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ABSTRACT

Dynamic Pricing for Stochastic Container Leasing System

by

Wen JIAO

With the substantial upsurge of container traffic, the container leasing company

thrives on the financial benefits and operations flexibility of leasing containers re-

quested by shippers. In practice, container lease pricing problem is different from

consumer product pricing in consideration of the fair value of container, limited cus-

tomer types and monopolistic supply market. In view of the durability of container

and the diversified lease time and quantity, the pricing is a challenging task for the

leasing company.

In the first part, the monopolist’s nonlinear pricing problems in static and dynamic

environments are examined. In particular, the leasing company designs and commits

a menu of price and hire quantity/time pairs to maximize the expected profit and

in turn customers choose hire quantities/time to maximize their surpluses according

to their hire preferences. In a static environment, closed-form solutions are obtained

for different groups of customers with multiple types subject to capacity constraint.

In a dynamic environment with contemporaneous arrivals, we address two customer

types and derive closed-form solutions for the problem of customers with hire time

preference. We show that the effect of the capacity constraint increases with time
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of the planning horizon when customers have the same hire time preference; while

in the case with different hire time preferences, the capacity constraint has opposite

effects on the low and high type customers. Next the case of customers with hire

quantity preference is discussed. We focus on the lease with alternative given sets of

hire time and use dynamic programming to derive the numerical optimal hire time

sequence. Further we investigate the nonlinear pricing problem with dynamic arrivals

and hire time preference. We derive the closed-form solutions and discuss the effects

of capacity constraints and dynamic arrivals on the optimal solution. Compared with

the solution with contemporaneous arrivals, the dynamic arrivals only aggravate the

effect of capacity constraint for the consistent low type customers.

The leasing company provides customer-oriented services to increase fleet efficien-

cy and maximize profit. Advance reservation could be a segment fence for container

leasing firm to vary the base price according to the supply and demand conditions.

In the second part, we consider a dynamic pricing problem of a container leasing firm

with unit capacity request and reservations. A reserved customer books containers

some time before the pickup date and settles the rent at booking time. A walk-in

customer arrives at the firm and requests the immediate lease service. The problem

is modelled as a continuous-time Markov decision process. Using value iteration, the

properties of the optimal allocation and pricing policy are derived. We show that

there exists a state-dependent rationing policy with bounded sensitivity. The opti-

mal posted price is nondecreasing with the leased amount and the number of advance

demands. Numerical experiments are conducted to study the effect of reservation on

the optimal policy.

In the third part, we examine a dynamic pricing problem of a container leasing

firm facing reserved customers and walk-in customers with multiple units of capacity

request and fixed lease durations. We first discuss the case with same lease duration

and the optimal prices for two customer types are nonincreasing in the system state.
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Next, we propose myopic pricing policy to the dynamic pricing problem. Finally, we

partially characterize the optimal policies for different lease durations. The optimal

policies have bounded and monotone sensitivity.
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CHAPTER 1

Introduction

1.1 Background and Motivation

In the past two decades, global container trade has witnessed a substantial upsurge

growing from 28.7 million TEU (Twenty-foot Equivalent Unit)s in 1990 to 161 million

TEUs in 2013 (UNCTAD 2014). In contrast to the thriving container trade, the

leasing companies’ share of world container fleet does not change much, from 43.2%

of 6.4 million in 1990 to 46.2% of 34.4 million in 2013 (Drewry 2014). The relatively

stable share of leasing company in ownership partially reveals the strong demand of

shipping companies whose needs are satisfied by lessors flexible services. From the

lessor’s perspective, the leasing company1 could enjoy the economies of scale by the

procurement of large numbers of containers, efficient utilization and access to raise

capital at a competitive rate in a volatile economy. From the lessee’s perspective,

renting containers could serve as a financial tool with the following advantages.

• Conserving capital. Instead of purchasing containers, the shipping compa-

nies are relieved from the burden of the huge expenditure on containers. It

is reasonable especially when the new container price is too high or it is d-

ifficult to raise finance for container investment such as in the recession year

1For variety, we use lessor, lease firm, leasing company, monopolist interchangeably without
confusion.

1



of 2009. This reserves lessee’s limited borrowing capacity for more profitable

investments, such as infrastructure depots and IT facilities.

• Providing a better fiscal picture. The lease is usually qualified as pre-tax

expense and considered as ‘off-balance-sheet financing’. The monthly payment

appears on the balance sheet as expense rather than long term debt.

• Avoiding risk. With fixed and predictable payment on container lease, the

shipper is protected from inflation.

Besides the financial benefits, the operational advantages of renting containers to

supplement their own fleet are as follows.

• Quick response to demand changes. Some shipping lines have extremely

high imbalance container flows owing to imbalance of trade volume between

continents. For instance, in 2013, the container moving from Asia to North

America (13.8 Million TEUs) is about twice of that from North America to Asia

(7.4 million TEUs). The imbalance between Asia and Europe is even bigger with

ratio 14.1:6.4 (UNCTAD 2014). The consequence of such a imbalance cargo flow

is the higher cost per TEU for these routes, which is a difficult task in capacity

management to the shipping companies. In addition, the trade volume and the

demand of containers are high during peak seasons such as Christmas. After

holidays, the demand falls back to a low level. Therefore, it is reasonable to

rent containers for fluctuating seasonal demand or imbalance cargo routes.

• High flexibility. It is convenient for a shipper to pick up/drop off containers

at the nearest depot and select the most suitable lease contracts to satisfy his

needs. When the lease period expires, the lessee could return, purchase, re-lease

or replace the leased containers.

• Cost Saving. The shippers receive carefully designed services with high quality
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control, unique depot selection, professional repair and the disposal of used

containers. The leasing service reduces costs such as overhead cost, maintenance

cost, finance cost and administrative cost.

The container lease contracts can be divided into two categories: master lease

and term lease. Master lease is also referred to a full service lease. Both parties

agree on a master contract: the shipper has the right to pick up/drop off container at

his convenience and changes the number of leased containers under the basic terms.

The lessor is responsible for repositioning the empty containers and the maintenance

and repair. The term lease has fixed lease duration including short and long terms,

ranging from a single-trip lease up to eight years rent. Unlike a master lease, the

lessee is responsible for the maintenance and repair of containers.

In the container leasing industry, pricing is a very challenging factor for a leasing

company. The main characteristics of container lease are the fair value of container,

stable and limited customer types and monopolistic supply market. (1) Fair value

of container. A container is labeled as an industrial product and durable good.

Its value is much higher than those of daily commodities but lower than those of

precision equipment. The average ex-factory price for newbuild TEU and resale price

for used TEU in 2013 are US$2150 and US$1260 respectively (Drewry 2014). (2)

Limited customer types. The target customers of container lease are big shipping

companies with long-term contractual relationship. There are limited discrete cus-

tomer types. In the changing lease market, each customer (shipper) requests large

numbers of container with diverse hire time (from one month to five years) depending

on his own demand. The varied lease time and quantities of different customer types

in container lease meet the requirement for second-degree price discrimination mech-

anism (different prices for distinct quantities). In other words, the leasing company

should pay attention to the characteristics of each customer in the price determina-

tion process which is the essence of the nonlinear pricing problem. By contrast, in
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service pricing, the target customers are individual customers who usually demand

for one unit without any contractual relationship and have wide variety of customer

types. (3) Monopolistic supply market. The container leasing industry has been

dominated by a small group of influential companies about two decades. The top

ten companies control 87.5% of the entire lease fleet. The top tier is headed by long-

standing number one, Taxtainer Group. Its fleet is about 40% bigger than its nearest

competitor (Drewry , 2014). This is the reason why the monopolist supply market is

studied in our paper. In practice, the lease rate determined by a leasing company is

usually based on the past leasing experience. Thus it is necessary to have a scientific

method assisting the leasing company on the pricing determination process.

Based on the main features of container lease, the price and discount affect cus-

tomers’ intention to deal, hire time and quantity. The more favorable price offered

to longer hire time and larger lease quantity incurs an opportunity cost, resulting in

inadequate capacity of containers that affects the lessor from gaining future profit

from other customers. On the other hand, higher price deters consumers’ interest to

rent and cause more idle capacity. There is clearly a need for identifying the hire

discount and time discount in the lease system given a capacity constraint.

Although a container is a durable product as the subject of lease service, it should

be seen as a perishable product on a daily basis. Two important factors for a container

leasing firm to stay profitable and competitive in the leasing industry are high level of

utilization and lease rate. The utilization rate of the container leasing industry leader-

s, Taxtainer Group and CAI are 96.1% and 91.5%, respectively (Textainer 2014, CAI

2014). Lease rate hinges on a number of elements including the supply and demand

for leased containers, the price of new containers, interest rates for leasing company,

shipping lines and the quantity of containers available by competitors. Except for the

first element, other elements are beyond the control of the leasing firm. The container

leasing firm exploits the different features to decide the base price based on supply
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and demand conditions. One feature to differentiate the customers is the lead time.

A reserved lessee usually books the containers in advance, settles the payment and is

protected by the availability of containers reserved, while a walk-in lessee rents the

containers in the last minute before the pickup date and the availability of containers

may not guaranteed.

Advance reservations could serve as one of segment fences to differentiate demand

between walk-in and reserved customers. However, the advance reservation could be

a double-edged sword. On one hand, a reserved customer books the containers and

settles the payments before the actual pickup date. Such advance reservations give

the leasing firm more information about future demand, more flexibility to manage

its fleet, more operational cash flow (prepay) and more effective price to control the

customer flow. On the other hand, if the firm allocates all the available containers

for reserved demand, it definitely hurts the profit of the firm since more revenue

can be generated by saving a portion of containers from reserved customers and

leasing the container to the forthcoming walk-in customers. Thus, a challenge for the

operation manager of the container leasing company is given the information on the

total available fleet how to deploy the fleet across two customer types and how to use

the pricing tool to achieve the maximum net profit.

1.2 Organization of the thesis

After introducing the background and motivation in Chapter 1, Chapter 2 in-

vestigates the revenue management problem considering both short-term lease and

long-term lease in practice. First, the firm allocates the capacity once in a static

environment. Closed form solutions are obtained for different groups of customers

subject to capacity constraint. Next, the firm allocates the finite capacity repeatedly

in a dynamic environment. For the case of customers with simultaneous arrivals and

hire time preference, closed-form solutions are derived and the effect of capacity con-
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straint is discussed. For the case of customers with hire quantity preference, dynamic

programming is adopted to acquire the numerical optimal solution and discuss the

effect of parameters on the optimal solution. Further the problem is investigated with

dynamic arrivals and hire time preference. We derive the closed-form solutions and

discuss the effect of capacity constraints and dynamic arrivals on the solution.

Chapter 3 examines a dynamic pricing and capacity management problem for

stochastic lease system facing two types–reserved and walk-in customers with unit

capacity request. In this chapter, customers have stochastic lease duration and s-

tochastic lead time for reserved customers. After reviewing the related literature,

the pricing and capacity rationing problem is modeled as a queuing model and the

structural properties of the optimal policy are shown. Numerical results and insights

about the model are stated.

Chapter 4 addresses a container leasing firm facing two customer types with mul-

tiple units of capacity request. After the literature review, some preliminary results

are present. The case with same lease duration is discussed and the optimal prices for

two customers are nonincreasing in the system state. The optimal walk-in demand is

most sensitive to reserved demand of current and next periods. The optimal reserved

demand is most sensitive to the latest booking. Further, we relax the same lease

duration assumption and study the optimal policies under different lease durations.

Myopic pricing policy is proposed for the dynamic pricing problem.

Last, Chapter 5 concludes the thesis and points out future research directions.
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CHAPTER 2

Dynamic Nonlinear Pricing for Stochastic

Container Leasing System1

This part investigates the static and dynamic rental revenue management problem

considering several situations (short-term lease and long-term lease) in practice. The

firm commits a price menu with hire quantity (time) to maximize the expected profit

and in turn customers choose their hire quantities/time to maximize their surpluses

based on their hire preferences. In a static environment, the firm allocates the capacity

once. Closed form solutions are obtained for different groups of customers subject

to capacity constraint. The leasing company provides various lease contracts based

on the type of customers. In a dynamic environment with contemporaneous arrivals,

the firm allocates the finite capacity repeatedly in the planning horizon. For the

case of customers with hire time preference, closed-form solutions are derived and the

effect of capacity constraint are discussed. We show that the effect of the capacity

constraint increases with time of the planning horizon when customers have the same

hire time preference; while in the case with different hire time preferences, the effect

of capacity constraint becomes smaller whenever the last customer type is the high

type and this effect becomes larger whenever the last customer type is the low type.

1The static and dynamic nonlinear pricing problems in Sections 2.2 and 2.3 are published as
“Jiao, W., H. Yan, and K.-W. Pang (2016). Nonlinear pricing for stochastic container leasing
system. Transportation Research Part B: Methodological 89, 1-18”.
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In other words, the influence of capacity constraint depends only on the realization of

the customer type in the previous period. For the case of customers with hire quantity

preference, we adopt dynamic programming to acquire the numerical optimal solution

and discuss the effect of parameters on the optimal solution.

Further we investigate the nonlinear pricing problem with dynamic arrivals and

hire time preference in a dynamic environment. We derive the closed-form solutions

and discuss the effect of capacity constraints on the solution. In the setting with same

hire time preference, the effect of capacity constraint at each time still increases over

time and but the effect reduces when customers arrive at the system dynamically.

In the setting with different hire time preferences, the dependent effect of capacity

constraint on the last customer type still holds. For the consistent high type cus-

tomers and inconsistent customer, the effect of capacity constraint is the same as in

the contemporaneous arrivals. For the consistent low type customers, the dynamic

arrivals accentuate the capacity effect.

2.1 Literature Review

The first part of this dissertation is built on three streams of literature: study

about rental service system, static and dynamic mechanism design.

There is a burgeoning scholarly literature on the rental/leasing systems. Recent

related study about rental systems mostly concentrate on the following major prob-

lems, empty container reposition problem in some regions with imbalance inbound

and outbound traffic (Song and Dong 2012, Bell et al. 2013), capacity rationing prob-

lem for different customer types (Savin et al. 2005, Papier and Thonemann 2008,

2010). Besides, Gans and Savin (2007) and Cachon and Feldman (2011) study the

rental/service revenue management and capacity allocation problem as queuing mod-

el. In queuing model, once the price is accepted by the customer, the rental duration

is a given parameter following exponential distribution rather than a specific rental
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time selected by each consumer. Dobbs (1995) examines a monopolist’s inter-temporal

nonlinear pricing problem with unit/excess capacity where customers arrive random-

ly and choose their hire time. Polynomial function is utilized to represent the price

schedule. The optimal pricing policy is sensitive to customer arrival frequency but in-

sensitive to changes in time discount rate. Dobbs captures the main feature of rental

system—customers have the option of selecting the hire time. In his model, same

type customers select the same hire time which is history independent in the infinite

horizon. To the best of our knowledge, there is no paper analyzing the pricing and

capacity rationing problem in the context of container leasing industry.

Various study about static mechanism design problem addresses the dynamics

between customer information and the firm’s pricing schedule. This line of research

starts with the seminal work of Mussa and Rosen (1978). They explore a monopo-

list’s price-quality schedule allocating quality-differentiated goods to customers under

self-selection constraint. In Myerson (1981), his contribution to the literature on u-

nidimensional continuous customer types is the identification of the optimal auction

structure to attain the criterion (e.g. social welfare maximization, customer purchas-

ing cost minimization). Maskin and Riley (1984) demonstrate that under a separabil-

ity assumption, the seller’s optimal price-quantity schedule has the quantity-discount

structure. Based on these pioneer works, the mechanism design theory of pricing has

been applied to information goods (Sundararajan 2004), multiproduct (Armstrong

1996), parking slot assignment (Zou et al. 2015) and transportation service procure-

ment (Huang and Xu 2013).

The dynamic mechanism design literature can be classified by two strands of liter-

ature according to the nature of dynamics. One strand of literature primarily focuses

on the setting that a fixed population whose preference evolves over time and allo-

cation for each customer is determined repeatedly. Battaglini (2005) investigates the

optimal contract between a monopolist and a customer whose valuation follows a two-
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stage Markov process in an infinite horizon. The optimal contract is non-stationary

and converges to efficient contract over time. The differences between this part and

Battaglini ’s work are that we consider multiple customers, one more dimension of

product characteristics (hire time) and capacity constraint. Athey and Segal (2013),

Kakade et al. (2013), Pavan et al. (2014) study the social welfare maximization and

incentive compatible mechanisms in dynamic environments. Athey and Segal (2013)

construct a budge-balanced mechanism in general dynamic environments. Kakade

et al. (2013) explore the optimal mechanism design in separable environments with

dynamic private information. They employ a relaxation method to first find an allo-

cation rule in the relaxed environment and then determine the allocation rule is ex

post incentive compatible under the restriction that each agent needs to report his

entire type history in each period. Pavan et al. (2014) adopt the first-order approach

to study mechanism design in dynamic quasilinear environment which each agent has

a dynamic unidimensional private information. Battaglini and Lamba (2014) exam-

ine a dynamic principal-agent model in which the agent’s types are serially correlated

and follow a Markov process. They show a dynamic envelope formula considering

only local incentive compatibility constraints but the formula fails to characterize

the optimal dynamic contract in general dynamic environments. So they present the

suboptimal monotonic contracts which works well in complex environments. Garrett

(2014) considers dynamic mechanism design in a setting that buyer arrive over time

and their values changes over time. The author fully characterizes the optimal mech-

anism under the two customer types setting and a continuum of values setting. The

late arrivals are punished with less surplus to earn.

The other strand considers that a dynamic population arrives over time with

fixed preference and the allocation for each customer is determined only once. Ger-

shkov and Moldovanu (2009) investigate a dynamic allocation of finite heterogeneous

objects to privately informed agents who arrive randomly before a deadline. They
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characterize implementable dynamic allocation rules through a method combining the

payoff equivalence principle and a variational argument. Pai and Vohra (2013) solve

a monopolist’s multi-period dynamic auction design problem for multiple identical

items. Customers with unit demand arrive over time with private arrival time and

deadline. The optimal allocation rule is a simple index rule which is calculated by a

dynamic knapsack algorithm. The customer’s index depends on the reported value

and its distribution with entry and exit time. The allocation rule is monotone in

valuation. Board and Skrzypacz (2013) study a seller’s revenue maximization prob-

lem in the finite horizon. Buyers enter the market over time and forward looking,

thus strategically time their purchases. The optimal mechanism includes a sequence

of deterministic cutoffs in continuous time and can be implemented by posed prices.

When the number of entrants decreases over time, the cutoffs also reduce and satisfy

the one-period-look-ahead property. Bergemann and Said (2011) provide a detailed

review of dynamic mechanism design.

However, the above studies on dynamic mechanism design assume that the char-

acteristic of product only has the quantity dimension or quality dimension under unit

demand assumption, in this part, we extend the problem with consideration of two

dimensions, hire quantity and hire time. We believe that this is the first work to

consider two dimensional features of product in a dynamic environment.

2.2 Static Nonlinear Pricing Problem

In this section, we discuss an atemporal monopolist nonlinear pricing problem

where the capacity is rationed once. In the next section, we study the intertemporal

nonlinear pricing problem where the capacity is allocated repeatedly in the finite

horizon.

In this paper, the cases we focus on that the lessee has hire quantity/time pref-

erence are also motivated by industry operations. In practice, the leasing company
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enters into long-term leases for a fixed term normally ranging from three to eight

years, with five-year term leases being most common (Textainer , 2014). The lessee

open calls for tenders to choose the alternative lessor with specific hire time pref-

erence. The final winner may be a sole bidder or two/three bidders who share the

contract. Under the agreement of preferred hire time, the hire quantity is decided

based on the price offered by leasing companies. In the trip lease, the sailing time

between origin and destination is also known in advance.

2.2.1 One group of customers

The monopolist (leasing company) has C units of container available to rent by

M customers at one time. In this subsection, we assume that all M customers have

the same hire time d. This assumption is reasonable as five year is the most common

hire time in the long-term lease contract according to the 2014 annual report of

Textainer . A customer usually has a preferred hire time and then choose the hire

quantity depending on the posted price. Further, in view of the sufficient long hire

time, the market would be quite different from now when the containers are returned.

Hence, it is more sensible to model this pricing problem in the long-term lease contract

as an atemporal nonlinear pricing problem. The firm determines a vector of quantity

and price pairs associated with each customer type to maximize the expected profit

and each customer selects the hire quantity and price pair designed for his type.

The M customers are classified into N types, where M < N . A customer’s

valuation refers to the benefit that a customer obtains from the leasing service. A

customer’s valuation, θ̄i ∈ Θ̄, is private information and drawn from a known iid

probability mass function f(θ̄i) and cumulative distribution function F (θ̄i), shortened

as fi and Fi respectively. Θ̄ = {θ̄1, θ̄2, . . . , θ̄N} is a finite set with θ̄i = iψ for some

ψ > 0. Assume that fi and Fi satisfy the monotone hazard rate condition, if j > i then

1−Fj
fj

> 1−Fi
fi

. This assumption is quite usual in literature (Armstrong 1996, Myerson
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1981, Anderson and Dana Jr 2009). A customer rents qi units of container for hire

time di enjoys utility U(θ̄i, di, qi) = θ̄idiqi− 1
2
(d2
i + q2

i ). The quadratic utility function

follows the tradition of the literature (Wilson 1993, Rochet and Stole 2003). Let Y be

the fixed lease contract setup cost. The operating cost per time per unit for the leasing

company is a and a < ψ. The unit benefit ψ obtained by the customer could not

lower than the operating cost per unit a of the leasing company. The direct operating

expense includes storage, handling, maintenance, and reposition (Textainer , 2014).

Such operating cost is a component of the objective function of these empty container

reposition articles (Cheung and Chen 1998, Song and Dong 2012, Bell et al. 2013),

which is linear to the number of containers and the duration of the lease contract.

The adoption of linear cost function is just to simplify exposition, and it is easy to

extend to some other forms of cost function. In this section with same hire time d,

let θi = θ̄id and U(θ̄i, di, qi) becomes to U(θi, qi) = θiqi − 1
2
(d2 + q2

i ).

The Firm’s Problem

The objective of the leasing company is to maximize the expected profit with finite

capacity. In the direct revelation mechanism, the leasing company first announces

and commits a menu of quantity qi and total price Pi pairs, shortened as {Q,P}.

When a customer arrives at the leasing company, the customer reports a type i based

on the announced menu {Q,P} to maximize his surplus U(θi, qi)−Pi. The customer

receives qi units of container and issues the payment Pi.

There are some constraints in which the direct revelation mechanism must satisfy.

Incentive Compatibility (ICij) Constraint. Each customer reports his type i truth-

fully and selects the quantity and price pair {qi, Pi} offered to his type. Customer

has no incentive to deviate from his type i as the consumer surplus of reporting type

i is greater than that reporting other types j (j 6= i). Thus, truthfulness is the best
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strategy to maximize his own consumer surplus.

U(θi, qi)− Pi ≥ U(θi, qj)− Pj ∀i and j where j 6= i (2.1)

Refer ICi,i+1 to the upward IC constraint and ICi,i−1 to the downward IC constraint.

Individual Rationality (IRi) Constraint. Each customer only rents the containers

if he has nonnegative consumer surplus.

U(θi, qi)− Pi ≥ 0 ∀i (2.2)

Due to the IRi constraint, there exists some customers obtaining positive con-

sumer surpluses, meanwhile some types of customers are priced out of the market.

There exists a type j such that qj = 0 which divides all customers into two categories,

for customers with type k ≤ j, qk = 0; otherwise, for j < k ≤ N , qk > 0. In other

words, the types of customers who belong to [1, j] fail to accept the price and leave

the firm; and the types of customers who belong to (j,N ] hire a positive quantity

with nonnegative consumer surplus.

Capacity Constraint (CC). The total units of container allocated cannot exceed

the available capacity.

M
∑
i

fiqi ≤ C (2.3)

The expected profit of the leasing company is the expected revenue minus the

operating cost. The atemporal nonlinear pricing problem is written as follows.

Π(Q,P ) = max
{Q,P}

M
∑
i

fi(Pi − Y − adqi) (2.4)

s.t. ICij, IRi, CC ∀i, j ∈ [1, · · · , N ]

Lemma 2.1. If a mechanism {Q,P} is implementable, then qi ≥ qj for any 1 ≤ j <
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i ≤ N .

Proof. Suppose that qi < qj for i > j. From ICi,j and ICj,i constraints, we have

ICi,j U(θi, qi)− Pi ≥ U(θi, qj)− Pj,

ICj,i U(θj, qj)− Pj ≥ U(θj, qi)− Pi.

The above two inequalities imply that

θi(qj − qi) ≤ Pj − Pi +
1

2
(q2
j − q2

i ) ≤ θj(qj − qi).

According to assumption θi > θj and qj > qi, we obtain that θi(qj − qi) > θj(qj − qi),

yielding a contradiction.

Denote the consumer surplus of type i as S(θi) = U(θi, qi)− Pi.

Lemma 2.2. If a mechanism {Q,P} is implementable, then for all customer types i,

S(θi) ≥ S(θ1) + ψd

i−1∑
k=1

qk (2.5)

S(θi) ≤ S(θ1) + ψd

i∑
k=2

qk (2.6)

Proof. From ICi,i−1, we have

S(θi) = U(θi, qi)− Pi ≥ U(θi, qi−1)− Pi−1.
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And the right side of the above equation can be rewritten as

U(θi, qi−1)− Pi−1

=U(θi−1, qi−1)− Pi−1 + U(θi, qi−1)− U(θi−1, qi−1)

=S(θi−1) + ψdqi−1.

Accordingly, we have S(θi) ≥ S(θi−1) + ψdqi−1. Summing up the constraints from

ICi,i−1 to IC2,1, we get

S(θi) ≥ S(θ1) + ψd
i−1∑
k=1

qk.

Similarly, summing up the constraints from ICi−1,i to IC1,2 and we obtain (4.2).

Lemma 2.3. If the adjacent downward (upward) IC constraint binds, then the cor-

responding upward (downward) IC constraint is satisfied.

Proof. If ICi,i−1 binds, U(θi, qi) − U(θi, qi−1) = Pi − Pi−1. Recall that U(θi, qi) =

θiqi − 1
2
(d2 + q2

i ), then

θi−1(qi − qi−1) +
1

2
(q2
i−1 − q2

i ) = U(θi−1, qi)− U(θi−1, qi−1)

< U(θi, qi)− U(θi, qi−1) = θi(qi − qi−1) +
1

2
(q2
i−1 − q2

i ).

It follows that U(θi−1, qi)− U(θi−1, qi−1) < Pi − Pi−1. The upward ICi−1,i constraint

is satisfied.

The atemporal nonlinear pricing problem with capacity constraint can be trans-

formed to a standard static nonlinear pricing problem using the Lagrange multipli-

er approach. Based on the above lemmas, we could consider the relaxed problem

which the adjacent downward ICi,i−1 and IR1 constraints bind. The binding con-

straint IR1 means that S(θ1) = 0 and the binding constraints ICi,i−1 indicates that
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S(θi) = ψd
∑i−1

k=1 qk. As a result, the optimal menu of prices can be derived from the

binding downward IC constraints. Replace Pi = U(θi, qi)−S(θi) and reformulate the

problem (2.4) as

Π(Q, λ) = max
{Q,λ}

M
∑
i

fi[U(θi, qi)− S(θi)− Y − adqi] + λ(C −M
∑
i

fiqi) (2.7)

s.t. S(θ1) = 0 IR1

S(θi) = ψd

i−1∑
k=1

qk ICi,i−1 for i ∈ [2, N ]

Theorem 2.1. The optimal allocation policy of atemporal nonlinear pricing problem

is characterized as follows. Let wi = i− 1−Fi
fi

and i∗ = arg min{i|wi > a
ψ
}.

• If (i∗ − a
ψ

)(1 − Fi∗−1) ≤ C
Mdψ

, then the capacity constraint is not binding. For

i < i∗, the optimal quantity qi is 0; for i∗ ≤ i ≤ N , qi = dψwi − ad.

• If (i∗ − a
ψ

)(1 − Fi∗−1) > C
Mdψ

, then the capacity constraint is binding. For

i < i∗, the optimal quantity qi is 0; for i∗ ≤ i ≤ N , qi = dψwi − ad − λ where

λ = dψi∗ − ad− C
M(1−Fi∗−1)

.

Proof. (i) When the capacity constraint is not binding, then λ = 0 and the problem

becomes a standard nonlinear pricing problem. Take the derivative of (4.2) w.r.t θi,

we can get

fi(idψ − ad− qi − dψ
1− Fi
fi

) = 0,

qi = dψwi − ad.

For i < i∗, qi = 0; otherwise, qi = dψwi−ad. Since capacity constraint is not binding,

from M
∑N

i=i∗ fiqi ≤ C, we have (i∗ − a
ψ

)(1− Fi∗−1) ≤ C
Mdψ

.

(ii) When the capacity constraint is binding, using the Lagrange multiplier ap-
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proach, (4.2) can be rewritten as

Π(Q, λ) = max
{Q,λ}

M
∑
i

fi[θiqi −
1

2
(d2 + q2

i )− S(θi)− Y − adqi − λqi] + λC

s.t. IR1, ICi,i−1 for i ∈ [2, N ]

The pointwise maximization solution is derived from the derivative about θi combining

with the binding capacity constraint.


fi(idψ − ad− qi − dψ 1−Fi

fi
− λ) = 0,

M
∑N

i=i∗ fiqi = C

⇒


qi = dψwi − ad− λ

λ = dψi∗ − ad− C
M(1−Fi∗−1)

The optimal allocation policy corresponding to the binding status of capacity con-

straint is derived.

Remark. The leasing company provides different rental contracts based on the

type of customers. The total number of customers who received the lease contract is

M(1− Fi∗−1).

2.2.2 Two different groups of customers

In this subsection, we consider the case that the M customers are classified into

two groups: one group of customers has hire time preference, denoted by Group I;

another group of customers has hire quantity preference, denoted by Group J . Let

d̄i be the preferred hire time in Group I, d̄i ≤ d̄i+1 (i ∈ I) and q̄j is the preferred hire

quantity in Group J , q̄j ≤ q̄j+1 (j ∈ J). Assume that each group still has N types.

A customer’s valuation in Group I is θIi = id̄iψ and in Group J is θJj = jq̄jξ for

i, j ∈ {1, 2, · · · , N}, ψ > 0 and ξ > 0. The other assumptions are the same as those

stated in Section 3.1. The atemporal nonlinear pricing problem with two different
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groups of customers can be formulated as

max
{QI ,PI ,DJ ,PJ}

M [
∑
i

fi(Pi − Y − ad̄iqi) +
∑
j

fj(Pj − Y − aq̄jdj)]

s.t. U(θIi , qi)− Pi ≥ U(θIi , qi′)− Pi′ ICI
i,i′

U(θJj , dj)− Pj ≥ U(θJj , dj′)− Pj′ ICJ
j,j′

U(θIi , qi)− Pi ≥ 0, U(θJj , dj)− Pj ≥ 0 IRI
i , IR

J
j

M [
∑

i fiqi +
∑

j fj q̄j1(dj > 0)] ≤ C CC

∀i, i′ ∈ I,∀j, j′ ∈ J

The first two constraints are incentive compatible constraints for both groups. The

next two constraints are individual rationality constraints. The last is the capacity

constraint, and 1(·) is an indicator function. The inequality (4.1) in Lemma 3.2

becomes to

S(θIi ) ≥ S(θI1) +
1

2
(d̄2

1 − d̄2
i ) + ψ

i−1∑
k=1

qk[(k + 1)d̄k+1 − kd̄k];

S(θJj ) ≥ S(θJ1 ) +
1

2
(q̄2

1 − q̄2
i ) + ξ

j−1∑
k=1

dk[(k + 1)q̄k+1 − kq̄k].

To solve this problem, we can still use Lagrange multiplier approach to obtain the

optimal solution.

Theorem 2.2. The optimal allocation policy of atemporal nonlinear pricing problem

with two different groups of customers is characterized as follows. The superscripts s

and b signify the slack and binding status of the capacity constraint.

• When the capacity constraint is not binding, the optimal allocation policy is

that for Group I, qsi = ψ
{
id̄i − ad̄i

ψ
− [(i+ 1)d̄i+1 − id̄i]1−Fi

fi

}+

; for Group J ,
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dsj = ξ
{
jq̄j − a

ψ
− [(j + 1)q̄j+1 − jq̄j]1−Fj

fi

}+

.

• When the capacity constraint is binding, the optimal allocation policy is that for

Group I, qbi = ψ
{
id̄i − ad̄i

ψ
− [(i+ 1)d̄i+1 − id̄i]1−Fi

fi

}+

− λ where

λ = 1
1−Fi∗−1

(∑
i≥i∗ fiq

s
i +

∑
j≥j∗ fj q̄j −

C
M

)
and i∗ = arg min{i|qsi ≥ 0}, j∗ =

arg min{i|dsj ≥ 0}; for Group J , dbj = dsj.

Proof. The proof is similar to the proof of Theorem 2.1, thus the proof is omitted.

For Group I, when customers have the same preferred hire time, the optimal

allocation policy reduces to the optimal policy in Theorem 3.1 except with different

λ values. The capacity constraint only binds the optimal hire quantity qbi of Group

I, but not the optimal hire time dj of Group J owing to the fact that customers in

this group have preferred hire quantities.

2.3 Dynamic Nonlinear Pricing Problem with Contempora-

neous Arrivals

In this section, we discuss the monopolist’s nonlinear pricing problem in a dynamic

environment with contemporaneous arrivals. In particular, the monopolist determines

a menu of quantity (time) and price pairs to maximize the expected profit in discrete-

time and finite horizon setting. All customers first show up in the leasing company

at the beginning of the horizon. To better capture the characteristics of the two

different groups of customers, we explore the nonlinear pricing problem for customers

with preferred hire time and preferred hire quantity separately. Besides, suppose that

there are two customer types in each group, the low type L and the high type H.
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2.3.1 Hire time preference

In this subsection, we describe the situation of a trip lease contract in the short

term lease category. The liner ship carrier announces the ports of call of a specific

route with specific estimated time of arrival and departure. This information is

usually known in advance and considered constant. The shippers will then make

reservation to occupy certain capacity (in TEUs) of a voyage with specific origin-

destination pair. They will consider rent the containers from the leasing company for

this specific shipment if they don’t have their own containers. If the route of the liner

shipping service has only one origin-destination port, the hire time of all customers

are considered the same; if there are multiple ports of call, this leads to the situation

that customers may have different hire times. Denote the preferred hire time of two

customer types by d̄H and d̄L. Corresponding to the different situations in practice,

we first study the case that d̄H = d̄L and then discuss the case when d̄H > d̄L. Let

θi = θ̄id̄i and θ̄i > a.

2.3.1.1 Same hire time preference (d̄H = d̄L = d)

As the M customers of the leasing company have the same hire time preference

d, there are equidistant time points in finite horizon, {0 = t0, t1, · · · , tK , tK+1 = T},

where tk = kd and tK is the last pricing decision point. In a finite period setting,

customer type is affected by the shipper’s demand and fleet capacity, world trade

and economic conditions, the price of new and used containers, shifting trend of

cargo traffic and fluctuation in interest rates and currency exchange rates. The above

factors directly or indirectly affect the customer type at the leasing time. Therefore,

we model the customer valuation as stochastic variable. At time t0, the firm has a

prior information about the proportion of customers being classified into the low and

high type, fL and fH . The customer type evolves over time according to a two-stage

Markov process. Let fij be the probability that a type i customer at time point tk
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becomes a type j customer at time point tk+1 for any tk, where i, j ∈ {L,H}. The

probability fij is independent of the time point. Moreover, assume that customer

types are positively correlated, fHH − fHL > 0 and fLL − fLH > 0. Hk is the set of

all possible history up to time tk. hzk is the public history up to time point tk and

the customer type at tk−1 is z (z ∈ {L,H}), hzk := {hk−1, z} and h0 := ∅. hk stands

for the general history up to time point tk. Let f(hk) be the expected probability of

history hk.

In each time point tk, the sequence of events is listed as follows: (1) if k ≥ 1,

contracted customers return the rented containers; (2) based on the public history

hk, the leasing company designs and commits a menu of quantity and price pairs

{Q,P} = {qi(hk), Pi(hk)} to maximize the expected profit with time discount factor

δ; (3) each customer reports his type to maximize his expected consumer surplus,

receives the corresponding quantity of his type and settles the payment.

Let S(θi|hk) be a customer’s expected surplus with type i up to history hk,

S(θi|hk) = U(θi, qi(hk))− Pi(hk) + δd
∑

j∈{L,H} fijS(θj|hik+1). For notational brevity,

we denote qi(h0) := qi, S(θi|h0) := S(θi).

Incentive Compatibility (ICij(hk)) Constraint. In a dynamic environment, the

incentive compatibility constraint for the high type and history hk (k = 0, · · · , K)

can be written as

U(θH , qH(hk))− PH(hk) + δd
∑
j

fHj[U(θj|hHk+1)− Pj(hHk+1)] ≥

U(θH , qL(hk))− PL(hk) + δd
∑
j

fHj[U(θj|hLk+1)− Pj(hLk+1)]

Simplify the above inequality, it becomes

S(θH |hk) ≥ S(θL|hk) + ∆θqL(hk) + δd
∑
j

(fHj − fLj)S(θj|hLk+1)
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where ∆θ = θH − θL = (θ̄H − θ̄L)d.

Individual Rationality (IRi(hk)) Constraint. The individual rationality constraint

in a dynamic environment is S(θi|hk) ≥ 0 for hk ∈Hk.

Capacity Constraint (CC(hk)). In view of the same hire time for all customers,

the capacity constraint at each time point tk is that the total number of allocated

units cannot exceed C. At time t0, the capacity constraint is M(fHqH + fLqL) ≤ C.

When k > 0, Hk can be divided into three subsets, Hk = {hLk , hĤk , hL̂k }, where

hLk = (L, · · · , L) is the history from time t0 to time tk−1 where the customer types

are all L in the first k time points; hĤk = {hk−1, H} refers to the history where the

customer type at tk−1 is H and hL̂k = {hk−1, L} is the history where the customer type

at tk−1 is L and hk−1 6= hLk−1. Note that f(hL̂1 ) = 0. The containers rented out at

time point tk−1 will return to the firm at the time point tk. The capacity constraint

at each time point tk can be expressed as

M

[
f(hLk )

∑
i

fLiqi(h
L
k ) + f(hĤk )

∑
i

fHiqi(h
Ĥ
k ) + f(hL̂k )

∑
i

fLiqi(h
L̂
k )

]
≤ C

The monopolist’s problem boils down to as follows.

Π(Q,P ) = max
{Q,P}

M{
∑
i

fi(Pi − Y − adqi) +
K∑
k=1

δkdEhzk
∑
i

fzi[Pi(h
z
k)− Y − adqi(hzk)]}

= max
{Q,S(θ)}

M{
∑
i

fi[U(θi, qi)− S(θi)− Y − adqi]

+
K∑
k=1

δkdEhzk
∑
i

fzi[U(θi, qi(h
z
k))− Y − adqi]} (2.8)

s.t. ICij(hk), IRi(hk), CC(hk)

∀i, j ∈ {L,H}, hk ∈Hk (k = 0, · · · , K)

Battaglini and Lamba (2014) proved that the first-order approach is valid for the

monotonic allocations in a dynamic environment, q(hk) ≥ q(hk′) if hk > hk′ , e.g.
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hk = {H,L} and hk′ = {L,L} in our problem. Since we only have two customer

types and unidimensional allocation under the monotone hazard rate assumption,

the monotonic allocation requirement is satisfied in our problem. We adopt the

relaxed method as presented in the standard static nonlinear pricing problem where

the incentive compatibility constraints for the high type ICHL(hk) and the individual

rationality constraints for the low type IRL(hk) are binding for any hk ∈Hk. Define

the relaxed problem as IRL(hk) and ICHL(hk) are binding constraints for any hk ∈

Hk.

Lemma 2.4. In a dynamic environment with same hire time preference, the optimal

solution of the relaxed problem is also an optimal solution of the original problem.

Proof. Suppose that {Q,P} is an optimal solution of the original problem which

IRL(hk) and ICHL(hk) are not binding constraints for some hk ∈Hk.

If IRL(hk) are not binding constraints for some hk ∈ Hk, that is, S(θL|hk) = ω,

where ω is a positive number.

• When k = 0, consider an alternative solution {Q′, S ′(θ)} such that S ′(θL) =

S(θL) − ω. Then the expected optimal profit increases by fLω, Π(Q′, S ′(θ)) =

Π(Q,P ) +MfLω.

• When k > 0, let S ′(θL|hk) = S(θL|hk)−ω, the expected profit remains the same

satisfying all constraints, Π(Q′, S ′(θ)) = Π(Q,P ).

If ICHL(hk) are not binding constraints for some hk ∈ Hk, S(θH |hk) = ∆θqL(hk) +

δd∆fS(θH |hLk+1) + ω, where ∆f = fHH − fLH . Consider an alternative solution

{Q′, S ′(θ)} such that S ′(θH |hk) = S(θH |hk)− ω.

• When k = 0, the net change is fHω, Π(Q′, S ′(θ)) = Π(Q,P ) +MfHω.

• When k > 0 and k′ > k, S ′(θH |hk′) remains the same as in the original so-

lution, S ′(θH |hk′) = S(θH |hk′). When k′ = k − 1, we have S ′(θH |hk−1) =
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S(θH |hk−1)− δdω. By repeatedly applying the above modifications until k′ = 0,

S ′(θH) = S(θH) − δkdω. The expected optimal profit increases by MfHδ
kdω,

Π(Q′, S ′(θ)) = Π(Q,P ) +MfHδ
kdω.

Based on the above, the alternative solution satisfying the binding constraints ICHL(hk)

and IRL(hk) in the relaxed problem yields an equal or higher profit, which contradicts

the optimality of the assumption.

From the binding constraint ICHL(hk) in the relaxed problem,

S(θH |hk) = ∆θqL + δd∆fS(θH |hLk+1), where ∆f = fHH − fLH ,

the expected consumer surplus S(θH) is

S(θH) = S(θH |h0) = ∆θ
K∑
k=0

(δd∆f)kqL(hLk ).

As S(θL|hk) = 0 and S(θH) depends on qL(hLk ) for k = {0, 1, · · · , K}, reformulate

(2.8) as the Lagrangean objective function. The relaxed problem is written as follows.

Π(Q,S(θH),Λ) = max
{Q,S(θH),Λ}

M [
∑
i

fi(U(θi, qi)− Y − adqi)− fHS(θH)]

+M

K∑
k=1

δkdEhzk
∑
i

fzi[U(θi, qi(h
z
k))− Y − adqi(hzk)] + λ0(

C

M
− fHqH − fLqL)

+
K∑
k=1

λk[
C

M
− f(hLk )

∑
i

fLiqi(h
L
k )− f(hĤk )

∑
i

fHiqi(h
Ĥ
k )− f(hL̂k )

∑
i

fLiqi(h
L̂
k )]

s.t. S(θL|hk) = 0 IRL(hk)

S(θH) = ∆θ
∑K

k=0(δd∆f)kqL(hLk ) ICHL(hk)

∀i ∈ {L,H}, hk ∈Hk (k = 0, · · · , K)
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Theorem 2.3. For any hk ∈ Hk, the optimal intertemporal allocation policy for

customers with same hire time preference is characterized as follows.

At time 0,


qH = θH − ad− Λ0;

qL = θL − ad− fH
fL

∆θ − Λ0;

where Λ0 =
λ0

M
= (θL − ad−

C

M
)+;

when hk ∈ {hĤk , hL̂k }, when hk = hLk ,


qH(hk) = θH − ad− Λk;

qL(hk) = θL − ad− Λk;


qH(hLk ) = θH − ad− Λk;

qL(hLk ) = θL − ad− fH∆θ
fL

( ∆f
fLL

)k − Λk;

where Λk = λk
Mδkd

=
{
θL − ad− C

M
+ ∆θ

[
fLH(f(hLk ) + f(hL̂k )) + f(hĤk )fHH − fH∆fk

]}+

.

Proof. When hk ∈ {hĤk , hL̂k }, the first-order conditions w.r.t qH(hk) and qL(hk) are

given by the following equations.

qH(hk) : Mδkd[θH − ad− qH(hk)]− λk = 0

qL(hk) : Mδkd[θL − ad− qL(hk)]− λk = 0

When hk = hLk , the first-order conditions about qH(hLk ) and qL(hLk ) are given by the

following equations.

qH(hLk ) : Mδkd[θH − ad− qH(hk)]− λk = 0

qL(hLk ) : Mδkd[θL − ad− qL(hk)− fH∆θ
fL

( ∆f
fLL

)k]− λk = 0

And Λk is obtained from the following equation[
f(hLk )

∑
i fLiqi(h

L
k ) + f(hĤk )

∑
i fHiqi(h

Ĥ
k ) + f(hL̂k )

∑
i fLiqi(h

L̂
k )− C

M

]+

= 0.
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Corollary 2.1. For 0 ≤ k ≤ K, Λk is increasing2 in k.

Proof. We use induction to prove this lemma. For k = 1, Λ1 − Λ0 = fLH∆θ > 0.

Next, we show that if Λk − Λk−1 > 0, then also Λk+1 − Λk > 0 holds. Note that


f(hLk ) = f(hLk−1)fLL;

f(hL̂k ) = f(hL̂k−1)fLL + f(hĤk−1)fHL;

f(hĤk ) = f(hĤk−1)fHH + f(hL̂k−1)fLH + f(hLk−1)fLH .

Λk − Λk−1

∆θ
=∆f

[
fLH

(
f(hL̂k−1) + f(hLk−1)

)
− fHLf(hĤk−1)

]
+ fH∆fk−1(1−∆f) > 0

Suppose that if the above equation is positive,

Λk+1 − Λk

∆θ
=fLH

[
f(hLk+1)− f(hLk ) + f(hL̂k+1)− f(hL̂k )

]
+ fHH

[
f(hĤk+1)− f(hĤk )

]
+ fH∆fk(1−∆f)

=∆f
{

∆f
[
fLH

(
f(hL̂k−1) + f(hLk−1)

)
− fHLf(hĤk−1)

]
+ fH∆fk−1(1−∆f)

}
> 0

As Λk increases with k, it indicates that the effect of capacity constraint at each

time point increases over time. The optimal quantity qi(hk) for hk ∈ {hĤk , hL̂k } and

qH(hLk ) diminishes as Λk grows; while the trend of qL(hLk ) as k increases depends on

the mixed effects which are the decrement of fH∆θ
fL

( ∆f
fLL

)k(1− ∆f
fLL

) and the increment of

Λk−Λk−1. Additionally, the capacity constraint at each time point binds the optimal

2The increase and decrease in our paper refer to the weak sense.
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quantity after any history hk. In Battaglini (2005), the uncapacitated and infinite

version of our problem, the optimal quantity converges to the efficient quantity θi

(θi − ad in our context) due to ∆f
fLL

< 1.

2.3.1.2 Different hire time preferences (d̄H > d̄L)

In this subsection, we discuss the problem with two types of customers having dif-

ferent preferred hire time d̄H > d̄L. Unlike the previous section, there are fixed but not

equidistant time points in the finite horizon, {t0 = 0, t1 = d̄L, t2 = d̄H , · · · , tK , tK+1 =

T}. Assume that each customer has only one rental contract at any time point. The

corresponding monopolist’s optimization problem can be formulated as follows.

max
{Q,S(θ)}

M{
∑
i

fi(Pi − Y − ad̄iqi) +
K∑
k=1

δtkEhzk
∑
i

fzi[Pi − Y − ad̄iqi(hzk)]}

s.t. S(θi|hk) ≥ S(θj|hk) + ∆θqj(hk) + δd̄j
∑

l(fil − fjl)S(θl|hjk+1) ICi,j(hk)

S(θi|hk) ≥ 0 IRi(hk)

M(fHqH + fLqL) ≤ C CC(h0)

fzLqL(hzk) + fzHqH(hzk) ≤ qz(hk−1) hzk = {hk−1, z} CC(hk)

∀i, j, l ∈ {L,H}, hk ∈Hk (k = 0, · · · , K)

Note that 4θ = θH − θL = θ̄H d̄H − θ̄Ld̄L. The capacity constraint CC(hk)(k > 0)

in this model is different from that in the model of customers with the same hire

time. In the previous section, with equidistant time points, the available capacity at

each time point is C; whereas in this section, the time points in the horizon are not

equidistant anymore, the available capacity at time point tk is the number of rented

containers at tk−1, qz(hk−1). We still apply the relaxed method to solve this problem.

Lemma 2.5. In a dynamic environment with different hire time preferences, the
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optimal solution of the relaxed problem is also an optimal solution of the original

problem.

Proof. The proof is similar to the proof of Lemma 2.4, except the part ICHL(hk)

when k > 0.

If ICHL(hk) are not binding constraints in an optimal solution {Q,P} of the

original problem for some hk ∈Hk, then S(θH |hk) = ∆θqL(hk) + δd̄L∆fS(θH |hLk+1) +

ω. Consider an alternative solution {Q′, S ′(θ)} such that S ′(θH |hk) = S(θH |hk)− ω.

When k > 0 and k′ > k, S ′(θH |hk′) remains the same as in the original solution,

S ′(θH |hk′) = S(θH |hk′). When k′ = k− 1, we have S ′(θH |hk−1) = S(θH |hk−1)− δd̄Lω.

By repeatedly applying the above modifications until k′ = 0, S ′(θH) = S(θH) −

δkd̄Lω. The expected optimal profit increases by MfHδ
kd̄Lω, Π(Q′, S ′(θ)) = Π(Q,P )+

MfHδ
kd̄Lω. It contradicts the optimality of the assumption.

Use the Lagrange multiplier approach to reformulate the relaxed problem as

Π(Q,S(θH),Λ) = max
{Q,S(θH),Λ}

M{
∑
i

fi[θiqi −
1

2
(q2
i + d̄2

i )− Y − ad̄iqi]− fHS(θH)

+
K∑
k=1

δtkEhzk
∑
i

fzi[θiqi(h
z
k)−

1

2
(q2
i (h

z
k) + d̄2

i )− Y − ad̄iqi(hzk)]}

+ λ0(
C

M
− fHqH − fLqL) +

K∑
k=1

λk[qz(hk−1)− fzLqL(hk)− fzHqH(hk)]

s.t. S(θL|hk) = 0 IRL(hk)

S(θH) = ∆θ
∑K

k=0(δd̄L∆f)kqL(hLk ) ICHL(hk)

∀i ∈ {L,H}, hk ∈Hk (k = 0, . . . , K)

Theorem 2.4. For any hk ∈ Hk, the optimal intertemporal allocation policy for

customers with different hire time preferences is characterized as follows.
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At time 0,


qH = θH − ad̄H − Λ0;

qL = θL − ad̄L − fH
fL

∆θ − Λ0;

where Λ0 =
λ0

M
= [θL − a(fH d̄H + fLd̄L)− C

M
]+;

when hk ∈ {hĤk , hL̂k }, 
qH(hk) = θH − ad̄H − Λk;

qL(hk) = θL − ad̄L − Λk;

where Λk = λk
Mδtkf(hk)

= [fzHθH + fzLθL − θz − a(fzH d̄H + fzLd̄L − d̄z) + Λk−1]+;

when hk = hLk ,


qH(hLk ) = θH − ad̄H − Λk;

qL(hLk ) = θL − ad̄L − fH∆θ
fL

( ∆f
fLL

)k − Λk;

where Λk = λk
Mδkd̄Lf(hLk )

=
[
fLH(∆θ − ad̄H + ad̄L) + fH∆θ

fL
( ∆f
fLL

)k−1(1−∆f) + Λk−1

]+

.

Proof. When hk ∈ {hĤk , hL̂k }, the first-order conditions w.r.t qH(hk) and qL(hk) are

given by the following equations.

qH(hk) : Mδtkf(hk)[θH − ad̄H − qH(hk)]− λk = 0

qL(hk) : Mδtkf(hk)[θL − ad̄L − qL(hk)]− λk = 0

And Λk = [fzH(θH − ad̄H) + fzL(θL − ad̄L) − qz(hk−1)]+ = [fzHθH + fzLθL − θz −

a(fzH d̄H + fzLd̄L − d̄z) + Λk−1]+.

When hk = hLk , the first-order conditions w.r.t qH(hLk ) and qL(hLk ) are given by
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the following equations.

qH(hLk ) : Mδtkf(hLk )[θH − ad̄H − qH(hk)]− λk = 0

qL(hLk ) : Mδtkf(hLk )fLL[θL − ad̄L − qL(hk)]− λkfLL −MδtkfH∆θ∆fk = 0

Λk =
[
fLH(θH − ad̄H) + fLL(θL − ad̄L − fH∆θ

fL
( ∆f
fLL

)k)− qL(hLk−1)
]+

=
[
fLH(∆θ − ad̄H + ad̄L) + fH∆θ

fL
( ∆f
fLL

)k−1(1−∆f) + Λk−1

]+

.

Corollary 2.2. For 0 ≤ k ≤ K and any hzk ∈ Hk, if z = L, Λk increases with k; if

z = H, Λk decreases with k.

Proof. We prove this corollary by induction. To begin with, consider the case z = L.

Step 1. For k = 1, h1 = { L} = hL1 .

Λ1 − Λ0 = fLH(∆θ − ad̄H + ad̄L) +
fH∆θ

fL
(1−∆f)

= fLH [d̄H(θ̄H − a)− d̄L(θL − a)] +
fH∆θ

fL
(1−∆f)

> fLH(θL − a)(d̄H − d̄L) +
fH∆θ

fL
(1−∆f) > 0

The positivity is derived from θ̄L > a, d̄H > d̄L and ∆f = fHH − fLH < 1.

Step 2. If hk = hL̂k , Λk = [fLH(∆θ − ad̄H + ad̄L) + Λk−1]+; if hk = hLk , Λk =

[fLH(∆θ − ad̄H + ad̄L) + fH∆θ
fL

( ∆f
fLL

)k−1(1 − ∆f) + Λk−1]+. As ∆θ − ad̄H + ad̄L > 0

and 1−∆f > 0, we have Λk ≥ Λk−1.

Consider the case when z = H. For k ∈ {1, · · · , K}, Λk = [−fHL(∆θ − ad̄H +

ad̄L) + Λk−1]+, hence Λk ≤ Λk−1.

In this subsection, it is interesting that the effect of capacity constraint becomes
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smaller whenever the last customer type is the high type and this effect becomes larger

whenever the last customer type is the low type no matter the history is hL̂k or hLk .

In other words, the influence of capacity constraint depends only on the realization

of the customer type in the previous period. Based on the monotonicity of Λk, the

optimal quantity of the consistent high type converges to the efficient quantity level

(θH − ad̄H) over time. At the same time, the distortion of the (highly consistent or

inconsistent) low type customer becomes greater over time. The situation that the

effect of capacity constraints depends on customer type contrasts with the effect of

capacity constraint which is independent of customer type in Section 4.1.1. For the

case with same hire time preference, the capacity constraint binds all the allocated

quantities at each time point, while in this case with different hire time preferences,

the capacity constraint only takes effect on the next allocation.

2.3.2 Hire quantity preference

Denote the preferred hire quantities of two customer types by q̄H and q̄L. We first

study the case that q̄H = q̄L and then discuss the case when q̄H > q̄L. Let θi = θ̄iq̄i.

2.3.2.1 Same hire quantity preference (q̄H = q̄L = q)

In this section, we analyze the case that both customer types have the same

hire quantity preference. The monopolist’s problem is to determine a optimal hire

time sequence D = {di(h0), di(h1), · · · , di(hk)} for any hk ∈ Hk (k = 0, 1, · · · , N)

to maximize the expected profit, where di(hk) is the hire time of customer type i

after history hk and N is the total number of rental contracts for history hLk in the

horizon. ti(hk) is the beginning time of rental contract for type i after history hk,

ti(hk) =
∑k−1

l=0 d(hl) (hl ∈ hk). The optimization problem in this setting is written as
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shown below.

Π(D,S(θ)) = max
{D,S(θ)}

M(
∑
i

fi[U(θi, di(h0))− S(θi)− Y − aqdi(h0)]

+
N∑
k=1

Ehzk
∑
j

δtj(h
z
k)fzj[U(θj, dj(h

z
k))− Y − aqdi(hzk)])

s.t. S(θi|hk) ≥ S(θj|hk) + ∆θdj(hk) + δdj(hk)
∑

l(fil − fjl)S(θl|hjk+1) ICi,j(hk)

S(θi|hk) ≥ 0 IRi(hk)

ti(hk) + di(hk) ≤ T

∀i, j, l ∈ {L,H}, hk ∈Hk, k = {0, 1, · · · , N}

The last constraint is the finite time constraint for hire time sequence D with

respect to hk. That is, for any hk ∈Hk, the summation of the hire time of all rental

contracts cannot exceed the planning horizon T . As customers have hire quantity

preference, there is no capacity constraint for the problem. Unfortunately, as the

following example shows, even N = 2, a closed form solution is unlikely derivable.

Example (N=2) Suppose that at time t0 = 0 the types of all arriving customers

are H, then at time point t1 = dH(h0), the hire time for the low type and the high

type are θL−aq̄L and θH−aq̄H , respectively. The objective function of the monopolist

is

Π(D,S(θ)) = max
dH(h0)

MfH{θHdH(h0)− 1

2
(d2
H(h0) + q̄2

H)− Y − aq̄HdH(h0)

+
1

2
δdH(h0)π(θH , θL)}

where π(θH , θL) = fHH [(θH − aq̄H)2 − q̄2
H ] + fHL[(θL − aq̄L)2 − q̄2

L]. The first order
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condition w.r.t dH(h0) is

θH − aq̄H − dH(h0) +
1

2
δdH(h0) ln dH(h0)π(θH , θL) = 0

As dH(h0) lies in the exponent, the above equation is a transcendental equation which

does not exist a closed form solution. The first decision variable di(h0) influences all

the following decision variables di(hk) (k = 1, · · · , N). This contrasts with the prob-

lem in a dynamic environment when customers have hire time preference. Because in

the problem discussed in Section 4.1 the decision variable such as qi(hk) only affects

the next decision variables qi(hk+1) through available capacity constraint rather than

all subsequent decision variables.

In view of this, we limit the choices of possible hire time. Suppose that the

alternative hire time sets for both types are DL = {d1
L, d

2
L, · · · , dKL } and DH =

{d1
H , d

2
H , · · · , dKH}, where dk+1

i > dki (i ∈ {L,H}), d1
H > dKL and |DL| = |DH | = K.

Due to the given hire time set, there may exist some idle time after the last rental

contract as the remaining time in the planning horizon is less than the minimum

given hire time d1
L. Let κ be the set of the last rental contract for each hk in the

planning horizon and the unit inventory cost per time period be c̄. For short, let

R(di(hk)) = θidi(hk)− 1
2
(d2
i (hk)+ q2)−Y −aqdi(hk). d∗i = arg maxdi∈Di{R(di)} refers

to the efficient hire time of type i. Thus, the problem degenerates into selecting an

optimal hire time from the given hire time set.

We still consider the relaxed problem where ICHL(hk) and IRL(hk) are binding
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constraints.

Π(D,S(θH)) =

max
{D,S(θH)}

M{
∑

i∈{L,H}

fi[R(di(h0))− S(θH)] +
N∑
k=1

Ehzk
∑

j∈{L,H}

δtj(h
z
k)fzjR(dj(h

z
k))}

− c̄
∑
j∈κ

Ehk(T − tj(hk) + dj(hk))

s.t. S(θL|hk) = 0 IRL(hk)

S(θH) = ∆θ
∑N

k=0 δ
tL(hLk )∆fkdL(hLk ) ICH,L(hLk )

tj(hk) + dj(hk) ≤ T, j ∈ κ

∀hk ∈Hk, k = {0, 1, · · · , N}

We use a binary tree (see Figure 2.1) to illustrate the computation process. Node

t = 0 is the beginning of the binary tree. Nodes with odd numbers represent the low

type customers and nodes with even numbers denote the high type customers. Let

l be a general node in the tree and ρ(l) be the type of that node. If l mod 2 = 1,

ρ(l) = L; if l mod 2 = 0, ρ(l) = H. For short, let hl be the history ended at node l and

tl be the beginning time of rental contract at node l. The objective function of this

problem implies that given the alternative hire time sets, there is a trade-off between

efficient hire discount of current state and future profit maximization. For a node in

tree, if the efficient hire time dρ(l)(hk) = d∗ρ(l) is selected by the leasing company, then

the next rental contracts for both types are available from time tl + d∗ρ(l); if the hire

time of node l is less than the efficient hire time d∗ρ(l), the next rental contracts start

earlier than the former case at the cost of sacrificing the profit at the current state.

The optimal hire time sequence strikes a balance between current state maximization

and expected future profit maximization.
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Figure 2.1. A binary tree, d∗L = 8, d∗H = 12 and T = 25

The dynamic programming algorithm is designed in the following way. First assign

the efficient hire time of both types to the corresponding nodes until the second last

contracts of different histories and calculate the hire time of last rental contract for

each history subject to the time constraint. For example, in Figure 2.1, assign d∗L = 8

for odd nodes and d∗H = 12 for even nodes except the last rental contract. For this

feasible solution, let κ(l) be the set of last rental contract for each history rooted

at node l and V (l) be a subtree rooted at node l. V (l) can be divided into two

sets, V (l) = {Va(l), Vn(l)}, where Va(l) = {k|k ∈ κ(l) and dρ(k)(htk) 6= d∗ρ(k)} is the

set of nodes in κ(l) whose hire time do not equal to the efficient hire time of the

corresponding types and Vn(l) = V (l) \ Va(l) is the set of rest nodes in V (l) whose

hire time equal to the efficient hire time of the corresponding types. Next, for each

node with efficient hire time, adjust this feasible solution by decreasing node l by η

and increasing nodes j in Va(l) by η. Let ∆l(η) be the net change of the expected profit

which includes the changes of expected profit of hire time at nodes l and j ∈ Va(l),
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the changes of time discount for nodes j ∈ Vn(l) whose hire time remain the same,

the changes of inventory cost of nodes in κ(l) and the possible change of S(θH).

∆l(η) =f(hl)δ
tl [R(dρ(l)(hl)− η)−R(dρ(l)(hl))] +

∑
j∈Vn(l)

f(hj)δ
tjR(dρ(j)(hj))(δ

−η − 1)

+
∑
j∈Va(l)

f(hj)[R(dρ(j)(hj) + η)δtj−η −R(dρ(j)(hj))δ
tj ]

+ c̄
∑

k∈κ(l)\Va(l)

f(hk)δ
tk(T − tk − dρ(k)(hk) + η)− fH4θ4l(S(θH))

where4l(S(θH)) = 1(l ∈ hLk )[−η4fkδtl+
∑N

j=k+14f jδ
tL(hLj )dL(hLj )(δ−η−1)+1(hLN∩

Va(l))η4fNδtL(hLN )−η].

Compute ∆l(ηmin) where ηlmin = mink∈{2,··· ,K}{dkρ(l) − d
k−1
ρ(l) } and ∆(ηlmax) where

ηlmax = min{d∗ρ(l) − d1
ρ(l),minj∈Va(l){d∗ρ(j) − dρ(j)(htj)}}. η∗l = arg max{∆l(η)|∆l(η) >

0}. If η∗l is not empty set, then adjust the feasible solution, otherwise continue to

next node. Subtrees V (l) rooted at the same level can be calculated separately since

the above adjustment does not affect the solution of other subtrees with the same

level, e.g., V (1) and V (2). Apply the adjustment repeatedly until η∗l is an empty set

for each node in V (l) \ κ(l).

Numerical Example 1. Consider an intertemporal nonlinear pricing problem in

the planning horizon T = 25 with different time discount factors δ = 0.95, 0.85, 0.65.

There are M = 10 customers with same hire quantity preference q = 5. The high type

customer with valuation θ̄H = 3.6 arrives at the system with probability fH = 0.6

at time 0 and with consistent probability fHH = 0.6 during the rest of planning

horizon. The low type customer with valuation θ̄L = 2.6 enters the system with

inconsistent probability fLH = 0.45. The alternative hire time sets for both types

are DL = [5, 6, 7, 8] and DH = [9, 10, 11, 12]. Contract setup cost Y is 4, the unit

inventory cost c̄ is 0.5 and the unit operating cost a is 0.6. The optimal hire time

sequence is shown in Figure 4.1.
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Figure 2.2. The Optimal Hire Time Sequence of Example 1, θ̄H = 3.6 and θ̄L = 2.6

Numerical Example 2. In this example, the valuations of both two types

become θ̄H = 2.8 and θ̄L = 2. The other parameters remain the same. The optimal

hire time sequence is illustrated in Figure 2.3.

Two interesting points can be drawn from these two examples. The first one is that

when δ decreases, the optimal hire time sequence converges to the efficient hire time.

The lessening time discount factor reduces the proportion of future profit in the total

expected profit which results in the dominant effect of current profit maximization

in the tradeoff. As the time discount factor diminishes, it is optimal for the leasing

company to lease the containers at the efficient hire time in order to maximize the

expected profit. In the two examples, when δ falls from from 0.95 to 0.65, the optimal

hire time sequence except the last rental contract has the trend of converging to the

efficient hire time.

Another finding is that the decrement of customer valuations lessens the effect of
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Figure 2.3. The Optimal Hire Time Sequence of Example 2, θ̄H = 2.8 and θ̄L = 2

current profit maximization. In Example 1, (θ̄i − a)q (θH = 15, θL = 10) is greater

than the maximal alternative hire time dKi (dKH = 12, dKL = 8), the efficient hire time

for both types are d∗H = 12 and d∗L = 8. In Example 2, d1
i < θ̄i − a)q < dKi , the

efficient hire time for both types becomes d∗H = 11 and d∗L = 7. The decreasing

customer valuation leads to the reducing efficient hire time. Thus, the opportunity

cost of leasing the containers at the efficient hire time reduces, which weakens the

effect of efficient hire discount. The effect of future profit maximization becomes

dominant in the trade-off. This is the reason that even δ = 0.65, the optimal hire

time of nodes 1 and 3 in Example 2 are 5 and 6 which are less than the efficient hire

time of low type, d∗L = 7. In a word, (θ̄i− a)q is the main factor of deciding the effect

of current state maximization and δ is the major determinant of the effect of future

profit maximization.
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2.3.2.2 Different hire quantity preferences (q̄H > q̄L)

We further investigate the case that customers have different hire quantity prefer-

ences, q̄H > q̄L. In the previous section, because of the same hire quantity preference,

there is no container left except the last rental contract in the planning horizon, where-

as the varied hire quantity preferences in this section give rise to the phenomenon that

after each rental contract, there may be several excess/inadequate units of container.

Suppose that the consistent type customers have the priority of satisfying the demand

and the inconsistent low type customers (the low type customer of last time changes

to the high type customer) are patient and can wait until when idle containers are

available. If hzk = hĤk , Mf(hzk)q̄H units of container are returned at ti(h
z
k)(i ∈ {L,H}).

The total number of requested containers by both types is Mf(hzk)(fHH q̄H + fHLq̄L)

which is strictly less than the units of available container Mf(hzk)q̄H . It implies

that Mf(hzk)fHL(q̄H − q̄L) units of container are left in the firm; if hzk ∈ {hLk , hL̂k },

Mf(hzk)q̄L units of container are returned at time ti(h
z
k)(i ∈ {L,H}). The consis-

tent low type customer requires Mf(hzk)fLLq̄L, which is less than Mf(hzk)q̄L. But

the inconsistent low type customer requests Mf(hzk)fLH q̄H which is greater than the

rest of container, Mf(hzk)fLH q̄L. Assume that the waiting cost per time is w. xi(hk)

represents the inventory level of containers for customer type i after history hk. Let

R(di(hk)) = θidi(hk) − 1
2
((d2

i (hk) + q̄2
i ) − Y − aq̄idi(hk). The corresponding relaxed

optimization problem can be formulated as

Π(D,S(θH)) = max
{D,S(θH)}

M
∑
i

fi[R(di(h0))− S(θi)] +M
N∑
k=1

Ehzk
∑
j

δtj(h
z
k)fzjR(dj(hk))

− c̄Ehk(xi(hk))+ − wEhk1(tj(hk)− ti(hk))(xi(hk))−
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s.t. S(θL|hk) = 0 IRL(hk)

S(θH) = ∆θ
∑N

k=0 δ
tL(hLk )∆fkdL(hLk ) ICH,L(hLk )

ti(hk) + di(hk) ≤ T

∀i, j ∈ {L,H},∀hk ∈Hk, k = {0, 1, · · · , N}

The objective function in this section is the rental revenue minus inventory cost,

operating cost and waiting cost. The other components are the same as the model in

the previous section.

The differences between this section and previous section are that (1) subtrees

with the same level jointly determine the optimal hire time sequence. For example,

the hire time of node 2 affects the available time of idle containers for inconsistent

low type customer at node 4; (2) Besides the finite time constraint of the planning

horizon, there exist hire quantity constraints for inconsistent low type customer due

to different hire quantity preferences, which incurs the inventory cost and waiting

cost. While in Section 4.2.1, there is only inventory cost after the last rental contract.

The changes of the algorithm are that ∆l(η) for nodes l in V (2) include the waiting

cost and the inventory cost of each node. The other parts remain the same.

Numerical Example 3. The preferred hire time for both types are q̄H = 10 and

q̄L = 5. The waiting cost per time w is 1. The other parameters are the same as

in Example 1. The optimal hire time sequence is shown in Figure 2.4. The number

in triangle denotes the preferred hire quantity requested by customers, Mf(hzk)fziq̄i

(z, i ∈ {L,H}).

Compare the result in Example 3 with the result in Example 1, one implication

for high type customers is that the optimal hire time are the efficient hire time,

d∗H = 12 and are insensitive to the variations of time discount factors. This is because

the preferred hire quantity of high type in this example is q̄H = 10, the profit from

high type customer becomes larger than that in Example 1. The effect of efficient
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Figure 2.4. The Optimal Hire Time Sequence of Example 3, q̄H = 10 and q̄L = 5

hire discount (current state profit maximization) dominates the effect of future profit

maximization. In addition, considering different hire quantity preferences, there is

inventory left for high type customers. Thus, it is optimal for the leasing company

to lease containers for high type customers at the efficient hire time. The second

implication is that the optimal hire time of low type customers at node 1 is longer

than that in Example 1, while the result at node 3 has the opposite trend. The most

likely explanation is as follows. Nodes 4 and 8 are inconsistent low type customers.

In the optimal solution, customers at node 4 wait until customers at node 2 return

containers. The waiting cost of node 4 depends on the difference between the hire

time of node 2 and 1. Then it is reasonable to increase the hire time of node 1 in

order to reduce the waiting cost. But customers at node 8 are refused by the leasing

company due to long waiting time and the finite horizon time constraint. Among the
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12 units excess inventory of node 2, 9 units is used to satisfy the demand of node

4 and 2.97 units is used to meet the demand of node 18. The hire time of node 3

affects the inventory cost of 2.97 units, thus the optimal hire time of node 3 is less

than the efficient hire time so as to minimize the time lag between node 2 and node

3 and reduce the inventory cost.

2.4 Dynamic Nonlinear Pricing Problem with Dynamic Ar-

rivals

In this section, we discuss the monopolist’s nonlinear pricing problem in a dynamic

environment with dynamic arrivals. Considering the fluctuation in the shipping mar-

ket, a lessee’s eagerness to lease often depends on his own situation. Thus, the case

that the lessees’ first arrival dates are uncertain is examined.

2.4.1 Same hire time preference

Customers first arrive at the leasing company at some date τ before T − d with

probability ρτ . The possibility that a customer arrives before τ is βτ =
∑τ−1

k=1 ρk. Up-

on the first arrival, the leasing company has a prior information about the probability

being categorized by the low and high type, fL and fH . When the first lease contract

of each lessee is over, the lessee keeps leasing from the monopolist until the end of

planning horizon. The continuing leases reflect the long-term contractual relation-

ship between the shippers and the leasing company. A customer informs the leasing

company his initial arrival date τ and his customer type and reports the subsequent

types truthfully in the following periods. The customer type evolves over time ac-

cording to a Markov process. Let fij be the probability that a type i customer at the

current rental contract becomes a type j customer at the next rental contract, where

i, j ∈ {L,H}. The probability fij is independent of the time point. A customer re-
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mains his type of previous lease contract with a higher probability compared with the

possibility of being the other type, that is, customer types are positively correlated,

∆f = fHH − fHL > 0 and fLL − fLH > 0.

Let hτ,k be the lease history with initial arrival date τ and k finished lease contracts

from time point τ to τ +kd with hire duration d. hzτ,k specifies the fact that customer

type at τ + (k − 1)d is z ∈ {L,H}. Hτ,k is the set of all possible histories from

time τ to time τ + kd. When k > 0, Hτ,k can be divided into three subsets, Hτ,k =

{hL̂τ,k,HL
τ,k,HH

τ,k}. hL̂τ,k = (L, · · · , L) is the consistent low type history from time τ to

time τ+(k−1)d. HL
τ,k = {Hτ,k−1, L} is the set of inconsistent low type histories where

the customer type at τ + (k− 1)d is L and hL̂τ,k−1 /∈ Hτ,k−1. HH
τ,k = {Hτ,k−1, H} refers

to the set of the histories where the customer type at τ + (k − 1)d is H. Let f(hτ,k)

be the probability for history hτ,k, e.g. f(hL̂τ,k) = ρτfL(fLL)k−1. Kτ = b(T − τ)/dc−1

is defined as the final pricing point for customers with entry date τ .

A customer of type i is allocated qi(hτ,k) units of container for preferred hire

duration di
3 and enjoys utility U(θi, qi(hτ,k)) = θidqi(hτ,k)− 1

2
(αd2

i + q2
i (hτ,k)), where

α is a scale factor to ensure that hire duration and hire quantity is comparable

in the utility function. The quadratic utility function follows the tradition of the

literature (Sundararajan, 2004; Wilson, 1993). The operations cost per time per unit

for the leasing company is a and a < θL. The direct operations expense includes

storage, handling, maintenance, and reposition. The operations cost in our context is

a component of the objective function of the empty container reposition articles (Bell

et al., 2013; Cheung and Chen, 1998), which is linear in the number of containers

and the duration of the lease contract. The adoption of linear cost function is just

to simplify exposition, and it is easy to extend to some other forms of cost function.

Besides, we focus on the case that the finite capacity is insufficient to meet the

demands of all first arrival customers, in other words, some first arrival customers are

3In this section, di denotes hire time preference and θi represents per-time customer valuation
of type i.
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denied the service by the leasing company.

The aim of the leasing company is to maximize the expected profit with finite

capacity C by designing a menu of quantity qi(hτ,k) and price Pi(hτ,k) given lease

history hτ,k. Upon the first arrival, a customer reports a type i corresponding to

{qi(hτ,k), Pi(hτ,k)} and reports his type truthfully in the subsequent periods to maxi-

mize his expected customer surplus. S(θi|hτ,k) is a type i customer’s expected surplus

up to history hτ,k,

S(θi|hτ,k) = U(θi, qi(hτ,k))− Pi(hτ,k) + δd
∑

j∈{L,H}

fijS(θj|hiτ,k+1),

where δ is the time discount factor.

The sequence of events at time point τ +kd for history hτ,k is listed as follows: (1)

if k > 0, customers return leased containers on the due date; (2) the leasing company

designs and commits a menu of quantity and price pairs {Q,P} = {qi(hτ,k), Pi(hτ,k)}

to maximize the expected profit; (3) each customer reports his type at time τ + kd

truthfully to maximize his expected consumer surplus, receives the allocated quantity

of his type and pays the lease revenue.

The direct revelation mechanism must satisfy the following constraints.

Initial Presence (IPi(hτ,0)) Constraint. A type i customer with claimed entry

date τ must prefer to arrive at date τ instead of delaying presence at date τ + 1.

S(θi|hτ,0) ≥ δ[fiiS(θi|hτ+1,0) + fijS(θj|hτ+1,0)]

Incentive Compatibility (ICij(hτ,k)) Constraint. The leasing company designs the

quantity and price menu in the way that misreporting customer type is hurtful to

customer surplus. Each customer reports his type i truthfully based on his report

history hτ,k and chooses the quantity and price pair {qi(hτ,k), Pi(hτ,k)} designed for

his type. Since the consumer surplus of reporting type i is greater than that reporting
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other types j (j 6= i), there is no incentive to deviate from his truthful type based on

report history. The incentive compatibility constraint in a dynamic environment for

the high type and history hτ,k can be written as

S(θH |hτ,k) ≥ S(θL|hτ,k) + ∆θdqL(hτ,k) + δd
∑
j

(fHj − fLj)S(θj|hLτ,k+1).

Individual Rationality (IRi(hτ,k)) Constraint. Each customer leases containers

with nonnegative consumer surplus, S(θi|hτ,k) ≥ 0 for hτ,k ∈Hτ,k.

Capacity Constraint (CC(hτ,k)). When k = 0, the capacity constraint for first

arrival customers is

M
T−d∑
τ=0

ρτ (fHqH(hτ,0) + fLqL(hτ,0)) ≤ C.

In view of the same hire duration preference d, the capacity constraint for cus-

tomers with the same entry date is that the total number of allocated units cannot

exceed the number allocated at the initial date τ . The containers leased out at time

τ + (k − 1)d are returned to the company at the time point τ + kd for 1 ≤ k ≤ Kτ .

The capacity constraint for customers with the same entry date can be expressed as

f(hL̂τ,k)
∑
i

fLiqi(h
L̂
τ,k) +

∑
hHτ,k∈H

H
τ,k

f(hHτ,k)
∑
i

fHiqi(h
H
τ,k) +

∑
hLτ,k∈H

L
τ,k

f(hLτ,k)
∑
i

fLiqi(h
L
τ,k)

≤ ρτ [fHqH(hτ,0) + fLqL(hτ,0)], i ∈ {L,H}.

The monopolist’s stochastic dynamic optimization problem is formulated as fol-
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lows.

Π(Q,P ) = max
{Q,P}

T−d∑
τ=0

Kτ∑
k=0

δτ+kdEhzτ,kM
∑
i

fzi[Pi(h
z
τ,k)− adqi(hzτ,k)]

= max
{Q,S(θ)}

M
{T−d∑
τ=0

Kτ∑
k=0

δτ+kdEhzτ,k
∑
i

fzi[U(θi, qi(h
z
τ,k))− adqi(hzτ,k)]

−
T−d∑
τ=0

ρτδ
τ
∑
i

fiS(θi|hτ,0)
}

(2.9)

s.t. IPi(hτ,0), ICij(hτ,k), IRi(hτ,k), CC(hτ,k)

∀i, z ∈ {L,H}, hτ,k ∈ Hτ,k 0 ≤ k ≤ Kτ .

When k = 0, it indicates that customers first arrive at the leasing company without

lease history, we have Ehzτ,0 = ρτ , z = ∅ and fzi = fi.

The setting with two customer types and hire time preference allows us to model

the problem as a one-dimensional dynamic screening problem. To motivate the high

type to report his true type, the monopolist utilizes the future payoff rather than

the present payoff to screen the customer types. Thus the high type customers enjoy

more surplus than the low type customers in the optimal solution. The following

lemma shows that there is no loss of generality in assuming constraints in the relaxed

problem are binding constraints. The relaxed problem of the dynamic nonlinear

pricing problem is defined as maximizing the monopolist’s intertemporal expected

profit where individual rationality constraint for the low type customers shown at the

last moment IRL(hT−d,0), the incentive compatibility constraints for the high type

ICHL(hτ,k) and initial presence constraints for the low type IPL(hτ,0) for 0 ≤ τ ≤ T−d

are satisfied as equalities.

Lemma 2.6. In a dynamic environment with same hire duration preference, the

optimal solution of the relaxed problem is also an optimal solution of the original

problem.
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Proof. Suppose that {Q,S(θ)} is an optimal solution of the original problem which

IRL(hT−d,0), ICHL(hτ,k) and IPL(hτ,0) are not binding constraints for 0 ≤ τ ≤ T −d.

If IRL(hT−d,0) is not a binding constraint, that is, S(θL|hT−d,0) = ω, where ω is a

positive number. Consider an alternative solution {Q′, S ′(θ)} such that S ′(θL|hT−d,0) =

S(θL|hT−d,0) − ω. The expected profit increases by MρT−dδ
T−dfLω, Π(Q′, S ′(θ)) =

Π(Q,P ) +MρT−dδ
T−dfLω.

If ICHL(hτ,k) are not binding constraints for 0 ≤ k ≤ Kτ , S(θH |hτ,k)−S(θL|hτ,k) =

∆θdqL(hτ,k)+δd4f [S(θH |hLτ,k+1)−S(θL|hLτ,k+1)]+ω. Consider an alternative solution

{Q′, S ′(θ)} such that S ′(θH |hτ,k)− S ′(θL|hτ,k) = S(θH |hτ,k)− S(θL|hτ,k)− ω.

• When k = 0, the net increase is Mρτδ
τfHω.

• When k > 0 and k′ > k, S ′(θH |hτ,k′) − S ′(θL|hτ,k′) remains the same as in the

original solution. When k′ = k − 1, we have S ′(θH |hτ,k−1) − S ′(θL|hτ,k−1) =

S(θH |hτ,k−1)− S(θL|hτ,k−1)− δd4fω. By repeatedly applying the above mod-

ifications until k′ = 0, S ′(θH |hτ,0) − S ′(θL|hτ,0) = S(θH |hτ,0) − S(θL|hτ,0) −

(δd4f)kω. The expected profit increases by Mρτδ
τfH(δd4f)kω.

If IPL(hτ,0) are not binding constraints for 0 ≤ τ ≤ T − d, then S(θL|hτ,0) =

δ[fLLS(θL|hτ+1,0) + fLHS(θH |hτ+1,0)] + ω. Let S ′(θL|hτ,0) = S(θL|hτ,0) − ω. The

expected profit grows by Mρτδ
τfLω.

Based on the above, the alternative solution satisfying the binding constraints

IRL(hT−d,0), ICHL(hτ,k) and IPL(hτ,0) in the relaxed problem yields an equal or

higher profit, which contradicts the optimality of the assumption.

Lemma 2.7. (Garrett, 2014) For a mechanism in the relaxed problem with the same

hire duration preference, the binding ICHL(hτ,k) constraints for 0 ≤ τ ≤ T − d and

0 ≤ k ≤ Kτ imply that

S(θH |hτ,k)− S(θL|hτ,k) = ∆θd
Kτ−k∑
l=0

(δd4f)lqL(hLτ,k+l). (2.10)
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The binding IPL(hτ,0) and IRL(hT−d,0) constraints for 0 ≤ τ ≤ T − d imply that

S(θL|hτ,0) = fLH∆θd
T−d−τ∑
l=1

δl
Kτ+l∑
k=0

(δd4f)kqL(hL̂τ+l,k).

Customers’ expected surpluses are

T−d∑
τ=0

ρτδ
τ
∑
i

fiS(θi|hτ,0) = ∆θd
T−d∑
τ=0

(fLHβτ + fHρτ )δ
τ

Kτ∑
k=0

(δd4f)kqL(hL̂τ,k).

Proof. The binding ICHL(hτ,k) constraints imply that the inequalities become to

equalities.

S(θH |hτ,k)− S(θL|hτ,k) = ∆θdqL(hτ,k) + δd4f [S(θH |hLτ,k+1)− S(θL|hLτ,k+1)]

where

S(θH |hτ,k+1)− S(θL|hτ,k+1) = ∆θdqL(hτ,k+1) + δd4f [S(θH |hLτ,k+2)− S(θL|hLτ,k+2)].

Based on induction by τ , it is easy to derive (2.10).

For the binding IPL(hτ,0) constraints, we have

S(θL|hτ,0) = δ[fLLS(θL|hτ+1,0) + fLHS(θH |hτ+1,0)]

= δ[S(θL|hτ+1,0) + fLH(S(θH |hτ+1,0)− S(θL|hτ+1,0))]

= δ[S(θL|hτ+1,0) + fLH∆θd

Kτ+1∑
l=0

(δd4f)lqL(hL̂τ+1,l)]

= δT−d−τS(θL|hT−d,0) + fLH∆θd
T−d−τ∑
l=1

δl
Kτ+l∑
k=0

(δd4f)kqL(hL̂τ+l,k)

= fLH∆θd
T−d−τ∑
l=1

δl
Kτ+l∑
k=0

(δd4f)kqL(hL̂τ+l,k).
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The third equality follows (2.10), the fourth equality drives from the induction until

T − d and the last equality obtains from the binding IRL(hT−d,0) constraint.

Customers’ expected surplus is

T−d∑
τ=0

ρτδ
τ
∑
i

fiS(θi|hτ,0)

=
T−d∑
τ=0

ρτδ
τ [S(θL|hτ,0) + fH(S(θH |hτ,0)− S(θL|hτ,0))]

=∆θdfLH

T−d∑
τ=0

δτβτ

Kτ∑
k=0

(δd4f)kqL(hL̂τ,k) + ∆θdfH

T−d∑
τ=0

δτρτ

Kτ∑
k=0

(δd4f)kqL(hL̂τ,k)

=∆θd
T−d∑
τ=0

(fLHβτ + fHρτ )δ
τ

Kτ∑
k=0

(δd4f)kqL(hL̂τ,k).

Use the Lagrange multiplier approach to reformulate (2.9) as follows.

Π(Q,S(θ),Λ)

= max
{Q,S(θ),Λ}

T−d∑
τ=0

Kτ∑
k=0

Ehzτ,kδ
τ+kdM

∑
i

fzi[U(θi, qi(h
z
τ,k))− adqi(hzτ,k)]

+ λτ,0[C −M
T−d∑
τ=0

ρτ (fHqH(hτ,0) + fLqL(hτ,0))] + λτ,kM [ρτfHqH(hτ,0) + ρτfLqL(hτ,0)

− f(hL̂τ,k)
∑
i

fLiqi(h
L̂
τ,k)−

∑
hHτ,k∈H

H
τ,k

f(hHτ,k)
∑
i

fHiqi(h
H
τ,k)−

∑
hLτ,k∈H

L
τ,k

f(hLτ,k)
∑
i

fLiqi(h
L
τ,k)]

−M∆θd
T−d∑
τ=0

(fLHβτ + fHρτ )δ
τ

Kτ∑
k=0

(δd4f)kqL(hL̂τ,k)

50



s.t. S(θL|hT−d,0) = 0 IRL(hT−d,0)

S(θH |hτ,k)− S(θL|hτ,k) = ∆θd
∑Kτ−k

l=0 (δd4f)lqL(hLτ,k+l) ICHL(hτ,k)

S(θL|hτ,0) = fLH∆θd
∑T−d−τ

l=1 δl
∑Kτ+l

k=0 (δd4f)kqL(hL̂τ+l,k) IPL(hτ,0)

∀i, z ∈ {L,H}, hτ,k ∈Hτ,k (0 ≤ k ≤ Kτ )

In the following theorem, we describe the optimal allocation policy. Let Λτ,k be to

the constrained effect of capacity constraint CC(hτ,k) caused by the finite number of

containers, otherwise with infinite capacity, the leasing company could allocate the

number requested by both types of customers.

Theorem 2.5. For any hτ,k ∈ Hτ,k, the optimal intertemporal allocation policy for

customers with same hire duration preference is characterized as follows.

For hτ,0,


qH(hτ,0) = (θH − a)d− Λτ,0;

qL(hτ,0) = (θL − a)d−∆θdfLHβτ+fHρτ
fLρτ

− Λτ,0;

where

Λτ,0 =
λτ,0 −

∑Kτ
k=1 λτ,k

δτ
=

1

ρτ

[
βτ+1(θL − a)d−∆θdfLH

τ∑
l=0

βl −
C

M
−

τ−1∑
l=0

ρlΛl,0

]+
;

when hτ,k ∈ {HH
τ,k,HL

τ,k}, when hτ,k = hL̂τ,k,


qH(hτ,k) = (θH − a)d− Λτ,k;

qL(hτ,k) = (θL − a)d− Λτ,k;


qH(hL̂τ,k) = (θH − a)d− Λτ,k;

qL(hL̂τ,k) = (θL − a)d−∆θdfLHβτ+fHρτ
fLρτ

( ∆f
fLL

)k − Λτ,k;

where Λτ,k =
λτ,k
δτ+kd =

{
fLH∆θd(1−4fk)( 1

1−4f + βτ
ρτ

) + Λτ,0

}+

.

Proof. When k = 0, the first-order conditions w.r.t qH(hτ,0) and qL(hτ,0) are given by
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the following equations.

qH(hτ,0) : δτ [(θH − a)d− qH(hτ,0)]− λτ,0 +
∑Kτ

k=1 λτ,k = 0

qL(hτ,0) : δτ [(θL − a)d− qL(hτ,0)− fLHβτ+fHρτ
fLρτ

∆θd]− λτ,0 +
∑Kτ

k=1 λτ,k = 0

For 0 ≤ τ ≤ T − d, the initial presence capacity constraint refers to

T−d∑
τ=0

ρτΛτ,0 =
[T−d∑
τ=0

ρτ (θL − a)d−∆θdfLHβτ −
C

M

]+

.

Λτ,0 can be obtained by the induction on τ from 0 to T − d.

When hτ,k ∈ {HH
τ,k,HL

τ,k}, the first-order conditions w.r.t qH(hτ,k) and qL(hτ,k) are

given by the following equations.

qH(hτ,k) : δτ+kd[(θH − a)d− qH(hτ,k)]− λτ,k = 0

qL(hτ,k) : δτ+kd[(θL − a)d− qL(hτ,k)]− λτ,k = 0

When hτ,k = hL̂τ,k, the first-order conditions about qH(hL̂τ,k) and qL(hL̂τ,k) are given by

the following equations.

qH(hL̂τ,k) : δτ+kd[(θH − a)d− qH(hL̂τ,k)]− λτ,k = 0

qL(hL̂τ,k) : δτ+kd[(θL − a)d− qL(hL̂τ,k)−∆θdfLHβτ+fHρτ
fLρτ

( ∆f
fLL

)k]− λτ,k = 0

For k > 0, Λτ,k is obtained from the following equation.

f(hL̂τ,k)
∑
i

fLiqi(h
L̂
τ,k) +

∑
hHτ,k∈H

H
τ,k

f(hHτ,k)
∑
i

fHiqi(h
H
τ,k) +

∑
hLτ,k∈H

L
τ,k

f(hLτ,k)
∑
i

fLiqi(h
L
τ,k)

= ρτ [fHqH(hτ,0) + fLqL(hτ,0)].
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Theorem 2.5 states the optimal allocation policy in the case with same hire du-

ration preference. The finite capacity is first allocated for first arrival customers.

Due to the same hire duration preference, the capacity is allocated repeatedly in the

following periods for customers with same entry date constrained by the quantity

allocated on that entry date. Besides the capacity distortion, there exists a distortion

for consistent low type customers away from the efficient quantity level (θi − a)d.

From Lemma (2.6), the customer surpluses of both customer types can be derived

from the optimal allocation policy. Based on the definition of the customer surplus,

the optimal pricing policy is obtained accordingly.

The next corollary discusses the effect of capacity constraints and the trend of

allocated quantity over time. When ρ0 = 1, it indicates that all customers arrive

at the company at the beginning of the horizon, we use superscript S to denote the

simultaneous arrival case. And let 4Λτ,k = Λτ,k+1 − Λτ,k.

Corollary 2.3. (i) For fixed τ , Λτ,k increases with k.

(ii) qi(hτ,k) decreases with k for hτ,k ∈ {HH
τ,k,HL

τ,k}.

(iii) 4Λτ,k > 4SΛτ,k.

(iv) Let τ ∗ = min{τ |Λτ,0 > 0}. The company denies the acceptance of first arrivals

customers from period τ + 1 until T − d.

Proof. (i) For customers with same entry date τ ,

4Λτ,k = fLH∆θd(∆f)k[1 +
βτ
ρτ

(1−∆f)] > 0.

(ii) For hτ,k ∈ {HH
τ,k,HL

τ,k}, qi(hτ,k+1)− qi(hτ,k+1) = −4Λτ,k < 0.
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(iii)

4SΛτ,k = fLH∆θd(∆f)k

4Λτ,k = 4SΛτ,k + fLH∆θd(∆f)k
βτ
ρτ

(1−∆f).

(iv) According to the definition of τ ∗, Λτ,0 = 0 for τ < τ ∗,

Λτ∗,0 =
1

ρ∗τ

[
βτ∗+1(θL − a)d−∆θdfLH

τ∗∑
l=0

βl −
C

M
]+.

Then the total number of containers rent out until τ ∗ is

M
τ∗∑
τ=0

ρτ (fHqH(hτ,0) + fLqL(hτ,0))

=M
τ∗−1∑
τ=0

(fHqH(hτ,0) + fLqL(hτ,0)) + ρτ∗(fHqH(hτ∗,0) + fLqL(hτ∗,0))

=M
τ∗−1∑
τ=0

ρτ [(θL − a)d−∆θd
fLHβτ
ρτ

] + ρτ∗ [(θL − a)d−∆θd
fLHβτ∗

ρτ∗
− Λτ∗,0]

=C.

Thus the leasing company denies the acceptance of first arrival customers from

time τ ∗ + 1 to T − d.

In the setting with same hire duration preference, Corollary 2.3(i) demonstrates

that the effect of capacity constraint on the optimal allocation policy increases over

time for customers with same initial arrival date. In Corollary 2.3(ii), the optimal

quantity for customers who are not consistent low type customers decreases with the

number of finished contracts k. For qL(hL̂τ,k), the tendency towards k is determined

by the combined effect including the decrement of ∆θdfLHβτ+fHρτ
fLρτ

( ∆f
fLL

)k and the in-
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Figure 2.5. The Capacity Effect Λτ,k of the Optimal Solution

crement of 4Λτ,k. Corollary 2.3(iv) shows that the leasing company has a deadline

for the first arrival customers. If Λ0,0 > 0, then the system is the same as the system

with simultaneous arrival case.

k
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Figure 2.6. The Optimal Allocated Quantity qL(hL̂τ,k) for Consistent Low-Type Customers,
fH = 0.34, fHH = 0.93, fLH = 0.13

We use a numerical example to illustrate the properties of the optimal allocation

policy. The leasing company has M = 30 customers to allocate the finite capacity
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Figure 2.7. The Optimal Allocated Quantity qL(hL̂τ,k) for Consistent Low-Type Customers,
fH = 0.54, fHH = 0.69, fLH = 0.39

C = 200 with time discount factor δ = 0.95. Customers have the same hire duration

preference d = 4. Customers enter the leasing company with probability ρτ which is

generated randomly and the sum of ρτ equals to 1. High type customers have per

time valuation θH = 10 arriving at the company with probability fH = 0.34 upon the

first arrival customers and consistent high type probability fHH = 0.93. Low type

customers enjoy per time valuation θL = 8 and remain the low type customer with

probability fLL = 0.87. The operations cost is 0.5 per time per unit. In Fig.(2.5),

Λ0,k and Λτ∗,k share the increasing over time property. It is clear that Λτ∗,k > Λ0,k

and Λτ∗,k has a steeper slope with k compared with the slope of Λ0,k. The possible

explanation for this phenomenon is as follows. Considering the two customer types

in the horizon with same hire duration, current profit maximization outweighs fu-

ture profit maximization. Given the continuous lease behavior after initial arrival,

thus the leasing company has a inclination to lease out all units of container as ear-

ly as possible. Fig.(2.6) and Fig.(2.7) display the declining and climbing trends of

the allocated quantities for consistent low-type customer under different parameter
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settings. This corroborates the trend of qL(hL̂k ) is determined by the decrement of

∆θdfLHβτ+fHρτ
fLρτ

( ∆f
fLL

)k and the increment of 4Λτ,k.

2.4.2 Different hire duration preferences

The different hire time preferences dH > dL is investigated in this section. The

dH < dL case can be solved similarly. The basic thought is solving the dynamic

nonlinear pricing problem by the binding initial presence constraints of low type

customers, binding incentive compatibility constraints for high type customers and

binding individual rationality constraint of low type customers shown at last allowable

entry date.

The allowable entry dates start from 0 to T − dH . hτ,l,k refers to the history with

initial arrival date τ and l lease contracts with hire duration dL and k lease contracts

with hire duration dH . Hτ,l,k is the set of all possible histories from time τ to time

τ + ldL + kdH . KL
τ,k = b(T − τ − kdH)/dLc − 1 is the last pricing point for low-type

customers with entry date τ and k complete lease contracts being high type customers

and KH
τ,l = b(T − τ − ldL)/dHc − 1 is the last pricing point for high-type customers

with entry date τ and l lease contracts being low type customers.

The direct revelation mechanism must satisfy the following constraints.

IPi(hτ,0,0) Constraint. S(θi|hτ,0,0) ≥ δ[fiiS(θi|hτ+1,0,0) + fijS(θj|hτ+1,0,0)].

ICij(hτ,l,k) Constraint.

S(θH |hτ,l,k) ≥ S(θL|hτ,l,k) + ∆θdLqL(hτ,l,k) + δdL
∑
j

(fHj − fLj)S(θj|hLτ,l+1,k).

S(θL|hτ,l,k) ≥ S(θH |hτ,l,k)−∆θdHqH(hτ,l,k) + δdH
∑
j

(fHj − fLj)S(θj|hHτ,l,k+1).

IRi(hτ,l,k) Constraint. S(θi|hτ,l,k) ≥ 0 for hτ,l,k ∈Hτ,l,k.

Capacity Constraint (CC(hτ,l,k)). The capacity constraint for first arrival cus-
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tomers with entry date τ for 0 ≤ τ ≤ T − dH is

M

T−dH∑
τ=0

ρτ (fHqH(hτ,0,0) + fLqL(hτ,0,0)) ≤ C.

Owing to different hire duration preferences and the binding capacity constraint for

first arrival customers, the available capacity for history hzτ,l,k at time t + ldL + kdH

is the number of units rent out qz(hτ,l−1L(z),k−1H(z)), where 1i(z) for i ∈ {L,H} is an

indicator function, e.g. 1L(L) = 1 and 1L(H) = 0.

The capacity constraint for history hzτ,l,k can be expressed as

fzLqL(hzτ,l,k) + fzHqH(hzτ,l,k) ≤ qz(hτ,l−1L(z),k−1H(z)).

The corresponding monopolist’s optimization problem can be formulated as fol-

lows.

Π(Q,S) = max
{Q,S}

M
{T−d∑
τ=0

KL
τ,0∑
l=0

KH
τ,l∑

k=0

δτ+ldL+kdHEhzτ,l,k
∑
i

fzi[U(θi, qi(h
z
τ,l,k))

− adiqi(hzτ,l,k)]−
T−d∑
τ=0

ρτδ
τ
∑
i

fiS(θi|hτ,0,0)
}

s.t. IPi(hτ,0,0), ICij(hτ,l,k), IRi(hτ,l,k), CC(hτ,l,k)

∀i, z ∈ {L,H}, hτ,l,k ∈Hτ,l,k

The relaxed problem in the dynamic nonlinear pricing problem with dynam-

ic arrivals are defined by the binding constraints IRL(hT−dH ,0,0), ICHL(hτ,l,k) and

IPL(hτ,0,0) for 0 ≤ τ ≤ T − dH , 0 ≤ L ≤ KL
τ,0 and 0 ≤ k ≤ KH

τ,l.

Lemma 2.8. In a dynamic environment with different hire duration preferences, the

optimal solution of the relaxed problem is also an optimal solution of the original

problem.
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Proof. The proof is similar to the proof of Lemma 2.6, except the part for ICHL(hτ,l,k).

If ICHL(hτ,l,k) are not binding constraints for 0 ≤ l ≤ KL
τ,0, S(θH |hτ,l,k)−S(θL|hτ,l,k) =

∆θdLqL(hτ,l,k)+δdL4f [S(θH |hτ,l+1,k)−S(θL|hτ,l+1,k)]+ω. Consider an alternative so-

lution {Q′, S ′(θ)} such that S ′(θH |hτ,l,k)−S ′(θL|hτ,l,k) = S(θH |hτ,l,k)−S(θL|hτ,l,k)−ω.

• When l = 0 and k = 0, the net increase is Mρτδ
τfHω.

• When l > 0 and l′ = l−1, we have S ′(θH |hτ,l−1,k)−S ′(θL|hτ,l−1,k) = S(θH |hτ,l−1,k)−

S(θL|hτ,l−1,k)− δdL4fω. By repeatedly applying the above modifications until

l′ = 0, S ′(θH |hτ,0,k) − S ′(θL|hτ,0,k) = S(θH |hτ,0,k) − S(θL|hτ,0,k) − (δdL4f)lω.

Apply the same modification for k > 0. The expected profit increases by

MρτfHδ
τ+ldL4f lω. It contradicts the optimality of the assumption.

Lemma 2.9. For a mechanism in the relaxed problem with different hire duration

preferences, the binding ICHL(hτ,l,k) constraints for 0 ≤ τ ≤ T − dH , 0 ≤ l ≤ KL
τ,0

and 0 ≤ k ≤ KH
τ,l imply that

S(θH |hτ,l,k)− S(θL|hτ,l,k) = ∆θdL

KL
τ,k−l∑
u=0

(δdL4f)uqL(hτ,l+u,k). (2.11)

The binding IPL(hτ,0,0) and IRL(hT−dH ,0,0) constraints for 0 ≤ τ ≤ T −dH imply that

S(θL|hτ,0,0) = fLH∆θdL

T−dH−τ∑
u=1

δu
KL
τ+u,0∑
v=0

(δdL4f)vqL(hτ+u,v,0).

Customers’ expected surplus is

T−dH∑
τ=0

ρτδ
τ
∑
i

fiS(θi|hτ,0,0) = ∆θdL

T−dH∑
τ=0

(fLHβτ + fHρτ )δ
τ

KL
τ,0∑

v=0

(δdL4f)vqL(hτ,v,0)

59



Use the Lagrange multiplier approach to reformulate the relaxed problem as

Π(Q,S,Λ) =

T−dH∑
τ=0

KL
τ,0∑
l=0

KH
τ,l∑

k=0

δτ+ldL+kdHEhzτ,l,kM
∑
i

fzi[U(θi, qi(h
z
τ,l,k))

− adiqi(hzτ,l,k)] + λτ,0,0[C −M
T−dH∑
τ=0

ρτ (fHqH(hτ,0,0) + fLqL(hτ,0,0))]

+ λτ,l,kMf(hzτ,l,k)[qz(hτ,l−1L(z),k−1H(z))− fzLqL(hzτ,l,k)− fzHqH(hzτ,l,k)]

−M∆θdL

T−dH∑
τ=0

(fLHβτ + fHρτ )δ
τ

KL
τ,0∑

v=0

(δdL4f)vqL(hτ,v,0)

s.t. S(θL|hT−dH ,0,0) = 0 IRL(hT−dH ,0,0)

S(θH |hτ,l,k)− S(θL|hτ,l,k) = ∆θdL
∑KL

τ,k−l
u=0 (δdL4f)uqL(hτ,l+u,k) ICHL(hτ,l,k)

S(θL|hτ,0,0) = fLH∆θdL
∑T−dH−τ

u=1 δu
∑KL

τ+u,0

v=0 (δdL4f)vqL(hτ+u,v,0) IPL(hτ,0,0)

∀i, z ∈ {L,H}, hτ,l,k ∈Hτ,l,k(0 ≤ l ≤ KL
τ,0, 0 ≤ k ≤ KH

τ,l)

Theorem 2.6 presents the optimal allocation policy in the case with different hire

duration preferences.

Theorem 2.6. For any hτ,l,k ∈Hτ,l,k, the optimal intertemporal allocation policy for

customers with different hire duration preferences is characterized as follows.

For hτ,0,0,


qH(hτ,0,0) = (θH − a)dH − Λτ,0,0;

qL(hτ,0,0) = (θL − a)dL −∆θdL
fLHβτ+fHρτ

fLρτ
− Λτ,0,0;
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where

Λτ,0,0 =
λτ,0,0
δτ

=
1

ρτ

{
βτ+1[fH(θH − a)(dH − dL) + (θL − a)dL]

−∆θdLfLH

τ∑
u=0

βu −
C

M
−

τ−1∑
u=0

ρuΛu,0,0

}+

;

when k > 0,


qH(hzτ,l,k) = (θH − a)dH − Λτ,l,k;

qL(hzτ,l,k) = (θL − a)dL − Λτ,l,k;

where

Λτ,l,k =
λτ,l,k

δτ+ldL+kdH
=
{

[(θH − a)dH − (θL − a)dL][fLH1L(z)− fHL1H(z)]

+ Λτ,l−1L(z),k−1H(z)

}+

;

when k = 0,


qH(hτ,l,0) = (θH − a)dH − Λτ,l,0;

qL(hτ,l,0) = (θL − a)dL −∆θdL
fLHβτ+fHρτ

fLρτ
( ∆f
fLL

)l − Λτ,l,0;

where

Λτ,l,0 =
λτ,l,0
δτ+ldL

=
{

Λτ,l−1,0 + ∆θdL
fLHβτ + fHρτ

ρτfL
(
4f
fLL

)l−1(1−4f)

+ fLH [(θH − a)dH − (θL − a)dL]
}+

.

Proof. qi(hτ,l,k) exists in the capacity constraints CC(hτ,l,k) and CC(hτ,l+1L(i),k+1H(i)).

CC(hτ,l,k) binds the optimal allocated quantity qi(hτ,l,k), while CC(hτ,l+1L(i),k+1H(i))

reduces the binding effect due to the returning process. Thus, we consider the optimal
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allocation policy under the tightened binding capacity effect CC(hτ,l,k).

When k > 0, the first-order conditions w.r.t qH(hzτ,l,k) and qL(hzτ,l,k) are given by

the following equations.

qH(hzτ,l,k) : δτ+ldL+kdHf(hzτ,l,k)[(θH − a)dH − qH(hzτ,l,k)]− λτ,l,k = 0

qL(hzτ,l,k) : δτ+ldL+kdHf(hzτ,l,k)[(θL − a)dL − qL(hzτ,l,k)]− λτ,l,k = 0

Λτ,l,k =
λτ,l,k

δτ+ldL+kdH
= [fzH(θH − a)dH + fzL(θL − a)dL − qz(hτ,l−1L(z),k−1H(z))]

+

=
{

[(θH − a)dH − (θL − a)dL][fLH1L(z)− fHL1H(z)] + Λτ,l−1L(z),k−1H(z)

}+

.

When k = 0, the first-order conditions w.r.t qH(hτ,l,0) and qL(hτ,l,0) are given by the

following equations.

qH(hτ,l,0) : δτ+ldLf(hτ,l,0)[(θH − a)dH − qH(hτ,l,0)]− λτ,l,0 = 0

qL(hτ,l,0) : δτ+ldL [(θL − a)dL − qL(hτ,l,0)]− λτ,l,0 − δτ+ldL∆θdL
fLHβτ+fHρτ

fLρτ
( ∆f
fLL

)l = 0

Λτ,l,0 =
λτ,l,0
δτ+ldL

=
[
fLL[(θL − a)dL −∆θdL

fLHβτ + fHρτ
fLρτ

(
∆f

fLL
)l]

+ fLH(θH − a)dH − qL(hτ,l−1,0)
]+

=
{

Λτ,l−1,0 + ∆θdL
fLHβτ + fHρτ

fLρτ
(
∆f

fLL
)l−1(1−∆f)

+ fLH [(θH − a)dH − (θL − a)dL]
}+

.

The next corollary discusses the effect of capacity constraints and the trend of

allocated quantity over time. Let 4iΛτ,l,k = Λτ,l+1L(i),k+1H(i) − Λτ,l,k. Recall that the

superscript S represents the simultaneous arrival case.
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Corollary 2.4. For fixed τ , 0 ≤ l ≤ KL
τ,0 and 0 ≤ k ≤ KH

τ,l,

(i) Λτ,l,k increases with l but decreases with k;

(ii) qi(hτ,l,k) decreases with l and increases with k for i ∈ {L,H};

(iii) 4LΛτ,l,0 ≥ 4S
LΛ0,l,0;

4iΛτ,l,k = 4S
i Λ0,l,k for k, τ > 0 and i ∈ {L,H}.

Proof. (i) If k > 0, 4LΛτ,l,k = fLH [(θH − a)dH − (θL − a)dL] > 0; if k = 0,

4LΛτ,l,k = fLH [(θH − a)dH − (θL − a)dL] + ∆θdL
fLHβτ + fHρτ

fLρτ
(
∆f

fLL
)l(1−∆f) > 0.

The positivity is derived from θH > θL, dH > dL and ∆f < 1.

4HΛτ,l,k = −fHL[(θH − a)dH − (θL − a)dL] < 0.

Thus, Λτ,l,k+1 ≤ Λτ,l,k.

(ii) If i = L, k > 0 or i = H, k ≥ 0

qi(hτ,l,k+1)− qi(hτ,l,k) = fHL[(θH − a)dH − (θL − a)dL] > 0;

qi(hτ,l+1,k)− qi(hτ,l,k) = −fLH [(θH − a)dH − (θL − a)dL] < 0;

if k = 0,

qL(hτ,l,1)− qL(hτ,l,0) =fHL[(θH − a)dH − (θL − a)dL] + ∆θdL
fLHβτ + fHρτ

fLρτ
(
∆f

fLL
)l > 0;

qL(hτ,l+1,0)− qL(hτ,l,0) =− fLH [(θH − a)dH − (θL − a)dL]

+ ∆θdL
fLHβτ + fHρτ

fLρτ
(
∆f

fLL
)l∆f(1− 1

fLL
) < 0.

Thus qi(hτ,l,k) increases with k and decreases with l.
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(iii)

4S
LΛ0,l,0 =

{
fLH [(θH − a)dH − (θL − a)dL] +

fH∆θdL
fL

(
∆f

fLL
)l(1−∆f)

}+

4LΛτ,l,0 =
[
4S
LΛ0,l,0 + ∆θdL

fLHβτ
fLρτ

(
∆f

fLL
)l(1−∆f)

]+

4iΛτ,l,k =4S
i Λ0,l,k = [(θH − a)dH − (θL − a)dL](fLH1L(i)− fHL1H(i)).
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Figure 2.8. The Capacity Effect Λτ,k of the Optimal Solution

The parameters of numerical example in this subsection are the same as in the

above subsection except dH = 6 and dL = 4. Corollary 2.4(i) suggests that the effect

of capacity constraint hinges on the customer type of the previous period. Fig.(2.8)

depicts the effect of capacity constraint for consistent low and high type customers.

The impact of capacity constraint becomes smaller when the last customer type is low

type and greater when last customer type is high type. While for customers with same

hire time preference in Section 4.3, capacity constraints have the same increasing effect

for both customer types with same entry date. Corollary 2.4(ii) means that given the

same initial presence date, the leasing company allocates less quantity for low type
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Figure 2.9. The Optimal Allocated Quantity qi(hτ,l,k) for Consistent Low-Type/ High-
type Customers

customers and more quantity for high type customers (See Fig.(2.9)). That is, the

growing distortion of the low type customers over time contrasts with the declining

distortion of the high type customers. In Corollary 2.4(iii) we compare the effect of

capacity constraint in dynamic arrivals case with the effect of capacity constraint in

the simultaneous arrival case. The results show that the dynamic arrivals accentuate

the capacity effect for the consistent low-type customers, but have the same effect

for other types customers. The reason behind this is that capacity constraints in

the different hire duration preferences are contingent on the allocated amount of last

customer type. The dynamic arrivals only increase the effect of capacity constraints

for consistent low type customers by ∆θdLfLHβτ
ρτfL

( 4f
fLL

)l(1−4f) but have the same effect

for the other types of customers.

2.5 Summary

In this part, we explore the monopolist’s dynamic nonlinear pricing problems in

static and dynamic environments. In a static environment, we obtain the closed-form
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solutions for the capacity-constrained nonlinear pricing problems under different cus-

tomer groups with multiple types. In a dynamic environment with contemporaneous

arrivals, we concentrate on two customer types in each group. The optimal closed-

form solutions are derived for customers with hire time preference. The capacity

constraint has distinct effects when customers have same or different hire time pref-

erence(s). For customers with preferred hire quantity, on the given alternative hire

time sets, we use dynamic programming approach to obtain the numerical optimal

solution. Further we investigate the dynamic arrivals in a dynamic environment with

hire time preference. We derive the closed-form solution and discuss the effect of

capacity constraints on the solution. Compared with the solution with contempo-

raneous arrivals, the dynamic arrivals aggravate the effect of capacity constraint for

the consistent low type customers but have the same effect of capacity constraint

compared with the simultaneous arrival case.
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CHAPTER 3

Dynamic Pricing with Reservation and Unit

Demand

This chapter examines the pricing and capacity management problem for stochas-

tic rental systems with advance demand information. In particular, we consider a con-

tainer leasing company that manages fixed container units to maximize the expected

profit with discount factor. The firm confronts two types of customers: advance-

demand-information (ADI) customers and walk-in customers. ADI customers inform

the leasing company some time before the actual demand happens and the lead time

follows exponential distribution. We make this assumption due to the fact that reser-

vations may not be very accurate. The demand realization will be earlier or later than

the expected date. Walk-in customers arrive the system and require the immediate

service. Customers with unit capacity request arrive at the system according to a

Poisson process and the rental duration of each customer class follows exponential

distribution. Next, the firm employs a pricing mechanism to control the number of

customers in service. By modeling the pricing and capacity rationing problem as a

continuous time Markov decision process, we show that the objective function is an

anti-multimodular function and there exists a state-dependent rationing policy with

bounded sensitivity such that walk-in customers’ rationing threshold nonincreases in

the number of ADI demand with at most unit decrease and ADI customers’ rationing
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threshold nondecreases in the leased amount with at most two-unit decrement. The

optimal posted price is nondecreasing with the leased amount and the number of

advance demands. Numerical experiments are conducted to study the effect of reser-

vations on the optimal policy.

3.1 Literature Review

Three areas of research are connected with the second part of the dissertation:

customer-based pricing, pricing and admission control in rental systems and inventory

control with ADI.

The first one comprises studies about the customer-based pricing, which is to

decide the prices based on customers type. There are two criteria to categorize the

customers. On the one hand, according to the customers’ behavior, customers are

divided to two types: strategic and myopic. Strategic customers wait for a sale price

or a promotion sacrificing the immediate gratification. They are forward-looking

to maximize their utility across time periods. And myopic customers are impulsive

and willing to buy goods without hesitation. Stokey (1979) is the earliest pricing

work considering strategic customers. Stokey analyzes a monopolist model of selling

a new product in continuous time and derive the optimal pricing strategies under

zero and positive production cost cases. Since then, the customer behavior-based

pricing has been extensively studied in the literature. One set of papers (Besanko

and Winston 1990, Su 2007 , Aviv and Pazgal 2008, Liu and van Ryzin 2008) apply

game theory to study the interaction between seller and customers. Other papers

solve the pricing problem from the seller’s point. For example, Zhang and Cooper

(2008) discuss a seller’s pricing and rationing decisions with mixed type of customers

for a single product over two periods under four different scenarios–finite(infinite)

capacity and fixed pricing (flexible pricing). The results indicate that rationing in

the second period has no additional benefit to the revenue under the infinite capacity
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and pricing flexibility. But for fixed price, rationing does contribute to the revenue.

In general, rationing has a mild effect on the optimal revenue compared with pricing

without rationing. Mersereau and Zhang (2012) extend the model of Zhang and

Cooper and discuss a two-period selling season in which the seller knows the aggregate

demand curve but without the information of the proportion of strategic customer.

Using a robust approach, the authors derive the preannounced pricing strategy which

continues to work well in stochastic demand situation.

On the other hand, according to the customers serving cost, two customer seg-

ments are a high-cost segment and a low-cost segment. Shin et al. (2012) study a

two-period monopoly model where a firm set price in the second period based on the

customer information at the first period. The results show that when heterogeneity is

small, there is no need to impose price discrimination. When heterogeneity is large,

the customer cost-based pricing is effective. By firing some high-cost customer, the

firm will have a new mixture of good and bad customer who is more profitable than

the original high-cost customer. Even the customer type is endogenous, the profit of

customer cost-based pricing is higher and the price gap between two types of customer

is also larger than that under exogenous case.

Another stream is the literature on admission control and pricing in rental and

queuing systems. Miller (1969) formulates a n-sever and m-customer class queuing

system as continuous time Markov decision process and present a specialized algo-

rithm to solve it. Lippman (1975) proposes a new definition of the time of transition,

to uniformize Markovian queuing systems. The uniformization is that the times be-

tween transition is exponentially distributed with a constant number. Altman et al.

(2001) use event-based dynamic programming to examine a call admission control

system with multiple classes without waiting room and derive structural properties

of optimal policy. Then they use a fluid model to approximate the large-capacity case.

Savin et al. (2005) investigate a capacity allocation problem in rental system with two
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customer classes. They characterize the switching-curve policy and conditions for pre-

ferred classes. An aggregate threshold policy is developed for the fluid approximation

model and the effect of capacity rationing on the optimal fleet size is analyzed. Gans

and Savin (2007) extend their model by incorporating the price interaction between

walk-in customer and rental company. They model the pricing and capacity rationing

problem for a rental system as a Markov decision process and demonstrate that the

optimal policy parameters are monotone with the system parameters. They further

obtain the condition of preferred customer class. This area of research neglects the

effect of advance demand information, except Papier and Thonemann (2010). They

study a stochastic rental system with two types of customers–advance demand infor-

mation(ADI) customers and walk-in customers and show that the optimal admission

policy is a threshold type policy. Due to the computational intractability, a close-

to-optimal ADI policy is proposed and performs better than the policy that ignores

ADI.

For the literature on with pricing in the queuing system, Leeman (1964) discusses

qualitatively the use of pricing to reduce queues in real life applications where addi-

tional charge may be helpful for a peak-load queue. Naor (1969) is the first analytical

work of pricing in queuing models. He considers an M/M/1 queuing model with e-

qual and constant reward for each customer. The strategies under self-optimization

and overall optimization objectives are analyzed. He shows that the strategy under

self-interest does not result in the overall optimality. A toll is charged to new coming

customer on some critical points so that the overall optimality is achieved. Knudsen

(1972), Lippman and Stidham Jr (1977), Stidham (1978) extend Noar’s work to more

general settings, such as multi-server with a general cost-benefit function, birth-death

process with holding cost and general interarrival time distribution. Johansen (1994)

studies the optimal dynamic pricing of an M/G/1 jobshop under profit maximization

and welfare maximization objectives. The price is charged at the completion of each
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job.

The third area related to our research is the literature on production-inventory sys-

tems with advance demand information. There is a growing interest in the production-

inventory systems with ADI, see flexible delivery (Wang and Toktay 2008), imperfect

ADI (Gayon et al. 2009), sharing ADI (Zhu and Thonemann 2004). Here we only

review the literature with ADI which is an endogenous outcome of pricing. Weng

and Parlar (1999) propose a model to evaluate the multiple effects of joint-stocking

and prior discount on the expected profit. The retailer provides prior-sale discount

to encourage customer’s early purchase before the selling season. The authors obtain

the optimal stocking quantity and discount rate when the two decisions are deter-

mined jointly. Tang et al. (2004) study a similar problem but focus more on the

benefits of advance book discount. McCardle et al. (2004) extend the model of Tang

to capture the market competition by considering a duopoly model. Boyacı and Özer

(2010) discuss the strategy of collecting revenue and information through advance

sales to a capacity decision under different cases–price are determined exogenously

or optimally. The control band policy is obtained and shows that advance selling

can improve the profit significantly. Li and Zhang (2012) analyze a seller’s preorder

strategy who sells a perishable product in two periods to heterogeneous customers.

They obtain the seller’s optimal price, quantity decisions and the timing of offering a

price guarantee. They find that the seller’s profit decrease with the accuracy degree

of advance demand information.

3.2 Model Description

Consider a container leasing company that manages C units of containers to

maximize the expected profit with discount factor α. The firm confronts with t-

wo classes of customers: advance-demand-information (ADI) customers and walk-in

customers. We denote the set of ADI customers by a and walk-in customers by w,
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respectively. Customers arrive at the system according to a Poisson process with

rate λi(i ∈ {a, w}). The lease duration of both customer classes follows exponential

distribution with mean 1/µ and each customer requests one unit of containers.

ADI customers inform the leasing company L time before the actual demand

happens. The lead time L follows exponential distribution with mean 1/ν. We make

this assumption due to the fact that the advance demand information may not be

very accurate. The demand realization will be earlier or later than the expected date.

Each customer class has a maximum price that they are willing to pay for one

unit container. The price is called reservation price. Customers lease one unit of

containers only if the posted price is lower than their reservation price. Assume that

the cumulative probability distribution function of the reservation price for class-i

customers, Fi(p) where p ∈ Pi = [P i, P̄ i], P̄w > P̄ a and the price range set Pi is a finite

set. Fi(p) is known to the leasing company and F̄i(P̄
i) = 1−Fi(P̄ i) = 0 refers to the

case that no customers arrive when the posted price equals to P̄ i. P̄ i−1 is the highest

effective price of class i when it is optimal to accept this class. Considering the current

system state and advance demand information, the firm employs a pricing mechanism

to determine the admission control and pricing policy. The pricing mechanism is as

follows: (1) the leasing company posts unit price for both customer classes depending

on the inventory level and accepted ADI demands; (2) customers who accept the

posted price arrive, request one unit of containers and accepted customers settle the

lease revenue; (3) walk-in customers are served immediately, while ADI customers are

served when they realize demands. If the remaining inventory level is not available,

the high emergency cost transshipped from other place or leased from other leasing

companies η is occurred and η > P̄w.

The assumptions of Poisson arrival, exponential distributed lead time and holding

time allow us to model the pricing and capacity rationing problem as an infinite-

horizon, discounted reward, continuous time Markov decision process (MDP). To

72



simplify the analysis, we uniformize the continuous time system to discrete time

system at rate Ω = λw + λa + C(ν + µ) + α and rescale time by letting Ω = 1.

(Lippman, 1975). Let λi, µ and ν divide by Ω so that the transformed problem

is equivalent to the original problem. Therefore, the MDP in our problem can be

characterized by three objects: (1) system state (x, y): x represents the number of

containers leased out by both classes, y denotes the number of container booked by

ADI customers. The system space is C2, where C = {0, 1, · · · , C}; (2) action space

pix,y ∈ P i: for each customer class i, the lessor first determines the optimal price pix,y

from P i. If pix,y ≤ P̄ i−1 provides one unit of containers for walk-in customers and

reserves one unit of containers for reserved customers, otherwise customer of class i is

rejected; (3) transition probability after events given state (x, y) are given as follows:

(x′, y′) =



(x, y) if pix,y = P̄ i with prob. λi

(x+ 1, y) if pwx,y ≤ P̄w−1 with prob. λw

(x, y + 1) if pax,y ≤ P̄ a−1 with prob. λa

(x+ 1, y − 1) with prob. yν

(x− 1, y) with prob. µx

(x, y) with prob. ν(C − y) + µ(C − x)

where ‘with prob.’ stands for ‘with probability’. Based on the above, the finiteness

of system states and action spaces implies that there exists an optimal switching

stationary pricing and rationing policy (Puterman, 1994). Let g(x, y) be the expected

discounted profit given the system is now in state (x, y). Let π∗ be the optimal pricing

policy for both customer classes. The optimal value function g∗(x, y) ≡ Tgπ
∗
(x, y)
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holds for all (x, y) under the value-iteration operator T :

Tg = λwW + λaA
1 + νA2 + µB

where

Wg(x, y) =


maxpwx,y∈Pw{F̄w(pwx,y)[p

w
x,y + g(x+ 1, y)] + Fw(p)g(x, y)} if x < C

g(x, y) if x = C

A1g(x, y) =


maxpax,y∈Pa{F̄a(pax,y)[pax,y + g(x, y + 1)] + Fa(p)g(x, y)} if y < C

g(x, y) if y = C

A2g(x, y) =


yg(x+ 1, y − 1) + (C − y)g(x, y) if x < C

y[g(x, y − 1)− η] + (C − y)g(x, y) if x = C

Bg(x, y) = xg(x− 1, y) + (C − x)g(x, y)

W denotes the lessor’s pricing operator for walk-in customers. To illustrate, if there

are no available containers, that is x = C, walk-in customer is denied at system state

(x, y); otherwise if x < C, pw∗x,y is the optimal posted price for walk-in customer, if

pw∗x,y < P̄w, the system state moves from (x, y) to (x + 1, y). The operator A1 is the

lessor’s pricing operator for ADI customers. A2 is the advance demand realization

operator. When an ADI customer realizes his demand, the lessor provides one unit

of containers. B represents the rental duration operator.
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3.3 Structure of the Optimal Policy

In this section, the structure of value function and the properties of the optimal

policy are characterized. First, the properties of revenue function are discussed. Let

b, c, d, e are decreasing numbers and R(b) = F̄ (p)[p + c] + F (p)b be general revenue

function, pb = arg maxp∈P{R(b)} and R∗(b) = R(b|pb).

Lemma 3.1. If b+ d− 2c < 0, then

(i) R∗(b) is increasing in b;

(ii) pb is nondecreasing in b;

(iii) R∗(b) +R∗(d)− 2R∗(c) < 0.

Proof. (i).

R∗(c)−R∗(b) ≤ R(c|pc)−R(b|pc) = c− b+ F̄ (pc)(b+ d− 2c) < 0

(ii). Suppose that pc < pb, we have F̄ (pc) > F̄ (pb). Since pc is the maximizer of R(c),

R∗(c)−R(c|pb) = R(c|pc)−R(c|pb)

=F̄ (pc)pc − F̄ (pb)pb + (d− c)[F̄ (pc)− F̄ (pb)] ≥ 0.

And

0 ≥ R(b|pc)−R∗(b) = R(b|pc)−R(b|pb)

=F̄ (pc)pc − F̄ (pb)pb + (c− b)[F̄ (pc)− F̄ (pb)]

>F̄ (pc)pc − F̄ (pb)pb + (d− c)[F̄ (pc)− F̄ (pb)]

A contradiction is obtained. Thus pb is nondecreasing as b increases.
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(iii).

R∗(b) +R∗(d)− 2R∗(c)

≤R∗(b)−R(c|pb) +R∗(d)−R(c|pd)

=F̄ (pb)(c− d) + F (pb)(b− c) + F̄ (p∗d)(e− d) + F (pd))(d− c)

≤F̄ (pb)(c− d) + F̄ (pd)(e− d) + F (pd)(b+ d− 2c) < 0

Define ℵ as a set of anti-multimodular functions with respect to M in C2, satis-

fying the following properties.

P .1 41,2g(x, y) ≤ 0 if x < C and y < C

P .2 41g(x+ 1, y) ≤ 41g(x, y + 1) if x < C − 1 and y < C

42g(x, y + 2) ≤ 42g(x+ 1, y) if x < C and y < C − 2

P .3 41,1g(x, y) ≤ 0 if x < C − 1

42,2g(x, y) ≤ 0 if y < C − 1

Given g(x, y) ∈ ℵ, define a series of switching curves.

S1(y) = max{x|41g(x, y) > −P̄w−1} (3.1)

S2(x) = max{y|42g(x, y) > −P̄ r−1} (3.2)

The definition of switching curves indicates that when x ≤ S1(y), 41g(x, y)+ P̄w−1 >

0, then it is optimal to accept the walk-in customer; when y ≤ S2(x), 42g(x, y) +

P̄ r−1 > 0, it is optimal to accept the ADI customer.
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Lemma 3.2. Given g(x, y) ∈ ℵ,

S1(y)− 1 ≤ S1(y + 1) ≤ S1(y), if 0 ≤ y < C;

S2(x)− 2 ≤ S2(x+ 1) ≤ S2(x), if 0 ≤ x < C.

Proof. When 0 ≤ y < C, from the definition of S1(y) and P .2,

−P̄w−1 < 41g(S1(y), y) ≤ 41g(S1(y)− 1, y + 1)

We have S1(y)− 1 ≤ S1(y + 1).

−P̄w−1 < 41g(S1(y + 1), y + 1) ≤ 41g(S1(y + 1), y)

Then S1(y + 1) ≤ S1(y). Similarly, When 0 ≤ x < C,

−P̄ r−1 < 42g(x, S2(x)) ≤ 42g(x+ 1, S2(x)− 2)

−P̄ r−1 < 42g(x+ 1, S2(x+ 1)) ≤ 42g(x, S2(x+ 1))

The inequality S2(x)− 2 ≤ S2(x+ 1) ≤ S2(x) is obtained.

The Lemma 3.2 proves the existence of monotone rationing curves. S1(y) nonin-

creases in y with bounded sensitivity which means that S1(y + 1) has at most unit

decrease in S1(y). The similar property holds for S2(x). This is also reflect the di-

agonal dominance in the anti-modularity. As x, y are integer-valued, the bounded

sensitivity results in at most unit/two-unit decrease. In Example. 3.1, the parameter

setting is C = 10, λa = λw = 2, µ = 1, ν = 2, Pw = 8, P̄w = 18, P a = 6.8, P̄ a =

16.8, α = 0.95, η = 67.2. Fig.3.1(a) illustrate the rationing switching curves for both

customer classes. The rationing curve of walk-in customers S1(y) nonincreases in y

with at most unit decrease. The rationing curve of ADI customers S2(x) equals to
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Figure 3.1. The structure of the optimal rationing policy
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the total capacity when x is relatively small, and then decreases with at most two

units when x achieves some critical point (6 in this case). Fig.3.1(b) shows the total

number of containers leased out and accepted given x/y value. It is easy to find that

when x = y ≤ 7, τa(x) ≥ τw(y) which means that the total number of containers

leased out and accepted τa(x) = x + S2(x) when the coming customer is an ADI

customer is greater than τw(y) = y + S1(y) when the coming customer is a walk-in

customer; when 7 < x = y ≤ 10, τa(x) < τw(y).

Intuitively, unit increase in the accepted ADI demand y has limited effect on S1(y)

due to the fact that the leasing company just reduce the number of walk-in customers

by one unit and reserved for the unit increment of reserved demand. By contrast,

when x is larger than some critical point, unit increase in x results in more than one

unit decrease in S2(x). The reason behind this is that when the number of containers

leased out x is relatively small, the benefit of accepting ADI customers is the increase

of the lease revenue, when x achieves some point, the high emergency cost to satisfy

accepted ADI demands counteracts the lease revenue benefit. So the leasing company

cut the rationing threshold by more than unit decrement. Fig. 3.1(b) also reflects

the above phenomenon.

Based on Lemma 3.2, the operators W and A1 can be formulated as follows.

Wg(x, y) =


maxpwx,y∈Pw{F̄w(pwx,y)[p

w
x,y + g(x+ 1, y)] + Fw(p)g(x, y)} if x ≤ S1(y)

g(x, y) if x > S1(y)

A1g(x, y) =


maxpax,y∈Pa{F̄a(pax,y)[pax,y + g(x, y + 1)] + Fa(p)g(x, y)} if y ≤ S2(x)

g(x, y) if y > S2(x)

After identifying the structural properties of the optimal pricing and rationing

policy, the following proposition shows that the operator T preserves the properties

of a function g through dynamic programming recursion if g belongs to ℵ.
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Proposition 3.3.1. If g ∈ ℵ, then Tg ∈ ℵ.

Proof. P.1 41,2g(x, y) ≤ 0

For short, let r(x, y|pix,y) = F̄ (pix,y)(p
i
x,y +4ig(x, y)).

If x < S1(y)− 1 or x = S1(y)− 1 = S1(y + 1)− 1,

41,2Wg(x, y) = 41,2g(x, y) + r(x+ 1, y + 1|pwx+1,y+1)

− r(x+ 1, y|pwx+1,y)− r(x, y + 1|pwx,y+1) + r(x, y|pwx,y)

≤ 41,2g(x, y) + r(x+ 1, y + 1|pwx+1,y+1)− r(x+ 1, y|pwx+1,y+1)

− r(x, y + 1|pwx,y) + r(x, y|pwx,y)

= F̄ (pwx+1,y+1)41,2g(x+ 1, y) + F (pwx,y)41,2g(x, y) < 0.

The first inequality follows that as pix,y is the maximizer of R(x, y) = r(x, y|pix,y) +

g(x, y), r(x+1, y|pwx+1,y+1) ≤ r(x+1, y|pwx+1,y) and r(x, y+1|pwx,y) ≤ r(x, y+1|pwx,y+1).

If x = S1(y)− 1 = S1(y + 1), then x+ 1 > S1(y + 1), we have

41,2Wg(x, y) = 41,2g(x, y)− r(x+ 1, y|pwx+1,y)− r(x, y + 1|pwx,y+1) + r(x, y|pwx,y)

≤ 41,2g(x, y)− r(x+ 1, y|pwx+1,y)− r(x, y + 1|pwx,y) + r(x, y|pwx,y)

= F (pwx,y)41,2g(x, y)− r(x+ 1, y|pwx+1,y) < 0.

The last inequality derives that x + 1 = S1(y) and 41g(x + 1, y) + P̄w−1 > 0, thus

r(x+ 1, y|pwx+1,y) > 0 by setting pwx+1,y = P̄w−1.

If x = S1(y) = S1(y + 1),

41,2Wg(x, y) = 41,2g(x, y)− r(x, y + 1|pwx,y+1) + r(x, y|pwx,y)

≤ 41,2g(x, y)− F̄ (pwx,y)41,2g(x, y)

= F (pwx,y)41,2g(x, y) < 0.
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If x = S1(y) = S1(y + 1) + 1,

41,2Wg(x, y) = 41,2g(x, y) + r(x, y|pwx,y)

= 41,2g(x, y) +41g(x, y) + pwx,y − F (pwx,y)(p
w
x,y +41g(x, y))

= 41g(x, y + 1) + pwx,y − F (pwx,y)(p
w
x,y +41g(x, y)) < 0.

Owing to x = S1(y), pwx,y +41g(x, y) > 0 by setting pwx,y = P̄w−1. Since x > S1(y+ 1)

and pwx,y ≤ P̄w−1, we have 41g(x, y + 1) + pwx,y < 0. , The negativity of 41,2Wg(x, y)

is obtained.

If x > S1(y), 41,2Wg(x, y) = 41,2R(x, y) < 0 from Lemma 3.1.

The other operators are proved similarly.

41,2A
1g(x, y) ≤



F (pax,y)41,2g(x, y) + F̄ (pax+1,y+1)41,2g(x, y + 1) < 0

if y < S2(x) = S2(x+ 1) or y < S2(x+ 1) < S2(x)

F (pax,y)41,2g(x, y)− r(x, y + 1|pax,y+1) < 0

if y = S2(x+ 1) < S2(x)

F (pax,y)41,2g(x, y) < 0 if y = S2(x) = S2(x+ 1)

42g(x+ 1, y) + pax,y − F (pax,y)(p
w
x,y +42g(x, y))

if y = S2(x) > S2(x+ 1)

41,2g(x, y) < 0 if y > S2(x)

41,2A
2g(x, y) =


(C − y)41,2g(x, y) + y41,2g(x+ 1, y − 1)

+41g(x+ 1, y)−41g(x, y + 1) < 0 if x < C − 1

(C − y − 1)41,2g(x, y)−41g(x, y)− η < 0 if x = C − 1
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41,2Bg(x, y) = x41,2g(x− 1, y) + (C − x− 1)41,2g(x, y) < 0

P .2 41,−2g(x, y) = 41g(x+ 1, y)−41g(x, y + 1) ≤ 0

41,−2Wg(x, y) ≤



F (pwx,y+1)41,−2g(x, y) + F̄ (pwx+2,y)41,−2g(x+ 1, y) < 0

if x < S1(y)− 1

F (pwx,y+1)41,−2g(x, y)− r(x+ 1, y + 1|pwx+1,y+1) < 0

if x = S1(y)− 1 = S1(y + 1)− 1

F (pwx,y)41,−2g(x, y) < 0 if x = S1(y)− 1 = S1(y + 1)

41,−2g(x, y) < 0 if x ≥ S1(y)

41,−2A
1g(x, y) ≤



F (pax,y+1)41,−2g(x, y) + F̄ (pax+2,y)41,−2g(x+ 1, y) < 0

if y < S2(x+ 2) = S2(x+ 1) ≤ S2(x)

or y ≤ S2(x+ 2) < S2(x+ 1) ≤ S2(x)

F (pax,y+1)41,−2g(x, y) + F̄ (pax+2,y)41,2g(x+ 1, y) < 0

if y = S2(x+ 2) = S2(x+ 1) < S2(x)

41,−2g(x, y) + F (pax+2,y)41,2g(x+ 1, y) < 0

if y = S2(x) = S2(x+ 1) = S2(x+ 2)

41,−2g(x, y)− r(x+ 1, y|pax+1,y)

if y = S2(x) = S2(x+ 1) > S2(x+ 2)

41,−2g(x, y) < 0

if y > S2(x) = S2(x+ 1) ≥ S2(x+ 2)

or y ≥ S2(x) > S2(x+ 1) ≥ S2(x+ 2)
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41,−2A
2g(x, y) =



(C − y)41,−2g(x, y) + y41,−2g(x+ 1, y − 1)

+4−1,2g(x, y) < 0 if x < C − 2

(C − y − 1)41,−2g(x, y)− y(41g(x+ 1, y) + η) < 0

if x = C − 2

41,−2Bg(x, y) ≤ x41,−2g(x− 1, y) + (C − x− 2)41,−2g(x, y) < 0

42g(x, y + 2) ≤ 42g(x+ 1, y) can be proved similarly.

P .3 41,1g(x, y) ≤ 0

41,1Wg(x, y) ≤



F̄ (pwx+2,y)41,1g(x+ 1, y) + F (pwx,y)41,1g(x, y) < 0 if x < S1(y)− 1

F (pwx,y)41,1g(x, y)− r(x+ 1, y|pwx+1,y) < 0 if x = S1(y)− 1

F (pwx,y)41,1g(x, y) < 0 if x = S1(y)

41,1g(x, y) < 0 if x > S1(y)

41,1A
2g(x, y) =


y41,1g(x+ 1, y − 1) + (c− y)41,1g(x, y) < 0 if x < c− 2

(c− y)41,1g(x, y)− y(41g(x+ 1, y − 1) + η) < 0 if x = c− 2

41,1Bg(x, y) = x41,1g(x− 1, y) + (c− x− 2)41,1g(x, y) < 0
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P .3 42,2g(x, y) ≤ 0

42,2A
1g(x, y) ≤



F (pax,y)42,2g(x, y) + F̄ (pax,y+2)42,2g(x, y + 1) < 0 if y < S2(x)− 1

F (pax,y)42,2g(x, y) + r(x, y + 1|pax,y+1) < 0 if y = S2(x)− 1

F (pax,y)42,2g(x, y) < 0 if y = S2(x)

42,2g(x, y) < 0 if y > S2(x)

42,2A
2g(x, y) =


y42,2g(x+ 1, y − 1) + (c− y − 2)42,2g(x, y)

+241,2g(x, y) < 0 if x < c

y(42,2g(x, y)− η) + (c− y − 2)42,2g(x, y) < 0 if x = c

42,2Bg(x, y) = x42,2g(x− 1, y) + (c− x)42,2g(x, y) < 0

Theorem 3.1. The optimal value function g∗(x, y) belongs to ℵ. There exists an

optimal switching stationary policy satisfying the following properties.

1. For walk-in customers, if x ≤ S1(y), it is optimal to accept the walk-in customer;

otherwise, deny the walk-in customer; For ADI customers, the leasing company

accepts the reserved demand as long as y ≤ S2(x).

2. The walk-in customers’ rationing threshold S1(y) nonincreases in y with bounded

sensitivity S1(y) − 1 ≤ S1(y + 1) ≤ S1(y). The ADI customers’ rationing

threshold S2(x) nonincreases in x with bounded sensitivity S2(x) − 2 ≤ S2(x +

1) ≤ S2(x).

3. When it is optimal to accept the class i customer, the optimal price pi∗x,y is

nondecreasing with x and y.
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(a) The optimal price for walk-in customer
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(b) The optimal price for ADI customer

Figure 3.2. The optimal pricing policy
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To illustrate Theorem 3.1, a simple example is used to illustrate the properties

of the optimal policy. Under the same parameter setting as in Example. 3.1, Figure

3.2(a) and 3.2(b) display the optimal price for walk-in customer and ADI customer,

respectively. It can be seen that when y is less than 5 and x approaches the capacity,

the slope of optimal ADI price is greater than the slope of the optimal walk-in price.

That could be explained by the fact that when the total number of container is

about to leased out, the leasing company can still accept the walk-in customers with

relatively fair price, but the firm posts high price for ADI customers to avoid the high

emergency cost. When y is near capacity, the leasing company denies more walk-in

customers to fulfill the reserved demands.

From Theorem 3.1, it is easy to extend the optimal policy for stochastic rental

system without advance demand information.

Corollary 3.1. The optimal value function g∗ belongs to ℵ. There exits a optimal

switching stationary policy satisfying the following properties.

1. The rationing threshold is S̄1(x) = max{x|41g(x, y) > P̄w−1}. The leasing

company provides the container as long as x ≤ S̄1(x).

2. The rationing threshold S̄1(x) nonincreases with x with S̄1(x)−1 ≤ S̄1(x+1) ≤

S̄1(x).

3. When it is optimal to accept the customer, the optimal price pi∗x is nondecreasing

with x.

3.4 Numerical Study

In this section, numerical experiments are conducted to explore the influence of

ADI on the optimal rationing and pricing policy, which provides insights for the

leasing company to maximize its revenue. The numerical results are obtained from
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value-iteration dynamic programming algorithm. The algorithm is terminated when

the difference of total discounted revenue between iterations is less than 10−7.

Effect of lead time on the optimal policy. In this case, the mean of demand

lead time 1/νi ranges from 0.1 to 10 and other parameters setting remains the same

as in Example. 3.1. We take the system state (4,6) as example to discuss the effect of

lead time on the optimal rationing and pricing policy. Fig. 3.3(a) displays the total

discounted revenue at system state (4,6). It can be seen that the total discounted

revenue increases as the mean of lead time grows from 0.1 to 2.5, when the mean of

lead time is greater than 2.5, the total revenue begins to decrease. As the mean of

lead time increases, the lease revenue benefit is offset by the emergency lease cost.

This indicates that the leasing company should set a maximum allowable lead time.

Fig. 3.3(b) shows that the rationing curves S1(6) for walk-in customers and S2(4) for

ADI customers increases with the mean of lead time. Fig. 3.3(c) exhibits that the

optimal prices have a declining trend as the lead time becomes longer. The optimal

walk-in price has a greater drop compared with the change of optimal ADI price. The

ascending of lead time gives the leasing company more time and flexibility to manage

its capacity. Especially when 1/v is greater than the duration µ = 1, the firm could

give priority to walk-in customers and then fulfill the reserved demand later. Thus,

S1(y) is more sensitive to the change of 1/ν compare to S2(x), the reduction of pw∗4,6

is larger than the contraction of pa∗4,6.

Effect of Emergency lease cost on the optimal policy. In this case, the

emergency lease cost η changes from P̄ a to 7P̄ a, the other parameter setting remains

the same as in Example. 3.1. In Fig. 3.4(a), when s = 1, S1(y) equals to the capacity

as the emergency lease cost is small. When η grows, S1(y) becomes to more sensitive

to y and unit decrease sensitivity is still kept. In Fig. 3.4(b), as η increases, S1(y)

is more sensitive to x and the curve is more steep with at most two-unit decrease

sensitivity. Fig. 3.4(c) shows that the optimal walk-in price and ADI price shares the
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policy
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Figure 3.4. The effect of emergency lease cost on the optimal rationing and pricing policy
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similar increasing pattern when η becomes greater. In a word, the high emergency

cost results in the decreasing rationing threshold and increasing optimal prices.

3.5 Summary

In this part, we consider a dynamic pricing problem of a container leasing com-

pany with reservations and unit capacity request. The problem is modelled as a

continuous-time Markov decision process. Using value iteration, the properties of the

optimal allocation and pricing policy are derived. We show that the objective func-

tion is an anti-multimodular function and there exists a state-dependent rationing

policy with bounded sensitivity such that the walk-in customers’ rationing threshold

nonincreases in the number of ADI reservations and the ADI customers’ rationing

threshold nonincreases in the leased amount. When it is optimal to accept this cus-

tomer class, the optimal posted price is nondecreasing with the inventory level and

the number of advance demands. Numerical experiments are conducted to study the

effect of reservations on the optimal policy.
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CHAPTER 4

Dynamic Pricing with Reservation and

Multiple-Unit Demand

This chapter focuses on a container leasing company dealing with two customer

types, reserved customers and walk-in customers. A reserved customer books the

containers before the pickup date and pays the rent at the booking. A walk-in cus-

tomer requests an immediate rental service. We first discuss the case with same lease

duration and the optimal prices for two customers are nonincreasing in the system

state. The optimal walk-in demand is most sensitive to reserved demand of current

period and the following period compared with reserved demands and rental amount

in other periods. The optimal reserved demand is most sensitive to the latest book-

ing. Next we propose an effective heuristic to derive the myopic pricing policy to

the dynamic pricing problem. Finally, the optimal policies are partially characterized

for the case with different lease durations. The distinct lease durations cause the

movement of the vector of reserved in the system state. The optimal pricing policy

still nonincreases in the system state with monotone bounded sensitivity.
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4.1 Literature Review

There are three streams of literature related to this work: capacity control and

pricing, advance selling in restaurant industry and study about multimodularity.

The literature about capacity control and pricing for stochastic rental system has

not received so much academic attention. Savin et al. (2005) investigate a capacity

allocation problem in rental system with two customer classes. They characterize

the switching-curve raioning policy and conditions for preferred classes. An aggre-

gate threshold policy is developed for the fluid approximation model and the effect of

capacity rationing on the optimal fleet size is analyzed. Gans and Savin (2007) ex-

tend their model by incorporating the price interaction between walk-in customer and

rental company. They model the pricing and capacity rationing problem for a rental

system as a Markov decision process and demonstrate that the optimal policy param-

eters are monotone with the system parameters. They further obtain the condition

of preferred customer class. Papier and Thonemann (2010) study a stochastic rental

system with two types of customers–advance demand information(ADI) customers

and walk-in customers and show that the optimal admission policy is a threshold

type policy. Due to the computational intractability, a close-to-optimal ADI policy

is proposed and performs better than the policy that ignores ADI. (Jain et al., 2015)

discuss a rental model with limited inventory, decreasing demand and two customer

classes differentiated by return behavior and penalty cost. They adopt the optimal

control theory to analyze the optimal allocation policy. The allocation policy is a

priority policy but the priority class changes at different points in the horizon. The

models in the above study fail to capture the time sensitivity of demand which is a

main feature for the container leasing system.

The second stream of work explores how to balance between reserved sales and

walk-in sales. This topic is well discussed in restaurant reservation. Alexandrov and
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Lariviere (2012) investigate a restaurant selling its service to strategic customer (a

single customer type) by advance reservation or walk-ins. The authors define the con-

ditions of offering reservations and various policies to reduce the chance of no-show.

Competition makes reservation more attractive to customers. Cil and Lariviere (2013)

consider a service provider with a fixed capacity facing two customer types (reserved

customers and walk-in customers) and clarify how much of the limited capacity avail-

able to reserved customers in a single sale period. When reserved demand is more

profitable but uncertain while the number of walk-in customers is fixed, it may be

optimal to set aside a capacity for walk-in customers. When walk-in demand is more

profitable but uncertain, it is possible that the firm allocates all the capacity for

reserved customers. The studies in this stream of literature are usually based on a

single-sale period and a multiple-period reservation pricing problem is discussed in

this part.

The last stream of the related literature is about the multimodularity. Hajek

(1985) first proposes the definition of multimodularity on integer space and select-

s the deterministic integer sequence to minimize the long-term average queue size

through proving that the mean queue size is a limit of multimodular functions of

the sequence. Altman et al. (2000) study the properties of multimodular functions

and the relation between the multimodularity and convexity of its linear interpola-

tion. Based on these properties, the authors establish the lower bounds which are

achieved by regular sequences for the expected average cost problem. Finally, they

apply this theory in admission control to a G/G/1 queue and D/D/1 queue with fixed

batch arrivals. Murota (2005) relates multimodular functions and L\-convex function

through a unimodular coordinate transformation and show that a discrete separation

theorem holds for multimodular functions. Zhuang and Li (2012) present a unified

framework to analyze monotone optimal control through multimodularity for a class

of Markov decision processes. They demonstrate that each system in this class could
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be a substitution or complement and present a generic proof of the structural prop-

erties for both type systems. Li and Yu (2014) define multimodularity in real space

and develop basic properties of multimodularity. They apply multimodularity into

three stochastic dynamic inventory problems where the system state and decision

variables are economic substitutes and derive monotone optimal policies with bound-

ed sensitivity. They also prove that multimodular function and L\-convex function

can be related through unimodular coordinate transformations. With the theoretical

development of multimodularity, to our knowledge, the computational attempt for

multimodularity is scarce. Chen et al. (2014) propose an effective heuristic policy for

the L\-concave objective function in the joint pricing and inventory control model.

They develop analytical bounds on the optimal order-up-to levels and propose an

approximate dynamic programming scheme through extending L\-concave function

to a multidimensional domain from a finite number of points. The multimodularity

will be employed in the stochastic rental system and further analyze the sensitivity

of system state in the optimal pricing practice.

4.2 Preliminary

This section introduces the definition and basic properties of anti-multimodularity

in real space. Let V ∈ <n be a polyhedron that forms a general lattice.

Definition 4.1. A function f : V → < is supermodular on V if

f(u) + f(v) ≤ f(u ∨ v) + f(u ∧ v)

for all u, v ∈ V , where ∨ and ∧ refer to the componenwise maximum and minimum.

The concept of multimodularity is first proposed by Hajek (1985), being an ef-

ficient tool for queuing network problems (Altman et al. 2000, Hordijk and Van der
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Laan 2005). The multimodularity is traditionally defined on integer variables (Hajek

1985, Murota 2005). In this part we follow Li and Yu (2014) to define the multi-

modularity in the real space. Let W be a polyhedron, W = {w ∈ <n|aiv ≥ bi, i =

1, 2 · · · ,m}, satisfying the property

Property (P1). The nonzero components of each n-dimensional vector ai are con-

secutive 1s or −1s.

Let W ′ ∈ < a polyhedron satisfying (P1).

Definition 4.2. (Li and Yu 2014) A function f : W → < is anti-multimodular (mul-

timodular) if the function ψ(x, y) = f(x1−y, x2−x1, · · · , xn−xn−1) is supermodular

(submodular) on S = {(x, y) ∈ <n×<|y ∈ W ′, (x1−y, x2−x1, · · · , xn−xn−1) ∈ W}.

Given that W and W ′ satisfy (P1) and the constraints defined on S involves only

two variables with opposite signs, the domain of the function ψ(x, y), forms a lattice

according to Topkis (1998) Example 2.2.7(b). Anti-multimodularity implies decreas-

ing difference, component concavity, joint concavity and diagonal dominance. An

anti-multimodular function with decreasing difference further indicates the variables

are economic substitutes, which means having one more unit of one variable results

in the decreasing of another variable.

The next lemma describes the properties of anti-multimodularity presented in Li

and Yu (2014).

Lemma 4.1. (a) If f(v) is anti-multimodular and α is a positive real number, then

αg(v) is also anti-multimodular.

(b) If g(v) and f(v) is anti-multimodular, then f(v) + g(v) is anti-multimodular.

(c) If g(v, d) is anti-multimodular in v for any given d and D is a random variable,

then Eg(v,D) is anti-multimodular in v.
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(d) If g(v) is anti-multimodular, then g̃(v1:i−1,w,vi+1:n) = g(v1, · · · , vi−1, w1 + w2 +

· · ·+ wm, vi+1, · · · , vn) is anti-multimodular in (v1, · · · , vi−1, w1, w2, · · · , wm,

vi+1, · · · , vn).

(e) If g(v) is anti-multimodular, g(vn, vn−1, . . . , v1) is also anti-multimodular in v.

(f) If U = {(v, w)|v ∈ S ⊆ <n, w ∈ A(v) ⊆ <m} is a polyhedron satisfying (P1),

g(v, w) is anti-multimodular in (v, w) on U , then f(v) = maxv∈A(v){g(v, w)} is

anti-multimodular in v on S.

Proof. Part (a), (b), (c) are directly follow from lemma 2.6.1 and Corollary 2.6.2 in

Topkis (1998).

Part (d) It suffices to show that the supermodularity of

ψ(v1, · · · , vi−1, w1, w2, · · · , wm, vi+1, · · · , vn, y)

=g̃(v1 − y, v2 − v1, · · · , w1 − vi−1, · · · , wm − wm−1, vi+1 − wm, · · · , vn − vn−1)

=g(v1 − y, v2 − v1, · · · , vi−1 − vi−2, wm − vi−1, vi+1 − wm, · · · , vn − vn−1)

Since g(v) is anti-multimodular, g(v1 − y, v2 − v1, · · · , vi−1 − vi−2, wm − vi−1, vi+1 −

wm, · · · , vn − vn−1) is supermodular in (v1, v2, · · · , vi−1, wm, vi+1, · · · , vn, y), further

supermodular in (v1, · · · , vi−1, w1, w2, · · · , wm, vi+1, · · · , vn, y). The result holds.

Part (e) and (f) are directly follows Theorem 1 in Li and Yu (2014).

Lemma 4.2. Assume that g(v, ξ,w) is anti-multimodular on U ∈ <n×<×<m, where

U is a polyhedron satisfying (P1) and v = (v1, v2, · · · , vn), w = (w1, w2, · · · , wm).

ξ∗(v,w) is the smallest value of ξ that maximizes g(v, ξ,w). Then ξ∗(v,w) is non-

increasing in (v,w), and satisfies

−1 ≤ 4vnξ
∗ ≤ 4vn−1ξ

∗ ≤ · · · ≤ 4v1ξ
∗ ≤ 0

−1 ≤ 4w1ξ
∗ ≤ 4w2ξ

∗ ≤ · · · ≤ 4wmξ
∗ ≤ 0

96



Proof. According to the definition of anti-multimodularity, g(v, ξ,w) is anti-multimodular,

we have

ψ(v, ξ,w, y) = g(v1 − y, v2 − v1, · · · , ξ − vn, w1 − ξ, · · · , wm − wm−1)

is a supermodular function on U . Let z = (v1 + y, v1 + v2 + y, · · · ,
∑n

k=1 vk +

y,
∑n

k=1 vk + y,
∑n

k=1 vk + y + w1, · · · ,
∑n

k=1 vk + y +
∑m

k=1wk, y). Then g(v, ξ,w) =

ψ(z + ξ
∑n+m+1

k=n+1 ek).

For 0 < i ≤ n, ξ∗vi = ξ∗(v + δei,w), we first prove ξ∗vi ≤ ξ∗vi−1
. For any δ > 0 and

ξ < ξ∗vi ,

g(v+ δei−1, ξ,w)− g(v+ δei−1, ξ
∗
vi
,w)

=ψ(z + δ
n+m+1∑
k=i−1

ek + ξ
n+m+1∑
k=n+1

ek)− ψ(z + δ
n+m+1∑
k=i−1

ek + ξ∗vi

n+m+1∑
k=n+1

ek)

≤ψ(z + δ
n+m+1∑
k=i

ek + ξ
n+m+1∑
k=n+1

ek)− ψ(z + δ
n+m+1∑
k=i

ek + ξ∗vi

n+m+1∑
k=n+1

ek)

=g(v+ δei, ξ,w)− g(v+ δei, ξ
∗
vi
,w)

<0

The first inequality follows the supermodularity of ψ(v, ξ,w, y) and the last inequality

derives from the fact that ξ∗vi is the smallest value to maximize g(v + δei, ξ,w) and

the assumption ξ < ξ∗vi . Thus, g(v+ δei−1, ξ,w) < g(v+ δei−1, ξ
∗
vi
,w), ξ could not

optimal for g(v+ δei−1, ξ,w). Therefore, ξ∗vi−1
≥ ξ∗vi .
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Next, we prove ξ∗(v,w)− δ ≤ ξ∗vn . For any δ > 0 and ξ < ξ∗(v,w)− δ,

g(v+ δen, ξ,w)− g(v+ δen, ξ
∗(v,w)− δ,w)

=ψ(z + δ
n+m+1∑
k=n

ek + ξ
n+m+1∑
k=n+1

ek)− ψ(z + δ
n+m+1∑
k=n

ek + (ξ∗(v,w)− δ)
n+m+1∑
k=n+1

ek)

≤ψ(z + (δ + ξ)
n+m+1∑
k=n+1

ek)− ψ(z + ξ∗(v,w)
n+m+1∑
k=n+1

ek)

=g(v, ξ + δ,w)− g(v, ξ∗(v,w),w)

<0

The first inequality follows the supermodularity of ψ(v, ξ,w, y) and the last inequality

derives from the definition of ξ∗(v,w) and the assumption ξ < ξ∗(v,w)− δ. Thus, ξ

could not optimal for g(v+ δen, ξ,w). Therefore, ξ∗(v,w)− δ ≤ ξ∗vn .

For 1 ≤ j ≤ m, ξ∗wj = ξ∗(v,w − δen+j+1), we first prove ξ∗wj ≤ ξ∗wj+1
. For any

δ > 0 and ξ < ξ∗wj ,

g(v, ξ,w− δen+j+2)− g(v, ξ∗wj ,w− δen+j+2)

=ψ(z − δ
n+m+1∑
k=n+j+2

ek + ξ
n+m+1∑
k=n+1

ek)− ψ(z − δ
n+m+1∑
k=n+j+2

ek + ξ∗wj

n+m+1∑
k=n+1

ek)

≤ψ(z − δ
n+m+1∑
k=n+j+1

ek + ξ

n+m+1∑
k=n+1

ek)− ψ(z − δ
n+m+1∑
k=n+j+1

ek + ξ∗wj

n+m+1∑
k=n+1

ek)

=g(v, ξ,w− δen+j+1)− g(v, ξ∗wj ,w− δen+j+1)

<0

The first inequality follows the supermodularity of ψ(v, ξ,w, y) and the last inequality

derives from the fact that ξ∗wj is the smallest value to maximize g(v, ξ,w− δen+j+1)

and the assumption ξ < ξ∗wj . Thus, ξ could not optimal for g(v, ξ,w − δen+j+2).

Therefore, ξ∗wj ≤ ξ∗wj+1
.
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Last, we prove ξ∗(v,w) + δ ≤ ξ∗w1
. For any δ > 0 and ξ < ξ∗(v,w) + δ,

g(v, ξ,w− δen+2)− g(v, ξ∗(v,w) + δ,w− δen+2)

=ψ(z − δ
n+m+1∑
k=n+2

ek + ξ
n+m+1∑
k=n+1

ek)− ψ(z − δ
n+m+1∑
k=n+2

ek + (ξ∗(v,w) + δ)
n+m+1∑
k=n+1

ek)

≤ψ(z + (ξ − δ)
n+m+1∑
k=n+1

ek)− ψ(z + ξ∗(v,w)
n+m+1∑
k=n+1

ek)

=g(v, ξ − δ,w)− g(v, ξ∗(v,w),w)

<0

The first inequality follows the supermodularity of ψ(v, ξ,w, y) and the last inequality

derives from the definition of ξ∗(v,w) and the assumption ξ− δ < ξ∗(v,w). Thus, ξ

could not optimal for g(v, ξ,w− δen+2). Therefore, ξ∗(v,w) + δ ≤ ξ∗w1
.

Unlike the supermodular functions, the anti-multimodular function is sensitive to

the order of variables.

4.3 Model Formulation and the Optimal Policy

We consider a pricing problem of container leasing system with reservations in

the finite planning horizon of length T . There are C units of containers of the same

type available to two customer classes, reserved customers and walk-in customers.

Reserved customers book containers at a reserved unit price, settle payments ahead

of service and pick up containers at L periods later. The reserved quantities are

guaranteed to be available at the pickup date. Walk-in customers arrive at the front

desk and decide to take the service based on the unit price of the lease service on

spot. The lease duration of all customers are µ periods. h is the unit holding cost,

b is the lost sales penalty cost in walk-in customer context and emergency lease cost

per unit of container in reserved customer context and α ∈ (0, 1] is the time discount
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factor. The objective of the leasing company is to maximize the expected profit over

the finite horizon by setting prices Pw
t for walk-in customers and P r

t+L for reserved

customers.

The sequence of events in each period t is specified as follows: (1) containers

leased at period t − µ are returned at the beginning of period and the firm reviews

the amounts of leased containers for the last µ− 1 period and reserved containers for

the following L− 1 periods; (2) the firm decides the current period walk-in price and

reserved price of each unit; (3) reserved customers realize the demand and walk-in

customers rent containers depend on the current walk-in price; (4) both holding cost

or penalty cost for this period are calculated.

Following the literature on revenue management (Chen and Simchi-Levi 2004,

Huh and Janakiraman 2008, Pang et al. 2012), stochastic aggregate demand has the

additive form

dit = Di
t(P

i
t ) + εt, where i ∈ {r, w}

where Di
t(P

i
t ) is the mean demand with respect to P i

t in period t and a strictly

decreasing in the price P i
t and the inverse demand function exists. εt is a zero-mean

random variable with bounded support [A,B], (A < 0 < B ≤ +∞). Let F (·) be

the probability density function of εt and F̄ (·) = 1 − F (·) be the lost-sales rate.

In addition, P i ∈ [P i, P̄ i] for i ∈ {r, w} and P r < Pw, P̄ r < P̄w. The one-to-one

correspondence between the aggregated demand and price within the same customer

type implies that dit ∈ Di
t = [dit, d̄

i
t], where dit = Dt(P̄

i) and d̄it = Dt(P
i). Thus, we

choose dit instead of P i
t as decision variables. Now the decision variables of the firm

are the walk-in demand dwt and the accepted booking for period t+L, drt+L. xk is the

number of containers rent out at period k. zt,l refers to the total number of leased

containers at period t+ l given the number of leased and reserved containers at period
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t. zt is used to represent zt,0 for short.

zt,l =



∑µ−1
j=l+1 xt−µ+j +

∑l
k=0 d

r
t+k, 0 ≤ l < L ∧ µ∑µ−1

j=l+1 xt−µ+j +
∑L−1

k=0 d
r
t+k, L ≤ l ≤ µ− 1 and µ ≥ L∑l

k=l−µ+1 d
r
t+k, µ ≤ l ≤ L and µ < L

The expected revenue function for walk-in customers and reserved customers are

Rw
t (zt, d

w
t ) = Pw(dwt )E[min(dwt + εt, C − zt)]

Rr
t (zt,L, d

r
t+L) = P (drt+L)E[min(drt+L + εt, C − zt,L)].

Two assumptions are imposed on the demand function and the probability density

function F (εt). (A1) ρ(di, x) = P i(di)F̄ ′(C−di−x)

P i′ (di)F̄ (C−di−x)
≥ 1 for di ∈ [di, d̄i] and 0 ≤ x ≤ C−d.

ρ(di, x) is first proposed by Kocabiyikoglu and Popescu (2011) and defined as lost-

sales rate elasticity. (A2) P ′′(di)di + P ′(di) ≤ 0 for di ∈ [di, d̄i]. Chen et al. (2014)

develop this assumption and show that this assumption works well for general demand

functions, such as linear, log, logit and exponential demand functions, except for iso-

elasticity demand function.

Lemma 4.3. If assumptions (A1) and (A2) hold, the expected revenue functions

Rw
t (zt, d

w
t ) and Rr

t (zt,L, d
r
t+L) are anti-multimodular in (zt, d

w
t ) and (zt,L, d

r
t+L), re-

spectively.

Proof. We first prove that Rw
t (zt, d

w
t ) is anti-multimodular in (zt, d

w
t ). According

to the definition of anti-multimodularity, it is need to show the supermodularity of

function ψ(zt, d
w
t , y) = Rt(zt − y, dwt − zt) for zt − C ≤ y ≤ zt. Rewrite Rw

t (zt, d
w
t ) =

Pw(dwt )(dwt +
∫ C−zt−dwt

0
F̄ (v)dv), thus Rt(zt − y, dwt − zt) = Pw(dwt − zt)(d

w
t − zt +
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∫ C−dwt +y

0
F̄ (v)dv). It suffices to show that ψ(zt, d

w
t , y) is supermodular in (zt, d

w
t , y).

∂2ψ

∂zt∂y
= −Pw′(dwt − zt)F̄ (C + y − dwt ) ≥ 0

The nonnegativity of ∂2R
∂zt∂y

derives from the fact that P ′(d) < 0.

∂2ψ

∂dwt ∂y
= Pw′(dwt − zt)F̄ (C + y − dwt )− Pw(dwt − zt)F̄ ′(C + y − dwt )

= −Pw′(dwt − zt)F̄ (C + y − dwt )[
Pw(dwt − zt)F̄ ′(C + y − dwt )

Pw′(dwt − zt)F̄ (C + y − dwt )
− 1]

= −Pw′(dwt − zt)F̄ (C + y − dwt )[ρ(dwt − zt, zt − y)− 1]

∂2ψ
∂dwt ∂y

> 0 follows the assumption that ρ(d, zt) ≥ 1 and P ′(d) < 0.

∂2ψ

∂dwt ∂zt
= −Pw′′(dwt − zt)(dwt − zt +

∫ C+y−dwt

0

F̄ (v)dv)− Pw′(dwt − zt)[2 + F̄ (C + y − dwt )]

If P ′′(dwt − zt) ≤ 0, then all terms in the equation are positive, ∂2R
∂dwt ∂zt

> 0.

If P ′′(dwt − zt) > 0, we have

∂2ψ

∂dwt ∂zt
≥ −Pw′′(dwt − zt)dwt − Pw′(dwt − zt)[2− F̄ (C + y − dwt )]

= −Pw′′(dwt − zt)dwt − P ′(dwt − zt)− Pw′(dwt − zt)F (C + y − dwt ) ≥ 0

The first inequality is derived from the fact that −Pw′′(dwt − zt)
∫ C+y−dwt

0
F̄ (v)dv ≥ 0.

Since εt is a zero-mean random variable with bounded support [A,B], (A < 0 < B ≤

+∞),
∫ C+y−dwt

0
F̄ (v)dv ≤

∫ B
A
F̄ (v)dv = 0. The last inequality is obtained from the

assumption (A2).

In summary, the second-order partial derivative with respect to any two variables

are nonnegative. Therefore, Rw
t (zt, d

w
t ) is anti-multimodular in (zt, d

w
t ). The proof for

Rr
t (zt,L, d

r
t+L) is similar to the abovep.
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Let x = (xt−µ+1, · · · , xt−1, d
r
t ) and dr = (drt+1, · · · , drt+L−1) (For conciseness, the

subscript t is omitted when there is no confusion). The system state of period t can

be represented by (x,dr) and the system dynamics are

(x+, d
r
+) = (xt−µ+2, · · · , xt−1, d

r
t + dwt , d

r
t+1, · · · , drt+L−1, d

r
t+L).

The inventory related holding-penalty cost at the end of period t is H(zt, d
w
t ) =

E[h(C−zt−dwt )+ +b(zt+dwt −C)+]. ft(x,d
r) denotes the maximal expected profit of

operating the rental system at state (x,dr) from period t to the end of the planning

horizon. The problem can be expressed as the stochastic dynamic programming

formulation.

gt(x, d
w
t ,d

r, drt+L) = Rw
t (zt, d

w
t ) +Rr

t (zt,L, d
r
t+L)−H(zt, d

w
t ) + αEft+1(x+, d

r
+)

(4.1)

ft(x,d
r) = max

dwt ,d
r
t+L∈A(d)

gt(x, d
w
t ,d

r, drt+L) (4.2)

where when µ ≥ L,

A(d) = {(x, dwt ,dr, drt+L)|dwt ∈ Dw, dwt + zt,l ≤ C, for 1 ≤ l ≤ L− 1,

drt+L ∈ Dr, drt+L + dwt + zt,L ≤ C};

when µ < L,

A(d) = {(x, dwt ,dr, drt+L)|dwt ∈ Dw, dwt + zt,l ≤ C, for 1 ≤ l ≤ µ− 1,

drt+L ∈ Dr, drt+L + zt,L ≤ C}.

The boundary condition is fT+1(x, dr) = 0 for any (x, dr). In Eq. (4.1), the

first two terms are expected revenues for walk-in customers and reserved customers.
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Zt,m-1

Zt,L

Figure 4.1. Capacity constraints

The third term is the possible holding or lost sales penalty costs depend on the value

of zt − dwt . The last term is the maximal expected profit of period t + 1 at state

(x+, d
r
+). Next, we explain the capacity constraints A(d) for dwt and drt+L. The

amount of walk-in demand dwt is leased out for µ periods once the lease period is over,

the due containers will be returned back. That is, dwt affects the capacity constraints

from period t to period t + µ − 1. When µ ≥ L, the last realized reserved demand

occurs at period t+L− 1 and zt,l decreases in l for L ≤ l ≤ µ− 1. Thus the effective

capacity constraints for dwt are the guaranteed reserved demands, dwt + zt,l ≤ C, for

1 ≤ l ≤ L−1. When µ < L, the effective capacity constraints for dwt are dwt +zt,l ≤ C,

for 1 ≤ l ≤ µ − 1. The other decision variable drt+L is the latest reserved demand.

When µ ≥ L, the walk-in demand and zt,L binds drt+L, drt+L + dwt + zt,L ≤ C; when

µ < L, although its effect on the capacity constraint still holds for µ periods, there is

no further information after this period, then the capacity constraint is drt+L+zt,L ≤ C
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when µ < L. We can check that the constraint set A(d) is a polyhedron satisfying

(P1).

It is easy to transform our model to a traditional joint inventory-pricing control

model. The system state can be represented by z = (zt, w1,t, · · · , wL∨µ−1,t) where wl,t

denotes the net quantity to be leased in l periods. When µ ≥ L, wl,t = drt+l−xt−µ+l for

1 ≤ l < L and wl,t = −xt−µ+l for L ≤ l ≤ L+µ− 1; when µ < L, wl,t = drt+l− xt−µ+l

for 1 ≤ l ≤ µ − 1 and wl,t = drt+l − drt+l−µ for µ ≤ l ≤ L − 1. In the joint inventory-

pricing model, wl,t is nonnegative owing to the nonnegative order quantity and thus

zt ≤ zt,1 ≤ zt,2 ≤ · · · zt,L∨µ−1. But in our model, wl,t could be either positive or

negative. For example, when 1 ≤ l ≤ µ, wl,t depends on the realized reserved demand

drt+l and leased quantity xt−µ+l or reserved demand drt+l−µ. Hence the nondecreasing

inventory level zt,l property does not hold for our model.

In addition, the decision variables of the joint inventory-pricing model with lead

time are the expected walk-in demand (in our context) and the order quantity of

current period which arrives at L periods later. The objective is to find a joint pric-

ing and ordering policy which strikes a balance between the expected revenue and

the inventory-related cost to maximize the expected discounted profit. The decision

variables in our model are the expected walk-in demand and expected reserved de-

mand. The optimization is a tradeoff between current state profit maximization and

expected future profit maximization.

Theorem 4.1 partially characterizes the optimal policy with bounded sensitivity.

Theorem 4.1. (i) For each t ∈ {1, · · · , T}, the functions gt(x, d
w
t ,d

r, drt+L) and

ft(x, d
r) are anti-multimodular in (x, dwt ,d

r, drt+L) and (x, dr), respectively.
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(ii) dw∗t and dr∗t+L are nonincreasing in (x, dr). Moreover,

− 1 ≤ 4drt
dw∗t ≤ 4xt−1d

w∗
t ≤ · · · ≤ 4xt−µ+1d

w∗
t ≤ 0 (4.3)

− 1 ≤ 4drt+1
dw∗t ≤ 4drt+2

dw∗t ≤ · · · ≤ 4drt+L−1
dw∗t ≤ 0 (4.4)

− 1 ≤ 4drt+L−1
dr∗t+L ≤ 4drt+L−2

dr∗t+L · · · ≤ 4drt
drt+L ≤ · · ·4xt−µ+1d

r∗
t+L ≤ 0 (4.5)

Proof. (i) We prove the anti-multimodularity of gt(x, d
w
t ,d

r, drt+L) and ft(x,d
r) by

induction on t. Note that fT+1(x, dr) = 0 is an anti-multimodular function.

Suppose that ft+1(x+, d
r
+) is anti-multimodular in (x+, d

r
+). From Lemma 4.3,

Rw
t (zt, d

w
t ) is anti-multimodular in (zt, d

w
t ) and recall that zt =

∑µ−1
k=1 xt−k +

drt , thus Rw
t (zt, d

w
t ) is anti-multimodular in (x, dwt ) according to Lemma 4.1

(d). Similarly, Rr
t (zt,L, d

r
t+L) is anti-multimodular in (x, dwt ,d

r, drt+L). In ad-

dition, expectation operation preserves anti-multimodularity from Lemma 4.1

(c) thus the third term is anti-multimodular. For the last term in Eq.(4.1),

from system dynamics and Lemma 4.1 (d), ft+1(x+, d
r
+) is anti-multimodular in

(x, dwt ,d
r, drt+L). Thus, gt(x, d

w
t ,d

r, drt+L) is the sum of anti-multimodular func-

tions and therefore is anti-multimodular in (x, dwt ,d
r, drt+L). The constraint set

A(d) of Eq.(4.2) is a polyhedron satisfying (P1). Thus, the anti-multimodularity

of ft(x,d
r) follows Lemma 4.1 (f).

(ii) Next, we reformulate the problem in period t with two maximization steps. We

maximize gt(x, d
w
t ,d

r, drt+L) sequentially. The reformulated problem is defined

as follows.

g̃t(x,d
r, drt+L) = max

dwt ∈A(dwt )
gt(x, d

w
t ,d

r, drt+L)

ft(x,d
r) = max

drt+L∈A(drt+L)
g̃t(x,d

r, drt+L)

As gt(x, d
w
t ,d

r, drt+L) is anti-multimodular, g̃t(x,d
r, drt+L) is anti-multimodular
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from Lemma 4.1 (f). And from Lemma 4.2, we know that dw∗t is nonincreasing

in (x, dr), and the inequalities (4.3) (4.4) hold. The inequality (4.5) is proved

similarly.

Theorem 4.1 partially characterizes the optimal properties of the two decision

variables and indicates that the optimal demands dwt and drt+L are nonincreasing in

the number of containers leased out in the last (µ − 1) periods and the number of

containers reserved for the next L−1 periods. This is intuitive when lead time is less

than the lease duration, the optimal walk-in demand of period t directly affects the

availability of the following reserved demand from period t+1 to period t+L−1. Thus

the more containers leased out during the last (µ− 1) periods or booked during the

next L − 1 periods, the less available containers for walk-in customer at the current

period. Moreover, the theorem suggests that the optimal policy has bounded and

monotone sensitivity. The optimal walk-in demand is most sensitive to the number

of leased containers and reserved containers near period t as these directly affect the

available number of containers to rent. The optimal reserved demand is most sensitive

to the latest booking because the pricing of reserved demand is actually a kind of

advance sell and the latest booking affects the available number of reserved containers

at period t + L. The inequalities about the optimal walk-in/reserved demand also

confirm that the decision variables are economic substitutes of the leased quantity of

last µ− 1 periods and reserved demand in the following L− 1 periods (system state).

The optimal walk-in and reserved prices accordingly are nondecreasing in (x, dr).

4.4 Myopic Pricing Policy

Due to the curse of dimensionality, it is computationally intractable to compute

the optimal state-dependent policy in a problem with multimodularity structure.
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We propose a myopic cycle-based pricing policy to maximize the expected profit.

The myopic policy dynamically breaks the finite horizon into serval rental cycle and

determines the appropriate first rental cycle and each periods price as a function of

inventory level.

The finite time horizon can be divided into two types of intervals: interior interval

and boundary interval. The interior interval is the time interval where the total

number of containers on hire is less than the capacity and the boundary interval

refers to the interval in which the total number of containers rent out equals to the

capacity. The time that the rental process entry from interior interval to boundary

interval is called entry point. We concentrate on the case that the finite capacity is

insufficient to meet the demands of all customers, that is, there is at least one entry

point in the rental process. In the stochastic leasing system, demand uncertainty may

result in several entry points. In particular, we focus on the first entry point since it

is easy to adjust the prices once the first entry point is settled. Next, we address the

two types of intervals respectively.

4.4.1 Boundary interval

In a boundary interval with the first known entry point te, the available number

of containers at each period t > te is the number of containers rent out at period

t − µ. From period te + 1, the µ period rental cycle is x = {x1∨te−µ+1, · · · , xte∨µ}.

The boundary interval indicates that there is no left inventory and the new allocated

containers can not exceed the number of returned containers. Thus, if t > te, the

profit of single period t+ L can be expressed as follows:

max
dwt+L+drt+L=xt′

Rt+L(zt,L, d
w
t+L) + α−LRr

t (zt,L, d
r
t+L)

= max
0≤drt+L≤xt′

Rt+L(C − xt′ , xt′ − drt+L) + α−LRt(C − xt′ , drt+L)
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where t′ = (t+L− te) mod µ. Let d̂rt+L be the myopic reserved demand to maximize

the single period profit. Then it is easy to derive that

d̂rt+L = arg max
0≤drt+L≤xt′

{Pw(xt′ − drt+L)(xt′ − drt+L) + α−LP r(drt+L)drt+L},

d̂wt = xt′ − d̂rt .

4.4.2 Interior interval

4.4.2.1 First interior interval

In this part, we consider the pricing and allocation policy to maximize the expected

profit in the first interior interval. Given the evolution of rental process, rented

containers are returned sequentially after the first entry point. Thus, in order to

achieve the maximum expected profit, it is fairly reasonable to maximize the expected

profit of the first rental cycle in the myopic pricing policy. The decision variables of

the rental company are the first entry point te and the expected demands dwt for

1 ≤ t ≤ te and drt+L for 1 ≤ t ≤ te − L. The first entry point is determined by the

total rental demand xt (walk-in and reserved demands) of each period in the interior

interval. Besides, if xt is chosen, it is easy to calculate the optimal portion of reserved

and walk-in demands just as in the boundary interval. Therefore, the myopic pricing

problem downgrades into selecting xt and xt+L based on the inventory level zt and

zt,L within the cycle length te. The myopic expected profit f̂t(zt, zt,L) is defined as

follows.

ĝt(zt, zt,L, te) = max
0≤xt,xt+L≤C

Rt(zt, xt) +Rt(zt,L, xt+L)−H(zt, d
w
t ) + αEf̂t+1(zt+1, zt+1,L)

(4.6)

f̂t(zt, zt,L) = max
1≤te≤T−µ

ĝt(zt, zt,L, te)

te ∨ µ
(4.7)
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f̂t(zt, zt,L) computes the average expected profit over the first rental cycle. The ratio-

nale behind maximizing the average expected profit rather than the total expected

profit over te is as follows. When the cycle length te is longer than µ, containers

rent out in the first µ periods will be returned in order, if the myopic objective is to

maximize the total expected profit, one extreme case is that when the horizon ends,

the total capacity still fails to be allocated out all once, then such an allocation policy

definitely is not an optimal policy.

Solution Algorithm. To solve the above optimization problem, we first fix the

value of te, solve the inner maximization problem (4.6), and enumerate all possi-

ble values of te, finally choose the maximum f̂t(zt, zt,L). The decision variables of

ĝt(zt, zt,L, te) in the first L periods are actually dwt and xt+L. While the decision vari-

ables of ĝt(zt, zt,L, te) in the following periods are xt+L for L < t ≤ te − L, since xt

for L < t ≤ te has already been settled down in period t − L. Thus, (4.6) can be

classified into the two subproblems.

ĝt(zt, te) = max
0≤dwt ≤C−zt

Rw
t (zt, d

w
t )−H(zt, d

w
t ) + αEf̂t+1(zt+1), 1 ≤ t ≤ L (4.8)

ĝt(zt,L, te) = max
0≤xt+L≤C−zt,L

Rt(zt,L, xt+L)−H(zt+L, d
r
t+L) + αEf̂t+1(zt+1,L), 1 ≤ t ≤ te − L

(4.9)

Myopic expected walk-in demand of the first L periods

Under the fixed rental cycle te, let d̂wt (zt, te) be the myopic expected walk-in de-

mand that maximizes the walk-in revenue of first L periods in the rental cycle te.

max
d̂wt (zt,te)∈Dwt

{Rt(zt, d̂
w
t (zt, te))− Ĥ(zt, te, d̂

w
t (zt, te))},
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where

Ĥ(zt, te, d̂
w
t (zt, te)) =

1− αte−t

1− α
h(C − zt − d̂wt (zt, te))

+bd̂wt (zt, te)α
2te−i−µ.

Ĥ(zt, te, d̂
w
t (zt, te)) denotes the possible holding and penalty cost associated with the

walk-in demand d̂wt (zt, te) in the first rental cycle. Considering that te is the last

period in the first rental cycle to consume all the capacity, the first term is the

possible holding cost and the second term is the maximum penalty cost caused by

the walk-in demand of current period. Note that the exponent of the second term

2te− i−µ functions as the regulator of the walk-in demand. When te > µ, 2te− i−µ

decreases the possible penalty cost of walk-in demand so that the capacity could be

depleted as early as possible; on the other hand, when te < µ, 2te − i − µ increase

the possible penalty cost in order to slow down the consuming rate of capacity. In a

word, 2te − i − µ is the regulator which enables the entry point approach the rental

duration.

Myopic rental demand of reserved periods t+ L for 1 < t ≤ te − L

In this case, we adopt an improved version of (Federgruen and Heching , 1999)

to reduce system states based on the modified accounting scheme. Federgruen and

Heching (1999) investigate a pricing and inventory control problem under demand

uncertainty in finite and infinite horizon settings. They prove the existence of a list-

price and base-stock policy and develop an efficient heuristic which the price is fixed

in the lead time. In our problem, the basic idea is that rent out the same amount

xt+L for the remaining te − t− L periods and (C − zt,L − (te − t)xt+L)+ in period te,
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and choose the expected inventory level to maximize ĝt(zt,L, te).

max
0≤xt+L(zt,L)≤C−zt,L

{
te−1∑
k=t

αk−1(Rk(zk, xt+L(zt,L))− h[C − zk − (k − t)xt+L(zt,L)]+

− b[(k − t)xt+L(zt,L) + zk − C]+)

+ αte−1Rte(zte , C − zt,L − (te − t)xt+L(zt,L))}

Once the rental demand of period t+ L is determined, the reserved demand drt+L

is

d̂rt+L(zt,L) = arg max
0≤drt+L≤xt+L(zt,L)

{Pw(xt+L(zt,L)− drt+L)(xt+L − drt+L) + α−LP r
t (drt+L)drt+L}.

The walk-in demand of period t for L+ 1 ≤ t ≤ te is the rental demand xt minus the

realization d̂rt .

4.4.2.2 Other interior intervals

When the time point lies in the interior interval after te due to demand uncertainty,

the main objective is to rent out the remaining inventory as early as possible. The

only difference in the myopic pricing policy between the interior interval after te and

boundary interval is the computation of the walk-in demand.

d̂wt (zt) = C − zt − d̂rt .

d̂rt+L = arg max
0≤drt+L≤xt′

{Pw(xt′ − drt+L)(xt′ − drt+L) + α−LP r(drt+L)drt+L},

where t′ = (t+ L− te) mod µ.
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4.5 Different Lease Durations

In this section, we relax the assumption that walk-in customers and reserved

customers share the same lease duration. Let µw and µr be the lease duration of

walk-in customers and reserved customers, respectively, and 4µ = µw − µr. The

demand distribution and cost parameters are the same as in Section 4.3. The basic

thought of the system state is combining the reserved demand with the associated

walk-in demand sharing the same returned date together. The values of lead time L,

lease durations µw and µr affects the order of system state.

4.5.1 4µ ≥ L

When 4µ > L, the system state becomes to

x =(xt−µw+1, · · · , xt−4µ−1, xt−4µ, · · · , xt−4µ+L−1)

=(xt−µw+1, · · · , xt−4µ−1, d
w
t−4µ + drt , · · · , dwt−4µ+L−1 + drt+L−1),

and dw = (dwt−4µ+L, · · · , dwt−1). The system dynamics are

(x+, d
w
+) = (xt−µw+2, · · · , xt−4µ+L−1, d

w
t−4µ+L + drt+L, · · · , dwt ).

The number of leased containers at period t + l, zt,l, in this case becomes to zt,l =∑µr+L−1
j=l+1 xt−µw+j +

∑µw−1
k=(µr+L)∨(l+1) d

w
t−µw+k for 0 ≤ l < µw.

The capacity constraints for dwt and drt+L are given as follows.

A(d) = {(x, drt+L,dw, dwt )|drt+L ∈ Dr, drt+L + zt,L ≤ C,

dwt ∈ Dw, dwt + zt,l ≤ C, for 1 ≤ l ≤ µw − 1}

The problem in this case can be expressed as the following stochastic dynamic
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programming formulation.

gt(x, d
r
t+L,d

w, dwt ) = Rt(zt, d
w
t ) +Rr

t (zt,L, d
r
t+L)−H(zt, d

w
t ) + αEft+1(x+, d

w
+)

ft(x,d
w) = max

drt+L,d
w
t ∈A(d)

gt(x, d
r
t+L,d

w, dwt )

Corollary 7.1 partially characterizes the optimal policy with bounded sensitivity when

4µ ≥ L.

Corollary 4.1. (i) In the case with 4µ ≥ L, the functions gt(x, d
r
t+L,d

w, dwt ) and

ft(x, d
w) are anti-multimodular in (x, drt+L,d

w, dwt ) and (x, dw), respectively

for each t ∈ {1, · · · , T}.

(ii) dw∗t and dr∗t+L are nonincreasing in (x, dw). Moreover,

− 1 ≤ 4xt−4µ+L−1
dr∗t+L ≤ 4xt−4µ+L−2

dr∗t+L ≤ · · · ≤ 4xt−µw+1
dr∗t+L ≤ 0

− 1 ≤ 4dwt−4µ+L
dr∗t+L ≤ 4dwt−4µ+L+1

dr∗t+L ≤ · · · ≤ 4dwt−1
dr∗t+L ≤ 0

− 1 ≤ 4dwt−1
dw∗t ≤ 4dwt−2

dw∗t · · · ≤ 4dwt−4µ+L
dw∗t ≤ · · ·4xt−µw+1

dw∗t ≤ 0

Different from the former case, dw∗t in this case is most sensitive to the last walk-in

demand dwt−1 and most insensitive to the leased amount xt−µw+1 which is about to

return in the next period. While drt+L is most sensitive to xt−4µ+L−1 and dwt−4µ+L and

most insensitive to xt−µw+1 and dwt−1. The reason behind this is that when 4µ > L,

the system state is represented by moving the vector of reserved demands by 4µ

periods earlier, so drt+L is most sensitive to the leased amount dwt−4µ+L−1 +drt+L−1 and

dwt−4µ+L, and dw∗t is most sensitive to the recent walk-in demand.
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4.5.2 0 < 4µ < L

In these two cases, the system state becomes to

x =(xt−µw+1, · · · , xt−4µ−1, xt−4µ, · · · , xt−1)

=(xt−µw+1, · · · , xt−4µ−1, d
w
t−4µ + drt , · · · , dwt−1 + drt+4µ−1),

and dr = (drt+4µ, · · · , drL−1). The system dynamics are

(x+, d
r
+) = (xt−µw+2, · · · , xt−1, d

w
t + drt+4µ, d

r
t+4µ+1 · · · , drt+L).

In this case, zt,l becomes to

zt,l =


∑µw−1

j=l+1 xt−µw+j +
∑l

k=0 d
r
t+k, 0 ≤ l < L ∧ µw∑µw−1

j=L+1 xt−µw+j +
∑L−1

k=(L−µr+1)+ drt+k, l = L

Note that the inventory level at period t+ L, zt,L, is different from the former cases.

The capacity constraints for dwt and drt+L are given as follows.

A(d) = {(x, dwt ,dr, drt+L)|dwt ∈ Dw, dwt + zt,l ≤ C, for 1 ≤ l < L ∧ µw,

drt+L ∈ Dr, drt+L + zt,L ≤ C};

The objective functions are the same as Eq.(4.1,4.2). Corollary 7.2 partially charac-

terizes the optimal policy with bounded sensitivity when 0 < 4µ < L.

Corollary 4.2. (i) In the cases with 0 < 4µ < L, the functions gt(x, d
w
t ,d

r, drt+L)

and ft(x, d
r) are anti-multimodular in (x, dwt ,d

r, drt+L) and (x, dr), respectively

for each t ∈ {1, · · · , T}.
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(ii) dw∗t and dr∗t+L are nonincreasing in (x, dr). Moreover,

− 1 ≤ 4xt−1d
w∗
t ≤ 4xt−2d

w∗
t ≤ · · · ≤ 4dwt−µw+1

dw∗t ≤ 0

− 1 ≤ 4drt+4µ
dw∗t ≤ 4drt+4µ+1

dw∗t ≤ · · · ≤ 4drt+L−1
dw∗t ≤ 0

− 1 ≤ 4drt+L−1
dr∗t+L ≤ 4drt+L−2

dr∗t+L · · · ≤ 4drt
drt+L ≤ · · ·4xt−µw+1

dr∗t+L ≤ 0

In this case, dw∗t is most sensitive to the leased containers of last period xt−1

and the reserved demand of period t +4µ. The positivity of 4µ results in moving

the vector dr by 4µ periods earlier in the system state. dr∗t+L is most sensitive to

the recent reserved demand and insensitive to the oldest leased amount at period

t− µw + 1.

4.5.3 4µ < 0

The system state is slightly different from the system state in Section 4.3. Let

x = (xwt−µw+1, · · · , xwt−1) = (dwt−µw+1, · · · , dwt−1) and dr = (drt , d
r
t+1, · · · , drt+L−1). Due

to the longer lease duration of reserved customers, it should keep dwt as one dimension

in the system state. The system state of period t can be represented by (x,dr) and

the system dynamics are

(x+, d
r
+) = (dwt−µw+2, · · · , dwt−1, d

w
t , d

r
t , d

r
t+1, · · · , drt+L−1, d

r
t+L).

In this case, zt,l becomes to

zt,l =


∑µw−1

j=l+1 xt−µw+j +
∑l

k=0 d
r
t+k, 0 ≤ l < L ∧ µw∑µw−1

j=L+1 xt−µw+j +
∑L−1

k=(L−µr+1)+ drt+k, l = L

The capacity constraints and the objective functions are the same as in Case 0 <

4µ < L. Corollary 7.3 partially characterizes the optimal policy with bounded
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sensitivity when 4µ < 0.

Corollary 4.3. (i) In the case with 4µ < 0, the functions gt(x, d
w
t ,d

r, drt+L) and

ft(x, d
r) are anti-multimodular in (x, dwt ,d

r, drt+L) and (x, dr), respectively for

each t ∈ {1, · · · , T}.

(ii) dw∗t and dr∗t+L are nonincreasing in (x, dr). Moreover,

− 1 ≤ 4dwt−1
dw∗t ≤ 4dwt−2

dw∗t ≤ · · · ≤ 4dwt−µw+1
dw∗t ≤ 0

− 1 ≤ 4drt
dw∗t ≤ 4drt+1

dw∗t ≤ · · · ≤ 4drt+L−1
dw∗t ≤ 0

− 1 ≤ 4drt+L−1
dr∗t+L ≤ 4drt+L−2

dr∗t+L · · · ≤ 4drt
drt+L ≤ · · ·4dwt−µw+1

dr∗t+L ≤ 0

In this case, dw∗t is most sensitive to the walk-in demand of last period dwt−1 and

the reserved demand of current period drt instead of drt and drt+1 in Section 4.3. The

longer lease duration µr actually postpone the vector dr by 4µ periods later in the

system state. dr∗t+L is most sensitive to the recent reserved demand and insensitive to

the oldest walk-in demand.

In a word, when 4µ < 0, the vector dr moves 4µ periods later in the system

state; while when 4µ > 0, the system state dr moves 4µ periods earlier in the

system state. Especially when 4µ ≥ L, the reserved demand vector is drown in the

past walk-in demand vector and dwt is the last returned amount in the system state

on the point of current period t.

4.6 Summary

This part studies the dynamic pricing problem of a container leasing company

with two customer types, reserved customers and walk-in customers. We show that

the objective function is anti-multimodular and the optimal pricing is nonincreas-

ing in the system state with bounded sensitivity. Further, we propose an effective
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heuristic to obtain myopic pricing policies to the dynamic pricing problem. Last,

we partially characterize the optimal policies under different lease durations of two

customer types.
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CHAPTER 5

Conclusion

This dissertation addresses three monopolist’s dynamic pricing problems based on

the characterization of customers in the context of container leasing industry. First,

customers are categorized by their hire time preference or hire quantity preference.

We apply the mechanism design method to derive the optimal closed-form solution for

customers with hire time preference. The capacity constraints and dynamic arrivals

have different effects for customers with same/different hire time preference(s). Sec-

ond, customers with unit capacity request are grouped by the lead time. We utilize

the continuous-time Markov decision process to analyze the problem and derive the

optimal allocation and pricing policy. There exists a state dependent rationing and

nondecreasing posted pricing policy. Last we classify customers with multiple units

of capacity request by lead time. Employing the concept of anti-multimodularity,

we partially characterize the optimal policies under same/different lease duration(s)

and show that the optimal policies are nonincreasing in the system state and have

bounded and monotone sensitivity.

One future research direction is including the competition effect into the mod-

el. The competition contains peer competition and downstream competition. Peer

competition refers to the small number of major leasing companies. The container

leasing industry is an oligopoly and such situation remains 20 or 30 years. Compe-
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tition among peer leasing firms relies on many factors such as lease rate, lease term,

availability, drop-off restrictions and repair provisions and customer service. Down-

stream competition relates to the decision by shipping lines to buy their containers

rather than leasing containers. Shippers may choose to purchase containers consid-

ering world trade and economic growth, the price of new containers, fluctuations in

interest rates and etc. Competition is another crucial element to be incorporated in

the pricing determination.

The capacity extension could also be included in the model. In the current stage,

we assume that capacity is fixed in the planning horizon. In practice, the leasing firm

purchases new containers from manufacturers quarterly according to the demand,

supply and the average age of current fleet. Besides the expansion of new containers,

it is also possible to transship some idle containers from low-demand areas to high-

demand areas.

Another future research direction for dynamic nonlinear pricing problem is the

multidimensional screening problem under contemporaneous and dynamic arrivals.

In the operating lease practice, master lease provides a master framework pursuant

to which lessees can lease containers on an as-needed basis based on the price. It

would be interesting to further study how the hire quantity and hire time influence

each other through the pricing decision and the effect of capacity constraint and

dynamic arrivals over time.
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