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Abstract

In this Dissertation, we mainly concern the e↵ects of covariates on the underlying

recurrent event process. Two topics are considered:

Recurrent event data are data in which the event of interest can occur repeat-

edly and the successive event times are available. We study the semiparametric

regression model with random e↵ects for recurrent event data in the presence of in-

formative censoring times. For inference, we propose using the maximum likelihood

approach for estimation of the underlying baseline intensity function and regression

parameters. The proposed estimates are consistent and have asymptotically a nor-

mal distribution. Also the maximum likelihood estimators of regression parameters

are asymptotically e�cient. The finite sample properties of the proposed estimates

are investigated through simulation studies. An illustrative example from a clinical

trial is provided.

Panel count data deal with the recurrent events in discrete times. We study the

semiparametric regression analysis of panel count data when certain covariate e↵ects

may be much more complex than linear e↵ects. To explore the nonlinear interactions

between covariates, we propose a class of partially linear models with possibly vary-

ing coe�cients for the mean function of the counting processes with panel count data.

The functional coe�cients are estimated by B-spline function approximations. The

estimation procedures are based on maximum pseudo-likelihood and likelihood ap-

proaches and they are easy to implement. The asymptotic properties of the resulting

vii



estimators are established, and their finite-sample performance is assessed by Monte

Carlo simulation studies. We also demonstrate the value of the proposed method by

the analysis of a cancer data set, where the new modeling approach provides more

comprehensive information than the usual proportional mean model.
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Chapter 1

Introduction

1.1 Background

The objective of statistical inference is to estimate or to predict unknowns based on

given data or information. The performance of the models is mainly based on how

close the assumptions made to the true mechanism from which the data is generated.

Cross-sectional study and longitudinal study are two types of observational studies

that observe the state of interest with no interventions. Data are collected at a static

time point from a cross-sectional study, on either individual or group level within

a specified population. While longitudinal study is conducted over time to detect

possible e↵ects for the observed changes. Memory ability of di↵erent age groups can

be compared with a cross-sectional study, but the e↵ect of aging towards memory

loss needs to be examined through a longitudinal study. Prospective studies and

retrospective studies are two types of longitudinal studies. The prospective studies

look forward in time. For example, we select two groups of subjects and follow them

for years. It may take even decades to accumulate su�cient data to draw any strong

conclusions. Reversely, retrospective studies work backwards. Like, we find people

infected with some disease and try to uncover the potential risk factors. The biggest

problem in a retrospective study is that some of the information needed may not be

observed. We usually use it when the event takes a long time to appear.
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Terminal event or recurrent events are usually confronted in longitudinal studies.

Time-to-event data modeling is a branch of statistics that examines the time point

or duration the event of interest occurs and explores the underlying e↵ects of risk

factors (covariates) on the time. In event history analysis, the states changing could

be characterized as stochastic processes with discrete state space and either discrete

or continuous time. The event of interest could be a single event for each subject,

such as death or the first infection of some disease. It could be multiple events of one

or more types that occur repeatedly (recurrent events), e.g. infection occurrences

and relapse of cancer.

The statistical field of dealing with the single event is called survival analysis or

failure time analysis, having only two states “alive or normal” and “dead or failure”.

The object of survival analysis is the hazard rate function for the survival time

distribution, with either censored or complete data. Lawless (1983) summarizes the

developments made during 1959-1983 in this area and gives suggestions on further

problems to be solved. Cox and Oaks (1984), Kalbfleisch and Prentice (2002) and

Klein and Moeschberger (2003) give explicit details and examples in survival analysis.

The censoring mechanism is crucial for survival data modeling, right-censored and

interval-censored data are commonly encountered.

The case of recurrent events occur in continuous time is referred to as recurrent

event data, where the successive event times are available. Two processes involved

are the underlying counting process that characterizes the recurrent process of in-

terest and the follow-up process. Most existing methods have been developed for

the analysis of such data by assuming that the follow-up times are independent of

the occurrence of the events completely or given covariates. Early works from Aalen

(1975, 1978) pave the way for a general framework of conducting event history analy-

sis in terms of counting process by means of its intensity process. The study of event

history data has been going on for decades based on counting processes, martingale
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theory and stochastic integrals. Renowned models in survival analysis are extended

to fit for event history data, e.g. the counting process with Cox type intensity model

in Andersen and Gill (1982), which is frequently used for the analysis of recurrent

event data. One may refer to Andersen and Borgan (1985) for an extensive review

without any prior knowledge. Cook and Lawless (2007) focuses mainly on recur-

rent event data and thoroughly organizes important models and methods in detail;

and illustrative examples are bladder cancer data, bowel motility data, pulmonary

exacerbations and rhDNase, software debugging data, and artificial field repair data.

Panel count data deal with the recurrent events in discrete times. The counts

of the occurrences of the events between observation times are provided without

specific recurrent times. Some clinical trial examples in Thall and Lachin (1988)

include gallstones patients with nausea, diabetes patients with hypoglycemia, coro-

nary disease patients with angina pectoris, and epileptic patients with seizures. For

all the cases, the recurrence situation of the symptom corresponding to each disease

is required at each visit to the hospital for every individuals. Patients may enter

late, miss some prescribed visits, or drop out of the study early for di↵erent reasons.

The number of observations and observation times are allowed to be distinct from

individual to individual. If complete records with exact occurrence times are imprac-

tical to be prepared, but the event counts between two subsequent time points are

available, panel count data analysis is then conducted. A special case is the so-called

current status data that each subject is observed only once and there are only the

total counts of occurrences by the observation time available. Examples and more

discussions can be found in Sun and Kalbfleisch (1993). Recurrent events of multiple

types that observe at discrete times are referred to as multivariate penal count data,

and the relationships among those types of events may not be ignored. For instance,

basal cell carcinoma and squamous cell carcinoma are two types of non-melanoma

skin cancer. It was diagnosed that some patients develop one of these two types of
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cancer, but some other patients have both under discrete recurrence times. Di↵erent

from recurrent event data, in addition to the recurrent event process and the follow-

up process, the observation process with incomplete occurrence times needs to be

considered for panel count data. The dependence or relationship between the event

process and the observation process, and even the correlations among the three pro-

cesses make panel count data special. Sun and Zhao (2013) suggests that one may

understand the structure di↵erence between recurrent event data and panel count

data via seeing the di↵erence between right-censored and interval-censored data in

survival analysis.

1.2 Literature review

As we know, the intensity process fully specifies the corresponded univariate counting

process. Aalen (1978) first introduces stochastic integrals and the martingale-based

counting process theory into statistical inference. Andersen and Gill (1982) extends

the Cox model to a multivariate counting process set-up and studies the asymptotic

properties by means of martingale central limit theorem. But in many situations,

the dependence structures among recurrent events cannot be modeled properly via

intensity models. Pepe and Cai (1993) advocates a more flexible idea of using rate

functions. Lawless and Nadeau (1995) studies mean functions and gives asymptotic

results for discrete time cases. Lawless (1995) reviews the methods based on inten-

sity function as well as the marginal rate and mean functions for recurrent event

data. The intensity model requires that the counting process has jumps of size one,

while the rate and mean functions work well for characterizing the counting process

with arbitrary jump sizes. Since martingale central limit theorem fails for arbitrary

continuous counting process with rates and mean model, Lin et al. (2000) provides

rigorous proofs through empirical process theory and establishes a class of graphical
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and numerical techniques for model checking. Thereafter, one may model the inten-

sity process or the mean function for the analysis of recurrent event data based on

their research questions. But for panel count data modeling, the focus is only on the

rate or mean function of the underlying recurrent event process.

In clinical trial studies, patients are often classified into groups in terms of med-

ical treatment or some categorical covariates (e.g. gender). For panel count data

analysis, the null hypothesis could be formulated by the mean functions of the un-

derlying recurrent event processes in di↵erent groups. Estimation of mean functions

is the foundation for comparing two or more recurrent event processes in the light of

constructing test statistics.

Isotonic regression involves finding a weighted least-squares subject to some or-

der restriction. Sun and Kalbfleisch (1995) presents the isotonic regression estimator

(IRE) of the mean function with the monotonicity constraint using the max-min

formula in Barlow et al. (1972). Under the non-homogeneous Poisson assumption

of the underlying counting process, Wellner and Zhang (2000) shows that the IRE is

identical with the nonparametric maximum pseudo-likelihood estimator (NPMPLE),

which ignores the dependence of successive counts and treats them as independent.

While their proposed nonparametric maximum likelihood estimator (NPMLE) al-

lows for the dependence structure and utilizes the independence of the increments

of the process under Poisson assumption. The NPMPLE and the NPMLE of the

mean function are both consistent. The robustnesses of the two estimators against

the Poisson assumption are revealed through simulation studies. They are identical

when it comes to the current status data, the NPMLE is more e�cient when the data

has numerous observation times but more intractable in computing. Groeneboom

and Wellner (1992) considers the expectation-maximization (EM) algorithm and the

iterative convex minorant (ICM) algorithm in solving the NPMLE for interval cen-

sored data. Jongbloed (1998) modifies the ICM algorithm (MICM) by inserting a line
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search procedure and proves the global convergence. Wellner and Zhang (2000) fol-

lows this idea and utilizes the MICM algorithm in acquiring the NPMLE of the mean

function for panel count data. Cheng et al. (2011) proposes a projected Newton-

Raphson algorithm to compute the NPMLE that is faster than the ICM algorithm in

the literature. Asymptotic properties of the NPMPLE and the NPMLE without any

model assumption for the counting process are given in Wellner and Zhang (2000)

via empirical process theory. The assumption of independent counts within each

subject is too restrictive. To make the NPMPLE more e�cient without sacrificing

simplicity in computation, one may take the correlation of sequential counts into ac-

count by importing some frailty variable. Zhang and Jamshidian (2003) generalizes

the non-homogeneous Poisson assumption about the underlying counting process to

conditional Poisson given the gamma-frailty variable (mixed-Poisson), in which the

mean function and the gamma parameter are estimated by the EM algorithm, but

leave the study of asymptotic behaviors an open problem. To obtain a smooth es-

timator of the mean function, Lu et al. (2007) presents the spline-based estimator

by involving the monotone cubic spline (I-spline) proposed by Ramsay (1988) in the

NPMLE and the NPMPLE of Wellner and Zhang (2000). Instead of giving only one

estimator, Hu et al. (2009a) presents a class of isotonic regression-based estimators

depending on the weight function, which include the IRE when the weight function

is the identity matrix. Di↵erent choice of the weight function results in diverse esti-

mator of the mean function with distinct e�ciency. Simulation studies show that the

estimator with GEE weights is close to the e�ciency of the NPMLE for Poisson event

processes and is more e�cient for non-Poisson processes. Rather than direct methods

of estimating the mean function, Thall and Lachin (1988) suggests to estimate the

rate function by partitioning the study period into fixed number of consecutive time

intervals and to compare two treatment groups based on the empirical rate di↵er-

ence. One may derive the mean function accordingly by the integral of the estimator
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of the rate function. Hu et al. (2009b) derives the mean function by a summation of

the estimates of the rate function at finite observation times, and provides two types

of self-consistent estimating equations in nonparametric estimation. All the methods

so far are based on the assumption that the observation process and the underlying

recurrent event process are independent. Panel count data with informative obser-

vation process is dealing with the case that the two processes are not independent.

Many research studies about this problem are discussed in the context of regression

analysis.

For two-sample comparison problems in the analysis of panel count data, the

test statistic is commonly constructed using the mean functions based on the above

mentioned NPMLE and NPMPLE/IRE. For simplicity, Thall and Lachin (1988)

transforms the problem of rate comparison into a multivariate comparison one by

partitioning the whole length of study into fixed and non-overlapped consecutive

intervals and proposes a Wilcoxon-like rank test, but the e�ciency would be highly

dependent upon the partition settings. Sun and Kalbfleisch (1993) accommodates the

IRE of the mean functions in the test statistic motivated by the log-rank test for right-

censored survival comparison, in the context of current status data both with same

and di↵erent observation times among all subjects. Sun and Fang (2003) generalizes

this idea to panel count data and proves the asymptotic normal properties of the

test statistic that represents the integrated weighted di↵erence between the IREs of

one group and the overall of the common mean under the assumption that subjects

from di↵erent population or treatment group share identical observation processes.

One important type of experiment in medical research is randomized clinical trials

(RCTs), where subjects under study are randomly allocated to di↵erent treatment

groups, hence meets the requirement of the test statistic. Park et al. (2007) suggests a

test statistic representing the integrated weighted di↵erence between the IRE’s of the

two mean functions for the two di↵erent groups with no assumption of independent
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and identically distributed group indicators in Sun and Fang (2003) and shows its

asymptotic normality. Motivated by the e�ciency of the NPMLE, Balakrishnan and

Zhao (2010) follows the idea from Sun and Fang (2003) and constructs a di↵erent

test statistic based on the NPMLE, and compares the power (the probability that the

test appropriately reject the null hypothesis when the alternative hypothesis is true)

of the hypothesis tests based on both the NPMLE and the NPMPLE/IRE through

comprehensive simulation studies, where the test statistics in Sun and Fang (2003)

and Park et al. (2007) with three di↵erent weight functions are all involved. For

more details on simulation studies, one may refer to Balakrishnan and Zhao (2010)

and Zhao et al. (2011). For multivariate panel count data, the null hypothesis

accommodates all types of recurrent events that the mean functions in di↵erent

groups being equal. Zhao et al. (2014) generalizes the test statistic in Park et al.

(2007) leaving the correlation between di↵erent types of recurrent events arbitrary

and proves its asymptotic normality. This can be extended to multi-sample situation.

For comparing mean functions of k-sample, Zhang (2006) constructs a class of

nonparametric tests based on the asymptotic normality of a smooth functional of

the NPMPLEs of two groups under monotonic condition of the limit weight pro-

cess. Balakrishnan and Zhao (2011) generalizes the existing test statistics based on

the NPMPLE to the multi-sample cases with both the assumption of iid treatment

indicator holds and not. As suggested, more weight processes can be used in their

test statistics by relaxing the assumption about the weight function in Zhang (2006).

One could certainly substitute the NPMLE for the NPMPLE/IRE, but it is more

complicated both in theory and computation. Balakrishnan and Zhao (2009) con-

siders two classes of nonparametric test statistics based on the integrated weighted

di↵erence between the increased rates of the NPMLEs. So far, the assumption of

identical observation processes in di↵erent groups is made for the aforementioned

test procedures. To further consider the di↵erence of the observation processes in
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di↵erent groups, Zhao and Sun (2011) formulates their test statistics allowing un-

equal observation processes based on the IRE and establishes asymptotic normality.

The weight functions work for imposing di↵erent emphases on di↵erent time intervals

either involving the group di↵erence or not. One may consider the NPMLE instead

and construct new nonparametric test procedures. But it’s not always better that

the NPMLE-based procedures perform. Zhao et al. (2011) shows that the choices of

both the test statistic and the weight process become compliated when the underly-

ing mean functions between groups cross, although in many cases we have no idea

whether it is true or not.

Regression analysis of panel count data is mainly to estimate the conditional

expectation of the underlying recurrent event process given covariates (either time-

invariant or time-varying). The fundamental model is the so-called proportional

mean model that the baseline mean function and the regression parameters are to

be determined. Early studies are built upon this assumption of the model. Zhang

(2002) follows the idea of mean function estimation with the IRE and recommends

the semiparametric maximum pseudo-likelihood estimation (SPMPLE) based on the

non-homogeneous Poisson process assumption. The two-step iterative algorithm for

the SPMPLE is to give an initial set of the regression parameters for updating the

mean via the IRE, and then with the updated mean to get a new estimator of the

regression parameters using Newton-Raphson algorithm. Convergence is then mea-

sured by the relative di↵erence between the log pseudo-likelihoods of two consecutive

iterations, which is robust against the Poisson assumption. Although the SPMPLE

has computational advantages, it is less e�cient when the number of observation

times is heavy-tailed as indicated in Wellner et al. (2004). A feasible algorithm for

the semiparametric maximum likelihood estimation (SPMLE) is further required.

Wellner and Zhang (2007) replaces the IRE with the NPMLE by the MICM algo-

rithm and utilizes the same two-step algorithm to get the SPMLE, and the SPMPLE
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of the regression parameters is chosen as the initial value. But this algorithm for

the SPMLE is time-consuming due to large amount of iterations for both MICM and

Newton-Raphson. Asymptotic normality has been established for both the SPMPLE

and the SPMLE of the regression parameters. But asymptotic variances have very

complicated forms and hence being estimated by bootstrap procedures. Rather than

treating the baseline mean function unspecified, one may consider a smooth function

(e.g. kernel or splines) approximation of the baseline mean function. As in Lu et

al. (2007), the spline-based estimator of the mean function performs better than the

NPMPLE and the NPMLE in Wellner and Zhang (2000). Lu et al. (2009) proposes

the spline-based sieve SPMPLE and SPMLE using the monotone cubic B-splines to

approximate the logarithm of the baseline mean function. The spline coe�cients and

the regression parameters are jointly estimated by the generalized Rosen algorithm

of Jamshidian (2004) in the modified form. The dimension has greatly reduced for

the estimation procedure and the computation is less intensive than the estimators

of Wellner and Zhang (2007). For possible improvements, Lu et al. (2009) suggests

that the penalized likelihood method could be used to select the amount and location

of the knots rather than prespecifying partition for monotone B-splines, and additive

or additive-multiplicative mean model could be considered instead of the restrictive

proportional mean model. One may also assume the underlying counting process to

be mixed Poisson and involve a latent variable in the mean model, similar proce-

dures can be made to estimate the baseline mean or spline coe�cients and regression

parameters. Poisson assumption implies that the variance and the mean are equal

for the recurrent event process given covariates, and the variance is no less than the

mean for the mixed Poisson assumption. Both are too confining and may not hold

in practice.

Generally our main interest is the e↵ects of covariates on the underlying recur-

rent event process, but sometimes the covariate e↵ects on the observation process
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and even the follow-up process cannot be ignored. For instance, patients in di↵er-

ent treatment group may have di↵erent frequencies for visiting their doctor. The

observation process may depend on the treatment indicator as a covariate. The

likelihood-based methods model the underlying recurrent event process condition on

the observation process. Sun and Wei (2000) leads an alternative way to solve regres-

sion problem utilizing estimating equation methods that further model the covariate

e↵ects on the observation process by the proportional mean model and the follow-

up process by the proportional hazards model. This approach does not depend on

the assumption of the underlying recurrent event process, but it requires that the

three processes are independent given covariates. The three estimators of the regres-

sion parameters are proved consistent and unique. The asymptotic normality and

a closed form asymptotic variance are given for all of them, respectively. Estimat-

ing equation methods do not need to estimate the unknown baseline mean function,

and hence less intensive in computation. But the likelihood-based methods are more

e�cient when the distributional assumptions make clear sense. More on estimating

equation methods, one may refer to Cheng and Wei (2000) and Hu et al. (2003).

Sun and Zhao (2013) gives a comprehensive review of the up-to-date methodologies

on regression analysis of panel count data, primarily based on the assumptions of

time-independent covariate e↵ects for regression models and no missing or censoring

data on covariates, with either independent or informative observation times. Sun

et al. (2009) generalized the proportional mean model to incorporate both time-

independent and time-varying regression parameters with independent observation

times.

Aforementioned approaches require that the observation process is independent

of the underlying recurrent event process given covariates. The marginal approach is

often used for inference about the recurrent event process. But in situations we have

to consider their correlations, one may model them jointly or model one marginally
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and the other conditionally given the former. To accommodate the follow-up process

as well, they are commonly referred to as panel count data with informative obser-

vation times and informative censoring. Huang et al. (2006) and Sun et al. (2007)

investigate the case when the observation process and the underlying recurrent event

process are related, while the follow-up process is independent of the other two pro-

cesses given covariates. Huang et al. (2006) assumes a non-homogeneous Poisson

process for the underlying recurrent event process and proposes the nonparametric

and semiparametric proportional rate models with a multiplicative frailty to charac-

terize the correlation between the two processes. No distributional assumptions are

made for the frailty and the observation process. The conditional likelihood method

is employed to estimate the baseline rate function and the regression parameters.

Sun et al. (2007) assumes that the observation process is a non-homogeneous Pois-

son process and proposes another semiparametric model for solving this problem. He

et al. (2009) considers more complicated situation that the three processes are corre-

lated. They conduct a joint analysis with some shared frailty models and introduce

two latent variables to account for the correlations among the three processes. A

three-step estimation procedure is presented and the estimating equation approach

is used. Instead of constructing a specified latent variable, Zhao and Tong (2011)

proposes a joint model in characterizing the correlation between the two processes

through a latent variable along with a completely unspecified link function, and the

latent variable does not need to be estimated in the estimation procedure. They also

address that the proposed method could be generalized to the case with informative

censoring by utilizing the approach in Sun et al. (2007). Deng (2013) follows this

idea and generalizes to the situation with time-dependent covariates and informative

censoring. To further relax the concerned assumptions, Zhao et al. (2013) puts for-

ward a more general and robust estimation approach combining the idea from Zhao

and Tong (2011). In addition, the preceding methods all assume that the covariate
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e↵ects on the underlying recurrent event process could be captured by the propor-

tional mean model. Li et al. (2010) presents a more flexible estimation approach

to allow for a variety of dependence patterns, which gives a class of semiparametric

transformation models to include the proportional mean model as a special case.

For the analysis of multivariate panel count data, one may separately apply meth-

ods for univariate panel count data to each type of the event. But it would be more

e�cient to conduct a joint or multivariate analysis if the di↵erent types of recurrent

events are related. To model the correlation between di↵erent types of recurrent

event processes, one way is to introduce some frailty variables as with informative

follow-ups. The analysis of multivariate panel count data is beyond the scope of

this dissertation. The literatures that discuss about this topic include Chen et al.

(2005), He et al. (2008), Lee (2008), Li et al. (2011), Zhang et al. (2013), Zhao et

al. (2013b), Zhao et al. (2014) and Li et al. (2015).

In practice, one may encounter the situation that some subjects are observed

continuously and the others are observed only at discrete times. It could also happen

that each subject is observed continuously over certain time periods but at discrete

times over other time periods. A mixture of two data structures makes this problem

more complicated. A naive solution is to avoid one structure and model only the

recurrent event data by imputation or the panel count data by data grouping. But

the results could be biased or less e�cient. Zhu et al. (2013) defines this problem

and presents a marginal mean model, and an estimating equation-based approach is

used to estimate the regression parameters. For further considerations of this topic,

one may refer to Zhu et al. (2014) and Zhu et al. (2015).
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1.3 Outline of the Dissertation

In this Dissertation, we discuss about two special situations, one with recurrent event

data and the other with panel count data.

In Chapter 2, we study the semiparametric regression model with random e↵ects

for recurrent event data in the presence of informative censoring times. For inference,

we propose using the maximum likelihood approach for estimation of the underlying

baseline intensity function and regression parameters. The proposed estimates are

consistent and have a asymptotic normal distribution. And the maximum likelihood

estimators of the regression parameters are asymptotically e�cient. The finite sample

properties of the proposed estimates are investigated through simulation studies. An

illustrative example from a clinical trial is provided.

In Chapter 3, we conduct semiparametric regression analysis of panel count data.

To explore the nonlinear interactions between covariates, we propose a class of par-

tially linear models with possibly varying coe�cients for the mean function of the

counting processes with panel count data. The functional coe�cients are estimated

by B-spline function approximations. The estimation procedures are based on the

maximum pseudo-likelihood and likelihood approaches, and they are easy to imple-

ment.The asymptotic properties of the resulting estimators are established, and their

finite-sample performance is assessed by Monte Carlo simulation studies. We also

demonstrate the value of the proposed method by the analysis of a cancer data set,

where the new modeling approach provides more comprehensive information than

the usual proportional mean model.

And in Chapter 4, we finalize with possible directions for future research.
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Chapter 2

Maximum Likelihood Estimation
for Recurrent Event Data with
Informative Censoring

2.1 Introduction

Recurrent event data are data in which the event of interest can occur repeatedly.

Areas that often produce such data include clinical and longitudinal follow-up studies,

reliability experiments, and sociological studies (Andersen et al. 1993; Cook and

Lawless 1996, 2007; Cook et al. 1996). Examples include hospitalizations, infections,

and tumor metastases. For recurrent event data, two processes are involved: the

underlying counting process that characterizes the recurrent process of interest and

the follow-up process. Most existing methods have been developed for the analysis of

such data by assuming that the follow-up times are independent of the reccurrence

of the events completely or given covariates. For example, Andersen and Gill (1982)

and Prentice et al. (1981) develope some intensity-based methods, while Lawless and

Nadeau (1995) and Lin et al. (2000) propose some marginal mean and rate-based

approaches. In particular, Cook and Lawless (2007) provides an excellent review of

the existing methods about the analysis of recurrent events.

In practice, the assumption that the recurrent process and the follow-up process
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are independent may not be true. For example, the follow-up times may be times

to some terminal events such as death, which are related to the recurrent events

of interest. Wang et al. (2001) consideres a study of AIDS patients in which the

recurrent and censoring events are hospitalization and death, respectively. In the

presence of dependent censoring events, several approaches have been developed for

the analysis of recurrent event data. For instance, Wang et al. (2001), Huang

and Wang (2004), Liu et al. (2004) and Ye et al. (2007) develope frailty-based

joint modeling procedures that model the recurrent event process and the censoring

process together. Ghosh and Lin (2000, 2002) also studies the same problem by using

marginal models instead of the frailty model. For estimation of regression parameters

in these models, an estimating equation-based approach is used and the resulting

estimators may not be e�cient. In this chapter, we consider a semiparametric model

which allows the censoring process to be correlated with the recurrent event process

through an unobserved frailty, and develop an e�cient estimation procedure for the

proposed model.

The remainder of this chapter is organized as follows. Section 2.2 introduces

notation and describes the model for the underlying recurrent event process. To

characterize the correlation between the recurrent events and the follow-up or cen-

soring times, we employ an unobserved latent variable in the model. The maximum

likelihood estimators (MLE) of regression parameters and the baseline intensity func-

tion are obtained and an EM algorithm for these estimators is presented. In Section

2.3, we study the large sample properties of the proposed estimators. The consistency

and asymptotic distribution of the MLEs are established. Section 2.4 presents some

results obtained from a simulation study for assessing the finite-sample properties

of the proposed estimates. In Section 2.5, we apply the proposed methodology to a

set of recurrent event data arising from a study of leukemia patients. Some research

findings are summarized in Section 2.6.
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2.2 Maximum Likelihood Estimation and Algo-

rithm

Consider a recurrent event study that consists of n independent subjects and let

Niptq denote the number of occurrences of the recurrent event of interest before or

at time t for subject i. Suppose that for each subject i, there exists a vector of

p-dimensional covariates denoted by Xi, and given Xi and one latent variable Ui,

Niptq is a non-stationary Poisson process with the intensity function given by

�pt|Xi, Uiq “ �0ptq exppX 1
i� ` Uiq . p2.1q

In the model above, �0ptq is a completely unknown continuous baseline inten-

sity function and � denotes the vector of regression parameters. Here the frailties

U1, . . . , Un are identically and independently distributed with density function hpuq.
The Gamma frailty is commonly used to model exppUiq. The advantage of this set-

ting is that the conditional distribution of exppUiq given the observed data is still a

Gamma distribution. Zhang and Jamshidian (2003) uses the Gamma frailty variable

to characterize the intracorrelation between the panel counts of the counting process

and obtained a maximum pseudo-likelihood estimate. However, its asymptotic prop-

erties are unknown. We prefer to use the zero mean normal distribution. That is,

hpuq “ �pu; �q, where �p¨; �q is the density function of the zero-mean normal distri-

bution with variance �2. Let ⇤0ptq “
≥t
0 �0psqds be the cumulative intensity function.

For identifiability, we assume that ⇤0p⌧q “ 1 with ⌧ being the largest follow-up time

or study time.

For subject i, i “ 1, . . . , n, let Ci denote the observed censoring time and let

Ti,1 † ¨ ¨ ¨ † Ti,Ki be the observed event times where Ki “ NipCi ^ ⌧q is the total

number of the observed recurrent event times. The censoring time Ci is assumed to

be independent of Nip¨q conditional on pXi, Uiq. Then the observed data consist of

Oi “ pT̃i, Xi, Ciq, i “ 1, . . . , n, with T̃i “ pTi,1, . . . , Ti,Kiq. Let �0 be the true value of
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�. Now we consider the maximum likelihood estimation of �0 along with � and the

function ⇤0.

Assume that the observations Oi’s from the n subjects are independently and

identically distributed realizations of O “ pT̃ , X, Cq with T̃ “ pT1, . . . , TKq. Given

the observed data Oi, i “ 1, . . . , n, the likelihood function of ✓ “ p�, �,⇤q is

Lnp✓|O1
isq9

nπ

i“1

ª
fpT̃i|Xi, Ci, ui, �,⇤q�pui; �qdui, p2.2q

where

fpT̃i|Xi, Ci, ui, �,⇤q
“ fpT̃i|NipCiq, Xi, Ci, ui, �,⇤qfpNipCiq|Xi, Ci, ui, �,⇤q

“
" Kiπ

j“1

�pTi,jq
⇤pCiq

*
expt´⇤pCiq exppX 1

i� ` uiqut⇤pCiq exppX 1
i� ` uiquKi

Ki!
.

Removing the terms that are not related to the parameter ✓, we have

Lnp✓|O1
isq9

" nπ

i“1

Kiπ

j“1

�pTi,jq
*

ˆ
nπ

i“1

ª
expt´⇤pCiq exppX 1

i� ` uiqu

ˆtexppX 1
i� ` uiquKi�pui; �qdui.

Then the maximum likelihood estimator of ✓0 “ p�0, �0,⇤0q can be obtained by

maximizing the above likelihood function subject to the monotonicity of ⇤p¨q, that
is, the function ⇤p¨q must be non-decreasing. It would seem natural to calculate the

maximum likelihood estimators. However, the maximum of the foregoing likelihood

function is infinity, because we can always choose some function ⇤p¨q with fixed values

at the Ti,j while letting �ptq “ d⇤ptq{dt go to infinity. Here we relax ⇤p¨q to be right-

continuous and allow it to have jumps at Ti,j. Set 0 † t1 † ¨ ¨ ¨ † tM be the ordered

distinct time points of tTi,ju. For m “ 1, . . . ,M , set Nm “ ∞n
i“1

∞Ki

j“1 IpTi,j “ tmq,
which is the total number that the observation time is exactly tm. Then the likelihood
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function can be rewritten as

Lnp✓|O1
isq9

" nπ

i“1

Kiπ

j“1

�⇤pTi,jq
*

ˆ
nπ

i“1

ª
expt´⇤pCiq exppX 1

i� ` uiqu

ˆ exppKiX 1
i� ` Kiuiq�pui; �qdui,

p2.3q

where �⇤ptq “ ⇤ptq ´ ⇤pt´q and ⇤ptq “ ∞M
m“1�⇤ptmqIpt • tmq. The resulting

estimator is referred to as the MLE, denoted by ✓̂n “ p�̂n, �̂n, ⇤̂nq.
EM Algorithm. It is obvious that there exist some di�culties in this maximization

procedure. The first is that the number pM ` p ` 1q of estimated parameters are so

large since M is very large, where M is the number of the distinct time points T 1
i,js.

Secondly, the integral has no closed form. We appeal to the EM algorithm. For this,

we treat the U 1
is as the missing data and the complete likelihood function is given

by

Lnp✓|O1
is, U

1
isq

“
Mπ

m“1

t�⇤ptmquNm

nπ

i“1

expt´⇤pCiq exppX 1
i� ` Uiq ` KipX 1

i� ` Uiqu�pUi; �q.

To implement the EM algorithm, we first consider the E-step, which computes

the conditional expectation of the log-likelihood function given the current estimate

of ✓ and the observed data Oi’s. To this end, note that the log-likelihood function

can be written as

lnp✓|O1
is, U

1
isq

“
nÿ

i“1

lnip✓|Oi, Uiq

“ ∞M
m“1 Nm log�⇤ptmq

`
nÿ

i“1

"
´⇤pCiq exppX 1

i� ` Uiq ` KipX 1
i� ` Uiq ` log �pUi; �q

*
.

p2.4q

Now we consider the maximization of the above expectation, which is M-step.

Suppose that at the kth step, the current parameter is ✓pkq “ p�pkq, �pkq,⇤pkqq, then
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the conditional expectation of the “complete” log-likelihood function is

lnp✓|O1
is, ✓

pkqq “
Mÿ

m“1

Nm log�⇤ptmq `
nÿ

i“1

„
´⇤pCiq exppX 1

i�qEtexppUiq|Oi, ✓
pkqu

`KitX 1
i� ` EpUi|Oi, ✓

pkqqu ` Etlog �pUi; �q|Oi, ✓
pkqu

⇢
.

Therefore, maximizing the above log-likelihood function, one obtains the pk ` 1qth
step estimates of ✓ given by

r�⇤ptmqspk`1q “ Nm

„ nÿ

i“1

IpCi • tmq exppX 1
i�

pkqqEtexppUiq|Oi, ✓
pkqu

⇢´1

, p2.5q

for m “ 1, ¨ ¨ ¨ ,M ,

r�2spk`1q “ 1

n

nÿ

i“1

EpU2
i |Oi, ✓

pkqq p2.6q

and �pk`1q satisfying the following equation

nÿ

i“1

Xi

„
Ki ´ r⇤pCiqspkq exppX 1

i�
pk`1qqEtexppUiq|Oi, ✓

pkqu
⇢

“ 0. p2.7q

Then the MLE of ✓ can be obtained by the following steps:

Step 1. Provide one initial value ✓p0q;

Step 2. At the kth step, we calculate the pk ` 1qth step ✓pk`1q through (2.5), (2.6)

and (2.7);

Iterate Step 2 until the desired convergence is achieved.

It is clear that, to calculate (2.5)-(2.7), one needs to calculate EpU2
i |Oi, ✓pkqq and

EpeUi |Oi, ✓pkqq. Generally,

EtgpUiq|Oi, ✓
pkqu “

ª
gpuiq fpui|Oi, ✓

pkqq dui ,
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for some function g, where

fpui|Oi, ✓q “ expt´⇤pCiq exppX 1
i� ` uiqu exppKiuiq�pui; �qª

expt´⇤pCiq exppX 1
i� ` uiqu exppKiuiq�pui; �qdui

, p2.8q

is the conditional density of Ui given Oi and ✓. It is apparent that this integration has

no closed form. For this, with ✓ “ ✓pkq, let tUil; i “ 1, ..., n, l “ 1, ..., L u be L i.i.d.

samples from Np0, t�pkqu2q, where L is su�ciently large. Then one can approximate

EtgpUiq|Oi, ✓pkqu by

ÊtgpUiq|Oi, ✓
pkqu “

∞L
l“1 gpUilq expt´r⇤pCiqspkq exppX 1

i�
pkq ` Uilqu exppKiUilq∞L

l“1 expt´r⇤pCiqspkq exppX 1
i�

pkq ` Uilqu exppKiUilq
.

p2.9q

2.3 Large Sample Behaviors

In this section, we study the asymptotical properties for the maximum likelihood

estimator. First, we impose the following regularity conditions.

C1. The covariate X is uniformly bounded.

C2. There exists some positive constant �0 such that P pCi • ⌧ |Xi, Uiq • �0.

C3. ⇤0p¨q is a strictly increasing function on r0, ⌧ s and has continuous first derivative

function �0, satisfying ⇤0p⌧q “ 1 and �0p0q ° 0.

C4. The true value p�1
0, �0q1 lies in the interior of a known compact subset � of

Rp ˆ R`, where

� “ tp�, �q : |�| § M0 for some constant M0, � ° �a for some positive �au.

C5. If there exists a vector � and a constant c such that

X 1� “ c
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almost surely, then � “ 0 and c “ 0.

Conditions C1-C2 are commonly seen in recurrent event data literature. Con-

dition C3 is made to make the model identifiable. Condition C5 is referred as the

identifiability condition, which can guarantee the estimates are unique and consis-

tent. Denote the function class ⌥, which satisfies condition C3. Let ⇥ “ � ˆ ⌥

denote the parameter space. Then the maximum likelihood estimator ✓̂n is obtained

by maximizing (2.3) over ✓ P ⇥.
Theorem 2.1. Under conditions C1-C5, }�̂n ´ �0} Ñ 0, |�̂2

n ´ �2
0| Ñ 0 and

suptPr0,⌧ s |⇤̂nptq ´ ⇤0ptq| Ñ 0 almost surely.

Theorem 2.1 states that the maximum likelihood estimator is consistent. Fur-

thermore, we have the following theorem about the asymptotical distribution.

Theorem 2.2. Under conditions C1-C5, n1{2p�̂1
n ´ �1

0, �̂
2
n ´ �2

0, ⇤̂nptq ´ ⇤0ptqq1

converges weakly to a zero mean Gaussian process in the metric space Rp`1ˆl8r0, ⌧ s,
where l8r0, ⌧ s is a normed space consisting of all the functions in ⌥, where the norm

is taken as the supremum norm on r0, ⌧ s. In addition, �̂n and �̂2
n are asymptotically

e�cient.

Theorems 2.1 and 2.2 are proven in Appendix A.

Now we turn to consider estimation of variance of p�̂n, �̂nq. Intuitively, using the

idea similar to Zeng et al. (2005, 2006), we can treat the distinct jump size�⇤ptmq as
the parameters and then the observed likelihood function is regarded as the function

of these parameters and p�, �q. Then the asymptotical covariance matrix can be

estimated by the inverse of the observed information matrix for all parameters. The

observed information matrix can be calculated via the Louis (1982) formula.
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2.4 Numerical results

This section will report some results obtained from a simulation study conducted

for assessing the performance of the inference procedures proposed in the previous

sections. In the study, we considered situations where there exists one covariate

Xi. It follows the Bernoulli distribution with the success probability 0.5, or follows

the uniform distribution U(0, 1). The latent variable Ui was generated from the

zero mean normal distribution with the variance of 0.52. The censoring time Ci was

generated from the minimum of Up2, ⌧ ` 1q and ⌧ , with ⌧ “ 4. With given Xi

and Ui, we generated the observation process Niptq under model (2.1) with di↵erent

values of � and �0ptq. Here � can be -0.2, 0, 0.5 or 1, and �0ptq “ 2.5 or �0ptq “ 1.25t.

The results reported below are based on 1000 replications with sample size n “ 100

or 200.

Tables 2.1 and 2.2 present the simulation results. Each table includes the averages

of the estimates �̂ and �̂, the sample standard deviations of the estimates (SSD), the

averages of the estimated standard errors (ESE), and the 95% empirical coverage

probabilities (CP). These results indicate that the proposed estimation procedure

seems to work well and in addition, the normal approximation to the distributions of

�̂ and �̂ seems to perform well. We also considered some other set-ups and obtained

similar results.

2.5 Analysis of AML Data

Now we apply the methodology developed in the previous sections to a set of re-

current event data arising from a clinical trial on the patients with acute myeloid

leukemia (AML) (Rubnitz et al., 2005). The data set consists of 201 subjects who

were consecutively treated for their AML from October 2002 through October 2008.

During the chemotherapy course, the patients may experience repeated bacterial,
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viral or fungal infections, and one of the objectives of the study was to investigate

the infection rates and its relationship with various predictor variables. In the study

we combine the three types of infections and Table 2.3 provides a summary of the

frequency of all infections among the 201 patients. In total, there were 391 events

during their chemotherapy with a median risk time as 160 days. During the study,

38 patients experienced the relapse, transplant or death, which will be treated as

informative censoring. For the study, there are six predictor variables or baseline

covariates of interest. They are gender (male = 0; female = 1), the leukemia risk

level (low = 0; standard = 1; high = 2), the dose of cytarabine given for the first

course of chemotherapy (standard = 0; high = 1), and race (white = 0; others =

1) along with the white blood count (WBC) and the age both at the diagnosis of

AML. Table 2.4 presents the analysis results obtained by applying the proposed esti-

mation procedure to the data here. It includes the estimated e↵ect of each covariate

on the occurrence rate of the infections, the estimated standard error (ESE), and

the p-value for testing no significant covariate e↵ect. These results indicate that

age seems to have significant e↵ect on the infection rate. More specifically, younger

patients su↵er more infections than older patients. All other covariates do not have

a significant e↵ect on the infection rate. Figure 2.1 presents the estimates of the

cumulative baseline intensities along with the pointwise 95% confidence bands.

For comparison, we also apply the method given in Wang et al. (WQC) (2001),

which accounts for the informative censoring also by a frailty-based model but esti-

mates parameters with estimating equations. The results are also included in Table

2.4.
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Figure 2.1: Estimates of ⇤0ptq with the pointwise 95% confidence bands.

2.6 Summary

In this Chapter, we considered regression analysis of recurrent event data when the

underlying recurrent event process and the follow-up or censoring times involved may

be related conditional on covariates. For the purpose, some shared frailty models were

proposed. For inference, the maximum likelihood approach and an EM algorithm

were developed for estimation of regression parameters representing covariate e↵ects

and the baseline intensity function of the underlying recurrent event process. The

proposed estimators for regression parameters achieve the asymptotic e�ciency.
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Table 2.1: Estimation of � and � for n=100

�ptq X � �̂ SSD ESE CP �̂ SSD ESE CP
2.5 0/1 -0.2 -0.186 0.127 0.121 0.932 0.475 0.055 0.054 0.924

0 0.012 0.122 0.119 0.939 0.477 0.054 0.053 0.932
0.5 0.513 0.117 0.116 0.942 0.484 0.049 0.050 0.929
1 1.021 0.122 0.114 0.929 0.487 0.048 0.047 0.928

U(0,1) -0.2 -0.183 0.213 0.211 0.953 0.477 0.055 0.054 0.926
0 0.024 0.205 0.208 0.951 0.481 0.051 0.052 0.936
0.5 0.535 0.207 0.203 0.935 0.490 0.050 0.050 0.935
1 1.045 0.201 0.197 0.941 0.490 0.047 0.047 0.940

1.25t 0/1 -0.2 -0.173 0.136 0.129 0.929 0.486 0.057 0.058 0.941
0 0.004 0.131 0.126 0.940 0.495 0.057 0.056 0.941
0.5 0.502 0.131 0.125 0.935 0.510 0.054 0.054 0.957
1 1.002 0.125 0.122 0.945 0.514 0.051 0.051 0.955

U(0,1) -0.2 -0.178 0.231 0.220 0.929 0.489 0.055 0.057 0.959
0 0.021 0.230 0.219 0.937 0.495 0.055 0.057 0.955
0.5 0.524 0.218 0.213 0.941 0.505 0.053 0.053 0.958
1 1.026 0.221 0.211 0.931 0.516 0.052 0.051 0.946

Table 2.2: Estimation of � and � for n=200

�ptq X � �̂ SSD ESE CP �̂ SSD ESE CP
2.5 0/1 -0.2 -0.187 0.086 0.085 0.947 0.479 0.038 0.038 0.929

0 0.010 0.088 0.085 0.941 0.487 0.037 0.037 0.932
0.5 0.509 0.083 0.082 0.934 0.489 0.036 0.035 0.921
1 1.022 0.078 0.081 0.941 0.496 0.035 0.033 0.949

U(0,1) -0.2 -0.171 0.154 0.148 0.935 0.482 0.036 0.038 0.925
0 0.031 0.151 0.147 0.944 0.485 0.038 0.038 0.933
0.5 0.505 0.156 0.138 0.926 0.493 0.036 0.036 0.936
1 1.039 0.148 0.139 0.930 0.495 0.032 0.033 0.949

1.25t 0/1 -0.2 -0.185 0.094 0.090 0.938 0.494 0.041 0.041 0.951
0 0.005 0.092 0.089 0.946 0.502 0.040 0.040 0.946
0.5 0.505 0.088 0.088 0.950 0.511 0.038 0.038 0.942
1 1.005 0.097 0.094 0.933 0.519 0.036 0.039 0.937

U(0,1) -0.2 -0.173 0.155 0.155 0.948 0.493 0.041 0.041 0.941
0 0.017 0.157 0.154 0.938 0.500 0.040 0.040 0.951
0.5 0.503 0.158 0.146 0.921 0.513 0.039 0.038 0.936
1 1.028 0.154 0.149 0.942 0.519 0.035 0.036 0.935
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Table 2.3: Frequencies of infections in the AML study

Infection 0 1 2 3 •4
Frequncy 44 55 35 28 39

Table 2.4: Estimates of covariate e↵ects for the AML study

Proposed method WQC’s method
Covariate Estimate ESE p-value Estimate ESE p-value
Gender -0.0929 0.1170 0.4273 -0.0481 0.1195 0.6875
Risk -0.0827 0.0764 0.2791 -0.1122 0.0799 0.1604
Dose 0.0630 0.1168 0.5897 0.0895 0.1216 0.4617
Race 0.0239 0.1285 0.8522 0.0533 0.1330 0.6887
WBC -0.0006 0.0007 0.3947 -0.0009 0.0008 0.2547
Age -0.0212 0.0100 0.0330 -0.0206 0.0113 0.0685
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Chapter 3

Semiparametric Partially Linear

Varying Coe�cient Models with

Panel Count Data

3.1 Introduction

This chapter considers regression analysis of panel count data when certain covariate

e↵ects may be much more complex than linear e↵ects. By panel count data, we

mean the data that concern occurrence rates of certain recurrent events and give

only the numbers of the events that occur between the observation times, but not

their occurrence times. Such data naturally occur in longitudinal follow-up studies

on recurrent events in which study subjects can be observed only at discrete time

points rather than continuously. Many authors have discussed the analysis of panel

count data by using nonparametric and semiparametric methods. For example, Sun

and Kalbfleisch (1995), Wellner and Zhang (2000), Zhang and Jamshidian (2003), Lu

et al. (2007), and Hu et al. (2009a) study nonparametric estimation for the mean

function of the counting process with panel count data; Thall and Lachin (1988),

Sun and Fang (2003), Zhang (2006), and Balakrishnan and Zhao (2009) propose

some nonparametric tests for the problem of nonparametric comparison of treatment

groups based on panel count data. Sun and Wei (2000), Cheng and Wei (2000), Hu
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et al. (2003), and Hua and Zhang (2011) discuss regression analysis of panel count

data by the estimating equation-based approaches, while Zhang (2002), Wellner and

Zhang (2007), and Lu et al. (2009) present more e�cient inference procedures for

joint estimation of parametric and nonparametric components in the proportional

mean model by the likelihood-based approaches. In addition, Huang et al. (2006)

and Sun et al. (2007) consider the analysis of panel count data with informative

observation times.

All these semiparametric regression methods mentioned above have focused on

parametric modeling of covariate e↵ects on the recurrent event process. In many

applications, a covariate e↵ect may be nonlinear and vary with another covariate. To

investigate both linear e↵ects and nonlinear interaction e↵ects between covariates, we

propose a class of semiparametric partially linear varying-coe�cient models for panel

count data. Suppose that Nptq is a counting process arising from a recurrent event

study. Let Z be a d-dimensional vector of covariates, and V and W be p-dimensional

vectors of covariates. We assume that given pZ, V,W q, Nptq is a non-homogeneous

Poisson process with the mean function ⇤pt|Z, V,W q “ EtNptq|Z, V,W u having the

following form

⇤pt|Z, V,W q “ ⇤0ptq exp
#
Z 1� `

pÿ

r“1

Vr�rpWrq
+
, p3.1q

where ⇤0p¨q is a completely unknown continuous baseline mean function, �rp¨q (r “
1, . . . , p) are completely unspecified smooth functions, and � is a d-dimensional vector

of unknown regression parameters. When Vr “ 0 (r “ 1, . . . , p), the model reduces

to linear regression model with panel count data, which has been well studied by

Wellner and Zhang (2007) and Lu et al. (2009), among others. When Vr “ 1 (r “
1, . . . , p), the model reduces to partly linear regression model for panel count data,

which has not been studied in the literature. There are many investigations about
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nonlinear e↵ects of covariates on response variables for censored data and longitudinal

data. For example, Zhang et al. (2014) studies a proportional hazards model with

varying coe�cients for right-censored and length-biased data; Lindqvist et al. (2015)

examines the functional form for covariates in parametric accelerated failure time

models with right-censored data by using residual plots; Cheng et al. (2014) provides

a simultaneous variable selection and structure identification procedure for ultra-high

dimensional longitudinal data. For notational simplicity, we consider the case with

p “ 1, that is,

⇤pt|Z, V,W q “ ⇤0ptq exptZ 1� ` V �pW qu. p3.2q

For inference about model (3.2), we propose to use likelihood-based methods,

where the functional coe�cient is estimated by the B-spline function approximation,

and the baseline mean function is still directly estimated with parametric components

because its B-spline function approximation has some nonlinear restriction that can

cause more complicated computing. For this reason, we develop a new algorithm

which can be easily implemented.

The remainder of this chapter is organized as follows. In Section 3.2, we present

two semiparametric methods including maximum pseudo-likelihood and maximum

likelihood approaches for joint estimation of parametric and nonparametric compo-

nents in the model, and also provide corresponding algorithms about computation of

the estimates. The asymptotic properties of the resulting estimators are established

in Section 3.3, while the proofs are given in Appendix B. Section 3.4 reports some

simulation results obtained for assessing the finite sample properties of the proposed

estimates and an illustrative example is given in Section 3.5. Some remarks are made

in Section 3.6.
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3.2 Semiparametric Likelihood Approaches

Consider a recurrent event study that consists of n independent subjects and let

Niptq denote the number of occurrences of the recurrent event of interest before or

at time t for subject i. Suppose that for each subject, given covariates pZi, Vi,Wiq,
Niptq is a non-homogeneous Poisson process with the mean function given by (3.2),

that is,

P tNiptq “ k|Zi, Vi,Wiu “ expt´⇤ipt|Zi, Vi,Wiqut⇤ipt|Zi, Vi,Wiquk
k!

,

where ⇤ipt|Zi, Vi,Wiq “ ⇤0ptq exptZ 1
i� ` Vi�pWiqu. For subject i, suppose that Nip¨q

is observed only at finite time points TKi,1 † ¨ ¨ ¨ † TKi,Ki § ⌧ , where Ki denotes

the potential number of observation times, i “ 1, . . . , n, and ⌧ is the length of the

study. That is, only the values of Niptq at these observation times are known and we

have panel count data on the Niptq’s.
In the following, we will assume that given pZi, Vi,Wiq, pKi;TKi,1, ..., TKi,Kiq are

independent of the counting processes Ni’s. Let X “ pK,T,N, Z, V,W q, where T “
pTK,1, ..., TK,Kq andN “ pNpTK,1q, . . . , NpTK,Kqq. Then tXi “ pKi,Ti,Niq, Zi, Vi,Wi i “
1, ..., nu is a random sample of size n from the distribution of X, where Ti “
pTKi,1, ..., TKi,Kiq and Ni “ pNipTKi,1q, . . . , NipTKi,Kiqq.

Without loss of generality, assume that W has support on r0, 1s. For estimation

of the smooth function �, we use B-spline function approximation. We first introduce

some notation (Huang, 1999). Let T “ tsi, i “ 1, . . . ,mn ` 2lu, with

0 “ s1 “ ¨ ¨ ¨ “ sl † sl`1 † ¨ ¨ ¨ † smn`l † smn`l`1 “ ¨ ¨ ¨ “ smn`2l “ 1,

be a sequence of knots that partition r0, 1s into mn `1 subintervals Ii “ rsl`i, sl`i`1s,
for i “ 0, 1, . . . ,mn. Define �n the class of polynomial splines of order l • 1 with

the knot sequence T . Then �n can be linearly spanned by the normalized B-spline
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basis functions tbi, i “ 1, . . . , bqnu with qn “ mn ` l (Schumaker, 1981). Let Bn “
pb1, ¨ ¨ ¨ , bqnq1. Then we can approximate � by �n “ B1

n↵, where ↵ is a qn-dimensional

vector of unknown coe�cients.

3.2.1 Maximum Pseudo-likelihood Approach

The log pseudo-likelihood function for �, ⇤, and � is

lpsn p�,⇤,�q “
nÿ

i“1

Kiÿ

j“1

rNipTKi,jq log t⇤pTKi,jqu ` NipTKi,jqtZ 1
i� ` Vi�pWiqu

´⇤pTKi,jq exptZ 1
i� ` Vi�pWiqus

after omitting the parts independent of �, ⇤, and �.

Let t1 † ¨ ¨ ¨ † tm denote the ordered distinct observation time points in the set

of all observation time points tTKi,j, j “ 1, . . . , Ki, i “ 1, . . . , nu. Let w` and N̄`

be the number and mean value, respectively, of the observations made at time t`,

` “ 1, ...,m, that is,

w` “
nÿ

i“1

Kiÿ

j“1

IpTKi,j “ t`q and N̄` “ 1

w`

nÿ

i“1

Kiÿ

j“1

NipTKi,jqIpTKi,j “ t`q.

Define

Ā`p�,�q “ 1

w`

nÿ

i“1

Kiÿ

j“1

exptZ 1
i� ` Vi�pWiquIpTKi,j “ t`q

and

B̄`p�,�q “ 1

w`

nÿ

i“1

Kiÿ

j“1

NipTKi,jqtZ 1
i� ` Vi�pWiquIpTKi,j “ t`q.

Then lpsn p�,⇤,�q can be expressed as

lpsn p�,⇤,�q “
mÿ

`“1

w`tN̄` log⇤` ´ Ā`p�,�q⇤` ` B̄`p�,�qu,
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where ⇤` “ ⇤pt`q, ` “ 1, . . . ,m.

Let R Ä Rd be a bounded closed set, and let

F “ t⇤ : ⇤ is a nondecreasing function over r0, ⌧ s,⇤p0q “ 0u ,

and

 n “ t� : � “ B1
n↵ P �n, ||�||8 § M0u

where ⌧ is the maximum follow-up time of the study and M0 is a constant. Let

✓ “ p�,⇤,�q, and ✓̂psn “ p�̂ps
n , ⇤̂ps

n , �̂ps
n q be the value that maximizes lpsn p✓q with

respect to ✓ P ⇥n “ tR ˆ F ˆ  nu. Following Wellner and Zhang (2000, 2007), we

define the estimator ⇤̂ps
n to have jumps only at the observation time points to meet

with uniqueness since lpsn p�,⇤,�q depends on ⇤ only at the observation time points.

We denote the estimator of � by �̂ps
n “ B1

n↵̂
ps
n . Following Zhang (2002), one can

find the solution of p�̂ps
n , ⇤̂ps

n , ↵̂ps
n q.

Step 1. Choose an initial p�p0q,↵p0qq.
Step 2. For given p�pkq,↵pkqq pk “ 0, 1, 2, ...q, compute

⇤pkq
` “ max

i§`
min
j•`

∞
i§r†j wrN̄r∞

i§r†j wrĀrp�pkq,↵pkqq , ` “ 1, . . . ,m.

Step 3. Update p�,↵q by finding

p�pk`1q,↵pk`1qq “ argmaxp�,↵qPRd`qn l̂
ps
n p�,↵,⇤pkqq

through the Newton-Raphson algorithm, where

l̂psn p�,↵,⇤q “
mÿ

`“1

w`tB̄`p�,↵q ´ Ā`p�,↵q⇤`u.

Step 4. Repeat Steps 2 and 3 until the convergence is achieved.
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3.2.2 Maximum Likelihood Approach

The log-likelihood function for �, ⇤, and � is

lnp�,⇤,�q “
nÿ

i“1

Kiÿ

j“1

rtNipTKi,jq ´ NipTKi,j´1qu log t⇤pTKi,jq ´ ⇤pTKi,j´1qu

` tNipTKi,jq ´ NipTKi,j´1qu tZ 1
i� ` Vi�pWiqu

´t⇤pTKi,jq ´ ⇤pTKi,j´1qu exptZ 1
i� ` Vi�pWiqus

after omitting the parts independent of �, ⇤, and �, where TKi,0 “ 0.

Let p�̂n, ⇤̂n, �̂nq be the value that maximizes lnp�,⇤,�q with respect to p�,⇤,�q P
⇥n. Similarly, the estimator ⇤̂n is defined to have jumps only at the observation time

points. This estimator can be computed by the algorithm proposed by Wellner and

Zhang (2007), but it is computationally expensive. Here, we propose a new algorithm

by using the self-consistent algorithm (Hu et al., 2009b).

Define �` “ ⇤pt`q´⇤pt`´1q, �Nipt`q “ Nipt`q´Nipt`´1q, and Yiptq “ Ipt § TKi,Kiq.
Let

Ript`q “ mintTKi,j, j “ 1, . . . , Ki;TKi,j • t`u

and

Lipt`q “ maxtTKi,j, j “ 1, . . . , Ki;TKi,j † t`u

denote the most recent observation times of individual i not before and before t`,

respectively. Here Ript`q “ tm`1 “ 8 if t` ° TKi,Ki . Define �̃Nipt`q “ NipRipt`qq ´
NipLipt`qq and �̃⇤ipt`q “ ⇤pRipt`qq´⇤pLipt`qq, that is, �̃⇤ipt`q “ ∞

r:Lipt`q†tr§Ript`q �r.

For given � and �, we have the following estimating equation for ⇤0:

nÿ

i“1

Yipt`q
«
�`
�̃Nipt`q
�̃⇤ipt`q

´ �` exptZ 1
i� ` Vi�pWiqu

�
“ 0, ` “ 1, . . . ,m.
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As Hu et al. (2009b) points out, the estimating functions are unbiased and also can

be viewed as the expectation of the likelihood estimating functions conditional on

panel counts.

We denote the estimators of � by �̂n “ B1
n↵̂n. To find out the solution of

p�̂n, ↵̂n, ⇤̂nq, we propose to implement the following algorithm.

Step 1. Choose the initial p�p0q,↵p0qq “ p�̂ps
n , ↵̂ps

n q.

Step 2. For given p�pkq,↵pkqq, obtain �pkq
` (` “ 1, . . . ,m) by computing

�pk,uq
` “

∞n
i“1 Yipt`q�pk,u´1q

` �̃Nipt`q{�̃⇤pk,u´1q
i pt`q∞n

i“1 Yipt`q exptZ 1
i�

pkq ` ViBnpWiq1↵pkqu

for u “ 1, 2, . . . until the convergence is achieved. Here we choose ⇤p0,0q “ ⇤̂ps
n and

⇤pk,0q “ ⇤pk´1q for k • 1.

Step 3. Update p�,↵q by finding

p�pk`1q,↵pk`1qq “ argmaxp�,↵qPRd`qn l̂np�,↵,⇤pkqq

through the Newton-Raphson algorithm, where

l̂np�,↵,⇤q “
nÿ

i“1

Kiÿ

j“1

rtNipTKi,jq ´ NipTKi,j´1qu t�1Zi ` ViBnpWiq1↵u

´t⇤pTKi,jq ´ ⇤pTKi,j´1qu expt�1Zi ` ViBnpWiq1↵us

Step 4. Repeat Steps 2 and 3 until the convergence is achieved.

3.3 Asymptotic Results

In this section, we study the asymptotic properties of the estimators ✓̂psn “ p�̂ps
n , ⇤̂ps

n , �̂ps
n q

and ✓̂n “ p�̂n, ⇤̂n, �̂nq of ✓ “ p�,⇤,�q. Let Bd`2 and B denote the collection of

Borel sets in Rd`2 and R, respectively, and let Br0,⌧ s “ tA X r0, ⌧ s : A P Bu. Let

Y “ pZ 1, V,W q1 with distribution function F pyq. Following Wellner and Zhang
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(2007), define the measures µ1, µ2, ⌫1, ⌫2, and � as follows: for A,A1, A2 P Br0,⌧ s, and

A3 P Bd`2,

⌫1pA ˆ A3q “
ª

A3

8ÿ

k“1

P pK “ k|Y “ yq
kÿ

j“1

P pTk,j P A|K “ k, Y “ yqdF pyq,

µ1pAq “ ⌫1pA ˆ Rd`2q,

⌫2pA1 ˆ A2 ˆ A3q

“
ª

A3

8ÿ

k“1

tP pK “ k|Y “ yq
kÿ

j“1

P pTk,j´1 P A1, Tk,j P A2|K “ k, Y “ yqudF pyq,

µ2pA1 ˆ A2q “ ⌫2pA1 ˆ A2 ˆ Rd`2q,

�pAq “
ª

Rd`2

8ÿ

k“1

P pK “ k|Y “ yq
kÿ

j“1

P pTk,k P A|K “ k, Y “ yqdF pyq.

We also define the L2-metrics d1 and d2 as

d1p✓1, ✓2q “
"

||�1 ´ �2||2 `
ª

|⇤1ptq ´ ⇤2ptq|2dµ1ptq ` E|�1pW q ´ �2pW q|2
*1{2

,

and

d2p✓1, ✓2q “
"

||�1 ´ �2||2 `
ª ª

|p⇤1puq ´ ⇤1pvqq ´ p⇤2puq ´ ⇤2pvqq|2dµ2pu, vq

`E|�1pW q ´ �2pW q|2
(1{2

.

To establish the consistency of the estimators, we need the following regularity

conditions.

C1. The maximum spacing of the knots, maxl`1§i§mn`l`1 |si ´ si´1| “ Opn´vq with
mn “ Opnvq for 0 † v † 0.5.
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C2. The true parameter ✓0 “ p�0,⇤0,�0q P R0 ˆ F ˆ Fr with ⇤0p⌧q § M for a

constant M ° 0, and r “ l ` a ° 0.5, where

Fr “ tgp¨q : |gplqpw1q ´ gplqpw2q| § M0|w1 ´ w2|a for all 0 § w1, w2 § 1u

and gplq is the lth derivative function of g.

C3. The measure µi ˆ F is absolutely continuous with respect to ⌫i, for i “ 1, 2.

C4. The function Mps
0 defined by Mps

0 pXq “ ∞K
j“1 NpTK,jq logpNpTK,jqq satisfies

PMps
0 pXq † 8.

C5. The function M0 defined by M0pXq “ ∞K
j“1�NpTjq logp�NpTK,jqq satisfies

PM0pXq † 8.

C6. C “ supppF q, is a bound set in Rd`2. Thus there exist z0 and v0 such that

P p|Z| § z0q “ 1 and P p|V | § v0q “ 1. That is, the covariates Z and V are

uniformly bounded.

C7. If with probability 1, Z 1b ` V  pW q ` ⇣pTK,Kq “ 0 for some b,  and ⇣, then

b “ 0,  “ 0 and ⇣ “ 0.

C8. There exists a positive integer K0 such that P pK § K0q=1.

Conditions C1 and C2 are common assumptions in semiparametric estimation prob-

lems. Conditions C4-C6 and C8 similar to those required by Wellner and Zhang

(2007). Conditions C3 and C7 are needed for identifiability of the model.

Theorem 3.1. (Consistency). Suppose that conditions C1-C8 hold.

(i) If µ1prb, ⌧ sq ° 0 for 0 † b † ⌧ , then

lim
nÑ8

d1pp�̂ps
n , ⇤̂ps

n 1r0,bs, �̂
ps
n q, p�0,⇤01r0,bs,�0qq “ 0 in Probability.

38



If µ1pt⌧uq ° 0,

lim
nÑ8

d1p✓̂psn , ✓0q “ 0 in Probability.

(ii) If �prb, ⌧ sq ° 0 for 0 † b † ⌧ , then

lim
nÑ8

d2pp�̂n, ⇤̂n1r0,bs, �̂nq, p�0,⇤01r0,bs,�0qq “ 0 in Probability.

If �pt⌧uq ° 0, then

lim
nÑ8

d2p✓̂n, ✓0q “ 0 in Probability.

To establish the rate of convergence and the asymptotic normality, we need ad-

ditional conditions.

C9. For some positive constant c0, Erexptc0Np⌧qus † 8.

C10. P pXK
j“1tTK,j P r⌧0, ⌧ suq “ 1 with ⌧0 ° 0 and ⇤0p⌧0q ° 0.

C11. There exists a positive constant s0 such that

P p min
1§j§K

tTK,j ´ TK,j´1u • s0q “ 1.

C12. ⇤0 is di↵erentiable and the derivative has a positive and finite lower and upper

bounds in r⌧0, ⌧ s.

C13. There exists ⌘1, ⌘2 P p0, 1q such that a1V arpZ|U, V,W qa • ⌘1a1EpZ 1Z|U, V,W qa
a.s. for all a P Rd, and V arpV |U,W q • ⌘2EpV 2|U,W q, where pU, Y q has

distribution ⌫1{⌫1pR` ˆ Cq.

C14. There exists ⌘1, ⌘2 P p0, 1q such that

a1V arpZ|U1, U2, Y qa • ⌘1EpZ 1Z|U1, U2, Y qa, a.s.
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for all a P Rd, and V arpV |U1, U2,W q • ⌘2EpV 2|U1, U2,W q, where pU1, U2, Y q
has distribution ⌫2{⌫2pR`2 ˆ Cq.

Conditions C9-C14 and their justifications are similar to those given in Wellner

and Zhang (2007).

Theorem 3.2. (Rate of Convergence). Suppose that conditions C1-C10 hold.

(i) If condition C13 holds, then n
1´v
3 d1p✓̂psn , ✓0q “ Opp1q.

(ii) If conditions C11, C12 and C14 hold, then n
1´v
3 d2p✓̂n, ✓0q “ Opp1q.

Theorem 3.3. (Asymptotic Normality). Suppose that 1
6r´2 † v † 1

4 with r ° 1 and

the conditions C1-C12 hold. Define

H “

$
&

%ph1, h2, h3q :
h1 P Rd, ||h1|| § 1, h3 P Fr

h2 is a function with bounded total variation in r0, ⌧ s
h2p0q “ 0

,
.

- .

(i) If condition C13 holds, then for ph1, h2, h3q P H,

h1
1

?
np�̂ps

n ´ �0q ` ?
n

ª
t⇤̂ps

n ptq ´ ⇤0ptqudh2ptq ` ?
n

ª
t�̂ps

n pwq ´ �0pwqudh3pwq

Ñd Np0, �2
psq,

where �2
ps is given in (B.5).

(ii) If condition C14 holds, then for ph1, h2, h3q P H,

h1
1

?
np�̂n ´ �0q ` ?

n

ª
t⇤̂nptq ´ ⇤0ptqudh2ptq ` ?

n

ª
t�̂npwq ´ �0pwqudh3pwq

Ñd Np0, �2q,

where �2 is given in (B.6).
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Remark: The proofs of these theorems are given in Appendix B. In particular, The-

orem 3.3.1 of van der Vaart and Wellner (1996, page 310) cannot be directly applied

to prove Theorem 3.3 because the rate of convergence for the proposed estimators is

no longer n´1{2. We will show the theorem by modifying the conditions required by

Theorem 3.3.1 of van der Vaart and Wellner (1996, page 310).

3.4 Simulation Studies

To access the performance of the proposed estimation procedure, we conducte sim-

ulation studies under various situations with the focus on the estimation of �. In

the study, we consider a bivariate covariate Z “ pZ1, Z2q1, where Z1 „ Np1, 1q and

Z2 „ Uniformp´1, 1q. The covariates V andW followed a Bernoulli distribution with

success probability 0.5 and a standard uniform distribution over r0, 1s. The follow-up
time Ci were generated by minpC̃i, ⌧q, where C̃i „ Uniformp2, 9q and ⌧ “ 8.

For the observation process, we consider two scenarios. One is to assume that the

observation times are independent of covariates and the other is to suppose that the

observation process Hptq depends on the covariate Z. For the i-th subject, the num-

ber of real observation times K˚
i was generated from a discrete uniform distribution

between 1 and 5 for the former setup, and it followed a Poisson distribution with

mean tCi exppZ1i ` Z2iq{⌧u for the latter one. Furthermore, the observation times

pTKi,1, . . . , TKi,K
˚
i

q were the order statistics of a random sample of size K˚
i from the

uniform distribution over p0, Ciq.
Given K˚

i and pTKi,1, . . . , TKi,K
˚
i

q, we generated the panel counts NipTKi,jq from

NipTKi,jq “ NipTKi,1q ` tNipTKi,2q ´ NipTKi,1qu ` ¨ ¨ ¨ ` tNipTKi,jq ´ NipTi,j´1qu ,

for j “ 1, . . . , K˚
i and i “ 1, . . . , n. In the above, Niptq follows a Poisson distri-

bution with mean t2 exptZ1i�1 ` Z2i�2 ` Vi�pWiqu{2 , where �pwq “ 2 sinp2w `
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0.1q ` expp´0.5wq. The results given below are based on n “ 100 or 200, and 500

replications with a bootstrap sample size 100.

Table 3.1 presents the simulation results by using the proposed maximum pseudo-

likelihood and maximum likelihood approaches for the situation where the observa-

tion process is independent of covariates and p�1, �2q “ p1, 1q, p1, 0q, p1,´1q, p0, 1q,
or p0, 0q. The table includes the estimated bias (BIAS) given by the averages of the

point estimates p�̂1, �̂2q minus the true value of p�1, �2q, the sample standard errors

of the estimates (SSE), the means of the bootstrap standard error estimates (BSE),

and the empirical 95% coverage probabilities (CP) for p�1, �2q. It can be seen that

the estimates p�̂1, �̂2q seem to be unbiased and the two standard error estimates are

quite close to each other, indicating that the bootstrap variance estimation procedure

provides reasonable estimates. In particular, the maximum likelihood method yields

smaller standard error estimates than the maximum pseudo-likelihood approach.

Moreover, the empirical coverage probabilities suggest that the normal approxima-

tion seems to be appropriate.

The results for the situation where the observation times depend on the covariates

Z are given in Table 3.2 in which other setups are the same as those in Table

3.1. As shown in Table 3.2, the conclusions are similar to those from Table 3.1

and indicate that the proposed estimation procedure seems to perform well for the

scenarios consider here.

Table 3.3 presents the simulation results of nonparametric estimates for p�1, �2q “
p1, 1q indicating that the estimated �pW q seems to be unbiased. The conclusions are

similar when p�1, �2q “ p1, 0q, p1,´1q, p0, 1q, or p0, 0q. Our proposed estimation

procedure for � by the B-spline function approximation performs well for all the

scenarios in the simulation study.

In addition, we have investigated the computation time of our simulation pro-

grams in MATLAB using a PC with Intel Xeon CPU E5520 2.27 GHz. For 500
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replications with n=200, it would take about 100 hours for the pseudo-likelihood

approach and 15 hours for the likelihood approach.

3.5 Reanalysis of Bladder Cancer Data

To illustrate the proposed methodology given in the previous sections, we apply it

to the bladder cancer study conducted by the Veterans Administration Cooperative

Urological Research Group (Byar, 1980; Andrews and Herzberg, 1985; Sun and Wei,

2000). In the original study, patients with superficial bladder tumors were randomly

divided into three treatment groups (placebo, thiotepa and pyridoxine) and followed

for 53 months. At the beginning of the study, two important baseline characteristics,

the number of initial bladder tumors and the size of the largest initial tumor, were

observed for each patient. After removing all the initial tumors, many patients had

multiple recurrences of tumors during the study. At each clinical follow-up visit, the

visit time and the number of recurrent tumors between visits were recorded, and

then the recurrent tumors were removed. Following Sun and Wei (2000), we focus

on patients in the thiotepa (38) and placebo (47) groups.

For the analysis, we define Z to be 1 if the patient was given the thiotepa treat-

ment and 0 otherwise. Let V denote the number of initial bladder tumors, and W

be the natural logarithm of the size of the largest initial tumor plus 1. Assume that

the occurrence process of the bladder tumors can be described by model (3.2). Our

model specification regarding pZ;V ;W q is based on the previous literature. Both the

number of initial tumors and the size of the largest initial tumor have been widely

used as important diagnostic factors in cancer studies. Among others, Sun and Wei

(2000) and Zhang (2002) conclude that the number of initial bladder tumors is sig-

nificantly positively related with the tumor recurrence rate but the size of the largest

initial tumor does not have a significant e↵ect. Therefore, we examine the size of the
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largest initial tumor (W ) as a potential moderator (e↵ect modifier) of the association

between the tumor recurrence and the number of initial bladder tumors (V ). With

a bootstrap sample size 1000, the application of the maximum pseudo-likelihood

procedure yieldes �̂ps “ ´1.2957 with an estimated standard error of 0.3713, while

we obtaine �̂ “ ´0.8271 with an estimated standard error of 0.3828 by applying

the maximum likelihood approach. Both results suggest that the thiotepa treatment

significantly reduced the recurrence rate of the bladder tumors.

Table 3.4 presents the estimated �pW q and its 95% pointwise bootstrap confi-

dence interval for the flexible e↵ect of the number of initial tumors on the tumor

recurrence rate based on both maximum pseudo-likelihood and maximum likelihood

approaches. The results indicate that the number of initial tumors seems to be pos-

itively associated with the tumor recurrence rate only when the size of the largest

initial tumor is 1 or 3, while the association is insignificant elsewhere. The di↵erence

is related to the unbalanced sample sizes for the stratified subgroups defined by W .

In particular, the observed sample sizes are n “ 48 (for W “ 1), n “ 10 (for W “ 2),

n “ 16 (for W “ 3), n “ 5 (for W “ 4), n “ 2 (for W “ 5), n “ 3 (for W “ 6),

and n “ 1 (for W “ 7). Therefore, the statistical power to reject H0 : �pW q “ 0

would be relatively low due to the small sample size at most values of W except for

W “ 1 or 3. A 95% bootstrap confidence band could be an alternative approach, but

it would be wide and not as informative as the 95% pointwise bootstrap confidence

interval due to the small sample size in this application example.

The conclusion is comparable with those given by Sun and Wei (2000), Zhang

(2002), Wellner and Zhang (2007) and Lu et al. (2009) among others, but the

proposed model reveals more insight on how the e↵ect of the number of initial tumors

is moderated by the size of the largest initial tumor. In practice, one may specify

pZ;V ;W q under a conceptual model according to research questions in which W is

a possible moderator (e↵ect modifier) of the association between the recurrent event
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process and covariate V .

3.6 Summary

In this chapter, we consider regression analysis of panel count data when certain

covariates have nonlinear e↵ects on recurrent events. For estimation of the constant

and functional coe�cients and the baseline mean function, we develop spline-based

pseudo-likelihood/likelihood approaches that yield the consistency and asymptotical

normality of the estimates, and propose a new algorithm for computing the spline-

based maximum likelihood estimators. The proposed inference procedures are robust

because the obtained asymptotic results do not rely on the Poisson assumption on

the panel counts at all.

It is important to mention that Theorem 3.3 shows not only the asymptotic

normality of the parametric estimators but also the asymptotic normality of the

functionals of the nonparametric estimators, which can be useful for hypothesis test-

ing problems, while Weller and Zhang (2007) and Lu et al. (2009) focus on the

asymptotic distributions of the parametric estimators. Similar to Theorem 3.3, we

can establish the asymptotic normality for the functionals of the estimators of the

baseline mean function in the proportional mean model proposed by Weller and

Zhang (2007) and Lu et al. (2009). In addition, we can also derive the asymptotic

normality of the functionals of the spline likelihood-based estimators proposed by Lu

et al. (2007), and thus construct a new class of nonparametric tests, which could be

more powerful than the existing nonparametric tests for nonparametric comparison

of several treatment groups with panel count data.
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Table 3.1: Simulation results for covariate-independent observation processes

Method n p�1,�2q BIAS SSE BSE CP
Maximum 100 (1,1) (0.0001,0.0005) (0.0094,0.0202) (0.0110,0.0233) (0.966,0.980)

pseudo- (1,0) (0.0003,0.0000) (0.0099,0.0209) (0.0114,0.0230) (0.976,0.968)

likelihood (1,-1) (0.0007,-0.0007) (0.0091,0.0201) (0.0116,0.0232) (0.974,0.974)

(0,1) (0.0013,0.0000) (0.0185,0.0354) (0.0205,0.0375) (0.954,0.948)

(0,0) (0.0004,0.0013) (0.0195,0.0334) (0.0210,0.0376) (0.954,0.962)

200 (1,1) (0.0003,-0.0004) (0.0055,0.0118) (0.0061,0.0129) (0.970,0.964)

(1,0) (-0.0002,0.0002) (0.0057,0.0123) (0.0063,0.0132) (0.960,0.960)

(1,-1) (0.0002,0.0000) (0.0057,0.0121) (0.0062,0.0132) (0.958,0.962)

(0,1) (-0.0002,0.0009) (0.0112,0.0239) (0.0122,0.0230) (0.960,0.930)

(0,0) (0.0006,0.0002) (0.0122,0.0219) (0.0125,0.0225) (0.936,0.954)

Maximum 100 (1,1) (0.0000,-0.0003) (0.0069,0.0146) (0.0079,0.0166) (0.976,0.970)

likelihood (1,0) (0.0002,-0.0001) (0.0071,0.0142) (0.0082,0.0165) (0.962,0.970)

(1,-1) (0.0000,0.0002) (0.0070,0.0142) (0.0078,0.0164) (0.962,0.972)

(0,1) (-0.0002,0.0021) (0.0148,0.0285) (0.0163,0.0305) (0.964,0.954)

(0,0) (-0.0013,0.0002) (0.0162,0.0283) (0.0170,0.0302) (0.960,0.954)

200 (1,1) (0.0000,0.0000) (0.0044,0.0093) (0.0047,0.0099) (0.964,0.952)

(1,0) (0.0000,-0.0002) (0.0047,0.0093) (0.0050,0.0101) (0.956,0.962)

(1,-1) (-0.0003,-0.0002) (0.0043,0.0093) (0.0046,0.0099) (0.956,0.964)

(0,1) (-0.0004,0.0012) (0.0097,0.0179) (0.0100,0.0190) (0.950,0.972)

(0,0) (-0.0007,0.0002) (0.0101,0.0172) (0.0106,0.0191) (0.954,0.962)
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Table 3.2: Simulation results for covariate-dependent observation processes

Method n p�1,�2q BIAS SSE BSE CP
Maximum 100 (1,1) (0.0003,-0.0010) (0.0087,0.0177) (0.0087,0.0201) (0.940,0.966)

pseudo- (1,0) (0.0004,-0.0002) (0.0093,0.0196) (0.0096,0.0217) (0.946,0.952)

likelihood (1,-1) (0.0001,0.0009) (0.0093,0.0208) (0.0099,0.0225) (0.956,0.952)

(0,1) (0.0003,-0.0041) (0.0224,0.0406) (0.0227,0.0417) (0.946,0.972)

(0,0) (-0.0012,-0.0011) (0.0252,0.0386) (0.0229,0.0421) (0.936,0.958)

200 (1,1) (0.0001,0.0004) (0.0054,0.0114) (0.0052,0.0121) (0.930,0.958)

(1,0) (0.0002,0.0005) (0.0062,0.0119) (0.0058,0.0128) (0.910,0.958)

(1,-1) (-0.0001,-0.0001) (0.0062,0.0140) (0.0059,0.0134) (0.922,0.932)

(0,1) (-0.0002,0.0006) (0.0146,0.0267) (0.0137,0.0261) (0.938,0.936)

(0,0) (-0.0002,-0.0020) (0.0163,0.0269) (0.0145,0.0259) (0.934,0.936)

Maximum 100 (1,1) (-0.0004,0.0001) (0.0059,0.0138) (0.0071,0.0155) (0.972,0.988)

likelihood (1,0) (-0.0002,0.0008) (0.0066,0.0134) (0.0075,0.0156) (0.972,0.964)

(1,-1) (-0.0001,0.0006) (0.0063,0.0141) (0.0074,0.0160) (0.968,0.960)

(0,1) (0.0000,0.0010) (0.0146,0.0278) (0.0160,0.0311) (0.964,0.962)

(0,0) (-0.0009,-0.0018) (0.0156,0.0290) (0.0170,0.0310) (0.956,0.968)

200 (1,1) (0.0001,0.0001) (0.0036,0.0081) (0.0041,0.0093) (0.968,0.966)

(1,0) (0.0000,0.0005) (0.0042,0.0084) (0.0045,0.0093) (0.952,0.962)

(1,-1) (0.0003,0.0002) (0.0041,0.0084) (0.0043,0.0093) (0.946,0.970)

(0,1) (0.0000,-0.0002) (0.0088,0.0174) (0.0097,0.0192) (0.962,0.956)

(0,0) (0.0000,-0.0005) (0.0103,0.0181) (0.0105,0.0190) (0.942,0.954)
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Table 3.3: Simulation results of the estimated flexible e↵ect �pW q for p�1, �2q “ p1, 1q

Covariate-independent observation processes Covariate-dependent observation processes

n “ 100 n “ 200 n “ 100 n “ 200

W �pW q ˆ�pspW q ˆ�pW q ˆ�pspW q ˆ�pW q ˆ�pspW q ˆ�pW q ˆ�pspW q ˆ�pW q
1/21 1.364 1.366 1.361 1.363 1.364 1.364 1.366 1.361 1.366

2/21 1.526 1.528 1.524 1.525 1.526 1.525 1.526 1.525 1.527

3/21 1.684 1.685 1.681 1.682 1.683 1.682 1.683 1.684 1.684

4/21 1.834 1.835 1.832 1.833 1.835 1.833 1.834 1.835 1.835

5/21 1.977 1.979 1.976 1.976 1.978 1.976 1.977 1.978 1.977

6/21 2.111 2.112 2.110 2.111 2.111 2.110 2.111 2.111 2.111

7/21 2.234 2.235 2.233 2.234 2.234 2.234 2.235 2.234 2.234

8/21 2.345 2.345 2.344 2.345 2.345 2.344 2.345 2.344 2.345

9/21 2.442 2.442 2.441 2.443 2.442 2.441 2.443 2.442 2.442

10/21 2.525 2.525 2.524 2.526 2.525 2.524 2.525 2.525 2.525

11/21 2.593 2.593 2.592 2.593 2.593 2.592 2.593 2.593 2.593

12/21 2.645 2.645 2.645 2.645 2.645 2.643 2.645 2.645 2.645

13/21 2.680 2.680 2.680 2.679 2.680 2.679 2.680 2.680 2.680

14/21 2.698 2.698 2.698 2.697 2.698 2.697 2.698 2.698 2.697

15/21 2.698 2.698 2.698 2.698 2.697 2.697 2.699 2.699 2.698

16/21 2.680 2.680 2.680 2.680 2.680 2.679 2.681 2.681 2.680

17/21 2.645 2.645 2.644 2.645 2.645 2.643 2.646 2.645 2.645

18/21 2.592 2.591 2.591 2.592 2.593 2.591 2.593 2.591 2.592

19/21 2.522 2.520 2.520 2.522 2.524 2.521 2.524 2.521 2.521

20/21 2.436 2.432 2.431 2.436 2.437 2.435 2.437 2.435 2.433

Table 3.4: Results of the estimated flexible e↵ect of the number of the initial tumors
on the tumor recurrence rate

Maximum pseudo-likelihood Maximum likelihood

Size

ˆ�pspW q 95% pointwise bootstrap CI

ˆ�pW q 95% pointwise bootstrap CI

1 0.2200˚
(0.0526, 0.4227) 0.2325˚

(0.0356, 0.4526)

2 0.0296 (-11.4648, 0.4819) 0.0673 (-11.9842, 0.4854)

3 0.2923˚
(0.0045, 0.8261) 0.2708˚

(0.0540, 0.8248)

4 -0.5134 (-6.5228, 0.9392) -0.1731 (-8.0308, 1.2608)

5 0.1993 (-5.4838, 1.4465) 0.3540 (-6.5023, 1.4312)

6 -0.2365 (-3.6525, 1.0312) -0.3196 (-4.0047, 0.6203)

7 -2.6712 (-10.3878, 10.4999) -2.8510 (-12.2190, 11.4039)

˚ P -value § 0.05.

48



Chapter 4

Future Work

In this Dissertation, our main interest is the e↵ects of covariates on the underlying

recurrent event process. And our approach depend on the distributional assumption

of the underlying recurrent event process. In this chapter, we discuss some possible

directions for future research based on our studies of the recurrent event data and

the panel count data.

In Chapter 2, we only considered e↵ects of time-independent covariates on the

recurrent event process. It would be desirable to extend the proposed procedure to

handle both time-dependent and time-independent covariates.

The example in section 2.5 involved multiple types of recurrent events. Rather

than ignoring the potential correlations, it would be worthwhile to develop the max-

imum likelihood estimation procedure for multivariate recurrent event data in the

presence of informative censoring.

The proposed approach is based on the normality assumption of the latent vari-

able. It may not be satisfied in some applications and it would be of great interest

to relax this assumption.

In Chapter 3, we assumed that the recurrent event process is independent of the

observation times given covariates. To relax this assumption, we could consider the

observation history as a covariate in the model and thus, the proposed method can
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be generalized to the dependent case. Clearly, the proposed estimation procedures

work under independent censoring. However, if the censoring time is informative, a

joint modeling approach needs to be developed for further research.

In addition, developing an appropriate model-checking procedure for our proposed

method is an important direction for future research. Another research direction may

involve high-dimensional partially linear proportional mean model with panel count

data.
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Appendix

Appendix A:

For i “ 1, ¨ ¨ ¨ , n and s P r0, ⌧ s, define the at-risk function Yipsq “ IpCi • sq, and
two functions

 1pX,C,K,U ; ✓q “ expt´⇤pCq exppX 1� ` Uqu exppKX 1� ` KUq�pU ; �q

and

 2pX,C,K; ✓q “
"ª

 1pX,C,K, u; ✓qdu
*´1 ª

 1pX,C,K ` 1, u; ✓qdu.

A.1. Proof of Theorem 2.1

For n “ 1, 2, . . ., since the ⇤̂np¨q is a bounded and nondecreasing right continuous

function and the p�̂n, �̂nq is bounded, then it follows from Helly’s selection theorem

that there exists a subsequence, still indexed by n, such that ⇤̂np¨q uniformly con-

verges to ⇤˚p¨q for some function ⇤˚p¨q and �̂n Ñ �˚ and �̂n Ñ �˚ for some constants

�˚ and �˚.

Next we prove that ✓˚ “ ✓0, where ✓˚ “ p�˚, �˚,⇤˚q. Taking derivatives to the

log-likelihood function (2.3) with respect to �⇤ptmq, one obtains that

⇤̂ptq “
ª t

0

1
n

∞n
i“1 dNipsq

1
n

∞n
i“1 Yipsq 2pXi, Ci, Ki; ✓̂nq

. pA.1q

Then we define

⇤̃nptq “
ª t

0

1
n

∞n
i“1 dNipsq

1
n

∞n
i“1 Yipsq 2pXi, Ci, Ki; ✓0q

. pA.2q

We now show that ⇤̃nptq converges to ⇤0ptq uniformly in t P r0, ⌧ s almost surely.

By the Glinvenko-Cantelli Theorem, the denominator of the fraction in the integral

part of (A.2) converges uniformly to EtY psq 2pX,C,K; ✓0qu.
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Note that given pXi, Ui, Ciq, Ki follows a Poisson distribution with intensity

⇤0pCiq exppX 1
i�0 ` Uiq, therefore the above expectation is

EtYipsq 2pXi, Ci, Ki; ✓0qu
“ E

"
Yipsq

8ÿ

k“0

 2pXi, Ci, k; ✓0q
ª
P pKi “ k|Xi, Ci, uiq�pui; �0qdui

*

“ E

"
Yipsq

8ÿ

k“0

ª
⇤kpCiq

k!
 1pXi, Ci, k ` 1, ui; ✓0qdui

*

“ E

"
Yipsq

ª 8ÿ

k“0

P pKi “ k|Xi, Ci, uiq exppX 1
i�0 ` uiq�pui; �0qdui

*

“ E

"
Yipsq

ª
exppX 1

i�0 ` uiq�pui; �0qdui

*
,

which immediately yields that ⇤̃nptq uniformly converges to ⇤0ptq for t P r0, ⌧ s.
By (A.1) and (2.3), one obtains that

1

n
lnp✓̂nq “ ´ 1

n

nÿ

i“1

Kiÿ

j“1

log

" nÿ

k“1

YkpTijq 2pXk, Ck, Kk; ✓̂nq
*

` 1

n

nÿ

i“1

log

"ª
 1pXi, Ci, Ki, ui; ✓̂nqdui

*
.

Likewise, by (A.2) and (2.3), one also obtains that

1

n
lnp�0, �0, ⇤̃nq “ ´ 1

n

nÿ

i“1

Kiÿ

j“1

log

" nÿ

k“1

YkpTijq 2pXk, Ck, Kk; ✓0q
*

` 1

n

nÿ

i“1

log

"ª
 1pXi, Ci, Ki, ui; ✓0qdui

*
.

By (A.1) and (A.2), one can see that ⇤̂np¨q is absolutely continuous with respect

to ⇤̃np¨q, and satisfies

⇤̂nptq “
ª t

0

1
n

∞n
i“1 Yipsq 2pXi, Ci, Ki; ✓0q

1
n

∞n
i“1 Yipsq 2pXi, Ci, Ki; ✓̂nq

d⇤̃npsq.

Therefore ⇤˚ptq is absolutely continuous with respect to ⇤0ptq by taking limits

on both sides above, and hence it is di↵erentiable with respect to t. In addition,
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d⇤̂nptq{d⇤0ptq converges uniformly to d⇤˚ptq{d⇤0ptq. Note that since p�̂n, �̂n, ⇤̂nq
maximizes the log-likelihood function, therefore

0 § 1

n
tlnp�̂n, �̂2

n, ⇤̂nq ´ lnp�0, �0, ⇤̃nqu

“ 1

n

nÿ

i“1

log

"ª
 1pXi, Ci, Ki, ui; ✓̂nqdui

*
´ 1

n

nÿ

i“1

log

"ª
 1pXi, Ci, Ki, ui; ✓̃nqdui

*

` 1

n

nÿ

i“1

Kiÿ

j“1

log

"
�⇤̂npTijq{�⇤̃npTijq

*
,

where ✓̃n “ p�0, �0, ⇤̃nq. Letting n tend to be infinity, one obtains that

0 § E

„
log

"ˆ Kiπ

j“1

�˚pTijq
ª
 1pXi, Ci, Ki, ui; ✓̃qdui

˙

ˆ
ˆ Kiπ

j“1

�0pTijq
ª
 1pXi, Ci, Ki, ui; ✓0qdu

˙´1*⇢
.

Note that the right-hand side of the above inequality is the Kullback-Leibler infor-

mation. Therefore

Kiπ

j“1

�˚pTijq
ª
 1pXi, Ci, Ki, ui; ✓

˚qdui “
Kiπ

j“1

�0pTijq
ª
 1pXi, Ci, Ki, ui; ✓0qdui

almost surely. That is,

ª Kiπ

j“1

�˚pTijq expt´⇤˚pCiq exppX 1
i�

˚ ` uiqu exptKipX 1
i�

˚ ` uiqu�pui; �
˚qdui

“
ª Kiπ

j“1

�0pTijq expt´⇤0pCiq exppX 1
i�0 ` uiqu exptKipX 1

i�0 ` uiqu�pui; �0qdui.

pA.3q
Letting Ti,j “ 0 and Ci Ñ 0, from condition (C3), one obtains that

Ki log �
˚p0q ` KiX

1
i�

˚ ` 1

2
K2

i p�˚q2 “ Ki log �0p0q ` KiX
1
i�0 ` 1

2
K2

i �
2
0.
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Since Ki can be positive, the above equality implies that �˚ “ �0 and

X 1
ip�˚ ´ �0q “ log �0p0q ´ log �˚p0q, almost surely

which immediately yields that �˚ “ �0 and �˚p0q “ �0p0q from condition (C5).

Again using (A3) and letting Ti,j “ 0, one can conclude that for any t P r0, ⌧ s,
ª
expt´⇤˚ptq exppX 1

i�0 ` uiqu exptKipX 1
i�0 ` uiqu�pui; �0qdui

“
ª
expt´⇤0ptq exppX 1

i�0 ` uiqu exptKipX 1
i�0 ` uiqu�pui; �0qdui

yielding that ⇤˚ptq “ ⇤0ptq since both sides of the above equation are strictly mono-

tone in ⇤˚ptq and ⇤0ptq. Combining all the results, we prove Theorem 2.1. l

A.2. Proof of Theorem 2.2

We show this theorem by verifying the four conditions in Theorem 3.3.1 of van der

Vaart & Wellner (1996). Now we define the mappings  and  n. For o “ px, c, k, t̃q
with t̃ “ pt1, ¨ ¨ ¨ , tkq, define the following three functions

⇡1po; ✓q “
"ª

 1px, c, k, u; ✓qdu
*´1 ª

 1px, c, k, u; ✓q exppx1� ` uqdu,

⇡2po; ✓q “
"ª

 1px, c, k, u; ✓qdu
*´1 ª

 1px, c, k, u; ✓qtk ´ ⇤pcq exppx1� ` uquxdu,
and

⇡3po; ✓q “
"
�

ª
 1px, c, k, u; ✓qdu

*´1 ª
 1px, c, k, u; ✓q

ˆ
u2

�2
´ 1

˙
du.

Define a random map  as follows: for any function g⇤p¨q on r0, ⌧ s of bounded

total variation, g� P Rp with }g�} § 1 and scalar g� P r´1, 1s,

 p✓qrg�, g�, g⇤s “ ´⇡1pO; ✓q
ª C

0

g⇤ptqd⇤ptq ` ⇡2pO; ✓q1g� ` ⇡3pO; ✓qg� `
Kÿ

j“1

g⇤pTjq,

which is the score function along the path p�`ag�, �`ag�,⇤`a
≥
g⇤d⇤q. Specifically,

 p✓qrg�, g�, g⇤s “ B
Bal

ˆ
� ` ag�, � ` ag�,⇤` a

ª
g⇤d⇤|O

˙ˇ̌
ˇ
a“0

,
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where lp¨|Oq is the log-likelihood function of ✓, given by taking the logarithm of (2.3)

for one observation. Then the mappings  np✓qrg�, g�, g⇤s is defined as the mean of

the i.i.d. sample of  p✓qrg�, g�, g⇤s.
Firstly, one can show that the score functions  are P´ Donsker. Therefore the

first conditions hold and

?
n

"
 np✓0q ´ E p✓0q

*
Ñ Np0, ⌘´2q,

where

⌘2 “ 1{Ert p✓0qrg�, g�, g⇤su2s. pA.4q

This implies that the second condition holds.

Following the proof of Theorem 2 in Zeng, et al. (2005), we verify the third condi-

tion that 9 ✓0 is continuously invertible. It is enough to prove that, if p✓0qrg�, g�, g⇤s “
0 almost surely, then g� “ 0, g� “ 0 and g⇤ “ 0. Letting Tj “ 0 and C “ 0, one

obtains that

KX 1g� ` ⇡3pO; ✓qg� `
Kÿ

j“1

g⇤p0q “ 0.

After some calculations, one obtains that

Kg⇤p0q ` KX 1g� ` K2�0g� “ 0,

which immediately yields that g⇤p0q “ 0, g� “ 0 and g� “ 0 from condition (C5).

Using this result and  p✓0q “ 0, one obtains that
≥C
0 g⇤ptqd⇤0ptq “ 0 and thus

g⇤ptq “ 0 from conditions (C1) and (C3).

Observe that  np✓̂nqrg�, g�, g⇤s “ 0 and Ep p✓0qrg�, g�, g⇤sq “ 0, which implies

that the forth condition is satisfied.

The asymptotic e�ciency follows from Proposition 1 of Bickel et al. (1993, p.

65), that is, p�̂1
n, �̂nq1 is asymptotically e�cient in the semiparametric sense. This

completes the proof. l
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Appendix B:

B.1. Proof of Theorem 3.1

Here, we only present the proof of part (i) since part (ii) can be verified similarly.

Let

mps
✓ pXq “

Kÿ

j“1

rNpTK,jq logt⇤pTK,jq exp p�1Z ` V �pW qqu ´ ⇤pTK,jq exp p�1Z ` V �pW qqs ,

Mps
n p✓q “ Pnm

ps
✓ pXq, and Mpsp✓q “ Pmps

✓ pXq,

where P and Pn denote the probability measure and the empirical measure, respec-

tively. Let hpxq “ x log x ´ x ` 1. Note that hpxq • px ´ 1q2{4 for 0 § x § 5. For

any ✓ in a su�ciently small neighborhood of ✓0,

Mpp✓0q ´ Mpp✓q

“
ª
⇤puq exptZ 1� ` v�pwquh

ˆ
⇤0puq exppz1�0 ` v�0pwqq
⇤puq exppz1� ` v�pwqq

˙
d⌫1pu, z, v, wq

• 1

4

ª
⇤puq exptZ 1� ` v�pwqu

"
⇤0puq exppz1�0 ` v�0pwqq
⇤puq exppz1� ` v�pwqq ´ 1

*2

d⌫1pu, z, v, wq.

pB.1q
Then, using (B.1) and the arguments similar to those in Wellner and Zhang

(2007), we can show that Mpsp✓0q “ Mpsp✓q if and only if � “ �0, ⇤ptq “ ⇤0ptq a.e.

with respect to µ1, and � “ �0 by C3 and C7.

By the similar arguments as those used in Wellner and Zhang (2007) again, we can

also show that ⇤̂ps
n ptq is uniformly bounded in probability for t P r0, bs if µ1prb, ⌧ sq ° 0

for some 0 † b † ⌧ or t P r0, ⌧ s if µ1pt⌧uq ° 0.

By Helly-Selection Theorem and compactness of⇥n, it follows that ✓̂psn “ p�̂ps
n , ⇤̂ps

n , �̂ps
n q

has a subsequence ✓̂psnk
“ p�̂ps

nk
, ⇤̂ps

nk
, �̂ps

nk
q converging to ✓` “ p�`,⇤`,�`q, where ⇤`
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is a nondecreasing bound function on r0, bs for 0 † b † ⌧ and it can be defined on

r0, ⌧ s if µ1pt⌧uq ° 0.

Note that ⇥n is compact, and the function mps
✓ pxq is upper semicontinuous in ✓

for almost all x. Furthermore, mps
✓ pXq § Mps

0 pXq † 8 with PMps
0 pXq † 8 by C4.

Thus, by Theorem A.1 of Wellner and Zhang (2000), we have

lim sup
nÑ8

sup
✓P⇥n

pPn ´ P qmps
✓ pXq § 0 a.s. pB.2q

By the Dominated Convergence Theorem and C4, Mpsp✓q is continuous in ✓.

Therefore, for any " ° 0, there exists �˚
0 P  n such that

Mpsp�0,⇤0,�0q ´ " § Mpsp�0,⇤0,�
˚
0q with ||�0 ´ �˚

0 ||8 “ op1q.

Clearly,

Mps
n p�0,⇤0,�

˚
0q ´ Mpsp�0,⇤0,�

˚
0q “ opp1q

and

Mps
n p�0,⇤0,�

˚
0q § Mps

n p�̂ps
n , ⇤̂ps

n , �̂ps
n q.

Then, using (B.2) and the arguments similar to those used in Lu et al. (2009), we can

show that Mpsp✓`q “ Mpsp✓0q, which yields �` “ �0, ⇤` “ ⇤0, a.e., and �` “ �0.

Therefore, we obtain the weak consistency of p�̂ps
n , ⇤̂ps

n , �̂ps
n q in the metric d1.

B.2. Proof of Theorem 3.2

To obtain the rate of convergence, we will apply Theorem 3.2.5 of van der Vaart

and Wellner (1996). Let mps
✓ pXq, Mps

n p✓q, and Mpsp✓q be as defined in Appendix

B.1. Let µpu, v, wq “ ⇤puq exptv�pwqu, µ0pu, v, wq “ ⇤0puq exptv�0pwqu and gptq “
µtpU,Z, V,W q exppZ 1�tq, where pU,Z, V,W q „ ⌫1, µt “ tµ` p1´ tqµ0, �t “ t�` p1´
tq�0 for 0 § t § 1. Then,

⇤pUqeZ1�`V �pW q ´ ⇤0pUqeZ1�0`V �0pW q “ gp1q ´ gp0q.
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By the mean value theorem, there exits a 0 § ⇠ § 1 such that gp1q ´ gp0q “ g1p⇠q.
Since

g1p⇠q “ exppZ 1�⇠qrpµ ´ µ0qpU, V,W q ` tµ0 ` ⇠pµ ´ µ0qupU, V,W qZ 1p� ´ �0qs

“ exppZ 1�⇠qrpµ ´ µ0qpU, V,W qt1 ` ⇠Z 1p� ´ �0qu ` µ0pU, V,W qZ 1p� ´ �0qs,

then from (B.1) we have

Mpsp✓0q ´ Mpsp✓q

• c1

ª
t⇤puq exppz1� ` v�pwqq ´ ⇤0puq exppz1�0 ` v�0pwqqu2 d⌫1pu, z, v, wq

“ c1

ª
rpµ ´ µ0qpu, v, wqt1 ` ⇠z1p� ´ �0qu ` µ0pu, v, wqz1p� ´ �0qs2d⌫1pu, z, v, wq

“ c1⌫1pg1h1 ` g2q2

for a constant c1, where g1pU,Z, V,W q “ Z 1p� ´ �0qµ0pU, V,W q, g2pU, V,W q “

pµ ´ µ0qpU, V,W q, and h1pU,Z, V,W q “ 1 ` ⇠ pµ´µ0qpU,V,W q
µ0pU,V,W q in the notation of Lemma

8.8 of van der Vaart (2002, page 432). To apply van der Vaart’s Lemma, we need to

show that

t⌫1pg1g2u2 § c⌫1pg21q⌫1pg22q pB.3q

for a constant c † 1. By the Cauchy-Schwarz inequality and condition C13, we can

show that (B.3) holds for c “ 1 ´ ⌘1. Let

⇤t “ t⇤` p1 ´ tq⇤0,�t “ t� ` p1 ´ tq�0, Qptq “ ⇤tpUqeV �tpW q.

Then

g2pU, V,W q “ Qp1q ´ Qp0q “ Q1p⇣q for 0 § ⇣ § 1,

and

⌫1pg22q “ ⌫1pph2g3 ` g4q2q
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where g3pU, V,W q “ V p�pW q´�0pW qq⇤0pUq, g4pUq “ p⇤´⇤0qpUq, and h2pU, V,W q “

1 ` ⇣ p⇤´⇤0qpUq
⇤0pUq . Similarly, we can show that

t⌫1pg3g4u2 § p1 ´ ⌘2q⌫1pg23q⌫1pg24q.

So, by van der Vaart’s Lemma, we have

⌫1pg1h ` g2q2 • cd21p✓, ✓0q.

To derive the rate of convergence, next we need to find a 'np�q such that

E

#
sup

d1p✓,✓0q†�

?
n|pPn ´ P qpmps

✓ pXq ´ mps
✓0

pXqq|
+

§ c'np�q.

Let

Fps
� “

 
mps

✓ pXq ´ mps
✓0

pXq : d1p✓, ✓0q § �
(
.

From the result of Theorem 2.7.5 of van der Vaart and Wellner (1996) and Lemma

B.2 of Huang (1999), for any ✏ § �, we have

logNrsp✏,Fps
� , || ¨ ||P,Bq § c

ˆ
1

✏
` qn log

�

✏

˙
,

where || ¨ ||P,B is the Bernstein Norm defined as ||f ||P,B “ t2P pe|f | ´ 1 ´ |f |qu1{2 by

van der Vaart and Wellner (1996, page 324). Moreover, we can show that

||mps
✓ pXq ´ mps

✓0
pXq||2P,B § c�2,

for any mps
✓ pXq ´ mps

✓0
pXq P Fps

� . Therefore, by Lemma 3.4.3 of van der Vaart and

Wellner (1996), we obtain

E||n1{2pPn ´ P q||Fps
�

§ cJrsp�,Fps
� , || ¨ ||P,Bq

"
1 ` Jrsp�,Fps

� , || ¨ ||P,Bq
�2n1{2

*
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where

Jrsp�,Fps
� , ||¨||P,Bq “

ª �

0

t1`logNrsp✏,Fps
� , ||¨||P,Bqu1{2d✏ § cq

1
2
n

ª �

0

ˆ
1 ` 1

✏
` log

�

✏

˙1{2
d✏ § cq

1
2
n �

1
2 .

Thus,

'np�q “ cq
1
2
n �

1
2

˜
1 ` cq1{2

n �1{2

�2n1{2

¸
“ cpq

1
2
n �

1
2 ` qn

�n1{2 q.

It is easy to see that 'np�q{� is decreasing in �, and

r2n'np 1

rn
q “ r2npq

1
2
n r

´ 1
2

n ` qn
r´1
n n1{2 q “ r

3
2
n q

1
2
n ` r3nqnn

´ 1
2 § cn

1
2

for rn “ n
1´v
3 and 0 † v † 1{2. Hence, it follows from Theorem 3.2.5 of van der

Vaart and Wellner (1996) that n
1´v
3 d1p✓̂psn , ✓0q “ Opp1q. Similarly, we can obtain

the rate of convergence for ✓̂n.

B.3. Proof of Theorem 3.3

First, we prove part (i). Recall that

lpsn p�,⇤,�q “
nÿ

i“1

Kiÿ

j“1

rNipTKi,jq log t⇤pTKi,jqu ` NipTKi,jqtZ 1
i� ` Vi�pWiqu

´⇤pTKi,jq exptZ 1
i� ` Vi�pWiqus .

We define a sequence of maps Sps
n mapping a neighborhood of p�0,⇤0,�0q, denoted
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by U , in the parameter space for p�,⇤,�q into l8pHq as :

Sps
n p✓qrh1, h2, h3s

“ n´1 d

d"
lpsn p� ` "h1,⇤` "h2,� ` "h3q

ˇ̌
ˇ
"“0

“ n´1
nÿ

i“1

Kiÿ

j“1

rtNipTKi,jq ´ ⇤pTKi,jq expp�1Zi ` Vi�pWiqquh1
1Zi

`
"
NipTKi,jq
⇤pTKi,jq

´ expp�1Zi ` Vi�pWiqq
*
h2pTKi,jq

`tNipTKi,jq ´ ⇤pTKi,jq expp�1Zi ` Vi�pWiqquVih3pWiqs

” Aps
n1p✓qrh1s ` Aps

n2p✓qrh2s ` Aps
n3p✓qrh3s

” Pnph1
1
9lps� q ` Pnp 9lps⇤ rh2sq ` Pnp 9lps� rh3sq

” Pn psp✓qrh1, h2, h3s.

Correspondingly, we define the limit map Sps : U ›Ñ l8pHq as

Spsp✓qrh1, h2, h3s “ Aps
1 p✓qrh1s ` Aps

2 p✓qrh2s ` Aps
3 p✓qrh3s,

where

Aps
1 p✓qrh1s “ P

«
Kÿ

j“1

tNpTK,jq ´ ⇤pTK,jq expp�1Z ` V �pW qquh1
1Z

�
,

Aps
2 p✓qrh2s “ P

«
Kÿ

j“1

"
NpTK,jq
⇤pTK,jq

´ expp�1Z ` V �pW qq
*
h2pTK,jq

�
,

and

Aps
3 p✓qrh3s “ P

«
Kÿ

j“1

tNpTK,jq ´ ⇤pTK,jq expp�1Z ` V �pW qquV h3pW q
�
.

To derive the asymptotic normality of the estimators p�̂ps
n , ⇤̂ps

n , �̂ps
n q, motivated

by the proofs of Theorem 3.3.1 of Van der Vaart and Wellner (1996, page 310) and

Theorem 2 of Zeng et al. (2005), we need to verify the following five conditions.
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(a1)
?
npSps

n ´ Spsqp�̂ps
n , ⇤̂ps

n , �̂ps
n q ´ ?

npSps
n ´ Spsqp�0,⇤0,�0q “ opp1q.

(a2) Spsp�0,⇤0,�0q “ 0 and Sps
n p�̂ps

n , ⇤̂ps
n , �̂ps

n q “ oppn´1{2q.

(a3)
?
npSps

n ´Spsqp�0,⇤0,�0q converges in distribution to a tight Gaussian process

on l8pHq.

(a4) Spsp�,⇤,�q is Fréchet-di↵erentiable at p�0,⇤0,�0q with a continuously invert-

ible derivative 9Spsp�0,⇤0,�0q.

(a5) Spsp�̂ps
n , ⇤̂ps

n , �̂ps
n q´Spsp�0,⇤0,�0q´ 9Spsp�0,⇤0,�0qp�̂ps

n ´�0, ⇤̂ps
n ´⇤0, �̂ps

n ´�0q “
oppn´1{2q.

Condition (a1) holds since

!
 psp�,⇤,�qrh1, h2, h3s ´  psp�0,⇤0,�0qrh1, h2, h3s :

d1pp�,⇤,�q, p�0,⇤0,�0qq † �, ph1, h2, h3q P H
)

is a Donsker class for some � ° 0, and that

sup
ph1,h2,h3qPH

P
“
 psp�,⇤,�qrh1, h2, h3s ´  psp�0,⇤0,�0qrh1, h2, h3s

‰2 ›Ñ 0,

as p�,⇤,�q ›Ñ p�0,⇤0,�0q in d1.

Clearly, Spsp�0,⇤0,�0q “ 0. For h3 P Fr, let h3n be the B-spline function approxi-

mation of h3 with ||h3´h3n||8 “ Opn´vrq by Corollary 6.21 of Schumaker (1981, page

227). Then we have Sps
n p�̂ps

n , ⇤̂ps
n , �̂ps

n qrh1, h2, h3ns “ 0. Thus, for ph1, h2, h3q P H,

?
ntSps

n p�̂ps
n , ⇤̂ps

n , �̂ps
n qrh1, h2, h3su

“ ?
nPn psp✓̂psn qrh1, h2, h3s ´ ?

nPn psp✓̂psn qrh1, h2, h3ns

“ In1 ´ In2 ` In3 ` In4
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where

In1 “ ?
npPn ´ P q

!
 psp✓̂psn qrh1, h2, h3s ´  psp✓0qrh1, h2, h3s

)
,

In2 “ ?
npPn ´ P q

!
 psp✓̂psn qrh1, h2, h3ns ´  psp✓0qrh1, h2, h3ns

)
,

In3 “ ?
nPn t psp✓0qrh1, h2, h3s ´  psp✓0qrh1, h2, h3nsu ,

and

In4 “ ?
nP

!
 psp✓̂psn qrh1, h2, h3s ´  psp✓̂psn qrh1, h2, h3ns

)
.

From (a1), we have In1 “ opp1q and In2 “ opp1q. Next we need to show In3 “ opp1q
and In4 “ opp1q . Note that

EpI2n3q “ P t psp✓0qrh1, h2, h3s ´  psp✓0qrh1, h2, h3nsu2 § c||h3n ´ h3||28 Ñ 0,

and

|In4| “
ˇ̌
ˇ
?
nP

«
Kÿ

j“1

t⇤0pTK,jq exppZ 1�0 ` V �0pW qq

´⇤̂ps
n pTK,jq exppZ 1�̂ps

n ` V �̂ps
n pW qq

)
V ph3pW q ´ h3npW q

ı ˇ̌
ˇ

§ c
?
nd1p✓̂psn , ✓0q||h3 ´ h3n||8

“ Opn´ 1´v
3 ´vr` 1

2 q

by Theorem 3.2. Thus (a2) holds for 1
6r´2 † v † 1

2 .

Condition (a3) holds becauseH is a Donsker class and the functionalsAps
n1, A

ps
n2, A

ps
n3

are bounded Lipschitz functions with respect to H.

For (a4), by the smoothness of Spsp�,⇤,�q, the Fréchet di↵erentiability holds

and the derivative of Spsp�,⇤,�q at p�0,⇤0,�0q, denoted by 9Spsp�0,⇤0,�0q, is a map
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from the space tp� ´ �0,⇤´ ⇤0,� ´ �0q : p�,⇤,�q P Uu to l8pHq and

9Spsp�0,⇤0,�0qp� ´ �0,⇤´ ⇤0,� ´ �0qrh1, h2, h3s

“ d

d"
tAps

1 p✓0 ` "p✓ ´ ✓0qqrh1su
ˇ̌
ˇ
"“0

` d

d"
tAps

2 p✓0 ` "p✓ ´ ✓0qqrh2su
ˇ̌
ˇ
"“0

` d

d"
tAps

3 p✓0 ` "p✓ ´ ✓0qqrh3su
ˇ̌
ˇ
"“0

“ ´P
Kÿ

j“1

expp�1
0Z ` V �0pW qqh1

1Z rt⇤pTK,jq ´ ⇤0pTK,jqu

`⇤0pTK,jq tp� ´ �0q1Z ` V p�pW q ´ �0pW qqus

´P
Kÿ

j“1

expp�1
0Z ` V �0pW qqh2pTK,jq

„"
⇤pTK,jq ´ ⇤0pTK,jq

⇤0pTK,jq

` tp� ´ �0q1Z ` V p�pW q ´ �0pW qqus

´P
Kÿ

j“1

expp�1
0Z ` V �0pW qqV h3pW q rt⇤pTK,jq ´ ⇤0pTK,jqu

`⇤0pTK,jq tp� ´ �0q1Z ` V p�pW q ´ �0pW qqus .

Thus, we have

9Spsp�0,⇤0,�0qp� ´ �0,⇤´ ⇤0,� ´ �0qrh1, h2, h3s

“ p� ´ �0q1Qps
1 ph1, h2, h3q `

ª
p⇤ptq ´ ⇤0ptqqdQps

2 ph1, h2, h3qptq pB.4q

`
ª

p�pwq ´ �0pwqqdQps
3 ph1, h2, h3qpwq

where

Qps
1 ph1, h2, h3q

“ ´E

«
Z expt�1

0Z ` V �0pW qu
Kÿ

j“1

t⇤0pTK,jqh1
1Z ` h2pTK,jq ` ⇤0pTK,jqV h3pW qu

�
,
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dQps
2 ph1, h2, h3qptq

“ ´E
”
expt�1

0Z ` V �0pW qu∞K
j“1

1
⇤0ptq t⇤0ptqh1

1Z ` h2ptq ` ⇤0ptqV h3pW qu dP pTK,j § t|K, Y q
ı
,

and

dQps
3 ph1, h2, h3qpwq

“ ´E
”
V expt�1

0Z ` V �0pwqu∞K
j“1 t⇤0pTK,jqh1

1Z ` h2pTK,jq ` ⇤0pTK,jqV h3pwqu |W “ w
ı
dFW pwq

where FW denotes the cumulative distribution of W .

Next, we show that Qps “ pQps
1 , Qps

2 , Qps
3 q is one-to-one, that is, for h P H, if

Qpsph1, h2, h3q “ 0, then h1 “ 0, h2 “ 0, h3 “ 0.

Suppose thatQpsph1, h2, h3q “ 0. Then 9Spsp�0,⇤0,�0qp�´�0,⇤´⇤0,�´�0qrh1, h2, h3s “
0 for any p�,⇤,�q in the neighborhood U . In particular, we take � “ �0 ` ✏h1,⇤ “
⇤0 ` ✏h2,� “ �0 ` ✏h3 for a small constant ✏. Thus we have

0 “ 9Spsp�0,⇤0,�0qp� ´ �0,⇤´ ⇤0,� ´ �0qrh1, h2, h3s

“ ´✏E
«
expt�1

0Z ` V �0pW qu
Kÿ

j“1

⇤0pTK,jq
"
h1
1Z ` V h3pW q ` h2pTK,jq

⇤0pTK,jq

*2
�
,

which yields

h1
1Z ` V h3pW q ` h2pTK,jq

⇤0pTK,jq
“ 0, j “ 1, . . . , K, a.s.

and so h1 “ 0, h2 “ 0, h3 “ 0 by C7.

Next we show that (a5) holds. Write

Spsp✓̂psn qrh1, h2, h3s ´ Spsp✓0qrh1, h2, h3s

´ 9Sp�0,⇤0,�0qp�̂ps
n ´ �0, ⇤̂

ps
n ´ ⇤0, �̂

ps
n ´ �0qrh1, h2, h3s

“ Bn1 ` Bn2 ` Bn3

where

Bn1 “ Aps
1 p✓̂psn qrh1s ´ d

d"

!
Aps

1 p✓0 ` "p✓̂psn ´ ✓0qqrh1s
) ˇ̌

ˇ
"“0

,
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Bn2 “ Aps
2 p✓̂psn qrh2s ´ d

d"

!
Aps

2 p✓0 ` "p✓̂psn ´ ✓0qqrh2s
) ˇ̌

ˇ
"“0

,

and

Bn3 “ Aps
3 p✓̂psn qrh3s ´ d

d"

!
Aps

3 p✓0 ` "p✓̂psn ´ ✓0qqrh3s
) ˇ̌

ˇ
"“0

It is easy to show that Bn1 “ Oppd21p✓̂psn , ✓0qq, Bn2 “ Oppd21p✓̂psn , ✓0qq, and Bn3 “

Oppd21p✓̂psn , ✓0qq. Thus, by Theorem 3.2, (a5) holds for 0 † v † 1{4.
It follows from (B.4), (a1), (a2) and (a5) that

?
np�̂ps

n ´ �0q1Qps
1 ph1, h2, h3q ` ?

n

ª
t⇤̂ps

n ptq ´ ⇤0ptqudQps
2 ph1, h2, h3qptq

`?
n

ª
t�̂ps

n pwq ´ �0pwqudQps
3 ph1, h2, h3qpwq

“ ´?
npSps

n ´ Spsqp�0,⇤0,�0qrh1, h2, h3s ` opp1q,

uniformly in h1, h2 and h3.

For each ph1, h2, h3q P H, since Qps is invertible, there exists phps
1 , hps

2 , hps
3 q P H

such that

Qps
1 phps

1 , hps
2 , hps

3 q “ h1, Q
ps
2 phps

1 , hps
2 , hps

3 q “ h2, Q
ps
3 phps

1 , hps
2 , hps

3 q “ h3.

Therefore, we have

h1
1

?
np�̂ps

n ´ �0q ` ?
n

ª
t⇤̂ps

n ptq ´ ⇤0ptqudh2ptq

`?
n

ª
t�̂ps

n pwq ´ �0pwqudh3pwq

“ ´?
npSps

n ´ Spsqp�0,⇤0,�0qrhps
1 , hps

2 , hps
3 s ` opp1q

Ñd Np0, �2
psq,

where

�2
ps “ Et 2

psp�0,⇤0,�0qrhps
1 , hps

2 , hps
3 su. pB.5q
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To prove part (ii), we define a sequence of maps Sn mapping a neighborhood of

p�0,⇤0,�0q, U , in the parameter space for p�,⇤,�q into l8pHq as:

Snp✓qrh1, h2, h3s “ n´1 d

d"
lnp� ` "h1,⇤` "h2,� ` "h3q

ˇ̌
ˇ
"“0

.

Write �NipTKi,jq “ NipTKi,jq ´ NipTKi,j´1q, �⇤pTKi,jq “ ⇤pTKi,jq ´ ⇤pTKi,j´1q, and
�hpTKi,jq “ hpTKi,jq ´ hpTKi,j´1q.

Then, we have

Snp✓qrh1, h2, h3s

“ n´1
nÿ

i“1

Kiÿ

j“1

rt�NipTKi,jq ´�⇤pTKi,jq expp�1Zi ` Vi�pWiqquh1
1Zi

`
"
�NipTKi,jq
�⇤pTKi,jq

´ expp�1Zi ` Vi�pWiqq
*
�h2pTKi,jq

`t�NipTKi,jq ´�⇤pTKi,jq expp�1Zi ` Vi�pWiqquVih3pWiqs

” An1p✓qrh1s ` An2p✓qrh2s ` An3p✓qrh3s

” Pnph1
1
9l�q ` Pnp 9l⇤rh2sq ` Pnp 9l�rh3sq

” Pn p✓qrh1, h2, h3s.

Correspondingly, we define the limit map S : U ›Ñ l8pHq as

Sp✓qrh1, h2, h3s “ A1p✓qrh1s ` A2p✓qrh2s ` A3p✓qrh3s,

where

A1p✓qrh1s “ E

«
Kÿ

j“1

t�NpTK,jq ´�⇤pTK,jq expp�1Z ` V �pW qquh1
1Z

�
,

A2p✓qrh2s “ E

«
Kÿ

j“1

"
�NpTK,jq
�⇤pTK,jq

´ expp�1Z ` V �pW qq
*
�h2pTK,jq

�
,
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and

A3p✓qrh3s “ E

«
Kÿ

j“1

t�NpTK,jq ´�⇤pTK,jq expp�1Z ` V �pW qquV h3pW q
�
.

Furthermore, the derivative of Sp�,⇤,�q at p�0,⇤0,�0q, denoted by 9Sp�0,⇤0,�0q, is
a map from the space tp� ´ �0,⇤´ ⇤0,� ´ �0q : p�,⇤,�q P Uu to l8pHq and

9Sp�0,⇤0,�0qp� ´ �0,⇤´ ⇤0,� ´ �0qrh1, h2, h3s

“ p� ´ �0q1Q1ph1, h2, h3q `
ª

t⇤ptq ´ ⇤0ptqudQ2ph1, h2, h3qptq

`
ª

t�pwq ´ �0pwqudQ3ph1, h2, h3qpwq

where

Q1ph1, h2, h3q

“ ´E rZ expt�1
0Z ` V �0pW qu

ˆ
Kÿ

j“1

t�⇤0pTK,jqh1
1Z `�h2pTK,jq `�⇤0pTK,jqV h3pW qu

�
,

dQ2ph1, h2, h3qptq

“ ´E rexpt�1
0Z ` V �0pW qu

ˆ
Kÿ

j“1

"ˆ
h1
1Z ` h2ptq ´ h2pTK,j´1q

⇤0ptq ´ ⇤0pTK,j´1q
` V h3pW q

˙
dP pTK,j § t|K,TK,j´1, Y q

´
ˆ
h1
1Z ` h2pTK,jq ´ h2ptq

⇤0pTK,jq ´ ⇤0ptq
` V h3pW q

˙
dP pTK,j´1 § t|K,TK,j, Y q

*⇢
,
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and

dQ3ph1, h2, h3qpwq

“ ´E rV expt�1
0Z ` V �0pwqu

ˆ
Kÿ

j“1

t�⇤0pTK,jqh1
1Z `�h2pTK,jq `�⇤0pTK,jqV h3pwqu |W “ w

�
dFW pwq.

Next, we show that Q “ pQ1, Q2, Q3q is one-to-one, that is, for h P H, if

Qph1, h2, h3q “ 0, then h1 “ 0, h2 “ 0, h3 “ 0

Suppose thatQph1, h2, h3q “ 0. Then 9Sp�0,⇤0,�0qp�´�0,⇤´⇤0,�´�0qrh1, h2, h3s “
0 for any p�,⇤,�q in the neighborhood U . In particular, we take � “ �0 ` ✏h1,⇤ “
⇤0 ` ✏h2,� “ �0 ` ✏h3 for a small constant ✏. Thus we have

0 “ 9Sp�0,⇤0,�0qp� ´ �0,⇤´ ⇤0,� ´ �0qrh1, h2, h3s

“ ´✏E
«
expt�1

0Z ` V �0pW qu
Kÿ

j“1

�⇤0pTK,jq
"
h1
1Z ` V h3pW q ` �h2pTK,jq

�⇤0pTK,jq

*2
�
,

which yields

h1
1Z ` V h3pW q ` �h2pTK,jq

�⇤0pTK,jq
“ 0, j “ 1, . . . , K, a.s.

and so h1 “ 0, h2 “ 0, h3 “ 0 by C7.

Similarly, we can show that Sp�0,⇤0,�0q “ 0, Snp�̂n, ⇤̂n, �̂nq “ oppn´1{2q, and

Sp✓̂nqrh1, h2, h3s ´ Sp✓0qrh1, h2, h3s

“ 9Sp�0,⇤0,�0qp�̂n ´ �0, ⇤̂n ´ ⇤0, �̂n ´ �0qrh1, h2, h3s ` Oppd22p✓̂n, ✓0qq

“ 9Sp�0,⇤0,�0qp�̂n ´ �0, ⇤̂n ´ ⇤0, �̂n ´ �0qrh1, h2, h3s ` oppn´1{2q.
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for 0 † v † 1{4. Thus it follows that

?
np�̂n ´ �0q1Q1ph1, h2, h3q ` ?

n

ª
t⇤̂nptq ´ ⇤0ptqudQ2ph1, h2, h3qptq

`?
n

ª
t�̂npwq ´ �0pwqudQ3ph1, h2, h3qpwq

“ ´?
npSn ´ Sqp�0,⇤0,�0qrh1, h2, h3s ` opp1q,

uniformly in h1, h2 and h3.

For each ph1, h2, h3q P H, since Q is invertible, there exists ph˚
1 ,h

˚
2 , h

˚
3q P H such

that

Q˚
1ph˚

1 , h
˚
2 , h

˚
3q “ h1, Q

˚
2ph˚

1 , h
˚
2 , h

˚
3q “ 0, Q˚

3ph˚
1 , h

˚
2 , h

˚
3q “ h3.

Thus, we have

h1
1

?
np�̂n ´ �0q ` ?

n

ª
t⇤̂nptq ´ ⇤0ptqudh2ptq

`?
n

ª
t�̂npwq ´ �0pwqudh3pwq

“ ´?
npSn ´ Sqp�0,⇤0,�0qrh˚

1 , h
˚
2 , h

˚
3s ` opp1q

Ñd Np0, �2q,

where

�2 “ Et 2p�0,⇤0,�0qrh˚
1 , h

˚
2 , h

˚
3su. pB.6q
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