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Abstract 

 
Weft-knitted spacer fabrics are textile structures commonly consisting of two outer layers 

that are connected by spacer yarns. As a potential substitute for traditional foams in anti-

vibration applications such as gloves and cushion pads, they are superior in terms of air 

permeability and thermoregulation. In former studies, spacer fabric with top-loaded mass 

was simply treated as a one-degree-of-freedom mass-spring-damper system. However, 

due to the nonlinear elastic force of spacer fabric, linear vibration models are only valid 

for very small excitation levels. To investigate its vibration performance under large 

excitations, nonlinear force-displacement relationship is considered in building the 

equation of motion, where models containing the symmetric elastic force and the 

asymmetric elastic force are compared. Besides, the viscoelasticity of spacer fabric is 

represented by a fractional derivative term.  

 

This study follows a procedure as below. Firstly, weft-knitted spacer fabrics with 

structural variations are manufactured. Secondly, forced vibration experiments are carried 

out under different excitation levels and load mass. Thirdly, theoretical models concerned 

with the nonlinear elastic force-displacement relationship and the viscoelasticity of spacer 

fabric are established, and then model parameters are identified by fitting models with 

experimental results. Fourthly, the effects of model parameters on frequency response 

curves are analysed. Moreover, numerical simulations are also presented for solving the 

periodic solutions and the aperiodic solutions. 
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Weft-knitted spacer fabrics were firstly knitted on a STOLL CMS 822 computerized flat 

knitting machine of gauge 14. Polyester monofilaments tucked alternately on two outer 

layers, forming a convoluted structure. The difference in fabric structure was achieved by 

varying the tucking distance of monofilaments, and thus two fabric structures were 

obtained. Two identical fabrics were laminated into one sample in order to balance the 

transverse shift of fabric under vertical force. 

 

In vibration experiments, sine sweep tests were carried out using an electromagnetic 

vibration exciter to record the acceleration transmissibility curves of the mass-spacer 

fabric systems. The influences of load mass, fabric structure and excitation level were 

studied. Results show that increasing the weight of load mass initially shifted the 

resonance frequency to lower values but then it rose again. Thicker spacer fabric exhibits 

better force isolation performance. It was also revealed that with a light load mass, 

increasing the vibration level could give rise to a nonlinear softening type of 

transmissibility curve, and a broadened isolation region could also be achieved. 

 

To build the equation of motion under forced harmonic vibration, nonlinear stiffness terms 

were applied. Phenomenological models with the symmetric elastic force and with the 

asymmetric elastic force were studied separately. The major difference lies in the 

quadratic stiffness term which breaks symmetry in the elastic force-displacement 

relationship. Besides, viscoelasticity was expressed as a fractional derivative term in both 

models. The frequency-domain solutions to the equations of motion were obtained using 

harmonic balance method (HBM) with the first-order approximation. The effects of model 

II 
 



parameters on the transmissibility and amplitude-frequency curves were analysed. 

 

Next, model parameters were identified by fitting theoretical models with experimental 

results. Root mean square error (RMSE) was adopted as the indicator of goodness of fit. 

Issues including the highest-order stiffness coefficient, the physical significance of the 

fractional order and the model redundancy were discussed. RMSEs using the symmetric 

model and the asymmetric model were compared. Results showed that the asymmetric 

model performed slightly better than the symmetric model. Moreover, the fractional 

derivative term improved the goodness of fit to a certain extent. 

 

Following parameter identification, MATLAB/Simulink block diagram was utilized to 

obtain periodic solutions of the equation of motion. The difference in the frequency 

response curves between using numerical simulation and the HBM approximation was 

explained. Besides, bifurcation and chaotic motions are also observed numerically with 

varied conditions.  

 

In brief, the vibration behavior of weft-knitted spacer fabric has been explored with the 

use of experimental, analytical and numerical methods. Nonlinear softening phenomenon 

is correlated with the polynomial force-displacement relationship. And the fractional 

derivative term is used to account for the viscoelasticity in the system. This study provides 

a better understanding of the vibration behavior of weft-knitted spacer fabric, and 

experimental data benefiting applied research in the future. 
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Chapter 1 

 CHAPTER 1 INTRODUCTION 

 

1.1 Motivations 

Weft-knitted spacer fabric consists of two outer layers connected by spacer yarns. The 

outer layer can be regular weft-knitted structures, and the connecting yarns enable the tuck 

stitches to form a spacer layer. It provides excellent thermophysiological comfort due to 

its superior air permeability and thermoregulation. Besides, the outer layer structure, the 

spatial structure of spacer yarns and materials used can be readily changed during knitting. 

Thus, weft-knitted spacer fabric can adapt to the requirements of various mechanical 

properties. Due to its versatility and thermal comfort, it is made into various products such 

as compression bandages that prevent chronic leg ulcers.  

 

In the similar context, it shows rising potentials in anti-vibration applications. Compared 

with regular passive vibration isolation materials such as rubber and polyurethane foams, 

weft-knitted spacer fabric is more suitable for uses that contact with human body. 

Different parts of the human body are sensitive to vibrations of different frequency 

components. To buffer sportive and occupational vibrations, spacer fabric can be made 

into knee braces, shoe materials, vehicle seats and anti-vibration gloves. For instance, for 

drillers working with electrical and pneumatic power tools, hand arm vibration syndrome 

(HAVS) such as pains and loss of strength in the joints and the vibration white finger 

(VWF) can occur in consequence of exposure to vibrations containing harmful 
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frequencies. Wearing anti-vibration gloves helps reduce the magnitude of vibration 

exposure so as to avoid occupational diseases.  

 

There are a few studies on the vibration behaviors of knitted spacer fabrics, and most of 

them are concerned with free vibrations under impact force. For instance, Arabzadeh et 

al. 1 built mathematical models for the free vibration of multi-layer warp-knitted spacer 

fabrics under impact. They found that decreasing the fineness and length of 

monofilaments and increasing their density will increase the transmitted force. Blaga et 

al. 2, 3 used impact tests to study the dynamic response of weft-knitted and warp-knitted 

spacer fabrics regarding transmissibility curves in different fabric directions. Liu and Hu 

4 studied the vibration isolation properties of warp-knitted spacer fabric top-loaded with 

mass, and found that the natural frequency measured by vibration test matched with the 

quasi-static compression curve. In these studies, spacer fabric with top-loaded mass was 

simply treated as a linear mass-spring-damper system. The same authors 5 also progressed 

the study by experimentally investigating the vibration isolation properties of different 

warp-knitted spacer fabrics top-loaded with varied masses under harmonic excitation by 

considering the spacer monofilaments as Euler springs, and found that a thicker fabric has 

better vibration isolation performance due to lower resonant and isolation frequencies.  

 

Nevertheless, the linear mechanism only applies to the elastic force of weft-knitted spacer 

fabric for very small displacements. The linear vibration model loses its validity when the 

excitation force F   is large. In fact, nonlinear mechanical behavior is a common 

phenomenon for many materials and systems, especially for the polymeric materials. The 
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nonlinear elastic force-displacement relationship for polymeric materials has been 

extensively studied. For instance, the LS model 6 divides the typical compression stress-

strain response of polymer foam into three regions, elastic region, collapse region and 

densification region. Other models include the tangent function model 7 and the 

polynomial models of various types. These complex models are quite suitable for 

describing the quasi-static compression behavior of material. Nonlinear elastic force 

needs also to be taken in account in building the equation of motion under forced vibration. 

The topic of nonlinear vibration is not new, which has been studied widely for the design 

and optimization of nonlinear isolators that have a better performance in vibration 

isolation, as compared with the linear equivalent isolators. These nonlinear isolators 

include negative stiffness systems and buckled beams that exhibit high-static-low-

dynamic stiffness, which will be reviewed in detail in Chapter 2.  

 

For a linear system under harmonic excitation, the equation of motion has the form of 

mx+cx+kx = Fcos tω  ,                                                                                                (1.1) 

where c  is the viscous damping coefficient, k  is the linear stiffness coefficient, F  is the 

excitation force, and ω  is the driving angular frequency. The resonance frequency rf  of 

this system is 

1
2r

kf
mπ

= .                                                                                                               (1.2) 

Assuming 1m c F= = =  and 20k =  in Equation (1.1), the black curve in Figure 1.1(a) 

illustrates the amplitude-frequency relationship for this linear mass-spring-damper system. 

The resonance frequency rf  is 0.71, according to Equation (1.2). Vibration is amplified 

3 
 



Chapter 1 

at resonance and attenuated at higher frequencies. In fact, high frequency components are 

relatively easy to isolate, while low frequency components are relatively difficult to 

isolate. Thus, vibration isolation in the low frequency range calls for more attention. 

Figure 1.1(b) gives the corresponding elastic force-displacement curve of this linear 

system as shown also in black, which is obviously a straight line.  

 

On the other hand, two examples of force nonlinearities are shown in Figure 1.1(b) in red 

and blue, assuming the absolute value of the cubic stiffness coefficient 3k  =100. In a 

softening nonlinear system, the elastic force becomes 3
3kx k x−  . The corresponding 

resonance peak of the amplitude-frequency curve deviates from the linear resonance peak 

and bends to the left, as shown in Figure 1.1(a) in red. In contrast, in a hardening nonlinear 

system, the elastic force becomes 3
3kx k x+ . The corresponding resonance peak of the 

amplitude-frequency curve deviates from the linear resonance peak and bends to the right, 

as shown in Figure 1.1(a) in blue. The peak amplitudes for the three systems are different. 

The nonlinear system with softening elastic force exhibits the largest peak amplitude 

while the nonlinear system with hardening elastic force exhibits the smallest peak 

amplitude, which can be explained by the largest overall stiffness in a hardening system.  
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Figure 1.1 (a) Softening and hardening cubic nonlinearities cause resonance peak in the 

amplitude-frequency curve to bend to the left and to the right, respectively. 

 

 

Figure 1.1 (b) The corresponding elastic force-displacement curves. 
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It is visible that the vibration behavior of weft-knitted spacer fabric is also nonlinear due 

to the nonlinearity of its elastic force. However, such phenomenon may not receive great 

attention. This study attempts to investigate the nonlinear response of weft-knitted spacer 

fabric under forced harmonic vibration. The vibration behavior of weft-knitted spacer 

fabric is closely related with fabric structure. Besides nonlinear elastic force, the time-

dependent property of polymeric materials should be considered as well. For this, Deng 

et al. 8, 9 have used the hereditary model and the fractional derivative model for flexible 

polyurethane foam. In this study, the fractional derivative term will be adopted to 

represent the viscoelasticity of spacer fabric.  

 

1.2 Objectives 

This study attempts to fill the gap in the area of nonlinear vibration of the weft-knitted 

spacer fabric. Hopefully, the vibration isolation properties of knitted spacer fabric can be 

employed to protect the human body from vibration hazards in the environment. In brief, 

this study aims (i) to experimentally reveal how fabric structure and excitation conditions 

affect frequency responses; (ii) to build models that describe the vibration behavior of 

weft-knitted spacer fabric properly; and (iii) to explore its nonlinear vibration behavior 

both analytically and numerically. The objectives of this study are presented as follows.  

(1) To realize relatively thick weft-knitted spacer fabrics using electronic flatbed knitting 

machine. It is beneficial to increase its thickness as it achieves smaller dynamic 

stiffness during vibration. Thus, the resonance frequency of the mass-spacer fabric 

system can be reduced, and vibration isolation covers a wider range of frequencies;  
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(2) To set up suitable and reliable experimental procedures for characterizing the vibration 

behaviors of weft-knitted spacer fabrics with fabric structure, excitation force and 

loaded mass varied; 

(3) To build analytical models that well describe periodic responses of the mass-spacer 

fabric system under harmonic excitation, and to find out how each model parameter 

affects the vibration behavior of the system. As it is known, weft-knitted spacer fabric 

has the properties of nonlinear elastic force and viscoelasticity. Hence, the linear mass-

spring-damper model with one linear stiffness term is only suitable for very small 

excitation forces. To account for the two abovementioned properties under various 

excitation forces, this study attempts to use the polynomial elastic force-displacement 

relationship and the fractional-order derivative to describe the vibration behavior of 

weft-knitted spacer fabrics; 

(4) To determine suitable polynomial force-displacement relationship that better 

describes the vibration behavior of the system analytically; 

(5) To confirm the validity of approximate analytical solutions by numerical simulations 

for the periodic responses; 

(6) And, to predict the bifurcation and chaotic behaviors of the system by numerical 

method under different excitation frequency and excitation force conditions. 

 

1.3 Methodology 

Experimental, analytical and numerical approaches were used to investigate the steady-

state responses of the mass-spacer fabric system under harmonic excitation in this study. 
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The methodology used is schematically shown in Figure 1.2. 

 

Building the equation of 
motion 

Fabric structural design 
and manufacture

Vibration experiment

Analytical expression in 
the frequency domain

Numerical simulations

Bifurcation and chaotic 
motions

Periodic solutions

Parametric study

Curve fit & parameter 
identification

Comparison and 
verification

guides

 

Figure 1.2 Flowchart of methodology in this study. 

 

The three approaches were employed not in parallel but in a crosslinking and hierarchical 

manner. On the first level of the hierarchy, weft-knitted spacer fabrics were designed, 

manufactured and tested for their vibration responses under forced harmonic excitation. 

On the second level, based on the observation of nonlinear frequency responses, the 

dynamic equation of motion in the time domain was built with unknown model parameters. 

Then, the analytical expression in the frequency domain was derived. Curve fit between 

analytical model and experimental data was performed to identify model parameters. On 

the third level, parameter analysis was carried out to study the effect of each model 

parameter on the vibration behavior of the system. On the fourth level, with the equation 
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of motion in the time domain and model parameters identified, numerical simulation was 

carried out to obtain periodic solutions for the system. On the last level, frequency 

response curves (FRCs) by analytical and numerical methods were compared. Numerical 

solutions confirmed the validity of analytical solutions. Above mentioned are all the levels 

concerned with the periodic motions of the system. Additionally, the bifurcation and 

chaotic motions of the system, although not observed experimentally, were also studied 

using numerical method.  

 

One advantage of the analytical method lies in that the underlying mechanism of how 

material and structural properties influence the vibration behavior of the system is 

reflected by model parameters including stiffness and damping coefficients. It is also 

noted that experimental, analytical and numerical results cannot be exactly the same. The 

discrepancies between experimental and analytical results come from fitting errors, and 

the discrepancies between analytical and numerical solutions come from the 

approximation of analytical solutions and the numerical errors. Above a brief introduction 

of the methodology is provided. Next, a description of the methodology is given.  

(1) Firstly, weft-knitted spacer fabrics were designed and manufactured with structural 

variations. To test their vibration isolation performance, sinusoidal sweep tests were 

carried out with the excitation force fixed during one sweep cycle. The frequency 

response curve was recorded in the form of acceleration transmissibility. The effect of 

load mass, fabric structure and excitation level on the isolation performance of fabric 

were studied.  
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(2) In order to theoretically model the vibration behavior, the dynamic equation of motion 

was built at first. Experimental results guided the modeling. Due to the viscoelasticity 

and the nonlinear elastic force of spacer fabric, a fractional derivative term and two 

different types of polynomial elastic force-displacement relationship were taken into 

consideration. The harmonic balance method (HBM) with the first-order 

approximation was used to solve the equation and obtain the approximate solution in 

the frequency domain.  

(3) Following this, curve fit was performed to identify parameter values and also to 

examine the performance of different model structures. Then, a parametric analysis 

was carried out to study the effects of varying model parameters and the excitation 

force on the frequency response curves. 

(4) In order to verify the approximate analytical solutions, the MATLAB/Simulink block 

diagram was used to obtain numerical results for the steady-state solutions in the 

frequency domain. Moreover, bifurcation and chaotic behaviors were also studied 

numerically using the bifurcation diagram, the phase portrait and the Poincaré map. 

 

1.4 Significance 

This study strengths the understanding of vibration behavior of weft-knitted spacer fabrics. 

The nonlinear vibration dynamics of the mass-spacer fabric system has been explored in 

depth. It also acts as a valuable reference for the applied research concerning the design, 

manufacture and optimization of weft-knitted spacer fabrics that reduce vibrations in 

different working environments. 
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(1) Although the analytical and numerical approaches to studying the nonlinear vibration 

problems are very common in a lot of research areas such as foams and buckled beams, 

the nonlinear vibration dynamics of spacer fabrics is under studied. This study 

presents a systematic investigation into the design, manufacture, testing and analysis 

of the mass-spacer fabric system. 

(2) The experimental results reveal how fabric structural variations affect the vibration 

isolation performance under forced harmonic excitation. This helps optimize fabric 

structural designs for specific applications such as anti-vibration gloves and car 

cushions which require vibration attenuation in different frequency bandwidths. With 

improvement, it is expected that they can be commercially used for vibration 

isolations in various fields.  

(3) Due to the great varieties of textile products, not only weft-knitted and warp-knitted 

spacer fabrics but also 3D woven and nonwoven fabrics can be designed as vibration 

isolators. Their stiffness and damping properties can be readily controlled by 

modifying the material and structure using textile technologies or by post-treatments 

on textile precursors. Thus, this study can be extended to other textile structures for 

vibration isolation purpose. 

 

1.5 Thesis outline 

After presenting Chapter 1 of an introductory nature, Chapter 2 firstly reviews literature 

on the mechanical performance of knitted spacer fabrics with regard to compression and 

impact behaviors, including the warp-knitted according to its prevalence. Next, different 
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high-static-low-dynamic-stiffness (HSLDS) isolators achieved by buckled Euler column 

and negative stiffness mechanisms (NSMs) are introduced. Their vibration behaviors are 

described using the Duffing equation and the Helmholtz-Duffing equation. Furthermore, 

the periodic and chaotic behaviors of the two equations with the inclusion of the 

fractional-order derivative are reviewed.  

 

Chapter 3 presents experimental details for weft-knitted spacer fabric as a vibration 

isolator. Structural design and manufacture of spacer fabrics are presented first. Then, 

vibration tests using sinusoidal sweeps are carried out to study the effect of load mass, 

fabric structure and excitation level on the vibration isolation performance of these spacer 

fabrics under forced harmonic excitation. Acceleration transmissibility curves are 

compared. 

 

Chapter 4 builds the equation of motion under forced harmonic excitation using two types 

of phenomenological models, one with the symmetric elastic force and the other with the 

asymmetric elastic force. Frequency-domain solutions are obtained using the harmonic 

balance method (HBM) with the first-order approximation. Then, model parameters are 

identified by curve fit, with discussions on the optimization algorithms used, the goodness 

of fit concerning two types of models, and the significance of the fractional derivative 

term. 

 

Chapter 5 investigates the effects of model parameters and the excitation force on the 

frequency response curves of the mass-spacer fabric system. 
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Chapter 6 carries out numerical simulations on the periodic responses in the frequency 

domain and compares the numerical results with the approximate analytical solutions. The 

bifurcation and chaotic behaviors are also studied with respect to the excitation frequency, 

the excitation force and the fractional order. The period-doubling bifurcation route to 

chaos is observed numerically.  

 

Chapter 7 draws conclusions and identifies the limitations of this study, and makes some 

recommendations for future research. 
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CHAPTER 2 LITERATURE REVIEW  

 

2.1 Introduction  

This chapter will review previous work related to this study. As the subject of this study 

is weft-knitted spacer fabrics, literature on knitted spacer fabrics will be first reviewed in 

Section 2.2. Since the vibration behavior of knitted spacer fabrics, especially the vibration 

behavior under forced harmonic excitation has been seldom studied, a detailed review on 

vibration related studies is also carried out. To study the vibration behavior of spacer 

fabrics under forced harmonic excitation, a proper equation of motion should be built first. 

Due to the nonlinear stiffness and the viscoelasticity of weft-knitted spacer fabrics, their 

vibration becomes very different from linear systems.  

 

Nonlinearity is very common in materials and systems. To utilize this nonlinearity for 

better vibration isolation, high-static-low-dynamic-stiffness (HSLDS) structures and 

systems have been investigated by different researchers, which will be reviewed in 

Section 2.3. As the Duffing equation and the Helmholtz-Duffing equation are adopted to 

describe the vibration behavior of such isolators, the analytical and numerical approaches 

to study these equations will be reviewed in Section 2.4. For polymeric materials such as 

spacer fabrics, the time-dependent viscoelasticity property should be considered in 

building the equation of motion under forced vibration. One method to describe this 

property is to use the fractional-order derivative. For the fractional-order Duffing 
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oscillator and the fractional-order Helmholtz-Duffing oscillator, subjective literature on 

their periodic and chaotic responses will be reviewed in Section 2.5. 

 

2.2 Knitted spacer fabrics 

The types, formation principles, and mechanical properties of knitted spacer fabrics are 

reviewed in this section. Experimental, analytical and finite element modeling approaches 

to study the compression and impact behaviors will be presented.  

 

2.2.1 Types 

Knitted spacer fabrics are a kind of sandwiched textile structure consisting of two outer 

layers which are connected but kept apart by a spacer layer of yarns such as monofilaments. 

They can be produced by both weft knitting and warp knitting technologies. Figure 2.1(a) 

shows the schematic structure of the weft-knitted spacer fabric. Two face layers are 

knitted with single jersey stitches and the yarns in the spacer layer are tucked on face-

layer loops. The tuck pillar constitutes the major thickness and transfers force when the 

fabric is deformed. Figure 2.1(b) shows the schematic structure of the warp-knitted spacer 

fabric. Two guide bars knit each of the two outer layers, and two other guide bars knit the 

spacer layer. 
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Figure 2.1 (a) Weft-knitted spacer fabric; (b) warp-knitted spacer fabric. 10 

 

2.2.2 Formation principles 

Weft-knitted spacer fabrics can be produced with double circular weft knitting machine 

and computerized flat knitting machine as shown in Figure 2.2. Although weft knitting 

process is simple and flexible, the upper limit of the dial height in a circular knitting 

machine, or the limit of the distance between two needle beds in a flat knitting machine 

obstructs the production of spacer fabrics with a thickness varied at a greater extent. 

Besides, the productivity of weft-knitted spacer fabrics with flat knitting machines is very 

low and weft-knitted fabrics have also a tendency to unravel due to the nature of weft loop 

constructions. However, the comparatively low speed of flat knitting machines conversely 

turns into an advantage when brittle and stiff yarns are used 11. On a computerized flat 

knitting machine, knitting parameters such as cam setting can be easily altered. Weft-

knitted spacer fabrics can be a priority for conducting a pilot study, since the preparation 

work is very simple and the required quantity of yarns for producing a sample is low, 

which is totally different from knitting warp-knitted spacer fabrics where a lot of time and 

yarns are required in the beam preparation and machine preparation. Besides, weft-knitted 

(b) (a) 
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spacer fabrics can be more competitive if texture effects such as color and jacquard pattern, 

or specified shapes are needed 12, 13. Finally, the two-way stretch and the ability to conform 

to shape make weft-knitted spacer fabrics very promising in lingerie industries 14 and for 

other next-to-skin applications such as medical bondages and knee braces. 

 

 

Figure 2.2 Machines for knitting weft-knitted spacer fabrics: (a) double circular knitting 

machine and (b) its dial and cylinder needle beds; (c) computerized flat knitting machine 

and (d) its front and back needle beds. 

(a) 

(d) 

(c) 

(b) 
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Figure 2.3 A schematic of Raschel knitting machine for producing warp-knitted spacer 

fabrics. 15 

 

However, knitted spacer fabrics found in the market are mostly warp-knitted, which are 

produced by double needle-bar Raschel knitting machines, as shown in Figure 2.3 15. This 

is due to several reasons. Firstly, double needle-bar warp knitting machines have a greater 

capacity in adjusting the distance of two needle bars, possibly from 5 to 60 mm 16, which 

permits to produce spacer fabrics with a large variation in thickness. Moreover, the 

adjustable shogging distance of yarn guide bars also adds to the advantage of using warp 

knitting machines to produce high-distance spacer fabric. For example, the HDR 6 EL 

(HighDistance®) warp knitting machine built by Karl Mayer could achieve a shogging 
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distances up to 65 mm. Another advantage of warp knitting machines comes from their 

high production efficiency. The maximum machine speeds for producing warp-knitted 

spacer fabrics range from 750 to 1000 r/min depending on the machine type 17. In addition, 

warp knitting technology is very suitable for producing mesh and stable fabric structures. 

A large range of variations in fabric structure and thickness make warp-knitted spacer 

fabrics become one of the mostly used 3D fabrics in technical areas. 

 

Bruer et al. 12 have reviewed production techniques and applications of knitted spacer 

fabrics, however, it should be noticed that with the progress of technology and techniques, 

innovated fabric structures and machine types are emerging. For instance, Włodarczyk 

and Kowalski 18 presented a technology of multi-layered weft-knitted spacer fabrics. 

Pieklak and Mikołajczyk 19 introduced a new concept of a multi-comb warp knitting 

machine for knitted spacer fabrics.  

 

2.2.3 Applications 

Knitted spacer fabric is attractive for many technical applications such as medical uses, 

composite reinforcement and impact protection. Its thermophysiological comfort 

regarding vapor permeability, liquid absorption and thermal insulation makes it very 

suitable for medical uses 14, 20-33. Fabric properties such as regain, dyeability and water 

drop absorption time on fabric surface can be modified by finishing 34. Knitted spacer 

fabric can be finished to possess antimicrobial function 21, 23, 35. Due to its good mechanical 

properties, it can also be made into intimate apparels 36 and cushions such as compression 

bandages and wound dressings 22, 24, 26, 27, 32. Moreover, its deformability allows it to be 
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easily made into curved shapes for applications such as art design 37 and reinforced 

concrete 38, 39. Its functions in the fields of sound attenuation 40-42, geotextile applications 

43, 44, thermal insulation for solar thermal applications 45, and piezoelectric effect for 

energy harvesting applications 46 have also been explored. Warp-knitted spacer fabrics 

with auxetic effect have also been reported 47-49. 

 

2.2.4 Compression studies 

Studies on the mechanical performance of knitted spacer fabrics incline to warp-knitted 

ones rather than weft-knitted ones. This may be caused by the dominance of warp-knitted 

spacer fabrics as highly flexible and commercial products, such as mattress beddings, 

which could again be traced back to its productive efficiency and product diversity. 

Besides, some studies on the analytical modeling of knitted spacer fabric do not specify 

whether it is warp-knitted or weft-knitted. Due to the over simplifications, warp-knitted 

and weft-knitted spacer fabrics may be not taken into consideration during modeling. In 

this section, the experimental, analytical and numerical studies of the compression 

behavior of warp-knitted and weft-knitted spacer fabrics are reviewed as follows.  

 

2.2.4.1 Experimental approach 

The compression behaviors of warp-knitted and weft-knitted spacer fabrics have been 

studied by different researchers. Compression mechanism is identified by dividing the 

deformation into different stages. With proper experimental design, parametric analysis 
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of fabric structure, yarn material and technological conditions can be directly applied. It 

is also noted that due to the large varieties of knitted spacer fabrics and their wide 

application fields, testing methods may need to be redefined.  

 

Ye et al. 50 developed a warp-knitted spacer fabric produced on a Karl Mayer Raschel 

machine RD 6 DPLM/30, with two needle beds and six guide bars, and compared its 

performance with polyurethane foam for the pressure distributions in cushion testing, with 

the aid of a ClinSeat pressure measurement system manufactured by TekScan Inc. The 

result indicates spacer fabric achieves better pressure relief. Two other related studies also 

gave a comparison of different materials for pressure relief. 51, 52  

 

Liu and Hu 53 carried out a study on the compression properties of weft-knitted spacer 

fabric. The compression test was performed using the KES-FB3-A compression tester. 

This article analyzed the effect of NP value (i.e. stitch setting, a higher NP value results 

in a lower density of the fabric), knit pattern and monofilament diameter. It is shown that 

a higher NP value for the spacer layer provides higher compression resistance and better 

compression recovery.  

 

Yip and Chung 54 and Yip and Ng 55 presented a study on the low stress mechanical 

properties of one warp-knitted spacer fabric and weft-knitted spacer fabrics with different 

inclination angle for spacer monofilament. The bending and compression properties were 

measured using the Kawabata evaluation system KES-F. They concluded that samples 

with higher inclination angle resulted in higher compression resistance. Besides, samples 
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using monofilaments as spacer yarns showed higher compression recovery compared with 

those using multifilament spacer yarns. 

 

Mecit and Roye 56 investigated a testing method for compression behavior of warp-knitted 

spacer fabrics designed for concrete applications. They identified the issue that 

conventional testing standards are not appropriate for compression characteristics of 

spacer fabrics due to their structural features, so they defined and investigated the testing 

method in order to fill in this gap. They evaluated the effects of sample area, presser foot 

area and sample shape for the force-controlled test using the thickness measuring device, 

and evaluated the effects of test speed and stabilization form for the way-controlled test 

using Zwick/Roell 2.5 material testing machine. A similar study can also be found in 

Armakan and Roye 16, 57. 

 

Liu and Hu 58 carried out an experimental study on the compression behavior of warp-

knitted spacer fabric. They evaluated the effects of the compression test boundary 

condition and the sample size. The deformation mechanism is identified by dividing the 

load-displacement curve into four stages. It is shown that the boundary condition 

influences fabric deformation in the plateau stage. Besides, sample walewise length has 

also an effect on the compression behavior.  

 

2.2.4.2 Analytical approach 

Due to the complexity of knitted spacer fabrics, analytical approach to solving the 

compression force-displacement relationship is carried out with simplifications. For 
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instance, the interactions of spacer yarn with face layer stitches and with other spacer 

yarns are often ignored. The boundary condition of spacer yarn fastened with face layer 

is assumed as pinned or fixed. Spacer yarn is treated as a perfect rod. Some works 

investigate the compression of a single spacer yarn, in which the classical beam theories 

can be applied. Other works investigate the compression of the whole spacer fabric, in 

which empirical models and phenomenological constitutive models can be applied. 

 

Supeł and Mikołajczyk 59 built a physical model for the spacer monofilament in a warp-

knitted spacer fabric, with the assumption of having one rod fastened at both ends by 

articulated joints, being one immovable and the other slidable. Correspondingly, a 

mathematical model based on Euler’s theory to describe compression process is 

formulated using fourth order differential equations. The resultant monofilament shape is 

a fragment of a sinusoid. They also proved that the force for higher order buckling form 

is greater than the first buckling form, which may occur due to the contact with 

neighboring monofilaments when the volume of monofilaments is great or when the 

compressive deformation is large. Supeł and Mikołajczyk 60 also studied the compression 

process of spacer monofilament mathematically with two different boundary conditions, 

one model with one-side fixed and one-side articulated, the other model with both-sides 

fixed. Supeł and Mikołajczyk 61 later built a mechanical model based on Euler-Leaf theory, 

which is different from the abovementioned model. Spacer monofilament is treated as an 

“elastica” fastened at both ends by articulated joints and its bent shape is described using 

elliptic integrals, which is verified by experiment. During compression, the central angle 

of the curved monofilament keeps increasing until it reaches 90° and is maintained 

23 
 



Chapter 2 

constant afterwards. The ends of monofilament then undergo parallel displacement. This 

theoretical force-displacement curve is also compared with experiment.   

 

Miao and Ge 62 derived an equation to calculate the pressure force on individual 

monofilament in the flat-wise compression. Besides, they modeled the monofilament 

spacing based on Love’s ordinary approximate theory, which assumes the erect 

monofilament as an elastic rod as described in the Bernoulli-Euler theory. On the other 

hand, a modified equation of Love’s is adopted for the initially curved rod. Sheikhzadeh 

et al. 63 presented an analytical model based on the Van Wyk’s equation, which showed 

that the variation of compressive pressure was directly proportional to the inverse 

thickness cubed of the fabric. This equation can be adapted to predict the lateral 

compressive behavior of spacer fabrics with an acceptable accuracy. Du and Hu 64 studied 

the spherical compression properties of knitted spacer fabrics with a detailed theoretical 

analysis on compression force and fabric geometry. Köllner and Völlmecke 65 built an 

analytical model for the compression of pile fibers in a spacer fabric based on rigid hinged 

struts. They used rotational springs to model the bending behavior of spacer yarn and used 

extension springs to model its interaction with fibers in the face layer. Then, the load-

deformation behavior was obtained by calculating the total potential energy of the system. 

Liu and Hu 66 proposed a constitutive model consisting of seven parameters to describe 

the compressive stress-strain relationship of warp-knitted spacer fabric. The proposed 

model outperforms three existing constitutive models by having the smallest fitting errors.  
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2.2.4.3 FE modeling approach 

To realize finite element modeling, the geometry of knitted spacer fabric 67, 68 should be 

built first. Zhang et al. 67 developed a realistic 3D special stitch model of warp-knitted 

spacer fabric using non-uniform rational B-spline (NURBS) curves and surfaces. With the 

aid of the Visual C++ language and usage of the OpenGL library, the geometric simulation 

of high accuracy is achieved. The 3D image help recognize complicated fabric structures. 

In many cases, however, the realistic geometry of spacer fabric is hard to be achieved. 

Simplifications are often used, such as taking outer layer as thin shell and assuming the 

spacer yarn is pin-ended with outer layers. Nevertheless, homogenization is usually not 

applied for the geometric modeling of knitted spacer fabrics. Last but not least, it is always 

critical to evaluate the validity of the constructed model. Below is a review of numerical 

studies on the compression behavior of knitted spacer fabrics using finite element 

modeling. 

 

Lee et al. 69 presented the application of knitted spacer fabric as single-layer bandage 

system for the treatment of venous leg ulcers and they used honeycombed geometry to 

represent face sheets of warp-knitted spacer fabric. However, no information is provided 

on the element type choices and material properties adopted for mechanical simulation in 

ANSYS. Vassiliadis et al. 70 offered a detailed study on the numerical modeling of the 

compressional behavior of warp-knitted spacer fabrics. The simulation focuses on a two-

scale mechanical analysis, micro and macro, using the Finite Element Method. 

Micromechanical analysis of the unit cell is based on the assumption that the spacer 

monofilament is bonded at the outer layers. Both of the inserted face yarns and spacer 
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monofilaments are simulated as beam element given that yarn bending dominates the 

deformation process during fabric compression. For the macromechanical modeling of 

the whole sample, inner spacer monofilaments are simplified as a solid volume and 

simulated with multi-linear isotropic elasticity, while the face layers are simulated using 

shell elements with linear orthotropic properties. This macromechanical simplification is 

encouraging and provides a direction for the homogenization of knitted spacer fabric 

during modeling. Kyosev and Renkens 71 discussed about a truss-joint model of warp-

knitted spacer fabric which excludes the influence of the bending stiffness of spacer yarns, 

but also quoted the literature 72 of an exhaustive investigation on the influence of the 

bending stiffness of the spacer yarn. Hou et al. 73 simulated the transverse compression of 

warp-knitted spacer fabric using elasto-plastic beam elements for spacer monofilaments 

and using isotropic shell elements for face layers. In their study, spacer monofilament was 

fixed at the end with the face layer, and two face layers were allowed relative sliding in 

the horizontal plane in order to observe the effect of shear stress on the deformation 

mechanism of spacer fabric. Later, Hou et al. 74 also presented a detailed study revealing 

the factors that affect the compression deformation of 3D spacer fabrics using finite 

element modeling. The geometric model was developed with the aid of micro-CT scanner, 

so it represented a realistic monofilament configuration. Simulations revealed that the 

constraints, shearing, bending and collapses of monofilament and its contact with other 

monofilament and with outer layers all affect the compression mechanism. Qian et al. 75 

simulated the flat compression stress-strain curve of one warp-knitted spacer fabric using 

ANSYS with reasonable assumptions that spacer yarn is ideal elastomer and surface 

fabrics are ideal elastic shell ignoring their thicknesses. Though the simulation result 
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conflated quite well with the experimental result complying with the poly-foam 

compression standard ASTM D3671-11, unfortunately, it lacks detailed information on 

the construction of its mechanical model. Dura Brisa et al. 76 carried out a FE modeling 

on the deformation of one spacer monofilament in the thick warp-knitted spacer fabric 

using ABAQUS. Hinged boundary condition was assumed and the contact with face layer 

was considered. On the other hand, the analytical solution which used Euler’s equation 

for column buckling was obtained dividing the compression process into two zones, i.e. a 

free flexural buckling zone and a forced flexural buckling zone after contact with face 

layer. During the whole flexural buckling process, circular form was assumed for the free 

length of monofilament. Numerical and analytical solutions for the force-deformation 

curve were compared, and discrepancies were analyzed. Liu and Hu 77 developed a FE 

model for the compression of warp-knitted spacer fabric. The model corroborated the 

experiment, with the adjustment of constraints of spacer monofilament and outer layer 

thickness. It was found that the nonlinear compression behavior was due to the post-

buckling, torsion, shear, rotation, contacts between spacer monofilament, and contacts 

between spacer monofilament and outer layers. Parametric study also showed that smaller 

monofilament inclination, coarser monofilament and smaller fabric thickness result in 

higher compression resistance. 

 

2.2.5 Impact studies 

The previous section reviewed literature on the quasi-static compression behavior of 

knitted spacer fabric. However, studies on the force vibration of knitted spacer fabric is 

still an open field. This section is concerned with experimental, analytical and finite 
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element modeling approaches for studying the impact behavior of knitted spacer fabric. 

 

Guo et al. 78 investigated on the impact and compression-after-impact properties of warp-

knitted spacer fabrics. Results showed that closed surface structure and coarser spacer 

yarns result in reduced peak force and higher energy absorption. Besides, higher fabric 

thickness has a better protective performance but at the cost of reduced comfort. Liu et al. 

79 studied the effects of structural parameters on the peak transmitted force for warp-

knitted spacer fabric used as impact protectors. It was found that higher inclination, higher 

fabric thickness, coarser spacer monofilament, and more stable outer layer structure 

performed better for impact force attenuation. Besides, the lamination of spacer fabric 

also improved force attenuation capacity. Marques et al. 80 found the warp-knitted spacer 

fabric embedded with silicone helps reduce peak force during a fall. Blaga et al. 3 used an 

impact hammer to study the dynamic behavior of different types of warp-knitted spacer 

fabrics on three directions. Frequency response curves were obtained using fast Fourier 

transform. It was found that the responses on wale and course directions were comparable, 

while the perpendicular testing direction had significantly higher resonance frequencies. 

The authors 2 also studied the impact responses of weft-knitted spacer fabric in these three 

directions.  

 

Arabzadeh et al. 1 provided a mathematical model in order to predict the damping behavior 

of warp-knitted spacer fabrics under impulsive loading. The uniqueness lies in that one 

spacer fabric was analytically modeled as a single-degree-of-freedom mass-spring-

damper system. The results showed that coarser monofilament, smaller fabric thickness 
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and higher monofilament density would decrease the force transmitted. Analytical results 

provided a relevant understanding of the findings. However, the widely used viscous 

damping model is not necessarily appropriate for knitted spacer fabrics; for some 

polymers, a complex model including both viscous and hysteretic models may be more 

general for this analysis. Besides, the problem could be tougher if geometric nonlinearity 

of the spacer monofilament is considered. As a continuation of Liu and Hu’s 66 proposal 

of a constitutive model for the quasi-static compression of warp-knitted spacer fabric, they 

81 also presented a dynamic model to describe its impact response based on the previous 

study. The dynamic model correlated with experimental results by drop-weight impact 

tests. 

 

Lu et al. 82 studied the impact behavior of shear thickening fluid impregnated warp-knitted 

spacer fabric, which showed higher stiffness and lower peak force compared with pure 

warp-knitted spacer fabric. FE analysis showed that the main load carrier in pure warp-

knitted spacer fabric is the monofilament. For the composite, however, the impact 

behavior and energy absorption mechanism were ruled by the thickening effect of shear 

thickening fluid and its interaction with yarns. 

 

2.3 HSLDS isolators 

In a linear vibration system, the stiffness, resonance frequency and the transmissibility do 

not change with the pre-load and the magnitude of excitation force. High stiffness is 

required to support the static load. On the other hand, low stiffness is preferred to reduce 
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resonance frequency so as to achieve a wider frequency bandwidth for vibration isolation. 

Thus, for a linear system exists an issue of having to choose between these two 

requirements. To solve this problem, a nonlinear system having high-static-low-dynamic-

stiffness (HSLDS) can be designed. This section will review two mechanisms that exhibit 

HSLDS, Euler column buckling in Section 2.3.1 and negative stiffness mechanisms 

(NSMs) in Section 2.3.2.  

 

2.3.1 Euler column buckling 

Winterflood et al. 83 and Winterflood et al. 84 demonstrated that to achieve the same 

resonance frequency, a vertical vibration isolator using a linear coil spring requires to be 

stretched under load by the same length as the equivalent pendulum performed as a 

horizontal isolator. This is caused by the presence of the storage of gravitational potential 

energy in vertical vibration isolation. This problem can be mitigated by using the buckled 

Euler column working in its axial direction as a nonlinear isolator, since it does not require 

the storage of static energy. As stated by Virgin and Davis 85, buckling in most cases means 

collapse and the loss of stiffness, a phenomenon generally to be avoided. To the opposite, 

it can also be utilized herein to generate the high-static-low-dynamic-stiffness (HSLDS). 

With the assumption of a half-sine shape for the buckled beam, they used the approximate 

solution for the force-lateral deflection relation valid for mild oscillations, 
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where P   is the axial force, 
2

eP EI
L
π =  
 

  is the classical Euler critical load for a pin-

ended beam, Q  is the lateral deflection, and L  is the beam length. Given the geometric 

relation between the lateral deflection Q  and the end shortening L  as, 
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,                                                                                     (2.2) 

the non-dimensional post-buckled force-axial deformation relation can be approximated 

as, 
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Assume the critical load to be eP mg= , then at the onset of buckling, the approximate 

stiffness is 
2

ePk
L

=  . Therefore, we have the angular resonance frequency 
2
g
L

ω =  

where L   is the length of the nonlinear beam. In comparison, the angular resonance 

frequency for a linear vertical isolator is 
g
l

ω =
∆

 where l∆  is the length of compression 

or extension of the linear spring under load. As shown by Winterflood et al. 83, not only is 

the requirement on spring length greatly lightened using a buckled beam as the nonlinear 

isolator, the spring mass is also greatly reduced so as to avoid internal resonance.  

 

Virgin and Davis 85 further incorporated the influence of initial geometric imperfection 

0Q  on the force-axial deformation relation. As a result, the stiffness becomes lower for 
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small oscillations at the vicinity of just above the critical buckling, compared with an 

initially straight beam; at relatively large deformation, it also shows a slightly lower axial 

force but with almost the same stiffness. Notably, as will be reviewed later for the 

realization of negative stiffness using oblique buckled beam, Liu et al. 86 found that a 

smaller imperfection is preferred because it yields smaller stiffness and a wider range of 

smaller overall stiffness. 

 

Friswell and Flores 87 investigated the design of HSLDS isolation mounts using beams of 

tunable geometric nonlinear stiffness. Tuning was achieved by prescribed axial 

displacement and rotation to the ends of beam so as to implement internal stresses and 

reduce the linear stiffness. Shoup 88 utilized the suspension spring pair clamped in a 

semicircular shape to generate symmetrical hardening nonlinearity for shock and 

vibration isolation. Yabuno and Tsumoto 89 found that the buckled beam can be recovered 

to the straight shape due to high-frequency excitation, which is valid in the neighborhood 

of the straight shape. The phenomenon was theoretically interpreted that high-frequency 

excitation shifts the pitchfork bifurcation point and increases the buckling force.  

 

Anti-spring 90 was used to generate anti-restoring force, reducing the natural frequency of 

system when added to a normal spring, so it can also be regarded as negative stiffness 

element. Winterflood et al. 84, 91 and Chin et al. 92 proposed a simple structure for mounting 

a pair of Euler spring blades in their buckled mode. The one facing the pivot flexure 

provides negative stiffness, so employing a pair of matched spring blades that possess 

appropriate bending stiffness ratio can give the structure much reduced resonant 
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frequencies. 

 

2.3.2 Negative stiffness mechanism 

Negative stiffness mechanism uses negative stiffness spring combined in parallel with 

positive stiffness spring to achieve quasi-zero stiffness (QZS) at the statically loaded 

position of the system. The concept of using NSM for a vibration isolator to achieve the 

low resonance frequency has already reached a practical and commercialized level. Below 

will introduce three approaches to negative stiffness component, by using pre-stressed 

beams in Section 2.3.2.1, oblique springs in Section 2.3.2.2, and magnet in Section 2.3.2.3. 

 

2.3.2.1 Pre-stressed beam 

Platus designed and patented a negative-stiffness-mechanism vibration isolation system 

in 1992 93, and his company “Minus K Technology” offers vibration isolation products 

with payload capacities ranging from a 10-pound tabletop to 10,000-pound floor panels. 

To improve the reliability of precision instruments such as the turntable, SPM and AFM, 

environmental vibrations with frequencies as low as 2 Hz need to be isolated. Figure 2.4 

shows the transmissibility chart for the high-performance air and the Minus K isolation 

system. The transmissibility is greater than one under low excitation frequencies, as 

shown in Figure 2.4, indicating vibration magnification. It reaches peak value at resonance 

and declines to below one at higher frequencies, indicating vibration isolation. The 

resonance frequency of a typical pneumatic isolation system is around 2.3 Hz. In 

comparison, the resonance frequency of the NSM isolator by the Minus K can reach as 
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low as 0.4 to 0.5 Hz. It exhibits a ten-fold to hundred-fold better isolation performance 

than high-performance air at certain frequencies. 

 

 

Figure 2.4 Transmissibility chart shows the Minus K isolation system can be 10-100 

times better than the high-performance air table. 93 

 

As shown in Figure 2.5, the vertical-motion isolation device by Platus 94 uses negative 

stiffness mechanism consisting of two bars hinged at the center connected in parallel with 

a regular positive linear spring. The vertical dynamic stiffness can be made to approach 

quasi-zero value by simply adjusting the loading screws as in Figure 2.6, in order to preset 

the compressive load P, thus to change the negative stiffness NK .  
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Figure 2.5 Concept of a vertical-motion isolator by negative stiffness mechanism. 94 

 

 

Figure 2.6 A schematic of vertical-motion isolator with means for accommodating 

changing weight loads. 94 

 

Shahan et al. 95 adopted a similar design concept as above, but they fabricated the negative 

stiffness device using selective laser sintering (SLS), to leverage the geometric design 

freedoms. The prototype is made of a single piece of material, except the threaded rods 
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and screws. As a rapid prototyping technology, SLS offers convenience and geometric 

design freedom for model realization and theory proof. One advantage of using SLS for 

studies in vibration isolation is the minimized number of sources for losses that are not 

captured in the model. 

 

 

Figure 2.7 Concept of a horizontal-motion isolator by the “beam-column effect”. 94 

 

 

Figure 2.8 A schematic of horizontal-motion system with natural frequency independent 

of change in weight load. 94 

 

Additional to the vertical-motion isolation, Platus 94 also made use of the “beam-column 

effect” in order to provide the horizontal-motion isolation. The mechanism is illustrated 
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in Figure 2.7(c). Consider the fixed-free column, without the weight load W, the beam-

column is just a cantilever beam acting as a horizontal spring with stiffness SK  as shown 

in Figure 2.7(c). Payload W adds bending moments on the laterally loaded beam, 

proportional to the deflection δ . Compared with the case when no weight load exists, to 

achieve the same lateral deflection δ , a reduced lateral force is needed when the payload 

W exists, which is equivalent to introducing a negative stiffness N NK F δ= , as in Figure 

2.7(c). The net horizontal stiffness of the beam-column approaches zero as the payload W 

approaches the critical buckling load, thus NK  approaches SK . Figure 2.8 illustrates a 

schematic of the horizontal-motion isolation system which is composed primarily of two 

sets of flexible columns preloaded with axial load Q. The payload sits between the upper 

and lower columns. Increasing payload weight decreases the negative stiffness effect and 

increases its horizontal stiffness of the upper column, while on the other hand, it increases 

the negative stiffness effect and reduces the horizontal stiffness of the lower column. Thus, 

by proper sizing of the upper and lower columns, the horizontal stiffness can be made 

proportional to the payload weight. The resulting horizontal natural frequency is then 

made independent of change in the weight load.  

 

Based on Platus’ vertical isolator device, the fundamental frequency of the isolator has 

been lowered to 0.4~0.5 Hz. However, a systematic design procedure is still necessary to 

act as design guidelines of the isolator. For this purpose, Ahn 96 initiated the nonlinear 

analysis on the performance limit, i.e. the fundamental frequency of the NSM vertical 

isolator using a nonlinear dynamic model, and presented an approximate design equation 

of the fundamental frequency as a meaningful guideline to improve the isolator 
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performance. According to his design equation, the stiffness of the horizontal spring 

should be kept as small as possible, while the vertical spring should be very stiff.  

 

Besides, Liu et al. 86 used Euler buckled beams as the negative stiffness element instead 

of coil springs to achieve quasi-zero stiffness. The slender beam is axially loaded and 

pinned at two ends. With initial imperfection, the approximate relation between the axial 

force and the end shortening is built based on the classical Euler critical load. Although 

the exact solution for a classic Euler beam makes use of elliptic integrals which can be 

found in the book by Bazant and Cedolin 97, for small deflections the approximate 

expression achieves sufficient accuracy. The force-deflection relation of the isolator is 

derived satisfying zero stiffness at the static equilibrium position. It is found that a larger 

oblique angle and a smaller imperfection yield smaller stiffness and a wider range of 

smaller overall stiffness.  

 

2.3.2.2 Oblique mechanical spring 

Aside from using pre-stressed beam to realize negative stiffness and achieve quasi-zero 

net stiffness, a number of configurations generally making use of coil spring orientations 

have also been proposed 98-104. Carrella et al. 98 studied the force-displacement 

characteristic of one quasi-zero-stiffness isolator, illustrated in Figure 2.9 shown in its 

unloaded condition.  
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Figure 2.9 Schematic representation of the simplest system which can exhibit quasi-zero 

stiffness. 98 

 

 

Figure 2.10 Typical force-displacement characteristic of the isolator shown in Figure 

2.9. 98 

 

This quasi-zero-stiffness (QZS) isolator is composed of a vertical spring vk   acting in 

parallel with two oblique springs ok . When it is loaded with a proper mass, the oblique 

springs vk  are compressed to the horizontal position and only the vertical spring vk  bears 

the static load. It is called the static equilibrium position. Figure 2.10 shows the typical 

force-deflection curve for the QZS isolator in Figure 2.9. It can be seen that at the static 
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equilibrium position ex , the dynamic stiffness of the system is zero. Based on the equation 

of the non-dimensional stiffness of the system as a function of the non-dimensional 

vertical displacement they have derived, their study clearly identified the relationship 

between the geometrical parameter 0 0cosa Lγ θ= =   and the spring coefficient ratio 

o vk kα =  that yields the desired stable QZS characteristic (i.e. zero dynamic stiffness at 

the static equilibrium position): 2
2 1QZS
αγ

α
=

+
.             

                                                                                                                                                                                          

 

Figure 2.11 Relationship of geometrical parameter γ  and stiffness ratio α  that yields 

QZS. 98 

 

Figure 2.11 illustrates this relationship. When the initial angles of inclination are too small 

( 1γ ≈ ), the inclined springs need to be orders of magnitude stiffer than the vertical spring; 

when the initial angles are in the moderate range of 37°~66° (0.4<γ <0.8), the inclined 

springs possess a similar stiffness as the vertical spring. To further optimize the QZS 

mechanism, they intensified the condition that to achieve a large excursion from the static 
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equilibrium position, while at the same time, over the range of displacement the stiffness 

of the system should also be kept smaller than the vertical spring alone. Satisfying this 

requirement, the resultant optimum stiffness ratio optα   ranges from 1 to 0.6, and the 

corresponding initial angles of inclination ranges from 48°~57°.  

 

As a continuation of the previous study, Kovacic et al. 99 analyzed the QZS isolator with 

nonlinear pre-stressed oblique springs. Unlike the previous model of a geometrically 

nonlinear but physically linear system, this study adopted a configuration possessing 

nonlinearity both geometrically and physically. In their study, they demonstrated the 

benefits of this update: 1) it achieves comparatively smaller stiffness at larger 

displacement about the static equilibrium position; 2) it also achieves very small stiffness 

around the equilibrium position. The penalty is, however, the possibility of exhibiting 

period-doubling bifurcations under an asymmetric excitation, but only within a specific 

frequency range.  

 

Additional to the abovementioned static analyses of the QZS isolator composed of two 

oblique springs connected in parallel with a vertical spring, Carrella et al. 100, 101 also 

investigated the transmissibility of three configurations of the same QZS system. They 

found that nonlinear and pre-stressed oblique springs acting as negative stiffness element 

exhibits advantages over either linear, or linear and pre-stressed oblique springs, which 

consolidated their earlier conclusions 98. Besides, all the QZS systems, with proper chosen 

system parameters, are capable of outperforming the linear system.  
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Pasala et al. 103 presented a new structural modification approach for seismic protection 

using adaptive negative stiffness. The schematic of the negative stiffness device is as 

illustrated in Figure 2.12. The pre-stressed vertical spring with stiffness vk  is connected 

in parallel with a horizontal spring with stiffness hk  to reduce the base shear and achieve 

horizontal vibration isolation. It was noticed that while NSD reduces the net stiffness of 

the structure, its assembly also results in an increase in maximum deformation. To reduce 

the deformation, a viscous damper, among which a nonlinear one is preferred, is added in 

parallel with the NSD. Their study examined the effectiveness of the proposed NSD in 

both elastic and inelastic structural systems through numerical simulations for periodic 

and random input ground motions. Based on the prototype this research team designed, 

the first phase experiments involving an actual NSD device have already been completed 

for proof of the concept. Further experimental and analytical study is in progress in their 

NEESR-Adapt-Struct project. 

 

 

Figure 2.12 A negative stiffness device for horizontal vibration isolation. 103 
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Figure 2.13 (a) Model of a suspension seat and (b) a schematic of the proposed isolation 

system. 104  

 

Figure 2.13 illustrates the model of a seat suspension system proposed by Le and Ahn 104. 

The negative stiffness structure is realized through two horizontally aligned and 

compressed springs attached to two bars connecting with the payload. The restoring force 

generated by the horizontal springs acts on the mass, as the way to realize negative 

stiffness. Their mathematical analysis indicates that negative stiffness cannot be achieved 

when the ratio of the length of the bar to the original length of the horizontal spring is 

below 0.2, or when the ratio of the distance between the wall and the mass to the length 

of the horizontal spring is below 1.0 or above 1.75. They also made a detailed analysis of 

the influence of the spring ratio, i.e. the ratio of the horizontal spring stiffness to the 

vertical spring stiffness, on the occurrence of structural negative stiffness. When the ratio 

of the length of the bar to the original length of the horizontal spring equals 1.0 and the 

spring ratio equals 0.5, the proposed system offers optimum effectiveness for low-

excitation-frequency excitations.  

(a) (b) 
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Another approach utilizing negative stiffness for seat suspension system involves solving 

the geometrically nonlinear problem of the large-amplitude post-buckling of rod-shaped 

elastic springs. Lee et al. 105 identified the problem that the conventional seat suspensions 

with load-bearing springs (LBSs) possess a certain “negative” stiffness under only small-

amplitude movement. Based on the consistent theory of thin shells, they presented an 

approach for designing compact springs in terms of their compatibility with the room 

available for mounting the vehicle suspensions and the extension of the height control 

region as well, and proposed a generic model of a simple springing element with negative 

stiffness in the large. The negative torsional stiffness was observed in experiment and it 

fits well with the computational result. Their generic spring module applies to various 

vehicle suspensions such as seat suspension, cab mounting, cargotainer platform or 

vehicle-borne mini-device. Similar approach to realize negative stiffness was applied to a 

multi-stage high-speed railroad vibration isolation system 106. 

 

 

Figure 2.14 Isolators with different types of negative stiffness systems. 107 

 

Park and Luu 107 summarized four typical types of passive negative stiffness systems 

based on their structure difference, illustrated in Figure 2.14 at their equilibrium position. 

They made a comparative study, both analytically and experimentally, of the 

abovementioned four NSD systems, with the goal of choosing the most reliable structure 
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that provides a low frequency, and that as the same time has a large working range. In the 

part of mathematical analyses, the equivalent stiffness of each NSD system was acquired 

either by calculating the second derivative of the potential function, or by calculating the 

first derivative of the restoring force. In the part of experimental evaluation, harmonic 

base excitation was performed and the fundamental frequency was determined based on 

the resultant transmissibility curve. Table 2.1 summarizes the properties and performance 

of these four types of negative stiffness systems. 

 

Based on their study, Type III NSD consisting of a compressed spring connected to a bar, 

and Type IV NSD consisting of a compressed spring and a roller, were selected as the 

superior model among the four described herein since they gave stability and low natural 

frequency. One drawback as they described is, however, the system is bulky and 

complicated since the condition 0l δ=  must be satisfied in order to achieve linearization. 

For this problem, they reconfigured the device by putting the NSD inside the main spring 

and changing the movement of the NSD from horizontal direction to vertical direction 

using a special joint.  

 

The device of the abovementioned Type III NSD isolator in Figure 2.14(c) is very similar 

with the suspension system proposed by Le and Ahn 104 as shown in Figure 2.13. They 

approached the solution for optimizing the effect of negative stiffness from different 

perspectives. For comparison, the latter presented a more comprehensive analysis of the 

influence of different structural elements on isolation performance and also gave more 

insights guiding people on new structural NSD design for isolation purpose.  
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Table 2.1 An overview of the properties and performances of four types of negative 

stiffness systems. 

 Type I isolator Type II isolator Type III isolator Type IV isolator 

NSD element Compressed coil 

spring with 

stiffness k   

 

Compressed leaf 

spring 

(nonlinear) 

Compressed coil 

spring k  

connecting to a 

bar l  

Compressed coil 

spring k  and a 

roller with radius  

r  

Mathematical 

analysis 

0 0eqK = >  for  

0x ≠ . 

The isolator is 

stable but cannot 

obtain the 

expected stiffness 

on all working 

ranges. 

Similar with 

Type I isolator, it 

is stable but 

cannot obtain 

the expected 

stiffness on all 

working ranges. 

When 0l δ= ,

0 0eqK = = , i.e. 

the isolator has 

zero stiffness at 

any point of x . 

The equivalent 

stiffness is a 

constant 

( 0eqK K k= = = ).  

When 

0 ( )R rδ = + , 

0 0eqK = = , i.e. 

the isolator has 

zero stiffness at 

any point of x , 

equivalent to 

Type III NSD. 

NSD property Non-linear Non-linear Linear Linear  

Natural 

frequency 

obtained from 

experiment 

Not obtained due 

to the operational 

instability of the 

model 

nf =1.4 Hz nf =0.6 Hz nf =0.6 Hz 

Note: 0δ  is the initial deformation of the spring k . 
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2.3.2.3 Magnet 

Aside from pre-stressed beam or oblique mechanical springs, negative stiffness spring can 

be realized by using magnets as well, which may be passive or active. Robertson et al. 108 

carried out a theoretical analysis on a non-contact spring with inclined permanent magnets 

for load-independent resonance frequency, and their study investigated the influence of 

design parameters such as magnet shape, magnet angle, magnet offset and magnet volume 

on the natural frequency characteristics of the system. Carrelle et al. 102 proposed a parallel 

connection of linear mechanical springs and magnets to achieve low dynamic stiffness. In 

their design, an isolated mass is mounted between two vertical mechanical springs. At the 

out edge of them two permanent magnets are introduced to provide negative stiffness. It 

was shown that for small oscillations this magnetic suspension could be treated as linear. 

A different approach utilizing negative stiffness from magnetic interaction was proposed 

by Zhou and Liu 109. The feature of the developed isolation design is its tunability 

regarding stiffness, acting either passively or semi-actively. The passive negative stiffness 

element is obtained from interaction between the permanent magnet and the steel cores of 

the electromagnets, in contrast with the negative stiffness mechanism in Carrella’s work 

102. Their study showed that reducing the gap distance or increasing the current widens 

the isolation region. Besides, they demonstrated that a proper combination of the gap 

distance and the electromagnet current results in a low and near constant dynamic stiffness.  

 

All the vibration isolation systems reviewed in Section 2.3 belong to the passive control 

category. Although the active-control of structures is more effective than passive-control, 

it has two major limitations: high power requirement to drive the actuator, and dependency 
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on the continuous feedback signal. Semi-active control combines the advantages of both 

active and passive control systems, without requiring high power supply, however, its 

operation still relies on battery power. In the critical case when the main power source to 

the structure fails, semi-active control system loses its reliability as well. Thus, passive 

negative stiffness systems is advantageous, as it does not need any feedback control or 

power supply. 

 

2.4 Helmholtz-Duffing equation 

The high-static-low-dynamic-stiffness (HSLDS) isolators reviewed in Section 2.3 have 

nonlinear stiffness terms. The equation of motion for such isolators under forced harmonic 

excitation can be described using the Duffing equation or the Helmholtz-Duffing equation. 

Except for negative stiffness systems, Euler buckled beam under transverse vibration can 

also be described using the latter equation. Using the Duffing equation to describe the 

vibration of negative stiffness systems will be reviewed in Section 2.4.1. Using the 

Helmholtz-Duffing equation to describe the vibration of other negative stiffness systems 

and Euler buckled beam under transverse vibration will be reviewed in Section 2.4.2. The 

steady-state periodic solutions of the Helmholtz-Duffing equation will be reviewed in 

Section 2.4.3, using approximate analytical and numerical methods.  

 

2.4.1 Duffing equation 

The QZS mechanism is one special case of the HSLDS isolator. It has high static stiffness 
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to support load and low dynamic stiffness to isolate vibration in a wide frequency range, 

particularly for low-frequency components. The Duffing equation is largely used to 

describe the dynamics of such isolators.  

 

As described earlier for the oblique mechanical springs in a negative stiffness device 98, 

101, when the geometrical parameter and the spring coefficient ratio satisfies a certain 

relationship, the linear term in the approximate force-deflection curve of the isolator will 

vanish and only a cubic term exists. At the static equilibrium position exhibits zero 

dynamic stiffness. This is the Duffing equation without linear term and with linear viscous 

damping, which can be written as  

3
32 cosy y c y F tζ+ + = Ω  .                                                                                          (2.4) 

The cubic stiffness coefficient is 3c , the excitation force is F  and the excitation angular 

frequency is Ω . Although the oblique springs, as negative stiffness element, offsets the 

linear stiffness of the vertical spring in the vicinity of the static equilibrium position and 

thus enlarges the vibration isolation region, it also introduces a cubic stiffness coefficient 

3c  which leads to the bending of resonance peak to higher frequencies and deteriorates 

the performance of the isolator. This undesirable phenomenon is less pronounced with 

higher damping and smaller excitation amplitude. Although this stiffening effect due to 

cubic nonlinearity in the Duffing oscillator is viewed as undesirable, in another point of 

view, however, in circumstances of transient oscillations and shock, hard spring is 

preferred; otherwise, the large deflection arising from softness could lead to catastrophic 

damage 88, 110.  
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Carrella et al. 100 studied the force transmissibility of the same vibration isolator. It is 

shown that using oblique springs which are pre-stressed and have a cubic softening 

nonlinearity is advantageous over using either linear, or linear and pre-stressed springs in 

that it reduces the undesirable hardening effect for large excursions from the static 

equilibrium position. As a result, the minimum frequency at which vibration isolation can 

occur is decreased. Furthermore, they showed that all the quasi-zero-stiffness (QZS) 

systems with appropriate parameters can outperform the linear system by having a lower 

jump-down frequency and a lower maximum force transmissibility.  

 

Later, Carrella et al. 111 showed the difference between the force transmissibility and the 

displacement transmissibility (corresponding to two types of excitations encountered, i.e. 

force excitation and base excitation) of a similar nonlinear isolator with high-static-low-

dynamic-stiffness (HSLDS), in which the static equilibrium position locates at when two 

oblique springs are horizontal. The force-deflection curve of the isolator is approximated 

by a linear and a cubic term. Therefore, the equation of motion can be described by the 

Duffing equation 

3
1 32 cosy y c y c y F tζ+ + + = Ω  .                                                                                 (2.5) 

The linear stiffness is 1c . With cubic stiffness coefficient 3 0c = , the equation reduces to 

a linear forced harmonic oscillator. In a different case with 1 0c =  , the cubic stiffness 

coefficient 3 1c =   and 1Ω =  , it reduces to the Ueda oscillator and has a hardening 

nonlinearity 112.  
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The Duffing equation was first introduced by the German electrical engineer Georg 

Duffing in 1918 113. It is used for describing many physical, engineering and even 

biological problems 114. Numerous studies have been carried out on the regular and chaotic 

motions of this oscillator. For example, Kalmar-Nagy and Balachandran 112 summarized 

the fundamental dynamic behaviors of the Duffing oscillator with linear viscous damping 

under harmonic excitation. Shen et al. 115 stated that chaotic motion may exist when the 

linear or cubic stiffness coefficient is negative in the Duffing oscillator, especially with 

homoclinic orbit and/or heteroclinic orbit. Besides, as described by Rega et al. 116, Duffing 

oscillators that have negative linear stiffness and hardening cubic stiffness are unstable, 

and exhibit multiple static equilibria. One example is the dynamics of a buckled beam or 

plate when only one mode of vibration is considered, i.e. the snap-through oscillation. 116, 

117 Also, as will be reviewed later, chaotic motions were observed in fractional-order 

Duffing oscillators with restoring force in the form of 3x x− + . 117-119 On the contrary, 

stable Duffing oscillators exhibit only one equilibrium state 116, such as the preceding 

HSLDS oscillators having positive values of linear and cubic stiffness.  

 

The Duffing equation is also studied by Carrella et al. 120, in which the benefit from using 

a HSLDS isolator is demonstrated by a broadened isolation bandwidth and lowered peak 

transmissibility compared with an equivalent linear isolator, i.e. the one that supports the 

same mass with the same static deflection as the nonlinear isolator. The displacement 

transmissibility for a base excited nonlinear isolator with an identical form of dynamic 

equation is also studied by Milovanovic et al. 121. They defined the regions in which the 

relative displacement has a finite, an infinite and a non-existent maximum value under the 
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combined effect of the cubic-to-linear stiffness ratio 3 1c c  and the linear damping ratio 

ζ . The result showed that a finite value of damping is needed to give a bounded response 

for a given stiffness ratio. In contrast, in a linear isolator with 3 0c = , no limit on the 

amount of damping is required to achieve a bounded response. Moreover, by replacing 

the linear damping with a cubic damping, the performance around the resonance region is 

improved while the performance at high frequencies is degraded. The vehicle suspension 

seat developed by Le and Ahn 104, 122 also employed a similar negative stiffness structure 

in which system the Duffing equation is applied to describe its dynamic behavior. It also 

presented experiments with random and multi frequency excitations in the time domain, 

and performed numerical simulations of transmissibility curves of the system with and 

without negative stiffness structure.  

 

2.4.2 Helmholtz-Duffing equation 

Except the Duffing equation, the Helmholtz-Duffing equation can also be used to describe 

the vibration behaviors of some other nonlinear systems. These nonlinear systems include 

HSLDS isolators realized by negative stiffness mechanisms, and Euler buckled beam 

under transverse vibration. Literature on the approximate analytical solutions and 

numerical solutions of the Helmholtz-Duffing equation is also reviewed. Except for 

regular periodic motion, chaotic motion can also occur for such nonlinear isolators.  
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2.4.2.1 For NSM structures 

Consisting with the QZS nonlinear isolator using Euler buckled beams as negative 

stiffness corrector by Liu et al. 86, Huang et al. 123 studied the same isolator but taking into 

account the effect of the distuning (overload or underload) of loaded mass, a practical case 

when the mass is not balanced at the static equilibrium point that has the lowest stiffness. 

This changes the system from a Duffing oscillator into a Helmholtz-Duffing oscillator 

since the restoring force is no longer symmetric. The resulting steady-state response 

contains a bias term. Besides, as suggested by the results of sinusoidal sweeping 

experiments, the system can be pure softening, mixed softening-hardening and pure 

hardening depending on the magnitude of excitation level. The Helmholtz-Duffing 

equation takes the form of 

2 3
1 2 32 cosy y c y c y c y F tζ+ + + + = Ω  .                                                                      (2.6) 

Its difference with the Duffing equation is the addition of a quadratic stiffness term. Huang 

et al. 124 also studied the Helmholtz-Duffing equation for an ultra-low frequency nonlinear 

isolator using a positive mechanical spring and a horizontal sliding beam loaded vertically 

at the midpoint as negative stiffness element. For small displacements, the force-

deflection curve and the stiffness-deflection curve of the system using the first three orders 

of deflection are comparable with the ones obtained using the full eleven terms. Therefore, 

for small oscillations it is adequate to use the approximate equation of Helmholtz-Duffing 

type; however, for large oscillations the frequency response curves (FRCs) obtained using 

this equation deviates from the ones using the full terms. For large excitations, double 

jump phenomenon takes place. The FRCs show both softening behavior at low frequency 
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and hardening behavior when approaching resonance. Besides, they found that the linear 

spring stiffness and the transverse deflection of beam in the midpoint affect the softening 

or hardening behavior of the FRCs. As noted by Kovacic et al. 125, the Helmholtz-Duffing 

oscillator can behave as hardening or softening depending on the sign of the expression 

2
3 2 110 9c c c− . Based on this rule, Huang et al. 124 explained the experimental results that 

the ultra-low frequency isolator using sliding beam as negative stiffness exhibited 

softening characteristic under a small static deflection, and vice versa. 

 

As a continuation of static analysis of the QZS nonlinear isolator using linear and 

unstressed oblique springs to realize negative stiffness by Carrella et al. 98, Kovacic et al. 

99 modified the oblique springs as reviewed earlier on Carrella et al. 100, and they 

considered an asymmetric excitation force comprised of a harmonic component and a 

static component. Consequently, the oscillator is changed from a symmetric Duffing type 

into an asymmetric Duffing type with no linear term and hardening nonlinearity, which is 

equivalent to a Helmholtz-Duffing oscillator with linear-quadratic-cubic stiffness terms 

after coordinate transformation. In this case, coupling between stiffness coefficients exists. 

The transformation along with the corresponding restoring force, energy level and phase 

trajectory was demonstrated in detail by Kovacic and Brennan 126.  

 

2.4.2.2 For Euler buckled beam 

Other than negative stiffness mechanisms, the Helmholtz-Duffing equation can also be 

employed to describe the vibration of buckled beam under transverse excitation. For 

instance, Mayoof and Hawwa 127 studied the chaotic behavior of a curved carbon nanotube 
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subjected to a transverse harmonic excitation. The governing differential equation is 

derived using an energy approach taking into account the kinetic energy, the energies due 

to the stretching and the bending of beam. They found that the quadratic term arises from 

the curvature of beam, and the cubic term arises from the mid-plane stretching. Increasing 

the curvature weakens the cubic nonlinearity, while its effect on the quadratic nonlinearity 

is non-monotonic. For a straight carbon nanotube, the equation of motion reduces to the 

Duffing type. Incidentally, Rega et al. 116 also state that the even term arises due to the 

initial curvature of elastic system in structural applications, such as curved beams, shallow 

arches and suspended cables, and the cubic term arises due to the stretching of cable axis. 

They identified that these systems can have three physically admissible stable equilibrium 

positions in which two are stable; however, for a heavy suspended elastic cable vibrating 

in its plane, it exhibits only one physically admissible stable equilibrium position because 

it can resist only tensile forces.  

 

The vibration of buckled beam under transverse excitation has been studied by different 

researchers. Friswell et al. 128 used a nonlinear buckled cantilever beam with a tip mass 

mounted vertically and excited in the transverse direction at its base as the energy 

harvester. When the mass is adjusted such that the beam is near the critical bucking, the 

nonlinear harvester has a low resonance frequency. The pre-buckled beam also gives rise 

to a high level of harvested power and a large bandwidth, compared with the linear 

harvester which is only efficient at resonance. They also made a comparison of the pre-

buckled and post-buckled beam configurations by adjusting the tip mass. Both of 

experimental results and simulations by solving the equation of motion indicated that, the 
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pre-buckled system that exhibits hardening nonlinearity generated higher power output 

than the post-buckled system that exhibits softening nonlinearity. It was explained that for 

the post-buckled system, the dominant response locates in a single potential well; however, 

the double potential well should be utilized in order to achieve higher energy harvesting. 

Ghayesh and Amabili 129 also investigated the nonlinear dynamics of axially moving 

viscoelastic beams at the post-buckled state. A distributed transverse excitation load is 

applied when the beam is traveling with an axial speed large enough to cause its instability 

and situate it in the supercritical regime. The governing differential equation of motion is 

built with cubic and quadratic terms after discretization. And the resultant frequency 

response curves (FRCs) are of softening type. It is identified that the softening behavior 

is associated with the presence of quadratic nonlinear terms. The softening behavior also 

decreases as the axial speed increases. Contrarily, when the axial speeds belong in the 

subcritical regime, the FRCs will be of hardening type instead. Somnay and Ibrahim 130 

studied the nonlinear dynamics of a Gospodnetic-Frisch-Fay beam under sinusoidal 

excitation. The restoring force was approximated by curve fit with the exact solution in 

terms of elliptic functions. The fitted curve obtained was a polynomial of the eleventh-

order with all odd terms. Busby and Weingarten 131 studied the steady-state response of a 

nonlinear beam under harmonic excitation. They pointed out the nonlinearity is due to the 

membrane tension effect induced when the deflection is not small compared with its 

thickness.  

 

2.4.3 Solutions to Helmholtz-Duffing equation 

The steady-state solutions of the Helmholtz-Duffing equation can be solved by 
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approximate analytical method and numerical method. Except for regular periodic 

response, chaotic motion may also arise in certain conditions.  

 

2.4.3.1 Approximate analytical solution 

Approximate analytical solutions of the steady-state response of the Helmholtz-Duffing 

oscillator are usually assumed to be a sum of the DC bias and the harmonic components. 

It involve perturbation techniques such as harmonic balance, averaging, multiple scales, 

etc. Harmonic balance method (HBM) with the first-order approximation is commonly 

used, such as in Ravindra and Mallik 132, Kadji et al. 133, Kovacic et al. 125 and Kovacic et 

al. 99. Kovacic et al. 134 also included a second harmonic. The inclusion of the second 

harmonic in the solution changed the response but its effect was little in their case. 

Benedettini et al. 135 added the period-two and period-three harmonic responses in the 

HBM solutions, and obtained the FRCs for the amplitude of the corresponding 1/2-

subharmonic and 1/3-subharmonic components; besides, the order two and three 

superharmonic responses were also analytically studied. In general, analytical solutions 

are concerned with frequency responses of the primary resonance and even of the 

secondary resonances using amplitude-frequency curves and transmissibility curves, in 

which the phenomena of curve bending, jump and resonant hysteresis may be observed. 

For example, Ravindra and Mallik 132 obtained the force transmissibility in the case of 

force excitation and the displacement transmissibility in the case of base excitation for a 

nonlinear oscillator, considering both symmetric and asymmetric nonlinear restoring 

forces. They found that the asymmetric force may not perform satisfactorily for a base 
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excitation. Kovacic et al. 125 and Kovacic et al. 134 studied the resonance responses of an 

oscillator with quasi-zero stiffness under static and harmonic forces. They found that the 

system can have a maximum number of one, three, or five steady-state values depending 

on the static and harmonic forces. As the static force increased from zero, the system 

changed from pure hardening to mixed hardening and softening, and finally to pure 

softening. They also studied how the stiffness of system changed at specific points of the 

amplitude-frequency curves, and confirmed damping can be used to avoid the appearance 

of jumps. 

 

Much of research work has considered steady-state responses of an asymmetric oscillator. 

However, studies on the transient responses are few due to the complexity involved. Elias-

Zuniga and Martinez-Romero 110 pointed out that the amplitudes of transient oscillation 

must be estimated to avoid undesirable peaks that could violate design constraints or 

unstable system behavior. They obtained the time-dependent amplitude-frequency 

response curves for the primary resonance of the Helmholtz-Duffing oscillator by using 

Jacobi elliptic function, Fourier series and harmonic balance.  

 

2.4.3.2 Numerical solution 

Numerical results, usually obtained by the 4th order Runge-Kutta algorithm 116, 133, can be 

used to evaluate or confirm analytical results in the frequency domain 125, 134. Yet a greater 

significance of numerical simulations is to study the bifurcation and chaotic responses of 

a nonlinear oscillator, although the bifurcation study can also be realized by approximate 

analytical methods 99. In respect of the dynamics of routes from periodic to chaotic 
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responses, a lot of studies showed that the Helmholtz-Duffing oscillator experienced the 

cascades of period-doubling bifurcations leading to chaos 99. Common dynamic measures 

such as time history, phase portrait, Poincaré section and bifurcation diagram contain rich 

and qualitative information on the transitions from periodic to chaotic motions. Poincaré 

map is the intersection, or return point, of a periodic orbit in the state space of a dynamic 

system, in which the period is determined by the driving force. As described by Cao et al. 

118, periodic motion forms n discrete points indicating the period of motion is nT; quasi-

periodic motion forms a closed curve; and chaotic motion forms a particular or 

geometrical structure. Bifurcation diagram provides an overview of essential dynamics 

with the change of parameters. For instance, these measures were used by Mayoof and 

Hawwa 127 to study the influence of increasing excitation amplitude on the dynamic 

response of the oscillator. They found that increasing excitation amplitude results in 

period-doubling bifurcation, followed by the chaotic behavior. Ghayesh and Amabili 129 

constructed bifurcation diagrams for increasing the excitation amplitude on the nonlinear 

system of a post-buckled and axially moving viscoelastic beam with distributed transverse 

excitation load, with the variations of axial speed. It was shown that increasing the axial 

speed resulted in less complicated and strange attractors in the bifurcation diagrams. 

Besides, quasi-periodic, period-n and chaotic motions appeared as the excitation 

amplitude increased. Kovacic et al. 99 studied the appearance of period-bifurcation and its 

development into chaos with decreasing excitation frequency. Besides, they found that 

period-doubling bifurcation can be entirely eliminated by choosing a suitable damping 

coefficient. Kadji et al. 133 studied the chaotic behaviors of plasma oscillations, in which 

area the cause of chaotic motion is of interest. They found that increasing the quadratic 
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nonlinearity led to quasi-periodic oscillations, and the rate of chaos became more 

important and remained unchanged; while increasing the cubic nonlinearity decreased the 

windows of chaotic and regular motions. Thus, the quadratic and cubic parameters can be 

used to manipulate the rate of chaotic motions in a plasma system. Besides, the bifurcation 

diagram and phase portraits for increasing excitation amplitude showed a quasi-periodic 

evolution and finally a chaotic one. Rega et al. 116 and Benedettini et al. 135 used control 

parameter spaces to study the influence of excitation amplitude and excitation frequency 

on the periodic and chaotic responses. The chaoticity of a system can be examined by the 

Lyapunov exponents of the system. Chaotic system has a positive Lyapunov exponent. As 

Sheu et al. 117 stated, Lyapunov exponents can be used to distinguish chaotic motion from 

quasi-periodic motion. Other than the aforementioned tools, basin of attraction was also 

adopted by Kadji et al. 133 and Benedettini et al. 135 to study the presence of co-existing 

solutions with sensitivity to initial conditions. The abovementioned features exist in even 

apparently simple nonlinear system. 136 

 

2.5 Fractional-order derivative 

The fractional-order derivative was raised by Leibniz more than 300 years ago. 137 The 

fractional order operator is a nonlocal operator. It has unlimited memory, but can closely 

resemble the real world in a concise manner. 118, 119 Fractional calculus has become a 

popular instrument in many scientific and engineering fields such as viscoelasticity, 

hereditary physics, structural hysteresis, rheology, electrochemistry, bioengineering, 

mechanics, automatic control, signal and image processing, quantum evolution of 
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complex system, etc. 117, 137 For example, Bagley and Torvik 138 have used fractional 

derivative models to describe the frequency-dependent damping behavior of materials and 

systems very well. This section will review literature that considers fractional-order 

derivative in the Duffing oscillator and the Helmholtz-Duffing oscillator. Relevant studies 

using approximate analytical and numerical approaches to study the periodic and chaotic 

behaviors of such nonlinear systems will be presented. First of all, the definitions of the 

fractional-order derivative is introduced as below. 

 

2.5.1 Definitions 

Several definitions of fractional-order derivative are widely used. One of them is the 

Riemann-Liouville (RL) definition, 8, 118, 139  

1

1 d ( )( ) d
( ) d ( )

n t

a t n na

fD f t
n t t

α
α

τ τ
α τ − +=

Γ − −∫ , 0α > , 1n nα− < < , n∈ ,                   (2.7) 

where α  has non-integer values, n  is the smallest integer larger than q , and ( )Γ ⋅  is the 

Gamma function; the subscripts to the left and right of D  are the lower- and upper-bounds 

in the integral. The equation implies that the history has an impact on the current state. 

Moreover, due to the 1( )nt ατ − −−   term, the integro-differential operator has fading or 

decaying memory in that it weighs the recent past more heavily than the distant past. 8, 140  

As noted by Zhang and Shimizu 141, the RL definition renders an infinite value for the 

integrand at upper limit tτ = ; besides, the resulting integral will diverge if the sequence 

of integration and differentiation is switched. The RL definition usually causes difficulties 

for practical application, albeit meaningful in physics. Furthermore, at 0t =   it may 
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encounter trouble to the instantaneous response of system due to the fact that the fractional 

derivative of a constant is not identically zero. 137 Shokooh and Suarez 142 proposed to use 

the initial velocity to replace the fractional derivative at 0t = , since the value of the latter 

is unknown. They verified that small variations in the initial data would not affect the 

result since the numerical models adopted are sufficiently stable. This problem can also 

be avoided by using the Caputo’s definition, which takes the form 

11 d ( )( ) ( ) d
( ) d

nt n
a t na

fD f t t
n

α α ττ τ
α τ

− −= −
Γ − ∫ , 0α > , 1n nα− < < , n∈ .           (2.8) 

 

However, due to the presence of the integral and the gamma function, numerical 

techniques are difficult to operate on the RL definition and the Caputo’s definition. 137 To 

realize discretization of the fractional order operators, the Grunwald-Letnikov (GL) 

definition is the most straightforward to use numerically. 118 It takes the form  

[ ]( )

0 0
( ) lim ( 1) ( )

t a h
j

a t h j
D f t h f t jh

j
α α α−

−

→
=

 
= − − 

 
∑ ,                                                            (2.9)  

where h  is the time increment, [ ]x  is the truncation of x , and the binomial coefficients 

are 
1( 1) ( )

(1 ) ( 1)

j j
j j
α α α

α

−  − Γ −
=  Γ − Γ + 

. 

 

For a great varieties of functions in real physical and engineering applications, the three 

definitions are equivalent. 137 Consequently, one can use the RL definition for problem 

formulation, and turn to the GL definition for numerical solution. 143  

 

Here below shows two basic properties of the fractional-order derivative: 144  
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(1) Linearity. For any constants c  and d  we have 

[ ]( ) ( ) ( ) ( )a t a t a tD cf t dg t c D f t d D g tα α α+ = + .                                                           (2.10) 

(2) Index law. With restrictions on initial values, the fractional-order differentiation 

operators commute, i.e. 

( ) ( ) ( )a t a t a t a t a tD D f t D D f t D f tα β β α α β+   = =    .                                                    (2.11) 

 

On the other hand, it is usually easier to describe the fractional integro-differential 

operation in the Laplace domain. 118 With vanishing initial conditions, i.e. all of the 

derivatives of the function ( )f t  equals to zero at t a= , the Laplace transform has a 

simplified form as,   

{ } { }( ) ( )a tL D f t s L f tα α= .                                                                                        (2.12) 

 

2.5.2 Research approach 

Based on these definitions, numerical simulations and approximate analytical methods 

can be used to solve the fractional-order differential equations (FODEs). Numerical 

methods for fractional order oscillators are quite a few, for instance, multi-step numerical 

schemes for a single-degree-of-freedom (SDOF) fractional oscillator in the time domain 

145, discretization 146, predictor-corrector method 117, linear approximation of fractional 

order transfer function in the frequency domain 143, 147, etc. Nevertheless, frequency 

domain methods are said to be not always reliable in detecting chaos. 119 One disadvantage 

of numerical simulations is that they are unable to relate structural parameters with the 
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underlying physics of the problem. 148 Moreover, they cannot arrive at unstable solutions. 

Although these solutions are not physically realizable, they do offer insight into the global 

behavior, such as the determination of domains of attraction. 136 On the other side, 

approximate analytical approach has no such problems. It usually uses different 

perturbation techniques, such as Multiple Scales and Averaging methods that are 

developed in the time domain. Frequency domain methods can also be used for solving 

FODEs, e.g., the Multiple Time Scales and the Lindstedt Poincaré perturbation methods 

(MSLP), thus nonlinear behaviors can be readily interpreted. 148  

 

As we are interested to learn about the periodic and chaotic behaviors of the Duffing 

oscillator and the Helmholtz-Duffing with fractional-order derivative, literature on the 

two kinds of oscillators is reviewed as follows.  

 

2.5.3 Duffing oscillator with fractional-order derivative 

Shen et al. 115 adopted the averaging method with the separation of periodic and aperiodic 

components to obtain the frequency response equation for steady-state solutions of the 

Duffing oscillator with fractional-order derivative. Equivalent damping coefficient and 

equivalent stiffness coefficient were calculated involving the effect of fractional-order 

derivative. The FRCs obtained by approximate analytical and numerical solutions showed 

that the fractional-order parameters could affect both of the resonance amplitude and the 

bending degree simultaneously. Based on the property of sequential fractional derivatives, 

Cao et al. 118 transformed the Duffing equation with fractional order damping into three 

state-space equations with zero initial conditions. As the fractional order operator cannot 

64 
 



Chapter 2 

be implemented directly in time-domain simulations, by direct discretization using the 

10th order CFE-Euler methods to approximate the fractional order operator and by using 

the 4th order Runge-Kutta method, the dynamics was simulated in MATLAB/Simulink. 

Bifurcation diagrams for increasing the fractional order, excitation frequency and 

excitation amplitude were generated. The oscillator exhibited alternating periodic and 

chaotic motions with the increase of the fractional order, during which a period doubling 

route to chaos and an inverse period doubling route leaving chaos were observed. El-

Sayed et al. 119 proposed a discretization method to approximate the right-hand side of the 

state-space equations with piecewise constant arguments for the fractional-order Duffing 

oscillator. Bifurcation diagrams of the discrete system showed that increasing the 

fractional order stabilized the chaotic system. Sheu et al. 117 used a predictor-corrector 

method for the numerical solution of fractional integral equations transformed from the 

original fractional-order Duffing equation. The bifurcation diagram showed that the size 

of attractor trended to enlarge as the fractional order increased. Besides, a period doubling 

route to chaos was found, with many period-three windows observed. 

 

2.5.4 Helmholtz-Duffing oscillator with fractional-order derivative 

Dal 149 used the Multiple Time Scales method (MS) to study the free vibration of the 

Helmholtz-Duffing equation with fractional-order damping. The approximate analytical 

result was compared with numerical solutions by both variational iteration method (VIM) 

and finite difference method (FDM). Ogam et al. 148 derived the frequency response 

equation for the cracked structure dynamics, described by the Helmholtz-Duffing 
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equation with a fractional-order derivative term close to unity. The Multiple Time Scales-

Lindstedt Poincaré perturbation method (MSLP) was employed to solve the dynamic 

equation in the frequency domain, valid for both weakly and strongly nonlinear systems. 

The stiffness nonlinearity arose from the contact of cracked surfaces, and was modeled 

using the Hertz contact theory. The cubic term gave a soft spring behavior, which 

explained the downward shift of resonance frequency as the excitation amplitude 

increased. This study has a practical significance in the prevention of catastrophic failure 

due to the development of crack-like defects in critical complex installations like aircraft 

and steel bridges during service. Yang and Zhu 137 studied the vibrational resonance (VR) 

phenomenon in over- and under-damped Duffing systems with fractional-order damping. 

Kovacic and Brennan 126 summarized current studies on the resonance, bifurcation and 

chaotic motions of the Helmholtz-Duffing oscillator. 

 

2.6 Chapter summary 

This chapter firstly reviews mechanical properties of knitted spacer fabrics regarding 

compression and impact behaviors. Secondly, high-static-low-dynamic-stiffness (HSLDS) 

structures and systems, and the Duffing equation and the Helmholtz-Duffing equation 

adopted to describe the vibration behavior of such isolators are reviewed, using analytical 

and numerical approaches. Moreover, the time-dependent viscoelasticity property can be 

described using the fractional-order derivative. Relevant literature on periodic and chaotic 

responses of the fractional-order Duffing oscillator and the fractional-order Helmholtz-

Duffing oscillator is lastly reviewed. 
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Weft-knitted spacer fabrics exhibit both nonlinear stiffness and the viscoelasticity. Their 

vibration behavior under forced vibration has not been studied by researchers yet. 

However, nonlinearity is very common for materials and systems. Different nonlinear 

vibration systems have been extensively studied. Nonlinear isolator designed to have 

HSLDS helps improve vibration isolation. Thus, the mechanisms of such systems 

including Euler buckled beam and negative stiffness devices are reviewed here. Models 

to describe their vibration behaviors and the methods of solving them are also presented 

to guide the solutions of vibration models for weft-knitted spacer fabrics in this study. 
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CHAPTER 3 EXPERIMENTAL DETAILS  

 

3.1 Introduction 

This chapter presents experimental details, including the design and fabrication of weft-

knitted spacer fabric samples in Section 3.2, and the setup, methodology and results of 

vibration experiment in Sections 3.3 and 3.4. Firstly, to fulfill the objective of obtaining 

relatively high thickness of weft-knitted spacer fabric thus reducing the dynamic stiffness 

and the resonance frequency, fabric structure is conceptualized and optimized. Based on 

the design idea, weft-knitted spacer fabrics having different fabric thicknesses are 

fabricated on a computerized flat knitting machine in which the distance between the front 

needle bed and the back needle bed cannot be changed. Next, to study the vibration 

isolation performance of spacer fabric, the sinusoidal sweep test is carried out using an 

electromagnetic vibration exciter to record the transmissibility curves of the mass-spacer 

fabric systems. Factors of sweep rate and direction, and material fatigue of spacer fabrics 

are evaluated. The effects of load mass, fabric thickness and excitation level on 

transmissibility curves are then analyzed.  

 

3.2 Fabric manufacture 

The section will present the design and fabrication of weft-knitted spacer fabrics using 

flat knitting technology. First, to achieve the objective of high fabric thickness for weft-
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knitted spacer fabric, a design idea is presented in Section 3.2.1 by increasing the linking 

distance of spacer monofilament and using elastic yarns to knit two outer layers. Secondly, 

an optimized fabric structure is chosen by comparing the thickness and appearance of 

three candidates in Section 3.2.2. Following this, two different spacer fabrics are 

manufactured with linking distance varied in Section 3.2.3. Dimensional properties such 

as fabric thickness, areal mass and stitch densities are then measured. Section 3.2.4 

presents the lamination of two identical spacer fabrics as one sample for vibration test. 

 

3.2.1 Design idea 

To reduce the stiffness of weft-knitted spacer fabrics and obtain a low resonance frequency, 

relatively thick spacer fabric should be used. However, as discussed in Section 2.2.2 of 

the previous chapter, the thickness of weft-knitted spacer fabrics is usually not high due 

to limited adjustment of the distance between two needle systems in a weft knitting 

machine. Besides, the length of continuous float stitches which crosslink two face layers 

on the needle beds could not be too long. Due to these twofold limitations, the thickness 

of a regular weft-knitted spacer fabric is within 10 mm for the knitting machine used in 

this study.  

 

To achieve the objective of higher thickness, a special structure concept is firstly 

suggested. As shown in Figure 3.1(a), the spacer structure suggested is constructed with 

two outer layers knitted from elastic yarn and an inner or spacer layer knitted with 

symmetrical monofilaments in “X” shape. As the outer layers are knitted from elastic yarn, 

after a steaming treatment, the outer layers would shrink, resulting in a rotation of the 
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inclined monofilament yarns to the thickness direction of the fabric, as shown in Figure 

3.1(b). As a result, fabric thickness is increased. If a different linking distance of spacer 

yarns is used, spacer fabric with different thickness can be easily obtained.  

 

Figure 3.1 Design concept of weft-knitted spacer fabric structure: (a) before steaming 

treatment; (b) after steaming treatment. 

 
 

3.2.2 Structure optimization 

As previously discussed, the linking distance of spacer monofilament should be long 

enough to obtain high fabric thickness. Thus, a linking distance of 20 needle stitches is 

used here. Fabric structure is varied by changing the density and tuck position of spacer 

monofilament, while the face layer is identical. This trial test is carried out in order to 

select a suitable fabric structure as vibration isolator. 

 

Three candidate weft-knitted spacer fabrics, i.e. Spacer-20f, Spacer-20h and Spacer-

20h_var, are designed. The number indicates the stitches between two tucking points on 

the same needle bed for one monofilament. In the case when all needles knit tuck stitches, 

“f” is designated, which means full linking density. In the case when only half numbers 

of needles knit tuck stitches, “h” is designated, which means half linking density. Figure 

3.2(c) shows the variants by changing tuck locations. 

(b) (a) 
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All of them have spacer monofilaments tuck every other nine needles on two needle beds 

alternately. In Spacer-20h, ten monofilaments comprise one course, in which the tuck 

positions are evenly distributed. Its periodic pattern is captured in Figure 3.2(b). By 

rearranging the tuck positions, Spacer-20h_var is obtained as in Figure 3.2(c). Spacer-20f, 

as shown in Figure 3.2(a), has twofold monofilament picks, and twofold evenly 

distributed tuck stitches.  

 

 

Figure 3.2 Tuck patterns for constructing three candidate weft-knitted spacer fabrics: (a) 

Spacer-20f; (b) Spacer-20h; (c) Spacer-20h_var. 

 

These fabrics are knitted on a STOLL CMS 822 computerized flat knitting machine of 

gauge 14. Monofilaments tuck and link together two outer single jersey layers separately 

knitted on the front and back needle beds of the machine. Outer layer structures are single 

jersey stitches using the multifilament containing one 100D nylon multifilament yarn and 

one 30D Spandex/70D nylon covering yarn. Polyester monofilament of 0.12 mm in 

diameter produced by the Nantong Xindike Special Fibre Co., Ltd. is used as the spacer 

yarn. The tensile behaviors of these yarns are shown in Figure 3.3. It is found that the 

Spandex nylon covering yarn used has a very small tensile modulus in a wide range of 

strain. 

(a) (b) (c) 
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Figure 3.3 Tensile load vs. strain curves of three types of yarns used for knitting weft-

knitted spacer fabrics. 

 

In order to knit the spacer fabrics with required quality, proper settings of knitting 

parameters are important. Among a series of knitting parameters, NP value, i.e. cam 

setting, is the most important parameter demanding correctly be set as it directly 

determines fabric density and loop length. Based on trial tests, it is found that NP value 

set at 9.0 for spacer layer, and NP value set at 11.0 for outer layers could give a better 

knitting effect. Too large or too small NP value for spacer layer could make outer layers 

rough or cause the damage of monofilaments. Special care should also be taken of for 

other machine settings such as yarn feeding routes and tension, fabric take-down tension 

and machine speed to minimize fabric defects.  

 

After knitting, all fabric samples are subjected to a steaming treatment using a steam iron 
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at a free state. The temperature of the steam iron is kept at around 50℃ to avoid yarn 

damages. Elastic yarns in the outer layers shrink during this process, which leads to fabric 

thickening. After the steaming treatment, the fabric samples are relaxed under a constant 

temperature and humidity condition of 20℃ and 65% relative humidity for one week to 

allow for further shrinkage, but at a lesser and slower extent. After full relaxation, spacer 

fabrics of stable dimensions are obtained. Fabric basic properties are listed in Table 3.1.    

 

    

Figure 3.4 Three candidate weft-knitted spacer fabrics in the course views: (a) Spacer-

20f; (b) Spacer-20h; (c) Spacer-20h_var. 

 

Figure 3.4 shows the course views of these spacer fabrics. Their structural parameters are 

also listed in Table 3.1. Spacer-20f has relatively small thickness which limits the range 

of displacement under axial vibration. Spacer-20h_var generates empty areas void of tuck 

stitches, making it unsuitable for bearing axial load. For Spacer-20h as shown in Figure 

3.4(b), the cross-over structure of spacer monofilaments in the course direction balances 

axial forces so that transverse shift along the courses of fabric does not arise. As a result, 

Spacer-20h is selected as the basal samples for vibration tests.  

 

 

(a) (b) (c) 
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Table 3.1 Fabric basic properties. 

Fabric type 
Course density 

(wales/cm) 

Wale density 

(courses/cm) 

Areal mass 

(g/m2) 

Thickness 

(mm) 

Spacer-20f 5.63 (0.08) 23.37 (0.53) 1102.27 (18.11) 7.10 (0.13) 

Spacer-20h 7.15 (0.12) 26.10 (0.91) 1020.15 (21.99) 12.01 (0.17) 

Spacer-20h_var 7.82 (0.19) 28.26 (0.90) 612.67 (14.58) 13.23 (0.21) 

Note: Standard deviations are given in parentheses. 

 

3.2.3 Linking distance variation 

The difference in fabric structure is achieved by varying the linking distance of 

monofilaments from 20 needles to 12 needles long, while keeping materials and the other 

knitting conditions identical. Two structures are used in the vibration experiments. The 

knitting notations are shown in Figure 3.5.  

 

    

Figure 3.5 Fabric structures with different linking distance of spacer monofilaments: (a) 

Spacer-20h; (b) Spacer-12h. 

 

(a) (b) 
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Figure 3.6 Cross-sectional views of spacer fabrics produced: (a) and (c) Spacer-20h; (b) 

and (d) Spacer-12h. 

 

Figure 3.6 also shows the cross-sectional views of the as-fabricated weft-knitted spacer 

fabrics. It can be found that the cross-sectional views along the course direction and the 

wale direction are different. Along the course direction, spacer monofilaments have a 

crossed structure. However, along the wale direction, i.e. the take-up direction for the 

whole fabric, spacer monofilaments have a curved shape. Moreover, linking points A and 

B of each monofilament with two outer layers are not located on the same vertical line.  

 

Along the wale direction (Figure 3.6(c) and (d)), the monofilaments should have exhibited 

(a) (b) 

(c) (d) 
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bilateral symmetry characteristic of “C”-shapes in an ideal-case scenario. Monofilaments 

connect two outer layers by tuck stitches. The floating length between adjacent tuck 

stitches forms a shallow arc, stemming from the bending moment developed on tuck 

stitches. However, the two endpoints of a monofilament segment may not be in a strictly 

vertical alignment in reality. As a result, transverse instability exists along the wale 

direction of fabric. The reasons are as follows:  

(1) The knitting of stitches in one outer layer always lags behind that in the other outer 

layer of spacer fabric. Due to the pulling force by the draw-off roll, the earlier knitted 

stitches will be drawn off first. As a result, the two opposite stitches from the two outer 

layers cannot be aligned. For the same reason, the two endpoints of a monofilament 

segment is also not aligned. Moreover, due to the limited control over steaming skills, 

imperfections are easily introduced to spacer fabrics. Consequently, one uncut piece 

of spacer fabric exhibits a preference regarding to the right or to the left along the 

wales would the monofilaments flatten under the perturbation of axial force. In 

addition, another source of imperfection comes from a tilted load mass.  

(2) Another important reason is the uncertain boundary conditions (neither pin-ended nor 

fixed-ended) of monofilament segment with two outer layers. Monofilament segments 

are in a continuous filament but only separated by tuck stitches at periodic intervals. 

Consequently, one uncut piece of spacer fabric exhibits a preference regarding to the 

right or to the left along the wales would the monofilaments flatten under the 

perturbation of axial force. Accompanying axial deformation, the aforementioned 

imperfection of the monofilament arc shape leads to lateral shifting of one outer layer 

relative to the other. As the compression force increases, it resembles the buckling of 
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a fixed-free column. Under stress, the monofilament segments depart readily from the 

original “C”-shaped symmetric construction, and transform into half “C” shapes, i.e. 

the tangent of one endpoint forms a right angle with the connected outer layer.  

 

Transverse instability could happen to certain types of warp-knitted spacer fabric as well, 

both along the wale and course directions. This adverse behavior could be avoided by 

proper design, so as to incorporate balanced and stable structures for monofilaments. Yet 

for weft-knitted spacer fabric, few countermeasures could be taken against transverse shift 

along the wale direction. Therefore, the dislocation between linking points A and B should 

be taken into consideration when preparing the fabric samples for vibration testing. 

 

Basic dimensional properties such as fabric thickness, areal mass, course density and wale 

density of two kinds of weft-knitted spacer fabrics are shown as in Table 3.2. As spacer 

fabric has longer linking distance, fabric thickness, areal mass are both increased. Besides, 

course density is slightly increased as well. However, wale density does not change much 

when linking distance is varied. 

 

Table 3.2 Basic dimensional properties of two weft-knitted spacer fabrics with different 

linking distances. 

Fabric type 
Course density 

(wales/cm) 

Wale density 

(courses/cm) 

Areal mass 

(g/m2) 

Thickness 

(mm) 

Spacer-20h 7.15 (0.12) 26.10 (0.91) 1020.15 (21.99) 12.01 (0.17) 

Spacer-12h 6.66 (0.06) 25.90 (0.42) 673.27 (31.33) 6.66 (0.18) 

Note: Standard deviations are given in parentheses. 
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3.2.4 Fabric lamination 

It is learned earlier that under the perturbation of axial force, an imperfect weft-knitted 

spacer fabric exhibits a preference regarding to the right or to the left along the wales that 

it would flatten. In order to circumvent the undesirable transverse shift along the wale 

direction of the spacer fabric structure during vibration tests, two identical spacer fabrics 

were bonded together using a double-sided adhesive tape as shown in Figure 3.7(a). Thus, 

point A and point C are located on the same vertical line. In this case, the topmost layer 

and the base layer of the laminated fabric can maintain opposite to each other under the 

mass loaded, as shown in Figure 3.7(b). By this way, the transverse motion of the spacer 

fabric has no interference on the vertical motion of the mass-spacer fabric system. 

 

Figure 3.7 Schematic of fabric structure with two identical fabrics laminated together: 

(a) before compression; (b) after compression. 

3.3 Experimental setup and method 

Below introduces the test setup, the typical transmissibility curve, the evaluation of the 

factors of sweep rate, sweep direction and material fatigue on the transmissibility curve, 

and the quasi-static compression test method.  

(a) (b) 

78 
 



Chapter 3 
 
3.3.1 Test setup 

A vibration test system EM-400F3K-30N80 manufactured by the King Design Instrument 

Technology (Kun Shan) Co., Ltd was used to measure the vibration transmissibility of 

laminated weft-knitted spacer fabrics. The system mainly consists of an electromagnetic 

vibration shaker equipped with a vertically connected 35 cm × 35 cm square platform 

made of aluminum, a digital vibration controller VCS 102, a high power amplifier and 

protector, and a cooling blower. The schematic of the system is shown in Figure 3.8. The 

controller VCS 102 has one output channel (Output) and two input channels (Input 1 and 

Input 2), and generates voltage signals transmitted through the power amplifier to drive 

the shaker platform to vibrate at predefined frequencies and excitation levels. Then, 

acceleration signals measured by two accelerometers respectively mounted on the shaker 

platform (Accelerometer 1) and the load mass (Accelerometer 2) were sent back through 

Input 1 and Input 2 to the controller for data acquisition. It should be noted that the 

Accelerometer 1, Input 1, controller, and Output form a feedback control system to ensure 

that the shaker platform vibrates correctly according to the predefined profile. The 

controller was also connected to the test software of PC for waveform display and analysis. 

The cooling blower cooled down the shaker for safety purpose. 
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Figure 3.8 Schematic of the vibration testing system. 

 

The mounting of two accelerometers for measuring the acceleration transmissibility of the 

mass-spacer fabric system is shown in Figure 3.9. The spacer fabric to be tested is placed 

on the center of the shaker platform and top-loaded with a metallic mass. The 

accelerometer stud-mounted on the shaker platform was an accelerometer Brüel & Kjær 

4514-004 with a sensitivity of 50.9 mV/g and an acceleration range of 100g, where g is 

the gravitational acceleration (9.81 m/s2). The other accelerometer PCB 352A56 with a 

sensitivity of 101.7 mV/g and an acceleration range of 50g was adhesively mounted on 

the center of the load mass using petro wax.  
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Figure 3.9 Photo of the mass-spacer fabric system and the mounting of two 

accelerometers. 

 
 
The size of fabric sample and that of load mass were selected by referring to the 

International Standard BS EN ISO 13753:2008, “Mechanical vibration and shock. Hand-

arm vibration. Method for measuring the vibration transmissibility of resilient materials 

when loaded by the hand-arm system”. According to this standard, the material to be tested 

shall contain a circular area of no less than 45 mm in radius; besides, the load block shall 

be a circular cylinder with a radius of 45 mm and a mass of 2.5 kg. However, due to the 

nearly orthotropic material properties of weft-knitted spacer fabric structure, it would be 

appropriate to have fabric samples cut into a square shape rather than a circular one. 

Consequently, spacer fabric samples used were cut into a size of 150 mm × 150 mm. In 

order to weaken the edge effect and avoid mass eccentricity, square steel blocks with a 

surface area (90 mm × 90 mm) smaller than that of spacer fabric samples, but with 

different masses were used as the load masses. 
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The shaker was excited by sinusoidal sweeps from 4 Hz to 500 Hz with a sweep rate of 

1.0 Oct/min. Each sweep event had a constant excitation level, namely, 0.1g, 0.2g or 0.3g. 

The profiles of excitation level vs. frequency are shown in Figure 3.10. It should be noted 

that excitation amplitude decreases as the driving frequency increases. Five different load 

masses from 1 kg to 5 kg were used. Acceleration transmissibility values at desired 

frequencies were obtained during tests. Three replications were carried out for each testing 

condition. 

 

Figure 3.10 Amplitude-frequency curves for three excitation levels, 0.1g, 0.2g and 0.3g. 

 

In addition, in order to better understand how the nonlinear behavior of spacer fabrics 

affects the vibration isolation performance, a quasi-static compression test was also 

conducted for the laminated fabrics on an Instron tester 5566 installed with two 

compression platens. The compression speed was set as 12 mm/min and the maximum 

compression strain was chosen as 60% of the original fabric thickness. The sample size 

used was 90 mm × 90 mm, the same as that of load blocks. 
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3.3.2 Typical transmissibility curve  

The vibration isolation performance of the weft-knitted spacer fabrics was evaluated by 

the acceleration transmissibility T  which is defined as the ratio of the acceleration of the 

load mass to that of the shaker platform. As shown in Figure 3.11, a typical curve of T  as 

a function of the excitation frequency obtained for Spacer-12h when tested under 0.3g 

excitation level and 2 kg load mass is selected as an example to explain the vibration 

isolation performance of this type of spacer fabric. The corresponding phase response 

curve between excitation and response signals is also shown. Although the tests were 

conducted from 4 Hz to 500 Hz, all the acceleration transmissibility curves shown 

afterwards are only until 100 Hz to get a better demonstration. From Figure 3.11, it can 

be seen that under low excitation frequencies, the acceleration transmitted from the 

platform to the mass approximately equals the excitation level, and the response of load 

mass is nearly in phase with the platform. However, with increasing the excitation 

frequency, the transmissibility and the phase angle increase rapidly until the resonance 

peak. The transmissibility reading above one unit ( 1T > ) indicates that the vibration is 

amplified. At resonance frequency rf  (15.2 Hz), the transmissibility of the mass-spacer 

fabric system reaches the peak value maxT  (4.1), where the response should have a 90° 

phase shift (experimental value 87.9°) with reference to the sinusoidal excitation. Further 

elevating the excitation frequency above rf  , the transmissibility starts to decline. The 

frequency at which the transmissibility equals one unit ( 1T = ) is called the crossover 

frequency cf  (30.3 Hz), which defines the boundary between the amplification region and 

the isolation region. Vibration isolation ( 1T < ) takes effect when the excitation frequency 
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is larger than cf .  

 

 

Figure 3.11 (a) Typical acceleration transmissibility curve and (b) the corresponding 

phase response curve for Spacer-12h under 0.3g excitation level and 2 kg load mass. 

 

To achieve a wider isolation region, the resonance frequency rf  should be reduced. In a 

linear single-degree-of-freedom (SDOF) system, the curve shape near the resonance peak 

looks symmetric. In such a kind of system 98, rf  is related to the dynamic stiffness dk  
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and the load mass m  which is defined by equation 
1

2
d

r
kf
mπ

= . Observing the curve in 

Figure 3.11, it can be found that the curve shape near the resonance peak is asymmetric 

and bent to the left side, indicating that the mass-spacer fabric system is a nonlinear one. 

Although in a nonlinear system, the calculation of rf  becomes more complicated, rf  is 

still affected by dk   and m  . Besides, under a low excitation level, such a mass-spacer 

fabric system can be assumed as a linear one. The reduction of rf   implies either 

decreasing dk   or increasing the load mass. Since the load mass is predefined by the 

working condition, decreasing dk   should be the only approach to a better isolation 

performance.  

 

Therefore, an ideal isolator should keep the dynamic stiffness as low as possible. However, 

due to the nonlinearity of weft-knitted spacer fabric, the value of dk  is affected by the 

load mass, the fabric thickness and the excitation level. For this reason, Section 3.4 will 

discuss the effects of these factors on the isolation performance of the mass-spacer fabric 

system. For better comparison, two physical quantities, i.e. the resonance frequency rf  

and the crossover frequency cf  , are selected. Since the amplification region is to be 

avoided during the use, the peak transmissibility maxT  is not a concern in this study.  

 
 

3.3.3 Sweep rate and direction 

The examination of the effect of sweep rate was carried out using three sweep rates 
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successively, 0.5, 1.0 and 1.5 Oct/min, on one same piece of stacked weft-knitted spacer 

fabric. The driving frequency varied logarithmically rather than linearly with time. The 

testing condition of 0.1g excitation level and 2 kg mass was used. Sweeps in both 

directions were performed, i.e. from lower to upper limit of frequency values and the 

reverse manner. In Figure 3.12, deviations between forward and backward sweep curves 

were observed. Regardless of the sequence of the events, backward sweep curves were 

always higher than forward sweep curves. This was an indication that the deviations were 

not caused by material fatigue. The difference was the smallest for the lowest sweep rate 

of 0.5 Oct/min. 

 

Furthermore, a comparison of transmissibility curves showed that the sweep rate did not 

have a strong influence on the responses overall. But taking a close look at the response 

curves around resonance peak, a higher forward sweep rate shifted the response curves to 

the right, while a higher backward sweep rate shifted the response curves to the left. Sweep 

test is a quasi-steady state technique. With a high sweep rate, the response of system may 

have not yet reached steady state before the driving frequency moves to the next 

magnitude. With a low sweep rate, however, the amount of time spent becomes greatly 

prolonged, thus bringing another problem which involves the fatigue and viscoelasticity 

of materials. Consequently, a compromise between both requirements for the sweep rate 

is needed to ensure the reliability of results. Based on an overall consideration, for all of 

the vibration experiments in the following sections, a sweep rate of 1.0 Oct/min was 

employed. 
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Figure 3.12 Effects of sweep rate and direction, where (b) is a magnified view of (a).  
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3.3.4 Material fatigue  

In order to examine the effect of repeated experiments on the transmissibility curve of one 

same piece of stacked weft-knitted spacer fabric, ten continuous forward and backward 

sweep cycles were performed at the same time of five consecutive days. Since the 

resonance peak bends to the left, the transmissibility curves are of softening type. The 

values of peak transmissibility and resonance frequency are compared.  

 

As shown in Figures 3.13 and 3.15, as the repetition continues, peak transmissibility 

increases and resonance frequency decreases within each day. However, as shown in 

Figure 3.15, given 24 hours’ time for relaxation, resonance frequency can be partially 

recovered. Peak transmissibility in the second day diverges from the main trend. Besides, 

as in Figure 3.15, within each day, backward sweep results in higher transmissibility in 

the beginning, but this gap is reduced and reversed as the repetition continues. 

 

 

 

88 
 



Chapter 3 
 

 

 

Figure 3.13 Transmissibility curves for the forward sweep events (a) during the 1st day 

and (b) during the 5th day. 
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Figure 3.14 Transmissibility curves of (a) the 1st sweep cycles and (b) the 10th sweep 

cycles for five consecutive days. 
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Figure 3.15 Trends of (a) peak transmissibility and (b) resonance frequency for the 

forward sweep events (in solid lines) and the backward sweep events (in dashed lines) 

during each of five consecutive days. 
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3.4 Results and discussion 

The effects of fabric thickness, load mass and excitation level on the transmissibility curve 

and the vibration isolation performance of the mass-spacer fabric system are investigated 

as follows. 

 

3.4.1 Effect of fabric thickness and load mass 

Under the same excitation level, the effect of the fabric thickness on the vibration isolation 

performance also depends on the load mass due to nonlinear behaviors of spacer fabrics 

under both static and dynamic loading conditions. In other word, the spacer fabrics will 

be deformed at different compression strains and will have different stiffness when the 

load mass changes. In this regard, the effects of the fabric thickness and load mass are 

discussed together in this section. For ease of discussion, only the testing results for one 

excitation level of acceleration are presented here. The effect of the excitation level will 

be discussed in the next section. 

  

Figure 3.16(a) and (b) respectively show the transmissibility curves of Spacer-20h and 

Spacer-12h with different load masses when the excitation level is kept at 0.1g. It can be 

seen that the resonance peaks of the transmissibility curves shift to the left side when the 

load mass increases. This implicates that rf  and cf  decrease with the increase of the load 

mass (Figure 3.16(c)). However, as shown in Figure 3.16(a), an exceptional case is found 

for Spacer-20h when the load mass increases from 4 kg to 5 kg. In this case, the 

transmissibility curve with 5 kg load mass shifts back to the right side instead of shifting 
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to the left side, resulting in a slight increase of rf  and cf  as shown in Figure 3.16(c). 

When observing the effect of the fabric thickness, it can be found that rf   and cf   of 

Spacer-20h are smaller than those of Spacer-12h, indicating that rf  and cf  decrease with 

the increase of the fabric thickness.  
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Figure 3.16 (a) and (b) Transmissibility curves under 0.1g excitation level with load 

mass varied; (c) Variation of rf  and cf  with load mass. 
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of damping materials. Therefore, their dynamic stiffness dk  should be different from their 

static stiffness sk   due to history-dependent mechanical properties under vibration 

condition. In spite of the nonlinear compressive force-displacement relationship of spacer 

fabrics, under 0.1g excitation level, the vibration is so localized that the mass-spacer fabric 

system could be treated as linear. Using 
1

2
d

r
kf
mπ

= , the values of dk  for two spacer 

fabrics with five load masses were calculated and listed in Table 3.3. It can be seen that 

the dk  values of Spacer fabric-20h are lower than those of Spacer-12h. This explains why 

rf  and cf  decrease with the increase of the fabric thickness and the thicker spacer fabric 

has better vibration isolation than the thinner fabric. 

 

The variation trends of dk  also explain why rf  and cf  decrease with the increase of the 

load mass because the dk  values also decrease with the increase of the load mass. The 

exceptional case for Spacer-20h, in which rf   and cf   increases when the load mass 

increases from 4 kg to 5 kg, can be also explained by dk   value change and static 

compression curve. As shown in Figure 3.17, when the load mass increases from 4 kg to 

5 kg, Spacer-20h changes into the compaction stage with a rapid increase of stiffness. As 

the effect of the increase of stiffness is higher than that of the increase of load mass, rf  

and cf  increases when the load mass increases from 4 kg to 5 kg. Table 3.3 also confirms 

that the dk  values increase when the load mass increases from 4 kg to 5 kg. 
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Table 3.3 dk  values of mass-spacer fabric system for a fixed excitation level at 0.1g.  

Load mass (kg) 1 2 3 4 5 

dk  (×104 N/m) Spacer-20h 5.26 3.69 2.32 0.74 1.32 

Spacer-12h 7.03 4.96 3.65 2.62 2.40 

 

 
Figure 3.17 Quasi-static compression curves (solid lines ‘—’) and stiffness curves sk  

(dashed lines ‘- -’) of spacer fabrics. 
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fixed load mass. Figure 3.18(a) and (b) respectively show the transmissibility curves of 

Spacer-20h and Spacer-12h with different excitation levels when the load mass is kept at 

2 kg. It can be seen that the resonance peaks of the transmissibility curves shift to the left 

side when the excitation level increases. This implicates that rf  and cf  decrease with the 

increase of the excitation level (Figure 3.18(c)). From Figure 3.18(a) and (b), it can be 

also found that the shapes of transmissibility curves at the resonance peaks get much bent 

to the left side when the excitation level increases, indicating that the mass-spacer fabric 

system becomes more softening. As the increase of softening implicates a decrease of the 

dynamic stiffness dk , rf  and cf  decrease with the increase of the excitation level.  

 

From Figure 3.18(c), it can be also found that the rf  and cf  values of Spacer-20h are 

lower than those of Spacer-12h for all the excitation levels, which confirms again that the 

thicker spacer fabric has better vibration isolation performance than the thinner spacer 

fabric. The result in Figure 3.18(c) also shows that the difference in rf  and cf  between 

two spacer fabrics increase with the increase of excitation level. The reason may be 

explained by the fact that at low excitation level, the dynamic loads applied to the fabric 

are relatively smaller and two fabrics work at their low deformation regions where the 

difference of their stiffness is not high. However, with increasing the excitation level, the 

dynamic loads applied to the fabric increase and two fabrics will work in different 

deformation regions where their stiffness gets more important. The detailed explanation 

needs a further theoretical analysis by considering the nonlinear softening of the mass-

spacer fabric system, which will be elaborated in Section 5.2.1 of Chapter 5 on the 

parametric analysis of theoretical model. 
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Figure 3.18 (a) and (b) Transmissibility curves under 2 kg load mass with excitation 

level varied; (c) Variation of rf  and cf  with load mass. 
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3.5 Chapter summary 

This chapter presents the design and fabrication of weft-knitted spacer fabrics with 

different thicknesses using an electronic flat knitting machine. Due to the inherent 

transverse shift of weft-knitted spacer fabric, two pieces were laminated into one sample. 

The vibration isolation performance of spacer fabric under forced vibration was tested, 

which is more complicated than that of a linear SDOF system. The effects of fabric 

thickness, load mass, and excitation level on the transmissibility curve were discussed. 

According to the results obtained, the following conclusions can be drawn.  

1) The vibration behaviors of weft-knitted spacer fabrics are not linear due to their 

nonlinear compression force-displacement relationships which result in different 

stiffness under different load mass and excitation level.  

2) Increasing the fabric thickness can result in a decrease of the resonance frequency and 

crossover frequency due to the reduction of stiffness, and thus improve the vibration 

isolation performance of spacer fabrics.  

3) The higher load mass normally results in a smaller resonance frequency and a smaller 

crossover frequency. However, too high load mass makes fabric compacting, resulting 

in a higher resonance frequency and a higher crossover frequency due to a rapid 

increase of the statically-loaded tangential stiffness of fabric. 

4) Increasing the excitation level results in a smaller resonance frequency and a smaller 

crossover frequency, and thus a broadened frequency region for vibration isolation. It 

also results in an enhanced nonlinear softening effect. 
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CHAPTER 4 PARAMETER IDENTIFICATION BY CURVE 

FIT 

 

4.1 Introduction 

This chapter builds the equation of motion under forced harmonic excitation using two 

types of models, one with symmetric elastic force and one with asymmetric elastic force. 

Frequency-domain solutions are obtained using the harmonic balance method (HBM) 

with the first-order approximation. Model parameters are identified by curve fit, with 

discussions on the optimization algorithms used, the goodness of fit concerning two types 

of models, and the significance of the fractional derivative term. 

 

4.2 Approximate analytical models 

4.2.1 Symmetric model with parameters k k3 k5 k7 c a α  

To simulate the vibration response of the mass-spacer fabric system under harmonic 

excitation using a symmetric model, the dynamic equation is first set up as follows 

5 7
5 7

3
3mx +cx +kx +k x +k x +k x aD x = -mGcos( t)α ω+  ,                                            (4.1) 

where the term aD xα  is a fractional derivative for explaining the viscoelasticity in spacer 

fabric, and G  is the magnitude of acceleration by the forced oscillation, i.e. the excitation 
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level. The elastic force is 5 7
5 7

3
3kx +k x +k x +k x , and the viscous damping force is cx . 

Similar equation of motion has been used by Deng 9 to study the vibration of polyurethane 

foam. For the nonlinear elastic force, different models have been set up in literature, for 

instance, the seventh-order polynomial, the fifth-order polynomial, the polynomial plus 

tangent terms, etc. Including high-order polynomial terms more than necessary may cause 

overfit, in which case the expression does not optimize but deteriorates the model instead. 

It is commonly accepted that a seventh-order polynomial can well describe the elastic 

force of a simple nonlinear system. Furthermore, a polynomial composed of all odd-order 

terms renders a symmetry of the elastic force-displacement relationship about the origin 

which represents the oscillations of mass around the pre-stressed position as the reference 

point for displacement. It should be noted that adding even-orders into the polynomial 

expression results in an asymmetric model, which has complicated mathematical 

derivations in the effort to obtain frequency response curves (FRCs). The simplest form 

of such an asymmetric model will be presented later.  

 

Consider the primary resonance of the system using the symmetric model by Equation 

(4.1), the response can be written as 

( ) j t j tx t Ae Aeω ω−= + ,                                                                                                   (4.2) 

where r iA A jA= + , and A  is the conjugate. The harmonic amplitude is 2 A . 

 

With the knowledge of 

{ } ( )
2

j tj tD e = e
πω αα ω αω

+

,                                                                                                 (4.3) 
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we can equate the coefficients of j te ω
 on both sides of the equation of motion using the 

harmonic balance method (HBM), and obtain 

2 2 3 2 4 32
3 5 73 10 35

2
j mGm A jc A kA aA e k A A k A A k A A
π ααω ω ω− + + + + + + = − .             (4.4) 

 

This equation can be simplified as 

2
mGPA jQA+ = − .                                                                                                      (4.5) 

Further split into real and imaginary parts, 

2
0

r i

i r

mGPA QA

PA QA

 − = −

 + =

,                                                                                                   (4.6) 

and multiplied by A , it becomes 

2

2

0
2

0
2

r

i

mGAP A

mGAQ A

 ⋅ + =

 ⋅ − =


,                                                                                                    (4.7) 

where 

2 4 62
3 5 73 10 35 cos( )

2

sin( )
2

P m k k A k A k A a

Q c a

α

α

πω ω α

πω ω α

 = − + + + + +

 = +


.                                (4.8) 

Equation (4.6) can also be squared to obtain 

2 2
2 4 6 22 2 2

3 5 7(( 3 10 35 cos( )) ( sin( )) )
2 2 4

m Gm k k A k A k A a c a Aα απ πω ω α ω ω α− + + + + + + + ⋅ =  ,                                                                                             
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which is used to recover the harmonic amplitude ( 2 A ) vs. excitation frequency curve 

after model parameters have been identified by curve fit. 

 

4.2.2 Asymmetric model with parameters: β κ k3 c a α  

As mentioned earlier, the asymmetric model considers adding even-orders into the 

polynomial expression for the elastic force-displacement relationship. This asymmetry 

arises from different sources, such as the ones described in Chapter 2: 

• The loaded mass is mistuned (overloaded or underloaded) for an isolator with quasi-

zero stiffness, i.e. the static equilibrium position departs from the point of symmetry 

for the elastic force-displacement relationship. 

• An asymmetric excitation force, comprised of a harmonic component and a static 

component, is applied to an isolator with quasi-zero stiffness. 

• For curved beams, the initial curvature gives rise to the quadratic term and the mid-

plane stretching gives rise to the cubic term. In such cases, the restoring force 

containing the quadratic stiffness term 2
2k x  is more realistic in practice, as compared 

with the one with all odd terms, such as the research carried out by Abolfathi 150. 

 

In comparison with the symmetric nonlinearity, the quadratic stiffness term takes into 

account the asymmetry in the restoring force which is more general for real materials and 

systems. In addition, lower-order nonlinearity terms contribute more to the restoring force 

than the higher-order terms, thus, the former exhibits higher significance. As a result, the 

linear-quadratic-cubic stiffness terms are used to build the asymmetric model. Besides, 
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the highest-order stiffness coefficient is limited to 3k . The dynamic equation of motion is 

2
2

3
3mx +cx +kx +k x +k x aD x = -mGcos( t)α ω+  .                                                                    (4.9) 

 

The polynomial elastic force has a relation of equivalence as below 

2
2 ( ) ( )3 3

3 3kx+k x +k x = x +k xκ δ δ β+ + − ,                                                             (4.10) 

which results in 

2

3
2

2

3
3

2 2
2

3 3

3

3

2
3 27

k
k

kk
k

k k k
k k

δ

κ

β


=


 = −

 ⋅ = −


.                                                                                                    (4.11) 

 

Let the new coordinate be ( ) ( )z t x t δ= +  , then after coordinate transformation, the 

equation of motion becomes                     

( )3
3mz +cz + z +k z aD z = -mGcos( t)ακ δ ω β+ − +  .                                                               (4.12) 

 

On the other hand, the fractional derivative of the constant δ  is 

0

( 1)lim
( 1) (1 )

tD = t
α

α λ α

λ

λ δδ δ
λ α α

−
−

→

Γ +
⋅ =

Γ − + Γ −
 ,                                                              (4.13) 

where 0α ≥ , and t α−  is a decaying function. Assume the time is adequately long to reach 

the steady state, which results in 0
t

D =αδ
→∞

. So we have 

( )D z = D z D D zα α α αδ δ− − = .                                                                                (4.14) 
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At last, the equation of motion is transformed into                     

3
3mz +cz + z +k z aD z = -mGcos( t)ακ ω β+ +  .                                                                          (4.15) 

 

Solving the unknowns 2 3, , , , ,k k k c a α   in the original equation (4.9) is equivalent to 

solving the unknowns 3, , , , ,k c aβ κ α   in Equation (4.15). The advantage of using the 

transformed form is that it can be treated as an isolator with symmetric elastic force 

excited by a harmonic force -mGcos( t)ω  and a constant force β . The resulting steady-

state amplitude ( )z t  contains a harmonic term and a bias term. Assume it has the form 

0 0( ) 2 cos( )j t j tz t A Ae Ae A A tω ω ω φ−= + + = + + ,                                                   (4.16)                                          

in which r iA A jA= + . The harmonic amplitude is 2 A  and the static displacement is 0A . 

We use the harmonic amplitude vs. excitation frequency curve to perform curve fit and to 

identify model parameters. 

 

Using the harmonic balance method (HBM), to equate the constants on both sides of 

Equation (4.15), we have  

23
3 0 3 0 06k A k A A Aκ β+ + = .                                                                                    (4.17) 

The static displacement 0A  has only one real root, which is associated with A  by 

2
3

0
3

6
3

k A
A M

k M
κ+

= − ,                                                                                                (4.18) 

where  
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( )
1

1 3
3 22

23

3 2
3 3 3

6

27 4 2

k A
M

k k k

κ β β
  +   = + +  
     

. 

Equating the coefficients of j te ω
 on both sides of Equation (4.15), we can obtain 

2 2 2
3 3 03 3 cos( ) sin( )

2 2 2
mGk A A k A A A aA jaA m A jc Aα απ πκ ω α ω α ω ω+ + + + − + = − . 

 (4.19) 

Similar as in the symmetric model, the equation above can be simplified as 

2
mGPA jQA+ = − .                                                                                                    (4.20) 

Further split into real and imaginary parts as  

2
0

r i

i r

mGPA QA

PA QA

 − = −

 + =

,                                                                                               (4.21) 

and multiplied by A , it becomes 

2

2

0
2

0
2

r

i

mGAP A

mGAQ A

 ⋅ + =

 ⋅ − =


,                                                                                               (4.22) 

where 

22 2
3 3 03 3 cos( )

2

sin( )
2

P m k A k A a

Q c a

α

α

πω κ ω α

πω ω α

 = − + + + +

 = +


.                                                 (4.23) 
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Equation (4.21) can also be squared to obtain 

 
2 2

2 22 2 2 2
3 3 0(( 3 3 cos( )) ( sin( )) )

2 2 4
m Gm k A k A a c a Aα απ πω κ ω α ω ω α− + + + + + + ⋅ = ,                                                                                             

which is used to recover the harmonic amplitude ( 2 A ) vs. excitation frequency curve 

after model parameters have been identified by curve fit. The static displacement 0A  can 

then be expressed using A . 

 

4.2.3 Fitness function 

Given the expression of harmonic amplitude vs. excitation frequency relationship using 

either the symmetric model or the asymmetric model, the next procedure is to find the 

optimal parameter estimates that best describe the vibration behavior of the mass-spacer 

fabric system by optimization strategy, which can be stated as 

2 2
2

1
min ( ) min ( )

N

nx x n
f x f x

=

 =  
 
∑ ,                                                                                (4.24) 

where ( )nf x   is the fitness function that characterizes the harmonic amplitude vs. 

excitation frequency relationship, and N  is the volume of experimental data. The fitness 

function has the form of 

2 2
1, 2,( ) ( ) ( )n n nf x f x f x= + ,                                                                                     (4.25) 

where 
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2
1,

2
2,

( )
2

( )
2

r
n

i
n

mGAf x P A

mGAf x Q A

 = ⋅ +

 = ⋅ −


.                                                                                                                (4.26) 

 

For the symmetric model in Section 4.2.1 we have 

2 4 62
3 5 73 10 35 cos( )

2

sin( )
2

P m k k A k A k A a

Q c a

α

α

πω ω α

πω ω α

 = − + + + + +

 = +


.                                     (4.27) 

 

For the asymmetric model in Section 4.2.2 we have 

22 2
3 3 03 3 cos( )

2

sin( )
2

P m k A k A a

Q c a

α

α

πω κ ω α

πω ω α

 = − + + + +

 = +


.                                                  (4.28) 

 

Experimental data of harmonic amplitude 2 A  can be calculated using the data of the 

transmissibility T  and the phase angle φ  by the equation 2
22 2 cos 1GA T T φ

ω
= − + . By 

optimizing the fitness function in Equation (4.25), parameter estimates of 2 3, , , , ,k k k c a α  

in the symmetric model and parameter estimates of 3, , , , ,k c aβ κ α   in the asymmetric 

model can be solved.  
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4.2.4 Statistical indicator of the goodness of fit (RMSE) 

The value of 2

2
min ( )

x
f x  is also the sum of square error (SSE). As a statistical indicator 

of the goodness of fit for a model while at the same time considering the effect of data 

volume, the root mean square error (RMSE) is given as 

SSERMSE=
N

.                                                                                                          (4.29) 

 

Another commonly used index for the goodness of fit is the coefficient of determination, 

which is defined as 

2

2 res 1

2tot

1

( )
SSR 1 1
SS ( )

N

n n
n

N

n
n

y f

y y

=

=

−
= − = −

−

∑

∑
,                                                                            (4.30) 

where resSS  and totSS  are the residual sum of squares and the total sum of squares, ny  

and nf  are experimental and fitted values respectively, and y  is the average of experiment 

values. However, in a nonlinear system, when the vibration response under a single-

frequency harmonic excitation has multiple solutions, the mapping relation between the 

excitation frequency and the vibration response will not be satisfied. In this case, the 

response is not a function of excitation frequency, thus, the coefficient of determination 

2R  will not be used here.  
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4.3 Results of data fitting 

Results of data fitting using symmetric models and asymmetric models are presented as 

below. In this study, the highest-order of nonlinearity for the symmetric force is restricted 

to quintic, so that the symmetric model with unknown parameters 3 5, , , , ,k k k c a α  contains 

the same number of parameters as the asymmetric model with unknown parameters 

3, , , , ,k c aβ κ α . 

 

4.3.1 Excitation level 

In this section, the levels of the goodness of fit by symmetric models of different structures 

and asymmetric models of different structures are compared for Spacer-12h under 0.1-

0.3g excitation levels and 2 kg load mass conditions. Experimental data of harmonic 

amplitude vs. excitation frequency were based on a combination of the sweep-up and 

sweep-down events. It should be noted that some of the harmonic amplitudes for spacer 

fabric under 0.3g excitation level and 2 kg load mass condition are multi-valued for certain 

frequency range as shown in Fig 4.1(c), due to the fact that its steady-state response 

depends on the sweep direction (from low to high frequencies, or from high to low 

frequencies) of sinusoidal excitation. Experimentally, the unstable solution cannot be 

observed, while the two stable solutions correspond to the lower and upper paths. The 

sudden switch from on stable path to the other is called the jump phenomenon. It could 

take place for nonlinear systems under large excitations.  
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Symmetric models 

Figures 4.1 and 4.2 show parameter estimates and RMSEs using four variants of 

symmetric models, i.e. with parameters 3 5, , , , ,k k k c a α , 3, , , ,k k c a α , 3 5, , ,k k k c , and 

3 5, , , ,k k k a α , in order to examine the effects of the quintic stiffness 5k , the viscous 

damping coefficient c , and the fractional derivative term aD xα .  
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Figure 4.1 Fitting results using the symmetric model with parameters 3 5, , , , ,k k k c a α  and the one with parameters 3, , , ,k k c a α  for the 
conditions of 2 kg load mass and: (a) and (d) 0.1g; (b) and (e) 0.2g; (c) and (f) 0.3g excitation level using Spacer-12h. 
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Figure 4.2 Fitting results using the symmetric model with parameters 3 5, , ,k k k c  and the one with parameters 3 5, , , ,k k k a α  for the 
conditions of 2 kg load mass and: (a) and (d) 0.1g; (b) and (e) 0.2g; (c) and (f) 0.3g excitation level using Spacer-12h.
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To compare the fitting results of these four variants of symmetric models, Figure 4.3 

summarizes their RMSEs. Firstly, it is shown that the symmetric model with six 

parameters 3 5, , , , ,k k k c a α  achieves the best curve fit by giving the smallest RMSEs. 

Secondly, the symmetric model without the quintic stiffness term 5
5k x , i.e. the one with 

parameters 3, , , ,k k c a α , gives the largest RMSEs, indicating that 5
5k x  is significant for 

the model. Thirdly, using the model with six parameters 3 5, , , , ,k k k c a α  results in reduced 

RMSEs for all three excitation level conditions, as compared with using the model without 

the fractional derivative term aD xα , i.e. the one with parameters 3 5, , ,k k k c . This makes 

clear the significance of the fractional derivative term for the model. Fourthly, using the 

model with the fractional derivative term aD xα   alone, i.e. the one with parameters 

3 5, , , ,k k k a α  , gives better curve fit compared with using the model with the viscous 

damping coefficient c  alone, i.e. the one with parameters 3 5, , ,k k k c . This also reveals 

the advantage of using the fractional derivative term to describe the vibration behavior of 

the mass-spacer fabric system. Last but not least, for 0.1g and 0.3g excitation level 

conditions, the viscous damping coefficient is redundant, since the model with parameters 

3 5, , , ,k k k a α  gives the same RMSE as the model with parameters 3 5, , , , ,k k k c a α ; however, 

for the 0.2g excitation level condition, cx   and aD xα   both helps improve the model 

structure. 
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Figure 4.3 Summary of RMSEs from curve fits using four variants of symmetric models. 

 

Asymmetric models 

Similarly, parameter estimates and RMSEs under the same excitation level and load mass 

conditions for the same spacer fabric are shown in Figure 4.4, using three variants of 

asymmetric models, i.e. with parameters 3, , , , ,k c aβ κ α , 3, , , ,k aβ κ α , and 3, , ,k cβ κ , in 

order to examine the effects of the viscous damping coefficient c  and the fractional 

derivative term aD xα . 
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Figure 4.4 Fitting results using the asymmetric model with parameters 3, , , , ,k c aβ κ α , the one with parameters 3, , , ,k aβ κ α  and the 

one with parameters 3, , ,k cβ κ  for conditions of 2 kg load mass and: (a), (d) and (g) 0.1g; (b), (e) and (h) 0.2g; (c), (f) and (i) 0.3g 

excitation level using Spacer-12h. 
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Similarly, to compare the fitting results of these three variants of asymmetric models, 

Figure 4.5 summarizes their RMSEs. Firstly, it is shown that the asymmetric model with 

six parameters 3, , , , ,k c aβ κ α  achieves the best curve fit by giving the smallest RMSEs. 

Secondly, using the model with six parameters 3, , , , ,k c aβ κ α  results in reduced RMSEs 

for all three excitation level conditions, as compared with using the model without the 

fractional derivative term aD xα  , i.e. the one with parameters 3, , ,k cβ κ  . This makes 

clear the significance of the fractional derivative term for the model. Thirdly, using the 

model with the fractional derivative term aD xα   alone, i.e. the one with parameters 

3, , , ,k aβ κ α  , gives better curve fit compared with using the model with the viscous 

damping coefficient c  alone, i.e. the one with parameters 3, , ,k cβ κ . This again reveals 

the advantage of using the fractional derivative term to describe the vibration behavior of 

the mass-spacer fabric system. Last but not least, for 0.1g and 0.3g excitation level 

conditions, the viscous damping coefficient is redundant, since the model with parameters 

3, , , ,k aβ κ α  gives the same RMSE as the model with parameters 3, , , , ,k c aβ κ α ; however, 

for the 0.2g excitation level condition, cx   and aD xα   both helps improve the model 

structure.  

 

The physical significance of the fractional derivative term aD xα  is some combination of 

the linear elastic force and the viscous damping force when 0 1α≤ ≤ . Thus, it contributes 

to both the elastic force and the damping force. When 0α = , aD xα  evolves into a linear 

spring ax ; when 1α = , aD xα  evolves into a viscous damper ax . For the 0.3g excitation 
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level condition, however, the best-fit value of the fractional order α  is larger than one. 

The extension of the interval ( 0 2α≤ ≤ ) makes the physical meaning of α  more difficult 

to be defined. Despite this, it helps improve the model structure to some degree by giving 

a reduced RMSE. 

 

Figure 4.5 Summary of RMSEs from curve fits using three variants of asymmetric 

models. 
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Asymmetric vs. symmetric models 

In order to find whether the six-parameter asymmetric model ( 3, , , , ,k c aβ κ α ) or the six-

parameter symmetric model ( 3 5, , , , ,k k k c a α ) performs better, Figure 4.6 compares their 

RMSEs. It is shown that two types of model structures have comparable performances. If 

must, the asymmetric model performs slightly better by giving a bit smaller RMSEs. 

 

 

Figure 4.6 Comparison of RMSEs by asymmetric vs. symmetric models. 
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Reconstructed force-displacement curve 

Although the asymmetric and the symmetric types of model structures have comparable 

performances, their elastic force-displacement relationships are quite different. To 

reconstruct the elastic force-displacement curves in the form of polynomials by 

asymmetric and symmetric model types, the fractional derivative term aD xα   is not 

considered, otherwise it would also contribute to the elastic force. On one hand, using the 

asymmetric model with parameters 3, , ,k cβ κ , the corresponding elastic force-

displacement curves under 0.1-0.3g excitation levels and 2 kg load mass for Spacer-12h 

are shown in Figure 4.7(a), expressed as 2 3
2 3( ) ( ) ( )k x k x k xδ δ δ β− + − + − +  , or 

3
3x +k xκ  after coordinate transformation, which passes the statically-loaded position at 

the point ( , )δ β  . The tangent stiffness k   (marked with a dashed line) at this position 

(marked with a solid dot) is also shown. On the other hand, using the symmetric model 

with parameters 3 5, , ,k k k c  , the corresponding elastic force-displacement curves are 

shown in Figure 4.7(b), expressed as 3 5
3 5kx k x k x+ + , which passes the statically-loaded 

position at the origin (0,0) .  
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Figure 4.7 Reconstructed elastic force-displacement curves using fitted parameters 

under 0.1-0.3g excitation levels and 2 kg load mass for Spacer-12h: (a) the asymmetric 

model with parameters 3, , ,k cβ κ ; (b) the symmetric model with parameters 3 5, , ,k k k c . 

 

The reconstructed elastic force-displacement curves show that, as the excitation level 

increases from 0.1g to 0.3g, the tangent stiffness k  decreases for both the asymmetric 

model and the symmetric model.  
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4.3.2 Load mass 

Using the experimental data for Spacer-12h under 1-5 kg load mass and 0.1g excitation 

level conditions, results of data fitting including RMSEs and parameter estimates are 

presented in Figures 4.9 to 4.12, using two symmetric and two asymmetric model 

structures. During curve fit, as the location of resonance peak for different load mass 

varies largely, a unified frequency range for data fitting becomes unsuitable. For each case 

of load mass, the frequency range is defined as an interval of ±7 Hz from the frequency 

value that has peak amplitude. 

 

Figure 4.8 also summarizes the RMSEs for different model structures. It is shown that 

when the load mass is small, all models result in nearly the same level of the goodness of 

fit. As the load mass increases, the advantage of using models containing the fractional 

derivative term appears. Moreover, the symmetric model structures and the asymmetric 

model structures have comparable levels of performance. 

 
Figure 4.8 Comparison of RMSEs for six model structures for the conditions of 1-5 kg 

load mass and 0.1g excitation level. 
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Figure 4.9 Fitting using the symmetric model 3 5, , , , ,k k k c a α  for the conditions of 0.1g excitation level and the mass of: (a) 1 kg; (b) 2 

kg; (c) 3 kg; (d) 4 kg; (e) 5 kg; and (f) is a summary. 
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Figure 4.10 Fitting using the symmetric model 3 5, , ,k k k c  for the conditions of 0.1g excitation level and the mass of: (a) 1 kg; (b) 2 kg; 

(c) 3 kg; (d) 4 kg; (e) 5 kg; and (f) is a summary. 
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Figure 4.11 Fitting using the asymmetric model 3, , , , ,k c aβ κ α  for the conditions of 0.1g excitation level and the mass of: (a) 1 kg; (b) 

2 kg; (c) 3 kg; (d) 4 kg; (e) 5 kg; and (f) is a summary. 
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Figure 4.12 Fitting using the asymmetric model 3, , ,k cβ κ  for the conditions of 0.1g excitation level and the mass of: (a) 1 kg; (b) 2 

kg; (c) 3 kg; (d) 4 kg; (e) 5 kg, and (f) is a summary. 

35 37 39 41 43 45 47 49
0

0.2

0.4

0.6

0.8

1

1.2

x 10-3

Excitation frequency (Hz)

H
ar

m
on

ic
 a

m
pl

itu
de

 (m
)

 

 

RMSE=1.81e-06

β=3.35
κ=9.33e+03
k

3
=3e+12

c=60.5

experiment
curve fit

15 17 19 21 23 25 27 29
0

0.2

0.4

0.6

0.8

1

1.2

x 10-3

Excitation frequency (Hz)

H
ar

m
on

ic
 a

m
pl

itu
de

 (m
)

 

 

RMSE=7.28e-06

β=5.63
κ=1.06e+04
k

3
=2.93e+11

c=50.3

experiment
curve fit

9 11 13 15 17 19 21 23
0

0.2

0.4

0.6

0.8

1

1.2

x 10-3

Excitation frequency (Hz)

H
ar

m
on

ic
 a

m
pl

itu
de

 (m
)

 

 

RMSE=2.24e-05

β=8.05
κ=8.73e+03
k

3
=5.89e+10

c=59.7

experiment
curve fit

5 7 9 11 13 15 17 19
0

0.2

0.4

0.6

0.8

1

1.2

x 10-3

Excitation frequency (Hz)

H
ar

m
on

ic
 a

m
pl

itu
de

 (m
)

 

 

RMSE=4.36e-05

β=9.95
κ=5.16e+03
k

3
=1.72e+10

c=59.9

experiment
curve fit

5 7 9 11 13 15 17
0

0.2

0.4

0.6

0.8

1

1.2

x 10-3

Excitation frequency (Hz)

H
ar

m
on

ic
 a

m
pl

itu
de

 (m
)

 

 

RMSE=5.87e-05

β=14.3
κ=6.76e+03
k

3
=8.13e+09

c=60.9

experiment
curve fit

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

x 10-3

Excitation frequency (Hz)

H
ar

m
on

ic
 a

m
pl

itu
de

 (m
)

 

 
1kg experiment
1kg curve fit
2kg experiment
2kg curve fit
3kg experiment
3kg curve fit
4kg experiment
4kg curve fit
5kg experiment
5kg curve fit

(a) (b) (c) 

(d) (e) (f) 

127 
 



Chapter 4 

4.4 Chapter summary 

In this chapter, curve fit and parameter identification was performed using symmetric 

models and asymmetric models under varied excitation level and load mass conditions. 

For each model structure, the corresponding equation of motion was built to describe the 

vibration of the mass-spacer fabric system. The steady-state solution was derived in the 

frequency domain. Experimental results of harmonic amplitude vs. excitation frequency 

curve were fitted with analytical models using a proper fitness function. Root mean square 

error (RMSE) was adopted as the indicator of goodness of fit.  

 

A comparison of RMSEs using different models shows that the asymmetric model and 

the symmetric model have comparable performance. The former performs slightly better. 

Secondly, including the high-order quintic stiffness coefficient 5k  helps improve the 

symmetric model. Moreover, the fractional derivative term aD xα  also improves the 

goodness of fit of models to a certain extent. The term aD xα   outperforms cx   for 

describing the vibration behavior of the mass-spacer fabric system. The viscous damping 

coefficient c  was redundant in some cases.    
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CHAPTER 5 PARAMETRIC ANALYSIS 

 

5.1 Introduction  

In this chapter, theoretical analysis concerning the effects of nonlinear stiffness and 

damping property on the dynamic equation of the system under forced vibration is 

performed to strengthen the understanding of the vibration response mechanism of weft-

knitted spacer fabrics. Two phenomenological models, the symmetric model and the 

asymmetric model, are considered separately. For the symmetric model, the influence of 

varying excitation level, viscous damping coefficient, fractional derivative parameters, 

linear stiffness, cubic stiffness and quintic stiffness on the frequency response curves 

(FRCs) will be discussed. For the asymmetric model, the influence of varying bias force, 

linear stiffness and cubic stiffness will be discussed. The FRCs used are the amplitude-

frequency response curve and the force transmissibility curve. For the asymmetric model, 

a static displacement-frequency response curve is also obtained due to the asymmetric 

elastic force. Concerning the influence of varying stiffness coefficients on vibration 

response, the corresponding nonlinear force-displacement relationship are also provided.  

 

5.2 Symmetric model 

Given the dynamic equation for the nonlinear mass-spacer fabric system under harmonic 

excitation as  
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3 5 7
3 5 7mx +cx +kx +k x +k x +k x +aD x = -mGcos( t)α ω  ,                                              (5.1) 

where aD xα
 is a fractional derivative for explaining the viscoelasticity in spacer fabric, 

and G  is the excitation level. The solution for the steady-state harmonic response has the 

form of 

( ) j t j tx t Ae Aeω ω−= + ,                                                                                                  (5.2) 

where r iA A jA= + , and A  is the conjugate. 

 

It can also be written as  

( ) 2 cos( )x t A tω φ= + ,                                                                                               (5.3) 

where 

cos

sin
r

i

A A

A A

φ

φ

 =


= −
.                                                                                                         (5.4)                 

 

From Chapter 4 we have already known that 

2

2

0
2

0
2

r

i

mGAP A

mGAQ A

 ⋅ + =

 ⋅ − =


,                                                                                                  (5.5) 

where 

2 4 62
3 5 73 10 35 cos( )

2

sin( )
2

P m k k A k A k A a

Q c a

α

α

πω ω α

πω ω α

 = − + + + + +

 = +


.                                 (5.6) 
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Equation (5.5) can also lead to 

 
2 2

22 2( )
4

m GP Q A+ ⋅ = ,                                                                                           (5.7) 

which is used to recover the harmonic amplitude 2 A   under different excitation 

frequencies with known model parameters.  

 

At resonance, we have 
d

0
d

A
φ

= . So the phase angle at resonance is 90φ = −  . Using 

90iA A
φ=−

=
 , 

2 0
2

imGAQ A⋅ − = , 

and 

sin( )
2

Q c a α πω ω α= +  

from Equations (5.4) to (5.6), at resonance, we will have 

2sin( ) 0
2 2

mG A
c a Aα πω ω α

⋅ + ⋅ − =  
.                                                                  (5.8) 

As a result, the locus of harmonic peak at resonance is 

90
2

sin( )
2

mGA
c a

φ
α πω ω α

=−
⋅ =

+
 .                                                                              (5.9) 

It is observed that the locus of response is not only a function of the excitation frequency, 

but also a function of the excitation level, load mass, damping coefficient and the 

fractional derivative term. It does not depend on the stiffness of the system. For simplicity, 
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the locus line will only appear in figures concerning the effect of changing stiffness terms.  

 

From Equation (5.3), i.e. ( ) 2 cos( )x t A tω φ= + , we learn that the force transmitted is also 

harmonic,  

1 cos( )t t tf f tω φ= + .                                                                                               (5.10)               

Since 

2

cos( )
cos( ) 2 cos( )

3 5 7
t 3 5 7f cx +kx +k x +k x +k x +aD x

mG t mx
mG t m A t

α

ω

ω ω ω φ

=
= − −

= − + +



 ,                                                                  (5.11) 

we have now 

2
1

2
1

cos 2 cos

sin 2 sin
t t

t t

f mG m A

f m A

φ ω φ

φ ω φ

 = − +


=
.                                                                           (5.12) 

So the amplitude of the transmitted force becomes 

22 2 2 4 2 2
1 4 4 costf m G m A m G Aω ω φ= + − .                                                             (5.13) 

 

Using 

cosrA A φ= , 

2 0
2

rmGAP A⋅ + = , 

and 

2 4 62
3 5 73 10 35 cos( )

2
P m k k A k A k A a α πω ω α= − + + + + +  
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from Equations (5.4) to (5.6), the cosine of phase angle can be written as 

2 4 62
3 5 72 3 10 35 cos( )

2cos
A m k k A k A k A a

mG

α πω ω α
φ

 ⋅ − + + + + +  = − .                     (5.14) 

This is substituted into Equation (5.13) to obtain the transmissibility as 

22 2
2 4 61

3 5 72

8
1 3 10 35 cos( )

2 2
t Af mT k k A k A k A a

mG mG
αω ω πω α

 
= = + ⋅ − + + + + + 

 
.            

                         (5.15) 

The locus of peak transmissibility can be obtained by setting the phase angle 90φ = −  . 

With Equations (5.9) and (5.13), we have 

2 4

290
1

sin( )
2

mT
c a

φ
α

ω
πω ω α

=−
= +

 +  

 .                                                                    (5.16) 

It is noticed that the locus of peak transmissibility is a function of the excitation frequency, 

load mass, damping coefficient and the fractional derivative term. It is, however, not 

affected by the excitation level and the nonlinear stiffness coefficients of the system. For 

simplicity, the locus of peak transmissibility will only appear in figures concerning the 

excitation level and nonlinear stiffness terms. 

 

If we let 0G = , we obtain that 0P = . By solving the equation 

2 4 62
3 5 70 3 10 35 cos( )

2
P m k k A k A k A a α πω ω α= = − + + + + + ,                        (5.17) 

a relation between the response amplitude 2 A   and the excitation frequency ω   is 
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obtained. This is the backbone curve of response amplitude. It is independent of the 

excitation level and the damping force (i.e. the imaginary part of the solution). In the 

following figures, backbone curves of response amplitude are also given. It tells the trend 

of the peak when increasing the excitation level. It also tells the resonance frequency.  

 

In Sections 5.2.1 to 5.2.6 as follows, the influence of excitation level, viscous damping 

coefficient, the fractional derivative term, linear, cubic and quintic stiffness coefficients 

will be presented by giving the harmonic amplitude response curve and the 

transmissibility curve. Concerning the effects of stiffness coefficients, the corresponding 

force-displacement curves are also given.  

 

The reference parameter values are obtained by data fitting using the symmetric model 

with parameters 3 5, , ,k k k c  for Spacer-12h under the condition of 0G = 0.1g excitation 

level and 2 kg load mass. They are listed in Table 5.1. The fractional derivative term 

aD xα  is not considered, otherwise it would also contribute to the elastic force. However, 

they are added arbitrarily later in order to examine their effects on the FRCs. 

 

Table 5.1 Parameter estimates by curve fit using the symmetric model. 

Model 
parameter 

0k  03k  
05k  0c  

Value 4.123 ×104 -2.463×1011 1.423×1018 46.15 
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5.2.1 Effect of excitation level G 

As the excitation level is very small, the system oscillates with a very limited amplitude 

around the statically loaded position. The tangential stiffness at the statically loaded 

position is the linear stiffness k . When the harmonic amplitude becomes infinitesimal, 

the backbone curve intercepts with the horizontal axis at the frequency 
1

2r
kf
mπ

=  , 

which equates to a linear system. As shown in Figure 5.1(a), as the excitation level 

increases from 0.01g to 0.1g, i.e. from 00.1G  to 0G , the response curve bends to the left, 

an indication of stiffness softening. The equivalent stiffness in a softening system is lower 

than the tangential stiffness at the statically loaded position (i.e. the linear stiffness k ), as 

a result the resonance frequency falls below rf . As the excitation level further increases 

from 0.1g to 0.3g, i.e. from 0G   to 03G  , the response curve bends to the right, an 

indication of stiffness hardening, and the corresponding resonance frequency is above rf . 

The cubic stiffness has a negative value, accounting for the stiffness softening 

phenomenon when the excitation level is relatively small; while the quintic stiffness has 

a positive value, accounting for the stiffness hardening phenomenon when the excitation 

level is relatively large. This is also verified by the fact that the trend of the backbone 

curve leans to the left first and then to the right as the harmonic amplitude rises. 
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(a)                                                                        (b) 

Figure 5.1 Effect of excitation level G  on (a) harmonic amplitude 2 A  vs. excitation 

frequency response and (b) acceleration transmissibility T .  

 

Figure 5.1(b) shows the corresponding transmissibility curves. It is learned from Equation 

(5.16) for the locus of peak transmissibility that, peak transmissibility is positively related 

with resonance frequency. This confirms the observation that at resonance, a softening 

system leads to reduced peak transmissibility, while a hardening system leads to elevated 

peak transmissibility.  

 

On the other hand, as the excitation level is increased to a certain value, multiple solutions 

under certain excitation frequencies could take place, such as in the condition of 0.2g 

excitation level. Some solutions are unstable and will not be observed in experiments or 

numerical simulations. As this study is not concerned with the stability analysis of such 

nonlinear systems, it will not be discussed herein. 

 

10
1

10
2

10
-4

10
-3

10
-2

Excitation frequency (Hz)

H
ar

m
on

ic
 a

m
pl

itu
de

 (m
)

 

 
G = 0.1 G 0
G = 0.5 G 0
G = G 0
G = 2 G 0
G = 3 G 0

10
1

10
2

10
-1

10
0

10
1

Excitation frequency (Hz)

Tr
an

sm
iss

ib
ili

ty
 (g

)/(
g)

 

 
G = 0.1 G 0
G = 0.5 G 0
G = G 0
G = 2 G 0
G = 3 G 0

136 
 



Chapter 5 

5.2.2 Effect of viscous damping coefficient c 

 

(a)                                                                        (b) 

Figure 5.2 Effect of viscous damping coefficient c  on (a) harmonic amplitude 2 A  vs. 

excitation frequency response and (b) acceleration transmissibility T . 

 

Figure 5.2 shows clearly that increasing the viscous damping coefficient c   leads to 

reduced response magnitude. This agrees with Equation (5.9) for the locus of harmonic 

peak and Equation (5.16) for the locus of peak transmissibility which suggest that both 

the peak harmonic amplitude and the peak transmissibility are negatively related with the 

viscous damping coefficient c . The damping term has a significant effect on both the 

harmonic amplitude and the transmissibility around resonance. However, its effect on 

regions away from resonance frequency is diminished. As a result, increasing damping is 

one efficient approach to vibration attenuation if resonance is a concern.  
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5.2.3 Effect of the fractional derivative term (a and α) 

The fractional derivative term ( )aD x tα   has two parameters, the coefficient a   and the 

fractional derivative order α . It is assumed that 0a ≥  and 0 2α≤ ≤ . Considering the 

cases when 0α = , 1α =  and 2α = , then this fractional derivative term evolves to the 

linear stiffness, the viscous damping coefficient and the inertia, respectively. Thus, when 

the fractional derivative order α   is a non-integer between zero and one, it implicates 

certain combination of a linear spring and a viscous damper. The increase of α  reduces 

the share of stiffness component and uplifts the share of damping component. To evaluate 

their effects on FRCs, we arbitrarily assume that 0 1000a =  and 0 0.2α = . As shown in 

Figure 5.3, the increase of α  from 0 to 04α  results in increased resonance frequency and 

reduced peak transmissibility.  

 

(a)                                                                        (b) 

Figure 5.3 Effect of fractional derivative order α  on (a) harmonic amplitude 2 A  vs. 

excitation frequency response and (b) acceleration transmissibility T . 
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On the other hand, it is evident that the increase of the coefficient a  uplifts both the share 

of stiffness component and the share of damping component. As shown in Figure 5.4, the 

increase of the fractional derivative coefficient a   from 0 to 04a   results in increased 

resonance frequency and reduced peak transmissibility.   

 

(a)                                                                        (b) 

Figure 5.4 Effect of fractional derivative coefficient a  on (a) harmonic amplitude 2 A  

vs. excitation frequency response and (b) acceleration transmissibility T . 

5.2.4 Effect of the linear stiffness k 

The linear stiffness k   is the tangential stiffness of the system at the statically-loaded 

position. As shown in Figure 5.5(a), the backbone curve intercepts with the horizontal axis 

at resonance frequency 
1

2r
kf
mπ

= . As a result, the increase of linear stiffness k  leads 

to higher resonance frequency. The increase of linear stiffness k  also reduces the peak 

harmonic amplitude. Examining on the force-displacement curves reconstructed with the 

stiffness terms 3 5
3 5y kx k x k x= + +  , where y   represents the force and x   represents the 
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displacement curve first softens and then hardens. Correspondingly, the amplitude curve 

and the transmissibility curve bend to the left first and then to the right. As the linear 

stiffness k   increases, the softening phenomenon is weakened. In the corresponding 

amplitude curve and transmissibility curve, the bending to the left is also weakened, and 

the bending to the right fades. However, it can be predicted from the backbone curves that 

as the excitation level increases or the viscous damping coefficient decreases, the 

frequency response curves will regenerate the bending to the right at resonance. 

 

(a)                                                                        (b) 

 

(c) 

Figure 5.5 Effect of linear stiffness k  on (a) harmonic amplitude 2 A , (b) acceleration 

transmissibility T  and (c) elastic force 3 5
3 5kx k x k x+ + . 
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5.2.5 Effect of the cubic stiffness k3 

 

(a)                                                                        (b) 

 

(c) 

Figure 5.6 Effect of cubic stiffness 3k  on (a) harmonic amplitude 2 A , (b) acceleration 

transmissibility T  and (c) elastic force 3 5
3 5kx k x k x+ + . 
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dominant effect of the quintic stiffness coefficient 5 0k >  . When the cubic stiffness 

coefficient 3k   increases, the reconstructed force-displacement curve in Figure 5.6(c) 

experiences a prolonged softening region before entering the hardening region as the force 

or displacement goes away from the statically-loaded position. The corresponding 

frequency response curves also reflect stronger softening effect by bending to left. Besides, 

the peak harmonic amplitude is elevated and the peak transmissibility is reduced. 

 

5.2.6 Effect of the quintic stiffness k5 

Due to the assumption of 3 0k <  and 5 0k > , the effects of 3k  and 5k  are opposite. As 

shown in Figure 5.7, with the increase of the quintic stiffness coefficient 5k , the frequency 

response curve changes from bending to the left to bending to the right. When the quintic 

stiffness coefficient 5k  is small, the cubic stiffness coefficient 3k  dominates the bending 

of the resonance peak to the left under current excitation level and damping effect. When 

the quintic stiffness coefficient 5k  increases, the resonance peak first bends to the left and 

then to the right under a relatively high excitation level or a relatively small viscous 

damping effect, which is not in the figure but is predicted from the backbone curve. When 

the quintic stiffness coefficient 5k  is large enough to counteract the softening effect given 

by the cubic stiffness coefficient 3k  , pure hardening effect will be observed in the 

frequency response curves. This also agrees with the pure stiffness hardening in the 

reconstructed force-displacement curve in Figure 5.7(c).  
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(a)                                                                        (b) 

 

(c) 

Figure 5.7 Effect of quintic stiffness 5k  on (a) harmonic amplitude 2 A , (b) acceleration 

transmissibility T  and (c) elastic force 3 5
3 5kx k x k x+ + . 

 

5.3 Asymmetric model 

To describe the vibration behavior of the mass-spacer fabric system under harmonic 

excitation using the asymmetric model, the dynamic equation has the form of 

2
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3
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Let 

2
2 ( ) ( )3 3

3 3kx+k x +k x = x +k xκ δ δ β+ + − ,                                                            (5.19) 

the relationship between two sets of parameters are 

2

3
2

2

3
3

2 2
2

3 3

3

3

2
3 27

k
k

kk
k

k k k
k k

δ

κ

β


=


 = −

 ⋅ = −


.                                                                                                   (5.20) 

 

The fractional derivative of the constant function is 

0

( 1)lim
( 1) (1 )

tD = t
α

α λ α

λ

λ δδ δ
λ α α

−
−

→

Γ +
⋅ =

Γ − + Γ −
 ,                                                              (5.21) 

where 0α ≥ , and t α−  is a decaying function so that 0
t

D =αδ
→∞

. 

Let ( ) ( )z t x t δ= + ,                                                                                                    (5.22) 

and assume time is adequately long to reach steady state, so we have  

( )D z D z D D zα α α αδ δ− = − = .                                                                                (5.23) 

 

After coordinate transformation, the equation of motion becomes                     

3
3mz +cz + z +k z aD z = -mGcos( t)ακ ω β+ +  .                                                                         (5.24) 

 

Assume 

0 0( ) 2 cos( )j t j tz t A Ae Ae A A tω ω ω φ−= + + = + + ,                                                   (5.25) 
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in which r iA A jA= + . The harmonic amplitude is 2 A  and the static displacement is 0A . 

 

Using the harmonic balance method (HBM), to equate the constants on both sides of 

Equation (5.24), we can obtain  

23
3 0 3 0 06k A k A A Aκ β+ + = .                                                                                     (5.26) 

 

The static displacement has only one real root, which is 

2
3

0
3

6
3

k A
A M

k M
κ+

= − ,                                                                                                (5.27) 

where  

( )
1

1 3
3 22

23

3 2
3 3 3

6

27 4 2

k A
M

k k k

κ β β
  +   = + +  
     

. 

 

Equating the coefficients of j te ω
 on both sides of Equation (5.24), we can obtain 

2 2 2
3 3 03 3 cos( ) sin( )

2 2 2
mGk A A k A A A aA jaA m A jc Aα απ πκ ω α ω α ω ω+ + + + − + = − . 

(5.28) 

Let 

2 2 2
3 3 03 3 cos( )

2

sin( )
2

P k A k A a m

Q c a

α

α

πκ ω α ω

πω ω α

 = + + + −

 = +


,                                                   (5.29) 

145 
 



Chapter 5 

Equation (5.28) can be reduced to 

2
mGPA jQA+ = − ,                                                                                                   (5.30)                             

thus, we have 

2
0

r i

i r

mGPA QA

PA QA

 − = −

 + =

.                                                                                                 (5.31) 

 

The following procedures are mainly identical with those in the earlier symmetric model. 

The difference is the static displacement term. The static displacement 0A   can be 

expressed with A . 

 

The locus of harmonic peak is identical with that in the symmetric model, i.e. Equation 

(5.9) 

90
2

sin( )
2

mGA
c a

φ
α πω ω α

=−
⋅ =

+
 . 

Substituting Equation (5.9) into Equation (5.27), the locus of static displacement is solved 

accordingly. 

 

The transmitted force is composed of a harmonic component and a static component 

0 1 cos( )t t t tf f f tω φ= + + .                                                                                   (5.32) 

Since 
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2

cos( )
cos( ) 2 cos( )

3
t 3f cx + x +k x +aD x

mG t mx
mG t m A t

ακ
β ω

β ω ω ω φ

=
= − −

= − + +



 ,                                                              (5.33) 

we have now 

2
1

2
1

0

cos 2 cos

sin 2 sin
t t

t t

t

f mG m A

f m A
f

φ ω φ

φ ω φ

β

 = − +


=
 =

.                                                                          (5.34) 

 

As there is no contribution of bias term, the transmissibility is expressed in the form of 

1tfT
mG

= .                                                                                                                   (5.35) 

 

Similar as for the symmetric model, with Equations (5.4), (5.5) and (5.29), the 

transmissibility becomes 

22 2
2 2

3 3 02

8
1 3 3 cos( )

2 2
A mT k A k A a

mG
αω ω πκ ω α

 
= + ⋅ − + + + + 

 
.                          (5.36) 

 

The locus of peak transmissibility is obtained by setting phase angle 90φ = −  , and it is 

identical with the symmetric model, i.e. Equation (5.16) 

2 4

290
1

sin( )
2

mT
c a

φ
α

ω
πω ω α

=−
= +

 +  

 .  
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If we let 0G = , we obtain that 0P = . By solving the equation 

2 2 2
3 3 00 3 3 cos( )

2
P k A k A a mα πκ ω α ω= = + + + − ,                                                  (5.37) 

and substituting 0A  in the form of A , the relation between the response amplitude 

2 A  and the excitation frequency ω  is obtained. This is the backbone curve of response 

amplitude.  

 

The parameter estimates by curve fit using the four-parameter model with 3, , ,k cβ κ  are 

shown in Table 5.2, for the mass-spacer fabric system under the condition of 0G = 0.1g 

excitation level and 2 kg load mass. The parameter estimates of k   and 2k   from the 

original equation of motion are also shown. The SI units are used for all of parameters. In 

the asymmetric model, the effects of the excitation level, the viscous damping coefficient 

and the fractional derivative term are similar with those in the symmetric model. So, only 

the effect of the bias term ( β ) and the stiffness terms (κ , 3k ) will be discussed. 

 

Table 5.2 Parameter estimates by curve fit using the asymmetric model. 

Model parameter 0β  0κ  03k  0c  0k  02k  

Value 5.797 1.009×104 1.319×1011 46.15 4.154×104 1.116×108 

 

Spacer fabric is pre-stressed by load mass. During harmonic excitation, the compressive 

displacement for spacer fabric changes dynamically. The emergence of the bias force β  
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in Equation (5.24) is due to the existence of an asymmetric stiffness term 2
2k x   in the 

system. The true force-displacement relationship is 2 3
2 3y kx k x k x= + +  , i.e. 

3
3( ) ( )y x k xκ δ δ β= + + + −  , where y   represents the force and x   represents the 

displacement, and which passes the origin (0,0)   of the coordinate plane, i.e. the 

statically-loaded position, and the point ( , )δ β− − .  

 

In order to trace the frequency response curves under different bias forces β   to the 

nonlinear stiffness terms of the system, we let X x δ= +  and Y y β= + , so the force-

displacement relationship is recast into 
3

3Y X k Xκ= + , as shown in Figure 5.8(a), which 

passes the point ( , )δ β , i.e. the statically-loaded position which is marked  with a solid 

dot, and the origin (0,0) , i.e. the center of 180° rotational symmetry. The instantaneous 

stiffness at the statically-loaded position equals k , which is marked with a dashed line. It 

is also noted that the tangent at the origin equals κ . The physical significance of X∆  is 

the change of compressive displacement for spacer fabric. To the positive direction 

( 0X∆ > ) of the reference coordinate ( , )δ β  is the pressure relaxation ( 0Y∆ > ) process, 

while to the negative direction ( 0X∆ < ) is the further compression ( 0Y∆ < ) process. Due 

to the asymmetric force-displacement relationship about the statically-loaded position, 

displacements to the left and to the right exhibit stiffness softening and stiffness hardening 

characteristics separately, as is shown in Figure 5.8(a). Consequently, the center of 

harmonic displacement is no longer at the statically-loaded position. We consider the 

offset distance from the statically-loaded position to the center of oscillation to be called 
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the static displacement 0A δ− , the value of which depends on the excitation frequency. 

It has removed the effect of the constant displacement δ   caused by coordinate 

transformation. It will be shown later that the static displacement 0A δ−   has negative 

values, which indicates that the center of oscillation shifts to the further compression 

direction for spacer fabric ( 0X∆ <  and 0Y∆ < ), i.e. the stiffness softening part. This is 

reasonable since a softening system undergoes longer displacement than a hardening 

system under an identical level of force. The center of oscillation will shift to the softening 

part to balance out the difference. To comply with practice, the reconstructed elastic force-

displacement curve in Figure 5.8(a) is also converted into the compression force vs. 

compression displacement curve in Figure 5.8(b), when the load mass is 2 kg. 
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Figure 5.8 (a) Reconstructed elastic force-displacement curve 3
3X k Xκ +  using fitted 

parameters of the model with parameters 3, , ,k cβ κ  under 0.1g excitation level; (b) 

Converted into the compression force vs. compression displacement curve. 

 

5.3.1 Effect of the bias force β 

The fitted model parameters satisfy the relations of 2 0k >  , 3 0k >   and 0β >  . The 

parameters κ   and 3k   are fixed herein. Since the curve 3
3( ) ( )y x k xκ δ δ β= + + + −  

passes the origin (0,0)  , then we have 3
3kβ κδ δ= +  . Since we have the fitted model 

parameter 0κ >  , then β   will also be positively related with δ  , an intermediate 

parameter generated due to coordinate transformation. On the other hand, Equation (5.20) 

can be transformed to obtain 2 33k k δ=  and 2
33k kκ δ= + . Consequently, the bias force 
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β  is positively related with both the linear stiffness k  and the quadratic stiffness 2k . This 

agrees with our case. Figure 5.9(d) shows that an increase in the bias force β  is associated 

with both an increase in the tangent stiffness k  at the statically-loaded position and an 

increase in the intermediate parameter δ  . Therefore, concerned with the frequency 

responses, the backbone curve will intercept with the horizontal axis at a higher resonance 

frequency 
1

2r
kf
mπ

= , as is shown in Figure 5.9(a) and (b) for the frequency response 

curves of the static displacement 0A δ−  and the harmonic amplitude 2 A . 

 

However, if restricting the conditions by letting 0κ < , which will be discussed in the next 

section, the positive relationship between the bias force β  and the intermediate parameter 

δ  will not always be founded. We have already known that the tangent equals κ  at the 

origin (0,0)  , i.e. the center of 180° rotational symmetry, then the force-displacement 

curve will experience a negative stiffness region about the center of symmetry if 0κ < . 

Suppose we have 0κ = , the curve will experience a quasi-zero stiffness region about the 

center of symmetry. 
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(a)                                                                        (b)  

 

(c)                                                                        (d) 

Figure 5.9 Effect of bias force β  on (a) static displacement 0A δ− , (b) harmonic 

amplitude 2 A , (c) acceleration transmissibility T  and (d) elastic force 3
3X k Xκ + . 

 

5.3.2 Effect of the linear stiffness κ 

Similarly, we use a recast force-displacement relationship 3
3Y X k Xκ= +  to examine on 

the effect of changing the parameter κ  on the frequency responses of the mass-spacer 

fabric system. This curve passes the point ( , )δ β , i.e. the statically-loaded position, and 
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the origin (0,0) , i.e. the center of 180° rotational symmetry. The tangent stiffness at the 

center of symmetry equals κ . From the previous analysis, we already know that the sign 

of κ  determines whether the curve exhibits a positive, a quasi-zero or a negative stiffness 

region about the center of symmetry.  

  

The fitted model parameters satisfy the relations of 2 0k >  , 3 0k >   and 0β >  . With 

parameters β  and 3k  fixed, the aforementioned equation 3
3kβ κδ δ= +  indicates that the 

stiffness κ  will be negatively related with the intermediate parameter δ . On the other 

hand, Equation (5.20) shows that 2 33k k δ= , so that δ  is proportional to 2k . In brief, as 

the linear stiffness κ  increases, both of the intermediate parameter δ  and the quadratic 

stiffness 2k  will decrease. Equation (5.20) gives the following expression 2
32k kβ δ

δ
= + , 

and the derivative is 3 2

d 4
d

k k βδ
δ δ
= − . When 

d 0
d

k
δ
> , i.e. 3

34k
βδ > , the linear stiffness 

k  will be positively related with the intermediate parameter δ ; on the contrary, when 

d 0
d

k
δ
<  , i.e. 3

34k
βδ <  , the linear stiffness k   will be negatively related with the 

intermediate parameter δ  . Our case belongs to the former situation, in which as κ  

increases, the linear stiffness k  will decrease.      
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(a)                                                                        (b)                                                     

 

(c)                                                                        (d) 

Figure 5.10 Effect of linear stiffness κ  on (a) static displacement 0A δ− , (b) harmonic 

amplitude 2 A , (c) acceleration transmissibility T  and (d) elastic force 3
3X k Xκ + . 

 

This agrees with the observation in Figure 5.10(d), which shows that an increase in the 

tangent stiffness κ  at the center of symmetry is associated with a decrease in the tangent 

stiffness k  at the statically-loaded position which is marked with a solid dot. Therefore, 

concerned with the frequency responses, the backbone curve will intercept with the 

horizontal axis at a smaller resonance frequency 
1

2r
kf
mπ

=  , as is shown in Figure 
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5.10(a) and (b) for the frequency response curves of static displacement 0A δ−   and 

harmonic amplitude 2 A . 

 
 

5.3.3 Effect of the cubic stiffness k3 

Once again, we use a recast force-displacement relationship 3
3Y X +k Xκ= , which passes 

the point ( , )δ β  and the origin (0,0) , to examine on the effect of changing the cubic 

stiffness 3k  on the frequency responses of this nonlinear system. The fitted parameters 

satisfy the relations of 2 0k >  , 3 0k >   and 0β >  . The bias force β   and the tangent 

stiffness κ  at the center of symmetry are kept constant herein. From the aforementioned 

equation 3
3kβ κδ δ= +  we know that as the cubic stiffness 3k  increases, the intermediate 

parameter δ   decreases. On the other hand, with Equation (5.20) we obtain the 

expressions 
3 2k β κ
δ

= −   and 2
kk κ
δ
−

=  . Consequently, the cubic stiffness 3k   is 

positively related with both the linear stiffness k   and the quadratic stiffness 2k  . This 

agrees with our case. Figure 5.11(d) shows that an increase in the cubic stiffness 3k  is 

associated with an increase in the tangent stiffness k   at the statically-loaded position 

which is marked with a solid dot. Therefore, concerned with the frequency responses, the 

backbone curve will intercept with the horizontal axis at a higher resonance frequency

1
2r

kf
mπ

= , as is shown in Figure 5.11(a) and (b) for the frequency response curves of 
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the static displacement 0A δ−  and the harmonic amplitude 2 A . 

 

 

(a)                                                                        (b) 

 

(c)                                                                        (d) 

Figure 5.11 Effect of cubic stiffness 3k  on (a) static displacement 0A δ− , (b) harmonic 

amplitude 2 A , (c) acceleration transmissibility T  and (d) elastic force 3
3X k Xκ + . 

 

5.4 Chapter summary 

Parametric analysis has been performed in this chapter using the symmetric model and 
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the asymmetric model separately. For both models, the amplitude-frequency relationship 

and force transmissibility relationship are derived from the equation of motion.  

 

In the upper half part, effects of the excitation level G   and model parameters 

, , , , ,3 5c a k k kα  are studied for the symmetric model.  

• Excitation level G : The system can be softening, hardening and mixed softening-

hardening depending on the magnitude of excitation level. As the excitation level 

increases, resonance peak of the frequency response curves (FRCs) becomes softening 

first and then hardening. 

• Viscous damping coefficient c  : Viscous damping coefficient c   can be used to 

reduce both harmonic amplitude and force transmissibility around resonance region. 

• The fractional derivative term aD xα : The increase of the fractional order α  and 

the fractional derivative coefficient a  result in increased resonance frequency and 

reduced peak transmissibility.  

• Linear stiffness k  : The increase of linear stiffness k   increases the resonance 

frequency, reduces the peak harmonic amplitude and increases the peak force 

transmissibility. 

• Cubic stiffness 3k  : Assume the value of cubic stiffness 3k   is negative, it is 

responsible for the softening behavior in the FRCs, which is characterized by the 

bending to left for resonance peak. Increasing its absolute value results in elevated 

peak harmonic amplitude and reduced peak transmissibility.  
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• Quintic stiffness 5k  : Assume the value of quintic stiffness 5k   is positive, it is 

responsible for the hardening behavior in the FRCs. The effect of the positive quintic 

stiffness 5k  is opposite to the effect of the negative stiffness 3k . Its significance is 

manifested at high displacement values.  

 

In the lower half part, effects of model parameters 3, ,kβ κ  are studied for the asymmetric 

model. In our case, we have 2 0k > , 3 0k >  and 0β > . 

• Bias force β : An increase in the bias force β  is associated with an increase in the 

tangent stiffness k   at the statically-loaded position. Therefore, resonance will take 

place at a higher frequency. 

• Stiffness κ   at the center of symmetry: In our cases, an increase in the tangent 

stiffness κ  at the center of symmetry of elastic force is associated with a decrease in 

the tangent stiffness k  at the statically-loaded position. Therefore, resonance will take 

place at a lower frequency. 

• Cubic stiffness 3k  : An increase in the cubic stiffness 3k   is associated with an 

increase in the tangent stiffness k   at the statically-loaded position. Therefore, 

resonance will take place at a higher frequency. 
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CHAPTER 6 NUMERICAL SIMULATION 

 

6.1 Introduction 

In Chapter 5, approximate analytical solutions of the amplitude-frequency relationship are 

obtained by the harmonic balance method with the first-order approximation. For the 

symmetric model with parameters 3 5, , , , ,k k k c a α , the amplitude-frequency response is 

composed of harmonic components. For the asymmetric model with parameters

3, , , , ,k c aβ κ α , the amplitude-frequency response is composed of a harmonic component 

and a static component. In this chapter, numerical simulations will be carried out to solve 

the equation of motion described by both symmetric and asymmetric models. The results 

will be compared with approximate analytical solutions. Secondly, whether model 

parameters obtained for one excitation level can predict the vibration behavior for a 

different excitation level will be investigated. Following this, the bifurcation and chaotic 

behaviors of the mass-spacer fabric are studied numerically using the asymmetric model 

with excitation frequency, excitation level and fractional order varied.  
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6.2 Periodic solutions 

 

Figure 6.1 MATLAB/Simulink block diagram, with the Oustaloup filter 151, 152 

implemented for the approximation of the fractional derivative operator. 

 

With model parameters identified in Chapter 4, the MATLAB/Simulink block diagram as 

shown in Figure 6.1 is utilized to obtain numerical results of the equation of motion 

described by both symmetric and asymmetric models, for Spacer-12h under the conditions 

of 0.1-0.3g excitation levels and 2 kg load mass. The ode3 solver with a fixed step size 
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0.001 s is adopted. The simulation time is 100 s in order for the response to achieve the 

steady state. The fractional-order operator is approximated using the 4th-order Oustaloup 

filter 151, 152, and the frequency range of interest is [0.001 1000] rad/sec. 

 

Figure 6.2 shows the numerical result of the static component 0A δ−  and the harmonic 

component 2 A  of the amplitude-frequency responses using the asymmetric model with 

parameters 3, , ,k cβ κ , in comparison with the experimental data and the approximation 

by harmonic balance method (HBM). As described in Chapter 5, the static component 

0A δ−  is the offset distance from the statically-loaded position to the center of oscillation, 

which has removed the effect of the constant displacement δ   caused by coordinate 

transformation. The negative value of 0A δ−  indicates that the center of oscillation shifts 

to the further compression direction for spacer fabric, i.e. to the stiffness softening region. 

For this asymmetric model structure, the numerical results and the HBM approximation 

agrees well at relatively high excitation frequencies. However, a discrepancy between 

them occurs at relatively low excitation frequencies of around 10 Hz, which is caused by 

an even order second harmonic. In comparison, when the symmetric model with 

parameters 3 5, , ,k k k c  is used as in Figure 6.4(a), numerical results agrees very well with 

the HBM approximation for all excitation frequencies. Time-domain numerical 

representations will be used later in Figures 6.5 and 6.6 to explain the discrepancy.  

 

Adding the fractional derivative term into the previous asymmetric model, Figure 6.3 

shows the numerical result in comparison with the experimental data and the HBM 
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approximation using the asymmetric model with parameters 3, , , , ,k c aβ κ α . In this case, 

the numerical result has an evident difference with the HBM approximation at the 

resonance peak and the high-frequency region. In comparison, Figure 6.4(b) uses the 

symmetric model with parameters 3 5, , , , ,k k k c a α . The same phenomenon occurs for this 

model structure.  
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Figure 6.2 Numerical result (‘+’) in comparison with the experimental data (‘○’) and the 

HBM approximation (‘•’) using the asymmetric model with parameters : (a) 

static displacement; (b) harmonic amplitude. 
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Figure 6.3  Numerical result (‘+’) in comparison with the experimental data (‘○’) and 

the HBM approximation (‘•’) using the asymmetric model with parameters

: (a) static displacement; (b) harmonic amplitude. 

101
-10-3

-10-4

-10-5

-10-6

-10-7

Excitation frequency (Hz)

St
at

ic
 d

isp
la

ce
m

en
t (

m
)

 

 
0.1g  analytical
0.1g  numerical
0.2g  analytical
0.2g  numerical
0.3g  analytical
0.3g  numerical

101

10-4

10-3

Excitation frequency (Hz)

H
ar

m
on

ic
 a

m
pl

itu
de

 (m
)

 

 
0.1g  experiment
0.1g  analytical
0.1g  numerical
0.2g  experiment
0.2g  analytical
0.2g  numerical
0.3g  experiment
0.3g  analytical
0.3g  numerical

3, , , , ,k c aβ κ α

(a) 

(b) 

165 
 



Chapter 6 

 
 

 

Figure 6.4 Numerical result (‘+’) in comparison with the experimental data (‘○’) and the 

HBM approximation (‘•’) of harmonic amplitude using (a) the symmetric model with 

parameters ; (b) the symmetric model with parameters . 
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Using the asymmetric model with the same set of parameter estimates of 3, , ,k cβ κ  as 

used in Figure 6.2 for the fabric Spacer-12h under 0.1g excitation level and 2 kg loaded 

mass (shown in red), numerical techniques are applied to obtain the periodic solutions for 

the dynamic displacement of spacer fabric in the time domain. Figure 6.5 shows the time 

series, phase portrait and Fourier amplitude spectrum for the steady-state solutions under 

different excitation frequencies. The time series diagram contains the displacement of 

vibration platform and the displacement of fabric deformation. Phase portrait depicts the 

trajectories of a dynamic system in the state space, in which the horizontal and vertical 

axes represent the state variables of displacement and velocity herein. The closed 

trajectory in the phase portrait is a limit cycle. For a linear system under sinusoidal 

excitation force, the limit cycle appears as an oval. However, the limit cycle becomes 

distorted in a nonlinear system as here. The peak at the driving frequency Ω  and the peak 

at zero frequency in the Fourier amplitude spectrum represents the primary harmonic and 

the static displacement, respectively. The magnitudes of hpeak   and speak   are both 

marked in the spectrum. The speak  being an absolute value does not reflect the real sign 

of the static displacement. In fact, the center of limit cycle in the phase portrait tends to 

the negative part of displacement signifying that the static displacement is negative, which 

agrees with the observations in Figure 6.2(a).  

 

On the other hand, the asymmetric period shape shown in the time series and the 

symmetry-breaking trajectory in the phase portrait suggest an even order harmonic 

distortion, which is caused by the quadratic stiffness term in the elastic force. This even 

order harmonic is represented by a peak at frequency 2Ω , i.e. twice the driving frequency, 
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in the Fourier amplitude spectrum. As the frequency increases from 8 to 12 Hz, this peak 

becomes stronger. Then, it fades with further increase of excitation frequency. This 

explains the discrepancy between the approximate analytical solution and the numerical 

solution occurring at relatively low excitation frequencies of around 10 Hz in the 

amplitude-frequency curves of Figure 6.2.  

 

 

 

 
Figure 6.5 Time series, phase portrait and Fourier amplitude spectrum for the dynamic 
displacement of spacer fabric using the asymmetric model with parameters . 
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Figure 6.6 Time series, phase portrait and Fourier amplitude spectrum for the dynamic 

displacement of spacer fabric using the symmetric model with parameters . 

 

In contrast, using the symmetric model with the same set of parameter estimates of 
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and 2 kg loaded mass (shown in red), the time-domain numerical representations are 

shown in Figure 6.6 when the excitation frequency varies from 8 to 14 Hz. Due to the fact 

that stiffness terms in the equation of motion are all odd, the steady-state solutions only 

present harmonics of odd order as seen in the Fourier spectrum. Moreover, the DC 

component noticed earlier in the asymmetric model does not show in the current 

symmetric model, which is confirmed by the consistency of approximate analytical 

solutions and numerical solutions in Figure 6.4(a). 

 

6.3 Model predictability 

This section is to examine whether model parameters identified by fitting a model with 

experimental data of one excitation level can be used to predict the frequency responses 

for the other excitation levels. Experimental data used is for Spacer-12h under the 

conditions of 0.1-0.3g excitation levels and 2 kg load mass. Figures 6.7 and 6.8 are 

concerned with numerical and HBM predictions using the symmetric model with 

parameters 3 5, , , , ,k k k c a α   and the asymmetric model with parameters 3, , , , ,k c aβ κ α  . 

With model parameters identified by fitting models with data of the 0.1g excitation level 

as shown in Figures 6.7(a) and 6.8(a), the predicted resonance peaks for 0.2g and 0.3g 

conditions have a hardening tendency, which diverges greatly from experimental 

observations of a softening behavior. However, the predictions agree with the 

experimental results in the non-resonant regions to a certain degree. It is also noted that 

for the asymmetric model as shown in Figure 6.8(a), in the non-resonant regions around 

10 Hz exhibit evident second-harmonics. Next, with model parameters identified by 
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fitting models with data of the 0.3g excitation level as shown in Figures 6.7(c) and 6.8(c), 

the predictions underestimate the resonance frequencies for the 0.1g and 0.2g conditions.  

 

It is concluded that parameter estimates from one excitation level cannot be used to predict 

the vibration behavior for a different excitation level, regardless of using a symmetric or 

an asymmetric model. For small excitation levels, the fitted nonlinear stiffness coefficients 

can only describe a narrow range of the elastic force-displacement curve. Thus, it is not 

difficult to understand that parameter estimates from low excitation levels cannot predict 

the vibration behavior for high excitation levels. The other way round, parameter 

estimates from high excitation levels also cannot predict the vibration behavior for low 

excitation levels. 
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Figure 6.7 Numerical predictions (‘+’) and approximate analytical predictions (‘•’) for 

the other two excitation levels using the symmetric model with parameters 

 identified by fitting with experimental data (‘○’) of (a) the 0.1g 

excitation level; (b) the 0.2g excitation level; (c) the 0.3g excitation level. 
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Figure 6.8 Numerical predictions (‘+’) and approximate analytical predictions (‘•’) for 

the other two excitation levels using the asymmetric model with parameters 

 identified by fitting with experimental data (‘○’) of (a) the 0.1g 

excitation level; (b) the 0.2g excitation level; (c) the 0.3g excitation level. 

6.4 Bifurcation and chaotic motions 

Although chaos was not observed during experiments, we would like to numerically study 

the bifurcation and chaotic behaviors of the mass-spacer fabric system. Model parameters 

identified by fitting experimental data with the asymmetric model without the fractional 

derivative term are used herein. Experimental data was obtained for the stacked fabric 

Spacer-12h under 0.1g excitation level and 2 kg load mass. The equation of motion has 

the form of 2
2

3
3mx +cx +kx +k x +k x = -mGcos( t)ω    or after coordinate transformation 
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3
3mz +cz + z +k z = -mGcos( t)κ ω β+  , in which the relationship of the original and the 

transformed model parameters can be found in Equation (5.20). The parameter estimates 

by curve fit are listed in Table 5.2. The SI units are used for all of parameters. The 

following section studies the bifurcation and chaos of the system using bifurcation 

diagram with excitation frequency, excitation level and the fractional order varied.  

 

6.4.1 Bifurcation vs excitation frequency 

The equation of motion is numerically solved with time step increment 0.001 s. At each 

value of the excitation frequency, the values of x  of the Poincaré map for the first 90 s 

simulation time are discarded to remove the initial transient effect from the steady-state 

response, and the values of x   for the next 10 s simulation time are plotted on the 

bifurcation diagram. Figure 6.9 shows the bifurcation diagrams when the excitation 

frequency is varied from 5 to 40 Hz with step size 0.2 Hz. The amplitude of excitation 

level is 0.1g, 0.4g, 0.6g and 1.0g, respectively, in which 1.0g represents one unit of 

gravitational acceleration, 9.81 2m s . It is shown that as the amplitude of excitation level 

is small, no bifurcation and chaos is observed within the simulated frequency range. When 

the excitation level increases, the phenomenon of period doubling bifurcation takes place.  

 

In order to inspect the variations of system dynamics over time, the steady-state time 

series, Phase portrait, Poincaré map, and Fourier amplitude spectrum with the initial 

condition ( 0 0,x x  ) = (0, 0) are presented in Figure 6.10 with different magnitudes of 

excitation frequency and excitation level. Under 30 Hz excitation frequency as in Figure 
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6.10(a) and (c), the Phase portrait forms a closed loop, the shape of which is not oval 

indicating that the time-series response is also not perfectly sinusoidal. The Poincaré map 

shows a period-one oscillation at the driving frequency. The peak at 0 Hz in the Fourier 

amplitude spectrum shows the response of a static displacement component due to the 

asymmetric elastic force. As the excitation frequency increases to 35 Hz as in Figure 

6.10(b) and (d), the Phase portrait evolves into a closed double-loop, and the Poincaré 

map shows a period-two oscillation. The Fourier amplitude spectrum contains an 

additional peak at one half of the driving frequency. This interprets the phenomenon of 

period doubling bifurcation in Figure 6.9(c) and (d).  

 

 

Figure 6.9 Bifurcation diagram with respect to excitation frequency under different 
excitation levels: (a) 0.1g; (b) 0.4g; (c) 0.6g; (d) 1.0g. 

 

(a) (b) 

(c) (d) 
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Figure 6.10  Time series, phase portrait, Poincaré map and Fourier amplitude spectrum 

for the dynamic displacement of spacer fabric using the asymmetric model with 

parameters , under the excitation frequency and the excitation level of: (a) 30 

Hz, 0.6g; (b) 35 Hz, 0.6g; (c) 30 Hz, 1.0g; (d) 35 Hz, 1.0g. 

 

6.4.2 Bifurcation vs excitation level 

Similarly, at each value of the excitation level, the values of x  of the Poincaré map for 

the first 90 s simulation time are discarded and those for the next 10 s simulation time are 

used. Figure 6.11 shows the bifurcation diagrams when the amplitude of excitation level 
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is varied from 0 to 20 2m s   with step size 0.04 2m s  . No bifurcation and chaos is 

observed at 25 Hz. However, period doubling bifurcation takes place at three other 

frequencies, 35 Hz, 40 Hz and 50 Hz. At 35 Hz also presents an inverse period doubling 

bifurcation. At 50 Hz, period doubling bifurcations take place for twice resulting in 

period-four oscillations as the excitation level is increased. It is noted that all these modes 

belong to periodic motions of the system.  

 

The non-periodic behavior takes place when the excitation frequency is 40 Hz. Under this 

condition, the period doubling bifurcation cascade leads to chaotic motions with the 

increase of excitation level. The first period doubling bifurcation takes place at excitation 

level about 4 2m s  . The period-two oscillation lasts until the second period doubling 

bifurcation at about 10.5 2m s . The next period doubling bifurcation takes place at about 

12 2m s , which can be viewed clearly in Figure 6.12.  

 

As shown in Figure 6.11(c), the system leaves chaos through a route of sudden transition 

from chaotic to period-one motion when the excitation level is increased to above 14 2m s . 

With further increasing the excitation level, it enters another chaotic zone through a 

sudden transition and leaves it by an inverse period doubling bifurcation. Then, the system 

returns to a period-one motion. 
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Figure 6.11 Bifurcation diagram with respect to excitation level under different 

excitation frequencies: (a) 25 Hz; (b) 35 Hz; (c) 40 Hz; (d) 50 Hz. 

   
Figure 6.12 Magnified bifurcation diagram in Figure 6.11(c) regarding excitation level 

under 40 Hz excitation frequency, showing period doubling bifurcation cascade to 

chaos. 
 

(a) (b) 

(c) (d) 
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Figure 6.13 Time series, phase portrait, Poincaré map and Fourier amplitude spectrum 

for the dynamic displacement of spacer fabric using the asymmetric model with 

parameters , under 40 Hz excitation frequency and the excitation level is: (a) 

0.10g; (b) 1.00g; (c) 1.10g; (d) 1.25g; (e) 1.28g; (f) 1.35g. 
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Figure 6.13(a)-(f) shows the steady-state time series, Phase portrait, Poincaré map, and 

Fourier amplitude spectrum for a period-one motion, period-two motion, period-four 

motion, period-eight motion, transition to chaos and chaotic motion when the excitation 

frequency is 40 Hz and the amplitude of excitation level is 0.10g, 1.00g, 1.10g, 1.25g, 

1.28g and 1.35g, respectively. The corresponding amplitude of excitation level in the SI 

unit is provided in Table 6.1. The chaotic motion is manifested by a strange attractor in 

the Poincaré map in Figure 6.13(f). The energy of the Fourier spectrum for chaos is not 

only concentrated in the peaks, but also distributed in a wide frequency domain.   

 

Table 6.1 Unit conversion: 1g = 9.81 2m s . The 1g is one gravitational acceleration. 

Unit (a) (b) (c) (d) (e) (f) 

g 0.10 1.00 1.10 1.25 1.28 1.35 

2m s  0.98 9.81 10.79 12.26 12.56 13.24 

 

6.4.3 Bifurcation vs fractional order 

To investigate the effect of the fractional derivative term aD xα
 on the chaotic behavior 

of the system, the fractional derivative coefficient a  is arbitrarily assigned to have the 

value of 5, 10, 20 and 40. As Figure 6.11(c) has shown that the chaotic motions take place 

under 40 Hz excitation frequency when the model does not contain the fractional 

derivative term, the same condition of excitation frequency and 1.35g excitation level is 

used here. The bifurcation diagrams are shown in Figure 6.14 when the fractional order 

α  is varied from 0 to 1.8 with step size Δα = 0.01.  
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The fractional order α   shows a strong effect on the dynamics of system. When the 

fractional order α  is small, chaotic motion takes place. As it increases, the system leaves 

chaos through an inverse period doubling bifurcation and becomes periodic. The system 

is stabilized when it approaches 1.8. Besides, as the fractional derivative coefficient a  

increases, the system can be stabilized with a relatively smaller fractional order α . 

 

 

 

Figure 6.14 Bifurcation diagram with respect to the fractional order under 1.35g 

excitation level and 40 Hz excitation frequency when the coefficient of the fractional 

derivative term a  is: (a) 5; (b) 10; (c) 20; (d) 40. 

 

(a) (b) 

(c) (d) 
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6.5 Chapter summary 

In this chapter, numerical simulations with regard to the regular behavior and the chaotic 

behavior of the mass-fabric system are performed.  

• The amplitude-frequency curves obtained by numerical simulation are compared with 

those obtained by approximate analytical solution, for both the symmetric models and 

the asymmetric models. For the symmetric models, two approaches achieve high 

consistency. However, for the asymmetric models, two approaches have a little 

inconsistency where exists an even order harmonic distortion.  

• Parameter estimates from one excitation level cannot be used to predict the vibration 

behavior for a different excitation level, regardless of using a symmetric or an 

asymmetric model. 

• Bifurcation and chaotic behaviors are studied using the asymmetric model with 

excitation frequency, excitation level and fractional order varied. Period doubling 

bifurcation to chaos and inverse period doubling bifurcation to periodic motion are 

observed numerically. The fractional derivative term can remove chaotic motion when 

the fractional derivative coefficient a  and the fractional order α  are large. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

Human body is sensitive to vibrational environments. Compared with conventional anti-

vibration materials such as rubber and polyurethane foams, weft-knitted spacer fabric 

provides better thermophysiological comfort to the human body due to its air and moisture 

management, softness and handle. However, studies on the vibration isolation 

performance of weft-knitted spacer fabrics are still needed. In order to promote its 

application for the protection of human body from vibration exposure, this study aimed at 

a comprehensive understanding of frequency responses of the nonlinear mass-spacer 

fabric system under forced harmonic excitation. 

 

Effects of fabric structure, load mass and excitation level on the isolation performance 

were analyzed experimentally. The mechanism of how nonlinear stiffness influence its 

vibration was related with the quasi-static compression behavior. Suitable analytical 

models were built to describe the vibration behavior of the system. Experimental 

observations and analytical models offered a fundamental perspective for the development 

of weft-knitted spacer fabric as vibration isolator in the future. Moreover, numerical 

investigations also uncovered the possibility of irregular vibration behaviors of the system. 

The fulfilled goals are summarized as follows. 
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7.1.1 Improved thickness of spacer fabric 

The main approach for achieving good vibration isolation is to reduce the dynamic 

stiffness of the isolation material. To reduce the stiffness of weft-knitted spacer fabrics for 

achieving small resonance frequencies during vibration, the use of thicker spacer fabrics 

is recommended. Thick weft-knitted spacer fabrics were manufactured on the electronic 

flatbed knitting machine with limited adjustment of the distance between two needle beds, 

by employing longer linking distance of spacer monofilaments to knit the spacer layer and 

elastic yarns to knit the outer layers.  

 

7.1.2 Effects influencing the isolation performance 

The vibration isolation performances of these fabrics were experimentally investigated 

revealing the effects of fabric structure, load mass and excitation level on the acceleration 

transmissibility curve of the mass-spacer fabric system. Due to the nonlinear elastic force 

of weft-knitted spacer fabric, the response of the system is complex, different from a linear 

mass-spring-damper model. Thicker fabric has a better isolation performance by having a 

lower resonance frequency and a lower crossover frequency. Higher excitation level 

results in a broadened isolation region and an enhanced nonlinear effect. A high load mass 

makes fabric compact leading to a rapid increase of the statically-loaded tangential 

stiffness of fabric and resulting in a high resonance frequency and a high crossover 

frequency. 
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7.1.3 Improved performance of analytical model 

Analytical models to describe the periodic response of system under forced harmonic 

excitation were built. Symmetric polynomial and asymmetric polynomial were used for 

the nonlinear elastic force. The fractional derivative term and the viscous damping term 

were used for the viscoelasticity. Approximate analytical solutions for the harmonic 

amplitude vs. excitation frequency curve were obtained using harmonic balance method 

(HBM). The performances of different models were compared by evaluating their levels 

of the goodness of fit. The asymmetric polynomial and the fractional derivative term help 

improve the model performance. However, parameter estimates from one excitation level 

cannot be used to predict the vibration behavior for a different excitation level, regardless 

of using a symmetric or an asymmetric model. This is one of the limitations of the present 

analytical models. 

 

7.1.4 Effects of nonlinear stiffness coefficients on frequency response curves 

Due to the nonlinear elastic force-displacement relationship of weft-knitted spacer fabric, 

bending of resonance peak was caused. The resonance frequency also changes with the 

conditions of excitation level and load mass. Influences of nonlinear stiffness coefficients 

on frequency response curves (FRCs) of the mass-spacer fabric system were studied 

through parametric analysis. Concerning the order and the sign of stiffness coefficients on 

the FRCs, under small excitations, the linear stiffness is responsible for the system 

dynamics. When the linear stiffness increases, the resonance frequency and peak force 

transmissibility are also increased, but the peak harmonic amplitude for spacer fabric is 
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reduced. As the excitation becomes larger, nonlinear stiffness terms exhibit their 

influences. Negative odd-order stiffness causes softening behavior in the FRCs, 

characterized by peak bending to the left. Its increase resulted in elevated peak harmonic 

amplitude and reduced peak transmissibility. To the opposite, positive odd-order stiffness 

causes hardening behavior in the FRCs characterized by peak bending to the right. The 

system can also be mixed softening-hardening if positive and negative nonlinearities both 

exist, but it also depends on the magnitude of excitation level.  

 

Odd-order nonlinearities such as cubic stiffness result in balanced vibration response for 

displacement away from the statically-loaded position. However, even order 

nonlinearities such as quadratic stiffness result in biased vibration response. From the 

numerical result of Fourier amplitude spectrum, a static displacement component exists 

for such a system. Besides the static displacement and the primary harmonic at the 

excitation frequency Ω , an even order second harmonic takes place at frequency 2Ω , 

i.e. twice the excitation frequency. This is also indicated by the little inconsistency of 

numerical result and approximate analytical solution by using the asymmetric model. 

 

7.1.5 Bifurcation and chaotic behavior of the nonlinear system 

Except for the periodic behavior, the bifurcation and chaotic behavior of the system was 

also predicted by numerical method with varied excitation frequency, excitation level and 

fractional order using the asymmetric model. Period doubling bifurcation to chaos and 

inverse period doubling bifurcation to periodic motion were observed. Besides, increasing 

the fractional order α   and the fractional derivative coefficient a   stabilized the 
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originally chaotic motion into the regular periodic motion. 

 

7.2 Limitations 

The limitations of this study are discussed as follows. 

7.2.1 Model predictability 

Model parameters identified by curve fit can only work for the current excitation level. 

Using the same set of model parameters fails to predict the vibration behaviors for other 

excitation levels. For instance, the fractional derivative term improves model prediction 

only under the high excitation force condition. For relatively low excitation levels, 

however, it does not improve the model significantly. Thus, a universal analytical model 

is not found. 

 

7.2.2 Phenomenological models 

The construction of phenomenological models considering the polynomial elastic force 

does not stem directly from material and structural properties of weft-knitted spacer 

fabrics, but is based on the empirical observation of the bending of resonance peak 

through experiment. As a result, the model may lack sufficient structures to capture the 

features of vibration behavior accurately. A different modeling approach revealing the 

inherent mechanism of how structural and material properties act on system dynamics is 

called for. To build such a model, elastic modulus and thickness of yarns need to be known, 
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and the deformation mechanism of three-dimensionally curved monofilaments with 

proper assumptions of initial and boundary conditions need to be discovered. However, 

this approach is challenging in that the quasi-static deformation mechanism of spacer 

fabric may not necessarily represent the elastic force under vibration conditions. 

 

7.2.3 Fabric instability 

Although the thickness of weft-knitted spacer fabric used in this study is increased, spacer 

monofilaments are loosely tucked with outer layers. Strictly speaking, the spacer is 

composed of parallel successions of two-dimensionally wavy structures of spacer 

monofilaments. This causes the instability of fabric under large vibration levels. In 

contrast, spacer monofilaments in the warp-knitted spacer fabric are tightly restrained by 

knit stitches. Besides, the monofilaments form a true three-dimensional spacer structure. 

Thus, warp-knitted spacer fabric is relatively more stable in general.  

 

7.2.4 Experiment condition 

This study focuses on the steady-state vibration of the mass-spacer fabric system under 

sinusoidal sweeps with fixed excitation force across the frequency band. However, 

sinusoidal sweeps with fixed excitation amplitude across the frequency band has not been 

studied, for which the FRCs will be different from the former case due to the nonlinear 

elastic force of the system. Moreover, the transient and steady-state time histories of 

vibration signals are not recorded in this study. Nevertheless, they are important because 

time-domain data contains rich information on system dynamics. 
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7.3 Recommendations for future work 

The recommendations for future work emerging from this study are presented as follows. 

7.3.1 Model improvement 

The phenomenological models used in this study can be improved to better describe the 

vibration behavior. Suggested directions for model modification include adding other 

types of damping such as hysteretic damping and quadratic damping, and using more 

complex forms of elastic force such as full orders of nonlinear stiffness terms. On the 

other hand, models revealing the inherent relationship between material and geometric 

properties of spacer fabric and the vibration dynamics can be built. 

 

7.3.2 Statistical analysis 

In this research, spacer fabric was designed with fabric structure, i.e. the linking distance 

of spacer monofilament varied. In addition to this, material and geometric properties of 

spacer monofilament and outer layer yarns have also significant effects on the vibration 

behavior, which has not been studied yet. Hence, a great variety of weft-knitted spacer 

fabrics can be designed and manufactured by varying needle density, yarn materials, the 

diameter and the linking distance of spacer monofilament, etc. Statistical analysis of 

variance can be performed to find statistically significant variables that act on the 

vibration behavior of spacer fabric. 
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7.3.3 Applied research 

Utilizing the anti-vibration performance of weft-knitted spacer fabric, products such as 

cushion packaging materials and anti-vibration gloves can be produced. Thus, vibration 

risks such as shock and vibration of packages during transportation and hand arm 

vibration from operating hand-held power tools can be analyzed through experiments in 

response to these types of excitations. It is noted that under these application conditions, 

lateral vibrations also exist besides vertical vibration. Moreover, for the application study, 

the anti-vibration performance using weft-knitted spacer fabric can be comparatively 

studied with warp-knitted spacer fabric and conventional cushion materials such as rubber 

and polyurethane foam.  

 

7.3.4 Time history 

Due to the rich information contained in the time domain signals, experimental time 

signals can be compared with time histories obtained by numerical method. It applies not 

only for steady-state responses, but also for transient responses before the system enters 

steady state, and also for transient responses under shock conditions, since transient 

dynamics is vital for system stability in such circumstances. 
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Appendixes 

 

Introduction 

Appendixes 1-6 are all concerned with the data fitting.  

 

In Appendixes 1 and 2, curve fit using the model with parameters 3 5, , , , ,k k k c a α  was 

adopted as an example to study the effects of frequency range and frequency step size on 

the level of the goodness of fit (indicated by RMSE) for Spacer-12h under the conditions 

of 0.1-0.3g excitation level and 2 kg load mass, based on which determines proper 

frequency range and step size for this study.  

 

In Appendix 3, through the goodness of fit test (indicated by visual comparisons) for the 

harmonic amplitude vs. excitation frequency curve obtained by two kinds of fitness 

function, a suitable fitness function was selected for this study. 

 

In Appendix 4, RMSEs obtained by the method of least squares was compared with those 

by the different evolution algorithm used in Chapter 4. The former is a local optimization 

method, which depends on the choices of initial values and bounds of unknown model 

parameters. In contrast, the latter achieves solutions more efficiently and is free of 

choosing an initial value, and more importantly, it results in a higher level of the goodness 

of fit. 

 

192 
 



Appendix 

In Appendix 5, the effect of the initial value of the fractional order on the level of the 

goodness of fit was examined using the method of least squares. 

 

In Appendix 6, the relative standard error (RSE) for an individual model parameter was 

used as the performance indicator of model parameter. 

 

Appendix 1 Frequency range  

The driving frequency for the sinusoidal sweep experiment covers a wide range, which 

results in a large quantity of data. However, the characteristic domain which is 

representative of the vibration behavior for a system locates around the resonance. In order 

to highlight the features in the region of resonance, a proper frequency range of training 

data set, i.e. the experimental data used for fitting, should be defined. However, if an 

improper training set is used, the apparent relationship outside the selected frequency 

range cannot be predicted by using the model parameters identified. Thus, a validation set 

is required to test the serviceability of the fitted model by examining the variability of the 

goodness of fit, and to decide which frequency range of training data to take. Here the 

validation set has a frequency range of 10-25 Hz.  

 

In Figure A.1, the model with parameters 3 5, , , , ,k k k c a α  is used. The solid lines are the 

RMSEs for the training set, while the dotted lines are those for the validation set as 

reference. A large variation between these two RMSEs indicates the selected frequency 

range has an unsatisfactory performance. Frequency ranges of 5-20 Hz, 5-25 Hz, 5-30 Hz, 
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10-25 Hz and 10-30 Hz resulted in the smallest variations in RMSEs between the training 

set and the validation set for all of three excitation levels. These frequency ranges 

performed better than other ones. Finally, the frequency range of 10-25 Hz was selected 

as the default. 

 

Figure A.1 Effect of frequency range on the RMSE using the model with parameters 

3 5, , , , ,k k k c a α . 

 

Appendix 2 Frequency step size 

Similar as in the previous discussion on selecting a proper frequency range of training 

data set, this section will determine the number of data points used in the training set. As 

described in Chapter 3, the raw data obtained by sweep experiment was recorded on a 

logarithmic scale. For curve fitting, it was converted into the linear scale format by 

interpolation. The resulting data resolution was 0.01 Hz per increment of frequency values. 

Due to the high resolution of data, the noise is also absorbed during fitting, which could 
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lead to over-fitting. To avoid this, a proper data resolution needs to be defined. As shown 

in Table A.1, the frequency step size was varied and the corresponding number of data 

points used was calculated. A similar approach as in the previous section was employed 

for the validation of various candidate frequency step sizes. A frequency step size of 31 

was used for the validation purpose.  

 

In Figure A.2, the model with parameters 3 5, , , , ,k k k c a α  is used. The solid and dotted 

lines are the RMSEs for the training set and the validation set, respectively. When the 

frequency step size was small, i.e. with a high number of data points, the RMSEs obtained 

by the candidate step size were almost identical with the ones obtained by the validation 

set. However, as the candidate step size became larger, a large variation between these 

two RMSEs emerged, an indication of poor performance with the use of the candidate 

step size. As a result, a frequency step size of 31 was selected as the default, as it ensures 

the performance of the fitted model and at the same time contains fewer number of data 

points. 

 

Table A.1 Nine candidate frequency step sizes. 

Frequency step size 1 3 5 15 31 93 155 217 279 

Data resolution (Hz) 0.01 0.03 0.05 0.15 0.31 0.93 1.55 2.17 2.79 

Number of data points 1500 500 300 100 49 17 10 7 6 
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Figure A.2 Effect of frequency step size on the RMSE using the model with parameters 

3 5, , , , ,k k k c a α . 

 

Appendix 3 Fitness function 

The harmonic amplitude vs. excitation frequency relationship can be formulated in two 

different forms, as discussed in Chapter 4. Correspondingly, the fitness function has also 

two forms. The one used as default in Chapter 4 is based on Equation (4.7), which belongs 

to the fitness function Type I and has the form of 

2
1,

2
2,

2

2

ue r
n

ue i
n

mG Af P A A

mG Af Q A A

  = ⋅ + ⋅   


  = ⋅ − ⋅   

,                                                                                 (A.1) 

where the weighing factor 0, 1, 2,...u = ± ±                                                                                                

 

On the other hand, Equation (4.7) can also be squared to obtain 
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2 2

22 2( )
4

em GP Q A+ ⋅ = ,                                                                                            (A.2) 

which is used to recover the harmonic amplitude ( 2 A ) vs. excitation frequency curve. 

Based on Equation (A.2), we obtain the fitness function Type II in the form of 

( )
2 2

22 2

4
de

n
m Gf P Q A A

 
= + ⋅ − ⋅ 
 

,                                                                         (A.3) 

where the weighing factor 0, 1, 2,...d = ± ±  

 

To evaluate the performances of fitness functions Type I and Type II considering weighing 

factors, the experimental data of harmonic amplitude vs. frequency curve under 0.3g 

excitation level and 2 kg load mass for Spacer-12h is used. The fitted curves using the 

asymmetric model with parameters 3, , , , ,k c aβ κ α  are shown in Figures A.3 and A.4; and 

the fitted curves using the symmetric model with parameters 3 5, , , , ,k k k c a α  are shown in 

Figures A.5 and A.6. Results show that the fitness function Type II weighs the low-

amplitude fitting more heavily than the fitness function Type I does. Type I mostly has 

worse fitting in the low-amplitude region, especially in the low-frequency part. The 

asymmetric model with parameters 3, , , , ,k c aβ κ α  alleviates this issue to some degree. 

However, Type I gives better fit than Type II at resonance. Secondly, the inclusion of 

weighing factor may cause under-fitting ( 1u = − , 1d = − ) or over-fitting ( 1u = , 1d = ). 

Therefore, the weighing factor is not considered for this study (i.e. let 0u = , 0d = ). Given 

an overall consideration, the fitness function Type I (with 0u = ) is selected as the default 

for this study.   
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Figure A.3 Fitness function Type I for the asymmetric model 3, , , , ,k c aβ κ α  with weighing factor: (a) 1u = − ; (b) 0u = ; (c) 1u = . 

 

Figure A.4 Fitness function Type II for the asymmetric model 3, , , , ,k c aβ κ α  with weighing factor: (a) 1d = − ; (b) 0d = ; (c) 1d = . 
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Figure A.5 Fitness function Type I for the symmetric model 3 5, , , , ,k k k c a α  with weighing factor: (a) 1u = − ; (b) 0u = ; (c) 1u = . 

 

Figure A.6 Fitness function Type II for the symmetric model 3 5, , , , ,k k k c a α  with weighing factor: (a) 1d = − ; (b) 0d = ; (c) 1d = .
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Table A.2 also summarizes the RMSEs for the model with parameters 3 5, , , , ,k k k c a α  and 

the model with parameters 3, , , , ,k c aβ κ α   using different fitness functions. It again 

confirms that the asymmetric model performs better than the symmetric model.  

 

Table A.2 The goodness of fit (RMSEs) using different fitness functions. 

RMSE Model with parameters 

3 5, , , , ,k k k c a α  

Model with parameters 

3, , , , ,k c aβ κ α  

Fitness 

function 

type I 

1u = −  0.585 0.57 

0u =  0.000179 0.000177 

1u =  7.77e-08 7.75e-08 

Fitness 

function 

type II 

1d = −  7.31e+03 7.26e+03 

0d =  2.27 2.13 

1d =  0.000699 0.000607 

 

Appendix 4 Optimization algorithm: least squares vs. jDE  

For data fitting, we have adopted a differential evolution (jDE) algorithm, developed by 

Brest et al. 153, and Zhang and Sanderson 154. The jDE algorithm runs efficiently and is 

free of choosing an initial value. Relatively, the method of nonlinear least-squares, which 

is a local optimization strategy, requires multiple attempts to achieve a best solution with 

adjustments of scaling factors, initial values and bounds of the unknown parameters, and 

the maximum number of function evaluations. Table A.3 makes a comparison of the 

features of the jDE algorithm and the method of least squares. 
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Table A.3 Comparison of the jDE algorithm and the method of least squares. 

Items jDE Least squares 

Range of bounds Finite  Infinite/Finite 

Lower and upper bounds Can be identical Must be different 

Initial value needed? No Yes 

Elapsed time to run the program Shorter Longer 

The goodness of fit achieved Equal/Better for reference 

Convenience (Is the definition of fitness function 

model-based?) 

High (No) Low (Yes) 

Applicability to asymmetric models (nonlinearly 

constrained optimization) 

Applicable Inapplicable 

Type of optimization Global  Local  

 

In order to compare the performances of two algorithms, experimental data for Spacer-

12h under the conditions of 0.1-0.3g excitation levels and 2 kg load mass is used for curve 

fit, using the model with parameters 3 5, , , , ,k k k c a α . For the method of least squares, the 

maximum number of function evaluations of 65 10×  is verified to be adequate, otherwise 

premature solution may arise. Besides, to increase its efficiency by reducing the number 

of iterations involved and to broaden the search range, scaling factors for stiffness 

coefficients are used. With improper scaling factors, although a local minimum may be 

achieved, the RMSE obtained can be too large, an indication of under-fitting. After 

multiple tests, the scaling factors for the linear, cubic, quintic and seventh-order stiffness 

coefficients are chosen to be 410 , 1010  , 1610  and 2210 , in order to obtain an optimized 
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solution of model parameters. 

 

Figure A.7 compares the RMSEs obtained by the method of least squares and by the jDE 

algorithm. Results show that the latter gives a smaller RMSE. Hence, the jDE algorithm 

is used as the default in Chapter 4, due to its improved efficiency and goodness of fit. 

 

 

Figure A.7 RMSEs obtained by two algorithms. 

 

For the asymmetric model, the method of least squares has an improved performance 

when the initial values of unknown model parameters are given not arbitrarily but by using 

parameter estimates from the jDE algorithm. This indicates the incapability of least 

squares method (hard to escape local minima), and also indicates the complexity of the 

solutions of data fitting using an asymmetric model. In fact, using the method of least 
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bounds, especially for the fractional order α . At times, the result equals the one obtained 
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by the jDE algorithm; at other times, the result can be much better than the initial values 

given by the jDE algorithm if the initial values are not good enough. This is the case when 

the fractional derivative term exists. 

 

Appendix 5 The initial value of the fractional order α  

In spite of the weaknesses of the method of least squares, it is a common and easy-to-use 

algorithm provided in the Optimization Toolbox in MATLAB. Its optimization 

performance is affected by the choice of initial values of the unknown model parameters. 

In order to check the dependence of parameter estimates and the RMSE on the initial value 

of the fractional order 0α , Figure A.8 shows the results of curve fit for Spacer-12h under 

0.3g excitation level and 2 kg load mass using the model with parameters 3 5, , , , ,k k k c a α  

with 0α   varied, accurate to the first decimal. The bound of α   is set as 0 2α≤ ≤  . The 

initial values for other model parameters are kept constant, i.e. 0 1k =  , 
03 1k =  , 

05 1k =  , 

0 1c = , and 0 1a = . 

 

Two kinds of parameter estimates are obtained. In Figure A.8(a), the fractional derivative 

coefficient a   approximately equals zero and the viscous damping coefficient c   is 

responsible for the damping of the system. Herein, the fractional derivative term aD xα  

is redundant. In Figures A.8(b)-(f), in contrast, the viscous damping coefficient c  

approximately equals zero and the fractional derivative term aD xα  is responsible for the 
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damping of the system. Parameter estimates are similar for these five cases. Besides, as 

compared with the result in Figure A.8(a), i) the RMSE is much reduced, ii) the goodness 

of fit in the low-amplitude-low-frequency region of the curve has also evident 

improvement, and iii) the goodness of fit at the resonance peak is also slightly optimized. 

Herein, the fractional derivative term aD xα   is not redundant and it starts to exert its 

significance to the model.  

 

It is noted that the currently used MaxIter ( 65 10× ) and MaxFunEvals ( 65 10× ) in the 

optimization procedure are sufficiently large, and the TolFun ( 2010− ) and TolX ( 1810− ) 

are sufficiently small for the trust-region-reflective algorithm to achieve a local minimum. 

The number of iterations is also below the threshold. Therefore, a reasonable explanation 

for obtaining different and unstable solutions of parameter estimates is the method of least 

squares itself, as it gives local optimization solutions. 
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Figure A.8 RMSE depends on the initial value of α : (a) 0α = 0.1; (b) 0α = 0.2; (c) 0α = 0.4; (d) 0α = 0.5; (e) 0α = 0.8; (f) 0α = 1.0.
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Appendix 6 The relative standard error (RSE) 

As the physical meaning of the viscous damping term cx  is overlapped with the fractional 

derivative term aD xα , the robustness of the model structure containing both terms should 

be examined. However, although the root mean square error (RMSE) is the statistical 

indicator of the goodness of fit for a model, this index cannot tell whether a model 

structure is robust or not. Instead, the relative standard error (RSE) is used.  

 

As long as the data volume is sufficiently large, the relationship between the confidence 

interval (CI), the standard error (SE) and the relative standard error (RSE) has the form  

95%CI= 1.96 SE
Standard error (SE)Relative standard error (RSE)

x

x

± ⋅



=

,                                              (A.4) 

where x  is the value of model parameter identified by data fitting. The 95% confidence 

interval for each model parameter was obtained using the nlparci command for the 

nonlinear least squares parameter estimates in MATLAB. Then, the RSE is obtained by 

applying the above relationship.  

 

RMSEs and parameter estimates obtained using the models with parameters 

3 5, , , , ,k k k c a α , 3 5, , ,k k k c , and 3 5, , , ,k k k a α  for the conditions of 0.1-0.3g excitation 

levels and 2 kg load mass are shown in Figures A.9-A.11. The RSE for an individual 

model parameter is shown in percentages and given in parentheses following the value of 

parameter estimate. RSEs of all parameters for one model structure are also shown in one 

separate figure.  
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The model with the parameters 3 5, , ,k k k c  gives the worst prediction due to its largest 

RMSE. Apparently, adding the fractional derivative term aD xα  in the model improves 

the goodness of fit, but at the cost of large RSEs for parameters c  , a   and α  . The 

viscous damping coefficient c  becomes redundant for the 0.3g excitation level condition. 

Nevertheless, for the 0.1g and 0.2g excitation levels, the viscous damping coefficient c  

has helped improve the model by reducing the RMSE. 

 

On the other hand, the linear stiffness coefficient k  is limited to positive values during 

fitting. The RSE for k  has increased due to the introduction of the fractional derivative 

term into the model. Furthermore, the RSEs for the cubic stiffness coefficient 3k  and the 

quintic stiffness coefficient 5k  are always relatively small, regardless of the model type. 

The negative value of 3k   characterizes the softening nonlinearity which relates to the 

resonance peak bent to the left. The positive value of 5k   accounts for the hardening 

nonlinearity in the elastic force-displacement relationship. When the excitation level is 

further increased to a sufficiently large magnitude, the resonance peak will bend to right. 

 

In overall, the RSEs for stiffness coefficients maintain relatively small; while the RSEs 

for the damping component depends on model structure. The model with parameters 

3 5, , , , ,k k k c a α  gives best fit but causes the largest RSEs.  
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Figure A.9 RMSE and RSEs obtained using (a) the model with parameters 3 5, , , , ,k k k c a α ; (b) the model with parameters 3 5, , ,k k k c ; 

(c) the model with parameters 3 5, , , ,k k k a α , for the 0.1g excitation level condition. 
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Figure A.10 RMSE and RSEs obtained using (a) the model with parameters 3 5, , , , ,k k k c a α ; (b) the model with parameters 3 5, , ,k k k c ; 

(c) the model with parameters 3 5, , , ,k k k a α , for the 0.2g excitation level condition. 
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Figure A.11 RMSE and RSEs obtained using (a) the model with parameters 3 5, , , , ,k k k c a α ; (b) the model with parameters 3 5, , ,k k k c ; 

(c) the model with parameters 3 5, , , ,k k k a α , for the 0.3g excitation level condition.
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