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 I 

Abstract 

Vibration isolation has been a hot topic in engineering for many years. Many 

vibration control technologies including active vibration control, passive and 

semi-active vibration control are being used in practice to realize good vibration 

isolation performance of structures and mechanisms. Passive vibration control has the 

advantages of simple construction, low cost, easy maintenance and the absence of a 

need for external power. This thesis proposes and analyzes a new, passive vibration 

isolator design. 

Two kinds of passive control techniques used in the isolation structures adopted: 

(i) periodic structures (phononic crystal) which possess band-gap properties and (ii) 

nonlinear mechanisms with nonlinear stiffness characteristics. 

The band-gap property is a very significant characteristic of periodic structures in 

view of its structural and/or material periodicities. The elastic waves that can 

propagate in the structure in some frequency ranges are referred to as the pass band. 

However, sound and vibration propagation is forbidden for certain other frequency 

ranges, called stop bands. This property endows periodic structures with the potential 

to control wave propagation, thus helping to realize passive vibration isolation 

control. 

In this study, the spectral element method (SEM) is adopted for dynamic 

modeling of periodic structures. The interpolation function used in SEM is based on 

an Eigen function of the equation of motion that can provide exact solutions in the 

frequency domain. If the structure has uniform geometry and material properties, it 

can be considered as only one spectral element, which means that the element number 

and the degree of freedom (DOF) can be reduced significantly. High solution accuracy 
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in the frequency domain and assuring the minimum DOF are the two main benefits 

derivable from SEM during a periodic structure analysis. 
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1 Introduction 

1.1 Background and Significance 

Vibration phenomena are often employed to change the natural environment by 

humans daily. Some kinds of vibrations are seen as nuisance in some contexts. With 

the development of science and technology, the demand for vibration reduction 

technologies has been increasing steadily in aerospace, marine and other fields. For 

instance, the flexible solar wing placed on a space station in orbit can vibrate owing to 

periodic thermal load, thus compromising the station’s safety. Likewise, the vibration 

generated by the dynamic contact conditions between the wheels and rails can 

adversely affect ride comfort and noise; the discomfort often increases with speed. 

Similarly, mechanical vibrations in the diving submersible chamber can reveal the 

location of a submarine, thus posing a security threat. In the field of engineering 

machinery, the working conditions of engineering machinery deteriorate as vibrations 

increase. Cabs suffer from the low-frequency excitations generated by uneven road 

surfaces as well as from any medium-high-frequency excitations resulting from 

imbalanced inertia forces generated by their engines. The vibrations can compromise 

the stability of the engineering machinery during operation and, hence, shorten its 

service life. Moreover, compromised comfort can adversely affect the working 

efficiency as well as health of the rider(s). The human body is very sensitive to 

vibrations in the 4-8Hz frequency range; vibrations in this range can be very 

uncomfortable in view of resonance effects.  Long-time working under such 

conditions can even lead to disease. All these examples point to the increasing 

practical importance of vibration isolation technologies.  
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As a field, vibration control has long presented challenging theoretical and 

practical issues. Current vibration isolation technologies can be classified into active, 

passive, and semi-active types. Among the difficulties associated with active vibration 

control are extremely high costs of manufacturing and implementation, increasing size 

and weight, potential failure due to actuator and sensor fault or saturation and, finally, 

the increasing complexity of analysis. Compared with active and semi-active vibration 

control technologies, passive vibration control technology has the advantages of 

permitting simple construction, low cost, easy maintenance and independence from 

external power. The study of the associated structures with passive vibration isolation 

performance has been found to have significant application value and hence has 

received considerable attention from numerous scholars. 

 

 

 

 

 

 

 

To solve the above issues caused by vibration, we adopt the following two 

solutions. We start by noting that many kinds of periodic structures are used in 

engineering applications, e.g., lattice structures in flexible solar wings, skin structures 

used in high-speed trains and the folding sandwich panels used in crashworthy hull 

structures (see Fig. 1.1). How to suppress the vibration phenomena arising in periodic 

structures is a particularly interesting and a potentially useful topic. 

Periodic structures possess unique dynamic characteristics; frequency pass-bands 

Figure 1.1 Periodic structures using in the engineering application such as (a) lattice 

structure in flexible solar wings, (b) skin structure of high-speed trains and (c) folding 

sandwich panel in crashworthy hull structures 
[1]

. 

(a) (b) (c) 
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and stop-bands in particular. Due to the unique frequency pass-band and stop-band 

properties, periodic structures can exhibit very attractive vibration isolation 

performance. The elastic waves and vibrations in frequency pass bands can propagate 

through the entire structure. When the frequencies of elastic waves and vibrations are 

in the stop-bands or band-gaps, they cannot propagate through the structure. This 

unique feature of periodic structures can make them act as vibration isolators in 

certain frequency ranges without the need for external energy. By designing and 

tuning the width and location of the stop-bands, periodic structures can provide the 

ability to control wave propagation in the structure. 

As for engineering machinery, although traditional linear system 

theories/methods have been applied often in the design and study of vibration 

isolators, the design of vibration isolators has proved to be difficult. For instance, an 

increase in linear damping will lead to a smaller resonant peak in a linear system but 

could deteriorate vibration isolation performance at frequencies higher than the 

resonant frequency. A bigger mass and/or a smaller stiffness are required to assure a 

smaller resonant frequency, which should benefit isolation performance. However, it 

will make the system cumbersome or has a lower loading capacity. To solve these 

problems, the ideal stiffness of an isolation system should be high in a static state but 

low in a dynamic state. This implies that the system’s stiffness should possess 

nonlinear characteristics. 

The problem in our study is to design new types of vibration isolation structures 

by exploiting the band-gap property of periodic structures and the nonlinearities of 

nonlinear structure. Our work demonstrates that vibrations can be controlled in a 

passive manner by using these kinds of structures. Our objective is to investigate the 

vibration isolation in a manner meaningful to engineering applications. 
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1.2 Research Status of Periodic structure  

In this thesis, the vibration isolation performance of periodic structures is one of 

the research objectives. In this section, the periodic structure and the research method 

will be reviewed.  

1.2.1 Periodic structure 

Structures and/or material parameters exhibiting periodicity are called periodic 

structures. The minimum unit in a periodic structure is called the cell. Fig. 1.2 shows a 

simple periodic structure formed by connecting material A and material B, so it has 

periodicity in the material parameter. Many researchers have studied periodic 

structures with different configurations in recent years. In this subsection, the lattice 

structure and the sandwich structure will be examined in detail. 

 

 

 

(a) Lattice structure 

The lattice structure (Fig. 1.3) contains rods or beams exhibiting useful 

mechanical performances such as anisotropy, negative Poisson’s ratio and band-gap. 

Lattice structures usually contain rectangular, triangular, hexagonal, Kagome and 

chiral configurations. 

 

 

 

 

 
Figure 1.3 Lattice structure. 

Figure 1.2 Schematic diagram of periodic rod structure and the unit cell. 

x A B 

a2 a1 

A B A B A B 

Exciting point Pick-up point R 
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The band-gap property has been analyzed by many researchers [2-10] in the 

context of one dimensional (1D) and two dimensional (2D) lattice structures. Yilmaz 

and Hulbert [2, 3] researched 2D lattice distributed inertial mass bodies. Their results 

indicated that stop-bands of this kind of structure are mainly present in the low 

frequency domain, and the appearance of the stop-band has no relationship with the 

boundary condition and the direction of the exciting force. Robillard et al. [4] 

designed a new lattice structure using a material exhibiting expansion deformation in 

the magnetic field. They could change the band-gap property of this kind of structure 

by adjusting the surrounding magnetic condition. They were also able to change the 

band-gap property without direct contact with the structure. Spadoni et al. [5] studied 

the chiral lattice. They analyzed the effect of the configuration on elastic wave 

propagation, frequency dispersion and the band-gap property. Zhao and Yuan [6] 

studied the 2D complex lattice and showed that the stop-bands of the complex lattice 

appeared at lower frequencies than those appearing with simple lattices. Xiao et al. [7] 

researched the periodic structure constituted by the spring oscillator, and studied the 

principle of the band-gap property. 

As for the three dimensional (3D) lattice structures, most researchers have 

focused on the following configurations: simple cube, face-centered cubic structure, 

body-centered structure and close-packed hexagonal structure [11-16]. Taniker and 

Yilmaz [11] studied the band-gap property of the face-centered cubic and 

body-centered structures. The stop-band in the lower frequency domain becomes 

wider by adding an inertia amplifier system. Meanwhile, they reduced the vibration 

amplitude by properly selecting the number of cells. Zhang et al. [12] studied 3D 

lattices in which the matrix is plastic and the inclusions are the spherical or square 

steel. The results showed that the stop band becomes wider, just as in the case of 2D 
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structures. Pourabolghasem et al. [13] experimentally examined the existence of the 

full band gap associated with the triangle lattice. Wang et al. [14] investigated the 

band-gap property of 3D honeycomb phononic crystal structures and analyzed the 

effect of the parameters of the harmonic oscillator on its band-gap properties. 

(b) Sandwich structure 

 

 

 

 

 

 

Sandwich panels (Fig. 1.4) represent one type of composite structures. They are 

usually composed of an upper plane, a lower plane and the core. Depending on the 

performance of the core structure, the performance of a sandwich structure can be 

different. Some kinds of sandwich structures can isolate vibration and reduce noise 

and have good thermal conductivity and impact resistance [17-19]. Except that, 

sandwich structures usually contain large porosity, which can reduce the mass and 

increase specific strength and stiffness. In view of these advantages, sandwich 

structures have found a variety of applications and have become the subject of 

research for many researchers. Sandwich panels with a variety of cores have been 

used widely in fields such as aerospace, high-speed trains and civil engineering. 

Corrugated structures are preferred in sandwich panels in view of their 

light-weight cores. Sandwich panels with corrugated cores have their voids arranged 

in one direction that enables fluid flow in that direction [20]. They have great 

scientific potential because of their superior structural dynamic characteristics. For 

Figure 1.4 Two types of sandwich structure. 
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example, they are widely used in buildings and cross flow heat exchangers. In view of 

their compactness and high thermal efficiency [21-23], heat exchangers made of 

sandwich panels with corrugated cores have been applied extensively in a variety of 

engineering fields. 

Some scholars have focused on the dynamic behavior of sandwich structures. 

The analysis of sandwich panels is complicated due to the variation of geometrical 

forms of the cores. Liang et al. [24] studied weight optimization design of corrugated 

structures in transverse and axial directions. They investigated the corrugation length 

and found that the face sheet thickness is the most effective parameter concerning the 

axial stress of the face sheet. Jayachandran et al. [25] researched the buckling of 

sandwich plates by modeling them as thin plates. Valdevit et al. [26] performed an 

experimental and computational study on the bending response of steel sandwich 

panels with corrugated cores subjected to both transverse and longitudinal loads. 

Radford et al. [27] conducted projectile impact tests on triangular corrugated 

structures and found that corrugated sandwich plates exhibited the highest shock 

resistance among the tested plates. To study core behaviors, various constitutive 

models of the equivalent continuum of square-honeycomb have been established 

through the theoretical analyses and numerical simulations by Xue et al. [28, 29] and 

Zok et al. [30].  

1.2.2 Review of the method 

The band-gap property of periodic structures has attracted much attention from 

scholars. According to different research objectives, the analysis method was varied. 

We will review the applications of different methods used in studies on periodic 

structures (phononic crystals). 
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(a) Finite element method 

Among the traditional methods, the finite element method (FEM) has an 

enormous application range. This approach is highly adaptable to structure and load. 

The precision of the FEM solution is dependent on the mesh quality. However, the 

accuracy of the results deteriorates at high frequencies. 

Wang et al. [31] investigated the 2D phononic crystal structure with cross-like 

holes using the FEM to analyze the influence of the geometric parameters of the holes 

on the band-gap properties. Li et al. [32] evaluated the propagation of elastic waves in 

a phononic crystal slab with Archimedean tilings based on the ABAQUS code and 

certain user subroutines. The influence of localized resonance on the band-gap 

property of the two-dimensional periodic composite structure has been investigated 

using FEM [33].  

Moreover, dynamic FEM and the wave FEM have also been adopted in the study 

on periodic structures. Nobrega et al. [34] studied the band-gap properties of elastic 

metamaterial rods with spatial periodic distribution and periodically attached local 

resonators using the wave FEM. Liu and Gao [35] presented an explicit dynamic FEM 

that is capable of analyzing band structures in 2D phononic crystals. 

(b) Plane wave expansion method 

Plane wave expansion is a commonly used method in the photonic crystal 

research [36, 37]; it has extensive applications in the study of phononic crystals. The 

method expands the displacement and the material constant to plane waves in the 

reciprocal lattice vector space, and superposes the series [38-46]. This method is 

usually used to solve the band-gap problems encountered in solid-solid, liquid-liquid 

and gas-gas type periodic structures. 

Laude et al. [38] investigated surface wave propagation in 2D piezoelectric 
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phononic crystals using the plane wave expansion method and analyzed the band-gap 

properties of the associated structures. Hou and Assouar [39] constructed a plate with 

two-dimensional phononic crystal layer coated on uniform substrate. Based on the 

plane wave expansion method, they studied the lamb wave propagation. Baboly et al. 

[40] investigated the solid-solid phononic crystals using an improved plane wave 

expansion method. Compared with the conventional plane wave expansion method, it 

exhibits faster convergence rates. Following the plane wave expansion method, 

Kushwaha and Halevi [41] computed the band gap properties of two-dimensional 

structurea with periodic arrays of long water cylinders surrounded by mercury host. 

(c) Transfer matrix method 

The transfer matrix method has been utilized to analyze band gap problems 

arising in1D and a few 2D periodic structures. For 3D periodic structures, it is usually 

difficult to analyze. Based on the continuity conditions, the method establishes the 

transfer matrix of the structure, and then is used to solve periodic structures. 

Compared with the plane wave expansion method, the calculation burden of the 

transfer matrix method is smaller, but the method also has a high precision. 

Based on the transfer matrix method, Li et al. [47] investigated the problem of 

wave localization in disordered periodic multi-span rib-stiffened plates. Li and Wang 

[48] discussed 2D wave propagation and localization in disordered periodic layered 

piezoelectric composite structures. Fomenko et al. [49] studied the propagation of the 

elastic wave (the P wave and the SV wave) in 1D phononic crystals. Combining the 

transfer matrix method with the Bloch theorem, Liu et al. [50] investigated the 

behavior of in-plane and out-of-plane wave propagation in phononic crystals, and then 

analyzed the band-gap properties of the structure. Lin et al. [51] calculated the 

bending vibration band structure of 1D phononic crystal using a modified transfer 
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matrix method. Cetinkaya and Vakakis [52] investigated the stress wave propagation 

of finite bi-periodic layered structures using the transfer matrix method. They 

analyzed wave propagation and attenuation in the 1D and 2D layered media using 

analytical and numerical methods. 

(d) Multiple scattering method 

The multiple scattering method is often applied in the solution of periodic 

structures with distinctive shapes [53-60]. However, this method is rarely used for the 

solution of periodic structures except for structures with the cylindrical and spherical 

shape. The band-gap properties of periodic structures depend on Mie scattering 

between each elastic body involved. Waves of other scatterers can be incident on to a 

single scatterer. The characteristic equation of the structure can be calculated and the 

band-gap property of the structure analysed. 

Utilizing the multiple scattering method, Cai et al. [53] investigated the band-gap 

properties of 2D cylindrical scatterers with tetragonal structure arrangements under 

long-wave conditions. Based on an analysis of the system periodicity and the Mie 

scattering coefficient, the analytical formulas of the equivalent wave speed were 

obtained. At the Nano scale, Liu et al. [54] studied the interface or surface stress effect 

in two-dimensional phononic crystals. Basing on numerical simulations, they 

demonstrated that the interface or surface stress effect was significant when the 

characteristic size was reduced to nanometers. Sainidou et al. [55] investigated wave 

propagation through phononic crystals consisting of metallic spheres and air. They 

analysed modes localized on the surfaces of the structure and studied the influence of 

physical parameters on the band-gap properties. The results are useful in the design of 

devices related to frequency filtering and wave guiding. Mei et al. [56] focused on the 

study of the out-of-plane propagating elastic waves in 2D phononic crystals. Qiu et al. 
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[57] applied the method to two-dimensional periodical composites. They calculated 

the reflection and transmission coefficients for elastic waves through finite slabs, and 

then obtained the transmission coefficients for phononic crystals made up of solid and 

fluid components.  

(e) Boundary element method 

The boundary element method is a numerical method developed subsequent to 

FEM. It is usually regarded as an important supplement of FEM. The method divides 

elements lying on the boundary of a given domain and a function meeting the control 

equation is utilized to approximate boundary conditions. In view of the advantages of 

the low unit number and the simple data preparation, this method has been used for 

the computation of period structures in recent years [58-63]. 

Based on the boundary element method, Li et al. [58] computed the band gaps of 

two-dimensional periodic structures. Phononic crystals of this kind can be either an 

array of solid scatterers embedded in a fluid matrix or an array of fluid scatterers 

embedded in a solid matrix. The boundary integral equations or a periodic unit cell are 

then established. Li et al. [59] demonstrated the validity of the method for the solution 

of flow-solid phononic crystal problems. They calculated periodic structures with 

solid cylinders in a solid matrix and established the linear Eigenvalue equation 

dependent on the Bloch wave vector and examined the convergence and the 

computing speed of the method. Zhu et al. [60] analysed the influence of interface 

imperfections on the wave’s propagation behavior inside a periodic structure. 

Combining the boundary element and the contour integral methods, Gao et al. [61] 

studied two-dimensional elastic periodic structures. Using the Bloch theorem, they 

investigated the nonlinear Eigenvalue problem in a unit cell.  

(f) Other methods 
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In addition to the methods enumerated above, the wavelet method, the 

lumped-mass method, the finite-difference time-domain method and the 

Dirichlte-Neumann mapping method are used typically for periodic structure analysis. 

Wang et al. [64] investigated the propagation of flexural elastic waves in the 

infinite quasi-one-dimensional beams using an improved lumped-mass method. Yan et 

al. [65-68] studied wave propagation in two-dimensional phononic crystals using the 

wavelet method, and then they analysed the defect modes caused by point and line 

defects. Based on the Dirichlet-to-Neumann map, Li et al. [69] investigated the square 

or triangular lattices of circular solid cylinders in a fluid matrix. The method 

expanded the cylindrical wave in a unit cell and transformed the problem to a linear 

Eigenvalue problem. Cao et al. [70] studied the two-dimensional phononic crystals 

consisting of liquid cylinders in a solid matrix using the finite-difference time-domain 

method. Compared with the conventional plane wave expansion method, the method 

converges fast.  

1.2.3 Spectral element method 

The spectral element method (SEM) was firstly applied in the calculation of fluid 

mechanics in the 1980s [71]. The method combines the FEM and the spectral method, 

and combines the advantages of the two methods. The strengths of the SEM include 

extraordinary precision, fast convergence speed and fewer unit numbers. Compared 

with FEM, SEM expands the solution using the orthogonal polynomial as the basis 

function. Due to the orthogonality property of the basis function, the convergence 

speeds increase during solution. The ―spectrum‖ constituting the solution is different 

when the method uses different orthogonal polynomials. The Chebyshev polynomial 

[72], the Lagrange polynomial [73] and the Fourier polynomial [74-80] are usually 
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used as a ―spectrum‖ on which the solution can be expanded. The first two kinds of 

polynomial, in particular, have received much scholarly attention.  

The SEM based on the Fourier transformation (called the SEM henceforth) 

combines the advantages of the FEM, the spectral method and the dynamic stiffness 

method. It combines the flexibility of discretization and integration of FEM, fuses the 

reduction of the DOF from the dynamic stiffness method, and merges the wave 

superposition involved in the spectrum method. 

The FEM is a widely used method in engineering. The accuracy of this method is 

dependent on the mesh quality adopted. The mesh quality requirement becomes 

significantly critical during solutions in the high frequency range, due to the small 

wavelength. Practice shows that the size of one mesh should be at least 10 times the 

corresponding wavelength with the highest frequency, in order to guarantee high 

precision results. However, the associated enormity of calculation cannot be ignored. 

In FEM, the displacement solution is expressed by the shape function and the node 

displacement. The interpolation function, which has no relationship with the 

frequency, has the polynomial form. Based on the resulting mesh refinement and the 

increase of the shape function order, the accuracy of the solution can be effectively 

improved. However, the two methodologies will increase the amount of calculations 

needed. 

The dynamic stiffness method derives the shape function based on the solution of 

the wave equation. The shape function is related to the frequency. The stiffness matrix 

deduced from the shape function is also related to the frequency. Since the method is 

based on the wave equation and the mass is accurately distributed on the element, it 

does not have a mass matrix, and the inertia parameters are included within the 

stiffness matrix. For these reasons, this method is called the dynamic stiffness method. 
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The advantage is that it can effectively reduce the number of degrees of freedom 

(DOF) of the structure. For structures with uniform structural and material parameters, 

it can be expressed by one wave equation, i.e., the solution of the structure in the 

frequency domain can be expressed just by using only one element. Because of the 

minimal element number, the DOF of the structure is greatly reduced. The method 

exhibits high precision while dealing with simple structures. However, the method 

cannot be applied as widely as FEM for the solution of complex structures with 

complex boundaries. 

The spectral method is an analytical method operating in the frequency domain. 

In this method, the solution of the differential equation can be seen as the 

superposition of an infinite number of waveforms with different frequencies. The 

spectral component is the Fourier transform coefficient. Once the solution in the 

frequency domain is obtained, the inverse Fourier transform is applied to the solution 

in the time domain. Due to restrictions arising from the continuous Fourier transform 

in the application, the actual calculations usually use the discrete Fourier transform, 

which adopts a finite number of wave superpositions while solving the equations. The 

use of the fast Fourier transform (FFT) during the programming stage makes the 

calculations economical and fast. 

Based on the above three methods, the following characteristics of SEM can be 

identified. Firstly, the whole structure can be dispersed and combined. After 

completing discretization, the nodal displacements can be calculated. The non-nodal 

displacement can be obtained from the shape function. Next the solution for the whole 

structure can be obtained. Secondly, the SEM has the minimum DOF. Structures with 

uniform structural and material parameters can be regarded as single spectral elements. 

Divisions between the spectral elements have no relationship with the size of the 
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structure. Thus, this method does not need to divide more elements while addressing 

large size structures. The total DOF can be greatly reduced due to the small element 

number. Similar to the dynamic stiffness method, SEM is based on the wave equation 

of the structure, so the mass of the structure is accurately distributed across the 

element. The spectral stiffness matrix contains the inertial and stiffness factors at the 

same time. Thus, it ensures the high accuracy results. Lastly, in SEM, the wave of 

each frequency is seen as a ―spectrum‖. The dynamic response of the structure is the 

superposition of a finite wave shape. Based on the discrete Fourier transform the 

displacement field of the structure is converted from the time domain into the 

frequency domain, so the solution can be achieved in the frequency domain. 

As summarized in [75], the advantages of the SEM include extremely high 

accuracy, smallness of DOF, low computation cost and effectiveness in the problem in 

the frequency domain. The disadvantages include strict requirement for exact wave 

solutions. Further, because the principle of superposition does not hold, the method 

cannot be applied directly to time-variant and nonlinear systems. 

1.3 Nonlinear vibration isolator 

In recent years, some novel isolation methods based on nonlinear dynamics 

theory have been developed. The methods have demonstrated excellent isolation 

performance; they are especially applicable for vibration isolation over wide 

frequency ranges although they are particularly good at low frequencies. Some earlier 

examples can be seen in [81‒84] while more recent results can be seen in [85‒93]. As 

summarized in [81], the influence of nonlinearity on the performance of a vibration 

suppression system is manifested as shifting the resonance frequency, jump 

phenomena, chaotic motion and internal resonance, and excellent damping 
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characteristics covering a wide spectrum of vibration frequencies. 

1.3.1 Quasi-zero-stiffness system 

A quasi-zero-stiffness system has recently been studied in [94‒101], where the 

negative stiffness realized by horizontal springs is designed to counteract the positive 

stiffness contributed by vertical springs so that quasi-zero stiffness is achieved. The 

system is good at vertical vibration isolation in a small region around the equilibrium 

state due to its quasi-zero stiffness property, but would be of very limited use in large 

vibration motion, heavy load and robustness of stability. Moreover, to exploit the 

nonlinear quasi-zero-stiffness property, Robertson et al. [102] developed a quasi-zero 

stiffness magnetic spring system. A nonlinear magnetic low frequency vibration 

isolator is studied in Xu et al. [103]. Liu et al. [104] designed a quasi-zero-stiffness 

(QZS) isolator with Euler buckled beams to form the negative stiffness corrector. 

These QZS isolators can lower the overall dynamic stiffness without sacrificing the 

supporting capacity. Active control methods employing the time-delay influence have 

also been studied for improving the robustness and the transmissibility performance 

of the QZS vibration isolation systems in [105]. Moreover, certain ultra-low 

frequency vibration isolation devices with hybrid lever-type structures have been 

studied in [106].  

1.3.2 X-like structure 

Many X- or Z-like shape structures can be found in nature. For example, the feet 

structures of bird skeletons have X-like shapes and then Z-like shapes for legs, see Fig. 

1.5(a). Compared with the Z-like structure, the X-like structure is much easier to 

implement in engineering practice. These kinds of Z- or X-like shape structures can 
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also be found in bone structures. The cranial bone shown in Fig. 1.5(b) has two 

outside layers and sponge-like inside structures. The inside structure (which contains 

many inclination links with Z- or X-like shape) is similar to a limb-joint system for 

supporting outside layers. Similar ―sponge bones‖ can be seen in almost all animal 

bone structures. The interlayer Z- or X-like shape structures are light-weight and 

exhibit good vibration isolation performance. This is why legs or limbs of animals can 

suppress vibration and mitigate shock impact, while osteoporotic bone structures are 

obviously weak in terms of impact protection due to loosened internal connections. 

 

 

 

 

 

 

 

A scissor-like structure (X-like shape structure) has been studied recently in 

[107–109] for achieving structural nonlinearity in vibration control. The work 

presented that the scissor-like truss structure could bestow vibration isolation systems 

with very beneficial nonlinearities that could lead to high static-low-dynamic stiffness 

properties. The beneficial nonlinear properties in dynamic stiffness and damping 

characteristics have been discussed in [109] along with experimental validation. 

1.3.3 Multi-DOF vibration isolator 

High performance and passive multi-DOF vibration isolators have been reported 

seldom in literature. Multi-DOF vibration isolation is often achieved via active control. 

Figure 1.5 (a) A bird skeleton containing X-like and Z-like shape structure 

and (b) cranial bone. 
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X-like shape 
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A Delta robot, which is a 3-DOF parallel robot, considering the kinematic anisotropic 

property for better isolation performance is presented in [110]. A fully suspended 

5-DOF active magnetic bearing system with a decentralized PID neural network 

control for all five axes is developed in [111]. Active six-axial hexapods or Stewart 

platforms are studied in [112-114] containing six struts for attenuation of vibration in 

six DOFs in both the low and high frequency range. Active isolation platforms used in 

aerospace engineering mainly implement micro-vibration attenuation in high 

precision instruments, e.g., space-based optical interferometers [114, 115] and solar 

optical telescopes [116]. The Stellar Interferometer Mission required 10-nm level 

stabilization of optical elements distributed across a 10m flexible structure under the 

disturbance of the spinning reaction wheel assemblies [117]. The six-axial hexapod 

vibration isolation platforms with each strut having the active optical control strategy 

provide vibration attenuation along six degrees of freedom.  

Usually, passive multi-DOF vibration isolation can be realized by applying 

various materials and structural designs. Noticeably in aerospace engineering, 

Kamesh et al [117] designed a low frequency flexible space platform consisting of 

foldable continuous beams for mounting the reaction wheel assembly, which can be 

effectively used to isolate disturbances from the reaction wheel emitted into high 

precision payloads of onboard space-crafts. The dynamic stiffness of the folded-beam 

isolator is kept small so it can provide vibration isolation at low frequencies. Passive 

vibration isolators generally exhibit high reliability performance and no energy 

transmission, which is very satisfactory for the aerospace, dynamic environment. 

However, the low frequency vibration control effect using pure passive isolation 

techniques is often not sufficiently effective. To attain better isolation performance, 

some semi-active control methods have been developed by combining the advantages 



 19 

of passive and active methods. Examples with a semi-active or hybrid controlled 

hexapod platform or otherwise [118-120] can be seen in aerospace engineering. 

1.4 Research gaps 

Numerous investigators of lattice structures have several impressive research 

achievements. In this study, the 2D and 3D lattice and the sandwich structure will be 

further investigated. The material distribution and the structural parameter will be 

designed and the piezoelectric material will be added to enhance vibration isolation 

performance while making the structure more functional. 

The traditional methods used in solving the phononic crystal are inapplicable for 

complex periodic structures such as the one shown in Fig. 1.1, Although the structure 

can be solved by FEM, the computational cost will be substantially increased as the 

size or number of the sub-structures increase. Moreover, solution accuracy 

deteriorates when the frequency becomes higher. In short, there is a need to explore a 

suitable and efficient method capable of studying the dynamic behaviors of this kind 

of light-weight periodic structures.  

Two issues should be taken into account during the establishment of the efficient 

dynamic model. Firstly, the periodic structure shown in Fig.1.1 is complex because it 

contains several basic structures such as rods and beams. Secondly, highly accurate 

solutions in the frequency domain are required to analyze the dynamic behavior of the 

system. In the SEM, one-element modeling is sufficient to represent a uniform 

structure member with any size, without structural and material discontinuities inside, 

which makes the system have the minimum number of elements. The exact spectral 

element matrix is frequency dependent and can be considered as a mixture of the 

inertia, stiffness and damping properties of an element, which insures highly accurate 
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results in the frequency domain. Adopting the SEM to study the complex periodic 

structures composed of a large number of rods and beams turns out to be feasible and 

efficient; this is an observation that has remained unreported so far.   

As for the sandwich structure, the core was usually treated as a homogeneous or 

an orthogonally anisotropic material in previous researches. Further, the equivalent 

material parameters of the lattice core were adopted. However, this ignored the 

micro-configuration of the core, hence leading to inevitable inaccuracies. Equally 

important, the periodicity of the system leads to the band-gap property. In contrast, the 

SEM can provide very accurate dynamic solutions while using a limited number of 

elements. The SEM is an effective approach for investigating the band-gap properties 

of sandwich structures; again a fact that has not been reported. 

As for the study on the nonlinear mechanism, it is worth mentioning that it has 

yielded some significant research achievements. However few corresponding reports 

on asymmetrical X-like shape isolator and multi-DOF isolators using X-like shape 

structures have been found so far. 

An asymmetric X-like shape structure will be investigated inspired by the limb 

structures of animals/insects in motion vibration control will be studied in this thesis. 

This should further the understanding of animal motion control systems. Note that the 

asymmetric X-like shape structure is a more general structure because of the 

asymmetry, which can be simplified as a scissor-like structure.  

Furthermore, a novel nonlinear and passive 6DOFs vibration isolator following a 

Stewart platform configuration but applying the novel X-shape structure as legs will 

be investigated. The X-shape structure is adopted in order to replace the legs with the 

active actuators found in traditional Stewart platforms. The nonlinearity introduced by 

the X-shape structures can greatly enhance the performance of the 6DOFs Stewart 
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platform in a passive manner.  

The asymmetric X-like shape structure and the multi-DOF isolator using the 

X-shape structures will also be developed and the corresponding static and dynamic 

mechanical performances analyzed. The vibration isolation performance due to the 

nonlinear stiffness property will be subjected to a systematic investigation. 

1.5 Outlines of thesis 

The thesis is organized as follows. The periodic structure is designed and 

analysed in chapters 2-5. The basic spectral element such as the bending element, 

tensional element, torsional element, piezoelectric element and the plate element is 

deduced in chapter 2 using the SEM. This chapter is the theoretical basis of the 

chapters 3, 4 and 5. Vibration isolation properties of the 2D lattice, the 3D Kagome 

lattice and the sandwich structure are displayed in chapters 3, 4 and 5, respectively. 

The vibration isolator designed by the structure nonlinearity is analysed in chapter 6 

and chapter 7. In chapter 6, a 1DOF isolator called bio-inspired limb-like mechanism 

is introduced. A 6DOFs vibration isolator based on the Stewart platform is introduced 

in chapter 7. A conclusion of this thesis is displayed in chapter 8. 
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2 Spectral element formulation 

In this chapter, the classic spectral element such as the bending element, 

tensional element, torsional element, piezoelectric beam element and plate element is 

deduced in detail. This chapter is the theory basis of the following three chapters. 

2.1 Bending element 

In this subsection, the analysis is focused on the bending vibrations in the x – y 

plane as shown in Fig. 2.1. Based on the Timoshenko beam theory, the spectral 

bending element model is established. Timoshenko beam model includes the effects 

of rotatory inertia and shear deformation due to transverse shear forces.  

 

 

 

 

The free vibration of the Timoshenko beam model is described by 
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where v(x, t) is the transverse displacement in the y direction, ζz(x, t) is the rotation 

around the z axis, E is the Young’s modulus, ρ is the mass density, G = E / [2(1+ υ)] is 

the shear modulus with υ being the Poisson’s ratio, Iz is the area moment of inertia 

about the bending axis (z axis), and κ is the shear correction factor depending on the 

shape of the cross section [121]. 

Figure 2.1 Bending element in the x – y plane. 
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The general solutions of Eqs. (2.1) and (2.2) can be given by the spectral 

representation [74] 

tω

n

N

n

n
nωxV

N
txv

i
1

0

e),(
1

),( 




 ,                   (2.3) 

tω

n

N

n

znz
nωxΘ

N
tx

i
1

0

e),(
1

),( 




 ,                  (2.4) 

where Vn (x, ωn) and Θzn(x, ωn) are the spectral displacements of v and ζz, N is the 

number of samples in the time-domain. For the maximum efficiency of the numerical 

computation in the FFT algorithm, the optimal N is required to be an integer power of 

2. 

Substituting Eqs. (2.3) and (2.4) into Eqs. (2.1) and (2.2), one can obtain (for 

simplification the subscript n is omitted) 
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The general solutions of Eqs. (2.5) and (2.6) can be given as follows: 
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where B and β are the wave mode coefficients. 

Substituting Eqs. (2.7) and (2.8) into Eqs. (2.5) and (2.6), one can obtain four 

roots by solving the dispersion equation. They have the following forms: 
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where 4/1)(
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From Eqs. (2.7) – (2.10), the wave mode coefficient β is deduced as 
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Based on the four roots, the general solutions of Eqs. (2.7) and (2.8) can be 

written as 
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Fig. 2.1 shows the bending element in the local coordinate system with the 

element length L. The spectral nodal displacements and forces are written as 
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where the spectral components of the transverse shear force and bending moment are 

defined by 
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Based on Eq. (2.14), the relation between the nodal forces and displacements is 

given by  
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where dv = [V
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is the nodal force vector, and Sv is the spectral stiffness matrix for the bending element 

in the x – y plane which can be written as 

1)(  vv RHS  ,                       (2.18) 

where Sv depends on the frequency. The 4×4 matrices R and Hv contain the 

propagation phase information at x = 0 and x = L and the coefficient βj. Besides, the 

matrix R also contains the material parameters. The details of the matrices R and Hv 

are given in Appendix A. 

 

 

 

 

The derivation of the bending components in the x – z plane (see Fig. 2.2) follows 

a similar procedure as that of the bending components in the x – y plane. The relation 

between the nodal forces and displacements of the bending element in the x – z plane 

is deduced as the following expression: 
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is the nodal force vector as shown in Fig. 2.2, and Sw is the spectral stiffness matrix 

for the bending element in the x – z plane. 

2.2 Tensional element 

The spectral formulation of the tensional element bases on the equation of 

motion 

Figure 2.2 Bending element in the x – z plane. 
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where u(x, t) is the displacement in the x direction. 

By the same way as the bending element, the relation between the nodal forces 

and displacements of the tensional element can be obtained as the following form: 
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force vector as shown in Fig. 2.3, and Su is the spectral stiffness matrix for the 

tensional element, which has the following expression: 
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where Eρωku / . For more detailed derivation procedure, please refer to Ref. [74]. 

 

 

 

2.3 Torsional element 

The equation of motion of the torsional element can be expressed as the 

following form:  
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where ζx(x, t) is the rotation angle around the x axis. 

 

 

 

Due to the similarity between Eqs. (2.20) and (2.23), the relation between the 

Figure 2.4 Torsional element around the x axis. 
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nodal forces and displacements of the torsional element in the frequency-domain can 

be written as 

xxx   FdS )( ,                      (2.24) 

where dζx = [Θx
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 is the nodal rotation vector, Fζx = [Mx
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 is the nodal 

torsional moment vector as shown in Fig. 2.4, and Sζ x (ω) is the spectral stiffness 

matrix for the torsional element, which has the following form: 
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where Gk x /   and Iρ is the polar moment of inertia of the cross-sectional area. 

2.4 Piezoelectric beam element 

2.4.1 Modeling 

 

 

 

 

 

The piezoelectric beam as shown in Fig. 2.5 is considered in this subsection. The 

piezoceramic layers are perfectly bonded on the base beam. The length and width of 

the piezoelectric beam are L and b. The thickness of the base beam is hb and 

piezoceramic layers is hp. The top and bottom piezoceramic layers are poled in the 

opposite thickness directions [122, 123]. The series connection of the electrical circuit 

is shown in Fig. 2.5(c). Assume that the dynamic stiffness matrix of the tension 

component is uncoupled with that of the bending component. In this subsection, pure 

bending motion is the main objective to be discussed. 

Figure 2.5 (a) Bimorph piezoelectric beam, (b) cross-sectional view and (c) electrical 

circuit representing the series connection of the piezoceramic layers. 
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The piezoelectric beam element is considered to be a Timoshenko beam. So the 

constitutive equations of the piezoelectric layers can be given in the matrix form as 
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where εp and γp are the normal and shear strains, σp and τp are the normal and shear 

stresses, D3 is the electric displacement, E3 is the electrical field intensity in the 

piezoceramic layer across the thickness, 
ES11  and 

ES55  are the elastic compliance 

constants, d31 is the piezoelectric constant, and T
33  is the permittivity constant. The 

superscripts E and T denote that the corresponding constants are evaluated under 

constant electric field and constant stress conditions. 

Based on the stress–strain relations and the Hamilton’s principle, the equations 

of motion of the piezoelectric beam are written as [122] 
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where v(x, t) is the transverse displacement, ζ(x, t) is the rotation, )(ˆ tv  is the voltage 

drop, ppbb bhGbhGGA 2  with E
p SG 55/1 , ppbb bhbhA  2  and 

222 hAIII ppppbb    with 12/3
bb bhI  , 12/3

pp bhI   and 2/)( pb hhh  . For open 

circuit, 33
2
31

22
11 /2)(2 hhAhAICIED ppp
D

bbt  , and for short circuit, 

)(2 2
11 hAICIED pp
E

bbt   where )/( 2
3133113311 dSC TETD   , )/( 2

3133113131 dSdh TE    and 

EE SC 1111 /1 . The superscripts b and p denote the constants of the base beam and 
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piezoceramic layer. 

Eq. (2.29) represents the Kirchhoff’s law which is applied to the electrical circuit, 

and R is the electrical load resistance which ranges from 100Ω to 10MΩ [122]. For 

the series connection condition, the capacitance Cp and the dependent current source 

term )(ti s
p  can be extracted as 

p

S

p
h

Lb
C 33

 ,                        (2.30) 
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where 
ETS Sd 11

2
313333 /  . 

The general solutions to Eqs. (2.27)–(2.29) are 

ωtωxVtxv ie),(),(  ,                      (2.32) 

ωtωxΘtx ie),(),(  ,                     (2.33) 

ωtωxVtxv ie),(ˆ),(ˆ  ,                     (2.34) 

where ),(ˆ xV  is the spectral displacement of ),(ˆ txv . 

Substituting Eqs. (2.32)–(2.34) into Eqs. (2.27)–(2.29), one can obtain 
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 )0()(ˆ ΘLΘgV  ,                    (2.37) 

where )]2/i1(/[i 1131 p

E RCSbhRdg   . 

The transformation of the physical variables from the time-domain to the 

frequency-domain has been realized through Eqs. (2.32)–(2.34). To transform the 

variables from the spatial-domain to the wavenumber-domain, the displacement and 
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rotation can be assumed as 

xkBV ie ,                         (2.38) 

xkBβΘ ie ,                         (2.39) 

where k  is the wavenumber, and B  and   are the wave mode coefficients. 

Substituting Eqs. (2.38) and (2.39) into Eqs. (2.35) and (2.36), one can obtain 

four solutions of the characteristic equation as 

tkk 1 ,  tkk 2 ,  ekk 3 ,  ekk 4 ,      (2.40a, b, c, d) 

where 
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(2.41b) 

From the characteristic equations, one can also obtain the coefficient β  as 

j
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A
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



i
i

2

 , ( j = 1, 2, 3, 4).              (2.42) 

Based on Eqs. (2.38) and (2.39), we can obtain the displacement and rotation as 

xkxkxkxk BBBBV 4321 i
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1 eeee  ,             (2.43) 
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The shear force and bending moment in the frequency-domain are 
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Based on Eqs. (2.43) – (2.46), the relation between the nodal forces and nodal 

displacements can be written in the matrix form as 

vvv dSF  ,                         (2.47) 

where 

IHRS
E

p

vvv
S

dbh
g

11

311   ,                   (2.48) 

where the matrix vR , vH  and I  is given in Appendix A 

Through the similar procedure as in Section 2.2, we can obtain the dynamic 

stiffness matrix of the tension component uS .  

2.4.2 Validation 

A piezoelectric cantilever beam is considered in this subsection. The structural 

and material properties as shown in Table 2.1 are the same as those in [122] to 

compare the results obtained by the SEM and the experimental results [122]. It must 

be emphasized here that the viscous damping ratio (set as 0.00874) in the experiment, 

is not considered in this calculation. A disturbance F
 
=

 
F0e

iωt
 is located at the free 

boundary, where F0 = 1N. 

The first resonance frequency measured in [122] is 502.5Hz for the short circuit 

(R = 470Ω) and 524.7Hz for the open circuit (R = 995kΩ). In this spectral analysis, 

one spectral element is used and the frequency responses of the free end are displayed 

in Fig. 2.6. The first resonance frequencies are 506.2Hz for the short circuit and 

529.4Hz for the open circuit. Since in this study the viscous damping is neglected, the 

first resonance frequencies computed by the SEM are a little larger than those in [122]. 
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The errors for both short and open circuits are less than 1%, which verifies the 

validity of the present SEM. Moreover, it can be seen that the piezoelectric beam 

problem can be successfully solved by the SEM with a minimum element number. 

 

 Piezoceramic 

(PZT-5H) 

Base beam 

(Brass) 

Length (mm) 24.53 24.53 

Width (mm) 6.4 6.4 

Thickness (mm) 0.265(each) 0.14 

Density (kg/m
3
) 7500 9000 

Elastic modulus (GPa) 60.6 105 

Piezoelectric constant (pm/V) –274 — 

Permittivity constant (nF/m) 30.1036 — 

Shear modulus (GPa) 23 40 

 

 

 

 

 

 

 

2.5 Plate element 

 

 

 

 

 

In this study, the plate in the sandwich panels are homogeneous, isotropic, elastic 

and of uniform thickness. Because the plate thickness is much smaller than the length 

Table 2.1 Structural and material properties of the piezoelectric cantilever beam. 

Figure 2.6 Frequency responses of the piezoelectric cantilever beam. 
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Figure 2.7 Edge conditions of the plate element. 
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and width, the effects of the shear and rotary inertia can be ignored. The normal after 

a deformation is still perpendicular to the neutral surface. The analysis can then be 

performed based on the classical plate theory, that is, the plates are considered as 

Kirchhoff ones in this work. 

Fig. 2.7 shows a plate element in its local coordinate system including the length 

L, the width b and the thickness h. Two opposite edges of the plate are simply 

supported (SS) at y = 0 and y = b. The opposite edges at x = 0 and x = L are 

considered as two nodes. It enables the plate element to be reduced from a 

two-dimensional to a one-dimensional element characterized by a spectral stiffness 

matrix. 

 

 

 

 

 

For the plate element, both the in-plane and out-of-plane components are 

analysed. Fig. 2.8 shows the in-plane and out-of-plane forces and moments in the 

local coordinate system, where Mx is the bending moment, Vx is the net vertical shear 

force, Nx is the in-plane longitudinal force, and Nxy is the in-plane shear force. For the 

sign convention used in Fig. 2.8, the force and moment equations are given by 
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Figure 2.8 Diagram of plate element with positive force 

and moment orientations. 

y, v 

x, u 

z, w 

Mx 

Vx 

Nx 

Nxy 

Nxy 

Nx 

Vx Mx 



 34 

)(
)1(2 x
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uEh
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
,                 (2.52) 

where w, u, and v represent the out-of-plane transverse, in-plane longitudinal and 

in-plane shear displacements, respectively, D = Eh
3
/[12(1 – v

2
)] is the bending rigidity 

of the plate, h is the plate thickness, E is the Young’s modulus, and v is the Poisson’s 

ratio. 

The differential equations of motion for the transverse, in-plane longitudinal and 

in-plane shear motions are given by 
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where ρ is the mass density. 

From Eqs. (2.52)-(2.54), it can be seen that the out-of-plane equation is 

decoupled from the in-plane equations. The spectral formulations for these two cases 

will be deduced separately in Sections 2.5.1 and 2.5.2. 

2.5.1 Out-of-plane formulation 

The general solution of Eq. (2.52) has the spectral representation [75]:  

t
n

N

n

n
nyxW

N
tyxw

 i
1

0

e);,(
1

),,( 




 ,                 (2.55) 

where ωn is the circular frequency and Wn (x, y, ωn) is the out-of-plane transverse 

spectral displacement.  

Substituting Eq. (2.55) into Eq. (2.52), one can obtain 
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0
44  nnn WW ,                     (2.56) 

where 

Dhnn /2  .                      (2.57) 

Substituting Eq. (2.55) into Eqs. (2.49) and (2.50), the net vertical shear force 

and bending moment can be expressed in the spectral forms: 
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where Vxn and Mxn are the spectral components of Vx and Mx. 

Due to the simply supported boundary conditions, the general solution of Eq. 

(2.56) can be expressed in terms of a modal and traveling wave solution: 







1

)sin(),;();,(
m

ynymnmnn ykkxWyxW  ,           (2.60) 

where Wnm is the spectral form of transverse displacement in the wave number ky and 

frequency domain, and ky is the modal wave number along the y direction and written 

as 

b

m
k y


 ,  ...),3,2,1( m ,                 (2.61) 

where m is the mode number. 

Substituting Eq. (2.60) into Eq. (2.56), one can obtain 

02 242)4(  nmnnmynmynm WWkWkW ,              (2.62) 

the four eigen roots can be obtained and expressed as 

22

1 yn kp  ,                      (2.63) 

22

2 yn kp  ,                     (2.64) 
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22

3 yn kp  ,                      (2.65) 

22

4 yn kp  .                    (2.66) 

From Eqs. (2.63)-(2.66), it can be observed that the four values of p depend on m. 

So, the transverse displacement Wnm in Eq. (2.62) can be written as 

xpxpxpxp

nynm AAAAkxW 4321 eeee),;( 4321  .          (2.67) 

where A1, …, A4 are four unknown coefficients. Eq. (2.67) is written as the following 

simple form: 

AE ),;(),;( nynynm kxkxW   ,                (2.68) 

where 

]eeee[),;( 4321 xpxpxpxp

nykx E ,             (2.69) 

T

4321 ][ AAAAA .                 (2.70) 

The rotation angle Θn in the frequency domain is given by the derivative of the 

transverse displacement with respect to x as  

x

W
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Substituting Eq. (2.60) into Eq. (2.71), one can obtain 
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Figure 2.9 The plate element with out-of-plane nodal 

displacements and forces in the local coordinate system. 
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In Fig. 2.9, nodes 1 and 2 on the boundaries at x = 0 and x = L of the plate element 

are designated. W1nm, Θ1nm, W2nm and Θ2nm are the nodal displacements and rotations 

in the wave number ky and frequency domain. They can be presented as the following 

form: 
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Substituting Eq. (2.68) into Eq. (2.74), one can obtain 

AΦd ),(),( nyoutnyout kk   ,                 (2.75) 
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From Eqs. (2.60) and (2.68), the net vertical shear force and bending moment in 

Eqs. (2.58) and (2.59) can be deduced as the following form: 

AEE )]()2()([),;( 2 xkxDkxV ynyxnm
  ,          (2.77) 

AEE )]()([),;( 2 xkxDkxM ynyxnm   ,            (2.78) 

where Vxnm and Mxnm are the net vertical shear force and bending moment in the wave 

number ky and frequency domain, respectively. 

As shown in Fig. 2.9, the nodal forces and moments are given by 
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where the minus signs ensure that a positive load will produce a positive 
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displacement. 

Substituting Eqs. (2.77) and (2.78) into Eq. (2.79) leads to 

AGf ),(),( nyoutnyout kk   ,                  (2.80) 

where 

][),( ijnyout gDk G   (i, j = 1, 2, 3, 4),            (2.81) 
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From Eqs. (2.75) and (2.80), one can obtain  

outoutnyout k fdS ),(  ,                   (2.83) 

where Sout
 
is the spectral stiffness matrix for the out-of-plane case, and it has the 

following form: 

),(),(),( 1

nyoutnyoutnyout kkk   ΦGS .            (2.84) 

It is clearly seen that Sout depends on the frequency ω and wave number ky, and it 

includes the effects of transverse inertia. 

2.5.2 In-plane formulation 

The general solution of Eqs. (2.53) and (2.54) can be given by the spectral 

representations: 
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where Un and Vn are the spectral displacements of u and v. 

The simply supported boundary conditions for the in-plane components have 

two forms [124], namely SS1 (for y = 0 and y = b, u = 0 and v ≠ 0; for x = 0 and x = L, 

v = 0 and u ≠ 0) and SS2 (for y = 0 and y = b, v = 0 and u ≠ 0; for x = 0 and x = L, u = 

0 and v ≠ 0). In this paper, the analysis is carried out in terms of the SS1 condition on 

edges y = 0 and y = b. In order to comply with this boundary condition, the solutions 

can be expressed as the following forms: 
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Substituting Eqs. (2.87) and (2.88) into Eqs. (2.85) and (2.86), and substituting 

the results into Eqs. (2.53) and (2.54) leads to 
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Four eigen roots can be obtained from Eqs. (2.89) and (2.90), and they are 
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2,1 Ly kk  ,                      (2.91) 
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4,3 Sy kk  ,                      (2.92) 

where EkL /)1( 2   and EkS /)1(2   . 

Unm and Vnm can be expressed as 
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ynynm BBBkBkkxV 4321 eeee),;( 443321

   ,      (2.94) 

where B1, …, B4 are four unknown coefficients. 
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Fig. 2.10 shows the in-plane nodal displacements and forces. U1nm, V1nm, U2nm 

and V2nm are the nodal displacements in the wave number ky and frequency domain. 

They can be presented as the following form: 
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Substituting Eqs. (2.93) and (2.94) into Eq. (2.95), one can obtain 

BΦd ),(),( nyinnyin kk   ,                  (2.96) 

where 
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From Eqs. (2.51) and (2.52), one can obtain the in-plane forces in the wave 

number ky and frequency domain as  
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The in-plane nodal force vector can be deduced as the following form: 

Figure 2.10 The plate element with in-plane nodal displacements and 

forces in the local coordinate system. 
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From Eqs. (2.93), (2.94), (2.99) and (2.100), the in-plane nodal force vector fin 

can be expressed as 

BGf ),(),( nyinnyin kk   ,                 (2.102) 

where Gin is the 4×4 matrix and it is given in Appendix A. 

From Eqs. (2.96) and (2.102), one can obtain  

ininnyin k fdS ),(  ,                   (2.103) 

where Sin is the spectral stiffness matrix for the in-plane case, and it has the following 

form: 

),(),(),( 1

nyinnyinnyin kkk   ΦGS .             (2.104) 

2.6. Conclusions 

As the theoretical basis of chapters 3, 4 and 5, the basic element such as the 

bending element, tensional element, torsional element, piezoelectric beam element 

and the plate element is modeled by the SEM. These spectral elements will be used to 

combine different kinds of periodic structures further. In the SEM, the spectral 

stiffness matrix for different elements is deduced in detail based on the equation of 

motion. It has relationship with the frequency, which makes the solution in the 

frequency domain have high accuracy.  
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3 Vibration isolation property of 2D lattice 

    In this chapter, a 2D lattice with the material periodical distribution is analysed 

using the SEM. In the spectral modeling, the SEM provides the highly accurate result 

in the frequency domain by the minimum element number. Moreover, a more 

functional lattice which possesses both the isolation performance and the energy 

harvesting performance is designed.  

3.1 Some basic preliminaries 

Fig. 3.1(a) displays a 2D square lattice containing 4×15 repeating unit cells and 

the corresponding unit cell is displayed in Fig. 3.1(b). The unit cell is made by two 

different materials. The black part is material M1 and the gray part is material M2. The 

lengths of the two materials are l1 and l2. 

 

 

 

 

 

 

The in-plane vibrations of the 2D square lattice are investigated. One unit cell can 

be considered as four beams including tensional and bending deformations. All of the 

beams in the lattice are homogeneous, isotropic and elastic, and they are uniform in 

thickness. The tensional and bending vibrations are decoupled when the elastic 

deformations are small. Subsections 2.1 and 2.2 display the derivation processes of 

the spectral bending and tensional elements, respectively. The complete element 

Figure 3.1 (a) 2D square lattice with 4×15 unit cells and (b) the unit cell 

made of two materials. 

(b) 

l1 l2 

(a) 

F R 

xg 
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which contains these two terms is deduced in Section 3.2. 

Two coordinate systems are needed to deduce the spectral stiffness matrix of the 

whole 2D square lattice, i.e., the local coordinate system (x – y) and the global one (x
g 

–
 
y

g
). The transformation matrix can map the spectral stiffness matrix in one 

coordinate system into that in the other one. The beams connected at any orientations 

can be solved because of the transformation matrix. The transformation and 

assembling processes are investigated in Sections 3.3. 

3.2 Complete Element 

From Eqs. (2.17) and (2.21), the governing equation of the element with both 

tensional and bending components can be presented as the following form: 

ccc dSF  ,                         (3.1) 

where dc = [U
1
 V

 1
 Θ

1
 U

 2
 V

 2
 Θ

2
]
T
 and T222111 ][ MFFMFF yxyxc F  are the 

nodal displacement and force vectors, and Sc is the complete spectral stiffness matrix. 

The relation among Sc, Su, and Sv is shown in Table 3.1. The terms of Sc which are not 

shown in the table are equal to 0. 

 

Sc Su Sv 

(1,1)  (1,4) (1,1)  (1,2)  

(2,2)  (2,3) 

(2,5)  (2,6) 
 

(1,1)  (1,2) 

(1,3)  (1,4) 

(3,2)  (3,3) 

(3,5)  (3,6) 
 

(2,1)  (2,2) 

(2,3)  (2,4) 

(4,1)  (4,4) (2,1)  (2,2)  

(5,2)  (5,3) 

(5,5)  (5,6) 
 

(3,1)  (3,2) 

(3,3)  (3,4) 

(6,2)  (6,3) 

(6,5)  (6,6) 
 

(4,1)  (4,2) 

(4,3)  (4,4) 

Table 3.1 Correspondence of matrix terms. 
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3.3 Assembling Process 

For the assembling of the spectral element matrix, the orientation of the element 

in the global coordinate system must be considered. Fig. 3.2 depicts an element in the 

local and global coordinate systems. The arbitrary angle α is from x
g
 axis to x axis. 

The transformation matrix that relates element displacements to the global 

displacement is 


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T .           (3.2) 

Then the spectral stiffness matrix in the global system is given by 

TSTS lg

T ,                        (3.3) 

where Sg is the global spectral stiffness matrix and Sl is the local spectral stiffness 

matrix. 
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Figure 3.2 Element in the local and global coordinate systems. 
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Figure 3.3 Unit cell divided into four spectral elements. 
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spectral element is sufficient, regardless of its length. So the unit cell can be divided 

into four spectral elements by five nodes as shown in Fig. 3.3. The global spectral 

stiffness matrices for all of the spectral elements in the lattice can be obtained by 

using the transformation matrix. The equation of motion of the whole square lattice in 

the global coordinate can be derived by assembling the spectral element equations of 

each element: 

www dSF  ,                         (3.4) 

where Sw is the spectral stiffness matrix of whole 2D lattice structures, and Fw and dw 

are the nodal force and displacement vectors in the global coordinates system. It 

should be noted that the whole deriving procedure is in the frequency domain. The 

frequency responses can be obtained by solving Eq. (3.4), and the frequency band-gap 

properties of the 2D lattice structure can also be studied. 

3.4. Vibration isolation property 

3.4.1 Regular 2D lattice 

The band-gap properties of the 2D square lattice in Fig. 3.1(a) are studied. The 

structure and material parameters used in the calculation are: the length l1 = l2 = 0.04m, 

the section radius r = 0.002m, the shear correction factor κ = 0.9 [121]. The material 

M1 employed in the calculation is steel whose Young’s modulus E1 = 210GPa, 

Poisson’s ratio υ1 = 0.3, and mass density ρ1 = 7800kg/m
3
. The material M2 is epoxy 

whose Young’s modulus E2 = 4.35GPa, Poisson’s ratio υ2 = 0.3, and mass density ρ2 = 

1180kg/m
3
. The disturbance F

 
=

 
F0e

iωt
 is located at left edge of the lattice as shown in 

Fig. 3.1(a), where F0 = 10N. By solving Eq. (3.4), the frequency response at the point 

R of the right edge in Fig. 3.1 can be obtained. In the numerical computation, the unit 

of frequency is set to be Hz, i.e. the frequency f = ω/(2π). 
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Fig. 3.4 shows the responses of displacements U, V and rotation Θ calculated by 

the SEM. In the given frequency ranges, many drops of the frequency responses 

appear. These corresponding frequency ranges are called stop bands. The others are 

called pass bands. The three components studied in this work present the same pass 

and stop band locations. In the following studies, the displacement U is as the object 

to investigate the band-gap properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen that the response amplitudes in the stop bands are much smaller 

than those in the pass bands. Vibrations and waves in the stop bands can hardly 

Figure 3.4 Frequency responses of (a) displacement components and (b) rotation component. 
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Figure 3.5 Frequency response calculated by the SEM and FEM. 
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propagate in the lattice. The reason is that for the waves propagating in the unit cell, 

reflected wave appears subsequently. For some stop-band frequencies, the reflected 

waves in every unit cell are in phase, and their superposition leads to be more 

powerful. These reflected waves can offset the incident waves. So the waves 

corresponding to these frequency ranges cannot propagate in the structure. The wave 

interaction can result in the phenomenon of band gaps. 

The frequency responses of the 2D square lattice calculated by the SEM and FEM 

are displayed in Fig. 3.5. The results in the FEM are obtained by using BEAM188 

ANSYS elements. The coarse and finer meshes are taken into account. For the two 

kinds of mesh, l1 and l2 are divided into 20 and 30 elements, respectively. That is, 

each unit cell contains 80 elements for the coarse mesh and 120 elements for the finer 

mesh. While for the SEM, the unit cell is divided into only 4 spectral elements as 

shown in Fig. 3.3. It is thus clear that this method can reduce the element number.  
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Figure 3.6 Vibration distributions of the 2D square lattice with 

different frequencies for (a) f = 2000Hz and (b) f = 6000Hz. 
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The three results agree each other well. In contrast to the results calculated by the 

coarse mesh, those calculated by the finer mesh are closer to the SEM results. This 

phenomenon is especially obvious in the high frequency ranges. Due to the 

frequency-dependent interpolation functions, the SEM provides exact 

frequency-domain solutions, such as the natural frequency and frequency responses. 

To obtain more accurate solutions, more elements in the FEM are required. It will 

consume more computation time consequently. The SEM can save time due to its 

small element number. 

The vibration distributions of the whole lattice with different frequencies are 

shown in Fig. 3.6. The whole structure vibrates when the frequency f = 2000Hz. The 

wave propagation without attenuation represents that this frequency is in the pass 

band. Frequency f = 6000Hz is in the stop band. The vibrations are confined at the left 

edge near the vibration source. They can propagate through the lattice hardly. In this 

case, the responses cannot be detected at the right edge. It means that the 2D square 

lattice has the function of vibration suppression. 

 

 

 

 

 

 

 

 

 

The frequency responses of the 2D square lattice with different structural loss 
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Figure 3.7 Frequency responses of structures with 

different structural loss factors. 
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factors are shown in Fig. 3.7. The structural damping can be considered by the 

complex Young’s modulus E (1+ iξ), where ξ is the structural loss factor. In the 

resonant regions, the amplitudes are the largest when the structural loss factor ξ = 0. 

They become smaller with the increase of structural damping. When the frequency 

ranges become higher, this phenomenon is more obvious. Fig. 3.7 also presents that 

the structural damping has no influence on the locations of stop bands, but has 

influences on the amplitudes in the pass bands. In the following studies, the structural 

loss factor ξ is set to be 0.001 without special statement. 

 

 

 

 

 

 

 

 

Fig. 3.8 shows the response comparison of the lattices with different materials. 

When the materials M1 and M2 are the same (steel in this work), it is hard to detect the 

stop bands. Aluminum is adopted as material M2 with Young’s modulus EAl = 72GPa, 

mass density ρAl = 2730 kg/m
3
 and Poisson’s ratio υAl

 
= 0.3. Different resonant 

frequencies and band gaps are displayed in the figure for the lattices with different 

materials. The responses have the clearest drops inside the stop bands when the epoxy 

is adopted as material M2. More stop bands appear in the given frequency ranges, and 

the first stop band appears in lower frequencies. When the differences of the two 
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Figure 3.8 Comparison of frequency responses 

for structures with different materials. 
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material properties become larger, the band-gap properties are more obvious. It is 

meaningful for the design of vibration attenuation structures. 

To discuss which material properties affecting the band-gap properties, different 

stiffness and inertia properties of the material in three cases are investigated. The 

material parameters are given in Table 3.2. The values of Young’s modulus and 

density of material M2 are assumed to be one tenth of those of material M1 in some 

cases. 

 

 
Young’s modulus E / 

GPa 
density ρ / kg/m

3
 

 M1 M2 M1 M2 

Case 1 210 21 7800 7800 

Case 2 210 210 7800 780 

Case 3 210 21 7800 780 

 

 

 

 

 

 

 

 

 

Fig. 3.9 shows the frequency responses for 2D square lattices with the materials 

in the three cases. For the cases 1 and 2, different Young’s moduli and densities 

between materials M1 and M2 are studied, respectively. In contrast to the case 2, the 

stop bands in case 1 are more and the location of the first one appears in lower 

frequency ranges. For the case 3, both Young’s moduli and densities of materials M1 

Table 3.2.The material parameters for the structures in three cases. 
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Figure 3.9 Frequency responses for 2D square 

lattices with different materials in three cases. 
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and M2 are different. The most evident band-gap properties are displayed. One can 

observe that both the Young’s modulus and density properties have influences on the 

band-gap properties. The stiffness and inertia properties play a role together. 

The component ratio of material M1 is set as α
 
=

 
l1 / (l1 + l2). To discuss the 

influences of α on the band-gap properties, the stop-band ratio is considered as γ = fstop 

/ fall, where fall is the given frequency range and it should be big enough to confirm the 

validity of γ. fstop is the frequency ranges in which the responses are smaller than a 

certain value, U*. When the responses are smaller than U*, the corresponding 

frequencies can be considered as in stop bands. So U* should be small enough in 

contrast to the responses in pass bands. 

 

 

 

 

 

 

 

 

In this study, fall is 50 kHz, U* is set to be 10
–9 

m, 10
–10 

m and 10
–11 

m, 

respectively. Fig. 3.10 displays the stop-band ratio γ varying with the component of 

material M1. The three lines have the same changing tendency. When the component 

of material M1 is close to 0 and 1, the lattice is almost constituted by one material, the 

stop-band ratio γ is close to 0. It means that there is nearly no stop band in the given 

frequency range. When α is from 0.3 to 0.6, the 2D square lattice has the relatively 

Figure 3.10 Stop-band ratio varying with the component of material M1. 
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high stop-band ratio. It means that the 2D square lattice has the better performance of 

vibration isolation for these components of material M1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11 shows the comparison of frequency responses for 2D square lattices 

with 5, 10 and 20 unit cell layers in the x direction. There are different resonance 

frequencies because of the different unit cell layers in the x direction. The three 2D 

square lattices demonstrate the same locations of the pass and stop bands due to the 

same structure and material parameters of the unit cells. The response amplitudes drop 

more clearly inside the stop bands when the structure includes more unit cells in the x 
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Figure 3.12 Comparison of frequency responses for 2D 

square lattices with different layers in the y direction. 

Figure 3.11 Comparison of frequency responses for 2D 

square lattices with different unit cells in the x direction. 
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direction. So the structure with 15 unit cell layers demonstrates the most evident 

band-gap properties.  

Compared with the stop band ―depth‖ determined by the unit cell layers in the x 

direction, the stop band ―width‖ is influenced by the unit cell layers in the y direction. 

Fig. 3.12 displays the frequency responses for 2D square lattices with different unit 

cell layers in the y direction. The stop band for lattice with 1 layer in the y direction 

presents the widest span. The stop band span becomes narrow with the increase of 

unit cell layers in the y direction. It is almost the same when the layer numbers are 4 

and 6. 

When considering the vibration isolation in the x direction, the increase of unit 

cell layer in the same direction is meaningful because it can make the waves 

propagate more hardly in the stop band. While the increase of unit cell layer in the y 

direction is not so valid. Although the stop band span can become wider, the change is 

not so evident. One can increase the appropriate layers in the y direction, but the 

overmuch layer is inadvisable due to the material waste. 

 

 

 Stop band ―width‖ Stop band ―depth‖ 

increasing ξ — — 

increasing the difference 

between M1and M2 
↑ ↑ 

increasing cell layers 

 in the x direction 
— ↑ 

increasing cell layers 

 in the y direction 
↓ — 

 

To summarize the above investigation, the effect of the structural and material 

parameter on the band-gap property of the 2D lattice is displayed in Table 3.3, which 

can provide the general guideline for the structural parameter selection. 

Table 3.3 The effect of the structural and material parameter on the 

band gap property, where ↑ represents increasing, ↓ represents 

decreasing and — represents no change. 
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Fig. 3.13 displays the frequency responses for 2D square lattices with different 

unit cell lengths. All of the three lattices show the obvious band-gap properties. For l1 

= l2 = 0.02m, the first stop band location is in the relatively high frequency ranges, and 

it shifts to lower frequencies when increasing the lengths of materials M1 and M2. In 

the given frequency ranges, the 2D square lattice with l1 = l2 = 0.06m have the most 

stop bands. This phenomenon is good for the study of vibration isolation in the low 

frequency ranges. 

3.4.2 2D lattice with piezoelectric beam 

In this section, the 2D square lattice in the global coordinate system (x
g 

–
 
y

g
) as 

Figure 3.13 Comparison of frequency responses for 2-D square lattices with 

different unit cell lengths. 
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shown in Fig. 3.14(a) is considered. It contains 15×15 repeating unit cells and the 

corresponding unit cell is displayed in Fig. 3.14(b).  

 

 

 

 

 

 

 

The spectral stiffness matrices of an elastic beam element and a piezoelectric 

beam element are deduced by the SEM in Section 2.4. For the conventional pure 

elastic beam, it is homogeneous, isotropic, and elastic, and has a uniform thickness. 

For the piezoceramic beam, its deformation is assumed to be small and it exhibits 

linear piezoelectric material behaviors. 

In this subsection, the band-gap characteristics of the 2D square lattice are studied. 

The length l1 = l2 = 0.04m, the width b = 0.004m, the thickness h = 0.004m and the 

shear correction factor κ = 5/6. The disturbances F
 
=

 
F0e

iωt
 are located at the center of 

the lattice, where F0 = 10N and the directions are shown in Fig. 3.14.  

 

 Piezoceramic 

(PZT-5H) 

Base beam 

(Brass) 

Density (kg/m
3
) 7500 9000 

Elastic modulus (GPa) 60.6 105 

Piezoelectric constant 

(pm/V) 

–274 — 

Permittivity constant 

(nF/m) 

30.1036 — 

Shear modulus (GPa) 23 40 

 

Figure 3.14 (a) 2D square lattice with 15×15 unit cells and (b) the 

unit cell made of two materials. 

(b) 
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Table 3.4 Material properties of the piezoelectric cantilever beam. 
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To study the effect of the piezoelectric layers on the band-gap property, brass 

base beams bonded to piezoceramic layers as shown in Fig. 2.5 are replaced now by 

pure brass beams and denoted as M1 in the lattice. The material parameters are the 

same as those in Table 3.4 and R = 995kΩ for the open circuit. The materials M2 used 

in the calculation is epoxy with the Young’s modulus E2 = 4.35GPa, the Poisson’s ratio 

υ = 0.3, and the mass density ρ2= 1180kg/m
3
. 

Fig. 3.15 displays the comparison of band-gap properties of the 2D square lattice 

with and without piezoceramic layers. Compared with the stop-bands of the lattice 

without piezoceramic layers (hp = 0mm), those with piezoceramic layers (hp = 1mm) 

are compressed but present the similar tendencies. Because the bimorph piezoelectric 

beam is a kind of energy harvester [122, 123], the lattice can transform the 

mechanical energy into the electrical energy in the pass-bands. Due to the existence of 

stop-bands in the high-frequency domain, the vibration amplitudes are too small and 

the function of energy harvester is not obvious. In other words, lattices with 

piezoelectric beams can be regarded as functional structures because they possess 

unique properties both in the pass-bands and the stop-bands. 

 

 

 

 

 

 

 

 

Figure 3.15 Frequency responses of 2D square 

lattice with and without piezoceramic layers. 
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To analyze the effect of the content of the piezoceramic layers on the band-gap 

property, the ratio of the piezoceramic layer content ε and the stop-band ratio γ are 

defined as ε = 2hp /h and γ = fstop / fall, where fall is the considered frequency range and 

fstop is the stop-band frequency range. In this work, fall = 30 kHz, and a certain 

response amplitude U* = 10
−11

m is defined as a boundary value between pass-band 

and stop-band responses. 

Fig. 3.16 shows the stop-band ratios varying with the different piezoceramic 

layer contents. The stop-band ratio experiences an overall declining trend with many 

fluctuations from 0.8 (ε = 0) to about 0.74 (ε = 0.9). It indicates that the piezoceramic 

layer content has different effects on the energy harvesting and vibration isolation 

respects. On the one hand, higher ratio of the piezoceramic layer composition is good 

for energy harvesting, which means that the output voltage benefits from the larger 

thickness of the piezoceramic layers [122]. Moreover, the pass-bands become wider 

due to the decreasing stop-band ratio, and it means that more mechanical energy can 

be converted into electric energy. On the other hand, the vibration isolation effect 

declines with the increasing ratio of the piezoceramic layer composition. It can be 

observed that the properties of the energy harvesting and vibration isolation cannot be 

improved together by changing the thickness of the piezoceramic layers. For 

considering the dynamic properties of 2D square lattice with piezoelectric beams, 

both of the two respects should be taken into account. 

Fig. 3.17 shows the three cases with material defects. In these lattices, M1 is 

brass, M2 is epoxy and the material in the defect areas is the piezoelectric beam with 

hp = 1mm. Fig. 3.18 shows the vibration distributions of the U component for the 

three cases when f = 8kHz which corresponds to the frequency stop-band. The elastic 

waves at this frequency can propagate in the defect parts, while they can hardly 
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propagate in the other parts. The defects are like passageways because they can 

transmit elastic waves in the stop-bands. In the material defect areas, the piezoelectric 

beams can also transform the mechanical energy into electric energy. So these defects 

are the passageways of both the elastic waves and the energy harvesting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19 shows a 20×20 square lattice which includes a central part (both M1 and 

M2 are the piezoelectric beams) and a peripheral part (M1 is brass and M2 is epoxy). 

Figure 3.17 2D square lattice with material defects in (a) the 

middle row, (b) the middle column and (c) both the middle row 

and middle column. 

(a) (b) (c) 

Figure 3.18 Vibration distribution of the U component for f = 8kHz of 2D square lattice 

with material defects in (a) the middle row, (b) the middle column and (c) both the middle 

row and the middle column. 
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Figure 3.16 Stop-band ratio versus the 

ratio of the piezoceramic layer content. 
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The frequency response of point P is calculated and compared with that of the lattice 

without piezoelectric beams as shown in Fig. 3.20. The two lines represent the same 

pass- and stop-band locations. Due to the central part, many local resonances appear 

in the stop-bands. The central piezoelectric beams have no effects on the stop-band 

locations and the periodic peripheral part plays an essential role in the vibration 

isolation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. 20×20 square lattice. 
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Figure 3.21 Vibration distribution of 

20×20 square lattice with central part 

for f = 10.04kHz. 
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Figure 3.20 Frequency responses of 2D square 

lattice with and without central piezoelectric beams. 
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The lattice with different central and peripheral parts can transform more energy 

because the piezoelectric beams always vibrate in both the pass- and stop-bands. For 

example, the wave with f = 10.04kHz is isolated by the peripheral parts, while it can 

propagate in the central part as shown in Fig. 3.21. This lattice possesses the function 

of energy transformation in the specified central fields and the vibration isolation by 

the periodic peripheral parts. Compared with the lattice without central piezoelectric 

beams, this type of lattice can realize both more energy transformation and good 

vibration isolation performance. 

3.5. Conclusions 

In this chapter, the SEM is applied to study the vibration band-gap properties of 

the 2D square lattice. The spectral stiffness matrices of the tensional and bending 

elements are deduced, and the spectral equations of the 2D square lattices are further 

derived. The frequency responses are calculated by the SEM. 

The SEM can be effectively applied to research the frequency band-gap 

properties of 2D square lattices. It can achieve highly accurate results by using small 

element numbers. The pass and stop band locations of the three DOFs are the same. In 

the pass bands, the whole lattice vibrates. The waves can propagate hardly if the 

frequencies are in the stop bands. The structural damping has no influence on the stop 

band locations. However, it can reduce the amplitudes in the pass bands obviously, 

especially in high frequency ranges. For the material properties, when the differences 

of the material properties become larger, the band-gap properties appear more 

obviously. The stiffness and inertia properties play a role together. Moreover, the 

appropriate material component ratios can produce high stop-band ratio. The unit cell 

layers in the x direction determine the stop band ―depth‖, while the stop band ―width‖ 



 61 

is influenced by the unit cell layers in the y direction. The effects of the unit cell size 

on the band-gap properties cannot be ignored. It is meaningful for the balance 

between the vibration isolation function and the material dosage. 

2D square lattices with piezoelectric beams present different functions in the 

pass- and stop-bands, so they can be considered as functional structures. Thicker 

piezoceramic layers are beneficial to energy harvesting but reduce the vibration 

isolation function. The material defects can permit the wave propagation and energy 

transformation along the defect ―passageway‖. The lattice with central piezoelectric 

beams can realize both more energy transformation and good vibration isolation 

performance. 
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4 Vibration isolation property of 3D Kagome structure 

    In this chapter, the vibration isolation performance of 3D Kagome structure is 

studied by the SEM. In the previous study, the SEM is usually used to investigate the 

1D or 2D structures. In this chapter, we explore this method to solve 3D problems. 

4.1 Problem description 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this section, a 3D Kagome lattice with rigid joints in the global coordinate 

system (x
g 

–
 
y

g 
–

 
z

g
) as shown in Fig. 4.1(a) is considered. There are 15 repeating 

substructures in the x
g 

–
 
y

g
 plane and one unit cell thickness in the z

g
 direction. The 

corresponding unit cell is displayed in Fig. 4.1(c) and it is considered as twelve basic 

elements which are elastic, homogeneous and isotropic. All basic elements have a 

uniform thickness. A number of unit cells with different materials constitute the whole 

Figure 4.1. (a) A 3D Kagome lattice with 15 substructures, (b) one substructure 

and (c) one unit cell. 
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H Core 

Top layer 
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3D Kagome lattice. The white part is material M1 and the black part is material M2. 

The spectral stiffness matrices of each spectral element are firstly deduced in its 

local coordinate system (x – y – z). Before the assembling process, transformation 

matrices must be adopted to map the spectral stiffness matrices in the local coordinate 

system into those in the global one. The transformation process allows the beams to 

be connected at any orientation. 

A basic element as shown in Fig. 4.2 is capable of tensional and torsional 

deformation as well as two-plane bending. The decoupled superposition of them can 

be carried out for the case of small elastic deformation. Each node has six DOFs. 

They can be decoupled as bending components v1, ζz1, v2 and ζz2 in the x – y plane, 

bending components w1, ζy1, w2 and ζy2 in the x – z plane, tensional components u1 and 

u2 in the x direction and torsional components ζx1 and ζx2 around the x axis. The 

decoupled terms are deduced by the SEM in Sections 2.1-2.3, and they are combined 

in Section 4.2. 

 

 

 

 

4.2 Complete element 

From Eqs. (2.17), (2.19), (2.21) and (2.24), the relation between the nodal forces 

and displacements of the complete element with bending, tensional and torsional 

components can be expressed as the following form: 

ccc FdS )( ,                        (4.1) 

where dc = [U
1
 V

 1
 W

1
 Θx

1
 Θy

1
 Θz

1
 U

2
 V

 2
 W

2
 Θx

2
 Θy

2
 Θz

2
]

T
 is the vector consisting of 

u1 

v1 

w1 

ζx1 

ζy1 

ζz1 

y 

x
 

z ζx2 

ζy2 

ζz2 

v2 

w2 

u2 

Figure 4.2 Total set of displacements and rotations of one element. 
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the nodal displacements and rotations, Fc=[Fx
1
 Fy

1
 Fz

1
 Mx

1
 My

1
 Mz

1
 Fx

2
 Fy

2
 Fz

2
 Mx

2
 My

2
 

Mz
2
]
T
 is the vector consisting of the nodal forces and moments and Sc is the complete 

spectral stiffness matrix. The relation among Sc, Su, Sv, Sw and Sζx is shown in Table 

4.1. The components of Sc which are not shown in the table are equal to 0. 

 

Sc Su Sv Sw Sζx 

(1,1)  (1,7) 

(7,1)  (7,7) 

(1,1)  (1,2) 

(2,1)  (2,2) 
   

(2,2)  (2,6) 

(6,2)  (6,6) 
 

(1,1)  (1,2) 

(2,1)  (2,2) 
  

(2,8)  (2,12) 

(6,8)  (6,12) 
 

(1,3)  (1,4) 

(2,3)  (2,4) 
  

(8,2)  (8,6) 

(12,2)  (12,6) 
 

(3,1)  (3,2) 

(4,1)  (4,2) 
  

(8,8)  (8,12) 

(12,8)  (12,12) 
 

(3,3)  (3,4) 

(4,3)  (4,4) 
  

(3,3)  (3,5) 

(5,3)  (5,5) 
  

(1,1)  (1,2) 

(2,1)  (2,2) 
 

(3,9)  (3,11) 

(5,9)  (5,11) 
  

(1,3)  (1,4) 

(2,3)  (2,4) 
 

(9,3)  (9,5) 

(11,3)  (11,5) 
  

(3,1)  (3,2) 

(4,1)  (4,2) 
 

(9,9)  (9,11) 

(11,9)  (11,11) 
  

(3,3)  (3,4) 

(4,3)  (4,4) 
 

(4,4)  (4,10) 

(10,4)  (10,10) 
   

(1,1)  (1,2) 

(2,1)  (2,2) 

4.3 Assembling process 

In this subsection, the basic elements in different orientations will be assembled. 

A unified coordinate system, i.e. the global coordinate system is defined to derive the 

stiffness matrix of an arbitrarily oriented element. This process is the same as that in 

the FEM. One can obtain the global spectral stiffness matrix of each element by using 

the transformation matrix. 

For one unit cell, it can be divided into twelve spectral elements by seven nodes 

Table 4.1 Correspondence of the stiffness matrix elements. 
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as shown in Fig. 4.3. By assembling the spectral element equations of each element in 

the global coordinate system, the equation of the whole 3D Kagome lattice can be 

derived as 

FdS )( ,                         (4.2) 

where S is the spectral stiffness matrix of the whole lattice, and F and d are the nodal 

force and displacement vectors in the global coordinate system. The frequency 

responses can be obtained by solving Eq. (4.2), and the vibration band-gap properties 

of the 3D Kagome lattice can be analysed accordingly. 

 

 

 

 

 

 

4.4 Vibration isolation of 3D Kagome lattice 

In this section, the dynamic properties of the 3D Kagome lattice in Fig. 4.1(a) 

with four free edges are studied. The structural and material parameters used in the 

calculation are: the length a = 0.2m, the thickness H = 0.1m, the sectional radius r = 

0.005 m and the shear correction factor κ = 0.9. The material M1 is steel with the 

Young’s modulus E1 = 210GPa, the Poisson’s ratio υ1 = 0.3, and the mass density ρ1 = 

7800kg/m
3
. The material M2 is epoxy with the Young’s modulus E2 = 4.35GPa, the 

Poisson’s ratio υ2 = 0.3, and the mass density ρ2 = 1180kg/m
3
. As depicted in Fig. 

4.1(a), the disturbance F
 
=

 
F0e

iωt
 is located at the point on the left edge, where F0 = 

–10N. By solving Eq. (4.2), the frequency responses at the pick-up point R on the 

Figure 4.3 One unit cell divided into twelve 

spectral elements by seven nodes. 
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right edge can be obtained. In the numerical computation, the unit of the frequency f = 

ω/(2π) is in Hz.  

4.4.1 Validations of the present method 

Fig. 4.4 presents a comparison of the frequency responses calculated by the SEM 

and the FEM. For the FEM, the results are obtained by ANSYS using BEAM188 

elements. For the coarse and fine meshes in ANSYS, each basic element is divided 

into 25 and 50 elements, respectively. That is, each unit cell contains 300 and 600 

conventional elements. In contrast, the SEM adopts a minimum spectral element 

number, i.e. 12 spectral elements in one unit cell as shown in Fig. 4.3. We no longer 

need to refine a uniform part into multiple meshes. It is obvious that the element 

number of the SEM is much smaller than that of the FEM. 

 

 

 

 

 

 

 

In general, the three curves in Fig. 4.4 agree well in the given frequency range. In 

the FEM, the result accuracy depends on the quality of the mesh, which is quite 

different from the SEM. In the SEM, only one spectral element is adequate no matter 

the size of a uniform structure. A small spectral element number reduces the DOFs of 

the system significantly. It means that the computational cost and time will be reduced 

in the SEM. When the size of the investigated structure becomes larger or the 

Figure 4.4 Frequency responses calculated by the SEM and the FEM. 
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considered frequency becomes higher, the element number in the SEM is not 

necessary to be increased, so the computing time remains almost the same. While for 

the FEM, more elements are needed to obtain sufficiently accurate solutions, which 

will require of course more computing time. This advantage of the SEM will be more 

obvious when the system contains plenty of uniform structures. 

Since the exact dynamic stiffness matrix is derived from the exact wave solutions 

of the governing partial differential equations, the accuracy of the SEM solution is 

high. That is why the results calculated by the FEM are much closer to those obtained 

by the SEM when the mesh becomes finer. Fig. 4.4 reflects this advantage of the SEM 

more obviously when the frequency becomes higher. For the analysis of the band-gap 

property, the locations of the pass- and stop-bands should be predicted precisely, 

especially in high-frequency ranges. The possible confusions between the pass- and 

stop-bands can be avoided by the exact frequency responses. For example, the 

frequency about 1480Hz is in the stop-band for the SEM and the FEM with finer 

mesh, while it is in the pass-band calculated by the FEM with coarse mesh. So the 

analysis of band-gap properties requires highly accurate evaluation of the dynamic 

response results in the frequency-domain. Due to its unique advantages, the SEM 

satisfies this requirement, so it is an appropriate method to analyze the band-gap 

properties of 3D Kagome lattices. The highly accurate dynamic response results can 

effectively avoid possible confusions between the pass- and stop-bands. 

4.4.2 Band-gap properties 

Fig. 4.5 shows the responses of the displacements U, V and W, and rotations Θx, 

Θy and Θz at the pick-up point R calculated by the SEM. In the given frequency ranges, 

many distinct drops of the frequency response curves appear. The corresponding 
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frequency ranges are the so-called stop-bands or band-gaps. The other frequency 

ranges are referred to as pass-bands. It can be observed that the amplitudes in the 

stop-bands are much smaller than those in the pass-bands. The six components present 

the same pass- and stop-band locations. For this reason, in the following studies only 

the displacement W is used to investigate the band-gap properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6 shows the vibration distributions of the W component of the elements in 

the upper layer of the 3D Kagome lattice. Two different frequencies are considered, 

i.e. 178Hz and 750Hz. One can observe from Fig. 4.5 that 178Hz is in the pass-band, 

so the whole structure vibrates at this frequency as shown in Fig. 4.6(a). When the 

frequency is 750Hz which is in the stop-band, the vibrations are confined to a smaller 

region. In this case, elastic waves can be hardly detected in the lattice except the 

region around the disturbance source. The performance of vibration isolation of the 

Figure 4.5 Responses of the displacement and rotation components at the pick-up point R 

calculated by the SEM. 
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3D Kagome lattice is thus vividly displayed. 

 

 

 

 

 

 

 

 

 

 

 

Mechanical vibrations and elastic waves in the stop-bands can hardly propagate 

in the lattice structure. The reason is that reflected waves appear when the waves 

propagate in the substructures. The reflected waves and the incident waves at some 

stop-band frequencies are in phase, and their superposition may become destructive. 

When these reflected waves are powerful enough to offset the incident waves, 

band-gap phenomenon can be induced. It means that the structure has a vibration 

isolation performance in certain frequency ranges. 

4.4.3 Effects of structural and material parameters 

Fig. 4.7 shows the frequency responses of 3D Kagome lattices with 5, 10 and 15 

substructures. Due to the different substructure numbers, we obtain different 

resonance frequencies which can be identified by the local maximum values. However, 

the three lattices have the same pass- and stop-band locations because the structural 

Figure 4.6 Vibration distribution of the 3D Kagome lattice for (a) f = 178Hz and (b) f = 750Hz. 
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and the material parameters of the unit cells are the same. Compared with the lattices 

with 5 and 10 substructures, the lattice with 15 substructures demonstrates the most 

obvious band-gap properties. For the lattice with more substructures, the response 

amplitudes drop more clearly inside the stop-bands. It means physically that the 

elastic waves in the stop-bands of the lattices with more substructures can propagate 

more hardly than in the lattices with fewer substructures. So for the design of 

vibration isolating structures, increasing the substructure number can effectively 

improve the vibration isolation performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 shows a comparison of the frequency responses for 3D Kagome lattices 
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Figure 4.8 Frequency responses for lattice structures with different material M2. 

Figure 4.7 Comparison of the frequency responses of 3D 

Kagome lattices with different substructure numbers. 
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with different material M2. In the case when both the materials M1 and M2 are steel, 

there is no stop-band in the given frequency range. For epoxy as the material M2, the 

responses have clear drops inside the stop-bands. When the materials M1 and M2 are 

different, the periodic characteristic of the 3D Kagome lattice is more obvious 

because both the geometrical configurations and the materials arrange periodically. 

The differences in the material properties make the band-gap characteristics appear 

obviously. For the design of vibration attenuating structures, the periodic arrangement 

of different materials is the key factor to achieve the vibration band-gap property. 

Fig. 4.9 presents the frequency responses for 3D Kagome lattices with different 

materials for the top layer, core and bottom layer. When the material of the top and 

bottom layers is steel and the core material is epoxy, obvious stop-bands can be 

observed although their number is much smaller than that in Fig. 4.5. However, the 

band-gap properties do not appear in the given frequency range when the materials 

interchange. For the design of vibration attenuating structures, the stiffness of the core 

material should not be larger than that of the top and bottom layers. 

 

 

 

 

 

 

 

4.4.4 Other types of 3D Kagome lattices 

Fig. 4.10 shows another type of 3D Kagome lattices, which is different from that 
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Figure 4.9 Frequency responses for structures with different materials of the top layer, core 

and bottom layer. 



 72 

as shown in Fig. 4.1 in the material arrangement. Due to the periodicity of the 3D 

lattice in Fig. 4.10, it also presents the band-gap property as shown in Fig. 4.11. It can 

be seen that the distribution of the stop-bands in the given frequency range is 

intensive. This implies that the 3D Kagome lattices with different material 

arrangements possess different locations of pass- and stop-bands. Thus, we can design 

novel 3D Kagome lattices with improved band-gap properties such as the one shown 

in Fig. 4.12 using this special characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13 shows the frequency responses of the new type 3D Kagome lattice as 

depicted in Fig. 4.12. The band-gap property of this 3D Kagome lattice is obviously 

improved compared to that of the lattice structure 14. Here, the distribution of 

stop-bands is intensive and the stop-band is wider. It means that the performance of 

the vibration isolation is enhanced. The reason is that some elastic waves in the 

pass-band of the first 15 substructures are in the stop-band of the last 15 substructures. 
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Figure 4.11 Frequency responses of the 3D Kagome lattice as shown in Fig. 4.10. 

Figure 4.10 A 3D Kagome lattice with different material arrangement. 
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The increased number of elastic waves which cannot propagate in the new type 3D 

Kagome lattice leads to the enhanced band-gap property. Similarly, we can also 

design other novel functional lattice structures by using this idea. 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 Conclusions 

In this chapter, the SEM is developed and applied to simulate elastic wave 

propagations in 3D Kagome lattices. The results are verified by comparing with those 

of the conventional FEM. The influences of several geometrical and material 

parameters on the band-gap properties are investigated. Some particular dynamic 

phenomena are observed and discussed. From the obtained results, the main 

conclusions of this work can be drawn as follows: 

(1) The SEM can provide more accurate frequency responses and need less 

computing time than the conventional FEM. For the analysis of band-gap 

Figure 4.13 Frequency responses of the 3D Kagome lattice as shown in Fig. 4.12. 
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characteristics, the SEM can avoid certain confusions with pass- and stop-bands. 

(2) Elastic waves in the stop-bands propagate more hardly in the 3D Kagome lattice 

with more substructures. 

(3) The periodical arrangement of different materials makes the band-gap 

characteristics appear obviously. 

(4) For the design of vibration isolation structures, the stiffness of the core material 

should not be larger than that of the top and bottom cover layers. 

(5) Based on the different pass- and stop-band locations, new types of 3D Kagome 

lattices with an enhanced band-gap property can be designed.  

The results in this section can provide some novel ideas for the vibration band-gap 

analysis of 3D periodic lattice structures. Based on the dynamic stiffness matrix of a 

basic element, the spectral equations of 3D periodic lattice structures with other 

topologies can also be obtained, and their band-gap properties can be thus further 

investigated. 
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5 Vibration isolation property of sandwich structure 

    Sandwich structures are widely applied in engineering practice. Especially, the 

sandwich panels with corrugated cores is used in the high-speed rail design. For the 

traditional analysis, the sandwich structure is always equivalent to a plate. In this 

chapter, we do not adapt the equivalent approach, but the SEM to establish the high 

precision mechanical model. This mode retains the periodicity and then the isolation 

performance is analysed. 

5.1 Some basic preliminaries 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Three styles of sandwich panels with different corrugated cores, and the 

corresponding unit cells. 
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Fig. 5.1 shows three styles of sandwich panels with corrugated cores in the 

global coordinate system (x
g
, y

g
, z

g
). The sandwich panels are periodic structures 

which contain N unit cells along the x
g
 direction. They contain the top plates, core 

plates and bottom plates. The sandwich panels are simply supported at the two 

opposite edges of y = 0 and y = Ly.  

Fig. 5.1 also illustrates the unit cell of the style I including the top and bottom 

plate thicknesses ht and hb, the core plate thickness hc, the length Lx, the width Ly and 

the height Lz. The dimensions of the unit cells for the style II and III are the same as 

those for the style I, while the core forms are different. Compared with the style I, the 

core forms in the style II and III are more complex, and the rigidity is stronger. 

In the SEM, the spectral stiffness matrix of each plate is deduced in its local 

coordinate system (x, y, z), and the spectral stiffness matrix can be transformed from 

the local coordinate system to the global one by the transformation matrix. Finally, the 

spectral stiffness matrix of the whole structure system can be assembled in the global 

coordinate system. For the SEM, treating the elements separately makes it possible to 

analyze the structure consisting of an arbitrary number of elements, and 

transformation from local to global coordinates allows the plates to be connected at 

any orientations. 

5.2 Complete plate spectral stiffness matrix 

From Eqs. (2.83) and (2.103), the governing equation of the plate with both 

in-plane and out-of-plane components can be presented as the following form: 

ppnyp k fdS ),(  ,                         (5.1) 

where dp and fp are nodal displacement and force vectors, and Sp is the complete 

spectral stiffness matrix. The relation among Sp, Sin, and Sout is shown in Table 5.1. 
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The terms of Sp which are not shown in the table are equal to 0. 

 

Sp Sin Sout 

(1,1)  (1,2) 

(2,1)  (2,2) 

(1,1)  (1,2) 

(2,1)  (2,2) 
 

(1,5)  (1,6) 

(2,5)  (2,6) 

(1,3)  (1,4) 

(2,3)  (2,4) 
 

(3,3)  (3,4) 

(4,3)  (4,4) 
 

(1,1)  (1,2) 

(2,1)  (2,2) 

(3,7)  (3,8) 

(4,7)  (4,8) 
 

(1,3)  (1,4) 

(2,3)  (2,4) 

(5,1)  (5,2) 

(6,1)  (6,2) 

(3,1)  (3,2) 

(4,1)  (4,2) 
 

(5,5)  (5,6) 

(6,5)  6,6) 

(3,3)  (3,4) 

(4,3)  (4,4) 
 

(7,3)  (7,4) 

(8,3)  (8,4) 
 

(3,1)  (3,2) 

(4,1)  (4,2) 

(7,7)  (7,8) 

(8,7)  (8,8) 
 

(3,3)  (3,4) 

(4,3)  (4,4) 

 

5.3 Spectral equation of the whole structure 

The spectral element matrix derived in Eq. (5.1) is in the local coordinate system. 

Every element is in its own local coordinate system to facilitate computation. When 

the two elements are connected together during the process of assembling, 

displacements and forces at the nodes must be related to the same axes. It is necessary 

to transform the spectral element matrix from the local to the global coordinate 

system. 

 

 

 

 

 

Fig. 5.2 shows the plate element in local and global coordinate systems. The 

local coordinate system can be obtained by rotating the global coordinate system 

Table 5.1 Correspondence of matrix terms. 

Figure 5.2 The plate element in the local 

and global coordinate systems. 
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xg 

yg 

υ 

zg 
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about y
g
 axis by an angle υ. The transformation of nodal displacements and forces 

from the global to local coordinate system can be accomplished by a matrix Λ which 

can be written as 






















1000

0cos0sin

0010

0sin0cos





Λ .                   (5.2) 

By the rules of the orthogonal transformation, the spectral element matrix in Eq. 

(5.1) can be transformed to the global coordinate system as 

rpr

g

p TSTS
T

 ,                        (5.3) 

where g
pS  is the plate spectral element matrix in the global coordinate system, and Tr 

is the transformation matrix expressed as the following form: 











Λ

Λ
T

0

0
r .                         (5.4) 

The equation of motion of the whole sandwich panel with corrugated cores can 

be obtained by assembling the spectral element matrix in the global coordinates g
pS , 

and it can be derived as 

wwnyw k fdS ),(  ,                      (5.5) 

where Sw is the global spectral stiffness matrix of the sandwich panel with corrugated 

cores, and dw and fw are the nodal displacement and force vectors in the global 

coordinates system. It should be noted that the whole derivation is in the frequency 

domain. The frequency responses can be obtained by solving Eq. (5.5), and the 

vibration band gap behaviors can be studied accordingly. 



 79 

5.4 Vibration isolation of sandwich structure 

In this section, the frequency responses of the three styles of sandwich panels in 

Fig. 5.1 are calculated by the SEM. Firstly, the style I is taken as an example to study 

the band gap behaviors and to analyze the influences of some parameters on the 

structural vibration properties. Then, the differences of the vibration band gap 

characteristics for the three styles are investigated further.  

For the style I, the structure and material parameters in the calculation are the 

length Lx = Ly = Lz = 0.04 m, the thickness of plate elements ht = hc = hb = h= 0.002
 
m, 

the mass density ρ = 2800 kg/m
3
, the Young’s modulus E = 72 GPa and the Poisson’s 

ratio ν
 
=

 
0.3. The unit cell number is N = 15, and each unit cell is considered as 5 

spectral plate elements as shown in Fig. 5.3. 

 

 

 

 

 

 

 

The external excitation F
 
=

 
F0e

iωt
 is located at the left edge of the sandwich panel, 

i.e. at the position (0m, 0.02m, 0.04m). Here F0 = 10N. Based on Eq. (5.5), the 

frequency responses of the whole structure can be obtained. In this work, the 

frequency responses at the point P (0.6m, 0.008m, 0.04m) are demonstrated. In the 

numerical calculation, the frequency is defined as f = ω/(2π). The unit is Hz. 

Fig. 5.4 shows the frequency responses of in-plane and out-of-plane 

displacements and rotation angle at point P (0.6m, 0.008m, 0.04m). Although the four 

1 2 

3 

4 

5 

Figure 5.3 One unit cell divided into five 

spectral plate elements. 
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responses are different, they display the same locations of stop band. There are 3 stop 

bands in the given frequency range (i.e. about 0-5580Hz, 8800-14880Hz and 

20770-27410Hz). In the stop bands, the vibration amplitudes are much smaller than 

those in the pass bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 shows the comparison between the frequency responses calculated by the 

SEM and the FEM. For the FEM, the results are obtained using SHELL63 ANSYS 

elements. This type of element is elastic quadrilateral shell element and is suitable for 

the analysis of Kirchhoff plates. It contains 4 nodes and 6 DOFs at each node (3 

displacements and 3 rotations). The ANSYS coarse mesh (0.004×0.004m
2
) and finer 

mesh (0.002×0.002m
2
) are taken into account, that is, every unit cell contains 300 and 

1200 elements, respectively. While for the SEM, the unit cell is divided into only 5 
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Figure 5.4 Frequency responses of four degrees of freedom. 

Figure 5.5 Variation of the transverse displacement 

calculated by the SEM and FEM. 
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spectral plate elements as shown in Fig. 5.3. 

It can be seen that the three results coincide with each other well. Compared with 

the results calculated by the coarse mesh, those calculated by the finer mesh are closer 

to the SEM results, especially in high frequency ranges. Because the SEM acquires 

the responses according to the solution of the governing equation, the result accuracy 

of this method is high. For the FEM, in order to obtain more accurate solutions, more 

elements are required and consequently it will consume more computation time, while 

the SEM can save time due to its small element number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 The vibration distributions of upper plate of the sandwich panel 

with f = 500Hz for (a) displacement u, (b) displacement v (c) displacement w 

and (d) rotation angle ζ .  

 

xg direction /m 

yg
 d

ir
ec

ti
o
n

 /
m

 

 

(a) 

xg direction /m 

 

yg
 d

ir
ec

ti
o
n

 /
m

 

(b) 

xg direction /m 

 

yg
 d

ir
ec

ti
o
n

 /
m

 

(c) 

xg direction /m 

 

yg
 d

ir
ec

ti
o
n

 /
m

 

(d) 



 82 

Fig. 5.6 shows the vibration distributions of the upper plate of the sandwich 

panel with the frequency f = 500Hz. For the four DOFs, the vibrations are confined at 

the left edge (near the vibration source), and they cannot propagate through the 

sandwich panel with corrugated cores. The responses can be hardly detected at the 

right edge. It means that this frequency is in the stop band. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 displays the vibration distributions with the frequency f = 20kHz. It can 

be seen that the vibration can propagate in the sandwich panel without attenuation. 
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Figure 5.7 The vibration distributions of upper plate of the sandwich panel 

with f = 20kHz for (a) displacement u, (b) displacement v (c) displacement w 

and (d) rotation angle ζ. 
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Obviously, this frequency is in the pass band. From Eqs. (2.87), (2.60), and (2.72), 

one can observe that the stationary wave mode functions of u, w and ζ in the y 

direction are sin(kyy). In Figs. 5.7(a), (c) and (d), the strong vibration appears in the 

middle parts (y = 0.02m), and the amplitudes equal to zero on the boundary (y = 0 and 

y = 0.04m). The situation in Fig. 5.7(b) is opposite because the stationary wave mode 

function of v is cos(kyy) as shown in Eq. (2.88). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8 displays the comparison of frequency responses for the sandwich panels 

with 10 and 15 unit cells. Due to the same structural and material parameters of the 

unit cells, the two structures have the same locations of stop band. Different unit cell 
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Figure 5.8 Comparison of frequency responses for 

sandwich panels with different unit cell numbers. 
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Figure 5.9 Frequency responses for sandwich 

panels with different structural loss factors. 
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numbers make the response amplitudes in the pass and stop bands changed. For the 

structure with more unit cells, the responses drop more clearly inside the stop bands, 

which means the waves in the stop bands propagate more hardly in the sandwich 

panel with corrugated cores. 

The frequency responses of sandwich panels with different structural loss factors 

calculated by the SEM are shown in Fig. 5.9. The structural damping can be 

considered by the complex Young’s modulus E(1+iε), where ε is the structural loss 

factor. From Fig. 5.9 it is seen that the structural damping has no influence on the 

locations of stop bands, but has influences on the amplitudes in the pass bands. In the 

resonant regions, the amplitudes are the largest for the structural loss factor ε = 0. The 

amplitudes become small with the increase of the structural damping, especially in 

high frequency ranges.  

 

 

 

 

 

 

 

 

The vibration band gap behaviors of sandwich panels with different material 

properties are displayed in Figs. 5.10 and 5.11. Fig. 5.10 shows the responses 

changing with the different materials of the whole structure. For the steel structure, 

the response curve appears a little offset toward the right. This phenomenon become 

more obvious in the high frequency ranges. The material properties of the whole 
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Figure 5.10 Frequency responses of sandwich 

panels with different materials. 
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structure have light influences on the pass and stop band locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11 shows the frequency responses of sandwich panels with the different 

core materials. All of the upper and lower plates are aluminum. When the core 

materials are cast iron and steel, obvious changes of the response are shown in the 

figure. For example, in the given frequency range, two more stop bands appear, which 

makes the stop bands wider. This band-gap property is useful in designing the 

sandwich panels with superior vibration isolation properties. 

Fig. 5.12 shows the different frequency responses for structures with different 

plate thicknesses. From this figure, one can observe that the stop band locations and 

the resonant frequencies change clearly for the different plate thicknesses. For the 

Figure 5.11 Frequency responses of sandwich 

panels with different core materials. 
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Figure 5.12 Frequency responses for sandwich panels with 

different plate thicknesses. 
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three sandwich panels, the first stop bands become wider with the increase of the plate 

thickness. If the vibration isolation characteristics in the low frequency ranges are 

focused, the influence of the plate thickness cannot be ignored. Moreover, for the 

sandwich panel with thin plate thickness, narrower band gaps are observed. But for 

the structure with thick plate thickness, fewer broad band gaps appear. 

To summarize the above investigation, the effect of the structural and material 

parameter on the band-gap property of the sandwich panels with corrugated cores is 

displayed in Table 5.2, which can provide the general guideline for the structural 

parameter selection. 

 

 

 Stop band ―width‖ Stop band ―depth‖ 

increasing cell number — ↑ 

Increasing ε — — 

increasing the material 

difference between the core 

and the upper and lower plates 

↑ — 

increasing the plate thickness ↑ ↑ 

 

 

 

 

 

 

 

 

For the three styles of sandwich panels with different corrugated cores as shown 

Table 5.2 The effect of the structural and material parameter on the 

band gap property, where ↑ represents increasing, ↓ represents 

decreasing and — represents no change. 
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Figure 5.13 Frequency responses for three styles of 

sandwich panels with different corrugated cores. 
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in Fig. 5.1, Fig. 5.13 shows the comparison of frequency responses. One can see that 

the locations and numbers of the pass and stop bands are different because of the 

different spectral element matrices. For the style II and III, there are 4 and 5 stop 

bands, respectively, which are more than those for the style I. The frequencies in the 

first stop bands become higher with the rigidity of the core structure increasing. In the 

given frequency range, the style III has the most stop bands, while the widths of the 

stop bands are narrower than those of the other two structures. It shows that the 

stronger the core rigidity is, the more the stop bands appear. 

5.5 Conclusions 

In this chapter, based on the Kirchhoff plate model, the SEM is used to study the 

vibration band gap behaviors of the sandwich panels with corrugated cores. Compared 

with the FEM, the SEM illustrates high accurate results with fewer elements. For the 

sandwich panel consisting of much number of plates, the frequency responses can be 

effectively obtained by the SEM. 

Much analysis is applied to demonstrate the frequency pass and stop band 

properties in the periodic distribution direction (x
g
 direction in this work). The 

vibrations in the stop bands propagate more hardly in the sandwich panel with more 

unit cells. The structural damping has no influence on the locations of stop bands.  

Moreover, different material and structure parameters also make the vibration 

isolation ability changed. One can design sandwich panels with better band-gap 

properties by properly selecting the core materials. The sandwich panel composed of 

thicker plates appears wider range of the first stop band. The sandwich panel with 

stronger core rigidity can provide more stop bands. In consideration of the vibration 

isolation, the material and structure effects cannot be ignored. 
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6 Vibration isolation by exploring bio-inspired structural 

nonlinearity 

Except the periodic structures, the nonlinear structures also possess beneficial 

vibration isolation performance due to the high-static-low-dynamic stiffness 

characteristic. In the chapters 6 and 7, static analysis, dynamic analysis and 

experimental technique will be adopted for the comprehensive understanding of the 

nonlinear mechanism. Due to the limitation of the SEM for the nonlinear system, the 

mechanical analysis approach will be used in the dynamic modeling instead of the 

SEM to study on the vibration isolation property. 

 

 

 

 

 

 

 

 

In this section, inspired by the limb structures of animals/insects in motion 

vibration control, a bio-inspired limb-like structure (LLS) which can be considered as 

an X-like shape structure is investigated for understanding and exploring its 

advantageous nonlinear function in passive vibration isolation (Fig. 6.1). Legs of birds 

can support the body and maintain very good stability no matter whether the bird is 

moving or standing. Obviously, the displacement-force relationship of the legs is 

Figure 6.1 (a) A grus japonensis, (b) schematic of its legs and (c) an asymmetric 

structure inspired by the leg. 
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nonlinear. To imitate the legs, the body is considered as a mass, articulations as joints 

and shin bones (tibia and femur) as rods. One DOF of the bio-inspired LLS system is 

shown in Fig. 6.1(c). The bio-inspired LLS consists of asymmetric articulations (of 

different rod lengths). The horizontal and vertical springs of different linear stiffness 

are the engineering realization of muscles and tendon. 

6.1 Bio-inspired limb-like structure 

 

 

 

 

 

 

 

 

 

Fig. 6.2(a) shows the n-layer bio-inspired LLS with unequal length L1 and L2. 

The initial angles are ζ1 and ζ2. In this study, it is supposed that L2 is not smaller than 

L1, and thus L2/L1≥1 and ζ1≥ζ2. Four rods and four joints are in each layer and their 

mass is not considered in the modeling since the supporting mass can be much larger 

than the rod/joint mass. Two linear springs, kh in the horizontal direction and kv in the 

vertical direction, are used in the bottom layer (as passive muscles). It should be noted 

that, when L2=L1 and kv =0, this is a special case discussed in our preliminary work 

[114, 115]. Fig. 6.2(b,c) shows the structure after deformation and corresponding 

parameters. From the geometrical relationship, it can be obtained 

Figure 6.2 The bio-inspired structure in modeling (a) before deformation, (b) after 

deformation and (c) a comparison between the two states. 
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where ŷ is the variable in the vertical direction. In the static study yy ˆ . In the 

dynamic study, there is a base excitation z and ŷ  is set as zyy ˆ . x1 and x2 are the 

corresponding variable in the horizontal direction, and υ1 and υ2 are the corresponding 

variables of angles. The relationships between the rod length and the angle are  

L1sin(ζ1) = L2sin(ζ2) and L1sin(ζ1+υ1) = L2sin(ζ2+υ1).        (6.5) 

From Eqs. (6.1) – (6.4), υ1, υ2, x1 and x2 can be expressed as 
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6.2 Mechanic modeling 

The bio-inspired LLS system loaded by a static force is shown in Fig. 6.3(a) and 

the stress states of the Joint 1, Joint 2 and Joint 3 are also displayed in Figs. 6.3(b)–(d), 

where f1 and f2 are the internal forces along the rods. Based on Fig. 6.3, three 

equilibrium equations at the joints can be established as, 

)cos(2 111   fxkh ,                      (6.10) 

n

y
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where x = x1+x2. Substituting Eqs. (6.10) and (6.12) into Eq. (6.11), one can obtain 
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Substituting Eqs. (6.1), (6.2), (6.8) and (6.9) into Eq. (6.13), f can be expressed 

as 
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Figure 6.3 (a) The bio-inspired mechanism loaded by a static force and 

the stress states at (b) Joint 1, (c) Joint 2 and (d) Joint 3. 
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The displacement range of each joint in the bio-inspired LLS should be noticed. 

The compression range of y is from ‒2nL1sinζ1 to 0 and the extension range is from 0 

to 2nL1(1‒ sinζ1) corresponding to the assembly angle ζ1 changing from 0 to 90
0
. Due 

to L1sin(ζ1) = L2sin(ζ2), the rod length L2 or the angle ζ2 should be changed 

accordingly with L1 and ζ1 for designing the working range of y. 

Eq. (6.14) can be written in the dimensionless form as 
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where the dimensionless parameters here are listed in Table 6.1. Obviously, the 

working range of the dimensionless displacement Y is from –2nγ to 2n(1–γ). 

 

Dimensionless parameters Values 

F f /(khL1) 

Dimensionless displacement Y y/L1 

Vertical to horizontal  

spring Stiffness ratio α kv/kh 

Rod-length ratio β L2/L1 

Initial assembly angle  

parameter γ sin(ζ1) 

γ/β sin(ζ2) 

 

From Eq. (6.15), one can obtain the stiffness as follows, 

Table 6.1 The dimensionless variables in Eq. (6.15). 
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Fig. 6.4 shows the dimensionless force F and dimensionless stiffness Y
F

d
d

 vary 

with the dimensionless displacement Y when n = 3, β = 2 and γ = sin(π/4). Figs. 6.4(a) 

and (c) are the results of the structure in a compressed state with negative Y, while 

Figs. 6.4(b) and (d) in an extension state with positive Y. The dimensionless stiffness 

Figure 6.4 Nonlinear force and stiffness with different displacement Y of the 

bio-inspired structure when n=3, β =2 and γ = sin(π/4) ((a) and (b) non-dimensional 

force, and (c) and (d) non-dimensional stiffness). 
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is increasing from the negative to positive with the increase of Y from the 

compression to extension. In compression, the stiffness is decreasing with the 

compression amount |Y| to zero and until to a negative value. This demonstrates a very 

amazing nonlinear stiffness property which is greatly beneficial to the design of 

vibration isolation.  

For different stiffness ratio α (=kv/kh), the structural stiffness can be very different. 

For α = 0.2, the structure possesses positive stiffness in the whole working range. For 

α = 0 and α = 0.1, negative stiffness occurs during compression. 

The relationship between the structural stiffness and the angular displacement υ1 

or υ2 can also be studied. The compression range of the angle υ1 is from ‒ ζ1 to 0 and 

the extension is from 0 to (π/2‒ ζ1). The relationship between the displacement Y and 

the angle υ1 is 

 )sin()sin(2 111   nY .                 (6.17) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Nonlinear force and stiffness with different angle υ1 of the bio-inspired 

structure when n=3, β =2 and γ = sin(π/4) ((a) and (b) non-dimensional force, and (c) and 

(d) non-dimensional stiffness). 

Angle υ1 

α = 0
 

α = 0.1 

α = 0.2 

S
ti

ff
n
es

s 
d
F

 /d
Y

 

(a) (b) 

(c) (d) 

F
o
rc

e 
 
F

 

F
o
rc

e 
 
F

 

Angle υ1 

Angle υ1 Angle υ1 

S
ti

ff
n
es

s 
d
F

 /d
Y

 



 95 

The dimensionless force and stiffness can be expressed by υ1 as 
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(6.19) 

The results are shown in Fig. 6.5. Similar conclusions for the angle υ1 to the 

displacement Y can be seen. When α = 0 and α = 0.1, the negative and zero stiffness 

appear. The appearance of negative stiffness is helpful to design zero or quasi-zero 

stiffness systems for practical application, but may also incur unstable equilibrium. 

All these can be well designed with structural parameters of the proposed bio-inspired 

LLS including rod length (l1), assembly angle (ζ1), layer number (n), vertical to 

horizontal spring-stiffness ratio (α), and asymmetric rod-length ratio (β), etc. 

6.3 Parameter influence 

To obtain the possible minimum point in the stiffness curve, the following 

equation can be solved 

0
d

d
2

2


Y

F
.                         (6.20) 

It gives the solution Ye = ‒2nγ which is the minimum point of the stiffness curve 
Y
F

d
d . 
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The lowest working range in compression for Y is YL= ‒2nγ which is equal to Ye. It 

means that the stiffness of the system continues to decrease with the increasing 

compression of the structure in the whole working range (see Fig. 6.6). 

Substituting Ye into Y
F

d
d  gives the smallest stiffness of the system (could be 

negative or zero). Therefore, for a positive-only stiffness within the whole working 

range in compression, the parameters α, β and γ (see definitions in Table 6.1) should 

satisfy the following inequality,  

  02
1

111
2

1 222 







 


 .           (6.21) 

In the ineqality (6.21), note that β= L2/L1 ≥1, α= kv/kh ≥0 and 20 1  (γ = sin ζ1). 

Otherwise, the system will possess negative and zero stiffness as well at different 

equilibrium points. 

 

 

 

 

 

 

6.3.1 Influence of the initial angle γ (i.e., sin θ1) 

By solving Ineq. (6.21), γ has the following form, 

13434

)122)(12)(12(22
223
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
 c ,     (6.22) 

where γc is the critical value for existing negative stiffness. 

Fig. 6.7 shows the distribution of γc with different spring-stiffness ratio α and 

Figure 6.6 Working and non-working range of the bio-inspired 

structure when n=3, α=0.1, β =2 and γ = sin(π/4). 
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rod-length ratio β. For the extreme case with γ =1, the inequality (6.21) implies that 

  21 1/ 1 1 / 4        . Therefore, when   21 1/ 1 1 / 4        , the 

system has positive-only stiffness for any γ. When α = 0, γc=0 implying no initial angle 

to achieve a positive-only stiffness for the whole working range. However, a critical γc 

exists when    4/11/110 2   implying simultaneous existence of negative, 

zero and positive stiffness. 
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Figure 6.7 Distribution of γc for different α and β. 
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Figure 6.8 Nonlinear force and stiffness of the bio-inspired structure with different γ when n =3, α 

= 0.1 and β = 2 for (a) and (b) non-dimensional force, and (c) and (d) non-dimensional stiffness. 
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Fig. 6.8 shows the dimensionless force and stiffness with different γ when n =3, α 

= 0.1 and β = 2. It can be seen that when γ = γc, the bio-inspired structure will have the 

unique zero stiffness at the lower limit of Y in compression, and the stiffness is always 

positive in the whole working range. For γ > γc (for example, γ = 0.7), the stiffness is 

zero when Y =Y0 (
0

d
d

0F
Y YY   ), negative when – 2nγ <Y <Y0 and positive when Y0<Y < 

2n(1– γ). For γ < γc (for example, γ = 0.4), the stiffness is always positive in the whole 

working range without zero stiffness. 

As an example to design the original angle ζ1 based on Ineq. (6.22) and Fig. 6.7, 

for example, given α = 0.2 and β = 2, it can be obtained that γc = 0.7804 as shown in 

Fig. 6.9. If the initial angle ζ1 = 0.8953 (i.e., 51.3
o
), the system can achieve a pure 

positive stiffness system with a unique zero stiffness point. That is to say, if ζ1 = 

0.8953, the mechanism possesses zero stiffness at exactly Y0 = – 2nγc (the lower limit 

of the working range) and the structure possesses positive stiffness for – 2nγc<Y < 

2n(1– γc). 

 

 

 

 

 

6.3.2 Influence of the spring-stiffness ratio α (i.e., kv/kh) 

By solving Ineq. (6.21), a critical α can also be obtained as 

  111
4

1 222  


 c .          (6.23) 

Fig. 6.10 shows the distribution of αc with different initial assembly angle γ and 

Figure 6.9 γc for different β when α = 0.2. 

β 

γ c
 

γc= 0.7804 



 99 

rod-length ratio β. It can be seen that αc is becoming smaller as β increases and/or γ 

decreases. The critical value αc = 0 implies that the structure stiffness is always 

positive and has no negative stiffness. However, larger αc implies that the structure 

potentially has negative and zero stiffness with appropriate parameters. Based on Ineq. 

(6.23) and Fig. 6.10, a negative-stiffness-free system can be designed (see Fig. 6.11) 

when α ≥ αc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Distribution of αc with different γ and β. 
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Figure 6.11 Nonlinear force and stiffness of the 

bio-inspired structure with different α when n =3, β = 2 and 

γ = sin(π/4) for (a) non-dimensional force, and (b) 

non-dimensional stiffness. 
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6.3.3 Influence of the rod-length ratio β (i.e., L2/L1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameter β can also significantly change the stiffness property of the 

structure as revealed by (6.21). Fig. 6.12 shows the influence of the rod-length ratio β 

on the stiffness of the bio-inspired LLS for n =3, α = 0.1583 and γ = sin (π/4). It can be 

seen that, when the rod-length ratio β is larger than (e.g., β =3 in Fig. 6.12), the 

structure possesses only positive stiffness on the whole working range; when β is 

smaller (e.g., β =1), the structure possesses zero stiffness when Y = Y0, negative 

stiffness when – 2nγ <Y <Y0 and positive stiffness when Y0<Y < 2n(1– γ). 

6.3.4 Influence of the layer number n 

Based on Ineq. (6.21), the layer number n has no effect on the existence of 

negative stiffness. Fig. 6.13 shows the dimensionless force and stiffness of the 

Figure 6.12 Nonlinear force and stiffness of the bio-inspired structure with different β 

when n =3, α = 0.1583 and γ = sin(π/4) for (a) and (b) non-dimensional force, and (c) 

and (d) non-dimensional stiffness. 
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bio-inspired structure with different n. It can be seen that the structure have the same 

largest loading force in compression which is close to F= – 0.1 no matter what the 

layer number is. This implies that the structure layer number n has no effect on the 

loading capacity. However, for the same loading capacity, a larger layer number can 

increase the working range Y obviously since – 2nγ <Y < 2n(1– γ). 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 Loading capacity 

A loading capacity is very important for any isolation system. If the parameters 

satisfy Ineq. (6.21), the bio-inspired structure possesses a positive-only stiffness. 

Based on this, the structure can support the largest compression loading is 

–2kvL1sin(ζ1) when ζ1 is at its lower limit ‒ υ1 (see Eq. (6.13)) and meanwhile y is at 

its lower limit ‒2nL1sinζ1 (see Eq. (6.14)). Increasing the spring stiffness in the 

vertical direction kv, the length of rod L1 and the angle ζ1 are also effective to increase 

Figure 6.13 Nonlinear force and stiffness of the bio-inspired structure with different number 

of layers n when α = 0, β = 2 and γ = sin(π/4) for (a) and (b) non-dimensional force, and (c) 

and (d) non-dimensional stiffness. 
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the working range in compression and thus potentially increase the loading capacity. 

If the structural parameters do not satisfy Ineq. (6.21), the system will have 

negative stiffness when Y < Y0 as discussed in Figs. 6.8 and 6.12. One can obtain the 

dimensionless value of Y0 by solving 0
d

d


Y

F
or obtain the real displacement value y0 by 

solving 0
d

d


y

f
. When L1=L2, the bio-inspired LLS is symmetric, the compression 

loading capacity denoted by f0 can be easily obtained as 
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and it occurs at the position  








 3
2

1110
)/(cos1sin2

vhh
kkknLy  . It can be seen 

that several structural parameters including the stiffness of springs kv and kh, the rod 

length L1 and the initial angle ζ1 have effect on the loading capacity, which can be 

employed in design for fulfilling practical requirements. 

In extension, the largest load could be infinity when y is at its upper limit 

2nL1(1‒ sinζ1).  

6.5 Equation of motion 

In the dynamic analysis, the air damping of the mass M and the rotational friction 

of each joint are considered. Since the mass of rods is not considered in the modeling, 

the material or size of the rods can be properly designed to minimize the potential 

influence. For example, new-type lightweight materials such as lattice materials or 

carbon fiber can be used. 

The kinetic energy can be written as 
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2

2

1
yMT  .                        (6.25) 

Considering the air damping and the friction of each connecting joint, the virtual 

work is  
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 ,            (6.26) 

where c1 is the air damping coefficient, c2 is the rotational fiction coefficient, nx = 

3n+1 is the number of joints and υ = υ1+υ2. It should be noticed that 4  is a 

summation of the angular velocity in one layer. For Joint 1 as shown in Fig. 6.2, the 

angular velocity is 2 1
 , and the angular velocities for the Joint 2, Joint 3 and Joint 4 

are 
21

   , 2
2

 and 21
   , respectively. 

Using the Hamilton principle, the dynamic equation can be obtained as 
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Using the Taylor series expanding for )ˆ(
1

yf and )ˆ(
2

yf , it can be obtained that 
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where !/)0()(

1
jf j

j
  ( j = 1, 2, 3, 4), they have relationship with kh, L1, L2, ζ1, ζ2 and n. 

!/)0()(

2
jf j

j
  ( j = 0, 1, …, 4), have relationship with L1, L2, ζ1, ζ2 and n. The ξi and δi 

are listed in Appendix B. 

The comparisons of the original functions and the Taylor series expansions are 
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displayed in Fig. 6.14 when L1= 0.2m, L2= 0.3m, ζ1 = π/4, n = 3 and kh = 1000N/m. It 

can be seen that they are in a good agreement. Moreover, based on the geometric 

nonlinearity of the bio-inspired mechanism, the curves demonstrate a weak nonlinear 

property although both the spring and the damping are considered to be linear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting Eqs. (6.30) and (6.31) into Eq. (6.27), one can obtain 
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The dimensionless equation of motion can be written as: 
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where t d/)(d）（  and tMkt
h
/ . The other parameters are listed in Appendix B. 

Figure 6.14 Comparisons between the original terms and 

Taylor-expansion for (a) f1 and (b) f2. 
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6.6 Equivalent stiffness 

Eq. (6.33) is a nonlinear function and from which the equivalent linear 

coefficient 2 and nonlinear coefficients p2, p3 and p4 can be obtained. To study the 

resonant frequency of the bio-inspired structure, the linear coefficient 2 is a dominant 

factor and it can be expressed as 

 
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
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 




 .            (6.34) 

For a simple case, when the length of rods L1=L2 and the vertical spring is not used in 

the system, that is β =1 and α = 0, the linear coefficient ω = tanζ/n. 

 

 

 

 

 

 

 

 

 

 

The resonant frequency should be reduced to obtain a better vibration isolation 

performance. Based on Eq. (6.34), it can be seen that increasing the layer number n 

and decreasing the spring-stiffness ratio α can effectively reduce the linear 

coefficient 2 . It should be noticed that α should satisfy α ≥ αc as shown in Ineq. (6.23) 

if the negative stiffness of the system is not desired. 

The effect of the assembly angle index γ and the rod-length ratio β on the linear 

Figure 6.15 Distribution of 2 for different γ and β when n=3 and α= 0.2. 
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coefficient 2 is displayed in Fig. 6.15 when n = 3 and α = 0.2. It can be seen that a 

bigger β or a smaller γ results in a reduced linear resonance frequency 2 . The linear 

coefficient 2 varies with β more obviously when γ >0.5. Because a small γ can bring 

a small working range of the system, γ cannot be designed too much small. The 

loading capacity and the equivalent stiffness of the system should be considered 

together in the design of the structural parameter γ. 

6.7 Vibration isolation performance 

Using the harmonic balance method (HBM) and considering the base excitation 

as z = z0 cos (ω0t)= z0 cos (Ωt') where 
h

kMΩ /
0

 , the solution of Eq. (6.33) can be 

determined as the second order harmonic response for a higher accuracy, which can 

be written as, 

)2cos()cos(ˆ
22110   tΩatΩaay ,           (6.35) 

where a0 is the bias term, a1 and ϑ1 are the first order harmonic amplitude and phase, 

a2 and ϑ2 are the second order harmonic amplitude and phase.  

Substituting Eq. (6.35) into Eq. (6.33), the unknown parameters (i.e. a0, a1, a2, ϑ1 

and ϑ2) can be obtained by solving a set of algebraic equation for each Ω with the 

standard HBM.  

In the dynamic study, ŷ  is set as zyy ˆ . The vibration solution of the mass 

is zyy  ˆ . The displacement transmissibility is the ratio of the vector norm of the 

mass displacement with that of the base excitation. In this calculation, the first order 

harmonic solution is used. So the displacement transmissibility Td has the following 

form: 
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where   means the norm of the vector. 

By calculating the displacement transmissibility in Eq. (6.36), the vibration 

isolation function of the bio-inspired mechanism can be evaluated and discussed. In 

the following analysis, M =10kg, ζ1 = π/4, the amplitude of the base excitation z0 = 

0.05m, c1 = 5Ns/m, c2 = 1Ns/m and n = 3 without further specification. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.16 shows the displacement transmissibility Td and the offset a0 with 

different L1 and L2 as kh = 4kN/m and kv = 1kN/m. It can be seen that the displacement 

transmissibility around the resonant frequency obviously larger than that at other 

frequencies. To improve the low frequency isolation performance of the bio-inspired 

structure, two aspects can be considered. The first one is to decrease the value of 

resonant frequency and the second one is to reduce the amplitude of the displacement 

transmissibility at the resonant frequency. It can be seen that decreasing the length L1 

and L2 simultaneously can effectively reduce the amplitude of both the displacement 

Figure 6.16 The isolation performance of the bio-inspired 

structure when the length L1 and L2 changes simultaneously. (a) 

The displacement transmissibility and (b) the offset. 
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transmissibility and the offset, however without obvious increasing high frequency 

transmissibility. This implies a typical nonlinear damping effect [13 –17], which is 

increased with the decrease of the L1 and L2. The value of resonant frequency is not 

changed in this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L2= 0.4m 

L2= 0.5m 

L2= 0.8m 

Figure 6.17 The isolation performance of the bio-inspired structure with 

different L2. (a) The displacement transmissibility and (b) the offset. 
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Figure 6.18 The isolation performance of the bio-inspired mechanism when the 

spring stiffness kh and kv changes simultaneously. (a) The displacement 

transmissibility and (b) the offset. The unit of kv and kh is kN/m. 
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Fig. 6.17 shows the isolation performance of the bio-inspired structure with 

different L2 when L1= 0.4m to study the effect of the rod-length ratio β (i.e., L2/L1). 

The other parameters are the same as those in Fig. 6.16. The system becomes 

asymmetric with the increase of L2. In Fig. 6.17, the increasing length of rods brings 

the increasing amplitudes, which is the same as the conclusion in Fig. 6.16. The 

resonant frequency becomes small with the increasing L2, which means that the 

resonant frequency is decreasing with the increasing rod-length ratio β, which is 

consistent with the conclusion in Fig. 6.15. 

Fig. 6.18 displays the isolation performance of the bio-inspired structure with 

L1= 0.4m and L2= 0.6m when the spring stiffness kh and kv changes simultaneously. It 

can be seen that the resonant frequency does not change but a smaller stiffness of the 

springs results in the reduced amplitude at the resonant frequency, implying an 

increasing nonlinear damping effect. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 The isolation performance of the bio-inspired structure 

with different stiffness ratio α. (a) The displacement transmissibility 

and (b) the offset. The unit of kv and kh is kN/m. 
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Fig. 6.19 shows the displacement transmissibility and the offset with the 

different stiffness ratio of springs kv and kh. The increase of the spring stiffness kv or kh 

can increase the peak value of the displacement transmissibility. The decrease of the 

spring-stiffness ratio α (i.e., kv/kh) can obvious decrease the resonant frequency, which 

is consistent with the conclusion in Eq. (6.34). 

 

 

 

 

 

 

 

 

 

 

 

 

The isolation performance of the bio-inspired structure with different layer 

number n is shown in Fig. 6.20 when L1= 0.4m, L2= 0.6m, kh = 2kN/m and kv = 

1kN/m. It can be seen that the increase of n is obviously helpful for improvement of 

the vibration isolation performance of the bio-inspired structure. It not only makes 

the resonant frequency smaller, but also makes the peak amplitude of the 

displacement transmissibility and the offset at the resonant frequency both be 

decreased. 

Fig. 6.21 displays the displacement transmissibility and the offset with different 

Figure 6.20 The isolation performance of the bio-inspired 

structure with different numbers of layer. (a) The 

displacement transmissibility and (b) the offset. 
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original angle ζ1 when L1= 0.4m, L2= 0.6m, kh = 2kN/m, kv = 1kN/m and n = 4. It can 

be seen that the vibration isolation performance can be obviously improved by 

decreasing γ (or ζ1). The resonant frequency is decreased and the peak amplitude is 

also reduced. 

 

 

 

 

 

 

 

 

 

 

 

6.8 Comparisons, Discussions and Experiments 

6.8.1 Compared with existing benchmark QZS isolators 

In this section the displacement transmissibility of the bio-inspired limb-like 

structure and two recently-developed QZS isolators, referred to as QZS isolator I and 

II, are compared. In the comparison, the loading mass and the stiffness of the linear 

spring are the same for the three isolators. The stability, the effective frequency range 

of vibration isolation and the working displacement range is the study objective in this 

case. It will be seen that the bio-inspired LLS has better stability, bigger effective 

frequency range of vibration isolation and preferable flexibility in the working range 

Figure 6.21 The isolation performance of the bio-inspired 

structure with different original angle ζ1. (a) The displacement 

transmissibility and (b) the offset. 
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design. 

The QZS isolator I is composed by three springs borrowed from [21‒23]. The 

equation of motion of the system can be approximated by Duffing’s equation without 

the linear term. When the QZS isolator is under the base excitation, it has the 

dimensionless equation of motion as: 

)cos(ˆˆ2ˆ
0

23 tzyyy   ,                 (6.37) 

where the dimensionless variables are defined in Table 6.2. 

 

Dimensionless parameters Values 

ωn Mk /  

t   tn  

ξ )2/(
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μ kn/kl 

Ω ω0/ωn 

 

The QZS isolator II is an isolator developed by parallel Euler buckled beams as a 

negative stiffness corrector [31]. The equation of motion of the QZS isolator can be 

expressed as: 

zMykLycyM   3 ,                  (6.38) 

where k is the stiffness of the linear vertical spring, c is the damping of the viscous 

damper and L is the length of beams before buckling. The parameter λ has the 

following form: 
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where χ = cosζ and ζ represents the inclined angle. Lqq /~
00

 and q0 is the initial small 

lateral deflection which is called ―imperfection‖ of beams [31]. When the two terms 

Table 6.2 The dimensionless variables of QZS isolator I. 
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are chosen, the coefficient λ is a constant. 

With the dimensionless variables defined as Table 6.3, the dimensionless 

equation is given by 

)cos(ˆˆ2ˆ
0

23 tzyyy   ,                (6.40) 

where t d/)(d）（ . 

 

Dimensionless parameters Value 

ωn Mk /  

t   tn  

ξ )2/(
n

Mc   

Ω ω0/ωn 

 

 

Symbol Value 

M (kg) 10 

kl (N/m) 800 

kn(N/m) 1400 

c (Ns/m) 5 

z0  0.05 

 

The parameters in the calculation are listed in Tables 6.4, 6.5 and 6.6. In the 

comparison, the loading mass is10kg which is the same for the QZS isolator I, QZS 

isolator II and the bio-inspired LLS. Moreover, the stiffness of the linear spring used 

in the three isolators is 800N/m. The damping coefficient of the damper using in the 

QZS isolator I and II is 5 Ns/m. For the bio-inspired LLS, there is no damper adopted. 

The coefficient of the air damping and the rotational fiction in the proposed structure 

can be much smaller than that of the dampers in the QZS isolators, which are set to 

Table 6.3 The dimensionless variables of QZS isolator II. 

Table 6.4 The parameter value of the QZS isolator I 

using in Sec. 6.8.1. 
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1Ns/m. 

 

 

Symbol Value 

M (kg) 10 

k (N/m) 800 

c (Ns/m) 5 

ζ (rad) 0.35 

0
~q  0.026 

z0  0.05 

 

The displacement transmissibility of the QZS isolator I, QZS isolator II and the 

bio-inspired LLS are displayed in Fig. 6.22. Compared with the QZS isolators, the 

proposed structure has the following advantages. Firstly, the bio-inspired LLS is 

superior to the QZS isolator in terms of stability. From Fig. 6.22, it can be seen that 

the multi-steady states appear with the QZS isolators. The solutions within the 

jump-up and jump-down frequencies are not unique which can result in instability and 

become highly dangerous in applications. By contrast, the proposed structure 

demonstrates only very weakly nonlinear dynamics with lower resonant frequency 

and peak value and without bifurcation, chaos and multi-steady state phenomena. 

Secondly, the effective frequency range of vibration isolation with the bio-inspired 

structure is much broader. The QZS isolators can only safely isolate vibration when 

the vibration frequency Ω is larger than the jump frequency Ωd as shown in Fig. 6.22. 

Last but not least, the bio-inspired structure is much easier to assembly and implement 

in practice than others. For the QZS isolators, the parameters should be chosen 

carefully to avoid the unstable region, and the initial imperfection or unbalance of the 

Table 6.5 The parameter value of the QZS isolator II 

using in Sec. 6.8.1 
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beams in the QZS isolators I or II are also difficult to avoid. Thirdly, the working 

displacement range of the bio-inspired LLS can be flexibly adjusted by changing the 

number of layers, which is quite difficult for the QZS isolators I and II. Moreover, the 

QZS isolator II discussed in [31] can achieve the quasi-zero stiffness without 

sacrificing loading capacity. However, for the QZS isolator I, the loading capacity and 

isolation performance are difficult to be compromised as discussed in [35].  

 

Symbol Value 

M (kg) 10 

kv (N/m) 40 

kh (N/m) 800 

c1 (Ns/m) 1 

c2 (Ns/m) 1 

L1 (m) 0.3 

L2 (m) 1.5 

ζ1 (rad) 0.35 

n 3 

z0  0.05 

 

 

 

 

 

 

 Figure 6.22 Comparison of the vibration isolation performance 

of the Bio-inspired LLS and the other QZS isolators 

QZS isolator II 

 

QZS isolator I 

Bio-inspired LLS Ωd 

Ω 

T
d
 

Table 6.6 The parameter value of the bio-inspired LLS 

using in Sec.6.8.1. 
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6.8.2 A discussion about parameter selection 

In this section, a brief outline is given to summarize how to design the structural 

parameters of the bio-inspired structure in practice (e.g., if the mass M is given). 

Based on the static and dynamic analyses, the general influential trend of each critical 

structural parameter on the performance of the bio-inspired LLS is summarized in 

Table 6.7 and Table 6.8. Aiming to make the system possess a stable equilibrium and 

an excellent vibration isolation performance, three key issues should be considered. 

Firstly, the mass weight should be in the range of the loading capacity of the structure. 

Secondly, the negative stiffness or critical negative stiffness point of the system 

should be avoided to reach for guaranteeing the overall stability of the structure. 

Finally, the resonant frequency of the system should be as low as possible (in most 

cases). The general guideline for the structural parameter selection is given as follows: 

(1) As discussed in Section 6.3, if the inequality Eq. (6.21) holds, the structure has 

only positive stiffness, and thus the maximum loading capacity of the bio-inspired 

mechanism is 2kvL1sin(ζ1); if the inequality (6.21) does not hold, the maximum 

loading capacity is determined by the position of the zero-stiffness point, i.e., 

|y-y0|. For the simple case with L1=L2, the loading capacity is given by Eq. (6.24). 

Considering the discussions in Figs. 6.16 and 6.18, L1 and kv should not be 

designed too larger to avoid a larger resonance peak. 

(2) The structure can provide zero stiffness and negative stiffness dependent on the 

parameter selection. The negative stiffness of the structure can be employed 

independently to create zero stiffness, together with other existing systems. To 

avoid the negative stiffness within the structure, the parameter α, β and γ should 

satisfy inequality (6.21) ((6.22) or (6.23)).  

(3) A larger stiffness ratio α will cause a larger resonant peak as shown in Eq. (6.34). 
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Achieving a larger γc with a smaller α (larger kh) could be the best way to improve 

the loading capacity and compression working range. From Fig. 6.7 it can be seen 

that when α is a little less than    4/11/11 2   , the larger γc can be 

obtained. 

(4) The larger β (or L2) can result in a smaller resonant frequency as shown in Fig. 

6.17. The stiffness of the horizontal spring kh can be designed to make the 

stiffness ratio α a little less than    4/11/11 2   to avoid negative stiffness 

point at a higher position ( and thus to achieve a larger γc i.e., a working range). 

(5) The layer number n can be designed as larger as possible to achieve a smaller 

resonace frequency and larger working range in comparison, as shown in Fig. 

6.13 and Fig. 6.20. 

 

 

 
Working range 

compressed/tensional 

Loading capacity 

compressed 

increasing L1 ↑  /  ↑ ↑ 

increasing ζ1 ↑  /  ↓ ↑ 

increasing kv — ↑ 

increasing n ↑  /  ↑ — 

 

It can be seen that the bio-inspired structure can be well designed with several 

structural parameters to achieve good vibration isolation performance, high loading 

capacity, and large displacement motion, without the stability problem. For example, 

if one wants to increase the loading capacity, the length of rods, the initial angle and 

the stiffness of springs should be increased; if one wants to increase the compression 

working range, increasing the length of rods, the initial angle and the number of layers 

Table 6.7 The effect of the structural parameter on the working range 

and the loading capacity, where ↑ represents increasing, ↓ represents 

decreasing and — represents no change.  
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is helpful; if one wants to reduce the resonant frequency, increasing the length ration β 

and the number of layer, and reducing the stiffness ratio α and the initial angle can be 

profitable; and if one wants to avoid the structure negative stiffness, one can increase 

the stiffness ratio α and decrease the initial angle and then the system will be more 

stable. 

 

 Resonant frequency 
Amplitude at resonant 

frequency 

L1 and L2 increase 

simultaneously 
— ↑ 

kh and kv increase 

simultaneously 
— ↑ 

increasing α  (kv/ kh) ↑ ↑ (for the same kh) 

increasing β  (L2/ L1) ↓ ↑ (for the same L1) 

increasing γ  (sinζ1) ↑ ↑ 

increasing n ↓ ↓ 

 

6.8.3 Experimental results and discussions 

 

 

 

 

 

 

 

 

In this section, the displacement transmissibility of the bio-inspired LLS, the 

symmetrical isolator and the traditional mass-spring system is compared by the 

Table 6.8 The effect of the structural parameter on resonant frequency and the 

amplitudes at the resonant frequency.  

Acceleration sensor I 
Load mass 

Horizontal spring 

Base 

Bearing platform 

Rods 

Acceleration sensor II 

Excitation platform 

Supporting bar 

Joint 

Figure 6.23 The experiment prototype of the bio-inspired LLS of 

asymmetric structures 
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experimental method. In the comparison, the loading mass and the stiffness of the 

spring are the same for the three structures. Based on the result from the random 

excitation experiment, the resonant frequency will be compared and discussed. The 

objective of the experiment is to prove that the bio-inspired LLS has better 

performance of vibration isolation due to its structural configuration. 

Fig. 6.23 shows the experimental prototype of the bio-inspired LLS with an 

asymmetric structure. In this prototype, a supporting bar is fixed on the base, which is 

used to guide the vertical motion of the load mass through a sliding bearing. The base 

of the LLS is placed on an excitation platform with four sliding bars vertically at each 

corner. In this way, the prototype can be considered as a one DOF system vibrating in 

the vertical direction.  

The parameters in the prototype are: the layer number n = 2, the stiffness of the 

horizontal spring kh = 720N/m, the rod length L1=0.1m and L2= 0.2m, the material of 

the rods is aluminum with density 2750kg/m
3
, the initial angle ζ1=0.67rad, the load 

mass on the bearing platform is 0.12kg. The total mass M = 0.55kg including the load 

mass, the mass of bearing platform, the mass of rods and joints, the mass of sensor 

attached on the bearing platform and the mass of the accessories in the mechanism. 

The normalized parameters are: the spring-stiffness ratio α=0 (sine no vertical spring 

is used kv=0), the rod-length ratio β=2(=L2/L1) and the initial angle γ = 0.62 radian. 

Based on Eq. (6.32), the natural frequency of the system can be calculated as: 
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Considering the equivalent damping ratio of the system, which is estimated 

experimentally as around 0.36, the resonance frequency can thus be estimated by 

regarding as an equivalent spring-mass-damper system, which is given by 1.37 Hz.  
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A random excitation in the vertical direction is applied to the base of the 

structure. The vibration signal of the bearing platform and the base can be obtained by 

the acceleration sensor I and II (see Fig 6.23), respectively. The results are shown in 

Fig. 6.24.  

 

 

 

 

 

 

 

 

Fig. 6.24(a) shows that the amplitude of the platform response is approximately 

up to 10% of that of the base excitation. Fig. 6.24(b) shows the displacement 

transmissibility of the experimental prototype. The peak of the transmissibility occurs 

at about 1.32 Hz which is much close to the theoretical computation above. When the 

frequency is bigger than about 2.64Hz the transmissibility is smaller than 0dB. The 

bio-inspired LLS presents a very good vibration isolation performance in a broad 

band of frequency domain. 

For comparisons, the other two experimental prototypes including a symmetrical 

LLS and a traditional mass-spring system are designed as shown in Fig. 6.25.  

The length of the rods L1=L2=0.1m for the symmetrical isolator (i.e., the 

rod-length ratio β = 1), the other parameters are the same as those in the 

unsymmetrical LLS prototype. The theoretical natural frequency can be calculated as 

(L1=L2):  

nM

kh
n




tan
 .                      (6.42) 

Figure 6.24 (a) Platform response and base excitation in the time domain for random 

excitation and (b) displacement transmissibility of the bio-inspired LLS system. 
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The theoretical natural frequency of the symmetrical isolator is 2.27Hz and thus an 

estimated resonance frequency is about 1.95Hz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.26(a) shows the symmetrical LLS also possesses a beneficial vibration 

isolation performance. For the displacement transmissibility as shown in Fig. 6.26(b), 

Figure 6.26 (a) Platform response and base excitation in time domain for random 

excitation and (b) displacement transmissibility of the symmetrical isolator. 
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Figure 6.25 Another two experimental prototypes for (a) a symmetrical 

LLS prototype and (b) a traditional mass-spring system. 

(a) (b) 

Figure 6.27 (a) Mass response and base excitation in time domain for random 

excitation and (b) displacement transmissibility for the traditional mass-spring system. 
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a peak occurs at 2.12Hz, which is also close to the theoretical computation above. 

When the excitation frequency is bigger than 3.25Hz, the transmissibility is smaller 

than 0dB. Note that the asymmetrical LLS has an obvious smaller resonance 

frequency which is consistent with the theoretical analysis before (see Fig 6.15, and 

Fig. 6.17). That is, the unsymmetrical rod length ratio is beneficial to vibration 

isolation. 

The traditional mass-spring system with the same spring and mass as used in the 

LLS systems above is also considered as shown in Fig. 6.25(b). The theoretical 

natural frequency is Hz76.5rad/s18.36/  Mkhn . Fig. 6.27 shows the mass 

response and the transmissibility when a random excitation in the vertical direction. 

The experimental resonance frequency is 5.71 Hz which is much larger than the LLS 

systems above. To achieve a similar resonance frequency (1.32 Hz) for the same load 

mass, the spring stiffness of the mass-spring system should be about 36.65 N/m, 

which could not support the mass given the used length of the spring (around 15 cm). 

This experimentally verifies that (1) the structural nonlinearity introduced with the 

LLS is very beneficial for achieving a smaller resonance frequency but 

simultaneously maintaining a good loading capacity; (2) the asymmetrical length ratio 

is very helpful for achieving a smaller resonance frequency; (3) the LLS is easy and 

flexible to design and implement in practice. 

6.9 Conclusions 

In this chapter, a generic bio-inspired limb-like structure is investigated 

systematically for its beneficial nonlinear functions in vibration isolation. The static 

mechanics, dynamic modeling, and experimental testing are conducted for 

understanding the nonlinear benefits that the proposed structure could introduce and 
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exploring its potential applications. It can be concluded that, 

(1) the limb-like structure provides a very flexible and designable stiffness system, 

which can be used to easily achieve zero stiffness, negative stiffness and positive 

stiffness, via designing several critical structural parameters (asymmetrical 

rod-length ratio, vertical-to-horizontal spring-stiffness ratio, assembly angle, rod 

length, layer number etc);  

(2) it is very interesting to unveil that the asymmetrical rod-length ratio and 

vertical-to-horizontal spring-stiffness ratio are very beneficial in tuning system 

stiffness property, which demonstrates the intriguing and excellent nature of 

animal motion control systems and presents a mechanics explanation to the 

usefulness of the asymmetrical structure of animal limbs; 

(3) the proposed structure can achieve very low resonance frequency, large 

displacement motion, but simultaneously maintain a very good and designable 

loading capacity, without the stability issue compared with existing QZS isolators; 

and also it can be very easily assembled and flexibly implemented in practice 

without the practical problems encountered in other existing QZS systems;  

(4) The results provide a practical engineering solution to passive vibration isolation 

and control of high performance in many engineering problems.  
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7 A new type 6DOFs passive vibration isolator based on 

Stewart platform design 

Stewart platform was proposed by D. Stewart in 1965 [125], which is a typical 

mechanism with 6 DOFs. As a parallel robot, it is composed of two bodies which are 

connected by six extensible legs. It can be seen that parallel kinematic manipulators 

have better performance compared to serial kinematic manipulators in terms of a high 

degree of accuracy, high speeds or accelerations and high stiffness [126-134]. It has 

been widely practical applications in disturbance isolation, flight simulation systems, 

precise machining and medical equipment. 

In this chapter, we propose a new type passive 6DOFs vibration isolator inspired 

by the Stewart Platform configuration. The X-like shape structure is adopted in the 

new type 6DOFs passive mechanism to instead of the legs with actuators in the 

Stewart platform. The nonlinear benefit will display in the static, dynamic and 

experimental analysis. 

7.1 The 6DOFs passive Stewart platform description 

 

 

 

 

 

 

 Figure 7.1 (a) A 6DOFs passive Stewart platform, (b) the schematic of one leg 

and (c) a special case for comparison. 
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Fig. 7.1(a) shows a 6DOFs passive Stewart platform with the height H. The 

system contains a moving platform and a base platform, and they are connected by six 

equal length legs with original length h as shown in Fig. 7.1(b). The pose of the 

moving platform can be described by a position vector T][ zyx PPPP , where Px, Py 

and Pz represent the displacement in the x, y and z direction, respectively. The rotation 

of the moving platform is defined by rotating the moving platform first about the 

Y-axis by β degrees, then about the moving x-axis by α degrees, and finally about the 

moving z-axis by γ degrees. All the angles are measured in a right-hand sense. The 

rotation matrices are RY(β), RX(α) and RZ(γ), respectively. 

 

Leg number Points in T-xyz  (TTi) Points in B-XYZ  (BBi) 

(1) TT1=T1 BB1=B1 

(2) TT2=T2 BB2=B1 

(3) TT3=T2 BB3=B2 

(4) TT4=T3 BB4=B2 

(5) TT5=T3 BB5=B3 

(6) TT6=T1 BB6=B3 

 

The leg is an n-layer X-like shape structure with the rod length L and the original 

angle ζ. Four rods and four joints are in each layer and their mass is not considered in 

the modeling since the supporting mass can be much larger than the rod/joint mass. 

Two linear springs, kh in the horizontal direction and kv in the vertical direction, are 

used in each leg. The corresponding relationship between the leg number and the 

point in the T-xyz and B-XYZ coordinate system is displayed in Table 7.1, where TTi is 

the connection point on the moving platform and BBi is that on the base platform for 

the ith leg. A special case of the leg is shown in Fig. 7.1(c). Only a linear spring with 

the stiffness ks is connected in each leg. The performance of the Stewart platform with 

Table 7.1 The corresponding relationship between the leg number 

and the point in the T-xyz and B-XYZ coordinate system. 
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the leg as shown in Figs. 7.1(b) and 7.1(c) will be analysed for comparison. 

The location of the point Ti on the moving platform has the following form: 





































0

)sin(

)cos(

TiT

TiT

zi

yi

xi

i r

r

T

T

T





T ,                    (7.1) 

where rT is the radius of the moving platform and  
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The location of the point Bi on the base platform has the following form: 
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where rB is the radius of the base platform and 

)12(
3

 iBi


 .  (i =1, 2, 3)                  (7.4) 

 

 

 

 

 

 

 

 

Fig. 7.2 shows the detailed information of one leg in the 6DOFs passive Stewart 

platform where 22
)( ixix

i

x BBTTd   and 22
)( iyiy

i

y BBTTd  . It can be seen that 

i

xd  and i

y
d  can represent the difference between the point TTi and BBi. The lengths h 

Figure 7.2 The detailed information of one leg in 

the 6DOFs passive Stewart platform. 
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and H have the following relationship:  

222

LdHh  ,                        (7.5) 

where
222 i

y

i

xL
ddd  . dL is a fixed value and has no relationship with i for six equal 

length legs. Especially, an extreme configuration (an upright platform) will appear 

when dL=0 as show in Fig. 7.3. 

 

 

 

 

 

 

 

The leg in the si ‒ qi coordinate system is displayed in Fig. 7.1(b) and its 

deformation is shown in Fig. 7.4. The geometrical relation of variables si, qi and υ can 

be obtained as 
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From Eqs. (7.6) and (7.7), we can get 
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Figure 7.3 An upright platform when dL=0. 
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7.2 Static analysis 

7.2.1 Mechanic modeling 

 

 

 

 

 

 

 

 

 

 

 

 

Because the load on the platform is along the z direction, the mechanic of z 

direction is considered. Fig. 7.5 shows the force analysis diagram of the 6DOFs 

passive Stewart platform with the force F in the z direction. From Fig. 7.5(a), the 

Figure 7.5 The force analysis diagram of the 6DOFs passive Stewart 

platform when it bears the force F in the z direction. 
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relationship between the force F and F1, F1 and F2 has the following form: 

13FF  ,                         (7.10) 

h

H
FF 21 2 ,                       (7.11) 

It should be noticed that the resultant moment at point T generated by F1 (or F2) is 

zero. 

The force equilibrium equations as shown in Fig. 7.5(d) are 

)cos(2 3   Fsk ih , (For the Joint 1 and 3)         (7.12) 
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q
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v )sin(2 32  . (For the Joint 2)          (7.13) 

Based on Eqs. (7.12) and (7.13), the force F2 has the following form: 
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Substituting Eq. (7.9) into Eq. (7.14), one can obtain 
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From Eqs. (7.10), (7.11) and (7.15) and notice that   hHPdq
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, we can 

obtain the relationship between the force F and the translation Pz: 
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(7.16) 

The static stiffness can be solved as: 
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In a special case, the force and displacement in Pz direction of the Stewart 

platform with legs as shown in Fig. 1(c) have the following form:  
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The static stiffness can be solved as: 
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7.2.2 Working range 

In this section, the working range of the translation and rotation displacement is 

considered. hw is the length of the six equal legs in working state and its length range 

is from h‒2nLsinζ to h+2nL(1‒sinζ). When the moving platform has a translation or 

rotation displacement, the length of each leg should not beyond their length range. 

In the B-XYZ coordinate system, the coordinate of TTi is (TTix, TTiy, H) and that 
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of BBi is (BBix, BBiy, 0). When the moving platform has a translation displacement Px0, 

the the coordinate of TTi changes as (TTix+Px0, TTiy, H). The length of the ith leg has 

the following form: 

222
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2 )( HdPdh i
yx

i
xw  .                  (7.20) 

Similarly, when the moving platform has a respective translation displacement 

Py0 and Pz0, the length of the ith leg has the following form: 
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When the moving platform has a respective rotation displacement α0, β0 and γ0, 

the coordinate of TTi changes to (TTix, TTiycosα0+Hsinα0, ‒TTiysinα0+Hcosα0), 

(TTixcosβ0‒Hsinβ0, TTiy, TTixsinβ0+Hcosβ0), (TTixcosγ0+ TTiysinγ0, ‒TTixsinγ0+ 

TTiycosγ0, H). The length of the ith leg has the following form: 
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The working range of the moving platform in the 6DOFs directions should 

satisfy the geometry equation (i.e., Eqs. (7.20)‒(7.25)), and the length of each leg 

should not beyond their length range h‒2nLsinζ < hw< h+2nL(1‒sinζ). 

From Eq. (7.20), we can obtain 
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Due to hw has its length range, the working range of Px for the ith leg i

xP  is also 

limited as 
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where Min(•) and Max(•) mean the minimum and maximum of the variable (•), 

respectively. For different leg, the working range of Px is different. The working range 

of the whole system is limited by the minimal one because the system cannot move 

after one of the six legs has reached its limit. The working range of Px for the whole 

system is the intersection of that for the six legs, it can be described as 
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x
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x PP
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Similarly, we can get the working range in the other direction for the ith leg  
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same procedure, the working range of the other five DOF of the whole system can be 

obtained. It should be noticed only the Pz0 is independent of i because it is the same 

for the six equal legs. 

It can be seen that the working range of the 6DOFs passive Stewart platform 

depends on the leg geometrical parameter L, ζ and n, the radii of the moving and base 

platform as well as the distribution of the legs. Obviously, the larger length range of 

the six legs can result in the larger working range of the six DOF.  
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7.2.3 Negative stiffness 

From Eq. (7.17), we can obtain zero stiffness point by solving 0
d

d


z
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Form Eq. (7.30), the Min (Pz0) can be obtained when hw= h‒2nLsinζ. If the zero 

stiffness point is in the working range (compression range exactly), the system will 

possess the negative stiffness. When the moving platform is in the negative stiffness 

region, the system will be lack of stability. To ensure the system has only positive 

stiffness, 
*

zP  should satisfy the following inequation:  

*22)sin2( zL PHdnLh   .                (7.35) 

By solving Ineq. (7.35), we can obtain 

cos1
h

v
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k
.                       (7.36) 

It can be seen only the initial angle and the ratio of the stiffness of the springs 

have effect on the appearance of negative stiffness. If the system has only the 

horizontal spring, it must have the negative stiffness region. When the stiffness of the 

spring satisfies Ineq. (7.36), the system possesses positive stiffness in the whole 

working range. If it does not satisfy Ineq. (7.36), the system may have negative 

stiffness, zero stiffness as well as positive stiffness. The zero stiffness occurs at *

zP . 

Fig. 7.6 shows the force and stiffness varying with Pz when the stiffness ratio is 

different. In this calculation, 1‒cosζ =0.134. When the stiffness ratio is larger than 

0.134 (that is kv / kh =0.180 as shown in Fig. 7.6), the stiffness is bigger than zero as 

shown in Fig. 7.6(c) in the whole working range. When the stiffness ratio is equal to 
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0.134, the system does not possess negative stiffness but a zero stiffness point at the 

minimum working range point. When the stiffness ration is smaller than 0.134 (that is 

kv / kh =0), zero stiffness point occurs at m097.0* zP . The negative and positive 

stiffness happen when *

zz
PP   and *

zz
PP   respectively. From Figs. 7.6(b) and (d), it 

can also be seen that when the system is at the tensional state, the system always 

presents positive stiffness and the stiffness rapidly increases when Pz is close to its 

maximum working range point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2.4 Loading capacity 

To analyze the loading capacity of the 6DOFs passive Stewart platform, whether 

the system possesses negative stiffness should be considered. If the stiffness ratio 

satisfies Ineq. (7.36), the system always presents positive stiffness. The maximum 

loading the platform can bear is when Pz has its maximum compression amount. 

Figure 7.6 Force and stiffness with different displacement Pz of the 6DOFs 

Stewart platform structure when h0= 0.15m, rB= 0.3m, rT = 0.2m, L= 0.1m, ζ = 

π/6, kh=1000N/m and n =2. ((a) and (b) force, and (c) and (d) stiffness). 
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According to Eqs. (7.16) and (7.28) with hw= h‒2nLsinζ, we can obtain the loading 

capacity of the 6DOFs passive Stewart platform FLC when that system possesses only 

positive stiffness:  

sin
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F vLC  .                   (7.37) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen that the spring in the horizontal direction does not affect the 

loading capacity in this situation. Fig. 7.7 shows the force and stiffness with the same 

spring stiffness kv=180N/m and different spring stiffness kh. The stiffness ratio 

satisfies Ineq. (7.36). Due to the same kv, the loading capacity is all the same (‒91.6N), 

Figure 7.7 Force and stiffness with different displacement Pz of the 6DOFs Stewart 

platform structure when h0= 0.15m, rB= 0.3m, rT = 0.2m, L= 0.1m, ζ = π/6, and n =2.  
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while the effect of the stiffness kh on the other moving position is obvious. 

The other situation is that the system possesses negative stiffness when the 

stiffness ratio does not satisfy Ineq. (7.36). In this case the loading capacity is the 

force at zero stiffness point (i.e., Pz=
*

zP ). The loading capacity FCL of the system with 

negative stiffness is 
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(7.38) 

In this situation, the stiffness of both the vertical and horizontal spring has 

relationship with the loading capacity.  

From Eqs. (7.37) and (7.38), the loading capacity depends on the initial angle ζ, 

the length of rod L and the length ratio H/h except the spring stiffness. The larger 

length ratio H/h benefits the loading capacity regardless of the existence of negative 

stiffness in the 6DOFs passive Stewart platform. 

Fig. 7.8 shows the comparison of the force and stiffness with displacement Pz of 

the 6DOFs Stewart platform with different type of legs. The two types of system has 

the same height ( h=0.5m). In the comparison, we assume that the working range of 

the special case is the same as that of the proposed mechanism. In the Stewart 

platform with the leg as shown in Fig. 7.1(b), the parameter is rB= 0.3m, rT = 0.2m, L= 

0.1m, ζ = π/6, and n =2. The stiffness of the spring ks in the special case, kh and kv in 

the proposed mechanism can be designed to make the two system possess the same 

loading capacity. It can be seen that the loading capacity is about 100N (in 

compression state) as shown in Fig. 7.8(a). 

From Eq. (7.19) and Fig. 7.8, it can be seen that the Stewart platform with the leg 
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as shown in Fig. 1(c) also presents a weak nonlinearity due to the Stewart platform 

configuration. Moreover, it must possess a positive stiffness in the working range. By 

contrast, the proposed mechanism has very beneficial nonlinear stiffness which can 

provide flexible quasi-zero, zero and/or negative stiffness by designing the stiffness of 

springs. The nonlinear stiffness properties are more adjustable and designable based 

on a good loading capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 Comparison of the force and stiffness with displacement Pz of the 6DOFs 

Stewart platform with different type of legs.  

(a) 

(b) 

Pz /m 

Pz /m 

 

F
o
rc

e 
F

 
 

(N
) 

S
ti

ff
n
es

s 
d

F
/d

P
z 

 
(N

/m
) 

ks= 100N/m 
 

kv = 200N/m  kh =1000N/m 

kv = 150N/m  kh =2400N/m 



 138 

7.3 Dynamic analysis  

7.3.1 Equation of motion 

In the dynamic analysis, the mass of rods and joints is not considered in the 

modeling. The damping effect is linear in the 6DOFs. 

The kinetic energy of the 6DOFs passive Stewart platform contains the 

translation energy and the rotation energy of the moving platform. The translation 

energy is given as the following form: 

)(
2

1 222

)( zyxtransmp PPPmK   ,                 (7.39) 

where m is the mass of the moving platform. 

For rotational motion of the moving platform around its center of mass, 

rotational kinetic energy can be written as 
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TmpTTmprotmp IK  ,                 (7.40) 

where (T ) in the subscript means the term is in moving platform coordinate system. I 

(T) is the rotational inertia of the moving platform and it has the following expression: 
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For a circular platform, 0
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In Eq. (7.40), Ωmp(T) is the angular velocity of the moving platform. It has the 

relationship with the angular velocity of the moving platform with respect to the base 

platform coordinate system Ωmp(B). This relationship can be expressed as 

)(

TTT

)( )()()( BmpYXZTmp  RRR .            (7.42) 

The angular velocity Ωmp(B) can be given by the definition of the angular 
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velocity: 
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Based on Eqs. (7.42) and (7.43), Ωmp(T) has the following form 
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Substituting Eq. (7.44) in Eq. (7.40), the rotational kinetic energy can be 

obtained. Then the kinetic energy of the system can be expressed as 
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where ][  
zyx PPPV  is the velocity vector. 

M has the following form: 
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where the element  22

44 sincos yx IIM  ,  2222

55 sin)cossin(cos zyx IIIM  , 

zIM 66 ,  sincoscos)(45 yx IIM   and sin56 zIM  . 

The expression of kinetic energy is  
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The virtual work of the ith leg has the following form: 
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where the first two terms come from the spring in the horizontal and vertical direction, 

and the last terms is the virtual work of the linear damping of the 6 legs. cxi, cyi, czi, cαi, 
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cβi and cγi is the damping coefficient. The term with ―^‖ means the relative variable 

with respect to the base platform. 

Eq. (7.48) can be also expressed as 
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Referring back to Fig. 7.2, the relationship among the four spatial vectors for the 

ith leg is displayed in Fig. 7.9. Ti and Bi have given in Eqs. (7.1) and (7.3). It should 

be noticed that the vector Ti is with respect to the moving platform coordinate system. 

To describe the relationship of the four vectors, they should transform into the same 

coordinate system. 

 

 

 

 

 

 

 

In the base platform coordinate system, the vector Qi of the ith leg is obtained as 

iiTi BPTRQ  ˆˆ ,                     (7.51) 
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Figure 7.9 The relationship among the 

four spatial vectors for the ith leg. 
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where T]ˆˆˆ[ˆ HPPP zyx P . TR̂ is the rotation matrix with respect to the base 

platform coordinate system and it has the following form: 

)ˆ()ˆ()ˆ(ˆ  ZXYT RRRR .                   (7.52) 

Substituting Eq. (7.52) into Eq. (7.51), the vector Qi can be expressed as 
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Where rij is the element in the ith row and the jth column of the matrix TR̂ . 

In the si ‒ qi plane as shown in Fig. 7.1(b), the relationship between qi and Qi is 
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From Eq. (7.54), the relationship between qi and xP̂ , yP̂ , zP̂ , ̂ , ̂  and ̂  can be 

solved, which is helpful for Eq. (7.49). 

The Hamilton principle is 
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Based on Eq. (7.49), we can get 
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 (7.57) 

where cx, cy, cz, cα, cβ and cγ are the equivalent linear damping of each DOF. 

Based on Eqs. (7.55)‒(7.57), the dynamic equation of motion of the 6DOFs 

passive Stewart platform can be deduced as 
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It can be seen that the variable in the 6DOFs is coupled in Eqs. (7.58a) ‒ (7.58f). 

7.3.2 Equivalent stiffness 

To analyze the equivalent stiffness in the 6DOFs, assume that the variable in the 

other five DOF is zero when the objective variable is studied. For example, when 

xP̂ is the objective variable, the variable yP̂ , zP̂ , P̂ , P̂  and P̂ is equal to zero in Eq. 
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(7.58a). In this case, Eq. (7.58a) changes to be the following form: 

0ˆ)ˆ(
6

1




xx

i

xix PcPGPm
 ,                  (7.59) 

where  

0ˆ,0ˆ,0ˆ,0ˆ,0ˆˆ
)()ˆ(







 PPPPP

x

i
iixi

zyP

q
qJPG .             (7.60) 

Notice that the relative displacement xxx BPP ˆ , Eq. (7.59) can be deduced as 
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Eq. (7.61) is the decoupled equation of motion of the 6DOFs passive Stewart platform 

about only xP̂ .  

Using the Taylor series expanding for Gi, it can be obtained that 
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Where the coefficient ia11 , ia12  and ia13  is listed in Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.10 shows the comparisons of the original functions Gi and the Taylor 

Figure 7.10 Comparison between the original terms and the Taylor-expansion when h0= 

0.05m, rB= 0.4m, rT = 0.3m, L= 0.15m, ζ = π/6, kh=1000N/m, kv=1000N/m and n =2. 
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series expansions iG (i=1, 2 …6 means the six legs). It can be seen that they are in a 

good agreement. The curves display a weak nonlinear property although both the 

spring and the damping are considered to be linear because of the geometric 

nonlinearity of the X-like shape structure.  

Substituting Eq. (7.62) into Eq. (7.61), the dimensionless equation of motion in 

the xP̂  direction can be expressed as 
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where t d/)(d）（  and tmkt h / . The parameters A12, A13 and the damping 

ratio ξx are listed in the Appendix C. 

The equivalent stiffness in the xP̂  direction is 
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where hv kk /  is the stiffness ratio of the spring.  

Using the same analyses procedure, the equivalent stiffness in the other five 

directions ( yP̂ , zP̂ , ̂ , ̂  and ̂ ) can be obtained. They have the following form: 
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where in the dimensionless process, tmkt h / for yP̂ and zP̂ , tIHkt xh /2  

for ̂ , tIHkt yh /2  for ̂  and tIHkt zh /2  for ̂ . 

It can be seen that the equivalent stiffness in the six DOF directions has 

relationship with the parameter in the X-like shape structure (ζ, n and λ). Obviously, 

the increasing layer number n and the decreasing angle ζ or stiffness ratio λ will make 

all of the equivalent stiffness down. Moreover, the connection state of the six legs also 

has effect on the equivalent stiffness in the different DOF components.  

7.3.3 Vibration isolation performance 

The harmonic balance method (HBM) is using to obtain the solution of Eq. 

(7.63). In the calculation, the base excitation Bx = Bx0 cos (ω t)= Bx0 cos (Ωx t') where 

mkΩ hx // is the frequency ratio. The solution of Eq. (7.63) can be determined 

as the second order harmonic response for a higher accuracy, which can be written as, 

)2cos()cos(ˆ
22110   tΩatΩaaP xxx ,           (7.70) 

where a0 is the bias term, a1 and ϑ1 are the first order harmonic amplitude and phase, 

a2 and ϑ2 are the second order harmonic amplitude and phase. In the simulation, the 

base excitation is at several mm level, which ensures the analysis based on the HBM 

with the first and the second order terms valid. 

Substituting Eq. (7.70) into Eq. (7.63), the unknown parameters (i.e. a0, a1, a2, ϑ1 

and ϑ2) can be obtained by solving a set of algebraic equation for each Ωx with the 

standard HBM.  

Notice that xP̂  is set as xxx BPP ˆ then the vibration solution of the mass in the 

Px direction is xxx BPP  ˆ . The displacement transmissibility is the ratio of the vector 

norm of the mass displacement with that of the base excitation. In this calculation, the 
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first order harmonic solution is used. So the displacement transmissibility Tx has the 

following form: 
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where   means the norm of the vector. 

By the same way, we can also get the displacement transmissibility in the other 

five DOF, which is Ty, Tz, Tα, Tβ, and Tγ with respect to the frequency ratio Ωy, Ωz, Ωα, 

Ωβ, and Ωγ, respectively, where Ωy = Ωz = Ωx 0 , xh IHk // 2  , 

yh IHk // 2   and zh IHk // 2  . In the analysis, the amplitude of the 

base excitation in each direction is 0.05m. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.11 shows the displacement transmissibility of the 6DOFs passive Stewart 

platform which can display the vibration isolation performance of the platform in the 
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Figure 7.11 Displacement transmissibility of the 6DOFs passive Stewart platform in the 

six directions when h0= 0.05m, rB= 0.4m, rT = 0.3m, L= 0.2m, ζ = π/6, λ=0.5, n =2 and the 

damping ratio in the six direction is 0.05. 
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six decoupled DOF direction. It can be seen that the Stewart platform with the X-like 

shape structure as shown in Fig. 7.1 can realize the vibration isolation in all of the 

DOF direction. The curves in Figs. 7.11(a) and 7.11(b) agreement with each other, 

which means the mechanism has the same vibration isolation performance in the Px 

and Py directions due to its structure symmetry. If the moving platform has the 

geometric symmetry in the x and y direction (Ix = Iy, then Ωx=Ωy), the vibration 

isolation performance in the α and β directions will be also the same. The tendency of 

the curves in α and β is the same although the corresponding frequency ratio 

(horizontal ordinate in Figs. 7.11(d) and 7.11(e)) is not the same. In the following 

analyses, the vibration isolation performance will focus on the Px, Pz , α and γ 

direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.12 shows the displacement transmissibility of the 6DOFs passive Stewart 

λ=0 
λ=0.5 

 
λ=1 

 

T
x 

 
(d

B
) 

Ω0 (a) Ω0 

T
z 

 
(d

B
) 

(c) 

Ωα 

T
α

 
 

(d
B

) 

(d) Ωγ 

T
γ 

 
(d

B
) 

(f) 

Figure 7.12 Displacement transmissibility of the 6DOFs passive Stewart platform with 

different stiffness ratio λ when h0= 0.05m, rB= 0.4m, rT = 0.3m, L= 0.2m, ζ = π/6, n =2 and 

the damping ratio 0.05. 
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platform with different stiffness ratios. It can be seen that the influence of the stiffness 

ratio of the horizontal and vertical springs on the vibration isolation performance is 

obvious. The resonant frequency becomes larger with the increasing stiffness ratio. It 

possesses the best vibration isolation performance without the vertical spring. While it 

should be noticed that the system must have the negative stiffness region as discussed 

in Section 7.2.3. 

The effect of the original angle ζ on the displacement transmissibility is 

displayed in Fig. 7.13. As the figure shows, the resonance frequency becomes smaller 

with the decreasing original angle. Moreover, the displacement transmissibility is 

reduced. The smaller original angle benefits the vibration isolation performance in all 

of the DOF directions.   
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Figure 7.13 Displacement transmissibility of the 6DOFs passive Stewart platform with 

different angle ζ when h= 0.5m, rB= 0.4m, rT = 0.3m, L= 0.2m, λ=0.5, n =2 and the 

damping ratio 0.05. 
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Fig. 7.14 shows the vibration isolation performance of the 6DOFs passive 

vibration isolator with different layers in the legs. The layer number n can 

significantly influence the displacement transmissibility in all the DOF directions. 

When the layer number increases the resonance frequency and the displacement 

transmissibility sharply decrease. The vibration isolation performance becomes better 

obviously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.15 shows the displacement transmissibility of the 6DOFs passive Stewart 

platform with different radius of the moving platform. It can be seen when the radius 

becomes larger, the resonance frequency of Px, α and γ is larger, while the vibration 

isolation performance in the Pz direction is better due to its smaller resonance 

frequency and lower displacement transmissibility. The tendency of Pz is opposite to 

the other DOFs direction with the different moving platform radius. 
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Figure 7.14 Displacement transmissibility of the 6DOFs passive Stewart platform with 

different layer number n when h0= 0.05m, rB= 0.4m, rT = 0.3m, L= 0.2m, λ=0.5, ζ = π/4 and 

the damping ratio 0.05. 



 150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rT = 0.3m 

 rT = 0.4m 

 rT = 0.5m 

 

T
x 

 
(d

B
) 

Ω0 (a) Ω0 

T
z 

 
(d

B
) 

(b) 

Ωα 

T
α

 
 

(d
B

) 

(c) Ωγ 

T
γ 

 
(d

B
) 

(d) 

Figure 7.15 Displacement transmissibility of the 6DOFs passive Stewart platform with 

different radius of the moving platform when h0= 0.05m, rB= 0.4m, L= 0.2m, λ=0.5, ζ = 

π/6, n =2 and the damping ratio 0.05. 
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Figure 7.16 Displacement transmissibility of the 6DOFs passive Stewart platform with 

different h0 when rB= 0.4m, rT = 0.3m, L= 0.2m, λ=0.5, ζ = π/6, n =2 and the damping 

ratio 0.05. 
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The displacement transmissibility of the system with different height h0 is shown 

in Fig. 7.16. The larger height h0 represents the higher mechanism with the same layer 

number. It can be seen that the tendency of Pz also opposite to the other DOFs 

direction. When the height h0 becomes larger, the system becomes higher. Figs. 

7.16(a), (c) and (d) display that the higher height of the system is profitable to the 

vibration isolation performance in the Px, α and γ directions, while it makes the 

vibration isolation performance in Pz direction down. 

7.3.4 Comparison with the special case 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.17 shows the comparison of the displacement transmissibility of the 

6DOFs Stewart platform with different types of leg. In the two systems, the same 

stiffness of spring (1000N/m) and the same mass (m=5kg) is used. Both the two 

Figure 7.17 Comparison of the displacement transmissibility of the 6DOFs Stewart platform 

with different types of leg. 
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systems present vibration isolation performance in the 6DOFs directions. Comparing 

with the Stewart platform in the special case, the proposed mechanism possesses 

significantly better vibration isolation characteristics. The proposed mechanism has 

lower resonant frequency, and then the vibration isolation becomes wider. 

The comparison above shows that the Stewart platform with the leg as shown in 

Fig. 7.1(b) has very beneficial nonlinearity which benefits both the static and dynamic 

property. 

7.4 Experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this section, the displacement transmissibility of the 6DOFs passive Stewart 

platform is investigated with an experimental prototype as shown in Fig. 7.18. Six 

legs are installed by following the Stewart style between the upper and lower 
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Figure 7.18 The experiment prototype of the 6DOFs passive Stewart 

platform with the excitation in Pz direction. 
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platforms using universal joints. The connection mode in the prototype makes the 

whole system stable but with motion limits in the γ direction. The vibration isolation 

performance in the Pz, Px and α directions will be shown here. The objective of the 

experiment is to validate that the 6DOFs passive Stewart platform has very good 

performance of vibration isolation. 

In the prototype, the radiuses of the moving and base platform are 0.12m and 

0.2m, respectively; the rod length L= 0.1m, the original angle ζ =π/4, layer number 

n=2 and the length of the leg h=0.4m; the stiffness of the horizontal springs kh=1.06 

kN/m; the gross mass is 4.5kg. The auxiliary springs in the vertical direction are just 

for motion restriction, which do not work as a stiffness element around the 

equilibrium. The stiffness ratio of the springs λ= 0. 

 

 

 

 

 

 

 

 

 

In comparisons, the structure parameter in the simulation is the same as that in 

the prototype. As mentioned in section 7.3.2, when the targeted variable is studied, it 

is assumed that the variables in the other five DOFs are zero in the simulation. To 

simulate this situation, the excitation with a certain DOF direction in an experiment is 

adopted. In this section, a random excitation is applied to the base of the structure in 

Figure 7.19 The experiment prototype of the 6DOFs passive Stewart platform 

with excitation in (a) Px direction and (b) α direction. 

(a) (b) 
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three directions, respectively. The excitation in the vertical and horizontal direction is 

shown in Fig. 7.18 and Fig. 7.19(a). Otherwise, the edge excitation and the center 

support devote to equalize the vibration in the α direction, which is shown in Fig. 

7.19(b). 

 

 

 

 

 

 

 

 

Fig. 7.20(a) shows the experiment results given as the time series data. It can be 

seen that the vibration amplitudes of the moving platform are much lower than that of 

the base platform. Fig. 7.20(b) shows a comparison of the displacement 

transmissibility between the simulation results and the experimental results in the Pz 

direction. Because the damping in the system is difficult to measure, the damping 

ratio ξz is set as 0.1 (the equivalent linear damping cz=13.81) and 0.01 (the equivalent 

linear damping cz=1.38) in the simulation, respectively.  

It can be seen that the experimental result basically match with the simulation 

one. The system can effectively isolate vibration in this direction. The effect of the 

linear damping in the system on the vibration isolation property is also displayed in 

Fig. 7. 20(b). Larger damping can make the peak amplitude of the displacement 

transmissibility down, while it does not benefit the vibration isolation in the high 

frequency range. 

Figure 7.20 (a) Platform response and base excitation in the time domain for random 

excitation on Pz direction and (b) a comparison of the displacement transmissibility 

between the simulation results and the experimental results in the Pz direction. 
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Figs. 7.21 and 7.22 show the experimental data in the time and frequency domain 

in the Px and α directions, respectively. Compared with the vibration amplitudes of the 

base platform, those of the moving platform are much lower, demonstrating very good 

isolation performance in each direction with very smaller resonance frequencies. 

When the frequency is larger than about 6Hz as shown in Fig. 7.20(b), 3Hz as shown 

in Fig. 7.21(b) and 7Hz as shown in Fig. 7.22(b), the transmissibility is smaller than 

0dB. The resonance frequencies of each direction can actually be tuned to be much 

smaller by adjusting assembly angle, layer number or rod length etc. It can be seen 

that the 6DOFs passive Stewart platform presents a very good vibration isolation 

Figure 7.22 (a) Platform response and base excitation in the time domain for random 

excitation on α direction (b) displacement transmissibility. 
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Figure 7.21 (a) Platform response and base excitation in the time domain for random 

excitation on Px direction (b) displacement transmissibility. 
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performance in a broad band of frequency range and in a pure passive manner. 

In a linear system, the natural frequency can be used to evaluate the vibration 

isolation performance of the structure. For a vibration isolation mechanism with lower 

natural frequency, the vibration isolation performance is better. Using the method in 

the linear system for reference, the equivalent natural frequency of the nonlinear 

system is used to evaluate the vibration isolation performance in this section. 

Eq. (7.66) shows the equivalent dimensionless stiffness in the Pz direction. Based 

on this equation, we can get the equivalent natural frequency of the system in this 

direction: 
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Based on Eqs. (7.64) and (7.67), the equivalent natural frequencies of the system 

in the Px and α directions can be calculated as: 
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In the nonlinear system, it can be seen that the resonant frequency of the 

displacement transmissibility as shown in Figs. 7.20(b), 7.21(b) and 7.22(b) is 

basically close to the equivalent natural frequency calculated in Eqs. (7.72), (7.73) and 

(7.74). From Eqs. (7.72)-(7.74), it can be seen that the equivalent natural frequency is 

smaller, which means the system possesses a good vibration isolation performance. 

Importantly, the equivalent natural frequency can be tuned by adjusting the structure 

parameters as discussed before. This greatly facilitates the design of the vibration 

isolation system to match different practical application requirements. 
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7.5 Conclusions 

In this chapter, a new type of vibration isolator, 6DOFs passive Stewart platform, 

is designed. It combines of the Stewart platform configuration and the beneficial 

nonlinear functions of X-like shape structure. The static and dynamic performance is 

analysed to explain the nonlinear benefits. From the results, the main findings of this 

work can be drawn as follows: 

(1) By designing the structure parameters, the 6DOFs passive Stewart platform can 

provide a flexible stiffness, which contains zero stiffness, negative stiffness and 

positive stiffness. 

(2) From the theoretically analysis result, it can be seen that the proposed structure 

can realize vibration isolation in all 6DOFs directions in a passive control way. It 

exploits a new idea to design the 6DOFs vibration isolator. 

(3) The proposed structure can achieve very low resonance frequency via the 

structure parameter design, and then the vibration isolation region is wide. The 

lower stiffness ratio of stiffness, the larger layer number and the smaller original 

theta are beneficial for vibration isolation performance. The changing radius of 

the moving platform and the height of the legs have opposite effect on the 

vibration isolation performance in the Pz and the other directions.  
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8 Conclusions, innovations and future work 

8.1 Conclusions 

This thesis has studied the new type structures with vibration isolation property, 

including the periodic structures and the nonlinear mechanisms. The structure has 

been designed to ensure good vibration isolation performance. 

The periodic structure analysis reveals that waves with stop-band frequency 

cannot propagate in the structure, which means the periodic structure possesses 

vibration isolation performance. The material parameter design brings the 

enhancement of periodicity, which benefits the vibration isolation performance of the 

2D square lattice, 3D Kagome lattice and the sandwich structure. The effects of 

parameters such as the unit cell number, the material distribution, structural size and 

damping on the band-gap property are also investigated.  

Based on the advantages of the X-like shape structure, a bio-inspired nonlinear 

mechanism and a 6DOFs passive isolator are designed during the nonlinear isolator 

analysis phase. The vibration isolation performance is subjected to a systematic 

investigation that pays due regard to beneficial nonlinear functions in vibration 

isolation. Through parameter design, one can adjust the system stiffness (negative 

stiffness, zero stiffness and positive stiffness) flexibly. The system is found to possess 

excellent loading capacity and motion range. The vibration isolation performance is 

studied by analyzing the displacement transmissibility. The effects of parameters are 

considered in the dynamic analysis. This thesis seeks to provide practical and 

effective solutions capable of achieving passive vibration control. 
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8.2 Innovations 

The main contributions in this thesis are summarized below: 

(1) Based on the band-gap property, the vibration isolation performance of 

typical periodic structures is studied using SEM. The result is a broad frequency-band 

solution with high accuracy that expands the application field of SEM. 

(2) The periodic structure with piezoelectric material is designed and the band 

gap characteristics are investigated. A trend of the stop-band ratio varying with the 

thickness of the piezoelectric layer and the structural parameters of piezoceramic is 

revealed. 

(3) A spectral 3D beam element model is established and the band-gap property 

of the complex 3D Kagome structures is investigated. A structure with good vibration 

isolation performance is obtained by designing the structural and material parameters.  

(4) Considering the concrete geometrical size of each component of the 

corrugated core, certain novel and more realistic dynamical equations of motion for 

sandwich structures are established. The band-gap behavior resulting from the 

periodicity of the structure is studied. The effect of the structural and material 

parameters on the stop-band is revealed. 

(5) A generic bio-inspired limb-like structure is designed and its beneficial 

nonlinear functions in vibration isolation analyzed. The asymmetry of the system is 

shown to be very beneficial in tuning system stiffness property, which demonstrates 

the intriguing and excellent nature of animal motion control systems and presents a 

mechanics-based explanation to the usefulness of the asymmetrical structure of 

animal limbs. 

(6) A 6DOFs passive Stewart platform with a flexible stiffness is designed. The 

proposed system realizes vibration isolation in all 6DOFs directions in a passive 
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control way. It exploits a novel idea while designing the 6DOFs vibration isolator. 

8.3 Future work 

Based on the studies reported in this thesis, the following future works appear to 

be worthwhile: 

(1) How to realize the integration of various spectral elements and establish an 

application software platform needs to be explored. This is meaningful to strengthen 

the applicability of SEM 

(2) As for the study on the periodic structures, the present thesis has focused on 

theoretical analyses. Subsequent works will focus on experimental studies. 

(3) As for the nonlinear system, nonlinear damping will be further investigated 

and the study will be worthwhile. 
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Appendix A. 

The matrices R and Hv in Eq. (2.18) has the following expression： 
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The matrices vR , vH  and I in Eq. (2.48) has the following expression: 
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The matrix Gin in Eq. (2.102) have the following form:  
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Where α = Eh/(1ν
2
) and β = Eh/[2(1+ν)]. 
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Appendix B. 

The ξi and δi in Eq. (6.31) have the following expression: 
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The parameters in Eq. (6.33) can be expressed as  
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Appendix C. 

The coefficient ia11 , ia12  and ia13  in Eq. (7. 62) has the following expression: 
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The parameters in Eq. (7.63) can be expressed as  
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