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ABSTRACT
of the thesis entitled
“Color Image Quantization & Halftoning Based on Human Visual Perception”
submitted by Yu Mei Ping
for the degree of Master of Philosophy

at The Hong Kong Polytechnic University in December 2002

In this dissertation, we propose two algorithms that address two important issues in
color quantization. The first one being the incorporation of spatial or contextual
information of an input image to the process of color quantization, thus allowing
quantization to give priorities to different regions of the image and focus on the

regions of the image having important color information.

In considering the way the human visual system deals with color difference, the
second algorithm is concermned with color space. The algorithm is a simple but
effective color quantization technique, which performs 3D frequency diffusion in
RGB color space. By manipulating a diffusion filter, a cross-space operation is
achieved, obtaining quantization effect in a color space without transforming the

image to that space.



For most color displays, processing of colors is performed on the R, G and B
components. The requirement for human vision system, however, would favour a
different scheme because the Euclidean distance in the RGB color space is not
consistent with the way the human visual system deals with color difference.
Theoretically, a luminance—chrominance color space that correlates with human
color perception is more suitable to be adopted than the RGB for many applications.
The transformation processes between color spaces is, however, bound up with
computational errors. As a result, the overall performance of any color quantization
scheme that involves conversion between color spaces may not be better than a

quantization completely in RGB.

This dissertation begins with a brief history of color quantization and halftone
development as well as descriptions of major techniques. Followed by that, the
essential color knowledge encountered in the context of color image quantization, as
well as the fundamental concepts, models, metrics and their formulation for
evaluating the quality of quantization outputs is examined. Experimental results
show that our algorithms perform better in some .aspects than two popularly used
algorithms for color quantization. Finally, description of the algorithms representing
the core of the research along with in depth discussions of each algorithm wili be

given.
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STATEMENTS OF ORIGINALITY

We summarize below the major contribution of this thesis.

This dissertation proposed two novel algorithms, the Contextual algorithm and
the 3D FD algorithm, that address two different problems that commonly

encountered in performing color quantization.

The contextual algorithm is a color quantization algorithm based on the
contextual information of the input image. In this algorithm, a method for

evaluating the contextual information of the input image is provided.

Experimental results indicate a good performance of the Contextual algorithm
with the capability to focus on the regions of an image having important color

information.

The 3D FD algorithm treats color quantization as a problem of vector error
diffusion. The process requires only simple arithmetical calculations. The

algorithm works well in all color space.



The dissertation demonstrates that the proposed 3F FD algorithm is able to
perform a cross-space operation without transforming the image between color

spaces by manipulating the geometric shape and coefficients of the 3D diffusion.

1t is found that the 3D FD algorithm, while operating in the RGB color space, is
capable of producing similar effect as it does under the YUV color space with no

transformation of the image required.
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Chépter 1

INTRODUCTION

Full color displays typically use 24 bits to represent the color of each pixel on the
screen. With 8 bits for each of the primary component, Red, Green and Blue,
approximately 16.7 million possible colors can be generated in a 24 bit full RGB
color image. In many imaging applications, it is often desirable to represent images
with as few colors as possible whille at the same time retain the optimal perceived
quality of the images. This is generally achieved by color quantization, in which the
number of colors in an image is reduced to a maximum of 256 simultaneously
displayable colors and followed by subsequent halftoning to create the illusion of a
continuous tone image. Although 24-bits/pixel full color displays have already
become affordable for most users, color quantization retains its practical value in
many graphic functions such as animation and transparency. In addition, the reduced
image file size resulting from color quantization will facilitate storage and

transmission efficiencies, particularly via the Internet.

Color quantization basically involves algorithms for performing two tasks. The first
task is called colormap design, which is to select the best possible set of

representative colors for an image. These colors will comprise the image colormap.



The second task is color mapping that is tb locate the closest representative for each
original color and replace the original color by its best representative from the
colormap. While this mapping of color to its nearest neighbor is optimal from a
minimum-average-error standpoint, it often produces objectionable contours in
smooth image regions. To solve this problem, digital halftoning is often carried out
as a subsequent proéessing step to create an illusion of continuous tone image by

exploiting the properties of the human visual system (HVS).

In the remainder of this chapter, we present a brief history of color quantization and
halftone development as well as descriptions of major techniques. The attempt 1s to
classify these techniques from a technological as well as a historical viewpoint. In
addition, the objective of this research and an overview of the dissertation will be

given at the end of this chapter.
1.1 Color Quantization

Over the past years, extensive research works have been conducted in the area of
color quantization and the algorithms proposed can be image dependent or
independent. It is, however, confirmed that the use of a fixed image independent

colormap, though is easier to implement and less computational intensive, usually



produces unacceptable results when comparing with the use of an adaptive image

dependent color palette.

Proposed by Tom Boyle and Andy Lippman at the AMG in the summer of 1978, the
Popularity algorithm [16] was the first algorithm proposed to adaptively quantize
color images with an image dependent colormap. In this algorithm, colormap is
constructed simply by selecting a number of the most frequently occurred colors
from the histogram of the true image colors. While the popularity algorithm is
extremely fast and produces good results for many images, it performs poorly on
images with a wide range of colors because colors in sparse region of the color space
is often neglected. Braudaway [6] suggested an improved popularity algorithm that
prevents the concentration of too many representatives in the neighborhood of one
distribution peak by allocating the palette colors sequentially and modifying the
histogram after each allocation. This leads to a more uniform distribution of the
representatives in the image histogram. With the attempt to use each paletie color to
represent an equal number of true colors, Heckbert [13] provided an alternative to
determine a colormap by a recursive process of splitting the largest cluster into two
equal halves. The algorithm is commonly referred to the Median cur algorithm. To
improve the initial colormap generated, both Heckbert and Braudaway apply the

LBG algorithm [30] to iteratively map the colors in the image to their nearest



representatives. Since the LBG algorithm converges only to a local minimum, this

step often yields only slight improvement.

More significant improvement is obtained by selecting the colors through a
sequential splitting process in which the color space of the original image is split
iteratively according to certain preference criteria until the expected number of
subspaces is reached. The representative color of each subspace will then become
the quantized color. A number of algorithms using different splitting procedures and
selection criteria have been proposed, some of the examples includes the Variance
minimization algorithm [65]-[66] suggested by Wan et al., in which more clusters
are assigned to regions with large variance thus reducing the total quantization errors
of the partition. Some of the other examples include the center-cut [21], the Octree
quantization [12]-[13], the Orchard-Bouman splitting algorithm {41], and Wu’s [67]

algorithm by Principal analysis.

Median Cut and Octree are the two color quantization schemes that we used later in
this work for comparison. A brief description of the two algorithms is given in the

following sections.



1.1.1 Median Cut

The basic idea of Median Cut [13] is to use each of the colors in the colormap to
represent an equal number of pixels in the original image. The algorithm repeatedly
divides the 3D color space into subspaces, with the median point being the boundary
for cutting, such that approximately equal numbers of points will fall at each side of
the cutting plane. Subdivision is stopped until K required subspaces are generated,
and the color representatives that comprise the colormap are obtained by averaging

the colors in each subspace.

Figure 1-1 illustrates the initial three steps of the division process in RGB color
space leading to the formation eight subspaces. Suppose the first cut, Figure 1-1(a),
is in the R-axis and the second cut, Figure 1-1(b}, in the G-axis. Since the median
point of each subspace will be different after the first division, the cutting point will
be different as well for the two subspaces. After that, the third division, Figure 1-
1(c), is completed and finally eight subspaces are formed. The division process

continues until 256 subspaces are generated.
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Figure 1-1: Initial three steps of the division process of the Median cut quantization in
RGB color space.

1.1.2 Octree

The concept behind Octree [10]-[11] is to build a tree structure containing always a
maximum of k different colors, which is the desired number of palette colors. During
quantization, the RGB color value is read sequentially from an input image data file
and added to the tree structure creating a new leaf node. When the number of leaf
nodes n exceeds the number of palette colors &, the tree will be reduced by merging

some very closely related colors and both values will be substituted by their mean.

Figure 1-2 shows how the RGB color space can be represented by an octree of depth

eight, with the RGB values (0 - 255) being the equivalent of the coordinates in the



3D color space. The bit pattern, corresponding to the same level in the octree as the

bit position, is used as the index for the branch into the octree.

The index gives the position of the color in the ROB cube s well as the branch of octree.
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Figure 1-2: Mapping an RGB Value into the RGB Cube/Octree.



1.2 Digital Halftoning

Important developments in digital halftoning include analog screening, noise
encoding, ordered dithering, error diffusion and stochastic screening [22].- In
addition, numerous model-based halftoning schemes have been developed. Among
the various methods, ordered dithering and error diffusion (ED) are the two main

classes of conventional digital halftoning techniques.

Ordered dithering provides a fixed pattern of numbers to indicate the order of
tuming pixels on within a halftone cell. It has two main approaches: clustered dots
and dispersed dots. The application of clustered-dot-ordered-dithering is primarily
used in the printing industry because clustered dots are insensitive to common
printing distortions and reproduce well on printers that have difficulties in producing
isolated single pixels [59]. Unlike the clustered-dot approach, dispersed-dot-ordered-
dithering turns pixels on individually without grouping them into clusters in the
highlight and midtone regions. Being developed to meet the needs of the television
and monitor display industries, it has been successfully used for bilevel displays for

its greater spatial resolution.

While clustered dots are often preferred for printing, ED is perhaps the most widely

used approach for displays [54]. ED is an adaptive algorithm that operates by



spréadin g or diffusing the quantization eﬁor of a current pixel to neighboring pixels.
A single pass is made over the input image; each pixel is processed sequentially. At
each pixel, error is computed according to the input pixel value and is passed to the
neighboring pixels that have not been processed. This method was first proposed by
Floyd and Steinberg in 1975 {11}, and was originally used and analyzed for gray-
scale images. The major part of the analysis is nevertheless applicable to color
images as well. For color images, ED is either performed separately in each
independent channel (scalar ED) or simultaneously in a 3-D color space (vector ED)

[26]. For color displays with an image dependent palette, vector ED is often used.

Based on Anastassiou’s analysis of ED and Z-A A/D conversion [3], Knox
considered an image resulting from ED as the sum of the original image and a
highpass filtered error image [27]. Due to the highpass nature of the “noise” in the
reproduction, ED images typically appear closer to the onginals than those obtained
with ordered dithering. The fact that ED produces high frequency noise, i.e. “blue
noise” as named by Ulchney [22], led to the development of various blue noise
masks (BNM) [60]-[61}], [34], [69]. These BNM methods are collectively known as

blue noise halftoning or stochastic screening.

The development of stochastic screening further led to the inclusion of output device

model and HVS into halftone algorithms, known as model-based halftoning. For



display of gray-scale images on binary oufput devices, a number of researchers have
suggested iterative schemes that provide good solutions with varying computational
requirements [1], [2], [36], [42], [56]. Pappas extended model-based halftoning
methods to color [43]-[45] that account for printer distortion as well as quantization
effects. Kim and co-workers applied model-based color halftoning to perceptually
uniform color spaces such as CIELAB {25]. The algorithms minimize the color
distortion between the continuous tone image and it’s low pass filtered halftone. For
color displays, however, surprisingly little research has been done and the problem
remains computationally infeasible at present. With the attempt to minimize a visual
model-based error, the optimization of ED for color display applications has been
reported in [28] and [57], where optimal ED filter coefficients were determined

through a process of autoregressive (AR) modeling of the eye’s spatial response.

1.3 Objective

The objective of this research is to develop color quantization algorithms that
optimize the overall color image quality on CRT displays. Our algorithms are
designed to address two important issues in color quantization. The first one being
the incorporation of spatial or contextual information of an input image to the
proceés of color guantization. For most of the color quantization algorithms, the

selection of colors for colormap entry is often maneuvered to regions of the color
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space with a larger number of pixels. However, colors that amount to a large
quantity might not be significant in contributing to the image quality. With this in
mind, we propose a heuristic approach (the Contextual algorithm) to perform color
quantization based on the contextual information of the input image, thus enabling

quantization to focus on the regions of the image having important color

information,

The second issue under consideration is related to color space. For most color
displays, processing of colors is performed on the R, G and B components. The
requirement for human vision system, however, would favour a different scheme.
We propose a novel algorithm (the 3D FD algorithm) for color quantization based
on frequency diffusion in the histogram of an image. By manipulating a diffusion
filter, a cross-space operation is achieved, obtaining quantization effect in a color

space without transforming the image to that space.

1.4 Overview of the Dissertation

The rest of this dissertation is organized as follows. A brief review on the basics of
color sctence is given in Chapter 2 (Colorimetry) and Chapter 3 (Digital Color

Spacés). Colorimetry is the method of measuring and evaluating colors that lay the

foundation for the development of various color spaces. Different color imaging
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devices use different color spaces, each of them has a variety of different
characteristics that lead to advantages and disadvantages depending on the
application. In presenting the basic information according to which colors are
specified, related and measured, these two chapters attempt to provide the
fundamental color knowledge that is encountered in the context of color image

quantization.

Over the past years, the designing of color quantization algorithms has evolved to an
integration of various imaging techniques, human vision, color science and device
models. In practice, improvements can only be made if image quality can be
accessed. Therefore, Chapter 4 (Evaluation of Color Image Quality) examines the
fundamental concepts, models, metrics and their formulation for evaluating the

quality of quantization outputs.

Description of the algorithms representing the core of the research, along with in
depth discussions of each algorithm will be given in Chapter 5 (A Contextual
Algorithm for Color Quantization) and Chapter 6 (Color Quantization by Three-

Dimensional Frequency Diffusion).

We first deal with the issue of deriving a mechanism to carry out image analysis for

allocation of quantization levels in Chapter 5. In this chapter, an algorithm called the
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Contextual algorithm is proposed. In our approach, we identify the regions of an
image having the greatest need for colors, allocate more quantization levels to them,
and then move to another part of the image in a deterministic manner. We achieve
this by scanning the elements of the input image in a way determined by their local
intensity and select the color representatives that comprise the colormap according
to their local popularity. The proposed algorithm is then compared with some of the

other well-established color quantization schemes such as Median cut and Octree.

The issue of color space is then tackled in Chapter 6. A novel algorithm for color
quantization, three-dimensional frequency diffusion (3D FD), applies to the
histogram of an image based on the principle of error diffusion using a 3D error
diffusion filter is proposed. With the histogram divided into overlapping cubes, an
iterative process is devised to select representative colors from these cubes by a
popularity scheme that considers a neighborhood of pixels until a colormap is filled.
By transforming the 3D frequency diffusion filter, a cross-color-space operation is
achieved with no transformation of the image required. The algorithm is able to

produce similar effect as i1t does under the YUV color space when operating in RGB.

The performance of the two proposed algorithms are then compared and concluded

in Cﬁapter 7. Finally, direction for future research is given in Chapter 8.
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Chapter 2

COLORIMETRY

Colorimetry is a measurement of color [9]. Color appearance of an object depends
on three components, namely the light source and illuminants, the interaction of
radiant energy with materials and the human visual response. While the
measurement or standardization of light sources and materials provides the
necessary physical information for cdlorimetry, the quantification of human visual
response provides the basis of color appearance specification. As a combination of
all these areas, colorimetry forms the foundation for the development of various

color appearance models or color spaces.

2.1 CIE XYZ (1931)

Based on the data from the measurements of the color-matching abilities of the
average human eyes made in 1931, a system of three primaries, XYZ, was
developed by the Commission Internationale de I'Eclairage (CIE) capable of
representing all visible colors using only positive values of X, Y and Z [68]. The Y
tristimulus value is identical to Luminance, X and Z tristimulus values give coloring

information. This forms the basis of the CIE 1931 XYZ color space, which is
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fundamental to all colorimetry. All color appearance models for practical
applications begins with the specification of the stimulus and viewing conditions in
terms of CIE XYZ tristimulus values. It is defined such that all other models can be

interpreted as different mappings or subsets of this color space.
2.2 Chromaticity Coordinates

Chromaticity diagrams are developed to provide a convenient two-dimensional
representation of colors. Mathemafically, the projection of the tristimulus space to
the two-dimensional X and Y plane can be defined as:

x=X/X+Y+7Z),

y=Y/(X+Y+7Z),

z=Z/(X+Y +2),

x+y+z=1,

where x, y, and z are the chromaticity coordinates. They are the normalization of the
tristimulus values. Figure 2-1 shows the 1931 CIE chromaticity diagram. The
chromaticity coordinates represent the relative amounts of the three stimuli X, Y and
Z required to obtain any colors. However, they do not provide information about the
color appearance of the stimuli because they lack information about luminance and
do not account for chromatic adaptation. Since luminance is incorporated into the Y

tristimulus value, the triplet (x, y, Y) should be used to accurately describe a color.
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Figure 2-1: The CIE 1931 x - y chromaticity diagram [22]:

2.3 CIE Color Spaces -

There are perhaps two problems with the specification of colors in terms of
tristimulus values and chromaticity coordinates. Firstly, this specification is not
easily interpreted in terms of the psychophysical dimensions of color perception
such as brightness, chroma and hue. Secondly, the XYZ system and the associated
chromaticity diagrams are not perceptually uniform. The second of these points is a
problem if we wish to estimate the magnitude of the difference between two color

stimuli. Visually uniform color spaces are therefore derived from nonlinear
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transforms of the CIEXYZ that describe color using opponent-type axis relative to a
given absolute white point reference. Two spaces were developed and recommended
by CIE for use in 1976, they are the CIE 1976 (L* a* b*) color space (CIELAB) and

the CIE 1976 (L* u* v*) color space (CIELUV).

2.3.1 CIE 1976 (L* a* b*)

The CIELAB color space is defined by the following equations [19]:

L* = 116(Y/Y)"” -16, for Y/Y, > 0.008856
L* = 903.3(Y/Y,), for Y/Y, < 0.008856
a* = S00[(X/Xa)"” - (Y/Y0)'""),

b* = 200[(Y/Y,)"? - (@/Z,)'""),

C*op = (@ + b¥) 12

hap = tan’ (b* / a*)

where X, Y, Z are the tristimulus values of the stimulus and X,,, Y,, and Z, are the
tristimulus values of the reference white. Note that when any of the quotients are
less than or equal to 0.008856, a slightly different set of equations are used.
Illustrated by Figure 2-2 is a Cartesian color space constructed using the L*, a* and

b* coordinates.
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Figure 2-2: Cylindrical representation of the CIELAB color space.

As indicated by the figure, L* represents lightness and extends from 0 (black) to 100

(white). a* approximate redness-greenness, b* approximate yellowness-blueness,
C*. chroma, and A,y hue. The L*, C*,, and A, coordinates are the cylindrical

representation of the same space.

2.3.2 CIE 1976 (L* u* v¥*)

Similar to the CIELAB color space, the CIELUYV color space is a nonlinear

transform of the 1931 CIEXYZ and is defined by the following equations:
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L* = 116(Y/Yy)" -16, for Y/Y, > 0.008856
L* = 903.3(Y/Y.), for Y/Y, <0.008856
u* = 13L* (u'- u'y)

v = 13L* (v'- V)

C*,, = (u*z + v*z)lrz

huy = tan” (u* / v¥)

where »’ and v’ are the chromaticity coordinates of the stimulus and u'y and v'y are

the chromaticity coordinates of the reference white. L* represents lightness, u*
redness-greenness, v* yellowness-blueness, C*,, chroma, and hyy hue. Similar to
CIELAB, The L*, u* and v* coordinates are used to construct a Cartesian color
space, while L*, C*,, and h, coordinates are the cylindrical representation of the

same space.

Although both the CIELAB and CIELUV spaces were recommended in 1976,

CIELAB has become almost universally used for color specification and particularly

color difference measure.
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Chapter 3

DIGITAL COLOR SPACES

A color space is a means by which colors can be specified, related and measured. Since
color is tri-variant, most color models are defined in a three-dimensional space and can be
considered as a three-dimensional geometric shape with a particular color specified by its
vector coordinates within that shape. Different color imaging devices use different color
spaces, and therefore colors produced by these spaces are device dependent and do not
correlate with the way the HVS perceived colors. The rendering or representation of colors
depends solely on the characteristics of the device being used. Digital color spaces have a
variety of different characteristics that lead to advantages and disadvantages depending on
the application and system for which a particular color space is required. Table 3-1

summarizes the most popular color spaces and some of their applications.

Color Spaces Applications
XYZ Colorimetric calculations
Device Independent CIELAB Color difference evaluation, image analysis, color management
RGB Computer graphics applications, image processing or analysis
Device Dependent YIQ, YUV, YCbCr | Television transmission; image compression, coding and storage
HSV User interface in computer graphics, human color perception

Table 3-1: The most popular color spaces and some of their applications.
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3.1 RGB -

RGB is the most frequently used color space in describing colors for computer
graphics since no transformation is required. Based on the red, green and blue
primaries, the RGB color space can be visualized as a cube with the three axes
corresponding to red, green and blue. Using an appropriate scale along each primary
axis, the space can be normalized and confined to values between 0 and 1, and all
definable colors will lie in the cube as shown in Figure 3-1. The origin of the cube,
defined as (0,0,0) corresponds to black and the point with coordinate (1,1,1)

corresponds to the system’s brightest white.

The major advantage of the RGB color space is that it is very easy to specify display
colors. However, this color space is not perceptually uniform, which means a given
change in any coordinates with the same Euclidian distance does not correspond to

the same perceived color difference in all regions of the color space.
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Figure 3-1: The RGB color space [46].

3.2 HSV

HSV (hue, saturation, value) color space is derived for user specification and
recognition of a color in an intuitive manner. The HSV coordinate system, proposed
originally by Smith [55], is an inverted hexagonal cone as shown in Figure 3-2, with

black at the apex and white at the center of the H — S plane.

The HSV color space, though provides better approximations to the perceptual
dimensions of color, remains device dependent as it is simply a linear transforms of
the RGB color space and hence is perceptually non-uniform. In addition, the three

axes are not perceptually independent. As one moves around the H — S color plane,
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for instance, the apparent lightness will change on the display, even though the V
component remains numerically constant. The biggest discrepancy is between green
and blue, which typically differ in luminance by a factor of 5. Conversely, a change
in V will generally change the apparent saturation, even though the S component

remains numerically constant.

Green Yellow

Cyan White V=0

Value

Black V=1

Figure 3-2: The HSV color space [23].

33YIQ, YUV, YCbCr [49]

These are television transmission color spaces adopted in practical video systems
such as NTSC and PAL, designed to take the advantage of the greater sensitivity of

the HVS to changes in luminance than to changes in hue or saturation. Instead of
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transmitting red, green and blue signals, in these color spaces, luminance (Y) and
two color difference signals (B-Y and R-Y) are transmitted as a means of conveying
the RGB information. Figure 3-3 is a unit RGB cube transformed into luminance Y

and color difference components B-Y and R-Y.

The decoupling of luminance (Y) and chrominance components (B-Y and R-Y)
provides several advantages in image coding and communication applications. For
instance, by allowing more bandwidth to code the luminance and less bandwidth to
code chrominance, noise introduced in transmission, processing and storage can be
reduced. Another implication is that the luminance (Y) component of an image can
be processed without affecting its color content. This color space is widely used in
transmission of images, situations where compression is important. It is device
dependent, but is intended for use under strictly defined conditions within closed

systems.
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Chapter 4

!

EVALUATION OF COLOR IMAGE QUALITY

As described by Holst [17], image quality is a ‘subjective impression ranking of imagery
_ from poor to excellent. It is a perceptual ability, accomplished by brain, affected by and
incorporating other sensory systems, emotions learning and memory. The relationships
are many and not well understood’, visual image quality, as perceived by observer,

however, has no single or unique definition.

Although the concept of quality in imaging is complex, especially when human factors
are involved, it would be essential if image quality can be quantified and measured so
that improvements can be made to optimize the performance of the quantization

algorithm to reproduce color images of optimal visual quality.

4.1 PSNR

Peak signal-to-noise (PSNR) [40], [50] is a measure used to estimate the quality of a
reconstructed image compared with an original image. The basic idea is to compute a
single number that reflects the quality of the reconstructed image. Reconstructed images
with higher metrics are judged better. In fact, PSNR measures do not equate with human

subjective perception, they are used because of their simplicity in computation.
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Given a source image (i, j) having dimensions of MxN and a reconstructed image Q(, ),

the PSNR in decibels (dB) is computed as follows

2
PSNR = 101og 4 20 X253

> UG H -G, )Y

i=0 j=0

where I(ij) and Qfi,j) are the RGB values at location (i, j) of the original image and

quantized image respectively.

When I{i,j} and Qfij) are vectors, the square of their difference becomes the algebraic
sum of the squares of the differences of the respective components. In essence the PSNR

is the ratio of 2557 to the mean square error of the reconstructed picture.

Typical PSNR values range between 20 and 40, and are usually reported to two decimal
points. The actual value is not meaningful, but the comparison between two for different

reconstructed images gives one measure of quality.
4.2 CIELAB Color Difference
Derived from perceptual measurements of color discrimination of large uniform targets

under fixed adaptation condition, the CIELAB color difference metric has been widely

used in measuring color reproduction errors for twenty years. Though imperfect, it works
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reasonably well in measuring perceptual differences between large uniform color patches
viewed under standard illuminants.

Color differences in the CIELAB color space (AE* ;) are measured as the Euclidean
distance between the coordinates for two stimuli:

AE* ., = (AL*? + A a** + A b**) 12

The aim of the CIELAB color space design was to have color differences be perceptually
uniform throughout the space, so that equal distances in the color space represent equal
perceived differences in appearance. For example, with the just noticeable color
difference equal to one AE* ;, unit, a AE* ,; of 1.0 for a pair of red stimuli should be
perceived as equal in magnitude to a AE* g, of 1.0 for a pair of gray stimuli. However,

this aim is not achieved precisely, especially for evaluating small color differences.

4.3 Contrast Sensitivity Function

‘Quality is not a property of images, but a description of a judge’s reaction to images’
[10). Since images are viewed by human, the incorporation of HVS models into image
processing algorithms would be essential in maximizing perceived image quality. For
digital halftoning, the most important parameter is perhaps spatial frequency and
therefore, most of the HVS models for digital halftoning are based on the human contrast

sensitivity function (CSF).
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Image contrast is the ratio of the local intensity to the average image intensity [64]. For a
sinusoidal grating, contrast is typically defined as the difference between the maximum
and minimum luminance divided by the sum of the maximum and minimum luminance
(Michelson contrast) [32]. Contrast sensitivity is the reciprocal of the contrast threshold,
which is the minimum amplitude necessary to just detect a sine wave of a given angular
spatial frequency. A CSF describes contrast sensitivity for sinusoidal gratings as a
function of spatial frequency expressed in cycle per degree (cpd) of the visual angle. It is

the linear spatially invariant approximation of the HVS.

Previous works on luminance CSFs indicates that human contrast sensitivity is affected
by background intensity [51}, [63). Under scotopic conditions, human vision has a low
pass filtering characteristics; on intense photopic backgrounds, CSF curves are bandpass. |
Furthermore, chromatic CSF curves behave differently from Juminance CSF curves.
Figure 4-1 illustrates a chromatic CSF curve and a luminance CSF curve measured by
Mullen [35], obtained at high mean luminance level. As indicated by the figure, the
luminance CSF is bandpass in nature, whereas the chromatic is of low-pass nature and
has a significantly lower cutoff frequency. This implies that the HVS is more sensitive to
fine spatial changes in luminance than it is to small changes in chrominance. This
explains the reasons why images with spatial degradations in chrominance will usually

not be noticed, though similar degradations in luminance might be obvious.
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Figure 4-1: Luminance and chrominance (blue-yellow) contrast sensitivity functions [22].

CSFs have been adopted for use in various HVS models and have been exploited in
several halftoning algorithms and some of the examples are given in (8], [33], [37]. In
addition, Zhang and Wandell [70] proposed a color image fidelity metric that
incorporates the spatial-color sensitivity of the human eye into the calculation of
CIELAB color difference to account for spatial errors as well as color errors in measuring

color reproduction errors of digital images.
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4.4 S-CIELAB

The overall quality of a color image is the integrated result of the spatial pattern and color
appearance. Due to the fact that real images are not made up of large uniform fields and
color perception is dependent on spatial patterns of images [15], [47]-[48], [53], [62], the
CIELAB color difference metric is, however, not suitable for measuring color differences
between real images. To reflect both spatial and color sensitivity of the HVS, S-CIELAB,
a spatial extension of CIELAB, has been developed for color reproduction of digital

images.

Since the HVS is not as sensitive to color differences in fine details as compared to large
uniform fields, the design goal of S-CIELAB is to apply spatial filtering to the color
image in a small-field or fine-pattern area, but reverts to the conventional CIELAB in a
large uniform area. The computation of S-CIELAB consists of three processing steps.
First, the original and distorted images, specified in terms of XYZ tristimulus values, are
converted into three opponent-colors planes representing luminance, red-green and blue-
green components for each image. Second, each opponent-colors plane is convolved with
a two-dimensional spatial filter selected according to the spatial sensitivity of the human
eye for that color component to simulate the spatial blurring by the HVS [39]-{40). Third,
the filtered representations are transformed back to CIEXYZ space and then to CIELAB
representations. The difference between S-CIELAB representations of the original and its
reproduction (AE,), as an indication to the reproduction error, is then computed precisely

as AE,, in conventional CIELAB. The AE; values are interpreted in the same way as the
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standard CIELAB AE,, values; that is distortions of one AE; unit is at threshold visibility
at optimum viewing condition, whereas distortions with AE,; values around two or below

are generally not visible under less controlled viewing conditions.
S-CIELAB has been used to predict texture visibility of printed halftone patterns and the

results correlate with perceptual data better than the standard CIELAB [71]. This metric

is also used to improve multilevel halftone images [72].
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Chapter 5

A CONTEXTUAL ALGORITHM FOR
COLOR QUANTIZATION

All the quantization techniques mentioned in Chapter 1 are operated in accordance
with the statistical distribution of the colors in the input image and share a common
initial condition attempting to allocate more quantization levels to regions of the
color space with a larger number of pixels. These algorithms, though iﬁlage
dependent, do not account for the spatial and contextual information of the image.
As a result, instead of focusing on the area of high interest in an image containing
highly saturated primaries, the grays and low saturated colors are often over
represented resulting in the appearance of .contouring artifacts, especially in regions
with smooth color transition. Aiming at this problem, we developed a color

quantization algorithm with contextual information taken into account.
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5.1 Contextual Algorithm

Consider a case to color quantize an image 1 containing millions of colors to an
output image Q containing a maximum of 256 simultaneously displayable colors.

From I, we generate two pseudo images, PI1 and P12, as the inputs to our algorithm.

The first pseudo image, P11, is obtained by summing up the RGB values of I at each
pixel as indicated in eq.(1) and is used to locate the areas of I containing important
color information.

PIIG, ) =[r(i,j)+g(i,))+b(i,j)] (1)
where r, g, b are the pixel values at location (i, j) for RGB values of the original

image respectively.

The second pseudo image, PI2, is composed of indexing values representing the
exact colors of every pixel in the original image 1, each of which constitutes the
RGB components of a specific color as below,

P12 (3, j) = [r (i, ) *10000000+ g (i,}) *1000+ b (i, )]. (2)
where r, g, b are the pixel values at location (i, j} for RGB values of the original

image respectively.
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Therefore, if the RGB values of a pixel 1 (1, j) is (16, 67, 17) for example, the
indexing value for PI2 at the same location will be 16067017, and the popularity of a
color can be determined by counting the frequency of occurrence of the
comresponding index value. For an image of size 256x256, the total number of
indexing values will be 256*256, i.e. 65536, while the total number of different

indexing values is dependent on the total number of colors that constitute an image.

Our approach is to identify the regions of the image we want to emphasize from PI1,
and then from PI2 at the same regions, we extract the color representatives that
comprise the colormap according to their local popularity. Once a color is extracted,
we can identify the locations of the image having the same or visually similar colors.
We then keep the locations and update the input images by assigning O to these
locations to prevent the same color being selected in the next iteration of color
extraction. Figure 5-1 shows a schematic diagram of the proposed algorithm, which

will be elaborated in the following section.
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colors via “Maximum Intensity Guidance™.
N
/I\ Pl,
Pl,
N
\L » O #» 256 colors
Possible anchor locations of Color Extraction based on their local popularity
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Figure 5-1: Schematic diagram of the Contextual algorithm.

5.2 Determining the Regions of High Interest

Figure 5-2(a) shows a 24 bits/pixel artificial image containing wide range of colors
that has been uniformly quantized to contain 256 colors only and Figure 5-2(b) is the
corresponding pseudo image (PI1) generated by summing”up the RGB values of the
original image at each pixel. As indicated by these figures, the regions where
contouring is most likely to occur after color quantization are equivalent to the
regions in the pseudo image showing excessive brightness, i.e. regions having large

sums of RGB values.

Therefore, by locating the areas of PI1 having the largest value, and thus the greatest
need for colors, we can easily identify the parts of the image we want to emphasize
and assign more colors to them. We achieve this by scanning the elements of Pli in

a deterministic way via “maximum intensity guidance” [7] {24]. The basic 1dea is to
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iteratively search the brightest region of PIl by partitioning the image into
subregions, always choosing the subregion containing the largest sum of elements

for assigning colors as well as further division.

(b)

Figure 5-2:  (a) An artificial image that is uniformly quantized to contain 256 colors; (b)
The corresponding pseudo image generated by summing up the RGB values
of the original true color image at each pixel.

5.3 Image Subregion Representation

Let X be the input image array to our algorithm of size KxL. If we consider a square

image of a binary size, i.e., K=L=N=2", the dimensions of which are divisible by 2,

when each side of the image is divided by 4, 16 equal subregions are obtained as

shown in Figure 5-3(a). Let a side of a subregion be w = N/4.
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Figure 5-3: (a) A scheme of dividing the image into 16 subregions, with the size of each
subregion equals wxw. (b) A scheme of dividing the image into 9 subregions,
with the size of each subregion equals 2wx2w.One subregion is shown with
bold border and an overlapping subregion is shaded.

With a simple scheme that picks all subregions with the largest sum of all elements
for assigning colors, it is likely that the resulting colormap will contain many entries
of similar colors, neglecting other less popular ones. To prevent this, we consider a

neighborhood or subset of the image:
Xk(lk,mk) = {Xk_l(ik-H(, mk+y) I X,y & 0.1,...,2w-1 } (3)
where k= 1,2, ..., w=2"%"and I, and my each takes the values of 0, w and 2w.

In this way, pixels in an area (or segment) of 2w by 2w are grouped together as

shown in Figure 5-3(b). With this arrangement, 9 overlapping segments are naturally
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formed within the whole image with each segment overlapping half the area of an

adjacent segment. The elements associated with a segment E; is defined as

(2w=-1) (2w-1)

E.(dom)= D DY X, U +x,m+y) (4)
120 y=0
The highest E; is selected and the corresponding X is subdivided according to eq
(3). Before proceeding to the next subsegment of the highest local intensity for
further subdivision, colors are extracted as the colormap entries from each of the
nine subsegments sequentially based on their local popularity. In eq (3), a higher &
refers to a smaller subregion such that X, represents the original input, and X, the
finest level containing a single element corresponding to the actual pixel of the X
array. It is important to note that the process of subdividing X; for color extraction
within the algorithm will not continue up to k=r-1. This is because the color of a
single pixel element is not likely to be an effective representation of any important
color information in an image. Instead, the process will terminate at a particular
level when X, has reached a certain size of n X n. We assume to stop extracting
colors at a level that is sufficient to include less popular colors that may be essential
in contributing to the final image quality, while further color extraction will not

contribute much to the final image quality.
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5.4 Extracting Colors for the Colormap

From P11, we identify the regions of the image to emphasize, and then extract the
color representatives that comprise the colormap based on their local popularity. The
popularity is obtained by counting the frequeﬁcy of occurrence of each color point
by point accordingly from PI2 at the same locations. The colors of the highest
frequency counts are selected for construction of colormap. To ensure that the
dominant colors will be extracted in case the region contains a large part of
background colors, the colors among the first three highest frequency counts are

selected, so that more than one color will be extracted at one time.

Referring to Figure 5-4, let ID1 = (idl,, idl, ..., idl,) be the list of colors extracted
from a particular image segment. Starting with the first value (id1;) from the list of
ID1, a second list of index values, ID2 = (id2,, id2;, ..., id2,), can be generated
consequently to include all possible colors within a distance D from the extracted
color in the RGB color space. The colors among the list of ID2 are regarded as
visually the same as id1; and satisfying results are obtained w.ith the distance D
equals to 5. After that, we identify any locations in PI2 having the same value as idl,
or as those among the list of ID2, and assign O to the input image arrays at these

locations to avoid the same color being selected in the next iteration of color
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extraction. This is followed by an update'of ID1 by neglecting idl; as well as any

subsequent values that are identical to those in the list of ID2.

The list of colors extracted from an image segment.

ID1] idl, | idl; [ idl;

g’ Identify the values that are identical to
those in the list of [D2.

Kl‘he list of colors considered as visually the same as idl .\
Allpossible | IDA id2; | id2; | id2; | id24 | id2s

colors within
a distance D<5. . ~_/ UpdaeIDI1

¥ Identify the locations in PI2 having the

same value as idl, or as those among
the list of ID2.

PI2
——

idly | idly | ... pe—

b j
Update P12

Figure 5-4: Updating of the input image array to avoid the same color being selected in
the each iteration of color extraction.
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5.5 Algorithm

Step 1: From the original image I of size NXN, generate two pseudo images, PI1 and
PI2.

Step 2: Initialize PI1 as the image array Xo for division. Set k =1.

Step 3: Divide the input image Xy into 9 overlapping segments X", m=1,2, ...... 9
according to eq (3). Find the sum of all elements E; associated with each
segment X™; according to eq (4). Select the segment X", with the largest E;
to be the new region of interest.

Step 4: Increment k. Set X"y as X;_1, the input image array, further divide the input
segment X, into nine subsegments as in Step 3. Label the 9 subsegments as
X =1, 2, ......9. Set j=1.

Step 5: From the subsegment X/, identify the most frequently occurring colors
within the confines of the subsegment according to PI2 at the same
location. Select the colors with the three highest frequency counts and
store them in a list ID1.

Step 6: Select idl,, the first entry in IDI as the colormap entry. Generate a list of

colors ID2 that is considered as visually the same as idl,. Identify the
locations of the image having the same values as those among the list of D2

from PI2. Update both PI1 and PI2 as well as all the subsequent subsegments
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by assigning 0 to the locations to avoid the same color being selected in the
next iteration of color extraction.
Step 7: Update ID1 by deleting idl, as well as any subsequent values that are
identical to those among the list of ID2. Set the next color that remains in
the list of ID1 as id1, and repeat Step 6 until ID1 contains no color.
Step 8: Repeat Step 5 to Step 7 for j=2, 3, ...... 9. Select the subsegment X’y with the
largest Ey to be the new region of interest as in Step 3.

Step 9: Repeat Step3 to Step 8 until the input image array X has reached a size nxn.
It is shown later that n=8 is optimal.

Step 10: Repeat Step 2 to Step 9 to extract the remaining colors until the whole

colormap is filled by 256 colors.
5.6 Experiment and Discussions

A representative set of images of a size 256x256 have been chosm; to include both
areas of smooth gradation (low frequency) and fine details (high frequency) for
evaluation of the algorithm. The images are shown in Figure 5-5. To start with, we
test our algorithm by subdividing X, until =5, at which level the process of division
and color extraction will terminate as X, reaches a size 8x8. At this size we shall
show later that, if the process of division stops before this level such that colors are

extracted from larger areas, some of the less popular colors that may be essential in
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contributing to the final image quality will be neglected. On the other hand, further
subdivision after this level to extract colors from smaller subregions will be of no

significance in contributing to the final image quality.

(d)

Figure 5-5: The test images — (a) Pool (b) Woman (c) Shop and (d) Blythe.
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To compare our algorithm with other color quantization schemes, we use the peak
signal-to-noise ratio (PSNR) as a gauge to measure the effectiveness of the resulting
palettes. Given the original image 1 having dimensions of NxN and a quantized

image Q, the PSNR in decibels (dB) is computed as follows

N?x255°
PSNR =10log 43 57 (5)
Z[I(i,j) -0, NI
i=0 j=

where I(i,j) and Qf4,j) are the RGB values at location (i, j) of the original image and

quantized image respectively.

When I(ij) and Q(ij) are vectors, the square of their difference becomes the
algebraic sum of the squares of the differences of the respective components. In
essence the PSNR is the ratio of 255% to the mean square error of the reconstructed

picture.

The PSNR values of the various test images quantized by our algorithm and by the
other two algorithms are given in Table 5-1. According to the table, terminating the
process of division and color extraction within the algorithm after the final input
imﬁge array X, has reached a size 8x8 gives the highest PSNR, comparing to the

other sizes such as 16x16 or 4x4, which is comparable to the other two color
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quantization schemes in comparison. Implied by the reduced PSNR, increasing or
decreasing the size of the final subsegment in terminating the division process will
not made any improvements to the overall performance of the algorithm as we
assumed. If colors are extracted from larger areas as the process of subdivision is
stopped at the level of 16x16, some of the less popular colors that may be essential
in contributing to the final image quality will be neglected. While extracting colors
from smaller subsegments of a size 4x4 could result in colors that will not contribute
to the final image quality being selected, leaving less possibility for colors that are

comparatively more important to be included in the resultant colormap.

Pool Woman Shop Blythe

5 g [n=l6 30.87 29.54 25.88 25.42
5 ::g *n=8 32.87 29.54 2794 | 2853
&2  fna 30.97 2950 | 2584 | 2553
2 IMedian Cut 32.63 29.92 28.84 28.31

& [Octree 33.72 3127 2847 29.10

Table 5-1: PSNR (in dB) of pictures reproduced after color quantization by the Contextual
algorithm, Median cut and Octree. *The division process within the algorithm
terminates when the size of the final input image array has reached the size of
nxn.

Apart from altering the size of the final subsegment to terminate the division

process, we test our algorithm by changing the number of colors we selected at a

time from each subsegment for color extraction. To start with, the number of colors
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to be selected is arbitrarily set to include those among the first three highest
frequency counts. The reason for this is to ensure the selection of dominant colors,
especially when the subsegment contains a large part of analogous background
colors. Experimental results indicate that while changing the selection criteria to less
than three will degrade the PSNR, increasing the number of colors to be selected
will not improve the performance of our algorithm either as shown in Table 5-2.
Since colors are selected based on their local popularity, decreasing the number of
colors to be extracted will have the possibility of bringing the focus to the
background colors, despite the less popular ones are actually more important. Given
that our algorithm extracts colors from subsegment to subsegment sequentially after
identifying the region of interest. Allocating more quantization levels to each
subsegment and hence the whole region will have the possibility of selecting too
many colors from a particular region at the beginning, thus giving the subsequent
regions insufficient prominence and neglecting some of the important colors in these

regions.
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Pool

Woman Shop Blythe

3g [1F2 30.02 25.54 25.10 28.40
5,250 t f=3 32.87 29.54 27.94 28.53
S< [if=4 31.68 28.81 25.43 27.90
#  Median Cut 32.63 29.92 28.84 28.31

2 [Octree 33.72 31.27 2847 29.10

Table 5-2: PSNR (in dB) of pictures reproduced after color quantization by the Contextual
algorithm, Median cut and Octree. The division process within the algorithm
terminates when the size of the input image array has reached 8x8.

t The colors selected from each subsegment are those among the first two
highest frequency counts (f=2), the first three highest frequency counts (f=3)

and the first four highest frequency counts (f=4).

The appearance of contouring artefacts is one of the major problems encountered by
color quantization, especially in regions exhibiting smooth color transition, such as
the background in “Woman” and the billiard balls in “Pool”. This problem can be
solved with spatial error diffusion by using the Floyd and Steinberg error diffusion
filter [9] during pixel mapping. The error, that is the difference between the exact

pixel value and the quantized value, is distributed to the neighborhood of four pixels

surrounding the central pixel as indicated in Figure 5-6.

Central pixel

716

3/16|5/16

1/16

Figure 5-6:  Weights of Floyd and Steinberg error diffusion filter surrounding the central

pixel.
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The resultant images are shown in Fi.gure 5-7 to 5-10. To study the overall
performance of our proposed algorithm with spatial error diffusion, we measure the
color reproduction errors by using the S-CIELAB color difference metric [70]. The
result is an error map with one AE value per pixel indicating the difference between
the S-CIELAB representation of the original image and the quantized image. We use
S-CIELAB because PSNR does not correlate to how the human visual system
detects and responds to image inaccuracies, which is the major shortcoming of
PSNR measures. Whether the eyes and brain judge an error as significant depends
on numerous factors, such as where the error resides in the image, both absolutely
and relative to where the eyes’ attention is at that point in time; what portions of the

color spectrum the error’s pixels represent.

Let us consider an example. Table 5-3 (a) and Table 5-3 (b) are the PSNR values of
the various test images quantized by the contextual algorithm and by the other two
algorithms without performing spatial error diffusion and followed by spatial error
respectively after quantization. According to the tables, spatial error diffusion could
degrade the PSNR, however, as a means to solve the problem of contouring, the
images are expected to have a higher perceived image quality. As illustrated by
Figure 5-11, the image “Woman” quantized by Octree followed by spatial error
diffusion, though with a lower PSNR, gives a better result than the image without

performing spatial error diffusion. Notice especially how the background of the
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image showing objectionable contours is improved after spatial error diffusion.
Therefore, a higher PSNR does not imply a better perceived image quality, but can

only be used to estimate the comparative of the various quantization schemes.

(a) Pool | Woman | Shop Blythe
Contextual Algorithm* | 32.87 29.54 277.94 28.53
Median Cut 32.63 29.92 28.84 28.31
Octree 33.72 31.27 28.47 29.10

(b} Pool Woman Shop Blythe
Contextual Algorithm* } 32.96 29.74 27.00 28.39

edian Cut 31.42 28.64 27.52 27.09
Octree 32.59 29.98 27.17 27.61

Table 5-3: PSNR (in dB) of pictures reproduced after color quantization by the Contextual
algorithm, Median cut and Octree (a) without performing spatial error diffusion
and (b) followed by spatial error diffusion. *The division process within the
algorithm terminates when the size of the final input image array has reached
the size of 8x8.

For this reason, we study the overall performance of our proposed algorithms by
measuring the color reproduction errors using the S-CIELAB color difference
metric. Table 5-4 (a) and Table 5-4 (b) tabulate some statistics of S-CIELAB AE of
the test images quantized by the Contetxual algorithm, Median Cut and Octree with
and without performing spatial error diffusion after quantization. By definition, AE
of value 3 or above is noticeable. According to the tables, images after performing

spatial error diffusion (Table 5-4 (b)) could greatly reduce the corresponding
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percentage of error pixels with AE >3, indicating S-CIELAB is a measure that
correlates more with human subjective perception comparing to PSNR.
Consequently, it is possible for a quantization algorithm to be significantly pooper
than the other algorithms in terms of PSNR and suddenly much better in terms of

AE.

In addition to the percentage of pixels having AE >3, median and mode are given for
evaluating the performance of our algorithm by S-CIELAB. Comparing to mean,
which is very sensitive to extremities, median and mode are more informative about
the picture quality. Since the median is the middle of a distribution while the mode
is the most frequently occurring score in a distribution, the smaller the values the
better will be the image quality and the corresponding plot of the distributions of AE
of the test images are shown in Figure 5-12. At a first glance, our proposed
algorithm performs more or less the same as either one of the two algorithms for
different images. Obviously, with “Poo!” and “Shop”, our algorithm performs much
better than Octree, while for “Woman”, our algorithm resembles Octree and

outperforms Median Cut.

51



(a) Image Pool Woman Shop Blythe
median [mode| pixels |median [mode| pixels | median|mode| pixels | median jmode| pixels
) AE>3% AE>3 AE>3 AE>3
Filter (%) {%o) {%) (%)
Contextual }1.1581 [3.19 [16.01 |1.6124 |1.13 [18.65 |[1.3563 |0.77 |18.73 11.9336 10.02 {36.54
Algorithm
Median Cut [1.1522 [1.09 [21.27 }1.7912 [1.28 |27.27 |1.8289 |1.15 [25.76 (1.6342 |0.06 |18.90
Octree 1.4757 [3.19 [24.27 [1.3789 [0.85 |14.99 [2.4282 |1.82 [36.68 [1.4623 [0.03 |15.18
(b) Image Pool Woman Shop Blythe
median [mode| pixels | median |mode| pixels | median {mode| pixels | median [mode| pixels
) AE>3t AE>3 AE>3 AE>3
Filter (%) (%) (%) (%)
Contextual [0.3602 [ 0.02| 2.69 [0.9834[0.46 [ 8.99 |0.9563 |0.570| 14.49 | 1.0178 | 0.02 [ 15.02
Algorithm
Median Cut [0.7872 | 1.09 | 3.63 |1.0839| 0.61 | 10.91 | 1.1337 | 0.41 ] 13.65 { 1.0004 | 0.04 | 8.86
Octree 09753 [ 3.19| 18.12 [ 1.0243| 041 7.82 { L.7045| 1.35| 19.37 | 1.0463 | 0.02 | 7.34
Table 5-4: Statistical parameters of S-CIELAB AE of the Contextual algorithm (a)

without performing spatial error diffusion and (b) followed by spatial error
diffusion after quantization. Median Cut (MC) and Octree (OC) with and
without error diffusion are included for comparison. (tA AE of value 3 or
above is noticeable (Zhang, X. and Wandell, B. A., 1997).
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(©) (d)

Figure 5-7:  (a) Original image “Pool” used for the experiment. (b), (c) and (d) The
corresponding images quantized by the Contextual algorithm, Median Cut and
Octree respectively followed by spatial error diffusion. Notice especially how
the various quantization schemes differ in selecting colors on the billiard balls
exhibiting a smooth transition from dark to bright primary colors.



Figure 5-8:

(a) Original image “Woman” used for the experiment. (b), (¢) and (d) The
corresponding images quantized by the Contextual algorithm, Median Cut and
Octree respectively followed by spatial error diffusion. Notice especially how
the various quantization schemes differ in reproducing the background
exhibiting a smooth color transition.



Figure 5-9:

(a) Original image “Shop” used for the experiment. (b), (c) and (d) The
corresponding images quantized by the Contextual algorithm, Median Cut and
Octree respectively followed by spatial error diffusion. Notice especially how
the various quantization schemes differ in reproducing colors on the window
display, in particular the areas around the lightings that are subjected to
contouring artifacts.
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Figure 5-10: (a) Original image “Blythe” used for the experiment. (b), (c) and (d) The
corresponding images quantized by the Contextual algorithm, Median Cut and
Octree respectively followed by spatial error diffusion. Notice especially how
the various quantization schemes differ in reproducing colors on the forehead
of the doll exhibiting a smooth transition.
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Figure 5-11: Color image “Woman” quantized by Octree (a) without performing spatial
error diffusion (b) followed by spatial error diffusion. Notice especially how
the problem of contouring is solved after spatial error diffusion in (b).
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Distributions of the S-CIELAB AE of (a) “Woman” (b) “Pool” (c) “Shop”
after color quantization and error diffusion. According to the distribution
plots, the Contextual algorithm is able to produce good results with small
median and mode.
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5.7 Quantization by Color Segmentation

We evaluate the contextual information of the input image and identify regions of interest
by subdividing a pseudo image into image segments. Another possible way to analyze an
image is by color segmentation, which has long been used in many applications to
identify regions of interest and objects in the scene. An argument is that instead of using
fixed spatial image segments for operation, color segmentation should be conducted first

and the operation applied to color segments.

Suppose we conduct color segmentation first to separate the individual object in an image
into color segments, and identify the region of interest by locating the color segment
having the largest sum of elements for assigning colors. It is expected that more
quantization levels will be allocated to the color segment that constitutes a larger area of
the image and hence a larger sum of RGB values. Since colors having large coverage
might not possibly be the same as colors that are important in contributing to the image
quality, our aim to derive a mechanism to account for contextual information of an image

might not be achieved.

Figure 5-13(b) is a quantized image “Pool” produced by performing color segmentation
first with the technique based on the split and merge algorithm suggested by Horowitz
and Pavlidis [18], then applying the quantization operations of our proposed algorithm to
the colors segments followed by spatial error diffusion using the Floyd and Steinberg

error diffusion filter. Obviously, the image quantized using color segments for identifying
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regions of interest, similar to the other statistical quantization algorithms, has problem in
allocating enough yellow to the billiard ball at the front due to the presence of large
number of green pixels in the image. The result is an increase in color reproduction error,
with the percentage of pixels having S-CIELAB AE > 3 increasing form about 3% using

fixed spatial segments to approximately 9.2% when color segments are used.

(a) (b)

Figure 5-13:  Color Images quantized by the Contextual algorithm using (a) fixed spatial
segment for operations, and (b) color segments for operations. Notice especially
the deficiency in the yellow color in (b), as more quantization levels are allocated
to the green pixels that give rise to an image segment of large coverage.
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5.8 Summary

We propose a new color quantization algorithm based on the contextual information of
the input image. Similar to other color quantization metheds, spatial error diffusion or
dithering is performed when mapping pixel values. Comparing with two ekisting popular
methods, our algorithm yields comparable PSNR before dithering (Table 5-1) and good

distributions of S-CIELAB errors after dithering (Figure 5-12).

By the use of a pseudo image, we provide a method for evaluating the contextual
information of the input image, allowing us to easily locate the dominant colors in an
image. We achieve this by dividing the image into 9 overlapping segments, which is a
consequence of using a binary number 4 as the divisor. Let C be the amount of
computations required for checking the pixel values of an NxN image and m be the
divisor, C = @N/mY>(m-1)%, i.e. C = 4N? (m-1/m) . According to the equation, it is
obvious that when m is much greater than 1, C approaches AN?, and hence a smaller
value of m will give a smaller value of C. Since 4 is the smallest binary number to be
used in this case, a scheme of 9 segments is developed. If a scheme of 16 segments is to
be devised and an overlap of half the area of 2 adjacent segments is to be maintained, an
image will be divided into 25 squares, i.e., each side being divided by 5. Since each side
has a dimension of 2, it is indivisible by an odd integer. Thus the resulting squares
cannot be all equal. If such a scheme is nevertheless implemented, the amount of

computations will be (2N15)2xl6 = (64/25)N2, while computations for the case with 9
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segments is (2N/4)*%9 = (9/4)N’. The ratio of computations is 1.14 tol, i.e., slightly

more computations are required for 16 segments.

Quantization is performed under the RGB color space, and color distance is used for
identifying visually similar color. The RGB color space is, however, not perceptually
uniform, which means a given change in any coordinates with the same Euclidian
distance does not correspond to the same perceived color difference in all regions of the
color space. In principle, a perceptually more uniform space such as CIELAB is more

appropriate for the process.

Suppose during the course of color quantization, we transform the color after color
extraction from RGB format to CIELAB format, identify any visually similar colors
within the CIELAB color space, transform the resulting colors determined in form of L*,
a* and b* back to RGB and continue to quantize the image in the RGB space. The PSNR
values of the resultant images are given in Table 5-5. The results imply that the
conversion could degrade the PSNR by more than 2 dB, which indicates the 'overall
performance with color extraction operating in a uniform color space with a subsequent
conversion may not be better than a quantization completely in RGB. Since most
common displays operate in the RGB mode, an advantage of performing the quantization
wholly in RGB is an climination of computational errors created by transforming

processes between color spaces.
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SNR (dB)
Color Space Pool Woman Shop Blythe
tRGB 32.87 29.54 2794 28.53
tCIELAB 30.78 27.70 25.89 26.75

Table 5-5: PSNR (in dB) of pictures reproduced after color quantization by the Contextual
Algorithm. The division process within the algorithm terminates when the size of the
input image array has reached 8x8. tAfter color extraction, visually similar colors are

identified in RGB and CIELAB color space (Refer to Figure 5-4).
In our experiments, we study the overall performance of our proposed algorithms by
measuring the color reproduction errors using the S-CIELAB color difference metric.
With contextual information taken into account, the superiority of our algorithm lies in
the capability to focus on the regions of an image having important color information,
thus allocating more quantization levels to these regions. Let us consider an example. The
“Pool” image has been selected for its wide range of colors. Figure 5-14 is the S-CIELAB
error images of 3 copies of “Pool” showing the spatial distribution of color reproduction
errors resulting from different color quantization schemes. As indicated by the figures, it
is apparent that our algorithm outperforms the other algorithms in providing a good
selection of colors on the billiard balls exhibiting a smooth transition from dark to bright
primary colors. Notice especially the deficiency in the yellow color in the images
quantized by other methods. Due to the presence of large number of green pixels!in the
image, more quantization levels are allocated to the green colors in the background,
despite the fact that the billiard balls need more colors such that an image with optimized
image quality can be reproduced. This is a fundamental problem of those statistical
quantization algorithms that do not account for the spatial or contextual information of

the input image.
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As more computation is involved in the analysis of the input image, our algorithm
requires more execution time as shown in Table 5-6. Operating with a 600-MHz personal
computer, the execution times for Median Cut range from 94 to 172 seconds, for Octree

145 to 249 seconds, and for the Contextual algorithm 210 to 372 seconds.

(a) (b) 0

Figure 5-14:  S-CIELAB error images of 3 copies of “Pool” reproduced from (a) the
Contextual algorithm (b) Median Cut and (c¢) Octree. A higher intensity indicates
a higher AE. Pixels with AE > 5 are patched in green. In (b) and (c), more errors
are found among the billiard balls than in (a).

Execution time
|Quantization (sec) Woman Pool Shop Blythe
Scheme
Contextual Algorithm 210.91 372.84 330.92 289.75
Median Cut 937 17231 99.76 164.8
Octree 181.09 248.65 145.22 227
Table 5-6: Execution times (sec) of different quantization algorithms by a 600-MHz

personal computer.
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Chapter 6

COLOR QUANTIZATION BY THREE-DIMENSIONAL
FREQUENCY DIFFUSION

As mentioned in previous sections, the Euclidean distance in the RGB color space is
not consistent with the way the human visual system deals with color difference.
Theoretically, a luminance—chrominance color space that correlates with human
color perception is more suitable to bé adopted than the RGB for many applications.
The transformation processes between color spaces ?s, however, bound up with
computational errors. As a result, the overall performance of any color quantization
scheme that involves conversion between color spaces may not be better than a
quantization completely in RGB. For this reason, we propose a simple but effective
color quantization technique. Our approach is to select the colors of the image with
the highest frequency of occurrence to be the colormap entries from the
corresponding 3D color histogram. We identify the color representatives by
iteratively subdivide the 3D color histogram into subspaces in a deterministic
manner until the subspace is represented by one representative color. Based on the
same principle that once a pixel is quantized, error will be introduced and this error
should affect the quantization of the neighboring pixels, we perform error diffusion
immediately after a color representative is selected by the use of a 3D diffusion

filter. In this way, error is diffused and added to the frequency counts of the
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neighboring colors. While operating in the RGB color space, the algorithm is
capable of producing similar effect as it does under the YUV color space with no
transformation of the image required. We achieve this by using a 3D frequency
diffusion filter computed to preserve the shape and hence the color distributing

features of the YUV color space.

6.1 Neighbourhood

Consider a population residing in the RGB color space. Every pixel in an image is
treated as a 3x1 vector that constitutes a single point, v,= (v_gR, v,.G, va)T, where 5 =0,
1,2, ..... (Ly X Ly)-1 for an image of size (L, X Ly), and T denotes the transpose of a
vector. In this color space, pixels of the same color are accumulated, giving rise to a
3D color histogram. Let X, be the input 3D color space of size NxNxN, which
contains the histogram, where N= 2" and r equals to the number of bits per channel.
Usually r is smaller than the original bit resolution of the image so as to scale down
the histogram to better fit a palette of 256 entries. For example, a 24-bit image
having 8 bits/channel would have a histogram of 5 bits/channel or N = 32. There are
32x32x32 = 32,768 clusters or cells. With most images, a 5-bit histogram is

sufficient to yield good results.
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Our algorithm is a two-step iterative algorithm. Each iteration, we first identify the
colors of the image having the highest frequency of occurrence according to the
input histogram Xyo). With a naive scheme that picks all the clusters with the
highest frequencies, it is likely that the palette will contain many entries of similar
colors, neglecting other less popular colors. To prevent this, we consider a

neighbourhood or subset of a color space:

Xiore) illiomioni) = { Xiorg) k-1(hctx, muty, i +2) | x, y, 2 € 0,1,..., 2w~ (D

where k=12, ...,r-1, w= 27%1 and I, my and ny each takes the values of 0, w

and 2w,

In eq (1), a higher & refers to a smaller subspace such that Xy, o represents the
original input. A space is divided into 27 overlapping subspaces, each occupying 1/8
of that space. The frequency f; associated with a subspace Xiory) « is defined as
(2w—'l)(2w—l)(2w—1)
file,me . n )= Z Z ZX(lk+x,mk+y,nk+z) (2)
x=0 y=0 z=0

The highest f; is selected and the corresponding Xy,r) « is subdivided according to eq
(1) until X 1, which is the finest level containing 8 clusters of the original

histogram in each subspace. After identifying the particular Xior) r-1 with the highest
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f-1, the last step is to pick the single cluster having the highest frequency from that
subspace, which does not require any summation in eq (2). The color of the final

cluster becomes an entry in the palette.

With N=32, r = 5, the index k varies from 1 to 4 and each color space is divided into
27 overlapping subspaces as shown in Figure 6-1. A palette entry is determined after
4 iterations of dividing color spaces and 5 iterations of seeking the maximum

frequency.

The process, together with frequency diffusion, allows ﬂgxibility by providing more
possible paths to reach a particular location without being trapped in a local
optimum. Let us consider a simplified example of picking 2 colours from 2 disjoint
neighbourhoods Ny and N». Suppose N; contains 2 major clusters C, and Cp, while
N, contains another 2 major cluster C. and Cg such that their frequencies fo> fo > fe
> fi but with f. + f4 > f,. With a simple scheme of taking the highest counts, C, and
Cp, which could be quite close in hue, will be chosen. When considering the
frequencies of neighbourhoods, C, will be first chosen and f, removed (see eq (5)
below). The frequency in Ny {f,) is now smaller than that in Ny (f;. + fu), therefore C,.
will be selected instead as the second entry of the- palette, which would contain more

varieties.
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6.2 3D Frequency Diffusion

The principle of frequency diffusion is similar to error diffusion that once a pixel has
been quantized, error is introduced, which will affect the next color to be picked.
Here frequency diffusion is performed in a 3D color space after choosing a cluster to

be an entry in the palette.

b, T 4 1

X ' w

Figure 6-1: A pictorial schematic showing 3 of the 27 overlapping subspaces obtained
according to eq (1). From left to right, they are Xi(2w,0,2w), Xi(2w,w,2w) and
Xi(2w,2w,2w).

To borrow the concept of quantization, an integer dot value is defined. Let f; be the
total frequency of X, and f the frequency of a cluster in X,,,. With an 8-bit
palette, we can scale f; to 256. Then the frequency density ¢ = f/ f can be calculated
and a fractional dot value d = 256x ¢ can be assigned to a cluster. When a cluster 1s

chosen, a dot value is assigned by a quantization process O( ):

O(d) = dot = max (1, round(d)) (3)
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where round( ) rounds the argument to the nearest integer. This function is required
because experimental results show that there may exist in a natural picture a few
clusters with a dot value larger than 1. Assuming that values in Xy are normalized

to 256, the error is:
e, m,n)=X(, m n)-dot(l, m, n) 4)

where is X the normalized color space.

The quantization error e{l,m.n) is then diffused and added to the frequency of the
neighbouring cluster, giving rise to an error histogram E. A 3D filter with a
convenient geometric shape, e.g. a sphere, and coefficients @ is defined for the

diffusion process. The error histogram is updated as follows:

0, if (ijk)=(Lmn)

X3, j.k)=E(@,jk) ={ (3)

X (i, j. k) + wyel,m,n), otherwise

where the sum of all @ ; = 1. When a part of the filter extends outside the boundary
of the color space, the part is folded back into the space. After the frequency
diffusion, the histogram X is updated. The quantization process is repeated until all

palette entries are filled.
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The frequency diffusion process regulates the selection of the palette entries such
that representative colors may be chosen from clusters not too close together. In a
normal picture, most dot values d are less than 1, which will generate negative errors
e. If Q is the window of support for the frequency diffusion filter, all clusters within
Q are penalized in being selected in the following iteration. Hence m-ore variation in

the palette will be obtained.

6.3 Algorithm

Step 1: Prepare a suitable color histogram Xp of dimensions NxNxN in a color space.
For example, with a 24-bit image, we can set up a 5-bit histogram in the
RGB space, i.e., there are 32x32x32 clusters. A 5-bit histogram is sufficient
for most pictures.

Step 2: Specify the shape and coefficients of a 3D filter for frequency diffusion.

Initialise an error histogram E(x,y,z) having the same size as Xp. Set r =

logoNV and k =1.

Step 3: Divide an input histogram X;-; into 27 overlapping subspace according to eq

(1). Find the frequency f; of each subspace X; according to eq (2). Seek the

subspace X" having the highest f;.
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Increment k. Set X™ as X;_1, the input histogram, and repeat Step 3 until £ =
r— 1.

Step 4: Identify the cluster with the highest frequency from the 8 clusters within
X1, the final histogram found in Step 3. Select the color of that cluster as
an entry of the palette. (Referring to Figure 6-1, each subspace of the size
2x2x2 will contain a total of 8 clusters.)

Step 5: Scale the total frequency f£; to 256 dots. Determine the dot value of the cluster
found in Step 4 according to eq (3). Compute and diffusion the error as

stated in eqs (4) and (5). Update the histogram Xo.

Step 6: Repeat Step 3 to Step 5 until the whole palette is filled.
6.4 Experiment and Discussions

The test images used for evaluation of the algorithm are shown in Figure 6-2. To
start with, we test our algorithm in the RGB color space. For the frequency
diffusion, spherical filters enclosed in 3x3x3 and 5x5x5 cubes are used, and the

filter coefficients are given in Figure 6-3 and Figure 6-4.

The PSNR values of several test images quantized by the 3D frequency diffusion

algorithm and by two other algorithms, Median Cut and Octree under RGB color
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space are given in Table 6-1. All the images produced by 3D frequency diffusion
give high values in PSNR, indicating a good performance of our proposed algorithm

compared to the other colour quantization schemes.

To solve the problem of contouring artefacts, we perform spatial error diffusion by
using the Floyd and Steinberg error diffusion filter during pixel mapping as in the

previous section. The resultant images are shown in Figure 6-5 to 6-9.

Again, we study the overall performance of 3D frequency diffusion with spatial
error diffusion by measuring the color reproduction errors using the S-CIELAB
color difference metric. Table 6-2 tabulates some statistics of S-CIELAB AE of the
test images and a typical plot of the distributions of AE of the corresponding images
is shown in Figure 6-10. The results show that our algorithm behaves equally well as

Median Cut and more consistently with different types of images than Octree.
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Image | Woman Pool Shop Musicians | Blythe

Filter*
SP3 29.34 30.88 28.82 30.09 29.61
B | SP3a 29.23 30.71 28.98 30.01 29.54
2 | SP5b 29.28 30.76 29.07 30.07 29.52
SP5c 29.27 30.81 29.01 30.08 29.55
£ | Median Cut 29.49 32.63 28.84 29.82 29.90
£ | Octree 30.50 | 33.72 28.47 29.76 30.44

Table 6-1: PSNR (in dB) of pictures reproduced after color quantization by 3D frequency
diffusion (FD), Median cut and Octree under RGB color space.
* Format of filter in 3D frequency diffusion, SPms :
m — the filter is enclosed in an mxmxm cube, e.g. 3x3x3.
a, b, ¢ — different filter coefficients as shown in Figure 6-4.
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Figure 6-2: The test images — (a) Woman (b) Pool (c) Shop (d) Musicians and (e) Blythe.
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Figure 6-3: Weights of 3D frequency diffusion filter SP3, where the centre carries a weight 0.
Radius = 1 in D, (4-neighbour) distance. Filter coefficients @y, = Wy,./6, where
Wiy, =1 if distance D =1 as shown on the diagram; otherwise w,y, =0.
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Figure 6-4: Weights of filter SP3a.
SP5a- Radius = 2 in D, distance. Weight w = | if distance D = 1 and 2;
otherwise w = 0. Coefficients Wy, = Wyy/ ZWay
SPsb:w=1ifD=1landz=0; w=05ifD={12}andz#0.
SPsc:w=1ifD=1; w=05i{D=2.
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Figure 6-5: Test image “Woman” quantized by 3D frequency diffusion under RGB color space
followed by spatial error diffusion. The filter used in (a) (b) (c) and (d) are SP3,
SP3a, SP5b and SP5c respectively. Notice especially how the algorithm performs in
reproducing the background exhibiting a smooth color transition, which is subjected
to contouring artifacts. The images show that the various filters work equally well.
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Figure 6-6:

(d)

Test image “Pool” quantized by 3D frequency diffusion under RGB color space
followed by spatial error diffusion. The filter used in (a) (b) (c) and (d) are SP3,
SP5a, SP5b and SP5c respectively. Notice especially how the algorithm performs
in selecting colors on the billiard balls exhibiting a smooth transition from dark to
bright primary colors. The images show that the various filters work equally well.
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Figure 6-7:

Test image “Shop” quantized by 3D frequency diffusion under RGB color space
followed by spatial error diffusion. The filter used in (a) (b) (c) and (d) are SP3,
SP5a, SP5b and SP5c respectively. Notice especially how the algorithm performs
in reproducing colors on the window display, in particular the areas around the

lightings that are subjected to contouring artifacts. The images show that the
various filters work equally well.
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Figure 6-8:

= Z

() (d)
Test image “Musician” quantized by 3D frequency diffusion under RGB color
space followed by spatial error diffusion. The filter used in (a) (b) (c¢) and (d) are
SP3, SP5a, SP5b and SP5c respectively. Unlike the other test image, this image
does not contain large area exhibiting smooth color transition. Whether the
pictures consisting evenly of many different colors or a few dominant hues, the

proposed algorithm yields good results by observation. The images show that the
various filters work equally well.
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Figure 6-9: Test image “Blythe” quantized by 3D frequency diffusion under RGB color
space followed by spatial error diffusion. The filter used in (a) (b) (c) and (d)
are SP3, SP5a, SP5b and SP5c¢ respectively. Notice especially how the
algorithm performs in reproducing colors on the forehead of the doll
exhibiting a smooth transition. The images show that the various filters work
equally well.
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color quantization and error diffusion under RGB
using filter SP5c as shown in Figure 6-4.
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algorithm is able to produce good results with
small median and mode.



6.5 Cross-Space Operation

Although for most color displays, processing of colors is performed on the R, G and
B components, the requirement for human vision syst?:m, however, would favour a
different scheme. Since human vision is more sensitive to changes in luminance than
to changes in chrominance, original image quality can be retained if one is able to
maintain optimal details in luminance. This would be difficult to accomplish in the
RGB color space because the perception of color differences in RGB is highly non-
uniform and the contribution of R, G and B components to brightness sensation is an
intricate matter. Given three sources of R, G and B of the same luminance, the green
will always appear the brightest and the blue will be the darkest of the three.
Although blue has small contribution to the brightness sensation, human vision has
extraordinarily good color discriminatioﬁ‘capability in blue colors. For this reason, a
luminance—chrominance color space, i.e., YC,C, or YUV, which provides
independent luminance channel, is more suitable to be adopted in some applications
than thel RGB. In these cases, a cross-space operation is desirable and the 3D

diffusion algorithm comes in handy.
Table 6-3 is the PSNR values of the test images quantized by the 3D frequency

diffusion algorithm in YUV color space, provided the images are given in YUV

format (requiring no conversion from RGB).
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Image | Woman Pool Shop | Musicians |- Blythe

Filter*
SP3 33.26 3391 32.83 33.52 33.00
g SP5a 33.33 33.88 3291 33.63 3291
2 SP5b 33.38 33.87 32.88 33.62 33.00
SP5¢ 33.41 33.81 32.75 33.61 32.89
g Median Cut 34.01 35.11 33.48 33.63 3398
£ Octree 35.41 39.39 33.59 34.80 35.71

Table 6-3: PSNR (in dB) of pictures reproduced after color quantization by 3D frequency
diffusion (FD), under YUV color space requiring no conversion from RGB.
*The filters used in 3D frequency diffusion are as stated in Table 6-1.

Comparing to Table 6-1, it is obvious that a picture quantized in YUV without
conversion is able to give a PSNR approximately 3 dB higher than the case in RGB.
Nevertheless, most common displays operate in the RGB mode and a conversion of

the colormap is required.

Suppose an image is given in the RGB format and it is to be quantized with
frequency diffusion in the YUV space. One method is that we transform the image
to YUV, process it with a filter in that color space and then transform the resulting
colormap back to RGB. The results as shown in Table 6-4 reveal that the conversion
could deérade the PSNR by about 4 dB, which indicates that the overall
performance in YUYV, even if the source image is given in YUV format, may not be

better than a quantization in RGB.
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Image | Woman Pool Shop | Musicians | Blythe

Filter*
SP3 2743 28.19 23.81 27.94 2775
E SP5a 27.28 28.46 23.68 27.93 27.65
a SP5b 27.22 28.20 23.77 2773 2771
SP5c 27.31 28.18 23.82 27.90 2772
g Median Cut 27.28 26.51 26.68 26.05 27.07
g Octree 28.27 2946 | 2691 27.13 28.57

Table 6-4: PSNR (in dB) of pictures reproduced after color quantization by 3D frequency
diffusion (FD) with the image transformed to YUV, processed with a filter in
that color space and then transform the resulting colormap back to RGB.

Another approach is that we keep the components as they are, transform the
coordinates of the filter from YUV to RGB and perform the frequency diffusion in
the RGB space. Obviously, the transforming the filter involves only a small amount
of computation as its size is very small. Also, the same transformed filter can be

used to process many different images.

The conversion from YUV to RGB with the values of each component kept within a

dynamic range of 5 bits (and ignoring the bias) is given by [49]:

R) (11644 0 15960 Y'Y
G |=|1.1644 -03918 -0.8130{U 7
B) \l.16a4 20172 0 )V
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If a filter is regarded as a 3D shape contained within a cube in the YUV space, the
above transformation involves a shearing, a translation and a magnification of the
cube. The 3 basis vectors in eq (7) are E\= {1.1644 1.1644 1.1644]T, E»=[0 -
0.3918 2.0172]T and E3= [1.5960 -0.8130 0]7, where T denotes the transpose. To
unify the magnification factor in all dimensions, we normalize the vectors, e, = Ey/

|Exll, where ||[Eq| is its norm. Hence we obtain

0.5774 0 0.8911
M ={0.5774 -0.1906 -0.453% 8
0.5774 09817 0 ®

Taking a 3x3x3 cube as an example, there are altogether 27 cells having coordinates
ranging from (1, 1, 1) to (3, 3, 3). Since muitiplying by M will result in a shift in
origin and decimal parts in the coordinates, medifications are required to handle
these situations. The shift can easily be removed by mapping the minimum values of
the respective components (R, G and B) to 1. The effect of truncating the decimal
part is minimized by increasing the resolution of the coordinates of the cube. We
achieve this by enlarging slightly the cube, i.e., the coordinates are multiplied by a
constant factor such that, after rounding, the integer parts carry most significance of
the numbers. A 3x3x3 cube may be mapped to a 7x7x7 cube such that the centre in

the first filter, namely, (2, 2, 2) is mapped to the centre of the second, namely, (4, 4,
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4). Having mapped the coordinates between the filters, their associated coefficients

are mapped accordingly.

Figure 6-11 shows a part of the quantized image “Blythe” using the SP5c filter (see
Figure 6-4) with the coordinates of the filter transformed from YUV to RGB. By
using a YUV-transformed frequency diffusion filter in the RGB space, our algorithm
is able to reproduce atypical colors as it does under the uniform YUV color space,
while at the same time retains similar PSNR (see Table 6-5). As indicated by the
Fig. 6-11(c) and 6-11(d), the quantized images produced by the cross-space
operation show a marked resemblance to that produced in the original YUV color
space, without ignoring the greenish eye shadow around the eyes of the doll.
Experimental results shows that the best result is produced using SP5c filter for both

high frequency and low frequency images.

Table 6-6 tabulates some statistics of S-CIELAB AE of the test images. Obviously,
with “Pool” and “Shop”, the 3D frequency diffusion algorithm performs more or
less the same as Median Cut but better than Octree. With images consisting of a few
dominant colors covering relatively large areas, Octree tends to select fewer
representative shades of colors from these areas than the other 2 algorithms.
Consequently the distribution of error would become bimodal as shown in Figure 6-

t0(b). In Figure 6-11(b), where the error image of “Pool” from Octree is depicted,
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we observe that a large background area near the lower left corner exhibits high
errors, whereas with 3D frequency diffusion, errors shown in Figure 6-12(a) are

dispersed among the ball and other small items.

@ =) (b)

(d)

Figure 6-11: Effect of a cross-space operation indicated by the preservation of atypical
colors. (a) The eyes of the original “Blythe” (b) Quantized image in the RGB
color space (¢) Quantized image in the YUV color space (d) Quantized image
in the RGB color space with the filter transformed from YUV. Note that in

(b), the greenish eye shadow around the eyes is missing. The result in (d)
shows a resemblance to that in (c).

89



Imagel Woman Pool Shop Musicians| Blythe
Filter
SP3 28.92 30.72 28.53 29.70 29.32
E SP5a 28.28 30.57 28.17 29.14 28.56
2 SP5b 28.51 30.71 28.21 29.41 28.44
SP5c 28.70 30.66 28.48 29.33 28.83
£ (Median Cut | 27.28 26.51 26.68 26.05 27.07
“’é Octree § 28.27 29.46 26.90 27.13 28.57
Table 6-5: Performance of cross-space operations in terms of PSNR in dB.

3D FD is performed in RGB with a filter transformed from YUV. Filter
coefficients are shown in Figure 6-3 and 6-4. where the z-axis is aligned to the

Y (luminance)-axis.

t For Median Cut and Octree, the source images are transformed from RGB to
YUV for quantization and the resulting palettes are reconverted to RGB.
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(a) (b)

Figure 6-12:  S-CIELAB error images of 2 copies of “Pool” reproduced from (a) 3D
frequency diffusion and (b) Octree. A higher intensity indicates a higher
AE. Pixels with AE > 5 are patched in green. In (b), large errors are found in
the lower right comner of the picture, whereas errors are dispersed among
the ball and other small items in (a).

6.6 Summary

In this chapter, a new color quantization algorithm, 3D frequency diffusion, based
on the principle of frequency diffusion in a color space is proposed. The algorithm is
simple yet effective. Although the process requires only simple arithmetical
calculations as described in the steps in section 3, it performs consistently well with
various types of color images. Similar to other color quantization methods, spatial

error diffusion or dithering is performed when mapping pixel values. Comparing
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with some existing popular methods, our algorithm yields high PSNR’s before
dithering (Table 6-1) and comparable or even better distributions of S-CIELAB

errors after dithering (Figure 6-12).

Since frequency diffusion is realized with a 3D filter under a color space, the
geometric shape and coefficients of the filter can be manipulated to suit a particular
applica[ioﬁ. The most convenient shape of the filter is a cube or a sphere contained
within a cube. Quantization results show that cubes with 3 or 5 units per side are
good choices. The use of a filter facilitates a cross-space operation mentioned in
section 3. Instead of transforming the whole block of data between different color
spaces, only the filter coefficients in a desired space are mapped to the existing
space of the image. Having transformed a filter once. many images can be processed
by the same filter. The advantage of the Cross-space operation is a reduction in
computational errors, such as rounding errors, because two transformation processes
between color spaces. namely, one for the original image and another for the
colormap after quantization, can be eliminated. In Table 6-1, we can see that a
picture quantized in RGB has a PSNR of about 30 dB. Supposing there is an image
given in YUV format (requiring no conversion from RGB) and quantized in YUV,
its PSNR would be about 33 dB. i.e., 3 dB higher than the cuse in RGB. However.
most common displays operate in the RGB mode and a conversion of the colormap

is required. Empirical results reveal that the conversion could degrade the PSNR by



about 4 dB, which indicates that the overall performance in YUV, even if the source
image is given in YUV format, may not be better than a quantization in RGB. With
the cross-space operation, the PSNR’s are maintained, which is revealed by
comparing Tables 6-1 and 6-5. Figure 6-11 gives one example to illustrate the effect
of cross-space operation. From Table 6-6, consistency in performance of 3D
frequency diffusion in terms of S-CIELAB errors is demonstrated; it is observed that
whether with pictures consisting evenly of many different colors or a few dominant

hues, the proposed algorithm yields good results.
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Chapter 7

CONCLUSIONS

In this work, we have proposed two algorithms, the Contextual algorithm and the 3D
FD algorithm. The objective of the Contextual Algorithm is to incorporate spatial or
contextual information of an input image to the process of color quantization, thus

allowing quantization to give priorities to different regions of the image.

In our approach, we evaluate the contextual information of the input image by the
use of a pseudo image generated by summing up the RGB values of the original
image at each pixel. To prevent quantization being trapped in a local optimum for
assigning colors, a nei ghborhood or subset of the image is considered. We identify
the parts of the image we want to emphasize by iteratively divide the pseudo image
into nine overlapping subl.'cgions in a deterministic manner. We compare their local
intensities and locate the subregion containing the largest value for assigning colors
as well as further division. Before proceeding to the next subregion of the highest
local intensity, the colors- of the highest frequency counts are extracted from each of
the nine subsegments sequentially for construction of colormap. Once a color is
selected as the colormap entry, the input image arrays will be updated to avoid the

same color being selected in the next iteration of color extraction. The process of
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division and color extraction is stopped when the final subsegment has reached a
particular size and then starts over again until the whole colormap is filled by 256
colors. In this way, priority is given to the regions of an image having the greatest
need for colors, allocate more quantization levels to them, and then move to another

part of the image.

In considering the way the human visual systern deals with color difference, the
second algorithm, the 3D FD algorithm, is concerned with color space. The
algorithm is a simple but effective color quantization technique, which performs 3D
frequency diffusion in RGB color space. Our approach is to select the colors of an
image with the highest frequency of occurrence to be the colormap entries from the
corresponding 3D color histogram. Similar to the Contextual Algorithm, the
frequencies of colors in a neighbourhood are considered to avoid choosing too many
entries from clusters nearby. We identify the color representatives by iteratively
divide the 3D color histogram into subspaces in a deterministic manner and compare
their frequencies until the subspace contains one target color, i.e., a cluster. Each
cluster of the histogram carries a fractional dot value d equal to its frequency density
times the number of entries of a colormap. When a cluster is chosen, an integer
value nearest to ¢ will be removed from the subspace. An error will thus be
introduced and diffused to its neighbours according to a 3D frequency diffusion

filter. In a normal image, most clusters carry a d less than 1. In this way, a self-
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correcting task is performed to penalize the neighbours of a color selected each
iteration. Under this arrangement, a cross-color-space operation can be achieved by
transforming the 3D frequency diffusion filter. As the geometric shape of a
frequency diffusion filter in space A is transformed to space B, the color distributing
features of space B is preserved. While operating in the RGB color space, our
algorithm is capable of producing similar effect as it does under the YUV color

space with no transformation of the image required.

7.1 Comparison of the Contextual algorithm and the 3D FD algorithm

Instead of using those images commonly used such as Lena and Pepper
containing large areas in similar tones, in our experiments, we use images with
wider range of colors including both areas of smooth gradation (low frequency} and
fine details (high frequency) for evaluation of our algorithms. As indicated in Figure
5-5, for example, “Pool” has a large background with nearly uniform color, and
billiard balls exhibiting a smooth transition from dark to bright primary colors.
“Woman” has a large continuous tone background in grayscale with small details
comprised of primary colors in the front. “Shop” has a large coverage of smooth
gradation in the window display and fine details at the bottom. “Blythe” is

composed of several large areas of colors in different ranges.
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In this section, the images we used to coi’npare the performance of the two proposed
algorithms are those used in evaluating the Contextual algorithm as shown in Figure
5-5. For the Contextual algorithm, the results we used for comparison are those
obtained by terminating the division process within the algorithm when the final
input image array has reached the size of 8x8 and the colors selected from each
subsegment are those among the first three highest frequency counts. For the 3D FD
algorithm, frequency diffusion is performed in RGB using filter SP5c transformed

from YUV (see Section 6.5).

In our experimenfs, we use the peak signal-to-noise ratio (PSNR) as a gauge to
measure the effectiveness of the resulting palettes. Similar to other color
quantization methods, spatial error diffusion is performed when mapping pixel
values to solve the problem of contouring artefacts. The resultant images are
depicted in Figure 7-1 to 7-4, and the corresponding color reproduction errors are
measured by the use of the S-CIELAB color difference metric. Comparing with two
existing popular methods, both algorithms yield high PSNR before dithering (Table
7-1), and comparable or even better distributions of S-CIELAB errors after dithering

(Table 7-2 and Figure 7-5). .
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According to the results, the performancé of the Contextual Algorithm and the 3D
FD algorithm in solving color quantization problem is more or less the same. With
spatial information of the input image incorporated into the process of color
quantization, it is obvious that the Contextual Algorithm produce images with better
perceived quality than images produced by 3D FD, and better results in reducing
color reproduction errors referring to Table 7-2 and Figure 7-5. However, the
Contextual Algorithm is very computational intensive comparing to the 3D FD
method. As more computation is involved in the analysis of the input image,
excessive execution time is required by the Contextual Algorithm as shown in Table

7-3, which is often the trade off between quality and complexity.
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Figure 7-1:  Test image “Woman™ quantized by (a) the Contextual algorithm, (b) 3DFD,
(c) Median cut and (d) Octree followed by spatial error diffusion. Notice
especially how the various quantization schemes differ in reproducing the
background exhibiting a smooth color transition.
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Figure 7-2:

(c) (d)

Test image “Pool” quantized by (a) the Contextual algorithm, (b) 3DFD, (¢)
Median cut and (d) Octree followed by spatial error diffusion. Notice
especially how the various quantization schemes differ in selecting colors
on the billiard balls exhibiting a smooth transition from dark to bright
primary colors.
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Figure 7-3:

Test image “Shop” quantized by (a) the Contextual algorithm, (b) 3DFD, (c)
Median cut and (d) Octree followed by spatial error diffusion. Notice
especially how the various quantization schemes differ in reproducing colors
on the window display, in particular the areas around the lightings that are
subjected to contouring artifacts.
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Figure 7-4:  Test image “Blythe” quantized by (a) the Contextual algorithm, (b) 3DFD, (c)
Median cut and (d) Octree followed by spatial error diffusion. Notice
especially how the various quantization schemes differ in reproducing colors
on the forehead of the doll exhibiting a smooth transition.
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Image :

Quantization Woman Pool Shop Blythe
Schemes

Contextual Algorithm 29.54 32.87 27.94 28.53
3DFD 29.40 30.66 28.48 28.20
Median Cut 29.92 32.63 28.84 28.31
Octree 31.27 33.72 28.47 29.10
Table 7-1: PSNR (in dB) of pictures reproduced after color quantization by the

Contextual algorithm, 3D FD, Median cut and Octree.

Image Woman Pool Shop Blythe
Quant median|mode|pixels|median|mode|pixels|median|mode|pixels | median| mode|pixels
ization >3AE >3AE >3AE >3AE
Schemes (%) (%) (%) (%)
Contextual|0.9834 | 0.46 | 8.99 10.3602| 0.02 | 2.69 |0.9563 | 0.57 | 14.49}1.01801 0.02 [ 15.02
3DFD 09411047 [12.4110.7757] 1.09 | 3.48 [0.9362| 0.41 |14.45}1.3106} 0.03 }20.37
MC 1.0839] 0.61 {10.91{0.7872| 1.09 | 3.63 | 1.1337} 0.41 | 13.69|1.00041 0.04 | 8.86
ocC 1.0243|0.41 | 7.82 [0.9753} 3.19 [ 18.12;1.7045] 1.35 [ 19.37|1.0463 | 0.02 | 7.34
Table 7-2:  Statistical parameters of S-CIELAB AE of the Contextual algorithm, 3D FD,

Median Cut (MC) and Octree (OC) followed by spatial error diffusion.

Execution time

Quantization (sec) | Woman Pool Shop Blythe
Scheme
Contextual Algorithm 210.91 372.84 330.92 289.75
3DFD 19.77 20.93 18.73 17.96
Median Cut 93.7 172.31 99.76 164.8
Octree 181.09 248.65 145.22 227
Table 7-3:  Execution times (sec) of different quantization algorithms by a 600-MHz

personal computer.
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Figure 7-5:  Distributions of the S-CIELAB AE of (a) “Woman” (b) “Pool” (c¢) “Shop™ and
(d) “Blythe” after color quantization and error diffusion.
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7.2 Summary

e The Contextual algorithm, which performs color quantization based on the
contextual information of the input image, is superior in focusing on the regions
of an image having important color information. It is, however, very

computational intensive and requires considerable execution time.

e The performance of the Contextual algorithm is affected by two factors: the size
of the final subsegment at which the division process terminates, and the number
of colors to be selected at a time from each subsegment for color extraction. For

both factors, assumptions are made and the initial criteria are set arbitrarily.

e The process of division and color extraction is stopped at a level that, by
assumption, is sufficient to include less popular colors that may be essential in
contributing to the final image quality. On the other hand, further subdivision to
extract colors from subregions of smaller size will be of no significance in

contributing to the final image quality.
e From the experiment, it is found that best results are obtained by terminating the

process of division and color extraction within the algorithm after the final input

image array has reached a size 8x8. Terminating the division process at other
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sizes such as 16x16 or 4x4 will not made any improvements to the overall

performance of the algorithm.

During color extraction, more than one color is selected at a time from each
subsegment to ensure the selection of dominant colors in case the subsegment
contains a large part of analogous background colors. At the same time, it is
important to avoid selecting too many colors from a particular region, thus
giving the subsequent regions insufficient prominence and neglecting sorrie of

the important colors in these regions.

Best results are obtained when the colors among the first three highest frequency
counts are selected. While decreasing the number of colors to be extracted will
degrade the PSNR, increasing the number of colors to be selected will not

improve the performance of the algorithm either.

Instead of using fixed spatial image segments for operation, we use color
segmentation as a means to identify regions of interest for quantization to take
place. In this manner, priorities will be given to the colors segments that
_constitute a larger area of the image. Since colors of large coverage and colors of
great importance are not equivalent, our aim to derive a mechanism to give

priorities to areas having important color information might not be achieved.

107



o The 3D FD algorithm realizes frequency diffusion with the histogram of a color
image. The algorithm is fast and effective. It is applicable to images of any size
in any color space. All steps require only simple arithmetical calculations, but

the algorithm performs consistently well with various types of pictures.

e The most time-consuming part of the algorithm is the preparation of the
histogram, which has a complexity of N’ (square class). For the part of
frequency diffusion, the size of the histogram is fixed, i.e., independent of the
image size, and so is the diffusion filter, which cannot be larger than the
histogram itself. Hence the computational complexity of this part is a constant.
Other algorithms, such as Median Cut, Principle Component Analysis and
Octree also have an N complexity. However, they require more complicated
mathematical operations like finding statistical parameters or Eigenvectors of the

images.

e« By the use of a 3D frequency diffusion filter, error introduced during
quantization is diffused to its neighbours accordingly. In this way, a self-
correcting task is performed to penalize the neighbours of a color selected each

iteration.
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o The most convenient shape of the filter is a cube or a sphere contained within a
cube. Quantization results show that cubes with 3 or 5 units per side are good
choices and the best result is produced using SP5c filter for both high frequency

and low frequency images.

e The algorithm works well in RGB color space. However, it is observed that
images quantized in RGB tend to ignore atypical colors, especially near areas
showing smooth color transition. This problem is solved when the operating
color space has changed from RGB to YUV. However, the overall performance
in YUV, even if the source image is given in YUV format, is not better than a
quantization in RGB due to computational errors arises from conversion between

color spaces.

o Instead of transforming the whole block of data between different color spaces,
we achieve cross-color-space operation by transforming the coordinates of the

filter from YUV to RGB and perform the frequency diffusion in the RGB space.

e By using a YUV-transformed filter in the RGB space, the algorithm is capable of
producing similar effect as it does under the YUV color space, while at the same
time retains similar PSNR as in RGB. Since no transformation of the image is

involved, computational errors, such as rounding errors can be eliminated.
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e From our experimental results, it is obvious that the Contextual algorithm is able
to produce images with better perceived quality than the 3DFD as well as

Median Cut and Octree.

e Comparing to the other well established algorithms such as Median Cut and
Octree, 3D FD is simple, which does not invelve any complicated calculations
such as determination of eigenvector, and the performance is more consistent,
whether with pictures consisting evenly of many different colors or a few
dominant hues. Most importantly, it is able to perform cross-space operation

without transforming between color spaces.
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7.3 Further Development

The concept of quality in imaging is complex, especially when human factors are
involved. The overall quality of a color image is the integrated result of the spatial
pattern and color appearance. Since images are viewed by human, it is essential to
consider the physical response of eyes to spatial patterns and the characteristics of

the HVS to color perception in designing color quantization algorithms.

HVS models utilize human visual sensitivity and selectivity to model and improve
perceived image quality. Many HVS models for luminance as well as for colors
have been proposed to approximate the visual response of human eyes. The simplest
model is very often the practice of spatial filtering that implement one of the CSFs.
Besides, Weber’s law [31]{52][20], the modular transfer function (MTF) of a linear,
shift invariant system [5], or Daley’s angular dependence [58] are also commonly
used. These models have been applied in every aspect of digital imaging. The
application of Campbell’s MTF and Daley’s angular dependence in a direct binary
search of digital halftoning by Analoui and Allebach [1} is an example. Other
examples include the use of Kelly's CSF in color quantization of color image
sequence by Atkins et al [4], or the combining of the Nasanen [38] and Sullivan et al

[56] models in image analysis by Kolpatzik and Bouman[29].
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While this work has provided a method to perform color quanitzation based on the
contextual information of an input image, the incorporation of HVS models into the
algorithm would be a desirable aspiration to improve performance. The design goal
can simply be applyiﬁg spatial filters to the color image to model the perceptual
responses of the HVS in determining the regions of high interest. As color
appearance is a complex phenomenon and involves a larger number of parameters
and mechanisms to account for, the type of HVS effect to be simulated in order to
produc.e the best result remains an open question. Further research and systematic

investigations are needed to answer the question.

In the 3D FD algorithm, the color space is iteratively subdivided until the finest level
containing 8 clusters is reached, and the single cluster representing one target color
with the highest frequency is selected as a colormap entry. Since the original bit
resolution of the image is scaled down, a single cluster might not possibly contain
only one color in reality. Therefore, for development and optimization, we can
further subdivide the cells with high frequency that exceed a predetermined

threshold value such that more colors can be assigned to that cell by 3D FD.
Inspired by the methods developed for designing VQ codebook [14] [30] [39] [50],

we suggest employing the principle of codebook training as an iterative optimization

scheme after performing 3D FD. With the colormap obtained from the 3D FD
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algorithm as the initial codebook, the final result is subject to the way at which the
training data is selected. Suppose we make use of the mechanism that derived in
giving priorities to different regions of the image from the Contextual algorithm to
obtain the vectors for training. The advantages of the 3D FD algorithm can be
retained while the inherent weakness as a statistical quantization method that
neglects the spatial information of the input image can be eliminated. Such an

approach would also benefit coding and compression algorithms.
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