

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

HARDWARE/SOFTWARE CODESIGN FOR

PERFORMANCE AND LIFETIME ENHANCEMENT

IN NAND-FLASH-BASED EMBEDDED

STORAGE SYSTEMS

 RENHAI CHEN

Ph.D

 The Hong Kong Polytechnic University

 2016

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

Hardware/Software Codesign for Performance and

Lifetime Enhancement in NAND-Flash-based

Embedded Storage Systems

By

RENHAI CHEN

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

May 2016

ABSTRACT

Embedded systems (e.g. smartphones) have become an integral part in peoples’ daily life.

In the last several years, most of efforts in improving embedded systems have been focusing

on enhancing the network performance and CPU speed. On the other hand, the performance

of NAND-flash-based storage in embedded systems is stagnant, and has become one of the

major performance bottlenecks in embedded systems. Even worse, the performance and

lifetimes of NAND flash memory are substantially degraded with the advent of multi-level

cell and triple-level cell flash memory for increasing the capacity. In this thesis, we have

addressed these issues from several aspects including the integration of the emerging hard-

ware and the cross-layer software management for the optimization of the performance and

lifetime.

First, we focus on employing the self-healing NAND flash memory to improve the

lifetime and performance. Researchers have recently discovered that heating can cause worn-

out NAND flash cells to become reusable and greatly extend the lifetime of flash memory

cells. However, the heating process consumes a substantial amount of power, and some

fundamental changes are required for existing NAND flash management techniques. In par-

ticular, all existing wear-leveling techniques are based on the principle of evenly distributing

writes and erases. For self-healing NAND flash, this may cause NAND flash cells to be worn

out in a short period of time. Moreover, frequently healing these cells may drain the energy

quickly in battery-driven mobile devices, which is defined as the concentrated heating prob-

lem. We propose a novel wear-leveling scheme called DHeating (Dispersed Heating) to ad-

dress the problem. In DHeating, rather than evenly distributing writes and erases over a time

period, write and erase operations are scheduled on a small number of flash memory cells at

a time, so that these cells can be worn out and healed much earlier than other cells. In this

iii

way, we can avoid quick energy depletion caused by concentrated heating. In addition, the

heating process takes several seconds and has become the new performance bottleneck. In

order to address this issue, we propose a lazy heating repair scheme. The lazy heating repair

scheme can ease the long time heating effect by delaying the heating operation and using the

system idle time to repair. Furthermore, the flash memory’s reliability becomes worse with

the flash memory cells reaching the expected worn-out time. We propose an early heating

strategy to solve the reliability problem. With the extended lifetime provided by self-healing,

we can trade some lifetimes for reliability. The idea is to start the healing process earlier than

the expected worn-out time. We evaluate our scheme based on an embedded platform. The

experimental results show that the proposed scheme can effectively prolong the consecutive

heating time interval, alleviate the long time heating effect, and enhance the reliability for

self-healing flash memory.

Second, we jointly optimize the NAND flash memory’s lifetime and performance

with the integration of NVMs. Novel NVMs (non-volatile memories), such as PCM (Phase

Change Memory) and STT-RAM (Spin-Transfer Torque Random Access Memory), can pro-

vide fast read/write operations. In this thesis, we propose a unified NVM/flash architecture to

improve the I/O performance. A transparent scheme, vFlash (Virtualized Flash), is also pro-

posed to manage the unified architecture. Within vFlash, inter-app and intra-app techniques

are proposed to optimize the application performance by exploiting the historical locality

and I/O access patterns of applications. Since vFlash is on the bottom of the I/O stack, the

application features will be lost. Therefore, we also propose a cross-layer technique to trans-

fer the application information from the application layer to the vFlash layer. The proposed

scheme is evaluated based on an Android platform, and the experimental results show that

the proposed scheme can effectively improve the I/O performance of mobile devices.

Third, we study the problem of performance and lifetime enhancement in the mobile

virtualization environment. Mobile virtualization introduces extra layers in software stacks,

which leads to performance degradation. Especially, each I/O operation has to pass through

iv

several software layers to reach the NAND-flash-based storage systems. This thesis targets

at optimizing I/O for mobile virtualization, since I/O becomes one of major performance

bottlenecks that seriously affects the performance of mobile devices. Among all the I/O

operations, a large percentage is updating metadata. Frequent updating metadata not only

degrades overall I/O performance but also severely reduces flash memory lifetime. In this

thesis, we propose a novel I/O optimization technique to identify the metadata of a guest file

system which is stored in a VM (Virtual Machine) image file and frequently updated. Then,

these metadata are stored in a small additional NVM (Non-Volatile Memory) which is faster

and more endurable to greatly improve flash memory’s performance and lifetime. To the best

of our knowledge, this is the first work to identify the file system metadata from regular data

in a guest OS VM image file under mobile virtualization. The proposed scheme is evaluated

on a real hardware embedded platform. The experimental results show that the proposed

techniques can improve write performance to 45.21% in mobile devices with virtualization.

Keywords: NAND flash memory, self-healing, wear leveling, non-volatile memory, mobile

virtualization, power consumption.

v

PUBLICATIONS

Journal Papers

1. Renhai Chen, Yi Wang, Duo Liu, Zili Shao, and Song Jiang, ”Heating Dispersal for

Self-Healing NAND Flash Memory”, Accepted in IEEE Transactions on Computers

(TC), 2016.

2. Renhai Chen, Yi Wang, Jingtong Hu, Duo Liu, Zili Shao, and Yong Guan, ”Image-

Content-Aware I/O Optimization for Mobile Virtualization”, Accepted in ACM Trans-

actions on Embedded Computing Systems (TECS), 2016.

3. Yi Wang, Zhiwei Qin, Renhai Chen, Zili Shao, and Laurence T. Yang, ”An Adaptive

Demand-Based Caching Mechanism for NAND Flash Memory Storage Systems”, Ac-

cepted in ACM Transactions on Design Automation of Electronic Systems (TODAES),

2016.

4. Yi Wang, Zhiwei Qin, Renhai Chen, Zili Shao, Qixin Wang, Shuai Li, and Laurence

T. Yang, ”A Real-Time Flash Translation Layer for NAND Flash Memory Storage

Systems”, Accepted in IEEE Transactions on Multi-Scale Computing Systems (TM-

SCS), 2016.

5. Renhai Chen, Zhaoyan Shen, Chenlin Ma, Zili Shao, Yong Guan, ”NVMRA: Utiliz-

ing NVM to Improve the Random Write Operations for NAND-Flash-Based Mobile

Devices”, Software: Practice and Experience (SPE), 46: 1263-1284, 2016.

6. Renhai Chen, Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, Yong Guan, ”On-Demand

Block-Level Address Mapping in Large-Scale NAND Flash Storage Systems”, IEEE

Transactions on Computers (TC), vol.64, no.6, pp. 1729-1741, 2015.

vi

7. Hongxing Wei, Zhenzhou Shao, Zhen Huang, Renhai Chen, Yong Guan, Jindong

Tan, Zili Shao, RT-ROS: A Real-time ROS Architecture on Multi-Core Processors”,

Accepted in Future Generation Computer Systems (FGCS), 2015.

8. Yi Wang, Zhiping Jia, Renhai Chen, Meng Wang, Duo Liu, Zili Shao, ”Loop Schedul-

ing with Memory Access Reduction Subject to Register Constraints for DSP Applica-

tions”, Software: Practice and Experience (SPE), vol. 44, issue 8, pp. 999-1026,

2014.

Conference Papers

1. Renhai Chen, Zili Shao, and Tao Li, ”Bridging the I/O Performance Gap for Big

Data Workloads: A New NVDIMM-based Approach”, 49th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO 2016), Taipei, Taiwan, October

15-19, 2016.

2. Renhai Chen, Zili Shao, Chia-Lin Yang, Tao Li, ”MCSSim: A Memory Channel

Storage Simulator”, 21th ACM/IEEE Asia and South Pacific Design Automation Con-

ference (ASP-DAC), Macau, China, January 25-28, 2016.

3. Renhai Chen, Yi Wang, Jingtong Hu, Duo Liu, Zili Shao, Yong Guan, ”Virtual Ma-

chine Image Content Aware I/O Optimization for Mobile Virtualization”, 12th IEEE

International Conference on Embedded Software and Systems (ICESS), New York,

USA, August 24-26, 2015.

4. Renhai Chen, Yi Wang, Jingtong Hu, Duo Liu, Zili Shao, Yong Guan, ”Unified

Non-Volatile Memory and NAND Flash Memory Architecture in Smartphones”, 20th

ACM/IEEE Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba/

Tokyo, Japan, January 19-22, 2015.

vii

5. Renhai Chen, Yi Wang, Jingtong Hu, Duo Liu, Zili Shao, Yong Guan, ”Virtual-

Machine Metadata Optimization for I/O Traffic Reduction in Mobile Virtualization”,

IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA), Chongqing,

China, August 20-21, 2014.

6. Renhai Chen, Yi Wang, Zili Shao, ”DHeating: Dispersed Heating Repair for Self-

Healing NAND Flash Memory”, ACM/IEEE International Conference on Hardware-

Software Codesign and System Synthesis (CODES+ISSS), Montreal, Canada, Septem-

ber 29- October 4, 2013.

7. Chi Zhang, Yi Wang, Tianzheng Wang, Renhai Chen, Duo Liu, Zili Shao, ”Deter-

ministic Crash Recovery for NAND Flash based Storage Systems”, 51st ACM/IEEE

Design Automation Conference (DAC), San Francisco, CA, USA, June 1-5, 2014.

8. Yi Wang, Renhai Chen, Zili Shao, Tao Li, ”SolarTune: Real-Time Scheduling with

Load Tuning for Solar Energy Powered Multicore Systems”, 19th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),

Taipei, Taiwan, August 19-21, 2013.

9. Yong Guan, Guohui Wang, Yi Wang, Renhai Chen, Zili Shao, ”BLog: Block-level

Log-block Management for NAND Flash Memory Storage Systems”, ACM SIGPLAN/

SIGBED Conference on Languages, Compilers and Tools for Embedded Systems (LCTES),

Seattle, Washington, June 20-21, 2013.

viii

ACKNOWLEDGEMENTS

First and foremost, I want to express my gratitude to my supervisor, Prof. Zili Shao, whose

expertise, understanding, and patience, added considerably to my Ph.D. study. I appreciate

his vast knowledge and skill in many areas and his professional supervision. It is my great

pleasure to work with Prof. Shao, and I want to thank him for supporting me over the years,

and for giving me so much freedom to explore and discover new areas of research. Without

his help and support, this body of work would not have been possible.

I also want to thank the other members of Prof. Shao’s research group - Yi Wang,

Zhiwei Qin, Duo Liu, Qi Zhang, Tianzheng Wang, Junhui Wang, Min Huang, Zhaoyan Shen,

Chenlin Ma, and Yimei Kang - for the assistance they provided during my Ph.D. study. I

also would like to thank all my teachers from whom I learned so much in my long journey

of formal education.

I want to thank Prof. Chun Bun Henry CHAN from the Hong Kong Polytechnic

University for kindly being the Chairman of the Board of Examiners (BoE), and the exter-

nal examiners for taking their precious time to review my thesis and provide the valuable

comments.

I recognize that this thesis would not have been possible without the financial as-

sistance from the Hong Kong Polytechnic University. I appreciate Prof. Shao and the

Department of Computing for offering me the travel grants to attend several international

conferences.

Finally, I want to thank my family. They educated and guided me and have watched

over me every step of way. I want to thank them for their care and love, support, and encour-

agement through my entire PhD study, for letting me pursue my dream for so long and so far

ix

away from home, and for giving me the motivation to finish this thesis. Special thanks to my

wife, who witnesses the joys and sorrows of my PhD study miles away. I am grateful for her

endless love, patience, understanding and support.

x

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY. ii

ABSTRACT . iii

PUBLICATIONS . vi

ACKNOWLEDGEMENTS . ix

LIST OF FIGURES . xiv

LIST OF TABLES . xvi

CHAPTER 1. INTRODUCTION. 1

1.1 Related Work . 3

1.1.1 Wear Leveling . 3

1.1.2 Non-Volatile Memory Integration . 4

1.1.3 Software Managed Flash . 5

1.2 The Unified Research Framework . 6

1.3 Contributions . 9

1.4 Organization . 10

CHAPTER 2. HEATING DISPERSAL FOR SELF-HEALING NAND FLASH MEM-
ORY . 11

2.1 Overview . 11

2.2 Background and Motivation . 13

2.2.1 NAND Flash Memory and Worn Out . 13

2.2.2 Self-Healing NAND Flash Memory and Heating Repair 15

2.2.3 The Architecture of Self-Healing NAND Flash Memory 16

2.2.4 Motivating Example . 18

2.3 The DHeating Scheme . 19

2.3.1 Overview . 19

2.3.2 Dispersed Heating . 20

2.3.3 Lazy Heating Repair . 24

xi

2.3.4 Early Heating . 26

2.3.5 DHeating Working with NFTL . 27

2.3.6 Performance and Overhead Analysis . 29

2.4 Evaluation . 30

2.4.1 Experimental Setup . 30

2.4.2 Results and Discussion . 32

2.5 Summary . 41

CHAPTER 3. VIRTUALIZED FLASH FOR OPTIMIZING THE I/O PERFORMANCE
IN MOBILE DEVICES . 43

3.1 Introduction . 43

3.2 Background . 45

3.2.1 The Android I/O System Architecture . 45

3.2.2 I/O Bottleneck and Non-Volatile Memory . 46

3.2.3 Transparent Integration . 48

3.3 vFlash Design . 49

3.3.1 Overview . 49

3.3.2 Cross Layer Management . 51

3.3.3 Inter-app and Intra-app Management . 54

3.3.4 Adaptive Space Preparation . 56

3.4 Performance and Overhead Analysis . 59

3.5 Evaluation . 61

3.5.1 Experimental Setup . 62

3.5.2 Results and Discussion . 64

3.6 Summary . 71

CHAPTER 4. IMAGE-CONTENT-AWARE I/O OPTIMIZATION FOR MOBILE VIR-
TUALIZATION . 73

4.1 Introduction . 73

4.2 Background . 75

4.2.1 NAND Flash Memory and PCM. 76

4.2.2 Storage Architecture . 77

4.2.3 Metadata Analysis . 77

4.3 Motivation . 83

4.3.1 Metadata Effect . 83

4.3.2 Motivational Example . 85

xii

4.4 VM Image File Content Aware Design . 87

4.4.1 Overview . 87

4.4.2 VM Image File Content Aware Scheme . 89

4.4.3 Metadata Identification . 91

4.5 Performance and Overhead Analysis . 93

4.6 Evaluation . 96

4.6.1 Experimental Setup . 96

4.6.2 PCM and NAND Flash Memory Models . 98

4.6.3 Results and Discussion . 98

4.7 Summary . 104

CHAPTER 5. CONCLUSION AND FUTURE WORK. 105

5.1 Conclusion . 105

5.2 Future Work . 106

REFERENCES . 108

xiii

LIST OF FIGURES

1.1 The Unified Research Framework. 7

2.1 The structure of a traditional NAND flash memory cell. 13

2.2 Illustration on wearing of a flash memory cell caused by (a) the programming
operation, and (b) the erase operation. 14

2.3 The structure of a self-healing NAND flash memory storage cell. (a) 3D
vision. (b) 2D vision. 15

2.4 A comparison of worn out flash memory and healed flash memory. (a) The
worn out flash memory storage cell. (b) The healed flash memory cell. 16

2.5 (a) FTL-based self-healing NAND flash memory storage systems. (b) Flash-
file-system-based self-healing NAND flash memory storage systems. 17

2.6 Motivating example. 18

2.7 Dispersed heating scheme. 19

2.8 Illustration on the procedure of lazy heating repair. 25

2.9 The raw bit error rate with different P/E cycles [42]. 26

2.10 The early heating strategy for reliability. 26

2.11 Illustration of the dispersed heating scheme working with NFTL [19]. 28

2.12 Experimental platform. (a) The top layer of our experimental platform. (b)
The core development board. 31

2.13 The evaluation framework of DHeating. 32

2.14 The consecutive heating time interval of SWL and DHeating over six appli-
cations (part1). 35

2.15 The consecutive heating time interval of SWL and DHeating over six appli-
cations (part2). 36

2.16 The lazy heating repair effect with running the File Copy application. (a)
The baseline scheme without lazy heating repair. (b) The lazy heating repair
technique with 60s heating period. (c) The lazy heating repair technique
with 600s heating period. 38

2.17 The consecutive heating time intervals of DHeating over the File Copy ap-
plication with different lifetimes. 40

3.1 The I/O system architecture of Android mobile devices. 46

3.2 Two usage methods of non-volatile memory. 48

3.3 The storage architecture with NVM integration. 49

3.4 The disk cache effect. 50

xiv

3.5 Disk cache in the file system. 51

3.6 Data organization in the block device driver. 53

3.7 The data organization with the inter-app and intra-app technologies. 54

3.8 Experimental Android platform. 62

3.9 The I/O characterization with running (a) the WeChat application, and (b)
the Facebook application. 65

3.10 The I/O performance by comparing the baseline schemes with the vFlash
scheme (the first user). 66

3.11 The I/O performance by comparing the baseline schemes with the vFlash
scheme (the second user). 67

3.12 The I/O performance by comparing the baseline schemes with the vFlash
scheme (the third user). 67

3.13 Illustration of the I/O energy consumption (the first user). 69

3.14 Illustration of the I/O energy consumption (the second user). 69

3.15 Illustration of the I/O energy consumption (the third user). 70

3.16 The performance degradation caused by the space preparation. 71

4.1 The storage architecture of mobile virtualization. 78

4.2 The qcow2 VM image file format with the ext4 file system. 79

4.3 A file creation procedure in a VM image file. 80

4.4 A file deletion procedure in a VM image file. 80

4.5 A file content increase procedure in a VM image file. 81

4.6 A file content shrink procedure in a VM image file. 82

4.7 The number of the logical block updates when running the facebook appli-
cation. 83

4.8 A motivational example of I/O optimization in mobile virtualization. 84

4.9 Three possible ways of integrating NVM into virtualization environment. 87

4.10 VM image file content aware scheme. 89

4.11 Two level address mapping in qcow2 image file. 90

4.12 Padding flag strategy to classify metadata from regular data. 93

4.13 The I/O performance with different number of VMs. 101

4.14 Comparison of all write requests and data updates in PCM with different
number of VMs. 102

xv

LIST OF TABLES

2.1 The characteristics of the applications. 33

2.2 Average heating time interval. 33

2.3 Extra valid page copies. 37

2.4 Extra block erasures. 37

2.5 A reliability comparison of early heating over different applications with
different reduced lifetimes. 41

3.1 The characteristics of NAND flash memory and non-volatile memory [31,
49, 87, 104]. 47

3.2 The description of symbols used in analysis. 59

3.3 The Android applications and their usage. 63

4.1 The characteristics of NAND flash memory and PCM [18, 31, 76, 104]. 76

4.2 The Android applications and their usage. 97

4.3 The I/O requests with different numbers of VMs (part 1). 99

4.4 The I/O requests with different numbers of VMs (part 2). 100

4.5 The I/O energy consumption with different numbers of VMs. 103

xvi

CHAPTER 1

INTRODUCTION

NAND-flash-based storage device has been widely used in mobile devices due to its attrac-

tive features, such as low cost and high density. However, with the advent of multi-level

cell (MLC)/triple level cell (TLC) NAND flash technology, several constraints are exposed,

particularly, limited lifetime and lengthy response time. For example, TLC flash mem-

ory can only withstand 2,500 program/erase (P/E) cycles, and the program latency is up

to 5ms [9, 29, 39, 65, 66]. In mobile devices, the lifetime of other components is usually

much longer than that of the flash device, such as unlimited read/write cycles of DRAM-

based main memory [76]. In addition, the network performance (e.g. 802.11ad with 7Gbps

peak throughput) and CPU speed in embedded systems have been greatly improved in the

last several years, while the performance of NAND-flash-based storage in embedded sys-

tems is stagnant. As a result, flash-based storage has become one of the major lifetime and

performance bottlenecks in mobile devices.

In this thesis, we address the short lifetime and lengthy response time issues from sev-

eral aspects including the integration of the emerging hardware and the cross-layer software

management for the optimization. Specifically, we employ two emerging hardware, self-

healing NAND flash memory and non-volatile memory, to improve the flash lifetime and

performance. These hardware can provide much faster access speed and longer read/write

cycles compared with the state-of-the-art flash memory, while also introduces new challenges

to well utilize these new hardware. For example, to extend the flash lifetime, researchers at

Macronix invent a self-healing flash memory [64], which can cause worn-out NAND flash

cells to become reusable and greatly prolong the lifetime of flash memory cells. However, the

heating process consumes a substantial amount of power. This means that some fundamen-

tal changes are required if existing NAND flash management techniques are to be applied

1

in self-healing NAND flash memory. In particular, all existing wear-leveling techniques are

based on the principle of evenly distributing writes and erases. This causes NAND flash

cells tend to wear out in a short time period. Moreover, healing these cells in a concentrated

manner may cause power outages in mobile devices.

We first employ self-healing flash memory to improve the flash lifetime and perfor-

mance. With the self-healing flash memory integration, a new wear-leveling scheme called

DHeating (Dispersed Heating) is proposed to solve the concentrated heating problem in self-

healing flash memory. In DHeating, rather than evenly distributing writes and erases during

a certain time period, write and erase operations are concentrated on a small portion of flash

memory cells, so that these cells can be worn-out and healed by heating first. In this way,

we can disperse healing to avoid the problem of concentrated power usage caused by heating

and eliminate the performance degradation caused by the traditional wear leveling strategies.

Furthermore, with the very long lifetime that results from self-healing, we can sacrifice life-

time for reliability. Therefore, we propose an early heating strategy to solve the reliability

problem caused by concentrated heating. The idea is to start the healing process earlier by

heating NAND flash cells before their expected endurance.

Second, we exploit the novel NVMs (non-volatile memories), such as PCM (Phase

Change Memory) and STT-RAM (Spin-Transfer Torque Random Access Memory), to en-

hance the flash lifetime and performance. In this thesis, we propose a unified NVM/flash

architecture to improve the I/O performance. A transparent scheme, vFlash (Virtualized

Flash), is also proposed to manage the unified architecture. Within vFlash, inter-app tech-

nique is proposed to optimize the application performance by exploiting the historic locality

of applications. Since vFlash is on the bottom of the I/O stack, the application features

will be lost. Therefore, we also propose a cross-layer technique to transfer the application

information from the application layer to the vFlash layer.

Third, mobile virtualization introduces extra layers in software stacks, which leads to

performance degradation. Especially, each I/O operation has to pass through several software

layers to reach the NAND-flash-based storage systems. Among all the I/O operations, a large

2

percentage is updating metadata. Frequent updating metadata not only degrades overall I/O

performance but also severely reduces flash memory lifetime. In this thesis, we propose

a novel I/O optimization technique to identify the metadata of a guest file system which

are stored in a VM image file and frequently updated. Then these metadata are stored in a

small additional NVM (non-volatile memory) which is faster and more endurable to greatly

improve flash memory’s performance and lifetime. To the best of our knowledge, this is the

first work to identify the file system metadata from regular data in a guest OS VM image file

under mobile virtualization.

The rest of this chapter is organized as follows. Section 1.1 presents the related

work. Section 1.2 discusses the unified research framework. Section 1.3 summarizes the

contributions of this thesis. Finally, Section 1.4 gives the outlines of the thesis.

1.1 Related Work

In this section, we describe the state-of-the art work related to NAND-flash-based storage

systems. We briefly introduce these schemes, and compare with representative techniques in

detail in respective chapters.

1.1.1 Wear Leveling

The principle in existing wear-leveling techniques is to evenly distribute writes and erases.

Basically, data are classified as hot or cold data according to data update times, while phys-

ical blocks are divided into old or young blocks. To evenly disperse erasures to all physical

blocks, hot and cold data are allocated to young and old physical blocks, respectively. Exist-

ing techniques can be further divided into two categories: static and dynamic.

With the dynamic strategy, wear leveling is achieved by reclaiming young blocks or

blocks with small P/E times, while with the static strategy cold data are swapped with hot

data so cold data cannot stay in young blocks for a long time [14, 15, 19]. In dynamic wear

leveling, if a young block is occupied by cold data but no update has occurred for a long time,

3

it will not be recycled and other blocks will be worn-out by updates of hot data. Therefore,

static wear leveling is proposed to overcome the shortage of dynamic wear leveling.

SWL is a typical static wear-leveling strategy proposed in [19]. In this strategy, a BET

(Block Erasing Table) is used to record which block has been erased in a pre-determined time

frame. In order to save memory space, a one-to-many mapping mode is adopted in SWL.

That is, one BET flag can be shared by 2k physical blocks. If one of the 2k physical blocks

is erased, the corresponding BET flag is set at 1. At the same time, two numbers, fcnt and

ecnt, are used to record the number of 1 in the BET and the total number of block erases done

since the BET was reset, respectively. When the ratio of fcnt and ecnt is equal to or larger

than a threshold T, which means that some level of unevenness has occurred or many erases

have been done on a small portion of blocks, SWL will find out those used blocks whose

corresponding BET flag is 0, and these blocks will be swapped with old blocks. SWL can

effectively achieve wear leveling with a small space overhead. Therefore, in this paper, we

compare our method with SWL.

1.1.2 Non-Volatile Memory Integration

Non-volatile memory (NVM) has drawn a lot of attentions due to its attractive features, such

as high density, fast access speed, and low leakage power, which makes NVM as a promising

candidate to replace DRAM. However, compared with DRAM, PCM consumes more energy

than that of DRAM and can only sustain limited program cycles. So, the state-of-the-art

work mainly focuses on overcoming these issues for NVMs to be integrated into the main

memory systems. Current researches that aim to overcome these two challenging issues

are mainly classified into two categories. The first category focuses on reducing the total

number of writes to NVM. The second category targets on evenly distributing writes to the

whole memory. These two categories are complementary to each other. Dhiman et al. [30]

and Park et al. [69] propose hybrid PCM and DRAM main memories. Ferreira et al. [34,35]

also work on hybrid PCM main memories and propose write-back minimization with new

cache replacement policies, unnecessary write avoidance, and PCM-aware swap algorithm

4

for wear-leveling. Shi et al. [79] propose a caching policy to reduce writes on non-volatile

main memory. Besides these techniques, Hu et al. [40] propose algorithms to reduce the

total number of write through software optimization. These work aims at reducing the total

number of writes. In addition, some researches focus on evenly distributing writes. Qureshi

et al. [72] propose a Start-Gap technique to effectively conduct wear levelling for PCM.

Seong et al. [75] propose dynamic addresses randomization to prevent malicious wear-out

and increase durability for PCM. Wu et al. [95] also propose an address re-mapping method

to prevent malicious wear-out. Liu et al. [62] propose an application-specific wear levelling

method, which gradually changes the mapping of hot region in address space to different

part of physical memory.

The state-of-the-art work also explores how to integrate NVM into the storage sys-

tem to improve the flash performance and lifetime. NAND flash memory has several con-

straints, such as erase-before-rewrite, limited lifetime, and lengthy garbage collection opera-

tion. These constraints seriously affect the flash memory performance. Compared with flash

memory, NVM can well compensate the above constraints, benefiting from the high I/O per-

formance, low standby power, and in-place update features. These good features make NVM

as a promising solution to effectively improve the performance and enhance the lifetime of

the NAND-flash-based storage system. Hyojun Kim and Seongjun Ahn propose a BPLRU

scheme to improve the random writes in flash storage [51], and a non-volatile memory based

cache policy for solid state drives is proposed to improve the flash performance in [33, 80].

In [70], Park et al. explore the linux kernel to find out the write-intensive segments in virtual

address space, and employ the NVM to cache these data. While these work can improve

the NAND-flash-based storage performance, a more effective scheme is required to further

consider the mobile environment.

1.1.3 Software Managed Flash

Several state-of-the-art work has studied the NAND-flash-based storage performance issue

and used software-assisted method to improve the flash performance. In [50], Hyojun Kim

5

et al. comprehensively study and analyze the storage architecture and the I/O performance

of smartphones. They discover that NAND-flash-based storage has become the new per-

formance bottleneck in smartphones. However, their work focuses on exploring the storage

problem without providing solid solutions. Wu et al. [96] present a file-system-aware FTL

design to identify file system metadata from regular data and propose to use a fine-grained

page-level mapping method to manage metadata. The results shown in this work demon-

strate promising performance and lifetime improvement in flash system. However, this work

can only identify the file system metadata in the host OS file system and ignore the meta-

data in a guest OS file system. Jian et al. [68] present a software-defined flash (SDF), a

hardware/software co-designed storage system to maximally exploit the performance char-

acteristics of flash memory in the context of server cache workloads. SDF exposes individual

flash channels to the host software and eliminates space over-provisioning. The host soft-

ware, given direct access to the raw flash channels of the flash memory, can effectively

organize its data and schedule its data access to better realize the SSDs raw performance

potential. However, this study focuses on the web server environment without considering

the unique features of the mobile devices.

In addition, several state-of-the-art work exploits the file-system-assisted method to

address the slow random-write issue, since flash memory’s random-write is much less than

its sequential write throughput. At the file system level, Min et al. [67] propose a log-

structured file system (SFS) to transform random writes in the file system into sequential

writes. Other log-based file systems, such as JFFS2 [93] and YAFFS2 [6] are designed

by considering NAND flash characteristics and are used widely, especially in mobile and

embedded domains.

1.2 The Unified Research Framework

In this section, we present the unified research framework for the proposed techniques. Fig-

ure 1.1 illustrates the sketch of the research framework.

In this thesis, we employ the emerging non-volatile techniques to improve the stor-

6

File System (e.g. EXT4, FAT32)

Non-Volatile Memory

(e.g. PCM, STT-RAM)
NAND Flash Memory

Intra-AppInter-App

Virtualized Flash Layer

Linux Kernel

Block Device Driver

C
ro

s
s
-L

a
y
e
r

Apps Monitor

Self-Healing Flash Memory

Virtual Machine (VM)

Guest Operating System

Guest File System

Gmail Facebook
Applications

Emulated Storage Media

…...Browser

Flash Translation Layer (FTL)

Address

Translator

Garbage

Collector

Wear-

Leveler
DHeating

Browser Gmail

Applications

Facebook …...

VM Image File Content Aware Design

Heating Dispersal for Self-Healing NAND

Flash Memory

Self-Healing Flash Assisted

Performance and Lifetime

Enhancement

Virtualized Flash for Optimizing the I/O

Performance in Mobile Devices

Non-Volatile Memory Assisted

Performance and Lifetime

Enhancement

Image-Content-Aware I/O Optimization for

Mobile Virtualization

Mobile Virtualization Considered

Performance and Lifetime

Enhancement

CHAPTER 2

CHAPTER 3

CHAPTER 4

Figure 1.1. The Unified Research Framework.

age lifetime and performance in embedded systems. Three hardware and software codesign

techniques are presented in this thesis. As shown in Figure 1.1, we propose to utilize the

7

self-healing flash memory and integrate the non-volatile memory in the embedded storage

systems with the objective of improving the flash lifetime, reducing the wear leveling over-

head, and the garbage collection overhead.

• For the first technique, in Chapter 2, we propose a novel wear-leveling scheme, called

DHeating, to manage self-heating NAND flash memory. DHeating performs wear lev-

eling by storing frequently updated data, called hot data, in a small number of flash

memory cells. By applying this technology to self-healing flash memory, heating op-

erations are dispersed so that only a small portion of the cells will be healed each time,

and the time interval for the consecutive heating operations is prolonged. In addition,

the heating procedure takes several seconds, which becomes the new performance bot-

tleneck in self-healing flash memory. In order to ease the long time heating effect, we

propose a lazy heating repair scheme. The basic idea of the lazy heating repair scheme

is to delay the heating operation and to repair during the system idle time period. Fur-

thermore, the flash memory’s reliability degrades dramatically with self-healing flash

memory reaching its worn out point [10, 36, 42]. In order to enhance the reliability of

the self-healing flash memory, we propose an early heating scheme in which we start

to heal flash memory cells earlier than their expected endurance. To the best of our

knowledge, this is the first work to address the concentrated heating problem through

the use of a dispersed heating strategy, to ease the long time heating effect with a

lazy heating repair technique, and to enhance the reliability of the self-healing flash

memory by adopting an early heating scheme.

• For the second technique, in Chapter 3, we propose vFlash (Virtualized Flash), a trans-

parent cross-layer scheme, to manage heterogeneous NVM and flash memory storage

system. vFlash is a software layer that works on the bottom of the software I/O stack

and makes use of application I/O features to transparently manage NVM. In vFlash,

two techniques, intra-app and inter-app, are integrated to utilize application behaviors

to manage NVM. These two techniques are introduced in vFlash based on different

considerations. Inter-app technique utilizes the historical locality information of ap-

8

plications, while intra-app considers the I/O access patterns for each application. At

different time periods of each day, a user tends to regularly use some fixed applica-

tions, while let the other applications sleep. Based on this historical locality informa-

tion, inter-app technique can determine which application should be served by NVM

at a given time period of each day. At the same time, if too many applications are used

at the same period, NVM spaces might be used up. Thus, intra-app can be adopted to

decide which application data should be stored in the NVM with the first priority.

• For the third technique, in Chapter 4, we present an image-content-aware scheme to

effectively identify both the host and guest metadata in a mobile virtualization plat-

form. In order to achieve this, the proposed image-content-aware scheme identifies

guest OS file system metadata according to the I/O request address in the guest OS

file system, and uses a padding flag to the virtual machine to trace the metadata. After

the metadata are successfully identified, both the guest metadata and host metadata are

stored in a small faster and endurable NVM, such as phase change memory. Smart

data management techniques are proposed to manage flash memory and the auxiliary

NVM. With proposed management techniques, we can greatly eliminate the frequent

update effects to the NAND-flash-based storage caused by the file system metadata in

a VM image file and in the host file system.

1.3 Contributions

The contributions of this thesis are summarized as follows.

• This is the first work to solve the concentrated heating problem for self-healing NAND

flash memory from the wear-leveling perspective. In addition, we propose an early

heating strategy to enhance the reliability of the self-healing flash memory in embed-

ded systems, and a lazy heating scheme to eliminate the delay caused by the lengthy

heating procedure.

9

• We take advantage of user behaviors to improve I/O performance in mobile devices.

Inter-app and intra-app techniques are crafted to optimize application performance

by exploiting historic locality and I/O access patterns of applications. A cross-layer

technique is proposed to transfer the application information from the application layer

to the vFlash layer to enable optimization.

• We identify the file system metadata from regular data in a guest OS VM image file

under mobile virtualization. We propose to utilize a small faster and more endurable

NVM to store file system metadata to reduce the flash memory I/O traffic with neg-

ligible extra cost. Smart data management techniques are proposed to manage flash

memory and the additional NVM.

1.4 Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we address the concentrated heating problem for self-healing NAND

flash memory. In the first phase, we present DHeating to solve the concentrated heating

problem in self-healing flash memory. In the second phase, we propose early healing

and lazy healing to handle some special cases.

• In Chapter 3, we propose a transparent scheme, vFlash (Virtualized Flash), to manage

the unified NVM and NAND flash memory architecture.

• In Chapter 4, we present a novel I/O optimization technique to identify the metadata

of a guest file system which is stored in a VM image file and frequently updated in the

mobile virtualization environment.

• In Chapter 5, we present conclusions and possible future work of research from this

thesis.

10

CHAPTER 2

HEATING DISPERSAL FOR SELF-HEALING NAND FLASH MEMORY

2.1 Overview

NAND flash memory has many advantages such as non-volatility, low power consumption,

and good shock resistance. It has been widely used as storage devices in embedded systems.

However, NAND flash memory has some constraints, particularly, limited lifetime. For ex-

ample, multi-level cell (MLC) flash memory, which is the mainstream NAND flash product

on the market, can withstand 10,000 program/erase (P/E) cycles; triple-level cell (TLC) flash

memory, which is the emerging flash memory product, can withstand only 2,500 P/E cy-

cles [9, 29, 32, 39, 65, 68]. In order to overcome this constraint, Researchers at Macronix

recently invented self-healing flash memory, in which worn-out flash memory cells can be

rejuvenated by thermal annealing [64].

However, heating a self-healing flash memory cell does consume a substantial amount

of power [26]. If a large number of flash memory cells are heated in a short time period, the

energy will be exhausted in a battery-driven embedded system such as smartphones. For tra-

ditional NAND flash memory, wear-leveling strategies are employed in an attempt to evenly

distribute write and erase operations [14, 15, 19, 20, 54, 85]. If such strategies are used to

manage self-healing flash memory, it will cause the concentrated heating problem, that is,

when all flash memory cells wear out together, healing these cells in a concentrated manner

might drain the energy. This chapter focuses on solving this problem.

Several challenging issues should be considered when self-healing flash memory is

used in embedded systems. First, the lifetime of self-healing flash memory is prolonged by

the heating of worn-out flash memory cells. However, heating does not come out without a

11

cost, as heating shortens the battery life and a heating operation consumes a large amount of

power [26]. As a result, heating should not occur frequently, and only a small portion of flash

memory cells should be healed at a time. Second, heated cells can be treated as newborn cells

rather than as permanently retired cells. Since the reliability of newborn cells is better than

that of nearly worn-out flash memory cells, data should be moved from nearly worn-out cells

to newborn cells. As discussed above, previous wear-leveling strategies are not suitable for

use on this emerging self-healing NAND flash memory. Thus, it is very important to design

a new management strategy for self-healing flash memory.

In this chapter, we first propose a novel wear-leveling scheme, called DHeating, to

manage self-heating NAND flash memory. DHeating performs wear leveling by storing fre-

quently updated data, called hot data, in a small number of flash memory cells. By applying

this technology to self-healing flash memory, heating operations are dispersed so that only a

small portion of the cells will be healed each time, and the time interval for the consecutive

heating operations is prolonged. In addition, the heating procedure takes several seconds,

which becomes the new performance bottleneck in self-healing flash memory. In order to

ease the long time heating effect, we propose a lazy heating repair scheme. The basic idea

of the lazy heating repair scheme is to delay the heating operation and to repair during the

system idle time period. Furthermore, the flash memory’s reliability degrades dramatically

with self-healing flash memory reaching its worn out point [10, 36, 42]. In order to enhance

the reliability of the self-healing flash memory, we propose an early heating scheme in which

we start to heal flash memory cells earlier than their expected endurance. To the best of our

knowledge, this is the first work to address the concentrated heating problem through the

use of a dispersed heating strategy, to ease the long time heating effect with a lazy heating

repair technique, and to enhance the reliability of the self-healing flash memory by adopting

an early heating scheme.

We have conducted experiments with various applications based on an embedded

system with an ARM11 processor and an 8Gb NAND flash memory chip. The experimental

results show that DHeating not only addresses the concentrated heating problem, but also

improves the system response time in self-healing flash memory compared with the baseline

12

scheme. The improvement of the system response time is mainly caused by reducing the

swapping of hot and cold data that occurs frequently in previous wear-leveling strategies.

The main contributions of this work are:

• This work addresses the concentrated heating problem for self-healing NAND flash

memory from the wear-leveling perspective.

• A lazy heating repair scheme is proposed to alleviate the long time heating effect.

• An early heating strategy is proposed to enhance the reliability of the self-healing flash

memory.

The rest of this chapter is organized as follows: Section 2.2 presents the background

of this work and our motivation on conducting this work. Section 2.3 introduces our DHeat-

ing strategy with performance and overhead analysis. The experimental results are presented

and discussed in Section 2.4. In Section 2.5, we summarize this chapter.

2.2 Background and Motivation

2.2.1 NAND Flash Memory and Worn Out

Top Gate (TG)

Floating Gate (FG)

Oxide

Tunnel Oxide

N+ N+

Source Drain Source

Word Line

Silicon Substrate Silicon Substrate

Figure 2.1. The structure of a traditional NAND flash memory cell.

13

In a traditional NAND flash memory chip, a floating-gate transistor is used as the

storage cell as shown in Figure 2.1. A floating-gate transistor is made of one top gate (or

control gate), one floating gate, two oxide layers, and the silicon substrate. The top gate,

floating gate, and silicon substrate are surrounded by the oxide, which functions as insulation.

The oxide layer between a floating gate and the silicon substrate is called tunnel oxide. When

a high voltage is applied to a word line, which is connected to the top gate of a cell, the

electrons from the silicon substrate will traverse the tunnel oxide and be trapped in a floating

gate. The number of electrons trapped in a floating gate is used to denote the stored data [81,

88, 100].

FG

Oxide

Tunnel Oxide

N+ N+

DrainSource Silicon Substrate

FG

Oxide

Tunnel Oxide

N+ N+

DrainSource Silicon Substrate

Top Gate (TG)

Word Line

Top Gate (TG)

Word Line

Electrons

(a) (b)

Figure 2.2. Illustration on wearing of a flash memory cell caused by (a) the programming

operation, and (b) the erase operation.

The lifetime of a flash memory cell decreases with constant program and erase oper-

ations, since repeated P/E cycles can damage the tunnel oxide layer as shown in Figure 2.2.

Program operations can cause electrons to traverse through the tunnel oxide layer to the float-

ing gate as shown in Figure 2.2 (a), while erase operations make electrons to traverse through

the tunnel oxide layer to the silicon substrate as shown in Figure 2.2 (b). The repeated tra-

verse procedures may cause electrons to be trapped in the tunnel oxide layer. Eventually,

the tunnel oxide layer is damaged because of too many electrons being trapped in the tunnel

oxide layer.

14

2.2.2 Self-Healing NAND Flash Memory and Heating Repair

Heat plate
(negative) Heat plate

(positive)

Low-resistance
gate

Silicon substrate

Floating
gate

Oxide

Diode

Diode

Low-Resistance

Gate (LRG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Heat Plate

(Negative)

Heat Plate

(Positive)

N+ N+

Source Drain

N+ N+

DrainSourceSilicon Substrate Silicon Substrate

(a) (b)

Figure 2.3. The structure of a self-healing NAND flash memory storage cell. (a) 3D vision.

(b) 2D vision.

Several state-of-the-art works [18, 26, 71] discover that high temperature can make

electrons to be detrapped from the oxide layer. Therefore, researchers at Macronix modify

the traditional NAND flash memory structure and invent self-healing NAND flash memory.

The structure of a self-healing flash memory cell is shown in Figure 2.3 (a) and Figure 2.3

(b). In self-healing NAND flash, a word line is modified to become a double-ended structure

with one positive heat plate and one negative heat plate; a low-resistance gate is used as the

top gate, which enables the current to pass through the gate [26]. The two heat plates are

connected to a double-ended word line-one plate on each end.

If a flash memory cell reaches its lifetime as shown in Figure 2.4 (a), a certain level

of voltage will be applied to the corresponding heat plates and a high temperature (>800◦C)

will be generated immediately after the current passes through the gate as Figure 2.4 (b)

shown. Heating can repair the damaged tunnel oxide of the cell, thus extending the lifetime

of the cell.

Since self-healing NAND flash memory extends its lifetime by heating damaged tun-

nel oxide layers rather than adding new tunnel oxide layers, a flash memory cell will per-

manently retire after several heating repairs. We assume that a self-healing NAND flash

15

Low-Resistance

Gate (LRG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Heat Plate

(Negative)

Heat Plate

(Positive)

N+ N+

DrainSource Silicon Substrate

Low-Resistance

Gate (LRG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Heat Plate

(Negative)

Heat Plate

(Positive)

N+ N+

DrainSource Silicon Substrate

Current

Heat

(a) (b)

Figure 2.4. A comparison of worn out flash memory and healed flash memory. (a) The worn

out flash memory storage cell. (b) The healed flash memory cell.

memory cell can be healed at most θ times, and after i′s (1 ≤ i ≤ θ) healing, it can be used

Li times. The lifetime of a self-healing flash cell can be represented as follows:

Lifetime =
θ∑

i=0

Li (2.1)

In Equation (2.1), L0 denotes the factory lifetime or the lifetime prior to healing, and Li(i ϵ[1, θ])

denotes the lifetime in each stage.

Suppose that we combine this self-healing technology with TLC NAND flash mem-

ory. Typically the factory lifetime of a TLC NAND flash memory chip is 2,500 or L0 =2,500 [5].

Assume that after each healing, its lifetime is decreased by 10, that is, Li − Li−1 = 10 (1 ≤

i ≤ 250). Based on Equation (2.1), we find that the total lifetime of TLC NAND flash mem-

ory is extended to
∑250

i=0 Li = (2500+2490+...+10) = 313,750 that is about 125 times longer

than that of traditional TLC NAND flash memory.

2.2.3 The Architecture of Self-Healing NAND Flash Memory

In general, there are two methods to make self-healing flash memory usable in embedded

systems: FTL-based flash memory storage systems and flash-file-system-based memory stor-

16

Application 1 Application n

General File System (e.g., FAT32, EXT4)

Address Translator

Garbage Collector

Wear-Leveler

Flash Translation Layer (FTL)

Flash File System

(JFFS, YAFFS)

Address

Translator

Operating System

......

Garbage

Collector

Wear-

Leveler
DHeating

DHeating

Memory Technology Device Layer

Self-Healing NAND Flash Memory

Operating System

Self-Healing NAND Flash Memory

Memory Technology Device Layer

Block Device Driver

Application 2 Application 1 Application n......Application 2

(a) (b)

Figure 2.5. (a) FTL-based self-healing NAND flash memory storage systems. (b) Flash-file-

system-based self-healing NAND flash memory storage systems.

age systems. As shown in Figure 2.5 (a) and Figure 2.5 (b), in these methods the MTD

(Memory Technology Device) layer directly operates on a self-healing flash memory chip

by providing primitive functions such as read, write, and erase operations; an FTL or a flash-

file-system is used to manage NAND flash by handling such issues as out-of-place update,

erase before rewrite, and limited lifetime. Both an FTL and a flash-file-system consist of

three components: an address translator, a garbage collector and a wear-leveler. The address

translator translates addresses between the logical page number (LPN) and the physical page

number (PPN). The garbage collector reclaims space by erasing obsolete blocks in which

invalidated data exist; the wear-leveler is an optional component that distributes write or

erase operations evenly across all blocks, so that the lifetime of a flash memory system can

be improved. In this chapter, we mainly focus on solving the wear-leveling problem for

self-healing NAND flash memory chips.

17

(80)
(80)
(80)
(80)
(80)
(80)
(80)

0
1
2
3
4
5
6
7 (80)

Physical

Block

Number
(700)
(700)
(700)
(700)
(700)
(700)
(700)

0
1
2
3
4
5
6
7 (700)

Physical

Block

Number

Erase

Times

(1400)
(1400)
(1400)
(1400)
(1400)
(1400)
(1400)

0
1
2
3
4
5
6
7 (1400)

Physical

Block

Number
(2,500)
(2,500)
(2,500)
(2,500)
(2,500)
(2,500)
(2,500)

0
1
2
3
4
5
6
7 (2,500)

Physical

Block

Number

Heating

Repair

HR
HR
HR
HR
HR
HR
HR

0
1
2
3
4
5
6
7 HR

......

Physical

Block

Number

(200)
(200)
(38)
(38)
(38)
(38)
(38)

0
1
2
3
4
5
6
7 (38)

Physical

Block

Number

(2,500)
(2,500)

(90)
(90)
(90)
(90)
(90)

0
1
2
3
4
5
6
7 (90)

Physical

Block

Number

Erase

Times
Heating

Repair

HR
HR

(2,500)
(2,500)
(280)
(280)
(280)

0
1
2
3
4
5
6
7 (280)

Physical

Block

Number
Heating

Repair
HR
HR
HR
HR
HR
HR

(2,500)

0
1
2
3
4
5
6
7 (2,500)

Physical

Block

Number

Heating

Repair

HR
HR
HR
HR
HR
HR
HR

0
1
2
3
4
5
6
7 HR

Physical

Block

Number

Previous

Wear

Leveling

(b) DHeating
......

t1 t2 t3 tn

(a)

time

t1 t2 t3 tm time

Figure 2.6. Motivating example.

2.2.4 Motivating Example

A motivating example is shown in Figure 2.6. The motivational example described in this

section is the typical example in reality and our daily life. Assume that there are eight blocks

and one block will carry out a heating operation after 2,500 erasures in a self-healing NAND

flash memory chip.

As shown in Figure 2.6 (a), SWL [19] causes all of the blocks to be worn out evenly.

As a result, at tn, all eight physical blocks reach their healing threshold of 2,500, and the

concentrated heating problem occurs. This can exhaust the energy in the battery within a

very short time period and reduce the lifetime of the battery.

Having made this observation, our idea in DHeating is to disperse the heating of the

eight blocks over different times. As shown in Figure 2.6 (b), at t2, only Block 0 and Block

1 reach the heating bar. At tm, after Block 6 and Block 7 complete heating operations, all

blocks finish the heating operation.

Normally, tm > tn, since previous wear-leveling strategies have introduced some

valid page copies and block erasure overheads to cause all blocks to wear out evenly. On

18

the other hand, our proposed DHeating scheme only introduces these overheads when the

system carry out a heating operation. As a result, our proposed scheme can further extend

the lifetime of self-healing flash memory and improve the performance of the system.

2.3 The DHeating Scheme

In this section, we introduce the DHeating scheme to effectively address the concentrated

heating problem. We first give an overview in Section 2.3.1, and then present the dispersed

heating strategy and the lazy heating repair scheme in Sections 2.3.2 and 2.3.3, respectively.

In Section 2.3.4, we discuss the early heating technique. An example to show how DHeating

works with NFTL is presented in Section 2.3.5. Finally, we analyze the performance and

overhead in Section 2.3.6.

2.3.1 Overview

Old

Pool

Young

Pool

New

Pool

Hot

Data

Cold

Data

Cold

Data
Young

Pool

Old

Pool

New

Pool

Hot

Data

Cold

Data

New

Pool

Hot

Data

Cold

Data

Cold

Data

Young

Pool

Hot

Data
Old

Pool

(1) Heating

Repaired

Blocks

C
ircular

Heating

Repaired

Blocks

Hot Data Cold Data

Young Pool Old PoolNew Pool

(2) (3)

(4)(5)

Figure 2.7. Dispersed heating scheme.

The DHeating strategy consists of three schemes: dispersed heating, lazy heating

repair and early heating. The dispersed heating scheme is to disperse heating operations to

address the concentrated heating problem. The basic idea of the dispersed heating scheme

is to intensively wear a small number of flash memory cells at a time. These cells will be

worn out quickly and be heated much earlier than that of the other cells. Then, we swap

19

out these heated flash memory cells, and repeat the above procedure. To this end, data

are divided into two categories, hot data and cold data, based on data update frequency.

According to block erasure times, physical blocks are classified into old, young, and new

physical blocks. Old physical blocks are stored in the old pool, young physical blocks are

kept in the young pool, and new physical blocks are stored in the new pool. When a write

request is received, the dispersed heating scheme will check which pool the data request

belongs to and allocate the corresponding physical blocks. In addition, the lazy heating

repair scheme is proposed to address the long time heating issue. The heating procedure

takes several seconds and seriously degrades the I/O performance. In order to address this

issue, the lazy heating repair scheme delays the heating operation and employs the system

idle time to repair. Furthermore, the flash memory’s reliability becomes worse with the flash

memory cells reaching the expected worn-out time. We propose an early heating strategy

to solve the reliability problem. With the extended lifetime provided by self-healing, we

can trade some lifetimes for reliability. The idea is to start the healing process earlier than

the expected worn-out time. With DHeating, the energy consumed during each occurrence

of heating is minimized, the long time heating effect can be eased, and the reliability of

self-healing flash memory is enhanced.

2.3.2 Dispersed Heating

In the dispersed heating scheme, all blocks are categorized into three types, namely, young,

old, and new blocks and are accordingly put into the young, old and new pools. Meanwhile,

we divide the data into cold and hot and put them into blocks in different pools based on the

different stages of our scheme.

The dispersed heating scheme has five stages, as shown in Figure 2.7. Stage 1 is the

starting point, where cold data are stored in young blocks. In Stage 2, we divide the hot and

cold data and the young and old blocks. In Stage 3, old blocks will be heated and moved

to the new pool. In Stage 4, no valid blocks exist in the young pool, and all blocks are kept

in the old pool and the new pool. In Stage 5, all old blocks are healed and put into the new

20

pool. We can then repeat the above five stages for a new round. Next, we will present the

details of each stage and introduce a key function used in our scheme, the hot data filter.

Stage 1 is the initial stage. In Stage 1, all data are cold data and all physical blocks

are stored in the young pool.

In Stage 2, hot/cold data and young/old blocks are classified. Based on block erasure

times, young blocks will be selected as old blocks and put in the old pool, since we do not

want old blocks to be allocated to cold data and young blocks to be allocated to hot data.

Then, the blocks in the old pool will continue to be used by the hot data. These blocks will

be healed first. A hot data filter will be used to identify hot/cold data and young/old blocks,

which will be discussed later.

In Stage 3, we start to heal blocks in the old pool, and these healed blocks are moved

to the new pool. Then cold data are allocated to blocks in the new and young pools, while

hot data continue to be assigned to blocks in the old pool. We move healed blocks to the new

pool, because if they are kept in the old pool, they will be used by hot data and may reach

their permanent retiring time much earlier than the other blocks. This can lead to very early

shrinkage of the capacity of NAND flash memory. When allocating cold data, we will first

use blocks in the young pool so blocks in the young pool will become old and move to the

old pool, and blocks in the new pool will only be utilized until there are no free blocks in the

young pool. In this way, the size of the young pool will decrease while that of the new pool

will increase.

We enter Stage 4 after all of the blocks in the young pool are used up. At this stage,

there are only the new and old pools, containing new and old blocks, respectively. Different

from the above stages, in Stage 4 hot data can be allocated to blocks in both the old and new

pools. However, blocks in the new pool are only used when there are no free blocks in the

old pool. In the new pool, a free block with the smallest number of erasures is used to hold

hot data, and this block will be kept in the new pool after it has been reclaimed. In the old

pool, blocks will be healed and moved to the new pool As a result, all blocks will become

new at some point in time, and we will enter Stage 5.

21

Stage 5 is the last stage, and only the new pool exists. The main function of this stage

is to clear up history records such as update times and hot or cold data. Then, we will go

back to Stage 1 and repeat the above procedures until a flash memory enters the last heating

phase, and permanently retires.

Hot data filter: Hot/cold data are identified based on the update frequency. We use

T to represent the number of hot data threshold that is calculated as follows:

T = (
n∑

i=0

Ui)/n (2.2)

In this equation, n denotes the number of blocks updated by hot and cold data during a time

period and Ui (1 ≤ i ≤ n) is the update times of i’s logical block. Umax(= Max1≤i≤nUi)

denotes the maximum update times of all cold data. If Umax is equal to or larger than the

threshold T , a new piece of hot data is detected. Correspondingly, the oldest block or the

block with the largest number of erasures in the young pool will be moved to the old pool.

The threshold T is calculated based on the average update times during a time period because

of the following considerations:

• If T is selected larger than the average update times, some hot data may not be iden-

tified. For example, if all update requests are issued from one piece of data, and Umax

is equal to the average update times, then, this piece of hot data cannot be identified.

• If T is selected smaller than the average update times, too many pieces of cold data

may be selected as hot data. This will lead to the selection of many blocks as hot data.

For each logical block, we use a number to store its page update times. Initially, all

numbers are set as zero. When one of the numbers achieves its maximum value, the hot data

filter will be triggered, and all numbers will be reset as zero. It is important to determine how

many bits are used to represent the number. If too many bits are used, a large memory space

will be consumed and hot data will be detected for a very long period of time; otherwise, the

hot data filter will be frequently triggered. In our experiments, eight bits are used to represent

this number. An example is given below to show how hot data are identified. Assume that

22

there are eight logical blocks, and eight bits are used to record the number of updates of each

logical block. Suppose that the update times of these eight logical blocks are 255, 100, 3, 2,

6, 2, 8, and 8, respectively. When the hot data filter is triggered, 255 is the maximum value

of an 8-bit unsigned number. Using Equation (2.2), the threshold T can be calculated as

(255+100+3+2+6+2+8+8)/8 = 48. If the logical block with the update time 255 has already

been chosen as hot data and all other blocks are cold data, then Umax is 100 as it is selected

from all cold data. Because Umax is larger than 48, the hot data filter chooses the logical

block with the update time 100 as a new piece of hot data.

Algorithm 1: Hot data filter
Input: n: The number of updated blocks

Uall: All update times

Umax: Maximum update times of cold data

E: The erasure times of physical blocks

Py: The young pool

Po: The old pool

Output: HDN : The logical block number identified as the hot data

1 T ← Uall/n

2 if Umax ≥ T then

3 HDN ←The logical block number with Umax

4 PBoldest ← Emax{X|XϵPy}

5 Po ← PBoldest

6 Return HDN

7 else

8 Return NULL to denote no hot data is detected

Algorithm 1 describes how the hot data filter works. Three input parameters are used

in hot data filter: n, Uall and Umax, which denote the number of pieces of updated data, all

23

update times, and the maximum update times of cold data respectively. n and Uall are used

to calculate filter threshold T . Then if Umax is equal to or larger than the threshold T, a new

piece of hot data will be detected and returned, and a physical block with the maximum erase

time from the young pool will be moved to the old pool. Otherwise, if Umax is smaller than

threshold T, no hot data is detected and the algorithm returns NULL.

2.3.3 Lazy Heating Repair

The heating operation takes a few seconds, which are much longer than that of an erase

operation [18], such as 1.5ms block erase time [32]. In addition, a heating operation can

block the whole Die response in a flash chip and thus may seriously degrade the system

response time. Therefore, the heating operation has become the new performance bottleneck

in self-healing flash memory and an effective management method is urgently required. In

this section, we propose a lazy heating repair technique to alleviate the long heating effect

with the benefits of utilizing system idle time.

When a block reaches the heating point, the block is moved to a heating list instead

of being heated immediately. Then, when the system is idle, the blocks in the heating list

are selected to repair. By delaying the heating operation and employing the idle time to

repair, the lazy heating repair technique can ease the long time heating effect. However, this

strategy may introduce a new problem. If too many blocks are accumulated in the heating

list, these blocks may be healed in a concentrated manner. In order to address this issue, the

lazy heating repair is periodically triggered to clean the heating list. The heating period is

adaptively adjusted according to two factors: the number of heating blocks in the heating list

and the number of free blocks. If a lot of blocks are waiting to do heating repair in the heating

list and a few free blocks are available, the heating repair operation is triggered intensively

within a short heating period. On the other hand, a few blocks in the heating list or many

free blocks will result in triggering the heating operation infrequently.

Figure 2.8 illustrates the procedure of the lazy heating repair scheme. Assume that the

heating period is △t and a block is heated at t1. If the system is idle after △t1(△t1 < △t)

24

Block

Heating

Repair

......

Time

Block

Heating

Repair

Block

Heating

Repair

Block Block Block

t1 t2 t3

Heating List

Block Block

Block

t1 t

Idle Time

Figure 2.8. Illustration on the procedure of lazy heating repair.

time interval, a block in the heating list will be selected to repair at the idle time, such as

t2 as shown in Figure 2.8. On the other hand, if the system is always busy during the △t

time interval, a block in the heating list is chosen to repair after the △t time interval. As

shown in Figure 2.8, the time interval between t2 and t3 is△t and the system is always busy

during this time interval. Then, at t3, a block in the heating list is selected to repair, since

the elapsed time has reached the heating period △t. The adjustment of △t can influence

the system performance and number of heating blocks. With the incremental of the heating

period△t , the lazy heating repair scheme can well utilize the system idle time to do heating

and thus further eliminating the performance overhead caused by heating. However, this

improvement benefits from keeping more worn-out blocks in the heating list. If only a few

free blocks are available to response the write requests and a lot of blocks are kept in the

heating list, the blocks in the heating list may be required to be healed in a concentrated

manner. This may seriously degrade the system response time. In order to well utilize the

lazy heating repair scheme, it is better to dynamically adjust the heating period according to

the number of heating blocks in the heating list and the number of free blocks.

25

0 500 1000 1500 2000 2500 3000 3500 4000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

70
.1

0%
 R

ed
uc

tio
n

75% Maximum P/E Cycles

R
a
w

 B
it
 E

rr
o
r

R
a
te

 (
%

)

P/E Cycles

Maximum P/E Cycles

Figure 2.9. The raw bit error rate with different P/E cycles [42].

2.3.4 Early Heating

An early heating strategy is proposed to enhance the reliability for self-healing NAND flash

memory. In the dispersed heating scheme, where write and erase operations are on a small

portion of flash memory cells, the reliability problem might arise. We propose to utilize an

early heating strategy to address this problem. The idea is to start the healing process earlier

than the expected worn-out time.

Block

Heating

Repair

......

Time
Maximum

P/E Cycles

Block

Heating

Repair

Maximum

P/E Cycles

Block

Heating

Repair

Maximum

P/E Cycles

Early Heating Point

Figure 2.10. The early heating strategy for reliability.

Since the dispersed heating scheme utilizes a small number of flash memory cells in

a concentrated manner, the reliability problem may arise. Figure 2.9 shows the raw bit error

rate with different P/E cycles. These results are obtained via testing Micron’s MLC flash

29F64GCBAAA with the capacity of 64 Gb and the maximum of 3000 P/E cycles. One key

26

observation form Figure 2.9 is that the raw bit error rate increases dramatically with flash

memory cells reaching the expected maximum P/E cycles. If we do healing earlier than the

expected maximum P/E cycles as shown in Figure 2.10, the raw bit error rate can be greatly

reduced and thus the reliability of self-healing flash memory can be effectively enhanced.

For example, the bit error rate can be reduced by 70.10% with the cost of 25% lifetime

reduction.

In addition to address the reliability issue, the proposed early heating strategy can

help avoid the concentrated heating problem. If a lot of blocks are worn out evenly, the early

heating strategy can help avoid the concentrated healing problem by healing a small portion

of flash memory cells earlier than the expected heating time. Thus, we can still guarantee

only a small portion of flash memory cells are healed each time.

2.3.5 DHeating Working with NFTL

Figure 2.11 illustrates how the DHeating scheme works. For purpose of demonstration,

NFTL [19] is selected as the FTL. NFTL uses a block-level address translation mechanism

for coarse-grained address translation and is widely used in embedded systems. Note that

our scheme is general and can work with other FTLs at block-level, page-level, or hybrid-

level. In NFTL, a logical page number (LPN) is divided by the number of pages in a block

to obtain its logical block number (LBN) and block offset, where the LBN is the quotient,

and the block offset is the remainder of the division. A block-level mapping table maps

the LBN into a physical block known as the primary block (PPBN). Each primary block is

associated with some additional physical blocks known as replacement blocks (RPBN). A

write operation to an LPN is mapped to a page in a primary block, and subsequent update

operations to the same LPN are made on the corresponding replacement block with the same

block offset.

Figure 2.11(a) shows the first stage of the dispersed heating, where all data update

times are 0 and all physical blocks are young. After some data requests are issued, hot

data LBN 0 is filtered from cold data with the help of a hot data filter (Figure 2.11(b)).

27

Cold Data

Hot Data

Cold Data

Young Pool

Old Pool

New Pool

LBN: Logical Block Number

PPBN: Primary Physical Block Number

RPBN: Replacement Physical Block Number

LBN PPBN

0

1 -1 -1

2 -1 -1

Block

Mapping

TableUpdate

Times

0

0

0 -1 -1

4 -1 -1

5 -1 -1

3 -1 -1

6 -1 -1

0

0

0

0

(0)

(0)

(0)

(0)

(0)

(0)

(0)

0

1

2

3

4

5

6

7 (0)

Erase

Times

Young Pool

Physical

Block

Number
RPBN

(a)

LBN PPBN

100

1 2 -1

2 3 -1

Block

Mapping

TableUpdate

Times

10

1

0 0 1

4 -1 -1

5 -1 -1

3 4 -1

6 -1 -1

2

0

0

0

(210)

(200)

(5)

(4)

(1)

(0)

(0)

0

1

2

3

4

5

6

7 (0)

Erase

Times

Young Pool

Physical

Block

Number
RPBN

Cold Data

Old Pool
Hot Data

(b)

LBN PPBN

120

1 4 -1

2 5 -1

Block

Mapping

TableUpdate

Times

20

2

0 2 3

4 -1 -1

5 -1 -1

3 6 -1

6 -1 -1

5

0

0

0

(200)

(230)

(20)

(30)

(10)

(1)

(0)

2

3

4

5

6

7

0

1 (0)

Erase

Times

Young Pool

Physical

Block

Number
RPBN

Old Pool

New Pool

Cold Data

Hot Data

(c)

Block

Mapping

Table
Erase

Times

LBN PPBN

130

1 4 -1

2 5 -1

Update

Times

10

5

0 6 7

4 -1 -1

5 -1 -1

3 6 -1

6 -1 -1

10

0

0

0

(270)

(280)

(13)

(10)

(10)

(6)

(5)

6

7

0

1

2

3

4

5 (0)

Physical

Block

Number
RPBN

New Pool

Old Pool

(d)

Hot Data

Cold Data

LBN PPBN

200

1 4 -1

2 5 -1

Block

Mapping

TableUpdate

Times

35

5

0 6 7

4 -1 -1

5 -1 -1

3 0 -1

6 -1 -1

10

0

0

0

(0)

(0)

(14)

(11)

(10)

(6)

(5)

6

7

0

1

2

3

4

5 (1)

Erase

Times

Physical

Block

Number
RPBN

New Pool

(e)

Hot Data

Cold Data

Figure 2.11. Illustration of the dispersed heating scheme working with NFTL [19].

28

Correspondingly, two old blocks (block 0 and block 1) with the erasure times of 210 and 200

respectively are stored in the old pool.

Figure 2.11(c) shows that block 0 and block 1 have been healed and moved from the

old pool to the new pool. Moreover, two old blocks (block 2 and block 3) are moved from

old pool to new pool. In Figure 2.11(d), when all the young blocks have been depleted; and

only old blocks and new blocks are stored in the old pool and new pool respectively, we

enter Stage 4. After the blocks in the old pool have healed, we enter the last stage as shown

Figure 2.11(e).

2.3.6 Performance and Overhead Analysis

In this section, we analyze the system performance and overhead of DHeating by comparing

it with the SWL scheme [19]. The system response time is an important metric to evaluate

the performance of FTLs. It is the time period from the point when an operation is issued

to the point when the operation has been completed. The inputs of an FTL are read and

write operations. We conduct the analysis for the system response time of read and write

operations. The symbols used in this analysis are listed below.

Trd The time to read one page
Twr The time to write one page
Terase The time to erase a block
Nvpage The number of valid pages in one block

The performance overhead is reflected as extra valid page copies and block erasures,

and the time is:

(Trd + Twr)×Nvpage + Terase. (2.3)

Compared with SWL, DHeating only introduces small performance overhead. In

SWL, cold data and hot data are swapped very frequently so as to achieve static wear lev-

eling. The frequent swap operations result in heavy performance overhead. SWL will be

29

triggered to find old and young blocks, and swap valid data between the two different kinds

of blocks when unevenness occurs. On the other hand, DHeating only does a data swap when

young blocks become old or old blocks become new. Therefore, compared with the SWL

scheme, DHeating can reduce valid page copies and block erasures, thereby improving the

system response time.

DHeating requires more memory space than that of SWL to record the update times

of each block. However, the memory space overhead is negligible since the information

recorded is at the block level. For example, the block size of a 32Gb MLC NAND flash [32]

memory chip is 512KB. If we use 2 bytes to record the erasure times for each block, only

16KB memory space is required.

With the early heating scheme, DHeating trades lifetime for reliability. However, as

shown in the experiments, with only 5% of lifetime overhead, heating can still be dispersed

very well. Indeed, the reliability is also improved in DHeating.

2.4 Evaluation

In this section, we present our experimental results with analysis. We compare and evaluate

the proposed DHeating scheme with the baseline scheme [19] in terms of four metrics: the

consecutive heating time intervals, the extra valid page copies, the lazy heating effect and the

early heating effect. The performance evaluation is conducted on an embedded development

board with a Samsung ARM11 processor and a 8 Gb NAND flash memory chip.

2.4.1 Experimental Setup

We conducted experiments on a hardware platform. Figure 2.12 (a) shows the top view of

our hardware platform. The evaluation platform adopts an ARM11 processor core (Samsung

S3C6410 [73]) with ARMv6 architecture. In this platform, the ARM processor core runs at

532MHz; and consists of a 16 KB instruction cache and a 16 KB data cache. The platform

adopts the Linux kernel 2.6.38. The core board is equipped with 8 Gb of NAND flash

30

NAND

Flash

SDRAM

S3C6410

(a) (b)

Figure 2.12. Experimental platform. (a) The top layer of our experimental platform. (b) The

core development board.

memory and 256 MB of SDRAM. The physical interfaces, such as the RJ45 interface, are

designed in the mother board. One pin connector is used to connect the core board with the

mother board.

The evaluation framework of our work is shown in Figure 2.13. DHeating is imple-

mented as a block device driver in the Linux kernel 3.5. DHeating functionally works as

the wear-lever of the flash translation layer (FTL), and another trace driver module is imple-

mented to trigger DHeating. In our evaluation, the trace driver module is also implemented

as a block device driver. FTL can issue read/write operations to the memory technology de-

vice (MTD) layer, which can control the NAND flash memory chip. We utilize the universal

serial device driver (i.e. a char device driver) to obtain and output the experimental results.

For fair comparisons, the same configuration has been adopted for both the baseline scheme

and the proposed DHeating scheme. We emulate the process of self-healing and assume that

NAND flash memory will perform heating after a given lifetime.

We use real applications as benchmarks to evaluate the effectiveness of DHeating.

Since the real environment varies significantly and the same application may generate dif-

ferent I/O requests with different running times even with the same configuration, we collect

31

Samsung 8Gb

SLC NAND Flash Memory

Memory Technology

Device Layer

Flash Translation Layer

(Block Device Driver)

Trace Driver Module

(Block Device Driver)

Results

Universal Serial Device

Driver

(Char Device Driver)

Linux Kernel

Figure 2.13. The evaluation framework of DHeating.

the I/O requests of real applications and use the collected traces to evaluate the techniques

in order to make a fair comparison. The characteristics of traces are shown in Table 2.1.

These applications are typical operations in our daily lifetime. They are mainly write domi-

nant, and they can be used to accelerate the evaluation process and evaluate the performance

of worn-out flash memory cells for NAND flash memory. We test each benchmark on the

evaluation platform. The traces iteratively issue requests to the storage system.

2.4.2 Results and Discussion

In this section, we present the experimental results with analysis. We first present the heating

impact of the self-healing flash memory. Then, we present the improvement in performance

by comparison of DHeating scheme and the baseline scheme. Finally, we analyze the early

heating effect.

We use SWL and DHeating to represent the results obtained from the work in [19]

and the proposed DHeating scheme, respectively.

32

Table 2.1. The characteristics of the applications.

Benchmarks
Numbers Write Avg.Arr. Avg.Req.

of Request (%) Time (ms) Size (KB)

File Copy 645,895 90.83 8.19 3.17

Sensor 777,945 92.66 8.12 2.26

Multimedia 790,925 83.10 196.90 48.03

NFS 850,700 89.37 8.40 29.38

SD Card 987,970 94.95 38.30 49.87

FTP 518,575 97.4 72.97 20.05

Table 2.2. Average heating time interval.

Benchmarks

SWL DHeating

Ave. Heating Ave.Heating DHeating/SWL

Time Int.(s) Time Int.(s)

File Copy 162.663 3,143.191 19.323

Sensor 159.070 3,789.925 23.825

Multimedia 166.572 3,864.397 23.199

NFS 185.844 4,152.161 22.342

SD Card 176.371 4,831.884 27.395

FTP 169.512 2,514.422 14.833

Heating Dispersal

Table 2.2 shows the average consecutive heating intervals of two physical blocks. The con-

secutive heating interval denotes the frequency of heating. Therefore, the longer the consec-

33

utive heating interval that the NAND flash memory experiences, the better its performance

and lifetime. Judging from the experimental results, our DHeating scheme can delay heating

by up to 24 times compared to SWL. This shows the effectiveness of DHeating in maximiz-

ing the consecutive heating interval.

Figure 2.14 and Figure 2.15 present the experimental results of the consecutive heat-

ing time intervals of SWL and DHeating. From the results, we can see that the consecutive

heating time interval for SWL is very short, and that our scheme can delay the consecutive

heating time interval for much longer thant SWL can. In the evaluation, we assume that

self-healing flash memory will trigger heating for every 100 program/erase (P/E) cycles.

Taking the benchmark sensor as an example, SWL finishes the 200th block heating

in 31, 655 seconds, while our scheme finishes the 200th heating in 754, 195 seconds , which

is 23 times longer. As the lifetime increases, DHeating will also significantly increase in

improvement over SWL.

Performance Improvement

Previous wear-leveling schemes basically relied on the swapping of hot and cold data to

balance the erase counts [14, 15, 20]; therefore, some system performance had to be sacri-

ficed, such as extra valid page copies and extra block erasures. In our technique, we allocate

hot data to old blocks and simply swap the data when young blocks become old blocks or

old blocks become new blocks. Therefore, DHeating can incur much less extra overhead

compared to previous wear-leveling schemes.

The extra valid page copies and the extra number of block erase counts are com-

pared in Table 2.3 and Table 2.4, respectively. The results of the experiment show that

DHeating performs significantly better than SWL in reducing the extra valid page copies

and the extra number of block erase counts. Since the extra number of valid page copy

operations will issue more write operations to blocks containing free pages, more erase op-

erations will be incurred and the lifetime of the NAND flash memory will be shortened.

DHeating can effectively reduce the number of extra valid page copy operations and the ex-

34

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(a) SWL/Local File Copy. (b) DHeating/Local File Copy.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(c) SWL/Sensor. (d) DHeating/Sensor.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(e) SWL/Multimedia. (f) DHeating/Multimedia.

Figure 2.14. The consecutive heating time interval of SWL and DHeating over six applica-

tions (part1).

35

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(g) SWL/NFS. (h) DHeating/NFS.

0 20 40 60 80 100 120 140 160 180 200
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(i) SWL/SD Card. (j) DHeating/SD Card.

0 20 40 60 80 100 120 140 160 180 200
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(k) SWL/FTP. (l) DHeating/FTP.

Figure 2.15. The consecutive heating time interval of SWL and DHeating over six applica-

tions (part2).

36

Table 2.3. Extra valid page copies.

Benchmarks SWL DHeating
DHeating over

SWL (%)

File Copy 158,720 9,344 94.11

Sensor 209,920 10,496 95.00

Multimedia 158,720 7,936 95.00

NFS 206,036 9,472 95.40

SD Card 215,096 8,640 95.98

FTP 139,202 10,688 92.32

Table 2.4. Extra block erasures.

Benchmarks SWL DHeating
DHeating over

SWL (%)

File Copy 3,262 192 94. 11

Sensor 3,800 190 95.00

Multimedia 3,600 180 95.00

NFS 4,010 184 95.41

SD Card 4,508 181 95.99

FTP 2,394 183 92.36

37

10000 20000 30000 40000 50000 60000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000
R

e
s
p
o
n
s
e
 T

im
e
 (

u
s
)

of Requests

10000 20000 30000 40000 50000 60000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

R
e
s
p
o
n
s
e
 T

im
e
 (

u
s
)

of Requests

(a) (b)

10000 20000 30000 40000 50000 60000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

R
e
s
p
o
n
s
e
 T

im
e
 (

u
s
)

of Requests

(c)

Figure 2.16. The lazy heating repair effect with running the File Copy application. (a) The

baseline scheme without lazy heating repair. (b) The lazy heating repair technique with 60s

heating period. (c) The lazy heating repair technique with 600s heating period.

tra number of block erase counts, which are beneficial to a NAND flash memory storage

system. To better understand the benefits of the proposed scheme, we further analyze the

performance improvement. The flash page read and write latencies are 25us and 500us, re-

spectively, and the block erasure latency is 1.5ms [31, 49, 87, 104]. Taking benchmark File

Copy as an example, by using Equation (2.3), we can calculate the performance improvement

is (25 + 500)× 149, 376 + 1, 500× 3, 070 = 830, 274, 000us.

38

Lazy Heating Repair Effect

Lazy heating repair is proposed to eliminate the long heating time effect. In this experiment,

the heating time is configured to 3s. In order to study the heating period effect, the heating

period is configured to 60s and 600s, respectively. The system idle time is detected based on

the pending requests. If the pending request queue is empty, the system is idle.

Figure 2.16 illustrates the lazy heating repair effect. The dispersed heating scheme

without the lazy heating repair technique is adopted as the baseline scheme. In the baseline

scheme, the self-healing flash memory heats the worn-out cells immediately. As a result, the

response time is greatly degraded as shown in Figure 2.16 (a), such as 6632964us in the worst

case. By employing the lazy heating scheme, the system response time can be effectively

improved with the benefits of utilizing the system idle time as shown in Figure 2.16 (b)

and Figure 2.16 (c). The benefits of the lazy heating repair scheme are reflected into two

aspects, the worst case response time and the total heating overhead. Compared with the

baseline scheme, the worst case response time is reduced by 49.77% and the total heating

time overhead is improved by 98.84% on average. In addition, with the heating period

prolonged, such as from 60s to 600s, the lazy heating repair scheme works better and the

improvement is enhanced by 43.49%. However, this improvement benefits from keeping

more worn-out blocks in the heating list. If only a few free blocks are available to response

the write requests and a lot of blocks are kept in the heating list, the blocks in the heating

list may be required to be healed in a concentrated manner. This may seriously degrade the

system response time. In order to well utilize the lazy heating repair scheme, it is better

to dynamically adjust the heating period according to the number of heating blocks in the

heating list and the number of free blocks.

Early Heating for Reliability

Early heating strategy can enhance the reliability at the expense of trading some flash mem-

ory lifetimes. With heating repair started earlier than the expected maximum P/E cycles, the

reliability of flash memory can be effectively enhanced. For example, the bit error rate can

39

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(a) Local File Copy/100%Lifetime. (b) Local File Copy/95%Lifetime.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(c) Local File Copy/90%Lifetime. (d) Local File Copy/85%Lifetime.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(e) Local File Copy/80%Lifetime. (f) Local File Copy/75%Lifetime.

Figure 2.17. The consecutive heating time intervals of DHeating over the File Copy appli-

cation with different lifetimes.

40

be reduced by 70.10% with the cost of 25% lifetime reduction [42].

Table 2.5. A reliability comparison of early heating over different applications with different

reduced lifetimes.

Benchmarks

DHeating 100% DHeating 95% Ave. Early

Life Time Ave. Life Time Ave. Heat. Diff.

Heat. Time(s) Heat. Time(s) (s)

File Copy 3,143.191 2981.181 162.010

Sensor 3,789.924 3,596.558 193.366

Multimedia 3,864.396 3,663.518 200.878

NFS 4,152.160 3,931.683 220.477

SD Card 4,831.884 4,569.271 262.613

FTP 2,514.422 2,383.442 130.980

Table 2.5 shows the experimental results for early heating with different lifetimes. It

can be seen that, using 95% as the heating threshold, early heating can work very well and

the average heating time interval only decreases by an average of about 5%. Figure 2.17

illustrates how different threshold values influence the consecutive heating time intervals of

the application File Copy. With the heating threshold decrease, the average heating interval

decreases accordingly. However, the proposed scheme can still work well with the decrease

in the lifetime of the flash memory, and the reliability of the self-healing flash memory is

enhanced.

2.5 Summary

In this chapter, we propose a scheme, called DHeating, to solve the concentrated heating

problem and overcome the constraints of self-healing NAND flash memory. DHeating con-

sists of three techniques: the dispersed heating technique, the lazy heating repair technique,

41

and the early heating technique. These three techniques are proposed based on different

considerations and interact with each other. The dispersed heating technique is designed

to avoid the concentrated heating problem. The lazy heating repair technique can address

the long time heating issue and the early heating technique is proposed to enhance the re-

liability of self-healing flash memory. We conduct experiments on a set of representative

I/O workloads collected from the embedded development board. The experimental results

show that our proposed scheme not only solves the concentrated heating problem for NAND

flash memory, but also improves the system response time and enhances the reliability of the

self-healing flash memory.

42

CHAPTER 3

VIRTUALIZED FLASH FOR OPTIMIZING THE I/O PERFORMANCE IN

MOBILE DEVICES

3.1 Introduction

Mobile devices have been an integral part of our daily life. Most of applications in mobile

devices need to transfer data from the internet and buffer the content in local storage [59,83].

Over a long period, most of efforts in improving system I/O performance have been fo-

cusing on improving the network performance. Emerging wireless technologies, such as

802.11ad (7Gbps peak throughput), significantly improve the network throughput of mobile

devices [50]. Therefore, local storage I/O is becoming one of the major performance bot-

tlenecks in mobile devices [47, 50]. What is worse, the access speed of flash memory will

become slower due to the introduction of MLC (multi-level cell) technology and high relia-

bility error correction techniques [44, 77]. Therefore, it is more and more difficult to satisfy

I/O demand with pure flash memory based storage in mobile devices.

Newly emerged NVM (non-volatile memory), such as PCM and STT-RAM [23,97],

provides a promising solution to improve the I/O performance for mobile devices, since it can

provide fast and high-throughput memory operations. By placing fast NVMs along side flash

memory at the bottom of the I/O stack and storing data in NVMs, the I/O performance can

be improved. To manage this kind of heterogeneous storage system, an intuitive approach is

to identify frequently accessed data and store them into NVM, while less accessed data are

stored into flash memory. This simple approach may work for desktop or server applications.

However it does not yield satisfiable performance for mobile devices. This is because the

applications in mobile devices are switched much more frequently than those in desktops

43

or servers. While an application is accessing hot data in one moment, another application

might be launched in the next moment and access other data. Therefore, we need a novel

management method that is tailored for mobile devices.

One key observation here is that mobile device user behaviors are relatively repetitive

everyday. Therefore, if we can exploit historical user behavior information to predict future

application usage and relocate data before the application is launched, the system perfor-

mance and the user experience can be greatly improved. In this chapter, we propose vFlash

(Virtualized Flash), a transparent cross-layer scheme, to manage heterogeneous NVM and

flash memory storage system. vFlash is a software layer that works on the bottom of the

software I/O stack and makes use of application I/O features to transparently manage NVM.

In vFlash, two techniques, intra-app and inter-app, are integrated to utilize applica-

tion behaviors to manage NVM. These two techniques are introduced in vFlash based on

different considerations. Inter-app technique utilizes the historical locality information of

applications, while intra-app considers the I/O access patterns for each application. At dif-

ferent time periods of each day, a user tends to regularly use some fixed applications, while

let the other applications sleep. Based on this historical locality information, inter-app tech-

nique can determine which application should be served by NVM at a given time period of

each day. At the same time, if too many applications are used at the same period, NVM

spaces might be used up. Thus, intra-app can be adopted to decide which application data

should be stored in the NVM with the first priority. The main contributions of this chapter

include:

• To the best of our knowledge, this is the first work to take the advantage of user be-

haviors to improve the I/O performance in mobile devices.

• Inter-app and intra-app techniques are crafted to optimize application performance by

exploiting the historical locality and I/O access patterns of applications.

• A cross-layer technique is proposed to transfer the application information from the

application layer to the vFlash layer to enable optimization.

44

Experiments are conducted with various Android applications on an Android plat-

form with an ARM Cortex-A9 processor and a 64Gb NAND flash memory chip. The pro-

posed vFlash scheme is implemented beneath the block device driver in the Linux kernel.

The experimental results show that vFlash can improve the I/O performance in Android mo-

bile devices by more than 2.86 times compared with the stock Android 4.2 system.

The rest of this chapter is organized as follows: Section 3.2 presents the background

of this work and our motivation for conducting this work. Section 3.3 introduces our vFlash

strategies. The performance and overhead introduced by the proposed scheme are analyzed

in Section 3.4. The experimental results are presented and discussed in Section 3.5. In

Section 3.6, we summarize this chapter.

3.2 Background

In this section, we first present the I/O system architecture of a typical Android mobile device

in Section 3.2.1. Then, we introduce the I/O performance bottleneck in Section 3.2.2 and two

challenges of integrating NVMs in the storage system of mobile devices in Section 3.2.3,

respectively.

3.2.1 The Android I/O System Architecture

We use the popular used Android system to study the I/O storage architecture in mobile

devices. As shown in Figure 3.1, Android applications run on the Linux kernel, and each

application runs with a Dalvik VM, which is a virtual machine running in Android mobile

devices. Dalvik VM converts the Java bytecode to local host executable binary code [24,47].

In the Linux kernel, I/O requests issued from applications are passed through three I/O layers

to the flash device, including the file system layer with disk cache, block device driver layer,

and flash device driver [63, 106].

The software layers in the I/O stack have been well designed to handle the I/O re-

quests, and the performance in the I/O stack is confined to NAND flash memory. In this

45

File System (e.g. EXT4, FAT32)

Flash Device Driver

Flash Device (e.g. eMMC, SD Card)

Block Device Driver

Linux Kernel

Dalvik VM Dalvik VM

Browser Gallery

Android Applications

Facebook

Dalvik VM Process

…...

Disk

Cache

Figure 3.1. The I/O system architecture of Android mobile devices.

chapter, we focus on improving the flash device performance. In order to improve the flash

memory performance, we propose to add small faster but expensive NVM to the I/O storage

system. However, in order to do so, we need to transparently integrate NVM into the existing

system such that all existing applications do not need to be modified.

3.2.2 I/O Bottleneck and Non-Volatile Memory

In mobile devices, NAND flash memory has been prevalently used as the secondary stor-

age. However, with the rapid improvement of the computation and communication speed,

NAND-flash-based I/O storage has become the new performance bottleneck, and thus se-

riously degrades the application performance in mobile devices. NAND flash memory has

several constraints, such as erase-before-rewrite, limited lifetime, and long time overhead for

garbage collection [17, 22, 28, 54, 86]. These constraints seriously affect the flash memory

performance. Compared with flash memory, newly emerged NVM, such as PCM and STT-

RAM, can well compensate the above constraints, benefiting from the high I/O performance,

low standby power, and in-place update features [11,97]. These good features make NVM a

promising solution to effectively improve the I/O performance for NAND flash memory, and

46

thus enhance the performance of mobile device applications.

Table 3.1. The characteristics of NAND flash memory and non-volatile memory [31, 49, 87,

104].

Attributes NAND PCM STT-RAM

Non-Volatility Yes Yes Yes

Byte Addressability No Yes Yes

Bit Alterability No Yes Yes

Read Latency ∼ 25 us ∼50 ns ∼ 1 ns

Write Latency ∼ 500 us ∼150 ns ∼ 10 ns

Erase Latency ∼ 1.5 ms No No

Endurance 104 − 105 106 − 108 > 1015

Table 3.1 summarizes the characteristics of NAND flash memory and non-volatile

memory. As shown in Table 3.1, non-volatile memory and NAND flash memory both have

the non-volatile feature. However, non-volatile memory also suppports the byte addressabil-

ity and bit alterability, which are not available in NAND flash memory. These two abilities

determine that non-volatile memory can do in-place update, while NAND flash memory

should do long time erase operations before update. Also, non-volatile memory presents

much shorter read/write latency compared with NAND flash memory, even though its byte

addressability has already made it superior to NAND flash on handling frequent data up-

dates. Flash memory has limited endurance, which can only sustain 104 − 105 writes before

a failure occurs [13, 48, 97]. Compared with flash memory, non-volatile memory has much

better endurance than that of NAND flash memory, such as more than 1015 for STT-RAM.

Therefore, non-volatile memory is rapidly developed as a promising candidate for memory

and/or storage in the design of embedded computing systems.

47

3.2.3 Transparent Integration

File System (e.g. EXT4, FAT32)

Flash Device Driver

Flash Device (e.g. eMMC, SD Card)

Block Device Driver

Linux Kernel

Browser Gallery

Applications

Facebook …...

Disk

Cache

Non-Volatile

Memory

(e.g. PCM,

STT-RAM)

Non-Volatile

Memory

(e.g. PCM,

STT-RAM)

1

2

Figure 3.2. Two usage methods of non-volatile memory.

In general, two possible methods can be explored to improve the I/O performance

by integrating NVM in mobile devices as shown in Figure 3.2. In the first method, NVM

is exposed to applications, and can be directly operated by applications. This method usu-

ally involves modifications of the application itself, which is expensive or even impossible.

In mobile devices, I/O operations are represented as read or write operations. If we use

this method to manage NVM, at least all write operations need to be modified. For exam-

ple, when an application issues a write request, it should determine the storing media, flash

memory or NVM.

Therefore, in order to transparently manage NVM, it is more desirable to place NVM

at the bottom of the I/O stack, lying beneath the standard block device driver as shown

in Figure 3.2. Compared with the first usage method, the second management method is

transparent to upper layers in the I/O stack. By using this method, we can effectively avoid

application modifications. It is also the choice of this work. After NVM is integrated into the

system, we need a software layer to manage the underlying heterogeneous storage system,

and provide transparent support for upper layers. We will discuss the details of the proposed

vFlash scheme which will achieve the desired goals.

48

3.3 vFlash Design

In this section, we introduce the vFlash scheme which can effectively improve the I/O per-

formance in mobile devices. We first provide an overview in Section 3.3.1, and then present

the detailed optimizations in Sections 3.3.2 and 3.3.3. An adaptive space preparation scheme

is presented in Section 3.3.4.

3.3.1 Overview

File System (e.g. EXT4, FAT32)

Flash Device Driver

Non-Volatile Memory

(e.g. PCM, STT-RAM)

Non-Volatile Memory

Device Driver

Flash Device

(e.g. eMMC, SD Card)

Intra-AppInter-App

Virtualized Flash (vFlash) Layer

Linux Kernel

Browser Gallery

Applications

Facebook …...

Block Device Driver

C
ro

s
s
-L

a
y
e
r

Apps Monitor

Disk

Cache

Figure 3.3. The storage architecture with NVM integration.

The objective of vFlash is to optimally manage the underlying heterogeneous storage

system and provide transparent support for upper layers, such that the system performance

of mobile devices can be improved. The basic idea in vFlash is to study the I/O behaviors of

different applications and based on different I/O behaviors, vFlash adopts different storing

49

decisions. In this chapter, two techniques, intra-app and inter-app, are proposed to study ap-

plication I/O behaviors. Inter-app utilizes the historical locality information of applications,

while intra-app considers the I/O access patterns for each application.

Figure 3.3 illustrates the storage hierarchy by integrating NVM in mobile devices. In

the storage hierarchy, a new software layer, vFlash, is proposed to manage the heterogenous

storage system. In vFlash, the main component is apps monitor, whose function is to use

application information to optimize the I/O performance. In order to achieve this goal, two

techniques, inter-app and intra-app, are proposed in apps monitor. These two techniques

are proposed based on different considerations. The inter-app technique is devised based

on the consideration of the historical locality information. At different time periods of each

day, a person tends to regularly use some fixed applications, while let the other applications

sleep. Based on this historical locality information, inter-app technique can determine which

application should be served by NVM at a given time period of each day. The intra-app tech-

nique is proposed based on the consideration of the I/O access patterns for each application.

The frequent update requests introduce the most I/O burdens for NAND-flash-based storage.

Therefore, the application that presents the frequent update I/O access pattern will have the

higher priority to store data in NVM.

However, there is a challenge for vFlash to do so. Since vFlash is placed at the

bottom of the I/O stack, the application information is lost when I/O requests reach this layer.

Therefore, we need a mechanism to transfer the application information from applications to

the proposed vFlash layer.

A
p
p
lic

a
tio

n
s

A
p
p
lic

a
tio

n
s

D
is

k
 C

a
c
h
e

A
p

p
lic

a
tio

n

Write

Requests

I/O

Completion

Finish

Flush
Storage

Device

Flush Daemon

D
is

k
 C

a
c
h

e

A
p
p
lic

a
tio

n
s

A
p
p
lic

a
tio

n
s

D
is

k
 C

a
c
h
e

A
p

p
lic

a
tio

n
A

p
p
lic

a
tio

n
s

A
p

p
lic

a
tio

n
s

A
p
p

lic
a

tio
n

Write

Requests

I/O

Completion

Storage

Device

(a) The write-back policy. (b) The write-through policy.

Figure 3.4. The disk cache effect.

50

Buffer Header AIDAName
Buffer Header AIDAName

Count=2

Radix Tree Root

Page

Buffer

Page

Buffer

Page

Buffer

Page

Buffer

Application 1

File Object Dentry Object

Block Block Block Block

Inode Object

Block

Buffer

Block

Buffer

Block

Buffer

Virtual File System(VFS)

Disk Cache

Applications

F
ile

 S
y

s
te

m

……

Application 2 ……

Storage

Device

Height=2

…

Page

Buffer

Buffer Header AID AName

…...

Count=2
…

Count=3
…

Figure 3.5. Disk cache in the file system.

3.3.2 Cross Layer Management

As we mentioned, by placing NVM at the bottom of the I/O stack, we can transparently

manage NVM. However, the application information will be lost in the vFlash layer. In

order to utilize the application information to better optimize the application performance,

we need a cross-layer mechanism to transfer the application information from applications

to the vFlash layer. We will analyze why the application information is lost in the vFlash

layer, and how to transfer the application information from applications to the vFlash layer.

51

The main contributor to the loss of the application information is the disk cache.

The disk cache is a buffer cache, allowing certain storage data to be kept in RAM without

being directly written to the storage device as shown in Figure 3.4. In general, two classical

caching policies, write-back and write-through, are employed to manage the disk cache. The

default caching policy used in the file system is write-back, by which the applications get

the I/O completion signal from the file system when data are stored in the disk cache. The

write-back policy works with a flush daemon. A flush daemon is responsible for flushing

the inconsistent RAM data to the storage device. If the data in the disk cache are needed to

be flushed to the storage device, the flush daemon will send I/O requests to the vFlash layer.

Therefore, vFlash can only obtain information of the flush process instead of the original

process that writes this data. In contrast, a write-through cache performs to guarantee that all

data are written to the cache and the storage device simultaneously. Therefore, vFlash can

obtain information of the process that writes this data. However, the write-through policy

severely degrades the overall system performance since every application needs to wait until

data are written to the storage device. Thus, it is not a desirable solution for mobile device

applications either.

In order to solve the above issue, we propose to transfer the application information

from applications to the vFlash layer. We slightly modify the Linux kernel to record the

application information in each I/O request. Therefore, even with the write-back caching

policy, vFlash can still obtain the application information from the I/O request. In the fol-

lowing part of this section, we will analyze the underlying data structure of the disk cache in

detail, and show how to transfer the application information from applications to vFlash.

Figure 3.5 illustrates the data structure of the disk cache. In Linux, files can have

large sizes, even a few terabytes. When accessing a large file, the page cache may be filled

with many pages. Sequentially scanning all of the pages would consume a lot of time. In

order to efficiently lookup the data in the page cache, the Linux file system uses a search

tree to organize the data in the page cache. The root of the search tree is represented by a

radix tree root data structure. Nodes at the middle of the search tree store pointers pointing

to the other nodes, and nodes at the bottom of the search tree store pointers pointing to page

52

submit_bio()

BIO Next

BIO Vector

Queue List

BIO

CBIO

Buffer Pointer

B
lo

c
k

B
u
ffe

r

B
lo

c
k

B
u

ffe
r

B
lo

c
k

B
u

ffe
r

......

B
lo

c
k

B
u
ffe

r

B
lo

c
k

B
u

ffe
r

B
lo

c
k

B
u
ffe

r
......

B
lo

c
k

B
u
ffe

r

B
lo

c
k

B
u
ffe

r

B
lo

c
k

B
u
ffe

r

Bio Vector

Page Pointer

Page Offset

Length

Request

Queue List

BIO

CBIO

Buffer Pointer

BIO

BIO Next

BIO Vector

AName
AID

B
lo

c
k
 D

e
v
ic

e
 D

riv
e

r

……

……

Bio Vector
Page Pointer

Page Offset

Length

Bio Vector

Page Pointer

Page Offset

Length

Request Queue

……
File System

…
...

Buffer Header AID AName Buffer Header AID AName

Request

Queue List

BIO

CBIO

Buffer Pointer

Request

BIO

BIO Next

BIO Vector

AName
AID

BIO

AName
AID

Block Block Block Block…… Storage

Device

Figure 3.6. Data organization in the block device driver.

buffers. Each page buffer contains several block buffers, and each block buffer is pointed by

a buffer header descriptor of type buffer header. This descriptor contains the block buffer

related information. We modify the buffer header structure, and add the application identifi-

cation (AID) and application name (AName) in the buffer header structure. The application

identification and application name are used to uniquely identify an application. When an

application issues an I/O request, the Linux kernel will record the application information in

AID and AName.

In the block device driver, the requests are linked into a request queue with the help of

the queue list as shown in Figure 3.6. In the request structure, the accessed data are pointed

by the bio field. The cbio and buffer pointer fields point to the first bio request that has not

been transferred. In order to keep the application information in the block device driver, we

53

modify the bio data structure and add the AID and AName in the bio data structure. When

the buffer header is converted to a block I/O request via a system function, submit bio(),

the AID and AName will be delivered from the buffer header to the bio structure. Finally,

when vFlash receives an I/O request, it can use AID and AName to identify the application

information from the bio data structure.

3.3.3 Inter-app and Intra-app Management

In the vFlash layer, apps monitor is proposed to capture and study the application I/O be-

haviors. Two techniques, inter-app and intra-app, are adopted in apps monitor. These two

techniques utilize the historical locality and I/O access patterns to study the application I/O

behaviors.

t1 t2 t3 tn-2... ... tn-1 tn

... ...

t1 t2 t3 tn-2... ... tn-1 tn

... ...

t1 t2 t3 tn-2... ... tn-1 tn

... ...

Application 1

<IOS1 2, UT1 2>

Application 2

Application 3

Application k

IOS: I/O Request Size UT: Update Times

m
D
ay

s

Figure 3.7. The data organization with the inter-app and intra-app technologies.

To collect the historical locality information, the inter-app technique uses several

time tables to record the execution time for each application as shown in Figure 3.7. Each

time table records the application execution time in one day, and one day is divided into

54

n (n ≥ 1) time periods. To better predict the application behaviors, m (m ≥ 1) tables are

employed to record the application execution time for the up-to-date m days. With the help

of the recorded historical locality information, we can predict which application will run in

the next time period, and thus pre-allocate the required NVM spaces. IOS (I/O request size)

is used to denote the required NVM spaces for one application, and will be discussed in the

following part.

I/O Request Size: IOSij(1 ≤ i ≤ m; 1 ≤ j ≤ n) is employed to represent the I/O

request size for the ith day and jth time period issued from one application. The predicted

IOSpre of the jth time period can be calculated through Equation (3.1).

IOSpre =

∑m
i=1 IOSij

m
, (3.1)

where m ≥ 1. In this way, we can implement the inter-app technique. However, the

inter-app technology can only predict which application will run and the required I/O spaces

at a given time period. If too many I/O requests are generated at a given time period, free

spaces in NVM may be used up. Under this condition, the intra-app technique is proposed

to determine which application should have the first priority to allocate NVM spaces.

For intra-app, it applies I/O access patterns to optimize the I/O performance. In the

NAND-flash-based storage system, the frequent update requests generate the most I/O bur-

dens, since data updates can lead to the lengthy garbage collection operations in NAND flash

memory. Therefore, if an application presents the frequent update feature, this application

should be given the high priority to store data in NVM. In intra-app, UT (update times) is

represented the data update times for each application and stored in the time table as shown

in Figure 3.7. For each application, UTij represents the update times of the ith day at the

jth time period. The predicted update times will be discussed in the following part.

Update Times: If NVM has sufficient spaces to allocate to each application, the

UT information can be ignored. Otherwise, UT information can help to minimize the I/O

burdens by first allocating the NVM spaces to applications with the frequent data update

feature. The predicted UTpre can be calculated through the following equation:

55

UTpre =

∑m
i=1 UTij

m
, (3.2)

in which m ≥ 1. In Equation (3.2), UTpre is the average update times of m days in

a given time period j. Then, UTpre can be applied to predict the update frequency for each

running application, and the inter-app technique is implemented.

3.3.4 Adaptive Space Preparation

For each time period, vFlash needs to prepare the NVM spaces in advance. The prepare

operation may introduce the data migration and thus degrade the I/O performance. In order

to eliminate the migration overhead while providing the NVM spaces for data caching, we

propose an adaptive data preparation scheme. The adaptive data preparation scheme reclaims

the NVM spaces by utilizing the system idle time and considering the data characteristics.

The data are classified into three different categories, namely, read only data, write only data,

and updated data. The read only data are not taken into account because of the following

reasons. The read performance of NAND flash storage (e.g. 25us) is much better than that

of the write performance (e.g. 500us) [31, 49]. In addition, If the data are frequently read,

these data will be cached in the page cache of the file system. And, if the read only data

are kicked out, these data are directly discarded by the file system without being flushed to

the flash devices. However, the write data are needed to be flushed to the flash devices for

the data persistence. So, the write data introduce much more I/O burdens compared with the

read only data, and we mainly employ the NVM to cache the write data. When cleaning the

data in NVM, the write only data are cleaned first, and then the updated data. The above

cleaning procedure is elaborated based on the following considerations. Compared with the

write only data, the updated data are more important since the data updates can generate

the invalid data in flash memory and thus introduce the lengthy garbage collection. The

next issue is to select an application to reclaim the NVM spaces. We adopt an execution

time aware based method to perform the application selection with the consideration of the

application temporal locality. The application with the maximum runtime distance (the time

56

interval between the current time period and the predicted execution time period) will be

selected as a candidate and follow the above mentioned data characteristics to perform the

cleaning procedure. If different applications present the same runtime distance feature, the

application with the minimum UTpre will be selected as a candidate and its data will be

cleaned first.

Algorithm 2 describes how the adaptive space preparation scheme works. The input

TT represents the time tables described in Section 3.3.3. In Algorithm 2, the adaptive space

preparation scheme does not work under the following three conditions. The first condition

is that the number of free spaces in NVM is larger than or equal to the predicted I/O request

size. The second condition is that the system is busy, and the last condition is that all NVM

spaces are free. If none of the above conditions is satisfied, the space preparation will be trig-

gered. The adaptive space preparation scheme reclaims NVM spaces according to the system

status, idle or busy. If the system is idle, the adaptive space preparation scheme continues

to clean NVM spaces until the number of free spaces in NVM is larger than or equal to the

required NVM spaces, or all the NVM spaces are cleaned. On the other hand, if the system is

busy handling I/O requests, the adaptive space preparation scheme will wait until the system

becomes idle. The adaptive space preparation also works with the consideration of the dif-

ferent data size. If the migrated data size is larger than the NAND flash page size, continuing

migrating a large amount of data may heavily block the system response. To solve this issue,

the adaptive space preparation scheme migrates data with a preemptive manner. That is, mi-

grated data are divided into flash page size data, and each atomic migration procedure only

contains one page size data. After migrating one page size data, the adaptive space prepa-

ration scheme will detect the system status. If the system becomes busy, the adaptive space

preparation scheme will release the system resources and let the system response the I/O

request first. By applying the preemptive migration, the performance overhead introduced

by migrating a large amount of data can be significantly reduced.

57

Algorithm 2: Adaptive space preparation
Input: TT : Time tables

1 IOSpre ← Calculate the I/O request size used in the

2 next time period according to TT

3 if The free spaces in NVM ≥ IOSpre or The system is busy or

All NVM spaces are free then

4 Adaptive space preparation does not work

5 else

6 while The system is idle and The NVM has occupied spaces and

The free spaces in NVM < IOSpre do

7 MD ← The write only data with the

8 maximum runtime distance

9 if MD is NULL then

10 APPmax ← The applications with the

11 maximum runtime distance

12 MD ← The updated data in the APPmax

13 with the minimum UTpre

14 while MD data size > 0 do

15 PMD ← The flash page size data in MD

16 Move PMD from NVM to flash memory

17 Mark the PMD occupied NVM spaces as free

18 MD data size←MD data size− PMD data size

19 if The system is busy then

20 Wait the system to be idle

58

3.4 Performance and Overhead Analysis

In this section, we analyze the system performance improvement and the extra overhead

introduced in the proposed scheme. The system response time is an important metric to

evaluate the system performance. It is the time period from the point when an operation is

issued to the point when the operation has been completed. The inputs of an I/O request are

read and write operations. Thus, we conduct the analysis for the best-case and worst-case

system response times of read and write operations. The symbols used in this analysis are

listed in Table 3.2.

Table 3.2. The description of symbols used in analysis.

Symbols Description

Trd The time to read one flash page

Twr The time to write one flash page

Terase The time to erase a flash block

TNVM rd The time to read one flash page size data in NVM

TNVM wr The time to write one flash page size data in NVM

Nmax vpage The maximum number of valid pages in one block

Ngc The number of garbage collection operations

NNVM wr The number of NVM write requests in the unit of

flash page size

NNVM rd The number of NVM read requests in the unit of

flash page size

Ndata mig The number of flash page size data migrated from

NVM to flash memory

The extra performance degradation is first reflected to the garbage collection opera-

59

tions, including extra valid page copies and block erasures, and the time is:

((Tflash rd + Tflash wr)×Nmax vpage + Tflash erase)×Ngc (3.3)

Tflash erase ×Ngc (3.4)

In original mobile devices, data updates generate invalid pages in NAND flash mem-

ory. The generation of these invalid pages finally results in triggering the garbage collection

operation, which needs to copy the valid pages and erase the dirty blocks. The worst-case and

best-case overhead of garbage collection operations can be calculated through Equation (3.3)

and Equation (3.4), respectively. The timing difference between the worst-case and best-case

is reflected from the valid page copy procedure. If one block contains maximum number of

valid pages denoted by Nmax vpage, the worst-case will occur and plenty of valid pages are

needed to be copied from dirty blocks as shown in Equation (3.3). On the other hand, if a

block has no valid pages, only block erasure operations occur as described in Equation (3.4).

Since NVM supports in-place updates, the data updates can be effectively absorbed by first

storing data in NVM. As a result, the proposed vFlash scheme can effectively improve the

system response time by reducing the garbage collection overhead.

(Tflash wr − TNVM wr)×NNVM wr+

(Tflash rd − TNVM rd)×NNVM rd

(3.5)

The proposed scheme not only reduces the garbage collection overhead but also can

enhance the read and write speed. Equation (3.5) describes the read and write performance

gain by integrating NVM. NNVM wr stands for the number of page size write requests issued

to NVM, and NNVM rd represents the number of page size read requests issued to NVM.

Without the proposed NVM integration scheme, these requests are directly issued to flash

devices. Given that the I/O speed of flash memory is orders of magnitude slower than that of

NVM, we can achieve great I/O performance gain as described in Equation (3.5).

60

(TNVM rd + Tflash wr)×Nnum mig (3.6)

The proposed scheme may introduce the data migration overhead. The performance

degradation introduced by data migration can be represented in Equation (3.6). TNVM rd and

Tflash wr represent the time to read one page size data in NVM and the time to write one page

in flash memory, respectively. Nnum mig denotes the number of page size data migrated from

NVM to flash memory. The migration operations first read data from NVM and then store

the read data into flash memory. However, the migration overhead does not introduce much

performance degradation to applications in the vFlash scheme. This is because the proposed

adaptive space preparation utilizes the system idle time to do migration.

The proposed scheme uses time tables to record the I/O request size and update times

for each application. This table consumes some RAM spaces. However, the RAM cost for

the time tables is acceptable. Assume we use one hour as a time interval, and we record

seven days. A person installs 100 applications in his/her mobile device, and we use 8 bytes

to record the IOS and UT. Then, in the worst case, the RAM cost for the time table is

100 ∗ 24 ∗ 7 ∗ 8 = 131.25KB. Since usually these 100 applications do not always run in

one day, the RAM space consumes introduced by the time tables should be less that of the

worst case. In addition to the time tables, vFlash also needs a mapping table to record the

flash memory address when data are stored in NVM. This RAM space consumption is also

acceptable since even with a small capacity of NVM (e.g. 16MB used in the experiment)

we can achieve great performance improvement. Assume the capacity of NVM is 16MB,

and one flash page size is 4KB. If each mapping item consumes 8 bytes, the RAM space

overhead is 16∗1024
4
× 8 = 32KB in the worst case (all the NVM spaces are utilized).

3.5 Evaluation

In this section, we present our experimental results with analysis. We compare and evaluate

the proposed vFlash scheme with the baseline schemes in terms of the I/O performance and

61

energy consumption. The baseline schemes adopt the stock Android 4.2 system and the

NVM integration with the LRFU [55] management. LRFU management is designed with

the consideration of the least recently used (LRU) and least frequently used (LFU) policies.

The performance evaluation is conducted on an Android platform with a Samsung ARM

Cortex-A9 quad-core processor and a 64Gb NAND flash memory chip.

3.5.1 Experimental Setup

NAND

Flash

DDR RAM

ARM

Processor

SD Card

USB WiFi

Core Board

Mother Board

Figure 3.8. Experimental Android platform.

A hardware platform is used to evaluate the baseline schemes and proposed vFlash

scheme. Figure 3.8 shows the top view of the hardware platform. The evaluation platform

contains a core board and a mother board, which are connected via a one-to-one pin connec-

tor. The core board includes an ARM Cortex-A9 quad-core processor (Samsung Exynos4412

[74]) with ARMv7 architecture. In this platform, the ARM processor core runs at 1.4GHz

and consists of a 32KB instruction cache and a 32KB data cache. In addition to the proces-

sor, the core board is also equipped with 64Gb NAND flash memory, 128Gb SD card, and

62

1GB DDR3 RAM. We use a small portion of RAM to simulate NVM, since the I/O accessing

patterns of NVM are similar to RAM [39]. That is, RAM and NVM are all byte addressable

and support in-place updates. The physical interfaces, such as the USB port, are designed in

the mother board, and a WiFi module is connected through the USB interface.

Table 3.3. The Android applications and their usage.

Applications Using Scenarios

Google Earth Search Places and View Streets

Browser Browse Websites and Search Pictures

WeChat Chat with Friends

YouTube Watch Online Movies

Facebook View Friends’ Status

Gmail Receive Emails and Send Emails

Gallery View Pictures

Download Download Applications

Install Install Applications

Media Player Watch Movies and Listen to Music

Angry Birds Play the Game and Select Levels

Android 4.2 with the Linux kernel 3.5 is ported to this platform. The proposed

scheme vFlash is implemented between the block device driver and the lower physical de-

vice driver (e.g. NAND flash memory device driver) in the Linux kernel. Since vFlash needs

to utilize application information to optimize the I/O performance, we modify the ext4 file

system and block device driver to transfer the application information from applications to

the vFlash layer. For fair comparisons, the same configuration has been adopted for the base-

63

line and vFlash schemes. We have covered a wide range of applications to demonstrate the

effectiveness of the proposed scheme. In this experiment, we employ 11 different kinds of

applications, such as Google Earth for navigation, Browser for web browser, and Facebook

for social network. These applications and their using scenarios are shown in Table 3.3.

These applications are frequently used in people’s daily life and iteratively issue I/O re-

quests to the storage system. Three different persons are selected to evaluate the proposed

scheme, and each person uses this board for one month. In the time table, the time interval is

configured to 1 hour, and vFlash records up-to-date 7 days’ data to predict the IOS and UT.

3.5.2 Results and Discussion

In this section, we present the experimental results with analysis. We first give the offline

data to deeply analyze the application data characteristics in the Android environment. Then,

we show the performance and energy consumption improvement by comparing the baseline

schemes with the proposed vFlash scheme. Finally, the effect of the adaptive space prepara-

tion scheme is discussed.

We utilize PCM as an example of NVM to study the benefits of the proposed scheme.

The response time of NAND flash device is directly measured with the help of the Linux

kernel function do gettimeofday. The other results are obtained by capturing I/O requests

to PCM and NAND flash memory and calculating with the models of NAND flash memory

and PCM. The read latency and write latency of PCM are configured to be 50ns and 150ns,

respectively. In order to study the energy consumption, the read and write energy of PCM

are configured to be 1J/GB and 6J/GB, respectively. The read and write energy of NAND

flash memory are set to 1.5J/GB and 17J/GB, respectively. NAND flash memory also

supports the erase operation which is not available in PCM. The energy consumption of the

erase operation is configured to be 10J/GB [39, 41, 52, 87, 104, 105]. In the experiment, the

PCM capacity is configured to 16MB. This configuration is based on the consideration of the

PCM price which is much higher than that of flash device. In the future, the NVM price may

drop. So we will explore how the proposed scheme is influenced with increasing the PCM

64

capacity in the future work.

Offline Data Analysis

0 200 400 600 800 1000

0

200000

400000

600000

800000

1000000

1200000

1400000

Log data

Regular data

B
lo
c
k
A
d
d
re
s
s

Time (s)

Metadata

0 200 400 600 800 1000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Log Data

Regular Data

B
lo
c
k
A
d
d
re
s
s

Time (s)

Metadata

(a) WeChat. (b) Facebook.

Figure 3.9. The I/O characterization with running (a) the WeChat application, and (b) the

Facebook application.

We select two representative applications, WeChat and Facebook, as examples to

analyze the application I/O behaviors. Figure 3.9(a) and Figure 3.9(b) compare the I/O char-

acterization with running the WeChat application and the Facebook application, respectively.

These results are obtained by modifying the proposed vFlash layer in the Linux kernel and

outputting the captured I/O requests to a trace file. As shown in Figure 3.9, there are three

different kinds of data, including metadata, log data, and regular data. Metadata and log data

are generated by the ext4 file system and usually can be easily identified according to the

data block address [21,96], which is an address from the file system’s perspective and differ-

ent from the NAND flash block address. The metadata usually present the frequent update

feature and should be migrated to NVM with the lowest priority. Different from metadata,

log data are sequentially written to the storage device with the infrequently accessed feature.

Therefore, the log data will be migrated to the flash storage with the first priority. The regular

data are generated by applications and the data access patterns are highly dependent on appli-

cations. For example, compared with the WeChat application, regular data generated by the

Facebook application present the frequent update feature, so these data should be migrated

65

to NVM with the lower priority.

Performance Improvement

G
oogle

 E
arth

Bro
wse

r

W
eChat

YouTube

Face
book

G
m

ail

G
alle

ry

Downlo
ad

In
st

all

M
edia

 P
la

ye
r

Angry
 B

ird
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p

 Stock Android LRFU vFlash Inter-App vFlash

Figure 3.10. The I/O performance by comparing the baseline schemes with the vFlash

scheme (the first user).

The normalized speedup is adopted to quantitatively analyze the performance im-

provement [103]. We first obtain the I/O throughput that is the number of megabytes pro-

cessed per second for each application, and then calculate the average I/O throughput of all

the applications. The normalized speedup is obtained by dividing the I/O throughput by the

average throughput.

Figure 3.10, Figure 3.11, and Figure 3.12 present the experimental results of the I/O

performance for the baseline and vFlash schemes with three different users. Several phe-

nomena can be observed from the experimental results. First, although different users may

have different usage behaviors, the proposed vFlash scheme can significantly improve the

I/O performance compared with the baseline schemes for all these three users. For example,

for three different users, the I/O performance by employing vFlash outperforms that of the

66

G
oogle

 E
arth

Bro
wse

r

W
eChat

YouTube

Face
book

G
m

ail

G
alle

ry

Downlo
ad

In
st

all

M
edia

 P
la

ye
r

Angry
 B

ird
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p

 Stock Android LRFU vFlash Inter-App vFlash

Figure 3.11. The I/O performance by comparing the baseline schemes with the vFlash

scheme (the second user).

G
oogle

 E
arth

Bro
wse

r

W
eChat

YouTube

Face
book

G
m

ail

G
alle

ry

Downlo
ad

In
st

all

M
edia

 P
la

ye
r

Angry
 B

ird
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p

 Stock Android LRFU vFlash Inter-App vFlash

Figure 3.12. The I/O performance by comparing the baseline schemes with the vFlash

scheme (the third user).

67

stock Android system up to 9.54 times (2.89 times on average), 8.63 times (2.93 times on av-

erage), and 10.27 times (2.76 times on average), respectively. These results demonstrate that

the user behaviors are relative fixed for each person, and the vFlash scheme can well utilize

the user behaviors to optimize the I/O performance with NVM integration. The second ob-

servation is that the LRFU management policy could not better manage the NVM resources

under the mobile environment. The LRFU scheme can only enhance the I/O performance

to 3.92% on average for all the three users compared with the stock Android system. This

is because applications in mobile devices are switched much more frequently than those in

desktops or servers. While an application is accessing hot data in one moment, another ap-

plication might be launched in the next moment and access other data. If we do not use the

cross-layer technique to transparently mange NVM spaces, previous generated data, which

may become hot data later, are easily to be kicked out by the data generated by the other

applications. Moreover, mobile applications (e.g. WeChat) tend to generate many new data.

If the spaces are not prepared well, the NVM spaces can be quickly used up. This finally

results in aggressively cleaning the NVM spaces for the new I/O requests, and the perfor-

mance even becomes worse than that of the stock Android system (e.g. Browser shown in

Figure 3.10). Last, the results show that the proposed inter-app and intra-app techniques play

different roles in addressing the storage performance improvement and can well cooperate

with each other. The experimental results illustrate that with intra-app technique, the pro-

posed vFlash scheme can further improve the I/O performance to 15.77% on average for all

the three users compared with the inter-app technique. Compared with the stock Android

system, the proposed scheme reduces 30,250 block erasure times. The typical block erasure

latency is 1.5ms [31, 49, 87, 104]. By using Equation (3.4), we can calculate that the perfor-

mance overhead introduced by block erasures is reduced by 30, 250× 1.5 = 45, 375ms.

Energy Consumption

Energy consumption is another important metric to evaluate the effectiveness of the pro-

posed scheme. The results shown in Figure 3.13, Figure 3.14, and Figure 3.15 illustrate the

normalized energy consumption of the baseline and vFlash schemes. From the experimental

68

G
oogle

 E
arth

Bro
wse

r

W
eChat

YouTube

Face
book

G
m

ail

G
alle

ry

Downlo
ad

In
st

all

M
edia

 P
la

ye
r

Angry
 B

ird
s

0.0

0.2

0.4

0.6

0.8

1.0

N
o

m
a

liz
e

d
 I
/O

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n Stock Android LRFU vFlash

Figure 3.13. Illustration of the I/O energy consumption (the first user).

G
oogle

 E
arth

Bro
wse

r

W
eChat

YouTube

Face
book

G
m

ail

G
alle

ry

Downlo
ad

In
st

all

M
edia

 P
la

ye
r

Angry
 B

ird
s

0.0

0.2

0.4

0.6

0.8

1.0

N
o

m
a

liz
e

d
 I
/O

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n Stock Android LRFU vFlash

Figure 3.14. Illustration of the I/O energy consumption (the second user).

69

G
oogle

 E
arth

Bro
wse

r

W
eChat

YouTube

Face
book

G
m

ail

G
alle

ry

Downlo
ad

In
st

all

M
edia

 P
la

ye
r

Angry
 B

ird
s

0.0

0.2

0.4

0.6

0.8

1.0
N

o
m

a
liz

e
d

 I
/O

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n Stock Android LRFU vFlash

Figure 3.15. Illustration of the I/O energy consumption (the third user).

results, we can discover that vFlash can effectively reduce the I/O energy consumption com-

pared with the baseline schemes. For example, in Figure 3.13, the proposed vFlash scheme

can achieve I/O energy consumption reduction to 60.36% and 51.98% on average compared

with the stock Android system and LRFU, respectively. The energy consumption reduction

for the vFlash scheme mainly benefits from two aspects. The first aspect is that the read and

write energy consumption of PCM is much lower that that of NAND flash memory. The

second aspect is that the proposed vFlash scheme can effectively reduce the data updates in

NAND flash memory, which finally results in the effectiveness reduction of the total number

of garbage collection operations in the flash storage.

Adaptive Space Preparation Effect

Since the adaptive space preparation needs to migrate data from NVM to flash storage, this

strategy may introduce the performance overhead. Figure 3.16 illustrates the normalized per-

formance degradation caused by the adaptive space preparation. These results are measured

70

G
oo

gl
e

E
ar

th

B
ro

w
se

r

W
eC

ha
t

You
Tub

e

Fac
eb

oo
k

G
m

ai
l

G
al

le
ry

D
ow

nl
oa

d

In
st

al
l

M
ed

ia
 P

la
ye

r

A
ng

ry
 B

ird
s --

G
oo

gl
e

E
ar

th

B
ro

w
se

r

W
eC

ha
t

You
Tub

e

Fac
eb

oo
k

G
m

ai
l

G
al

le
ry

D
ow

nl
oa

d

In
st

al
l

M
ed

ia
 P

la
ye

r

A
ng

ry
 B

ird
s --

G
oo

gl
e

E
ar

th

B
ro

w
se

r

W
eC

ha
t

You
Tub

e

Fac
eb

oo
k

G
m

ai
l

G
al
le

ry

D
ow

nl
oa

d

In
st

al
l

M
ed

ia
 P

la
ye

r

A
ng

ry
 B

ird
s

0.0

0.2

0.4

0.6

0.8

1.0
User3User2

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

 D
e

g
ra

d
a

ti
o

n

 Ideal Case Direct Space Preparation Adpactive Space Preparation

User1

Figure 3.16. The performance degradation caused by the space preparation.

by monitoring the delays of the I/O requests caused by the data migration. The ideal case

assumes that no request is blocked by the data migration, and the normalized performance

is always 1. The direct space preparation performs the data preparation without utilizing the

system idle time. From Figure 3.16, we can observe that the proposed adaptive data migra-

tion introduces about 12.72% performance degradation on average compared with the ideal

case, while it can achieve 39.33% performance improvement on average compared with the

direct space preparation. These results demonstrate that the data migration overhead intro-

duced by the adaptive space preparation scheme is acceptable, and can be greatly eliminated

with the help of utilizing the system idle time.

3.6 Summary

In this chapter, we propose a unified NVM and flash memory architecture to improve the I/O

performance for mobile devices. We also present a software layer, called vFlash, to manage

this hybrid storage architecture. The basic idea in vFlash is to cross-layer transparent utilize

NVM resources to minimize the application modifications while maximize the I/O perfor-

mance for NAND-flash-based mobile devices. We conduct experiments on a set of realistic

I/O workloads of Android applications running in a hardware platform. The experimental

results show that the proposed scheme can significantly enhance the I/O performance and

71

reduce the energy consumption for mobile devices.

72

CHAPTER 4

IMAGE-CONTENT-AWARE I/O OPTIMIZATION FOR MOBILE

VIRTUALIZATION

4.1 Introduction

Mobile virtualization is gaining more and more popularity in mobile devices, since it can

provide multiple platforms with a single device and can defend against increasing security

threat. Major virtualization providers, such as VMWare [84] and Citrix [27], have started

to provide their mobile virtualization solutions for mobile devices. By allowing a physical

device to host multiple virtual machines (VMs), mobile virtualization can reduce develop-

ment cost, shorten time-to-market with code reuse, and enhance privacy and security with

VM isolation.

While mobile virtualization provides all the benefits, it also introduces considerable

overhead with additional software stack layers. Particularly, storage accessing overhead is

increased. In mobile devices, NAND-flash-based devices, such as NAND flash memory/SD

cards, are widely used as secondary storage. NAND flash has well-known constraints such

as erase-before-rewrite, limited lifetime, and long time overhead for garbage collection [38,

46]. However, mobile virtualization was not designed to take the constraints of NAND flash

into consideration. Without any optimization, VMs place extra burden on the NAND flash

storage system in mobile platform. When a guest OS creates a file system, a VM image file

contains both the guest file system metadata and regular file data. In a VM image file, the

metadata will be updated much more frequently compared with regular data because most

file operations to regular files will also lead to the same metadata being updated. The same

thing occurs in the host operating system, since the frequent updating of the image file also

73

leads to the host metadata being updated frequently. The frequent updating of the same

metadata will lead to frequently triggering of out-of-space update and garbage collection in

flash storage system. Therefore, both the system performance is degraded and NAND flash’s

lifetime is shortened [12, 43, 56, 79, 94]. A promising solution to overcome this drawback

is to identify the metadata and store it in a faster and more endurable NVM (non-volatile

memory). In this way, we can greatly reduce unnecessary updates to NAND flash, which

will further result in less garbage collection overhead and improving the I/O performance

and flash lifetime.

Wu et al. [96] explored how to classify file system metadata from regular data and

used dedicated fine-grained page-level mapping to manage metadata. Their work showed

promising performance and lifetime improvement in flash system. Their work can effec-

tively identify metadata for the host OS file system. However, it cannot identify the metadata

in a guest OS file system. In the virtual machine environment, guest OS file system metadata

are stored in a disk image file. So, the guest file system metadata are seen as the regular

file data in the mobile virtualization platform, and the unique challenge is how to separate

the guest file system metadata from regular data in the mobile virtualization platform. More

specifically, the most important challenging issue is how to identify the guest file system

metadata data via the IBA (image block address), which is translated through the VBA (vir-

tual block address) via a two-level mapping table. Without additional support, it is difficult

for the host OS to directly identify file system metadata in a guest OS disk image file.

In this chapter, we propose an image-content-aware scheme to effectively identify

both the host and guest metadata in a mobile virtualization platform. In order to achieve

this, the proposed image-content-aware scheme identifies guest OS file system metadata

according to the I/O request address in the guest OS file system, and uses a padding flag to

the virtual machine to trace the metadata. After the metadata are successfully identified, both

the guest metadata and host metadata are stored in a small faster and endurable NVM, such

as phase change memory. Smart data management techniques are proposed to manage flash

memory and the auxiliary NVM. With proposed management techniques, we can greatly

eliminate the frequent update effects to the NAND-flash-based storage caused by the file

74

system metadata in a VM image file and in the host file system. The main contributions of

this chapter include:

• To the best of our knowledge, this is the first work to identify the file system metadata

from regular data in a guest OS VM image file under mobile virtualization.

• We propose to utilize a small faster and more endurable NVM to store file system

metadata to reduce the flash memory I/O traffic with negligible extra cost.

• Smart data management techniques are proposed to manage flash memory and the

additional NVM.

The proposed techniques are evaluated on an embedded platform with an ARM

Cortex-A15 processor and a 64Gb NAND flash memory chip. The experimental results show

that the proposed scheme not only improves the system response time, but also enhances the

lifetime in NAND flash memory.

The rest of this chapter is organized as follows: Section 4.2 presents the background

of this work, and Section 4.3 introduces the motivation for conducting this work. Section 4.4

detailed describes the proposed scheme. In Section 4.5, we analyze the performance and

overhead of the proposed scheme. The experimental results are presented in Section 4.6.

Finally, Section 4.7 summarizes this chapter.

4.2 Background

In this section, we introduce the background of mobile virtualization. We first introduce the

properties of NAND flash memory and PCM in Section 4.2.1, and then present the storage

architecture in Section 4.2.2. Finally, we analyze the metadata in Section 4.2.3.

75

Table 4.1. The characteristics of NAND flash memory and PCM [18, 31, 76, 104].

Attributes NAND PCM

Non-Volatility Yes Yes

Byte Addressability No Yes

Bit Alterability No Yes

Read Energy 1.5 J/GB 1 J/GB

Write Energy 17 J/GB 6 J/GB

Erase Energy 10 J/GB No

Read latency ∼25 us ∼50 ns

Write latency ∼500 us ∼1 us

Erase latency ∼1.5 ms No

Endurance 104 − 105 106 − 108

4.2.1 NAND Flash Memory and PCM

Table 4.1 summarizes the characteristics of NAND flash memory and PCM. As shown in

Table 4.1, PCM and NAND flash memory both have the non-volatile feature; however, PCM

also has the byte addressability property and bit alterability property, which are not avail-

able in NAND flash memory. These two properties determine that PCM can support in-

place update, while NAND flash memory should do erase operations before update. Also,

PCM presents much shorter read/write latency and lower energy consumption compared

with NAND flash memory, even though its byte addressability has already made it superior

to NAND flash on handling reads/writes of small random data such as the file system meta-

data. Due to the heating process, each PCM cell only can sustain 106 − 108 writes before

a failure occurs. The read/write operations have asymmetric performance and energy con-

sumption [48, 78, 97]. However, PCM still has much better endurance than that of NAND

flash memory. Therefore, PCM is rapidly developed as a promising candidate for memory

and/or storage in the design of embedded computing systems due to its shock-resistance,

non-volatility, byte addressability, and low energy consumption. The capacity and price con-

76

strains of PCM in the market make it impossible to fully replace NAND flash memory as the

storage devices in mobile devices.

4.2.2 Storage Architecture

Figure 4.1 shows a typical storage architecture of mobile virtualization. Similar to traditional

virtualization environment, three different software components are packaged above the stor-

age media: host operating system, VM, and guest operating system [37, 60]. In this chapter,

the VM is a more general concept, which can be represented as the virtual machine or virtual

machine monitor (VMM). In the full virtualization environment, the VM denotes the virtual

machine. In the hardware-assisted virtualization environment, the VM is used to denote the

virtual machine monitor (VMM). VM acts as a bridge that connects the guest operating sys-

tem and the host operating system. The function of VM is to emulate hardware devices that

execute programs like a physical machine, such as emulated storage media shown in Fig-

ure 4.1. With the help of VM, different kinds of mobile operating systems, such as Google

Android operating system and Apple iOS operating system, can simultaneously run in one

mobile devices. These different mobile operating systems are called guest operating systems

and run as multiple threads in the host operating system. Each guest operating system has

its own disk space represented as a VM image file, and each VM image file keeps its own

metadata, such as block bitmap in ext file system. Metadata show the frequent updating fea-

ture that both does harm for the NAND flash based storage media and shortens the flash’s

lifetime.

4.2.3 Metadata Analysis

In this part, we use a case to study the file system metadata. We employ a widely used

VM image format qcow2 [1] and ext4 file system [4] to show how the file system metadata

works in a VM image file. The qcow2 image format is one of the most popular used image

formats in mobile virtualization, which can be supported by many virtual machines, such as

QEMU [8]. The ext4 file system is the fourth extended filesystem, and it has become the

77

VM I/O

Requests

Virtual Machine (VM)

Host File System

Host Operating System

Storage

Block Device Driver

Storage Media Device Driver

Guest Operating System

Inode Table

Block Bitmap

Inode Bitmap

Block Device Driver

Storage Media Device Driver

Guest File System

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

Gmail Facebook

Applications

Emulated Storage Media

VM Image File

…...

Metadata

Browser

Ext File System Metadata

…...
VM Image FileMetadata

VM Image FileMetadata

1

2

3

Figure 4.1. The storage architecture of mobile virtualization.

78

default file system on popular Linux based embedded operating systems, such as Android

operating system.

Image Header Group 0

Block Bitmap Inode Bitmap Inode Table

Metadata

Qcow2 VM Image File

Ext4 File System

Superblock Group Descriptor

Group 1 Group N

Journal

Directory File

Regular File

Figure 4.2. The qcow2 VM image file format with the ext4 file system.

As shown in Figure 4.2, qcow2 file begins with an image header, which contains

image format related information. The virtual machine uses these information to identify

the image format and loads the image file content. For example, the first four bytes in an

image file contain a magic number, and virtual machine uses this magic number to identify

the image format. The other image space excepting the image header is exposed to the user

program and managed by the ext4 file system. In the ext4 file system, the image space is

split into several groups, and each group contains four parts, including file system metadata,

journal, directory file, and regular file. File system metadata are all in fixed, well-known

locations [96], and they mainly consist of five important elements, including superblock,

group descriptor, block bitmap, inode bitmap, and inode table.

Figure 4.3 and Figure 4.4 illustrate the detailed file creation and deletion process,

respectively. If a VM creates a new file under the root directory, such as a.dat, the following

procedures will occur. First, ext4 file system reads the inode table to find the root directory

location as shown in step (2). In ext4 file system, the location of the root directory is pointed

by the second inode and the address of root directory can be obtained from inode table.

After getting the root directory disk location, such as block 100, ext4 file system will read

79

Guest File System
Root Directory

Len Name Inode
10416 dir

12 a.dat 200

Storage

Block Bitmap Inode TableInode BitmapSuperblock Group Descriptor

Directory File (Block 100)

Journal

void main(int argc, char * argv[]) {

File a = create(a.dat);

}

Application

Block Bitmap Inode TableInode BitmapSuperblock Group Descriptor

Block 1002
1

200

Inode Table

(1)

(3) (2)

(4)

(5)
(5)

Figure 4.3. A file creation procedure in a VM image file.

Guest File System
Root Directory

Len Name Inode
10416 dir

Storage

Block Bitmap Inode TableInode BitmapSuperblock Group Descriptor

Directory File (Block 100)

Journal

void main(int argc, char * argv[]) {

File a = delete(a.dat);

}

Application

Block Bitmap Inode TableInode BitmapSuperblock Group Descriptor

Block 1002

Block 300

1

200

Inode Table

(1)

(3)
(2)(4)

(4)

Figure 4.4. A file deletion procedure in a VM image file.

80

the root directory content as shown in step (3). Then, file system adds a new directory entry

in the root directory and allocates an empty inode to the new directory entry in step (4).

The new directory entry mainly contains three parts: len, name and inode, which denote the

length of this directory entry, file name and the number of the inode that this directory entry

points to, respectively. Since an empty inode is allocated, the content of superblock, group

descriptor and inode bitmap are updated correspondingly. The updates of block bitmap and

the contents of the inode table depend on the storing location of the new directory entry. If

the new directory entry is allocated to a new block, the contents of block bitmap and inode

table are updated. Otherwise, these two contents are untouched. Figure 4.3 (b) shows the file

deletion operation which is a reverse operation of the file creation operation.

Guest File System

Buffer CacheLen Name Inode
10416 dir

12 a.dat 200

Storage

Block Bitmap Inode TableSuperblock Group Descriptor

Directory File (Block 100)

Journal

void main(int argc, char * argv[]) {

File a = write(data, a.dat);

}

Application

Block Bitmap Inode TableInode BitmapSuperblock Group Descriptor

Block 1002

Block 300

1

200

Inode Table

(1)

(3)
(2)(5)

Regular File (Block 300)

(4)

data

Root Directory

(5)

Inode Bitmap

Figure 4.5. A file content increase procedure in a VM image file.

Figure 4.5 and Figure 4.6 illustrate a file content increase and shrink process, respec-

tively. These two processes all need five steps. In step (2), ext4 file system uses the root

directory inode, more specially inode 2, to retrieve the root directory content. Then, in step

(3), ext4 file system gets the required file directory entry, and uses the inode table of the

directory entry to obtain the file content inode (the inode 200 in the example). With the help

81

Guest File System

Len Name Inode
10416 dir

12 a.dat

Storage

Block Bitmap Inode TableSuperblock Group Descriptor

Directory File (Block 100)

Journal

void main(int argc, char * argv[]) {

File a = shrink(a.dat);

}

Application

Block Bitmap Inode TableInode BitmapSuperblock Group Descriptor

Block 1002
1

200

Inode Table

(1)

(3)
(2)(5)

Block 300

(4)

Root Directory

Inode Bitmap

200

Figure 4.6. A file content shrink procedure in a VM image file.

of the file content inode, ext4 file system can locate the physical blocks which contain the

real file content as shown in step (4). Then, the real file content increase or shrink opera-

tion will be executed by adding or reducing the file contents. The file content increase or

shrink procedure requires to allocate new physical blocks or recycling discarded blocks. As

a result,superblock, group descriptor, block bitmap and the contents of the inode table are

updated as shown in step (5).

The above analysis shows that the frequent update of metadata is the intrinsic feature

of the file system, since the file system metadata are responsible for recording the changes of

the regular data. Normally, each file operation is accompanied with a file system metadata

updating procedure.

82

0

15
00
00

30
00
00

45
00
00

60
00
00

75
00
00

90
00
00

10
50
00
0

12
00
00
0

13
50
00
0

15
00
00
0

16
50
00
0

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0

15
00
00

30
00
00

45
00
00

60
00
00

75
00
00

90
00
00

10
50
00
0

12
00
00
0

13
50
00
0

15
00
00
0

16
50
00
0

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

T
h
e
 N

u
m

b
e
r

o
f
U

p
d
a
te

s

Logical Block Number

Guest Metadata

T
h

e
 N

u
m

b
e

r
o

f
U

p
d

a
te

s

Logical Block Number

Host Metadata

Figure 4.7. The number of the logical block updates when running the facebook application.

4.3 Motivation

4.3.1 Metadata Effect

We utilize the ARM Cortex-A15 dual-core processor platform [2] with the original stock

Android system 4.2 running in QEMU virtual machine to analyze the data access patterns,

especially for metadata stored in the fixed lower address of the whole file system. Imme-

diately after the preconditioning is complete, we set the facebook application to issue 1.65

million 512B sized write requests. We collect each write request and the collected data are

periodically retrieved and written to a log file. Figure 4.7 shows the distributions of number

of logical block updates for the facebook application. The X-axis represents the logical block

number, and the Y-axis represents the calculated number of block updates. The graph has a

smaller graph embedded, which presents the whole data range with a log scaled Y-axis.

Several important results can be observed from the graph. First, the maximum num-

ber of updates of host file system metadata is 143, which is about 101x more frequently

than the facebook’s average number of updates of 1.41. Meanwhile, the number of guest

file system metadata updates is 103, which is more than 73x times frequent than that of the

average number of updates. These numbers show that both the guest file system metadata

and host file system metadata are updated much more frequently than that of the regular data.

83

MD0I/O

Requests

NVM

Flash

Memory

MD1 MD1 MD0

RD0 RD1 RD2 RD3

MD0

MD1

RD0

RD1

RD2

RD3

MD0

MD1

RD0

RD1

RD2

RD3

MD0

MD1

RD0

RD1

RD2

MD0

MD1

RD0

RD1

RD2

MD0

MD1

RD0

RD1

MD0

RD0

RD1

MD0

RD0RD0

Timet1 t2 t3 t4 t5 t6 t7 t8t0

Free Block Invalid Block Valid Block

Flash

Memory

RD0

MD0

RD1

RD2

RD0

MD0

RD1

RD2

RD0

MD0

RD1

MD1

RD0

MD0

RD1

MD1

RD0

MD0

RD1

MD1

RD0

MD0

RD1

RD0

MD0

RD0

RD2 RD2 MD1

MD1

MD1

RD3

RD0

MD0

RD1

RD2

MD1

RD3

RD0

RD1

RD2

MD1

RD3

RD0

RD1

RD2

MD1

RD3

MD0

MD0I/O

Requests

MD1 MD1 MD0

RD0 RD1 RD2 RD3

Timet1 t2 t3 t4 t5 t6 t7 t8t0

(a)

(b)

Previous

Scheme

Proposed

Scheme

t9 t10 t11

RD0

MD0

RD1

MD1

RD2

t12

Garbage

Collection
Garbage

Collection

Data

Invalidation

Data

Invalidation

MD: File System Metadata RD: Regular Data

Saved

In-Place

Update

In-Place

Update

Figure 4.8. A motivational example of I/O optimization in mobile virtualization.

Second, the updated metadata size only occupies 0.42% of the whole captured write request

size. That means the frequently updated metadata only occupy a very small portion of the

write requests for the facebook application.

The frequent update of metadata is the intrinsic feature of the file system. Normally,

each regular data write request is accompanied with a file system metadata write request,

since the file system metadata are responsible for recording the changes of the regular data.

Taking ext4 file system as an example, when a new file is created, an available inode, which

is part of ext4 file system metadata, should be allocated for the new file. That is, the ext4 file

system will select an available inode from the inode table, and then change the status of this

84

inode to be used. The changing status process is a filesystem metadata updating process.

4.3.2 Motivational Example

This work is motivated by the fact that frequent updates of the file system metadata in a VM

image file do harm to the NAND flash based storage media in mobile devices. The objective

of this work is to reduce the negative effects of file system metadata on NAND flash based

storage media so as to improve the system performance and prolong the lifetime of NAND

flash based storage media. Therefore, we propose to classify the file system metadata from

the VM image file, and utilize the non-volatile memory to store these metadata to eliminate

the metadata effects on NAND flash memory.

A motivational example is illustrated in Figure 4.8. In this example, we assume

that all I/O requests are write requests, as we mainly concern the frequent update effects

caused by file system metadata in this chapter. We divide the I/O requests into two kinds of

requests, file system metadata (MD) requests and regular data (RD) requests. The MDi and

RDi (i ≥ 1) denote the ith file system metadata request and regular data request issued from

a VM, respectively, where i represents the request address. If the addresses of two requests

are the same, the later coming request is an update request of the early coming request, such

as MD0 at time t2 and t10 in Figure 4.8 (a).

Figure 4.8 (a) shows the default scheme used in the original mobile system. This

scheme does not use non-volatile memory to cache the file system metadata in a VM image

file. Figure 4.8 (b) illustrates our proposed scheme that uses non-volatile memory to cache

the file system metadata. Normally, each regular data write request is accompanied with a file

system metadata write request, since the file system metadata are responsible for recording

the changes of the regular data.

From Figure 4.8 (a), we can observe that the frequent updates of metadata will in-

cur block invalidation and garbage collection operations in NAND flash memory. These two

operations seriously affect the system response time, especially the garbage collection opera-

tion. Garbage collection operation contains two parts including moving the valid data into an

85

empty block, and erasing the invalid block. It is particularly time consuming if the cleaning

block contains many valid data. Metadata usually updates a small portion of blocks and lead

to a lot of valid data. For example, in Figure 4.8 (a), no valid space exists at time t8, since

metadata MD1 is updated, resulting in generating the invalid data at time t6. When the I/O

request RD3 is issued to NAND flash memory at time t8, the garbage collection is triggered

to reclaim the invalid data MD1. At that time, in order to perform the erase operation, five

valid data (RD0, RD1, RD2, MD0 and MD1) are required to move to a new empty block,

which consumes a lot of time.

Therefore, in order to eliminate the frequent update effect introduced by metadata,

we propose to utilize the non-volatile memory to store the file system metadata in a VM

image file. As shown in Figure 4.8 (b), the file system metadata MD0 and MD1 are stored

in the non-volatile memory, while the regular file data are kept in flash memory. Since

non-volatile memory supports in-place update, all the updates of file system metadata can

be efficiently tackled by non-volatile memory. As a result, we can effectively improve the

system performance and prolong the NAND flash lifetime with the proposed scheme.

Although the I/O performance can be enhanced by putting the frequent-update meta-

data in the PCM memory, this method can introduce the lifetime degradation of the PCM

memory. However, compared with the NAND flash memory, the lifetime of PCM is much

longer. For example, the lifetime of PCM is 106∼108, while the lifetime of NAND flash

memory is 104∼105. Here, we use PCM as one kind of NVM, for the other kinds of NVM

(e.g. STT-RAM), the lifetime of other NVMs is even longer than that of PCM. So, nor-

mally, the lifetime of PCM is more than 100 times longer than that of NAND flash memory.

Meanwhile, our experimental results show that the update frequency of metadata is about

100 times more than that of the regular data in the mobile virtualization environment. So,

putting the frequent-update metadata in NVM does not lead to PCM being worn out much

earlier than that of the NAND flash storage, and it is reasonable to put the frequent-update

metadata in PCM for the lifetime and performance enhancement for the NAND-flash-based

storage system.

86

VM Image File Content Aware Scheme

VM I/O

Requests

Host File System

Host Operating System

NAND Flash Memory

Block Device Driver

VM Image File Content Aware Scheme

VM Image File

…...
VM Image FileMetadata

VM Image File

Non-Volatile Memory

…...

Metadata

Metadata

NVM Device Driver Flash Device Driver

3

Figure 4.9. Three possible ways of integrating NVM into virtualization environment.

4.4 VM Image File Content Aware Design

In this section, we introduce the proposed scheme to effectively avoid the frequent update of

file system metadata in a VM image file. We first give an overview in Section 4.4.1, and then

present the proposed scheme in Section 4.4.2 and Section 4.4.3.

4.4.1 Overview

In order to achieve the results shown in the motivational example, we propose to store fre-

quently updated metadata in the non-volatile memory to avoid the bad effects (long time

garbage collection and lifetime degradation) to NAND flash memory. When a virtual ma-

chine issues an I/O request, the proposed scheme will use a metadata monitor to check the

data type based on the address of the request. If the data are file system metadata, these data

will be stored or fetched from non-volatile memory. On the other hand, the regular data will

bypass to NAND flash memory. As a result, the I/O response time can be improved and the

NAND flash lifetime can be prolonged.

By utilizing NVM to optimize the I/O performance, we need to integrate NVM in

87

the current mobile virtualization environment. There are three possible ways of integrating

NVM as shown in Figure 4.1. In the first method, NVM can be directly operated by the

guest operating system. This method involves modifications of the guest operating system,

virtual machine, and host operating system. These modifications can be summarized as fol-

lows. From the guest operating system’s perspective, each guest operating system should be

modified to support the proposed scheme. Meanwhile, virtual machine should provide the

emulated NVM device, and host operating system should expose the NVM access interface,

such as NVM Read and NVM Write. So, these modifications are expensive, and even im-

possible by considering the real implementation. For the second method, NVM is managed

by virtual machine. This method also requires a lot of software modifications in terms of

modifying the virtual machine and the host operating system. Virtual machine should be

renovated to support the proposed scheme, while the host operating system should provide

the NVM access interface.

Therefore, in order to reduce the software modifications, it is more desirable to in-

tegrate the proposed scheme into the host operating system. More specifically, we propose

to put the proposed scheme at the bottom of the I/O stack, lying beneath the standard block

device driver in host operating system as shown in Figure 4.9. Compared with the first two

usage methods, the last management method is transparent to upper layers in the I/O stack.

The design is implemented in both the host OS and the virtual machine layer. In the virtual

machine layer, we propose a simple but effective method to identify the guest OS file system

metadata. More specifically, we use a padding flag to denote the data type. In the host OS

file system, with the help of the padding flag, we design and implement the proposed VM

image file content aware scheme. By using this method, we can effectively avoid substantial

software modifications. It is also the choice of this work. We will discuss the details of the

proposed scheme which will achieve the desired goals.

88

VM Image File

NAND Flash Memory

…...
VM Image FileMetadata

VM Image FIle

Non-Volatile Memory

…...

Metadata

Metadata

NVM Device Driver Flash Device Driver

VM Image File Content Aware Scheme

Metadata Monitor Address Manager

Decision Maker

I/O Requests

Figure 4.10. VM image file content aware scheme.

4.4.2 VM Image File Content Aware Scheme

As shown in Figure 4.10, the proposed scheme consists of three components (metadata mon-

itor, decision maker and address manager). These three components interact with each other

and play different roles in the proposed scheme. The function of metadata monitor is to

classify the file system metadata and regular file data in a VM image file. Decision maker

determines the storing media, NAND flash memory or non-volatile memory. Address man-

ager is responsible for managing the storage usage of non-volatile memory.

We have introduced the function of the three components in the VM image file con-

tent aware scheme; and we will describe the detailed working procedures of these three

components. The metadata monitor identifies the location of the file system metadata in the

flash storage device by analyzing the metadata layout in a VM image file during the system

start-up. Therefore, whenever the metadata monitor receives an I/O request, it should be able

to distinguish metadata from regular file data according to the accessed address issued from

a VM. If the accessed address belongs to the regular data, the regular data can be directly

bypass to NAND flash memory. On the other hand, metadata will be delivered to decision

maker. Decision maker will consult the address manager and allocate the required address

89

to the metadata requests.

L1 Table

L2 Table

Address

L1 Table Offset

L2 Table

L2 Table Offset Cluster Offset

L1 Table

Address

Cluster

Cluster

Address

IBA

VBA

Virtual Machine

Figure 4.11. Two level address mapping in qcow2 image file.

The metadata monitor is responsible for classifying the file system metadata from

regular file data. However, it is difficult for the host OS file system to identify the guest file

system metadata mainly because of lacking of the VM context in the host file system. The

reason for this context loss is that the guest metadata address is translated to the regular image

file block address via a two level mapping table as shown in Figure 4.11. So, in the host file

system, it is difficult to identify the guest file system metadata according to the translated

address. The two levels of tables are called L1 table and L2 table. There is only one L1

table, and each entry of the L1 table links to an L2 table. Each entry of an L2 table points

to a cluster, which is the unit for space allocation in an image and contains multiple blocks

(e.g., a 64KB unit consists of sixteen 4KB blocks). Accordingly, a VBA consists of three

components: L1 table offset, L2 table offset, and cluster offset. L1 table offset and L2 table

offset indicate specific entries in the corresponding L1 and L2 tables, respectively, and the

cluster offset specifies the block in the corresponding cluster, or the IBA the VBA is mapped

to. These two mapping tables translate the virtual block address (VBA) into an image block

address (IBA), which is actually also a logic block address in the disk image. Therefore, it is

difficult to directly identify the metadata based on the translated VM I/O request address.

90

4.4.3 Metadata Identification

Metadata Identification in the Guest File System

One key observation here is that the metadata and regular data can still be identified before

VBA is translated. Therefore, we can use techniques proposed in [96] to identify metadata

and regular data before the address is translated.

Algorithm 3: Metadata identifier
Input: V BA: The virtual block address

Output: DT : The data type

1 MT ← the table recordered the metadata address

2 DT ← Regular data

3 counter ← 0

4 while MT [counter] is available do

5 MVBA← The virtual address in MT [counter]

6 MLen← The data length in MT [counter]

7 if MVBA ≤ V BA ≤ (MVBA+MLen) then

8 DT ←Metadata

9 Return

10 counter ← counter + 1

Algorithm 3 describes the metadata identifier used to identify I/O requests as meta-

data requests or regular requests. The metadata identifier maintains a run length structure for

each metadata file in the main memory. Each I/O request contains information like MVBA

and MLength, where MVBA is the first virtual block address belonging to the metadata,

and MLength is the number of consecutive MVBA. By comparing the request address, the

metadata identifier determines the request type, which is a metadata request or a regular data

91

request. If the request is to access the content of a file or directory, the request is identified as

the regular data request. Although many popular commercial file systems seldom change the

location of their metadata, the proposed metadata identifier analyzes and updates the changed

VBA regions of metadata during the systems startup, so as to prevent the loss of accuracy in

metadata tracking in the long run and to prevent the adoption of the costly online monitoring

mechanism. In the ext file system, all of the VBA regions of metadata could be reconstructed

by parsing its Superblock and Group Description Table, because the layout of an ext2 parti-

tion is determined when it is formatted [96]. Each block group usually consists of the same

number of blocks with the same number of metadata blocks in the beginning of the block

group, and each block group is allocated one after another. Therefore, the MVBA region of

the metadata in each block group could be easily derived by several arithmetic operations,

instead of maintaining a run-length structure for each block group. Once the Superblock or

the root sector of the storage is modified, the calculation parameter for the MVBA region of

metadata in each block group could be revised accordingly.

Metadata Information Delivered in the Virtual Machine

After the data are successfully identified, we modify the VM and append a padding flag

P in the I/O request as shown in Figure 4.12. Then, when metadata monitor receives an

I/O request, the metadata monitor can identify the metadata based on the appended padding

information.

Figure 4.12 shows the padding flag strategy to classify metadata from regular data.

We add a metadata identifer in virtual machine. From [96], we know that both metadata and

regular data are located in fixed, well-known VBA. By looking at VBA, we can easily iden-

tify them and use metadata identifer to give different padding flags, such as 1 for metadata

and 0 for regular data. The detailed working procedure is discussed in the following part.

When I/O requests are delivered to the VM, the VBA will be translated to an image block

address (IBA) with the two level mapping table. After the IBA is found with the help of the

two level mapping table, the padding flag will be appended by metadata identifer. Then, both

92

L1 Table

L2 Table

Address

L1 Table Offset

L2 Table

L2 Table Offset Cluster Offset

L1 Table

Address

Cluster

Cluster

Address

IBA

VBA

Virtual Machine

VBA

Metadata Identifier
P

IBA P

Figure 4.12. Padding flag strategy to classify metadata from regular data.

the IBA and padding flag P will be transferred to host operating system. After VBA with

padding flag P is transferred to the VM image file content aware layer, metadata monitor can

utilize the padding flag P to check whether this data is metadata or regular data.

4.5 Performance and Overhead Analysis

In this section, we analyze the system performance of the proposed scheme by comparing it

with the original mobile virtualization. The system response time is an important metric to

evaluate the system performance. It is the time period from the point when an operation is

issued to the point when the operation has been completed. The inputs of an I/O request are

read and write operations, and the basic read and write unit is one page. Thus, we conduct the

analysis for the best-case and worst-case system response times of read and write operations.

The symbols used in this analysis are listed below.

93

Tflash rd The time to read one page in flash memory
Tflash wr The time to write one page in flash memory
Tflash erase The time to erase a block in flash memory
TNVM rd The time to read one page size data in NVM
TNVM wr The time to write one page size data in NVM
Tecc en The time to encode data in flash memory
Tecc de The time to decode data in flash memory
Nmax vpage The maximum number of valid pages in one block
Ngc The number of garbage collection operations
Nmd wr The number of metadata write requests
Nmd rd The number of metadata read requests

The extra performance degradation is first reflected to garbage collection operations,

including extra valid page copies and block erasures, and the time is:

((Tflash rd + Tflash wr)×Nmax vpage + Tflash erase)×Ngc (4.1)

Tflash erase ×Ngc (4.2)

In the mobile virtualization environment, the frequent metadata updates in a VM im-

age file leads to generate many invalid pages in NAND flash memory. The generation of

these invalid data finally results in triggering the garbage collection operation, which needs

to copy the valid pages and erase the dirty blocks. The worst-case and best-case overhead of

garbage collection operations can be calculated through Equation (4.1) and Equation (4.2),

respectively. The timing difference between the worst-case and best-case is reflected from

the valid page copy procedure. If one block contains maximum number of valid pages de-

noted by Nmax vpage, the worst-case will occur and plenty of valid pages are needed to copy

from dirty blocks as shown in Equation (4.1). On the other hand, if a block has no valid

pages, only block erasure operations occur as described in Equation (4.2).

(Tflash wr − TNVM wr)×Nmd wr + (Tflash rd − TNVM rd)×Nmd rd (4.3)

94

Tecc en ×Nmd wr + Tecc de ×Nmd rd (4.4)

The proposed scheme not only reduces the garbage collection overhead but also

can enhance the read and write speed. Equation (4.3) describes the read and write per-

formance gain by utilizing NVM. NNVM wr stands for the number of NVM write requests,

and NNVM rd represents the number of NVM read requests. Without the proposed NVM

integration scheme, these requests are issued to flash devices. Given that the I/O speed of

flash memory is orders of magnitude slower than that of NVM, we can achieve great perfor-

mance gain for I/O operations as shown in Equation (4.3). In addition, the proposed scheme

can further improve the data coding time. Since the reliability of NVM is much better than

that of NAND flash memory, metadata stored in NVM usually use simple coding or non-

coding method to guarantee the data reliability. The proposed scheme stores the metadata

in NVM resulting in eliminating the encoding/decoding time for these metadata as shown in

Equation (4.4).

We use an example to illustrate the benefits of the proposed scheme. Assume that

the flash page size is 4KB and each block contains 512 pages. Given that the flash page

read and write latency are 25us and 500us, respectively, and the block erase time is 1.5ms.

For the NVM, we use the parameters of PCM as an example to quantitatively analyze the

performance improvement, and the read latency and write latency for accessing one cache

line size (e.g. 64bytes) data are configured to be 50ns and 1us, respectively. If 800 garbage

collection operations are reduced, the performance improvement with the garbage collection

reduction is ((0.025ms+0.5ms)×63+1.5ms)×800 = 27660ms in the best case, and 800×

1.5ms = 1200ms in the worst case. If 50,000 metadata read requests and 50,000 metadata

write requests are received, the response time can be reduced by (0.5ms− 0.001ms× 64)×

50, 000 + (0.025ms− 0.00005ms× 64)× 50, 000 = 22890ms.

95

4.6 Evaluation

In this section, we present our experimental results with analysis. We compare and evaluate

the proposed scheme with the baseline scheme in terms of three metrics: the lifetime, the I/O

performance and the energy consumption. The baseline scheme is the original stock Android

4.2 system. The performance evaluation is conducted on a real Android based VM platform

with a Samsung ARM Cortex-A15 dual-core processor and a 64 Gb NAND flash memory

chip.

4.6.1 Experimental Setup

We conducted experiments on a real Android platform [3]. The evaluation platform adopts

an ARM Cortex-A15 dual-core processor (Samsung Exynos5250 [2]) with ARMv7 archi-

tecture. In this platform, the ARM processor core runs at 1.7GHz, and it consists of a 32

KB instruction cache and a 32 KB data cache. The platform adopts Android 4.2 with the

Linux kernel 3.9. The core board is equipped with 64 Gb of eMMC flash memory, 128Gb

SD card and 2GB DDR3 RAM. We use a small portion of RAM to simulate PCM, since the

I/O accessing patterns of PCM are similar to RAM [39]. That is, RAM and PCM are all byte

addressable and support in-place update. The physical interfaces, such as the USB port, are

designed in the mother board, and we connect a WiFi module through a pin to pin connector.

Also, one pin connector is used to connect the core board with the mother board.

The scheme is implemented in the host operating system. In evaluation, QEMU em-

ulates the hardware devices, and the popular used mobile operating system, Android 4.2 with

the Linux kernel 3.9, is running on the QEMU. When an application accesses the storage in

QEMU, QEMU issues the I/O requests to the host operating system. Host operating system

can issue read/write operations to the flash device driver, which can control the NAND flash

memory chip and SD Card. We utilize the universal serial device driver to obtain and output

the experimental results. For fair comparisons, the same configuration has been adopted for

both the baseline scheme and our proposed scheme.

96

Table 4.2. The Android applications and their usage.

Applications Using Scenarios

Google Earth Search Places and View Streets

Browser Browse Websites and Search Pictures

WeChat Chat with Friends

YouTube Watch Online Movies

Facebook View Friends’ Status

Gmail Receive Emails and Send Emails

Gallery View Pictures

Download Download Applications

Install Install Applications

Media Player Watch Movies and Listen to Music

Angry Birds Play the Game and Select Levels

We use real Android applications as benchmarks to evaluate the effectiveness of the

proposed scheme. These applications are running in the guest Android operating system.

The applications and their using scenarios are shown in Table 4.2. These applications are

typical operations in our daily lifetime. They can be used to accelerate the evaluation process,

and evaluate the I/O performance for mobile virtualization. We test each application on the

evaluation platform. The applications iteratively issue requests to the storage system. In

the experiments with 2 and 3 VMs, these VMs are running simultaneously, which can help

understand the scalability of the proposed design.

97

4.6.2 PCM and NAND Flash Memory Models

We utilize PCM as an example of NVM to study the benefits of the proposed scheme. The

response time of NAND flash device is directly measured with the help of the Linux kernel

function do gettimeofday. The other results are obtained by capturing I/O requests to PCM

and NAND flash memory and calculating with the models of NAND flash memory and PCM.

The read latency and write latency of PCM are configured to be 50ns and 1us, respectively.

In order to study the energy consumption, the read and write energy of PCM are configured

to be 1J/GB and 6J/GB, respectively. The read and write energy of NAND flash memory

are set to 1.5J/GB and 17J/GB, respectively. NAND flash memory also supports the erase

operation which is not available in PCM. The energy consumption of the erase operation is

configured to be 10J/GB [16, 25, 39, 53, 101].

PCM also has much better endurance than that of NAND flash memory. Each PCM

cell can sustain 106−108 writes before a failure occurs, while NAND flash memory can only

support 104− 105 program/erase operations. That is why we can utilize PCM to improve the

NAND flash memory lifetime.

4.6.3 Results and Discussion

In this section, we present the experimental results with analysis. We first present the im-

provement in performance by comparison of the baseline scheme and the proposed scheme.

Then, we discuss the lifetime enhancement for flash memory. Finally, we analyze the I/O

energy consumption for the two schemes.

The performance and power models of NAND flash memory and PCM are presented

in Section 4.6.2. We get the experimental results by capturing and calculating the number

of I/O requests to PCM and NAND flash memory, respectively as shown in Table 4.3 and

Table 4.4. Then, we can obtain the I/O performance and I/O energy consumption with the

help of PCM and NAND flash memory models.

98

Table 4.3. The I/O requests with different numbers of VMs (part 1).

Applications

I/O Requests

All Read All Write PCM Read PCM Write Avg. Req.

(1 VM) (1 VM) (1 VM) (1 VM) Size (KB)

Google Earth 33,272 122,301 26,625 97,842 4.91

Browser 140,423 13,652 98,301 9,562 21.53

WeChat 1,123 124,215 995 113,722 4.23

YouTube 2,787 3,100 2,240 2,040 8.35

Facebook 38,831 41,242 31,074 32,919 6.85

Gmail 1,652 55,110 1,132 41,408 4.26

Gallery 32,210 878 25,568 745 89.65

Download 7,318 7,344 5,790 5,995 232.94

Install 9,725 24,622 7,291 16,475 145.95

Media Player 15,260 5,024 12,221 4,023 12.55

Angry Birds 7,791 522 6,241 390 58.32

Applications
All Read All Write PCM Read PCM Write Avg. Req.

(2 VMs) (2 VMs) (2 VMs) (2 VMs) Size (KB)

Google Earth 22,582 82,994 18,072 66,393 4.85

Browser 94,851 9,222 75,488 7,438 20.56

WeChat 810 92,582 642 74,064 4.23

YouTube 1,889 1,908 1,512 1,581 8.56

Facebook 29,113 30,942 23,301 24,775 6.23

Gmail 1,072 35,681 860 28,542 4.89

Gallery 22,377 612 17,904 429 100.23

Download 4,392 4,435 3,521 3,524 212.53

Install 6,901 17,424 5,521 13,596 156.23

Media Player 7,747 2,543 6,195 2,023 15.63

Angry Birds 5,779 365 4,635 210 68.56

99

Table 4.4. The I/O requests with different numbers of VMs (part 2).

Applications
All Read All Write PCM Read PCM Write Avg. Req.

(3 VMs) (3 VMs) (3 VMs) (3 VMs) Size (KB)

Google Earth 9,342 34,312 7,457 27,465 5.62

Browser 51,354 4,989 41,081 3,992 22.35

WeChat 351 35,373 252 28,306 5.63

YouTube 772 805 621 684 8.79

Facebook 23,234 24,667 18,587 19,714 5.94

Gmail 426 15,259 367 12,213 4.56

Gallery 18,402 506 14,742 410 112.35

Download 2,878 2,903 2,320 2,132 256.32

Install 3,510 8,814 2,802 7,083 186.32

Media Player 3,972 1,310 3,185 1,052 18.62

Angry Birds 2,791 272 2,235 142 75.62

Performance Improvement

Figure 4.13 illustrates the write performance and read performance of the baseline and the

proposed scheme. We run one to three VMs to study the effects with running different

number of VMs in mobile devices.

From the experimental results, we can discover that the read and write performance

can be effectively improved compared with the baseline scheme. We take applications run-

ning with one VM as an example (shown in Figure 4.13 (a) and Figure 4.13 (d)) to illustrate

the benefits of the proposed scheme. Compared with the baseline scheme, the proposed

scheme can improve the write and read performance to more than 45.21% and 12.48% on

average, respectively. In addition, with the number of VMs increase (from one to three), the

read and write performance decrease in both the baseline scheme and the proposed scheme.

This phenomenon is introduced by the mobile resources preemption between different VMs,

which significantly degrades the system performance. However, the proposed can still work

100

G
oo
gl
e
Ea
rth

Br
ow
se
r

W
eC
ha
t

Yo
uT
ub
e

Fa
ce
bo
ok

G
m
ai
l

G
al
le
ry

Do
wn
lo
ad

In
st
al
l

M
ed
ia
Pl
ay
er

An
gr
y
Bi
rd
s

0

4

8

12

16

20

24

Baseline Our Scheme16MB PCM + 1 VM

W
ri
te
P
e
rf
o
rm
a
n
c
e
(M
B
/s
)

G
oo
gl
e
Ea
rth

Br
ow
se
r

W
eC
ha
t

Yo
uT
ub
e

Fa
ce
bo
ok

G
m
ai
l

G
al
le
ry

Do
wn
lo
ad

In
st
al
l

M
ed
ia
Pl
ay
er

An
gr
y
Bi
rd
s

0

4

8

12

16

20

24
Baseline Our Scheme

W
ri
te
P
e
rf
o
rm
a
n
c
e
(M
B
/s
)

16MB PCM + 2 VMs

(a) Write performance with one VM. (b) Write performance with two VMs.

G
oo
gl
e
Ea
rth

Br
ow
se
r

W
eC
ha
t

Yo
uT
ub
e

Fa
ce
bo
ok

G
m
ai
l

G
al
le
ry

Do
wn
lo
ad

In
st
al
l

M
ed
ia
Pl
ay
er

An
gr
y
Bi
rd
s

0

4

8

12

16

20

24

W
ri
te
P
e
rf
o
rm
a
n
c
e
(M
B
/s
)

16MB PCM + 3 VMs Baseline Our Scheme

G
oo
gl
e
Ea
rth

Br
ow
se
r

W
eC
ha
t

Yo
uT
ub
e

Fa
ce
bo
ok

G
m
ai
l

G
al
le
ry

Do
wn
lo
ad

In
st
al
l

M
ed
ia
Pl
ay
er

An
gr
y
Bi
rd
s

0

10

20

30

40

50

60

70
16MB PCM + 1 VM Baseline Our Scheme

R
e
a
d
P
e
rf
o
rm
a
n
c
e
(M
B
/s
)

(c) Write performance with three VMs. (d) Read performance with one VM.

G
oo
gl
e
Ea
rth

Br
ow
se
r

W
eC
ha
t

Yo
uT
ub
e

Fa
ce
bo
ok

G
m
ai
l

G
al
le
ry

Do
wn
lo
ad

In
st
al
l

M
ed
ia
Pl
ay
er

An
gr
y
Bi
rd
s

0

10

20

30

40

50

60

70

R
e
a
d
P
e
rf
o
rm
a
n
c
e
(M
B
/s
)

16MB PCM + 2 VMs Baseline Our Scheme

G
oo
gl
e
Ea
rth

Br
ow
se
r

W
eC
ha
t

Yo
uT
ub
e

Fa
ce
bo
ok

G
m
ai
l

G
al
le
ry

Do
wn
lo
ad

In
st
al
l

M
ed
ia
Pl
ay
er

An
gr
y
Bi
rd
s

0

10

20

30

40

50

60

70

R
e
a
d
P
e
rf
o
rm
a
n
c
e
(M
B
/s
)

16MB PCM + 3 VMs Baseline Our Scheme

(e) Read performance with two VMs. (f) Read performance with three VMs.

Figure 4.13. The I/O performance with different number of VMs.

better than the baseline scheme even working with more VMs as shown in Figure 4.13. All

these good performance achievements benefit from storing the file system metadata in PCM,

since PCM has better I/O performance and supports in-place update compared with NAND

flash memory.

101

Lifetime Enhancement

G
oogle

 E
ar

th

Bro
w

se
r

W
eC

hat

Y
ouTube

Fac
eb

ook

G
m

ai
l

G
al

le
ry

D
ow

nlo
ad

In
sta

ll

M
ed

ia
 P

la
ye

r

A
ngry

 B
ird

s0

20000

40000

60000

80000

100000

120000

140000

I/
O

 R
eq

u
es

ts

 All Write Requests PCM Data Updates

G
oogle

 E
ar

th

Bro
w

se
r

W
eC

hat

Y
ouTube

Fac
eb

ook

G
m

ai
l

G
al

le
ry

D
ow

nlo
ad

In
sta

ll

M
ed

ia
 P

la
ye

r

A
ngry

 B
ird

s
0

20000

40000

60000

80000

100000

I/
O

 R
eq

u
es

ts

 All Write Requests PCM Data Updates

(a) Data updates with one VM. (b) Data updates with two VMs.

G
oogle

 E
ar

th

Bro
w

se
r

W
eC

hat

Y
ouTube

Fac
eb

ook

G
m

ai
l

G
al

le
ry

D
ow

nlo
ad

In
sta

ll

M
ed

ia
 P

la
ye

r

A
ngry

 B
ird

s
0

5000

10000

15000

20000

25000

30000

35000

40000

I/
O

 R
eq

u
es

ts

 All Write Requests PCM Data Updates

(c) Data updates with three VMs.

Figure 4.14. Comparison of all write requests and data updates in PCM with different number

of VMs.

The NAND flash lifetime is mainly affected by data updates, since data updates gen-

erate invalid pages, and lead to more block erasures. Figure 4.14 shows the number of data

updates in PCM with running different number of VMs. In the figure, the white bar stands

for the number of write requests to flash memory and PCM, while the bar with cross lines

represents the number of data updates in PCM. From the figure, the proposed scheme can

effectively reduce the number of data updates to NAND flash memory, and thus prolong

the lifetime of flash memory. We take the Google Earth application running with one to

three VMs as an example to show the effectiveness of the proposed scheme. Compared

with the baseline scheme, the proposed scheme can reduce 63.88% data updates on average.

102

For all the evaluated applications, the proposed scheme can reduce 67.03% data updates

on average. These experimental results demonstrate that a large number of write requests

is to update metadata, and the proposed scheme can effectively reduce the data updates to

NAND-flash-based mobile devices.

IO Energy Consumption

Table 4.5. The I/O energy consumption with different numbers of VMs.

Applications

I/O Energy (mJ)

Baseline Our Scheme Baseline Our Scheme Baseline Our Scheme

(1 VM) (1 VM) (2 VMs) (2 VMs) (3 VMs) (3 VMs)

Google Earth 39,976.99 19,469.08 26,880.12 13,051.03 12,835.64 6,248.78

Browser 36,390.66 23,685.27 23,684.58 14,077.31 14,058.57 8,303.45

WeChat 34,221.20 13,907.76 25,416.23 12,264.84 12,946.16 6,236.32

YouTube 1,811.80 1,061.35 1,171.68 559.11 507.70 235.00

Facebook 19,872.60 9,974.46 13,568.85 6,785.26 10,341.63 5,167.28

Gmail 15,284.98 7,853.82 11,345.00 5,480.38 4,523.44 2,183.34

Gallery 21,627.64 14,453.08 16,841.61 11,584.54 15,546.78 10,424.81

Download 120,713.49 59,522.57 66,516.70 33,611.97 52,505.67 28,410.47

Install 241,294.86 138,237.27 182,770.31 91,924.22 110,300.14 53,867.36

Media Player 5,214.71 2,773.58 3,290.45 1,758.96 2,045.03 1,069.96

Angry Birds 4,574.16 2,925.52 3,919.95 2,679.69 2,561.54 1,768.59

The energy consumption is another important metric to measure the effectiveness of

the proposed scheme. With the versatile mobile applications appearing in mobile devices,

people have more and more relied on mobile devices, and the energy consumption becomes

an important issue for battery-driven mobile devices.

Table 4.5 summarizes the measured energy consumption. From the experimental

103

results, we can discover that the proposed scheme can achieve less I/O energy consumption

compared with the baseline scheme. For example, compared with the baseline scheme, the

proposed scheme can reduce about 44.99% I/O energy consumption on average when one

VM is running. With increasing the number of VMs (from one VM to three VMs), the I/O

energy consumption decreases for both the baseline scheme and the proposed scheme. This

is because we get the experimental results by running the applications with the same time

period. The decreasing of the I/O performance leads to less I/O requests generated from the

VMs. The energy reduction for the proposed scheme benefits from two aspects. The first

aspect is that the I/O energy consumption of PCM is lower than that of NAND flash memory.

By storing metadata in PCM, we can directly reduce the I/O energy consumption. The

second aspect is indirectly reflected by reducing the garbage collection operation. Garbage

collection includes valid pages copy and block erasure operations that both need to consume

a lot of energy. By storing frequently updated metadata in PCM, we can reduce the garbage

collection operations, and thus can effectively save the energy consumption.

4.7 Summary

In this chapter, we propose an image-content-aware scheme to improve the system perfor-

mance, and prolong the lifetime for NAND-flash-based mobile devices. The basic idea of the

proposed scheme is to analyze the VM image file content, and store both the guest and host

file system metadata in small but faster and endurable non-volatile memory. We conduct

experiments on a set of representative Android applications in an embedded development

board. The experimental results show that the proposed scheme not only improves the sys-

tem performance for mobile virtualization, but also extends the lifetime, and reduces the I/O

energy consumption for mobile devices.

104

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we investigate emerging storage techniques for I/O optimization in mobile

devices, which can provide comprehensive solutions and generate optimal storage optimiza-

tion for resource-constrained mobile devices. Specifically, we proposed three schemes to

optimize I/O performance.

• For the first scheme, we propose a scheme, called DHeating, to solve the concentrated

heating problem, enhance the reliability, and eliminate the lengthy heating operation

for self-healing NAND flash memory. We conduct experiments on a set of realistic I/O

workloads collected from our embedded development board. The experimental results

show that the proposed scheme not only solves the concentrated heating problem for

NAND flash memory, but also improves the average system performance and enhances

the reliability of the self-healing flash memory.

• For the second scheme, we propose a unified NVM and flash memory architecture to

improve the I/O performance for mobile devices. We also propose a software, called

vFlash, to manage the novel architecture. The basic idea of vFlash is to cross-layer

transparent utilize NVM to minimize the application modifications and maximize the

I/O performance for NAND-flash-based mobile devices. We conduct experiments on

a set of I/O workloads of Android applications running in a representative hardware

platform. The experimental results show that the proposed scheme can greatly enhance

the I/O performance.

105

• For the third scheme, we propose a VM image file content aware scheme to improve

the system performance and extend the life time for NAND-flash-based mobile de-

vices. The basic idea in our scheme is to analyze the VM image file format, and store

guest OS metadata and hot regular data in faster and more endurable NVM. We con-

duct experiments on a set of Android applications in an embedded development board.

The experimental results show that the proposed scheme not only improves the sys-

tem performance for mobile virtualization, but also greatly reduces the data updates to

NAND flash memory.

5.2 Future Work

The work presented in this thesis can be extended in different directions in the future.

• First, we will continue to study self-healing NAND flash memory. Since the data

access pattern of applications may influence the endurance and heating of self-healing

flash memory, how to effectively identify the characteristics of the access pattern of

applications and employ this access patter to guide the design of the self-healing flash

management scheme is a possible topic for exploration.

• Second, we will continue to study the non-volatile memory technologies and apply

these technologies to the other fields. The non-volatile memory based processor [89–

91] is one direction that we can explore.

• Third, the newly emerged other memory technologies, such as memristor [7,57,58,61,

82,92], racetrack memroy [98,99,102], and scratch pad memory [45], present different

features. It is also an interesting topic to research these different features and utilize

these memory technologies to serve the current computer system.

• Finally, we will continue to investigate the performance and energy issues in the mo-

bile virtualization environment. The mobile virtualization environment presents many

106

new challenges in effectively running multiple operation systems in the resource-

constrained mobile systems. How to optimize the virtualization to satisfy the mobile

devices would be an important direction for us to explore.

107

REFERENCES

[1] The QCOW2 image format. https://people.gnome.org/ markmc/qcow-image-

format.html, 2008.

[2] Exynos5250. http://www.samsung.com/global/business/semiconductor/file/product/

Exynos 5 Dual User Manaul Public REV1.00-0.pdf, 2012.

[3] Arndale board exynos5250. http://www.arndaleboard.org/wiki/index.php/Main Page,

2014.

[4] Ext4 disk layout. https://ext4.wiki.kernel.org/index.php/Ext4 Disk Layout, 2014.

[5] Everything you need to know about slc, mlc, & tlc nand flash.

http://www.mydigitaldiscount.com/everything-you-need-to-know-about-slc-mlc-

and-tlc-nand-flash.html, 2015.

[6] YAFFS: Yet another flash file system. http://www.yaffs.net/, 2016.

[7] H. Akinaga and H. Shima. Resistive random access memory (ReRAM) based on

metal oxides. Proceedings of the IEEE, 98(12):2237–2251, 2010.

[8] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In USENIX Annual

Technical Conference (ATC ’05), pages 41–46, 2005.

[9] Simona Boboila and Peter Desnoyers. Write endurance in flash drives: Measurements

and analysis. In Proceedings of the 8th USENIX Conference on File and Storage

Technologies (FAST ’10), pages 1–14, 2010.

108

[10] Yu Cai, E.F. Haratsch, O. Mutlu, and Ken Mai. Error patterns in MLC NAND flash

memory: Measurement, characterization, and analysis. In Design, Automation Test in

Europe Conference Exhibition (DATE ’12), pages 521–526, 2012.

[11] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollow, Rajesh K. Gupta,

and Steven Swanson. Moneta: A high-performance storage array architecture for

next-generation, non-volatile memories. In Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO ’43), pages 385–

395, 2010.

[12] Bing-Jing Chang, Yuan-Hao Chang, Hung-Sheng Chang, Tei-Wei Kuo, and Hsiang-

Pang Li. A pcm translation layer for integrated memory and storage management. In

Proceedings of the 2014 International Conference on Hardware/Software Codesign

and System Synthesis (CODES+ISSS ’14), pages 6:1–6:10, 2014.

[13] Da-Wei Chang, Hsin-Hung Chen, Dau-Jieu Yang, and Hsung-Pin Chang. BLAS:

Block-level adaptive striping for solid-state drives. ACM Transactions on Design Au-

tomation of Electronic Systems, 19(2):21:1–21:29, 2014.

[14] Li-Pin Chang. On efficient wear leveling for large-scale flash-memory storage sys-

tems. In Proceedings of the 2007 ACM Symposium on Applied Computing (SAC ’07),

pages 1126–1130, 2007.

[15] Li-Pin Chang and Li-Chun Huang. A low-cost wear-leveling algorithm for block-

mapping solid-state disks. In Proceedings of the 2011 SIGPLAN/SIGBED Conference

on Languages, Compilers and Tools for Embedded Systems (LCTES ’11), pages 31–

40, 2011.

[16] Li-Pin Chang, Yo-Chuan Su, and I-Chen Wu. Plugging versus logging: Adaptive

buffer management for hybrid-mapping ssds. ACM Transactions on Embedded Com-

puting Systems (TECS ’15), 14(2):29:1–29:21, 2015.

109

[17] Li-Pin Chang and You-Chiuan Su. Plugging versus logging: A new approach to

write buffer management for solid-state disks. In Proceedings of the 48th Design

Automation Conference (DAC ’11), pages 23–28, 2011.

[18] Yu-Ming Chang, Yuan-Hao Chang, Jian-Jia Chen, Tei-Wei Kuo, Hsiang-Pang Li, and

Hang-Ting Lue. On trading wear-leveling with heal-leveling. In Proceedings of the

51st Annual Design Automation Conference (DAC ’14), pages 83:1–83:6, 2014.

[19] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. Endurance enhancement of flash-

memory storage, systems: An efficient static wear leveling design. In Proceedings

of the 44th ACM/IEEE Design Automation Conference (DAC ’07), pages 212 –217,

2007.

[20] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. Improving flash wear-leveling by

proactively moving static data. IEEE Transactions on Computers, 59:53 –65, 2010.

[21] Yuan-Hao Chang, Po-Liang Wu, Tei-Wei Kuo, and Shih-Hao Hung. An adaptive

file-system-oriented FTL mechanism for flash-memory storage systems. ACM Trans-

actions on Embedded Computing Systems, 11(1):9:1–9:19, 2012.

[22] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding intrinsic charac-

teristics and system implications of flash memory based solid state drives. In Proceed-

ings of the Eleventh International Joint Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS ’09), pages 181–192, 2009.

[23] Yiran Chen, Hai Li, Xiaobin Wang, Wenzhong Zhu, Wei Xu, and Tong Zhang. A 130

nm 1.2 V/3.3 V 16 kb spin-transfer torque random access memory with nondestructive

self-reference sensing scheme. IEEE Journal of Solid-State Circuits, 47(2):560–573,

2012.

[24] Ben Cheng and Bill Buzbee. A jit compiler for android’s dalvik vm. In Google I/O

developer conference, 2010.

110

[25] Sheng-Wei Cheng, Yu-Fen Chang, Yuan-Hao Chang, Hsin-Wen Wei, and Wei-Kuan

Shih. Warranty-aware page management for pcm-based embedded systems. In Pro-

ceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD ’14), pages 734–741, 2014.

[26] Y.-T. Chiu. Forever flash. IEEE Spectrum, 49(12):11 –12, December 2012.

[27] Citrix. Xenmobile. https://www.citrix.com/products/xenmobile/overview.html, 2015.

[28] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven Swanson.

From ARIES to MARS: Transaction support for Next-generation, Solid-state Drives.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Princi-

ples (SOSP ’13), pages 197–212, 2013.

[29] Peter Desnoyers. Analytic models of ssd write performance. ACM Transactions on

Storage (TOS), 10(2):8:1–8:25, 2014.

[30] G. Dhiman, R. Ayoub, and T. Rosing. PDRAM: A hybrid PRAM and DRAM main

memory system. In 46th ACM/IEEE Design Automation Conference (DAC ’09),

pages 664–669, 2009.

[31] Xiangyu Dong and Yuan Xie. AdaMS: Adaptive MLC/SLC phase-change memory

design for file storage. In 16th Asia and South Pacific Design Automation Conference

(ASP-DAC ’11), pages 31–36, 2011.

[32] Samsung Electronics. K9LBG08U0M. http://www.samsung.com.

[33] Z. Fan, D. H. C. Du, and D. Voigt. H-ARC: A non-volatile memory based cache policy

for solid state drives. In 30th Symposium on Mass Storage Systems and Technologies

(MSST ’14), pages 1–11, 2014.

[34] A. P. Ferreira, B. Childers, R. Melhem, D. Moss, and M. Yousif. Using PCM in next-

generation embedded space applications. In 16th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS ’10), pages 153–162, 2010.

111

[35] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Moss. Increas-

ing PCM main memory lifetime. In Design, Automation Test in Europe Conference

Exhibition (DATE ’10), pages 914–919, 2010.

[36] Congming Gao, Liang Shi, Kaijie Wu, C.J. Xue, and E.H.-M. Sha. Exploit asym-

metric error rates of cell states to improve the performance of flash memory storage

systems. In 2014 32nd IEEE International Conference on Computer Design (ICCD

’14), pages 202–207, 2014.

[37] Yongqiang Gao, Haibing Guan, Zhengwei Qi, Yang Hou, and Liang Liu. A multi-

objective ant colony system algorithm for virtual machine placement in cloud com-

puting. Journal of Computer and System Sciences, 79(8):1230 – 1242, 2013.

[38] Yong Guan, Guohui Wang, Yi Wang, Renhai Chen, and Zili Shao. BLog: Block-level

log-block management for nand flash memorystorage systems. In Proceedings of the

14th ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for

Embedded Systems (LCTES ’13), pages 111–120, 2013.

[39] Jie Guo, Jun Yang, Youtao Zhang, and Yiran Chen. Low cost power failure protection

for MLC NAND flash storage systems with PRAM/DRAM hybrid buffer. In Design,

Automation Test in Europe Conference Exhibition (DATE ’13), pages 859–864, 2013.

[40] J. Hu, C. J. Xue, Q. Zhuge, W. C. Tseng, and E. H. M. Sha. Towards energy effi-

cient hybrid on-chip scratch pad memory with non-volatile memory. In 2011 Design,

Automation Test in Europe (DATE ’11), pages 1–6, 2011.

[41] Jingtong Hu, Qingfeng Zhuge, Chun Jason Xue, Wei-Che Tseng, and Edwin H.-M.

Sha. Software enabled wear-leveling for hybrid PCM main memory on embedded

systems. In Proceedings of the Design, Automation Test in Europe Conference Exhi-

bition (DATE ’13), pages 599–602, 2013.

[42] Min Huang, Zhaoqing Liu, and Liyan Qiao. Asymmetric programming: A highly

reliable metadata allocation strategy for MLC NAND flash memory-based sensor sys-

tems. Sensors, 14(10):18851–18877, 2014.

112

[43] Po-Chun Huang, Yuan-Hao Chang, Tei-Wei Kuo, Jen-Wei Hsieh, and Miller Lin. The

behavior analysis of flash-memory storage systems. In Proceedings of the 2008 11th

IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC ’08),

pages 529–534, 2008.

[44] Po-Chun Huang, Yuan-Hao Chang, Kam-Yiu Lam, Jian-Tao Wang, and Chien-Chin

Huang. Garbage collection for multiversion index in flash-based embedded databases.

ACM Transactions on Design Automation of Electronic Systems, 19(3):25:1–25:27,

2014.

[45] Ilya Issenin, Erik Brockmeyer, Miguel Miranda, and Nikil Dutt. DRDU: A data reuse

analysis technique for efficient scratch-pad memory management. ACM Transactions

on Design Automation of Electronic Systems, 12(2), 2007.

[46] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee, and Jihong Kim. Lifetime im-

provement of NAND flash-based storage systems using dynamic program and erase

scaling. In 12th USENIX Conference on File and Storage Techniques (FAST ’14),

pages 61–74, 2014.

[47] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won. I/O

stack optimization for smartphones. In USENIX Annual Technical Conference (ATC

’13), pages 309–320, 2013.

[48] Lei Jiang, Youtao Zhang, and Jun Yang. ER: Elastic reset for low power and long

endurance MLC based phase change memory. In Proceedings of the 2012 ACM/IEEE

International Symposium on Low Power Electronics and Design (ISLPED ’12), pages

39–44, 2012.

[49] Adwait Jog, Asit K. Mishra, Cong Xu, Yuan Xie, Vijaykrishnan Narayanan, Ravis-

hankar Iyer, and Chita R. Das. Cache revive: Architecting volatile STT-RAM caches

for enhanced performance in CMPs. In Proceedings of the 49th Annual Design Au-

tomation Conference (DAC ’12), pages 243–252, 2012.

113

[50] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting storage for smart-

phones. ACM Transactions on Storage, 8(4):14:1–14:25, 2012.

[51] Hyojun Kim and Seongjun Ahn. BPLRU: A buffer management scheme for improv-

ing random writes in flash storage. In 6th USENIX Conference on File and Storage

Technologies (FAST ’08), volume 8, pages 1–14, 2008.

[52] Yuan-Hung Kuan, Yuan-Hao Chang, Po-Chun Huang, and Kam-Yiu Lam. Space-

efficient multiversion index scheme for PCM-based embedded database systems.

In 51st ACM/EDAC/IEEE Design Automation Conference (DAC ’14), pages 147:1–

147:6, 2014.

[53] Yuan-Hung Kuan, Yuan-Hao Chang, Po-Chun Huang, and Kam-Yiu Lam. Space-

efficient multiversion index scheme for PCM-based embedded database systems. In

Proceedings of the 51st Annual Design Automation Conference (DAC ’14), pages

147:1–147:6, 2014.

[54] Tei-Wei Kuo, Yuan-Hao Chang, Po-Chun Huang, and Che-Wei Chang. Special issues

in flash. In Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design (ICCAD ’08), pages 821–826, 2008.

[55] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. LRFU: A

spectrum of policies that subsumes the least recently used and least frequently used

policies. IEEE Transactions on Computers, 50(12):1352–1361, 2001.

[56] Sungjin Lee, Taejin Kim, Ji-Sung Park, and Jihong Kim. An integrated approach

for managing the lifetime of flash-based SSDs. In Proceedings of the Conference on

Design, Automation and Test in Europe (DATE ’13), pages 1522–1525, 2013.

[57] Boxun Li, Yu Wang, Yiran Chen, H.H. Li, and Huazhong Yang. ICE: Inline calibra-

tion for memristor crossbar-based computing engine. In Proceedings of the Confer-

ence on Design, Automation & Test in Europe (DATE ’14), pages 1–4, 2014.

114

[58] Boxun Li, Yuzhi Wang, Yu Wang, Yiran Chen, and Huazhong Yang. Training it-

self: Mixed-signal training acceleration for memristor-based neural network. In

IEEE/ACM 19th Asia and South Pacific Design Automation Conference (ASP-DAC

’14), pages 361–366, 2014.

[59] Xueliang Li, Guihai Yan, Yinhe Han, and Xiaowei Li. Smartcap: Using machine

learning for power adaptation of smartphone’s application processor. ACM Transac-

tions on Design Automation of Electronic Systems, 20(1):8:1–8:16, 2014.

[60] Qian Lin, Zhengwei Qi, Jiewei Wu, Yaozu Dong, and Haibing Guan. Optimiz-

ing virtual machines using hybrid virtualization. Journal of Systems and Software,

85(11):2593 – 2603, 2012.

[61] Chenchen Liu and Hai Li. A weighted sensing scheme for ReRAM-based cross-point

memory array. In 2014 IEEE Computer Society Annual Symposium on VLSI (ISVLSI

’14), pages 65–70, 2014.

[62] D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. Sha. Curling-PCM: Application-

specific wear leveling for phase change memory based embedded systems. In 2013

18th Asia and South Pacific Design Automation Conference (ASP-DAC ’13), pages

279–284, 2013.

[63] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. A

study of linux file system evolution. volume 10, pages 3:1–3:32, 2014.

[64] Hang-Ting Lue, Pei-Ying Du, Chih-Ping Chen, Wei-Chen Chen, Chih-Chang Hsieh,

Yi-Hsuan Hsiao, Yen-Hao Shih, and Chih-Yuan Lu. Radically extending the cycling

endurance of flash memory (to>100M cycles) by using built-in thermal annealing to

self-heal the stress-induced damage. In 2012 IEEE International Electron Devices

Meeting (IEDM ’12), pages 9.1.1–9.1.4, 2012.

[65] Chris Mellor. TLC flash gets tender loving care from DensBits. http://www. theregis-

ter.co.uk/2012/05/02/densbit tlc/, 2012.

115

[66] Micron. 3D NAND flash memory flyer. https://www.micron.com/resource-details/

1cea2229-16db-483b-8e39-48fc7ec29022, 2016.

[67] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom.

SFS: random write considered harmful in solid state drives. In 10th USENIX Confer-

ence on File and Storage Technologies (FAST ’12), page 12, 2012.

[68] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and Yuanzheng

Wang. SDF: Software-defined flash for web-scale internet storage systems. In Pro-

ceedings of the 19th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS ’14), pages 471–484, 2014.

[69] H. Park, S. Yoo, and S. Lee. Power management of hybrid DRAM/PRAM-based

main memory. In 48th ACM/EDAC/IEEE Design Automation Conference (DAC ’11),

pages 59–64, 2011.

[70] Youngwoo Park, Sung Kyu Park, and Kyu Ho Park. Linux kernel support to exploit

phase change memory. In Linux Symposium, volume 2010, pages 217–224, 2010.

[71] Wu Qi, Guiqiang Dong, and Tong Zhang. Exploiting heat-accelerated flash memory

wear-out recovery to enable self-healing SSDs. In USENIX Workshop on Hot Topics

in Storage and File Systems (HotStorage ’11), pages 1–5, 2011.

[72] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-

vasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and security of PCM-

based main memory with start-gap wear leveling. In Proceedings of the 42Nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO ’42), pages 14–

23, 2009.

[73] Samsung. S3C6410. http://www.samsung.com/global/business/semiconductor/product

/application/detail?productId=7115&iaId=835.

[74] Samsung. Exynos4412. http://www.samsung.com/global/business/semiconductor/file/

product/Exynos 4 Quad User Manaul Public REV100-0.pdf, 2012.

116

[75] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. Security refresh: Prevent

malicious wear-out and increase durability for phase-change memory with dynami-

cally randomized address mapping. In Proceedings of the 37th Annual International

Symposium on Computer Architecture (ISCA ’10), pages 383–394, 2010.

[76] Zili Shao, Yongpan Liu, Yiran Chen, and Tao Li. Utilizing PCM for energy opti-

mization in embedded systems. In Proceedings of the 2012 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI ’12), pages 398 –403, 2012.

[77] L. Shi, K. Wu, M. Zhao, C.J. Xue, D. Liu, and E.H. Sha. Retention trimming

for lifetime improvement of flash memory storage systems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 35(1):58–71, 2016.

[78] Liang Shi, Keni Qiu, Mengying Zhao, and C.J. Xue. Error model guided joint

performance and endurance optimization for flash memory. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD ’14), 33(3):343–

355, 2014.

[79] Liang Shi, Chun Jason Xue, Jingtong Hu, Wei-Che Tseng, Xuehai Zhou, and Edwin

H.-M. Sha. Write activity reduction on flash main memory via smart victim cache.

In Proceedings of the 20th symposium on Great lakes symposium on VLSI (GLSVLSI

’10), pages 91–94, 2010.

[80] Guangyu Sun, Yongsoo Joo, Yibo Chen, Dimin Niu, Yuan Xie, Yiran Chen, and Hai

Li. A hybrid solid-state storage architecture for the performance, energy consumption,

and lifetime improvement. In 2010 IEEE 16th International Symposium on High

Performance Computer Architecture (HPCA ’10), pages 1–12, 2010.

[81] Guangyu Sun, Xiaoxia Wu, and Yuan Xie. Exploration of 3D stacked L2 cache de-

sign for high performance and efficient thermal control. In Proceedings of the 14th

ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED

’09), 2009.

117

[82] Yuan Heng Tseng, Chia-En Huang, C.H. Kuo, Y.-D. Chih, and Chrong Jung Lin. High

density and ultra small cell size of contact ReRAM (CR-RAM) in 90nm CMOS logic

technology and circuits. In 2009 IEEE International on Electron Devices Meeting

(IEDM ’09), pages 1–4, 2009.

[83] Chia-Heng Tu, Hui-Hsin Hsu, Jen-Hao Chen, Chun-Han Chen, and Shih-Hao Hung.

Performance and power profiling for emulated android systems. ACM Transactions

on Design Automation of Electronic Systems, 19(2):10:1–10:25, 2014.

[84] VMware. MVP. http://www.vmware.com/ap/company/acquisitions/trango.html,

2008.

[85] Chundong Wang and Weng-Fai Wong. Observational wear leveling: An efficient al-

gorithm for flash memory management. In Proceedings of the 49th ACM/EDAC/IEEE

Design Automation Conference (DAC ’12), pages 235–242, June 2012.

[86] Chundong Wang and Weng-Fai Wong. SAW: System-assisted wear leveling on the

write endurance of NAND flash devices. In Proceedings of the 50th Design Automa-

tion Conference (DAC ’13), pages 164:1–164:9, 2013.

[87] Rujia Wang, Lei Jiang, Youtao Zhang, and Jun Yang. SD-PCM: Constructing reli-

able super dense phase change memory under write disturbance. In Proceedings of

the Twentieth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’15), pages 19–31, 2015.

[88] Y. Wang, Y. Liu, Y. Liu, D. Zhang, S. Li, B. Sai, M.F. Chiang, and H. Yang. A

compression-based area-efficient recovery architecture for nonvolatile processors. In

Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE

’12), pages 1519–1524, 2012.

[89] Yiqun Wang, Yongpan Liu, Shuangchen Li, Xiao Sheng, Daming Zhang, Mei-Fang

Chiang, Baiko Sai, X.S. Hu, and Huazhong Yang. PaCC: A parallel compare and

compress codec for area reduction in nonvolatile processors. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 22(7):1491–1505, 2014.

118

[90] Yiqun Wang, Yongpan Liu, Shuangchen Li, Daming Zhang, Bo Zhao, Mei-Fang Chi-

ang, Yanxin Yan, Baiko Sai, and Huazhong Yang. A 3us wake-up time nonvolatile

processor based on ferroelectric flip-flops. In Proceedings of the ESSCIRC (ESSCIRC

’12), pages 149–152, 2012.

[91] Yiqun Wang, Yongpan Liu, Yumeng Liu, Daming Zhang, Shuangchen Li, Baiko Sai,

Mei-Fang Chiang, and Huazhong Yang. A compression-based area-efficient recovery

architecture for nonvolatile processors. In Proceedings of the Conference on Design,

Automation and Test in Europe (DATE ’12), pages 1519–1524, 2012.

[92] Yu Wang, Boxun Li, Rong Luo, Yiran Chen, Ningyi Xu, and Huazhong Yang. Energy

efficient neural networks for big data analytics. In Design, Automation and Test in

Europe Conference and Exhibition (DATE ’14), pages 1–2, 2014.

[93] D. Woodhouse. Jffs: The journaling flash file system. In Ottowa Linux symposium,

2012.

[94] Chin-Hsien Wu and Tei-Wei Kuo. An adaptive two-level management for the flash

translation layer in embedded systems. In Proceedings of the IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD ’06), pages 601 –606, 2006.

[95] G. Wu, H. Zhang, Y. Dong, and J. Hu. CAR: Securing PCM main memory system

with cache address remapping. In 2012 IEEE 18th International Conference on Par-

allel and Distributed Systems (ICPADS ’12), pages 628–635, 2012.

[96] Po-Liang Wu, Yuan-Hao Chang, and Tei-Wei Kuo. A file-system-aware ftl design for

flash-memory storage systems. In Proceedings of the Conference on Design, Automa-

tion and Test in Europe (DATE ’09), pages 393–398, 2009.

[97] Chun Jason Xue, Youtao Zhang, Yiran Chen, Guangyu Sun, J. Jianhua Yang, and Hai

Li. Emerging non-volatile memories: opportunities and challenges. In Proceedings

of the 7th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign

and System Synthesis (CODES+ISSS ’11), pages 325–334, 2011.

119

[98] Chao Zhang, Guangyu Sun, Weiqi Zhang, Fan Mi, Hai Li, and Weisheng Zhao.

Quantitative modeling of racetrack memory, a tradeoff among area, performance, and

power. In 2015 20th Asia and South Pacific Design Automation Conference (ASP-

DAC ’15), pages 100–105, 2015.

[99] Chao Zhang, Guangyu Sun, Xian Zhang, Weiqi Zhang, Weisheng Zhao, Tao Wang,

Yun Liang, Yongpan Liu, Yu Wang, and Jiwu Shu. Hi-fi playback: Tolerating position

errors in shift operations of racetrack memory. In Proceedings of the 42Nd Annual In-

ternational Symposium on Computer Architecture (ISCA ’15), pages 694–706, 2015.

[100] W. Zhang, N. K. Jha, and L. Shang. Low-power 3D NANO/CMOS hybrid dynam-

ically reconfigurable architecture. ACM Journal on Emerging Technologies in Com-

puting Systems, 6(3):10.1–10.32, 2010.

[101] Xianwei Zhang, Youtao Zhang, Bruce R. Childers, and Jun Yang. Exploiting dram

restore time variations in deep sub-micron scaling. In Proceedings of the 2015 Design,

Automation & Test in Europe Conference & Exhibition (DATE ’15), pages 477–482,

2015.

[102] Yue Zhang, Chao Zhang, J.-O. Klein, D. Ravelosona, Guangyu Sun, and Weisheng

Zhao. Perspectives of racetrack memory based on current-induced domain wall mo-

tion: From device to system. In 2015 IEEE International Symposium on Circuits and

Systems (ISCAS ’15), pages 381–384, 2015.

[103] Jishen Zhao, O. Mutlu, and Yuan Xie. FIRM: Fair and high-performance memory

control for persistent memory systems. In 47th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO ’14),, pages 153–165, 2014.

[104] Mengying Zhao, Lei Jiang, Liang Shi, Youtao Zhang, and C.J. Xue. Wear relief

for high-density phase change memory through cell morphing considering process

variation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 34(2):227–237, 2015.

120

[105] Mengying Zhao, Lei Jiang, Youtao Zhang, and Chun Jason Xue. SLC-enabled wear

leveling for MLC PCM considering process variation. In Proceedings of the 51st

Annual Design Automation Conference (DAC ’14), pages 36:1–36:6, 2014.

[106] Kan Zhong, Xiao Zhu, Tianzheng Wang, Dan Zhang, Xianlu Luo, Duo Liu, Weichen

Liu, and Edwin Sha. DR. Swap: Energy-efficient paging for smartphones. In Pro-

ceedings of the 2014 International Symposium on Low Power Electronics and Design

(ISLPED ’14), pages 81–86, 2014.

121

