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Abstract

Vibration isolation has been a hot topic in engineering for many years. Many
vibration control technologies including active vibration control, passive and
semi-active vibration control are being used in practice to realize good vibration
isolation performance of structures and mechanisms. Passive vibration control has the
advantages of simple construction, low cost, easy maintenance and the absence of a
need for external power. This thesis proposes and analyzes a new, passive vibration
isolator design.

Two Kkinds of passive control techniques used in the isolation structures adopted:
(i) periodic structures (phononic crystal) which possess band-gap properties and (ii)
nonlinear mechanisms with nonlinear stiffness characteristics.

The band-gap property is a very significant characteristic of periodic structures in
view of its structural and/or material periodicities. The elastic waves that can
propagate in the structure in some frequency ranges are referred to as the pass band.
However, sound and vibration propagation is forbidden for certain other frequency
ranges, called stop bands. This property endows periodic structures with the potential
to control wave propagation, thus helping to realize passive vibration isolation
control.

In this study, the spectral element method (SEM) is adopted for dynamic
modeling of periodic structures. The interpolation function used in SEM is based on
an Eigen function of the equation of motion that can provide exact solutions in the
frequency domain. If the structure has uniform geometry and material properties, it
can be considered as only one spectral element, which means that the element number

and the degree of freedom (DOF) can be reduced significantly. High solution accuracy



in the frequency domain and assuring the minimum DOF are the two main benefits

derivable from SEM during a periodic structure analysis.
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1 Introduction

1.1 Background and Significance

Vibration phenomena are often employed to change the natural environment by
humans daily. Some kinds of vibrations are seen as nuisance in some contexts. With
the development of science and technology, the demand for vibration reduction
technologies has been increasing steadily in aerospace, marine and other fields. For
instance, the flexible solar wing placed on a space station in orbit can vibrate owing to
periodic thermal load, thus compromising the station’s safety. Likewise, the vibration
generated by the dynamic contact conditions between the wheels and rails can
adversely affect ride comfort and noise; the discomfort often increases with speed.
Similarly, mechanical vibrations in the diving submersible chamber can reveal the
location of a submarine, thus posing a security threat. In the field of engineering
machinery, the working conditions of engineering machinery deteriorate as vibrations
increase. Cabs suffer from the low-frequency excitations generated by uneven road
surfaces as well as from any medium-high-frequency excitations resulting from
imbalanced inertia forces generated by their engines. The vibrations can compromise
the stability of the engineering machinery during operation and, hence, shorten its
service life. Moreover, compromised comfort can adversely affect the working
efficiency as well as health of the rider(s). The human body is very sensitive to
vibrations in the 4-8Hz frequency range; vibrations in this range can be very
uncomfortable in view of resonance effects. Long-time working under such
conditions can even lead to disease. All these examples point to the increasing

practical importance of vibration isolation technologies.



As a field, vibration control has long presented challenging theoretical and
practical issues. Current vibration isolation technologies can be classified into active,
passive, and semi-active types. Among the difficulties associated with active vibration
control are extremely high costs of manufacturing and implementation, increasing size
and weight, potential failure due to actuator and sensor fault or saturation and, finally,
the increasing complexity of analysis. Compared with active and semi-active vibration
control technologies, passive vibration control technology has the advantages of
permitting simple construction, low cost, easy maintenance and independence from
external power. The study of the associated structures with passive vibration isolation
performance has been found to have significant application value and hence has

received considerable attention from numerous scholars.

(©

Figure 1.1 Periodic structures using in the engineering application such as (a) lattice
structure in flexible solar wings, (b) skin structure of high-speed trains and (c) folding
sandwich panel in crashworthy hull structures ™.

To solve the above issues caused by vibration, we adopt the following two
solutions. We start by noting that many kinds of periodic structures are used in
engineering applications, e.g., lattice structures in flexible solar wings, skin structures
used in high-speed trains and the folding sandwich panels used in crashworthy hull
structures (see Fig. 1.1). How to suppress the vibration phenomena arising in periodic
structures is a particularly interesting and a potentially useful topic.

Periodic structures possess unigue dynamic characteristics; frequency pass-bands



and stop-bands in particular. Due to the unique frequency pass-band and stop-band
properties, periodic structures can exhibit very attractive vibration isolation
performance. The elastic waves and vibrations in frequency pass bands can propagate
through the entire structure. When the frequencies of elastic waves and vibrations are
in the stop-bands or band-gaps, they cannot propagate through the structure. This
unique feature of periodic structures can make them act as vibration isolators in
certain frequency ranges without the need for external energy. By designing and
tuning the width and location of the stop-bands, periodic structures can provide the
ability to control wave propagation in the structure.

As for engineering machinery, although traditional linear system
theories/methods have been applied often in the design and study of vibration
isolators, the design of vibration isolators has proved to be difficult. For instance, an
increase in linear damping will lead to a smaller resonant peak in a linear system but
could deteriorate vibration isolation performance at frequencies higher than the
resonant frequency. A bigger mass and/or a smaller stiffness are required to assure a
smaller resonant frequency, which should benefit isolation performance. However, it
will make the system cumbersome or has a lower loading capacity. To solve these
problems, the ideal stiffness of an isolation system should be high in a static state but
low in a dynamic state. This implies that the system’s stiffness should possess
nonlinear characteristics.

The problem in our study is to design new types of vibration isolation structures
by exploiting the band-gap property of periodic structures and the nonlinearities of
nonlinear structure. Our work demonstrates that vibrations can be controlled in a
passive manner by using these kinds of structures. Our objective is to investigate the

vibration isolation in a manner meaningful to engineering applications.



1.2 Research Status of Periodic structure

In this thesis, the vibration isolation performance of periodic structures is one of
the research objectives. In this section, the periodic structure and the research method

will be reviewed.

1.2.1 Periodic structure

Structures and/or material parameters exhibiting periodicity are called periodic
structures. The minimum unit in a periodic structure is called the cell. Fig. 1.2 shows a
simple periodic structure formed by connecting material A and material B, so it has
periodicity in the material parameter. Many researchers have studied periodic
structures with different configurations in recent years. In this subsection, the lattice

structure and the sandwich structure will be examined in detail.
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Figure 1.2 Schematic diagram of periodic rod structure and the unit cell.

(a) Lattice structure

The lattice structure (Fig. 1.3) contains rods or beams exhibiting useful
mechanical performances such as anisotropy, negative Poisson’s ratio and band-gap.
Lattice structures usually contain rectangular, triangular, hexagonal, Kagome and

chiral configurations.

Figure 1.3 Lattice structure.



The band-gap property has been analyzed by many researchers [2-10] in the
context of one dimensional (1D) and two dimensional (2D) lattice structures. Yilmaz
and Hulbert [2, 3] researched 2D lattice distributed inertial mass bodies. Their results
indicated that stop-bands of this kind of structure are mainly present in the low
frequency domain, and the appearance of the stop-band has no relationship with the
boundary condition and the direction of the exciting force. Robillard et al. [4]
designed a new lattice structure using a material exhibiting expansion deformation in
the magnetic field. They could change the band-gap property of this kind of structure
by adjusting the surrounding magnetic condition. They were also able to change the
band-gap property without direct contact with the structure. Spadoni et al. [5] studied
the chiral lattice. They analyzed the effect of the configuration on elastic wave
propagation, frequency dispersion and the band-gap property. Zhao and Yuan [6]
studied the 2D complex lattice and showed that the stop-bands of the complex lattice
appeared at lower frequencies than those appearing with simple lattices. Xiao et al. [7]
researched the periodic structure constituted by the spring oscillator, and studied the
principle of the band-gap property.

As for the three dimensional (3D) lattice structures, most researchers have
focused on the following configurations: simple cube, face-centered cubic structure,
body-centered structure and close-packed hexagonal structure [11-16]. Taniker and
Yilmaz [11] studied the band-gap property of the face-centered cubic and
body-centered structures. The stop-band in the lower frequency domain becomes
wider by adding an inertia amplifier system. Meanwhile, they reduced the vibration
amplitude by properly selecting the number of cells. Zhang et al. [12] studied 3D
lattices in which the matrix is plastic and the inclusions are the spherical or square

steel. The results showed that the stop band becomes wider, just as in the case of 2D



structures. Pourabolghasem et al. [13] experimentally examined the existence of the
full band gap associated with the triangle lattice. Wang et al. [14] investigated the
band-gap property of 3D honeycomb phononic crystal structures and analyzed the
effect of the parameters of the harmonic oscillator on its band-gap properties.

(b) Sandwich structure

Figure 1.4 Two types of sandwich structure.

Sandwich panels (Fig. 1.4) represent one type of composite structures. They are
usually composed of an upper plane, a lower plane and the core. Depending on the
performance of the core structure, the performance of a sandwich structure can be
different. Some kinds of sandwich structures can isolate vibration and reduce noise
and have good thermal conductivity and impact resistance [17-19]. Except that,
sandwich structures usually contain large porosity, which can reduce the mass and
increase specific strength and stiffness. In view of these advantages, sandwich
structures have found a variety of applications and have become the subject of
research for many researchers. Sandwich panels with a variety of cores have been
used widely in fields such as aerospace, high-speed trains and civil engineering.

Corrugated structures are preferred in sandwich panels in view of their
light-weight cores. Sandwich panels with corrugated cores have their voids arranged
in one direction that enables fluid flow in that direction [20]. They have great

scientific potential because of their superior structural dynamic characteristics. For



example, they are widely used in buildings and cross flow heat exchangers. In view of
their compactness and high thermal efficiency [21-23], heat exchangers made of
sandwich panels with corrugated cores have been applied extensively in a variety of
engineering fields.

Some scholars have focused on the dynamic behavior of sandwich structures.
The analysis of sandwich panels is complicated due to the variation of geometrical
forms of the cores. Liang et al. [24] studied weight optimization design of corrugated
structures in transverse and axial directions. They investigated the corrugation length
and found that the face sheet thickness is the most effective parameter concerning the
axial stress of the face sheet. Jayachandran et al. [25] researched the buckling of
sandwich plates by modeling them as thin plates. Valdevit et al. [26] performed an
experimental and computational study on the bending response of steel sandwich
panels with corrugated cores subjected to both transverse and longitudinal loads.
Radford et al. [27] conducted projectile impact tests on triangular corrugated
structures and found that corrugated sandwich plates exhibited the highest shock
resistance among the tested plates. To study core behaviors, various constitutive
models of the equivalent continuum of square-honeycomb have been established
through the theoretical analyses and numerical simulations by Xue et al. [28, 29] and

Zok et al. [30].

1.2.2 Review of the method

The band-gap property of periodic structures has attracted much attention from
scholars. According to different research objectives, the analysis method was varied.
We will review the applications of different methods used in studies on periodic

structures (phononic crystals).



(a) Finite element method

Among the traditional methods, the finite element method (FEM) has an
enormous application range. This approach is highly adaptable to structure and load.
The precision of the FEM solution is dependent on the mesh quality. However, the
accuracy of the results deteriorates at high frequencies.

Wang et al. [31] investigated the 2D phononic crystal structure with cross-like
holes using the FEM to analyze the influence of the geometric parameters of the holes
on the band-gap properties. Li et al. [32] evaluated the propagation of elastic waves in
a phononic crystal slab with Archimedean tilings based on the ABAQUS code and
certain user subroutines. The influence of localized resonance on the band-gap
property of the two-dimensional periodic composite structure has been investigated
using FEM [33].

Moreover, dynamic FEM and the wave FEM have also been adopted in the study
on periodic structures. Nobrega et al. [34] studied the band-gap properties of elastic
metamaterial rods with spatial periodic distribution and periodically attached local
resonators using the wave FEM. Liu and Gao [35] presented an explicit dynamic FEM
that is capable of analyzing band structures in 2D phononic crystals.

(b) Plane wave expansion method

Plane wave expansion is a commonly used method in the photonic crystal
research [36, 37]; it has extensive applications in the study of phononic crystals. The
method expands the displacement and the material constant to plane waves in the
reciprocal lattice vector space, and superposes the series [38-46]. This method is
usually used to solve the band-gap problems encountered in solid-solid, liquid-liquid
and gas-gas type periodic structures.

Laude et al. [38] investigated surface wave propagation in 2D piezoelectric



phononic crystals using the plane wave expansion method and analyzed the band-gap
properties of the associated structures. Hou and Assouar [39] constructed a plate with
two-dimensional phononic crystal layer coated on uniform substrate. Based on the
plane wave expansion method, they studied the lamb wave propagation. Baboly et al.
[40] investigated the solid-solid phononic crystals using an improved plane wave
expansion method. Compared with the conventional plane wave expansion method, it
exhibits faster convergence rates. Following the plane wave expansion method,
Kushwaha and Halevi [41] computed the band gap properties of two-dimensional
structurea with periodic arrays of long water cylinders surrounded by mercury host.

(c) Transfer matrix method

The transfer matrix method has been utilized to analyze band gap problems
arising in1D and a few 2D periodic structures. For 3D periodic structures, it is usually
difficult to analyze. Based on the continuity conditions, the method establishes the
transfer matrix of the structure, and then is used to solve periodic structures.
Compared with the plane wave expansion method, the calculation burden of the
transfer matrix method is smaller, but the method also has a high precision.

Based on the transfer matrix method, Li et al. [47] investigated the problem of
wave localization in disordered periodic multi-span rib-stiffened plates. Li and Wang
[48] discussed 2D wave propagation and localization in disordered periodic layered
piezoelectric composite structures. Fomenko et al. [49] studied the propagation of the
elastic wave (the P wave and the SV wave) in 1D phononic crystals. Combining the
transfer matrix method with the Bloch theorem, Liu et al. [50] investigated the
behavior of in-plane and out-of-plane wave propagation in phononic crystals, and then
analyzed the band-gap properties of the structure. Lin et al. [51] calculated the

bending vibration band structure of 1D phononic crystal using a modified transfer



matrix method. Cetinkaya and Vakakis [52] investigated the stress wave propagation
of finite bi-periodic layered structures using the transfer matrix method. They
analyzed wave propagation and attenuation in the 1D and 2D layered media using
analytical and numerical methods.

(d) Multiple scattering method

The multiple scattering method is often applied in the solution of periodic
structures with distinctive shapes [53-60]. However, this method is rarely used for the
solution of periodic structures except for structures with the cylindrical and spherical
shape. The band-gap properties of periodic structures depend on Mie scattering
between each elastic body involved. Waves of other scatterers can be incident on to a
single scatterer. The characteristic equation of the structure can be calculated and the
band-gap property of the structure analysed.

Utilizing the multiple scattering method, Cai et al. [53] investigated the band-gap
properties of 2D cylindrical scatterers with tetragonal structure arrangements under
long-wave conditions. Based on an analysis of the system periodicity and the Mie
scattering coefficient, the analytical formulas of the equivalent wave speed were
obtained. At the Nano scale, Liu et al. [54] studied the interface or surface stress effect
in two-dimensional phononic crystals. Basing on numerical simulations, they
demonstrated that the interface or surface stress effect was significant when the
characteristic size was reduced to nanometers. Sainidou et al. [55] investigated wave
propagation through phononic crystals consisting of metallic spheres and air. They
analysed modes localized on the surfaces of the structure and studied the influence of
physical parameters on the band-gap properties. The results are useful in the design of
devices related to frequency filtering and wave guiding. Mei et al. [56] focused on the

study of the out-of-plane propagating elastic waves in 2D phononic crystals. Qiu et al.

10



[57] applied the method to two-dimensional periodical composites. They calculated
the reflection and transmission coefficients for elastic waves through finite slabs, and
then obtained the transmission coefficients for phononic crystals made up of solid and
fluid components.

(e) Boundary element method

The boundary element method is a numerical method developed subsequent to
FEM. It is usually regarded as an important supplement of FEM. The method divides
elements lying on the boundary of a given domain and a function meeting the control
equation is utilized to approximate boundary conditions. In view of the advantages of
the low unit number and the simple data preparation, this method has been used for
the computation of period structures in recent years [58-63].

Based on the boundary element method, Li et al. [58] computed the band gaps of
two-dimensional periodic structures. Phononic crystals of this kind can be either an
array of solid scatterers embedded in a fluid matrix or an array of fluid scatterers
embedded in a solid matrix. The boundary integral equations or a periodic unit cell are
then established. Li et al. [59] demonstrated the validity of the method for the solution
of flow-solid phononic crystal problems. They calculated periodic structures with
solid cylinders in a solid matrix and established the linear Eigenvalue equation
dependent on the Bloch wave vector and examined the convergence and the
computing speed of the method. Zhu et al. [60] analysed the influence of interface
imperfections on the wave’s propagation behavior inside a periodic structure.
Combining the boundary element and the contour integral methods, Gao et al. [61]
studied two-dimensional elastic periodic structures. Using the Bloch theorem, they
investigated the nonlinear Eigenvalue problem in a unit cell.

(F) Other methods

11



In addition to the methods enumerated above, the wavelet method, the
lumped-mass method, the finite-difference time-domain method and the
Dirichlte-Neumann mapping method are used typically for periodic structure analysis.

Wang et al. [64] investigated the propagation of flexural elastic waves in the
infinite quasi-one-dimensional beams using an improved lumped-mass method. Yan et
al. [65-68] studied wave propagation in two-dimensional phononic crystals using the
wavelet method, and then they analysed the defect modes caused by point and line
defects. Based on the Dirichlet-to-Neumann map, Li et al. [69] investigated the square
or triangular lattices of circular solid cylinders in a fluid matrix. The method
expanded the cylindrical wave in a unit cell and transformed the problem to a linear
Eigenvalue problem. Cao et al. [70] studied the two-dimensional phononic crystals
consisting of liquid cylinders in a solid matrix using the finite-difference time-domain
method. Compared with the conventional plane wave expansion method, the method

converges fast.

1.2.3 Spectral element method

The spectral element method (SEM) was firstly applied in the calculation of fluid
mechanics in the 1980s [71]. The method combines the FEM and the spectral method,
and combines the advantages of the two methods. The strengths of the SEM include
extraordinary precision, fast convergence speed and fewer unit numbers. Compared
with FEM, SEM expands the solution using the orthogonal polynomial as the basis
function. Due to the orthogonality property of the basis function, the convergence
speeds increase during solution. The “spectrum” constituting the solution is different
when the method uses different orthogonal polynomials. The Chebyshev polynomial

[72], the Lagrange polynomial [73] and the Fourier polynomial [74-80] are usually
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used as a “spectrum” on which the solution can be expanded. The first two kinds of
polynomial, in particular, have received much scholarly attention.

The SEM based on the Fourier transformation (called the SEM henceforth)
combines the advantages of the FEM, the spectral method and the dynamic stiffness
method. It combines the flexibility of discretization and integration of FEM, fuses the
reduction of the DOF from the dynamic stiffness method, and merges the wave
superposition involved in the spectrum method.

The FEM is a widely used method in engineering. The accuracy of this method is
dependent on the mesh quality adopted. The mesh quality requirement becomes
significantly critical during solutions in the high frequency range, due to the small
wavelength. Practice shows that the size of one mesh should be at least 10 times the
corresponding wavelength with the highest frequency, in order to guarantee high
precision results. However, the associated enormity of calculation cannot be ignored.
In FEM, the displacement solution is expressed by the shape function and the node
displacement. The interpolation function, which has no relationship with the
frequency, has the polynomial form. Based on the resulting mesh refinement and the
increase of the shape function order, the accuracy of the solution can be effectively
improved. However, the two methodologies will increase the amount of calculations
needed.

The dynamic stiffness method derives the shape function based on the solution of
the wave equation. The shape function is related to the frequency. The stiffness matrix
deduced from the shape function is also related to the frequency. Since the method is
based on the wave equation and the mass is accurately distributed on the element, it
does not have a mass matrix, and the inertia parameters are included within the

stiffness matrix. For these reasons, this method is called the dynamic stiffness method.
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The advantage is that it can effectively reduce the number of degrees of freedom
(DOF) of the structure. For structures with uniform structural and material parameters,
it can be expressed by one wave equation, i.e., the solution of the structure in the
frequency domain can be expressed just by using only one element. Because of the
minimal element number, the DOF of the structure is greatly reduced. The method
exhibits high precision while dealing with simple structures. However, the method
cannot be applied as widely as FEM for the solution of complex structures with
complex boundaries.

The spectral method is an analytical method operating in the frequency domain.
In this method, the solution of the differential equation can be seen as the
superposition of an infinite number of waveforms with different frequencies. The
spectral component is the Fourier transform coefficient. Once the solution in the
frequency domain is obtained, the inverse Fourier transform is applied to the solution
in the time domain. Due to restrictions arising from the continuous Fourier transform
in the application, the actual calculations usually use the discrete Fourier transform,
which adopts a finite number of wave superpositions while solving the equations. The
use of the fast Fourier transform (FFT) during the programming stage makes the
calculations economical and fast.

Based on the above three methods, the following characteristics of SEM can be
identified. Firstly, the whole structure can be dispersed and combined. After
completing discretization, the nodal displacements can be calculated. The non-nodal
displacement can be obtained from the shape function. Next the solution for the whole
structure can be obtained. Secondly, the SEM has the minimum DOF. Structures with
uniform structural and material parameters can be regarded as single spectral elements.

Divisions between the spectral elements have no relationship with the size of the
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structure. Thus, this method does not need to divide more elements while addressing
large size structures. The total DOF can be greatly reduced due to the small element
number. Similar to the dynamic stiffness method, SEM is based on the wave equation
of the structure, so the mass of the structure is accurately distributed across the
element. The spectral stiffness matrix contains the inertial and stiffness factors at the
same time. Thus, it ensures the high accuracy results. Lastly, in SEM, the wave of
each frequency is seen as a “spectrum”. The dynamic response of the structure is the
superposition of a finite wave shape. Based on the discrete Fourier transform the
displacement field of the structure is converted from the time domain into the
frequency domain, so the solution can be achieved in the frequency domain.

As summarized in [75], the advantages of the SEM include extremely high
accuracy, smallness of DOF, low computation cost and effectiveness in the problem in
the frequency domain. The disadvantages include strict requirement for exact wave
solutions. Further, because the principle of superposition does not hold, the method

cannot be applied directly to time-variant and nonlinear systems.

1.3 Nonlinear vibration isolator

In recent years, some novel isolation methods based on nonlinear dynamics
theory have been developed. The methods have demonstrated excellent isolation
performance; they are especially applicable for vibration isolation over wide
frequency ranges although they are particularly good at low frequencies. Some earlier
examples can be seen in [81-84] while more recent results can be seen in [85-93]. As
summarized in [81], the influence of nonlinearity on the performance of a vibration
suppression system is manifested as shifting the resonance frequency, jump

phenomena, chaotic motion and internal resonance, and excellent damping
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characteristics covering a wide spectrum of vibration frequencies.

1.3.1 Quasi-zero-stiffness system

A quasi-zero-stiffness system has recently been studied in [94-101], where the
negative stiffness realized by horizontal springs is designed to counteract the positive
stiffness contributed by vertical springs so that quasi-zero stiffness is achieved. The
system is good at vertical vibration isolation in a small region around the equilibrium
state due to its quasi-zero stiffness property, but would be of very limited use in large
vibration motion, heavy load and robustness of stability. Moreover, to exploit the
nonlinear quasi-zero-stiffness property, Robertson et al. [102] developed a quasi-zero
stiffness magnetic spring system. A nonlinear magnetic low frequency vibration
isolator is studied in Xu et al. [103]. Liu et al. [104] designed a quasi-zero-stiffness
(QZS) isolator with Euler buckled beams to form the negative stiffness corrector.
These QZS isolators can lower the overall dynamic stiffness without sacrificing the
supporting capacity. Active control methods employing the time-delay influence have
also been studied for improving the robustness and the transmissibility performance
of the QZS vibration isolation systems in [105]. Moreover, certain ultra-low
frequency vibration isolation devices with hybrid lever-type structures have been

studied in [106].

1.3.2 X-like structure

Many X- or Z-like shape structures can be found in nature. For example, the feet
structures of bird skeletons have X-like shapes and then Z-like shapes for legs, see Fig.
1.5(a). Compared with the Z-like structure, the X-like structure is much easier to

implement in engineering practice. These kinds of Z- or X-like shape structures can
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also be found in bone structures. The cranial bone shown in Fig. 1.5(b) has two
outside layers and sponge-like inside structures. The inside structure (which contains
many inclination links with Z- or X-like shape) is similar to a limb-joint system for
supporting outside layers. Similar “sponge boneS” can be seen in almost all animal
bone structures. The interlayer Z- or X-like shape structures are light-weight and
exhibit good vibration isolation performance. This is why legs or limbs of animals can
suppress vibration and mitigate shock impact, while osteoporotic bone structures are

obviously weak in terms of impact protection due to loosened internal connections.

Z-like shape
structure

X-like shape
structure - - ———__ VA

B o

(a) LTS

Figure 1.5 (a) A bird skeleton containing X-like and Z-like shape structure
and (b) cranial bone.

A scissor-like structure (X-like shape structure) has been studied recently in
[107-109] for achieving structural nonlinearity in vibration control. The work
presented that the scissor-like truss structure could bestow vibration isolation systems
with very beneficial nonlinearities that could lead to high static-low-dynamic stiffness
properties. The beneficial nonlinear properties in dynamic stiffness and damping

characteristics have been discussed in [109] along with experimental validation.

1.3.3 Multi-DOF vibration isolator

High performance and passive multi-DOF vibration isolators have been reported

seldom in literature. Multi-DOF vibration isolation is often achieved via active control.
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A Delta robot, which is a 3-DOF parallel robot, considering the kinematic anisotropic
property for better isolation performance is presented in [110]. A fully suspended
5-DOF active magnetic bearing system with a decentralized PID neural network
control for all five axes is developed in [111]. Active six-axial hexapods or Stewart
platforms are studied in [112-114] containing six struts for attenuation of vibration in
six DOFs in both the low and high frequency range. Active isolation platforms used in
aerospace engineering mainly implement micro-vibration attenuation in high
precision instruments, e.g., space-based optical interferometers [114, 115] and solar
optical telescopes [116]. The Stellar Interferometer Mission required 10-nm level
stabilization of optical elements distributed across a 10m flexible structure under the
disturbance of the spinning reaction wheel assemblies [117]. The six-axial hexapod
vibration isolation platforms with each strut having the active optical control strategy
provide vibration attenuation along six degrees of freedom.

Usually, passive multi-DOF vibration isolation can be realized by applying
various materials and structural designs. Noticeably in aerospace engineering,
Kamesh et al [117] designed a low frequency flexible space platform consisting of
foldable continuous beams for mounting the reaction wheel assembly, which can be
effectively used to isolate disturbances from the reaction wheel emitted into high
precision payloads of onboard space-crafts. The dynamic stiffness of the folded-beam
isolator is kept small so it can provide vibration isolation at low frequencies. Passive
vibration isolators generally exhibit high reliability performance and no energy
transmission, which is very satisfactory for the aerospace, dynamic environment.
However, the low frequency vibration control effect using pure passive isolation
techniques is often not sufficiently effective. To attain better isolation performance,

some semi-active control methods have been developed by combining the advantages
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of passive and active methods. Examples with a semi-active or hybrid controlled

hexapod platform or otherwise [118-120] can be seen in aerospace engineering.

1.4 Research gaps

Numerous investigators of lattice structures have several impressive research
achievements. In this study, the 2D and 3D lattice and the sandwich structure will be
further investigated. The material distribution and the structural parameter will be
designed and the piezoelectric material will be added to enhance vibration isolation
performance while making the structure more functional.

The traditional methods used in solving the phononic crystal are inapplicable for
complex periodic structures such as the one shown in Fig. 1.1, Although the structure
can be solved by FEM, the computational cost will be substantially increased as the
size or number of the sub-structures increase. Moreover, solution accuracy
deteriorates when the frequency becomes higher. In short, there is a need to explore a
suitable and efficient method capable of studying the dynamic behaviors of this kind
of light-weight periodic structures.

Two issues should be taken into account during the establishment of the efficient
dynamic model. Firstly, the periodic structure shown in Fig.1.1 is complex because it
contains several basic structures such as rods and beams. Secondly, highly accurate
solutions in the frequency domain are required to analyze the dynamic behavior of the
system. In the SEM, one-element modeling is sufficient to represent a uniform
structure member with any size, without structural and material discontinuities inside,
which makes the system have the minimum number of elements. The exact spectral
element matrix is frequency dependent and can be considered as a mixture of the

inertia, stiffness and damping properties of an element, which insures highly accurate
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results in the frequency domain. Adopting the SEM to study the complex periodic
structures composed of a large number of rods and beams turns out to be feasible and
efficient; this is an observation that has remained unreported so far.

As for the sandwich structure, the core was usually treated as a homogeneous or
an orthogonally anisotropic material in previous researches. Further, the equivalent
material parameters of the lattice core were adopted. However, this ignored the
micro-configuration of the core, hence leading to inevitable inaccuracies. Equally
important, the periodicity of the system leads to the band-gap property. In contrast, the
SEM can provide very accurate dynamic solutions while using a limited number of
elements. The SEM is an effective approach for investigating the band-gap properties
of sandwich structures; again a fact that has not been reported.

As for the study on the nonlinear mechanism, it is worth mentioning that it has
yielded some significant research achievements. However few corresponding reports
on asymmetrical X-like shape isolator and multi-DOF isolators using X-like shape
structures have been found so far.

An asymmetric X-like shape structure will be investigated inspired by the limb
structures of animals/insects in motion vibration control will be studied in this thesis.
This should further the understanding of animal motion control systems. Note that the
asymmetric X-like shape structure is a more general structure because of the
asymmetry, which can be simplified as a scissor-like structure.

Furthermore, a novel nonlinear and passive 6DOFs vibration isolator following a
Stewart platform configuration but applying the novel X-shape structure as legs will
be investigated. The X-shape structure is adopted in order to replace the legs with the
active actuators found in traditional Stewart platforms. The nonlinearity introduced by

the X-shape structures can greatly enhance the performance of the 6DOFs Stewart
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platform in a passive manner.

The asymmetric X-like shape structure and the multi-DOF isolator using the
X-shape structures will also be developed and the corresponding static and dynamic
mechanical performances analyzed. The vibration isolation performance due to the

nonlinear stiffness property will be subjected to a systematic investigation.

1.5 Outlines of thesis

The thesis is organized as follows. The periodic structure is designed and
analysed in chapters 2-5. The basic spectral element such as the bending element,
tensional element, torsional element, piezoelectric element and the plate element is
deduced in chapter 2 using the SEM. This chapter is the theoretical basis of the
chapters 3, 4 and 5. Vibration isolation properties of the 2D lattice, the 3D Kagome
lattice and the sandwich structure are displayed in chapters 3, 4 and 5, respectively.
The vibration isolator designed by the structure nonlinearity is analysed in chapter 6
and chapter 7. In chapter 6, a 1DOF isolator called bio-inspired limb-like mechanism
is introduced. A 6DOFs vibration isolator based on the Stewart platform is introduced

in chapter 7. A conclusion of this thesis is displayed in chapter 8.
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2 Spectral element formulation

In this chapter, the classic spectral element such as the bending element,
tensional element, torsional element, piezoelectric beam element and plate element is

deduced in detail. This chapter is the theory basis of the following three chapters.

2.1 Bending element

In this subsection, the analysis is focused on the bending vibrations in the x—y
plane as shown in Fig. 2.1. Based on the Timoshenko beam theory, the spectral
bending element model is established. Timoshenko beam model includes the effects

of rotatory inertia and shear deformation due to transverse shear forces.

VZ(F)

y
@zl (le)/ //@zz (Mzz) X
1 2 /
L z

Figure 2.1 Bending element in the x —y plane.
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The free vibration of the Timoshenko beam model is described by

. A{52\/(>§,t)_ 802(x,t)}_p y 82v(>2<,t) o 2.1)
OX OX ot
0%0,(x,1) v(x.t) A GV
E|ZT+KGA{—6X Hz(x,t)} Pl =25 =0, (2.2)

where v(x, t) is the transverse displacement in the y direction, 6,(x, t) is the rotation
around the z axis, E is the Young’s modulus, p is the mass density, G=E/[2(1+0)] is
the shear modulus with » being the Poisson’s ratio, I, is the area moment of inertia
about the bending axis (z axis), and « is the shear correction factor depending on the
shape of the cross section [121].
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The general solutions of Egs. (2.1) and (2.2) can be given by the spectral

representation [74]

N-1 )
v(x,t) = %Zvn(x, w,)e' ", (2.3)
n=0
1 N2 )
0,(x,t) = WZ@Z”(X’ w,)e"", (2.4)
n=0

where V, (X, @n) and @, (X, wn) are the spectral displacements of v and &,, N is the
number of samples in the time-domain. For the maximum efficiency of the numerical
computation in the FFT algorithm, the optimal N is required to be an integer power of
2.

Substituting Egs. (2.3) and (2.4) into Egs. (2.1) and (2.2), one can obtain (for

simplification the subscript n is omitted)

o 0O
GA —222) 4+ pAw?V =0, 25
K (8x2 8x) pAw (2.5)
0%O oV
El. ~—2+xGA(C— -0+ pl *O, =0. 2.6
1 52 T (6x )+ pl,w° 0, (2.6)

The general solutions of Egs. (2.5) and (2.6) can be given as follows:
V =Be™, (2.7)
0, =Bpe™, (2.8)
where B and f are the wave mode coefficients.

Substituting Egs. (2.7) and (2.8) into Egs. (2.5) and (2.6), one can obtain four

roots by solving the dispersion equation. They have the following forms:

k
K, =—k, =k, :T;\/qu PPk Ak | 2.9)
o =k, =k, =2kt — P+ 40-nkd). (2.10)
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where k. :\/Z(E—IA)““, Ko :JZ(%AA)M , n=1,/A+EIl/[(xGA) and 1 =1,/A.
K

z

From Egs. (2.7) — (2.10), the wave mode coefficient /5 is deduced as

B, =—i(kj —t—éJ (=1,2,3,4). (2.12)

j

Based on the four roots, the general solutions of Egs. (2.7) and (2.8) can be
written as

V =Be " +B,e** +B,e " +B, ", (2.12)

O, = B e+ B,B,"* + g,B,e " + §,B, e"*. (2.13)

Fig. 2.1 shows the bending element in the local coordinate system with the

element length L. The spectral nodal displacements and forces are written as

Vi=v| . 0/=0] . (2.14a,b)
VE=V| . 07=0] (2.14c,d)
F=Fl gy M =M, (2.14e.f)
FP=Fl, MS=M (2.14g.h)

where the spectral components of the transverse shear force and bending moment are

defined by
F = KGA(ﬂ—@Z) : (2.15)
OX
M, =El, o, : (2.16)
OX

Based on Eq. (2.14), the relation between the nodal forces and displacements is
given by

S,(w)d, =F,, (2.17)
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where dy=[V' ©,' VZ ©,7]" is the nodal displacement vector, F, = [F,' M,' F,* M,”]"
is the nodal force vector, and S, is the spectral stiffness matrix for the bending element

in the x—y plane which can be written as

S,(w)=RH*, (2.18)
where S, depends on the frequency. The 4>4 matrices R and H, contain the
propagation phase information at x=0 and x=L and the coefficient f;. Besides, the

matrix R also contains the material parameters. The details of the matrices R and H,

are given in Appendix A.
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Figure 2.2 Bending element in the x—z plane.
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The derivation of the bending components in the x—z plane (see Fig. 2.2) follows

a similar procedure as that of the bending components in the x—y plane. The relation

between the nodal forces and displacements of the bending element in the x—z plane
is deduced as the following expression:

S,(w)d, =F,, (2.19)

where d,, = [W" 0, W? ©,]" is the nodal displacement vector, F,, = [F,* M,' F,> M,?]"

Is the nodal force vector as shown in Fig. 2.2, and S, is the spectral stiffness matrix

for the bending element in the x—z plane.

2.2 Tensional element

The spectral formulation of the tensional element bases on the equation of

motion
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Qu(xt) £ ou(x,t) _

e =0, (2.20)

where u(x, t) is the displacement in the x direction.
By the same way as the bending element, the relation between the nodal forces
and displacements of the tensional element can be obtained as the following form:
S,(w)d, =F,, (2.21)
where dy=[U* U?]" is the nodal displacement vector, F, = [F, F,?]" is the nodal
force vector as shown in Fig. 2.3, and S, is the spectral stiffness matrix for the

tensional element, which has the following expression:

S,(w)=EA

K, {cos(kuL) -1 } (2.22)

sin(k,L) -1 cos(k,L)

where k, =w+/p/E . For more detailed derivation procedure, please refer to Ref. [74].
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Figure 2.3 Tensional element along the x direction.

2.3 Torsional element

The equation of motion of the torsional element can be expressed as the

following form:

0°0, (x,1) G %0, (x,t)

= 2 =0, (2.23)

where 6x(X, t) is the rotation angle around the x axis.

o (M) 6 (M%)
—> G—»>» — X
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Figure 2.4 Torsional element around the x axis.

Due to the similarity between Egs. (2.20) and (2.23), the relation between the
26



nodal forces and displacements of the torsional element in the frequency-domain can
be written as

S,(w)d, =F,, (2.24)
where dg. = [0, ©,7]" is the nodal rotation vector, Fg = [M' M]" is the nodal

torsional moment vector as shown in Fig. 2.4, and Sy, (w) is the spectral stiffness

matrix for the torsional element, which has the following form:

Sy (@) =Gl (2.25)

Ko cos(K,, L) -1
sin(k,, L)| -1 cos(k,L) |’

where k,, =wyp/G and |, is the polar moment of inertia of the cross-sectional area.

2.4 Piezoelectric beam element

2.4.1 Modeling
J_ Ny
y iS(t
Ty Piezoceramic \ T ip (1) —C,
A W A

= B U0

- L > - ; > Ils)(t) _|__Cp

Y

@) (b) © -

Figure 2.5 (a) Bimorph piezoelectric beam, (b) cross-sectional view and (c) electrical
circuit representing the series connection of the piezoceramic layers.

The piezoelectric beam as shown in Fig. 2.5 is considered in this subsection. The
piezoceramic layers are perfectly bonded on the base beam. The length and width of
the piezoelectric beam are L and b. The thickness of the base beam is h, and
piezoceramic layers is h,. The top and bottom piezoceramic layers are poled in the
opposite thickness directions [122, 123]. The series connection of the electrical circuit
is shown in Fig. 2.5(c). Assume that the dynamic stiffness matrix of the tension
component is uncoupled with that of the bending component. In this subsection, pure

bending motion is the main objective to be discussed.
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The piezoelectric beam element is considered to be a Timoshenko beam. So the

constitutive equations of the piezoelectric layers can be given in the matrix form as

£, S, 0 dj|[o,
Yo (= 0 85E5 0 Tyt (2.26)
D, d;, O ‘93T3 E,

where &, and y, are the normal and shear strains, o, and 7, are the normal and shear
stresses, D3 is the electric displacement, E; is the electrical field intensity in the
piezoceramic layer across the thickness, st and s& are the elastic compliance
constants, ds; is the piezoelectric constant, and &j, is the permittivity constant. The
superscripts E and T denote that the corresponding constants are evaluated under
constant electric field and constant stress conditions.

Based on the stress—strain relations and the Hamilton’s principle, the equations

of motion of the piezoelectric beam are written as [122]

K@{ae(x,t) _ azv(f’t) } + p_Aa—ZV 0, (2.27)
OX OX ot,
0%0(x,t) =] ov(x,1) —?0(x,t)
D5+ KGA{T - e(x,t)} —p 23 =0, (2.28)
1o WO VO sy =
Gty h(®=0. (2.29)

where v(x, t) is the transverse displacement, 8(x, t) is the rotation, v(t) is the voltage
drop,  GA=Gybh,+2G,bh,  with G, =1/S§ ,  pA=p,bh, +2p,bh,  and
ol =pyly+2p,1, +2p,An% with 1, =bh}/12,1,=bn3/12 and h=(h, +h,)/2 . For open
circuit, D, =E,l,+2CL(I, +Ah?)—2A NN, /By and for short circuit,
D, =Eyl, +2CH (1, +Ah%)  where Cf=el/(Sfel, —d%) ,  hy=dy/(Sfel~d%)  and

ci=1/sf;. The superscripts b and p denote the constants of the base beam and
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piezoceramic layer.

Eq. (2.29) represents the Kirchhoff’s law which is applied to the electrical circuit,
and R is the electrical load resistance which ranges from 100Q2 to 10MQ [122]. For
the series connection condition, the capacitance C, and the dependent current source

term i’ (t) can be extracted as

C,= g%tb , (2.30)
(1) = d;lgb(aa(alt_,t) _ae{(a?,t)j’ (2.31)
where &3,=e1,—d2/SE .
The general solutions to Eqgs. (2.27)—(2.29) are
v(x,t) =V (x,w)e', (2.32)
o(x,t) = O(x,w)e'”, (2.33)
V(x,t) =V (X, w)e'™ (2.34)
where V(x,) is the spectral displacement of V(xt).
Substituting Egs. (2.32)—(2.34) into Egs. (2.27)—(2.29), one can obtain
KGA ‘Z—f—g;q—ﬁwzvzo, (2.35)
D, 227?+KG_A56—\;+(,3|@2 —xGA)O =0, (2.36)
V =g(e(L)-06(0)), (2.37)

where g =i@Rdyhb/[S;(1+iwRC,/2)].
The transformation of the physical variables from the time-domain to the

frequency-domain has been realized through Egs. (2.32)-(2.34). To transform the

variables from the spatial-domain to the wavenumber-domain, the displacement and
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rotation can be assumed as
V =Be*, (2.38)
O = pBe™, (2.39)
where k is the wavenumber,and B and £ are the wave mode coefficients.

Substituting Egs. (2.38) and (2.39) into Egs. (2.35) and (2.36), one can obtain
four solutions of the characteristic equation as

k, =k, k,=—k, ky=k, k,=-k, (2.40a, b, c, d)

where

© _ |KGApl’+D, pho’ + J(kGAGI & + D pAw? | - 4D kGApAY (plo? — kGA)
t 2D,xGA

(2.41a)

e

- _ \/ KGApI? + D, phas’ —(kGApl w* + D, phe* | — 4D xGApAw* (ple” - xGA)

2D,xGA
(2.41b)
From the characteristic equations, one can also obtain the coefficient g as
R A
=ik +——,(j=1,2,3,4). 2.42
Bi=1k; i GAC (J ) (2.42)

Based on Egs. (2.38) and (2.39), we can obtain the displacement and rotation as
V =B + B,e™* + B,e™* + B,e™*, (2.43)
O = BBe™ + B,B,e™* + B,Be" + B,B,e"*. (2.44)

The shear force and bending moment in the frequency-domain are

F, - Ka{ﬂ . @j, (2.45)

OX
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M = D[a—@+&‘:31\7. (2.46)
ox S

Based on Egs. (2.43) — (2.46), the relation between the nodal forces and nodal

displacements can be written in the matrix form as

F,=Sd,, (2.47)
where
_ hb d,, _
S,=R,H"+g—"1T, (2.48)
S
11

where the matrix R,, H, and T is given in Appendix A

Through the similar procedure as in Section 2.2, we can obtain the dynamic

stiffness matrix of the tension components, .

2.4.2 Validation

A piezoelectric cantilever beam is considered in this subsection. The structural
and material properties as shown in Table 2.1 are the same as those in [122] to
compare the results obtained by the SEM and the experimental results [122]. It must
be emphasized here that the viscous damping ratio (set as 0.00874) in the experiment,
is not considered in this calculation. A disturbance F = Fe'" is located at the free
boundary, where Fo=1N.

The first resonance frequency measured in [122] is 502.5Hz for the short circuit
(R=470Q) and 524.7Hz for the open circuit (R =995kQ). In this spectral analysis,
one spectral element is used and the frequency responses of the free end are displayed
in Fig. 2.6. The first resonance frequencies are 506.2Hz for the short circuit and

529.4Hz for the open circuit. Since in this study the viscous damping is neglected, the

first resonance frequencies computed by the SEM are a little larger than those in [122].
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The errors for both short and open circuits are less than 1%, which verifies the
validity of the present SEM. Moreover, it can be seen that the piezoelectric beam

problem can be successfully solved by the SEM with a minimum element number.

Table 2.1 Structural and material properties of the piezoelectric cantilever beam.

Piezoceramic Base beam

(PZT-5H) (Brass)
Length (mm) 24.53 24.53
Width (mm) 6.4 6.4
Thickness (mm) 0.265(each) 0.14
Density (kg/m°) 7500 9000
Elastic modulus (GPa) 60.6 105
Piezoelectric constant (pm/V) 274 —
Permittivity constant (nF/m) 30.1036 —
Shear modulus (GPa) 23 40

10°

—— Short circuit
----10pen circuit

107 |

Displacement V/m

0 200 400 600 800
Frequency f /Hz

Figure 2.6 Frequency responses of the piezoelectric cantilever beam.

2.5 Plate element

[h? N Node 2

< L =
Node 1 é
TAV
X

SS edge

Figure 2.7 Edge conditions of the plate element.

In this study, the plate in the sandwich panels are homogeneous, isotropic, elastic

and of uniform thickness. Because the plate thickness is much smaller than the length
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and width, the effects of the shear and rotary inertia can be ignored. The normal after
a deformation is still perpendicular to the neutral surface. The analysis can then be
performed based on the classical plate theory, that is, the plates are considered as
Kirchhoff ones in this work.

Fig. 2.7 shows a plate element in its local coordinate system including the length
L, the width b and the thickness h. Two opposite edges of the plate are simply
supported (SS) at y = 0 and y = b. The opposite edges at x = 0 and x = L are
considered as two nodes. It enables the plate element to be reduced from a
two-dimensional to a one-dimensional element characterized by a spectral stiffness

matrix.

Figure 2.8 Diagram of plate element with positive force
and moment orientations.

For the plate element, both the in-plane and out-of-plane components are
analysed. Fig. 2.8 shows the in-plane and out-of-plane forces and moments in the
local coordinate system, where M is the bending moment, V is the net vertical shear
force, Ny is the in-plane longitudinal force, and Nyy is the in-plane shear force. For the

sign convention used in Fig. 2.8, the force and moment equations are given by

3 3
V,= 0| i@ | (2.49)
OX OXoy
o’w  o°w
M, :_D(WJFVW) : (2.50)
N, = o (M, (2.51)
1-v® ox oy
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v 2(1+ V) (5 &) (252)

where w, u, and v represent the out-of-plane transverse, in-plane longitudinal and
in-plane shear displacements, respectively, D = Eh%/[12(1 — v?)] is the bending rigidity
of the plate, h is the plate thickness, E is the Young’s modulus, and v is the Poisson’s
ratio.

The differential equations of motion for the transverse, in-plane longitudinal and

in-plane shear motions are given by

o*w(x, y,t)
2

DV*w(x, y,t) + ph =0, (2.52)

(1 v) 0°u (1+v) v ([1-v¥)p du
ax2 2 oy’ 2 X0y E ot

=0, (2.53)

o%v (1 V) 62V+(1+v) o%u (l—vz)pé_zv
o 2 oy 2 oxoy E ot

=0, (2.54)
where p is the mass density.
From Egs. (2.52)-(2.54), it can be seen that the out-of-plane equation is

decoupled from the in-plane equations. The spectral formulations for these two cases

will be deduced separately in Sections 2.5.1 and 2.5.2.

2.5.1 Out-of-plane formulation

The general solution of Eq. (2.52) has the spectral representation [75]:

w(x, y,t) = ZW (X, y;0,)e"", (2.55)

n=0
where w, is the circular frequency and W, (x, y, wn) is the out-of-plane transverse
spectral displacement.

Substituting Eq. (2.55) into Eq. (2.52), one can obtain
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VW, -Q ‘W, =0, (2.56)

where
Q% =w,\/ph/D. (2.57)
Substituting Eq. (2.55) into Egs. (2.49) and (2.50), the net vertical shear force

and bending moment can be expressed in the spectral forms:

6‘3\N
Vin = ( ] , (2.58)

2 2
M, z_D(aaXV‘z’n +vaay"‘2’n ), (2.59)

where Vy, and My, are the spectral components of V, and M.
Due to the simply supported boundary conditions, the general solution of Eg.

(2.56) can be expressed in terms of a modal and traveling wave solution:

W (X, Y;,) = Zan(x, Kym» @,)SIN(K, Y), (2.60)

m=1
where Wy is the spectral form of transverse displacement in the wave number k, and
frequency domain, and ky is the modal wave number along the y direction and written

as
k=7 (m=123 .), (2.61)

where m is the mode number.

Substituting Eqg. (2.60) into Eq. (2.56), one can obtain
WY — 2k W+ koW, — QW =0, (2.62)

n-"nm

the four eigen roots can be obtained and expressed as

=+ +k;, (2.63)

P, =,/—Qﬁ+k§ , (2.64)



Py =—% +k; (2.65)
P =—- Q2 +K2. (2.66)

From Eqgs. (2.63)-(2.66), it can be observed that the four values of p depend on m.

So, the transverse displacement Wy, in Eq. (2.62) can be written as
W (XK, @,) = Ae™ + A + Ae™* + AeP™. (2.67)

where Ay, ..., A are four unknown coefficients. Eq. (2.67) is written as the following

simple form:
Won (XK, @,) = E(X Ky, @,) A, (2.68)
where
E(xk, o) =[e™ e™ e "], (2.69)
A=[A A A Al. (2.70)

The rotation angle @, in the frequency domain is given by the derivative of the
transverse displacement with respect to x as

0,XY,o,)= aav)\:” ) (2.71)

Substituting Eqg. (2.60) into Eq. (2.71), one can obtain

0, (X, Yi@,) = Y.0,,sin(k,y), (2.72)
m=1
where,
oW
=__—_m 2.73
=] (2.73)

Mlnm an V2nm

o 4 1( =]

1nm 1nm 2nm

Wan

Figure 2.9 The plate element with out-of-plane nodal
displacements and forces in the local coordinate system.

36



In Fig. 2.9, nodes 1 and 2 on the boundaries at x=0 and x =L of the plate element
are designated. Winm, ®1nm, Wonm and O, are the nodal displacements and rotations

in the wave number ky and frequency domain. They can be presented as the following

form:
Wi (Ky @) W, (03K, @)
R VA P Y S
Onm Ky, @) Wi (LK, @,)
Substituting Eq. (2.68) into Eq. (2.74), one can obtain
doui(Ky, @) =@, (K, @) A, (2.75)
where
1 1 1 1
Do = ;ff ;ff ;pf’f ;pf’:‘ . (2.76)

- pleplL - pzepZL - paep3L - p4ep4L
From Egs. (2.60) and (2.68), the net vertical shear force and bending moment in
Egs. (2.58) and (2.59) can be deduced as the following form:

Viom (X Ky 2,) ==D[E"(X) - (2-v)kJE'(X)]A, (2.77)

) y!
M, (X Ky, @,) =—D[E"(X) -k E(X)]A, (2.78)
where Vynm and My.m are the net vertical shear force and bending moment in the wave

number ky and frequency domain, respectively.

As shown in Fig. 2.9, the nodal forces and moments are given by

lxnm(k n) xnm(o! y’ )
1xnm(k a)n) xnm(O’ y’a) )

Pl @)=y 00 [ 7] Vel o) [0 BT
2xnm(k n) xnm(L’ y! )

where the minus signs ensure that a positive load will produce a positive
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displacement.

Substituting Egs. (2.77) and (2.78) into Eq. (2.79) leads to

fou(Kys @) = G (K, @) A, (2.80)
where
Goulky @) =-DIg;] (i,j=1,2,3,4), (2.81)
G =—p; +(2-v)k;p;, (2.82a)
0, =—PF +k], (2.82b)
gs; = pie” —(2-v)kIpe™", (2.82¢)
g,; = ple”t —1kZe"". (2.82d)

From Eqgs. (2.75) and (2.80), one can obtain

Sout(Kys @,)do = fos (2.83)

out —
where Syt is the spectral stiffness matrix for the out-of-plane case, and it has the

following form:
Sou(Ky, @) =G (K, @,) Py (K, @,) . (2.84)

It is clearly seen that S, depends on the frequency « and wave number ky, and it

includes the effects of transverse inertia.

2.5.2 In-plane formulation

The general solution of Egs. (2.53) and (2.54) can be given by the spectral

representations:

N-1 )
u(x, y,t) = %ZUH(X, y;m,)e' ", (2.85)
n=0
1 N-1 .
v(X,y,t) = WZVn (X, y; @,)e"", (2.86)
n=0

38



where U, and V, are the spectral displacements of u and v.

The simply supported boundary conditions for the in-plane components have
two forms [124], namely SS1 (fory=0andy=b,u=0andv#0; forx=0and x =L,
v=0andu#0)and SS2 (fory=0andy=b,v=0andu#0;forx=0andx=L,u=
0 and v # 0). In this paper, the analysis is carried out in terms of the SS1 condition on
edgesy =0 and y = b. In order to comply with this boundary condition, the solutions

can be expressed as the following forms:

U,(x,y;0,) = iunm(x;ky,a)n)sin(kyy), (2.87)
V,(x,y,0,) = ivnm(x;ky,a)n)cos(kyy). (2.88)

Substituting Eqgs. (2.87) and (2.88) into Egs. (2.85) and (2.86), and substituting

the results into Egs. (2.53) and (2.54) leads to

_ 2
U’ _(1 V) k2U _(1+V)kV' +MQ)ZU :O, (289)
nm 2 y~ nm 2 y - nm E nm
_ 2
nm 2 y ' nm 2 y = nm E nm

Four eigen roots can be obtained from Egs. (2.89) and (2.90), and they are

A :i,/ky2 -k, (2.91)
A4 =i,/ky2 —kZ, (2.92)
where k, =@\ p(L—v?*)/E and k, = @/2p1+V)/E.

Unm and Vi, can be expressed as

Uon(X Kk, @,) = 4Be* + 1,B,e™ +k Be™ +k Be*", (2.93)

yl

Vom(%: Kk, @) =k Be™ +k Be™ + 1,B,e™ + 1,B,e™", (2.94)

y’

where By, ..., B4 are four unknown coefficients.
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Figure 2.10 The plate element with in-plane nodal displacements and
forces in the local coordinate system.

Fig. 2.10 shows the in-plane nodal displacements and forces. Uinm, Vinm, Uznm
and Vanm are the nodal displacements in the wave number ky, and frequency domain.

They can be presented as the following form:

Uspn(Ky2 @) (03 Ky, @)
T Y & Ei ol (295)
Voum(Ky, @,) | [ Vin(Li Ky, ;)
Substituting Egs. (2.93) and (2.94) into Eqg. (2.95), one can obtain
Ay (K, @) =B, (K, 2,)B, (2.96)
where
A A, k, k,
P = ﬂ;iﬁ A;LL ky/eliaL ky/eliaL ! (2.97)
ket ket Aet Aett
B=[B, B, B, B,. (2.98)

From Egs. (2.51) and (2.52), one can obtain the in-plane forces in the wave
number ky and frequency domain as

Eh ,oU
N, = —n 2.99
xnm 1—V2 ( ox y nm) ( )

Eh oV
= +—"). 2.100
xynm 2(1+V)( y='nm Ox ) ( )

The in-plane nodal force vector can be deduced as the following form:
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lenm(ky’a)n) - anm(O; ky'a)n)
leynm(ky ) a)n) T nynm(O; ky ) a)n)
N2xnm(ky!a)n) - anm(L;ky'wn)
Nnynm(ky'a)n) nynm(L;ky’a)n)

fin (k a)n) = (2101)

ynm?

From Egs. (2.93), (2.94), (2.99) and (2.100), the in-plane nodal force vector fj,
can be expressed as
f.(k, @) =G, (k, ®,)B, (2.102)
where Gj, is the 4>4 matrix and it is given in Appendix A.
From Eqgs. (2.96) and (2.102), one can obtain
Sk, @)d,, = T, (2.103)
where Sj is the spectral stiffness matrix for the in-plane case, and it has the following
form:

Sin (ky’a)n) :Gin (ky'wn)¢i;1(ky!a)n) ' (2104)

2.6. Conclusions

As the theoretical basis of chapters 3, 4 and 5, the basic element such as the
bending element, tensional element, torsional element, piezoelectric beam element
and the plate element is modeled by the SEM. These spectral elements will be used to
combine different kinds of periodic structures further. In the SEM, the spectral
stiffness matrix for different elements is deduced in detail based on the equation of
motion. It has relationship with the frequency, which makes the solution in the

frequency domain have high accuracy.
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3 Vibration isolation property of 2D lattice

In this chapter, a 2D lattice with the material periodical distribution is analysed
using the SEM. In the spectral modeling, the SEM provides the highly accurate result
in the frequency domain by the minimum element number. Moreover, a more
functional lattice which possesses both the isolation performance and the energy

harvesting performance is designed.

3.1 Some basic preliminaries

Fig. 3.1(a) displays a 2D square lattice containing 415 repeating unit cells and
the corresponding unit cell is displayed in Fig. 3.1(b). The unit cell is made by two
different materials. The black part is material M; and the gray part is material M,. The

lengths of the two materials are I; and I,.

—Jd 1111111111111 i
yg_,JJJJJJJJJJJJJJJ —
S N O S A [ B B B :

X9 L.

@) (b)

Figure 3.1 (a) 2D square lattice with 415 unit cells and (b) the unit cell
made of two materials.

L T T O AR ey | ————————— !

The in-plane vibrations of the 2D square lattice are investigated. One unit cell can
be considered as four beams including tensional and bending deformations. All of the
beams in the lattice are homogeneous, isotropic and elastic, and they are uniform in
thickness. The tensional and bending vibrations are decoupled when the elastic
deformations are small. Subsections 2.1 and 2.2 display the derivation processes of

the spectral bending and tensional elements, respectively. The complete element
42



which contains these two terms is deduced in Section 3.2.

Two coordinate systems are needed to deduce the spectral stiffness matrix of the
whole 2D square lattice, i.e., the local coordinate system (x—Y) and the global one (x°
—y%. The transformation matrix can map the spectral stiffness matrix in one
coordinate system into that in the other one. The beams connected at any orientations
can be solved because of the transformation matrix. The transformation and

assembling processes are investigated in Sections 3.3.

3.2 Complete Element

From Egs. (2.17) and (2.21), the governing equation of the element with both
tensional and bending components can be presented as the following form:

F. =S.d., (3.1)

where d.=[U' V' @' U*V? & and F =[F{ F, M' FZ2 F? M?]" arethe

nodal displacement and force vectors, and S is the complete spectral stiffness matrix.

The relation among S, Sy, and S, is shown in Table 3.1. The terms of S which are not

shown in the table are equal to 0.

Table 3.1 Correspondence of matrix terms.

S S, S,
11 14 @1 (1,2

2,2) (2,3) (11 (1,2
(2,5) (2,6) (1,3) (1,4
(3,2) (3,3) 2,1) (2.2
(3,5) (3.6) 2,3) (2,4)
41 (44 1) (22

(5,2) (5,3) (31) (3,2
(5,5) (5,6) (3.3) (3.4)
(6,2) (6,3) 41) (42
(6,5) (6,6) (4,3) (4,9
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3.3 Assembling Process

For the assembling of the spectral element matrix, the orientation of the element

in the global coordinate system must be considered. Fig. 3.2 depicts an element in the

local and global coordinate systems. The arbitrary angle « is from x? axis to x axis.

The transformation matrix that relates element displacements to the global

displacement is

[ cosa
0

0
0
0

Then the spectral stiffness matrix in the global system is given by

0

0
0
0

sinaa 0
—sina cosa O

1

0
0
0

0 0
0 0
0 0
cosa Sina
—sina cosa
0 0

S,=T'ST,

R O O O O o

(3.2)

(3.3)

where Sgis the global spectral stiffness matrix and S; is the local spectral stiffness

matrix.

Figure 3.3 Unit cell divided into four spectral elements.

For a regular beam without any structure or material discontinuities, only one
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spectral element is sufficient, regardless of its length. So the unit cell can be divided
into four spectral elements by five nodes as shown in Fig. 3.3. The global spectral
stiffness matrices for all of the spectral elements in the lattice can be obtained by
using the transformation matrix. The equation of motion of the whole square lattice in
the global coordinate can be derived by assembling the spectral element equations of
each element:

F,=S,d

v =S,d,, (3.4)
where S, is the spectral stiffness matrix of whole 2D lattice structures, and F,, and d,
are the nodal force and displacement vectors in the global coordinates system. It
should be noted that the whole deriving procedure is in the frequency domain. The

frequency responses can be obtained by solving Eq. (3.4), and the frequency band-gap

properties of the 2D lattice structure can also be studied.

3.4. Vibration isolation property

3.4.1 Regular 2D lattice

The band-gap properties of the 2D square lattice in Fig. 3.1(a) are studied. The
structure and material parameters used in the calculation are: the length I, =1,=0.04m,
the section radius r = 0.002m, the shear correction factor x=0.9 [121]. The material
M; employed in the calculation is steel whose Young’s modulus E; = 210GPa,
Poisson’s ratio v;=0.3, and mass density p; = 7800kg/m®. The material M is epoxy
whose Young’s modulus E; =4.35GPa, Poisson’s ratio v, =0.3, and mass density p, =
1180kg/m?. The disturbance F = Foe'®" is located at left edge of the lattice as shown in
Fig. 3.1(a), where Fo=10N. By solving Eq. (3.4), the frequency response at the point
R of the right edge in Fig. 3.1 can be obtained. In the numerical computation, the unit

of frequency is set to be Hz, i.e. the frequency f = w/(2x).
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Fig. 3.4 shows the responses of displacements U, V and rotation @ calculated by
the SEM. In the given frequency ranges, many drops of the frequency responses
appear. These corresponding frequency ranges are called stop bands. The others are
called pass bands. The three components studied in this work present the same pass
and stop band locations. In the following studies, the displacement U is as the object

to investigate the band-gap properties.
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Figure 3.4 Frequency responses of (a) displacement components and (b) rotation component.
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Figure 3.5 Frequency response calculated by the SEM and FEM.

It can be seen that the response amplitudes in the stop bands are much smaller

than those in the pass bands. Vibrations and waves in the stop bands can hardly
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propagate in the lattice. The reason is that for the waves propagating in the unit cell,
reflected wave appears subsequently. For some stop-band frequencies, the reflected
waves in every unit cell are in phase, and their superposition leads to be more
powerful. These reflected waves can offset the incident waves. So the waves
corresponding to these frequency ranges cannot propagate in the structure. The wave
interaction can result in the phenomenon of band gaps.

The frequency responses of the 2D square lattice calculated by the SEM and FEM
are displayed in Fig. 3.5. The results in the FEM are obtained by using BEAM188
ANSYS elements. The coarse and finer meshes are taken into account. For the two
kinds of mesh, I; and I, are divided into 20 and 30 elements, respectively. That is,
each unit cell contains 80 elements for the coarse mesh and 120 elements for the finer
mesh. While for the SEM, the unit cell is divided into only 4 spectral elements as

shown in Fig. 3.3. It is thus clear that this method can reduce the element number.

10
C | T T T I T | I T T T T T T I 1
0.3 |
i i i | | | i i i | | 1
Dz-—i—l— R e e S —
£
S . o b Lo 0
> - —
01k .
I [ I P T
[ | ——— 1
A R T R R . S

@)

vy /m

0.2 0.4 0B 0.8 1 1.2
(b) x9 /m

Figure 3.6 Vibration distributions of the 2D square lattice with
different frequencies for (a) f = 2000Hz and (b) f = 6000Hz.
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The three results agree each other well. In contrast to the results calculated by the
coarse mesh, those calculated by the finer mesh are closer to the SEM results. This
phenomenon is especially obvious in the high frequency ranges. Due to the
frequency-dependent  interpolation  functions, the SEM provides exact
frequency-domain solutions, such as the natural frequency and frequency responses.
To obtain more accurate solutions, more elements in the FEM are required. It will
consume more computation time consequently. The SEM can save time due to its
small element number.

The vibration distributions of the whole lattice with different frequencies are
shown in Fig. 3.6. The whole structure vibrates when the frequency f =2000Hz. The
wave propagation without attenuation represents that this frequency is in the pass
band. Frequency f = 6000Hz is in the stop band. The vibrations are confined at the left
edge near the vibration source. They can propagate through the lattice hardly. In this
case, the responses cannot be detected at the right edge. It means that the 2D square

lattice has the function of vibration suppression.

Displacement U/m

| —— <=0
-~ ¢=0.001
—————— ¢=0.003

0 05 1 15 2

Frequency f /Hz

Figure 3.7 Frequency responses of structures with
different structural loss factors.

The frequency responses of the 2D square lattice with different structural loss
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factors are shown in Fig. 3.7. The structural damping can be considered by the
complex Young’s modulus E (1+ i), where ¢ is the structural loss factor. In the
resonant regions, the amplitudes are the largest when the structural loss factor £=0.
They become smaller with the increase of structural damping. When the frequency
ranges become higher, this phenomenon is more obvious. Fig. 3.7 also presents that
the structural damping has no influence on the locations of stop bands, but has
influences on the amplitudes in the pass bands. In the following studies, the structural

loss factor ¢ is set to be 0.001 without special statement.
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Figure 3.8 Comparison of frequency responses
for structures with different materials.

Fig. 3.8 shows the response comparison of the lattices with different materials.
When the materials M; and M, are the same (steel in this work), it is hard to detect the
stop bands. Aluminum is adopted as material M, with Young’s modulus Ea =72GPa,
mass density pa = 2730 kg/m® and Poisson’s ratio va = 0.3. Different resonant
frequencies and band gaps are displayed in the figure for the lattices with different
materials. The responses have the clearest drops inside the stop bands when the epoxy
is adopted as material M,. More stop bands appear in the given frequency ranges, and

the first stop band appears in lower frequencies. When the differences of the two
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material properties become larger, the band-gap properties are more obvious. It is
meaningful for the design of vibration attenuation structures.

To discuss which material properties affecting the band-gap properties, different
stiffness and inertia properties of the material in three cases are investigated. The
material parameters are given in Table 3.2. The values of Young’s modulus and
density of material M, are assumed to be one tenth of those of material M; in some

Cases.

Table 3.2.The material parameters for the structures in three cases.

Young’s Cr;nF?adulus E/ density p / kg m?
Ml M2 M1 M2

Case 1 210 21 7800 7800
Case 2 210 210 7800 780
Case 3 210 21 7800 780

Displacement U /m

Frequency f /Hz

Figure 3.9 Frequency responses for 2D square
lattices with different materials in three cases.

Fig. 3.9 shows the frequency responses for 2D square lattices with the materials
in the three cases. For the cases 1 and 2, different Young’s moduli and densities
between materials M; and M are studied, respectively. In contrast to the case 2, the
stop bands in case 1 are more and the location of the first one appears in lower

frequency ranges. For the case 3, both Young’s moduli and densities of materials M;
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and M, are different. The most evident band-gap properties are displayed. One can
observe that both the Young’s modulus and density properties have influences on the
band-gap properties. The stiffness and inertia properties play a role together.

The component ratio of material My is set as a =11/ (1 + I). To discuss the
influences of a on the band-gap properties, the stop-band ratio is considered as y = fsop
I fan, where fy is the given frequency range and it should be big enough to confirm the
validity of y. fsop IS the frequency ranges in which the responses are smaller than a
certain value, U*. When the responses are smaller than U*, the corresponding
frequencies can be considered as in stop bands. So U* should be small enough in

contrast to the responses in pass bands.

0.8

U*<10°m
———-U*<10m
— U*<10™m

Stop-band ratio y

0 0.2 04 06 038 1
a

Figure 3.10 Stop-band ratio varying with the component of material M;.

In this study, fa is 50 kHz, U* is set to be 10°m, 10" m and 10 m,
respectively. Fig. 3.10 displays the stop-band ratio y varying with the component of
material M;. The three lines have the same changing tendency. When the component
of material M, is close to 0 and 1, the lattice is almost constituted by one material, the
stop-band ratio y is close to 0. It means that there is nearly no stop band in the given

frequency range. When « is from 0.3 to 0.6, the 2D square lattice has the relatively
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high stop-band ratio. It means that the 2D square lattice has the better performance of

vibration isolation for these components of material M;.

Displacement U/m

Frequency f /Hz

Figure 3.11 Comparison of frequency responses for 2D
square lattices with different unit cells in the x direction.

Displacement U/m

4000 5000 6000 7000 5000 9000

Frequency f /Hz

Figure 3.12 Comparison of frequency responses for 2D
square lattices with different layers in the y direction.

Fig. 3.11 shows the comparison of frequency responses for 2D square lattices
with 5, 10 and 20 unit cell layers in the x direction. There are different resonance
frequencies because of the different unit cell layers in the x direction. The three 2D
square lattices demonstrate the same locations of the pass and stop bands due to the
same structure and material parameters of the unit cells. The response amplitudes drop

more clearly inside the stop bands when the structure includes more unit cells in the x
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direction. So the structure with 15 unit cell layers demonstrates the most evident
band-gap properties.

Compared with the stop band “depth” determined by the unit cell layers in the x
direction, the stop band “width” is influenced by the unit cell layers in the y direction.
Fig. 3.12 displays the frequency responses for 2D square lattices with different unit
cell layers in the y direction. The stop band for lattice with 1 layer in the y direction
presents the widest span. The stop band span becomes narrow with the increase of
unit cell layers in the y direction. It is almost the same when the layer numbers are 4
and 6.

When considering the vibration isolation in the x direction, the increase of unit
cell layer in the same direction is meaningful because it can make the waves
propagate more hardly in the stop band. While the increase of unit cell layer in the y
direction is not so valid. Although the stop band span can become wider, the change is
not so evident. One can increase the appropriate layers in the y direction, but the

overmuch layer is inadvisable due to the material waste.

Table 3.3 The effect of the structural and material parameter on the
band gap property, where 1 represents increasing, | represents
decreasing and — represents no change.

Stop band “width” Stop band “depth”
increasing & — —
increasing the difference
between Mjand M, 1 T
increasing cell layers
in the x direction B f
increasing cell layers !

in the y direction

To summarize the above investigation, the effect of the structural and material
parameter on the band-gap property of the 2D lattice is displayed in Table 3.3, which

can provide the general guideline for the structural parameter selection.
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Figure 3.13 Comparison of frequency responses for 2-D square lattices with
different unit cell lengths.

Fig. 3.13 displays the frequency responses for 2D square lattices with different
unit cell lengths. All of the three lattices show the obvious band-gap properties. For I3
=1,=0.02m, the first stop band location is in the relatively high frequency ranges, and
it shifts to lower frequencies when increasing the lengths of materials M; and M,. In
the given frequency ranges, the 2D square lattice with 1; =1, =0.06m have the most
stop bands. This phenomenon is good for the study of vibration isolation in the low

frequency ranges.

3.4.2 2D lattice with piezoelectric beam

In this section, the 2D square lattice in the global coordinate system (x?—y?) as

54



shown in Fig. 3.14(a) is considered. It contains 1515 repeating unit cells and the

corresponding unit cell is displayed in Fig. 3.14(b).

P
:
y? ;‘_ Ih |2_’§
| o { . . i
@ e (b)

Figure 3.14 (a) 2D square lattice with 1515 unit cells and (b) the
unit cell made of two materials.

The spectral stiffness matrices of an elastic beam element and a piezoelectric
beam element are deduced by the SEM in Section 2.4. For the conventional pure
elastic beam, it is homogeneous, isotropic, and elastic, and has a uniform thickness.
For the piezoceramic beam, its deformation is assumed to be small and it exhibits
linear piezoelectric material behaviors.

In this subsection, the band-gap characteristics of the 2D square lattice are studied.
The length I; =1,=0.04m, the width b = 0.004m, the thickness h = 0.004m and the
shear correction factor x=5/6. The disturbances F = Foei“” are located at the center of

the lattice, where Fo= 10N and the directions are shown in Fig. 3.14.

Table 3.4 Material properties of the piezoelectric cantilever beam.

Piezoceramic Base beam
(PZT-5H) (Brass)

Density (kg/m°) 7500 9000
Elastic modulus (GPa) 60.6 105
Piezoelectric constant 274 —
(pm/V)

Permittivity constant 30.1036 —
(nF/m)

Shear modulus (GPa) 23 40
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To study the effect of the piezoelectric layers on the band-gap property, brass
base beams bonded to piezoceramic layers as shown in Fig. 2.5 are replaced now by
pure brass beams and denoted as Mj in the lattice. The material parameters are the
same as those in Table 3.4 and R = 995k for the open circuit. The materials M, used
in the calculation is epoxy with the Young’s modulus E; =4.35GPa, the Poisson’s ratio
»=0.3, and the mass density p,= 1180kg/m°.

Fig. 3.15 displays the comparison of band-gap properties of the 2D square lattice
with and without piezoceramic layers. Compared with the stop-bands of the lattice
without piezoceramic layers (h, =0mm), those with piezoceramic layers (h, =1mm)
are compressed but present the similar tendencies. Because the bimorph piezoelectric
beam is a kind of energy harvester [122, 123], the lattice can transform the
mechanical energy into the electrical energy in the pass-bands. Due to the existence of
stop-bands in the high-frequency domain, the vibration amplitudes are too small and
the function of energy harvester is not obvious. In other words, lattices with
piezoelectric beams can be regarded as functional structures because they possess

unique properties both in the pass-bands and the stop-bands.

Displacement U/m

Frequency f /Hz

Figure 3.15 Frequency responses of 2D square
lattice with and without piezoceramic layers.
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To analyze the effect of the content of the piezoceramic layers on the band-gap
property, the ratio of the piezoceramic layer content » and the stop-band ratio y are
defined as # =2h,/h and y=fsop/ fan, where fy is the considered frequency range and
fsop 1S the stop-band frequency range. In this work, fa = 30 kHz, and a certain
response amplitude U* = 10™"m is defined as a boundary value between pass-band
and stop-band responses.

Fig. 3.16 shows the stop-band ratios varying with the different piezoceramic
layer contents. The stop-band ratio experiences an overall declining trend with many
fluctuations from 0.8 (1 =0) to about 0.74 (3 =0.9). It indicates that the piezoceramic
layer content has different effects on the energy harvesting and vibration isolation
respects. On the one hand, higher ratio of the piezoceramic layer composition is good
for energy harvesting, which means that the output voltage benefits from the larger
thickness of the piezoceramic layers [122]. Moreover, the pass-bands become wider
due to the decreasing stop-band ratio, and it means that more mechanical energy can
be converted into electric energy. On the other hand, the vibration isolation effect
declines with the increasing ratio of the piezoceramic layer composition. It can be
observed that the properties of the energy harvesting and vibration isolation cannot be
improved together by changing the thickness of the piezoceramic layers. For
considering the dynamic properties of 2D square lattice with piezoelectric beams,
both of the two respects should be taken into account.

Fig. 3.17 shows the three cases with material defects. In these lattices, M; is
brass, M, is epoxy and the material in the defect areas is the piezoelectric beam with
hp = Imm. Fig. 3.18 shows the vibration distributions of the U component for the
three cases when f= 8kHz which corresponds to the frequency stop-band. The elastic

waves at this frequency can propagate in the defect parts, while they can hardly
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propagate in the other parts. The defects are like passageways because they can
transmit elastic waves in the stop-bands. In the material defect areas, the piezoelectric
beams can also transform the mechanical energy into electric energy. So these defects

are the passageways of both the elastic waves and the energy harvesting.

0.8

0.78

0.76

Stop-band ratio y

0.74 ¢

n

Figure 3.16 Stop-band ratio versus the
ratio of the piezoceramic layer content.

@) (b) ©

Figure 3.17 2D square lattice with material defects in (a) the
middle row, (b) the middle column and (c) both the middle row
and middle column.
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Figure 3.18 Vibration distribution of the U component for f= 8kHz of 2D square lattice
with material defects in (a) the middle row, (b) the middle column and (c) both the middle
row and the middle column.

Fig. 3.19 shows a 200 square lattice which includes a central part (both M; and

M, are the piezoelectric beams) and a peripheral part (M; is brass and M, is epoxy).
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The frequency response of point P is calculated and compared with that of the lattice
without piezoelectric beams as shown in Fig. 3.20. The two lines represent the same
pass- and stop-band locations. Due to the central part, many local resonances appear
in the stop-bands. The central piezoelectric beams have no effects on the stop-band
locations and the periodic peripheral part plays an essential role in the vibration

isolation.

Figure 3.19. 200 square lattice.

— with ceritral'part .
- - - - without central part
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x 10*
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Frequency f /Hz

Figure 3.20 Frequency responses of 2D square
lattice with and without central piezoelectric beams.
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Figure 3.21 Vibration distribution of
20>20 square lattice with central part
for f = 10.04kHz.
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The lattice with different central and peripheral parts can transform more energy
because the piezoelectric beams always vibrate in both the pass- and stop-bands. For
example, the wave with f= 10.04kHz is isolated by the peripheral parts, while it can
propagate in the central part as shown in Fig. 3.21. This lattice possesses the function
of energy transformation in the specified central fields and the vibration isolation by
the periodic peripheral parts. Compared with the lattice without central piezoelectric
beams, this type of lattice can realize both more energy transformation and good

vibration isolation performance.

3.5. Conclusions

In this chapter, the SEM is applied to study the vibration band-gap properties of
the 2D square lattice. The spectral stiffness matrices of the tensional and bending
elements are deduced, and the spectral equations of the 2D square lattices are further
derived. The frequency responses are calculated by the SEM.

The SEM can be effectively applied to research the frequency band-gap
properties of 2D square lattices. It can achieve highly accurate results by using small
element numbers. The pass and stop band locations of the three DOFs are the same. In
the pass bands, the whole lattice vibrates. The waves can propagate hardly if the
frequencies are in the stop bands. The structural damping has no influence on the stop
band locations. However, it can reduce the amplitudes in the pass bands obviously,
especially in high frequency ranges. For the material properties, when the differences
of the material properties become larger, the band-gap properties appear more
obviously. The stiffness and inertia properties play a role together. Moreover, the
appropriate material component ratios can produce high stop-band ratio. The unit cell

layers in the x direction determine the stop band “depth”, while the stop band “width”
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is influenced by the unit cell layers in the y direction. The effects of the unit cell size
on the band-gap properties cannot be ignored. It is meaningful for the balance
between the vibration isolation function and the material dosage.

2D square lattices with piezoelectric beams present different functions in the
pass- and stop-bands, so they can be considered as functional structures. Thicker
piezoceramic layers are beneficial to energy harvesting but reduce the vibration
isolation function. The material defects can permit the wave propagation and energy
transformation along the defect “passageway”. The lattice with central piezoelectric
beams can realize both more energy transformation and good vibration isolation

performance.
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4 Vibration isolation property of 3D Kagome structure

In this chapter, the vibration isolation performance of 3D Kagome structure is
studied by the SEM. In the previous study, the SEM is usually used to investigate the

1D or 2D structures. In this chapter, we explore this method to solve 3D problems.

4.1 Problem description

AN \VAVA VAT VATA Y A VAT,
\/ \/ \/ \/ \/ \/

@)

(b) A ©

H k \ Core

- a = Bottom layer
f—————]

Figure 4.1. (a) A 3D Kagome lattice with 15 substructures, (b) one substructure
and (c) one unit cell.

In this section, a 3D Kagome lattice with rigid joints in the global coordinate
system (x° —y®—2z°) as shown in Fig. 4.1(a) is considered. There are 15 repeating
substructures in the x° —y9 plane and one unit cell thickness in the z° direction. The
corresponding unit cell is displayed in Fig. 4.1(c) and it is considered as twelve basic
elements which are elastic, homogeneous and isotropic. All basic elements have a

uniform thickness. A number of unit cells with different materials constitute the whole
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3D Kagome lattice. The white part is material M; and the black part is material M.

The spectral stiffness matrices of each spectral element are firstly deduced in its
local coordinate system (x —y — z). Before the assembling process, transformation
matrices must be adopted to map the spectral stiffness matrices in the local coordinate
system into those in the global one. The transformation process allows the beams to
be connected at any orientation.

A basic element as shown in Fig. 4.2 is capable of tensional and torsional
deformation as well as two-plane bending. The decoupled superposition of them can
be carried out for the case of small elastic deformation. Each node has six DOFs.
They can be decoupled as bending components vy, 6,1, Vo and 6, in the x—y plane,
bending components wy, 6y1, W, and 6y, in the x—z plane, tensional components u; and
Uz in the x direction and torsional components 6y and 6y, around the x axis. The
decoupled terms are deduced by the SEM in Sections 2.1-2.3, and they are combined

in Section 4.2.

y
Oy Vq X Vo b2
O ’ Uy z ’ Uz Oxo
C 0]
621 Wi W2 9 72

Figure 4.2 Total set of displacements and rotations of one element.

4.2 Complete element

From Egs. (2.17), (2.19), (2.21) and (2.24), the relation between the nodal forces
and displacements of the complete element with bending, tensional and torsional
components can be expressed as the following form:

S.(w)d, =F,, 4.1)
where d. =[U' VI W! 0l 0, 6, U V2 W? ©260,2 ©,7] is the vector consisting of
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the nodal displacements and rotations, F.=[F," F,' F,' M,' My M,' FZ F2 F.2 Mé M/
M,?]" is the vector consisting of the nodal forces and moments and S; is the complete
spectral stiffness matrix. The relation among S, Sy, Sy, Sw and Sy, is shown in Table

4.1. The components of S; which are not shown in the table are equal to 0.

Table 4.1 Correspondence of the stiffness matrix elements.

Sc Su Sv Sw S@x
11 @7 1) (12
7,1 (7,7 2,1) (2,2
2,2) (2,6) (1,1) (1,2
6,2) (6,6) 2,1) (2.2
(2,8) (2,12) (1,3) (1,4)
(6,8) (6,12) 2,3) (2,4)
(8,2) (8,6) (3,1 (32
(12,2) (12,6) 41) (42
(8,8) (8,12) (3,3) (34)
(12,8) (12,12) (4,3) (4,4)
(3.3) (35) 11 (12
(5,3) (5,5) (21) (22
(3,9) (3,11) (1.3) (1.4
(5,9) (5,11) (23) (24)
(9,3) (9,5) (B1) (3,2
(11,3) (11,5) 41) (42
(9,9) (9,11) (3,3) (3,4
(11,9) (11,11) 4,3) (4.4)
(4,4) (4,10 1,1) (1,2
(10,4) (10,10) (2,1) (2,2)

4.3 Assembling process

In this subsection, the basic elements in different orientations will be assembled.
A unified coordinate system, i.e. the global coordinate system is defined to derive the
stiffness matrix of an arbitrarily oriented element. This process is the same as that in
the FEM. One can obtain the global spectral stiffness matrix of each element by using
the transformation matrix.

For one unit cell, it can be divided into twelve spectral elements by seven nodes
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as shown in Fig. 4.3. By assembling the spectral element equations of each element in
the global coordinate system, the equation of the whole 3D Kagome lattice can be
derived as

S(w)d =F, 4.2)
where S is the spectral stiffness matrix of the whole lattice, and F and d are the nodal
force and displacement vectors in the global coordinate system. The frequency
responses can be obtained by solving Eq. (4.2), and the vibration band-gap properties

of the 3D Kagome lattice can be analysed accordingly.
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Figure 4.3 One unit cell divided into twelve
spectral elements by seven nodes.

4.4 Vibration isolation of 3D Kagome lattice

In this section, the dynamic properties of the 3D Kagome lattice in Fig. 4.1(a)
with four free edges are studied. The structural and material parameters used in the
calculation are: the length a=0.2m, the thickness H=0.1m, the sectional radius r =
0.005m and the shear correction factor x = 0.9. The material M; is steel with the
Young’s modulus E; =210GPa, the Poisson’s ratio v; =0.3, and the mass density p; =
7800kg/m®. The material M, is epoxy with the Young’s modulus E, = 4.35GPa, the
Poisson’s ratio v, = 0.3, and the mass density p, = 1180kg/m°. As depicted in Fig.
4.1(a), the disturbance F=Fqe' is located at the point on the left edge, where Fo=

—10N. By solving Eq. (4.2), the frequency responses at the pick-up point R on the
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right edge can be obtained. In the numerical computation, the unit of the frequency f =

wl(2r) is in Hz.

4.4.1 Validations of the present method

Fig. 4.4 presents a comparison of the frequency responses calculated by the SEM
and the FEM. For the FEM, the results are obtained by ANSYS using BEAM188
elements. For the coarse and fine meshes in ANSYS, each basic element is divided
into 25 and 50 elements, respectively. That is, each unit cell contains 300 and 600
conventional elements. In contrast, the SEM adopts a minimum spectral element
number, i.e. 12 spectral elements in one unit cell as shown in Fig. 4.3. We no longer
need to refine a uniform part into multiple meshes. It is obvious that the element

number of the SEM is much smaller than that of the FEM.

1DD T T T T T T T T

_____ FEM (finer mesh)
—-— FEM (coarse mesh)

Displacement W /m
=

..
LR

| | | | | | | |
J00 c00 900 1000 1100 1200 1300 1400 1500 1600

Frequency f /Hz
Figure 4.4 Frequency responses calculated by the SEM and the FEM.

In general, the three curves in Fig. 4.4 agree well in the given frequency range. In
the FEM, the result accuracy depends on the quality of the mesh, which is quite
different from the SEM. In the SEM, only one spectral element is adequate no matter
the size of a uniform structure. A small spectral element number reduces the DOFs of
the system significantly. It means that the computational cost and time will be reduced

in the SEM. When the size of the investigated structure becomes larger or the
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considered frequency becomes higher, the element number in the SEM is not
necessary to be increased, so the computing time remains almost the same. While for
the FEM, more elements are needed to obtain sufficiently accurate solutions, which
will require of course more computing time. This advantage of the SEM will be more
obvious when the system contains plenty of uniform structures.

Since the exact dynamic stiffness matrix is derived from the exact wave solutions
of the governing partial differential equations, the accuracy of the SEM solution is
high. That is why the results calculated by the FEM are much closer to those obtained
by the SEM when the mesh becomes finer. Fig. 4.4 reflects this advantage of the SEM
more obviously when the frequency becomes higher. For the analysis of the band-gap
property, the locations of the pass- and stop-bands should be predicted precisely,
especially in high-frequency ranges. The possible confusions between the pass- and
stop-bands can be avoided by the exact frequency responses. For example, the
frequency about 1480Hz is in the stop-band for the SEM and the FEM with finer
mesh, while it is in the pass-band calculated by the FEM with coarse mesh. So the
analysis of band-gap properties requires highly accurate evaluation of the dynamic
response results in the frequency-domain. Due to its unique advantages, the SEM
satisfies this requirement, so it is an appropriate method to analyze the band-gap
properties of 3D Kagome lattices. The highly accurate dynamic response results can

effectively avoid possible confusions between the pass- and stop-bands.

4.4.2 Band-gap properties

Fig. 4.5 shows the responses of the displacements U, V and W, and rotations 6,
Oy and O, at the pick-up point R calculated by the SEM. In the given frequency ranges,

many distinct drops of the frequency response curves appear. The corresponding
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frequency ranges are the so-called stop-bands or band-gaps. The other frequency
ranges are referred to as pass-bands. It can be observed that the amplitudes in the
stop-bands are much smaller than those in the pass-bands. The six components present
the same pass- and stop-band locations. For this reason, in the following studies only
the displacement W is used to investigate the band-gap properties.
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Figure 4.5 Responses of the displacement and rotation components at the pick-up point R
calculated by the SEM.

Fig. 4.6 shows the vibration distributions of the W component of the elements in
the upper layer of the 3D Kagome lattice. Two different frequencies are considered,
i.e. 178Hz and 750Hz. One can observe from Fig. 4.5 that 178Hz is in the pass-band,
so the whole structure vibrates at this frequency as shown in Fig. 4.6(a). When the
frequency is 750Hz which is in the stop-band, the vibrations are confined to a smaller
region. In this case, elastic waves can be hardly detected in the lattice except the

region around the disturbance source. The performance of vibration isolation of the
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3D Kagome lattice is thus vividly displayed.
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Figure 4.6 Vibration distribution of the 3D Kagome lattice for (a) f= 178Hz and (b) f= 750Hz.

Mechanical vibrations and elastic waves in the stop-bands can hardly propagate
in the lattice structure. The reason is that reflected waves appear when the waves
propagate in the substructures. The reflected waves and the incident waves at some
stop-band frequencies are in phase, and their superposition may become destructive.
When these reflected waves are powerful enough to offset the incident waves,
band-gap phenomenon can be induced. It means that the structure has a vibration

isolation performance in certain frequency ranges.

4.4.3 Effects of structural and material parameters

Fig. 4.7 shows the frequency responses of 3D Kagome lattices with 5, 10 and 15
substructures. Due to the different substructure numbers, we obtain different
resonance frequencies which can be identified by the local maximum values. However,

the three lattices have the same pass- and stop-band locations because the structural
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and the material parameters of the unit cells are the same. Compared with the lattices

with 5 and 10 substructures, the lattice with 15 substructures demonstrates the most

obvious band-gap properties. For the lattice with more substructures, the response

amplitudes drop more clearly inside the stop-bands. It means physically that the

elastic waves in the stop-bands of the lattices with more substructures can propagate

more hardly than in the lattices with fewer substructures. So for the design of

vibration isolating structures, increasing the substructure number can effectively

improve the vibration isolation performance.
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Figure 4.7 Comparison of the frequency responses of 3D
Kagome lattices with different substructure numbers.
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Figure 4.8 Frequency responses for lattice structures with different material M.
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Fig. 4.8 shows a comparison of the frequency responses for 3D Kagome lattices
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with different material M,. In the case when both the materials M; and M; are steel,
there is no stop-band in the given frequency range. For epoxy as the material M, the
responses have clear drops inside the stop-bands. When the materials M; and M, are
different, the periodic characteristic of the 3D Kagome lattice is more obvious
because both the geometrical configurations and the materials arrange periodically.
The differences in the material properties make the band-gap characteristics appear
obviously. For the design of vibration attenuating structures, the periodic arrangement
of different materials is the key factor to achieve the vibration band-gap property.

Fig. 4.9 presents the frequency responses for 3D Kagome lattices with different
materials for the top layer, core and bottom layer. When the material of the top and
bottom layers is steel and the core material is epoxy, obvious stop-bands can be
observed although their number is much smaller than that in Fig. 4.5. However, the
band-gap properties do not appear in the given frequency range when the materials
interchange. For the design of vibration attenuating structures, the stiffness of the core

material should not be larger than that of the top and bottom layers.
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Figure 4.9 Frequency responses for structures with different materials of the top layer, core
and bottom layer.

4.4.4 Other types of 3D Kagome lattices

Fig. 4.10 shows another type of 3D Kagome lattices, which is different from that
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as shown in Fig. 4.1 in the material arrangement. Due to the periodicity of the 3D
lattice in Fig. 4.10, it also presents the band-gap property as shown in Fig. 4.11. It can
be seen that the distribution of the stop-bands in the given frequency range is
intensive. This implies that the 3D Kagome lattices with different material
arrangements possess different locations of pass- and stop-bands. Thus, we can design
novel 3D Kagome lattices with improved band-gap properties such as the one shown

in Fig. 4.12 using this special characteristic.
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Figure 4.11 Frequency responses of the 3D Kagome lattice as shown in Fig. 4.10.

Fig. 4.13 shows the frequency responses of the new type 3D Kagome lattice as
depicted in Fig. 4.12. The band-gap property of this 3D Kagome lattice is obviously
improved compared to that of the lattice structure 14. Here, the distribution of
stop-bands is intensive and the stop-band is wider. It means that the performance of
the vibration isolation is enhanced. The reason is that some elastic waves in the

pass-band of the first 15 substructures are in the stop-band of the last 15 substructures.
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The increased number of elastic waves which cannot propagate in the new type 3D
Kagome lattice leads to the enhanced band-gap property. Similarly, we can also

design other novel functional lattice structures by using this idea.

15 substructures 15 substructures

Figure 4.12 A new type of 3D Kagome lattice.
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Fiqgure 4.13 Frequency responses of the 3D Kagome lattice as shown in Fig. 4.12.

4.5 Conclusions

In this chapter, the SEM is developed and applied to simulate elastic wave
propagations in 3D Kagome lattices. The results are verified by comparing with those
of the conventional FEM. The influences of several geometrical and material
parameters on the band-gap properties are investigated. Some particular dynamic
phenomena are observed and discussed. From the obtained results, the main
conclusions of this work can be drawn as follows:

(1) The SEM can provide more accurate frequency responses and need less

computing time than the conventional FEM. For the analysis of band-gap
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characteristics, the SEM can avoid certain confusions with pass- and stop-bands.
(2) Elastic waves in the stop-bands propagate more hardly in the 3D Kagome lattice

with more substructures.

(3) The periodical arrangement of different materials makes the band-gap
characteristics appear obviously.

(4) For the design of vibration isolation structures, the stiffness of the core material
should not be larger than that of the top and bottom cover layers.

(5) Based on the different pass- and stop-band locations, new types of 3D Kagome
lattices with an enhanced band-gap property can be designed.

The results in this section can provide some novel ideas for the vibration band-gap
analysis of 3D periodic lattice structures. Based on the dynamic stiffness matrix of a
basic element, the spectral equations of 3D periodic lattice structures with other
topologies can also be obtained, and their band-gap properties can be thus further

investigated.
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5 Vibration isolation property of sandwich structure

Sandwich structures are widely applied in engineering practice. Especially, the
sandwich panels with corrugated cores is used in the high-speed rail design. For the
traditional analysis, the sandwich structure is always equivalent to a plate. In this
chapter, we do not adapt the equivalent approach, but the SEM to establish the high
precision mechanical model. This mode retains the periodicity and then the isolation

performance is analysed.

5.1 Some basic preliminaries

o - =L
=== ) —

o [ 7 4
A VAR VAR V7 A4 VAR VA
G

~
N unit cells
Style |

Unit cell of style 111

Style 111

Figure 5.1 Three styles of sandwich panels with different corrugated cores, and the
corresponding unit cells.
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Fig. 5.1 shows three styles of sandwich panels with corrugated cores in the
global coordinate system (x° y¢ z%. The sandwich panels are periodic structures
which contain N unit cells along the x° direction. They contain the top plates, core
plates and bottom plates. The sandwich panels are simply supported at the two
opposite edges of y=0and y = L.

Fig. 5.1 also illustrates the unit cell of the style I including the top and bottom
plate thicknesses h; and hy, the core plate thickness he, the length L, the width L, and
the height L,. The dimensions of the unit cells for the style Il and Il are the same as
those for the style I, while the core forms are different. Compared with the style I, the
core forms in the style 1l and 111 are more complex, and the rigidity is stronger.

In the SEM, the spectral stiffness matrix of each plate is deduced in its local
coordinate system (X, y, z), and the spectral stiffness matrix can be transformed from
the local coordinate system to the global one by the transformation matrix. Finally, the
spectral stiffness matrix of the whole structure system can be assembled in the global
coordinate system. For the SEM, treating the elements separately makes it possible to
analyze the structure consisting of an arbitrary number of elements, and
transformation from local to global coordinates allows the plates to be connected at

any orientations.

5.2 Complete plate spectral stiffness matrix

From Egs. (2.83) and (2.103), the governing equation of the plate with both
in-plane and out-of-plane components can be presented as the following form:

Spky,a,)d, =1, (5.1)

where d, and f, are nodal displacement and force vectors, and S, is the complete

spectral stiffness matrix. The relation among Sy, Sin, and Soy is shown in Table 5.1.
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The terms of S, which are not shown in the table are equal to 0.

Table 5.1 Correspondence of matrix terms.

Sp Sin Sout
1,1 (1,2 1,1) (1,2
2,1) (2,2 2,1) (2,2
(1,5 (1,6) 1,3) (1,4
(2,5) (2,6) (2,3) (2,4)
(3.3) (B4 1,) (1,2
43) 44 2,1) (2,2
(3,7 (3,8 1,3) (1,4
4,7 4.8 (2,3) (2,4)
(5,1) (5,2 (31 (3,2
(6,1) (6,2) 41 4,2
(5,5) (5,6) (3,3) (3.4)
(6,5) 6,6) 43) (44
(7,3) (7,4) (3,1) (3,2
(8,3) (8,4) 41 4,2
7,7y (7,8 3.3) (B4
(8,7) (8,8 (43) (44

5.3 Spectral equation of the whole structure

The spectral element matrix derived in Eq. (5.1) is in the local coordinate system.
Every element is in its own local coordinate system to facilitate computation. When
the two elements are connected together during the process of assembling,
displacements and forces at the nodes must be related to the same axes. It is necessary

to transform the spectral element matrix from the local to the global coordinate

system.

Fig. 5.2 shows the plate element in local and global coordinate systems. The

local coordinate system can be obtained by rotating the global coordinate system

Figure 5.2 The plate element in the local
and global coordinate systems.
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about y? axis by an angle ¢. The transformation of nodal displacements and forces
from the global to local coordinate system can be accomplished by a matrix A4 which

can be written as

cosep 0 sing O
0 1 0 O
A=| | . (5.2)
—singp 0 cosep O
0 0 0 1

By the rules of the orthogonal transformation, the spectral element matrix in Eq.

(5.1) can be transformed to the global coordinate system as
T
S, =T, ST, (5.3)
where S is the plate spectral element matrix in the global coordinate system, and T,

Is the transformation matrix expressed as the following form:

A4 0
w0 -

The equation of motion of the whole sandwich panel with corrugated cores can

be obtained by assembling the spectral element matrix in the global coordinatess?,

and it can be derived as

Su(k,, »,)d, =f,, (5.5)
where S, is the global spectral stiffness matrix of the sandwich panel with corrugated
cores, and dy, and f,, are the nodal displacement and force vectors in the global
coordinates system. It should be noted that the whole derivation is in the frequency
domain. The frequency responses can be obtained by solving Eq. (5.5), and the

vibration band gap behaviors can be studied accordingly.
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5.4 Vibration isolation of sandwich structure

In this section, the frequency responses of the three styles of sandwich panels in
Fig. 5.1 are calculated by the SEM. Firstly, the style I is taken as an example to study
the band gap behaviors and to analyze the influences of some parameters on the
structural vibration properties. Then, the differences of the vibration band gap
characteristics for the three styles are investigated further.

For the style I, the structure and material parameters in the calculation are the
length Ly=L,=L,=0.04m, the thickness of plate elements h; = h; = hy = h=0.002 m,
the mass density p = 2800 kg/m®, the Young’s modulus E =72 GPa and the Poisson’s
ratio v=0.3. The unit cell number is N = 15, and each unit cell is considered as 5

spectral plate elements as shown in Fig. 5.3.

Figure 5.3 One unit cell divided into five
spectral plate elements.

The external excitation F = Fee™ is located at the left edge of the sandwich panel,
I.e. at the position (Om, 0.02m, 0.04m). Here Fo = 10N. Based on Eqg. (5.5), the
frequency responses of the whole structure can be obtained. In this work, the
frequency responses at the point P (0.6m, 0.008m, 0.04m) are demonstrated. In the
numerical calculation, the frequency is defined as f = w/(2z). The unit is Hz.

Fig. 5.4 shows the frequency responses of in-plane and out-of-plane

displacements and rotation angle at point P (0.6m, 0.008m, 0.04m). Although the four
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responses are different, they display the same locations of stop band. There are 3 stop
bands in the given frequency range (i.e. about 0-5580Hz, 8800-14880Hz and
20770-27410Hz). In the stop bands, the vibration amplitudes are much smaller than

those in the pass bands.

Displacements /m
Rotation angle /rad

0 05 1 15 2 25 3

Frequency f /Hz Frequency f /Hz

Figure 5.4 Frequency responses of four degrees of freedom.
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Figure 5.5 Variation of the transverse displacement
calculated by the SEM and FEM.

Fig. 5.5 shows the comparison between the frequency responses calculated by the
SEM and the FEM. For the FEM, the results are obtained using SHELL63 ANSYS
elements. This type of element is elastic quadrilateral shell element and is suitable for
the analysis of Kirchhoff plates. It contains 4 nodes and 6 DOFs at each node (3
displacements and 3 rotations). The ANSYS coarse mesh (0.004>0.004m?) and finer
mesh (0.002>0.002m?) are taken into account, that is, every unit cell contains 300 and

1200 elements, respectively. While for the SEM, the unit cell is divided into only 5
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spectral plate elements as shown in Fig. 5.3.

It can be seen that the three results coincide with each other well. Compared with
the results calculated by the coarse mesh, those calculated by the finer mesh are closer
to the SEM results, especially in high frequency ranges. Because the SEM acquires
the responses according to the solution of the governing equation, the result accuracy
of this method is high. For the FEM, in order to obtain more accurate solutions, more
elements are required and consequently it will consume more computation time, while

the SEM can save time due to its small element number.
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Figure 5.6 The vibration distributions of upper plate of the sandwich panel
with f = 500Hz for (a) displacement u, (b) displacement v (c) displacement w
and (d) rotation angle 6.



Fig. 5.6 shows the vibration distributions of the upper plate of the sandwich
panel with the frequency f = 500Hz. For the four DOFs, the vibrations are confined at
the left edge (near the vibration source), and they cannot propagate through the
sandwich panel with corrugated cores. The responses can be hardly detected at the

right edge. It means that this frequency is in the stop band.
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Figure 5.7 The vibration distributions of upper plate of the sandwich panel
with f = 20kHz for (a) displacement u, (b) displacement v (c) displacement w
and (d) rotation angle 6.

Fig. 5.7 displays the vibration distributions with the frequency f = 20kHz. It can

be seen that the vibration can propagate in the sandwich panel without attenuation.
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Obviously, this frequency is in the pass band. From Egs. (2.87), (2.60), and (2.72),
one can observe that the stationary wave mode functions of u, w and & in the y
direction are sin(kyy). In Figs. 5.7(a), (c) and (d), the strong vibration appears in the
middle parts (y = 0.02m), and the amplitudes equal to zero on the boundary (y = 0 and
y = 0.04m). The situation in Fig. 5.7(b) is opposite because the stationary wave mode

function of v is cos(k,y) as shown in Eq. (2.88).
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Figure 5.8 Comparison of frequency responses for
sandwich panels with different unit cell numbers.
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Figure 5.9 Frequency responses for sandwich
panels with different structural loss factors.

Fig. 5.8 displays the comparison of frequency responses for the sandwich panels
with 10 and 15 unit cells. Due to the same structural and material parameters of the

unit cells, the two structures have the same locations of stop band. Different unit cell
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numbers make the response amplitudes in the pass and stop bands changed. For the
structure with more unit cells, the responses drop more clearly inside the stop bands,
which means the waves in the stop bands propagate more hardly in the sandwich
panel with corrugated cores.

The frequency responses of sandwich panels with different structural loss factors
calculated by the SEM are shown in Fig. 5.9. The structural damping can be
considered by the complex Young’s modulus E(1+iy), where 7 is the structural loss
factor. From Fig. 5.9 it is seen that the structural damping has no influence on the
locations of stop bands, but has influences on the amplitudes in the pass bands. In the
resonant regions, the amplitudes are the largest for the structural loss factor =0. The
amplitudes become small with the increase of the structural damping, especially in

high frequency ranges.

Displacement w /m

Frequency f /Hz

Figure 5.10 Frequency responses of sandwich
panels with different materials.

The vibration band gap behaviors of sandwich panels with different material
properties are displayed in Figs. 5.10 and 5.11. Fig. 5.10 shows the responses
changing with the different materials of the whole structure. For the steel structure,
the response curve appears a little offset toward the right. This phenomenon become

more obvious in the high frequency ranges. The material properties of the whole

84



structure have light influences on the pass and stop band locations.
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Figure 5.11 Frequency responses of sandwich
panels with different core materials.
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Figure 5.12 Frequency responses for sandwich panels with
different plate thicknesses.

Fig. 5.11 shows the frequency responses of sandwich panels with the different
core materials. All of the upper and lower plates are aluminum. When the core
materials are cast iron and steel, obvious changes of the response are shown in the
figure. For example, in the given frequency range, two more stop bands appear, which
makes the stop bands wider. This band-gap property is useful in designing the
sandwich panels with superior vibration isolation properties.

Fig. 5.12 shows the different frequency responses for structures with different
plate thicknesses. From this figure, one can observe that the stop band locations and

the resonant frequencies change clearly for the different plate thicknesses. For the
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three sandwich panels, the first stop bands become wider with the increase of the plate
thickness. If the vibration isolation characteristics in the low frequency ranges are
focused, the influence of the plate thickness cannot be ignored. Moreover, for the
sandwich panel with thin plate thickness, narrower band gaps are observed. But for
the structure with thick plate thickness, fewer broad band gaps appear.

To summarize the above investigation, the effect of the structural and material
parameter on the band-gap property of the sandwich panels with corrugated cores is
displayed in Table 5.2, which can provide the general guideline for the structural

parameter selection.

Table 5.2 The effect of the structural and material parameter on the
band gap property, where 1 represents increasing, | represents
decreasing and — represents no change.

Stop band “width” Stop band “depth”

increasing cell number — 1

Increasing # — —
increasing the material
difference between the core 1 —
and the upper and lower plates

increasing the plate thickness 1 T
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Figure 5.13 Frequency responses for three styles of
sandwich panels with different corrugated cores.

For the three styles of sandwich panels with different corrugated cores as shown
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in Fig. 5.1, Fig. 5.13 shows the comparison of frequency responses. One can see that
the locations and numbers of the pass and stop bands are different because of the
different spectral element matrices. For the style 1l and Ill, there are 4 and 5 stop
bands, respectively, which are more than those for the style I. The frequencies in the
first stop bands become higher with the rigidity of the core structure increasing. In the
given frequency range, the style Il has the most stop bands, while the widths of the
stop bands are narrower than those of the other two structures. It shows that the

stronger the core rigidity is, the more the stop bands appear.

5.5 Conclusions

In this chapter, based on the Kirchhoff plate model, the SEM is used to study the
vibration band gap behaviors of the sandwich panels with corrugated cores. Compared
with the FEM, the SEM illustrates high accurate results with fewer elements. For the
sandwich panel consisting of much number of plates, the frequency responses can be
effectively obtained by the SEM.

Much analysis is applied to demonstrate the frequency pass and stop band
properties in the periodic distribution direction (x% direction in this work). The
vibrations in the stop bands propagate more hardly in the sandwich panel with more
unit cells. The structural damping has no influence on the locations of stop bands.

Moreover, different material and structure parameters also make the vibration
isolation ability changed. One can design sandwich panels with better band-gap
properties by properly selecting the core materials. The sandwich panel composed of
thicker plates appears wider range of the first stop band. The sandwich panel with
stronger core rigidity can provide more stop bands. In consideration of the vibration

isolation, the material and structure effects cannot be ignored.
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6 Vibration isolation by exploring bio-inspired structural

nonlinearity

Except the periodic structures, the nonlinear structures also possess beneficial
vibration isolation performance due to the high-static-low-dynamic stiffness
characteristic. In the chapters 6 and 7, static analysis, dynamic analysis and
experimental technique will be adopted for the comprehensive understanding of the
nonlinear mechanism. Due to the limitation of the SEM for the nonlinear system, the
mechanical analysis approach will be used in the dynamic modeling instead of the

SEM to study on the vibration isolation property.

(b)

Figure 6.1 (a) A grus japonensis, (b) schematic of its legs and (c) an asymmetric
structure inspired by the leg.

In this section, inspired by the limb structures of animals/insects in motion
vibration control, a bio-inspired limb-like structure (LLS) which can be considered as
an X-like shape structure is investigated for understanding and exploring its
advantageous nonlinear function in passive vibration isolation (Fig. 6.1). Legs of birds
can support the body and maintain very good stability no matter whether the bird is

moving or standing. Obviously, the displacement-force relationship of the legs is
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nonlinear. To imitate the legs, the body is considered as a mass, articulations as joints
and shin bones (tibia and femur) as rods. One DOF of the bio-inspired LLS system is
shown in Fig. 6.1(c). The bio-inspired LLS consists of asymmetric articulations (of
different rod lengths). The horizontal and vertical springs of different linear stiffness

are the engineering realization of muscles and tendon.

6.1 Bio-inspired limb-like structure

Figure 6.2 The bio-inspired structure in modeling (a) before deformation, (b) after
deformation and (c) a comparison between the two states.

Fig. 6.2(a) shows the n-layer bio-inspired LLS with unequal length L; and L.
The initial angles are #; and 6,. In this study, it is supposed that L, is not smaller than
L;, and thus L,/L;>1 and 6:>6,. Four rods and four joints are in each layer and their
mass is not considered in the modeling since the supporting mass can be much larger
than the rod/joint mass. Two linear springs, ky in the horizontal direction and k, in the
vertical direction, are used in the bottom layer (as passive muscles). It should be noted
that, when L,=L; and k, =0, this is a special case discussed in our preliminary work
[114, 115]. Fig. 6.2(b,c) shows the structure after deformation and corresponding

parameters. From the geometrical relationship, it can be obtained
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: y
sin(@,) + >
L, sin(&)) o

tan(0, + ¢,) = Toos@) 6.1)
L,sin(8,)+ -

tan(6, + ¢,) = C COS(HZ)_ZXZ‘ , (6.2)

L2 = (Lysin(@) + 20" + (L 00s(6) ~X)° (6.3)

Lg = (L,sin(6,) + Zyn)2 +(L, COS(¢92)—X2)2, (6.4)

where § is the variable in the vertical direction. In the static study y=y. In the
dynamic study, there is a base excitation z and y is setasy=y-z. x; and x, are the
corresponding variable in the horizontal direction, and ¢; and ¢, are the corresponding
variables of angles. The relationships between the rod length and the angle are
Lisin(61) = Lysin(@2) and Lisin(6i+¢1) = Lasin(@a+¢q). (6.5)

From Eqgs. (6.1) —(6.4), @1, 2, X1 and X, can be expressed as

L sin(6,)+ -

@, = arctan 1 -6, (6.6)
L, cos(6,) — X,
L, sin(6,) + -

@, = arctan 2n | _g,, (6.7)
L, cos(8,) — X,

X, = Ly[cos(6,) —cos(6; + )] = L, cos(6) —\/ L —(L,sin(6) +2—9n)2 ., (6.8

X, = L,[cos(8,) —cos(8, + ¢,)| = L, cos(ez)—\/ |2 —(Lzsin(6>2)+2—9n)2 . (6.9)
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6.2 Mechanic modeling

The bio-inspired LLS system loaded by a static force is shown in Fig. 6.3(a) and
the stress states of the Joint 1, Joint 2 and Joint 3 are also displayed in Figs. 6.3(b)—(d),
where f; and f, are the internal forces along the rods. Based on Fig. 6.3, three

equilibrium equations at the joints can be established as,

k,x=2f cos(6,+¢), (6.10)

f = f,sin(0,+ @)+ f,sin(6, +@,) +k, 2, (6.11)
n

k,x=2f,cos(6, +¢,), (6.12)

where X =X1+X,. Substituting Egs. (6.10) and (6.12) into Eq. (6.11), one can obtain

f =k—2hX[tan(01+¢1)+tan(92 o))k, Y (6.13)
n

f
f i f
Joint 1 Joint3 | x ! Joint 2 2 kn X
59 Joint 1 ;
: f, f, : Joint 3
fl k X
“n
(@) (b) (c) (d)

Figure 6.3 (a) The bio-inspired mechanism loaded by a static force and
the stress states at (b) Joint 1, (c) Joint 2 and (d) Joint 3.

Substituting Egs. (6.1), (6.2), (6.8) and (6.9) into Eq. (6.13), f can be expressed

as

f =—"|L cos(d,)+L, cos(@z)—\/Li —(L, sin(é’l)+%)2 —\/Li —(Lzsin(6’2)+2—{])2

k
. y . y
L 0.)+—= L 0,)+—=
, Sin( l)+2n , Sin( 2)+2n

2
{ + +k

v

Y.
2 - y 2 2 H y 2 n
\/Ll_(LlSIn(Hl)—i_zn) \/Lz_(l—z Sln(92)+%)
(6.14)
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The displacement range of each joint in the bio-inspired LLS should be noticed.
The compression range of y is from —2nL;sind; to 0 and the extension range is from 0
to 2nL;(1-siné:) corresponding to the assembly angle 6, changing from 0 to 90°. Due
to Ljsin(f1) = Losin(6;), the rod length L, or the angle 6, should be changed
accordingly with L; and 6, for designing the working range of y.

Eq. (6.14) can be written in the dimensionless form as

& o e R e

1 1
+ +a

L )

where the dimensionless parameters here are listed in Table 6.1. Obviously, the

S| <

working range of the dimensionless displacement Y is from —2ny to 2n(1—y).

Table 6.1 The dimensionless variables in Eq. (6.15).

Dimensionless parameters Values
F f/(knLy1)
Dimensionless displacement Y y/Ly

Vfertical to horizontal
spring Stiffness ratio a Ku/kn

Rod-length ratio g Lo/l

Initial assembly angle
parameter y sin(6+)

yIB sin(62)

From Eq. (6.15), one can obtain the stiffness as follows,
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Figure 6.4 Nonlinear force and stiffness with different displacement Y of the
bio-inspired structure when n=3, =2 and y=sin(z/4) ((a) and (b) non-dimensional

force, and (c) and (d) non-dimensional s

tiffness).

Fig. 6.4 shows the dimensionless force F and dimensionless stiffness 4 vary

with the dimensionless displacement Y when n=3, =2 and y=sin(z/4). Figs. 6.4(a)

and (c) are the results of the structure in a compressed state with negative Y, while

Figs. 6.4(b) and (d) in an extension state with positive Y. The dimensionless stiffness
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Is increasing from the negative to positive with the increase of Y from the
compression to extension. In compression, the stiffness is decreasing with the
compression amount |Y| to zero and until to a negative value. This demonstrates a very
amazing nonlinear stiffness property which is greatly beneficial to the design of
vibration isolation.

For different stiffness ratio « (=k./ky), the structural stiffness can be very different.
For a=0.2, the structure possesses positive stiffness in the whole working range. For
a=0and a=0.1, negative stiffness occurs during compression.

The relationship between the structural stiffness and the angular displacement ¢;
or ¢, can also be studied. The compression range of the angle ¢ is from —6; to 0 and
the extension is from 0 to (z/2—6,). The relationship between the displacement Y and

the angle ¢, Is

Y = 2n[sin(6, + ¢,) —sin(8)]. (6.17)
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Figure 6.5 Nonlinear force and stiffness with different angle ¢, of the bio-inspired
structure when n=3, =2 and y=sin(z/4) ((a) and (b) non-dimensional force, and (c) and
(d) non-dimensional stiffness).
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The dimensionless force and stiffness can be expressed by ¢; as

F =%sin(el +0)|cos (@) —cos(@, + @) ++ B2 —sin*(8,) — B —sin*(6, +(p1)]

1 1 - -
[cos(@l+¢l) + \/ﬂz _Sinz(el+¢1)}+2a[sln(91+¢1)sm(gl)]_

(6.18)

S_F —~leos @) ~cos(6, + ) + 57 —sin’ (@) - 5 ~sin’(@, o))
%

1

1 cos(6, +¢,) Sin2(91 +¢,)c0s(6, + ¢1)
2 + - * 7
cos“ (6, + ¢,) \/ﬂz —sin?(6,+¢,) [ﬂz _sin2(¢91+(pl)]7

1, cos(6, +¢,) ! 1
il 6,+¢,) 1
P Hp)[ +\/ﬁz—sinz(elwl)][ms(@ﬁ%)+\/ﬂz—Si”Z(elwl)]

+2acos(6,+¢,).

(6.19)

The results are shown in Fig. 6.5. Similar conclusions for the angle ¢; to the
displacement Y can be seen. When « =0 and « =0.1, the negative and zero stiffness
appear. The appearance of negative stiffness is helpful to design zero or quasi-zero
stiffness systems for practical application, but may also incur unstable equilibrium.
All these can be well designed with structural parameters of the proposed bio-inspired
LLS including rod length (l;), assembly angle (61), layer number (n), vertical to

horizontal spring-stiffness ratio («), and asymmetric rod-length ratio (5), etc.

6.3 Parameter influence

To obtain the possible minimum point in the stiffness curve, the following

equation can be solved

d’F
dy?

0. (6.20)

It gives the solution Y =-2ny which is the minimum point of the stiffness curve 4.
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The lowest working range in compression for Y is Y = —2ny which is equal to Y. It
means that the stiffness of the system continues to decrease with the increasing
compression of the structure in the whole working range (see Fig. 6.6).

Substituting Ye into - gives the smallest stiffness of the system (could be

negative or zero). Therefore, for a positive-only stiffness within the whole working

range in compression, the parameters «, £ and y (see definitions in Table 6.1) should

satisfy the following inequality,

%(\/1—;/2 B - —1—,8)(1+%j+2a20. (6.21)

In the ineqality (6.21), note that f= L,/L; >1, a= ki/kn >0 and 0<% <1(y = sin 6y).

Otherwise, the system will possess negative and zero stiffness as well at different

equilibrium points.

02 )
E working range
L | ------ non-working range
© 01
£ o
(2]
-6 0

Displacement Y

Figure 6.6 Working and non-working range of the bio-inspired
structure when n=3, a=0.1, #=2 and y =sin(z/4).

6.3.1 Influence of the initial angle y (i.e., sin 6,)

By solving Ineq. (6.21), y has the following form,

220 B (B-2a+1)(~2aB+ B+1)(B* —2aB+2B+1)
- B —daf +3p° —daf+38+1 ’

(6.22)

—/C

where y. is the critical value for existing negative stiffness.

Fig. 6.7 shows the distribution of y. with different spring-stiffness ratio a and
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rod-length ratio f. For the extreme case with y =1, the inequality (6.21) implies that
« z(1+1/ﬂ)(1+ﬂ—\m)/4 . Therefore, when « 2(1+1/ﬂ)(1+ﬂ—\/ﬁ)/4 . the
system has positive-only stiffness for any y. When a.=0, y.=0 implying no initial angle
to achieve a positive-only stiffness for the whole working range. However, a critical y.
exists wheno<a < (1+1/ﬂ)(g.+ﬂ—m)/4 implying simultaneous existence of negative,

zero and positive stiffness.
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Figure 6.8 Nonlinear force and stiffness of the bio-inspired structure with different y when n=3, «
=0.1and g =2 for (a) and (b) non-dimensional force, and (c) and (d) non-dimensional stiffness.
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Fig. 6.8 shows the dimensionless force and stiffness with different y when n=3, a
=0.1 and g =2. It can be seen that when y =y, the bio-inspired structure will have the
unique zero stiffness at the lower limit of Y in compression, and the stiffness is always

positive in the whole working range. For y >y, (for example, y=0.7), the stiffness is

zero when Y =Y (g—$|Y=Y0 =0), negative when —2ny <Y <Y, and positive when Y,<Y <

2n(1-y). For y <y. (for example, y=0.4), the stiffness is always positive in the whole
working range without zero stiffness.

As an example to design the original angle ¢; based on Ineq. (6.22) and Fig. 6.7,
for example, given oo=0.2 and £ =2, it can be obtained that y.=0.7804 as shown in
Fig. 6.9. If the initial angle 6; =0.8953 (i.e., 51.3°), the system can achieve a pure
positive stiffness system with a unique zero stiffness point. That is to say, if 6; =
0.8953, the mechanism possesses zero stiffness at exactly Yo=-—2ny. (the lower limit

of the working range) and the structure possesses positive stiffness for — 2ny.<Y <

2n(1-yc).

Figure 6.9 y. for different g when o = 0.2.

6.3.2 Influence of the spring-stiffness ratio « (i.e., k,/k;)

By solving Ineg. (6.21), a critical o can also be obtained as

aZaC:i(ﬂ—Jl—yz—\/ﬂz—y2+1)(ﬂ+1). (6.23)
Fig. 6.10 shows the distribution of o with different initial assembly angle y and
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rod-length ratio g. It can be seen that a. is becoming smaller as f increases and/or y
decreases. The critical value a. = 0 implies that the structure stiffness is always
positive and has no negative stiffness. However, larger o implies that the structure
potentially has negative and zero stiffness with appropriate parameters. Based on Ineq.
(6.23) and Fig. 6.10, a negative-stiffness-free system can be designed (see Fig. 6.11)

when a > ac.
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Figure 6.11 Nonlinear force and stiffness of the
bio-inspired structure with different & when n=3, 5 =2 and
y = sin(z/4) for (a) non-dimensional force, and (b)
non-dimensional stiffness.
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6.3.3 Influence of the rod-length ratio g (i.e., L,/L,)
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Figure 6.12 Nonlinear force and stiffness of the bio-inspired structure with different 8
when n=3, a=0.1583 and y =sin(z/4) for (a) and (b) non-dimensional force, and (c)
and (d) non-dimensional stiffness.

The parameter £ can also significantly change the stiffness property of the
structure as revealed by (6.21). Fig. 6.12 shows the influence of the rod-length ratio
on the stiffness of the bio-inspired LLS for n=3, a=0.1583 and y =sin (z/4). It can be
seen that, when the rod-length ratio g is larger than (e.g., # =3 in Fig. 6.12), the
structure possesses only positive stiffness on the whole working range; when £ is
smaller (e.g., f =1), the structure possesses zero stiffness when Y =Y, negative

stiffness when —2ny <Y <Y, and positive stiffness when Yo<Y <2n(1-vy).

6.3.4 Influence of the layer number n

Based on Ineq. (6.21), the layer number n has no effect on the existence of

negative stiffness. Fig. 6.13 shows the dimensionless force and stiffness of the
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bio-inspired structure with different n. It can be seen that the structure have the same
largest loading force in compression which is close to F=—-0.1 no matter what the
layer number is. This implies that the structure layer number n has no effect on the
loading capacity. However, for the same loading capacity, a larger layer number can

increase the working range Y obviously since —2ny <Y <2n(1-y).
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Figure 6.13 Nonlinear force and stiffness of the bio-inspired structure with different number
of layers n when a=0, # =2 and y=sin(z/4) for (a) and (b) non-dimensional force, and (c)
and (d) non-dimensional stiffness.

6.4 Loading capacity

A loading capacity is very important for any isolation system. If the parameters
satisfy Ineq. (6.21), the bio-inspired structure possesses a positive-only stiffness.
Based on this, the structure can support the largest compression loading is
—2kyL1sin(61) when 6, is at its lower limit —¢; (see Eq. (6.13)) and meanwhile y is at
its lower limit —2nL;siné; (see Eq. (6.14)). Increasing the spring stiffness in the

vertical direction ky, the length of rod L; and the angle ¢, are also effective to increase
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the working range in compression and thus potentially increase the loading capacity.
If the structural parameters do not satisfy Ineq. (6.21), the system will have

negative stiffness when Y <Y, as discussed in Figs. 6.8 and 6.12. One can obtain the

dimensionless value of Y, by solvingg—s =0or obtain the real displacement value y, by

soIving%:o. When Li=L,, the bio-inspired LLS is symmetric, the compression

loading capacity denoted by f, can be easily obtained as

f, = 2L1[kh cos(6,) - (k, — kv)(MﬂJl_ [ K, 003(91)]3 ( ki COS(91)J3 _2k Lsin(d))

I(h_kv I(h_kv I(h_kv
(6.24)

and it occurs at the position yO:—ZnI_l{sin@l—\/l—[kh cos&ll(kh—kv)]%}. It can be seen

that several structural parameters including the stiffness of springs k, and k, the rod
length L; and the initial angle 6, have effect on the loading capacity, which can be
employed in design for fulfilling practical requirements.

In extension, the largest load could be infinity when y is at its upper limit

2nL1(1-sindy).

6.5 Equation of motion

In the dynamic analysis, the air damping of the mass M and the rotational friction
of each joint are considered. Since the mass of rods is not considered in the modeling,
the material or size of the rods can be properly designed to minimize the potential
influence. For example, new-type lightweight materials such as lattice materials or
carbon fiber can be used.

The kinetic energy can be written as
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T= % My?. (6.25)

Considering the air damping and the friction of each connecting joint, the virtual

work is
SW = —k, x5 —k, %5% —¢,§ —c,n 95, (6.26)

where c; is the air damping coefficient, c, is the rotational fiction coefficient, ny=

3n+1 is the number of joints and ¢ = @1t¢,. It should be noticed that 4¢ is a

summation of the angular velocity in one layer. For Joint 1 as shown in Fig. 6.2, the

angular velocity is2¢,, and the angular velocities for the Joint 2, Joint 3 and Joint 4
are ¢ +¢,, 2¢,and ¢, +¢,, respectively.

Using the Hamilton principle, the dynamic equation can be obtained as

~ A 1 A A A\ A .
MY+ fl(y)+F k,9+cy+cn f,(9)y=-M2, (6.27)
where

. dx dy
f(9) =k x 2D 6.28
D =kx g g (629

2

. do

£.(9) = . 6.29
() (dyJ (6.29)

Using the Taylor series expanding for f,(y) and f,(y), it can be obtained that
F(=69+&9° +&5° +&49 (6.30)
(D=6 +aJ+59 +a:9 +6. 9", (6.31)
where & =120)/j! (j=1, 2, 3, 4), they have relationship with k, L1, L2, 61, 62 and n.
g, =f2017j (j=0,1,...,4), have relationship with Ly, L, 61, 6> and n. The ¢ and ¢

are listed in Appendix B.

The comparisons of the original functions and the Taylor series expansions are
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displayed in Fig. 6.14 when L;=0.2m, L,=0.3m, ; =x#/4, n=3 and k, =1000N/m. It
can be seen that they are in a good agreement. Moreover, based on the geometric
nonlinearity of the bio-inspired mechanism, the curves demonstrate a weak nonlinear

property although both the spring and the damping are considered to be linear.
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Figure 6.14 Comparisons between the original terms and
Taylor-expansion for (a) f; and (b) f,.

Substituting Egs. (6.30) and (6.31) into Eq. (6.27), one can obtain

~n 1 A A A A A A A A A A .
M ¥ +( §1+Fkv> J+&ET+EP+EY +ey+en(g+aY+6Y +6° +6,9) y=-M?
(6.32)

The dimensionless equation of motion can be written as:
§'+ 0’9+ 0,97+ Py + P+ 298 + 89+ 5,97 +5,9°+5,9°)=—2". (6:33)

where (e)=d(e)/dt’ and t'=.,/k,/M t. The other parameters are listed in Appendix B.
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6.6 Equivalent stiffness

Eqg. (6.33) is a nonlinear function and from which the equivalent linear
coefficient»®and nonlinear coefficients p,, ps and ps can be obtained. To study the
resonant frequency of the bio-inspired structure, the linear coefficient »*is a dominant

factor and it can be expressed as

. N E=af e 63
T’ @B -7 o

For a simple case, when the length of rods L;=L, and the vertical spring is not used in

the system, that is =1 and o= 0, the linear coefficient w = tané/n.
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Figure 6.15 Distribution of «»* for different y and # when n=3 and a=0.2.

The resonant frequency should be reduced to obtain a better vibration isolation
performance. Based on Eq. (6.34), it can be seen that increasing the layer number n
and decreasing the spring-stiffness ratio o can effectively reduce the linear
coefficient »®. It should be noticed that « should satisfy o> o, as shown in Ineq. (6.23)
if the negative stiffness of the system is not desired.

The effect of the assembly angle index y and the rod-length ratio f on the linear
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coefficientw?is displayed in Fig. 6.15 when n=3 and « =0.2. It can be seen that a
bigger f or a smaller y results in a reduced linear resonance frequency »”. The linear
coefficient »®varies with g more obviously when y>0.5. Because a small y can bring
a small working range of the system, y cannot be designed too much small. The
loading capacity and the equivalent stiffness of the system should be considered

together in the design of the structural parameter y.

6.7 Vibration isolation performance

Using the harmonic balance method (HBM) and considering the base excitation
as =120 cos (wot)= zo CoSs (") where ©@=w,/M/k, , the solution of Eq. (6.33) can be
determined as the second order harmonic response for a higher accuracy, which can
be written as,

Y =a,+a,cos(t'+9)+a,cos(2t'+9,), (6.35)
where ay is the bias term, a; and 3, are the first order harmonic amplitude and phase,
ay and 9, are the second order harmonic amplitude and phase.

Substituting Eq. (6.35) into Eq. (6.33), the unknown parameters (i.e. ao, a1, az, %
and &) can be obtained by solving a set of algebraic equation for each Q with the
standard HBM.

In the dynamic study, y is set asy=y-z. The vibration solution of the mass
isy=y+z. The displacement transmissibility is the ratio of the vector norm of the

mass displacement with that of the base excitation. In this calculation, the first order
harmonic solution is used. So the displacement transmissibility T4 has the following

form:

T |a, cos(Qt + ) + 2, cos O’
o |z, cos Ot

\/af +2¢ +2a,2,c08(9)

. (6.36)
12|
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where |e| means the norm of the vector.

By calculating the displacement transmissibility in Eq. (6.36), the vibration
isolation function of the bio-inspired mechanism can be evaluated and discussed. In
the following analysis, M =10kg, 61 = #/4, the amplitude of the base excitation zp =

0.05m, ¢; =5Ns/m, ¢, = 1INs/m and n = 3 without further specification.
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Figure 6.16 The isolation performance of the bio-inspired
structure when the length L; and L, changes simultaneously. (a)
The displacement transmissibility and (b) the offset.

Fig. 6.16 shows the displacement transmissibility Tq and the offset a; with
different L and L, as k,=4kN/m and k, = 1kN/m. It can be seen that the displacement
transmissibility around the resonant frequency obviously larger than that at other
frequencies. To improve the low frequency isolation performance of the bio-inspired
structure, two aspects can be considered. The first one is to decrease the value of
resonant frequency and the second one is to reduce the amplitude of the displacement
transmissibility at the resonant frequency. It can be seen that decreasing the length L;

and L, simultaneously can effectively reduce the amplitude of both the displacement
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transmissibility and the offset, however without obvious increasing high frequency
transmissibility. This implies a typical nonlinear damping effect [13 —17], which is
increased with the decrease of the L; and L,. The value of resonant frequency is not

changed in this case.
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Figure 6.17 The isolation performance of the bio-inspired structure with
different L,. (a) The displacement transmissibility and (b) the offset.
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Figure 6.18 The isolation performance of the bio-inspired mechanism when the
spring stiffness k, and k, changes simultaneously. (a) The displacement
transmissibility and (b) the offset. The unit of k, and k;, is KN/m.
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Fig. 6.17 shows the isolation performance of the bio-inspired structure with
different L, when L;=0.4m to study the effect of the rod-length ratio £ (i.e., Lo/L;).
The other parameters are the same as those in Fig. 6.16. The system becomes
asymmetric with the increase of L,. In Fig. 6.17, the increasing length of rods brings
the increasing amplitudes, which is the same as the conclusion in Fig. 6.16. The
resonant frequency becomes small with the increasing L,, which means that the
resonant frequency is decreasing with the increasing rod-length ratio B, which is
consistent with the conclusion in Fig. 6.15.

Fig. 6.18 displays the isolation performance of the bio-inspired structure with
L;=0.4m and L,=0.6m when the spring stiffness k, and k, changes simultaneously. It
can be seen that the resonant frequency does not change but a smaller stiffness of the
springs results in the reduced amplitude at the resonant frequency, implying an

increasing nonlinear damping effect.
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Figure 6.19 The isolation performance of the bio-inspired structure
with different stiffness ratio «. (a) The displacement transmissibility
and (b) the offset. The unit of k, and k;, is KN/m.
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Fig. 6.19 shows the displacement transmissibility and the offset with the
different stiffness ratio of springs k, and k. The increase of the spring stiffness k, or ki
can increase the peak value of the displacement transmissibility. The decrease of the
spring-stiffness ratio « (i.e., ki/ky) can obvious decrease the resonant frequency, which

is consistent with the conclusion in Eq. (6.34).
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Figure 6.20 The isolation performance of the bio-inspired
structure with different numbers of layer. (a) The
displacement transmissibility and (b) the offset.

The isolation performance of the bio-inspired structure with different layer
number n is shown in Fig. 6.20 when L;= 0.4m, L,= 0.6m, k, = 2kN/m and k, =
1kN/m. It can be seen that the increase of n is obviously helpful for improvement of
the vibration isolation performance of the bio-inspired structure. It not only makes
the resonant frequency smaller, but also makes the peak amplitude of the
displacement transmissibility and the offset at the resonant frequency both be
decreased.

Fig. 6.21 displays the displacement transmissibility and the offset with different
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original angle 6; when L;=0.4m, L,=0.6m, k, =2kN/m, k, =1kN/m and n=4. It can
be seen that the vibration isolation performance can be obviously improved by
decreasing y (or 61). The resonant frequency is decreased and the peak amplitude is

also reduced.
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Figure 6.21 The isolation performance of the bio-inspired
structure with different original angle ;. (a) The displacement
transmissibility and (b) the offset.

6.8 Comparisons, Discussions and Experiments

6.8.1 Compared with existing benchmark QZS isolators

In this section the displacement transmissibility of the bio-inspired limb-like
structure and two recently-developed QZS isolators, referred to as QZS isolator I and
I1, are compared. In the comparison, the loading mass and the stiffness of the linear
spring are the same for the three isolators. The stability, the effective frequency range
of vibration isolation and the working displacement range is the study objective in this
case. It will be seen that the bio-inspired LLS has better stability, bigger effective

frequency range of vibration isolation and preferable flexibility in the working range
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design.

The QZS isolator | is composed by three springs borrowed from [21-23]. The
equation of motion of the system can be approximated by Duffing’s equation without
the linear term. When the QZS isolator is under the base excitation, it has the
dimensionless equation of motion as:

9" +28" + 1% =0z, cos(Q') (6.37)
where the dimensionless variables are defined in Table 6.2.

Table 6.2 The dimensionless variables of QZS isolator I.

Dimensionless parameters Values
wn k/M

t' o,t

‘ c/(2Maw,)
u kn/k;

Q wolon

The QZS isolator 11 is an isolator developed by parallel Euler buckled beams as a
negative stiffness corrector [31]. The equation of motion of the QZS isolator can be

expressed as:

My + ¢y + KLAYy® = —MZ (6.38)
where Kk is the stiffness of the linear vertical spring, ¢ is the damping of the viscous
damper and L is the length of beams before buckling. The parameter 1 has the

following form:

2 N 70y . (6.39)
2y x[7°qy — 4y +12] ){[ﬂ'zaoz -4y +4) _7zc~1o[7z'zqo2 —4y+4]

where y=cos6 and 6 represents the inclined angle. g, =q,/Land qo is the initial small

lateral deflection which is called “imperfection” of beams [31]. When the two terms
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are chosen, the coefficient 4 is a constant.

With the dimensionless variables defined as Table 6.3, the dimensionless

equation is given by
¥ +28) + A9° =%z, cos(Q') (6.40)

where (o) =d(e)/dt’.

Table 6.3 The dimensionless variables of QZS isolator II.

Dimensionless parameters Value

wn k/iM

t' o,t

& c/2Mw,)
Q wolon

Table 6.4 The parameter value of the QZS isolator |
using in Sec. 6.8.1.

Symbol Value
M (kg) 10

ki (N/m) 800
kn(N/m) 1400
¢ (Ns/m) 5

Zo 0.05

The parameters in the calculation are listed in Tables 6.4, 6.5 and 6.6. In the
comparison, the loading mass is10kg which is the same for the QZS isolator I, QZS
isolator 11 and the bio-inspired LLS. Moreover, the stiffness of the linear spring used
in the three isolators is 800N/m. The damping coefficient of the damper using in the
QZS isolator I and 11 is 5 Ns/m. For the bio-inspired LLS, there is no damper adopted.
The coefficient of the air damping and the rotational fiction in the proposed structure

can be much smaller than that of the dampers in the QZS isolators, which are set to
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INs/m.

Table 6.5 The parameter value of the QZS isolator 1l
using in Sec. 6.8.1

Symbol Value
M (kg) 10

k (N/m) 800

¢ (Ns/m) 5

6 (rad) 0.35
0o 0.026
Zo 0.05

The displacement transmissibility of the QZS isolator I, QZS isolator Il and the
bio-inspired LLS are displayed in Fig. 6.22. Compared with the QZS isolators, the
proposed structure has the following advantages. Firstly, the bio-inspired LLS is
superior to the QZS isolator in terms of stability. From Fig. 6.22, it can be seen that
the multi-steady states appear with the QZS isolators. The solutions within the
jump-up and jump-down frequencies are not unique which can result in instability and
become highly dangerous in applications. By contrast, the proposed structure
demonstrates only very weakly nonlinear dynamics with lower resonant frequency
and peak value and without bifurcation, chaos and multi-steady state phenomena.
Secondly, the effective frequency range of vibration isolation with the bio-inspired
structure is much broader. The QZS isolators can only safely isolate vibration when
the vibration frequency Qs larger than the jump frequency Q4 as shown in Fig. 6.22.
Last but not least, the bio-inspired structure is much easier to assembly and implement
in practice than others. For the QZS isolators, the parameters should be chosen

carefully to avoid the unstable region, and the initial imperfection or unbalance of the
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beams in the QZS isolators | or Il are also difficult to avoid. Thirdly, the working
displacement range of the bio-inspired LLS can be flexibly adjusted by changing the
number of layers, which is quite difficult for the QZS isolators | and Il. Moreover, the
QZS isolator Il discussed in [31] can achieve the quasi-zero stiffness without
sacrificing loading capacity. However, for the QZS isolator I, the loading capacity and

isolation performance are difficult to be compromised as discussed in [35].

Table 6.6 The parameter value of the bio-inspired LLS
using in Sec.6.8.1.

Symbol Value

M (kg) 10

ky (N/m) 40

kn (N/m) 800

1 (Ns/m) 1

2 (Ns/m) 1

L1 (m) 0.3

Lz (M) 15

61 (rad) 0.35

n 3

Z0 0.05

10 | ; —

=
—-—- QZS isolator |
—— QZS isolator Il
Qq 1=~~~ Bio-inspired LLS
0.6 U.hB

Figure 6.22 Comparison of the vibration isolation performance
of the Bio-inspired LLS and the other QZS isolators
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6.8.2 A discussion about parameter selection

In this section, a brief outline is given to summarize how to design the structural
parameters of the bio-inspired structure in practice (e.g., if the mass M is given).
Based on the static and dynamic analyses, the general influential trend of each critical
structural parameter on the performance of the bio-inspired LLS is summarized in
Table 6.7 and Table 6.8. Aiming to make the system possess a stable equilibrium and
an excellent vibration isolation performance, three key issues should be considered.
Firstly, the mass weight should be in the range of the loading capacity of the structure.
Secondly, the negative stiffness or critical negative stiffness point of the system
should be avoided to reach for guaranteeing the overall stability of the structure.
Finally, the resonant frequency of the system should be as low as possible (in most
cases). The general guideline for the structural parameter selection is given as follows:
(1) As discussed in Section 6.3, if the inequality Eq. (6.21) holds, the structure has

only positive stiffness, and thus the maximum loading capacity of the bio-inspired

mechanism is 2k,L;sin(6,); if the inequality (6.21) does not hold, the maximum

loading capacity is determined by the position of the zero-stiffness point, i.e.,

|y-Yyo|. For the simple case with L;=L,, the loading capacity is given by Eq. (6.24).

Considering the discussions in Figs. 6.16 and 6.18, L; and k, should not be

designed too larger to avoid a larger resonance peak.

(2) The structure can provide zero stiffness and negative stiffness dependent on the
parameter selection. The negative stiffness of the structure can be employed
independently to create zero stiffness, together with other existing systems. To
avoid the negative stiffness within the structure, the parameter «, f and y should
satisfy inequality (6.21) ((6.22) or (6.23)).

(3) A larger stiffness ratio « will cause a larger resonant peak as shown in Eq. (6.34).
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Achieving a larger y. with a smaller a (larger kp) could be the best way to improve

the loading capacity and compression working range. From Fig. 6.7 it can be seen
that when « is a little less than (1+1/ﬁ)‘;+ﬂ—,/ﬁ2—1)/4, the larger y. can be

obtained.
(4) The larger g (or L) can result in a smaller resonant frequency as shown in Fig.

6.17. The stiffness of the horizontal spring k, can be designed to make the
stiffness ratio « a little less than (1+1//3)(1+,3—,/ﬁ2 —1)/4to avoid negative stiffness

point at a higher position ( and thus to achieve a larger y. i.e., a working range).
(5) The layer number n can be designed as larger as possible to achieve a smaller
resonace frequency and larger working range in comparison, as shown in Fig.

6.13 and Fig. 6.20.

Table 6.7 The effect of the structural parameter on the working range
and the loading capacity, where 1 represents increasing, | represents
decreasing and — represents no change.

Working range Loading capacity
compressed/tensional compressed
increasing L A 1
increasing 6, A 1
increasing ky — 1
increasing n A —

It can be seen that the bio-inspired structure can be well designed with several
structural parameters to achieve good vibration isolation performance, high loading
capacity, and large displacement motion, without the stability problem. For example,
if one wants to increase the loading capacity, the length of rods, the initial angle and
the stiffness of springs should be increased; if one wants to increase the compression
working range, increasing the length of rods, the initial angle and the number of layers
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is helpful; if one wants to reduce the resonant frequency, increasing the length ration f
and the number of layer, and reducing the stiffness ratio « and the initial angle can be
profitable; and if one wants to avoid the structure negative stiffness, one can increase
the stiffness ratio a and decrease the initial angle and then the system will be more

stable.

Table 6.8 The effect of the structural parameter on resonant frequency and the
amplitudes at the resonant frequency.

Amplitude at resonant

Resonant frequency
frequency

L; and L, increase o 1
simultaneously

kn and ky increase L 1
simultaneously

increasing o (ki/ky) 1 1 (for the same k)
increasing f (Lo/ L;) ! 1 (for the same L;)
increasing y  (sinéy) 1 1
increasing n ! 1

6.8.3 Experimental results and discussions

Supporting bar

) | Load mass
Acceleration sensor | ———————8&& " pgegring platform
T

=R
Joint

'Y

Rods

Horizontal spring
Base
Excitation platform

Acceleration sensor 11

Figure 6.23 The experiment prototype of the bio-inspired LLS of
asymmetric structures

In this section, the displacement transmissibility of the bio-inspired LLS, the

symmetrical isolator and the traditional mass-spring system is compared by the
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experimental method. In the comparison, the loading mass and the stiffness of the
spring are the same for the three structures. Based on the result from the random
excitation experiment, the resonant frequency will be compared and discussed. The
objective of the experiment is to prove that the bio-inspired LLS has better
performance of vibration isolation due to its structural configuration.

Fig. 6.23 shows the experimental prototype of the bio-inspired LLS with an
asymmetric structure. In this prototype, a supporting bar is fixed on the base, which is
used to guide the vertical motion of the load mass through a sliding bearing. The base
of the LLS is placed on an excitation platform with four sliding bars vertically at each
corner. In this way, the prototype can be considered as a one DOF system vibrating in
the vertical direction.

The parameters in the prototype are: the layer number n=2, the stiffness of the
horizontal spring k,=720N/m, the rod length L;=0.1m and L,=0.2m, the material of
the rods is aluminum with density 2750kg/m?, the initial angle 6,=0.67rad, the load
mass on the bearing platform is 0.12kg. The total mass M =0.55kg including the load
mass, the mass of bearing platform, the mass of rods and joints, the mass of sensor
attached on the bearing platform and the mass of the accessories in the mechanism.
The normalized parameters are: the spring-stiffness ratio =0 (sine no vertical spring
is used k,=0), the rod-length ratio f=2(=L,/L;) and the initial angle y=0.62 radian.

Based on Eq. (6.32), the natural frequency of the system can be calculated as:

2 2 2 .2 2
0, = |7 Ja ”;J(f 714 % _1010radis =160Hz.  (6.41)
My4an®  @=y)B ~7) n

Considering the equivalent damping ratio of the system, which is estimated
experimentally as around 0.36, the resonance frequency can thus be estimated by

regarding as an equivalent spring-mass-damper system, which is given by 1.37 Hz.
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A random excitation in the vertical direction is applied to the base of the
structure. The vibration signal of the bearing platform and the base can be obtained by
the acceleration sensor | and Il (see Fig 6.23), respectively. The results are shown in

Fig. 6.24.

Acceleration (m/s 2)
Transmissibility (dB)

@) Time (s) (b) Frequency (Hz)

Figure 6.24 (a) Platform response and base excitation in the time domain for random
excitation and (b) displacement transmissibility of the bio-inspired LLS system.

Fig. 6.24(a) shows that the amplitude of the platform response is approximately
up to 10% of that of the base excitation. Fig. 6.24(b) shows the displacement
transmissibility of the experimental prototype. The peak of the transmissibility occurs
at about 1.32 Hz which is much close to the theoretical computation above. When the
frequency is bigger than about 2.64Hz the transmissibility is smaller than 0dB. The
bio-inspired LLS presents a very good vibration isolation performance in a broad
band of frequency domain.

For comparisons, the other two experimental prototypes including a symmetrical
LLS and a traditional mass-spring system are designed as shown in Fig. 6.25.

The length of the rods L;=L,=0.1m for the symmetrical isolator (i.e., the
rod-length ratio g = 1), the other parameters are the same as those in the
unsymmetrical LLS prototype. The theoretical natural frequency can be calculated as
(L1=L>):

ﬁ tan@
" M n
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The theoretical natural frequency of the symmetrical isolator is 2.27Hz and thus an

estimated resonance frequency is about 1.95Hz.

Figure 6.25 Another two experimental prototypes for (a) a symmetrical
LLS prototype and (b) a traditional mass-spring system.

Base excitation —_
<> Platform response 5‘53,/
£ ’ | >
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Figure 6.26 (a) Platform response and base excitation in time domain for random
excitation and (b) displacement transmissibility of the symmetrical isolator.
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Figure 6.27 (a) Mass response and base excitation in time domain for random
excitation and (b) displacement transmissibility for the traditional mass-spring system.

Fig. 6.26(a) shows the symmetrical LLS also possesses a beneficial vibration

isolation performance. For the displacement transmissibility as shown in Fig. 6.26(b),
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a peak occurs at 2.12Hz, which is also close to the theoretical computation above.
When the excitation frequency is bigger than 3.25Hz, the transmissibility is smaller
than 0dB. Note that the asymmetrical LLS has an obvious smaller resonance
frequency which is consistent with the theoretical analysis before (see Fig 6.15, and
Fig. 6.17). That is, the unsymmetrical rod length ratio is beneficial to vibration
isolation.

The traditional mass-spring system with the same spring and mass as used in the

LLS systems above is also considered as shown in Fig. 6.25(b). The theoretical
natural frequency isw, =./k, /M =36.18rad/s =5.76Hz. Fig. 6.27 shows the mass

response and the transmissibility when a random excitation in the vertical direction.
The experimental resonance frequency is 5.71 Hz which is much larger than the LLS
systems above. To achieve a similar resonance frequency (1.32 Hz) for the same load
mass, the spring stiffness of the mass-spring system should be about 36.65 N/m,
which could not support the mass given the used length of the spring (around 15 cm).

This experimentally verifies that (1) the structural nonlinearity introduced with the
LLS is very beneficial for achieving a smaller resonance frequency but
simultaneously maintaining a good loading capacity; (2) the asymmetrical length ratio
is very helpful for achieving a smaller resonance frequency; (3) the LLS is easy and

flexible to design and implement in practice.

6.9 Conclusions

In this chapter, a generic bio-inspired limb-like structure is investigated
systematically for its beneficial nonlinear functions in vibration isolation. The static
mechanics, dynamic modeling, and experimental testing are conducted for
understanding the nonlinear benefits that the proposed structure could introduce and
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exploring its potential applications. It can be concluded that,

)

(2)

3)

(4)

the limb-like structure provides a very flexible and designable stiffness system,
which can be used to easily achieve zero stiffness, negative stiffness and positive
stiffness, via designing several critical structural parameters (asymmetrical
rod-length ratio, vertical-to-horizontal spring-stiffness ratio, assembly angle, rod
length, layer number etc);

it is very interesting to unveil that the asymmetrical rod-length ratio and
vertical-to-horizontal spring-stiffness ratio are very beneficial in tuning system
stiffness property, which demonstrates the intriguing and excellent nature of
animal motion control systems and presents a mechanics explanation to the
usefulness of the asymmetrical structure of animal limbs;

the proposed structure can achieve very low resonance frequency, large
displacement motion, but simultaneously maintain a very good and designable
loading capacity, without the stability issue compared with existing QZS isolators;
and also it can be very easily assembled and flexibly implemented in practice
without the practical problems encountered in other existing QZS systems;

The results provide a practical engineering solution to passive vibration isolation

and control of high performance in many engineering problems.
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7 A new type 6DOFs passive vibration isolator based on

Stewart platform design

Stewart platform was proposed by D. Stewart in 1965 [125], which is a typical
mechanism with 6 DOFs. As a parallel robot, it is composed of two bodies which are
connected by six extensible legs. It can be seen that parallel kinematic manipulators
have better performance compared to serial kinematic manipulators in terms of a high
degree of accuracy, high speeds or accelerations and high stiffness [126-134]. It has
been widely practical applications in disturbance isolation, flight simulation systems,
precise machining and medical equipment.

In this chapter, we propose a new type passive 6DOFs vibration isolator inspired
by the Stewart Platform configuration. The X-like shape structure is adopted in the
new type 6DOFs passive mechanism to instead of the legs with actuators in the
Stewart platform. The nonlinear benefit will display in the static, dynamic and

experimental analysis.

7.1 The 6DOFs passive Stewart platform description

T, J £ Moving platform - -
L x AN __ T i
A T il N Ts ]

y

@ B, ©)

Figure 7.1 (a) A 6DOFs passive Stewart platform, (b) the schematic of one leg
and (c) a special case for comparison.
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Fig. 7.1(a) shows a 6DOFs passive Stewart platform with the height H. The
system contains a moving platform and a base platform, and they are connected by six

equal length legs with original length h as shown in Fig. 7.1(b). The pose of the

moving platform can be described by a position vector P =[P, P, P,]", where Py, Py

and P, represent the displacement in the x, y and z direction, respectively. The rotation
of the moving platform is defined by rotating the moving platform first about the
Y-axis by p degrees, then about the moving x-axis by o degrees, and finally about the
moving z-axis by y degrees. All the angles are measured in a right-hand sense. The
rotation matrices are Ry(5), Rx(a) and Rz(y), respectively.

Table 7.1 The corresponding relationship between the leg number
and the point in the T-xyz and B-XYZ coordinate system.

Leg number Pointsin T-xyz (TT;)  Pointsin B-XYZ (BB))

1) TT.=T, BB,=B;
) TT,=T, BB,=B;
3) TT:=T, BBs=B,
(4) TT.=Ts BB,=B,
(5) TTs=T; BBs=B;
(6) TTe=T: BBs=B;

The leg is an n-layer X-like shape structure with the rod length L and the original
angle 4. Four rods and four joints are in each layer and their mass is not considered in
the modeling since the supporting mass can be much larger than the rod/joint mass.
Two linear springs, ki in the horizontal direction and ky in the vertical direction, are
used in each leg. The corresponding relationship between the leg number and the
point in the T-xyz and B-XYZ coordinate system is displayed in Table 7.1, where TTi; is
the connection point on the moving platform and BB; is that on the base platform for
the ith leg. A special case of the leg is shown in Fig. 7.1(c). Only a linear spring with

the stiffness ks is connected in each leg. The performance of the Stewart platform with
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the leg as shown in Figs. 7.1(b) and 7.1(c) will be analysed for comparison.

The location of the point T; on the moving platform has the following form:

T, I; CoS(A+;)

X1

T, =|T;|=]| rsin(Ay) |, (7.1)

i yi

T, 0
where rr is the radius of the moving platform and

A =2§(i—1). (i =1, 2, 3) (7.2)

The location of the point B; on the base platform has the following form:

B, s COS(4g;)
B, =| B, |=| Issin(4g) |, (7.3)
B 0

zi

where rg is the radius of the base platform and

Ay :%(Zi—l). (i =1, 2, 3) (7.4)

Figure 7.2 The detailed information of one leg in
the 6DOFs passive Stewart platform.

Fig. 7.2 shows the detailed information of one leg in the 6DOFs passive Stewart

i2 i2
platform where d,” =(TT, —-BB,)* and d,” =(TT, —BB,)*. It can be seen that

iy

d,

and d; can represent the difference between the point TT; and BB;. The lengths h
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and H have the following relationship:
h>=H?+d/, (7.5)
whered? =d!" +d!*. d_ is a fixed value and has no relationship with i for six equal

length legs. Especially, an extreme configuration (an upright platform) will appear

when d; =0 as show in Fig. 7.3.

(] *
1 X ! T 1
| 1 y ! 3
|
lz
X‘/BL\Y '

Figure 7.3 An upright platform when d, =0.

The leg in the sj—q; coordinate system is displayed in Fig. 7.1(b) and its
deformation is shown in Fig. 7.4. The geometrical relation of variables s;, g; and ¢ can

be obtained as

Lsin0+&
tan(0+(p):—28”, (7.6)
Lcosd— "+
2
2 s 2
2= Lsing+3 | +f Lcoso—2] . (7.7)
2n 2
From Eqgs. (7.6) and (7.7), we can get
Lsin9+&
@ =arctan —an -0, (7.8)
Lcosd—- "+
2
2
s, =2L[cos€—cos(6?+go)]=2Lcos¢9—2\/L2—(Lsin0+g—‘j . (7.9)
n
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Figure 7.4 The n-layer X-like shape
structure and its deformation.

7.2 Static analysis

7.2.1 Mechanic modeling

@) (b)

F
F3 F3
Kp Si . Joint 2 Si
Joint 1 Joint 3
Fs3 Fs q; F3 F3
k, FI

(d)

Figure 7.5 The force analysis diagram of the 6DOFs passive Stewart
platform when it bears the force F in the z direction.

Because the load on the platform is along the z direction, the mechanic of z
direction is considered. Fig. 7.5 shows the force analysis diagram of the 6DOFs

passive Stewart platform with the force F in the z direction. From Fig. 7.5(a), the
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relationship between the force F and F1, F; and F; has the following form:

F=3F, (7.10)

Fl:ZFZ%,

(7.11)

It should be noticed that the resultant moment at point T generated by F; (or ) is
zero.
The force equilibrium equations as shown in Fig. 7.5(d) are

k.S, =2F, cos(8+¢), (For the Joint 1 and 3) (7.12)
F, :2F3sin(6?+(p)+kv%. (For the Joint 2) (7.13)

Based on Egs. (7.12) and (7.13), the force F, has the following form:
F, =k.s, tan(0+ ) + k% (7.14)

Substituting Eq. (7.9) into Eq. (7.14), one can obtain

Lsin6+&

2
F2=2kh[Lcose\/L2(Lsin9+—'j } 2n ¢ 9 (7.15)
2n \/ q j2 n

L2 —(Lsin0+

2n

From Egs. (7.10), (7.11) and (7.15) and notice that & =vd: +(P.+H) ~h e can

obtain the relationship between the force F and the translation P;:

F =

d2+(P,+H) -h
12HK, gy YO+ H) J

2 2
df+(PZ+H)2—hJ [ "

h [L? —[Lsin9+
2n

2n

2
; 2 _ JaZ (P, +H) -
Lcosd - LZ[LSin9+ di+(P+H) h} +6: k,(Jdf +(P, +H) h)_
n

(7.16)

The static stiffness can be solved as:
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dF 6H(P,+H) - Kk,
- , _
P, nhydZ+(P,+H) LZ—(LSinG-F df+(PZ+H)2h}
2n

2n 2n

2 2
JaZ+(P,+H) —h d>+(P,+H)* =h
{Lsin0+ (+(P.+H) } +Lcosd— LZ—[Lsin49+ (+(P+H)

2 2
dZ2+(P,+H)* -h dZ2+(P,+H)* -h
kh(Lsin9+ i 22+ ) ] Lcosd — Lz—{Lsin9+ i 22+ ) ]
n n

+

(7.17)
In a special case, the force and displacement in P, direction of the Stewart

platform with legs as shown in Fig. 1(c) have the following form:

F, :%ks(w/df +(P,+H)* —h).

(7.18)
The static stiffness can be solved as:
dF, _ 6k,H(P,+H)
dp, h\/df +(P, +H) | (7.19)

7.2.2 Working range

In this section, the working range of the translation and rotation displacement is
considered. hy, is the length of the six equal legs in working state and its length range
Is from h-2nLsing to h+2nL(1-sind). When the moving platform has a translation or
rotation displacement, the length of each leg should not beyond their length range.

In the B-XYZ coordinate system, the coordinate of TT; is (TTi, TTiy, H) and that
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of BB; is (BBix, BBiy, 0). When the moving platform has a translation displacement Py,
the the coordinate of TT; changes as (TTi+Pxo, TTiy, H). The length of the ith leg has
the following form:

hg = (d} + Py)? +di” + H2, (7.20)
Similarly, when the moving platform has a respective translation displacement

Pyo and Py, the length of the ith leg has the following form:
hZ =di” +(d! +P,)2+H?. (7.21)
h2 =d’+(H+P,)>. (7.22)
When the moving platform has a respective rotation displacement ag, fo and yo,
the coordinate of TT; changes to (TTi, TTiCoSag+HSsinag, —TTiySinag+HCOSa),
(TTixcospo—Hsingo, TTiy, TTisinfotHCOsPo), (TTixcosyo+ TTisinye, —TTiSinye+

TTiycosyo, H). The length of the ith leg has the following form:
h2=d”+ (TT, cosa, + Hsing, — BB, )” +(-TT, sing, + Hcos)?,  (7.23)
h? = (TT, cos B, —Hsin 8, —BB,)? +d!" +(TT, sin B, + Hoos 3,)°,  (7.24)
hj, = (TT, cos y, +TT, sin y, — BB, )" + (-TT, siny, + TT, cos y, — BB, )* + H? .(7.25)
The working range of the moving platform in the 6DOFs directions should
satisfy the geometry equation (i.e., Egs. (7.20)—(7.25)), and the length of each leg

should not beyond their length range h-2nLsind < hy,< h+2nL(1-sinf).

From Eq. (7.20), we can obtain

Po=yh2—di"—H? —d. (7.26)

Due to hy has its length range, the working range of Py for the ith leg P! is also
limited as

Min(P,,)< P} <Max(P,,), (7.27)

X
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where Min(*) and Max(*) mean the minimum and maximum of the variable (°),
respectively. For different leg, the working range of Py is different. The working range
of the whole system is limited by the minimal one because the system cannot move
after one of the six legs has reached its limit. The working range of Py for the whole

system is the intersection of that for the six legs, it can be described as
P.=NP. (7.28)

Similarly, we can get the working range in the other direction for the ith leg

i2 i
Po=+h;—d,” —H?—d,, (7.29)
Po=+h,—di —H, (7.30)

02
d”+BB.+TT2+H?*—h’
a, = arccos| — a4 Z'y - A+, (7.31)
2BB, [H2+TT;
02
d"+BB2+TT2+H?-h?
S, =arccos| — L= =+ (7.32)
2BB, \[HZ +TT?
2 2 2 2
y, =arccos| T8 * H™-h, +, (7.33)
2\/ rZ+r
where ¢, =arctan H ¢, = arctan {— H J and ¢ =arctan[BB‘*TT'” — BB”TT‘XJ . As the
TT, T, ’ BB,TT, + BB,TT,

same procedure, the working range of the other five DOF of the whole system can be
obtained. It should be noticed only the P, is independent of i because it is the same
for the six equal legs.

It can be seen that the working range of the 6DOFs passive Stewart platform
depends on the leg geometrical parameter L, 8 and n, the radii of the moving and base
platform as well as the distribution of the legs. Obviously, the larger length range of
the six legs can result in the larger working range of the six DOF.
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7.2.3 Negative stiffness

From Eq. (7.17), we can obtain zero stiffness point by solving :E =0, which is
> 2
. , khcos @ \* 2
P, =_[| h—2nL|sing— 1—( kh—kvj -d’-H (7.34)

Form Eq. (7.30), the Min (P,) can be obtained when h,= h-2nLsind. If the zero
stiffness point is in the working range (compression range exactly), the system will
possess the negative stiffness. When the moving platform is in the negative stiffness

region, the system will be lack of stability. To ensure the system has only positive

stiffness, P, should satisfy the following inequation:

J(h=2nLsin@)? —d? —H > P, (7.35)

By solving Ineq. (7.35), we can obtain

:—V>1—cos«9. (7.36)

h
It can be seen only the initial angle and the ratio of the stiffness of the springs
have effect on the appearance of negative stiffness. If the system has only the
horizontal spring, it must have the negative stiffness region. When the stiffness of the
spring satisfies Ineq. (7.36), the system possesses positive stiffness in the whole

working range. If it does not satisfy Ineq. (7.36), the system may have negative
stiffness, zero stiffness as well as positive stiffness. The zero stiffness occurs at P,
Fig. 7.6 shows the force and stiffness varying with P, when the stiffness ratio is
different. In this calculation, 1-cosf =0.134. When the stiffness ratio is larger than
0.134 (that is k,/k,=0.180 as shown in Fig. 7.6), the stiffness is bigger than zero as

shown in Fig. 7.6(c) in the whole working range. When the stiffness ratio is equal to
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0.134, the system does not possess negative stiffness but a zero stiffness point at the
minimum working range point. When the stiffness ration is smaller than 0.134 (that is
ky / kn =0), zero stiffness point occurs atP, =-0.097m. The negative and positive
stiffness happen whenP, <P" and P >P’ respectively. From Figs. 7.6(b) and (d), it
can also be seen that when the system is at the tensional state, the system always
presents positive stiffness and the stiffness rapidly increases when P, is close to its

maximum working range point.

50 . . . . . 6000 . .
—_ — k/ky=0
£ . soool = ke/ ky=0.134
n P'2=-0.097m ——~k,/ ky=0.180
3 ‘ I
S 50} T 2000}
-------------- o
. —_ - |
qo0b—— . 0 : :
025 -02 015 01 005 0 0 005 01 015 02
@) P, /m (b) P, /m
_ x 10°
£ 1500 - . . . : 10
P4
= 1000} P
o
= 500} 5t
-c 5 -
§ b o e -
:E iP,=-0.097m
|
=500 : : : ' : 0 ' : :
025 02 015 01 005 0 0 005 01 015 02

Figure 7.6 Force and stiffness with different displacement P, of the 6DOFs
Stewart platform structure when ho=0.15m, rg=0.3m, ry=0.2m, L=0.1m, =
/6, ky=1000N/m and n=2. ((a) and (b) force, and (c) and (d) stiffness).

7.2.4 Loading capacity

To analyze the loading capacity of the 6DOFs passive Stewart platform, whether
the system possesses negative stiffness should be considered. If the stiffness ratio
satisfies Ineq. (7.36), the system always presents positive stiffness. The maximum

loading the platform can bear is when P, has its maximum compression amount.
134



According to Egs. (7.16) and (7.28) with h,= h-2nLsin#, we can obtain the loading
capacity of the 6DOFs passive Stewart platform F ¢ when that system possesses only

positive stiffness:

12H .
Fc :—TkVLSInH. (7.37)
]
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Figure 7.7 Force and stiffness with different displacement P, of the 6DOFs Stewart

platform structure when hy=0.15m, rg=0.3m, rr=0.2m, L=0.1m, 8=x/6, and n =2.

It can be seen that the spring in the horizontal direction does not affect the
loading capacity in this situation. Fig. 7.7 shows the force and stiffness with the same
spring stiffness k,=180N/m and different spring stiffness kn. The stiffness ratio

satisfies Ineq. (7.36). Due to the same k,, the loading capacity is all the same (-91.6N),
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while the effect of the stiffness ki on the other moving position is obvious.
The other situation is that the system possesses negative stiffness when the

stiffness ratio does not satisfy Ineq. (7.36). In this case the loading capacity is the
force at zero stiffness point (i.e., P,=P, ). The loading capacity Fc, of the system with

negative stiffness is

. cose—[k“ cosHJ \/1(kh cosHJ
C12HL kn —k, kn —k,

I:CL - 1
h k,cosé |’
k, —k

v

sk | 1o KOO ging
kh_kv

(7.38)

In this situation, the stiffness of both the vertical and horizontal spring has
relationship with the loading capacity.

From Egs. (7.37) and (7.38), the loading capacity depends on the initial angle 9,
the length of rod L and the length ratio H/h except the spring stiffness. The larger
length ratio H/h benefits the loading capacity regardless of the existence of negative
stiffness in the 6DOFs passive Stewart platform.

Fig. 7.8 shows the comparison of the force and stiffness with displacement P, of
the 6DOFs Stewart platform with different type of legs. The two types of system has
the same height ( h=0.5m). In the comparison, we assume that the working range of
the special case is the same as that of the proposed mechanism. In the Stewart
platform with the leg as shown in Fig. 7.1(b), the parameter is rg=0.3m, rr=0.2m, L=
0.1m, 8==/6, and n=2. The stiffness of the spring ks in the special case, k, and k, in
the proposed mechanism can be designed to make the two system possess the same
loading capacity. It can be seen that the loading capacity is about 100N (in
compression state) as shown in Fig. 7.8(a).

From Eq. (7.19) and Fig. 7.8, it can be seen that the Stewart platform with the leg
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as shown in Fig. 1(c) also presents a weak nonlinearity due to the Stewart platform
configuration. Moreover, it must possess a positive stiffness in the working range. By
contrast, the proposed mechanism has very beneficial nonlinear stiffness which can
provide flexible quasi-zero, zero and/or negative stiffness by designing the stiffness of
springs. The nonlinear stiffness properties are more adjustable and designable based

on a good loading capacity.
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""" k,=200N/m k,=1000N/m
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Figure 7.8 Comparison of the force and stiffness with displacement P, of the 6DOFs
Stewart platform with different type of legs.
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7.3 Dynamic analysis

7.3.1 Equation of motion

In the dynamic analysis, the mass of rods and joints is not considered in the
modeling. The damping effect is linear in the 6DOFs.

The Kkinetic energy of the 6DOFs passive Stewart platform contains the
translation energy and the rotation energy of the moving platform. The translation

energy is given as the following form:

1 . . .
K Em(PX2 +P?+P}), (7.39)

mp(trans) =

where m is the mass of the moving platform.
For rotational motion of the moving platform around its center of mass,
rotational kinetic energy can be written as

1
mp(rot) — EQmp(T)l(T)Q

K (7.40)

mp(T)?

where (T) in the subscript means the term is in moving platform coordinate system. I

() Is the rotational inertia of the moving platform and it has the following expression:

ly=|0 1, O (7.42)
0

For a circular platform, I, =1, = 2 =l,, I,= 5 =21,.

In Eq. (7.40), Qmp is the angular velocity of the moving platform. It has the
relationship with the angular velocity of the moving platform with respect to the base

platform coordinate system Qmupeg). This relationship can be expressed as
Qmp(T) = RZ (7/)1— RX (a)T RY (ﬁ)T‘Qmp(B) . (742)

The angular velocity Qmp@e) can be given by the definition of the angular
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velocity:
Qe =R, (B)X + BY + R, (B)Ry (o) Z . (7.43)
Based on Eqgs. (7.42) and (7.43), Qmy() has the following form
Qo) = R, (1) R (@) X+ R, (1) R (@) R () Q)Y + R, (1) Z . (7.44)
Substituting Eq. (7.44) in Eq. (7.40), the rotational kinetic energy can be

obtained. Then the kinetic energy of the system can be expressed as

1
K = EvT MV, (7.45)

z

where V=[B, P, B, a S 7] isthe velocity vector.

M has the following form:

m O O 0 0 0
m O 0 0 0
m O 0 0
M = , (7.46)
M 44 M 45 0
sym M 55 M 56
L M 66 _|

where the element M,, =1, cos’y+1, sin*y, Mg =cos’a(l, sin’y+1,cos’y)+1,sin’a,

Mg =1,, My=(l,—1,)cosacosysiny and My =-I,sinc.

The expression of kinetic energy is
Ko = %(mpf +MP? +MP? +M,,&° + Mgy 8° + Mgeir? + 2M 568+ 2M g 7). (7.47)
The virtual work of the ith leg has the following form:

W, =—k, 585, —kK, %8% — ¢, P3P, —C, P3P, —C,P.3P, — 086 —C, B33 787
(7.48)

where the first two terms come from the spring in the horizontal and vertical direction,

and the last terms is the virtual work of the linear damping of the 6 legs. cyi, Cyi, Czi, Cas,

139



cg and c,; is the damping coefficient. The term with “*”” means the relative variable
with respect to the base platform.

Eq. (7.48) can be also expressed as

qu SG + ﬁqj 5p + a—qfé‘u?
oa op oy (7.49)

W, =-J;(; a—qi?ilf’x 4 3P, + ! 8P, +
oP, oP, oP.

X y z

- cinSXESFA’X - cyilf;yéSFA’y s FéZ 8P, —ca 8a — cﬁi,é 3B —c,y 87,

where

2
2k, Lcos@—\/Lz—(Lsin9+qi] (Lsin0+q‘j
ds a, 2n 2n a0

d_qI n? 2 n
n\/L2 —(Lsin0+qi}
2n

(7.50)

Referring back to Fig. 7.2, the relationship among the four spatial vectors for the
ith leg is displayed in Fig. 7.9. T; and B; have given in Egs. (7.1) and (7.3). It should
be noticed that the vector T; is with respect to the moving platform coordinate system.

To describe the relationship of the four vectors, they should transform into the same

coordinate system.

R

Figure 7.9 The relationship among the
four spatial vectors for the ith leg.

In the base platform coordinate system, the vector Q; of the ith leg is obtained as

Q =RT +P-B, (7.51)
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where P =[P, P, P,+H]". R;is the rotation matrix with respect to the base
platform coordinate system and it has the following form:
Rr =R (DR (DR, (7). (7.52)
Substituting Eq. (7.52) into Eq. (7.51), the vector Q; can be expressed as

Qxi r11TT><i + r12TTyi + Px - BBxi
Q =|Q, |=| TT, +6,TT, +P,—BB, |. (7.53)
Q, LIT, + rngTyi +P,+H

Where r;; is the element in the ith row and the jth column of the matrix R;.

In the s;— @i plane as shown in Fig. 7.1(b), the relationship between g; and Q; is

qi(lﬁx’ If\)y’ é’d’ ﬂ’\! 7;):|Qi|_h_VQxl +Qy| +Qz| _h (754)

From Eq. (7.54), the relationship between g; andP,, P,, P,, &, # andj can be

solved, which is helpful for Eq. (7.49).

The Hamilton principle is

t2
[ (3K +3W)dt =0. (7.55)

4

Based on Eq. (7.47), we can get

tZ t2
[ K it = j[—m(F’iXSPX +B,0P, + P,3P,) — M 4,6 8t — Mg 38 — Mg Sy

t, t
_ -M da
(2 > B+ ,8}/ o By —Mys ) (7.56)
oM, . My .. Mg .. .. ;s
+(_ 45 0(2— 45 ay — 56 a}/—M450!—M567)6ﬂ
oa oy da
1dMy 2, 1My Mus dM56 ' 3
L -M dy]dt.
(2 dy @13 oy P 57/ “w- Ml

Based on Eq. (7.49), we can get
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TSWdt = Tiawi dt

t, i=1

e

y =l

61

Wi 5p S gp, 4 Phgg s T 5ﬁ+ o 257 | (757
PR ea op

y

_¢, P3P - cyI5y6I5y PSP, —C.d6d - cﬂB 34 —c, oy dt
where ¢y, Cy, C;, C,, Cg and c, are the equivalent linear damping of each DOF.

Based on Egs. (7.55)—(7.57), the dynamic equation of motion of the 6DOFs

passive Stewart platform can be deduced as

(7.58a)

=1 x
mp +ZJ @) q' (7.58b)

2 p

6 .

mﬁz+2‘]i(qi)a_(ili+czlsz:0’ (7580)

=]
Y B e ﬁy+za @) Sh+e,é=0, (7580

oMy, My .. M o
Mo B+ Myl + Mggh + —2 02 + —B 6y +—S5 g5+ > Ji(q)) —= +C 0,(7.58¢
555+ Mys 567 Ew o7 /4 Py Zl: i(Gi) op ﬂﬂ ( )

2 dy 2 87/ 8}/

. dM56 . 6 aq A
+ +> Ji(g)—++c,7=0

of o af i§1 i(Gi) o Y
.(7.58f)

It can be seen that the variable in the 6DOFs is coupled in Egs. (7.58a) — (7.58f).

7.3.2 Equivalent stiffness

To analyze the equivalent stiffness in the 6DOFs, assume that the variable in the

other five DOF is zero when the objective variable is studied. For example, when

P, is the objective variable, the variable P,, P,, P,, P, andP, is equal to zero in Eq.
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(7.58a). In this case, Eq. (7.58a) changes to be the following form:

6 A x
mP, +ZGi(PX)+cXPX =0, (7.59)

i=1

where

(7.60)

B,=0, B,=0, B,=0, P;=0, B,=0 *

A oq;
G(P)=J.(9)—=
i(P) '(q')aPX

Notice that the relative displacement If'X =P, —B,, Eq. (7.59) can be deduced as

. 6 .
mP, +ZGi(PX)+cXPX =-mB

i=1l

- (7.61)
Eq. (7.61) is the decoupled equation of motion of the 6DOFs passive Stewart platform
about only P,

Using the Taylor series expanding for G;, it can be obtained that

C_;i(lfsx):a'lillf\)x +a1i2|5><2 +a1i3|f)x3' (762)

Where the coefficiental,, al, and al, is listed in Appendix C.
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Figure 7.10 Comparison between the original terms and the Taylor-expansion when hy=
0.05m, rg=0.4m, ry=0.3m, L=0.15m, 8 =/6, k,=1000N/m, k,=1000N/m and n =2.

Fig. 7.10 shows the comparisons of the original functions G; and the Taylor
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series expansions G, (i=1, 2 ...6 means the six legs). It can be seen that they are in a

good agreement. The curves display a weak nonlinear property although both the
spring and the damping are considered to be linear because of the geometric
nonlinearity of the X-like shape structure.

Substituting Eq. (7.62) into Eq. (7.61), the dimensionless equation of motion in

the P direction can be expressed as
P/+S,P + AP+ AP’ +2& P =-B!, (7.63)
where (o) =d(e)/dt’ and t'=./k,/mt. The parameters A, A3 and the damping

ratio & are listed in the Appendix C.

The equivalent stiffness in the P, direction is

tan 9+/12d (7.64)

n’h? <
where A=K, /k, is the stiffness ratio of the spring.
Using the same analyses procedure, the equivalent stiffness in the other five

directions ( a, ,B and y) can be obtained. They have the following form:

Z 1

tann ijigd, | (7.65)

s - 6H 2(tnaznhzzc9+/1) | (7.66)

g —1an Zi: iy ;TT(Z ih? | (7.67)

5, = 2i2+ ) Zl,TT(l i)?, (7.68)

= tar;hé:f Z_l:[TT(Z iyd —TT@i)d! [, (7.69)
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where in the dimensionless process, t'=./k,/mt for F3yand P, t'=JkH?/I t

for &, t'=,k,H*/1,t for g and t'=k,H?/I,t for 7.

It can be seen that the equivalent stiffness in the six DOF directions has
relationship with the parameter in the X-like shape structure (4, n and 1). Obviously,
the increasing layer number n and the decreasing angle 6 or stiffness ratio A will make
all of the equivalent stiffness down. Moreover, the connection state of the six legs also

has effect on the equivalent stiffness in the different DOF components.

7.3.3 Vibration isolation performance
The harmonic balance method (HBM) is using to obtain the solution of Eq.
(7.63). In the calculation, the base excitation By = Byo €0S (@ t)= Byo C0S (€« t') where

Q. =wlk,/mis the frequency ratio. The solution of Eq. (7.63) can be determined

as the second order harmonic response for a higher accuracy, which can be written as,

P, =a,+a,cos(Qt'+9)+a,cos(2Q,t' +9,), (7.70)

where ay is the bias term, a; and 3, are the first order harmonic amplitude and phase,

a, and 9, are the second order harmonic amplitude and phase. In the simulation, the

base excitation is at several mm level, which ensures the analysis based on the HBM
with the first and the second order terms valid.

Substituting Eq. (7.70) into Eq. (7.63), the unknown parameters (i.e. ao, a1, az, %

and J,) can be obtained by solving a set of algebraic equation for each Q4 with the

standard HBM.

Notice that P, is set as P, = P, — B, then the vibration solution of the mass in the

P, direction is P, = P, + B, . The displacement transmissibility is the ratio of the vector

norm of the mass displacement with that of the base excitation. In this calculation, the
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first order harmonic solution is used. So the displacement transmissibility Ty has the

following form:

T la, cos(¢2,t'+9)+ B, cos 2t \/af + B}, +2a,B,, cos(9,)
< B, OS2, 1] - B,o|

, (7.70)

where || means the norm of the vector.

By the same way, we can also get the displacement transmissibility in the other

five DOF, which is Ty, T, T,, Tg, and T, with respect to the frequency ratio Qy, &,, 2.,

Qp, and Q, respectively, where Q = Q, = Q =0, , 2, =wl/kH*/I ,

2, =0l \|kH?/1, and Q =w/\kH?/1,. In the analysis, the amplitude of the

base excitation in each direction is 0.05m.
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Figure 7.11 Displacement transmissibility of the 6DOFs passive Stewart platform in the
six directions when hy=0.05m, rg=0.4m, r1=0.3m, L=0.2m, #=x/6, 1=0.5, n=2 and the
dampinag ratio in the six direction is 0.05.

Fig. 7.11 shows the displacement transmissibility of the 6DOFs passive Stewart

platform which can display the vibration isolation performance of the platform in the
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six decoupled DOF direction. It can be seen that the Stewart platform with the X-like
shape structure as shown in Fig. 7.1 can realize the vibration isolation in all of the
DOF direction. The curves in Figs. 7.11(a) and 7.11(b) agreement with each other,
which means the mechanism has the same vibration isolation performance in the Py
and Py directions due to its structure symmetry. If the moving platform has the
geometric symmetry in the x and y direction (Ix = Iy, then ©2,=Q,), the vibration
isolation performance in the « and g directions will be also the same. The tendency of
the curves in a and g is the same although the corresponding frequency ratio
(horizontal ordinate in Figs. 7.11(d) and 7.11(e)) is not the same. In the following
analyses, the vibration isolation performance will focus on the Py, P, , a and y

direction.
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Figure 7.12 Displacement transmissibility of the 6DOFs passive Stewart platform with
different stiffness ratio A when hy=0.05m, rg=0.4m, rr=0.3m, L=0.2m, §=x/6, n=2 and
the damping ratio 0.05.

Fig. 7.12 shows the displacement transmissibility of the 6DOFs passive Stewart
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platform with different stiffness ratios. It can be seen that the influence of the stiffness
ratio of the horizontal and vertical springs on the vibration isolation performance is
obvious. The resonant frequency becomes larger with the increasing stiffness ratio. It
possesses the best vibration isolation performance without the vertical spring. While it
should be noticed that the system must have the negative stiffness region as discussed
in Section 7.2.3.

The effect of the original angle 6 on the displacement transmissibility is
displayed in Fig. 7.13. As the figure shows, the resonance frequency becomes smaller
with the decreasing original angle. Moreover, the displacement transmissibility is
reduced. The smaller original angle benefits the vibration isolation performance in all

of the DOF directions.

T (dB)
T, (dB)

T, (dB)
T, (dB)

(©) Q (d) 2,

Figure 7.13 Displacement transmissibility of the 6DOFs passive Stewart platform with
different angle 8 when h= 0.5m, rg= 0.4m, rr =0.3m, L=0.2m, 1=0.5, n =2 and the
damping ratio 0.05.
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Fig. 7.14 shows the vibration isolation performance of the 6DOFs passive
vibration isolator with different layers in the legs. The layer number n can
significantly influence the displacement transmissibility in all the DOF directions.
When the layer number increases the resonance frequency and the displacement
transmissibility sharply decrease. The vibration isolation performance becomes better

obviously.

Tx (dB)
T, (dB)

@ b
0 )
= 3
© (d

Figure 7.14 Displacement transmissibility of the 6DOFs passive Stewart platform with
different layer number n when hy=0.05m, rg=0.4m, rr=0.3m, L=0.2m, 2=0.5, §==/4 and
the damping ratio 0.05.

Fig. 7.15 shows the displacement transmissibility of the 6DOFs passive Stewart
platform with different radius of the moving platform. It can be seen when the radius
becomes larger, the resonance frequency of Py, a and y is larger, while the vibration
isolation performance in the P, direction is better due to its smaller resonance
frequency and lower displacement transmissibility. The tendency of P, is opposite to

the other DOFs direction with the different moving platform radius.
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Figure 7.15 Displacement transmissibility of the 6DOFs passive Stewart platform with
different radius of the moving platform when hy=0.05m, rg=0.4m, L=0.2m, 2=0.5, 6=
7/6, n=2 and the damping ratio 0.05.
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Figure 7.16 Displacement transmissibility of the 6DOFs passive Stewart platform with
different hg when rg=0.4m, rr=0.3m, L=0.2m, 1=0.5, §=7x/6, n=2 and the damping
ratio 0.05.
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The displacement transmissibility of the system with different height hg is shown
in Fig. 7.16. The larger height ho represents the higher mechanism with the same layer
number. It can be seen that the tendency of P, also opposite to the other DOFs
direction. When the height hy becomes larger, the system becomes higher. Figs.
7.16(a), (c) and (d) display that the higher height of the system is profitable to the
vibration isolation performance in the Py, a and y directions, while it makes the

vibration isolation performance in P, direction down.

7.3.4 Comparison with the special case

20¢ ks=1000N/m
—————— kn,=1000N/m
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Figure 7.17 Comparison of the displacement transmissibility of the 6DOFs Stewart platform
with different types of leg.

Fig. 7.17 shows the comparison of the displacement transmissibility of the
6DOFs Stewart platform with different types of leg. In the two systems, the same

stiffness of spring (LO00ON/m) and the same mass (m=5kg) is used. Both the two
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systems present vibration isolation performance in the 6DOFs directions. Comparing
with the Stewart platform in the special case, the proposed mechanism possesses
significantly better vibration isolation characteristics. The proposed mechanism has
lower resonant frequency, and then the vibration isolation becomes wider.

The comparison above shows that the Stewart platform with the leg as shown in

Fig. 7.1(b) has very beneficial nonlinearity which benefits both the static and dynamic

property.

7.4 Experiment

Acceleration Sensor | Moving platform

——— Auxiliary sprin
Horizontal Spring kj v y spring

Acceleration Sensor 1l

Excitation platform Base platform

Excitation rod

- 1

’ ’ Vibration exciter

Figure 7.18 The experiment prototype of the 6DOFs passive Stewart
platform with the excitation in P, direction.

9

In this section, the displacement transmissibility of the 6DOFs passive Stewart
platform is investigated with an experimental prototype as shown in Fig. 7.18. Six

legs are installed by following the Stewart style between the upper and lower
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platforms using universal joints. The connection mode in the prototype makes the
whole system stable but with motion limits in the y direction. The vibration isolation
performance in the P, Px and a directions will be shown here. The objective of the
experiment is to validate that the 6DOFs passive Stewart platform has very good
performance of vibration isolation.

In the prototype, the radiuses of the moving and base platform are 0.12m and
0.2m, respectively; the rod length L=0.1m, the original angle 6 ==/4, layer number
n=2 and the length of the leg h=0.4m; the stiffness of the horizontal springs k,=1.06
kN/m; the gross mass is 4.5kg. The auxiliary springs in the vertical direction are just
for motion restriction, which do not work as a stiffness element around the

equilibrium. The stiffness ratio of the springs A= 0.

Figure 7.19 The experiment prototype of the 6DOFs passive Stewart platform
with excitation in (a) Py direction and (b) a direction.

In comparisons, the structure parameter in the simulation is the same as that in
the prototype. As mentioned in section 7.3.2, when the targeted variable is studied, it
is assumed that the variables in the other five DOFs are zero in the simulation. To
simulate this situation, the excitation with a certain DOF direction in an experiment is

adopted. In this section, a random excitation is applied to the base of the structure in
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three directions, respectively. The excitation in the vertical and horizontal direction is
shown in Fig. 7.18 and Fig. 7.19(a). Otherwise, the edge excitation and the center

support devote to equalize the vibration in the a direction, which is shown in Fig.

7.19(Db).

o m simulation results (¢,=0.1) |
<200 T Base excitation 1 5 | - simulation results (£,=0.01)
% II\/Ic?\./llnglpIatlform respclmlsel = 20l } ------- - experimental results
=100 b s it S g ik il b i 2 i L
S 3
e 2
3 0 =
3 2
< s

oo R e =
0 2 4 b a
@) Time (s) (b) Frequency (Hz)

Figure 7.20 (a) Platform response and base excitation in the time domain for random
excitation on P, direction and (b) a comparison of the displacement transmissibility
between the simulation results and the experimental results in the P, direction.

Fig. 7.20(a) shows the experiment results given as the time series data. It can be
seen that the vibration amplitudes of the moving platform are much lower than that of
the base platform. Fig. 7.20(b) shows a comparison of the displacement
transmissibility between the simulation results and the experimental results in the P,
direction. Because the damping in the system is difficult to measure, the damping
ratio & is set as 0.1 (the equivalent linear damping c¢,=13.81) and 0.01 (the equivalent
linear damping c¢,=1.38) in the simulation, respectively.

It can be seen that the experimental result basically match with the simulation
one. The system can effectively isolate vibration in this direction. The effect of the
linear damping in the system on the vibration isolation property is also displayed in
Fig. 7. 20(b). Larger damping can make the peak amplitude of the displacement
transmissibility down, while it does not benefit the vibration isolation in the high

frequency range.
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Figure 7.22 (a) Platform response and base excitation in the time domain for random
excitation on o direction (b) displacement transmissibility.

Figs. 7.21 and 7.22 show the experimental data in the time and frequency domain
in the Py and a directions, respectively. Compared with the vibration amplitudes of the
base platform, those of the moving platform are much lower, demonstrating very good
isolation performance in each direction with very smaller resonance frequencies.
When the frequency is larger than about 6Hz as shown in Fig. 7.20(b), 3Hz as shown
in Fig. 7.21(b) and 7Hz as shown in Fig. 7.22(b), the transmissibility is smaller than
0dB. The resonance frequencies of each direction can actually be tuned to be much
smaller by adjusting assembly angle, layer number or rod length etc. It can be seen

that the 6DOFs passive Stewart platform presents a very good vibration isolation
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performance in a broad band of frequency range and in a pure passive manner.

In a linear system, the natural frequency can be used to evaluate the vibration
isolation performance of the structure. For a vibration isolation mechanism with lower
natural frequency, the vibration isolation performance is better. Using the method in
the linear system for reference, the equivalent natural frequency of the nonlinear
system is used to evaluate the vibration isolation performance in this section.

Eqg. (7.66) shows the equivalent dimensionless stiffness in the P, direction. Based
on this equation, we can get the equivalent natural frequency of the system in this

direction:

2 2
o, = ﬁ\/GH (tan” 6+4) _ 5 6omz . (7.72)

m n’h’
Based on Egs. (7.64) and (7.67), the equivalent natural frequencies of the system

in the P, and « directions can be calculated as:

k, [tan®@+ A ;2
== |———> d =0.92Hz, 7.73
_ |k,H? [tan*0+2 S TT(2.0)? — 3.81H
@, == e 21: (2,i)* =3.81Hz. (7.74)

In the nonlinear system, it can be seen that the resonant frequency of the
displacement transmissibility as shown in Figs. 7.20(b), 7.21(b) and 7.22(b) is
basically close to the equivalent natural frequency calculated in Egs. (7.72), (7.73) and
(7.74). From Eqgs. (7.72)-(7.74), it can be seen that the equivalent natural frequency is
smaller, which means the system possesses a good vibration isolation performance.
Importantly, the equivalent natural frequency can be tuned by adjusting the structure
parameters as discussed before. This greatly facilitates the design of the vibration

isolation system to match different practical application requirements.
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7.5 Conclusions

In this chapter, a new type of vibration isolator, 6DOFs passive Stewart platform,
is designed. It combines of the Stewart platform configuration and the beneficial
nonlinear functions of X-like shape structure. The static and dynamic performance is
analysed to explain the nonlinear benefits. From the results, the main findings of this
work can be drawn as follows:

(1) By designing the structure parameters, the 6DOFs passive Stewart platform can
provide a flexible stiffness, which contains zero stiffness, negative stiffness and
positive stiffness.

(2) From the theoretically analysis result, it can be seen that the proposed structure
can realize vibration isolation in all 6DOFs directions in a passive control way. It
exploits a new idea to design the 6DOFs vibration isolator.

(3) The proposed structure can achieve very low resonance frequency via the
structure parameter design, and then the vibration isolation region is wide. The
lower stiffness ratio of stiffness, the larger layer number and the smaller original
theta are beneficial for vibration isolation performance. The changing radius of
the moving platform and the height of the legs have opposite effect on the

vibration isolation performance in the P, and the other directions.
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8 Conclusions, innovations and future work

8.1 Conclusions

This thesis has studied the new type structures with vibration isolation property,
including the periodic structures and the nonlinear mechanisms. The structure has
been designed to ensure good vibration isolation performance.

The periodic structure analysis reveals that waves with stop-band frequency
cannot propagate in the structure, which means the periodic structure possesses
vibration isolation performance. The material parameter design brings the
enhancement of periodicity, which benefits the vibration isolation performance of the
2D square lattice, 3D Kagome lattice and the sandwich structure. The effects of
parameters such as the unit cell number, the material distribution, structural size and
damping on the band-gap property are also investigated.

Based on the advantages of the X-like shape structure, a bio-inspired nonlinear
mechanism and a 6DOFs passive isolator are designed during the nonlinear isolator
analysis phase. The vibration isolation performance is subjected to a systematic
investigation that pays due regard to beneficial nonlinear functions in vibration
isolation. Through parameter design, one can adjust the system stiffness (negative
stiffness, zero stiffness and positive stiffness) flexibly. The system is found to possess
excellent loading capacity and motion range. The vibration isolation performance is
studied by analyzing the displacement transmissibility. The effects of parameters are
considered in the dynamic analysis. This thesis seeks to provide practical and

effective solutions capable of achieving passive vibration control.
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8.2 Innovations

The main contributions in this thesis are summarized below:

(1) Based on the band-gap property, the vibration isolation performance of
typical periodic structures is studied using SEM. The result is a broad frequency-band
solution with high accuracy that expands the application field of SEM.

(2) The periodic structure with piezoelectric material is designed and the band
gap characteristics are investigated. A trend of the stop-band ratio varying with the
thickness of the piezoelectric layer and the structural parameters of piezoceramic is
revealed.

(3) A spectral 3D beam element model is established and the band-gap property
of the complex 3D Kagome structures is investigated. A structure with good vibration
isolation performance is obtained by designing the structural and material parameters.

(4) Considering the concrete geometrical size of each component of the
corrugated core, certain novel and more realistic dynamical equations of motion for
sandwich structures are established. The band-gap behavior resulting from the
periodicity of the structure is studied. The effect of the structural and material
parameters on the stop-band is revealed.

(5) A generic bio-inspired limb-like structure is designed and its beneficial
nonlinear functions in vibration isolation analyzed. The asymmetry of the system is
shown to be very beneficial in tuning system stiffness property, which demonstrates
the intriguing and excellent nature of animal motion control systems and presents a
mechanics-based explanation to the usefulness of the asymmetrical structure of
animal limbs.

(6) A 6DOFs passive Stewart platform with a flexible stiffness is designed. The

proposed system realizes vibration isolation in all 6DOFs directions in a passive
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control way. It exploits a novel idea while designing the 6DOFs vibration isolator.

8.3 Future work

Based on the studies reported in this thesis, the following future works appear to
be worthwhile:

(1) How to realize the integration of various spectral elements and establish an
application software platform needs to be explored. This is meaningful to strengthen
the applicability of SEM

(2) As for the study on the periodic structures, the present thesis has focused on
theoretical analyses. Subsequent works will focus on experimental studies.

(3) As for the nonlinear system, nonlinear damping will be further investigated

and the study will be worthwhile.
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Appendix A.

The matrices R and H, in Eq. (2.18) has the following expression:

~kGA(-ik ) —KGA(k ~B,)  —kGA(-ik,~f,)  —KGA(K, - ,)

iEIzﬁlkt - iEIzﬂZkt iEIzﬂake - iE|Zﬁ4ke
R= : —ikeL : ik, L : —ikeL : ike L (Al)
kGA(—ik, — p)e™  kGA(ik, — p,)e""  kGA(-ik, — p,)e™™  «GA(ik, — f,)e"" |
—iEl B ke™" iEl B,ke"" —iEl Bk e " iEl B,k e""
1 1 1 1
H = '8_1 ﬁ 2 53 ﬁ 4 (A.2)
v e—lle e|k1L e_lkeL e|keL ' )

ﬁle—iktL 'BzeiktL ﬁBe_ikeL ﬂ4eikeL
The matrices R,, H, and T in Eq. (2.48) has the following expression:

_KG_A(al - ikvl) _K@(az - ikvz) —KG_A(Ol3 - ikv3) —KG_A(C(4 - ikv4)

R=| — Daik, . Dok, _ Da,ik,, - Da,ik,, (A3)
v KGA(O{1 - ikVi)eileL KGA((ZZ - ikvz)eik‘IZL K'GA(O-’s - ikva)eikVSL K’GA((ZA - ikVA)eikVAL ,
D,a,ik ,e"* D,a,ik ,e™?" D,aik e D,aik "
1 1 1 1
(Zl a'2 0(3 a4
H, gkl ezl ekl L (A.4)
aleikv1L azeiksz (Z3eik"3L a4eikv4L
0 0 0 O
- 10 -1 0 1
| = (A5)
0 0 0 O
0 1 0 -1

The matrix Gi, in Eq. (2.102) have the following form:

—a(ﬂf—vkyz) —a(ﬂé—vkyz) —all-v)k, 4, —al-v)k4,
-2/, A -2/, 4, - pk; + %) - pk; +4)
a(Z —k)et a(h—k)e”t  all-v)kAe™  al-v)kle™"
25, et 25, A8 pk; + )" pk; + )" (A6)

Gin (ky’ wn) =

Where o = Eh/(1-v%) and 8 = Eh/[2(1+v)].

161



Appendix B.

The & and ¢ in Eq. (6.31) have the following expression:

_ ka(cos® g, +cos’ 6, +2cos g, cos 6, sin 6 sin 6, —2cos’ §, cos” 6,)

B.1
& 4n? cos’ 6, cos® 6, (B.1)
g, = 3K, (L, cos* @,sin @, + L, cos® 6, cos 6, sin @
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The parameters in Eq. (6.33) can be expressed as
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Appendix C.
The coefficient a},, a;, and aj, in Eq. (7. 62) has the following expression:
. k. tan’@+k, ;2
== TN . d”, (C.1)
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The parameters in Eq. (7.63) can be expressed as

A=Y (=2,9) c4)

N (C5)
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