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Abstract

Scan and lookup are two core operations in main memory column stores. A scan

operation scans a column and returns a result bit vector that indicates which

records satisfy a filter. Once a column scan is completed, the result bit vector

is converted into a list of record numbers, which is then used to look up values

from other columns of interest for a query. Recently there are several in-memory

data layout proposals that aim to improve the performance of in-memory data

processing. However, these solutions all stand at either end of a trade-off —

each is either good in lookup performance or good in scan performance, but

not both. This thesis presents ByteSlice, a new main memory storage layout

that supports both highly efficient scans and lookups. ByteSlice is a byte-level

columnar layout that fully leverages SIMD data-parallelism. Micro-benchmark

experiments show that ByteSlice achieves a data scan speed at less than 0.5

processor cycle per column value — a new limit of main memory data scan,

without sacrificing lookup performance. Experiments on TPC-H data and real

data show that ByteSlice offers significant performance improvement over all

state-of-the-art approaches.
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Chapter 1

Introduction

In main-memory column stores like SAP HANA [14], MonetDB [20], Vec-

torwise [45], and Oracle Exalytics [34], data is memory-resident, queries are

read-mostly, and the performance goal is to support real-time analytic. When

the performance is not disk-bound, one key design goal of data processing algo-

rithms is to process data at (or near) the speed of CPU by judiciously utilizing

all the available parallelisms in each processing unit.

Data-level parallelism is one strong level of parallelism supported by mod-

ern processors. Such parallelism is supported by the SIMD (single instruction

multiple data) instruction set, whose instructions can process multiple data ele-

ments in parallel. SIMD instruction set (e.g., SSE 128-bits, AVX2 256-bits) was

originally designed for accelerating multimedia applications (e.g., to increase the

video brightness when playing a video), but work including [44] pioneered the use

of SIMD instructions to accelerate core database operations such as filter scans

and joins. After about a decade of research, SIMD parallelism has now become

1
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the basic requirement of building many new data processing systems [24, 25, 14];

operations in Google’s Supersonic library [17], an open-source library for building

data processing system, are all SIMD enabled.

SIMD instructions can execute one multi-operand operation per cycle, where

each operand is b bits (b = {8, 16, 32, 64} in AVX2). To enable SIMD parallel

processing in column-oriented database, (encoded) column values need to be

aligned and loaded into SIMD registers before processing. Early work in SIMD

data processing [44] was not fastidious about the storage layout in the main

memory and simply stored columns values using standard data type (e.g., 32-bit

integer). So, in the context of today’s AVX2 whose SIMD registers are 256 bits, a

SIMD register is used as eight 32-bit banks (i.e., b = 32) and eight 32-bit values

are directly loaded from memory into the register for processing. Subsequent

proposals [42, 41] focused more on the memory bandwidth consumption and

proposed to store the column values in memory using a tightly bit-packed layout,

ignoring any byte boundaries. For example, to store a column of 11 bits in

memory, the first value is put in the 1-st to 11-th bits whereas the second value is

put in the 12-th to 22-nd bits and so on. Such bit-packed layout incurs overhead

to unpack the data before processing. In the example above, several SIMD

instructions have to be spent to align eight 11-bit values with the eight 32-bit

banks of a register.1 After alignment, data processing operations like filter scan

can then be carried out using a series of SIMD instructions. In the example

above, although 8-way data-level parallelism is achieved in data processing, many

cycles are actually wasted during unpacking and alignment. Furthermore, as 0’s

are used to pad up with the SIMD soft boundaries, for the example above, any

1As an 11-bit value may span across three bytes under the bit-packed format, a bank width
b = 32 is needed because b = 32 > 3 × 8). More details will be given in Section 2.2.
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Figure 1.1. 11-bit column values stored in memory using VBP

data processing operation is wasting (32-11) × 8 = 168 bits of computation power

per cycle.

Recently, Li and Patel [31] observed that by changing the main memory

storage layout, higher parallelism and thus better scan performance could be

achieved. Inspired by bit-slice indexing [33], their first layout, Vertical Bit-

Parallel (VBP), is a bit-level columnar that systematically packs values in chunks

of memory called words. Figure 1.1 shows an example of VBP for an 11-bit data

column given that a SIMD register is 256 bits. Specifically, the i-th bit of each

k-bit value v is stored in the i-th 256-bit memory word. In the example, 256

values are packed into k = 11 memory words: W1, W2, . . ., W11. Under such lay-

out, after a memory word is brought into a SIMD register, predicate evaluation

in a scan operation is carried out as a series of logical computations on those

“words of bits”. SIMD scans on VBP formatted data can achieve significant

speedup because (1) a memory word and a register are of the same length (256

bits) so register bits are fully utilized in processing (no register bits are wasted

to padding), and (2) scans can early stop. To illustrate, consider the evaluation

of the predicate “v = 1024” (see Figure 1.1). Under VBP, the bits of the con-

stant to be compared against (i.e., 100000000002 = 102410) is first transposed

and vertically packed into k words (see words Wc1, Wc2, . . .Wc11 in Figure 1.1).

Then the scan carries out predicate evaluation through k iterations. In the first
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Figure 1.2. 11-bit column values stored in memory using HBP

iteration, it intersects word W1 with word Wc1. The result of the intersection,

which is a bit vector, indicates the data values whose first bits match that of

102410. In the example, after the first iteration, the scan concludes that none

of the 256 values v1 . . . v256 satisfies the predicate. In this case, the scan stops

early and skips the remaining words W2 to W11. Reconstructing/looking-up a

value under the VBP layout is expensive though. That is because the bits of

a value are spread across k words. Retrieving all these bits incurs many CPU

instructions and possibly many cache misses. Poor lookup performance hurts the

performance of operations that require the values in their plain form (e.g., joins

and aggregations), resulting in poor query performance.

The Horizontal Bit-Parallel (HBP) storage layout is the other in-memory

storage layout proposed in [31]. HBP supports value lookups efficiently. In HBP,

all bits of a column value are packed into the same memory word, providing

good lookup performance. Figure 1.2 shows an example of a 256-bit memory

word formatted in HBP. In this example, we consider a SIMD register to operate

in banks of 64 bits (i.e., b = 64). Hence, under HBP, a 256-bit memory word is

partitioned into chunks of 64 bits with soft boundaries defined at every 64 bits

of the word. That way, each 64-bit chunk can hold five 11-bit values. During

processing, each 64-bit chunk (containing 5 values) is loaded into a 64-bit bank

of a SIMD register. Note that the whole 256-bit memory word contains 4 chunks

and thus 20 11-bit values in total, which is much more than just eight 11-bit
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values offered by the bit-packed format we discussed earlier [44, 42, 41]. SIMD

scans on HBP formatted data can leverage two levels of parallelism: intra-bank

parallelism and inter-bank parallelism. Intra-bank parallelism manages evalua-

tion on values loaded within a bank of the register (e.g., evaluating a predicate

“v = 4” among v1 to v5 in Figure 1.2). Inter-bank parallelism is offered by

the SIMD instructions that process values in multiple banks in parallel. In our

example, HBP brings 5-way intra-bank parallelism and SIMD brings 4-way inter-

bank parallelism, achieving a 20-way parallelism in scans. Although efficient in

lookup, HBP offers no early stopping opportunity for scans because all bits of a

column value are stored in the same word. Hence, all bits of a value are always

processed at the same time.

In summary, scans on VBP has excellent performance because of early stop-

ping but lookups are poor. In contrast, lookups on HBP are excellent but scans

are way poorer than on VBP. Scans on HBP and VBP are generally faster than

scans on bit-packed formatted data. This thesis presents ByteSlice, a simple

yet powerful storage layout with which scans perform better than on VBP and

lookups perform as well as on HBP. ByteSlice has two key properties: (1) bytes of

a k-bit value are spread across dk/8e words; (2) an S-bit memory word contains

bytes from S/8 different values. Compared with VBP that distributes the bits

of a value to k words, ByteSlice distributes the bytes of a value to only dk/8e

words, thereby reducing the reconstruction/lookup efforts by a factor of 8. Such

reduction turns out to be significant enough to make a lookup overlap with other

operations in the instruction pipeline, resulting in lookup performance that is

as good as on HBP. Compared with HBP that has no early stopping opportuni-

ties, ByteSlice enjoys early stopping like VBP. Recall that scans on VBP involve
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examining values bit-by-bit and that lower-order bits can be skipped when ap-

propriate. Scans on ByteSlice examine values byte-by-byte, and so lower-order

bytes can be skipped in a similar fashion. As an interesting observation, our

analysis shows that ByteSlice provides even more effective early stopping than

VBP. In short, ByteSlice combines the advantages of both VBP and HBP with-

out inheriting their disadvantages. ByteSlice thus gives main memory analytic

databases a single best storage layout, which frees the database administrators

or the tuning advisors from choosing between VBP and HBP.

The contribution of this thesis is ByteSlice, a new in-memory storage layout

for column stores that supports both fast scans and lookups. The corresponding

framework to support scans and lookups on ByteSlice formatted data is also

included in this thesis. Experimental results show that running TPC-H queries

on ByteSlice can be up to 10X, 5.5X, and 3X faster than on bit-packed, VBP,

and HBP formatted data, respectively.

The remainder of this thesis is organized as follows: Chapter 2 contains

background information. Chapter 3 presents the ByteSlice storage layout along

with the framework to support scans and lookups. Chapter 4 gives experimental

results. Chapter 5 discusses related works. Chapter 6 concludes the thesis with

a future work discussion. The work in this thesis has been published in [16].



Chapter 2

Background and Preliminary

2.1 Background

SIMD instructions interact with S-bit SIMD registers as a vector of banks.

A bank is a continuous section of b bits. In AVX2, S = 256 and b is 8, 16, 32,

or 64. This thesis adopts these values but remarks that the proposed techniques

can be straightforwardly extended to other models (e.g., 512-bit AVX-512 [23]

and Larrabee [36]). The choice of b, the bank width, is on per instruction basis. A

SIMD instruction carries out the same operation on the vector of banks simulta-

neously. For example, the mm256 add epi32() instruction1 performs an 8-way

addition between two SIMD registers, which adds eight pairs of 32-bit integers

simultaneously. Similarly, the mm256 add epi16() instruction performs 16-way

addition between two SIMD registers, which adds sixteen pairs of 16-bit short

integer simultaneously. The degree of such data-level parallelism is S/b.

1Technically, it is a C function supported by SIMD instructions. In this thesis, the C function
names are used in place of the SIMD instructions for simplicity.

7



8 2.1. BACKGROUND

In modern main memory analytic databases, data is often stored in a com-

pressed form [5, 13, 14, 28]. ByteSlice is applicable to common compression

schemes such as null suppression, prefix suppression, frame of reference and dic-

tionary encoding [5, 13, 14, 28]. In these schemes, native column values are

compressed as fixed-length order-preserving codes. All data types including nu-

meric and strings are encoded as unsigned integer codes. For example, strings

are encoded by building a sorted dictionary of all strings in that column [6, 28].

Floating point numbers with limited precision can be scaled to integers by mul-

tiplication with a certain factor [13]. Consequently, range-based column scans

can be directly evaluated on such codes. From now on, the terms code and

value are used interchangeably. For predicates involving arithmetic or similarity

search (e.g., LIKE predicates on strings), codes have to be decoded before a scan

is evaluated in the traditional way.

This thesis focuses on the scan and lookup operations in main-memory col-

umn stores. A (column-scalar) scan takes as input a list of n k-bit codes and

a predicate with a range-based comparison, e.g., =, 6=, <,>, ≤, ≥, BETWEEN,

on a single column. Constants in the predicate are in the same domain of the

compressed codes. A column-scalar scan finds all matching codes that satisfy a

predicate, and outputs an n-bit vector, called the result bit vector, to indicate the

matching codes. Conjunctions and disjunctions of predicates can be implemented

as logical AND and OR operations on these result bit vectors. NULL values and

three-valued boolean logic can be handled using the techniques proposed in [33].

Once the column-scalar scans are completed, the result bit vector is con-

verted to a list of record numbers, which is then used to retrieve codes/values

from other columns of interest for the query. A lookup refers to retrieving a code
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in a column given a record number. Depending on the storage layout, a code may

have to be reconstructed from multiple memory regions during a lookup. In ex-

isting main-memory column store implementations, the results (retrieved codes)

of lookups are inserted into an array of a standard data type (e.g,. int32[])

[26, 7, 8, 4, 3]. This array serves as an intermediate result whose content is con-

sumed by operations like joins, aggregations and sorts. Since these operations

are not directly processing data straight from the base columns, their perfor-

mances are independent of the storage layout of the base columns [18]. For this

reason, this thesis focuses on the basic operations scan and lookup. Nonetheless,

it can be envisioned that ByteSlice has the potential of being a representation of

intermediate query results in addition to just being a storage format for the base

column values. In that case, operations like joins and sorts could potentially

benefit from reading input formatted in ByteSlice. Chapter 6 elaborates this

future work idea.

2.2 Bit-Packed (BP) Layout

The Bit-Packed layout [42, 41] aims to minimize the memory bandwidth

usage when processing data. Figure 2.1a shows an example with 11-bit column

codes. The codes are tightly packed together in the memory, ignoring any byte

boundaries. In this layout, a byte may contain bits from multiple codes (e.g.,

Byte# 02 contains bits from both v2 and v3) and a code may span across multiple

bytes (e.g., v3 spans across Byte# 02 to Byte# 04).

Scan Scans on bit-packed data requires unpacking the tightly packed data into

SIMD registers. In Figure 2.1a, as a code may initially span 3 bytes (e.g., v3), a
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Figure 2.1. (a) 11-bit column values stored under Bit-Packed memory layout. (b)
Scans on bit-packed data with predicate v > 129

bank width of b = 32 has to be used. Under b = 32, scans can be run in 8-way

parallelism and thus 8 codes are loaded to a SIMD register each time. Under

the bit-packed layout, that means 8 × 11 bits of data (i.e., v1 ∼ v8) are loaded

from the memory to the register. To align the 8 values into the eight 32-bit

banks, three instructions are carried out: (1) Shuffle: an SIMD byte-level shuffle

instruction is used to copy the bytes of each code to their destination bank. In

Figure 2.1a, Bytes# 00 ∼ 01 are shuffled to the first bank, as they contain bits

from v1, Bytes# 01 ∼ 02 are shuffled to the second bank, and Bytes# 02 ∼ 04

are shuffled to the third bank, so on. (2) Shift: a shift instruction is used to align

the codes to their (right) bank boundaries. (3) Mask: carry out a bitwise AND

instruction with a mask to clear the leading unwanted bits (of another code).

After unpacking, data in the SIMD register (e.g., W1 in Figure 2.1b) is ready to

be processed by any database operation. Figure 2.1b illustrates how a scan with

the predicate “v > 129” is evaluated against the unpacked data using AVX2’s

8-way greater-than comparison instruction mm256 cmpgt epi32(). The result
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of the instruction is a vector of eight boolean masks. After that, the scan starts

another iteration to unpack and compare the next 8 codes with Wc. From the

above, we see that the unpacking step consumes a number of cycles, hurting the

scan performance.

Lookup To look up a code vi in Bit-Packed data, one has to first compute

(1) at which byte vi starts and (2) the offset of vi’s starting bit within that

byte. For example, to look up v3 from memory in Figure 2.1a, we compute

bk(i − 1)/8c = b(11 × (3 − 1))/8c = 2 and k(i − 1) mod 8 = (11 × (3 − 1))

mod 8 = 6 to obtain the byte number and offset, respectively. Next, three bytes

starting from Byte# 02, i.e., Bytes# 02 ∼ 04, are fetched from memory. These

bytes are stitched together using shifting and bitwise OR operations. Finally, the

stitched value is shifted by 6 bits (the offset) and a mask is applied to retain the

11 bits of v3. As a code may span multiple bytes under the bit-packed format,

a lookup may incur multiple cache misses, particularly when those bytes span

across multiple cache lines.

2.3 Vertical Bit-Parallel (VBP) Layout

The VBP storage layout vertically distributes the bits of a k-bit code across

k chunks of memory called words. Specifically, the column of codes is broken

down into fixed-length segments, each of which contains S codes, where S is the

width of a SIMD register. The S k-bit codes in a segment are then transposed

into k S-bit words, denoted as W1, W2, . . . , Wk, such that the j-th bit in Wi
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equals to the i-th bit in the original code vj .

Scan Scans on VBP formatted data are carried out segment by segment. Within

a segment, a single predicate is evaluated through k iterations. As VBP allows

processing n k-bit codes in S-way parallelism, its worst-case scan complexity

is O(nkS ) instructions. Practically, VBP scans seldom hit that bound because

of early stopping, which was illustrated in Figure 1.1. When early stopping

occurs, the scan will proceed to the next segment. To reduce the condition-

checking overhead as well as branch miss-prediction penalty, the early stopping

condition is tested for every τ iterations. It has been empirically determined

that τ should be set as 4 [31]. Scans on VBP has no overflow problem because

the predicate evaluations only use bitwise operations AND, OR, NOT, and XOR

but not addition or multiplication.

We can illustrate VBP’s early stopping with a back-of-the-envelope calcu-

lation. Consider the predicate “v = c”. Assume the S codes of a segment are

independent and that the codes and the comparison constant c are random num-

bers uniformly distributed in the domain of the codes. The probability of a code

v matching the constant c at any particular bit position is 1/2. Note that we can

conclude that the predicate evaluates to false after scanning the most significant

t bits of v if any one of those t bits of v does not match the corresponding bit of

c. The probability of this event is 1− (1/2)t. To early stop a segment of S codes

after examining the codes’ most significant t bits, we need the above condition

to hold for all S codes. Hence, the probability of early stop processing a segment

after t bits is [31]:
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PVBP (t) =
(
1− (

1

2
)t
)S

(2.1)

From Equation 2.1, we derive that VBP needs to scan, on average, 10.79

bits of each code before the processing of a segment can be early-stopped. As

we will see later, we can significantly improve the early-stop probability with

ByteSlice and thus lower the number of bits per code read before early stop to

8.94. With registers in future generations of SIMD architecture (e.g., 512-bit

AVX-512 [23] and Larrabee [36]) having larger register width (larger S), the

early-stop probability will become smaller (see Equation 2.1) and thus it will

become harder for VBP to early stop. In this scenario, we can expect ByteSlice’s

advantage over VBP to be even more pronounced.

Lookup Lookups under VBP are expensive because retrieving a value requires

accessing k different memory words. For example, in Figure 1.1, to look up v5,

we have to extract the 5-th bit of each word W1, ..., W11 with a mask, shift the

bit to the correct position, and merge it with the running output using a bitwise

OR operation. The number of instructions involved increases linearly with k.

Moreover, since the memory words can be located in different cache lines, the

number of cache misses expected during a lookup also increases with k.

2.4 Horizontal Bit-Parallel (HBP) Layout

The HBP storage layout horizontally packs codes from a column into S-bit

memory words. The layout is designed so that the bits of a word can be loaded

directly into an S-bit register without unpacking. To maximize the number
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D

v = 129 true v = 129 truev = 129 false

Figure 2.2. Evaluating v = 129 on 11-bit column values stored in HBP format.

of codes that can be stored in a memory word under the constraint of bank

boundaries (Figure 1.2), we always use the largest possible register bank width

(b) e.g., in AVX2, b is set to 64.

Each k-bit code vi is stored with an additional bit, which is a delimiter

between adjacent codes of the same bank. The delimiter bit is prepended to the

code and is dedicated for handling overflow and producing the result bit vector.

A bank can hold b b
k+1c values. If b is not a multiple of k+ 1, 0’s are left padded

up to the bank boundary.

Scan Figure 2.2 shows an example of evaluating a predicate v = 129 on HBP

formatted data W1. Before the scan, the constant in the predicate (i.e., 129)

is first repeatedly aligned and packed into a SIMD register Wc in HBP format.

Then, a sequence of arithmetic and logic operations are carried out to evaluate

the predicate. That generates a result bit vector R, where the evaluation results

are stored in the delimiter bits. Scans on HBP formatted layout have no early

stopping because all bits of a code are in the same word/register. The scan

complexity is Θ( nb
Sbb/(k+1)c).

Lookup Lookup in HBP formatted data is similar to that in bit-packed format-
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ted data. We have to compute (1) which bank in a memory word a code vi is

located and (2) the offset of vi in that bank. For example, to look up v9 in Fig-

ure 1.2, we first determine that v9 is located in the 2nd bank with a 12-bit offset

from the right boundary. Shifting and masking instructions are then executed to

retrieve the 11-bit value. As each code lies in one memory word, a lookup under

HBP incurs at most one cache miss only.
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Chapter 3

ByteSlice

3.1 ByteSlice (BS) Layout

The ByteSlice storage layout regards S contiguous bits in memory as one

word. It also views a word or a SIMD register as S/8 8-bit banks. ByteSlice

vertically distributes the bytes of a k-bit code across the same bank of dk/8e

memory words. In other words, an S-bit memory word contains bytes from

S/8 different codes. These S/8 codes form a segment. The magic number 8

comes from the smallest bank width of SIMD multi-operand instructions. A

bank width of 8 bits implies the highest degree of SIMD parallelism, i.e., S/8-

way (e.g., 256/8 = 32), is exploited. The choice also has the advantage of simple

implementation because bytes are directly addressable.1 Hence, bit shifting and

masking operations are avoided.

1In this regard, a bank width of 16 bits is also an option. Appendix 7.1 explains our choice
of 8 bits bank width in more detail.

17
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Figure 3.1. 11-bit column codes stored under ByteSlice memory layout.
(a) Option 1: Storing tailing bits as bytes. (b) Option 2: Storing tailing bits om VBP.

Figure 3.1a illustrates how a segment of thirty-two 11-bit codes (v1 ∼ v32)

are formatted into two memory words W1 and W2 under the ByteSlice layout. In

the example, the first bytes of v1 ∼ v32 are packed into the banks of W1. There

are two options to deal with the remaining 3 bits. Option 1 is to pad 0’s at the

end and pack them into the banks of W2 in a way similar to W1 (see Figure

3.1a). Option 2 is to pack those remaining bits in VBP format, i.e., use three

memory words Wr1, Wr2, Wr3 to store the remaining 3 bits of each code, with the

1st remaining bit goes to Wr1, the 2nd remaining bit goes to Wr2, and the last

remaining bit goes to Wr3 (see Figure 3.1b)2. We choose Option 1 for reasons

that will become clear in Section 3.2.3. Continuing with our example, the next

segment of 32 values (v33 ∼ v64) are formatted in the same way into words W3

2Using HBP to store those tailing bits is not an option because scan algorithms on HBP
cannot work on part of the codes. The two options also apply to columns whose codes use less
than 8 bits (i.e., k ≤ 7). In this case, ByteSlice is degenerated into VBP if Option 2 is used.
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and W4. Words that contain the i-th bytes of values are stored in a contiguous

memory region, which we name as ByteSlice. In Figure 3.1a, W1 and W3 are

stored in ByteSlice BS1 whereas W2 and W4 are stored in ByteSlice BS2. As we

will explain shortly, ByteSlice supports early stopping. It is thus likely that after

word W1 (which stores the first bytes of values in Segment 1) is processed, word

W2 can be skipped and the scan operation proceeds to processing W3. With a

machine having a cache line size of 512 bits (i.e., 2S), by putting W1 and W3 into

neighboring memory locations, the two words can be found in the same cache

line. This arrangement also avoids bringing W2/W4 into the cache when early

stopping can happen.

3.2 Scan

3.2.1 Evaluating v < c

We now describe how to evaluate comparison predicates (<,>,≤,≥,=, 6=

, BETWEEN) using SIMD instructions under ByteSlice. The output of such filter

scans is a result bit vector R, which indicates which codes in the column satisfy

the predicate. Each scan operation processes one segment of codes at a time.

Without loss of generality, we assume the code width k is a multiple of full bytes.

If not, we pad 0’s at the end of both the codes and the comparison constant.

The comparison result should remain the same, e.g., (10000)2 > (01000)2 ↔

(10000 000)2 > (01000 000)2. We use the notation v[i] to denote the i-th byte of

v. For example, in Figure 3.1, v
[1]
1 = (01000000)2, v

[2]
1 = (011 00000)2.

We begin with the discussion of evaluating the LESS-THAN predicate (v <
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c) in ByteSlice. To illustrate, consider the following two 11-bit values v1 and v2

and a comparison constant c (with padding 0’s underlined):

v1 = (01000000 01100000)2

v2 = (00001111 10000000)2

c = (00010000 10000000)2

The evaluation is carried out in dk/8e iterations, with the j-th iteration

comparing the j-th most significant bytes of v’s and c. For the example, after

the j-th = 1st iteration, we know:

v
[1]
1 > c[1] and v

[1]
2 < c[1],

which allows us to conclude that (1) v1 > c and (2) v2 < c. So, v1 does not

satisfy the predicate but v2 does. In this case, we can early stop and skip the

next iteration. In general, when evaluating the predicate “v op c” (op = {<,>

,≤,≥,=, 6=}), we can early stop after the j-th iteration if v
[j]
i 6= c[j] for all vi’s.

Algorithm 1 delineates the pseudo-code of evaluating the LESS-THAN pred-

icate under ByteSlice. The algorithm takes a predicate “v < c” as input and

outputs a result bit vector R whose i-th bit is 1 if vi satisfies the predicate or

0 otherwise. Initially, the bytes of the constant c are broadcast to dk8e SIMD

words (Lines 1–3). Then, the algorithm scans the column codes segment-wise,

with each segment containing S/8 (i.e., 32, when S = 256) codes (Lines 4–18).

For each segment, the algorithm first prepares two S-bit segment-level result

masks Meq and Mlt. We interpret the bit-mask Mlt as a vector of S/8 banks,
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Algorithm 1 ByteSlice Column Scan (<)

Input: predicate v < c
Output: result bit vector R
1: for j = 1 . . . dk8 e do
2: Wcj = simd broadcast(c[j]) . Word with c’s j-th byte
3: end for
4: for every segment of S/8 codes vi+1 . . . vi+S/8 do

5: Meq = 1S . a mask of S 1’s
6: Mlt = 0S . a mask of S 0’s
7: for j = 1 . . . dk8 e do
8: if simd test zero(Meq) then
9: break . early stopping

10: Wj = simd load(v
[j]
i+1 . . . v

[j]
i+S/8) . load the j-th bytes

11: Mlt = simd cmplt epi8(Wj ,Wcj)
12: Meq = simd cmpeq epi8(Wj ,Wcj)
13: Mlt = simd or(Mlt, simd and(Meq,Mlt))
14: Meq = simd and(Meq,Meq)
15: end for
16: r = simd movemask epi8(Mlt) . condense the mask
17: Append r to R . Append S/8 results to final R
18: end for
19: return R

where all eight bits in the i-th bank are 1’s if vi < c or all 0’s otherwise. The

bit mask Meq is similarly interpreted for the condition vi = c. The algorithm

then examines the codes byte-by-byte through dk8e iterations (Lines 7–15). In

the j-th iteration, it first inspects the maskMeq to see if we can early stop (Lines

8–9).3 If not, it loads the j-th bytes of all the codes in the segment into a SIMD

register. It then executes two S/8-way SIMD instructions to determine the codes

whose j-th bytes are either (1) = c[j] or (2) < c[j] (Lines 10–12). The comparison

results are put into two local masks Meq and Mlt, which are subsequently used to

update the segment-level masksMeq andMlt, respectively (Lines 13-14). After

the iterations, the S-bit mask Mlt, which contains the segment’s comparison

results, is condensed to a S/8-bit mask r. This is done by converting each bank

3The instruction simd test zero() (Line 8) is implemented by the vptest instruction in
Intel AVX2.
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of all 1’s (0’s) in Mlt into a single bit of 1 (0) in r using the SIMD movemask

instruction (Line 16). Finally, the segment result r is appended to the final result

R (Line 17) before the processing of the next segment begins.

3.2.2 Other Comparison Operators

Algorithm 1 can be easily modified to handle other comparison operators

(e.g., ≤). The following presents how to extend Algorithm 1 to handle other

comparison operators:

GREATER-THAN (>) Replace the instruction simd cmplt epi8() by simd cmpgt epi8()

and rename the variable Mlt to Mgt.

EQUAL (=) Remove Line 11 (Mlt) and Line 13 (Mlt) from Algorithm 1. Use

the mask Meq instead of Mlt in Line 16.

NOT-EQUAL ( 6=) To evaluate NOT-EQUAL (6=), further negate r before

appending it to R in Line 17.

LESS-THAN-OR-EQUAL-TO (≤) and GREATER-THAN-OR-EQUAL-

TO (≥) Change Line 16 to

r = simd movemask epi8(simd or(Mlt,Meq)).

Ditto for GREATER-THAN-OR-EQUAL-TO (≥).

BETWEEN The BETWEEN predicate “c1 ≤ v ≤ c2” is evaluated by the con-

junction of two predicates: c1 ≤ v and v ≤ c2.
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3.2.3 Early Stopping

The early stopping condition (Line 8 in Algorithm 1) generally holds for all

comparison conditions. Consider a t that is a multiple of 8. ByteSlice would have

processed the t most significant bits of the codes in a segment after the (t/8)-th

iteration. With S/8 codes in a segment, ByteSlice can early stop at that point

if none of the codes in the segment matches the constant c in their t/8 most

significant bytes. Assuming that any bit of a code matches the corresponding bit

of c with a probability of 1/2, the probability, PBS(t), of ByteSlice early stopping

after the t most significant bits are processed is given by:

PBS(t) =
(
1− (

1

2
)t
)S

8 (3.1)

Bit examined (t) PVBP (t) PBS (t)

4 0.0000000668 -

8 0.3671597549 0.8822809129

12 0.9394058945 -

16 0.9961013398 0.9995118342

20 0.9997558891 -

24 0.9999847413 0.9999980927

28 0.9999990463 -

32 0.9999999404 0.9999999925

Expected Value scan 10.79 bits / code scan 8.94 bits / code

Table 3.1. Early stopping probability under S = 256

Table 3.1 compares the early stopping probabilities of VBP and ByteSlice.

For VBP, early stopping is checked for every τ = 4 iterations even though each

iteration handles one bit per code (see Section 2.3). So for VBP, only entries

for t that are multiples of 4 are shown. Similarly, ByteSlice processes 1 byte (8

bits) per iteration, so only entries of t that are multiples of 8 are shown. First,
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from the table, we see that ByteSlice’s early stopping probabilities are all larger

than 0.88. That is highly desirable because it implies that the conditional branch

given in Algorithm 1 Line 8 is highly predictable. Thus scans on ByteSlice incur

low branch mis-prediction penalty. Second, we see that the chance of VBP early

stopping at t = 4 is very slim (≈ 0). That means the one extra chance of early

stopping with VBP at t = 4 (compared with ByteSlice whose first chance is at

t = 8) is actually immaterial. Furthermore, we see that probability of ByteSlice

early stopping after the first bytes (i.e., t = 8) is much higher than that of VBP

(0.88 vs. 0.37). In fact, when S = 256, the expected number of bits that needed

to be scanned by ByteSlice and VBP are respectively 8.94 and 10.79 per code.

That is a difference of 1.85 bit per code. For the next generation SIMD whose

registers are double in width (S = 512), the expected number bits that needed

to be scanned by ByteSlice and VBP are respectively 9.78 and 11.96 per code.

That translates into an even bigger difference of 2.18 bit per code.

Higher early stopping probability not only helps saving instruction execu-

tions (and thus running time), but also helps reducing memory bandwidth con-

sumption. Consider a code width of k = 12, by referring to Table 3.1, the

expected bandwidth usage of ByteSlice is 0.88× 8 + (1− 0.88)× 16 ≈ 8.94 bits

per code. Similarly, the expected bandwidth usage of VBP, which has two early

stopping chances at t = 4 and t = 8, is ≈ 10.53 bits per code. HBP has no early

stopping. It packs b 64
k+1c = b6413c = 4 codes per 64-bit bank, resulting in 4×4 = 16

codes per 256-bit memory word. That means it consumes 16 bits bandwidth per

code. Bit-packed layout tightly packs the codes in memory. However, as scans

on BP has no early stopping either, its bandwidth usage is exactly k = 12 bits

per code.
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We now come back to the discussion of how tailing bits are handled: Option

1 (pad them up as a byte; Figure 3.1a) and Option 2 (using VBP; Figure 3.1b).

First, from our discussion above, we see that if a column is 9 < k < 16 bits wide,

there is a very high chance (>0.88) that a scan is early stopped after examining

the first bytes of codes. The choice between the two options therefore is insignif-

icant . In fact, we have tested the two options on TPC-H workloads and found

that the overall performance difference between the two options is very minimal.

Since Option 2 requires branching (to switch between ByteSlice and VBP for the

last byte)4 and it incurs a higher reconstruction cost for lookup, we recommend

Option 1. Similar arguments also apply to columns whose width is 8 bits or

less. In particular, scans and lookups on short codes generally consume very

few cycles, rendering the choice between the two options insignificant. Moreover,

our focus is actually more on columns with k > 8 because scans and lookups on

those columns consume much more cycles than on columns with k ≤ 8. That is,

columns with k > 8 are the ones that throttle the overall query performance and

being able to significantly reduce the cycles for them deserves more focus. Finally,

Option 2 (VBP) still has the drawback of higher lookup costs when comparing

with Option 1 (ByteSlice) after all. As we strive to reduce the code complexity

for the various operations on top of ByteSlice data, we generally recommend the

use of ByteSlice for all column widths.

4That would still increase the number of instructions even the branch can be eliminated
using JIT query compiling [27].
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Figure 3.2. Three approaches to handle conjunctions.
The labels 1© 2© 3©, etc. denote the execution sequence.

3.2.4 Evaluating Complex Predicates

We now discuss how complex predicates that involve multiple columns are

evaluated with ByteSlice. The baseline approach is to evaluate each predicate

separately and then combine their result bit vectors. Figure 3.2a illustrates the

baseline approach of evaluating a complex predicate col1 < 5 AND col2 > 18.

The final result bit vector R is obtained by intersecting the result bit vector R1

of evaluating predicate P1: col1 < 5 and the result bit vector R2 of evaluating

predicate P2: col2 > 18.

Another approach is to pipeline the result bit vector of one predicate eval-

uation to another so as to increase the early stopping probability of the subse-

quent evaluations [31]. In our context, there are two possible implementations
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of such pipelining approach. Figure 3.2b shows the column-first implementation

for the example above. After P1 evaluation is done on the whole column col1

(Steps 1© and 2©), its result bit vector R1 is pipelined to the evaluation of P2

on col2. This step can be implemented by modifying Algorithm 1 to (i) accept

a result bit vector Rprev and (ii) for each S/8-bits rprev from Rprev, execute an

instruction that inverses “simd movemask” to transform rprev into a 256-bit mask

Meq (See Line 16 of Algorithm 1). However, AVX2 does not provide such an

“inverse” movemask instruction, which has to be implemented using other in-

structions. To illustrate, consider a 32-bit result vector r = 0100 . . . 000 whose

bits except the 2nd one are all 0’s (false). To expand r into a 256-bit mask

00000000111111110 . . . 0, three instructions: simd shuffle epi8, simd and, and

simd cmpeq epi8 are executed as illustrated in Figure 3.3. The overhead of exe-

cuting these additional instructions, however, nullifies the benefit (e.g., efficiency

obtained through early-stopping) of ByteSlice. To eliminate this overhead, we

perform the following trick: Instead of “expanding” a pipelined 32-bit result vec-

tor rprev into a 256-bit maskMeq, we “condense”Meq to a 32-bit vector instead.

Algorithm 2 gives the pseudo-code of this column-first implementation for the <

comparison. Algorithm 2 is modified from Algorithm 1. Changes are made at

Lines 7, 9, and 18.

Figure 3.2c shows an alternate implementation of the pipelining approach.

We call this implementation predicate-first because it first processes all predicates

for each segment of S/8 values before moving on to the next segment. In Figure

3.2c, after P1 evaluation is done on a segment of S/8 codes from column col1

(Step 1©), the intermediate result M1
eq for those S/8 codes is pipelined to the

evaluation of P2 on col2 (Step 2©). Unlike the column-first implementation,
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Figure 3.3. Simulating “inverse” movemask instruction.

Algorithm 2 Column-First Scan (<) Pipelined

Input: predicate v < c
Input: result bit vector Rprev from a previous predicate
Output: result bit vector R
1: for j = 1 . . . dk8 e do
2: Wcj = simd broadcast(c[j]) . word with c’s j-th byte
3: end for
4: for every S/8 values vi+1 . . . vi+S/8 do

5: Meq = 1S . a mask of S 1’s
6: Mlt = 0S . a mask of S 0’s
7: rprev = Rprev[i+ 1 . . . i+ S/8] . extract from Rprev the S/8 result bits for this

segment
8: for j = 1 . . . dk8 e do
9: if (rprev & simd movemask epi8(Meq)) = 0 then

10: break . early stopping

11: Wj = simd load(v
[j]
i+1 . . . v

[j]
i+S/8) . load the j-th bytes

12: Mlt = simd cmplt epi8(Wj ,Wcj)
13: Meq = simd cmpeq epi8(Wj ,Wcj)
14: Mlt = simd or(Mlt, simd and(Meq,Mlt))
15: Meq = simd and(Meq,Meq)
16: end for
17: r = simd movemask epi8(Mlt) . condense the mask
18: Append (r & rprev) to R . Append S/8 results to final R
19: end for
20: return R
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this predicate-first implementation does not need to movemask back-and-forth

between rprev andMeq but simply pipelineMeq until all predicates are evaluated.

The column-first implementation cannot follow suit because it would have very

large memory footprint to hold theMeq’s of all segments until the next predicate

is evaluated. To reduce the memory footprint, the column-first implementation

must pipeline the condensed result bit vector instead.

The predicate-first implementation of the pipelining approach has its own

pros and cons. This implementation needs fewer movemask instructions but it

is more difficult for the compiler to optimize because the number of columns

involved in a complex predicate is unknown until run-time. Furthermore, it

switches to accessing another column for every S/8 values. As columns are

located in different memory regions, it thus incurs more cache conflict misses

(i.e., a useful cache line is evicted because another cache line is mapped to the

same entry).

To evaluate disjunction, in Algorithm 2, we change rprev to ¬rprev in Line

9. That is, only tuples that do not satisfy the previous predicate are considered.

Next, we change r & rprev to r | rprev in Line 18.

3.3 Lookup

Lookup in ByteSlice formatted memory data is simple. As each value is

sliced into several bytes, we stitch the bytes back together and remove the
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padding zeros at the end if needed (� and � are left shift and right shift):

vj =
( d k

8
e∑

i=1

(
BSi[j]� 8(dk

8
e − i)

))
� (8dk

8
e − k)

For example, looking-up (reconstructing) v2 in Figure 3.1 needs:

v2 =
(
BS1[2]� 8 +BS2[2]

)
� 5

=
(
000011112 � 8 + 100000002

)
� 5

= (00001111 10000000)2 � 5

= (00001111100)2

The above example involves two shifts, one addition and two memory reads.

Roughly, for each byte involved, it requires a left shift and an addition (or bitwise

OR). A right shift is probably needed at the end in order to remove padding

bits. The possibly incurred cache misses are bounded by dk8e. Since in TPC-

H most attributes could be encoded using fewer than 24 bits, a lookup usually

needs to handle no more than 3 bytes. Such a few instructions can be effectively

overlapped in the processor’s instruction pipeline, rendering its performance very

close to that of Bit-Packed and HBP layouts.



Chapter 4

Experimental Evaluation

4.1 Setup

Experiments are run on a personal computer with a 3.40GHz Intel i7-4770

quad-core CPU, and 16GB DDR3 memory. Each core has 32KB L1i cache, 32KB

L1d cache and 256KB L2 unified cache. All cores share an 8MB L3 cache. The

CPU is based on Haswell microarchitecture which supports AVX2 instruction

set. In the experiments, we compare ByteSlice with Bit-packed, VBP, and HBP.

Table 4.1 summarizes their properties. Collectively, these competitors represent

the state-of-the-art main memory storage layouts that support fast scans and

lookups. We implement all methods in C++. All implementations are optimized

using standard techniques such as prefetching. The programs are compiled using

g++ 4.9 with optimization flag -O3. Intel Performance Counter Monitor [22] is

used to collect the performance profiles. Unless stated otherwise, all experiments

are run in a single process with a single thread.

31
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Bit-packed VBP HBP ByteSlice

Scan

Complexity Θ(nbS ) O(nkS ) Θ( nb
Sbb/(k+1)c) O(8ndk/8eS )

Early Stop No Good No Strong

Lookup Good Poor Good Good

Table 4.1. Summary of Comparison

4.2 Micro-Benchmark Evaluation

For micro-benchmarking, we create a table T with one billion tuples. Values

in each column are by default uniformly distributed integer values between [0, 2k),

where k is the width of the column, and is equal to 12 by default.

4.2.1 Lookup

In this experiment, we compare the lookup performance on all layouts by

varying the code width k. We perform one million random lookups and report (1)

the average processor cycles per code and (2) the average number of instructions

per code. The results are shown in Figure 4.1. We can see that lookups on VBP

are significantly more expensive, in terms of both cycles and instruction, than

the other methods. The lookup cost of VBP increases linearly with k, because

every single bit of a VBP code is stored in a different memory word. A single

VBP lookup can cost up to 1800 cycles for large k values.

Lookups on Bit-packed, HBP, and ByteSlice data have comparable perfor-

mance. Although the cost of a lookup on ByteSlice data shall increase piecewise

linearly with dk/8e, that is almost not noticeable in the experimental result be-

cause (1) the code-reconstruction process under ByteSlice is so lightweight that
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Figure 4.1. Lookup Performance

overlaps with other instructions in the instruction pipeline and (2) the incurred

cache misses are bounded by dk8e.

4.2.2 Scan

In this experiment, we evaluate column scan performance on all layouts by

varying the code width k. The benchmark query is in the form of:

SELECT COUNT(*) FROM T WHERE T.v OP c

We first present experimental results for OP as <, =, and 6=. The constant

c in the WHERE clause is used to control the selectivity. By default we set the

selectivity as 10%, i.e., 10% of the input tuples match the predicate.

Figure 4.2a and Figure 4.2b report the scan cost in terms of processor cycles

per code and number of instructions spent per code respectively, when varying

the column code width k. As can be seen in Figure 4.2b, scans on ByteSlice

outperform all the other methods across all code widths in terms of the number



34 4.2. MICRO-BENCHMARK EVALUATION

 0

 1

 2

 3

 0  4  8  12  16  20  24  28  32

C
y
cl

e
s/

co
d
e

Code width (# of bits)

<
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 0  4  8  12  16  20  24  28  32

C
y
cl

e
s/

co
d
e

Code width (# of bits)

=
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 0  4  8  12  16  20  24  28  32

C
y
cl

e
s/

co
d
e

Code width (# of bits)

≠
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 4

 5

 0  4  8  12  16  20  24  28  32

In
st

ru
ct

io
n
s/

co
d
e

Code width (# of bits)

<
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 4

 5

 0  4  8  12  16  20  24  28  32

In
st

ru
ct

io
n
s/

co
d
e

Code width (# of bits)

=
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 4

 5

 0  4  8  12  16  20  24  28  32

In
st

ru
ct

io
n
s/

co
d
e

Code width (# of bits)

≠
Bit-Packed

HBP
VBP

ByteSlice

(a) Cycles (b) Instructions

Figure 4.2. Scan Performance of <,= and 6= (10%)
(a) Execution Time and (b) Number of Instructions versus Code Width

of instructions. This translates into ByteSlice excellent performance in terms of

cycles per code in Figure 4.2a. Scans on ByteSlice and VBP outperform scans on

HBP and Bit-packed because of early stopping. For the same reason, increasing

the code width does not significantly increase the scan costs on ByteSlice and

VBP because scans are usually early stopped after examining early bytes for

ByteSlice and early bits for VBP. When the code width is 22 ≤ k ≤ 30, scans

on HBP have the worst performance because starting from there, a 64-bit SIMD

bank can hold only two codes. The benefit of 2-way intra-bank parallelism turns



CHAPTER 4. EXPERIMENTAL EVALUATION 35

out to be outweighed by the penalty of executing instructions that are required

by HBP’s scan algorithm. When the code width k = 32, a 64-bit SIMD bank

can hold only one code (because HBP requires one extra delimiter bit per code).

Consequently, a scan on HBP gains no advantage but overhead, explaining its

abrupt rise in running time.

Scan performance of ByteSlice with other predicate types: GREATER-

THAN(>), GREATER-THAN-OR-EQUAL-TO (≥) and LESS-THAN-OR-EQUAL-

TO (≤), are reported in Figure 4.3. As we can see, the results are similar to the

previous predicates we reported in Figure 4.2.

Figure 4.4 shows the effectiveness of early stopping when performing scans on

VBP and ByteSlice. From Figure 4.4a, we see that (1) early stopping indeed bring

performance improvement to both VBP and ByteSlice, and (2) without early

stopping, scans on ByteSlice still perform better than scans on VBP because the

former consumes fewer instructions than the latter (Figure 4.4b). In addition,

when early stopping is switched on, VBP plateaus at about t > 12 bits and

ByteSlice plateaus at about t > 8 bits. This is consistent with our probability

analysis in Table 3.1.

As the example given in Section 3.2 illustrated, given a scan query such

as v < c, early stopping in ByteSlice (as well as in VBP) is most effective if

the data values of a given segment are different from the query constant c in

their more-significant bytes. That is, when the data values are not close to the

query constant. Let us define data density at a value c to be the fraction of the

column data values that are close to c. Skewness in data distribution affects

the effectiveness of early stopping in VBP and ByteSlice scan because a skewed
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Figure 4.3. Scan Performance of >,≥ and ≤ (10%)

 0

 1

 2

 0  4  8  12  16  20  24  28  32

C
y
cl

e
s/

co
d
e

Attribute Code Width (# of bits)

ByteSlice
VBP

ByteSlice w/o ES
VBP w/o ES

 0

 1

 2

 3

 0  4  8  12  16  20  24  28  32

In
st

ru
ct

io
n
s/

co
d
e

Attribute Code Width (# of bits)

ByteSlice
VBP

ByteSlice w/o ES
VBP w/o ES

(a) Cycles (b) Instructions

Figure 4.4. Effectiveness of Early Stopping (ES) on Scans: VBP and ByteSlice
(T.v < c)



CHAPTER 4. EXPERIMENTAL EVALUATION 37

data distribution implies regions of high data density and regions of low density.

More specifically, given a query constant c, if the data values are skewed towards

c (i.e., the data density at c is high), then early stopping will be less effective.

On the other hand, if data values are skewed away from c (i.e., the data density

at c is low), early stopping is most effective.

To illustrate, we first repeat experiments in Figure 4.2 with different selec-

tivities: 1% and 90%. The results are shown in Figure 4.5 and Figure 4.6. We

see, under uniformly distributed data, the scan performance is not affected by

the query selectivity, because the data density is the same on all values.

We then generate data values following a Zipfian distribution and change

the skew factor from zipf = 0 (uniform distribution) to zipf = 2 (heavily skewed

distribution). Figure 4.7a shows the running time for the predicate T.v < c

with c set as 0.1×2k by default. We see that ByteSlice consistently outperforms

all other methods under all skewness. Moreover, as the skew factor increases,

the running times by ByteSlice and VBP decrease. This is because for the Zipf

distribution, increasing the skew factor has the effect of shifting the data density

to the small values of the domain. With the fixed value of c (which is 10% of the

value domain) chosen in the experiment, increasing the skewness causes the data

density at c to become smaller, which makes early stopping more effective. This

explains why the running time of ByteSlice (and VBP) improves when the data

is getting more skewed. Figure 4.7b shows that the running times of ByteSlice

and VBP decrease when we vary c under zipf = 1 skewed data. When c is small

(e.g., when the selectivity of the query v < c is 20%), the query constant lies

in the dense region of the zipfian curve. Hence, early stopping is less effective,

resulting in higher running times of ByteSlice and VBP. When c is large (e.g.,
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Figure 4.5. Scan Performance (1%)
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Figure 4.6. Scan Performance (90%)

when selectivity is 80%), the query constant lies in the sparse region of the

zipfian curve, resulting in very effective early stopping and very low running

times. Figure 4.7c shows that the running times of ByteSlice and VBP does

not vary when we vary c under uniformly distributed data. This is because the

data density is uniform across the domain and hence the effectiveness of early

stopping stays constant.
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Figure 4.7. Scan Performance (T.v < c) with Data Skew

4.2.3 Complex Predicates

In this experiment, we study the performance of the two implementations of

the pipeline approach (column-first and predicate-first) and the baseline approach

(i.e., no pipeline) when evaluating complex predicates on ByteSlice data. The

WHERE clause of the benchmark query is in the form of:

WHERE T.col1 < c1 AND T.col2 > c2

For both implementations of the pipeline approach, the predicate T.col1 <

c1 is evaluated first and its result is pipelined to the predicate T.col2 > c2. In

the experiment, we fix the constant c2 to a value so to let the predicate col2
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> c2 to have a selectivity of 50%. We then vary the value of c1 in order to

control the selectivity of the predicate col1 < c1. Figure 4.8a shows the results

in terms of cycles per tuple.1 We see that the column-first pipeline implementa-

tion, BS(Column-First), is the most efficient method of supporting conjunction

evaluation, under all selectivities. When the predicate T.col1 < c1 becomes

more selective (i.e., from 50% to 0.1%), the running time of evaluating the whole

query decreases because the evaluation of predicate T.col2 > c2 runs faster by

a higher early stopping chance. As expected, the predicate-first pipeline im-

plementation, BS(Predicate-First), is not fruitful because its code path involves

more branches. Furthermore, Figure 4.8b shows that the predicate-first pipeline

implementation has more cache misses, due to accessing different memory re-

gions more frequently than the column-first approach (Section 3.2.4). We have

got similar results when evaluating disjunctions. We thus suggest the use of

column-first pipeline implementation when evaluating complex predicates under

ByteSlice.

The different approaches for disjunction is also studied with a predicate in

the form of:

WHERE T.col1 < c1 OR T.col2 > c2

Similarly to conjunction, we fix the selectivity of col2 and vary the selectiv-

ity of col1. Slightly unlike conjunction, in disjunction, a predicate only considers

those tuples that did not pass the previous predicate. Therefore, a high selec-

tivity of col1 helps to increase the early stopping probability of col2, and thus

1 The results of Bit-Packed, VBP, and HBP are also included in the figure as a reference.
Bit-Packed has the lowest cache miss (Figure 4.8a) merely because it is the slowest — as it
processes the data slowly, it leaves sufficient time for the memory subsystem to (pre)-fetch the
next item into the cache/instruction pipeline.
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Figure 4.8. Evaluation of Complex Predicate (Conjunction)

reducing execution time. This is confirmed by the results reported in Figure 4.9.

Again, we observe that the column-first pipeline implementation outperforms the

other alternates. We conclude that it is the consistently best choice of complex

predicate evaluation approach. Experimental results for Bit-Packed, HBP and

VBP in Figure 4.9 are also similar to conjunction results in Figure 4.8.

4.2.4 Multi-Threading

In this experiment, we study the performance of using multiple threads to

carry out scans on all layouts. Parallelizing data scans on multi-core is known to

be straightforward. We simply partition data into chunks and assign chunks to

the threads. Our CPU is quad-core, so we turn on simultaneous multi-threading

(SMT) and vary the number of threads from one to eight.



CHAPTER 4. EXPERIMENTAL EVALUATION 43

 0

 0.5

 1

 1.5

 2

99.5% 99% 95% 90% 50% 10%

C
y
cl

e
s/

tu
p
le

(a) Cycles

Bit-Packed 
HBP

VBP
BS (Baseline)

BS (Predicate-First)
BS (Column-First)

 0

 0.01

 0.02

 0.03

99.5% 99% 95% 90% 50% 10%L2
 C

a
ch

e
 M

is
se

s/
tu

p
le

(b) L2 Cache Misses
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Figure 4.10 shows the average scan throughput (number of codes processed

per cycle) under the 4 memory layout schemes. The numbers shown are obtained

by averaging the throughputs measured when the code width k is varied from

1 to 32 bits. From the figure, we can see the throughputs of all the schemes

increase when more threads are used. The four schemes allow efficient data

processing and thus they are utilizing the memory bandwidth very effectively.

Computations become memory-bound when four threads are used. Among the

four schemes, ByteSlice and VBP are extremely effective in using the memory

bandwidth. In our experiment, we measured the bandwidth utilization under

different scenarios. For example, we found that HBP, VBP and ByteSlice used

more than 50% of the available memory bandwidth with a single thread. When

two threads are used, HBP and VBP used more than 70% of the bandwidth and

ByteSlice used more than 98% of the bandwidth. This explains the scale up

behaviors of all schemes as shown in the figure. As mentioned in [31], effective

bandwidth utilization is a key advantage of sophisticated storage layout schemes

because one can fully exploit the potentials of high-end memory subsystems

(which the in-memory appliances have) effectively. From our results, we see that

ByteSlice takes this advantage to the next level.

When data processing has reached a state of memory-bound (such as when

we are running many threads), ByteSlice still exhibits clear advantage over other

schemes in throughput. As we have analyzed in Section 3.2.3, the early stopping

properties of ByteSlice and VBP allow them to process codes without processing

all the bits. This greatly improves their throughputs, especially for ByteSlice.

HBP and Bit-packed offer no early stops and so their bandwidth usages increase

with the code width k. Moreover, HBP uses delimiters and padding bits, it thus
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consumes even more bandwidth than Bit-packed in general. Consequently HBP

gives the lowest throughput among the 4 schemes. When SMT threads are used,

HBP’s throughput further drops due to resource contention.

4.3 TPC-H Benchmark Evaluation

We have also evaluated the overall performance of the methods using TPC-H

benchmark [39]. The experiments are run on a TPC-H dataset at scale factor 10.

To focus only on scans and lookups, we follow [32] to materialize the joins and

execute the selection-projection components of the queries. Queries that involve

string similarity comparison LIKE are discarded.

4.3.1 Overall Speed-up

Figure 4.11 shows the experimental results for default distributed data. The

results are presented as speed-up over the bit-packed layout. When queries are

not highly selective (e.g., Q1, Q14, Q15; whose selectivity ≥ 1%), ByteSlice

layout yields the best performance for all tested queries because of its excellence

on both scans and lookups. VBP performs worst and even worse than bit-packed

because the lookup time dominates the query time, which unveils the poor lookup

issue of VBP.

4.3.2 Query Time Breakdown

Figure 4.12 reports the execution time breakdown of TPC-H queries in Fig-

ure 4.11. The run time of each query is dissected into scan cost and lookup cost.
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Figure 4.11. Speed-up over Bit-Packed on TPC-H Queries
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Figure 4.12. Execution Time Breakdown for TPC-H Queries.
Y-axis reports cycles per tuple.
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The reported numbers have been normalized on a per tuple basis.

We could see that TPC-H benchmark has both scan-dominant (e.g., Q4

and Q19) and lookup-dominant (e.g., Q1) queries. A couple of queries sit in

the middle with different weights on the two operations. The results show that

ByteSlice strikes an excellent balance between scan and lookup across industrial-

strength TPC-H workload.

4.3.3 TPC-H Skew Data

Experiments are also run on skewed TPC-H data. Data generator from [10]

is used to generate Zipfian TPC-H data with skew factor zipf = 1 and 2. Both

skewed data sets are of scale factor 10GB.

The results are shown in Figure 4.13. The experimental results are still

consistent — TPC-H queries on ByteSlice data outperform the other methods

across the whole workload under different degrees of skewness.

4.4 Real Datasets Evaluation

In the following experiments, experiments are run using two real data sets,

ADULT and BASEBALL. ADULT [2] is a single-relation demographic data set

extracted from the 1994 Census database. BASEBALL [29] is a multi-relation

data set that contains statistics for Major League Baseball from 1871 to 2013.

The queries on that two real datasets are extracted from [38]. We discard queries

that have no selection clauses.
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Figure 4.13. Speed-up over Bit-Packed on TPC-H Queries with Zipfian Data.

Figure 4.14 shows the experimental results on that two datasets. Again, we

see that ByteSlice outperforms all competitors.
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Figure 4.14. Performance of Different Layouts on Two Real Data Sets: ADULT
(Queries A*) and BASEBALL (Queries B*).
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Chapter 5

Related Work

The PAX (Partition Attributes Across) layout [1] was one of the first stud-

ies on in-memory storage layout, which underlines the importance of processor

architecture (e.g., cache and memory bandwidth utilization) in main memory

processing. The motivation behind PAX is to keep the attribute values of each

record in the same memory page as in traditional N-ary Storage Model (NSM),

while using a cache-friendly algorithm for placing the values inside the page.

PAX vertically partitions the records within each page, storing together the val-

ues of each attribute in “minipages”, combining inter-record spatial locality and

high data cache performance at no extra storage overhead. The PAX idea has

been generalized in Data Morphing [19], which partitions the data based on the

query load.

PAX and Data Morphing were storage layouts developed for row-stores. In

the past decade, the analytical market has been dominated by pure column-

store systems like Vertica [30], MonetDB/X100 [9], and SAP HANA [14]. In
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current main-memory column store implementations like Vectorwise [45] and

SAP HANA, base column data by default are stored in standard data array

[9]. Recently, the Bit-Packed storage layout [42, 41] was proposed to store the

base column data in a tightly bit-packed manner in memory. By doing so, the

memory bandwidth usage can be reduced when scanning (filtering) the base

data columns. Li and Patel [31] proposed the Vertical Bit Packing (VBP) and

Horizontal Bit Packing (HBP) layouts, which store the base column data in a way

that fully exploits the intra-cycle parallelism in modern processors to accelerate

scans. Later on, aggregations that leverage intra-cycle parallelism on VBP and

HBP are also developed [15].

In current main-memory column store implementations, when an operator

reads input produced from another operator, the input is assumed to be format-

ted using standard data array [26, 7, 8, 4, 3, 37, 12, 43, 21, 11, 35]. Under that

implementation, after a lookup operation has retrieved a code from the base col-

umn, the code (together with its record number) is inserted into an array of, say,

struct {int32; int32;}. Subsequent operations like joins, aggregations and

sorts would then take the array as inputs. Since these operators are not directly

processing data straight from the base columns, their performances are indepen-

dent of the storage layout of the base columns. Take join as an example. Existing

hardware-conscious join algorithm [26, 7, 8, 4] all assume that their input is an

array of <RecordID, JoinKey> pairs. Both RecordID and JoinKey are 32-bit

integers. When a join is carried out, their major concern is to avoid excessive

TLB misses and cache misses, and to reduce synchronization overheads among

multi-threads. To this end, many works have engineered efficient partitioning

algorithms. Kim et al. [26] proposed a lock-free histogram-based partitioning
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scheme that aims to parallelize on multi-core architectures. Moreover, they limit

the partitioning’s fan-out to the number of TLB entries so as to avoid TLB misses.

They also exploit SIMD to accelerate hash computation. [4, 35] increased the

partitioning fan-out without sacrificing performance by using an in-cache write

buffer. Existing hardware-conscious aggregation algorithms [37, 12, 43] also as-

sume input arrays of the form <GroupByKey, Value>. Since the the aggregate

value (e.g., min or sum) would be updated by multiple threads concurrently, their

major concern is to reduce the locking and contention overheads. A variety of

approaches are investigated in [37, 12, 43]. For example, one can allocate a

private aggregate buffer to each thread and merge them in the end. Likewise,

existing hardware-conscious sorting algorithms [21, 11] also assume an array of

<SortKey, RecordID> as input. When the sorting is carried out, the main con-

cern is to exploit on-chip parallelism (e.g., SIMD) and to minimize cache misses

and memory accesses. All these works are orthogonal to ByteSlice because they

mostly read intermediate data (arrays) generated at runtime but not the base

column data in ByteSlice format. Nonetheless, we envision that ByteSlice has

the potential of being a representation of intermediate data as well. In that case,

operations like partitioning and sorting could potentially benefit from ByteSlice.

We will further elaborate this idea in Chapter 6.

Finally, a latest trend of main memory column stores is to pre-join tables

upfront and materialize join results as one or more wide tables [45, 32]. Queries on

the original database, even complex join queries, can then be handled as simple

scans on wide tables. Such a denormalization approach would not incur much

storage overhead in the context of column stores because of the various effective

encoding schemes enabled by columnar storage. In [32], it was shown that such
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a “Denormalization + Columnar + VBP/HBP scans” combo can outperform

MonetDB and Vectorwise on TPC-H without using much extra storage. The

idea of wide table (denormalization) can also be applied to us, resulting in a

“Denormalization + Columnar + ByteSlice scan/lookup” combo. We plan to

investigate the performance of this combo in our future work.



Chapter 6

Conclusion and Future Work

Recently, there is a resurgence of interest in main memory analytic databases

because of the large RAM capacity of modern servers (e.g., Intel Xeon E7 v2

servers can support 6TB of RAM) and the increasing demand for real-time ana-

lytic platforms. Existing in-memory storage layouts for columnar either acceler-

ate scans at the cost of slowing down lookups or preserving good lookup perfor-

mance with less efficient scans. This thesis proposes ByteSlice, a new in-memory

storage layout that supports both fast scans and fast lookups. Experiments show

that scans on ByteSlice can achieve 0.5 process cycle per column value, a new

limit of main memory data scan, without sacrificing lookup performance. Exper-

iments on TPC-H workload shows that ByteSlice outperforms all state-of-the-art

approaches and can be up to 3X to 10X faster than existing approaches.

The research of main memory column stores is still ongoing. In current

main memory column stores like Vectorwise and SAP HANA, operations other

than scan and lookup do not expect their input data being formatted using any
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specialized layout other than arrays. This thesis also envisions that ByteSlice

could be used as a layout for intermediate result as well. That is, the lookup

operations retrieve codes from ByteSlice-formatted column and construct inter-

mediate results in ByteSlice format. In that case, operations such as partitioning,

sorting and searching could potentially benefit from ByteSlice. In the following,

we briefly outline the idea:

Partitioning Partitioning data is an essential step of many operations in main

memory database including joins and aggregations. The state-of-the-art parti-

tioning method is multi-pass hash radix partitioning [26, 7, 4, 3, 35]. During

each pass, it partitions a key k based on R of the radix bits of k’s hash value

and assigns k to one of the 2R partitions. When partitioning a chunk of data D

in parallel (e.g., latching a partition and chaining), the partitioning first scans

the data once, computes the hash values of keys, and builds a histogram of the

partitions’ sizes. Based on the histogram and the degree of parallelism, a write

cursor over the buffer is designated for each partition. Next, the partitioning

operation scans the data the second time in parallel, computes the hash values

of keys again, and inserts the keys into corresponding positions of the output

buffer. In the process, hash values computation are done twice. Hash values

computation can be vectorized using SIMD. In [26], keys are represented using

standard data types (32-bit integers) and thus the hash value computation can

be run in S/32 = 8-way parallelism on AVX2. If the input data of a partition

operation are formatted using (8-bit) ByteSlice, the parallelism of hash value

computation can be improved to S/8 = 32-way on AVX2. To do so, we simply

need to devise hash functions that take as input a code and return a byte-wide

hash value. For example, if a code v is in 12-bit and is stored using ByteSlice, a
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hash function could be in the form:

h(v[1], v[2])

The hash function h shall return a 8-bit (a byte) hash value. One byte hash

value is indeed sufficient because each pass of the partitioning generates only 2R

partitions. In [26], it is advised that R should be bound by 2NTLB to avoid TLB

thrashing (NTLB is the number of entries in L1 TLB). On modern architectures,

L1 TLB seldom contains more than 64 entries, so R ≤ 8. Hence, a hash value

of 8 bits is sufficient to generate 2R partitions. For another pass, we can simply

use a different function h(·).

Sorting One powerful sorting algorithm for main-memory databases is radix

sort [40, 35]. For example, consider sorting 16-bits (2-byte) codes. 0x7000,

0xA005, 0xB005, 0x0091 (for illustration, we use hexadecimal notation here). If

the input data are formatted using ByteSlice, we shall have two ByteSlices BS1

and BS2.

BS1 : 70 A0 B0 00

BS2 : 00 05 05 91

where BS1 and BS2 hold the most and the least significant bytes of the values,

respectively. In this case, we can employ a least-significant-byte radix sort. In the

first iteration, it sorts on ByteSlice BS2. After shuffling, in the second iteration,

it sorts on the (shuffled) ByteSlice BS1. ByteSlice provides acceleration in each

iteration by leveraging the accelerated partitioning implementation we mentioned

in above. We sort on ByteSlice BS2 in the first iteration and sort on BS1 in the

second iteration. By having data stored in the ByteSlice format, after sorting a
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ByteSlice in an iteration (e.g., sorting BS2 in the first iteration), that ByteSlice

does not need to stay in the working set anymore. We can therefore progressively

reduce the memory footprint of radix sort as we proceed through the iterations.

Searching Searching is to find all matches of a search key in a list of values.

It is a basic operation employed by many other operations like nested loop joins

and is used in the probe phase of hash joins. Native SIMD-accelerated searching

algorithms are introduced in [44], where keys and values are stored using standard

data type (32-bit integers), resulting in a S/32 = 8-way SIMD search in AVX2.

If the input data are formatted using (8-bit) ByteSlice, a search can simply be

regarded as a scan with the EQUAL(=) predicate. As such, search can enjoy

S/8 = 32-way parallelism with early stopping offered by ByteSlice. This idea

can even be used as an indexing method to index specific column(s) [31].



Chapter 7

Appendix

7.1 (8-bit) ByteSlice vs. 16-bit-Slice

This thesis selects 8 instead of 16 as the bank width because attributes in

real-world workloads are usually encoded using 24 bits or fewer. For example,

we found that 90% columns in TPC-H are shorter than 24 bits after encoding.

All columns in the two real datasets that we used in the experiments are shorter

than 20 bits after encoding. When column widths fall into that range:

1. Using 16-bit bank width could consume more storage space than 8-bit

bank. For example, a 20-bit attribute consumes 3×8 = 24 bits/code under

ByteSlice but 2× 16 = 32 bits/code if 16-bit banks are used.

2. Using 16-bit bank width could only leverage 16-way (if S = 256) parallelism

while using 8-bit bank width could leverage 32-way (if S = 256) parallelism.

3. Using 16-bit bank would not reduce lookup overhead much comparing with
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Figure 7.1. Lookup (a) and Scan (b) performance of using 16 bits as the bank
width.

using 8-bit bank. For example, looking up a 20-bit attribute under 16-bit

bank requires accessing 2 memory words whereas looking up a 20-bit at-

tribute under 8-bit bank requires accessing 3 memory words. That differ-

ence could easily be overlapped in the instruction pipeline.

Moreover, using 32 as the bank width is meaningless because it simply de-

grades to the naive SIMD approach.

The above claims are verified by implementing 16-bit-slice and comparing

its scan and lookup performance with (8-bit) ByteSlice and VBP. Figure 7.1

shows that (8-bit) ByteSlice always outperforms 16-bit-slice in scans and have

very close performance in lookup. Based on empirical evaluation we use 8 as the

bank width in this thesis.
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