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Abstract

A genomic signal track is a set of genomic intervals associated with values of

various types, such as measurements from high-throughput experiments. Anal-

ysis of signal tracks requires complex computational methods, which often make

the analysts focus too much on the detailed computational steps rather than on

their biological questions.

This thesis presents Signal Track Analytical Research Tool (START) and

Signal Track Query Language (STQL) for easy analysis of signal tracks. STQL

is an SQL-like declarative language, which means one only specifies what com-

putations need to be done but not how these computations are to be carried

out. STQL provides a rich set of constructs for manipulating genomic intervals

and their values. To run STQL queries, we have developed the Signal Track

Analytical Research Tool (START), a MapReduce-based system that includes a

Web-based user interface and a back-end execution system.

By running some typical analyses tasks, we show that the START+STQL

solution is usually the simplest, and the parallel execution achieves significant

speed-up with large data files.
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Chapter 1

Introduction

The rapid development of new applications of high-throughput sequencing

and the sharp reduction in cost have made it common to produce large amounts

of sequencing data that measure a variety of biological signals in a single study.

For instance, large-scale disease studies can involve the sequencing of hundreds or

even thousands of disease and control samples [55]. Major collaborative projects

such as ENCODE [56] and Roadmap Epigenomics [48] have performed tens of

thousands of high-throughput sequencing experiments that survey the genomes,

transcriptomes and epigenomes of a large number of samples, creating rich and

complex sets of data.

After standard data processing, sequencing data are commonly represented

as signal tracks. A signal track is a set of genomic intervals each associated with

a signal value. Depending on the analytical needs, the intervals can be defined

in various ways. For example, when the data from a ChIP-seq experiment are

represented as a signal track, at the basic level, each interval corresponds to a

1
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single genomic location and the associated value is the number of aligned reads

that cover the location. At the next level, one could use the distribution of signal

values to define signal peaks, and consider each peak as an interval with a fixed

value of one (which means “present”) or a value that indicates the enrichment

score of the peak as compared to control. One could also use a gene annotation

set to define intervals of interest (e.g., promoters), and compute the average

number of covering reads at each interval as its signal value. In each of these

three cases, the ChIP-seq data are represented by a signal track. The generality

of representing high-throughput sequencing data by signal tracks is exemplified

by its prevalent use in genome browsers for displaying many types of sequencing

data.

Figure 1.1 shows a screenshot of UCSC genome browser [13]. It displays

the detailed information for a region of DNA of chromosome 21. Each track

is represented by a horizontal line. Some tracks such as UCSC genes, RefSeq

genes only show the gene locations while some such as Layered H3K27AC shows

the signal values. Single nucleotide polymorphism(SNP) genes are also showed

in this figure. Each track is an interval set which particularly describes the

information about different regions of the DNA. From the figure, we can see that

every displayed item in a track spans a series of continuous positions of the DNA

sequence. These items are the genomic intervals we will process.

Signal track data are obtained from DNA sequencing. More and more DNA

sequencing data means we can extract more signal track data. Figure 1.2 shows

the increase of DNA sequencing data every year. The left axis shows the total

number of human genomes sequenced and the right axis shows the annual se-

quencing capacity in the world. The 1000 Genomes Project [23], TCGA [20],
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Figure 1.1: UCSC genome browser example

ExAC [7] are representative projects that aim for different sequencing goals.

Analysis of signal tracks usually involves multiple steps. Typical operations

at each step include a selection of intervals based on certain criteria, comparison

of intervals from the same or different tracks, and aggregation of multiple intervals

to form new intervals. There are software tools for particular types of operation,

and pipelines can be set up by writing scripts that invoke the different tools and

convert the outputs of one tool into the inputs of another.

As the volume and complexity of signal track data have both increased dra-

matically in recent years [62], this paradigm of data analysis is facing several

challenges. First, many existing tools have a fixed set of functions. When they

do not exactly match the needs of an analytical pipeline, one would need to

modify a tool or implement a new one. Second, pipelines are usually developed

in an imperative language. Researchers are required to specify the detailed com-

putational steps, which could distract him/her from focusing on the biological
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Figure 1.2: Growth of DNA Sequencing [62]

questions. Third, in order to perform analysis efficiently, a researcher needs to de-

cide on proper data structures, algorithms, and parallel execution environments,

which impose a strong requirement on his/her computational backgrounds.

With a goal of providing a single platform that can support a large variety

of analytical needs, in this thesis we describe the Signal Track Query Language

(STQL) that we specifically designed for signal track data analysis. It is a declar-

ative language with a syntax similar to the Structured Query Language (SQL)

commonly used in relational database systems, which makes STQL easy to learn.

Users only need to specify what operations they want to perform using some

high-level constructs, but not the detailed steps of how these operations are to

be performed, thereby allowing them to focus on the analytical goals rather than

the technical details.

We have also implemented a system based on MapReduce [2] for executing

STQL queries called Signal Track Analytical Research Tool (START, http://yiplab.

cse.cuhk.edu.hk/start/). It contains a Web interface that guides users to con-
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struct STQL queries and provides example queries for various types of data

analysis. At the back end, the submitted queries are automatically translated

into executable programs, which are then run on a cluster of machines in par-

allel. START provides a variety of pre-loaded public data that facilitate inte-

grated analysis of both public and private data, including data from ENCODE,

RoadMap Epigenomics, FANTOM5 [16], and other sources. START also pro-

vides storage for both users’ data files and executed queries, allows sharing of

queries among users, and contains features for protecting security and data pri-

vacy. Users who want to execute STQL queries locally on their own machines

can download our installable package, which comes with a detailed installation

guide.

During the system implementation, other related research problems arose.

Interval join is an important operation on interval data in START in order to

associate related intervals. It is like Theta-join [44], in which a pair of intervals

must satisfy the join condition to output possible results. Closest interval join

is a join operation between two interval sets, which can be described as follows.

Given two sets of intervals R and S, the closest interval join of R against S

means, for each r ∈ R, find all the intervals in S that are closest to r. r’s closest

intervals from S means among all the intervals of S, there are some intervals

which have the minimum distance between it and r. The distance between

two intervals is defined by the minimum length expansion such that these two

intervals can intersect with each other. If two intervals have already intersected,

their distance is 0.

To improve the efficiency of START, we studied the closest interval join
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operation in detail and proposed a new MapReduce algorithm to handle it.

To summarize, our main contributions include:

• Considering the engineering implementation efficiency and common users’

habits, we proposed STQL to help users express the complex tasks involved

in signal track analysis, which make it much easier for them to finish the

tasks.

• To support STQL and massive signal track data, we designed and imple-

mented a MapReduce-based system, START, to store, retrieve and com-

pute these signal track data.

• To optimize an important join operator for signal track data analysis, we

proposed a novel MapReduce algorithm. Experiments with both of the real

and synthetic data show its performance efficiency comparing with other

approaches.

The remainder of this thesis is organized as follows: Chapter 2 introduces

some existing systems which handle genomic data and large scale data processing

systems. Chapter 3 presents the detail design and implementation of STQL and

START. Chapter 4 presents the novel MapReduce algorithm to handle the closest

interval join operation in START. This work has been published in [64]. Chapter

5 concludes the thesis.



Chapter 2

Background

It has been a long history for bioinformaticians to build the corresponding

system to do genomic data analysis, and it is more popular to do the comprehen-

sive analysis of genomic data in academic and clinical research contexts in recent

years [22]. With the rapid growth of genomic data [8], it is natural to consider

storing and processing genomic data with modern large scale data processing

system. So we first introduce some traditional genomic data processing systems

and then some new emerging large scale data processing systems.

2.1 Genomic Data Analysis System

Data visualization can facilitate the ability of humans to absorb and un-

derstand information. In order to satisfy this requirement, some web-based pro-

grams were built which allow users to view genomic data, especially human

genome graphically. Three major browsers are developed in this area: UCSC

7
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genome browser [13], Ensembl [6] and MapViewer [12].

UCSC genome browser is an interactive website for users to access genome

sequence data. It uses MySQL as the back-end database system to store all

the genomic data and is optimized to support fast interactive performance. To

speed up the interaction when performing the queries, some indexes are created.

The goal of Ensembl is to automatically annotate the genome, integrate this

annotation with other available data and make all of them publicly available

via the web. It has integrated source of genome annotations for many different

species. It also provides APIs for users to access. Map Viewer allows users to

view and search organism’s complete genome, display chromosome maps and

zoom into progressively greater levels of details, down to the sequence data for

a region of interest. Another similar tool is Integrative Genomics Viewer [10].

InterMine [11] is an open source data warehouse built specifically for the

integration and analysis of complex biological data. It uses PostgreSQL as the

back-end database system. It provides a Parser that can integrate data from

many common biological data sources and formats. In addition to that, it pro-

vides a framework to add user’s data. Moreover, it has a built-in attractive,

user-friendly web interface that works ‘out of the box’ and can be easily cus-

tomized.

Galaxy [32] is another popular web-based genome analysis system. Similar

to other systems, it can allow users to upload their own data and apply various

computational tools to analyze the data. Most of the computational tools are

standalone tools written with python or C++, and the Galaxy developer can

easily upgrade these tools without changing the UI. The most useful feature of
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Galaxy is that it can record each procedure applied to the data, so it is very

convenient for users to share the data and the whole workflow with other users.

BEDTools [5] is a powerful toolset for genomic arithmetic. These tools

can allow a user to intersect, merge, count, complement and shuffle genomic

intervals from multiple files in widely-used genomic file formats such as BAM,

BED, GFF/GTF, VCF. They are UNIX-style command line tools, so users have

to specify all parameters from the command line to manipulate them. Each tool

is designed to finish a relatively simple task, so users need to think out their own

workflow carefully to combine multiple tools.

2.2 Large Scale Data Processing System

MapReduce [26] is a popular programming model for large scale data storing

and processing. It breaks a program into a map and a reduce function. All of

the data are represented by key-value pairs during the whole program. Multiple

machines can apply the same map function to different parts of the input data

and generate key-value pairs as the intermediate results. The intermediate results

are first grouped and then shuffled to different machines according to the keys

through the network. Multiple machines can apply reduce function concurrently

on the intermediate results to compute the final results.

Hadoop [2] is a typical implementation of MapReduce. It uses HDFS [52]

to store large data. JobTracker and TaskTracker are designed to control the

map and reduce task. As the intermediate result are serialized to local hard disk

before being shuffled, Hadoop provides excellent fault tolerance.
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To improve the speed of Hadoop, Spark [4] is designed to support in-memory

processing. All of the intermediate results are stored and processed in memory.

The core of Spark is a data structure called the resilient distributed dataset

(RDD). It is a read-only multi-set of data items distributed over a cluster of

machines, and it can also provide fault tolerant function.

In order to make it much easier for a common user to express the analytical

task, Hive [57] is designed as a data warehousing infrastructure built on top of

MapReduce. It supports an SQL-like language called HiveQL and translates it

into MapReduce jobs. Pig [3] is also a large scale data analysis platform built

on top of MapReduce. Unlike Hive, Pig offers a textual language called Pig

Latin [45], which has advantages such as ease of programming, opportunities for

optimization and extensibility. Pig also translates the job expressed with Pig

Latin into MapReduce jobs at the end.



Chapter 3

Signal Track Analytical

Research Tool(START) ∗

In this chapter, we first describe the constructs of the SQL-like language

STQL, then introduce its back-end system START, finally we present example

queries and the comparison with other approaches.

3.1 Data Model

Our data model is very similar to relational data model [21]. The relational

data model is based on a relation or a table. A tuple or a row contains all the data

of a single instance of the table. A column identifies an attribute. An attribute

value has a type of that attribute. In addition to support basic attribute types

∗This is a joint work with Xinjie Zhu. I am responsible for the system design, implementation,
verification and all the experiments.

11
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such as integer, string, float point number, we proposed an interval data type

to represent DNA segment and track which is table-like that contains a set of

intervals.

An interval is a compound data type, which contains several fields:

• chr: It indicates the chromosome to which a DNA segment belongs. The

type is string, the value is like “chr1”, “chr2”.

• chrstart: It indicates the start position (inclusive) of the DNA segment.

The type is integer.

• chrend: It indicates the end position (inclusive) of the DNA segment. The

type is integer.

• value: It is a value associated with the DNA segment. The type is float

point number. The value can be obtained by different interpreting of the

DNA segment.

• strand: DNA has double helix structure, so this field indicates on which

strand the DNA segment is. The type is string. The value can be “+”, “-”

or “.”. “+” or “-” indicates the two strands respectively, “.” means don’t

know or don’t care which strand it is on.

• other metadata: There are also other optional information to describe fea-

tures of the DNA segment. For example, a source field indicates which

program generated the information.

In most cases, a DNA segment can be expressed with an interval type like this

[chr, chrstart, chrend ] or [chr, chrstart, chrend, strand ] if we care which strand
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it is from.

Track is like a table, and it is a set of meaningful DNA segments. For

example, SNPs can be considered a track which contains SNP intervals.

3.2 Basic constructs in STQL

The formal grammar of STQL is given in Appendix B . Basically, each

STQL query contains three main parts, namely a SELECT clause for specifying

interval attributes to be included in the results, a FROM clause for the signal

tracks to query from, and an optional WHERE clause for criteria for filtering

intervals. For example, the following query returns all attributes of the intervals

on chromosome 1 from a signal track T:

SELECT *

FROM T

WHERE T.chr = ’chr1’;

3.2.1 The SELECT clause

The SELECT clause includes a comma-separated list of attributes of the

queried intervals to be returned. Each interval contains four mandatory at-

tributes, namely its chromosome (‘.chr’), starting position (‘.chrstart’, one-based

inclusive), ending position (‘.chrend’, inclusive), and value (‘.value’). Each sig-

nal track can define any number of additional attributes for its intervals. For

example, a .strand attribute can be defined to contain the strand of each in-

terval, with values ‘+’, ‘−’ and ‘.’ for the positive strand, negative stand, and
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don’t care/not available, respectively. STQL also supports other syntactic con-

structs commonly used in the SELECT clause of SQL, such as the DISTINCT

keyword for removing duplicates, standard arithmetic operations, and the AS

keyword for renaming attributes. As in SQL, if the signal track from which an

attribute comes is unambiguous, the attribute can be listed without stating the

track name. For example, the following query returns the set of distinct interval

lengths for the intervals in a track T:

SELECT DISTINCT chrend − chrstart + 1 AS len

FROM T;

Since interval lengths are commonly queried in analysis tasks, STQL also

defines a short-hand (“syntactic sugar”) for it, allowing the above query to be

written in a simpler form:

SELECT DISTINCT length(T) AS len

FROM T;

3.2.2 The FROM clause

The FROM clause contains a comma-separated list of signal tracks to query

from. Each listed track can be an existing signal track in the database, a nested

query (described below), or a track dynamically generated using one of the track

operations to be described in the section on advanced constructs.

In STQL, conceptually a Cartesian product of the listed tracks is performed

in a chromosome-by-chromosome manner, since intervals from different chromo-

somes are seldom directly compared. For example, suppose we have the following

two tracks T1 and T2:
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T1 T2

chr chrstart chrend value chr chrstart chrend value

chr1 101 200 10 chr1 401 500 40

chr1 201 300 20 chr2 501 600 50

chr2 301 400 30 chr3 601 700 60

Suppose the following query is issued to identify all pairs of intervals on the

same chromosome from the two tracks:

SELECT T1.chr, T1.chrstart, T1.chrend, T1.value,

T2.chr AS chr2, T2.chrstart AS chrstart2,

T2.chrend AS chrend2, T2.value AS value2

FROM T1, T2;

The query results will be as follows:

chr chrstart chrend value chr2 chrstart2 chrend2 value2

chr1 101 200 10 chr1 401 500 40

chr1 201 300 20 chr1 401 500 40

chr2 301 400 30 chr2 501 600 50

The results do not involve any intervals from chromosome 3, because T1 does

not contain any interval on this chromosome. One could also use LEFT JOIN,

RIGHT JOIN and OUTER JOIN to include intervals on chromosomes that ap-

pear only in the first, second or either of the two joining tracks. For example,

suppose RIGHT JOIN is used in the previous query:
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SELECT T1.chr, T1.chrstart, T1.chrend, T1.value,

T2.chr AS chr2, T2.chrstart AS chrstart2,

T2.chrend AS chrend2, T2.value AS value2

FROM T1 RIGHT JOIN T2 ON T1.chr=T2.chr;

Then the query results will be as follows:

chr chrstart chrend value chr2 chrstart2 chrend2 value2

chr1 101 200 10 chr1 401 500 40

chr1 201 300 20 chr1 401 500 40

chr2 301 400 30 chr2 501 600 50

NULL NULL NULL NULL chr3 601 700 60

In our actual implementation, more efficient algorithms are used to avoid

performing the costly Cartesian product.

As in SQL, if a signal track T appears in the FROM clause, writing T.chr

means the chromosome of an instance (i.e., an interval) on track T. To make the

meaning of the query clearer, one could give an alias to each track by appending

the alias after the track name in the FROM clause. For instance, the interval

length example given above can also be written as follows:

SELECT DISTINCT length(TInt) AS len

FROM T TInt;

By using the alias TInt, it is clear that the query returns the lengths of the

intervals in the signal track as its results. We recommend adding aliases in this

way since the resulting queries are easier to understand, but syntactically the

aliases are not mandatory.



CHAPTER 3. SIGNAL TRACK ANALYTICAL RESEARCH TOOL 17

3.2.3 The WHERE clause

The WHERE clause contains a logical expression that specifies which in-

tervals should be kept in the results. The logical expression can be composed

of primitive expressions joined together by standard logical operators AND, OR

and NOT. As in SQL, each primitive expression can involve a mathematical

equality or inequality (e.g., length(TInt) < 1000). In addition, since in many

analysis tasks, different genomic intervals are compared to determine the ones to

be included in the final results, a list of common relations are defined in STQL

to express the positional relationships among intervals. Table 3.1 lists the formal

definitions of these interval relations, and provides an example use of each rela-

tion. If additional relations are needed in a certain task, they can be constructed

in STQL queries using the primitive constructs.

The input intervals of these relations can be intervals selected from a sig-

nal track or constant intervals specified in the format “[<chr>, <chrstart>,

<chrend>]” such as “[chr1, 100, 200]”.

Among these interval relations, is upstream of and is downstream

of have the most complex definitions since they involve strand information. As

in the usual sense, one can define an interval I1 to be upstream/downstream of

another interval I2 only if the strand of I2 is known and the strand of I1 is either

the same as I2 or is not available.

Since it is common to analyze genomic distances, there is also a function

distance() defined in STQL for computing the distance between two genomic

intervals in the WHERE clause:
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Relation Definition Example use
I1 coincides
with I2

I1.chr = I2.chr and
I1.chrstart = I2.chrstart and
I1.chrend = I2.chrend

Finding genomic bins with positive
signals in two replicated experiments

I1 overlaps
with I2

I1.chr = I2.chr and
I1.chrstart ≤ I2.chrend and
I1.chrend ≥ I2.chrstart

Counting the number of sequencing
reads that overlap with each promoter

I1 contains I2 I1.chr = I2.chr and
I1.chrstart ≤ I2.chrstart and
I1.chrend ≥ I2.chrend

Finding transcription factor binding
sites that contain single nucleotide
variants

I1 is within I2 I1.chr = I2.chr and
I1.chrstart ≥ I2.chrstart and
I1.chrend ≤ I2.chrend

Checking if a gene is within a certain
haplotype block

I1 is adjacent
to I2

I1.chr = I2.chr and
(I1.chrend + 1 = I2.chrstart or
I1.chrstart − 1 = I2.chrend)

Finding the flanking exons of an intron

I1 is prefix
of I2

I1.chr = I2.chr and
I1.chrstart = I2.chrstart and
I1.chrend ≤ I2.chrend

Finding the first exon of each gene on
the positive strand

I1 is suffix
of I2

I1.chr = I2.chr and
I1.chrstart ≥ I2.chrstart and
I1.chrend = I2.chrend

Finding the first exon of each gene on
the negative strand

I1 precedes I2 I1.chr = I2.chr and
I1.chrend < I2.chrstart

Ordering intervals on the same chro-
mosome

I1 follows I2 I1.chr = I2.chr and
I1.chrstart > I2.chrend

Ordering intervals on the same chro-
mosome

I1 is upstream
of I2

I1.chr = I2.chr and
((I2.strand = ‘+’ and I1.strand = ‘+’ and I1
precedes I2) or
(I2.strand = ‘+’ and I1.strand = ‘.’ and I1 pre-
cedes I2) or
(I2.strand = ‘−’ and I1.strand = ‘−’ and I1 fol-
lows I2) or
(I2.strand = ‘−’ and I1.strand = ‘.’ and I1 fol-
lows I2))

Defining promoter regions

I1 is downstream
of I2

I1.chr = I2.chr and
((I2.strand = ‘+’ and I1.strand = ‘+’ and I1
follows I2) or
(I2.strand = ‘+’ and I1.strand = ‘.’ and I1 fol-
lows I2) or
(I2.strand = ‘−’ and I1.strand = ‘−’ and I1 pre-
cedes I2) or
(I2.strand = ‘−’ and I1.strand = ‘.’ and I1 pre-
cedes I2))

Finding sequence elements down-
stream of a sequence motif

Table 3.1: Relations defined in STQL for comparing intervals
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distance(I1, I2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I2.chrstart− I1.chrend if I1 precedes I2

0 if I1 overlaps with I2

I1.chrstart− I2.chrend if I1 follows I2

NaN if I1.chr �= I2.chr

One frequently used operation more difficult to define using the primitive

constructs is finding out the interval(s) closest to a given interval. In STQL, the

is closest to each relation is defined for this purpose, as shown in the following

example:

SELECT *

FROM T1 TInt1, T2 TInt2

WHERE TInt1 is closest to each TInt2;

In this example, for each interval in T2, we find its closest interval among all

intervals in T1. The result can contain zero intervals (if no intervals in T1 are on

that chromosome), one interval, or more than one interval (if multiple intervals

in T1 are of exactly the same closest distance from it).

3.2.4 Other optional clauses

Similar to SQL, STQL provides a GROUP BY clause for grouping intervals

and performing aggregations (COUNT(), SUM(), AVG(), MIN(), MAX(),

etc.) for each group, and an ORDER BY clause for ordering the selected in-

tervals. For example, the following query counts the number of intervals with

a value larger than 10 on each chromosome, with the resulting counts sorted in

ascending order:
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SELECT TInt.chr, COUNT(*) AS intervalcount

FROM T TInt

WHERE TInt.value > 10

GROUP BY TInt.chr

ORDER BY intervalcount;

The basic constructs described above are sufficient for many simple analyses.

On the other hand, some analyses can be more easily performed with the help

of additional constructs. We next describe these advanced constructs defined in

STQL.

3.3 Advanced constructs in STQL

3.3.1 Creating a new track from an existing track

In an analysis pipeline, it is common for an intermediate step to create small

intervals that can overlap or be adjacent to each other. These small regions are

subsequently merged into longer regions in later steps. For example, suppose

in an analysis step individual transcriptional enhancers are identified, and in

the next step the overlapping or adjacent enhancers are to be merged to form

potential super enhancers [60]. This type of operations can be performed by

using the coalesce operator, which can be used in the FROM clause with the

following syntax:

FROM coalesce T [with <vd> using <value-model>]

where T is the input track (the individual enhancers), and the optional

“with <vd> using <value-model>” part is for deriving the value of each re-

sulting interval based on the mathematical operation <vd> and value model
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<value-model>. STQL has a highly flexible design for value derivation that

distinguishes itself from other existing languages, the details of which will be

discussed shortly. The output of this operation is a new track that contains the

merged intervals. An illustration of the coalesce operator is given in Figure 3.1.

Complete query examples using coalesce and other advanced constructs will be

given later.

Track 1
I1 I3

I4
I6

I7I2
I5

Resulting Track

Ir1 Ir2 Ir3

Coalesce Track1

Note: I1..I7 are intervals in the input track that are allowed to overlap with or be adjacent
to each other, while Ir1..Ir3 are the non-overlapping, non-adjacent intervals in the resulting
track after the coalesce operation. Ir1 is formed by merging I1, I2, I3 and I4, which occupy a
contiguous block of genomic locations. Ir2 is formed by I5 alone, which does not overlap with
or is adjacent to any other input intervals. Ir3 is formed by merging I6 and I7.

Figure 3.1: An example that illustrates the coalesce operator

Another common operation for processing overlapping regions is to use their

boundary locations to define discrete intervals (Figure 3.2). This is useful when

the next analysis step requires all intervals to be non-overlapping, for example

when each genomic location should be classified as either within an interval

(such as a protein binding site) or not. In STQL, this type of operations can be

performed by using the discretize operator in the FROM clause:

FROM discretize T [with <vd> using <value-model>]
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Track 1
I1

I3

I5
I7I2
I6

Resulting Track

Ir1 Ir7 Ir9

Discretize Track1

I4

Ir2
Ir3

Ir4
Ir5

Ir6
Ir8

Note: I1..I7 are intervals in the input track that are allowed to overlap with each other, while
Ir1..Ir9 are non-overlapping intervals in the resulting track after the discretization operation.
Each resulting interval is defined by the boundary positions of some input intervals. For exam-
ple, Ir1’s starting position is the same as I1’s starting position, and its ending position is equal
to I2’s starting position minus one.

Figure 3.2: An example that illustrates the discretize operator

3.3.2 Creating a new track from two existing tracks

The FROM and WHERE clauses together allow for some basic joins of

multiple signal tracks. To make more advanced types of track joins easy to

perform, STQL provides convenient constructs for them.

In the first type of advanced track joins, a track T2 defines the positional

information of the resulting intervals and another track T1 defines their values

(Figure 3.3). This is most typically used when T2 corresponds to gene annota-

tions, T1 is a signal track of experimental values, and the goal is to compute an

aggregated signal value for each gene based on the experimental data. In STQL,

this type of operations is described as projecting T1 on T2 in the FROM clause:

FROM project T1 on T2 [with <vd> using <value-model>[,metadata]]

where the optional “metadata” part is for specifying whether non-default
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attributes of the input intervals are to be inherited by the resulting intervals,

which will be explained later.

It is often useful to partition the whole genome into bins of a fixed size, and

compute an aggregated signal value for each bin. By choosing a suitable bin size,

the signals are smoothed locally and some downstream tasks can be carried out

more efficiently due to the reduced data resolution and easily computable bin

locations. This binning operation can be performed in STQL by projecting a

signal track on a bin track dynamically created using the generate bins with

length construct in the FROM clause:

FROM project T on generate bins with length <bin-size> [with <vd> using

<value-model>[,metadata]]

where <bin-size> is the size of each bin in base pairs.

Two different signal tracks are usually compared to find out genomic lo-

cations covered by both tracks, one track but not the other, or either track.

STQL supports these operations by the intersectjoin , exclusivejoin and

UNION ALL constructs.

intersectjoin considers every pair of overlapping intervals from the two

input tracks, and takes their intersection as a resulting interval (Figure 3.4). It

can be used in the FROM clause:

FROM T1 intersectjoin T2 [with <vd> using <value-model>[,metadata]]

exclusivejoin considers every interval from the first input track, and re-

moves all parts of it that overlap any intervals in the second input track (Fig-

ure 3.5):



24 3.3. ADVANCED CONSTRUCTS IN STQL

Track 1

Track 2
I21

I11
I12

I13 I14

I22 I23

Resulting Track

Ir1 Ir2 Ir3

Project Track1 on Track2 with vd using each

.value = vd (v2, v3, v4)

.value = v1

.value = v2

.value = v3 .value = v4

.value = vd (v1, v2) .value = 0

Note: I11..I14 are intervals in input track 1, I21..I23 are intervals in input track 2, while Ir1..Ir3
are intervals in the resulting track after the projection. The locations of the intervals in the
resulting track are directly from the intervals in input track 2. The value of Ir1 is determined
by the values of I11 and I12 since they are the ones that overlap with I21. The exact way of
computing the value depends on the mathematical operator and the value model (which we
use vd(v1, v2) here to mean the computation based on the values from intervals I11 and I12).
Similarly, the value of Ir2 is determined by the values of I12, I13 and I14 since they are the
intervals that overlap with I22. Since I23 does not overlap with any intervals in track 1, it does
not receive any value from track 1 but is instead given the default value of 0.

Figure 3.3: An example that illustrates the project on operator

Track 1

Track 2
I21

I11 I12
I13

I14

I22 I23

Resulting Track

Ir1 Ir2
Ir3

Ir4

Track1 intersectjoin Track2

Note: I11..I14 are intervals in input track 1, I21..I23 are intervals in input track 2, while Ir1..Ir4
are intervals in the resulting track after the intersect-join. I11 and I21 each produces only one
resulting interval (Ir1 and Ir2 respectively) because they only overlap with I21. I13 produces two
resulting intervals (Ir3 and Ir4) because it overlaps with both I21 and I22. I14 does not produce
any resulting interval because it does not overlap with any intervals in track 2.

Figure 3.4: An example that illustrates the intersectjoin operator
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FROM T1 exclusivejoin T2 [with <vd> using <value-model>[,metadata]]

Track 1

Track 2
I21

I11 I12
I13

I14

I22
I23

Resulting Track

Ir1 Ir2 Ir3 Ir4

Track1 exclusivejoin Track2

Note: I11..I14 are intervals in input track 1, I21..I23 are intervals in input track 2, while Ir1..Ir4
are intervals in the resulting track after the exclusive-join. The whole interval of I11 remains to
become Ir1 in the resulting track, because it does not overlap with any interval in track 2. In
contrast, the whole interval of I12 is not included in the resulting track, because it is completely
covered by I21 and I22. For I13, the part of it not covered by I22 becomes interval Ir2 in the
resulting track. Finally, I14 is being cut by I23 into two intervals Ir3 and Ir4 in the resulting
track.

Figure 3.5: An example that illustrates the exclusivejoin operator

Finally, UNION ALL forms a new track that keeps all intervals from the two

input tracks without removing duplicates. It can be used to join the resulting

tracks of two queries. Since the result of UNION ALL is also a signal track, it

can be repeatedly applied to join the resulting track with another signal track.

For example, the following query takes the union of three signal tracks to form

a new track (where the alias NtInt stands for “new track interval”):
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SELECT *

FROM (

SELECT * FROM T1

UNION ALL

SELECT * FROM T2

UNION ALL

SELECT * FROM T3) NtInt;

3.3.3 Value derivation and inheritance of metadata

All advanced constructs described above allow the derivation of values for

the resulting intervals. Having a flexible way to manipulate interval values is

crucial to many types of analysis. In STQL, two value models are used for

interpreting and deriving signal values. In the EACH MODEL, each genomic

location within an interval is considered to individually own the signal value

of the interval. For example, if signal values represent exact raw read counts,

an interval having a certain value means that every genomic location in the

interval is covered by that number of reads. On the other hand, in the TOTAL

MODEL, all genomic locations within an interval is considered to collectively

own the signal value of the interval. For example, if a gene is represented by an

interval, and its value indicates its expression level, all genomic locations of the

gene collectively own the expression value.

For STQL operations that involve the creation of intervals described above,

the value of each resulting interval is determined by the specified value model

and mathematical operation. In general, the value of each resulting interval is

derived in three steps:
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1. For each interval in the input tracks, the signal value at each of its genomic

locations is determined.

2. For each interval in the resulting track, the signal value at each of its

genomic locations is computed based on the values at the same location of

the input intervals computed in Step 1.

3. For each interval in the resulting track, a final value is computed by aggre-

gating the values of its genomic locations computed in Step 2.

For Step 1, if the EACH MODEL is used, the value at each genomic

location is simply the value of the corresponding interval. On the other hand, if

the TOTAL MODEL is used, each genomic location is given an equal share of

the value of the interval.

Step 2 depends on the exact STQL operation being performed, the details

of which will be explained next.

Step 3 computes the average over all values of the genomic locations within

the resulting interval.

For example, suppose in Figure 3.4 every interval in the two input tracks has

value 1, and the two tracks are joined using the intersectjoin construct with

the vd sum operation, which adds up values from different intervals location by

location in Step 2 of value derivation. If the EACH MODEL is used, the values

of Ir1, Ir2, Ir3 and Ir4 will all be 2. This is because in Step 1, every genomic

location of the input intervals receives a value of 1; In step 2, every genomic

location of the resulting intervals is given a value of 1+1=2; In Step 3, since

every location in each resulting interval has the same value, taking the average
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will give the same value of 2.

On the other hand, if the TOTAL MODEL is used, the values of the

resulting intervals will depend on the lengths of the intervals. For example, the

value of Ir1 will be I11.length(I11) + I21.length(I21), since the two fractional

values are respectively given to each genomic location of I11 and I21 in Step 1,

and Steps 2 and 3 are similar to the case for the EACH MODEL.

STQL operation
coalesce
discretize
project on

intersectjoin exclusivejoin

Values involved v1...vn v1, v2 v1

vd sum
∑n

i=1 vi v1 + v2 N/A

vd avg
∑n

i=1 vi
n

(v1 + v2)/2 N/A
vd diff N/A v1 − v2 N/A
vd product

∏n
i=1 vi v1 × v2 N/A

vd quotient N/A v1 ÷ v2 N/A
vd max maxn

i=1 vi max(v1, v2) N/A
vd min minn

i=1 vi min(v1, v2) N/A
vd left N/A v1 v1
vd right N/A v2 N/A

Note: Starting from the third row, the first column shows the names of these mathematical
operations that can be used in the <vd> placeholders in statements involving coalesce,
discretize , project on , intersectjoin and exclusivejoin . These mathematical
operations are used in Step 2 of value derivation. The second row defines the values involved
in the operations. In the case of intersectjoin , exactly two values are involved, namely
v1 from the first track and v2 from the second track. In the case of exclusivejoin , exactly
one value is involved, namely v1 from the first track. In the case of coalesce , discretize
and project on , all values come from the same track and there can be one or more
values involved. N/A indicates mathematical operators that cannot be used with the STQL
operations.

Table 3.2: The full list of mathematical operations in STQL

Table 3.2 shows the full list of mathematical operations in STQL and how

the value of each genomic location of the resulting interval is computed in Step 2.

The operations provided include 1) arithmetic operations (summation, averaging,

subtraction, multiplication and division), 2) maximum and minimum function,
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and 3) direct copying of values from the interval from input track 1 or track 2.

For intersectjoin , each resulting interval is formed by exactly two intervals

one from each input track, and thus all nine types of operation are well-defined.

For exclusivejoin , each resulting interval is formed by one interval from the

first input track and zero, one or more intervals from the second track. Only

the unary operator vd left is applicable. For coalesce and discretize , only

one track is involved, while for project on , all values come from track 1. For

these three constructs, each resulting interval can be formed by one, two or more

than two input intervals. Without a defined order of these intervals, the vd diff,

vd quotient, vd left and vd right operations cannot be defined and are thus

not allowed.

If the value model and mathematical operation are not specified, the result-

ing intervals will be given the value NULL.

Each interval may contain additional attributes that are called metadata,

such as the name of a gene and the confidence score of a signal peak. For some of

the interval-creating constructs, these metadata can be inherited from the input

intervals to the resulting intervals using “metadata”. For project on , the

metadata are inherited from the input intervals in the second track, the track that

defines the positional information of the resulting intervals. For intersectjoin

and exclusivejoin , the metadata are inherited from input intervals in the first

track.
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3.3.4 Using dynamically created tracks

In the FROM clause, in addition to using existing tracks in the database,

one could also create new tracks dynamically using either a nested query or one

of the above track operations. For example, the following query first takes the

intersectjoin of two tracks, and then selects out the resulting intervals with a

value larger than 2:

SELECT *

FROM (T1 intersectjoin T2

with vd sum using EACH MODEL) NtInt

WHERE NtInt.value > 2

An alias is given to the intervals of the dynamically created track, which

can then be referred to in the SELECT and WHERE clauses.

3.3.5 Data definition and manipulation statements

STQL also contains statements for creating and deleting signal tracks, and

loading data into a signal track from a local file.

The CREATE TRACK statement is used to create a new track and add it

to the database. It has two different forms:

CREATE TRACK <track-name> (<attribute-name1>

<data-type1> [,...]);

CREATE TRACK <track-name> AS <query>;

In the first form, a new empty track is created with the name specified at

the placeholder <track-name>. The list of attributes and their data types are



CHAPTER 3. SIGNAL TRACK ANALYTICAL RESEARCH TOOL 31

then listed within the brackets. In the second form, an STQL query is executed

and the result is stored as a new track with the name specified at <track-name>.

If the query results do not form a valid signal track, i.e., it does not have all the

required attributes for a signal track, an error will be produced when a query

tries to use the query results as a track. This second form of CREATE TRACK

is particularly useful when multiple STQL statements are submitted in the same

block on the START Web site, where the intermediate results produced by a

step are stored in a temporary signal track using a CREATE TRACK statement,

which can then be accessed by the queries in the subsequent steps.

The DROP TRACK statement deletes a track in the database:

DROP TRACK <track-name>;

Execution of this statement requires the user to have the corresponding

permission. There are other security measures in STQL that will be explained

when we describe START in detail.

STQL also allows loading data into a track by using the

LOAD DATA LOCAL INPATH INTO TRACK statement, for example after a

new track is created using the first form of the CREATE TRACK statement:

LOAD DATA LOCAL INPATH <file-path> [OVERWRITE]

INTO TRACK <track-name>;

where <file-path> is the path of the data file, <track-name> is the name of the

track into which the data are to be loaded, and the OVERWRITE option is for

specifying whether any existing data in the track are to be removed.
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3.3.6 Selection and looping over signal tracks

A final feature of STQL, which is very useful when analyzing a large number

of signal tracks, is selecting tracks based on their attributes, and looping over

the selected tracks for repeating some operations. This feature is provided by

the FOR TRACK IN () statement with two forms:

FOR TRACK <track-variable> IN (category=<track-category>,

<track-selection-conditions>)

<STQL-query>

COMBINED WITH UNION ALL AS <output-track-name>;

FOR TRACK <track-variable> IN (category=<track-category>,

<track-selection-conditions>)

CREATE TRACK <output-track-name> AS <STQL-query>;

In both forms, <track-variable> is a variable for the intervals of a selected

track in the STQL query, <track-category> is the category of signal tracks to

be selected, <track-selection-conditions> states extra conditions for track selec-

tion, <STQL-query> is the query to be performed on each selected track, and

<output-track-name> is the name of the track to store the results.

Specifically, <track-selection-conditions> is a list of attribute names and val-

ues delimited by “and”. For example, if one wants to select all ChIP-seq binding

peaks in the GM12878 cell line produced by the ENCODE Stanford/Yale/Davis/Harvard

(SYDH) sub-group, and stores the union of all these peaks into an output signal

track, the following statement can be used:
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FOR TRACK TInt IN (category=‘SYDH TFBS’,

cell=‘GM12878’ and fname LIKE ‘%Pk%’)

SELECT TInt.chr, TInt.chrstart, TInt.chrend

FROM TInt

COMBINED WITH UNION ALL AS AllPeaks;

In this statement, a track is selected if it belongs to the ENCODE SYDH

transcription factor binding sites (SYDH TFBS) category, contains data from

GM12878 cells, and has “Pk” (peak) as part of its track name. The “LIKE”

syntax of SQL for string matching with wildcards can be used in specifying track

selection conditions. For each selected track, its intervals are represented by the

variable TInt, and the union of the intervals from these tracks are stored in the

output track “AllPeaks”.

As shown in this example, the first form of the FOR TRACK IN () state-

ment combines the results from all the selected tracks by a UNION ALL oper-

ation. The second form, on the other hand, allows the query result from each

selected track to be stored in a separate output track (with track name <output-

track-name> concatenated with the name of the selected track), which can then

be post-processed by using other STQL queries.

3.4 Signal Track Analytical Research Tool (START)

We developed a system called Signal Track Analytical Research Tool (START)

for running STQL queries on multiple machines in parallel. START involves a

front-end Web-based user interface and a backend execution system (Figure 3.6).
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Note: The Web-based user interface helps users select signal tracks, construct STQL queries,
submit queries, and retrieve execution results. It also provides various additional functionality,
such as user management, storage for queries, data files and result files, and sharing of queries
with other users. The metastore provides information about the stored signal tracks in the
backend database. When a query is sent to the backend system, it is handled by a driver
that consists of three main components. First, a compiler checks for potential syntactic and
permission errors, and produces a parse tree of the query if no errors are found. Second, an
optimizer analyzes the parse tree and determines an execution plan optimized for efficiency.
Third, an executor calls the underlying system to execute the query. The underlying system
is based on the Hadoop framework, which distributes the data files needed and performs the
actual computations on multiple machines in parallel. When a job is finished, the results are
stored and the user is notified to preview or download them using the user inferface.

Figure 3.6: The overall architecture of START
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The purpose of the Web-based user interface is to provide a simple way for

users to execute STQL. We have pre-loaded around 10,000 signal tracks from

ENCODE, Roadmap Epigenomics, FANTOM5 [16] and other sources into our

database for users to integrate these data into their analyses.

We encourage users who want to use STQL to analyze large amounts of pri-

vate data to install START locally on their own machines. We provide an installa-

tion package at https://github.com/stql/start/wiki/Install-START-in-your-own-

cluster. START can be run on either a single machine or a cluster of machines.

All source code of START can be found at https://github.com/stql/start, dis-

tributed under Apache License v2.0.

3.4.1 Front-end: Web-based user interface

START provides aWeb-based user interface at http://yiplab.cse.cuhk.edu.hk/start/

(Figure 3.7). It provides a main input box for entering STQL queries. Multiple

queries can be entered at the same time, in which case each query should store

its results in a temporary track, and the results of the last query will be returned

by the system as the final results.

Four features are provided to help users construct their queries. First, a

user can use his/her previous queries or queries shared by other users as template

to perform new analyses by changing only the parts that differ. Second, signal

tracks stored in the backend database are listed in categories. A user can select

signal tracks using the built-in searching function based on text matches in all

track attributes. The names and data types of the attributes of the intervals in

a signal track can be shown by clicking the “track schema” link. Third, in the
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Note: (A) The main text box for entering STQL queries. (B) Categories of the tracks stored
in the backend database. (C) The list of signal tracks in the selected category. (D) Menu items
related to user accounts. (E) Menu items for managing and sharing stored queries and files.

Figure 3.7: The user interface of START

main input box, STQL keywords are highlighted in different colors to help users

spot syntax errors. Finally, an extensive help system is provided on the START

Web site with detailed documentations and example queries.

A user can use all the functions described above and submit STQL queries

with or without logging in. Users logged in (after a free registration) can addi-

tionally store their own executed queries, data files, and query results on START.

Data files can be uploaded in a number of standard file formats, and multiple

files can be uploaded at the same time in a zip package. A user can also share

or unshare queries with other users. START ensures that only queries explicitly

shared by the owner can be seen by other users, and data files uploaded by a

user cannot be accessed by other users.
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A user submits a query by entering a name of the query and pressing the

“Submit” button. A checker module at the backend is then invoked immediately.

If any syntax error or permission problem is detected, the query is rejected and

an error message is returned to the user without executing the query. Otherwise,

a query job will be created at the backend and the actual processing of it will be

carried out when the execution system becomes available.

When a query has been executed, the user can preview the first few rows

of the results on START, or download all the results in a file. Users are not

required to wait for a query to complete by keeping the browser open, because

when a user returns to the START Web site, he/she can find all executed queries

from the menu and the result files can be downloaded from the corresponding

page linked from the list of executed queries for recently executed queries.

3.4.2 Back-end: parallel execution system

In the back-end of START, STQL queries are translated into optimized

executable programs that are run on a cluster of machines in parallel. It can be

described in detail with three components.

Translation: In the back-end, we use Hadoop [2] for distributed data stor-

age, which includes a MapReduce framework for big data processing. High-level

STQL queries are translated into executable programs (MapReduce jobs) that

can be executed by Hadoop. This translation is originally facilitated by Hive [57],

a warehousing infrastructure built on top of MapReduce. It provides an SQL-like

query language called HiveQL, and it translates HiveQL queries into Hadoop pro-

grams. We extended HiveQL to include syntactic constructs specific to STQL.
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An advantage of Hive is that it can work on raw data files directly. It does not

require a long processing time of converting the raw data files into a particular

format before the corresponding tracks can be used in the queries. This feature

makes it very efficient for users to use their own signal tracks in the queries.

To execute an STQL query, the first step is to translate it to a sequence of

operations. It involves four sub-steps, namely

1) parsing the STQL statement and producing an abstract syntax tree

(AST), ANTLR [1] is used in this step.

2) traversing the AST to create a query block (QB) and record necessary

parsing information in the QB. AST is a tree data structure that can be traversed

by a program. The program will fill in the QB when it is traversing the AST,

finally the query statement was transformed into the filled data structure which

can be understood by the computer.

3) interacting with the metastore to retrieve metadata of the involved signal

tracks. In this step, the program will access the QB iteratively to do some basic

checking such as whether the queried track exist, the queried interval atrribute

exist.

4) generating a query plan in the form of a directed acyclic graph (DAG)

of logical operations based on the QB. The program will access the QB itera-

tively again and generate corresponding operators according to the information

collected in QB. For example, if the boolean variable hasFilter in QB which

indicates there is a condition in the query statement, a Filter operator will be

generated and added to the DAG. If hasGroupBy varialbe is true, a GroupBy

operator will also be generated and added to the corresponding position of DAG.
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Figure 3.8: A typical MapReduce job created by the executor from an STQL
query

Execution: The DAG of logical operations are then converted into ex-

ecutable jobs in Hadoop. Figure 3.8 shows a simple example illustrating the

typical steps in such a MapReduce job. In the Map phase, the TableScan opera-

tor fetches one interval from a signal track at a time, and forwards all attributes

of the interval to the Filter operator. Upon receiving an interval, the Filter op-

erator judges whether the interval satisfies the predicate in the WHERE clause,

such as having a value larger than 2 in this example. If the predicate holds true

for the interval, the Filter operator forwards the interval to the Select Operator.

The Select operator selects the attributes of the interval necessary for the cal-

culations, which in this example include the chr, chrstart and chrend attributes,

and calculates chrstart +/− 200 and chrend +/− 200. It then forwards the re-

sults to the ReduceSink operator, which creates a key-value pair for the interval

it receives. This finishes the Map phase. Based on the keys, the intervals are
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sent to different machine nodes for further processing.

In the Reduce phase, the Intersectjoin operator maintains buffers for caching

the intervals it receives. When all intervals have been received, it proceeds with

the actual computations. Whenever a resulting interval is produced, it forwards

the interval to the Select operator, which supplies all attributes that need to be

returned in the final outputs.

Optimization: Together, the compiler and executor described above are

sufficient for turning STQL statements into executable programs. However, the

straight-forward way of translating the queries into executable programs could

make the programs inefficient. The goal of the optimizer is to find ways to

perform the queries more efficiently.

The optimizer makes use of several key ideas. First, it removes interval

attributes that are not needed as early as possible, to reduce the amount of data

transfer between computing nodes. Second, when a join is performed between

two tracks, instead of producing the Cartesian product, the optimizer tries to

use more efficient algorithms to reduce both the computation and the amount

of intermediate results. For example, by pre-sorting both signal tracks involved,

sometimes it is possible to perform a single linear scan of the resulting sorted

tracks to produce the join result. Finally, if the generate bins with length

construct is used, instead of creating the actual bins, the optimizer computes

the overlapping bins of each interval, so that projection can be done efficiently

without considering the bins that do not overlap any intervals.
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3.4.3 Interface between front-end and back-end: Metastore

Here we describe the detail about metastore that bridges the front-end and

the back-end. In order for the front-end user interface to obtain information

about the stored signal tracks in the database, it has to obtain the information

from the back-end. The metastore provides such information and acts as an

interface between the front-end and back-end systems. The metastore records

three main types of information, namely 1) the schema of each signal track, i.e.,

the exact names and data types of the attributes of the intervals in each signal

track, 2) the physical locations of the corresponding data files in the backend

system, which is stored in a Hadoop file system (HDFS), and 3) the organization

of the signal tracks into categories, and the attributes of the signal tracks in each

category. When any of these three types of information is updated at the back-

end, the Web-based user interface always displays the most updated information

by retrieving it from the metastore in real time.

3.5 Results

3.5.1 Example queries

We used STQL to perform 14 representative analysis tasks. The full list of

example queries and their detailed application scenarios are given in Appendix

A. Here we show two queries as illustrative examples.
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FOR TRACK T IN (category=‘SYDH TFBS‘,

cell=’GM12878’ and fname LIKE ’%Pk%’)

SELECT chr, chrstart, chrend, value

FROM T

COMBINED WITH UNION ALL AS Step1Results;

SELECT *

FROM discretize Step1Results

with vd sum using EACH MODEL;

In the first example, the task is to count the number of transcription factors

with a binding peak overlapping each genomic location. Neighboring locations

with the same count are grouped into one single interval in the results. This

query can be used as one step in identifying high occupancy (HOT) regions [61].

The first sub-query demonstrates the use of FOR TRACK IN () in select-

ing all files corresponding to transcription factor binding peaks in a particular

cell line. The union of all these peaks is stored in a temporary track called

Step1Results. Each of these peaks has a value of 1. In the second sub-query, the

discretize operation is used to group neighboring genomic locations with the

same number of overlapping transcription factor binding peak count into a region

disjoint from other regions. These counts are computed by using the vd sum

operation with the EACH MODEL of interval values.
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CREATE TRACK Step1Results AS

SELECT chr, chrstart - 200 AS chrstart, chrend - 200 AS chrend

FROM ‘wgEncodeCshlLongRnaSeq’.

‘wgEncodeCshlLongRnaSeqK562CellPapPlusRawSigRep1.bigWig’

WHERE value > 2;

CREATE TRACK Step2Results AS

SELECT chr, chrstart + 200 AS chrstart, chrend + 200 AS chrend

FROM ‘wgEncodeCshlLongRnaSeq’.

‘wgEncodeCshlLongRnaSeqK562CellPapMinusRawSigRep1.bigWig’

WHERE value > 2;

SELECT *

FROM Step1Results intersectjoin Step2Results;

In the second example, the task is to identify genomic regions with bi-

directional transcription at their flanking regions, which could be potential en-

hancers producing enhancer RNAs (eRNAs) [24, 39]:

In the first sub-query, genomic regions on the positive strand with an ex-

pression level higher than a given value (e.g., 2) are selected. These regions are

shifted 200bp to the left to make the last step easy. Likewise, the second sub-

query identifies regions on the negative strand with significant expression, and

the regions are shifted to the right by 200bp. Finally, in the third sub-query, the

results from the first two sub-queries are intersected. Each region in the final

signal track has significant expression level 200bp downstream on the positive

strand and 200bp upstream on the negative strand, which forms a bi-directional

pattern indicative of eRNA [24].
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3.5.2 Comparison with other approaches

To evaluate the simplicity of STQL and the correctness and efficiency of

START in executing STQL queries, we compared STQL with three other ap-

proaches in performing the same analysis tasks.

First, we used the Web-based user interface to submit the 14 example STQL

queries to START, and downloaded the resulting output files. For each query,

we measured the time required, from submitting the query to getting the final

result file. We also used bedtools [47], Galaxy [32] and custom Python scripts

to perform the same tasks. We then checked if the output files produced by the

different approaches were the same, and compared the time required.

Query START Bedtools Python

SQ1 21 63 158
SQ2 30 71 220
SQ3 6 26 202
SQ4 34 61 336
SQ5 23 28 162
SQ6 12 24 146
SQ7 13 25 117
SQ8 14 25 91
CQ1 38 N/A 288
CQ2 53 N/A 460
CQ3 102 N/A 471
CQ4 105 164 500
CQ5 266 N/A 462
CQ6 50 83 202

Note: Number of tokens involved in the code of the different approaches on the 14 example
queries. N/A indicates cases in which we were unable to find a trivial way to perform the
analysis using the approach.

Table 3.3: Number of tokens involved between different systems

The source code of these three implementations is available at https://

github.com/stql/start/wiki/Website-User-Manual#source-code-for-other-tools.



CHAPTER 3. SIGNAL TRACK ANALYTICAL RESEARCH TOOL 45

For some queries, we were unable to find a trivial way to perform exactly the

same operations using one or more of these approaches. We note that this does

not mean it is impossible to carry out the corresponding analyses using these

approaches, but the solutions could be non-trivial. On the other hand, it was

fairly easy to write STQL queries to perform the tasks, and the STQL queries

involved fewer tokens than both the bedtools and Python scripts for all the 14

tasks (Table 3.3).

Based on the execution results, START was able to produce identical output

files as those produced by the Python scripts for all 14 queries. In some cases,

bedtools and Galaxy produced results different from STQL. For example, for

SQ5, bedtools could produce the same intervals as STQL but could not derive

the required values. In general, STQL was found to be very expressive, and its

value derivation capability was particularly flexible.

Query START Bedtools Galaxy Python

SQ1 207 407 N/A 1171
SQ2 50 135 N/A 184
SQ3 39 0.04 23 0.3
SQ4 47 21 408 42
SQ5 52 7 270 125
SQ6 46 0.04 N/A 21
SQ7 31 6 44 5
SQ8 33 2 30 3
CQ1 86 N/A N/A 36
CQ2 300 N/A N/A 7
CQ3 1340 N/A N/A 84
CQ4 1680 262 N/A 420
CQ5 360 N/A N/A 5289
CQ6 119 207 N/A 483

Note: Execution time of the different approaches on the 14 example queries in seconds. N/A
indicates cases in which we were unable to find a trivial way to perform the analysis using
the approach.

Table 3.4: Execution time between different systems
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Table 3.4 shows the execution time of the different approaches. For START,

we used a Hadoop cluster to execute the queries. The cluster contained 22

machines, each with an Intel Core i7-3770 CPU at 3.40GHz, 16GB main memory,

and disks with I/O speed of 133.75 MB/s. For bedtools and python scripts, we

used a single machine to execute the queries, with an Intel Core i7-3770 CPU

at 3.40GHz, 16GB main memory, and disks with I/O speed of 156 MB/s. For

Galaxy, we used its online version (https://usegalaxy.org/). Since the hardware

used for each approach was different, it is not meaningful to use the measured

time to argue which approach is more efficient. Instead, the main purpose of

this time comparison is threefold. First, it shows that for some of the tasks

that STQL could easily handle, we could not find a way to perform the same

tasks using bedtools or Galaxy (marked as N/A in Table 3.4), suggesting that

it is more difficult or even impossible to perform these tasks using these tools.

Second, in general, START could finish each task within reasonable time even

without using algorithms and data structures specially designed for each task

as we did with the Python scripts. Third, when the data files were large, the

implicit parallel execution of START made it easy to speed up the analysis,

without requiring the user to write anything about parallelization in the STQL

queries. For example, in SQ1 and SQ2, the data files involved were larger than

1GB, and START was able to finish the task faster than the other approaches

due to its parallel computations.

3.5.3 Case study

To test if STQL is easy to learn and to use, we asked one of us (KH-OY), who

was trained as a biologist and had received minimal formal training in computer
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programming, to analyze some sequencing data using two different approaches.

The data involved were DNA methylation data we produced by MBDCap-seq [37]

on 60 pairs of human hepatocellular carcinoma (HCC) tumor and matched non-

tumor tissues. The goal was to compute DNA methylation levels at gene pro-

moters, and identify promoters with significant differential methylation between

the tumor and non-tumor groups.

The first analysis approach was to implement the analysis pipeline by writing

custom Perl scripts. The second approach was to write STQL queries and submit

them through the START Web interface, to perform exactly the same analysis.

Specifically, for each protein-coding gene in Gencode [34] v19, the pro-

moter region was defined as the +/-500bp around the transcription start site.

The average methylation signal at each promoter was computed separately for

the tumor and non-tumor samples. Finally, the full list of genes and their

promoter differential methylation fold change values were reported. The Perl

scripts and the STQL queries written, as well as the resulting output files, are

all available at https://github.com/stql/start/raw/master/for-download/

STQL_HCC_Diff_Methyl_files.zip.

The STQL queries are found to be simpler than the Perl scripts. For in-

stance, the Perl scripts involve 253 lines of code in total, while the STQL queries

involve only 55 lines.

The two approaches led to identical results. Among the top five most hyper-

methylated promoters, FGF19 is related to HCC tumor promotion [51], FGF4 is

related to HCC drug response [17], and HLX is involved in normal liver develop-

ment [35]. Although the other two genes have yet to link with HCC, their roles
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in cancer development have been reported. MYEOV deregulation contributes

to malignant transformation of different cell types [38], while LRR1 is involved

in cell growth control [59]. These results suggest that it is indeed fairly easy

for someone without very strong computer science background to learn and use

STQL to produce biologically meaningful results.



Chapter 4

Closest Interval Join Using

MapReduce

An interval can be represented as [s,e ], where s and e respectively ex-

presses the start and the end point of the interval, which also contains all the

points between s and e . A number of real-world data can be modeled by interval

such as the duration of a weather event and a segment of a DNA strand.

Figure 4.1 is an example about the closest interval join, suppose R =

{r1, r2, r3} and S = {s1, s2, s3, s4, s5}. For r1, obviously it has a distance 0

with s1 and s2, so s1 and s2 are its closest intervals. For r2, the distance between

s2 and r2 is 9 − 6 = 3, the distance between s3 and r2 is 13 − 11 = 2, so s3 is

its closest interval. For r3, its closest interval is s4, because they intersect each

other. So the final result of the closest interval join operation of R against S is

(r1, s1), (r1, s2), (r2, s3), (r3, s4).

49
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Figure 4.1: Closest interval join example

Closest interval join has many important applications. Take the bioinfor-

matics field as the example, DNA has two paired strands which form the double

helix structure. The smallest unit of the strand is one base, which can be rep-

resented by A, T, C and G. The base can be considered as an integer position.

Therefore, a region of a DNA strand can be represented with an interval [s,e ],

s and e represents the start and end base respectively. In order to understand

the biological systems, biologists conduct a variety of experiments to find biolog-

ical functions of different regions of DNA [65], these regions are called genomic

intervals [9]. Take Figure 4.2 as the example, it illustrates a genomic interval,

which can be represented as [3,12].

+

−
G G A C C T G G A A
C C T G G A C C T T

3 4 5 6 7 8 9 101112

Figure 4.2: Basic DNA structure

In bioinformatics, SNP(single nucleotide polymorphism) [15] is a variation

in a single base which may occur at some specific position, for instance, C is

changed to T. SNP is actually a genomic interval with length 1. Related studies

are usually performed to determine whether these SNPs affect other genes. Genes

are also genomic intervals. In most cases, it is unclear which gene a SNP affects,

and the first to check is often the gene closest to the SNP, so this task can be
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converted to find closest intervals from gene intervals for a set of SNP intervals

[58, 46, 36]. Figure 4.3 shows that bioinformatician want to find the closest genes

for each SNP.

Figure 4.3: Find closest genes for SNPs

Interval data can be very large and continue to increase in size due to the

advancement of data acquisition technology. For example, the 1000 Genome

Project aims to establish an extensive catelogue of human genetic variation. This

project needs to sequence the genomes of at least thousands of individuals from

different populations, which will result in multiple massive raw big data files.

The Cancer Genome Atlas(TCGA) is a project aiming at exploring the entire

spectrum of genomic changes responsible for human cancer. It has collected

genomic characterization of the tumor genomes from more than 11,000 cases

regarding about 30 different cancer types. These experiments also produced a

large number of files.

Due to the high availability of different types of genomic data from numerous

individual genomes, it is now possible to run multiple analysis of many diverse

genomic features simultaneously. This requires a new generation of convenient

platform to process heterogeneous datasets as well as the state-of-the-art parallel

computing strategies to achieve scalability and performance.

With about ten years development, MapReduce has already been the de

facto standard for big data processing framework. A popular open source imple-
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mentation is Hadoop [2], which has been adopted widely both in academic and

industry. Consequently, considering how to store interval data and perform com-

putation on MapReduce platform is a reasonable and interesting problem. To

our best knowledge, we are the first to study closest interval join on MapReduce.

A typical MapReduce program mainly consists of a Mapper and a Reducer

class. All the input and output are represented with (key, value) pair for Mapper

and Reducer to process. Users have to implement customized map function in

Mapper, and reduce function in Reducer. The map function is applied in parallel

to every input record from HDFS and emit a set of new (key, value) pairs and

write them into local disks as the intermediate results. After that, pairs with the

same key from all Mapper output will be shuffled to a Reducer for the reduce

function to process through the network. Finally, the newly emitted (key, value)

pairs are written to HDFS back as the final result.

In this chapter, we study closest interval join on MapReduce. The work

most similar to our problem is overlap interval join between two interval sets

using MapReduce, which has been discussed in literature [19]. Overlap interval

join operation is often used to correlate intervals of different events. It means

for each r ∈ R and s ∈ S, the goal is to output all (r, s) pairs that r overlaps

s. overlaps means for interval [sr, er] and [ss, es], if sr < ss < er < es, we say

interval [sr, er] overlaps [ss, es]. Take Figure 4.4 as the example, the output

of overlapped interval pairs are (r1, s1), (r1, s2) and (r3, s4) . In this example, R

and S are stored in HDFS as input files, each interval is represented by a tuple,

such as [2,5] for s1.

The authors of [19] proposed a MapReduce algorithm to solve overlap inter-
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Figure 4.4: Overlap interval join example

val join. The main idea of [19] is to first specify a key set K = {ki, . . . , kj}, and
assign each interval to one or multiple keys from the key set in the map function,

then all the data with the same key are shuffled and processed in the same reduce

function. There are three challenges here. First, how to choose the key set for a

specific problem? Some choices may result in heavy skewness if many records are

assigned to one key. In this chapter, we call the key set partition scheme for con-

venience. Second, how to map an input record to one or multiple keys, especially

in the context of processing interval join on MapReduce platform? An inappro-

priate mapping mechanism for R and S may affect the correctness of the result.

We call the mechanism mapping rules, which are implemented in map function.

Take Figure 4.4 as the example, there are R = {r1, r2, r3}, S = {s1, s2, s3, s4, s5},
and an overlap interval join wants to output all (r, s) pairs that r overlaps s.

[19] uses a set of non-overlapping ranges as the partition scheme P. In the ex-

ample, P = {p1, p2} with p1 = [0, 12), p2 = [12, 24). In this simple example, one

mapping rule in [19] is to assign each interval to the partition it is within, so

finally r1, r2, s1, s2 are assigned to p1, while r3, s3, s4, s5 are assigned to the key

p2. Then two Reducer instances are started to compute the results in parallel.

However, the simple partition scheme together with the simple mapping rules

cannot solve our closest interval join problem correctly. For example, in Figure

4.4, there is no chance for r2 and s3 to be in the same partition for comparison
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according to the mapping rules in [19], but they form one result for closest in-

terval join. Third, how to choose an efficient local algorithm for reduce function

to process join problem.

In this chapter, we present a novel MapReduce algorithm for handling the

closest interval join. Our algorithm is equipped with a better partition scheme

and correct mapping rules to output all the closest pairs. Besides, we also de-

signed an efficient local algorithm for the reduce function to find the closest

intervals quickly. We conducted the experiments on both real and synthetic

data. The results show that our method can outperform two baseline methods

by several orders of magnitude.

The rest of the chapter is organized as follows. Section 4.1 reviews some re-

lated work. Section 4.2 describes three different solutions to handle this problem.

A performance study based on real and synthetic data is conducted in Section

4.3.

4.1 Related Work

Interval data is ubiquitous in many fields. Driven by the demand for sup-

port of interval related queries and joins, many research work have been done

to embed interval related operations into current data-processing systems. Re-

lated work includes efforts to process overlap interval join on MapReduce(Section

4.1.1), to compute kNN join(Section 4.1.2) or similarity join(Section 4.1.3) for

N-dimension objects on MapReduce, and centralized algorithms to process in-

terval joins(Section 4.1.4).
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4.1.1 Overlap Interval Join on MapReduce

There are several works about processing overlap interval joins using MapRe-

duce directly. [19] has developed novel algorithms to optimize 2-way and multi-

way overlap interval joins. These presented methods are expected to be inte-

grated with already implemented spatio-temporal data processing system such

as Spatial-Hadoop [29], Sci-Hadoop [18] and CloST [54]. Consider a kind of

spatial-temporal environment modeling data, interval [s,e ]can model the du-

ration of an event such as a rainfall, high wind speed, high temperature and high

pollutant concentration observed, s and e represents the start and end time re-

spectively. For example, [7 AM, 7:15 AM] can indicate that a high wind speed

was observed during the period of 7 AM to 7:15 AM.

Suppose there has already been two sets of intervals R and S. R is the set of

intervals which indicates all the high wind speed events, S indicates all the high

temperature events. If all the event pairs that high temperature starts during the

period of a high wind speed and ends after it are required to output, R overlaps

S can be used to find all the pairs. This is an overlap interval join application.

Look at Figure 4.5, there are interval sets R = {r1, r2, r3, r4} and S =

{s1, s2, s3, s4}, for each r ∈ R and s ∈ S, the goal is to output all pairs (r, s) if

r overlaps s. [19] proposed a MapReduce algorithm to solve this problem. The

idea can be described in the following three parts.

partition scheme: All the intervals of the two sets lie within a range, for ex-

ample, in Figure 4.5, all the intervals are in the range [t0, t3). Suppose there

are three continuous ranges here, which are [t0, t1), [t1, t2), [t2, t3), and P =

{p1, p2, p3} is a partition scheme with p1 = [t0, t1), p2 = [t1, t2), p3 = [t2, t3).



56 4.1. RELATED WORK

r1 r2

r3

s4

r4

s1 s2 s3

p1 p2 p3t0 t1 t2 t3

Figure 4.5: Overlap interval join in detail

Mapper: The partition scheme is loaded into main memory in each Mapper,

at least two Mapper instances are started to read R and S in parallel. Each

Mapper will read an interval I one by one, and check which partition it belongs

to according to some mapping rules, this logic is finished in the map function.

Then the Mapper outputs intermediate results in the format of (pid, (label, I)).

pid means the partition id, for example, it may be p1, p2, or p3. p1, p2 and p3

can also be considered as the reducer id, because each partition corresponds to

a reducer. label means which set the interval is from, it may be R or S, which

can be represented with one byte in practical implementation. I is the interval

object.

Now let us discuss more about the mapping rules used in [19]. The first

rule: if an interval is totally within a partition, it will be sent to the that

partition. Look at Figure 4.5, it is easy to decide pid for intervals such as

r1, r2, r4, s1, s2, s3, because they are only within one partition, so they are sent

to the corresponding partition seperately. However, careful considerations are

required for interval r3 and s4, because both of them intersect multiple parti-

tions. If they are sent to all of these partitions, there will be duplicate results

in reducers, the same result pair will be output by different reducers. To solve

this, [19] proposed the second rule: this kind of interval from R is sent to all
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partitions it intersects, while this kind of interval from S will be sent to only the

first partition it intersects. So r3 is sent to partition p1 and p2 while s4 is sent to

only p1. Table 4.1 shows an example of the intermediate results output by each

mapper.

mapper1: (p1, (R, r1)) (p2, (R, r2)) (p1, (R, r3))
(p2, (R, r3)) (p3, (R, r4))

mapper2: (p1, (S, s1)) (p2, (S, s2)) (p3, (S, s3))
(p1, (S, s4))

Table 4.1: Intermediate results output by each mapper

The reason is if r3 is not sent to all the partitions it intersects, there will

be some results missed, for example, (r3, s2) will be missed if r3 is not sent to

p2. On the other hand, this kind of interval from S does not need to be sent to

all partitions it intersects. Take s4 as the example, if there exists r overlaps s4,

then the start point of r must be smaller than the start point of s4 according

to the definition of overlaps, so s4 just needs to be sent to the first partition it

intersects.

Reducer: After map phase, all key-value pairs are shuffled to corresponding

reducers according to their keys. Table 4.2 shows what intervals each reducer

finally received. Then the computation will be performed in each reducer in

parallel, the final result is the union of all the reducer output, which are (r1, s1),

(r3, s2) and (r3, s4).

reducer intervals output

p1 r1, r3, s1, s4 (r1, s1), (r3, s4)

p2 r2, r3, s2 (r3, s2)

p3 r4, s3

Table 4.2: Intervals received in each reducer
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This example shows that though a partition scheme is defined, it still requires

to define mapping rules to decide which partitions an interval should go, and it

depends on the specific properties of a problem in order to output the correct

result.

The partition scheme and mapping rules defined for the overlap interval join

cannot handle the closest interval join directly. In the example above, (r2, s3)

have no chance to meet each other in the same reducer for computation, but it

is a result for closest interval join.

4.1.2 kNN join on MapReduce

kNN join on MapReduce is formulated as: for each object r in R, find its

k nearest neighbors in set S. Closest interval join can be considered as a case of

1NN join problem. We introduce two different MapReduce algorithms here.

The first method is from [63]. It is similar to Cartesian product, which

means there is a chance for ∀r ∈ R and ∀s ∈ S to compare with each other. This

method divides the whole Cartesian product job into several independent tasks

so they can be executed on MapReduce in parallel.

The method consists of two MapReduce jobs. The map phase of the first

job divides R and S into n equally-sized blocks randomly, such as R1, R2...Rn

and S1, S2...Sn. Then each RiSj combination will be sent to a reducer, so the

number of reducers needed is n2. To achieve this, each interval is emitted n

times in order for it to have the chance to compute with those n blocks from

another set. The reduce phase is then started to compute local kNN result for

each r. Suppose there are R = {r1, r2, r3, r4, r5, r6}, S = {s1, s2, s3, s4, s5, s6}.



CHAPTER 4. CLOSEST INTERVAL JOIN USING MAPREDUCE 59

Let n = 2, which means there will be n2 = 4 reducers, say they are p1, p2, p3, p4.

Let R1 = {r1, r2, r3}, R2 = {r4, r5, r6}, S1 = {s1, s2, s3}, S2 = {s4, s5, s6}. Figure
4.6 shows that the map function emits two key-value pairs for each input interval

in this example.

After the map phase, intermediate results with the same key will be shuffled

to the same reducer. Table 4.3 shows the blocks each reducer receives. It demon-

Reducer p1 p2 p3 p4
Blocks R1, S1 R1, S2 R2, S1 R2, S2

Table 4.3: The blocks each reducer receives

strates that each block from R has a chance to compare against each block from

S. The output of each reducer is in the format of (r, (s, |r, s|)), |r, s| means the

distance between r and s. Then the kNN computation is performed locally in

each reducer. After local kNN computation per reducer, another MapReduce

job is used to find the global kNN result for each object r ∈ R. The map phase

of the second job is to read the output of the first job and emit them to corre-

sponding reducers using r as the key, each reducer will find global kNN result

for every r and output them.

The problem of this method is the huge shuffling traffic incurred in the two

jobs. In the first job, as each block has to be shuffled to n reducers to compare

with n blocks from another, the total data shuffled is O((|R| + |S|) · n). After

the first MapReduce job, there will be roughly k results for an object r among

n reducers, because each Reducer will compute a kNN result for the object r.

So in the second MapReduce job, each r and its k results will be shuffled to the

same Reducer from n output files, therefore the total data shuffled is O(|R|nk).
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r1 →
{
(p1, (R, r1))

(p2, (R, r1))
r2 →

{
(p1, (R, r2))

(p2, (R, r2))
r3 →

{
(p1, (R, r3))

(p2, (R, r3))

r4 →
{
(p3, (R, r4))

(p4, (R, r4))
r5 →

{
(p3, (R, r5))

(p4, (R, r5))
r6 →

{
(p3, (R, r6))

(p4, (R, r6))

s1 →
{
(p1, (S, s1))

(p3, (S, s1))
s2 →

{
(p1, (S, s2))

(p3, (S, s2))
s3 →

{
(p1, (S, s3))

(p3, (S, s3))

s4 →
{
(p2, (S, s4))

(p4, (S, s4))
s5 →

{
(p2, (S, s5))

(p4, (S, s5))
s6 →

{
(p2, (S, s6))

(p4, (S, s6))

Figure 4.6: Emitted intermediate results by mappers

The analysis demonstrated the total data shuffled depends on |R|, |S|, n and k,

and it is almost proportional to each of them. So a large amount of data will

be shuffled during the two jobs, and the experiments from our experiment part

have also shown that.

Authors in [43] proposed a more complicated MapReduce algorithm to ef-

ficiently compute kNN result, which emits much smaller size of intermediate

results as well as much lower shuffling cost. The main idea is to first partition R

into disjoint subsets R1, . . . , Rn based on a set of pivot objects P = {p1, . . . , pn}
from R. Then for each Ri the algorithm will find a subset S

′
i from S that guaran-

tees all kNN results for ∀r ∈ Ri exist in S
′
i , then Ri and S

′
i will be shuffled to the

same reducer for computing and the correct kNN results are output. To find S
′
i

correctly, some advanced bounding and pruning techniques are used. However,

these techniques are based on triangle inequality, which cannot apply to interval

data directly, we will explain it later.
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Job1

Suppose a set of pivot objects {p1, . . . , pn} from R are selected. The map

phase of this job will partition R and S by assigning each object to its closest

pivot. Figure 4.7 is an example to illustrate the partitioning process. Suppose

there are R = {r1, r2, r3, r4, r5, r6} and S = {s1, s2, s3, s4, s5}, k = 2. Suppose

r4, r5, r6 are selected from R as the pivot objects. Now R and S are emitted

into disjoint partitions R1, R2, R3, S1, S2, S3 by {r4, r5, r6}. At the same time,

the Mapper also collects statistics for each partition. The statistics includes:

the number of objects N in the partition, the minimum distance L(Ri)(resp.

L(Si)) and the maximum distance U(Ri)(resp. U(Si)) from an object in partition

Ri(resp. Si) to the pivot pi. In addition to that, for each Si, the statistics also

includes the first k smallest distances between the objects in Si and the pivot pi.

There is no reduce phase in this job.

r5

r2

r3

r1

r4

r6

R1

R2R3

(a) Partitioning of R

s1

s2 s4
s3

s5

S1

S2S3

(b) Partitioning of S

Figure 4.7: The partitioning of R and S

Job2

The first MapReduce job has assigned each object a pid to indicate which

reducer it should go. For example, r1, r4, s1, s2 should go to reducer P1. Now

there is another problem arose, the set S1 = {s1, s2} may not contain all the
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kNN results for R1 = {r1, r4}. There may exist objects from other Sj that also

become the kNN result for objects in R1. For example, from Figures 4.7(a) and

4.7(b), s5 is the closest object to r1, but it does not belong to S1. This is what

the map phase of this job will resolve. It will find a correct set S
′
i from S1, . . . , Sn

to make sure all kNN results for Ri are in S
′
i . In this example, S

′
1 = {s1, s2, s5},

it includes objects from S1 and S3. Actually, the map phase will inspect every

s from all partitions S1, . . . , Sn to decide whether it should be a possible kNN

result for partition Ri.

Bounding and Pruning Techniques: To decide whether an object s is a

possible result for some r of Ri, [43] first developed the upper and lower bound

of the distance between s and r. Suppose s ∈ Sj and r ∈ Ri, |r, s| denotes
the distance between r and s, ub(s,Ri) denotes the upper bound of |r, s|, and
lb(s,Ri) denotes the lower bound of |r, s|, which means

lb(s,Ri) � |r, s| � ub(s,Ri) (4.1)

According to the collected statistics, the algorithm can reason a threshold

θi for partition Ri, which means that for all kNN result of Ri, the distance |r, s|
should not be greater than θi. Therefore the pruning rule is: if lb(s,Ri) � θi,

it may be a possible result of Ri, so it will be sent to reducer Pi; else, it will

be pruned. Obtaining lb(s,Ri), ub(s,Ri) and θi will use the triangle inequality

frequently. Look at Figure 4.8, according to triangle inequality, it is easy to

obtain that |r1, s5| � |r4, s5|− |r4, r1|, |r4, r1| � U(R1), |r4, s5| � |r4, r6|− |r6, s5|,
so finally |r1, s5| � |r4, r6| − U(Ri)− |r6, s5| = lb(s5, R1). Then this lb(s5, R1) is

compared with θ1 according to the previous pruning rule to decide whether s5
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should be contained in S
′
1.

r1

r4

r6
s5

R1

U(Ri)

S3

Figure 4.8: The bounding and pruning techniques

However, the triangle inequality cannot hold for interval data. Take Figure

4.9 as the example. Obviously that |r1, s5| � |r4, r6| − U(Ri) − |r6, s5|, which
violates the triangle inequality. As there is no way to compute the lb(s5, R1)

for interval data, that pruning rule cannot apply. The essential reason is that

the interval distance defined in our problem actually is affected by the interval’s

internal length, but distance between N-dimentional objects are usually defined

independent of the objects’ extent. That’s why the bounding and pruning tech-

niques cannot be adopted to solve our problem directly.

U(Ri) |r6, s5|
|r4, r6|
|r1, s5|r1 s5r4 r6

Figure 4.9: Interval data cannot apply triangle inequality

4.1.3 Similarity Join on MapReduce

Similarity join [50] can be defined as: given one object set R, distance

threshold θ and the distance function, for all r ∈ R, the goal is to output all the

pairs (r1, r2) which satisfies |r1, r2| � θ. The difference between the problem and
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the closest interval join is that similarity join has a fixed threshold while closest

interval join does not have. More specifically, in closest interval join, even an

interval is very far away(way beyond a threshold), it can still be a result if it is the

closest interval of another one. The bounding and pruning techniques developed

in similarity join also depend on the triangle inequality property, which cannot

apply to interval data directly as well.

4.1.4 Centralized Overlap Interval Join Algorithms

Traditional centralized algorithms for overlap interval join [33, 53, 42, 28, 31,

49, 40, 25] can be categoried into three classes: Sort-Merge Algorithms, Partition-

Based Algorithms and Index-Based Algorithms.

Sort-Merge Algorithms consist of two phases. The first phase is to sort

the two sets R and S according to the start or end points of the interval. The

second phase is to scan R and S simultaneously and merge the intervals which

overlap with each other. The Sort-Merge Algorithms can be considered as an

improvement of Nested-Loop Algorithms by using the order property so as to

prune those interval pairs that obviously cannot output the result. [33] proposed

a sort-merge version called TJ-1, which sorts R and S based on an ascending

primary order on the start point and an ascending secondary order on the end

point. Then it scans sorted R in order, and maintains a special pointer for S.

This pointer is explicitly incremented under certain conditions as the algorithm

proceeds. Scanning S is always started from this special pointer instead of the

beginning of S, so less records have to be read during the scan of S in every

iteration.
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Partition-Based Algorithms consist of two phases. The first phase is to par-

tition interval sets R and S, for instance, R and S are partitioned into R1, . . . , Rn

and S1, . . . , Sn. The second phase is to load the combination RiSi into memory

and perform the join. How to decide the partition interval boundary to make

sure each partition obtains rough amounts of intervals is an important problem.

[53] uses histograms to count the number of intervals falling in each partition

and adjust the partition boundaries so as to guarantee each partition has nearly

the same amount of intervals. [42] presents another partition based algorithm

for centralized overlap interval join. In this algorithm, an interval is mapped to a

point in a two-dimentional space where x-coordinate represents the interval start

point and y-coordiate represents the interval lengh. Then the space is partitioned

into regions. During the join phase, a region of R has to be compared with mul-

tiple regions of another interval set. The two-dimensional space makes finding

the corresponding regions that may overlap a region intuitive. [28] proposed a

new partition strategy in order to make sure the overlap interval join operation

is independent of short- and long-lived intervals. So this method is still efficient

with long-lived intervals.

Indexed-Based Algorithms are to build index for S, and perform the query

for each interval of R. The index could be preexisting or built on the fly. It could

be: quadtree [31], loose quadtree [49], relational interval tree [40], or segment

tree [25].

The works described above are centralized algorithms for overlap join but

not for closest join and the primary optimization goal is to reduce the number of

disk I/Os. However, this is different from a MapReduce algorithm, because the

goal of a MapReduce algorithm is to reduce the size of intermediate results to
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decrease the network shuffling cost. In addition to that, these algorithms except

Nested-Loop cannot be used to compute the closest interval join result unless

with substantial modification.

4.1.5 Summary

Compared with above-related work, our closest interval join problem is in-

deed different. The strategies for overlap interval join cannot be applied to our

problem directly because the overlap is just one case in our problem setting. More

cases need to be considered to solve our problem correctly. kNN and similarity

join work exploit triangle inequality to prune as much as possible computation,

however, it is only correct for multi-dimensional objects. Other centralized al-

gorithms focus on reducing the number of disk I/Os, which are different from a

MapReduce algorithm. In a MapReduce environment, the bottleneck is usually

the huge intermediate data that need to be shuffled, so the goal is to reduce this.

In addition to that, centralized algorithms also only consider overlap interval join

instead of closest interval join problem.

We have derived two algorithms from existing literature which focus on other

problems originally. But we found that there is still a significant improvement if

tailored for closest interval join problem. The experiments also demonstrate it.

4.2 The Solutions

In this section, we propose three algorithms called Broadcast Algorithm(BA)

in Section 4.2.1, Neighbor Replicating Algorithm(NRA) in Section 4.2.2, and
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Distance-Aware Algorithm(DAA) in Section 4.2.3.

BA is going to divide R and S randomly into partitions R1, . . . , Rn and

S1, . . . , Sn, and broadcast every Ri to all the partitions of S to compute the

result. So each reducer is responsible for computing a combination of Ri and

Sj . No pruning techniques are used. NRA also tries to partition R and S, but

only sends Ri to possible partitions of S to compute the result. However, Ri

will be sent to some additional partitions of S that cannot produce results for

it. Compared with NRA, DAA is more efficient by developing better partition

scheme and mapping rules to send Ri to even fewer partitions for computation

without missing any result. In addition to that, we also propose an efficient local

algorithm to compute the closest interval join used by each reducer.

We will use |r, s| to represent the distance between interval r = [sr, er] and

s = [ss, es], formal definition of |r, s| is:

|r, s| =

⎧⎪⎪⎨
⎪⎪⎩
0, if r intersects s

min(|ss − er|, |sr − es|), otherwise

where r intersects s iff sr � es ∧ ss � er

4.2.1 Broadcast Algorithm(BA)

The broadcast algorithm is based on the kNN join MR algorithm [63] that

we described in Section 4.1.2. The main idea is to first divide R and S into

R1, . . . , Rn and S1, . . . , Sn randomly. Then all RiSj can be computed in parallel,

so there are n2 reducers. As there are n output files for each r ∈ Ri, these

files are sent to the same machine to compute the final result for each r. When
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implemented in MR algorithm, it contains two MR jobs. The Mapper of the first

job is to read each interval one by one and emit n key-value pairs for it. Then

all the intermediate results are broadcasted to different Reducers for computing

local result for RiSj . The Mapper of the second job is to read the result output

by the first job, and emit them with r ∈ R as the key, so result with the same r

are shuffled to the same reducer for computing the final result for r.

4.2.2 Neighbor Replicating Algorithm(NRA)

This algorithm is based on the overlap interval join MR algorithm [19] that

we discussed in Section 4.1.1, where each interval will be sent to multiple par-

titions according to a partition scheme. A simple range partition scheme may

output wrong answer if we simply send r to the partition that it intersects. To

fix that, an intuitive idea is to send r not only to the partition pi that it inter-

sects, but also its neighbor partitions, namely pi−1 and pi+1. For example, in

Figure 4.10, instead of sending r2 to p3 only, we also send r2 to p2. However,

this works only when the partition scheme is properly chosen. Take Figure 4.10

as the example, the domain is equally divided into three partitions. Because

of the skew distribution, S has no answer intervals in p2 and p3. So r2 will

only be sent to p2 and p3, while its closest interval s3 is in p1. Therefore, to

guarantee that NRA is correct, we need to carefully choose the partition scheme

such that each partition contains at least one interval. To do that, we borrow

idea from [27] to perform sampling (e.g., 1%) to build a partition scheme such

that each partition contains some answer intervals. For example, we can use

P = {p1 = [0, 4), p2 = [4, 8), p3 = [8, 36)} as the partition scheme.
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r1

s2 s3

r2
s1 9

5

11
4

106 9
0

28 32

p1=[0, 12) p2=[12, 24) p3=[24, 36)

Figure 4.10: An example about NRA

We can now use three MapReduce jobs to find out all closest pairs.

The first job is to decide the partition scheme by sampling. Suppose

the total range for R and S is [t0, tn), now we want to get a partition scheme

P = {p1 = [t0, t1), p2 = [t1, t2), . . . , pn = [tn−1, tn)} to make sure every partition

has at least one s ∈ S fall in. Algorithm 1 explains this job. The map phase is

to sample some intervals from S. Then all the sampled intervals are shuffled to

one reducer. The reducer first sorts the intervals by the start point on ascending

order. Then it divides the data into a partition for every k elements, so we use

the start point of the first element of each partition as the partition boundary

(Line 11 in Reducer of Algorithm 1).

The second job is to partition R and S based on the partition scheme

obtained by the sampling job, and then compute the closest pairs within each

reducer. Specifically, each r ∈ R will be sent to all partitions it intersects as well

as the neighbor partitions, while each s ∈ S will be sent to only those partitions it

intersects in the map phase. Algorithm 2 shows the pseudocode for this Mapper.

The reduce phase is the same as the first job of BA so that each reducer

employs a local algorithm to compute the result for a combination of RiSi. Since

the NRA replicates r more than one time, the closest pair obtained in each

partition could be a local optimum. So, we need the third job to find out the
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global optimum for each r. This is the same as the last job of BA that the map

phase sends all the local optimum with the same r to a reducer and the reducer

finds the global optimum for that r.

Algorithm 1 The sampling job

1: class Mapper
2: method Setup
3: sampleRatio ← specified by user
4: end method
5: method Map(interval I)
6: generate random float ratio ∈ [0, 1]
7: if ratio < sampleRatio then
8: Emit(1, I)

9: end method
10: end class

1: class Reducer
2: method Setup
3: n ← user specified � Number of partitions
4: end method
5: method Reduce(1, list of interval I)
6: S ← list of I � suppose S starts from S[0]
7: total ← the size of S
8: k = total/n
9: sort S by start point on ascending order
10: for all j ∈ {1, . . . , n− 1} do
11: tj ← the start point of interval S[j ∗ k − 1]
12: Emit(null, tj)
13: end for
14: end method
15: end class

4.2.3 Distance-Aware Algorithm(DAA)

Although NRA can reduce a large amount of replications of R and S com-

pared with BA, it still has a lot of unnecessary replications. For instance, NRA

needs to replicate r3 to p1 in Figure 4.11, but r3’s closest interval is in p2 indeed.

Recall that NRA needs three MR jobs. The first job is to obtain the partition

scheme by sampling. The second job is to partition R and S according to the
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partition scheme in map phase and compute local result in each reduce phase.

The third job is to find global closest intervals for each r ∈ R. The distance-

aware algorithm(DAA) is going to modify the second and the third job of NRA.

Instead of partitioning R and S at the same time, DAA only partitions S and

obtains the new partition boundary in the second job. Then the map phase of

the third job partitions R according to the new partition scheme and computes

the result in reduce phase.

Algorithm 2 The map phase of the second job of NRA

1: class Mapper
2: method Setup
3: label ← R or S
4: load partition scheme file into memory
5: obtain partition mapping {p1 = [t0, t1), . . . , pn = [tn−1, tn)} from partition scheme

file
6: end method
7: method Map(interval I)
8: i, j ← index of continuous partitions {pi, . . . , pj} that I intersects
9: for all k ∈ {i, . . . , j} do
10: Emit(k, (label, I))
11: end for
12: if label is R then
13: if i > 1 then
14: Emit(i− 1, (label, I))

15: if j < n then
16: Emit(j + 1, (label, I))

17: end method
18: end class

4.2.3.1 Algorithm Description

Still take Figure 4.11 as the example.

The first job is to do sampling on S, and the partition scheme obtained is

P = {p1 = [0,12), p2 = [12,24)}. Then the second job partitions S according

to the partition scheme, the results are: partition p1 contains s1 while p2 contains
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Figure 4.11: Motivating example

{s2, s3, s4}. The key of the second job is its reduce phase, which adjusts the

partition scheme. For example, p1 contains s1 = [0,4], so p1 is adjusted into

p′1 = [0,4). p2 contains {s2, s3, s4}, so it finds the leftmost start point and

the rightmost end point of these intervals and use them as the new partition

boundary, so p2 is adjusted into p′2 = [13,24). Then the third job partitions R

according to the adjusted partition scheme. The mapping rule is: if r intersects

multiple partitions, it is sent to those partitions; if it does not intersect any

partition, it is sent to the partition closest to it.

r1 r2 r3
7 1162 1917

p’1=[0, 4) p’2=[13, 24)0 24134

Figure 4.12: The new boundary for each partition

Look at Figure 4.12, the adjusted new partition scheme is P = {p′1 =

[0,4), p′2 = [13,24)}. Now consider r1, as it intersects p′1 but is far away

from p′2, it is only sent to p′1. For r2, it does not intersect any partition, so

we compute the distance between it and its neighbor partitions, then we have

|r2, p′1| = 7− 4 = 3, and |r2, p′2| = 13− 11 = 2. So, unlike NRA that sends r2 to

both p′1 and p′2, DAA sends r2 only to p′2. For r3, it will be sent only to p′2, be-
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cause r3 only intersects p′2. That’s why this algorithm is called distance-aware,

because it considers the distance information between r and each partition p′i

to partition R smartly. The reduce phase of the third job performs the closest

interval join within each partition and output the result.

However, there could be the situation that some intervals from S intersect

more than one partitions, which requires special care to guarantee the correctness

of DAA.

r1
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Figure 4.13: An example shows some intervals intersect more than one partition

Take Figure 4.13 as the example, suppose the initial partition scheme ob-

tained by the first sampling job is P = {p1 = [0,12), p2 = [12,24)}. The

second job partitions S according to the partition scheme. It is easy to handle

s1, s2, s3, s4, because they are only within one partition and will be sent to that

partition accordingly. But s5 intersects two partitions. We have two options to

handle s5 here: (o1) sending s5 to either p1 or p2; (o2) sending s5 to both p1

and p2. The first option (o1) will give us the wrong query answer. For example,

if s5 is sent to p1, then p1 contains {s1, s2, s5}, while p2 contains {s3, s4}. After

partition boundary adjustment, p′1 = [0,15), p′2 = [13,24). Using the adjusted

partition scheme to partition R, when considering r2 = [16,18), we will send r2

to p′2. However, this is wrong, since the actual closest interval to r2 is s5 which

is not in p′2. Similarly, the mapping rules will output wrong answer for r1 if we

send s5 to p2 only.
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So, for this special case, our mapping rule uses option (o2). For example,

after sending s5 to p1 and p2, we get adjusted partitions p′1 = [0,15) and

p′2 = [9,24). Both r1 and r2 can find their closest answer intervals if we send

them to their closest adjusted partition, namely, sending r1 to p′1, and sending

r2 to p′2.

Note that the adjusted partitions p′1 = [0,15) and p′2 = [9,24) inter-

sect each other, therefore it makes r3 = [10,11] fall into both partitions. To

eliminate this redundancy, we further amend our partition adjustment method:

suppose the boundary of the old partition p is [left, right), the leftmost start

point and the rightmost end point of all intervals falling in that partition is lm

and rm, if lm > left, we adjust left to lm; if rm < right, we adjust right to

rm. If both of the two conditions cannot be satisfied, we will not adjust the

partition. For example, in Figure 4.13, after replicating s5 to p1 and p2, parti-

tion p1 contains {s1, s2, s5}, so rm = 15 which is greater than the old partition

boundary 12, so we don’t adjust it. Based on the same reason, we don’t adjust

p2 either.

The resulting adjusted partitions are still p′1 = [0,12) and p′2 = [12,24).

According to these adjusted partitions, r3 is sent to only p′1. The new partition

scheme is still correct for all the other query intervals.
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Figure 4.14: An example shows duplicate results

Duplicate Removing There is one remaining issue in DAA. That is, it may
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create duplicate results. Figure 4.14 shows an example. According to our map-

ping rules, r3 and s2 are sent to partition p1 as well as p2. So the result pair

(r3, s2) will appear in both p1 and p2. To remove the duplication, we first find the

common part of the result pair. For example, the common part of the result pair

(r3, s2) is [10,14], then we check which partition the start point of the common

part falls in, and we only keep the result pair in that partition and discard other

duplicate ones. As the start point of the common part of (r3, s2) is 10, and it falls

in partition p1, so we output the result pair (r3, s2) in p1 but discard duplicates

in other partitions.

Job implementation The sampling job is the same as NRA’s. The second

job is to partition S and adjust the partition scheme as Algorithm 3 shows.

Algorithm 4 shows the third job of DAA, which partitions R according to the

adjusted partition scheme and compute the final result.

4.2.3.2 Finding the Closest Interval Pairs within a Reducer

In Algorithm 4, the reduce phase has to employ an algorithm to compute

the closest interval join for RiSi. As there is no efficient centralized algorithm for

closest interval join, we design an efficient algorithm to find the closest interval

pairs within a single reducer.

Let Ri = {r1, · · · , rm} and Si = {s1, · · · , sn} be the set of intervals that are

sent to partition p′i. One algorithm to find out the closest pairs is the simple

nested loop one, where Ri is put in the outer loop and Si is put in the inner loop.

For each r ∈ Ri, it will scan the whole set of Si to obtain the closest interval(s).

Let M be the size of Ri and N be the size of Si. The time complexity of such
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Algorithm 3 The adjustment job

1: class Mapper
2: method Setup
3: load partition scheme file into memory
4: obtain partition mapping {p1 = [t0, t1), . . . , pn = [tn−1, tn)} from partition scheme

file
5: end method
6: method Map(interval I)
7: i, j ← index of continuous partitions {pi, . . . , pj} that I intersects
8: for all k ∈ {i, . . . , j} do
9: Emit(k, I)
10: end for
11: end method
12: end class

1: class Reducer
2: method Setup
3: load partition scheme file into memory
4: obtain partition mapping {p1 = [t0, t1), . . . , pn = [tn−1, tn)} from partition scheme

file
5: end method
6: method Reduce(k, list of interval I)
7: start, end ← look up k in partition mapping
8: min ← find minimum start point from list of interval I
9: max ← find maximum end point from list of interval I
10: if min > start then start = min

11: if max < end then end = max

12: update pk = [start, end) to partition scheme file
13: emit all intervals to file
14: end method
15: end class
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algorithm is O(M ×N).

The problem of the simple nested loop algorithm is that it needs to repeat-

edly scan Si. We want to improve this nested loop algorithm by skipping some

s when scanning Si in the inner loop.

s3

s4
s5

rs1
s2

sr er

emax

smin

before r, if emax < sr after r, if smin >  erintersect r

Figure 4.15: Three different regions in terms of a query interval

Algorithm 4 The last job of DAA

1: class Mapper
2: method Setup
3: load adjusted partition scheme file into memory
4: obtain partition mapping {p1, . . . , pn} from partition scheme file
5: end method
6: method Map(interval I)
7: i, j ← index of continuous partitions {pi, . . . , pj} that closest to I
8: for all k ∈ {i, . . . , j} do
9: Emit(k, I)
10: end for
11: end method
12: end class

1: class Reducer
2: method Reduce(k, list of interval I)
3: setR ← list of interval I
4: construct setS by reading files for partition pk
5: FindClosestAndEmit(setR, setS) � refer to Algorithm 5
6: end method
7: end class

Given a query interval r = [sr, er], the whole domain of Si can be divided

into 3 regions, which are described as follows: (i) the first region is the one in

which the largest end point is smaller than sr. (ii) the second region is the one

in which all the intervals intersect r. (iii) the third region is the one in which the

smallest start point is greater than er. We say interval of Si in region (i) is before
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r, and the interval in region (iii) is after r. Figure 4.15 shows us an example

about these regions. emax is the largest end point in the first region, smin is

the smallest start point in the third region. In this figure, we can find that if

there are answer intervals intersect r, they must be the closest answer intervals

to r. Besides, the interval before r with the largest end point is closer than other

intervals before r. This implies that if such an interval is not the closest interval

to r, neither are other intervals before r. Similar observation can be obtained for

the intervals after r. That is, if the interval after r with the smallest start point

is not the closest interval to r, neither are other intervals after r.

These before and after relationships are useful for skipping some unnecessary

s when scanning Si. Specifically, each one can be used to derive a skipping

technique as follows:

s1
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s3
s2

2 6

7 8
r1
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s4
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s6

Figure 4.16: An example used for our algorithm

Skipping technique (i): We first describe how to use the after relationship to

skip some answer intervals. Let us take Figure 4.16 as an example. Given the

query interval r1, we now scan Si according to the increasing order of their start

points. As soon as we scan to s4, we can skip the remaining answer intervals s5

and s6, since we have |r1, s3| == 0 and |r1, s4| > 0. We are sure that all answer

intervals after r1 cannot be the closest intervals to it. The case is similar for r2.

As soon as we scan to s5, we can skip the remaining answer interval s6, since we

have |r2, s4| < |r2, s5|, where s4 is before r2 with the largest end point and s5 is

after r2 with the smallest start point.
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Skipping technique (ii): The above showcases the usefulness of the after rela-

tionship. Actually, the before relationship is also useful to skip some scanning of

Si. For example, if we have known that the answer interval before r1 with the

largest end point is s2, when turning to the next query interval r2, we do not

need to scan s1 this time, we can just begin scanning from s2.

The whole procedure is summarized in Algorithm 5. Line 10 will start scan-

ning S from the position we scanned last time. In Line 11, we update the start

position of S for the next r according to the skipping technique (ii). The reason

we collect this set of answer intervals is that, if there are no answer intervals

intersect r, this collected answer interval set could be its closest intervals. We

continue to scan S till all answer intervals that intersect r (if any) are collected.

If there exist answer intervals intersect r, we can skip the remaining answer in-

tervals after r based on skipping technique (i). If not, we first check whether

the answer intervals before r are closer to r than those after r in Line 19. If

the answer is yes, we can skip the remaining answer intervals based on skipping

technique (i). If no, Line 22 will scan S till all answer intervals after r with the

smallest start point are collected. All remaining answer intervals will be skipped

based on skipping technique (i). The algorithm will check which are the closest

answer intervals and output the results in Line 23 to Line 26.

Let M be the size of Ri and N be the size of Si. In Algorithm 5, we need to

first sort Ri and Si. These take O(MlogM) and O(NlogN) time. In the nested

loop part, we only need to scan R once, so the time for this part is M . It would

be a little bit complicated to analyze the time complexity of the inner loop.

In fact, the scanning of S is output sensitive. Firstly, we have the startIndex

move from left to right gradually in the algorithm, which will take O(N) time
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Algorithm 5 Closest interval join(Local)

Input: Input interval sets R and S
Output: All closest interval pairs (r, s)
1: Sort R by increasing order of start point.
2: Sort S by increasing order of start point.
3: startIndex← 1
4: for all r ∈ R do
5: beforeDistmin ←∞ � The minimum distance between r and s, where s is

before r.
6: afterDistmin ←∞ � The minimum distance between r and s, where s is after r
7: BeforeClosestSet← ∅ � The set of answer intervals which are before r with

distance equals to beforeDistmin.
8: AfterClosestSet← ∅ � The set of answer intervals which are after r with

distance equals to afterDistmin.
9: OverlapResult← ∅

10: BeforeClosestSet← Start from S[startIndex] till find the set of answer intervals
that are before r with the largest end point.

11: startIndex ←Find the index of first interval in S which are before r with the
largest end point. � Skipping the remaining answer intervals using technique (i).

12: beforeDistmin ← Distance(r, S[b])
13: b← startIndex + length(BeforeClosestSet) � Index of S which may intersect or

after r
14: OverlapResult← Start from S[b] till find the set of answer intervals that intersect

r
15: if OverlapResult �= ∅ then
16: Output (r, s), ∀s ∈ OverlapResult
17: Continue
18: afterDistmin ← Distance(r, S[b]) � There are no answer intervals overlapping

r, so the interval after r could be the closest one.
19: if beforeDistmin < afterDistmin then
20: Output (r, s), ∀s ∈ BeforeClosestSet
21: Continue
22: AfterClosestSet ← Start from S[b] till find the set of answer intervals that are

after r with the smallest start point.
23: if beforeDistmin > afterDistmin then
24: Output (r, s), ∀s ∈ AfterClosestSet
25: else if beforeDistmin == afterDistmin then
26: Output (r, s), ∀s ∈ BeforeClosestSet ∪AfterClosestSet

27: Continue
28: end for

in total. Secondly, assuming the number of closest answer intervals for rk is ck,

then for each rk, we need to scan at most (ck + 1) of Si, in order to collect all
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the answers. This is because the movement of startIndex has been counted by

the first part. In the worst case, as soon as the startIndex stops at the answer

interval before rk with the largest end point, we only need to further scan at

most ck to collect all the answers plus one more scan to determine that the rest

cannot be the answers any more. Hence, the time complexity of our Algorithm

5 is O(MlogM + NlogN + T ), where T is the number of results output by the

algorithm.

4.3 Experiments

In this section, we study the performance of our proposed methods. We

conducted our experiments on both real and synthetic data. Our cluster has

10 machines connected with Gigabit network. Each machine has one Intel(R)

Core(TM) i5-3570 CPU @ 3.40GHz and 16GB RAM. We set one machine as

the master node and the other 9 as slave nodes. Hadoop 2.7.1 is used in our

experiment. As the map phase only reads each interval and process it one by

one, it does not need large memory to store some intermediate results, so it is

enough to allocate 1GB RAM for each Mapper. The reduce phase needs to read

the two sets R and S into memory before performing the closest interval join,

and some auxiliary data structures are created during the process, so we allocate

6GB RAM to each Reducer to guarantee it has enough memory to work with our

real and synthetic data. So two concurrent Reducer instances can be launched

in each node, and the maximum number of reducers can be run in parallel is

18 because we have 9 slaves. The HDFS block size is set to 128MB. To match

the maximum number of reducers, the default number of partitions for BA and
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NRA are 18. For BA, R and S are divided into 18 partitions respectively, which

results in 18 ∗ 18 reducers. We choose this partition number because we want

each reducer to consume roughly the same amount of data as NRA and DAA.

4.3.1 Real Data

As mentioned before, closest interval join operation is frequently conducted

on signal track data in bioinformatics field. So we use these signal track data as

our real data. Specifically, we use two real signal track files from UCSC Genome

Bioinformatics Site [14]. They are the data files about the binding of a protein

called CTCF to the DNA in two different cell lines, with or without estrogen

treatment. The purpose is to find the binding site in a cell line that is closest to

the binding site in another cell line, which can be part of an analysis of finding

cell-type-specific binding. The two files are named R and S. File R contains 60

million intervals and file S contains 53 million intervals. The final result shows

that there are about 80% pairs are closest intervals with distance greater than 0.
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Figure 4.17: Time breakdown for real data

Figure 4.17 shows the running time of the three algorithms. We can see

that DAA can outperform NRA and BA by 3 times and 5 times respectively.
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Figure 4.18: Shuffling cost for real data

The main reason is that a lot of unnecessary replications of R and S are avoided

by our mapping rules, which saves the shuffling cost and computation time in

the reducer. This can be observed in Figure 4.18, which summarizes the total

size of shuffled data of each algorithm. For example, DAA’s shuffled size is only

about 10% of BA. Besides, since both BA and NRA can only find the local

optimum in the first place, they need an extra job to find the global optimum.

This introduces another overhead. Figure 4.17 also shows the time breakdown

of the three algorithms. The last job of BA (i.e., Job2) and NRA (i.e., Job3)

are the extra jobs to find the global optimum, while DAA only needs one job

(i.e., Job3) to carry out the actual closest computation. Remember that Job1

for DAA is to build the initial partition scheme and Job2 is to adjust the initial

partition scheme, and Job3 is to partition R and S according to our mapping

rules based on partition scheme.

In addition, for the local algorithm used in each reducer, we did a comparison

between the simple nested loop and our proposed Algorithm 5. We find that,

even for DAA, it takes extremely long time to finish when the simple nested loop

algorithm is adopted in each reducer. To verify that, we ran the two centralized
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algorithms in one reducer with the real data R and S. The experiment shows

that Algorithm 5 takes about 200 seconds to finish, but nested loop needs at

least 12 hours. As it was too slow, we terminated it after 12 hours. Then we

generated 1 million intervals for R and S respectively. It takes about 2 seconds

for Algorithm 5 to finish, but 6700 seconds for nested loop algorithm to finish.

As the time complexity of nested loop algorithm is quadratic, we can estimate

the rough running time based on the current experiment result. It shows that

the performance improvement gained by Algorithm 5 is significant.

4.3.2 Synthetic Data

In order to study the performance of the three algorithms in a controlled

manner, we generated synthetic data. Similar to [19], the parameters we use to

control the synthetic intervals are: 1) number of intervals N ; 2) the start point

distribution SD; 3) the interval length distribution LD. The domain range

D = [0, 1B), B = billion, it means each interval’s start and end point lie in this

range. The average interval length is set to L = 10. The default parameters we

used are shown in Table 4.4.

Parameter Default Value

N 700M, M = million

SD Uniform

LD Uniform

Table 4.4: Default parameters for synthetic data generator

Effect of data size: To study the performance of our method when varying the

data size, we generate four groups of dataset. We fixed the size of the second

interval set and varied the size of the first linearly. The details are shown in
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Table 4.5. For example, in group G1, we generate 350 million intervals for R

and 700 million intervals for S. The running time for G1-G4 is shown in Figure

4.19. The corresponding shuffling data size is shown in Figure 4.20. When the

data size is large, our method can outperform BA by an order of magnitude and

NRA by more than 5 times. The main reason is again that a lot of unnecessary

replications of R and S are avoided by our mapping rules. Furthermore, we can

observe that our algorithm scales linearly when the data size increases. Figure

4.21 is a time breakdown of the three algorithms. We can see that under G2, the

running time of Job1 and Job2 in DAA become negligible when the data size is

large.

Group First Interval Set Second Interval Set

G1 R=350M S=700M

G2 R=700M S=700M

G3 R=1.05B S=700M

G4 R=1.4B S=700M

Table 4.5: Varying data size
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Figure 4.19: Execution Time vs. Data Size

Effect of number of partitions: In this experiment, we study the performance

of our method when varying the number of partitions by specify it via program
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 0

 5000

 10000

 15000

 20000

BA NRA DAA

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Algorithms

Job3
Job2
Job1

Figure 4.21: Time breakdown for G2

arguments. Figure 4.22 shows the result. We can see that the running time

first decreases as the number of partitions increases, but then goes up when

the number of partitions is larger than 54. In theory, the more partitions, the

better the performance it is. This is because the running time of our algorithm

is sublinear to the number of partitions. As the partition number increases, the

number of intervals received by each partition would be smaller. This results in

faster completion time of each reducer. Remember that the time complexity of

our Algorithm 5 running in each reducer is O(MlogM +NlogN + T ). Assume

we double the number of partitions, then the number of intervals received by

each reducer will be half of before and the running time of each reducer becomes
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O(M2 log
M
2 + N

2 log
N
2 + T

2 ) = O(M2 (logM − log2)+ N
2 (logN − log2)+ T

2 ), which is

more than 2 times faster. However, Figure 4.22 shows a sweet spot at number 36.

There are two reasons. First, since the maximum number of concurrent reducers

is fixed, the more partitions, the more waves we need to finish the reducers. For

example, when we double the partition number from 18 to 36, it requires 2 waves

to finish all reducers. Second, as the number of reducers increases, the task start-

up and scheduling overhead become dominant and cancel out the performance

gained by Algorithm 5. These explain the “U” shape of Figure 4.22.
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Effect of cluster size: In this experiment, we vary the number of nodes for DAA.

In our cluster, one node is the master node for job scheduling and the other 9 are

the slave nodes. So we changed the slave nodes from 1 to 9 using the G2 data.

The number of partitions we configured is 18 in each experiment, each node can

run two reducers concurrently. Figure 4.23 shows that the running time decreases

when the number of working nodes increases. The sharpest decrease happened

when the number is changed from 1 to 3. That’s because when the number is 1,

there is only one slave node that works. As there are only two reducers running

concurrently in a node, it will take one slave node 9 waves to finish the whole
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job. When there is almost no parallelism, the overhead of spawning a full fledged

program (mapper or reducer) will become an unignorable factor which affects the

total running time. If the number of slave nodes is 3, there can be 6 reducers

running at the same time, only 3 waves are needed to finish this. As parallelism

increases, the overhead of startup/shutdown of mappers and reducers becomes

less and less influential in the total execution time, so the time almost linearly

reduced with the number of nodes increases such as from 3 to 9.
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Figure 4.23: Execution Time vs. Number of Slave Nodes
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Figure 4.24: Varying the skewness on interval length

Effect of data skew: In this experiment, we vary the interval length distribution

and start point distribution of G2 data. We use zipf distribution, which has a

parameter θ. When θ is smaller, the data tends to uniform; when it is larger,
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Figure 4.25: Varying the skewness of starting position

the data tends to skew. Figure 4.24 shows the result of DAA when we vary

the interval length through θ but keep the start points uniformly distributed. It

shows that the performance of DAA is not influenced much because the start

points remain uniformly distributed and DAA’s first job (sampling) would still

evenly partition the data as before. Figure 4.25 shows the result of DAA when we

vary the start point through θ but keep the interval lengths uniformly distributed.

It follows the folklore and indicates an increase in running time because such data

skewness increases the data volume for a small number of reducers. How to deal

with data skewness in MR environment is a standalone topic [41] and we regard

that as a future work in the context of interval data.

4.3.3 Summary

In summary, there are three reasons that DAA is always the best. First,

DAA takes extra efforts to adjust the partition boundary before it partitions

R. Compared with NRA, this strategy guarantees each r in R can be shuffled

to only the exact partitions that will generate the output and thus save a lot

of traffic. On the other hand, NRA will send r to the neighbor partitions as
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well. Second, both of BA and NRA have to find the global optimum with

one additional MapReduce job. This job has to start a reducer for each r and

shuffle all the r related results to it, which will cause large data traffic. Third,

the efficient local algorithm of DAA further helps reduce the computation time

greatly.



Chapter 5

Conclusions

The system presented in this thesis consists of four major components:

1. A declarative language called Signal Track Query Language (STQL), which

is an SQL-like language we specifically designed to suit the needs for ana-

lyzing genomic signal tracks.

2. A system built on top of a parallel architecture based on the MapReduce

distributed storage and processing framework for big data and the Hive

data warehouse infrastructure. It facilitates the execution of each user

task on multiple machines in our computer cluster in parallel.

3. A simple and user-friendly website that helps users construct and execute

queries, upload/download compressed data files in various formats, manage

stored data, queries and analysis results, and share queries with other users.

It also provides a complete help system, detailed specification of STQL, and

a large number of sample queries for users to learn STQL and try it easily.
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Private files and queries are not accessible by other users.

4. A repository of public data popularly used for large-scale genomic data

analysis, including data from ENCODE and Roadmap Epigenomics, that

users can use in their analyses.

The current version of START has been running for almost one year. It has

already been used by our collaborators.

Finally, to optimize one key operation closest interval join in START, we

designed three algorithms to handle it on MapReduce. The broadcast algorithm

is easy to implement, but will cause a huge network traffic which makes it ex-

tremely slow in practice. The neighbor replicating algorithm will reduce the

network traffic by sending intervals to just its neighbor partitions, but there are

still unnecessary replications. The distance-aware algorithm considers adjusting

the partition boundary and the distance between an interval and the partition in

order to send the interval to exact partitions that will output the result. Besides,

we also proposed an efficient centralized algorithm to compute the closest interval

join in each reducer, which has a significant improvement to the total job execu-

tion time. The experiments showed the distance-aware algorithm combined with

the efficient centralized algorithm is scalable and can gain the shortest execution

time compared with other two algorithms.

In the future, there are some interesting directions to explore:

• With technology advancement, the implementation of MapReduce frame-

work has also changed a lot. It would be interesting to integrate our system

to Spark [4] or integrate GPU acceleration power into our system [30].



CHAPTER 5. CONCLUSIONS 93

• As different users will issue similar queries at the same time or different

queries will touch the same track data, how to connect queries into work-

flows and offer more effective resource allocation policies with the declara-

tive system is another interesting topic.

• In addition to offering STQL, it will also be helpful to provide simple APIs

for advanced users to manipulate the track data more flexibly.
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Appendix A

Full set of example queries

A.1 Simple queries

SQ1 Analysis task: To compute the average H3K4me1 signal at each 100bp

bin across the whole genome, for identifying potential transcriptional en-

hancers.

Query template:

SELECT *

FROM (project T on generate bins with length 100

with vd sum using EACH MODEL) NtInt

WHERE NtInt.value > 0;

Example of real data:

• T: ‘wgEncodeBroadHistone’.‘wgEncodeBroadHistoneGm12878H3k04-

me1StdSigV2.bigWig’ (An ENCODE ChIP-seq data file of H3K4me1

signals in the GM12878 cell line produced by the Broad Institute)

95
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Explanations: This is a simple demonstration of the second form of the

project on statement. In the bigWig file we use, the intervals are all non-

overlapping. In this case, using vd sum, vd avg, vd product, vd max

and vd min would all give the same results.

SQ2 Analysis task: To compute the expression level of each gene, defined as the

average RNA-seq signals covering the genomic locations of the gene.

Query template:

SELECT *

FROM (project T1 on (

SELECT DISTINCT chr, chrstart, chrend

FROM T2

WHERE feature = ’gene’) NtInt1

with vd avg using EACH MODEL) NtInt2

WHERE NtInt2.value > 0;

Example of real data:

• T1: ‘wgEncodeCshlLongRnaSeq’.‘wgEncodeCshlLongRnaSeqGm128-

78CellTotalPlusRawSigRep1.bigWig’ (An ENCODE RNA-seq data

file of total long RNA in the GM12878 cell line produced by the Cold

Spring Harbor Laboratory)

• T2: ‘wgEncodeGencode’.‘gencode.v19.annotation.gtf’ (Gencode ver-

sion 19 annotation file)

Explanations: In this query, a nested query is first used to select the se-

quence elements in the gene annotation file that correspond to genes. “fea-

ture” is a non-default attribute defined for the gene annotation track. A
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projection is then performed to compute the average RNA-seq signal of

each gene, and the genes with non-zero expression are returned.

SQ3 Analysis task: To find the genomic regions covered by signal peaks of

both H3K4me1 and H3K27ac, which are potential active enhancers in a

particular context (the HCT116 human cell line in this case).

Query template:

SELECT *

FROM T1 intersectjoin T2;

Example of real data:

• T1: ‘wgEncodeSydhHistone’.‘wgEncodeSydhHistoneHct116H3k04m-

e1UcdPk.narrowPeak‘ (An ENCODE ChIP-seq data file of H3K4me1

signal peaks in the HCT116 cell line produced by the Stanford/Yale-

/Davis/Harvard sub-group)

• T2: ‘wgEncodeSydhHistone‘.‘wgEncodeSydhHistoneHct116H3k27ac-

UcdPk.narrowPeak‘ (An ENCODE ChIP-seq data file of H3K27ac

signal peaks in the HCT116 cell line produced by the Stanford/Yale-

/Davis/Harvard sub-group)

Explanations: This query demonstrates the use of the intersectjoin con-

struct in finding common regions in different signal tracks.

SQ4 Analysis task: To identify expressed regions outside annotated level-1 (ex-

perimentally validated) and level-2 (manually curated) Gencode protein-

coding genes, some of which could be non-coding RNAs.

Query template:
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SELECT *

FROM T1 exclusivejoin (

SELECT chr, chrstart, chrend

FROM T2

WHERE feature = ’gene’ AND

attributes LIKE ’%gene type “protein coding”%’

AND

(attributes LIKE ’%level 1%’ OR attributes LIKE

’%level 2%’)

) NtInt;

Example of real data:

• T1: ‘wgEncodeCshlLongRnaSeq‘.‘wgEncodeCshlLongRnaSeqGm128-

78CellTotalPlusRawSigRep1.bigWig‘ (An ENCODE RNA-seq data

file of total long RNA in the GM12878 cell line produced by the Cold

Spring Harbor Laboratory)

• T2: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode ver-

sion 19 annotation file)

Explanations: This query demonstrates the use of the exclusivejoin con-

struct in excluding regions. A nested query is used to select out only level-

1 and level-2 protein coding genes from an annotation file, based on the

non-default attribute “attributes” defined for the gene annotation track.

These regions are then excluded from the expressed regions with RNA-seq

signals. One could also easily modify the query to exclude also small flank-

ing regions from each gene, by selecting for example “T2.chrstart-1000”

and “T2.chrend+1000” in the nested query, or by considering only regions
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with RNA-seq signals higher than a certain threshold as expressed, by pre-

filtering T1 using the WHERE clause.

SQ5 Analysis task: To identify contiguous genomic regions with significant ex-

pression, which could correspond to transcribed exons.

Query template:

SELECT *

FROM coalesce (

SELECT chr, chrstart, chrend, value

FROM T

WHERE value > 2) NtInt

with vd avg using EACH MODEL;

Example of real data:

• T: ‘wgEncodeCshlLongRnaSeq‘.‘wgEncodeCshlLongRnaSeqGm128-

78CellTotalPlusRawSigRep1.bigWig‘ (An ENCODE RNA-seq data

file of total long RNA in the GM12878 cell line produced by the Cold

Spring Harbor Laboratory)

Explanations: This query demonstrates the use of the coalesce construct

in joining overlapping and adjacent regions. A nested query is used to select

genomic locations with an expression level larger than 2 (say in RPKM or

other units). These regions are then joined together into larger contiguous

regions by using coalesce .

SQ6 Analysis task: To identify regions bound by a transcription factor that

overlap binding sites of another factor, which could indicate co-binding

events and provide information for finding functionally related factors.

Query template:
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SELECT *

FROM T1 TInt1, T2 TInt2

WHERE TInt1 overlaps with TInt2;

Example of real data:

• T1: ‘wgEncodeSydhTfbs’.‘wgEncodeSydhTfbsHelas3CfosStdPk.narr-

owPeak‘ (An ENCODE ChIP-seq data file of Cfos binding signal peaks

in the HeLa-S3 cell line produced by the Stanford/Yale/Davis/Harvard

sub-group)

• T2: ‘wgEncodeSydhTfbs‘.‘wgEncodeSydhTfbsHelas3CjunStdPk.narr-

owPeak‘ (An ENCODE ChIP-seq data file of Cjun binding signal

peaks in the HeLa-S3 cell line produced by the Stanford/Yale/Davis-

/Harvard sub-group)

Explanations: This query demonstrates the use of the overlaps with

relation in the WHERE clause. The query returns Cfos binding peaks

that overlap Cjun binding peaks. These two factors are both members of

the AP-1 complex and are expected to have overlapping binding peaks.

This query is different from taking an intersectjoin between the two

tracks (which is another possible way to study co-binding events), because

intersectjoin only returns the overlapping parts of the intervals but not

whole Cfos binding peaks.

SQ7 Analysis task: To identify all annotated genes longer than a given length.

Query template:
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SELECT *

FROM T TInt

WHERE feature = ’gene’ AND length(TInt) > 1000;

Example of real data:

• T: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version

19 annotation file)

Explanations: This query demonstrates the use of the length() function

in the WHERE clause in filtering intervals. By changing the conditions

in the WHERE clause, this query could also be used for identifying other

types of sequence element.

SQ8 Analysis task: To count the number of annotated non-protein-coding genes,

which is relatively more variable than the number of protein-coding genes

among different annotation sets and different versions of the same annota-

tion set.

Query template:

SELECT COUNT(*)

FROM T

WHERE feature = ’gene’ AND attributes NOT LIKE ’%gene type

“protein coding”%’;

Example of real data:

• T: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode version

19 annotation file)

Explanations: This query demonstrates the use of the COUNT() function

in the SELECT clause in computing an aggregated value of the resulting
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intervals. The selection condition in the WHERE clause also demonstrates

how the NOT LIKE construct can be used to filter out protein coding genes

from the results.

A.2 Composite queries

CQ1 Analysis task: To count the number of transcription factors with a binding

peak overlapping each genomic location. Neighboring locations with the

same count are grouped into one single interval in the results. This query

can be used as one step in identifying high occupancy (HOT) regions [61].

Query template:

FOR TRACK T IN (category=<track-category>, <track-selection-conditions>)

SELECT chr, chrstart, chrend, value

FROM T

COMBINED WITH UNION ALL AS Step1Results;

SELECT *

FROM discretize Step1Results with vd sum using EACH MODEL;

Example of real data:

• <track-category>: ‘SYDH TFBS‘ (ENCODE transcription factor bind-

ing signals from ChIP-seq experiments produced by the Stanford/Yale-

/Davis/Harvard sub-group)

• <track-selection-conditions>: cell=’GM12878’ and fname LIKE ’%Pk%’

(considering only peak files from the cell line GM12878)

Explanations: The first sub-query demonstrates the use of FOR TRACK

IN () in selecting all files corresponding to transcription factor binding
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peaks in a particular cell line. The union of all these peaks is stored in

a temporary track called Step1Results. Each of these peaks has a value

of 1. In the second sub-query, the discretize operation is used to group

neighboring genomic locations with the same number of overlapping tran-

scription factor binding peak count into a region disjoint from other re-

gions. These counts are computed by using the vd sum operation with

the EACH MODEL of interval values.

CQ2 Analysis task: To identify regions that 1) have active transcription factor

binding, 2) are not within pre-defined promoter-proximal regulatory mod-

ules and 3) are at least 10kb away from high-confidence annotated genes.

These regions are potentially gene-distal regulatory regions.

Query template:

CREATE TRACK Step1Results AS

SELECT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend

FROM (T1 exclusivejoin T2) NtIntA;

CREATE TRACK Step2Results AS

SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend

FROM Step1Results NtIntB, T3 TInt3

WHERE TInt3.feature = ’gene’ AND

(TInt3.attributes LIKE ’%level 1%’ OR TInt3.attributes

LIKE ’%level 2%’) AND

distance(NtIntB, TInt3) < 10000;

SELECT *

FROM Step1Results exclusivejoin Step2Results;
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Example of real data:

• T1: ‘HumanMetaTracks‘.‘BAR Gm12878 merged.bed‘ (Regions with

active transcription factor binding in GM12878 as defined in [61])

• T2: ‘HumanMetaTracks‘.‘PRM Gm12878 merged.bed‘ (Promoter-proximal

regulatory regions in GM12878 as defined in [61])

• T3: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode ver-

sion 19 annotation file)

Explanations: The first sub-query uses exclusivejoin to select regions

with active transcription factor binding but are not within the pre-defined

promoter-proximal regulatory regions. The second sub-query takes these

regions and identifies those that are within 10,000bp from any level-1 or

level-2 annotated genes in Gencode. The third sub-query removes the gene-

proximal regions obtained in sub-query 2 from the regions obtained in sub-

query 1 to get the final results. We designed three sub-queries for this

task, rather than one single complex query (which is possible), to keep

each sub-query short and easily understandable.

CQ3 Analysis task: To identify transcription factor binding regions, in the form

of 100bp bins, that are at least 10kb from any high-confidence annotated

genes. This is another way to identify potential gene-distal regulatory

regions when the binding-active regions and the promoter-proximal regu-

latory modules are not pre-defined and it is desirable to give 100bp bins as

outputs for further analyses.

Query template:
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FOR TRACK T IN (category=<track-category>, <track-selection-conditions>)

SELECT chr, chrstart, chrend, value

FROM T

COMBINED WITH UNION ALL AS Step1Results;

CREATE TRACK Step2Results AS

SELECT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend

FROM (project Step1Results on

generate bins with length 100 with vd sum using

EACH MODEL) NtIntA

WHERE NtIntA.value > 0;

CREATE TRACK Step3Results AS

SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend

FROM T1 TInt1, Step2Results NtIntB

WHERE TInt1.feature = ’gene’ AND

(TInt1.attributes LIKE ’%level 1%’ OR TInt1.attributes

LIKE ’%level 2%’) AND

distance(NtIntB, TInt1) < 10000;

SELECT *

FROM coalesce (

SELECT NtIntC.chr, NtIntC.chrstart, NtIntC.chrend

FROM (Step2Results exclusivejoin Step3Results) NtIntC

) NtIntD;

Example of real data:

• <track-category>: ‘SYDH TFBS‘ (ENCODE transcription factor bind-

ing signals from ChIP-seq experiments produced by the Stanford/Yale-
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/Davis/Harvard sub-group)

• <track-selection-condition>: cell=’GM12878’ and fname LIKE ’%Pk%’

(considering only peak files from the cell line GM12878)

• T1: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode ver-

sion 19 annotation file)

Explanations: The first sub-query stores all transcription factor binding

peaks in a temporary track. The second sub-query maps these regions to

100bp bins, and counts the number of transcription factors with a peak

overlapping each bin. By using the “.value > 0” condition, only bins with

at least one binding transcription factor are kept. The third sub-query

identifies the bins that are close to level-1 or level-2 Gencode genes. Finally,

the fourth sub-query uses exclusivejoin to find bins far away from these

genes, and join those that are adjacent into larger regions.

CQ4 Analysis task: To identify genomic regions, in the form of 2000bp bins,

that overlap the binding peaks of at least 2 transcription factors. The

average H3K27ac signal at each of the identified regions is then computed.

Thresholding the resulting signals gives a list of regions with exceptionally

strong H3K27ac signals, which could be potential super enhancers.

Query template:
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FOR TRACK T IN (category=<track-category>, <track-selection-conditions>)

SELECT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend, NtIntA.value

FROM (project T on

generate bins with length 2000 with vd sum using

EACH MODEL) NtIntA

WHERE NtIntA.value > 0

COMBINED WITH UNION ALL AS Step1Results;

CREATE TRACK Step2Results AS

SELECT chr, chrstart, chrend, COUNT(*) AS value

FROM Step1Results

GROUP BY chr, chrstart, chrend;

CREATE TRACK Step3Results AS

SELECT chr, chrstart, chrend

FROM Step2Results

WHERE value > 2;

CREATE TRACK Step4Results AS

SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend, NtIntB.value

FROM (project T on Step3Results with vd sum using

EACH MODEL) NtIntB;

SELECT *

FROM Step4Results

WHERE value > 3;

Example of real data:

• <track-category>: ‘SYDH TFBS‘ (ENCODE transcription factor bind-
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ing signals from ChIP-seq experiments produced by the Stanford/Yale-

/Davis/Harvard sub-group)

• <track-selection-conditions>: cell=’K562’ and fname LIKE ’%Pk%’

(considering only peak files from the cell line K562)

• T: ‘wgEncodeBroadHistone‘.‘wgEncodeBroadHistoneK562H3k27ac-

StdSig.bigWig‘ (An ENCODE ChIP-seq data file of H3K27ac signals

in the K562 cell line produced by the Broad Institute)

Explanations: In the first sub-query, all peak files of transcription factor

binding from a particular cell line are selected. Each of them is projected

onto 2000bp bins, so that a bin has value 1 if it overlaps with a binding peak,

or value 0 if it does not. Only bins that overlap with at least one binding

peak are kept. In the second sub-query, the number of transcription factors

with a binding peak overlapping a bin is counted by using the COUNT()

function and the GROUP BY clause. In the third sub-query, only bins

that overlap with at least the binding peaks of a certain number of (e.g., 2)

different transcription factors are kept. In the fourth sub-query, H3K27ac

signals are mapped onto these remaining bins. Finally, in the fifth sub-

query, only bins with an H3K27ac level larger than a threshold (e.g., 3) are

kept in the output. Again, it is possible to write the STQL statements in a

more compact form, but separating them into sub-queries makes each one

easy to write and to understand.

CQ5 Analysis task: To identify genes with significant differential binding sig-

nals at their promoters in two different contexts. In each context, the

binding signals are computed by subtracting the ChIP-seq signals by the
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corresponding background signals obtained from a control experiment.

Query template:

CREATE TRACK Step1Results AS

SELECT chr, chrstart, chrend, strand

FROM T1

WHERE feature = ’gene’ AND

attributes LIKE ’%gene type “protein coding”%’;

CREATE TRACK Step2Results AS

SELECT DISTINCT NtIntA.chr, NtIntA.chrstart, NtIntA.chrend

FROM (SELECT chr, chrstart-1500 AS chrstart, chrstart+500 AS chrend

FROM Step1Results

WHERE strand = ’+’

UNION ALL

SELECT chr, chrend-500 AS chrstart, chrend+1500 AS chrend

FROM Step1Results

WHERE strand = ’-’) NtIntA;

CREATE TRACK Step3Results AS

SELECT NtIntB.chr, NtIntB.chrstart, NtIntB.chrend,

NtIntB.value - NtIntC.value as value

FROM (project T2 on Step2Results with vd sum using

EACH MODEL) NtIntB,

(project T3 on Step2Results with vd sum using

EACH MODEL) NtIntC
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WHERE NtIntB coincides with NtIntC;

CREATE TRACK Step4Results AS

SELECT NtIntD.chr, NtIntD.chrstart, NtIntD.chrend,

NtIntD.value - NtIntE.value as value

FROM (project T4 on Step2Results with vd sum using

EACH MODEL) NtIntD,

(project T5 on Step2Results with vd sum using

EACH MODEL) NtIntE

WHERE NtIntD coincides with NtIntE;

CREATE TRACK Step5Results AS

SELECT NtIntF.chr, NtIntF.chrstart, NtIntF.chrend,

NtIntF.value / NtIntG.value as value

FROM Step3Results NtIntF,

(SELECT chr, chrstart, chrend, value

FROM Step4Results

WHERE value != 0) NtIntG

WHERE NtIntF coincides with NtIntG;

CREATE TRACK Step6Results AS

SELECT chr, chrstart, chrend

FROM Step5Results

WHERE value > 2;
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SELECT *

FROM (SELECT NtIntH.chr, NtIntH.chrstart,

NtIntH.chrend, NtIntH.strand

FROM Step1Results NtIntH,

(SELECT chr, chrstart+1500 AS chrstart,

chrstart+1500 AS chrend

FROM Step6Results) NtIntI

WHERE NtIntH.strand = ’+’ AND NtIntI is prefix of NtIntH

UNION ALL

(SELECT NtIntJ.chr, NtIntJ.chrstart, NtIntJ.chrend, NtIntJ.strand

FROM Step1Results NtIntJ,

(SELECT chr, chrend-1500 AS chrstart,

chrend-1500 AS chrend

FROM Step6Results) NtIntK

WHERE NtIntJ.strand = ’-’ AND NtIntK is suffix of NtIntJ) NtIntL;

Example of real data:

• T1: ‘wgEncodeGencode‘.‘gencode.v19.annotation.gtf‘ (Gencode ver-

sion 19 annotation file)

• T2: ‘wgEncodeSydhTfbs‘.‘wgEncodeSydhTfbsGm12878JundIggrabSig.bigWig‘

(An ENCODE ChIP-seq data file of Cjun binding signals in the GM12878

cell line produced by the Stanford/Yale/Davis/Harvard sub-group)

• T3: ‘wgEncodeSydhTfbs‘.‘wgEncodeSydhTfbsGm12878InputStdSig.bigWig‘

(An ENCODE control experiment file using input DNA in the GM12878

cell line produced by the Stanford/Yale/Davis/Harvard sub-group)
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• T4: ‘wgEncodeSydhTfbs‘.‘wgEncodeSydhTfbsK562JundIggrabSig.bigWig‘

(An ENCODE ChIP-seq data file of Cjun binding signals in the K562

cell line produced by the Stanford/Yale/Davis/Harvard sub-group)

• T5: ‘wgEncodeSydhTfbs‘.‘wgEncodeSydhTfbsK562InputStdSig.bigWig‘

(An ENCODE control experiment file using input DNA in the K562

cell line produced by the Stanford/Yale/Davis/Harvard sub-group)

Explanations: The first sub-query identifies all protein-coding genes. The

second sub-query defines the promoter of each gene as the region from

1500bp upstream of the transcription start site to 500bp downstream of

it. The two strands need to be handled in different ways. The third and

fourth sub-queries compute the background-subtracted binding signals of

a transcription factor at the promoters in two different cell lines. The fifth

sub-query computes the fold change of the binding signal, given that the

signal is non-zero in the second cell line. The sixth sub-query selects the

promoters with at least a 2-fold higher binding signal in the first cell line

as compared to the second one. Finally, the seventh sub-query gets back

the information of the genes of these promoters.

Since the results of the first two sub-queries are frequently used, they can

be pre-constructed for reuse by various queries, which would simplify the

whole analysis procedure.

CQ6 Analysis task: To identify genomic regions with bi-directional transcription

at their flanking regions, which could be potential enhancers producing

enhancer RNAs (eRNAs) [24, 39].

Query template:
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CREATE TRACK Step1Results AS

SELECT chr, chrstart - 200 AS chrstart, chrend - 200 AS chrend

FROM T1

WHERE value > 2;

CREATE TRACK Step2Results AS

SELECT chr, chrstart + 200 AS chrstart, chrend + 200 AS chrend

FROM T2

WHERE value > 2;

SELECT *

FROM Step1Results intersectjoin Step2Results;

Example of real data:

• T1: ‘wgEncodeCshlLongRnaSeq‘.‘wgEncodeCshlLongRnaSeqK562Ce

llPapPlusRawSigRep1.bigWig‘ (An ENCODE RNA-seq data file of

total long RNA of the positive strand in the K562 cell line produced

by the Cold Spring Harbor Laboratory)

• T2: ‘wgEncodeCshlLongRnaSeq‘.‘wgEncodeCshlLongRnaSeqK562Ce

llPapMinusRawSigRep1.bigWig‘ (An ENCODE RNA-seq data file of

total long RNA of the negative strand in the K562 cell line produced

by the Cold Spring Harbor Laboratory)

Explanations: In the first sub-query, genomic regions on the positive strand

with an expression level higher than a given value (e.g., 2) are selected.

The regions are shifted 200bp to the left, which will make the last step

easy. Likewise, the second sub-query identifies regions on the negative



114 A.2. COMPOSITE QUERIES

strand with significant expression, and the regions are shifted to the right

by 200bp. Finally, in the third sub-query, the results from the first two

sub-queries are intersected. Each region in the final signal track has signif-

icant expression level 200bp downstream on the positive strand and 200bp

upstream on the negative strand, which forms a bi-directional pattern in-

dicative of eRNA [24].



Appendix B

STQL grammar rules

STQL STATEMENT := DDL | DML | QUERY

DDL := CREATE TRACK | CTAS | DROP TRACK

CREATE TRACK := create track TRACKALIAS LBracket SCHEMA RBracket

CTAS := create track TRACKALIAS as REG QUERY

SCHEMA := ATTRNAME DATA TYPE (, ATTRNAME DATA TYPE)*

DROP TRACK := drop track TRACKALIAS

DML := LOAD DATA

LOAD DATA := load data local inpath Filepath (overwrite)? into track

TRACKALIAS

DATA TYPE := string | int | float

QUERY := REG QUERY | FOR LOOP
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REG QUERY := SELECT STAT FROM STAT (WHERE STAT)? (GROUPBY STAT)?

(ORDERBY STAT)?

FOR LOOP := for track TRACK VAR in LBracket TrackProperty RBracket

( REG QUERY combined with UNION as TRACKALIAS | CTAS)

TRACK VAR := Identifier

FROM STAT := from FROM SOURCE

FROM SOURCE := MULTIPLETRACK

TRACK := RAW TRACK | TRANSFORM RES | OVERLAPJOIN RES |
SUBQUERY | UNION RES

MULTIPLETRACK := TRACK (, TRACK)*

UNION RES := LBracket TRACK UNION TRACK (UNION TRACK)*

RBracket TRACKALIAS

UNION := union all

RAW TRACK := (CATEGORY.)?TRACKNAME ((as)? TRACKALIAS)?

CATEGORY := Identifier

TRACKALIAS := Identifier

TRANSFORM RES := TRANSFORM OP | LBracket TRANSFORM OP

RBracket TRACKALIAS

TRANSFORM OP := TRANSFORM (with VALUE DER)?

TRANSFROM := COALESCE TRACK | DISCRETIZE TRACK
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COALESCE := coalesce

DISCRETIZE := discretize

OVERLAPJOIN RES := OVERLAPJOIN OP | LBracket OVERLAPJOIN OP

RBracket TRACKALIAS

OVERLAPJOIN OP := OVERLAPJOIN (with (VALUE DER METADATA

| VALUE DER | META DATA))?

OVERLAPJOIN := INTERSECTJOIN | EXCLUSIVEJOIN | PROJECT

INTERSECTJOIN := TRACK intersectjoin TRACK

EXCLUSIVEJOIN := TRACK exclusivejoin TRACK

PROJECT := project TRACK on (TRACK | CREATE BINS)

CREATE BINS := generate bins with length Integer

VALUE DER METADATA := VALUE DER, META DATA |META DATA,

VALUE DER

VALUE DER := VD TYPE using VALUE MODEL

VD TYPE := vd sum | vd diff | vd product | vd quotient | vd avg | vd max

| vd min | vd left | vd right

META DATA := metadata

VALUE MODEL := VM TYPE model

VM TYPE := each | all

SELECT STAT := select ((distinct)? FIELD (, FIELD)* | SELALLEXP)
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SELEXP := FIELD (as ATTRNAME)?

SELALLEXP := *

FIELD := ARITH FUNC | AGG

ARITH FUNC := (MUL DIV | Number) ((+ | −) (MUL DIV | Number))?

MUL DIV := (ELEM | Number) ((* | /) (ELEM | Number))?

ELEM := INTERVAL ATTR | LBracket ARITH FUNC RBracket

INTERVAL ATTR := ATTRNAME | TRACKNAME.ATTRNAME

TRACKNAME := Identifier | TRACKALIAS

ATTRNAME := chr | chrstart | chrend | value | Identifier

AGG := AGG FUNC LBracket INTERVAL ATTR RBracket | COUNT ALL

AGG FUNC := count | max | min | avg | sum

COUNT ALL := count LBracket SELALLEXP RBracket

WHERE STAT := where (OR PREDICATE | CLOSEST PREDICATE)

OR PREDICATE := AND PREDICATE (or AND PREDICATE)?

AND PREDICATE := NOT PREDICATE (and NOT PREDICATE)?

NOT PREDICATE := PREDICATE | not (PREDICATE | LBracket OR PREDICATE

RBracket)

PREDICATE := NUMERIC COMP | LOCATION COMP | PATTERN MATCHING

NUMERIC COMP := (INTERVAL ATTR | INTERVAL LENGTH | IN-

TERVAL DIS | Number) COMP OP (INTERVAL ATTR | INTERVAL LENGTH
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| INTERVAL DIS | Number)

INTERVAL LENGTH := length LBracket (TRACKNAME | CONS INTERVAL)

RBracket

INTERVAL DIS := distance LBracket (TRACKNAME | CONS INTERVAL)

, (TRACKNAME | CONS INTERVAL) RBracket

COMP OP := < | = | ! = | > | <= | >=

LOCATION COMP := (TRACKNAME | CONS INTERVAL) LOC COMP OP

(TRACKNAME | CONS INTERVAL)

LOC COMP OP := overlaps with | precedes | follows | coincides with | is
prefix of | is suffix of | is adjacent to | is within | contains | is upstream of | is
downstream of

CONS INTERVAL := LeftSquareBracket CHR, CHRSTART, CHREND (,

STRAND)? RightSquareBracket

CHR := Identifier

CHRSTART := Integer

CHREND := Integer

STRAND := + | −

PATTERN MATCHING := INTERVAL ATTR (not)? like RegularExpres-

sion

CLOSEST PREDICATE := TRACKNAME is closest to each TRACK-

NAME
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GROUPBY STAT := group by INTERVAL ATTR (, INTERVAL ATTR)*

ORDERBY STAT := order by INTERVAL ATTR (, INTERVAL ATTR)*

SUBQUERY := LBracket QUERY RBracket TRACKALIAS
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