
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



RESOURCE ALLOCATION AND
PERFORMANCE OPTIMIZATION IN

FULL-DUPLEX MIMO/OFDMA SYSTEMS

YUNXIANG JIANG

Ph.D

The Hong Kong Polytechnic University

2016



The Hong Kong Polytechnic University

Department of Electronic and Information Engineering

Resource Allocation and Performance
Optimization in Full-Duplex MIMO/OFDMA

Systems

Yunxiang Jiang

A thesis submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy

June 2016

i



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowl-

edge and belief, it reproduces no material previously published or written, nor ma-

terial that has been accepted for the award of any other degree or diploma, except

where due acknowledgement has been made in the text.

(Signed)

Yunxiang Jiang (Name of student)

ii



To my family

iii



Abstract

With the development of self-interference (SI) cancellation, full-duplex (FD) radios,

i.e., using the same frequency channel for transmit and receive, have recently gained

significant attention owing to the potential to further improve or even double the

capacity of conventional half-duplex (HD) systems. Although the gains of full-

duplex systems can be easily foreseen, practical implementations of such full-duplex

systems pose many challenges and a lot of technical problems still need to be solved.

Moreover, many wireless systems are starting to use orthogonal frequency division

multiple access (OFDMA) and multiple-input multiple-output (MIMO) as the core

transmission techniques. In addition, the cooperative relaying technique is being

considered to further increase the capacity of mobile cellular systems. Applying

the full-duplex technology in MIMO/OFDM and/or cooperative systems will bring

more degrees of freedom in system design and resource allocation, and therefore

needs more insightful investigations.

In this thesis, we will explore the potential of full-duplex technology at the base

station (BS) in MIMO/OFDM mobile cellular systems with/without relays while

the user terminals are operating in the half-duplex mode. Firstly, we consider an

OFDMA multi-user cellular system with one full-duplex base station communicating

with multiple half-duplex users in a bidirectional way. The uplink and downlink

transmissions are coupled together due to the existence of the self-interference (SI)

at the base station and the inter-user interference (IUI) from the uplink users to the

downlink users. We aim to maximize the system sum-rate of uplink and downlink

transmissions by optimally pairing the uplink and downlink users, and allocating the

subcarriers and powers to these users. We formulate the problem as a mixed integer

nonlinear programming problem. A two-layer iterative solution based on the dual

iv



method and the sequential parametric convex approximation (SPCA) method is

proposed. It is referred to as the Dual-SPCA algorithm. The Dual-SPCA algorithm

requires the IUI channel state information (CSI) to be available at the base station

and hence a significant overhead is generated. To reduce the amount of overhead

required, we assume that the IUI channel model is known at the BS and we design

a location-aware resource allocation algorithm with limited CSI that maximizes

the system sum-rate. Simulation results show that when SI is low, uplink and

downlink user-pairing can provide significant improvement on the system sum-rate

compared to the conventional unidirectional half-duplex transmission. In addition,

by considering two different network deployments, i.e., urban macro cell scenario

and small cell scenario, we show that the improvement of full-duplex transmission

over half-duplex transmission highly depends on the channel parameters.

Secondly, we jointly consider three different transmission modes in coopera-

tive OFDMA systems, i.e., direct transmission mode, half-duplex relay cooperative

transmission mode and full-duplex relay transmission mode. The joint optimiza-

tion problem of transmission mode selection, subcarrier assignment, relay selection,

subcarrier-pairing as well as power allocation is investigated. We transform the

binary assignment problem into a maximum weighted bipartite matching problem.

Based on the dual method, we solve the joint power allocation and binary assignment

problem iteratively. Specifically, since the direct link is considered to be interference

in the full-duplex relay transmission mode, the power allocation problem in full-

duplex relay transmission mode is non-trivial. Thus, we provide a novel hierarchical

dual method to solve the power allocation problem in full-duplex relay transmission

mode. In addition, in half-duplex relay cooperative transmission mode, the joint

transmission of both source and relay is taken into account, and we provide a simple

and insightful power allocation scheme. Results show that the system throughput

enhances significantly compared to previous works.

Thirdly, we investigate a max-min weighted SINR problem in a full-duplex

multi-user MIMO system, where a full-duplex-capable base station equipped with

multiple antennas communicates with multiple half-duplex downlink and uplink

users under the same system resources. Instead of optimizing the joint uplink and

downlink max-min weighted SINR, we consider a more practical scenario where the
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downlink minimum weighted SINR is maximized under specific SINR constraints

for uplink users. Moreover, the optimization is conducted by jointly considering the

base station transmit power, uplink transmit power, and base station transmit and

receive beamforming. This optimization problem is therefore subject to multiple

uplink SINR constraints and multiple transmit power constraints. Due to the SINR

constraints, negative matrix components arise and hence the optimization problem

cannot be solved by the Perron–Frobenius theory directly. With fixed base station

transmit and receive beamforming, we first optimize the max-min weighted SINR

problem under multiple uplink SINR constraints and a single power constraint, and

show how the subgradient projection-based method can be applied to optimize the

problem under multiple-power-constraint conditions. Then we derive the network

duality of the same problem, i.e., fixed base station transmit/receive beamforming

with multiple uplink SINR constraints and a single power constraint. To solve the

original problem, we propose an optimization algorithm that iteratively updates

(i) the transmit power vector and receive beamforming in the primal domain, and

(ii) the dual transmit power vector and transmit beamforming in the dual domain.

Moreover, the algorithm, which is also based on the subgradient projection-based

method, is proven to converge under appropriate initialization parameters. With

network duality, we avoid optimizing coupled transmit beamforming in the primal

domain and instead are able to optimize individual transmit beamformers easily in

the dual domain. Simulation results show that our proposed algorithm has a fast

convergence rate and leads to a better performance compared to other optimization

techniques that do not jointly considered all parameters.

Finally, energy efficiency of a full-duplex relay system under the total power

constraint and fixed circuitry power consumption is studied. An optimization prob-

lem is formulated towards maximizing the system energy efficiency. Unfortunately,

this problem is non-trivial and cannot be solved by conventional fractional program-

ming methods, such as the Dinbelbach’s method. To resolve this issue, an algorithm

called sequential parametric convex approximation-Dinbelbach is proposed. Simu-

lation results show that the proposed algorithm can converge to the global optimum

very quickly.
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Operation and function
(
m
n

)

Binomial coefficient

exp(x) Exponential function

ln(x) Natural logarithm, base e

log(x) Logarithm on base 2

max{x1, . . . , xn} Maximum of the elements x1, . . . , xn

min{x1, . . . , xn} Minimum of the elements of x1, . . . , xn

O(x3) Big O notation

n! Factorial of n

ℜ(z) Real part of complex variable z

Probability

CN (µ, σ2) Complex circularly symmetric Gaussian distribution

with mean µ and variance σ2

Pr(A) Probability of an event A

E(A) Expectation of an event A

p(x) Probability density function of a random variable X
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Chapter 1

Background and Motivations

Wireless communication systems have brought huge convenience to humans. The

recent proliferation of “smart” mobile devices has allowed users to surf the Inter-

net, download applications, and upload/download pictures/videos anytime and any-

where. Consequently, there has been a tremendous increase in mobile data usage.

In the foreseeable future, the number of smart devices will continue to increase and

the demand of high-speed wireless access will keep on rising. While many advanced

technologies have been put together to enhance the wireless transmission rates, the

improvement may not be able to cope with the rapid increase in demand.

The challenges in wireless communication originate from the shared, broadcast

nature of the wireless medium. A shared medium implies that communication de-

vices need to contend amongst themselves, requiring specific sharing mechanisms to

use the medium efficiently. The wireless medium also exhibits rapid attenuation of

signals. With such attenuation, different devices in a network can have very different

and inconsistent views of the wireless channel. A typical example is that a device
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cannot use the same frequency to send and receive data simultaneously. The main

reason is that the transmitted signal from the wireless device will interfere severely

with the useful received signal. This phenomenon is named as self-interference (SI)

[1]. When the useful received signal is overwhelmed, it becomes useless. Thus,

half-duplex (HD) mode is widely applied in current wireless systems. There are

two classical duplexing techniques called Time-Division Duplexing and Frequency-

Division Duplexing, which allow the transmitter and receiver operate at different

time- and frequency-resources, respectively.

If each device can use the same frequency for transmit and receive at the same

time, the capacity of the wireless systems can be enhanced considerably. This is the

so called full-duplex (FD) transmission. Due to the existence of self-interference,

the practical rate of FD transmission cannot reach twice of transmission rate of HD

transmission. Yet recent research has shown that SI can be reduced practically [2–

19] and hence it is envisaged in the near future that SI can be reduced significantly.

There are other major technical challenges to be overcome before we can fully utilize

the extra capacity. For example, when the same frequency is used in the uplink (UL)

and in the downlink (DL), the signal from the UL user will interfere with the DL

signal arriving at the DL user. In order to minimize such interferences, there is a

need to investigate strategies for assigning channels to UL and DL users. Moreover,

existing base stations (BSs) and mobile devices may be equipped with multiple

antennas that can enhance the signal quality and hence channel capacity. We need

to devise ways to continue fully utilizing such features in future cellular systems.

Optimizing the resources in FD systems is therefore the main focus of this thesis.

7



1.1 Motivations

Resource allocation is a general strategy to control interferences and enhance the

performance of wireless networks [20–22]. The basic idea for resource allocation is

to utilize the channels more efficiently by sharing the spectrum through optimizing

parameters such as transmit power, transmission rate, subcarrier, coding scheme, or

combinations of these parameters. Moreover, the network performance can be fur-

ther improved by introducing more diversity and cross-layer considerations. Various

DL and UL resource allocation algorithms have been proposed and investigated for

Orthogonal Frequency Division Multiple Access (OFDMA) systems [23–28]. Most

literatures studying resource allocation focus on either DL or UL transmissions,

and they model all subchannels (i.e., subcarriers) as interference-free channels. It

means that the transmission rate is only affected by the signal-to-noise ratio (SNR)

and therefore, water-filling algorithms can be applied to solve the power allocation

problem. As more advanced self-interference cancellation (SIC) techniques are be-

ing developed, FD technology is becoming very promising in improving spectral

efficiency and system throughput. OFDMA systems consisting of FD-capable BS

have not been thoroughly investigated yet. In addition, the optimization approach

provided in multi-user HD OFDMA systems may not be applicable to analyzing

multi-user FD OFDMA systems due to the residual self-interference of FD equip-

ment. Thus, there is a need to provide solutions for the resource allocation problems

in FD OFDMA multi-user systems.

In addition, adding the cooperative relaying nodes in OFDMA-based networks

has brought more degrees of freedom in system design and resource allocation, and

has become a hot research topic [29–44]. Much of the previous research focuses
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on the HD relaying system due to the limitation of FD transmission. In particu-

lar, the authors in [35] have provided an in-depth analysis and algorithm in joint

FD and HD relaying system for resource allocation. However, the direct link has

been neglected in [35]. Since cooperative relay transmission mode may not always

achieve higher data rate than direct transmission mode [36, 45], it is necessary to

jointly consider direct transmission mode and cooperative relay transmission mode.

More importantly, unlike the HD relaying transmission where the direct link can be

treated as an improvement, the signal from the direct link is inevitable and should

be considered as interference in FD relaying transmission [16, 46]. This fact would

definitely decrease the system performance when the mobile users are near the BS.

Advanced resource allocation schemes are therefore required to further improve the

system performance. Another important property of OFDMA-based relaying that

is missing in [35] is the so-called subcarrier-pairing, where the first-hop subcarrier

and the second-hop subcarrier at the relay need to be carefully “matched” [37–42].

In [47], an excellent idea has been provided for solving the interference problem

between direct link and relay link by jointly processing the sum of signals from the

source and the relay. The authors have designed a fast construct-and-forward full-

duplex relay which can utilize the direct link as an additional path to the relay path,

resulting in strengthening the received signal at the destination. It has been shown

that this fast construct-and-forward full-duplex relay can be well applied in a TDMA

system, e.g., WiFi system. However, the processing is performed in the time do-

main which means that all subcarriers would be given the same amplification. Since

the amplifications are identical for all subcarriers, the relay cannot apply different

power allocations to different subcarriers. In other words, power allocation and

subcarrier allocation are not feasible in this fast construct-and-forward full-duplex
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relay. Hence, the performance of the fast construct-and-forward full-duplex relay in

OFDMA systems is still an open problem. More importantly, only one relay and

one user are considered in [47] such that the signals from the relay link and direct

link can be designed to arrive at the user with the same phase. However, when mul-

tiple relays and multiple users are considered, the signal design becomes much more

complex and the problem is yet to be solved. Thus, the joint optimization prob-

lem of transmission mode selection (including direct transmission (DT) mode, HD

relay cooperative transmission (HDRCT) mode and FD relay transmission (FDRT)

mode), subcarrier assignment, relay selection, subcarrier-pairing as well as power

allocation has not been systematically investigated yet.

FD techniques have been investigated under multi-user MIMO cellular systems

where the base station (BS) is allowed to transmit and receive signals in the same

time-frequency block while the uplink and downlink users work in a half-duplex way

[48–50]. The target of these open literatures are to optimize the system sum-rate. In

additional to the system sum-rate, the signal-to-interference-plus-noise-ratio (SINR)

balancing problem, which is also named as max-min weighted SINR problem [51],

is another important performance metric in wireless networks. The earliest work

on the max-min weighted SINR problem appeared in [51]. The single-input-single-

output (SISO) problem with a single power constraint was solved by applying the

Perron-Frobenius theory [52]. The approach was subsequently extended to solv-

ing multiple-input-single-output (MISO) and single-input-multiple-output (MISO)

problems [53–59]. Specifically, due to the coupled structure of the transmitted sig-

nals in MISO cases, the max-min weighted SINR problem with joint beamforming

and power control is usually non-convex and thus cannot be solved directly. The
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key technique used to overcome this difficulty is to transform the non-convex down-

link joint optimization problem into a convex dual uplink problem via a so-called

network duality relationship. In the equivalent dual uplink problem, beamforming

vectors can be derived in closed-form expressions with respect to the powers. A

unified analysis of max-min weighted SINR problem in MIMO systems has been

further proposed [60] based on the network duality and nonlinear Perron-Frobenius

theory [61, 62].

The max-min weighted SINR problem has also been extended to study co-

operative transmissions in multiple cells [63–65]. Multiple power constraints, e.g.,

per-BS power constraints, therefore have to be considered in such an environment.

However, it is not straightforward to extend the network duality with a single power

constraint to the case with multiple power constraints. Thus, instead of using net-

work duality in the max-min weighted SINR problem directly, the authors in [64, 65]

have addressed the MISO max-min weighted SINR problem by iteratively solving

the sum-power minimization problem and looking for a maximum feasible SINR.

In [66], assuming all the weights are equal to one, i.e., all user priorities are the

same, an analytical expression for the network duality has been derived and a more

efficient solution for the MISO max-min SINR problem is provided. The SIMO max-

min weighted SINR problem with multiple power constraints is first analyzed in [67]

by decoupling the original problem into subproblems each involving a single power

constraint. The proposed algorithm in [67] involves finding the solution to each sub-

problem separately, and choosing the solution which gives the smallest value for the

objective function. The strategy in [67] has been applied to tackle MISO max-min

weighted SINR problem with multiple linear transmit covariance constraints [68].
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However, the results cannot be extended due to the lack of a convex reformulation

of the relaxed problem. In [69], an explicit solution for the MISO max-min weighted

SINR problem with multiple linear sum-power constraints has been provided based

on network duality and nonlinear Perron-Frobenius theory. It has also been claimed

in [69] that the solution can be extended to the MIMO problem when both the

transmit and receive beamformers are optimized. This motivates us to investigate

the max-min weighted SINR problem under a FD multi-user MIMO scenario, which

has not been evaluated in the open literature yet.

Energy efficiency (EE), defined as bits/Joule delivered to the receivers, has also

attracted much interest in the telecommunications community [70–80]. Increasing

EE has become an important and urgent task. In relay communications, recent

research efforts have focused on EE in half-duplex relay systems [71, 77–79, 81–83].

In this thesis, we also investigate EE of FD relay systems.

1.2 Thesis Organization

The rest of this thesis is divided into five chapters.

In Chapter 2, we consider an OFDMA multi-user cellular system with one FD

base station (BS) communicating with multiple HD users in a bidirectional way.

The UL and DL transmissions are coupled together due to the existence of the SI

at the BS and the inter-user interference (IUI) from the UL users to the DL users.

We aim to maximize the system sum-rate of UL and DL transmissions by optimally

pairing the UL and DL users, and allocating the subcarriers and powers to these

users. We formulate the problem as a mixed integer nonlinear programming prob-
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lem. A two-layer iterative solution based on the dual method and the sequential

parametric convex approximation (SPCA) method is proposed. It is referred to

as the Dual-SPCA algorithm. The Dual-SPCA algorithm requires the IUI channel

state information (CSI) to be available at the BS and hence a significant overhead

is generated. To reduce the amount of overhead required, we assume that the IUI

channel model is known at the BS and we design a location-aware resource alloca-

tion algorithm with limited CSI that maximizes the system sum-rate. Simulation

results show that when SI is low, UL and DL user-pairing can provide significant im-

provement on the system sum-rate compared to the conventional unidirectional HD

transmission. In addition, by considering two different network deployments, i.e.,

urban macro cell scenario and small cell scenario, we show that the improvement of

FD transmission over HD transmission highly depends on the channel parameters.

In Chapter 3, we jointly consider three different transmission modes in coop-

erative relay OFDMA systems, i.e., direct transmission mode, HD relay cooperative

transmission mode and FD relay transmission mode. The joint optimization problem

of transmission mode selection, subcarrier assignment, relay selection, subcarrier-

pairing as well as power allocation is investigated. We transform the binary assign-

ment problem into a maximum weighted bipartite matching problem. Based on the

dual method, we solve the joint power allocation and binary assignment problem

iteratively. Specifically, since the direct link is considered to be interference in the

HD relay transmission mode, the power allocation problem in HD relay transmis-

sion mode is non-trivial. Thus, we provide a novel hierarchical dual method to

solve the power allocation problem in FD relay transmission mode. In addition, in

HD relay cooperative transmission mode, the joint transmission of both source and
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relay is taken into account, and we provide a simple and insightful power alloca-

tion scheme. Results show that the overall system throughput can be significantly

enhanced compared to previous works.

In Chapter 4, we investigate a max-min weighted SINR problem in a FD multi-

user MIMO system, where a FD-capable base station equipped with multiple an-

tennas communicates with multiple HD DL and UL users under the same system

resources. Instead of optimizing the joint UL and DL max-min weighted SINR,

we consider a more practical scenario where the DL minimum weighted SINR is

maximized under specific SINR constraints for uplink users. Moreover, the opti-

mization is conducted by jointly considering the base station transmit power, up-

link transmit power, and base station transmit and receive beamforming. This

optimization problem is therefore subject to multiple uplink SINR constraints and

multiple transmit power constraints. Due to the SINR constraints, negative ma-

trix components arise and hence the optimization problem cannot be solved by

the Perron-Frobenius theory directly. With fixed base station transmit and receive

beamforming, we first optimize the max-min weighted SINR problem under mul-

tiple uplink SINR constraints and a single power constraint, and show how the

subgradient projection-based method can be applied to optimize the problem under

multiple-power-constraint conditions. Then we derive the network duality of the

same problem, i.e., fixed base station transmit/receive beamforming with multiple

uplink SINR constraints and a single power constraint. To solve the original prob-

lem, we propose an optimization algorithm that iteratively updates (i) the transmit

power vector and receive beamforming in the primal domain, and (ii) the dual

transmit power vector and transmit beamforming in the dual domain. Moreover,
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the algorithm, which is also based on the subgradient projection-based method, is

proven to converge under appropriate initialization parameters. With network du-

ality, we avoid optimizing coupled transmit beamforming in the primal domain and

instead are able to optimize individual transmit beamformers easily in the dual do-

main. Simulation results show that our proposed algorithm has a fast convergence

rate and leads to a better performance compared to other optimization techniques

that do not jointly considered all parameters.

In Chapter 5, energy efficiency of a FD relay system under the total power

constraint and fixed circuitry power consumption is studied. An optimization prob-

lem is formulated towards maximizing the system energy efficiency. Unfortunately,

this problem is non-trivial and cannot be solved by conventional fractional program-

ming methods, such as the Dinbelbach’s method. To resolve this issue, an algorithm

called sequential parametric convex approximation-Dinbelbach is proposed. Simu-

lation results show that the proposed algorithm can converge to the global optimum

very quickly.

Finally, Chapter 6 concludes this thesis and outlines some possible future di-

rections.
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Chapter 2

Full-Duplex OFDMA Multi-user

Cellular Systems: Resource

Allocation and User Pairing

In this chapter, we investigate a FD multi-user OFDMA system consisting of one FD

BS, multiple UL users and multiple DL users. As the SI cancellation technologies

required for implementing the FD transmission are highly complex, we assume that

FD is only implemented at BS but not at UL and DL users. In other words, the UL

and DL transmissions of all users are performed in a HD mode. Since BS operates

in the FD mode, it can communicate with a pair of HD UL and DL users using the

same subcarrier. In order to maximize the system sum-rate, we consider the joint

optimization of subcarrier allocation, power allocation, and UL and DL user-pairing

by taking into account the SI at the BS and IUI from the UL users to the DL users.

We aim to maximize the system sum-rate of all UL and DL transmissions.

16



In a FD OFDMA system, the channels are considered as interference-limited

channels due to the existence of SI and IUI. Hence, UL transmissions and DL trans-

missions over the same subcarrier are coupled together. As a result, conventional

OFDMA resource allocation algorithms and power allocation algorithms applicable

to individual UL or DL transmissions cannot be applied here. While the paired

UL and DL transmissions can be modeled as an interference channel and the power

control scheme in an interference channel has been solved by some previous works

[84, 85], the problem in our model is highly sophisticated. For instance, the allocated

power over each subcarrier for each UL user is not only limited by the individual

power constraint but is also dependent on IUI and SI. In our model, subcarrier al-

location, power allocation and user-pairing are being tangled and coupled together,

leading to a mixed integer nonlinear programming problem (MINLP).

To tackle the aforementioned problem, we apply the dual method [86] and

the sequential parametric convex approximation (SPCA) method [87]. Specifically,

we propose a two-layer iterative algorithm called Dual-SPCA algorithm to solve

the MINLP problem. The Dual-SPCA algorithm requires full IUI channel state

information (CSI) to be available at the BS and hence generates a significant amount

of overhead. To overcome this issue, we further propose an algorithm that does not

require full IUI CSI — a location-aware resource allocation algorithm with limited

CSI (we abbreviate it as location-aware algorithm with limited CSI ). The algorithm

makes use of the user locations to estimate the IUI, and formulates and solves the

scenario as a chance-constrained problem.

The rest of this chapter is organized as follows. Section 2.1 describes the system

model and problem formulation. Section 2.2 presents the Dual-SPCA algorithm with
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Figure 2.1: A single cell OFDMA system model with FD BS.

full CSI and Section 2.3 describes the location-aware algorithm. Section 2.4 provides

and discusses the numerical results and Section 2.5 gives a summary.

2.1 System Model and Problem Formulation

We consider the multi-user OFDMA system shown in Fig. 2.1, where each subcarrier

experiences independent flat fading. The system consists of a BS, multiple UL and

DL users. The BS operates in the FD mode while all the users operate in the HD

mode. We assume that the channel coefficients experience both path loss and short-
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term fading. The path loss is a function of distance d and is denoted by pl(d) while

the short-term fading of all channels is assumed to be Rayleigh independent and

identically distributed (i.i.d.) with unit parameter. We further define the following

symbols.

• B: base station

• Um: m-th UL user

• Dn: n-th DL user

• K: number of subcarriers

• M : number of UL users

• N : number of DL users

• K = {1, . . . , K}

• M = {1, . . . ,M}

• N = {1, . . . , N}

• k ∈ K: subcarrier index

• m ∈M: UL-user index

• n ∈ N : DL-user index

• σ2
B: noise power at BS over each subcarrier

• σ2
D,n: noise power at n-th DL user over each subcarrier
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• hB,n,k: complex channel coefficient of the link between B and Dn over subcar-

rier k

• hm,B,k: complex channel coefficient of the link between Um and B over sub-

carrier k

• hm,n,k: complex channel coefficient of the link between Um and Dn over sub-

carrier k

• hB,B,k: SI channel coefficient at the BS over subcarrier k and is modeled as

hSI/
√
τ , where τ is the SI attenuation and hSI ∼ CN (0, 1)1

• pm,B,k: transmit power level of Um to B over subcarrier k

• pB,n,k: transmit power level of B to Un over subcarrier k

• αB,n,k = |hB,n,k|2/σ2
D,n: effective channel gain between B and Dn over subcar-

rier k

• αm,B,k = |hm,B,k|2/σ2
B: effective channel gain between Um and B over subcar-

rier k

• αm,n,k = |hm,n,k|2/σ2
D,n: effective channel gain between Um and Dn over sub-

carrier k

• αB,B,k = |hB,B,k|2/σ2
B: effective SI channel gain at the BS over subcarrier k

In this system, we consider the following policy for subcarrier allocation and

user-pairing.

1Before analog domain cancellation, the SI channel has a strong line-of-sight (LOS) component,
and can be modeled as Ricean distribution with a large K-factor. It is shown experimentally in
[10] that after applying an analog domain cancellation, the strong LOS component is attenuated,
resulting in a Ricean distribution with a small K-factor or a Rayleigh distribution.

20



Policy: Since BS operates in the FD mode, it can communicate with a UL user

and a DL user over each subcarrier simultaneously. Therefore, UL users can form

pairs with DL users. Then the UL user and DL user in each pair form a FD link

and communicate with BS simultaneously. In our OFDMA system, each subcarrier

can only be assigned to exactly one UL user and/or one DL user. However, each

UL user or DL user can be assigned with multiple subcarriers.

Let us assume that the UL user Um and the DL user Dn are paired over

subcarrier k. the corresponding UL rate and DL rate (in bits/s/Hz) of the OFDM

transmission, denoted by Rm,B,k and RB,n,k, respectively, can be expressed as

Rm,B,k = log(1 +
αm,B,kpm,B,k

αB,B,kpB,n,k + 1
), (2.1)

RB,n,k = log(1 +
αB,n,kpB,n,k

αm,n,kpm,B,k + 1
). (2.2)

(Unless otherwise stated, the log function has a base of 2.) Our objective is to

maximize the total system transmission sum-rate subject to a set of constraints.

We assume that the BS and UL users are power-limited. Denoting PB and

PU,m as the maximum transmission powers of the BS and UL user Um, respectively,

we then have the following power constraints.

BS power constraint

K∑

k=1

N∑

n=1

pB,n,k ≤ PB (2.3)
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UL user power constraint

K
∑

k=1

pm,B,k ≤ PU,m ∀m ∈M (2.4)

To represent the Policy as a mathematical equation, we denote tm,n,k ∈ {0, 1}

as the subcarrier and user-pairing assignment. If the subcarrier k is assigned to

the user pair (m,n), then tm,n,k = 1; otherwise tm,n,k = 0. Then the policy can be

formulated as the following constraint.

Joint subcarrier-and-user-pairing-assignment constraint

N
∑

n=1

M
∑

m=1

tm,n,k = 1 ∀k ∈ K (2.5)

The above constraint indicates that each subcarrier should be allocated to one and

only one user-pair. However, the UL/DL user may or may not use the assigned

subcarrier, depending on the allocated power being positive or zero. In other words,

each subcarrier may practically be used by (i) one UL user and one DL user; (ii) only

one UL user; (iii) only one DL user; and (iv) none of the UL/DL users. Thus, the

allocated powers and tm,n,k jointly indicate the transmission status of the UL/DL

users over each subcarrier k. Table 2.1 summarizes the detailed UL/DL transmission

status over each subcarrier by jointly considering allocated powers, and subcarrier

and user-pairing assignments2.

Lemma 2.1. Given M ≥ K in the optimal subcarrier allocation scheme that max-

2Note also that tm,n,k = 0 means subcarrier k has not been assigned to UL user Um AND DL
user Dn simultaneously. It only guarantees that the transmit powers of UL user Um and DL user
Dn cannot be both non-zero, i.e., pm,B,k ̸= 0 AND pB,n,k ̸= 0 is not allowed. For example, it is
still possible that pm,B,k ̸= 0 AND pB,n,k = 0 because the m-th UL user may have paired up with
the n′-th DL user over the k-th subcarrier for n′ ̸= n.
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imizes the system sum-rate, there always exists an UL transmission or a DL trans-

mission or both over each subcarrier.

Proof. We prove by contradiction. Assume that there is neither UL nor DL transmis-

sions in a certain subcarrier k∗, i.e. pm,B,k∗ = 0 ∀m ∈M and pB,n,k∗ = 0 ∀n ∈ N .

As each subcarrier can be allocated to at most one UL user, there exists at least

one UL user Um which is not assigned with any subcarrier (because M ≥ K). Since

there is no transmission in subcarrier k∗, Um can use the subcarrier k∗ for UL trans-

mission and hence to increase the system sum-rate. Such a scenario is contradictory

to the assumption and Lemma 2.1 is hence proved.

To maximize the system sum-rate, we need to optimize the power allocation

among subcarriers (pm,B,k, pB,n,k) ∀m,n, k subject to the constraints (2.3) and (2.4);

and to optimize the joint subcarrier and user-pairing assignments tm,n,k ∀m,n, k

subject to the constraint (2.5). Such an optimization problem will be solved by the

BS and the resulting allocation information will be sent to each user.

Defining p as {pm,B,k, pB,n,k|n ∈ N , m ∈ M, k ∈ K} and t as {tm,n,k|m ∈

M, n ∈ N , k ∈ K}, we seek the joint optimization of p and t to maximize the system

transmission rate subject to the power and subcarrier assignment constraints, i.e.,

P1 : max
p,t

K∑

k=1

N∑

n=1

M∑

m=1

tm,n,k(Rm,B,k +RB,n,k) (2.6)

s.t. (2.3), (2.4) and (2.5).

Note that we only consider the instantaneous sum-rate as the performance metric.

In other words, messages are transmitted separately over each channel realization.
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Table 2.1: The Transmission Status of Um and Dn over subcarrier k when tm,n,k = 1
or 0.

pm,B,k pB,n,k Um Status Dn Status tm,n,k = 1 tm,n,k = 0

non-zero non-zero on on Possible (when
SI is low and
IUI is low)

Not possible

non-zero 0 on off Possible (when
SI is very high
or DL rate is
very low after
BS transmit
power is turned
on)

Possible (when
subcarrier k is
assigned to UL
user m and DL
user n′ where
n ̸= n′)

0 non-zero off on Possible (when
IUI is very high
or UL rate is
very low after
UL user Um

transmit power
is turned on)

Possible (when
subcarrier k is
assigned to UL
user m′ and DL
user n where
m ̸= m′)

zero zero off off Possible only
when M < K
in our system
and all transmit
powers have
been used on
other subcar-
riers; and not
possible when
M ≥ K

Possible (when
subcarrier k is
assigned to UL
user m′ and DL
user n′ where
m ̸= m′ and
n ̸= n′ )

The ergodic sum-rate, of which the messages are encoded over a very long period of

channel realizations, is beyond the scope of this chapter. For ease of notation, we

use sum-rate instead of instantaneous sum-rate in the rest of the chapter.
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2.2 Dual-SPCA Algorithm with Full CSI

We first consider the scenario when BS has the access to all global CSI, including

UL-CSI, DL-CSI, SI-CSI and IUI-CSI3. The optimal solution {p, t} to (2.6) requires

solving a MINLP problem. The total (MN)K possibilities of subcarrier and user-

pairing assignment significantly complicate the problem whenK, M andN are large.

Fortunately, our optimization problem is a multiple subcarriers allocation problem

and can be solved by using the dual method [86]. Moreover, the duality gap of the

non-convex resource allocation problem is negligible when the number of subcarriers

becomes sufficiently large, i.e., the solution is asymptotically optimal when K is

large. We propose a two-layer iterative algorithm called Dual-SPCA algorithm,

which includes three main steps: (i) problem transformation; (ii) optimizing the

dual function at given primal variables; (iii) optimizing primal variables at a given

dual point. Details of the proposed Dual-SPCA algorithm are described as follows.

2.2.1 Problem Transformation

The problem under consideration is a mixed combinatorial and non-convex opti-

mization problem. The combinatorial nature comes from the integer constraint for

the subcarrier and user-pairing assignment strategy. In general, a brute force ap-

proach is needed to obtain the global optimal solution. In this chapter, we propose

to tackle the integer constraint in (2.5) with the following lemma.

Lemma 2.2. (Optimality of the time-sharing relaxation): If we relax the subcarrier

3Usually, the system performance under global CSI assumption is treated as the baseline. Note
that BS can directly estimate UL-CSI and SI-CSI. However, the DL CSI and IUI-CSI have to be
fed back by DL users.
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and user-pairing variable tm,n,k in (2.5) to be a real value between zero and one, i.e.,

0 ≤ tm,n,k ≤ 1, instead of a Boolean value, then the relaxed problem has the same

solution as the original optimization problem in (2.6).

Proof. The above lemma can be proved by using a similar approach as in [86, 88].

To facilitate time-sharing the subcarrier and user-pairing variable tm,n,k, we

introduce two “virtual powers” variables p(n)m,B,k and p(m)
B,n,k. They are paired together

and are defined as

p(n)m,B,k = tm,n,kpm,B,k

p(m)
B,n,k = tm,n,kpB,n,k. (2.7)

The reason for proposing the concept of the virtual powers is to eliminate the integer

factor tm,n,k and to decompose the optimization problem P1 into a solvable dual

problem. The actual transmit powers are still pB,n,k and pm,B,k, which can directly

derived after the virtual powers p(m)
B,n,k and p(n)m,B,k and the user-pairing variable tm,n,k

are obtained in the Dual-SPCA algorithm. Thus using the virtual powers p(n)m,B,k

and p(m)
B,n,k, the UL rate and the DL rate of the OFDM transmission over subcarrier

k can be re-defined as R(n)
m,B,k and R(m)

B,n,k, which are re-expressed as

R(n)
m,B,k = log(1 +

αm,B,kp
(n)
m,B,k

αB,B,kp
(m)
B,n,k + 1

), (2.8)

R(m)
B,n,k = log(1 +

αB,n,kp
(m)
B,n,k

αm,n,kp
(n)
m,B,k + 1

). (2.9)

Then the BS and UL power constraints can be rewritten as follows.
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BS power constraint

K
∑

k=1

N
∑

n=1

M
∑

m=1

p(m)
B,n,k ≤ PB (2.10)

UL user power constraint

K
∑

k=1

N
∑

n=1

p(n)m,B,k ≤ PU,m, ∀m ∈M (2.11)

Hence the problem P1 can be transformed equivalently to

P2 : max
p̂,t

K
∑

k=1

N
∑

n=1

M
∑

m=1

(R(n)
m,B,k +R(m)

B,n,k) (2.12)

s.t. (2.5), (2.10) and (2.11)

where p̂ is defined as {(p(n)m,B,k, p
(m)
B,n,k)|m ∈M, n ∈ N , k ∈ K}. It can be seen that

the integer constraint for tm,n,k is eliminated.

2.2.2 Optimizing the dual function

We define T as the set of possible subcarrier and user-pairing assignments t satisfying

(2.5). In addition, we define P(t) as the set of possible power allocations p̂ under

the given t. Then, the Lagrange dual problem P2 can be readily written as [89]

min
λ≥0

g(λ)
∆
= min

λ≥0
max

p̂∈P(t),t∈T
L(p̂, t,λ), (2.13)
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where the Lagrangian is

L(p̂, t,λ) =
K
∑

k=1

N
∑

N=1

M
∑

m=1

(

log

(

1 +
αm,B,kp

(n)
m,B,k

αB,B,kp
(m)
B,n,k + 1

)

+ log

(

1 +
αB,n,kp

(m)
B,n,k

αm,n,kp
(n)
m,B,k + 1

))

+ λB

(

PB −
K∑

k=1

N∑

n=1

M∑

m=1

p(m)
B,n,k

)

+
M
∑

m=1

λU,m

(

PU,m −
K
∑

k=1

N
∑

n=1

p(n)m,B,k

)

(2.14)

and λ = {λB,λU,1, · · · ,λU,M} represents the vector of the dual variables associated

with the individual power constraints {PB, PU,1, · · · , PU,M}.

Since a dual function is always convex by definition [89], gradient or subgradient-

based methods can be used to minimize g(λ) with a guaranteed convergence. We

let p̂∗(λ) be the optimal power allocation at a dual point (to be discussed in the

next subsection). Then a subgradient of g(λ) can be derived using a similar method

as in [86] and the dual variables λ can be updated as

λ(l+1)
B =

[

λ(l)B − π(l)

(

PB −
K
∑

k=1

N
∑

n=1

M
∑

m=1

p(m)∗
B,n,k

)]+

(2.15)

λ(l+1)
U,m =

[

λ(l)U,m − π
(l)

(

PU,m −
K
∑

k=1

N
∑

n=1

p(n)∗m,B,k

)]+

(2.16)

where [⋆]+ denotes max(0, ⋆), the superscript (l) denotes the iteration number, and

π(l) represents the step size. When the step size π(l) follows the diminishing policy

in [90], the subgradient method above is guaranteed to converge to the optimal dual

variables. Here, we just take the simple diminishing step, i.e., π(l) = π(0)/
√
l, where
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π(0) > 0 is the initial step size. The computational complexity of such an updating

method is polynomial in the number of dual variables M + 1 [86].

2.2.3 Optimizing Primal Variables at a Given Dual Point

Computing the dual function g(λ) involves determining the optimal (p∗, t∗) at the

given dual point λ. In this subsection, we present the detailed derivation of the

optimal primal variables in three phases. Before that, we rewrite (2.13) as

g(λ) = max

(
K
∑

k=1

N
∑

n=1

M
∑

m=1

Lm,n,k

+λBPB +
M
∑

m=1

λU,mPU,m

)

(2.17)

where

Lm,n,k = log

(

1 +
αm,B,kp

(n)
m,B,k

αB,B,kp
(m)
B,n,k + 1

)

+ log

(

1 +
αB,n,kp

(m)
B,n,k

αm,n,kp
(n)
m,B,k + 1

)

− λBp(m)
B,n,k − λU,mp

(n)
m,B,k. (2.18)

2.2.3.1 Optimal Power Allocation for a Given Subcarrier and User-pair

Assignment

Here we analyze the optimal power allocation p∗ for a given subcarrier and user-

pairing assignment t. We suppose that a user-pair (m,n) is assigned with the sub-

carrier k, i.e., tm,n,k = 1. Then the optimal power allocation over this combination
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(m,n, k) can be determined by solving the following problem:

max
{p(n)

m,B,k
,p(m)

B,n,k
}

Lm,n,k (2.19)

s.t. p(n)m,B,k ≥ 0, p(m)
B,n,k ≥ 0. (2.20)

Since Lm,n,k is non-convex, it is very hard to obtain a closed-from expression of

p(n)m,B,k and p(m)
B,n,k based on the Karush-Kuhn-Tucker (KKT) conditions [89]. Since

the power control algorithm is not our main concern, we simply utilize a local opti-

mization method. The method performs a successive parametric convex approxima-

tion (SPCA) of Lm,n,k and solves the problem iteratively. The solution process of the

SPCA method that maximizes Lm,n,k is shown in Appendix 2.A. The SPCA method

has been proved to satisfy the KKT conditions [87], which form a sufficient condition

to apply the dual method [86]. Finally, the optimal value of the Lagrangian function

for a given subcarrier and user-pairing assignment tm,n,k is set as Lo
m,n,k.

2.2.3.2 Optimal Subcarrier and User-pairing Assignment

For a given subcarrier k, we select a user-pair as (mk, nk) = argmax∀m,nLo
m,n,k

through exhaustive search of all possible (MN) combinations. Then we set tmk ,nk,k =

1 and tm′,n′,k = 0 form′ ̸= mk or n′ ̸= nk. It is not hard to verify that (2.5) is satisfied

subsequently. Finally, the virtual powers p(n
′)

m′,B,k and p(m
′)

B,n′,k are set as zeros.
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2.2.4 Optimality Analysis

In the outer iteration of our proposed Dual-SPCA algorithm, the dual method is

used to optimize the dual variables based on a gradient-based method. In addition,

in the inner iteration of our proposed Dual-SPCA algorithm, the SPCA method is

guaranteed to converge to a KKT point [87]. Since a multiple subcarriers allocation

problem solved by using the dual method is asymptotically optimal given the inner

problem reaches a KKT point [86], we can conclude that our proposed Dual-SPCA

algorithm is near-optimal.

2.3 Location-Aware Resource Allocation Algorithm

with Limited CSI

In the previous section, we have assumed that the BS collects and processes all

the instantaneous CSI information, including the UL-CSI, SI-CSI, DL-CSI and IUI-

CSI. The UL-CSI and SI-CSI can be estimated by the BS directly. However, the

DL-CSI and IUI-CSI are measured by the DL users and then fed back to the BS.

Each of the N DL users is required to measure K DL-CSI and MK IUI-CSI. Since

M >> 1, measuring the IUI-CSI and sending the information back to the BS re-

quires considerable overhead. To overcome this problem, in this section we propose

and investigate a sub-optimal IUI estimation algorithm. Instead of estimating and

uploading the instantaneous IUI-CSI, each user only has to report its location —

based on the global positioning system (GPS) or some other means — to the BS

periodically. We further assume that the BS has the prior knowledge of the prob-
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ability density function (PDF) of the channel fading model between users. Then,

the BS can make use of the user-locations information to estimate the IUIs and to

allocate resources.

2.3.1 Problem Relaxation

According to the decomposition theory [91] and inspired by [92], we introduce a

set of slack variables ΓB,k denoting the constraint of the self-interference of BS over

subcarrier k, and Γn,k denoting the constraint of the interference suffered by Dn

over subcarrier k. The vector Γ = {ΓB,k,Γn,k|n ∈ N , k ∈ K} is similar to the

concept of interference temperature in cognitive radios and here we refer to it as the

interference-to-noise temperature (INRT) vector. Compared to the problem P1,

the following problem decouples the subcarrier and user-pairing assignment into

separable UL and DL user scheduling problem with the use of the INRT vector Γ:

max
p,s,Γ

K
∑

k=1

M
∑

m=1

sm,B,kR
′
m,B,k +

K
∑

k=1

N
∑

n=1

sB,n,kR
′
B,n,k (2.21)

s.t. (2.10) and (2.11)

N
∑

n=1

sB,n,k = 1 and
M
∑

m=1

sm,B,k = 1 ∀k (2.22)

N∑

n=1

αB,B,kpB,n,k ≤ ΓB,k ∀k (2.23)

M
∑

m=1

sB,n,ksm,B,kαm,n,kpm,B,k ≤ Γn,k ∀n, k (2.24)
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where

R′
m,B,k = log

(

1 +
αm,B,kpm,B,k

ΓB,k + 1

)

, (2.25)

R′
B,n,k = log

(

1 +
αB,n,kpB,n,k

Γn,k + 1

)

, (2.26)

and sB,n,k and sm,B,k are, respectively, Boolean variables indicating scheduling of UL

user and DL user over subcarrier k. Specifically, sB,n,k = 1 indicates that the DL

user Dn is scheduled over subcarrier k; otherwise sB,n,k = 0. sm,B,k is also defined

in a similar way. Here, the constraint (2.22) ensures that the subcarrier assignment

and user scheduling satisfy the Policy; the constraint (2.23) guarantees that the

actual self-interference-to-noise ratio over each subcarrier k is below the INRT level

ΓB,k; and the constraint (2.24) indicates that for any DL user who is scheduled over

each subcarrier k, the corresponding interference-to-noise ratio should be below the

INRT Γn,k.

Since there is no instantaneous IUI-CSI available at the BS side, the constraint

(2.24) may not be satisfied all the time. Hence, we consider a more realistic in-

terference constraint called chance-constrained IUI, which specifies the minimum

probability that the IUI interference constraint in (2.24) is satisfied. We introduce

the concept of chance-constrained resource allocation which has been recently pro-

posed in [93, 94]. The constraint (2.24) is then re-written as

Pr

{
M∑

m=1

sB,n,ksm,B,kαm,n,kpm,B,k ≤ Γn,k

}

≥ 1− ϵ. (2.27)

The above inequality enforces that if DL user Dn is scheduled over subcarrier k, the

probability of the interference suffered by the DL user being smaller than INRT Γn,k
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is no less than 1 − ϵ. As a result, ϵ ∈ (0, 1) denotes the maximum probability that

the INRT Γn,k is exceeded.

Lemma 2.3. Assuming that the long-term fading and the PDF of short-term fading

of the IUI channel are known, the constraint (2.27) can be re-written as

M
∑

m=1

sB,n,ksm,B,kα̃m,n,kpm,B,k ≤ Γn,k ∀n, k (2.28)

where α̃m,n,k = log(1ε )/pl(dm,n)σ2
Dn

.

Proof. Please refer to Appendix 2.B.

Subsequently for a given Γ, the problem of (2.21) with the additional constraint

(2.28) can be formulated as follows.

P3(Γ) : max
p,s

K
∑

k=1

M
∑

m=1

sm,B,kR
′
m,B,k +

K
∑

k=1

N
∑

n=1

sB,n,kR
′
B,n,k

s.t. (2.10), (2.11), (2.22), (2.23) and (2.28)

Note that without knowing full IUI-CSI, we cannot solve the optimization

problem P1. Instead, we can estimate the chance-constrained interference based on

limited CSI, i.e., IUI channel model and user locations, and transform problem P1

to problem P3. Obtaining the optimal solution (p, s) of problem P3(Γ) requires

solving a mixed integer programming problem. In Sections 2.3.2 and 2.3.3, we will

show that by using the dual method, the problem can be solved iteratively with a

fixed Γ. Then, in Section 2.3.4, we will show that having solved the problem P3(Γ),

we can solve the master problem in (2.21) by updating the INRT vector Γ.
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2.3.2 Optimizing Dual Function

We define S as the set of possible subcarrier and user scheduling (sm,B,k, sB,n,k)

satisfying (2.22). In addition, we define P(s) as the set of all power allocations p

that satisfy (i) pm,B,k > 0 for sm,B,k = 1, (ii) pB,n,k > 0 for sB,n,k = 1, (iii) pm,B,k = 0

for sm,B,k = 0, and (iv) pB,n,k = 0 for sB,n,k = 04. Then, the dual problem P3(Γ)

can be readily written as

min
λ,µ,ν≥0

g(λ,µ,ν)
∆
= min

λ,µ,ν≥0
max

p∈P(s),s∈S
L(p, s,λ,µ,ν) (2.29)

where the Lagrangian is

L(p, s,λ,µ,ν) =
K
∑

k=1

M
∑

m=1

log

(

1 +
αm,B,kpm,B,k

ΓB,k + 1

)

+
K
∑

k=1

N
∑

n=1

log

(

1 +
αB,n,kpB,n,k

Γn,k + 1

)

+ λB

(

PB −
K∑

k=1

N∑

n=1

pB,n,k

)

+
M
∑

m=1

λU,m

(

PU,m −
K
∑

k=1

pm,B,k

)

+
K
∑

k=1

µB,k

(

ΓB,k −
N
∑

n=1

αB,B,kpB,n,k

)

+
K
∑

k=1

N
∑

n=1

νn,k

(

Γn,k −
N
∑

n=1

M
∑

m=1

sB,n,kα̃m,n,kpm,B,k

)

;

(2.30)

4In fact, we can directly use a mapping between allocated power and user scheduling instead of
utilizing additional “virtual powers” introduced in the near-optimal algorithm.
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λ = {λB,λU,1, · · · ,λU,M} represents the vector of the dual variables associated with

the individual power constraints {PB, PU,1, · · · , PU,M}; µ = {µB,k|k ∈ K} represents

the vector of the dual variables associated with the individual INRT constraints

{ΓB,k|k ∈ K}; and ν = {µn,k|n ∈ N , k ∈ K} represents the vector of the dual

variables corresponding to the individual INRT constraints {Γn,k|n ∈ N , k ∈ K}.

As in Section 2.2.2, the updating rules of these dual variables are based on the

subgradient method, i.e.,

λ(l+1)
B =

[

λ(l)B − π
(l)
1

(

PB −
K
∑

k=1

N
∑

n=1

p∗B,n,k

)]+

(2.31)

λ(l+1)
U,m =

[

λ(l)U,m − π
(l)
2

(

PU,m −
K
∑

k=1

p∗m,B,k

)]+

, (2.32)

µ(l+1)
B,k =

[

µ(l)
B,k − π

(l)
3

(

ΓB,k −
N
∑

n=1

αB,B,kp
∗
B,n,k

)]+

, (2.33)

ν(l+1)
n,k =

[

ν(l)n,k − π
(l)
4

(

Γn,k −
M
∑

m=1

sB,n,kα̃m,n,kp
∗
m,B,k

)]+

, (2.34)

where the step size π(l)
i (i ∈ {1, 2, 3, 4}) follows the same diminishing policy described

in Section 2.2.2. Note that the subgradient of νn,k highly depends on sB,n,k. The

physical implication is that if the subcarrier k is assigned to DL user Dn, the UL

transmit power would affect the estimated INRT and reduce the convergence speed

of νn,k. However, if the subcarrier k is not assigned to DL user Dn, the corresponding

constraint is always satisfied and the update process of νn,k can quickly converge to

the optimal value.
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2.3.3 Optimizing the Primal Variables at a Given Dual Point

By dual decomposition, the dual problem is decomposed into (K ×M + K × N)

sub-problems, i.e.,

g(λ,µ,ν) = max

(
K
∑

k=1

M
∑

m=1

Lm,k +
K
∑

k=1

N
∑

n=1

Ln,k +
K
∑

k=1

µB,kΓB,k +
K
∑

k=1

N
∑

n=1

νn,kΓn,k

+ λBPB +
M
∑

m=1

λU,mPU,m

)

(2.35)

where

Lm,k = log

(

1 +
αm,B,kpm,B,k

ΓB,k + 1

)

−
(

λU,m +
N
∑

n=1

νn,ksB,n,kα̃m,n,k

)

pm,B,k (2.36)

Ln,k = log

(

1 +
αB,n,kpB,n,k

Γn,k + 1

)

− (λB + µB,kαB,B,k)pB,n,k. (2.37)

From (2.36), we can see that the sub-problem Lm,k highly depends on the DL user

scheduling sB,n,k. However, the subproblem Ln,k is independent of UL user schedul-

ing. Hence, we can first optimize the power allocation and user scheduling of DL

users and then optimize the power allocation and user scheduling of UL users. The

optimal solution is further described in Lemma 2.4.

Lemma 2.4. The optimal power allocation and user scheduling for DL users and
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UL users over any subcarrier k are given as follows.

s∗B,n,k =

⎧

⎪
⎨

⎪
⎩

1,

0,

if n = argmax∀n Lo
n,k

otherwise
(2.38)

p∗B,n,k =

⎧

⎪
⎨

⎪
⎩

[
1

λB+µB,kαB,B,k
− Γn,k+1

αB,n,k

]+
,

0,

if s∗B,n,k = 1

if s∗B,n,k = 0
(2.39)

s∗m,B,k =

⎧

⎪
⎨

⎪⎩

1,

0,

ifm = argmax∀m Lo
m,k

otherwise
(2.40)

p∗m,B,k =

⎧

⎪
⎨

⎪
⎩

[
1

λU,m+νnk,kα̃m,nk,k
− ΓB,k+1

αm,B,k

]+
,

0,

if s∗m,B,k = 1

if s∗m,B,k = 0
(2.41)

Lo
m,k and Lo

n,k are defined as the optimal values of Lm,k and Ln,k with respect to the

powers pm,B,k and pB,n,k, respectively. nk is the optimal DL user over subcarrier k.

Proof. Please refer to Appendix 2.C.

2.3.4 Optimizing Interference-to-Noise Ratio Temperature

Having solved the problem P3(Γ), we then define the master problem as the function

of updating the INRT vector Γ, i.e.,

P3mas : max
Γ

P3(Γ) (2.42)

s.t. Γ ≥ 0. (2.43)

The master problem can be solved iteratively using a subgradient method and the

following lemma suggests the subgradients for each ΓB,k and Γn,k.
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Lemma 2.5. The subgradient of ΓB,k and Γn,k in the master problem are given by,

respectively,

∆ΓB,k = −
αmk ,B,kp∗mk ,B,k/(1 + ΓB,k)

In2(1 + ΓB,k + αmk ,B,kp∗mk ,B,k)
+ µ∗

B,k ∀k, (2.44)

∆Γn,k = −
αB,n,kp∗B,n,k/(1 + Γn,k)

In2(1 + Γn,k + αB,n,kp∗B,n,k)
+ ν∗n,k ∀n, k, (2.45)

where mk is the selected UL user over subcarrier k; p∗m,B,k and p∗B,n,k are given

by (2.41) and (2.39), respectively; µ∗
B,k and ν∗n,k are the optimal dual multipliers

corresponding to the constraints (2.23) and (2.24), respectively.

Proof. Please refer to Appendix 2.D.

According to Lemma 2.5, the BS has to update K(N + 1) INRTs after solving

the relaxed P3(Γ). ΓB,k and Γn,k are updated, respectively, using

Γ(l+1)
B,k =

[

Γ(l)
B,k + ϱ(l)1 ∆ΓB,k

]+
∀k (2.46)

Γ(l+1)
n,k =

[

Γ(l)
n,k + ϱ(l)2 ∆Γn,k

]+
∀n, k (2.47)

where ϱ(l)i (i ∈ {1, 2}) is a positive step size. The updating process is stopped when

|Γ(l+1)
B,k − Γ(l)

B,k|/Γ
(l)
B,k ≤ ζ and |Γ(l+1)

n,k − Γ(l)
n,k|/Γ

(l)
n,k ≤ ζ , where ζ is a sufficiently small

convergence tolerance.

Remark: In the Dual-SPCA algorithm, all CSI information is available. The

BS can therefore exhaustively consider all possible combinations of paired UL-DL

users and determines the best user-pair over each subcarrier in order to achieve near-

optimal performance. Compared with the Dual-SPCA algorithm with full CSI, the
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location-aware algorithm with limited CSI does not need the exact IUI-CSI of each

subcarrier but requires the long-term fading and short-term fading PDF of the IUI

channel. Only UL users of which the interference to the DL users are under the

interference threshold with a certain probability are treated as potential candidates

for pairing. Then, the best paired UL and DL users over each subcarrier are selected

under the given interference threshold. Subsequently, by updating the interference

threshold iteratively, we can find the ultimate paired users over each subcarrier. In

summary, by introducing the interference threshold in the location-aware algorithm,

we can first select a DL user over a given subcarrier and then find a UL user that can

maximize the sum-rate over the subcarrier. This fact also leads to another advantage

of the proposed location-aware algorithm, i.e., we can easily adopt a semi-distributed

way to implement the location-aware algorithm.

2.4 Simulation Results

To quantify the potential benefit of the full-duplex transmission considered in this

chapter, we evaluate the performance of the proposed algorithms under the 3GPP

LTE specifications for both urban macro (UMa) cell and small cell deployments.

The simulation parameters of an UMa cell and a small cell are taken from [95, 96]

and listed in Table 2.2. The cell coverage area is assumed to be circular, as shown in

Fig. 2.1. For an UMa cell, the radius is set to 2 km and all the channels are considered

to be under the non-line-of-sight (NLOS) environment. By setting the heights of

BS and users to 31 m and 1.5 m, respectively, above ground [96, Section.1.2.1.3], we
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Table 2.2: System simulation parameters.

Basic Parameters
Cellular Layout Isolated Cell, 1-sector

Noise spectral density −174 dBm/Hz
Bandwidth 10 MHz

Number of subcarriers 32
Center frequency 2 GHz

Noise figure 9 dB
Short-term fading Standard Rayleigh fading

Parameters for UMa Cell
Cell area The radius is 2km

Path-loss of UL and DL channels 122.5+35log10(d)
Path-loss of IUI channels 146.2+39.8log10(dIUI)

PBS − PU 20dB
Parameters for Small Cell

Cell area The radius is 100m
Path-loss of UL and DL channels 103.8+20.9log10(d)

Path-loss of IUI channels 145.4+37.5log10(dIUI)
PBS − PU 3dB

obtain the path-loss models of the UL channels, DL channels, and the IUI channels5.

Also, according to the suggestion in [95], the peak power constraints for UL users

are the same and set to be 20 dB below the peak power constraint of BS. For a small

cell, the radius is set to 100 m. Moreover, the DL and UL channels are assumed

to experience a path-loss model for line-of-sight (LOS) communications while IUI

channels are assumed to encounter a path-loss model for NLOS transmissions [97].

Furthermore, the peak power constraint for UL users are the same and set to be

3 dB below the peak power constraint of BS [95].

5According to [96], the height of BS can be from 0 to 50 m above ground. We therefore set
the height of BS to 31 m in the UL and DL channel models. However, the path-loss model of IUI
channels has not been given specifically. Here we set the height of users to 1.5 m above ground in
the IUI channel models as well as UL and DL channel models.
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In addition to our proposed algorithms, the following four approaches are sim-

ulated.

• Half-Duplex Single User Selection (HD-SUS): For each subcarrier, only one

UL or DL user is selected optimally based on the water-filling algorithm [98,

99]. In this approach, even if the total number of users is larger than the

number of subcarriers, at most K users are allowed to access to the network

simultaneously.

• Equal Power Allocation (EPA): In this approach, we firstly set equal power for

all subcarriers and select the best user-pair over each subcarrier. Supposing

the m-th UL user Um is assigned with a total of Km subcarriers, we then

divide the total transmit power PU,m equally among these subcarriers, i.e., we

set pm,B,k = PU,m/Km if tm,n,k = 1.

• Random User-Pair Selection (RUPS): For each subcarrier, a random UL and

DL user-pair is selected. Then power allocation is optimized at the given

subcarrier and user-pairing assignment.

• Separately Maximizing UL transmissions and Maximizing DL transmissions

(SMUMD): For each subcarrier, one UL user and one DL user are selected

based on the water-filling algorithm. Then the UL transmissions and DL

transmissions are maximized separately without taking IUI into account. In

other words, SMUMD optimizes subcarrier assignment and power allocation

without taking IUI into account.

A total of 5000 different channel realizations have been used. The number of sub-

carriers is set to K = 32. The number of UL and DL users are set to M = N = 32,
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Figure 2.2: Average sum-rate versus BS transmit power with different SI attenua-
tions (τ) under a UMa cell scenario.

which are the same as the number of subcarriers.
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Figure 2.3: Average sum-rate versus BS transmit power with different SI attenua-
tions (τ) under a small cell scenario.

2.4.1 Average Sum-rate Performance of the Proposed Dual-

SPCA Algorithm with Full CSI at BS

We first study the average sum-rates achieved by different schemes with different SI

attenuations τ under both UMa cell scenario and small cell scenario. The results
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under the UMa cell scenario and the small cell scenario are plotted in Figs. 2.2 and

2.3, respectively. Based on the curves, we have the following observations.

• The average sum-rates of all algorithms increase with the BS transmit power.

• As expected, the average sum-rate of HD-SUS algorithm is independent of SI

attenuation.

• Under FD transmissions, the average sum-rates of Dual-SPCA, EPA, RUPS

and SMUMD algorithms increase with SI attenuation.

• Dual-SPCA algorithm outperforms the other four baseline approaches, i.e.,

HD-SUS, EPA, RUPS and SMUMD algorithms. Among the four FD trans-

mission algorithms, their relative performance in decreasing order is as follows:

Dual-SPCA, EPA, SMUMD, RUPS.

• When SI is large (e.g. 120 dB), Dual-SPCA algorithm can outperform HD-SUS

algorithm substantially. In particular, with 25 dBm BS transmit power and

120 dB SI attenuation, the proposed Dual-SPCA algorithm achieves about 60%

average sum-rate improvement compared with the HD-SUS approach under

an UMa cell environment and about 20% improvement under a small cell envi-

ronment. The results also show that besides SI attenuation, other parameters

such as cell environment are affecting the performance of FD transmissions.

• When SI attenuation is not large (e.g. 80 dB), Dual-SPCA algorithm only

slightly outperforms HD-SUS algorithm. When the SI attenuation is not large,

the transmit DL signal at BS creates a substantial interference to the receive

signal in the UL channel. Under such circumstances, the effectiveness of FD
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transmissions is reduced and using FD transmissions becomes not much ben-

eficial.

• Among the four FD transmission algorithms, our proposed Dual-SPCA is the

best. Moreover, EPA and SMUMD are the second best and third best, re-

spectively. The results show that ignoring IUI in the optimization process (as

in SMUMD) produces a larger degradation (compared with Dual-SPCA) than

not optimizing the power allocation (as in EPA). Thus, pairing up UL and DL

users appropriately by considering IUI is an important step in FD transmis-

sions. Furthermore, depending on the BS transmit power, SI attenuation and

channel environment, EPA and SMUMD may or may not outperform HD-SUS.

• For a given SI attenuation, RUPS algorithm always provides the lowest aver-

age sum-rate among the five algorithms. The results indicate that randomly

pairing UL and DL users followed by optimized power allocation gives the

worst performance — even worse than HD-SUS — and hence should never be

used in practice.

Based on the above observations, we can conclude that without both appro-

priate user-pairing and optimized power allocation, FD transmissions may be worse

than HD transmissions in an OFDMA multi-user cellular system. To gain further

insights out of the system under study, we plot the percentage sum-rate gain of

our proposed Dual-SPCA algorithm over the HD-SUS approach in Fig. 2.4. The

results show that when SI attenuation is low (below 80 dB), there is not much gain

when using Dual-SPCA compared with HD-SUS. It means that SI is causing much

interference to the UL transmissions and FD transmissions cannot be utilized ef-

fectively. When SI attenuation increases from 90 dB to 120 dB, we can observe a
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Figure 2.4: Average sum-rate gain of our proposed Dual-SPCA algorithm over HD-
SUS approach versus SI attenuation for different BS transmit powers under both
UMa cell and small cell scenarios.

steep rise in the gain. It indicates that more and more FD transmissions are being

utilized and our proposed Dual-SPCA algorithm are providing substantial sum-rate

improvements over HD-SUS. When SI attenuation is beyond 130 dB, the gain be-

comes flat but less than 100%. It shows that SI has become minimal, and all FD

transmissions as well as the advantage of the Dual-SPCA algorithm have been fully

realized. Moreover, due to the effect of IUI, the improvement of Dual-SPCA over

HD-SUS cannot reach 100%. In other words, if there were no IUI, FD transmissions

can be fully utilized in the system and the average sum-rates should be twice that of
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HD transmissions. For the same BS transmit power, we observe that the gain of our

proposed Dual-SPCA algorithm under an UMa scenario is always higher than that

under a small cell scenario. It is due to the larger sum-rates achieved by HD-SUS

under a small cell scenario than under an UMa scenario (see Figs. 2.2 and 2.3). For

the same reason, the ultimate gain (i.e., when SI attenuation is very large) increases

with BS transmit power under an UMa scenario but decreases under a small cell

scenario. The above results indicate that the improvement of sum-rates achieved by

Dual-SPCA not only on depends SI attenuation, but is also related to the network

deployment environment. It is because other factors such as cell radius, path-loss

models and maximum transmit powers are influencing the IUI which in turn affects

the DL transmission rate and hence the sum-rate.

In Figs. 2.5 and 2.6, we plot the average sum-rate of our proposed Dual-SPCA

algorithm and SMUMD approach under a UMa scenario and a small cell scenario,

respectively. Given a BS transmit power, we observe that the average sum-rate

increases with SI attenuation and reaches a maximum after the SI attenuation is

above a certain threshold. When SI attenuation increases, FD transmissions become

more effective and hence the sum-rate increases. Above a certain SI attenuation,

the effect of SI becomes very minimal and the change in sum-rate is negligible.

Figs. 2.5 and 2.6 also show that the Dual-SPCA algorithm always outperforms the

SMUMD approach under the same conditions. The main reason is that IUI has

been considered in the Dual-SPCA algorithm but ignored in the SMUMD algorithm.

Thus, we can conclude that IUI plays a major role in determining the performance

of a FD multiuser OFDMA cellular system.

Fig. 2.7 plots the average sum-rate versus number of UL/DL users (M = N)
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Figure 2.5: Average sum-rate of our proposed Dual-SPCA algorithm and SMUMD
approach versus SI attenuation for different BS transmit powers under a UMa cell
scenario.

when the number of subcarriers is 32. We find that our proposed Dual-SPCA

algorithm outperforms all other algorithms. We can also observe that all algorithms

except RUPS generate increasing average sum-rate as the number of UL/DL users

(M = N) increases. When there are more users to select from during the pairing

process, it is obvious that a better solution (except RUPS) can be found so as to

generate a higher sum-rate. As for RUPS which pairs users up randomly, its average

sum-rate is the lowest among all algorithms. Moreover, its sum-rate quickly becomes
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Figure 2.6: Average sum-rate of our proposed Dual-SPCA algorithm and SMUMD
approach versus SI attenuation for different BS transmit powers under a small cell
scenario.

flat when the number of UL/DL users reaches 40. It is because when the number of

UL/DL users reaches a certain threshold (40 in this case), the pool of users become

sufficiently large and the selection process becomes “random” enough. Increasing

the number of users further will no longer increase the randomness and the sum-rate

becomes almost constant.
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Figure 2.7: Average sum-rate versus number of UL/DL users (M = N) under a UMa
cell scenario when the BS transmit power is 25 dBm and the number of subcarriers
is 32. SI attenuation τ = 120 dB.

2.4.2 Performance Comparison of the Proposed Dual-SPCA

Algorithm and Location-Aware Algorithm

In this section, we further consider the case when the BS does not receive any IUI-

CSI information from the users. Instead, the BS makes use of the location-aware

sub-optimal algorithm to estimate the IUIs and to assign the subcarriers to users.

Furthermore, the IUI for each user over each subcarrier should lie below the INRT

threshold with a chance-constrained probability of 1− ϵ. The value of 1− ϵ in fact
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determines the confidence level of the system sum-rate. A larger value increases the

confidence probability but at the same time reduces the system sum-rate. Thus, the

effect of the value of ϵ needs to be investigated.

Since we focus on the effect of IUI in this section, we evaluate the system

performance at a SI attenuation of 120 dB such that the effect of SI becomes negli-

gible. We also use the “goodput”, which is defined as bits/s/Hz successfully received

[100, 101], as the performance metric when comparing the location-aware algorithm

with limited CSI and the Dual-SPCA algorithm with full CSI. Figs. 2.8 and 2.9 plot

the goodput of the two algorithms under an UMa cell scenario and a small cell sce-

nario, respectively. From the results, we observe that the location-aware sub-optimal

algorithm can achieve close performance as the Dual-SPCA near-optimal algorithm

when the value of ϵ in the location-aware algorithm is around −20 dB(= 0.01). In

Tables 2.3 and 2.4, we further plot the performance loss when ϵ = −20 dB. Re-

sults show that the performance losses under all scenarios range between 4.7% and

8.4%. Thus we conclude that our proposed location-aware algorithm, which does

not require precise IUI-CSI but estimates IUI-CSI based on user locations, suffers

from a small degradation in goodput compared with the Dual-SPCA near-optimal

algorithm. Note that when the estimated IUI in a certain pair of UL and DL users

for the location-aware algorithm is higher than the actual IUI, it is easy to derive

that the goodput of the location-aware algorithm is lower than the goodput of Dual-

SPCA algorithm. In addition, when the estimated IUI in a certain pair of UL and

DL users for the location-aware algorithm is lower than the actual IUI, the goodput

of the location-aware algorithm would be in outage such that the goodput of the

location-aware algorithm is lower than the goodput of Dual-SPCA algorithm. That
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Figure 2.8: Goodput versus ϵ for Dual-SPCA near-optimal algorithm and location-
aware sub-optimal algorithm under a UMa cell scenario.

is why the goodput of the location-aware algorithm is lower than that of Dual-SPCA

algorithm.

2.4.3 Feedback Overhead and Computational Complexity

Analysis

We now give a brief analysis of the overhead complexity of the proposed Dual-

SPCA algorithm with full CSI and location-aware algorithm with limited CSI. We
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Figure 2.9: Goodput versus ϵ for Dual-SPCA near-optimal algorithm and location-
aware sub-optimal algorithm under a small cell scenario.

first analyze the system feedback requirement. The Dual-SPCA algorithm with full

CSI requires O(KMN + KN) measurements fed back from the DL users in order

to obtain the global CSI while the location-aware algorithm with limited CSI only

requires KN such measurements. Thus the sub-optimal algorithm requires much

less feedback overhead than the near-optimal algorithm.

In Table 2.5, we further list the system feedback requirement of all algorithms,

i.e., Dual-SPCA/location-aware/HD-SUS/EPA/RUPS/SMUND algorithms. The

results indicate that (i) Dual-SPCA and EPA algorithms require the same and
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Table 2.3: Goodput of Dual-SPCA algorithm and location-aware algorithm under
an UMa cell scenario.

PB (dBm)
Average goodput (bits/s/Hz)

Loss
Dual-SPCA Location-Aware

5 3.44 3.15 8.4%
15 8.40 7.83 6.8%
25 13.53 12.72 6%
35 18.20 17.21 5.5%
45 21.66 20.65 4.7%

Table 2.4: Goodput of Dual-SPCA algorithm and location-aware algorithm under a
small cell scenario.

PB (dBm)
Average goodput (bits/s/Hz)

Loss
Dual-SPCA Location-Aware

−15 9.29 8.54 8.1%
−5 13.84 12.89 6.9%
5 17.82 16.68 6.3%
15 21.44 20.26 5.5%
25 24.09 22.88 5.1%

largest amount of feedback measurements; (ii) location-aware, HD-SUS and SMUND

algorithms require the same and moderate amount of feedback measurements; and

(iii) RUPS algorithm requires the least feedback.

Next we analyze the computational complexity of all algorithms.

• In the Dual-SPCA algorithm with full CSI, the computational complexity for

the outer iteration is O((M+1)To) where To is the number of outer iterations;

and the computational complexity for the inner iteration is O(KMNTi) where

Ti is the number of inner iterations. Hence, the overall computational com-

plexity of the Dual-SPCA algorithm with full CSI isO(KMNTi((M+1))To) ≈
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Table 2.5: System Feedback Requirement of Different Algorithms

Algorithm Feedback Requirement
Dual-SPCA O(KMN +KN)

Location-Aware O(KN)
HD-SUS O(KN)
EPA O(KMN +KN)
RUPS O(K)

SMUND O(KN)

O(KM2N).

• In the location-aware algorithm with limited CSI, the computational complex-

ity for updating INRT in the outer iteration is O(K(N + 1)T ′
o) where T ′

o is

the number of outer iterations. The computational complexity for solving the

sub-problem in the inner iteration is O(K(N+1)T ′
i +(M+1)T ′

i +2(M+N)K)

where K(N + 1)T ′
i is the number of updated dual variables corresponding to

the INRT constraint, (M + 1)T ′
i is the number of updated dual variables cor-

responding to the power constraint, 2(M +N)K is the number of water-filling

calculations and user scheduling, and T ′
i is the number of inner iterations.

Finally, the overall computational complexity of the sub-optimal algorithm is

O((K(N +1)T ′
i + (M +1)T ′

i +2K(M +N))K(N +1)T ′
o) ≈ O(2K2(M +N)).

• In the HD-SUS algorithm, the computational complexity is proportional to the

number of water-filling calculations and user scheduling, i.e., O(K(M +N)).

• In the EPA algorithm, the computational complexity is proportional to the

number of user pairing without power allocations, i.e., O(KMN).

• In the RUPS algorithm, the computational complexity is proportional to the
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Table 2.6: Computational Complexity of Different Algorithms

Algorithm Computational Complexity
Dual-SPCA O(KM2N)

Location-Aware O(2K2(M +N))
HD-SUS O(K(M +N))
EPA O(KMN)
RUPS O(K)

SMUND O(K(M +N))

number of power allocation calculations in all subcarriers, i.e., O(K).

• In the SMUND algorithm, the computational complexity is proportional to the

number of water-filling calculations and user scheduling, i.e., O(K(M +N))

The complexities of the algorithms are further summarized in Table 2.6. We can

observe that the location-aware algorithm with limited CSI has a lower computa-

tional complexity than the Dual-SPCA algorithm with full CSI when M and N are

very large. Moreover, the Location-Aware algorithm and Dual SPCA algorithm,

which can achieve higher sum-rates compared with HD-SUS/EPA/RUPS/SMUND

algorithms, require higher computational complexities.

2.5 Summary

In this chapter, we have investigated a full-duplex multiuser OFDMA cellular sys-

tem. We have optimized the system sum-rate with respect to subcarrier allocation,

power allocation, and UL and DL user-pairing. By integrating the dual method and

the SPCA method, we have solved the optimization problem in a two-layer itera-

tive way. We have shown that when the self-interference attenuation is high (i.e.,
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self-interference is low), using full duplex can substantially increase the system sum-

rate. We have also found that user-pairing can substantially reduce the inter-user

interference and hence improve the system sum-rate. In addition, by considering two

different network deployments, i.e., urban macro cell scenario and small cell scenario,

we show that the improvement of full-duplex transmission over half-duplex trans-

mission also depends on the cell size and channel parameters. Furthermore, we have

presented a location-aware algorithm which requires less channel state information

and has a lower computational complexity than the dual-SPCA algorithm.

Appendix 2.A SPCA solution to maximize Lm,n,k

To solve the non-convex optimization problem, we apply the SPCA method in [87].

The basic principle of the SPCA method is to replace the non-convex function by

its convex upper bound and to iteratively solve the resulting problem by judiciously

updating the variables in the convex approximation until convergence. This convex

upper bound should also have two properties [87].

Lemma 2.6. Consider a non-convex function g(x). If the function G(x,y) replaces

g(x) in the SPCA method, G(x,y) should have the following two properties:

i) for any x, g(x) ≤ G(x,y) ∀y > 0;

ii) for a given feasible point x0, there exists y = ψ(x0) satisfying g(x) =

G(x,y) and ∇g(x) = ∇G(x,y).

Proof. Refer to [87].

Additionally, it has been proven that the convergence of the SPCA method
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always exists and the convergent point satisfies the KKT conditions theoretically

[87].

Now, we describe the solution process to maximize Lm,n,k. For simplicity,

p(n)m,B,k and p(m)
B,n,k are replaced by p1 and p2, respectively. Similarly αm,B,k, αm,n,k,

αB,n,k and αB,B,k are replaced by α1, α′
1, α2 and α′

2, respectively. λU,m and λB are

replaced by λ1 and λ2, respectively. We use the first-order inequality log(1 + x) ≤

log(1+ y)+ (x− y)/(1+ y) for x ≥ 0 where y is an arbitrary operating point. Then,

Lm,n,k in (2.18) is lower bounded by

L(p1, p2) ≥ log(1 + α1p1 + α′
2p2) + log(1 + α′

1p1 + α2p2)

− log(1 + α′
2y2)−

α′
2(p2 − y2)

1 + α′
2y2

− log(1 + α′
1y1)−

α′
1(p1 − y1)

1 + α′
1y1

− λ2p2 − λ1p1 = LLB. (2.48)

It is not hard to verify that this inequality satisfies the two properties defined in

Lemma 2.6. Also the right hand side of this inequality is a convex function [89].

According to the SPCA method, in each iteration, y(l+1)
1 and y(l+1)

2 is updated by

p(l)1 and p(l)2 , respectively, where l represents the l-th iteration. One can use the

interior-point method (or other convex optimization method) to obtain the optimal

values p(l)1 and p(l)2 that maximize L(l)
LB in each iteration. However, we can give a

closed-form solution of the lower-bounded optimization problem alternatively. For

simplicity, we omit the superscript in the following derivation.
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The partial derivative of LLB over p1 and p2 are given by, respectively,

∂LLB

∂p1
= α1Q+ α′

1T −
α′
1

1 + α′
1y1
− λ1 (2.49)

∂LLB

∂p2
= α′

2Q+ α2T −
α′
2

1 + α′
2y2
− λ2 (2.50)

where Q = 1/((1 + α1p1 + α′
2p2) loge 2) and T = 1/((1 + α′

1p1 + α2p2) loge 2).

Defining λ̃1 = ( α′
1

1+α′
1y1

+ λ1) loge 2 and λ̃2 = ( α′
2

1+α′
2y2

+ λ2) loge 2, we divide the

original problem that maximizes LLB with respect to p1 and p2 into four cases.

Case A : When λ̃1 ≥ α1 + α′
1 and λ̃2 ≥ α2 + α′

2, LLB is a decreasing function

of both p1 and p2. Thus, we have p1 = p2 = 0.

Case B : When λ̃1 ≥ α1+α′
1 and λ̃2 < α2+α′

2, LLB (i) is a decreasing function

of p1, and (ii) increases then decreases as p2 increases. Thus, we obtain (i)

p1 = 0 and (ii) a unique solution for p2 by letting ∂LLB/∂p2 = 0, i.e.,

p2 =
1

2λ̃2α2α′
2

(

−λ̃2(α2 + α′
2) + 2α2α

′
2 +

√

(λ̃2(α2 + α′
2) + 2α2α′

2)
2 + 4λ̃22α2α′

2

)

.

(2.51)

Case C : When λ̃1 < α1+α′
1 and λ̃2 ≥ α2+α′

2, LLB is a decreasing function of

p2. Using a similar analysis as in Case B, we obtain (i) p2 = 0 and (ii) p1 as

p1 =
1

2λ̃1α1α′
1

(

−λ̃1(α1 + α′
1) + 2α1α

′
1 +

√

(λ̃1(α1 + α′
1) + 2α1α′

1)
2 + 4λ̃21α1α′

1

)

.

(2.52)

Case D : When λ̃1 < α1 + α′
1 and λ̃2 < α2 + α′

2, LLB increases then decreases
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as both p1 and p2 increase. However, deriving the closed-form solution in this

case is not straightforward. Hence, we give an iterative solution in this case.

By letting ∂LLB/∂p1 = ∂LLB/∂p2 = 0, we obtain

p1 = [
1

λ̃1 − α′
1T
− α′

2p
pre
2

α1
]+ (2.53)

p2 = [
1

λ̃2 − α′
2Q
− α′

1p
pre
1

α2
]+ (2.54)

where ppre1 and ppre2 are the values obtained in the previous iteration. In prac-

tice, we do not have to wait for full convergence and a single ascent step is

sufficient before updating.

To sum up, the entire algorithm is listed in Algorithm 1.

Appendix 2.B Proof of Lemma 2.3

According to the constraint (2.22), only one UL user and one DL user can be sched-

uled over subcarrier k. Assuming that the scheduled UL user is Umk
and the sched-

uled UL user is Dnk
, we have smk,B,k = snk,B,k = 1 and sm′,B,k = sn′,B,k = 0 for

m′ ̸= mk, n′ ̸= nk. In this case, the constraint (2.27) can be simplified to

Pr {αmk ,n,kpmk ,B,k ≤ Γn,k} ≥ 1− ϵ, for n = nk and ∀k (2.55)

Pr {0 ≤ Γn′,k} ≥ 1− ϵ, for n ̸= nk and ∀k. (2.56)

It is obvious that the inequality (2.56) is always satisfied. Since the long-term

fading between Um and Dn is given by pl(dm,n) and the short-term fading from Um
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Algorithm 1 Solution of Lm,n,k

1: Set Imax (maximum number of iterations)
ϵi > 0 (convergence tolerance)

2: Set arbitrary positive values for y(1).
3: l ← 1.
4: while ||y(l) − y(l−1)|| > ϵi and l < Imax do
5: if λ̃1 ≥ α1 + α′

1 and λ̃2 ≥ α2 + α′
2 then

6: p(l)1 = p(l)2 = 0.
7: else if λ̃1 ≥ α1 + α′

1 and λ̃2 < α2 + α′
2 then

8: p(l)1 = 0 and p(l)2 is given in (2.51).
9: else if λ̃1 < α1 + α′

1 and λ̃2 ≥ α2 + α′
2 then

10: p(l)2 = 0 and p(l)1 is given in (2.52).
11: else
12: use (2.53) and (2.54) to obtain p(l)1 and p(l)2 , respectively.
13: end if
14: y(l+1) ← (p(l)1 , p(l)2 ).
15: l ← l + 1.
16: end while
17: The optimal solution of maximizing Lm,n,k is (p∗1, p

∗
2) = y(l). The optimal value

of Lm,n,k is obtained as L(l−1)
LB .

18: return

to Dn is assumed to be the standard Rayleigh fading, the inequality (2.55) can be

expressed as
∫ Γn,k

0

1

ζ
e−x/ζdx ≥ 1− ε for n = nk and ∀k (2.57)

where ζ = 1/pl(dmk,n)σ
2
Dn

. Then, (2.57) can be further simplified to

α̃mk,n,kpmk ,B,k ≤ Γn,k for n = nk and ∀k (2.58)

where α̃mk ,n,k = log(1ε )/pl(dmk,n)σ
2
Dn

. Combining (2.55), (2.56) and (2.58), we read-

ily have Lemma 3.
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Appendix 2.C Proof of Lemma 2.4

By applying KKT conditions of the sub-problem (2.37), the partial derivative of

Ln,k over pB,n,k is given by

∂Ln,k

∂pB,n,k
=

αB,n,k

In2(Γn,k + 1 + αB,n,kpB,n,k)
− λB − µB,kαB,B,k. (2.59)

Equating (2.59) to zero and applying the positive power constraint, we obtain the

optimal power for the n-th DL user over subcarrier k as

p∗B,n,k =

[
1

(λB + µB,kαB,B,k) loge 2
− Γn,k + 1

αB,n,k

]+

. (2.60)

The corresponding optimal value of the Lagrangian function Ln,k for the n-th DL

user over subcarrier k is set as Lo
n,k. Then, we select the optimal DL user over

subcarrier k as nk = argmax∀n Lo
n,k and set snk,k = 1. Moreover, we set sn′,k = 0

for n′ ̸= nk and the power p∗B,n′,k to zero accordingly. Hence, (2.38) and (2.39) are

proved.

Similarly, by applying KKT conditions of the sub-problem (2.36), the partial

derivative of Lm,k over pm,B,k is given by

∂Lm,k

∂pm,B,k
=

αm,B,k

(ΓB,k + 1 + αm,B,kpm,B,k) loge 2
− λU,m −

N
∑

n=1

νn,ksB,n,kα̃m,n,k. (2.61)

Since sB,nk,k = 1 and sB,n′,k = 0 for n′ ̸= nk, (2.61) can be simplified to

∂Lm,k

∂pm,B,k
=

αm,B,k

(ΓB,k + 1 + αm,B,kpm,B,k)loge 2
− λU,m − νnk,kα̃m,nk,k. (2.62)
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Equating (2.62) to zero and applying the positive power constraint, we obtain the

optimal power for the m-th UL user over subcarrier k as

p∗m,B,k =

[
1

(λU,m + νnk,kα̃m,nk,k)loge 2
− ΓB,k + 1

αm,B,k

]+

. (2.63)

The corresponding optimal value of the Lagrangian function Lm,k for the m-th UL

user over subcarrier k is set as Lo
m,k. We select the optimal UL user over subcarrier k

as mk = argmax∀m Lo
m,k and set smk,k = 1. Moreover, we set sm′,k = 0 for m′ ̸= mk

and the power p∗m′,B,k to zero accordingly.

Finally, we have completely proved Lemma 2.4.

Appendix 2.D Proof of Lemma 2.5

We compute the subgradient for Γ from the Lagrangian dual function of the problem

P3(Γ) which is given by (2.29). The partial derivatives of g(λ,µ,ν,Γ) in (2.29)

(considering Γ as a variable in (2.29)) with respect to ΓB,k and Γn,k are given by

∂g

∂ΓB,k
= max

p,s

(

µB,k −
M
∑

m=1

αm,B,kpm,B,k

(1 + ΓB,k + αm,B,kpm,B,k)(1 + ΓB,k)loge 2

)

(2.64)

∂g

∂Γn,k
= max

p,s

(

νn,ksB,n,k −
αB,n,kpB,n,k

(1 + Γn,k + αB,n,kpB,n,k)(1 + Γn,k)loge 2

)

(2.65)

Combining (2.41) and (2.64), we can prove (2.44). Similarly, Combining (2.39) and

(2.65), (2.45) is readily obtained.
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Chapter 3

Resource Allocation for

Multi-User OFDMA Hybrid

Full-/Half-Duplex Relaying

Systems With Direct Links

In this chapter, we aim to investigate the joint optimization problem of transmission

mode selection (including direct transmission (DT) mode, HD relay cooperative

transmission (HDRCT) mode and FD relay transmission (FDRT) mode), subcarrier

assignment, relay selection, subcarrier-pairing as well as power allocation in the DL

of a cooperative OFDMA system.

This joint optimization problem is sophisticated because all these factors are

highly coupled with one another, leading to a mixed integer non-linear programming

problem. In this chapter, we first show that the binary assignment problem of trans-
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mission mode selection, subcarrier assignment, relay selection and subcarrier-pairing

with fixed power allocation can be transformed into a maximum weighted bipartite

matching problem which is solved by the classical Hungarian method. Then, based

on the dual method, we divide the joint power allocation and binary assignment

problem into multiple sub-problems. In each sub-problem, the power allocation

schemes in FDRT mode, HDRCT mode and DT mode are all provided. Specifi-

cally, we design a hierarchical dual method to solve the power allocation problem

in FDRT mode. In addition, unlike most previous works [37–41], we consider the

joint transmission of both source and relay in HDRCT mode so as to fully utilize

the transmit power of the source. (Details of this HDRCT mode will be presented

in the following.)

The rest of this chapter is organized as follows. Section 3.1 describes the system

model and problem formulation. Section 3.2 presents the optimal solution for the

binary assignment problem with fixed power allocation, and Section 3.3 shows the

solution of the joint power allocation and binary assignment problem. Section 3.4

presents the numerical results and finally Section 3.5 provides a summary.

3.1 System Model and Problem Formulation

3.1.1 System Description

We consider the single-cell multi-user DL OFDMA system shown in Fig. 3.1. The

system consists of a BS, multiple decode-and-forward relays1 and multiple users.

1In this chapter, the decode-and-forward relaying protocol is adopted because the relay has
to decode the signals in order to perform self-interference digital cancellation. Recently, a fast
and constructive full duplex relay using an amplify-and-forward technique has been proposed [47].
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odd time slot

even time slot

DT mode

FDRT mode

HDRCT mode

DT mode

Figure 3.1: System Model. Illustration of three different transmission modes.

Each node (BS, relay or user) is equipped with a single antenna. In particular,

each relay uses the same single antenna for simultaneous transmission and signal

reception in FDRT mode. All links are assumed to be frequency selective and each

is assigned with a subcarrier undergoing flat fading. For each symbol in each link, the

transmission is in either FDRT mode, HDRCT mode, or DT mode. We also assume

that each user decodes each subcarrier signal independently from other subcarrier

signals. We further define the following symbols.

Since the relay has the ability to perform digital computations, we do not treat it as a traditional
amplify-and-forward relay.
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• B: BS (base station)

• Rm: m-th relay

• Un: n-th user

• K: numbers of subcarriers

• M : numbers of relays

• N : numbers of users

• K = {1, . . . , K}

• M = {1, . . . ,M}

• N = {1, . . . , N}

• σ2
0: noise power at the relays and users over each subcarrier

• k ∈ K: subcarrier index

• hb,m,k: complex channel coefficient of the link between B and Rm over subcar-

rier k

• hb,n,k: complex channel coefficient of the link between B and Un over subcarrier

k

• hm,n,k: complex channel coefficient of the link between Rm and Un over sub-

carrier k

• pb,n,k: BS transmit power for Un over subcarrier k

• pm,n,k: Rm transmit power for Un over subcarrier k
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• σ2
e : self-interference (SI) power at the relay and is modeled as an additive

white Gaussian noise (AWGN) 2

• αb,m,k = |hb,m,k|2/(σ2
0 + σ2

e): effective channel gain between B and Rm over

subcarrier k (we assume all subcarriers at the relays would suffer from an

extra noise due to SI cancellation operations)

• αb,n,k = |hb,n,k|2/σ2
0: effective channel gain between B and Un over subcarrier

k

• αm,n,k = |hm,n,k|2/σ2
0: effective channel gain between Rm and Un over subcar-

rier k

Note that we assume that the additive white noises at all nodes are independent

circular symmetric complex Gaussian random variables, each having zero mean and

σ2
0 variance. Moreover, all subcarrier signals received by the relays suffer from an

extra noise due to relays performing SI cancellation operations.

The DL transmission from the BS to the users is on a time-frame basis with

each frame consisting of multiple OFDM symbols. Each frame is further divided into

2L equal time slots, where 2L represents the number of coherent time slots3. We

consider three different transmission modes which are FDRT mode, HDRCT mode

2The authors in [15, 16, 102] have considered the issue of residual self-interference (SI) due to the
imperfect FD realization. In their model, the SI is proportional to the transmit power. However,
the latest FD techniques used by the Stanford team [13, 103] have offered some astonishing results.
Their FD systems are able to keep the SNR loss uncorrelated with the transmit power and to
maintain the residual self-interference of the same order as noise power. The results can greatly
simplify the modeling of a FD transmission because the residual SI can be treated as a constant.
Here we assume that each FD relay uses a single antenna for simultaneous transmission and signal
reception. Our work can be readily extended to the case when the FD relays use multiple antennas
for simultaneous transmission and signal reception.

3In practice, the coherence time for each frame depends on the mobility of the users. For
example, the coherence time is roughly 200 ms with a central carrier frequency of 2.5 GHz and a
user mobility of 2 km/h [104, 105].
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and DT mode. We use i to be the transmission mode index, i.e., i = 1 represents

FDRT mode, i = 2 represents HDRCT mode, and i = 3 represents DT mode.

The subcarriers allocated in odd and even time slots are represented as k1 and k2,

respectively. We denote the transmit power levels in the BS transmission and in

the relay Rm transmission for the user Un over subcarrier k1 in the odd time slot by

pb,n,k1 and pm,n,k1, respectively (∀m,n, k1). Similarly, we denote those over subcarrier

k2 in even time slot by pb,n,k2 and pm,n,k2, respectively (∀m,n, k2). Without loss of

generality, the end-to-end transmission rate in any transmission mode is expressed

in nats/s/Hz. In the following, we describe the three different transmission modes.

3.1.1.1 FD relay transmission (FDRT) mode

In both odd and even time slots, the BS transmits DL signals containing independent

messages to the relays while the relays decode and re-transmit the signals, received

from the BS in the previous time slot, to different users. For the same user, the BS

and the relay transmit their signals over the same subcarrier in both odd and even

time slots, i.e., k1 = k2 = k.

In this chapter, we treat the signals from the BS as the interference to the

links between the relays and users4. Hence, the transmission rate for Un through

4If the signal from the relay is considered to be interference, FDRT becomes meaningless. Note
that there are advanced encoding strategies, namely block Markov encoding, which enable the
direct link to help rather than to interfere with the relay link [45, 106]. Yet the block Markov
encoding needs some advanced decoding algorithms, such as joint decoding [45], successive decod-
ing, sliding-window decoding and backward decoding [107]. However, joint decoding has a much
higher computation complexity and decoding delay, and successive decoding/sliding-window de-
coding/backward decoding could increase the probability of error propagation in practical systems.
Thus, we do not consider block Markov encoding strategies in this work.
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Rm within one frame in FDRT mode is expressed as,

Rk1,k2,1
n,m =

1

2
min

{

log(1 + pb,n,k2αb,m,k2), log(1 +
pm,n,k1αm,n,k1

pb,n,k1αb,n,k1 + 1
)

}

+
1

2
min

{

log(1 + pb,n,k1αb,m,k1), log(1 +
pm,n,k2αm,n,k2

pb,n,k2αb,n,k2 + 1
)

}

(3.1)

where k1 = k2.

Note that we do not consider subcarrier-pairing in FDRT mode. In other

words, we do not consider the case where k1 ̸= k2. Hence, the transmission rate for

Un through Rm within one frame in FDRT mode is given by

Rk1,k2,1
n,m = 0, if k1 ̸= k2. (3.2)

3.1.1.2 HD relay cooperative transmission (HDRCT) mode

In an odd time slot, the BS transmits the DL signals containing independent mes-

sages for different users, while all the users and the HD relays keep silent. In an

even time slot, the HD relays forward the signals received in the odd time slot to

the users operating in the HDRCT mode. At the same time, the BS transmits the

same information as the relay to the target user. The users then combine the signals

(i) received from the BS in the odd time slot and (ii) received from the BS and the

relay in the even time slot using maximal-ratio-combining (MRC) technique. The

subcarrier used in the link between BS and relay can be different from the subcarrier

used in the link between the relay and the user. The pairing of the subcarriers is

the so-called subcarrier-pairing. More explicitly, subcarrier pairing means that the

signals received by the relay on subcarrier k1 will be forwarded on subcarrier k2 to

the destinated user, where k1 and k2 are not necessarily the same and they form a
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subcarrier pair denoted as (k1, k2). When the decode-and forward relaying strategy

is used, the transmission rate for Un through Rm within one frame is given by

Rk1,k2,2
n,m =

1

2
min {log(1 + pb,n,k1αb,m,k1),

log(1 + pb,n,k1αb,n,k1 + (
√
pb,n,k2αb,n,k2 +

√
pm,n,k2αm,n,k2)

2)
}

(3.3)

3.1.1.3 Direct Transmission (DT) Mode

In both odd and even time slots, the BS transmits DL signals containing independent

messages for different users while no relay transmits signals. The BS can use two

different subcarriers in the odd and even time slots, i.e., subcarrier k1 is for the

transmission in the odd time slots and k2 is for the transmission in the even time

slots. Then, the achievable rates of user Un over subcarrier k1 and k2 for DT mode

within one frame are given by, respectively,

Rk1
n =

1

2
log(1 + pb,n,k1αb,n,k1) (3.4)

Rk2
n =

1

2
log(1 + pb,n,k2αb,n,k2). (3.5)

Remark 1: In HDRCT mode, the subcarrier in the first hop can be different from

the subcarrier in the second hop. In addition, in DT mode, the subcarriers in the

first hop and second hop are not necessarily the same. However, in FDRT mode,

we restrict that the subcarriers assigned in the first hop and second hop are the

same, i.e., k1 = k2 = k. The reason is that if subcarriers in the first hop and the

second hop are not assigned to the same relay, inter-relay interference will appear.
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For example, we suppose the subcarrier k is assigned in the first hop to the relay R1

and also assigned in the second hop to the relay R2. While R1 is receiving signals

from the BS, it will be interfered by R2 over subcarrier k.

Remark 2: In summary, each given relay decodes signals from subcarriers selected

for FDRT or HDRCT mode during the odd time slots, and re-transmit them in the

even time slots. Similarly, the relay decodes signals from subcarriers ONLY selected

for FDRT during the even time slots and re-transmit them in the odd time slots.

Thus, once the subcarriers selected for FD or HD relay transmission are known, the

relay can perform the decode-and retransmission accordingly. Hence, our system

model can be implemented in practice.

3.1.2 Subcarrier and Power Constraints

3.1.2.1 Subcarrier Constraints

We now introduce four sets of binary assignment variables for subcarriers as follows.

• ρk1,1n indicates whether subcarrier k1 in the odd (first) time slot is assigned to

user Un in DT mode.

• ρk2,2n indicates whether subcarrier k2 in the even (second) time slot is assigned

to user Un in DT mode.

• ρk1,k2,1n,m indicates whether subcarrier pair (k1, k2) is assigned to relay Rm to

assist user Un in FDRT mode, where ρk1,k2,1n,m = 0 for k1 ̸= k2.

• ρk1,k2,2n,m indicates whether subcarrier pair (k1, k2) is assigned to relay Rm to

assist user Un in HDRCT mode.
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In this chapter, we assume that each subcarrier in each time slot can be assigned to

one and only one transmission mode in order to avoid interference. Therefore, these

binary variables must satisfy the following constraints:

N
∑

n=1

ρk1,1n +
2
∑

i=1

N
∑

n=1

M
∑

m=1

K
∑

k2=1

ρk1,k2,in,m = 1, ∀k1 ∈ K (3.6)

N
∑

n=1

ρk2,2n +
2
∑

i=1

N
∑

n=1

M
∑

m=1

K
∑

k1=1

ρk1,k2,in,m = 1, ∀k2 ∈ K (3.7)

ρk1,k2,1n,m = 0, ∀k1, k2 ∈ K, k1 ̸= k2 (3.8)

Note that each user can use FDRT, HDRCT or DT over different sets of subcarriers.

Moreover, each user can be assisted by multiple relays over multiple subcarriers.

3.1.2.2 Individual Peak Power Constraints

Total peak power constraints have been widely assumed in the literatures [36, 43,

108]. Based on the total peak power constraints, power allocation schemes can be

greatly simplified by deriving the equivalent channel gains [36, 43, 108]. However,

power constraints are usually affected by the individual electronic power amplifier

in a practical system. In other words, individual peak power constraints become

more meaningful than total peak power constraints. Hence, in this chapter, we

consider individual peak power constraints of the BS and the relays in each time
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slot5. Consequently, individual power constraints are given as follows.

N
∑

n=1

K
∑

k1=1

pb,n,k1 ≤ Pb,
N
∑

n=1

K
∑

k2=1

pb,n,k2 ≤ Pb (3.9)

N∑

n=1

K∑

k1=1

pm,n,k1 ≤ Pm,
N∑

n=1

K∑

k2=1

pm,n,k2 ≤ Pm, ∀m ∈M (3.10)

where Pb and Pm denote the peak power constraints for BS and the m-th relay,

respectively.

3.1.3 Problem Formulation

To avoid allocating all the resources to users closest to the BS or relays and leading

to an unfair resource allocation, users who have been assigned more resource over

previous time frames will be given a lower priority in the next time frame. Specif-

ically, we denote r̃n as the long-term average rate for the n-th user, i.e., average

number of transmitted bits over previous time frames. Then, a weight of ωn = 1/r̃n

will be given to the rate rn of the n-th user in the next time frame. Our objective

is therefore to maximize the weighted sum-rate by optimally selecting transmission

mode, allocating subcarriers, pairing subcarriers, selecting the best relays and allo-

cating powers. Mathematically, this can be formulated as (P1):

P1 : max
ρ,p

Rtot =
N
∑

n=1

ωnrn (3.11)

s.t. (3.6), (3.7), (3.8), (3.9) and (3.10)

5Strictly speaking, energy constraints are considered in [37] though they have been named as
individual peak power constraints.
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where

rn =
K
∑

k1=1

ρk1,1n Rk1
n +

K
∑

k2=1

ρk2,2n Rk2
n +

2
∑

i=1

M
∑

m=1

K
∑

k1=1

K
∑

k2=1

ρk1,k2,in,m Rk1,k2,i
n,m

ρ = {ρk1,1n , ρk2,2n , ρk1,k2,1n,m , ρk1,k2,2n,m }

p = {pb,n,k1, pb,n,k2, pm,n,k1, pm,n,k2}, ∀k1, k2, m, n.

Note that (3.6), (3.7) and (3.8) indicate the mode selection, relay selection, user

selection and subcarrier-pairing constraints; while (3.9) and (3.10) indicate the in-

dividual power constraints of the BS and the relays.

We assume that the BS collects all the channel state information and performs

the scheduling. In particular, the relay transmits the channel state information of

the relay-to-user link to the BS, and the BS informs all the relays the scheduling

results6. Hence, our approach is a centralized one.

3.2 Optimal Binary Assignment

In this section, we fix the power allocation, and propose a solution for joint optimal

subcarrier assignment, relay selection, subcarrier pairing and transmission mode

6We assume that the time taken to (i) collect all channel state information by the BS, and (ii)
compute and disseminate the scheduling results to the relays, is very short compared to a time
frame. Moreover, one time frame is limited to the coherence time.
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selection7. For a given power allocation, P1 can be transformed into (P2):

P2 : max
ρ

Rtot (3.12)

s.t. (3.6) to (3.8)

where Rtot is given in (3.11). Problem P2 is a combinatorial optimization prob-

lem and the optimal solution can be obtained by exhaustive search. However, the

complexity is exponential and thus prohibitive when K, M , and N are large. Here,

we propose a graph-based approach to solve the problem optimally in polynomial

time. While we can easily prove that the problem P2 is a minimum cost network

flow problem by using a method similar to that in [37], we alternatively transform

problem P2 into a maximum weighted bipartite matching problem. It is because

the maximum weighted bipartite matching solution requires a lower computational

complexity than the minimum cost network flow one.

Referring to the first summation term of (3.11), i.e.,
N∑

n=1
ωn

K∑

k1=1
ρk1,1n Rk1

n , there

is at most one non-zero element for a given subcarrier k1 because of constraint (3.6).

It implies that among the N users, at most one user can utilize the subcarrier k1 for

DT in the odd time slot. Similarly, in the second summation term of (3.11), there is

at most one non-zero element for a given subcarrier k2 because of constraint (3.7).

It means that at most one user can utilize the subcarrier k2 for DT mode in the even

time slot. In the third summation term of (3.11), there is also at most one non-zero

element for a given subcarrier pair (k1, k2) because of constraints (3.6), (3.7) and

7In most previous works focusing on resource allocation without subcarrier pairing [86, 109], the
binary assignment optimization problem can be solved by the greedy algorithm directly. However, if
subcarrier pairing is taken into account, the joint optimization problem of subcarrier assignment,
relay selection, subcarrier pairing and transmission mode selection is non-trivial and cannot be
solved by the greedy algorithm.
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(3.8). In summary, the subcarrier pair (k1, k2) can only be assigned to assist one

user in (i) FDRT mode, (ii) HDRCT mode with one relay, or (iii) DT mode without

relay.

Based on the above observations, in FDRT mode, we define

R1(k1, k2) = max
n∈N ,m∈M

ωnR
k1,k2,1
n,m (3.13)

for each possible subcarrier pair (k1, k2). In HDRCT mode, we define

R2(k1, k2) = max
n∈N ,m∈M

ωnR
k1,k2,2
n,m (3.14)

for each possible subcarrier pair (k1, k2). In DT mode, we define

R3(k1) = max
n∈N

ωnR
k1
n (3.15)

R3(k2) = max
n∈N

ωnR
k2
n (3.16)

which are the maximal weighted transmission rates over subcarrier k1 in the odd

time slot and k2 in the even time slot, respectively. Then, we define

R3(k1, k2) = R3(k1) +R3(k2) (3.17)

which is the maximal weighted transmission rate for DT mode over subcarrier-pair

(k1, k2). As a result, the maximal transmission rate for a given subcarrier-pair

(k1, k2) is given by

R(k1, k2) = max
i=1,2,3

Ri(k1, k2). (3.18)
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We further denote the associated user nodes, relay node, and selected trans-

mission mode that take the maximum in (3.18) for the subcarrier pair (k1, k2) as

(n∗
1, n

∗
2), m

∗ and i∗, respectively. Specifically, n∗
1 and n∗

2 are defined as the selected

users in the odd time slot and even time slot, respectively. If either FDRT mode or

HDRCT mode has been adopted, the selected users will be identical, i.e., n∗
1 = n∗

2.

When DT mode is adopted, m∗ = 0 (no relay used) and n∗
1 is not necessarily the

same as n∗
2. We therefore introduce a new binary variable ρk1,k2,3n1,n2,m. When m = 0,

the value of ρk1,k2,3n1,n2,m indicates whether k1 in the first time slot is assigned to user

n1 AND k2 in the second time slot is assigned to user n2 for DT mode. Thus, if

ρk1,1n1
= 1 AND ρk2,2n2

= 1, then ρk1,k2,3n1,n2,0 = 1; otherwise ρk1,k2,3n1,n2,0 = 0. Consequently,

using ρk1,k2,i
∗

n∗
1 ,n

∗
2,m

∗ to indicate that the subcarrier pair (k1, k2) is assigned with the as-

sociated user nodes (n∗
1, n

∗
2), relay node m∗, and selected transmission mode i∗, we

can transform the problem P2 to the following simplified problem P3 without loss

of optimality:

P3 : max
K
∑

k1=1

K
∑

k2=1

R(k1, k2)ρ
k1,k2,i∗

n∗
1,n

∗
2,m

∗ (3.19)

s.t.
K∑

k1=1

ρk1,k2,i
∗

n∗
1 ,n

∗
2,m

∗ = 1, ∀k1 ∈ K

K
∑

k2=1

ρk1,k2,i
∗

n∗
1 ,n

∗
2,m

∗ = 1, ∀k2 ∈ K.

In the following, we show that the simplified problem P3 is equivalent to a standard

maximum weighted bipartite matching problem [110].

A balanced bipartite graph G = (V1 × V2, ξ,W) is constructed, where the two

set of vertices, V1 and V2 are the set of subcarriers K in the odd time slot and the
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even time slot, respectively. ξ is the set of edges that connect all possible pairs of

vertices in the two set of vertices. Note that K is shared in both odd and even time

slots, and thus |V1| = |V2| = |K| = K, where | · | is the cardinality of a set. W

is the weighting function such that ξ → R+. Specifically, each edge is assigned a

weight, representing the maximum achievable rate over the two connected vertices

(i.e., subcarriers), namely,

W(k1,k2) = R(k1, k2) (3.20)

where R(k1, k2) is defined in (3.18). The weighting process is done across all edges.

According to (3.13)–(3.18), the complexity of the weighting process is O(MNK +

MNK2 + 2NK + 4K2), which is polynomial.

Consequently, the binary assignment problem of subcarrier-pairing based sub-

carrier assignment, relay selection, user selection and transmission mode selection

for the weighted sum-rate maximization is equivalent to finding a perfect match-

ing ξ∗ ⊆ ξ in G so that the sum weights of ξ∗ is maximum. This is the so-called

maximum weighted bipartite matching problem P4:

P4 : max
ξ∗⊆ξ

∑

(k1,k2)∈ξ∗

W(k1,k2). (3.21)

The key of the proposed algorithm is the mapping from the original problem P2 to

the simplified problem P3 and then to the maximum weighted bipartite matching

problem P4 without loss of optimality. Once the mapping is done, the classic

Hungarian method can be adopted to solve P4 optimally with a computational

complexity of O(K3) [111]. By combining the two aforementioned complexities, the

total complexity of our proposed algorithm isO(MNK+MNK2+2NK+4K2+K3),
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which is polynomial and lower than that for solving the minimum cost network flow

problem [37].

3.3 Joint Power Allocation and Binary Assign-

ment

In the previous section, we have proposed a solution for the binary assignment prob-

lem, i.e., joint optimal subcarrier assignment, relay selection, subcarrier pairing and

transmission mode selection with a given power allocation scheme. In this section,

we further take power allocation into account, and solve the joint power allocation

and binary assignment problem which is a mixed integer non-linear programming

problem. The large number of binary assignment possibilities ((3MN)K ) signifi-

cantly complicates the problem when K, M , and N are large. Recently, it has been

shown in [86] that in multicarrier systems, the duality gap of a non-convex resource

allocation problem is negligible when the number of subcarriers becomes sufficiently

large. Since our optimization problem is obviously a multiple subcarriers allocation

problem, it can be solved by using the dual method and the solution is asymptoti-

cally optimal when K is large. The solution procedure includes three main steps: (i)

problem transformation; (ii) optimizing the dual function at given primal variables;

and (iii) optimizing primal variables at a given dual point.
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3.3.1 Problem Transformation

The problem P1 under consideration is a mixed combinatorial and non-convex op-

timization problem. The combinatorial nature comes from the binary integer con-

straints. In general, a brute force approach is needed to obtain the global optimal

solution. Here, we propose handling the integer constraints in (3.6), (3.7), and (3.8)

using the following process.

To facilitate binary assignment variables ρk1,1n , ρk2,2n , and ρk1,k2,in,m , we introduce

a series of “virtual power” variables:

pm,k2,i
b,n,k1

= ρk1,k2,in,m pb,n,k1, (3.22a)

pk1,im,n,k2
= ρk1,k2,in,m pm,n,k2, (3.22b)

pm,k1,i
b,n,k2

= ρk1,k2,in,m pb,n,k2, (3.22c)

pk2,1m,n,k1
= ρk1,k2,1n,m pm,n,k1, (3.22d)

p3b,n,k1 = ρk1,1n pb,n,k1, p
3
b,n,k2 = ρk2,2n pb,n,k2 (3.22e)

for i = {1, 2}, ∀k1, k2 ∈ K, ∀m ∈M, and ∀n ∈ N .

• pm,k2,i
b,n,k1

in (3.22a) indicates the transmit power of the BS assigned to the user

Un through the relay Rm over subcarrier k1 paired with subcarrier k2 in trans-

mission mode i.

• pk1,im,n,k2
in (3.22b) indicates the transmit power of the relay Rm assigned to the

user Un over subcarrier k2 paired with subcarrier k1 in transmission mode i.

• pm,k1,i
b,n,k2

in (3.22c) indicates the transmit power of the BS assigned to the user

Un through the relay Rm over subcarrier k2 paired with subcarrier k1 in trans-
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P5 : max
ρ,p̂

R̂tot =
N∑

n=1

ωn

(
K∑

k1=1

R̂k1
n +

K∑

k2=1

R̂k2
n +

2∑

i=1

M∑

m=1

K∑

k1=1

K∑

k2=2

R̂k1,k2,i
n,m

)

(3.27)

s.t. (3.6)− (3.8), and (3.23)− (3.26)

mission mode i.

• pk2,1m,n,k1
in (3.22d) indicates the transmit power of the relay Rm assigned to the

user Un over subcarrier k1 paired with subcarrier k2 in FDRT mode.

• p3b,n,k1 and p3b,n,k2 in (3.22e) indicate the transmit power of the BS assigned to

the user Un over subcarrier k1 and k2, respectively, in DT mode.

As a result, the power constraints in (3.9) and (3.10) should be transformed

into
N
∑

n=1

K
∑

k1=1

p3b,n,k1 +
2
∑

i=1

N
∑

n=1

M
∑

m=1

K
∑

k2=1

K
∑

k1=1

pm,k2,i
b,n,k1

≤ Pb (3.23)

N
∑

n=1

K
∑

k2=1

p3b,n,k2 +
2
∑

i=1

N
∑

n=1

M
∑

m=1

K
∑

k2=1

K
∑

k1=2

pm,k1,1
b,n,k2

≤ Pb (3.24)

N
∑

n=1

M
∑

m=1

K
∑

k2=1

K
∑

k1=1

pk2,1m,n,k1
≤ Pm, ∀m ∈M (3.25)

2
∑

i=1

N
∑

n=1

M
∑

m=1

K
∑

k2=1

K
∑

k1=1

pk1,im,n,k2
≤ Pm, ∀m ∈M. (3.26)

Thus, the problem P1 is transformed into the problem P5 where R̂k1,k2,1
n,m , R̂k1,k2,2

n,m ,
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R̂k1
n and R̂k2

n are given in (3.28), (3.29) and (3.30), respectively.

R̂k1,k2,1
n,m =

1

2
min

{

log
(

1 + pm,k1,1
b,n,k2

αb,m,k2

)

, log

(

1 +
pk2,1m,n,k1

αm,n,k1

pm,k2,1
b,n,k1

αb,n,k1 + 1

)}

+
1

2
min

{

log
(

1 + pm,k2,1
b,n,k1

αb,m,k1

)

, log

(

1 +
pk1,1m,n,k2

αm,n,k2

pm,k1,1
b,n,k2

αb,n,k2 + 1

)}

(3.28)

R̂k1,k2,2
n,m =

1

2
min

{

log
(

1 + pm,k2,2
b,n,k1

αb,m,k1

)

,

log

(

1 + pm,k2,2
b,n,k1

αb,n,k1 +

(√

pm,k1,2
b,n,k2

αb,n,k2 +
√

pk1,2m,n,k2
αm,n,k2

)2
)}

(3.29)

R̂k1
n =

1

2
log(1 + p3b,n,k1αb,n,k1), R̂k2

n =
1

2
log(1 + p3b,n,k2αb,n,k2). (3.30)

In addition, p̂ = {pm,k2,i
b,n,k1

, pk1,im,n,k2
, pm,k1,i

b,n,k2
, pk2,1m,n,k1

, p3b,n,k1, p
3
b,n,k2}. The binary assign-

ment can be obtained after allocating the powers based on the objective function

R̂tot. In other words, with known power allocations, the problem P5 is evolved into a

binary assignment problem. Thus, we can firstly optimize the power allocation, and

then optimize the binary assignment problem by using a similar method provided

in Section 3.2.

We introduce a Lagrangian multiplier vector λ = {λb,i,λ1,i,λ2,i, · · · ,λm,i, . . . ,λM,i}

(i = 1, 2) associated with the individual power constraints. We also define I as the

set of possible binary assignments ρ satisfying (3.6)–(3.8). In addition, we define

P(ρ) as the set of possible power allocations p̂ under the given ρ. Then, the dual

problem of problem P5 can be readily written as

g(λ)
∆
= max

p̂∈P(ρ),ρ∈I
L(p̂,ρ,λ), (3.31)
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where the Lagrangian is given in (3.32). In (3.32), the first term (3.32a) represents

the profit expression of FDRT mode in the dual domain; the second term (3.32b)

is the profit expression of HDRCT mode; and the third and fourth terms together

(3.32c) represent the profit expression of DT mode. Computing the dual function

g(λ) requires determining the optimal (p̂∗,ρ∗) for the given dual vector λ. In the

following we present the derivations in detail. It is worth mentioning that we set λ

to be sufficiently large and p̂ to be zeros in the initialization process.

3.3.2 Optimizing Dual Function at Given Primal Variables

The dual optimization problem is given by

min
λ≽0

g(λ) (3.34)

s.t. λ ≽ 0.

Since a dual function is always convex by definition [89], gradient- or subgradient-

based methods can be used to minimize g(λ) with guaranteed convergence. We

denote (p̂∗,ρ∗) as the optimal power allocation and binary assignment pair at a

given dual point (to be discussed in the next subsection). Then a subgradient of

g(λ) can be derived using a similar method as in [86] such that the dual variables

λ are updated as in (3.33), where [⋆]+ denotes max(0, ⋆), the superscript (l) denotes

the iteration number, and π(l) represents the step size. When the step size π(l)

follows the diminishing policy in [90], the subgradient method above is guaranteed

to converge to the optimal dual variables. Here, we just take the simple diminishing
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L(p̂,ρ,λ) =
N∑

n=1

ωn

M∑

m=1

K∑

k1=1

K∑

k2=2

(

R̂k1,k2,1
n,m − λb,1pm,k2,1

b,n,k1
− λb,2pm,k1,1

b,n,k2
− λm,1p

k2,1
m,n,k1

− λm,2p
k1,1
m,n,k2

)

(3.32a)

+
N
∑

n=1

ωn

M
∑

m=1

K
∑

k1=1

K
∑

k2=2

(

R̂k1,k2,2
n,m − λb,1pm,k2,2

b,n,k1
− λb,2pm,k1,2

b,n,k2
− λm,2p

k1,2
m,n,k2

)

(3.32b)

+
N
∑

n=1

ωn

K
∑

k1=1

(

R̂k1
n − λb,1p3b,n,k1

)

+
N
∑

n=1

ωn

K
∑

k2=1

(

R̂k2
n − λb,2p3b,n,k2

)

(3.32c)

+ (λb,1 + λb,2)Pb +
M
∑

m=1

(λm,1 + λm,2)Pm (3.32d)

λ(l+1)
b,1 =

[

λ(l)b,1 − π
(l)

(

Pb −
N
∑

n=1

K
∑

k1=1

p3b,n,k2 −
N
∑

n=1

M
∑

m=1

K
∑

k2=1

K
∑

k1=1

pm,k2,1
b,n,k1

)]+

(3.33a)

λ(l+1)
b,2 =

[

λ(l)b,2 − π
(l)

(

Pb −
N
∑

n=1

K
∑

k1=1

p3b,n,k2 −
N
∑

n=1

M
∑

m=1

K
∑

k2=1

K
∑

k1=1

pm,k2,1
b,n,k1

)]+

(3.33b)

λ(l+1)
m,1 =

[

λ(l)m,1 − π(l)

(

Pm −
N
∑

n=1

M
∑

m=1

K
∑

k2=1

K
∑

k1=1

pk2,1m,n,k1

)]+

(3.33c)

λ(l+1)
m,2 =

[

λ(l)m,2 − π(l)

(

Pm −
2
∑

i=1

N
∑

n=1

M
∑

m=1

K
∑

k2=1

K
∑

k1=1

pk1,im,n,k2

)]+

(3.33d)

step, i.e., π(l) = π(0)/
√
l, where π(0) > 0 is the initial step size8. The computational

complexity of such an updating method is polynomial in the number of dual variables

2(M + 1) [86].

8Since optimizing the step size is not the main theme of our work, we apply only a simple
diminishing step. This simple diminishing step is not in an optimized way but is guaranteed to
converge.

86



3.3.3 Optimizing Primal Variables at a Given Dual Point

Computing the dual function g(λ) involves determining the optimal (p̂∗,ρ∗) at the

given dual point λ. In this subsection, we present the detailed derivation of the

optimal primal variables in two phases. We first find the optimal power variables

p̂ by fixing the integer variables ρ. Then we search the optimal ρ by eliminating

p̂ in the objective function. Also, we optimize the power in the three different

transmission modes sequentially.

3.3.3.1 Optimizing Power Allocation in FDRT Mode

In FDRT mode, i.e., i = 1, the corresponding objective function is in (3.32a). Based

on (3.32a), the problem can be decomposed into MNK2 subproblems. With given

dual variables, the power allocation can be performed by solving the corresponding

sub-primal problem. The optimal power allocation that maximizes (3.32a) does not

have a closed-form solution in general, and we introduce a hierarchical dual method

to solve the power allocation problem. Details can be found in Appendix 3.A.

3.3.3.2 Optimizing Power Allocation in HDRCT Mode

In HDRCT mode, i.e., i = 2, the corresponding objective function is in (3.32b).

Given m, n, k1 and k2, a slight change of (3.32b) gives

Lk1,k2,2
m,n =

1

2
log(1 + γk1,k2m,n ) + ν(pm,k2,2

b,n,k1
αb,m,k1 − γk1,k2m,n )

− λb,1pm,k2,2
b,n,k1

− λb,2pm,k1,2
b,n,k2

− λm,2p
k1,2
m,n,k2

(3.35)
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where

γk1,k2m,n =pm,k2,2
b,n,k1

αb,n,k1 + (
√

pm,k1,2
b,n,k2

αb,n,k2 +
√

pk1,2m,n,k2
αm,n,k2)

2. (3.36)

The second term on the right hand side of (3.35) is associated with the Lagrange

multiplier ν ≥ 0, corresponding to the condition

pm,k2,2
b,n,k1

αb,m,k1 ≥ γk1,k2m,n (3.37)

for relay transmission mode rather than DT mode [43]. If (3.37) is not valid, the

power of the given relay can be reallocated, without reducing its rate to other sub-

carriers, or simply be conserved. We aim at maximizing the Lagrange function (3.35)

subject to the individual powers for given m, n, k1 and k2. The referred problem is

obviously a convex optimization problem. To derive the convex optimization prob-

lem, one may formulate and solve a set of equations based on the KKT conditions

and the method in [43]. The method, however, is effective only when the objective

function (3.35) and all the constraints are differentiable at the optimum solution.

However, γk1,k2m,n is not differentiable at pm,k1,2
b,n,k2

= 0 or pk1,2m,n,k2
= 0. As a result, the

KKT-conditions-based method cannot be applied to finding the optimum solution.

In this chapter, we provide a much simpler analysis to solve this problem.

We define the optimal powers as pm,k2,2∗
b,n,k1

, pm,k1,2∗
b,n,k2

and pk1,2∗m,n,k2
. Then the power

allocation scheme can be analyzed under the following three cases.

• Case 1 pk1,2∗m,n,k2
= 0: It means that the relay does not transmit any information.

As a result, pm,k2,2∗
b,n,k1

= 0 and pm,k1,2∗
b,n,k2

= 0. Note that (3.35) may not be optimal

under pm,k2,2∗
b,n,k1

= pm,k1,2∗
b,n,k2

= 0 and pk1,2∗m,n,k2
= 0. However, in this chapter, we also
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have taken into account the DT mode. In DT mode, we can have a better

achievable rate than that of HDRCT mode when pk1,2∗m,n,k2
= 0. Thus, we directly

give the results following the definition of HDRCT mode.

• Case 2 pk1,2∗m,n,k2
> 0 and pm,k1,2∗

b,n,k2
= 0: By substituting pm,k1,2∗

b,n,k2
= 0 into (3.35),

and equating the partial derivatives of Lk1,k2,2
m,n in (3.35) over pm,k2,2

b,n,k1
and pk1,2m,n,k2

to zeros, the closed-forms of the optimal power allocations pm,k2,2∗
b,n,k1

and pk1,2∗m,n,k2

can be readily obtained as follows.

If αb,m,k1 > αb,n,k1, and 1/2(βk1,k2λb,1 + λm,2) − 1/αb,m,k1βk1,k2 > 0, where

βk1,k2 = αm,n,k2/(αb,m,k1 − αb,n,k1), then

pm,k2,2∗
b,n,k1

=
1

2(λb,1 + λm,2/βk1,k2)
− 1

αb,m,k1

(3.38)

pk1,2∗m,n,k2
=

1

2(βk1,k2λb,1 + λm,2)
− 1

αb,m,k1βk1,k2
; (3.39)

otherwise, Case 2 is not feasible.

Note that the condition αb,m,k1 > αb,n,k1 for selecting HDRCT mode is based

on the fact that in this situation, the relay will receive more information than

the destination. Otherwise, there is no need to use the relay and we should go

back to Case 1. The other condition 1/2(βk1,k2λb,1 + λm,2)−1/αb,m,k1βk1,k2 > 0

is used to guarantee pk1,2∗m,n,k2
> 0 and hence to satisfy the condition of Case 2.

• Case 3 pk1,2∗m,n,k2
> 0 and pm,k1,2∗

b,n,k2
> 0: By equating the partial derivatives of

Lk1,k2,2
m,n in (3.35) over pm,k2,2

b,n,k1
, pm,k1,2

b,n,k2
and pk1,2m,n,k2

to zeros and after some ma-

nipulations, the closed-forms of the optimal power allocations pm,k2,2∗
b,n,k1

, pm,k1,2∗
b,n,k2

and pk1,2∗m,n,k2
can be readily obtained as follows. If αb,m,k1 − αb,n,k1 > 0 and
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γk1,k2∗m,n > 0, then

pm,k2,2∗
b,n,k1

= γk1,k2∗m,n /αb,m,k1 (3.40)

pm,k1,2∗
b,n,k2

=
γk1,k2∗m,n η∗(αb,m,k1 − αb,n,k1)

αb,m,k1(αb,n,k2 + η∗αc)2
(3.41)

pk1,2∗m,n,k2
=

γk1,k2∗m,n αb,m,k1 − αb,n,k1

αb,m,k1(αb,n,k2 + η∗αc)2
(3.42)

where

η∗ =
1

2λm,2αc
(−(λm,2αb,n,k2 − λb,2αm,n,k2)

+
√

(λm,2αb,n,k2 − λb,2αm,n,k2)
2 + λm,2λb,2α2

c

)

, (3.43)

γk1,k2∗m,n =
(αb,n,k2 + ηαc)/2

λb,2(αb,n,k1 − αb,m,k1)− λb,1(αb,n,k2 + η∗αc)
− 1, (3.44)

αc =
√
αb,n,k2αm,n,k2; (3.45)

otherwise, Case 3 is not feasible. Details of the proof are shown in Appendix

3.B.

Subsequently, we evaluate the Lagrangian function (3.35) under the above three

power allocation schemes. Then we select the power allocation scheme corresponding

to the largest Lagrangian function as the optimal one9.

9In [112], a more general solution has been proposed for the scenario where multiple relays
jointly assist the source to transmit information. However, the general solution is inefficient and
not easy to understand under a single-relay case scenario. Our proposed method here is a kind
of exhaustive search algorithm that searches all the possible cases and find the optimal one. Yet,
the method is very efficient because the number of power variables is limited and only three cases
need to be analyzed.
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3.3.3.3 Optimizing Power Allocation in DT Mode

In DT mode, i.e., i = 3, the corresponding objective function is in (3.32c). By

applying KKT conditions, the closed-forms of optimal power allocations p3b,n,k1 and

p3b,n,k2 for a given set of n, k1 and k2 can be easily obtained

p3b,n,k1 =

[

1

2λb,1
− 1

αb,n,k1

]+

, (3.46)

p3b,n,k2 =

[
1

2λb,2
− 1

αb,n,k2

]+

. (3.47)

3.3.3.4 Optimizing binary assignment

Following a similar procedure as in [37], our proposed algorithm in Section 3.2 can

be applied to solve the problem in (3.31) by replacing the rate expressions with the

profit expressions. Specifically, we have

R̄1(k1, k2) = max
n∈N ,m∈M

ωn(R̂
k1,k2,1
n,m − λb,1pm,k2,1

b,n,k1
− λb,2pm,k1,1

b,n,k2
− λm,1p

k2,1
m,n,k1

− λm,2p
k1,1
m,n,k2

)

(3.48)

R̄2(k1, k2) = max
n∈N ,m∈M

ωn(R̂
k1,k2,2
n,m − λb,1pm,k2,2

b,n,k1
− λm,2p

k1,2
m,n,k2

) (3.49)

R̄3(k1) = max
n∈N

ωn(R̂
k1
n − λb,1p3b,n,k1) (3.50)

R̄3(k2) = max
n∈N

ωn(R̂
k2
n − λb,2p3b,n,k2) (3.51)

R̄3(k1, k2) = R̄3(k1) + R̄3(k2). (3.52)

Then, the maximal transmission rate for a given subcarrier-pair is given by

R̄(k1, k2) = max
i=1,2,3

R̄i(k1, k2). (3.53)

91



ReplacingR(k1, k2) in (3.19) by R̄(k1, k2), the problem becomes a maximum weighted

bipartite matching problem and can be solved by the classic Hungarian algorithm.

3.3.4 Computation Complexity

In our joint power allocation and binary assignment problem, the computation com-

plexity is determined by the complexity of the dual method, power allocation and

binary assignment jointly. It has been shown in Section 3.3.2 that the computational

complexity of updating the dual variables is O(2(M + 1)). In each dual problem,

the computational complexity of the binary assignment problem has been shown

in Section 3.2 to be O(MNK + MNK2 + 2NK + 4K2 + K3). For each binary

assignment, the power allocation scheme in DT mode has a closed form solution,

and thus its computational complexity is O(1); that in the HD relay cooperative

transmission mode has three cases of which each has a closed form solution, and

thus its computational complexity is O(3); that in FD relay transmission mode has

four cases among which the first three have closed form solutions and the fourth case

needs a further dual-based computation, and thus its computational complexity is

O(3 + 2 ∗ (2 + 1)) = O(9). Thus, the overall computation complexity of our joint

optimization problem is O(26(M + 1)(MNK +MNK2 + 2NK + 4K2 +K3)).

3.4 Simulation Results

In this section, we evaluate the system performance of our proposed algorithm by

simulations. We consider the 3GPP ITU-R urban macro (UMa) cell in Fig. 3.1

where the BS locates at the center of the cell [96]. We assume a cell radius of 2 km
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and a total of N = 32 users. We adopt the path loss model from [96], i.e., path loss

equals 122.5 + 35 log10 d (in dB), where d denotes the distance in km and the path

loss exponent is set to be 3.5 for the height of BS as 31 meters over the ground.

The small-scale fading is modeled as a multipath time-delay model following ITU-R

M.1225 PedA [96]. The center frequency is 2 GHz and the bandwidth is 10 MHz,

within which there are 64 subcarriers. The noise spectral density is −174 dBm/Hz

and the noise figure is set to 9 dB. The number of the relays is M = 4 and they

are located at [0, 1], [0, −1], [1, 0] and [−1, 0] (km). A total of 50000 different

channel realizations are conducted in the simulation. For each channel realization,

the locations of the users are randomly and uniformly distributed. The peak power

constraints for all relay nodes are the same and set to be 5 dB lower than the peak

power constraint of the BS. In addition to our proposed algorithm, the following

benchmark approaches are simulated for comparison10.

1) No Subcarrier Pairing (NSP) : The operation is in either DT mode, FDRT mode

or HDRCT mode. When operating in the HDRCT mode, however, the same sub-

carrier is used in the two time slots of the cooperative transmission. The joint

optimization is performed with respect to power allocation, subcarrier assignment,

relay selection, and transmission mode selection; and can be solved by per-subcarrier

basis using the greedy policy.

2) DT only: The operation is in DT mode only. All users transmit directly without

the assistance of the relays. In this case, the greedy policy is optimal for throughput

maximization. The joint optimization is performed with respect to power allocation

10The prior work [35] considers the scenario that the users are located at the cell edge such that
the direct link can be neglected. The algorithm proposed in [35] becomes ineffective when the users
are uniformly distributed in the cell because the direct link could not be neglected. In our system
model, the users are uniformly distributed in the cell. Thus, it is not appropriate to compare the
work [35] with our work.
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and subcarrier assignment.

3) No DT (NDT): In the NDT mode, the operation is in either FDRT mode or

HDRCT mode, and all users require the assistance of the relays. The joint opti-

mization is performed with respect to power allocation, relay selection, subcarrier

pairing and assignment.

4) FDRT: The operation is in FDRT mode only and all users require the assistance

of the relays. The joint optimization is performed with respect to power allocation,

relay selection and subcarrier assignment.

5) HDRCT: The operation is in HDRCT mode only and all users require the as-

sistance of the relays. The joint optimization is performed with respect to power

allocation, relay selection, subcarrier pairing and assignment.

For the ease of notation, we define the interference-to-noise ratio (INR) as the

self-interference power over noise power, i.e., σ2
e/σ

2
0.

3.4.1 Convergence of the Proposed Algorithm

Fig. 3.2 plots the average sum-rate of the primal problem and the dual problem

versus the number of iterations when the maximum BS transmit power equals 20

dBm and INR = 3 dB. The results in Fig. 3.2 show that the proposed hybrid FD

transmission algorithm converges very fast and becomes very close to the optimal

value in 5 iterations. In other words, the duality gap between the solutions of the

primal and the dual of the joint optimization problem is negligible. The main reason

is that the number of subcarriers (i.e., 64) is sufficiently large.
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Figure 3.2: Average sum-rate for primal problem and dual problem versus number
of iterations when the maximum BS transmit power equals 20 dBm and INR = 3
dB.

3.4.2 Comparison with Benchmark Approaches

In this subsection, we evaluate the performance of our proposed algorithm and com-

pare it with those of the benchmark approaches. In Fig. 3.3(a) and Fig. 3.3(b),

we plot the average sum-rates of the different approaches under INR = 3 dB and

INR = 10 dB, respectively. Firstly, among all the algorithms, our proposed algo-

rithm achieves the highest average sum-rate. Compared with the NSP scheme, our

proposed algorithm can provide about 8% and 10% throughput improvements at
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Figure 3.3: Performance comparison between our proposed algorithm and five other
benchmark approaches. (a) INR = 3 dB; (b) INR = 10 dB.
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Figure 3.4: Transmission mode selection probability versus BS transmit power for
INR = 3 dB and INR = 10dB.

INR = 3 dB and INR = 10 dB, respectively, when the BS transmit power equals

30 dBm. The results reveal that the use of subcarrier pairing can indeed increase

the throughput. Moreover, we observe that our proposed algorithm can improve

the system sum-rate significantly (even above 100%) compared with the FDRT,

HDRCT, NDT and DT schemes. From Fig. 3.3(a) and Fig. 3.3(b), we also find that

the HDRCT scheme achieves better performance than the FDRT scheme when the

BS transmit power is high, and vice versa. The reason is that when the BS transmit

power increases, the users under the FDRT scheme suffer from a higher interference

from the BS. While the overall sum-rate of the FDRT scheme still improves with

the BS transmit power, the improvement is relatively smaller compared with that

achieved by the HDRCT scheme, in which the users are benefited by the stronger

signals from the BS.
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Figure 3.5: Transmission mode selection probability versus the effective radius ru
with given transmit power PB = 10 dBm and INR = 3 dB, in which the users in the
circle area 0 < d < ru and the two concentric ring-shaped discs area ru−0.1 < d < ru
are considered as effective users in (a) and (b), respectively.

3.4.3 Transmission Mode Selection Probability

To gain more insightful results, we analyze the different transmission mode selection

probabilities under our proposed hybrid transmission protocol. In Fig. 3.4, we plot

the selection probability of DT, HDRCT and FDRTmodes versus BS transmit power

under INR = 3 dB and INR = 10 dB. Firstly, the results show that the DT mode

selection probability and the HDRCT mode selection probability increase whereas

the FDRT mode selection probability decreases with the BS transmit power. The

phenomenon is reasonable because a stronger BS transmit power (a) introduces a

higher interference to the user in FDRT mode and (ii) provides a stronger signal to

users in HDRCT or DT mode. Hence, both HDRCT and DT modes will be selected

with an increasing probability as BS transmit power increases; and consequently,

the probability of selecting FDRT mode will be reduced. Secondly, FDRT mode

selection probability decreases with self-interference power, which is expected.
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Next, we study the transmission mode selection probability of users in different

locations. Fig. 3.5 illustrates the transmission mode selection probability versus the

effective radius ru under a BS transmit power PB = 10 dBm and INR = 3 dB.

Users located within a distance of ru from the BS are considered as effective users

in Fig. 3.5(a); while users located further than ru − 0.1 but within ru from the BS

are considered as effective users in Fig. 3.5(b).

Referring to Fig. 3.5(b), when users are located very near the BS (up to ru =

0.6), they can receive very strong signals from the BS and almost all of them select

DT mode. Under this condition, DT mode can provide significant gain compared

to HDRCT mode because DT uses only one time slot to transmit information. It

also performs better than FDRT mode in this scenario since the strong direct link

is considered as interference. As users move away from the BS (0.8 ≤ ru ≤ 1.4)

and become close to the relays (located at [0, 1], [0, −1], [1, 0] and [−1, 0]), users

begin to receive not-so-strong signals from the BS but stronger ones from the relays.

The advantage of DT diminishes and DT becomes less likely to be selected. The

combined signals from the BS and the relay favor the selection of the HDRCT

mode within this range. The probability of FDRT mode being selected is still small

because of the relatively strong interference signal from the BS. When users move

further away from both the BS and relays (1.6 ≤ ru ≤ 2.0), the signal from the

BS becomes very weak. The selection probability of DT mode continues to decline.

HDRCT mode also begins to lose its advantage compare to FDRT mode. It is

because FDRT mode uses only one time slot to transmit information and the users

far from the BS receive very little interference from it.
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3.4.4 Effect of Power Allocation

Next, we evaluate the effectiveness of the power allocation (PA) algorithm in our

proposed scheme. In the top-left sub-figure of Fig. 3.6, we plot the sum-rate versus

BS transmit power when INR = 3 dB. The upper bound obtained by searching

the optimal power allocation exhaustively in the dual domain under a given binary

assignment is provided as a comparison. We also plot the results for the equal power

allocation (EPA) scheme in which the transmit powers of BS and relays are equally

shared among all subcarriers. In particular, the proposed EPA scheme optimizes the

binary assignment problem by using the Hungarian algorithm directly with EPA.

The results show that our proposed algorithm approaches the upper bound very

closely. It verifies that the duality gap is negligible when the number of subcarriers is

large. Moreover, the performance improvement of our proposed algorithm compared

to the proposed EPA scheme is larger in low and moderate BS transmit power

regimes but limited when the BS transmit power is high.

In a previous work [37], it has been shown the EPA scheme has nearly the

same performance as the optimal power allocation at the high signal-to-noise-ratio

(SNR) region (i.e., high BS transmit power) in a HD relaying system. In this work,

we show that a similar conclusion can be obtained in the hybrid relaying system.

In other sub-figures of Fig. 3.6, we plot the sum-rates of using DT mode, HDRCT

mode and FDRT mode under optimized PA scheme and equal PA scheme. The

results indicate that PA scheme has a small effect on the sum-rates of DT mode and

HDRCT mode, and it has a large effect on the sum-rates of FDRT mode. A first

glance at the very large difference of the sum-rate achieved by FDRT mode (lower-

right sub-figure of Fig. 3.6) at the high SNR regime under the optimized PA scheme
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and the EPA scheme would suggest that there should also be a large difference of

our proposed hybrid scheme under the optimized PA scheme and the EPA scheme in

the same regime (top-left sub-figure of Fig. 3.6). However, as the results in Fig. 3.4

have shown, the probability of FDRT mode being selected is relatively small at the

high SNR region. Thus the difference in the sum-rate achieved by the optimized PA

scheme and the EPA scheme under FDRT mode at the high SNR region has a small

effect on the our proposed hybrid scheme.

3.4.5 Fairness to Users

Finally, we look at the average transmission rate of each user under our proposed

scheme (i.e., maximizing weighted sum-rate). For comparison, we also show the

average transmission rate when all weights are equal, i.e., ωn = 1 and the sum-

rate is maximized. Fig. 3.7 plots the average individual user transmission rate in

a descending order when the maximum BS transmit power equals 20 dBm and

INR = 3 dB. The results indicate that our proposed algorithm can provide a more

balanced transmission rate (ranging from 3 bits/s/Hz to 6 bits/s/Hz) to all users

while the maximizing sum-rate scheme gives a very diverse transmission rate (rang-

ing from 1 bits/s/Hz to 11.7 bits/s/Hz) to users. In other words, our proposed

scheme is fairer to all users in terms of resource allocation.

3.5 Summary

In this chapter, we have investigated resource allocation in OFDMA DL cooperative

networks. We have formulated the combinatorial binary assignment optimization
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problem of optimizing the subcarrier pairing, subcarrier assignment, relay selection,

and transmission mode selection. We have transformed the binary assignment prob-

lem into an equivalent maximum weighted bipartite matching problem which can

be solved by the classic Hungarian algorithm. Subsequently, we have considered

the joint power allocation and binary assignment problem which is solved by the

dual-based iterative algorithm. Specifically, the power allocation schemes of FD re-

lay transmission mode and HD relay cooperative transmission mode are solved in

semi-closed forms. Simulation results have shown that our proposed algorithm can

achieve significant throughput gain compared to the other benchmark approaches.

Appendix 3.A Power Allocation in FDRT Mode

For simplicity, pm,k2,1
b,n,k1

, pm,k1,1
b,n,k2

, pk2,1m,n,k1
, and pk1,1m,n,k2

are replaced by pb,1, pb,2, pm,1, and

pm,2, respectively. In addition, αb,m,k1, αb,m,k2, αm,n,k1, αm,n,k2, αb,n,k1, and αb,n,k2 are

replaced by αb,1, αb,2, αm,1, αm,2, α′
b,1, and α

′
b,2, respectively. Then, for a given set

of (m,n, k1, k2), we transform the problem of maximizing (3.32a) into the following

equivalent problem

max
p̄

R1 +R2 −Ψ (3.54)

s.t. R1 ≤
1

2
log(1 + pb,2αb,2) (3.55)

R1 ≤
1

2
log(1 +

pm,1αm,1

pb,1α′
b,1 + 1

) (3.56)

R2 ≤
1

2
log(1 + pb,1αb,1) (3.57)

R2 ≤
1

2
log(1 +

pm,2αm,2

pb,2α′
b,2 + 1

) (3.58)
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where p̄ = {pb,1, pb,2, pm,1, pm,2} ≽ 0, and Ψ = λb,1pb,1+λb,2pb,2+λm,1pm,1+λm,2pm,2.

We first introduce non-negative Lagrangian multipliers µ1,1, µ1,2, µ2,1, and µ2,2

associated with the rate constraints (3.55), (3.56), (3.57), and (3.58), respectively.

All of them are denoted as µ ≽ 0. Then the dual function of problem (3.54) can be

defined as

ḡ(µ)
∆
= max

p̄
L(p̄), (3.59)

where the Lagrangian is given by

L(p̄) = R1(1− µ1,1 − µ1,2) +R2(1− µ2,1 − µ2,2)−Ψ

+
µ1,1

2
log(1 + pb,2αb,2) +

µ1,2

2
log(1 +

pm,1αm,1

pb,1α′
b,1 + 1

)

+
µ2,1

2
log(1 + pb,1αb,1) +

µ2,2

2
log(1 +

pm,2αm,2

pb,2α′
b,2 + 1

). (3.60)

To make sure the dual function is bounded, we have µ1,1+µ1,2 = 1 and µ2,1+µ2,2 = 1.

By substituting these results into (3.60), the Lagrangian can be rewritten as

L(p̄) =
µ1,1

2
log(1 + pb,2αb,2) +

µ2,1

2
log(1 + pb,1αb,1)−Ψ

+
1− µ1,1

2
log(1 +

pm,1αm,1

pb,1α′
b,1 + 1

) +
1− µ2,1

2
log(1 +

pm,2αm,2

pb,2α′
b,2 + 1

). (3.61)

By applying Karush-Kuhn-Tucker (KKT) conditions [89], i.e., equating the partial
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derivatives of (3.60) over all the power variables p̄ to zeros, we can obtain

∂L

∂pb,1
=

µ2,1αb,1

2(1 + pb,1αb,1)
+

(1− µ1,1)α′
b,1

2(1 + pb,1α′
b,1 + pm,1αm,1)

(1− µ1,1)α′
b,1

2(1 + pb,1α′
b,1)
− λb,1 = 0

(3.62)

∂L

∂pm,1
=

(1− µ1,1)αm,1

2(1 + pb,1α′
b,1 + pm,1αm,1)

− λm,1 = 0 (3.63)

∂L

∂pb,2
=

µ1,1αb,2

2(1 + pb,2αb,2)
+

(1− µ2,1)α′
b,2

2(1 + pb,2α′
b,2 + pm,2αm,2)

−
(1− µ2,1)α′

b,2

2(1 + pb,2α′
b,2)
− λb,2 = 0

(3.64)

∂L

∂pm,2
=

(1− µ2,1)αm,2

2(1 + pb,2α′
b,2 + pm,2αm,2)

− λm,2 = 0. (3.65)

To derive the power allocation scheme, one may formulate and solve a set of

equations based on the KKT conditions, i.e., (3.62) to (3.65). This method is effec-

tive only when the objective function (3.61) and all the constraints are differentiable

at all the feasible regions. However, the differentiations of the constraints are not

unique in zero value. It means that the KKT-conditions-based method is not capable

of finding the optimum solution in general.

We denote the optimal powers as p∗b,1, p
∗
b,2, p

∗
m,1, and p∗m,2. In order to derive

the allocated powers, we firstly give the following lemma.

Lemma 3.1. If p∗m,1 = 0, then p∗b,2 = 0. Similarly, p∗b,1 = 0 when p∗m,2 = 0.

Proof. According to the expression of rate for FDRT mode in (3.1), it is easy to

verify that the rate would be maximized when p∗b,2 = 0 if p∗m,1 = 0. Similar result

can be applied into the fact that p∗b,1 = 0 when p∗m,2 = 0.
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Then, we give the explicit analysis of the power allocation scheme in four

different cases:

• Case 1: p∗m,1 = 0 and p∗m,2 = 0. According to lemma 3.1, we can obtain

p∗b,1 = p∗b,2 = 0.

• Case 2: p∗m,1 > 0 and p∗m,2 = 0. According to lemma 3.1, pb,1 = 0. Then,

we examine the feasibility of Case 2. By substituting p∗b,1 = 0 into (3.63) and

combining the fact that p∗m,1 > 0, we can conclude that Case 2 is feasible if

1−µ1,1

2λm,1
− 1

αm,1
> 0 and vice versa. If Case 2 is feasible, the exact value of p∗m,1

is given by

p∗m,1 =
1− µ1,1

2λm,1
− 1

αm,1
. (3.66)

By substituting p∗m,2 = 0 into (3.64), p∗b,2 can be derived as

p∗b,2 =

[
µ1,1

2λb,2
− 1

αb,2

]+

. (3.67)

• Case 3: p∗m,1 = 0 and p∗m,2 > 0. Similar to Case 2, we have p∗b,2 = 0. By

substituting pb,2 = 0 into (3.65) and combining the fact that pm,2 > 0, we can

conclude that Case 3 is feasible if 1−µ2,1

2λm,2
− 1

αm,2
> 0 and vice versa. If Case 3

is feasible, the exact value of pm,2 is given by

p∗m,2 =
1− µ2,1

2λm,2
− 1

αm,2
. (3.68)

By substituting p∗m,1 = 0 into (3.62), p∗b,1 can be derived as

p∗b,1 =

[
µ2,1

2λb,1
− 1

αb,1

]+

. (3.69)
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• Case 4: p∗m,1 > 0 and p∗m,2 > 0. Since p∗m,1 > 0 and p∗m,2 > 0, (3.63) and (3.65)

are satisfied. Then (3.62) and (3.64) can be simplified to (3.70) and (3.71),

where χ1 = 2λm,1α′
b,1/αm,1 − 2λb,1 and χ2 = 2λm,2α′

b,2/αm,2 − 2λb,2. Thus, the

allocated powers p∗b,1 and p∗b,2 are the non-negative real roots of equations (3.70)

and (3.71), respectively. After obtaining the allocated BS powers, according

to (3.63) and (3.65), we can allocate the relay powers as follows

p∗m,1 =
1− µ1,1

2λm,1
−

1 + pb,1α′
b,1

αm,1
(3.72)

p∗m,2 =
1− µ2,1

2λm,2
−

1 + pb,2α′
b,2

αm,2
. (3.73)

It is also necessary to check the feasibility of Case 4. If both (3.70) and (3.71)

have non-negative real roots, and 1−µ1,1

2λm,1
− 1+p∗b,1α

′
b,1

αm,1
> 0 and 1−µ2,1

2λm,2
− 1+p∗b,2α

′
b,2

αm,2
> 0

under the given source powers p∗b,1 and p∗b,2, Case 4 is feasible; otherwise, Case

4 is not feasible.

We compare the Lagrangian function (3.61) with different power allocation

schemes in four cases, and choose the one with largest value of the Lagrangian

function as the optimal power allocation scheme.

The allocated powers depend on the dual variables µ. The dual optimization

problem is given by

min
µ≽0

ḡ(µ) (3.74)

s.t. µ ≽ 0

As described in Section 3.3.2, a dual function is always convex. Hence, subgradient-
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Algorithm 2 Algorithm for Power Allocation in FDRT mode
1: Initialize µ

ϵµ > 0 (convergence tolerance of iterations)
2: while µ(l) − µ(l−1) ≤ ϵµ do
3: Compare the Lagrangian function (3.61) with different power allocation

schemes in four cases. Choose the ones with largest value of the Lagrangian
function as the optimal powers p(l)b,1, p

(l)
b,2, p

(l)
m,1, and p(l)m,2.

4: Update µ using ellipsoid method with gradient of the constraints (3.75) and
(3.76).

5: l ← l + 1.
6: end while
7: The optimal powers are given by p(l−1)

b,1 , p(l−1)
b,2 , p(l−1)

m,1 , and p(l−1)
m,2 .

8: return

based methods, e.g., ellipsoid method, can be used to minimize ḡ(µ) with guaranteed

convergence [89]. In this chapter, we use ellipsoid method to update µ based on the

following subgradient vectors:

∆µ1,1 = log(1 + pb,2αb,2)− log(1 +
pm,1αm,1

pb,1α′
b,1 + 1

) (3.75)

∆µ2,1 = log(1 + pb,1αb,1)− log(1 +
pm,2αm,2

pb,2α′
b,2 + 1

). (3.76)

We note that the duality gap between the dual problem (3.59) and primary

problem (3.54) is non-zero due to the non-convexity of rate constraints (3.56) and

(3.58). However, according to the results in [86], the duality gap goes to zero as the

number of subcarrier tends to infinity. It is also worth to mention that for given

dual variables λ, we introduce new dual variables µ to decompose the problem (3.54)

into a solvable problem. Hence, we named this method as hierarchical dual method.

To sum up, the entire algorithm for power allocation in FDRT mode is given in

Algorithm 1.
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Appendix 3.B Derivations for (3.40) to (3.42)

By equating the partial derivative of Lk1,k2,2
m,n in (3.35) over pm,k2,2

b,n,k1
, pm,k1,2

b,n,k2
and pk1,2m,n,k2

to zeros, and after some manipulations, the closed-forms of optimal power allocations

pm,k2,2∗
b,n,k1

, pm,k1,2∗
b,n,k2

and pk1,2∗m,n,k2
can be readily obtained as

αb,n,k1

2(1 + γk1,k2m,n )
= λb,1 + ν(αb,n,k1 − αb,m,k1) (3.77)

(αb,n,k2 + ηαc)

2(1 + γk1,k2m,n )
= λb,2 + ν(αb,n,k2 + ηαc) (3.78)

(αm,n,k2 + αc/η)

2(1 + γk1,k2m,n )
= λm,2 + ν(αm,n,k2 + αc/η) (3.79)

where

η = pm,k1,2
b,n,k2

/pk1,2m,n,k2
(3.80)

αc =
√
αb,n,k2αm,n,k2. (3.81)

Eliminating γk1,k2m,n and ν by using (3.77) to (3.79), we obtain

λm,2αcη
2 + (λm,2αb,n,k2 − λb,2αm,n,k2)η − λb,2αc = 0. (3.82)

Based on the solution for a quadratic equation, it is easy to obtain that (3.82) has

one and only one positive root, which is

η∗ =
1

2λm,2αc
(−(λm,2αb,n,k2 − λb,2αm,n,k2)

+
√

(λm,2αb,n,k2 − λb,2αm,n,k2)2 + λm,2λb,2α2
c

)

. (3.83)
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By substituting (3.83) into (3.77) and (3.78) and eliminating ν, γk1,k2m,n can be derived

as

γk1,k2∗m,n =
(αb,n,k2 + ηαc)/2

λb,2(αb,n,k1 − αb,m,k1)− λb,1(αb,n,k2 + ηαc)
− 1. (3.84)

Since ν is the Lagrange multiplier of (3.37), based on the KKT conditions, we have

to guarantee

ν(pm,k2,2∗
b,n,k1

αb,m,k1 − γk1,k2∗m,n ) = 0. (3.85)

Since ν cannot be guaranteed to be zero, we have

pm,k2,2∗
b,n,k1

αb,m,k1 − γk1,k2∗m,n = 0. (3.86)

As a result, we obtain pm,k2,2∗
b,n,k1

in (3.40). Then, according to (3.40), (3.84) and

(3.80), pm,k1,2∗
b,n,k2

and pk1,2∗m,n,k2
are given in (3.41) and (3.42), respectively. We also have

to evaluate the feasible region. In order to ensure that all the powers be positive,

we have γk1,k2∗m,n > 0 and αb,m,k1 − αb,n,k1 > 0. Thus, we readily have the results.
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Figure 3.6: Average sum-rate versus BS transmit power of the proposed PA scheme
compared with EPA scheme for INR = 3 dB.
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Figure 3.7: Average individual user transmission rate in a descending order when
the maximum BS transmit power equals 20 dBm and INR = 3 dB.

χ1αb,1α
′
b,1p

2
b,1 + (χ1(αb,1 + α′

b,1) + (µ2,1 + µ1,1 − 1)αb,1α
′
b,1)pb,1 + χ1 + µ2,1αb,1 + (1− µ1,1)α

′
b,1 = 0

(3.70)

χ2αb,2α
′
b,2p

2
b,2 + (χ2(αb,2 + α′

b,2) + (µ1,1 + µ2,1 − 1)αb,2α
′
b,2)pb,2 + χ2 + µ1,1αb,2 + (1− µ2,1)α

′
b,2 = 0

(3.71)
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Chapter 4

Max-Min Weighted downlink

SINR with uplink SINR

Constraints for full-duplex MIMO

Systems

In this chapter, we investigate the max-min weighted SINR problem in a FD multi-

user MIMO system, where each user is equipped with a single antenna. Instead

of optimizing the joint UL and DL max-min weighted SINR, we consider a more

practical scenario in which the DL minimum weighted SINR is maximized under

some target SINR constraints for UL users. Specifically, the system should first

guarantee the quality of service (QoS) of UL users before sharing the spectrum

resources to the DL users. We consider jointly (i) the transmit beamforming at

the BS, (ii) the receive beamforming at the BS, (iii) the transmit powers at the
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BS, and (iv) the transmit powers at the UL users, such that the UL users can be

provided with specific SINRs and the SINRs of the DL users should be balanced

and maximized. Since the additional SINR constraints are not non-negative power

constraints, the problem cannot be solved directly or with trivial transformations

by the Perron-Frobenius theory or other existing algorithms.

To tackle the aforementioned problem, we propose an iterative optimization al-

gorithm which is proved to be convergent. The proposed algorithm iteratively opti-

mizes (i) the power control and receive beamforming, and then (ii) the power control

and transmit beamforming. By fixing the transmit and receive beamforming at the

BS, we first transform the original problem into a standard SISO max-min weighted

SINR problem with multiple SINR constraints and multiple power constraints. Un-

der the single power constraint scenario, we also derive the network duality of the

optimization problem. Based on the network duality principle, we show that the

optimization problem with multiple power constraints can be decoupled into sub-

problems each with a single power constraint. Subsequently, we apply the Perron-

Frobenius theory and subgradient projection-based method to solve the transformed

SISO max-min weighted SINR problem with multiple power constraints and multi-

ple SINR constraints. By using network duality and minimum-mean-squared-error

(MMSE) criterion, the transmit and receive beamforming can be iteratively derived

accordingly.

The remaining chapter is organized as follows. In Section 4.1, we describe the

system model and problem formulation. In Section 4.2, we derive the optimization

algorithm when the transmit and receive beamforming are fixed. In Section 4.3, we

propose optimization algorithms for the max-min weighted SINR problem by consid-
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ering both power and beamforming and prove their convergence. The performance

of the proposed algorithm is compared with that of other optimization techniques

in Section 4.4. Finally, a summary is given in Section 4.5.

4.1 System Model and Problem Formulation

Referring to Fig. 4.1, we consider a single-cell FD wireless communication system

in which a FD BS is designed to communicate with Kd single-antenna users in the

DL transmission and Ku single-antenna users in the UL transmission at the same

time and frequency band. The total number of users is denoted as K = Kd +Ku.

Furthermore, there is a total of NT +NR antennas at the BS, where NT represents

the number of transmit antennas for DL data transmissions and NR represents the

number of receive antennas for UL data receptions.

We generalize the FD system into a MIMO network where K independent data

streams are transmitted over a common frequency band. We denote the transmitter

and receiver of the k-th stream by tk and rk, respectively. We also define the following

sets: K = {1, . . . , K}, Kd = {1, . . . , Kd} and Ku = {Kd + 1, . . . , K}. When k ∈ Kd,

(i) tk represents the transmitter at the BS for the k-th DL user and Ntk = NT ; and

(ii) rk represents the DL user and Nrk = 1. However, when k ∈ Ku, (i) tk represents

the transmitter of the k-th UL user and Ntk = 1; and (ii) rk represents the receiver

at the BS for the k-th user and Nrk = NR. We further assume that the channels

suffer from flat fading but channel state information (CSI) is perfectly known at

both the BS and users.

We model the equivalent MIMO network as a Gaussian broadcast channel
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which is given by

yk =
K
∑

l=1

Hklxl + zk, k ∈ K (4.1)

where yk ∈ CNrk is the received signal vector at rk, xl ∈ CNtl is the transmitted

signal vector of the transmitter tl, i.e., l-th stream, Hkl ∈ CNrk
×Ntl is the channel

vector between tl and rk, zk ∼ CN (0, nkI) is the circularly symmetric Gaussian

noise vector at rk with covariance nkI and nk ∈ R>0. Specifically, when l ∈ Kd

and k ∈ Ku, Hkl represents the SI channel between the transmit antennas and the

receive antennas at the FD BS, and its entries are determined by the capability of

the SI cancellation techniques. When l ∈ Ku and k ∈ Kd, Hkl represents the IUI

channel between the UL tl and the DL rk.

We assume linear transmit and receive beamforming. The transmitted signal

vector of the l-th stream (l ∈ K) can be written as xl =
√
plwlsl, where wl ∈ CNtl

×1

is the normalized transmit beamformer, and sl and pl are the information signal and

transmit power, respectively. The k-th received stream yk (k ∈ K) is decoded using

a normalized receive beamformer vk ∈ CNrk
×1. We denote p = [p1, . . . , pK ]T as the

power vector and n = [n1, . . . , nK ]T as the noise covariance vector. We also denote

W = (w1, . . . ,wK) as the tuples of transmit beamformers and V = (v1, . . . ,vK) as

the tuples of receive beamformers. Recall that each user is equipped with a single

antenna. Therefore, we have

wk ∈ C
NT×1 and vk = 1, ∀k ∈ Kd; (4.2)

wk = 1 and vk ∈ CNR×1, ∀k ∈ Ku. (4.3)

We define a matrix G ∈ R
K×K
≥0 in which the (k, l)-th element Gkl represents
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the effective link gain between tl and rk, i.e.,

Gkl = |v†
kHklwl|2. (4.4)

Applying (4.2) and (4.3) to (4.4), we obtain

Gkl =

⎧

⎪
⎪
⎪
⎪⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪
⎪
⎪
⎩

|Hklwl|2 if k, l ∈ Kd

|v†
kHkl|2 if k, l ∈ Ku

|Hkl|2 if k ∈ Kd and l ∈ Ku

|v†
kHklwl|2 if k ∈ Ku and l ∈ Kd.

(4.5)

The SINR of the k-th received stream can hence be expressed as

SINRk(p,W,V) =
pkGkk

(
∑

l∈K,l ̸=k plGkl

)

+ nk

, ∀k ∈ K (4.6)

=

⎧

⎪
⎪⎨

⎪
⎪
⎩

pk|Hkkwk|2

(
∑

l∈K,l ̸=k pl|Hklwl|2)+nk

! SINRDL
k (p,W) if k ∈ Kd

pk|v
†
kHkk|2

(
∑

l∈K,l ̸=k pl|v
†
k
Hklwl|2)+nk

! SINRUL
k (p,W,V) if k ∈ Ku

(4.7)

where (4.2)–(4.5) have been applied in arriving at the second equality, and SINRDL
k (p,W)

and SINRUL
k (p,W,V) are defined as the DL (DL) and UL (UL) SINR, respectively.

Applying (4.5) again, we can re-write SINRDL
k (p,W) and SINRUL

k (p,W,V) as fol-
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lows.

SINRDL
k (p,W) =

pk|Hkkwk|2
(
∑

l∈Kd,l ̸=k pl|Hklwl|2
)

+
(∑

l∈Ku
pl|Hkl|2

)

+ nk

∀k ∈ Kd(4.8)

SINRUL
k (p,W,V) =

pk|v†
kHkk|2

(
∑

l∈Kd
pl|v†

kHklwl|2
)

+
(
∑

l∈Ku,l ̸=k pl|v
†
kHkl|2

)

+ nk

∀k ∈ Ku(4.9)

Our target is to maximize the minimum weighted SINR of the DL streams when

the UL streams have to satisfy certain SINR constraints. We therefore formulate

the problem as

P : max
p,W,V

min
kd∈Kd

SINRDL
kd

(p,W)

βkd
(4.10a)

s.t. SINRUL
ku (p,W,V) ≥ βku , ∀ku ∈ Ku (4.10b)

tTi p ≤ Pi, p ≥ 0, ∀i = 0, 1, . . . , Ku (4.10c)

||wk|| = 1, ||vk|| = 1, ∀k ∈ K (4.10d)

where 1/βkd is the weight assigned to the kd-th DL user; βku is the pre-assigned

SINR constraint for the UL user corresponding to ku (i.e., the (ku − Kd)-th UL

user); t0 = [

Kd
︷ ︸︸ ︷

1, . . . , 1,

Ku
︷ ︸︸ ︷

0, . . . , 0]T , ti = [

Kd
︷ ︸︸ ︷

0, . . . , 0,

Ku
︷ ︸︸ ︷

0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

Ku−i

]T for i = 1, . . . , Ku;

P0 is the total power constraint at the BS; Pi is the individual power constraint of

the i-th UL user (i = 1, . . . , Ku); and 0 is an all-zero vector of appropriate size. We

also define β = [β1, . . . , βK ] in which the k-th element is related to the weight or

constraint assigned to the SINR of the k-th stream.
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4.2 Power optimization with Fixed Beamforming

In this section, we fix the transmit and receive beamforming vectors and aim to

optimize the power vector p. The problem T , under the problem P with fixed

beamforming vectors, is defined as

T : max
p

min
kd∈Kd

SINRDL
kd

(p)

βkd
(4.11a)

s.t. SINRUL
ku (p) ≥ βku , ∀ku ∈ Ku (4.11b)

tTi p ≤ Pi, p ≥ 0, ∀i = 0, 1, . . . , Ku (4.11c)

where SINRk(p) = SINRk(p,W,V) with fixed W and V. It can be seen that T is

a max-min power optimization problem (refer to (4.11a) with multiple power con-

straints (P0, P1, . . . , PKu in (4.11c) and multiple SINR constraints (βKd+1, βKd+2, . . . , βKd+Ku

in (4.11b). Next, we consider T under a certain i and formulate the new problem

as

T i : max
p

min
kd∈Kd

SINRDL
kd

(p)

βkd
(4.12a)

s.t. SINRUL
ku (p) ≥ βku , ∀ku ∈ Ku (4.12b)

tTi p ≤ Pi, p ≥ 0. (4.12c)

Due to the fixed i, T i is a problem with a single power constraint (Pi in (4.12c)

and multiple SINR constraints (βKd+1, βKd+2, . . . , βKd+Ku in (4.12b)). T i can also

be re-formulated as
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T i : max
τ i,p

τ i (4.13a)

s.t. τ i ≤
SINRDL

kd
(p)

βkd
, ∀kd ∈ Kd (4.13b)

SINRUL
ku (p) ≥ βku , ∀ku ∈ Ku (4.13c)

tTi p ≤ Pi, p ≥ 0 (4.13d)

where τ i is simply an auxiliary variable.

Lemma 4.1. Under the optimal solutions of T i, the constraints in (4.13b), (4.13c)

and (4.13d) must be satisfied with equality for all kd ∈ Kd and ku ∈ Ku. That is to

say,

τ̂ i =
SINRDL

kd
(p̂i)

βkd
, ∀kd ∈ Kd (4.14a)

SINRUL
ku (p̂

i) = βku , ∀ku ∈ Ku (4.14b)

tTi p̂
i = Pi, p̂i ≥ 0 (4.14c)

where τ̂ i and p̂i are the optimal solutions.

Proof. Refer to Appendix 4.A.

Theorem 4.1. Let p̂i denote the unique solution and τ̂ i be the optimal value of T i.

Also, let s = argmini=0,...,Ku τ̂
i. Then the optimal value and unique solution of the

original problem T are given by τ̂ = τ̂ s and p̂ = p̂s, respectively.

Proof. Refer to Appendix 4.B.
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4.2.1 Solving the Single-Power-and-Multiple-SINR-Constraint

Problem

Theorem 4.1 shows that T can be solved by separately solving Ku+1 single-power-

and-multiple-SINR-constraint sub-problems T i. In the following, we describe the

way to solving these sub-problems T i.

We define a cross-channel interference matrix F ∈ R
K×K
≥0 and a weighted vector

β̃ ∈ R
1×K
≥0 as follows:

Fkl =

⎧

⎪⎨

⎪
⎩

0,

Gkl,

if l = k

if l ̸= k
l, k ∈ K (4.15)

β̃ =

(

β1
G11

, · · · , βK
GKK

)

. (4.16)

Then, the weighted SINR of the k-th stream can be rewritten as

SINRk(p̂i)

βk
=

pk
[

diag(β̃)(Fp̂i + n)
]

k

, k ∈ K (4.17)

where the subscript k in
[

diag(β̃)(Fp̂i + n)
]

k
denotes the k-th element of the vector

[

diag(β̃)(Fp̂i + n)
]

. We further decompose the cross-channel interference matrix F

into

F =

⎡

⎢
⎣

Fdd Fdu

Fud Fuu

⎤

⎥
⎦ (4.18)

where Fdd is a matrix of size Kd ×Kd, Fdu of size Kd ×Ku, Fud of size Ku ×Kd,
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and Fuu of size Ku ×Ku. We split β̃ into

β̃ = [βd,βu] (4.19)

where βd is a vector of length Kd and βu is of length Ku. Then diag(β̃) can be

written as

diag(β̃) =

⎡

⎢
⎣

Bd 0

0 Bu

⎤

⎥
⎦ (4.20)

where Bd = diag(β̃d) and Bu = diag(β̃u).

In Lemma 4.1, we have proved that under the optimal solutions of T i, (4.14a),

(4.14b) and (4.14c) become valid. We divide p̂i, n and ti into

p̂i =

⎡

⎢
⎣

p̂i
d

p̂i
u

⎤

⎥
⎦ (4.21)

n =

⎡

⎢
⎣

nd

nu

⎤

⎥
⎦ (4.22)

ti =

⎡

⎢
⎣

ti,d

ti,u

⎤

⎥
⎦ (4.23)

where p̂i
d, nd and ti,d are vectors of size Kd; and p̂i

u, nu and ti,u are of size Ku. We

then re-write (4.14a), (4.14b) and (4.14c) as follows.

1

τ̂ i
p̂i
d = BdFddp̂

i
d +Bdnd +BdFdup̂

i
u (4.24)

p̂i
u = BuFuup̂

i
u +Bunu +BuFudp̂

i
d (4.25)

Pi = tTi,dp̂
i
d + tTi,up̂

i
u (4.26)
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Using (4.25) and assuming that (I−BuFuu) is invertible, we have

p̂i
u = (I−BuFuu)

−1Bunu + (I−BuFuu)
−1BuFudp̂

i
d. (4.27)

By substituting (4.27) into (4.24), we further obtain

1

τ̂ i
p̂i
d = Ep̂i

d + e (4.28)

where

E = BdFdd +BdFdu(I−BuFuu)
−1BuFud (4.29)

e = Bdnd +BdFdu(I−BuFuu)
−1Bunu. (4.30)

Similarly, we substitute (4.27) into (4.26) and obtain

P ′
i = gip̂

i
d (4.31)

where

P ′
i = Pi − tTi,u(I−BuFuu)

−1Bunu (4.32)

gi = tTi,d + tTi,u(I−BuFuu)
−1BuFud. (4.33)

Combining (4.28) and (4.31), we have

1

τ̂ i
=

1

P ′
i

giEp̂
i
d +

1

P ′
i

gie. (4.34)
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We can therefore conclude that the sub-problem T i can be converted into the

determination of power allocation for only the DL transmission, i.e., (4.28) and

(4.34). These two equations can also be formulated into the following eigensystem

1

τ̂ i
ṕi
d = Υiṕi

d (4.35)

where

ṕi
d =

⎡

⎢
⎣

p̂i
d

1

⎤

⎥
⎦ (4.36)

Υi =

⎡

⎢
⎣

E e

1
P ′
i
giE

1
P ′
i
gie

⎤

⎥
⎦ . (4.37)

The optimal DL power allocation then corresponds to the unique positive eigenvector

of the matrix Υi [55]. In order to solve the eigensystem (4.35), we apply the Perron-

Frobenious theory which requires the matrix of the eigensystem to be non-negative

[55]. If the requirement is satisfied, the eigenvector corresponding to the largest

eigenvalue of the non-negative matrix is always non-negative and unique. To this

end, the following Lemma is sufficient and necessary to ensure the matrix Υi in

(4.37) is non-negative.

Lemma 4.2. The matrix Υi in (4.37) is a non-negative matrix if and only if

ρ(BuFuu) < 1 (4.38)

tTi,u(I−BuFuu)
−1Bunu < Pi (4.39)

where ρ(BuFuu) is the Perron-Frobenius eigenvalue of the non-negative matrix BuFuu.
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Proof. Refer to Appendix 4.C.

Result 1: The optimal value of the sub-problem T i is given by

τ̂ i =
1

λmax(Υi)
(4.40)

where λmax(Υi) is the maximal eigenvalue of Υi. By scaling the dominant eigen-

vector of Υi such that the last element equals unity, the first Kd elements of the

dominant eigenvector become the optimal power vector p̂i
d for the DL transmission.

Subsequently, the optimal power vector p̂i
u for the UL transmission can be computed

using (4.27).

By solving the Ku + 1 sub-problems T i (i = 0, 1, . . . , Ku) using the aforemen-

tioned procedures, the problem T can be solved based on Theorem 4.1.

4.2.2 Solving T with subgradient projection-based method

Corollary 4.1. We define a function T (θ) as

T (θ) : max
p

min
kd∈Kd

SINRDL
kd

(p)

βkd
(4.41a)

s.t. SINRUL
ku (p) ≥ βku, ∀ku ∈ Ku (4.41b)

∑

i
θit

T
i p ≤

∑

i
θiPi, p ≥ 0. (4.41c)

Then, the optimal solution τ̂ of T is equal to

τ̂ = min{T (θ) : θ ≥ 0}. (4.42)
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Proof. Refer to Appendix 4.D.

Corollary 4.2. T (θ) is a quasi-convex function with respect to (w.r.t.) θ.

Proof. Refer to Appendix 4.E.

Result 2: By replacing (i) tTi in (4.12c) with
∑

i θit
T
i and (ii) Pi with

∑

i θiPi,

we can obtain (4.41c). Thus the method described in Sect. 4.2.1 can also be applied

to find the solution of T (θ) for a given θ.

It is also well known that the optimal point of a quasi-convex function can be

found by using subgradient projection-based method. Based on Corollaries 4.1 and

4.2, we can therefore solve the minimum of T (θ) with the subgradient projection-

based method and obtain the optimal solution τ̂ of T . To this end, the explicit

solution of the multiple-power-and-multiple-SINR-constraint problem is given ex-

plicitly in Algorithm 1.

4.3 Joint Power and Beamforming Optimization

In this section, we optimize the max-min weighted SINR problem by considering

both power and beamforming, i.e., the problem P in (4.10a) to (4.10d). In general,

the global optimization of P is an open problem because its non-convexity. More-

over, the mutual coupling between the transmit beamformers and receive beamform-

ers make it very difficult to jointly optimize the beamformers. Here, we propose a

suboptimal algorithm for solving the problem P. The flowchart of the proposed

1When the step size αn follows the diminishing policy in [89], the subgradient method above is
guaranteed to converge to the optimal value. Here, we just take the simple diminishing step, i.e.,
αn = α0/(n+ 1).
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Algorithm 1 Solution of the multiple-power-and-multiple-SINR-constraint problem
without beamforming

1: Define I = Ku + 1 and θ ∈ RI
≥0.

2: Initialization: Set stopping criterion ε = 0.01; θ(0) > 0; subgradient-projection-
method step size α0 > 0; ∆τ = 1; and τ̂ (0) = −1000.

3: n← 0.
4: while ∆τ > ε do
5: Solve T (θ(n+1)) by using Result 2 and Result 1. The optimal value of

T (θ(n+1)) is denoted as τ̂ (n+1) and the optimal power allocation vector is
denoted as p̂(n+1).

6: Update θ(n+1) using the subgradient projection method with αn = α0/(n+1)1,
i.e.,

θ(n+1) = θ(n) − αnf (p̂
(n+1))

where f (p̂(n+1)) = [P0 − t0p̂(n+1), P1 − tT1 p̂
(n+1), . . . , PKu − tTKu

p̂(n+1)].
7: Set ∆τ = τ̂ (n+1) − τ̂ (n).
8: n← n+ 1.
9: end while

10: Set p̂ = p̂(n−1) and the optimal value of the problem T as τ̂ (n−1).

algorithm is shown in Fig. 4.2. As in the last section, we consider the power con-

straints individually and then jointly optimize power and beamforming. Finally, we

select the optimized system that achieves the minimum objective function value.

In the following, we again focus on the single-power-and-multiple-SINR-constraint

problem T i. We first prove the network duality for the problem, and then describe

the solutions for (i) receive beamforming optimization with fixed power vector and

transmit beamforming and (ii) transmit beamforming optimization with fixed power

vector and receive beamforming. Afterwards, we describe the ways to obtain solu-

tions for the problem P.
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4.3.1 Network Duality for the Single-Power-and-Multiple-

SINR-Constraint Problem

In this section, we derive the network duality for the single-power-and-multiple-

SINR-constraint problem. We re-write the single-power-and-multiple-SINR-constraint

problem T i in (4.13a) to (4.13d) as

T i : max
τ i,p

τ i (4.43a)

s.t. τ i ≤
SINRDL

kd
(pi)

βkd
, ∀kd ∈ Kd (4.43b)

SINRUL
ku (p

i) ≥ βku , ∀ku ∈ Ku (4.43c)

tTi p
i ≤ Pi, pi ≥ 0 (4.43d)

Theorem 4.2. The single-power-and-multiple-SINR-constraint problem T i in (4.43a)

to (4.43d) is equivalent to following power optimization problem Si

Si : max
τ i,qi

τ i (4.44a)

s.t. τ i ≤
SINRUL,D

kd
(qi)

βkd
, ∀kd ∈ Kd (4.44b)

SINRDL,D
ku (qi) ≥ βku, ∀ku ∈ Ku (4.44c)

nTqi ≤ Pi, qi ≥ 0 (4.44d)
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where

SINRUL,D
kd

(qi)

βkd
=

qkdGkdkd
∑

l∈K,l ̸=kd
qlGkdl + ti,kd

, ∀kd ∈ Kd (4.45)

SINRDL,D
ku

(qi)

βku
=

qkuGkuku
∑

l∈K,l ̸=ku
qlGkul + ti,ku

, ∀ku ∈ Ku (4.46)

are the dual weighted UL SINR and weighted DL SINR, respectively.

Proof. Making the logarithmic change of variables τ̃ i = log τ i in (4.43a) and p̃ik =

log pik for the problem T i, and applying (4.15)–(4.17), we arrive at the following

equivalent convex problem:

min
τ̃ i,p̃i

−τ̃ i (4.47)

s.t. log

⎛

⎜
⎝

[

(eτ̃diag(β̃))(Fpi + n)
]

kd

ep̃
i
kd

⎞

⎟
⎠ ≤ 0, ∀kd ∈ Kd

log

⎛

⎜
⎝

[

(diag(β̃))(Fpi + n)
]

ku

ep̃
i
ku

⎞

⎟
⎠ ≤ 0, ∀ku ∈ Ku

log

(

1

Pi
tTi e

p̃i

)

≤ 0.

where F and β̃ have defined in (4.15) and (4.16), respectively; and the subscript

k in [·]k denotes the k-the element of [·]. Furthermore, the Lagrangian function
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associated with (4.47) equals

L(τ̃ i, p̃i, µ,λ) = −τ̃ i + µ log

(
1

Pi
tTi e

p̃i

)

+
∑

kd∈Kd

λkd log

⎛

⎜
⎝

[

(eτ̃
i
diag(β̃))(Fpi + n)

]

kd

ep̃
i
kd

⎞

⎟
⎠

+
∑

ku∈Ku

λku log

⎛

⎜
⎝

[

(diag(β̃))(Fpi + n)
]

ku

ep̃
i
ku

⎞

⎟
⎠ (4.48)

where µ and λk are the non-negative Lagrange dual variables. It is easy to check

that the convex problem given by (4.47) satisfies Slater’s condition. Hence, the

Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient conditions for

the optimality of (4.47). Adding the symbol “ˆ” to the optimal solutions, the KKT
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conditions are represented as follows.

τ̂ i =
p̂ikd

[

(diag(β̃))(Fp̂i + n)
]

kd

, ∀kd ∈ Kd (4.49)

1 =
p̂iku

[

(diag(β̃))(Fp̂i + n)
]

ku

, ∀ku ∈ Ku (4.50)

tTi p̂
i = Pi (4.51)

τ̂ i =
q̂ikd

[

(diag(β̃))(FT q̂i + ti)
]

kd

, ∀kd ∈ Kd (4.52)

1 =
q̂iku

[

(diag(β̃))(FT q̂i + ti)
]

ku

, ∀ku ∈ Ku (4.53)

∑

kd∈Kd

λkd = 1, (4.54)

q̂i =
Pi

µ̂
·
(

τ̂ iλ̂1β̃1
p̂i1

, · · · , τ̂
iλ̂Kd

β̃Kd

p̂iKd

,
λ̂Kd+1β̃Kd+1

p̂iKd+1

, · · · , λ̂K β̃K
p̂iK

)T

(4.55)

λ̂k > 0, ∀k ∈ K (4.56)

µ̂ > 0 (4.57)

Here, (4.49), (4.50) and (4.51) are the transformations of (4.14a), (4.14b) and

(4.14c), respectively; (4.52) and (4.53) follow from ∂L/∂pk = 0; (4.54) follows from

∂L/∂τ = 0; and (4.56) and (4.57) follow from the fact that λ̂k and µ̂ must be

strictly positive to satisfy the constraints (4.49), (4.50) and (4.51). We can see that

FT becomes the channel matrix in the dual network. Hence, from (4.52) and (4.53),

we conclude that q̂i is the optimal dual power vector and ti is the noise covariance

vector in the dual network [55]. To obtain the equivalent power constraint in the
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dual network, we rewrite (4.52) and (4.53), respectively, in vector form as

[

FT q̂i + ti
]

kd
=

[
1

τ̂ i
diag(β̃)−1q̂i

]

kd

, ∀kd ∈ Kd (4.58)

[

FT q̂i + ti
]

ku
=
[

diag(β̃)−1q̂i
]

ku
, ∀ku ∈ Ku. (4.59)

Substituting (4.49) and (4.50) into (4.58) and (4.59), respectively, we can obtain a

unified equation, i.e.,

[

FT q̂i + ti
]

k
p̂ik =

[

Fp̂i + n
]

k
q̂ik, ∀k ∈ K. (4.60)

Applying (4.51) and

(FT q̂i)T p̂i = (q̂i)TFp̂i = (p̂i)TFT q̂i = (Fp̂i)T q̂i, (4.61)

to (4.60), we have

[

FT q̂i + ti
]

k
p̂ik =

[

Fp̂i + n
]

k
q̂ik, ∀k ∈ K

⇒
[

FT q̂i + ti
]T

p̂i =
[

Fp̂i + n
]T

q̂i

⇒
[

FT q̂i
]T

p̂i + tTi p̂
i =

[

Fp̂i
]T

q̂i + nT q̂i

⇒ nT q̂i = tTi p̂
i = Pi (4.62)
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Therefore, (4.49)–(4.57) are equivalent to the following conditions.

τ̂ i =
q̂ikd

[

(diag(β̃))(FT q̂i + ti)
]

kd

, ∀kd ∈ Kd (4.63)

1 =
q̂iku

[

(diag(β̃))(FT q̂i + ti)
]

ku

, ∀ku ∈ Ku (4.64)

nT q̂i = Pi (4.65)

τ̂ i =
p̂ikd

[

(diag(β̃))(Fp̂i + n)
]

kd

, ∀kd ∈ Kd (4.66)

1 =
p̂iku

[

(diag(β̃))(Fp̂i + n)
]

ku

, ∀ku ∈ Ku (4.67)

∑

kd∈Kd

λkd = 1 (4.68)

p̂i =
Pi

µ̂
·
(

τ̂ iλ̂1β̃1
q̂1

, · · · , τ̂
iλ̂Kd

β̃Kd

q̂iKd

,
λ̂Kd+1β̃Kd+1

q̂iKd+1

, · · · , λ̂K β̃K
q̂iK

)T

(4.69)

λ̂k > 0, ∀k ∈ K (4.70)

µ̂ > 0 (4.71)

Here, we replace the power constraint (4.51) with the dual power constraint (4.65).

We can also observe that (4.63)–(4.67) can be obtained from (4.49)–(4.53) via the

following substitutions:

pi ↔ q
i

ti ↔ n

n↔ ti

F↔ FT

(4.72)

Hence, (4.63)–(4.71) are necessary and sufficient conditions to achieve the optimal
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solution of Si where the parameters and variables in Si are defined by the mappings

in (4.72). Thus, Theorem 4.2 is proved.

Theorem 4.2 shows the problem T i has a network duality relationship with the

problem Si. In the following, we also provide the solution to the problem Si.

Result 3: The optimal value of the problem Si is given by

τ̂ i =
1

λmax(Ῡi)
(4.73)

where λmax(Ῡi) is the maximal eigenvalue of Ῡi and

Ῡi =

⎡

⎢
⎣

Ē ē

1
P̄ ′
i
ḡiĒ

1
P̄ ′
i
ḡiē

⎤

⎥
⎦ (4.74)

1

τ̂ i
q̂i
d = BdF

T
ddq̂

i
d +Bdti,d +BdF

T
udq̂

i
u (4.75)

q̂i
u = BuF

T
uuq̂

i
u +Buti,u +BuF

T
duq̂

i
d (4.76)

Pi = nT
d q̂

i
d + nT

u q̂
i
u (4.77)

Ē = BdF
T
dd +BdF

T
ud(I−BuF

T
uu)

−1BuF
T
du (4.78)

ē = Bdti,d +BdFud
T (I−BuF

T
uu)

−1Buti,u. (4.79)

P̄ ′
i = Pi − nT

u (I−BuF
T
uu)

−1Buti,u (4.80)

ḡi = nT
d + nT

u (I−BuF
T
uu)

−1BuF
T
du (4.81)

q̂i =

⎡

⎢
⎣

q̂i
d

q̂i
u

⎤

⎥
⎦ (4.82)

with q̂i
d and q̂i

u being vectors of size Kd and Ku, respectively. By scaling the domi-

nant eigenvector of Ῡi such that the last element equals unity, the first Kd elements
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of the dominant eigenvector become the optimal dual power vector q̂i
d for the DL

transmission. Subsequently, the optimal dual power vector q̂i
u for the UL transmis-

sion can be computed using (4.76).

Note that the necessary and sufficient conditions to guarantee that Ῡi being a

non-negative matrix are given by

ρ(BuF
T
uu) < 1 (4.83)

nT
u (I−BuF

T
uu)

−1Buti,u < Pi. (4.84)

The proof is similar to that of Lemma 4.2 and is thus omitted here.

By considering both transmit and receive beamforming, we can re-write the

dual UL SINR SINRUL,D
k (qi,W,V) and dual DL SINR SINRDL,D

k (qi,V) as follows.

SINRUL,D
k (qi,W,V) =

qik|w
†
kHkk|2

(
∑

l∈Kd,l ̸=k q
i
l |w

†
kHkl|2

)

+
(
∑

l∈Ku,l ̸=k q
i
l |w

†
kHklvl|2

)

+ ti,k

∀k ∈ Kd(4.85)

SINRDL,D
k (qi,V) =

qik|Hkkvk|2
(
∑

l∈Kd,l ̸=k q
i
l |Hkl|2

)

+
(
∑

l∈Ku,l ̸=k q
i
l |Hklvl|2

)

+ ti,k
∀k ∈ Ku(4.86)

4.3.2 Optimizing Receive Beamforming with Fixed Power

and Transmit Beamforming

Assuming that the power vector pi and transmit beamforming W are fixed, we opti-

mize the receive beamforming V in the primal domain. For a given power constraint,
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i.e., tTi p ≤ Pi, the receive beamforming problem can be written as follows.

P i(V) : max
V

min
kd∈Kd

SINRDL
kd

(pi,W)

βkd
, (4.87)

s.t. SINRUL
ku (p

i,W,V) ≥ βku , ∀ku ∈ Ku

tTi p
i ≤ Pi, pi ≥ 0

||vk|| = 1, ∀k ∈ K

The receive beamforming only appears in the UL SINR constraints because vk = 1

when k ∈ Kd. If the receive beamforming V is optimized, we will be able to reduce

the UL transmit power vector pi
u to meet the SINR constraints. Then the weighted

DL SINRs can be increased subsequently. Therefore, for a given power vector pi and

transmit beamforming W, we can optimize the receive beamforming V as follows.

P i(V) : max
V

min
ku∈Ku

SINRUL
ku (V), (4.88)

s.t. ||vku|| = 1, ∀ku ∈ Ku

As a result, the receive beamforming should be designed to maximize its SINR, i.e.,

v̂k = argmax
vk

vT
kUkkvk

vT
k

(
∑

l∈K,l ̸=k p̂
i
lUklvl + nkI

)

vk

, ∀k ∈ Ku (4.89)

s.t. ||vk|| = 1, ∀k ∈ Ku

where Ukl = Hklwl, (l, k ∈ K). The solution can be obtained by finding the domi-

nant generalized eigenvector of the matrix pairs [Ukk,
∑

l∈K,l ̸=k p̂
i
lUkl + nkI].
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4.3.3 Optimizing Transmit Beamforming with Fixed Power

and Receive Beamforming

Assuming that the power vector pi and receive beamforming V are fixed, we optimize

the transmit beamforming W in the dual domain. For a given power constraint, i.e.,

tTi p
i ≤ Pi, the transmit beamforming problem in the primal domain can be written

as follows.

P i(W) : max
W

min
kd∈Kd

SINRDL
kd

(pi,W)

βkd
, (4.90)

s.t. SINRUL
ku (p

i,W,V) ≥ βku , ∀ku ∈ Ku

tTi p
i ≤ Pi, pi ≥ 0

||wk|| = 1, ∀k ∈ K

We can observe that it is very difficult to solve the problem in the primal domain.

However, the problem becomes much simpler in the dual domain. By using network

duality, the dual problem of P i(W) is given by

Si(W) : max
W

min
kd∈Kd

SINRUL,D
kd

(qi,W,V)

βkd
, (4.91)

s.t. SINRDL,D
ku

(qi,V) ≥ βku , ∀ku ∈ Ku

nTqi ≤ Pi, qi ≥ 0

||wk|| = 1, ∀k ∈ K

where SINRUL,D
kd

(qi,W,V) and SINRDL,D
kd

(qi,V) are given in (4.85) and (4.86), re-

spectively. From the expression of SINRDL,D
kd

(q,V), we can see that the transmit
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beamforming W does not affect the SINR constraints of dual DL because wk = 1

when k ∈ Ku. Therefore, for a given dual power vector qi and receive beamforming

V, we can simplify the problem Si(W) to

Si(W) : max
W

min
kd∈Kd

SINRUL,D
kd

(W)

βkd
, (4.92)

s.t. ||wkd|| = 1, ∀kd ∈ Kd.

The optimal transmit beamforming W is exactly the same as the solution of the

max-min weighted multiple-input-single-output (MISO) optimization problem and

can be obtained by independently maximizing the SINR of each channel in the

dual domain [55]. In other words, the optimal transmit beamforming W can be

determined by solving the following optimization problem

ŵk = argmax
wk

wT
kRkkwk

wT
k

(
∑

l∈K,l ̸=k q̂
i
lRklwl + ti,kI

)

wk

, ∀k ∈ Kd (4.93)

s.t. ||wk|| = 1, ∀k ∈ Kd

whereRkl = Hklvl, (l, k ∈ K). The solution can be obtained by finding the dominant

generalized eigenvector of the matrix pairs [Rkk,
∑

l∈K,l ̸=k q̂
i
lRkl + ti,kI].
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4.3.4 Iterative Power and Transmit/Receive Beamforming

Optimization based on multiple single-power-constraint

problems

Referring to Fig. 4.2, we can solve the joint optimization problem P iteratively. In

the primal domain we optimize the power and receive beamforming while in the

dual domain, we optimize the dual power and transmit beamforming. We describe

the steps of the suboptimal algorithm as follows.

1. Split the multiple-power-constraint problem P in (4.10a)–(4.10d) into (Ku+1)

single-power-constraint problems, i.e.,

P i(pi,W,V) : max
pi,W,V

min
kd∈Kd

SINRDL
kd

(pi,W)

βkd
, (4.94)

s.t. SINRUL
ku (p

i,W,V) ≥ βku, ∀ku ∈ Ku

tTi p
i ≤ Pi, pi ≥ 0

||wk|| = 1, ||vk|| = 1, ∀k ∈ K

where i = 0, 1, . . . , Ku.

2. For i = 0, 1, . . . , Ku, initialize the transmit and receive beamforming as Wi

and Vi.

3. For i = 0, 1, . . . , Ku, update the power vector pi in the primal domain and the

corresponding solution τ̂i using Result 1.

4. For i = 0, 1, . . . , Ku, update receive beamforming Vi in the primal domain

using (4.89).
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5. For i = 0, 1, . . . , Ku, update the dual power vector qi in the dual domain using

Result 3.

6. For i = 0, 1, . . . , Ku, update transmit beamforming Wi in the dual domain

using (4.93).

7. If one or more τ̂i has not converged, repeat Steps 3 to 6.

8. Select s such that τ̂s is the minimum among all τ̂i, i.e.,

s = arg min
i=0,1,...,Ku

τ̂i. (4.95)

Then ps,Ws and Vs are the solutions for P.

Lemma 4.3. If the initial beamforming parameters Wi and Vi satisfy the condi-

tions (4.38) and (4.39), these conditions will continue to be satisfied in the iteration

algorithm.

Proof. Please refer to Appendix 4.F.

4.3.5 Iterative Power and Transmit/Receive Beamforming

Optimization with subgradient projection-based method

As in Sect 4.2.2, we can solve P iteratively using the subgradient projection-based

method. It is more efficient compared with the previous algorithm that splits the

multiple-power-constraint problem into many single-power-constraint problems. We

show the iterative algorithm in Fig. 4.3 and describe the steps as follows.
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1. Since the subgradient projection-based method is used, the multiple-power-

constraint problem P is re-written as

P(p,W,V, θ) : max
p,W,V

min
kd∈Kd

SINRDL
kd

(p,W)

βkd
(4.96)

s.t. SINRUL
ku (p,W,V) ≥ βku, ∀ku ∈ Ku

∑

i
θit

T
i p ≤

∑

i
θiPi, p ≥ 0

||wk|| = 1, ||vk|| = 1, ∀k ∈ K.

2. Initialize θ and subgradient-projection-method step size α.

3. Initialize the transmit and receive beamforming as W and V.

4. [Outer Loop begins.]

5. (Inner Loop begins)

(a) Update the power vector p in the primal domain and the corresponding

solution τ̂inner using Result 2 and Result 1 .

(b) Update receive beamforming V in the primal domain using (4.89).

(c) Update the dual power vector q in the dual domain using Result 3.

(d) Update transmit beamforming W in the dual domain using (4.93).

(e) If τ̂inner has not converged, repeat Steps 5a to 5d.

6. (Inner loop ends.)

7. Set τ̂outer = τ̂inner.
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8. If τ̂outer has not converged, update θ using the subgradient projection method

and go to Step 4.

9. [Outer loop ends.]

10. p,W and V are the solutions for P and the optimal value equals τ̂outer.

Lemma 4.4. If the initial beamforming parameters W and V for the inner loop

satisfy the conditions (4.38) and (4.39), these conditions will continue to be satisfied

in the iteration algorithm.

Proof. Same as that of Lemma 4.3.

Lemma 4.5. If the initial beamforming parameters W and V satisfy the conditions

(4.38) and (4.39), the algorithm will converge.

Proof. Please refer to Appendix 4.G.

Note that the convergence point of the proposed solution is dependent on the

appropriate choice of initial conditions. We consider a random initialization to

satisfy the feasible conditions conditions (4.38) and (4.39). If a selected random

initialization does not satisfy the feasible conditions conditions (4.38) and (4.39),

we drop it and select a new one until it satisfies the feasible conditions conditions

(4.38) and (4.39). Here, we do not consider any other advanced initializations, e.g.,

minimizing SI and maximizing UL transmission rate.
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4.4 Results

To quantify the potential benefit of the FD transmission considered in this chapter,

we evaluate the performance of the proposed algorithms under the 3GPP LTE speci-

fications for urban macro (UMa) cell deployments. The simulation parameters of an

UMa cell are taken from [95, 96]. The cell coverage area is assumed to be circular.

For an UMa cell, the radius is set to 2 km and all the channels are considered to

be under the non-line-of-sight (NLOS) environment. By setting the heights of BS

and users to 31 m and 1.5 m, respectively, above ground [96, Section.1.2.1.3], we

obtain the path-loss models of the UL channels, DL channels, and the IUI channels2.

Then, the path-loss model of DL and UL channels is 122.5+35log10(d) and the path-

loss model of inter-user-interference channels is 146.2+39.8log10(dIUI) where d and

dIUI are distances in km. Also, according to the suggestion in [95], the peak power

constraints for UL users are the same and set to be 20 dB below the peak power

constraint of BS. The noise spectral density is −174 dBm/Hz and the noise figure

is set to 9 dB. The number of UL and DL users are both set as 8. The number of

transmit and receive antennas are both set as 8. The small-scale fading is modeled

as a multi-path time delay model following ITU-R M.1225 PedA [96]. The center

frequency is 2 GHz and system bandwidth is 10 MHz. For simplicity, the UL SINR

requirements are the same for all users, i.e., βku = γ (∀ku ∈ Ku) and the weights for

the DL SINR are also the same, i.e., βkd = ω (∀kd ∈ Kd).

An accurate model for the SI channel plays an important role in evaluating the

2According to [96], the height of BS can be from 0 to 50 m above ground. We therefore set
the height of BS to 31 m in the UL and DL channel models. However, the path-loss model of IUI
channels has not been given specifically. Here we set the height of users to 1.5 m above ground in
the IUI channel models as well as UL and DL channel models.
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system performance of FD systems. A pioneer practical experiment on SI channel

model has been carried out in [10]. The main conclusion of [10] is that the Rician

probability distribution with a small Rician factor should be used to characterize

the residual SI. Hence, in this chapter, the SI channel matrix HSI is generated as

CN (
√

Lσ2
SI

1+L H̄SI ,
σ2
SI

1+K INR
⊗INT

), where H̄SI is a deterministic matrix, L is the Rician

factor, ⊗ denotes the Kronecker product and σ2
SI is introduced to parameterize the

capability of a certain SI cancellation design.

We compare four optimization algorithms.

• Algorithm 1: Only power but no beamforming is considered (Refer to Algo-

rithm 1)

• Algorithm 2: All power and transmit and receive beamforming are considered

(Refer to Sect. 4.3.5 and Fig. 4.3)

• Algorithm 2(sub1): Power and receive beamforming is optimized (transmit

beamforming strategy used is Maximum Ratio Transmitting (MRT))

• Algorithm 2(sub2) : Power and transmit beamforming is optimized (receive

beamforming strategy used is Maximum Ratio Combining (MRC))

We plot the evolution of the max-min weighted SINR τ in the DL against

the iteration number for these four algorithms in Fig. 4.4. Firstly, the SINR is

monotonically increasing against the iteration number. Secondly, the maximum

transmission power PB and SI attenuation σ2
SI do not affect the convergence rate of

τ at all. Thirdly, when beamforming optimizations are considered, the SINR values

will improve significantly but it will take more iterations to converge. We also verify
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that the average number of random initialization of W and V is less than 20 times,

which is acceptable compared to the iteration number of the proposed Algorithm 2.

Next, we investigate the system performance and benefits of jointly optimiz-

ing the power and transmit and receive beamforming. Fig. 4.5 plots τ versus the

base station transmission power. We can observe that among all algorithms, Algo-

rithm II, i.e., jointly optimizing the transmission power and transmit and receive

beamforming, will result in the best performance.

For a FD system, it is necessary to evaluate the impact of SI on the system

performance. We plot τ versus the SI attenuation σ2
SI in Fig. 4.6. We can see that

when SI attenuation is high, e.g., σ2
SI ≤ −30dB the performance gain of our proposed

algorithm (Algorithm II) is notable. However, when the SI attenuation is very low,

e.g., σ2
SI ≥ −20dB, the performance of all the algorithm is very limited. The main

reason is that in the low SI attenuation region, the SI at the BS is relatively large.

Thus, the transmit power at the BS has to be reduced in order to ensure that the

UL SINR requirements can be satisfied. As a result, τ becomes smaller. Effective

SI cancellation therefore plays a very important role here.

Fig. 4.7 shows the relationship between τ and the UL SINR requirements γ. As

γ increases, τ decreases. Our proposed algorithm (Algorithm II) is shown to have

the best performance under all conditions. Thus, the effectiveness of our proposed

algorithm is verified.
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4.5 Summary

In this chapter, we have investigated a MIMO FD multi-user cellular system. We

have formulated the weighted max-min DL SINR problem with additional UL SINR

constraints. Joint optimization of the base station transmit power, UL transmit

power, and base station transmit and receive beamforming is required. We have

derived the network duality of the optimization problem consisting of multiple UL

SINR constraints and a single power constraint. With the network duality prop-

erty, we are able to break down the multiple-power-and-multiple-SINR-constraint

problem into many single-power-and-multiple-SINR constraint sub-problems. As a

result, we can solve the multiple-power-and-multiple-SINR constraint problem by

using Perron–Frobenius theory and subgradient method jointly. Simulation results

show that our proposed algorithm possesses fast convergence rate and leads to a bet-

ter performance compared to other optimization mechanisms. Finally, our proposed

algorithm can be easily extended to solve other max-min optimization problems

with arbitrary weight power constraints (e.g., weights can be negative).

Appendix 4.A Proof of Lemma 4.1

Proof. We prove Lemma 1 by contradiction. Referring to (4.8), we can observe

that when all other parameters are fixed,
SINRDL

kd
(p)

βkd

is (i) an increasing function of

pkd ∀kd ∈ Kd; (ii) a decreasing function of pk′
d
if k′

d ̸= kd and k′
d ∈ Kd; and (iii) a

decreasing function of pku ∀ku ∈ Ku. Referring to (4.9), we can also see that when all

other parameters are fixed, SINRUL
ku (p) is (iv) a decreasing function of pkd ∀kd ∈ Kd;

and (v) an increasing function of pku ∀ku ∈ Ku.
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We also denote τ̂ i as the optimal solution and p̂i as the optimal power vector.

Then, we have

τ̂ i ≤
SINRDL

kd
(p̂i)

βkd
∀kd ∈ Kd. (4.97)

Moreover, there must exist at least one k̂d ∈ Kd such that τ̂ i =
SINRDL

k̂d
(p̂i)

β
k̂d

. Assuming

that (4.97) is satisfied with at least one strict inequality, i.e., there exists a k′
d ∈ Kd

such that τ̂ i <
SINRDL

k′
d
(p̂i)

βk′
d

. Due to (i) above, we can continue maintaining the strict

inequality if we reduce only very slightly the transmit power corresponding to k′
d,

i.e., pk′
d
. Moreover, when pk′

d
is reduced,

1. SINRUL
ku (p̂

i) increases due to (iv) and hence (4.13c) is still satisfied;

2. tTi p̂
i decreases and hence (4.13d) is still satisfied;

3.
SINRDL

kd
(p̂i)

βkd

increases for all other kd ̸= k′
d due to (ii) and hence (4.13b) is still

satisfied.

In other words, reducing pk′
d
slightly is also a feasible solution to the problem T i in

(4.13a). However, as indicated in Item 3) above,
SINRDL

kd
(p̂i)

βkd

increases for all other

kd ̸= k′
d and hence the new

SINRDL
k̂d

(p̂i)

β
k̂d

is strictly larger than τ̂ i. It means that τ̂ i is

not the optimal solution which contradicts to our assumption. Hence for the optimal

solution, there does not exist any strict inequality in (4.97) and

τ̂ i =
SINRDL

kd
(p̂i)

βkd
∀kd ∈ Kd. (4.98)

Next, we assume that the constraint in (4.13c) is not satisfied with equality for

some k′
u ∈ Ku, i.e., SINR

UL
k′u

(p̂i) > βk′u . Due to (v) above, we can reduce slightly
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the power corresponding to k′
u, i.e., pk′u , to maintain the strict inequality. Moreover,

when pk′u is reduced,

4.
SINRDL

kd
(p̂i)

βkd

increases for all kd ∈ Kd due to (ii) and hence (4.13b) is still satisfied;

5. tTi p̂
i decreases and hence (4.13d) is still satisfied.

In other words, reducing pk′u slightly is also a feasible solution to the problem T i in

(4.13a). However, as indicated in Item 4) above,
SINRDL

kd
(p̂i)

βkd

increases for all kd ∈ Kd

and they become strictly larger than τ̂ i. It means that τ̂ i is not the optimal solution

which contradicts to our assumption. Hence for the optimal solution, there does not

exist any strict inequality in (4.13c) and

SINRUL
ku (p̂

i) = βku ∀ku ∈ Ku. (4.99)

Finally, we consider the constraint in (4.13d). Using (4.6) and assuming α > 1,

we have

SINRk(αp) =
αpkGkk

(
∑

l∈K,l ̸=k αplGkl

)

+ nk

k ∈ K

>
αpkGkk

(
∑

l∈K,l ̸=k αplGkl

)

+ αnk

=
pkGkk

(
∑

l∈K,l ̸=k plGkl

)

+ nk

= SINRk(p). (4.100)

Assuming that (4.13d) is satisfied with strict inequality, i.e. tTi p̂
i < Pi, we can

increase p̂i with the factor α > 1 such that tTi (αp̂
i) = Pi. Moreover, (4.100) has
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shown that SINRk(αp) is an increasing function of p. Therefore, when p̂i is increased

by the factor α > 1,
SINRDL

kd
(p̂i)

βkd

(∀kd ∈ Kd) in (4.13b) and SINRUL
ku (p̂

i) (∀ku ∈ Ku)

in (4.13c) are increased and hence both (4.13b) and (4.13c) are still satisfied. Since
SINRDL

kd
(p̂i)

βkd

is increased for all kd ∈ Kd, τ̂ i is no longer the optimal solution. This

contradicts to our assumption. Thus, the constraint in (4.13d) must be satisfied

with strict equality, i.e., tTi p̂
i = Pi.

Appendix 4.B Proof of Theorem 4.1

Proof. We transform the problem T in (4.11a)–(4.11c) into epigraph form, i.e.,

T : max
τ,p

τ (4.101a)

s.t. τ ≤
SINRDL

kd
(p)

βkd
, ∀kd ∈ Kd (4.101b)

SINRUL
ku (p) ≥ βku , ∀ku ∈ Ku (4.101c)

tTi p ≤ Pi, p ≥ 0, ∀i = 0, 1, . . . , Ku. (4.101d)

We denote the optimal solution and power vector by τ̂ and p̂, respectively. Then, τ̂

and p̂ must satisfy (4.13b)–(4.13d) for all i = 0, 1, . . . , Ku. Using arguments similar

to those in proving Lemma 4.1, we can prove that under the optimal solutions, (i)

the constraints (4.101b) and (4.101c) are satisfied with equality and (ii) there exists

an s ∈ {0, 1, . . . , Ku} such that tTs p̂ = Ps.3

Again, for the sub-problem T i in (4.13a), we let p̂i be the unique solution and

3If tTi p̂ < Pi for all i = 0, 1, . . . ,Ku, we can always increase p̂ by a factor of α > 1 such that
tTs p̂ = Ps for some s and tTi p̂ < Pi for all i ̸= s.
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τ̂ i be the optimal value. From the definition of the sub-problem, we can further

conclude that p̂ = p̂s and τ̂ = τ̂ s. To determine the value of s, we consider i ∈

{0, 1, . . . , Ku} where i ̸= s. Since i ̸= s, we have tTi p̂ < Pi and hence p̂ is not

the optimal power vector of T i. Therefore the corresponding τ , i.e., τ̂ =
SINRDL

kd
(p)

βkd

(∀kd ∈ Kd), is not the optimal value of T i and hence must be smaller than τ̂ i.

Combining all the aforementioned arguments, we have τ̂ s = τ̂ < τ̂ i for all i ̸= s and

the proof is complete.

Appendix 4.C Proof of Lemma 4.2

Proof. We first make note of the fact that the matrices/vectors B, F, p̂, n and t

and their components are non-negative. Hence their products such as BuFuu are

non-negative.

If ρ(BuFuu) < 1, limj→∞(BuFuu)j = 0 and therefore (I − BuFuu) is a non-

singular matrix [113]. In addition, by using the Neumann series (I − BuFuu)−1 =
∑∞

j=0(BuFuu)j, we can conclude that (I−BuFuu)−1 is a non-negative matrix because

BuFuu is non-negative [113]. When (I−BuFuu)−1 is non-negative, the matrix E in

(4.29) and the vector e in (4.30) and the vector gi in (4.33) are also non-negative

because all other matrices in the equations are non-negative. Moreover, if (4.39)

is satisfied, P ′
i in (4.32) becomes positive. Therefore, all terms in Υi in (4.37) are

non-negative and the conditions (4.38) and (4.39) are sufficient.

If Υi is non-negative, E, e, 1
P ′
i
giE and 1

P ′
i
gie are non-negative. Based on (4.29)

and (4.30), (I − BuFuu) must be a non-singular matrix. By using the Neumann

series (I − BuFuu)−1 =
∑∞

j=0(BuFuu)j , we can conclude that ρ(BuFuu) < 1 and
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(I−BuFuu)−1 is a non-negative matrix because BuFuu is non-negative [113]. Based

on (4.33), gi is also non-negative and hence P ′
i in

1
P ′
i
giE and 1

P ′
i
gie must be positive.

When P ′
i is positive, (4.32) shows that Pi > tTi,u(I−BuFuu)−1Bunu. The necessary

conditions are therefore proved.

Appendix 4.D Proof of Corollary 4.1

Proof. First using similar arguments as in the proof of Lemma 4.1, we have

T (θ) =
SINRDL

kd
(p̂)

βkd
, ∀kd ∈ Kd (4.102a)

SINRUL
ku (p̂) = βku , ∀ku ∈ Ku (4.102b)

∑

i
θit

T
i p̂ =

∑

i
θiPi (4.102c)

where p̂ is the optimal power vector under T (θ).

Next, we prove the following inequality.

min{T (θ1), T (θ2)} ≤ T (λθ1 + (1− λ)θ2), 0 ≤ λ ≤ 1 (4.103)

Let p∗ denote the optimal power vector corresponding to T (λθ1 + (1 − λ)θ2). Ap-
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plying (4.102a) to (4.102c), we obtain

T (λθ1 + (1− λ)θ2) =
SINRDL

kd
(p∗)

βkd
, ∀kd ∈ Kd

(4.104a)

SINRUL
ku (p

∗) = βku , ∀ku ∈ Ku (4.104b)
∑

i
(λθ1,i + (1− λ)θ2,i) tTi p∗ =

∑

i
(λθ1,i + (1− λ)θ2,i)Pi

⇒ λ
(∑

i
θ1,it

T
i p

∗
)

+ (1− λ)
(∑

i
θ2,it

T
i p

∗
)

= λ
(∑

i
θ1,iPi

)

+ (1− λ)
(∑

i
θ2,iPi

)

.

(4.104c)

From (4.104c), one of the following

∑

i
θ1,it

T
i p

∗ ≤
∑

i
θ1,iPi (4.105)

∑

i
θ2,it

T
i p

∗ ≤
∑

i
θ2,iPi (4.106)

must hold true. Without loss of generality, suppose (4.105) is true and hence p∗ is

a potential solution to T (θ1).

Case I:
∑

i θ1,it
T
i p

∗ =
∑

i θ1,iPi

Given
∑

i
θ1,it

T
i p

∗ =
∑

i
θ1,iPi, (4.107)

we can readily prove that

∑

i
θ2,it

T
i p

∗ =
∑

i
θ2,iPi (4.108)

based on (4.104c). According to the Perron-Frobenius theory [55], combining (4.107),
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(4.104b) and the fact that
SINRDL

kd
(p∗)

βkd

is a constant for all kd ∈ Kd (from (4.104a)),

we can conclude that p∗ is the unique solution for (4.102a) to (4.102c) for θ = θ1,

which also indicate that p∗ is the optimal power vector for T (θ1). Therefore,

T (θ1) =
SINRDL

kd
(p∗)

βkd
, ∀kd ∈ Kd. (4.109)

With (4.108) and similar arguments, we can conclude that p∗ is also the optimal

power vector for T (θ2), i.e.,

T (θ2) =
SINRDL

kd
(p∗)

βkd
, ∀kd ∈ Kd. (4.110)

Comparing (4.104a), (4.109) and (4.110), the inequality (4.103) is proved for Case

I.

Case II:
∑

i θ1,it
T
i p

∗ <
∑

i θ1,iPi

Given
∑

i
θ1,it

T
i p

∗ <
∑

i
θ1,iPi, (4.111)

we can readily prove that

∑

i
θ2,it

T
i p

∗ >
∑

i
θ2,iPi (4.112)

based on (4.104c). Due to (4.112), p∗ cannot be the optimal power vector of T (θ2).

(In fact, the strict inequality in (4.111) indicates that p∗ cannot be the optimal

power vector of T (θ1) neither.) We define the optimal power vector of T (θ2) as p†.
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Using (4.102c), we have

T (θ2) =
SINRDL

kd
(p†)

βkd
, ∀kd ∈ Kd (4.113a)

SINRUL
ku (p

†) = βku , ∀ku ∈ Ku (4.113b)
∑

i
θ2,it

T
i p

† =
∑

i
θ2,iPi. (4.113c)

We further define

αk =
p†k
p∗k

∀k ∈ K, (4.114)

ǩ = argmin
k∈K

αk. (4.115)

Assuming that αǩ ≥ 1, then αk ≥ 1 for all k ∈ K and

∑

i
θ2,it

T
i p

† ≥
∑

i
θ2,it

T
i p

∗ >
∑

i
θ2,iPi (4.116)

where the first inequality comes from (4.114) and the second one comes from (4.112).

The outcome in (4.116) contradicts with the fact in (4.113c). Therefore, the assump-

tion αǩ ≥ 1 is not justified and we conclude that αǩ < 1.
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Next, assuming that ǩ ∈ Ku, we have

SINRUL
ǩ (p†) =

p†
ǩ
Gǩǩ

∑

l∈K,l ̸=ǩ p
†
lGǩl + nǩ

=
αǩp

∗
ǩ
Gǩǩ

∑

l∈K,l ̸=ǩ αlp∗lGǩl + nǩ

<
αǩp

∗
ǩ
Gǩǩ

αǩ

∑

l∈K,l ̸=ǩ p
∗
lGǩl + nǩ

<
αǩp

∗
ǩ
Gǩǩ

αǩ

∑

l∈K,l ̸=ǩ p
∗
lGǩl + αǩnǩ

=
p∗
ǩ
Gǩǩ

∑

l∈K,l ̸=ǩ p
∗
lGǩl + nǩ

= SINRUL
ǩ (p∗) = βǩ (4.117)

where the second equality follows from (4.114), and the third and fourth strict

inequalities follow from that fact that mink∈K αk = αǩ < 1. However, the outcome

in (4.117) contradicts with the fact in (4.113b). Therefore, the assumption ǩ ∈ Ku

is not justified and we conclude that ǩ ∈ Kd.
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Since mink∈K αk = αǩ < 1 and ǩ ∈ Kd, we have

T (θ2) =
SINRDL

kd
(p†)

βkd
, ∀kd ∈ Kd

=
p†
ǩ
Gǩǩ

∑

l∈K,l ̸=ǩ p
†
lGǩl + nǩ

=
αǩp

∗
ǩ
Gǩǩ

∑

l∈K,l ̸=ǩ αlp∗lGǩl + nǩ

<
αǩp

∗
ǩ
Gǩǩ

αǩ

∑

l∈K,l ̸=ǩ p
∗
lGǩl + nǩ

<
αǩp

∗
ǩ
Gǩǩ

αǩ

∑

l∈K,l ̸=ǩ p
∗
lGǩl + αǩnǩ

=
p∗
ǩ
Gǩǩ

∑

l∈K,l ̸=ǩ p
∗
lGǩl + nǩ

=
SINRDL

ǩ (p∗)

βǩ

= T (λθ1 + (1− λ)θ2) (4.118)

where the last two equalities follow from (4.104a). Therefore, we have proved (4.103).

Further, we can easily extend (4.103) to the general case, i.e.,

min
i
{T (θi)} ≤ T

(∑

i
λiθi

)

; 0 ≤ λi ≤ 1 ∀i and
∑

λi = 1. (4.119)

Finally, we will prove that the optimal solution τ̂ of T equals min{T (θ) : θ ≥

0}. We define θi as a unit vector of length Ku with a 1 in its i-th entry and 0

elsewhere. From Theorem 4.1, we have

τ̂ = min
i=0,...,Ku

τ̂ i = min
i=0,...,Ku

{T (θi)} ∈ T (θ). (4.120)
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We also normalize θi in (4.102c) by defining λi =
θi

∑

θi
and we rewrite (4.102c)

as

∑

i θit
T
i p̂ =

∑

i
θiPi

⇒
∑

i θit
T
i p̂

∑

θi
=

∑

i θiPi
∑

θi

⇒
∑

i

(
θi

∑

θi

)

tTi p̂ =
∑

i

(
θi
∑

θi

)

Pi

⇒
∑

i λit
T
i p̂ =

∑

i
λiPi; 0 ≤ λi ≤ 1 ∀i and

∑

λi = 1. (4.121)

The result in (4.121) indicates that T (θ) and T (λ) are identical, i.e.,

T (θ) = T (λ); λi =
θi
∑

θi
∀i; (4.122)

where λ is the normalized version of θ. Combining (4.119) and (4.122), we obtain

T (θ) = T (λ) = T
(∑

i
λiθi

)

≥ min
i
{T (θi)}. (4.123)

Together with (4.120), we can conclude

τ̂ = min
i=0,...,Ku

{T (θi)} = min{T (θ) : θ ≥ 0}. (4.124)
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Appendix 4.E Proof of Corollary 4.2

Proof. To prove that T (θ) is a quasi-convex function w.r.t. θ, we need to show that

T (λθ1 + (1− λ)θ2) ≤ max{T (θ1), T (θ2)} (4.125)

for arbitrary θ1 and θ2 and 0 < λ < 1. Let p∗ denote the optimal power vector

corresponding to T (λθ1 + (1− λ)θ2). Following the procedures shown in the proof

of Corollary 4.1, one of the following

∑

i
θ1,it

T
i p

∗ ≤
∑

i
θ1,iPi (4.126)

∑

i
θ2,it

T
i p

∗ ≤
∑

i
θ2,iPi (4.127)

must hold true. Without loss of generality, suppose (4.126) is true and hence p∗ is

a potential solution to T (θ1). We further define

p̃ =

( ∑

i θ1,iPi
∑

i θ1,it
T
i p

∗

)

p∗ ≥ p∗. (4.128)

In (4.100), we have proved that SINRk(p) is an increasing function of p. Therefore,

p̃ satisfies the SINR constraints and power constraints of T (θ1) and is also a feasible

solution to T (θ1). As a result, we have

T (λθ1 + (1− λ)θ2) =
SINRDL

kd
(p∗)

βkd
∀kd ∈ Kd

≤
SINRDL

kd
(p̃)

βkd
∀kd ∈ Kd

≤ T (θ1) (4.129)

157



where the first inequality follows from the fact
SINRDL

kd
(p)

βkd

is an increasing function

of p and the second inequality follows from that p̃ is a feasible solution to T (θ1).

Similarly, we can prove that T (λθ1 + (1 − λ)θ2) ≤ T (θ2) if (4.127) is true. Thus,

(4.125) is proved and hence T (θ) is a quasi-convex function w.r.t. θ.

Appendix 4.F Proof of Lemma 4.3

To reduce the number of symbols, we will not show the index “i” in the proof. We

assume that the initial beamforming matrices W(0) and V(0) satisfy the required

conditions in (4.38) and (4.39), i.e., Υ(W(0),V(0)) in (4.37) is a nonnegative matrix.

In the primal domain, p̂(1)
d > 0 is derived from Result 1. Then, by using

(4.27), p(1)
u > 0 can be obtained. Based on (4.25), we also have

p̂(1)
u = B(0)

u F(0)
uu p̂

(1)
u +B(1)

u nu +B(0)
u F(0)

ud p̂
(1)
d . (4.130)

Then, the receive beamforming V(1) is updated using (4.89). As a result,

SINRUL
ku (V

(1)) ≥ SINRUL
ku (V

(0)), ∀ku ∈ Ku. (4.131)

Note that the matrices B and F and their components are updated as the re-

ceive beamforming is updated. Combining (4.130), (4.131) and the definition of

SINRUL
ku (V), we have

p̂(1)
u ≥ B(1)

u F(1)
uu p̂

(1)
u +B(1)

u nu +B(1)
u F(1)

ud p̂
(1)
d . (4.132)
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Note that B(1)
u , F(1)

uu , nu and F(1)
ud are positive while p̂(1)

u and p̂(1)
d are non-negative

with at least one positive element. Therefore, we have

p̂(1)
u > B(1)

u F(1)
uu p̂

(1)
u

⇒ p̂
(1)
u

(

p̂
(1)
u

)T
p̂
(1)
u

>
B(1)

u F(1)
uu p̂

(1)
u

(

p̂(1)
u

)T
p̂(1)
u

⇒ 1 >

(

p̂(1)
u

)T
B(1)

u F(1)
uu p̂

(1)
u

(

p̂(1)
u

)T
p̂(1)
u

⇒ 1 > ρ(B(1)
u F(1)

uu ) (4.133)

and the required condition in (4.38) is satisfied. From (4.132), we obtain

p̂(1)
u > B(1)

u F(1)
uu p̂

(1)
u +B(1)

u nu

⇒ p̂(1)
u > (I−B(1)

u F(1)
uu )

−1B(1)
u nu. (4.134)

Combining (4.134) and (4.26), we have

P ≥ tTu p̂
(1)
u > tTu (I−B(1)

u F(1)
uu )

−1B(1)
u nu. (4.135)

and the required condition in (4.39) is therefore satisfied. Since both (4.38) and

(4.39) are satisfied based on W(0) and V(1), the power vector p̂ in the primal domain

and hence the dual power vector q̂ in the dual domain can be updated.

The fact that the dual power vector q̂(1) in the dual domain can be evaluated

also means that (4.83) and (4.84) are satisfied based on W(0) and V(1). Having
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evaluated q̂(1)
d and q̂(1)

u using Result 3, we can re-write (4.76) as

q̂(1)
u = B(1)

u FT
uu

(1)
q̂(1)
u +B(1)

u ti,u +B(1)
u FT

du
(1)
q̂(1)
d . (4.136)

Then, the transmit beamforming W(1) in the dual domain is updated using (4.93).

As a result,

SINRkd(W
(1)) ≥ SINRkd(W

(0)), ∀kd ∈ Kd. (4.137)

Combining (4.136), (4.137) and the definition of SINRkd(W) and using similar pro-

cedures as above, we can readily proved that (4.83) and (4.84) are satisfied. Since

both (4.83) and (4.84) are satisfied based on W(1) and V(1), the dual power vector

q̂ in the dual domain and hence the power vector p̂ in the primal domain can be

updated.

The fact that the power vector p̂(2) in the primal domain can be evaluated

again means that (4.38) and (4.39) are satisfied based on W(1) and V(1). We can

therefore conclude that if the initial beamforming matrices W(0) and V(0) satisfy the

required conditions in (4.38) and (4.39), the iterative beamforming matrices derived

from our proposed algorithm will always satisfy the same conditions.

Appendix 4.G Proof of Lemma 4.5

where (a) is derived from the definition of subgradient method, (b) is from the

network duality, (c) is from (4.89), (d) is from the network duality, (e) is from (4.93)

and (f) is from the fact that the problem in (4.101a) is optimally solved with fixed

beamforming under a single power constraint. Then, we readily have Lemma 4.5.

160



!"#$%
&'"'()*

+,

-).*/(*0%1#$2#13/(*0%1#$2# &$/456*'$24$2$*7$

6*'$251#$2%6*'$24$2$*7$

-).*/(*0%
89"**$/

13/(*0%
89"**$/

Figure 4.1: A single-cell MIMO system model with FD BS.
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mization by considering the power constraints individually.
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(b) Algorithm 2
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(c) Algorithm 2(sub1)
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(d) Algorithm 2(sub2)

Figure 4.4: Convergence of τ against the iteration number for the four algorithms.
Different maximum BS transmit power PB and SI attenuation σ2

SI have been con-
sidered. The UL SINR requirement is γ = 5dB.
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Figure 4.5: Weighted max-min DL SINR τ versus base station transmission power.
The UL SINR requirements γ = 5dB and σ2

SI = −50dB.
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Figure 4.6: Weighted max-min DL SINR τ versus SI attenuation σ2
SI . The UL SINR

requirements γ = 5dB and the maximum base station transmit power PB = 30dBm.
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Figure 4.7: Weighted max-min DL SINR τ against UL SINR requirements γ. The
maximum BS transmit power PB = 30 dB and SI attenuation σ2

SI = −70 dB.
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Chapter 5

Energy Efficiency Optimization in

Full-Duplex Relay Systems

In this chapter, a FD relay system, in which a relay helps information delivery from

the source to the destination in FD manner, is considered. The decode-and-forward

relaying protocol is adopted since the relay has to decode the signals in order to

perform self-interference cancellation. First, an optimization problem is formulated

to maximize the energy efficiency (EE) in the FD relay system. The optimization

problem is non-trivial and cannot be solved by conventional fractional programming

methods, such as the Dinbelbach’s method [114]. Then, the optimization problem is

converted into an equivalent problem that can be further decomposed into two sub-

problems. The first subproblem can be solved by the Dinbelbach’s method directly.

The second subproblem is not quasi-concave because of the non-convex constraint,

which cannot be solved by the Dinbelbach’s method directly. An effective algorithm

called sequential parametric convex approximation (SPCA) [87] is utilized to iter-
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atively approach the optimum value at each iteration of the Dinbelbach’s method.

The joint algorithm is called SPCA-Dinbelbach.

5.1 System Model

We consider a three-node cooperative communication system in which the source S

communicates with the destination D via a relay R, as shown in Fig. 5.1. The source

and destination are equipped with a single antenna, while the relay is equipped with

one receiving antenna and one transmitting antenna (can receive and transmit sig-

nals simultaneously). Let xs(t) and xr(t) denote the signals transmitted from S and

from the transmitting antenna of R at the time instant t, respectively, where the av-

erage powers of transmitted symbols equal to 1, i.e., E[xs(t)′xs(t)] = E[xr(t)′xr(t)] =

1. Let Hsr denote the channel coefficient of the link between the source S and the

relay R, Hsd denote the channel coefficient of the link between the source S and the

destination D, and Hrd denote the channel coefficient of the link between the relay

R and the destination D. The transmission powers of the source S and the relay R

are denoted as Ps and Pr, respectively. Then, the received signals at the receiving

antenna of R and D, denoted by yr(t) and yd(t) respectively, can be written as

yr(t) =
√

PsHsrxs(t) +
√

PrHrrxr(t) + nr(t), (5.1)

yd(t) =
√

PrHrdxr(t) +
√

PsHsdxs(t) + nd(t), (5.2)

where nr(t) and nd(t) are the additive white Gaussian noises at the relay R and the

destination D, respectively, and follow CN (0, σ2
z). It is assumed that the channel

coefficient between node i and node j is Hij ∼ CN (0,Ωi,j). Here Ωi,j is determined
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Figure 5.1: A full-duplex relay system. Solid lines denote information transmission
and the dashed line denotes self-interference.

by the path-loss, i.e., Ωi,j = (d0/dij)m, where m is the path-loss exponent, dij is

the distance between node i and node j, and d0 is the reference distance. The

self-interference channel coefficient Hrr is modeled as
√
βHSI , where β is the self-

interference attenuation and HSI ∼ CN (0, 1)1. The effective channel gains are then

defined as Gij = |Hij|2/σ2
z , i ∈ {s, r}, and j ∈ {r, d}.

The decode-and-forward relaying protocol is adopted at the relay2. Then, the

achievable rate is given by [115, eq.7]

RDF(Ps, Pr) = min{RDF,1(Ps, Pr), RDF,2(Ps, Pr)} (5.3)

1Before analog domain cancellation, the self-interference channel has a strong line-of-sight com-
ponent. So it can be modeled as a Ricean distribution with a large K-factor. It is shown ex-
perimentally in [10] that after applying a sufficiently large analog domain cancellation, the strong
line-of-sight component is attenuated, resulting in a Ricean distribution with a small K-factor or
a Rayleigh distribution.

2The decode-and-forward relaying protocol is adopted because the relay has to decode the
signals in order to perform self-interference digital cancellation.
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where RDF,1(Ps, Pr) and RDF,2(Ps, Pr) are defined as

RDF,1(Ps, Pr) = log2(1 +
PsGsr

1 + βPrGrr
), (5.4)

RDF,2(Ps, Pr) = log2(1 + PsGsd + PrGrd). (5.5)

However, if Gsd ≥ Gsr, the achievable rate in (5.3) boils down to the rate of the

direct transmission between the source and the destination, which is given by

RD(Ps) = log2(1 + PsGsd). (5.6)

Hence, the overall achievable rate can be re-written as:

R(Ps, Pr) = max{RDF(Ps, Pr), RD(Ps)}. (5.7)

The EE of the FD relay system is studied, and is defined as

Ueff = R(Ps, Pr)/PT (Ps, Pr) [bits/Joule], (5.8)

where the total power consumption PT is calculated by

PT (Ps, Pr) = Ps + Pr + Pc. (5.9)

In (5.9), Pc denotes the energy consumed by the circuitry of the whole relay system,

and is assumed to be constant. Assuming that the total power constraint of the

source and relay is given by Ps + Pr ≤ Pmax, the optimal transmission powers Ps

and Pr will be obtained by solving
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Optimization Problem (P1)

max
Ps,Pr

Ueff(Ps, Pr)

s.t. C1 : Ps + Pr ≤ Pmax,

C2 : Ps, Pr ≥ 0.

(5.10)

5.2 Algorithm

In this section, firstly the optimization problem P1 will be transformed into an

equivalent problem which can be further decomposed into two subproblems. Then,

the subproblems will be solved one by one. In the optimization problem P1, the

variables to be optimized are Ps and Pr. The objective function is a nonlinear

fractional function, in which the numerator is a max-min function. Thus, this prob-

lem is very difficult to solve directly. Then, the optimization problem P1 will be

transformed into a simpler and equivalent problem, which can be solved. Note that

assuming all the channel state informations are perfectly known at the source, the

source does the optimization procedure in a centralized way, and then transmits the

value of optimized power to the relay.

Lemma 5.1. The solution to the optimization problem P1 is equivalent to the solu-

tion to the optimization problem P2, as described bellow. Equivalent Optimiza-

tion Problem (P2)
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P2.1 : max
Ps

RD(Ps)/PT (Ps, 0) (5.11)

s.t. 0 ≤ Ps ≤ Pmax;

P2.2 : max
Ps,Pr

RDF,2(Ps, Pr)/PT (Ps, Pr) (5.12)

s.t. Ps + Pr ≤ Pmax, (5.13)

Ps, Pr ≥ 0, (5.14)

RDF,1(Ps, Pr) ≥ RDF,2(Ps, Pr), (5.15)

where RDF,1(Ps, Pr), RDF,2(Ps, Pr), and RD(Ps) are defined in (5.4), (5.5), and (5.6),

respectively. If Gsd ≥ Gsr, solve the subproblem P2.1; otherwise, solve the subprob-

lem P2.2.

Proof. Please refer to the Appendix 5.A.

5.2.1 Solution to Problem P2.1

It is not hard to prove that the objective function of the problem P2.1 is a quasi-

concave function with respect to Ps, and the constraint is affine. Thus, we can

directly use the traditional Dinkelbach’s method to solve the problem seen in Al-

gorithm 1. The detail of the Dinkelbach’s method is given in the Appendix 2. It

is worth to mention that at step 5 of Algorithm 1, we can derive a closed-form so-

lution in each iteration. As follows, by applying the Karush-Kuhn-Tucker (KKT)
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Algorithm 1 Dinkelbach’s Method
1: Set Imax (maximum number of iterations),

ϵo > 0 (convergence tolerance),
2: q1 = 0 and q0 = 1.
3: i← 1.
4: while qi − qi−1 > ϵo and i < Imax do
5: Solve max

Ps

{F (qi) = R(Ps)−qiPT (Ps)} subject to 0 ≤ Ps ≤ Pmax to obtain the

optimal solution Ps.
6: qi ← R(Ps)/PT (Ps).
7: i← i+ 1.
8: end while
9: return

conditions [89], it can be obtained that

Ps =

[
1

qi
− 1

Gsd

]Pmax

0

(5.16)

where [∗]Pmax
0 = min(Pmax,max(0, ∗)) is the box constraint.

5.2.2 Solution to Problem P2.2

Due to the non-convex constraint (5.15) , the problem P2.2 is not a quasi-concave

problem. It is not possible to use the traditional Dinkelbach’s method because that

convex optimization algorithm is not valid at step 5 of the Dinkelbach’s Method in

Algorithm 1. Specifically, the constraint (5.15) in the problem P2.2 is extended as

α1Ps + α2Pr + α3PrPs + α4P
2
r ≤ 0, (5.17)

where α1 = Gsd −Gsr, α2 = Grd, α3 = βGsdGrr, and α4 = βGsdGrr.

Note that (5.17) is obviously a non-convex function. To deal with the non-
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convex constraint, a SPCA method is utilized to iteratively solve the problem.

Herein, we give the key lemma for the SPCA method.

Lemma 5.2. Considering an optimization problem with non-convex constraint g(x).

If the function G(x,λ) have the following properties: i) for any x, g(x) ≤ G(x,λ),λ >

0; ii) for a given feasible point x0, there exists a λ = ψ(x0) satisfying g(x) = G(x,λ)

and ∇g(x) = ∇G(x,λ), then G(x,λ) can replace λ(l) by ψ(x(l−1)) such that the re-

laxed problem with convex constraint G(x,λ) is solved iteratively until convergence.

The iterative solution would finally converge to a KKT point.

Proof. see [87].

It is observed in the constraint (5.15) that the unique effective part for non-

convexity is PsPr. Thus, one only need to find a convex upper-bound to approach

PsPr iteratively. To do this, the following function is defined:

G([Ps, Pr],λ) =
1

2λ
P 2
s +

λ

2
P 2
r , (5.18)

which is a convex function used to over-estimate PrPs. Additionally, λ(l+1) is updated

by P (l)
s /P (l)

r iteratively. It is very easy to verify that the function G([Ps, Pr],λ)

satisfies Lemma 3 (see Page 5).

Replacing PrPs in (5.17) by G([Ps, Pr],λ), the relaxed constraint is expressed

as

α1Ps + α2Pr +
α3

2λ
P 2
s +

α3λ

2
P 2
r + α4P

2
r ≤ 0, (5.19)

which can be proved as a convex constraint by the Hessian function [89].

The proposed SPCA-Dinkelbach algorithm is depicted as Algorithm 2. The
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Algorithm 2 SPCA-Dinkelbach Algorithm

1: Set I0max (maximum number of outer iterations),
ϵo > 0 (convergence tolerance of outer iterations),

2: Set I lmax (maximum number of inner iterations),
ϵl > 0 (convergence tolerance of inner iterations),

3: q1 = 0 and q0 = 1,
4: λ(1) = 0 and λ(0) = 1.
5: i← 1.
6: while qi − qi−1 > ϵo and i < Imax do
7: while |λ(l) − λ(l−1)| > ϵl and l < I lmax do
8: Using the standard convex optimization (e.g., interior-point method) to

solve the problem
max
Ps,Pr

F (qi) = RDF,2(Ps, Pr)− qiPT (Ps, Pr),

s.t. (5.13), (5.14), and (5.19).

Obtain the optimal transmission powers P (l)
s and P (l)

r .
9: λ(l+1) ← P (l)

s /P (l)
r .

10: l ← l + 1.
11: end while
12: qi ← R(P (l−1)

s , P (l−1)
r )/PT (P

(l−1)
s , P (l−1)

r ).
13: i← i+ 1.
14: end while
15: return

algorithm is a dual iterative algorithm, in which the outer iteration is based on

the Dinkelbach method and the inner iteration is based on SPCA. Although SPCA

is converged to a solution satisfying the KKT conditions (i.e., local optimum is

achieved), we find through extensive numerical simulations that the solution is in fact

the global optimum. However, the global optimum cannot be derived theoretically

so far.
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5.3 Simulation Results

This section presents the results of applying the proposed SPCA-Dinkelbach algo-

rithm to the FD relay system. The reference distance is D0 = 1 m. The distance

between the source and the destination is 10 m, and the relay is at the mid-point of

the line connecting the source and the destination. The path-loss exponent is m = 3

and the noise power is σ2
z = 10−6. The power consumption of circuitry is Pc = 20

dBm [116]. The convergence tolerance ϵo and ϵl are set as ϵ = 10−5. The results

are retrieved by averaging over 1000 different channel realizations. We assume that

the optimization process would be finished within one channel realization such that

adaptive power can be optimally assigned from the source to the relay.

5.3.1 Convergence of the Proposed Algorithm

Fig. 5.2 illustrates the convergence behavior of the proposed SPCA-Dinkelbach al-

gorithm. As seen in Fig. 5.2, the proposed algorithm converges to the optimal value

within five outer iterations. We also study the number of inner iterations required

during the second outer iteration. We find that the SPCA method converges within

five inner iterations. The result demonstrates that the proposed algorithm indeed

obtains the global optimal solution, even though the SPCA method only reaches the

KKT conditions theoretically. We also find that the convergence speed is not highly

related to β (the self-interference attenuation factor) in both inner and outer iter-

ations. It is trivial to obtain that the computational complexity of the exhaustive

search algorithm is proportional to 1/ϵ = 105. It is hard to derive the computational

complexity of the SPCA-Dinkelbach method directly. However, based on the sim-
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ulation results seen in Fig. 5.2, we can see that the maximal number of iterations

of the outer iteration and the inner iteration in the SPCA-Dinkelbach method are

both fixed as 4. In addition, the computational complexity of interior-point method

to solve the convex problem in step 8 of algorithm 2 is n3.5 log(1/ϵ) [89], in which n

represents the number of optimized variables. To sum up, in this our optimization

problem, the approximate computational complexity is 4 ∗ 4 ∗ 23.5 log(1/ϵ) = 905

which is much lower than that of exhaustive search algorithm.

5.3.2 Effects of Pmax and β on Average EE

Fig. 5.3 illustrates the average EE against Pmax for EE-maximization and rate-

maximization schemes with different β. The EE-maximization scheme is imple-

mented by our proposed SPCA-Dinkelbach algorithm. It can be observed in Fig. 5.3

that the average EE increases upon increasing Pmax, and remains unchanged when

Pmax reaches a certain threshold. Specifically, when Pmax is larger than 25 dBm,

the average EE no longer increases under our simulation settings. It can be also

obtained that the average EE increases as β decreases. When β equals −70 dBm

and −90 dBm, the average EE under the settings are nearly the same. It implies

that when β is very low and the total power is high (in our simulation β = −70

dB and Pmax = 25 dBm), the optimal average EE does not change. In order to

further exploit the performance improvement of EE-maximization scheme, we con-

sider the rate-maximization scheme as a comparison. The rate-maximisation scheme

is achieved by the similar procedure in Algorithm 2 except for choosing qi = 0,

which means that the outer iteration of Algorithm 2 is not needed. In the rate-

maximization scheme, when Pmax increases, the average EE first increases and then

178



decreases. As the metric is average EE, the EE-maximization scheme is always bet-

ter than or equal to the rate-maximization scheme. Interestingly, at low Pmax, the

results are the same except for β = −10 dB. The reason is that at low Pmax, the total

power constraint is always satisfied with equality, i.e., the source and relay would

utilize the total power. Then, according to the expression of energy consumption in

(5.9), the consumed power is always constant, i.e., Pmax + Pc, which is also verified

by our simulations. Due to the limited space, the corresponding simulation results

are not given. Thus, we can conclude that the average EE of the EE-maximization

scheme is equivalent to that of rate-maximization scheme.

5.3.3 Effects of Pmax and β on Average Achievable Rate

We then compare the EE-maximization scheme with the rate-maximization scheme

for the performance metrics of EE and achievable rate. In Fig. 5.4, it is obvious

that the rate-maximization scheme can have better achievable rate than the EE-

maximization scheme. As a sequel, The EE-maximization scheme has a performance

degradation in terms of rate. Besides, it can be obtain that the EE-maximization

scheme keeps constant achievable rate in high SNR region, specifically when the

SNR is larger than 25dB. Combining with the results in Fig. 5.3, we can conclude

that when the maximal total transmit power is increased, the actual total transmit

power will be firstly increased and then fixed, which is similar as the performance

metric of EE. Interestingly, we find that the achievable rate in β = −10dB and

β = −30dB are almost the same while the EE in β = −30dB is larger than that

in β = −10dB. This fact explains that the higher the self-interference is, the more

power would be consumed. However, when the self-interference is very low, i.e.,
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Figure 5.2: Convergence of the SPCA-Dinkelbach algorithm (Pmax = 30 dBm).

β = −70dB and β = −90dB, the performance of achievable rate and EE are nearly

the same.

5.4 Summary

In this chapter, energy efficiency of a full-duplex relay system under the total power

constraint and fixed circuitry power consumption has been studied. The formulated

optimization problem is transformed into an equivalent problem which is decom-
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posed into two subproblems. The first subproblem is solved by the traditional

Dinbelbach’s method. Then, a dual iterative algorithm called SPCA-Dinbelbach

method is used to solve the second subproblem. Simulation results show that the

proposed algorithm can converge to the global optimum at different levels of self-

interference.
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Appendix 5.A Lemma 5.1

It is straightforward that if Gsd ≥ Gsr, R(Ps, Pr) = RD(Ps) according to (5.7). Thus,

the problem can be simplified to

Ueff =
RD(Ps)

PT (Ps, Pr)
=

RD(Ps)

PT (Ps, 0)
. (5.20)

As a result, we need to solve P2.1 when Gsd ≥ Gsr.
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When Gsd < Gsr, we have

Ueff =
RDF(Ps)

PT (Ps, Pr)

=
min{RDF,1(Ps, Pr), RDF,2(Ps, Pr)}

PT (Ps, Pr)
. (5.21)

We firstly give some lemmas before proving P2.2 which are obvious.

Lemma 5.3. RDF,1(Ps, Pr) is an increasing function with respect to (w.r.t.) Ps, and

a decreasing function w.r.t. Pr.

Lemma 5.4. i) PT (Ps, Pr) is an increasing function w.r.t. Ps and Pr; ii) PT (Ps, Pr)

is also a linear function w.r.t. Ps, Pr.

We are now ready to prove P2.2.

Proof of P2.2: We prove it by self-contradiction. For the sake of notational

simplicity, we define the constraint set as F . We assume that {P ∗
s , P

∗
r } ∈ F as the

optimal policy with the following constraint:

RDF,1(P
∗
s , P

∗
r ) < RDF,2(P

∗
s , P

∗
r ). (5.22)

The optimal energy efficiency U∗
eff is therefore expressed as

U∗
eff =

min{RDF,1(P ∗
s , P

∗
r ), RDF,2(P ∗

s , P
∗
r )}

PT (P ∗
s , P

∗
r )

=
RDF,1(P ∗

s , P
∗
r )

PT (P ∗
s , P

∗
r )

. (5.23)

According to Lemma 2 and 3, RDF,1(P ∗
s , P

∗
r ) is a decreasing function of P ∗

r

and PT (P ∗
s , P

∗
r ) is an increasing function of P ∗

r . Consequently, based on (5.23), U∗
eff
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should be optimal when P ∗
r = 0. Substituting P ∗

r = 0 into (5.4) and (5.5) gives

RDF,1(P
∗
s , P

∗
r ) = log2(1 + P ∗

sGsr), (5.24)

RDF,2(P
∗
s , P

∗
r ) = log2(1 + P ∗

sGsd). (5.25)

Since it is given thatGsd < Gsr, the above results indicate RDF,1(P ∗
s , P

∗
r ) > RDF,2(P ∗

s , P
∗
r ),

which is contradictory to our assumption in (5.22). In conclusion, under any P ∗
r in

the optimal solution, RDF,1 is larger than RDF,2. Therefore, we prove that P2 is

equivalent to P1.

Appendix 5.B Dinkelbach’s Method

Consider a fractional programming problem

max
x∈S0

R(x)/PT (x)

s.t. g(x) ≤ 0.

(5.26)

This problem is formed by denoting the objective function value as q so that a

subtractive form of the objective function can be written as

F (q) = max{R(x)− qPT (x))|g(x) ≤ 0}, q ∈ R. (5.27)

Additionally, it requires that PT (x) > 0 for all x ∈ S where S is the feasible set of

x. Then, the function F (q) has a series of important properties which are given in

[114]. Explicitly, the solution to F (q∗) is equivalent to the solution to the fractional

programming problem (5.26). Dinkelbach has proposed an iterative method to find
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increasing q values, which are feasible, by solving the parameterized problem of

max
x

{R(x− qi−1PT (x))} at each iteration. Hence, it can be shown that the method

produces an increasing sequence of q values, which converges to the optimal value

F (q∗) = 0. Each iteration corresponds to solving max
x

{R(x) − qi−1PT (x)}, where

qi−1 is a given value of the parameter q, to obtain the optimum value x∗ at the ith

iteration of the Dinkelbach’s method. For more details and the proof of convergence,

please refer to [114].
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

To wireless communication engineers and scientists, the challenge of developing

faster communication systems is not to increase the transmission rates of the point-

to-point channels of a network anymore, but to increase the overall throughput

of the network by guiding the information streams within the network efficiently.

By considering full-duplex, the wireless networks would have a huge improvement

compared with the half-duplex networks.

In this thesis, we have investigated full-duplex MIMO/OFDMA multi-user sys-

tems. Specifically, we have provided an optimization framework for the resource

allocation problem of full-duplex multi-user OFDMA cellular systems with one full-

duplex base station communicating with multiple half-duplex users in a bidirectional

way. Simulation results show that when self-interference is low, uplink and downlink

user-pairing can provide significant improvement on the system sum-rate compared
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to the conventional unidirectional half-duplex transmission. In addition, by consid-

ering two different network deployments, i.e., urban macro cell scenario and small

cell scenario, we show that the improvement of full-duplex transmission over half-

duplex transmission highly depends on the channel parameters.

We have further investigated the joint optimization problem of transmission

mode selection, subcarrier assignment, relay selection, subcarrier-pairing as well

as power allocation in the DL of a cooperative OFDMA system. Simulation re-

sults show that our proposed algorithm can significantly enhance the overall system

throughput compared to previous works.

Furthermore, we have exploited the potential performance gain of full-duplex

multi-user MIMO system. We have investigated the max-min weighted SINR prob-

lem in a full-duplex multi-user MIMO system, where each user is equipped with a

single antenna. We have considered a practical scenario in which the downlink min-

imum weighted SINR is maximized under some target SINR constraints for uplink

users. Simulation results show that our proposed algorithm has a fast convergence

rate and leads to a better performance compared to other optimization techniques

that do not jointly considered all parameters.

Finally, we have proposed an optimization method for the energy efficiency of

full-duplex relaying systems. Simulation results show that the proposed algorithm

can converge to the global optimum very quickly.

6.2 Future Directions

In the following, we propose some possible future research directions.
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• The average sum-rate [49, 97, 117] and goodput [100, 101] have been selected as

the performance metrics in full-duplex multi-user OFDMA cellular systems. In

the future, other constraints such as rate and usage fairness can be considered

in the system model. Outage probability and diversity gain with appropriate

user-selection can also be evaluated in a full-duplex multiuser cellular system.

• Full-duplex transmission mode without subcarrier-pairing in multi-user OFDMA

cooperative relaying systems has been investigated here. It is worth investi-

gating systems in which subcarrier-pairing is considered. While the problem

becomes much more complicated, the solution should provide an enhanced

throughput.

• As IC design and antenna technology advance, equipping multiple antennas

in mobile devices will soon become more practical. Thus, extending our opti-

mization frameworks to users with multiple antennas will be of great interest

to the research community and industry.

• Full-duplex technology can be applied to both relays and base station. There-

fore, the study of full-duplex base station together with full-duplex relaying in

a cooperative network should be pursued in the future.
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