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Abstract

Censored data, one of the most common data types, arise frequently in

many fields of modern science, e.g., health science, reliability, economics,

finance, etc. The most prominent feature of this kind of data is that the

occurrence of the event could not be observed exactly. Right censored

data and interval censored data are among the most popular ones. Over

the past decades, there have been numerous state-of-the-art methodolo-

gies in survival analysis literature to handle censoring. This thesis would

focus on the nonparametric statistical inference of right censored data

and interval censored data.

As the first part of this thesis, a penalized nonparametric maximum

likelihood estimation of the log-hazard function is introduced in analyzing

the right censored data. The smoothing spline is employed for a smooth

estimation. The most appealing fact is that a functional Bahadur rep-

resentation is established, which serves as a key step for nonparametric

inference of the unknown parameter/function. Asymptotic properties of

the resulting estimate of the unknown log-hazard function are proved.

Furthermore, the local confidence interval and simultaneous confidence
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band of the unknown log-hazard function are provided, along with a local

and global likelihood ratio tests. We also investigate issues related to the

asymptotic efficiency.

As the second part of this thesis, the aforementioned nonparametric

inference approach is extended to handle interval censored data. In par-

ticular, we focus on the nonparametric inference of the cumulative hazard

function, instead of the log-hazard function of the interval censored da-

ta. Similarly, we have derived a functional Bahadur representation and

established the asymptotic properties of the resulting estimate of the

cumulative function. Particularly, the global asymptotic properties are

justified under regularity conditions. A likelihood ratio test is also pro-

vided. To the best of our knowledge, there is no report in the literature

on the asymptotic properties of a smoothing spline-based nonparametric

estimate for the interval censored data.

The theoretical results are validated by extensive simulation studies.

Applications are illustrated with some real datasets. A few discussions

and closing remarks are given.

Key Words: Functional Bahadur representation; Interval censored da-

ta; Likelihood ratio test; Nonparametric inference; Penalized likelihood;

Right censored data; Smoothing splines.
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Chapter 1

Introduction

The chapter briefly introduces the background via some datasets and

gives some literature reviews related to the topic. In this thesis, we

mainly discuss the nonparametric analysis about the right censored data

and interval censored data.

1.1 Background

Three datasets would be introduced first, which would reveal some data

structures in the biomedical studies, engineering and many other fields

in survival analysis.

1.1.1 Primary biliary cirrhosis datasets

Although the primary biliary cirrhosis (PBC) is very rare, with just about

50-per-million in population, it is a kind of lethal chronic liver disease

with ambiguously cause. As types of the events reveal that the dis-

ease may be mediated by immunologic mechanism, the Mayo Clinic con-
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ducted a trial to explore the drug D-penicillamine (DPCA) on the PBC

from January 1974 to May 1984. Specially, 312 patients were double-

blinded randomized in the treatment group with DPCA and the control

group with a placebo. Many related explanatory factors, such as clin-

ical, biomedical, serological and histological variables were recorded for

as many participates as possible. Finally, there were 125 patients died,

with 11 deaths were not died of PBC liver. Besides, there were 8 patients

lost to follow up, and another 19 patients had chosen to undergo liver

transplantation. The data can be found in Appendix 6 in Fleming and

Harrington (2011).

1.1.2 Lung Tumor Data

In order to determine the relationship between a suspected agent or envi-

ronment with the time of tumor onset, some tumorigenicity experiments

are often carried out. In these trials, the tumor onset is the occurrence

of an interesting event. But most of the time, the death or sacrifice time

instead of the time of tumor onset can be observed. Hoel and Walberg

(1972) gave a dataset related to a lung tumor trial. In the trail, 96 mice

were put into the conventional environment and 48 mice were treated

with germ-free environment. Specifically, the death time of 144 male

RFM mice were measured in days and whether the lung tumor presence

or not at the time of death are recorded by an indicator function. As

lung tumor’s occurrence in RFM mice will not affect the time of death,
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the occurrence of tumor onset is only known before or after the death or

sacrifice. The data can be found in Table 1.3 in Sun (2007).

1.1.3 Breast cosmesis study

Beadle et al. (1984) conducted a clinical trial to explore the cosmetic

different effects of radiotherapy alone and radiotherapy plus adjuvan-

t chemotherapy on women with early breast cancer. In the study, 46

subjects were treated with radiation treatment while the other 48 were

assigned to the radiotherapy plus chemotherapy group. Patients were

pre-scheduled followed for every 4-6 months, but the time gap between

every visit was lengthened with the recovery progressing. Three points

of scale (none, moderate, severe) of breast retraction were recorded at

each visit. The interest event is the first observation time of the retrac-

tion of moderate or severe breast. As the subjects were observed only

when they did the examinations, instead of observing the exact time of

the retraction of breast, we just know whether it fell in the interval be-

tween visits or not. The subjects were followed up to 60 months, and the

recorded data of the two groups can be found in Table 1.9 in Klein and

Moeschberger (1997).

1.2 Time origin, censoring and truncation

The commonness of the three examples in the previous section is that

the response of interest is the time until some events occur. Such events
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often refer to the occurrence of a disease, death or the onset of certain

milestone, the failing of a machine, or learning something. Thereby,

the event is often named as failure and the time, usually referring to

the death in biological organisms and failure in mechanical systems, is

named as failure time or survival time. In order to analyze the data,

it is important to have a general knowledge about the data structures.

More specifically, in the section, we would introduce the time origin, the

censoring mechanism and the similar data structure, truncation.

1.2.1 Time origin

Before analyzing the failure time data, it is crucial to define the time

origin clearly and unambiguously. In some instances, it may be the birth

time of an individual; in other cases, it can be the occurrence of an event,

such as the randomization registered in a trial or the occurrence of a heart

attack. According to Kalbfleisch and Prentice (2011), in order to get the

time origin, we should make clearly the following:

(1) A clear definition of what constitutes the failure;

(2) An exact definition of the occurrence of the event of interest,

namely “response”;

After figuring out the above two definitions, we can define the survival

or failure time. For example, in PBC data case, failure means a subject

died of PBC liver; in lung tumor situation, the response is the tumor

onset while in breast cosmesis study, the time of breast retraction is the
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response. Just like the examples, if the observed time is not at the origin,

special data structure arises.

1.2.2 Censoring and truncation

As noted in the PBC data example, lung tumor data and the breast

cosmesis study case, we can find that the data often include some indi-

viduals whose time could not be observed. The data on these subjects are

said to be censored. Specifically, there are three censoring mechanisms:

right censoring, left censoring and interval censoring.

In the PBC data example, we can find that some individuals do not

fail during the observation period. The data on these individuals are

said to be right censoring. Actually, the right censoring include three

kinds of cases: (1) the individuals are still alive at the end of the study;

(2) the individuals are lost to follow up because of their moving home,

or withdrawing from the trial; (3) the other events happened before our

interesting event happening, such as the individual died of heart attack

while the interesting event is the PBC liver disease. Specifically, right

censoring is that you can observe the failure time data exactly or the

failure does not occur at the time the censoring happens. In the light

of the relationship between the failure time and the censoring time, it

consists of different kinds of censoring mechanisms: type one censoring

with a random censoring time, type two censoring with the fixed censor-

ing time; independent censoring mechanism with the failure rate applies
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to the individual at each time is the same as those without censoring,

vise versa, it is called dependent censoring. Most of the times in survival

analysis, we would assume the failure time is independent or conditional

independent of a random censoring time.

Similar to the right censoring mechanism, there also exists the left

censoring mechanism. Specifically, left censoring occurs when the failure

time could be observed just before some time, otherwise, we could not

know whether it fail or not. The analysis of left censoring is very similar

to that of the right censoring mechanism, so we do not talk it in detail.

Compared with right censoring, interval censoring is much more com-

plex. As in the example of lung tumor data and the breast cosmesis study,

instead of recording the exact failure time, we just know that the event

occurred before or after some point or that the event occurred in some

interval or not. This kind of data is named as the interval censored data.

Specifically, there exist three kinds of interval censored data types: case-

one interval censored data, case-two interval censored data and doubly

censored failure time data. Generally, case-one interval censoring means

that instead of observing the exact of each individual’s failure time, one

just knows that the failure time is either left before or right behind some

time. Case-one interval censoring is also referred as current status data,

coming from the demographic studies. The data in example 2 is exactly

about case-one interval censoring. According to the sampling schemes,
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there mainly exist four types of the case-one interval censored data: case-

control censored data (Jewell and Van Der Laan (2004)), doubly censored

data (De Gruttola and Lagakos (1989)), clustered censored data (Gal-

braith et al. (2010)) and bivariate case-one interval censored data (Wang

and Ding (2000)). From the example 3, we can get that there exists at

leat one interval for an individual, and the event failing in an interval

or not could be observed. However, the exact failure time could not be

recorded. This kind of data is called case-two interval censored data.

When two related events are studied in a study and you just know that

each event could fail in an interval or not, doubly censored data occurs.

Similar to the right censoring mechanism, there also exists independent

or dependent censoring mechanism. Specifically, if the failure time is in-

dependent of the censoring time, the independent censoring occurs. Vise

versa. Under the situation of current status data, independent censoring

means that the failure time is independent of the observation time point,

while for case-two interval censoring, it means that the failure time is

independent of the interval of the observation time. Also, we mainly talk

about the case of independent censoring in this thesis.

Truncation data are very similar but different from censored data.

Generally, in some cases, whether the subjects could be observed or not

depends on their entry of the study. If the individual can be observed

if and only if the failure time is larger than some time, we claim that

7



the left truncation or the delay entry occurs. Vise, we claim the right

truncation happens. The analysis of left truncation is very similar to the

right censored data, and many methods related to the right censoring

can be extended easily to the left truncation.

1.3 Distribution, survival time, density, haz-

ard and cumulative hazard

Let T be an arbitrary nonnegative random variable. Denote F (t) =

P (T ≤ t), which represents the cumulative distribution function of T . In

survival analysis, three other statistics related to the distribution function

of T can also reveal the structure of the failure time: the survival function,

denoted as S(t), the probability density, denoted as f(t) and the hazard

denoted as λ(t).

The survival function measures the probability of T larger than a

fixed value t, namely an individual lives longer than time t. That is:

S(t) = P (T > t) = 1− F (t), 0 < t <∞. (1.1)

It is easy to check that S(t) is right-continuous at time t, and S(0) = 1

while S(∞) = 0.

If T is continuous, then it has the probability density function, defined

as:

f(t) =
dF (t)

dt
= − dS(t)

dt
. (1.2)
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The hazard function gives an instantaneous rate at which failure oc-

curs for an individual or item that is surviving at time t, which is defined

as:

λ(t) = lim
dt↓0

1

dt
P{t ≤ T < t+ dt|T ≥ t}

= − dS(t)

S(t)

=
f(t)

S(t)

= − d log{S(t)}. (1.3)

Actually, as Spierdijk (2008) said, an increasing hazard rate reflects the

positive duration dependence while a decreasing hazard rate means neg-

ative duration dependence. Besides, following from (1.3), it is easy to

check that:

S(t) = exp{−
∫ t

0

λ(s) ds} = exp{−Λ(t)}, (1.4)

where Λ(t) =
∫ t

0
λ(s) ds, which is called the cumulative hazard function.

From (1.1), (1.2), (1.3) and (1.4), it is known that there is a one-to-

one mapping relationship between F (t), S(t), f(t) and λ(t). So in order

to get the feature of the failure time, anyone of the four can be used. we

can extend the previous discussion to the discrete case via some slight

changes .
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1.4 Literature review

In the fields of biometry, reliability, clinical trials and medical follow-

up studies, estimating the distribution of the failure or survivor time

is of fundamental importance. As the occurrence of censoring would

complicate the analysis of survival time, there exists abundant literature

that focuses on this topic. This section would give an overview about the

analysis of the right censored data and interval censored data in survival

analysis.

1.4.1 Right censoring

The random right censoring arises frequently in fields of survival analysis

in biomedical studies and of reliability analysis in engineering. In these

situations, life-time table estimation is firstly proposed to estimate the

survival function (Berkson and Gage (1952), Cutler and Ederer (1958),

and Gehan (1969)). Resulting from the grouping of the data structure,

the life-time table estimator is slightly biased. Thereby, Böhmer (1912)

extended the life-time table to the product limit estimator or the Kaplan-

Meier estimator. After Kaplan and Meier (1958) showed that the estima-

tor was a nonparametric maximum likelihood estimation, the method was

widely applied in statistics under the scenario of right censoring. Efron

(1967) proved the estimator enjoyed the self-consistency property while

Breslow and Crowley (1974) gave the asymptotic normality properties.
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There also exists abundant literature that talked about the exponential

bound for the Kaplan-Meier estimator, see Dabrowska (1989), Bitouze

et al. (1999), Wellner (2007). As the similarity of the right censoring

and left censoring scheme, many statisticians extended the Kaplan-Meier

estimator to the left censored data case, named as Left Kaplan-Meier es-

timator (LKM). This can refer to Ware and Demets (1976), Csörgö and

Horváth (1980), Gomez et al. (1992) and Gómez et al. (1994). The self

consistency and asymptotic properties about the LKM are also well es-

tablished. Although the Kaplan-Meier estimator is easy to calculate and

well-developed, it is a step function. As a smoothed survival function is

much more desirable in survival analysis, many statisticians extended the

step-function to a smoothed version. Among these, Blum and Susarla

(1980) and Földes et al. (1981) proposed kernel methods to smooth the

estimate of survival function, Kim et al. (2003) borrowed the idea about

Bezier curve smoothing from computer science, while Whittemore and

Keller (1986) used the splines to get a smoothed nonparametric max-

imum likelihood estimator of the survival function. Some parametric

methods are also involved to get the smoothed estimator of the survival

function. Among these, Weibull and exponential models have been con-

sidered by Greenhouse and Silliman (1996), Gompertz model was used in

Gieser et al. (1998) while Weibull, logistic and log-logistic were discussed

in Hauck et al. (1997).
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Density estimation is another important way to study the lifetime,

both in theory and reality in statistics. Among the nonparametric esti-

mators of the density, histogram density estimator is the simplest and

first way to give the density estimation in survival analysis. Actually,

based on the life time table, Gehan (1969) gave the density estimation

of the survival function. Based on the Kaplan-Meier estimator, Földes

et al. (1981) also gave the formula of the histogram density. Not only

they gave the self-consistency property of the estimator, they gave the

exact convergence rate of the histogram estimate. Burke and Horvath

(1982) have considered a more general density estimator, and the his-

togram can be the special case of this kind of estimators. Although the

histogram estimator is easy to calculate and requires few assumptions,

its non-smoothed character hinders the sophisticated inference. Thereby,

the kernel-type estimators have been well-developed with right-censored

data after 1980. Specially, via the kernel method, Blum and Susarla

(1980) have considered to maximize the deviation of the density, which

has a strong powerful for goodness-of-fit test and tests for hypothesis

about the density without specified form. Földes et al. (1981) showed

that another kind of kernel estimator of the density enjoyed the strong

convergence property, which covers the usual Parzen (1962) density es-

timate. As the mean integrated square error (MISE) is one of the most

usual criteria to evaluate the performance of the estimates, Sánchez-
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Sellero et al. (1999) talked about the convergence of MISE with censored

data. Based on which, they showed the optimal bandwidth to get the

minimum MISE. From the formula in Sánchez-Sellero et al. (1999), it

can derive that the censoring will not affect the bias of MISE but it will

affect the variance of the estimates. As competing risks is a special case

of right censoring model, Burke and Horvath (1982) proposed a general

estimates of the density under the senecio, which include the kernel-type

estimates, series-type estimates and histogram-type estimates. McNi-

chols and Padgett (1981) gave a weighted kernel-type estimates of the

density under the proportional hazard model. The estimator is shown

to be asymptotically unbiased. McNichols and Padgett (1982b) modified

the weighted kernel method and showed that the new estimator enjoyed

the consistency property under mild conditions. Delta sequence curve

estimator, including the kernel-type estimators, is proposed by Yandell

(1981). The estimator enjoys the uniform consistency and asymptotical

normality properties. The nonparametric maximum likelihood estimates

of the density is another method to get the estimator of the density, see

McNichols and Padgett (1982a), Kooperberg and Stone (1992). Series-

type estimates can be found in Kimura (1972), Tarter (1979), Tanner

and Wong (1984), Antoniadis et al. (1999) and so on. Specifically, Tarter

(1979) expanded the density as a linear combination of the Fourier se-

ries, and based on the maximum likelihood method, he got a consistent
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estimator of the density. Based on the wavelet method, Antoniadis et al.

(1999) and Li (2007) gave an estimator of the density and showed the

optimal rate, respectively. Splines or the log-splines are also used to

estimate the density, such as in Koo et al. (1999). All the methods

talked above are based on the nonparametric methods. Parallel to the

survival function, there also exist some parametric density estimation

methods. For example, the exponential model, the Weibull model and

the log-normal are the most common model to estimate the density. The

maximum likelihood method is often used to estimate the corresponding

parameters in the models.

As the hazard rate can reveal the instantaneous probability that an

event maybe occurs in the next instant, it can reflect much more details

about the survivor time. Thereby, extensive state-of-the-art method-

ologies exist about the estimation of the hazard rate. Among theses,

the Nelson-Aalen estimate, which was proposed by Nelson (1969) and

Nelson (1972), is the simplest one to calculate. Besides, Breslow and

Crowley (1974) and Aalen (1976) gave the asymptotic properties of the

Nelson-Aalen estimate. As the estimate is a jump function, the smoothed

version are well developed. Specifically, kernel, wavelets and the splines

are the usual methods to give the smoothed estimators of the hazard.

In particular, Beran (1981), Dabrowska (1987), Gray (1992), Muller and

Wang (1994) and Cai (1998) have derived smooth estimators of the haz-
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ard based on the kernel methods and neighbour smoothing methods.

Likelihood methods, always with a penalty to derive a more smooth

estimation, are also discussed in extensive statistical literature, see An-

derson and Senthilselvan (1980), O’Sullivan (1988), Antoniadis (1989)

and Antoniadis and Grégoire (1990), Gu (1996), Kooperberg and Stone

(1992). This penalized maximum likelihood is well-developed and the

nonparametric function is often approximated by a linear combination

of the splines. Cox and O’Sullivan (1990) gave the general convergence

rate of this kind of estimates in a Sobolev space. Similar to the sur-

vival function, the orthogonal series is another well-developed approach

to estimate the hazard (Kronmal and Tarter (1968), Tanner and Wong

(1984)). Among these, the wavelet method is much more popular (Patil

(1997), Antoniadis et al. (1999), Li (2002)). As most of the times, many

explanatory variables have an effect on the failure time, there exists ex-

tensive literature to model the relationship between the covariates and

the hazard. Among these, the relative risk model or the Cox model

(Cox (1972)), the additive hazard model (Lin and Ying (1994)) and the

accelerated failure time model are well known and developed. Specifi-

cally, there has numerous literature about the Cox model. Cox (1972)

and Cox (1975) proposed the model and used the partial likelihood to

estimate the hazard. Kalbfleisch and Prentice (1973) generalized the

marginal likelihood derivation based on the Cox regression model. Other
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methodologies talked about the Cox model based on the maximum likeli-

hood approach can be found in Breslow (1974), Thompson and Godambe

(1974) , Jacobsen (2012) and so on. Lin and Ying (1994) gave the estima-

tion equation about the additive hazard model. They talked about the

asymptotic properties about the estimators and through modifying the

nonparametric parts, they can get a positive and monotone cumulative

hazard functions. But most of the above methods just can get a discon-

tinuous estimate of the hazard as the nonparametric part is sum of the

indicator function. Fosen et al. (2006) extended the kernel methods to

estimate nonparametric parts of the multiplicative and additive hazard

models, which can give a smoothed hazard.

1.4.2 Interval censoring

Interval-censored data arise frequently in health or medical studies when

the interest is the occurrence of an event during a pre-specified period.

Nonparametric maximum likelihood estimation (NPMLE) has been

discussed in extensive literature with interval censored data. The earli-

est work about NPMLE with current status data, namely the case-one

interval censored data was proposed by Ayer et al. (1955), Eeden (1956)

and Eeden (1957). The pool-adjacent-violators algorithm was discussed

to compute the estimate of the distribution function. The asymptotic

properties about the NPMLE were established in Groeneboom (1987).

Groeneboom and Wellner (1992) have proved that the asymptotic distri-
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bution of the NPMLE was a two sided Brownian process, then based on

Groeneboom and Wellner (2012), the confidence interval of the NPMLE

can be derived through the estimation of the quantile. Following from the

limiting theorem, the bootstrap method can also be used to get the point-

wise variance estimation and the confidence interval. Without estimating

the unknown parameters in the asymptotic distribution, Banerjee and

Wellner (2005) established the confidence interval for case-one interval-

censored data based on the likelihood ratio test. Recently, Groeneboom

et al. (2015) also talked about the confidence intervals with current status

data based on the likelihood ratio test with restricted and unrestricted

likelihood function. Peto (1973) and Turnbull (1976) generalized the

estimation to case-two interval-censored data. The Newton-Raphson al-

gorithm and self-consistency algorithm were presented respectively in the

two literature. Specifically, as there are not a closed form of the NPMLE

with case-two interval censored data, various algorithms have been devel-

oped for the NPMLE with case-two interval censored data. The iterative

convex minorant (ICM) algorithm was proposed by Groeneboom and

Wellner (1992) and modified by Jongbloed (1998). After modification,

the algorithm can make sure the increase of the objective function after

every iteration and enjoys the global convergence property. The EM-ICM

algorithm, which combines the EM algorithm with the ICM algorithm

and was proposed by Wellner and Zhan (1997), also enjoys the global con-
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vergence property. Böhning et al. (1996) generalized the vertex-exchange

or other algorithms proposed for the finite mixture model estimation to

determine the NPMLE with interval censored data. Gentleman and Gey-

er (1994) and Li et al. (1997) also investigated the algorithm or character-

ized the data structure related to the NPMLE based on interval-censored

data. Besides, Groeneboom and Wellner (1992) showed that the NPMLE

enjoyed the uniform consistency property with case-two interval censored

data. So do van de Geer (1993) and Yu et al. (1998). Further, Schick

and Yu (2000) gave a strong consistency results with L1 norm, while

Yu et al. (2000) showed the self-consistency results about the NPMLE

under this scenario. As pointed out by Sun (2007), the NPMLE with

case-two interval censored data also has the same limiting distributing

as current status data in Groeneboom and Wellner (1992). Huang (1999)

showed that under a little strong assumption, both case-one and case-two

interval censored data can converge to a standard normal distribution.

Then the likelihood ratio statistics or the bootstrap method can be used

to get the confidence interval. Further, Goodall et al. (2004) established

the confidence interval for case-two interval-censored data based on three

methods. The first one is based on the full information matrix, the sec-

ond is based on the nonzero estimates’ information matrix while the third

one is relied on the likelihood ratio inference. In addition, Sun (2001)

generalized the Greenwood formula to interval-censored data to estimate
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the variance. Similar to the Kaplan-Meier estimator, the NPMLE is al-

so a discontinuous function. Thereby, in order to do some sophisticated

inference, smoothed estimation about the survival function or density is

needed. Although the complexity of the interval censored data result-

ing in the difficulty of smoothing the NPMLE directly, some smoothed

estimation about the survival function or density estimations were pro-

posed by Braun et al. (2005) and Pan (2000) respectively. Vandal et al.

(2005) proposed the the constrained nonparametric estimation problem

to estimate the distribute function with interval censored data.

As the hazard can reveal more characters of the failure time than

the survival function, there exist numerous well-developed approaches

to estimate the hazard with interval censored data. The earliest work

is based on the nonparametric estimation without smoothing. But the

hazard derived through this way is unstable and unsuitable for graphical

presentation. The smoothing estimator of the hazard mainly based on

the kernel methods (Lawless (2011); Tanner and Wong (1984)) the the

spline methods (Kooperberg and Stone (1992), Rosenberg (1995)), and

the local likelihood methods (Tibshirani and Hastie (1987)) with para-

metric model. Actually, the spline methods are mainly related with the

likelihood methods. Specifically, in order to get a smooth estimator of

the hazard, the penalized likelihood method would be introduced and the

hazard or log-hazard would be modeled as a linear combination of the s-
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pline basis. Among the basis, the B-spline basis, penalized B-spline basis

(Cai and Betensky (2003)), M-spline basis (Joly et al. (1998)) are used.

Similar to the right censored data, there exit some regression methods

to estimate the hazard. Among them, the proportional hazards model,

the additive hazards model and the proportional Odds model are the

most popular ones. Specifically, for the current status data, Huang et al.

(1996) and Huang and Wellner (1997) gave the rigorous and detailed

discussion about the use of the proportional hazards model. They gave

fundamental ground work for the asymptotic study based on the max-

imum of the likelihood estimation and investigated the use of the pro-

portional hazards model. The additive hazards model for current status

data were investigated by Ghosh (2001), Lin et al. (1998), and Marti-

nussen and Scheike (2002). For case-two interval-censored failure time

data, Finkelstein (1986) was the first to study the use of the PH model

for interval-censored data. After that, Huang and Wellner (1997) gave

the asymptotic properties of the PH model with interval censored data.

Alioum and Commenges (1996), Datta et al. (2000), Huber-Carol and

Vonta (2004), and Pan and Chappell (2002) generalized the PH model

the analysis of survival time data that involve interval censoring as well

as truncation. Others that investigated the PH model include Satten

(1996), Goggins et al. (1998), Betensky et al. (2002),Cai and Betensky

(2003), Huber-Carol and Vonta (2004), ect. The proportional odds mod-
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el involved case-two interval censoring include Huang and Rossini (1997),

Rabinowitz et al. (2000), and Shen (1998). The reviews about the accel-

erated failure time model include Pu and Li (1999), Li and Pu (2003),

Rabinowitz et al. (1995), Betensky et al. (2001), and Xue et al. (2006).

1.5 Research of outline

The remainder of the dissertation is organized as follows. Chapter 2

presents a penalized nonparametric maximum likelihood estimation of

the log-hazard function with the right censored data. In particular, the

log-hazard is approximated by a linear combination of the B spline basis,

which derives a smoothed estimator. A reproducing kernel Hilbert space

is established with a special inner product. The most appealing fact is

that a functional Bahadur representation is established in the reproduc-

ing kernel space, which serves as a key technical tool for nonparametric

inference of the unknown parameter/function. Both pointwise and glob-

al asymptotic properties of the resulting estimator of the unknown log-

hazard function are proved. Furthermore, the local confidence interval

and simultaneous confidence band of the unknown log-hazard function

are provided, along with a local and global likelihood ratio tests. We also

investigate issues related to the asymptotic efficiency. The fast comput-

ing algorithm is used to calculate the estimators.

As the second main part of this thesis, the aforementioned nonpara-
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metric inference approach is extended to handle interval censored data

in Chapter 3. In particular, we focus on the nonparametric inference of

the cumulative hazard function, instead of the log-hazard function of the

interval censored data. That is because it’s not so easy to take care of

the inner space with log-hazard. Similarly, we have derived a functional

Bahadur representation and established the asymptotic properties of the

resulting estimate of the cumulative function. Particularly, the global

asymptotic properties are justified under regularity conditions. A like-

lihood ratio test is also provided. Besides, some constrained algorithm

would be used to calculate the estimator.

Some conclusions and future work would be related in Chapter 4.
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Chapter 2

Nonparametric Statistical

Inference for Right Censored

Data Using Smoothing

Splines

This chapter focuses on the statistical inference about the penalized non-

parametric maximum likelihood estimation for right censored data using

the smoothing splines. A functional Bahadur representation is derived

firstly, which is the key technical tool of the chapter. Based on the func-

tional Bahadur representation, we study the asymptotic properties about

the estimator. Then the local confidence interval and simultaneous con-

fidence band about the estimator is given as by products. After that, the

local and global likelihood ratio test are shown. Besides, some optimal

and efficiency issues are figured out. Simulation studies are carried out

to verify the theories. A real data example is demonstrated.
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2.1 Introduction

In survival analysis, the outcome variable of interest is the time until the

occurrence of an event, such as occurrence of a disease, death, marriage,

etc. The time-to-event or survival time is usually measured in days, weeks

or years, which is typically positive. Censored observations, of which the

survival time is incomplete, are collected frequently in medical studies,

reliability and many other fields related to survival analysis. The most

commonly encountered case is right censoring. To accommodate cen-

soring, state-of-the-art statistical methodologies have been developed in

past decades, including parametric, semiparametric and nonparametric

methods.

Parametric approaches assume that the underlying distributions of

the time-to-events are certain known probability distributions. For ex-

ample, the exponential, lognormal and Weibull distributions are among

those commonly used ones. Parametric methods are appealing to prac-

titioners owing to their convenience and ease of interpretation (Johnson

and Kotz (1970), Mann et al. (1974),Lawless (2011), Kalbfleisch and

Prentice (2011)). The most extensively used semiparametric model for

the analysis of survival data is the celebrated Cox’s proportional hazards

model, in which it is assumed that the hazard function of the survival

time is multiplicatively related to an unknown baseline function and the

covariate; see Cox (1972),Cox (1975), Cox and Oakes (1984), Lin and
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Wei (1989) and Lin and Ying (1994). In contrast to parametric models,

Cox’s model makes no assumption on the shape of the baseline hazard

function, and provides easy-to-interpret information for the relationship

of the hazard function of the survival time and the covariates. The

parameter regarding the covariate effect in the Cox’s model is usual-

ly estimated by maximizing the partial likelihood, and its large-sample

properties are beautifully justified with the martingale theory; see An-

dersen and Gill (1982), Kosorok (2008), and Fleming and Harrington

(2011). In the analysis of survival data, an important alternative to the

Cox’s proportional hazards model is the accelerated failure time model

(AFT), which assumes the logarithm of the survival time is linearly re-

lated to the covariates; Kalbfleisch and Prentice (1980),Cox and Oakes

(1984), Wei (1992) and Zeng and Lin (2007). Intriguing semiparametric

inference methods for the AFT model have been studied thoroughly in

the literature, Buckley and James (1979),Prentice (1978),Ritov (1990),

Tsiatis (1990), Wei et al. (1990), Lai and Ying (1991a), Lai and Ying

(1991b), Lin et al. (1993) and Lin and Chen (2013).

Parametric and semiparametric methods rely very much on the dis-

tributional or model assumption. However, the underlying distribution

or model is often unknown, and the inference based on the parametric

and semiparametric models may suffer from possibly mis-specification.

Without making assumption about the unknown distribution or an ac-

25



tual model form, nonparametric inference concerned about the hazard

rate, survival function and density function are proposed in the litera-

ture, as hazard function is closely tied to survival function and density

function through a direct relationship. Among them, the Kaplan-Meier

estimator Kaplan and Meier (1958) was the nonparametric maximum

likelihood estimator, which enjoys the self-consistency and asymptotic

normality, see Efron (1967) and Breslow and Crowley (1974). Although

the Kaplan-Meier estimator is well developed and easy to calculate, the

discontinuous property would hinder the sophisticated inference. There-

by, some smoothed estimator of the hazard and density estimators are

developed. For example, with censored survival data, kernel smooth-

ing and nearest neighbor smoothing on the time axis are well-known

approaches to estimate the density function or the hazard function; see

Beran (1981), Dabrowska (1987),Gray (1992). In order to avoid the selec-

tion of bandwidth, ease the computation and give a smoothed estimator,

penalized likelihood methods for the estimation of the hazard rate using

the smoothing splines are developed in the literature; see Anderson and

Senthilselvan (1980), O’Sullivan (1988) and Rosenberg (1995). It is also

known that kernel estimates reflect mostly the local structure with the

data, and estimates of the density function or the hazard function based

on smoothing splines with a global smoothing parameter enjoy better

global properties (O’Sullivan et al. (1986)). Except some consistency
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properties for the smoothing splines hazard estimate were reported (Cox

(1972)), to the best of our knowledge, there are limited discussion on

the theoretical properties of the estimate of the hazard function using

smoothing splines in the literature. Moreover, the nonparametric infer-

ence for the hazard function is subject to a positivity constraint, which

makes the computation complicated. In this chapter, we target at the

log-hazard rate in a nonparametric framework Kooperberg et al. (1995)

provide a penalized likelihood estimate using smoothing splines. Our

major contribution of this chapter is to establish the local and global

asymptotic properties of the proposed log-hazard estimator.

The rest of the chapter is organized as follows. Some background

and preliminary knowledge are given in section 2.2. In section 2.3, we

report a new functional Bahadur representation (FBR) in the Sobolev

space, and investigate the local and global asymptotic properties of the

resulting estimate of the log-hazard rate; We discuss the hypothesis test

in section 2.4 and some simulation results are presented in section 2.5. In

Section 2.6 our method is applied to a non-Hodgkin’s lymphoma dataset.

Section 2.7 contains some concluding remarks and further discussions.

All technical proofs are deferred to the Section 2.8.
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2.2 Preliminaries

2.2.1 Notation and Methodology.

We introduce notations that will be used throughout this chapter. Let

T be the survival time and let C be the censoring time. We define the

observation time Y = min(T,C) and δ = I(T ≤ C) be the censoring in-

dicator, where I(·) is the indicating function. Moreover, we denote λ(t)

as the hazard rate/function of the survival time and g0(t) = log(λ(t)).

λ(t) : I 7→ R is bounded away from 0 and infinity (this already is assump-

tion). Without loss of generality, we consider I = [0, 1]. Suppose that

the observed data (Yi, δi), i = 1, . . . , n, are independent and identically

distributed (i.i.d) copies of (Y, δ). Then, the log-likelihood of g is:

ln(g) = −
∫
I
exp{g(t)}Sn(t) dt+

1

n

n∑
i=1

δig(Yi),

where Sn(·) is the empirical survival function of Y ; see O’Sullivan (1988).

Let l(g) ≡ E{ln(g)}. A direct calculation yields that

l(g) = −
∫
I
exp{g(t)}S(t) dt+

∫
I
exp{g0(t)}g(t)S(t) dt,

where S(t) is the survival function of Y . Throughout this chapter, we

consider the true target function g0(t) belongs to the mth-order Sobolev
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space Hm(I) shorten as Hm:

Hm(I)

={g : I 7→ R|g(j) is absolutely continuous for j = 0, 1, . . . ,m− 1, g(m) ∈ L2(I)}.

where the constant m > 1/2 and is assumed to be known, g(j) is the jth

derivative of g and L2(I) is the L2 space defined in I. Define J(g, g̃) =∫
I g

(m)(t)g̃(m)(t) dt. The penalized likelihood of g(·) is defined as:

ln,λ(g) = ln(g)− λ

2
J(g, g),

where J(g, g) is the roughness penalty and λ is the smoothing parameter,

which converges to 0 as n→∞.

For the inference of g0(t), we propose to use B-splines to approximate

g in ln,λ(g). For the finite closed interval I, we define a partition of I:

0 = t1 = . . . = tl < tm+1 < . . . < tmn+m < tmn+m+1 = . . . = tmn+2m = 1,

with which [0, 1] is partitioned into mn + 1 subintervals with knots set

I ≡ {ti}mn+2m, and mn = o(nv) for 0 < v < 1/2. Let {Bi,m, 1 ≤ i ≤

qn} denote the B-spline basis functions with qn = mn + m. Let Ψm,I

(with order m and knots I) be the linear space spanned by the B-spline

functions, that is

Ψm,I = {
qn∑
i=1

θiBi,m : θi ∈ R, i = 1, . . . , qn}.
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It follows from Schumaker (1981) that there exists a smoothing spline

gn(t) ∈ Ψm,I such that ‖gn(t) − g0(t)‖∞ = O(n−vm) and ‖g(t)‖∞ ≡

supt∈I |g(t)|. Now, we define

ĝn,λ ≡ arg max
g∈Ψm,I

ln,λ(g)

= arg max
g∈Ψm,I

{
ln(g)− λ

2
J(g, g)

}

as the estimator of g0(t). The numerical implementation of solving the

above objective function is available in O’Sullivan (1988) with a fast

computation algorithm. Moreover, a data-driven method based on AIC

criterion was suggested to select the smoothing parameter λ.

2.2.2 Reproducing Kernel Hilbert Space

We now present some useful properties about the reproducing kernel

Hilbert space (RKHS) as in Shang and Cheng (2013). First of all, it

is known that when m > 1/2, Hm is a RKHS with the inner prod-

uct < g, g̃ >λ=
∫
I g(t)g̃(t) exp{g0(t)}S(t) dt + λJ(g, g̃) and the norm

‖g‖2
λ =< g, g >λ . Furthermore, there exists a positive definite self-

adjoint operatorWλ : Hm 7→ Hm, which satisfies: < Wλg, g̃ >λ= λJ(g, g̃)

for any g, g̃ ∈ Hm Denote V (g, g̃) =
∫
I g(t)g̃(t) exp{g0(t)}S(t) dt. Then,

it follows directly that

< g, g̃ >λ= V (g, g̃)+ < Wλg, g̃ >λ .
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Let K(·, ·) be the reproducing kernel of Hm defined on I× I. Then it is

known to possess the following properties:

(P1) Kt(·) = K(t, ·) and < Kt, g >λ= g(t) for any g in Hm and any t in

I.

(P2) There exists a constant cm depending on m only, such that ‖Kt‖λ ≤

cmh
−1/2 for any t ∈ I and h = λ1/(2m). Hence, we have ‖g(t)‖∞ ≤

cmh
−1/2‖g‖λ for any g ∈ Hm.

We denote two positive sequences an and bn as an � bn if they satisfy

limn→∞(an/bn) = c > 0. There exists a sequence of eigenfunctions hj ∈

Hm and eigenvalues γj satisfying the following properties:

(P3) supj∈N ‖hj‖∞ <∞, γj � j2m, where N = {0, 1, . . .};

(P4) V (hi, hj) = δij, J(hi, hj) = rjδij, where δij is a Kronecker delta,

that is δij = 1 when i = j; otherwise, δij = 0.

(P5) For any g ∈ Hm, we have g =
∑∞

j=0 V (g, hj)hj with convergence in

the ‖ · ‖λ-norm.

(P6) For any g ∈ Hm and t ∈ I, we have ‖g‖2
λ =

∑∞
j=0 V (g, hj)

2(1 +

λγj), Kt(·) =
∑∞

j=0 hj(t)hj(·)/(1 + λγj) and Wλhj(·) = (λγj)/(1 +

λγj)hj(·).

Following Shang and Cheng (2013, page 2613), the eigenvalues and

eigenfunctions can be solved through the ordinary differential equations
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(ODE):

(−1)mh
(2m)
j (·) = γj exp(ĝ(·))Sn(·)hj(·),

h
(k)
j (0) = h

(k)
j (1) = 0, k = m,m+ 1, · · · , 2m− 1.

(2.1)

For ease of presentation, we introduce more notations related to the

Fréchet derivatives. Let Sn(g) and Sn,λ(g) be the Fréchet derivatives

of ln(g) and ln,λ(g), respectively. Similarly, let S(g) and Sλ(g) be the

Fréchet derivatives of l(g) and lλ(g), respectively. Let D be the Fréchet

derivative operator and g1, g2, g3 ∈ Hm be any direction. Then, we have

Dln,λ(g)g1 = −
∫
I
exp{g(t)}g1(t)Sn(t) dt+

1

n

n∑
i=1

δig1(Yi)− < Wλg, g1 >λ

=< Sn(g), g1 >λ − < Wλg, g1 >λ

=< Sn,λ(g), g1 >λ,

where Sn(g) = −
∫
I exp{g(t)}KtSn(t) dt + n−1

∑n
i=1 δiKYi and Sn,λ(g) =

Sn(g)−Wλg. Moreover,

D2ln,λ(g)g1g2 = −
∫
I
exp{g(t)}g1(t)g2(t)Sn(t) dt− < Wλg1, g2 >λ,

D3ln,λ(g)g1g2g3 = −
∫
I
exp{g(t)}g1(t)g2(t)g3(t)Sn(t) dt.
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Further, by a direct calculation, we can express

S(g) = Dl(g)

= −
∫
I
exp{g(t)}KtS(t) dt+

∫
I
exp{g0(t)}KtS(t) dt = E{Sn(g)},

as well as Sλ(g) = S(g)−Wλg. Besides,

D{S(g)g1}g2 = D2l(g)g1g2 = −
∫
I
exp{g(t)}g1(t)g2(t)S(t) dt.

Hence, we have the following result:

< DSλ(g0)f, g >λ = < D{S(g0)−Wλg0}f, g >λ

= < DS(g0)f, g >λ − < Wλf, g >λ

= < −
∫
I
exp{g(t)}f(t)KtS(t) dt, g >λ − < Wλf, g >λ

= −
∫
I
g(t)f(t) exp{g0(t)}S(t) dt− λJ(g, f)

= − < f, g >λ .

Proposition 2.1. DSλ(g0) = −id, where id is the identity operator on

Hm.

This proposition will be playing an important role in deriving a func-

tional Bahadur representation (FBR) about the proposed estimator.
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2.3 Functional Bahadur Representation

In this section, we derive and present the major technical tool: functional

Bahadur representation (FBR), which laid down a theoretical foundation

for statistical inference procedures in later sections. With the help of the

FBR, we establish the asymptotic normality of the proposed smoothing

spline estimate. Likelihood ratio test procedure are also justified rigor-

ously. To begin with, we present a lemma regarding the consistency of

the proposed estimate for obtaining the FBR. All theoretical conditions

and proofs are deferred to Appendix.

Lemma 2.1. (Consistency) Suppose conditions(C2.1)-(C2.3) given in

Appendix hold. Then, if λ(n(1−v)/2 + nvm) → 0 as n → ∞ for 0 < v <

1/2, we have

‖ĝn,λ − g0‖∞ = op(1),

J(ĝn,λ − g0, ĝn,λ − g0) < C̃,

where C̃ is a constant larger than 1.

In fact, the consistency of the estimator with the infinity norm can be

derived by Cox and O’Sullivan (1990). But the second theoretical result

is given firstly by us.

To obtain the rate of convergence of the proposed estimator, we next

drive a concentration inequality of certain empirical process. Define G =
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{g ∈ Hm : ‖g‖∞ ≤ 1, J(g, g) ≤ C̃}, where C̃ is specified in Lemma 2.1.

We next define

Zn(g) ≡ 1√
n

n∑
i=1

[ϕn(Yi, g)− E{ϕn(Yi, g)}],

where ϕn(Yi, g) is a real-valued function in Hm.

Lemma 2.2. Suppose that ϕn(Y, g) satisfies the following condition:

‖ϕn(Y, f)− ϕn(Y, g)‖λ ≤ ‖f − g‖∞ for any f, g ∈ G. (2.2)

Then, we have

lim
n→∞

P

[
sup
g∈G

‖Zn(g)‖λ
‖g‖1−1/(2m)

∞ + n−1/2
≤ {5 log log(n)}1/2

]
= 1.

By Lemma 2.1 and Lemma 2.2, we obtain the convergence rate of our

estimate which is presented in the following theorem:

Theorem 2.1. (Convergence Rate) Assume that conditions(C2.1)-(C2.3)

given in Appendix are satisfied. Then, when log{log(n)}/(nh2) → 0,

λ{n(1−v)/2 + nvm} → 0 as n→∞, we have

‖ĝn,λ − g0‖λ = Op

(
(nh)−1/2 + hm

)
.

Remark 1. If h � n−1/(2m+1), Theorem 2.1 suggests that ĝn,λ achieves

the optimal rate of convergence when we estimate g0 ∈ Hm, that is

Op(n
−m/(2m+1)).
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Based on Theorem 2.1, we are ready to present the key technical

tool of this chapter, a new version of functional Bahadur representation

compare with that of Shang and Cheng (2013).

Theorem 2.2. (Functional Bahadur Reprensentation) Assume that conditions(C2.1)-

(C2.3) hold. Then, if log{log(n)}/(nh2) → 0, λ(n(1−v)/2 + nvm) → 0 as

n→∞, we have

‖ĝn,λ − g0 − Sn,λ(g0)‖λ = Op(αn),

where Sn,λ(g0) = n−1
∑n

i=1

∫
I exp(g0(t))Kt dMi(t)−Wλ(g0),

αn = n−1/2−vm + n−vm{(nh)−1/2 + hm}+ h−1/2{(nh)−1 + h2m}

+ h−(6m−1)/(4m)n−1/2{log log(n)}1/2{(nh)−1/2 + hm}.

In fact, one of the key results leading to the FBR in Theorem 2.2

is Proposition 2.1, which can be seen from the proofs of Theorem 2.2

in Appendix. Moreover, Theorem 2.2 reveals that the “bias” of our

estimate ĝn,λ is approximately Sn,λ(g0), a sum of certain independent

and identical random variables. Applying this result, we immediately

obtain the following result regarding the asymptotic normality:

Theorem 2.3. Assume conditions (C2.1)-(C2.3) hold. For m > 3/4 +

√
5/4 and 1/(4m) ≤ v ≤ 1/(2m), suppose nh4m−1 → 0 and nh3 →∞ as

n→∞. Then, we have:
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(i) For any t0 ∈ I,

√
nh{ĝn,λ(t0)− g(t0)−Wλg0(t0)} d−−→ N(0, σ2

t0
),

where σ2
t0
≡ limh→0 h

∑∞
j=0 h

2
j(t0)/(1 + λγj)

2 and
d−−→ means con-

verges in distribution.

(ii) Moreover, we have
√
nh{ĝn,λ(t)− g0(t)−Wλg0(t)} converges weak-

ly in I to a mean zero Gaussian process Z(t) with the covariance

function at (s,t) equals to Σ(s, t), where

Σ(s, t) = lim
h→0

h
∞∑
j=0

hj(t)hj(s)

(1 + λγj)2
.

Remark 2. The second part of Theorem 2.2 provides the weak con-

vergence of our proposed estimate. To the best of our knowledge, there is

no report in the literature regarding the weak convergence to a Gaussian

process of a smoothing spline-type estimate.

Corollary 2.1. Assume conditions(C2.1)-(C2.3) hold. For m > 3/2 and

1/(4m) ≤ v ≤ 1/(2m), suppose nh2m → 0 and nh3 → ∞ as n → ∞.

Then, for any t0 ∈ I, we have

√
nh{ĝn,λ(t0)− g0(t0)} d−−→ N(0, σ2

t0
)

with σ2
t0

defined in Theorem 2.1. In addition, we show that
√
nh{ĝn,λ(t)−

g0(t)} converges weakly in I to a zero-mean Gaussian process Z(t) with
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the covariance function at (s,t) equals to Σ(s, t).

Remark 3. Corollary 2.1 implies that, under certain under-smoothing

conditions, the asymptotic bias for the estimation of g0(t0) vanishes.

Hence, Corollary 2.1 together with the so-called Delta-method imme-

diately gives the pointwise confidence interval (CI) for some real-valued

smooth function of g0(t) at any fixed point t0 ∈ I, denoted by ρ
(
g0(t0)

)
.

Let ρ̇(·) be the first derivative of ρ(·). By Corollary 2.1, for any fixed

point t0 ∈ I, if ρ̇
(
g0(t0)

)
6= 0, we have

P

(
ρ
(
g0(t0)

)
∈

[
ρ
(
ĝn,λ(t0)

)
± Φα

2

ρ̇
(
g0(t0)

)
σt0√

nh

])
→ 1− α

as n → ∞, where Φ(·) is the standard normal cumulative distribution

function and Φα is the lower α-th quantitle of Φ(·), that is Φ(Φα) = α.

As for the simultaneous confidence band, we employ the resampling

method of Lin et al. (1993) for distributional approximation. For illustra-

tion, let (G1, . . . , Gn) be independent standard normal random variables,

independent of the data (Yi, δi), i = 1, . . . , n. It can be shown that the

distribution of the limiting process Z(t) can be approximated by that of

the following zero-mean Gaussian process

Ẑ(t) ≡ 1√
nh−1

n∑
i=1

∫
I
Kt(s) dMi(s)Gi, (2.3)

where Mi(t) ≡ Ni(t) −
∫ t

0
I(Yi ≥ s) exp{g0(s)} ds, and Ni(t) = I(Yi ≤
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t, δi = 1). It is well-known that Mi(t) is a martingale. In view of this fact,

we obtain a large number of realizations of Ẑ(t) by repeatedly generating

the standard normal random samples (G1, . . . , Gn) while fixing the data.

Thus, one may use the empirical distribution of these random samples to

approximate the distribution of Z(t). In particular, the α-percentile of

supt∈I |Z(t)| can be approximated by the empirical percentile of a large

number of realizations of supt∈I |Ẑ(t)|, denoted by Ĝα. As a result, we

can construct the global confidence band of g0(t) as follows:

(
ĝn,λ(t)−

1√
nh
Ĝα, ĝn,λ(t) +

1√
nh
Ĝα

)
.

2.4 Likelihood Ratio Test

With the help of the FBR, we consider further inference of g0(·) by testing

local and global hypothesis. In this section, we focus on likelihood ratio

tests for testing g0(·).

2.4.1 Local Likelihood Ratio Test

We consider the following hypothesis for some pre-specified (t0, ω0):

H0 : g(t0) = ω0 versus H1 : g(t0) 6= ω0.
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The penalized log-likelihood under H0, or the “constrained” penalized

log-likelihood by Shang and Cheng (2013), is defined as:

Ln,λ(g) = −
∫
I
exp{g(t) + ω0}Sn(t) dt+

1

n

n∑
i=1

δi{g(Yi) + ω0} −
λ

2
J(g, g),

where g ∈ H0 = {g ∈ Hm : g(t0) = 0}. We consider the following

likelihood ratio test (LRT) statistic:

LRTn,λ = ln,λ(ω0 + ĝ0
n,λ)− ln,λ(ĝn,λ),

where ĝ0
n,λ ≡ arg maxg∈Ψ0

m,I
Ln,λ(g) is the MLE of g in

Ψ0
m,I = {

qn∑
i=1

θiBi,m,

qn∑
i=1

θiBi,m(t0) = 0}.

Clearly, H0 is a closed subset in Hm, and hence it is a Hilbert space

endowed with the norm ‖ · ‖λ.

The following proposition states the reproducing kernel and penalty

operator of H0 inherited from Hm without proofs.

Proposition 2.2. The reproducing kernel and penalty operator of H0

inherited from Hm satisfy the following properties:

(a) Recall that K(t1, t2) is the reproducing kernel for Hm under

< ·, · >λ. Then, the bivariate function

K∗(t1, t2) = K(t1, t2)−K(t0, t1)K(t0, t2)/K(t0, t0)
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is a reproducing kernel for (H0, < ·, · >λ). That is, for any t ∈ I

and g ∈ H0, we have K∗t ≡ K∗(t, ·) ∈ H0 and < K∗t , g >λ= g(t).

Moreover, we have ‖K∗‖λ ≤
√

2cmh
−1/2, where cm is the same as

in P2.

(b) The operator W ∗
λ , defined by W ∗

λg ≡ Wλg−(Wλg)(t0)Kt0/K(t0, t0),

is bounded linear fromH0 toH0 and satisfies < W ∗
λg, g̃ >= λJ(g, g̃),

for any g, g̃ ∈ H0.

Based on Proposition 2.2, we are in the position to derive the func-

tional Bahadur representation (FBR) for ĝ0
n,λ under null hypothesis, or

the so-called “restricted” FBR for ĝ0
n,λ, which will be used to obtain the

limiting distribution under null. A direct calculation yields the Fréchet

derivatives of Ln,λ (along directions in H0). Consider g1, g2, g3 ∈ H0.

The first-order of Fréchet derivative of Ln,λ, denoted by S0
n,λ, can be
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calculated as follows:

DLn,λ(g)g1

= −
∫ 1

0

exp{g(t) + ω0}Sn(t)g1(t) dt+
1

n

n∑
i=1

δig1(Yi)

− < W ∗
λg, g1 >λ

= −
∫ 1

0

exp{g(t) + ω0}Sn(t) < K∗t , g1 >λ dt+
1

n

n∑
i=1

δi < K∗Yi , g1 >λ

− < W ∗
λg, g1 >λ

=< −
∫ 1

0

exp{g(t) + ω0}Sn(t)K∗t dt, g1 >λ +
1

n

n∑
i=1

δi < K∗Yi , g1 >λ

− < W ∗
λg, g1 >λ

=< S0
n(g), g1 >λ − < W ∗

λg, g1 >λ

=< S0
n,λ(g), g1 >λ,

where S0
n(g) = −

∫ 1

0
exp{g(t)+ω0}Sn(t)K∗t dt+n

−1
∑n

i=1 δiK
∗
Yi

and S0
n,λ(g) =

S0
n(g)−W ∗

λg. Define S0(g) ≡ E{S0
n(g)} and S0

λ(g) ≡ S0(g)−W ∗
λg. Nex-

t, we denote the second-order and the third-order Fréchet derivatives

of Ln,λ(g) as D2Ln,λ(g)g1g2 and D3Ln,λ(g)g1g2g3 respectively. Further

calculation yields that

D2Ln,λ(g)g1g2 = −
∫ 1

0

exp{g(t) + ω0}Sn(t)g1(t)g2(t) dt− < W ∗
λg2, g1 >λ,
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and

D3Ln,λ(g)g1g2g3 = −
∫ 1

0

exp{g(t) + ω0}Sn(t)g1(t)g2(t)g3(t) dt.

We consider the derivative of S0
λ(g) and obtain

DS0
λ(g)g1g2 = −

∫ 1

0

exp{g(t) + ω0}S(t)g1(t)g2(t) dt− < W ∗
λg2, g1 >λ .

Then, by defining g0
0(t) = g0(t) − ω0, we got the following important

equation:

< DS0
λ(g0

0)f, g >λ =< D{S0(g0
0)}f, g >λ − < W ∗

λf, g >

= −
∫ 1

0

exp{g0
0(t) + ω0}S(t)f(t)g(t) dt− < W ∗

λf, g >λ

= − < f, g > .

We state this result as the next proposition.

Proposition 2.3. DS0
λ(g0

0) = −id, where id is the identity operator.

Similar to Theorem 2.1 in Section 2.3, we need to prove the rate of

convergence of the resulting estimator so as to obtain the FBR.

Proposition 2.4. (Convergence Rate) Assume conditions(C2.1)-(C2.3)

hold. Under H0, if log{log(n)}/(nh2) → 0, λ(n(1−v)/2 + nvm) → 0 as

n→∞, we have

‖ĝ0
n,λ − g0

0‖λ = Op((nh)−1/2 + hm).
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The proof of Proposition 2.4 is similar to that of Theorem 2.1. Hence

it is omitted. The next theorem follows directly from Propositions 2.2-

2.4.

Theorem 2.4. (Restricted Functional Bahadur Representation) Suppose

that conditions(C2.1)-(C2.3) are satisfied. Also, we assume that under

H0, log{log(n)}/(nh2)→ 0, λ(n(1−v)/2 +nvm)→ 0 as n→∞. Then, we

have

‖ĝ0
n,λ − g0

0 − S0
n,λ(g

0
0)‖λ = Op(αn),

where αn is defined in Theorem 2.2.

Our main result on the local likelihood ratio test follows immediately

from Theorem 2.4 and is presented below.

Theorem 2.5. (Local Likelihood Ratio Test) Assume conditions(C2.1)-

(C2.3) hold. For m > (5 +
√

21)/4 and 1/(4m) ≤ v ≤ 1/(2m), suppose

that nh2m → 0 and nh4 → ∞ as n → ∞. Furthermore, for any t0 ∈ I,

if σt0 6= 0, let ct0 = limh→0 V (Kt0 , Kt0)/‖Kt0‖2
λ ∈ (0, 1]. Then, under H0,

we have:

(i) ‖ĝn,λ − ĝ0
n,λ − ω0‖λ = Op(n

−1/2);

(ii) −2nLRTn,λ = n‖ĝn,λ − ĝ0
n,λ − ω0‖2

λ + op(1);

(iii) −2nLRTn,λ
d−−→ ct0χ

2
1.
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Remark 4. The central Chi-square limiting distribution in part (iii)

above is established under those under-smoothing assumptions in The-

orem 2.5. One may also relax those conditions for h at the price of

obtaining a noncentral Chi-square limiting distribution. We also note

that the convergence rate stated in Theorem 2.5 is reasonable under lo-

cal restriction.

2.4.2 Global Likelihood Ratio Test

It is of paramount importance to study the global behavior of a smooth

function. In this section, we consider the following “global” hypothesis:

Hglobal
0 : g = g0 versus H1 : g 6= g0,

where g0 ∈ Hm can be either known or with unknown. The penalized

likelihood ratio rest (PLRT) statistic is defined as:

PLRTn,λ ≡ ln,λ(g0)− ln,λ(ĝn,λ).

We next derive the null limiting distribution of PLRTn,λ.

Theorem 2.6. Assume conditions(C2.1)-(C2.3) hold. For m > (3 +

√
5)/4 and 1/(4m) ≤ v ≤ 1/(2m), suppose that nh2m+1 = O(1) and

nh3 →∞ as n→∞. Define σ2
λ ≡

∑∞
j=0 h/(1 + λγj), ρ2

λ ≡
∑∞

j=0 h/(1 +

λγj)
2, γλ ≡ σ2

λ/ρ
2
λ, νλ ≡ h−1σ4

λ/ρ
2
λ. Under Hglobal

0 , we have

(2νλ)
−1/2(−2nγλPLRTn,λ − nγλ‖Wλg0(t)‖2

λ − νλ)
d−−→ N(0, 1).

45



In fact, the null limiting distribution above remains unchanged when

g0 in the null hypothesis is unknown. Moreover, it can be easily verified

that h � n−d with 1/(2m + 1) ≤ d < 1/3 satisfies those conditions in

Theorem 2.6. We can also show that n‖Wλg0‖2 = o(h−1) = o(νλ). Thus,

−2nγλPLRTn,λ is asymptotically N(νλ, 2νλ), which approaches χ2
νλ

as n

goes to infinity. In other words, we have

−2nγλPLRTn,λ ∼ χ2
νλ
,

suggesting the Wilks phenomenon holds for the PLRT.

Lastly, to conclude this section, we show that the PLRT achieves the

optimal minimax rate of testing given by Ingster (1993) based on the

uniform version of the FBR. To this end, we consider the alternative

hypothesis H1n : g = gn0 , where gn0 = g0 + gn, g0 ∈ Hm and gn belongs

to the alternatives value set A = {g ∈ Hm, exp{gn(t)} ≤ ζ, J(g, g) ≤ ζ}

for some constant ζ > 0.

Theorem 2.7. Assume that conditions(C2.1)-(C2.3) are satisfied. For

m > (3 +
√

5)/4 and 1/(4m) ≤ v ≤ 1/(2m), suppose that h � n−d for

1/(2m + 1) ≤ d < 1/3 and uniformly over gn ∈ A, ‖ĝn,λ − gn0‖λ =

Op

(
(nh)−1/2 + hm

)
holds under H1n : g = gn0 . Then, for any δ ∈ (0, 1),

there always exist positive constants C and N such that

inf
n≥N

inf
gn∈A,‖gn‖λ≥Cηn

P (reject Hglobal
0 |H1n is true) ≥ 1− δ,

46



where ηn ≥
√
h2m + (nh1/2)−1. Moreover, the minimal lower bound of ηn

is n−2m/(4m+1), which can be achieved when h = h∗∗ = n−2/(4m+1).

Importantly, when h = h∗∗ = n−2/(4m+1), Theorem 2.7 proves that

the PLRT can detect any local alternatives with separation rate no faster

than n−2m/(4m+1), which is actually the minimax rate of hypothesis test-

ing in the sense of Ingster (1993).

2.5 Simulation Results

To verify the theoretical results, we present three simulated examples in

this section. In the simulation studies, we set ν = 1/5 and the number

of knots is [3 × n1/5], where [x] is the integer part of x. Fore ease of

presentation, more notations are needed. We define

H ≡
∫ 1

0

exp{g(t)}B(s)B(s)>Sn(s) ds,

Ωlk ≡
∫ 1

0

B̈l,m(s)B̈k,m(s) ds, l, k = 1, 2, . . . , qn,

Ω = (Ωlk) which is the matrix with the (l, k) element being Ωlk and

B̈l,m(s) is the second derivative of Bl,m(s). The following AIC criterion

proposed by O’Sullivan (1988) is used to select the smoothing parameter

λ:

AIC(λ) = −ln(ĝn,λ) +
trace[(Ĥ + λΩ)−1Ĥ]

n
,
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In linear algebra, the trace of an n-by-n square matrix A is defined to

be the sum of the elements on the main diagonal (the diagonal from the

upper left to the lower right) of A.

Example 1: In this example, the failure time follows Beta(1, β1) and

the censoring time follows Beta(1, 1−β1), where β1 is chosen to yield 20%

or 40% censoring rate. The sample size n = 250, 500 and the replication

time is 500.

To examine the performance of the pointwise confidence interval and

global simultaneous confidence band, we compare our method with the

Bayesian confidence interval proposed by Wahba (1983), denoted by B-

CI. And its corresponding coverage probability is denoted by BCP. We

refer our proposed pointwise (local) confidence interval and its coverage

probability as LCI and LCP, while we refer our proposed simultaneous

(global) confidence band as GCI. Through the simulations, we find that

exp(ĝ(t))Sn(t) is nearly flat in the interval [0.2, 0.8], we set the eigen-

functions as the trigonometric series. To be specific, we let r be the mean

value of [{exp(ĝ(t))Sn(t)}]1/2, t ∈ [0.2, 0.8]. Thus, the eigenfunctions and

eigenvalues are given as the following:

hj(t) =


1/r, j = 0;√

2 sin(2πk)/r, j = 2k − 1, k = 1, 2, . . . ;√
2 cos(2πk)/r, j = 2k, l = 1, 2, . . . ;
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γj(t) =


0, j = 0;
(2πk)2m

r2
, j = 2k − 1, k = 1, 2, . . . ;

(2πk)2m

r2
, j = 2k, l = 1, 2, . . . ;

Then following from the method in Shang and Cheng (2013) on page

2631, we can get the estimate of σt0 . Specifically, we can estimate σt0

by I2r
−(2−1/m)/π, where I2 =

∫∞
0

(1 + x2m)−2 dx. By plugging in the

eigenfunctions and eigenvalues obtained previously into 2.3 to get Ĝα,

we can compute the global coverage probability (CP). The simulation

results are presented in Figures 1-2. We observe that the length of our

proposed local confidence interval (LCI) is shorter than that of Wahba’s

method (1983), which is consistent with that of Shang and Cheng (2013).

The LCP is close to 95% for t ∈ [0.1, 0.8] while the BCP is almost 1 due to

over-estimation in the variance. Besides, table 1 gives the Global CP at

different intervals. From the table, we can get that the global confidence

band is reasonable.

To show the power of the test, we considered the test functions: g(t) =

log(β1)−log(1−x)+cx, with c = 0, 0.5, 1, 1.5. As J(g, g) =∞, we modify

PLRTn,λ � ln(g0)−ln(ĝn,λ). The results about the global likelihood ratio

tests are listed in Table 2. From the table, we can find that when c = 0,

the power is around 5% or less 5%, and when c > 0, the power increases

to 1 with the samples or c increasing. This means that the modified
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PLRTn,λ can also do some likelihood ratio test when J(g, g) =∞, namely

the true function do not belong to the Hm.

Example 2: The failure time is generated from the truncated Weibull

distribution on [0.1,∞] with density function

f(x) ∝ k

λ
(
x

λ
)k−1 exp(−(

x

λ
)k), x ∈ [0.1,∞],

with k = 2.8 and λ = 0.8. We generate the censoring time from the

truncated Weibull distribution on [0.1, 1.1] with λ = 5 and k is chosen to

yield 20% and 40% censoring rate. In this example, we set m=2. We are

able to obtain the eigenvalues and eigenfunctions of the Hilbert space by

solving the ODE functions (2.1) numerically, which therein are used in

the estimation of σt0 and Ĝα similar to Example 1. The simulation results

of the pointwise and global confidence interval and coverage probability

are reported in Figures 3-4. We observe that the local and global CI and

CP exhibit similar patterns as in example 1, for example, LCP is close

to 95% for [0.2, 0.9] and the global confidence band works reasonably

well.

To show the power of the test, we consider the test functions: g(t) =

log(k)+(k−1) log(t)−k log(λ)+cx, with c = 0, 0.5, 1, 1.5. Still following

from the ODE function (2.1), we can get the eigenvalues of the different

g are γj ≈ (αj)2m, with α = 2.9162, 2.4562, 2.6543, 2.2476 and alpha =

3.1169, 2.9013, 2.6673, 2.4820 with the censoring rate being 20%, n=250

and n=500, respectively. Then we can get the γλ = 1.333 while hνλ =
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0.5078, 0.5579, 0.6029, 0.6589 or hνλ = 0.4751, 0.5104, 0.5552, 0.5967, re-

spectively. The results about the global likelihood ratio tests are listed in

Table 4. The table shows that when c = 0, the power is around 5%, and

when c > 0, the power increases to 1 with the samples or c increasing.

Example 3: In our simulation studies, the failure time follows from

the exponential distribution with the corresponding mean parameter 1/2,

while the censoring time follows from the uniform distribution Unif(0, L)

and the end of the study time is 1. L is chosen to yield the censoring rate

being 20% or 40%. We considered the sample sizes n = 250, 500 while

the replication times are 500.

To show the power of PLRTn,λ, we considered the test functions:

g(t) = log(2) + cx, with c = 0, 0.5, 1, 1.5. Following from the ODE func-

tion (2.1), we can get the eigenvalues of the different g are γj ≈ (αj)2m,

with α = 1.887, 1.7584, 1.6431, 1.5446 and α = 1.8727, 1.7665, 1.6507, 1.5572

with the censoring rate being 20%, n=250 and n=500, respectively. Then

we can get the γλ = 1.333 while hνλ = 0.7883, 0.8488, 0.9013, 0.9588 or

hνλ = 0.7908, 0.8384, 0.8972, 0.9510, respectively. Similarly, we can also

get the hνλ when the censoring rate is 40% and n=250, 500 respectively.

The results about the global likelihood ratio tests are listed in Table 5.

The table shows that when c = 0, the power is around 5%, and when

c > 0, the power increases to 1 with the samples or c increasing.
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2.6 Application

For illustration, we apply the proposal to analyze the study of non-

Hodgkin’s lymphoma Dave et al. (2004). The goal of the experiment

is to detect the effect of follicular lymphoma on the patients’ survival

time. The data were obtained from seven institutions from 1974 to 2001.

The samples are from 191 patients with untreated follicular lymphoma,

who are diagnosed at the ages from 23 to 81 years (median 51). The

follow-up times are ranging from 1.0 to 28.2 years (median 6.6). Af-

ter removing 4 samples with missing censoring indicator and observation

time, we have n = 187 samples and around 50% censoring rate. As

suggested by Iglewicz and Hoaglin (1993), we also calculate an outlier

statistic: Zi = 0.6745|Yi − median(Y )|/mad(Y ), where i refers to the

ith subject, median(Y ) and mad(Y ) are the median and median abso-

lute deviation of the 187 observation times, respectively. According to

Iglewicz and Hoaglin (1993), an observation is an outlier if Z > 3.5. In

this analysis, we observe that the 170th subject is the outlier. Then

we would clean it out and use the left samples to do the data analysis.

We standardize the survival times to range from 0 to 1. The results are

summarized in Figure 5.

For comparison, we also compute the Kaplan-Meier estimate, the

smooth Kaplan-Meier estimate and our proposed method about the cu-

mulative hazard function. Besides, we give the lower and up bound of the
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95% CI of cumulative hazard with the method of Kaplan-Meier estima-

tor. The results are shown in the left panel of Figure 5. From the figure,

we can get that our method can give an appropriate estimation, which is

very close to the other classical methods. The right panel in figure 5 gives

the estimation of the log-hazard of our method, the LCI and BCI. From

the figure, we can get that the pointwise interval is shorter than that

given by Wahba (1983), which are accordance to the simulation results.

2.7 Appendix

The following regularity conditions are assumed to prove the main results.

(C2.1) The probability P (min(T,C) ≥ 1) > 0.

(C2.2) The censoring time C and the survival time T are independent.

(C2.3) The hazard function of T , λ(t) is bounded away from 0 and ∞,

that is, there exist constants C1 > 0 and C2 < ∞ such that C1 ≤

λ(t) ≤ C2.

To prove Lemma 2.1, we define the inner product < ·, · >1 as a special

case of < ·, · >λ when λ = 1 and the corresponding norm ‖g‖2
1 =<

g, g >1.

Proof of Lemma 2.1. Let gn(t) be the B-spline function satisfying

‖gn − g0‖∞ = O(n−vm). Since any two norms in a finite dimensional

Hilbert space is equivalent, we choose hn ∈ Ψm,I satisfying ‖hn‖2 =

O(n−(1−v)/2 +n−vm) and ‖hn‖∞ = O(n−(1−v)/2 +n−vm). For some α ∈ R,
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write

Hn(α) = ln,λ(gn + αhn)

= −
∫
I
exp{gn(t) + αhn(t)}Sn(t) dt+

1

n

n∑
i=1

δi(gn + αhn)(Yi)

−1

2
< Wλ(gn + αhn), gn + αhn >λ .

The derivative of Hn(α) with respect to α is

H ′n(α)

= −
∫
I
exp{gn(t) + αhn(t)}hn(t)Sn(t) dt+

1

n

n∑
i=1

δihn(Yi)

− α < Wλhn, hn >λ − < Wλgn, hn >λ

= −
∫
I

[
exp

(
g0(t)

)
+ exp

(
g0(t)

){
gn − g0 + αhn(t)

}
{1 + o(1)}

]
hn(t)

× Sn(t) dt− α < Wλhn, hn >λ − < Wλgn, hn >λ +
1

n

n∑
i=1

δihn(Yi)

= −α
∫
I
h2
n(t){1 + o(1)} exp

(
g0(t)

)
Sn(t) dt− α < Wλhn, hn >λ

−

[∫
I
exp

(
g0(t)

)
hn(t)Sn(t) dt− 1

n

n∑
i=1

δihn(Yi)

]

−
∫
I
(gn − g0){1 + o(1)}hn(t) exp

(
g0(t)

)
Sn(t) dt− < Wλgn, hn >λ

≡ −αI1 − αI2 + I3 + I4 + I5.
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Because Sn(t) is a Donsker-Class,we have that ‖Sn(t)−S(t)‖∞ = Op(n
−1/2).

Then,

|I1| =

∣∣∣∣∫
I
h2
n(t){1 + o(1)} exp{g0(t)}Sn(t) dt

∣∣∣∣
≥ Op(1)P (Y ≥ 1)C1‖hn‖2

2

= Op(n
−(1−v) + n−2vm).

Next, we consider I3. In view of the fact that Mi(t) is a martingale, we

have

E{|I3|2} =
1

n
E

[
δihn(Yi)−

∫
I
exp{g0(t)}hn(t)Sn(t) dt

]2

=
1

n
E

{∫
I
hn(t) dMi(t)

}2

=
1

n

∫
I
h2
n exp{g0(t)}S(t) dt

= O(n−(2−v) + n−2vm−1).
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Thereby, we have I3 = Op(n
− (2−v)

2 + n−vm−1/2). On the other hand, from

‖gn − g0‖∞ = O(n−vm), we get

|I4| =

∣∣∣∣−∫
I
(gn − g0){1 + o(1)}hn(t) exp{g0(t)}Sn(t) dt

∣∣∣∣
≤

∣∣∣∣−∫
I
(gn − g0){1 + o(1)}hn(t) exp{g0(t)}{Sn(t)− S(t)} dt

∣∣∣∣
+

∣∣∣∣∫
I
(gn − g0){1 + o(1)}hn(t) exp{g0(t)}S(t) dt

∣∣∣∣
≤ Op(n

− 2−v
2
−vm + n−2vm−1/2) +O(n−

1−v
2
−vm + n−2vm).

Lastly, it follows from the property of B-spline that ‖g(m)
n (t)‖L2 ≤ C0, for some

constant C0 depending on ‖g(m)
0 (t)‖L2 and m, where ‖ · ‖L2 is the L2 norm,

which is the integral norm. Thus, we have

|I5| = |< Wλgn, hn >λ|

≤ λ‖g(m)
n ‖L2‖hn‖1

= λOp(n
− 1−v

2 + n−vm) = op(n
−(1−v) + n−2vm).

As a result, we can conclude that αH ′n(α) < 0. Further, it is not hard to see

that

H ′′n(α) = −
∫
I
exp{gn(t) + αhn(t)}h2

n(t)Sn(t) dt− < Wλhn, hn >λ ≤ 0,

which implies H ′n(α) is a nonincreasing function. Hence, ĝn,λ ∈ [gn−αhn, gn+

αhn]. Note that

‖ĝn,λ − g0‖∞ ≤ ‖ĝn,λ − gn‖∞ + ‖ĝn − g0‖∞

≤ α‖hn‖∞ +O(n−vm) = O(n−
1−v
2 + n−vm),
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which goes to zero as n→∞. Recall that any two norms in the finite dimen-

sion Hilbert Space are equivalent. Then, ‖ĝn,λ − gn‖1 = O(‖ĝn,λ − gn‖∞) =

O(n−
1−v
2 + n−vm). Therefore, we have

‖ĝn,λ − g0‖1 ≤ ‖ĝn,λ − gn‖1 + ‖gn − g0‖1

≤ O(n−
1−v
2 + n−vm) + ‖gn − g0‖1.

Using ‖gn − g0‖∞ = O(n−vm), ‖g(m)
n (t)‖L2 ≤ C0 and g0 ∈ Hm, we have

‖ĝn,λ − g0‖1 < C̃,

and

J(ĝn,λ − g0, ĝn,λ − g0) < C̃,

where C̃ only depends on g0 and m. The proof of Lemma 2.1 is complete.

Proof of Lemma 2.2. Following from equation (2.2) and Theorem 2 of

Hoeffding (1963), we have

P (‖Zn(g)−Zn(f)‖λ ≥ t) ≤ 2 exp

(
−t2

8‖f − g‖∞

)
.

Together with Lemma 2.2.1 of Van Der Vaart and Wellner (1996), we have

∥∥‖Zn(f)−Zn(g)‖λ
∥∥
ψ2
≤ 8‖f − g‖∞,

where ‖ · ‖ψ2 denotes the orlicz norm associated with ψ2(s) = exp(s2) − 1.

Applying Theorem 2.2.4 of Van Der Vaart and Wellner (1996), for any δ > 0,
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we have

∥∥∥∥∥ sup
f,g∈G,‖f−g‖∞≤δ

‖Zn(g)−Zn(f)‖λ

∥∥∥∥∥
ψ2

≤ C ′
(∫ δ

0

√
log
{

1 +N(δ,G, ‖ · ‖∞)
}

+ δ
√

log
[
1 + {N(δ,G, ‖ · ‖∞)}2

])
≈ δ1− 1

2m ,

where N(δ,G, ‖ · ‖∞) is the covering number, which means the minimum num-

ber of ‖ · ‖∞ δ-balls needed to cover G. Thus, we have

P

(
sup

g∈G,‖g‖∞≤δ
‖Zn(g)‖λ ≥ t

)
≤ 2 exp(δ−2+1/mt2).

For brevity, we denote γ ≡ 1 − 1/(2m), Tn ≡ {5 log log(n)}1/2, bn =
√
n,

ε = b−1
n , and Qε = [− log(ε)− 1]. Write
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P

(
sup
g∈G

bn‖Zn(g)‖λ
bn‖g‖γ∞ + 1

≥ Tn

)

≤ P

(
sup

g∈G,‖g‖∞≤ε1/γ

bn‖Zn(g)‖λ
bn‖g‖γ∞ + 1

≥ Tn

)

+

Qε∑
l=0

P

(
sup

g∈G,(elε)1/γ≤‖g‖∞≤(e(l+1)ε)1/γ

bn‖Zn(g)‖λ
bn‖g‖γ∞ + 1

≥ Tn

)

≤ P

(
sup

g∈G,‖g‖∞≤ε1/γ
bn‖Zn(g)‖λ ≥ Tn

)

+

Qε∑
l=0

P

(
sup

g∈G,‖g‖∞≤{e(l+1)ε}1/γ

bn‖Zn(g)‖λ
bn‖g‖γ∞ + 1

≥ Tn

)

≤ 2 exp
{
− (ε1/γ)−2+1/mT 2

n/n
}

+2

Qε∑
l=1

exp
(
−
[
{e(l+1)ε}1/γ ]−2+1/mT 2

n(el + 1)2/n
)

= 2 exp(−T 2
n) + 2

Qε∑
l=1

2 exp{−e−2(l+1)T 2
n(el + 1)2}

≤ 2(Qε + 2) exp(−T 2
n/4)

= C log(n){log(n)}−5/4 → 0

as n→∞. We complete the proof of Lemma 2.2.

Proof of Theorem 2.1. Denote g = ĝn,λ − g0. By Lemma 2.1, it is clear

that g ∈ G. Write

ln,λ(g0 + g)− ln,λ(g0) = Sn,λ(g0)g +
1

2
DSn,λ(g0)gg +

1

6
D2Sn,λ(g∗)ggg

≡ I1 + I2 + I3, (2.4)
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where g∗ = g0 + α1g and α1 ∈ [0, 1]. We will next discuss the order of

each term in (2.4). From the definition of ĝn,λ, we can get that ln,λ(g0 + g)−

ln,λ(g0) ≥ 0.

First, it follows from g ∈ G that there exists a constant c̃ such that

exp{|g(t)|} ≤ c̃. Then, we have

|6I3| = |D2Sn,λ(g∗)ggg|

=

∣∣∣∣∣ 1n
n∑
i=1

∫
I
exp{g0(t) + α1g(t)}g3(t)I(Yi ≥ t) dt

∣∣∣∣∣
≤ ‖g‖∞

∣∣∣∣∣ 1n
n∑
i=1

∫
I
exp{g0(t) + α1g(t)}g2(t)I(Yi ≥ t) dt

∣∣∣∣∣
≤ c̃‖g‖∞

∣∣∣∣∣ 1n
n∑
i=1

∫
I
exp{g0(t)}g2(t)I(Yi ≥ t) dt

∣∣∣∣∣
≤ c̃‖g‖∞

n

∣∣∣∣∣
n∑
i=1

∫
I
exp{g0(t)}g2(t)I(Yi ≥ t) dt− n

∫
I
exp{g0(t)}g2(t)S(t) dt

∣∣∣∣∣
+c̃‖g‖∞

∫
I
exp{g0(t)}g2(t)S(t) dt. (2.5)

Denote ψ(Y ; g) =
∫
I exp{g0(t)}g(t)I(Y ≥ t)Kt dt and ψ̃(Y ; g) = C−1

2 c−1
m h1/2ψ(Y ; g).

Then, we have

∣∣∣∣∣
n∑
i=1

∫
I
exp{g0(t)}g2(t)I(Yi ≥ t) dt− n

∫
I
exp{g0(t)}g2(t)S(t) dt

∣∣∣∣∣
= C−1

2 c−1
m h1/2

∣∣∣∣∣
n∑
i=1

< ψ̃(Yi; g), g >λ − < Eψ̃(Yi; g), g >λ

∣∣∣∣∣ . (2.6)
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Under condition(C2.2), we have

‖ψ̃(Y ; g)− ψ̃(Y ; f)‖λ

= C−1
2 c−1

m h1/2‖ψ(Y ; g)− ψ(Y ; f)‖λ

= C−1
2 c−1

m h1/2

∥∥∥∥∫
I
exp{g0(t)}{f(t)− g(t)}I(Y ≥ t)Kt dt

∥∥∥∥
λ

≤ C−1
2 c−1

m h1/2

∫
I
exp{g0(t)} dt‖f − g‖∞‖Kt‖λ

≤ C−1
2 c−1

m h1/2C2cmh
−1/2‖f − g‖∞

= ‖f − g‖∞.

Together with Lemma 2.2, the following inequality hold with probability one

∥∥∥∥∥
n∑
i=1

ψ̃(Yi; g)− Eψ̃(Yi; g)

∥∥∥∥∥
λ

≤
√
n
{
‖g‖1−1/(2m)
∞ + 1

}
{5 log log(n)}1/2 . (2.7)

The order of the first term in equation (2.4), directly derived from (2.5)

and (2.6)

c̃‖g‖∞
n

∣∣∣∣∣
n∑
i=1

∫
I
exp{g0(t)}g2(t)I(Yi ≥ t) dt− n

∫
I
exp{g0(t)}g2(t)S(t) dt

∣∣∣∣∣
≤ c̃‖g‖∞

n
C−1

2 c−1
m h1/2‖g‖λ

∥∥∥∥∥
n∑
i=1

ψ̃(Yi; g)− Eψ̃(Yi; g)

∥∥∥∥∥
λ

= Op[{5 log log(n)}1/2n−1/2h−1]‖g‖2λ.
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As log{log(n)}/nh2 → 0, we have

c̃‖g‖∞
n

∣∣∣∣∣
n∑
i=1

∫
I

exp{g0(t)}g2(t)I(Yi ≥ t) dt− n
∫
I

exp{g0(t)}g2(t)S(t) dt

∣∣∣∣∣
= op(1)‖g‖2λ.

For the second term in (2.4), we have

c̃‖g‖∞
∣∣∣ ∫

I
exp{g0(t)}g2(t)S(t) dt

∣∣∣ = c̃‖g‖∞V (g, g)

≤ c̃‖g‖∞‖g‖2λ.

Thus, we have |6I3| = op(1)‖g‖2λ. It then follows from the Cauthy-Schwarz

inequality that

|I1| = |Sn,λ(g0)g| ≤ ‖Sn,λ(g0)‖λ‖g‖λ.

For Sn,λ(g0), we have

‖Sn,λ(g0)‖λ =

∥∥∥∥∥−
∫
I
exp{g0(t)}KtSn(t) dt+

1

n

n∑
i=1

δiKYi −Wλg0

∥∥∥∥∥
λ

≤ 1

n

∥∥∥∥∥
n∑
i=1

∫
I
Kt dMi(t)

∥∥∥∥∥
λ

+ ‖Wλg0‖λ = OP ((nh)−1/2 + λ1/2).

Regarding I2, we have

2I2 = DSn,λ(g0)gg

= DSn,λ(g0)gg −DSλ(g0)gg +DSλ(g0)gg

= −‖g‖2λ +DSn,λ(g0)gg −DSλ(g0)gg.
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This is because

|DSn,λ(g0)gg −DSλ(g0)gg|

=

∣∣∣∣∣ 1n
n∑
i=1

[∫
I
exp{g0(t)}I(Yi ≥ t)g2(t) dt−

∫
I
exp{g0(t)}S(t)g2(t) dt

]∣∣∣∣∣
≤ ‖g‖∞(

∫
I
exp{g0(t)}| < Kt, g >λ ||Sn(t)− S(t)|) dt)

= ‖g‖∞‖Kt‖λ‖g‖λ
(∫

I
exp{g0(t)}‖Sn(t)− S(t)‖∞ dt

)
= op(1)Op{(nh)−1/2}‖g‖λ.

Therefore, we have

‖g‖2λ{1 + op(1)} ≤
[
Op{(nh)−1/2 + λ1/2}+ op{(nh)−1/2}

]
‖g‖λ,

which leads to ‖g‖λ = Op((nh)−1/2 + hm).

Proof of Theorem 2.2. For brevity, we denote g = ĝn,λ − g0, rn =

M{(nh)−1/2+hm}, g̃ = d−1
n g and dn = cmrnh

−1/2. Recall ‖g‖λ = Op((nh)−1/2+

hm) in Theorem 2.1. Then, there exists a constant M such that the even-

t Bn = {‖g‖λ ≤ rn} happens with large probability. Since h = o(1) and

log{log(n)}/(nh2) → 0 as n → ∞, it is easy to see that dn = o(1). On the

other hand, when event Bn happens, one can get ‖g̃‖∞ ≤ 1 and

J(g̃, g̃) = d−2
n λ−1λJ(g, g) ≤ d−2

n λ−1‖g‖2λ = d−2
n λ−1r2

n ≤ c−2
m hλ−1.

It then follows directly that g̃ ∈ F , where F = {g : ‖g‖∞ ≤ 1, J(g, g) ≤

c−2
m hλ−1} when the event Bn happens. Next, by a Taylor expansion, we have
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Sn(ĝn,λ)− Sn(g0)− {S(ĝn,λ)− S(g0)}

= − 1

n

n∑
i=1

∫
I
exp{g0(t) + g(t)}I(Yi ≥ t)Kt dt+

1

n

n∑
i=1

∫
I
exp{g0(t)}I(Yi ≥ t)Kt dt

−
[
−
∫
I
exp{g0(t) + g(t)}S(t)Kt dt+

∫
I
exp{g0(t)}S(t)Kt dt

]

= − 1

n

n∑
i=1

∫
I
exp{g0(t)}[exp{g(t)} − 1]I(Yi ≥ t)Kt dt

+

∫
I
exp{g0(t)}[exp{g(t)} − 1]S(t)Kt dt

= − 1

n

n∑
i=1

∫
I
exp{g0(t)}

[
g(t) +

g(t)2

2
{1 + op(1)}

]
{I(Yi ≥ t)− S(t)}Kt dt

= − 1

n

n∑
i=1

∫
I
exp{g0(t)}g(t){I(Yi ≥ t)− S(t)}Kt dt

− 1

2n

n∑
i=1

∫
I
exp{g0(t)}g(t)2{I(Yi ≥ t)− S(t)}Kt dt{1 + op(1)}

≡ I1 + I2.
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Observe that

‖2I2‖λ =

∥∥∥∥∥− 1

n

n∑
i=1

∫
I
exp{g0(t)}g2(t){I(Yi ≥ t)− S(t)}Kt dt{1 + op(1)}

∥∥∥∥∥
λ

=

∥∥∥∥∫
I
exp{g0(t)}g2(t){Sn(t)− S(t)}Kt dt{1 + op(1)}

∥∥∥∥
λ

≤
∥∥∥∥∫

I
exp{g0(t)} dt

∥∥∥∥
λ

‖Sn(t)− S(t)‖∞‖g‖2∞‖Kt‖λ

≤ Op(n
−1/2)(cmh

−1/2)2‖g‖2λcmh−1/2

= Op{(n1/2h)−1}‖g‖2λcmh−1/2.

The fact log(log(n))/(nh2)→ 0 imples nh2 →∞ as n→∞. Thus, the term

I2 = op(1)cmh
−1/2‖g‖2λ = op(1)cmh

−1/2{(nh)−1/2 + hm}2. (2.8)

We next consider I1. Write

−I1 =
1

n

n∑
i=1

∫
I
exp{g0(t)}g(t){I(Yi ≥ t)− S(t)}Kt dt

=
1

n

n∑
i=1

φ(Yi, g)− E{φ(Yi, g)},

where φ(Y, g) =
∫
I exp{g0(t)}g(t)I(Y ≥ t)Kt dt. We denote:

φ̃(Y ; g̃) = C−1
2 (cmh

−1/2)−1d−1
n φ(Y, d−1

n g̃).

By a careful evaluation, we can show that

‖φ̃(Y ; g̃)− φ̃(Y ; f̃)‖λ ≤ ‖f̃ − g̃‖∞.
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Define

Zn(g) =
1√
n

n∑
i=1

φ(Yi, g)− Eφ(Yi, g),

In light of Lemma S.1 in Shang and Cheng (2013) and the proof of Lemma

2.2, we have

lim
n→∞

P

[
sup
g∈F

‖Zn(g)‖λ
h−(2m−1)/4m‖g‖1−1/(2m)

∞ + n−1/2
≤ {5 log log(n)}1/2

]
= 1.

Then, the term

‖I1‖λ = C2(cmh
−1/2)dn

∥∥∥∥∥ 1

n

n∑
i=1

φ̃(Yi, g̃)− E{φ̃(Yi, g̃)}

∥∥∥∥∥
λ

=
C2(cmh

−1/2)dn
n

{√
n‖g̃‖1−1/(2m)

∞ h−(2m−1)/(4m) + 1
}
{5 log log(n)}1/2.

In view of the fact that m > 1/2 and ‖g̃‖∞ ≤ 1, we get

C2(cmh
−1/2)dn
n

{√
n‖g̃‖1−1/(2m)

∞ h−(2m−1)/(4m) + 1
}
{5 log log(n)}1/2

= O(h−(6m−1)/(4m){n−1/2 + h(2m−1)/(4m)}{5 log log(n)}1/2{(nh)−1/2 + hm})

= O(h−(6m−1)/(4m)n−1/2{log log(n)}1/2{(nh)−1/2 + hm}). (2.9)

Hence, combing (2.8) and (2.9), we have

Sn(ĝn,λ)− Sn(g0)− (S(ĝn,λ)− S(g0))

= Op(h
−(6m−1)/(4m)n−1/2{log log(n)}1/2{(nh)−1/2 + hm}+ h−1/2{(nh)−1 + h2m}).
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On the other hand, we note that

Sn(ĝn,λ)− Sn(g0)− {S(ĝn,λ)− S(g0)}

= Sn,λ(ĝn,λ)− Sn,λ(g0)− {Sλ(ĝn,λ)− Sλ(g0)}

= Sn,λ(ĝn,λ)− Sn,λ(g0)−
{
DSλ(g0)g +

∫
I

∫
I
sD2Sλ(g0 + s′sg)g2 ds ds′

}

= g − Sn,λ(g0)−
∫
I

∫
I
sD2Sλ(g0 + s′sg)g2 ds ds′ + Sn,λ(ĝn,λ).

For any h ∈ Hm, there exists hn ∈ Ψm,I such that ‖h − hn‖∞ = O(n−vm).

Furthermore, by the definition of Sn,λ(ĝn,λ), we have Sn,λ(ĝn,λ)hn = 0. Then,

we further write

Sn,λ(ĝn,λ)h

= Sn,λ(ĝn,λ)(h− hn)

= Sn,λ(ĝn,λ)(h− hn)− Sn(g0)(h− hn) + Sn(g0)(h− hn)

=

[
−
∫
I
exp{g0(t)}g(t){1 + op(1)}{h(t)− hn(t)}Sn(t) dt− < Wλg, h− hn >λ

]

−
∫
I
exp{g0(t)}{h(t)− hn(t)}Sn(t) dt+

1

n

n∑
i=1

δi(h− hn)(Yi)− < Wλg0, h− hn >λ

≡ L1 + L2 + L3.
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First, we consider L1. Write

|L1| =
∣∣∣∣∫

I
exp{g0(t)}g(t){1 + o(1)}{h(t)− hn(t)}Sn(t) dt+ < Wλg, h− hn >λ

∣∣∣∣
≤

∣∣∣∣∣
[∫

I
exp{g0(t)}g2(t)Sn(t) dt

]1/2 [∫
I
exp{g0(t)}{h(t)− hn(t)}2Sn(t) dt

]1/2
∣∣∣∣∣

× {1 + o(1)}+ | < Wλg, h− hn >λ |

≤ Op(‖g‖λ‖h− hn‖∞) + op(λn
−vm)

= Op(n
−vm{(nh)−1/2 + hm}) + op(h

2mn−vm).

Next, we consider L2 and get

E{|L2|2} = E

∣∣∣∣∣
∫
I
exp{g0(t)}{h(t)− hn(t)}Sn(t) dt− 1

n

n∑
i=1

δi{h− hn(t)}

∣∣∣∣∣
2


=
1

n
E

[∣∣∣∣∫
I

exp{g0(t)}{h(t)− hn(t)} dMi(t)

∣∣∣∣2
]

≤ C4

n
‖h− hn‖2∞

= O(n−1−2vm),

which implies |L2| = Op(n
−1/2−vm). Third, it is not hard to verify that

|L3| = O(λn−vm). Combining the asymptotic order of L1, L2 and L3, we have

‖Sn,λ(ĝn,λ)‖λ = Op(n
−1/2−vm +h2mn−vm +n−vm{(nh)−1/2 +hm}). Lastly, we

observe

∥∥∥∥∫
I

∫
I
sD2Sλ(g0 + s′sg)g2 ds ds′

∥∥∥∥
λ

≤
∫
I

∫
I

∥∥D2Sλ(g0 + s′sg)g2
∥∥
λ
ds ds′.
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In particular,

‖D2Sλ(g0 + s′sg)g2‖λ =

∥∥∥∥∫
I
exp{g0(t) + ss′g(t)}S(t)g2(t)Kt dt

∥∥∥∥
λ

≤ c̃(cmh
−1/2)‖g‖2λ.

Finally, we get

‖g − Sn,λ(g0)‖λ = Op(αn),

where

αn = n−1/2−vm + n−vm((nh)−1/2 + hm) + h−1/2((nh)−1 + h2m)

+h−(6m−1)/(4m)n−1/2(log log(n))1/2((nh)−1/2 + hm).

The proof of Theorem 2.2 is complete.

Proof of Theorem 2.3. For ease of presentation, we denote Rn = ĝn,λ −

g∗ − Sn(g0) and g∗ = (id−Wλ)g0. It follows from Theorem 2.2 directly that

‖Rn‖λ = Op(αn) = op(n
−1/2). It can be checked that ‖Sn‖λ = Op((nh)−1/2).

Hence, Rn is asymptotically negligible compare with Sn. In the following, we

shall derive the asymptotic distribution of (nh)−1/2{ĝn,λ(t0)− g∗(t0)}. Recall

that for any t ∈ I and g ∈ Hm, we have < Kt, g >λ= g(t). Then, we have

|(nh)1/2 < Kt0 , ĝn,λ − g∗ − Sn(g0) >λ | ≤ ‖Kt0‖λ‖Rn‖λ(nh)1/2

≤ cmh
−1/2(nh)1/2op(n

−1/2)

= op(1).

69



Next, we write

−(nh)1/2 < Kt0 ,Sn(g0) >λ

= (nh)1/2

∫
I
exp{g0(t)}Sn(t)Kt(t0) dt− 1

n

n∑
i=1

δiKYi(t0)

= (nh)1/2

∫
I
exp{g0(t)}Sn(t)Kt0(t) dt− 1

n

n∑
i=1

δiKt0(Yi)

= (nh)1/2 1

n

n∑
i=1

∫
I
Kt0(t) dMi(t)

=
1√
nh−1

n∑
i=1

∫
I
Kt0(t) dMi(t).

Observe that

V ar

{∫
I
Kt0(t) dMi(t)

}
=

∫
I
K2
t0(t) exp{g0(t)}S(t) dt = V (Kt0 ,Kt0).

Invoking hV (Kt0 ,Kt0) < h‖K‖2λ < c2
m and hV (Kt0 ,Kt0)→ σ2

t0 as n→∞, we

have

(nh)1/2 < Kt0 ,Sn(g0) >λ
d−−→ N(0, σ2

t0)

as n→∞. By the multivariate central limit theorem, (nh)1/2 1
n

∑n
i=1

∫
IKs(t) dMi(t)

converges to a zero-mean Gaussian distribution with covariance function Σ(s, t).
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Moreover, since Kt(s) =
∑∞

j=0
hj(t)

1+λγj
hj(s), it can be shown that

(nh)1/2 1

n

n∑
i=1

∫
I
Kt(s) dMi(s) = (nh)1/2 1

n

n∑
i=1

∫
I

∞∑
j=0

hj(t)

1 + λγj
hj(s) dMi(s)

=
1√
n

n∑
i=1

∞∑
j=0

h1/2hj(t)

1 + λγj

∫
I
hj(s) dMi(s)

=
∞∑
j=0

h1/2hj(t)

1 + λγj

1√
n

n∑
i=1

∫
I
hj(s) dMi(s)

≡ Zn(t).

Note that h1/2hj(t)/(1 + λγj) is a bounded deterministic function and

n∑
i=1

(1/
√
n)

∫
I
hj(s) dMi(s)

is tight. Then,

h1/2hj(t)√
n(1 + λγj)

n∑
i=1

∫
I
hj(s) dMi(s)

is also tight. By Theorem 2.1 of Kosorok (2008) and
∑n

i=1(1/
√
n)
∫
I hj(s) dMi(s)

is integral of martingale, we can show

h1/2hj(t)

1 + λγj

1√
n

n∑
i=1

∫
I
hj(s) dMi(s)

is a Donsker-Class. Also, for any integer M , it can verified by Corollary 9.32

of Kosorok (2008) that

Zn,M (t) ≡
M∑
j=1

h1/2hj(t)

1 + λγj

1√
n

n∑
i=1

∫
I
hj(s) dMi(t)
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is a Donsker-Class. Hence, it follows from Theorem 2.1 of Kosorok (2008) that

there exists a semimetric ρ for which I is totally bounded and

lim
δ↓0

lim
n→∞

P ( sup
s,t∈I withρ(s,t)<δ

|Zn,M (t)− Zn,M (s)| > ε) = 0

for all ε > 0. Moreover, it can be shown similarly that Zn,M (t) converges

uniformly in I to Zn(t) as M → ∞. So far, we have shown, for any ε > 0,

there exists a M such that |Zn(t)−Zn,M (t)| < ε/4 for all t ∈ I. Consequently,

lim
δ↓0

lim
n→∞

P ( sup
s,t∈I withρ(s,t)<δ

|Zn(t)− Zn(s)| > ε)

≤ lim
δ↓0

lim
n→∞

P ( sup
s,t∈Iwithρ(s,t)<δ

|Zn,M (t)− Zn,M (s)|+ |Zn,M (t)− Zn(t)|

+ |Zn,M (s)− Zn(s)| > ε)

≤ lim
δ↓0

lim
n→∞

P ( sup
s,t∈Iwithρ(s,t)<δ

|Zn,M (t)− Zn,M (s)| > ε/2) = 0,

implying Zn(t) is tight. Finally, for any finite-dimension (t1, t2, · · · , tk), (Zn(t1), Zn(t2),

· · · , Zn(tk))
d−−→ (Z(t1), Z(t2), · · · , Z(tk)) as n→∞ can imply that Zn(t)

d−−→

Z(t) uniformly in I. Hence, we have shown
√
nh{ĝn,λ(t) − g∗(t)} converges

weakly in I to a mean zero Gaussian process Z(t) with covariance function at

(s,t) being Σ(s, t). The proof of Theorem 2.3 is complete.

Proof of Corollary 2.1. First, for any t,

Wλg0(t) =< Wλg0,Kt >λ=
∞∑
j=0

λγj
1 + λγj

hj(t)V (g0, hj).
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By the Cauchy-Schwarz’s inequality,

∞∑
j=0

λγj
1 + λγj

hj(t)V (g0, hj) ≤


∞∑
j=0

λγjV
2(g0, hj)


1/2

∞∑
j=0

λγj
(1 + λγj)2

h2
j (t)


1/2

≤ hm sup
j∈N
‖hj‖∞

√
J(g0, g0)


∞∑
j=0

λγj
(1 + λγj)2


1/2

.

Invoking g0 ∈ Hm and γj ≈ j2m, Wλg0(t) = O(hm−1/2). Hence,

√
nhWλg0(t) = O(n1/2hm) = o(1).

It follows directly from Theorem 2.3 that the results of Corollary 2.1 hold.

Proof of Theorem 2.5 (ii). For notational convenience, we denote ĝ = ĝn,λ,

ĝ0 = ĝ0
n,λ, g = ĝ0 + ω0 − ĝ. By Theorem 2.4,

‖g‖λ = ‖ĝ0 + ω0 − ĝ‖λ ≤ ‖ĝ0 + ω0 − g0‖λ + ‖ĝ − g0‖λ = Op(rn),

where rn = (nh)−1/2 + hm. Applying Taylor expansion,

LRTn,λ = ln,λ(ω0 + ĝ0)− ln,λ(ĝ)

= Sn,λ(ĝ)(ω0 + ĝ0 − ĝ) +

∫
I

∫
I
sDSn,λ(ĝ + ss′g)gg ds ds′.
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It follows from the definition of Sn,λ(ĝ) that Sn,λ(ĝ)(ĝ0 + ω0 − ĝ) = 0. Hence,

LRTn,λ

=

∫
I

∫
I
sDSn,λ(ĝ + ss′g)gg ds ds′

=

∫
I

∫
I
s
{
DSn,λ(ĝ + ss′g)gg −DSn,λ(g0)gg

}
ds ds′ +

∫
I

∫
I
sDSn,λ(g0)gg ds ds′

=

∫
I

∫
I
s{DSn,λ(ĝ + ss′g)gg −DSn,λ(g0)gg} ds ds′ + 1

2
{DSn,λ(g0)gg −DSλ(g0)gg}

+
1

2
DSλ(g0)gg

≡ I1 + I2 + I3.

We first consider I1. Denote g̃ = ĝ + ss′g − g0 for any 0 ≤ s, s′ ≤ 1. Then,

‖g̃‖λ = Op(rn) and

DSn,λ(ĝ + ss′g)gg = DSn,λ(g̃ + g0)gg

= −
∫
I
exp{g0(t) + g̃(t)}g(t)g(t)Sn(t) dt− < Wλg, g >λ .

Thus, we can write

|DSn,λ(ĝ + ss′g)gg −DSn,λ(g0)gg|

=

∣∣∣∣−∫
I
[exp{g0(t) + ĝ(t)} − exp{g0(t)}]g(t)g(t)Sn(t) dt

∣∣∣∣
=

∣∣∣∣∫
I
exp{g0(t)}g̃(t){1 + op(1)}g2(t)Sn(t) dt

∣∣∣∣
≤ ‖g̃‖∞

∥∥∥∥∫
I
exp{g0(t)}g2(t)Sn(t) dt

∥∥∥∥
≤ ‖g̃‖∞

∫
I
exp{g0(t)}g2(t)|Sn(t)− S(t)| dt+ ‖g̃‖∞

∥∥∥∥∫
I
exp{g0(t)}g2(t)S(t) dt

∥∥∥∥ .
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Under condition(C2.3) and the assumption that nh4 →∞ as n→∞,

‖g̃‖∞
∫
I
exp{g0(t)}g2(t)|Sn(t)− S(t)| dt

= ‖g̃‖∞
∫
I
exp{g0(t)}g(t) < Kt, g >λ |Sn(t)− S(t)| dt

≤ ‖g̃‖∞‖Kt‖λ‖g‖λ‖Sn(t)− S(t)‖∞‖g(t)‖∞
∫
I
exp{g0(t)} dt

= Op(n
−1/2h−1)‖g‖2λ‖g̃‖∞

= op(1)‖g‖2λ‖g̃‖∞.

Moreover, note that

‖g̃‖∞
∥∥∥∥∫

I
exp{g0(t)}g2(t)S(t) dt

∥∥∥∥ ≤ ‖g̃‖∞‖g‖2λ.
which gives that |I1| = Op(1)‖g̃‖∞‖g‖2λ = Op(h

−1/2r3
n).

We next consider I2. Write

2|I2| = |DSn,λ(g0)gg −DSλ(g0)gg|

=
1

n

∣∣∣∣∣
n∑
i=1

∫
I
exp{g0(t)}g2(t){I(Yi ≥ t)− S(t)} dt

∣∣∣∣∣
=

1

n

∣∣∣∣∣
〈

n∑
i=1

∫
I
exp{g0(t)}g(t)Kt{I(Yi ≥ t)− S(t)} dt, g

〉
λ

∣∣∣∣∣ .
We can show along the same lines of Theorem 2.2 that |I2| = Op(rna

′
n) and

a′n = h−(6m−1)/(4m)n−1/2{log log(n)}1/2{(nh)−1/2 + hm}.
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Lastly, we consider I3. Applying the fact that I3 = −‖g‖2λ/2 and combining

the previous arguments, we have

LRTn,λ = −
‖g‖2λ

2
+Op(h

−1/2r3
n + rna

′
n).

Recall that nh2m → 0. Hence, nh2m+1 → 0 as n → ∞. Together with

nh4 →∞, we have shown h−1/2r3
n + rna

′
n = o(n−1). As a result,

−2nLRTn,λ = n‖ĝ0 + ω0 − ĝ‖2λ + op(1).

Proof of Theorem 2.5 (iii). In view of −2nLRTn,λ = n‖ĝ0+ω0−ĝ‖2λ+op(1)

in Theorem 2.5 part(ii), to show part (iii), it suffices to derive the asymptotic

properties of n‖ĝ0 + ω0 − ĝ‖2λ. It is not hard to see that

n1/2
∥∥ĝ0 + ω0 − ĝ − S0

n,λ(g0
0) + Sn,λ(g0)

∥∥
λ

≤ n1/2‖ĝ0 + ω0 − S0
n,λ(g0

0)‖λ + n1/2‖ĝ − Sn,λ(g0)‖λ

= Op(n
1/2an) = op(1).

Thus, we only need to focus on n1/2{S0
n,λ(g0

0)− Sn,λ(g0)}. Recall that

S0
n,λ(g0

0)

= −
∫
I
exp{g0(t)}Sn(t)K∗t dt+

1

n

n∑
i=1

δiK
∗
Yi −W

∗
λg

0
0

= −
∫
I
exp{g0(t)}Sn(t)

{
Kt −

Kt0(t)Kt0

K(t0, t0)

}
dt+

1

n

n∑
i=1

δi

{
KYi −

Kt0(Yi)Kt0

K(t0, t0)

}

−
{
Wλg0 −

(Wλg0)(t0)

K(t0, t0)
Kt0

}
.
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Then,

S0
n,λ(g0

0)− Sn,λ(g0) =
Kt0

K(t0, t0)

[ 1

n

n∑
i=1

∫
I
Kt0(t) dMi(t) + (Wλg0)(t0)

]
,

and

√
n‖S0

n,λ(g0
0)−Sn,λ(g0)‖λ =

∣∣∣∣∣ 1√
K(t0, t0)

[
1√
n

n∑
i=1

∫
I
Kt0(t) dMi(t) +

√
n(Wλg0)(t0)

]∣∣∣∣∣ .
Applying nh2m → 0, we get

√
n(Wλg0)(t0)

‖Kt0‖λ
≤

√
nh(Wλg0)(t0)

h1/2‖V 1/2(Kt0 ,Kt0)‖λ
= O(1)

√
nh(Wλg0)(t0)

σt0
= O(

√
nhm) = o(1).

Combining these gives

1√
K(t0, t0)

{
1√
n

n∑
i=1

∫
I
Kt0(t) dMi(t) +

√
n(Wλg0)(t0)

}
d−−→ N(0, ct0)

where

ct0 = lim
h→0

V (Kt0 ,Kt0)

‖Kt0‖2
∈ (0, 1].

As a result, it follows immediately that −2nLRTn,λ
d−−→ ct0χ

2
1, which implies

that ‖ĝ0 +ω0− ĝ‖λ = Op(n
−1/2). Thereby, we prove the first part of Theorem

2.5. The proof of Theorem 2.5 is complete.
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Proof of Theorem 2.6. For simplicity, we denote g = g0 − ĝn,λ and rn =

(nh)−1/2 + hm. By a Taylor expansion,

PLRTn,λ = ln,λ(g0)− ln,λ(ĝn,λ)

= Sn,λ(ĝn,λ)(g0 − ĝn,λ) +

∫
I

∫
I
sDSn,λ(ĝn,λ + ss′g) ds ds′

≡ I1 + I2.

We first consider I1. Along similar lines of the proof of Theorem 2.2, we have

|I1| = |Sn,λ(ĝn,λ)g|

≤ ‖Sn,λ‖‖g‖λ

= Op[n
−1/2−vm + h2mv−vm + n−vm{(nh)−1/2 + hm}]‖g‖

= Op(rn[n−1/2−vm + n−vm{(nh)−1/2 + hm}]).

Similar to the proof of Theorem 2.5(ii), it can be easily verified that

|I2| = −
‖g‖2λ

2
+Op(h

−1/2r3
n + rnα

′
n),

where α′n = h−(6m−1)/(4m)n−1/2{log log(n)}1/2rn. Thus,

PLRTn,λ = −
‖g‖2λ

2
+Op(h

−1/2r3
n + rnα

′′
n),

where α′′n = α′n+n−1/2−vm+n−vm{(nh)−1/2 +hm}. Under the conditions that

m > (3 +
√

5)/4, 1/(4m) ≤ v ≤ 1/(2m), nh2m+1 = O(1) and nh3 →∞,

−2nPLRTn,λ = n‖g‖2λ + op(h
−1/2).
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On the other hand, under Hglobal
0 , g0 is true function. Then, Theorem 2.2

gives ‖ĝn,λ−g0−Sn,λ(g0)‖ = Op(αn) and Theorem 2.3 suggests n1/2αn = o(1).

Combining these gives

n1/2‖g‖λ = n1/2‖Sn,λ(g0)‖λ + op(1).

Next, we consider ‖Sn,λ(g0)‖λ. Through direct calculation,

n‖Sn,λ(g0)‖2λ = n−1

∥∥∥∥∥
n∑
i=1

∫
I
Kt dMi(t)

∥∥∥∥∥
2

λ

+ 2 <

n∑
i=1

∫
I
Kt dMi(t),Wλg0 > +n‖Wλg0‖2λ.

We first approximate ‖Wλg0‖λ. To this end, we definemλ(j) ≡ |V (g0, hj)|2γj λγj
1+λγj

and m(j) ≡ |V (g0, hj)|2γj , j = 0, 1, 2, · · · . Note that |mλ(j)| is a sequence of

functions satisfying |mλ(j)| ≤ m(j). Since g0 ∈ Hm,

|V (g0, hj)|2γj =

∫
N
m(j) dµ(j) = J(g0, g0) <∞,

where µ(·) is the counting measure. Invoking limλ→0mλ(j) = 0,

∑
j

|V (g0, hj)|2
λγ2

j

1 + λγj
=

∫
N
mλ(j) dm(j)→ 0

as λ→ 0 by the Lebesgue dominated convergence theorem. That is,

‖Wλg0‖2λ =
∑
j

|V (g0, hj)|2
λ2γ2

j

1 + λγj
= o(λ).
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Using this fact, we have

E

∣∣∣∣∣<
n∑
i=1

∫
I
Kt dMi(t),Wλg0 >

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑
i=1

∫
I
Wλg0(t) dMi(t)

∣∣∣∣∣
2

= n

∫
I
exp{g0(t)}S(t) {Wλ(g0(t))}2 dt

≤ n‖Wλ(g0(t))‖2λ = o(nλ).

Together with nh2m+1 = O(1), it follows that

<
n∑
i=1

∫
I
Kt dMi(t),Wλg0 >= op{(nλ)1/2} = op(n

1/2hm) = op(h
−1/2).

So far, we have shown that

n‖Sn,λ(g0)‖2λ = n−1

∥∥∥∥∥
n∑
i=1

∫
I
Kt dMi(t)

∥∥∥∥∥
2

λ

+ op(h
−1).

In what follows, we shall derive the limiting distribution of n−1‖
∑n

i=1

∫
IKt dMi(t)‖2λ.

A direct calculation yields that

1

n

∥∥∥∥∥
n∑
i=1

∫
I
Kt dMi(t)

∥∥∥∥∥
2

λ

=
1

n

n∑
i=1

∫
I

∫
I
< Kt,Ks > dMi(t) dMi(s) +

1

n
Wn,

where Wn =
∑

i 6=j
∫
I
∫
I < Kt,Ks > dMi(t) dMj(s). Denoting Wij = 2

∫
I

∫
I <

Kt,Ks > dMi(t) dMj(s), one can write Wn =
∑

1≤i<j≤nWij . So, Wn is clean

(de1987central). Next, we aim to derive the limiting distribution of Wn. Let
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σ2
n = V ar(Wn). Write

σ2
n =

n(n− 1)

2
E(W 2

ij)

= 2n(n− 1)E

{∫
I

∫
I
< Kt,Ks > dMi(t) dMj(s)

}2

= 2n(n− 1)
∞∑
l=0

1

(1 + λγl)2
.

More notations are needed here. Define G1, G2 and G4 as follows:

G1 ≡
∑
i<j

E(W 4
ij),

G2 ≡
∑
i<j<k

{
E(W 2

ijW
2
ik) + E(W 2

jiW
2
jk) + E(W 2

kiW
2
kj)
}
,

G4 ≡
∑

i<j<k<l

{E(WijWikWljWlk) + E(WijWilWkjWkl) + E(WikWilWjkWjl)} .

By Proposition 3.2 of Jong (1987), if G1, G2, G3 are all of lower order than σ4
n,

σ−1
n Wn converges weakly to the standard normal distribution. Now, we study
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the order of each Gi, i = 1, 2, 3. First, observe that

E{W 4
ij}

= 16E

{∫
I

∫
I
< Kt,Ks > dMi(t) dMj(s)

}4

= 16

∫
I

∫
I

∫
I

∫
I

∫
I

∫
I

∫
I

∫
I
< Kt1 ,Ks1 >< Kt2 ,Ks2 >< Kt3 ,Ks3 >< Kt4 ,Ks4 >

E
{
dMi(t1) dMj(s1) dMi(t2) dMj(s2) dMi(t3) dMj(s3) dMi(t4) dMj(s4)

}
≤ 16‖Kt1‖4‖Ks1‖4

∫
I
[E{dMi(t1)}]4

∫
I
[E{dMj(s1)}]4

= O(h−4),

which implying G1 = O(n2h−4). Next, by Cauchy-Schwarz inequity,

E{W 2
ijW

2
ik} ≤ [E{W 4

ij}]1/2[E{W 4
ik}]1/2 = O(h−4),

which gives G2 = O(n3h−4). A straightforward calculation yields that

E(WijWikWljWlk) = 16

∞∑
j=0

1

(1 + λγj)4
= O(h−1).

Therefore, G4 = O(n4h−1). Combining the fact that σ4
n = (σ2

n)2 = O(n4h−2)

and the assumptions that nh3 → ∞ and h = o(1), G1, G2, G4 are of lower

order than that of σ4
n. Hence, by Jong (1987),

σ−1
n Wn

d−−→ N(0, 1)

as n→∞. Recall that ρ2
λ =

∑∞
j=0

h
(1+λγj)2

. We have

1√
2h−1nρλ

Wn
d−−→ N(0, 1). (2.10)
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Lastly, we consider 1
n

∑n
i=1

∫
I
∫
I < Kt,Ks > dMi(t) dMi(s). By a direct cal-

culation,

E

{∫
I

∫
I
< Kt,Ks > dMi(t) dMi(s)

}2

= O(‖Kt‖4λ) = O(h−2).

Then,

E

{
n∑
i=1

∫
I

∫
I
< Kt,Ks > dMi(t) dMi(s)− h−1σ2

λ

}2

≤ nE
{∫

I

∫
I
< Kt,Ks > dMi(t) dMi(s)

}2
= O(nh−2),

where σ2
λ =

∑∞
j=0

h
1+λγj

. Combining these gives

1

n

n∑
i=1

∫
I

∫
I
< Kt,Ks > dMi(t) dMi(s) = h−1σ2

λ +Op{(n1/2h)−1}. (2.11)

Combining (2.10) and (2.11), we have n‖Sn,λ‖2λ = Op(h
−1) and therefore

n1/2‖Sn,λ‖λ = Op(h
−1/2). As a result,

−2nPLRTn,λ = {n1/2‖Sn,λ‖λ + op(1)}2 + op(h
−1/2)

= n‖Sn,λ‖2λ + op(h
−1/2). (2.12)

In view of (2.10), (2.11) and (2.12), we have that as n→∞,

(2h−1σ4
λ/ρ

2
λ)−1/2

{
−2nγλPLRTn,λ − nγλ‖Wλg0(t)‖2λ − h−1σ4

λ/ρ
2
λ

} d−−→ N(0, 1).

Proof of Theorem 2.7. First, it can be easily verified that m > (3 +
√

5)/4,

1/(4m) ≤ v ≤ 1/(2m) and h � n−d with 1/(2m + 1) ≤ d < 1/3 satisfy

those conditions in Theorem 2.6. Throughout this proof, we only consider
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gn0 = g0 + gn for gn ∈ A in H1. To prove Theorem 2.7, we write

−2n · PLRTn,λ = −2n{ln,λ(g0)− ln,λ(gn0)} − 2n{ln,λ(gn0)− ln,λ(ĝn,λ)}

≡ I1 + I2. (2.13)

We first consider I1. For simplicity, we denote

Ri

=

[
−
∫
I
exp{g0(t)}I(Yi ≥ t) dt+ δig0(Yi)

]
−
[
−
∫
I
exp{gn0(t)}I(Yi ≥ t) dt+ δign0(Yi)

]

= −
∫
I
gn(t) dMi(t)−

∫
I

∫
I
exp{gn0(t)− sgn(t)}g2

n(t)I(Yi ≥ t) dt ds.

Then,

E{R2
i }

≤ 2

∫
I
g2
n(t)S(t) exp{gn0(t)} dt+ 2E

[∫
I

∫
I
exp{gn0(t)− sgn(t)}g2

n(t)I(Yi ≥ t) dt ds
]2

= O(‖gn‖2λ + ‖gn‖4λ).

Therefore, we can get

E


∣∣∣∣∣
n∑
i=1

(Ri − ERi)

∣∣∣∣∣
2
 ≤ nE{R2

i } = (n‖gn‖2λ + n‖gn‖4λ).

Combining these gives

n [ln,λ(g0)− ln,λ(gn0)− E{ln,λ(g0)− ln,λ(gn0)}] = Op(n
1/2‖gn‖λ + n1/2‖gn‖2λ).
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On the other hand, invoking DSλ(g)gngn < 0 for any g ∈ Hm, there exists

constant c′ > 0 satisfies that

E{DSn,λ(g∗n0
)gngn} ≤ c′E{DSn,λ(gn0)gngn}

= −c′‖gn‖2λ.

Then, we can write

E{ln,λ(g0)− ln,λ(gn0)} = E

{
Sn,λ(gn0)(−gn) +

1

2
DSn,λ(g∗n0

)gngn

}

≤ λJ(gn0 , gn)−
c′‖gn‖2λ

2

≤ {J(gn, gn) + J(g0, gn)} −
c′‖gn‖2λ

2

≤ {J(gn, gn) + J(g0, g0)1/2J(gn, gn)1/2} −
c′‖gn‖2λ

2

= O(λ)−
c′‖gn‖2λ

2
.

It then follows that

I1 ≥ n‖gn‖2λ +Op(nλ+ n1/2‖gn‖λ + n1/2‖gn‖2λ)

= n‖gn‖2λ{1 +Op(λ‖gn‖−2
λ + n−1/2‖gn‖−1

λ + n−1/2)}. (2.14)

Second, we consider I2. WnderH1n, note that ‖ĝn,λ−gn0‖ = Op{(nh)−1/2+

hm}. It then follows by the FBR in Theorem 2.2 that

inf
n≥N

inf
gn∈A

Pgn0 (‖ĝn,λ − gn0 − Sn,λ(gn,0)‖λ ≤Mrn) , (2.15)

where rn = (nh)−1/2 +hm, Pgn0 means the probablity relies on gn0 . Along the

lines of Theorem 2.6, we can show I2 has the same limiting distribution as in

Theorem 2.6, uniformly for any gn ∈ A. In other words, uniformly over all
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gn ∈ A,

(2νn0)−1/2(I2 − n‖Wλgn0‖2λ − h−1σ2
n0,λ) = Op(1), (2.16)

where νn0 = h−1σ4
n0,λ

/ρ2
n0,λ

, σ2
n0,λ

and ρ2
n0,λ

are defined the same as σ2
λ and ρ2

λ

but with eigenvalues and eigenvectors obtained under gn0 . Next, let Vn0 and

V0 be similar functions defined like V as in section 2. Thus, for any f ∈ Hm,

|Vn0(f, f)− V0(f, f)| =
∣∣∣∣∫

I

[
exp{gn0(t)} − exp{g0(t)}

]
S(t)f2(t) dt

∣∣∣∣
≤ ‖ exp{gn(t)}‖∞V0(f, f)‖gn‖∞

= ζV0(f, f)‖gn‖∞.

It follows from the Shang and Cheng (2013) in the supplementary on page 56

that

σ2
n0,λ − σ

2
λ = O(h−1/2‖gn‖λ). (2.17)

Combining (2.14), (2.16) and (2.17) gives

(2νn)−1/2(−2nrλPLRTn,λ − νn)

=(2νn)−1/2{−rλ(I1 + I2)− νn}

=(2νn)−1/2rλ(I2 − n‖Wλgn0‖2λ − h−1σ2
n0,λ) + (2νn)−1/2rλn‖Wλgn0‖2λ

+ (2νn)−1/2rλI1 + (2νn)−1/2rλh
−1(σ2

n0,λ − σ
2
λ)

≥Op(1) + (2νn)−1/2rλn‖gn‖2λ{1 +Op(λ‖gn‖−2
λ

+ n−1/2‖gn‖−1
λ + n−1/2)}+O(h−1‖gn‖λ),

whereOp(1) holds uniformly inA, νn = h−1σ4
λ/ρ

2
λ and rλ is defined in Theorem

2.6. Let λ‖gn‖−2
λ ≤ 1/C, n−1/2‖gn‖−1

λ ≤ 1/C, Ch−1‖gn‖λ ≤ (nh1/2)‖gn‖2λ,
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and ‖gn‖2λ ≥ C(nh1/2)−1 for some sufficiently small constant C. In other

words,

|(2νn)−1/2(−2nrλPLRTn,λ − νn)| ≥ cα,

where cα is the critical value (based on N(0, 1)) to Hglobal
0 at nominal level α.

This leads to

‖gn‖2λ ≥ C{h2m + (nh1/2)−1}. (2.18)

Combine (2.15) and (2.18), the proof of Theorem 2.7 is complete.

Table 2.1: The estimated size and power of PLRT for example 1, where
the test function is g(t) = g0(t)+ct with various c values and the nominal
significance level is 95%.

Censoring rate n c = 0 c = 0.5 c = 1 c = 1.5
20% 250 0.016 0.604 1 1

500 0 0.912 1 1
40% 250 0.056 0.634 1 1

500 0.022 0.906 1 1

Table 2.2: Estimated global coverage probability with the nominal cov-
erage probability being 95% for example 1.

Censoring rate n [0,0.96] [0,0.97] [0,0.98] [0,0.982]
20% 250 98.8% 98.2% 93.2% 88.8%

500 100% 100% 99.4% 93.6%
40% 250 95.2% 95.2%

500 99.8% 99.6% 96.4% 91.6%
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Figure 2.1: The pictures show the simulation results with censoring rate being 20%.
The first panel and fourth panel is the estimation ( marked with −.) and the true
function (solid line), respectively. The second and fifth panels display the estimate
coverage probabilities given by LCP (marked with −.) and BCP (marked with ·),
while the third and last panels show the estimate pointwise confidence intervals given
by LCI (marked with −.) and BCI (marked with ·).
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Figure 2.2: The pictures show the simulation results with censoring rate being 40%.
The first panel and fourth panel is the estimation ( marked with −.) and the true
function (solid line), respectively. The second and fifth panels display the estimate
coverage probabilities given by LCP (marked with −.) and BCP (marked with ·),
while the third and last panels show the estimate pointwise confidence intervals given
by LCI (marked with −.) and BCI (marked with ·).
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Figure 2.3: The pictures show the simulation results with censoring rate being 20%.
The first panel and fourth panel is the estimation ( marked with −.) and the true
function (solid line), respectively. The second and fifth panels display the estimate
coverage probabilities given by LCP (marked with −.) and BCP (marked with ·),
while the third and last panels show the estimate pointwise confidence intervals given
by LCI (marked with −.) and BCI (marked with ·).
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Figure 2.4: The pictures show the simulation results with censoring rate being 40%.
The first panel and fourth panel is the estimation ( marked with −.) and the true
function (solid line), respectively. The second and fifth panels display the estimate
coverage probabilities given by LCP (marked with −.) and BCP (marked with ·),
while the third and last panels show the estimate pointwise confidence intervals given
by LCI (marked with −.) and BCI (marked with ·).
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Figure 2.5: The pictures display the real data analysis. The first panel displays
the cumulative hazard estimation: the kernel methods (solid line), the Kaplan-Meier
estimator (marked with −−) and our estimation (the dash line), and the confidence
band is given by the Kaplan-Meier estimation marked with −. line. The second panel
shows the log-hazard estimation and its confidence band various the three methods:
the solid line is the log-hazard estimation, the −− line the simultaneous confidence
band, the −. line is the local pointwise confidence interval while the line marked with
· is the confidence interval given by Wahba.
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Table 2.3: The estimated size and power of PLRT for example 2, where
the test function is g(t) = g0(t)+ct with various c values and the nominal
significance level is 95%.

Censoring rate n c = 0 c = 0.5 c = 1 c = 1.5
20% 250 0.064 1 1 1

500 0.044 1 1 1
40% 250 0.052 0.982 1 1

500 0.052 1 1 1

Table 2.4: Estimated global coverage probability with the nominal cov-
erage probability being 95% for example 1.

Censoring rate n [0.18,1.1] [0.17,1.1] [0.16,1.1] [0.1,1.1]
20% 250 95.6% 92.8% 90.0% 81.6%

500 98.2% 98.2% 98.0% 95.6%
40% 250 98.2% 98.2% 98.2% 71.0%

500 96.6% 96.2% 96.2% 96.0%

Table 2.5: The estimated size and power of PLRT for example 3, where
the test function is g(t) = g0(t)+ct with various c values and the nominal
significance level is 95%.

Censoring rate n c = 0 c = 0.5 c = 1 c = 1.5
20% 250 0.058 0.790 1 1

500 0.052 0.954 1 1
40% 250 0.070 0.492 1 1

500 0.060 0.716 1 1
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Chapter 3

Nonparametric Statistical

Inference for Case One

Interval Censored Data

In this chapter, we consider the nonparametric statistical inference with case-

one interval censored data, namely the current status data.

3.1 Introduction

When analyzing the survivor data, interval censoring arises frequently in med-

ical and public health examples. In particular, interval censored data occur

when the exact failure time data could not be observed, instead we just know

that it lies within an interval or not. Among these data, due to the constraints,

costs, character of interest events and many other difficulties, one extreme for-

m is that the failure time is just be known before the examination time or not.

This kind of data is called the case-one interval censored data or current status

data (Groeneboom and Wellner (1992)).
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Nonparametric maximum likelihood, as a widely used method in survival

analysis, has been derived for the survival functions with current status da-

ta. Specifically, Ayer et al. (1955) and Eeden (1956) gave the nonparametric

maximum likelihood estimators of current status data, while Banerjee and

Wellner (2005) established the estimator’s self-consistency property and the

confidence interval. However, as the estimator is discrete, it is not suitable to

study the density and the hazard. Groeneboom et al. (2010) introduced the

smoothed estimator for the survival function with current status data based

on the kernel method.

As hazard can give more insight about the event of interest than the sur-

vival function, numerous articles have been developed based on the hazard.

While the nonparametric estimation without smoothing is not stable, some

smooth estimation approaches have been developed. Similar to the right cen-

sored data, the kernel-based approaches were given in Eubank (1999) and

Groeneboom et al. (2010). In order to avoid selecting the sensitive bandwidth

in estimation, spline methods have also been extended to the interval censored

data. Specifically, Joly et al. (1998) used the M-spline to model the log-hazard,

Rosenberg (1995) suggested using the non-negative coefficients to model the

hazard, while Cai and Betensky (2003) developed the penalized B-spline basis

to model the hazard. However, all the method with the splines have not talked

about the asymptotic properties about the estimators.

In this chapter, we also use the penalized likelihood method to get the es-

timator of the cumulative hazard function. Specifically, a functional Bahadur
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representation would be established. Based on the technical tool, we show the

estimator enjoys the pointwise asymptotic normality and global asymptoti-

cal gaussian process. Further more, the likelihood ratio test is shown, which

reveals some efficient properties of the test.

The setup of this chapter is organized as follows: In section 3.2, we give

some preliminary knowledge. Specifically, we talk about the statistical model

and some estimating procedures; then we present how to construct the Sobolev

space with a special inner product; Section 3.3 develops a new functional

Bahadur representation (FBR) in the space and gives the local and global

asymptotic property of the estimators of the cumulative hazard function; In

Section 3.4, we propose the hypothesis test; In Section 3.5, some simulation

results are presented; In Section 3.6, the real example analysis is given; All

technical proofs are deferred to the 3.7.

3.2 Methodology

Denote U as an “examination” or “observation” time, T as the failure time.

Then under the scenario of current status data, the observation consists of the

random vector X = (δ, U) where δ = 1(T ≤ U). Through the whole chapter,

we assume that the examination time is independent of the failure time. Let

Xi = (δi, Ui), i = 1, 2, . . . , n are the i.i.d copies of X = (δ, U). Under this

condition, the likelihood function can be denoted as:

Ln(F ) =
n∏
i=1

F (Ui)
δi(1− F (Ui))

1−δih(Ui),
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where F is the cumulative distribute function of the failure time T and that

h is the density of the examination time. As U is independent of T , the

log-likelihood of the failure time without an additive term not involving F is:

ln(F ) =
1

n

n∑
i=1

δi log(F (Ui)) + (1− δi) log(1− F (Ui)).

Assume that g0 is the true cumulative-hazard function of the failure time, and

g0(t) : I 7→ R is bounded away from 0 and infinity, without generality, we can

assume that I = [0, 1]. Then the log-likelihood of g is:

ln(g) =
1

n

n∑
i=1

δi log[1− exp{−g(Ui)}] + (1− δi) log[exp{−g(Ui)}]

=
1

n

n∑
i=1

δi log[1− exp{−g(Ui)}]− (1− δi)g(Ui).

Define l(g) = Eln(g), and

Hm(I)

={g : I 7→ R|g(j)is absolutely continuous for j = 0, 1, · · · ,m− 1, g(m) ∈ L2(I)},

wherem > 1/2 and is assumed to be known. Define J(g, g̃) =
∫
I g

(m)(t)g̃(m)(t) dt.

To make an inference about g0(t), the penalized log-likelihood of g is:

ln,λ(g) =
1

n

n∑
i=1

δi log[1− exp{−g(Ui)}]− (1− δi)g(Ui)−
λ

2

∫ 1

0
{g(m)(t)}2 dt

= ln(g)− λ

2
J(g, g).
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Define the inner product in the space Hm is:

< g, h >λ= EU
h(U)g(U) exp{−g0(U)}

1− exp{−g0(U)}
+ λ

∫ 1

0
g(m)(t)h(m)(t) dt,

where EU is the expectation regarding to U . As exp{−g0(U)} ≤ C < 1,

we have that under the inner product, Hm is the reproducing kernel Hilbert

space (RKHS) with the norm ‖g‖2λ =< g, g >λ. Besides, there exists a positive

self-adjoint operator:

Wλ : Hm → Hm,

which satisfies: < Wλf, g >= λJ(f, g) for any f, g ∈ Hm. Define:

V (f, g) = EU
f(U)g(U) exp{−g0(U)}

1− exp{−g0(U)}
,

we have that

< f, g >λ= V (f, g)+ < Wλf, g >λ .

Further, the reproducing kernel K(·, ·) of Hm defined on I × I satisfies the

following properties:

(P1) Kt(·) = K(t, ·) and < Kt, g >λ= g(t) for any g in Hm and any t in I.

(P2) There exists a constant cm which only depends on m s.t. ‖Kt‖λ ≤

cmh
−1/2 for ∀t ∈ I, where h = λ1/2m. Thereby, for any g ∈ Hm, we

have ‖g‖∞ ≤ cmh−1/2‖g‖λ.
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Denote positive sequences ai and bi as ai � bi if limi→∞(ai/bi) = c > 0, and

when c=1, we write ai ∼ bi. There exist a sequence of eigenfunctions hj ∈ Hm

and eigenvalues γj satisfying the following properties:

(P3) supj∈N ‖hj‖∞ <∞, γj � j2m;

(P4) V (hi, hj) = δij , J(hi, hj) = rjδij , where δij is a Kronecker’s delta, which

means that when i = j, δij = 1; otherwise, it’s zero.

(P5) For any g ∈ Hm, we have g =
∑

j V (g, hj)hj with an convergence in the

‖ · ‖λ-norm.

(P6) For any g ∈ Hm and t ∈ I, we have ‖g‖2λ =
∑

j V (g, hj)
2(1 + λγj),

Kt(·) =
∑

j hj(t)hj(·)/(1 + λγj) and Wλhj(·) = (λγj)/(1 + λγj)hj(·).

It follows from Shang and Cheng (2013) that, the underling eigensystem

satisfies the following ODE functions:

(−1)mh
(2m)
j (·) = γj

exp{−g0(·)}
1− exp{−g0(·)}

π(·)hj(·),

h
(k)
j (0) = h

(k)
j (1) = 0, k = m,m+ 1, . . . , 2m− 1, (3.1)

where π(·) is the density of U .

Denote Sn(g)
(
Sn,λ(g)

)
and S(g)

(
Sλ(g)

)
as the Fréchet derivatives of ln(g)

(
ln,λ(g)

)
and l(g)

(
lλ(g)

)
respectively, D be the Fréchet derivative operator, g1, g2, g3 ∈
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Hm be any direction, then we have:

Dln,λ(g)g1 =
1

n

n∑
i=1

−g1(Ui) + δi
g1(Ui)

1− exp{−g(Ui)}
− λ

∫ 1

0
g(m)(t)g

(m)
1 (t) dt

=
1

n

n∑
i=1

< −KUi , g1 >λ + < δi
KUi

1− exp{−g(Ui)}
, g1 >λ − < Wλg, g1 >λ

= < Sn(g), g1 >λ − < Wλg, g1 >λ,

where

Sn(g) =
1

n

n∑
i=1

−KUi + δi
KUi

1− exp{−g(Ui)}
,

Sn,λ(g) = Sn(g)−Wλg.

D2ln,λ(g)g1g2 = − 1

n

n∑
i=1

δi
g1(Ui)g2(Ui) exp{−g(Ui)}

[1− exp{−g(Ui)}]2
− λ

∫ 1

0
g

(m)
1 (t)g

(m)
2 (t) dt.

D3ln,λ(g)g1g2g3 =
1

n

n∑
i=1

δi
g1(Ui)g2(Ui)g3(Ui) exp{−g(Ui)}[1 + exp{−g(Ui)}]

[1− exp{−g(Ui)}]3
.

Further, we have

S(g) = Dl(g) = EKU
exp{−g(U)} − exp{−g0(U)}

1− exp{−g(u)}
,

Sλ(g) = S(g)−Wλg.
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Besides, we have that

D{S(g)g1}g2 = D2l(g)g1g2 = −EU
[1− exp{−g0(Ui)}]g1(Ui)g2(Ui) exp{−g(Ui)}

[1− exp{−g(Ui)}]2
.

Thereby, we have that

< DSλ(g0)f, g > = −EU
f(Ui)g(Ui) exp{−g0(Ui)}

1− exp{−g(Ui)}
− < Wλf, g >λ

= − < f, g >λ .

Proposition 3.1. DSλ(g0) = −id, where id is the identity operator.

This proposition would paly a key role in the FRB, as following from it,

the first term of the taylor expansion of Sn,λ(g) at g0 can be approximated by

−id(g− g0). This would result in that we may have a sum of the independent

and identically distributed random variables.

3.3 Functional Bahadur Representation

The Functional Bahadur Representation (FBR), which is a key technique in

the whole chapter is established in this chapter, and we then give the asymp-

totic normality of the estimators through the straightforward application of

the FBR. The following lemma shows that the estimator is consistent in the

‖ · ‖∞ and ‖ · ‖1, which denotes that ‖ · ‖λ with λ = 1.

ĝn,λ = arg max
g∈Hm

ln,λ(g).

Lemma 3.1. (Consistency) Assume that Conditions (C3.1) ∼ (C3.2) are
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satisfied. If λn1−2µ → 0 as n → ∞ for any µ > 0, we have ‖ĝn,λ − g0‖∞ =

op(1), J(ĝn,λ − g0, ĝn,λ − g0) = op(1), which means that ‖ĝn,λ − g0‖1 = op(1).

Based on Lemma 3.1, we can get the exact rate of convergence.

Theorem 3.1. (The Rate of Convergence) If log{log(n)}/(nh2)→ 0, λn1−2µ →

0 as n→∞ for any µ > 0, we have ‖ĝn,λ − g0‖λ = Op((nh)−1/2 + hm).

Given the exact rate of convergence, we derive a new version of FBR.

Theorem 3.2. (Functional Bahadur Reprensentation) Assume that Condi-

tions (C3.1) ∼ (C3.2) are satisfied. If log{log(n)}/(nh2)→ 0, λn1−2µ → 0 as

n→∞ for any µ > 0, we have ‖ĝn,λ − g0 − Sn,λ(g0)‖λ = Op(αn), where

αn = h−1/2{(nh)−1+h2m}+h−(6m−1)/(4m)n−1/2[log{log(n)}]1/2{(nh)−1/2+hm}.

From Theorem 3.2, we can find that the ‘bias’ of the estimator is very close

to a sum of some independently and identically distributed random variables,

which is very helpful to study the asymptotic normality.

Theorem 3.3. (Asymptotic Normality) Assume that Conditions (C3.1) ∼

(C3.2) are satisfied. If m > 3/4 +
√

5/4, nh4m−1 → 0 and nh3 → ∞ as

n → ∞. For ∀t0 ∈ I, define σ2
t0 = limh→0 h

∑∞
j=0 h

2
j (t0)/(1 + λγj)

2. Let

g∗ = (id−Wλ)g0 be the biased ‘true parameter’, then we have

√
nh{ĝn,λ(t0)− g∗(t0)} d−−→ N(0, σ2

t0).

Besides, we have
√
nh{ĝn,λ(t) − g∗(t)} converges weakly in I to a zero mean
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Gaussian process with the covariance function at (s,t) equals to Σ(s, t), where

Σ(s, t) = lim
h→0

h

∞∑
j=0

hj(t)hj(s)

(1 + λγj)2
.

Corollary 3.1. Assume Conditions (C3.1) ∼ (C3.2) hold. If m > 3/2,

nh2m → 0 and nh3 →∞ as n→∞, we have

√
nh{ĝn,λ(t0)− g0(t0)} d−−→ N(0, σ2

t0).

Besides, we have
√
nh{ĝn,λ(t) − g0(t)} converges weakly in I to a zero mean

Gaussian process Z(t) with the covariance function at (s,t) equals to Σ(s, t).

Remark: Corollary 3.1 together with Delta-method immediately gives

the the pointwise CI for some real-valued smooth function of g0(t0) at any

fixed point t0 ∈ I, denoted as ρ(g0(t)). Let ρ̇(·) be the first derivative of ρ(·).

If ρ̇(g0(t0)) 6= 0, we have

P (ρ{g0(t0)} ∈
[
ρ{ĝn,λ(t0)} ± Φ(α/2)

ρ̇{g0(t0)}σt0√
nh

]
)→ 1− α,

where Φ is the standard normal distribution function and Φ(α) is the lower

αth quantile of Φ.

Regarding to the confidence band, it is not so easy to get as Z(t) is not

so easy to sample. To overcome this difficulty, we appeal to the resampling

approach (e.g., Lin et al. (1993)). Let (G1, . . . , Gn) be independent standard

normal random variables independent of the data. It can be shown follow-

ing from Lin et al. (1993) that the distribution of the process Z(t) can be
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approximated by that of the zero-mean Gaussian process

Ẑ(t) =

√
h

n

n∑
i=1

Kt(Ui)
[
1− δi

1− exp{−ĝn,λ(Ui)}
]
Gi.

Thus, we can first obtain a large number of realizations of Ẑ(t) by repeat-

edly generating the standard normal random sample (G1, . . . , Gn) while fixing

the data at their observed values, and then use the empirical distribution of

these realizations to approximate the distribution of Z(t). More specifically,

the α-percentile of supt∈I |Z(t)| can be obtained by the empirical percentile

of a large number of realizations from supt∈I |Ẑ(t)|, denoted as Ẑα. Then the

global confidence band of g0(t) is:

(
ĝn,λ(t)− 1√

nh
Ẑα, ĝn,λ(t) +

1√
nh
Ẑα

)
.

3.4 Likelihood Ratio Test

Based on the likelihood ratio test, we give the local and global hypothesis test

about g0.

3.4.1 Local Likelihood Ratio Test

For some prespecified point (t0, ω0), we consider the following hypothesis:

H0 : g(t0) = ω0 V.S. H1 : g(t0) 6= ω0.
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The “constrained” penalized log-likelihood is defined as:

Ln,λ(g) =
1

n

n∑
i=1

δi log[1− exp{−g(Ui)− ω0}]− (1− δi){ω0 + g(Ui)} −
λ

2
J(g, g),

where g ∈ H0 = {g ∈ Hm : g(t0) = 0}. We consider the likelihood ratio test

(LRT) statistic:

LRTn,λ = Ln,λ(ω0 + ĝ0
n,λ)− Ln,λ(ĝn,λ),

where ĝ0
n,λ = arg maxg∈H0 Ln,λ(g).

Endowed with the norm ‖ · ‖λ, H0 is a closed subset in Hm, and thus

a Hilbert space. The following proposition says that H0 also inherits the

reproducing kernel and penalty operator from the space Hm. The proof is

trivial thus omitted.

Proposition 3.2. (a) Recall that K(t1, t2) is the reproducing kernel for

Hm under < ·, · >λ, the bivariate function K∗(t1, t2) = K(t1, t2) −

K(t0, t1)K(t0, t2)/K(t0, t0) is a reproducing kernel for (H0, < ·, · >λ).

That is, for any t′ ∈ I and g ∈ H0, we have K∗t′ ≡ K∗(t′, ·) ∈ H0 and

< K∗t′ , g >λ= g(t′). Besides, ‖K∗‖λ ≤
√

2cmh
−1/2.

(b) The operator W ∗λ defined by W ∗λg = Wλg − (Wλg)(t0)Kt0/K(t0, t0) is

bounded linear from H0 to H0 and satisfies < W ∗λg, g̃ >= λJ(g, g̃).

On the basis of the proposition 3.2, we denote the restricted FBR for ĝ0
n,λ,

which will be used to obtain the null limiting distribution. By straightfor-

ward calculation we can find the Fréchet derivatives of Ln,λ (under H0). Let

g1, g2, g3 ∈ H0, the first-order of Fréchet derivative of Ln,λ (Ln) is denoted as
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S0
n,λ (S0

n), then we have

DLn,λ(g)g1

=
1

n

n∑
i=1

δi
exp{−g(Ui)− ω0}g1(Ui)

1− exp{−g(Ui)− ω0}
− (1− δi)g1(Ui)− λ

∫ 1

0
g(m)(t)g

(m)
1 (t) dt

=
1

n

n∑
i=1

δig1(Ui)

1− exp{−g(Ui)− ω0}
− g1(Ui)− λ

∫ 1

0
g(m)(t)g

(m)
1 (t) dt

=<
1

n

n∑
i=1

δiK
∗
Ui

1− exp{−g(Ui)− ω0}
−K∗Ui , g1 >λ − < W ∗λg, g1 >λ

=< S0
n(g), g1 >λ − < W ∗λg, g1 >λ

=< S0
n,λ(g), g1 >λ .

where

S0
n(g) =

1

n

n∑
i=1

δiK
∗
Ui

1− exp{−g(Ui)− ω0}
−K∗Ui ,

Sn,λ(g) = S0
n(g)−W ∗λg.

Define

S0(g) = E{S0
n(g)}

S0
λ(g) = S0(g)−W ∗λg.

Then the second-order and the third-order of the Fréchet derivatives of Ln,λ(g)

are denoted as D2Ln,λ(g)g1g2 and D3Ln,λ(g)g1g2g3 respectively. Besides, we

have

D2Ln,λ(g)g1g2 = − 1

n

n∑
i=1

δi exp{−g(Ui)− ω0}g1(Ui)g2(Ui)

[1− exp{−g(Ui)− ω0}]2
− < W ∗λg2, g1 >λ,
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D3Ln,λ(g)g1g2g3

=
1

n

n∑
i=1

δig1(Ui)g2(Ui)g3(Ui) exp{−g(Ui)− ω0}[1 + exp{−g(Ui)− ω0}]
[1− exp{−g(Ui)− ω0}]3

.

Considering the derivative of S0
λ(g), we have

DS0
λ(g)g1g2 = −Eδi exp{−g(Ui)− ω0}g1(Ui)g2(Ui)

[1− exp{−g(Ui)− ω0}]2
− < W ∗λg2, g1 >λ,

Define g0
0(t) = g0(t)− ω0, then we have

< DS0
λ(g0

0)f, g >λ = < D{S0(g0
0)}f, g >λ − < W ∗λf, g >

= −E exp{−g0(Ui)}g1(Ui)g2(Ui)

1− exp{−g0(Ui)}
− < W ∗λf, g >λ

= − < f, g > .

Following from the equation, we have the next proposition.

Proposition 3.3. DS0
λ(g0

0) = −id, where id is the identity operator.

Proposition 3.4. (The Rate of Convergence) Assume that Conditions (C3.1) ∼

(C3.2) are satisfied. Under H0, if (log log(n))/(nh2) → 0, λ(n1/2−µ) → 0 as

n→∞ for µ > 0, we have ‖ĝ0
n,λ − g0

0‖λ = Op((nh)−1/2 + hm).

Proposition 3.4 is very similar to the proof of theorem 3.1.

Theorem 3.4. (Restricted FBR) Assume that Conditions (C3.1) ∼ (C3.2)

are satisfied. Under H0, suppose that (log log(n))/(nh2) → 0, λ(n1/2−µ) → 0

as n → ∞ for any µ > 0 hold, we have ‖ĝ0
n,λ − g0

0 − S0
n,λ(g0

0)‖λ = Op(αn),

where αn is defined as in theorem 3.2.
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Our main result follows immediately from the Restricted FBR.

Theorem 3.5. (Local Likelihood Ratio Test) Assume that Conditions (C3.1) ∼

(C3.2) are satisfied. If m > (5+
√

21)/4, nh2m → 0 and nh4 →∞ as n→∞.

Furthermore, for ∀t0 ∈ I, if σt0 6= 0, ct0 = limh→0 V (Kt0 ,Kt0)/‖Kt0‖2λ ∈ (0, 1],

Under H0, we have that: (i) ‖ĝn,λ−ĝ0
n,λ−ω0‖λ = Op(n

−1/2); (ii)−2nLRTn,λ =

n‖ĝn,λ − ĝ0
n,λ − ω0‖2λ + op(1); (iii)−2nLRTn,λ

d−−→ ct0χ
2
1.

Note that the parametric convergence rate stated in theorem 3.5 is rea-

sonable since the restriction is local.

3.4.2 Global Likelihood Ratio Test

Consider the following “global” hypothesis:

Hglobal
0 : g = g0 V.S. H1 : g 6= g0,

where g0 ∈ H can be either known or unknown. The PLRT statistic is defined

as:

PLRTn,λ = ln,λ(g0)− ln,λ(ĝn,λ).

Theorem 3.6. Assume that Conditions (C3.1) ∼ (C3.2) are satisfied. If

m > (3 +
√

5)/4, nh2m+1 = O(1), nh3 → ∞ as n → ∞. Define σ2
λ =∑∞

j=0 h/(1 + λγj), ρ
2
λ =

∑∞
j=0 h/(1 + λγj)

2, γλ = σ2
λ/ρ

2
λ, νλ = h−1σ4

λ/ρ
2
λ.

Under Hglobal
0 , we have

(2νλ)−1/2(−2nγλPLRTn,λ − nγλ‖Wλg0(t)‖2λ − νλ)
d−−→ N(0, 1).
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A direct examination reveals that h � n−d, where 1/(2m + 1) ≤ d <

1/3 satisfies the conditions required by theorem 3.6. As we can show that

n‖Wλg0‖2 = o(h−1) = o(νλ), we have−2nγλPLRTn,λ is asymptoticallyN(νλ, 2νλ).

As N(νλ, 2νλ) is asymptotically distributed as χ2
νλ

, denoted

−2nγλPLRTn,λ ∼ χ2
νλ
.

That shows that the Wilks phenomenon holds for the PLRT.

To conclude this section, we show that the PLRT achieves the optimal

minimax rate of testing specified in Ingster (1993) based on the uniform version

of the FBR. Write H1 : g = gn0 , where gn0 = g0 + gn, where g0 ∈ Hm and gn

belongs to the alternatives value setA = {g ∈ Hm, exp(gn(t)) ≤ ζ, J(g, g) ≤ ζ}

for some constant ζ > 0.

Theorem 3.7. Assume that Conditions (C3.1) ∼ (C3.2) are satisfied. If

m > (3+
√

5)/4, h � n−d, where 1/(2m+1) ≤ d < 1/3. Suppose that uniformly

over gn ∈ A, ‖ĝn,λ − gn0‖λ = Op((nh)−1/2 + hm) holds under H1n : g = gn0 .

Then for any δ ∈ (0, 1), there exist positive constants C and N that

inf
n≥N

inf
gn∈A,‖gn‖λ≥Cηn

P (reject Hglobal
0 |H1n is true) ≥ 1− δ,

where ηn ≥
√
h2m + (nh1/2)−1. The minimal lower bound of ηn, that is ,

n−2m/(4m+1), is achieved when h = h∗∗ = n−2/(4m+1).

Theorem 3.7 presents that, h = h∗∗ = n−2/(4m+1), the PLRT can detect

any local alternatives with separation rates no faster than n−2m/(4m+1), which

turns out to be the minimax rate of testing in the sense of Ingster (1993).
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3.5 Simulation

In order to get the estimator of the cumulative hazard function, we would use

the B-spline functions to approximate the true function. Specifically, we have

g(t) ≈ B′(t)θ, where B(t) = (B1(t), B2(t), . . . , Bq(t))
> is the B spline basis

and q is the number of basis.

The objective function to be minimized for the B-spline coefficients θ is:

ln,λ(θ) =
1

n

n∑
i=1

−δi log(1− exp(−B>(t)θ) + (1− δi)B>(Ui)θ +
λ

2
θ>Ωθ,

where Ωlm ≡
∫ 1

0 B̈l(s)B̈m(s) ds, l,m = 1, 2, . . . , q, Ω = (Ωlm). If we let θ(k)

be the kth approximation to the minimizer, then θ(k+1) is:

θ(k+1) = Π
[
θ(k) − τ · [H(k) + λΩ]−1

]
,

where τ is the value in the sequence {1, 1/2, 1/4, 1/8, 1/16, 0} to result in a

reduction in the objective function, Π[x] = argminz∈C , where C = {z ∈ Rq :

0 = z1 ≤ z2 ≤ . . . ≤ zq}.

H
(k)
lm =

1

n

n∑
i=1

δi
Bl(Ui)Bm(Ui) exp(−

∑q
i=1B

>(Ui)θ)

(1− exp(−
∑n

i=1B
>(Ui)θ)2

,

d
(k)
j =

1

n

n∑
i=1

−δi
exp(−

∑q
i=1B

>(Ui)θ)Bj(Ui)

1− exp(−
∑q

i=1B
>(Ui)θ)

+ (1− δi)Bj(Ui) + λ[Ωθ(k)]j ,

where The notation [Ωθ(k)]j stands for the jth component of the vector Ωθ(k).

In order to verify the theoretical results, we present some simulated examples.

Example 1: In this example, the failure time follows from Weibull distri-
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bution:

f(x) =
k

λ
(
x

λ
)k−1 exp(−(

x

λ
)k), x ∈ [0,∞],

with the corresponding parameter k = 0.3, λ = 0.2, while the censoring time

follows from the truncated exponential distribution from 0 to 3, with mean of

the exponential distribute function is chosen to yield 20% and 30% censoring

rate. In order to get the estimate, we use the cubic spline to estimate of the

true function, and the number of knots is at the order of qn = [4.7n1/4]. In this

section, we use the AIC proposed by O’Sullivan (1988) to select the parameter

λ. Specifically, define

H =

∫ 1

0

exp{g(t)}
1− exp(g(t))

B(s)B(s)> ds,

Ωlm =

∫ 1

0
B̈l(s)B̈m(s) ds, l,m = 1, 2, . . . , qn,

and Ω = (Ωlm), B̈l(s) is the second derivative of Bl(s), B = {Bl(s), l =

1, 2 . . . , qn} is the B-spline basis, then the AIC is:

AIC = −ln +
trace[(Ĥ + λΩ)−1Ĥ]

n
,

In linear algebra, the trace of an n-by-n square matrix A is defined to be the

sum of the elements on the main diagonal (the diagonal from the upper left

to the lower right) of A.

To check the pointwise confidence interval and global simultaneous confi-

dence band, we compare the method proposed by Wahba (1983). Specially, we

denote the coverage probability derived from Wahba (1983) as W CP , while

112



that derived from our method is local CP . In this example, we set m=2, and

following from the ODE functions (3.1), we can get the eigenvalues and eigen-

functions of the Hilbert space. Then plug in the estimation of σt0 and Ĝα, we

can get the pointwise and global CI. The simulation results are reported in

Figures 3.1-3.3 and Table 3.1.

From the figures, we can get that the local confidence interval got from our

method is reasonable, that is accordance to the results in Shang and Cheng

(2013). Besides, from Figures 3.1-3.3, we can get that the W CP is almost

around 1, that is because the variance is too large, while the local CP is

nearest to 95% at [0.5, 2.5] when the censoring rate being 20%. While the

censoring rate is 30%, the W CP is also almost around 1, while the local CP

is nearest to 95% at [0.5, 2]. Further, Table 3.1 gives the Global CP at

different intervals. From the table, we can get that the global confidence band

is reasonable.

3.6 Application

We apply our proposed method to the analysis of one dataset of heart disease

(Detrano et al. (1989)). Actually, there were total 200 patients undergoing the

heart disease at the Veterans Administration Medical Center in Long Beach,

California, from 1984 to 1987. If we deem the age of patients as the observation

time and the heart attack as the interest event, at the end of the study, there

were 75% patients died of the heart disease, with the other 25% patients were

subjected to case-one interval censored. Besides, we would scale the data to
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make the survival time ranging from 0 to 1. For comparison, we would give

the confidence interval through various methods: the method given by Wahba

(1983), our pointwise confidence interval and the global confidence interval.

The results are shown in Figure 3.4. From the figure, we can get that the

pointwise interval is shortest among the three methods, which are accordance

to the simulation results.

3.7 Appendix

In order to study the asymptotic properties of the proposed estimators, we

need the following regularity conditions.

(C3.1) exp{−g0(U)} ≤ C < 1 almost surely.

(C3.2) U and T are independent.

Proof of Lemma 3.1: Let hn(t) ∈ Hm which satisfies that ‖hn‖∞ =

O(n−1/2+µ). Then we have that:

Hn(α) =
1

n

n∑
i=1

δi log[1− exp{−g0(Ui)− αhn(Ui)}]− (1− δi){g0(Ui) + αhn(Ui)}

− λ

2

∫ 1

0
{g(m)

0 (t) + αh(m)
n (t)}2 dt
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Then the derivative of Hn(α) is:

H ′n(α) =
1

n

n∑
i=1

δi
hn(Ui)

1− exp{−g0(Ui)− αhn(Ui)}
− hn(Ui)

− λ
∫ 1

0
g

(m)
0 (t)h(m)

n (t) dt− αλ
∫ 1

0
(h(m)
n )2 dt

=
1

n

n∑
i=1

δihn(Ui)
[ 1

1− exp{−g0(Ui)− αhn(Ui)}
− 1

1− exp{−g0(Ui)}
]

+ hn(Ui)

×
[
δi

1

1− exp{−g0(Ui)}
− 1
]
− λ

∫ 1

0
g

(m)
0 (t)h(m)

n (t) dt− αλ
∫ 1

0
(h(m)
n (t))2 dt

= −α[
1

n

n∑
i=1

δi
h2
n(Ui) exp{−g0(Ui)}

[1− exp{−g0(Ui)}]2
+ λ

∫ 1

0
h(m)
n (t)2 dt]

+
1

n

n∑
i=1

hn(Ui)
[
δi

1

1− exp{−g0(Ui)}
− 1
]
− λ

∫ 1

0
g

(m)
0 (t)h(m)

n (t) dt,

As ‖hn‖∞ = O(n−1/2+µ), ‖h(m)
n ‖∞ = O(n−1/2+µ), λn1/2−µ → 0, we have that

H ′n(α)α < 0. Besides, as

H ′′n(α) = −[
1

n

n∑
i=1

δi
h2
n(Ui) exp{−g0(Ui)}

[1− exp{−g0(Ui)}]2
+ λ

∫ 1

0
h(m)
n (t)2 dt],

we have thatH ′n(α) is a nonincreasing function, so ĝn,λ(t) ∈ [g0(t)−αhn(t), g0(t)+

αhn(t)]. Then we have that ‖ĝn,λ − g0‖∞ ≤ α‖hn‖∞ → 0. Following from

Schumaker (1981), there exist two B-spline functions ĥm,λ, ĥm,0 that we have

‖ĝn,λ − ĥm,λ‖∞ = O(n−νm), ‖ĥm,0 − g0‖∞ = O(n−νm), where 0 < ν < 1/2
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and the number of knots have the same order of (nν). Then we have that

‖ĥm,λ − ĥm,0‖∞

≤ ‖ĝn,λ − ĥm,λ‖∞ + ‖ĥm,0 − g0‖∞ + ‖ĝn,λ − g0‖∞

= Op(n
−νm + n−1/2+µ).

Then as ĥm,λ, ĥm,0 belong to the same finite space, we have that ‖ĥ(m)
m,λ−ĥ

(m)
m,0‖∞

has the same order of ‖ĥm,0 − ĥm,λ‖∞, namely ‖ĥ(m)
m,λ − ĥ

(m)
m,0‖∞ = Op(n

−νm +

n−1/2+µ). Thereby, we have

‖ĝ(m)
n,λ − g

(m)
0 ‖∞ ≤ ‖ĝ(m)

n,λ − ĥ
(m)
m,λ‖∞ + ‖ĝn,λ − ĥ

(m)
m,λ‖∞ + ‖g(m)

0 − ĥ(m)
m,0‖∞.

As Schumaker(1981) says, the derivative of the spline approximate the deriva-

tives of the function it approximates, so the first term and the last term in

the above format is o(1), thereby,‖ĝ(m)
n,λ − g

(m)
0 ‖∞ → 0.Then we have that

J(ĝ
(m)
n,λ − g

(m)
0 , ĝ

(m)
n,λ − g

(m)
0 ) = op(1). Then the conclusions derived.

Proof of Theorem 3.1: Denote g = ĝn,λ − g0, then

ln,λ(g + g0)− ln,λ(g0) = Sn,λ(g0)g +
1

2
DSn,λ(g0)gg +

1

6
D2Sn,λ(g∗)ggg

≡ I1 + I2 + I3,
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where g∗ = g0 + αg,with α ∈ [0, 1].

|6I3| = |D2Sn,λ(g∗)ggg|

=
∣∣∣ 1
n

n∑
i=1

δi
[1 + exp{−g∗(Ui)}] exp{−g∗(Ui)}g3(Ui)

[1− exp{−g∗(Ui)}]3
∣∣∣

≤ ‖g‖∞
∣∣∣ 1
n
δi

[1 + exp{−g∗(Ui)}] exp{−g∗(Ui)}g2(Ui)

[1− exp{−g∗(Ui)}]3
∣∣∣

As ‖g‖∞ = o(1), then when n is large enough, we have ‖ exp{−g(Ui)}‖∞ ≈ 1.

Besides, as exp{−g0(Ui)} ≤ C < 1, we have

|6I3| ≈ ‖g‖∞
2

1− C
∣∣ 1
n

n∑
i=1

δi
exp{−g0(Ui)}g2(Ui)

[1− exp{−g0(Ui)}]2
∣∣

≤ 2‖g‖∞
n(1− C)

∣∣∣ n∑
i=1

δi
exp{−g0(Ui)}g2(Ui)

[1− exp{−g0(Ui)}]2
− E

(exp{−g0(Ui)}g2(Ui)

[1− exp{−g0(Ui)}]2
)∣∣∣

+ ‖g‖∞
2

(1− C)
E
(exp{−g0(Ui)}g2(Ui)

[1− exp{−g0(Ui)}]2
)

=
2‖g‖∞
n(1− C)

| <
n∑
i=1

ψ(δi, Ui, g)KUi − E[ψ(δ, U, g)KU ], g >λ |

+
2‖g‖∞
1− C

E
(exp{−g0(Ui)}g2(Ui)

[1− exp{−g0(Ui)}]2
)
.

Define ψ̃(δi, Ui, g) = (1−C)2

C c−1
m h1/2ψ(δi, Ui, g), i = 1, 2, . . . , n, then

|ψ̃(δi, Ui, g)− ψ̃(δi, Ui, f)|

=
(1− C)2

C
c−1
m h1/2 δi exp{−g0(Ui)}

[1− exp{−g0(Ui)}]2
|f(Ui)− g(Ui)|

≤ c−1
m h1/2‖f − g‖∞.
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Then it follows from Shang and Cheng (2013) that

‖
n∑
i=1

[ψ̃(δi, Ui, g)KUi − E{ψ̃(δi, Ui, g)KUi}]‖λ

≤ (n1/2‖g‖1−1/(2m)
∞ + 1){5 log log(n)}1/2.

Thereby, we have that

2‖g‖∞
n(1− C)

| <
n∑
i=1

ψ(δi, Ui, g)KUi − E[ψ(δ, U, g)KUi ], g >λ |

≤ cmh
−1/2 C

(1− C)2

‖g‖∞‖g‖λ
n

(n1/2‖g‖1−1/(2m)
∞ + 1){5 log log(n)}1/2.

As

‖g‖∞
2

1− C
E
[exp{−g0(Ui)}g2(Ui)

1− exp{−g0(Ui)}
]
≤ ‖g‖∞

2

(1− C)2
‖g‖2λ,

we have that

|6I3|

≤ C

(1− C)2
cmh

−1/2 ‖g‖∞‖g‖λ
n

(n1/2‖g‖1−1/(2m)
∞ + 1){5 log log(n)}1/2

+
2

(1− C)2
‖g‖∞‖g‖2λ

≤ 2

n1/2h(1− C)3
c2
m{log log(n)}1/2‖g‖λ +

2

(1− C)2
‖g‖∞‖g‖λ.

Thereby, following (n1/2h)−1{log log(n)}1/2 = o(1), we have |6I3| = op(1)‖g‖2λ.

|I1| = |Sn,λ(g0)g| ≤ ‖Sn,λ(g0)‖λ‖g‖λ = Op((nh)−1/2 + λ1/2)‖g‖λ.
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Regarding to I2, we have

2I2 = DSn,λ(g0)gg

= {DSn,λ(g0)gg − EDSn,λ(g0)gg}+ EDSn,λ(g0)gg

= −‖g‖2λ + {DSn,λ(g0)gg − EDSn,λ(g0)gg}

= −‖g‖2λ +
1

n

n∑
i=1

(
δi
g2(Ui) exp{−g0(Ui)}
[1− exp{−g0(Ui)}]2

− Eg
2(Ui) exp{−g0(Ui)}
1− exp{−g0(Ui)}

)
.

It follows from the proof of I3, we have that

∣∣∣ 1
n

n∑
i=1

δi
g2(Ui) exp{−g0(Ui)}
[1− exp{−g0(Ui)}]2

− E
[g2(Ui) exp{−g0(Ui)}

1− exp{−g0(Ui)}
]∣∣∣

≤ 1

(1− C)2
cmh

−1/2‖g‖λ(
1√
n
‖g‖1−1/(2m)
∞ +

1

n
){5 log log(n)}1/2

=
1√

nh(1− C)2
cm‖g‖λ‖g‖1−1/(2m)

∞ {5 log log(n)}1/2

+
1√

hn(1− C)2
cm‖g‖λ{5 log log(n)}1/2.

Then, we have that

2I2 = −‖g‖λ +
1√

nh(1− C)2
cm‖g‖λ‖g‖1−1/(2m)

∞ {5 log log(n)}1/2

+
1

n
√
h(1− C)2

cm‖g‖λ{5 log log(n)}1/2.
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Thereby, we have that

‖g‖λ(1 + op(1))

≤ ‖g‖2−1/(2m)
λ n−1/2c2−1/(2m)

m h−1+1/(4m){5 log log(n)}1/2

+
1

nh1/2(1− C)2
‖g‖λ{5 log log(n)}1/2 +Op((nh)−1/2 + λ1/2)‖g‖λ.

‖g‖λ ≤ ((nh)−1/2 + λ1/2) + ‖g‖1−1/(2m)
λ n−1/2c2−1/(2m)

m h−1+1/(4m){5 log log(n)}1/2

+
1

nh1/2(1− C)2
{5 log log(n)}1/2.

As (nh1/2)−1{5 log log(n)}1/2 = o((nh)−1/2), we have that

‖g‖n,λ ≤ (nh)−1/2 + λ1/2 + ‖g‖1−1/(2m)
∞ n−1/2{5 log log(n)}1/2cmh−1/2.

Besides, as ‖g‖∞ = op(1), (nh)−1/2{5 log log(n)}1/2 = o(1), we have that

‖g‖λ ≤ (nh)−1/2 + hm.

Proof of Theorem 3.2: Denote g = ĝn,λ−g0, following from theorem 3.1, we

have that ‖g‖λ = Op((nh)−1/2 + hm). Thereby, there exists a constant M, s.t.

Bn = {‖g‖λ ≤ rn ≡M((nh)−1/2+hm)} has large probability. Define g̃ = d−1
n g,

where dn = cmrnh
−1/2, since h = o(1), and {log log(n)}(nh2)−1 → 0, we

have that dn = o(1). Besides, on Bn, we have ‖g̃‖∞ ≤ 1 and J(g̃, g̃) =

d−2
n λ−1(λJ(g, g)) ≤ d−2

n λ−1‖g‖2λ = c−2
m λ−1h−1. Thus, when the event Bn

holds, we have g̃ ∈ F , where F = {g : ‖g‖∞ ≤ 1, J(g, g) ≤ c−2
m hλ−1}. By the
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Taylor expansion, we have that

Sn(ĝn,λ)− Sn(g0)− (S(ĝn,λ)− S(g0))

= − 1

n

n∑
i=1

KUi + δi
KUi

1− exp{−ĝn,λ(Ui)}
+

1

n

n∑
i=1

(KUi − δi
KUi

1− exp{−g0(Ui)}
)

− E[δ
KU

1− exp{−ĝn,λ(U)}
− δ KU

1− exp{−g0(U)}
]

=
1

n

n∑
i=1

δi
KUi

1− exp{−ĝn,λ(Ui)}
− δi

KUi

1− exp{−g0(Ui)}

− E[δ
KU

1− exp{−ĝn,λ(U)}
− δ KU

1− exp{−g0(U)}
]

= − 1

n

n∑
i=1

δi
KUi exp{−g0(Ui)}g(Ui)

[1− exp{−g0(Ui)}]2

− Eδi
KUi exp{−g0(Ui)}g(Ui)

[1− exp{−g0(Ui)}]2

− 1

n

n∑
i=1

(
δi

exp{−g0(Ui)}KUig
2(Ui)[1 + exp{−g0(Ui)}]

[1− exp{−g0(Ui)}]3

− Eδi
exp{−g0(Ui)}KUig

2(Ui)[1 + exp{−g0(Ui)}]
[1− exp{−g0(Ui)}]3

)
(1 + op(1))

≡ I1 + I2.

I1 = − 1

n

n∑
i=1

δi
KUi exp{−g0(Ui)}g(Ui)

[1− exp{−g0(Ui)}]2
− Eδi

KUi exp{−g0(Ui)}g(Ui)

[1− exp{−g0(Ui)}]2

= − 1

n

n∑
i=1

φ(δi, Ui, g)KUi − Eφ(δi, Ui, g)KUi ,

where

φ(δi, Ui, g) = δi
exp{−g0(Ui)}g(Ui)

[1− exp{−g0(Ui)}]2
,
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define

φ̃(δi, Ui, g) =
1− C
C

d−1
n φ(δi, Ui, dng̃)c−1

m h1/2,

then we have

|φ̃(δi, Ui, g̃)− φ̃(δi, Ui, f̃)|

≤ 1− C
C

d−1
n c−1

m h1/2|φ(δi, Ui, dng̃)− φ(δi, Ui, dnf̃)|

=
1− C
C

d−1
n c−1

m h1/2
∣∣∣ δi exp{−g0(Ui)}
[1− exp{−g0(Ui)}]2

dn(g̃ − f̃)
∣∣∣

≤ c−1
m h1/2‖f̃ − g̃‖∞,

Then we have

‖
n∑
i=1

φ̃(δi, Ui, g̃)KUi − Eφ̃(δi, Ui, g̃)KUi‖λ

≤(n−1/2h−(2m−1)/(4m)‖g̃‖1−1/(2m)
λ + 1){5 log log(n)}1/2.

Thereby, we have that

‖I1‖λ

=
1

n
‖

n∑
i=1

φ(δi, Ui, g)− Eφ(δi, Ui, g)‖λ

≤ 1

n
(n1/2h−(2m−1)/(4m)‖g̃‖1−1/(2m)

∞ + 1){5 log log(n)}1/2 C

1− C
dncmh

−1/2

≤ (n−1/2h−(2m−1)/(4m)‖g̃‖1−1/(2m)
∞ + n−1){5 log log(n)}1/2 C

1− C
dncmh

−1/2.
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As ‖g̃‖∞ ≤ 1, we have

‖I1‖λ ≤ (n−1/2h−(6m−1)/(4m) + n−1h−1){5 log log(n)}1/2 C

1− C
c2
mrn

= Op(n
−1/2h−(6m−1)/(4m){5 log log(n)}1/2{(nh)−1/2 + hm}).

Regarding to I2, we have that

I2 = − 1

n

n∑
i=1

(
δi

exp{−g0(Ui)}KUig
2(Ui)[1 + exp{−g0(Ui)}]

[1− exp{−g0(Ui)}]3

− Eδi
exp{−g0(Ui)}KUig

2(Ui)[1 + exp{−g0(Ui)}]
[1− exp{−g0(Ui)}]3

)
,

Thus, we have

‖I2‖λ ≤
2‖g‖∞
1− C

‖I1‖λ = op(‖I1‖λ).

Thereby, it is easy to check that

‖Sn(ĝn,λ)− Sn(g0)− (S(ĝn,λ)− S(g0))‖λ

= Op(n
−1/2h−(6m−1)/(4m){log log(n)}1/2{(nh)−1/2 + hm}).

On another hand, we have

Sn(ĝn,λ)− Sn(g0)− (S(ĝn,λ)− S(g0))

= Sn,λ(ĝn,λ)− Sn,λ(g0)− (Sλ(ĝn,λ)− Sλ(g0))

= −Sn,λ(g0)− (Sλ(ĝn,λ)− Sλ(g0))

= g − Sn,λ(g0)−
∫ 1

0

∫ 1

0
sD2Sλ(g0 + ss′g)g2 ds ds′,
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As ‖
∫ 1

0

∫ 1
0 sD

2Sλ(g0 + ss′g)g2 ds ds′‖λ ≤
∫ 1

0

∫ 1
0 ‖D

2Sλ(g0 + ss′g)g2‖λ ds ds′,

and

‖D2Sλ(g0 + ss′g)g2‖λ = Op(h
−1/2{(nh)−1/2 + hm}2),

we have that ‖g − Sn,λ(g0)‖λ = Op(αn), where

αn = h−1/2{(nh)−1+h2m}+n−1/2h−(6m−1)/(4m){log log(n)}1/2{(nh)−1/2+hm}.

Proof of Theorem 3.3: Define Remn = ĝn,λ − g∗ − Sn(g0),then it fol-

lows from the Functional Bahadur representation, we have that ‖Remn‖λ =

Op(αn). As nh3 → ∞, nh4m−1 → 0, m > (3 +
√

5)/4, we have that αn =

op(n
−1/2). Since ‖Sn(g0)‖λ = Op((nh)−1/2), thus Remn is negligible com-

pared with Sn(g0). Next, we would show the asymptotic distribution of

(nh)−1/2{ĝn,λ(t0)− g∗(t0)}. We would use the fact that for any t ∈ I, and any

g ∈ Hm, we have < Kt, g >λ= g(t). Thereby, for any fixed t0 ∈ I, we have

|(nh)−1/2 < Kt0 , ĝn,λ − g∗ − Sn(g0) >λ | ≤ ‖Kt0‖λ‖ĝn,λ − g∗ − Sn(g0)‖λ(nh)1/2

= op(1),

As

−(nh)1/2 < Kt0 ,Sn(g0) >λ= (nh)1/2 1

n

n∑
i=1

Kt0(Ui)
(
1− δi

1− exp{−g0(Ui)}
)
,
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V ar
(
Kt0(Ui)

(
1 − δi

1−exp{−g0(Ui)}
))

= V (Kt0 ,Kt0), hV (Kt0 ,Kt0) → σ2
t0 < c2

m,

we have

(nh)1/2 < Kt0 ,Sn(g0) >λ
d−−→ N(0, σ2

t0).

Then the conclusion follows.

It follows from the multivariate central limit theorem that

(n−1h)1/2
n∑
i=1

Kt0(Ui)
(
1− δi[1− exp{−g0(Ui)}−1]

)

converges in finite dimensional distributions to a zero-mean Gaussian distri-

bution with the covariance function is Σ(s, t). Besides, As

Kt(s) =

∞∑
j=0

hj(t)

1 + λγj
hj(s),

it’s easy to get that

(nh)1/2 1

n

n∑
i=1

Kt(Ui)
[
1− δi

1− exp{−g0(Ui)}
]

= (nh)1/2 1

n

n∑
i=1

∞∑
j=0

hj(t)

1 + λγj
hj(Ui)

[
1− δi

1− exp{−g0(Ui)}

]

=
∞∑
j=0

h1/2hj(t)

1 + λγj

1√
n

n∑
i=1

hj(Ui)
[
1− δi

1− exp{−g0(Ui)}

]

Denote

Zn(t) =
∞∑
j=0

h1/2hj(t)

1 + λγj

1√
n

n∑
i=1

hj(Ui)
(
1− δi[1− exp{−g0(Ui)}]−1

)
.
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As h1/2hj(t)/(1+λγj) is a bounded deterministic function, n−1/2
∑n

i=1 hj(Ui)
(
1−

δi[1−exp{−g0(Ui)}]−1
)

is tight, h1/2hj(t)/{
√
n(1+λγj)}

∑n
i=1 hj(Ui)

(
1−δi[1−

exp{−g0(Ui)}]−1
)

is also tight. Then it follows from Kosorok (2008) that, we

can get h1/2hj(t)/{
√
n(1 + λγj)}

∑n
i=1 hj(Ui)

(
1 − δi[1 − exp{−g0(Ui)}]−1

)
is

a Donsker-Class. Again, following form Kosorok (2008), we have for any inter

M,
∑M

j=0 h
1/2hj(t)/{

√
n(1 +λγj)}

∑n
i=1 hj(Ui)

(
1− δi[1− exp{−g0(Ui)}]−1

)
is

a Donsker-Class, denoted as Zn,M (t). Thereby, it follows from Kosorok (2008)

that there exists a semimetric ρ for which I is totally bounded and

lim
δ↓0

limP ( sup
s,t∈I withρ(s,t)<δ

|Zn,M (t)− Zn,M (s)| > ε) = 0

for all ε > 0. As it’s easy to prove that Zn,M (t) uniformly in I converges

to Zn(t) as M → ∞. We have that for any ε > 0, there exists a M, s.t.

|Zn(t)− Zn,M (t)| < ε/4 for all t ∈ I. Then we have

lim
δ↓0

limP ( sup
s,t∈I withρ(s,t)<δ

|Zn(t)− Zn(s)| > ε)

≤ lim
δ↓0

limP ( sup
s,t∈Iwithρ(s,t)<δ

|Zn,M (t)− Zn,M (s)|+ |Zn,M (t)− Zn(t)|

+|Zn,M (s)− Zn(s)| > ε)

≤ lim
δ↓0

limP ( sup
s,t∈Iwithρ(s,t)<δ

|Zn,M (t)− Zn,M (s)| > ε/2) = 0

thereby, Zn(t) is tight. As for any finite-dimension (t1, t2, · · · , tk), Zn(t1, t2, · · · , tk)
d−−→

Z(t1, t2, · · · , tk) when n → ∞, we can get Zn(t)
d−−→ Z(t) uniformly in I.

Thereby,
√
nh{ĝn,λ(t)− g∗(t)} converges weakly in I to a mean zero Gaussian

process Z(t) with the covariance function at (s,t) equal to Σ(s, t).
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Proof of theorem 3.5(ii): For notational convenience, denote ĝ = ĝn,λ,

ĝ0 = ĝ0
n,λ, g = ĝ0+ω0−ĝ. By theorem 3.4, we have that ‖g‖λ = ‖ĝ0+ω0−ĝ‖λ ≤

‖ĝ0 + ω0 − g0‖λ + ‖ĝ − g0‖λ = Op(rn), where rn = (nh)−1/2 + hm. By Taylor

expansion, we have

LRTn,λ = Ln,λ(ω0 + ĝ0)− Ln,λ(ĝ)

= Sn,λ(ĝ)(ω0 + ĝ0 − ĝ) +

∫ 1

0

∫ 1

0
sDSn,λ(ĝ + ss′g)gg ds ds′

It follows from the definition of Sn,λ(ĝ) = 0, we have Sn,λ(ĝ)(ω0 + ĝ0− ĝ) = 0.

Then

LRTn,λ

=

∫ 1

0

∫ 1

0
sDSn,λ(ĝ + ss′g)gg ds ds′

=

∫ 1

0

∫ 1

0
s[DSn,λ(ĝ + ss′g)gg −DSn,λ(g0)gg] ds ds′ +

∫ 1

0

∫ 1

0
sDSn,λ(g0)gg ds ds′

=
1

2
[DSn,λ(ĝ + ss′g)gg −DSn,λ(g0)gg] +

1

2
[DSn,λ(g0)gg −DSλ(g0)gg] +

1

2
DSλ(g0)gg

≡ I1 + I2 + I3.

Define g̃ = ĝ + ss′g − g0, for any 0 ≤ s ≤ s′ ≤ 1, ‖g̃‖λ = ‖ĝ − g0 + ss′g‖λ ≤

‖ĝ − g0‖λ + ‖g‖λ = Op(rn).Then we have

DSn,λ(ĝ + ss′g)gg = DSn,λ(g̃ + g0)gg

= − 1

n

n∑
i=1

δi
g2(Ui) exp{−g̃(Ui)− g0(Ui)}
[1− exp{−g̃(Ui)− g0(Ui)}]2

− λ
∫ 1

0
{g(m)(t)}2 dt.
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Thereby, we have

|DSn,λ(ĝ + ss′g)gg −DSn,λ(g0)gg|

=
∣∣ 1
n

n∑
i=1

δi
g2(Ui) exp{−g̃(Ui)− g0(Ui)}
[1− exp{−g̃(Ui)− g0(Ui)}]2

− 1

n

n∑
i=1

δi
g2(Ui) exp{−g0(Ui)}
[1− exp{−g0(Ui)}]2

∣∣
≈
∣∣ 1
n

n∑
i=1

δig
2(Ui)

exp{−g0(Ui)}[1 + exp{−g0(Ui)}]g̃(Ui)

[1− exp{−g0(Ui)}]3
∣∣

≤ 2‖g̃∞‖
1− C

∣∣ 1
n

n∑
i=1

δi
g2(Ui) exp{−g0(Ui)}
[1− exp{−g0(Ui)}]2

− Eg
2(Ui) exp{−g0(Ui)}
[1− exp{−g0(Ui)}]

∣∣
+

2‖g̃∞‖
1− C

E
g2(Ui) exp{−g0(Ui)}
[1− exp{−g0(Ui)}]

≤ 2‖g̃∞‖
1− C

∣∣ 1
n

n∑
i=1

δi
g2(Ui) exp{−g0(Ui)}
[1− exp{−g0(Ui)}]2

− Eg
2(Ui) exp{−g0(Ui)}
1− exp{−g0(Ui)}

∣∣+
2‖g̃∞‖
1− C

‖g‖2λ

≡ I11 + I12.

Following from the proof of theorem 3.2, we have that

I11 = ‖g̃‖∞Op(rnα′n),

where α′n = n−1/2{(nh)−1/2 +hm}h−(6m−1)/(4m){log log(n)}1/2. Then we have

that

|I1| = ‖g̃‖∞Op(rnα′n) + ‖g̃‖∞Op(r2
n).

Following from the condition of λ, we have n−1/2h−(6m−1)/(4m){log log(n)}1/2 =

op(1), thereby, we have α′n = op(rn), so we have

|2I1| = ‖g̃‖∞Op(r2
n) ≤ h−1/2rnOp(r

2
n) = Op(h

−1/2r3
n).
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Further, we can easy get that

|2I2| = |DSn,λ(g0)gg −DSλ(g0)gg|

= Op(rnα
′
n).

As I3 = −‖g‖2λ/2, we have

LRTn,λ = −
‖g‖2λ

2
+Op(h

−1/2r3
n + rnα

′
n).

Following from nh2m → c0, then we have nh2m+1 → 0, along with nh4 →∞,

we have h−1/2r3
n + rnα

′
n = o(n−1). Thereby, we have that

−2nLRTn,λ = n‖ĝ0 + ω0 − ĝ‖2λ + op(1).

Then the first part of the proof is completed.

Proof of theorem 3.5(iii):As −2nLRTn,λ = n‖ĝ0 + ω0 − ĝ‖2λ + op(1), it’s

sufficient to give the asymptotic property of n‖ĝ0 + ω0 − ĝ‖2λ. As

n1/2‖ĝ0 + ω0 − ĝ − S0
n,λ(g0

0) + Sn,λ(g0)‖λ

≤ n1/2‖ĝ0 + ω0 − S0
n,λ(g0

0)‖λ + n1/2‖ĝ − Sn,λ(g0)‖λ

= Op(n
1/2an) = op(1).
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Thereby, we just have to focus on n1/2{S0
n,λ(g0

0)− Sn,λ(g0)}. Recall that

S0
n,λ(g0

0) =
1

n

n∑
i=1

δiK
∗
Ui

1− exp{−g0
0(Ui)− ω0}

−K∗Ui −W
∗
λg

0
0

=
1

n

n∑
i=1

δi
1− exp{−g0

0(Ui)− ω0}
(
KUi −

KUi(t0)Kt0

K(t0, t0)

)

−
(
KUi −

KUi(t0)Kt0

(K(t0, t0))

)
−
(
Wλg0 −

Wλ(g0)(t0)Kt0

K(t0, t0)

)
.

Thus,

S0
n,λ(g0

0)− Sn,λ(g0) =
Kt0

K(t0, t0)

[ 1

n

n∑
i=1

−δiKUi(t0)

1− exp{−g0(Ui)}
+KUi(t0) + (Wλg0)(t0)

]
.

Thereby,

n1/2‖S0
n,λ(g0

0)− Sn,λ(g0)‖λ

=
∣∣∣ 1√

K(t0, t0)

[ 1√
n

n∑
i=1

−δiKUi(t0)

1− exp{−g0(Ui)}
+KUi(t0) + (Wλg0)(t0)

]∣∣∣.
As nh2m → 0, we have

√
n(Wλg0)(t0)

‖Kt0‖λ
≤

√
nh(Wλg0)(t0)

h1/2‖V 1/2(Kt0 ,Kt0)‖λ
= O(1)

√
nh(Wλg0)(t0)

σt0
= O(

√
nhm) = o(1).

Thereby, we have

1√
K(t0, t0)

[ 1√
n

n∑
i=1

−δiKUi(t0)

1− exp(−g0(Ui))
+KUi(t0) + (Wλg0)(t0)

] d−−→ N(0, ct0),

where

ct0 = lim
h→0

V (Kt0 ,Kt0)

‖Kt0‖2
∈ (0, 1].
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Thereby, we have −2nLRTn,λ
d−−→ ct0χ

2
1. It follows immediately that ‖ĝ0 +

ω0 − ĝ‖λ = Op(n
−1/2).

Proof of theorem 3.6: For simplify, denote g = g0−ĝn,λ, rn = (nh)−1/2+hm.

Using the Taylor expansion, we have

PLRTn,λ = ln,λ(g0)− ln,λ(ĝn,λ)

= Sn,λ(ĝn,λ)(g0 − ĝn,λ) +

∫
I

∫
I
sDSn,λ(ĝn,λ + ss′g) ds ds′

≡ I1 + I2.

It follows from the the definition of Sn,λ, we have that

|I1| = 0.

using the argument very similar to the proof of theorem 5(ii), we have

|I2| = −
‖g‖2λ

2
+Op(h

−1/2r3
n + rnα

′
n),

where α′n = h−(6m−1)/(4m)n−1/2(log log(n))1/2rn. Thus,

PLRTn,λ = −
‖g‖2λ

2
+Op(h

−1/2r3
n + rnα

′
n).

Following from the conditions that m > (3 +
√

5)/4, 1/(4m) ≤ v ≤ 1/(2m),

nh2m+1 = O(1), nh3 →∞, we have

−2nPLRTn,λ = n‖g‖2λ + op(h
−1/2).
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Under the hypothesis Hglobal
0 that g0 is “true” parameter, by theorem 2, we

have ‖ĝn,λ − g0 −Sn,λ(g0)‖ = Op(αn). Following from the theorem 3, we have

n1/2αn = o(1), then we have

n1/2‖g‖λ = n1/2‖Sn,λ(g0)‖λ + op(1).

Next, we study the leading term ‖Sn,λ(g0)‖λ. Through direct computation,

we have

n‖Sn,λ(g0)‖2λ = n‖ 1

n

n∑
i=1

−KUi + δi
KUi

1− exp{−g0(Ui)}
−Wλg0‖2λ

=
1

n
‖

n∑
i=1

−KUi + δi
KUi

1− exp{−g0(Ui)}
‖2λ

− 2 <
n∑
i=1

−KUi + δi
KUi

1− exp{−g0(Ui)}
,Wλg0 >λ +n‖Wλg0‖2λ

We first approximate ‖Wλg0‖λ.Firstly, define

mλ(j) = |V (g0, hj)|2γj
λγj

1 + λγj
, for j = 0, 1, 2, . . . .

Then |mλ(j)| is a sequence of functions satisfying that |mλ(j)| ≤ |V (g0, hj)|2γj ≡

m(j). From g0 ∈ Hm, we have that |V (g0, hj)|2γj =
∫
N m(j) dµ(j) = J(g0, g0) <

∞, where µ()̇is the counting measure. As

lim
λ→0

mλ(j) = 0
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, we have ∑
j

|V (g0, hj)|2
λγ2

j

1 + λγj
=

∫
N
mλ(j) dm(j)→ 0

based on the Lebesgue dominated convergence theorem. That is,

‖Wλg0‖2λ =
∑
j

|V (g0, hj)|2
λ2γ2

j

1 + λγj
= o(λ).

Following from this, we have

E| <
n∑
i=1

−KUi + δi
KUi

1− exp{−g0(Ui)}
,Wλg0 > |2

= E|
n∑
i=1

( δi
1− exp{−g0(Ui)}

− 1
)
Wλg0|2

= nE
[ exp{−g0(Ui)}
1− exp{−g0(Ui)}

(Wλg0)2)
]

≤ n‖Wλ(g0(t))‖2λ = o(nλ)

Thereby, it follows from nh2m+1 = O(1) that

<
n∑
i=1

−KUi + δi
KUi

1− exp{−g0(Ui)}
,Wλg0 >

= op((nλ)1/2) = op(n
1/2hm) = op(h

−1/2).

Thereby, we have

n‖Sn,λ(g0)‖2λ =
1

n
‖

n∑
i=1

−KUi + δi
KUi

1− exp{−g0(Ui)}
‖2λ + op(h

−1).
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In what follows, we study the limiting property of n−1‖
∑n

i=1−KUi+δiKUi [1−

exp{−g0(Ui)}]−1‖2λ. Through directly computing, we have

1

n
‖

n∑
i=1

−KUi + δi
KUi

1− exp{−g0(Ui)}
‖2λ

=
1

n

n∑
i=1

[ δi
1− exp{−g0(Ui)}

− 1
]2
< KUi ,KUi > +

1

n
Wn,

where

Wn =
∑
i 6=j

( δi
1− exp{−g0(Ui)}

− 1
)( δj

1− exp{−g0(Uj)}
− 1
)
< KUi ,KUj > .

Denote

Wij = 2
( δi

1− exp{−g0(Ui)}
− 1
)( δj

1− exp{−g0(Uj)}
− 1
)
< KUi ,KUj >,

then we can write Wn =
∑

1≤i<j≤nWij , so that Wn is clean (Jong (1987)).

Next, we will derive the limiting distribution of Wn. Let σ2
n = var(Wn), then

through direct computation, we have

σ2
n

=
n(n− 1)

2
E(W 2

ij)

= 2n(n− 1)E

(( δi
1− exp{−g0(Ui)}

− 1
)( δj

1− exp{−g0(Uj)}
− 1
)
< KUi ,KUj >

)2

= 2n(n− 1)
∞∑
l=0

1

(1 + λγl)2
.
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Let G1, G2, G4 be:

G1 =
∑
i<j

E(W 4
ij),

G2 =
∑
i<j<k

E{W 2
ijW

2
ik}+ E{W 2

jiW
2
jk}+ E{W 2

kiW
2
kj},

G4 =
∑

i<j<k<l

E{WijWikWljWlk}+ E{WijWilWkjWkl}+ E{WikWilWjkWjl}.

It follows from the proposition 3.2 of Jong (1987) that, if G1, G2, G3 are all of

the lower order than σ4
n, we will have σ−1

n Wn converge weekly to the standard

normal distribution.

E{W 4
ij}

= 16E

{( δi
1− exp{−g0(Ui)}

− 1
)( δj

1− exp{−g0(Uj)}
− 1
)
< KUi ,KUj >

}4

= O(h−4).

Thereby, we have G1 = O(n2h−4). It follows from Cauchy-Schwarz inequity,

we have EW 2
ijW

2
ik ≤ (EW 4

ij)
1/2(EW 4

ik)
1/2 = O(h−4). Thereby, G2 = O(n3h−4).

Straight forward calculation yields that

E{WijWikWljWlk} = 16

∞∑
j=0

1

(1 + λγj)4
= O(h−1).

Therefore, we have G4 = O(n4h−1). As σ4
n = (σ2

n)2 = O(n4h−2) and nh3 →∞,

h = o(1), we have G1, G2, G4 are of lower order than that of σ4
n.So we have

σ−1
n Wn

d−−→ N(0, 1).
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Following from ρ2
λ =

∑∞
j=0 h/(1 + λγj)

2, we have

1√
2h−1nρλ

Wn
d−−→ N(0, 1). (3.2)

Now, consider

1

n

n∑
i=1

[ δi
1− exp{−g0(Ui)}

− 1
]2
< KUi ,KUi > .

Through straight forward calculation, we have

E
{( δi

1− exp{−g0(Ui)}
− 1
)2
< KUi ,KUi >

}2
= O(‖KU‖4λ) = O(h−2).

Therefore, a direct calculation leads to

E
{ n∑
i=1

[ δi
1− exp{−g0(Ui)}

− 1
]2
< KUi ,KUi > −h−1σ2

λ

}2

≤ nE
{( δi

1− exp(−g0(Ui))
− 1
)2
< KUi ,KUi >

}2
= O(nh−2),

where σ2
λ =

∑∞
j=0 h/(1 + λγj). Thereby, we have

1

n

n∑
i=1

[ δi
1− exp{−g0(Ui)}

− 1
]2
< KUi ,KUi >= h−1σ2

λ +Op((n
1/2h)−1). (3.3)

It follows from (3.2) and (3.3), we have n‖Sn,λ‖2λ = Op(h
−1). Hence, we have

n1/2‖Sn,λ‖λ = Op(h
−1/2).
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Thus, we have

−2nPLRTn,λ = {n1/2‖Sn,λ‖λ + op(1)}2 + op(h
−1/2)

= n‖Sn,λ‖2λ + op(h
−1/2). (3.4)

It follows from (3.2),(3.3)and (3.4) that,

(2h−1σ4
λ/ρ

2
λ)−1/2(−2nγλPLRTn,λ − nγλ‖Wλg0(t)‖2λ − h−1σ4

λ/ρ
2
λ)

d−−→ N(0, 1).

Proof of theorem 3.7: Firstly, through straightforward calculation, we can

verify that m > (3 +
√

5)/4, 1/(4m) ≤ v ≤ 1/(2m), h � n−d, where 1/(2m+

1) ≤ d < 1/3 satisfy the conditions in theorem 6. Throughout, we can only

consider gn0 = g0 + gn for gn ∈ A. In order to prove the theorem, rewrite

−2n · PLRTn,λ = −2n(ln,λ(g0)− ln,λ(gn0))− 2n(ln,λ(gn0)− ln,λ(ĝn,λ))

= I1 + I2. (3.5)

In order to complete the proof, it’s sufficient to derive the order of the two

parts respectively. Firstly, we would see the first part I1. For simplicity, define

Ri

= (δi log[1− exp{−g0(Ui)}]− (1− δi)g0(Ui))− (δi log[1− exp{−gn0(Ui)}]

−(1− δi)gn0(Ui))

= δi
(

log[1− exp{−g0(Ui)}]− log[1− exp{−gn0(Ui)}]
)
− (1− δi)gn(Ui).

It is easy to calculate that

ER2
i = O(‖gn‖2λ).
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Thereby, we have

E{|
n∑
i=1

(Ri − ERi)|2} ≤ nER2
i = (n‖gn‖2λ).

Thus, we have that n (ln,λ(g0)− ln,λ(gn0)− E(ln,λ(g0)− ln,λ(gn0))) = Op(n
1/2‖gn‖λ).

On the other hand, follows from DSλ(g)gngn < 0, for any g ∈ Hm, there exists

constant c′ > 0 satisfies that

E{DSn,λ(g∗n0
)gngn} ≤ c′E{DSn,λ(gn0)gngn}

=
−c′‖gn‖2λ

2
.

Thereby, we have that

E{ln,λ(g0)− ln,λ(gn0)} = E{Sn,λ(gn0)(−gn) +
1

2
DSn,λ(g∗n0

)gngn}

λJ(gn0 , gn)−
c′‖gn‖2λ

2

≤ {J(gn, gn) + J(g0, gn)} −
c′‖gn‖2λ

2

≤ {J(gn, gn) + J(g0, g0)1/2J(gn, gn)1/2} −
c′‖gn‖2λ

2

= O(λ)−
c′‖gn‖2λ

2
.

Following from the above, we can get

I1 ≥ n‖gn‖2λ +Op(nλ+ n1/2‖gn‖λ + n1/2‖gn‖2λ)

= n‖gn‖2λ(1 +Op(λ‖gn‖−2
λ + n−1/2‖gn‖−1

λ + n−1/2)). (3.6)

Secondly, let us see the second part I2. It’s easy to note that under H1n,

following from ‖ĝn,λ − gn0‖ = Op((nh)−1/2 + hm) and the FBR, we can get
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that

inf
n≥N

inf
gn∈A

Pgn0 (‖ĝn,λ − gn0 − Sn,λ(gn,0)‖λ ≤Mrn) , (3.7)

where rn = (nh)−1/2 + hm. Similar to theorem 6, we can get I2 has the same

distribution as in theorem 6, but uniformly for ∀gn ∈ A. That’s to say,

(2νn0)−1/2(I2 − n‖Wλgn0‖2λ − h−1σ2
n0,λ) = Op(1), (3.8)

uniformly for ∀gn ∈ A, where νn0 = h−1σ4
n0,λ

/ρ2
n0,λ

with σ2
n0,λ

, ρ2
n0,λ

are in the

form of σ2
λ, ρ2

λ but the eigenvalues and eigenvectors are derived under gn0 . Let

Vn0 , V0 be the V functions as defined in section 2, then ∀f ∈ Hm, we have

|Vn0(f, f)− V0(f, f)| = ζV0(f, f)‖gn‖∞.

It follows from shang and Cheng (2013) that

σ2
n0,λ − σ

2
λ = O(h−1/2‖gn‖λ). (3.9)

Thereby, it follows from (3.6), (3.8) and (3.9), we have

(2νn)−1/2(−2nrλPLRT − νn)

=(2νn)−1/2(−rλ(I1 + I2)− νn)

=(2νn)−1/2rλ(I2 − n‖Wλgn0‖2λ − h−1σ2
n0,λ) + (2νn)−1/2rλn‖Wλgn0‖2λ

+ (2νn)−1/2rλI1 + (2νn)−1/2rλh
−1(σ2

n0,λ − σ
2
λ)

≥Op(1) + (2νn)−1/2rλn‖gn‖2λ(1 +Op(λ‖gn‖−2
λ + n−1/2‖gn‖−1

λ + n−1/2))

+O(h−1‖gn‖λ).
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whereOp(1) holds uniformly inA, νn = h−1σ4
λ/ρ

2
λ, and rλ is defined in theorem

6. Let λ‖gn‖−2
λ ≤ 1/C, n−1/2‖gn‖−1

λ ≤ 1/C, Ch−1‖gn‖λ ≤ (nh1/2)‖gn‖2λ, and

‖gn‖2λ ≥ C(nh1/2)−1 for some sufficiently large constant C. This means that

|(2νn)−1/2(−2nrλPLRT − νn)| ≥ cα, where cα is the cutoff value of (based on

N(0, 1)) for rejecting Hglobal
0 at normal level α. This means that

‖gn‖2λ ≥ C(h2m + (nh1/2)−1). (3.10)

Combine (3.7) and (3.10), we can get the conclusion.
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Figure 3.1: The picture gives the estimation and local CI of the example 1 with
n=100. It shows the cumulative hazard estimation with censoring rate being 20%
and 30% and the coverage probabilities with the censoring rate being 20% and 30%,
respectively. Specifically, the solid line is the true cumulative hazard estimation, the
−. lines are that according to the censoring rate being 20% and 30%, respectively.
The solid lines marked with · are the CI according to the method of Wahba.
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Figure 3.2: The picture gives the estimation and local CI of the example 1 with
n=200. It shows the cumulative hazard estimation with censoring rate being 20%
and 30% and the coverage probabilities with the censoring rate being 20% and 30%,
respectively. Specifically, the solid line is the true cumulative hazard estimation, the
−. lines are that according to the censoring rate being 20% and 30%, respectively.
The solid lines marked with · are the CI according to the method of Wahba.
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Figure 3.3: The picture gives the estimation and local CI of the example 1 with
n=300. It shows the cumulative hazard estimation with censoring rate being 20%
and 30% and the coverage probabilities with the censoring rate being 20% and 30%,
respectively. Specifically, the solid line is the true cumulative hazard estimation, the
−. lines are that according to the censoring rate being 20% and 30%, respectively.
The solid lines marked with · are the CI according to the method of Wahba.
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is the cumulative hazard estimation, the −− line the simultaneous confidence band,
the −. line is the local pointwise confidence interval while the line marked with · is
the confidence interval given by Wahba.
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Table 3.1: Estimated global coverage probability with the nominal cov-
erage probability being 95% for example 1.

interval censoringrate=20% censoringrate=30%
n=100 n=200 n=300 n=100 n=200 n=300

[0.05, 0.95] 95% 97% 97% 99% 99% 98%
[0.05, 1.05] 95% 97% 97% 98% 99% 98%
[0.05, 1.15] 95% 97% 97% 98% 99% 98%
[0.05, 1.25] 95% 97% 97% 97% 99% 98%
[0.05, 1.35] 95% 97% 97% 97% 99% 98%
[0.05, 1.45] 95% 97% 97% 96% 98% 98%
[0.05, 1.55] 95% 97% 97% 95% 98% 98%
[0.05, 1.65] 95% 97% 97% 94% 98% 98%
[0.05, 1.75] 95% 97% 97% 93% 98% 98%
[0.05, 1.85] 95% 97% 96% 91% 97% 97%
[0.05, 1.95] 95% 97% 96% 89% 96% 96%
[0.05, 2.05] 95% 97% 96% 89% 95% 95%
[0.05, 2.15] 95% 97% 96% 87% 94% 94%
[0.05, 2.25] 95% 97% 96% 85% 92% 93%
[0.05, 2.35] 94% 97% 96% 82% 90% 90%
[0.05, 2.45] 94% 97% 96% 80% 88% 88%
[0.05, 2.55] 93% 96% 96% 78% 85% 85%
[0.05, 2.65] 93% 96% 96% 75% 82% 83%
[0.05, 2.75] 92% 96% 95% 71% 78% 79%
[0.05, 2.85] 91% 95% 95% 68% 74% 75%
[0.05, 2.95] 87% 92% 94% 64% 70% 71%
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Chapter 4

Conclusions and future work

This chapter draws conclusions on the thesis, and points out some possible

research directions related to the work done in this thesis.

4.1 Conclusions

This thesis focuses on the nonparametric statistical inference of censored data.

In particular, the right censored data and the current status data are studied

in great detail.

1. In Chapter 2, the nonparametric inference focuses on the log-hazard

function. The major advantage of doing so is that there is no constraint

on the target function, and hence it simplifies the computation. Since

the penalized nonparametric maximum likelihood estimation is quite

useful to balance the smoothness and goodness-of-fit of the resulting es-

timator, we adopt the method here to estimate the log-hazard function

with right censored data. On the other hand, the idea of smoothing

B-spline can be also found in Schumaker (1981) for a smooth estima-
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tion. The most appealing finding of the chapter is that a functional

Bahadur representation is established in the Sobolev space Hm with a

proper inner product, which serves as a key tool for nonparametric in-

ference of the unknown parameter/function. Asymptotic properties of

the resulting estimate of the unknown log-hazard function are justified.

Furthermore, the local confidence interval and simultaneous confidence

band of the unknown log-hazard function are provided, along with a

local and global likelihood ratio tests. We also investigate issues related

to the asymptotic efficiency. Extensive simulations have been conducted

to verify the theories.

2. In Chapter 3, the nonparametric inference approach in Chapter 2 is

extended to handle interval censored data. Chapter 3 mainly focuses

on the current status data, that is the case-one interval censored da-

ta. What difference in this chapter is that we target at the cumulative

hazard function, instead of the log-hazard function. One key step is to

derive an appropriate inner product. With the inner product defined

satisfactorily, we derive a functional Bahadur representation and estab-

lish the asymptotic properties of the resulting estimate of the cumulative

hazard function. In particular, the global asymptotic properties of the

resulting estimator are shown under certain regularity conditions. A

likelihood ratio test is also provided. Numerous simulations have been

conducted to verify the theories.
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4.2 Future Work

We may pursue along the following directions for future work.

1. Case-two interval censored data are quite common but much more com-

plex than the current status data in survival analysis. To the best of

our knowledge, there is limited report on the asymptotic properties of

the smoothed estimation of the survival function or the hazard func-

tion with case-two interval censored data. In this regard, we shall strive

to generalize the approach for estimating the survival function or the

hazard function with case-two interval censored data, and carry out

corresponding statistical inference for the target function.

2. Functional data regression is fast developing. Proportional hazard func-

tional regression model is one of the most widely used models, in which

the response refers to the time-to-event. For such a model, the penalized

B-spline method has been used to estimate the functional coefficients To

the best of our knowledge, there is no results reported in the literature on

the theoretical properties of the estimate of the entire function. Hence,

we consider to extend our approach to this kind of semiparametric mod-

els. Moreover, we also consider to adopt some penalty function to select

important non-functional covariates. In the meanwhile, we may apply

the penalized B-spline method to control the roughness of the functional

coefficients. As in some case, the functional coefficients may remain a

constant in certain interval. Another penalty function may also be im-
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posed on the B-spline coefficients to control the shape of the resulting

function.

3. Nowadays, ultrahigh-dimensional data, in which the number of candi-

date predictors or parameters may be at the exponential rate of the

sample size, arise in many fields of modern science. As the big data

brings to us its own features, such as heterogeneity, spurious correla-

tion, noise accumulation etc, traditional penalized method may not be

suitable both in theory and in computation. Hence, one need to reduce

the high dimensionality to a moderate scale by some screening tech-

niques. However, statistical inference for high dimensional survival data

after screening remains challenging. We shall work along this direction

for future extension and refinement .
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