets of initial weights. In Tables 5.15 and 5.16, the performance is as expected; WOM

0

0.01

0.02

0.03

0.04

0.05

0 2000 4000 6000 8000 10000 12000 14000

M
SE

iteration

TR

VA

69

can solve the local minimum problem while TOD can speed up the convergence rate

and improve the classification ability.

BP CR CC MCR (%)

Original 28,752 14% 0.26
TOD 28,735 14% 0.24

WOM 5,975 100% 0.003
WOM + TOD 5,393 100% 0

Table 5.15 Performance comparisons of neural networks with two hidden layers

using BP in Breast Cancer

BP CR CC MCR (%)

Original null 0% null
TOD null 0% null

WOM 131,100 100% 0
WOM + TOD 106,169 100% 0

Table 5.16 Performance comparisons of neural networks with two hidden layers

using BP in Iris

5.9 The Performance Comparison of WOM and Random Method

Random Method [35, 36] ensures convergence to the global minimum of the objective

function with probability 1. Thus the convergence rate of this method will be

considered for performance comparisons. Using Random Method, the average

number of iterations (NR) that used to get the solution can be calculated by the

following equation:

MAXCR N
P

PNN ⋅
−

+=
1 (5.2)

70

Where, P is probability that the learning convergence to a global solution, CN is the

average number of iterations used to converge to a global solution, and MAXN is the

maximum number of iterations allowed for training.

 Different learning algorithms with random method were applied in Breast Cancer

problem. If the training cannot converge within 100,000 iterations, it re-started with

the new set of (random) initial weights. Compared with WOM, we can see the

convergence rate is very slow in Table 5.17.

Breast Cancer BP MGF Quickprop RPROP LM

Random Method 243,278 8,839 2,402,366 4,902,151 271,691

with WOM 12,477 8,619 3,221 1,742 1,085

Table 5.17 Performance comparisons of WOM and random method in Breast

Cancer

71

Chapter 6 Conclusions and Future Work

6.1 Conclusions

Many learning algorithms suffer from the local minimum problem in training

multi-layered feed-forward neural networks,. Many modifications have been proposed

but they still cannot totally solve this problem. This means that the training cannot

always converge to a global minimum (solution) using such learning algorithms. Thus,

the trained networks cannot always perform well in classification or prediction.

To address this issue, a new algorithm called Wrong Output Modification (WOM)

was proposed in this thesis. WOM is a systematic approach to solve the local

minimum problem. When the learning is trapped by a local minimum, WOM has a

procedure for the learning to escape from such a minimum by modifying wrong

output values. WOM also has a procedure to check whether the learning is going back

to the previous local minimum or not. This procedure can reduce the number of

iterations. Note that WOM can be applied in different learning algorithms because its

methodology is independent of the operations of a general learning algorithm.

In the simulation results, training different learning algorithms with WOM was

always completed in different benchmark learning problems (i.e., the learning always

converged to a global minimum) and their convergence rates were similar with the

original learning algorithms.

Another important issue in training is the termination condition (i.e., a condition

to confirm that the learning converged to a global minimum). The traditional

72

termination condition in training multi-layered feed-forward neural networks is to use

a fixed error threshold. The learning is declared to converge to a global minimum if

the mean square error is less than or equal to the fixed error threshold (usually it is a

small positive real number). Our performance investigation found that a network

well-trained by a learning algorithm with WOM still cannot classify all training data

correctly. Thus, it concludes that a fixed error threshold is not good enough as a

termination condition.

A new termination condition called Threshold of Output Differences (TOD) was

proposed in this thesis. Its methodology is based on the principle of classification. It

monitors the difference of each output value and its corresponding target output value.

The learning is declared to close enough to a global minimum if all differences are

less than 0.5, which means all outputs can be classified correctly.

 Throughout the performance comparisons using TOD as the termination

condition, the convergence rates of different learning algorithms were increased in

different learning problems, and they usually had better classification ability.

Furthermore, when a network was well-trained using this new termination condition,

the misclassification rate of the original training data was equal to zero, which means

that the network classified all original training data correctly.

73

6.2 Future Work

Through our investigation and experiments, there is still some work to be carried

out for further improvement.

First, the performance of WOM and TOD can be investigated with more

complicated learning problems (applications). This means problems with more input

attributes or/and training patterns.

In addition, performance analysis can be developed to show their features

mathematically including their stability, convergence rate, convergence capability and

classification ability.

Moreover, the performance of WOM and TOD can be investigated in neural

networks with more than one hidden layer because, occasionally, some neural

networks in some applications may require more than one hidden layer.

Finally, Restricted Boltzmann Machine (RBM) [37] is a widely used model in

Deep Learning (DL). It is mainly used for encoding data to reduce the dimensionality

of the data with Neural Networks. The training process consists of three parts:

Pre-training, Unrolling and Fine-tuning. Pre-training consists of learning a stack of

RBMs. The learned feature activations of one RBM are used as the “data” for training

the next RBM in the stack. After the pre-training, the RBMs are “unrolled” to create a

deep auto-encoder, which is then fine-tuned using BP. We will apply WOM to BP in

the model of DL. We expect it may get better results since WOM solves the local

minimum problem.

74

References

[1] J. McCarthy, M. Minsky, N. Rochester and C. Shannon, Claude, "A Proposal for

the Dartmouth Summer Research Project on Artificial Intelligence", AI

Magazine, 1955.

[2] J. McCarthy, “What Is Artificial Intelligence?”, Stanford University, 2007.

Available: http://www-formal.stanford.edu/jmc/.

[3] L. A. Zadeh, “Soft Computing and Fuzzy Logic”, IEEE Software, vol. 11(6),

pp.48 – 56, November 1994.

[4] W.S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity”, Bulletin of Mathematical Biophysics, 5:115 – 155, 1943.

[5] S.-H. Liao and C.-H. Wen, “Artificial neural networks classification and

clustering of methodologies and applications – literature analysis from 1995 to

2005”, Expert Systems With Applications, vol. 32(1), pp. 1 – 11, 2007.

[6] B. Yegnanarayana, “Artificial neural networks for pattern recognition”, Sadhana,

vol. 19(2), pp. 189 – 238, 1994.

[7] W.-L. Xing and X.-W. He, “Applications of artificial neural networks on signal

processing of piezoelectric crystal sensors”, Sensors & Actuators: B. Chemical,

vol. 66(1), pp. 272 – 276, 2000.

[8] W. G. Baxt, “Application of artificial neural networks to clinical medicine”, The

Lancet, vol. 346(8983), pp. 1135 – 1138, 1995.

[9] Y. Huang, L. J. Kangas and B. A. Rasco, “Applications of Artificial Neural

Networks (ANNs) in Food Science”, Critical Reviews in Food Science and

75

Nutrition, vol. 47(2), pp. 113 – 126, 2007.

[10] D. Himmelblau, “Applications of artificial neural networks in chemical

engineering”, Korean Journal of Chemical Engineering, vol. 17(4), pp. 373 –

392, 2000.

[11] S. A. Kalogirou, “Applications of artificial neural networks in energy systems”,

Energy Conversion and Management, vol. 40(10), pp. 1073 – 1087, 1999.

[12] J. R. M. Smits, W. J. Melssen, L. M. C. Buydens and G. Kateman, “Using

artificial neural networks for solving chemical problems: Part I. Multi-layer

feed-forward networks”, Chemometrics and Intelligent Laboratory Systems, vol.

22(2), pp. 165 – 189, 1994.

[13] D. Svozil, V. Kvasnicka and J. Pospichal, “Introduction to multi-layer

feed-forward neural networks”, Chemometrics and Intelligent Laboratory

Systems, vol. 39(1), pp. 43 – 62, 1997.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal

representations by error propagation", Parallel Distributed Processing:

Exploration in the Microstructure of Cognition, vol. I, MIT Press, Cambridge,

Mass, 1986.

[15] J. Barzilai and J.M. Borwein, “Two point step size gradient methods”, IMA

Journal of Numerical Analysis, vol. 8, pp. 141–148, 1988.

[16] Y. Lee, S. H. Oh, and M. W. Kim, “An analysis of premature saturation in back

propagation learning”, Neural Networks, vol. 6, pp. 719 – 728, 1993.

[17] F. Stager and M. Agarwal, “Three methods to speed up the training of

76

feedforward and feedback perceptrons”, Neural Networks, vol. 10, no. 8,

pp.1435 – 1443, 1997.

[18] A. Van Ooyen and B. Nienhuis, “Improving the convergence of the

backpropagation algorithm”, Neural Networks, vol. 5, pp. 465 – 471, 1992.

[19] J. E. Vitela and J. Reifman, “Premature saturation in backpropagation networks:

Mechanism and necessary conditions”, Neural Networks, vol. 10, no. 4, pp. 721

– 735, 1997.

[20] S. C. Ng, C. C. Cheung and S. H. Leung, "Magnified Gradient Function with

Deterministic Weight Evolution in Adaptive Learning", IEEE Transactions on

Neural Networks, vol. 15, no. 6, page 1411 – 1423, November 2004.

[21] S. E. Fahlman, “Fast learning variations on backpropagation: An empirical

study”, Proceedings of Connectionist Models Summer School, D. Touretzky, G.

Hinton, and T. Sejnowski, Eds., San Mateo, CA, 1989, pp. 38 – 51. Pittsburgh,

1988.

[22] M. Riedmiller and H. Braun, “A direct adaptive method for faster

backpropagation learning: The RPROP algorithm”, Proceedings of Int. Conf.

Neural Networks, vol. 1, pp. 586 – 591, 1993.

[23] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the

Marquardt algorithm”, IEEE Transactions on Neural Networks, vol. 5, pp.

989–993, Nov. 1994.

[24] C. C. Cheung, S. C. Ng, A. K. Lui, and Sean Shensheng XU, “Enhanced

Two-Phase Method in Fast Learning Algorithms”, Proceedings of IJCNN 2010,

77

Barcelona, Spain, July 2010.

[25] C. C. Cheung, S. C. Ng, A. K. Lui, and Sean Shensheng XU, “A Fast Learning

Algorithm with Promising Convergence Capability”, Proceedings of IJCNN

2011, San Jose, California, USA, July 2011.

　 Sean Shensheng Xu, C. C. Cheung and S. C. Ng, “Performance Analysis of

WOM and TOD in Training a Feed-Forward Neural Networks”, will be

submitted to IJCNN 2016, 2015.

[26] C. C. Cheung, S. C. Ng, A. K. Lui and Sean Shensheng Xu, "Solving the Local

Minimum and Flat-Spot Problem by Modifying Wrong Outputs for

Feed-Forward Neural Networks", Proceedings of IJCNN 2013, Dallas, TX, USA,

August 2013.

[27] C. C. Cheung, S. C. Ng, A. K. Lui and Sean Shensheng Xu, "Further

Enhancements in WOM Algorithm to Solve the Local Minimum and Flat-Spot

Problem in Feed-Forward Neural Networks", Proceedings of IJCNN 2014,

Beijing, China, July 2014.

[28] Sean Shensheng Xu, C. C. Cheung and S. C. Ng, “A new algorithm to speed up

the convergence rate and the classification ability in Training a Feed-Forward

Neural Networks”, will be submitted to IJCNN 2016, 2016.

[29] Sean Shensheng Xu and C. C. Cheung, “A New Terminating Condition to

Identify the Convergence of the Learning Process in Multi-Layer Feed-Forward

Neural Networks”, Proceedings of IJCNN 2015, Killarney, Ireland, July 2015.

[30] K. Hornik, “Approximation capabilities of multilayer feedforward networks”,

78

Neural Networks, vol. 9, pp. 251 – 257, 1991.

[31] G.-B. Huang and H. A. Babri, “Upper bounds on the number of hidden neurons

in feedforward networks with arbitrary bounded nonlinear activation functions”,

IEEE Transactions on Neural Networks, vol. 9, pp. 224 – 229, 1998.

[32] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward

networks with a nonpolynomial activation function can approximate any

function”, Neural Networks, vol. 6, pp. 861 – 867, 1993.

[33] A. Frank and A. Asuncion, “UCI machine learning repository,” University of

California, Irvine, School of Information and Computer Sciences, 2010.

[Online]. Available: http://archive.ics.uci.edu/ml/.

[34] A. Maren, C. Harston and R. Pap, "Handbook of Neural Computing

Applications”, Academic Press, 1990.

[35] N. Baba, “A new approach for finding the global minimum of error function of

neural networks”, Neural Networks, Volume 2, Issue 5, Pages 367 – 373, 1989.

[36] N. Baba, Y. Mogami, M. Kohzaki, Y. Shiraishi, and Y. Yoshida, “A hybrid

algorithm for finding the global minimum of error function of neural networks

and its applications”, Neural Networks, Volume 7, Issue 8, Pages 1253 – 1265,

1994.

[37] G. E. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with

neural networks”, Science, vol. 313, pp. 504-507, 2006.

