

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

SENSOR WEB AND GEOSPATIAL

CLOUD COMPUTING MODELING

AND ITS APPLICATION IN

REAL-TIME COLLABORATIVE

EARTH OBSERVATION DATA

PROCESSING

XIAO FEI

Ph.D

The Hong Kong Polytechnic University

2016

2

 The Hong Kong Polytechnic University

Department of Land Surveying and Geo-Informatics

Sensor Web and Geospatial Cloud

Computing Modeling and its

Application in Real-time Collaborative

Earth Observation Data Processing

XIAO Fei

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

December 2015

iii

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written, nor

material which has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

______________________ (Signed)

_____Fei Xiao (肖斐) (Name of student)

iv

ABSTRACT

Sensor Web and Geospatial Cloud Computing Modeling and its Application in

Real-time Collaborative Earth Observation Data Processing

The geospatial science is one of data-intensive domains, where research and

development typically produce and analyze large volumes of distributed

heterogeneous geospatial data sets. The recent advancements of sensor network and

computing technologies have resulted in an explosion of geospatial data. In addition,

scientific workflows and Web Services have been widely employed in geospatial

data infrastructures. These technologies allow distributed data and model resources

to be accessed and chained together to achieve complex scientific problems. The

emergence of cloud computing provides a new way for processing big geoscience

data by dynamically scheduling computing and storage resources over the Internet.

Although the geospatial community tends to deploy the Earth Observation and

geospatial model resources onto the cloud, there are still some challenges on

effectively applying cloud computing paradigm to manage and analyze big

geoscience data. First, the service-orientated cloud computing paradigm is

transforming traditional geoscientific workflow management system from a close

and centralized control system into a worldwide dynamic business process, which

always consists of complex interactions among a large set of geographically

distributed processing resources deployed and maintained by various organizations.

Out of the necessity, these complex applications need to make use of large volumes

of heterogeneous data and be executed in distributed computing environments.

Furthermore, Current web-based GIS or RS applications generally rely on

centralized structure, which has inherent drawbacks such as single points of failure,

network congestion, and data inconsistency. The inherent disadvantages of

traditional GISs need to be solved for new applications on Internet or Web.

v

To address these challenges, this research presents the Hypercube Geospatial

Service Framework (HyperCGSF), an agent-based framework comprising a scalable

architecture and a set of distributed algorithms for decentralized enactment of

construction and execution of geospatial processing workflows in the cloud

computing environment. Using the Integrated Dust storm Detection Model (IDDM)

as a case study, this research investigates how geospatial cloud computing and Earth

Observation Sensor Web technologies can be utilized to realize standard-compliant

geospatial web services, service composition, model input integration, and output

utilization. Additionally, this research will explore how to apply a scalable hypercube

Peer-to-Peer (P2P) topology to organize an arbitrary number of geospatial service

agents, which can then collaborate in the decentralized execution and monitoring of

geospatial workflows. Contrary to traditional centralized approaches (e.g. BPEL),

each service agent does not fully take charge of executing the whole workflow and

all of the processes in a workflow are evenly distributed among the participating

nodes in a fine-grained manner. An experimental evolution of HyperCGSF and a

comparison with traditional centralized BPEL engine architecture demonstrate that

the proposed HyperCGSF can dramatically decrease the execution times of complex

workflow and increase the stability of the whole systems.

vi

PUBLICATIONS ARISING FROM THIS RESEARCH

Journals

1. Fei Xiao, Geoffrey Y. K. Shea, Jiannong Cao, Man Sing Wong, Zheng Wu.

2016. Decentralized orchestration of composite geospatial processing services

based on OGC web processing service standard. Computers & Geosciences.

(Submitted).

2. Fei Xiao, Man Sing Wong, Kwon Ho Lee, James R Campbell, Geoffrey Y. K.

Shea, 2015. Retrieval of dust storm aerosols using an integrated Neural

Network model, Computers & Geosciences, 102(85):104-114.

3. Wong M. S., Xiao F., Nichol J. E., Shea, G.Y. K., Fung J., Kim J., Campbell J.,

Chan P. W., 2015, A Multi-Scale hybrid neural network retrieval model for dust

storm detection, a study in Asia, Atmospheric Research, 158, 89-106.

Conference Papers

1. Fei Xiao, Geoffrey Y. K. Shea, Man Sing Wong, James Campbell, 2014. An

Automated and Integrated Framework for Dust Storm Detection Based on OGC

Web Processing Services. ISPRS-International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, 151-156

2. Fei Xiao, Geoffrey Y. K. Shea, Jiannong Cao, 2015. Decentralized Orchestration

of Composite OGC Web Processing Services in the Cloud, First International

Conference on Smart Data and Smart Cities September 7-9, 2016, University of

Split, Croatia (accepted).

vii

ACKNOWLEDGEMENTS

It would not have been possible to write this doctoral thesis without the help

and support of the kind people around me, to only some of whom it is possible to

give particular mention here.

First I must give a special thanks to my parents. Their unconditional love and

support are the reasons that I am where I am today. Words cannot express how much

I love you both.

Then I wish to thank Dr. Geoffrey Y. K. Shea, who has been the thesis

supervisor. His wise advice, insightful criticisms, and patient encouragement aided

the writing of this thesis in innumerable ways. I extend my gratefulness and highest

reverence to him for his tolerance, restless academic and personal support. His

astuteness, knowledge and commitment to the highest standards inspired and

motivated me.

I also thank Prof. Jiannong Cao, who has been my co-supervisor. His vast

knowledge in computing science and his dedication to science also served to

establish excellent examples for me. I am fortunate to have him as my co-supervisor.

I also thank the department of LSGI for their support and assistance since the

start of my postgraduate work in 2012, especially the head of department, Prof.

Wenzhong Shi, who inspires me all along since I was enrolled in LSGI in 2009 and

offers me a lot of help. Special thanks to Dr. Man Sing Wong (Charles) for his

valuable comments and support during my studies. His attitudes towards researching

have been inspiring me all along and his tips have been very useful to handle my

PhD studies.

I would also to thank the staff of the department of LSGI, especially Vaness,

Ziki, and Justin for their enthusiastic assistant. I also would like acknowledge the

viii

financial, academic and technical support of The Hong Kong Polytechnic University

and its staff, particularly in the award of a Postgraduate Research Studentship that

provided the necessary financial support for this research.

ix

Table of Contents

ABSTRACT ... iv

PUBLICATIONS ARISING FROM THIS RESEARCH .. vi

ACKNOWLEDGEMENTS ... vii

List of Tables .. xi

List of Figures ... xii

List of Abbreviations ... xiv

Chapter 1: Introduction .. 1

1.1 Research Background .. 1

1.2 Problem Statements ... 5

1.3 Goals and Contributions .. 9

1.4 Thesis Structure ...13

Chapter 2: Literature Review .. 15

2.1 Cloud Computing and Geospatial Cloud Computing ..16

2.2 EO Sensor Web and Sensor Web Enablement (SWE) ...23

2.3 Technologies for Processing Big Geoscience Data ...33

2.4 Geospatial Service Composition in Cloud ..41

2.5 P2P Technology and Its Application in Geoscience ..49

2.6 Concluding Summary ..51

Chapter 3: The GeoSPA Model .. 53

3.1 Internal Structure of GeoSPA ..54

3.2 GeoSPA EO Data Service Model ..55

3.3 GeoSPA Processing Service Model ...66

3.4 GeoSPA Computing Service Model ..76

3.5 Concluding Summary ..82

Chapter 4: The HyperCGSF .. 83

4.1 Hypercube Network Topology ..83

4.2 The Architecture of HyperCGSF ...90

4.3 Distributed Geospatial Service Planning Algorithm (DGSPA)92

4.4 Decentralized Orchestration of Plan ..105

4.5 Monitoring Process Execution and Fault Tolerance ..115

4.6 Concluding Summary ..117

Chapter 5: The Integrated Dust Storm Detection Model .. 118

5.1 Review of Methodologies for Dust Storm Detection ..118

5.2 Data Used and Study Area...121

5.3 IDDM Description ...124

5.4 Implementation and Deployment of the IDDM ..131

5.5 Illustration of Final Result ...133

x

5.6 Concluding Summary ..136

Chapter 6: Evaluation and Discussion .. 137

6.1 Experiment Environment ..137

6.2 Prototype System of HyperCGSF ...138

6.3 Evaluation of GeoSPA EO Data Service ...142

6.4 Evaluation of GeoSPA Processing and Computing Services.................................145

6.5 Test of Node Departure ...154

Chapter 7: Conclusions and Future Work .. 159

7.1 Conclusions ...159

7.2 Future Work ...161

References .. 163

xi

List of Tables

Table 3.1. The description of parameters of RESTful syntax. ... 64

Table 3.2. Comparison of tow implantation strategies. .. 74

Table 3.3. States and descriptions of the G-FSM model. ... 79

Table 3.4. Core transition in the transport protocol of EFSM model. 80

Table 4.1. The Plan and corresponding dependence solution for each GeoSPA. 100

Table 4.2. The Plan and corresponding dependence solution for each GeoSPA. 109

Table 5.1. Different Band wavelengths and corresponding resolution of MTSAT-2 122

Table 5.2. Configuration of SBDART in this study. .. 128

Table 5.3. The geospatial processes of the IDDM and their input/output paramters. 132

xii

List of Figures

Figure 1.1. Illustration of diverse geospatial cloud computing resources distributed over the

Internet ... 4

Figure 1.2. (a) service orchestration, and (b) service choreography. .. 7

Figure 1.3. Contributions of the HyperCGSF. ... 10

Figure 2.1. Cloud computing characteristics, service, and deployment models defined by NIST..

 .. 17

Figure 2.2. The A-Train satellite constellation.. .. 24

Figure 2.3. The UML class diagram of NetCDF information model. ... 28

Figure 2.4. The aggregation function of the NcML. ... 30

Figure 2.5. The architecture of HBase system. ... 38

Figure 3.1. Internal structure of the GeoSPA. ... 53

Figure 3.2. The Tile-based scheme used by GeoSPA for EO data storage. 55

Figure 3.3. Hierarchical storage structure of the multi-dimensional EO data. 56

Figure 3.4. The procedure of storing EO data coverage in the HBase .. 58

Figure 3.5. Illustration of how to transfer geospatial coordinates to Geohash code (Dimiduk et al.,

2013)... 59

Figure 3.6. Illustrations of the row-key design schema... 61

Figure 3.7. Illustrations of the table design schema of (b) HInfoTable, and (c) HTileDataTable. 61

Figure 3.8. Structure of the WMTS implementation of GeoSPA. ... 63

Figure 3.9. UML class diagram of Porcess object. .. 67

Figure 3.10. UML class diagram of GeoSPA processing service model. 69

Figure 3.11. WPS DescribeProcess response generated by GeoSPA. ... 72

Figure 3.12. The Goal model of RAT model represented by XML. .. 73

Figure 3.13. Direct implementation of GeoSPI. .. 74

Figure 3.14. Adapter implementation of GeoSPI .. 75

Figure 3.15. Life cycle of GeoSPA computing service procedure. ... 76

Figure 3.16. Transport protocol of the EFSM model. ... 78

Figure 4.1. Illustration of Hypercube topology with the base: (a) b=2 and (b) b=3. 85

Figure 4.2. Illustration of broadcast operation conducted by node 000 .. 86

Figure 4.3. Illustration of building and maintaining a hypercube topology with 9 nodes and three

dimensions .. 87

Figure 4.4. The architecture of HyperCGSF ... 90

Figure 4.5. Life cycle of HyperCGSF-based geospatial processing service composition 91

Figure 4.6. The desired plan for user-specified service requirement .. 102

Figure 4.7. The sequence diagram of entire lifecycle of DGSPA ... 103

Figure 4.8. Embedded WPS request demo of the ‘Overlap’ operation 106

Figure 4.9. The desired plan for user-specified service requirement .. 110

Figure 4.10. Dispatching sequence and results of task actors for the execution of plan 111

Figure 4.11. Illustration of decentralized plan execution .. 115

Figure 5.1. Domain of this study ... 122

Figure 5.2. Workflow of IDDM .. 124

xiii

Figure 5.3. (a) RGB composition image from MODIS channel 1 (645 nm), 4 (555 nm) and 3

(469 nm) of a serious dust storm on April 27, 2012 and scatterplot of different class

(e.g. land, cover, dust) of (b) BTD, (c) TVAP; (d) IDDI .. 127

Figure 5.4. Simulation of the relationships between BT11 and BTD11-12 for bare soil in various

dust layer heights with an atmospheric profile of MLW: (a) BTD versus BT11 with a

water vapor amount of 0 g/cm2, (b) BTD versus BT11 with a water vapor amount of

3 g/cm2. The altitude of dust layer is 2km and the surface temperature is set to 290K.

 .. 129

Figure 5.5. MODIS RGB color composite image, IDDM-derived dust presence, IDDM-derive

AOT at 550nm, and MYD04-based AOT at 550nm from upper to lower image for

(upper) a dust storm case on 24 April 2009 and (lower) a dust storm case in 20 March

2010. ... 134

Figure 5.6. Screen capture of displaying the (a) NN-derived dust AOT at 550 nm and (b)

simulated dust storm transportation paths generated by HYSPLIT model, in Google

Earth. .. 135

Figure 6.1. Google Compute Engine and VM instances used in this study 137

Figure 6.2. Integrated operating environment of HyperCGSF .. 138

Figure 6.3. (a) EO Data Explorer displaying MTSAT-2 VIS layer. (b) Plan Diagram displaying

the DGSPA-derived plan of IDDM and (c) Work List panel. 140

Figure 6.4. Displaying output of IDDM on EO Data Explorer ... 141

Figure 6.5. Two platforms for GeoSPA EO data service evaluation: (a) THREDDS-based

GeoSPA EO data service testing environment and (b) WMTS-based GeoSPA EO data

service testing environment. ... 142

Figure 6.6. Comparison of response time using different data service (requesting domain size:

10°×10°). .. 143

Figure 6.7. Comparison of response time using different data service (requesting domain size:

20°×20°) ... 144

Figure 6.8. Structure of (a) centralized BPEL and (b) decentralized HyperCGSF 145

Figure 6.9. Percentage of response time in stages of dust storm detection scenario workflow .. 147

Figure 6.10. Comparison of response time using different service composition methods for dust

storm detection scenario ... 149

Figure 6.11. Comparison of response time with the increasing of HyperCGSF nodes for dust

storm detection scenario ... 152

Figure 6.12. Distribution of geospatial processes across the nodes of the three dimensional

HyperCGSF system with 8 nodes (duration=30 min, request rate=60/min). 153

Figure 6.13. Illustration of the workload changing rate at each node for the presence of node

departure ... 157

xiv

List of Abbreviations

AOT Aerosol Optical Thickness

API Application Programming Interface

BDI Belief-Desire-Intension

BTD Brightness Temperature Difference

CDM Common Data Model

DE Digital Earth

DGSPA Distributed Geospatial Service Planning Algorithm

DTDA Dynamic Task Dispatching Algorithm

EO Earth Observation

EWRD Embedded WPS Request Document

GCI Geospatial Cyber Infrastructure

GDAL Geospatial Data Abstraction Library

GeoSPA Geospatial Service Provider Agent

GeoSPI Geospatial Service Programming Interface

GIS Geographic Information System

G-FSM GeoSPA Finite State Machine

GP Geospatial Process

GPW Geoprocessing Web

HyperCGSF Hypercube Geospatial Service Framework

HBase Hadoop Database

HDF Hierarchical Data Format

HDFS Hadoop Distributed File System

IDDI Infrared Dust Difference Index

IDDM Integrated Dust storm Detection Model

IOE Integrated Operating Environment

LST Land Surface Temperature

xv

MaaS Model as a Service

MAS Multiagent System

MIME Multipurpose Internet Mail Extensions

MTSAT Multi-functional Transport SATellite

NcML NetCDF Markup Language

NCSS NetCDF Subset Service

NetCDF Network Common Data Form

OGC Open Geospatial Consortium

OpenMI Open Modeling Interface

OWS OGC Web Services

P2P Peer-to-Peer

PDG Program Dependence Graph

RAT Reverse Absorption Technology

RDBMS Relational Databases Management Systems

Reff Effective Radius

REST Representational State Transfer

RS Remote Sensing

SBDART Santa Barbara DISORT Atmospheric Radiative Transfer

SDI Spatial Data Infrastructure

SOA Service-oriented Architecture

SQL Structured Query Language

SWE Senor Web Enablement

TDS THREDDS Data Server

THREDDS Thematic Real-time Environmental Distributed Data Services

TVAP Three-bands Volcanic Ash Product

WCS Web Coverage Service

WMS Web Map Service

WMTS Web Map Tile Service

WPS Web Processing Service

 1

Chapter 1: Introduction

1.1 Research Background

Geoscience theories and technologies have developed dramatically over the last

three decades and the computational environment for Geographic Information

Science (GIS) and Remote Sensing (RS) have evolved from traditional desktop to a

web-based and service-oriented architecture (SOA) (David, 2005). As one essential

technology of SOA, the Web Service has been widely used by the government,

companies, and research organizations for building core enterprise systems because

of some important features of Web Service such as flexibility, reusability and

platform independence (Shen et al., 2007). Geospatial science can prominently

benefit from Web Service technologies, which enable users to deploy, discover, and

access geospatial resources faster and more efficiently by separating the geospatial

service description from its implementation. It is believed that web-based distributed

geospatial services and large-scale of collaborating applications are the next

development trends of geoscience (Kiehle et al., 2007). In order to make geoscience

data and models more accessible and foster the interoperability of geospatial

resources, many research works have been conducted focusing on building geospatial

warning and decision support systems through Web Service techniques, such as the

Model Web (Geller and Turner, 2007; Granell et al., 2010; Thiebes et al., 2013;

Nativi et al., 2013), Geoprocessing Web (Chen et al., 2010 and Zhao et al., 2012),

CyberGIS (Yang et al., 2010 and Wang et al., 2013), and Model as a Service (MaaS)

(Geller and Melton, 2008; Roman et al., 2009; Yang, Xu, and Nebert, 2013; Li et al.,

2014).

In addition, to better understand, protect and improve our living environment, a

variety of sensors have been developed and deployed for monitoring the Earth and

accumulating valuable records. The advancements of sensing technologies have

Chapter 1: Introduction

2

dramatically improved the accuracy and spatiotemporal scope of the record. In recent

years, the realization and development of Earth Observation (EO) Sensor Web (Di et

al., 2010) is one of the most important achievements in geospatial science. The EO

Sensor Web refers to the realization and development of a continuous, distributed,

and cooperative EO data service system that aims at integrating and coordinating the

multiple heterogeneous Earth monitoring platforms to achieve complex EO tasks

(Chen et al., 2013). The advancements of sensing technologies dramatically increase

people’s capabilities in acquiring geospatial data for building the Digital Earth (DE)

(Craglia et al. 2012) and Spatial Data Infrastructure (SDI) (Masser et al., 2005).

Based on Yang et al. (2011), massive amounts of multi-dimensional data recording

various physical phenomena are taken by the sensors across the globe, and these

sensing data are collected rapidly with a daily increase rate of terabytes to petabytes.

This increase is dramatically enhanced by novel crowd sourcing in situ ground-based

sensor networks as well as the deployment of satellite systems which generates EO

data with very high resolution (Zhao et al., 2012). For example, the National

Aeronautics and Space Administration (NASA)’s Earth Observation System (EOS)

satellites collect alone 1000 terabytes annually (Clery and Voss, 2005), and The

geostationary satellite Himawari-9 for meteorological observation tasks generates

more than three terabytes (TB) of data per day (Minchin, 2014).

Because of the instantaneity and flexibility, the EO Sensor Web technologies

have been widely used in many geoscience projects including disaster monitoring

and assessment, climate change, ecosystem dynamics, and atmospheric pollution

monitoring, which produce massive volumes of geospatial data, or big geoscience

data (Li et al., 2015). The geoscience is typically data-intensive domain, which

always involves large volumes of heterogeneous geospatial data. The needs for high

performance, big data analysis for modeling and simulation of geospatially enabled

content are greater than ever. In addition, many geoscience problems are also

experiencing an increased demand for computing resources, quantification of

information, and making large spatial data available over the web (Vaccari et al.,

Chapter 1: Introduction

3

2009). The geoscience community has recognized that it is critical to leverage

current advanced information and network technologies to share EO resources and

relevant geospatial processing services to effectively achieve the global challenges,

e.g. climate change, atmospheric pollution, and earthquake prediction (Gerard et al.,

2013). Yang et al. (2011) proposed several great challenges in the geoscience

community to achieve the goals of DE and SDI, which can be categorized into four

aspects: data intensity, computing intensity, concurrent intensity, and spatiotemporal

intensity. Recent advancements of cloud computing technology provide potential

solutions to address these grand challenges, which is the motivation of this research.

In recent years, the SOA paradigm has been replaced by cloud computing in the

software industry on a broader scope. The cloud computing can provide the

computing resource, storage space, web services, and other software in a dynamic

and scalable manner via the Internet, which enables service consumers to rent

computing resources on demand (Zhang et al., 2010). The cloud computing is also a

new generation computing paradigm to handle the dynamic demands on computing

resources for processing Big Data. The recent advancements of cloud computing

offers new approaches for dynamically scale compute-intensive tasks or web

applications in the presence of temporarily large number of concurrent access

(Laniak et al., 2013). Furthermore, the increasing tendency of network service users

to use cloud computing encourages Web Service providers to develop and deploy

more and more geospatial services with various functionalities to the service pool,

which is a key characteristic of cloud computing. The cloud computing technology

has been utilized by different geospatial sciences and applications including storing

and acquiring EO data, extracting parameters, configuring and running models,

obtaining knowledge, making decisions, and collecting users’ feedback.

Regardless of the type and content, each piece of information in the cloud can

be described as ‘resource’, and each resource has a set of properties as well as the

relationships with other resources. The geospatial resources are ‘born distributed’,

Chapter 1: Introduction

4

where geospatial data are collected, stored, and processed at different locations

across the Internet (Berners-Lee et al., 2001). Generally, the geospatial resources

distributed over the cloud computing environment can be divided into three

categories: (i) computational resources, (ii) data resources and (iii) model resources,

which are shown in Figure 1.1.

Figure 1.1. Illustration of diverse geospatial cloud computing resources distributed over the

Internet

Scientific workflows have been widely used to combine these diverse resources

to achieve more complex tasks. The term ‘service chain’ is an implementation of a

workflow under the SOA (Friis-Christensen et al., 2009). It is significant to chain

interoperable geospatial data and processing resources to achieve more complex

tasks than the individual model alone (Dubois et al., 2013). Moreover, the emergence

and development of DE and SDI are transforming the globe into an interconnected

and mutual influenced organic unity which requires efficiently integration of

independently developed GIS platforms to share knowledge and collaborate among

diverse organizations worldwide.

Chapter 1: Introduction

5

1.2 Problem Statements

Although the geospatial community tends to deploy the Earth observation and

geospatial model resources onto the cloud computing environment, there are still

some challenges on effectively applying cloud computing paradigm to manage and

analyze big geoscience data, which are introduced below.

1.2.1 Complex Interaction between Geospatial Processing Services

Geoscience problems are intrinsically complicated to analyze and model

because of the complex and dynamical characteristics of the Earth system (Yang et

al., 2011a). Solving comprehensive geographic problem (e.g. environmental disaster

monitoring and evaluation) often requires the integration of multi-disciplinary

geospatial models and massive observational data. Interactions among geospatial

processes and datasets in the spatial or temporal dimensions are intrinsically

complicated (Donner et al., 2009). The Web Service technologies have been

intensively researched for decades to address this problem. However, web-based

geospatial services are slightly different from traditional web service technologies

because the geospatial data on which the geospatial processing services operate is

always diverse, huge, and complex (Granell et al., 2007). Furthermore, the

heterogeneity of existing geospatial models, data formats, semantics, as well as the

complex spatial relationships dramatically complicate the integration of geospatial

resources, which in practice are the most prominent limiting factors for the

achievement of geospatial interoperability (Granell et al., 2010).

Moreover, geospatial processing workflow always consists of a large amount of

geographically distributed geospatial services which are independently developed,

maintained, and published by different organizations. The interoperability of the

distributed geospatial services still remains a grant challenge for geospatial science

disciplines (Nativi et al., 2013). It is complicated and expensive to make the

independently developed geospatial service resources interoperable because of the

Chapter 1: Introduction

6

complex dependencies. The manner of handling the dynamic and complex

interaction between these geospatial model resources for achieving complex

geoscience task is a great challenge.

1.2.2 Geospatial Big Data and Data Intensity

With the rapid development of EO technologies, large amounts of geospatial

data with multiple layers and dimensions are collected from heterogeneous sensing

platforms including satellite imageries, airborne sensing images, and in-situ

observations. These multiple data sources make the volume of EO data grow in a

geometric progression. Yet model simulation result and geospatial dataset always

have more than two dimensions with corresponding geospatial elements such as

geographic coordinate systems, projections, and time series. These data is published

and maintained by globally distributed-organizations over the entire Earth (Li et al.,

2010). However, due to the limitation of the processing capability of a single server,

traditional centralized geospatial service framework is hard to support the efficient

storage and processing of EO data through Internet (Li et al., 2008). Besides,

geospatial data analysis tasks always need to deal with large volumes of

heterogeneous data with different data formats (e.g. text, raster-based data, and

binary file), and share the analysis result over the Internet. Effectively managing,

analyzing and storing these big geoscience dataset are grand challenges in geospatial

science (Cui et al., 2010; Liu et al., 2009).

1.2.3 Centralized and Decentralized Web Service Composition

Web Service composition is the technology of combining a set of interconnected

Web Services to create a more complex, cross-organizational, and value-added

business process. Generally, the description and execution of Web Service

composition can be divided into two categories: service orchestration and service

choreography (Tong et al., 2011), which are shown in Figure 1.2.

Chapter 1: Introduction

7

 (a) (b)

Figure 1.2. (a) service orchestration, and (b) service choreography

Service orchestration can be described as a service composition and all of the

participating services are coordinated by a central orchestrator, i.e. ∑ 𝑊. As shown

in Figure 1.2(a), there are 𝑛 participating services in the service orchestration model

and each of which needs to communicate with ∑ 𝑊 by message exchanges. On the

other hand, service choreography has no central controller and all of the participated

service nodes can collaborate with each other directly to achieve a common goal. As

illustrated in Figure 1.2(b), the service choreography approach tracks the sequence of

messages among 𝑛 independently autonomous services directly, rather than a

specific business process that a single party executes.

Given the distributed nature of the cloud computing and relevant technologies

involved, geospatial workflow applications are inherently distributed (Lee et al.,

2008). Currently, most of the geospatial service composition technologies or

frameworks are built based on the centralized manner, which relies on one central

orchestrator for the execution of the overall geospatial services (Zhao et al., 2012b;

Pantazoglou et al., 2014). However, these centralized approaches for compositing

geospatial processing services always suffer from performance bottleneck for the

reasons analyzed below.

First, as introduced in section 1.2.2, many web-based geoscience applications

always need to collect and integrate data from multiple locations, and a geospatial

processing service can output a large amount of data which may be irrelevant to other

Chapter 1: Introduction

8

processing service in the service chain. However, these data are transferred to the

central controller where it is discarded, which causes unnecessary communication

load on the network. Hence, huge volume of data may be transferred over the

Internet, which makes it a bottleneck for geoscience applications.

Second, in the cloud computing environment, web services are distributed

across physical and geospatial boundaries, which are constantly removed and

updated (Tong et al., 2011). The geospatial processing services become more fragile

when they are deployed on the Internet due to network connection failure or server

downtime. Currently, the main Web Service composition technologies are mainly

based on a centralized manner, which may suffer from performance bottleneck and

the failure of single node. In addition, when the scale of geoscience application

network keeps increasing, it will be very difficult and expensive to discover the

required services among the thousands of distributed geospatial service nodes that

offer services (Tan et al., 2014). Finally, an ever-changing runtime environment may

result in generating lots of various decentralized version of geospatial processing

services at runtime. Considering such dynamicity in workflow execution raises the

problem that there is lack of suitable software architectures to support the execution

of different decentralized version of geospatial process (Safi Esfahani et al., 2011).

Based on the analysis above, it can be concluded that developing a more fine-grained

geospatial service planning and allocation approach is urgent for ensure the

scalability of the geospatial processing workflow execution at lower cost.

Finally, the development of distributed geospatial processing services and the

popularization of web and wireless devices enabled massive numbers of end users to

access geospatial systems at the same time (Goodchild 2007). The real-time

processing of EO data requires geospatial processing services own the capability to

handle the pressure of high concurrency caused by sudden increment of the number

of users and give fast response (Bodk et al., 2010). New software paradigms offered

by cloud such as software, platform, and infrastructure as services always receive a

Chapter 1: Introduction

9

large number of requests. Particularly, in the case of geospatial workflow engine as a

service, a large number of workflow instances are requested from different users all

around the world. Consequently, it results in creating thousands of concurrent

executing instances of geospatial processing services. So there it is urgent to

investigate how to leverage cloud computing technologies to improve the

performance of geospatial service compositions, enable the computability of

concurrent-access-intensive geoscience problems, and hide the complexity of the

computing infrastructure so that scientists can focus on resolving scientific problems

(Yang et al., 2011b).

In summary, it is hard and expensive for the traditional centralized approach to

expand in the presence of a potentially large number of simultaneous, long running

geospatial processing service instances that produce and consume voluminous data.

The decentralized service choreography can address these problems efficiently for

inherent structural features (Gutierrez-Garcia et al., 2013; Tan et al., 2015). Based on

the Figure 1.2, the service choreography model is more collaborative than service

orchestration model because it can achieve efficient interactions and collaborations

among multiple services (Nanda et al., 2004). However, the way of achieving

complex and dynamic coordination and cooperation between the distributed

geospatial service providers without the centralized control is still a great challenge.

1.3 Goals and Contributions

The major objective of this research is to propose a cloud-based geospatial

service framework, called Hypercube Geospatial Service Framework (HyperCGSF),

to address the challenges introduced above. The HyperCGSF consists of a

multifunctional geospatial service provider agent model, an underlying networking

topology called ‘hypercube’, and a set of distributed algorithms to support:

 Efficient publishing, sharing, managing, and accessing the geospatial service

resources (data and processes) distributed over the cloud (Chapter 3).

Chapter 1: Introduction

10

 Automatic discovery and composition of geospatial services to achieve

complex geoscience tasks (Chapter 4.2).

 Orchestration of geospatial processing services in a decentralized manner

with the features of security, load balancing, and fault tolerance (Chapter 4.3

and 4.4).

The HyperCGSF focuses on the automatic geospatial service sharing, discovery

and composition, as well as improvement of the average geospatial process execution

time in the presence of multiple, concurrent and long running geospatial processing

instances through a set of fully decentralized algorithms. In summary, the main

contributions of this research were shown in Figure 1.3.

Figure 1.3. Contributions of the HyperCGSF

As shown in Figure 1.3, the contributions of this research consists of four

aspects: a multifunctional Geospatial Service Provider Agent (GeoSPA) for offering

web-based geospatial services, a hypercube-based Peer-to-Peer (P2P) network

topology for organizing distributed GeoSPAs, a distributed geospatial service

planning algorithm for service discovery and composition, and a fully decentralized

approach to orchestration of geospatial processing services. Developed based on the

Chapter 1: Introduction

11

SOA and open geospatial service standards (e.g. OGC Web Service), the HyperCGSF

can be conveniently deployed onto commercial cloud computing infrastructures (e.g.

Amazon Elastic Compute Cloud, Google Computing Engine, and Windows Azure)

and seamlessly integrated with the EO Sensor Web to supply RESTful-based

geospatial services. The details of these four contributions were introduced further in

detail below.

 GeoSPA

The GeoSPA is designed as a multifunctional service hub for managing the

distributed geospatial service resources in cloud. Different geospatial service

resources can be registered and managed by GeoSPA in a configurable manner. Three

service models were predefined for GeoSPA, which are EO data service model,

processing service model, and computing service model. These three service models

make GeoSPA as a one-stop solution for building SDI in cloud. To ensure the

interoperability and collaboration among service agents in HyperCGSF, all GeoSPA

service models are fully compliant with the OGC Web Service specifications.

In addition, this research proposed a Geospatial Service Programming Interface

(GeoSPI), which can significantly facilitate the model developers to deploy

geospatial model entity onto GeoSPA in the form of web-based geospatial processing

service fulfilled with OGC Web Service (OWS) standard specification. When the

service provider registers a geospatial processing service onto GeoSPA through

GeoSPI, the knowledge-base embedded in GeoSPA can automatically update its

knowledge according to the description of geospatial process and dependent relations

with other service agents. Through this way, GeoSPA can not only work

independently to offer geospatial services, but also cooperate with other GeoSPAs to

achieve more complex task.

Chapter 1: Introduction

12

 A Hypercube-based P2P Network Topology

Current web-based GIS applications generally rely on centralized structure,

which has inherent drawbacks such as single point of failure, network congestion,

and data inconsistency, etc. These inherent disadvantages of traditional GISs need to

be solved for new applications on Internet or Web. To overcome these problems, a

scalable P2P network topology called hypercube is applied to link and coordinate

multiple GeoSPAs to resolve complex scientific problems. By utilizing the

hypercube topology, the HyperCGSF can fully exploit the elasticity capabilities of

cloud computing platforms by dynamically increasing the dimensions of hypercube

on demand. Several algorithms were also proposed for automatically adding or

removing the service agents at runtime, which makes HyperCGSF able to timely and

effectively react to the changing workload in the high dynamic environment of cloud

computing without affecting the performance of the whole system.

 Distributed Geospatial Service Planning Algorithm

Based on the GeoSPA service models and the Hypercube-based network

topology, a Distributed Geospatial Service Planning Algorithm (DGSPA) is proposed

for automatic geospatial processing service composition in the dynamic and complex

distributed computing environment. Based on the distributed decision making of the

GeoSPAs, DGSPA has better scalability and addresses the distributed nature of

service composition in the cloud computing environment. The testing result of

DGSPA using real-world study case indicates that DGSPA is effective and flexible

for achieving complex geoscience tasks by composing distributed geospatial

processing services.

 Fully Decentralized Approach to Orchestration of Geospatial Services

Decentralized orchestration offers performance improvements in terms of

increased throughput and scalability and lower response time. The model developer

Chapter 1: Introduction

13

can deploy geospatial model onto GeoSPA as a geospatial process, which is then

exposed as web-based geospatial processing service. Every GeoSPA is responsible

for managing a set of geospatial processes. The GeoSPA is not fully responsible for

managing the execution of the whole workflow; rather, it contributes by executing

one or more processes in the workflow and maintains the result generated by these

processes. Thus, the geospatial processing service composition and execution tasks

do not need any central controller. All GeoSPAs in a HyperCGSF system can

automatically negotiate with each other to exchange instantiate process instances and

coordinate the execution of various task instances in a decentralized manner.

Additionally, the HyperCGSF achieves a real parallelism by allocating the geospatial

processing tasks to different GeoSPA for execution. The feature is particularly useful

for the data-intensive application which always involves large amounts of data

exchanging. Instead of transferring a large volume of data through the central

controller, the geospatial process can migrate to target location for execution, which

minimizes the low efficiency of large-volume transfer of spatial data on a cloud

computing environment and ensure data integrity.

1.4 Thesis Structure

The thesis consists of seven chapters. This chapter of an introductory nature

discusses the study by introducing research background and analyzing challenges,

potential solutions, and the contributions of this thesis. Chapter 2 reviews related

work, including spatial cloud computing, Web Service composition, comparison of

current EO systems, geospatial service frameworks, and P2P technologies as well as

their potential contributions in geoscience. Chapter 3 presents the structure of

geospatial service provider agent and geospatial service programming interface

(GeoSPI) which can be utilized by mode developers to expose geospatial process as

standard-compliant Web Service. Chapter 4 investigates how to apply a

hypercube-based P2P topology to manage the service agents and achieve the

decentralized orchestration of geospatial services. Several widely used approaches

Chapter 1: Introduction

14

for dust storm detection through remote sensing technology are introduced and

analyzed and the integrated dust storm detection model (IDDM) was proposed as the

study case to evaluate the proposed HyperCGSF in Chapter 5. Chapter 6 brings the

system evaluations and discussions. Chapter 7 summarizes the research and discusses

future work.

 15

Chapter 2: Literature Review

Over the past half century human’s capability to explore the Earth system has

been enhanced with the emergence of new computing, sensor and information

technologies (Yang et al., 2008). While the technological advancements accelerate

collecting, simulating and sharing geoscience data, they also produce Big Data for

geosciences. In recent years, the importance of affordable access to reliable

high-performance hardware and software resources and avoiding maintenance costs

and security concerns has encouraged large institution managers and stakeholders of

information technology companies to migrate to cloud computing. The birth of giant

trustworthy clouds has led to a dramatic reduction in apprehension toward such an

approach. The unprecedented flexibility and scalability provided by cloud bring new

approaches for geoscientists to process large volumes of big geoscience data.

This section provides a brief overview of cloud computing and EO Sensor Web

technologies as well as their applications in geoscience. Because the investigated

subject is very extensive, it is impossible to include all relevant topics. Hence, some

related subjects do not fall within the research scope of this review but will be briefly

mentioned. First, the recent development of the cloud computing technologies was

reviewed as well as their application in processing Big Data. Second, the EO Sensor

Web technologies and their applications were discussed, and a new generation of EO

Sensor Web system was analyzed, indicating that make full use of current

advancement of cloud computing technologies to enhance the capability of

traditional EO Sensor Web system is the next development direction. Then, some

research hotpots of managing and analyzing geoscience Big Data, as well as

web-based geospatial service composition technologies in the cloud computing

environment were introduced. Finally, the P2P technologies were introduced as well

as their application in geoscience.

Chapter 2: Literature Review

16

2.1 Cloud Computing and Geospatial Cloud Computing

Cloud computing has become popular in recent years for its flexibility and

scalability. Cloud computing is a new generation of computing paradigm for sharing

and pooling computing resources to handle the dynamic demands on computing

resources posed by many 21st century challenges. The idea of cloud computing is

initiated from the networked computing or internet computing, and the term “cloud

computing” comes from the general usage of the cloud symbol in the system

diagrams of communication systems and networked computing (Yang et al., 2013).

Cloud computing expands CPU and bandwidth sharing in the modern IT

environment in order to share computing resources more effectively through

hardware virtualization and delivering computing resources as a type of service on

the Internet (Yang et al., 2013). Cloud computing connects networks of computing

resources on the internet through a communication infrastructure.

There have been various definitions for cloud computing. In this study, the

definition provided by the National Institute of Standards and Technology (NIST)

(Mell, 2011) was applied, which is “…cloud computing is a model for enabling

ubiquitous, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider

interaction. This cloud model is composed of five essential characteristics, three

service models, and four deployment models.” Figure 2.1 illustrates the cloud

computing characteristics, service, and deployment models defined by NIST.

Chapter 2: Literature Review

17

Figure 2.1. Cloud computing characteristics, service, and deployment models defined

by NIST

As shown in Figure 2.1, the cloud computing concept defined by NIST consists of three

aspects: essential characteristics, service models, and deployment models, which were

introduced in further detail below.

2.1.1 Cloud Computing Characteristics

NIST denotes five characteristics of cloud computing: on-demand self-service, broad

network access, resource pooling, rapid elasticity, and measured service. These five

characteristics differentiate cloud computing from other distributed computing paradigms,

such as grid computing. The details of these five characteristics were introduced as below:

 On-demand self-service. Cloud computing offers computing resources on

demand through a "pay-and-go" method. Self-service refers to that the

cloud service consumers perform all the actions through web-based service

interfaces directly. And the user-specified service request is automatically

processed by the cloud infrastructure, without human intervention through

an professional IT department.

Chapter 2: Literature Review

18

 Broad network access. The service and data resources that are distributed in

different provider areas in the cloud computing platforms can be accessed

from a wide range of locations and provisioned through standards

approaches. Similar terms, e.g. “easy-to access standardized mechanism”

(Hamdaqa and Tahvildari, 2012) and “global reach capability” (Yakimenko

et al., 2009) are also used to refer to this characteristic.

 Resource pooling. Based on Wischik et al. (2008), a resource pool provides

a collection of resources simulating the behavior of a single blended

resource. This method enables service provider to supply various real or

virtual computing resources in a dynamic manner.

 Rapid elasticity. Elasticity, or scalability, is the ability to scale up (or scale

down) the resources as they need at any time. Elasticity takes advantage of

the concept of virtual servers, which are installed using predefined images

by removing any manual labor required to extend or reduce computing

capacity. Everything is under the control of triggers provided by the system

monitoring tooling. If more computing capacity is required, it is

immediately initialized and configured within minutes. Yet the released free

computing capacity is reduced instantly by system monitoring tooling.

 Measured service. The cloud computing resource can be measured and the

status report will be returned to user in a real-time manner for optimization.

2.1.2 Cloud Computing Service Model

Based on NIST, the cloud service models are grouped into three different forms,

which are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS). The first form concerns hardware resources, the second

form is about runtime environments, and the third area describes the provisioning of

software and services. These three forms were introduced as below:

Chapter 2: Literature Review

19

 IaaS is the most widely used service model of cloud computing. IaaS

supplies physical machines, storage and system software, networks, and

other computer infrastructures in the form of virtualized computing

resources over Internet. In addition, IaaS allows users to configure, deploy,

and run operating systems (OS) and relevant application by themselves.

IaaS user doesn’t need to care about the infrastructure of application

provider and has limited authority to configure relevant setting.

 PaaS. Different with IaaS, PaaS is a much higher level service and supplies

a platform service for application developers. In addition, PaaS provides a

layer of cloud-based software and APIs to computing platforms, which can

be applied to develop higher-level web services. PaaS supplies all the

toolkits for developing and publishing SOA-based applications and services

through the Internet. Google App Engine and Microsoft Azure

(www.microsoft.com/windowsazure) are the most popular examples of

PaaS.

 SaaS is the most widely applied cloud computing service type and supplies

various capabilities of applications which are traditionally supplied through

the Web browser to end users. Notable examples are Google's Gmail and

Salesforce.com. Another example of SaaS is the ArcGIS Online, which is

an ArcGIS implementation on the cloud computing environment.

To facilitate data discoverability, accessibility, and processing in geospatial

sciences, the Data as a Service (DaaS) and Model as a Service (MaaS) has also been

studied in recent years.

 DaaS is the least well defined of the four types of cloud services. DaaS

facilitates users to discover, share, utilize geospatial data resources

distributed on the cloud, and delivers required data and computing

resources to end users regardless of physical location of cloud clients and

Chapter 2: Literature Review

20

servers (Olson, 2010). DaaS facilitates geospatial data discovery and

utilization on the fly to achieve complex geoscience problems by

integrating a layer called middleware layer that collocates and manages data

and processing resources aims at optimizing cloud operations (Jiang 2011),

 MaaS is a cloud-enabled modeling infrastructure proposed by Li et al.

(2014) to capture the technology advancements for dealing with geoscience

modeling by: (1) publishing geoscience models as Web Services to hide the

complexity of model setup; (2) providing an on-demand ready-to-go model

environment, including hardware and software resources; (3) automatically

provisioning computing resources to execute multiple model runs in

parallel to support many-model-run scenarios and concurrent user accesses;

and (4) effectively handling model output for online visualization.

2.1.3 Cloud computing deployment models

Fast development in the utilization of cloud computing leads to publishing more

cloud services on the worldwide service pool. Because of the presence of complex

and diverse services, a single simple service cannot satisfy the existing functional

requirements for many real-world cases. To complete a complex service, it is

essential to have a batch of atomic simple services that work with each other.

Therefore, there is a strong need to define different cloud computing deployment

models, which are introduced below:

 Public cloud. This model is the major one of cloud computing deployment

model. In a public cloud, based on predefined rules, policies, and pricing

model, the cloud provider provides services in the vast majority of cases on

the Internet. Handling a large number of wide-spread computing resources

enables cloud service providers to supply a consumer various choices to

choose the most appropriate resources while considering the Quality of

Service (QoS) at the same time.

Chapter 2: Literature Review

21

 Private cloud. This approach is designed and established to prepare most

of the benefits of a public cloud exclusively for an organization or institute.

Considering the wide utilization of corporate firewalls, setting up such a

private cloud can lead to decreased security concerns because all of the

infrastructures are located inside the organization.

 Community cloud. This model is built by the organizations with similar

requirements, concerns, and policies in form of a community where

member share the cloud computing resources. A third-party service

provider or some community members can be responsible for supplying

the needed infrastructure of the cloud computing.

 Hybrid cloud. Hybrid cloud refers to the creation of a compound cloud

model through a combination of two or more various public, private, or

community clouds. In hybrid cloud system, each constitutive keeps their

specific properties. Yet some standardized or agreed components are also

required to enable the communications with each other with respect to

portability and interoperability on applications and data.

2.1.4 Spatial cloud computing (SCC)

Geoscience applications have special requirements that cannot be automatically

supported by generic cloud computing platforms, because most geospatial algorithms

and applications are not designed to leverage multiple CPUs and be delivered

through the Internet as a service (Huang et al., 2013). Geoscience phenomena are

complex processes and geoscience applications often take a variety of data as input

with a long and complex workflow. It becomes then a critical challenge to deliver

such complex applications to cloud as a transparent service to support massive

numbers of users. Most importantly, both the geoscience and the cloud computing

environments are spatiotemporal intensive. However, the middleware used to

schedule computing tasks on a cloud computing platform is mostly not developed for

Chapter 2: Literature Review

22

Earth science applications and does not take the spatiotemporal principles and

patterns into consideration. Such middleware should be reengineered to support

spatiotemporal processing. The SCC seeks to optimize the data, model, and

computing resources distributed on the cloud based on the spatiotemporal principles

through middleware technologies (Yang et al. 2011a).

Yang et al., (2011a) defined the SCC as “…Spatial cloud computing refers to

the cloud computing paradigm that is driven by geospatial sciences, and optimized

by spatiotemporal principles for enabling geospatial science discoveries and cloud

computing within distributed computing environment”. Based on Yang,

Spatiotemporal principles should be particularly considered in algorithms,

methodologies and phenomena simulations. For example, in atmospheric sciences,

the actual number of grid points selected for buffering would greatly impact both

computation and forecasting accuracy. In addition, when forecasting dust storm as a

weather component, we will consider the time and space interaction, i.e., how time

changes impact the space distribution of dust in the atmosphere.

For Earth science models, multiple inputs with strict format are required to

execute the models (Xie et al., 2010). Although the required datasets for a model are

actually provided online directly, or indirectly, conversion and transformation

processes are required. It is very different and time-consuming to obtain such

datasets and greater effort has to be made on data processes before datasets can be

assimilated by the models. However, no systematic study has been done on how to

integrate widely distributed data resources to enable the executions of Earth Science

models. Moreover, there are situations where different models must work together to

tackle complex problems. These problems cannot be resolved efficiently and

accurately by only one model without major modifications to the original models

(Zhou et al., 2007).

Based on the features provided by current widely used cloud computing

platform, a large number of core GIS operations, such as projection and spatial

Chapter 2: Literature Review

23

analysis, can be implemented as cloud-based web services. To access these

geospatial services, the cloud computing users can use a spatial cloud portal which is

an integrated management interfaces used in Internet browsers (i.e. IE, Chrome, and

Firefox), and local users can use the cloud servers directly through the management

user interface provided by the middleware layers. Further research is required for

integration of PaaS, IaaS, SaaS, DaaS, and MaaS to achieve the bidirectional

enablement between geoscience and cloud computing (Yang et al., 2011a).

2.2 EO Sensor Web and Sensor Web Enablement (SWE)

Understanding the Earth system, its climate and weather, and natural

environment and human-induced disasters, is crucial to human health, safety and

sustainable development. One of the major achievements in Earth observation is the

development and implementation of the EO Sensor Web (Zhang et al., 2012). In this

section, the concept of EO Sensor Web and relevant technologies were reviewed.

2.2.1 Introduction of EO Sensor Web

The concept of EO Sensor Web has emerged due the fast development of Earth

sensing, communication, and information technologies. EO Sensor Web is proposed

to meet the requirements of geoscientists for the timely and pertinent geospatial data

and information, which are used for supporting applications in the societal benefit

area of EO. The EO data is most often referring to satellite imagery or satellite

remote sensing, which utilized upon atmosphere, land and ocean. The obtained data

of Earth Observation, which is named EO data, is widely used in the fields of

scientific research such as climate, weather, environment, ecosystem, biodiversity,

hydrology and natural disaster migration, forecasting or reduction. The capabilities of

Sensor Web include that it can perform intelligent autonomous operations in

uncertain environments, respond to changing environmental conditions, and carry out

automated diagnosis and recovery (Delin et al., 2001).

Chapter 2: Literature Review

24

Figure 2.2. The A-Train satellite constellation

(http://atrain.nasa.gov/historical_graphics.php)

In recent years, the EO Sensor Web has been an active research topic in

geoscience. A lot of international EO programs and space agencies have ongoing

research projects and application that contributes to EO Sensor Web. The National

Aeronautics and Space Administration (NASA) of the United States sponsored more

than 30 research projects in 2005 to evolve and develop the sensor web technology

through its Advanced Information System Technology (AIST) program (Di et al.,

2010). Furthermore, Dozens of EO applications have been developed based on those

research projects in various social benefit areas, such as ecosystem dynamics,

land-use change, disaster monitoring, disaster assessment, sustainability and

agricultural production, climate change, biodiversity, and public health

(NASA/ESTO, 2008).

In recent years, there have been several initiatives at various administrative

levels (e.g., national, regional, and international) for organizing the geospatial service

resources in the field of EO Sensor Web. As one of the most famous worldwide

initiatives in this direction, The Global Earth Observation System of Systems

Chapter 2: Literature Review

25

(GEOSS) has been developed for years with the goal to build a network of EO

sensors by integrating a wide range of heterogeneous EO platforms. By sharing all

international sensor resources, the GEOSS can provide a real-time image as the

snapshot of the whole planet. the Global Monitoring for Environment and Security

(GMES) initiative, Infrastructure for Spatial Information in the European

Community (INSPIRE), and Shared Environmental Information System (SEIS) can

be seen as part of the European contribution to GEOSS (Chen et al., 2013). Mandl et

al. (2008) presents an ambitious space sensor web for disaster management with the

objective of facilitating the United States contribution to the GEOSS. Another

famous initiative of EO system is the Intelligent Sensor web for Integrated Earth

Sensing (ISIES) undertaken by a team of Canadian industry. ISIES integrates the

in-situ sensor web data with remote sensing data and vegetation models

automatically to provide maps of leaf area index, soil moisture and biomass, as well

as improved predictions of crop and rangeland yield.

2.2.2 OGC Sensor Web Enablement (SWE) Framework

The SWE initiative of OGC is a collection of various standard specifications

which aims at increasing the interoperable usage of heterogeneous sensors or sensor

system by enabling their discovery, planning, interacting and event processing

(Broring et al., 2011). Utilizing the Web2.0 technology and Sensor Web Enablement

(SWE) Web Service standards to enable access to Earth Observation (EO) data is an

emerging mega-trend which will dramatically decrease the cost of the producing

customized science by an order of magnitude (Daniel Mandl et al., 2010). OGC SWE

has defined a suite of open standards for the sensor web (Botts et al. 2007), including

specifications for data models, data encodings, and Web Service interfaces. Although

these OGC SWE standards are not as popular as the WWW standards, the

development and adaption of sensor web open standards is one of the necessary steps

to realize the sensor web vision. OGC SWE components include models and XML

schemas (SWE Common, O&M 2.0, SensorML 2.0, EML) and Web Service

Chapter 2: Literature Review

26

interfaces ((SOS 2.0, SPS 2.0, SES, SIR, SOR), which are described as follows:

SWE components include models and XML schemas (SWE Common, O&M

2.0, SensorML 2.0, EML) and Web Service interfaces ((SOS 2.0, SPS 2.0, SES, SIR,

SOR), which are briefly described below:

 SWE Common Data Model: a common data model defining some common

and basic data types used throughout the SWE framework. The SWE

Common Data Model is an encoding standard for exchanging sensing data

between sensor nodes in the OGC SWE framework. These models enable

SWE applications and servers to encode and transmit sensor datasets in a

semantically enabled and self-describing way.

The model enables the user and/or the server to organize, encode and

transfer sensor data-sets through self-describing and semantic activation

(Robin, 2011).

 SensorML, Sensor Model Language: SensorML specifies a model to

encode the description of all kinds of sensors or sensor platforms, as well

as related processes using XML Schema. It provides a functional

description of detectors, actuators, filters, operators, and other sensor

systems, which are treated as instances of process models (Botts, 2007).

 O&M, Observations & Measurements: O&M standard is a domain

independent, XML-based conceptual representation of both spatiotemporal

measurement data. This standard defines some terms as well as their

relations relevant to observation and measurement (Cox, 2011).

 EML, Event Patterns Markup Language: EML is a new specification of

SWE 2.0 which is developed for representing and processing of complex

events, event flows and event cloud (Everding and Echterhoff, 2008).

Chapter 2: Literature Review

27

 SOS, Sensor Observation Service: The SOS offers a series of web-based

interfaces to facilitate the users to discover and access observations and

sensor metadata generated by Sensor Web (Na and Priest, 2007). SOS

enables client applications to discover various types of observation through

standardized operations and filters and retrieve the observations in a

common format specified by the standard.

 SPS, Sensor Planning Service: SPS can be used to define tasks for the

collection of observations and the scheduling of requests. SPS performs as

a middleware to support the complex interactions between users and

sensors (Simonis and Echterhoff, 2011).

 SES, Sensor Event Service: SES provides a series of APIs for managing

event subscription and message sending. SES evolves from the Sensor

Alert Service and offers more powerful functionalities to process

event-based observation tasks. Through SES, the sensing platform can

automatically detect the changing of geospatial conditions, trigger

predefined mechanism to process observed data, and sends messages to

users based on the specifications of the user-specified subscription (Na and

Priest, 2007).

 WNS, Web Notification Service, a Web Service which enables the

asynchronous interchange of message between a client and one or more

services (e.g., SES and SPS) (Simonis and Echterhoff, 2003).

2.2.3 Common Data Model (CDM) and NetCDF Markup Language (NcML)

The NETwork Common Data Form (NetCDF, Domenico, 2011) has become

one of the most widely-used file formats in geoscience and environmental science

applications. NetCDF is commonly used by integrating the Climate and Forecast (CF)

metadata conventions (Domenico and Nativi, 2012) which provide semantic meaning

Chapter 2: Literature Review

28

and georeferencing information. Figure 2.3 illustrates the UML diagram of the

NetCDF information model. The Network Common Data Form (NetCDF) has been

widely applied all over the world as a efficient data model for storing and sharing

scientific data, especially geospatial datasets with multiple dimensions (Nativi et al.,

2005). Some other file formats like the Hierarchical Data Format (HDF) and

GRIdded Binary (GRIB) are also in wide use in geoscience. The Unidata Common

Data Model (CDM) offers an abstraction layer to harmonize and unifies these

formats. The CDM is implemented as Java library that can read all of these formats

(and more) using a common Application Programming Interface (API).

Figure 2.3. The UML class diagram of NetCDF information model

(http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM)

The NetCDF Markup Language (NcML) was developed as a natural

augmentation of the NetCDF with extensions encapsulating descriptions of the

structure and content of NetCDF objects in an XML (Nativi et al., 2005). An NcML

Chapter 2: Literature Review

29

document is an XML document describing the content and structure of the data

stored in a NetCDF file and represents a generic NetCDF dataset. NcML describes

the metadata of the NetCDF data and does not encode the data. NcML enables users

to append additional attributes (e.g. CF convention attributes) to it instead of

rewriting the original file. Furthermore, NetCDF dataset can be used to create the

“virtual NetCDF” files that presenting existing NetCDF files or other gridded data

files as a single dataset. By using NcML to encode part of dataset semantics, generate

virtual datasets, and introduce GIS community semantics, the files do not required to

be rewritten or the program to be remodified (Nativi et al., 2005). The purpose of

NcML is to define and redefine NetCDF file. The NcML has the function as follows:

 Metadata to be added, deleted, and changed.

 Variables to be renamed, added, deleted, and restructured.

 Aggregated data from multiple CDM files.

The aggregation function of the NcML is useful for time series data

combinations. Multiple time series NetCDF data can be aggregated into a single,

logical dataset with several types of aggregation including Union, JoinExisting, and

JoinNew. Figure 2.4 illustrates a demo of NcML aggregation. The attribute

‘dimName’ of ‘aggregation’ indicate the dimension on which the aggregation bases,

and the attribute ‘type’ indicates the aggregation type. When the data server

(THREDDS in this study) is started, the server will read this configuration file and

aggregate relevant files into a single virtual dataset which is updated every 30

minutes.

Chapter 2: Literature Review

30

Figure 2.4. The aggregation function of the NcML

THREDDS (Thematic Real-time Environmental Distributed Data Services)

catalogs provide information about which datasets are available via which

services/protocols (Domenico et al., 2002). The three main client/server (as opposed

to full-file transfer with FTP or GridFTP) protocols for remote data access in use in

the community are OPeNDAP (Open-source Project for a Network Data Access

Protocol), ADDE (Abstract Data Distribution Environment), and NetCDF access via

HTTP protocol. In many cases, the EO data service systems can be augmented by

integrating with THREDDS catalog services which has inventory list and metadata

access. Through the THREDDS catalog services, client applications can understand

the service capabilities of the EO data server, e.g. all available dataset on the server,

via the THREDDS interface. In this way, the client applications can retrieve required

subset of raw EO data via ADDE, OPeNDAP, or NetCDF/HTTP protocols.

The THREDDS Data Server also provides a Web Service called NetCDF Subset

Service (NCSS) for retrieving the subset of CDM scientific datasets. The subset of a

data is specified using earth coordinates, e.g. latitude and longitude, bounding boxes,

Chapter 2: Literature Review

31

and date ranges, rather than index ranges referring to the underlying data arrays. The

NcML and NCSS were intensively applied in this study for grid-based data

transmission. Compared with traditional raster-based data service, e.g. WCS, the

NCSS is more simple and effective because it is developed directly based on the

NetCDF-java library, and can seamlessly integrated with NcML for data service.

2.2.4 New generation of EO Sensor Web

With the continuous development of EO Sensor Web theories and technologies,

the traditional Sensor Web applications and service patterns for observing the Earth

are not able to provide enough powers to handle the changeable and complex EO

tasks, which includes the amount of multiscale observation dataset, distributed

heterogeneous sensing systems, and dynamic and complex controlled network

environments (Chen et al., 2014). It is extremely urgent to research and develop the

new generation of EO Sensor Web system architectures and service patterns. The

major challenge is to develop a robust approach to fast and effectively discover and

integrate these various, heterogeneous sensors within an application of disaster

emergency in a simultaneous manner (Hu et al., 2011). Moreover, how to better

understand the capabilities of an EO sensing platform, and then process their

observation data with disregard to the heterogeneous data formats is another grant

challenge. Finally, how to achieve better performance in serving EO data on-demand

in a virtual sensor web environment and how can the relevant emergency services

including sensor planning, data accessing and relevant processing, etc., to be

on-demand timely chained and composed have become the bottleneck of geospatial

Sensor Web.

One of the research directions for EO Sensor Web is to develop a scalable and

cooperative work mechanism, as well as the integration of multiple heterogeneous

EO platforms called Integrated EO Sensor Web system (IEOSWS). First, the

IEOSWS can realize dynamic assignment of ground-based, airborne, and aerospace

observational resources based on user's requirement. Second, the IEOSWS can

Chapter 2: Literature Review

32

effectively discover and utilize observational resources, fulfil increasingly various

observation requirements, and enable the customizable, transparent, and efficient

application of EO resources. Thus, the IEOSWS can truly realize the dynamic

resource management, intelligent event perception, information fusion, on-demand

observation, data assimilation, and smart service on multiple heterogeneous sensing

platforms.

On the other hand, the EO processing challenges drive the evolution of

distributed computing paradigms from cluster computing, grid computing, to cloud

computing, which can provide more powerful and scalable computing capabilities to

enable the computability of geoscience applications (Yang et al., 2011a). As

introduced in section 2.1, the cloud computing offers computing resources

(processing capability, storage, and network) in a scalable, dynamic, and virtualized

way in the form of web services. It is believed that this new type of computing

resource distribution and organization paradigm can supply more benefits for new

generation of EO Sensor Web system, such as improvement of utilization ratio,

intelligent sensing resource allocation, realization of green computing , energy saving

and provision of a new sensor service mode (Chen et al., 2014). In addition, the

performance of computing could be further improved and optimized through

utilizing spatiotemporal patterns of phenomena, data, services, models, and

computing resources.

Finally, Chen et al. (2009) and Chen et al. (2011) proposed the concept of

virtualization sensor data service, which refers to the registry, deployment, discovery,

planning, collaboration, combination, and fusion of EO resources under the Internet

environment. The provision of creating highly virtualized sensing resources

dynamically is one of the most important technologies utilized by cloud computing

in EO Sensor Web system. The sensing resources commonly include the sensing

platforms distributed in the air-space-earth, storage devices, networking resources,

computing resources, and processing model resources. It is believed that the

Chapter 2: Literature Review

33

virtualization service technologies of cloud computing is the development trend for

the Sensor Web and can dramatically enhance the sensing resources utilization and

the performance of complicated, multiple observation tasks,

2.3 Technologies for Processing Big Geoscience Data

One significant feature of modern distributed systems is the large volume of

data that they are expected to handle. Amazon and eBay routinely deal with

enormous volumes of data from all over the world. The research engines Google,

Yahoo, and Bing routinely crunch enormous amount of data to process user queries

from all over the world. With geoscience analytic are becoming more and more

computation- intensive and data-intensive, massively parallel data processing engines

have become for generating prompt responses for processing big geoscience data. To

crunch massive volumes of data, Google invented MapReduce (Yang et al., 2008)

and Google File System (Dean et al., 2003).

2.3.1 MapReduce Framework and Distributed File System

MapReduce refers to a programming model and an associated implementation

for processing and generating large volumes of datasets. MapReduce was designed to

solve the problem of processing in excess of terabytes of data in a scalable way. The

key idea of MapReduce originates from functional programming (Alexandrov et al.,

2011), which is based two second-order methods: Map and Reduce. Each function

has two input parameters, input data set (a set of key/value pairs) and a user function

(user-defined first-order function). To design MapReduce-based algorithms, users

must implement a Map method for processing the key/value pair and producing a set

of intermediate key/value pairs, as well as a Reduce function for combining all

intermediate values produced by Map functions based on intermediate keys.

Chapter 2: Literature Review

34

GFS is a Distributed File System (DFS, Ghemawat et al., 2003), which is

widely used in Web Services, and the leading examples include Amazon Simple

Storage Service (S3) and Apache Hadoop Distributed File System (HDFS). GFS

provides fault tolerance, while running on inexpensive commodity hardware and also

serving large number of clients with high aggregate performance. Even though the

GFS shares many similar goals with previous distributed file systems, the design has

been driven by Google’s unique workload and environment. Google had to rethink

the file system to serve their “very large scale” applications, using inexpensive

commodity hardware.

The Apache Hadoop is a commonly used open-source implementation of

MapReduce and GFS, which has been widely used to create a cloud computing

environment for large amounts of data storage and linearly scalable processing on

clusters. Hadoop consists of two main components, Hadoop MapReduce and HDFS.

HDFS is the answer of storage industry for unstructured and huge amount of data

which incurs huge amount of cost and fault tolerance. It is a fault tolerant file system

designed to store data in a reliable manner even if failures like NameNode, DataNode

and network occur. It works on a master slave architecture wherein a master server

manages access to files and slave for storing user data via data nodes. An advantage

of using HDFS is data awareness between the TaskTrackers and JobTrackers.

Hadoop is also optimized for minimal network I/O by allocating the computation

tasks as close as possible to the data. In general, the DataNodes of HDFS and

TaskTrackers of MapReduce are placed on the same server that allows the map and

reduce processes to run on the same physical site where the data is located. By using

this approach, Hadoop gets ride of transferring the data over the network.

Hadoop has been widely used in the geospatial science research community. To

enable Hadoop to process multi-dimensional and array-based geoscience data, Zhao

et al. (2010) applied the text-based CDL file, which is transformed by the NetCDF

data, in order to achieve the parallel processing of the NetCDF data with large file

Chapter 2: Literature Review

35

size using MapReduce technologies. Duffy et al. (2012) utilized the Hadoop

framework to analyze the meteorological dataset by transferring rater-based climate

data into Sequence Files, which is widely used to store binary file in Hadoop

software. Li et al. (2014) proposed a “Tile Cube”, which is a Map-Reduce-enabled

Spatial On-Line Analytical Processing (SOLAP), for aggregating large-scale of

remote sensing data. The “Tile Cube” improves the scalability and throughput of

satellite image aggregation through the implementation of Roll-Up/Drill-Across

operations in the SOLAP environment, which makes the wide-range, long time-series,

and multi-view analysis of remote sensing data can be processed in real-time manner.

Malik et al. (2010) developed the Cassandra, which is a distributed storage system for

managing large amounts of structured remote sensing data. Cassandra aims to run on

top of an cluster of cheap commodity servers or desktops, which are possibly

distributed across various data servers and these servers fail continuously. Cassandra

can offer highly available and stable geospatial services, handle high I/O throughput

while not sacrificing read efficiency. Rizvandi et al. (2011) gave an overview of the

Prestack Kirchhoff Time Migration (PKTM) algorithm, which is one of the

widely-used seismic imaging algorithms, and proposed an approach to deploy and

run this algorithm on the MapReduce framework.

The MapReduce algorithms efficiently harness the built-in parallelism exhibited

by many large-scale or data-intensive problems. MapReduce supplies a way to build

a system that increases in performance linearly with the number of physical

machines added. Following a divide-and-conquer approach by splitting the data

located on a distributed filesystem so that the servers (or rather CPUs, or more

modern “cores”) available can access these chunks of data and process them as fast

as they can. However, it is important to realize that although MapReduce can be

directly used for a large class of problems that exhibit embarrassingly parallel feature,

many algorithms cannot be easily expressed as a single MapReduce job. Complex

algorithms have to be decomposed into a sequence of jobs, and data routing has to be

orchestrated so that the output of one job becomes the input to another job.

Chapter 2: Literature Review

36

2.3.2 NoSQL Database and HBase

More than thirty years, the relational databases management systems (RDBMS)

(e.g. SQL Server, Oracle, and DB2) have become the prior solution for data storage

in many geoscience projects and applications. RDBMSs have been widely utilized

for the storage and management of a variety of geoscientific data for decades and

currently the mainstream technology of GIS data storage is still using RDBMS. The

traditional way for managing geospatial dataset is to store the metadata in a relational

database while store the actual geospatial data in local file systems. The geospatial

data can be retrieved by using the file location found by spatial query over the

database. Furthermore, RDBMS can effectively support constructing GIS workflows

because of the transaction and locking features and supply reliable backend for

enterprise GIS systems. Geospatial data usually have a fixed schema and they are not

applied independently in most cases. A combination of two or more heterogeneous

datasets and exchanging data through geospatial operations is necessary in most GIS

workflows.

Although the evolution of traditional RDBMS has achieved better scalability by

using parallelization to deal with geographically dispersed data, these systems may

not be able to offer the required effectiveness under some situations, especially with

physical environment provided by cloud computing facilities consisting of relatively

low-end hardware (Chen et al., 2014). One of these situations is when there is a need

to publish a standard geospatial resource that deals with big geospatial data. At the

moment a few terabytes of data can be considered as big data. Also in some

situations (such as disaster management) when there is a need to use various

geospatial data from different sources for fast decision making, the performance of

the system (in terms of response time) is very important. Furthermore, the cloud

computing provides an environment with high-concurrent and large-scale data

accessing as well as massive data processing, which makes RDBMS inadequate to

meet continuously increasing demands on big data storage and query.

Chapter 2: Literature Review

37

One potential solution to these problems of traditional RDBMS is the NoSQL

databases technologies (Stonebraker, 2010). NoSQL commonly stands for the “non

SQL” or non-relational database management system. Distinct from traditional

RDBMS (Relational Database Management System), NoSQL-based database does

not support query based on the relationship of entities; rather, the rows in NoSQL

database can only be retrieved through the row-key, which is a unique and used to

identify the records in NoSQL database (Zhang et al, 2014). In recent years, the

NoSQL database technology has been intensively researched and applied because it

is highly scalable to achieve the grant challenges proposed by recent development of

Web-based applications, such as concurrent read and write on the database, and

access to a large volumes of data. The NoSQL databases are more palpable in

advantage than the traditional RDBMS for processing a large mass of data.

Furthermore, NoSQL databases are more suitable for storing and managing

semi-structured or unstructured data such as text, images, and videos.

In addition, traditional RDBMS applies tables, row-keys, and relationships of

entities for data storage, Structured Query Language (SQL) for performing all sorts

of functions with data, and relational algebra and relational calculus as their

theoretical foundation for managing data. These features make traditional RDBMS

suitable for managing structured data. However, this approach faces challenges when

dealing with unstructured data. Recent trends begin to focus on how to apply

unstructured or semi-structured data model to represent geospatial dataset. In the

geoscience domain, there are three examples of semi-structured and unstructured

data which are geospatial data generated by Location Based Services (LBS),

observation and measurements from sensor webs, and social networks. Furthermore,

there are also some approaches that produce large volumes of geospatial data, e.g. the

remote sensing and laser scanning. The traditional RDBMSs provide very expensive

cost for storing and managing such semi-structured data in some situations when

high scalability and availability are needed, even if it has a fixed schema.

Chapter 2: Literature Review

38

HBase, which is the abbreviation of Hadoop Database, is a non-relational, open

source, and distributed database systems. The HBase runs on top of the HDFS.

Developed based on Google’s BigTable (Chang et al., 2006) framework, HBase

supplies high reliability and scalability storage abilities by managing data located on

a cluster of commodity computer nodes with the capability of automatic recovery

from node failure. All data stored in HBase is organized through tables. Figure 2.5

illustrates the architecture of HBase system.

Figure 2.5. The overview of HBase architecture

As shown in Figure 2.5, the data in a table is stored in the form of Row, which is

identified through a unique row-key. The row-key is similar to traditional RDBMS,

yet the difference is that each row in HBase table is able to contain an arbitrary

number of Columns. Furthermore, the HBase table is column oriented, which means

that the tables are actually stored by column on file systems. Each column family is

stored in one storage unit called HStore. This characteristic indicates that it is

efficient to retrieve a column of a table rather than a row in HBase system. Finally, a

table in HBase is divided into several Regions logically, which are then physically

stored and managed by different RegionServers. Each RegionServer locates on a

single computer in the HBase cluster. A Region can be merged or re-divided when

the number of rows in that Region reaches to a user-specified threshold.

Chapter 2: Literature Review

39

Several studies have been conducted to investigate the capabilities of using

HBase to store and manage large volumes of geospatial data. Liu et al. (2013)

developed a way to store large volumes of raster-based remote sensing data in HBase

by proposing tow tables, which are “HRasterTable” and “HRasterDataTable”. Chen

et al. (2014) proposes an efficient mechanism for searching and managing satellite

imageries stored in HBase. Li et al. (2015) proposed a decomposition mechanism to

manage multidimensional geospatial data in a cloud computing environment. Based

on Li, the remote sensing data can be divided into a set of tiles indexed by the row

number, column number, and levels.

2.3.3 REST Architecture and RESTful Web Services

REST (Representational State Transfer) is an alternative software architectural

development style for developing distributed network systems. REST was first

proposed by Rod Thomas Melding (Fielding, 2000) in 2000 in his PhD thesis as a set

of constraints used for the communication between clients and servers. REST offers

software architects for engineers to develop concrete distributed systems and

applications. In the REST architecture, all interactions with the services are actually

stateless, and the information transferred between various service resources is the

representations of these resources. All the architectures which are satisfied with the

REST constraints are called RESTful architectures.

There are many different ways for a web application to follow the RESTful

architecture. That is because for a REST-based application, only the Uniform

Resource Indicator (URL) is mandatory. As the most widely used application-level

protocol, HTTP has been one of the typical implementations of RESTful architecture

(Mazzetti et al., 2009). Based on the HTTP protocol, four operations, GET, PUT,

POST, and DELETE, were defined to represent the operations that can be executed

on the target web resource. The CRUD pattern was applied to describe these basic

operations. Based on CRUD pattern, the POST operation means creating a new

resource, the GET operation means retrieving a resource, the PUT operation means

Chapter 2: Literature Review

40

updating, and the DELETE operation means deleting a resource. A resource

representation as well as its links corresponds to a snapshot of states about the web

applications. Each interaction can trigger an updated application state. However For

security consideration, the state of resources can only be modified in the presence of

the PUT, POST or DELETE operations. In addition, the interactions between client

and server are idempotent, which means that duplicate user-specified requests of

creating, updating, or deleting a resource executed only once (Muracevic et al., 2009).

The CRUD pattern has been proved to be effective in computer systems. RESTful is

less complicated than SOAP in the concept level. Considering that the only web

protocol needed by RESTful service is the HTTP, the RESTful-based Web Service is

able to go through firewalls of operating systems without special security

configuration. Furthermore, RESTful-based web service is easier to develop because

the HTTP protocol is much easier than the protocol used by SOAP.

Geo-scientists are not profound IT experts and they are not able to rely on

full-time technical staff often to maintain a complex IT infrastructure. On the

contrary, they should concentrate on their own research topics. Typically,

geoscientists usually require to access and deploy geospatial datasets in an easy way.

So the emergence of REST technology is particularly attractive for geoscientists by

avoiding the trouble of bored programming technologies and maintaining complex

networking. Recently, the development and designing of RESTful Web Services and

resource-oriented architectures are gaining much attention. Most of research works

have been conducted on transferring data models defined by OGC specifications to

RESTful-based web services in the SDI context (Mazzetti et al., 2009; Finney and

Watts, 2011; Foerster et al., 2011; Janowicz et al., 2012).

A RESTful-based workflow interoperation method was discussed by Chen et al.

(2009) to integrate heterogeneous geospatial workflow instances into an

interoperable system and a study case about simulating nitrogen dioxide (NO2) from

a volcanic eruption was conducted to evaluate the efficiency of the proposed method.

Chapter 2: Literature Review

41

Muracevic et al. (2009) proposed how to expose geospatial data and processing

services as web services over the Internet based on REST. Muracevic gave a

RESTful implementation of RESTful-based geospatial Web Services, which provides

open and simple access to geospatial data over the Internet using standard web

protocols. Granell et al., (2012) have conducted some proof-of-concept experiment

of using RESTful interfaces for building geospatial processing services and evaluate

the feasibility. The RESTful architecture was applied in this research to build

geospatial data services. The detail implementation was given in section 3.2.

2.4 Geospatial Service Composition in Cloud

It is necessary to research how to encode geospatial data and transfer them

between the servers and clients when exposing geospatial models in the form of web

services. The Web Processing Service (WPS, Schut, 2007) standard proposed by

OGC has become the de facto standard which is used to build web-based geospatial

processing. A large number of GIS libraries and software are based on the WPS

standard (Brauner et al., 2009). In order to improve the compatibility, WPS only

defines the rules of exchanging information between WPS servers and WPS clients.

Furthermore, WPS allows exchanging various types of data (i.e. bounding box, literal,

complex, sub-process) which are widely used in geospatial analysis and processing

(Schaeffer, 2008). The OGC WPS standard standardizes the implementation of web

resources through a specific way. For example, a WPS-based web service must

accept receiving input data and apply them to execute a geospatial process, and

output the final result in the form of XML-encoded document which is sent back to

the service consumer. Michaelis and Ames (2009) presented an evaluation and

implementation of WPS in order to test the algorithms for raster manipulation and

watershed delineation.

Chapter 2: Literature Review

42

2.4.1 OGC WPS-Compliant Web Service composition

There have been several popular WPS server products including 52-North WPS,

PyWPS, and Zoo. The 52-North is an organization aims at offering open-source

software based on many OGC standards. The 52-North WPS component is

developed using the Java programming language which offers various types of

service interfaces such as raw data, HTTP, and SOAP. 52-North WPS enables users

to connect to ArcGIS and GRASS GIS component for geospatial processes. 52-North

WPS offers a component called WPS4R through which can be used to expose the R

scripts as WPS service instances. PyWPS is an open source software written in

Python aiming at implementing the geospatial processes provided by GRASS GIS

system as Web Services. PyWPS provides a convenient Apache module called

‘Mod_python’. Through applying Mod_python to integrate a Python interpreter into

the Apache server directly, the PyWPS guarantees a fifty times faster request

processing capability than other WPS implementation (Fenoy et al., 2012). Finally,

the Zoo project (Fenoy et al., 2012) is an open source WPS framework written in C.

Zoo support online processing of both vector-based and raster-based dataset, and

creating and chaining existing WPS processes. Contrary to other similar WPS

implementations, Zoo enables model developers to apply various programming

languages to develop and deploy new WPS instances. The Zoo-Kernel component

embedded in Zoo can be used to effectively communicate to GRASS GIS tools

through and generate a full-featured WPS service.

Many attempts have been proposed within the geoscience and environmental

science domains to apply OGC WPS services in service-based geospatial workflows,

which demonstrate the flexibility and reliability of OGC WPS interfaces in

geospatial workflows. Chen (2010) proposed a general Sensor Web data service

framework for Geo-processing Workflow (GPW) which integrates OGC Sensor Web

Enablement (SWE) and OWS to achieve interoperability, flexibility, and reusability.

Yue et al. (2010) utilized Ontology Web Language for Services (OWL-S) as the

Chapter 2: Literature Review

43

underlying semantic technology for the semantic description of geospatial services.

Cannata et al (2012) use WPS for shallow landslide assessment by linking two

landslide models in a real-time application. Dubois et al. (2013) present the e-Habitat

application, which implemented as WPS and combined with climate change

scenarios to allow evaluating future conditions in ecosystems. Castranova et al.

(2013) proposed an approach to integrate WPS implementation and the OpenMI

standard for service oriented environmental modeling. Based on Castranova, the

OGC WPS standard performs as a mechanism for exposing geospatial models as

Web Services while the OpenMI standard provides the interfaces for consuming

them. Thiebes et al. (2013) provide a model for landslide analysis as WPS, aiming to

integrate this model in landslide early warning systems. Nativi et al. (2013) described

how geospatial models can be deployed the cloud and applied WPS specification to

improve access to available models and interoperability between models and

modelers.

However, the current OGC OWS-based service composition technologies are

mostly based on a centralized manner, which means both the data flow and control

flow are controlled by a centralized workflow engine. The advantage of the

centralized manner is that it is easy to implement and manage. However, the serious

problem is that this type of service architecture is susceptive to so-called single point

of failure. Furthermore, the centralized architecture has a bottleneck and it is hard to

extend for the presence of high concurrency accessing number.

2.4.2 The Group on Earth Observation (GEO) Model Web

Some researchers have tried to expose geoscience and environmental models as

Web Services. However, the interdependencies between the complex geospatial

processes further complicated the integration and orchestration of integrating

geospatial processing services. This problem is compounded by the limited access

that decision makers have to the earth models, forecasting products, and related

professional knowledges that do exist (Nativi et al., 2013). To solve these problems,

Chapter 2: Literature Review

44

Geller and Turner (2007) introduced a concept of Model Web as an open-ended

system of interoperable computer models and datasets based on the SOA architecture.

The Model Web is a generic concept for increasing accessibility to models and their

output, and to facilitate greater model-model interaction, resulting in a chain of

interacting models, databases, and websites. The Group on EO Model Web initiative

applies the web technologies to expose geospatial models as standards-compliant

Web Service aims at increasing model sharing and access.

There are several applications in the climate dynamic community based on the

Model Web architectures (e.g., the METAFOR project, Nativi et al., 2013).

Furthermore, based on the concept of Model Web, Nativi et al. (2013) proposed the

GEO Model Web initiative to increase the environmental model accessibility and

sharing by defining model web conceptual framework, resource data model, and

metadata framework. The GEO Model Web has now been widely used in geoscience

community as a useful tool to build geoscience models, combining individual

components in complex workflows (Bastin et al., 2013). However, chaining and

integrating existing and independent models is still challenging due to the complex

dependencies, e.g. different platform, heterogeneous data structure, and interfaces

(Nativi et al., 2013).

2.4.3 Model as a Service (MaaS)

The geospatial models are inherently distributed, which means the model

descriptions, and related resources can be deployed, in principle, anywhere on the

Internet. Current development of cloud computing technologies enables service

consumers to rent required cloud computing resources, opening new doors for

developing web-based geoscience applications and achieve complex geoscience

tasks which are always dynamically-scaling and computing-intensive (Gerard et al.,

2013). The concept of model exposed in the form of Web Services, called “Model as

a Service” (MaaS), has been promoted for several years and intensively studies

(Geller and Turner, 2007; Geller and Melton, 2008; Roman et al., 2009; Yang, Xu,

Chapter 2: Literature Review

45

and Nebert, 2013; Yang et al., 2014).

However, more research works are needed in order to investigate the way to

effectively leverage these methods for specific applications within Model Web, for

example, how to optimize data transmission and operations between traditional

desktop environments and remote servers on the web. Several attempts have been

made to integrate OGC services into service-based geospatial workflows within the

geospatial and environmental domains (Granell et al., 2010; Goodall et al., 2011; De

Jesus et al., 2012; Mullerm et al., 2013; Wang et al., 2013). The flexibility and

reliability of using OGC WPS interface services in operational geospatial workflows

can be enhanced. Cannata et al. (2012) used WPS for landslide assessment by linking

landslide models in a real-time application. Thiebes et al. (2013) developed a model

for landslide analysis based on WPS, and also integration of this model in landslide

early warning systems. Dubois et al. (2013) presented the e-Habitat application,

which made use of WPS and climatic models to give prediction in ecosystem

environment. Yue et al. (2009) utilized OWL-S (Semantic Markup for Web Services)

as the underlying semantic Web Service technology for the semantic description of

OWSs. Castranova et al. (2013) proposed a WPS implementation framework for

disseminating models as Web Services and adopting OpenMI standards as service

oriented environmental modeling. Nativi et al. (2013) described how models can be

set up and integrated in the cloud computing environment in order to improve

interoperability between models.

2.4.4 Geospatial Cyberinfrastructure (GCI)

GCI was first proposed by Yang et al. (2010) as the cyberinfrastructure that

utilizes geospatial information technologies to transform how research, education,

and development are conducted within and across science domains, such as the

environmental, climate, and geospatial sciences. Based on Yang, a

Cyberinfrastructure (CI) is a combination of data storage systems, computing

platforms, computational services, network protocols, and visualization

Chapter 2: Literature Review

46

environments that integrates people, data and information, and computational

resources together to perform science or other data-rich applications in this

information-driven world.

GCI is based on recent advancements in GIS, IT, computer networks, sensor

web, and cloud computing technologies. GCI offers an integrated architecture based

on existing SDI to share geospatial data resources, computing resources, model

resources, and knowledge in targeted domains, such as hydrology, social, and

ecology sciences. To present of GCI, Yang et al. (2010) applied a GCI framework

cube based on five aspects: enabling technologies, logical frameworks, desired future

research, geospatial functions, and domain applications. GCI has been widely

adopted in environmental projects (Pezzoli, Marciano, & Robertus, 2006; Rich et al.,

2005; Kido et al., 2008; Mahinthakumar et al., 2006; Sucaet et al., 2008; Keating et

al., 2009).

Besides the GCI, Wang et al. (2013) proposed the concept of

Cyberinfrastructure-based GIS (CyberGIS) as a fundamentally new GIS modality

comprising a seamless integration of CI, GIS, and geospatial analysis and modeling

capabilities. Based on Wang, the CyberGIS has the following six core characteristics:

open and distributed, high-performance and scalable, service-oriented, collaborative,

community-driven, and user-centric.

2.4.5 Geoprocessing Web

As SOA has been developed to be one of the basic technologies for developing

distributed and interoperable framework, more and more geospatial service resources

and applications have been developed and deployed as web services over the Internet.

However, it is a grand challenge in geoscience to develop an efficient geopolitical

data processing method for extracting information and discovering knowledge over

the web. The concept of Geoprocessing Web was first proposed by Zhao et al. (2012)

aims to support the distributed, interoperable and collaborative processing of

Chapter 2: Literature Review

47

geospatial data for information extraction and knowledge discovery. The

Geoprocessing Web consists of crowd-sourcing capability, light-weight protocols,

and the capability to process real-time geospatial data sources provided by sensors.

Zhao introduced the Geoprocessing Web as a three-layer architecture which covers

the conceptual, methodological, technical, and managerial aspects to facilitate

distributed and collaborative geoprocessing over the Web. Interoperability,

light-weight protocols, collaboration, distribution of resources, real-time and

separation of concerns are six characteristics of Geoprocessing Web. Chen et al.

(2010) also proposed a general Sensor Web data service framework for

Geo-processing Workflow which integrates OGC Sensor Web Enablement (SWE)

and WPS to achieve interoperability, flexibility, and reusability.

2.4.6 Open Model Interface (OpenMI)

The OpenMI was initiated within the HarmonIT project (Moore, 2001) in 2001,

shortly after the adoption of the ambitious Water Framework Directive 2000/60/EC

(WFD) by the European Parliament and Council. The primary goal of the OpenMI is

to improve the interoperability between independently developed hydrologic models

(Gregersen et al., 2007). The OpenMI is first proposed by Moore et al. (2005) as a

component interface standard developed through the Water Framework Directive.

The goal of OpenMI is to specify the communication standard for model

interoperability, especially in hydrological science (Castronova et al., 2010). By

designing a set of interoperation schemas and programming interfaces, OpenMI

supplies a series of functions to facilitate the development of component-based

modeling in a loosely-coupled way.

Based on Gregersen et al. (2005) and Goodall et al. (2008), the geoscience

programs always consist of millions of code lines, and these programs are developed

using various programming languages, e.g. C/C++, Java, IDL, Matlab, and Python.

Model developers always have to constantly re-code popular programs in order to

link them. In addition, many of these programs utilize a variety of techniques for

Chapter 2: Literature Review

48

presentation of the result. The incompatibilities between programming languages and

various visualization technologies make the geoscience models complicated to

modify. The emergence of OpenMI addresses these problems. Instead of applying the

common approaches of developing complex integrated models which always need

constantly upgrading or customizing, OpenMI aims at combining existing geoscience

models including both academic and commercial models or toolkits (Makropoulos et

al., 2009) with slightly modified. By specifying some approaches of exchanging

information in real-time and the way models can be linked to each other (Gregersen

et al., 2007), an OpenMI-compliant model can be linked directly to other

OpenMI-compliant models without applying any external configuration files. The

OpenMI standards offer a way for integrating independently developed

heterogeneous models. Furthermore, OpenMI provides a plug-and-play way for

geospatial models to be linked, through which it is possible to replace one model in a

workflow with another OpenMI-compliant model which that has more advanced

functions and improved capability of simulating geospatial processes (Argent, 2005).

However, OpenMI was primarily designed for wrapping existing legacy model

programs (Moore and Tindall, 2005), and it is hard for model developers to

effectively develop new components in the process-level in a straight forward way.

In addition, migrating local model to OpenMI interfaces is time-consuming since the

technological details and knowledge needed is a grant challenge for many geoscience

scientists (Granell et al., 2013).

2.4.7 The Infrastructure for Spatial Information in the European Community

(INSPIRE)

Current research trends for discovery and access of large-scale distributed

geospatial data and processing resources are being addressed by a European Union

project called INSPIRE (INSPIRE, 2007). INSPIRE is designed for enhancing the

interoperability of geospatial data and processing service deployed on geospatial

infrastructures at the European member state level. The technical architecture of

Chapter 2: Literature Review

49

INSPIRE consists of metadata of data and models, geospatial datasets, the

Presentation layer, network services within a layered architecture that differentiates

the presentation layer, the Service layer, and the Data Source layer. The

implementation rules of INSPIRE directive propose a set of geospatial services

classified in groups according to their functionality in order to embrace all required

geospatial or GIS-based functionalities.

2.4.8 The Earth System Modeling Framework (ESMF)

The ESMF aims to provide shareable software component for climate, weather,

and related projects by building flexible, scalable, and high-performance computing

infrastructure that increase ease of use, interoperability, and performance portability

in numerical weather products. ESMF is one of the most popular paradigms of

modeling framework for combining earth model components and couplers of

different Earth subsystem model through a common interface (Turuncoglu et al.,

2013). The EMSF consists of a structure for combining components of earth system

applications in a standardized approach, an infrastructure of automatic,

high-performance utilities, and data structures which ensure consistent component

behavior (Hill et al., 2004, 2006; Collins et al., 2005). In order to improve the

interoperability of climate models, a series of standards were initiated by ESMF,

which consists of a set of specified interfaces agreed by multi-agency consortium for

developing ESMF. EMSF also supplies the ability to store and export component,

grid, and field-level metadata as eXtensible Markup Language (XML) and other

document.

2.5 P2P Technology and Its Application in Geoscience

With the fast development and widespread of GIS and RS theories, a large

number of research works have been conducted to integrate how to integrate

Chapter 2: Literature Review

50

wide-spread heterogeneous and autonomous GIS applications into a cooperative

environment for constructing a new generation of GIS featuring in open architecture,

distributed computing capability, cooperativity and extensibility. However, current

web-based GIS or RS applications generally rely on centralized structure, where the

geospatial data is stored on one single server. To get the required geospatial

information, it is necessary to collect data and processing resources from multiple

service nodes spreading over the network, composite these services as a workflow,

and execute the workflow on a centralized controller. This approach has inherent

drawbacks such as single points of failure, network congestion, and data

inconsistency, etc. The inherent disadvantages of traditional GISs need to be solved

for new applications on Internet or Web.

P2P networking is a paradigm where a set of user machines at the edge of the

Internet communicates with one another to share resources without the help of any

central authority (Sukumar, 2014). For a P2P network, the geographical boundaries

become irrelevant, and the failure of any central authority promises spontaneous

growth, as well as freedom form censorship. Peers include friends, collaborators and

competitors, and the resource sharing has to be implemented through decentralized

protocols. Scalability is an integral part of this concept, which means that no P2P

system is worth looking at unless it scales to millions of machines around the globe.

Regardless of the legal ramifications of ethical issues, P2P has led to users to a new

form of freedom in collaborative resource sharing. One typical application of P2P

network is the generation of genomic data about newly discovered proteins by

collaborating hundreds of small laboratories all over the world. In addition, Facebook

and Twitter also started using P2P technologies for content distribution,

Typically, a P2P system is composed of a large number of nodes with a host of

sharable resources that encompass data/content, services, computing power, network

bandwidth, etc. Each peer in a P2P network, which may take the roles of both a

consumer and a provider of data and/or services, may join and depart the P2P

Chapter 2: Literature Review

51

network at any time, resulting in a truly dynamic and ad-hoc environment. In

addition, the distributed nature of such a design can eliminate the need for costly

infrastructure by enabling direct communication among clients, and enable resource

aggregation, thus provide promising opportunities for novel applications to be

developed. By fitting Web services and P2P technologies into GIS, more flexibility

and autonomy are added to GIS Web services, and the inherent limitations of

centralized systems are alleviated to some degree.

Several studies have been conducted to apply P2P technologies to construct

distributed GIS and RS systems. Guan et al. (2004) explored the techniques of

enabling GIS services in a P2P environment to overcome the inherent shortcomings

of current GISs and presented an implementation called BP-GService. Puppin et al.

(2005) applied Globus package to develop a grid information service based on P2P

network, which offers a fast propagation of information and has high scalability and

reliability following the OGSA standard. Lee et al. (2006) proposed a method of

applying P2P network to collaborative GIS environment, particularly targeting

exploratory spatial data analysis for small-group brainstorming. Gianluigi et al.

(2010) proposed a grid portal for solving geoscience problems using distributed

knowledge discovery services by integrating workflow technologies with data

mining resources and a portal framework in unique work environment called MOSÈ.

2.6 Concluding Summary

In this chapter, a literature review was conducted in five aspects. First, the

recent development of the cloud computing technologies was reviewed as well as

their application in processing Big Data. The conclusion is that the cloud computing

technologies is the development trend for geoscience applications in the future.

Second, the EO Sensor Web technologies and their applications were discussed, and

a new generation of EO Sensor Web system was analyzed, indicating that make full

Chapter 2: Literature Review

52

use of current advancement of cloud computing technologies to enhance the

capability of traditional EO Sensor Web system is the next development direction.

Then, some research hotpots of managing and analyzing geoscience Big Data, as

well as web-based geospatial service composition technologies in the cloud

computing environment were introduced. Finally, the P2P technologies were

introduced as well as their application in geoscience.

52

Chapter 3: The GeoSPA Model

The GeoSPA was designed as a geospatial service hub through which the

geospatial model developers and data producers can deploy their standard-based

geospatial services in cloud. The GeoSPA supplies a set of algorithms for managing

and discovering geospatial services, as well as orchestrating the service composition

execution. To achieve these functionalities, three GeoSPA service models, which are

EO data service model, processing service model, and computing service model,

were defined and introduced as below:

 EO Data Service Model is proposed to facilitate the storage and

management of large volumes of EO data by introducing a tile-based

storage scheme and RESTful-based map service structure. Furthermore,

The GeoSPA can be seamlessly integrated with HBase system to manage

and process big geoscience data in the distributed file system, which can

dramatically improve the processing efficiency.

 Processing Service Model enables the GeoSPA to expose geospatial models

as standard-based geospatial web processing services, which can be

combined as service chain to solve more complex geoscience problems. A

knowledge model, which applies the notions of Belief, Process, Task and

Plan to represent the geospatial processes as well as their composition, is

designed for automatically discovering and compositing geospatial

processing services.

Chapter 3: The GeoSPA Model

54

 Computing Service Model is used to supply a distributed parallel execution

environment for geospatial processes maintained by different GeoSPAs.

Any registered geospatial process can migrate from one GeoSPA to another

for execution. A Finite State Machine (FSM) is also deigned in this model

for managing the states generated by The GeoSPA during the execution of

geospatial workflows.

These three models make the GeoSPA as a one-stop solution for building SDI in

cloud computing environment. To ensure different services can be interacted and

cooperated with each other in a unified fashion, all of the GeoSPA service models are

fully compliant to the OGC Web Service (OWS) specifications. The details of the

internal structure and the three GeoSPA service models were introduced in next

sections.

3.1 Internal Structure of GeoSPA

Figure 3.1. Internal structure of the GeoSPA

Chapter 3: The GeoSPA Model

55

As shown in Figure 3.1, several functional components are embedded in the

GeoSPA, which are introduced below. The GeoSPA Request Handler performs as the

entry point of the GeoSPA for processing the incoming requests sent by service

consumers or other service agents in a simultaneous manner. Each GeoSPA is

equipped with a knowledge-base, through which the GeoSPA can determine which

kind of service model needs to be used to handle the incoming request. Considering

the geoscience problems are complex and several geospatial services always need to

be cooperated and coordinated to achieve complex tasks, each GeoSPA was equipped

with an Agent Connector, which is responsible for communicating with other

GeoSPAs to exchange data. The Process Execution Manager (PEM) is responsible

for managing the execution of geospatial processes in a multi-threaded manner, yet

the Extended Finite State Machine (EFSM) is used to manage and handle the state

transitions during the process execution lifecycle. Furthermore, each GeoSPA holds a

Node Database which is responsible for storing all information needed for service

agents communications and geospatial workflow execution. Finally, the HBase API

component is utilized to interact with HBase system for storing and managing big

geoscience data across a distributed file system.

3.2 GeoSPA EO Data Service Model

The GeoSPA EO data service model was proposed to facilitate the storage and

management of large volumes of EO data. With the development of EO technology,

the amount of grid-based EO data increases exponentially, reaching the scale of TB

level and even PB level. This causes a grant challenge in storage and management of

these data. The multi-resolution pyramid model based on the image block technology

is an effective method for grid-based EO data organization. In order to store large

Chapter 3: The GeoSPA Model

56

volumes of EO data rapidly and efficiently, this research proposed a tile-based

scalable EO data storage scheme and introduced how to apply the NoSQL-based

database called HBase to manage these data.

3.2.1 Tile-based Storage Scheme for EO Data

Tile-based data model uses a logical tile scheme that maps positions on the

Earth to a two-dimensional surface and divides that surface into a series of regularly

spaced blocks (Sample et al., 2010). As the essential component of the tile-based GIS,

the logical tile-based storage scheme defines how to generate and locate the map tiles

in multiple zoom levels, as well as the translation approach between the tile indexes

and the geospatial coordinate system which is continuous. The tile-based storage

scheme for EO data is typically based on map projection of two dimensions, and the

indexing scheme enables a tile to be located using row and column numbers directly

with discrete coordinates in the form of (𝑙𝑒𝑣𝑒𝑙, 𝑡𝑖𝑙𝑒_𝑥, 𝑡𝑖𝑙𝑒_𝑦), where 𝑙𝑒𝑣𝑒𝑙 is the

layer number, 𝑡𝑖𝑙𝑒_𝑥 is the the column number, and 𝑡𝑖𝑙𝑒_𝑦 is the row number.

Figure 3.2 illustrates the tile-based storage scheme used in this research for storing

and managing large volumes of EO dataset.

Figure 3.2. The tile-based storage scheme for EO data

Chapter 3: The GeoSPA Model

57

As shown in Figure 3.2, the tile-based storage scheme used in this research is

based on the Spherical Mercator projection, which is also applied by Microsoft Bing

Maps, Google Maps, and Yahoo! Maps. Take the Bing Maps as an example, each tile

can be divided into 4 sub-tiles to generate a zoom levels with higher resolution. The

coordinate pairs are used to indicate the location of tiles in different zoom levels. The

origin is located in the top-left. The tile size is defined as 256 × 256 by default.

Assuming there are 𝑟𝑜𝑤 rows and 𝑐𝑜𝑙 columns after blocking, then there should

be (𝑟𝑜𝑤 × 𝑐𝑜𝑙) tiles in this level.

Normally, EO data are array-based, which can be represented in five dimensions:

space (latitude, longitude, and altitude), time and variable (band) (Li et al., 2015).

The array-based data model is defined as Equation 1:

𝑓(𝐷) = 𝐷𝑆(𝑡𝑖𝑙𝑒_𝑥, 𝑡𝑖𝑙𝑒_𝑦, level, 𝑏𝑎𝑛𝑑, 𝑡) (1)

Where 𝐷 is the identifier of dataset, 𝐷𝑆 is the dataset, 𝑡𝑖𝑙𝑒_𝑥 and 𝑡𝑖𝑙𝑒_𝑦

represents the tile column number and tile row number respectively, 𝑙𝑒𝑣𝑒𝑙 is the

level of map view, 𝑏𝑎𝑛𝑑 is a set of bands in this dataset, and 𝑡 is the timestamp.

Based on the raster-based data model defined by Equation 1, any EO data can be

decomposed hierarchically as shown in Figure 3.3.

Figure 3.3. Hierarchical structure of the multi-dimensional EO data

Chapter 3: The GeoSPA Model

58

Base on Figure 3.3, first, the EO data can be categorized as various dataset

according to the sensing platform (e.g. Terra and Aqua), and then each dataset is

tiered according to its observing date in the form of timestamp. For each timestamp,

an original image can be tiered to some bands, and every band is a composition of a

set of pyramid layers. Each layer in the pyramid model consists of multiple tiles

(blocks), and each block is identified by a three-tuple in the form of

(𝑙𝑒𝑣𝑒𝑙, 𝑡𝑖𝑙𝑒_𝑥, 𝑡𝑖𝑙𝑒_𝑦). Every type of EO data uploaded by the data producer is

automatically processed and managed following the tile-based storage scheme by the

GeoSPA and exposed as standard-based web services.

3.2.2 Storage of EO Data Tiles in HBase

HBase was utilized in this research to store the EO data tiles in a distributed file

system. At the conceptual level, HBase stores data in table and each row in the table

is identified and sorted through a unique row-key. The row-key is represented in the

form of byte array, which means theoretically any data type can be used as a row-key.

Each row has several columns, which are grouped into column families. All column

family members have a common prefix. A column name can be expressed in the form

of “𝑐𝑜𝑙𝑢𝑚𝑛_𝑓𝑎𝑚𝑖𝑙𝑦 ∶ 𝑙𝑎𝑏𝑒𝑙”, where 𝑙𝑎𝑏𝑒𝑙 indicates the specific column in a

column family with the name of 𝑐𝑜𝑙𝑢𝑚𝑛_𝑓𝑎𝑚𝑖𝑙𝑦 . The basic storage unit in HBase

is cell, which is indexed through the intersection of the row and column coordinates

and versioned by a timestamp. The content of the table cell is an uninterrupted array

of bytes.

To store and manage EO data through HBase, the GeoSPA first reads the

original EO data through the GDAL (Geospatial Data Abstraction Library) toolkit

and then generates an EO dataset with specific timestamp according to the image

Chapter 3: The GeoSPA Model

59

pyramid model introduced in section 3.2.1. And then the dataset is split into some

different zoom layers based on the resolution and then each layer is split into

same-scale tiles based on the tile-based storage scheme. The original image data is

put as the bottom of pyramid model, and a series of image layers (band) is generated

with the same scope but different resolutions by resampling. Finally each tile is

assigned a unique identifier and stored as one row in HBase table. Figure 3.4

illustrates the procedure of storing EO data coverage in the HBase.

Figure 3.4. The procedure of storing EO data coverage in the HBase

As introduced in section 2.3.2, the row-key is the only way through which the

user can query required records in the HBase tables. An effective row-key design

pattern should be investigated first in order to improve the querying efficiency. The

Geohash (Balkic et al., 2012) used by the GeoSPA makes a great choice for the

row-key design because it’s inexpensive to calculate and the prefix makes it easy to

find nearest neighbors. Geohash is a latitude/longitude geocode system to encode and

decode the geospatial coordinates in the form of latitude-longitude pair into a

compact form. A Geohash code is actually a character string representing a fixed

Chapter 3: The GeoSPA Model

60

geographic bounding box. Based on Balkic, the Geohash algorithm divides spatial

regions into a hierarchical structure by interleaving bits generated from

latitude-longitude pairs and then transfers these bits into a character string using the

Base32 character alphabet. Figure 3.5 illustrates how to transfer geospatial

coordinates to Geohash-based string using the latitude and longitude coordinates of

(40.78°N, 73.97°W) as an example.

Figure 3.5. Illustration of how to transfer the latitude and longitude coordinates to

Geohash code (Dimiduk et al., 2013)

As shown in Figure 3.5, the Geohash code is actually a sequence of bits which

reflects the increasingly precise division of latitude and longitude. And these bits are

all represented using character strings based on the Base32 encoding alphabet. For

example, the latitude of 40.78° N falls in the upper half of the [-90.0, 90.0], which

indicates the first Geohash bit should be 1. The second bit becomes 0 because after

the first decision, the new range becomes to [0.0, 90.0] and 40.78 locates on the

lower half of the new range. Similar operation is performed and the third bit is 1

because 40.78 locates in the upper half of new range [0.0, 45.0]. The same

Chapter 3: The GeoSPA Model

61

calculation is performed for each dimension of the coordinates by halving the range

values and determining which half the point locates in. If the coordinate is less than

the value of the midpoint of the current range, it’s a 0-bit. Otherwise, it’s a 1-bit.

This process is repeated until a predefined precision (which is usually the total length

of the Geohash code) is reached. Different with the other methods which apply the

bit sequence from each dimension independently, the Geohash method weaves the

bits of all dimensions together to generate the hash code. This spatial partitioning

approach makes Geohash own the capability to reflect the spatial locality property.

All levels of EO data tiles are stored in single table. Based on the row-keys, the

HBase can automatically partition the big table into multiple storage blocks which

are stored and managed on distributed storage regions. The coding mechanism

introduced above ensures all the cell-compatible tiles to be stored in the same or

closed regions, which can get rid of transferring massive data when user needs to do

some spectral or spatial analysis within the same geographic domain. A row-key

coding mechanism based on the Geohash is developed in this research to effectively

identify and distinguish the tile. The goal of the coding mechanism is to create

row-keys which make the close tiles have similar row-keys. The best advantage of

this approach is to improve the efficiency of deriving multiple tiles at one time. As

shown in Figure 3.6, the tile key has 32 bits, among which 8 bits in the beginning

represent the Geohash codes, the next two bits represent level number of the pyramid

model, 10-13 is the column index, 14-17 is the row index of the block, 18-20 is the

band identifier. Finally, 21-28 is the timestamp represent by a long integer type and

29-31 is sensor identifier.

Chapter 3: The GeoSPA Model

62

Figure 3.6. Illustrations of the row-key design schema

Two tables, named HInfoTable (Figure 3.7(a)) and HTileDataTable (Figure

3.7(b)), were designed to store the metadata of EO dataset and actual tile data

respectively. When a new dataset is generated by sensing platforms and uploaded to

the GeoSPA, a new record is generated to store the metadata in HInfoTable. And then

the GeoSPA splits the image into tiles based on the tile-based storage scheme

introduced above, generate the row-key for each tile, and write the image into the

HTileDataTable. After storing the tiles into HBase, the GeoSPA can access these data

through the standard HBase API.

(a)

(b)

Figure 3.7. Illustrations of the table design schema of (a) HInfoTable, and (b)

HTileDataTable

Chapter 3: The GeoSPA Model

63

3.2.3 RESTful-based Map Service

Many studies have been conducted on standardizing the storage scheme of map

tiles and the ways to offer tiled-based geospatial data services. OGC released the

Web Map Tile Service (WMTS) standard (Maso et al., 2005), which complements

the existing OGC Web Map Service standard to support efficient tile-based map

services. WMTS provides an open-source alternative to proprietary web mapping

services, such as Google Maps and Microsoft Bing Maps. Furthermore, WMTS

defines standard approaches to define the properties about tile storage scheme,

projection, resolutions and so on (Sample et al., 2010). Based on WMTS standard

specification, three service operations are defined: GetCapabilities, GetTile, and

GetFeatureInfo.

WMTS uses a tiling model to describe the predefined images, which divides the

space into a fixed tile matrix. To facilitate users to access the EO data stored on the

GeoSPA and improve the performance of data processing, the GeoSPA offers an

implementation of OGC WMTS standard for serving tile-based EO data service. The

WMTS service implementation offered by the GeoSPA is utilized the RESTful

programming structure in order to allow it to be easily integrated into a wide array of

Web 2.0 applications. Although any reasonable tiling strategy can be used, the

Google’s approach was applied in this research in order to enable the seamless

integration with the Google Map API on the client side. Figure 3.8 illustrates the

architecture of WMTS implementation in the GeoSPA.

Chapter 3: The GeoSPA Model

64

Figure 3.8. Structure of WMTS implementation of the GeoSPA

As shown in Figure 3.8, to visit tiled map service offered by the GeoSPA

WMTS server, the first step is to select a zoom level and bounding box, which are

used to determine the tiles for prefetching. The next step is to iterate through all the

tiles at all zoom levels and retrieve map tiles from the HBase through the

Geohash-based row-keys. The retrieved tiles will be cached into RAM (Random

Access Memory) by the GeoSPA in order to improve the serving efficiency. The

GeoSPA WMTS server has a built-in tile caching system which is used to cache

image tiles. As new tiles are requested, the GeoSPA WMTS server intercepts these

requests and returns corresponding tiles (PNG or JPEG) as necessary to client users.

At the same time, these tiles are cached by the tile caching system. Once the request

for the same tiles is received, the GeoSPA directly picks corresponding tile images

from the tile caching system and returns them to client, which making for a more

seamless user experience by increasing the speed of map rendering many times.

Chapter 3: The GeoSPA Model

65

As introduced above, the WMTS tile resource represents a single cached tile,

which is a fragment of an image in the context of WMTS specification. Users can get

the WMTS tiles based on the RESTful syntax as defined by OGC WMTS

specification. In response to a valid request for a tile representation from a client, a

WMTS server shall send either an image representation of the tile or a reference to

an image. An image is the most typical representation but representations in other

formats are also allowed. The RESTful-based request pattern can be described as

below:

http://<wmts-url>/<layer>/<style>/<tilematrixset>/<tilematrix>/<tilerow>/<t

ilecol>.<format>

Table 3.1 shows the description of the URL tokens defined in the RESTful

syntax.

Table 3.1: The description of parameters of RESTful syntax

URL Token Optional/Required Description

layer Required Valid layer identifier advertised in WMTS service

metadata

style Optional valid style identifier advertised in WMTS service

metadata

tilematrixset Required TileMatrixSet is a concept in OGC WMTS specification

which is similar to Tiling Schema. The identifier of one

of the TileMatrixSet advertised in WMTS service

metadata, which includes well-known TileMatrixSet

like Google Maps Online, or a customized

TileMatrixSet defined by service publisher.

tilematrix Required TileMatrix is a concept in OGC WMTS specification

which is a collection of tiles for a fixed scale. The

identifier of one of the TileMatrix defined in a particular

TileMatrixSet

Chapter 3: The GeoSPA Model

66

tilerow Required Row index of a tile matrix

tilecol Required Column index of a tile matrix

format Optional the suffix of one of the supported formats advertised in

WMTS service metadata

3.3 GeoSPA Processing Service Model

3.3.1 Model Description

The GeoSPA processing service model provides a knowledge model to describe

and manage the deployed geospatial processes as well as their compositions. The

proposed knowledge model consists of five fundamental elements: Belief, Goal,

Process, Task, and Plan. Belief represents the current states of the agent’s internal

and external worlds. Goal is the set of goals that the service agent wants to achieve.

Process represents the action that the service agent can perform. Task is the basic

execution unit which contains three components: the behaving agent, the behaved

process, and the specified output parameters. Plan is composed of a set of tasks as

well as their execution sequence for achieving a certain goal. The details of these five

notions were introduced below.

 Belief Model

The GeoSPA model applies Belief to represent the knowledge about itself

and its environment. The knowledge of the GeoSPA can be classified into two

categories, which are social knowledge and basic knowledge. The social

knowledge indicates the relationships among service agents as well as other

service agents’ information such as their capabilities and addresses. The basic

knowledge is the fact that the service agent knows about itself such as the states

of a service. The basic knowledge is denoted as tuple: 〈𝑛, 𝑡, 𝑢, 𝑣〉, where 𝑛 is

Chapter 3: The GeoSPA Model

67

the name , 𝑡 is type , 𝑢 is the unit measure for the basic knowledge, and 𝑣 is

the value. Social knowledge is represented by the tuple: 〈𝐴𝐼𝐷, 𝐴𝑐〉, where 𝐴𝐼𝐷

is the neighbor’s identifier composed of agent name and agent address, 𝐴𝑐 is

the capabilities of neighbor. Through the social knowledge, the dependence

relations among distributed service agents can be constructed.

 Process Model

Three types of Processes were defined by the GeoSPA: internal process,

communicating process, and geospatial process (GP). The GP can be performed

by an agent by defining the input parameters, output parameters, and executable

model entity. The service providers can deploy their geospatial model as an

instance of GP onto the GeoSPA, which can be exposed as the

standard-compliant web-based geospatial processing service. Figure 3.9

illustrates the UML class diagram of Process object.

Figure 3.9. UML class diagram of the Process object.

As shown in Figure 3.9, each Process has a ‘name’ attribute and a ‘description’

attribute, which are used to describe the basic information of a process. Furthermore,

each Process object owns two List objects for Processes composition, which are ‘inputs’

and ‘outputs’, respectively. Each ‘inputs’ has several ‘input’ objects, each of which

represents an input parameter containing three attributes: name, description, and type.

Chapter 3: The GeoSPA Model

68

The ‘type’ attributed is used to connect two processes by comparing its value between

the output of process and the input of another process.

 Task Model

The Task model is the basic execution unit of the GeoSPA, which can be

represented using an agent-process-parameters: 𝑡(𝑠𝑝𝑎, 𝑝, 𝑣), where 𝑠𝑝𝑎 is the

name of the GeoSPA that performs this task, 𝑝 is the GP to be performed, and

𝑣 is the user-specified output variables.

 Goal Model

The Goal model is the business goal that the agent achieves, which is

denoted as tuple: 〈𝑖𝑛𝑝𝑢𝑡𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡𝑠〉, where the inputs and outputs denote

the input parameters and output parameters, respectively.

 Plan Model

The Plan model encapsulates the business logics of how to use a set of

𝑇𝑎𝑠𝑘s to achieve a specific Goal by defining the execution sequence of

these Tasks.

Figure 3.10 illustrates the relations of Belief, Process, Task, Gola, and Plan

model using the UML class diagram. A more detailed introduction about these five

models was given in section 4.1. These five models compose the knowledge-base of

the GeoSPA. When the service provider deploys GP onto the GeoSPA, the embedded

knowledge-base can automatically update itself by transferring the user-specified

metadata of GP into these five models.

Chapter 3: The GeoSPA Model

69

Figure 3.10. UML class diagram of the GeoSPA processing service model

3.3.2 Geospatial Service Programming Interface (GeoSPI)

To facilitate model developers to deploy GPs as the GeoSPA processing services,

the GeoSPI was proposed in this section. The GeoSPI was designed to regulate the

behavior of each geospatial processing service by defining a series of programming

rules (programming interfaces and annotations for labelling metadata). Each GP

should follow the rules to expose their metadata and services to client and other

processes for interoperability. Many Object-oriented Programming (OOP) languages

(e.g. Java, C++, and C#) supply a special file type called ‘interface’, which can be

used as a contract between the classes that implement the interface and the outside

world. Through GeoSPI, the service user can access the geospatial processing service

through the standardized interfaces without caring the detailed implementation of the

process. This feature is extremely useful in the high-level distributed computing

environment (i.e., cloud computing), where many geospatial models and data

resources were developed and maintained by different organizations and agencies.

Chapter 3: The GeoSPA Model

70

The GeoSPI defines the ways for model developer to specify the metadata of a

GP and for the GeoSPA to read these metadata. The traditional way of representing

the metadata about a geospatial process is to store these data in a single file, which is

separated from the executable model program codes (Matott et al., 2009). This

approach is not able to provide the model users legible descriptions about the

geospatial processes they need. Furthermore, separating the model metadata with

executable model program codes makes it error-prone because the model developers

have to spend extra time to guarantee the synchronization between the metadata files

and model modifications. Combining the metadata directly to model program codes,

which is applied by GeoSPI, can get rid of these problems and facilitate model

clients to retrieve the metadata about the input and output parameters of a GP. It can

also enable model developer to maintain the GPs more efficiently. The 'annotations'

mechanism provided by Java programming language supplies a convenient approach

to combine the metadata information with the model modules. Three annotations

were defined by GeoSPI to support the combination of model metadata with model

program codes:

1) @DescribeProcess labels the basic information of the GP.

2) @DescribeOutput labels the metadata about the output parameters of a GP.

3) @DescribeInput labels the metadata about the input parameters of a GP.

To design geospatial processing services that can be deployed and managed by

the GeoSPA, the geospatial model developers only need to implement their own

algorithms in the ‘execute’ function defined in the GeoSPI and specify the input and

output parameters, leaving the complex control algorithms to the GeoSPA. The code

below demonstrates how to implement the GeoSPI on the IDDI model, which is a

widely used dust storm detection model introduced in Chapter 5.

Chapter 3: The GeoSPA Model

71

@DescribeProcess (name= " MTS_SBDART", description = "……")

public class MTS_SBDART implements GeoProcess

{

 @DescribeOutput (name=“aot550nm” description = "…“ type=“xs:AOT550nm”)

 public String aot550;

 @DescribeOutput (name=“height” description = "…“ type=“xs:DustHeight”)

 public String height;

 @DescribeOutput (name=“reff” description = "…“ type=“xs:Reff”)

 public String reff;

 public NetcdfDataset execute(

 @DescribeInput (name = “dust_region", description = "… “, type=“xs:Dust”) NetcdfDataset dust,

 @DescribeInput (name = “dust_region_name", description = "… “, type=“xs:String”) String band1,

 @DescribeInput (name = “mtsat", description = "… “, type=“xs:MTSAT”) NetcdfDataset mtsat,

 @DescribeInput (name = “input1", description = "… “, type=“xs:String”) String band1,

 …)

 {

 // Implementation codes of geospatial algorithms

 }

}

As shown in the code above, the model class (InfraredDifferenceDustIndex)

implements its own algorithms in the ‘execute’ functions defined in the GeoProcess

Java interface. In addition, three GeoSPI annotations introduced above were labeled

on different part of this class to describe the metadata information (i.e. model

description, input, and output parameters) of the algorithm.

To deploy the implementation of GeoSPI as the GeoSPA processing service, the

program codes of GP needs to be compiled by the Java Virtual Machine (JVM) into a

JAR package file together with its dependent libraries. Then the JAR package is

submitted into the directory of the GeoSPA which has been specified as a geospatial

process deployment directory. After deploying the GPs onto the GeoSPA, model

clients can then call these GPs following the WPS operations across the Internet.

Before calling the required GP, client should identify and understand all the available

Chapter 3: The GeoSPA Model

72

GPs on the GeoSPA, which can be retrieved through parsing the metadata return

from the GetCapabilities operation. Although the metadata returned from the

GetCapabilities operation can help clients understand the GPs, the information is

insufficient for accessing the GP practically. Detailed process metadata can be

obtained from the DescribeProcess operation. Figure 3.11 illustrates the geospatial

processing service metadata for the IDDI model. The GeoSPA processing services

allow clients to run a given GP on the GeoSPA by calling the Execute operation.

Because the GeoSPA processing services are shared using open standards (e.g., OGC

WPS, GML), any tool or system that complies with those standards can be used to

access these services.

Figure 3.11. The GeoSPA processing service metadata returned from calling the

DescribeProcess operation using a Web browser

Chapter 3: The GeoSPA Model

73

Upon receipt of the compiled JAR package, the GeoSPA reads the metadata

from the annotations defined by GeoSPI, and then the metadata will be imported to

the local knowledge-base based on the processing service model introduced above.

Figure 3.12 illustrates the Goal object of the ‘InfraredDifferenceDustIndex’ model in

the form of XML document.

Figure 3.12. The Goal model of RAT model represented by XML

3.3.3 Implementation Strategies of GeoSPI

As introduced above, to deploy the GPs to the GeoSPA as geospatial processing

services, model developer must implement the ‘execute’ method defined in the

GeoProcess interface using their model program codes, and then specify the

metadata information through the annotations defined in GeoSPI. Considering that

multiple types of programming languages (e.g., C/C++, Java, FORTRAN, Python,

Matlab, and IDL) have been used for developing geospatial models and each of them

needs a special execution environment, two implementation strategies of GeoSPI

Chapter 3: The GeoSPA Model

74

were introduced in this section. The details of these two strategies were introduced

below:

 Direct Implementation.

Figure 3.13 illustrates the direct implementation of GeoSPI. Using this way, the

model developers directly implement the GeoSPI using Java programming language,

which needs the same execution environment as the GeoSPA does. Then the

GeoSPI-based GP can be directly deployed onto the GeoSPA after compiling for

offering geospatial processing service. Compared with the adapter implementation

way introduced below, the direct implementation approach is much stable and can

supply better performance. However, the disadvantage of this approach is that the

modification of GP is difficult because the model developers have to access to the

source code of GP for editing and the new GP has to be re-deployed onto the

GeoSPA in order to expose the new version of geospatial processing service. In

addition, the model developers must be familiar with Java programming because all

of the model modules must be implemented using Java.

Figure 3.13. Direct implementation of GeoSPI

 Adapter Implementation

Figure 3.14 illustrates the adapter implementation of GeoSPI. Using this

approach, an adapter module is developed to implement the GeoSPI for the

Chapter 3: The GeoSPA Model

75

geospatial model module and connect the model module to the GeoSPA. The adapter

module translates model calls and inputs/outputs from the GeoSPA form to the form

supported by model, and it avoids modifications to the model. This approach is

particularly suitable for integrating geospatial models developed using various

programming language with the GeoSPA. However, the adapter implementation

usually requires transforming input and output data back and forth between the

model process and the process where its adapter module is running, which slows

down the performance.

Figure 3.14. Adapter implementation of GeoSPI

Table 3.2 gives a comparison of these tow implantation strategies.

Table 3.2. Comparison of tow implantation strategies

Strategy Advantages Disadvantages

Direct

implementation

 Better performance.

 Easy to deploy and manage.

 The model can be deployed

on any GeoSPA node

distributed on the internet.

 The model developer must

be familiar with Java

programming.

 Hard to utilized existing

geoscience model resources

Adapter

Implementation

 Make full use of existing

models that implemented by

other programming

languages.

 The transformation of input

and output data back and

forth slows down the

performance.

 The execution of model

module need special

runtime environment, which

Chapter 3: The GeoSPA Model

76

hinders the distributed

execution of models.

3.4 GeoSPA Computing Service Model

The GeoSPA computing service model was designed for a) performing the GPs,

and b) managing and processing the states generated during the GP execution. The

GeoSPA offers a runtime environment for performing GPs, which may come from

either local GeoSPA node or remote GeoSPA nodes. In addition, the execution of GP

can generate a set of states, which should be captured and handled correctly and

efficiently in order to guarantee the service consumer to get the correct result. To

address this problem, the GeoSPA computing service model is first introduced in this

section, and then the GeoSPA Finite State Machine (G-FSM) is proposed for state

management.

3.4.1 Model Description

Figure 3.15 depicts how the GeoSPA computing service model works.

Figure 3.15. Life cycle of the GeoSPA computing service procedure

The symbol ○n (n is a positive integer) in Figure 3.15 indicates the position of

Chapter 3: The GeoSPA Model

77

a step in the overall life cycle. In step ○1 , the service user submits a XML-encoded

request document based on OGC WPS standard to the GeoSPA. Once the user

submits the service requirement, the GeoSPA first creates a GeoSPA Service Request

Handler object to process the request. A service requirement object denoted as

〈𝑟𝑖, 𝑟𝑜〉 which is generated and delivered to the embedded Inference Engine for next

operation (step ○2 in Figure 3.15). The Inference Engine is responsible for

analyzing the service requirement and checking if there is any GP on local

knowledge-base which can meet this service requirement (step ○3 in Figure 3.15).

If it is true, then the GeoSPA initiates a ProcessExecutor object, which is actually a

Java object that can be executed in parallel to perform this GP. And this

ProcessExecutor object will be sent to the ProcessExecutionManager for execution

(step ○4 in Figure 3.15). Upon receipt of a new ProcessExecutor object, the

ProcessExecutionManager first checks if there are input parameters referring to the

output of ProcessExecutors persisted by other GeoSPAs. If it is true, then the

ProcessExecutionManager postpones the ProcessExecutor and sends a request to get

the result generated by other ProcessExecutors through Agent Connector component

(Step ○5 in Figure 3.15). Once the GP finishes successfully, the result is written to

local HBase system and an XML-encoded document describing the result is sent

back to service user. Finally, if there is no GP to meet the user-specified service

requirement in local knowledge-base, the GeoSPA forwards the service requirement

to its neighbor GeoSPAs for further processing (Step ○7 in Figure 3.15).

Chapter 3: The GeoSPA Model

78

3.4.2 GeoSPA Finite State Machine (G-FSM)

The G-FSM used in this research can be described by a 6-tuple:

(𝑆, 𝑠0, Σ𝑒 , Σ𝑜 , 𝑇, 𝑉), where 𝑆 is a finite set of states. Let 𝑆 = {𝑠𝑖|0 ≤ 𝑖 ≤ 𝑛}, then

𝑠0 is called the initial state of the G-FSM. 𝛴𝑒 is a finite set of events, yet 𝛴𝑜 is a

finites set of operations. Each operation 𝑜𝑝 ∈ 𝛴𝑜 can be triggered by the event e ∈

𝛴𝑜. 𝑉 is a set of global variables and each variable 𝑥 ∈ 𝑉 can be used by every

state 𝑠𝑖 ∈ 𝑆. 𝑇 is a finite set of transitions and each 𝑡 ∈ 𝑇 can be represented by a

5-tuple: 𝑡 = (𝑠𝑠, 𝑒, 𝑜𝑝, 𝑒′, 𝑠𝑒), where 𝑠𝑠 is the start state of 𝑡, 𝑜𝑝 is a sequential

operation (e.g. assignment statement), 𝑒 is the event triggers this 𝑜𝑝, 𝑒′ is the

generated event, and 𝑠𝑒 is the end state of 𝑡 . Figure 3.16 illustrates the state

transition diagram of G-FSM model.

Figure 3.16. Transport protocol of the G-FSM model

Chapter 3: The GeoSPA Model

79

The G-FSM totally defines seven runtime states (Table 3.3) and ten state

transitions (Table 3.4). As shown in Table 3.3, there is a set of variables which in

particular are used to represent the machine state and are called state or major state.

A state transition occurs when one of the machine’s state changes to another one. As

shown in table 3.4, each transition has two major states: start state (𝑠𝑠) and end state

(𝑠𝑒). A transition 𝑡 may have one or more atomic operations (𝑜𝑝) to be executed

when 𝑡 is taken. The Σ1 and Σ2 is based on the FIPA Communicative Act Library

Specification (FIPA, 2002), which defines a series of primitives to standardize the

communicative acts between various service agents.

Table 3.3. States and descriptions of the G-FSM model

State Name Description

S0 Idle The GeoSPA is available and waiting for new incoming request.

S1 Initializing The GeoSPA receives incoming request and begins to i) analyze the

request content, ii) initialize the available GP and load it into local

memory system, and iii) read required input parameters.

S2 Standby The target GP is ready.

The GeoSPA waits for further operations from users.

S3 Executing The GP is being executed.

S4 Postponed The geospatial process is postponed due to some exceptions.

The GeoSPA waits for further operations from service consumer.

S5 Fished The GP is completed successfully.

S6 Terminated The GP is terminated and occupied computing resources will be

released.

Chapter 3: The GeoSPA Model

80

Table 3.4. Core transition in the transport protocol of EFSM model

T: Se→Ss 𝒆 𝒆′ Operations

t1: S0→S1 CFP(𝑟𝑖 , 𝑟𝑜) CFP(𝐺𝑜𝑎𝑙)

Upon receipt new user-specified service requirement in the form of input and output

pair: (𝑟𝑖 , 𝑟𝑜), the GeoSPA launches a new thread to initialize the requested processing

services as well as user-specified input parameters. The XML-encoded request will be

transferred into 𝐺𝑜𝑎𝑙 model, which can be understood by the GeoSPA for further

analysis.

t2: S1→S2 CFP(𝐺𝑜𝑎𝑙) 𝑃𝑅𝑂𝑃𝑂𝑆𝐸(𝐺𝑃s)

The GeoSPA begins to analyze the 𝐺𝑜𝑎𝑙 , and retrieves all 𝐺𝑃 s in local

knowledge-base to determine if there is any 𝐺𝑃 that can achieve the Goal. The fitting

𝐺𝑃’s detail information is returned to users through the 𝑃𝑅𝑂𝑃𝑂𝑆𝐸 message. Finally,

GeoSPA waits for further operations.

t3: S2→S3 ACCEPT(GP) CONFIRM(GP)

If the potential 𝐺𝑃 is approved, the user should send a ACCEPT message to rotifer

the GeoSPA to start the 𝐺𝑃 execution. The GeoSPA initializes a new Thread object

called ‘ProcessExecutor’ with the input parameters. Then this thread object is delivered

to the local Process Execution Manager for execution, and a CONFIRM(GP) message

is returned to service consumer for accessing the result of 𝐺𝑃.

T4: S3→S4 NULL INFORM(GP, result)

Once the 𝐺𝑃 finishes without failures, the final result of GP execution is written into

HBase system by the GeoSPA, and meanwhile an INFORM(GP, result) message is

generated and returned to service consumer. Finally t5 is triggered.

t5: S4→S5 NULL NULL The GeoSPA releases the occupied computing resources.

Chapter 3: The GeoSPA Model

81

t6: S6→S1 INFORM(𝑟𝑖 , 𝑟𝑜) NULL
The GeoSPA receives new user-specified service requirement through an

INFORM(𝑟𝑖 , 𝑟𝑜) message, and the state of GeoSPA changes to S1.

t7: S1→S6 FAILURE(exception) NULL
The GeoSPA catches the 𝐺𝑃 run exceptions, returns them to service consumer, and

waits for further operations.

t8: S3→S6 FAILURE(exception) NULL
The GeoSPA catches the 𝐺𝑃 run exceptions, returns them to service consumer, and

waits for further operations.

t9: S6→S5 CANCEL(GP) NULL
Upon receipt the CANCEL(GP) message from service consumer or the setting timeout

is reached, the GeoSPA triggers the process of terminating the 𝐺𝑃.

t10: S5→S0 NULL NULL
The GeoSPA changes its status to ‘Idle’ and waits for new incoming request.

Chapter 3: The GeoSPA Model

82

3.5 Concluding Summary

This Chapter introduced a Geospatial Service Provider Agent (GeoSPA)

structure which could be used as one-stop geospatial service solution for SDI. The

overall structure of the GeoSPA was first introduced in section 3.1 as well as three

service models: EO data service, processing service, and computing service. These

services are fully compliant to the OGC Web Service specifications to ensure that

different services can be interacted with each other in a unified fashion. Then these

three service models were introduced in details respectively in section 3.2, 3.3 and

3.4. The GeoSPA is the core component for supporting geospatial services in the

cloud. In next Chapter, a P2P-based HyperCGSF framework was proposed to

manage and orchestrate multiple GeoSPAs in a decentralized manner.

82

Chapter 4: The HyperCGSF

As introduced in Chapter 3, the GeoSPA is designed as the single infrastructure

node of SDI based on SOA. In geoscience, the SDI is actually a network of

inter-linked infrastructure nodes and each single node in SDI maintains a set of

geospatial services following the SDI principles grouped by geographic criteria

commonly. In such a context, individual infrastructure node can be seen as the

service providers which can be incorporated into common solutions for complex

geoscience problems. However, it is complicated for non-SDI experts to discover and

utilize required geospatial resources over the large amounts of SDI nodes due to the

lack of proper communication scheme for connecting and coordinate heterogeneous

and distributed SDI nodes (Granell et al., 2013).

In this chapter, a P2P-based networking structure called Hypercube Geospatial

Service Framework (HyperCGSF) and a set of distributed algorithms are introduced

which can be exploited to carry out efficient searching and broadcasting for

cooperating distributed GeoSPAs to achieve complex geoscience problems. The P2P

technologies and systems have been proven effective for constructing distributed

systems with large-scale. Unlike the commonly used centralized structure in

geoscience, e.g. BPEL, the P2P system applies the mutual cooperation pattern

through which each peer can dynamically utilize other peers' resources (e.g., CPU,

storage, bandwidth, etc.). The P2P-based service architecture is able to process large

volumes of geospatial dataset, while preventing bottleneck in system performance

and eliminating the possibility of single-point failure.

4.1 Hypercube Network Topology

4.1.1 Introduction

In order to build a scalable distributed system and avoid the worst case of

Chapter 4: The HyperCGSF

84

network diameter, several factors need to be considered. First, the degree of P2P

nodes should be limited, and the number of networking links that one node needs to

maintain should be as few as possible. Second, the networking topology should

support redundancy and fault tolerance, which means that the single-node failure will

not lead to the breakdown of the whole distributed system or hampering search and

broadcast tasks severely. Lastly, the number of communication messages during the

broadcast and search operations should be evenly allocated among all peers in the

P2P network.

To meet the requirements introduced above, Schlosser et al (2002) propose a

network topology called ‘hypercube’ to manage the peers in a P2P network. Figure

4.1 depicts the two examples of hypercube topology drawn in 3D with the base b=2

and b=3, respectively. Based on Schlosser, essentially every node can perform as the

root node of a tree which spans all nodes in the hypercube. In P2P-based distributed

systems, the network diameter, denoted as ∆, refers to the shortest path between

most distant nodes. ∆ is a crucial parameters to reflect the efficiency of a P2P

network for search and broadcast. The worst case of ∆ is 𝑂(𝑛), where 𝑛 is the

number of peers in a P2P network. A complete hypercube topology has 𝑁 =

𝑏𝐿𝑚𝑎𝑥+1 nodes and has a Δ equals to logbN, where 𝐿𝑚𝑎𝑥 + 1 is the number of

dimensions spanned by the cube. There are (𝑏 − 1) ∙ (𝐿𝑚𝑎𝑥 + 1) neighbors for

each node in the hypercube. Based on Figure 4.1, the hypercube topology is

symmetric because there is no node has the more prominent position than other

nodes. The most important feature is that every node in a hypercube can perform the

source of a broadcasting task, yet the load always is always equally shared. This

advantage is crucial for the load balancing in a P2P network.

Chapter 4: The HyperCGSF

85

(a) (b)

Figure 4.1. Illustration of Hypercube topology with the base: (a) b=2 and (b) b=3

Some definitions were stated in this study to describe the topology of a P2P

network. A P2P network can be expressed by 𝐺 = (𝑉, 𝐸), where 𝐸 is the set of

edges and 𝑉 is the set of vertexes. Given a binary based Hypercube, The edge in 𝐸

is labeled: Node 𝑋 is denoted as the 𝑖-neighbor of node 𝑌 or 𝑋 = 𝑖𝑁(𝑌) iff node

𝑋 is 𝑌’s neighbor in 𝑖th dimension. There may be extended neighbors represented

by 𝑋 = 𝑁(𝑌) = {𝑦0, 𝑦1, … }(𝑌) for each node, where 𝑁 represents the neighbor

link set which indicates the sequence of 𝑖-neighbors one would have to follow in the

complete hypercube graph to reach node 𝑋 from node 𝑌 and vice versa. A

hypercube node connects with other nodes as its neighbors with a link set using a

transport network address. The dimension label starts at 𝑖=0 and the maximum

dimension label of a node is 𝐿𝑚𝑎𝑥.

4.1.2 Broadcast Scheme in Hypercube

The hypercube topology can achieve more efficient broadcast tasks than

traditional network topology. Traditional network topology such as the tree structure

could not offer an effective and reliable broadcast scheme due to several factors

listed below. First if the broadcast is performed by a non-root node, the tree must be

reconstructed completely by setting the new sender node as the root node. Once the

tree is reconstructed, there is an overhead associated with building new connections

between nodes in order to create the tree with a new root node. Second, the

reconstruction may result the tree to be unbalanced and suffer from poor performance

Chapter 4: The HyperCGSF

86

measures such as poor load-balancing across nodes and a long average path length.

On the contrary, the hypercube topology offers a more effective and reliable

broadcast scheme than the tree structure. As shown in Figure 4.2, a tree structure can

be superimposed based on the hypercube topology structure easily. For hypercube is

relative symmetry, the root node of the superimposed tree can be any node in the

hypercube.

Figure 4.2. Illustration of broadcast operation conducted by node 000

A broadcast scheme is proposed in this research which guarantees each node in

the hypercube receives a message exactly only once. As shown in Figure 4.2, it can

be seen that totally 𝑁 − 1 messages are needed for a broadcast operation to notify

all nodes in the hypercube. Furthermore, there are 𝑙𝑜𝑔𝑏𝑁 forwarding steps when the

last node is reached, and every node can perform as the origin that starts a broadcast

task in the hypercube and satisfy the crucial requirement. The hypercube-based

broadcast scheme works as follows: A node initiates a broadcast task by sending the

broadcast message to its neighbors. The message contains the edge label. Upon

receiving the broadcast message, hypercube nodes can read the edge label and

restrict the forwarding of the message to those links tagged with higher edge labels.

As shown in Figure 4.2, Node 000 initiates a broadcast task and sends the broadcast

message to all of its neighbors, which are nodes 100, 001, and 010. When node 100

receives the message, it checks the tagged dimension number on the link, which is 0.

Then the node 100 forwards the message to its neighbors with higher dimensions,

which are node 110 in dimension 1 and 101 in dimension 2. In addition, node 010

Chapter 4: The HyperCGSF

87

receives the message on dimension 1 and forwards the message to neighbor node 011

in dimension 2. Finally, node 110 receives the message at dimension 1 and forwards

it to neighbor node 111 in dimension 2. The path length in this scheme can be

calculated using the equation below:

L =
1

𝐿 − 1
∙ ∑

(𝑏 − 1)𝑙𝑜𝑔𝑏𝑁−𝑖+1

(𝑙𝑜𝑔𝑏𝑁 − 𝑖)!

𝑙𝑜𝑔𝑏𝑁

𝑖=1

∙ ∏ (𝑖 + 𝑗)

𝑙𝑜𝑔𝑏𝑁−𝑖

𝑗=0

 (2)

4.1.3 Building and Maintaining a Hypercube-based Network Topology

In this section, the algorithm for building a hypercube topology is introduced.

Fig 4.3 illustrates the basic idea of the algorithm for building and maintaining a

hypercube topology with nice nodes and three dimensions.

a b c

d e f

Chapter 4: The HyperCGSF

88

g h i

Figure 4.3. Illustration of building and maintaining a hypercube topology with 9 nodes and

three dimensions

The basic principles of this algorithm are two-fold: first, the complete

hypercube topology updates in the presence of arriving new node; second, when a

node is removed, other nodes cover the positions of the leaving node, and prepare to

give up these positions again when a new node joins. The detailed procedure is listed

below:

Figure 4.3 (a): Node 1 joins the network and node 0 is performed as the proxy

for adding node 1 into the hypercube topology. For node 0 has no neighbor at this

stage, peer 1 is added as the 0-neighbor of node 0.

Figure 4.3 (b): Node 2 contacts peer 1 to join the network. At this time node 1

becomes the control node for adding node 2. Considering node 0 has been the

0-neighbor of node 1, node 1 opens up a new dimension for the integration of node 2

into the network, which is dimension 1. At the same, a vacant dimension is generated

by node 0 on dimension 1 and node 0 will add itself as the 1- neighbor.

Figure 4.3 (c): Node 3 contacts node 0 to join the network. At this time, node 0

adds the node 3 in its first vacant dimension, which is 1, since node 0 has a

0-neighbor but no 1-neighbor. The node 3 is put on the temporary position which is

used by node 0 to maintain in the hypercube.

Chapter 4: The HyperCGSF

89

Figure 4.3 (d): Node 4 contacts node 0 to join the network. Node 0 opens up a

third dimension to add node 4 as its 2-neighbor. When node 4 is joined, it requires 3

neighbors at three dimensions. Considering that neither node 0’s 1-neighbor, node 3,

nor node 0’s 0-neighbor, node 1, has 2-neighbor which can be add to node 4 as the

neighbor node, node 3 acts as temporary 1-neighbor for node 4 and node 1 acts as

temporary 0-neighbor for node 4.

Figure 4.3 (e): Node 1 is contacted to integrate the newly arriving node 5. Node

1 is still lacking a 2-neighbor, thus node 5 will be integrated on this position.

Figure 4.3 (f): Node 0 suddenly leaves. In this case, node 4 takes over node 0’s

position and establishes tow temporary links to the neighbors of node 0, which are

node 1 and node 3.

Figure 4.3 (g): Node 4 is contacted by node 6 to integrate it as its new

1-neighbor, which is currently covered by node 3. Hence node 4 forwards the joining

control to node 3. All temporary links, which are originally belong to the new

position of node 6 while currently owned by node 3, are restored and passed to node

6. Additionally, node 3 adds node 6 as its new 2-neighbor.

Figure 4.3 (h): Node 7 contacts node 6 for joining the network. Node 6 add node

7 as its new 0-neighbor.

Figure 4.3 (i): Node 8 contacts node 4 for joining the network. At this stage,

node 4 follows the general rule to add node 8 in its first vacant dimension, which is 2.

Now node 8 covers the temporary position which is maintained by node 4 in the

hypercube.

As shown in Figure 4.3, the hypercube topology is implicitly preserved in the

presence of node addition or removal. This feature makes the broadcast and search

algorithms do not need to be changed and every node in the hypercube still receives a

broadcast message exactly once during a broadcast activity.

Chapter 4: The HyperCGSF

90

4.2 The Architecture of HyperCGSF

Based on the hypercube network topology introduced above and the GeoSPA

model introduced in chapter 3, the HyperCGSF is designed in this study as a scalable

geospatial service framework to enable the efficient discovery, composition and

execution of geospatial processes persisted by multiple GeoSPAs. By utilizing the

hypercube structure as the underlying network topology, the HyperCGSF possesses

many advantages over existing distributed computing architectures as introduced

below:

First, all GeoSPA nodes in the HyperCGSF are equivalent and no service agent

owns a more prominent position than the other nodes. Consequently, any service

agent in the HyperCGSF can become the entry point for the deployment and

execution of a geospatial processing workflow.

Second, when a GeoSPA starts a broadcast task, the value of ∆ is guaranteed to

be exactly N-1 to ensure the message can be received by all N nodes in the

hypercube network, regardless of the broadcasting source. This feature is of

extremely critical to improve the performance because the broadcast scheme is

extensively used in this research for the deployment of geospatial processing

workflow.

Third, it is possible that the GeoSPA node may be deployed in less controlled

public cloud computing environments. The GeoSPA node deployed on the cloud is

assumed to be unreliable. It is always possible for the HyperCGSF to recover from

sudden node losses due to utilizing the hypercube topology.

Finally, the HyperCGSF guarantees a complexity of 𝑙𝑜𝑔2𝑁 for joining or

removing a GeoSPA node in the network. Hence, the process of the joining and

removing tasks does not inflict the overall performance of the HyperCGSF. Figure

4.4 illustrates the overall architecture of HyperCGSF.

Chapter 4: The HyperCGSF

91

Figure 4.4. The overall architecture of the HyperCGSF

As shown in Figure 4.4, central to this framework is the binary hypercube

topology for organizing an arbitrary number of available GeoSPA nodes (represented

by circle in Figure 4.4). Based on the hypercube network topology introduced above,

there is no centralized controller in the HyperCGSF and every GeoSPA can

communicate with each other directly for data exchange. In addition, the geospatial

processes can migrate among the HyperCGSF nodes for execution. One of the most

important features of the HyperCGSF is to map the static job workflow specification

to the dynamic cloud computing resources on the fly and coordinate multiple

GeoSPAs to achieve complex geospatial processing tasks. Figure 4.5 illustrates the

life cycle of the HyperCGSF-based geospatial processing service composition:

Chapter 4: The HyperCGSF

92

Figure 4.5. Life cycle of the HyperCGSF-based geospatial processing service composition

As shown in Figure 4.5, the life cycle of the HyperCGSF-based geospatial

processing service composition can be divided into four steps: distributed geospatial

service planning, plan initialization, dynamic task deployment, and decentralized

execution. The details of these four steps were introduced below.

4.3 Distributed Geospatial Service Planning Algorithm (DGSPA)

Based on the GeoSPA processing service model introduced in Chapter 3, a

distributed geospatial service planning algorithm called DGSPA is proposed in this

section to support efficient discovery and composition of geospatial processing

services distributed over the cloud. The essential criterion of the DGSPA is the

solution with the smallest length has the highest priority among all of the potential

solutions. The DGSPA formalizes geospatial processing service compositions into a

search problem in graphic theories according to the dependence relationships among

geospatial processes. The characteristics of the DGSPA are two-fold. First, the

DGSPA has better scalability. This algorithm is fully distributed based on

autonomous and intelligent service agents, which can find the best solution among

the distributed geospatial processes. Second, DGSPA can produce solution with high

quality at a low cost of communication, because the plan generated by the DGSPA

has the smallest length.

Chapter 4: The HyperCGSF

93

4.3.1 Problem Formulation

Several notation concepts were previously defined to clearly introduce the

DGSPA. For expression convenience, we use notation ‘∗. #’ to express ‘# is a part of

∗’ through the remaining of this chapter. For example, 𝑝. 𝐷𝑆 represents that the 𝐷𝑆

is a part of 𝑝.

Definition 1: Service requirement

The service requirement can be represented using a tuple 〈𝑟𝑖, 𝑟𝑜〉, where ri is

the set of input parameters that the user provides, ro is the set of output parameters

that the user desires.

Definition 2: Geospatial Process

The geospatial process (GP) is defined as tuple: 𝑝 = 〈𝑖𝑑𝑝, 𝑝𝐼𝑛, 𝑝𝑂𝑢𝑡, 𝐶𝑝, 𝑄𝑜𝑆〉,

where 𝑖𝑑𝑝 defines a unique ID of 𝑝, 𝑝𝐼𝑛 and 𝑝𝑂𝑢𝑡 define the input and output

parameters used by 𝑝 , 𝐶𝑝 is the identifier of an executable model, and 𝑄𝑜𝑆

defines the quality of the geospatial service.

Definition 3: Task

A task is an atomic execution unit that can be performed by the GeoSPA. The

task is defined as an agent-process-parameters: 𝑡 = 〈𝑠𝑝𝑎, 𝑝, 𝑣〉, where 𝑠𝑝𝑎 is the

name of the GeoSPA that performs this task, 𝑝 is the GP to be performed, and 𝑣 is

required output parameters specifying 𝑣 ⊆ GetOutputs(𝑝).

Chapter 4: The HyperCGSF

94

Definition 4: Dependence

A GP is said to be dependent on another if the latter can help it to achieve one of

its goals. As no GeoSPA has a privileged role than the other, the dependence relation

between GPs enables the GeoSPA to adapt to a changing environment by taking into

consideration of the other GeoSPAs in the HyperCGSF. The dependence relation

among GeoSPAs is defined below.

Given two GeoSPAs denoted as 𝑠𝑝𝑎𝑖 = (Beliefsi, Processesi, Goalsi, Plansi)

and 𝑠𝑝𝑎𝑗 = (Beliefsj, Processesj, Goalsj, Plansj), respectively. if there exists two

processes 𝑝 ∈ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠i and 𝑝′ ∈ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠j satisfying GetOutputs(𝑝′) ∩

GetInputs (𝑝) ≠ ∅, then the 𝑝 of 𝑠𝑝𝑎𝑖 is said to be dependent on the 𝑝′ of 𝑠𝑝𝑎𝑗,

which is denoted as 𝐷𝑒𝑝(𝑠𝑝𝑎𝑖, 𝑝, 𝑠𝑝𝑎𝑗, 𝑝′, 𝑣) , where 𝑣 = GetOutputs(𝑝′) ∩

GetInputs (𝑝).

Definition 5: Dependence Solution

Given a GeoSPA denoted as 𝑠𝑝𝑎 which has a set of dependence relations

which can be expressed as 𝐷𝑆𝑝 = {𝐷𝑒𝑝(𝑠𝑝𝑎, 𝑝, 𝑠𝑝𝑎𝑖
′, 𝑝𝑖

′, 𝑣𝑖)| 𝑖 = 1,2, … , 𝑛}

satisfying GetInputs(𝑝) ⊆ (𝑟𝑜 ∪ 𝑣1 ∪ 𝑣2 ∪ … ∪ 𝑣𝑛), then 𝐷𝑆𝑝 is the dependence

solution of geospatial process 𝑝. For each element e ∈ 𝐷𝑆𝑝, if 𝐷𝑆𝑝 − 𝑒 is not a

dependence solution, then 𝐷𝑆𝑝 is called the minimal dependence solution, denoted

as 𝑀𝐷𝑆𝑝, of geospatial process 𝑝. All 𝑀𝐷𝑆𝑝 are alternative to solutions for dully

matching the input parameters of the process.

Chapter 4: The HyperCGSF

95

Definition 6: Solution

A solution of the user-specified service requirement 〈𝑟𝑖 , 𝑟𝑜〉 is a set of tasks

denoted as 𝑆 = {𝑡𝑖(𝑠𝑝𝑎, 𝑝, 𝑣)|𝑖 = 1,2, … , 𝑛} satisfying 𝑟𝑜 ⊆ (𝑡1. 𝑣 ∪ 𝑡2. 𝑣 ∪ … ∪

𝑡𝑛. 𝑣). For any task 𝑡 ∈ 𝑆, if 𝑆 − 𝑡 is not the solution for the service requirement,

then 𝑆 is called the minimal cover solution.

Definition 7: Plan`

The plan satisfying the user-specified service requirement can be graphically

represented as 𝑝𝑙𝑎𝑛 = (𝑖𝑑𝑝𝑙𝑎𝑛, 𝐺𝑜𝑎𝑙, 𝑆, 𝐿, 𝑡𝑚), where 𝑖𝑑𝑝𝑙𝑎𝑛 is the unique identifier

of the plan, 𝐺𝑜𝑎𝑙 is the business goal that the plan achieves denoted as tuple

〈𝑖𝑛𝑝𝑢𝑡𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡𝑠〉, 𝑆 is a set of minimal cover solution, and 𝐿 is a set of relations

among the processes in 𝑆 represented as 𝐿 = {(𝑡𝑖, 𝑡𝑗)|𝑡𝑖, 𝑡𝑗 ∈ 𝑆}. If there is an edge

connecting 𝑡𝑖 and 𝑡𝑗 ((𝑡𝑖, 𝑡𝑗) ∈ 𝐿) and 𝑡𝑗 < 𝑡𝑖, then 𝑡𝑗 is called 𝑡𝑖’s successor and

𝑡𝑖 is called 𝑡𝑗’s predecessor. The set of predecessors of 𝑡𝑖 is denoted as 𝐿𝑝(ti), and

the set of successors of 𝑡𝑖 is denoted as 𝐿𝑠(ti). 𝑡𝑚 is the unique identifier of the

main task, i.e. the one that is always executed first.

Given a user-specified service requirement 〈𝑟𝑖, 𝑟𝑜〉, the objective of DGSPA is

to find the plan denoted as 𝑝𝑙𝑎𝑛, which consists of a set of geospatial processes that

distributed over the HyperCGSF as well as their execution sequence. The desired

𝑝𝑙𝑎𝑛 should satisfy:

1. 𝐺𝑒𝑡𝐺𝑜𝑎𝑙𝐼𝑛𝑝𝑢𝑡𝑠(𝑝𝑙𝑎𝑛) ⊆ 𝑟𝑖 and 𝑟𝑜 ⊆ 𝐺𝑒𝑡𝐺𝑜𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑠(𝑝𝑙𝑎𝑛).

Chapter 4: The HyperCGSF

96

2. For any geospatial process 𝑝i without predecessor, there is 𝐺𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠(𝑝𝑖)

⊆ 𝐺𝑒𝑡𝐺𝑜𝑎𝑙𝐼𝑛𝑝𝑢𝑡𝑠(𝑝𝑙𝑎𝑛) Where the function of 𝐺𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠(𝑝𝑖) returns the

input parameters of the geospatial processing 𝑝𝑖 and GetGoalInputs(𝑝𝑙𝑎𝑛)

returns the input parameters defined in the goal of a 𝑝𝑙𝑎𝑛.

3. For any operation pj with predecessors, there is re(pj) ⊆

(GetGoalInputs(plan) ∪ (∪pk∈Pre(pj) GetOutputs(pk))), Where the functions

of Pre(pj) and GetOutputs(pk) returns the predecessors of the operation 𝑝𝑗

and the output parameters of the operation template 𝑝𝑘, respectively.

4. (∪𝑝𝑘∈𝑂𝑠
𝐺𝑒𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝑠(𝑝𝑘)) ⊇ 𝐺𝑒𝑡𝐺𝑜𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑠(𝑝𝑙𝑎𝑛) , Where the

functions of GetGoalOutputs(𝑝𝑙𝑎𝑛) return the output parameters of the plan.

In the following paragraphs, we introduced how to apply the DGSPA to get the

desired solutions for the user-specified service requirement in a distributed

computing environment.

4.3.2 DGSPA Steps

The GeoSPA performing on behalf of the service consumer to communicate

with the HyperCGSF is called the manager agent denoted as 𝑠𝑝𝑎𝑚, while the agent

which is responsible for processing the requests sent by 𝑠𝑝𝑎𝑚 is called the worker

agent denoted as 𝑠𝑝𝑎𝑖 where 𝑖 = 1,2, … , 𝑛 and 𝑛 is the number of GeoSPA nodes

in HyperCGSF. Upon receipt of a service requirement 〈𝑟𝑖 , 𝑟𝑜〉, the 𝑠𝑝𝑎𝑚 first

broadcasts a 𝐶𝐹𝑃(𝑠𝑝𝑎𝑚, 𝑟𝑖, 𝑟𝑜) message in the HyperCGSF to notify other worker

agents of the incoming service requirement. When 𝑠𝑝𝑎𝑖 receives the 𝐶𝐹𝑃 message,

Algorithm 1 is executed as represented below:

Chapter 4: The HyperCGSF

97

The function 𝐺𝑒𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠(𝑠𝑝𝑎𝑖) returns a collection of geospatial processes

(𝐶𝑝) persisted by 𝑠𝑝𝑎𝑖 (Line 2, Algorithm 1). Then 𝑠𝑝𝑎𝑖 checks if there is a

geospatial process 𝑝 whose output parameters match 𝑟0 (Line 3-8, Algorithm 1). If

it is true, then 𝑠𝑝𝑎𝑖 replies a message 𝑃𝑅𝑂𝑃𝑂𝑆𝐸(𝑠𝑝𝑎𝑖, 𝑝, 𝐺𝑒𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝑠(𝑝) ∩ 𝑟0) to

𝑠𝑝𝑎𝑚. Once 𝑠𝑝𝑎𝑚 receives all proposed geospatial processes returned from other

worker agents in the HyperCGSF, it generates a minimal cover solution denoted as

𝑀𝐶𝑆 based on the proposed geospatial processes, and Algorithm 2 is executed as

demonstrated below.

If the 𝑀𝐶𝑆 is not empty, the 𝑠𝑝𝑎𝑚 begins to retrieve every task 𝑡𝑖 in 𝑀𝐶𝑆

and send 𝑅𝐸𝑄𝑈𝐸𝑆𝑇(𝑠𝑝𝑎𝑚, 𝑛𝑢𝑙𝑙, 𝑠𝑝𝑎, 𝑝, 𝑣, 𝑟𝑖) message to 𝑡𝑖. 𝑠𝑝𝑎 to query if the

geospatial process 𝑝 generating 𝑟𝑖 is feasible; otherwise, the 𝑠𝑝𝑎𝑚 notifies the

service consumer that the service requirement cannot be achieved. When 𝑡𝑖. 𝑠𝑝𝑎

receives the 𝑅𝐸𝑄𝑈𝐸𝑆𝑇(𝑠𝑝𝑎𝑚, 𝑛𝑢𝑙𝑙, 𝑠𝑝𝑎, 𝑝, 𝑣, 𝑟𝑖) message, Algorithm 3 is executed

as demonstrated below.

Chapter 4: The HyperCGSF

98

As shown in Algorithm 3, the worker agent first checks if the requested

geospatial process 𝑝 has been checked before (Line 2, Algorithm 1). The

“unexplored” of 𝑝 represents that the worker agent never receives such a

𝑅𝐸𝑄𝑈𝐸𝑆𝑇 message about this geospatial process and the search for 𝑝 has not been

carried out before. While the “explored” means that the search for the process p has

been performed before, and a 𝐶𝑂𝑁𝐹𝐼𝑅𝑀(𝑠𝑝𝑎′, 𝑝′, 𝑡(𝑠𝑝𝑎, 𝑝, 𝑣), 𝑓𝑙𝑎𝑔, 𝐿) message is

returned to 𝑠𝑝𝑎′, where 𝑓𝑙𝑎𝑔 indicates if the process is feasible, and 𝐿 is the

relation set of 𝑝.

Chapter 4: The HyperCGSF

99

If the status of the process 𝑝 is ‘unexplored’, three conditions are considered:

1. The input parameters of process 𝑝 cannot be fully matched by 𝑟𝑖 and the

set of minimal cover dependence solutions is empty, which indicates that

the process 𝑝 can’t be performed using the user-specified input

parameters. Then the algorithm is end and the worker agent sends a

message 𝐶𝑂𝑁𝐹𝐼𝑅𝑀 (𝑠𝑝𝑎′, 𝑝′, 𝑡(𝑠𝑝𝑎, 𝑝, 𝑣), 𝑓𝑎𝑙𝑠𝑒, 𝑛𝑢𝑙𝑙) to s𝑝𝑎′ (Line

4-7 in Algorithm 3).

2. The user-specified input data in 𝑟𝑖, can be fully matched by the input

parameters of the process 𝑝. In this situation, as the input data of the

geospatial process 𝑝 is directly satisfied by user-specified input data in 𝑟𝑖,

which mean the geospatial process can meet the service requirement. Then

the algorithm is end and the service agent sends the message

𝐶𝑂𝑁𝐹𝐼𝑅𝑀(𝑠𝑝𝑎′, 𝑝′, 𝑡(𝑠𝑝𝑎, 𝑝, 𝑣), 𝑡𝑟𝑢𝑒, 𝑡𝑝) to spa, where 𝑡𝑝 refers to the

sequence of processes (Line 14-12 in Algorithm 3).

3. The input parameters of the process 𝑝 cannot be fully matched by

user-specified input data in 𝑟𝑖, but minimal cover dependence solutions set

is not empty. Under this circumstance, the worker agent first set the status

of process 𝑝 to ‘explored’ which means the processes has been visited.

Then a minimal cover dependence solution set which has the minimal

length is chosen by this service agent. Finally, every element in the

minimal cover dependence solution set is searched by sending them a

𝑅𝐸𝑄𝑈𝐸𝑆𝑇 message to repeat the planning algorithm (Line 14-18 in

Algorithm 3).

Upon receipt of the 𝐶𝑂𝑁𝐹𝐼𝑅𝑀(𝑠𝑝𝑎′, 𝑝′, 𝑡(𝑠𝑝𝑎, 𝑝, 𝑣), 𝑓𝑙𝑎𝑔, 𝑡𝑝) message, the

GeoSPA executes Algorithm 4 shown below:

Chapter 4: The HyperCGSF

100

When the 𝑠𝑝𝑎𝑚 receives the 𝐶𝑂𝑁𝐹𝐼𝑅𝑀(𝑠𝑝𝑎𝑚, 𝑛𝑢𝑙𝑙, 𝑡(𝑠𝑝𝑎′, 𝑝′, 𝑣), 𝑓𝑙𝑎𝑔, 𝐿)

message, Algorithm 5 shown below is executed.

Chapter 4: The HyperCGSF

101

One scenario of DGSPA is illustrated below to describe how the algorithm

works. As shown in Table 4.1, five GeoSPAs (denoted from 𝑠𝑝𝑎1 𝑡𝑜 𝑠𝑝𝑎5)

participate as the service provider. Each GeoSPA maintains one geospatial process

described as 𝑃𝑟𝑜𝑐𝑒𝑠𝑠: 𝑖𝑛𝑝𝑢𝑡 ⟶ 𝑜𝑢𝑡𝑝𝑢𝑡, and a dependence solutions (𝐷𝑆𝑝). The

variables with bold character in Table 4.1 represent the sharing variables between

two processes. Another GeoSPA denoted as 𝑠𝑝𝑎𝑚 participates on behalf of the

service consumer to communicate with the other five agents.

Table 4.1: The process and corresponding dependence solution for each GeoSPA

Agent 𝑷𝒓𝒐𝒄𝒆𝒔𝒔: 𝒊𝒏𝒑𝒖𝒕 ⟶ 𝒐𝒖𝒕𝒑𝒖𝒕 𝑫𝑺𝒑

𝑠𝑝𝑎1 𝑝1: (𝑥11, 𝑥12, 𝑥13) ⟶ (𝒚𝟏𝟏, 𝑦12) ∅

𝑠𝑝𝑎2 𝑝2: (𝑥21, 𝑥22) ⟶ (𝒚𝟐𝟏) ∅

𝑠𝑝𝑎3 𝑝3: (𝑥31, 𝒚𝟏𝟏, 𝒚𝟐𝟏) ⟶ (𝑦31, 𝒚𝟑𝟐)
𝐷𝑒𝑝(𝑠𝑝𝑎3, 𝑝3, 𝑠𝑝𝑎1, 𝑝1, (𝑦11))

𝐷𝑒𝑝(𝑠𝑝𝑎3, 𝑝3, 𝑠𝑝𝑎2, 𝑝2, (𝑦21))

𝑠𝑝𝑎4 𝑝4: (𝑥41, 𝑥42, 𝒚𝟑𝟐) ⟶ (𝒚𝟒𝟏) 𝐷𝑒𝑝(𝑠𝑝𝑎4, 𝑝4, 𝑠𝑝𝑎3, 𝑝3, (𝑦32))

𝑠𝑝𝑎5 𝑝5: (𝑥51, 𝒚𝟒𝟏) ⟶ (𝑦51) 𝐷𝑒𝑝(𝑠𝑝𝑎5, 𝑝5, 𝑠𝑝𝑎4, 𝑝4, (𝑦41))

Chapter 4: The HyperCGSF

102

Based on Table 4.1, given the user-specified service requirement denoted as

〈(𝑥51, 𝑥41, 𝑥31, 𝑥21, 𝑥11, 𝑥12), (𝑦51)〉, the objective of the DGSPA is to generate a

𝑝𝑙𝑎𝑛 that can fulfill this service requirement by outputting 𝑦51. One possible 𝑝𝑙𝑎𝑛,

which consists of five tasks, was shown in Figure 4.6. As the start tasks of this 𝑝𝑙𝑎𝑛,

the 𝑡1 and 𝑡2 has no predecessor and can be performed directly and generate 𝑦11

and 𝑦21, respectively. 𝑦11 and 𝑦21 can then be used by 𝑡3 as the input parameters

to generate 𝑦32, which then can be transmitted to 𝑡4 as one input parameter. Finally,

𝑡4 generates 𝑦41 and sends it to 𝑡5, which is the end task generating the desired

output 𝑦51.to the service consumer.

Figure 4.6. The desired plan for user-specified service requirement

Figure 4.7 depicts the UML sequence diagram of using DGSPA to derive the

plan shown in Figure 4.6 above. The numbers in Figure 4.7 indicates the step number

followed by the message type. For example, at the first step of DGSPA, the 𝑠𝑝𝑎𝑚

broadcasts a 𝐶𝐹𝑃 message to every worker node in the HyperCGSF for the

proposal of service requirement, and only 𝑠𝑝𝑎5 gives a response to this request. The

interaction between the GeoSPAs is conducted through a generic request-response

structure, which is briefly presented in following eight steps:

Chapter 4: The HyperCGSF

103

Figure 4.7. The sequence diagram of entire lifecycle of DGSPA

Setp1: Upon receipt of a service requirement, the 𝑠𝑝𝑎𝑚 on behalf of the

service consumer broadcasts a 𝐶𝐹𝑃(𝑠𝑝𝑎𝑚, 𝑟𝑖, 𝑟𝑜) to notify all GeoSPAs for proposal.

The 𝑠𝑝𝑎5 checks its processes and gets the process 𝑝5 whose output parameters

has intersection with 𝑟𝑜. Then 𝑠𝑝𝑎5 returns a message 𝑃𝑅𝑂𝑃𝑂𝑆𝐸(𝑠𝑝𝑎5, 𝑝5, 〈𝑦51〉)

to 𝑠𝑝𝑎𝑚.

Step2: Upon receipt of the 𝑃𝑅𝑂𝑃𝑂𝑆𝐸 messages, 𝑠𝑝𝑎𝑚 sends the message

𝑅𝐸𝑄𝑈𝐸𝑆𝑇(𝑠𝑝𝑎𝑚, 𝑛𝑢𝑙𝑙, 𝑠𝑝𝑎5, 𝑝5, 〈𝑦51〉) to 𝑠𝑝𝑎5 for the plan which contains the

completed workflow.

Step3: When 𝑠𝑝𝑎5 receives the 𝑅𝐸𝑄𝑈𝐸𝑆𝑇(𝑠𝑝𝑎𝑚, 𝑛𝑢𝑙𝑙, 𝑠𝑝𝑎5, 𝑝5, 〈𝑦51〉)

message, it first checks if the 𝑟𝑖 contains all the needed input parameters of 𝑝5. If it

is false, 𝑠𝑝𝑎5 derives the dependence solution of 𝑝5 based on Table 4.2

(𝐷𝑒𝑝(𝑠𝑝𝑎5, 𝑝5, 𝑠𝑝𝑎4, 𝑝4, 〈𝑦41〉)) and sends 𝑅𝐸𝑄𝑈𝐸𝑆𝑇(𝑠𝑝𝑎5, 𝑝5, 𝑠𝑝𝑎4, 𝑝4, 〈𝑦41〉) to

𝑠𝑝𝑎4 to check if it is feasible. This similar operation is performed in step 4.

Chapter 4: The HyperCGSF

104

Step4: A similar operation carried out in Step 3 is performed.

Step 5: When 𝑠𝑝𝑎1 receives 𝑅𝐸𝑄𝑈𝐸𝑆𝑇(𝑠𝑝𝑎3, 𝑝3, 𝑠𝑝𝑎1, 𝑝1, 〈𝑦12〉), it finds that

there is no dependence solution of 𝑝1, but an intersection between 𝑟𝑖 and the input

set of 𝑝1. Then 𝑠𝑝𝑎1 will create a task denoted as 𝑡(𝑠𝑝𝑎1, 𝑝1, 〈𝑦12〉) and send the

𝐶𝑂𝑁𝐹𝐼𝑅𝑀(𝑠𝑝𝑎3, 𝑝3, 𝑡(𝑠𝑝𝑎1, 𝑝1, 〈𝑦12〉), 𝑡𝑟𝑢𝑒, 𝑛𝑢𝑙𝑙) to 𝑠𝑝𝑎3 to notify that the

process 𝑝1 can be performed by 𝑠𝑝𝑎1. The similar operation is conducted on 𝑠𝑝𝑎2.

Step 6: Upon receipt of the 𝐶𝑂𝑁𝐹𝐼𝑅𝑀 message, 𝑠𝑝𝑎3 first creates a task pair

collection denoted as 𝐿 which consists of 〈t(𝑠𝑝𝑎1, 𝑝1, 𝑦12), 𝑡(𝑠𝑝𝑎3, 𝑝3, 𝑦32)〉 and

〈t(𝑠𝑝𝑎2, 𝑝2, 𝑦21), 𝑡(𝑠𝑝𝑎3, 𝑝3, 𝑦32)〉. Then a new task denoted as 𝑡(𝑠𝑝𝑎3, 𝑝3, 〈𝑦32〉) is

created. Finally, 𝑠𝑝𝑎3 send the 𝐶𝑂𝑁𝐹𝐼𝑅𝑀(𝑠𝑝𝑎4, 𝑝4, 𝑡(𝑠𝑝𝑎3, 𝑝3, 〈𝑦32〉), 𝑡𝑟𝑢𝑒, 𝐿)

message to 𝑠𝑝𝑎4..

Step 7: The similar operation carried out in Step 6 is performed.

Step 8: When 𝑠𝑝𝑎5 receives the 𝐶𝑂𝑁𝐹𝐼𝑅𝑀 message, it will check if the flag

is true. If it is true, the 𝑠𝑝𝑎5 will return the 𝑝𝑙𝑎𝑛 = (𝑖𝑑𝑝𝑙𝑎𝑛, 𝐺𝑜𝑎𝑙, 𝑇, 𝐿) to 𝑠𝑝𝑎m.

4.3.3 DGSPA Complexity Analysis

As an important part of a computational complexity theory, the algorithm

analysis was conducted in this section to evaluate the efficiency of DGSPA. The

amount of messages required to run the DGSPA is used here to evaluate the

algorithm complexity of the DGSPA. For the HyperCGSF system with 𝑛 service

agents and 𝑟 dependence relations, the number of messages required to run the

DGSPA for one time can be estimated by the following two steps:

1. There are totally 𝑛 𝐶𝐹𝑃 message. Generally, since the number of

geospatial processes whose output parameters can partially or fully math the

user-specified output parameters in the service requirement could be very

small, it can be estimated that the amount of 𝑃𝑅𝑂𝑃𝑂𝑆𝐸 messages is far

Chapter 4: The HyperCGSF

105

less than that of 𝐶𝐹𝑃 messages. Therefore, the amount of the messages

needed in this stage is about 𝑛.

2. In the worst case, all the alternative solutions need to be searched to resolve

a complex geoscience problem, which means or dependence relations will

be checked to get the needs geospatial processes. Therefore, the amount of

𝑅𝐸𝑄𝑈𝐸𝑆𝑇 messages can be estimated as 𝑟 and the number of

corresponding 𝐶𝑂𝑁𝐹𝐼𝑅𝑀 messages is 𝑟 too.

Based on the analysis above, the total number of messages required for on the

DGSPA task is about 𝑛 + 2𝑟 in the worst case.

4.4 Decentralized Orchestration of Plan

4.4.1 Plan Initialization

Each DGSPA-derived plan needs to be initialized for execution. The plan

generated through DGSPA is called the abstract plan, which is not able be executed

directly by the HyperCGSF because the processes in the abstract plan do not refer to

any GeoSPA for execution. In this case, the service consumer should specify required

input parameters in order to make it executable. In this research, the Embedded WPS

Request Document (EWRD) was designed to facilitate service consumer to construct

the executable plan. Much like how functions can call other functions, the WPS

standard has the native ability to chain geospatial processes, which means that one

process can be directly used as the input parameter of another process. Through

EWRD, many complex functions can thus be combined into a single powerful

request. Figure 4.8 demonstrates an example EWRD which describes a widely used

raster-based overlap operation named ‘ras:Overlap’. Based on Figure 4.8, this

operation contains two embedded WPS processes named ‘geoms:CominedRAT’ and

‘geoms:InfraredDifferenceDustIndex’, respectively.

Chapter 4: The HyperCGSF

106

Figure 4.8. Embedded WPS request demo of the ‘Overlap’ operation

Compared with the traditional BPEL-based service composition approaches, the

most advantage of using the EWRD is that a geospatial process produces some

output which will become the input of the next process, resulting in a processing

pipeline that can solve complex spatial analysis with a single HTTP request.

Furthermore, because the EWRD is fully WPS-based and all of the WPS processes

are involved and connected in a single WPS document, the geospatial processing

service providers no longer need a central controller (e.g. BEPL engine) for

workflow execution. However, the disadvantage of using the EWRD is that users are

not able to set complex operations such as using the ‘if’ statement to control the

sequence of process execution.

Upon receipt of the EWRD, the GeoSPA first performs a syntactic validation of

the document. If the format and structure is good, then the GeoSPA decomposes the

EWRD into its constituent geospatial process 𝑝 including its input/output variables.

Each process variable 𝑣𝑖 takes the form of 4-tuple:

Embedded WPS1

Embedded WPS2

Chapter 4: The HyperCGSF

107

〈𝑖𝑑𝑣𝑖
, 𝑣, 𝑇, 𝑀𝐼𝑀𝐸〉

Where 𝑖𝑑𝑣𝑖
 is the unique identifier of the variable, 𝑣 is the holder of the

variable value, 𝑇 is the type of 𝑣 indicating how to derive the variables and

expressed by a set: 𝑇 ∈ {𝐿𝑖𝑡𝑒𝑟𝑎𝑙, 𝑇𝑒𝑥𝑡, 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑆𝑢𝑏𝑝𝑟𝑜𝑐𝑒𝑠𝑠} . The 𝐿𝑖𝑡𝑒𝑟𝑎𝑙

type can be any character string such as float, date, etc., normally described as

primitive datatype in the W3C XML Schema standard (Biron and Malhotra, 2004);

the 𝑇𝑒𝑥𝑡 type is a structured document which needs to be parsed based on some

rules, e.g. GML and KML; the 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 type is always described as a Universal

Resource Locator (URL) of the resource, which indicates the address of the input

parameter; the 𝑆𝑢𝑏𝑝𝑟𝑜𝑐𝑒𝑠𝑠 means that the input parameter comes from its

embedded geospatial process. The 𝑀𝐼𝑀𝐸 represents the Multipurpose Internet Mail

Extensions (MIME) type of 𝑣.

4.4.2 Dynamic Task Dispatching Algorithm (DTDA)

After initializing the plan through the EWRD, each of its tasks needs to be

dispatched to one available the GeoSPA, called worker agent, for performance. It is

possible that one worker agent in the HyperCGSF can perform more than one task at

a time. This study proposed the DTDA for dispatching geospatial processes of a plan

to various the GeoSPA for performance. The main goal of the DTDA is to optimize

the allocation of the task instances of a plan in HyperCGSF system and finally

improve the performance of plan execution. To balance the workload, the Least

Recently Used (LRU; Pantazoglou et al., 2014) algorithm was used in the DTDA.

Based on the LRU algorithm, each GeoSPA node in HyperCGSF maintains a record

of the recent visited time by other agents. When the GeoSPA needs to deliver the

dispatching request to its neighbors, it first picks up the latest visited GeoSPA, and

then sends the dispatching request to it for further dispatching operations. The detail

of DTDA is introduced below.

Chapter 4: The HyperCGSF

108

First, before dispatching task to worker agent, the manager agent 𝑠𝑝𝑎𝑚 first

initializes the plan execution session (PES) for each plan, which can be expressed by

the 4-tuple:

〈𝑖𝑑𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑖𝑑𝑝𝑙𝑎𝑛, 𝐸𝑝, 𝑠𝑝𝑎𝑚〉

Each PES instance is distinguished by the unique identifier denoted as 𝑖𝑑𝑠𝑒𝑠𝑠𝑖𝑜𝑛,

while it is associated with the plan to be executed through the plan identifier 𝑖𝑑𝑝𝑙𝑎𝑛.

In addition, it includes a table denoted as 𝐸𝑝𝑙𝑎𝑛 = {(𝑡𝑎𝑠𝑘𝑖 , 𝑠𝑝𝑎𝑖)}𝑖=1
|𝑝𝑙𝑎𝑛.𝑆|

, which

maps the task of a plan to the endpoint addresses of worker agent.

In order to properly fill table 𝐸𝑝, a dispatching work is carried out based on

Algorithm 6 given next.

Chapter 4: The HyperCGSF

109

The 𝑠𝑝𝑎𝑚 first selects its LRU hypercube neighbor 𝑠𝑝𝑎𝑖 in the lowest

possible dimension, and then sends a dispatching request containing the updated plan

execution session to the 𝑠𝑝𝑎𝑖. Upon receipt of the 𝑅𝐸𝑄𝑈𝐸𝑆𝑇 message, the 𝑠𝑝𝑎𝑖

traverses every task in the plan to determine which process can be performed locally

and update the 𝐸𝑝 (Line 4-15, Algorithm 6). Finally, the 𝑠𝑝𝑎𝑖 checks if all

geospatial processes of a plan have been assigned to an available GeoSPA for

performance. If it is true, then the 𝑠𝑝𝑎𝑖 sends a message 𝐶𝑂𝑁𝐹𝐼𝑅𝑀

(𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(𝑖𝑑𝑠𝑒𝑠𝑠𝑖𝑜𝑛,𝑖𝑑𝑝𝑙𝑎𝑛,𝐸𝑝,𝑠𝑝𝑎𝑚)) to 𝑠𝑝𝑎𝑚 . Otherwise, the same set of steps

are performed each time a node is visited during the dispatching procedure, until all

entries in 𝐸𝑝 are properly set.

One possible scenario is introduced below to clearly describe how the DTDA

works. As shown in Table 4.2, the 𝑠𝑝𝑎101 was configured as the geospatial

processing service provider agent, which maintains five geospatial processes

(denoted from 𝑝1 to 𝑝5) similar to the one in section 4.2.2. The variables with bold

character in Table 4.1 represent the sharing variables between two processes. Figure

4.9 illustrates the DGSPA-derived abstract plan indicating the tasks as well as their

relations.

Table 4.2: The Processes and corresponding dependence solution for each GeoSPA

Service Provider 𝑷𝒓𝒐𝒄𝒆𝒔𝒔: 𝒊𝒏𝒑𝒖𝒕 ⟶ 𝒐𝒖𝒕𝒑𝒖𝒕

𝑠𝑝𝑎101 𝑝1: (𝑥11, 𝑥12, 𝑥13) ⟶ (𝒚𝟏𝟏, 𝑦12)

𝑠𝑝𝑎101 𝑝2: (𝑥21, 𝑥22) ⟶ (𝒚𝟐𝟏)

𝑠𝑝𝑎101 𝑝3: (𝑥31, 𝒚𝟏𝟏, 𝒚𝟐𝟏) ⟶ (𝑦31, 𝒚𝟑𝟐)

𝑠𝑝𝑎101 𝑝4: (𝑥41, 𝑥42, 𝒚𝟑𝟐) ⟶ (𝒚𝟒𝟏)

𝑠𝑝𝑎101 𝑝5: (𝑥51, 𝒚𝟒𝟏) ⟶ (𝑦51)

Chapter 4: The HyperCGSF

110

Figure 4.9. The DGSPA-derived abstract plan for user-specified service requirement

Once the abstract plan shown in Figure 4.9 was ready, the DTDA was applied to

dispatch each geospatial processes to distributed GeoSPAs over the HyperCGSF for

execution. Figure 4.10, read from top to bottom, demonstrates the sequence in which

the GeoSPA is visited upon receipt of the dispatching request sent by 𝑠𝑝𝑎000 during

the execution of DTDA. As shown in Figure 4.10, the tables on the right side show

the value of 𝐸𝑝 at current stage. As it can be seen, the DTDA can evenly map each

task to all available GeoSPAs as the worker agent while taking into account their

sequence of use upon distribution of workload. At each step, one GeoSPA node was

visited based on the LRU algorithm. If there was a geospatial process that the visited

GeoSPA was able to perform, then a new record was added to the table 𝐸𝑝. For

example, at the first step (Figure 4.10(a)), the 𝑠𝑝𝑎100 was visited and the geospatial

process 𝑝1 was dispatched to it for execution. At the same time, a new record was

added to table 𝐸𝑝. Then the dispatching request was forwarded to next GeoSPA

together with the 𝐸𝑝 . The similar operation was performed until all geospatial

processes in the abstract plan were dispatched to corresponding GeoSPA for

execution.

Chapter 4: The HyperCGSF

111

(a)

𝐸𝑝

Provider Process Output Executor

𝑠𝑝𝑎101 𝑝
1
 𝑦

11
 𝑠𝑝𝑎100

(b)

𝐸𝑝

Provider Process Output Executor

𝑠𝑝𝑎101 𝑝
1
 𝑦

11
 𝑠𝑝𝑎100

𝒔𝒑𝒂𝟏𝟎𝟏 𝒑
𝟐

 𝒚
𝟐𝟏

 𝒔𝒑𝒂𝟏𝟏𝟎

(c)

𝐸𝑝

Provider Process Output Executor

𝑠𝑝𝑎101 𝑝
1
 𝑦

11
 𝑠𝑝𝑎100

𝑠𝑝𝑎101 𝑝
2
 𝑦

21
 𝑠𝑝𝑎110

𝒔𝒑𝒂𝟏𝟎𝟏 𝒑
𝟑

 𝒚
𝟑𝟐

 𝒔𝒑𝒂𝟎𝟏𝟎

(d)

𝐸𝑝

Provider Process Output Executor

𝑠𝑝𝑎101 𝑝
1
 𝑦

11
 𝑠𝑝𝑎100

𝑠𝑝𝑎101 𝑝
2
 𝑦

21
 𝑠𝑝𝑎110

𝑠𝑝𝑎101 𝑝
3
 𝑦

32
 𝑠𝑝𝑎010

𝒔𝒑𝒂𝟏𝟎𝟏 𝒑
𝟒

 𝒚
𝟒𝟏

 𝒔𝒑𝒂𝟎𝟏𝟏

(e)

𝐸𝑝

Provider Process Output Executor

𝑠𝑝𝑎101 𝑝
1
 𝑦

11
 𝑠𝑝𝑎100

𝑠𝑝𝑎101 𝑝
2
 𝑦

21
 𝑠𝑝𝑎110

𝑠𝑝𝑎101 𝑝
3
 𝑦

32
 𝑠𝑝𝑎010

𝑠𝑝𝑎101 𝑝
4
 𝑦

41
 𝑠𝑝𝑎011

𝒔𝒑𝒂𝟏𝟎𝟏 𝒑
𝟓

 𝒚
𝟓𝟏

 𝒔𝒑𝒂𝟏𝟏𝟏

Figure 4.10. Dispatching sequence and results of task actors for the execution of plan

Chapter 4: The HyperCGSF

112

4.4.3 Decentralized Execution of Plan

As soon as the stage of dynamic task dispatching is finished, the manager agent

retrieves from table 𝐸𝑝 the endpoint address of the worker agents and sends to these

agents the request containing the processing identifier and the plan execution session

tuple to start the execution. During the execution, the geospatial process can migrate

from one worker agent to another agent and executes in a decentralized manner. This

paradigm has many advantages. First, the concurrent tasks can be forwarded to

different sites for execution, which achieves real parallelism. Second, the geospatial

tasks can be evenly distributed over the worker agents, which increases the flexibility

and performance of the system. Lastly, if a site needs to leave, it can transfer its tasks

to other sites to keep the system stable. Algorithm 7, which is presented below,

shows the detailed procedure of plan execution.

Chapter 4: The HyperCGSF

113

When spai receives the 𝑅𝐸𝑄𝑈𝐸𝑆𝑇(𝐸𝑥𝑒𝑐𝑢𝑡𝑒(𝑖𝑑𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑖𝑑𝑝𝑙𝑎𝑛, 𝐸𝑝, 𝑠𝑝𝑎𝑚))

sent from the manager agent 𝑠𝑝𝑎𝑚, it first traverses each row in Ep to pick up the

task(spa, p, v) dispatched to it (Algorithm 7, Line 2-3). If the endpoint address of

task. spa is the same as 𝑠𝑝𝑎𝑖 , 𝑠𝑝𝑎𝑖 creates a geospatial process 𝑝𝑖 from its

Chapter 4: The HyperCGSF

114

knowledge-base, otherwise, 𝑠𝑝𝑎𝑖 sends a request to task. spa for process

migration (Algorithm 7, Line 5-10). Once the geospatial process 𝑝𝑖 is ready, the

𝑠𝑝𝑎𝑖 retrieves two task sets, the predecessor set (𝐿𝑝) and the successor set (𝐿𝑠), from

the dispatched task, as well as an input parameter set (𝑆𝑖𝑛𝑝𝑢𝑡) of 𝑝𝑖 (Algorithm 7,

Line 11-13). Then 𝑠𝑝𝑎𝑖 begins to read the input parameters based on the input

parameter type and the MIME type. If the parameter type is ‘subprocess’, then spai

retrieves the endpoint address of the node that is responsible to generate this

parameter from 𝐿𝑝 and waits for its response (Algorithm 7, Line 14-26). When all

of the required input parameters are ready, spai begins to run the process and to

write the value of all variables (𝑣𝑖) in task. v to the nodes in charge of all tasks in

𝐿𝑠. If there is no process in 𝐿𝑠, which means the process is the last process of the

plan, then spai sends a 𝐶𝑂𝑁𝐹𝐼𝑅𝑀(𝑖𝑑𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 𝑖𝑑𝑝𝑙𝑎𝑛, 𝑣𝑖) message to the manager

agent to notify the plan execution has finished successfully (Algorithm 7, Line

22-29).

Figure 4.11 illustrates the procedure of the decentralized execution of plan

based on Algorithm 7. The 𝐺𝑒𝑜𝑆𝑃𝐴101 plays the role of geospatial process provider

agent, while 𝐺𝑒𝑜𝑆𝑃𝐴100, 𝐺𝑒𝑜𝑆𝑃𝐴110, 𝐺𝑒𝑜𝑆𝑃𝐴010, 𝐺𝑒𝑜𝑆𝑃𝐴011, and 𝐺𝑒𝑜𝑆𝑃𝐴111

play the role of process worker agents (Figure 4.11(a)).

(a) (b)

Chapter 4: The HyperCGSF

115

(c) (d)

Figure 4.11. Illustration of decentralized plan execution

Based on the dynamic task dispatching result shown in Figure 4.11, at the

beginning of plan execution, every worker agent requests the migration of geospatial

process which has been assigned to it from 𝐺𝑒𝑜𝑆𝑃𝐴101 (Figure 4.11(b)). Upon

receipt of the geospatial processing migration request, the geospatial processing

service provider agent creates a new instance of requested geospatial processes,

which then migrates to requesting a worker agent (Figure 4.11(c)). Then, every

worker agent executes the process and cooperates with other worker agents to

achieve the execution of the plan in a decentralized manner based on Algorithm 7.

When a process execution completes successfully, the worker agent transmits the

desired output variable to the process’s immediate successor (Figure 4.11(d)). For

example, in Figure 4.11(d), the 𝐺𝑒𝑜𝑆𝑃𝐴100 performs 𝑝1 and returns the desired

output parameter 𝑦11 to its immediate successor 𝐺𝑒𝑜𝑆𝑃𝐴010 , where 𝑝3 is

executed with 𝑦11 as one of its input parameters.

4.5 Monitoring Process Execution and Fault Tolerance

4.5.1 Monitoring Process Execution

As the execution of geospatial process is always time-consuming, the ability to

monitor the status of deployed geospatial process is a critical user requirement. The

Chapter 4: The HyperCGSF

116

HyperCGSF offered mechanism for users to keep tracking of the execution progress

during the whole lifecycle of a plan. The service consumer can send a ‘GetStatus’

request to the manager node to get the current status of plan execution. In doing so,

the manager node checks all of the endpoint addresses from the table 𝐸𝑝 in the plan

execution session and sends to them a request containing the identifier of plan

execution session 𝑖𝑑𝑠𝑒𝑠𝑠𝑖𝑜𝑛 and process identifier 𝑖𝑑𝑝 . When the worker node

receives the request, it checks current status of the processes allocated to it and

returns the result to manager node.

4.5.2 Resilience to Network Failures

In the presence of node departure (𝑠𝑝𝑎) in the HyperCGSF, one of departing

node’s neighbor, denoted as 𝑠𝑝𝑎′, takes over 𝑠𝑝𝑎’s position. Then 𝑠𝑝𝑎′ inherits all

the HyperCGSF-specific data from 𝑠𝑝𝑎 and takes its responsibility. After that, 𝑠𝑝𝑎′

broadcasts a notification inside the HyperCGSF to update the processes allocation

data in all affected session tuples. Algorithm 8 illustrates the detailed procedure.

Algorithm 8 can be divided into four stages. First, the 𝑠𝑝𝑎 needs to set its

status to “REMOVING”, which means it stops receiving new tasks (Algorithm 8, line

Chapter 4: The HyperCGSF

117

2). Second, the 𝑠𝑝𝑎 communicates the replacing node (𝑠𝑝𝑎′) for updating its

hypercube-specific and the HyperCGSF-specific information (Algorithm 8, Line 4-8).

Then, the GeoSPA moves all of its working tasks to the replacing node 𝑠𝑝𝑎′ so that

the tasks can resume their execution (Algorithm 8, Line 9-12). Finally, the departing

GeoSPA node broadcasts the message of 𝐼𝑁𝐹𝑂𝑅𝑀(𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝑠𝑝𝑎′, 𝑠𝑝𝑎)) to other

worker agents to notify the replacement of 𝑠𝑝𝑎 with 𝑠𝑝𝑎′ and the departure of

𝑠𝑝𝑎 (Algorithm 8, Line 13-14).

4.6 Concluding Summary

In this chapter, a P2P-based geospatial service framework, called the

HyperCGSF, was proposed to coordinate multiple GeoSPAs for achieving complex

geoscience task. Given the user-specified service requirement, the HyperCGSF can

automatically discover and composite geospatial service and orchestrate the

execution of service composition in a decentralized manner. To describe HyperCGSF,

this chapter is divided into four sections. First, a most widely used P2P network

topology called Hypercube was analyzed and used for organizing the GeoSPA

service nodes. Second, a problem formulation about service planning was given and

the Distributed Geospatial Service Planning Algorithm (DGSPA) was introduced for

automatically discovering and composing geospatial processing services. Third, we

introduced the decentralized orchestration of geoprocessing workflow generated by

the DGSPA. Finally, some important issues about workflow execution such as

execution monitoring and fault tolerance technologies were discussed. In the next

chapters, we applied the dust storm detection as a study case to test the efficiency of

the HyperCGSF on processing of EO data.

117

Chapter 5: The Integrated Dust Storm Detection

Model

To evaluate the performance of HyperCGSF, the Integrated Dust storm

Detection Model (IDDM) was developed as a study case by combining five models

for dust storm detection, aerosol optical thickness (AOT) retrieval, and dust

trajectories simulation. The IDDM is developed based on the integrated

environmental modelling (IEM) paradigm, which has been applied for addressing

scientific challenges, such as monitoring the environmental change detection and

forecasting environmental problems (Granell et al., 2013). IEM focuses on the issues

of resource integration, model sharing and reusing, and decision making through

model integration (Bulatewicz et al., 2013).

5.1 Review of Methodologies for Dust Storm Detection

There is an increasing concern for the health impacts of dust storms on urban

populations. Every year approximately 800 terra grams of dusts are released from

arid and semiarid regions of the northwestern China (Zhang et al., 1997). Asian dust

is usually associated with frontal systems and/or cyclones (Tsai, 2008)). Dust

particles can be transported by northwesterly winds at surface-level under Asian

winter monsoon and by westerly winds in the troposphere layer from the eastern

Asian continent to the Pacific Ocean (Zhao et al., 2006). It is also known that dust

aerosols can have serious aviation and human health impacts (Chan et al, 2007). The

chemical dioxins, anthropogenic inorganic pollutants, and trace metals, as well as the

associated pathogenic fungi and bacteria may attach to dust particles when dust

storms are passed through the urbanized and industrialized regions (Garrison et al.,

2003). In addition, the atmospheric impacts from Asian dusts have also been

extensively studied (Husar et al., 2001; McKendry et al., 2001; Zhao et al., 2008).

The atmospheric mineral-dust loadings can affect the earth’s radiation budget and

Chapter 5: The Integrated Dust Storm Detection Model

119

atmospheric, which can cause a reduction of 30-40% in solar radiation, as well as

reduce visibility and promote the formation of severe haze (Husar, 2001).

5.1.1 Satellite-based detection methods

Satellite remote sensing is advantageous in monitoring the spatial and temporal

variations of dust events (Chiapello et al., 1999). The application of satellite imaging

in dust storm detection has been extensively studied in the last two decades. The

ultraviolet measurements of the Nimbus 7 Total Ozone Mapping Spectrometer

(TOMS) and the Ozone Monitoring Instrument (OMI) have been used to detect

mineral dust (Chiapello et al., 1999; Torres et al., 2007), and the observations in the

visible bands of the SeaWiFS and MODIS have been used to characterize the

properties of dust aerosols (Yao et al., 2012).

In the visible wavelengths, Rao et al. (1989) proposed the first AVHRR

algorithm used radiances in AVHRR channel 1 (630 nm) for AOT retrieval.

Pavolonis et al. (2006) analyzed the limitations of “reverse absorption” technique

and proposed another method that applies the ratio of reflectance at3.75 µm and 0.65

µm (hereafter RAT (3.7 µm, 0.65µm)), as a complement for automated dust aerosols

detection. Qu et al. (2006) used Normalized Difference Dust Index (NDDI), which

expressed as a normalized ratio of 2.1µm band and blue band, to detect dust storms

and monitor the moisture change of dust. Lee et al. (2012) retrieved AOT from the

Geostationary Ocean Color Imager (GOCI) on board the Communication, Ocean,

and Meteorological Satellites (COMS) applying six visible bands (412, 443, 490,

555,660 and 680 nm) and two near-infrared (NIR) wavelengths (745 nm and 865

nm). However, these algorithms, which are based on visible and ultraviolet channels,

are applicable only during the daytime.

Some successes in detecting dust form satellite-based Infrared (IR)

measurements have been reported (Ackerman, 1997; Legrand et al., 2001; Li et al.,

2007). Furthermore, quantitative physical parameters could be more beneficial than

Chapter 5: The Integrated Dust Storm Detection Model

120

an ambiguous dust index if measurements were possible during the nighttime. Then,

using the Mie calculation for the Asian dust (Han et al., 2013), it may be possible to

covert IR aerosol optical thickness (AOTs) into more familiar visible AOTs, if IR

AOTs can be retrieved form IR measurements during the nighttime. Satellite

radiometer measurements in thermal infrared channels own the capability of

detecting dust storms during both the daytime and the nighttime (Ackerman, 1997;

Wald et al., 1998). The Reverse Absorption Technique (RAT), which uses the

Brightness Temperature Difference (BTD) of two or more thermal infrared bands, is

the most commonly used satellite dust detection technique. BTD (11µm - 12 µm) can

be applied to distinguish dust aerosols from clouds since dust particles absorb more

infrared radiation at shorter wavelength while ice or liquid water particles exhibit

higher absorption in longer wavelengths (Prata, 1989; Legrand et al., 2001; Ellrod et

al., 2003; Zhao et al., 2010). Ackerman (1997) found that measurements of the dust

refractive index show large discrepancies in the 3.7 µm and 11 µm wavelengths, thus

proposed a method to locate and track the dust outbreaks (e.g., BTD 3.7 µm - 11 µm).

Legrand (2001) developed the Infrared Difference Dust Index (IDDI) to detect the

presence of desert dusts over Africa. The rationale of IDDI is based on observing

thermal radiation (10 µm -12 µm) emitted by the same scene over the course of

several days, where distinct changes are evaluated for potential dust presence. Ellrod

et al. (2003) demonstrated a Three band Volcanic Ash Product (TVAP) using three

bands from Geostationary Satellite System (GOES) centered at 3.75 μm, 11 μm and

12.0 μm wavelength. In contrast to BTD, TVAP generates better ash retrieval results

due to its high sensitive to thin ash.

5.1.2 Radiative Transfer Model (RTM)

In order to comprehensively analyze the effort of dust storm presence and

meteorological conditions on satellite observed brightness temperature at different

wavelengths, the RTM was used in this chapter to simulate the radiances of different

bands of MTSAT with various dust aerosols or atmospheric parameters, such as AOT,

Chapter 5: The Integrated Dust Storm Detection Model

121

effective radius, and water vapor. The influence of atmospheric conditions on the

relationships of the TOA BTs at thermal infrared bands (in this study, the 3.75, 11,

and 12 μm) were simulated by the Santa Barbara DISORT (DIScreet Ordinate

Radiative Transfer) Atmospheric Radiative Transfer (SBDART) model choosing

standard middle latitude winter mode as the atmospheric profile. The surface type is

set to bare soil. The dust optical properties, including the single-scattering albedo

(SSA) and asymmetry parameter, were defined based on tabulated values for mineral

nucleation mode dust from OPAC (Optical Properties of Aerosol and Cloud) (Hess et

al., 1998). The surface emissive of bare soil at the three channels was set according

to the seeBor database.

5.2 Data Used and Study Area

5.2.1 Study Area

The study area covers most of the East Asia from 20°N to 55°N latitude and

from 95°E to 135°E longitude, which includes the main source regions for Asian

dusts: the Gobi and the Taklimakan deserts (Figure 5.1) (Sun et al., 2001; Shao et al.,

2006). Approximately 240 𝑇𝑔 of dusts are re-deposited in Chinese deserts each year

(Zhang et al., 1997), and 140 𝑇𝑔 of dusts falls off during their transportations in

China (Zhang et al., 1997). Climatologically, dust storms in east Asia are reported

dominantly in winter-spring season, and the highest frequency is observed in April.

Approximately one-third to one-half of yearly dust storms occurs in April

(Natsagdorj et al. 2003; Zhou and Zhang, 2003). During dust peak season, the

estimated dust loads reach to 1.7×103 kg/km2 (Shao et al., 2006). Tan et al. (2012)

analyzed the transport pathways of dust storms from two stations (Sunitezuoqi

(41.37°N, 102.37°E) and Guaizohu (43.87°N, 113.63°E)) of main dust resources.

They have concluded that the pathways are normally transported from Inner

Mongolia deserts via the Loess Plateau to the North China Plain, and then entered

into the East and South China Sea.

Chapter 5: The Integrated Dust Storm Detection Model

122

Figure 5.1. Domain of this study

5.2.2 EO Data Used

Multi-functional Transport Satellite (MTSAT-2)

MTSAT-2 is a Japanese geostationary earth-orbiting satellite. In contrast to

low-earth orbiting satellites, geostationary satellites can profile atmospheric aerosols

at higher temporal resolution. Hourly Brightness Temperature (hereafter BT) images

derived from four infrared channels (mid-infrared: IR3 and IR4; thermal-infrared:

IR1 and IR2), with a spatial resolution of 4 km, and one visible channel (VIS), with a

resampled spatial resolution of 4 km (original data resolution is 1 km), were used. A

summary of all MTSAT channels is given in Table 5.1.

Table 5.1: Different Band wavelengths and corresponding resolution of MTSAT

Wavelength/ Band Spectral Range (μm) Spatial Resolution (km)

IR1 10.5-11.5 4

IR2 11.5-12.5 4

IR3 6.5-7.5 4

IR4 3.5-4 4

VIS 0.55-0.9 1 (resampled to 4km)

Chapter 5: The Integrated Dust Storm Detection Model

123

MODerate resolution Imaging Spectroradiometer (MODIS)

MODIS is a passive multi-spectral imager deployed aboard the two NASA

Earth Observing System (EOS) satellites, TERRA and AQUA, which respectively

crosses the equator at 10:30 a.m. and 1:30 p.m. (UTC). Each provides global daily

detection of the earth-atmosphere system in 36 spectral bands ranging in wavelength

from 0.4 μm to 14.4 μm, with a ±55-degree scanning pattern at the EOS orbit of

705 km and a 2330-km imaging swath, and provides global coverage every 1-2 days.

The MODIS project provides many standard products for the scientific community,

and the morphemic profile products represent one of them, denoted as MOD_07 or

MYD_07 if the Terra or Aqua platforms are used, respectively. In this study, we only

use the MOD_07 Collection 5 products collected form the Terra platform. The

MOD_07 product consists of several parameters, which include the total ozone

burden, the atmospheric stability, the temperature and moisture profiles, and the

atmospheric water vapor. The pixel resolution is 5 km×5 km.

NCEP FNL Final (FNL) Operational Global Analysis data (NCEP/FNL)

The NCEP final operational global analysis data in the GRIdded Binary (GRIB1)

format is used in this study as atmospheric profiles data. The NCEP FNL (Final)

Operational Global Analysis data are on 1-degree by 1-degree grids prepared

operationally every six hours. This product is generated from the Global Data

Assimilation System (GDAS), which continuously collects observational data from

the Global Telecommunications System (GTS), and other sources, for numerous

analyses. The data are on a 1°×1° longitude/latitude grid and generated globally

every 6 hours (0:00, 06:00. 12:00, 18:00 UTC). The extracted atmospheric profiles of

FNL have 26 mandatory (and other pressure) levels from 1000 to 10 hPa, in the

surface boundary layer and at some sigma layers. Other vertical atmospheric

parameters include the geopotential height, the air temperature and the relative

humidity.

Chapter 5: The Integrated Dust Storm Detection Model

124

The advanced research ARW Weather Research and Forecasting (WRF) model

is used to generate the 1-hour, 10×10 km atmospheric profiles. The 6-hour Final

(FNL) Operational Global Analysis data with 1°×1° resolution from the NCEP

were used for meteorological initial and boundary conditions of WRF. The Yonsi

University (YSU) planetary boundary layer (PBL) (Hong et al., 2006), the NOAH

land-surface model (Chen and Dudhia, 2001) and the Monin-Obukhov surface layer

scheme (Obukhov, 1971) were used in the simulation. Grell 3D (Grell, 1993) scheme

was used as the cumulus parameterization. The rapid radiative transfer model

(RRTM) scheme (Mlawer et al., 1997) was used for both short-wave and long-wave

radiation including only direct radiative effect of aerosols.

5.3 IDDM Description

Figure 5.2 illustrates the workflow of IDDM. The rectangle represents the

model input and output item, which the round rectangle represents the geospatial

model. The detailed introduction of each model was given below.

Figure 5.2. Workflow of the IDDM

5.3.1 Model-1: Combined reverse absorption technique (RAT) Model

The Combined RAT is one of the most widely used satellite-based techniques

for dust storm detection (Gu et al., 2003; Hu et al., 2008), which exploits selective

absorption in the thermal infrared wavelengths (e.g. 11 µm and 12 µm) (equation 1),

Chapter 5: The Integrated Dust Storm Detection Model

125

where dust aerosols absorb more infrared radiation at shorter wavelength and absorb

less at longer wavelength (Prata, 1989; Ackerman, 1997). The presence of dust storm

can be identified and distinguished with cloud pixels by BTD threshold tests of RAT.

A negative difference (11 µm - 12 µm) of < -1.0 °K is normally used as the

threshold to indicate the presence of dust (Ellord, 2003).

 𝐵𝑇𝐷11−12 = 𝐵𝑇11𝜇𝑚 − 𝐵𝑇12𝜇𝑚 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙 (3)

However, the two bands RAT may generate false detection in some situations

such as high water vapor concentrations, which are common in tropical areas (Ellrod

et al., 2003; Pavolonis et al., 2006). Ellrod et al. (2003) demonstrated a Three-band

Volcanic Ash Product (TVAP) using Geostationary Satellite System (GOES) data

centered at 3.75 μm, 11 μm and 12.0 μm (Equation 2). TVAP generates better

ash-retrieval results than BTD due to its high sensitivity to thin ash. The threshold

value of TVAP can be set between 60 and 100 during nighttime for very thin ash and

200 and 255 for relatively thick ash during daytime (Ellrod et al., 2003). TVAP is

also valid for detecting dust storms. In Figure 5.3(b), the TVAP values for dust

storms over land or sea are both higher than those of the land/sea background.

Clouds impartially have TVAP values between 150 and 200 and lower IR1 values.

Therefore, by using TVAP and IR1, dust storms over land and sea can be

discriminated from both clouds and land/sea background. The output of TVAP is

shown in Figure 5.3(c).

𝑇𝑉𝐴𝑃 = 60 + 10(𝐵𝑇12𝜇𝑚 − 𝐵𝑇11𝜇𝑚) + 3(𝐵𝑇3.75𝜇𝑚 − 𝐵𝑇11𝜇𝑚) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (4)

5.3.2 Model-2: The Infrared Difference Dust Index (IDDI) model

The Infrared Difference Dust Index (IDDI) was first proposed by Legrand (2001)

to detect the presence of desert dusts over Africa using thermal band (11 μm) of

midday Meteosat-IR imagery. Based on Legrand, the surface thermal radiance does

not change over relatively short time periods (e.g. 15 days) on clears days. However,

Chapter 5: The Integrated Dust Storm Detection Model

126

in the presence of dust, outgoing thermal radiation will be attenuated along its path

through the atmosphere, resulting in a reduction in the apparent radiance at the top of

atmosphere when compared to a clear day. Therefore increased contrast between

observations can be obtained during clear and dust conditions. The thermal contrast

can in turn be an indicator of dust pixels. In this study, the IDDI is used as an

indicator for dust detection where dusts have a distinct range of IDDI as:

𝐼𝐷𝐷𝐼 = 𝑇𝑟𝑖 − 𝑇𝑜𝑖 (5)

Where 𝑇𝑜𝑖 is the BT of each pixel in original image and 𝑇𝑟𝑖 is the BT of each

pixel in the reference image. The reference image can be derived by calculating the

maximum pixel value of each pixel over a period, such as 15 days in this study. As

shown in Figure 5.3(d), clouds, dust storms and land/sea background can be readily

distinguished.

A significant dust storm occurred in the northern China and Inner Mongolia on

April 27, 2012 and was selected for a sensitivity study using MTSAT imagery. Five

sample regions (represented by different color squares with the size of 20 × 20

pixels) were selected from a MODIS RGB composite image (Figure 5.3 (a)),

respectively for 5 different classes (e.g. land background (LB), sea background (SB),

dust storm over Land (LD), dust storm over sea (SD) and cloud (CL)) to examine

response at 3.75 µm, 11 µm and 12 µm wavelengths. Figure 5.3 (b) to (d) illustrate

scatter plots for each of the five classes of dust detection applied to MTSAT. Based

on Figure 5.3, the dust storms pixels can be clearly discriminated from cloud and

from the land/sea background using proper BTD (11 μm - 12 μm), TVAP and IDDI

threshold.

Chapter 5: The Integrated Dust Storm Detection Model

127

(a) (b)

(c) (d)

Figure 5.3. (a) RGB composition image from MODIS channel 1 (645 nm), 4 (555 nm)

and 3 (469 nm) of a serious dust storm on April 27, 2012 and scatterplot of different class

(e.g. land, cover, dust) of (b) BTD, (c) TVAP; (d) IDDI

5.3.3 Model-3: Land Surface Temperature (LST) Model

Based on the radiative transfer theory, the land surface temperature (LST)

strongly affects the calculation of atmospheric aerosol properties (Prata et al., 1989).

In this study, the LST was taken based on a reference BT11μm. The reference

BT11μm synthesized from two previous week’s clear sky BT11μm value in the same

study area. Considering the dust storm event is usually accompanied with the

decreased temperature, 5K was subtracted form the background value (Zhang et al.,

2006).

Chapter 5: The Integrated Dust Storm Detection Model

128

5.3.4 Model-4: SBDART Model

Table 5.2 illustrates the parameters for the simulations of infrared radiance on

different MTSAT bands with SBDART. The relationships between BT11 and BT12

were simulated with various dust layer heights with atmospheric profiles of MLW.

Figure 5.4 presents the relationship between BT11 and BTD11-12, with a water

vapor amount of 0 g/cm2 and 3 g/cm2 respectively. For each figure, the retrieval net

is labeled for specific effective radius and optical depth values. Solid lines in Figure

5.4 represent different effective radii, and the dashed lines represent optical depth at

550 nm.

Table 5.2: Configuration of SBDART in this study

Parameter Value

Atmospheric Model Midlatitude Winter (MLW)

Integrated water vapor amount (g/cm2) 0,1,2,3

Solar zenith angle 40

View zenith angle 30

user azimuth angles 50

Surface temperature (K) 290, 300

Aerosol type Mineral dust

Altitude of aerosol layer 2km

Aerosol optical depth 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5

Chapter 5: The Integrated Dust Storm Detection Model

129

(a)

(b)

Figure 5.4. Simulation of the relationships between BT11 and BTD11-12 for bare soil in

various dust layer heights with an atmospheric profile of MLW: (a) BTD versus BT11 with a

water vapor amount of 0 g/cm2, (b) BTD versus BT11 with a water vapor amount of 3 g/cm2.

The altitude of dust layer is 2km and the surface temperature is set to 290K

Based on Figure 5.4, several conclusions can be drawn: first, the presence of

dust aerosol displays a significant negative BTD11-12 signal when the optical depth is

greater than 0.5. Second, it can be seen that BT11 decrease with increasing optical

Chapter 5: The Integrated Dust Storm Detection Model

130

thickness while BTD11-12 decreases with the increase of particle effective radius,

which indicate that it is possible to retrieve the optical thickness and particle size of

dust from the combination of BT11 and BTD11-12 information. Finally, since

absorption by water vapor in the infrared window is serious, the magnitude of the

positive BTD11-12 with a higher water vapor amount is greater than the BTD11-12 with

lower water vapor amount. This can explain why the BTD methods are always failed

for dust storm detection in moist district, such as the South-East China.

IR radiances of the identified dust storm pixels are used for the dust storm

properties retrieval by using the lookup-table (LUT) based inversion technique.

Basically, the LUTs describe the relationships between satellite receiving radiance

and the AOT for given atmospheric and surface conditions. For the construction of

the LUTs, the SBDART radiative transfer code was run using the OPAC (Hess, 1998)

dust model. Similar to Lee et al., (2013), for each dust storm presence and each of

the two selected channels (11μm and 12μm), the LUTs contain radiances computed

for 11 dust storm loadings (AOT = 0.0, 0.2, 0.4, 0.8, 1.0, 1.4, 1.8, 2.2, 3.0, 4.0, and

5.0) and 10 altitudes of the layer from 1 km to 10 km. LUTs were calculated using

the SBDART code for the retrieval, which can calculate solar flux as well as radiance

for the solar illumination and satellite observation geometry based on searching for

the closest value in the LUT, according to the root–mean–square deviation (RMSD):

𝑅𝑀𝑆𝐷 =
1

𝑁𝑖

√
(𝐵𝑇𝑖

𝑐𝑎𝑙𝑐 − 𝐵𝑇𝑖
𝑜𝑏𝑠)2

𝐵𝑇𝑖
𝑜𝑏𝑠

+
1

𝑁𝑖

√
(𝐵𝑇𝐷𝑖

𝑐𝑎𝑙𝑐 − 𝐵𝑇𝐷𝑖
𝑜𝑏𝑠)2

𝐵𝑇𝐷𝑖
𝑜𝑏𝑠 (6)

Where 𝐵𝑇𝑖
𝑐𝑎𝑙𝑐 and 𝐵𝑇𝑖

𝑜𝑏𝑠 are the calculated and observed BTs, respectively,

of channel 𝑖. BTD is the BT difference between two IR channels. To be selected as

closest to the observations, a set of BTs within the LUT should have values similar to

the observations for each channel, and differences between the BTs should be

Chapter 5: The Integrated Dust Storm Detection Model

131

sufficiently close to the differences between the observed BTs. Before running the

SBDART model, the input water vapor parameter of MOD07 needed to be

interpolated in order to match the resolution of MTSAT, which is 4 kilometers.

5.3.5 Model-5: HYSPLIT Model

To understand the impacts of dust storms form different source areas on the

China, a 72-hour forward trajectory analysis was performed using the NOAA

HYSPLIT model with inputs from the National Centers for Environmental

Prediction/the National Center for Atmospheric Research (NECP/NCAR) global

reanalysis meteorological data. This public domain model is available at the

NOAA/ARL’s (U.S. National Oceanic and Air Administration/Air Resources

Laboratory) web server (https://ready.arl.noaa.gov/HYSPLIT.php).

5.4 Implementation and Deployment of the IDDM

The previous section described the IDDM for real-time dust storm detection.

This section focuses on an implementation of the IDDM based on the HyperCGSF as

a specific case study.

5.4.1 Setting Up the Model as a Geospatial Processing Service

Every sub-model in the IDDM is implemented in Java programming language

based on GeoSPI and packaged in the form of standard Java Archive (JAR) file.

Then the JAR package was deployed as a GeoSPA processing service by copying the

single JAR package into a folder that has been specified by GeoSPA as the model

deployment folder. Meanwhile, the GeoSPA can automatically parse the JAR file and

conduct two operations. First, the GeoSPA transfers the model metadata to its

knowledge-base in the form of geospatial process objects, and the dependency

solution is generated too. Second, the geospatial process is exposed based on the

OGC WPS standard, which allows model users to retrieve detailed model process

metadata through ‘DescribeProcess’ operation and run a given model by calling the

https://ready.arl.noaa.gov/HYSPLIT.php

Chapter 5: The Integrated Dust Storm Detection Model

132

Execute operation. Once the resources have been developed and deployed on the

GeoSPA, they can be discovered through DGSPA and composed into a plan. Table

5.3 shows the geospatial processes of the IDDM and their input/output parameters.

Table 5.3. The geospatial processes of IDDM and their input/output parameters

Model Geospatial Process

Name

Input parameters Output parameters

Model-1 sds: CombinedRAT MTSAT-2 (IR1, IR2, IR3, IR4,

and VIS)

dust_region

Model-2 sds: IDDI MTSAT-2 (IR1,VIS),

MTSAT-2 IR1 reference image

dust_region

Model-3 sds: LST MTSAT-2 IR1 reference image lst

Model-4 sds: SBDART MTSAT-2 (IR1, IR2),

land_surface_temperature,

MOD07_5

aot_550nm,

reff,

dust_height

Model-5 sds: HYSPLIT dust_region,

dust_height,

hours

forward_trajectory

* The geospatial process name consists of two parts connected by a colon: the left part is the

workspace name and the right part is the actual process name.

Furthermore, several EO datasets must be first collected and uploaded on the

HyperCGSF for model run. First, the MTSAT-2 data was automatically downloaded

from the Hong Kong Observatory per hour and feed into HyperCGSF through the

GeoSPA EO data service. Second, the MOD07 data was downloaded from official

website of MODIS to offer the water vaper data. All of the EO datasets is processed

based on the tile-based storage scheme and can be accessed by users and GeoSPAs

through the OGC WMTS operations.

5.4.2 Running the Model in a Workflow Composition

Once the geospatial data and processing resources has been developed and

Chapter 5: The Integrated Dust Storm Detection Model

133

deployed on HyperCGSF as standard-based geospatial services, all sub models of the

IDDM can be discovered and composed as plan object through DGSPA. By using the

DGSPA, the service consumer needs to specified a service requirement object

denoted as 〈ri, ro〉 , for example where ri = (𝑚𝑡𝑠𝑎𝑡2, 𝑚𝑜𝑑_07_𝑐5) and ro =

(𝑎𝑜𝑡_550𝑛𝑚, 𝑓𝑜𝑟𝑤𝑎𝑟𝑑_trajectory), to a random GeoSPA as the manager agent on

behalf of the service consumer to interact with the HyperCGSF. The manager agent

generates an abstract plan through DGSPA and returns the abstract plan to service

consumer for further operation. If the service consumer agrees the proposed abstract

plan, the plan can be initialized and submitted for execution by specifying all

mandatory input parameters by the service consumer.

To complete the plan initialization, links should be established between sub

models of IDDM to define how data will flow during plan execution. Based on the

workflow of IDDM shown in Figure 5.2, an ‘ras:overlap’ process is linked to

‘sds:CombinedRAT’ and ‘sds:IDDI’ respectively to supply the ‘dust_region’ output

which represent the region of dust storm presence. Similarly, a link is established to

send the output variable ‘lst’, which represents land surface temperature, from the

‘sds:LST’ to the ‘sds:SBDART’ for dust storm physical parameters (AOT at 550nm,

dust layer height, and effective radius) retrieval. Finally, a link is added between the

‘sds:SBDART’ and ‘sds:HYSPLIT’ to supply the forward trajectories of dust particles.

Collectively, these links define how data will flow during IDDM execution.

5.5 Illustration of Final Result

Two dust storms events (i.e., April 27-30, 2009, March 20-22, 2010) were used

as case study to evaluate the performance of the model. Figure 5.5 shows the

IDDM-derived dust storm pixels (column 2) and spatial distribution of dust AOT at

550 nm for the three dust storm cases. The IDDM-derived AOT in Figure 5.5

(column 3) works on the dust pixels and presents promising results when compared

MYD04 products (column 4).

Chapter 5: The Integrated Dust Storm Detection Model

134

MODIS RGB Dust Piexels IDDM-derived AOT MYD04 AOT

Figure 5.5. MODIS RGB color composite image, IDDM-derived dust presence, IDDM-derive AOT at 550nm, and MYD04-based AOT at 550nm

from upper to lower image for (upper) a dust storm case on 24 April 2009 and (lower) a dust storm case in 20 March 2010

134

As shown in Figure 5.5, it can be seen that the IDDM can effectively detect the

dust storm presence based on the EO dataset, and the IDDM-derived AOTs are

statistically comparable to the MODIS AOT products (MYD04). This newly

automated IDDM can be used to give advance near real-time warning of dust storms,

for both environmental authorities and public. It is also benefit from early warning of

adverse air quality conditions, and prediction of low visibility associated with dust

storm events for port and airport authorities.

Figure 5.6 shows the dust storm case initiated over the northwestern China and

Mongolia on April 24, 2009.

(a) (b)

Figure 5.6. Screen capture of displaying the (a) NN-derived dust AOT at 550 nm and (b)

simulated dust storm transportation paths generated by HYSPLIT model, in Google Earth

As shown in Figure 5.6(a), the dust storm travelled from the Inner Mongolia

deserts, over the Loess Plateau and North China Plain, and then entered to the East

China Sea through Shandong, Jiangsu, Zhejiang and Fujian provinces, eventually

reaching Taiwan and Hong Kong. This dust storm thus affected large areas, and high

values of aerosol concentrations were observed in Beijing, Korea, Taiwan and Hong

Kong. The white lines in Figure 5.6(b) indicate the simulated dust storm

transportation paths generated by HYSPLIT model.

Chapter 5: The Integrated Dust Storm Detection Model

136

5.6 Concluding Summary

In this chapter, several widely used dust storm detection as well as aerosol

optical thickness retrieval approaches were reviewed first and the dataset used and

study area in this research were illustrated. Then based on the dust storm detection

approaches, the Integrated Dust storm Detection Model (IDDM) was proposed as the

real-world study case to test the HyperCGSF developed in this research. The IDDM

consists of five models (CombinedRAT, IDDI, LST, SBDART and HYSPLIT) and

one raster-based process (Overlap), which were developed in Java programming

language and deployed onto the GeoSPA as web-based geospatial processing services.

Finally, two dust storm cases were used to evaluate the accuracy of IDDM. In next

chapter, some experiments were conducted and analyzed to evaluate the performance

of the HyperCGSF.

 136

Chapter 6: Evaluation and Discussion

In this Chapter, several experiments were designed and conducted to test the

efficiency of the proposed HyperCGSF and relevant algorithms using the IDDM

introduced in Chapter 5 as the study case. Before discussion about the experiment

result, the experiment environment building on top of the commercial clouding

computing platform was first introduced. Then the GeoSPA service models were

tested and discussed. Finally, a condition of node departure was simulated and tested

to evaluate the stability of the HyperCGSF.

6.1 Experiment Environment

Provided as part of the Google Cloud Platform, the Google Compute Engine

(GCE) is an infrastructure service which is made up of three major components:

virtual machines, persistent disks, and networks. GCE is available at several Google

data centers worldwide and is provided exclusively on an on-demand basis. GCE

provides worldwide Cloud services, such as IaaS, PaaS, and SaaS. Figure 6.1

illustrates the GCE console for managing the computing resources used in this study.

Figure 6.1. Google Compute Engine and VM instances used in this study

Chapter 6: Evaluation and Discussion

138

As shown in Figure 6.1, eight GCE virtual machine (VM) instances (instance-1

to 8) with CentOS 6 operating system were purchased in this research and each VM

has one virtual CPU of 2.50 GHz, with 3.75 GB of RAM, a 50-GB disk, and

bandwidth of 4 Gb/s. Performance tests were conducted to evaluate the potential

computational costs introduced by the HyperCGSF. A prototype system of

HyperCGSF was implemented and deployed onto the GCE platform.

6.2 Prototype System of HyperCGSF

A user-friendly integrated operating environment (IOE) based upon web

technologies was developed to help clients access the services of HyperCGSF. Figure

6.2 shows the layout of the IOE interface, which is composed of three components:

toolbar panel (number 1 in Figure 6.2), layer management panel (number 2 in Figure

6.2), and workspace panel (number 3 in Figure 6.2).

Figure 6.2. Integrated operating environment of HyperCGSF

1

2 3

Chapter 6: Evaluation and Discussion

139

As shown in Figure 6.2, the IOE is composed of three components: toolbar

panel (number 1 in Figure 6.2), layer management panel (number 2 in Figure 6.2),

and workspace panel (number 3 in Figure 6.2). The toolbar panel consists of a set of

buttons which can trigger various functionalities provided by GeoSPA (e.g., loading

and editing EO data, find plan, and checking system information). The layer

management panel locates on the left side, which has a ‘tree’ control for displaying

and managing the EO data layers and the processing result generated by GeoSPA.

The workspace panel has a control called ‘tab’ which contains other three panels: the

‘EO Data Explorer’ panel (Figure 6.3(a)), the ‘Plan Diagram’ panel (Figure 6.3(b)),

and the ‘Work List’ panel (6.3 (c)).

(a)

Chapter 6: Evaluation and Discussion

140

(b)

(c)

Figure 6.3. (a) The EO Data Explorer displaying the MTSAT-2 VIS layer. (b) The Plan Diagram

displaying the DGSPA-derived plan of the IDDM and (c) The Work List panel

Chapter 6: Evaluation and Discussion

141

When platform users load EO data into IOE using the ‘Load Data’ button, the

name of this dataset together with band information are added to the layer tree. Then

the user can select the desired layers and display them in the EO Data Explorer panel

(Figure 6.3 (a)). In addition, when the user submits a service requirement through the

‘Find Plan’ button, the GeoSPA on behalf of the user as the manager node executes

the DGSPA and obtains an abstract plan. The abstract plan will be displayed as a

workflow diagram which is displayed in the Plan Diagram panel. Figure 6.3(b)

illustrates a workflow diagram of the IDDM model. As shown in Figure 6.3(b), the

Plan Diagram panel consists of two sub-panels, a diagram panel on the top and an

information panel on the bottom. Then the service consumer can edit the abstract

plan on the Plan Diagram panel for supplying required data and parameters to enable

the abstract plan executable. Once the plan is submitted for execution, the plan status

will be displayed on the Work List panel (Figure 6.3(c)). If the plan executes

successfully, the final result is added and displayed in the layer management panel

and the EO Data Explorer panel for the user to check. Figure 6.4 illustrates the output

parameters of the IDDM.

Figure 6.4. Displaying output of IDDM on the EO Data Explorer

Chapter 6: Evaluation and Discussion

142

6.3 Evaluation of GeoSPA EO Data Service

To evaluate the efficiency of GeoSPA EO data service, two platforms were built

and tested respectively with a changing request rate. Each platform contains three

GCE VMs. Figure 6.5 illustrates the structure of these two platforms.

(a)

(b)

Figure 6.5. Two platforms for GeoSPA EO data service evaluation: (a)

THREDDS-based GeoSPA EO data service testing environment, and (b) WMTS-based

GeoSPA EO data service testing environment

Chapter 6: Evaluation and Discussion

143

For the first platform in Figure 6.5(a) (hereafter platform-1), three VMs

equipped with TDS were combined as a cluster system for offering a geospatial data

service. The TDS combines THREDDS catalog services with integrated data-serving

capabilities, including OPeNDAP and OGC WCS (Web Coverage Service), and

automatic catalog generation. While for the second platform in Figure 6.5(b)

(hereafter platform-2), three VMs equipped with GeoSPA nodes and HBase were

connected to form a HyperCGSF system. Both of them applied the Nginx as the load

balancing and proxy server for simulating a high concurrency environment on the

cloud.

Figure 6.6 and Figure 6.7 shows the testing results of these two platforms using

different request rates from 30 to 150, over geographical scope 10°×10° and 20°×

20° degree with 4km spatial resolution, respectively.

Figure 6.6: Comparison of response time using different data service (requesting domain

size: 10°×10°)

5

7

9

11

13

15

17

19

30 60 90 120 150

A
ve

ra
ge

 r
es

p
o

n
ge

 t
im

e
(s

)

Request reate (/Min)

THREDDS Data Service GeoSPA EO Data Service

Chapter 6: Evaluation and Discussion

144

Figure 6.7. Comparison of response time using different data service (requesting domain size:

20°×20°)

Several conclusions can be drawn based on Figure 6.6 and Figure 6.7. First, the

response time for both TDS and GeoSPA increase with the number of current

requests. For example, as shown in Figure 6.7, the response time for these two

methods increases from about several seconds to approximately one minute when the

number of requests per minute increases from 30 to 150. This is because the

processing capabilities of both platforms are limited. With the increase of request

numbers, both platforms need to spend more time to generate the required dataset

and send them to the service consumers.

Second, the response time of platform-2 is less than the platform-1 for every

request rate, and the increasing rate of average response time for platform-2 is also

lower than platform-1. This is because upon receipt of the incoming request, the

platform-1 needs to operate on the original NetCDF file to obtain the required dataset.

Loading the complete dataset is time-consuming and unnecessary. On the contrary,

the platform-2 supplies tile-based data service, which only loads the tiles that fulfills

10

20

30

40

50

60

70

30 60 90 120 150

A
ve

ra
ge

 r
es

p
o

n
ge

 t
im

e
(s

)

Request reate (/Min)

THREDDS Data Service GeoSPA EO Data Service

Chapter 6: Evaluation and Discussion

145

the user’s request, and these tiles are stored in the local caching system. If the same

tile is requested, the platform-2 picks it up directly from the caching system and sent

back to the service consumer rather than retrieve it from HBase again via the spatial

query, which dramatically improves the efficiency of the EO data service.

6.4 Evaluation of GeoSPA Processing and Computing Services

In the second part of our experiment, the performance of HyperCGSF was

evaluated by comparing it with the traditional BEPL-based WPS service composition

(BPEL-WPS) (Yu et al., 2012) approach in experimental tests. Figure 6.8 illustrates

the structure of these two systems.

(a)

(b)

Figure 6.8. Structure of (a) centralized BPEL and (b) decentralized HyperCGSF

Chapter 6: Evaluation and Discussion

146

Figure 6.8(a) illustrates the structure of the centralized workflow management

system. In this paradigm, one GCE VM instance is configured as the central

workflow server taking charge as the orchestrator of the overall process, while six

GCE VM instances, equipped with the PyWPS to offer web-based geospatial

processing services based on the OGC WPS specification, were configured as the

service provider. The potential user needs to write a BPEL script describing the

workflow and submit it to the BPEL Engine for execution. Then the BPEL Engine

starts to execute this workflow by calling corresponding services distributed over the

six service providers and coordinate their execution. The workflow engine must

communicate with each service provider, deliver the necessary information and

retrieve the outcome of each task.

Figure 6.8(b) shows the structure of presented HyperCGSF with seven GeoSPA

nodes (one node as geospatial processing service provider and the other six as both

the computing service provider and data service provider) in this study.

Distinguished with Figure 6.8(a), this paradigm supports the execution of the plan in

a decentralized manner, where there is no central orchestrator, and all the nodes can

interact with each other to exchange data directly.

6.4.1 Percentage of Response Time for Single Request Processing

The consumed time at different stages of the life cycle of the HyperCGSF-based

geospatial processing service composition was recorded and analyzed. The response

time of the life cycle for a processing service composition 𝑇 can be described as:

𝑇 = 𝑇𝑝𝑎𝑟𝑠𝑒 + 𝑇𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ

+ ∑(𝑇𝑖𝑛𝑖𝑡𝑖
+ 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑖

)

𝑛

𝑖=1

 (7)

where 𝑇𝑝𝑎𝑟𝑠𝑒 represents time of parsing embedded the XML-encoded WPS

request document, 𝑇𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ represents the time of dynamic task dispatching task,

Chapter 6: Evaluation and Discussion

147

𝑇𝑖𝑛𝑖𝑡 represent the time of initializing geospatial processes, and 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑒 represents

the time of executing the whole workflow. The timing of 𝑇𝑝𝑎𝑟𝑠𝑒 and 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑒 is

relatively stable in that all of the processes were performed on local machines.

However, the times of 𝑇𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ and 𝑇𝑖𝑛𝑖𝑡 are unstable because of the uncontrolled

network conditions, especially the 𝑇𝑖𝑛𝑖𝑡 procedure, which includes the time of

migrating geospatial processes among distributed GeoSPAs and preparing the input

parameters of each process. The results were converted into percentages of the

processing time and shown in Figure 6.9.

Figure 6.9. Percentage of response time in stages of IDDM workflow

As shown in Figure 6.9, for each HyperCGSF-based geospatial processing

service composition lifecycle, the average time of 𝑇𝑝𝑎𝑟𝑠𝑒 is about 4.3s and occupies

about 5% of the time, the average time of 𝑇𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ is about 12.2s occupies about

14.3%, the average time of 𝑇𝑖𝑛𝑖𝑡 is about 14.4s and occupies about 16.9%, and the

average time 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑒 is about 54.2s and occupies about 63.8%. It can be concluded

that the time spent on process execution occupies the largest part of the whole

processing time (about 63.8%). This result is reasonable for that the execution of

each geospatial models and the data interchange are time-consuming and

computing-intensive.

6.4.2 Varying Request Rate and Domain Size

To evaluate the efficiency of the algorithms in the presence of many

Chapter 6: Evaluation and Discussion

148

simultaneous accesses, the average execution time of IDDM workflow was recorded

and compared using both the HyperCGSF and the traditional BEPL-based WPS

service composition (BPEL-WPS) approach (Meng et al., 2009). The objective of

this experiment was to evaluate how the average execution time varies with the

increment of domain size and request rate. The request rate is the number of

incoming service composition requests every minute. Figure 6.10 shows the

experiment results using different request rates from 1 to 60, over geographical scope

of 10°×10° (Figure 6.10(a)), 20°×20° (Figure 6.10(b)), and 30°×30° (Figure

6.10(c)) with 4km spatial resolution.

(a) Domain size: 10°×10°

0

100

200

300

400

500

600

700

800

1 10 20 30 40 50 60

A
vg

. p
ro

ce
ss

 e
xe

cu
ti

o
n

 t
im

e
(s

)

Request rate (/Min)

BPEL

HyperCGSF

Chapter 6: Evaluation and Discussion

149

(b) Domain size: 20°×20°

(c) Domain size: 30°×30°

Figure 6.10. Comparison of average process execution time using different service

composition methods for the IDDM

Several conclusions can be drawn from Figure 6.10. First, the average execution

time of BPEL-WPS and HyperCGSF increases dramatically with the number of

current requests. For example, the response time for these two methods increases

0

100

200

300

400

500

600

700

800

900

1 10 20 30 40 50 60

A
vg

. p
ro

ce
ss

 e
xe

cu
ti

o
n

 t
im

e
(s

)

Request rate (/Min)

BPEL

HyperCGSF

0

100

200

300

400

500

600

700

800

900

1000

1 10 20 30 40 50 60

A
vg

. p
ro

ce
ss

 e
xe

cu
ti

o
n

 t
im

e
(s

)

Request rate (/Min)

BPEL
HyperCGSF

Chapter 6: Evaluation and Discussion

150

from about several minutes to approximately one hour when the number of requests

per minute increases from 1 to 60. That is because before model execution, the

service agent needs to read geospatial data with large volume from remote sites as

the input parameters.

Second, the response time of HyperCGSF is less than the traditional

BPEL-WPS approach for every request number, and the increasing rate of execution

time for HyperCGSF is also lower than BPEL-WPS. The test result is reasonable.

The BPEL-WPS approach applies the centralized manner that the interaction and

data exchange movements are conducted through the orchestrator, or workflow

execution engine. The geospatial processes can generate a lot of data that is irrelevant

to the composite service, yet this data will be transferred to the coordinator node

where it is discarded, thereby putting an unnecessary load on the network. Different

from BPEL-WPS, the HyperCGSF applies the decentralized architecture in the way

the service agents can communicate directly with each other to exchange processing

results on demand.

One of the most advanced features of HyperCGSF is that it supports the

migration of geospatial processes among various GeoSPAs. This feature is extremely

useful for geoscience because the geospatial data is always Big Data and distributed

on remote sites. Considering that the geoscience applications always need to process

large volumes of geospatial data, transferring the geospatial processes rather than the

geospatial data over a cloud computing environment is significant in that it can

dramatically decrease the volume of data transmission and increase the computing

efficiency. Several studies have shown the advantages of applying the migration of

the service agent in geospatial model services (Tan et al., 2015). However, some

security issues must be taken into consideration before migrating a geospatial process

from one GeoSPA node to another.

Chapter 6: Evaluation and Discussion

151

6.4.3 Varying HyperCGSF Nodes Number

In this section, the efficiency of HyperCGSF was further evaluated by analyzing

how the average process time varies with the number of nodes at different request

rates. Four HyperCGSF (N=2, 5, 6, and 8) systems were constructed and evaluated

respectively in this test. Figure 6.11 shows the experiment results using different

request rates of 10 to 100, over geographical scope 10×10, 20×20, and 30×30

degree with 4km spatial resolution.

(a) Domain size: 10°×10°

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90 100

A
vg

. p
ro

ce
ss

 e
xe

cu
ti

o
n

 t
im

e
(s

)

Request rate (/Min)

2 Nodes

4 Nodes

6 Nodes

8 Nodes

Chapter 6: Evaluation and Discussion

152

(b) Domain size: 20°×20°

(c) Domain size: 30°×30°

Figure 6.11. Comparison of average process execution time with the increasing of

HyperCGSF nodes for the IDDM

As the result in Figure 6.11 suggests, all four HyperCGSF nodes exhibited

similar process times for rates up to 20 requests per minute, which is around 150

seconds. However, the performance of HyperCGSF with two nodes only was

seriously degraded for larger request rates, and the processing time reached more

0

100

200

300

400

500

600

700

800

900

10 20 30 40 50 60 70 80 90 100

A
vg

. p
ro

ce
ss

 e
xe

cu
ti

o
n

 t
im

e
(s

)

Request rate (/Min)

2 Nodes

4 Nodes

6 Nodes

8 Nodes

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

10 20 30 40 50 60 70 80 90 100

A
vg

. p
ro

ce
ss

 e
xe

cu
ti

o
n

 t
im

e
(s

)

Request rate (/Min)

2 Nodes

4 Nodes

8 Nodes

8 Nodes

Chapter 6: Evaluation and Discussion

153

than 2000 seconds at the rate of 100 requests per minute, which was about 20 times

longer than that of 10 requests per minute. In the case of 110 requests per minute,

the 2-nodes HyperCGSF broke down. However, with the increment of HyperCGSF

nodes, the performance improved dramatically, and the 8-nodes HyperCGSF

managed a relatively steady average process execution time regardless of the

request rate with a slight increase (29s) on the average process execution times from

10 requests per minutes to 120.

6.4.4 Test of Workload Distribution

The workload distribution was also monitored by counting the total number of

processes that are assigned to each GeoSPA node over time. Figure 6.12 illustrates

the distribution of geospatial processes across the nodes of the three dimensional

HyperCGSF system with eight nodes for a 30-minute round of workflow execution.

The request rate was set at 60/min.

Figure 6.12. Distribution of geospatial processes across the nodes of the three dimensional

HyperCGSF system with 8 nodes for the IDDM (duration=30 min, request rate=60/min)

Chapter 6: Evaluation and Discussion

154

As shown in Figure 6.12, our recruitment algorithm achieved a remarkably even

distribution of the geospatial processes, exploiting all the available GeoSPA nodes

and considering at the same time their frequency of use. Although the measurements

revealed some deviation regarding the process number for each node, such a

circumstance was anticipated because the GeoSPA node was randomly selected as

the manager of the geospatial processes assignment for each request, and the node

number (which is eight) is more than the process number (which is six), so we could

not guarantee all of the nodes were assigned an equal number of processes.

An import advantage of load balance in the HyperCGSF is that the computing

capability of each GeoSPA node can be fully used. The geospatial processes are

heterogeneous because every process requires various computing and storage

resources. In traditional centralized structure, each server is responsible for

processing certain types of geospatial process, which is not reasonable for the

heterogeneity of the requirement of computing resources for each process.

Distinguished by a centralized structure, the worker nodes in HyperCGSF have the

equal role which means that each kind of geospatial process can be deployed on the

GeoSPA node for execution. Through this approach, every GeoSPA can reach the

highest working efficiency.

6.5 Test of Node Departure

Finally, the scalability and stability of HyperCGSF were evaluated by

simulating the departure of the GeoSPA node during the workflow execution. As

introduced in Chapter 1, the web services are distributed across physical and

geospatial boundaries in the cloud computing environment, and constantly removed

and updated due to unpredicted factors such as network connection failure, server

downtime, or hardware maintenance. As geospatial processes begin to rely on

remote resources for their computation, they become more fragile and generating

the desirable result at a given time could not be guaranteed. The objective of this

Chapter 6: Evaluation and Discussion

155

test is to illustrate that our system keeps running smoothly for the presence of node

departure.

In this test, a HyperCGSF with six GeoSPA nodes was constructed for testing.

The node of GCE-5 was simulated to depart after one-minute of running. The blue

dotted line indicates the time of node departure. The temporal variation of workload

at each GCE VM is recorded every 10 seconds, as depicted in Figure 6.13.

(a) Temporal variation of workload at GCE VM-1.

(b) Temporal variation of workload at GCE VM-2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
u

m
b

e
r

o
f

Ta
sk

s
as

si
gn

e
d

e

ve
ry

 t
im

e
 e

p
o

ch

Time epoch (10s)

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
u

m
b

e
r

o
f

Ta
sk

s
as

si
gn

e
d

e

ve
ry

 t
im

e
 e

p
o

ch

Time epoch

Chapter 6: Evaluation and Discussion

156

(c) Temporal variation of workload at GCE VM-3

(d) Temporal variation of workload at GCE VM-4

(e) Temporal variation of workload at GCE VM-5

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
u

m
b

e
r

o
f

Ta
sk

s
as

si
gn

e
d

e

ve
ry

 t
im

e
 e

p
o

ch

Time epoch

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
u

m
b

e
r

o
f

Ta
sk

s
as

si
gn

e
d

e

ve
ry

 t
im

e
 e

p
o

ch

Time epoch

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
u

m
b

e
r

o
f

Ta
sk

s
as

si
gn

e
d

e

ve
ry

 t
im

e
 e

p
o

ch

Time epoch

Chapter 6: Evaluation and Discussion

157

(f) Temporal variation of workload at GCE VM-6

Figure 6.13. Illustration of the workload changing rate at each node for the presence of

node departure

As shown in Figure 6.13, before the GCE-5 departed, the average number of

processing tasks every 10 seconds is about 10, which indicates the processes were

evenly distributed across all of the nodes. When GCE-5 departed, the average

number of designed tasks of each node begins to increase (to about 14), which

indicates the remaining nodes begin to take on more processing tasks due to the

departure of GCE-5. It should be noted that at the time epoch of seven, the average

number of processing tasks shows a relatively low value than at the other time for

all of the five remaining nodes. This is because when the GCE-5 departed, the

HyperCGSF began to reconstruct its topology and every node needs to spend extra

computing resources to update its neighbor set and rebuild relations with them.

Another case is the unexpected node departure. If the HyperCGSF has been

deployed to an open environment with a high churn rate, it is always possible that

nodes go unexpectedly offline, without performing the HyperCGSF leave protocol.

Under this circumstance, the other nodes will take the place of the vacant position

eventually, leading to a stable and consistent topology. However, the

HyperCGSF-specific data of the departed node including the information of

processes deployed on this node will be missed. The only way to preserve the

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
u

m
b

e
r

o
f

Ta
sk

s
as

si
gn

e
d

e

ve
ry

 t
im

e
 e

p
o

ch

Time epoch

Chapter 6: Evaluation and Discussion

158

HyperCGSF-specific data of the departed node is to enable replication. This feature

will be developed in future work, as it comes with the price of increased network

traffic and resources consumption.

158

Chapter 7: Conclusions and Future Work

7.1 Conclusions

Geoscience observations are generating vast amounts of multi-dimensional data.

Effectively analyzing these data is a great challenge for geo-scientists. Cloud

computing provides enabling capabilities for geosciences and Digital Earth in the

twenty-first century. Studies for adopting cloud computing to enable or solve the

geoscience problems and Digital Earth challenges have attracted many computational

and geo-scientists to investigate the readiness of cloud computing. This study

proposed the HyperCGSF, which is a decentralized geospatial processing service

framework based on P2P technologies aims at managing geospatial processing

services and service compositions in the cloud computing environment.

HyperCGSF is composed of GeoSPA, which was designed as a geospatial

services hub through which the geospatial model developer can deploy

standard-based geospatial services onto cloud system. GeoSPA supplies a series of

algorithms for managing and discovering the geospatial services, as well as

orchestrating the service composition execution. Based on P2P technologies and

OGC Web Service specification, the HyperCGSF supports the distributed service

discovery, automatic service composition and decentralized enactment of geospatial

processing executions in the cloud computing environment. The HyperCGSF

particularly focuses on the improvement of the average process execution times in

the presence of multiple, concurrent and long-running process instances.

In order to provide a comprehensive overview of the HyperCGSF, some

challenges of current distributed geospatial service technologies were first introduced

in Chapter 1 and a literature review about cloud computing, EO sensor web, and

cloud-based geospatial processing frameworks were given in Chapter 2. Then the

HyperCGSF was introduced through two chapters. Chapter 3 introduced a

Chapter 7: Conclusions and Future Work

160

multifunctional geospatial server called GeoSPA, which has three service models:

Earth observation (EO) data service model, geospatial processing service model, and

computing service model. These three models make GeoSPA as a one-stop solution

for building SDI in cloud computing environment. Chapter 4 introduced a P2P-based

network topology called hypercube, which is used to organize multiple GeoSPAs into

a decentralized and distributed geospatial data and processing service framework.

Finally, the Integrated Dust Storm Detection Model was introduced in Chapter 5 as a

study case to evaluate the efficiency of HyperCGSF.

HyperCGSF was evaluated through a series of experiments, and compared with

traditional centralized architectures in term of performance in Chapter 6. The

retrieved measurement indicate that our framework is more suitable for the execution

of long-running and data intensive processes, while it is able to accommodate more

concurrent clients than traditional centralized approach. Moreover, thanks to the even

distribution of workload, our approach copes with large data in a more efficient

manner.

To sum up, the major contributions of this thesis are as follows:

a) Based on the challenges and existing approaches in a general-purpose

distributed geospatial service architecture were summarized, we identified

two problems need to be resolved.

b) A multifunctional geospatial server called GeoSPA was developed, which

has three configurable service models: EO data service model, geospatial

processing service model, and computing service model. This structure

makes GeoSPA scalable and easy to be deployed on the cloud computing

environment as SDI service node.

c) The HyperCGSF was designed to organize multiple GeoSPAs aiming at

achieving a more reliable and efficient decentralized geospatial processing

Chapter 7: Conclusions and Future Work

161

service framework. HyperCGSF applies a P2P-based network topology

called hypercube, which possesses many scalability advantages over

existing distributed computing architectures.

d) The presented distributed geospatial service planning algorithm (DGSPA)

supports automatically build a geospatial processing service chain based

on user-defined service requirement and the workflow execution is

performed in a completely decentralized manner without the existence of a

central coordinator.

7.2 Future Work

For future directions, it is believed that each of the identified challenges (in

Chapter 1.2) is an interesting and important research question that is worth further

investigation. In addition, as mentioned in Chapter 6, the quality optimization for

composite Web Service and exception handling mechanism for the decentralized

execution of the composite Web Service has not been sufficient studies. These topics

are very important for that the cloud computing environment is very dynamic

environment where the computational resources keep changing over time and have

lower reliability. Furthermore, a more complex geospatial processing workflow

needs to be designed to evaluate the proposed frameworks. And further research

needs to be conducted to enhance our research to process dynamic partition and QoS

constrained planning approach.

Another research direction is to integrate dynamic streaming data with my

system. Streaming data is an important data source for Earth observation. The OGC

Sensor Web Enablement (SWE) architecture could describe, discover and invoke

services from different kinds of heterogeneous platforms by using SOAP and XML

standards. This architecture has implemented the discovery, access, utilization and

control of sensor resources via the web. So SWE could be an important dataset for

GeoSPA EO data service.

Chapter 7: Conclusions and Future Work

162

In general, despite the fact that there are still many important topics and

directions to be investigated, as one of the first distributed geospatial processing

service frameworks based on hypercube topology, the proposed solutions and

HyperCGSF architecture serve as a promising initiative to address the unique

distributed geospatial processing challenges and consequently allow us to harvest the

full potential of the cloud computing and EO sensor web.

References

163

References

Ackerman, S.A., 1997. Remote sensing aerosols using satellite infrared observations. Journal

of Geophysical Research 102(D14), 17069–17079.

Akbar, M., Aliabadi, S., Patel, R., Marvin, W., 2013. Fully automated and integrated

multi-scale forecasting scheme for emergency preparedness. Environmental Modelling&

Software 39, 24-38.

Alexandrov, A., Ewen, S., Heimel, M., Hueske, F., Kao, O., Markl, V., Nijkamp, E.,

Warneke, D., 2011. MapReduce and PACT-comparing data parallel programming models.

In Proceedings of the Conference Datenbanksysteme in Büro, Technik und Wissenschaft,

BTW, GI, Bonn, Germany, pp. 25–44.

Ames, D.P., Michaelis, C., Anselmo, A., Chen, L., Dunsford, H., 2008. Map Window GIS.

In Shekhar, S., Xiong, H. (Eds.), Encyclopedia of GIS. Springer US, Boston, MA, pp.

633-634.

Anselmi, J., Ardagna, D., and Cremonesi, P., 2007. A QoS-based selection approach of

autonomic grid services. In Proceedings of the 2007 workshop on service-oriented

computing performance. Aspects, issues, and approaches. Monterey, California, USA, pp.

1–8

Argent, R.M., 2005. A case study of environmental modelling and simulation using

transplantable components. Environmental Modelling& Software 20 (12), 1514-1523.

Bao, H. H., and Dou, W. C., 2012. A QoS-aware service selection method for cloud service

composition. In 2012 IEEE 26th international parallel and distributed processing

symposium workshops and PhD Forum. New York: IEEE. pp. 2254–2261.

Barnes, N., 2010. Publish your computer code: it is good enough. Nature, 467, pp.753.

Barzegar, S., Davoudpour, M., Meybodi, M. R., Sadeghian, A., and Tirandazian, M., 2011.

Formalized learning automata with adaptive fuzzy coloured petri net: an application

specific to managing traffic signals. Scientia Iranica 18, 554–565.

Bastin, L., Cornford, D., Jones, R., Heuvelink, G.B.M., Pebesma, E., Stasch, C., Nativi, S.,

Mazzetti, P., Williams, A., 2013. Managing uncertainty in integrated environmental

References

164

modelling: the UncertWeb framework. Environmental Modelling& Software 39, 116–

139.

Berners-Lee, T., Hall, W., Hendler, J., Shadbolt, N., Weitzner, D.J., 2006. Creating a science

of the web. Science 313, 769–771.

Bodk, P., et al., 2010. Characterizing, modeling, and generating workload spikes for stateful

services. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC’10,

6-11 June 2010, UC Berkeley, Berkeley, CA, USA, pp. 241-252.

Botts, M., Robin, A., 2007. Open Geospatial Consortium (OGC) document number:07-000.

Bratman, M. E., 1987. Intentions, Plans, and Practical Reason. Havard University Press,

Cambridge, MA, USA.

Braun P. and Rossak W., 2005, Mobile Agents: Basic Concepts, Mobility Models, and the

Tracy Toolkit, Morgan Kaufmann Publıshers.

Brauner, J., Foerster, T., Schaeffer, B., Baranski, B., 2009. Towards a research agenda for

geoprocessing services. In 12th AGILE International Conference on Geographic

Information Science 2009 Leibniz University, Hannover, Germany, pp. 1-12.

Broring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S.,

Lemmens, R., 2011. New generation sensor web enablement. Sensors 11, 2652-2699.

Bulatewicz, T., Andresen, D., Auvenshine, S., Peterson, J., Steward, D.R., 2013. A

distributed data component for the Open Modeling Interface. Environmental Modelling&

Software 57, 138-151.

Cannata, M., Molinari, M. E., Luan T. X., and Long N. H., 2012. Web processing services

for shallow landslide. International Journal of Geo-informatics, 8 (1), 25–34.

Cao, J. et al., 2005. A multi-agent negotiation based service composition method for

on-demand service. In Proceedings of International Conference of Services Computing

(SCC) 1, 329-332.

Cao, J., Das, S. K., 2012. Mobile agents in networking and distributed computing. Wiley

Series in Agent Technology, John Wiley & Sons, Inc., USA, pp. 134.

Castronova, A. M. and Goodall, J. L., 2010. A generic approach for developing process-level

hydrologic modeling components. Environmental Modelling& Software, 25(7), 819-825.

References

165

Castronova, A.M., Goodall, J.L., 2013. Simulating watersheds using loosely integrated

model components: evaluation of computational scaling using OpenMI. Environmental

Modelling& Software 39, 304-313.

Chan, C. C., Chuang, K.J., Chen, W.J., Lee, C.T. and Peng, C.M., 2007. Increasing

cardiopulmonary emergency visits by long range transported Asian dust storms in Taiwan.

Environmental Research, 106, 393-400.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T.,

Fikes, A., and Gruber, R. E. 2006. Bigtable: A distributed storage system for structured

data. In Proceedings of the 7th Conference on USENIX Symposium on Operating

Systems Design and Implementation - Volume 7 (Seattle, WA, November 06 - 08, 2006).

USENIX Association, Berkeley, CA, pp. 15-15.

Chen, D., et al., 2009. Regional CO pollution and export in China simulated by the

high-resolution nested-grid GEOS-Chem model, Atmospheric Chemistry and Physics 9,

3825–3839.

Chen, F. and Dudhia, J., 2001. Coupling an advanced land surface hydrology model with the

Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity.

Monthly Weather Review 129(4), 569-585.

Chen, N., Di, L., Yu, G., Gong, J., 2010. Geo-processing workflow driven wildfire hot pixel

detection under sensor web environment. Computers & Geosciences 36, 362–372.

Chen, N., X. Chen, K. Wang and X. Niu , 2014. Progress and challenges in the architecture

and service pattern of Earth Observation Sensor Web for Digital Earth. International

Journal of Digital Earth 7(12), 935-951.

Chen, N., Zhen, Z., Di, L., Yu, G., Zhao, P., 2009. Resource oriented architecture for

heterogeneous geo-processing workflow integration. In Proceedings of 17th International

Conference on Geo-informatics. Fairfax, VA. pp. 1-5.

Chen, X. and Yang, C.W., 2014. Introduction to big geospatial data research. Annals of GIS

20(4), 227-232.

Chiapello, I., Prospero, J. M., Herman, J., and Hsu, C., 1999. Detection of mineral dust over

the North Atlantic Ocean and Africa with the Nimbus 7 TOMS, Journal of Geophysical

Research 104, 9277–9291.

References

166

Christian, E. 2005. Planning for the Global Earth Observation System of Systems (GEOSS).

Space Policy 21 (2), 105-109.

Clery, D., Voss, D., 2005. All for one and one for all. Science 308 (5723), 809.

Collins, N., Theurich, G., Deluca, C., Suarez, M., Trayanov, A., Balaji, V., Li, P., Yang,W.,

Hill, C., and Da Silva, A., 2005. Design and implementation of components in the Earth

System Modeling Framework. International Journal of High Performance Computing

Applications 19 (3), 341-350.

Craglia, M., Bie, K. de, Jackson, D., Pesaresi, M., Remetey-Fülöpp, G., Wang, C., Annoni,

A., Bian, L., F. Campbell, M. Ehlers, J. van Genderen, Goodchild, M., Guo, H., Lewis, A.,

Simpson, R., Skidmore, A., and Woodgate, P., 2011. Digital Earth 2020: towards the

vision for the next decade. International Journal of Digital Earth 5(1), 4-21

David, J.M., 2005. Towards a GIS platform for spatial analysis and modeling. In Maguire,

D.J., Batty, M., Goodchild, M.F. (Eds.), GIS, Spatial Analysis, and Modeling. ESRI Press,

Redlands, C.A., U.S., pp. 19-39.

Deelman, E., Gannon, D., Shields , M., Taylor, I., 2010. Workflows and e-science: An

overview of workflow system features and capabilities, Future Generation Computer

Systems 25, 528–540.

Delin, K.A., and Jackson, S.P., 2000. Sensor web for in situ exploration of gaseous bio

signatures. In Proceedings of the 2010 IEEE Aerospace Conference 7, 465-472.

Demir, I., Krajewski, W.F., 2013. Towards an integrated flood information system:

centralized data access, analysis, and visualization. Environmental Modelling & Software

50, 77-84.

De Jesus, J., Walker, P., Grant, M., and Groom, S., 2012. WPS orchestration using the

Taverna workbench: The eScience approach. Computers & Geosciences 47(0), 75-86

Di, L., K. Moe, and Van Zyl, T. L., 2010. Earth Observation Sensor Web: An overview.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3

(4), 415-417.

Dijkstra, J., Timmermans, H.J.P., and Jessurun, A. J., 2001. A multi-agent cellular automata

system for visualizing simulated pedestrian activity. Theory and Practical Issues on

Cellular Automata. Springer London, 29-36.

References

167

Dimiduk, N., Khurana, A., 2013. HBase in Action, O’Reilly Media, Sebastopol, Calif, USA,

pp. 254.

Domenico, B., Caron, J., Davis, E., Kambic, R., and Nativi,S., 2002. Thematic Real-time

Environmental Distributed Data Service (THREDDS): incorporating interactive analysis

tools into NSDL, Journal of Digital Information Management, 2(4), 29.

Donner, R., et al., 2009. Understanding the Earth as a complex system recent advances in

data analysis and modelling in Earth sciences. European Physical Journal Special Topics

174, 19.

Dubois, G., Schulz, M., Skøien, J., Bastin, L., Peedell, S., 2013. eHabitat, a multipurpose

Web Processing Service for ecological modeling. Environmental Modelling & Software

41 (3), 123-133.

Ellrod, G.P., 2001. Loss of the 12 mm “split window” band on GEOS-M: impacts on

volcanic ash detection. Paper Presented at 11th Conference on Satellite Meteorology and

Oceanography. American Meteorological Society, Madison, Wisc., USA, pp. 15-18.

Erl, T., 2005. Service-Oriented Architecture:Concepts, Technology, and Design. The

Prentice Hall Service-Oriented Computing Series from Thomas Erl. Prentice Hall,

pp.205.

Feng, M., Liu, S., Euliss Jr, N. H., Young, C., and Mushet, D. M., 2011. Prototyping an

online wetland ecosystem services model using open model sharing standards.

Environmental Modelling & Software 26(4), 458-468

Fenoy, G., Bozon, N., Raghavan, V., Jan. 2012. ZOO-Project: the open WPS platform.

Applied Geomatics 5 (1), 19-24.

Fielding R.T., 2000. Architectural styles and the design of network-based software

architectures. Ph.D. Thesis, University of California. Irvine, USA.

Finney, K.T., Watts, D., 2011. REST-based semantic feature catalogue services.

International Journal of Geographical Information Science 25 (9), 1507-1524.

Foerster, T., Brühl, A., Schäffer, B., 2011. RESTful web processing Service. In Proceedings

of the AGILE 2011 Conference. Utrecht, The Netherlands, pp. 8.

References

168

Folino, G., Forestiero, A., G. Papuzzo, G. Spezzano, A Grid portal for solving geoscience

problems using distributed knowledge discovery services. Future Generation Computer

Systems 26 (2010), 87–96.

Friis-Christensen, A., Lucchi, R., Lutz, M. and Ostländer, N., 2009. Service chaining

architectures for applications implementing distributed geographic information

processing. International Journal of Geographical Information Science 23(5), 561-580.

Gaber, N., Laniak, G., Linker, L., 2008. Integrated modeling for integrated environmental

decision making. EPA White paper. 100/R, pp. 8-10.

Garrison, V.H., Shinn, E.A., Foreman, W.t., Griffin, D.W., Holmes, C.W., Kellogg, C.A.,

Majewski, M.S., Richardson, L.L., Ritchie, K.B., Smith, G.W., 2003. African and Asian

dust: from desert soil to coral reefs. BioScience 53, 469-480.

Geller, G.N, Turner, W., 2007. The model web: A concept for ecological forecasting,

Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS 2007). IEEE

International, pp. 2469-2472.

Geller, G. N., and Melton, F., 2008. Looking forward: Applying an ecological model web to

assess impacts of climate change. Biodiversity 9(3–4), 79–83.

Gesell, G., 1989. An algorithm for snow and ice detection using AVHRR data: An extension

to the APOLLO software package. International Journal of Remote Sensing 10, 897–905.

Ghemawat, S., Gobioff, H., and Leung, S.-T. 2003. The Google file system. In 19th

Symposium on Operating Systems Principles. Lake George, NY, USA, pp. 29-43.

Goodall, J.L., Robinson, B.F., Shatnawi, F.M., Castronova, A.M., 2008. Linking hydrologic

models and data: The OpenMI approach. American Geophysical Union, San Francisco,

US, pp. 15-19.

Goodall, J.L., Robinson, B.F., Castronova, A.M., 2011. Modeling water resource systems

using a service-oriented computing paradigm. Environmental Modelling& Software 26

(5), 573-582.

Goodchild, M., 2007. Citizens as sensors: the world of volunteered geography. GeoJournal

69(4), 211-221.

Grell, G. A., 1993. Prognostic evaluation of assumptions used by cumulus parameterizations.

Monthly Weather Review 121(3), 764-787.

References

169

Gregersen, J.B., Gijsbers, P.J.A., Westen, S.J.P., 2007. OpenMI: Open Modeling Interface.

Journal of Hydroinformatics 9(3), 175-191.

Granell, C., Diaz, L., Gould, M., 2010. Service-oriented applications for environmental

models: reusable geospatial services. Environmental Modelling & Software 25(2),

182-198.

Group on Earth Observations, 2005. The Global Earth Observation System of Systems

(GEOSS) 10-Year Implementation Plan. http://www.earthobservations.org/documents/

10-Year_Implementation_Plan.pdf

Gu, Y.X., Rose, W.I., Bluth, G.J.S., 2003. Retrieval of mass and sizes of particles in

sandstorms using two MODIS IR bands: A case study of April 7, 2001 sandstorm in

China. Geophysical Research Letters 30, 1805.

Guan, J., Wang, L., Zhou, S., 2004. Enabling GIS services in a P2P environment. In Das, G.,

Gulati, V.P. (eds.) CIT 2004. LNCS, Springer, Heidelberg 3356, 776–781.

Gutierrez-Garcia, J. O., and Sim, K. M., 2010. Agent-based service composition in cloud

computing. In T. H. Kim, S. S. Yau, O. Gervasi, B. H. Kang, A. Stoica, and Slezak, D.

(Eds.). Grid and Distributed Computing, Control and Automation. Berlin:

Springer-Verlag Berlin, pp, 1–10.

Gutierrez-Garcia, J. O., and Sim, K., 2013. Agent-based cloud service composition. Applied

Intelligence 38, 436–464.

Gruber, T.R., 1993. A translation approach to portable ontology specification. Knowledge

Acquisition 5 (2), 199–220.

Han, H.-J., Sohn, B.J., 2013. Retrieving Asian dust AOT and height from hyperspectral

sounder measurements: An artificial neural network approach. Journal of Geophysical

Research: Atmospheres 118, 837–845.

Hamdaqa, M., and Tahvildari, L., 2012. Cloud computing uncovered: a research landscape.

in H. Ali & M. Atif (Eds.), Advances in Computers 86, 41–85.

Hess, M., Koepke, P., and Schult, I., 1998. Optical properties of aerosols and clouds: the

software package OPAC, Bull. American Meteorological Society 79(5), 831–844.

Hill, C., DeLuca, C., Balaji, V., Suarez, M., Da Silva, A., 2004. The architecture of the earth

system modeling framework. Computing in Science and Engineering 6 (1), 18-28.

http://www.earthobservations.org/documents/

References

170

Hill, C., DeLuca, C., Balaji, V., Suarez, M., Da Silva, A., Sawyer, W., Cruz, C., Trayanov,

A., Zaslavsky, L., Hallberg, R., Boville, B.A., Craig, A., Collins, N., Kluzek, E.,

Michalakes, J., Neckels, D., Schwab, E., Smithline, S., Wolfe, J., Iredell, M., Yang, W.,

Jacob, L.R., Larson, J.W., 2006. Implementing applications with the Earth System

Modeling Framework. Lecture Notes in Computer Science 3732, 563-572.

Hofer, B., 2014. Uses of online geoprocessing technology in analyses and case studies: a

systematic analysis of literature. International Journal of Digital Earth 8(11), 901-917.

Hong, S. Y., Noh, Y. and Dudhia, J., 2006. A new vertical diffusion package with an explicit

treatment of entrainment processes. Monthly Weather Review, 134(9), 2318-2341.

Hu, C.L., and Chen, N., 2011. Geospatial sensor web for smart disaster emergency

processing. In Proceedings of the 19th International Conference on Geo-informatics,

Shanghai, China, pp. 1-5.

Hu, X.Q., Lu, N.M., Niu, T., Zhang, P., 2008. Operational retrieval of Asian dust storm from

FY-2C Geostationary Meteorological Satellite and its application to real time forecast in

Asia. Atmospheric Chemistry and Physics 8, 1649-1659.

Huang, Q., Yang, C., Benedict, K., Chen, S., Rezgui, A., Xie, J., 2012. Utilize cloud

computing to support dust storm forecasting. International Journal of Digital Earth 6 (4),

338–355.

Husar, R.B., Tratt, D.M., Schichtel, B.A., Falke, S.R., Li, F., Jaffe, D., Gasso, S., Gill, T.,

Laulainen, N.S., Lu, F., Reheis, M.C., Chun, Y., Westphal, D., Holben, B.N., Gueymard,

C., McKendry, I., Kuring, N., Feldman, G.C., McClain, C., Frouin, R.J., Merrill, J.,

Dubois, D., Vignola, F., Murayama, T., Nickovic, S., Wilson, W.E., Sassen, K.,

Sugimoto, N., Malm, W.C., 2001. Asian dust events of April 1998. Journal of

Geophysical Research 106(D16), 18317–18330.

INSPIRE, 2007. INSPIRE EU Directive, Directive 2007/2/EC of the European Parliament

and of the Council of 14 March 2007 establishing an Infrastructure for Spatial

Information in the European Community (INSPIRE). Official Journal of the European

Union, L 108/1 50.

Jaber, A., Guarnieri, F., and Wybo, J., 2001. Intelligent software agents for forest fire

prevention and fighting. Safety Science 39(1), 3–17.

References

171

Janowicz, K., Broering, A., Stasch, C., Schade, S., Everding, T., Llaves, A., 2012. A

RESTful proxy and data model for linked sensor data. International Journal of Digital

Earth 6(3), 233-254.

Jiang, J.R., 2011. Nondominated local coteries for resource allocation in grids and clouds.

Information Processing Letters 111, 379-384.

Jiang, H., Kwong, C. K., Chen, Z., and Ysim, Y. C., 2012. Chaos particle swarm

optimization and T-S fuzzy modeling approaches to constrained predictive control.

Expert Systems with Applications 39, 194–201.

John C. Schaake, Thomas M. Hamill, Roberto Buizza, and Martyn Clark, 2007: HEPEX:

The Hydrological Ensemble Prediction Experiment. Bulletin of the American

Meteorological Society 88,1541–1547.

Jula, A., Sundararajan, E. and Othman, Z., 2014. Cloud computing service composition: A

systematic literature review. Expert Systems with Applications, 41(8), 3809-3824.

Keating, T., 2009. Cyberinfrastructure for air quality management, EPA internal document,

pp. 10.

Kido, M. H., Mundt, C. W., Montgomery, K. N., Asquith, A., Goodale, D. W., Kaneshiro, K.

Y., 2008. Integration of wireless sensor networks into cyberinfrastructure for monitoring

Hawaiian "mountain-to-sea" environments. Environmental Management 42(4), 658–666.

Kiehle, C., Greve, K., Heier, C., 2007. Requirements for next generation spatial Data

Infrastructures - standardized Web based geoprocessing and Web Service orchestration.

Transactions in GIS 11(6), 819–834.

Kofler, K., ul Haq, I., and Schikuta, E., 2009. A parallel branch and bound algorithm for

workflow QoS optimization. In Parallel Processing 2009, ICPP International Conference,

478–485.

Kofler, K., Haq, I. U., and Schikuta, E., 2010. User-centric, heuristic optimization of service

composition in clouds. LNCS 6271, 405–417.

Korte, B., and Vygen, J., 2012. Linear Programming (21). Berlin Heidelberg: Combinatorial

Optimization Springer, pp. 51-71.

Koshy, T., 2004. Chapter 11 – formal languages and finite-state machines. In Discrete

Mathematics With Applications. Burlington: Academic Press, pp. 733–802.

References

172

Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G., G. Geller,

Quinn, N., M. Blind, Peckham, S., Reaney, S., Gaber, N., Kennedy, R. and Hughes, A.,

2013. Integrated environmental modeling: A vision and roadmap for the future.

Environmental Modelling & Software 39(0), 3-23.

Lee, C., Percivall, G., 2008. Standards-based computing capabilities for distributed

geospatial applications. Computer 41 (11), 50-57.

Lee, S.-S., and B. J. Sohn, 2012. Nighttime AOT retrieval for Asian dusts from MODIS IR

measurements: An artificial neural network approach. Journal of the Meteorological

Society of Japan 90, 163–177.

Lee, Y-W., Park, H.-H., Shibasaki, R., 2006. Collaborative GIS environment for exploratory

spatial data analysis based on hybrid P2P network. Z. Pan et al. (Eds.) Edutainment 2006,

LNCS 3942, 330-333.

Legrand, M., Plana-Fattori, A., and N'doumé, C., 2001. Satellite detection of dust using the

IR imagery of Meteosat: 1. Infrared difference dust index. Journal of Geophysical

Research 106(D16), 18251–18274.

Li, J., Zhang, P., Schmit, T. J., Schmetz, J., and Menzel, W. P., 2007. Technical note:

Quantitative monitoring of a Saharan dust event with SEVIRI on Meteosat-8,

International Journal of Remote Sensing 28(10), 2181–2186.

Li, Z., Yang, C., Huang, Q., Liu, K., Sun, M. and Xia, J., 2014. Building model as a service

to support geosciences. Computers, Environment and Urban Systems (In press)

Li Z, Yang C, Jin B, Yu M, Liu K, Sun M, 2015. Enabling big geoscience data analytics with

a cloud-based, MapReduce-enabled and service-oriented workflow framework. PLoS

ONE 10(3), e0116781.

Liu, M., Wang, M. R., Shen, W. M., Luo, N., and Yan, J. W., 2012. A quality of service

(QoS)-aware execution plan selection approach for a service composition process. Future

Generation Computer Systems-the International Journal of Grid Computing and

E-Science 28, 1080–1089.

Maamar Z, Moste f́aoui SK, Yahyaoui H., 2005. Toward an agent-based and

context-oriented approach for Web Services composition. IEEE Transactions on

Knowledge & Data Engineering 17(5), 686–97.

References

173

Mahinthakumar, K., von Laszewski, G., Ranjithan, R., Brill, D., Uber, J., Harrison, K.,

Sreepathi, S., Zechman, E., 2006. An adaptive cyberinfrastructure for threat management

in urban water distribution systems. In Proceedings of computational science-ICCS 2006.

Part III (lecture notes in computer science, vol. 3993), May 2006, Reading, pp. 401–408.

Makropoulos, C., Safiolea, E., Efstratiades, A., Oikonomidou, E., Kaffes, V., Papathanasiou,

C., Mimikou, M., 2009. Multi-Reservoir management with OpenMI, 11th International

Conference on Environmental Science and Technology, Chania, Crete, pp. 788-795.

Malik, A. and Lakshman, P., 2010. Cassandra: a decentralized structured storage system.

SIGOPS Operating System Review 44(2), 35-40.

Malucelli, A., Palzer, D., and Oliveira, E., 2006. Ontology-based services to help solving the

heterogeneity problem in e-commerce negotiations. Electronic Commerce Research and

Applications 5(1), 29–43.

Mandl, D., Sohlberg, R., Justice, C., Ungar, S., Ames, T., Frye, S., Chien, S., Tran, D.,

Cappelaere, P., Sullivan, D., and Ambrosia, V., 2008. A space-based sensor web for

disaster management. In Geoscience and Remote Sensing Symposium. IGARSS 2008.

IEEE International.

Matott, L.S., Babendreier, J.E., Purucker, S.T., 2009. Evaluating uncertainty in integrated

environmental models: a review of concepts and tools. Water Resources Research 45,

1-14.

Mazzetti, P., Nativi, S., Caron, J., 2009. RESTful implementation of geospatial services for

Earth and Space Science applications. International Journal of Digital Earth 2(1), 40-61.

McKendry, I.G., Hacker, J.P., Stull, R., 2001. Long-range transport of Asian dust to the

Lower Fraser Valley, British Columbia, Canada. Journal of Geophysical Research

106(D16), 18361–18370.

Mell P, Grance T, 2011. The NIST definition of cloud computing (draft), NIST, http://

csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf.

McIlraith, S., and Son, T.C., 2002. Adapting Golog for composition of semantic Web

Services. Proc 8th International Conference on Principles of Knowledge Representation

and Reasoning, pp. 482–493.

References

174

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A., 1997.

Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k

model for the longwave. Journal of Geophysical Research 102(D14), 16663-16682.

Moore, R.V., 2001. Description of work for the HarmonIT PROJECT agreed during contract

negotiation, IT Frameworks (HarmonIT), Proposal Number: EVK1 2001-00037.

www.HarmonIT.com.

Moore, R.V., Tindall, C.I., 2005. An overview of the open modelling interface and

environment (the OpenMI). Environmental Science and Policy 8 (3), 279-286.

Muller, I., Kowalczyk, R., and Braun, P., 2006. Towards agent-based coalition formation for

service composition. In Proceedings of of IEEE/WIC/ACM international conference on

intelligent agent technology, Omaha, USA, pp. 73–80.

Muracevic, D., Kurtagic, H., 2009. Geospatial SOA using RESTful web services. In

Proceedings of the 31st International Conference on Information Technology Interfaces,

IEEE Piscataway, Dubrovnik, pp. 199–204.

Nanda, M.G., Chandra, S., Sarkar, V., 2004. Decentralizing execution of composite Web

Services. In Proceedings of Conference on Object Oriented Programming Systems,

Languages, and Applications, New York, USA, pp. 170-187.

Nativi, S., Caron, J., Davis, E., Domenico, B., 2005. Design and implementation of netCDF

markup language (NcML) and its GML-based extension (NcML-G(ML)). Computers &

Geosciences 31, 1104–1118.

Natsagdorj, L., Jugder, D., Chung, Y.S., 2003. Analysis of dust storms observed in Mongolia

during 1937-1999. Atmospheric Environment 37, 1401-1411.

NASA/ESTO. 2008. Report from the Earth Science Technology Office (ESTO) Advanced

Information System Technology (AIST) Sensor Web technology meeting. Orlando, FL:

NASA Earth Science Technology office.

Nativi, S., Caron, J., Davis, E. and Domenico, B., 2005. Design and implementation of

netCDF markup language (NcML) and its GML-based extension (NcML-GML).

Computers & Geosciences 31(9), 1104-1118

Nativi, S., Mazzetti, P., Geller, G.N., 2013. Environmental model access and interoperability:

the GEO model web initiative. Environmental modelling & Software 39, 214-228.

References

175

Obukhov, A.M., 1971. Turbulence in an atmosphere with a non-uniform temperature.

Boundary-Layer Meteorology 2, 7-29.

Olson, A.J., 2010. Data as a service: Are we in the clouds? Journal of Map & Geography

Libraries 6 (1), 76-78.

Pantazoglou, M., Pogkas, I. and Tsalgatidou, A., 2014. Decentralized enactment of BPEL

processes. IEEE Transactions on Services Computing 7(2), 184-197.

Parkera, D.C., S. M. Mansonb, M. A. Janssenc, M. J. Hoffmannd, and P. Deadmane, 2003.

Multi-agent systems for the simulation of land-use and land-cover change: A review.

Annals of the Association of American Geographers 93(2), 314–337.

Pavolonis, M.J., Feltz, W.F., Heidinger, A.K., Gallina, G.M., 2006. A daytime complement

to the reverse absorption technique for improved automated detection of volcanic ash.

Journal of Atmospheric and Oceanic Technology 23, 1422–1444.

Percivall, G. (Ed.), 2002. The OpenGIS abstract specification, topic 12: OpenGIS service

architecture. Version 4.3. OGC 02-112. Open Geospatial Consortium, Inc., pp. 78.

Pezzoli, K., Marciano, R., Robertus, J., 2006. Regionalizing integrated watershed

management: A strategic vision. In ACM international conference proceeding series –

proceedings of the 7th annual international conference on digital government research,

May 21–24, 2006, San Diego, CA, pp. 444–445.

Pham, T. V., Jamjoom, H., Jordan, K., and Shae, Z.-Y., 2010. A service composition

framework for market-oriented high performance computing cloud. In Proceedings of the

19th ACM International Symposium on High Performance Distributed Computing,

Chicago, Illinois: ACM. pp. 284–287.

Prata, A.J., 1989. Infrared radiative transfer calculations for volcanic ash clouds.

Geophysical Research Letters 16, 1293–1296.

Puppin, D., Moncelli, S., R. Baraglia, N. Tonelotto, Silvestri, F., 2005. A Grid information

service based on Peer-to-Peer. In Proceedings of 11th Euro-Par Conference, Euro-Par

2005, In LNCS, vol. 3648, Springer, 454–464.

Qu, J. J., Hao, X. J., Kafatos, M., and Wang, L. L., 2006. Asian dust storm monitoring

combining Terra and Aqua MODIS SRB measurements, IEEE Geosci. Remote Sensing

Letters 3(4), 484-486.

References

176

Rao, A. S. and Georgeff, M. P., 1991. Modeling rational agents within a BDI architecture. In

Allen, J., Fikes, R., and Sandewall, E., editors, Proceedings of the 2nd International

Conference on Principles of Knowledge Representation and Reasoning, Morgan

Kaufmann. pp. 473-484.

Rich, P. M., Weintraub, L. H. Z., Ewers, M. E., Riggs, T. L., Wilson, C. J., 2005. Decision

support for water planning: The ZeroNet water-energy initiative. In Proceedings of the

2005 World Water and Environmental Resources Congress, Anchorage, AK, pp. 468.

Rizvandi, N. B., Zomaya, A. Y., A. J. Boloori, and J. Taheri, 2011. On modeling dependency

between MapReduce configuration parameters and total execution time, CoRR.

Roman, D., Schade, S., Berre, A. J., Bodsberg, N. R., and Langlois, J., 2009. Model as a

service (MaaS). In AGILE workshop: Grid technologies for geospatial applications,

Hannover, Germany,

Safi Esfahani, F., Azmi Murad, M. A.,Sulaiman, M. N. B. and Udzir, N. I., 2011. Adaptable

decentralized service oriented architecture. Journal of Systems and Software 84(10),

1591-1617.

Sample J, Ioup E., 2010, Logical tile schemes. In Tile-based geospatial information systems.

US: Springer. ISBN 978-1-4419-7630-7; 2010. pp. 5–15.

Schaeffer, B., 2008. Towards a transactional web processing service. In Proceedings of the

Sixth Geographic Information Days, Münster.

Schlosser, M., Sintek, M., Decker, S., Nejdl, W., 2002. A scalable and ontology-based p2p

infrastructure for semantic Web Services, in Proceedings of the Second International

Conference on Peer-to-Peer Computing (P2P’02), Linkoping, Sweden, pp. 104–111.

Schut, P., 2007. OpenGIS Web Processing Service. Open Geospatial Consortium, pp. 1-87.

Searle, J., 1970. Speech Acts: An Essay in the Philosophy of language. Cambridge Univ.

Press, pp. 142.

Sim K.M., 2009. Agent-based cloud commerce. In Proc IEEE international conference on

industrial engineering and engineering management, Hong Kong, pp. 717–721

Sim K.M., 2011. Agent-based cloud computing. IEEE Transactions on Services Computing

5(4), 564 – 577.

References

177

Sim K.M., 2012. Complex and concurrent negotiations for multiple interrelated e-markets.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 43(1),

230-245.

Shao Y. and Dong C. H., 2006. A review on East Asian dust storm climate, modelling and

monitoring. Global and Planetary Change 52, 1–22.

Sheth, A.P., 1999. Changing focus on interoperability in information systems: from system,

syntax, structure to semantics. In Goodchild, M., Egenhofer, M., Fegeas, R., Kottman, C.

(Eds.), Interoperating Geographic Information Systems. Kluwer Publisher, Norwell, pp.

5–30.

Shen, W., et al., 2007. An agent-based service-oriented integration architecture for

collaborative intelligent manufacturing. Robotics and Computer Integrated

Manufacturing 23, 315–325.

Shneiderman, B., 2007. Web science: a provocative invitation to computer science.

Communication of ACM 50 (6), 25–27.

Sinnema, M., and Deelstra, S., 2007. Classifying variability modeling techniques.

Information and Software Technology 49, 717–739.

Smith, R. G., 1981. Correction to the contract net protocol: high-level communication and

control in a distributed problem solver. IEEE Transactions on Computers, 30, pp. 372.

Stonebraker, M., 2010. SQL databases vs NoSQL databases, Communications of the ACM

53 (4), 10–11.

Su, H., Houser, P.R., Tian, Y., Geiger, J.V., Kumar, S.V., Belvedere, D.R., 2008. A Land

Information Sensor Web (LISW) study in support of land surface studies. International

Geoscience & Remote Sensing Symposium (IGARSS), Boston, MA.

Sucaet, Y., Van Hemert, J., Tucker, B., and Bartholomay, L., 2008. A web-based relational

database for monitoring and analyzing mosquito population dynamics. Journal of Medical

Entomology 45(4), 775–784.

Sun, J., Zhang, M., and Liu, T., 2001. Spatial and temporal characteristics of dust storms in

China and its surrounding regions, 1960 – 1999: Relations to sources area and climate.

Journal of Geophysical Research 106(10), 325 – 10,333.

References

178

Tang, W., Wang, S., Bennett, D.A., and Liu, Y., 2011. Agent-based modeling within a

cyberinfrastructure environment: A service-oriented computing approach. International

Journal of Geographical Information Science 25(9), 1323–1346.

Talia D., 2011. Cloud computing and software agents: towards cloud intelligent services, in

WOA, ser. CEUR Workshop Proceedings, G. Fortino, A. Garro, L. Palopoli, W. Russo,

and G. Spezzano, Eds., vol. 741. CEUR-WS.org 2011, pp. 2–6.

Tan, S.C., Shi, G.Y., Wang, H., 2012. Long-range transport of spring dust storms in inner

Mongolia and impact on the China seas. Atmospheric Environment 46, 299-308.

Tan, X.C., et al., 2015. Cloud- and agent-based geospatial service chain: A case study of

submerged crops analysis during flooding of the Yangtze River basin. IEEE Journal on

Selected Topics of Applied Remote Sensing 8(3), 1359-1370.

Thiebes, B., R. B. Bell, T. Glade, S. Jäger, M. D. Anderson, and L. Holcombe. 2013. A

WebGIS decision-support system for slope stability based on limit-equilibrium modelling.

Engineering Geology 158, 109–118.

Tong, H., et al., 2009. A distributed agent coalition algorithm for Web Service composition,

in Proceedings of 2015 IEEE 10th World Congress on Services, pp. 62–69.

Tong, H., Cao, J., Zhang, S., Li, M., 2011. A distributed algorithm for Web Service

composition based on service agent model. IEEE Transactions on Parallel and Distributed

Systems 22(12), 2008–2021.

Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., R. Braak, Bhartia, P. K., Veefkind, P.,

and Levelt, P., 2007. Aerosols and surface UV products from Ozone Monitoring

Instrument observations: An overview. Journal of Geophysical Research 112, 24-47.

Tsai, F., G. T.-J. Chen, T.-H. Liu, W.-D. Lin, and Tu J.-Y., 2008. Characterizing the

transport pathways of Asian dust. Journal of Geophysical Research 113, D17311

Turuncoglu, U. U., Dalfes, N., Murphy, S. and DeLuca, C., 2013. Toward self-describing

and workflow integrated Earth system models: a coupled atmosphere-ocean modeling

system application. Environmental Modelling & Software 39, 247-262

Vaccari, L., Shvaiko, P., and Marchese M., 2009. A geo-service semantic integration in

Spatial Data Infrastructures. International Journal of Spatial Data Infrastructures Research

4, 24–51.

References

179

Wald, A. E., Kaufman, Y. J., Tanré, D., and Gao, B. C., 1998. Daytime and nighttime

detection of mineral dust over desert using infrared spectral contrast, Journal of

Geophysical Research 103(D24), 32307–32313.

Wang, J.-Z., Wang, J.-J., Zhang, Z.-G., and Guo, S.-P., 2011. Forecasting stock indices with

back propagation neural network. Expert Systems with Applications, 38,14346–14355.

Wang, Q. and Wang J., 2009. Intelligent web map service aggregation. In Proceedings of

International Conference of Computing, Intell. Nat. Comput 2, 229–231.

Wang, S.Y., Shen, W.M., and Hao, Q., 2006. An agent-based Web Service workflow model

for inter-enterprise collaboration. Expert Systems with Applications 31 (4), 787–799.

Wang, S., Anselin, L., Bhaduri, B., Crosby, C., Goodchild, M. F., Liu, Y., et al., 2013.

CyberGIS software: A synthetic review and integration roadmap. International Journal of

Geographical Information Science 27, 2122–2145.

Weiss G., 2013. Multiagent systems: a modern approach to distributed artificial intelligence,

2nd edition. MIT Press, Cambridge, pp. 197.

Wischik, D., Handley, M., and Braun, M. B., 2008. The resource pooling principle.

SIGCOMM Computer Communication Review 38, 47–52.

Wittern, E., Kuhlenkamp, J., and Menzel, M., 2012. Cloud service selection based on

variability modeling. LNCS 7636, 127–141.

Worm, D. et al., 2012. Revenue maximization with quality assurance for composite Web

Services. In Service-oriented Computing and Applications (SOCA), 2012 5th IEEE

International Conference. pp. 1–9.

Wooldridge, M., Jennings, N. R., and Kinny, D., 2000. The Gaia Methodology for

Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3),

285-312.

Wu, Q., Zhang, M., Zheng, R., Lou, Y., and Wei, W., 2013. A QoS-satisfied prediction

model for cloud-service composition based on a hidden Markov model. Mathematical

Problems in Engineering, pp. 7.

Xie, J., et al., 2010. High performance computing for the simulation of dust storms.

Computers, Environment, and Urban Systems 34 (4), 278-290.

References

180

Yakimenko, O. A., Slegers, N. J., Bourakov, E. A., Hewgley, C. W., Bordetsky, A. B.,

Jensen, R. P., Robinson, A. B., Malone, J. R., and Heidt, P. E., 2009. Mobile system for

precise aero delivery with global reach network capability. In Control and Automation,

2009. ICCA 2009, IEEE International Conference, pp. 1394–1398.

Yang, C., Li, W., Xie, J., and Zhou, B., 2008. Distributed geospatial information processing:

Sharing earth science information to support Digital Earth. International Journal of

Digital Earth 1(3), 259–278.

Yang, C., and Raskin, R., 2009. Introduction to distributed geographic information

processing research. International Journal of Geographic Information Science 23(5), 553–

560.

Yang, C., Raskin, R., Goodchild, M., and Gahegan, M., 2010. Geospatial

Cyberinfrastructure: Past, present and future. Computers, Environment and Urban

Systems 34(4), 264-277.

Yang, C., M. Goodchild, Q. Huang, D. Nebert, R. Raskin, Y. Xu, M. Bambacus and D. Fay,

2011a. Spatial cloud computing: how can the geospatial sciences use and help shape

cloud computing?, International Journal of Digital Earth 4(4), 305-329.

Yang C., et al., 2011b. Using spatial principles to optimize distributed computing for

enabling physical science discoveries. Proceedings of National Academy of Sciences 106

(14), 5498-5503.

Yang C., Chen, N.C., and Di, L.P., 2012b. Restful based heterogeneous geoprocessing

workflow interoperation for sensor Web Service. Computers & Geosciences 47, 102-110.

Yang, C., Xu, Y., and Nebert, D., 2013. Redefining the possibility of digital earth and

geosciences with spatial cloud computing. International Journal of Digital Earth 6(4),

297-312.

Yao, Z., Li, J., Han, H.-J., Huang, A., Sohn, B. J., and Zhang, P., 2012. Asian dust height

and infrared optical depth retrievals over land from hyperspectral longwave infrared

radiances, Journal of Geophysical Research 117, D19202

Yu, G., Zhao, P., Di, L., Chen, A., Deng, M., Bai, Y., 2012. BPELPower – a BPEL

execution engine for geospatial web services. Computer & Geosciences 47 (10), 87–101.

References

181

Yue, P., Gong, J., and Di, L., 2010. Augmenting geospatial data provenance through

metadata tracking in geospatial service chaining. Computers & Geosciences 36(3), 270–

281.

Zeng, C., Guo, X. A., Ou, W. J., and Han, D., 2009. Cloud computing service composition

and search based on semantic. In M. G. Jaatun, G. Zhao, & C. Rong (Eds.). Cloud

Computing, Proceedings. Berlin: Springer-Verlag Berlin, pp. 290–300.

Zhang, X.Y., Arimoto, R., An, Z.S., 1997. Dust emission from Chinese desert sources linked

to variations in atmospheric circulation. Journal of Geophysical Research 102, 28041–

28047.

Zhang, P., Lu, N.M., Hu, X.Q., Dong, C.H., 2006. Identification and physical retrieval of

dust storm using three MODIS thermal IR channel. Global Planet. Change 52, 197–206.

Zhang, Q., Cheng, L., Boutaba, R., 2010. Cloud computing: state-of-the-art and research

challenges, Journal of Internet Services and Applications 1(1), 7–18.

Zhang B., Di L.P., Yu G.N., Han W.G., Wang H.L., 2012 Towards data and sensor planning

service for coupling earth science models and earth observations. IEEE Journal of

selected topics in applied Earth Observations and Remote Sensing 5(6), 1939-1404,

Zhang, M., Ranjan, R., Nepal, S., Menzel, M., and Haller, A., 2012. A declarative

recommender system for cloud infrastructure services selection. In Proceedings of the 9th

International Conference on Economics of Grids, Clouds, Systems, and Services, Berlin,

Germany: Springer-Verlag. pp. 102–113.

Zhang, X. M., Song, W., Liu, L. M., 2014. An implementation approach to store GIS spatial

data on NoSQL database. In Geoinformatics, 22nd International Conference, pp. 25-27.

Zhao, T. L., Gong, S. L., Zhang, X. Y., Blanchet, J-P., McKendry, I. G., and Zhou, Z. J.,

2006. A simulated climatology of Asian dust aerosol and its trans-pacific transport. Part I:

Mean Climate and Validation. Journal of Climate 19, 88–103.

Zhao, T.L., Gong, S.L., Zhang, X.Y., Jaffe, D.A., 2008. Asian dust storm influence on North

American ambient PM levels: observational evidence and controlling factors.

Atmospheric Chemistry and Physics 8, 2717-2728.

Zhao, P., Foerster, T. and Yue, P., 2012a. The geoprocessing web. Computers &

Geosciences 47, 3-12.

References

182

Zhao, P., Di, L. and Yu, G., 2012b. Building asynchronous geospatial processing workflows

with Web Services. Computers & Geosciences 39(0), 34-41.

Zhao, X., Wen, Z., and Li, X., 2013. QoS-aware Web Service selection with negative

selection algorithm. Knowledge and Information Systems, pp. 1–25.

Zhou, S., Balaji, V., Cruz, C., da Silva, A., Hill, C., Kluzek, E., Smithline, S., Trayanov, A.,

and Yang, W., 2007. Cross-organization interoperability experiments of weather and

climate models with the Earth System Modeling Framework: Research Articles.

Concurrency and Computation: Practice and Experience 19(5), 583-592.

Zhou, X., and Mao, F., 2012. A semantics web service composition approach based on cloud

computing. In Computational and Information Sciences (ICCIS), 2012 Fourth

International Conference, pp. 807–810.

Zhou, Z.J., Zhang, G.C., 2003. Typical severe dust storms in northern China during

1954-2002. Chinese Science Bulletin 48 (21), 2366-2370.

Zhu, Y., Li, W., Luo, J., & Zheng, X. (2012). A novel two-phase approach for QoS-aware

service composition based on history records. In 5th IEEE International Conference on

Service-Oriented Computing and Applications (SOCA), pp. 1–8.

