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Abstract: 

This thesis proposes two new algorithms. They are Wrong Output Modification 

(WOM) and Threshold of Output Differences (TOD). WOM is used to solve the local 

minimum problem in training a multi-layer feed-forward network while TOD is used 

to improve the classification ability in training a multi-layer feed-forward network. 

When a searching to find a global minimum is trapped by a local minimum, the 

change of weights could be zero or extremely small. Thus, the mean square error 

cannot be further reduced while its value is still so large that the searching cannot find 

the global minimum. In this circumstance, WOM locates the wrong output values and 

moves them closer to their corresponding target output values. Thus neuron weights 

are modified accordingly, and hence the searching can escape from such local 

minimum. WOM can be applied in different learning algorithms. Our performance 

investigation shows that learning with WOM can always escape from local minima 

and converge to a global minimum. Moreover, it obtains better classification ability 

after training. 

TOD monitors the difference of each output value and its corresponding target 

output value. All differences are used to identify whether a searching finds a global 

minimum or not. TOD can be applied in different learning algorithms. Our 

performance investigation shows that by using TOD, a multi-layer feed-forward 

neural network can be trained in a better way so that its classification ability is better. 

This improvement is very significant if all features in testing data can be found in 

training data. 
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Chapter 1  Introduction 

 

1.1  Artificial Neural Networks 

Artificial Intelligence (AI) is a branch of computer science that is related to 

intelligent automation. John McCarthy [1], as the father of AI, coined the concept of 

intelligence in 1955 and defined it as "the science and engineering of making 

intelligent machines" [2] in 2007. Many Artificial Intelligence techniques have been 

proposed to develop different forms of AI. In soft computing [3], the most popular AI 

techniques are Artificial Neural Networks (ANNs), Fuzzy Logic (FL) and 

Evolutionary Algorithm (EA). This thesis focuses on ANNs.  

 ANNs [4] are biologically inspired networks that consist of processing neurons. 

The neurons are connected with each other and are capable of receiving and sending 

signals. The connections can be considered as a function of network weights, and the 

value of weights represents the strength of connections. The term artificial neural 

networks can be shortened to neural networks. The main contribution of neural 

networks is their ability to capture hidden information from known data, and this 

capturing process is called learning or training of neural networks. Neural networks 

have been successfully used in many applications, such as classification and 

clustering [5], pattern recognition [6], signal processing [7], clinical medicine [8], 

food science [9], chemical engineering [10], and energy systems [11], among others. 

Three types of learning can be found in neural networks: Supervised Learning, 

Unsupervised Learning and Reinforcement Learning. Supervised learning means the 
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desired output of each input pattern is known. A neural network keeps adjusting 

weights according to the error signals, so that the actual output can approach its 

corresponding desired output. Unsupervised learning means the desired output is not 

known. Thus, no error signals exist to evaluate the actual output and the neural 

network just tries to get hidden information from the input data. Reinforcement 

learning can be seen between supervised learning and unsupervised learning. The 

learning process has to rely on trial-and-error interactions with a dynamic 

environment. 

My research is concerned with multi-layer feed-forward neural networks in 

supervised learning, because supervised learning in multi-layer feed-forward neural 

networks is one of the most popular neural network applications. These applications 

are applied in a wide variety of fields, especially in chemistry related problems [12, 

13]. 

 

1.2  Multi-Layer Feed-Forward Neural Networks 

In a multi-layer feed-forward neural network, neurons are ordered into layers. 

The network consists of an input layer, one or more hidden layers and an output layer. 

Fig. 1.1 shows a fully connected feed-forward neural network with one hidden layer. 

My research is focused on this network structure. 
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Fig. 1.1  A feed-forward neural network 

 

There are N input neurons, K hidden neurons and M output neurons in the 

network. From input to output, each neuron (node) is connected to its neighbors. Let 

pky  and pmo  be the outputs of the hidden node and the output node from the input 

pattern p (p = 1, 2…, P, where P is the number of input patterns) respectively. 

Moreover, pnx  is the input value in the input node n for the input pattern p, pmt  is 

its corresponding desired target which can be found in the training data set, nkω  is 

the network weight for the input node n and the hidden node k, and kmω  is the 

network weight for the hidden node k and the output node m. The system error of the 

network (E) at the i-th iteration is defined as [14]: 

∑∑
= =

−=
P

p

M

m
pmpm iotiE

1 1

2)]([
2
1)( .            (1.1) 

Compared with E, the mean square error (MSE) is used to determine the convergence 
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of the learning. The value of E is expected to be not very small since it is used for the 

computation in neural networks (this computation will be described later in this 

chapter) and the computation will not be effective if E is too small. On the other hand, 

the mean square error is an indicator to determine whether the learning converges or 

not. Sometimes it may be very small when the learning is close to converge. Thus it 

should not be used in the computation. The definition of the mean square error at the 

i-th iteration is shown below: 

∑ ∑ −=
= =

P

p

M

m
pmpm iot

PM
iMSE

1 1

2)]([1)( .        (1.2) 

 

1.3  Back-Propagation Algorithm 

Back-Propagation (BP) [14] is the most popular supervised learning algorithm 

widely used in training multi-layer feed-forward neural networks. BP employs the 

gradient descent method [15] to minimize the mean square error by calculating the 

gradient of a loss function with respect to all weights in the network. Based on Fig. 

1.1, the implementation of the standard BP algorithm is shown below: 

 

1) Before Training: initialization and parameter setting. 

The weights of the network need to be initialized. The learning rate μ  and the 

momentum factor α  are set to small positive values. The error threshold is set to a 

very small positive value (0.001 is used as the default error threshold in my thesis), 

and the iteration number i is equal to 0. The definitions of these parameters will be 

described later in this section. 
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2) Forward Pass: calculate the network output pmo  and the mean square error. 

For an input pattern px  ( ]....[ 1 pNpp xxx = ), 

))(()( 1∑= =
N
n pnnkpk xifiy ω              (1.3) 

and  ))()(()( 1 iyifio K
k pkkmpm ∑= = ω .            (1.4) 

Sigmoid functions are used as the activation functions for both the hidden and 

output layers. The mean square error is obtained from Equation (1.2). If it is less than 

the error threshold, the learning process is terminated and the convergence is met; 

otherwise, Backward Pass operation is processed. Note that the error threshold can be 

considered as a terminating condition in learning, and it will be discussed later. 

3) Backward Pass: calculate weight-update kmωΔ  and nkωΔ  for the next iteration. 

The partial derivative of E(i) with respect to the weights between hidden neuron 

and output neuron )(ikmω  can be expressed as: 

)(
)(

)(
)(

)(
)(

i
io

io
iE

i
iE

km

pm

pmkm ωω ∂

∂
⋅

∂
∂

=
∂
∂              (1.5) 

where 

)(
)(

)( iot
io

iE
pmpm

pm

−=
∂
∂               (1.6) 

and  )())(1)((
)(
)(

iyioio
i
io

pkpmpm
km

pm −=
∂

∂

ω
.           (1.7) 

The partial derivative of E(i) with respect to the weights between hidden neuron and 

input neuron )(inkω  can be expressed as: 

)(

)(
)(
)(

)(
)(

)(
)(

1 i
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iy
io

io
iE

i
iE
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pk

pk

pmM
m

pmnk ωω ∂

∂
⋅

∂

∂
⋅∑

∂
∂

=
∂
∂

=           (1.8) 

where 
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kmpmpm
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pm ω−=
∂

∂
            (1.9) 
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pk xyiy
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∂
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ω
.             (1.10) 

The weight-update for the (i+1)-th iteration can be expressed as: 

)()()(

)(
)(

)()1(

1 iiyi

i
i

iEi

kmpk
P
p pm

km
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km

ωαδμ

ωα
ω
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∂
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        (1.11) 
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ωα
ω
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Δ+
∂
∂

−=+Δ

=

         (1.12) 

where 

))(1)(())(()( ioioioti pmpmpmpmpm −−=δ           (1.13) 

and  )()())(1)(()( 1 iiiyiyi km
M
m pmpkpkpk ωδδ ∑−= = .         (1.14) 

So 

)1()()1( +Δ+=+ iii kmkmkm ωωω          (1.15) 

and  )1()()1( +Δ+=+ iii nknknk ωωω .         (1.16) 

The weights of the network have been updated. Then set i = i + 1 and process 

Forward Pass. 

The main advantages of BP are its simplicity and low computational complexity. 

However, BP cannot overcome two limitations. First, the mean square error surface 

may have many local minima, and BP may converge to one of them since it calculates 

the gradient of a loss function. BP cannot escape from a local minimum once it is 

trapped, and therefore the learning process cannot converge to the global minimum. 

Second, the convergence rate of BP may be very slow because of the “flat-spot” 
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problem [16 – 19]. If BP is trapped into a flat-spot area, the change of weights 

becomes very slow so the change of the mean square error becomes very small. BP 

has to spend many iterations escaping from a flat-spot area, thereby leading to its slow 

convergence. 

 Fig. 1.2 shows the relationship between the mean square error (Vertical Axis) and 

the iterations (Horizontal Axis) when the BP algorithm is applied in the Five-Bit 

Counting problem. This Five-Bit Counting problem will be briefly described in 

Chapter 5. In Fig. 1.2, the mean square error drops quickly at the beginning: it is 

reduced from 0.3 to 0.015 within 200 iterations. BP can dramatically reduce the mean 

square error in this problem. However, the convergence rate is slow after the first 200 

iterations, with hardly any changes after 1000 iterations because the learning process 

is trapped (a) into a flat-spot area, and then (b) by a local minimum. The change of the 

mean square error is shown in Fig. 1.3 by adjusting the scale of Vertical and 

Horizontal Axis in Fig. 1.2. Since the nature of these local minimum and flat-spot 

problems are very similar and later our proposed algorithm can solve both problems, 

for simplicity, these two problems are combined into one and it is called local 

minimum problem in rest of the thesis. 
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Fig. 1.2  BP is applied in the Five-Bit Counting learning problem 

 

 

Fig. 1.3  Flat-spot area and local minimum 

 

1.4  Terminating Condition and Misclassification Rate 

The initialization of the training of a neural network generates a set of initial 

weights and sets the error threshold at 0.001. Note that error threshold can be seen as 
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the terminating condition of learning. Further investigation on this terminating 

condition does not occur because it is a simple and direct way to estimate the 

differences between outputs and targets. When the mean square error is less than the 

error threshold, that means the terminating condition is satisfied, the learning process 

is completed successfully and the weights of neural network are trained well. It is 

expected that this trained network should classify all training data correctly. 

 Using validation sets is another way to terminate the learning and there are two 

approaches to using them. One is called early stopping. It divides the training data 

into two sets: for training and validating. The validation error is calculated 

periodically during training. Training is terminated when the validation error begins to 

go up (see Fig. 1.4). Early stopping is fast and is the most common way for avoiding 

error over-fitting (i.e., a neural network trains in too many iterations so that the 

classification ability of the neural network after training is worse than the optimum 

one). The other approach is called cross-validation. It divides the data into k subsets of 

equal size. The network is trained k times and one subset is used each time for 

validation. Training is terminated when the subset with the smallest validation error is 

found. The biggest problem with using validation sets is how to split the training data, 

especially in cases where the size of training data may not be large enough. The split 

sample cannot contain all the features of the entire data for both training and 

validation. Moreover, using validation sets as the terminating condition cannot tell 

whether the learning is trapped by a local minimum or not. 
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Fig. 1.4  Early stopping 

 

1.5  Thesis Organization 

The thesis is organized as follows: Chapter 2 introduces some learning algorithms 

dealing with aspects of convergence rate and convergence capability to overcome the 

limitations of the standard BP algorithm. Chapter 3 describes a new algorithm called 

Wrong Output Modification (WOM) which is used to solve the local minimum 

problem. Chapter 4 describes another new algorithm called Threshold of Output 

Difference (TOD) which is used to improve the classification ability. Chapter 5 shows 

the performance of the proposed algorithms through simulation results and 

performance comparisons with different learning algorithms in different learning 

problems. Conclusions are drawn in Chapter 6. 

  

Validation error 

Training error 

Iteration 

MSE 

0 

Stop here 
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Chapter 2  Background 

 

This thesis proposes (a) a new algorithm to solve the local minimum problem and 

(b) a new terminating condition to improve the classification capability of a learning 

algorithm. They can be applied to different learning algorithms in different learning 

problems. This Chapter briefly describes some popular existing learning algorithms 

for reference, and also describes some existing algorithms that have been proposed to 

solve the local minimum problem. 

 

2.1  Other Learning Algorithms 

Back-propagation (BP) is simple to apply in different learning problems but it is 

sometimes slow and easily trapped by a local minimum or into a flat-spot area. Many 

modifications have been proposed to speed up the learning process or improve the 

convergence capability of learning algorithms such as Back-propagation using 

Magnified Gradient Function [20], Quickprop [21], Resilient Back-propagation [22], 

Levenberg-Marquardt Algorithm [23], Enhanced Two-Phase Method [24] and Fast 

Learning Algorithm with Promising Convergence Capability [25]. This section 

introduces the principle(s) of the above learning algorithms and their limitations. 

 

2.1.1  Back-propagation with Magnified Gradient Function 

In the standard BP, when the output values of the output layer )(io pm  or the 

hidden layer )(iy pk  approach their extreme binary values (i.e., 0 or 1), the factors 
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))(1)(( ioio pmpm −  and ))(1)(( iyiy pkpk −  cannot reflect the true error ))(( iot pmpm −  

(as shown in Equations (1.13) and (1.14)), and the neuron weights adjustment 

becomes insignificant or even unchanged. This is why the learning rate of BP is very 

slow when output values approach their target output values. On the other hand, when 

output values go to other extremes, the neuron weights adjustment also becomes 

insignificant. Thus the learning rate of the BP is also very slow but this time the 

learning is trapped by a local minimum. 

Back-propagation with Magnified Gradient Function (MGF) magnifies the 

factors ))(1)(( ioio pmpm −  and ))(1)(( iyiy pkpk −  by using a power factor (1/S), where 

S is a positive real number larger than 1. The original factors are replaced by 

S
pmpm ioio

1

))](1)(([ − and S
pkpk iyiy

1

))](1)(([ − . Thus, in Equation (1.13) and (1.14), 

)(ipmδ  and )(ipkδ  can have larger increments when the output values approach 0 or 

1, and the change of neuron weights is also larger. The weight-update in MGF can be 

presented as: 

∑ =
Δ+⋅⋅=+Δ

P

p kmpk
MGF
pmkm iiyii

1
)()()()1( ωαδμω      (2.1) 

)()()1( 1 ixii nkpn
P
p

MGF
pknk ωαδμω Δ+⋅∑⋅=+Δ =       (2.2) 

where 

S
pmpmpmpm

MGF
pm ioioioti

1

))](1)(())[(()( −−=δ       (2.3) 

and  )()())](1)(([)( 1

1

iiiyiyi km
M
m

MGF
pm

S
pkpk

MGF
pk ωδδ ∑−= =      (2.4) 

Based on the above modification, Fig. 2.1 shows how MGF is implemented in the 

backward pass phase of BP. 
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 For all neuron weights, 

S
pmpmpmpm

MGF
pm ioioioti

1

))](1)(())[(()( −−=δ  

∑ =
Δ+⋅⋅=+Δ

P

p kmpk
MGF
pmkm iiyii

1
)()()()1( ωαδμω  

)()())](1)(([)(
1

1

iiiyiyi km
M

m
MGF
pm

S
pkpk

MGF
pk ωδδ ∑ =

−=  

)()()1( 1 ixii nkpn
P
p

MGF
pknk ωαδμω Δ+⋅∑⋅=+Δ =  

Fig. 2.1  MGF algorithm 

MGF improves the performance of the standard BP in terms of the convergence 

rate. However, the error overshoot problem (the error signal )(iMGF
pmδ  or )(i

MGF
pkδ  is 

too large so that it overshoots the system error and thus takes more iterations to 

converge to a global solution) occurs if the magnification is too aggressive; therefore 

the learning process has to spend more time converging. Finally, the convergence 

capability of MGF is better than BP through magnifying the true error signal but it 

cannot totally solve the local minimum problem. 

 

2.1.2  Quickprop 

Quickprop is a popular learning algorithm based on BP. In BP, the weight-update 

is calculated by the partial derivative of the system error with respect to the neuron 

weights. Quickprop assumes that the relationship between the system error and the 

change of neuron weights can be approximated by an arms open upward parabola. 

This parabola is determined by measuring the previous gradient of the error surface 

( ω∂−∂ )1(iE ) and the current one ( ω∂∂ )(iE ). Note that the weight-update for each 

weight is independent. It can be obtained as follows [21]: 
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)1(
)()1(

)()( −Δ
∂∂−∂−∂

∂∂
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Fig. 2.2 shows how Quickprop is implemented in the backward pass phase of BP. 

  For all weights and biases 
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Fig. 2.2  Quickprop algorithm 

It is expected that the curve would move directly towards the minimum point of 

the parabola in the process of modifying the weights. However, once the mean square 

error reaches a minimum, and that minimum is not the global minimum, the learning 

will be trapped there and will most probably never escape from it. Compared with BP, 

the convergence rate of Quickprop is much faster, but the probability that the learning 

is trapped by a local minimum using Quickprop is higher than that by using BP. Thus 

the convergence capability of Quickprop is poor. 

 

2.1.3  Resilient Back-propagation 

Resilient back-propagation is another popular learning algorithm because it is one 

of the fastest learning algorithms. In RPROP, each network weight has its individual 



15 
 

update-value (i.e., )(iΔ , i is the number of iterations). Unlike other fast learning 

algorithms, calculating an update-value does not include the partial derivative of the 

system error with respect to the weights ( ω∂∂E ); calculation is based on changes of 

the partial derivative sign. If the sign does not change in successive iterations (i.e., 

0)()1( >∂∂⋅∂−∂ ωω iEiE ), the update-value will be increased by an increasing 

factor ( +η ) to take a bigger step than last time and move faster; otherwise (i.e., 

0)()1( <∂∂⋅∂−∂ ωω iEiE ), the update-value will be decreased by a decreasing 

factor ( −η ) to take a smaller step next time and get closer to the minimum of the error 

surface. The update-value is adapted as below [22]: 

⎪
⎩

⎪
⎨

⎧

−Δ
<∂∂⋅∂−∂−Δ
>∂∂⋅∂−∂−Δ

=Δ −

+

else),1(
0)()1(if),1(
0)()1(if),1(

)(
i

iEiEi
iEiEi

i ωωη
ωωη

     (2.6) 

After that, the weight-update can be calculated by the update-value by using 

Equation (2.7). If the derivative is positive, the weight will be decreased by its 

update-value; otherwise, the weight will be increased. The rules of weight-update are 

shown below [22]: 

⎪
⎩

⎪
⎨

⎧
<∂∂Δ+
>∂∂Δ−

=Δ
else,0

0)(if),(
0)(if),(

)( ω
ω

ω iEi
iEi

i         (2.7) 

Fig. 2.3 shows the implementation of RPROP. 
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  Repeat 

   Calculate the MSE 

   Computer the gradient ω∂∂ )(iE  

      For all weights and biases 

If 0)()1( >∂∂⋅∂−∂ ωω iEiE  

 )1()( −Δ=Δ + ii η  

     )())(()( iiEsigni Δ⋅∂∂−=Δ ωω  

     )()()1( iti ωωω Δ+=+  

     ωω ∂∂=∂−∂ )()1( iEiE  

    Else if 0)()1( <∂∂⋅∂−∂ ωω iEiE  

     )1()( −Δ=Δ − ii η  

     0/)1( =∂−∂ ωiE  

    Else 

     )()/)(()( iiEsigni Δ⋅∂∂−=Δ ωω  

     )()()1( iti ωωω Δ+=+  

     ωω ∂∂=∂−∂ )()1( iEiE  

  Until (converged) 

Fig. 2.3  RPROP algorithm 

RPROP is very fast since it has an effective variable step size mechanism to 

modify the weights. Moreover, RPROP is robust compared with BP; it does not 

require specifying any parameters (e.g., learning rate or momentum) for different 

learning problems. However, the rule of weight-update is still based on derivatives of 
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the system error. Thus, RPROP always converges to the first minimum, but that may 

not be the global minimum. Therefore, it still suffers from the local minimum 

problem. 

 

2.1.4  Levenberg-Marquardt Algorithm 

Levenberg–Marquardt algorithm (LM) is well known as one of the most efficient 

learning algorithms. It combines the speed of the Gauss–Newton algorithm with the 

stability of the gradient descent algorithm. The weight-update of LM is: 

[ ] eJIJJ TT 1−
+=Δ μω            (2.8) 
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and   
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Note that µ is a small positive real number called combination coefficient that is 

defined as 0.1 here. J is the Jacobian matrix, JT is the transpose of the Jacobian matrix, 

I is the identity matrix and e is the error vector for all the training patterns. 

During the learning, if the current MSE is decreased because of the updated 

weights, the combination coefficient µ is decreased by a factor of 10 (i.e., µ/10) for 

the next update to speed up the learning rate (the Gauss–Newton algorithm is obtained 

when µ is zero). If the current MSE is increased because of the updated weights, the 

combination coefficient µ is increased gradually (i.e., µ*10) to avoid causing the error 

overshoot problem (the gradient-descent method is obtained when the µ approaches 

positive infinity). The implementation of LM is shown in Fig. 2.4: 
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  Repeat 

   Calculate the MSE(i) 

   Computer change of weights and update the weights 

   eJIJJ TT 1][ −+=Δ μω  

   ωωω Δ+=  

   Calculated the MSE(i+1) 

   If MSE(i+1)< MSE(i) 

    10÷= μμ  

   Else 

    10⋅= μμ  

  Until (converged) 

Fig. 2.4  LM algorithm 

LM is an efficient learning algorithm for small-sized networks. If the network 

size is large, the memory cost for the Jacobian matrix will become huge. Thus it 

spends a lot of computation time computing the weight-updates, so the convergence 

process of LM is sometimes even slower than the standard BP. Moreover, LM also 

suffers from the local minimum problem since the Gauss–Newton algorithm or 

gradient descent method is not capable of jumping out of a local minimum. 

 

2.1.5  Enhanced Two-Phase Method 

The idea of the Enhanced Two-Phase Method (E2P) is to apply two different 

algorithms in two learning phases respectively. When the learning is trapped by a 
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local minimum, it switches to another learning algorithm and hopes that this new 

learning algorithm can escape from the local minimum. In E2P, the change of mean 

square error ( MSEΔ ) is used to identify the existence of the local minimum, and 

another learning algorithm will be applied if MSEΔ  is not changed (e.g., MSEΔ = 0) 

or decreases very slowly (e.g., MSEΔ  is less than 0.001 within 1000 iterations). It is 

expected that the conversion could adjust weights of the network and help the 

learning escape from the local minimum, and then the original learning algorithm will 

be re-applied. The E2P algorithm is shown in Fig. 2.5 [24]. 

 

  Repeat 

   Learning Algorithm = Method 1 

   Calculate the MSEΔ  

   If the learning is trapped 

    Learning Algorithm = Method 2 

   Else 

    Learning Algorithm = Method 1 

  Until (converged) 

Fig. 2.5  E2P algorithm 

 

From the simulation results shown in [24], the performance of E2P is much better 

than some existing popular learning algorithms. E2P not only speeds up the 

convergence rate but also improves the global convergence capability. However, the 
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percentage of converged runs over 100 different runs with different initial weights 

cannot reach 100% (94% and 93% for the Five-bit Counting problem and Wine 

problem respectively [24]). It means that E2P can partially solve the local minimum 

problem. 

 

2.1.6  Fast Learning Algorithm with Promising Convergence 

Capability 

To solve the local minimum problem completely, a systematic approach called 

Fast Learning Algorithm with Promising Convergence Capability (PCC) is proposed 

in [25]. The motivation is the drawback of E2P. Using E2P, it is still possible that the 

learning is trapped by a local minimum because neither learning algorithm may 

escape from the local minimum. Moreover, the switched learning algorithm may 

make the learning move to another local minimum. Two learning algorithms are 

simply not good enough to handle all local minima. 

PCC keeps trying to escape from local minima. The learning process is regarded 

as particular stages according to the different learning algorithms. This is because that 

each learning algorithm has its own characteristics to speed up convergence and its 

own path to jump out of the local minima (e.g., RPROP is quite fast but easily trapped 

by local minima, while MGF is slow but has a better convergence capability). The 

PCC algorithm is shown in Fig. 2.6 [25]. 
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Begin 

   MGF = MGF (S=2) 

   Use Method RPROP, First = true, TempE = 0 

   Repeat 

    Calculate the MSEΔ  

   If )0( 1 ≤Δ≤ MSET  and (First is true) // Trapped first time 

    Restore the initial weights 

    Use Method MGF 

    Count = 0, First = false 

   If )0( 2 ≤Δ≤ MSET  and (First is true) and (Method = MGF) 

    Use Method RPROP, TempE = MSE 

   If )0( 3 ≤Δ≤ MSET  and (First is true) and (Method = RPROP) 

    Restore the new initial weights 

    If (Count < 2) 

     Use Method MGF, Count = Count + 1 

    Else 

     Use Method MGF (S=5), Restore the initial weights 

   If (Method = RPROP) and (First is false) and (MSE < TempE – 10-5) 

    Record the current weights, TempE = 0 

  Until (converged) 

End 

Fig. 2.6  PCC algorithm 
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Note that three different thresholds (T1, T2, T3) are used in the PCC algorithm to 

identify the existence of local minima. The values of these thresholds are highly 

related to the learning problem and the chosen learning algorithm. From the 

simulation results in [25], PCC was faster than the original learning algorithm and 

could always solve the local minimum problem in the Iris and Breast Cancer 

problems. However, it did not show that PCC can work in other learning problems. 

 

2.2  Limitations 

MGF, Quickprop, RPROP and LM mainly focus on the flat-spot problem. They 

speed up the learning process and their convergence rates are faster than the standard 

BP. However, the learning is still easily trapped by a local minimum and their global 

convergence capabilities are still poor. 

E2P and PCC can partially solve both flat-spot and local minimum problems. 

Their global convergence capabilities are much better than some existing learning 

algorithms, but they still have their own limitations. E2P cannot solve the local 

minimum problem totally. The biggest problem with PCC is that its parameter setting 

is highly related to the characteristics of the specific learning problem. Thus it is 

difficult to determine suitable parameters for different problems. 
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Chapter 3  Wong Output Modification (WOM) Algorithm 

 

3.1  Motivations 

When learning is trapped by a local minimum, the change of weights is zero or 

extremely small, and the mean square error cannot be further reduced but its value is 

greater than the fixed error threshold (FET). In this thesis, FET is defined as Tε which 

is usually a very small positive real number (default is 0.001), i.e., 

T

P

p

M

m
pmpm iot

PM
iMSE ε>−= ∑∑

= =1 1

2)]([1)(            (3.1) 

The performance investigation revealed that some output values of training 

patterns are close or equal to other extremes compared with their corresponding target 

output values. Such output values make the mean square error larger than Tε . Note 

that the range of an output value is 0 to 1 since the sigmoid function is used as the 

activation function for both the hidden and output layers. For example: an output 

value is close to 1 (e.g., 0.95) but its corresponding target value is 0, and vice versa. 

Such output values are declared as wrong output values. Note that it is normal that 

some output values sometimes move in the opposite direction in training. Ultimately 

they will move back to their corresponding target output values when the learning is 

about to converge. However, if they never move back, the mean square error cannot 

be further decreased to be less than Tε . 

Fig. 3.1 shows the learning process trained by RPROP is trapped by a local 

minimum in the Five-bit Counting problem (described later in Chapter 5). The mean 

square error drops quickly at the beginning of the learning. However, the convergence 
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rate decreases significantly after 200 iterations. After that, the convergence rate 

becomes very slow. Finally, the convergence rate is very close to zero (after 500 

iterations), which means the mean square error cannot decrease further (see Fig. 3.2). 

In this situation, the 5th target output value in the first pattern and the second target 

output value in the 32nd pattern are both one but their corresponding output values are 

very close to zero. Wrong output values are found in these two patterns. Thus, the 

mean square error equals 0.010417 which is larger than the error threshold, whereby 

the learning is trapped by the local minimum. 

Based on this observation that wrong outputs exist when the learning is trapped 

by a local minimum, we wondered if the local minimum problem could be solved if 

wrong outputs could be removed. 

 

 

Fig. 3.1  RPROP is trapped by a local minimum in Five-bit Counting 
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Fig. 3.2  Mean square error is unchanged 

 

3.2  Proposed Algorithm: Wrong Output Modification 

Based on the above findings, we intend to locate wrong output values and modify 

them according to their corresponding target output values, so as to guide them in the 

right direction(s) [26]. 

Theorem 1: The learning is declared to be trapped by a local minimum if the 

change of the mean square error is very close to zero but the mean square error is 

larger than the error threshold. 

Proof: Typically the input-output relationship of a neural network is 

)),(()( )( p
mmpm Xiio ΩΦ=            (3.2) 

where )(imΩ  is the set of neuron weights related to the output m at the ith 

iteration, )( p
mX  is the set of input values related to the output m and pattern p, and Φ 

is a complicated real function. By using (3.1) and (3.2), we know that 

))(()( ihiMSE Ω=             (3.3) 
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where h is a real function. Moreover, MSE(i) and )(iΩ  are the mean square 

error and the set of all neuron weights at the ith iteration (i.e., )()( iim Ω⊂Ω ) 

respectively. [24] shows that if )(* iΩ  is a local minimum of h, it has two properties: 

))(*()( )( ihh g Ω<Ω             (3.4) 

and  0))(*( =Ω∇ ih              (3.5) 

where )( gΩ  is a global minimum of h and ))(*( ih Ω∇  is the gradient of h at 

)(* iΩ . Since the system error is zero when the learning converges to a global 

solution, by using Equations (3.4) and (3.5) there are two conditions to identify the 

existence of a local minimum: 

Condition 1: Usually a threshold (i.e., an error threshold — it should be a very 

small positive real number) is used to identify whether the learning converges to a 

global solution or not. By considering Equation (3.4), the same threshold can be used 

to identify a local minimum. If the learning converges to a minimum but the 

minimum is greater than the threshold, the minimum is declared to be a local 

minimum. 

Condition 2: In Equation (3.5), it is found that the change of the mean square 

error is zero when the learning is trapped by a local or global minimum. Thus, the 

change of the mean square error can signal the existence of a local minimum. When 

the change of the mean square error is less than a very small threshold (e.g, 10-6), it 

signals that the learning has converged to a minimum. Note that the change of the 

mean square error is zero when the learning converges to a local or global minimum. 

Thus, a minimum is declared to be local only if both conditions (Condition 1 and 
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Condition 2) are met. 

 Theorem 2: When the learning is trapped into a local minimum, the values of 

neuron weights that generate wrong output values are not equal to those of the same 

neuron weights when the learning converges to a global minimum. 

From Equation (3.2), we have 

),( )()()( p
m

l
m

l
pm Xo ΩΦ=             (3.6) 

where )(l
pmo  and )(l

mΩ  are the output value of output m with pattern p and the set 

of neuron weights related to output m, respectively, when the learning is trapped into a 

local minimum. On the other hand, when the learning converges to a global solution, 

we have 

)),(( )()()( p
m

g
mpm

g
pm Xkto ΩΦ==           (3.7) 

where )( g
pmo  and )( g

mΩ  are the desired output value of output m with pattern p 

and is the set of neuron weights related to output m respectively when the learning 

converges to the kth global solution. Note that  

},2,1),({)( )()()( K=Ω=Ω∈Ω kkk g
m

G
m

g
m         (3.8) 

where )(G
mΩ is the set of global solutions related to output m. According to 

Theorem 2,  
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m
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l
pm oXkXo =ΩΦ=ΩΦ= . Thus, contradiction 

occurs. 
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It is proved that when the learning is trapped into a local minimum, the values of 

neuron weights that generate wrong output values do not equal those of the same 

neuron weights when the learning converges to a global minimum. Through 

modifying outputs, the changes in such neuron weights may help the learning to 

escape from the local minimum. Thus, wrong output values should be modified to 

change such neuron weights. However, wrong outputs cannot be simply moved to 

their desired output values because this may violate the trend of the original learning 

process significantly and thus the learning may become very unstable. Therefore the 

modification should be small but sufficient so that the weight update equations 

gradually move the neuron weight back to their appropriate values through the 

modification. If that works, the learning can escape from the local minimum. Note 

that the modification will be made once when the learning is trapped by a local 

minimum. Thus, the stability of the learning can still be maintained.  

Based on this idea, a new algorithm is proposed as shown in Fig. 3.3 [26]. In this 

algorithm, ΔMSE is the difference of the mean square error within 10 iterations. 

Based on Theorem 1, a local minimum is declared if ΔMSE is less than 10-8 or less 

than 10-5 within 1,000 iterations. 

 

Initialization: 

WOT_1 = 0.95, WOT_0 = 0.05 

AOV_1 = 0.9, AOV_0 = 0.1 

Repeat 
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 If (tpm = 0) and (opm ≥ WOT_1) then opm = AOV_1 

 If (tpm = 1) and (opm ≤ WOT_0) then opm = AOV_0 

 Process the selected fast learning algorithm 

 For all patterns p 

 Calculate the change of the mean square error, ΔMSE 

  If it is trapped by a local minimum 

   Check the past history 

   If it is a new local minimum 

    AOV_1 = WOT_1 – 0.05 

    AOV_0 = WOT_0 + 0.05 

   Else // it has been visited before 

    AOV_1 = AOV_1 – 0.1 

    If (AOV_1 = 0.1)  

     then  WOT_1 = WOT_1 – 0.1 

       AOV_1 = WOT_1 – 0.05 

    If (WOT_1 = 0.55)  

     then WOT _1 = 0.95 

       AOV_1 = WOT_1 – 0.05 

    AOV_0 = AOV_0 + 0.1 

    If (AOV_0 = 0.9) 

     then WOT_0 = WOT_0 + 0.1 

       AOV_0 = WOT_0 + 0.05 
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    If (WOT_0 = 0.45) 

     then WOT_0 = 0.05 

       AOV_0 = WOT_0 + 0.05 

 Update the corresponding weights 

Until converge 

Fig. 3.3 The WOM algorithm (initial version) [26] 

 

In Fig. 3.3, AOV_0 and AOV_1 are assigned output values for the output close to 

0 and 1 respectively. Moreover, WOT_0 and WOT_1 are wrong output thresholds for 

the output close to 0 and 1 respectively. In this additive procedure, some output values 

that are very close to another extreme (i.e., WOT_0 and WOT_1 are close to 0 and 1 

at the beginning respectively) will be modified and a small modification is expected 

to be enough to escape from a local minimum. If the learning cannot escape from such 

local minimum, the wrong output thresholds will be adjusted (i.e., WOT_0 increases 

and WOT_1 decreases) so that more output values are considered as wrong outputs 

and the modification will be further increased. 

Fig. 3.4 shows the effect of WOM when applied in the case that RPROP is 

trapped by a local minimum in Fig. 3.1. The mean square error cannot be further 

reduced at the 311st iteration, and a local minimum is identified here. The mean square 

error changes obviously when the WOM is applied. The learning escapes from the 

local minimum, and finally converges at the 502nd iteration (i.e., the mean square 

error is less than 0.001). 
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Fig. 3.4  RPROP jumps out of the local minimum by using WOM 

 

The performance investigation using WOM demonstrated that it can significantly 

improve the global convergence capability of a learning algorithm. The detailed 

description of the performance investigation is included in Chapter 5. However, the 

local minimum problem cannot be totally solved because of several limitations: 

1. The setting to declare wrong output values is too conservative: In Fig. 3.3, the 

upper bound of WOT_0 is 0.45 while the lower bound of WOT_1 is 0.55. It 

means an output cannot be considered as a wrong output if the difference 

between the output value and its corresponding target output value is less than 

0.55 (an output can be declared as a wrong output if the difference is more 

than 0.5). This setting is too conservative so that, occasionally in some cases, 

the learning cannot escape from a local minimum because some wrong 

outputs cannot be included in the modification process.   

2. The modification of wrong output values does not adapt to the current status 
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of the learning process: The modification of wrong output values is fixed in 

the above WOM algorithm, but modification(s) should be related to the 

stability of the learning. When the modified output value is far away from its 

corresponding target output value but the learning cannot escape from a local 

minimum, stability is not a critical issue and thus modification should be 

increased significantly so that the modified output value gets closer to the 

target output value. It is hoped that the chance to escape from the local 

minimum can be significantly increased. When the modified output value is 

close to its corresponding target output value but the learning still cannot 

escape from a local minimum, stability now becomes critical (the learning 

may become unstable) and thus the modification should be increased slightly 

to maintain stability. 

3. The number of modifications is limited: Since the modification is linearly 

additive, the number of modifications is limited. In [26], the number of 

modifications is limited to 16 times. 

4. Modifications occasionally cannot help the learning to escape from a local 

minimum: In our performance investigation, WOM helped the learning escape 

from a local minimum (using different learning algorithms in different 

learning problems) most of the time. Occasionally, however, the learning 

cannot escape from a local minimum no matter how we modified wrong 

output values. We studied such special cases very carefully and found that it 

happens because the global solutions are far away from the local minimum 
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and the local minimum is always more attractive than all global solutions. The 

investigation of this part is described in Chapter 5. 

5. Too many iterations are required to confirm that the learning cannot escape 

from a local minimum: When the learning is trying unsuccessfully to escape 

from a local minimum, our algorithm takes many iterations to confirm that it 

reverts to the local minimum. Thus, even if the learning finally escapes from 

the local minimum after trying a number of times, the convergence rate will 

have dropped significantly. 

The WOM algorithm has been improved to overcome the above limitations [27, 

28]. The improved algorithm is shown in Fig. 3.5, Fig. 3.6 and Fig. 3.7. In Fig. 3.6, Γ 

and k are set to 0.95 and 0.9 respectively while εk and εΓ are set to 0.9. The 

performance investigation shows that these parameter settings are robust for the 

algorithm to perform effectively. They are adequate if they are not close to zero so 

that stability of the learning can be maintained. 

 

Repeat 

Process the selected fast learning algorithm 

Calculate the change of the mean square error, ΔMSE 

If it is trapped by a local minimum, 

 Process the procedure Escape to escape from the local minimum. 

If the procedure Escape was processed, 

Process the procedure FastChecking to identify whether the learning 
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goes back to the previous local minimum or not. 

Update the corresponding weights. 

Until converge 

Fig. 3.5 The WOM algorithm (final version) [27, 28] 

 

Procedure Escape 

Begin 

 If it is the first time to be trapped by a local minimum, 

 For all output values, 

  Δ = |Wrong output value – Desired output value| 

  If (Δ > Γ )  

   Δ ← k × Δ where 0 < k < 1. 

   New output value = |Desired output value – Δ| 

Endfor 

 Endif 

Else 

If it is still trapped by the local minimum, 

  // Move closer to desired outputs 

k ← k × εk where 0 < εk < 1.  

  For all output values, 

   Δ = |Wrong output value – Desired output value| 

   If (Δ > Γ )  
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    Δ ← k × Δ 

    New output value = |Desired output value – Δ| 

Endfor 

Endif 

Else 

If it is still trapped by the local minimum and Δ is too small,  

   // Involve more outputs  

Γ ← Γ × εΓ  where 0 < εΓ  < 1.  

   For all output values, 

    Δ = |Wrong output value – Desired output value| 

    If (Δ > Γ )  

     Δ ← k × Δ  

     New output value = |Desired output value – Δ| 

Endfor 

Endif 

Else 

If it is still trapped by the local minimum 

and Δ is sufficiently small 

    and all possible wrong output values are involved, 

Generate a new set of initial weights but the region of 

weights that is trapped by the local minimum is excluded. 

    Re-start the learning. 
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Endif 

End 

Fig. 3.6 The procedure Escape 

 

Procedure FastChecking 

Begin 

 After each β iterations, 

  For k = 1, 2, …, K, // number of local minima 

   Count ← 0; 

   For l = 1, 2, …, L, // number of neural weights 

    If ( )()( k
lll ωωω β >> ) or ( )()( k

lll ωωω β << ), 

// this weight approaches to kth local minimum 

Count = Count + 1; 

   Endfor 

   If (Count ≥ Ψ), // confirm to approach, Ψ = 0.8L 

    Process the procedure Escape. 

  Endfor 

End 

Fig. 3.7  The procedure FastChecking 
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The following improvements have been made in this updated algorithm: 

1. All possible wrong output values can be modified: In Fig. 3.5, only some 

extreme wrong output values will be considered at the beginning in order to 

maintain stability of learning. If the learning cannot escape from a local 

minimum, more wrong output values will be involved until all possible wrong 

output values are involved.   

2. The modification of wrong output values adapts to the current status of the 

learning process: In Fig. 3.5, a multiplication modification is used in the 

algorithm. Thus the change of the modification is large at the beginning so 

that the change of the learning is large and it has a high probability of 

escaping from a local minimum. When the modified output value is closer to 

its target output value, the change is smaller to maintain stability of the 

learning. 

3. The number of modifications is extended significantly: Since the modification 

is changed by multiplying a factor, the number of modifications is much 

greater than the previous algorithm. In [27], the modification can be made 73 

times before the procedure to re-generate initial weights proceeds (this 

procedure will be described later). 

4. A procedure to re-generate initial weights is introduced occasionally if the 

learning cannot escape from a local minimum using WOM: When all wrong 

output values have been involved and modified so that they are close to their 

corresponding output values but the learning still cannot escape from a local 
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minimum, we concede that the local minimum is too far away from all global 

solutions and thus WOM cannot effectively help the learning. Thus we 

re-generate all initial weights and hope that the learning can escape from such 

a local minimum. Note that the previous region of neuron weights is excluded 

to avoid the new initial weights leading the learning to such a local minimum 

again. 

 

Theorem 3. If the learning re-starts with a new set of initial weights which is 

re-generated excluding the region of weights that is trapped by the local minimum, the 

probability that the learning converges to a global solution this time is higher than the 

probability that the learning converges to a global solution with a set of 

randomly-generated initial weights. 

Proof. Let )( I
iω and )'( I

iω be the initial values of ωi when it is generated at the 

beginning and when the learning re-starts. Let ui ,ω  and li ,ω  be the upper and lower 

bounds of )( I
iω . Then, 
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Let iR and iR′ be the valid ranges of iω  when it is randomly generated at the 

beginning and when the learning re-starts. Moreover, let )(
,
G
jiR be the range of iω  

such that the learning converges to the jth global solution. Then, we have 
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liuiiR ,, ωω −= ,             (3.11) 

and  )()(
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L
i

I
iliuiiR ωωωω −−−=′ .          (3.12) 

Let p and p′ be the probabilities that the learning converges to a global solution 

at the beginning and after the learning re-starts, respectively. Then, 
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Based on Equations (3.13) and (3.14), we know ii RR ′>  for all weights and 

therefore pp >′ . 

Theorem 4. This algorithm can finally converge to a global solution, if it exists. 

Proof. Let )(np be the probability that the learning converges to a global solution 

after the learning re-starts the nth time. Through theorem 3, we know 

)()1( nn pp >+ .             (3.15) 

Let fp  be the probability that the learning finally converges to a global solution, 

then we have 

n

n

n
f ppp )1(1)1(1

0

)( −−>−−= ∏
=

.        (3.16) 

When n → ∞, .1=fp  

The above theorems demonstrate that the procedure of re-generating initial 

weights can guarantee the learning can finally converge to a global solution. Actually, 

during performance investigation, this procedure was executed at most once and the 

learning could converge to a global solution quickly after that. 
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5. A fast checking procedure to identify whether the learning goes back to the 

local minimum is introduced to speed up the convergence rate: The idea 

underlying this procedure is to check the tendency of each neural weight 

rather than the mean square error. This fast checking procedure can speed up 

checking by monitoring the change of neuron weights; that is, whether they 

have a trend (e.g., over 80% of neuron weights) to any of the existing local 

minima (i.e., local minima that have been visited before). If the trend is 

confirmed, it means the learning may revisit such a local minimum in the near 

future. The escape procedure should be processed in advance and not wait for 

the learning to be trapped by the local minimum again. Fig. 3.7 shows the fast 

checking procedure. Note that β is a small positive integer (e.g., 10), K is the 

number of local minima, L is the total number of neuron weights, and Ψ is the 

number of neuron weights approaching a local minimum. 

Theorem 5. If most of neuron weights are approaching a local minimum, the 

probability that the learning will be trapped by this local minimum is very high. 

Proof. Consider a simplified model to calculate the probability.  Assume that 

the probability of a neuron weight approaching a local minimum is 0.5 (either 

approach it or not). Moreover, it is assumed that a weight must approach this local 

minimum if all other weights are approaching it. Finally, assume that the 

relationship between this probability and the number of neuron weights 

approaching the local minimum is linear. Then, given that Nw is the number of 

neuron weights approaching a local minimum, the probability that the learning 
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finally converges to such minimum is 

  ∏
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where L is the total number of neuron weights. If L = 10 and 80% of neuron 

weights are approaching a local minimum (i.e., Nw = 8), the probability that the 

learning converges to this local minimum is 0.9444. If L = 40, the probability is 

reduced to 0.69, which is still a high probability. Additionally, the changes of 

neuron weights inside a neural network are usually highly correlated and thus this 

probability is even higher than in the above simplified model.  

Therefore, this checking approach is very promising. The performance 

investigation showed that Nw is sufficiently large if it is set to 80% of the total 

number of neuron weights for all learning algorithms in all learning problems. The 

performance investigation found that the number of iterations for checking is 

significantly reduced and hence the convergence rate of a learning algorithm with 

this procedure is similar to the original learning algorithm. 
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Chapter 4  Threshold of Output Difference (TOD) 

 

4.1  Motivations 

Classification is an important contribution of a neural network. During training, 

the learning will be terminated when the mean square error is less than the fixed error 

threshold. That means this learning is declared to converge to a global minimum and 

the network has been well trained. It is expected that this network should classify the 

training data perfectly, and the network can be used to classify new data. That is why 

a neural network can act as a universal approximator [30 – 32], so many applications 

use neural networks for classification or prediction. However, our experiments found 

that the original training data sometimes cannot be correctly classified by the trained 

network. The problem is the terminating condition in the algorithm. 

Consider the following example: RPROP is applied to the Breast Cancer learning 

problem (explained in Chapter 5). Note that the number of training patterns in the 

Breast Cancer problem is 699, Tε  is 0.001, and the maximum number of iterations is 

5000. After 5000 iterations, RPROP still cannot converge to a global minimum. The 

mean square error is larger than 0.001. After training, all training patterns have been 

used for testing in this network. In this case, five out of 699 patterns are misclassified 

— the misclassification rate (MCR) is 0.7153%. The result is reasonable because the 

learning does not converge to a global minimum. 

RPROP with WOM was applied to the same case. WOM solved the local 

minimum problem, and the mean square error was less than 0.001 after 2,049 
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iterations. That means the learning process converged to a global minimum this time. 

Thus, it is expected that a well trained network can classify all training patterns 

correctly. However, one out of 699 patterns was still misclassified — the MCR was 

0.1431% which is not equal to zero. 

From Equation (1.2), it is known that the mean square error is related to the size 

of the training data (P) and the number of output nodes (M). It is calculated by the 

sum of the entire training patterns. Note that P and M may be very different for 

different learning problems, but the error threshold is fixed (i.e., 001.0=Tε ) for all 

learning problems. Thus, there is a problem: Tε  may be too tough to meet if P and 

M are small. The learning has to spend unnecessary iterations to meet the criteria 

(make sure MSE < Tε ) when all outputs in all training patterns are already very close 

to their corresponding target outputs. On the other hand, Tε  may be too easy to meet 

if P and M are large; the setting of Tε  is not small enough so that several outputs in 

training patterns may not be trained completely, but the terminating condition is still 

met (i.e., MSE < Tε ). Thus, we conclude that using a fixed error threshold as a 

terminating condition may not be good enough to measure whether the learning 

converges to a global minimum or not, and whether the trained network may be 

suitable or not for classifying testing data. 

 

4.2  New Terminating Condition: Threshold of Output Differences 

Classification is one of the most important applications of neural networks. In the 

classification process, if the difference between a real output and its corresponding 
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target output is less than 0.5, it is declared that this output is correctly classified. For 

example, if a target output is one and its corresponding real output is 0.55, it is 

declared that 0.55 is equal to one and this output is correctly classified. The value of a 

real output is not required to be very close to one (e.g., 0.9). 

Based on this principle of classification, a new termination condition called 

Threshold of Output Differences (TOD) is proposed to identify whether the learning 

converges to a global minimum or not [29]. TOD is: 

5.0<− pmpm ot                               (4.1) 

where 

  p = 1, 2, …, P and m = 1, 2, …, M. 

It is claimed that the learning converges to a global minimum if the difference 

between each training pattern output and its corresponding target output is less than 

0.5, which means all training patterns can be classified correctly. TOD is dynamic 

compared with the traditional termination condition (i.e., FET), and that is suitable for 

different learning problems. If P and M are small, this new termination condition (i.e., 

TOD) is easily satisfied and its convergence rate is faster. If P and M are large, this 

new termination condition may be difficult to satisfy but the trained network will 

perform better in classification.  

TOD is implemented as shown in Fig. 4.1. Note that TOD can be applied in 

different learning algorithms since its implementation is independent of the operations 

of a learning algorithm. 
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Initialization: 

Initialize all weights kmω , nkω  and set Count = 0. 

Repeat 

For p = 1, 2, …, P 

For m = 1, 2, …, M 

      ))(()( 1∑= =
N
n pnnkpk xifiy ω  

      ))()(()( 1 iyifio K
k pkkmpm ∑= = ω  

If 5.0<− pmpm ot  

             Count = Count + 1 

          Else 

                              Count = 0 

       End For 

      End For 

If Count = P × M, 

The training is completed and the convergence is declared to be 

satisfied. 

Else 

Compute the changes of the weights for the next iteration by 

using a learning algorithm (e.g., BP, Quickprop). 

Then update all weights. 

Until converge 

Fig. 4.1  Implementation of TOD 
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Note that a smaller threshold (e.g., 0.4 or 0.3) in training may not improve the 

classification rate in testing because of the existence of the over-fitting problem in 

neural networks. 

 

4.3  Examples 

Consider the same case used in Section 4.1. TOD is used as the terminating 

condition instead of the traditional FET. RPROP with TOD cannot converge within 

5000 iterations, and the MCR is still 0.7153% (five out of 699 are misclassified). The 

MCR is not improved because of the limitation of RPROP (i.e., the local minimum 

problem), not TOD. 

RPROP with WOM and TOD converges after 2,063 iterations. In this case, the 

convergence rate is a little bit slower than RPROP with WOM and FET. However, the 

MCR is equal to zero. Under the new terminating condition, all training patterns can 

be classified correctly (i.e., MCR = 0) by this trained network. 
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Chapter 5  Numerical Results 

 

5.1  Introduction 

This chapter describes the Wrong Output Modification (WOM) and Threshold of 

Output Differences (TOD) algorithms in detail with examples. Their performance 

with different learning algorithms in different learning problems (applications) is also 

described in this chapter. 

In this chapter, five popular learning algorithms (BP, MGF, Quickprop, RPROP 

and LM, all of which were introduced in Chapter 2) were applied to six different 

benchmark learning problems to investigate how WOM and TOD performed. These 

benchmark learning problems are XOR, Three-bit Parity, Five-bit Counting, Iris, 

Wine, and Breast Cancer. These data sets can be found in the UCI Machine Learning 

Repository [33], which is a famous database for testing the performance of learning 

algorithms. 

 

5.2  Learning Problems 

Brief descriptions of the learning problems and their network configurations are 

shown in Table 5.1 and 5.2, where N, K, and M represent the number of input, hidden, 

and output nodes, and μ and α are the learning rate and the momentum of BP for 

those learning problems. Note that all these parameters are optimized in the different 

learning problems. They are found by using trial-and-error.  Based on the number of 

training patterns, these six learning problems can be classified into two sets: simple 
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problems (i.e., XOR, Three-bit Parity and Five-bit Counting) and difficult problems 

(i.e., Iris, Wine and Breast Cancer). 

 

Learning Problem Description 

XOR “Give two binary inputs a and b, and output a⊕b.” [33] 

Three-bit Parity “Give three binary inputs and output the odd parity of all 
inputs.” [33] 

Five-bit Counting “Count the number of 1s from the five input units.” [33] 

Iris “The data set contains 3 classes of 50 instances each, 
where each class refers to a type of iris plant.” [33] 

Wine 

“These data are the results of a chemical analysis of 
wines grown in the same region in Italy but derived from 
three different cultivars. The analysis determined the 
quantities of 13 constituents found in each of the three 
types of wines.” [33] 

Breast Cancer 

“These data were obtained from the University of 
Wisconsin Hospitals, Madison, from Dr. William H. 
Wolberg. The databases reflect this chronological 
grouping of the data.” [33] 

Table 5.1 Learning problems (descriptions) 

 

Learning Problem 
Network 

Architecture
N-K-M 

Parameter 
Setting 
(μ, α) 

Number of 
Training 
Patterns 

Problem 
Difficulty 

XOR 2-2-1 (0.5, 0.7) 4 Low 
Three-bit Parity 3-3-1 (0.6, 0.9) 8 Low 

Five-bit Counting 5-12-6 (0.1, 0.7) 32 Low 
Iris 4-15-3 (0.02, 0.05) 150 High 

Wine 13-10-3 (10-8, 0.1) 178 High 
Breast Cancer 9-20-1 (0.005, 0.03) 699 High 

Table 5.2 Learning problems (parameter setting) 
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5.3  Simulation Environment 

The simulation programs were written in C and MATLAB, and integrated 

development environments were Visual Studio 2010 and MATLAB 6.5 respectively. 

All experiments were processed in a personal computer with Windows 7. 

Neural Network Toolbox is an important component in MATLAB, and it is easy 

to create, train, and simulate neural networks. It not only supports supervised learning 

with multi-layer feed-forward networks, but also provides many popular network 

training functions (e.g., Levenberg-Marquardt algorithm) for modeling complex 

nonlinear systems. In other words, LM can be called directly without dealing with 

complex matrix operations. In our experiments, LM with and without WOM were 

implemented in the Wine and Breast Cancer problems under a MATLAB environment. 

However, the training function and the terminating condition are packaged in 

MATLAB, and the FET acts as the terminating condition. Only the value of this 

threshold can be adjusted (i.e., 001.0=Tε ) before training. Thus, our proposed 

terminating condition (i.e., TOD) was not applied in LM under a MATLAB 

environment. 

 The performance investigations were divided into two parts: Part A focuses on the 

convergence rate (CR) and the convergence capability (CC). CR is the number of 

iterations spent to meet the terminating condition; while CC is the probability that the 

terminating condition is met in training. Part B focuses on the classification ability. 

The average percentage of misclassified patterns in testing patterns (MCR) is used as 

the performance measure. Note that the sets of initial weights were randomly 
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generated between -0.3 and 0.3. The maximum number of iterations was 1,000,000 

for each run, which means the training was declared not to converge if the terminating 

condition cannot be met within 1,000,000 iterations. 

We focus on one hidden layer network in my experiments since usually the 

structure is good enough to solve learning applications [34]. Usually it is less than 15% 

of applications need two hidden layers. Actually, we have already applied the 

proposed algorithm WOM and TOD to neural networks with two hidden layers (see 

section 5.8 in the thesis). The results are promising. Moreover, the numbers of hidden 

nodes used in the performance investigation are optimized by using trial-and-error in 

different learning applications. 

 

5.4 The Effect of the Procedure to Re-generate Initial Weights 

As mentioned in Chapter 3, WOM occasionally cannot escape from a local 

minimum and thus it is essential to re-generate the set of initial weights. This 

subsection shows some numerical results to explain why it is necessary to re-generate 

the set of initial weights. 

In the escape procedure, if all wrong outputs are included but the training still 

cannot escape from the local minimum, the initial weights will be re-generated and 

the training will be re-started. This is because such a local minimum is very far away 

from all global minima. Let DW(i) be the difference of neuron weights between the ith 

local minimum and the global minimum that the learning finally converges to: 
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Note that B is the number of neuron weights. Its value is related to the structure of 

learning problems. Let )(iLM
bω  be neuron weights when the training is trapped by 

the ith local minimum, and GM
bω  be neuron weights when the training converges to 

the global minimum. 

Consider some learning algorithms with WOM applied to the three difficult 

learning problems (i.e., Breast Cancer, Wine, and Iris). All trainings converge to a 

global minimum at the end since the local minimum problem can be solved by WOM. 

The comparisons of DW(i) are shown in Table 5.3. In the first seven cases, all local 

minima are close to the global minimum (DW(i) ≤ 1.27) and thus WOM can 

effectively escape from all local minima and finally converge to a global solution. In 

the last three cases, the procedure to re-generate initial weights was implemented and 

the learning finally converged to a global minimum. The data show that all local 

minima were far away from the global minimum (DW(i) ≥ 7.95 and the difference can 

be up to 261.31) and thus we need this procedure to escape from local minima. Note 

that this procedure was executed once only when it happened, after which the learning 

could converge to a global minimum. 
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Case 
Fast 

Learning 
Algorithm 

Learning 
Problem 

Number of 
local minima 

visited 
Re-generate? DW(i) 

1 RPROP Breast 
Cancer 1 No DW(1) = 0.88 

2 RPROP Breast 
Cancer 2 No DW(1) = 0.97 

DW(2) = 0.43 

3 BP Breast 
Cancer 1 No DW(1) = 1.16 

4 Quickprop Wine 1 No DW(1) = 0.21 
5 RPROP Wine 1 No DW(1) = 0.04 

6 RPROP Iris 4 No 

DW(1) = 1.27 
DW(2) = 1.17 
DW(3) = 0.84 
DW(4) = 0.10 

7 Quickprop Iris 4 No 

DW(1) = 0.98 
DW(2) = 0.96 
DW(3) = 1.01 
DW(4) = 0.05 

8 Quickprop Wine 3 Yes 
DW(1) = 89.38 
DW(2) = 261.31* 
DW(3) = 0.02 

9 RPROP Wine 4 Yes 

DW(1) = 7.95 
DW(2) = 8.77 
DW(3) = 9.34 
DW(4) = 8.81* 

10 Quickprop Iris 5 Yes 

DW(1) = 26.31 
DW(2) = 26.26* 
DW(3) = 1.91 
DW(4) = 0.47 
DW(5) = 0.083 

Table 5.3  Difference of neuron weights in different cases 

*: The procedure to re-generate the initial weights was implemented. 
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5.5 Performance Comparison between WOM (initial version) and 

WOM (final version) 

As mentioned in Chapter 3, the initial version of WOM was not good enough [26] 

and thus WOM has been significantly improved in [27] and [28]. In this subsection, 

some numerical results are shown to illustrate its improved performance in terms of 

convergence rate and global convergence capability. The performance comparison is 

shown in Table 5.4. 

In this table, the first row shows different versions of WOM. The first column 

shows different algorithms applied to the learning algorithm. “Original” represents the 

original Quickprop. The two numbers inside a cell show the performance of a learning 

algorithm in a learning problem: the upper one is the average number of iterations that 

the learning takes to converge to a global minimum (i.e., CR) while the lower one is 

the percentage that the learning converges to a global minimum in 100 runs (i.e., CC).  

For example, in this table, the third cell of the second row shows that the average 

number of iterations to converge to a global minimum is 985 (i.e., CR = 985) and the 

percentage that the learning converges using Quickprop is 38% (i.e., CC = 38%). The 

second cell of the second row shows CR = null and CC = 0%. This means that 

learning with the corresponding learning algorithm cannot converge to a global 

minimum in any of 100 runs. That does not mean that such a learning algorithm 

cannot help the learning to converge but the probability that the learning converges to 

a global minimum is so small that it cannot be found in 100 runs. It is found that 

Quickprop has fast convergence rates in Wine and Breast Cancer but very poor global 
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convergence capability in all three learning problems. WOM (initial version) can 

improve the global convergence capability significantly but it cannot totally solve the 

local minimum problem. The procedure Escape can further improve the global 

convergence capability and they are close to 100%. But the local minimum problem 

cannot be completely solved. The procedure FastChecking can significantly reduce 

the number of iterations to check whether it goes back to the previous local minimum 

or not and thus the convergence rate becomes similar to the original algorithm. The 

final version of WOM can totally solve the local minimum problem with similar 

convergence rate(s) to the original algorithm. Note the results in this table and also in 

the rest of the tables are slightly different from those shown in [27] because the 

procedure to re-generate initial weights was not implemented in [27] and the 

parameter setting was also slight different to [27] due to maintaining the stability of 

the learning of some learning algorithms in some learning problems. 

 

Quickprop Iris Wine Breast Cancer 

Original null 
0% 

985 
38% 

2,366 
4% 

With WOM (initial version) 30,264 
56% 

1,399 
87% 

3,283 
100% 

With WOM (initial version) + 
Procedure Escape (see Fig. 3.6) 

26,007 
95% 

4,560 
96% 

3,518 
100% 

With WOM (initial version) + 
Procedure FastChecking (see Fig. 3.7) 

13,776 
64% 

756 
87% 

3,024 
100% 

With WOM (final version) 132,669 
100% 

7,378 
100% 

3,221 
100% 

Table 5.4  The performance of Quickprop with different versions of WOM in three 

learning problems 
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5.6 Full performance comparison (Part A): Convergence Rate 

and Capability 

In Part A, each learning problem (application) was carried out 100 times with 100 

different sets of initial weights, and all data (patterns) were used for training. The 

performance comparisons of BP, MGF, Quickprop, RPROP and LM in different 

learning problems are shown in Tables 5.5 to 5.9. 

In these tables, the cell on the upper left corner of a table identifies the learning 

algorithm used in training. The first row shows different learning problems. The first 

column shows different algorithms applied to the learning algorithm. “Original” 

represents the original learning algorithm with the traditional terminating condition 

FET ( 001.0=Tε ). “TOD” represents the original learning algorithm with TOD. 

“WOM” represents the original learning algorithm with WOM and the traditional 

terminating condition FET. “WOM + TOD” represents the original learning algorithm 

with WOM and TOD. There are two numbers inside a cell to show the performance of 

a learning algorithm in a learning problem: the upper one is the average number of 

iterations to converge to a global minimum (i.e., CR); while the lower one is the 

percentage the learning converged to a global minimum in 100 runs (i.e., CC).  

For example, in Table 5.5, the second cell of the last row shows that the average 

number of iterations for the learning to converge to a global minimum using 

Backpropagation (BP) algorithm with WOM and TOD is 2,078 (i.e., CR = 2,078) and 

the percentage the learning converges using BP with WOM and TOD is 100% (i.e., 

CC = 100% - the learning converges to a global minimum in all runs). Finally, some 
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cells reveal that CR = null and CC = 0%. This means that learning with the 

corresponding learning algorithm cannot converge to a global minimum in any of the 

100 runs. It does not mean that this learning algorithm cannot help the learning to 

converge but the probability that learning converges to a global minimum is so small 

that it cannot be found in 100 runs. This happens because the learning rate of the 

learning algorithm is too small when the learning is close to a global minimum that it 

finally stops before it arrives at the global minimum. Note that WOM and TOD 

cannot help in such cases because this issue is related to the nature of the learning 

algorithms but not the local minimum problem and classification ability. 

Compared to the “Original” and the “WOM”, their convergence rates are similar, 

except Quickprop or RPROP in XOR, and RPROP in Iris. For the XOR problem, 

Quickprop or RPROP are so aggressive that they overshoot the system error and thus 

the training takes many number of iterations before it converges to the global 

minimum. For the Iris problem, many local minima exist during the training and 

WOM spends many number of iterations escaping them. Note that “WOM” always 

makes the learning meet the terminating condition (i.e., TMSE ε< ) for all these 

learning problems. This means that by using WOM, learning always converges to a 

global minimum. Their convergence capabilities are improved significantly. 

Compared to “Original” and “TOD”, without affecting the convergence capability, 

“TOD” always gives a faster convergence rate. It can also be found in the comparison 

between “WOM” and “WOM + TOD” because TOD dynamically adapts to the nature 

of learning problems and thus the training can be terminated precisely. 
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BP XOR Three-bit 
Parity 

Five-bit 
Counting Iris Wine Breast 

Cancer 

Original 2,581 
98% 

356 
100% 

null 
0% 

559,337 
14% 

null 
0% 

130,513 
47% 

TOD 1,665 
98% 

271 
100% 

null 
0% 

548,918 
13% 

null 
0% 

129,985 
47% 

WOM 2,993 
100% 

356 
100% 

2,390 
100% 

129,891 
100% 

null 
0% 

12,477 
100% 

WOM 
+ TOD 

2,078 
100% 

271 
100% 

2,017 
100% 

118,119 
100% 

null 
0% 

9,860 
100% 

Table 5.5 Performance comparisons in BP (Part A) 

 

MGF XOR Three-bit 
Parity 

Five-bit 
Counting Iris Wine Breast 

Cancer 

Original 1,152 
99% 

228 
100% 

10,176 
100% 

39,159 
100% 

null 
0% 

7,829 
99% 

TOD 987 
99% 

207 
100% 

10,136 
100% 

33,448 
100% 

null 
0% 

7,827 
99% 

WOM 1,233 
100% 

228 
100% 

793 
100% 

44,210 
100% 

null 
0% 

8,619 
100% 

WOM 
+ TOD 

1,069 
100% 

207 
100% 

752 
100% 

38,379 
100% 

null 
0% 

8,523 
100% 

Table 5.6 Performance comparisons in MGF (Part A) 
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Quickprop XOR Three-bit 
Parity 

Five-bit 
Counting Iris Wine Breast 

Cancer 

Original 60 
50% 

87 
100% 

480 
63% 

null 
0% 

846 
38% 

2,366 
4% 

TOD 40 
50% 

41 
100% 

467 
65% 

null 
0% 

809 
38% 

2,301 
4% 

WOM 18,160 
100% 

87 
100% 

465 
100% 

132,669 
100% 

7,378 
100% 

3,221 
100% 

WOM 
+ TOD 

18,138 
100% 

41 
100% 

442 
100% 

91,769 
100% 

7,347 
100% 

3,067 
100% 

Table 5.7 Performance comparisons in Quickprop (Part A) 

 

RPROP XOR Three-bit 
Parity 

Five-bit 
Counting Iris Wine Breast 

Cancer 

Original 79 
42% 

105 
89% 

707 
5% 

4,046 
22% 

1,453 
60% 

2,151 
2% 

TOD 57 
42% 

80 
89% 

681 
5% 

2,758 
22% 

1,460 
61% 

2,092 
2% 

WOM 9,045 
100% 

1,308 
100% 

494 
100% 

24,274 
100% 

1,966 
100% 

1,742 
100% 

WOM 
+ TOD 

8,753 
100% 

1,282 
100% 

482 
100% 

21,417 
100% 

1,962 
100% 

1,731 
100% 

Table 5.8 Performance comparisons in RPROP (Part A) 

 

LM Wine Breast Cancer 

Original 30 
52% 

1,321 
27% 

WOM 203 
100% 

1,085 
100% 

Table 5.9 Performance comparisons in LM (Part A) 
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5.7  Full Performance Comparison (Part B): Classification Ability 

In Part B, the classification abilities of different learning algorithms in different 

learning problems were investigated. The performance measure is the 

mis-classification rate (MCR, in %). In this part, only difficult learning problems (i.e., 

Iris, Wine and Breast Cancer) were considered because they had enough training 

patterns for training and testing. Two approaches were used to investigate 

classification ability. The first approach is more commonly used: 70% of the data 

patterns are randomly selected for training and the rest are used for testing. It is 

possible that some features in the testing data are not represented in the training data. 

Thus, even though a learning algorithm can capture all features from the training data, 

its MCR (in %) would not be small. Using this approach, each application was 

performed with 50 different sets of initial weights and each set of initial weights 

worked with 10 random sets of training and testing data. Thus, each application was 

performed 500 times in total. 

The second approach uses all data patterns for both training and testing . 

Compared with the first approach, the second approach can capture all features from 

the training data and the MCR of this learning algorithm using this approach could be 

zero or close to zero (i.e., no patterns or very few patterns are misclassified) if the 

learning algorithm is good in classification. Thus, this approach can effectively 

demonstrate the classification ability of a learning algorithm. Each application was 

performed 100 times with 100 different sets of initial weights. Note that “null” means 

the learning cannot converge to a global minimum in any of runs and so their 
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classification ability is not used in comparison. 

 For convenience, the MCRs using the first and the second approaches are named 

MCR1 and MCR2 respectively. The classification performance of the five learning 

algorithms in different learning problems is shown in Tables 5.10 to 5.14. 

 

BP Iris Wine Breast 
Cancer 

Original 
MCR1 5.36 null 4.85 
MCR2 5.67 null 0.13 

TOD 
MCR1 5.28 null 4.82 
MCR2 0.57 null 0.09 

WOM 
MCR1 5.73 null 5.09 
MCR2 0 null 0.13 

WOM 
+ TOD 

MCR1 5.73 null 4.93 
MCR2 0 null 0 

Table 5.10 Performance comparisons in BP (Part B) 

 

MGF Iris Wine Breast 
Cancer 

Original 
MCR1 5.55 null 5.02 
MCR2 0 null 0.03 

TOD 
MCR1 5.72 null 4.97 
MCR2 0 null 0 

WOM 
MCR1 5.33 null 5.02 
MCR2 0 null 0 

WOM 
+ TOD 

MCR1 5.53 null 4.94 
MCR2 0 null 0 

Table 5.11 Performance comparisons in MGF (Part B) 
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Quickprop Iris Wine Breast 
Cancer 

Original 
MCR1 31.00 11.75 5.25 
MCR2 38.31 7.51 1.57 

TOD 
MCR1 28.58 11.82 5.24 
MCR2 38.25 7.48 1.57 

WOM 
MCR1 5.69 7.89 5.58 
MCR2 0.01 0.11 0.03 

WOM 
+ TOD 

MCR1 5.70 7.98 5.56 
MCR2 0 0 0 

Table 5.12 Performance comparisons in Quickprop (Part B) 

 

RPROP Iris Wine Breast 
Cancer 

Original 
MCR1 5.48 9.85 5.13 
MCR2 0.93 0.55 0.70 

TOD 
MCR1 5.48 9.85 5.13 
MCR2 0.93 0.43 0.69 

WOM 
MCR1 5.54 8.64 5.49 
MCR2 0 0.15 0 

WOM 
+ TOD 

MCR1 5.48 8.71 5.45 
MCR2 0 0 0 

Table 5.13 Performance comparisons in RPROP (Part B) 

 

LM Wine Breast 
Cancer 

Original MCR2 0.589 0.167 
WOM MCR2 0.054 0.024 

Table 5.14 Performance comparisons in LM (Part B) 

 

MCR1 shows that the results of “Original” and “TOD” are very similar. “WOM” 

is usually better than the “Original” but there are some exceptions. The same 

condition can be found in “TOD” and “WOM + TOD”. As mentioned before, some 
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features of the testing data cannot be captured in training and thus the classification 

ability cannot be identified clearly using the first approach. 

MCR2 shows that “WOM” is always better than “Original”. “TOD” is usually 

better than “Original”. It is not as good as “WOM” because the training sometimes 

cannot be completed without WOM. This means that a learning algorithm with WOM 

is always better than one without WOM, and the improvement is relatively significant. 

WOM can help a learning algorithm converge to a global solution and it performs 

well in classification because the training completely captures all features of the 

training data and thus classifies new data more precisely. Furthermore, results of 

“WOM+TOD” are perfect (i.e., zero). It means that if the training can always be 

completed, the classification is always perfect. 

 From the Table 5.9 and Table 5.14, though LM with WOM can solve the local 

minimum problem, learning can always converge to a global minimum (i.e., CC = 

100%), and all data patterns were used for both training and testing, the MCRs were 

not equal to zero. Since TOD was not applied in these cases, they also proved the 

limitations of the traditional terminating condition (i.e., FET). 

We used the whole patterns of a learning problem as training data to investigate 

the convergence rate and the convergence capability, and found that the MCR of all 

these training data sometimes is still not equal to zero though the terminating 

condition is satisfied. Thus in part B, the whole patterns are used for training and 

testing, and we declare the misclassification rate as MCR2. Compared with an 

original learning algorithm with ET, the MCR of this original learning algorithm with 
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WOM and TOD is perfect, and the trained neural network can classify all patterns 

correctly because the features of the training patterns are fully captured. 

Sometimes the MCR1 of some learning algorithms with WOM or/and TOD is 

worse than the original one. It is because that the over-fitting problem is occurred 

during neural network training. The error of the training set becomes small after 

training. However, when testing data is classified by the trained network, its error is 

large. It is found that the network has memorized the training data but the 

generalization is bad. To investigate the over-fitting problem, we used a set of 

validation data to check the generalization. 

Fig. 5.1 shows the learning curve. It shows the change of the mean square error. 

Note that TR and VA are the mean square error in training and validation respectively. 

We can see that, after around 80 iterations, the MSE of training data decreases but the 

MSE of validation data increases. 

 

Fig. 5.1 The MSEs in training and validation 
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 In my experiments, MCR is calculated after the training, and the terminating 

conditions of training are FET or TOD. Thus, the well trained network that meets FET 

or TOD may not be good for the validation data or testing data. For validation data or 

testing data, it is possible that the best solution is found before the training process is 

trapped by a local minimum. 

 Here is another example (see Fig. 5.2); RPROP with WOM is applied to the Iris 

problem. Because of WOM, the training can escape from a local minimum, and note 

that the terminating condition is satisfied at last. But for validation data or testing data, 

the performance of this “well” trained network in terms of the MCR is bad because of 

the over-fitting problem. That is reason why sometimes the MCR1 of some learning 

algorithms with WOM or/and TOD is worse than the original ones. The terminating 

condition is perfect for training data, but just for that data. 

 

 

Fig. 5.2 Over-fitting (RPROP with WOM in Iris) 
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 In order to avoid over-fitting problem, early stopping is used to identify the 

convergence in my experiments. The whole training data is divided into three sets: a 

training set, a validation set and a testing set. The validation error is also computed 

during training. The set of neuron weights will be saved when the validation error 

starts to go up. After that, if the change of validation error is small and still far away 

from the training error over a number of iterations, we declare that the training is 

trapped by a local minimum, and WOM will be applied to solve this problem. 

Otherwise, the training is supposed to be stopped at the pervious valley point, and the 

corresponding neuron weights are used to do the classification for testing data. 

 Thus if there has local minimum problem during the training, the MCR of a 

learning algorithm WOM always can be better than the original one. Consider that 

RPROP is applied to the Iris problem without WOM. The Iris data (total number of 

patterns is 150, P = 150) is randomly divided into three sets: Training (60%, P = 90), 

Validation (20%, P = 30) and Testing (20%, P = 30).  

Fig. 5.3 shows the learning curve. It shows the change of the mean square error. 

We can see the over-fitting problem is happened. To overcome it, the training should 

be stopped after 50 iterations. After training, the trained network is used to do the 

classification for testing data. Its MCR is 2 out of 30. It means for the testing data, 

two patterns cannot be classified correctly in total 30 patterns. 
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Fig. 5.3 The training is trapped by a local minimum 

 

Now RPROP with WOM is applied to the same case (see Fig. 5.4). The training 

is escaped from the previous local minimum and the MSE of training data can be 

further reduced to 0.001 after 13000 iterations. Moreover, this time, the global 

minimum of validation error comes out after 5800 iterations. The trained network is 

used to do the classification for testing data. Its MCR is 0. It means all testing data 

can be classified correctly. 
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Fig. 5.4 The training can escape from such local minimum by using WOM 

 

5.8  The Performance of WOM in Neural Networks with Multi 

Hidden Layers 

The proposed WOM and TOD algorithms can be applied into neural networks 

with more than one hidden layer. This subsection describes the performance of neural 

networks with two hidden layers with different learning algorithms in different 

learning problems. 

BP was applied in this subsection in the Breast Cancer and Iris learning problems. 

The network structures for these two problems are 9-20-20-1 and 4-15-15-3 

respectively. The rest of parameter settings are unchanged (i.e., the learning rates and 

the momentum). The learning problem was carried out 100 times with 100 different 

sets of initial weights. In Tables 5.15 and 5.16, the performance is as expected; WOM 

0

0.01

0.02

0.03

0.04

0.05

0 2000 4000 6000 8000 10000 12000 14000

M
SE

iteration

TR

VA



69 
 

can solve the local minimum problem while TOD can speed up the convergence rate 

and improve the classification ability. 

 

BP CR CC MCR (%) 

Original 28,752 14% 0.26 
TOD 28,735 14% 0.24 

WOM 5,975 100% 0.003 
WOM + TOD 5,393 100% 0 

Table 5.15  Performance comparisons of neural networks with two hidden layers 

using BP in Breast Cancer 

 

BP CR CC MCR (%) 

Original null 0% null 
TOD null 0% null 

WOM 131,100 100% 0 
WOM + TOD 106,169 100% 0 

Table 5.16  Performance comparisons of neural networks with two hidden layers 

using BP in Iris 

 

5.9  The Performance Comparison of WOM and Random Method 

Random Method [35, 36] ensures convergence to the global minimum of the objective 

function with probability 1. Thus the convergence rate of this method will be 

considered for performance comparisons. Using Random Method, the average 

number of iterations (NR) that used to get the solution can be calculated by the 

following equation: 

MAXCR N
P

PNN ⋅
−

+=
1              (5.2) 
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Where, P is probability that the learning convergence to a global solution, CN is the 

average number of iterations used to converge to a global solution, and MAXN is the 

maximum number of iterations allowed for training. 

 Different learning algorithms with random method were applied in Breast Cancer 

problem. If the training cannot converge within 100,000 iterations, it re-started with 

the new set of (random) initial weights. Compared with WOM, we can see the 

convergence rate is very slow in Table 5.17. 

 

Breast Cancer BP MGF Quickprop RPROP LM 

Random Method 243,278 8,839 2,402,366 4,902,151 271,691 

with WOM 12,477 8,619 3,221 1,742 1,085 

Table 5.17  Performance comparisons of WOM and random method in Breast 

Cancer 
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Chapter 6  Conclusions and Future Work 

 

6.1  Conclusions 

Many learning algorithms suffer from the local minimum problem in training 

multi-layered feed-forward neural networks,. Many modifications have been proposed 

but they still cannot totally solve this problem. This means that the training cannot 

always converge to a global minimum (solution) using such learning algorithms. Thus, 

the trained networks cannot always perform well in classification or prediction. 

To address this issue, a new algorithm called Wrong Output Modification (WOM) 

was proposed in this thesis. WOM is a systematic approach to solve the local 

minimum problem. When the learning is trapped by a local minimum, WOM has a 

procedure for the learning to escape from such a minimum by modifying wrong 

output values. WOM also has a procedure to check whether the learning is going back 

to the previous local minimum or not. This procedure can reduce the number of 

iterations. Note that WOM can be applied in different learning algorithms because its 

methodology is independent of the operations of a general learning algorithm.  

In the simulation results, training different learning algorithms with WOM was 

always completed in different benchmark learning problems (i.e., the learning always 

converged to a global minimum) and their convergence rates were similar with the 

original learning algorithms. 

Another important issue in training is the termination condition (i.e., a condition 

to confirm that the learning converged to a global minimum). The traditional 



72 
 

termination condition in training multi-layered feed-forward neural networks is to use 

a fixed error threshold. The learning is declared to converge to a global minimum if 

the mean square error is less than or equal to the fixed error threshold (usually it is a 

small positive real number). Our performance investigation found that a network 

well-trained by a learning algorithm with WOM still cannot classify all training data 

correctly. Thus, it concludes that a fixed error threshold is not good enough as a 

termination condition. 

A new termination condition called Threshold of Output Differences (TOD) was 

proposed in this thesis. Its methodology is based on the principle of classification. It 

monitors the difference of each output value and its corresponding target output value. 

The learning is declared to close enough to a global minimum if all differences are 

less than 0.5, which means all outputs can be classified correctly. 

 Throughout the performance comparisons using TOD as the termination 

condition, the convergence rates of different learning algorithms were increased in 

different learning problems, and they usually had better classification ability. 

Furthermore, when a network was well-trained using this new termination condition, 

the misclassification rate of the original training data was equal to zero, which means 

that the network classified all original training data correctly. 
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6.2  Future Work 

Through our investigation and experiments, there is still some work to be carried 

out for further improvement. 

First, the performance of WOM and TOD can be investigated with more 

complicated learning problems (applications). This means problems with more input 

attributes or/and training patterns.  

In addition, performance analysis can be developed to show their features 

mathematically including their stability, convergence rate, convergence capability and 

classification ability. 

Moreover, the performance of WOM and TOD can be investigated in neural 

networks with more than one hidden layer because, occasionally, some neural 

networks in some applications may require more than one hidden layer. 

Finally, Restricted Boltzmann Machine (RBM) [37] is a widely used model in 

Deep Learning (DL). It is mainly used for encoding data to reduce the dimensionality 

of the data with Neural Networks. The training process consists of three parts: 

Pre-training, Unrolling and Fine-tuning. Pre-training consists of learning a stack of 

RBMs. The learned feature activations of one RBM are used as the “data” for training 

the next RBM in the stack. After the pre-training, the RBMs are “unrolled” to create a 

deep auto-encoder, which is then fine-tuned using BP. We will apply WOM to BP in 

the model of DL. We expect it may get better results since WOM solves the local 

minimum problem. 
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