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Abstract

Online video streaming is one of the most popular web application nowadays. Billions

of users watch videos on YouTube, while Netflix has 60 millions of subscribers around

the world. These video service providers use HTTP streaming to transfer video data

to the users over the existing web architecture. HTTP streaming gains its popularity

rapidly, because it can help video data traverse the firewall and the Network Address

Translation (NAT). The Content Delivery Network (CDN) can also be leveraged to

largely increase the scalability. HTTP Adaptive Streaming (HAS), a newer version

of HTTP streaming, can support video bitrate adaptation, which can adjust the video

bitrate according to the network condition. Although video service providers can easily

obtain the network Quality of Service (QoS) data, ordinary Internet users do not have

sufficient knowledge about the network QoS. They concern more about their Quality

of Experience (QoE), which represents their overall perceived quality. However, it is

very challenging for service providers to evaluate the QoE because of its the subjective

nature.

In this research, we contribute to three aspects of the QoE of HTTP video streaming

system—QoE measurement, QoE improvement, and QoE assessment. QoE measure-

ment is to understand the impact from the network quality on the QoE of HTTP video

streaming. We investigate the relationships among the network QoS, application layer

events, and the QoE. A set of Application Performance Metrics (APM) is proposed

to quantify the application layer events. The APM is further correlated with the QoE
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collected from the subjective assessments. Our results show that the rebuffering events

can adversely affect the QoE. Our follow-up studies further show that both the initial

and the abrupt change of video bitrate in HTTP adaptive streaming can affect the QoE.

The MOS can be reduced by 17% if a sub-optimal initial bitrate is chosen.

One of the key issues leading to sub-optimal QoE in HTTP adaptive streaming is

that the streaming system lacks accurate network measurement data to support the se-

lection of video bitrate. This can result in rebuffering events or unnecessary bitrate

switching. However, it is challenging to perform lightweight and accurate network

measurement on the clients’ browsers. To improve the QoE, we propose a server-side

measurement paradigm, which executes the main measurement logic in a middlebox

installed in front of the streaming server. With this framework, we design and imple-

ment two systems, IRate and QDASH, to support measurement before and during the

video stream (i.e., pre-stream and mid-stream stages), respectively. IRate exploits the

pre-stream time window to probe the network, so that a quick estimation of the network

condition can be performed, and the best initial video bitrate can be estimated at the

onset of the streaming. Our results show that IRate can achieve an accuracy of 80%

by performing 10s of measurement. After the video streaming starts, QDASH hijacks the

video flow to carry out inline measurement. By carefully designing the packet sending

order and rate, we can conduct packet train-based available bandwidth measurement

and estimate the video bitrate the network can support. We compare the amount of

time required for obtaining the correct throughput between QDASH and throughput av-

eraging method commonly used in video players. Our testbed experiment shows that

QDASH can respond quicker than the harmonic mean of throughput data for at least 5s.

The final part of this research is on enhancing the scalability and reliability of QoE

assessments by employing user behavior analytics. Traditional subjective assessment

in a controlled environment using Mean Opinion Score (MOS) does not scale. Dis-
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tributing a set of customized video can increase the participation, but the subjective

assessment alone has its limitations. Crowdsourcing is aimed at further scaling the

QoE measurement. However, screening out low-quality workers is an inherent and un-

solved challenge for this approach. Subjective assessment is also hard to be conducted

in real-world environment, because users are not responsive to the assessment. We pro-

pose user-behavior analytics to improve the video QoE assessments. User behaviors,

such as pause events, mouse click events and cursor trajectory, contain rich informa-

tion reflecting users’ cognitive processes. We record and analyze these user behaviors

while they review videos in customized video players or crowdwsourcing platform. We

found that these user-behavior data can significantly improve the explanatory power of

QoE model for the MOS by 8%. Our worker behavior based approach can detect

around 80% of low-quality users in crowdsourcing platforms.
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Chapter 1

Introduction

Video streaming is unarguably an extremely popular application in the Internet nowa-

days. For example, YouTube has billions of views every day [245], while Netflix has

over 65 million subscribers in over 50 countries [177]. In terms of Internet traffic

volume, video traffic accounts for more than half of the downstream traffic in North

America [208]. A Cisco white paper predicts that three-quarters of the world’s mobile

data will be video by 2019 [59].

The boom of online video streaming is partially due to the introduction of progres-

sive download Adobe Flash. The Flash player running on the browser sends HTTP GET

requests to a web server to download video data. Users can start to watch the video

without completely downloading the whole video clip. Comparing to tradition UDP-

based streaming, HTTP-based video streaming can easily traverse the network mid-

dleboxes, such as firewalls and Network Address Translation (NAT) boxes. However,

progressive download does not support timeshifting seek, which allows users to jump

to a timecode where the video data has not been downloaded. Later on, HTTP stream-

ing introduces the “trick-play” technique, where the server can locate the keyframe

nearest to the required time point.

A recent advance in HTTP streaming, namely HTTP adaptive streaming (HAS),
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can switch the video bitrate according to various criteria, such as network condi-

tions. The video clips are encoded into several (usually from 5 to 12) quality lev-

els/representations using different resolution and bitrate settings. Each version is fur-

ther divided into a number of video segments containing 2 to 10 seconds of video

data. The player can download and stitch video segments of different quality levels

to produce a smooth playback. Dynamic Adaptative Streaming over HTTP (DASH)

is a standard published by MPEG [217]1. Industrial implementations of HAS include

Adobe HTTP Dynamic Streaming [15], Apple HTTP Live Streaming [24], and Mi-

crosoft Smooth Streaming [162].

The popularity of video streaming brings both opportunities and challenges. On

the one hand, websites can easily provide better entertainment and content to attract

users [104]. By using HTTP streaming, existing web architecture, such as Content De-

livery Network (CDN) and web proxy, can be reused [221]. On the other hand, video

streaming is more sensitive to network performance than ordinary web applications.

It is challenging for the service and network providers to improve the server side and

the network performance, such that the streaming system can support a huge amount

of video traffic from an increasing number of users [70, 86]. However, performance

degradation is still not uncommon in today’s video streaming systems [105, 117, 106].

One of the reasons for the performance degradation is that the design of HTTP

streaming system, especially HTTP adaptive streaming, does not incorporate a net-

work measurement component to estimate the quality of the network path. Unlike

the protocol designed for video streaming (e.g., RTP [210], RTCP, RTSP [211], and

MGRP [186]), neither HTTP nor TCP can provide information on the current network

status. Without the availability of accurate network measurement data, sub-optimal or

even instable video bitrate, including both initial and mid-stream ones, can be chosen.

This instability in bitrate selection can result in flicker and/or sudden drop in video

1In this thesis, HAS and DASH are used interchangeably.
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bitrate, which can be annoying to users [179, 170].

Another challenge is to estimate the Quality of Experience (QoE) of users, which is

defined as “the overall acceptability of an application or services, as perceived subjec-

tively by the end-user” [111]. In addition to the network performance quantified by the

Quality of Service (QoS), the QoE also depends on a number of human factors, such

as past experience, expectations, and/or enjoyment level [37, 40]. For example, users

may expect the video streaming supporting a High Definition (HD) or even 4K resolu-

tion rather than 360p or 480p for their large screen TVs. They may also have a higher

tolerance to buffering events when they watch video through the mobile network.

The subjective nature of the QoE makes it difficult to assess in real-world envi-

ronment. Measuring the QoE requires users to rate their perceived quality. Mean

Opinion Score (MOS) [112] is often used as a measure of the QoE (1:Bad – 5:Ex-

cellent). However, users are often reluctant to provide feedback until they experience

poor performance. Therefore, the results may not be able to reveal the QoE of unsat-

isfied users. User engagement [70, 27] is proposed to be a pseudo subjective measure

of QoE. Although this metrics can be obtained without explicit feedback from users,

other confounding factors, such as video content, can also affect the engagement level.

Furthermore, some subjective factors, such as user expectation, cannot be revealed by

this metrics.

This thesis presents a suite of works studying three inter-related problems–QoE

measurement, QoE improvement, and QoE assessment of HTTP video streaming. Fig-

ure 1.1 shows their relationships. QoE measurement evaluates the performance and

studies the correlation among network layer, application layer, and the perceived qual-

ity of HTTP streaming systems, which is essential for revealing impairments that de-

grade the QoE. With the measurement findings, QoE improvement enhances the HTTP

streaming system by introducing better network measurement methods and consider-
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ing the user perceived quality. The final step of the cycle is QoE assessment. This

step focuses on the new subjective assessment methodologies, which can enhance the

reliability of QoE measurement.

QoE Measurement

QoE Improvement QoE Assessment

Deployment
Reveals artifacts/ 

impairments

Assess the improved system

Figure 1.1: Relationships among QoE Measurement, QoE Improvement, and QoE

Assessment.

In the rest of this chapter, we introduce the QoE measurement and related prob-

lems in HTTP video streaming in Section 1.1. The problems motivate us to design

and implement IRate and QDASH to be introduced in Section 1.2. We then present

the motivations for the QoE assessment with user-behavior analytics in Section 1.3.

Finally, we summarize the contributions and organization of this thesis in Section 1.4

and Section 1.5, respectively.

1.1 QoE Measurement

Measuring the QoE of online video streaming is a challenging and important topic for

both service and network providers in recent years. A number of standards and meth-

ods have been developed to measure the perceived quality of multimedia content in

UDP-based streaming (e.g., [113, 114, 110]). HTTP streaming delivers video data via

HTTP over TCP. The reliable features of TCP relieve the video codec from handling

packet losses, and the picture quality is not affected by unrecoverable video data loss.



5

However, the TCP throughput can be reduced due to long network latency or packet

loss. When the throughput is unable to support the video bitrate, the consumption rate

of the video buffer will be faster than the data arrival rate. As a result, the playback

will be paused to wait for more video data after the buffer is depleted.

In the first part of the QoE measurement, we investigate the impact of network QoS

on the QoE in HTTP streaming. However, directly inferring the QoE from the network

QoS is difficult in HTTP streaming because users cannot easily perceive the network

quality. Therefore, a set of application performance metrics (APM) [165] is proposed

to quantify the application level events. A testbed experiment is setup to measure the

correlation between the network QoS and the APM. Furthermore, we conduct subjec-

tive experiment, which is one of the first studies in this research domain, to study the

relationships between the APM and the QoE. Our results show that rebuffering events

can seriously impact the QoE. We further apply a regression model to predict the QoE

from the APM.

The introduction of HAS can improve the video quality or reduce the chance of re-

buffering events by automatically choosing the video bitrate. However, the fluctuation

of network throughput can cause abrupt changes to video quality [19]. Therefore, we

design subjective experiments to investigate the impact of switching up/down of the

video quality levels on the QoE in HTTP adaptive streaming. We find that inserting

an intermediate level between the original and the target quality level can mitigate the

impact on QoE in switching down the video quality. Moreover, users prefer a better

initial quality rather than a stepwise switching up of the quality level.

1.2 QoE Improvement

From our subjective experiments, we find that reducing rebuffering events, a smooth

change of quality levels, and better initial quality can improve the QoE of HTTP
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streaming and HAS. These three directions are closely related to the accuracy of net-

work throughput estimation. However, obtaining accurate network measurement in the

browser is difficult [88, 143]. While most of the research focus on filtering noise in

throughput measurement or utilizing buffer information on the client side to decide the

video bitrate, we advocate a server-side paradigm which enables the HTTP streaming

system to deploy lightweight and accurate measurement tools in a measurement mid-

dlebox. We design and implement two systems using this paradigm, IRate [169] and

QDASH [170], to support pre-stream and mid-stream measurement.

1.2.1 Pre-stream network measurement

A major effort in improving the HAS was spent on proposing mid-stream measurement

methods to update the best bitrate during the video stream. We argue that an equally,

if not more, important problem is to determine the best initial bitrate (BIBR), because

the default setting cannot accommodate diverse end-to-end network quality and end

systems. Without any network measurement as a benchmark, a “safe” approach is to

choose a conservative bitrate to start with. This approach, however, results in subopti-

mal QoE, especially for short video clips, because of the following two reasons.

1. Even though the quality adaptation algorithm in DASH can ramp up the video

bitrate and find the best rate quickly on the client side, the video player cannot

discard the low-bitrate video segments already downloaded during this process.

The user therefore has to suffer from low initial video quality for a period of

time. This start-up phase can be longer than 150s of video [106]. A recent study

[251] shows that existing algorithms achieve only 14%-20% of optimal quality

in the first 32 seconds. Our subjective tests also show that using a low initial

bitrate can degrade the overall QoE as much as 17%.

2. Starting from a low video bitrate also induces unnecessary quality switching
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during the adaptation process. It has been shown that a frequent switching of

bitrates can hurt user engagement [70] and also the QoE [191, 61, 179].

We propose to introduce pre-stream network measurement into existing video stream-

ing systems to determine the BIBR with a reasonable accuracy before the video play-

back starts. There are three main challenges in integrating such measurement. First,

we need to identify a suitable time frame for carrying out the measurement, such that

the measurement results can be ready before the onset of the video. Second, we need to

mitigate the measurement inaccuracy at the browser level. Lastly, we need to consider

whether the measurement can be seamlessly integrated into the existing web architec-

ture and provide accurate path quality metrics for estimating the BIBR.

In this research, we present a practical system called IRate to determine the BIBR.

Our user behavior driven design helps explore possible time frames for pre-stream

measurements. Therefore, sufficient measurement result can be collected before the

onset of the video. Moreover, we exploit a number of tactics in the TCP/IP layer

and web technology to implement the measurement component. The measurement

core of IRate is designed as a measurement box, which can be easily deployed along

with the existing video caches and servers to collect accurate network path quality

data at the server side. The measurement core can accommodate packet-pair based

bandwidth estimation algorithms to measure the network quality at the server side. By

imbedding a script in web pages, clients can measure dedicated IRate-enabled video

caches through the browser. Based on the measurement results, IRate profiles clients

by determining their BIBR to video caches. The web server utilizes this information

and redirects users to a better video cache which could serve the highest BIBR for the

best QoE. IRate can predict the BIBR with 80% of accuracy with 10s of pre-stream

measurement.
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1.2.2 Mid-stream network measurement

After the video streaming is started, the benefit from the BIBR diminishes. The qual-

ity adaptation algorithm running in the video player takes over the task of updating the

most suitable video bitrate. The algorithm performs mid-stream measurement and ob-

tains estimates of the network throughput by dividing the number of downloaded bytes

by the download time. However, this kind of application layer-based throughput mea-

surement requires careful calibration. For example, multiple TCP connections rather

than a single one, are preferred [88] and a warm-up transfer should be performed to

mitigate the effect of TCP slow start [224].

It is hard to perform calibrated throughput measurement in HTTP streaming, be-

cause the video player initiates only one TCP flow to stream the video, and the sizes

of video segments can vary. Therefore, the throughput measured by the player can

experience a large fluctuation [105]. Many methods are proposed to filter the noise or

short-term fluctuations in the throughput measurement to avoid frequent switching of

the video bitrate (e.g., [152, 229, 77, 149, 64, 118, 145, 223]). On the other hand, the

buffer-based algorithm considers solely the information from the video buffer to adjust

[106] the video bitrate.

In our research, instead of deciding the video bitrate based on inaccurate through-

put measurement results, we propose QDASH-abw [170], which is a novel probing

methodology to detect the highest video bitrate the current network conditions can

support. Similar to IRate, QDASH-abw is designed to be deployed in a measurement

box. It can manipulate the packets in a video flow to conduct in-line measurement and

estimate the approximate available bandwidth based on the RTT variations [115]. We

speed up the convergence of available bandwidth estimates by only considering a few

discrete sending rates which match to the choice of the video bitrate. We also exploit

the packet sending sequence to increase the number of RTT samples. We examine
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the performance of our method in four different scenarios used in [19]. The results

show that our method can detect available bandwidth changes much quicker than the

harmonic mean of the network throughput for at least 5 seconds.

1.3 QoE Assessment

The objective measures, such as network QoS and application level events, can only

partially reflect the QoE, because the subjective nature of QoE cannot easily be re-

vealed without involving users. Therefore, a reliable QoE assessment is necessary to

understand the factors influencing user perceived quality. One promising method is

to conduct subjective assessments in a laboratory environment and compute the MOS

for each stimulus. However, this kind of assessment cannot be applied to uncontrolled

environments, such as real-world video streaming systems and crowdsourcing-based

QoE assessments. In this study, we propose user-behavior analytics to alleviate QoE

assessment problems in these environments. User-behavior analytics is the process of

analyzing the actions or events generated by the users to uncover subjective informa-

tion. It is particularly important in subjective assessments, because user behavior can

potentially connect to their cognitive process [219].

1.3.1 Inferring the QoE from user-viewing activities

In the real-world environment, obtaining user feedback is challenging. Users can be

non-responsive, because they lack incentive unless the service level is unacceptable.

Forcing users to respond can be irritating to them. Therefore, assessing the QoE with-

out interrupting users is not a straightforward task. We tackle this problem by investi-

gating the movements and actions generated by users, referred to user-viewing activ-

ities, including pausing the video and changing the video bitrate manually in HTTP
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streaming. Users are more motivated to perform these activities, because based on

their past experience these actions can actually improve the streaming performance.

For example, users can pause the video to buffer more video data when the network

throughput is low.

We propose employing the user-viewing activities to estimate the subjective pa-

rameters in HTTP video streaming [166]. We incorporate the user-viewing activities

to infer the QoE. In our implementation, the user-viewing activities and the application

layer performance can be returned to the server together. Thus, the service providers

can understand their users’ QoE with subjective metrics without explicitly requiring

their feedback.

1.3.2 Detecting low-quality workers in QoE crowdtesting by worker

behavior

QoE crowdtesting [95] becomes increasingly popular among researchers to conduct

QoE assessments on crowdsourcing platforms, including Amazon Mechanical Turk

(MTurk) [21], Microworkers [3], and CrowdFlower [1]. The QoE of different network

services, such as video streaming [125, 183, 97, 194], VoIP, and IPTV [46], can be

evaluated using the crowdsourcing approach. Furthermore, the quality of multimedia

materials can also be evaluated, including images [201], audio [132], or speech [36].

Experimenters can easily deploy their experiments by compiling the assessments as a

website published on the crowdsourcing platform. After finishing the assessments, the

workers can report to the platform to claim their payment.

The advantages of using crowdtesting over traditional laboratory experiments are

lower cost and a larger, more diverse crowd of workers [95, 242, 185]. However, with-

out any supervision, the quality of the work received from crowdtesting is questionable

[236] due to various factors [124]. For example, a previous study [66] has shown that
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less than 25% of Indian workers can achieve precision higher than 50%. Another study

[199] also shows that the precision of Indian workers is only 70%. Some cheaters only

intend to maximize their payment with minimum effort by quickly submitting the as-

sessments. Even if workers do not intend to cheat, they can be distracted or unsuitable

for the task. Both kinds of workers can lead to unreliable measurements. Therefore,

identifying these workers can help improve the reliability of crowdsourcing-based as-

sessments.

In this study, we propose a novel method to detect low-quality workers in QoE

crowdtesting by analyzing the worker’s behavior. Our approach is to construct a pre-

dictive model using supervised learning algorithms. A quality score is computed by ap-

plying existing anti-cheating techniques in the question design and human inspections

to label the workers. A set of ten worker behavior metrics is defined as the feature vec-

tor, which quantifies different types of worker behavior, including finer-grained cursor

trajectory analysis. A multiclass Naı̈ve Bayes classifier is applied to train a model to

predict the quality of workers from the metrics. We have conducted video QoE assess-

ments on Amazon Mechanical Turk and CrowdFlower to collect the worker’s behavior

traces. Our results show that the error rates of the model trained from four metrics are

no more than 30%. We employ four different 5-point Likert scale rating methods, and

find that combining the predictions from the four rating methods can further improve

the success rate in detecting low-quality workers to around 80%. Our method is 16.5%

and 42.9% better in precision and recall, respectively, than CrowdMOS [202].

1.4 Contributions

The contributions of this dissertation are as follows:
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Measurement studies to correlate the network QoS, Application performance,

and the QoE. We have conducted a seminal study of measuring the QoE of HTTP

streaming. We investigate the correlation among the network QoS, application layer

events, and the QoE in HTTP streaming by performing both testbed evaluation and

subjective experiments.

We have established a set of application performance metrics (APM) to quantify the

performance of video streaming. We further correlate this set of metrics with the net-

work QoS and the QoE by a model, and regression analysis, respectively. This set of

metrics have been widely employed for evaluating the performance of HTTP stream-

ing and also HAS.

We have designed and carried out subjective experiments to systematically investigate

the impact of switching up/down of video bitrate on the QoE. Our findings have been

cited by over 200 papers in designing quality adaptation algorithms, measuring the

QoE of video streaming, and enhancing the HTTP-based video streaming system.

A novel middlebox for improving the QoE of HAS. We have proposed a novel

measurement middlebox on the server side to support optimized-probing network mea-

surement methods in HTTP video streaming system. The middlebox incorporates mea-

surement components into the streaming system to improve both selection of initial

video bitrate and the available bandwidth measurement, while the changes in both

server side and client side can be kept to minimal.

We have designed and implemented IRatewhich can perform packet-pair-based (TRIO

[42]) pre-stream measurement to estimate the network quality and predict the best ini-

tial bitrate (BIBR). We have identified a suitable time period (pre-stream time window)

for carrying out the pre-stream measurement. We show that IRate can reduce the re-

buffering events in HTTP streaming by 25.7% and improve the efficiency and stability

of HAS by 36% and 33%, respectively.
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We have presented QDASH which can manipulate video data packets in the video flows

to conduct in-line packet-train-based (pathload [115]) mid-stream measurement. QDASH

uses the round-trip time (RTT) information to determine the highest video bitrate the

network can support. We show that QDASH can respond to changes in network condi-

tions quicker than measuring the average throughput of downloading video segments.

User-behavior analytics for QoE inference and detecting low-quality QoE crowdtest-

ing workers. We have conducted subjective assessments to analyze the user-viewing

activities generated by users during the video playback. We show that the application

events/impairments can trigger some user-viewing activities, which can be quantified

and incorporated into the APM model. The estimation of the QoE can be improved by

8%.

We have proposed a user-behavior based method to detect low-quality workers in QoE

crowdtesting. We have designed a set of worker behavior metric to systematically

extract information from the raw behavior traces collected from the browser when the

workers answer the questions. We show that the metrics can be used to build a machine

learning based model to identify low-quality workers. Furthermore, we show that the

four rating methods we tested can trigger different behavior in the cursor trace. The

accuracy of the detection can reach 80% by combining the results from three of them.

1.5 Organization

The rest of this thesis consists of six chapters: Chapter 2 discusses the background

and related work, Chapter 3 on QoE measurement, Chapter 4 and Chapter 5 on QoE

improvement, Chapter 6 and Chapter 7 on QoE assessment, and finally Chapter 8

presents conclusions and future work.

In Chapter 2, we will first present the background of HTTP streaming and HAS.
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Next, we will review some testbed and Internet performance evaluations and their find-

ings. We will present some QoE measurement works by classifying them into three

different approaches. After that, we will provide an overview of existing works on im-

proving the QoE of this system. In addition to quality adaptation algorithms in HAS,

we will summarize server-side and middlebox solutions. Lastly, we will discuss on

user-behavior based QoE assessments and countermeasures against low-quality work-

ers in crowdsourcing platforms.

In Chapter 3, we will focus on the QoE measurement. We will first present our

methodology on correlating among the network QoS, application QoS, and the QoE

in HTTP streaming. The APM model is proposed to quantify the application QoS.

We will then measure the correlation between QoE and the APM with subjective as-

sessment, and combine and visualize the two sets of correlation results. After that, we

extend our study to investigate the impact of quality adaptation on the QoE.

Chapter 4 will introduce the IRate system. We discover that the existing solutions

of HAS often use a “default setting” for the initial video quality. This method can

easily lead to a suboptimal setting (both too high or too low), because the decision

does not consider the network quality. To tackle this problem, we propose IRate, a

practical system to determine the best initial bitrate (BIBR) based on the pre-stream

measurement results collected by an IRate middlebox. Our evaluations show that IRate

can provide a reasonably accurate BIBR which can improve the stability and efficiency

of DASH.

Chapter 5 is devoted to the QDASH system. We also employ the middlebox paradigm

to imbed packet-train based measurement into the video flow to estimate the available

bandwidth during the mid-stream stage. Using the round-trip delay information from

the measurement, we can determine the highest quality level supported by the network

between the client and the middlebox. We show that our method can respond to change



15

of network throughput quickly. Finally, by considering the QoE measurement results

in Chapter 3, we propose a QoE-aware quality adaptation algorithm which takes into

account of the buffer status.

In Chapter 6, we will propose a user behavior based model for QoE assessment.

In particular, we incorporate a number of user-viewing activities generated during the

video playback to improve the QoE inference. We first select a set of possibly rele-

vant user-viewing activities. After that, we will evaluate the improvement of the new

framework against the APM model which only considers the application level metrics.

In Chapter 7, we will present our work on detecting low-quality workers in QoE

crowdtesting. We propose a novel method to extract and analyze useful information

imbedded in the worker’s behavior traces. We will then describe the construction of

a predictive model, which can detect low-quality workers. By removing the results

submitted by these workers, the reliability of QoE crowdtesting can be improved. We

will show the results obtained from both Amazon Mechanical Turk and CrowdFlower.



16

Chapter 2

Background and Related Work

In this chapter, we discuss existing works related to this thesis. We begin with a de-

scription of the background on the HTTP adaptive streaming system. Next, we survey

the testbed and Internet measurement studies on the performance of video streaming

systems and also the QoE of HTTP adaptive streaming. This is important to under-

stand the correlation among network layer, application layer, and the QoE. We will

then introduce a survey on existing methods for for improving the QoE. We classify

them into three types, namely client-side, server-side, and in-network, according to the

location of the measuring node. In particular, we summarize the design of different

quality adaptation algorithms for client-side approaches, which is the most popular

type among the three. After that, we will discuss works on assessing the QoE using

user behavior, such as viewing time, and video skipping. These behavior can be useful

in inferring the QoE. Finally, we will discuss the existing anti-cheating methods on

QoE crowdtesting, which could be based on the distribution of ratings submitted by

the workers and the worker’s behavior during the task.



17

2.1 HTTP streaming system

A basic HTTP streaming system only requires a web server (e.g., Apache or nginx) to

host the video clips. The video player running on the client side simply downloads,

decodes and plays the video data for users. Later on, HTTP Adaptive Streaming (HAS)

is developed as a major enhancement to the HTTP streaming. The HAS can automat-

ically switch the video quality according to different parameters to enhance the QoE.

Figure 2.1 depicts the framework of a typical HAS system. At the right of the figure,

we show an example of a HAS-enabled video clip. The video clip is encoded into three

quality levels or representations (denoted by Quality Level A, B, and C in the figure)

by using different sets of parameters, such as resolution, video bitrate, audio bitrate,

and so on. Each representation is further divided into video segments containing 2 to

10 seconds of video data (denoted by the numbers 1, 2, 3, ... in Figure 2.1). The video

segments encoded in different quality levels contain identical video content. There-

fore, the adjacent video segments in different quality levels can be seamlessly stitched

and played by the client. The meta-information of the video, including the number of

quality levels and their bitrates, is stored in a Media Presentation Description (MPD)

file along with the video clip.

The framework of the video player is shown on the left hand side of the figure.

First, after the video player runs on the client’s browser, it downloads the MPD from

the video server through HTTP. With the information in the MPD file, the quality

adaptation algorithm can start to fetch the first video segment. The downloaded video

segments are cached at the video buffer and further decoded by the video decoder.

On the other hand, the status of the download, such as the video segment sizes and

the download time, is passed to the throughput estimator to estimate the current net-

work goodput for the quality adaptation algorithm. Some algorithms also consider the

buffer status and the previous states of the player for achieving better QoE. The quality
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adaptation algorithm also decides when to download which quality level of the video

segments.
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Figure 2.1: A typical HTTP adaptive streaming system.

2.2 Evaluating the performance of HTTP streaming

HTTP streaming runs on HTTP over TCP. However, HTTP is a stateless protocol. Both

video players and servers cannot exchange any state information to control the video

playback or detect the streaming quality. With the interaction of TCP, the streaming

behavior is very different from traditional UDP based streaming. In the following, we

will introduce some studies on evaluating HTTP streaming in both testbed and Internet

environments.

2.2.1 Testbed evaluations

A class of work studies the behavior of HTTP streaming in different aspects under a

controlled environment. Testbed experiments are carried out to evaluate industrial im-

plementations of HTTP streaming and HAS. Biernacki and Tutschku [31] take a simi-

lar approach as our study [165], which emulates different network QoS in a testbed, to



19

evaluate the performance of HTTP streaming. They find a set of criteria for network

QoS which can smoothly stream different quality of video. Karki et al. [123] evaluate

the performance of Orb, which enables users to stream video from home networks us-

ing HTTP streaming. In [19, 30], the authors empirically evaluate commercial DASH

players by emulating different bandwidth profiles. They find that some video play-

ers fail to converge to an appropriate bitrate, while some players are more aggressive

in selecting a better video quality which can produce an excessive number of bitrate

switching. Apart from the wired network, several studies [241, 173, 204] examine the

performance of DASH players in cellular networks and find that the streaming perfor-

mance is still unsatisfactory in the mobile environment which has a high variability

in network throughput. Krishnamoorthi et al. [134] evaluate on the newer version

of OSMF using different bandwidth traces. Besides server-client scenarios, they also

evaluate the performance of HAS streaming through a proxy with different policies and

conclude that the design and policy of proxies have to consider the network conditions

and bottlenecks.

The aforementioned studies assume that the client is the only user of the video

streaming server and the network bottleneck. In later studies [18, 231], the interac-

tion between multiple competing HAS flows is considered. The characteristic of HAS

video flows is very different from TCP bulk transfer. Because the video buffer size

is limited, the video player pauses the download when the video buffer is full (OFF

period). After some data in the video buffer is consumed, the player resumes pulling

the data (ON period). This mechanism results in an ON-OFF pattern in video flows

[198]. However, this pattern may not be synchronized among video flows sharing the

same bottleneck. These studies find that the throughput estimator fails to accurately

measure the network throughput, because the ON-OFF patterns can be fully, partially,

or completely overlapped among video flows. Therefore, the quality adaptation algo-
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rithm could fail to converge to a stable bitrate, and the bottleneck capacity cannot be

fairly shared.

2.2.2 Internet experiment

A considerable amount of research effort is spent on evaluating the performance of

real-world video streaming systems using the passive or active approach. Passive mea-

surement studies include analyzing server logs [146, 148, 147, 246], traces obtained

from a client-side program [117, 48, 53], and packet traces captured at the gateway of

a network [86, 250, 54, 96] or in the ISPs [80, 192, 39, 215]. This kind of study can

reveal the viewing behavior and diagnose the performance issues between clients and

particular video streaming sites, such as YouTube, DailyMotion, PPTV, and PPLive.

On the other hand, in the active measurement approach, experimenters set up prob-

ing machines which act as clients to stream videos from video websites. Rao et al.

[198] measure and models the streaming strategies of YouTube and Netflix on differ-

ent OSes and browsers. The authors identify three different streaming strategies with

different traffic properties. Another study [197] also shows similar findings. Liu et al.

[156] conduct experiments on iOS devices and investigate redundant video streaming

traffic when the video player streams videos from YouTube, DailyMotion, and Veoh.

The authors propose a proxy-based approach, named CStreamer, to mitigate the re-

dundancy.

Apart from directly downloading video through the Internet, it is also common to

insert a middlebox between the probing machine and the Internet gateway to emulate

different measurement scenarios. De Cicco and Mascolo [63] investigate the charac-

teristics and performance of Akamai video streaming service. In [105], the authors

characterize the bitrate selection methods adopted by Hulu, Netflix and Vudu, and find

that obtaining accurate bandwidth estimates on the client side is hard. In [158], the
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authors compare the Netflix service on an Xbox, a Roku, a Windows desktop, and an

Android phone. They find that the bandwidth consumption at the steady state varies

across devices.

Other than evaluating the streaming performance, the active probing method can

be used to dissect the architecture of CDN employed by large-scale video websites

[12, 13]. Wink and Zink [234] set up DASH servers in a cloud (e.g., Amazon EC2),

and evaluate their performance by connecting them from different networks. A recent

work [16] employs 16 dual-stacked probes deployed in home, office and academic

networks to compare the connectivity and performance of YouTube over IPv4 and

IPv6 network.

2.3 Measuring the QoE of HTTP streaming

The QoE of HTTP streaming can be measured using objective metrics or subjective

assessments. However, objective metrics, such as Peak-Signal-to-Noise-Ratio (PSNR),

is hard to reveal the subjective nature of the QoE. For example, video length, content,

or even the time of day can also affect the QoE [171]. Therefore, in this section,

we focus on three types of QoE measurement approaches—subjective-based, pseudo

subjective based, and objective metrics [52]. The QoE is often expressed using Mean

Opinion Score (MOS) [112]. The subjects rate their perceived quality using a 5-point

Likert scale from 1 (“Bad”) to 5 (“Excellent”) after watching a video.

2.3.1 Subjective assessment based approach

A number of laboratory-based or crowdsourcing-based subjective studies investigate

the impact of different video streaming events in HTTP streaming on the QoE. Table

2.1 summarizes the video streaming events these works have investigated and their
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effect on the QoE. The last three rows in the table are our work to be presented in this

thesis. Ni et al. [179] find that flickering video quality can degrade the QoE. In [97],

the authors perform QoE crowdtesting on YouTube. Their results confirm our finding

in [165] that the rebuffering events are one of the major factors can degrade the QoE.

Hoßfeld et al. [94] further investigate the trade-off between initial buffering time and

rebuffering events. Their results show that both impairments can hurt the QoE, but

increasing the initial buffering time is less harmful to the QoE than having rebuffering

events. Liu et al. [155] conduct QoE assessments for both artificial and real network

video bitrate switching cases, and show that the fluency of the video, the start-up bitrate

and bitrate switching can impact on the QoE.

Staelens et al. [220] use the Single Stimulus Continuous Quality Evaluation (SS-

CQE) [110] method to continuously monitor the change in perceived quality of three

artificial bitrate variations which include stalling and bitrate fluctuation with different

amplitudes, and find that mid-range quality level switches are mostly not perceivable

by users. Hoßfeld et al. [98] assess the effect size of different influencing factors in

the HAS QoE model and find that the time duration playing on the highest quality and

the amplitude of video quality switches significantly influence the QoE. However, in a

recent study, Egger et al. [73] show that frequent or abrupt quality switching does not

significantly affect the QoE. Other than the video quality and rebuffering events, Tani

and Nunome [226] analyze the relationship between seeking operation and the QoE.

Context information, such as system properities and states, are also found very useful

in predicting the QoE [99]. A number of comprehensive surveys about measuring the

QoE of HTTP streaming can be found in [214, 52, 120].
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Table 2.1: Summary of different video streaming events investigated in the literatures.

Work
Bitrate Bitrate switching Initial Rebuffering Rebuffering

Initial Highest Frequency Amplitude delay events duration

[179] ↓
[97] ↓ ↓
[94] ↓ ↓
[155] ↑ ↓ ↓
[220] – ↓ ↓
[98] ↑ – ↓
[73] – – –

[165] ↓ ↓ ↓
[170] ↓
[169] ↑ ↓

Note: ↓, –, ↑ represents higher frequency or longer duration of that event is found to be

improving, having no effect, or degrading the QoE, respectively.

2.3.2 Pseudo subjective metrics based approach

Another class of works does not assess the QoE directly. Instead, they infer the QoE

using some pseudo subjective metrics, such as user engagement and video abandon-

ment rate. Dobrian et al. [70] correlate two levels of engagement metrics with five

quality metrics. The engagement metrics include the duration of the viewing session,

the number of views per viewer, and the total play time of all videos watched by the

viewer. On the other hand, the quality metrics are application layer events, includ-

ing join time, buffering ratio, rate of buffering events, average bitrate, and rendering

quality. The higher the engagement level are regarded as the better the QoE. In [139],

the authors further include the abandonment rate and the viewer’s return rate as the

engagement metrics. The user engagement metrics in [215] also considers the skip-

ping of video. Furthermore, the authors correlate lower layer information, including

the information from TCP/IP layer and features in cellular network, with the user en-

gagement metrics. In a recent study, Chen et al. [51] combine data packets captured

in a campus WiFi network and a survey collected from the users of that WiFi network

to understand the relationships among video streaming performance, user engagement
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and viewer experience. They argue that user engagement can only partially reflect the

viewer experience.

2.3.3 Model based approach

Because the impairments in HTTP streaming are different from UDP-based stream-

ing, the objective metrics focusing on spatial artifacts, such as PSNR, and [57], are

no longer applicable. Therefore, a number of new objective models or metrics are

developed using the findings obtained from subjective assessments.

Singh et al. [216] employ a Random Neural Network (RNN) to learn the relation-

ships among rebuffering, quantization parameters, and the QoE. The total number of

rebuffering, average and maximal rebuffering duration, and the number of quality lev-

els are considered in their model. They find that users are more sensitive to rebuffering

events than lower bitrates. Casas et al. [40] reconstruct YouTube video flows from

packet traces and estimate their performance in terms of the number of rebuffering

events. They propose a mapping function to predict the QoE from the number of re-

buffering events. Therefore, network operators can have a clearer view on the QoE

only using passive monitoring techniques. Similarly, Alberti et al. [20] estimate the

QoE by computing an Estimated Mean Opinion Score (eMOS) using the rebuffering

frequency, average duration, and the rate of quality switching. The average and stan-

dard deviation of video bitrate and the frequency of quality switches are considered in

[232]. The predicted MOS is based on a linear combination of the three metrics.

Chen et al. [44] propose time-varying subjective quality (TVSQ) of videos to infer

the QoE. TVSQ is a metrics based on continuous-time records of viewer’s perceived

quality of short video clips. In [44], the authors propose a dynamic system model to

smooth out the variations estimated by short-term quality prediction algorithm. How-

ever, their model assumes that there is no rebuffering event occurred in the playback.
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Balachandran et al. [27] develop a decision tree-based predictive model from the appli-

cation layer information, including the join time, buffering ratio, and ratio of buffering,

to predict the user engagement level. They also identify a number of confounding fac-

tors which can affect the engagement level. Their results show that the decision trees

are useful for selecting the CDN and bitrate for clients.

2.4 Improving the QoE of video streaming

Having discussed the factors influencing the QoE, we move on to the problems of mit-

igating the impairments and further enhancing the QoE of HTTP video streaming. We

will first review the methodologies for adapting video bitrate on the client side, which is

the most common approach in HAS. After that, we will highlight some related works

employing middleboxes or server-side approaches to improve the streaming perfor-

mance from other layers, such as the network layer. Finally, we will present some

works focusing on the initial bitrate selection problem.

2.4.1 Quality adaptation algorithms

The quality adaptation algorithm plays an important role in HAS, because it is respon-

sible for selecting the quality levels to be downloaded from the server. One of the

major goals of the algorithm is to mitigate rebuffering events, which impact the QoE

more than other factors. On top of that, some algorithms also consider the stability

of the video bitrate, which can further improve the QoE. In addition, some algorithms

can alleviate the interference caused by competitive video flows sharing the same net-

work bottleneck [18]. In this section, we will summarize existing quality adaptation

algorithms by focusing on three aspects—1) bandwidth estimation, 2) video bitrate

adaptation, and 3) segment download schedule. Bandwidth estimation can measure
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the network condition. By incorporating bandwidth estimates and other information,

the video bitrate adaptation decides the quality level to be downloaded which can re-

duce the occurrence of rebuffering and the impact of video quality switching on the

QoE. Segment download schedule is particularly important for accurately estimating

the bandwidth when multiple video flows share the same network bottleneck. Table

2.2 lists the quality adaptation algorithms we will discuss in this section. “T”, “R”, and

“B” in the table represent the bitrate adaptation or the download schedule is determined

by the throughput information, the current/historical bitrate information, and the infor-

mation from the video buffer, respectively. We focus on HTTP streaming systems, so

we do not consider UDP-based video streaming systems as a recent taxonomy does

[65]. Table 2.3 shows the notations used in this section for describing the algorithms.

Table 2.2: A list of quality adaptation algorithms studied in this literature.

Algorithms Bandwidth estimation
Video bitrate Video segment

adaptation download schedule

[152] Mean T B

FESTIVE [118] Harmonic mean R Random, B

[230] PID controller B B

[228] EWMA T B

[229] EWMA T B

QAAD [223] EWMA T, B B

[106] n/a B, R B

PANDA [149] EWMA (Bandwidth share) T T, B

PANDA/CQ [145] EWMA (Bandwidth share) T, B T, B

SARA [121] Harmonic mean T B

[243] Harmonic mean T, B B

Note: “T”, “R”, and “B” represent “Throughput-based”, “bitRate-based”, and “Buffer-

based”, respectively.

Bandwidth estimation

There is a considerable amount of research investigating the bandwidth estimation

problem [115, 102, 23, 222]. Some of them can be applied to UDP-based stream-

ing [25]. However, HTTP-based streaming runs on top of browsers which is not able
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Table 2.3: Notation used in this section.

Notation Explanation

n The number of downloaded video segments

µ Segment fetch time

Bcur Current buffered video size (in video time)

Bmax Maximum buffer size (in video time)

Bmin Lower bound of desired buffered video size (in video time)

L A set of quality levels supported by the video, L = {l1, l2, ..., lk|k = 0, 1, ...}
tseg Length of a video segment (in video second)

lsj Quality level selected for jth video segment, lsj ∈ L

Sk The actual size of video segment of quality level k
Tj Actual download time of jth video segment

Ij The inter-request time between the requests for jth and (j − 1)th video segments

b(·) A function that returns the bitrate of a quality level

Q(·) Video bitrate quantization function

x̃ Measured TCP throughput

xk Estimated throughput of jth video segment

to have fine-grained control on probe packets’ sending time or sizes. Therefore, these

methods cannot be easily applied. Most of the quality adaptation algorithms mea-

sure network throughput at the application layer. The results are then used to predict

the throughput of the next video segment. A straightforward approach is to use the

throughput of downloading the last video segment as the estimated throughput of the

next one. The network throughput can be computed by dividing the size of the previous

video segment by its download time as shown in Equation (2.1). This kind of through-

put measurement is similar to the flooding-based bandwidth measurement, which can

be inaccurate especially when a single TCP flow is used and the video segment size is

not sufficiently large. Therefore, smoothing or filtering techniques are usually neces-

sary in order to obtain a more stable estimate.

xn+1 = x̃ =
Slsn
Tn

. (2.1)

Liu et al. [152] propose using the ratio of video segment duration to segment fetch

time µ as shown in Equation (2.2). However, this metric is actually directly propor-
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tional to the throughput obtained from Equation (2.1). Tian and Liu [230] employ a

PID control module to accommodate the fluctuation. Therefore, the video quality can

be more stable. The control module also considers the size and the trend of the video

buffer in order to provide an estimate of the highest supported video bitrate.

µ =
tseg
Tn

(2.2)

=
Slsn
lsnTn

=
x̃

lsn
,

Other than the PID controller, a number of algorithms apply exponential weighted

moving average (EWMA) to mitigate the throughput fluctuation as shown in Equation

(2.3). The parameter δ is a weighting value which controls the contribution of the most

recent throughput measurement result to the smoothed throughput. QAAD [223] uses

a constant value of δ and a fixed throughput sampling period. Comparing to sampling

the throughput at completion of downloading a video segment, a fixed sampling period

may obtain more throughput estimates and respond quicker to throughput changes. In

[228] and [229], the value of δ is adjusted according to a logistic function, which is

derived from the normalized throughput deviation. Equations (2.4) and (2.5) show the

computation of the logistic function and the deviation, respectively.

xn+1 =





(1− δ)xn−1 + δ
Sn,lsn

Tn
, if n > 1

Slsn

Tn
, if n = 1

(2.3)

δ =
1

1 + e−k(p−P0)
, (2.4)

p =
|
Slsn

Tn
− xn−1|

xn−1

, (2.5)
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where the values of k and P0 are constant and set according to the characteristics of

the network, and p is the deviation of throughput.

Harmonic mean is another averaging function commonly employed by quality

adaptation algorithms. Equation (2.6) shows the equation for computing the harmonic

mean of the last a throughput samples, where wi is the weight to the ith historical

throughput. FESTIVE [118] smooths the throughput estimation by applying harmonic

mean to the last 20 samples with equal weights (i.e., a = 20 and wi = 1, ∀i). SARA

[121] assigns the weights proportional to the actual video segment sizes, which can

be found in the enhanced MPD file. In [243], the authors claim that their model pre-

dictive control approach does not restrict on the throughput prediction algorithm. The

harmonic mean to the throughput of the past five chunks is applied in their implemen-

tation of FastMPC and RobustMPC methods (i.e., a = 5 and wi = 1, ∀i).

xn+1 =

∑n
i=n−awi

∑n
i=n−a wi/(

Si,ls
i

Ti
)
. (2.6)

Some algorithms indirectly consider the throughput information rather than di-

rectly applying the smoothing functions. PANDA [149] and PANDA/CQ [145] do not

directly apply smoothing to the measured throughput. Instead, they apply an EWMA

smoother to the estimated bandwidth share, denoted by x̂n+1. The goal of this approach

is to filter the overestimation caused by the OFF period of competitive streaming flows.

Equation (2.7) shows the computation of the bandwidth share.

x̂n+1 − x̂n

In
= κ(w −max(0, x̂n −

Slsn
Tn

+ w)), (2.7)

where κ and w are the convergence rate and the adaptive increase bitrate, respectively,

to control the rate of increasing or decreasing the video bitrate. In [106], the authors

advocate a buffer-based approach, which only considers the buffer occupancy infor-
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mation for adapting the video bitrate.

Video bitrate adaptation

After estimating the throughput, the next step is to select a suitable quality level of the

next video segment to be downloaded. A major goal is to avoid the buffer underruns

and overflows (i.e., Bmin < Bcur < Bmax). A simple approach is to select the highest

quality level with a video bitrate supported by the most recent estimated throughput

[152, 228, 229, 121]. A safety margin ε is often added to mitigate the throughput

overestimation as shown in Equation (2.8). However, this approach does not consider

the QoE and can possibly result in an abrupt change in quality when the throughput

drops suddenly, which can adversely affect the QoE.

lsn+1 = Q(xn − ε). (2.8)

Besides the throughput, a number of works considers the previous quality level,

or/and buffer status in the algorithms. For example, QAAD [223] increases the quality

level additively. Moreover, the algorithm uses the estimated throughput to predict the

time the buffer reaches the minimum buffer level Bmin, and selects the highest quality

level which can avoid the depletion of the buffer for at least one video segment. Tian

and Liu [230] use a dynamic piece-wise constant function to control the responsiveness

of bitrate adaptation. A faster growth of the buffer allows a more aggressive increase of

bitrate. FESTIVE [118] employs a monotonic decreasing function to control the rate of

increase of quality levels according to the current quality level. The rate of switching

up the quality level is faster when the current level is low and vice versa. PANDA [149]

implements a dead-zone quantizer which introduces two different margins to control

the upshift and downshift of quality levels.

Some works do not directly consider the possibly highly fluctuated throughput in-
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formation. A Markov decision process (MDP) based controller is designed in [116]

to control the switching of the video bitrate mainly relying on buffer information. In

[106], the authors solely consider the buffer states and propose a mapping function for

selecting the next video segment’s bitrate by the buffer occupancy. The higher video

bitrate is selected when the buffer contains more video data.

Apart from only considering the quality level of next video segment, recent works

employ different models to estimate the impact of multiple steps of bitrate decision on

the QoE. PANDA/CQ [145] employs a dynamic programming approach to compute

the finite horizon, which predicts the upcoming steps based on throughput and buffer

information. Yin et al. [243] maximize a QoE metrics which combines the average

quality, quality variations, and total rebuffering time from the beginning. A Model

Predictive Control (MPC) approach utilizes the QoE metrics, throughput estimation,

and buffer information to generate and predict the optimal setting for the player. Xing

et al. [238] use two discrete-time finite-state Markov models which consider the state

within a smooth window size.

Video segment download schedule

Not all the quality adaptation algorithms explicitly specify the download schedule after

determining the quality level (e.g., [223, 228, 229]). Their download schedule of a

new video segment is indeed indirectly controlled by the buffer size as illustrated in

Equation (2.9). The new video segment is fetched immediately if the buffer is not

full. Otherwise, the next video segment will be downloaded after playing at least one

segment [243].

Kuschnig et al. [140] and DAVVI [78] propose to employ multiple parallel TCP

connections to download video segments for better utilizing the network bandwidth.

The HTTP requests and video segments are sent through three TCP connections. In
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[152], the system considers the maximum amount of video data used when the through-

put drops to the bitrate of the lowest quality level as shown in Equation (2.10). SARA

[121] and Tian and Liu [230] define a threshold Bβ to determine the download sched-

ule as shown in Equation (2.11). When the buffer level is higher than Bβ , a delay is

inserted. These algorithms will produce a periodic ON-OFF pattern when the through-

put is stable.

In =





0 ifBcur < Bmax

tseg ifBcur = Bmax,

(2.9)

In = max(0, Bcur −Bmin −
lsn
l1
tseg), (2.10)

In =





0 ifBcur < Bβ

Bcur − Bβ ifBcur ≤ Bβ.

(2.11)

The aforementioned methods may suffer from an instability problem caused by

concurrent video flows [18]. FESTIVE [118] proposes a randomized scheduler to

ensure the request time is independent of the video start time, so that the throughput

estimate can be converged. However, the randomized schedule may not be able to

fully utilize the network throughput. PANDA [149] and PANDA/CQ [145] employ

a closed-loop design to determine the segment download schedule. It considers both

throughput and buffer information as shown in Equation (2.12).

In =
b(lsn+1)tseg

x̂n+1 + β(Bcur −Bmin)
. (2.12)

2.4.2 Server-side and middleboxes approach

Although the client side approach is flexible to deploy, the video player runs at the

application layer and cannot obtain information of other clients. For example, it is in-
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feasible to obtain a global view of the server status or modify the default TCP behavior

of video flows. Therefore, a number of server side, middlebox, caches, and in-network

approaches are proposed.

Server-side shaping methods are proposed in [17, 154] for achieving a similar goal.

Trickle [85] proposes to throttle the video flows at the video server. The TCP conges-

tion window is also adjusted according to the streaming rate rather than only consider-

ing network events. Their results show that the packet loss events due to bursty traffic

can be significantly reduced.

Middleboxes, including home gateway and proxies, can be used to regulate the

traffic of video flows. The home gateway is used in [100] to shape the video traffic

to improve the stability of multiple video flows (from different clients) sharing the

same network bottleneck. A recent work [130] proposes to use a network proxy to

evenly share the bandwidth for its clients. When the client requests a higher bitrate

than its share, the proxy rewrites the HTTP requests for the client to avoid potential

performance degradation.

Caches and proxies, especially the CDN, are commonly used to improve video

streaming performance. Carbunar et al. [38] propose a network-aware caching algo-

rithm, which considers both video popularity and the network fetch cost in replacing

an object in the cache. Zhang et al. [247], on the other hand, consider the ratio of re-

quired playback rate to the actual playback rate as a QoE metrics to manage the video

cache in wireless network.

The video cache may not store the complete sets of video segments. Therefore, the

video streaming throughput can drop significantly when cache misses occur in fetching

some video segments. The client can perceive an instable video quality. ViSIC [141]

is proposed to address this problem by shaping the traffic in the cache. This prevents

the client from requesting a video quality that exceeds the network throughput. iPac
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[150] analyzes the video requests and pre-fetches uncached video segments from the

content server which are likely to be requested in the near future. Therefore, the video

streaming performance can be increased with a higher cache hit rate. Wang et al. [235]

propose to utilize the idle CDN resource to perform online video transcoding based on

user request predictions and their geo-location.

In the future Internet architecture, in particular Software Defined Network (SDN),

can facilitate in-network approaches to improve the QoE of video streaming. Open-

Flow, which is an implementation of SDN, specifies the protocol of exchanging infor-

mation between the OpenFlow switches and the controllers. An OpenFlow controller

can capture the information, redirect, and/or modifying the video flows through the

OpenFlow switches. QFF [84] is proposed to use an OpenFlow switch to fairly share

the bandwidth of multiple video streaming devices in a home network. Petrangeli et

al. [189] archive a similar goal by prioritizing video flows.

OpenCache [83] is proposed to provide in-network caching between clients and

video servers. The controller redirects the clients to an appropriate cache node to

download video segments. Bouten et al. [32] use packet sampling measurement ob-

tained by OpenFlow switches to estimate the remaining bandwidth. The OpenFlow

switches then feedback the network information to the clients for a better selection of

quality levels.

2.4.3 Initial video bitrate selection

Most of the aforementioned quality adaptation algorithms initiate the video stream to

a default quality level. Without any information of the network condition to base on,

users can perceive unnecessary quality switching at the video start-up phase. Hsu [101]

invents a system for determining the startup bitrate in adaptive bitrate streaming. His

system stores the measured throughput measured from previous video streaming in the
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browser’s cookie. At the next video playback, the startup bitrate is estimated using

the stored historical throughput. However, the startup bitrate cannot be determined at

the first visit, or after the cookie is cleared. Netflix [176] and Google [89] archive the

throughput data from video streaming clients by countries, ISPs, and access methods,

but these data will not be used in deciding the initial video bitrate. Furthermore, more

fundamentally, the historical data may not correctly reflect the latest network condition.

A number of works consider information apart from network throughput to deter-

mine the initial bitrate. Liu et al. [153] propose a coordinated video control plane to

optimize the video delivery by a global view of clients and their network. Later on, C3

[81] introduces a split control plane architecture to further improve the performance

of CDN and video bitrate selection. However, the summarized global view may not

be able to react to short-term performance degradation promptly for a small number of

clients. Riiser et al. [205], Fardous and Kanhere [79], and GTube [92] utilize the geo-

graphic location to estimate the bandwidth for mobile users’ next locations, but these

methods are location-specific, and the training cost is often expensive.

Another direction is to pre-load the video segments of the same [135] or different

[136] video clip using parallel TCP connections. In [135], the authors aim at improv-

ing the playback performance of interactive branched video, which assumes the users

traverse to a particular time point of a video by clicking the timeline. After the jump,

users may experience a long interruption and low video bitrate when downloading new

video segments. Therefore, a pre-fetching mechanism is proposed in [135], which

downloads the video segments of some predicted branch point in advance to reduce

the start-up delay and enhance the bitrate. This approach is later extended to preload

video segments of the next video clip likely to be watched in [136]. Similarly, the

preloading video segments are downloaded during the OFF period of the current HAS

flow through a parallel TCP connection. Therefore, if the prediction is correct, the
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initial video bitrate of the next video can possibly be improved. However, this method

cannot improve the initial video bitrate of the first video.

2.5 User-behavior based QoE assessment

User-behavior based QoE assessment employs the events or activities that users in-

teract with the video streams to infer the QoE. Most of the existing works analyze

the user/viewer behavior including viewing time and video seeking by summarizing

their overall distributions. Dobrian et al. [70] first propose to infer the QoE from

user engagement level, which includes join time, viewing time, and application events

collected on the client-side. The user behavior Tencent’s video service [48, 49] is an-

alyzed using server logs. A similar study [53] is performed on another VoD platform,

PPLive. Besides the engagement level, video clip switching, seeking behavior, and

video popularity are considered.

From the ISPs and network operators point of view, the server log is not readily

available to them. Shafiq et al. [215] analyze the user engagement level from an ISP

perspective. A number of network factors are used to classify the viewing sessions

into four classes (completed vs. abandoned and non-skipped vs. skipped) and the

video download completion rate. Another work [51] predicts the user engagement level

by deducing application events from packet traces captured from campus network.

Furthermore, a survey is conducted with the network users to understand the general

perceived quality.

Besides analyzing natural user behavior, OneClick framework [47] requires users

to explicitly click a dedicated button whenever they perceive quality degradations. The

frequency of clicks is used to train a Poisson regression based model to find out the

factors at the network layer responsible for the QoE degradation.
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2.6 Detecting low-quality workers in QoE crowdtesting

To improve the reliability of QoE crowdtesting, a considerable amount of works study

on screening out low-quality workers from the crowd. Some previous works employ

worker behavior or application layer metrics to identify low-quality workers. Rzeszo-

tarski et al. [206] propose to use several user behaviors to infer the quality of work-

ers. However, they aggregated mouse cursor movements into events without storing

the coordinates. Therefore, their analysis on mouse cursor movement was coarse. In

their follow-up paper [207], the authors focus on visualizing the user behavior, which

can help the experimenters to manually screen out potentially low-quality workers.

Costagliola et al. [60] capture the student behavior in an e-learning system and de-

tected cheating by analyzing the sequence of answering questions. Hirth et al. [93]

analyze some application layer metrics, such as consideration time and completion

time, and then flag the outliers as low-quality workers. Gardlo et al. [82] employ

a credit based scheme to estimate the reliability of workers. The worker’s reliability

points are deducted when some suspicious behaviors are identified.

Other than analyzing worker behavior, a number of studies focus on processing

the data after the workers complete the tasks. Buchholz and Latorre [36] propose

comparing the data with the gold standard data collected in laboratory experiments.

CrowdMOS [202, 201] computes the average and the deviation of the results submitted

by workers for each scenario. The workers providing results significantly different

from the average value will be considered as low-quality ones. Instead of directly

giving the ratings, Wu et al. [236] only require workers to give a binary decision

on which case is better. The rankings are then compared among workers to find the

outliers. However, these methods often cannot be applied to surveys or assessments

that have no absolute answers or rankings. Joglekar et al. [119] propose techniques to

generate confidence intervals for worker error rate estimates to determine the worker’s
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quality. However, their method only supports binary questions.

Instead of detecting cheaters after the completion of the whole crowdtesting cam-

paign, some existing works proposed a better job design to evade cheaters. Using

CAPTCHAs or asking questions with known answers are effective in foiling software

bots which automatically complete the task [72, 74]. Redesigning the task as a game

[75] can attract entertainment-seeking workers, who are shown to be more reliable

than money-driven workers. In [195], a hybrid approach is adopted. Three levels of

the filtering scheme are used based on both application layer information and con-

trol questions to filter unreliable workers. Another method is to adopt a two-phase

approach to screen out the pseudo-reliable crowd before conducting the actual assess-

ment [218]. A qualification task is first deployed. The workers who passed the task are

believed to be more reliable. They are then invited to work on the actual assessments.

However, these two methods can be easily noticed by careful cheaters, and they also

inevitably increase the length of the assessment period.



39

Chapter 3

Understanding the Influencing Factors

to the QoE

HTTP streaming delivers video streaming data over TCP. The reliable feature of TCP

distinguishes HTTP streaming from traditional UDP-based streaming. Because the

video codec is free from handling packet losses, the picture quality is not degraded

due to missing/damaged video frames. In this chapter, we present our study on the

influencing factors in the QoE of HTTP streaming and HAS. We first study the cor-

relation between network quality of service (QoS) and the QoE in HTTP streaming,

which is one of the first systematic studies on this problem. Network QoS is usually

represented by network path quality metrics, such as round-trip time, packet loss rate,

and capacity. Poor network quality can reduce the TCP throughput. Meanwhile, the

application layer performance can be affected by the throughput. For example, when

the throughput is lower than the playback rate, the video playback will pause and wait

for new video data. For HAS, even though the video playback may not pause, the video

quality can drop abruptly. These events can be regarded as application QoS. In HTTP

streaming, the application QoS layer focuses on the temporal structure. Rebuffering

events can be mitigated by adjusting the video bitrate in HAS, hence the application
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QoS in HAS also includes the transition of video quality levels. Finally, users perceive

the application QoS as a part of their QoE.

Obviously, common users can only directly perceive the performance from the

application, instead of the network. Therefore, it is challenging to directly correlate

between the network QoS and the QoE. In the first part of the chapter (Section 3.1–3.4),

we introduce a two-step approach to study this problem. The first step is to correlate

between the network QoS and the application QoS layer, and the second step is to

investigate the correlation between the application QoS and the QoE. Therefore, we

form a conceptual relationship between the network QoS and the QoE into a protocol

stack [227, 237] as shown in Figure 3.1.
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Figure 3.1: Three levels of QoS considered in this thesis.

To characterize the relationship between the network QoS and application QoS,

previous works [128, 233, 180] perform analytical studies to model the video stream-

ing performance using TCP. An algorithm is proposed to estimate the receiver buffer

requirement based on the model in [128]. In section 3.1, we adopt both analytical and

empirical approaches to study the correlation between the network QoS and applica-

tion QoS. In particular, we propose a set of application performance metrics (APM)

for the study: (1) Initial buffering time, (2) mean duration of a rebuffering event, and

(3) rebuffering frequency. On the other hand, the network QoS can be measured based

on active measurement (e.g., OneProbe [157] and YouTube Video Speed History [8])
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or passive measurement (e.g., [58, 41]).

We investigate the correlation between the application QoS and the QoE of HTTP

streaming by conducting subjective assessments. We have implemented a customized

Flash video player, which emulates a pre-defined set of APM. The subjects can rate

their QoE using the Mean Opinion Score (MOS) of 1 (“Bad”) to 5 (“Excellent”) [112].

A regression based model is then employed to acquire the relations between the appli-

cation QoS and the QoE. We find that the rebuffering events can significantly impact

the QoE. This finding is later confirmed and employed by a number of studies (e.g.,

[97, 70, 85, 94, 40]). Furthermore, a radar chart [43] is employed to visualize the re-

lationship between the network QoS and the QoE. We also investigate the impact of

network path asymmetry on the performance of HTTP streaming.

In the second part of this chapter (Section 3.5), we focus on investigating the impact

of quality adaptation on the QoE in HAS. The chance of triggering rebuffering events

can be reduced in HAS, because the quality adaptation algorithm can switch to a lower

quality level when the network throughput decreases. On the other hand, the quality

level can automatically switch up in high network throughput environment. For the

same network conditions, there are multiple schemes to transit the video quality quality

which can be perceived differently by users. We conduct a laboratory-based and a

crowdsourcing-based subjective assessments to investigate the QoE of different video

quality transition schemes.

3.1 Network QoS and application QoS

In this section, we investigate the relationship between the network QoS and applica-

tion QoS. Network QoS is the network path performance between a server and a client,

including the round-trip time (RTT), packet loss rate, and network bandwidth. Appli-

cation QoS, on the other hand, reflects the performance from an application point of
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view. In the ensuing discussion, we propose three APMs to quantify the application

QoS for HTTP video streaming. We then correlate both QoS using analytical modeling

and empirical evaluation.

3.1.1 Application performance metrics

We propose three APMs to quantify the application QoS for HTTP video streaming,

and these metrics represent the temporal structure of a video playback, regardless of

the video content.

1. Initial buffering time (denoted by Tinit): This metric measures the period be-

tween the starting time of loading a video and the starting time of playing it.

2. Mean rebuffering duration (denoted by Trebuf ): This metric measures the aver-

age duration of a rebuffering event.

3. Rebuffering frequency (denoted by frebuf ): When the amount of buffered video

data decreases to a low value, the playback will pause, and the player will en-

ter into a rebuffering state. This metric measures how frequent the rebuffering

events occur.

Figure 3.2 plots the time series of the video playhead time (i.e., the current position

of the video) and the amount of video buffered by FlashTrack, our implementation of

a customized Flash video player which will be presented in section 3.1.4. The solid

line refers to the video playhead time, and the dotted line to the amount of buffered

video. The circles on the dotted line correspond to the empty-buffer events which

occur whenever the amount of buffered video falls to a low value. The video playback

pauses until the buffer is refilled. Therefore, the video playhead time stops increasing

for a period of rebuffering after the onset of an empty-buffer event.
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Figure 3.2: Time series of the video playhead time and the amount of video data

buffered at the player.

3.1.2 Modeling the APMs

We construct a simple approximate model to correlate network QoS with the three

APMs in HTTP streaming. To simplify the model, we make the following assump-

tions:

1. The network bandwidth, RTT, and packet loss rate are constant during the video

download.

2. The client does not interact with the video during the playback, such as pausing

and forward/backward seeking.

3. The average bitrate of cross traffic between the server and the client is constant.

4. The fluctuation of video bitrate is not large.

5. The video buffer must be filled up before exiting the initial buffering and re-

buffering states, and its size is smaller than the video’s length.



44

Initial buffering time and mean rebuffering duration

The estimates (in seconds) of the initial buffering time and mean rebuffering duration

can be computed by

T̂init =
Bfull × λ

β
, (3.1)

T̂rebuf =





0, if β ≥ λ,

(Bfull −Bempty)λ/β, otherwise,
(3.2)

where Bfull is the size (in seconds of video) of the video buffer, Bempty (< Bfull) is the

threshold below which rebuffering event occurs, λ is the video’s bitrate (in bits/s), and

β is the average TCP goodput (in bits/s) for the video streaming. T̂rebuf = 0 for β ≥ λ

because the rebuffering event occurs only when the average TCP goodput is less than

the video’s bitrate.

To estimate the average TCP throughput, we employ the throughput model for a

TCP Reno flow [184], given by

s(p) =
1

R
√

2bp
3

+ T0min

(
1, 3

√
3bp
8

)
p (1 + 32p2)

, (3.3)

where s(p) is the packet sending rate per RTT, p is the packet loss rate, b is the number

of packets that are acknowledged by an ACK, R is the RTT, and T0 is the retransmis-

sion timeout. As a result, the estimated average TCP goodput for the given RTT and

loss rate is β = s(p) ×M × 8/R, where M is the size of the data packets sent from

the server.

While the throughput model can estimate the TCP packet sending rate, the TCP

throughput is also affected by the available bandwidth which affects both the packet

loss rate and RTT experienced by the TCP flow. In particular, when the packet sending



45

rate is greater than the available bandwidth, the network path will become congested,

thus increasing the queueing delay of TCP packets or even discarding some packets due

to buffer overflow. To compute the throughput, we resort to OneProbe [157] to measure

the RTT and loss rate for the network path with a particular bandwidth configuration

emulated in a testbed.

Rebuffering frequency

Given a video’s length of l (in seconds), the rebuffering frequency estimate is given by

f̂rebuf =





0, if β ≥ λ,

nrebuf/l, otherwise,
(3.4)

where

nrebuf =

⌈
l′

brebuf

⌉
, (3.5)

l′ = l −Bfull/

(
1−

β

λ

)
, (3.6)

brebuf = (Bfull −Bempty) /

(
1−

β

λ

)
. (3.7)

When the average TCP throughput is less than the video’s bitrate, we will encounter

nrebuf rebuffering events during the video playback given by Equation (3.5), where l′

is the remaining length of the video (in seconds) upon the onset of the first empty-

buffer event, and brebuf is the length of the played video (in seconds) before the next

empty-buffer event. When β ≪ λ (i.e., β/λ ≈ 0), the maximum rebuffering frequency

is given by

max(frebuf ) =
1

l

⌈
l −Bfull

Bfull −Bempty

⌉
. (3.8)
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From Equation (3.8), the maximum rebuffering frequency only depends on the video

length and buffer size, and is independent of the TCP throughput.

3.1.3 Measuring the APMs from clients

We have implemented a customized Flash video player, named FlashTrack, to com-

pute the actual APMs based on the status of video playbacks obtained from the client.

FlashTrack uses the Flash Netstream class to record the buffer status and current play-

head time every 0.25 seconds, and special events, such as empty buffer. We have used

the property BufferTime in the Netstream class to adjust the size of the player buffer.

The buffer must be filled up before starting the playback or after the rebuffering event.

In our experiments, we set BufferTime to 3 seconds, because we have observed that

it is the value possibly used by YouTube.

3.1.4 Testbed experiments

Figure 3.3 shows the testbed setup for evaluating our model for the correlation between

network QoS and application QoS. A web server is installed with Ubuntu 10.04 (kernel

2.6.32-22) and Apache 2.2.14 to host video clips for a client to download and play

using FlashTrack. The client runs Ubuntu 9.04, Firefox 3.6.8, and Flash Player 10.1.

The TCP congestion avoidance algorithm for both machines are configured as “Reno.”

A Click router [131] is installed between the server and the client to emulate different

network bandwidths, packet loss rates and RTTs.

Table 3.1 lists the network QoS parameters emulated by the Click router. The

bandwidth was chosen between 1 Mbits/s and 15 Mbits/s to emulate the bandwidth of

common home users, while 100 Mbits/s was chosen to serve as a control. The choices

for RTT represent the local, inter-continent, and transoceanic paths. We also varied

the round-trip packet loss rate from 0% to 8% to investigate the impact of packet loss.
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Figure 3.3: A testbed setup for evaluating the correlation between network QoS and

application QoS.

Moreover, we introduced background cross traffic to the forward path of the web server

using D-ITG [26]. The cross traffic was a TCP flow with packet size drawn from Pareto

distribution of shape 1.2 and exponential inter-departure time with mean 500 ms, and

had the average bitrate of around 100 kbits/s.

Table 3.1: The network QoS parameters emulated by the Click router.

Network QoS Parameters

Network bandwidth (Mbits/s) 1, 5, 10, 15, 100

RTT (ms) 0, 25, 50, 75, 100

Round-trip packet loss rate (%) 0, 2, 4, 6, 8

For every set of parameters, we ran FlashTrack from the client to download a video

clip from the web server for three trials. The browser’s cache folder was first cleared,

and the private mode of the Firefox was used to ensure that the video will not be

saved to the local cache after quitting the browser. The video clip was extracted from

the movie trailer of “The Twilight Saga: New Moon” which belongs to the type of

“Movies, movies tailers” stated in the VQEG test plan. Table 3.2 summarizes the

specification of the video clip.

Figure 3.4 shows the histograms of the actual APMs measured by FlashTrack under

different network QoS parameters specified in Table 3.1. The results are the averages

from three independent trials. The bars with different grey levels represent different

emulated bandwidths. The x-axis is the delay, whereas the y-axis is the packet loss rate.

As shown in Figure 3.4, all three APMs increase with the packet loss rate and delay,
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Table 3.2: A specification of the video used in the testbed experiments and QoE as-

sessment.

Items Parameters

Video length 87 seconds

Video format H.264

Audio format ACC

Resolution 864×480

File size 10.6 MBytes

Frame rate 23.97 fps

File format FLV

but decrease with the network bandwidth. As shown in Figures 3.4(a) and 3.4(c),

the distributions of Tinit and Trebuf exhibit similar patterns. Moreover, Figure 3.4(b)

shows that frebuf is significantly reduced by the network path with high bandwidth and

low packet loss rate. frebuf reaches near the maximum value, which is obtained from

Equation (3.8), when the delay is larger than 50 ms with loss rate greater than 4%.
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Figure 3.4: The three APMs under different network path quality.

We now compare the three APMs estimated by our model with the actual APMs
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obtained by FlashTrack. To obtain the (round-trip) packet loss rate and RTT for Equa-

tion (3.3), we ran OneProbe [157] from the client to measure the network path be-

tween the web server and itself. OneProbe was executed three seconds after launching

FlashTrack with a periodic probe rate of 2 Hz for 60 seconds. Based on OneProbe

measurement, we computed the median RTT and average packet loss rate which are

the parameters for estimating the TCP goodput.

Figure 3.5 shows the cumulative distribution function (CDF) of relative errors

between the APM estimates and actual APMs. We compute the relative errors by

(x̂ − x)/x, where x̂ and x are the APM estimates and the actual APMs, respectively.

As shown, more than 90% of the rebuffering frequency estimates have errors less than

50%, while over 75% of rebuffering duration estimates and over 60% of initial buffer-

ing time estimates have errors less than 50%. The larger error in the initial buffering

time estimates is probably due to a small congestion window at the beginning of the

connection which limits the packet sending rate. However, the TCP throughput model

assumes that the flow has already been in the steady state, thus overestimating the TCP

goodput.
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Figure 3.5: The CDF of relative errors between the APM estimates and actual APMs.

We have further investigated the rebuffering frequency using our analytical model.

As will be seen later, the rebuffering frequency is the major factor affecting the QoE.
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Figure 3.6 shows the rebuffering frequency for different buffer sizes and goodput-to-

bitrate ratio (β/λ) with l = 87 seconds (same as the length of the video clip for the

previous experiment). As shown, the rebuffering frequency decreases with β/λ and

Bfull, because a small buffer is used up quickly especially for a small TCP goodput (or

large bitrate). When Bfull is greater than 10 seconds, the rebuffering frequency stays at

a low level (even if β/λ is small), because the maximum rebuffering event is bounded

by the video length.
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Figure 3.6: The rebuffering frequency estimates for a 87-second video clip under dif-

ferent buffer sizes and goodput-to-bitrate ratios.

3.2 The QoE measurement

We have performed a subjective assessment to measure QoE of Flash video perceived

by users and to quantify how the QoE is influenced by the application QoS (i.e., the

APMs). To this end, we have implemented a platform using Flash to emulate video

playback under various levels of APMs as shown in Table 3.3. We divide each APM

into three levels (low, medium, and high) which are based on the 25th, 50th, and 75th

percentiles of the actual APMs (obtained by FlashTrack) reported in section 3.1.4.

Instead of delivering the video in real time, we simulate the rebuffering events by

pausing and resuming the video, during which a message “buffering . . . ” and the cur-
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Table 3.3: Three levels of application performance based on the APMs.

APMs
Level

Tinit frebuf Trebuf

Low 0− 1 seconds 0− 0.02 0− 5 seconds

Medium 1− 5 seconds 0.02− 0.15 5− 10 seconds

High > 5 seconds > 0.15 > 10 seconds

rent buffering progress are shown on the interface. The advantage of this approach

(over generating video playback in real time) is to minimize the variations (e.g., net-

work conditions) among different subjects during the QoE measurement. To minimize

the subjective bias, the player’s interface, similar to common video sharing web sites,

includes a progress bar showing the video playhead time, buffered video length, and

video’s length.

Each subject participating in the subjective assessment was required to fill in their

basic personal information (e.g., gender and age) and watched the same video clip

specified in Table 3.2 for 30 rounds, which include all the possible combinations of

APM levels (33 = 27) and three replications to validate the reliability of the subjects’

scoring. The replications were based on the APM levels randomly selected from all

the 27 possibilities. After each round, the subject was asked to give a score imme-

diately, and the whole experiment did not last more than an hour to avoid burdening

the subject. Due to this time limitation, the duration of each round was limited to 120

seconds. Therefore, the subjects may not watch the video completely in every round.

Finally, the sequence of video playback was randomly shuffled by a pseudo random

function (Math.random in Flash) to mitigate the possible ordering bias resulted from

the watching sequence.

After excluding three outliers who produced unreliable scores, we have success-

fully examined ten subjects: seven of them are male and three of them are female.

Their ages ranged between 23 and 35. All of them were non-experts in evaluating
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video quality. For each combination of the APM levels, we use the scores obtained

from the ten subjects to compute a MOS and therefore obtain 27 MOSes to represent

the QoE of the Flash video. An ANOVA analysis reveals that the rebuffering fre-

quency is the only main factor influencing the MOS. Users are generally annoyed by

the video pausing due to the rebuffering events. Moreover, there is no interaction of

variables. As a result, a higher rebuffering frequency will generally lower the user-

perceived quality. The effects of the initial buffering and mean rebuffering duration,

on the other hand, are not significant, because users are generally willing to tolerate a

longer start-up delay for a better video-watching experience.

We have performed a regression analysis to acquire a relationship between QoE

and application QoS. As shown in Equation (3.9), the coefficients of the three APMs

are all negative, thus a higher level of APMs giving a lower MOS.

MOS = 4.23− 0.0672Lti − 0.742Lfr − 0.106Ltr, (3.9)

where Lti, Lfr and Ltr are the respective levels of Tinit, frebuf , and Trebuf . We use 1,

2, and 3 to represent the “low”, “medium”, and “high” levels, respectively.

To minimize the variability caused by the video content, only one video clip is used

in the subjective experiment. We performed pilot studies on four other video clips of

different content—-sports game, news, TV comedy show and music video. Figure

3.7 plots the MOS against the three levels of rebuffering frequency. The result shows

that the level of rebuffering frequency is negatively correlated with the MOS, which

is consistent with our previous findings. Quantifying the correlation of various video

types will be our future work.
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Figure 3.7: MOS against levels of frebuf for four types of video clips.

3.3 Correlating QoE with network QoS

We now describe our methodology for correlating QoE of HTTP video streaming with

network QoS. Specifically, we first estimate the three APMs for a given network QoS

(measured by OneProbe) using our model presented in section 3.1.2. With the three

APM estimates, we then look up their levels according to Table 3.3 and finally obtain

the corresponding MOSes to represent the user-perceived performance under the net-

work path quality. Moreover, we use the radar chart proposed in [43] to inspect the

correlation between the QoE and network QoS. For the network QoS parameters, the

bandwidth varies from 1 Mbit/s to unlimited, delay from 0 ms to 100 ms, and packet

loss rate from 0% to 8%.

3.3.1 Visualizing the correlation

Figure 3.8 shows the radar chart that maps network QoS to QoE. The MOS is divided

into three levels – greater than 1, 2 and 3, which are represented using different color

levels. The network path metrics with the same MOS level are bounded into areas.

Sectors AB, BC, and CA fix one of the network path metrics to the “best” value –

unlimited bandwidth, zero packet delay and zero packet loss rate, respectively. The

other two metrics, on the other hand, vary within the sector. The three axes A, B, and
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C in the chart extended from the center of the circle vary one of the network metrics

from the best to the worst. Moreover, the values of axes A, B and C belong to sectors

dd′, ee′, and ff ′ respectively. For example, in sector Ad′, while the bandwidth is

unlimited, the packet loss rate increases from 0% to 8% in clockwise direction and the

packet delay increases from the center to the edge of the chart. Therefore, we could

observe how the two network metrics interact with each other.
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Figure 3.8: The radar chart mapping network QoS with QoE.

As shown in Figure 3.8, both packet loss rate and packet delay are the dominating

factors affecting the QoE. Sector AB of the chart, which varies the packet loss rate

and packet delay, is mainly a dark color region (i.e., a low MOS). This effect is also

reflected in the large light color regions shown in sectors CA (with zero packet loss

rate) and BC (with zero packet delay). However, a very small RTT (packet loss rate)

could partially compensate the low QoE due to the packet loss (high packet delay).

For example, a small region of semi-light color region in sector Ad′ could still be seen

even for high packet loss rate.
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3.3.2 Applications

We demonstrate how the quality of HTTP video streaming can be predicted based on

network QoS obtained from our recent Internet measurement study. We have con-

ducted OneProbe measurement from a probing machine located at a local university in

Hong Kong to the Lenovo web server in China between 26 August 2010 to 7 Septem-

ber 2010 (UTC). Since OneProbe uses HTTP requests as probe packets to elicit HTTP

data response packets from remote web servers, we expect that OneProbe can observe

similar network path quality experienced by the HTTP video streaming traffic. During

the measurement period, the measuring node performs one-minute OneProbe measure-

ment every ten minutes.

Figure 3.9: Time series of the HTTP video streaming’s MOS, and the RTT and packet

loss rate of the network path.

Figure 3.9 shows the time series of the median RTT and average round-trip packet

loss rate obtained from the two-week network measurement. The solid (blue) line is the

RTT, and the green lines close to the x-axis is the average round-trip packet loss rate.

The grey-scale spectrum at the background shows the MOS estimated by our model.

The lighter color in the spectrum represents a higher MOS score (i.e., better QoE) for

users in watching videos hosted by the web server. We observe diurnal RTT and loss

rate patterns throughout the measurement period. Moreover, the MOS is dominated by

the packet loss rate, because the dark grey areas coincide mainly with higher packet

loss rate, particularly on 26 August and 5 September when the packet loss rate reached

around 5%. On the other hand, only sparse grey lines appear in the RTT inflation
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periods, thus implying that the users could still perceive an acceptable level of video

quality.

3.4 Impact of network path asymmetry

In the previous sections, we consider the round-trip packet loss rate for evaluating

the application QoS. However, network path asymmetry is a common phenomenon

in the Internet, and it introduces different impacts on the TCP performance [28]. We

therefore investigate the effect of packet loss asymmetry on the performance of HTTP

video streaming by evaluating the APMs measured by FlashTrack under our testbed.

To this end, we configured the testbed with network bandwidth of 5 Mbits/s, RTTs

of {25, 100} ms, and packet loss rate between 0% and 8% on a unidirectional path

(forward or reverse path), while keeping the loss rate in the opposite direction to

zero. Let A (f, r) be the measured APM under forward-path and reverse-path packet

loss rates of f and r, respectively. We compute the APM difference ∆asy (A (p)) =

A (p, 0)− A (0, p) for a loss rate p.

Figures 3.10(a)-3.10(c) show the values of ∆asy (Tinit), ∆asy (frebuf ), and ∆asy (Trebuf )

for different packet loss rates. The solid line and the dashed line show the results for

RTTs of 25 ms and 100 ms, respectively. As shown, the APM differences are all posi-

tive, meaning that the forward-path packet loss introduces a more significant impact on

the application QoS. When packet loss occurs in the forward path, the corresponding

video data has to be retransmitted from the server, thus reducing the TCP goodput.

However, packet loss in the reverse path affects mainly the ACK packets from the

client, and a lost ACK packet could be compensated by a succeeding ACK packet

with a higher acknowledgement number. Furthermore, the APM difference is more

significant under the higher RTT as a result of slower packet retransmissions.

We also consider the effect of different TCP variants on the application QoS. While
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Figure 3.10: The APM differences under different asymmetric loss rates, bandwidth

of 5 Mbits/s, and RTTs of {25, 100} ms.

TCP Reno considered in the previous sections is supported by most operating sys-

tems, TCP Cubic [90] and Compound TCP [225] are the default congestion avoidance

algorithms used by Linux and Microsoft Windows, respectively. These congestion

avoidance algorithms could improve the fairness and throughput by better estimates of

the TCP congestion window. Previous work [10] shows that TCP Cubic outperforms

Compound TCP and New Reno in terms of goodput. To investigate the effect of TCP

variants, we carried out another set of experiments under the same testbed except that

TCP Cubic is used for both the client and server. We compare the performance by

computing the APM difference ∆c (A) = Ac−Ar, where Ac and Ar are the respective

APMs measured by FlashTrack under TCP Cubic and TCP Reno.

Figures 3.11(a)-3.11(c) show the APM differences of various packet loss rates and

RTTs under a constant bandwidth of 5 Mbits/s. We also repeated the experiments with
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Figure 3.11: The APM differences for two TCP variants under different round-trip loss

rates, bandwidth of 5 Mbits/s, and RTTs of {25, 100} ms.

RTTs of {25, 100}ms. As shown, the advantage of using TCP Cubic is not significant.

For an RTT of 25 ms, ∆c (Tinit) shows approximately the same performance, except

for some performance gain when the loss rate increases to 8%. On the other hand,

∆c (frebuf ) slightly decreases at a low loss rate. The performance of TCP Cubic is

better when the delay increases to 100 ms, but only less than 10 seconds of reduction

in ∆c (Tinit) and ∆c (Trebuf ). Moreover, ∆c (frebuf ) decreases when the loss rate is

2%, implying a reduction of the rebuffering events. The TCP Cubic could maintain a

larger congestion window in the presence of occasional loss events. Therefore, TCP

Cubic receives a performance gain at loss rate less than 6%. However, when the loss

is too heavy, none of the TCP variants can have a clear performance advantage.
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3.5 Measuring the influence of bitrate adaptation to the

QoE

In this section, we consider two problems related to the transition of quality levels.

The first problem is on the best way of switching down the video quality, when the

network throughput dramatically reduced. Previous studies [61, 191, 249] have shown

that users tend to heavily criticize quality degradations. The second problem is on the

selection of initial quality level. As the evolution of the broadband network, the user

expectation increases. Users may not satisfy with a slow ramp up time to the High

Definition (HD) quality.

To study the impact of these two problems on the QoE, we carefully design two sets

of subjective assessments. The assessments are conducted using both laboratory-based

and crowdsourcing-based approaches. To the first problem, we find that introducing an

intermediate quality level can mitigate the impact of quality degradation on the QoE.

In the second study, our results show that starting at a high video quality can provide

the best QoE. Otherwise, even the video quality switch up to the same level, the QoE

can be significantly degraded.

3.5.1 Evaluating the QoE impact on video quality down-switching

We consider a scenario that the network throughput drops from supporting the highest

quality level to the lowest one. As quality degradations are usually noticeable and

cause larger impact to the QoE [61], we carry out subjective assessments on their

perception of quality adaptation which is possible under the same network conditions.

To ensure the consistency among subjects, we pre-define a list of rule sets to profile

the quality level changes. The subjects rate their QoE on different rule sets in terms of

MOS.
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Experiment setup

We have implemented an experimental video delivery platform to carry out subjective

assessments. The video server is installed with Debian 6.0, Apache web server 2.2.16,

and Adobe’s HTTP Origin Module [14] in order to support Adobe Dynamic Streaming.

In addition, the video player is developed using the Open Source Media Framework

(OSMF) [5] and Strobe Media Playback (SMP) [11]. We replace the original quality

adaptation algorithm in the OSMF, so that the quality level switching follows a pre-

defined scenario.

We define each scenario with a rule set, R, expressed by Equation (3.10). Each

rule set contains at least one rule tuple represented by < lk,Sj,lk >, where lk is the kth

quality level and Slk is the number of bytes to be downloaded at that quality level. One

rule tuple is completed when the number of bytes downloaded at the quality level is

greater than or equal to the defined value. The player proceeds to the next rule tuple

until all the rule tuples have been used. At this point, the quality level stays at the last

level. Therefore, we can emulate different kinds of quality changes by defining these

rule sets.

R = {< l0,Sl0 >,< l1,Sl1 >, ..., < lj,Slj >} , j = 0, 1, 2, ... (3.10)

Generation of rule sets

In our experiments, we emulate a sudden drop of throughput from 4Mbps to 400Kbps

after playing the first three fragments. Therefore, the highest possible quality drop

is from l4 to l0. We also emulate three buffer sizes—1 segment, 3 segments, and 8

segments. These three buffer sizes are typical values employed by DASH video play-

ers. We also compute the maximum number of segments supported at the intermediate

quality levels nfrag (5.2). Table 3.4 lists the values of nfrag for our experiments. For
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the 1-segment buffer, only quality levels below l2 allow downloading at least one com-

plete segment during the buffer compensated period.

Three different initial quality levels, l4, l2, and l0, are employed in the experiments.

As the subjects have not watched the video before, varying the initial quality levels

can give an insight as to how the subjects perceive the picture quality in a no reference

context.

Table 3.5 lists the rule sets we employed in our experiments. Except for R0, the

subjects watch the first three segments of the video at the original quality level defined

in the first tuple of the rule sets. Then, the video player plays all the segments in the

buffer to emulate the consumption of the buffer due to a decrease in throughput. After

that one or two intermediate quality levels are inserted and played. Finally, the player

reaches the target level, l0.

R0 is the base case providing the worst video quality. The rule sets denoted with

R1,x, R3,x, and R8,x are of buffer size 1, 3, and 8 segments, respectively. R3,8, R3,9, and

R3,10 have two intermediate levels. Half of the buffer is used to load a higher quality

level, and the remaining half is used to load a lower quality level. Figure 3.12 depicts

the quality level transition of R1,4, R3,7, and R3,8. R1,4 and R3,8 have one and two

intermediate levels, respectively, while R3,7 starts with quality level l2. The buffer of

R8,4 and R8,5 is large enough to allow the intermediate level to be used until the end of

video clip. Therefore, these two rule sets do not switch to quality level l0.

Table 3.4: The maximum number of segments supported at intermediate levels, nfrag.

Buffer size

Quality levels 1 (segment) 3 (segments) 8 (segments)

l4 0 1 4

l3 0 2 6

l2 1 4 11

l1 5 15 42
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Table 3.5: Summary of experiment rule sets defining different quality transition

schemes.

R0 < l0, 23× Sl0 >

R1,1 < l4, 3× Sl4 >, < l4, 1× Sl4 >, < l2, 1× Sl2 >, < l0, 17× Sl0 >
R1,2 < l4, 3× Sl4 >, < l4, 1× Sl4 >, < l1, 5× Sl1 >, < l0, 13× Sl0 >
R1,3 < l4, 3× Sl4 >, < l4, 1× Sl4 >, < l0, 19× Sl0 >
R1,4 < l2, 3× Sl2 >, < l2, 1× Sl2 >, < l1, 5× Sl1 >, < l0, 13× Sl0 >
R1,5 < l2, 3× Sl2 >, < l2, 1× Sl2 >, < l0, 19× Sl0 >

R3,1 < l4, 3× Sl4 >, < l4, 3× Sl4 >, < l4, 1× Sl4 >, < l0, 16× Sl0 >
R3,2 < l4, 3× Sl4 >, < l4, 3× Sl4 >, < l3, 2× Sl3 >, < l0, 15× Sl0 >
R3,3 < l4, 3× Sl4 >, < l4, 3× Sl4 >, < l2, 4× Sl2 >, < l0, 13× Sl0 >
R3,4 < l4, 3× Sl4 >, < l4, 3× Sl4 >, < l1, 15× Sl1 >, < l0, 2× Sl0 >
R3,5 < l4, 3× Sl4 >, < l4, 3× Sl4 >, < l0, 17× Sl0 >
R3,6 < l2, 3× Sl2 >, < l2, 3× Sl2 >, < l1, 15× Sl1 >, < l0, 2× Sl0 >
R3,7 < l2, 3× Sl4 >, < l2, 3× Sl4 >, < l0, 17× Sl0 >
R3,8 < l4, 3× Sl4 >, < l4, 3× Sl4 >, < l3, 1× Sl3 >, < l2, 2× Sl2 >, < l0, 14× Sl0 >
R3,9 < l4, 3× Sl4 >, < l4, 3× Sl4 >, < l3, 1× Sl3 >, < l1, 7× Sl1 >, < l0, 9× Sl0 >
R3,10 < l4, 3× Sl4 >, < l4, 3× Sl4 >, < l2, 1× Sl2 >, < l1, 7× Sl1 >, < l0, 9× Sl0 >

R8,1 < l4, 3× Sl4 >, < l4, 7× Sl4 >, < l4, 4× Sl4 >, < l0, 9× Sl0 >
R8,2 < l4, 3× Sl4 >, < l4, 7× Sl4 >, < l3, 6× Sl3 >, < l0, 7× Sl0 >
R8,3 < l4, 3× Sl4 >, < l4, 7× Sl4 >, < l2, 11× Sl2 >, < l0, 2× Sl0 >
R8,4 < l4, 3× Sl4 >, < l4, 7× Sl4 >, < l1, 13× Sl1 >
R8,5 < l2, 3× Sl2 >, < l2, 7× Sl2 >, < l1, 13× Sl1 >

l0

l1

l2

l3

l4

t1t0

R3,8

R1,4

R3,7

Figure 3.12: The quality transition of R1,4, R3,7, and R3,8.

Video materials

We prepared 11 short video clips, each with a duration of about 90 seconds. The

video clips were taken from various kinds of sources, including sports, movie trailers,

animations, and music videos. The quality of the source video was at least equal to that
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of l4 in Table 3.6. We subsequently downsampled the source video clips to other quality

levels. To emulate more realistic environment, we used the video quality specification

adopted by Akamai Adaptive Video Streaming. Table 3.6 shows the profiles of all the

quality levels [63]. Adobe’s File Packager [14] was then used to package the video

files of different quality levels and translate the encoded video files into segments. We

define segment length, θ, be four seconds of video, which is the default value in the

File Packager. Therefore, each video clip contains about 23 (⌈90/4⌉) segments.

Table 3.6: Profiles of the video quality levels [63].

Parameters l0 l1 l2 l3 l4

Video height (pixel) 180 360 360 720 720

Video width (pixel) 320 640 640 1280 1280

Avg. video bit rate (kbps) 300 700 1500 2500 3500

Avg. audio bit rate (kbps) 160 128 128 128 128

Video frame rate (fps) 29.97 29.97 29.97 29.97 29.97

Video codec H.264 H.264 H.264 H.264 H.264

Audio codec AAC AAC AAC AAC AAC

Subject assessment

Subjects were told that a sudden drop in network throughput was emulated during

each experiment. They were advised to watch the video in full screen, and not to

pause or time-shift the video playback. Each subject was asked to watch 11 video

clips, as mentioned in Section 3.5.1. We applied one of the experiment rule sets from

Table 3.5 to the video playback. R0 was shown to all subjects. For the other ten

experiment sessions, the video player randomly selected one of the experiment rule

sets. Therefore, the sequence for all subjects was randomized to mitigate the order

effect.

After completing each playback, subjects were immediately required to answer

questions on the video playback they just watched. We first asked the subject if they
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notice any quality change in video quality during the playback. Then, the subjects were

asked to separately rate the perceived quality on the following aspects – picture quality,

sound quality, playback smoothness, and video content. Finally, they were asked to

give a composite score on the overall perceived quality. We adopt a 7-point Likert

scale, from ‘1’ (Bad) to ‘7’ (Excellent), to measure the MOS for higher granularity.

Assessment results

Descriptive statistic A total of 24 subjects, 19 males and 5 females, participated in

the subject assessment. All the subjects were volunteers, non-experts in video quality

assessment, and with normal vision. They have the basic computer skills to use the

experiment platform. We obtained 242 valid samples of rating on overall perceived

quality. Figure 3.13 depicts the frequency distribution of the overall QoE rating. No

subject rated ‘1’ and only two experiment sessions gave a rate of ‘7’. We think this is

reasonable as there was no service interruption and only quality degradation took place

in all cases. We also validated that all the rule sets and the choice of video were evenly

distributed among all the samples.
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Figure 3.13: The overall distribution of overall QoE rating.
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Comparisons on MOSes We compare the QoE between all the rule sets by comput-

ing the MOS difference as given by (3.11).

∆MOS(i, j) = MOS(Ri)−MOS(Rj) (3.11)

,where MOS(Rj) is the mean QoE rating obtained using rule set Rj . In addition,

we also determine the significance level of the MOS difference, p, using Independent-

samples t-test. Table 3.7 shows the MOS difference between rule sets, ∆MOS(column,row).

We highlight the MOS differences at the significant level less than 0.1 (p <0.1).

Our results indicate that, R3,4, R8,4, and R8,5 obtain a negative MOS difference with

respect to most of the other rule sets in the respective rows, meaning that these three

rule sets have a higher MOS compared to other cases and outperform the other rule

sets in terms of QoE. However, no significant difference in MOS is observed among

these three cases. R8,4 and R8,5 do not drop to the lowest quality level, l0, at the end of

the video playback. Therefore, the higher QoE could be due to the higher final picture

quality. The MOSes of R8,4, and R8,5 are significantly higher than that of R8,1 which

plays the longest time in highest quality level. This shows that providing as high video

quality as possible does not lead to the highest QoE. Surprisingly, R0, which plays

at the lowest quality level throughput the whole playback, does not obtain the lowest

MOS. As there is no quality transitions, the subjects did not know they were watching

the video with the lowest quality.

Rule sets without intermediate quality levels usually have lower perceived qual-

ity. One example is that R3,5 has lower MOS than six other rule sets with intermediate

levels. However, using two intermediate levels (R3,8, R3,9, R3,10) shows only slight im-

pact in improving the QoE. Among the three rule sets, the QoE for R3,8 is significantly

higher than five other rule sets.

On the other hand, large video buffer size does not necessary improve the QoE.
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Many rule sets with small buffer size have no significant difference in MOS to those

with large buffer size. One example is R3,4 which provides better perceived quality

than R8,1. However, larger video buffer consumes more resources at the client-side,

such as cache memory.

To summarize the results, inserting intermediate levels usually gives a better QoE,

while one intermediate level gives the highest perceived quality. A small video buffer

can only have short period to have intermediate level, and usually produces lower QoE.

3.5.2 The impact of initial bitrate setting to the QoE

The default bitrate can definitely impact the QoE. If the bitrate is too high, the playback

will be stalled by rebuffering events. Previous works had shown that these events can

degrade the QoE [165] and also the user engagement [70]. However, we found that

using a conservative choice cannot meet user expectations and impacts to the overall

QoE. To quantify the impact of low default quality to the QoE, we carry out subject

assessments to measure the user perceived quality under different initial settings and

transition schemes. Our assessment emulates users streaming videos with DASH using

a high-speed network connection, which can support the highest bitrate of the video

without any rebuffering. But, the initial bitrate is set to a suboptimal value and then

switches up until the highest bitrate.

Experiment settings

To emulate different quality adaptation methods, we composed 17 (15+2) cases, de-

noted by Rid, to switch up the quality levels to the BIBR as listed in Table 3.8. The

transitions are represented using the right arrows, →. For example, lx → ly means

the quality levels switch from lx to ly. Each level was played for two segments before



67

T
ab

le
3
.7

:
T

h
e

M
O

S
d
if

fe
re

n
ce

,
∆
M

O
S

(c
o
lu

m
n
,r

o
w

).

R
0

R
1
,1

R
1
,2

R
1
,3

R
1
,4

R
1
,5

R
3
,2

R
3
,3

R
3
,5

R
3
,6

R
3
,7

R
3
,1
0

R
8
,1

R
8
,2

R
3
,1

-1
.0

3
†

R
3
,3

-0
.7

0
†

R
3
,4

-1
.0

3
*

-1
.2

5
*

-1
*

-0
.8

8
†

-1
.2

3
*
*

-0
.9

3
*

-1
.6

7
*
*

-0
.9

7
*

-1
.2

5
*
*

-1
.0

3
*

-1
.2

1
*

-0
.9

8
*

R
3
,7

-0
.9

2
†

-0
.9
†

-1
.3

3
*

-0
.9

2
†

R
3
,8

-0
.9

2
†

-0
.9

*
-1

.3
3
*
*

-0
.9

2
*

1
.1

2
†

R
3
,9

-1
.2

3
†

-0
.8

2
†

R
3
,1
0

0
.8

8
†

R
8
,2

-1
.0

3
*

R
8
,3

-1
†

R
8
,4

-1
.1

2
*

-1
.3

3
*
*

-1
.1

0
*

-0
.9

6
*

-1
.3

2
*
*

-1
.0

2
*

-1
.7

5
*
*
*

-1
.0

5
*
*

-1
.3

3
*
*

-1
.1

2
*

-1
.2

9
*
*

-1
.0

6
*

-0
.7

2
†

R
8
,5

-1
.5

2
*

-1
.2

7
*

-1
.1

5
†

-1
.5

*
-1

.2
*

-1
.9

3
*

-1
.2

3
*

-1
.5

2
*
*

-1
.3

*
-1

.4
8
*

-1
.2

4
†

N
o
te

:
†p

<
0
.1

,
∗p

<
0
.0

5
,
∗
∗
p
<

0
.0

1
,
∗
∗
∗p

<
0
.0

0
1



68

the next transitions. R−2 and R−1 are control cases emulating the worst and the best

overall picture quality, respectively. These two cases do not have any quality change in

the entire video playback. For other cases, the quality levels will monotonically switch

up to l4 and keep steady until the end. The video was streamed through a Flash-based

customized video player, which was implemented on top of the Strobe Media Play-

back, and allowed us to override the internal quality adaptation algorithm and switch

the quality levels according to the preset rules.

We downloaded four different kinds of HD video clips from the YouTube (includ-

ing News, sports video, music video, and movie trailer) to randomize the effect from

the video content. Then, the video clips were trimmed to 1 minute and were encoded

into five quality levels (denoted by l0 to l4) according to Adobe’s encoding recommen-

dation [142] (first five levels of Variant 3), where l0 is the lowest quality. The segment

length was 4s, which is the default value for the Adobe HTTP Dynamic Streaming’s

file packager. We argue that the video length in our subjective test is sufficient and

realistic. Measurement studies of YouTube [86, 55] and Akamai [137] showed that

short video clips are still very popular in today’s Internet.

A crowdsourcing-based QoE assessment

We employed MTurk and CrowdFlower to carry out the subjective tests using crowdtest-

ing approach [95]. We implemented a web-based crowdtesting platform similar to

[195]. The workers were instructed to visit our test system, which was a website

hosted on an Amazon EC2 instance. Because this assessment focused on the effect of

picture quality instead of the playback smoothness, we used CloudFlare CDN to cache

the video data to mitigate any rebuffering events due to insufficient network through-

put at the server side. From the log returned by the video player, we confirmed that

no rebuffering events were observed. Each worker was asked to watch and rate on
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perceived quality of the four video clips. Among the four video clips to be watched by

the worker, one of them is a control case (either R−2 or R−1) and others are randomly

selected from the 15 cases with quality transitions. After finished playing each video,

a questionnaire immediately shows up and requires the worker to rate on the overall

perceived quality in a 5-point Likert scale (1: Bad - 5: Excellent) [114]. Furthermore,

we also measure their expectation by asking them whether the initial and overall pic-

ture quality meets their expectations in a 5-point Likert scale (1: Strongly disagree - 5:

Strongly agree), denoted by Einit and Eoverall, respectively. Each worker was awarded

from USD 0.5 to 1. We successfully recruited 209 subjects to perform this assessment

after screening our low-quality workers using [167].

Table 3.8: Summary and the MOS of different quality transition schemes.

ID Transition MOS Einit Eoverall

R−2 l0 3.21 3.07 3.09 129

R−1 l4 4.16 4.23 3.99 90

R0 l0 → l4 3.92 3.05 3.65 130

R1 l1 → l4 4.06 3.86 4.06 35

R2 l2 → l4 4.15 3.94 3.88 33

R3 l3 → l4 4.13 3.98 3.90 40

R4 l0 → l1 → l4 3.55 3.00 3.50 38

R5 l0 → l2 → l4 3.90 3.00 3.57 30

R6 l0 → l3 → l4 3.79 2.79 3.29 34

R7 l1 → l2 → l4 4.00 3.83 4.11 35

R8 l1 → l3 → l4 4.26 4.03 4.13 31

R9 l2 → l3 → l4 4.13 3.63 4.03 40

R10 l0 → l1 → l2 → l4 3.78 3.24 3.49 37

R11 l0 → l2 → l3 → l4 4.00 3.50 3.87 30

R12 l0 → l1 → l3 → l4 3.63 3.47 3.63 30

R13 l1 → l2 → l3 → l4 4.23 3.58 4.02 43

R14 l0 → l1 → l2 → l3 → l4 3.77 3.42 3.74 31

The MOS, Einit, Eoverall, N column in Table 3.8 show the mean opinion score, the

mean value of the expectation rating of initial, overall picture quality, and the number

of samples, respectively. All the cases are evaluated by at least 30 subjects. The cases

with darker background color have more video quality transitions. We can see that
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all the cases (R0, R4, R5, R6, R10, R11, R12, R14) started from the lowest quality

level, l0, have a lower MOS, Einit, and Eoverall than the similar schemes starting from

l1 (R1, R7, R8, R13). We further compute the correlation coefficient among these

three metrics. The MOS values show significant positive correlation with both Einit

(r = 0.42, p < 0.001) and Eoverall (r = 0.71, p < 0.001). Although the correlation

coefficient for Einit is smaller than Eoverall, we can conclude that the initial quality

shows significant influence to the overall QoE. Furthermore, R14 shows a lower MOS

to other schemes with less number of transitions (e.g., R5, R6, R11). We can reveal

that the longer duration of the transition phase can also hurt the QoE.

3.6 Summary

This chapter presented our QoE measurement studies on HTTP streaming and HAS.

In the first part, we studied how network path quality affects QoE of HTTP streaming.

We addressed the problem by dividing it into two subproblems: measuring the corre-

lation between the network QoS and application QoS, and measuring the correlation

between application QoS and QoE. In the first subproblem, we proposed three appli-

cation performance metrics for HTTP video streaming and used both analytical model

and empirical evaluation to characterize their correlation. In the second subproblem,

subjective assessments were conducted to correlate the QoE in terms of MOS and the

application QoS.

Our main finding is that network throughput is lowered by packet losses and the

RTT, thus increasing the rebuffering frequency. We also identified the rebuffering fre-

quency to be the main factor responsible for the MOS variance. This shows that the

temporal structure, instead of spatial artifacts, is also an important factor affecting the

QoE. The QoE could be improved by both network QoS or application QoS man-

agement. Moreover, our approach allows us to inspect the correlation between QoS
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and the QoE from different aspects, and the approach could be easily applied to other

application environments.

In the second part, we investigated the impact of quality adaptation in HAS on the

QoE. We designed two subjective assessments to examine the differences in perceived

quality under the two emulated network conditions. In the first assessment, we emu-

lated a steep in network throughput. We found that inserting an immediately quality

level in between a downshift of quality levels can cushion the effects of spatial quality

degradations. We emulated a high throughput environment in the second crowdsourc-

ing based assessment. We found that starting from a low video quality can result in

lower QoE even the quality eventually ramps up. We believed that this is because the

low initial quality fails to meet user expectations. These findings are very important in

designing a QoE-aware video streaming system.
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Chapter 4

Improving the Initial Video Bitrate

Our subjective assessments in the previous chapter reveal that low initial video cannot

provide the best QoE to users. Motivated by this finding, we design and implement

a practical system to determine the Initial bitRate (abbv. IRate). Our user-behavior

driven design helps explore possible time frames for pre-stream measurements. More-

over, we exploit a number of tactics in the TCP/IP layer and the web technology to

implement the measurement component. The measurement core of IRate is designed

as a measurement box, which can be easily deployed along with the existing video

caches and servers to collect accurate network path quality data at the server side.

The measurement core can accommodate packet-pair based bandwidth estimation al-

gorithms to measure the network quality at the server side. By imbedding a script

in web pages, clients can measure dedicated IRate-enabled video caches through the

browser. Based on the measurement results, IRate profiles clients by determining their

BIBR to video caches. The web server utilizes this information and redirects users to

a better video cache which could serve the highest BIBR for the best QoE.

We have conducted extensive testbed experiments to evaluate IRate’s accuracy of

estimating the BIBR and its robustness when operating under diverse network condi-

tions. Our results show that using IRate can achieve a 80% accuracy using only 10
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seconds of measurement data. It also achieves better stability and higher efficiency

than DASH with the default setting. We further conducted user assessments to com-

pare the performance of IRate and the predefined approach in terms of QoE.

In this chapter, we first survey the default initial bitrate settings used in several

popular video streaming services and a subject assessment on different initial bitrate

settings in Section 4.1. We present our user-behavior driven approach for estimating

the BIBR in Section 4.2 and then describe IRate, our implementation based on this

approach, in Section 4.3. Section 4.4 presents our testbed results for evaluating the

accuracy and robustness of IRate. We present a user QoE experiment for IRate in

Section 4.5. We then discuss some limitations of IRate in Section 4.6.

4.1 Background

4.1.1 Default settings for initial video quality

Video streaming providers generally offer several quality levels or video bitrates for

each video. However, whether they support adaptive bitrate streaming or not, they

set their default initial bitrates oblivious to the performance of the end-to-end path

between the client and video server. We have surveyed several video content providers

on their default settings, and summarized in Table 4.1. Since the default settings are

not always stated clearly in public documentations, we have performed testings to

uncover their initial bitrate settings. However, we cannot perform the tests for Hulu,

because its service are not available locally. We also show in the table whether they

support adaptive streaming, the number of supported bitrates, and whether they have

any pre-roll advertisement.

As shown in Table 4.1, there are three types of initial bitrate settings. YouTube

sets the initial bitrate to the highest quality based on the video player size [244]. We
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also observe from our tests that the corresponding quality levels for “small”, “large”,

and “full screen” are 360p, 480p, and 1080p, respectively. Netflix, on the other hand,

determines the default video quality settings by countries. For example, for Canada

and Brazil users, the quality level is set to “good”, and other users are set to “best”

[178]. We are however unable to determine the setting for Hulu. As for the other three,

our tests show that they choose predefined quality for the initial bitrates. For example,

Youku streams video clips in a standard definition. Dailymotion selects “HQ” as the

default bitrate [163], where we observe that the resolution can be 360p or 480p.

We also perform supplementary tests to verify whether the default settings for new

clients will be changed according to different network conditions. We run a Windows 7

virtual machine as the client. We then configured the capacity of the virtual machine’s

network interface in the VMware to 10Kbps, 200Kbps, and unlimited. The downstream

link for receiving video is therefore bandwidth throttled. After setting the network,

we arbitrarily select at least three video clips from the front page to stream from the

YouTube, Vimeo, Dailymotion, Youku, and Tudou websites with Internet Explorer. To

emulate new clients with no prior knowledge of the throughput, the InPrivate mode is

used to avoid local caching or any tracking of user preferences. We believe the videos

shown on the front page are popular videos which have been cached nearby CDN

caches. All the tests show that their default values do not change for the three different

downlink bandwidth scenarios, thus further supporting that their initial bitrates are

oblivious to the path performance.

4.1.2 Impacts of the default settings

To understand the impact of the default settings, we employ a two-step approach. The

first step is to measure the degree of discrepancy between the default setting and the

BIBR. Then, we present a subjective experiment to show how the default settings im-
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pact on the user perceived quality.

Discrepancy between default settings and the BIBR

We performed throughput measurements for YouTube, Dailymotion, Youku, and Tu-

dou. Our methodology is to arbitrary select a video from the front page of each

provider. We captured the traffic using wireshark while playing the video clip. Then

we computed the average throughput of the whole video stream. Furthermore, to cap-

ture the potential influences from the TCP slow-start, we also compute the average

throughput of downloading the first 250KBytes of video data as the start-up through-

put. For each video, we repeated the download for five times. Finally, the BIBR is

determined by mapping to bitrate closest to the measured throughput.

Table 4.2 shows the results of comparing the default initial bitrates and the BIBRs

based on the throughput measurement. Except for YouTube, the initial bitrates set by

the other three providers do not agree with the BIBRs. Both Youku/Tudou can provide

a higher quality than the default settings, whereas Dailymotion’s exceeds the actual

throughput provision. YouTube, on the other hand, can provide the highest quality for

the BIBR. Surprisingly, the start-up throughput in Youku/Tudou and Dailymotion is

higher than the average throughput of the whole video stream. The start-up through-

put for both providers can support one quality level higher than the overall one. Even

though YouTube shows a lower start-up throughput, the start-up throughput is still suf-

ficient for supporting the same (highest) video bitrate. Since their default settings for

all player sizes are less than the BIBR, theirs are sufficient for guaranteeing the best

QoE at the onset of the viewing. YouTube’s exceptional throughput performance is

due to their local cache servers [13], our laboratory’s high-speed network (100 Mbps),

and their aggressive buffering strategies [80]. For the other three providers, we per-

formed traceroute with TCP SYN packets and confirmed that the video servers are
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not located locally. It is believed that the throughput is limited by the overseas link.

We next present two testbed traces to illustrate the impact of suboptimal initial

bitrates (the full set will be presented in Section 4.4). The first case is classic HTTP

streaming, and there are packet losses on the path. We plot in Figure 4.1 the video

playhead times (the solid lines) and buffer status (the dotted lines) for two cases: a

default initial bitrate of level 3 in a scale of 0 to 4 (the light red) and the BIBR (the

dark green). Notice that the default bitrate is too high for the network condition. Hence,

the playback suffers from a long initial buffering time (>10s). It then pauses at around

30s for rebuffering and resumes at 60s. The case using the BIBR, on the other hand,

chooses the lowest bitrate, thus yielding a smooth playback.
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Figure 4.1: Video playhead times and buffer statuses for default initial bitrate and

BIBR in classic HTTP streaming under a lossy network condition.

The second case shows the first 15s of the traces for DASH streaming with a default

initial bitrate and the BIBR. The network condition is better than the first case, which

can support level 4, the highest quality. Figure 4.2 shows the quality levels against

the video playhead time. The BIBR is used throughout the entire period, whereas the

default case is started with the lowest quality (level 0) and reaches the final quality
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level after two consecutive up-switchings at 4s and 8s. The shaded region therefore

refers to the amount of under-utilized bandwidth for the default case. Depending on

the video segment length, buffer size and the aggressiveness of the quality adaptation

algorithm, users could experience an unstable video quality for more than 150s [106].
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Figure 4.2: Quality levels vs. video playhead times for default initial bitrate and BIBR

under DASH streaming in a good network condition.

4.2 User-behavior driven design

4.2.1 Design goals

We design IRate by considering three aspects—users, video service providers, and

system accuracy. Our objective is to derive the BIBR from pre-stream measurement

results. Moreover, the current infrastructure and user habit can be preserved. From

users’ point of view, the pre-stream measurement cannot disturb the normal user be-

havior, especially blocking the onset of the streaming after they selected the video or

generating excessive amount of measurement traffic. On the other hand, the design

of IRate has to be practical for service providers to deploy it to the current distributed

video delivery infrastructure. More importantly, IRate needs to collect accurate enough

path performance data, in a lightweight way, to determine the BIBR.
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These issues are not independent of each other, because the measurement accuracy

also depends on the measurement method and measurement duration. The amount

of time allocated to the pre-stream measurement is clearly very limited. Moreover, in

order not to block the video streaming, the pre-stream measurement must be conducted

and completed before the user selection of the video. As a result, the measurement

must be conducted in the “background” when the user is making his video selection.

As the measurement is now run in parallel with the download of web objects of the

current page, the choice of measurement method has to be lightweight. Furthermore,

a practical design should also be able to accommodate the distributed architecture of

large-scale video delivery systems.

4.2.2 Pre-stream measurement window

Our approach to designing IRate is to first study a user’s typical behavior before se-

lecting a video to watch. The user behavior will inform us the constraints, as well as

the opportunities, for conducting pre-stream measurement to determine the BIBR. The

five dark-bordered boxes in Figure 4.3 show the main actions performed by a user and

his browser:

(1) The user visits the front page of a video streaming website, such as YouTube,

which usually displays a video catalog.

(2) The browser starts downloading and rendering the web objects in the front page.

(4) When the page is partially parsed and rendered, the user may browse the page

and acquire the video clips information from the page.

(7) After selecting a video to watch, the user clicks on the video’s hyperlink/thumbnail

to view the video page.

(8) The user may need to explicitly start the video streaming. A pre-roll video ad-

vertisement may be shown before streaming the requested video.
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Pre-stream time window

timeRunning pre-stream measurement

Background

actions
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Video 

streaming

(2) Browser loads and 

renders the page.

(3) Browser runs the 

probe-kit script.
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start(s).

(6) Probe kit returns the 

first batch of results.

(9) The BIBR is determined 

by a decision tree.

(1) User visits the front 

page.

(4) User browses the 

web page.

(7) User selects a video.

(8) User starts the video 

stream.

Pre-roll

Ad

Figure 4.3: Typical user actions and background actions before starting a streaming

video. The dark-bordered boxes are the actions for typical video streaming, whereas

the light-bordered boxes are added for IRate-enabled video streaming.

We refer the period between action (4) and the onset of the video streaming to as a

pre-stream time window. In this period, the user may engage in different types of ac-

tivities. One of them is considering which page to visit next, which can be modeled as

user think time. A measurement study [87] shows that the user think time for YouTube

is about 30s, which is longer than traditional web transactions. Another typical event

occurring in the pre-stream time window is showing short video advertisements (Ads),

also known as pre-roll Ads, (typically 15-30s) [109, 138]. The Ads in some sites are

not skippable. Even though YouTube’s TrueView advertising package [9] and Daily-

motion provide a “skip” option for users to jump over the Ad, users have to wait for

at least 4s. As a result, the pre-stream time window will provide a window of about

34(=30+4)s for conducting the pre-stream measurement.

4.2.3 Measuring network path-quality metrics

Using a more conservative estimate, the window for pre-stream measurement is about

10s. Within such a small time window, it is very challenging to collect accurate enough



82

measurement data for determining the BIBR. A general approach is to estimate the

network throughput and then select the video bitrate that is closest to the throughput.

There are a number of methods/tools for measuring the (available) throughput. Be-

sides flooding based method, packet pairs or packet trains can be used to measure the

available bandwidth. Pathload [115], pathChirp [203], and PTR [103] employ probe

rate model, which measures the network by self-induced congestion. Spruce [222] and

IGI [103] are based on the probe gap model, which relies on the timing information

carried in the time gap between a pair of probe packets after traversing the network.

However, these tools are not designed for web clients, because they often need raw

socket to send packets in a particular pattern.

To enable web clients to perform network measurement, a number of browser-

based measurement tools have been developed in recent years. They are based on

Adobe Flash [181], Java applet [133], and JavaScript [122]. Browsers allow these

tools to elicit HTTP requests or initiate connections to servers. However, browsers

are run on the application layer, which has limited access to the information from the

network layer. It is hard to capture timestamps of specific probe packets and to send

probe packets in a particular pattern. Besides, these tools may suffer a higher delay

as they are running on the application layer [143]. Hence, they, such as speedtest

[181], often measure the throughput by flooding, which incurs high overhead in order

to obtain reasonably accurate results.

We investigate the accuracy of flooding based method by downloading five ob-

jects of different size (cf. Section 4.4.1 for details). We compare the average TCP

throughput obtained between the largest object (4.3MBytes) and those obtained from

the smaller objects by computing the percentage differences, ∆βs, by Equation (4.1).

∆βs =
βs − β4.3MB

β4.3MB
× 100%, (4.1)
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where βs is the throughput measured using one of the smaller objects, and β4.3MB is

the throughput measured by the 4.3-MB object.

Figure 4.4 shows a box-and-whisker plot of ∆β of the four small objects. The

lower and upper edge of box gives the 25th and the 75th percentile, respectively, and

the central line inside is the median. The lower and upper whiskers respectively are

the minimum and maximum, after excluding the outliers. Outliers are defined as the

data points exceeding 1.5 of the upper quartile, and those below the minimum are less

than 1.5 of the lower quartile, which are marked as dots outsides the whiskers. From

the figure, we can see that using small objects (18KBytes and 240KBytes) show a

large disagreement and variance to β4.3MB. Some cases overestimate the throughput

by 200%. The difference reduces as the file size increased to 1.9MBytes. The inter-

quartile range of ∆β1.9MB is about 14.8%. Hence, high overhead of this kind of speed

measurement is unavoidable.

0

200
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Figure 4.4: The percentage difference of average throughput against different web

object sizes.

Another important consideration for measuring the network path quality is which

side (user or video server) to conduct the measurement. Recall that the pre-stream

measurement is to be performed before selecting the video to download. However, the

measurement may have to terminate once users make the selection. Client-side tools

may not be able to feedback the results timely to the server when the measurement is
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still in progress.

This constraint therefore motivates us to employ a server-side active measurement

paradigm for IRate. In this paradigm, the server side masters the measurement process,

while the browser running at the client side is required only to send some dummy data

to the server. This paradigm has several advantages.

1. It can provide more accurate network-layer measurement by optimizing the im-

plementation and unifying the measuring agent. For example, a hardware-assisted

measurement middlebox could be implemented based on Endace DAG card [76]

or NetFPGA for high performance and accuracy.

2. The implementation can incorporate into other server-side in-line network ap-

pliances (e.g., firewall, IPS), shaper [17], or measurement middleboxes (e.g.,

QDASH [170]). These middleboxes are very common in today’s enterprise net-

work [213].

3. The browser does not need to install extra plug-ins or tools to cooperate with

the measurement. In IRate, a probe-kit script is written in commonly used Web

technology (e.g., a Flash object or HTML5 script), and is imbedded in a web

page to induce data for measurement.

4. The server-side measurement facilitates the BIBR estimation, because all the

data are collected on the server side and are readily available for BIBR estima-

tion.

Our design does not restrict the probing method. But, in particular, we use a

server-side version of TRIO [42] for network measurement. TRIO is a light-weight,

non-cooperative packet-pair based measurement method. Figure 4.5 shows a box-and-

whisker plot of the amount of data used in 10-second IRate measurement across dif-

ferent network conditions against the RTTs. The dotted blue and orange lines, respec-

tively, show the minimum number of data used in downloading a 494-KB object and
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a 1.9-MB object in Speedtest Mini package [182] as reference points. The median

number of data used in IRate is less than that of downloading the 494-KB object. Al-

though IRate consumes more data in some low-RTT cases, all of them are much less

intrusive than downloading the 1.9-MB object. Hence, IRate is more light-weight than

the flooding based measurement tools.
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Figure 4.5: The number of Bytes transferred in 10-second IRate measurement against

RTTs.

4.2.4 Methods for estimating the BIBR

We use the set of path-quality metrics collected in the pre-stream measurement to

estimate of the BIBR. The metrics includes the delay, delay jitter, loss rate, reordering

rate, and capacity for two paths: video server→user and user→video server. A major

concern of estimating the BIBR is the computational speed, because the web server

has to wait for the estimated BIBR for generating the parameters on the video page to

control the initial bitrate. Otherwise, the IRate could become a bottleneck of the video

delivery system. Instead, we can tolerate larger errors as the difference of bitrates

among quality levels are often large.

We therefore consider a much faster and lightweight approach that assumes a pre-

computed throughput model. Two examples are equation-based [184, 29] and decision

tree. The equation-based method mathematically models the steady-state throughput
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of a TCP flow using round-trip delay, packet loss rate, and bottleneck capacity. The

decision tree, on the other hand, is based on a set of training data to construct a decision

tree for determining the BIBR directly.

It is not our goal to compare the two methods’ accuracy in this work. Instead,

we focus on their computational efficiency and scalability, because of the small time

window for measurement and large number of clients. Figure 4.6 shows a comparison

of execution time between Padhye’s model [184] for TCP Reno and the decision tree

(cf. Section 4.3.2 for details). We implemented both methods with perl and randomly

generated 100K to 10M sets of network path metrics as the input to predict the quality

levels. For the equation-based approach, we use our bitrate quantization in Equation

4.2 (in Section 4.3.2) to convert the estimated throughput to a video quality level. We

ran both methods on a Dell R210 Rack Mount server and used time command in Linux

to record the execution times.

The results show that the decision tree (marked with crosses) is much faster than

the equation-based method (marked with circles) by nearly three times. The execu-

tion time could be made shorter if we skip the bitrate quantization step (marked with

squares). However, the equation-based method is still two times slower than the de-

cision tree. The reason, we believe, is that the CPU requires more clock cycles for

computing floating points than determining cases in decision tree. Hence, we adopt the

decision tree approach in IRate as it can scale to a large number of users. We also note

that we have considered other machine learning approaches, such as [35, 164, 127],

but they are not suitable for IRate for various reasons. For example, Mirza’s work

[164] uses SVR to estimate TCP throughput, but the input metrics must be obtained

from a cooperative measurement which is hard to deploy in browsers. Nunes et al.

[35] combine a number of machine learning algorithms for predicting RTTs, but they

cannot predict packet loss, which is a key metric for estimating TCP throughput.
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Figure 4.6: An execution-time comparison of the equation-based and decision tree

methods for estimating the BIBR.

With IRate-enabled video streaming, four more light-bordered boxes ((3), (5), (6),

and (9)) are added to Figure 4.3 for background actions. Besides, a probe-kit script is

imbedded to the front page which is accessed by users in (1).

(3) The browser runs the probe-kit script.

(5) The probe-kit script starts establishing TCP measurement flow(s) with the video

server.

(6) Pre-stream measurement begins when receiving the first batch of measurement

results.

(9) Based on the network measurement data, a decision tree method is used to de-

termine the BIBR for the video streaming.

4.3 An IRate implementation

We have implemented a prototype called IRate to estimate the BIBR based on the

methods discussed in the last section. The square box in the middle of Figure 4.7

depicts IRate which is located before the streaming video website and video servers.

To simplify the ensuing discussion, both the website which is first contacted by a user

and the video server are assumed located in the same domain.
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IRate consists of two building blocks: a probe kit and a quality oracle. The probe

kit (cf. Section 4.3.1) is responsible for measuring the network performance during

the pre-stream time window. It is transparent to both browser and video server, as

it intercepts the measurement packets destined to the video server. The quality oracle

(cf. Section 4.3.2) maintains a decision tree for determining the BIBR with the network

performance data as inputs. Note that the numbers inside parentheses correspond to

those in Figure 4.3.

(4)

(2, 3)

(5)

(6)

(9)
(7)

(8)

(1)

Estimated BIBR Probe-kit 

script

Figure 4.7: The main steps in IRate-enabled video streaming.

The design of IRate has considered the deployment in the large-scale video delivery

infrastructure. Figure 4.8 shows the way of deploying IRate when the front-end and

video servers are under different domains. We assume the front-end web server is

videoweb.com for hosting the web pages of the video site. There are two video caches

at different locations and domains to the web server, namely v1.cache.com and v2.

cache.com.

The key is that the probe kit script and the IRate middlebox can be separately lo-

cated at the front-end server and the video caches, respectively. When a client reaches

the front-end server, the server can assign one or more IRate-enabled video cache(s) as

the measurement target in the probe kit script. By utilizing the cross domain policy in

Adobe Flash and WebSocket, the client can measure the two video caches at different

domains to the web server. Then, the front-end server can query the respective IRate
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middlebox for the BIBR of the client at the end of pre-stream timing window.

Front-end Server

IRate

Client

Video Caches

Probe Kit

script

Internet

Measurement 

Target(s):

v1.cache.com

v2.cache.com

v1.cache.com

Measurement

Traffic

Web Traffic

videoweb.com

BIBR

(v1)

IRateVideo Caches

v2.cache.com

BIBR

(v2)

Figure 4.8: Deploying IRate in a large-scale video site.

4.3.1 Probe kit

The probe kit offers a probe-kit script and a network measurement middlebox. The

measurement middlebox is located on the incoming path to a video server, and the

probe-kit script is run at the user’s browser. Together, they allow the middlebox to

measure the quality of the network path between the middlebox and the user without

the user’s and video server’s intervention. As pointed out in the last section, this server-

side measurement paradigm alleviates the user from installing any measurement tool

(e.g., Wireshark) and browser plugin (e.g., Fathom [67]).

Probe-kit script

The probe-kit script, hosted at the web server, requires high compatibility with various

kinds of clients. Therefore, in our implementation, we prepare two versions of the

probe-kit script using Adobe Flash and HTML5 WebSocket. Adobe Flash is still a

de facto standard in Windows clients, while WebSocket is supported by latest version
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of Apple Safari browser and mobile clients. To facilitate our testbed experiments, we

have also implemented a text-based version of probe-kit script which can be run on

Linux clients.

When the script is executed at the browser, it calls Socket in Flash ActionScript

or the WebSocket to establish at least one TCP connection to the video server as mea-

surement flows. It then prepares and sends a long dummy string to the measurement

flow’s socket buffer. As the data has been sent to the network stack, the delay overhead

at the application layer can be mitigated. The script can also receive command from

the middlebox to close the measurement flows.

Measurement middlebox

We implemented a prototype in a Linux box. The middlebox acts as a measuring node,

while the user’s machine as a remote node. Figure 4.9 shows the details of a measure-

ment flow. The probe-kit script establishes at least one TCP connection with the web

server through the browser. The middlebox also records the TCP states kept by both

sides by examining the packets exchanged. Moreover, when the middlebox detects the

IRate URI in the HTTP POST message used for measurement flow, it hijacks the flow

by terminating the connection to the web server. We use the NFQUEUE library to inter-

cept packets passing through the middlebox and raw socket to send out measurement

probes.

After successfully hijacking the measurement flow, the middlebox continues to

send probe packets (according to the TRIO probes [42]) to elicit more data from the

user’s browser for network measurement. The content of the probe packets is a legit-

imate HTTP response message, emulating a complete HTTP transaction in the mea-

surement flow. This can effectively prevent raising the alarm of firewalls. When the

response data prepared by the script are used up, the middlebox terminates the connec-
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tion. According to [157], the middlebox can measure the round-trip time, and detect

packet loss and reordering events on both unidirectional paths based on the response

packets. In addition, TRIO cleverly exploits two types of probes to obtain three min-

imum RTTs to compute both forward and reverse capacities, and another minimum

RTT for measurement validation.

User’s browser

(Remote node)

IRate’s measurement 

middlebox

(measuring node)

Video server

T
C

P
S

Y
N

T
C

P
S

Y
N

/A
C

K

T
C

P
 A

C
K

H
T

T
P

P
O

S
T

IR
a
te

U
R

I
F

IN
d
a
ta

d
a
ta

d
a
ta...

T
C

P
F

IN

Connection 

Setup

Measurement 

Phase

Connection 

Close

T
C

P
F

IN
/A

C
K

Figure 4.9: Probe kit’s measurement flow between a user’s browser and the measure-

ment middlebox.

4.3.2 Quality oracle

The quality oracle returns an estimated BIBR or initial quality level when given the

path measurement data from the probe kit. Due to the storage space consideration,

only four to five quality levels are usually available for each video [63]. The quality

oracle determines the BIBR or quality level based on a decision tree constructed from

a set of training data. As the computation details of decision tree is out of the scope of

this work, we mainly describe the method on how to prepare the inputs and build the

decision tree. The single decision tree may not be able to capture the characteristic of

different clients. The server-side may be manually built multiple trees with their own

historical data to better capture the characteristics of different sets of clients, such as

in certain ISPs, ASes, connection methods, or geographical locations [176, 89].

The training data for the decision tree generation is composed of a set of metrics
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characterizing the performance of a network path and the actual BIBR. Table 4.3 sum-

marizes the six network performance metrics considered here. The forward/reverse

direction is referenced from the middlebox, because it acts as a measuring node. We

do not include the packet reordering rates and reverse capacity, because our experience

shows that they are not important for determining the BIBR. On the other hand, the

actual BIBR is usually based on the actual throughput measurement. When the quality

level is used (instead of the bitrate), the throughput measurement is converted to the

number of levels using Equation 4.2. In our implementation, we employ C4.5 [193] to

generate the decision tree D. The quality oracle then uses D to obtain a BIBR estimate

L̂ for a set of network performance data given by the probe kit.

Table 4.3: Input attributes and class variable for decision tree building.

Notation Description

d̄ Mean round-trip time, RTT (ms)

d̃ Median round-trip time, RTT (ms)

jd Delay jitter (ms)

ιf Forward Packet Loss Rate (%)

ιr Reverse Packet Loss Rate (%)

cf Forward Capacity (Kbps)

L* BIBR

Note: *: Class variable

Equation (4.2) converts throughput measurement, β, to the BIBR in quality lev-

els, denoted by L. A speed factor, fspeed, is multiplied with the average video bitrate

of different levels to reduce the influence caused by the bitrate fluctuation for video

clips encoded with VBR (Variable Bitrate). fspeed is set to 1.25, which is adopted by

bandwidth throttling strategy in YouTube [22].

L =





lmin, if β ≤ (b(lmin)× fspeed),

lmax, if β ≥ (b(lmax)× fspeed),

li, otherwise,

(4.2)
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where b(·) is a function to map the quality level to its video bitrate. i is an integer such

that b(li−1) ≤ β/fspeed ≤ b(li). lmin and lmax represent the minimum and maximum

quality levels, respectively.

4.4 Evaluation

In this section, we mainly present testbed results to demonstrate how we train the

decision tree in the quality oracle for profiling clients as an application of the network

performance data we collected. Besides, we evaluate the accuracy of the estimated

BIBR by comparing the actual streaming speed.

4.4.1 Testbed experiments

Testbed setup

We setup a testbed to generate data for decision tree building and evaluate IRate. Figure

4.10 shows the testbed topology. The web server and the IRate middlebox are directly

connected. The middlebox is connected to a result database through another internal

network, so that the database traffic will not interfere with the network measurement.

S1, S2, and S3 are Gigabit Ethernet switches. R1, a Linux router installed with

Ubuntu 12.04 LTS, emulates different sets of network path quality with tc. The link

capacity of R1 is set to 1 Gbps for emulating large capacity links in the Internet core,

but it often times incurs a higher delay and packet loss. R2 is a MikroTik 750G Router-

Board, emulating a home network by limiting the bottleneck link capacity. We choose

three asymmetric capacity profiles which are commonly found in ADSL or VDSL

users. Moreover, R2 is configured to use a 50-packet FIFO queue. The network path is

loaded with 20% of cross traffic generated by three Linux hosts (X1, X2, and X3) using

D-ITG [62]. The cross-traffic packets are UDP packets, being generated according to
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Pareto inter-arrivals with a shape parameter α = 1.9 [71].

The client is installed with Ubuntu 10.10 with a Firefox browser and Flash player

11, while the web server is installed Ubuntu 12.04 LTS, Apache 2.2.22, and Adobe

F4F Apache Module 4.5.1 for supporting Adobe HDS. The IRate middlebox is also a

Linux server installed with the software bridge (bridge-utils and brctl) for bridg-

ing two network interfaces. In this section, the direction of forward and reverse path

are referred to the uplink and downlink of the server, respectively.
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Figure 4.10: The testbed topology.

Preparing training data and the decision tree

To generate useful training data, we use a wide range of network path parameters

to emulate different network connections (e.g., local access vs. access from another

country). Table 4.4 summarizes the network parameters. We consider all the possible

combinations of the parameters. That is, we have a total of 384 (8×4×4×3) connection

settings. For each setting, we repeatedly perform both IRate pre-stream measurement

and TCP bulk download for three times. We then use these data to build a decision tree

using C4.5.

For the IRate pre-stream measurement, we first let the testbed run for two seconds

to allow the cross traffic to reach a steady state. We then ran the text-based probe-kit

script to launch the pre-stream measurement for 60s. Three measurement flows are

established between the client and the IRate middlebox. To mitigate possible effects

from periodic events on the network path and the client, the second and the third mea-
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Table 4.4: Network path parameters used for generating the training data.

Emulated Path Metrics Devices Values

Round-trip Time R1 4, 10, 20, 40, 70, 100, 150, 200 (ms)

Forward Packet Loss R1 0, 2, 4, 6 (%)

Reverse Packet Loss R1 0, 2, 4, 6 (%)

Bottleneck Capacity
R2 {6,0.64},{8,0.8},{30,10} (Mbps)

{Forward,Reverse}

surement flows are initiated at a random time between [0.5, 1]s after the start of first

and the second measurement flow, respectively. Furthermore, we employ asymmet-

ric IP packet sizes of 1500Bytes and 120Bytes for measuring the forward and reverse

path, respectively. This packet size combination can mitigate the network congestion

caused by the reverse-path bottleneck, which has slight impact on the video streaming

performance.

For the bulk download, we measured the TCP throughput by initiating an HTTP

bulk download of a 4.3MB file using wget, and tcpdump was run at the background

to capture the traffic on the client side. The size of the file was approximately equal

to a one-minute 500-Kbps video clip. Hence, the throughput of downloading that file

is similar to that in streaming a short video clip. To speed up the experiments, the

download tests lasted for at most 60s, which is long enough to leave the slow-start

phase and capture the average TCP throughput.

We analyze the packet traces using tshark to extract the packet timestamps and

compute the average throughput β. We then convert β to the BIBR using Equation

(4.2). We adopt the five video quality levels, denoted by li , i = 0, 1, 2, 3, 4, used in our

subjective assessment described in Section 3.5.2. Their bitrates are 300, 500, 1000,

1700, and 2500Kbps, respectively. Two additional levels i = −1, 5 are introduced

to label the cases having a throughput much lower than the lowest and higher than

the highest bitrates. Therefore, the number of samples in each level is more evenly

distributed, which can alleviate the data overfitting problem.
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We use C4.5 classifier in Weka [91] to generate a decision tree with the inputs of the

network path parameters and β. We set the confidence factor to 0.25 for tree pruning.

To prevent outliers increasing the height of the tree, we also require the number of

records at each leaf to be at least 10% of the total number of test records. The resultant

decision determines the BIBR mainly by the median RTT and forward packet loss rate.

Besides, measuring the asymmetric packet loss rate is very important for estimating

the BIBR. As the forward loss rate has to be inspected in all the cases in the decision

tree, while only four cases need the reverse loss rate. This is because the forward path

is used for streaming the video data, but the reverse path is for TCP ACKs, which have

only a slight impact on the throughput. If only round-trip loss rate is used, the BIBR

will be under-estimated when the actual packet loss rates are asymmetric.

Accuracy of estimating the BIBR

We next use the 60-second training data to evaluate IRate’s accuracy of estimating

the BIBR. We slice the 60-second measurement data to shorter measurement durations

from the beginning of the measurement to the required duration for emulating a shorter

time window for pre-stream measurement. If the predicted quality level is one of the

two additional levels i = {−1, 5}, it is mapped to the quality levels {0, 4}, respectively.

Figure 4.11 shows the accuracy of IRate’s prediction across the entire pre-stream time

window, from 1s to 30s. We only show the accuracy up to 30s, because we find that the

accuracy is converged after 30s. We compute ∆L = L̂−L, where L is the actual BIBR

computed from the throughput measurement. The green (bottom), white (middle), and

red (top) portions of the bars show the percentage of samples that IRate has under-

, correctly-, and over-estimated the BIBR (i.e., ∆L < 0, ∆L = 0, and ∆L > 0),

respectively.

The white portions indicating the correct estimation increase from 45.9% to 86.8%
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as the pre-stream time window grows from 1s to 30s, because a larger time window can

allow the probe kit to obtain more results and mitigate the effect of short-term fluctua-

tions. Although about 4.8% of the samples under-estimates the BIBR by one level, the

video playback under these cases can still play smoothly without any rebuffering. By

also considering these cases as acceptable, the accuracy is above 80% for a pre-stream

time window of 10s.
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Figure 4.11: The accuracy of IRate’s estimation of the BIBRs using different pre-

stream time windows.

Video streaming performance with IRate

This set of experiments is to illustrate the benefit of IRate by comparing the streaming

performance against the usage of BIBR to HTTP streaming under an unknown network

environment. We have integrated IRate into a small video streaming system and run it

on the same testbed. The client in the testbed streams video clips from the server with

a customized Flash video player, which is modified from the Strobe Media Playback

for supporting the similar functions as FlashTrack [165] for both HTTP streaming

and DASH. The player can report application layer information, such as rebuffering

events, the number of bytes downloaded. Particularly for DASH, the BIBR chosen by

IRate is only effective to the first video segment. After that, the same quality adaption

algorithm will take over the bitrate adaption process.
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To emulate a more realistic environment to evaluate the performance of IRate,

we generated a set of 200 samples by randomly choosing an RTT from the range of

[4,150]ms, forward and reverse packet loss rates from [0,6]%, and one of the band-

width profile in Table 4.4. For each set of metrics, the client ran the probe-kit script

for 10s to determine the BIBR. Besides, the test video clip is a 60-second sports video,

which is one of the test video clips used in the subjective assessment.

A Firefox browser was run on the client to load the video page and play the video

using HTTP streaming with IRate, HTTP streaming with predefined initial bitrate.

We assume that the predefined initial bitrate scheme uses quality level l2. To speed

up the experiment, we only allow the video to be played for 90s. Moreover, HTTP

streaming with predefined initial bitrate and DASH without IRate will not be tested if

the predicted BIBR is l2 or l0, respectively, because the predicted BIBR is the same as

the default value.

The accuracy for IRate’s estimation of the BIBR under randomly selected network

metrics is about 75%. Furthermore, we quantify the improvement in the video stream-

ing performance using IRate. We analyze the log captured by FlashTrack using the

application performance metrics proposed in [165]: Initial buffering time (Tinit), re-

buffering frequency (frebuf ), and mean rebuffering duration (Trebuf ). Figures 4.12(a),

4.12(b), and 4.12(c) plot the CDFs of Tinit, frebuf , and Trebuf for HTTP streaming and

DASH, with and without IRate, respectively.

In our analysis, we exclude the cases that the estimated BIBR is equal to the pre-

defined bitrate of the streaming method (i.e., l2 for HTTP streaming and l0 for DASH),

because both methods are expected to have the same performance. There are {19%,

12.5%} of cases that have the estimated BIBR of {l0, l2}. Figure 4.12(a) shows that

IRate reduces the initial buffering time in HTTP streaming. About 80% of HTTP

streaming with IRate can start playing the video within 2s, which is 6.3% higher than
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that of without IRate. The native DASH has a shorter Tinit, because it always starts

with the lowest quality. Although DASH needs more time for initial buffering when

the predicted BIBR is used, the absolute time is still very short. Tinit is less than 4s for

90% of the cases, but it also shows a long tail for over-estimated cases.

Rebuffering frequency quantifies how often rebuffering events occur during the

video playback. The smaller the value means the playback is smoother, giving a bet-

ter QoE [165, 70]. frebuf = 0 means no rebuffering throughout the playback. Figure

4.12(b) shows that 88% of the HTTP streaming (with IRate) cases encounter no re-

buffering events, which is 25.7% more than HTTP streaming (with predefined quality).

On the other hand, DASH greatly reduces rebuffering events by adapting the video bi-

trate, and the performance for DASH with IRate and the native DASH is comparable.

We average the rebuffering duration of all the rebuffering events of each video

playback. Figure 4.12(c) plots the distributions of Trebuf for those cases with frebuf >

0 in Figure 4.12(b). Using IRate, the median of Trebuf is similar in HTTP streaming.

However, some cases in HTTP streaming show higher mean rebuffering duration than

the default, which can be due to over-estimated BIBR. Similarly, the performance of

DASH for both default and IRate is generally comparable. However, we hesitate to

draw any general conclusion as the rebuffering events are rare in our dataset.

DASH Stability and Efficiency

DASH stability refers to how frequent the bitrate changes during the video playback.

Previous studies showed that unstable bitrate can hurt the QoE [179]. We define a sta-

bility metric, denoted by τ , in Equation (4.3) to quantify the improvement of DASH’s

bitrate stability by IRate. This metric is similar to the stability metric in [118]. How-

ever, we consider only the first seven video chunks (∼28s) of the video playback which
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Figure 4.12: The CDFs of application performance metrics.

are more relevant to the choice of initial bitrate.

τ =

∑d≤7
d=2 |b(ld−1)− b(ld)|∑d≤7

d=1 b(ld)
, (4.3)

where ld is the bitrate level used for streaming dth video chunk.

Figure 4.13(a) shows the CDF of DASH stability for the predefined (lowest) quality
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strategy and IRate. Nearly half of the cases in IRate has no bitrate switching (i.e.,

τ = 0) in the first seven video chunks. Since we do not show the cases with BIBR

equals to l0, all the cases in the native DASH switch the bitrate at the beginning (i.e.,

τ > 0). This shows that selecting the BIBR helps improve the stability by reducing

quality up-switching at the beginning of video.

DASH efficiency, denoted as ǫ, quantifies the effectiveness of DASH on utilizing

the network resources for video streaming. In the ideal case, the BIBR is equal to the

network throughput. In other words, the time to download a video chunk is equal to

the length of video it contains. In [118], they proposed to use the video bitrate and

the average throughput to compute the efficiency. However, these two metrics cannot

accommodate the video encoded with the variable bitrate (VBR). Hence, we propose

to use the video chunk download time and the length of video (in seconds) contained

in a video chunk, denoted by g, to compute the efficiency:

ǫ =

∑i≤γ
i=1

ωi−g
g

γ
, (4.4)

where γ is the total number of downloaded video chunks, and ωi is the time spent on

downloading ith video chunk.

If DASH is completely efficient, the download time of a video chunk will be equal

to the number of seconds of video contained in the chunk, (i.e., ǫ = 0). When DASH

cannot completely utilize the network bandwidth, less time is used to download the

same video chunk, resulting in ǫ < 0. Figure 4.13(b) shows the CDF of the efficiency

metric. For ǫ ≤ 0, DASH with IRate obtains a closer-to-zero value, meaning a higher

efficiency. The DASH with IRate has a median value 36% larger than the predefined

quality case. This is because DASH with IRate can avoid ramping up from the lowest

bitrate, therefore better utilizing the network bandwidth.
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Figure 4.13: The CDFs of DASH efficiency and stability metrics.

4.5 User QoE experiments

To further compare the performance in terms of QoE, we conducted subjective assess-

ments similar to the one described in §3.5.2. The main difference is that the video

quality levels in this set of experiments are adapted according to the real Internet per-

formance, instead of an emulated transition scheme. The goal of this assessment is

to compare the difference in QoE between the default (lowest) initial quality and the

BIBR estimated by IRate.

In this assessment, we create the pre-stream time window by requiring the subjects

to fill a short survey, because we do not have considerable amount of content for sub-

jects to choose from to generate the user think time. The pre-stream measurement was
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conducted at the background to measure the network path quality between the clients

and the IRate-enabled video server connected to our campus network until the com-

pletion of the survey. After the survey, each subject was required to watch two video

clips randomly chosen from the four video clips used in §3.5.2. The approach to be

used (default or IRate) to select the initial bitrate in the video clip was randomized and

did not inform to the subjects. After that, the video player adapts the video quality

according to the network throughput.

We have successfully collected the results from 22 volunteers. Instead of inviting

them to the laboratory, we delivered the assessment site through email. Therefore,

the subjects can stream the video clips using the real Internet networks. Table 4.5

shows the network types of the subjects according to the IP records. Most of the

subjects accessed the experiment using local residential broadband network. One of

the participants is from the US. The predicted BIBRs from IRate showed that one of

local subject’s network quality cannot support the highest quality level. The player

logs recorded only one rebuffering event in one of the playback started with the default

approach. We cannot observe any rebuffering event for all video playbacks used IRate.

Therefore, the accuracy of IRate is 100%.

Table 4.5: Distribution of network types.

No. of volunteers Network type Location

10 Residential broadband (HKBN)

Hong Kong

6 Residential broadband (PCCW)

2 University dormitory WiFi

2 University campus network

1 Residential broadband (Hutchison)

1 Overseas academic network US

Similar to the study presented in §3.5.2, we compare the MOS, Einit, and Eoverall

between the video clips started with the estimated BIBR and the predefined quality

level. We find that the MOS is increased from 3.82 to 4.09 (6.67%) when the estimated
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BIBR from IRate is applied. Furthermore, IRate’s average rating on the initial video

quality Einit and the overall picture quality Eoverall are higher by 24.4% and 11.8%,

respectively. The differences in rating for Einit and Eoverall are significant (p <0.05)

in two-sample t-test.

4.6 Discussion

In this section, we discuss the limitations and issues of IRate.

4.6.1 Accessing videos from third-party video sites

In some circumstances, video pages are accessed directly without first visiting the

video website. Users could be redirected from 1) embedded video objects in third

party websites, 2) sharing forums in social networks, or 3) recommendations in search

engines. IRate can still be used for the first case. The embedded video objects provided

by the video sites for sharing are implemented as an iframe, which then loads a small

page from the video website. In this case, the probe-kit script can be inserted to the

page and executed by users. For the second and third cases, pre-stream measurement

cannot be carried out as the social networks or the search engines only provide a link

to the video website. Therefore, the probe-kit script cannot be inserted. Without any

reliable measurement results, IRate can simply fallback to the default bitrate scheme.

A better solution requires the co-operation between these websites and the video ser-

vice provider in that the probe-kit script can also be inserted into the web pages of

these websites and executed when the web pages are rendered. Another solution is to

perform the measurement during the pre-roll advertisement, but more cross traffic can

be incurred by the download of the Ad stream.
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4.6.2 Scalability and security issues of IRate

The server-side design may suffer from scalability issue for large-scale video websites.

Our current IRate prototype measures every client accessing the video website. How-

ever, measuring all clients may not be necessary. As the network condition may be

stable within a short time [188, 248] and the average throughput can be better known

after the first video is watched, the web server could also utilize these historical data

to improve the accuracy of the BIBR. Moreover, IRate can reduce the measurement

traffic by closing the measurement flows of some clients for which sufficient data have

been collected for estimating their BIBRs. The IRate middlebox can send messages to

the probe-kit script, so that the script will not establish any new measurement flow.

We believe that the IRate middlebox is not vulnerable to Distributed Denial-of-

Service (DDoS) attacks, because the IRate middlebox is IP-less, therefore transparent

to clients. Moreover, the middlebox only handles the TCP connections successfully

established by web server. Malicious clients can trigger the middlebox to recognize

the flow as a measurement flow by injecting the specially crafted HTTP requests in the

network flow. However, the middlebox can close the existing connections and refuse

any new measurement connections from the clients whenever the middlebox collects

enough data or maintains sufficient measurement flows to the same client.

4.6.3 Short vs. long video clips

IRate is obviously most beneficial for short video clips, which are still very popular in

today’s Internet. On the other hand, for long videos or movies, the benefit to the overall

QoE rating will be decreased as users may forget the experience at the beginning [191].

In a recent study, Staelens et al. [220] evaluated the QoE of long videos on tablets

using SSCQE [110], which continuously measures the QoE. Their results showed that

large-range bitrate switchings at the beginning of the video, which can be mitigated
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by IRate, have significant impact to the QoE instantaneously. Further investigation on

quantifying the effect of the video length will be our future work.

4.7 Summary

In this chapter, we presented a server-side pre-stream measurement system, IRate,

which is compatible with existing video delivery infrastructure. IRate exploits the

pre-stream time window to perform active measurement to the actual video cache. The

performance data collected from IRate could help profile the client by estimating the

best initial bitrate (BIBR) for HTTP streaming. Our testbed results showed that IRate

can acquire enough path quality data for estimating the BIBR with 80% accuracy in

10s, and it can help improve the QoE of HTTP streaming. Our user experiment fur-

ther validated that IRate can improve the QoE by more than 6% in the actual Internet

environment.
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Chapter 5

Towards an Accurate Bandwidth

Estimate for DASH Video Streams

In Chapter 4, we showed that IRate can provide a better decision of the initial video

bitrate. After the video playback is started, the quality adaptation algorithm decides the

quality levels to be downloaded. This chapter proposes a QoE-aware DASH system,

named QDASH, which aims at providing a practical solution to improve the QoE for

the current DASH systems by 1) enhancing the mid-stream throughput measurement

and 2) mitigating the impact on the QoE when network degradation occurs. The video

service providers do not need to re-encode existing video clips and do not require to

install extra softwares in the server. QDASH composes of two modules—QDASH-abw

and QDASH-qoe.

QDASH-abw is a novel probing methodology which embeds available bandwidth

measurement into video flows to detect the highest quality level the current network

conditions can support. Similar to IRate, this module is implemented as a mea-

surement middlebox, which is placed in front of the video server. Therefore, it can

manipulate the packet sending patterns and headers in video data flows. Instead of

applying flooding-based throughput measurement, QDASH-abw measures the available
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bandwidth using Pathload [115].

There are two main challenges in measuring the available bandwidth. First, the

original Pathload algorithm uses binary search to seek for the exact sending rate which

results in inflated RTT. This method can be insufficient for DASH. Another challenge

is that normal TCP flows do not have enough RTT samples due to TCP delayed ac-

knowledgement mechanism [33].

We tackle the first challenge by only considering a few discrete sending rates which

match with the bitrate of video quality levels to speed up the convergence of avail-

able bandwidth estimates. The second problem is alleviated by exploiting the packet

sending sequence. In particular, we reorder the packets to trigger TCP pure ACKs to

increase the number of RTT samples.

With the available bandwidth estimates, QDASH-qoe is responsible for helping

clients to select the most suitable video quality level. In particular, we focus on switch-

ing down of video quality which can degrade the QoE the most. In Section 3.5.1, our

subjective study investigated different approaches of switching down the quality levels

under the same network conditions. Our results show that inserting intermediate levels

provides a better QoE than directly switching to the target quality level. With this find-

ing, we propose a QoE-aware adaption algorithm to utilize the video buffer and select

a suitable quality levels.

The overview of QDASH system will be described in Section 5.1. In Section 5.2,

we will illustrate the methodology of QDASH-abw in details. Section 5.3 describes

QDASH-qoe which utilizes the findings in our subjective assessment to mitigate the

QoE degradation caused by changes in quality level.
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5.1 Overview of QDASH

QDASH consists of two building blocks—QDASH-abw and QDASH-qoe. QDASH-abw

measures the network available bandwidth, and QDASH-qoe determines the video qual-

ity levels. These two modules can be integrated into existing DASH systems, while the

modifications to the systems are kept to minimum.

QDASH is designed for streaming H.264/AVC video clips, and aims at immediate

deployment to current systems. The main shortcoming for using H.264/AVC in DASH

is that the storage overhead is large for multiple copies of video for different quality

levels. To reduce the overhead, researchers recently propose employing H.264/SVC,

which encodes video clip into enhancement layers [212], to improve the efficiency.

However, billions of existing video clips have already been encoded into multiple bi-

trates with H.264/AVC codec. They only need to insert meta data in order to enable

DASH, while H.264/SVC solution requires video re-encoding which is computation-

ally expensive. Therefore, the proposed architecture is targeted for DASH systems

using H.264/AVC.

Figure 5.1 shows the overall QDASH’s architecture. A measurement middlebox,

which is equipped with the QDASH-abw, is directly connected to the video server.

Therefore, the middlebox can inspect and intercept the video data flows. It shapes the

packet sending rate according to the bitrates of video quality levels and sends packets

according to the QDASH-abw probing method (cf. Section 5.2). The middlebox is an

IP-less device, which does not require an IP address and is transparent to both clients

and servers.

Employing the measurement middlebox paradigm reduces the overhead of mea-

surement. The middlebox manipulates real video data packets to perform inline mea-

surement. Extra probing packets, such as the RTT test in Akamai’s video streaming

[63], are not required. Furthermore, by coupling the measurement flow with the video
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data flow, we can avoid using additional measurement flows, which may not traverse

the same path as the data flow because of load balancers on the path. Hence, measured

performance can be obtained with higher accuracy and less overhead.

With the QDASH middlebox, the server-side is able to measure their clients without

installing additional softwares or requiring root privilege at either side for lower levels’

information. The measurement tasks are offloaded to the measurement proxy and do

not induce additional loading to the video server. The server-side only needs to modify

the video player at the application level. The client-side also does not need to install

softwares, such as libpcap [7], to cooperate with the measurement [151].

At the client-side, we proposed a QoE-aware quality adaptation algorithm—QDASH-qoe

(cf. Section 5.3). QDASH-qoe incorporates the finding in Section 3.5.1 to adjust the

video quality. It can be implemented in the video player delivered to the clients’

browser. On the other hand, QDASH enables the video player to establish a lightweight

flow to receive updates about the measurement results measured by QDASH-abw. At

the same time, this flow can report application level events or user-viewing activities

to help inferring the QoE as we will discuss in Section 6.

The video delivery procedure for QDASH is described as follow. After the establish-

ment of TCP connection and the download of MPD files, the client first sends an HTTP

request to the video server to initiate the video streaming. The video server transmits

the HTTP responses with the requested video segments. The measurement middlebox

then hijacks the data flows and transmits the data packets according to QDASH-abw

probing methodology. Hence, the RTT can be measured using the TCP acknowledge-

ment packets triggered by the re-ordered data packets. At the same time, the client

starts playing the video once the video buffer is full and connects to the measurement

middlebox for the latest measurement results. QDASH-qoe can choose the most suitable

quality level according to the measurement results.
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Figure 5.1: The overall QDASH architecture.

5.2 Measuring available bandwidth for DASH

Instead of simple throughput measurement, we employ available bandwidth measure-

ment to assist clients to suitably select the video quality levels. Available bandwidth

measurement methods, such as Pathload [115], aim at acquiring accurate estimates by

varying the packet size or the packet sending rate. However, these tools need tens of

second to obtain one estimate, and this time is too long for DASH to adjust the quality.

In fact, video quality levels have a limited number of values. To determine whether

the current available bandwidth is higher than any of the video quality levels, a high-

resolution estimate is not required. Instead, timely updates of estimates are more im-

portant for correctly selecting or withdrawing the quality levels. We therefore propose

a quantization approach to reduce the number of probes and speed up the convergence

of results.

5.2.1 Assumptions

We make the following assumptions for the available bandwidth measurement method-

ology:

1. The average bit rates of video quality levels are known.

2. The available bandwidth between the server and the client is always higher than

or equal to the least video bitrate (the lowest video quality level).

3. The client has sufficient computational power to render all the video quality
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levels.

These assumptions are realistic. The service providers are often responsible for encod-

ing video clips. They can therefore easily obtain the video quality level information

from the encoding profiles. Our probing methodology (cf. Section 5.2.2) does not test

the available bandwidth lower than the least video bitrate. Moreover, DASH cannot

help improve the scenario if the client consistently has low available bandwidth. In

this chapter, we are only interested in the change in quality levels for adapting to the

network conditions, instead of other factors, such as clients’ computational power and

system loading. Therefore, we assume all the clients can smoothly render the highest

quality video clips.

5.2.2 QDASH-abw probing methodology

The basic idea of our measurement method comes from the observation that if the

packet sending rate λ is higher than the available bandwidth A, the mean and the

variance of the packets’ RTTs will be larger than the values obtained when the packet

sending rate is less than the available bandwidth [239]. Although the basic idea is

simple, there are three challenging issues to be tackled:

1. How to generate the probing packets for measurement?

2. How to collect the measurement samples?

3. How to determine the acceptable sending rate?

These issues are closely related to the design of QDASH and we will elaborate on our

solutions below.

To the best of our knowledge, existing tools for available bandwidth measurement

use customized probing packets. Part of the available bandwidth is therefore consumed

by the measurement. In contrast, we propose using inline measurement that employs

the media data packets directly to determine whether a certain sending rate is supported
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by the current available bandwidth. The rational behind such design is three-fold. First,

measurement results from an additional TCP connection may not be accurate because

the new TCP connection may not traverse the same network path as the media data

because of the load balancing. Second, the additional measurement packets can com-

pete the bandwidth with video flows and degrade the streaming performance. Third,

our measurement methodology can throttle the bursty video traffic, which can induce

packet loss in large-scale video systems [85].

A probing round is defined as a sequence of packets sending at the same rate from

the measurement middlebox. For each probing round, the server side (measurement

middlebox) elicits a packet train with K pairs of W -byte probe packets at a sending rate

λ. We denote the TCP data packets sent from the video server by Sa|b and the response

packets from the client by Ca|b. a and b are the data segments’ sequence number and

acknowledgement number, respectively. Instead of showing the exact TCP sequence

and acknowledgement number, we simply use a = 1, 2, 3, ... to label server’s TCP data

segments and b = 1′, 2′, 3′, ... client’s data segments.

Figure 5.2 illustrates an example of two probing rounds with sending rates (Kbps)

λ0 and λ1, and the available bandwidth is between λ0 and λ1. We assume that the

TCP connection between the client and the video server is established, and the server

receives an HTTP GET request from the client for the first video segment. The response

packets do not send to the client directly, and are intercepted by the measurement

middlebox. At the slow start phase of TCP connection, the sending window in the

video server is small. The number of on-the-flight respond packets is not enough

for a probing round. Hence, the measurement middlebox needs to send pure TCP

ACKs to the video server for fetching more video data packets. In each probing round,

the measurement middlebox buffers 2K data packets, S1, ..., S2K. Then, it sends a

TCP ACK with zero receive window to suppress the server from sending out more
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video data packets and overflow the middlebox. After a new probing round starts, the

middlebox re-opens the sending window of the video server by sending a duplicated

TCP ACK with non-zero window size. In our implementation, we set the window size

to two times of the Maximum Segment Size (MSS).
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Figure 5.2: Two probe rounds of sending rates.

Existing tools for available bandwidth measurement usually adopt the binary search

technique for the sake of determining the accurate available bandwidth in a short period

[239]. However, the time required is still too long for seeking a suitable video quality

level. In fact, it is not necessary to probe the network with all possible sending rates

for deciding whether a video quality level can be smoothly played by the client under

the current network condition. Instead, we propose probing the network with a set of

selected sending rates that correspond with the bitrate of quality levels. By doing so,

we can quickly know whether a sending rate is supported by the network through the

obtained RTT samples.
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We adjust the packet sending rate by varying the inter-departure time (IDT) of

packets in each probing round. The IDT γk of packet sending rate λk is computed by

γk = (W × 8)/λk, k = 0, 1, ... (5.1)

The RTT samples can be computed as the duration from sending a TCP data

packet to receiving a corresponding acknowledgement packet (i.e., TCP ACK). How-

ever, the TCP delayed acknowledgement mechanism [33] may bias the results be-

cause it allows the receiving side to acknowledge multiple data packets with a sin-

gle TCP ACK. To solve this problem, the measurement middlebox reorders the data

packets by pairs, so that clients send an ACK packet for every TCP data packet. Af-

ter the reordering, the packet sending sequence for the first probing round is {S2,

S1, S4, S3, ..., S2K,S(2K − 1)} with the sending time {ρ0, ρ1, ..., ρ2k−1}. Assume

there is no packet loss, the response packets for the first probing round are {C1′|0,

C1′|2, C1′|2, C1′|4, ..., C1′|(2K − 2), C1′|2K} and arrive the measurement middle-

box at time {ρ′0, ρ
′
1, ..., ρ

′
2k−1}, respectively. Hence, the RTT estimates are retrieved by

{ρ′0 − ρ0, ρ
′
1 − ρ1, ...}.

5.2.3 Determining the video quality levels

Before conducting the measurement, we can first measure the network path quality and

predict the BIBR using IRate (cf. Chapter 4). After that, we use the sending rate that

is equal to the BIBR to do a round of measurement and calculate the loss rate (i.e.,

Umax), the average RTT (i.e., Tmax), and the variance of RTT (i.e., Vmax). Since the

available bandwidth should be less than or equal to the capacity, the values {Umax,

Tmax, and Vmax} serve as the upper bound of these metrics. Similarly, we use the

minimal sending rate to perform another round of measurement and compute the loss

rate (i.e., Umin), mean RTT (i.e., Tmin), and variance (i.e., Vmin). Since we assume that
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the available bandwidth is larger than the minimal sending rate, these values {Umin,

Tmin, and Vmin} are the lower bound of the metrics.

When the sending rate is higher than the available bandwidth, the probability of

packet loss increases [129]. An acceptable sending rate leads to a smaller packet loss

rate than Umax. Using a packet sending rate higher than the available bandwidth will

inflate the mean RTT and the RTT variance, both of which severely affect the average

throughput of network path. In contrast, a lower RTT and RTT variance can be ob-

served when a lower packet sending rate is used. The performance will be acceptable

to users. Therefore, we adopt a conservative approach that bounds the mean RTT and

the RTT variance to determine whether a sending rate is acceptable. More precisely,

besides the loss rate should be smaller than Umax, an acceptable sending rate should re-

sult in a mean RTT less than Tmin+a×Vmin and a variance less than b×Vmax+c×Vmin.

In our experiments, we set a = 3 and b = c = 1/2. The highest acceptable packet

sending rate will be the preferred rate.

After each round of measurement, the measurement middlebox informs the latest

preferred rate to the client for quality adaptation. If the client selects a quality level with

bit rate lower than the preferred rate, video rebuffering is unlikely to occur. However,

sometimes, we choose quality level with bit rate higher than the preferred rate for a

short period of time. We will elaborate our quality adaptation algorithm, QDASH-qoe,

in section 5.3.

5.2.4 Evaluating QDASH-abw

Experiment setup

We have implemented a prototype of measurement middlebox using a Linux bridge.

The QDASH-abw module hooks to the bridge with NFQUEUE target in iptables [4].

This design enables the QDASH-abw module to capture, discard, or manipulate all the
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packets flowing between the video server and the clients. We inject a TCP MSS option

with value W in the TCP SYN packet such that the server sends W -byte video data

packets [42]. Once the QDASH-abw module recognized an HTTP GET, it buffers and

resends video data packets according to the probing methodology described in Section

5.2.2.

In the following evaluation, we adopted a dumbbell client-server architecture. A

click modular router [131] was placed between the video server and the client to control

the available bandwidth. The packet size W and the packet train length, K were set

to 576bytes and 25, respectively. The packet sending rates, λ ∈ {λ0, λ1, λ2, λ3, λ4},

were respectively selected as {0.3, 0.7, 1.5, 2.5, 3.5}Mbps which are the bitrate of

video quality levels adopted by Akamai Adaptive Video Streaming [63]. The client

uses wget to send HTTP GET requests to download an MP4 video file from the server.

For better illustrating the variations of RTT in different packet sending rate during the

whole experiments, the sending rates were scheduled in a round-robin manner.

Experiment results

Figure 5.3 shows the CDFs of sampled RTTs under different available bandwidth. In

Figure 5.3(a), the available bandwidth is 1Mbps. When λ0 and λ1 are used to measure

the available bandwidth, the RTTs are similar and do not have large variance compared

to the results from other sending rates. The reason is that λ0 and λ1 are less than the

available bandwidth and the packets do not suffer from a long queuing delay. On the

other hand, when using λ2 to λ4, we can observe much longer RTTs with larger vari-

ance. The reason is that the bottleneck needs much more time to process the packets

and the queueing delay increase. In Figure 5.3(b), the available bandwidth is 2Mbps

and we can observe similar results as Figure 5.3(a). The only difference is that since

λ2 is less than 2Mbps the corresponding RTTs are similar to those resulted from λ0
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and λ1.
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Figure 5.3: CDF of sampled RTTs under available bandwidth of 1Mbps and 2Mbps.

Figure 5.4 illustrates the mean and the variance (expressed in standard deviations,

std) of the sampled RTTs with different packet sending rates λ and available band-

width. The number on the x-axis, {0, ..., 4}, represents the packet sending rate, {λ0, ..., λ4},

respectively. For each available bandwidth, our system conducts the measurement with

different packet sending rates. The x-axis indicates the sending rate (from λ0 to λ4)

and the y-axis is the mean RTTs. We plot the standard deviations (std) of the RTTs

along with their mean values.

In Figure 5.4(a), since the available bandwidth is 0.5Mbps, all except λ0 resulted in

high average RTTs with large std. When the available bandwidth increases to 1Mbps as

shown in Figure 5.4(b), the average RTTs and the corresponding std resulted from λ2

to λ4 are still larger than that of λ0 and λ1 because λ2 to λ4 are larger than the available

bandwidth. However, compared to Figure 5.4(a), the average RTT and the std for λ2

to λ4 decrease. In Figure 5.4(c) and 5.4(d), the available bandwidth becomes 2Mbps

and 3Mbps, respectively. From these two figures, we can still observe that the rate(s)

higher than the available bandwidth led to larger mean RTT and std than the rates less

than the available bandwidth. However, such difference decreases with the increase

of the available bandwidth. In Figure 5.4(e), the available bandwidth is 5Mbps larger
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than all packet sending rates. Therefore, the average RTTs and the std from different

sampling rate are similar.
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Figure 5.4: The mean and the standard deviation of sampled RTTs with different sam-

pling rate and different available bandwidth.

We adopted available bandwidth changing profiles in [19] to simulate changes in

network conditions and examine the behaviors of QDASH-abw. Figure 5.5 shows the

time series of mean RTT of different packet sending rates in four profiles—persistent

variations, short-term variations with positive spikes, short-term variations with neg-
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ative spikes, and persistent variations with stepwise increases. The dash-dotted lines

are the mean RTTs measured with different packet sending rates. The grey dashed

line in the figures plots the emulated network available bandwidth for reference. We

also measure the throughput by continuously fetching a video segment with a size of

949KB by using wget. We capture the packets on the client side and sample the TCP

throughput for every 0.5s using tshark. The solid line in the figures shows the har-

monic mean of the last 20 throughput estimates as the average throughput, which is

used in some quality adaptation algorithms to smooth out throughput fluctuations (cf.

Section 2.4.1).

Figure 5.5(a) plots the results and the emulated available bandwidth for persistent

variations. We emulate this condition by sequentially limit the available bandwidth

to 5Mbps for 20 seconds, 1Mbps for 20 seconds, 5Mbps for 30 seconds, and finally

2Mbps until the experiment ends. For the first 20 seconds, the available bandwidth is

sufficient for all the sending rates. The RTTs are close to the emulated delay (20ms).

During the period of 20 to 40s, the sending rates λ2 to λ4 are higher than the available

bandwidth. The RTTs for these three sending rates inflate at least 3 times than the

RTT in the previous period. Then, the RTTs for all the sending rates fall back to

around 20ms after the available bandwidth restored to 5Mbps. After 70 seconds, the

available bandwidth is 2Mbps, which is higher than λ0 to λ2, but lower than that of λ3

to λ4. Hence, we only observe inflated RTTs for λ3 and λ4. In contrast, the average

throughput converges to the available bandwidth in 10s after the changes of bandwidth.

Figure 5.5(b) shows a case of short-term variations with positive spikes. The avail-

able bandwidth for most of the time in the experiment is 1Mbps, except there is a

2-second spike to 5Mbps and a 5-second spike to 10Mbps at time 30s and 62s, respec-

tively. The RTTs for λ2 to λ4 are significantly higher than that of λ0 and λ1 when the

available bandwidth is 1Mbps. In the 2-second spike, the measured RTTs for λ3 and
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λ4 drops sharply to the same level as λ0 and λ1. λ2 does not show a RTT decrease,

because there is no sample with λ2 during that spike. However, the average throughput

fails to react to the first spike due to the smoothing function. At the second spike to

10Mbps, the RTTs for all sending rates fall to the same level. This means the available

bandwidth is higher than the highest sending rate. The average throughput increases to

around 1.5Mbps near the end of the spike and overestimates the available bandwidth

for more than 10s. The quality adaptation algorithm may not correctly respond to the

spike.

In Figure 5.5(c), we illustrate the case of short-term variations negative spikes.

The available bandwidth at most of the time is 5Mbps. We emulate three spikes with

duration of 2 seconds, 5 seconds, and 10 seconds dropping to 1Mbps at the time 30s,

62s, and 97s, respectively. In the 2-second spike, the rates λ0 and λ2 shows RTT

inflation. However, the increase in RTT for λ0 is due to packet loss during the moment

of switching the available bandwidth setting in the click router. Other sending rates

are not scheduled during this short spike. For the spike longer than 5 seconds, our

measurement can capture significant RTT inflation for the sending rate higher than

available bandwidth. Interestingly, the measured average throughput over-reacts for

this first spike. The value drops to below 2Mbps for more than 5s. For the other two

spikes, we can also see the delayed responses in the average throughput.

The final profile, as shown in Figure 5.5(d), emulates stepwise increases of avail-

able bandwidth. The available bandwidth increases from 500Kbps, 1Mbps, 2Mbps,

3Mbps, to finally 5Mbps for every 20 seconds. For the first 20 seconds, the RTTs for

λ1 to λ4 significantly inflated. Even for λ0, we can also observe a slight RTT infla-

tion. the measured RTTs for {λ1, λ2, λ3, λ4} can observe RTTs close to the RTTs of

λ0 at time {20, 40, 60, 80}s, respectively, as the available bandwidth increases to a

value higher than the packet sending rates. On the other hand, the average throughput
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requires 8 to 10 seconds to converge to a steady value after each bandwidth change.

To sum up, QDASH-abw is a novel probing methodology to determine the highest

quality level the network can support. It speeds up the existing available bandwidth

measurements by sending probes with a few selected packet sending rate. Our evalu-

ation shows that QDASH-abw is accurate and is more sensitive to available bandwidth

variations than the average throughput. With a timely estimation of the network con-

dition, the video player at the client can better select a suitable video quality levels to

download.

5.3 A QoE-aware switching algorithm

5.3.1 Buffer-aware strategies

Similar to other streaming technologies, such as UDP streaming and classic HTTP

streaming, a buffer is deployed to reduce the chance of playback interruptions. How-

ever, it is not feasible to stream videos at a higher bitrate than the end-to-end available

bandwidth. In this case, congestion and packet loss will occur at the bottleneck link.

As a result, spatial artifacts, such as blocking frames, are often seen due to incomplete

video decoding.

DASH transfers video data via TCP/IP. The reliable service provided by TCP en-

sures the integrity of video data. Video with a higher bitrate than the network through-

put can be delivered without loss of picture quality. Even though the download rate

is lower than the playback rate, interruption-free playback can be sustained for a short

period of time by consuming the video data in the buffer. During this short time period,

we can first request the video segments with quality levels between the original and the

final level to append to the video buffer. By inserting intermediate quality levels, the

original and final (lower) quality levels can be bridged.
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Figure 5.6 gives an example of how we can utilize the buffer in quality level transi-

tions. The y-axis at the left is the bitrate of the different quality levels, while the y-axis

at the right is the measured network throughput. The x-axis represents the time. This

example illustrates a video encoded into a set of five quality levels, L ∈ {l0, l1, ..., l4}.

The solid line, dashed line, and the dot-dashed line represent the video levels requested

by the video player, the network throughput, and the quality level shown to the user,

respectively.

At time t0, we assume the video buffer of size B is full. The video player plays

and requests video segments at quality level l4. However, the network throughput de-

creases to a level that is barely higher than the bitrate of quality level l1 at t1. After

the video player detects the change at t2, existing adaptation algorithms [19] switch

the quality level to l1 in order to adapt to the network conditions. As a result, users

would perceive a sudden decline in picture quality. In order to avoid this, we propose

to insert an intermediate level, for example l2, between l4 and l1. With the same sce-

nario, the download rate is higher than the playback rate (i.e. the time to download the

segments,(t3 − t2), is longer than the length of segments (t5 − t4)). If this situation

were maintained for a longer time period, rebuffering would occur. However, while

the video player is downloading segments of l2, it continues playing the buffered video

at the original quality. Therefore, we can use the buffered video playback period, from

t2 to t4, to download the video segments at the intermediate level.

Although intermediate levels can smooth out the picture quality change, rebuffering

events also reduce the QoE [165]. Downloading intermediate quality levels should also

avoid causing the buffer starvation. The maximum number of intermediate quality
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video segments to be downloaded, nfrag, is given by Equation (5.2).

nfrag = ⌊tbuffer
β

sfrag
⌋, (5.2)

tbuffer =
Bcur(

1− β
sfrag

) , (5.3)

sfrag = λi × θ, (5.4)

where λi is the average bitrate of the intermediate quality level, li with a segment

length of θ seconds of video. Bcur is the current video buffer size in second of video,

and β is the degraded network throughput. sfrag computes the average size of each

video segment of quality level, li. tbuffer is the time period for which the video buffer

is able to offset the download of intermediate quality levels. Therefore, nfrag gives the

number of complete segments that can be downloaded within tbuffer.

5.3.2 Designing an QoE-aware switching algorithm

From the results obtained in Section 3.5.1, the QoE can be increased by inserting in-

termediate levels in between quality level down switching. Hence, we formulate and

propose a QoE-aware switching algorithm, which is shown in Algorithm 1, by consid-

ering the intermediate levels and video buffer size.

This algorithm is run before deciding the quality level of the next video segment.

We obtain the supported quality level, lsupport, by using QDASH-abw. If lsupport is lower

than the current quality level, lcur, by two levels, we compute the number of fragments

of intermediate levels to be downloaded, nfrag, by using Equation (5.2)-(5.4). We

choose the intermediate level as one level above the target quality level. So, the time

period of watching at intermediate level can be maximized. It also shows effective in

the QoE assessment in Section 3.5.1.
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Algorithm 1 A QoE-aware quality adaptation algorithm

lsupport: The quality level current network condition can support

lcur: Current quality level

lnxt: Proposed quality level

tbuffer: Number of intermediate quality video segments to be downloaded

B: Buffer size in video second

b(l): Bit rate of quality level l
s(l, θ): Average size of 1 video fragment at quality level l
nfrag: Number of fragments for the proposed quality level

if lsupport < lcur then

if (lcur − lsupport) > 1 then

tbuffer ←
B

1−b(lsupport)/s(lsupport,θ)

nfrag ← ⌊tbuffer × b(lsupport)/s(lsupport, θ)⌋
if nfrag > 0 then

lnxt ← lsupport + 1
else

lnxt ← lsupport
end if

else

lnxt ← lsupport
end if

else

lnxt ← lsupport
end if

5.4 Summary

In this chapter, we proposed a QoE-aware DASH system—QDASH. It consists of two

modules. QDASH-abw is a novel probing methodology which is tailor-made for DASH

system to measure the network throughput. By reducing the choice of packet sending

rate, QDASH-abw is sensitive to changes in available bandwidth and provides accurate

decisions on which the video quality levels can be supported by current network con-

ditions. On the other hand, we utilized our findings in our subjective assessments and

designed QDAHS-qoe, a QoE-aware quality adaptation algorithm, to mitigate the QoE

degradation caused by sudden decrease of network throughput.
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(c) Short-term variations – negative spikes
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Figure 5.5: Evaluations with four network profiles.
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Chapter 6

User-behavior Analytics for QoE

Assessment

Assessing the QoE in real-world environment can be a very challenging problem.

Users can be non-responsive, because they lack incentive unless the service level is

unacceptable. In Chapter 3, we infer the QoE from the network QoS, and application

layer events, which do not need to involve any user feedback. However, QoE is a

complex construct, which includes both subjective and objective factors. Even though

some works, as reviewed in Chapter 2, suggest to use user engagement as a measure

of perceived quality, this metrics can be affected by other confounding factors, such as

the video content and the availability.

To alleviate this problem, we propose to analyze the user behavior to help infer

the QoE. In particular, user viewing activities, which refer to the activities that users

interact with the video page or the video player interface, are employed. Figure 6.1

shows the enhanced QoE assessment model. We believe that the activities can reveal

some subjective information relevant to the QoE, because the activities are generated

when users interact with the application according to their cognitive process.

The major challenge of using user-viewing activities is to identify suitable user-
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Figure 6.1: The enhanced QoE assessment model.

viewing activities in inferring the QoE. We set up a simple HTTP video streaming

system and conduct subjective assessments to collect user-viewing activities from sub-

jects. We analyze the data by listing out possible activities triggered by the impair-

ments. After that, we use hypothesis testings to find out activities which are useful in

estimating the QoE. Our results show that we can significantly improve the explanatory

power of the QoE model by 8%.

In this chapter, Section 6.1 describes the user-viewing activities and overall method-

ology used in this study. Section 6.2 details the experiment setup, whereas Section 6.3

reports the experiment results.

6.1 User-viewing activities

User-viewing activities refer to the activities that a user interacts with a player inter-

face. We have conducted a survey on how users behave when the playback is smooth

or jerky. In the survey, we listed all the user-viewing activities in Table 6.1 except the

two mouse movement items. The subjects were asked to rate their level of agreement

on whether they will perform the listed activities under a given scenario (i.e., the play-

back is smooth/jerky). The level of agreement is measured with a 5-point Likert scale

from 1 (strongly disagree) to 5 (strongly agree).

Two sets of ratings are obtained for each user-viewing activity. We compare the
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two scenarios by subtracting the mean rating of each activity as shown in Equation

(6.1). The mean rating difference of activity j, denoted by ∆r̄j , is given by

∆r̄j = r̄jsmooth − r̄jjerky, (6.1)

where r̄jsmooth and r̄jjerky are the mean rating of the user-viewing activity j given smooth

and jerky playback scenarios, respectively. Using paired samples t-test, we can obtain

the level of significance, p, for each activity.

The third column in Table 6.1 shows the mean rating difference of each user-

viewing activity from a survey of 19 people. The activities with positive mean rat-

ing difference, ∆r̄j > 0, means that users prefer those activities when the playback

is smooth. Otherwise, users favor the activity in jerky playback scenario. The results

show that users choose pausing, switching to a lower picture quality, and watching with

normal screen size under jerky playback scenario. In contrast, for smooth playback

scenario, only switching up the quality and enlarging the screen size are significant.

Users show no significant preference for other activities, such as resuming and time

shifting.

On the other hand, some user-viewing activities can help mitigate the temporal

structure impairments [165]. Pausing that can increase the time for buffering video

data is an example of positive technical impact (i.e., Tech. is +). Other examples

include refreshing the page which allows the player to choose another video server

from a content delivery network and switching to a lower video quality by reducing the

video data size. In contrast, resuming and forward time shifting have negative impact.

Resuming the playback consumes the buffered video, and forward time shifting gives

up the buffered video and sends a new HTTP GET request. The effects of impact is

shown in the second column of Table 6.1 represented by +, ◦, and −.

Table 6.1 also lists the possible user-viewing activities and their effects of impact,
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explicit, and implicit meaning, particularly for HTTP video streaming.

6.1.1 The overall methodology

In this section, we describe the methodology for evaluating whether user-viewing ac-

tivities are induced by temporal structure impairments or just user’s random actions.

Our research hypothesis is given in Hypothesis 1. To testify against the null hypothesis

which claims that the activities are random, we analyze the activities recorded before

and after the impairment events.

Hypothesis 1. The user-viewing activities are more likely to be triggered after the

presence of temporal structure impairments.

We assume that an impairment event only affects the user-viewing activities nearby.

Therefore, we inspect the user-viewing activities within a range around each impair-

ment event. Figure 6.2 shows an example of a video playback timeline. The video

starts playing at t0 and ends at tend. Three impairment events occur at times ti−1, ti,

and ti+1. Two user-viewing activities are recorded at times ta and ta+1. A time pe-

riod δ, computed by Equation (6.2), is half of the time between the current impairment

event and the nearest impairment events or the start or the end of the video playback.

An upper bound for δ is arbitrarily set to 5 seconds to prevent the inclusion of irrelevant

activities far away from the impairment event. Two other time periods dai and d(a+1)i

are the time displacements from the activities at ta and ta+1 to ti, respectively.

δ =
min(ti+1 − ti, ti − ti−1, ti − t0, tend − ti, 10)

2
. (6.2)

Since random activities occur independent of the impairment events, they could

occur before or after an impairment with equal probability. For the activities involving

mouse clicks, the average time displacement to the impairment events is zero (i.e.,
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Di = 0), where Di is the summation of time displacement within the range between

ti − δ and ti+1 + δ and ni is the number of user-viewing activities within the range as

shown in (6.3).

Di =

ni∑

j=0

d(a+j)i. (6.3)

On the other hand, the mouse movement at time t is quantified by the speed of the

cursor movement, vt, as shown in Equation (6.4), where (xt, yt) and (xt−1, yt−1) are

the current and the pervious recorded coordinates, respectively. The speed of cursor

movement is obtained by the Euclidean distance between the two coordinates over the

difference in recorded timestamps, ∆t. If the mouse movement is impairment-driven,

the speed of the cursor movement is expected to be higher after the event.

vt =

√
(xt−1 − xt)

2 + (yt−1 − yt)
2

∆t
. (6.4)

t0 ti ti+1

 

ta ta+1ti-1

dai d(a+1)i

 

tend

Figure 6.2: A timeline for a video viewing session with impairment events and user-

viewing activities.

6.2 Evaluation

To validate our hypothesis, we have carried out experiments to record the subjects’

video watching activities under various scenarios. We describe the experiment setup

in this section and the results in the next.
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6.2.1 Experiment setup

Figure 6.3 shows the experiment setup which is a simple video delivery system. The

video server listening on multiple TCP ports responds with the same content. The

Click modular router [131], placed in front of the video server, introduces delay and

packet loss to the TCP flows. Table 6.2 lists the path metrics setting used by the router.

The router emulates one of the 9 (3 × 3) combinations of path metrics on each TCP

port. Therefore, connecting the video server via different ports results diverse network

path performance. A mild level of cross-traffic with Pareto distributed inter-departure

time and fixed size packets is generated by the distributed Internet traffic generator

[62]. A workstation installed with a Endace DAG card [76] captures all the traffic

between the click router and the video server. The logging server is responsible for

recording the information reported by the customized video player (cf. Section 6.2.2)

during the experiment. The traffic between the logging server and the video player,

however, will not be captured and manipulated by the click router.

Video server

Click Router

Subject

Logging Server

Subject

Subject

DAG card Internet

Cross-traffic sourceCross-traffic sink

Figure 6.3: Experiment setup for the subjective experiment.

Table 6.2: Path quality settings used in the Click modular router.

Path quality metrics Settings

Additional delay (ms) 0, 40, 80

Round-trip packet loss rate 0%, 2%, 4%
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6.2.2 Client software

We have enhanced FlashTrack [165], a customized Adobe Flash video player, to record

the application events. The events include the current position of video playback, the

buffer status, the number of bytes loaded, buffer-full events, and buffer-empty events.

In addition to those events, we record user-viewing activities listed in Table 6.1. Be-

sides using Flash, we have employed Javascript to capture the cursor coordinates and

browser’s focus. All the events are logged periodically every 0.25 seconds. The logs

are then aggregated and sent to a logging server every three seconds.

The video player provides all the basic functionalities offered by commodity video

sharing websites. Users can pause and resume the video playback, changing the video

quality, watch in full screen mode and forward/backward shift along the buffered video.

Moreover, the downloading progress, current video position, and the length of the

video are visible to the subjects. When a buffer-empty event occurs, a small screen is

shown over the video displaying the percentage of buffer filled until the buffer is filled

up. These visual components help the subjects understand the status of the playback.

6.2.3 Video materials

Three videos clips are chosen for the experiments. They are labeled as speech, TVshow,

and sports, in an ascending order of temporal complexity. Video speech shows a person

delivering a speech with static background. Video TVshow is a portion of a local TV

comedy show. Video sports is a highlight of basketball games. Table 6.3 shows the

detailed profiles of the video clips used in this experiment. The quality of the source

videos is equivalent to 720p. The source videos are then down-sampled into three

lower bit rate versions with H.264 codec according to the profiles of 480p, 360p, and

240p.
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Table 6.3: Profiles of the video clips.

Parameters 720p 480p 360p 240p

Video width (pixel) 1280 854 640 400

Video height (pixel) 720 480 360 226

Video bit rate (Mbps) 2 1 0.5 0.25

Video frame rate (fps) 29.97 29.97 29.97 29.97

Audio bit rate (kbps) 128 96 80 32

6.2.4 Subjective assessment

After filling some basic information and answering questions on video-watching habits,

each subject was given a list of four videos to watch. They were first instructed to ac-

cess to a dedicated video to try the platform before starting the experiment. Through

this training process, the subjects became more familiar with the testing environment

and understood clearly about the functionality provided by the video player. After that,

the subjects could freely select the watching sequence of the remaining 3 videos. To

mitigate the order effects, the display order and the choice of network path perfor-

mance of the remaining three videos were randomized, and the initial quality of all the

videos was 480p.

The subjects were first informed that they might experience dissimilar performance

for different links. Besides, they were also reminded to behave as usual and watch

the entire video clips. At the end of each video clip, the subjects could immediately

rate their perceived video-watching experience. A 7-point Likert scale of MOS was

adopted, from 1 (“Bad”) to 7 (“Excellent”), for obtaining a higher granularity.



137

6.3 Results and analysis

6.3.1 User-viewing activities and network path quality

A total of 22 subjects, 16 male and 6 female, participated in the subjective assessment.

All of them were non-experts in assessing the video quality. Nine of them carried

out the experiment through the campus network, and others accessed the experiment

platform through the public Internet. All the subjects reported that they spent at least

one hour on surfing the Internet, and 20 of them watched at least one video on the web

in the week before performing the experiment. Therefore, it is reasonable to assume

that they are familiar with video-watching applications.

Figure 6.4 shows the frequency distribution of the ratings collected in the assess-

ment. Although we observe very low frequency for the two extreme ratings (1 and 7),

unrealistically poor or good performance usually contain less information. Another

possible reason is that the subjects, who are all Chinese, avoid giving extreme ratings

because of stronger central tendency bias [45]. However, we believe that the frequency

of the rating between 2 and 6 can already provide enough variance.
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Figure 6.4: The overall distribution of MOS.
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Figure 6.5 depicts the user-viewing activities recorded from one of the experiments.

The bars shown along the x-axis are the cursor speed. The “×”s and “◦”s are the points

when the buffer-empty and buffer-full events are triggered, respectively. The time that

the subject pressed the pause button and the resume button are denoted by the “+”s

and the “�”s, respectively. The “△”s and the “▽”s are the respective times that the

subject switched to full screen mode and normal screen mode. The quality switching

events are indicated by the “⊳”s (for switching down) and “⊲”s (for switching up). For

a clearer illustration, the events are plotted in different levels.

Figure 6.5 shows that the application-level events, such as cursor movement, corre-

late with the user-viewing activities to some extent. In the first 50 seconds, the subject

was still adapting to the network condition, and therefore the viewing activities are

relatively few. After feeling that the playback is acceptable, she switched to a higher

quality and watched in full screen mode just before the second buffer-empty event.

However, after the second buffer-empty event occurs, the subject seemed to be an-

noyed by the event, switching back to the original quality quickly and returning to the

normal screen size. She clicked the pause button and returned to normal screen mode

until the end of the playback. After 200 seconds, she paused the playback for every

buffer-empty event. Moreover, the cursor speed sharply increased whenever some user-

viewing activities were captured, because the subject had to move the mouse cursor to

press the pause buttons.

Figure 6.6, on the other hand, shows the RTT and packet loss rate (aggregated

every second) measured from the same viewing session. To facilitate the comparison,

the two time axes are perfectly aligned. The median RTT is about 80ms and the average

packet loss rate is 4%. Loss busts are occasionally observed, but the network path was

generally unchanged during the whole experiment session. The video was completely

downloaded about 10 seconds before the video playback was finished. By comparing
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Figures 6.5 and 6.6, we observe that using only network path measurement could fail

to capture the important information about the user perceived QoE of the video, such

as her dissatisfaction after the second rebuffering event.
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Figure 6.5: Time series of application-level events and user-viewing activities.
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Figure 6.6: Time series of the RTT and packet loss rate.

6.3.2 Hypothesis testing for user-viewing activities

To give a generalized view of the activities, we formulate hypotheses for the user-

viewing activities from Hypothesis 1 and test each hypothesis through statistical tests.
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Using one-sample t test, we can obtain probability p that the null hypothesis is true

for given mean and standard error [209]. If a user-viewing activity occurs after the

impairment events, the average time distance is positive (i.e., Di > 0). We choose

rebuffering (buffer-empty) events as the impairment event, because it is the main factor

affecting the perceived quality. However, our method can also be applied to other

impairment events.

Table 6.4 shows the average time distance, Di, of three user-viewing activities. The

results show that the average time distance for the pause activity is significantly larger

than zero, which means that users pause the video playback around two seconds after

she encounters rebuffering events. Similarly, users change back to the normal-size

screen from full screen about three seconds after the occurrence of impairment events.

The few seconds of delay between the impairment events and the activities can be

regarded as user’s reaction time. The average time distance for reducing the screen size

is about one second more than pausing, implying that users usually pause the playback

before reducing the screen size. As users know that pausing is functional, they regard

it as a more critical action than reducing the screen size.

Although the activities of switching to a lower quality have a positive mean, it is

not statistically significant due to small sample size (N = 3). A small activity count

reflects that the subjects prefer pausing instead of switching the quality. The results for

mouse movement are also not significant in our analysis, indicating that the average

cursor speeds before and after the impairments are very similar.

6.3.3 Correlating user-viewing activities with QoE

In [165], we have showed that the rebuffering frequency is the main factor affecting

the QoE, in terms of the MOS. Our results show that all three application performance

metrics (APMs) impacted the QoE, and we have also found that using log transforma-
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Table 6.4: Average time distance for different user-viewing activities and impairment

events.

Activities Di (seconds)

Pause 1.94***

Switch to lower quality 2.19

Reduce the screen size 3.10**

vt (pixel/ms)

Mouse movement -0.070

Note: *p <0.05, **p <0.01, ***p <0.001.

tion to correct the functional form of the rebuffering frequency and the initial buffering

time can obtain a better model fit. As the MOS is ordinal in nature, the ordinary least-

square regression cannot be applied. We have therefore adopted the ordinal logistic

regression [34, 172] using SPSS [2] in the analysis below.

The left column of βs in Table 6.5 shows the regression results of solely using

the APMs proposed in [165], where frebuf is the rebuffering frequency, Tinit is the

initial buffering time, and Trebuf is the mean rebuffering duration. The model is sig-

nificant with a χ2 of 14.3 on 3 d.f., meaning that the original model better explains

the variations in the MOS than an intercept-only model. Among the three APMs, the

rebuffering frequency and the initial buffering time are significant, while the mean re-

buffering duration is marginally significant. The negative β means that the odds (prob-

ability) of obtaining higher MOS categories decrease with the rebuffering frequency

and/or the initial buffering time. This implies that a higher rebuffering frequency or a

longer initial buffering time has a lesser chance of obtaining higher MOS categories.

However, an increase in mean rebuffering duration has a slightly higher chance of ob-

taining higher MOS categories. We adopt one of the pseudo-R2 metrics, Nagelkerke

R2 [175], which ranges from 0 to 1, to represent the goodness of fit of the model. The

explanatory power is moderate with a Nagelkerke R2 of 0.24.

We further incorporate two of the user-viewing activities which show significant

results in section 6.3.1 (i.e., pausing and reducing the screen size). We count the num-
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Table 6.5: Regression results for the APM model and modified model.

Predictors Estimates, βs

APM model Modified model

ln (frebuf ) -0.54* -0.62*

ln (Tinit) -0.60* -0.54*

Trebuf 0.04 † 0.045*

Npause - -0.68†
Nscreen - 0.94

Nagelkerke R2 0.24 0.32

χ2 14.3** 19.5**

d.f. 3 5

Valid N 54 54

Note: †p <0.1, *p <0.05, **p <0.01.

ber of pause and screen size reducing activities which are probably triggered by the

impairments, denoted by Npause and Nscreen, respectively. The right column of βs

in Table 6.5 shows the regression results of the modified model which is also signif-

icant with a χ2 of 19.5 on 5 d.f. The rebuffering frequency which shows significant

result in the original model is still significant. For the new factors, we have obtained

a marginal significance for the pause activities. By adding these two factors, the ex-

planatory power, measured by the Nagelkerke R2, increases from 0.24 to 0.32. The

negative β of Npause means that the probability of obtaining a higher MOS category

increases when less pauses are triggered by impairment events. On the other hand,

switching the screen size has no effect to the odds of MOS categories.

6.4 Summary

In this chapter, we studied how the user-viewing activities help evaluate the QoE of

HTTP video streaming. We proposed a new methodology to examine the user-viewing

activities around the occurrences of impairment events. From our subjective measure-

ment results, we found that the impairments can trigger pause and screen size switching

events after two and three seconds, respectively. We then incorporated these triggered
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activities into the prediction model of the QoE to improve its prediction power by 8%.

We also found that the pause activities are responsible for the variation of the MOS.
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Chapter 7

Improving the Reliability of QoE

Crowdtesting

Conducting QoE assessments in the crowd, also known as QoE crowdtesting, is one

of the recent trend, because crowdsourcing platforms can provide diverse and large

amount of human subjects. However, the workers in the crowd lack supervision. Some

of them may intend to cheat and give unreliable and random responses, while they

can also be distracted or unsuitable for the task. Both kinds of workers can lead to

unreliable measurements. Therefore, identifying these workers can help improve the

reliability of crowd-based assessments.

To address this problem, we analyze the worker behavior to infer the quality of

workers. A worker behavior-based mechanism has three main advantages over exist-

ing anti-cheater methods, which was reviewed in Section 2.6. First, as the monitoring

of worker behavior runs in the background, it is almost invisible to the workers. There-

fore, fraudsters’ attempts to evade the anti-cheating checks will be foiled. Second, the

time and cost for conducting experiments can be reduced because the monitoring will

not induce extra or redundant questions in the assessment. Finally, our mechanism is

independent of the assessment results, so that the test items or stimulus are not required
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to have any implicit ranking or absolute answers.

In this study, we propose a novel method for detecting low-quality workers. Our

method constructs a predictive model based on the worker behavior. After collecting

raw behavior data and the assessment results from the QoE crowdtesting, the first step

is to estimate the quality of workers and assign a label for each worker by analyzing

the assessment results. The second step is to extract useful features from the behavior

data. The final step is to leverage supervised machine learning algorithms to train

a model which can predict the quality of workers from the metrics. There are three

major issues to be resolved. First, systematically analyzing the worker’s behavior is

hard. The second issue is how to obtain the ground truth (i.e., the quality of workers) as

a label from the assessment results. The last issue is that implementing the assessment

system has to be carefully designed to mitigate the performance impact caused by the

capturing of the behavior.

We tackle the first issue by proposing a novel set of ten worker behavior metrics.

This set of metrics can effectively extract information from the worker’s behavior data

captured from the browser. In the design of the metrics, the most challenging part is

to systematically analyze the cursor trajectory. We quantify the cursor trajectory by its

micro-movement and timing information. The second problem is alleviated by care-

fully designing the assessment task. Multiple existing anti-cheating techniques, such

as reserved code items, are employed. Furthermore, we include human inspection.

Hence, we can compose a quality score to reveal the quality of workers. The third

issue is mitigated by carefully adjust the parameters in the system to balance between

the performance and the frequency of feedback.

In our evaluation, we collect worker behavior datasets from our adaptive video

quality assessments crowdsourced through MTurk and CrowdFlower. The worker be-

havior traces are used to compute the worker behavior metrics, while the assessment
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results are used to compute the quality score. A mulitclass Naı̈ve Bayes classifier [200]

is employed to build a predictive model for estimating the quality of workers from the

worker behavior metrics. Furthermore, four rating methods suitable for rating Likert

scale, are investigated, including radio buttons, stars, slide bar, and number steps.

Our results show that four out of ten metrics can effectively infer the workers’

quality. The error rates of the trained model for all rating methods are around 30%.

These metrics include the submovement count, the time delay, the cursor’s speed, and

the number of extra clicks. We also find that, among four rating methods, stars and

radio buttons are more effective than the other two to be used in detecting low-quality

workers. By combining multiple rating methods, the accuracy of detecting low-quality

workers can reach about 80%. Extending from our previous work [167], we further

compare the performance with CrowdMOS [202]. Our method shows better precision

and recall than CrowdMOS.

The outline of this chapter is structured as follows. An overview of our mechanism

is provided in Section 7.1. After that, we describe the composition of quality score and

worker behavior metrics in Section 7.2 and Section 7.3, respectively. The experiment

setup, building of predictive model, and the results are presented in Section 7.4. We

then further compare the cursor traces from different rating methods in Section 7.5.

7.1 Overview

Our approach is to analyze the behavior generated by the workers when they answer the

questions in our QoE crowdtesting task. After the completion of the QoE crowdtesting

campaign, we process the behavior traces to detect low-quality workers. Our method

is enclosed by the solid blue box in Figure 7.1. The basic idea of the detection mech-

anism is to quantify the worker’s behavior captured during the assessment into worker

behavior metrics. After that, we apply a multiclass Naı̈ve Bayes classifier to build a
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predictive model to correlate with the quality of workers. A quality score is used to

estimate the quality of the workers by the assessment results they submitted in the task

and ratings from human raters. Finally, we can obtain a trained model which can be

used to predict the quality of worker by the worker’s behavior.

Input meta-

information

Watch 60-second 

video clip with/ 

without video bitrate 

adaptation

Instructions

16-question 

assessment

(presented with 1 

out of 4 rating 

methods)

Complete

Repeat for 3 times 

Capture worker s

behavior

Worker

Crowdtesting Task

Assessment 

results
Quality score

Rater

Worker behavior 

metrics
Worker s quality

Predictive Model

Our method

Figure 7.1: The overview of the workflow.

Employing workers’ behavior has three main advantages over other cheater de-

tection approaches. First, the capturing of worker behavior is almost invisible to the

workers. This feature is important, because anti-cheating checks, such as plausible

questions or consistency tests, can be easily located and evaded by individual sophisti-

cated spammers. The checks may also fail to group attacks, which share the answers of

a task among cheaters [68]. Second, the monitoring of worker’s behavior does not incur

any extra work load to workers. After obtaining the trained model, the anti-cheating

checks can be reduced/removed. Thus, the length of of tasks can be decreased. As

the cost for conducting experiments is often directly proportional to the task’s length,

our method can save experimenter’s cost. Finally, our approach is independent to the

actual ratings. This is particular useful for QoE assessments, because some subjective

measures, such as expectation or enjoyment level, may not have an absolute answers or

rankings. Discrepancy between workers may not be able to infer the worker’s quality.

There are three main challenges in using worker’s behavior to detect low-quality

workers.
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• Systematically analyzing the worker’s behavior and identifying the factors en-

abling the detecting of low-quality workers are hard, because their behavior can

also be affected by their responses or their own usage behavior. We tackle this

challenge by designing ten worker behavior metrics to quantify relevant behav-

ior, such as the micro-movements of the cursor trajectories and timing informa-

tion throughout the assessment. In particular, we apply submovement analysis

[159], which is common in the human-computer interface area to investigate the

performance and accuracy of pointing devices, to extract the micro-movement

information from the cursor traces. In addition, we adopt part of the cursor mea-

sures proposed in Hwang et al. [107] to quantify the cursor trajectories, such as

the velocity and the acceleration of the cursor (cf. Section 7.3). In our analysis,

we apply statistical tools to select four of the metrics to be included in our model.

• The second challenge is to obtain the ground truth about the quality of workers in

order to correlate it with the worker’s behavior. Even though the crowdsourcing

platforms provide the historical acceptance rate of individual worker, we find

that the workers’ quality can be diverse. For example, a group of workers or

bots can use the Shared Question Answer Dictionary (SQAD) method to boost

their acceptance rate [68]. Therefore, we carefully design the questions in our

QoE crowdtesting task, which includes reverse-coded questions and skip logic.

We also analyze the open-ended responses and assessment results. By examining

the violation of these logic, complexity of the responses and human inspection,

we can deduce a quality score to estimate the quality of the workers (cf. Section

7.2).

• The final issue is related to a practical design of capturing the workers’ behavior.

The implementation of the assessment system has to be carefully designed to

mitigate the performance impact caused by the capturing of the behavior which
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could interrupt the normal behavior. Therefore, we carefully adjust the frequency

of the feedback of the worker behavior. Therefore, the number of entries buffered

at the browser can be reduced. We also utilize the cloud to improve the video

streaming performance.

In this paper, we evaluate our method by an QoE crowdtesting task as shown in

the green dashed box in Figure 7.1. Our crowdsourcing task is similar to typical QoE

crowdtesting tasks requiring workers to rate according to their quality of experience.

Our task is to assess the QoE of different video bitrate adaptation schemes, and is im-

plemented as a simple web site similar to [196]. First, each worker was asked to pro-

vide some meta-information, such as gender and frequency of watching online videos.

An instruction was then presented to the worker about the task, the questions to be

asked, and the rating methods to be used. Each worker was required to rate the QoE

of four 60-second video clips. Our customized video player adjusted the video bitrate

in three of the video clips according to a pre-defined scheme, while the remaining one,

serving as a control, was kept at a constant highest/lowest bitrate. After watching each

video, the worker was then prompted to answer 16 questions. We expect a normal

worker can finish the entire task using less than 20 minutes. The worker was given a

unique validation code to return to the crowdsourcing platform for their payment. The

implementation details will be discussed in Section 7.4.1.

7.2 Assessing the workers’ quality

The subjective nature of QoE crowdtesting makes it unfeasible to measure the accu-

racy or precision of the workers. Unlike the previous works (e.g., [206] and [236]),

our task does not have model answers. We tackle this problem by imbedding multiple

cheater-detection tactics in our assessment, such that we can infer the worker’s quality

with some confidence. In addition to the single-item measure used in [114], we used 15
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multiple choice questions and 1 open-ended question to measure the QoE. The work-

ers were asked to rate the QoE they just watched from different aspects to improve the

robustness of the measurement, including picture/sound quality, video content, and the

smoothness of the playback, and so on. The workers were required to indicate whether

they noticed any video quality adaptation. Three reverse-coded questions were set to

measure the worker’s reliability. We also implemented four rating methods commonly

used in rating 5-point Likert scales (cf. Section 7.4.1). One of the methods was ran-

domly chosen for workers in each assessment.

A quality score is used to quantify the quality of workers. It is composed of seven

measures which are computed from the responses of all four video assessments and

manual inspections. We assume the quality of worker does not change throughout the

whole task. Therefore, we assign the quality score per worker instead of per assess-

ment. The set of measures can be classified into three categories.

7.2.1 Complexity in text input response

There is an open-ended question in our assessment requiring the workers to input three

words separated by commas about the content of the video they have just watched.

This question is similar to the image/video annotation tasks. Based on their answers,

we can examine whether the worker has paid sufficient attention to the video and the

question.

We analyze the response by three metrics (qwc, qww, and qwf ), which are related

to the number of unique characters used, the number of unique words used, and the

format of the response. We also manually inspect the content of the response and give

a rating to each, qct. To compute qwc, as shown in Equation (7.1), we first convert the

response to small capital letters and then count the number of unique characters used.

We normalise this index by dividing it by 26, which is the total number of English
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alphabets.

qwc =
No. of unique character used

26
. (7.1)

Another measure, qww, considers the ratio of unique words to the total number of

words in the response as shown in Equation (7.2). The unique words are found by

grouping the same sub-string slitted by non-alphabet characters. We observe that some

workers gave similar responses to all four videos with different content, such as “good”

and “interesting”.

qww =
No. of unique words used

No. of total words used
. (7.2)

As the counting of characters or words cannot inspect the content of the responses,

we also rate the responses (from 1 to 5) by a human rater as a measure, qct. Table 7.1

lists the rating criteria and examples of the respective score taken from our dataset.

The responses are related to a NBA basketball match. Because our tasks only require

the workers to input three words per assessment, the rating criteria mainly focus on

the accuracy of the responses rather than the descriptiveness. The scores are then

normalized as shown in Equation (7.3).

Table 7.1: The rating schemes and examples for rating the responses.

Score Description Example

5 All words describe different objects. Basketball, Lakers, shot, ...

4 One or two two-word nouns broken into two

words or some typos are found.

Basket, ball, match, ...

3 Some words describe the video content, but

irrelevant words are found.

basketball, game, boring, ...

2 Descriptive words are used, but they mostly

are not related to the video content.

entertaining, active, memo-

rable,...

1 Simple words are used and they are not re-

lated to the video content.

Good, Nice, Impressive, ...
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qct =
Rating of responses

5
. (7.3)

7.2.2 Violation of soft rules

To ensure the workers reach a certain quality, some rules are stated in the instructions.

For example, the workers have to watch the whole video without fast forwarding. Vi-

olating these “hard” rules can lead to a rejection of their work or stopping them from

proceeding to the next assessment. On the other hand, “soft” rules do not lead to re-

jection, but they can reflect the workers’ awareness to the instructions. There are two

soft rules in our assessment. One of them is implemented in a question requiring the

workers to indicate whether they notice any video quality adaptation. The workers

were instructed to skip the next question if they did not notice any quality changes.

However, we find that some workers did not skip the question as instructed. qjp is the

average count of correctly following the rules across the four assessments in the whole

task as computed in Equation (7.4).

qjp =
Count of correctly skipping/answering the questions

4
. (7.4)

Another soft rule is about the formatting of the text responses, which requires the

workers to input three comma separated words. Although it is feasible to enforce the

formatting policy at the browser before the workers submit the answer, we do not limit

the input. Therefore, we can capture the low-quality workers who input casually. We

find that around 18% of workers did not input the correct format in all four assessments.

Similar to qjp, this measure, qwf , is computed using the average number of correctly

formatted input in Equation (7.5).

qwf =
No. of correctly formatted inputs

4
. (7.5)
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7.2.3 Contradictory responses

Some low-quality workers tend to provide random ratings or the same rating for all

questions. These workers can be easily screened out by applying reverse-coded ques-

tions. These questions are phrased in the semantically opposite direction to another

one. For example, “The initial picture quality is too low.” vs. “The initial picture

quality meets my expectation.” In our assessments, three questions are reverse-coded.

We compose a measure, qrc, which computes the average differences in ratings be-

tween the positively and negatively coded questions in all four assessments as shown

in Equation (7.6).

qrc = 1−

∑4
j=1

∑3
k=1 ∆rjk

3× 4× 5
, (7.6)

where ∆rjk is the difference in ratings of the kth in the j th assessment.

The last measure, qcn, checks whether the workers can correctly identify whether

the video streaming has any video bitrate adaptation. Because it is easy for workers to

determine whether the video quality has changed or kept constant, we believe that this

measure can reveal the level of concentration to the assessment. This measure averages

the number of correctly identified assessments in the task as shown in Equation (7.7).

qcn =
No. of assessments correctly identified constant/changing video bitrate.

4
.

(7.7)

Finally, the quality score, q, is the summation of the seven measures. Therefore,

the score is between 0.4 to 7. A higher score means a better worker’s quality.
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7.3 Quantifying workers’ behavior

In this session, we present our methodology on systematically quantifying the workers’

behavior using worker behavior metrics. Before introducing the details of the metrics,

we first provide some intuition for using mouse cursor trajectory to infer worker’s

quality by showing a typical case collected in our QoE crowdtesting task.

7.3.1 Observation

We believe that the information hidden in the mouse cursor trajectory can also help

infer the quality of workers, because cursor movements strongly correlate with eye

movement [50]. We manually select two workers from our experiment, an honest

worker R and a low-quality worker C, to illustrate the importance of cursor trajectory.

Figure 7.2 shows the cursor trajectories of the two workers. The red dotted rectangle

is the area for answering the questions. We can see that worker C takes a much di-

rect pathway to answer all the questions, but worker R shows more zig-zag paths in

between questions. Besides the pathway, the velocity of the cursor also carries useful

information. Figure 7.3 plots the velocity of the two traces in Figure 7.2. We can see

that worker C moves the cursor with a much higher velocity and shorter-period pauses

than worker R.
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Figure 7.2: Mouse cursor trajectories of an honest worker R and a low-quality worker

C



155

0 10 20 30 40
−4

−2

0

2

4

Time /s
V

e
lo

c
it
y
 /
p
ix

e
l 
m

s−
1

 

 

C x−velocity
C y−velocity
R x−velocity
R y−velocity

Cursor 
paused

Figure 7.3: Cursor velocity of the data in Figure 7.2

7.3.2 Worker behavior metrics

Our raw behavior trace consists of a comprehensive set of cursor and mouse-related

events. Table 7.2 lists the worker behavior collected from our experiments. Further-

more, we install callback functions for each rating objects, such as radio buttons or text

fields, to distinguish between random clicks and clicks on the rating objects. Other

browser events, such as the sizing or loss of focus, are also recorded. Each record is

timestamped at the user side with time resolution of 1ms.

We propose a set of ten worker behavior metrics which extracts information from

the start-up period, inter-question periods, and the overall time period. We believe

that these three types of metrics can capture workers’ cognitive process from different

aspects. In the following sections, we will use the timeline in Figure 7.4 as an example.

The assessment page finishes rendering and starts capturing worker behavior at time t0.

The worker clicks on the ath question at time t
(a)
c . The start-up period is defined as the

time period from the page rendered to the first click on the answer, whereas the inter-

question time periods are defined as the time period between the worker answering a

question and the next one.

Each cursor movement record contains the coordinates, xj and yj , and its times-

tamp tj , where j is the j th cursor movement record in the trace. The shaded area with

solid color is the time period in which continuous mouse cursor movement with inter-
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Table 7.2: A list of collected user behavior.

Event/Behavior Description

Cursor coordinates The mouse coordinates are recorded when the worker moves the

mouse cursor over the page. The coordinates are relative positions

to the top-left corner of the browser window containing the page and

are only available when the window of the page is in focus.

Mouse clicking The click position relative to the top-left corner of the page is

recorded. We can distinguish the click events triggered by rating

and random clicks.

Mouse over A mouse-over event will be fired when the mouse cursor is moving

over the stars in the star rating method.

Mouse up/down Besides clicking, the slider bar may also be used by dragging the

slider. We can identify the sliding time by recording the mouse up

and down events separately.

Mouse scrolling The amount of pixel scrolled by the worker is recorded by this event.

We can use this information to recover the absolute coordinate of the

page the worker is on.

Key strokes The last question in our assessment is an open-ended question. We

record how the workers key in the answers into the text field.

Window focus This event can detect whether the window is in or out of focus.

Window resizing The height and width of the browser window are recorded when the

browser window is resized.

cursor movements less than 50 ms (i.e., tj − tj−1 < 50 ms) is recorded. Otherwise,

we treat the movement as a pause which shaded with vertical strokes. We use t
(k)
p and

τ
(k)
p to denote the beginning and the end of the kth pause event, respectively. We let

the total number of cursor movement records and clicks to be N and C, respectively.

In the rest of the chapter, we use these notations to introduce the computation of the

worker behavior metrics.

Page rendered

t0 tc
(1)

tc
(2)

tc
(n)

tp
(1)

 p
(1)

time

Recorded continuous cursor movement

Inter!question

time period

Start!up

 period

No recorded movement (Pause)

Figure 7.4: A timeline of events.
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Another challenge is to systematically analyze the trajectory, because the trajec-

tory can be affected by many factors, such as the responses and the worker’s habit.

In this work, we apply submovement analysis [159] to capture the micro-structures

in the trajectories. Figure 7.5 shows an example of a cursor trajectory consisting of

two submovements. The horizontal dotted line connects the start and end points. We

assume the origin (i.e., (x, y) = (0, 0)) is at the top left corner. The first submovement

is in upward direction away from the horizontal line (i.e., y−velocity<0) until the red

dotted line. The second submovement changes to downward direction until reaching

the end point (i.e., y−velocity>0). Furthermore, Hwang et al. [107] propose a set

of cursor measures, which are mainly based on submovement analysis, to analyze the

performance and accuracy of pointing devices for different kinds of users. We also

adopt the cursor measures to infer workers’ quality.

2
nd

 submovement1
st
 submovement

start end

y-velocity <0 y-velocity >0

Zero-crossing of y-velocity

Figure 7.5: A submovement example.

We compute the submovements from cursor trajectories using the following steps.

We define function S(a, b) to be the number of submovements between time epoches a

and b. The collected cursor trajectories are represented by a series of points {tj, xj, yj}, ∀j =

0, 1, ..., N − 1, where xj and yj are the x and y coordinates, tj is the timestamp of

this datum, and N is the total number of records. To compute S(t0, tN−1), we com-

pute the x and y components of the cursor velocity by (xj+1 − xj)/(tj+1 − tj) and

(yj+1 − yj)/(tj+1 − tj), respectively. Finally we count the number of zero-crossings

(i.e., from positive to negative value or vice versa) in either x− or y− velocity compo-

nents as the number of submovement.
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Overall submovement count, number of pause and median pause duration

The first three metrics quantify the worker behavior throughout the assessment task.

The total number of submovement as computed in Equation (7.8) can quantify the

micro-movement generated by the workers during the assessments and reveal whether

the worker takes a very straight forward pathway to complete the task.

mtc = S(t0, tN). (7.8)

Submovement can only reveal the direction of movement. To obtain the temporal

measures, we consider the number of pause, P , and the median pause duration, mtd.

Equation (7.9) shows the computation of mtd. We consider there is a pause event

whenever the cursor stays at the same position for longer than 50 ms. We employ a

shorter time than the one used in [206], because our task is relatively simple and the

workers can answer quickly.

mtd = Md({τ (i)p − t(i)p |i = 2, ..., P}), (7.9)

where Md(·) returns the median value of the input set.

Start-up time and submovement count

The following two metrics particularly focus on the start-up period when the workers

may skim through the questions before answering the questions and move the mouse

cursor. We quantify this behavior by measuring the length and counting the submove-

ment of the start-up period (denoted by mst and msc, respectively). These two metrics
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can be computed by Equations (7.10) and (7.11).

mst = t(1)c − t0. (7.10)

msc = S(t0, t
(1)
c ). (7.11)

Number of extra clicks

We count the number of extra clicks generated by the workers, denoted by mtk. We

subtract the minimum number of clicks required to complete the task from the number

of clicks recorded by the trace. For example, we assume that only one click is required

for answering a multiple choice question with radio buttons. We consider this metrics

because low-quality workers are tend to finish the task with minimum effort. However,

extra mouse clicks is additional to the task. Therefore, we believe that this metrics can

help screen out low-quality workers.

Median inter-question time and submovement

In addition to the overall and start-up period statistic, we consider the behavior during

the inter-question period. The callback function installed in each rating object allows

us to identify the questions the worker answered. We can easily slice the trace by the

time the worker answering the questions. After that, we can compute the median length

of time, mit, and the number of submovement generated, mis, in between answering

each question by Equations (7.12) and (7.13), respectively. By quantifying the inter-

question behaviors, we can mitigate those spammers who attempts to evade the timing

or submovement check by generating extra movement after finishing the task.

mit = Md({(t(i)c − t(i−1)
c )|i = 2, 3, ..., C}), (7.12)

mis = Md({S(t(i−1)
c , t(i)c )|i = 2, 3, ..., C}). (7.13)
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Median cursor speed and acceleration

From our observation, we find that the dynamics of the mouse movement is also impor-

tant in detecting low-quality workers. Therefore, kinematic analysis [190] is employed

as a part of our metrics. The median cursor speed, mcs, and acceleration, mca, are the

first and second derivatives of the coordinates which can be computed in Equations

(7.16) and (7.17), respectively. These two metrics are important measures in charac-

terising the cursor trajectories [190, 107].

δD(j) =
√
(xj − xj−1)2 + (yj − yj−1)2, (7.14)

δt(j) = tj − tj−1, (7.15)

mcs = Md({
δD(i)

δt(i)
|i = 2, 3, ..., N}). (7.16)

mca = Md({
δ2D(i)

δ2t(i)
|i = 3, 4, ..., N}). (7.17)

7.4 Evaluation and Results

Our aim of the evaluations is to investigate the relationships between the worker be-

havior metrics and the quality of workers. In our evaluation, a QoE crowdtesting

task is published to evaluate the perceived quality of different video bitrate adapta-

tion schemes as we described in Section 3.5.2. We then analyze the results for training

the predictive model.

7.4.1 Implementation of the QoE crowdtesting task

Because the worker’s behavior can be influenced by the layout of the page, our im-

plementation has considered the spacing and size of the objects on the question page.

The upper part of the question page using number field is shown in Figure 7.6. The

width of the page is 800 px, which modern PCs should be able to display without
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horizontal scrolling. Furthermore, we have implemented four common methods for

rating questions in 5-point Likert scale . They are radio buttons, slider bar, number

field, and stars. Table 7.3 shows the outputs of the rating methods rendered by Chrome

and Firefox. We used the RateIt [6] jQuery library to implement the stars. Although

the other three methods are the input types natively supported in HTML5, we can see

that the rendering of the slider and number field method is slightly different in the two

browsers. Chrome provides more feature to the two methods. It supports tags above

the slider to indicate the positions of the values, and provides drop-down menu show-

ing all available options when users click on the number field. The size of all rating

methods are unified as 200 px (width) × 20 px (height).

Figure 7.6: The layout of the question page.

Table 7.3: The sample display of the four rating methods used in our task.

Rating methods Implementation Chrome Firefox

Radio buttons
<input

type="radio">

Slider
<input

type="range">

Number field
<input

type="number">

Stars RateIt plugin [6]

We have implemented a jQuery-based library to collect the worker’s behavior as
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listed in Table 7.2 from the browser. The library is deployed in the question page and

executed upon the rendering of the page. Our library is run at the background, and

it sends back the worker behavior to our server using AJAX every second. We have

considered several time interval for sending back the worker behavior. Sending back

worker behavior frequently could generate excessive network traffic and overheads,

whereas the performance of the workers’ browsers could be slowed down when there

was a large amount of data in the browser’s buffer. At the server side, we used php

and MySQL to receive and store the data. We believe that the library can be easily

intergraded into other web-based QoE crowdtesting frameworks (e.g., [126, 132, 82]).

Since we cannot control the access time of workers, our assessment platform is

required to support multiple workers to simultaneously watching HD video, which are

quite bandwidth demanding. Therefore, we utilized two separate servers and the cloud

[126]. Figure 7.7 depicts the overall architecture of the assessment platform. The web

server, which is hosted by a web hosting company in the US, is responsible for hosting

the assessment interface and logging the worker behavior recorded at the browsers,

while the video streaming server is an Amazon EC2 virtual machine. We also used the

CloudFlare CDN to cache the video data to ensure the server side is not the bottleneck.

Streaming Server

Worker

CloudFlare CDN

Assessment

 Interface

Worker

Behavior

Web Server

Video Streaming

Figure 7.7: The architecture of our assessment platform.
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We published our QoE crowdtesting task to two major crowdsourcing platforms,

Amazon Mechanical Turk (MTurk) and CrowdFlower. Only US workers were able to

perform our tasks of evaluating the video steaming performance. We chose the workers

with acceptance rate higher than 90% in MTurk and the “highest quality” in all avail-

able channels in CrowdFlower, because we targeted to capture the behavior of more

intelligent cheaters rather than those who could be easily detected. Each completed

worker was awarded $0.5 US.

7.4.2 Results

Descriptive statistics

We successfully collected results from 172 workers (42 MTurk workers and 130 Crowd-

Flower workers from 20 channels). As each worker was required to rate four video

clips, we collected a total of 688 (=172 × 4) samples of worker behavior data. Nearly

half of the workers (49.3%) are male. Due to the compatibility issue for our Flash-

based video player, our platform does not support Apple and Internet Explorer users.

Moveover, 63.4% of the workers used Google Chrome browser to perform our tasks,

while others used Mozilla Firefox. Almost all workers used Windows. Only one

worker used Linux. Figure 7.8 shows the CDF of the completion time of each as-

sessment. The median time for {MTurk/CrowdFlower} workers to complete one as-

sessment is {67.8s/71.3s}, respectively. About 90% of the workers submitted the as-

sessment in 150s. However, we also found a few workers taking longer than 5 minutes.

58 CrowdFlower workers also submitted post-task feedback through the CrowdFlower

platform. The average satisfaction to our award is 4.1 out of 5. We believe that the

workers generally satisfied the pay and were not motivated to provide low-quality work

because of underpayment.

The CDFs of the quality score of all workers is plotted in Figure 7.9. The dotted
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Figure 7.8: The CDF of completion time of each assessment (x-axis in log scale).

grey line, light green line and the dark blue line are the CDFs of the overall quality

score, and the quality score from MTurk and CrowdFlower workers, respectively. We

can see that workers from MTurk generally have a lower score than those from Crowd-

Flower. The median score for {MTurk,CrowdFlower} workers is {4.6,5.2}, which

shows that the workers from CrowdFlower has a better quality than those from MTurk.
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Figure 7.9: The CDFs of the quality scores.

We also study the characteristics of the quality score and the measures using corre-

lation analysis and principal component analysis before employing them in our train-

ing. Table 7.4 shows the correlation table for the seven measures used to compose the
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quality score. All the measures are expectedly positively correlated with each other.

Table 7.4: Correlation analysis among metrics of quality score.

qwc qww qrc qjp qcn qwf

qww .55***

qrc .13 .082

qjp .07 .084 .72***

qcn .32*** .068 .069 .009

qwf .39*** .15† .055 .059 .41***

qct .57*** .68*** .033 .016 .16† .31***

Note: †p < 0.1, *** p < 0.001

The measure, qwc, is not only significantly correlated with other measures related to

the word input (i.e., qww, qwf , qct). It is also significantly correlated with a consistency

measure, qcn. Besides, we find that the workers with less contradictory responses,

qrc, have better performance in following the soft rule, qjp. The workers obtained a

high value in identifying bitrate changes also tend to provide correctly formatted text

responses.

We observe that there are two distinct sets of variables which are highly correlated

(i.e., {qwc, qww, qwf , qct} and {qrc, qjp}). Hence, we apply the principal component

analysis to the measures to understand the underlying factors. Figure 7.10 plots the

percentage of variance explained of the components. We find that there are three major

components explaining over 87% of variances. We believe that the three components

are related to the three categories of the measures.

Model training

To train the predictive model, we include all or some of the worker behavior metrics

and compare their error rates for the best model. Multinomial distribution is applied to

count data, such as msc and mtk, denoted by ‡ in Table 7.5. In the following, we adopt

a 10-fold cross validation method to estimate the error rate of the classifiers. Because
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Figure 7.10: The result of a principal component analysis of the seven measures.

of the randomness in the cross validation process, the error rate of each model is the

average error rate computed from 100 times of training.

We first apply all the ten worker behavior metrics into the model as shown in the

first row of Table 7.5. Figure 7.11 plots the average error rates of the model with 95%

confidence intervals. In model 1, stars and slide bar rating methods can achieve error

rates of 31.8% and 33.1%, respectively. However, the error rates for radio buttons and

number field are large (i.e., 38.3% and 59.0%, respectively).

The poor results are due to some metrics failing to fit the model well. To select

the metrics to be included in the model, we use a simple linear regression model to

identify the metrics which can better predict the quality score. It is found that four of

the metrics are statistically significant in at least one of the rating methods: msc, mit,

mcs, and mtk. Guided by the results from the linear regression analysis, we selected

these four metrics to form models 2 to 5 as listed in the second to fifth row in Table

7.5 and re-train them using the multiclass Naı̈ve Bayes classifier. Subsequently, the

average error rates are decreased to around 30%. Among the four rating methods, the

radio button and stars are better other two methods with an error of 27.2% in model

5. All rating methods except the number field method also obtained lowest error rates

in model 5, whereas the number field method achieved the lowest value in model 3.

Therefore, we suggest that different sets of worker behavior metrics should be used
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when the rating method is different.

Table 7.5: Worker behavior metrics used in various models.

Model
Worker behavior metrics

mst msc‡mtc‡ P ‡ mtd mit mis‡ mcs mca mtk‡

1 X X X X X X X X X X

2 X X X X

3 X X X

4 X X X

5 X X X

Note: ‡the variables applied multinomial distribution.
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Figure 7.11: The average error rate of different models.

We further analyze the performance of the models using the model with the lowest

error rate for each rating method to predict the worker’s category. We then compute the

differences between the actual and the predicted worker’s category, ∆L, with Equation

(7.18).

∆L = l − ľ, (7.18)

where l is the actual category, and ľ is the predicted category.

Table 7.6 shows the percentage of workers in each category. The percentage of

correctly predicting the categories for all four rating methods (∆L = 0) is quite high,

which is ranged from 73.3% to 82.6%. The quality of less than 2% of workers is under-

estimated by two categories (∆L = 2). This can cause the false alarm that the worker

is wrongly classified as a low-quality one. However, it is still acceptable in practice,

because the honest workers can complaint to the experimenter on his decision. The
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experimenter can also manually check those workers labeled as low-quality. On the

other hand, there are around 16% and 6% cases which are over-estimated by one and

two categories, respectively. The false negative rate is barely satisfactory.

However, we found that different sets of workers are labeled as low-quality in dif-

ferent rating methods. We hence label the workers using the lowest category predicted

by all the rating methods. The fifth row in Table 7.6 shows the combined results. The

accuracy can be retained, whereas the percentage of over-estimating the categories

(∆L < 0) is significantly reduced to 9.3% (=0.58%+8.72%).

Furthermore, as the number of low-quality workers are often less than good ones,

the accuracy can be easily inflated by overestimating their quality. Therefore, we also

examine whether the model can successfully identify low-quality workers. We man-

ually inspect the low-quality workers reported by the four rating methods. Both stars

and number field methods report the same set of six workers. Radio buttons and slide

bar can detect five and three low-quality workers, respectively. However, only two

workers can be found by at least two rating methods. This is probably due to the dif-

ferent behavior induced by the rating methods. We will further discuss this issue in

§7.5. By combining four rating methods, 78.6% (11 out of 14) of low-quality workers

are correctly identified.

Table 7.6: The percentage of workers showing differences between the actual and

predicted worker’s category.

Rating methods
∆L

-2 -1 0 1 2

Radio buttons 4.07% 12.8% 82.6% 0.58% 0%

Slide bar 5.23% 17.4% 75.6% 1.74% 0%

Number field 4.65% 15.1% 73.8% 4.65% 1.74%

Stars 6.98% 16.3% 73.3% 2.91% 0.58%

Combined 0.58% 8.72% 82.6% 6.40% 1.74%
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Comparison with CrowdMOS

We further compare our method with the post-screening procedure in the CrowdMOS

[202]. The main idea of the procedure is to compute the correlation between submitted

ratings and the mean rating of the same cases. The worker will be rejected if the

correlation coefficient is lower than a threshold, rth. The sample correlation coefficient

of worker n, rn, can be computed by Equation (7.19).

rn =
cov(µ̂1

(n,1), ..., µ̂
7
(n,4); v̂

1
(n,1), ..., v̂

7
(n,4))

std(µ̂1
(n,1), ..., µ̂

7
(n,4))std(v̂1(n,1), ..., v̂

7
(n,4))

, (7.19)

where cov(·) and std(·) return the covariance and standard deviation of the values,

respectively. µ̂c
(a,b) represents the rating for question c given by worker a in the bth

assessment and µ̂c
(a,b) represents the mean rating from all the workers in question c

under the scenario experienced by worker a in the bth assessment.

However, our task only required the workers to rate on four video clips, which

is insufficient to compute a meaningful correlation coefficient. Hence, we consider

seven ratings from each assessment, such as the rating on sound quality, playback

smoothness, and video content, instead of only examining the overall perceived quality

(MOS).

Because the threshold, rth, is an arbitrary chosen value [202], we evaluate a range

of threshold value from 0.2 to 0.5. We label those workers with {rn < rth/rn ≥

rth} as {‘reject’/‘accept’}. Figure 7.12 shows the recall, precision, and accuracy of

CrowdMOS against different correlation coefficient threshold. The recall, precision,

and accuracy can be computed by Equations (7.22), (7.21), and (7.20), respectively.

The accuracy and precision reached the maximum at rth = 0.25 with the value 98.3%

and 38.5%, respectively. This result also matches the value of rth recommended in

[202]. Both measures decrease when rth further increases, because more workers are
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incorrectly classified as ‘cheaters’. However, the recall increases from 14.3% to 64.3%

as rth increases from 0.2 to 0.5, because more cheaters are spotted as the criteria of

labeling cheaters releases.

Accuracy = (tp+ tn)/W, (7.20)

Precision = tp/(tp+ fp), (7.21)

Recall = tp/(tp+ fn), (7.22)

where tp, tn, fp, and fn are the number of true positives, true negatives, false posi-

tives, false negatives, respectively. W is the total number of workers.
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Figure 7.12: Recall and precision of CrowdMOS approach against different correlation

coefficient, rth.

Table 7.7 shows a comparison of the accuracy, precision, and recall CrowdMOS

and our method. For CrowdMOS, we set to threshold to be 0.25 (i.e., rth = 0.25).

For our method, we use the results combined by all rating methods. CrowdMOS only

supports making binary decision. Therefore, the ‘low-quality’ workers labeled by our

method are equivalent to the ‘reject’ category in CrowdMOS. Other workers are re-

garded as ‘accept’. CrowdMOS has a slightly higher accuracy than our method, be-

cause it selects less workers as low-quality ones than our method and results in more

true negatives. However, our method has significantly higher precision and recall, be-

cause it can correctly detect more low-quality workers.
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Table 7.7: A comparison of results of CrowdMOS and our method.

Accuracy Precision Recall

CrowdMOS (rth = 0.25) 98.3% 38.5% 35.7%

Our Method 93.0% 55.0% 78.6%

7.5 Discussion

In this section, we will discuss how different rating methods can affect the worker

behavior and the limitation of our method.

7.5.1 The influence of rating methods

Figures 7.13(a) – 7.13(d) show the fragments of the cursor traces and mouse events

from a typical and acceptable worker rating with radio buttons, number field, slide bar,

and stars methods, respectively. All the figures are in the same scale. The degree of

horizontal movement for radio buttons and number field is lower than slide bar and

stars. Moreover, the number field can trigger more vertically up and down movement,

which is probably due to the menu in Chrome. Interestingly, even though both slide bar

and stars can be used by directly clicking on the position corresponding to the rating or

the number of stars, the worker still controls them by drag-and-release or by moving

over the stars. We believe that, due to these differences in the behavior, we cannot

apply the same set of worker behavior metrics to the model for all the rating methods.

7.5.2 Limitation

The popularity of tablet devices and laptops with touch screens is increasing. The

workers can directly tap on the rating objects without using mouse. In this case, we

cannot record any cursor trajectory. In our tasks, we used javascript to check the type

of operating system and browser to filter the workers using tablet devices. However,
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this approach cannot apply to the workers using laptops equipped with touch screens.

We suggest that the experimenters can require the workers to use a mouse in the in-

structions. In our assessments, no worker used touch screen devices.

7.6 Summary

This chapter presented a novel worker-behavior based method which could be used

to infer the quality of workers. We proposed to extract information from the cursor

trajectory and quantify them using a set of worker behavior metrics. In our experiment,

we carefully designed a QoE crowdtesting task, such that we could estimate the quality

of workers with a quality score. We then correlated the worker behavior metrics with

the score using multiclass Naı̈ve Bayes model.

Our results showed that the error rate for the models with three metrics is less than

30%. We also found that different set of metrics should be used for different rating

methods. By combining the predictions from four rating methods, the success rate

in detecting low-quality workers is around 80%. We further showed that our method

outperforms CrowdMOS in the precision and recall.
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Figure 7.13: Cursor trace of different rating methods from a typical worker.
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Chapter 8

Conclusions and Future Work

This thesis advances HTTP video streaming systems in three directions—QoE mea-

surement, QoE improvement, and QoE assessment.

QoE Measurement We proposed a set of application performance metrics (APM)

to quantify the application QoS of HTTP streaming and link the network QoS with

the QoE. Through comprehensive testbed experiments and subjective assessments, we

revealed that the frequency of the occurrence of rebuffering events impacts the QoE

the most. We further investigated the impact of video quality adaptation on the user

perceived quality by conducting laboratory-based and crowdsourcing-based subjective

assessments. In particular, we found that a sudden drop of quality level can severely

degrade the QoE. Instead, switching down to an intermediate level before reaching the

target (lower) quality level is preferred. Another finding is that starting from low initial

video bitrate impacts on the QoE even if the quality can ramp up to a high quality. We

believe that this is because low initial video quality cannot meet user expectation.

QoE Improvement To improve the QoE of HTTP-based video streaming system,

we designed and implemented two practical systems IRate and QDASH. Both systems
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enhanced the HAS systems by a measurement middlebox, which can facilitate the

implementation of probe optimized network measurement methods on the server side.

IRate improved the selection of initial video bitrate by conducting pre-stream network

measurement before the onset of the video playback. Our design enables browsers to

perform lightweight packet-pair based measurement to collect the network path qual-

ity. We demonstrated that IRate can estimate the BIBR with 80% accuracy in 10s of

measurement with a trained decision tree. IRate can significantly reduce the rebuffer-

ing frequency in HTTP streaming and improve the efficiency and stability in DASH.

Our user QoE experiment further showed that the perceived initial quality and the MOS

increase by 20.8% and 6.4%, respectively.

After the video starts, the network throughput can be changed. The BIBR may be

no longer suitable. Therefore we proposed QDASH to improve the QoE of quality adap-

tation in DASH after the initial playback. First, the QDASH middlebox can improve the

available bandwidth measurement in HAS. Our novel design allows the measurement

middlebox to buffer and dispatch trains of video data packets with different packet

sending rates to measure the available bandwidth. We further increased the probing

performance by reordering the packets to increase the number of RTT samples and

selecting discrete sending rates corresponding to video bitrates. We showed that our

method can detect throughput changes rapidly, so that the quality adaptation algorithm

can have more time to mitigate steep quality changes. We further proposed a buffer-

aware quality adaptation algorithm to mitigate abrupt change in quality level.

QoE Assessment We proposed to apply user-behavior analytics to enhance the video

streaming QoE assessments and detect low-quality QoE crowdtesting workers. We first

studied how the user-viewing behavior can be useful for inferring the QoE. A novel

methodology was proposed to select and analyze the user viewing behavior which

is relevant to the impairments in HTTP streaming. The results from subjective as-
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sessments showed that including user viewing behavior can significantly improve the

explanatory power of predicting the QoE from using only the application layer infor-

mation.

QoE crowdtesting can compensate the lack of scalability in laboratory based sub-

jective assessments. However, the reliability of workers can be questionable. We there-

fore proposed a novel cheater detection mechanism to screen out low-quality workers.

We proposed a set of worker behavior metrics to systematically quantify the behav-

ior traces collected from the question pages. The trained prediction model can classify

low-quality workers without processing the submitted ratings. We also found that using

different rating methods the accuracy of our method was about 80%. In our compari-

son to CrowdMOS, our method reported a higher precision and recall by around 20%

and 40%, respectively.

8.1 Future work

Although we believe that our works presented in this thesis have shown the feasibility

of a QoE-aware HTTP-based video streaming system, there are still a few issues to

explore.

First, in the QoE measurement, we consider the impact of application QoS on the

QoE. We will further extend our measurement to the video content. It is because

the degradation of QoE may vary for different genre of video under the same set of

application QoS. For example, rebuffering events may hurt the QoE more in action

movies than news. We will include other factors into the QoE model which are related

to the characteristics of video clips, such as Structural Similarity Index (SSIM) [174].

Furthermore, we will construct a model based on the QoE measurement results to

improve the bitrate adaptation of the video streaming.

Second, we will investigate the interaction of competing HAS video flows with
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QDASH. Because QDASH middlebox bypasses the TCP congestion control, the charac-

teristics of QDASH video flows can be different from other DASH video flows. We

will also examine the fairness and stability of QDASH video flows. Furthermore, the

QDASH middlebox can manipulate the video flows sending to the same client, so that

the competing flows can fairly share the network bandwidth.

Third, video streaming through mobile networks is increasing popular. It is very

common nowadays that users watch videos using their smartphones or tablets. The

characteristics of the network and the user behavior can be very different from desktop

users. Therefore, we will extend our studies to the mobile context in the following two

aspects.

1. IRate and QDASH were only evaluated in wired network environment. However,

in mobile networks, the probe packets may experience a higher delay overhead in

the device [144], which can affect the RTT measurement. Furthermore, through-

put estimation in cellular networks can be more challenging, because the timing

of packets can be regulated by schedulers in the base station and/or the queuing

policy [240, 160, 161]. We will validate the accuracy of the network measure-

ment components of both systems under mobile networks. Other factors include

the signal strength, interference in WiFi, network congestion, and so on [69].

2. The user behavior analytics we proposed was focused on desktop environment.

However, some types of behavior are not available in the mobile. For example,

smartphones and tablets, which are touch screen operated, lack mouse cursor

trajectory traces. Instead, new types of user behavior can be triggered, includ-

ing user interactivity with virtual keyboards [187]. The sensors equipped on

smartphones, such as accelerometer, gyroscope, and GPS, can provide rich in-

formation about the user behavior. Therefore, we will extend our QoE evaluation

by implementing a mobile app [108] and collecting user behavior data.
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We will also investigate incorporating historical data to further improve the accu-

racy and reduce the overhead of IRate. It is common to record the throughput and

video streaming performance in the video player. These collected data can validate the

BIBR predicted by IRate. Similar to MLASH [56], the corresponding IRate measure-

ment results can be used as a feedback to the model, such that the quality oracle can

learn the characteristics of the clients and improve the prediction accuracy.

Finally, we will seek for opportunities to deploy our systems in large-scale video

streaming systems. In the meantime, we will explore other possible paradigms and

improvements to implement IRate and QDASH. For example, we can directly modify

the video servers to support the network measurement. We can further improve the

accuracy of the network measurement by employing new network primitives (e.g.,

OMware [168]). For the middlebox paradigm, we will research the SDN, which is one

of the future Internet initiatives. The software running on SDN controllers can measure

and intercept the traffic flowing through the SDN switches. This design shares some

similarities with our middlebox paradigm. We will investigate embedding network

measurement components into the SDN architecture for improving the QoE of video

streaming.
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[68] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux. Mechanical cheat: Spamming schemes and

adversarial techniques on crowdsourcing platforms. In Proc. ACM CrowdSearch, 2012.

[69] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, K. Papagiannaki, and P. Steenkiste. Identifying the

root cause of video streaming issues on mobile devices. In Proc. ACM CoNEXT, 2015.



184

[70] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stoica, and H. Zhang. Under-

standing the impact of video quality on user engagement. In Proc. ACM SIGCOMM, 2011.

[71] C. Dovrolis, P. Ramanathan, and D. Moore. Packet dispersion techniques and a capacity-

estimation methodology. IEEE/ACM Trans. Netw., 12(6):963–977, 2004.

[72] J. S. Downs, M. B. Holbrook, S. Sheng, and L. F. Cranor. Are your participants gaming the

system?: Screening mechanical turk workers. In Proc. ACM CHI, 2010.

[73] S. Egger, B. Gardlo, M. Seufert, and R. Schatz. The impact of adaptation strategies on perceived

quality of HTTP adaptive streaming. In Proc. ACM VideoNext, 2014.

[74] C. Eickhoff and A. P. de Vries. Increasing cheat robustness of crowdsourcing tasks. Inf Retrieval,

16(2):121–137, 2013.

[75] C. Eickhoff, C. G. Harris, P. Srinivasan, and A. P. de Vries. Quality through flow and immersion:

Gamifying crowdsourced relevance assessments. In Proc. ACM SIGIR, 2012.

[76] Endace. DAG packet capture cards. http://www.endace.com.

[77] A. E. Essaili, D. Schroeder, D. Staehle, M. Shehada, W. Kellerer, and E. Steinbach. Quality-of-

Experience driven adaptive HTTP media delivery. In Proc. IEEE ICC, 2013.

[78] K. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. F. Hansen, and P. Engelstad. Using band-

width aggregation to improve the performance of quality-adaptive streaming. Signal Processing:

Image Communication, 27(4):312–312, 2012.

[79] J. Fardous and S. Kanhere. On the use of location window in geo-intelligent HTTP adaptive

video streaming. In Proc. IEEE ICON, 2012.

[80] A. Finamore, M. Mellia, M. M. M. abd Ruben Torres, and S. G. Rao. YouTube Everywhere:

Impact of device and infrastructure synergies on user experience. In Proc. ACM/USENIX IMC,

2011.

[81] A. Ganjam, J. Jiang, X. Liu, V. Sekar, F. Siddiqui, I. Stoica, J. Zhan, and H. Zhang. C3: Internet-

scale control plane for video quality optimization. In Proc. USENIX NSDI, 2015.

[82] B. Gardlo, S. Egger, M. Seufert, and R. Schatz. Crowdsourcing 2.0: Enhancing execution speed

and reliability of web-based QoE testing. In Proc. IEEE ICC, 2014.



185

[83] P. Georgopoulos, M. Broadbent, A. Farshad, B. Plattner, and N. Race. Using software defined

networking to enhance the delivery of Video-on-Demand. Computer Communications, 69:79–87,

2015.

[84] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race. Towards network-wide QoE

fairness using openflow-assisted adaptive video streaming. In Proc. ACM FhMN, 2013.

[85] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate limiting YouTube video streaming.

In Proc. USENIX ATC, 2012.

[86] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube traffic characterization: A view from the edge.

In Proc. ACM IMC, 2007.

[87] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Characterizing user sessions on YouTube. In Proc.

MMCN, 2008.

[88] O. Goga and R. Teixeira. Speed measurements of residential Internet access. In Proc. PAM,

2012.

[89] Google. Video quality report. https://www.google.com/get/videoqualityreport/.

[90] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly high-speed TCP variant. SIGOPS Oper.

Syst. Rev., 42(5):64–74, 2008.

[91] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA data

mining software: An update. ACM SIGKDD Explorations, 11(1):10–18, 2009.

[92] J. Hao, R. Zimmermann, and H. Ma. GTube: Geo-predictive video streaming over HTTP in

mobile environment. In Proc. ACM MMSys, 2014.

[93] M. Hirth, S. Scheuring, T. Hoßfeld, C. Schwartz, and P. Tran-Gia. Predicting result quality in

crowdsourcing using application layer monitoring. In Proc. IEEE ICCE, 2014.

[94] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen. Initial delay vs.

interruptions: Between the devil and the deep blue sea. In Proc. QoMEX, 2012.

[95] T. Hoßfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K. Diepold, and P. Tran-Gia. Best prac-

tices for QoE crowdtesting: QoE assessment with crowdsourcing. IEEE Trans. Multimedia,

16(2):541–558, 2014.

[96] T. Hoßfeld, R. Schatz, and U. R. Krieger. QoE of YouTube video streaming for current Internet

transport protocol. In Proc. MMB&DFT, 2014.



186

[97] T. Hoßfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz. Quantification of

YouTube QoE via crowdsourcing. In Proc. IEEE ISM, 2011.

[98] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner. Assessing effect sizes of influence factors

towards a QoE model for HTTP adaptive streaming. In Proc. QoMEX, 2014.

[99] T. Hoßfeld, L. Skorin-Kapov, Y. Haddad, P. Pocta, V. A. Siris, A. Zgank, and H. Melvin. Can

context monitoring improve QoE? a case study of video flash crowds in the internet of services.

In Proc. IFIP/IEEE QCMan, 2015.

[100] R. Houdaille and S. Gouache. Shaping HTTP adaptive streams for a better user experience. In

Proc. ACM MMSys, 2012.

[101] J. K. Hsu. Startup bitrate in adaptive bitrate streaming, August 2013.

[102] N. Hu and P. Steenkiste. Evaluation and characterization of available bandwidth probing tech-

niques. IEEE JSAC, 21(6):879–894, 2003.

[103] N. Hu and P. Steenkiste. Evaluation and characterization of available bandwidth techniques.

IEEE JSAC, 21(6):879–894, 2003.

[104] C. Huang, J. Li, and K. W. Ross. Can Internet Video-on-Demand be profitable? In Proc. ACM

SIGCOMM, 2007.

[105] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. Confused, timid, and unstable:

Picking a video streaming rate is hard. In Proc. ACM/USENIX IMC, 2012.

[106] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A buffer-based approach to

rate adaptation: Evidence from a large video streaming service. In Proc. ACM SIGCOMM, 2014.

[107] F. Hwang, S. Keates, P. Langdon, and J. Clarkson. A submovement analysis of cursor trajectories.

Behaviour & Information Technology, 24(3):205–217, 2005.

[108] S. Ickin, M. Fiedler, K. Wac, P. Arlos, C. Temiz, and K. Mkocha. VLQoE: Video QoE instru-

mentation on the smartphone. Multimed Tools Appl, 74(2):381–411, 2014.

[109] Interactive Advertising Bureau. Digital video in-stream Ad format guidelines and best practices.

http://www.iab.net/media/file/IAB-Video-Ad-Format-Standards.pdf, May 2008.

[110] ITU-R Recommendation BT.500-12. Methodology for the subjective assessment of the quality of

television pictures, January 2012.



187

[111] ITU-T Recommendation P.10/G.100. Vocabulary for performance and quality of service, amend-

ment 1 edition, 2006.

[112] ITU-T Recommendation P.800. Methods for subjective determination of transmission quality,

August 1996.

[113] ITU-T Recommendation P.910. Subjective video quality assessment methods for multimedia

applications, April 2008.

[114] ITU-T Recommendation P.911. Subjective audiovisual quality assessment methods for multime-

dia applications, December 1998.

[115] M. Jain and C. Dovrolis. End-to-end available bandwidth: measurement methodology, dynamics,

and relation with TCP throughput. IEEE/ACM Trans. Netw., 11:537–549, 2003.
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