

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

MATRIXMAP: PROGRAMMING ABSTRACTION
AND IMPLEMENTATION OF MATRIX

COMPUTATION FOR BIG DATAAPPLICATIONS

YAGUANG HUANGFU

M.Phil

The Hong Kong Polytechnic University

2016

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

MATRIXMAP: PROGRAMMING ABSTRACTION AND

IMPLEMENTATION OF MATRIX COMPUTATION FOR BIG

DATA APPLICATIONS

Yaguang Huangfu

A thesis submitted in partial fulfillment of the requirements for

the degree of Master of Philosophy

November 2015

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published or

written, nor material that has been accepted for the award of any other degree

or diploma, except where due acknowledgement has been made in the text.

(Signed)

Huangfu Yaguang (Name of Student)

Abstract

Big data refers to information that exceeds the processing capacity of conventional

database systems and is characterized by its volume, velocity and variety. Big data program-

ming requires parallel programming systems to implement parallel programming models to

scale up with flexibility. A parallel programming model is an abstraction which expresses

the application logic, defines how to load data into data structures, and perform parallel

operations on the structure.

The computation core of many big data applications can be expressed as general matrix

computations, including linear algebra operations and irregular matrix operations. Many

common machine learning algorithms and graph algorithms can be implemented by matrix

operations. However, existing parallel programming systems do not provide programming

abstraction and efficient implementation for general matrix computations. For example,

Data-Parallel programming systems such as Spark are inefficient to support matrix oper-

ations. Graph-Parallel programming systems such as GraphLab are for graph algorithms

but do not support matrix operations. Large-scale matrix computation systems such as

MadLINQ are specified for linear algebra operations, but do not support irregular matrix

operations.

In this thesis, we describe the design and implementation of MatrixMap, a unified and ef-

ficient data-parallel programming framework for general matrix computations. MatrixMap

provides powerful yet simple abstraction, consisting of a distributed in-memory data struc-

ture called bulk key matrix and a computation interface defined by matrix patterns. Users

can easily load data into bulk key matrices and program algorithms into parallel matrix

patterns. Bulk key matrix is the fundamental data structure of MatrixMap, a scalable

and constant distributed shared memory data structure, which stores vector-oriented data

indexed by key and can keep data across matrix patterns. Matrix patterns can be pro-

grammed by user-defined lambda function. Mathematical matrix is the special case with

i

key and value in number.

We implement MatrixMap on a shared nothing cluster with multi-cores support. The

BSP model is used to compute each pattern and to form an asynchronous computation

pipeline of getting, computing and saving data. Furthermore, we leverage sparse matrices

and BLAS (Basic Linear Algebra Subprograms) to speed up in-memory matrix compu-

tations. MatrixMap outperforms current state-of-the-art systems by employing three key

techniques: matrix patterns with lambda functions for irregular and linear algebra matrix

operations, asynchronous computation pipeline with optimized data shuffling strategies for

specific matrix patterns, and in-memory data structure reusing data in iterations. More-

over, it can automatically handle the parallelization and distribute execution of programs

on a large cluster. Based on MatrixMap, many example applications have been implement-

ed and tested. The experiment results show that MatrixMap can be 12 times faster than

Spark.

ii

Publications

Conference Paper

1. Yaguang Huangfu, Jiannong Cao, Hongliang Lu, Guanqing Liang, ”Ma-

trixMap: Programming Abstraction and Implementation of Matrix Com-

putation for Big Data Applications, IEEE International Conference on

Parallel and Distributed Systems (ICPADS), 2015

Journal Paper

1. Yaguang Huangfu, Jiannong Cao, Hongliang Lu, Guanqing Liang, ”Ma-

trixMap: a Big Data Programming Model for Machine Learning and

Graph Algorithms, IEEE Transactions on Computers, 2016 (submitted)

iii

iv

Acknowledgements

I would like to express my gratitude to all those who helped me during my MPhil. study.

My deepest gratitude goes first and foremost to Prof. Jiannong Cao, my supervisor, for his

systematic guidance and valuable suggestions. He has broad knowledge, keen insight, and

enormous enthusiasm for the research, which inspire me and encourage me to keep going in

my study. He teaches me to be a good researcher, not only about the research methods and

presentation skills but also rigorous work attitude. I appreciate all these and will definitely

benefit from him in my future work.

I would also like to thank my parents. They always encourage and support me when

I encounter difficulties in different aspects. Their love is the most powerful motivation I

can make progress in my work. I would like to thank my colleagues Dr. GuanQing Liang,

Dr. Hongliang Lu, Dr. Lei Yang, all other members of our research group that I cannot

enumerate here. Thank you for your help in these years. We learn from each other, share

our joyfulness and sadness, and have an unforgettable memory together. I wish all of you

a brilliant future.

v

vi

Table of Contents

Abstract i

Publications iii

Acknowledgements v

Table of Contents vii

List of Figures viii

1 Introduction 1

1.1 Big Data Appications . 2

1.2 Limitations of Existing Matrix Computations Systems 4

1.3 MatrixMap Programming Framework . 5

1.4 Contributions . 6

1.5 Organization of Thesis . 7

2 Literature Review 9

2.1 Process-oriented Programming Systems . 9

2.1.1 Message Passing Systems . 10

2.1.2 Distributed Shared Memory Systems 10

2.2 Application-oriented Programming Systems 11

2.2.1 Data-Parallel Programming Systems 12

2.2.2 Graph-Parallel Programming Systems 14

2.2.3 Matrix Computation Systems . 15

3 The MatrixMap Programming Model 17

3.1 Overview . 18

3.2 Programming Interface . 18

3.3 Bulk Key Matrix . 19

3.4 Matrix Patterns . 21

3.5 Summary . 29

vii

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

4 The MatrixMap Framework 31
4.1 System Architecture . 31
4.2 Bulk Key Matrix Implementation . 32
4.3 Matrix Patterns Implementation . 34
4.4 Fault Tolerance . 38
4.5 Optimization for Sparse Matrix Computation 38
4.6 Optimization for Graph Algorithms . 39
4.7 Summary . 40

5 Implementation of Example Applications on MatrixMap 43
5.1 Extract-Transform-Load . 43

5.1.1 Word Count . 44
5.1.2 Inner Join . 44

5.2 Machine Learning Algorithms . 45
5.2.1 Logistic Regression . 45
5.2.2 K-Means . 46
5.2.3 Alternating Least Squares . 47

5.3 Graph Algorithms . 48
5.3.1 Breadth-First Search . 48
5.3.2 Graph Merge . 49
5.3.3 All Pair Shortest Path . 50
5.3.4 PageRank . 52

5.4 Evaluation . 52
5.5 Discussion . 59
5.6 Summary . 62

6 Conclusions and Future Research 63
6.1 Conclusions . 63
6.2 Future Research . 64

References 65

viii

List of Figures

1.1 MatrixMap Framework . 1

3.1 Matrix Plus Pattern . 24

3.2 Matrix Multiply Pattern . 25

3.3 Matrix Join Pattern . 28

4.1 Distributed Framework . 32

4.2 Distributed Framework . 33

4.3 Asynchronous Computing Process . 36

4.4 CSR Format . 39

4.5 Key-CSR Format . 41

5.1 Breadth-First Search in Matrix Operations 49

5.2 Breadth-First Search Run time . 54

5.3 Graph Merge Run Time . 55

5.4 All Pair Shortest Path Run Time . 56

5.5 PageRank Run Time . 57

5.6 Logistic Regression Run Time . 58

5.7 KMeans Run Time . 59

5.8 Alternating Least Squares Run Time . 60

5.9 Scalability in PageRank Run Time . 61

ix

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

x

Chapter 1

Introduction

This thesis aims to design and implement a big data programming framework to solve

issues of big data programming. The core of many big data applications can be expressed

as general matrix computation, including linear algebra operations and irregular matrix

operations. Irregular matrix operations are similar to linear algebra operations, for example,

irregular matrix plus in Graph Merge is not plus but to compare two matrices. However,

existing data-parallel systems lack the support of abstractions for programming and efficient

implementation of general matrix computation. Here, we propose MatrixMap, a unified

and efficient data-parallel system for general matrix computation. MatrixMap provides

powerful yet simple abstraction, a data structure, called bulk key matrices with computation

interface, matrix patterns. Based on MatrixMap, we have implemented typical example

applications.

Fig. 1.1: MatrixMap Framework

1

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

MatrixMap can support varieties of big data applications, Extract-Transform-Load, ma-

chine learning and graph algorithms. Figure1.1 illustrates whole picture of MatrixMap.

There are three layers in the MatrixMap project. The middle layer is the interface layer

which provides five parallel patterns and matrix data formats, dense matrices and sparse

matrices. At the bottom layer, iterative computing engine supports matrix patterns and

bulk key matrix supports dense and sparse matrix. At the application layer, MatrixMap

supports Extract-Transform-Load, machine learning, and graph algorithms. MatrixMap

plays important roles in big data research community and big data in industries.

In this chapter, we first describe the background knowledge of big data in Section 1.1.

Then we introduce problems of existing systems in Section 1.2. After that, we introduce

the approach in Section 1.3. In Section 1.4, we summarize the main contributions of this

thesis. Finally, we outline the organization of this thesis in Section 1.5.

1.1 Big Data Appications

Big data is characterized by its volume, velocity, variety, and applies to information

that exceeds the processing capacity of conventional database systems. Cloud computing

provides abundant computing resources and massively parallel processing capabilities that

can support the management and processing of big data. In recent years, many parallel

programming systems have been carried out on coordinating the cloud computing resources

to support different types of big data applications.

A parallel programming model is an abstraction which expresses the logic of the applica-

tion, defines how to divide data into structure and element, and performs parallel operations

on the structure. A framework is the implementation of the corresponding model: archi-

tecture and runtime mechanisms that map them onto the processing units, coordinate the

processing units to form a data flow, and scale up data to huge volume flexibly. Frame-

works provide API in libraries or language extensions. Such high-level support enables

users to process big data without being involved in many low-level things, for example, load

balancing and failover.

2

Chapter 1 Introduction

Many machine learning algorithms are based on matrix operations. Matrix parameters

can be used to learn interrelations between features: The (i,j)th element of the parameter

matrix represents how feature vector i is related to feature vector j. The prediction is a

function of a dot product between the parameter vector and the feature vector. Fo example,

PCA and collaborative filtering are to infer matrix parameters.

Additionally, matrix operations provide computation engine for the majority of machine

learning algorithms. Such algorithms will not be effective unless they are trained and are

operating on large data sets, ranging from hundreds of training examples to millions of

testing data. For example, KMeans [Kan02] is a typical unsupervised learning clustering

algorithms. The multiple dimensions points are formulated into matrices. In an iteration,

the point will multiply centroids and get the distance. Points will be classified into new

clusters according to distance. And logistic regression [HLS00] is a simple and typical su-

pervised learning algorithm which is an algorithm for learning a binary classifier: a function

that maps its input vector to a binary output.

Many common graph algorithms can be implemented by operations on the adjacency

matrix: Breadth-first or depth-first search can be formulated into matrix-vector multiplica-

tion; Graph merge can be formulated into matrix-matrix plus; Breadth-first or depth-first

search to or from multiply vertices simultaneously can be formulated into matrix-matrix

multiplication. [KG11] This approach can provide a variety of benefits:

• Graph algorithms expressed in matrices are more compact and are easier to figure

out.

• Graph algorithms expressed in matrices are easy to be implemented by the existing

tools for parallel computations.

• Graph algorithms expressed in matrices have clear data access patterns which can be

readily optimized.

3

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

1.2 Limitations of Existing Matrix Computations Systems

Many common machine learning and graph algorithms which are extensively used in

big data applications can be implemented by general matrix computations, including linear

algebra operations and irregular matrix operations. General matrix operations define a

sequence of operations on matrices. Irregular matrix operations extending linear algebra

operations have the same sequences of operations as their corresponding linear algebra

operations but have different operations. For example, operations of the irregular matrix

plus in Graph Merge is not the addition but the or operation, but they perform the same

sequence of operations on matrices.

However, existing parallel programming systems do not have programming abstrac-

tion and efficient implementation for general matrix computation in machine learning and

graph algorithms. Data-Parallel programming systems are inefficient to support matrix

operations. In MapReduce [DG08] and Spark [ZCF+10], matrix multiplication has to be

implemented into several Map and Reduce, which is cumbersome and not efficient. Graph-

Parallel programming systems are for graph algorithms but do not support matrix opera-

tions. Large-scale matrix computation systems are specified for linear algebra operations

but do not support irregular matrix operations such as graph merge and all pair shortest

paths.

To facilitate the processing of big data applications, a unified and efficient programming

model for general matrix computation is highly desirable. Nevertheless, designing and

implementing such programming system entails two major challenges.

The first challenge lies in abstracting a unified interface for both machine learning and

graph algorithms. Many algorithms, for example, PageRank, can be formulated into linear

algebra operations. So we need to support linear algebra operations. On the other hand,

many algorithms such as graph algorithms, can be formulated into irregular matrix oper-

ations. For example, graph merge is to merge two graphs. It is similar to linear algebra

matrix plus. It is not to plus each element in the matrix but to do or operation. All pair

shortest paths is similar to matrix multiplication. It is not to sum corresponding row and

4

Chapter 1 Introduction

column in two matrices, but to get the minimum value between elements in the first matrix

and sum of two elements of two matrices. We also need to support these irregular matrix

operations.

The second challenge is how to implement a unified interface to support general matrix

computations. The input of logistic regression is the dense matrix, while the input of

PageRank is a sparse matrix. Thus, we need to support both dense matrix and sparse

matrix. Irregular matrix operations, especially in graph algorithms, are different from linear

algebra operations. For example, Breadth-First search can be formulated into irregular

multiply operations, but needs level synchronization. Additionally, many algorithms require

to reuse data in iterations. For example, PageRank can be formulated as matrix and vector

multiplication. In each iteration, the matrix keeps the same. We need to reuse data in

iterations algorithms.

1.3 MatrixMap Programming Framework

We present MatrixMap, a unified and efficient data-parallel programming framework

for general matrix computations. MatrixMap provides a powerful yet simple abstraction.

MatrixMap defines a data structure called bulk key matrix and a computation interface

using matrix patterns. Bulk key matrix is the fundamental data structure, a scalable and

constant distributed shared memory data structure [PTM98], which stores vector-oriented

data indexed by key and can keep data across matrix patterns. Mathematical matrix is

the special case with key and value in digits. Matrix patterns can be programmed by user-

defined lambda function. Particularly, linear algebra operations are special cases of matrix

patterns with specific lambda functions. There are two kinds of matrix patterns. One is

the unary pattern: Map, Reduce; the other is the binary pattern: Plus, Multiply, Join.

In MatrixMap, data are loaded into bulk key matrices and algorithms are formulated

as a series of matrix patterns. MatrixMap is implemented on a shared nothing cluster with

multi-cores support. It follows BSP model [Val90] to compute each pattern and form an

5

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

asynchronous computation pipeline to get, compute and save data. Furthermore, we lever-

age sparse matrices and BLAS (Basic Linear Algebra Subprograms) to speed up in-memory

matrix computations. MatrixMap with unary matrix patterns supports Extract-Transform-

Load [Vas] operations like MapReduce on data and MatrixMap with binary matrix patterns

supports complex and dense matrix computations. Users can easily program sequential algo-

rithms to parallel codes without considering parallel issues. It outperforms current systems

by employing three key techniques: matrix patterns with lambda functions for irregular

and linear algebra matrix operations, asynchronous computation pipeline with optimized

data shuffling strategies for specific matrix patterns and in-memory data structures reusing

data in iterations. To evaluate performance, several typical algorithms such as PageRank

are expressed in this framework. The experiment results show that MatrixMap is up to 12

times faster than Spark, especially for iterative computation. Based on MatrixMap frame-

work, we implement several typical algorithms, such as Breadth-First Search and PageRank,

as algorithm library in this framework and we can see codes in MatrixMap are similar to

sequential codes.

1.4 Contributions

Machine learning and graph algorithms have been extensively used in big data analytic

applications, including social network analysis, recommendation system, etc. However, di-

rectly applying existing data-parallel models (e.g., Spark, Presto) to machine learning and

graph algorithms can be cumbersome and inefficient. This thesis makes contributions on de-

signing and implementing novel programming model, MatrixMap, for big data. MatrixMap

framework plays important roles in big data research community and big data industries.

We propose and implement a unified and abstract programming model for big data

processing. We abstract five patterns, Map, Reduce, Join and Multiply, Plus, from machine

learning and graph algorithms, especially for Multiply pattern and Plus pattern, which can

support a wide range of frequently used algorithms. Map, Reduce and Join patterns can

support Extract-Transform-Load and database operations, Multiply and Plus patterns can

6

Chapter 1 Introduction

support algorithms with general matrix computation. Users with five patterns can cover

most of the work in big data processing. Our contributions are:

• A unified and efficient programming framework for general matrix computations.

• A scalable matrix data structure across memory and out-of-core storage for the mas-

sive amount of data.

• Matrix patterns with optimized data shuffling strategies and asynchronous computa-

tion pipeline for algorithm parallelization.

1.5 Organization of Thesis

Chapter 1 is the introduction of this thesis. Chapter 2 reviews related works in the

literature. The main body of this thesis is Chapter 3, Chapter 4 and Chapter 5.

In Chapter 3, we present the design of MatrixMap parallel programming model for big

data. In Chapter 4, we show the details of implementation of the MatrixMap framework.

In Chapter 5, we introduce example algorithms and carry out the evaluation of typical

algorithms on MatrixMap. Finally, we conclude the thesis and discuss the future works in

Chapter 6.

7

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

8

Chapter 2

Literature Review

Big data programming environments are different from sequential programming environ-

ments, which have to coordinate computation in an unstable and distributed environment.

In this chapter, we will introduce the definition of parallel programming models in the big

data programming environments, categorize and illustrate typical models. A parallel pro-

gramming model is an abstraction which expresses the logic of the application, defines how

to divide data into structure and element, and perform parallel operations on the structure.

As the complexity of big data, current models can be categorized according to two

dimensions: process and application. In terms of process dimension, models can be cate-

gorized into message passing model and shared memory model. From the perspective of

application, models can be categorized into data parallel models, graph parallel models and

matrix computation models.

2.1 Process-oriented Programming Systems

Process-based programming systems make a wrapper of low-level sockets of operating

system and can map tasks on a distributed cluster. In the parallel computing parts, users

make use of sequential languages, while in the communication and synchronization parts,

users take advantage of the message API of the library above the raw sockets. In the be-

ginning, these models are pure message passing model with message method, but gradually

some models append shared memory model [PTM98]. These models are general purposes,

they are not specified for certain applications. These application programming models are

9

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

not automatic, as programmers must manually decompose data, partition tasks, manage

tasks, map tasks, communication and make synchronization.

We divide these models into two groups. The first message passing group is a collection

of processes, each running on a separate processor and communicating using SEND and

RECEIVE primitives that send messages over a network. The typical example is MPI.

The second shared memory group has the same logical multiple process structure while

their shared memory is simulated by implementing message passing. The typical example

is PVM.

2.1.1 Message Passing Systems

MPI (Message Passing Interface) is a specification for a standard library for message

passing. The standard defines the syntax and semantics of a core of library routines use-

ful to a wide range of users writing portable message-passing programs in Fortran 77 or

the C programming language. Its interface is meant to provide essential virtual topology,

synchronization, and communication functionality between a set of processes (that have

been mapped to nodes/servers/computer instances) in a language-independent way, with

language-specific syntax (bindings), plus a few language-specific features.

Since MPI is a general programming model, users are free to express any kinds of

applications, which has pros and cons. Although MPI is more advanced than the raw

sockets, yet programmers have to manually make communication and synchronization in

the distributed environment.

2.1.2 Distributed Shared Memory Systems

The Parallel Virtual Machine (PVM) [Sun90] is a software tool for parallel networking

of computers. It is designed to allow a network of heterogeneous Unix and/or Windows

machines to be used as a single distributed parallel processor. Thus, large computation-

al problems can be solved more effectively by using the aggregate power and memory of

many computers. The overall objective of this project is to permit concurrent computation

resources.

10

Chapter 2 Literature Review

Munin [BCZ90] allows programmers to annotate variables with the access pattern to

choose an optimal consistency protocol for them. Linda [CGL86] provides a tuple space

programming model that may be implemented in a fault-tolerant fashion. Thor [LAC+96]

provides an interface to persistent shared objects.

Parallel language has been embedded with distributed shared memory programming

model into the specification of language which shares a global address, such as UPC

[CDC+99], X10 [CGS+05]. Users have to manually decompose task mapping into threads

or process. In the virtue of these models, users do not need to communicate with message

methods. These models try to hide the physical distribution by making the system look

like it has shared memory. Users can acquire variable just like in the local programming

language. After finishing the program, it can automatically run across the clusters and can

dispatch tasks in different nodes.

A language may present a programming model that is higher level, more abstract, than

the message passing model supported by the most operating system. There are three

main characteristics that distinguish distributed programming languages from traditional

sequential languages, in terms of how they deal with parallelism, communication, and partial

failures.

X10 [CGS+05] is a modern object-oriented programming language for high performance,

high productivity programming of NUCC (Non-Uniform Cluster Computing) systems. It

is a new generation of parallel programming language. It aims to deliver new adaptable,

scalable systems that will provide a 10× improvement in development productivity for

parallel applications.

2.2 Application-oriented Programming Systems

Compared to above-mentioned programming model, these application programming

models are more automatic, as they can decompose data, partition tasks, manage tasks,

map tasks, communication and synchronize without instructive and redundant codes. It

not only manages the resource of a cluster but also can express algorithms. However, in

11

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

order to efficiently program applications, these models cannot manipulate concrete task and

cannot achieve optimal efficiency. Furthermore, higher abstraction means less generaliza-

tion. Application programming models are limited to a specific area, for instance, Pregel

for the graph. They cannot be applied to every application like MPI.

2.2.1 Data-Parallel Programming Systems

MapReduce, a data parallel programming model, is the dominant programming model

in big data. MapReduce [DG08] programming model makes it possible to easily parallelize

a number of common batch data processing tasks and operates in large clusters without

worrying about system issues like failover management. Most computations in MapReduce

are conceptually straightforward and are not iterative jobs. If you want to do iterative

job, you have to redirect your data to a file in secondary storage. MapReduce is suitable

for offline analysis, for example, ETL operations of large data sets. This abstraction is

inspired by the map and reduces primitives presented in Lisp and many other functional

languages. Map, written by the user, takes an input pair and produces a set of intermediate

key/value pairs. MapReduce groups together all intermediate values associated with the

same intermediate key and passes them to the reduce function. The reduce function, also

written by the user, accepts an intermediate key and a set of values for that key. It merges

these values together. Typically there is just zero or one output value produced in each

reduce invocation. The intermediate values are supplied to the users reduce function via an

iterator. This allows us to handle lists of values that are too large to be fitted in memory.

Twister [ELZ10], a MapReduce framework that allows long-lived map tasks to keep

static data in memory between jobs, which extends MapReduce to support iterative jobs.

Abstraction of MatrixMap is more general than iterative MapReduce. A MatrixMap pro-

gram can define multiple BKMs and alternate between running patterns on them, whereas

a Twister program has only one map function and one reduce function.

Dryad [IBY+07] allows a more general application model than MapReduce. It allows

programmers to write acyclic graphs of sequential processing modules spanning many com-

puters without compiling any code which refers to existing executables such as Perl or grep,

12

Chapter 2 Literature Review

which are likely to be a generalization of the Unix piping mechanism. More than two stages,

map and reduce, are able to be specified by users. Dryad is suitable for offline analysis of

large data sets (batch computation system). A Dryad application combines computational

vertices with communication channels to form a data flow graph. Dryad runs the applica-

tion by executing the vertices of this graph on a set of available computers. The vertices

provided by the application developer are quite simple and are usually written as sequential

programs with no thread creation or locking.

Naiad is a distributed system for executing data parallel, cyclic data flow programs. It

offers the high throughput of batch processors, the low latency of stream processors, and

the ability to perform the iterative and incremental computation. It enriches data flow

computation with time stamps. It offers low-level primitive data flow for users but does not

support high-level matrix operations. [MMI+13]

Spark [ZCF+10] is designed for iterative algorithms (machine learning, graphs) and in-

teractive data mining. It provides two main abstractions for parallel programming: resilient

distributed datasets(RDD) and parallel operations on these datasets (invoked by passing

a function to be applied on a dataset). Users can explicitly cache an RDD [ZCDD12] in

memory across machines and reuse it in multiple MapReduce-like parallel operations. S-

park cannot directly support matrix operations, which is the basic operations in machine

learning and graph algorithms. For example, matrix multiplication must be formulated into

a series of the map and reduce. Its RDD cache algorithm is LRU, which does not consider

the context of algorithms to improve efficiency. The main abstraction in Spark is a resilient

distributed dataset (RDD), which represents a read-only collection of objects partitioned

across a set of machines that can be rebuilt if a partition is lost. Users can explicitly cache

an RDD in memory across machines and reuse it in multiple MapReduce-like parallel oper-

ations. RDDs achieve fault tolerance through a notion of lineage: If a partition of an RDD

is lost, the RDD has enough information about how it was derived from other RDDs to

be able to rebuild just that partition. [Spark] In bulk operations on RDDs, a runtime can

schedule tasks based on data locality to improve performance. Thus, RDDs are best suited

13

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

for batch applications that apply the same operation to all elements of a dataset.

2.2.2 Graph-Parallel Programming Systems

GraphX [XGF+13] is a resilient distributed graph system on Spark. In GraphX, dis-

tributed graph representation is to efficiently distribute graphs as tabular data structures.

GraphX model, however, is limited to graph algorithms. Although they are in the same

system, GraphX model totally different from Spark model. When programming graph algo-

rithm, programmers should use graph parallel model, GraphX; when programming machine

learning algorithms, programmers have to switch to data-parallel model, Spark. So users

would be easily confused when they are programming these two kinds of algorithms with

separate models.

Pregel [MAB10] is a programming model for processing large graphs in a distributed

environment. It is a vertex-centric model. The programs are expressed in an iterative vertex

which can send and receive messages to other vertices in the iterations. Vertices iteratively

process data and send messages to neighboring vertices. It is easy to adapt typical graphic

algorithms into a vertex-based program.

GraphLab [LGK11] is a graph-based, high performance, distributed computation pro-

gramming model in machine learning. It solves the dependency of the graph. Different from

Pregel, it does not work in bulk-synchronous steps, but rather allows the vertices to be pro-

cessed in asynchronous steps [LGK+12]. The recent PowerGraph [GLG+12] framework

combines the shared-memory and asynchronous properties of GraphLab with the associa-

tive combining concept of Pregel. It follows GAS Decomposition: gather, apply, scatter.

Vertex approach will flood messages in the graph, which is inefficient to converge.

GraphChi [Aap12] which adopts GraphLab model is a system for handling graph com-

putations using just a PC. It uses a novel parallel sliding windows method for processing

graphs from disk. Ligra [SB13] is a lightweight graph processing framework for shared-

memory, which makes graph traversal algorithms easy to write. The framework consists of

two simple routines, one for mapping over edges and one for mapping over vertices. But

vertex floods messages through the graph. These can only run on a single computer, which

14

Chapter 2 Literature Review

cannot take advantage of distributed computing to process large-scale data.

X-Stream is a system for processing both in-memory and out-of-core graphs on a single

shared-memory machine. A large number of graph algorithms can be expressed using the

edge-centric scatter-gather model. This system is for graphs and on a single shared-memory

machine [RMZ13].

2.2.3 Matrix Computation Systems

ScaLAPACK [CDPW92] is a library of high-performance linear algebra routines for

parallel distributed memory machines. It is used for linear algebra matrix operations. But

it does not supprt irregular matrix operations and lacks in-memory data structure to reuse

data in iterations.

Presto [VBR+13] extends R programming language to support linear algebra operations.

Its data structure is a mathematical matrix, which cannot support key value data. So

they cannot manipulate data like MapReduce or Spark, for instance, data join or data

aggregation. Its interface limited to matrix multiplication is different from matrix operations

and not flexible to support irregular matrix operations. It cannot reuse data in iterations.

Piccolo [PL10] provides key-value partitioned tables which allow computation running on

different machines to share distributed mutable state. It is costly to support the immutable

state. Piccolo does not support parallel patterns like Map and Reduce with optimized

shuffling strategies.

MadLINQ [QCKC12] is a highly scalable, efficient and fault-tolerant matrix computation

system integrated with Dryad. Without lambda function on its interface, MadLINQ is less

flexible to support algorithms in irregular matrix operations and its DAG engine does not

take advantage of in-memory data structure and matrix operations with optimized shuffling

strategies.

Blitz [Vel98] and Eigen [JG12] provide optimized matrix computation. Although they

have many computation operations, they do not have parallel programming patterns which

can be programmable. They cannot run matrix operations in parallel either. Matrix Tem-

plate 4 [SL98] can do parallel matrix operations, but it cannot program function into the

15

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

matrix data operations.[SYK+10]

HAMA [SYK+10] is a framework supporting linear algebra operations based on MapRe-

duce for Big Data analytics which uses the Bulk Synchronous Parallel (BSP) computing

model. Its disadvantages are the same as MapReduce.

16

Chapter 3

The MatrixMap Programming
Model

Many common machine learning and graph algorithms which are extensively used in

big data applications can be implemented by general matrix computations, including linear

algebra operations and irregular matrix operations. We present MatrixMap, a unified and

efficient data-parallel system for general matrix computations. MatrixMap provides a pow-

erful yet simple abstraction. MatrixMap defines a data structure called bulk key matrix

and a computation interface using matrix patterns. Bulk key matrix is the fundamental

data structure, a scalable and constant distributed shared memory data structure [PTM98],

which stores vector-oriented data indexed by key and can keep data across matrix patterns.

Mathematical matrix is the special case with key and value in digits. Matrix patterns can

be programmed by user-defined lambda function. Particularly, linear algebra operations

are special cases of matrix patterns with specific lambda functions. There are two kinds of

matrix patterns. One is the unary pattern: Map, Reduce; the other is the binary pattern:

Plus, Multiply, Join.

17

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

3.1 Overview

We present MatrixMap, a unified and efficient data-parallel system for general matrix

computations. MatrixMap provides powerful yet simple abstraction, matrix data structure,

bulk key matrix and matrix patterns. Bulk key matrix is a constant and scalable distributed

shared memory, which stores vector-oriented data indexed by key and can keep data across

matrix patterns. Specifically, matrix patterns can be programmed by user-defined lambda

function and mathematical matrix operations are special cases of matrix patterns with

specific lambda functions. In MatrixMap, data are loaded into bulk key matrices and

algorithms are formulated as a series of matrix patterns.

3.2 Programming Interface

MatrixMap provides object-oriented interfaces in C++, a BKM data structure and its

patterns with lambda functions as input parameters, illustrated in codes 3.1. MatrixMap

supports multiple kinds of data types by C++ template: int, float and other user-defined

data type. In order to simplify elaboration, the interface in the example only contains float

and string.

Each pattern has its corresponding lambda function. For Map pattern, the map lambda

function receives a string and then insert processed key-value pairs into the context. For

Reduce, the reduce lambda function receives a string and iterable object and write key-value

pairs into the context. For Multiply and Plus patterns, their lambda functions receive two

numbers and return another number. For Join pattern, its lambda function receives two

keys in numbers or string from each row in each matrix. If users want to reserve two input

rows, the lambda function should return true.

18

Chapter 3 MatrixMap Programming Model

Listing 3.1: Matrix Interface

class BKM {
// Matrix Pat terns

Map(MapLambda) ;

Reduce (ReduceLambda) ;

Mult ip ly (MultiplyLambda) ;

Plus (PlusLambda) ;

Join (JoinLambda) ;

// Matrix s u p p o r t i n g method

BKM(s t r i n g f i l e n a m e) ;

Load (s t r i n g f i l e n a m e) ;

Cahe () ;

Save () ;

} ;

void map(s t r i ng , s t r i ng , Context) ;

void reduce (s t r i ng , I t e r a b l e <int>, Context) ;

f loat mult ip ly (f loat , f loat) ;

f loat plus (f loat , f loat) ;

bool j o i n (f loat , f loat) ;

To use MatrixMap, users should write a driver program that implements the high-level

control flow of their application and launches various patterns in parallel. It can directly

implement acyclic data flow and cyclic data flow with native C++ control flow clause,

for example, if-else clause or while clause. Besides matrix patterns, MatrixMap provides

supporting methods. For example, users can use Load method to load data, use Cache

method to cache data in the memory, and use Save method to dump all data into disks.

3.3 Bulk Key Matrix

Bulk key matrix (BKM) is the fundamental data structure. BKM can be viewed as

an abstraction for distributed shared memory which spreads data in the whole cluster and

19

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

provides an integrated interface for usage. It can achieve the balance between cost and

performance. Mathematical matrix is the special case of BKM with key and value in digits.

In the processing, data will be loaded into BKM and the lambda function in patterns will

operate on this data structure in parallel. It has following features:

BKM is a constant data structure. After initiation, it cannot be changed. If users want

to change data in BKM, users should create a new one. If users want to update several

rows in BKM, it may be inefficient to reconstruct a new data structure. But in big data

analytic, users do not care about the concrete individual element but the whole data set.

BKM can keep data across matrix patterns, so users can save the result and reuse the

result conveniently. In many cases, algorithms have to reuse input data or temporal results,

for example, PageRank which has to compute input data in each iteration. Keeping data

in the BKM can be more efficient for the usage of next time than to read data from files

again. Because it will preserve data in memory and in a good format. For unary patterns,

patterns will directly perform functions on BKM in memory.

BKM can reuse data in iterations. For binary patterns, MatrixMap will keep large

matrix and shuffle the small matrix. For example, in the iteration, PageRank can reuse

the matrix. In each iteration, BKM can keep the large matrix in the iteration. In the

processing, it does not need to transmit all data.

BKM is a vector-oriented data structure. Users cannot randomly slice the individual

element in the matrix, for example, fetch element located in row 1, column 1. So it does not

encourage to do algorithms involved matrix slice, for example, matrix inversion. The data

structure is vector-oriented. Users must fetch bulk rows or columns. Although slice may

be convenient in some cases, but most of the algorithms and data operations are vector-

oriented and power method [CW93] in vectors can be used to solve matrix inversion. In big

data, it is costly and rare to slice single element. If users want to slice element, users can

20

Chapter 3 MatrixMap Programming Model

write map pattern on BKM to get the concrete element.

BKM supports key-value data, one key with multiple values in the same data type.

One key with one value is the special case. The key can be string or digit. It uses keys

to index row or column. Key in strings is more readable and friendly than key in digits.

Mathematical matrix is the special case with key and value in digits. It makes indexes of

the data by hash functions. Although indexing will make extra costs, it is flexible to query

data according to keys. In the case that users do not need to process all data, if the data

is indexed, users can filter data according to keys, which is useful in database operations.

We store the numerical data in binary formats, so there is no need to do serialization and

deserialization.

BKM supports massive data beyond memory. The data structure can automatically

manage data between memory and storage. It can form a pipeline which asynchronously

fetches data, asynchronously computes data and asynchronously stores data between mem-

ory and secondary storage. It preferentially reserves data in memory. If the size of data is

more than physical memory, the data structure will distribute parts of data into secondary

storage and memorize the data location into location index. When fetching data, BKM

gets data location from the index, if data location is not in memory, it will read data from

secondary storage.

3.4 Matrix Patterns

MatrixMap provides powerful yet simple parallel matrix patterns. Parallel matrix pat-

terns define the sequence of operations on elements in matrices. Matrix patterns can be

programmed by user-defined lambda functions which configure operations of the pattern

and will be applied to elements according to their pattern. Mathematical matrix opera-

tions are special cases of matrix patterns filled with specific lambda functions. MatrixMap

21

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

supports frequently used parallel patterns such as map, reduce and also abstracts parallel

patterns from machine learning and graph algorithms, for example, multiply pattern. There

are two kinds of matrix patterns. .

• Unary Matrix Pattern: Map, Reduce

• Binary Matrix Pattern: Multiply, Plus, Join

Unary matrix patterns operate on a single matrix, which are frequently used and

basic patterns. These patterns apply associate lambda functions to every element on a ma-

trix. Unary matrix patterns like Map and Reduce are well suited for ETL data operations.

The typical example is WordCount. Firstly, each line of input is mapped to key-value data,

(word, 1), then they will be reduced to numbers of each word.

• Map patterns apply a function to every element in each vector of a matrix. The input

of Map in the MapReduce is the special case, one key with a vector in one element.

This pattern can both map one element to one element or to multiple elements.

• Reduce patterns combine all elements in a vector of a matrix into a single element

using an associative combiner function. The reduce pattern will be operated on every

vector and output is the single element.

MatrixMap provides single Map and single Reduce and optional global Sort. But

MapReduce includes Map and Reduce, and a global sort between Map and Reduce, which

is a bottleneck in the process. Often, Map or Reduce is needed, but MapReduce forces

users to run whole MapReduce model, Map, Sort and Reduce. So Users are more flexible

to use unary matrix patterns in MatrixMap.

22

Chapter 3 MatrixMap Programming Model

Listing 3.2: WordCount Code

BKM m(”wordcount . txt ”) ;

m.Map ([] (s t r i n g key , s t r i n g word , Context c){
c . I n s e r t (word , 1) ; })

. Sort () . Reduce ([] (s t r i n g key , I t e r a b l e <Int> i , Context c) {
int sum = 0 ;

for (int e : r) {
sum += e ;

}
context . I n s e r t (key , sum) ;

}
) ;

The above code defines a BKM, m, to load WordCount data. Then it invokes a Map

pattern to map data and sort results. Finally, a Reduce pattern is invoked to count numbers

of each word.

Binary matrix patterns operate on two matrices. These matrix patterns are similar

but are not limited to mathematical matrix operations. Actually, these are parallel patterns,

which define the sequence of combinations of each element between two matrices. The

lambda function should be defined into parallel patterns and will be applied to elements

according to their patterns.

Matrix + Matrix patterns will apply user-defined lambda functions to every two

elements in the same position of two matrices, similar to matrix plus. Mathematical Plus is

to plus two corresponding elements, illustrated in Figure 3.1. It maps each vector from each

matrix to a computing node, then run lambda function on each element in the two vectors.

Users can define lambda function to perform mathematical plus in this pattern. Users can

write other lambda functions in this pattern instead. For example, lambda functions can

compare two elements to merge two graphs or minus two elements to implement matrix

23

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

minus operation.

Fig. 3.1: Matrix Plus Pattern

Graph merge algorithm is to merge graph A and graph B to create graph C: Edges are

created in graph C, if any of its vertices exist in graph A or graph B. We formulate the

algorithm as matrix plus, C = A + B with a lambda function to compare two elements in

graphs.

Listing 3.3: Graph Merge

BKM A(”a . data ”) ;

BKM B(”b . data ”) ;

BKM C = A. Plus (B,

[] (f loat a , f loat b){
i f (a != 0) return a ;

else i f (b != 0) return b ;

else return 0 ;

}
) ;

Codes define BKM of graph A and graph B, and load their data. The BKM A uses plus

pattern to merge graph B. The lambda function receives two input, if one element is not

zero, then return the element, otherwise it returns 0.

24

Chapter 3 MatrixMap Programming Model

Matrix × Matrix patterns will apply user-defined lambda functions to combinations

of every row and every column from two matrices, similar to mathematical matrix multi-

plication, illustrated in Figure 3.2. The pattern is in two stages. Firstly, map this pair of

row and column to a vector. Then reduce result vector to a single element. Mathematical

multiplication is the special case that is to add each pair of elements in a pair of row and

column and sum up the result. It is a common operation on large graphs, used in graph

contraction, peer pressure clustering, all-pairs shortest path algorithms, and breadth-first

search from multiple source vertices. Particularly, in all pair shortest path algorithm, the

lambda function is to find the minimum value of the sum of two elements.

Fig. 3.2: Matrix Multiply Pattern

All Pair Shortest Path [Cor09] is to find the shortest paths between all pairs of vertices

in a graph. The all-pairs shortest paths problem for unweighted directed graphs could be

solved by a linear number of matrix-matrix multiplications. This is a dynamic-programming

algorithm. Each major loop of the dynamic program will invoke an operation that is similar

25

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

to matrix-matrix multiplication. The lambda function is to find the minimum value between

the sum of the two elements and input element.

Listing 3.4: All Pair Shortest Path

BKM W(”graph . data ”) ;

int i t e r a t i o n = W. GetRows () ;

for (int i = 0 ; i < n − 1 ; i = 2∗ i){
W = W. Mult ip ly (W,

[] (f loat x , f loat y) {
return min (x+y , x) ;

}
) ;

}

Codes define BKM W and initialize with graph data name. The data will be automat-

ically loaded. Then the iteration number is set in the loop. In the for loop, the BKM W

will multiply itself. The lambda function in the multiply pattern returns the smaller value

between the addition of the two input and first input.

Matrix × V ector patterns are special cases of the matrix and matrix multiplication

pattern. The right part does not limit to a single vector, but can be small matrices. It is

the most widely used matrix operation, since it is the workhorse of iterative linear equa-

tion solvers and eigenvalue computations. Many algorithms can be formulated into Matrix

Vector Multiplication. For example, PageRank algorithm, Breadth-first search algorith-

m, Bellman-Ford shortest paths algorithm, and Prim’s minimum spanning tree algorithm.

[KG11]

PageRank [L P99] is an algorithm used by Google Search to rank websites in their search

engine results. PageRank works by counting the number and quality of links to a page to

determine a rough estimate of how important the website is. Each link’s vote is proportional

to the importance of its source page. Given a web graph with N nodes, where the nodes are

26

Chapter 3 MatrixMap Programming Model

pages and edges are hyperlinks. We load the data into adjacency matrix M. We have a rank

vector r with an entry per page. We can formulate the PageRank into the flow equation in

the matrix form: r = M ∗ r.

Listing 3.5: PageRank

BKM M(”web . graph”) ;

BKM r new , r o l d ;

int i t e r a t i o n s = 100 ;

for (int i = 0 ; i < i t e r a t i o n s ; ++i){
r new = M. Mult ip ly (r o l d) ;

r o l d = r new ;

}

Codes define BKM M and initialize with graph data name. r new, and r old are rank

vectors in 1×N . We define iteration number as 100. We set the multiplication pattern in

the for loop.

Matrix Join Matrix patterns combine vectors from two matrices, illustrated in Fig-

ure 3.3. It is abstracted from database operation Join, which is a common operation in

the database. Join operations include inner join, left join, outer join, right outer join, full

outer join and cross join. Users can implement different Join operation with different lamb-

da functions. This pattern selects return result from element combinations between two

matrices.

An inner join [Wik15] requires each record in the two joined tables to have matching

records and is a commonly used join operation in applications. Inner join creates a new

result table by combining column values of two tables (A and B) based upon the join-

predicate. The query compares each row of A with each row of B to find all pairs of rows

which satisfy the join-predicate. The result of the join can be defined as the outcome of

first taking the Cartesian product of all records in the tables (combining every record in

table A with every record in table B) and then returning all records which satisfy the join

27

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

Fig. 3.3: Matrix Join Pattern

predicate.

Listing 3.6: Inner Join

BKM matrix1 (” matrix1 . data ”) ;

BKM matrix2 (” matrix2 . data ”) ;

matrix1 . Join (matrix2 ,

[] (f loat key1 , f loat key2) {
return key1 == key2 ;

}
) ;

Codes define BKM matrix1, matrix2 and initialize with matrix data name. The data will

be automatically loaded. Matrix1 uses join pattern to join matrix2. The lambda function

of Join pattern is to return true, if the two inputs are the same.

28

Chapter 3 MatrixMap Programming Model

3.5 Summary

Existing systems are cumbersome and inefficient to program general matrix computation

in parallel manner for big data analytics. We present MatrixMap, a unified and efficient

data-parallel system for general matrix computations. MatrixMap provides powerful yet

simple abstraction, consisting of a distributed data structure called bulk key matrix and a

computation interface defined by matrix patterns. Users can easily load data into bulk key

matrices and program algorithms into parallel matrix patterns.

29

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

30

Chapter 4

The MatrixMap Framework

MatrixMap framework is the implementation of the corresponding MatrixMap program-

ming model. This framework can process data in parallel on a shared nothing cluster with

multi-cores support. We use Intel Threading Building Blocks (TBB) [tbb14] to implement

matrix patterns. TBB helps programmers easily write parallel C++ programs that take

full advantage of multi-core performance. We use ZeroMQ [Hin13] to do communication

between machines. We implement the framework in C++ language and take advantages

of lambda functions, a new feature in C++ 11. We use template and metaprogramming

technique to support multiple kinds of data.

4.1 System Architecture

The framework is a typical master and slave system as depicted in Figure 4.1. As C++

is a compiled language, which cannot dynamically load codes like interpreted languages, so

MatrixMap framework cannot dynamically load users’ program code. Users’ driver program

codes should be compiled before submitting. The driver program is also in slave and master

mode. Framework master will run driver program and framework slaves will run worker

program.

Data of BKM cross around machines in the cluster. When a parallel pattern in the

users’ program is invoked on a BKM, MatrixMap creates and sends tasks to process each

31

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

Fig. 4.1: Distributed Framework

partition of the BKM on slaves. Slaves will compute each partition of data in parallel. After

all computation of a pattern, the master will start another pattern.

Figure 4.2 illustrates the flowchart of the MatrixMap framework. The framework will

input data and partition data for the Map phase. Map phase takes an input pair and

produces a set of intermediate key/value pairs. The framework collects all intermediate

values associated with the same intermediate key and passes them to the Reduce phase.

The Reduce phase accepts an intermediate key and a set of values for that key and merges

these values together.

4.2 Bulk Key Matrix Implementation

BKM reserves data into memory and store unused data into secondary storage. If there

is not enough memory for one BKM, it will store parts of matrix data into secondary storage.

32

Chapter 4 MatrixMap Framework

Fig. 4.2: Distributed Framework

33

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

If data is stored into secondary storage, data will never be deleted. It assumes that there

is infinite capacity for secondary storage and is costly to write data into secondary storage.

It will remember keys of data both in memory and storage with location information in a

map. BKM supports all kinds of data types, if the data types do not belong to basic data

types, users should write serialization function.

BKM makes efficient memory management. It prefers to store data into memory.

In memory part, there is an object manager. It will create continuous memory block for

each vector in BKM. So it is efficient to apply parallel functions on BKM with memory

coherence. When there are not enough memory for data, it will save data in the storage via

RocksDB. We do not write our own persistent part, but use RocksDB instead. RocksDB is

an embeddable persistent key-value store for fast storage. MatrixMap will asynchronously

store data into secondary storage via RocksDB [Roc15]. It will set up a database for the

data. Each BKM will be stored into each column file in the database. Although a random

query is faster in hash-based tree format, but BKM often iterate all data. So MatrixMap

uses tree-based file format to store data.

BKM makes efficient cache across memory and secondary storage according to matrix

patterns. The cache algorithm is vector-oriented, not Least Recently Used(LRU) [OOW93]

in many systems. Many matrix operations are based on rows or columns. So our cache

prefetches the following vectors and those not frequently-used elements.

4.3 Matrix Patterns Implementation

For the implementation of matrix patterns, since TBB directly provides some basic pat-

terns, like Map, Reduce, Sort. We directly use these patterns in TBB. Plus pattern is built

on top of Map pattern of TBB. One dimension plus pattern is to map two arrays simultane-

ously. The two dimensions plus pattern is based on one dimension, which iterates all rows

34

Chapter 4 MatrixMap Framework

data with one dimension Plus pattern. Multiply pattern is built on top of Map pattern and

Reduce pattern of TBB. One dimension multiplication pattern is dot multiplication which

maps two arrays to a vector, then reduces result vector. Two dimensions pattern is to map

each pair of row and column with one dimension multiplication pattern.

MatrixMap conforms to the synchronous computation mode, the bulk synchronous

parallel (BSP) model [Val90]. The BSP model proceeds in a series of global super steps

which consist of three ordered stages: Computation, Communication and Barrier synchro-

nization. One matrix pattern is a kind of super step. In one matrix pattern, it will create

tasks to computes each element in parallel. The length of the matrix is the barrier. Without

finishing all rows in matrices during a pattern, it can not process another matrix patterns.

Since matrices have enough rows for computation, synchronous model also can fully utilize

computation resources.

MatrixMap has the asynchronous computation pipeline to asynchronously fetch

data, compute data and store data, although MatrixMap follows synchronized BSP model.

We use asynchronous input queues to decouple data fetch and data computation and use

asynchronous output queue to decouple data computation and data storage. Asynchronous

queues are lock-free concurrent data structures. MatrixMap will fetch data from asyn-

chronous input queues and create parallel tasks to compute data in parallel. Then store

results to asynchronous output queues. Consequently, MatrixMap fully leverages multi-core

CPUs and other computation resources.

Figure 4.3 is an asynchronous computation pipeline of a Map pattern. Firstly, the Map

pattern can asynchronously get data from an asynchronous input queue. Then the Map

pattern does parallel tasks on these data. Thirdly, Map pattern outputs the result to an

asynchronous output queue. If there is not enough memory for data, BKM will move parts

of data to disk. In the whole process, data are transmitted by pointers.

35

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

Fig. 4.3: Asynchronous Computing Process

36

Chapter 4 MatrixMap Framework

MatrixMap will make parallel data partition. For unary patterns, there is one input

and it is easy to partition data in vectors into asynchronous input queues, then send data

to each slaves nodes for computation. For binary patterns, MatrixMap will simultaneously

partition two inputs and has two kinds of cases for sending data. In matrix and vector

case, it will send the vector first and then start computation when one row of a matrix is

coming. In matrix and matrix case, MatrixMap will send pairs of vectors in each matrix to

each slave and compute each pair of vectors.

MatrixMap has efficient data shuffling strategies for different matrix patterns, which

are much more efficient than the strategy of MapReduce. It will send important data first

and send less redundant data in the data shuffling.

For Matrix and Vector Multiplication pattern, which has M rows matrix and 1 column

vector and runs on C machines, it transmits C copies of the column vector and M rows

matrix data separately assuming that C is much smaller than M. In MapReduce, it will

send M rows and M columns in data shuffling.

For Matrix and Matrix Multiplication pattern, we simultaneously send data from two

matrices. For M rows matrix and N columns matrix with D computing nodes, it sends a

couple of columns to D computing nodes, then it sends D copies of first matrix data to each

computing nodes separately. We only need to send D ∗M + N , which is much less than

those in MapReduce. MapReduce needs to send M ×N data.

For Matrix Plus pattern, it will send pairs of vectors in the same position in each matrix

simultaneously, so it can start computing immediately. For Matrix Join pattern, it will send

pairs of vectors in each matrix simultaneously.

37

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

4.4 Fault Tolerance

Since MatrixMap is designed to process huge amounts of data using hundreds or t-

housands of commodity machines, the framework must tolerate machine failures gracefully.

The framework has implemented fault tolerance mechanism and can quickly recover from

the former matrix patterns. When encountering failures, it does not need to repeat the

application at the start. It can reserve temporal accomplishment and start at the former

matrix patterns.

To make fault tolerance, matrix data and matrix patterns will be updated into sec-

ondary storage periodically. If MatrixMap fails, it can recover data and data patterns from

secondary storage. MatrixMap will write pattern logs into secondary storage after finishing

a pattern. When recovering from a failure, it reads logs and start from current pattern.

4.5 Optimization for Sparse Matrix Computation

A sparse matrix is a matrix in which most of the elements are zero. Large sparse

matrices often appear in big data applications. MatrixMap adopts compressed sparse row

format(CSR)[KKGK11] for sparse matrix and optimizes computing engine for CSR matrix

computation. So MatrixMap can support both dense matrices and sparse matrices.

Compressed Sparse Row(CSR) consists of value, column index, row pointer, where

value is an array of the (left-to-right, then top-to-bottom) non-zero values of the matrix;

column index is the column indices corresponding to the values; and, row pointer is the list

of value indexes where each row starts. This format is efficient for arithmetic operations,

row slicing, and matrix-vector products.

SIMD Computation via BLAS has been introduced to speed up numerical compu-

tation. The Basic Linear Algebra Subprograms (BLAS) are a specified set of low-level

subroutines that perform common linear algebra operations such as copying, vector scaling,

38

Chapter 4 MatrixMap Framework

Fig. 4.4: CSR Format

vector dot products, linear combinations, and matrix multiplication via Single Instruction

Multiple Data instruction(SIMD) of CPUs. It uses BLAS subroutine as lambda function on

corresponding matrix patterns, for example, Multiply. Users do not need to write specific

lambda function for mathematical matrix operations. MatrixMap supports such operations

in default.

4.6 Optimization for Graph Algorithms

To support graph algorithms, we introduce a new data format, Key-CSR to improve the

performance of the framework when processing graphs. And we introduce frequently used

graph operations for users.

CSR (Compressed Sparse Row) format is almost identical to the adjacency matrix rep-

resentation of a directed graph [SC96]. However, it has much less overhead and much better

cache efficiency. Instead of storing an array of linked lists as in the adjacency list represen-

tation, CSR is composed of three arrays that store whole rows continuously. The first array,

vertex array, stores the row pointers as explicit integer values, the second array, edge array,

stores the column indices, and the last array, number array, stores the actual numerical

values. Those column indices stored in the edge array indeed come from concatenating the

39

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

edge indices of the adjacency lists.

We introduce Key-CSR format into our BKM, vertex array as key, edge array and

value array as values in the matrix. It is similar to adjacency list, but there is no link

between elements in the value of the key matrix. It is more efficient than CSR. It does not

need to store the end position of each vertex and does not need to store a vertex with no

neighboring vertices. There is no vertex array to store the beginning of edges. The element

can be easily located like locating the element in the array. So it can take advantage of

memory cohesion.

Besides basic matrix patterns for graph algorithms, MatrixMap provides frequently used

graph operations for graph algorithms, which is the combination of basic matrix patterns

with specific lambda functions.

Graph contraction can be formulated into sparse triple product. The contraction of

a pair of vertices v i and v j of a graph produces a graph in which the two nodes v 1 and

v 2 are replaced with a single node v such that v is adjacent to the union of the nodes to

which v 1 and v 2 were originally adjacent. [KG11]

Subgraph extraction can be formulated into a sparse triple product. A subgraph, H,

of a graph, G, is a graph whose vertices are a subset of the vertex set of G, and whose edges

are a subset of the edge set of G. [KG11]

Graph join (or complete join) of two graphs is their graph union with all the edges

that connect the vertices of the first graph with the vertices of the second graph. It is a

commutative operation (for unlabelled graphs) [KG11]

4.7 Summary

MatrixMap framework is the implementation of the corresponding MatrixMap program-

ming model. This framework can process data in parallel on a shared nothing cluster with

40

Chapter 4 MatrixMap Framework

Fig. 4.5: Key-CSR Format

multi-cores support. It outperforms currents systems by employing three key techniques:

matrix patterns with lambda functions for irregular and linear algebra matrix operations,

asynchronous computation pipeline with optimized data shuffling strategies for specific ma-

trix patterns and in-memory data structures reusing data in iterations.

41

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

42

Chapter 5

Implementation of Example
Applications on MatrixMap

Many machine learning and graph algorithms can be implemented by operations on

matrices. MatrixMap not only supports Extract-Transform-Load [Vas] like MapReduce,

but also supports complex and dense computation algorithms, machine learning and graph

algorithms. Users can easily express various algorithms in MatrixMap that are difficult or

inefficient to implement in current models. We implement several typical algorithms in this

framework and we can see codes in MatrixMap are similar to sequential codes from listings

below.

5.1 Extract-Transform-Load

It is important to clean data with ETL. In computing, Extract, Transform and Load

(ETL) refers to a process in database usage:

• Extracts data from homogeneous or heterogeneous data sources

• Transforms the data for storing it in proper format or structure for querying and

analysis purpose

• Loads it into the final target.

43

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

Unary patterns and Join pattern can support various kinds of ETL operations.

5.1.1 Word Count

Although word count is simple, yet it is a frequently used algorithms in the search engine

to build inverted index. The following codes define a BKM, m, to load WordCount data.

Then invoke a Map pattern to map data and sort results. Finally, invoke a Reduce pattern

to count numbers of each word.

Listing 5.1: WordCount Code

BKM m(”wordcount . txt ”) ;

m.Map ([] (s t r i n g key , s t r i n g word , Context c){
c . I n s e r t (word , 1) ; })

. Sort () . Reduce ([] (s t r i n g key , I t e r a b l e <Int> i , Context c) {
int sum = 0 ;

for (int e : r) {
sum += e ;

}
context . I n s e r t (key , sum) ;

}
) ;

5.1.2 Inner Join

An inner join requires each record in the two joined tables to have matching records

and is a commonly used join operation in applications. Inner join creates a new result table

by combining column values of two tables (A and B) based upon the join-predicate. The

query compares each row of A with each row of B to find all pairs of rows which satisfy

the join-predicate. The result of the join can be defined as the outcome of first taking

the Cartesian product of all records in the tables (combining every record in table A with

every record in table B) and then returning all records which satisfy the join predicate.

44

Chapter 5 Example Applications

Listing 5.2: Inner Join

BKM matrix1 (” matrix1 . data ”) ;

BKM matrix2 (” matrix2 . data ”) ;

matrix1 . Join (matrix2 ,

[] (f loat key1 , f loat key2) {
return key1 == key2 ;

}) ;

Codes define BKM matrix1, matrix2 and initialize with matrix data name. The data will

be automatically loaded. Matrix1 uses join pattern to join matrix2. The lambda function

of Join pattern is to return true when the two inputs are the same.

5.2 Machine Learning Algorithms

Many machine learning algorithms are based on matrix operations. Matrix parameters

can be used to learn interrelations between features. Matrix operations provide computation

engine for the majority of machine learning algorithms.

5.2.1 Logistic Regression

Logistic regression is to predict a binary response from a binary predictor, used for

predicting the outcome of a categorical dependent variable (i.e., a class label) based on one

or more predictor variables (features). It will take all features and multiply each one by a

weight and then add them up. This result will be put into the sigmoid function, and it will

get a number between 0 and 1. If the number is above 0.5, it will get a 1, else it will get a

0. [Har12]

45

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

Listing 5.3: Logistic Regression

BKM data (” po in t s . data ”) ;

BKM weights , l abe l , e r r o r ;

BKM temp ;

int i t e r a t i o n s = 100 ;

for (int i = 0 ; i < i t e r a t i o n s ; ++i) {
temp = data . Mult ip ly (weights)

f loat h = sigmoid (temp) ;

e r r o r = l a b e l . Plus (h) ;

temp = data . Mult ip ly (e r r o r) ;

temp = temp . Mult ip ly (alpha) ;

weights = temp . Plus (weights) ;

}

Codes define BKM data and initialize with data name. The data will be automatically

loaded. Define vector weights, label, error by BKM. Then defines the iteration number of

the loop. In the loop, we formulate the algorithm into matrix-vector multiplication.

5.2.2 K-Means

K-means clustering aims to partition n points into k clusters in which each observation

belongs to the cluster with the nearest mean, serving as a prototype of the cluster. It can be

formulated into Map and Reduce in iterations. The input matrix with each point as a row.

Center matrix with each central point as a column. Since the centroid data is much smaller

than point data, we store the centroid data into shared variable. In the Map, we each point

multiplies the centroid. Then send centroid with the smallest distance and corresponding

key. Finally, find the means of clusters to get new centroids.

46

Chapter 5 Example Applications

Listing 5.4: K-Means

BKM point (” po in t s . data ”) ;

BKM c e n t r o i d s ;

int i t e r a t i o n s = 100 ;

for (int i = 0 ; i < i t e r a i o n s ; ++i) {
po int .Map ([] (s t r i n g key , vector<double> point , Context c) {
BKM temp = point . Mult ip ly (c e n t r o i d s) ;

int index = min index (temp) ;

c . I n s e r t (index , po int) ;

}) . Reduce ([] (s t r i n g key , I t e r a b l e <double> i , Contex c){
c e n t r o i d s = c . i n s e r t (key , average (po int)) .Dump() ;

}) ;

}

5.2.3 Alternating Least Squares

Alternating Least squares (ALS) decomposes matrix for collaborative filter problems,

such as predicting users’ ratings for movies according to other users’ historical ratings. ALS

is computation-intensive rather than data-intensive. R = U ∗M+E. We have to decompose

R into U and M. We use EM method to compute U and M in iteration: [ZWSP08]

1. Initialize M with a random value.

2. Solve U given M to minimize error on R

3. Solve M given U to minimize error on R

4. Repeat steps 2 and 3 until a stopping criterion is satisfied.

47

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

Listing 5.5: Alternating Least Squares

BKM m(” r . data ”) ;

BKM u , r , e r r o r ;

int i t e r a t i o n 100 ;

for (int i = 0 ; i < i t e r a t i o n s ; ++i) {
BKM temp = m. Mult ip ly (u) ;

e r r o r = r . Plus (temp) ;

temp = m. Mult ip ly (e r r o r) ;

temp = temp . Mult ip ly (alpha) ;

u = temp . Plus (u) ;

temp = u . Mult ip ly (m) ;

e r r o r = r . Plus (temp) ;

temp = u . Mult ip ly (e r r o r) ;

temp = temp . Mult ip ly (alpha) ;

m = temp . Plus (m) ;

}

5.3 Graph Algorithms

Many graph algorithms can be implemented by operations on the adjacency matrix:

Breadth-first or depth-first search can be formulated into matrix-vector multiplication;

Graph merge can be formulated into matrix-matrix plus; Breadth-first or Depth-first search

to or from multiply vertices simultaneously can be formulated into matrix-matrix multipli-

cation.

5.3.1 Breadth-First Search

Breadth-first search can be performed by multiplying a sparse matrix G with a sparse

vector x. To search from node i, we begin with x(i) = 1 and x(j) = 0 for j 6= i. Then

y = GT ∗ x picks out row i of G, which contains the neighbors of node i. Then multiplying

48

Chapter 5 Example Applications

y by GGT gives nodes two steps away, and so on. We solve the BFS problem using level

synchronization. BFS traverses the graph in levels; once a level is visited it is not again and

processes each level of the BFS in parallel. The number of iterations required is equal to

the (unweighted) distance of the furthest node reachable from the starting vertex, and the

algorithm processes each edge at most once.[SB13]

Fig. 5.1: Breadth-First Search in Matrix Operations

Listing 5.6: Breadth-first Search

BKM graph (”graph . data ”) ;

BKM t ra c e ;

graph . Mult ip ly (t r a c e) ;

5.3.2 Graph Merge

Graph merge algorithm is to merge graph A and graph B to create graph C: Edges are

created in graph C if any of its vertices exist in graph A or graph B. We formulate the

algorithm as matrix plus, C = A + B with a lambda function to compare two elements in

graphs.

49

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

Listing 5.7: Graph Merge

BKM A(”a . data ”) ;

BKM B(”b . data ”) ;

BKM C = A. Plus (B,

[] (f loat a , f loat b){
i f (a != 0) return a ;

else i f (b != 0) return b ;

else return 0 ;

}
) ;

Codes 5.7 define BKM of graph A and graph B, and load their data. The BKM A uses

plus pattern to merge graph B. The lambda function receives two input, if one element is

not zero, then return the element, else return 0.

5.3.3 All Pair Shortest Path

All Pair Shortest Path [Cor09] is to find the shortest paths between all pairs of vertices

in a graph. The all-pairs shortest paths problem for unweighted directed graphs could be

solved by a linear number of matrix-matrix multiplications. This is a dynamic-programming

algorithm. Each major loop of the dynamic program will invoke an operation that is very

similar to matrix-matrix multiplication. The lambda function is to find the minimum value

between the sum of the two elements and input element. So the algorithm will look like

repeated matrix multiplication. Now we can see the relation to matrix multiplication.

Suppose we wish to compute the matrix product C = A ·B of two n×n matrices A and B.

Then, for i, j = 1,2,..., n, we compute

l
(m)
ij = min(l

(m−1)
ij , min

1≤k≤n
){l(m−1)

ij + wkj}

l
(m)
ij = min

1≤k≤n
{l(m−1)

ik + wik}

(5.1)

50

Chapter 5 Example Applications

Taking as our input the matrix W = (wij), we now compute a series of matrices L(1), L(2), ..., Ln−1,

where for m = 1,2,...,n - 1, we have Lm = (l
(m)
ij). The final matrix L(m−1) contains the actual

shortest-path weights. Observe that l
(1)
ij = wij for all vertices i, j ∈ V , and so L(1) = W .

The core of the algorithm is the following procedure, which, given matrices L(m−1) and W ,

returns the matrix L(m). That is, it extends the shortest paths computed so far by one

more edge.

L(1) = L(0).W = W,

L(2) = L(1).W = W (2)

L(n−1) = L(n−2).W = W (n−1)

(5.2)

Listing 5.8: All Pair Shortest Path

BKM W(”graph . data ”) ;

int i t e r a t i o n = W. GetRows () ;

for (int i = 0 ; i < n − 1 ; i = 2∗ i){
W = W. Mult ip ly (W,

[] (f loat x , f loat y) {
return min (x+y , x) ;

}
) ;

}

Codes 5.8 define BKM W and initialize with graph data name. The data will be auto-

matically loaded. Then set the iteration number in the loop. In the for loop, the BKM W

will multiply itself. The lambda function in the multiply pattern is to return the smaller

value between the addition of the two input and first input.

51

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

5.3.4 PageRank

PageRank [L P99] is an algorithm used by Google Search to rank websites in their search

engine results. PageRank works by counting the number and quality of links to a page to

determine a rough estimate of how important the website is. Each link’s vote is proportional

to the importance of its source page. Given a web graph with n nodes, where the nodes are

pages and edges are hyperlinks. We load the data into adjacency matrix M. We have a rank

vector r with an entry per page. We can formulate the PageRank into the flow equation in

the matrix form: r = M ∗ r.

Codes define BKM M and initialize with graph data name. r new, and r old is rank

vector in 1 ×N . We define iteration number as 100. We set the multiplication pattern in

the for loop.

Listing 5.9: PageRank

BKM M(”web . data ”) ;

BKM r new , r o l d ;

int i t e r a t i o n s = 100 ;

for (int i = 0 ; i < i t e r a t i o n s ; ++i){
r new = M. Mult ip ly (r o l d) ;

r o l d = r new ;

}

5.4 Evaluation

Although our implementation of MatrixMap is still at an early stage, the experiment

results demonstrate that it is a promising cluster computing framework. All of the experi-

ments were performed on a cluster of 10 nodes machines with CPU Intel Xeon E5-2630 v2

2.6G, RAM 8G, HDD 150G. The parallel programs were compiled with Intel’s TBB (version

4.2). The programs were compiled using g++ 4.8.3 with the -O2 flag.

52

Chapter 5 Example Applications

We compare MatrixMap with a data-parallel system called Spark, a graph-parallel sys-

tem called GraphX and a matrix computation system called ScaLAPACK. Apache Spark

is a fast and general engine for large-scale data processing, which run programs up to

100x faster than Hadoop MapReduce in memory, or 10x faster on disk. Because Spark is

faster than Hadoop MapReduce, we compare MatrixMap with Spark for machine learning

algorithms. GraphX is Apache Spark’s API for graphs and graph-parallel computation.

Because GraphX is faster than Graphlab, we compare MatrixMap with GraphX for graph

algorithms. ScaLAPACK [CDPW92] is a library of high-performance linear algebra routines

for parallel distributed memory machines.

According to the experiment result, MatrixMap is 12 times faster than Spark and out-

performs ScaLAPACK by 30%, especially for iterative algorithms which reuse data. We

roughly cut the time into two stages, input stage and computation stage. The input stage

is the first iteration and computation stage is the remain iterations. Due to the asynchronous

computation pipeline, both stages include data input and data computation.

We evaluate framework in different data size with non-iterative algorithms, graph merge

and all pair shortest path with one iteration. They have input stages and no computation

stages. We use GraphX’s implementation as a baseline. We test algorithms with data size in

4k(2M byte), 81k(6.5M byte), 875k(62M byte), 1.9m(71M byte), 3.9m(203.5M byte) graph

nodes. GraphX in Spark project is a message passing method [Sni95] with fixed topology in

the graph. GraphX has nothing to do with graph algorithms, which do not send messages

through graph topology, for example, all pair shortest path algorithm and Floyd-Warshall

algorithm. Additionally, vertices will flood messages through the graph, but not all vertices

need all their neighbor vertices’ information. The problem is that it takes longer time to

converge. GraphX uses three RDDs to represent a graph, which will cost much memory.

Before processing, it has to take much time to cut graph into vertex-cut. With vertex-cut, it

53

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

4k 81k 875k 1.9m
Number of Graph Nodes

0

5

10

15

20

25

30

R
u
n
n
in

g
 T

im
e
 (

s)

1 2

4

13

2 3

8

25

Breadth First Search

GraphX
MatrixMap

Fig. 5.2: Breadth-First Search Run time

cannot take advantage of BLAS to speed up computation. Using BLAS, Graph algorithms

in the matrix are more compact and are easier to figure out and have clear data access

patterns. Here, MatrixMap takes advantage of BLAS for matrix operations.

Breadth-First Search can be formulated into matrix-vector multiplication, but not a

typical mathematical matrix operation. In each iteration, parts of rows will be visited,

do one dot multiplication. In one dot multiplication, it can visit a couple of vertices at

one time. But GraphX has to visit each vertex through its edge separately. Additionally,

GraphX will cost much time to cut graph into partitions.

Graph Merge can be formulated into matrix-matrix plus. MatrixMap will send data

in each matrix simultaneously and asynchronously compute each row. GraphX uses the

outerJoinVertices operation to merge two graphs. It will cost much time to compare and

54

Chapter 5 Example Applications

4k 81k 875k 1.9m 3.9m
Number of Graph Nodes

0

10

20

30

40

50

60

70

80
R

u
n
n
in

g
 T

im
e
 (

s)
Graph Merge

GraphX
MatrixMap

Fig. 5.3: Graph Merge Run Time

find the corresponding key in each graph. MatrixMap costs much less time than GraphX.

All Pair Shortest Path can be formulated into matrix-matrix multiplication. We use

GraphX’s implementation to compare its performance with MatrixMap. GraphX cannot

implement all pair shortest path in dynamic algorithm paradigm, but runs single shortest

path on every vertex. From algorithm analysis, the dynamic algorithm in MatrixMap costs

less than the algorithm in GraphX. This algorithm needs to shuffle matrix data in each

iteration. The result shows that MatrxiMap is faster than GraphX.

We evaluate MatrixMap framework with iterative algorithms, logistic regression and

PageRank. The input stage costs constant time and in computation stage, every iteration

almost cost constant time. In input stage, ScaLAPACK uses less time on loading data than

MatrixMap. In computation stage, MatrixMap is quicker than ScaLAPACK gradually.

55

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

100 300 500 700 900
Number of Graph Nodes

0

5

10

15

20

25

30

35

40

R
u
n
n
in

g
 T

im
e
 (

s)

All Pair Shortest Path

GraphX
MatrixMap

Fig. 5.4: All Pair Shortest Path Run Time

Therefore, MatrixMap is suitable to iterative algorithms. MatrixMap’s running time in

each iteration keeps constant. BKM can efficiently save and reuse the temporal result

and data, so MatrixMap can be gradually faster than ScaLAPACK, especially for iterative

algorithms which reuse data.

Logistic regression is formulated into matrix-vector multiplication in iterations. Ma-

trixMap will firstly send the matrix to computing nodes, then send rows of the first matrix

and asynchronously compute each row. We use Spark’s implementation to compare its

performance with MatrixMap. Spark formulates the algorithm into Map and Reduce in

iterations. In MapReduce, it will shuffle data between Map and Reduce, which will cost

much time. In MatrixMap, after the first iteration which sends data to cluster, the following

iterations only need to reconstruct and transmit a vector and can reuse matrix data in the

56

Chapter 5 Example Applications

1 20 40 60 80
Number of Iterations

0

2

4

6

8

10
R

u
n
n
in

g
 T

im
e
 (

s)

PageRank

ScaLAPACK
MatrixMap

Fig. 5.5: PageRank Run Time

local machine. We run algorithms in several iterations. Experiments show that MatrixMap

is much faster than Spark after several iterations for 12 times.

Alternating Least Squares is formulated into two matrix matrix multiplications in iter-

ations. We use Spark’s implementation to compare its performance with MatrixMap. In

iterations, parts of matrix can be reserved and resued in the local machines. The result

shows that MatrixMap is faster than Spark.

We evaluate the computation efficiency of MatrixMap. We use ScaLAPACK’s imple-

mentation on PageRank as a benchmark. At the beginning of iteration phase, ScaLAPACK

is faster than MatrixMap. After 60 iterations, MatrixMap gradually outperforms ScaLA-

PACK by 30% with the help of optimized data shuffling strategies, asynchronous pipeline

directly and in-memory data structure for data reuse. The input matrix in the PageRank

57

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

1 10 20 30 40 50 60
Number of Iterations

0

50

100

150

200

250

300

350

400

R
u
n
n
in

g
 T

im
e
 (

s)

Logistic Regression

Spark
MatrixMap

Fig. 5.6: Logistic Regression Run Time

can be reserved in the memory of computing nodes.

We further evaluate the scalability of MatrixMap. In particular, we compare MatrixMap

framework with ScaLAPACK in PageRank algorithm with 80 iterations based on different

numbers of machines. The experiment shows the running time of both Spark and ScaLA-

PACK will decrease linearly with respect to the number of machine. They both have good

scalability and performance, because matrix data can be easily partitioned linearly accord-

ing to different computing nodes.

58

Chapter 5 Example Applications

1 10 20 30 40
Number of Iterations

0

20

40

60

80

100

120

140

R
u
n
n
in

g
 T

im
e
 (

s)
KMeans

Spark
MatrixMap

Fig. 5.7: KMeans Run Time

5.5 Discussion

MatrixMap is faster than Spark, GraphX and ScaLAPACK in iterative algorithms and

MatrixMap can automatically handle the parallelization and distribute execution of pro-

grams on a large cluster. From the above code listings, we can see that codes in MatrixMap

are similar to sequential codes. Users can easily load data into bulk key matrices and

program algorithms into parallel matrix patterns without considering low-level issues.

MatrxMap not only provides the MapReduce model, also provides parallel matrix pat-

terns for efficient process algorithms. MatrixMap directly provides matrix operations. It

sends each row and column to slaves and computes each row and column. In MapReduce

and Spark, matrix operations have to be implemented into several Map and Reduce, cutting

matrix into key-value data and shuffling data with global sort between Map and Reduce.

59

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

1 10 20 30 40
Number of Iterations

0

20

40

60

80

100

120

140

160

R
u
n
n
in

g
 T

im
e
 (

s)

Alternating Least Squares

Spark
MatrixMap

Fig. 5.8: Alternating Least Squares Run Time

It creates many temporal data in the process and has to recombine the data across cluster

several times. If two matrices are both in large scale, firstly, it has to do Map and Reduce

on each matrix separately into a same key value format in the same file. Then MapReduce

has to Map each pair of row and column in the file and does multiplication in Reduce.

For matrix-vector multiplication, it puts the vector into shared memory and Maps each

row in the matrix with the shared variable. Since shared variables have to update values

periodically, it is less efficient.

With asynchronous computation pipeline, MatrixMap can asynchronously compute

data when there is a pair of row and column in the computing node of the reduce phase. It

does not need to wait for the completion of all data shuffling after the map phase. In parallel

data shuffling, MatrixMap transmits fewer data in iterations. Different matrix patterns

60

Chapter 5 Example Applications

2 4 6 8 10
Number of Machines

0

5

10

15

20

25

30
R

u
n
n
in

g
 T

im
e
 (

s)

Scalability in PageRank

ScaLAPACK
MatrixMap

Fig. 5.9: Scalability in PageRank Run Time

have different data transmission strategies, which are much efficient than the strategy of

MapReduce. It will first send important data and then send the less redundant data in the

transmission.

With in-memory data structures, MatrixMap can reuse data in iterations. For

example, in PageRank, it is unnecessary to resend input matrix in each iteration, because

input matrix keeps constant and only the vector changes. After one iteration, it has already

sent constant data across the cluster. Thus, it only needs to send the changed vector data

in the iterations.

With optimized framework which is implemented in C++ language with lambda

function and template to support multiple data type, MatrixMap runs faster than Scala, a

interpreted language on JVM used in Spark. We utilize TBB to process data in parallel.

61

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

TBB has more advantage over raw threads used by Spark. We use Key-CSR matrix format

to greatly boost the performance of graph algorithms, take advantage of BLAS to speed

up density matrix operations and provide optimal data transmission strategy for different

patterns.

5.6 Summary

We have implemented typical ETL, machine learning and graph algorithms in Ma-

trixMap programming model. Users can easily express various algorithms in MatrixMap

that are difficult or inefficient to implement in current models.

62

Chapter 6

Conclusions and Future Research

In this chapter, we conclude this thesis in Section 6.1 and outline some future works in

Section 6.2.

6.1 Conclusions

Machine learning and graph algorithms can be formulated into matrix operations. Cur-

rent models are cumbersome and inefficient to program such operations in parallel on big

data. We introduce MatrixMap, an efficient parallel programming model which supports

both machine learning and graph algorithms. It is easy for users to transform algorithms

in matrix operations into parallel matrix patterns without handling issues such as fault

tolerance. In the end, MatrixMap is able to allow users to process big data in an easy and

unified way.

MatrixMap provides powerful yet simple matrix patterns and data structure, bulk key

matrices. In MatrixMap, data are loaded into bulk key matrices and algorithms are for-

mulated as a series of matrix patterns. It is implemented on a shared nothing cluster with

multi-cores support. To evaluate performance, several typical algorithms are expressed in

this framework. The experiment results show that MatrixMap is 12 times faster than Spark,

especially for iterative computation.

63

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

6.2 Future Research

In the future, we need to run more complex algorithms such as deep learning algorithms,

to get more information on big data. Although these intelligent algorithms are complex,

they are made of basic matrix operations. MatrixMap which is designed for parallel matrix

operations has the potential to support these complex algorithms.

To support more complex algorithms, MatrixMap needs to provide more matrix pat-

terns, for example, matrix inversion which is common in PCA. To better support user’

requirement, we plan to implement more typical machine learning algorithms in our algo-

rithms library: SVM. To improve programming efficiency, it is better to provide domain

specific language like SQL for users. It can help users like database administrator to use

MatrixMap to process big data.

Overall, we believe that the following directions are worth further investigations.

• Provide more matrix patterns for users to program more algorithms.

• Implement more machine learning and graph algorithms in the library.

• Provide higher-level interactive interfaces on top of MatrixMap, such as SQL and R

shells.

64

References

[Aap12] Carlos Guestrin Aapo Kyrola, Guy Blelloch. GraphChi: Large-scale graph

computation on just a PC. In Proceedings of the 10th USENIX conference on

Operating Systems Design and Implementation, pages 31–46. USENIX Associ-

ation, 2012.

[BCZ90] John K Bennett, John B Carter, and Willy Zwaenepoel. Munin: Distributed

shared memory based on type-specific memory coherence, volume 25. ACM,

1990.

[CDC+99] William W Carlson, Jesse M Draper, David E Culler, Kathy Yelick, Eugene

Brooks, and Karen Warren. Introduction to UPC and language specification.

Center for Computing Sciences, Institute for Defense Analyses, 1999.

[CDPW92] Jaeyoung Choi, Jack J Dongarra, Roldan Pozo, and David W Walker. ScaLA-

PACK: A scalable linear algebra library for distributed memory concurren-

t computers. In Frontiers of Massively Parallel Computation, 1992., Fourth

Symposium on the, pages 120–127. IEEE, 1992.

[CGL86] Nicholas Carriero, David Gelernter, and Jerrold Leichter. Distributed data

structures in Linda. In Proceedings of the 13th ACM SIGACT-SIGPLAN sym-

posium on Principles of programming languages, pages 236–242. ACM, 1986.

65

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,

Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10:

an object-oriented approach to non-uniform cluster computing. SIGPLAN Not.,

40(10):519–538, October 2005.

[Cor09] THomas H Cormen. Introduction to algorithms. MIT press, 2009.

[CW93] Moody T Chu and J Loren Watterson. On a multivariate eigenvalue problem,

Part I: Algebraic theory and a power method. SIAM Journal on Scientific

Computing, 14(5):1089–1106, 1993.

[dat15] libsvm dataset url: www.csie.ntu.edu.tw/˜cjlin/libsvmtools /datasets/bina-

ry.html#news20.binary, 2015.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing

on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[ELZ10] Jaliya Ekanayake, Hui Li, and Bingjing Zhang. Twister: a runtime for iter-

ative mapreduce. In HPDC ’10 Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing, pages 810–818, 2010.

[GLG+12] JE Gonzalez, Y Low, H Gu, Danny Bickson, and Carlos Guestrin. PowerGraph:

Distributed Graph-Parallel Computation on Natural Graphs. In OSDI’12 Pro-

ceedings of the 10th USENIX conference on Operating Systems Design and Im-

plementation, pages 17–30, 2012.

[Har12] Peter Harrington. machine learning in action. Manning Publications, 2012.

[Hin13] Pieter Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly Media,

Inc., 2013.

66

References

[HLS00] David W Hosmer, Stanley Lemeshow, and Rodney X Sturdivant. Introduction

to the logistic regression model. Wiley Online Library, 2000.

[IBY+07] Michael Isard, M Budiu, Y Yu, Andrew Birrell, and Dennis Fetterly. Dryad: dis-

tributed data-parallel programs from sequential building blocks. ACM SIGOPS

Operating Systems Review, 41(3):59–72, 2007.

[JG12] B Jacob and G Guennebaud. Eigen is a C++ template library for linear algebra:

Matrices, vectors, numerical solvers, and related algorithms, 2012.

[Kan02] A. Y Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman,

R., & Wu. An efficient k-means clustering algorithm: analysis and imple-

mentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

24(7):881–892, 2002.

[KG11] J Kepner and J Gilbert. Graph algorithms in the language of linear algebra.

SIAM, 2011.

[KKGK11] Kornilios Kourtis, Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris.

CSX: an extended compression format for spmv on shared memory systems. In

ACM SIGPLAN Notices, volume 46, pages 247–256. ACM, 2011.

[L P99] T Winograd L Page, S Brin, R Motwani. The PageRank citation ranking:

Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[LAC+96] Barbara Liskov, Atul Adya, Miguel Castro, S Ghemawat, R Gruber, U Ma-

heshwari, A C Myers, M Day, and Liuba Shrira. Safe and efficient sharing of

persistent objects in Thor. ACM SIGMOD Record, 25(2):318–329, 1996.

67

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

[LGK11] Yucheng Low, Joseph Gonzalez, and Aapo Kyrola. Graphlab: A distributed

framework for machine learning in the cloud. arXiv preprint arXiv:1107.0922,

1107(0922), 2011.

[LGK+12] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,

and Joseph M Hellerstein. Distributed GraphLab: A Framework for Machine

Learning and Data Mining in the Cloud. In Proceedings of the VLDB Endow-

ment, pages 716–727, 2012.

[MAB10] Grzegorz Malewicz, MH Austern, and AJC Bik. Pregel: a system for large-

scale graph processing. Proceedings of the the 2010 international conference on

Management of data, 114(2):135–145, 2010.

[MMI+13] Derek Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Mart’n Abadi. Naiad: A Timely Dataflow System. In SOSP ’13: Proceed-

ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,

pages 439–455, 2013.

[OOW93] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K page

replacement algorithm for database disk buffering. In ACM SIGMOD Record,

volume 22, pages 297–306. ACM, 1993.

[PL10] Russell Power and Jinyang Li. Piccolo: Building Fast, Distributed Programs

with Partitioned Tables. Proceedings of the 9th USENIX conference on Oper-

ating systems design and implementation - OSDI’10, (1-14):1–14, 2010.

[PTM98] Jelica Protic, Milo Tomasevic, and Veljko Milutinović. Distributed Shared Mem-

ory: Concepts and Systems, volume 21. John Wiley & Sons, 1998.

68

References

[QCKC12] Zhengping Qian, Xiuwei Chen, N Kang, and M Chen. MadLINQ: large-scale

distributed matrix computation for the cloud. Proceedings of the 7th ACM

european conference on Computer Systems. ACM, pages 197–210, 2012.

[RMZ13] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: edge-centric

graph processing using streaming partitions. In the Twenty-Fourth ACM Sym-

posium on Operating Systems Principles, pages 472 —- 488, 2013.

[Roc15] RocksDB url:http://www.rocksdb.org/, 2015.

[SB13] Julian Shun and Ge Blelloch. Ligra: a lightweight graph processing framework

for shared memory. In PPoPP, pages 135–146, 2013.

[SC96] Y Saad and T.F. Chan. Iterative methods for sparse linear systems. IEEE

Computational Science and Engineering, 3(4):88–88, 1996.

[SL98] Jeremy G Siek and Andrew Lumsdaine. The matrix template library: A gener-

ic programming approach to high performance numerical linear algebra. In In

International Symposium on Computing in Object-Oriented Parallel Environ-

ments, pages 59–70. Springer, 1998.

[Sni95] Steven Snir, Marc and Otto, Steve W. and Walker, David W. and Dongarra,

Jack and Huss-Lederman. MPI: The complete reference. MIT Press, 1995.

[Sun90] Vaidy S Sunderam. PVM: A framework for parallel distributed computing.

Concurrency: practice and experience, 2(4):315–339, 1990.

[SYK+10] Sangwon Seo, Edward J. Yoon, Jaehong Kim, Seongwook Jin, Jin-Soo Kim,

and Seungryoul Maeng. HAMA: An Efficient Matrix Computation with the

MapReduce Framework. In 2010 IEEE Second International Conference on

Cloud Computing Technology and Science, pages 721–726. Ieee, November 2010.

69

MatrixMap: Programming Abstraction and Implementation of Matrix Computation for Big Data
Applications, MPhil Thesis

[tbb14] Threading Building Blocks url: https: //www.threadingbuildingblocks.org/,

2014.

[Val90] LG Valiant. A bridging model for parallel computation. Communications of

the ACM, 33(8):103–111, 1990.

[Vas] Panos Vassiliadis. A Survey of ExtractTransformLoad Technology. Internation-

al Journal of Data Warehousing and Mining, 5(3):1–27.

[VBR+13] Shivaram Venkataraman, Erik Bodzsar, Indrajit Roy, Alvin AuYoung, and

Robert S. Schreiber. Presto. In Proceedings of the 8th ACM European Confer-

ence on Computer Systems - EuroSys ’13, page 197, 2013.

[Vel98] Tl Veldhuizen. Arrays in blitz++. In Computing in Object-Oriented Parallel

Environments, pages 223–230. Springer, 1998.

[Wik15] Wikipedia. Join (SQL) url:https://en.wikipedia.org/wiki/Join (SQL), 2015.

[XGF+13] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, Ion Stoica, and Eecs

AMPLab. GraphX: A Resilient Distributed Graph System on Spark. In First

International Workshop on Graph Data Management Experiences and Systems,

page 2, 2013.

[ZCDD12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, and Ankur Dave. Re-

silient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. Technical report, UCB/EECS-2011-82 UC Berkerly, 2012.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and

Ion Stoica. Spark : Cluster Computing with Working Sets. HotCloud’10 Pro-

ceedings of the 2nd USENIX conference on Hot topics in cloud computing,

page 10, 2010.

70

References

[ZWSP08] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale

parallel collaborative filtering for the netflix prize. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 5034 LNCS:337–348, 2008.

71

