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ABSTRACT 

In order to perform complex tasks, Natural Language Processing (NLP) 

applications need to rely on knowledge resources, whose main building blocks have 

been identified in entities and relations (Herger, 2014). Given their affinity to 

semantic memory in human beings, these resources have often been referred to as 

models of semantic memory (Jones, Willits, & Dennis, 2015). 

In the last fifty years, a number of these models have been proposed in the 

cognitive, linguistic and computational literature (Jones, Willits, & Dennis, 2015). 

While the first generation models were mostly theoretical and were not designed to 

be computationally implemented (i.e. classic models), starting from the 1980s, a 

second generation tried to address the learnability issue by adopting representations 

of meaning that could be learnt automatically by observing word co-occurrence in 

natural text (i.e. learning models). 

Among the second generation models, starting from the 1990s, Distributional 

Semantic Models (DSMs) gained a lot of attention in the cognitive, linguistic and 

computational communities because they allow the efficient treatment of word 

meaning and word similarity (Harris, 1954), showing furthermore consistent 

behaviors with psycholinguistic findings (Landauer & Dumais (1997); Lenci, 

(2008)). Even though these models are strong in identifying similarity (and therefore 

relatedness), they were found to suffer from a major limitation, that is they do not 

offer any principled way to discriminate semantic relations held by words. In fact, 
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since they define word similarity in distributional terms (i.e. Distributional 

Hypothesis; Harris (1954)), they put together, under the umbrella of similar words, 

terms that are related by very different semantic relations, such as synonymy, 

antonymy, hypernymy and co-hyponymy (Santus, Lenci, Lu, & Huang, 2015a). 

In this thesis we address this limitation proposing several unsupervised methods 

for the discrimination of semantic relations in DSMs. These methods (i.e. APSyn, 

APAnt and SLQS) are linguistically and cognitively motivated (Murphy G. L., 2002; 

Cruse, 1986) and aim at identifying distributional properties that characterize the 

studied semantic relations (i.e. respectively, similarity, opposition and hypernymy), 

so that the DSMs are provided with useful discriminative information. 

In particular, our measures analyze the properties of the most salient contexts of 

the target words, under the assumption that these contexts are more informative than 

the full distribution, which is instead assumed to include noise (Santus, Lenci, Lu, & 

Huang, 2015a). In order to identify the most salient contexts, for every target we sort 

them by either the Positive Pointwise Mutual Information (PPMI; Church & Hanks 

(1989)) or the Positive Local Mutual Information (PLMI; Evert (2005)), and we 

select the top N ones, which are then used for the extraction of a given distributional 

property (i.e. intersection, informativeness, etc.). In all our methods, N is a 

hyperparameter that can be tuned in a range between 50 and 1000. 

Our measures are carefully described and evaluated, and they are shown to be 

competitive with the state-of-the-art, sometimes even outperforming the best models 

in particular settings (including the recently introduced predictive models, generally 

referred to as word embeddings; see Mikolov, Yih, & Geoffrey (2013)). Their scores, 
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moreover, have been used as features for ROOT9 (Santus, Lenci, Chiu, Lu, & Huang, 

2016e), a supervised system that exploits a Random Forest algorithm to classify 

taxonomical relations (i.e. hypernymy and co-hyponymy versus unrelated words), 

achieving state-of-the-art performances (Weeds, Clarke, Reffin, Weir, & Keller, 

2014). 

The thesis is organized as follows. The Introduction describes the problem and 

the reasons behind the adoption of the distributional framework. The first two 

chapters describe the main models of semantic memory and discuss how computers 

can learn and manipulate meaning, starting from word distribution in language 

corpora. Three chapters are then dedicated to the main semantic relations we have 

dealt with (i.e. similarity, opposition and hypernymy) and the relative unsupervised 

measures for their discrimination (i.e. APSyn, APAnt and SLQS). The final chapter 

describes the supervised method ROOT9 for the identification of taxonomical 

relations. In the Conclusions, we summarize our contribution and we suggest that 

future work should target i) the systematic study of the hyperparameters (e.g. the 

impact of N); ii) the merging of the methods for developing a multi-class 

classification algorithm; and iii) the adaptation of the methods (and/or their 

principles) to reduced matrices (see Turney & Pantel (2010)) and word embeddings 

(see Mikolov, Yih, & Geoffrey (2013)) 
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Introduction 

In the last decades, Natural Language Processing (NLP) has achieved 

impressive progress in modelling human language ability. Motivated simultaneously 

by engineering and scientific interests, the discipline led to the development of a 

large number of applications, which are able to perform almost any kind of linguistic 

task – including Question Answering (QA), Information Extraction (IE), Machine 

Translation (MT), Speech Synthesis (SS), and so on (Jurafsky & Martin, 2009; 

Manning & Schütze, 1999). These applications are not only useful (i.e. Google 

search engine and Siri’s voice are used by millions of users every day), but they also 

provide interesting insights about how humans actually manipulate language (Jones, 

Willits, & Dennis, 2015). 

The accuracy of these models has constantly increased not only thanks to the 

improvement of the algorithms, but also thanks to the adoption of richer and more 

powerful semantic representations (Lenci, 2010). Such representations are in fact of 

paramount importance for providing NLP applications with the necessary knowledge 

to perform complex tasks (Lenci, 2010). Since their role in NLP is similar to the one 

played by the semantic memory for human beings, they are generally referred to as 

models of semantic memory (Jones, Willits, & Dennis, 2015). 

Given their importance, methods for their automatic development and update 

assumed a key role in NLP (Lenci, 2010). In particular, several studies introduced 

novel methods for the automatic extraction, representation and manipulation of 
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entities and relations, which have been identified as the main building blocks of such 

resources (Herger, 2014). 

The focus of this thesis is to suggest some principled ways to provide a specific 

family of models of semantic memory, namely Distributional Semantic Models 

(DSMs), with information to discriminate semantic relations. DSMs models have 

gained particular attention in the cognitive, linguistic and computational 

communities because of their ability of efficiently treat word meaning and word 

similarity (Harris, 1954), showing furthermore consistent behaviors with 

psycholinguistic findings (Landauer & Dumais (1997); Lenci, (2008)). However, 

they were found to suffer from a major limitation: since they rely on a loose 

definition of similarity (i.e. distributional similarity as it is defined by the 

Distributional Hypothesis; Harris (1954)), they cluster together, under the umbrella 

of similar words, terms that related by different semantic relations, such as synonymy, 

antonymy, hypernymy and co-hyponymy (Santus, Lenci, Lu, & Huang, 2015a). Our 

objective is therefore to propose unsupervised methods (i.e. APSyn, APAnt and SLQS) 

that aim at identifying specific distributional properties of such semantic relations 

(i.e. respectively, similarity, opposition and hypernymy) to provide DSMs with 

principled ways for their discrimination. These features are finally combined in a 

supervised model (i.e. ROOT9) for the multi-class classification of taxonomical 

relations (i.e. hypernymy and co-hyponymy). 

A common assumption of our unsupervised measures is that for the 

identification of semantic relations the most salient contexts of the target words are 

more informative than their full distribution, which is instead assumed to include 
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noise (Santus, Lenci, Lu, & Huang, 2015a). In order to identify the most salient 

contexts, for every target we sort them by either the Positive Pointwise Mutual 

Information (PPMI; Church & Hanks (1989)) or the Positive Local Mutual 

Information (PLMI; Evert (2005)), and we then select the top N ones, which will be 

used for the extraction of the distributional properties that seem to characterize 

specific semantic relations (i.e. intersection, informativeness, etc.). In all our 

methods, N is a hyperparameter that can be tuned in a range between 50 and 1000. 

The thesis is organized as follows. In Chapter I, we present several models of 

semantic memory, discussing their ability of automatically learn semantic 

representations (i.e. word meaning). In this respect, we describe language as a system 

of symbols (Saussure, 1983) and meaning as a system of relations (i.e. both 

syntagmatic and paradigmatic ones; Murphy (2003)). We identify the distributional 

approach as our framework, underlining its strength in automatically representing 

word meaning and modeling word similarity (Harris, 1954). Nevertheless, we report 

its weakness in identifying specific semantic relations, leaving to the rest of the 

thesis the description and evaluation of methods for their identification. In Chapter II, 

we summarize the origin and the development of the distributional approach, 

discussing it from both the cognitive and linguistic perspectives (Lenci, 2008). We 

show, then, how to develop a Distributional Semantic Model from scratch, reporting 

and elaborating on the linguistic and mathematical steps identified by Turney & 

Pantel (2010). The subsequent chapters are dedicated to similarity (Chapter III), 

opposition (Chapter IV) and hypernymy (Chapter V). Each of these chapters starts 

with the definition of the relation, followed by the description and evaluation of our 
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method for its identification (i.e. respectively APSyn, APAnt and SLQS). Chapter VI, 

finally, describes ROOT9, a supervised method for the classification of taxonomical 

relations (Santus, Lenci, Chiu, Lu, & Huang, 2016e). The thesis concludes 

summarizing our contribution and suggesting directions for future research, which 

include i) the systematic study of the hyperparameters (e.g. the impact of N); ii) the 

merging of the methods for developing a multi-class classification algorithm; and iii) 

the application of the methods (or their principles) to reduced matrices (see Turney 

& Pantel (2010)) and word embeddings (Mikolov, Yih, & Geoffrey (2013)). 
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Chapter I – Semantic Memory and Semantic 

Relations: From Word Distribution to Meaning 

“Words are but symbols for the relations 

of things to one another and to us; 

nowhere do they touch upon absolute truth” 

F. Nietzsche, Philosophy in the Tragic Age of the Greeks 

 

In this chapter, we discuss the importance of models of semantic memory in 

NLP (Section 1.1), providing an overview of the principal ones, classified as classic 

(Section 1.1.1) and learning models (Section 1.1.2). In Section 1.2, we show how the 

latter address the learnability issue by observing the regularities of language and we 

briefly describe the connection between syntagmatic and paradigmatic relations 

(Section 1.2.1). After identifying the distributional approach as one of the most 

powerful approaches to model semantic memory, we argue that such approach 

suffers from the lack of a principled way to identify semantic relations. In section 1.3 

and 1.3.1, therefore, we describe the importance of semantic relations, setting the 

description and evaluation of methods for the identification of synonymy, antonymy 

and hypernymy as major objective of the thesis. In sections 1.3.2 and 1.3.3, we also 

clarify the terminology that will be used in the rest of the text. We conclude the 

chapter with a summary in Section 1.4. 
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1.1 Models of Semantic Memory 

Alike human beings, in order to perform any linguistic or cognitive task 

(retrieval, recognition, categorization, etc.), computers need to have access to 

resources that contain conceptual information stored in a way that can be easily 

identified and exploited. Such resources are often referred to as models of semantic 

memory because of their resemblance to human memory and its functions (Jones, 

Willits, & Dennis, 2015). 

Models of semantic memory vary according to three strictly correlated factors: i) 

how they represent meaning (i.e. feature lists, graphs, vectors, etc.); ii) how they are 

implemented and updated (i.e. hand-crafted or automatically learnt in a supervised or 

unsupervised way); iii) how cognitively plausible and computationally efficient they 

are (Jones, Willits, & Dennis, 2015). 

The first factor is the most important, as it affects all the others. How to 

represent meaning is, in fact, both a theoretical and practical problem, which has 

attracted the interest of philosophers, linguists, psychologists and computer scientists 

(Clark & Pulman, 2007). The choice of the representation has consequences on how 

conceptual information should be learnt, on what is stored and what is derived, and 

on how to account for cognitive findings and computational efficiency (Murphy M. 

L., 2003; Jones, Willits, & Dennis, 2015). 

An ideal model of semantic memory should account for a large range of 

cognitive findings (i.e. it should perform like humans), while being able to efficiently 

learn and manipulate linguistic (i.e. phonological, morphological, syntactic and 
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semantic; see Lenci (2010)) and non-linguistic (i.e. visual, acoustic, tactile, and so on; 

see Barsalou (2008)) information. 

In the last fifty years, numerous models of semantic memory have been 

proposed (Collins & Quillian, 1969; Collins & Loftus, 1975; Rips, Shoben, & Smith, 

1973; Smith, Shoben, & Rips, 1974; Osgood, 1971; McClelland & Rumelhart, 1986; 

Landauer & Dumais, 1997). The first generation of models (also known as classic 

models) was mostly theoretical rather than empirical, and they were not designed to 

automatically learn knowledge (Jones, Willits, & Dennis, 2015). When 

computational models inspired to this generation started being developed (e.g. 

WordNet has much in common with the hierarchical model proposed by Collins & 

Quillian (1969)), their need of being hand-crafted became an obvious limitation. For 

this reason, starting from the second half of the 1980s, researchers proposed a new 

generation of models that was finally able to learn semantic representations by 

exploiting natural text corpora. This new generation includes the connectionist and 

the distributional models (Jones, Willits, & Dennis, 2015). 

In the following subsections, we briefly describe the classic (1.1.1) and the 

learning models (1.1.2), summarizing their strengths and limitations. 

1.1.1 Classic Models 

The classic models were introduced and discussed in the cognitive literature 

between the late 1960s and the early 1980s. They were designed as static models, 

representing conceptual information through one of the following representations: i) 

associative; ii) feature-based; iii) spatial. 
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The associative representation is based on the idea that concepts can be thought 

as nodes in a conceptual network, so that the knowledge about them is represented as 

the set of associations (relations) with other concepts. Such network allows simple 

reasoning, such as entailment (e.g. “if X is a DOG, then X is also an ANIMAL; if 

ANIMAL breathes, then X breathes too”). 

The first model adopting an associative representation was proposed by Collins 

& Quillian (1969), who described it as a hierarchical semantic network where 

concepts are nodes and propositions are labeled links (see Figure 1). Such 

hierarchical structure represents at the same time conceptual and propositional 

information, complying with a principle of cognitive economy. Attributes are in fact 

inherited by the children nodes in the hierarchy, avoiding the need of re-stating them 

for every concept. 

This model showed some reliability in predicting subjects’ latency in verifying 

statements, with a positive correlation between response time and distance of the 

concepts in the hierarchy. In a more careful investigation, however, Conrad (1972) 

showed that the strength of association between concepts was a better predictor. Also, 

the hierarchical model does not account for typicality (i.e. prototypical concepts are 

treated like un-prototypical ones) and suffers from the so-called “tennis problem” 

(Fellbaum C. , 1998), which is the absence of relations between terms that are not 

taxonomically related but that are nonetheless associated, such as player, tennis court, 

racket and ball. Despite the criticisms, this model inspired further research and 

computational models (e.g. WordNet is organized in a strict hierarchical structure). 
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In the attempt to address some of the limitations of the hierarchical model, 

Collins & Loftus (1975) deemphasized the hierarchical structure in favor of a 

network characterized by the idea of spreading activation. In this model (generally 

referred to as spreading activation model), any stimulus in the network is propagated 

to the neighboring nodes, activating them. The flexibility of this model was at the 

same time its strength and its weakness: while it allowed accounting for a number of 

behavioral phenomena, it could have potentially accounted for any data pattern 

(Johnson-Laird, Herrmann, & Chaffin, 1984). Nonetheless, many principles of the 

spreading activation model were later inherited by the connectionist models. 

 

 

Figure 1:  Hierarchical model
1
 

 

A competing representation was proposed by Rips, Shoben, & Smith (1973). 

This representation is called feature-based because concepts are encoded as lists of 

                                                 
1
 Adapted from: http://images.slideplayer.com/17/5320534/slides/slide_12.jpg 

http://images.slideplayer.com/17/5320534/slides/slide_12.jpg
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binary primitives (Katz & Fodor, 1963; Murphy M. L., 2003) such as those in 

examples (1) and (2): 

 (1) girl:  [+human, -adult, +female] 

 (2) woman: [+human, +adult, +female] 

In this approach, learning a new concept consists in filling in a list of features 

that unambiguously identify it. Similarity and relations can be derived then from the 

analysis of the common and uncommon primitives. For example, we may consider (1) 

and (2) as holding an opposition relation (i.e. girl-woman), because they share all the 

features but one (i.e. the primitive adult has opposite sign), as suggested by the 

paradox of simultaneous similarity and difference proposed by Cruse (1986). A 

major problem of this approach is how to identify which semantic features are 

relevant for the characterization of a specific concept. 

Osgood (1971) proposed a third representation method, called spatial model of 

semantic memory. This model represents concepts as vectors in a multidimensional 

Cartesian space, in which every dimension describes a property (e.g. weight, size, 

etc.) and the position of the vector in that dimension is based on human ratings about 

the relative property (e.g. weight: light-heavy, size: small-big, etc.). In the spatial 

model, similarity can be measured in terms of distance in the multidimensional 

Cartesian space. The spatial representation was later adapted by the distributional 

models. 
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1.1.2 Learning Models 

A major shortcoming of the classic models is that they were mostly theoretical, 

and they were not designed to learn conceptual representations, forcing the first 

computational models inspired to them to be hand-crafted (Jones, Willits, & Dennis, 

2015). In the second half of the 1980s, such limitation was addressed by two new 

types of models: the connectionist and the distributional one (McClelland & 

Rumelhart, 1986; Miller & Charles, 1991). Such models – which respectively 

inherited some characteristics from the spreading activation and the spatial model – 

were designed to automatically learn conceptual information (henceforth word 

meaning: see Section 1.3.2) from natural text corpora. 

Connectionist models represent word meaning in terms of weighted connections 

between neurons in layer units (i.e. input, hidden layers and output). The weights are 

generally randomly initiated and then they are tuned through either supervised (by 

matching input and output training examples; Kohonen (1982)) or unsupervised 

(through the frequency of activation, as for the Hebbian Learning; Hebb (1949); 

Grossberg (1976)) training. 

When neurons are only connected to the next layer and the activation is 

propagated from the input layer towards the output one, the network is referred to as 

feed-forward network. A critical issue in this representation is that the same neuron 

is generally used for more patterns of activation (e.g. for both run and swim) and this 

may cause the weight to change to better address one of the patterns, penalizing the 

others. These models have shown human-like behaviors (Jones, Willits, & Dennis, 

2015). For example, Rogers & McClelland (2006) claimed that, during training, the 
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internal concept representation shows progressive differentiation, learning broad 

distinction first and fine-grained then, similarly to what children do. An example of 

feed-forward network is the one trained by Rumelhart & Todd (1993) to output 

semantic features (e.g. wings) after getting in input one unit for concepts (e.g. robin) 

and one for relations (e.g. has). Two sets of hidden units are trained in a supervised 

way to match the inputs and output. Interestingly, by tuning the weights, these 

hidden layers are not simply learning the relations, but they are developing complex 

representations that can be used to achieve good performance even on unknown data. 

Another typology of connectionist models, sometimes referred to as dynamical 

models, involves bi-directionality (i.e. feedback) and/or recurrent connectivity 

(Hopfield, 1982). Dynamical connectionist models have been used to study a 

numerous cognitive and neural phenomena (Jones, Willits, & Dennis, 2015). 

McLeod, Shallice, & Plaut (2000) proposed a dynamical model to pronounce words. 

It encodes orthography, phonology and semantic features of words in three different 

layer units, separated by additional hidden layers. Their model allows going from 

orthography to phonology and the other way round. Since the grapheme, sememe 

and phoneme layers have recurrent connections (i.e. loops), and since they are bi-

directional, if non-words are provided (e.g. “dag”), the network searches for a stable 

attractor, eventually finding it in an activated neighbor (e.g. either “dad” or “dog”).  

The other approach that addresses the learnability issue is the distributional one 

(Miller & Charles, 1991; Harris, 1954), which represents word meanings through 

vectors recording the frequency of co-occurrence between target words and their 

contexts in large corpora (Turney & Pantel, 2010). While a vector has no intrinsic 
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meaning, except storing the information about the distribution of the target words, its 

relative position in the n dimensional semantic space can be exploited to evaluate its 

similarity with respect to other targets. Such similarity is generally calculated as 

proximity between the vectors in the vector space, often measured through the vector 

cosine (Turney & Pantel, 2010). 

Within the distributional semantic framework, learning a new word meaning 

consists in encoding a new vector with the distributional information of the word in 

the corpus (Turney & Pantel, 2010). This approach was used to study and derive 

syntagmatic and paradigmatic information (e.g. morphological, syntactic and 

semantic ones). Distributional approaches were shown to perform likewise humans 

in predicting word similarity (Landauer & Dumais, 1997). 

A second generation of distributional models, often referred to as word 

embeddings, has been recently introduced in the literature (Mikolov, Yih, & 

Geoffrey, 2013; Huang, Manning, & Ng, 2012; Collobert & Weston, 2008). Unlike 

count-based distributional models, vector representations are not learnt by counting 

the co-occurrence frequency, but by training a neural network to predict the contexts 

of a given target. These models have shown a strong ability to capture similarity and 

analogies, as in the famous “King - Man + Woman = Queen” example, where 

Mikolov and colleagues subtracted the vector of “Man” from the one of “King”, and 

then added the vector of “Woman”, obtaining a vector very similar to the one of 

“Queen”. 
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1.2 Learning Meaning from Word Distribution 

In the previous section, we showed two families of models capable of learning 

word meaning by observing the word distribution in large text corpora (i.e. 

connectionist and distributional models). These models exploit the regularities of 

language to derive morphological, syntactic and semantic information (Harris, 1954). 

Languages are in fact complex systems of symbols and rules, and within a system 

“everything depends on relations” (Saussure, 1983). When humans communicate, 

they do not use random words in a random order, but rather they place them in the 

syntagmatic axis (i.e. either spoken or written text surface) in a way to fulfil certain 

morphological, syntactic and semantic constraints. One of the most interesting 

consequences of such regularities is that, assuming that there is sufficient amount of 

observable data, they can be used to derive paradigms, that is group of linguistic 

items (e.g. morphemes, lexemes, etc.) sharing similar syntagmatic behaviours at any 

of the linguistic levels (e.g. morphological, syntactic, semantic, etc.). In this way, 

computational models can explore not only how these linguistic items tend to co-

occur in the linguistic surface (i.e. syntagmatic behaviour), but also how likely they 

are to substitute each other in the syntagm (i.e. paradigmatic behaviour), that is how 

similar they are to each other (Harris, 1954). By observing the syntagmatic 

regularities, therefore, computational models can, at least theoretically, recreate what 

Saussure (1983) calls the “trésor intérieur” (i.e. internal treasure), which is roughly 

the set the knowledge every speaker has about a language. 
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1.2.1 Syntagmatic and Paradigmatic Relations 

Syntagmatic and paradigmatic relations are often presented in terms of axes. The 

syntagmatic axis (also horizontal axis) is generally concerned with the position in the 

text surface. The paradigmatic axis (also vertical axis) is instead concerned with the 

possibility of substitution.  

Syntagmatic relations differ from paradigmatic ones in many aspects: i) while 

the former exist in praesentia (that is, they exist only when two words co-occur in 

the same spoken or written text), the latter also exist in absentia (that is, they exist 

independently of their co-occurrence in the same text, as they are part of the 

knowledge of speakers of a language); furthermore, ii) while syntagmatic relations 

involve different parts-of-speech and presuppose a certain grammatical relation (e.g. 

determiners generally precede adjectives or nouns), paradigmatic relations usually 

hold between words of the same grammatical category, since these words must be 

replaceable at least in some contexts. 

Nevertheless, these two kinds of relations are strongly tied to each other, and 

such bond is at the basis of the distributional approach to word meaning, as 

summarized in the famous Firth (1957)’s saying “You shall know a word by the 

company it keeps”. Miller & Charles (1991) claimed that when speakers know the 

meaning of a word, they do not know its dictionary definition, but rather they know 

how to use it, implying therefore that word meaning can be acquired by observing 

word usage. Evidence of distributional learning of word meanings (and of other 

properties) has been noted in several studies (see Ouyang, Boroditsky, & Frank 
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(2016)), and it was mostly attributed to the fact that words having similar meanings 

tend also to have a similar distributions (Harris (1954); Landauer & Dumais (1997)). 

The distributional approach is adopted in this thesis as the main framework. We 

will show how it provides machines with a principled way to learn word meaning 

from word distribution and how it models word similarity (and consequently word 

relatedness). We will then discuss and try to address one of its major limitations: 

while it has been found powerful in identifying words with similar meanings (Harris, 

1954), it lacks a principled way to discriminate in which way words are similar 

(Santus, Lenci, Lu, & Schulte im Walde, 2014c). That is, it does not offer a method 

for the identification of semantic relations, which are instead fundamental for the 

organization of the semantic memory (i.e. semantic relations contribute to many 

aspects of cognition, including organization and retrieval of information). 

1.3 Semantic Relations 

In the previous sections, we have described several models of semantic memory. We 

have then presented how the learning models – and in particular the distributional 

ones – can take advantage of large amount of linguistic data to derive paradigmatic 

information. We have also mentioned that the focus of this thesis will be in 

semantics, and more precisely in the attempt of providing DSMs with principled 

methods for the discrimination of semantic relations. 

In this section and in its subsections we would like to provide the reader with a 

background on the object of research, leaving the details to the relevant chapters. We 
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take advantage of this section and its subsections also to clarify the terminology that 

will be used in the following pages. 

1.3.1 Lexical Semantic Relations 

Semantic relations have attracted the interest of scholars from numerous fields, 

such as philosophy, linguistics, psycholinguistics, cognitive sciences, computer 

scientists, and so on. If, on the one hand, such interest has enriched the perspectives 

from which the phenomenon was studied, on the other hand, it has increased the 

terminology and its ambiguity (Murphy M. L., 2003). On top of it, every discipline 

has approached semantic relations with different assumptions, goals and methods. 

Some disciplines have based their claims on evidence in behavioural data, others on 

lexicographic methods and others on corpora. Unfortunately, however, rarely these 

different assumptions, sources and methods have led the investigators to the same 

conclusions. A very basic open issues is, for example, what exactly semantic 

relations relate: words, senses or referents in the real world? While lexical 

semanticists claim that they relate senses (Lyons, 1977), we cannot ignore that dog is 

the hyponym of mammal because the DOG IS-A-KIND-OF MAMMAL (where 

capitalization indicates entities and relationship in the real world). In this thesis, we 

will treat semantic relations as relating word meanings. 

1.3.2 Words, Word Meanings and Concepts 

Up to this moment, we have talked about relations between words, word 

meanings and concepts without clearly defining these terms. The reason is that they 
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are difficult to pin down. The term word, for example, may have multiple meanings, 

depending on the contexts in which it is used (Matthews, 1991). Generally, word is 

used to refers to lexical units (e.g. “There are seven words in this sentence!”), but it 

can be also used to refer to lexemes (e.g. "Go and gone are the same word"). The 

term word meaning, on the other hand, is often used to refer to concepts and, in fact, 

there seems to be a large overlap between these two notions, which however does not 

correspond to a perfect one-to-one match (Hirst, 2009). Given their similarity, it is 

not rare to read in the literature experiments illustrated in terms of words and 

findings discussed in terms of concepts (Vigliocco & Vinson, 2007). In the same 

fashion, semantic relations held by words (e.g. dog is a hyponym of animal) are 

often used to discuss conceptual relations existing between concepts (e.g. DOG IS-

A-KIND-OF ANIMAL). This is even truer in NLP, where lexical resources, such as 

WordNet (Fellbaum C. , 1998), are often used as conceptual ones (i.e. ontologies). 

However, as discussed in Murphy (2002), there might exist concepts without words 

(and therefore without word meanings), and we can constantly create ad hoc 

concepts for which there is no need to create a respective word (Barsalou, 2008). Not 

to mention cognitive and neurological evidence, which registers problems that only 

affect lexical tasks but not conceptual ones and vice versa (i.e. Tip of the Tongue 

syndrome; Murphy, 2003; Vigliocco & Vinson, 2007). 

While leaving the debate about similarity and differences between semantic and 

conceptual knowledge to other works (see, for example, Chierchia (1997), Murphy, 

(2002), Murphy (2003) and Hirst (2009)), in this thesis we will consider words as the 

signifiers that are arbitrarily linked to word meanings (Saussure, 1983), and we will 
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treat the learning models as able to acquire and manipulate word meanings, rather 

than concepts. It must be specified however that most of what we say can be 

eventually applied to concepts too.  

1.3.3 Near-Synonymy, Antonymy and Hypernymy 

Given that in the rest of the thesis we will mostly focus on three kinds of 

relations (i.e. synonymy, antonymy and hypernymy), in this section we briefly 

describe them, also clarifying some terminological choices. 

By synonymy we refer to the semantic relation existing between words carrying 

nearly the same meaning (Cruse, 2000). Since it is unlikely that words carry exactly 

the same meaning (otherwise there would not be reasons for both to exist) and since 

such relation is gradual rather than binary, we have preferred to refer to it by 

similarity, and in some cases by near-synonymy (see Chapter III). 

Antonymy is the relation describing lexical contrast and it can be divided into 

two subclasses, namely canonical and non-canonical antonymy. The former refers to 

the relation held by pairs such as good-bad, small-big, etc., while the latter refers to 

the relation held by pairs such as green-red, morning-afternoon, small-medium, and 

so on. The contrast between the latter antonyms is certainly less defined and it is 

more context-dependent. Since in our investigation we will include any kind of 

semantic contrast, in this thesis we have opted for using the term opposition (see 

Chapter IV). 
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Differently from synonymy and antonymy, the third relation we will deal with in 

this thesis – i.e. hypernymy – is not symmetric: while a hyponym is always a kind of 

its hypernym, the opposite is not always true (e.g. a dog is always a mammal; *a 

mammal is always a dog). This relation, generally also referred to as IS-A relation, is 

hierarchical and represents the backbone of the taxonomies (see Chapter VI) and the 

main organizer of the semantic memory (see Section 1.1.1). 

Similarly to hypernymy, meronymy is also an asymmetric and hierarchical 

relation. It generally includes the part-whole (most prototypical), made-of and 

membership relationships. In this thesis we do not deal directly with such 

relationship, even though it appears in some experiments as relation from which we 

need to discriminate hypernymy (see, for example, Chapter V). 

Few words should be spent, finally, for co-hyponyms and co-meronyms, which 

are semantic relations that respectively connect hyponyms and meronyms that 

descend from the same hypernym and holonym. Since these relations are “derivable”, 

in this thesis we will not describe any unsupervised method for their automatic 

identification. In any case, co-hyponyms (often also named coordinates) will appear 

in several experiments as relation from which to discriminate antonyms and 

hypernyms. On top of it, in Chapter VI, co-hyponyms are one of the three relations 

that we will try to classify with ROOT9. 

1.4 Summary of Chapter I 

In Section 1.1, we have seen that machines need semantic representations to 

perform any kind of linguistic task. Such representations are generally stored in 
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resources that can be called models of semantic memory for their affinity with 

human memory and its function. Several models, with their specific representations, 

have been described in Section 1.1.1 and 1.1.2, paying particular attention to the 

ability to automatically learn word meaning. 

Given the ability of machines in elaborating symbols and given that language is 

a complex system of symbols and rules, we have showed that it is possible to derive 

word meaning by observing word distribution in large text corpora (Section 1.2). 

That is, it is possible to extract paradigmatic information from syntagmatic one 

(Section 1.2.1). We said that the distributional framework allows to automatically 

learn word meaning and model word similarity (i.e. words with similar distribution 

are assumed to have similar meaning). This framework however suffers from a major 

limitation, which is the inability of identifying the semantic relations connecting 

similar words. We have therefore mentioned that addressing such limitation will be 

the main objective of this thesis and we have provided a general background about 

semantic relations and related terminology (Section 1.3). 

In the next chapter, we describe the origins of the distributional approach, 

discussing its theoretical background. The chapter will also provide an overview on 

how to implement a Distributional Semantic Model from scratch. 
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Chapter II – Building a Count-Based 

Distributional Semantic Model 

“You take the blue pill - the story ends, you wake up 

in your bed and believe whatever you want to believe. 

You take the red pill - you stay in Wonderland 

and I show you how deep the rabbit-hole goes.” 

Morpheus, Matrix 

 

In this chapter, we describe the origins and development of the distributional 

approach (Section 2.1), discussing its linguistic and cognitive background as well as 

the two major interpretations of the Distributional Hypothesis (Harris (1954); 

Section 2.1.1). In Section 2.2, we discuss how the distributional approach has been 

adopted in NLP, listing the main parameters that need to be considered when 

implementing a distributional model (Section 2.2.1). The second part of the chapter 

deals with how to implement a Distributional Semantic Model from scratch (Section 

2.3), describing all steps, from the data collection (Section 2.3.1) to the linguistic 

(Section 2.3.2) and the mathematical (Section 2.3.3) processing, as they were 

identified in Turney and Pantel (2010). 
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2.1 Origins and Development of the Distributional Approach 

Although the distributional approach to semantics has mainly flourished in the 

last three decades, especially under the pressure of corpus linguistics, its roots can be 

found already in the beginning of the XX century, when Ferdinand de Saussure 

(1983) described language as symbolic system, stressing the importance of the bond 

between syntagmatic and paradigmatic relations (see Section 1.2.1). 

The formalization of the distributional approach to semantics begun with the 

American structuralists, and in particular with Zellig Harris, who analysed linguistic 

expressions with a particular attention to their contexts (Harris, 1954). In his analysis 

of the semantic level, Harris noted that words with similar syntagmatic relations 

were also semantically similar. This idea was formalized in the Distributional 

Hypothesis (Harris, 1954; Miller & Charles, 1991), according to which: i) at least 

some aspects of the meaning of a lexical expression depend on its distribution; ii) the 

degree of similarity between two linguistic expressions is a function of the similarity 

of their contexts (Lenci, 2008). 

In the first two decades, it progressed very little as it had to deal with the 

generative paradigm, which emphasized the importance of the competence over the 

performance (Lenci, 2008). It fared no better under the cognitive paradigm and the 

formal models of language. The former stressed a conceptualist view of semantics, 

often grounded on embodied representations (Barsalou, 2008), while the latter 

adopted a denotational approach (Lenci, 2008). In both cases, meaning was 

conceived as depending on external entities, and it could have not been conceived in 

terms of language-internal word distributions (Lenci, 2008). 
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Despite these difficulties, the distributional approach was still favoured by the 

corpus linguistics community, which was interested in the concrete evidence of 

linguistic data. When machines reached a sufficient computational power, the 

computational community started considering this quantitative approach as a 

powerful and efficient way to represent word meaning. 

At the beginning of the 1990s, the distributional approach also found support in 

several psychological and cognitive studies (Lenci, 2008). Miller & Charles (1991) 

hypothesized that we learn semantic representations from contextual information, 

where by contextual information they referred not only to the linguistic co-text (e.g. 

linguistic items surrounding the target word), but also to the extra-linguistic context 

(e.g. speaker, hearer, situation, etc.). In the same period, other researchers proved the 

importance of distributional information for learning non-experienceable terms, such 

as colours and visual perception verbs in congenitally blind individuals (Landau & 

Gleitman, 1985; Lenci, Baroni, Cazzolli, & Marotta, 2013). Finally, neo-behaviourist 

psychologists noted that distributional information was suitable to model 

psychological phenomena, such as similarity judgements, semantic and associative 

priming, and so on (for an overview, see Schulte im Walde & Melinger (2008)). 

2.1.1 Weak and Strong View 

There are two main ways to conceive the Distributional Hypothesis (Harris, 

1954): the weak and the strong view. 

The weak view is based on the idea that word meaning determines word 

distribution. Thus, according to this view, word distribution can be used to derive 



Enrico Santus, Ph.D. 

48 

 

some information about word meaning (Lenci, 2008), since between the two there is 

a certain correlation. This view is compatible with most of the theoretical research in 

linguistics. 

The strong view, instead, consists in a comprehensive cognitive hypothesis 

about the form and origin of semantic representations (Lenci, 2008) and has its most 

relevant supporters in Miller & Charles (1991) who suggested that word distribution 

has a causal role in the formation of the semantic representations. In their theory, 

however, the authors consider not only the linguistic context (or co-text), but also the 

extra linguistic one (or context; e.g. participants, communicative situation, visual 

features, etc.). 

Following the majority of the current computational approaches to word 

meaning, in the rest of the thesis we exclusively consider linguistic information, 

being aware that this is an approximation of the enormous amount of contextual 

information that might be considered. The reasons behind this choice are mostly 

pragmatic: computational techniques to identify, extract and manipulate linguistic 

information are in fact much more advanced than those for the manipulation of extra-

linguistic information (i.e. audios, images, videos, etc.). This methodology does not 

preclude any future integration of other types of contextual information, which might 

enrich semantic representations. 

2.2 Distributional Approach in NLP: Vectors and DSMs 

The distributional approach to word meaning has been implemented in NLP by 

means of Vector Space Models (VSMs), which – given their scope – are generally 
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referred to as Distributional Semantic Models (DSMs). These models represent 

linguistic expressions (in our case, words) through vectors in vector spaces (also 

called semantic spaces), similarly to the space model of semantic memory described 

in 1.1.1. 

A vector is a mathematical structure which can be used to represent a target by 

mean of the values stored in its n dimensions, each of which describes a property of 

the target. In the case of DSMs, the dimensions are generally initialized to represent 

the distribution of the target among its n contexts. The values stored in these 

dimensions establish the position of the vector in an n-dimensional Cartesian space, 

and such a position is fundamental to measuring the similarity between the targets. In 

fact, targets that have similar meaning are likely to be characterized by a similar 

distribution, and in turn by a similar vector. Since similar vectors are expected to be 

close in the n-dimensional Cartesian space, the distance between vectors can be used 

to measure their similarity (Turney & Pantel, 2010). Interestingly, being math 

structures, it is possible to apply several algebraic operations on vectors, such as sum, 

subtraction, multiplication, division, and so on. 

DSMs were firstly used for Information Retrieval (IR), with the SMART 

Information Retrieval System created by Salton, Yang, & Yu (1975). This system 

was used to retrieve documents (i.e. targets), which were represented as bags of 

words (Turney & Pantel, 2010), that is as vectors encoding the frequency of words 

(i.e. the properties that characterize the documents). Thanks to this representation, 

similar documents were represented by similar vectors, which were thus close to 

each other in the vector space. Identifying a specific document was therefore done by 
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turning a query into the vector of a pseudo-document, and finding its neighbour(s) 

(Turney & Pantel, 2010). 

The success of the SMART System encouraged further research in DSMs. It 

was noticed that by simply modifying the definitions of target and properties it was 

possible to represent not only documents, but also words, word-pairs and any other 

linguistic expressions. 

2.2.1 Parameters: Targets, Contexts, Matrix and SoA 

DSMs can be used to represent any kind of linguistic expression, by simply 

varying some parameters. Every DSM is defined by the quadruple <T, C, M, S> 

(Lowe, 2001), where i) T stands for the set of targets that constitutes the vector space; 

ii) C stands for the set of contexts that defines the dimensions of the vector space 

(and, therefore, the dimensions of the vectors); iii) M stands for the matrix in which 

data is stored (e.g. whether or not it is reduced); and iv) S stands for the strength of 

association (SoA) between the chosen targets and the contexts (i.e. frequency, 

Positive Pointwise Mutual Information, Positive Local Mutual Information, etc.). 

Every parameter of the quadruple can be set in a different way. The set of targets 

(T), for example, can include words, pairs, triplets or any other item we may want to 

represent. The set of contexts (C), on the other hand, can be defined in terms of 

documents, windows of n content words (Lund & Burgess, 1996), dependency based 

contexts, joint-based contexts (Chersoni, Santus, Lenci, Blache, & Huang, 2016a), or 

any other contextual environment in which the targets may occur. The more complex 

the definition of targets and contexts, the sparser the matrix will be. The other two 
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parameters define the shape of the matrix (M) and its actual content (S), so as to 

determine which algebraic and statistical operations can be applied to it. The matrix 

(M), in particular, describes what we have in the row and what in the columns, which 

can be the result of a dimensionality reduction process (e.g. Singular Value 

Decomposition, SVD; see Turney & Pantel (2010)). The parameter S, instead, 

defines the statistical measure that is used for quantifying the association between 

the rows and the columns, that is between the set of targets and the set of contexts 

(e.g. frequency, Positive Pointwise Mutual Information, Positive Local Mutual 

Information, etc.; Church & Hanks (1989); Evert (2005)). 

2.3 Implementing a DSM 

DSMs are implemented through a series of complex linguistic and mathematical 

processes, starting from large text corpora containing millions of words. In this 

section, we go through the major steps, as they were identified in Turney & Pantel 

(2010), providing additional information where relevant. 

2.3.1 Corpus 

Among the most popular corpora in Natural Language Processing there are the 

British National Corpus (BNC), the Reuters Corpus Volume 1 (RCV1), Wikipedia 

corpus and ukWac (Baroni, Bernardini, Ferraresi, & Zanchetta, 2009). These corpora 

vary in many aspects, including their content (i.e. news, articles, written and/or 

spoken language) and their size. 
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The BNC, for example, is the smallest of the abovementioned corpora and it is 

designed to represent the twentieth century British English. It contains 100 million 

words from a wide range of written and spoken sources (Aston & Burnard, 1998). It 

can be freely downloaded from http://www.natcorp.ox.ac.uk/. We have not used this 

corpus in our research, but it is often concatenated to other corpora in related work. 

RCV1, instead, was released in 2000 as a collection of Reuters News stories 

stored in 806,791 XML files, of approximately 3.7Gb (Lewis, 2004). It contains 

about 150 million words. The corpus is available on request from the National 

Institute of Science and Technology (NIST). More information can be found at 

http://about.reuters.com/researchandstandards/corpus/index.asp. 

Wikipedia is one of the most popular corpora in distributional semantics for 

several reasons. First of all, it is considered well balanced, since as an encyclopedia 

it treats many different domains using the most appropriate words. Second, its 

dimension is several times bigger than the RCV1, including more than 1 billion 

words, and is constantly growing. Wikipedia can be freely downloaded from 

https://en.wikipedia.org/wiki/Wikipedia:Database_download. Preprocessed versions 

of the Wikipedia corpus for several languages (English, Italian, French and German) 

are available at http://wacky.sslmit.unibo.it/doku.php (Baroni, Bernardini, Ferraresi, 

& Zanchetta, 2009). Once the corpus is obtained, if it is not preprocessed, the first 

step consists in cleaning out the XML markups. There are several tools to perform 

this task. For some of our experiments we have used the WikiExtractor tool, 

provided at https://github.com/jodaiber/Annotated-WikiExtractor. Such tool is a 

simple python script that goes through the corpus and cleans out all the markups, 

http://www.natcorp.ox.ac.uk/
http://about.reuters.com/researchandstandards/corpus/index.asp
https://en.wikipedia.org/wiki/Wikipedia:Database_download
http://wacky.sslmit.unibo.it/doku.php
https://github.com/jodaiber/Annotated-WikiExtractor
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leaving the links. Links were then removed by using the following regular expression 

to identify them: '<[^>]+>'. 

Another relevant corpus is ukWac, which can be also downloaded at 

http://wacky.sslmit.unibo.it/doku.php, already lemmatized and POS-tagged with 

TreeTagger. ukWaC contains 2 billion words and it is crawled from the Web, 

limiting the crawl to the .uk domain and using medium-frequency words from the 

BNC as seeds. This corpus is unfortunately very noisy and it is mostly used 

concatenated to the more balanced Wikipedia. In most of our experiments we have in 

fact adopted such concatenation. 

2.3.2 Linguistic Processing 

Once the raw and clean data is available, before creating the matrix, it is 

necessary to perform some linguistic processing (Turney & Pantel, 2010), which is 

generally language-dependent
5
. Linguistic pre-processing, often simply referred to as 

pre-processing, includes the following steps: i) tokenization; ii) normalization; and iii) 

annotation. 

                                                 
5
 While several of our DSMs were developed on the already annotated corpora, for some 

experiments, we have annotated the corpora ourselves with POS tags and dependency tags by using 

Spacy, a library for python that can be found at https://spacy.io/. Spacy also performs case folding and 

lemmatization. 

 

http://wacky.sslmit.unibo.it/doku.php
https://spacy.io/
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2.3.2.1 Tokenization and Stop Words 

The corpus consists of sentences containing words separated by spaces and/or 

punctuation marks. The tokenization process is needed to identify and isolate the 

words from each other and from other intervening characters (i.e. punctuation marks). 

An accurate tokenizer must handle exceptions, such as those involving 

apostrophes (e.g. don’t versus do not), hyphens (e.g. above-mentioned versus above 

mentioned), and so on (Manning & Schütze, 2008). Moreover, it should be able to 

identify multi-word expressions, such as Bill Clinton and personal computer (Turney 

& Pantel, 2010). 

A step that is related to the tokenization process is the removal of stop words, 

which are high frequency words containing very little semantic information (e.g. 

determiners, prepositions, etc.). A list of 571 stop words can be found in the source 

code for the SMART system (Salton, Yang, & Yu, 1975). 

2.3.2.2 Normalization 

A second linguistic step is the normalization of the strings that differ on the 

surface but convey the same meaning (Turney & Pantel, 2010). For example, is, are, 

was and were have the same meaning, exactly as Dog and dog or Leonardo and 

Leonardo da Vinci have. 

In order to reduce the superficial variations, several techniques can be adopted, 

including case folding (i.e. remove the case differences), lemmatization (i.e. reduce 

the inflected words to the lemma), named entity recognition and anaphora resolution 
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(i.e. reduce different instantiations of the same entities). All these processes imply a 

certain amount of risk. For example, when removing case differences, attention 

should be paid to proper names that are also common nouns (e.g. president Bush 

versus a bush). 

The normalization process increases recall (i.e. it reduces data sparseness) and 

reduces precision (Kraaij & Pohlmann, 1996). The extent of the normalization 

process should therefore depend i) on the goals of the system that is being built, and 

ii) on the size of the corpus. A small corpus, in fact, would need an extensive 

normalization in order to allow a sufficient recall, while a large corpus might not 

need it at all (Hull, 1996). 

2.3.2.3 Annotation: POS Tagging, Parsing and Other 

Information 

While different strings can convey the same meaning, it is also possible that 

similar strings convey different meanings (Turney & Pantel, 2010). This is, for 

example, the case of ambiguous words (e.g. run used as a noun or as a verb, or bank 

used with its different meanings). Given that words out of context lose 

disambiguating information, such information may need to be annotated to keep 

track of their original meaning. 

Annotations can be done at different linguistic levels. For example, i) Part-Of-

Speech tagging (POS) provides morphosyntactic information; ii) word sense tagging 

provides semantic information; and iii) parsing provides syntactic information. 
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Being the opposite of normalization, annotation keeps track of the differences, 

and therefore it increases precision and lowers recall (therefore increasing data 

sparseness; Hull (1996)). Also in this case, the amount of annotation should be 

evaluated according to the purpose of the system and the size of the used corpora. 

2.3.3 Mathematical Processing 

When the corpus has been cleaned, normalized and annotated, a series of 

mathematical processing is needed in order to build the DSM. This elaboration 

consists in: i) generating the frequency matrix; ii) adjusting the weights, so that they 

can better represent word distribution; iii) smoothing the matrix, in order to reduce 

the noise and the sparseness (Lowe, 2001; Turney & Pantel, 2010), consequently 

improving the calculation efficiency. 

2.3.3.1 Frequency Matrix and Weights 

A frequency matrix stores the frequencies of certain events. In DSMs, it stores 

the frequency of co-occurrence between the targets and the contexts. In order to 

build a frequency matrix, the system must count how many times the events take 

place, that is how many times a specific target and a specific context co-occur in a 

corpus. A way to do it is to sequentially scan the corpus, recording the events and 

their frequencies in a hash table that can then be used then to build the matrix 

(Turney & Pantel, 2010). 
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Frequency, however, is not very informative. There are words that are very 

frequent, but contain very little meaning (i.e. the stop words), as well as words that 

are very informative (i.e. content words) but have low frequency. In order to avoid 

such frequency bias and increase DSMs performance, several weighting systems can 

be adopted (Church & Hanks, 1989; Evert, 2005; Turney & Pantel, 2010). 

Since in Information Theory an unexpected event is generally more informative 

than an expected one (Shannon, 1948), weights can be used to moderate the 

frequency bias towards very frequent events, producing a more informative matrix. 

One of the most common weights is the Pointwise Mutual Information (PMI), or the 

Positive PMI (PPMI; Church & Hanks (1989)), in which negative values are 

replaced with zeros. 

 

𝑝𝑖𝑗 =
𝑓𝑖𝑗

∑ ∑ 𝑓𝑖𝑗
𝑛𝑐
𝑗=1

𝑛𝑟
𝑖=1

  1 

 

𝑝𝑖∗ =
∑ 𝑓𝑖𝑗

𝑛𝑐
𝑗=1

∑ ∑ 𝑓𝑖𝑗
𝑛𝑐
𝑗=1

𝑛𝑟
𝑖=1

  2 

 

𝑝∗𝑗 =
∑ 𝑓𝑖𝑗

𝑛𝑟
𝑖=1

∑ ∑ 𝑓𝑖𝑗
𝑛𝑐
𝑗=1

𝑛𝑟
𝑖=1

  3 

 

𝑝𝑚𝑖𝑖𝑗 = 𝑙𝑜𝑔2 (
𝑝𝑖𝑗

𝑝𝑖∗𝑝∗𝑗
) 4 
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𝑝𝑝𝑚𝑖𝑖𝑗 = {
𝑝𝑝𝑚𝑖𝑖𝑗          𝑖𝑓 𝑝𝑝𝑚𝑖𝑖𝑗 > 0

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  5 

 

where fij is the frequency of the co-occurrence of the target i and the context j; pij is 

the probability that target i occurs in context j (see Equation 1); pi* is the probability 

of the target i (see Equation 2); and p*j is the probability of the context j (see 

Equation 3). pi* p*j represents the probability of random co-occurrence. Therefore, if 

target and context are statistically independent, when pi* p*j ≥ pij we expect PMI ≤ 0, 

because log2(0 ≤ x ≤ 1) ≤ 0. If instead there is a relation, we can expect that pij > pi* 

p*j, and therefore the PMI should be positive (see Equation 4). The PPMI is self-

explanatory (see Equation 5). 

PMI and PPMI are biased towards infrequent events. Several corrections have 

been proposed. Among them, the Local Mutual Information (LMI; Evert (2005)) and 

the Positive Local Mutual Information (PLMI), which are simply the co-occurrence 

frequency multiplied respectively by PMI or PPMI, in order to normalize it. 

 

𝑙𝑚𝑖𝑖𝑗 = 𝑓𝑖𝑗 × 𝑝𝑚𝑖𝑖𝑗  6 

𝑝𝑙𝑚𝑖𝑖𝑗 = 𝑓𝑖𝑗 × 𝑝𝑝𝑚𝑖𝑖𝑗 7 
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2.3.3.2 Smoothing the Matrix: SVD and Context Selection 

Smoothing the matrix consists in creating an approximating function that 

attempts to capture the important information, while leaving the noise out. This is 

generally done to increase the computational performance. 

There are many different ways to smooth a matrix. One of the most popular and 

sophisticated methods is the Singular Value Decomposition (SVD; Landauer & 

Dumais (1997)), which is based on linear algebra and consists in decomposing a 

matrix Mmn in the product of three matrices Umm * Σmn * Vnn
T
, where U and V are in 

column orthonormal form (i.e. the columns are orthogonal and have unit length, U
T
U 

= V
T
V = I) and Σ is a diagonal matrix of singular values in decreasing order (Turney 

& Pantel, 2010). If only the top-k values are kept, it is possible to obtain Mk = Uk * Σk 

* Vk
T
 which is a matrix of rank k that best approximates the original matrix Mmn. 

SVD has been regarded as a method for noise reduction and for the discovery of 

latent dimensions of meaning (i.e. Landauer & Dumais (1997) have shown that SVD 

allows the discovery of high-order co-occurrence, that is words appearing in contexts 

which are similar to each other), and it has been shown to improve similarity 

measurements. 

Other methods include the selection of features according to minimum 

thresholds (e.g. minimum frequency or minimum number of targets to co-occur with) 

or according to a maximum acceptable quantity of features (i.e. only the top N 

features). The methods described in this thesis, rely on the most salient contexts of 

the target words, rather than on their full distribution (with saliency defined as the 

ranking in a PPMI/PLMI sorted context list). Such approach comes from the 
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assumption that not all contexts are equal, and that the most salient contexts tend to 

be more informative, therefore better representing the semantics of words (see 

Section 3.1.1 for more information). 

From a cognitive perspective, this is consistent with the findings of Smith and 

colleagues (Smith, Shoben, & Rips, 1974), who have noticed that some features were 

listed more frequently than others when subjects were asked to list features 

describing certain concepts, showing de facto that some features are more relevant 

than others. In the same fashion, from the distributional point of view, it is very 

likely that some contexts are more relevant, and therefore more informative about a 

specific word. On top of it, relying on a limited number of contexts also complies 

with the principle of cognitive economy (Collins & Quillian, 1969). 

In our methods, we sort the contexts of every target word by either PPMI, PLMI 

or LMI. Since their ranking somehow resembles their relevance for the target word, 

we then select the top N contexts, where N is a hyperparameter empirically set in a 

range between 50 and 1000 (Santus, Lenci, Lu, & Schulte im Walde, 2014a). Once 

the most relevant contexts of the target words have been identified, they can be used 

to extract properties aimed at discriminating semantic relations (i.e. hypernymy, co-

hyponymy, synonymy and antonymy). 

2.4 Summary of Chapter II 

In this chapter we have described the origin and development of the distributional 

approach (Section 2.1), illustrating the importance of such approach in NLP (Section 

2.2) and how it can be implemented computationally (2.3). A large part of the 
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chapter has shown the main parameters that need to be considered when developing 

a DSM (Section 2.2.1), as well as the linguistic (Section 2.3.2) and mathematical 

(Section 2.3.3) pre-processing steps that need to be performed, as they were 

identified in Turney and Pantel (2010). 

In the next chapter, we will discuss the concept of similarity and we describe our 

contribution to its automatic identification. 
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Chapter III – Similarity 

“No entity without identity” 

W. v. O. Quine, Ontological Relativity and Other Essays 

 

This chapter describes the concept of semantic similarity (Section 3.1) and its 

treatment in NLP (Section 3.2), with a particular focus on distributional semantics. 

While the first part of the chapter is mostly theoretical, the second part describes 

several distributional measures and introduces APSyn, an unsupervised method for 

similarity identification (Section 3.3). APSyn is evaluated on all the most popular test 

sets – TOEFL, ESL, MEN, WordSim-353 and SimLex-999 –, showing comparable 

or even better performances than state-of-the-art methods, including word 

embeddings models. Section 3.3 reports and discusses the results of the evaluation. 

Section 3.3.6, in particular, shows that vector cosine on the top-N contexts cannot 

reach the results obtained by APSyn, suggesting that the measure captures a different 

aspect of similarity. 

The chapter is an adaptation and extension of: 

 Santus, E., Chersoni, E., Lenci, A., Huang, C.-R., & Blache, P. (2016a). 

Testing APSyn against Vector Cosine on Similarity Estimation. Seoul, 
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South Korea: Proceedings of Pacific Asia Conference on Language, 

Information and Computation (PACLIC, 2016). 

 Santus, E., Chiu, T.-S., Lu, Q., Lenci, A., & Huang, C.-R. (2016b). 

Unsupervised Measure of Word Similarity: How to Outperform Co-

occurrence and Vector Cosine in VSMs. Phoenix, Arizona: Proceedings of 

American Association for the Advancement of Artificial Intelligence 

(AAAI, 2016). 

 Santus, E., Chiu, T.-S., Lu, Q., Lenci, A., & Huang, C.-R. (2016c). What a 

Nerd! Beating Students and Vector Cosine in the ESL and TOEFL Datasets. 

Portorož, Slovenia: Proceedings of 10th Conference on Language Resources 

and Evaluation (LREC, 2016). 

3.1 Similarity 

The interest to the concept of similarity dates back to Plato’s problem, which 

questions how people can acquire so much knowledge from so little information 

(Landauer & Dumais, 1997). During the centuries, the relevance of such relation has 

motivated a lot of research and discussion in many disciplines, such as linguistics, 

philosophy, cognitive science, and so on. Nowadays, its definition is still “liquid” 

(Murphy M. L., 2003), as “there is no unique answer to the question of how similar 

is one object to another” (Murphy & Medin, 1985). 

Although the difficulty of defining similarity has led some scholar to argue that 

theories based on it are based on nothing (Murphy & Medin, 1985), similarity is 

known to play a fundamental role in categorization (Murphy G. L., 2002). The only 
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way something can be properly categorized, in fact, is by comparing it to previously 

encountered examples (Murphy G. L., 2002). Such comparison can be modeled in 

many ways, depending on the studied object and on the adopted representation. In all 

cases, it has been understood as sharing some features (i.e. properties, relations, etc.; 

Rips, Shoben, & Smith, (1973)). In distributional semantics, where the objects of 

study are linguistic expressions (e.g. words) and the features are contexts, similarity 

has been often conceived in terms of co-occurrence. Following the Distributional 

Hypothesis (Harris, 1954), two linguistic expressions that occur in similar contexts 

have similar meanings
6
. 

This definition of similarity has three main implications. First of all, similarity 

has not to be seen as a binary relation, but rather as a continuum. Such continuum 

has at the extremes: i) words sharing all contexts (i.e. perfect synonyms, or identities) 

and ii) words sharing no contexts (i.e. perfectly unrelated words). Since it is not 

possible that two different words share all contexts (in that case, there would not be 

reasons for both to exist), perfect synonyms hardly exist. This is why most of the 

literature generally talks about near-synonyms rather than synonyms (Cruse, 1986; 

Murphy M. L., 2003). A second implication is that similarity is not always transitive. 

In fact, if we think about similarity in terms of intersections between sets of features 

(each set characterizing one word), it is possible that word meanings can be similar 

in different ways, as they may share different subsets of features. For example, if A 

and B are similar, and B and C are similar, we cannot conclude that A and C are also 

similar: consider A to be calculator, B to be tool and C to be screwdriver; A is 

                                                 
6
 It may be important to notice that some literature has discriminated between two types of 

similarity (Nakov & Kozareva, 2011): i) attributional similarity, if there is correspondence between 

attributes; ii) relational similarity, if there is correspondence between relations. 
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similar to B, and B is similar to C, but A and C are definitely less similar than the 

previous ones. A third implication is that, being similarity an intersection of features, 

it is symmetric: A and B share exactly the same features of B and A. This property 

does not hold for relations like hypernymy and meronymy, which are asymmetric, 

even though they are still characterized by a considerable amount of similarity 

(Cruse, 2000). 

3.1.1 Features Salience 

In compositional semantics and cognitive research, it is well known that features 

describing word meanings do not have equal salience. In early experiments carried 

out by Smith and colleagues (Smith, Shoben, & Rips, 1974), it was noticed that some 

features were listed more frequently by the subjects. The authors claimed that 

heavier weights should be assigned to those features, as they were more prototypical 

and therefore fundamental for the definition of a concept, while the others simply 

characterize it. 

Interestingly, feature salience can change depending on the context (Murphy M. 

L., 2003). Tversky (Features of similarity, 1977), for example, noted that subjects 

considered Austria similar to Sweden when the competitors were Hungary and 

Poland, but they considered it more similar to Hungary when the other possible 

competitors were Sweden and Norway. He claimed that second set of words caused 

the geographic attribute to be more salient and discriminative. 



Making Sense: From Word Distribution to Meaning 

67 

 

3.2 Word Similarity in NLP 

Word similarity is one of the most important and most studied problems in NLP, 

as it is fundamental for a wide range of tasks, such as Word Sense Disambiguation 

(WSD), Information Extraction (IE), Paraphrase Generation (PG), as well as the 

automatic creation of semantic resources. 

As we have seen in the previous chapter, thanks to their representation, DSMs 

are suitable for the calculation of similarity, which is generally measured in terms of 

vector proximity. The vector cosine is usually adopted for such measurement, as it 

computes the angular width between the vectors. A number of other measures have 

been introduced during the last decades to address some of the limitations of vector 

cosine. We briefly describe some of the most known ones in 3.2.1. The chapter is 

then dedicated to introduce our new metric APSyn, which is inspired at Average 

Precision (AP; see Kotlerman, Dagan, Szpektor, & Zhitomirsky-Geffet (2010)), that 

computes the weighted intersection between the top most salient contexts of the 

words in a pair. 

While we will work on “count-based” DSMs (see Chapter II), word embeddings 

have also been recently adopted for the study of word similarity. These models are 

based on the context-prediction and learn word representation through neural 

network training (Collobert & Weston, 2008; Mikolov, Yih, & Geoffrey, 2013; 

Huang, Manning, & Ng, 2012): word vector dimensions are set to maximize the 

probability for the contexts which typically occur with the target word. 

Collobert & Weston (2008) proposed a convolutional neural network that, given 

a sentence, returns a large amount of linguistic predictors, such as POS-tags, named 
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entity tags, semantic roles, semantically similar words, etc. Almost all tasks rely on 

labeled data. Huang, Manning, & Ng (2012) proposed a neural network that learns 

word embeddings to maximize the likelihood of predicting the last word in a 

sentence, relying on the local context (i.e. previous word) and on the global one (i.e. 

document in which the word occurs). Mikolov, Yih, & Geoffrey (2013) proposed 

two efficient embedding algorithms, the Skip-Gram and the Continuous-Bag-of-

Words, which also learn word representations by means of neural network training, 

but without using a non-linear hidden layer, thus minimizing the computational 

complexity of the training. One of these models, the Skip-Gram with negative-

sampling training method, achieves state-of-the-art results in a wide range of NLP 

tasks. 

Extensive evaluations comparing the two families of models have given 

contrasting results. The first systematic comparison was carried out in a study by 

Baroni, Dinu, & Kruszewski (2014), in which word embedding models emerged as 

the clear winners. By contrast, a following paper by Levy, Goldberg, & Dagan (2015) 

suggested that the superiority of context-predicting models was tied to the optimal 

choice of some hyperparameters that had been already tuned by the algorithm 

designers and were not taken into account in the work by Baroni and colleagues. 

Their final claim was that such settings have a significant impact on the performance 

and that part of these parameters can be transferred to count-based models to obtain 

comparable results. 

Other approaches to word similarity have relied on bilingual corpora, 

paraphrases and knowledge resources, such as lexicons or semantic networks (i.e. 
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WordNet; Fellbaum (1998)). These approaches achieve high precision but suffer 

from low recall, because of the limited coverage of the underlying resources, caused 

by their development and update costs (Santus, Lenci, Lu, & Huang, 2015a). 

3.2.1 Similarity Measures 

As we have seen in Chapter II, once the words are represented as vectors in a 

vector space, similarity can be calculated as proximity (Turney & Pantel, 2010). 

Several measures have been adopted for this purpose, including the Manhattan 

Distance (L1), which is the sum of the differences between the vectors’ dimensions, 

and the Euclidean Distance (L2), which is the squared root of the sum of the squared 

differences between the vectors’ dimensions (Deza & Deza, 2009). All of them can 

be used and converted in measure of similarity by applying either the inversion or 

the subtraction (Manning & Schütze, 1999), as shown below: 

 

𝑠𝑖𝑚(𝑥, 𝑦) =
1

𝑑𝑖𝑠𝑡(𝑥,𝑦)
 8 

𝑠𝑖𝑚(𝑥, 𝑦) = 1 − 𝑑𝑖𝑠𝑡(𝑥, 𝑦) 9 

 

A wide range of other similarity measures – such as the Dice’s Coefficient, the 

Jaccard Similarity and the Matching Coefficient – has been adopted in the literature. 

However, the most common measure of word similarity in DSMs is the vector cosine 

(Turney & Pantel, 2010), which looks at the normalized correlation between the 

dimensions of two word vectors, w1 and w2. It is described by the following equation: 
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𝑐𝑜𝑠(𝑤1, 𝑤2) =  
∑ 𝑓1𝑖×𝑛

𝑖=1 𝑓2𝑖

√∑(𝑓1𝑖)2×√∑(𝑓2𝑖)2
  10 

 

where 𝑓𝑥𝑖
 is the i-th dimension in the vector x. Cosine ignores the length of the 

vectors, focusing on the angle between them (i.e. not much importance is given to 

the absolute frequency of the word). It returns values ranging between -1, when the 

vectors point to opposite directions (i.e. θ = 180°), and +1, when the vectors point to 

the same direction (i.e. θ = 0°), having value 0 (zero) when the vectors are 

orthogonal (i.e. θ = 90°). If no smoothing has been applied, frequencies cannot be 

negative, and therefore vector cosine scores can only range between 0 and 1. This 

measure has been extensively used to quantify word similarity in vector spaces 

becoming a sort of de facto standard in distributional semantics (Landauer & Dumais, 

1997; Mikolov, Yih, & Geoffrey, 2013; Levy, Goldberg, & Dagan, 2015). 

In this chapter, we introduce APSyn, a rank-based measure of word similarity 

that was shown to outperform the vector cosine in the TOEFL
7
 and ESL

8
 test sets 

                                                 
7
 The TOEFL dataset consists of 80 multiple-choice synonym questions, in which, given a target 

word, the system has to choose the synonym among four possible choices. After its first use in 

Landauer & Dumais (1997), who achieved a score of 64.38% (which is very close to the reported 

average of non-English US college applicant: i.e. 64.50%), the TOEFL dataset became one of the 

most common benchmarks for DSMs testing. Bullinaria & Levy (2012) even achieved 100% accuracy 

on this dataset. In their paper, the authors extensively analyze numerous parameters, including the 

influence of corpus size, window size, stop-lists, stemming and SVD, until they find a perfectly 

optimized model. After achieving perfect precision on the TOEFL, the authors acknowledge that 

while these results are impressive for the benchmark, they can hardly be generalized to new tasks. 
8
 The ESL was proposed by Turney (2001) as a benchmark for the evaluation of systems in the 

identification of synonyms. It consists of 50 multiple-choice synonym questions, which are provided 

in a context to facilitate sense disambiguation. The best reported corpus-based approaches in this 

benchmark were those of Turney (2001) and Terra & Clarke (2003), while the best performing 

algorithm was developed by Jarmasz & Szpakowicz (2003) and relies on a thesaurus, achieving 82% 

of accuracy. 
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(Santus, Chiu, Lu, Lenci, & Huang, 2016a-b-c). This measure is based on the 

hypothesis that similar words not only share many contexts, but they share their most 

relevant ones in higher proportion to less similar words. Such a hypothesis relies on 

the observation that features have different salience in characterizing word meaning, 

as described in 2.3.3.2 and in 3.1.1. 

We define APSyn as the extent of the weighted intersection between the top-N 

most relevant contexts for the two words, where the weight is the average rank of the 

intersected features in the features lists of the target words, sorted by either PPMI or 

PLMI (note: other association measures can be also used). 

Given a traditional count-based DSM, where every word is represented as a 

vector of weighted associations between such word and its contexts, this measure can 

be implemented through the following steps: i) first, for every target word in the pair, 

we rank the contexts according to the Positive Pointwise Mutual Information (PPMI: 

see 2.3.3.1); ii) second, once the contexts are ranked according to their PPMI, for 

every target word we pick the top-N contexts and we intersect them with those of the 

other word in the pair; iii) third, for each shared context, we add one divided by the 

average rank of the shared context in the two PPMI-ranked context lists. See the 

equation below: 

 

𝐴𝑃𝑆𝑦𝑛(𝑤1, 𝑤2) =  ∑
1

(𝑟𝑎𝑛𝑘1(𝑓)+𝑟𝑎𝑛𝑘2(𝑓))/2 𝑓∈𝑁(𝐹1)∩𝑁(𝐹2)   11 
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that is, for every feature f included in the intersection between the top-N features of 

w1, N(F1), and w2, N(F2), APSyn will add 1 divided the average rank of that feature in 

the two context lists, sorted by PPMI (note: other association measures can be also 

used). N is a parameter and rankx is the position of the intersected feature f in the 

context list of word x. 

APSyn is expected to return the highest score when all top-N features are 

intersected and have exactly the same rank, as it happens in the identity. Lower 

scores are returned when the extent of the intersection or the relevance of the 

intersected contexts are smaller. Suppose, in fact, to have three toy-vectors a, b and c. 

They are initialized with the following features (note: between round brackets we 

report the indices of the dimensions and outside there are their values, which are 

used in APSyn only for ranking): a = b = [2(1), 4(2), 3(3), 5(4), 1(5)] and c = [5(1), 

2(2), 5(3), 1(4), 0(5)]. If we want to calculate APSyn with N=3 among a and b, and b 

and c, we need to: 

a) sort the features and select only the top-N=3, obtaining: a = b = [5(4), 

4(2), 3(3)] and c = [5(1), 5(3), 2(2)]. 

b) calculate APSyn for the sorted vectors of a and b, obtaining: 

𝐴𝑃𝑆𝑦𝑛(𝑎, 𝑏) =
1

(1 + 1)/2
+

1

(2 + 2)/2
+

1

(3 + 3)/2
= 1 + 0.5 + 0.3 = 1.8 

c) calculate APSyn for the sorted vectors of b and c, obtaining: 

𝐴𝑃𝑆𝑦𝑛(𝑏, 𝑐) = 0 +
1

(2 + 3)/2
+

1

(3 + 2)/2
= 0.4 + 0.4 = 0.8 
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As it can be seen the score of APSyn for b and c is much lower than the one for a 

and b, which are identities. Since it is based on the intersection, APSyn is not 

directional, so that APSyn(b, c) = APSyn(c, b). 

3.3 Systematic Evaluation of APSyn vs. Vector Cosine 

In the following sections, we report a systematic evaluation of APSyn on the most 

popular test sets – namely MEN (Bruni, Tran, & Baroni, 2013), WordSim-353 

(Finkelstein, Gabrilovich, Matias, Rivlin, Solan, Wolfman, & Ruppin, 2001) and 

SimLex-999 (Hill, Roi, & Korhonen, 2014). In our evaluation, we compare the 

performance of our measure to the one of vector cosine under several parameter 

settings, taking into consideration corpus size, context window width, measure of 

association and the adoption of SVD. The results – measured in Spearman 

correlation – are also discussed in relation to the state-of-the-art VSMs, as they are 

reported in Hill, Roi, & Korhonen (2014). In particular, we compare our models 

(vector cosine is always calculated on the full vector, if not specified otherwise) to 

the neural language models (NLMs), which were identified as the best performing 

ones. In such comparison, APSyn and vector cosine, in their best settings, are 

competitive to, or even better than, word embeddings in almost all datasets (the only 

exception is WordSim-353 when the DSMs are trained on Wikipedia). 

All the mentioned results for the NLMs are those calculated by Hill, Roi, & 

Korhonen (2014) using the code (or directly the embeddings) shared by the original 

authors. Collobert & Weston (2008)’s model was trained on 852 million words of 

Wikipedia and on the RCV Vol. 1 Corpus (Lewis, 2004). Huang, Manning, & Ng 
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(2012)’s model was trained on 990 million words of Wikipedia. The scores reported 

here for Mikolov, Yih, & Geoffrey (2013)’s model were obtained by Hill and 

colleagues training a 200 dimensions model, using Mikolov, Yih, & Geoffrey’s 

Word2Vec software on 1000 million words of Wikipedia. 

Finally, given the recent debate about the ability of DSMs to calculate genuine 

similarity as distinguished from word relatedness (see, for example, Hill, Roi, & 

Korhonen (2014)), we show how our models maximize such distinction performing 

particularly well in SimLex-999 and in the similarity subset extracted from 

WordSim-353 by Agirre, Alfonseca, Hall, Kravalova, Pasca, & Soroa (2009). 

The remaining part of the chapter is organized as follows. Section 3.3.1 shortly 

describes the adopted corpora and the preprocessing. Section 3.3.2 illustrates the 

implementation of twenty-four DSMs. Section 3.3.3 describes the used datasets, 

while Sections 3.3.4 and 1.1.1 report and analyze the results of our experiments. 

3.3.1 Corpora and Preprocessing 

We used two different corpora for our experiments: RCV vol. 1 (Lewis, 2004) 

and the Wikipedia corpus (Baroni, Bernardini, Ferraresi, & Zanchetta, 2009), 

respectively containing 150 and 820 million words. These corpora are described in 

2.3.1. 
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3.3.2 DSMs 

We implemented twenty-four DSMs. All of them include the target words of the 

three datasets (i.e. MEN, WordSim-353 and SimLex-999) and the contexts with the 

frequency above 100. Other frequency thresholds were investigated (i.e. 250, 500 

and 1000), but the models’ performance was comparatively worst, and they were 

therefore abandoned. 

We considered as contexts the content words (i.e. nouns, verbs and adjectives) 

within a window of 2, 3 and 5, even though the latter was given up for its poor 

performance. It might be relevant noticing here that targets and contexts are 

represented with their POS-tags in our DSMs. When the dataset does not explicitly 

mention the words’ POS-tags (as it happens in WordSim-353), we assumed that both 

words had the same syntactic category, and we assigned it in the following way: 

noun, if both words exist as nouns, otherwise verb, if both words exist as verbs, 

otherwise adjective. This means that word pairs like [white, rabbit] and [run, 

marathon] are considered noun pairs. 

Twelve out of twenty-four models were developed for RCV1, while other 

twelve were developed for Wikipedia. For each corpus, the twelve models differ 

according to the window size (i.e. 2 and 3), the adopted measure of association (i.e. 

frequency, PPMI and LMI) and the application of truncated SVD with k=300 to the 

previous combinations. In the next sections, whenever we refer to a specific DSM, 

we will use the following convention: 

Corpus_SVD/NoSVD_AssociationMeasure_Window, such as in 

RCV_NoSVD_PPMI_2 or in Wiki_SVD_Freq_3. 
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3.3.3 Datasets 

For our evaluation, we used three popular datasets: WordSim-353  (Finkelstein, 

Gabrilovich, Matias, Rivlin, Solan, Wolfman, & Ruppin, 2001), MEN (Bruni, Tran, 

& Baroni, 2013), SimLex-999 (Hill, Roi, & Korhonen, 2014). The three datasets 

have a different generative history, but all of them consist in word pairs with an 

associated score, that should either represent word association or word similarity. 

WordSim-353 (Finkelstein, Gabrilovich, Matias, Rivlin, Solan, Wolfman, & 

Ruppin, 2001) was proposed as a word similarity dataset containing 353 pairs 

annotated with scores between 0 and 10. However, as claimed by Hill, Roi, & 

Korhonen (2014), the instructions given to the annotators were ambiguous with 

respect to similarity and association, so that i) many dissimilar word pairs received a 

high rating, and ii) only concepts that were dissimilar and not associated received 

low ratings. On top of it, WordSim-353 does not provide the POS-tags for the 439 

words that it contains, forcing the users to decide which POS to assign to the 

ambiguous words (e.g. [white, rabbit] and [run, marathon]). An extension of this 

dataset is the subclassification carried out by Agirre, Alfonseca, Hall, Kravalova, 

Pasca, & Soroa (2009), who discriminated between similar and associated word pairs. 

Such discrimination was done by asking annotators to classify all pairs according to 

the semantic relation they hold (i.e. identical, synonymy, antonymy, hypernymy, 

meronymy and none-of-the-above). The annotation was then used to group the pairs 

in three categories: similar pairs (those classified as identical, synonyms, antonyms 

and hypernyms), associated pairs (those classified as meronyms and none-of-the-

above, with an average similarity greater than 5), and non-associated pairs (those 
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classified as none-of-the-above, with an average similarity below or equal to 5). Two 

gold standards were finally produced: i) one for similarity, containing 203 word pairs 

resulting from the union of similar and non-associated pairs; ii) one for relatedness, 

containing 252 word pairs resulting from the union of associated and non-associated 

pairs. Even though such classification made a clear distinction between the two types 

of relations (i.e. similarity and association), Hill, Roi, & Korhonen (2014) argue that 

these gold standards still carry the scores they had in WordSim-353, which are 

known to be ambiguous in this regard. 

The MEN Test Collection (Bruni, Tran, & Baroni, 2013) includes 3,000 word 

pairs divided in two sets (one for training and one for testing) together with human 

judgments, obtained through Amazon Mechanical Turk. The 751 words composing 

the pairs were randomly selected from a list of words occurring at least 700 times in 

ukWac and Wackypedia corpora (size: about 2.7 billion tokens; Baroni, Bernardini, 

Ferraresi, & Zanchetta (2009): see 2.3.1) and at least 50 times as tags in the ESP 

game dataset (von Ahn and Dabbish, 2004). The construction was performed by 

asking subjects to rate which pair – among two – was the most related one (i.e. the 

most associated). Every pairs-couple was proposed only once, and a final score out 

of 50 was attributed to each pair, according to how many times it was rated as the 

most related. According to Hill, Roi, & Korhonen (2014), the major weakness of this 

dataset is that it does not encode word similarity, but a more general notion of 

association. 

SimLex-999 is the dataset introduced by Hill, Roi, & Korhonen (2014) to 

address the above mentioned criticisms of confusion between similarity and 
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association. The dataset consists of 999 pairs containing 1,028 words, which were 

also evaluated in terms of POS-tags and concreteness. The pairs were annotated with 

a score between 0 and 10, and the instructions strictly required the identification of 

word similarity, rather than word association. Hill and colleagues claim that 

differently from other datasets, SimLex-999 inter-annotator agreement has not been 

surpassed by any automatic approach. 

3.3.4 Results 

Given the twenty-four DSMs, for each dataset we have measured APSyn and 

vector cosine between the words in the pairs (Note: APSyn was not measured for the 

SVD models, because this measure was designed to measure the extent of 

intersection among linguistic contexts). Spearman correlation between our scores 

and the gold standard was then calculated for every model, as reported in Table 1 

and Table 2. In particular, Table 1 describes the performances on SimLex-999, MEN 

and WordSim-353 for the RCV Vol. 1 models. Table 2, instead, describes the 

performances on the three datasets for the Wikipedia models. Concurrently, Table 3 

and Table 4 describe the performances respectively of the RCV Vol. 1 and 

Wikipedia models on the subsets of WordSim-353 extracted by Agirre, Alfonseca, 

Hall, Kravalova, Pasca, & Soroa (2009). 
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Dataset SimLex-999 WordSim-353 MEN 

Window 2 3 2 3 2 3 

COS 

Cos Freq 0.149 0.133 0.172 0.148 0.089 0.096 

Cos LMI 0.248 0.259 0.321 0.32 0.336 0.364 

Cos PMI 0.284 0.267 0.41 0.407 0.424 0.433 

COS-SVD 

Cos SVD-Freq 0.128 0.127 0.169 0.173 0.076 0.084 

Cos SVD-LMI 0.19 0.21 0.299 0.291 0.275 0.286 

Cos SVD-PMI 0.386 0.382 0.485 0.470 0.509 0.538 

LMI-APSyn 

APSyn-1000 0.18 0.163 0.254 0.237 0.205 0.196 

APSyn-500 0.199 0.164 0.283 0.265 0.226 0.214 

APSyn-100 0.206 0.182 0.304 0.265 0.23 0.209 

PPMI-

APSyn 

APSyn-1000 0.254 0.304 0.399 0.453 0.369 0.415 

APSyn-500 0.295 0.32 0.455 0.468 0.423 0.478 

APSyn-100 0.332 0.328 0.425 0.422 0.481 0.513 

STATE-OF-THE-ART 

Mikolov et al. 0.282 0.442 0.433 

 

Table 1: Spearman correlation scores for our twelve models trained on RCV Vol. 1, in 

the three datasets Simlex-999, WordSim-353 and MEN. At the bottom the performance of 

the state-of-the-art model of Mikolov, Yih, & Geoffrey (2013), as reported in Hill, Roi, & 

Korhonen (2014). The best performance for every model is bolded. 
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Dataset SimLex-999 WordSim-353 MEN 

Window 2 3 2 3 2 3 

COS 

Cos Freq 0.148 0.159 0.199 0.207 0.178 0.197 

Cos LMI 0.367 0.374 0.489 0.529 0.59 0.63 

Cos PMI 0.395 0.364 0.605 0.622 0.733 0.74 

COS-SVD 

Cos SVD-Freq 0.157 0.184 0.208 0.222 0.197 0.226 

Cos SVD-LMI 0.327 0.329 0.441 0.486 0.524 0.563 

Cos SVD-PMI 0.477 0.464 0.533 0.562 0.769 0.779 

LMI-APSyn 

APSyn-1000 0.343 0.344 0.449 0.477 0.586 0.597 

APSyn-500 0.339 0.342 0.438 0.470 0.58 0.588 

APSyn-100 0.303 0.31 0.392 0.428 0.48 0.498 

PPMI-

APSyn 

APSyn-1000 0.434 0.419 0.599 0.643 0.749 0.772 

APSyn-500 0.442 0.423 0.602 0.653 0.757 0.773 

APSyn-100 0.316 0.281 0.58 0.608 0.703 0.722 

STATE-OF-THE-ART 

Huang et al. 0.098 0.623 0.3 

Collobert & Weston 0.268 0.494 0.575 

Mikolov et al. 0.414 0.655 0.699 

 

Table 2: Spearman correlation scores for our twelve models trained on Wikipedia, in 

the three datasets Simlex-999, WordSim-353 and MEN. At the bottom the performance of 

the state-of-the-art models of Collobert & Weston (2008), Huang, Manning, & Ng (2012), 

Mikolov, Yih, & Geoffrey (2013), as reported in Hill, Roi, & Korhonen (2014). The best 

performance for every model is bolded. 
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  WordSim (SIM) WordSim (REL) 

  2 3 2 3 

Cos Freq 0.208 0.158 0.167 0.175 

Cos LMI 0.416 0.395 0.251 0.269 

Cos PMI 0.52 0.496 0.378 0.396 

Cos SVD-Freq 0.202 0.119 0.091 0.182 

Cos SVD-LMI 0.39 0.368 0.18 0.189 

Cos SVD-PMI 0.574 0.491 0.408 0.321 

LMI APSyn-1000 0.32 0.290 0.259 0.241 

LMI APSyn-500 0.355 0.319 0.261 0.284 

LMI APSyn-100 0.388 0.335 0.233 0.270 

PMI APSyn-1000 0.519 0.525 0.337 0.397 

PMI APSyn-500 0.564 0.546 0.361 0.382 

PMI APSyn-100 0.562 0.553 0.287 0.309 

 

Table 3: Spearman correlation scores for our twelve models trained on RCV1, in the 

two subsets of WordSim-353. The best performance for every model is bolded. 

 
  WordSim (SIM) WordSim (REL) 

  2 3 2 3 

Cos Freq 0.335 0.334 0.03 0.05 

Cos LMI 0.638 0.663 0.293 0.34 

Cos PMI 0.672 0.675 0.441 0.446 

Cos SVD-Freq 0.35 0.363 -0.011 0.001 

Cos SVD-LMI 0.6 0.626 0.223 0.286 

Cos SVD-PMI 0.722 0.725 0.444 0.486 

LMI APSyn-1000 0.609 0.609 0.317 0.36 

LMI APSyn-500 0.599 0.601 0.289 0.344 

LMI APSyn-100 0.566 0.574 0.215 0.271 

PMI APSyn-1000 0.692 0.726 0.507 0.568 

PMI APSyn-500 0.699 0.742 0.508 0.571 

PMI APSyn-100 0.66 0.692 0.482 0.516 

 

 

Table 4: Spearman correlation results for our twelve models trained on Wikipedia, in 

the subsets of WordSim-353. The best performance for every model is bolded. 
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3.3.5 Discussion 

Table 1 shows the Spearman correlation scores for APSyn and vector cosine on 

the three datasets for the twelve DSMs built using RCV Vol. 1. Table 2 does the 

same for the DSMs built using Wikipedia. Vector cosine, as mentioned above, is 

calculated on the full vector, while APSyn is focused on the top-N contexts. For the 

sake of comparison, we also report the results of the state-of-the-art VSMs 

mentioned in Hill, Roi, & Korhonen (2014) and briefly described in Section 3.2. 

Two models perform particularly well in comparison to the state-of-the-art: i) 

one relies on APSyn, applied on the PPMI weighted DSM (henceforth, APSynPPMI); 

ii) the other relies on the vector cosine applied on the SVD-reduced PPMI-weighted 

matrix (henceforth, CosSVDPPMI). These two models always outperform the state-

of-the-art VSMs when RCV1 is used, and in SimLex-999 and MEN when Wikipedia 

is used (achieving competitive results also in WordSim-353). 

Also, we can notice that the smaller window (i.e. 2) does not always perform 

better than the larger one (i.e. 3). However, this can be due to the minor difference 

between window 2 and window 3. In fact, despite Hill, Roi, & Korhonen (2014)’s 

claim that no evidence supports the hypothesis that smaller context windows 

improve the ability of models to capture similarity, we have noticed that window 5 

was performing worse than the smaller ones, and therefore it was not further 

evaluated. 

Some further observations are: i) the corpus size strongly affects the results; ii) 

PPMI strongly outperforms LMI in all models; iii) SVD boosts the vector cosine 

when it is combined with PPMI, while its contribution is unpredictable with other 
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weighting measures. With reference to i), we should mention here that our version of 

Wikipedia is about one fifth smaller than the one used by Mikolov, Yih, & Geoffrey 

(2013), namely 820 million versus 1000 million words. 

Looking more carefully at Table 1, we can see that our best models have a good 

advantage on the best state-of-the-art VSMs when RCV Vol. 1 is used. The 

advantage is reduced, yet existing, when Wikipedia is used as a training corpus (see 

Table 2). This may depend either on the difference between the versions of 

Wikipedia that were used to train the models, or on the ability of NLM to perform 

proportionally better with bigger amount of data. APSyn seems also to be affected by 

the corpus size: it, in fact, becomes more competitive with vector cosine model when 

used on Wikipedia. 

Finally, few words need to be spent with regard to the ability of calculating 

genuine similarity, as opposed to word relatedness (see, for example, Turney (2001); 

Agirre, Alfonseca, Hall, Kravalova, Pasca, & Soroa (2009)). Table 3 and Table 4 

show the Spearman correlation scores for the models respectively trained on RCV1 

and Wikipedia in the subsets of WordSim-353 extracted by Agirre and colleagues 

(2009). It can be easily noticed that our best models work better on the similarity 

subset rather than on the relatedness one. In particular, they perform about 20-30% 

better better for similarity than for relatedness (see Table 3 and Table 4). 

 The good performances of our models on SimLex-999 (which was built with a 

particular attention to genuine similarity) and the large difference in performance 

between the two subsets of WordSim-353 described in Table 3 and Table 4 confirm 

that our models are indeed efficient in identifying genuine similarity. It is however 
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possible that by adopting a larger window, the performance would have increased 

also for relatedness, as larger windows are expected to capture more topical 

relatedness than strictly semantic similarity. This trend can be already noticed in 

Table 4, where the scores for window 3 grow more on the related subset than on the 

similarity one. The fact that the trend is not instead visible in Table 3 may depend on the 

corpus size. 

To summarize, APSyn is competitive with the best model of vector cosine (calculated 

on the full vector of a PPMI-SVD reduced matrix). The fact that the two measures 

implement different hypotheses (i.e. the former is rank-based while the latter is distance-

based) may call for a combination of the two in order to merge their strength, possibly 

leading to a more complete approach to similarity. On top of it, we can already say here that 

APSyn is very scalable and its performance seems to grow with the size of corpus in higher 

proportion than what vector cosine does. In some recent experiments, we have noticed that 

when using large corpora, such as the concatenation of UkWac and Wacky (see 2.3.1), 

APSyn outperforms vector cosine calculated on the full vector extracted from the PPMI 

SVD-reduced matrix. 

3.3.6 Feature Selection and Rank 

In order to verify whether vector cosine calculated on the top-N features would also 

improve, we performed an experiment comparing APSyn to two new 

implementations of vector cosine, which calculate the distance of only the top-N 

features. The experiment was carried out on several DSMs built on a combination of 

ukWac and Wackypedia (see 2.3.1), containing about 2.7 billion words. We varied 

the window size, considering 2 and 5 content words on the left and the right of the 
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targets. Only PPMI was used as weight, as in all previous experiments this has 

shown to perform more consistently. Two versions of Top-N vector cosine were 

implemented to calculate respectively i) the distance on the intersection between the 

top-N features (as it happens in APSyn); ii) the distance on the union between the 

top-N features. This second interpretation is a step ahead the hypothesis of APSyn. In 

fact, rather than evaluating the rank and the extent of the shared features, it measures 

how relevant the most salient feature of one vector are for the other. For consistency, 

we have also implemented a union version of APSyn. In Table 5 we report the results 

of the measures in the various settings. 

As it can be seen in Table 5, vector cosine computed on the intersected features 

reports low results, which are even unpredictable when N is tuned. The reason is that 

the most relevant features of the vectors also have high scores and therefore a short 

distance. This causes vector cosine to score high for all the pairs, reducing therefore 

its discriminative power. Much more interesting results are obtained when vector 

cosine is calculated on the context union. In this case, it performs similarly to APSyn, 

without however never reach its Spearman scores. 

In the union-based vector cosine, we have noticed that several contexts that are 

salient for one word are instead completely irrelevant for the other, therefore 

contributing very little or nothing to the vector cosine (i.e. their PPMI=0). This 

observation is also at the base of the slightly worst performance of APSyn for the 

union, compared to the more classic intersection. 

From these experiments, we can conclude that context selection is certainly 

fundamental for APSyn performance. However, the results also demonstrate that the 
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feature rank play a big role in the performance. We can conclude that the rank-based 

measure and the distance-based measure perform similarly, but catch two different 

aspects of word similarity. Combining them may therefore lead to further 

improvements.  

 

Dataset SimLex-999 WordSim-353 MEN 

Window 2 5 2 5 2 5 

Vector Cosine PPMI N=All 0.268 0.227 0.603 0.584 0.729 0.707 

Vector Cosine  

PPMI SVD (k=300) 

N=All 
0.301 0.268 0.618 0.617 0.73 0.713 

Vector Cosine 

Intersection 

100 0.219 0.181 0.383 0.384 0.487 0.483 

500 -0.075 -0.056 -0.184 -0.172 -0.217 -0.177 

1000 -0.125 -0.071 -0.252 -0.178 -0.236 -0.283 

Vector Cosine Union 

100 0.282 0.242 0.708 0.707 0.779 0.775 

500 0.275 0.242 0.699 0.702 0.768 0.758 

1000 0.274 0.241 0.684 0.681 0.761 0.751 

APSyn Intersection 

(Classic) 

100 0.277 0.208 0.520 0.552 0.668 0.665 

500 0.333 0.287 0.691 0.701 0.767 0.763 

1000 0.337 0.297 0.718 0.722 0.775 0.771 

APSyn Union 

100 0.325 0.278 0.704 0.703 0.779 0.773 

500 0.329 0.288 0.736 0.740 0.788 0.176 

1000 0.324 0.286 0.734 0.736 0.785 0.781 

 

Table 5: Spearman correlation scores for the three datasets Simlex-999, WordSim-353 

and MEN, calculated with vector cosine computed on the full PPMI vector, the PPMI SVD 

reduced vector (k=300), the intersection of the top-N most relevant contexts and their union. 

Scores for APSyn computed on the intersection and union of the top-N contexts. The DSM 

are a 2- and 5-window based DSMs, with features weighted with PPMI. The best 

performance for every model is bolded. 
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3.4 Summary of Chapter III 

In this chapter, we have illustrated the concept of similarity (Section 3.1), 

describing its properties. After the theoretical introduction, we have discussed the 

importance of similarity in NLP (Section 3.2) and we have illustrated several metrics 

that can be used for its identification, including our newly proposed APSyn (Section 

3.2.1). In Section 3.3, we reported an extensive and systematic evaluation of the 

metrics in twenty-four count-based DSMs. 

Each of the twenty-four models represents a particular configuration of 

parameters (i.e. corpus size, window size, weighting measure, dimensionality 

reduction, etc.) that have been carefully assessed. In particular, PPMI emerged as the 

most efficient association measure, especially when combined with SVD. The 

newly-introduced metric APSyn showed extremely promising performances, which 

encourage us to further investigations. APSyn is comparable to the best setting of 

vector cosine, and both of them (i.e. APSynPPMI and CosSVDPPMI) outperform the 

word embedding models in all datasets (with the exception of WordSim-353 for the 

models trained on Wikipedia, where competitive results are still obtained), 

independently of the training corpus, confirming Levy, Goldberg, & Dagan (2015)’s 

claim that well-tuned count-based DSMs can achieve similar performances to word 

embedding models, or even better ones. We concluded the discussion in 3.3.5 

mentioning that APSyn seems to perform progressively better with bigger corpora, 

even outperforming the best setting of vector cosine when a large amount of data is 

used. 
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In Section 3.3.6, in order to verify whether vector cosine could improve by 

running on the top-N contexts, we implemented two versions of the vector cosine 

that calculate the distance respectively between: i) the intersection of the top-N 

features of the target words; and ii) the union of the top-N features of the target 

words. Results show that vector cosine on the intersection fails completely, while 

vector cosine on the union achieves competitive results, without however 

outperforming APSyn. We concluded therefore that the rank-based measure and the 

distance measure capture two different aspects of word similarity, which might be 

combined in future studies to achieve better results. 

In the next chapter, we discuss the concept of opposition and introduce APAnt, 

our measure for its automatic identification. The measure is carefully evaluated in 

several antonym retrieval tasks. 
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Chapter IV – Opposition 

“Truth, in its nature, is untruth.” 

M. Heidegger, The Origin of the Work of Art 

 

This chapter describes the concept of semantic opposition (Section 4.1) and its 

treatment in NLP (Section 4.2), with a particular focus on distributional semantics. 

The second part of the chapter illustrates APAnt (Section 4.3), a newly introduced 

unsupervised method for the discrimination between antonyms and synonyms. 

APAnt was evaluated on numerous pairs extracted from EVALution, Lenci/Benotto 

and BLESS datasets, outperforming vector cosine and a baseline implementing the 

co-occurrence hypothesis (Section 4.4). 

The chapter is an adaptation and extension of: 

 Santus, E., Lu, Q., Lenci, A., & Huang, C.-R. (2014b). Taking 

Antonymy Mask off in Vector Space. Phuket, Thailand: Proceedings of 

the 28th Pacific Asia Conference on Language, Information and 

Computation (PACLIC 2014). 

 Santus, E., Lu, Q., Lenci, A., & Huang, C.-R. (2014c). Unsupervised 

Antonym-Synonym Discrimination in Vector Space. Pisa, Italy: Atti 

della Conferenza di Linguistica Computazionale Italiana (CLIC-IT 2014). 
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 Santus, E., Lenci, A., Lu, Q., & Huang, C.-H. (2015a). When Similarity 

Becomes Opposition: Synonyms and Antonyms Discrimination in DSMs. 

In Italian Journal on Computational Linguistics, aAccademia University 

Press. 

4.1 Opposition 

People do not always perfectly agree on classifying word pairs as opposites 

(Mohammad, Dorr, Hirst, & Turney, 2013), confirming that their identification is 

indeed a hard task, even for native speakers. The major problems in such task are 

that i) opposites are rarely in a truly binary contrast (e.g. warm/hot); ii) the contrast 

can be of different kinds (e.g. semantic, as in hot/cold, or referential, as in 

Clinton/Bush); and iii) opposition is often context-dependent (e.g. consider the near-

synonyms very good and excellent in the following sentence: “not simply very good, 

but excellent”; Cruse (1986)). All these issues make opposites difficult to define, so 

that linguists often need to rely on diagnostic tests to make the opposition clear 

(Murphy M. L., 2003). 

Over the years, many scholars from different disciplines have tried to provide a 

precise definition of this semantic relation. They are yet to reach any conclusive 

agreement. Kempson (1977) defines opposites as word pairs with a “binary 

incompatible relation”, such that the presence of one meaning entails the absence of 

the other. In this sense, giant and dwarf are good opposites, while giant and person 

are not. Mohammad, Dorr, Hirst, & Turney (2013), noticing that the terms opposites, 

contrasting and antonyms have often been used interchangeably, have proposed the 
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following distinction: i) opposites are word pairs that are strongly incompatible with 

each other and/or are saliently different across a dimension of meaning; ii) 

contrasting word pairs have some non-zero degree of binary incompatibility and/or 

some non-zero difference across a dimension of meaning; iii) antonyms are opposites 

that are also gradable adjectives. They have also provided a simple but 

comprehensive classification of opposites based on Cruse (1986), including a) 

antipodals (e.g. top-bottom), pairs whose terms are at the opposite extremes of a 

specific meaning dimension; b) complementaries (e.g. open-shut), pairs whose terms 

divide the domain in two mutual exclusive compartments; c) disjoints (e.g. hot-cold), 

pairs whose words occupy non-overlapping regions in a specific semantic dimension, 

generally representing a state; d) gradable opposites (e.g. long-short), adjective- or 

adverb-pairs that describe gradual semantic dimensions, such as length, speed, etc.; e) 

reversibles (e.g. rise-fall), verb-pairs whose words respectively describe the change 

from state A to state B and the inverse, from state B to state A. 

In this chapter, we will not account for all these differences, but rather we will 

use the terms opposites and antonyms as synonyms, meaning all pairs of words in 

which a certain level of contrast is perceived. Under such category we include also 

the paranyms, which are a specific type of coordinates (Huang, Su, Hsiao, & Ke, 

2007) that partition a conceptual field into complementary subfields. For instance, 

although dry season, spring, summer, autumn and winter are all co-hyponyms, only 

the latter four are paranyms, as they split the conceptual field of seasons. 

According to Cruse (1986), antonymy is characterized by the paradox of 

simultaneous similarity and difference: opposites are identical in every dimension of 
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meaning except for one. A typical example of such paradox is the relation between 

dwarf and giant. These words are semantically similar in many aspects (i.e. they may 

refer to similar entities, such as humans, trees, galaxies), differing only for what 

concerns the size, which is assumed to be a salient semantic dimension for them. 

From a distributional perspective, dwarfs and giants share many contexts (e.g., both 

giant and dwarf may be used to refer to galaxies, stars, planets, companies, people
9
), 

differing for those related to the semantic dimension of size. For example, giant is 

likely to occur in contexts related to big sizes, such as global, corporate, dominate 

and so on
10

, while dwarf is likely to occur in contexts related to small sizes, such as 

virus, elf, shrub and so on
11

. 

4.2 Antonymy in NLP 

Opposites identification is very challenging for computational models 

(Mohammad, Dorr, & Hirst, 2008). Yet, this relation is essential for many NLP 

applications, such as Information Retrieval (IR), Ontology Learning (OL), Machine 

Translation (MT), Sentiment Analysis (SA) and Dialogue Systems (Roth & Schulte 

im Walde, 2014; Mohammad, Dorr, Hirst, & Turney, 2013). In particular, the 

automatic identification of semantic opposition is crucial for the detection and 

generation of paraphrases (i.e. during the generation, similar but contrasting 

candidates should be filtered out, as described in Marton (2011)), the understanding 

                                                 
9
 These examples were found through the Sketch Engine (https://www.sketchengine.co.uk), by 

using the word sketch function. 
10

 Ibid. 
11

 Ibid. 
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of contradictions (de Marneffe, Rafferty, & Manning, 2008) and the identification of 

irony (Xu, Santus, Laszlo, & Huang, 2015) and humor (Mihalcea, 2005). 

Several existing hand-crafted computational lexicons and thesauri explicitly 

encoding opposition are often used to support the above mentioned NLP tasks, even 

though many scholars have shown their limitations. Mohammad, Dorr, Hirst, & 

Turney (2013), for example, point out that “more than 90% of the contrasting pairs 

in GRE closest-to-opposite questions
12

 are not listed as opposites in WordNet”. 

Moreover, the relations encoded in such resources are mostly context independent. 

Most of corpus-based approaches on opposition are founded on the co-

occurrence hypothesis (Lobanova, 2012), formulated by Miller & Charles (1991) 

after observing that opposites co-occur in the same sentence more often than 

expected by chance. Such claim has then found many empirical confirmations 

(Justeson & Katz, 1991; Fellbaum C. , 1995) and it is used in the present work as a 

baseline. Ding & Huang (2013) also pointed out that, unlike co-hyponyms, opposites 

generally have a strongly preferred word order when they co-occur in a coordinate 

context (i.e. A and/or B), such as in dead or alive. Another part of related research 

has been focused on the study of lexical-syntactic constructions that can work as 

linguistic tests for opposition definition and classification (Cruse, 1986). 

Starting from all these observations, several computational methods for 

opposition identification were implemented. Most of them rely on patterns 

(Lobanova, Kleij, & Spenader, 2010; Turney, 2008; Pennacchiotti & Pantel, 2006), 

                                                 
12

 GRE stands for Graduate Record Examination, which is a standardized test, often used as an 

admissions requirement for graduate schools in the United States. 
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which are known to be affected by various problems, most notably the difficulty of 

finding patterns that are highly reliable and uniquely associated with specific 

relations, without incurring at the same time in data-sparsity problems. The 

experience with pattern-based approaches has shown that these two criteria can 

rarely be satisfied simultaneously. Some other methods, like the one proposed by 

Lucerto, Pinto, & Jiménez-Salazar (2002), use the number of tokens between the 

target words and other clues (e.g. the presence/absence of conjunctions like but, from, 

and, etc.) to identify contrasting words. 

Turney (2008) proposed a supervised algorithm for the identification of several 

semantic relations, including synonyms and opposites. The algorithm relied on a 

training set of word pairs with class labels to assign the labels also to a testing set of 

word pairs. All word pairs were represented as vectors encoding the frequencies of 

co-occurrence in textual patterns extracted from a large corpus of web pages. He 

used the Sequential Minimal Optimization (SMO) Support Vector Machine (SVM) 

with a radial basis function kernel implemented in Weka (Waikato Environment for 

Knowledge Analysis; see Witten, Frank, & Hall (2005)). In the discrimination 

between synonyms and opposites, the system achieved an accuracy of 75% against a 

majority class baseline of 65.4%. 

Mohammad, Dorr, & Hirst (2008) proposed a method for determining the 

degree of semantic contrast based on the use of thesauri categories and corpus 

statistics. For each target word pair, they used the co-occurrence and the 

distributional hypothesis to establish the degree of opposition. Their algorithm 

achieved an F-score of 0.7, against a random baseline of 0.2. 
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Mohammad, Dorr, Hirst, & Turney (2013) used an analogical method based on 

a given set of contrasting words to identify and classify different kinds of opposites 

by hypothesizing that for every opposing pair of words, A and B, there is at least 

another opposing pair, C and D, such that A is similar to C and B is similar to D. For 

example, for the pair night-day, there is the pair darkness-daylight, such that night is 

similar to darkness and day to daylight. Given the existence of contrast, they 

calculated its degree relying on the co-occurrence hypothesis. Their approach 

outperformed other state-of-the-art measures. 

Schulte im Walde & Köper (2013) proposed a vector space model relying on 

lexico-syntactic patterns to distinguish between synonymy, antonymy and 

hypernymy. Their approach was tested on German nouns, verbs and adjectives, 

achieving a precision of 59.80%, which was above the majority baseline. 

More recently, Roth & Schulte im Walde (2014) proposed that statistics over 

discourse relations can be used as indicators for paradigmatic relations, including 

opposition. 

4.3 APAnt: Discrimination of Antonyms and Synonyms 

Starting from the paradox of simultaneous similarity and difference between 

antonyms (Cruse, 1986), we propose a rank-based distributional measure inspired at 

the Average Precision formula (see: Kotlerman, Dagan, Szpektor, & Zhitomirsky-

Geffet (2010)) to discriminate antonyms from near-synonyms, under the assumption 

that both have similar distributions but antonyms share a smaller proportion of their 

most relevant contexts. For example, dress and clothe are very likely to have among 
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their most relevant contexts words like wear, thick, light and so on. On the other 

hand, dwarf and giant will probably share contexts like eat and sleep, but they will 

differ on other very salient contexts such as big and small. To exemplify such idea, 

in Table 6 we report the first most relevant contexts for the verbs to fall, to lower and 

to raise, where the latter are respectively near-synonym and antonym of to fall. 

APAnt takes into account two main factors: i) the extent of the intersection 

between the top-N most relevant contexts of two words (where relevance is 

measured as the rank in a LMI-ranked contexts list); and ii) the salience of such 

intersection (i.e. the average rank of the context in the two targets LMI-ranked 

contexts lists). It can be seen as the inverse of APSyn. Such an inverse should not be 

confused with the inverse of vector cosine. In fact, while the inverse of vector cosine 

is a measure of dissimilarity (i.e. words having different distribution), the inverse of 

APSyn – i.e. APAnt – simply measures how different the most relevant contexts are. 

We expect near-synonyms to share many relevant contexts (i.e. scoring high with 

vector cosine and APSyn, and consequently low for APAnt), while antonyms are 

expected to share many contexts, but a lower proportion of their most relevant ones 

(i.e. scoring high with vector cosine and low with APSyn, and consequently high for 

APAnt). 

As we have described it in Section 3.2.1, given a target pair 𝑤1and 𝑤2, APSyn 

first selects the N most relevant contexts for each of the two terms and, then, 

calculates the extent of their intersection, by summing up for each intersected context 

a function of its salience score. N should be large enough to sufficiently describe the 

distributional semantics of a term for a given purpose (i.e. in our experiments we 
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have often chosen values like 50, 100, 150, 200 and 250, but this parameter can be 

further optimized). It is important to note here that a small N would inevitably reduce 

the intersection, forcing most of the scores to the same values (and eventually to 

zero), independently on the relation the pair under examination holds. On the other 

hand, a very large value of N will inevitably include also contexts with very low 

values of LMI and, therefore, much less relevant for the target pairs. Finally, it might 

be relevant to notice that APSyn assigns the highest scores to the identity pairs, as 

their intersection will include all N contexts and all in the same rank (e.g. dog-dog). 

Its inverse, instead, would do exactly the opposite. While APSyn assigns higher 

scores to near-synonyms, APAnt assigns higher scores to antonyms. Such scores can 

then be used for semantic relations discrimination tasks: 

 

𝐴𝑃𝐴𝑛𝑡(𝑤1, 𝑤2) =
1

𝐴𝑃𝑆𝑦𝑛(𝑤1, 𝑤2)
  

 

where APSyn is defined as in 3.2.1. 
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To fall To lower (Synonym) To raise (Antonym) 

1. love-n 
2. category-n 
3. short-j 
4. disrepair-n 
5. rain-n 
6. victim-n 
7. price-n (rank=7) 
8. disuse-n 
9. cent-n 
10. rise-v 
11. foul-j 
12. hand-n 
13. trap-n 
14. snow-n 
15. ground-n 
16. rate-n (rank=16) 
17. … 

1. cholesterol-n 
2. raise-v 
3. level-n 
4. blood-n 
5. cost-n 
6. pressure-n 
7. rate-n (rank=7) 
8. price-n (rank=8) 
9. risk-n 
10. temperature-n 
11. water-n 
12. threshold-n 
13. standard-n 
14. flag-n 
15. age-n 
16. lipid-n 
17. … 

1. awareness-n 
2. fund-n 
3. money-n 
4. issue-n 
5. question-n 
6. concern-n 
7. profile-n 
8. bear-v 
9. standard-n 
10. charity-n 
11. help-v 
12. eyebrow-n 
13. level-n 
14. aim-v 
15. point-n 
16. objection-n 
17. … 

 

Table 6: Top 16 contexts for the verbs to fall, to lower and to raise. These terms 

are present in our dataset. At this cutoff, the antonyms do not yet share any context. 

 

Two cases need to be considered here: 

 if APSyn has not found any intersection among the N most relevant contexts, 

it will be set to zero, and consequently APAnt will be infinite; 

 if APSyn has found a large and salient intersection, it will get a high value, 

and consequently the value of APAnt will be very low. 

The first case happens when the two terms in the pair are distributionally 

unrelated or when N is not sufficiently high. Therefore, APAnt is set to the maximum 

attested value. The second case, instead, can occur when two terms are 
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distributionally very similar, sharing therefore many salient contexts. Ideally, this 

should only be the case for near-synonyms. 

As we will see in Section 4.4.2, most of the scores given by APAnt are either 

very high or very low. In order to scale them, in Section 4.4.2 we use the logarithm 

function of the scores, while in Section 4.4.3 we normalize them through the Min-

Max function (note: our infinite values will be set – together with the maximum ones 

– to the highest attested finite value): 

 

𝑀𝑖𝑛𝑀𝑎𝑥(𝑥𝑖) =  
𝑥𝑖−min (𝑋)

max(𝑋)−min (𝑋)
  12 

where, for every value 𝑥𝑖 that we want to normalize, we calculate the ratio between 

𝑥𝑖  less the minimum score in the distribution and the difference between the 

maximum and the minimum score in the distribution (i.e. the score variability range). 

4.4 Evaluation 

In this section we report the main experiments we carried out to evaluate APAnt. 

Section 4.4.2 summarizes the experiments reported in Santus, Lu, Lenci, & Huang 

(2014c), showing the box-plots (which describe the distributions of scores per 

relation) and reporting the Average Precision measure (AP; see Kotlerman, Dagan, 

Szpektor, & Zhitomirsky-Geffet (2010)), which is used to compute the ability of 

APAnt to discriminate antonyms from synonyms for nouns, adjectives and verbs. For 

comparison, we report the performances of the vector cosine and of a baseline 

implementing the co-occurrence hypothesis. Section 4.4.3 reports the experiments 
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described in Santus, Lenci, Lu, & Huang (2015a), where APAnt is tested on a larger 

dataset and it is not only used to discriminate antonyms from synonyms, but also 

from hypernyms and co-hyponyms. Interestingly, in these experiments we found that 

APAnt obtains high scores for hypernyms too. 

4.4.1 DSM and Datasets 

For our experiments, we use a standard window-based DSM recording co-

occurrences with context window of the nearest two content words both to the left 

and right of each target word. Co-occurrences are extracted from a combination of 

the freely available ukWaC and WaCkypedia corpora (with a respective size of 1.915 

billion and 820 million words). See Section 2.3.1 for further details about the corpora. 

For the experiments described in 4.4.2, we rely on a subset of English word 

pairs collected by Alessandro Lenci and Giulia Benotto in 2012/13 using Amazon 

Mechanical Turk (Benotto, 2015), following the method described by Scheible & 

Schulte im Walde (2014). The balance of the target items across word categories, 

their frequency, the degree of ambiguity and the semantic classes were some of the 

criteria adopted for collecting the data. Our subset contains 2,232 word pairs
13

, 

including 1,070 antonym pairs and 1,162 synonym pairs. Antonyms include 434 

noun pairs (e.g. parody-reality), 262 adjective pairs (e.g. unknown-famous) and 374 

verb pairs (e.g. try-procrastinate). Synonyms include 409 noun pairs (e.g. 

completeness-entirety), 364 adjective pairs (e.g. determined-focused) and 389 verb 

pairs (e.g. picture-illustrate). 

                                                 
13

 The sub-set includes all the pairs for which both the target words exist in the DSM. 
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For the experiments described in 4.4.3, the datasets change according to the two 

subtasks that we performed. The first subtask is concerned with the discrimination 

between synonyms and antonyms, while the second one introduces also hypernyms 

and co-hyponyms. Both the datasets are extracted from the English word pairs 

obtained with the union of the Lenci/Benotto dataset (Benotto, 2015), BLESS 

(Baroni & Lenci, 2011) and EVALution 1.0 (Santus, Yung, Lenci, & Huang, 2015b). 

The final dataset for task 1 contains 4,735 word pairs, including 2,545 antonyms and 

2,190 synonyms. The class of antonyms consists of 1,427 noun pairs (e.g. parody-

reality), 420 adjective pairs (e.g. unknown-famous) and 698 verb pairs (e.g. try-

procrastinate). The class of synonyms consists of 1,243 noun pairs (e.g. 

completeness-entirety), 397 adjective pairs (e.g. determined-focused) and 550 verb 

pairs (e.g. picture-illustrate). The final dataset for task 2, includes also 4,261 

hypernyms from the Lenci/Benotto dataset, BLESS and EVALution, and 3,231 

coordinates from BLESS. The class of hypernyms consists of 3,251 noun pairs (e.g. 

violin-instrument), 364 adjective pairs (e.g. able-capable) and 646 verb pairs (e.g. 

journey-move). The coordinates only include noun pairs (e.g. violin-piano). 

4.4.2 Experiments with Lenci/Benotto 

BOX-PLOTS. Box-plots display the median of a distribution as a horizontal 

line within a box extending from the first to the third quartile, with whiskers 

covering 1.5 of the interquartile range in each direction from the box, and outliers 

plotted as circles. 
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Figure 2 and Figure 3 show the box-plots summarizing the logarithmic 

distributions of APAnt and baseline scores for antonyms and synonyms, respectively. 

The logarithmic distribution is used to smooth the range of data, which would 

otherwise be too large and sparse for the box-plot representation. Figure 4 shows the 

box-plot summarizing the vector cosine scores. Since vector cosine scores range 

between 0 and 1, we multiplied them by ten to scale up for comparison with the other 

two box-plots in Figure 2 and Figure 3. The box-plots in Figure 2, Figure 3 and 

Figure 4 include test data with all part of speech types (i.e. nouns, adjectives and 

verbs). The box-plots for individual parts-of-speech are not reported because they do 

not show significant differences. 

 

Figure 2: Logarithmic distribution of APAnt scores for antonym 

and synonym pairs (N=100) across nouns, adjectives and verbs. 
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Figure 3: Logarithmic distribution of the co-occurrence 

baseline scores for antonym and synonym pairs 

across nouns, adjectives and verbs
14

. 

 

 

Figure 4: Distribution of the vector cosine scores for antonym 

and synonym pairs across nouns, adjectives and verbs
15

. 

 

The more the boxes in the plot overlap, the less distinctive the measure is. In 

Figure 3 and Figure 4, we can observe that the baseline and the vector cosine tend to 

                                                 
14

 410 pairs with co-occurrence equal to zero on a total of 2,232 have been removed to make the 

box-plot readable, because log(0) = -inf 
15

 Since vector cosine scores range between 0 and 1, we multiplied them by ten to scale up for 

comparison with the other two box-plots in Figure 2 and Figure 3Error! Main Document Only.. 
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promote synonyms on antonyms. Also, we can observe that there is a large range of 

overlap among synonyms and antonyms distributions, showing the weakness of these 

two measures for their discrimination. On the other hand, in Figure 2 we can observe 

that APAnt scores are much higher for antonymy-related pairs. This shows that 

APAnt has a clear preference for antonyms, differently from the vector cosine or the 

simple co-occurrence. Moreover, results also suggest the partial inaccuracy of the co-

occurrence hypothesis. The tendency of co-occurring is not a hallmark of antonyms, 

being a property of near-synonyms too. 

AVERAGE PRECISION. Table 7 shows the second performance measure we 

used in our evaluation: Average Precision (AP; see: Kotlerman, Dagan, Szpektor, & 

Zhitomirsky-Geffet (2010)) computed for APAnt, baseline and vector cosine scores. 

AP is used in Information Retrieval to combine precision, relevance ranking and 

overall recall. It corresponds to the area under the precision-recall curve and it is 

defined by the following equation: 

𝐴𝑃 =  ∑ 𝑝(𝑘)Δ𝑟(𝑘)

𝑀

𝑘=1

 

where: k varies between 1 and the total number of elements in the rank (i.e. M); p(k) 

is the precision at cutoff k (i.e. how many relevant elements were identified among 

the total elements present at cutoff k); and Δ𝑟(𝑘) is the change in recall that happens 

between cutoff k-1 and cutoff k (i.e. recall increases if a relevant element is in 

position k). For example, the AP of a vector like a = [1 (T), 1 (T), 0 (F), 0 (T), 1 (T)] 

(where 1 is the prediction for (T)rue and 0 is the prediction for (F)alse; between 

round brackets we report the gold standard values) would be the following sum: 
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1 ∗ 0.25 +  1 ∗  0.25 +  0.66 ∗ 0 +  0.5 ∗ 0.25 +  0.66 ∗ 0.25 =  0.79 . The best 

possible score we can obtain is 1 for antonymy and 0 for synonymy, which would 

correspond to the perfect discrimination between antonyms and synonyms. 

APAnt performs the best, compared to the reference methods, which mostly 

promote synonyms on antonyms. In fact, regardless of the value of N (either equal to 

50, 100 or 150), the AP scores confirm the trend shown in the box-plots of Figure 2, 

Figure 3 and Figure 4, proving that APAnt is a very effective measure to distinguish 

antonymy from synonymy. 

 

ALL PoS ANT SYN 

APAnt, N=50 0.71 0.57 

APAnt, N=100 0.73 0.55 

APAnt, N= 150 0.72 0.55 

Baseline 0.56 0.74 

Cosine 0.55 0.75 

 

Table 7: Average Precision (AP) values per relation for APAnt (N=50, 100 and 

150), baseline and vector cosine across the parts-of-speech. 

 

Below we also list the AP values for the different parts-of-speech (i.e. nouns, 

adjectives and verbs) with the parameter N=100. 
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NOUNS ANT-N SYN-N 

APAnt, N=100 0.79 0.48 

Baseline 0.53 0.77 

Cosine 0.54 0.74 

 

Table 8: Average Precision (AP) values per relation for APAnt, 

baseline and vector cosine on nouns. 

 

ADJECTIVES ANT-J SYN-J 

APAnt, N=100 0.65 0.65 

Baseline 0.57 0.74 

Cosine 0.58 0.73 

 

Table 9: Average Precision (AP) values per relation for APAnt, 

baseline and vector cosine on adjectives. 

 

VERBS ANT-V SYN-V 

APAnt, N=100 0.74 0.52 

Baseline 0.53 0.75 

Cosine 0.52 0.77 

 

Table 10: Average Precision (AP) values per relation for APAnt, 

baseline and vector cosine on verbs. 
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As it can be observed, APAnt always outperforms the baseline. However, a 

lower performance can be noticed in Table 9, where the AP scores for adjectives are 

0.65 for both antonyms and synonyms. A possible explanation of this result might be 

that the different number of pairs per relation influences the AP values. In our dataset, 

in fact, we have 364 synonymy-related pairs against 262 antonym pairs for adjectives 

(+102 synonymy-related pairs, +39%). 

 

ADJECTIVES ANT-J SYN-J 

APAnt, N=100 0.72 0.6 

Baseline 0.66 0.69 

Cosine 0.68 0.66 

 

Table 11: Average Precision (AP) values per relation for APAnt, baseline 

and vector cosine on adjectives, after extracting 262 pairs per relation. 

 

To test this hypothesis, we randomly extract 262 synonymy-related pairs from 

the 364 that are present in our dataset and we re-calculate the AP scores for both the 

relations. The results can be found in Table 11. Such results confirm that APAnt 

works properly also for adjectives. However, this is the lowest result among the three 

parts-of-speech used in our experiments. 

The different results for the three parts-of-speech should be interpreted in 

relation to our hypothesis. It is in fact possible that while opposing nouns (e.g. giant 

– dwarf) share very few or no salient contexts, opposing verbs (e.g. rise – fall) and – 
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even more – opposing adjectives (e.g. hot – cold) share some salient contexts, 

making the discrimination task more difficult for these parts-of-speech. In any case, 

the accuracy of our method has strongly outperformed the baseline for all the parts-

of-speech, confirming the robustness of our hypothesis. 

4.4.3 Experiments with Joint Datasets 

In Table 12, we report the AP values for APAnt and the baselines. Since the 

Average Precision values may be biased by pairs obtaining the same scores (in these 

cases, in fact, the rank cannot be univocally determined, except by assigning it 

randomly or adding a new criterion – and we have adopted the alphabetic one), for 

every measure, we provide information about how many pairs have identical scores. 

As it can be seen in the table, when N is big enough (in our case N>=200), APAnt 

has less identical scores than the vector cosine. 

As it can be seen in Table 12, APAnt outperforms all the baselines. Given that 

our dataset contains few more antonyms than synonyms, we expect the random rank 

to have a certain preference for antonyms. This is, in fact, what happens, making the 

random baseline outperforming the co-occurrence baseline. The vector cosine, 

instead, has a preference for synonyms, balancing the AP independently of the 

different sizes of the two classes. Finally, we can notice that while the values of N 

seem to have a small impact on the performance, they have a high impact in reducing 

the number of identical scores. That is, the larger the value of N, the less pairs have 

identical scores. Co-occurrence frequency is the worst measure in this sense, since 

almost 76% of the pairs obtained identical scores. Such a high value has to be 
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attributed to the sparseness of the data and may be eventually reduced by choosing a 

larger window in the construction of the DSM. However, this also shows that use of 

co-occurrence data alone may be of little help in discriminating antonyms from other 

semantic relations. 

 

MEASURE N (Pairs with identical score) Antonyms Synonyms 

APAnt 50 (1374) 0.60 0.41 

APAnt 100 (274) 0.60 0.41 

APAnt 150 (96) 0.61 0.41 

APAnt 200 (67) 0.61 0.40 

APAnt 250 (67) 0.61 0.40 

Co-occurrence (3591) 0.54 0.46 

Cosine (85) 0.5 0.5 

Random (3) 0.55 0.45 

 

Table 12: AP scores for APAnt and the baselines on the dataset containing 

4,735 word pairs, including 2,545 antonyms and 2,190 synonyms. The second 

column contains the values of N (only for APAnt) and – between brackets – the 

quantity of pairs having identical scores. 

 

In Table 13, we report the AP scores for the task performed on the dataset 

including also hypernyms and coordinates. Again, APAnt outperforms the baselines. 

An interesting and unexpected result is obtained for the hypernyms. Even though 

their class is almost twice the size of antonyms and synonyms (this can be seen also 

in the AP scores obtained by the baselines), this result is important and is further 
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discussed below. Once more, the AP value for the random rank is proportional to the 

sizes of the classes. Co-occurrence frequency seems to have a slight preference for 

antonyms and hypernyms (which may be due to the size of these classes), while the 

vector cosine seems to prefer synonyms and coordinates. 

Once more, the values of N do not significantly affect the AP scores, but they 

influence the number of identical scores (N>=150 is necessary to have less identical 

scores than those obtained with the vector cosine). Co-occurrence frequency is again 

the worst measure in this sense, since it has as many as 10,760 pairs with the same 

score on 12,227 (88%). 

 

MEASURE 
N (Pairs with identical 

score) Antonyms Synonyms Hypernyms Coordinates 

APAnt 50 (4756) 0.27 0.18 0.43 0.18 

APAnt 100 (2449) 0.27 0.18 0.44 0.17 

APAnt 150 (1987) 0.28 0.18 0.44 0.17 

APAnt 200 (1939) 0.28 0.18 0.44 0.17 

APAnt 250 (1901) 0.28 0.18 0.44 0.17 

Co-occ. (10760) 0.23 0.19 0.36 0.23 

Cosine (2096) 0.2 0.2 0.31 0.29 

Random (15) 0.21 0.18 0.35 0.26 

 

Table 13: AP scores for the APAnt and the baselines on the dataset containing 

12,227 word pairs, including 4,261 hypernyms and 3,231 coordinates. The second 

column contains the values of N (only for APAnt) and – between brackets – the 

quantity of pairs having identical scores. 
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The AP results confirm that APAnt assigns higher scores to antonyms compared 

to both synonyms and coordinates. Such results are coherent with our hypothesis that 

antonyms share less relevant contexts than both synonyms and coordinates. Figure 5 

shows boxplots describing the distribution of scores for APAnt (on the left) and 

vector cosine (on the right). As it can be seen, APAnt scores are – on average – 

higher for antonymy, while the vector cosine scores are similarly distributed for both 

relations, with a slight preference for near-synonyms. 

 

 

 

A surprising result instead occurs for the class of hypernyms, as shown in Table 

13, to which APAnt assigns high scores. Although such class is almost twice the size 

of both antonyms and synonyms, the APAnt AP score for such class is much higher 

than the AP scores assigned to the baselines. The reason may be that hypernymy 

related pairs – even though they are known to be characterized by high distributional 

similarity – do not share many salient contexts. That is, contexts that are salient for 

Figure 5: APAnt scores (on the left) for N=50 and vector cosine ones (on the 

right). APAnt scores have been normalized in a range 0-1 with Min-Max (see: 

Section 4.3), setting the infinite values to the maximum attested value, and 

therefore normalized to 1. 
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one of the two terms are not necessarily salient for the other one (e.g. wild for the 

hypernym animal might not be salient for the hyponym dog), and vice versa (e.g. 

bark is not salient for the hypernym animal, while it is for the hyponym dog). This 

result is coherent with what we have found in Santus, Lenci, Lu, & Schulte im 

Walde (2014a) (see Section 5.3), where we have shown that the most relevant 

contexts of hypernyms tend to have higher entropy than the most relevant contexts of 

hyponyms. More investigation is required in this respect, but it is possible that APAnt 

can be used in combination with other measures (e.g. SLQS or entropy: see Section 

5.3) for discriminating also hypernymy. 

Another relevant point is the role of N. As it can be seen from the results, it has a 

low impact on the AP values, meaning that the rank is not strongly affected by its 

change (at least for what concerns the values we have tested, which are 50, 100, 150, 

200 and 250). However, the best results are generally obtained with N>150. The 

value of N is instead inversely proportional to the number of identical scores. 

Finally, we have identified a potential bias for AP, concerned with the ranking 

of pairs that have obtained the same score. In our experiment, we have used the 

alphabetical order as the secondary criterion for ranking. Such criterion does not 

affect the evaluation of APAnt (including its variants) and vector cosine, because 

these measures assign a fairly small amount of identical scores (around 15% of 

12,227 pairs). It instead certainly affects the reliability of the co-occurrence 

frequency, where the amount of pairs obtaining identical scores amount up to 88%. 

Even though such result is certainly imputable to the sparseness of the data, we 
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should consider whether the co-occurrence frequency can properly account for 

antonymy. 

4.5 Summary of Chapter IV 

This chapter has presented APAnt (Section 4.3), a distributional measure for the 

identification of antonymy based on a distributional interpretation of the paradox of 

simultaneous similarity and difference between the antonyms (Cruse, 1986). 

APAnt is evaluated in several discrimination tasks (Section 4.4), including 

synonyms, antonyms, hypernyms and coordinates. The evaluation has been 

performed on nouns, adjectives and verbs. In the tasks, APAnt has outperformed the 

vector cosine and the baseline implementing the co-occurrence hypothesis (Fellbaum 

C. , 1995; Justeson & Katz, 1991; Miller & Charles, 1991) for all the parts-of-speech, 

achieving good AP for all of them. However, its performance is higher for nouns, 

slightly lower for verbs and significantly lower for adjectives. These differences 

across parts-of-speech might be due to the fact that while opposing nouns share very 

few salient contexts, opposing verbs and – even more – opposing adjectives share 

some salient contexts, making the discrimination task more difficult. APAnt 

performance supports our hypothesis, according to which synonyms share a number 

of salient contexts that is significantly higher than the one shared by antonyms. 

The chapter has also discussed a limitation of AP, when the measures assign too 

many identical scores. In this respect, APAnt outperforms the vector cosine when 

N>150, producing less similar scores than it. 
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Finally, unexpectedly, APAnt has been found to have preferences also for 

hypernymy, which redirect us to the hypothesis presented in the next chapter, 

according to which the most relevant contexts of hypernyms are less informative 

than those of hyponyms, therefore not corrisponding. 
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Chapter V – Hypernymy 

“All men are mortal. Socrates was mortal. 

 Therefore, all men are Socrates.” 

Woody Allen 

 

This chapter describes the concept of hypernymy (Section 5.1) and its treatment 

in NLP, with a particular focus on distributional semantics (Section 5.2). After 

having provided such background, we introduce the most common metrics for 

hypernymy identification, presenting SLQS (Section 5.3), an unsupervised method 

for generality identification, which can be applied to identify hypernymy. SLQS was 

evaluated in two tasks on BLESS (Section 5.4), showing interesting results. 

The chapter is an adaptation of: 

 Santus, E., Lenci, A., Lu, Q., & Schulte im Walde, S. (2014a). Chasing 

Hypernyms in Vector Spaces with Entropy. Proceedings of the 14th 

Conference of the European Chapter of the Association for Computational 

Linguistics (EACL 2014), 2, p. 38-42. 

5.1 Hypernymy and Taxonymy 

Hypernymy (sometimes also referred to as IS-A; Collins & Quillian (1969)), 

together with similarity, is the main organizer of the semantic memory (Murphy G. 

L., 2002): similarity is used to cluster together similar word meanings, while 
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hypernymy organizes them hierarchically. In fact, as suggested by its name (i.e. the 

term hypernym comes from the Greek hyper = “over” -onym = “name”, “higher-level 

name”, and its counterpart hyponym comes from hypo = “under” -onym = “name”, or 

“lower-level name”), hypernymy is the relation of dominance that structures 

semantic hierarchies (and, in some cases, taxonomies). 

Hypernymy is not limited to structuring hierarchies. It is, for example, at the 

base of inferences, entailments, concept definitions and categorization process 

(Casagrande & Hale, 1967), which explains why it is learnt very early in childhood 

(Markman, 1981). For the same reason, it is “[by] far the most studied lexical 

relation in the computational community” (Pustejovsky, 1995). Four main properties 

of hypernymy have been identified in the literature (Cruse, 1986): 

1. Asymmetry, or directionality: if A is a hypernym of B, B is not a 

hypernym of A, but it is its hyponym; 

2. Catenary: if A is a hypernym of B, B can still be a hypernym of C, 

and so on; 

3. Transitivity: if hypernymy exists between A and B and between B and 

C, hypernymy also exists between A and C. 

4. Inheritance Property: the hyponym inherits the properties of the 

hypernym. 

Taxonymy is argued to share the same properties of hypernymy, the only 

difference being that it requires keeping constant the relation of difference between 

the co-hyponyms (Cruse, 1986). For example, while a hierarchy can have one level 
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based on type and one on gender differentiation (e.g. mammal  dog / human; and 

human  male / female), a taxonomy must keep the relation of difference constant 

in all levels (e.g. either type or gender). Cruse (2000) suggests that taxonymy is a 

prototypical type of hypernymy.  

The concept of hypernymy can finally be sub-classified according to several 

factors. Miller (1998), for example, distinguished taxonomical (e.g. a dog IS-A 

animal) and functional hypernymy (e.g. dog IS-USED-AS-A pet). Herrmann & 

Herrmann (1984), on the other hand, based their distinction on the type of 

information involved: perceptual hyponymy (e.g. animal/horse), functional (e.g. 

vehicle/car), geographical (e.g. country/China), activity (e.g. game/chess), state (e.g. 

emotion/fear) and action (e.g. cook/fry). 

5.2 Hypernymy and Taxonymy in NLP 

The problem of identification of asymmetric relations like hypernymy and 

taxonymy has often been approached through semi-supervised methods, such as 

pattern-based (Hearst, 1992; Pennacchiotti & Pantel, 2006) and – more recently – 

machine learning (Weeds, Clarke, Reffin, Weir, & Keller, 2014; Levy, Remus, 

Biemann, & Dagan, 2015). 

The identification of hypernymy and taxonymy has been addressed through 

unsupervised distributional approaches only in a limited way (Kotlerman, Dagan, 

Szpektor, & Zhitomirsky-Geffet, 2010), especially because it is not clear to what 

extent distributional similarity (which is by definition a symmetric relation) is 

appropriate to model the semantic properties of asymmetric relations. In fact, it is not 
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enough to say that animal is distributionally similar to dog. We must also account for 

the fact that animal is semantically broader than dog: every dog is an animal, but not 

every animal is a dog. 

The few work that has attempted at a completely unsupervised approach to the 

identification of hypernymy in corpora has mostly relied on some version of the 

Distributional Inclusion Hypothesis (DIH; Geffet & Dagan (2005); Weeds & Weir 

(2003); Weeds, Weir, & McCarthy (2004)), according to which the contexts of a 

narrower term are also shared by the broader term. 

A measure formalizing the DIH is the WeedsPrec (Weeds & Weir, 2003; Weeds, 

Weir, & McCarthy, 2004)), which quantifies the weights of the features f of a 

narrower term u that are included into the set of features of a broader term v: 

 

𝑊𝑒𝑒𝑑𝑠𝑃𝑟𝑒𝑐(𝑢, 𝑣) =
∑ 𝑤𝑢(𝑓)𝑓∈𝐹𝑢∩𝐹𝑣

∑ 𝑤𝑢(𝑓)𝑓∈𝐹𝑢

 13 

 

where Fx is the set of features of a term x, and wx(f) is the weight of the feature f of 

the term x. This measure identifies the direction of hypernymy with 71% accuracy on 

word-pairs extracted from WordNet (Fellbaum C. , 1998). This result, however, was 

not significantly better than the frequency baseline, according to which more general 

words are more frequent. 

Variations of this measure have been proposed. Clarke (2009) extended the DIH, 

suggesting that generality difference can be calculated as the degree to which the 

dimensions of the narrower term have lower values than the broader ones, across all 
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the intersected dimensions. Lenci & Benotto (2012) adapted this measure to check 

not only to which extent the features of the narrower term are included in the features 

of the broader, and also how the features of the broader are not included in the 

features of the narrower. Kotlerman, Dagan, Szpektor, & Zhitomirsky-Geffet (2010) 

combined Average Precision (AP) with the balancing approach of Szpektor & Dagan 

(2008), outperforming the above mentioned methods. Herbelot & Ganesalingam 

(2013) measured the Kullback-Leibler (KL) divergence between the probability 

distribution over context words for a term, and the background probability 

distribution, based on the idea that hypernyms, being less informative words, should 

have smaller values for such divergence. Rimmel (2014) considered the top features 

in a context vector as topics and used a Topic Coherence (TC) measure. 

In this chapter, we introduce SLQS, an entropy-based distributional measure that 

aims to identify hypernyms by providing a distributional characterization of their 

semantic generality. According to the Distributional Informativeness Hypothesis 

(DInH), the generality of a term can be inferred from the informativeness of its most 

typical linguistic contexts. We assess this hypothesis in two tasks: i) the 

identification of the broaderer term in hyponym-hypernym pairs (directionality task); 

ii) the discrimination between hypernymy and other semantic relations (detection 

task). 

5.3 SLQS 

DIH is grounded on an “extensional” definition of the asymmetric character of 

hypernymy: since the class denoted by a hyponym (i.e. extension) is included in the 
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class denoted by the hypernym, hyponyms are expected to occur in a subset of the 

contexts of their hypernyms. However, it is also possible to provide an “intensional” 

definition of the same asymmetry. In fact, the typical characteristics making up the 

“intension” expressed by a hypernym (i.e. concept; e.g. move or eat for animal) are 

semantically more general than the characteristics forming the “intension” of its 

hyponyms (e.g. bark or has fur for dog). This corresponds to the idea that 

superordinate terms like animal are less informative than their hyponyms (Murphy G. 

L., 2002). From a distributional point of view, we can therefore expect that the most 

typical linguistic contexts of a hypernym are less informative than the most typical 

linguistic contexts of its hyponyms. In fact, contexts such as bark and has fur are 

likely to co-occur with a smaller number of words than move and eat. 

Starting from this hypothesis, which we call Distributional Informativeness 

Hypothesis (DInH), and using entropy as an estimator of context informativeness 

(Shannon, 1948), we propose SLQS, which infers the semantic generality of a word 

from the median entropy of its statistically most prominent contexts. 

For every term wi we identify the N most associated contexts c (where N is a 

parameter empirically set to 50)
16

. The association strength has been calculated with 

Local Mutual Information (LMI; Evert (2005)). For each selected context c, we 

define its entropy H(c) as: 

 

 

                                                 
16

 N=50 is the result of an optimization of the model against the dataset after trying the following 

suboptimal values: 5, 10, 25, 75 and 100. 
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𝐻(𝑐) = − ∑ 𝑝(𝑓𝑖|𝑐) ∙ 𝑙𝑜𝑔2(𝑝(𝑓𝑖|𝑐))𝑛
𝑖=1   14 

 

where p(fi|c) is the probability of the feature fi given the context c, obtained through 

the ratio between the frequency of <c, fi> and the total frequency of c. The resulting 

values H(c) are then normalized in the range 0-1 by using the Min-Max-Scaling: 

Hn(c). Finally, for each term wi we calculate the median entropy Ewi of its N contexts: 

 

𝐸𝑤𝑖
= 𝑀𝑒𝑗=1

𝑁  (𝐻𝑛(𝑐𝑗))  15 

 

Ewi can be considered as a semantic generality index for the term wi: the higher 

the index value, the more semantically general wi is. SLQS is then defined as the 

reciprocal difference between the semantic generality of two terms w1 and w2: 

 

𝑆𝐿𝑄𝑆(𝑤1, 𝑤2) = 1 −
𝐸𝑤1

𝐸𝑤2

  16 

 

According to this formula, SLQS<0, if Ew1 > Ew2; SLQS≃0, if Ew1 ≃ Ew2; and 

SLQS>0, if Ew1 <. Ew2. SLQS is an asymmetric measure because, by definition, 

SLQS(w1,w2)≠SLQS(w2,w1) (except when w1 and w2 have exactly the same 

generality). Therefore, if SLQS(w1,w2)>0, w1 is semantically less general than w2. 
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5.4 Experiments 

In the following subsections we describe the assessment of SLQS in two tasks 

(i.e. directionality identification and hypernymy identification), providing 

information about the training corpora, the DSM and the dataset. 

5.4.1 Corpora, DSM and Dataset 

For the experiments, we used a standard window-based DSM recording co-

occurrences with the nearest 2 content words to the left and right of each target word. 

Co-occurrences were extracted from a combination of the freely available ukWaC 

and WaCkypedia corpora (see Section 2.3.1) and weighted with LMI. 

To assess SLQS we relied on a subset of BLESS (Baroni & Lenci, 2011), a 

freely-available dataset that includes 200 distinct English concrete nouns as target 

concepts, equally divided between living and non-living entities (e.g. BIRD, FRUIT, 

etc.). For each target concept, BLESS contains several relata, connected to it through 

one relation, such as co-hyponymy (COORD), hypernymy (HYPER), meronymy 

(MERO) or no-relation (RANDOM-N)
17

. 

Since BLESS contains different numbers of pairs for every relation, we 

randomly extracted a subset of 1,277 pairs for each relation, where 1,277 is the 

maximum number of HYPER-related pairs for which vectors existed in our DSM. 

                                                 
17

 In these experiments, we only consider the BLESS pairs containing noun relata. 
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5.4.2 Task 1: Directionality Identification 

In this experiment we aimed at identifying the hypernym in the 1,277 

hypernymy-related pairs of our dataset. Since the HYPER-related pairs in BLESS are 

in the order hyponym-hypernym (e.g. eagle-bird, eagle-animal, etc.), the hypernym 

in a pair (w1,w2) is correctly identified by SLQS, if SLQS (w1,w2) > 0. 

Following Weeds, Weir, & McCarthy  (2004), we used word frequency as a 

baseline model. This baseline is grounded on the hypothesis that hypernyms are 

more frequent than hyponyms in corpora. Table 14 gives the evaluation results: 

 

  SLQS WeedsPrec BASELINE 

POSITIVE 1111 805 844 

NEGATIVE 166 472 433 

TOTAL 1277 1277 1277 

PRECISION 87.00% 63.04% 66.09% 

 

Table 14: Accuracy for Task 1. 

 

As it can be seen in Table 14, SLQS scores a precision of 87% in identifying the 

second term of the test pairs as the hypernym. This result is particularly significant 

when compared to the one obtained by applying WeedsPrec (+23.96%). As it was 

also noticed by Geffet & Dagan (2005) with reference to a previous similar 

experiment performed on a different corpus (Weeds, Weir, & McCarthy  (2004)), 

WeedsPrec in this task performs comparably to the frequency baseline. SLQS scores 

instead a +20.91% to it. 
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5.4.3 Task 2: Hypernymy Identification 

The second experiment aimed at discriminating HYPER test pairs from those 

linked by other types of relations in BLESS (i.e., MERO, COORD and RANDOM-

N). To this purpose, we assumed that hypernymy is characterized by two main 

properties: i) the hypernym and the hyponym are distributionally similar (in the 

sense of the Distributional Hypothesis), and ii) the hyponym is semantically less 

general than the hypernym. We measured the first property with the vector cosine 

and the second one with SLQS. 

After calculating SLQS for all the pairs in our datasets, we set all the negative 

values to zero, that is to say those in which – according to SLQS – the first term is 

semantically more general than the second one. Then, we combined SLQS and vector 

cosine by taking their product. The greater the resulting value, the greater the 

likelihood that we are considering a hypernymy-related pair, in which the first word 

is a hyponym and the second word is a hypernym. 

To evaluate the performance of SLQS, we used Average Precision (AP; see 

Section 4.4.2), a method derived from Information Retrieval that combines precision, 

relevance ranking and overall recall, returning a value that ranges from 0 to 1. AP=1 

means that all the instances of a relation are at the top of the rank, whereas AP=0 

means they are at the bottom. AP is computed for the four relations for which we 

extracted pairs from BLESS. SLQS was also compared with WeedsPrec and vector 

cosine, again using frequency as baseline. Table 15 shows the results. 
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  HYPER COORD MERO RANDOM 

Baseline 0.4 0.51 0.38 0.17 

Cosine 0.48 0.46 0.31 0.21 

WeedsPrec 0.5 0.35 0.39 0.21 

SLQS * 
Cosine 

0.59 0.27 0.35 0.24 

 

Table 15: AP values for Task 2. 

 

The AP values show the performances of the tested measures on the four 

relations. The optimal result would have been a score of 1 for HYPER and 0 for the 

other relations. 

The product between SLQS and vector cosine gets the best performance in 

identifying HYPER (+0.09 in comparison to WeedsPrec) and in discriminating it 

from COORD (-0.08 than WeedsPrec). It also achieves better results in 

discriminating MERO (-0.04 than WeedsPrec). On the other hand, it seems to get a 

slightly lower precision in discriminating RANDOM-N (+0.03 in comparison to 

WeedsPrec). The likely reason is that unrelated pairs might also have a fairly high 

semantic generality difference, slightly affecting the measure’s performance. Figure 

6 gives a graphic depiction of the performances. SLQS corresponds to the black line 

in comparison to the WeedsPrec (black borders, grey fill), the vector cosine (grey 

borders) and the baseline (grey fill). 

To conclude, our experiments demonstrate that hypernymy can be identified by 

measuring the generality spread between the words in the pairs with entropy. SLQS 

does not account however for the other property that characterizes hypernymy, that is 
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similarity: it therefore needs to be combined with a similarity measure, such as 

vector cosine, when unrelated pairs need to be discriminated too. 

 

 

Figure 6: AP values for Task 2. 

 

5.5 Summary of Chapter V 

In this chapter, we have discussed the concept of hypernymy (Section 5.1) and 

described SLQS (Section 5.3), an asymmetric distributional measure of semantic 

generality which is able to identify the broader term in a hypernym-hyponym pair 

and, when combined with vector cosine, to discriminate hypernymy from other types 

of semantic relations. The successful performance of SLQS in the reported 

experiments confirms that hyponyms and hypernyms are distributionally similar, but 

hyponyms tend to occur in more informative contexts than hypernyms. SLQS shows 
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that an “intensional” characterization of hypernymy can be pursued in distributional 

terms. This opens up new possibilities for the study of semantic relations in DSMs. 
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Chapter VI – Supervised Learning of Hierarchies 

“Knowledge is knowing a tomato is a fruit; 

wisdom is not putting it in a fruit salad.” 

Anonymous 

 

In this chapter, we describe ROOT9 (Section 6.3), a supervised method based on 

a Random Forest algorithm and nine corpus-based features (mostly inspired at the 

previously described unsupervised measures: see Chapters III, IV and V) for the 

identification of hierarchical relations (Section 6.1), namely hypernymy and co-

hyponymy, as opposites of unrelated words. The method is evaluated in three tasks 

(Section 6.4) and shows competitive performance with the state-of-the-art. 

The chapter is an adaptation of: 

 Santus, E., Lenci, A., Chiu, T.-S., Lu, Q., & Huang, C.-R. (2016e). Nine 

Features in a Random Forest to Learn Taxonomical Semantic Relations. 

Portorož, Slovenia: Proceedings of Language Resources and Evaluation 

Conference (LREC 2016). 

 Santus, E., Lenci, A., Chiu, T.-S., Lu, Q., & Huang, C.-R. (2016f). 

ROOT13: Spotting Hypernyms, Co-Hyponyms and Randoms. Phoenix, 

Arizona: Proceedings of Association for the Advancement of Artificial 

Intelligence (AAAI). 
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6.1 Hierarchical Discrimination 

Distinguishing hypernyms from co-hyponyms and, thus, discriminating them 

from semantically unrelated words (henceforth randoms) is a fundamental task in 

Natural Language Processing (NLP). As we have seen in 5.1, hypernymy represents 

a key organization principle of semantic memory (Murphy G. L., 2002), the 

backbone of taxonomies and ontologies, and one of the crucial semantic relations 

supporting lexical entailment (Geffet & Dagan, 2005). Co-hyponymy (or 

coordination), on the other hand, is the relation held by words sharing a close 

hypernym, which are therefore attributionally similar (Weeds, Clarke, Reffin, Weir, 

& Keller, 2014). 

The ability of discriminating hypernymy, co-hyponymy and random words has 

numerous applications, including Automatic Thesauri Creation, Paraphrasing, 

Textual Entailment, Sentiment Analysis and so on (Weeds, Clarke, Reffin, Weir, & 

Keller, 2014; Xu, Santus, Laszlo, & Huang, 2015). For this reason, in the last 

decades, numerous methods, datasets and shared tasks have been proposed to 

improve computer ability to discriminate such relations, generally achieving 

promising results (Santus, Lenci, Chiu, Lu, & Huang, 2016e-f; Roller, Erk, & Boleda, 

2014; Weeds, Clarke, Reffin, Weir, & Keller, 2014; Santus, Lenci, Lu, & Schulte im 

Walde, 2014; Levy, Remus, Biemann, & Dagan, 2015; Geffet & Dagan, 2005; Lenci 

& Benotto, 2012; Weeds, Weir, & McCarthy, 2004; Rimmel, 2014). Both supervised 

and unsupervised approaches have been investigated. The former have been shown 

to outperform the latter in Weeds, Clarke, Reffin, Weir, & Keller (2014), even 

though Levy, Remus, Biemann, & Dagan (2015) have claimed that – because of 
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lexical memorization – these methods may learn whether a term y is a prototypical 

hypernym, regardless of its actual relation with x. 

In this chapter we report a revision of ROOT13 (Santus, Lenci, Chiu, Lu, & 

Huang, 2016f), a supervised method based on a Random Forest algorithm (Breiman, 

2001) and thirteen corpus-based features. The feature contribution is evaluated with 

an ablation test, using a 10-fold cross validation on 9,600 pairs
18

 randomly extracted 

from EVALution (Santus, Yung, Lenci, & Huang, 2015b), Lenci/Benotto (Benotto, 

2015) and BLESS (Baroni & Lenci, 2011). The ablation test has shown that four out 

of thirteen features were actually not contributing to the system’s performance, and 

they were therefore removed, turning ROOT13 into ROOT9. On the 9,600 pairs, 

ROOT9 achieved an F1 score of 90.7% when the three classes were present, 95.7% 

when we had to discriminate hypernyms and co-hyponyms, 91.8% for hypernyms 

and randoms, and 97.8% for co-hyponyms and randoms. 

In order to compare ROOT9 with the state-of-the-art, we have also evaluated it 

in the Weeds, Clarke, Reffin, Weir, & Keller (2014)’s datasets. Unfortunately, 

ROOT9 was not able to cover the full datasets, as several words in their pairs were 

missing from our Distributional Semantic Model (DSM) because of their low 

frequency. Nevertheless, the authors kindly provided the results of their models on 

our subsets, so that the comparison can be considered reliable. Also in relation to the 

state-of-the-art, ROOT9 is proved to be competitive, being slightly outperformed in 

all the datasets only by the svmCAT model (Weeds, Clarke, Reffin, Weir, & Keller, 

                                                 
18

 The 9,600 pairs are available at https://github.com/esantus/ROOT9 

https://github.com/esantus/ROOT9
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2014), which is a Support Vector Machine (SVM) classifier run on the concatenation 

of the dependency-based distributional vectors of the words in the pairs. 

Finally, we carried out an extra test to verify whether the system was actually 

learning the semantic relation between two word pairs, or simply identifying 

prototypical hypernyms (Levy, Remus, Biemann, & Dagan, 2015). The test consisted 

in providing to the trained model switched hypernyms (e.g. from “dog HYPER 

animal” to “dog RANDOM fruit”), and verify how they were classified. Our results 

show that most of the switched hypernyms were in fact misclassified as hypernyms 

(especially when those hypernyms were in the training test), and that the only way to 

overcome such problem is to explicitly provide the model with negative examples 

(i.e., switched hypernyms tagged as randoms) during the training. 

6.2 Related Work 

Since the pioneering work of Hearst (1992), who used a pattern based approach 

for the “automatic acquisition of hyponyms from large text corpora”, a large number 

of distributional methods have been applied to the identification of hypernyms. 

Among the supervised methods, Baroni, Bernardi, Do, & Shan (2012) proposed 

to use an SVM classifier on the concatenation (after having tried also subtraction and 

division) of the vectors. Roller, Erk, & Boleda (2014) used the vectors’ difference, 

while Weeds, Clarke, Reffin, Weir, & Keller (2014) implemented numerous 

combinations (difference, multiplication, sum, concatenation, etc.), comparing them 

against the most common unsupervised methods. The authors demonstrated that 

supervised methods generally perform better than unsupervised ones, but they 
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acknowledge that these methods tend to learn ontological information, re-using it 

any time a word occur again in the dataset. For this reason, they suggest to adopt a 

new dataset, where words occur at most twice, once per side. Weeds, Clarke, Reffin, 

Weir, & Keller (2014)’s observation was further investigated by Levy, Remus, 

Biemann, & Dagan (2015), who claimed that supervised methods learn whether a 

term y is a prototypical hypernym, regardless of its actual relation with x. 

6.3 ROOT9 

ROOT13 was firstly introduced in  Santus, Lenci, Chiu, Lu, & Huang (2016f). It 

uses the Random Forest algorithm implemented in Weka (Witten, Frank, & Hall, 

2005), with the default settings (i.e., 100 trees, 1 seed, and maxDepth and 

numFeatures initialized to 0), and relies on thirteen features that are carefully 

described below. Each of them is automatically extracted from a window-based 

DSM, trained on a combination of ukWaC and WaCkypedia corpora (see Section 

2.3.1), counting word co-occurrences within the 5 nearest content words to the left 

and right of each target. Only adjectives, nouns and verbs with frequency above 

1,000 are included in the DSM. As it will be shown in the evaluation, four out of 

thirteen features were redundant and were not contributing to the system 

performance. They were therefore dropped, turning ROOT13 into ROOT9. 

6.3.1 Features 

The feature set was designed to identify several distributional properties 

characterizing the terms in the pairs. On top of the standard distributional features 
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(e.g., co-occurrence frequency and words frequencies), we have added several types 

of information that have been proved to be effective to discriminate paradigmatic 

semantic relations in vector spaces (see chapters III, IV and V). All the features were 

computed using the above-mentioned DSM and normalized in the range 0-1. 

6.3.1.1 Co-Occurrence 

Cooc is defined as the co-occurrence frequency between the two terms in the 

pair, within the DSM window. According to the Co-occurrence Hypothesis (Miller 

& Charles, 1991), this measure is discriminative for synonyms and antonyms: 

antonyms are in fact expected to occur in the same sentence more often than 

synonyms. Since co-hyponyms can often be seen as a specific kind of opposition (e.g. 

“Winter or summer?”; Murphy (2003)), this measure should help in discriminating 

them from hypernyms and randoms (Santus, Lu, Lenci, & Huang, 2014a). 

6.3.1.2 Frequency 

Frequency is an important property of words. Weeds & Weir (2003), for 

example, have shown that the frequency baseline was very competitive in identifying 

the directionality of hypernymy-related pairs. We can therefore expect that 

hypernyms have higher frequency than hyponyms. Frequency is incorporated in our 

model with three features, namely one for each word involved in the pair (Freq1,2), 

plus one used for storing the difference between the frequencies (Diff Freq). 
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6.3.1.3 Entropy 

As we have seen in 5.3, entropy is generally used to measure informativeness: 

the lower the entropy of an event, the higher its informativeness (see Section 5.3). 

Words in a corpus has very low entropy, as every word needs to fulfil specific 

morphological, syntactic and semantic requirements in order to occur in specific 

positions (e.g. in a phrase like “𝑥 barks”, it is very likely that 𝑥 is “dog”, because 𝑥 is 

expected to be a noun, and only dogs are known for barking). Nevertheless, word 

entropies vary according to several factors, such as the generality and prototypicality 

of the word. As claimed by Murphy (2002), the amount of informativeness in the 

taxonomies increases, when moving from the superordinate to the subordinate level. 

We can therefore use entropy as an index of word informativeness. It is calculated 

using the Shannon (1948)’s equation, as described in the Equation 14 in Section 5.3, 

reported here for simplicity: 

 

𝐻(𝑤) = − ∑ 𝑝(𝑐𝑖|𝑤) ∙ 𝑙𝑜𝑔2(𝑝(𝑐𝑖|𝑤))𝑛
𝑖=1  14 

 

where 𝑝(𝑐𝑖|𝑤) is the probability of the context 𝑐𝑖  given the word 𝑤, computed as  

the ratio between the co-occurrence frequency of the pair <𝑤, 𝑐𝑖 > and the total 

frequency of 𝑤.  

In our system, entropy corresponds to three features, namely one for each word 

in the pair (Entr1,2), plus one used for storing the difference between the entropies 

(Diff Entr). 
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6.3.1.4 Shared and APSyn 

Shared and APSyn (see 3.2.1) are two features that do not rely on the full 

distribution of the words, but on the top 𝑁 most related contexts to the words in a 

pair, where 𝑁 was empirically fixed at 1000 (see sections 2.3.3.2 and 3.1.1 for the 

motivations behind feature selection). 

We calculated APSyn using Positive Pointwise Mutual Information (PPMI; Levy, 

Goldberg, & Dagan (2015)), as it has shown some improvements. Once the PPMI 

values are assigned to all contexts of the target words (i.e. the words in the pair), we 

rank these contexts in a decreasing order, and consider only the top 𝑁, with 𝑁 =

1000. At this point, Shared is the cardinality of the intersection of the top 𝑁 contexts 

of the target words. APSyn, instead, is defined like in Section 3.2.1, namely the 

weighted cardinality of the intersection, where the weight is the average ranking of 

the common features, as in Equation 11, reproduced below: 

 

𝐴𝑃𝑆𝑦𝑛(𝑤1, 𝑤2) =  ∑
1

(𝑟𝑎𝑛𝑘1(𝑓)+𝑟𝑎𝑛𝑘2(𝑓))/2 𝑓∈𝑁(𝐹1)∩𝑁(𝐹2)   11 

 

That is, for every feature 𝑓 included in the intersection between the top N features of 

𝑤1, 𝑁(𝐹1), and 𝑤2, 𝑁(𝐹2), APSyn will add 1 divided by the average rank of the 

feature, among the top PPMI ranked features of 𝑤1, 𝑟𝑎𝑛𝑘1(𝑓1), and 𝑤2, 𝑟𝑎𝑛𝑘2(𝑓2). 
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6.3.1.5 Contexts Frequency 

We have noticed that hypernyms tend to occur in more frequent contexts than 

co-hyponyms and randoms. Our system exploits two features, C-Freq1,2, capturing 

the average frequency of the 𝑁 top contexts of the target words in the pair. 

6.3.1.6 Contexts Entropy 

Given what mentioned in Section 5.2, the DIH and the DInH (Weeds & Weir, 

2003; Santus, Lenci, Lu, & Schulte im Walde, 2014a), general words are likely to 

occur in a larger variety of contexts (i.e. higher frequency) and in more general ones 

(i.e. less informative), compared to specific words. In fact, although hypernyms can 

certainly occur in more selective contexts, specific words are more likely to be 

chosen in these situations. Consider the following sentences: 

 

a) The X has barked all night. 

b) The Y has arrested the thieves. 

 

Any reader would agree that X is likely to be dog and Y policeman. Of course, X 

could have also been animal and Y man, or – even – both X and Y could have been 

mammal, but we expect that such general words are less frequently used in these 

contexts, as their hyponyms are more appropriate. 

Adopting a similar approach to the one described in Seciton 5.3, we have 

measured the average entropy of the top N most related contexts and used it as an 
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index of generality. Entropy is again calculated as in Equation 14 (see Section 5.3) 

and the most related contexts are identified by sorting the context list by PPMI. The 

higher the average entropy of the top-N contexts, the less informative the word (i.e. it 

is more likely to be a hypernym). Our system uses one of these features for each 

target: C-Entr1,2. 

6.4 Experiments 

We have performed three tasks: i) an ablation test to evaluate the contribution of 

the features on our dataset (henceforth, ROOT9 Dataset; see Section 6.4.4); ii) an 

evaluation against the state-of-the-art, and – in particular – against the best 

performant models in Weeds, Clarke, Reffin, Weir, & Keller (2014) (see Section 

6.4.5); iii) an evaluation on switched pairs to verify whether it was learning the 

actual semantic relations or the prototypical hypernyms (Levy, Remus, Biemann, & 

Dagan, 2015) (see Section 6.4.6). 

We performed the ablation test on a tree-classes classification task (hypernyms, 

co-hyponyms and randoms), removing one feature at a time and measuring the 

loss/gain (F1 score is used for the evaluation on a 10-fold cross validation). By doing 

so, we have found that four of our features were in fact redundant, and we have 

therefore removed them from the final model (hence the name ROOT9 as opposed to 

ROOT13). Once the best model has been identified, we have performed three binary 

classification tasks, involving only two classes per time. F1 score on a 10-fold cross 

validation was chosen as accuracy measure. 
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The second task was a binary classification tasks on the four datasets proposed 

by (Weeds, Clarke, Reffin, Weir, & Keller, 2014). These datasets are described 

below, in Section 6.4.2. The task allowed us to compare ROOT9 against the state-of-

the-art models reported by Weeds and colleagues. 

The last task was performed on an extended ROOT9 Dataset, including also 

3,200 randomly switched hypernyms to verify whether they were classified as 

hypernyms or as randoms. 

6.4.1 ROOT9 Dataset 

We have used 9,600 pairs, randomly extracted from three datasets – EVALution 

(Santus, Yung, Lenci, & Huang, 2015b), Lenci/Benotto (Benotto, 2015) and BLESS 

(Baroni & Lenci, 2011) –, which are freely available at 

https://github.com/esantus/ROOT9. The pairs are equally distributed among the three 

classes (i.e., hypernyms, co-hyponyms and random words) and involve several Parts-

Of-Speech (i.e., adjectives, nouns and verbs). 

The class of hypernyms contains 2,447 noun pairs, 458 verb pairs and 295 

adjective pairs. The class of co-hyponyms has only 3,200 noun pairs, which were 

completely derived from BLESS, as this relation does not exist in the other two 

datasets. The class of randoms contains 1,100 noun pairs, 1,050 verb pairs and 1,050 

random pairs. 

The full dataset contains 4,263 terms (2,380 nouns, 958 verbs and 927 

adjectives), so that every term occurs on average 4.5 times. Considering only the first 

https://github.com/esantus/ROOT9
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word in the pairs, we have 1,265 different terms (987 nouns, 186 verbs and 92 

adjectives). Considering instead only the second word, we have 3,665 terms (1,945 

nouns, 860 verbs and 862 adjectives). 

In the third task, we have extended this dataset randomly switching the 3,200 

hypernymy pairs (e.g. from “car HYPER vehicle” to “car RANDOM mammal”) to 

verify whether ROOT9 was able to classify them as randoms. 

6.4.2 Weeds Datasets 

In order to compare ROOT9 to the state-of-the-art, we have evaluated it with the 

datasets created by Weeds, Clarke, Reffin, Weir, & Keller (2014).
19

 These are four 

datasets, containing respectively: i) hypernyms versus other relations (extracted from 

WordNet; henceforth WN Hyper); ii) co-hyponyms versus other relations (extracted 

from WordNet; henceforth WN Co-Hyp); iii) hypernyms versus other relations 

(extracted from BLESS; henceforth Bless Hyper); iv) co-hyponyms versus other 

relations (extracted from BLESS; henceforth Bless Co-Hyp). 

The WN dataset – which includes both WN Hyper and WN Co-Hyp – in 

particular, was built after noticing that supervised systems tended to perform well 

also when running on random vectors. This happens because they are able to learn 

ontological information and re-use it whenever the words re-appear in other pairs. 

For this reason, the authors have constructed a dataset where words occurred at most 

twice (once on the left and once on the right of the relation). In this dataset, 

                                                 
19

 The datasets are freely available at: https://github.com/SussexCompSem/learninghypernyms 

https://github.com/SussexCompSem/learninghypernyms
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ontological information cannot be learnt and re-used, and indeed the random vectors 

cannot perform well. 

Unfortunately our DSM did not cover the whole datasets, because of the chosen 

frequency threshold (in Table 16, we report the size of our subsets in comparison to 

the original datasets). However, Weeds and colleagues kindly provided the results of 

their models on our subsets, so that the comparison is representative
20

. 

 

  
  

WN 
Hyper 

WN 
Co-Hyp 

Bless 
Hyper 

Bless 
Co-Hyp 

Weeds et al. 2514 4166 1668 5835 

Subset 1791 2936 1636 5389 

Coverage % 71.24 70.47 98.08 92.36 

 

Table 16: Coverage on Weeds et al. (2014)’s datasets. 

6.4.3 Baselines and Other Models 

For our internal tests (Task 1, Section 6.4.4), we have implemented two 

baselines, which can be used as reference for evaluating the performance of ROOT9: 

COSINE and RANDOM13. 

The first baseline simply uses the vector cosine (COSINE) as feature of a 

Random Forest classifier in the default settings (i.e. 100 trees, 1 seed, and maxDepth 

and numFeatures initialized to 0). This baseline is supposed to perform particularly 

                                                 
20

 The subsets of Weeds, Clarke, Reffin, Weir, & Keller (2014)’s datasets are also available at 

https://github.com/esantus/ROOT9. 

https://github.com/esantus/ROOT9
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well in discriminating similar words (i.e. hypernyms and co-hyponyms) from 

randoms.  

The second baseline (RANDOM13) relies on a default Random Forest classifier, 

but uses thirteen randomly initialized features, with values between 0 and 1. 

While the vector cosine achieves a reasonable accuracy, which is anyway far 

below the results obtained by our model, the random baseline performs much worse. 

The discrepancy with what was found by Weeds, Clarke, Reffin, Weir, & Keller 

(2014) – namely that random vectors perform particularly well when words are re-

used in the dataset – may depend on the small number of features, which does not 

allow the system to identify discriminative random dimensions. 

In the second task, we have used as baselines the most competitive models 

reported in Weeds, Clarke, Reffin, Weir, & Keller (2014), namely the SVM 

classifiers trained on the PPMI vector of the second word (svmSINGLE), or on the 

concatenated (svmCAT), summed (svmADD), multiplied (svmMULT) and subtracted 

(svmDIFF) PPMI vectors of the words in the pair. Such vectors contain as features 

all major grammatical dependency relations involving open class parts-of-speech. As 

a reference, we also report the performance of three main unsupervised methods: 

cosine, balAPinc (Kotlerman, Dagan, Szpektor, & Zhitomirsky-Geffet, 2010) and 

invCL (Lenci & Benotto, 2012). A threshold p, empirically found in a training set, 

was used in these methods for the decision. 
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6.4.4 Task 1: Ablative and Binary Tests 

Table 17 describes the feature contribution in the ablation test. Given the set of 

thirteen features of ROOT13 (Santus, Lenci, Chiu, Lu, & Huang, 2016f), we have 

removed each of them and measured the loss (negative) or the gain (positive). 

As shown in Table 16, most of the features are contributing for an increment 

between 1.12% and 2.46%. The highest contribution comes from the C-Entr1,2, 

which were inspired by SLQS (see Chapter V), and the second highest contribute is 

given by APSyn (see Chapter III). Interestingly, four of the thirteen features were not 

contributing to the performance, thus penalizing our system between 0.11% and 

0.34%. These features are Diff Entr, Diff Freq, Co-Occurrence, and APSyn and 

Shared, when they are used together (so we kept only APSyn, removing Shared). The 

main reason why these features negatively affect the results could be due to the fact 

that they contain redundant information. If we remove both APSyn and Shared, for 

example, we have a loss of 1.79%, but when we remove only one of them we have a 

gain of 0.34%. In a similar way, Diff Entr and Diff Freq can be seen as redundant in 

respect to the features Entr1,2 and Freq1,2. Perhaps surprisingly, Cooc does not 

contribute to the final score, but instead lowers it. 
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Hyper 

Co-Hyp 
Random 

LOSS 
OR 

GAIN 

ROOT13 89.3 0.00% 

- C-Freq 1, 2 88.2 -1.23% 

- C-Entr 1, 2 87.1 -2.46% 

- APSyn 89.6 0.34% 

- Shared 89.6 0.34% 

- Shared + APSyn 87.7 -1.79% 

- Diff Entr 89.6 0.34% 

- Diff Freq 89.7 0.45% 

- Entr 1, 2 88.0 -1.46% 

- Freq 1, 2 88.3 -1.12% 

- Cooc 89.4 0.11% 

ROOT9 90.7 1.12% 

BASELINES 

ROOT9 using SMO 68.6 -23.18% 

ROOT9 using Logistic 73 -18.25% 

COSINE 57.2 -35.95% 

RANDOM13 33.4 -62.60% 

 

Table 17: Ablation test, F1 scores on a 10-fold cross validation and 

loss/gain values. Scores are in percent. 

 

Removing the four redundant features (we removed Shared but we kept APSyn), 

ROOT13 turns into ROOT9. This system outperforms all the baselines (i.e. COSINE, 

RANDOM13) and ROOT13. For the sake of completeness, in Table 18 we also report 

the performance of ROOT9 using Logistic Regression and SMO classifiers. As it can 

be seen, the Random Forest version largely outperforms the other classifiers in this 

dataset. However, it is worth noticing here that such difference disappears with the 

WN datasets proposed by Weeds and colleagues (see Table 19). 
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Hyper 

Co-Hyp 
Hyper 

Random 
Co-Hyp 

Random 

ROOT13 94.3 91.1 97.4 

ROOT9 95.7 91.8 97.8 

- using SMO 77.3 80.1 93 

- using Logistic 78.7 82.1 95.3 

COSINE 69.8 64.1 79.4 

RANDOM13 50.1 49.6 51.4 

 

Table 18: F1 scores on a 10-fold cross validation for 

binary classification tasks. Scores are in percent. 

 

Table 18 describes the results of ROOT9 and the baseline in the binary 

classification tasks. These results confirm the analysis suggested above. 

6.4.5 Task 2: ROOT9 vs. State-of-the-art 

In Table 19, we show ROOT9 performance compared to the best systems 

reported by Weeds, Clarke, Reffin, Weir, & Keller (2014). The scores are all 

calculated on subsets of Weeds and colleagues’ datasets, as reported in Section 4.3. 

Considering all the datasets, ROOT9 is the second best performing system, after 

svmCAT (Weeds, Clarke, Reffin, Weir, & Keller, 2014), which uses the SVM 

classifier on the concatenation of PPMI vectors, containing as features all major 

grammatical dependency relations involving open class parts-of-speech. 

The SVM classifier on the sum (svmADD) and the multiplication (svmMULT) of 

the same PPMI vectors performs better in identifying co-hyponyms, but worst in 



Enrico Santus, Ph.D. 

146 

 

identifying hypernyms. The SVM on the difference (svmDIFF) and on the second 

PPMI vector (svmSINGLE) is instead particularly good at identifying hypernyms, 

while it performs poorly at identifying co-hyponyms. 

Among the unsupervised methods, we report the results for the cosine and the 

methods of Lenci and Benotto (2012; invCL) and Kotlerman, Dagan, Szpektor, & 

Zhitomirsky-Geffet, (2010; balAPinc). Such methods classify the pairs using the best 

threshold p observed in the training sets. In general, unsupervised methods are less 

competitive. 

Differently from what observed in Section 6.4.3, the performance of ROOT9 

does not change by adopting a different classifier (i.e., Random Forest, SMO or 

Logistic Regression) on the WN Hyper and WN Co-Hyp datasets. However, it 

drastically changes again on the BLESS Hyper and BLESS Co-Hyp datasets. This 

may depend on the ability of the Random Forest classifier to learn more ontological 

information than SMO and Logistic Regression, even when the number of features is 

small. 
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WN 
Hyper 

WN 
Co-Hyp 

Bless 
Hyper 

Bless 
Co-Hyp 

ROOT9 69.8 60.8 94.6 87.7 

- using SMO 67.7 60.9 65.5 70.4 

- using Logistic 68.8 61.2 65.5 71.9 

STATE-OF-THE-ART (Weeds, Clarke, Reffin, Weir, & Keller, 2014) 

svmCAT 74.1 62.9 96.7 90.7 

svmADD 40.9 66 68.5 94.1 

svmMULT 40.3 63.2 75.1 96.4 

svmDIFF 74.1 40.7 86.5 56.7 

svmSINGLE 66.3 58.2 97.8 62.8 

cosine 58.7 52.8 64.7 78.5 

balAPinc 55.8 53.4 65.7 76.8 

invCL 60.7 61.7 72.5 63.2 

 

Table 19: F1 scores, in percent, on a 10-fold cross validation (state-of-the-art 

models are evaluated on a 5-fold cross validation). 

6.4.6 Task 3: Learning Prototypical Hypernyms? 

Finally, we have tried to test Levy, Remus, Biemann, & Dagan (2015)’s claim 

by evaluating the classifier on a dataset containing 3,200 hypernyms and 3,200 

switched hypernyms (e.g. apple RANDOM animal and dog RANDOM fruit). In this 

evaluation, we have noticed that a large number of the switched hypernyms were 

indeed misclassified as hypernyms (up to 100% of them, if the words in the testing 

switched pairs were exactly the same as the ones used as hypernyms in the training 

set). In the attempt of correcting the behavior of the classifier, we extended the 

original 9,600 pairs dataset with other 3,200 switched hypernyms pairs labeled as 

randoms. It is important to notice that the switched hypernyms (tagged as randoms) 

contain the same words used in for the real hypernyms, and that in this new dataset, 
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the size of the random class is double the others, including a total of 6,400 pairs. The 

new 10-fold cross validation test on the three classes registered a significant loss, 

passing from 90.7% to 84%. However, only 576 out of 6,400 randoms (most of 

which are likely to be the switched pairs) were misclassified as hypernyms. 

These results confirm the lexical memorization and support the idea that future 

systems for the identification of semantic relations might benefit from relying on 

features that better represent the relations (e.g. lexical-syntactic patterns) rather than 

only the lexical properties of the words in the pairs. 

 

6.5 Summary of Chapter VI 

In this chapter, we have described ROOT9 (Section 6.3), a classifier for 

hypernyms, co-hyponyms and random words that is derived from an optimization of 

ROOT13 (Santus, Lenci, Chiu, Lu, & Huang, 2016f). The classifier, based on the 

Random Forest algorithm, uses only nine unsupervised corpus-based features, which 

have been described (Section 6.3.1), and whose contribution has been assessed 

(Section 6.4.4). The impressive results in our dataset (Section 6.4.1 and 6.4.4), 

developed by randomly extracting 9,600 pairs from EVALution (Santus, Yung, Lenci, 

& Huang, 2015), Lenci/Benotto (Benotto, 2015) and BLESS (Baroni & Lenci, 2011), 

were further tested against the state-of-the-art models presented in Weeds, Clarke, 

Reffin, Weir, & Keller (2014). The comparison has shown that ROOT9 is in fact 

competitive with the state-of-the-art, being outperformed on all the datasets only by 

an SVM trained on concatenated dependency-based PPMI vectors. Interestingly, 
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while on our dataset and on BLESS the chosen classifier is fundamental for the 

performance, on the WN Hyper and WN Co-Hyp datasets, Random Forest, SMO and 

Logistic Regression algorithm achieved a similar performance, suggesting that 

Random Forest performs better when can relies on lexical memorization, but in a 

comparable way to other classification methods otherwise. 

Finally, we have noticed the effect reported in Levy, Remus, Biemann, & Dagan 

(2015). However, we managed to reduce it by training the model also on negative 

examples, namely switched hypernyms labeled as randoms (e.g. apple RANDOM 

animal, dog RANDOM fruit). These results confirm the lexical memorization and 

support the idea that future systems for the identification of semantic relations might 

benefit from relying on features that better represent the relations (e.g. lexical-

syntactic patterns) rather than only the lexical properties of the words in the pairs. 

With respect to the state-of-the-art, ROOT9 shows that a few carefully designed 

features may reach the same discrimination power as thousands of distributional 

features. This suggests that combining them might lead to even better results. On top 

of it, ROOT9 might be useful when memory is very limited. Finally, we would like 

to point out that all our features were extracted from a window based DSM (see 

Chapter II). It is possible that extracting the same features from a dependency-based 

DSM could have led to better results. 



Enrico Santus, Ph.D. 

150 

 

  



Making Sense: From Word Distribution to Meaning 

151 

 

Conclusions 

In the previous chapters we have discussed the importance of models of 

semantic memory (Introduction and Chapter I), and we have claimed that semantic 

relations are a fundamental building block for such models (Murphy M. L., 2003). 

For this reason, we have developed and evaluated several new methods for their 

automatic identification in corpora, namely three unsupervised methods (APSyn for 

similarity: see Chapter III; APAnt for opposition: see Chapter IV; and SLQS for 

hypernymy: see Chapter V) and a supervised one (ROOT9 for classifying hypernyms, 

co-hyponyms and randoms: see Chapter VI). 

Our approaches rely on the framework of distributional semantics (Miller & 

Charles, 1991), which was carefully described in its cognitive and computational 

aspects in Chapter II. In particular, we have shown how such framework has been 

exploited in NLP to develop efficient representations of word meanings, starting 

from word co-occurrences in corpora (Harris, 1954). 

Each method was introduced in a specific chapter, which provided the 

background about the relevant relation (i.e. similarity, opposition, hypernymy and 

taxonomical relations) and about its treatment in NLP. Each chapter then described 

the hypothesis, the method implementation and its evaluation. Our methods were 

shown to be competitive or even to outperform several state-of-the-art models. This 

has confirmed the validity of our hypotheses. 
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Since their performance and their contribution was analysed and discussed in 

their respective chapters, here we only summarize the major conclusions we can 

draw from our results: 

1. Similarity: similar words not only occur in similar contexts, but they also 

share a larger amount of their most relevant contexts, compared to 

simply associated words (see Chapter III). This hypothesis was proved to 

be valid by showing that APSyn outperforms vector cosine in almost all 

settings, except when the latter is used on a PPMI-SVD reduced matrix, 

which is known to be the best setting in the literature. This is certainly 

due however to the SVD reduction rather than to the good performance 

of vector cosine. A consequence is that future research should focus on 

the extension of APSyn or of its principles, so that such rank-based 

measure can be also applied to a SVD reduced matrix. In order to 

understand whether vector cosine calculated on the top-N contexts would 

have performed better, in 3.3.6 we have developed two new versions of 

vector cosine, respectively calculated on i) the intersected contexts – as 

for APSyn; and ii) the unified ones. In both cases, APSyn was still the 

best performant measure, demonstrating that not only the feature 

selection but also the rank-based calculation contribute to the results, and 

suggesting therefore that APSyn and vector cosine might capture 

different aspects of similarity and that their future combination might 

lead to better results. 
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2. Opposition: not differently from synonyms, opposites share many 

contexts, but – compared to them – they share a smaller amount of 

relevant contexts (see Chapter IV). This claim was tested by evaluating 

the discriminative power of APAnt (i.e. the inverse of APSyn), which is 

likely to assign high scores to pairs that share few relevant contexts and 

lower scores to pairs that share many relevant contexts (notice that such 

measure needs to be calculated on related pairs – e.g. pairs with high 

vector cosine –, as unrelated words are expected to share very few 

contexts). Our tests demonstrated that APSyn is in fact more 

discriminative than i) a baseline implementing the co-occurrence 

hypothesis (i.e. the hypothesis that antonyms co-occur in the same 

sentence more often than by chance) and i) vector cosine. APAnt is not 

anyhow similar to the inverse of vector cosine, as it only verifies that the 

most relevant contexts are not shared, while the inverse of vector cosine 

would rather check that the vectors have very little correlation. This 

claim, which is based on a logical reasoning, should be proved in further 

studies. 

3. Hypernymy: hypernyms are semantically more general than hyponyms; 

the generality of these words can be estimated in terms of 

informativeness, by measuring the entropy of their most relevant 

contexts. The higher the entropy of the most relevant contexts, the lower 

the informativeness of a given word, and – therefore – the higher its 

generality (see Chapter V). This hypothesis was proved by testing SLQS, 
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an entropy based measure that – in fact – compares the median entropy 

of the most relevant contexts of the two target words, in several tasks: 

directionality detection and hypernymy discrimination. SLQS performs 

better than other measures developed for the same purpose (e.g. 

WeedsPrec) on our dataset (BLESS), showing that there is in fact a 

generality spread between the words and that such spread can be 

measured in terms of informativeness. SLQS does not capture, however, 

similarity. Therefore it is expected to be combined with vector cosine or 

run only on related word pairs (e.g. pairs that are expected to have a high 

vector cosine). 

4. Taxonomical relations: the distributional properties that were identified 

by our unsupervised measures can be used to train a supervised model 

(i.e. a Random Forest algorithm) to discriminate taxonomical semantic 

relations (i.e. hypernymy and co-hyponymy). Interestingly, nine 

unsupervised features are sufficient to achieve competitive performance 

with the thousands of features used by the state-of-the-art systems. In 

both cases, however, supervised methods seem to learn word properties 

(i.e. some regions of the vectors) rather than relation properties. In the 

future, therefore, they might benefit from features that are more oriented 

to represent relation properties rather than the lexical properties, such as 

lexical-syntactic patterns. 

On top of these findings, it is worth mentioning two main characteristics of the 

proposed unsupervised methods. First, they have shown that it is possible to work 
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with a subset of contexts (i.e. the most salient ones), which are assumed to be more 

informative than the full distribution of contexts. Furthermore, such selection 

reduces the computational load and complies with a principle of cognitive economy. 

Second, our methods are strongly grounded on cognitive and linguistic observations 

(Cruse, 1986; Murphy G. L., 2002). The findings can therefore be also considered 

from a theoretical point of view, and not only from the applicative perspective, and 

they can eventually contribute to the relative cognitive and linguistic theories, 

providing more background for further research. 

In the next studies, we would like to target three major limitations of this thesis: 

i) the systematic study of the hyperparameters (e.g. the impact of N and of 

different context types, such as dependency-based and joint-based); ii) the merging 

of the methods for developing a multi-class classification algorithm; and iii) the 

adaptation of the methods (and/or their principles) to reduced matrices (see Turney 

& Pantel (2010)) and word embeddings (Mikolov, Yih, & Geoffrey (2013)). 

By i), we would like to test the measures on a larger amount of DSMs, 

evaluating all their hyperparameters and assessing different context types (e.g. 

dependency based and joint based), as well as providing a deeper error analysis, so 

that the methods can be refined and improvements can be adopted. Point ii) would 

instead target the very ambitious development of a multi-class classifier. So far, very 

few systems for multi-class classification were developed, as the task is particularly 

hard to tackle. A recent shared task has tried to promote this kind of approach to 

semantic relations (i.e. synonyms, antonyms, hypernyms and part-whole meronyms), 

and the best supervised system obtained 44.5% F1 score (Santus, Gladkova, Evert, & 
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Lenci, 2016), demonstrating that a lot of work is still needed in this direction. For 

what concerns point iii), given the recent introduction of models based on word 

embeddings and given the best performance of vector cosine on SVD reduced 

matrices, it becomes fundamental that our methods can be applied to such resources. 

At the moment, however, it is not yet clear whether this is possible, as our methods 

were designed for linguistic contexts and the features in such resources do not really 

represent linguistic contexts, being furthermore hard to interpret. This possibility 

might lead to even better results, allowing therefore the adoption of our methods (or 

their principles) in a larger range of applications. 
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