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ABSTRACT 

Fringe projection profilometry (FPP) is a popular optical three-dimensional (3D) 

scanning methodology, which allows real-time measurements of an object’s 3D 

information. It has salient advantages of low cost, high resolution, fast data 

acquisition, and full-field measurement as compared to other existing 3D scanning 

approaches. This thesis focuses on the development of robust FPP methods for 

obtaining accurate 3D estimation of the objects from incomplete or degraded 

observations due to the interference in the working environment.  

In a practical FPP procedure, some parts of the fringe images can be masked by the 

highlights generated due to the reflection of the surrounding global illuminations. In 

this research, an iterative inpainting regularization algorithm is proposed to restore 

the missing fringe patterns. The new algorithm detects the highlight regions 

automatically using a Gaussian mixture model (GMM). The geometrical structure of 

the missing fringe pattern is then sketched and used as the initial guess to guide the 

iterative regularization process. The simulation and experimental results show that 

the proposed method can detect the highlight regions and inpaint the missing fringe 

pattern accurately. They show that the proposed approach outperforms the traditional 

approaches in both quantitative and qualitative evaluations.  

Traditional FPP methods have the ambiguity problem that only the wrapped phase 

information (confined to - to ) of the fringe pattern can be measured, although the 

true phase information is required. Various phase unwrapping methods have thus 

been proposed for the FPP; however, most of them have problem if the captured 

fringe images have a complex scene, for instance, containing multiple and occluded 
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objects, having different kinds of artifact, such as high noise level in dark regions 

and discontinuities in fringe pattern, etc. In this research, a new marker encoding and 

detection algorithm is proposed to assist the phase unwrapping procedure to solve the 

ambiguity problem. For the proposed algorithm, unique markers that encode the true 

phase information of the fringes are embedded into the fringe pattern. Using the 

proposed marker detection and period order estimation algorithm, the markers are 

first detected and the true phase information is estimated accurately using a two-

dimensional dual tree complex wavelet transform analysis. Then this true phase 

information is used to facilitate the phase unwrapping algorithm at the later stage. As 

shown in the simulation and experimental results, the proposed scheme is robust in 

obtaining the correct 3D model of objects with fringe images of complex scene. 

Besides, the algorithm is simple that does not introduce a significant burden to the 

FPP process computationally. 

The above marker encoding and detection algorithm encodes the true phase 

information based on the position of the markers in the fringe pattern. A natural 

question arises if there is other form of encoding method that can give an even better 

performance in terms of robustness. In this research, we propose another algorithm 

which embeds a set of textural code patterns into the fringe pattern. It encodes the 

true phase information based on the morphological structure of the textural code 

patterns. During the fringe analysis procedure, the code patterns are separated from 

the fringe pattern using a modified morphological component analysis method. They 

are then decoded using a discriminative dictionary which is learned to give the sparse 

representations of the code patterns. They are integrated to a multilevel quality guide 

phase unwrapping procedure to allow the phase unwrapping to be carried out in 

fringe images of complex scene efficiently. The experimental results show that the 
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proposed algorithm is superior over the traditional approaches in terms of robustness. 

It is also computationally efficient as it requires only approximately 300ms when 

running on a normal personal computer in the Matlab environment.  
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CHAPTER 1  

1 INTRODUCTION 

  

 

 

Optical three-dimensional (3D) scanning is an active research field recently. Related 

techniques have been successfully applied in various non-contact 3D measurement 

applications such as medical tomography [1], 3D scene reconstruction [2, 3], 3D face 

scanning [4],  industrial quality control [5, 6], and 3D reconstruction of complex 

objects, e.g., multiple objects with strong global illumination  [7-10]. Among the 

existing optical 3D scanning techniques, the fringe projection profilometry (FPP) has 

salient advantages of low cost, high resolution, fast data acquisition, and full-field 

measurement. For a typical FPP procedure, fringe patterns are projected onto the 

target objects. Due to the 3D structure of the objects, the fringe patterns as shown on 

the object surface will be distorted. By measuring the amount of distortion 

(expressed in terms of the phase changes in the fringe patterns), the 3D information 

of the objects can be inferred.  

While many traditional FPP methods can perform satisfactorily in simulations, their 

performance can degrade significantly in actual practice. It is often due to the 

assumption that the phase changes of the fringe patterns can be completely observed 
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and captured by an imaging device, such as a digital camera. It is unfortunately not 

the case in many practical working environments where different kinds of 

interference can seriously affect the quality of the captured images. In this thesis, we 

develop a series of robust FPP methods which can accurately estimate the phase 

information of the fringe patterns from low quality captured images. Before further 

explaining the motivation and objective of this research, let us have a brief review 

about the existing 3D scanning technologies and their limitations that lead to this 

study. 

 

1.1 OPTICAL 3D SCANNING SYSTEM 

In last two decades, the development of computers and optical components has 

contributed significantly to the achievement and advancement of optical 3D scanning 

systems. In this section, several widely adopted optical 3D scanning systems are 

briefly reviewed.   

1.1.1 TIME-OF-FLIGHT CAMERA 

A time of flight (ToF) camera is a range imaging camera system which emits light 

pulses, i.e. laser beam, toward the target and captures the partially reflected signal 

pulses [11]. By measuring the time interval between the emission and the receipt of 

the reflected pulses, the system can measure the distance to the target object with 

reference to the speed of light. Its primary advantage is that it can obtain a 3D 

complete scene with a single shot at the video frame rate. In addition, the accuracy of 

the measurement at each pixel is independent of the object surface. However it only 

produces a low resolution depth map such that additional super-resolution process is 

often required as in [12]. Besides, the obtained 3D model of a scene often contains 
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severe artifacts due to light scattering and interferences. Hence this approach is not 

suitable for measuring the 3D model of complex scene. Figure 1-1 shows some 

examples of commercial ToF cameras and the principle of ToF phase measurement 

method.  

   

Figure 1-1. Mesa Imaging SR4000 (left), PMD Technologies 3D ToF Camera (the second column) , 

Depth Sense 325 from softkinectic (the third column) and the principle of ToF camera (right) adopted 

from [11] 

1.1.2 STEREO VISION 

To mimic human eyes, a stereo vision system employs a pair of cameras to capture 

two images from two different angles [13]. With the knowledge of the camera 

parameters and the captured images, the 3D coordinates of the scene can be obtained 

by triangulation [14]. In practice, more than two cameras are commonly employed to 

get accurate 3D geometric structures of a scene. Stereo vision systems have been 

used in various applications such as 3D building reconstruction [15], aerial survey, 

3D face recognition [16], and  3D body scanning [17]. However, most passive stereo 

vision systems have low accuracy [16] and are computationally intensive [18]. Hence 

they are not suitable to real-time applications. 

1.1.3 STRUCTURE LIGHT SYSTEM  

For stereo vision systems, it can be difficult to find the corresponding points of the 

two images even when the epipolar constraint is taken into account. In contrast, the 

3D model reconstruction of an object can be considerably alleviated by an active 

vision method [19]. To simplify the searching process of the corresponding points, a 

structure light system (SLS) employs a projector which replaces one of the two 
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cameras used in stereo vision systems. More specifically, the projector projects a 

code pattern of a particular structure so that the code points in the captured image can 

be easily distinguished by means of a coding strategy [19, 20]. Many coding 

strategies can be found in the literature. For instance, [21-24] employ a color coding 

technique to encode the pixels; [25] employs a binary coding method which uses two 

illumination levels, i.e. 0 and 1, in their code pattern; [26, 27] employ an N-ary 

coding method to reduce the large number of patterns used in the binary coding 

techniques; [28] proposes a hybrid method, i.e., color N-ary Gray code, to obtain an 

accurate 3D model; [29-31] employ the De Bruijn sequences which are claimed to be 

the best uncorrelated code; [32] employs an unstructured light pattern and [33-40] 

propose a periodic fringe pattern. Although these approaches may work effectively 

for simple objects, erroneous results will be generated when working with images of 

complex scene, for instance, containing multiple and occluded objects, having high 

noise level in dark regions and discontinuities in the code pattern. The current FPP 

system developed in this thesis can be considered as a particular SLS system which 

employs periodic fringe patterns. However, extra measures are developed in this 

research to improve the robustness when working in practical environment. They 

will be discussed in detail in the next few chapters. 

Two of the most popular consumer SLS devices perhaps are the Kinect [5, 41] and 

XTion [42]. In these consumer systems, infrared (IR) light is employed as the light 

source and is projected unto the object in the form of random speckles. An IR camera 

will capture the speckle pattern image that is shifted due to the shape of the object. 

The 3D shape of the object can be inferred by triangulation between the camera and 

the light source. However, these devices can only be applied to perform low 

precision and low resolution 3D measurements. Their performance can be further 
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limited due to the various interferences of the working environment, such as the 

illumination variations, radiometric noises, etc. For example, Kinect system projects 

fix speckles pattern using near infra-red (NIR) laser projector and the depth 

information of a pixel is estimated by finding the best correlation pattern patch, 

typically in a 9x9 pixel window. Hence, it can give only a lower resolution depth 

image but faster in term of computational time as it requires minimum projected 

pattern and simple calculation. 

1.1.4 ACTIVE STEREO VISION  

An active stereo vision system incorporates both the active vision and stereo vision 

techniques. For instance, in the active stereo vision system described in [7], a 

standard active vision method, phase measuring profilometry (PMP) 1 , is 

implemented but includes a pair of stereo cameras to improve the 3D measurement 

accuracy. Similarly, a coded structured light system with an additional stereo vision 

method has been reported in [43] to achieve highly accurate 3D measurement 

without the system calibration process. The stereo vision technique is also 

incorporated into the active vision system in [2] to mitigate the phase ambiguity 

problem during the phase unwrapping process, which is typical in most FPP systems. 

While the active vision system has somehow benefited from the additional 

information given by the stereo vision system, it also inherits its problem such as 

high computational complexity and higher hardware cost.  

1.2 MOTIVATION AND OBJECTIVES 

The above 3D scanning technologies have a common feature; they are contactless. It 

is an important feature since any contact between the scanner and the object can lead 

                                                 
1 PMP is a general term for a phase based FPP method including both phase shifting profilometry (PSP) and Fourier 

transform profilometry (FTP) method. 
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to artifacts on the object surface which is unacceptable in many applications. While 

the systems are contactless, it means that there must be a distance between the 

scanning device and the object. In general, we do not want the distance to be too 

short, since it will limit the flexibility in the system setup. However, the longer is the 

distance, the higher will be the probability that the system is affected by the 

interference in the working environment. It is particularly the case for optical-based 

systems such as the stereo vision systems and the structured light systems. It is 

because the performance of the system can be easily affected by the ambient lighting 

condition and the light reflected by the object itself, which are difficult to perfectly 

control. In a typical optical-based 3D scanning process, the resulting images captured 

for 3D reconstruction can have strong reflection due to the surrounding strong global 

illumination. They can also have strong white Gaussian noise in the dark regions of 

the images. Sometimes some parts of them can be totally blocked due to the 

occlusion between multiple objects. And the images can also have sudden jumps in 

intensity due to the discontinuities, coloration and structural changes of the objects. 

All these will lead to severe errors in a 3D measurement process. In this thesis, we 

define a captured image to have a complex scene if the image contains one of more 

of the abovementioned problems. The study of robust 3D measurement of objects 

based on images with complex scenes has a high research value since it deals with 

the real problems in practical working environments.  

In this research, we confine our study to one of the SLS methods, i.e. the fringe 

projection profilometry (FPP). As mentioned above, the FPP has salient advantages 

of low cost, high resolution, fast data acquisition, and full-field measurement over 

the existing optical 3D scanning techniques. We focus on developing robust FPP 

methods that can maintain the accuracy when working on images with complex 
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scenes. We are particularly interested in tackling the following problems in the 

captured images: (i) high noise level in the dark regions of the image; (ii) bias in the 

image due to the coloration of the object; (iii) reflection due to strong global 

illumination; (iv) sudden intensity change due to the discontinuities or sharp 

structural changes of the object; and (v) occlusion due to multiple objects. These 

problems are typical in real working environments.    

To summarize, the general objective of this research is to develop robust FPP 

methods that can function effectively in adverse working environments. It is 

achieved by the following two strategies:  

 Develop efficient and effective methods to enhance the captured images 

which are affected by the interference in the working environment.  

 Develop good projection methods so that the projection patterns can be 

robustly detected despite of the possible artifacts in the captured images 

introduced by the working environment. 

1.3 THESIS STRUCTURE 

This thesis consists of six chapters. Chapter 1 provides an overview of some related 

3D measurement techniques and outlines the motivation and objectives of this 

research.   

Chapter 2 presents the principle of different FPP methods and their problems in real 

working environments. We also describe a dual-tree complex wavelet transform FPP 

framework which our research team developed recently for tackling the noise and 

bias problems in the captured images.  
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Chapter 3 presents the proposed inpainting algorithm for the captured images using 

geometrically guided iterative regularization method. The new algorithm solves the 

reflection problem introduced by surrounding global illuminations. It shows our first 

effort of tackling the problems in FPP due to the imperfect working environment.  

In Chapter 4, a novel marker encoding and detection algorithm is proposed to solve 

the ambiguity problem in FPP. Traditional FPP procedures have the ambiguity 

problem since the phase information evaluated from the captured images is always 

confined to -𝜋 to 𝜋. Such ambiguity problem will be amplified if the captured images 

have noises, bias, discontinuities and other artifacts. The algorithm embeds a set of 

special markers into the fringe pattern to help determining the true phase information. 

The markers used in Chapter 4 encode the true phase information based on their 

positions in the fringe pattern. A natural question arises if there is other form of 

encoding method that can give an even better performance in terms of robustness. 

We thus propose another algorithm in Chapter 5. The new algorithm embeds a set of 

textural code patterns into the fringe pattern. It encodes the true phase information 

based on the morphological structure of the textural code patterns. For decoding the 

code patterns, different sparse coding and sparse dictionary learning techniques are 

adopted. 

Based on the results in Chapter 3 to 5, we draw the conclusions in Chapter 6. Future 

works for this research are also outlined in that Chapter. 
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CHAPTER 2 

2 FRINGE PATTERN PROJECTION PROFILOMETRY  

 

 

 

A fringe projection profilometry (FPP) system projects fringe patterns to an object 

and captures the deformed patterns caused by the object height distribution. By 

analyzing the displacement of the fringes, the 3D model of the object can be 

measured. Although there are many techniques available for FPP, many of them in 

fact do not function properly in practice. It is because the assumptions made by these 

approaches often cannot be fulfilled in practical working environments. This chapter 

first reviews the principle of FPP methods. Then the common problems when the 

conventional FPP is applied in the real working environment are described.  

This chapter is organized as follows: Section 2.1 presents the principle of the FPP 

method; Section 2.1.1 describes the two fringe analysis methods namely, the Fourier 

transform profilometry (FTP) method and the phase shifting profilometry (PSP) 

method respectively; Section 2.1.2 reviews the principle of the phase unwrapping 

process for FPP. Section 2.2 presents three common problems of FPP methods in real 

world applications. And finally Section 2.3 describes the dual-tree complex wavelet 

transform (DTCWT) FPP framework and the specific problems which are tackled in 

this research. 
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2.1 PRINCIPLE OF FPP METHODS 

In this section, we first review the principle of the conventional FPP methods [44]. 

An FPP system is typically set up based on the crossed-optical-axes geometry as 

shown in Figure 2-1 [44]. 

 
Figure 2-1 Phase based fringe projection profilometry arrangement in the crossed-optical-axes 

geometry. 

As shown in Figure 2-1, a fringe pattern image is projected by the projector located 

at 𝐸𝑝 and the deformed fringe pattern as shown on the object surface is captured by 

the camera at  𝐸𝑐. The resulting image can be modeled using the following equation 

[45], 

𝐺(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) 𝑐𝑜𝑠[𝜙(𝑥, 𝑦)] (2-1) 

where 𝑎(𝑥, 𝑦) is the bias caused by the object’s texture and color; 𝑏(𝑥, 𝑦) is the 

amplitude of the fringe pattern which is model as a sinusoidal function. In (2-1),  

𝜙(𝑥, 𝑦) = 2𝜋𝑓0𝑥 + 𝜙δ(𝑥, 𝑦) is the phase angle at pixel position (𝑥, 𝑦) of the fringe 

image, where 𝑓0  is the carrier frequency of the fringe; and 𝜙δ(𝑥, 𝑦) is the phase 

difference from the reference. Its value is related to the height of the object. It can be 

explained as follows. First, assume that there is a reference plan R placed as in 

Figure 2-1. The fringe projected onto 𝑅 at point 𝐴 will be seen by the camera to be at 
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point 𝐷 on the object. The amount of displacement in 𝑥-axis is given by 𝐴𝐶, which is 

related to the object height at point 𝐷, i.e. −ℎ𝐷, by, 

𝐴𝐶

−ℎ𝐷
=

𝑑0
𝑙0 − ℎ𝐷

 (2-2) 

Hence if 𝐴𝐶 is known, the object height at point 𝐷 can be evaluated by,  

ℎ𝐷 = 
𝑙0𝐴𝐶

𝐴𝐶 − 𝑑0
 (2-3) 

The next question is how to obtain 𝐴𝐶. Assume that the fringe projected onto the 

reference plane 𝑅  is captured by the camera as a reference image. And denote 

𝜙0(𝑥, 𝑦) = 2𝜋𝑓0𝑥  be the phase angle of the sinusoidal fringe pattern on that 

reference image. Now the same fringe is projected onto the object. The resulting 

image captured by the camera is given in (2-1) with phase angle 𝜙(𝑥, 𝑦). To estimate 

𝐴𝐶, we just need to measure the phase difference between 𝜙(𝑥, 𝑦) and 𝜙0(𝑥, 𝑦), i.e. 

𝜙δ(𝑥, 𝑦) at point 𝐶, since it is linearly proportional to the distance 𝐴𝐶. In general, the 

height profile ℎ(𝑥, 𝑦) of the object can be computed as follows: 

ℎ(𝑥, 𝑦) =
𝑙0𝜙δ(𝑥, 𝑦)

𝜙δ(𝑥, 𝑦) − 𝑑0
 (2-4) 

The evaluation of 𝜙δ(𝑥, 𝑦)  requires the true phase of 𝜙(𝑥, 𝑦) . Unfortunately, it 

cannot be directly measured from the observed image 𝐺(𝑥, 𝑦) in (2-1) since any 

integer multiple of 2𝜋 added to 𝜙(𝑥, 𝑦) will give the same 𝐺(𝑥, 𝑦). Or in other words, 

only the modulo-2𝜋 wrapped 𝜙(𝑥, 𝑦) can be obtained from 𝐺(𝑥, 𝑦). To obtain the 

true phase of 𝜙(𝑥, 𝑦), the phase unwrapping procedure needs to be applied. Then 

once the phase information is obtained, the 3D model of an object can be 

reconstructed. In the following sub-sections, the fringe analysis methods for 

obtaining the wrapped 𝜙(𝑥, 𝑦) from the fringe image  𝐺(𝑥, 𝑦) as well as the phase 

unwrapping procedure will be described in detail.  
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2.1.1 FRINGE ANALYSIS 

Referring to (2-1), the objective of the fringe analysis procedure is to obtain 𝜙(𝑥, 𝑦) 

from the fringe image 𝐺(𝑥, 𝑦). This seemingly simple problem becomes difficult in 

practice since real fringe images can deviate significantly from the mathematical 

model in (2-1). More specifically, real fringe images may contain higher order 

harmonics in addition to the dc bias and the cosine term in (2-1). Besides, these 

higher order harmonics as well as the dc bias can “alias” into the fundamental 

frequency component (i.e. the cosine term in (2-1)) that makes the estimation of 

𝜙(𝑥, 𝑦) erroneous. Many approaches have been devised to deal with these problems. 

In this subsection, two types of fringe analysis method will be reviewed, namely, the 

Fourier transform profilometry (FTP) and the phase shifting profilometry (PSP).  

FTP method 

We first focus on the FTP method which was first proposed in [44]. In FTP, the 

fundamental frequency spectrum is assumed to have no aliasing components from 

the dc bias and the higher order harmonics as in Figure 2-2. Hence it can be extracted 

directly in the Fourier domain such that the phase of interest which is associated with 

the object’s height can be estimated accurately. 

 
Figure 2-2. Frequency spectra of the deformed fringe pattern [44]. 

 

The above procedure can be mathematically explained as below. We first assume 

that the higher order harmonics are insignificant and there is no aliasing among 
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frequency spectra, then we can continue to use (2-1) to describe the fringe image. 

Suppose 𝐺𝑦(𝑥) = 𝐺(𝑥, 𝑦) for a particular  𝑦, (2-1) can be formulated by using the 

Euler’s formula as follows [46]: 

𝐺𝑦(𝑥) = 𝑎𝑦(𝑥) + 𝑐𝑦(𝑥)𝑒
𝑖2𝜋𝑓0𝑥 + 𝑐𝑦(𝑥)𝑒

−𝑖2𝜋𝑓0𝑥 (2-5) 

where  

𝑐𝑦(𝑥) =
1

2
𝑏𝑦(𝑥)𝑒

𝑖δ𝜙𝑦(𝑥) (2-6) 

Taking the Fourier transform on (2-5), the following equation can be obtained,  

�̂�𝑦(𝑓𝑥) = �̂�𝑦(𝑓𝑥) + �̂�𝑦(𝑓𝑥 − 𝑓0) + �̂�𝑦
∗(𝑓𝑥 + 𝑓0) (2-7) 

where  �̂�𝑦(𝑓𝑥), �̂�𝑦(𝑓𝑥), and �̂�𝑦(𝑓𝑥 − 𝑓0) are the frequency spectra of 𝐺𝑦(𝑥), 𝑎𝑦(𝑥) , 

and 𝑐𝑦(𝑥), respectively, as illustrated in Figure 2-2. Note that the superscript * in  

(2-7) represents a complex conjugate. To estimate δ𝜙𝑦(𝑥), we just need the  �̂�𝑦(𝑓𝑥 −

𝑓0) term. It can be directly extracted from �̂�𝑦(𝑓𝑥) assuming we know the bandwidth 

of �̂�𝑦(𝑓𝑥 − 𝑓0) . The resulting spectra is inverse-transformed back to the spatial 

domain. Then, an estimation of 𝑐𝑦(𝑥) is obtained. The wrapped phase difference 

𝛿�̂�𝑦(𝑥) can be extracted by computing only the imaginary part of the logarithm of 

𝑐𝑦(𝑥) [46], 

𝛿�̂�𝑦(𝑥) = ℑ[log[𝑐𝑦(𝑥)]] = ℑ [log [
1

2
𝑏𝑦(𝑥)] + 𝑖δ�̂�𝑦(𝑥)] (2-8) 

where ℑ is an operator that extracts the imaginary part of a complex number. 𝛿�̂�𝑦(𝑥)  

in (2-8) is the wrapped phase difference of δ𝜙𝑦(𝑥)  which has a principle value 

[– 𝜋, 𝜋). FTP has the advantage that, in principle, it only requires one fringe image to 

compute the wrapped phase difference 𝛿�̂�𝑦(𝑥) and in turn the 3D model of the target 

object. However, FTP assumes there is no aliasing among frequency spectra, which 

is in general not the case in practice since the color pattern and the texture of the 
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object can introduce a dc bias with large bandwidth. It often introduces the aliasing 

problem that makes the FTP method not as popular as the other fringe analysis 

methods.   

PSP method 

Unlike the FTP method which directly removes the dc bias and higher order 

harmonics in the frequency domain, the PSP method employs 𝑁 phase shifted fringe 

patterns to remove them in the spatial domain. Again, assuming the higher order 

harmonics are insignificant, the 𝑁 shifted fringe patterns captured by the camera can 

be expressed as,  

𝐺𝑛(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) 𝑐𝑜𝑠 [𝜙(𝑥, 𝑦) −
2𝜋𝑛

𝑁
] (2-9) 

where 𝑛 = 1,… ,𝑁 and 𝑁 is the total number of fringe patterns used. Note that (2-9) 

is in fact the shifted version of (2-1). The phase information 𝜙(𝑥, 𝑦) can be obtained 

by, 

�̂�(𝑥, 𝑦) = arctan [
∑ 𝐺𝑛(𝑥, 𝑦) sin (2𝜋

𝑛
𝑁)

𝑁
𝑛=0

∑ 𝐺𝑛(𝑥, 𝑦) cos (2𝜋
𝑛
𝑁)

𝑁
𝑛=0

] (2-10) 

Since (2-9) has three unknown terms, 𝑎(𝑥, 𝑦), 𝑏(𝑥, 𝑦), and 𝜙(𝑥, 𝑦), theoretically, it 

can be solved using only three shifted fringe patterns. Hence using three shifted 

fringe pattern images is popular in many PSP based fringe analysis researches [10, 

33, 34, 36, 38, 39, 47-49]. The three fringe pattern images captured by the camera 

can be expressed as follows:  

𝐺1(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) 𝑐𝑜𝑠 [𝜙(𝑥, 𝑦) −
2𝜋

3
] 

𝐺2(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) 𝑐𝑜𝑠[𝜙(𝑥, 𝑦)]              

𝐺3(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) 𝑐𝑜𝑠 [𝜙(𝑥, 𝑦) +
2𝜋

3
] 

(2-11) 
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Since it uses three fringe patterns, N=3, the phase information in (2-10) can be 

reduced to [47],  

�̂�(𝑥, 𝑦) = arctan [
√3(𝐺1(𝑥, 𝑦) − 𝐺3(𝑥, 𝑦))

 2𝐺2(𝑥, 𝑦) − 𝐺1(𝑥, 𝑦) − 𝐺3(𝑥, 𝑦)
] 

(2-12) 

The PSP method does not suffer from the aliasing problem due to the dc bias as in 

the FTP method. However, it requires 3 fringe images which may introduce 

difficulty to some real-time systems, particularly when the object is fast moving. 

Besides, similar to the FTP method, the PSP method can also give only the modulo-

2𝜋  wrapped phase rather than the true phase. Hence an extra phase unwrapping 

procedure is necessary.  

 

2.1.2 PHASE UNWRAPPING PROCESS 

It has been shown that both fringe analysis methods, i.e., FTP and PSP, give only a 

modulo-2𝜋 wrapped phase �̂�., which has a principle value [−𝜋, 𝜋). Given only the 

wrapped phase �̂�  after the fringe analysis, a phase unwrapping procedure is 

performed to recover the absolute (true) phase 𝜙. In a traditional phase unwrapping 

procedure, it is generally assumed that the absolute value of phase differences 

between neighboring pixels is less than 𝜋. If the assumption is valid, the solution of 

the absolute phase image can be easily determined. The above assumption was first 

reckoned by Itoh and known as the Itoh condition which can be expressed as follows 

[50]:  

|Δ𝜙(𝑥)| ≤ 𝜋 (2-13) 

where 

Δ𝜙(𝑥) = 𝜙(𝑥) − 𝜙(𝑥 − 1) (2-14) 
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with 𝜙(𝑥) denoting the unwrapped phase at a particular location 𝑥. Note that the 

delta operator Δ will hold, irrespective of the phase being an absolute or a wrapped 

phase. Thus the relation between the wrapped phase  �̂� and the absolute phase 𝜙 can 

be written as follows,  

Δ𝜙(𝑥) = 𝒲(Δ�̂�(𝑥)) (2-15) 

where 

𝒲(𝑡) = 〈𝑡 + 𝜋〉2𝜋 − 𝜋 (2-16) 

is the wrapping operator which gives Δ𝑦(𝑥) → [−𝜋, 𝜋) and 〈𝑎〉𝑏 denotes a modulo b. 

Using (2-14), the absolute phase at position 𝑥′ can be recovered by,  

𝜙(𝑥′) = ∑ Δ𝜙(𝑥)

𝑥=𝑥′

𝑥=1

+ 𝜙(0) (2-17) 

By substituting (2-15) into (2-17), the absolute phase 𝜙(𝑥′) can be obtained from the 

wrapped phase �̂� as follows:  

𝜙(𝑥′) = ∑ 𝒲(Δ�̂�(𝑥))

𝑥=𝑥′

𝑥=1

+ 𝜙(0) 
(2-18) 

After the true phase is obtained, the 3D model of the object can be readily 

reconstructed.  

In the last two decades, there have been many phase unwrapping algorithms 

developed based on the Itoh assumption [51]. One of the classic algorithms is 

Goldstein’s branch cut algorithm [52]. In this algorithm, the nearby residues2 are first 

detected and then connected by branch cuts3 so that the residues are balanced and the 

phase can be unwrapped along any path that does not cross the branch cuts. This 

                                                 
2 A residue is an inconsistent pixel which is located somewhere inside a “loop” of four pixels whose integration of the phase 

derivative, i.e., the sum of the wrapped phase differences, is not zero, but 2𝜋(positive charge) or −2𝜋 (negative charge). 
3 A branch cut is a line that connects two residues with difference polarities; the phase cannot be unwrapped crossing this 

line.  
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algorithm is simple and fast. Another classic algorithm is the quality-guided phase 

unwrapping algorithm [51]. It is in fact a floodfill algorithm in which the order of fill 

is determined by a quality map4 which was first introduced by Bone [53]. Since then, 

there have been many phase quality guided unwrapping algorithms developed [37, 

54-57]. Besides, the phase unwrapping procedure can also be performed by 

separating the phase image into regions by means of the fringe lines and adding a 

multiple of 2𝜋  to each region such that the discontinuities are minimized. This 

approach was proposed in [58] which employs an edge detection technique to find 

the boundary of regions. An improved version of this approach was later introduced 

by Flynn [59] and was used to unwrap the interferometric phase. This approach is 

robust but is also computationally expensive. Although there are many robust phase 

unwrapping algorithms, they often cannot give accurate results since the assumption 

of the Itoh condition made by these algorithms is not valid in many practical working 

environments, which is the topic for discussion in the next section. 

 

2.2 FPP IN THE REAL WORKING ENVIRONMENT  

When a camera captures the projected fringe pattern on the scene, the light intensity 

as shown in each pixel in the captured image can be viewed of composing by two 

components, namely, the direct light and the indirect light. The direct light is 

generated by the direct illumination of the fringe pattern projected by the projector. 

The indirect light is the global illumination from the scattering of light of other parts 

in the scene. In addition to those two components, a fringe image can also contain 

bias and noise. As mentioned above, the bias is caused by the object’ texture and 

                                                 
4 A quality map is a quality or goodness of phase values to guide the unwrapping path, i.e. the second difference, phase 

derivative variance, maximum phase gradient, etc.  
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coloration which reflect only some of the direct light; whereas noise is caused by the 

different noise sources, such as, electronic noise of the CCD, camera lens, air, etc.  

In real working environments, shadows are also commonly exist when the scene 

consists of multiple objects. In such situation, the light from the projector can be 

blocked due to the objects’ shape. The captured fringe image may thus contain 

regions with low intensity pixels known as shadows. Hence the phase value in this 

region cannot be inferred. And in some extreme situations, even some parts of the 

object cannot be seen in the image due to occlusion. In this situation, the 

conventional phase unwrapping algorithm will fail to recover the true phase since the 

continuity of the phase cannot be guaranteed. In the following subsections, some 

traditional methods in FPP that deal with the noise and bias problem, the global 

illumination problem, and the ambiguity problem are reviewed.  

2.2.1 NOISE AND BIAS PROBLEM 

The noise and bias problem in FPP has been analyzed for nearly three decades [44, 

60-63]. For the FTP method, the noise and bias problem is particularly crucial to the 

fringe analysis process since the incurred aliasing effect cannot be simply removed in 

the frequency domain. The noise problem can be relatively easier to resolve. In [60-

63], a short time Fourier transform is employed to deal with the non-stationary 

fringes and noise. One of the limitations of this approach is that the width of the 

window needs to be determined. Besides, it is also computationally expensive. 

Alternatively, the wavelet transform can be used to detect the phase and at the same 

time remove noise as in [64-68]. All these approaches are however computationally 

expensive and cannot handle the bias problem. 
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Figure 2-3 the fringe pattern with bias (left) and the intensity plot at row indicated by red line (right) 

 

The bias problem occurs usually when the target object contains textures and/or color 

patterns of large luminance differences. In this case, the resulting bias will have a 

large bandwidth and lead to spectral leakage. An example is shown in Figure 2-3. In 

the figure, the paper aeroplane has a few color strips such that sharp changes in 

luminance are found on the strip boundaries. In this case, conventional FTP methods 

which try to remove the bias in the frequency domain will not be effective. The 3D 

model reconstructed from the resulting fringe image will thus contain severe artifacts. 

Different approaches were developed to solve the problem. In [46], an additional 

background image is captured to remove the bias prior to the fringe analysis process. 

This approach is simple but requires additional image, which may cause problem if 

the object is moving rapidly. In [67], a bias removal method is successfully 

integrated into the dual-tree complex wavelet transform (DTCWT) based FTP 

system [69]. By adopting the special feature of the fringe image in DTCWT domain, 

the bias in the fringe image can be much easily detected and removed. In fact, some 

of the works in this research were also carried out based on this system. More details 

of this system will be given in a later section of this Chapter.  

As it is mentioned above that using more fringe images can help to remove the bias, 

the PSP method which inherently uses multiple fringe images for fringe analysis has 

been shown to be able to mitigate the noise and bias problem easily. It is resistant to 
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the ambient light and the reflection due to the cancelation effect from several shifted 

fringe images. As it is mentioned in Section 2.1.1, the PSP method needs a minimum 

of three phase shifted fringe images. Then the bias component can be removed by 

averaging the three images [2, 17, 70]. 

While using more fringe images can improve the performance in removing noise and 

bias, it can also introduce problem to applications with moving objects as mentioned 

above. To minimize the number of fringe patterns without sacrificing the accuracy of 

the measurement, [6, 70, 71] propose a two plus phase shifting algorithm which 

requires only two fringe patterns and one flat image. In [6], a two-step method is 

employed to obtain an accurate 3D measurement of soldering paste on a printed 

circuit board; whereas in  [70, 71], a two-step method is employed to speed up the 

process particularly in dealing with motion which commonly presents during the 

capturing process.  

To further improve the accuracy of the PSP method, a pre-filtering stage has also 

been introduced [6, 7, 72]. In [6], an additional median filter is incorporated to obtain 

an accurate 3D measurement of the tiny solder paste on a printed circuit board. In [7], 

a stereo camera with additional Kullback-Leibler divergence refinement is used to 

enhance the final 3D reconstruction of a complex scene; and in [72], the FTP method 

is applied to each phase shifted fringe pattern to further improve the accuracy of the 

phase measurement. Although all the abovementioned approaches can effectively 

reduce the effect of the noise and bias problem, they will still fail to reconstruct the 

3D model of objects if the fringe images have a complex scene, for instance, 

containing multiple objects and/or with strong global illumination. It will be 

discussed in the following sections.  
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2.2.2 GLOBAL ILLUMINATION 

In FPP, it is expected that the camera will capture only the direct light emitted from 

the projector. However in practice, it is unavoidable for the camera to be affected by 

the illumination generated by other light sources in the scene. It is known as the 

“global illumination”. Figure 2-4 shows a camera that captures light from both the 

direct illumination from the projector and the global illumination from various 

indirect light sources such as: (B) inter-reflections, (C) subsurface scattering, (D) 

volumetric scattering, and  (E) translucency [73].  

In the presence of global illumination, the phase measured from the fringe analysis 

process is unlikely to be accurate. It introduces additional bias to the fringe image. 

And in some extreme cases that the global illumination is strong and the material of 

the object is reflective, specular highlights are formed on the object surface and the 

fringes in the highlight regions can be totally washed out [74]. Hence the continuity 

of the fringes cannot be preserved and introduces much difficulty to phase 

unwrapping. To minimize the global illumination effects, some FPP methods employ 

high frequency fringe patterns [9, 10, 75-77]. However all of these approaches 

require more than the theoretical three fringe patterns of PSP. Alternatively, 

additional hardware systems are employed to the PSP method such as sliding 

projector [78], polarizer [10], special coaxial optical scanner [76], laser scanner [8], 

and additional camera [7]. Obviously they introduce additional cost and complicate 

the system setup. In fact, the approach in [10] still requires more than the minimum 

three fringe images and is designed specifically for reconstructing the 3D model of 

translucent objects.  
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Figure 2-4 Illustration of direct illumination and global illumination from other light sources in the 

scene [73].   

 

2.2.3 AMBIGUITY PROBLEM 

All FPP systems which employ periodic fringe patterns, i.e., the FTP and PSP 

method, will suffer from the so-called ambiguity problem that only the wrapped 

phase information is retrieved. Phase unwrapping algorithms are thus adopted to help 

resolving the ambiguity problem. Most phase unwrapping algorithms are based on 

the Itoh condition [50] as mentioned in Section 2.1.2. To obtain the true phase, it is 

shown in (2-18) that a pre-defined reference point 𝜙(0) is needed. To obtain this 

reference point, an additional tiny marker is commonly used to put on the surface of 

the object, for instance, PSP with a dot marker [38], PSP with a strip marker [79], 

and FTP with a cross marker [46] , etc. These approaches, although simple, suffer 

from a few difficulties in practice. First, some of these approaches are invasive (that 

require a real marker putting on the object surface) or require human effort (manually 

marking on the fringe images). Second, for complex scenes that contain multiple 

objects, one marker is required for each object in the scene. Finally, if there is 

discontinuity in the fringe image, a marker is needed for each disconnected region. 
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The last problem is particularly difficult to solve since the number and position of the 

disconnected regions are usually unknown during the system setup. 

 

Figure 2-5 Illustration of the ambiguity problem due to isolated multiple objects [36].    

 

To illustrate the above, Figure 2-5 shows a scene consisting of two objects positioned 

at different distance from the camera. As shown in the figure, the distance of the two 

fringes becomes closer in the fringe image although the period order (the number in 

the figure) is significantly different. So the fringes are discontinuous and each object 

needs to have its own marker (or reference point). To simplify the need of putting 

markers on the objects, several pattern codification strategies have been proposed to 

solve the ambiguity problem by embedding the period order information (the number 

above the fringes in Figure 2-5) into the fringe pattern in the form of, e.g. multi-

wavelength [80],  random speckles [39], multi-colors [79],  dual frequencies [35, 81], 

and additional extra patterns or extra gray code patterns [5, 82-84]. However the 

approaches in [5, 82-84] need additional projections whereas the approaches in [35, 

39, 79, 81] can reduce the accuracy of the final reconstructed 3D model.  



  24 

 

 

Figure 2-6 Illustration of the ambiguity problem due to occlusions [36].    

 

Furthermore, the presence of occlusions in the scene also contributes to the severe 

ambiguity problem. As shown in Figure 2-6, the continuity of the fringes seems 

preserved but in fact the fringes in region B (period number 2-4) are missing in the 

camera’s view (right). Any conventional phase unwrapping algorithms based on the 

Itoh condition will fail in recovering the true phase. To solve this problem, different 

period order encoding strategies have been proposed [35, 36, 39, 40, 85]. However 

all these approaches reduce the accuracy of the final 3D model of the objects since 

the additional period order information introduces noise to the fringe images and can 

seriously affect the accuracy of the measurement. Moreover, the approaches in [35, 

36, 85] require more than the theoretical three fringe images. For example, [35] 

employs six fringe images for embedding the additional period order information to 

assist the phase unwrapping procedure whereas [36] employs at least four fringe 

images; and [85] proposes a phase-coding method which needs additional three 

coded phase-shifted images. Further research is needed to develop a truly robust FPP 

scheme that can get around with the various problems in practical working 

environments. 
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2.3 DTCWT FPP FRAMEWORK  

It has been proved in [67] and [69] that the DTCWT is an effective and efficient tool 

for denoising and removing the bias of fringe images. This research can be 

considered as a continuation of our previous studies in DTCWT based FPP systems 

with particular emphasis on the applications in practical working environments. For 

this reason, let us first briefly review some background about the conventional 

DTCWT FPP methods. 

Based on the wavelet theory, a fringe image 𝐺𝑦(𝑥) in (2-1) can be synthesized based 

on the wavelet functions  and the scaling function  as follows [67]: 

𝐺𝑦(𝑥) = ∑ 𝑠𝑦(𝑛)𝜍𝑦(𝑥 − 𝑛)

∞

𝑛=−∞

+ ∑ ∑ 𝑤𝑦(𝑗, 𝑛)2
𝑗
2𝜓𝑦(2

𝑗𝑥 − 𝑛)

∞

𝑛=−∞

∞

𝑗=−∞

 (2-19) 

where j is the scale factor. The scaling coefficients 𝑠𝑦(𝑛)  and the wavelet 

coefficients 𝑤𝑦(𝑗, 𝑛) are given by, 

𝑠𝑦(𝑛) = 2
𝑗
2∫ 𝐺𝑦(𝑥)𝜍𝑦(2

𝑗𝑥 − 𝑛)𝑑𝑥
∞

−∞

 (2-20) 

and 

𝑤𝑦(𝑗, 𝑛) = 2
𝑗/2∫ 𝐺𝑦(𝑥)𝜓𝑦(2

𝑗𝑥 − 𝑛)𝑑𝑥
∞

−∞

. (2-21) 

In case the wavelet function is analytic (i.e. having zero negative frequency 

components) and has compact support, it has been proven in [67] that the magnitude 

response when applying such analytic wavelet transform to a fringe image is 

piecewise smooth. This feature greatly facilitates the design of denoising and bias-

removal operators in the analytic wavelet domain, since such special magnitude 

response allows the wavelet coefficients of fringes to be more distinguishable from 

both noises and bias.   
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Due to these advantages, our research team has developed a DTCWT based FPP 

framework as illustrated in Figure 2-7. As shown in the figure, both the fringe 

denoising and bias removal operation are performed in the DTCWT domain. Once 

finished, the wavelet coefficients are transformed back to the spatial domain and the 

phase unwrapping algorithm is used to recover the absolute phase information.   

 
Figure 2-7.  The conventional DTCWT FPP framework (adopted from [67, 69]) 

 

In our DTCWT FPP framework, the 2D-DTCWT is realized by using two pairs of 

2D discrete wavelet transform (DWT) trees as illustrated in Figure 2-8. Each pair has 

an approximately analytic wavelet function.  

 

Figure 2-8. Realization of the 2D DTCWT using four DWT trees (J=2) 
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As shown in Figure 2-8, each level of the wavelet transform gives two sets of 

oriented complex wavelet coefficients 𝑤𝑝𝑝
(𝑛)
+ 𝑗𝑤𝑞𝑞

(𝑛)
 and 𝑤𝑝𝑞

(𝑛)
+ 𝑗𝑤𝑞𝑝

(𝑛)
 with three 

orientations 𝑛 ∈ {𝐻, 𝑉, 𝐷}: vertical (𝑉), horizontal (𝐻), and diagonal (𝐷). Thus at 

each level j, we have a set of  𝑤𝑗 denoted as,  

𝑤𝑗 = {𝑤𝑗
15°, 𝑤𝑗

45°, 𝑤𝑗
75°, 𝑤𝑗

105°, 𝑤𝑗
135°, 𝑤𝑗

165°} 

       = {𝜌1𝑒
𝑖𝜃1 , … , 𝜌6𝑒

𝑖𝜃6}                                    

(2-22) 

where 𝜌𝑖 and  𝜃𝑖 correspond to the six magnitudes and orientations (15°, 45°, 75°, 

105°, 135°, and 165°), respectively, of the wavelet coefficients. Meanwhile, at the 

coarse level 𝐽 we have the oriented scaling coefficients which have two components:  

𝑧1 = 𝑧𝑝𝑝 + 𝑗𝑧𝑞𝑞         𝑧2 = 𝑧𝑝𝑞 + 𝑗𝑧𝑞𝑝 (2-23) 

Although the original DTCWT based FPP method is efficient in handling noise and 

bias, further work is needed to improve its robustness when dealing with the global 

illumination and ambiguity problems as mentioned in Sections 2.2.2 and 2.2.3. To 

tackle these problems, we improve the original DTCWT based FPP framework by 

introducing the geometrically guided iterative regularization block and the period 

order detection and estimation block as shown in Figure 2-9.  

 
  Figure 2-9.  Enhanced DTCWT based FPP Framework 
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The new functional blocks of enhanced DTCWT based FPP framework can be 

summarized as follows:   

1. Geometrically Guided Iterative Regularization block. As shown in the figure, 

this block is in fact the original iterative regularization with additional 

automatic highlight detection and geometric structure initialization 

functionalities. It targets at recovering the missing fringes, if any, due to the 

global illumination problem. More specifically, the block first detects 

automatically the location of the regions with missing fringes. Then the 

geometric structure of the fringes in these regions is estimated to give a good 

initialization for an iterative inpainting process to regenerate the missing 

fringes. The operation of this new function block will be further explained in 

Chapter 3. 

2. Period Order Detection and Estimation block. In the enhanced framework, 

we employ a new strategy that embeds the period order information into the 

fringe pattern. Two approaches are proposed in this research. The first 

approach employs a marker encoded fringe pattern, which has the period 

order number encoded based on the relative position of the markers and the 

fringes. Then using the DTCWT, the marker cue information can be extracted 

from the fringe image and is used to estimate the period order information. In 

the second approach, the period order information is encoded based on the 

shape of some textural patterns and embedded to the fringe patterns. On the 

decoder side, the morphological component analysis (MCA) is used to 

separate the textural pattern and the original fringe pattern. Then a sparse 

dictionary is learned and used to identify the textural pattern and estimate the 

period order number of the fringes. They are used to facilitate the phase 
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unwrapping procedure to obtain the true phase. The operation of this new 

function block will be further explained in Chapter 5. 
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CHAPTER 3 

3 INPAINTING FRINGE PATTERN USING GEOMETRICALLY 

GUIDED ITERATIVE REGULARIZATION  

 

 

Fringe projection profilometry (FPP) is well known as a phase imaging system that 

can obtain the 3-dimensional (3D) model of objects accurately and efficiently. As 

successful as it has been proved on simple objects, FPP with a single fringe image 

produces less satisfactory results when measuring an object if the captured fringe 

image is distorted by strong global illumination such as highlights. As mentioned in 

Chapter 2, it is due to the mistaken assumption made by the traditional FPP systems 

that all the light captured by the camera is from the projector. Due to the strong 

global illumination, some of the fringes might be washed out by the highlights and 

the resulting 3D model reconstructed will be distorted in the affected regions. In this 

chapter, we propose a sparse representation based iterative regularization inpainting 

algorithm to regenerate the missing fringes washed out by the highlights. The 

algorithm can detect the affected regions automatically and inpaint the missing 

fringes accurately. The proposed algorithm greatly improves the measurement result 

compared with the conventional FPP methods when working in an environment with 

strong global illumination.  
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This chapter is organized as follows. Section 3.1 presents a brief review on some 

recent related research works. Section 3.2 introduces the general framework of the 

proposed sparse representation based iterative inpainting regularization using the 2D-

DTCWT. Section 3.3 presents the highlight detection algorithm using the 2D-

DTCWT. Section 3.4 presents the geometric sketching algorithm for guiding the 

inpainting process. Section 3.5 shows the simulation and experimental results. 

Section 3.6 summaries this chapter. The content of this chapter is extracted from our 

paper published in IEEE Transactions on Image Processing [86]. 

 

3.1 RELATED WORKS 

 
     (a)                                                     (c) 

     

(b) 

Figure 3-1 (a) The texture image of a plastic banana; (b) the fringe image captured using an FPP 

system; and (c) the 3D model (depth map) evaluated from the fringe image in (b). 

 

In the last decade, significant achievements in the area of FPP have been reported. 

By using FPP, real time 3D measurements [33, 36] and highly accurate 3D scanning 

[5, 7] can be achieved. However, it is necessary to point out that all existing FPP 
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techniques assume the deformed fringe pattern is available for all parts of the object. 

It is indeed not true particularly when the target object is made of materials with high 

reflectivity of light, such as metal, porcelain or even plastic, etc. The fringe image 

captured by the camera is often affected by nearby strong light sources that some 

parts of the fringe image are masked by the reflected light. They form the so-called 

“highlight” regions on the fringe image. They corrupt the fringe pattern and thus 

affect the 3D model measurement result. Figure 3-1 (a) and (b) show an example of 

the highlight in a fringe image. The measured 3D model is distorted in the highlight 

region as shown in Figure 3-1(c).  

In the presence of highlights, 3D scanning based on FPP is a challenging task and 

has been an active research area recently. One solution is to capture several fringe 

images from various viewpoints either by using an active stereo technique [76], a 

moving camera or a moving scene [87], a sliding projector [78], or polarization 

filters [10, 88], etc. Although these techniques are effective to remove the highlights, 

they require additional hardware and complicated calibration procedures in the 

hardware setup. Another approach is by using multiple fringe images of different 

fringe patterns. For instance, the methods in [9, 10, 48, 73, 77, 89] employ the phase 

shifting method with high frequency patterns for 3D reconstruction of translucent 

objects. The methods in [9] and [5] employ special discreet fringe patterns to 

mitigate both the indirect illumination problem and subsurface scattering. These 

techniques are more cost efficient than the special hardware solutions but they suffer 

from the drawback of requiring many fringe images taken in sequence. It thus further 

limits their application to only absolutely static objects. These approaches are also 

computationally expensive. Based on the spatial method, [89] employs an 

unstructured light pattern that is specifically designed to reduce the global 
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illumination. Although this method requires only a single pattern, the resulting 3D 

model can only have low resolution and the method is also computationally 

expensive. 

Indeed for general texture images, there have been many works on recovering the 

missing texture of the image due to the highlights [90-95]. The method in [95] 

requires a spectral image and thus a special camera is required. The methods in [91-

94] are based on Shafer’s dichromatic reflection model [96] that works only on RGB 

images. These approaches are thus inapplicable to FPP since a fringe image is a gray 

scale image that contains non-stationary sinusoids.  

There are some other approaches which are based on the inpainting technique [90, 

97]. The method in [90] requires the illumination information for guiding the 

inpainting procedure and the method in [97] requires two images captured with 

different exposure times based on the color line projection techniques. Compared to 

the conventional methods, these approaches provide better result in recovering the 

surface texture and shading intensities. In particular, [90] requires only a single 

image that makes it applicable to dynamic scenes. However, the illumination 

information of these approaches is again obtained based on the chromaticity analysis 

of RGB images and is thus not suitable to the fringe images used in FPP.   

For FPP, various fringe enhancement techniques have been developed to improve the 

quality of the fringe images [54, 67, 69, 98-101]. For instance, the methods in [98-

100] extrapolate the missing fringes at the border of the measured fringe patterns by 

applying a specifically designed filter in the Fourier domain. The methods in [67, 69] 

employ an iterative regularization method based on a complex wavelet analysis to 

enhance the fringe pattern distorted by bias and noise. However all of these fringe 
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enhancement approaches cannot regenerate the missing fringes due to the highlights 

since they do not consider the continuity of the structure within the measured fringe 

pattern. Besides, the approaches in [98-100] work only when the spatial variations, 

i.e., object’s color, texture, are minimum. Meanwhile, the exemplar based inpainting 

approach [102] is employed to fill the missing area of the coded fringe image [101] 

or the wrapped phase map [99]. However, it will generate additional residues in the 

measured fringe pattern.  

In this chapter, we introduce a novel inpainting algorithm for the restoration of the 

fringe patterns due to the highlights in the fringe image. Different from the previous 

approaches, the proposed algorithm does not require special hardware and works 

only on a single fringe image. The new algorithm first detects the highlight regions 

of a fringe image based on a Gaussian mixture model. Then a sparse representation 

based image inpainting method similar to [103-107] is applied to recover the 

corrupted fringe patterns. Unlike the conventional inpainting methods such as [103-

107] which assume no information about the highlight regions, the proposed 

algorithm first detects the missing fringe area and estimates the geometrical structure 

of the fringe patterns in order to guide the iterative inpainting procedure. The 

restored fringe image is then used in the conventional FPP to measure the 3D model 

of the object.  

 

3.2 SPARSE REPRESENTATION BASED INPAINTING 

Due to the presence of highlights, the total radiance measured at the camera sensor 

consists of both the direct and global illuminations as follows: 
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𝐺(𝑥, 𝑦) = {
𝐺𝑑(𝑥, 𝑦)    (𝑥, 𝑦) ∈ 𝑅\Ω

𝐺𝑔(𝑥, 𝑦)    (𝑥, 𝑦) ∈ Ω     
  (3-1) 

where 𝐺(𝑥, 𝑦)  is the captured fringe image; 𝐺𝑔(𝑥, 𝑦)  is the degradation of the 

original fringe image caused by the highlight in (𝑥, 𝑦) ∈ Ω as shown in Figure 3-2; 

and 𝐺𝑑(𝑥, 𝑦) is the unaffected region.  

 

 

Figure 3-2 A fringe pattern with highlight. The entire fringe image is denoted by𝑅; the highlight 

region and its contour are denoted by Ω and ∂Ω, respectively.  

 

The problem can be viewed as a classical inpainting problem such that the original 

fringe image in the highlight region Ω can be estimated by minimizing the following 

cost function  [105],  

𝑚𝑖𝑛
𝐺,𝑤

1

2
‖𝑃(𝐺 − 𝐹)‖2

2 +
𝜆

2
‖|𝛹𝑤‖𝑝 (3-2) 

where 𝐹 is the original image, 𝛹 ∈ ℝ𝑀×𝑁 is the transform matrix of some operator; 𝑃 ∈

ℤ𝑀×𝑁  is a diagonal matrix with entries 1 in 𝑅\Ω and 0 otherwise; 𝜆 is a penalizing 

factor; 𝑤 is transform coefficients, and ‖∙‖𝑝 denotes the ℓ𝑝  norm. Given a ℓ1 norm 

using a tight frame transform Ψ, such as DCT [103, 108], wavelet [109], curvelet 

[110], framelet [107], i.e., 𝛹𝑇𝛹 = 𝐼, a close form solution for (3-2) can be obtained as 

follows:   
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𝐺(𝑡+1) = 𝑃𝐹 + (𝐼 − 𝑃)𝛹∗𝑆𝜆(𝛹𝐺
(𝑡)) (3-3) 

where 

𝑆𝜆(𝑎) = 𝑠𝑔𝑛(𝑎)max (|𝑎| − 𝜆, 0) (3-4) 

is the soft thresholding operator [111]. For the selection of  𝛹, we adopt the 2D-

DTCWT [112]. It is based on the fact that the 2D-DTCWT has nearly shift-invariant 

and minimum aliasing properties. They allow the fringe image to be sparsely 

represented by only one or two levels of wavelet coefficients. Besides, it is shown in 

[67] that the magnitude response of the 2D-DTCWT of a fringe image is piecewise 

smooth. It enables different efficient denoising and bias removal algorithms [67, 69, 

113]. In fact, as mentioned in Chapter 2, the proposed inpainting algorithm is included 

in one of the subsystems of the 2D-DTCWT based FPP framework described in [67].  

Although the abovementioned inpainting strategy is effective, its general application 

is hindered by the following two problems: 

1. As shown in (3-2), the mask 𝑃 needs to be known in order to implement the 

equation. It means that the highlight region Ω needs to be determined prior to 

the inpainting procedure. 

2. For most iterative minimization algorithms, a good initial guess can 

significantly reduce the number of iterations and ensure the iterations to 

converge to the global minimum. Unlike normal texture images, fringe 

images are highly structural. They are formed by stripes with orientation 

following the 3D shape of the object. Any initial guess of the corrupted fringe 

pattern should have a stripe-like structure with orientation close to the 

original fringe pattern or it is highly unlikely the iterative process can 

converge to such structural pattern.  
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 In order to estimate the missing fringe pattern due to the highlights, the proposed 

algorithm is performed in three stages: highlight region detection, geometric 

sketching of fringe pattern and inpainting with sparse regularization. In the highlight 

region detection phase, we analyze the histogram of the fringe image using a 

Gaussian mixture model so that a threshold is determined to identify the highlight 

pixels in the image. Thus the matrix 𝑃 in (3-2) is obtained. The details are shown in 

next section. In the second phase, the geometric structure of the fringe pattern is 

estimated and forms the initial guess of the iterative inpainting process. The 

procedure is explained in Section 3.4. Lastly, the inpainting based on the iterative 

regularization method in (3-2) is performed using the 2D-DTCWT, as described 

earlier in this section. 

   
            (A)                                                          (B) 

    
            (C)                                                          (D)              

Figure 3-3 (a) The fringe image of a plastic banana; (b) histogram of the fringe pattern, dash lines are 

the threshold obtained by the Otsu method [114] (left) and the minimum error method [115] (right); (c) 

the result using the Otsu method; and (d) the result of the minimum error method. 

 

3.3 HIGHLIGHT DETECTION 

Although the highlights have a rather distinctive appearance in a fringe image, 

automatically locating them is not as straightforward as it seems to be. Standard 

operators such as the Otsu method [1] or the minimum error thresholding method [2] 
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make use of the intensity information of the image to form a  histogram for 

determining a threshold. Then image pixels having intensity higher than the 

threshold will be considered as the highlight. However, difficulty arises when 

applying these standard approaches to fringe images. Since a fringe image is formed 

by dark and bright stripes, they have a sharp contrast similar to the effect of the 

highlights. They influence the standard approaches when determining the threshold 

value. An example is shown in Figure 3-3. It can be seen that the resulting detected 

regions of the Otsu method are the bright regions of the whole image; and the ones 

detected by the minimum error method are the bright regions within the highlight. 

The problem is further complicated if the texture of the object also contains sharp 

contrast in intensity. 

In the next subsections, two approaches based on the 2D-DTCWT will be introduced 

in detail. In the first approach, the 2D-DTCWT coefficients of the fringe image are 

used to determine the highlight regions directly and the threshold is estimated based 

on the statistic information, i.e. means and variance, of the coefficients. To improve 

the accuracy of the detection, the fringe pattern is first smoothed in the 2D-DTCWT 

domain and the threshold is estimated using a Gaussian mixture model (GMM). 

3.3.1 HIGHLIGHT DETECTION USING INTERPOLATED 2D-DTCWT COEFFICIENTS 

To facilitate the inpainting process, we first detect the highlight regions in the 

captured fringe image. Traditional methods to detect a highlight area in an image is 

often based on the chromaticity of the color image, such as [91, 93]. However, these 

approaches cannot be applied to our problem since they work only on color RGB 

images rather than fringe images. In our study, it is observed that the highlights in a 

fringe image can be characterized by structures with low frequency information but 

high intensity value. Hence they can be detected by a simple thresholding operation 
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applied to the magnitude response of their coarse level DTCWT coefficients. To 

achieve this, we first extract the coarse level DTCWT coefficients of the fringe 

image and compute their magnitude response. Then we use an interpolation function 

ℱ(∙) to expand their size to be the same as the original image. Based on the nearly 

shift invariant property of the DTCWT, it is safe to assume that the highlight regions 

detected in the DTCWT domain should be very close to those in the spatial domain. 

To facilitate the thresholding operation, we take the product of the magnitude of the 

two coarse level subbands before performing the interpolation as follows: 

𝐻𝑔 = ℱ(|𝑧1| × |𝑧2|) (3-5) 

where |𝑧1| and |𝑧2| are the magnitudes of the wavelet coefficients at the coarsest 

scale defined in (2-23) and the highlight region is determined by, 

�̅� = {
1   𝑖𝑓 𝐻𝑔 > 𝜆𝐻𝑔    
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-6) 

where �̅� denotes the domain of the highlight regions; and 𝜆𝐻𝑔 is the threshold value. 

As it is mentioned in Chapter 2, the 2D-DTCWT magnitude response of a fringe 

image is piecewise smooth. Hence, H is smooth and has a low variance value in the 

absence of highlights. If it is assumed that the total area of highlights is only a small 

part of the fringe image, the mean and the standard deviation of H are approximately 

equal to the average value and the standard variation of the direct light (defined as 

dL
  and 

dL
  respectively). Here we assume that the global illumination has a far lower 

value than the direct light. In this case, the threshold value can be determined by,   

   𝜆𝐻𝑔 = 𝜇𝐿𝑑 + 2𝜎𝐿𝑑 + 𝜀 (3-7) 

where 𝜀  is a small constant to determine the sensitivity to the highlights. In our 

experiment 𝜀 is set to be zero. Figures 3-4 (a) and 3-4 (b) show the fringe pattern and 

the texture image of a ceramic plate respectively. It can be seen that due to the global 

illumination and the material of the object, a specular highlight region is found at the 
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upper right part of the ceramic plate. By using the approach as mentioned above, the 

magnitude response of the 2D-DTCWT of the fringe image at the coarse scale is 

interpolated and the result is shown in Figure 3-4 (c). It can be seen that the detected 

highlight region has a significantly higher magnitude than the surrounding non 

highlight region. Thus, as shown in Figure 3-4, the highlight region can be detected 

accurately using the threshold value defined in (3-7). Note that the proposed iterative 

regularization algorithm will fill the missing area accurately even when the detected 

highlight region is slightly larger than the actual missing area because the algorithm 

will eventually converge to the actual size of the missing area.  

                                

  ( a )   ( b ) 

         

                                    ( c )   ( d ) 

Figure 3-4 (a) The texture image of a ceramic plate with a highlight region; and (b) the fringe image 

of the plate with the highlight region. (c) Interpolated magnitude of complex wavelet coefficients at 

the coarse level; and (d) the estimated highlight region (white). 
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3.3.2 HIGHLIGHT DETECTION USING GMM SMOOTHED FRINGE IMAGE 

Although the above method can estimate the highlight region with reasonably good 

accuracy, it will become less effective if the texture of the object contains large 

contrast in intensity, which can be wrongly classified as highlights. To solve this 

problem, we suggest to first blur the fringe image with a smoothing operator and then 

use a Gaussian mixture model (GMM) [116] to determine the threshold for highlight 

detection. More specifically, a smoothed fringe image can be obtained using a 

multiscale analysis based on the 2D-DTCWT as follows: 

    �̂� = 𝛹𝑇℘(𝛹𝐺) (3-8) 

where ℘(. ) is a smoothing operator in the transform domain similar to [74]; �̂� is the 

resulting smoothed fringe image; ΨT  and Ψ  are the analysis and synthesis 2D-

DTCWT operator, respectively. The 2D-DTCWT is chosen since the highlight 

detection is carried out within the 2D-DTCWT based FPP framework as described in 

Section 2.3. Besides, smoothing the fringe image in the 2D-DTCWT domain can 

introduce less distortion due to the nearly shift-invariant and minimum aliasing 

properties of the 2D-DTCWT. By smoothing the fringe pattern, its average intensity 

will be lower than the highlight. An example is shown in Figure 3-5, which gives the 

histogram of the fringe image in Figure 3-3(a) after the smoothing operation. 

Comparing with Figure 3-3(b), the peak for the highlight can now be clearly 

identified. It greatly simplifies the determination of the threshold (vertical dash line). 

For automatically determining the threshold, a good mathematical model of the 

histogram of �̂� needs to be obtained. Let us denote 𝑃�̂�(𝑢) as the probability density 

function (pdf) of the image �̂�. It can be modeled as the following mixture model,  

𝑃�̂�(𝑢) = ∑𝑃𝑘(𝑢)𝑃(𝐶𝑘)

𝑁𝑘

𝑘=1

 (3-9) 
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Figure 3-5 Histogram, mixtures and pdf of two classes. The histogram is obtained after the smoothing 

operation.  The dash line is the optimum threshold.  

 

where 𝑃𝑘(𝑢) is the pdf  of the class 𝐶𝑘  for gray level 𝑢 and 𝑃(𝐶𝑘) is the a-priori 

probability of class 𝐶𝑘 of �̂�. We can approximate 𝑃�̂�(𝑢) using the histogram of �̂�. 

However the 𝑃𝑘(𝑢) of each class as well as 𝑃(𝐶𝑘) are not available in practice. The 

number of classes, 𝐾, is also unknown. To simplify the problem, we assume the pdf  

of all classes is Gaussian distributed with mean 𝜇1 < ⋯ < 𝜇𝑁𝑘  and variance 

𝜎1, … , 𝜎𝑁𝑘. More specifically, we approximate 𝑃�̂�(𝑢) by a Gaussian mixture model 

𝑓𝒩(𝑢, 𝑁𝑘) as follows:  

𝑃�̂�(𝑢) ≈ 𝑓
𝒩(𝑢, 𝑁𝑘) = ∑𝑓𝑘

𝒩(𝑢, 𝑁𝑘; 𝜃𝑘)

𝑁𝑘

𝑘=1

 (3-10) 

and 

𝑓𝑘
𝒩(𝑢, 𝑁𝑘; 𝜃𝑘) = 𝑃𝑘𝒩(𝑢; 𝜇𝑘, 𝜎𝑘) (3-11) 

where 𝑃𝑘  is a mixing probability of the mixtures and  𝒩(𝑢; 𝜇𝑘, 𝜎𝑘) is a Gaussian 

function with parameter 𝜃𝑘 consisting of the mean 𝜇𝑘 and the variance 𝜎𝑘. As to the 

number of classes K, intuitively we can estimate it by solving the following 

constrained minimization problem: 

arg min
𝑗∈{2,…,𝑗𝑚𝑎𝑥} 

𝑗    𝑠. 𝑡.
1

𝑁𝑏𝑖𝑛
|𝑝�̂�(𝑢) − 𝑓

𝒩(𝑢, 𝑗)| < 𝜆𝐸𝑀 (3-12) 

where 𝑁𝑏𝑖𝑛 is the total number of bins for the histogram, 𝑗 is the estimated number of 

classes, and 𝑗𝑚𝑎𝑥 is predetermined maximum number of classes in our estimation. 
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Given a threshold  , the above minimization problem (i.e., (3-10) and (3-11)) can 

be realized using an iterative Expectation Maximization (EM) algorithm  [117]. 

 

 
 

Figure 3-6  The object and its highlight area obtained by thresholding the histogram with the optimum 

threshold (see solid red line) obtained from the proposed multi-classes GMM approach. 

 

Since highlights are characterized by pixels of high intensity values, we assume them 

to be the members of the class with the largest mean value 𝜇𝑁𝑘. Thus the threshold 

𝜆𝐻𝐸𝑀 for highlight detection can be chosen as the intersection point of the final two 

classes. Mathematically, it can be expressed as follows: 

𝜆𝐻𝐸𝑀 = arg min
𝑢∈𝑁

|𝑓𝒩(𝑢, 𝑁𝑘) − 𝑓
𝒩(𝑢, 𝑁𝑘 − 1)|   (3-13) 

The main advantage of the proposed GMM framework is its ability to provide a good 

approximation in a tractable way from the histogram. It is robust such that it can 

work well even when the fringe image is noisy or has other fluctuation in intensity. 

Figure 3-6 (top) shows a fringe image with a highlight region with is accurately 

detected (red line) by using the proposed GMM framework. Figure 3-6 (bottom) 

shows the histogram of the fringe image (solid line), and the optimal threshold 

obtained using the proposed GMM framework (red dot line). 
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3.4 GEOMETRIC SKETCHING OF FRINGE PATTERN 

As mentioned above, the highlight will corrupt the fringe pattern in the affected 

region. In the worst case, the highlight region can be blown out such that all the 

fringes within the region will disappear. Without the fringes, the FPP reconstruction 

basically cannot be carried out. While the inpainting method as described in Section 

3.2 can regenerate the fringe pattern in the highlight region, it is effective only when 

the region is small. If the region is large, the iterative regularization process may 

converge to any local minimum that can be far from the desired fringe pattern. In this 

case, the process will be robust only when a good initial guess of the fringe pattern is 

available. To obtain a good initial guess, we propose in this chapter to construct a 

geometric sketch of the missing fringe pattern in the highlight region and use it to 

guide the regularization process. An example is shown in Figure 3-12(a). Before 

explaining the procedure, let us assume that the fringe image has gone through the 

denoising and debiasing processes of the 2D-DTCWT based FPP framework [67] as 

described in Section 2.3. We denote the resulting fringe image as �̇� . Hence we 

assume �̇� is noise-free (or have the noise power, if any, significantly reduced) and 

has zero dc component. 

3.4.1 T-JUNCTION POINT DETECTION  

To build an accurate geometric sketch, let us first introduce the T-junctions of the 

highlight region where fringes are missing. More specifically, let us denote 𝑝 =

{𝑝𝑘|𝑝𝑘 ∈ 𝜕Ω}  be the points at the contour of the highlight region Ω , where 𝑘 ∈

1,2, … ,𝑁; and 𝑁 is the total number of points on 𝜕Ω. Then we define the T-junctions 

to be the local extrema within 𝑝 as follows: 

�̇� = {𝑝�̇�|�̇�
′(𝑝�̇�) = 0 ∧ 𝑝�̇� ∈ 𝑝}   (3-14) 
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for 𝑘 ∈ 1,2, … , �̇� where �̇� < 𝑁 . Two types of T-junction �̇�𝑘 are considered:  

1) The maxima T-junction which is indicated by �̇�′′(�̇�𝑘) < 0, g''pk<0and  

2) the minima T-junction which is indicated by �̇�′′(�̇�𝑘) > 0. 

Note that our definition of T-junction is different from [118] and [119] which define 

T-junctions as the points having a common vertex and the same gray levels. There 

are two major reasons why we define T-junctions based on the local extrema. First, it 

is to ensure the consistency of the T-junction detection because of the possible 

fluctuations in the pixel magnitude. Second, it is due to the fact that a gradually 

increasing or decreasing function exists between two consecutive local extrema. This 

property simplifies not only the T-junction detection but also the geometric sketching 

required for the iterative regularization at the later stage. 

Let us further define three types of cue that characterize a T-junction 𝑝�̇�: 

a. Amplitude 𝑚𝑘 

b. Direction vector 𝑟𝑘  

c. Flow degree 𝑠𝑘 

For a T-Junction point 𝑝�̇�, its amplitude 𝐴𝑘 is defined as,  

𝑚𝑘 = 𝑆(�̇�(𝑣𝑘))   𝑓𝑜𝑟  𝑘 = 1,… , �̇� (3-15) 

where 𝑣𝑘is the neighbor points of T-junction �̇�𝑘 and 𝑆(∙) is a statistical function such 

as median or mean. The use of the statistical function is to minimize the influence of 

the noise surrounding the T-junction and hence the resulting amplitude is more 

accurate. Figure 3-7a shows the T-junctions 𝑝�̇�  and their magnitude mk.𝑚𝑘 . To 

simplify the presentation, all negative 𝑚𝑘 are shown in blue (local minima) and all 

positive 𝑚𝑘 are shown in red (local maxima).    
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                   (a)                                (b)                               (c) 

Figure 3-7  (a) T-junction with binary label for maxima (red circle) and minima (blue circle); (b) the 

orientation of T-junction with labels: the leaving T-junctions are green in color; and (c) the curve 

generated between pairwise compatible T-junction using the Bezier curve (blue curve) and the 

Clothoid (red curve). 

 

  
(a)                 (b) 

Figure 3-8  (a) Gradient of the fringe pattern; (b) direction of the fringe pattern 

 

The direction vector 𝑟𝑘  is basically the direction of the fringe pattern at the T-

junction 𝑝�̇�. It is defined by,  

𝑟𝑘 = 𝑆(𝜃(𝑣𝑘))   𝑓𝑜𝑟  𝑘 = 1, … , �̇� (3-16) 

where 𝜃 is the direction of the fringe pattern defined as:  

𝜃(. ) = 𝒲 {∠∇(�̇�(. ))
⊥

}    𝑓𝑜𝑟  𝑘 = 1, … , �̇� (3-17) 

where 𝒲 is the wrapping operator to change the orientation angle to the first/second 

quadrant and ∠∇(�̇�(∙)⊥) is the normal of the gradient of �̇�(∙). Figure 3-8 shows the 

difference between the gradient �̇� and the direction of the fringe pattern 𝜃.  It can be 

seen that unlike the gradient of the image, the direction of T-junction is consistent to 
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the structure of the fringe pattern. Figure 3-7b shows the direction of the T-junction 

obtained from (3-15) and (3-16).  

Lastly, the flow degree 𝑠𝑘 is defined by, 

𝑠𝑘 = 𝑆(ℳ(�̇�𝑘
𝑟))   𝑓𝑜𝑟  𝑘 = 1,… , �̇� (3-18) 

where ℳ(. ) is a mask with size the same as the image. It has the value of -1 in the 

highlight region and 1 otherwise. It is obtained from the highlight region detection 

algorithm as mentioned in Section 3.3. In (3-18), �̇�𝑘
𝑟  is a set of points in the 

neighborhood of the point �̇�𝑘 + 𝑟𝑘 , where 𝑟𝑘  is obtained from (3-16). The flow 

degree 𝑠𝑘 ∈ [−1,1]   denotes whether the fringe at that T-junction point is going 

outward to the highlight region or going inward from the highlight region. For 

instance, if  𝑠𝑘 is positive and larger than a threshold, �̇�𝑘 is an outward T-junction. 

And if 𝑠𝑘  is negative and smaller than a threshold, �̇�𝑘  is an inward T-junction. 

Finally, if |𝑠𝑘| is smaller than a small threshold, we dub such �̇�𝑘 as the transition T-

junction. An example of these T-junctions is shown in Figure 3-9. Note that the 

selection of the thresholds as mentioned above is not critical as shown in our 

experiments. 

    
Figure 3-9   The flow of T-junction: inward, outward, and transition 
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3.4.2 FINDING POSSIBLE CONFIGURATIONS 

Given a set of T-junctions �̇�, the next step is to build a configuration, which is 

defined as a set of pairwise compatible T-junctions. It is known that each outward T-

junction should connect to an inward T-junction. They form a compatible pair. By 

determining all the compatible pairs, we can sketch the geometric structure of the 

missing fringe pattern in the highlight region. However, matching up the T-junctions 

using an exhaustive search approach can be very time consuming. To speed up the 

process, we utilize the transition T-junctions. As mentioned above, a transition T-

junction is any T-junction that has an absolute flow degree |𝑠𝑘|  smaller than a 

threshold. When |𝑠𝑘| ≈ 0, the transition T-junction is in fact having the orientation 

nearly parallel to the tangent of the highlight region boundary. This notion does not 

only imply the boundary is in the direction as the fringe pattern, it also indicates that 

a compatible pair of T-junctions is near to that T-junction (as shown in Figure 3-9). 

Hence the transition T-junctions can be chosen as the initial point for searching the 

compatible pairs. 

More specifically, let us first define a cost function given a pair of T-junctions �̇�1 and 

�̇�2 as follows:  

𝐶(�̇�1, �̇�2) = 𝑐𝑎𝐶
𝑎(�̇�1, �̇�2) + 𝑐𝑏𝐶

𝑏(�̇�1, �̇�2) (3-19) 

and  

𝐶𝑎(�̇�1, �̇�2) =
|𝑚1 −𝑚2|

2‖𝑚‖∞
,   𝐶𝑏(�̇�1, �̇�2) =

|𝑠1+𝑠2|

2
  (3-20) 

where 𝑐𝑎  and 𝑐𝑏  are the weights for the normalized cost 𝐶𝑎(�̇�1, �̇�2) ∈ [0,1]  and 

𝐶𝑏(�̇�1, �̇�2) ∈ [0,1] . If �̇�1  and �̇�2  are a compatible pair of T-junctions, their flow 

degree 𝑠𝑘 should have opposite sign. Hence 𝐶𝑏(�̇�1, �̇�2) should be small. And since 

�̇�1   and �̇�2  should belong to the same fringe if they are a compatible pair, their 
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amplitude 𝑚𝑘  should be similar. Thus 𝐶𝑎(�̇�1, �̇�2) will also be small. As a whole, 

𝐶(�̇�1, �̇�2) will be small if �̇�1 and �̇�2 are a compatible pair of T-junctions. This cost 

function helps us match the T-junctions.  

Algorithm 1. Finding possible configurations 

Inputs: A set of T-junction points  �̇� = {�̇�1, �̇�2, … , �̇��̇�}  and its magnitude 𝑚, 

direction vector 𝑟, and flow degree 𝑠.  

Output:  A set of possible configurations 𝑍 = {𝛱1, 𝛱2, … , 𝛱𝑛}.  

1. Let  𝑖 = 1 

2. For each transition T-junction 𝑝𝑖: 

(a) Initialize a configuration Π𝑖 = ∅    and a list of temporary T-junctions 

�̇�𝑡𝑒𝑚𝑝 = �̇�.  

(b) Let 𝑗 = 1 and start from the transition T-junction p⃡i.    

(i) Find an outward T-junction �̇�1 in clockwise direction from 𝑝𝑖 by selecting 

the first T-junction in �̇�𝑡𝑒𝑚𝑝.  

(ii) Find a compatible inward T-junction �̇�2  by walking counter-clockwise 

from 𝑝𝑖p⃡i and selecting the T-junction from �̇�𝑡𝑒𝑚𝑝 that minimizes (3-19). 

A pairwise compatible T-junction 𝜛𝑗 = (�̇�1, �̇�2)  is thus formed. 

(iii) 𝛱𝑖 ← 𝛱1 ∪𝜛𝑗  and remove �̇�1 and �̇�2 from the list �̇�𝑡𝑒𝑚𝑝; 𝑗 = 𝑗 + 1. 

(iv) If no more outward T-junction is found in the list �̇�𝑡𝑒𝑚𝑝, stop; else go to 

step (i). 

(c) 𝑖 = 𝑖 + 1; go to step (a) if 𝑖 ≤ 𝑛. 

3. 𝑍 = {𝛱1, 𝛱2, … , 𝛱𝑛}. 

 

Now we are ready to introduce Algorithm 1.  This algorithm suffices to obtain a set 

of configurations that realizes the connections without crossings each other. The 

algorithm makes use of the observation as mentioned above that there must be a 

compatible pair of T-junctions near a transition T-junction. Hence for each transition 

T-junction, we search the nearest outward and inward T-junctions to form a pair. 
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Then the next nearest outward and inward T-junctions are searched until all T-

junctions are exhausted.  

Note that for Algorithm 1, one configuration will be generated for each transition T-

junction. Hence at the end, a set of n configurations is resulted from Algorithm 1, 

where n is the number of transition T-junctions. In the later step, the criteria for 

further selecting the optimal configuration from the set will be defined. 

3.4.3 CURVE COMPLETION 

Assuming the best configuration is obtained, we can then sketch the curves between 

the compatible T-junction pairs. They will be used as the initial guess of the missing 

fringes in the highlight region. Given two compatible T-junctions 𝜛𝑗 = (�̇�1, �̇�2) and 

their directions 𝜛𝑗
𝑟 = (𝑟1, 𝑟2), we can sketch a curve to connect them by using the 

following approach. First we check if a straight line can connect the two points. If 

not, we apply a curve completion. Two kinds of curves are considered: the C-shape 

curves and S-shape curves as shown in Figure 3-10. A S-shape curve is used to 

connect the two T-junction pairs if their directions, i.e. 𝑟1 and 𝑟2, are in the same 90o 

quadrant; otherwise a C-shape curve is applied. A C-shape curve can be generated 

by the quadratic Bezier function using an additional control point 𝑝0 as shown in 

Figure 3-10 (left). 𝑝0 can be obtained by drawing two straight lines from �̇�1 and �̇�2 

following their direction 𝑟1 and 𝑟2. The intersection point of the two lines is 𝑝0 for a 

C-shape curve.  Meanwhile a S-shape curve can be generated by using a cubic Bezier 

curve but needs two additional control points, �̇�𝑎  and �̇�𝑏, as depicted in Figure 3-10 

(right). They can be obtained as follows: first, we draw two straight lines from �̇�𝑎  

and �̇�𝑏  following their direction 𝑟1 and 𝑟2. We draw another straight line to connect 

up �̇�1 and �̇�2. Then the fourth straight line (green line in Figure 3-10 (right)) is drawn 



  51 

 

that cuts the above three straight lines. The fourth straight line should be drawn based 

on the condition that the following cost function (90 − 𝛼𝑎)
2 + (90 − 𝛼𝑏)

2  is 

minimized, where 𝛼𝑎  and 𝛼𝑏  are defined as in Figure 3-10 (right). With all the 

control points available, we can sketch a curve 𝜐 that connects �̇�1 and �̇�2 using the 

following formulations [120]:  

𝜐(𝑡) = �̇�1(1 − 𝑡)
2 + 𝑝0 ∙ 2(1 − 𝑡)𝑡 + �̇�2𝑡

2 (3-21) 

for C-shape curves and  

𝜐(𝑡) = �̇�1(1 − 𝑡)
3 + 𝑝𝑎 ∙ 3(1 − 𝑡)

2𝑡 + 𝑝𝑏 ∙ 3(1 − 𝑡)𝑡
2  + �̇�2𝑡

3 (3-22) 

for S-shape curves. Note that 𝑡 ∈ [0,1]  in (3-21) and (3-22) denotes the normalized 

curve segment between the starting and ending control points.  We can also employ 

the Euler spiral curve known as clothoids. To generate a clothoid, the algorithm in 

[121] can be used. In our implementation we found that both approaches gave similar 

results. 

                       
Figure 3-10   Curves generated by the Bezier functions. A C-shape curve (left) and a S-shape curve 

(right). 
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                               (a)                      (b)  

Figure 3-11   Some possible configurations obtained from Algorithm 1 given the starting transition T-

junctions (red arrow). (a) Non-optimal configuration; and (b) the optimal configuration. 

 

3.4.4 SELECTING THE BEST CONFIGURATION 

As shown in Figure 3-11, different configuration can be generated by Algorithm 1 

when different starting transition T-junction is chosen. For a non-optimal 

configuration, the average curve total length is often larger than the optimal one 

because the orientations of the connected T-junctions often have larger variations 

than those of the optimal configuration. They end up with longer curves as illustrated 

in Figure 3-11 (a) and (b). Hence given a set of configurations 𝑍, we suggest to select 

the best one based on the total length of the connections between its compatible T-

junction pairs. Besides, the connections in such configuration must not be crossing 

each other and must be within the highlight region Ω. The procedure to find the best 

configuration is described in Algorithm 2 below. Given a configuration 𝛱𝑖 and its 

curve set Υ , where 𝑖 = {1, … , 𝑛} , we first define the average total length of the 

connections between its compatible T-junction pairs as,  

𝐶(𝛱𝑖) =∑
𝐿(𝜐𝑖

𝑗
)

𝑁𝜐
𝑗

 (3-23) 

where 𝐿(𝜐𝑖
𝑗
) is the length of the curve 𝜐𝑖

𝑗
; and 𝑁𝜐 is the total number of curves in the 

configuration. Based on 𝐿(𝜐𝑖
𝑗
), Algorithm 2 is summarized as follows:  
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Algorithm 2. Selecting the best configuration 

Inputs: A set of configurations  𝑍 = {𝛱1, 𝛱2, … , 𝛱𝑛}. 

Output: The best configuration 𝛱𝑖 and curve set Υ𝑖. 

1. Let 𝑖 = 1 

2. For each configuration 𝛱𝑖 ∈ 𝑍   

(a) For each compatible T-junction pair 𝜛 = {𝜛1, 𝜛2, … ,𝜛𝑁𝜛} where 𝑁𝜛  is 

the total number of pairs in the configuration 𝛱𝑖  and let 𝑗 = 1 and Υ𝑖 ← ∅. 

(i) build a curve 𝜐𝑖
𝑗
 by linking the compatible T-junction pair in 𝜛𝑗  using 

(3-21), (3-22) , or [121].The curve should be within Ω and does not 

cross other curves. 

(ii) Υ𝑖 = Υ𝑖 ∪ 𝜐𝑖
𝑗
; 𝑗 = 𝑗 + 1; get back to (i) if 𝑗 ≤ 𝑀. 

(b) Calculate 𝐶(𝛱𝑖) using (3-23). 

(c) 𝑖 = 𝑖 + 1 and get back to (a) if 𝑖 ≤ 𝑛. 

3. Return a configuration 𝛱𝑖 and Υ𝑖 such that 𝐶(𝛤𝑖)  is the minimum. 

 

After the best configuration 𝛱𝑖 and its set of curves Υ𝑖 are obtained, the final step is 

to estimate the magnitude of the curves. It can be achieved by interpolating the 

curves using any linear function based on the magnitude of the T-junction pairs. 

Recall that for a compatible T-junction pair (�̇�1, �̇�2)  with extrema magnitude  

(𝑚1, 𝑚2), the curve connecting between them is defined as 𝜐(𝑡), where  𝑡 ∈ [0,1] is a 

normalized index indicates the distance along the line 𝜐(𝑡) from the starting point �̇�1. 

Then the magnitude of the curve can be linear interpolated as follows: 

𝑚(𝑡) = 𝑚1 + 𝑡(𝑚2 −𝑚1) (3-24) 

It should be noted that the exact magnitude in fact is not important to the later 

reconstruction process since only the phase shift of the fringes will be considered. 

However, any disruption in the fringe magnitude will introduce distortion to the final 

reconstructed model. Hence an interpolation process like (3-24) is still useful to 

smooth the curves.    
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Figure 3-12. The 2D-DTCWT regularization on a fringe pattern. (a) Original fringe pattern after the 

curve interpolation. Note that the rest missing area is initialized to zero; (b) and (c) the regularization 

results after several iterations 

 

Based on the approach as mentioned above, a geometric sketch of the missing fringes 

in the highlight region can be obtained. Figure 3-12 (left) shows the final geometric 

sketching result. It can be seen that all compatible T-junction pairs are correctly 

connected together. Note that the rest of the highlight region is initialized to zero. 

Based on this initial guess, the iterative regularization in (3-3) and (3-4) is applied to 

obtain the final inpainting result. Figure 3-12 (middle) and Figure 3-12 (right) show 

the results after the first iteration and when the iteration converges. The missing 

fringes in the highlight region are regenerated. In practice, the regularization can 

usually converge in a few iterations. Hence the whole inpainting process is rather fast. 

3.5 SIMULATION AND EXPERIMENT 

To evaluate the performance of the proposed algorithm, we first perform a simulation 

using computer generated fringe patterns. The shapes of the objects, i.e., “cone” and 

“peak”, and their fringe images are depicted in Figure 3-13(a)-(b) and Figure 

3-14(a)-(b), respectively. These objects also serve as the ground truth for the 

evaluation of our proposed algorithm. To simulate the inpainting process in real 

working environments, two synthetic masks of oval and circle shape are used to 

generate the missing area and Gaussian noise is added to the fringe image as shown 

in Figure 3-13(c)-(d) and Figure 3-14(c)-(d). The size of the oval shape mask and the 
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circle shape mask are about 1,998 pixels and 2,728 pixels respectively. Meanwhile, 

the resolution of the fringe image is 512⨉512.  

    
      (a)  (b) (c) (d) 

Figure 3-13. The object used in the simulation. (a) A computer generated 3D object “peak” (ground 

truth); (b) the deformed fringe pattern; (c) the deformed fringe pattern with noise and the circle shape 

mask added; (d) the deformed fringe pattern with noise and the oval shape mask added;. 

 

     
Figure 3-14. The object used in the simulation. (a) A computer generated 3D object “peak” (ground 

truth); (b) the deformed fringe pattern; (c) the deformed fringe pattern with noise and the mask added; 

(d) the deformed fringe pattern with noise and the oval shape mask added;. 

 

The proposed algorithm is then compared with the conventional iterative 

regularization method (2D-DTCWT), the exemplar based inpainting (EI) [102, 122], 

the wrapped phase image inpainting (WP-II) [54], the vector-valued image 

regularization with PDEs (VVIR-PDE) [123], the adaptive inpainting algorithm 

based on DCT induced wavelet regularization (AI-DCT-WR) [106], and an image 

inpainting approach using spatially adaptive iterative singular-value thresholding 

algorithm (SAIST) [124]. The conventional iterative regularization method actually 

is the proposed approach but without the proposed initial guess as the geometrical 

guidance. Note that all simulation codes are written in MATLAB running on a 

personal computer at 3.4 GHz except VVIR-PDE which is written in C++. For fair 
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comparison, the execution time of VVIR-PDE implemented with C++ is assumed, as 

it is claimed by [125], to be 10 times faster than that implemented with MATLAB. 

Table 3-1 and Table 3-2 show the average signal-to-noise ratio (SNR) when 

comparing with the ground truth of the object “cone” and “peak” respectively. Given 

ℎ𝑜𝑟𝑖 as the depth of the ground truth and ℎ as the depth after the inpainting procedure, 

SNR can be calculated by,  

𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋𝑔𝑡

𝑀𝑆𝐸
) (3-25) 

where 𝑀𝐴𝑋𝑔𝑡 = Σ𝑖=0
𝑚 Σ𝑖=0

𝑛 ℎ𝑜𝑟𝑖(𝑖, 𝑗)
2  and 𝑀𝑆𝐸 = Σ𝑖=0

𝑚 Σ𝑖=0
𝑛 (ℎ𝑜𝑟𝑖(𝑖, 𝑗) − ℎ(𝑖, 𝑗))

2
 and 

both 𝑚 and 𝑛 are set to be 512. The average of SNR is calculated by repeating 100 

times for each algorithm at different noise levels, different masks, and different 

locations of the missing area. The location of the highlight area is randomly selected 

for each simulation. It can be seen in Table 3-1 and Table 3-2 that the proposed 

algorithm gives the highest SNR in all noise levels. Besides, the proposed initial 

guess is extremely important to the quality of the restored fringe image and to speed 

up the optimization process as shown in the comparison of execution time in Table 

3-3. Significant distortion is noted if just implementing the iterative regularization 

without the proposed initial guess. 
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Table 3-1  Comparison of inpainting results on the object “cone” with an oval shape mask and a circle 

shape mask respectively  

 

Noise 
Level 

SNR 

2
D

-D
TC

W
T 

EI
 

W
P

-I
I 

V
V

IR
-P

D
E 

A
I-

D
C

T-
IW

R
 

SA
IS

T 

P
ro

p
o

se
d

 

Oval shape mask 

0 18.01 34.02 32.25 22.71 7.78 29.54 37.64 

0.2 15.86 33.10 31.46 21.53 9.53 29.06 36.40 

0.4 15.42 30.89 29.63 21.58 10.03 28.49 33.01 

0.6 12.91 29.02 27.76 20.89 8.45 25.37 30.05 

0.8 11.67 27.24 26.26 19.11 8.98 22.90 28.81 

Circle shape mask 

0 11.53 32.09 30.15 22.47 15.12 14.81 35.46 

0.2 12.12 32.01 30.66 21.89 14.98 15.82 34.56 

0.4 9.88 30.12 29.16 21.89 14.47 14.96 31.72 

0.6 10.75 28.13 26.18 21.19 13.14 14.60 28.27 

0.8 10.09 27.54 26.98 18.85 11.63 14.88 27.80 
 

 

Table 3-2  Comparison of inpainting results on the object “peak” with an oval shape mask and a circle 

shape mask respectively 

 

Noise 
Level 

SNR 

2
D

-D
TC

W
T 

EI
 

W
P

-I
I 

V
V

IR
-P

D
E 

A
I-

D
C

T-
IW

R
 

SA
IS

T 

P
ro

p
o

se
d

 

Oval shape mask 

0 15.82 30.52 24.83 23.36 12.58 28.71 33.69 

0.2 14.65 28.40 25.04 22.85 12.86 28.31 33.18 

0.4 14.43 26.02 23.15 21.82 11.88 26.12 30.81 

0.6 14.67 25.16 23.28 20.92 11.87 23.36 28.56 

0.8 14.59 24.57 22.85 20.05 12.21 23.49 25.81 

Circle shape mask 

0 13.01 23.76 22.85 22.51 14.81 15.49 31.23 

0.2 13.21 25.30 22.64 23.02 15.07 16.18 30.78 

0.4 11.71 24.41 23.41 21.98 14.80 16.14 30.60 

0.6 11.36 23.13 20.96 20.22 13.45 14.10 27.03 

0.8 11.82 21.47 20.15 19.56 13.75 15.52 25.27 
 

 

Table 3-3  Comparison of execution time 

M
e

th
o

d
s 

 

2
D

-D
TC
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EI
 

W
P
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I 

V
V
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-P

D
E
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I-

D
C

T
-
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R
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T
 

P
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p
o
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d

 

Time  
(seconds) 

2.47 3.81 5.05 37.47 20.99 293.26 1.09 
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 (a) (b)                               

               

 (c) (d) 

             

 (e) (f)  

Figure 3-15.  Experiment with a ceramic plate with highlight. (a) The fringe image; (b) the 

reconstructed 3D model; (c) the generated depth image using the conventional approach; (d) the blow 

up of the highlight region in (c); (e) The generated depth image using the proposed approach; and (f) 

the blow up of the highlight region in (e). 

 

To evaluate the performance of the proposed algorithm in real working environments, 

we conducted a series of experiments using real objects. The proposed algorithm is 

implemented using a system consisting of a computer with a 3.4GHz CPU and 16GB 

RAM. It is connected to a video projector and a digital camera. The projector has a 
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light output of 3300 ANSI lumens and 2000:1 contrast ratio and the camera has a 

22.2 x 14.8mm CMOS sensor and a 17-50mm lens. They are placed at a distance 

approximately 700mm from the object. Figure 3-15 shows a large ceramic plate with 

a small highlight region. Due to the highlight, some of the fringes are missing 

(Figure 3-15 (a)), resulting in a loss of the depth information. Using the conventional 

regularization method [103, 104], the missing area can be minimized but some 

distortion is introduced to the depth image (Figure 3-15 (c) and (d). The proposed 

method improves the conventional regularization method and results in a better 

reconstruction as illustrated in Figure 3-15 (e) and (f) respectively. The resulting 3D 

model is depicted in Figure 3-15 (b). 

Next we consider fringe images with larger highlight regions. Figure 3-16 shows the 

fringe image of a rectangular melamine plate with a long highlight region and Figure 

3-17 shows a circular melamine plate with a big oval shape highlight at the center. In 

both cases, the highlight masks out some fringe patterns. We compare several 

inpainting methods: the conventional iterative regularization method (2D-DTCWT); 

the exemplar based inpainting (EI) [102, 122]; the wrapped phase image inpainting 

(WP-II) [54]; the vector-valued image regularization with PDEs (VVIR-PDE) [123]; 

the adaptive inpainting algorithm based on DCT induced wavelet regularization (AI-

DCT-WR) [106]; and an image inpainting approach using spatially adaptive iterative 

singular-value thresholding algorithm (SAIST) [124]. As shown in Figure 3-16, if the 

highlight area is not big, some methods (except WP-II, AI-DCT-WR, and SAIST) 

can reconstruct the depth image reasonably well. As the highlight area getting bigger 

(as shown in Figure 3-17), the conventional regularization methods result in 

significant errors in the reconstructed depth image. The proposed method on the 

other hand can make a correct estimation of the missing area. Indeed the result is 
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expected since the regularization procedure of the proposed method is guided by the 

geometrical structure based on the fringe pattern on the boundary of the highlight 

region.  

  

    
The fringe image and 3D model  

   

  
The iterative regularization with the oriented 2D-DTCWT 

 

  
the exemplar based inpainting method (EI) 

 

  
the wrapped phase image inpainting (WP-II) 

 

  
VVIR-PDE 

 

  
AI-DCT-WR 

 

   
SAIST 

 

  
the proposed method 

 

Figure 3-16.  Comparison with other inpainting methods on a rectangular melamine plate with long 

highlight. The 1st column:  (1st row) The fringe image with highlights and the 3D model reconstructed 

using the proposed method; (2nd row) iterative regularization with the oriented 2D-DTCWT; (3rd row) 

the exemplar based inpainting method [102, 122]; (4rd row) the wrapped phase image inpainting (WP-

II) [54]; The 2nd  column:  (1st row) the vector-valued image regularization with PDEs (VVIR-PDE) 

[123]; (2nd row) the adaptive inpainting algorithm based on DCT induced wavelet regularization (AI-

DCT-WR) [106]; (3rd row) the image inpainting approach using spatially adaptive iterative singular-

value thresholding algorithm (SAIST) [124]; (4th row) the proposed method 
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The fringe image and 3D model  

   

   
The iterative regularization with the oriented 2D-DTCWT 

 

    
the exemplar based inpainting method (EI) 

 

   
the wrapped phase image inpainting (WP-II) 

 

   
VVIR-PDE 

 

   
AI-DCT-WR 

 

   
SAIST 

 

   
the proposed method 

Figure 3-17.  Comparison with other inpainting methods on a melamine plate with large highlights. 

The 1st column:  (1st row) The fringe image with highlights and the 3D model reconstructed using the 

proposed method; (2nd row) iterative regularization with the oriented 2D-DTCWT; (3rd row) the 

exemplar based inpainting method [102, 122]; (4rd row) the wrapped phase image inpainting (WP-II) 

[54]; The 2nd  column:  (1st row) the vector-valued image regularization with PDEs (VVIR-PDE) 

[123]; (2nd row) the adaptive inpainting algorithm based on DCT induced wavelet regularization (AI-

DCT-WR) [106]; (3rd row) the image inpainting approach using spatially adaptive iterative singular-

value thresholding algorithm (SAIST) [124]; (4th row) the proposed method 
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  Figure 3-18.  Performance of the proposed method for objects with complex shape and strong color 

variation.  

 

Finally, we show in Figure 3-18 the performance of the proposed method for objects 

with complex shape (a ceramic jug) and strong color variation (a plastic banana). It 

can be seen that the proposed method performs equally well. It shows the robustness 

of the proposed method. 

3.6 SUMMARY 

In this chapter, a novel method for inpainting fringe images in the presence of 

highlights is proposed. The proposed method can detect the highlight regions in a 

fringe image and regenerate the fringes that are masked by the highlights. The 

algorithm is based on an iterative regularization procedure with additional 

geometrical sketching of the fringe pattern in the highlight regions. It serves as the 
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initial guess and guides the iterative regularization process to converge to the 

desirable result. Simulation and experimental results show that the proposed 

algorithm is able to accurately estimate the missing fringe patterns due to the 

highlights and thus correct the errors in the reconstructed 3D model which can be 

found when using the traditional methods. 
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CHAPTER 4 

4 PERIOD ORDER ENCODED COMPLEX WAVELET TRANSFORM 

PROFILOMETRY 

 

In the previous chapter, we have shown that DTCWT is an effective tool not only for 

denoising and removing bias of fringe images, but also for regenerating the missing 

fringes due to the presence of highlights. However, the problem of FPP is not only 

about highlights; the ambiguity problem as mentioned in Chapter 1 can also lead to 

severe distortions to the final reconstructed 3D model. Recall that the ambiguity 

problem is introduced due to the phase analysis process of FPP which gives only the 

wrapped phase data. The same is applied to the FPP systems using DTCWT. In this 

chapter, we propose a new marker encoding and detection algorithm which can 

estimate the period order information of the fringes. It is then used to assist the phase 

unwrapping procedure in solving the ambiguity problem. The proposed algorithm is 

robust in obtaining the 3D model with fringe images having complex scene, such as 

containing multiple objects. Besides, it is computationally efficient.  

This chapter is organized as follows. Section 4.1 presents a brief review on some 

recent related research works to solve the ambiguity problem in FPP. Section 4.2 

describes the proposed marker encoded fringe pattern that carries the period order 

information. Section 4.3 presents the proposed period order estimation algorithm. 
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Section 4.4 shows the simulation and experimental results and section 4.5 summaries 

this chapter. The content of this chapter is extracted from our paper published in 

Applied Optics [126]. 

4.1 RELATED WORKS 

As mentioned earlier, any phase imaging system including FPP gives only a modulo-

2𝜋  wrapped phase in its phase analysis process. Hence conventionally a phase 

unwrapping procedure is performed to recover the absolute (true) phase. Many phase 

unwrapping algorithms have been proposed to estimate the true phase shift by 

integrating the wrapped phase differences [3]–[6]. However, due to the various 

artifacts in the fringe images, some of the wrapped phase data can be missing. The 

same can also happen when the target object has a sharp change in height. Directly 

carrying out the unwrapping process with such erroneous data will lead to severe 

distortion to the final reconstructed 3D model. Recent quality-guided phase 

unwrapping methods, such as [5], will also fail particularly when the fringes have 

phase discontinuity along the object boundary with respect to the reference 

background. It is the case when the object does not have a direct contact with the 

reference background or the object itself has a curvature (such as a bowl) such that 

some parts of it cannot be seen from the angle of the camera.     

In fact, the above problem stems from Itoh’s assumption [3] that assumes the 

absolute phase can be estimated by integrating the wrapped phase difference. The 

estimated true phase shift will thus have much error if some of the phase data are 

missing. To solve this problem, recent approaches try to embed the period order 

information in the projected fringe patterns. By period order, we refer to the number 

of 2π jumps in the phase angle that is hidden in the wrapped phase data. If the period 
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order is known, phase unwrapping can be achieved even when some of the wrapped 

phase data are missing. Traditional approaches embed the period order information 

to the fringe patterns using, for instance, multiple cameras [2, 7], multi-wavelength 

fringe pattern [80], fringe pattern with additional information, such as colors [79], 

speckles [40], and markers [38, 49, 127], multiple frequencies [81], multiple patterns 

[82, 83], and gray coded fringe patterns [5, 84], etc. However, the approaches in [2], 

[7], and [80] require additional hardware systems. The performance of the approach 

in [49, 79, 81] can be seriously affected by the color pattern of the object, whereas 

the approaches in [38] and [127] can only be applied to fringe images having a 

simple scene (e.g., a single object). The approaches in [5, 84], [82], and [83] require 

additional fringe projections, hence are not suitable to dynamic applications. In 

addition to the above approaches, it was recently reported in [35] that a dual 

frequency scheme can be used to embed the period order information to the fringe 

patterns in a phase measurement profilometry process (PMP-DF). In such method, 

high frequency fringe patterns are generated to encode the object’s height 

information similar to the traditional phase shifting profilometry (PSP) approaches 

[34]. And low frequency signals are added to the fringe patterns to encode the period 

order information. Similar to other PSP methods, it requires at least 5 fringe patterns 

to obtain both the wrapped phase data and the period order information. Hence it is 

also not suitable to dynamic applications. Besides, our experiment shows that the 

method is highly sensitive to the quality of the fringe images. It will be exemplified 

in Section 4.4. 

In this chapter, a new period order encoding and detection algorithm is proposed. 

The new algorithm encodes the period order information based on the spatial 

distribution of some strip markers which are carefully embedded in the fringe pattern. 
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After projecting the fringe pattern onto the object, the markers are detected from the 

fringe image to assist the phase unwrapping process. Similar to the inpainting 

algorithm as described in Chapter 3, the proposed algorithm is included as a 

subsystem of the DTCWT FPP framework as explained in Chapter 2. Hence the 

proposed approach is applicable to objects with color texture. Furthermore, the 

proposed algorithm is applicable to scenes which contain several objects with sudden 

jumps in height. And unlike the approaches that use multiple frame patterns, the 

proposed scheme is applicable to dynamic applications because it requires only a 

single fringe pattern for the entire operation. Finally, the algorithm is not sensitive to 

the quality of the fringe image. As different from PMP-DF, the period order 

information can be detected accurately with noisy fringe images or images with 

abnormal brightness. With the period order information, we can reconstruct the 3D 

model of the object even when some of the fringe data are missing due to the 

artifacts of the fringe image or the irregularity of the object shape.  

4.2 PROPOSED MARKER CODING FOR CONSISTENT PHASE 

UNWRAPPING 

Instead of  using (2-18) which is based on the Itoh condition, the relationship 

between the absolute phase 𝜙𝑦(𝑥) and the wrapped phase �̂�𝑦(𝑥) can be written as 

follows [50]: 

𝜙𝑦(𝑥) = �̂�𝑦(𝑥) + 𝑘𝑦(𝑥)2𝜋 (4-1) 

where 𝑘𝑦(𝑥) ∈ ℤ is the so-called period order that determines the number of 2 

jumps required to unwrap the wrapped phase. If 𝑘𝑦(𝑥) is known, 𝜙𝑦(𝑥) can always 

be computed even if some of the wrapped phase information is missing. In this 

chapter, we propose to embed a set of structured markers into the projected fringe 
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pattern to facilitate the estimation of the period order 𝑘𝑦(𝑥) from the fringe image. 

The marker encoded fringe pattern is defined as follows:  

𝐺𝑦
𝑚𝑎𝑟𝑘𝑒𝑟(𝑥) = 𝐺𝑦(𝑥) + 𝑚𝑦(𝑥)  (4-2) 

where 𝐺𝑦(𝑥)  is the original sinusoidal fringe pattern and 𝑚𝑦(𝑥) is the marker signal 

added to the fringe pattern as illustrated in Figure 4-1.  

 
Figure 4-1.  The original sinusoidal fringe pattern (for a particular row) and the markers (top). 

Resulting fringe pattern with markers embedded (bottom). 

 

As shown in the figure, the markers are realized as a sequence of impulses (dash line) 

added to the original sinusoidal fringe pattern (solid line) at different phase angles. 

These phase angles are carefully selected such that they encode the order number of 

the sinusoidal period. Ideally, for every sinusoidal period in 𝐺𝑦  with period order 

number 𝑘𝑦, a marker should be added to it at phase angle 𝜃𝑦(𝑘𝑦) = 𝑀(𝑘𝑦), where 

𝑀(∙) is a unique mapping function. It is however difficult to achieve in practice since 

each sinusoidal period is represented by a limited number of pixels of the fringe 

pattern. It is not possible to have many different 𝜃𝑦(𝑘𝑦). That is, there can only be a 

limited number of unique markers. Suppose that every sinusoidal period is 

represented by To pixels of the fringe pattern and every marker has a size of Tm pixels. 

Then at most 𝑁𝑚 = 𝑇0/𝑇𝑚 unique markers can be made. Here we assume To is an 
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integer multiple of Tm. In this case, a marker will be added to a sinusoidal period at 

phase angle 𝜃𝑦(𝑘𝑦) = 𝑀(〈𝑘𝑦〉𝑁𝑚 ) , where 〈𝑎〉𝑏  refers to a modulo b.  In our 

experiment, we choose To = 36 and Tm = 4. Hence, 9 unique markers can be inserted 

into 9 different sinusoidal periods respectively. The set of markers will be repeated 

for the next 9 sinusoidal periods. Such arrangement allows phase unwrapping using 

(4-1) when up to 8 consecutive sinusoidal fringe periods are missing due to whatever 

reasons. This resolvability is sufficient in normal applications of FPP.  

To facilitate the detection of the markers, the mapping function 𝑀(. ) should be 

designed to maximize the difference of 𝜃𝑦(𝑘𝑦) between two neighboring markers. A 

natural choice is as follows: 
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 (4-3) 

Here we assume Nm is an odd number. It is shown in Appendix A that the mapping 

function in (4-3) ensures neighboring markers will have a difference in 𝜃𝑦(𝑘𝑦) with 

value at least 
(𝑁𝑚−1)𝜋

𝑁𝑚
, which is about the maximum possible value (i.e. π). 

 
Figure 4-2.  A fringe pattern with markers located at different phase angles of the sinusoidal fringes. 

 

An example of the marker encoded fringe pattern is shown in Figure 4-2. In the 

figure, the thick black and white columns are the sinusoidal fringe projection pattern. 
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The markers are characterized by the sharp black and white lines. As mentioned 

above, we select Nm = 9 in our experiment. Following (4-3), 9 markers are inserted 

into 9 consecutive sinusoidal periods at 9 different phase 

angles {0, 5𝜉, 1𝜉, 6𝜉, 2𝜉, 7𝜉, 3𝜉, 8𝜉, 4𝜉} , where 𝜉 = 2𝜋/9 , respectively. With this 

arrangement, any 2 neighboring markers are separated by at least 4. Such 

arrangement maximizes the difference in 𝜃𝑦(𝑘𝑦)of neighboring markers. It will 

improve the performance of the later marker detection process. Based on (4-3), we 

can also define 𝑚𝑦(𝑥)  of (4-2) as follows:  

𝑚𝑦(𝑥) =∑(𝑓𝑘𝑦(𝑥) ∗ 𝛿)

𝑘𝑦

 (4-4) 

where 
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In (4-4) the symbol * denotes linear convolution and δ can be any short support 

impulsive function. In our experiment, we set δ to be the first derivative of an 

impulse function. Each marker is represented by 4 pixels in the projected fringe 

pattern as mentioned above.   

4.3 PERIOD ORDER ESTIMATION ALGORITHM 

In this section, we discuss how the embedded markers and in turn the period order 

information are obtained from the fringe image captured by the camera. The captured 

fringe image with markers embedded will be processed based on the DTCWT FPP 

framework as shown in Figure 2-9. Then the wavelet coefficients of 6 orientations at 

different levels will be generated. Recall that the markers are signals of sharp 

changes in magnitude. They induce strong wavelet coefficients particularly in the 
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first few levels. On the other hand, normal fringe patterns usually do not have high 

frequency contents. Hence their wavelet coefficients can often be found in higher 

levels of the wavelet transform. For the proposed algorithm, we examine the first 2 

levels of the wavelet transform to detect the positions of the markers. Note also that 

the markers are added row-wise to the fringe pattern, they will not introduce wavelet 

coefficients of all 6 orientations. To be specific, only the subbands of 45o, 75o, 105o, 

and 135o will contain significant wavelet coefficients of the markers. 

Those wavelet coefficients will be sent to the Period Order Estimation function block 

as shown in Figure 2-9. Denote the wavelet coefficients at level j and orientation 

subband m as 𝑑(𝑗,𝑚). The marker cue information 𝑄 is first computed in the Period 

Order Estimation function block using the following formulation,  

𝑄 =∑ℱ𝑗

(

 
 
𝛼𝑗

[
 
 
 
 

∑ |𝑤𝑗
𝑚|

𝑚={45°,75°,
105°,135°} ]

 
 
 
 

)

 
 

𝛽

2

𝑗=1

 (4-6) 

where |𝑤𝑗
𝑚| is the magnitude of the complex wavelet coefficients. Parameters α and 

 are used to control the contribution of the wavelet coefficients to the marker cue 

function. We empirically select α = 1 and  = 1, as our experiments show that the 

final result is not sensitive to their selection. In (4-6), function   ℱ𝑗(∙)  is an 

interpolation function (e.g., bilinear interpolation) applied to the accumulation results 

of each level such that they have the same size as the original fringe image. Due to 

the shift invariance property of the DTCWT [128], the singularities that characterize 

the markers in the fringe image will generate strong coefficients at similar positions 

at all levels in the DTCWT domain. The Gaussian-like magnitude response of the 

wavelet functions [128] will also ensure that each marker will have only one 
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maximum of Q. Thus the position of the maxima in Q is strongly related to the 

position of the markers 

However, the first two levels of the wavelet transform are also swamped by the 

coefficients of noises. It means that the maxima in Q can also be contributed by 

noises. Hence in practical setting, detecting markers by using only the maxima of Q 

will get false detection results, as illustrated in Figure 4-3.  

 
(a)                                                     (b) 

Figure 4-3.  Marker detection results: (a) using only the maxima of Q; (b) the zoom in version which 

shows many falsely detected markers (circled).  

 

To identify the maxima of the markers, we threshold both the magnitude and phase 

of the complex wavelet coefficients at the positions where the maxima of Q are 

found. The magnitude of the markers’ wavelet coefficients in general should be 

much higher than that of noises. So a thresholding operation to the magnitude of the 

wavelet coefficients can be performed first to remove the maxima contributed by 

noises of small magnitude. Given the wavelet coefficients 𝑤𝑗
𝑚 at j = 1 and 2 and m = 

{45o, 75o, 105o, and 135o}, the following operation is carried out: 

𝑤𝑗
𝑚|
𝑥,𝑦
= {

  𝑤𝑗
𝑚|

𝑥,𝑦
      𝑖𝑓       |𝑤𝑗

𝑚|
𝑥,𝑦
| > 𝜆𝑗,𝑚

𝑢𝑛𝑖𝑣

0               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       
 

(4-7) 
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where 𝑤𝑗
𝑚|

𝑥,𝑦
  is the 𝑤𝑗

𝑚  at position {𝑥, 𝑦}  and 𝜆𝑢𝑛𝑖𝑣  is the so-called universal 

threshold  that is commonly used in many wavelet denoising applications [111, 129, 

130]. It is defined as follows: 

𝜆𝑗,𝑚
𝑢𝑛𝑖𝑣 = 𝜎𝑗,𝑚

𝑛 √2 𝑙𝑜𝑔 𝑁𝑗,𝑚 (4-8) 

where  𝑁𝑗,𝑚 denotes the number of coefficients at level 𝑗 and orientation subband 𝑚; 

𝜎𝑛  is the standard deviation of noise which is estimated using the robust statistics 

[131] by 𝜎𝑗,𝑚
𝑛 ≈ 𝑚𝑒𝑑𝑖𝑎𝑛{|𝑤𝑗

𝑚|}/0.6745. 

To further improve the detection of the maxima of the markers, we consider the local 

relative phase of the complex wavelet coefficients [132-134]. By definition, the local 

relative phase ∡𝑤𝑗
𝑚 of the complex wavelet coefficients 𝑤𝑗

𝑚  is given by [132, 133],  

∡𝑤𝑗
𝑚 = ∠𝑤𝑗

𝑚|
𝑥,𝑦
− ∠𝑤𝑗

𝑚|
𝑥+1,𝑦

 (4-9) 

where ∠𝑤𝑗
𝑚|

𝑥,𝑦
 is the local phase angle at position {x, y}. While the local phase of 

the complex wavelet is known to be arbitrary irrespective to the structure of the 

image, there is a strong relationship between the local relative phase and the 

orientation of the edges in natural images [133]. Our experiment shows that it also 

provides a good description of the markers. Since all markers have the same structure, 

they incur complex wavelet coefficients of similar local relative phase. It however is 

not case for those of noises. An example is shown in Figure 4-4.  
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Figure 4-4.  A comparison of local phase and local relative phase: (left) local phase; (right) local 

relative phase.  

 

As it is seen in Figure 4-4 (left), the local phases (arrows) around the markers’ 

maxima have unpredictable directions. However, the local relative phases (arrows) as 

shown in Figure 4-4 (right) around the markers’ maxima have a similar horizontal 

direction, while it is not the case for those of noises. For the proposed algorithm, we 

first compute the mean relative phase of the complex wavelet coefficients. More 

specifically, we apply a 2D rectangular mask of 3x3 centered at every complex 

wavelet coefficient 𝑤𝑗
𝑚. Then the mean of the relative phase ∡𝑤̅̅ ̅̅   from the set  ∡𝑤(𝑖)  

for index 𝑖 ∈ 1,… , 𝑛 is computed by,  

∡𝑤̅̅ ̅̅ = arctan(∑ cos∡𝑤(𝑖)

𝑁∡𝑤

𝑖=1

/∑ sin∡𝑤(𝑖)

𝑁∡𝑤

𝑖=1

) (4-10) 

where 𝑁∡𝑤 is the number of maxima point in a particular mask. Finally the following 

thresholding procedure with respect to the relative phase mean ∡𝑤̅̅ ̅̅  is performed as, 

𝑤𝑗
𝑚|

𝑥,𝑦
= {

𝑤𝑗
𝑚|

𝑥,𝑦
        𝑖𝑓      ∡𝑤̅̅ ̅̅ 𝑗

𝑚|
𝑥,𝑦
− 𝜋 < 𝜀 

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
 (4-11) 

 where ∡𝑤̅̅ ̅̅ 𝑗
𝑚|

𝑥,𝑦
 is the mean relative phase at level j and orientation subband 𝑚 at 

position {𝑥, 𝑦}; and  is a very small real number.  
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(a)                                                                                                   (b) 

Figure 4-5. (a) Marker detection results after using the proposed thresholding method; (b) the zoom in 

version.  

 

The thresholded wavelet coefficients are then used in (4-6) for computing the marker 

information cue Q and in turn detecting the position of the markers. The detection 

accuracy is greatly improved by using the abovementioned thresholding techniques 

based on the magnitude and relative phase of the complex wavelet coefficients. An 

example of the end result is shown in Figure 4-5. It can be seen that almost all 

maxima of noises are removed. The maxima retained clearly show the positions of 

the markers in the fringe image. 

When the maxima of the markers are identified, the next step is to determine the 

period order ky of each marker by identifying 𝜃𝑦 of the marker from the fringe image 

(see (4-3) for the relationship between 𝑘𝑦 and 𝜃𝑦). To do so, we first use the flood fill 

algorithm [120] to find the regions in the wrapped phase map where the phase 

difference is bounded by 2. Hence within the region, the period order should be the 

same. Let us define 𝑌𝑗 to be the set of all vertical coordinate index y in such regions 

with j as the region index. An exhaustive search is then performed to estimate the 

period order 𝑘𝑦 based on the maxima detected in region j as follows:  
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𝑖 = min
𝑖′

1

𝑁𝑗
∑|�̃�𝑦 − 𝑖

′𝜉|

𝑦∈𝑌𝑗

 

𝑘𝑦∈𝑌𝑗 = 𝑀
−1{𝑖𝜉} 

(4-12) 

where 𝜉  is defined in Section 3; 𝑁𝑗  is the total number of maxima that can be 

detected in region j; and �̃�𝑦  is the phase angle of the maxima in row y, which is 

obtained directly by inspecting the fringe image based on the maxima position 

indicated in Q. However, due to the various artifacts in the fringe image, the �̃�𝑦 

obtained is always slightly different from the true 𝜃𝑦. (4-12) thus helps to identify the 

correct i based on �̃�𝑦. Another problem when implementing (4-12) is that the flood 

fill algorithm may accidentally include the maxima from neighboring regions into the 

computation. It is particularly the case when the fringe image is of low quality. 

Recall that when embedding the markers, arrangement has been made to maximize 

the difference in y of neighboring markers. So in practice before implementing 

(4-12), we first carry out a screening process to all  �̃�𝑦 such that those having large 

difference from the rest will be ignored. Once we get the period order ky from (4-12), 

the phase unwrapping problem can be solved using (4-1) and the 3D model of the 

object can be readily reconstructed. 

4.4 SIMULATION AND EXPERIMENT RESULT 

To evaluate the computational efficiency and accuracy of the proposed algorithm, a 

simulation using a computer generated fringe pattern was first carried out. Figure 4-6 

(left) and (right) show a computer generated cone object and the deformed marker 

encoded fringe pattern, respectively, which were used in the simulation. They serve 

as the ground truth for the evaluation. To simulate the real working environment, 



  77 

 

white Gaussian noise (variance 1.0) is added to the fringe pattern. The simulation 

code is written in MATLAB running on a personal computer at 3.4 GHz. 

     
Figure 4-6. The object used in the simulation. (left) A computer generated 3D cone (ground truth); 

(right) the deformed fringe pattern 

 

  

We compare the proposed algorithm with the traditional Window Fourier Filtering 

(WFF) method [62, 63] and the DTCWT method without markers embedded [67, 69]. 

For DTCWT, we use the filter coefficient proposed in  [135]. For both approaches, 

the phase unwrapping is done by using the Goldstein algorithm [52]. All algorithms 

are implemented in MATLAB. Table 4-1 shows the comparison results in terms of 

the execution time and SNR at different noise levels. As shown in the table, the 

proposed algorithm is faster by approximately 10 times than the WFF+Goldstein 

method with similar, if not better, SNR. Compared to the DTCWT+Goldstein 

method (without markers), the proposed algorithm gives a similar performance both 

in the execution time and SNR. They show that the use of markers does not introduce 

much burden to the computation of the algorithm. 

The real advantage of using markers is that it allows correct phase unwrapping even 

when some of the phase information is seriously corrupted or even missing. To 

demonstrate it, we conducted a series of experiments using real objects. More 

specifically, we implemented our proposed algorithm with an FPP hardware setup 
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that contains a DLP projector and a digital SLR camera. The projector has a 2000:1 

contrast ratio with light output of 3300 ANSI lumens and the camera has a 22.2 x 

14.8mm CMOS sensor and a 17-50mm lens. Both devices are connected to the 

computer with a 3.4GHz CPU and 16GB RAM for image processing. They are 

placed at a distance of 700mm-1200mm from the object. 

Table 4-1. Comparison between the proposed method, the conventional DTCWT+Goldstein method, 

and the WFF+Goldstein method in terms of execution time and SNR 

σ 

Proposed 

Conventional 

DTCWT WFF 

Time 

(s) SNR 

Time 

(s) SNR 

Time 

(s) SNR 

0.2 2.27 39.55 2.13 39.37 33.39 43.12 

0.4 2.26 38.40 2.12 38.22 33.14 38.13 

0.6 2.27 36.95 2.12 36.79 33.11 34.84 

0.8 2.28 35.49 2.13 35.35 33.53 32.32 

1 2.28 33.86 2.12 33.99 33.42 30.29 

 

In our experiment, a marker encoded fringe pattern at the resolution of 1280×1024 is 

generated and projected onto the target object. The fringe pattern consists of about 35 

sinusoids in x-direction; each has a length of 36 pixels. A marker is embedded to 

each sinusoid with 4 pixels width. There are 9 unique markers and repeated in every 

9 sinusoids. 

In the first experiment, we compare the performance of the proposed algorithm 

(using markers) with the conventional DTCWT+Goldstein method (without markers) 

in the situation that there are phase jumps in the fringe image. To create such testing 

environment, a paper plane and two small boxes of different height are used, as 

illustrated in Figure 4-7a. Basically, no fringe patterns can be found on the edges of 

the boxes, as shown in Figure 4-7b. Thus phase jumps are introduced to the fringe 

images. As shown in Figure 4-7c-f, both approaches can correctly reconstruct the 
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paper plane since they both use the DTCWT FPP framework as shown in Figure 2-7. 

However, only the proposed method can make a correct estimation of the height of 

the boxes. It is expected since the period order information obtained from the 

markers allows us to restore the unwrapped phase even when there are phase jumps 

in the fringe image. 

                                       
(a)           (b) 

               
(c) (d) 

             
 (e) (f) 

Figure 4-7. Comparison of the proposed algorithm and the traditional phase unwrapping method. (a) 

texture image; (b) fringe pattern illumination; (c) reconstructed 3D shape with texture using the 

proposed method; (d) reconstructed 3D shape with height profile using the proposed method; (e) 

reconstructed 3D shape with texture using the traditional DTCWT+Goldstein; and (f) reconstructed 

3D shape with height profile using the traditional DTCWT+Goldstein 
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(a)  (b)                (c) 

Figure 4-8.  (a) Texture images (b) markers encoded fringe image; (c) one of the PMP-DF fringe 

images. 

 

In the second experiment, we compare the proposed algorithm with a similar method 

PMP-DF [35]. The PMP-DF method uses a low frequency signal added to the high 

frequency fringes for embedding period order information. Thus it serves similar to 

the markers of the proposed algorithm. As required by PMP-DF, 6 frames of image 

with phase shifted sinusoidal fringes are used for the reconstruction of one 3D model. 

It is in contrast to the proposed algorithm which requires only 1 fringe image due to 

the use of the DTCWT FPP framework. Figure 4-8 shows the image of a paper plane 

and a box, the marker encoded fringe image used in the proposed algorithm and one 

of the fringe images used in PMP-DF. In this experiment, we try to test the 

robustness of the algorithms by changing the brightness of the fringe images. To do 

so, we take the fringe images using different settings of ISO and shutter speeds: low 

ISO (100) with shutter speed 1/15s and 1/30s, respectively; and high ISO (1600) with 

shutter speed, 1/80s and 1/125s, respectively. The texture images captured using high 

ISO setting and low ISO setting are illustrated in Figure 4-9 and Figure 4-11 

respectively. 
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Figure 4-9. Texture images captured at low ISO (100) and different shutter speeds: (left) shutter speed 

1/15s and (right) shutter speed 1/30s  

 

At ISO 100, both approaches can generate accurate height profile when the shutter 

speed is set to 1/15s as shown in Figure 4-10. However when the images become 

darker by changing the shutter speed to 1/30s, the height profile reconstructed by 

PMP-DF is seriously distorted. 

It is also the case when the ISO value is high (1600) as illustrated in Figure 4-12. For 

both shutter speeds (1/80s and 1/125s), PMP-DF generates incorrect height profile 

whereas the proposed method performs as usual. It can be observed that PMP-DF is 

sensitive to the brightness of the fringe image. When the fringe image is too dark or 

too bright, the low frequency signal will have its magnitude decreased or distorted. 

Hence the period order information it carries cannot be accurately recovered.  
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      (a)                                           (e) 

    
     (b)                                                (f) 

    
     (c)                                          (g) 

    
                                 (d)                                                (h) 

 

Figure 4-10.  (Left column) A comparison of the proposed algorithm and PMP-DF with fringe images 

captured at ISO 100 and shutter speed 1/15s: (a) the height profile generated by the proposed method, 

(b) the 3D shape with texture generated by the proposed method, (c) the height profile generated by 

PMP-DF, (d) the 3D shape with texture generated by PMP-DF. (Right column) A comparison of the 

proposed method and PMP-DF with fringe images captured at ISO 100 and shutter speed 1/30s: (e) 

the height profile generated by the proposed method, (f) the 3D shape with texture generated by the 

proposed method, (g) the height profile generated by PMP-DF, (h) the 3D shape with texture 

generated by PMP-DF. 
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Figure 4-11. Texture images captured at high ISO (1600) and different shutter speeds: (left) shutter 

speed 1/80s and (right) shutter speed 1/125s.  

 

In the final experiment, we used a free form object, a human hand. Reconstructing 

the 3D model of free form objects like human hands is very challenging because of 

the abruptly changing surface and the discontinuity around the edges. Nevertheless 

the proposed algorithm is able to reconstruct the 3D model satisfactorily (Figure 

4-13). 
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 (a)                                                (e) 

  
 (b)     (f) 

    
 (c)     (g) 

 
 (d)   (h) 

Figure 4-12.  (Left column) A comparison of the proposed algorithm and PMP-DF with fringe images 

captured at ISO 1600 and shutter speed 1/80s: (a) the height profile generated by the proposed method, 

(b) the 3D shape with texture generated by the proposed method, (c) the height profile generated by 

PMP-DF, (d) the 3D shape with texture generated by PMP-DF. (Right column) A comparison of the 

proposed method and PMP-DF with fringe images captured at ISO 1600 and shutter speed 1/125s: (e) 

the height profile generated by the proposed method, (f) the 3D shape with texture generated by the 

proposed method, (g) the height profile generated by PMP-DF, (h) the 3D shape with texture 

generated by PMP-DF.    
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             (a)  (b) 

 

  
 (c)  (d) 

 

 
(e) 

 

 
(f) 

Figure 4-13. 3D model reconstruction of a human hand. (a) Texture image; (b) the fringe image; (c) 

wrapped phase of the hand; (d) the detected markers; (e) the reconstructed 3D model with texture 

image; and (f) the reconstructed 3D model. 
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4.5 SUMMARY 

In this chapter, a new marker encoding and detection algorithm for the fringe 

projection profilometry (FPP) is proposed. Based on our previously developed dual 

tree complex wavelet (DTCWT) FPP framework, the proposed system can 

reconstruct the 3D model of an object using only one projection fringe image. The 

system can also handle the bias and noise problem in the image. In this chapter, a 

marker encoding scheme is developed to embed the period order information to 

facilitate phase unwrapping even when there are phase jumps in the image. Based on 

our proposed algorithm, the marker cue information can be extracted and the period 

order information can be estimated accurately. The system can be built with merely a 

conventional projector and a camera with no additional hardware requirement. 

Experimental results show that the proposed algorithm is robust to the quality of the 

fringe image and does not introduce much burden computationally to the original 

DTCWT FPP framework. However, the use of markers will in fact accumulate the 

detection error since the marker is rather restrictive. For instance the width of the 

fringes is fix and the markers are sensitive to the lens’ defocus. When the number of 

detected markers in a particular region is small and the fringe image is of low quality, 

the detection error will be large. In the next chapter, the code marker approach is 

proposed to solve this problem.  
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CHAPTER 5 

5 ROBUST FRINGE PROJECTION PROFILOMETRY VIA SPARSE 

REPRESENTATION 

 

 

In the previous chapter, we have introduced a marker encoded FPP method which 

encodes the period order information based on the spatial position of the markers in 

the fringe pattern. Since the shape of the markers is fixed (the first derivative of an 

impulse), the number of unique markers that can be embedded into the fringe image 

is controlled by the width of the fringes. This becomes rather restrictive since the 

width of the fringes is fixed once the system is set up. In fact, such marker encoding 

scheme is similar to the time division multiplexing scheme of communication 

systems. And it is well known that the code division multiplexing method can often 

outperform the time division one in using the channel capacity. A natural question 

thus arises if we can borrow the idea of code division multiplexing in communication 

systems when designing the encoding method. More specifically, can we design a set 

of markers in the form of code patterns with different shapes such that they can be 

easily identified at the decoding stage? Such idea has an important engineering 

implication since in this case the number of unique markers is not solely controlled 

by the system set up, but also the resolvability of the decoding algorithm. 

Consequently, we can take advantage of the recent advance in pattern learning and 
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classification to help in the marker detection task. Based on the above idea, a robust 

code pattern encoding and decoding algorithm is proposed in this chapter. In the new 

algorithm, a set of textural code patterns is first designed to encode the period order 

information of the fringes. They are then embedded into the fringe pattern and 

projected onto the object. On the decoding side, the code patterns and fringe patterns 

are separated from the captured fringe image using a modified morphological 

component analysis (MCA) procedure. The resulting code patterns are then decoded 

by a sparse classification algorithm with dictionary learnt also via a sparse approach. 

By using the decoded period order information, the true phase can be obtained using 

the multi-level quality guided phase unwrapping algorithm. The proposed algorithm 

greatly improves the robustness of FPP when working with fringe images that have a 

complex scene, or are affected due to the ambient lighting condition.  

The rest of this chapter is organized as follows. In Section 5.1, the concept of the 

morphological component analysis (MCA), the dictionary learning, and the sparse 

coding technique is presented. In Section 5.2, the proposed algorithm is discussed in 

detail. Finally, Section 5.3 and Section 5.4 present the experimental results and the 

summary of this chapter respectively. The content of this chapter is extracted from 

our paper published in IEEE Transactions on Image Processing [136].  

5.1 BACKGROUND 

We begin by introducing two important concepts that are employed in this chapter. 

The first concept is the morphological component analysis (MCA) which is used to 

separate the code patterns and the fringe patterns. The second concept is the 

dictionary learning and the sparse coding technique that are used to determine the 

period order of a code pattern.  
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5.1.1 MCA  BASED ON VARIABLE SPLITTING USING SALSA 

Given an observed signal G, which is formed by the summation of two signals 𝐺1 

and 𝐺2, i.e. 𝐺 = 𝐺1 + 𝐺2. Assume that 𝐺1and 𝐺2 have different morphologies. The 

goal of MCA is to estimate 𝐺1and 𝐺2 by solving the following optimization problem:  

min
𝑤1,𝑤2

‖𝐺 − Φ1𝑤1 −Φ2𝑤2‖2
2 + 𝜆1‖𝑤1‖1 + 𝜆2‖𝑤2‖1 (5-1) 

where Φ1  and Φ2  are bases such that 𝐺1 = Φ1𝑤1  and 𝐺2 = Φ2𝑤2 . They are 

designed based on the criterion that both 𝑤1 and  𝑤2 are sparse. In [137], Φ1 and Φ2 

are realized by using the rational-dilation wavelet transform (RADWT) [138] and 

(5-1) is solved by using an iterative thresholding procedure based on the split 

augmented Lagrangian shrinkage algorithm (SALSA) developed in [139-141]. More 

specifically, the problem in (5-1) can be formulated as, 

arg min
𝑊

𝑓1(𝑣) + 𝑓2(𝑤)   𝑠. 𝑡.  𝑣 = 𝑤 (5-2) 

where  

𝑓1(𝑣) = ‖𝐺 − Φ𝑣‖2
2,     𝑓2(𝑤) = 𝜆1‖𝑤1‖1 + 𝜆2‖𝑤2‖1        (5-3) 

with   

Φ = [Φ1 Φ2], 𝑣 = [
𝑣1
𝑣2
] ,      𝑤 = [

𝑤1
𝑤2
] ,      𝜆 = [

𝜆1
𝜆2
] (5-4) 

Then 𝐺1 and 𝐺2 can be obtained by iteratively performing the following computation. 

Given the initial 𝑣0and 𝛿0,  

1. 𝑧𝑘+1 = 𝑆𝜆(𝑣
𝑘 + 𝑑𝑘) − 𝑑𝑘 

2. 𝑑𝑘 =
1

(𝜇+2)
Φ𝑇(𝐺 − Φ𝑧𝑘+1) 

3. 𝑣𝑘+1 = 𝑑𝑘+1 + 𝑧𝑘+1 

where 𝑧 = 𝑤 − 𝛿; 𝑧𝑘+1 stands for the z at 𝑘 + 1 iterations; and 𝑆𝜆(𝑎) is the standard 

soft thresholding function described in (3-4). The above computation is repeated until 
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it is converged. Finally 𝐺𝑖 = Φw𝑖
𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒

, where w𝑖
𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒

 is the w𝑖  when 

converges with 𝑖 = 1,2.  It is shown in [137] that the algorithm can achieve the 

global minimum when converged.  

5.1.2 DICTIONARY LEARNING 

For the traditional dictionary learning methods, a set of training signals 𝐺 =

[𝑔1, 𝑔2, … , 𝑔𝑁]   in ℝ𝑀×𝑁  is employed to learn an over-complete dictionary 𝐷 ∈

ℝ𝑀×𝐾  (hence K > M) that can give a sparse representation 𝛾 = [𝛾1, … , 𝛾𝑁] ∈

ℝ𝐾×𝑁 of 𝐺 . The learning process can be compactly written as a minimization 

problem as follows:  

〈𝐷, 𝛾〉 = arg min
𝐷,𝛾

‖𝐺 − 𝐷𝛾‖2
2     𝑠. 𝑡.  ∀𝑖   ‖𝛾𝑖‖0 ≤ 𝑇0  (5-5) 

where 𝑇0 is a threshold; and ‖∙‖0 is the pseudo  𝑙0-norm, which can be implemented 

by counting the number of non-zero entries. One of the popular approaches to solve 

the above optimization problem is the K-SVD algorithm [142]. Instead of the  𝑙0-

norm, we can also use the 𝑙1-norm since both the 𝑙0-norm and 𝑙1-norm promote 

sparsity. When the 𝑙1-norm is used, methods such as the basis pursuit [143] or lasso 

[144] can be used for online dictionary learning (ODL) [145].  

Given a dictionary D, the sparse representation 𝛾 = [𝛾1, … , 𝛾𝑁] ∈ ℝ
𝐾×𝑁of a signal 

𝐺 = [𝑔1, 𝑔2, … , 𝑔𝑁] in ℝ
𝑀×𝑁 can be obtained through a process known as the sparse 

coding, which can be expressed as another minimization problem as follows:  

arg min
𝛾𝑖

‖𝑔𝑖 − 𝐷𝛾𝑖‖2
2     𝑠. 𝑡.  ∀𝑖   ‖𝛾𝑖‖0 ≤ 𝑇0  (5-6) 

(5-6) can be solved by using the orthogonal matching pursuit algorithm (OMP) [146]. 

Since the sparse codes of a signal can also be considered as its features, recently 

there are many works trying to use the dictionary learning methods in signal 

classification applications [147-151]. However, traditional dictionary learning 
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methods are for signal reconstruction purposes (such as compressive sensing). The 

discriminative power of the dictionaries needs to be improved for using them in 

classification applications. To do so, researchers developed several approaches to 

learn a classification-oriented dictionary in a supervised learning fashion by 

exploring the class label information. More specifically, denote 𝑊 ∈ ℝ𝑚×𝐾  to be  

model parameters of a given classifier which assigns the class label for a given 

sparse code, where 𝑚  denotes the number of classes to be discriminated. Two 

approaches are commonly used for assigning the class labels, either by minimizing 

the class-specific residue [152] or by a linear classification [147, 151]. In this 

research, we employ the later approach. 𝑊 can be jointly learned with the dictionary 

𝐷 based on a cost function as follows: 

arg min
𝐷,W,𝛾

‖𝐺 − 𝐷𝛾‖2
2 + 𝜆1𝑓(𝑊) + 𝜆2𝑓(𝐷)    𝑠. 𝑡.  ∀𝑖   ‖𝛾𝑖‖0 ≤ 𝑇0  (5-7) 

𝑓(𝐷) denotes a function that forces the sub-dictionaries in 𝐷 for different classes to 

be as incoherent as possible [147, 152].  𝑓(𝑊) denotes a classifier function, e.g., a 

linear classifier [151], a label consistent term [147],  a logistic function [148], or 

Fisher discrimination criterion [153]. And {𝜆𝑖}𝑖=1,2 denote the regularization 

parameters. Comparing with (5-5), it can be seen that additional constraints are 

added in (5-7) for improving the discriminative power of the learned dictionary. In 

this work, we use a similar approach to learn a dictionary that can effectively detect 

the period order information of the fringe images and in turn facilitate the 

reconstruction of the 3D model of the object. 
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5.2 PROPOSED ALGORITHM  

5.2.1 ENCODING OF THE PERIOD ORDER INFORMATION 

Recall from Section 2.1 that the goal of FPP method is to accurately evaluate the true 

phase map 𝜙 from the wrapped phase map �̂�  computed from the fringe image. Once 

�̂� is obtained, the 3D model of the object at each scene point can be evaluated using 

(2-4). As mentioned in (4-1), there is a direct relationship between 𝜙  and �̂�   as 

follows [50]: 

𝜙 = �̂� + 𝐾2𝜋 (5-8) 

where 𝐾 is also called the K-Map. It gives the missing period order information (or 

the k-value) of �̂�. If it is known, the phase unwrapping problem is solved. The key 

idea of the proposed method is to encode the K-map with some unique textural 

patterns. They are then embedded into the fringe patterns and projected onto the 

object. Thus the captured fringe image can be formulated as,  

 𝐺 = 𝐺1 + 𝐺2 (5-9) 

where 𝐺1  denotes the original sinusoidal fringe pattern (i.e. 𝐺  in (2-1)); and 𝐺2 

denotes the code pattern that encodes the k-value defined by, 

𝐺2 = 𝑀(𝐾(𝜙)) 

𝐾: ℝ → ℤ+ 

𝜙 → ⌊
𝜙 + 𝜋

2𝜋
− 𝜋⌋ 

(5-10) 

In (5-10), 𝑀 is the encoding function for each k-value and ⌊∙⌋ is the floor function 

that gives the closest smaller integer number. Hence 𝐺2 is unique for each k-value.   
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Figure 5-1.  5×5 pixels binary textons (most left), the code pattern generated by textons (second 

column), and the coded fringe pattern with one unique texture assigned for each k-value (column 

three).  

 

When designing the encoding function 𝑀, it is important to ensure that: 1)  𝑀 can 

generate some code patterns 𝐺2 which have different morphological structures from 

𝐺1, e.g., different shape, frequencies, colors, etc.; and 2)  𝐺2 should have a unique 

feature for each k-value. In this chapter, we propose to construct the code patterns by 

a concatenation of image patches (or textons). An example of five unique textons and 

their corresponding code patterns are shown in Figure 5-1. As can be seen in the 

figure, each texton has the size of 5x5 pixels and has a unique orientation and scale. 

It will give a unique response when applying to a 2D band-pass multiresolution 

transform filter, e.g. the Gabor filter. As shown in column 3 of Figure 5-1, one 

unique code pattern is assigned to each k-value of the fringe. We shall discuss in the 

next few sections how the k-value can be efficiently decoded by using a dictionary 

learning method.  

5.2.2 OVERVIEW OF THE PROPOSED DECODING ALGORITHM 

As illustrated in Figure 5-4, the proposed decoding algorithm consists of an offline 

stage performed during the system calibration and an online stage when the object’s 

3D model is actually reconstructed. At the offline stage, a large number of training 

fringe patterns, which have been encoded with different code patterns, are first 
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applied to a modified MCA procedure so that the fringe patterns and codes patterns 

are separated. Since the k-values that the represented code patterns are known, a 

supervised label consistent K-SVD (LC-KSVD) training process [147] can be carried 

out for learning a discriminative dictionary D and a linear classifier W which will be 

used at the online stage. Figure 5-2 illustrates the captured coded fringe pattern of a 

shiny flat board used for training. It should be noted that in this figure, each texton is 

used for three consecutive fringes and repeated every five textons. It is due to the 

limitation of the number of textons when high frequency fringe pattern are used (see 

Section 5.3 for detail description).  

 

Figure 5-2.  The captured coded fringe pattern of a shiny flat board 
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Figure 5-3.  The captured coded fringe pattern of a jar 

 

At the online stage, the encoded fringe images of the testing object are fed to a 

modified MCA procedure to separate the fringe patterns and the code patterns. The 

wrapped phase map �̂� is then computed from the fringe patterns while the k-values 

of �̂� are determined by feeding the code patterns to the discriminative dictionary D 

and a linear classifier W learned at the offline stage. These k-values thus obtained are 

used to guide a multilevel phase unwrapping procedure to evaluate the true phase 

map 𝜙 and in turn reconstruct the 3D model of the object. Details of the algorithm 

will be explained in the following subsections. Figure 5-2 illustrates the captured 

coded fringe pattern of a jar. 
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Figure 5-4. Flowchart of the proposed dictionary learning based FPP method for 3D reconstruction 

 

5.2.3 THE MODIFIED MCA 

For a typical FPP setup, a fringe pattern needs to go through various optical devices 

before being captured by the camera. Hence the captured fringe images are often 

noisy and blurred, which can be formulated as, 

𝐺 = 𝒦(𝐺1 + 𝐺2) + ℰ (5-11) 

where 𝐺  is the captured image; 𝒦  is the blurring kernel; ℰ  is the Gaussian white 

noise of known variance. 𝐺1  and 𝐺2  are defined as in (2-1) and (5-10). 𝐺  can be 
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interpreted as the convolution of the original encoded fringe pattern with the blurring 

kernel plus the additive Gaussian white noise. 

 
Figure 5-5. Input of the coded fringe pattern.  

 

Given two predefined transform matrices Φ1 and Φ2, the problem in (5-11) can be 

formulated as an optimization problem similar to (5-1) as follows: 

arg min
𝛼1,𝛼2

‖𝐺 −𝒦(Φ1𝛼1 +Φ2𝛼2)‖2
2 + 𝜆1‖𝛼1‖1 + 𝜆2‖𝛼2‖1 (5-12) 

where 𝛼𝑖  are the sparse representations of {𝐺𝑖}𝑖=1,2  and 𝜆𝑖  are the regularization 

parameters. (5-12) can still be solved by using the MCA with a slight modification. 

First, we employ the tuned-Q wavelet transform (TQWT) similar to that in [137, 154] 

for the implementation of Φ1 and Φ2 . They fulfill the mutual incoherence 

requirement and can efficiently capture the structures of interest (i.e. having sparse 

𝛼𝑖). For performing the MCA, we first utilize the splitting variable approach. Let, 

𝑓1(𝑣) = ‖𝐺 −𝒦Φ𝑣‖2
2,     𝑓2(𝛼) = 𝜆1‖𝛼1‖1 + 𝜆2‖𝛼2‖1 (5-13) 

with  

Φ = [Φ1 Φ2],     𝑣 = [
𝑣1
𝑣2
] ,   𝛼 = [

𝛼1
𝛼2
]. (5-14) 
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(5-13) can be written as the following iterative optimization procedure:  

Given the initial 𝑣0 and 𝑑0, 

𝛼𝑘+1 = arg min
𝑣

𝜆1‖𝛼1‖1 + 𝜆2‖𝛼2‖1 +
𝜇

2
‖𝛼 − 𝑣𝑘 − 𝑑𝑘‖2

2  

𝑣𝑘+1 = arg min
𝑣

‖𝐺 −𝒦Φ𝑣‖2
2, +

𝜇

2
‖𝛼𝑘+1  − 𝑣 − 𝑑𝑘‖2

2 

𝑑𝑘+1 = 𝑑𝑘 − (𝛼𝑘+1 − 𝑣𝑘+1) 

(5-15) 

Since Φ1 and Φ2 are a tight-framed TQWT and 𝒦 can be assumed to be a circular 

convolution operation, 𝒦, Φ1 and Φ2 can be factorized as follows, 

𝒦 = 𝑈𝑇𝐻𝑈,     Φ𝑖 = 𝑈
𝑇𝐶𝑖𝑈     ∀𝑖 ∈ 1,2 (5-16) 

where 𝑈 represents the discrete Fourier transform (DFT), 𝑈𝑇 = 𝑈−1  is its inverse   

(𝑈  is unitary, i.e., 𝑈𝑇𝑈 = 𝑈𝑇𝑈 = 𝐼 ) and 𝐻  is the diagonal matrix of the DFT 

coefficients of the convolution operator, 𝐶 and 𝐶𝑇  are analysis and synthesis prior 

performed. As shown in appendix  

B, (5-15) can be simplified to the following iterative algorithm such that the fringe 

pattern and the embedded code pattern (i.e. 𝐺1 and 𝐺2 as defined in (5-9) and (5-10)) 

can be obtained from the observed blurred and noisy fringe image 𝑌: 

Algorithm I: Modified MCA  

Given the initial 𝑣0 and 𝑑0 

1. 𝑧(𝑘+1) = 𝑆𝜆(𝑣
(𝑘) + 𝑑(𝑘)) − 𝑑(𝑘) 

2. 𝑣(𝑘) =
1

𝜇
(𝐼 − 𝑈𝑇𝐹𝑈)(Φ𝑇𝒦𝐺 + 𝜇𝑧𝑘+1) 

3. 𝑑(𝑘+1) = 𝑑(𝑘+1) − 𝑧(𝑘+1) 

For the algorithm, we assume that Φ  are in a tight frame, i.e.   ΦΦ𝑇 = 2𝐼 . The 

definition of most parameters is the same as in Section 5.1.1, except a new parameter 

F is introduced which is defined as follows: 
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𝐹 = 𝐶𝑇𝐻∗(𝜇 + 2|𝐻|2)−1𝐻𝐶 (5-17) 

where 𝐻∗ is the complex conjugate of 𝐻; |𝐻|2 is the squared absolute value of 𝐻; 

and 𝐶 = [𝐶1 𝐶2]. In (5-17), the expression 𝐻∗(𝜇 + 2|𝐻|2)−1𝐻 is actually a Wiener 

filter in the frequency domain. It helps to enhance the blurred and noisy fringe image 

to facilitate the decomposition. 

 

    

0.1   0.3   0.9   

    

Figure 5-6. the coded fringe pattern decomposition using TQWT with different threshold value. The 

result of  decomposition: the fringe pattern, 𝐺1 (top row) and the code pattern 𝐺2 (bottom row) with its 

regularization parameter 𝜆.  

 

One of the important features of Algorithm I is its fast computation speed. In the 

algorithm, the term Φ𝑇𝒦𝐺 can be pre-computed before the iteration; and 𝐹 can be 

computed efficiently since it is performed in the Fourier domain. The total 

computation cost is only 𝑂(𝑟𝑁 log2𝑁), where 𝑁 is the total number of pixels of the 

fringe image and r is the redundancy factor which is set to 2.  Figure 5-6 shows the 

results of using Algorithm I to decompose an encoded fringe image with various 

regularization parameter 𝜆 . As shown in the figure, the fringe pattern 𝐺1  and the 
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code patterns 𝐺2 can be clearly extracted from the encoded fringe image when 𝜆 is 

set to 0.3 (𝜆1 + 𝜆2 = 1). The parameter 𝜆 is set at the offline stage empirically. 

5.2.4 DICTIONARY LEARNING 

In this section, we present the dictionary learning procedure and how the learned 

dictionary and the linear classifier are used in the k-value estimation.  

1) Training Set for Dictionary Learning 

To construct a reliable and robust dictionary, a large number of high quality image 

patches is needed for the training process. For the proposed algorithm, the image 

patches are selected during the offline stage by first projecting the encoded fringe 

pattern on a flat surface and capturing the resulting fringe image following the 

standard FPP approach. Since the object is a flat surface, there will not be any phase 

jump hence all k-values can be easily determined from the fringe image. They will be 

used as the ground truth for training the dictionary. As mentioned above, the encoded 

fringe image will go through the modified MCA such that the fringe patterns and 

code patterns are separated. For each region 𝑅𝑘 in the separated code pattern (where 

k is the k-value of that region), a set of code pattern patches and their Gabor features 

can be obtained. Let, 

𝑃𝑘 = {𝑝𝑖
𝑘}
𝑖=1,…,𝑁𝑘

 and 𝜁𝑘 = {𝜁𝑖|𝜁 = 𝒢(𝑝𝑖
𝑘)}

𝑖=1,…,𝑁𝑘
 (5-18) 

where 𝑃𝑘  and 𝜁𝑘  are a patch set and a patch feature set, respectively. 𝑁𝑘  is the 

number of training patches for each label in set 𝑃𝑘. In our experiment, we randomly 

select 256 patches (𝑁𝑘 = 256) for each 𝑘. Suppose we have K k-values, i.e. 𝑘 =

1, . . , 𝐾, the total number of training patches is 𝑁𝑘𝐾. 
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In (5-18), 𝒢(. ) is a function that extracts the features of a given patch. The Gabor 

features are obtained by convolving a patch 𝑝 with a Gabor kernel of 𝐽 scales, i.e. 𝑗 =

1… 𝐽; and 𝜃 orientations, i.e. 𝜃𝑜 = 1,… , 𝜃. It results in a complex vector which can 

be written as, 𝜌𝑗,𝜃
𝑘 = 𝑝𝑘 ∗ 𝐺𝑗,𝜃 where ‘*’ denotes the convolution operator. The final 

feature set  𝜁𝑘 is formed by taking the mean of the complex vectors 𝜌𝑗,𝜃
𝑘  of different 

scales and orientations defined as follows:  

𝜁𝑘 = [|𝜌1,1
𝑘 |̅̅ ̅̅ ̅̅ ̅, … , |𝜌1,𝜃

𝑘 |̅̅ ̅̅ ̅̅ ̅, … , |𝜌𝐽,1
𝑘 |̅̅ ̅̅ ̅̅ ̅, … , |𝜌𝐽,𝜃

𝑘 |̅̅ ̅̅ ̅̅ ̅] (5-19) 

where |𝜌|̅̅ ̅̅  is the mean of the magnitude of 𝜌. From our experiments, we observe that 

good results can be obtained by setting  𝐽 = 3 and 𝜃 = 6. 

2) Discriminative Dictionary Learning and Linear Classifier 

To learn a discriminative dictionary 𝐷, we employ a label consistent K-SVD (version 

1) [147] by minimizing the following objective function, 

arg min
𝐷,𝐴,Γ

‖𝑍 − 𝐷𝛾‖2
2 + ‖𝐵 − 𝐴𝛾‖2

2  𝑠. 𝑡.  ∀𝑖, ‖𝛾𝑖‖0 ≤ 𝑇 (5-20) 

where 𝑍 = [𝜁1, . . , 𝜁𝐾] ∈ ℝ𝜃𝐽×𝑁
𝑘𝐾is the training feature set. Each column of 𝑍 is a 

patch feature 𝜁𝑖
𝑘 = 𝒢(𝑝𝑖

𝑘) with 𝑝𝑖
𝑘 ∈ 𝐺2 . As it is indicated in [147], (5-20) will learn 

the dictionary 𝐷 ∈ ℝ𝜃𝐽×𝐿  which gives the sparse codes 𝛾 ∈ ℝ𝐿×𝑁
𝑘𝐾  of 𝑍. Besides, 

the second term of (5-20) enhances the discriminability of 𝛾  by minimizing the 

difference between the linear transformation of 𝛾 and a discriminative block diagonal 

binary matrix 𝐵 ∈ ℤ𝑁
𝑘𝐾×𝑁𝑘𝐾 defined as follows: 

𝐵 = [ 

1𝑁𝑘×𝑁𝑘
0
0
0

   

0
1𝑁𝑘×𝑁𝑘
0
0

    

0
0
⋱
0

    

0
0
0

1𝑁𝑘×𝑁𝑘

 ] (5-21) 
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where 1𝑁𝑘×𝑁𝑘 is all-ones matrix of size 𝑁𝑘 ×𝑁𝑘. It forces the code pattern patches 

of the same period order k to have very similar sparse representations. It results in 

good classification performance even using a simple linear classifier as will be 

discussed below. The matrix 𝐷  and 𝐴  are initialized using the discrete cosine 

transform (DCT) basis and updated using the approach in [147]. 

When a discriminative sparse code of a patch is obtained, we need a classifier to 

determine the k-value that the code represents. As mentioned above, it is sufficient to 

use a linear classifier which can be obtained by solving the following minimization 

problem:  

arg min
𝑊

‖𝐻 −𝑊𝛾‖2
2 + 𝜆𝑤 ‖𝑊‖

2 (5-22) 

where 𝑊 is the required classifier and  𝛾 is obtained from  (5-6); 𝜆𝑤 is a constant to 

control the contribution of the corresponding term; and  

𝐻 = [

11×𝑁𝑘
0
0
0

   

0
11×𝑁𝑘
0
0

    

0
0
⋱
0

    

0
0
0

11×𝑁𝑘

 ]. (5-23) 

(5-22) has a close form solution as follows:  

𝑊 = 𝐾𝛾𝑇(𝛾𝛾𝑇 + 𝜆𝑤𝐼)
−1. (5-24) 

 

5.2.5 APPLYING TO PHASE UNWRAPPING 

Both the dictionary 𝐷 and the linear classifier 𝑊 will be used at the online stage to 

determine the k-values of the code patterns. At the online stage, the input encoded 

fringe image will go through a modified MCA procedure so that the fringe patterns 

and code patterns are separated as indicated in Figure 5-4. Patches are extracted from 

the code patterns and their Gabor features are obtained using the same approach as in 
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(5-19). Given a patch feature vector  𝜁, the following sparse coding method can be 

used to obtain its sparse code �̃�:  

arg min
�̃�

‖𝜁 − D�̃�‖
2

2
  𝑠. 𝑡.   ∀𝑖, ‖�̃�‖0 ≤ 𝑇0. (5-25) 

(5-25) can be solved by using the OMP [146]. The k-value encoded by the code 

patch can be obtained by,  

�̂� = max
𝑖
(𝑊�̃�) (5-26) 

where max
𝑖
(𝑊�̃�) returns the index 𝑖 of the coefficient in the vector 𝑊�̃� of which the 

value is the maximum.  

The above sparse k-value classification algorithm can be applied to all code patches 

to obtain their k-value; however the process can be time consuming. We propose to 

apply it together with the traditional multilevel quality guided phase unwrapping 

algorithm [37] to achieve a higher computational efficiency. The proposed algorithm 

first randomly chooses a “good” point in the wrapped phase map �̂�. To determine if 

the point is “good”, we make use of the approach given in [37] [51] as below, 

𝑄𝑚𝑎𝑝(𝑖, 𝑗) = max{max{|Δ𝑖,𝑗
𝑥  |, |Δ𝑖−1,𝑗

𝑥  |} , max{|Δ𝑖,𝑗
𝑦
 |, |Δ𝑖−1,𝑗

𝑦
 |}} (5-27) 

where Δ𝑖,𝑗
𝑥 = 𝒲(�̂�(𝑖 + 1, 𝑗) − �̂�(𝑖, 𝑗))  and Δ𝑖,𝑗

𝑦
= 𝒲(�̂�(𝑖, 𝑗 + 1) − �̂�(𝑖, 𝑗))  are the 

wrapped phase differences in the horizontal and vertical directions; 𝒲(∙) is the phase 

wrapping operator defined in (2-16). In (5-27), 𝑄𝑚𝑎𝑝(𝑖, 𝑗) ∈ [0,2𝜋) is called the 

quality map (or Q-map), which gives the prediction of the quality of each unwrapped 

phase data. Note that we consider the quality is good if the Q value is low, and vice 

versa. 
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Figure 5-7. Code patterns and Q-map at various locations  

 

Traditionally, the Q-map is used to guide the phase unwrapping process. However, 

we found that for a particular position where the Q-map indicates the quality is low 

(e.g. the Q value has a high mean), the result of k-value classification at that position 

also will not be good. An example is shown in Figure 5-7 which depicts the code 

patterns and Q-map obtained in an FPP experiment of an object. Three code pattern 

patches and Q-map patches are extracted. The sparse k-value classification algorithm 

as mentioned above is applied to each code pattern patch and the resulting K-maps 

are shown. For the Q-map patch centered at position (𝑥, 𝑦), the mean 𝜇 = 𝑄(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ of 

the patches is also evaluated. In the second row, the code pattern patch and Q-map 
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patch are near the boundary of the object. Hence some of the Q values (fourth 

column) are rather high which means that they are not suitable for phase unwrapping. 

It can be seen that the corresponding Q-map patch has a high mean value. One can 

also see that the K-map estimated in the corresponding location (third column) is 

quite far away from the ground truth (second column). The same can be seen in the 

results in the final row. The code pattern patch and Q-map patch are at the location 

where distortion is found due to the global illumination to the object. It can be seen 

that the corresponding Q-map patch has a relatively higher mean value. And the K-

map estimated in the corresponding location (third column) is also somewhat 

different from the ground truth (second column). On the contrary, the code pattern 

patch and Q-map patch in the third row are at the smooth region of the object. The 

mean of the Q-map patch is low and the K-map estimated is very close to the ground 

truth. The above observation is expected since for the code pattern patches located at 

the positions where there are abrupt changes in the fringe pattern, both the MCA and 

the classification algorithm, which heavily rely on the second order statistics in their 

optimization process, will have difficulty to obtain statistically stationary data. Hence 

the estimation is prone to error. 

Consequently, the proposed algorithm first chooses a point (𝑥, 𝑦) in the wrapped 

phase map �̂� such that the mean value of the Q-map patch at the same position, i.e. 

𝑄(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ , is low. The sparse k-value classification algorithm is then applied to the 

code patterns to obtain the k-value at that position. Then starting from that position of 

the wrapped phase map, the traditional multilevel scanline phase unwrapping 

algorithm is used to unwrap the phase data. The whole procedure can be summarized 

as follows:  
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Algorithm II 

Inputs: The wrapped phase map �̂�, the quality map 𝑄 

Output:  The unwrapped phase map  𝜙 

1. Initialize  minQThreshold  with a small value 

2. Repeat  

(a) Randomly select a point (x,y) where 𝑄(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ < 𝑚𝑖𝑛𝑄𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

(b) If the true phase and k-value of a neighbor of (x,y) has been obtained, directly 

compute 𝜙(𝑥, 𝑦) and its k-value based on those of its neighbor. 

(c) Otherwise, estimate the k-value using the proposed sparse k-value 

classification algorithm (i.e. (5-25) and (5-26)). Then based on the estimated 

k-value, compute 𝜙(𝑥, 𝑦). 

(d) Starting from (x,y), scan all other pixels of which the 𝑄 value also smaller 

than minQThreshold. Repeat step (a), (b) and (c) for all these pixels. 

(e) If no more pixel whose 𝑄 value has a mean smaller than minQThreshold, 

increase the value of minQThreshold by a fixed amount. 

3. Until no more pixel to be unwrapped 

 

Similar to the traditional multi-level scanline phase unwrapping algorithm [37], 

Algorithm II is very simple that can be implemented with real time performance. In 

addition, it allows true phase estimation even when there are multiple disconnected 

regions in the wrapped phase map, which is common for fringe images of complex 

scene. In such situation, traditional algorithms such as [37] will fail since in these 

regions, their wrapped phase data cannot find any neighbors with known true phase 

or k-value hence unwrapping cannot be carried out. And since most traditional 

algorithms do not have the remedy such as Step 2c of Algorithm II, errors cannot be 

avoided. For Algorithm II, the k-value and hence the true phase in these regions can 

be obtained based on the sparse k-value classification algorithm. It allows the 

algorithm to be applicable for fringe images of complex scene. Some examples will 

be given in next section to illustrate the performance of the proposed algorithm. 
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5.3 EXPERIMENT 

To verify the proposed algorithm, a series of FPP experiments were conducted using 

different real objects. To implement these experiments, an FPP hardware setup that 

contains a DLP projector and a digital SLR camera was adopted. The projector has a 

2000:1 contrast ratio with light output of 3300 ANSI lumens and the camera has a 

22.2 x 14.8mm CMOS sensor and a 17-50mm lens. Both devices were connected to a 

computer with a 3.4GHz CPU and 16GB RAM for image processing. They were 

placed at a distance of 700mm-1200mm from the object. The program code was 

written in MATLAB running on a personal computer at 3.4 GHz. The resolution of 

the testing fringe images is 728×640 pixels. 

In the real working environment, FPP employs high frequency fringe pattern images. 

By doing so, we can reduce the influence of the global illumination. However since 

the number of textons is limited, each textons is used to represent several fringes. In 

our experiment, each texton is used to represent three consecutive fringes. To 

differentiate between the first, the second, and the third fringe, the phase unwrapping 

algorithm will check the texton of the previous and the next fringes. Hence we can 

increase the number of 𝑘 by three times. In our experiments, five textons were used 

and thus 15 fringes could be employed in our FPP. This arrangement also improves 

the detection because the area for detection a single texton becomes larger.  
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Figure 5-8. Relationship between the root mean square (RMS) reconstruction error (phase error) and 

the number of periods P. The number of patterns used by PMP-DF is six whereas the number of 

patterns used by other methods is three. 

 

The first experiment was to reconstruct the 3D model of a shiny flat board. Since the 

ground truth of the flat board can be easily measured, it allows us to have an 

objective comparison of the accuracy of different methods. For this experiment, the 

size of the board is 500mm×400mm. Different methods were tested including the 

conventional phase shifting profilometry (PSP) with the Goldstein phase unwrapping 

algorithm (PSP+Goldstein) [33, 47, 52], the PSP method with speckle-embedded 

fringe patterns (PSP-Speckle) [39], and the proposed algorithm. All methods use 

three phase shifted fringe patterns to implement the PSP. While PSP+Goldstein is the 

conventional approach, PSP-Speckle was recently proposed and indeed similar to the 

proposal algorithm in the sense that it also embeds code patterns into the fringe 

patterns to carry the period order information. However, it does not use the MCA 

method to separate the code patterns and fringe patterns; and it also does not use the 

dictionary method to decode the code patterns. To understand the importance of the 

modified MCA in the proposed algorithm, we try to replace it by using the traditional 
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method as in PSP-Speckle, i.e. simply summing up all frames to remove the fringe 

pattern and obtain the code patterns. The method is then compared with the proposed 

algorithm and other conventional approaches. In this experiment, the flat board was 

scanned for 50 times using those approaches. The total number of reconstructed 

points is 678,665 by ignoring a few pixels at the boundary which contain some 

artifacts. The root means square (RMS) of the reconstruction phase error is obtained 

by averaging the whole surface. The comparison result is shown in Figure 5-8. As it 

is seen in the figure, the PSP-Speckle method shows low accuracy particularly when 

the number of periods is small. It is because the embedded speckles introduce 

distortion to the original fringe patterns that affect the accuracy. Meanwhile the 

accuracy of the proposed algorithm without the modified MCA only shows a slightly 

better performance than the PSP-Speckle method but is worse than the conventional 

PSP. It shows that the embedded code patterns in the proposed algorithm also 

introduce error to the fringe patterns similar to the PSP-Speckle method. It can affect 

the final result even using the learned dictionary and linear classifier in the proposed 

method. However once the modified MCA is applied, the phase error of the proposed 

algorithm is similar or even slightly better for all period numbers as illustrated in 

Figure 5-8. It shows that the embedded coded patterns in the proposed algorithm can 

be separated successfully using the modified MCA. In this experiment, we have 

shown that the proposed algorithm can give one of the best performances when 

working on fringe images of simple scene. We shall show in the next experiment that 

when working on complex scenes, the proposed method can tackle the ambiguity 

problems while the other methods fail to deliver. 
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Figure 5-9. Objects that form complex scenes. (a) A head sculpture and a plastic toy; (b) a plastic 

banana occluded by a jar; (c) a jar with texture and highlights; (d) a plastic bag with regular textual 

pattern; and (e) a ceramic plate with complex texture cover the whole object. 

 

For qualitative evaluation, objects that form a complex scene as depicted in Figure 

5-9 are considered. In these scenes, highlight regions, sudden intensity jump, 

occlusion, or bias due to the object’s texture can be found. To be specific, the first 

scene consists of a head sculpture and a color plastic toy. The second scene consists 

of a plastic banana occluded by a jar. The third scene consists of a jar with texture 

and highlights. The fourth consists of a plastic bag with regular textural pattern. And 

the last scene consists of a ceramic plate with complex texture covering the whole 

object. 

Similar to the first experiment, we compare the proposed algorithm with the 

conventional method (PSP+Goldstein) [33, 38, 47, 52] and PSP-Speckle [39]. The 

result of the comparison is illustrated in Figure 5-10. In the figure, the ground truth is 

generated by scanning the scenes using 30 fringe pattern images with the period 

order determined manually. As shown in the figure, the resulting 3D models 

generated by the PSP+Goldstein method are erroneous for scene 1 and 2. When 

using the PSP+Goldstein method, it is traditionally assumed that a reference point 

(usually at the center of the image) is known so that a complete depth map can be 

grown from this reference point using the Goldstein method. Such assumption is 

valid only when there is only one object located at that reference point. For scene 1, 

both objects are not located at the center. And since there is no period order 
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information provided in the fringe images, there is no way to estimate the absolute 

depth of the objects. For scene 2, it is noted that the plastic banana is located at the 

center of the image hence its absolute depth can be obtained from the reference. 

However, due to the shadow of the jar, the two objects are disconnected as can be 

seen in the second image in Figure 5-9. Thus the depth estimation of the jar cannot 

be conducted through the reference at the plastic banana, and leads to the erroneous 

result. In practice, additional hardware setup is required to give the reference for each 

disconnected region (such as using some tiny markers as in [38]). Without those 

reference points, unsatisfactory results will be obtained as in the first two images of 

the first row in Figure 5-10. 

Unlike the conventional PSP methods, both the PSP-Speckle method and the 

proposed algorithm provide the period order information and are able to obtain the 

true phase correctly as shown in Figure 5-10 (the second and the third row). However, 

the PSP-Speckle method can give erroneous results when the scene is complex. As 

illustrated in Figure 5-10 (the third to the fifth scene), distortion of different extents 

is found in the reconstructed 3D models using the PSP-Speckle method. Since the 

PSP-Speckle method does not have measure to remove the speckles from the fringe 

images, they can appear as noises in the reconstructed 3D model. Such noises may 

not only affect the smoothness of reconstructed 3D model surface, sometimes they 

can lead to erroneous reconstruction particularly in the regions where the fringe 

images have other artifacts, such as highlights (see the results of the third scene in 

the third column of Figure 5-10). 
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 4.21  3.82   38.52   23.56     38.59 

     
 35.43  32.31 38.63 4.76  0.92    

     
 35.94  32.98 41.01 27.38  43.00 

     
 

Figure 5-10.  3D reconstruction of various complex scenes with multiple objects, occlusion, highlight 

regions, and textures. (First row) Results of the conventional PSP+Goldstein method; (second row) 

results of the PSP-Speckle method; (third row) results of the proposed method; and (fourth row) the 

ground truth. The numbers under the images of the first 3 rows are the SNR (in dB) as compared with 

the ground truth. 

Besides, incorrect period order information is generated when the object itself 

contains large textural pattern (such as the fourth and the fifth scene). They are 

confused with the speckles and lead to the erroneous k-value estimation as shown in 

Figure 5-10 (second row, fourth and fifth columns). The same problem does not exist 

for the proposed algorithm since, by using the modified MCA, the code pattern can 

be effectively separated from the textural pattern of the object, as they have different 

morphological structures. Together with the dictionary learning method which 

significantly enhance the classification power, the proposed algorithm (the third row) 

can accurately recover the 3D model of objects and the results are close to the ground 

truth (as can be seen in the images in the third row of Figure 5-10). More 

experimental results are shown in Figure 5-11. They show the robustness of the 

proposed algorithm. 
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Figure 5-11.  A scene of complex objects (the first column). Result of 3-D reconstruction using the 

proposed algorithm (second column). The top view of 3D reconstruction (the last column).  

 

5.4 SUMMARY 

In this chapter, we have presented a robust algorithm for fringe projection 

profilometry (FPP). The proposed approach solves the ambiguity problem by 

embedding codes patterns which carry the period order information to the fringe 

patterns. Unlike the traditional approaches, the proposed algorithm does not require 

special hardware setup or projecting additional fringe patterns. When comparing with 

the marker approach in Chapter 4, the implementation of the proposed algorithm in 

this chapter is more flexible since the number of unique markers is not only 

controlled by the system setup but also the resolvability of the decoding algorithm. 

There can then be many possibilities and different methods can be used to optimize 

the performance of FPP in different applications. For the proposed algorithm, we 

adopt a modified morphological component analysis (MCA) for separating the code 

patterns and the fringe patterns; and a sparse dictionary learning and classification 

procedure for determining the k-values from the extracted code patterns. They are 

integrated to a multilevel quality guide phase unwrapping procedure to allow the 

phase unwrapping to be carried out in fringe images of complex scene. Experimental 

results have demonstrated the superiority of the proposed algorithm over the 

traditional approaches in terms of robustness and accuracy. The proposed algorithm 



  114 

 

only requires approximately 300ms when running on a normal personal computer in 

the Matlab environment. We believe the computational efficiency can be further 

increased when working in industrial-grade computing systems. 
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CHAPTER 6 

6 CONCLUSIONS AND FUTURE WORKS 

 

In this chapter, we conclude this research and discuss possible extension works of 

this research in the future.  

6.1 CONCLUSIONS 

The general objective of this research is to develop robust FPP methods that can 

function effectively in adverse working environments. While there can be many 

problems in practical working environments, we have focused on those that are often 

encountered when the target objects form a complex scene. By complex scenes, we 

refer to the situation that the captured fringe images contain one or more of the 

following: (i) high noise level in the dark regions of the image; (ii) bias due to the 

texture and coloration of the objects; (iii) reflection due to strong global illumination; 

(iv) sudden intensity change due to the discontinuities or sharp structural changes of 

the objects; and (v) occlusion due to multiple objects. Such kind of fringe images are 

often obtained in real working environments, and we have demonstrated in the last 

few chapters that serious distortion will be resulted in the final reconstructed 3D 

model if they are not carefully taken care of. 

The general strategy that we have adopted for achieving the objective of this project 

can be summarized into the following two points:  
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 Develop efficient and effective methods to enhance the captured images 

which are affected by the interference in the working environment.  

 Develop good projection methods so that the projection patterns can be 

robustly detected despite of the possible artifacts in the captured images 

introduced by the working environment. 

More specifically, the following three algorithms have been developed and they are 

the major contributions of this research work: 

1. Developed an iterative regularization inpainting algorithm to regenerate 

the missing fringes due to the specular highlights.  

In this research work, we have developed an iterative regularization algorithm 

for inpainting fringe patterns washed out by the specular highlights due to the 

global illumination. The proposed method is realized using the 2D-DTCWT 

which has the nearly shift invariant and minimum aliasing properties. Based 

on these properties, two highlight detection approaches are developed for 

finding the affected area automatically. The highlight region can be detected 

accurately by thresholding the smoothed fringe pattern image. The threshold 

value is estimated using the Gaussian mixture model (GMM). Besides, the 

proposed algorithm also generates the geometric structure to initialize the 

inpainting algorithm such that the iterative regularization process will 

converge to the global minimum. The simulation and experimental results 

show that the proposed inpainting method can regenerate accurate fringe 

patterns which are washed out by strong specular highlights of large size.  

2. Developed a marker encoded fringe pattern and a period order 

estimation algorithm for solving the ambiguity problem of FPP. 
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A novel marker encoding algorithm has been specifically designed for fringe 

patterns so as to carry the period order information and in turn assist the 

phase unwrapping process. The markers are a set of impulse functions 

embedded at different spatial positions of the fringe pattern. They are 

resistive to the ambient illumination and has a low sensitivity to the surface 

reflectivity variations of the object. Hence they can be easily detected from 

the fringe image. Since the proposed algorithm is developed under the 

DTCWT FPP framework, it can be applied to FPP systems using a single 

fringe pattern (such as FTP) and for objects with color texture. Based on the 

embedded markers, the robustness of the original DTCWT framework is 

further improved such that it performs equally well with fringe images having 

a complex scene (e.g. multiple objects). It has a low computational 

complexity that does not introduce much burden computationally to the 

original DTCWT framework. The above has been fully demonstrated in the 

simulation and experimental results.  

3. Developed a robust FPP method via dictionary learning and sparse 

classification for accurate 3D shape measurement of a complex scene. 

Rather than using markers of fixed shape, a code patterns encoding and 

decoding algorithm is developed for robust FPP. Similar to the fixed marker 

approach, the proposed algorithm can reconstruct the 3D model of objects 

that form a complex scene (such as containing multiple objects, occlusions, 

and having sudden changes in light intensity). However, the proposed 

algorithm relieves the restriction that the number of unique markers does not 

control solely by the system setup, but also the resolvability of the decoding 

algorithms. In the proposed FPP method, two main approaches are adopted to 
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develop the decoding system, namely, 1) a modified MCA for separating the 

code pattern and the fringe pattern and 2) the dictionary learning and the 

sparse classification procedure for determining the k-values from the 

extracted code pattern. They are integrated into a multilevel quality guided 

phase unwrapping procedure to estimate the true phase value. The 

experimental results show that the proposed algorithm can recover the 3D 

model of objects that form a complex scene accurately and efficiently. It only 

requires approximately 300ms when running on a personal computer. We 

believe the computational efficiency can be further increased when working 

in industrial-grade computing systems. 

Each algorithm as mentioned above has been extensively verified by numerous 

simulation and experiment results. We can conclude that the objective of this 

research has been fully achieved. 

6.2 FUTURE WORKS 

FPP methods face a fundamental trade-off between temporal and spatial resolutions. 

While it is well known that a more accurate 3D model can be obtained by projecting 

more fringe patterns, the time required for doing so limits its application to dynamic 

applications where the target objects are moving in time. One solution is to develop 

more robust reconstruction algorithms which we have demonstrated in this thesis. 

Another possible solution is to increase the speed of projection and imaging, e.g. 

using high speed cameras and projectors, which however will incur high hardware 

cost. Meanwhile, in the photography imaging area, there have been some techniques 

that allow sampling, representing, and reconstructing the space-time volume 

efficiently to achieve the high speed photography using only a consumer camera 
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[155]. In the future, a similar approach can be applied to FPP by capitalizing good 

sampling and sparse representation techniques such that many fringe patterns can be 

represented by only a small amount of patterns (and ultimately, a single pattern) and 

projected to the objects. Hence, without additional hardware costs, many fringe 

images can be obtained within a short period of time such that accurate 3D models 

can be reconstructed even when the objects are moving. We believe that it is a very 

interesting research direction since it will integrate a few currently hot research 

topics in signal processing, such as compressive sensing, sparse representation, 3D 

image coding, etc. into an important optical engineering problem. It is believed to 

draw a lot of attention from the signal processing and optical engineering 

communities and fruitful results are expected. 
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APPENDIX A 

 

Prove: Given Nm is an odd integer, show that the mapping function in (4-3) ensures 
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7 APPENDIX B 

Consider the minimization problem as stated in (5-12),  

arg min
𝛼1,𝛼2

‖𝐺 −𝒦(Φ1𝛼1 +Φ2𝛼2)‖2
2 + 𝜆1‖𝛼1‖1 + 𝜆2‖𝛼2‖1 

Applying the variable splitting method, the above problem can be reformulated as, 

arg min
𝑣,𝛼

𝑓1(𝑣) + 𝑓2(𝛼)    𝑠. 𝑡.  𝑣 = 𝛼 

where 

𝑓1(𝑣) = ‖𝐺 −𝒦Φ𝑣‖2
2,   𝑓2(𝛼) = 𝜆1‖𝛼1‖1 + 𝜆2‖𝛼2‖1  

Φ = [Φ1 Φ2],    𝑣 = [
𝑣1
𝑣2
] ,    𝛼 = [

𝛼1
𝛼2
] ,   𝜆 = [

𝜆1
𝜆2
] 

 

Using the augmented Lagrangian method (ALM), the solution of the above problem 

can be written as an iterative algorithm as follows:  

Initialize 𝑘 ← 0, 𝜇 > 0, 𝑑0, and 𝑣0 

Repeat  

     𝛼𝑘+1 ← arg min
𝛼

 𝜆1‖𝛼1‖1+𝜆2‖𝛼2‖1+
𝜇

2
‖𝛼− 𝑣𝑘−𝑑

𝑘
‖
2

2
 

   𝑣𝑘+1 ← arg min
𝑣

 ‖𝐺 −𝒦Φ𝑣‖2
2 +

𝜇

2
‖𝛼𝑘+1 − 𝑣 − 𝑑𝑘‖2

2 

 𝑑𝑘+1 ← 𝑑𝑘 − (𝛼𝑘+1 − 𝑣𝑘+1) 
 

 𝑘 ← 𝑘 + 1 
 

Until meet the stopping criteria 

 

In the above algorithm, line 3 can be solved using the soft-thresholding while line 4 

is a least squares problem which can be solved in its explicit form. By substituting 

𝑧 = 𝛼 − 𝑑, the above algorithm can be rewritten as,  

Initialize 𝑘 ← 0, 𝜇 > 0, 𝑑0, and 𝑣0 

Repeat  

 𝑧𝑘+1 ← 𝑆𝜆/𝜇( 𝑣
𝑘 + 𝑑𝑘) − 𝑑𝑘    

 𝑣𝑘+1 ← (Φ𝑇𝒦𝑇𝒦Φ+𝜇𝐼)
−1

(Φ𝑇𝒦𝑇𝐺+ 𝜇𝑧𝑘+1) 

 𝑑𝑘+1 = 𝑣𝑘+1 − 𝑧𝑘+1 

 𝑘 ← 𝑘 + 1  
Until meet the stopping criteria 

 

where 𝑆𝑥(𝑦) is the soft-thresholding of y with a threshold x. Now let us focus on the 

first term in line 4 of the above algorithm. Since we adopt a tunable Q-factor wavelet 
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transform (TQWT) which has a tight frame (Φ𝑖Φ𝑖
𝑇 = 𝐼) for both  1  , and 2  ,  we 

have:  

ΦΦ𝑇 = [Φ1 Φ2] [
Φ1
Φ2
] = 2𝐼 

Thus applying the Sherman-Morrison-Woodbury matrix inversion lemma to the first 

term in line 4, we have 

(𝛷𝑇𝒦𝑇𝒦𝛷 + 𝜇𝐼)−1 =
1

𝜇
(𝐼 − Φ𝑇𝒦𝑇(𝜇𝐼 + 2𝒦𝒦𝑇)−1𝒦Φ) 

Also, since the TQWT is adopted, Φ1 and Φ2 can be implemented efficiently in the 

Fourier domain. Assume that 𝒦  can be approximated as a circular convolution 

operator. Then 𝒦,Φ1 , and Φ2  can be factorized as,  

𝒦 = 𝑈𝑇𝐻𝑈, Φ𝑖 = 𝑈
𝑇𝐶𝑖𝑈, Φ𝑖

𝑇 = 𝑈𝑇𝐶𝑖
𝑇𝑈, ∀𝑖 ∈ 1,2 

where  𝑈 represents the discrete Fourier transform (DFT), 𝑈𝑇 = 𝑈−1is its inverse; 𝐻 

and 𝐶𝑖 are some diagonal matrices. Therefore the above terms can be written as,  

 Φ𝑇𝒦𝑇(𝜇𝐼 + 2𝒦𝒦𝑇)−1𝒦Φ   

= UT𝐶𝑖
𝑇𝐻∗𝑈(𝜇𝑈𝑇𝑈 + 2𝑈𝑇𝐻𝐻∗𝑈)−1𝑈𝑇𝐻𝐶𝑖𝑈 

= UT 𝐶𝑖
𝑇𝐻∗(𝜇 + 2|𝐻|2)−1𝐻𝐶𝑖⏟              

𝐹

 

where 𝐻∗ is the complex conjugate of 𝐻∗; |𝐻|2 is the squared absolute values of the 

entries of the diagonal matrix 𝐻; and 𝐶 = [𝐶1 𝐶2]. By substituting the above term 

to the algorithm, Algorithm I is obtained as follows:  

Initialize 𝑘 ← 0, 𝜇 > 0, 𝑑0, and 𝑣0 

Repeat  

 𝑧𝑘+1 ← 𝑆𝜆/𝜇( 𝑣
𝑘 + 𝑑𝑘) − 𝑑𝑘    

 𝑣𝑘+1 ←
1

𝜇
(𝐼 − 𝑈𝑇𝐹𝑈)(Φ𝑇𝒦𝑇𝐺 + 𝜇𝑧𝑘+1) 

 𝑑𝑘+1 = 𝑣𝑘+1 − 𝑧𝑘+1 

 𝑘 ← 𝑘 + 1  
Until meet the stopping criteria      (Q.E.D.)  
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