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Abstract

In recent years, due to the rapid urbanization all over the world, air pollution

has become a serious problem in many countries. Especially in China, rapid

industrialization associated with more fossil fuel consumption has caused se-

rious suspended particulate matter pollution, and resulted in more frequent

haze days. At present, many studies have been indicating that the size

and the formation mechanism have a close relationship with public health.

Therefore, a good understanding of the distribution of air suspended par-

ticles with different diameters is necessary. However, there are still some

limitations for different size distributions of air suspended particles retrieval

by remote sensing. Thus, this thesis firstly put forward a reliable method

for monitoring dust distribution (diameter less than 1 mm) with the aid

of ground-based plant leaf spectral data. A back propagation (BP) neu-

tral network model was generated using spectral response functions and

integrated remote sensing data to estimate dustfall weight in the city of

Beijing. Compared with actual dustfall weight, validation of the results

showed a satisfactory accuracy with a low RMSE of 3.6 g/m2. Secondly,

an algorithm was developed which incorporates haze monitoring and haze

aerosol optical thickness (HAOT, particulate size between 0.001µm to 10

µm) retrieval based on MODIS data. From the comparison, this method can

effectively make up for MODIS AOT products deficiency about missing data

under haze weather condition. Then, the fine mode fraction (FMF) is a use-

ful tool to separate the fine mode aerosol from the total aerosol. However,

the spatial view of the FMF is still limited. Therefore, a lookup table-based

spectral deconvolution algorithm (LUT-SDA) was proposed. This method

was validated with ground-based data and had a high accuracy compared
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to the Aerosol Robotic Network (AERONET) FMF. Finally, assistant by

LUT-SDA, a ground-level PM2.5 retrieval model was developed. This model

had been applied to retrieval surface PM2.5 concentration over Beijing from

December 2013 to June 2015 in cloud free day. The derived results ware

compared with the monitoring values with R2 = 0.64 and RMSE = 18.9

µg/m3 (N = 921). This validation demonstrated that the developed model

exhibits a good performance with a high accuracy.
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Chapter 1

Introduction

1.1 Background

Suspended particulate matters are widely considered as a major source of

atmospheric pollution, especially in urban areas, of which the morphologic

structure, the size and the formation mechanism have a close relationship

with public health (Figure 1.1). Therefore, monitoring suspended particles

is important to the environmental control and improvement, and a good

understanding of the distribution of air suspended particles with different

diameters is vital.

Suspended particulate matters have a wide range of sizes, varying from

0.001 µm to 1000 µm, and different residence time from minutes to hours.

Generally, particles with a diameter larger than 50 µm would gravitate to

the ground quickly. As we known, particles with different sizes would have

different impacts on human health. For example, particles less than 10µm

result in a greater damage than other particles, and especially 2-4 µm parti-

cles have the largest deposition rate in the bronchi and bronchioles. Particles

less than 1 µm have a strong scattering effect on visible lights which would
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decrease the atmospheric visibility. So far, with the rapid development of

remote sensing techniques, the acquisition of a large-scale distribution of

the suspended particulate matters has been increasingly possible. There-

fore, this study aims at monitoring the airborne particles of various sizes,

i.e. dustfall, haze aerosol, fine mode aerosol and PM2.5, based on remote

sensing, and illustrating the potential limitations and improvements in the

current literature pool.

Figure 1.1: Suspended particulate matter pollution

1.1.1 Dustfall

Urban atmospheric dust contains high concentration of heavy metals and

particulate matters, which are thought to be the most harmful pollution

component (Rai, 2013). In addition, dust accumulation on plant leaves can

impair their growth. A significant negative correlation was found between

dust load and pigment content (Prusty, Mishra, and Azeez, 2005). Thus,
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mitigation of air pollution has become a crucial challenge for environmen-

tal management agencies in urban areas. In this context, the sources and

spatial distribution of dust particles are of particular concern. Some studies

were performed to map air pollution by sampling particulates around city

(Shu et al., 2001; Likuku, Gaboutloeloe, and Mmolawa, 2013). However,

air samplers are time consuming, and high density of sampling points is also

of high cost.

Recent studies have revealed that dust deposited over the plant leaves

can be used as a valuable indicator for monitoring air pollution (Yang et

al., 2011; Yang et al., 2011). Based on airborne pollutants accumulated on

pine needles, Urbat, Lehndorff, and Schwark (2004) found that the main

source for air pollution in Cologne was motor vehicle traffic. Due to wide

distribution of vegetation in the urban areas, plant leaves can also be used

to investigate the spatial distribution of atmospheric dust (Lu, Zheng, and

Bai, 2008).

Satellites-based solution has been widely applied in the field of air pol-

lution monitoring in recent years. Many studies used satellite image to

obtain aerosol optical thickness (AOT) in a large spatial and temporal cov-

erage (Chu et al., 2003; Gupta et al., 2006; Luo, Zhao, and Yan, 2014).

However, only few researchers have applied satellite to monitor urban dust

(Lue et al., 2010). Recent studies have indicated that there is a significant

relationship between dust and near-infrared band region (Luo, Zhao, and

Yan, 2013). The dust can increase spectral reflectance in the visible band

while decrease it in the near infrared band (Peng et al., 2013). Yan et al.

(2014a) used near-infrared band to estimate the amount of dust deposi-

tion on plant leaves and the results showed a good accuracy. Chudnovsky,
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Ben-Dor, and Saaroni (2007) developed a new spectral based method for

estimating indoor settled dust weight. Ong et al. (2001) applied visible,

near infrared and short wave infrared regions spectroscopy to quantify dust

loads on mangroves by high spectral resolution imaging sensors. Thus, re-

mote sensing can be used as a new way to investigate dust pollution in the

urban.

1.1.2 Haze

Haze is defined as a weather phenomenon in which air has a relative hu-

midity of < 80% and atmospheric visibility of 10 km (World Meteorological

Organization, WMO). Thick haze is detrimental to the environment and

public health (Hoek et al., 2010). In recent years, due to rapid worldwide

urbanization, haze has become a serious problem in many countries. In

China in particular (Figure 1.2), increased industrialization and fossil-fuel

consumption have caused serious haze pollution. The increase in haze has

been associated with mortality and morbidity from respiratory diseases and

cardiovascular problems (Ram et al., 2014). Haze can contain high concen-

trations of heavy metals and PM, which are thought to be the most harmful

pollution components (Huang et al., 2011a). Thus, mitigation of haze pollu-

tion has become a crucial challenge for environmental management agencies

in urban areas. In this context, the sources and spatial distribution of haze

are of particular concern.
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Figure 1.2: Haze pollution in China

Many studies have been performed to analyze the physical and chemi-

cal characteristics of haze (Sun et al., 2006; Che et al., 2009). However,

most studies have been based on ground and point measurements, which

lack spatial coverage and may not elucidate the sources contributing to the

formation of haze in widespread areas (Tao et al., 2012). To overcome this

limitation, satellite remote sensing can be used to monitor and describe the

spatial variability of regional haze. In recent studies, the Moderate Reso-

lution Imaging Spectroradiometer (MODIS) has been widely applied in the

field of haze analysis due to its large spatial and temporal coverage (Lee

et al., 2006; Noh et al., 2009; Tao et al., 2014). For example, Tao et al.

(2012) provided large-scale and long-term insights into regional haze over

the North China Plain of Eastern China using MODIS data, and Han et al.
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(2013) proposed an enhanced dust index for Asian dust detection.

Using satellite imagery to monitor haze aerosol optical thickness is also

an effective way to assess air pollution levels. The MODIS atmospheric

Level 2 aerosol product has been widely used and shown a high accuracy.

It has three aerosol retrieval algorithms: dark-target (DT) land algorithm,

DT ocean algorithm and deep-blue (DB) algorithm. However, the aerosol

model on hazy days is very different from that on less-polluted days, the

default aerosol model in the DT land algorithm of MODIS Aerosol Optical

Thickness (AOT) products may be not suitable. In addition, hazy weather

conditions are always accompanied by a thick aerosol layer, which causes

uncertainty in the relationship between the visible (VIS) and the short-wave

infrared (SWIR) bands, but it is still used in the DT land algorithm of the

MODIS AOT products. Lee et al. (2006) also found that using the MODIS

SWIR-to-VIS ratio to determine surface reflectance over Northeast Asia

could lead to errors in aerosol retrieval. In order to monitor haze distri-

bution, Li et al. (2013) presented an AOT retrieval method for heavy haze

events based on a lookup table (LUT) method; however, the maximum re-

trieval of AOT by this method is 3.0, while in Beijing the AOT will be more

than 5.0 on some hazy days, such as on July 6, 2014. Thus, accurate AOT

retrieval is still a difficult task under hazy weather conditions. In addition,

although many current aerosol retrievals make use of the LUT, it is time

consuming when building it (Li et al., 2005; Wong, Nichol, and Lee, 2011;

Zha et al., 2011). Tang et al. (2005) used the synergy of Terra and Aqua

MODIS data (SYNTEM) to obtain AOT in China without an LUT, but the

results tended to be poor when there was an obvious difference in weather

conditions between two observation passes. Luo et al. (2015) proposed an
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improved aerosol retrieval algorithm with fast calculation and reliable out-

comes; however, the method is based on Landsat images and intended for

urban-scale studies, and is not suitable for haze aerosol monitoring of larger

areas.

1.1.3 Fine mode aerosol

Fine mode aerosol optical thickness (FM-AOT) is a powerful and indepen-

dent measure of anthropogenic aerosol emission (Lee and Chung, 2013).

Bellouin et al. (2005) indicated that the fine mode fraction (FMF) can be

a useful tool to separate natural from man-made aerosols. However, at

present, our understanding of FM-AOT derived by FMF in a spatial per-

spective is still limited.

Currently, there are two easy ways to obtain the FMF; one is from the

MODIS MOD04 aerosol product and the other is from the Aerosol Robotic

Network (AERONET). Levy et al. (2010) reported that the MODIS-retrieved

FMF over land is still an experimental product, and found that it has lit-

tle physical validity. This is because MODIS retrieval algorithms have to

separate the aerosol signal from the land surface signal, and there is great

uncertainty in surface reflectance (Diner et al., 2005; Hauser et al., 2005;

Kokhanovsky et al., 2010; Mishchenko and Geogdzhayev, 2007). Because

of this, the FMF over land is much less accurate than over the ocean. How-

ever, the AERONET FMF is based on the Spectral Deconvolution Algo-

rithm (SDA), which uses solar extinction data obtained directly from solar

measurements; thus it is only slightly influenced by surface reflectance and

is almost as accurate over the ocean as over land (O’Neill, Dubovik, and

Eck, 2001; O’Neill et al., 2003). Gassó and O’Neill (2006) showed a good
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correlation between the fine mode aerosol optical thickness (AOT) from a

sunphotometer and airborne in situ measurements using the SDA. However,

the use of in situ samples is a limitation of the AERONET FMF because

they only provide point-scale outcomes, while MODIS can provide spatial

coverage of the FMF.

With atmospheric pollution worsening all over the world, researchers

have used the FMF to assist in the estimation of surface PM2.5 concentra-

tion. The FMF is used to separate the contributions from smaller and larger

particles in the AOT and to generate a fine mode AOT to PM conversion.

Lin et al. (2015) proposed a ground-level PM2.5 model, which contains

the FMF, humidity effect from hygroscopic growth, and mass extinction

efficiency. Zhang and Li (2013) found that the relationship between fine

mode AOT and PM2.5 was stronger than that of AOT and PM2.5 under

hazy weather conditions in winter. Di Nicolantonio et al. (2007) reported

a significant improvement in the correlation of this relationship when using

fine mode AOT for PM2.5, with correlation coefficients (R) increasing from

0.59 to 0.74 in June. Generally, most studies have used ground-based data

to develop statistical models to describe the AOT-PM2.5 relationship and

then apply it to remote sensing data. Zhang and Li (2015) generated an

expression between the FMF and volume-to-extinction ratio of fine partic-

ulates (VEf) based on eight AERONET sites, and then applied it to the

MODIS FMF. However, the AERONET and MODIS FMFs were derived

using different methods. AERONET assumes a fine mode and coarse mode

with no overlap, but MODIS uses bimodal lognormal models where the fine

modes contain a coarse mode and vice versa. Additionally, the MODIS

FMF is not determined as a continuous variable, but as 11 discrete val-
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ues from 0 to 1. Levy et al. (2007) revealed that the MODIS FMF had

essentially no correlation with the AERONET FMF. Jethva et al. (2010)

compared the MODIS FMF with the AERONET FMF, and found that the

root mean square difference between them was 0.61 (N = 651). Therefore,

MODIS FMF may not suitable as an input parameter for the AERONET

FMF-based model.

As described by O’Neill, Dubovik, and Eck (2001), it is still a challenge

to apply the SDA to remote sensing data. The SDA requires multiband

AOT when using a second-order polynomial fit to obtain the Angstrom

exponent (AE) and AE derivative (O’Neill et al., 2003). However, most of

the current satellite AOT retrieval methods only have two channels of AOT:

a blue band and a red band (Zha et al., 2011; Wong, Nichol, and Lee, 2011;

Luo et al., 2015; Bilal et al., 2013). If just two bands of AOT are available,

the AE can be calculated by the Volz method (Soni et al., 2011), but the

AE derivative cannot be obtained by a second-order polynomial fit.

1.1.4 PM2.5

Particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5,

Figure 1.3) has serious adverseness to human health (Anderson, Thundiyil,

and Stolbach, 2012). Many researches presented that PM2.5 is associated

with mortality, respiratory system and lung cancer (Pope III et al., 2002;

Brook et al., 2010; Itai et al., 2013). Particularly, a decrease of 10 µg/m3

in the concentration of PM2.5 was associated with an estimated increase

in life expectancy about six months (Pope III, Ezzati, and Dockery, 2009).

Thus, it is imperative to assess accurately PM2.5 concentration distribution

and exposures for making control measures to mitigate its health impacts
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(Bell, Ebisu, and Peng, 2011; Luo, Zhao, and Yan, 2014).

Figure 1.3: PM2.5 size in comparison to a human hair and beach sand (Image courtesy of

Hazelwood Mine Inquiry Report)

Monitoring site measurement for ground-level PM2.5 is a traditional so-

lution for pollution and health studies, but its spatial coverage is sparse and

limited (Han et al., 2015). In order to obtain a large-scale PM2.5 distribu-

tion, satellite remote sensing has been used (Liu, Paciorek, and Koutrakis,

2009; Lee et al., 2011; Chudnovsky et al., 2014; Kloog et al., 2015). The

common satellite product for estimating ground-level PM2.5 concentration

is the AOT. Researchers have developed the relationship between AOT and

PM2.5 in different methods, such as empirical statistical model (Engel-Cox

et al., 2004; Gupta et al., 2006; Schaap et al., 2009; Guo et al., 2014),

chemical transport model (Wang et al., 2010a; Van Donkelaar et al., 2010;

Liu et al., 2011; Xu et al., 2013) and physical model (Kokhanovsky et al.,

2009).

Despite promising progress has been made recently in surface PM2.5 es-

timation from satellite AOT, uncertainties still exist due to several factors.

The planetary boundary layer height (PBLH) was reported to have signif-
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icant impact on AOT-PM2.5 relationship (Gupta and Christopher, 2009).

This is because the greater PBLH is more favorable to the dilution and

diffusion of the pollutants, which decreases concentration of surface PM2.5

in spite of high AOT (Qu et al., 2016). The relative humidity (RH) was

found to be another factor that could result in discrepancies between AOT

and surface PM2.5 (Wang and Christopher, 2003; Paciorek et al., 2008).

Wang et al. (2010b) indicated a significant improvement in surface PM2.5

estimation when relative humidity correction was performed (R2 increased

from 0.35 to 0.66). Furthermore, previous studies have always used the

MODIS AOT products (MOD04) for PM2.5 monitoring, but its spatial res-

olution is 10 km, which is not appropriate for exposure estimates in urban

areas (Jerrett et al., 2005). In addition, Chudnovsky et al. (2013) pointed

out the spatial resolution of AOT affected PM2.5 accuracy, correlation be-

tween AOT and PM2.5 decreased significantly as AOT resolution degraded.

Although MODIS has released 3 km AOT product recently, the accuracy

assessment was less reliable than 10 km AOT’s (Munchak et al., 2013; Yan

et al., 2016).

Most of the previous studies using satellite AOT to derive PM2.5 focused

on the total AOT (Eeftens et al., 2012; Lee et al., 2012; Luo, Zhao, and Yan,

2014). However, some researchers found that fine mode AOT (FM-AOT)

can have a better correlation with ground-level PM2.5 (Di Nicolantonio et

al., 2007; Zhang and Li, 2013). Van Donkelaar et al. (2011) applied FM-

AOT for PM2.5 estimation in the Moscow and the results showed a high

accuracy. Di Nicolantonio et al. (2007) presented an obvious improvement

by using FM-AOT for PM2.5 in June. Although these studies showed the

improvement by FM-AOT, the comparison between total AOT and FM-
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AOT for PM2.5 is still limited.

On the other hand, as FM-AOT is involved in PM2.5 retrieval, the fine

model fraction (FMF) that pertains the contributions of smaller and larger

particles to the AOT is becoming a more and more important parameter.

Zhang and Li (2015) proposed an expression between AERONET FMF and

volume-to-extinction ratio of fine particulates (VEf) for PM2.5 retrieval,

and then applied it using MODIS FMF. Nevertheless, AERONET FMF has

a very different calculation method from MODIS FMF (Gassó and O’Neill,

2006). Levy et al. (2007) revealed that MODIS FMF had a poor correlation

with AERONET FMF, and Zhang and Li (2015) also showed the same

phenomenon.

1.2 Research objectives

Based on the aforementioned issues, four objectives of this research have

been identified as follow:

• To establish a reliable method for dust distribution with the aid of

satellite images and plant leaf spectral data.

• To develop a new algorithm to obtain aerosol conditions; it includes

haze identification and AOT retrieval not only on hazy days but also

in normal weather.

• To propose a practical and effective method of FMF retrieval for fine

mode aerosol.

• To design a ground-level PM2.5 retrieval model based on fine mode

aerosol.
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1.3 Dissertation outline

The outline of the dissertation is summarized as Figure 1.4, which is based

on the particle size from large to small (Figure 1.5). Chapter 2 presents

dustfall retrieval based on satellite and ground-based data. The enhanced

haze aerosol retrieval algorithm for haze aerosol is introduced in Chapter

3. Then a Look up table based Spectral Deconvolution Algorithm for fine

mode fraction is introduced by Chapter 4. Retrieval surface PM2.5 based

on fine mode aerosol optical thickness is described in Chapter 5. Finally,

Chapter 6 discusses the summary and conclusions of this study.

Figure 1.4: Outline of the dissertation

13



F
ig

u
re

1.
5:

P
ar

ti
cl

e
si

ze
in

th
e

d
iff

er
en

t
C

h
ap

te
r

14



Chapter 2

Mapping Dustfall Distribution in

Urban Areas

2.1 Introduction

Generally, dustfall is considered as the solid particulate matters with a

diameter less than 1 mm and is widely distributed in the whole urban area.

With the external dynamic effects, these particles will suspend again, which

is an important pollutant in cities due to this reciprocal cycle of lifting and

settling. Thus, it is necessary to obtain the spatial distribution of dustfall

in the city and to know the pollution level. The purpose of this chapter is

to establish a reliable method for monitoring dust distribution with the aid

of satellite images and plant leaf spectral data. This research first analyzed

the correlation between spectral reflectance and dust on plants. Based on

this correlation, dust distribution is derived using a neutral network model.

Finally, the sources of dust in urban areas are discussed as well. This chapter

is based on Yan et al. (2015).
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2.2 Materials and methods

2.2.1 Satellite data

MODIS Terra L1B data of the overpass at 10:30 am were obtained from

NASAs Goddard Space Flight Center (http://modis.gsfc.nasa.gov). The

MODIS L1B data contains calibrated and geolocated at-aperture radiances

for 36 bands generated from MODIS Level 1A sensor counts (Bilal et al.,

2013). This study used MODIS images acquired on July 2, August 3, and

September 25 2013. Table 2.11 lists the weather information from the days

when MODIS overpassed.

Table 2.1: Weather information during MODIS overpass

Date Wind direction Wind Speed Relative Humidity AOT at 550 nm

7/2/2013 290 5 49 0.11

8/3/2013 130 2 43 0.25

9/25/2013 290 4 18 0.06

2.2.2 Plants collection

In this study, Euonymus japonica L., Sophora japonica L., and Populusto-

mentosa L. Carr. were selected as experimental plants. Euonymus japonica

L. is one of the main shrub species in Beijing, while Sophora japonica L. and

Populustomentosa L. Carr. are also common in this area (Yang et al., 2005;

Yan et al., 2014b). The above plants have been widely used for landscaping

around cities. Experimental leaf samples were collected from 44 sampling

locations around Beijing, and their spatial distributions are shown in Figure

2.1.

1Unit:Wind direction is degree,Wind Speed is m/s, Relative Humidity is %
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2.2.3 Spectral measurements and processing

Initially, each plant leaf was weighed using an electronic analytic balance

(1/10,000 g scale). Then, the spectral reflectances of the leaves were mea-

sured using a spectrometer (Analytical Spectral Devices FieldSpec Pro,

ASD 2008) equipped with a Plant Probe (ASD auxiliary product, Halo-

gen bulb light source type, Figure 2.2) and an ASD Leaf Clip (Figure 2.3).

The ASD is a single-beam field spectroradiometer covering a range of 350-

2,500 nm with a total of 2,100 spectral bands. The spectral measurements

were repeated 10 times for each sample, and the mean value was taken

to represent each leafs spectral reflectance (Hansen and Schjoerring, 2003;

Haboudane et al., 2004). Subsequently, leaves were cleaned with ultra-pure

water and dried by absorbent paper. The cleaned leaves were reweighed, and

the reflectances were measured again. Although leaf reflectance is affected

by many factors, such as chlorophyll, plant health, and water content, this

research compared reflectance data between dust and clean leaves, which

was referred to as a samples’ self-comparison and, thus, neglected possible

interfering factors.

18



Figure 2.2: The ASD Contact Probe

Figure 2.3: The Leaf Clip
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Another issue was that, due to low spatial resolution of MODIS im-

ages and the limited study area, urban cities always contained mixed pix-

els, which made dustfall retrieval inaccurate. Thus, when collecting leaf

samples, the selected locations needed to be widely covered by vegetation

cover. In addition, in order to eliminate the interference of plant type on

the retrieval result, mean spectral values for three plants at single site were

calculated and used for final dustfall weight calculations.

In order to transfer ground-measured data to satellite images, a leafs

narrow-band spectra was resampled at broad-band according to the rela-

tive spectral response function of MODIS. The MODIS spectral response

function is as follows (Ghulam et al., 2008):

RMODIS(λ) =

∫ λmax

λmin
RLeaf(λ)f(λ)dλ∫ λmax

λmin
f(λ)dλ

(2.1)

whereRMODIS(λ) refers to broad-band reflectance, f(λ) refers to the MODIS

spectral response function at a corresponding waveband, λmin and λmax re-

fer to the lower and upper limit of band internal, and indicates the center

wavelength (nm) in each band. Then, the ratio of the reflectance between

dust and clean leaves was calculated by the following:

r(λ) =
RDust

MODIS
(λ)

RClean
MODIS

(λ)
(2.2)

where RDust
MODIS

(λ) and RClean
MODIS

(λ) are dust and clean leafs reflectance corre-

sponding to a specific band of MODIS.
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2.2.4 Dustfall retrieval

The central idea of this retrieval method is to find out the relationship

between spectral reflectance and dustfall weight and to sequentially use

dust images and clean images as input parameters to calculate the whole

dust distribution. Plant leaves can be cleaned by heavy continuous rain

(Przybysz et al., 2014). Thus, based on Table 2.2, MODIS images from

July 2 2013 were considered clean images, and images from August 3 and

September 25 2013 were considered dust images.

Table 2.2: Weather information from June 28 to July 2, 2013

Date Weather Condition Air temperature (day/night)

6/28/2013 moderate to heavy rain 33/21◦C

6/29/2013 showery rain 30 /22◦C

6/30/2013 showery rain 28/22◦C

7/1/2013 heavy rain 28/20◦C

7/2/2013 sunny 34/23◦C

As shown in Section 2.3.1, it could be existing nonlinear correlation be-

tween spectral reflectance and dustfall weight. The Back Propagation (BP)

Neutral Network model is considered a generalization of the delta rule for

nonlinear activation functions and has been successfully applied in many

environmental studies (Tumbo, Wagner, and Heinemann, 2002; Pal et al.,

2003; Şahin, 2012; Valipour, Banihabib, and Behbahani, 2012; Valipour,

Banihabib, and Behbahani, 2013). Thus, it was used to retrieval dustfall

weight in this research. For this BP model as showed in Figure 2.4, the train-

ing data were r(λ) and dust weight per unit area (Dustweight÷Leafarea,

N=180), and the simulation data were MODIS reflectance ratios between

dust and clean images.
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Figure 2.4: Back Propagation neural network flow-chart of dustfall retrieval

This model consisted of 15 nodes in the middle layer; tansig/tansig was

chosen as the transfer function and trainlm as the train method. These

parameters were determined by optimal mean squared error (MSE) and

training time epochs as showed in Figure 2.5, Figure 2.6 and Figure 2.7.
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Figure 2.5: Selection of models nodes in the middle layer

Figure 2.6: Selection of transfer functions
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Figure 2.7: Selection of train methods

Figure 2.8 shows the workflow for dustfall retrieval. At first, MODIS

data were processed by the Second Simulation of a Satellite Signal in the

Solar Spectrum (6S) model to conduct atmospheric correction and calculate

surface reflectance. Then, because Normalized Difference Vegetation In-

dex (NDVI) values corresponding to sampling locations were always greater

than 0.4, NDVI in these ranges were extracted. Finally, dustfall weights in

these extracted regions were retrieved by a BP Neutral Network model, and

Kriging interpolation was adopted to derive the whole dustfall distribution

image.
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Figure 2.8: Schematic diagram of dustfall retrieval
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2.2.5 Dustfall validation

This research used ground-measured dustfall weight to validate the retrieval

results. As shown in Figure 2.9, empty bottles were numbered and weighed.

Then, these bottles were hung on the pillars around Third Ring Road (Fig-

ure 2.10) in Beijing, resulting in a total of 14 sampling sites (Hua Yuan Qiao,

Li ZeQiao, Wan Shou Si, Si Tong Qiao, Ji Men Qiao, Bei Tai Ping Qiao,

Ma Dian Qiao, An Zhen Qiao West, An Zhen Qiao East, San Yuan Qiao,

Liang Ma Qiao, ShuangJin, Pan Jia Yuan and Ba Yi Hu). The sampling

time was from July 2 to August 1 2013.

Figure 2.9: Validation sampling locations
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Figure 2.10: Sampling bottles for validation

2.3 Results

2.3.1 Influence of dustfall on plants spectral features

Figure 2.11 A, B and C show the difference in spectral reflectance values

between dust and clean leaves for three kinds of plants. It is apparent that

the trend in clean leaf reflectance is similar to dust, but their reflectances

have significant differences for specific bands. Dust leaves have a higher re-

flectances than clean leaves at 350-700 nm, indicating that dustfall reflects

energy over this interval, and at 780-1300 nm dust reflectance is obviously

lower than clean leaf reflectance. Although there are fewer reflectance differ-

ences between dust and clean leaves at greater than 1300 nm, small amounts
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of dust sediment over this range can be effectively examined (Chudnovsky,

Ben-Dor, and Saaroni, 2007). These features mentioned above are consis-

tent with previous findings by Wang et al. (2012), Luo, Zhao, and Yan

(2013) and Peng et al. (2013), which revealed that reflectance differences

between dust and clean leaves indeed exist.

Figure 2.11: Impact of dust on spectral features: A) Euonymus japonica; B) Sophora

japonica L.; C) Populustomentosa Carr.; D) correlation analysis between reflectance ratios

(Dust/Clean) of the three types of plants and dustfall weight.

Figure 2.11 D shows the correlation coefficients between dustfall weight

and leaf reflectance ratios (Dust/Clean). Generally, between 350-700 nm,

1400-1540 nm, and 1860-2500 nm positive correlations were present with

dustfall, while 700-1400 nm and 1540-1860 nm showed negative relation-

ships. Specifically, the 750-1350 nm interval contained a low point, reach-

ing -0.38; 1350-1550 nm and 1950-2500 nm wavebands displayed a contrary

positive relationship with dust weight, and the correlation value reached

28



0.4.

Further correlation analysis between resampled spectral data r(λ) and

dustfall weight was performed (Figure 2.12). The results showed that gener-

ally the correlation trend was consistent with Figure 2.11 D: r(865), r(1240),

and r(1640) were strongly and negatively related to leaf dust, peaking at

-0.47, -0.48, and -0.37, respectively. In addition, r(550) had the lowest posi-

tive relationship with dust (0.21). Correlation coefficients of r(470), r(660),

and r(2130nm) ranged from 0.3 to 0.34. Similar to these results, Chud-

novsky and Ben-Dor (2008) also found that spectrum correlated with dust

content. Thus, they could be used to predict the dust weight.
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2.3.2 Dustfall retrieval and validation

Figure 2.13 shows the results of dustfall retrieval in the Beijing urban area

on August 3 and September 25 2013 based on BP Network. It is clear that

the spatial and temporal variation of dustfall was significant during these

periods. The results from August 3 reveal that high values concentrated at

sampling locations in the northern corner of the city, such as Fang’s Lane

and An Ding Men. In addition, there were many hotspots located around

the main roads with values ranging from 15 to 23 g/m2. On September

25, dustfall levels increased and the hotspots continually extended. South-

ern areas of the city, such as the southeast of Second Ring Road and the

southwest of Third Ring Road, experienced a rapid dustfall increase. To the

north of the city, regions with elevated dustfall on September 25 were larger

than those observed on August 3, particularly in Jian Xiang Qiao and An

Hua Qiao. The dustfall histogram shown in Figure 2.14 also indicates that

September 25 had a mean value of 12.36 g/m2, which was higher than the

value observed on August 3 (10.98 g/m2). Additionally, the retrieved dust-

fall followed normal distribution with small standard deviations of 2.104

(September 25) and 2.046 (August 3).
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Figure 2.14: Histogram of derived dustfall on August 3 and September 25, 2013

To evaluate the performance of the retrieval results, derived dustfall was

compared with validation bottle data (Figure 2.15). The comparison shows

that the change trend of the retrieved results agrees well with bottle mea-

surements, and a low Root Mean Square Error (RMSE) value of 3.6 in-

dicates satisfactory estimation accuracy. However, the retrieved dustfall

was slightly higher than the actual measurements, which may be related to

the fact that satellite reflectance not only accounts for surface reflectance,

but also contains noise, like Bidirectional Reflectance Distribution Function

(BRDF) effects and surrounding noises. Although the 6S model was uti-

lized to reduce these influences, there were still errors that could not be

eliminated.
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Figure 2.15: Retrieved dustfall validation with actual measurement data

2.3.3 Dustfall source analysis

The spatial distribution of dustfall is influenced by many factors related to

land cover activities, such as building and population, air flushing rates, and

the distribution of transportation networks. Figures 2.16 A and B show an

under-construction subway station beside the Olympic Sports Center and

a construction site for business activities, respectively. These construction

projects are all in the high dustfall level regions and could be the main source

of dust pollution (Tsang, 1996). Weng and Yang (2006) also indicated that

construction sites contributed dust and particles and were prone to causing

air pollution problems.
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Due to the old age of Beijing, some of the buildings in the studied area

are low-rise and in dilapidated condition (Figure 2.16 C). They are closely

packed along the road with little space between buildings (Figure 2.17).

The lack of space between the buildings can easily trap air emissions, and

dustfall would be serious in these air sheds with limited dispersive capacity.

Homeowners might want to maximize the use of land, resulting in limited

open spaces, which are necessary for air ventilation. In addition, transport

related dust pollution could also be serious in these areas. Emissions from

vehicles diffuse poorly due to the lack of space between old buildings.

Figure 2.17: Buildings in cottage areas
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2.4 Discussion

Combined with ground sampling and spectrum measurement data, satellite

can be used as a tool to map dustfall distribution over large areas. The

method proposed in this research not only represents an original technique

to observe air pollution by calculating the whole dust distribution, but also

directly connects satellite data to observed values at a very low cost. Un-

fortunately, the low spatial resolution of MODIS cannot exactly match the

sampling sites for leaf collection and, thus, a high accuracy retrieval result is

not expected. To combat this limitation, this study selected sampling loca-

tions that were widely covered by vegetation and corresponded to satellite

pixels as much as possible to reduce the influence of mixed pixels. Another

issue of concern is that leaf reflectance can be altered by vegetation phe-

nology. Liang, Zhong, and Fang (2006) indicated that, except for extreme

weather impacts, surface properties do not change dramatically within a

3-month period. From the validation results, the trend of retrieved dustfall

agrees well with real measurements, which illuminates the reliability of this

method and demonstrates the utility of the results as a tool for curbing en-

vironmental pollution. Nevertheless, there are still errors between satellite

and ground based data, and the retrieved results do not have a very high

accuracy. Thus, techniques for further improving accuracy remain vital and

require further study.
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2.5 Summary

The aim of this chapter was to utilize remote sensing and ground-based

spectral data to assess dustfall distribution in urban areas. The ground-

based spectral data denoted that dust has a significant impact on spectral

features. Dusty leaves have an obviously lower reflectance than clean leaves

in the near-infrared bands (780-1,300 nm). The correlation analysis between

dustfall weight and spectral reflectance showed that spectroscopy in the 350-

2,500-nm region produced useful dust information and could assist in dust

weight estimation. A back propagation (BP) neutral network model was

generated using spectral response functions and integrated remote sensing

data to assess dustfall weight in the city of Beijing. Compared with actual

dustfall weight, validation of the results showed a satisfactory accuracy with

a lower root mean square error (RMSE) of 3.6 g/m2. The derived dustfall

distribution in Beijing indicated that dustfall was easily accumulated and

increased in the south of the city. In addition, the outcomes of this chapter

showed that construction sites and low-rise buildings with inappropriate

land use were two main sources of dust pollution. This chapter offers a

low-cost and effective method for investigating detailed dustfall in an urban

environment. Environmental authorities may use this method for deriving

dustfall distribution maps and pinpointing the sources of pollutants in urban

areas.
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Chapter 3

Remote Sensing for Haze Aerosol

Monitoring

3.1 Introduction

The particulate size of haze aerosol is much smaller than dustfall, which

is between 0.001 µm to 10 µm (diameter) and its mean diameter is 1 µm

to 2 µm. Along with rapid economic growth, haze has become one key

environment issues in China. For example, extremely severe haze pollution

happened in Beijing-Tianjing-Hebei region, with high level of PM2.5 affect-

ing about 800 million people. Therefore, monitoring haze distribution is an

urgent practical problem need to be resolved. The purpose of this chapter

is to develop a new algorithm to obtain aerosol conditions; it includes haze

identification, retrieval of AOT not only on hazy days but also in normal

weather. A comprehensive discussion of the differences and limitations of

this method compared with the C6 DT land algorithm is presented in this

chapter as well. This chapter is based on Yan et al. (2016).
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3.2 Data and methods

3.2.1 Study area

The North China Plain is the largest alluvial plain in China, with an area of

409,500 km2, as shown in Figure 3.1. The region includes Beijing, Tianjin,

and Hebei, whose gross domestic product accounted for 11.3% of China’s

GDP in 2007. With the development of urbanized construction, the land

cover in the North China Plain has changed markedly. Many main roads

and residential buildings have been built to accommodate the increase in

motor vehicles and in population. Even though the government has made

great efforts to improve the environment, urban air pollution problems have

become increasingly serious. Particulate matter levels are severe around the

cities and continuous air-pollution episodes such as haze events are more

frequent than in the past (Li et al., 2013).

Figure 3.1: Study area of haze monitoring
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3.2.2 Satellite data

Daytime MODIS TERRA satellite images were acquired1 from December

2013 to June 2015, as shown in Table 3.12. TERRA is a satellite launched in

1999 that passes from north to south over the study area every morning (ca.

10:30 a.m. local time); with 36 wavebands, it can be used for atmospheric,

oceanic, and land studies at both global and local scales.

Collection 6 MODIS aerosol products (C6 MOD04) were obtained for

this study, and C6 DT AOT with 10-km and 3-km resolution3 were used

as a comparison. In addition, MODIS C6 DB AOT with 10-km resolu-

tion4 was also obtained for comparison, which was filtered by quality assur-

ance (QA)(Hsu et al., 2013; Sayer et al., 2013). The C6 cloud mask data

(Aerosol Cldmsk Land Ocean) were extracted from MOD04 and used for

cloud detection in our algorithm.

The MODIS Albedo product (MCD43) was also acquired. It provides

data describing both directional hemispherical reflectance (black-sky albedo)

and bi-hemispherical reflectance (white-sky albedo). The MCD43A1 Bi-

directional Reflection Distribution Function (BRDF)/Albedo Model Param-

eters Product provides the weighting parameters associated with the Ross

ThickLiSparse Reciprocal BRDF model. These three parameters (fiso, fvol,

and fgeo) are provided for each of the MODIS spectral bands. In this study,

fiso, fvol, and fgeo in Bands 1 and 3 were collected to calculate surface re-

flectance.
1https://ladsweb.nascom.nasa.gov/data/search.html
2BJ = Beijing AERONET station; BR = Beijing-RADI AERONET station; BC = Beijing−CAMS

AERONET station; XL = Xinglong AERONET station; XH = Xiang He AERONET station; BT = AOE
Baotou AERONET station

3 Optical Depth Land And Ocean
4 Deep Blue Aerosol Optical Depth 550 land Best Estimate
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Table 3.1: The MODIS data used for haze monitoring

Date Month Year AERONET Station Date Month Year AERONET Station

11 12 2013 BJ, BR,BC 16 10 2014 BR,XH

12 12 2013 BJ, BR 17 10 2014 BC,BR

14 12 2013 BJ,BR 18 10 2014 BJ,BC,BR,XH

26 12 2013 BJ,BR 25 10 2014 BC,BR,BT,XH

28 12 2013 BJ,BR 13 11 2014 BJ,BC,BR

30 12 2013 BJ,BR,BC 17 11 2014 BJ,BR,BC

1 1 2014 BJ,BR 22 11 2014 BJ,BR,BC

3 1 2014 BJ,BR,BC 26 11 2014 BJ,BC,BR,XH

13 1 2014 BJ,BR,BC 1 12 2014 BR,BC

22 1 2014 BJ,BR,BC 3 12 2014 BR,BC

3 2 2014 BJ,XH 17 12 2014 BJ,BR

4 2 2014 BJ,BR 24 12 2014 BJ,BR,BC

27 2 2014 BR,XH 31 12 2014 BJ,BR,BC

2 3 2014 BR,XH 2 1 2015 BJ,BR,BC

14 3 2014 BJ,BR 6 1 2015 BJ,BC

22 3 2014 BJ,XH 11 1 2015 BJ,BR,BC

7 4 2014 BJ,XH 27 1 2015 BJ,BC

2 5 2014 BJ,BC,XH 30 1 2015 BJ,BR,BC

7 5 2014 BJ,BC,XH 5 2 2015 BJ,BR,BC

16 5 2014 BJ,XH 17 2 2015 BJ,BR,BC

18 5 2014 BJ,XH 26 2 2015 BJ,BR,BC

3 6 2014 BJ,BC 3 3 2015 BJ,BR,BC

12 6 2014 BJ,BC 11 3 2015 BR,BC

27 6 2014 BJ,BC 21 3 2015 BJ,BC

28 6 2014 BJ,XH 23 3 2015 BC,XH

5 7 2014 BJ,BC,XH 21 4 2015 BC,XH

6 7 2014 BJ,BC,XH 22 4 2015 BC,XH

10 7 2014 BJ,BC 24 4 2015 BJ,BR,BC

12 7 2014 BJ,BC 26 4 2015 BR,BC

15 8 2014 BJ,BC 4 5 2015 BJ,BR,BC

25 8 2014 BC,XH 7 5 2015 BJ,BR,BC

3 9 2014 BR,BC 19 5 2015 BJ,BR,BC

8 9 2014 BJ,BR,BC 26 5 2015 BJ,BR,BC

9 9 2014 BJ,BR 2 6 2015 BR,BC

15 9 2014 BJ,BR 8 6 2015 BJ,BC

9 10 2014 BC,BR,BT,XH 18 6 2015 BJ,BR,BC

10 10 2014 BC,BR,BT,XH
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3.2.3 Enhanced haze aerosol retrieval algorithm (EHARA)

A new method is described here for haze monitoring and AOT retrieval

based on MODIS data. This algorithm is designed for application in large

areas characterized by the complex land surfaces of cities or dense vege-

tation. A schematic diagram of this method is shown in Figure 3.2. The

central idea of this algorithm is dependent on the spectral characteristics

received by a satellite to detect haze, and it then uses an aerosol model to

calculate AOT. In this method, haze detection rules of MODIS image is

based on Table 1 in Li et al. (2013).

Figure 3.2: Schematic diagram for the EHARA

Initially MODIS L1B data have a gas-absorption correction, as does the

latest C6 method, based on Appendix A in Levy et al. (2013). The EHARA

is described as follows. The MODIS−measured TOA spectral reflectance

can be estimated by (Drury et al., 2008):
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ρ
TOA(λ)

(θ0, θ, φ) = ρAer(θ0, θ, φ) + ρRay(θ0, θ, φ) +
T(θ0)T(θ)ρs(θ0, θ, φ)

1− ρs(θ0, θ, φ)S(λ)
(3.1)

where θ0 is the solar zenith, θ is the sensor view zenith, and φ is the rel-

ative azimuth angle, ρAer(θ0, θ, φ) is the aerosol reflectance, ρRay(θ0, θ, φ)

is the Rayleigh reflectance for molecules, T(θ0) and T(θ) are the downward

and upward total scattering transmittances, and S(λ) is the atmospheric

backscattering ratio. T(θ0) and T(θ) are defined by:

T(θ0) = exp
[
−(τR+τa)

µs

]
+ td(µs)

T(θ) = exp
[
−(τR+τa)

µv

]
+ td(µv)

 (3.2)

where µs is the cosine of the solar zenith angle, µv is the cosine of the sensor

zenith angle and τa is the AOT. τR is the Rayleigh optical depth, which can

be calculated as follows:

τR = 0.00864λ−(3.916+0.074λ+ 0.05
λ ) (3.3)
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where td(µ) is the diffuse transmittance and can be well approximated

by (Liu and Liu, 2009; Tanré et al., 1979):

td(µ)= exp(−(τR + τa)/µ){exp[(0.52τR + τa(1 + g)/2)/µ]− 1} (3.4)

For the atmospheric backscattering ratio S(λ), it can be approximated

by:

Sλ = (0.92τR + (1− g)τa) exp [−(τR + τa)] (3.5)

in which g is the asymmetry factor (AF).

ρAer(θ0, θ, φ) is the aerosol reflectance in the absence of air molecules,

which results from single scattering; it can be approximated by (Antoine

and Morel, 1998):

ρAer(θ0, θ, φ) =
ω0τaPa(θ0, θ, φ)

4µsµv
(3.6)

where ω0 is the single scattering albedo (SSA), Pa(θ0, θ, φ) is the aerosol

scattering phase function as (Rahman, Pinty, and Verstraete, 1993):

Pa(θ0, θ, φ) =
1− g2

[1 + g2 − 2g cos(π −Θ)]
3
2

(3.7)
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Then, the Rayleigh reflectance for molecules ρRay(θ0, θ, φ) can be approx-

imated by:

ρRay(θ0, θ, φ) =
ωRτRPR(θ0, θ, φ)

4µsµv
(3.8)

where ωR is the Rayleigh single-scattering albedo; in this study, ωR ≈ 1.

PR(θ0, θ, φ) is the Rayleigh scattering phase function as (Levy et al.,

2007):

PR(θ0, θ, φ) =
3

4
(1 + cos2(Θ)) (3.9)

with

Θ = cos−1(− cos(θ0) cos(θ) + sin(θ0) sin(θ) cos(φ)) (3.10)

Thus, AOT (τa) can be calculated by:

τa =
4µsµv

{
ρ
TOA(λ)

− ωRτRPR
4µsµv

− T(θ)T(θ0)ρs
1−ρs[0.92τR+(1−g)τa]exp[−(τR+τa)]

}
ω0Pa

(3.11)

In Equation 3.11, the surface reflectance (ρs) is a key parameter in the

aerosol retrieval algorithm. In this study, surface reflectance was calculated

by MCD43 at corresponding MODIS L1b data angles (Roujean, Leroy, and

Deschamps, 1992). In EHARA, we used the single-scatter approximation

for aerosol reflectance as Equation 3.6 and Equation 3.7 and a BRDF as-

sumption for surface reflectance. Then EHARA combined these with a

multiple-scattered light equation over a Lambertian surface as Equation 3.1.
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However, it should be noted that the physical assumptions in EHARA are

not as self-consistent as DB and DT which with a full radiative transfer

model.

3.2.4 Aerosol model

The aerosol model varies significantly in different areas and seasons. The

SSA and the asymmetry factor (AF) are two key parameters in determin-

ing aerosol physical properties. The SSA and AF may differ for each pixel

in MODIS data due to large coverage (Drury et al., 2008). Thus, in this

study, we determined the SSA and AF values for each pixel from the nearest

AERONET station (Table 3.1). If the nearest AERONET station’s mea-

surements were under hazy conditions, the non-hazy areas used empirical

SSA and AF values based on last years mean value in the corresponding sea-

son. On the other hand, if the nearest AERONET station’s measurements

were under non-hazy conditions, the hazy areas were assigned empirical

SSA and AF values, as will be discussed in detail in 3.3.1.

3.3 Results

3.3.1 Haze aerosol model

To obtain empirical SSA and AF values for haze aerosol retrieval, 12−yr

(2002−2014) AERONET data for hazy days in Beijing were collected. Fig-

ure 3.3 shows SSA values at 440 nm and 675 nm under hazy conditions.

It is evident that 675-nm SSA values are always higher than 440-nm SSA

values, which means that aerosol particles are more strongly scattered at
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675 nm on hazy days. From 2002 to 2006, SSA was low in these two wave-

lengths. Lee, Kim, and Kim (2006) also found that the haze aerosol had a

large absorption (SSA = 0.88) with black carbon particles in October 2004.

After 2007, the SSA values at 675 nm (total mean SSA at 675 nm) were

generally above 0.90, with the highest mean value of 0.95 in 2012, which

approximates to the dust model in the MODIS retrieval algorithm (Levy

et al., 2010). The mean SSA value at 440 nm in these years was always be-

tween 0.89 and 0.91, which was a little higher than the total mean value of

0.89. The SSA values increase when the haze aerosol displays more scatter-

ing and the secondary aerosols include both sulfate and nitrate (Yan et al.,

2008). Thus, the empirical SSAs for the haze aerosol model in this study

were 0.9 (blue band) and 0.92 (red band), values that are consistent with

the results of previous studies (Noh et al., 2009; Tao et al., 2013; Tao et al.,

2014). It is interesting that SSA has been higher over Beijing area in recent

years. Yu et al. (2012) found that from 2002 to 2008, the mean values of

haze SSA were 0.91 (675 nm) and 0.89 (440 nm). And in the normal days,

Bergin et al. (2001) indicated that SSA over Beijing in 1999 was 0.81 and

Mao and Li (2006) showed that the mean SSA was 0.79 in 2003.
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Figure 3.3: Interval plot of haze SSA from 2002 to 2014 (95% confidence interval; the black

points are SSA at 675 nm wavelength; the blue points are SSA at 440 nm wavelength; the

red dashed line is the mean SSA at 675 nm over the 12 years, and the green dashed line is

the mean SSA value at 440 nm over the 12 years)

Figure 3.4 shows the AF variation at 440 nm and 675 nm, clearly showing

that AF values were higher at 440 nm than at 675 nm, and always ranged

from 0.69 to 0.71, which approximates to the total mean value of 0.7. AF

mean values were always between 0.65 and 0.66, similar to the 12-yr mean

value of 0.66. Therefore, the empirical AF in this study was 0.71 for the

blue band and 0.67 for the red band (Tanré et al., 1979).
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Figure 3.4: Interval plot of haze AF values from 2002 to 2014 (95% confidence interval; the

black points are AF at 675 nm wavelength; the blue points are AF at 440 nm wavelength;

the red dashed line is the mean AF value at 675 nm over the 12 years, and the green dashed

line is the mean AF value at 440 nm over the 12 years)

3.3.2 Haze aerosol optical thickness retrieval

To illustrate the outcomes of the EHARA, we use three retrieval results as

examples. The first case is under heavy haze conditions. Figure 3.5A is

a true-color satellite image taken on 9 October 2014, which shows signif-

icantly different colors that distinguish heavy haze and cloud. Generally,

clouds are white and haze appears gray. The haze mark based on Li et al.

(2013) is shown in Figure 3.5B with extensive coverage over Beijing, Hebei,

and Shanxi. Figure 3.5F presents the EHARA 1-km AOT spatial distribu-

tion for the same day, revealing a high haze aerosol-loading event over the

North China Plain. High AOT values (2.5-3) are evident between Beijing

and Hebei due to the local topography, which forms a bowl ringed by moun-

tainous terrain (Yanshan and Taihang mountains) in the west (Lee, Kim,

and Kim, 2006). When the atmospheric structure is stable, air masses are
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easily blocked by these mountains, which leads to haze accumulation.

Figure 3.5: (A) True-color MODIS image taken on 9 October 2014. (B) Result of haze

identification. (C) MODIS C6 DT 10-km AOT. (D) MODIS C6 3-km AOT. (E) MODIS

C6 DB 10-km AOT. (F) EHARA 1-km AOT.

The second case is a hazy day with cloud. Figure 3.6A shows cloudy

weather conditions over the North China Plain on 5 July 2014. Haze de-

tection revealed scattered haze pixels that covered a wide, area including

Beijing, Tianjin, Hebei, Shanxi, Henan, and Shandong (Figure 3.6B). Figure

3.6F shows the high aerosol values (AOT: 4-5.5) over the Beijing, Liaoning,

Hebei, and Shandong regions, where values were much higher than in the

northwestern areas (AOT: 0.2-0.4).
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Figure 3.6: (A) True-color MODIS image on 5 July 2014. (B) Result of haze identification.

(C) MODIS C6 DT 10-km AOT. (D) MODIS C6 3-km AOT. (E) MODIS C6 DB 10-km

AOT. (F) EHARA 1-km AOT.

The third case is under normal weather condition on 16 October 2014.

The true-color satellite image shows a fine and cloud-free day on the North

China Plain (Figure 3.7A). No haze pixels were detected, indicating good

weather conditions (Figure 3.7B). Figure 3.7F shows that high AOT values

were observed in southeastern areas with high population densities, with

low AOT values in the western region with high elevations and dense veg-

etation. These AOT spatial characteristics are consistent with previous

research (Guo et al., 2012; Luo et al., 2015).
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Figure 3.7: (A) True-color MODIS image on 16 October 2014. (B) Results of haze iden-

tification. (C) MODIS C6 10-km AOT. (D) MODIS C6 3-km AOT. (E) MODIS C6 DB

10-km AOT. (F) EHARA 1-km AOT.

3.3.3 Validation

Figure 3.8 presents the validation result of EHARA AOT, MODIS C6 DB

10-km AOT, MODIS C6 DT 10-km AOT, and MODIS C6 DT 3-km AOT

with AERONET AOT. 88 AERONET measurements at 550 nm AOT (in-

terpolated by 675 nm and 440 nm) from 2 AERONET stations Beijing and

Xianghe with Level 2 data were collected over the course of ± 2 to 30 min

when satellite overpasses. The dotted red line is the estimated error en-

velope line ±(0.05 + 0.15AERONETAOT ) , and the solid red line is the 1:1

line. Figure 3.8A compares EHARA AOT with AERONET measurements,
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showing the close correspondence between them. The EHARA AOT misses

3.4% of data, and the majority of the observations (73%) are within the

error range ±(0.05 + 0.15AERONET AOT ), which indicates that the retrieved

AOT values are of good quality. Good agreement was also observed for the

MODIS C6 DB AOT as most of data points lie close to the 1:1 line (Fig-

ure 3.8C). It has 68% data within the error range and 9% data is missed.

However, for the DT AOT products, 43% of 10-km AOT and 38% of 3-

km AOT are missed in this study. In the MODIS DT 3-km AOT, only

53% of the data are within the error range line, while the 10-km AOT is

66%. Remer et al. (2013) also found that the 3-km AOT product matches

AERONET less well than the 10-km product. Furthermore, Munchak et al.

(2013) indicated that the performance of the 3-km AOT product is poor

especially over urban surfaces, which clearly suggests a limitation for air

quality applications as well.
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3.4 Comparison and discussion

As shown in Figure 3.5 and Figure 3.6, the EHARA AOT had better spa-

tial coverage than the MOD04 DT AOT products. Especially under hazy

conditions, the MODIS DT aerosol products missed most values. Tao et al.

(2012) found that the MODIS DT AOT could not provide a full retrieval

due to haze clouds over the North China Plain, which led to an underesti-

mation of the haze aerosol loading. Because in Section 3.3.3 the MODIS DB

AOT also shows a good performance, thus we only focus on the comparison

between the EHARA and MODIS DT AOT.

3.4.1 Surface reflectance assumptions

The C6 updates of the DT algorithm include refinements and code bug fixes,

but they are based on the same principles as the C5 version (Sayer et al.,

2014). The C6 still uses the VISvs2.1 surface reflectance parameterization

with NDVIswir dependence (Levy et al., 2013), which is described in Levy

et al. (2007). However, hazy days with thick aerosols make the VISvs2.1

surface reflectance relationship inappropriate (Wang et al., 2010a). From

Figure 3.9, the NDVIswir for hazy days has a mean value of 0.381, which

is significantly higher than that for non-hazy days (0.325). As presented in

Equation (8) to (10) in Levy et al. (2007), NDVIswir is the most important

parameter for the calculation of surface reflectance. In hazy weather, over-

estimation of NDVIswir can lead to large errors in estimates of the surface

reflectance of hazy pixels. Kaufman et al. (1997) indicated that an error

of 0.01 in surface reflectance can lead to an error of 0.1 in retrieved AOT

values. Thus, the EHARA uses MCD43 BRDF parameters to calculate sur-
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face reflectance. As shown in Figure 3.1, most elevations in the North China

Plain are of less than 50 m, resulting in a low BRDF effect in the majority

of urban areas. Li et al. (2013) showed that between March and September,

both mountain and urban areas have low surface reflectance and show small

non-Lambertian behavior in the North China Plain; thus, errors in surface

reflectance using MCD43 are likely to be less than 0.03.

Figure 3.9: NDVIswir on hazy and non-hazy days.

3.4.2 Null data pixels

There are null data in almost every MODIS AOT image, which limit the

inversion of ground-based air data like PM2.5 and PM10 values. Here some

brief reasons are presented for the C6 DT land algorithm to illustrate why

the significant Null Data problem exists. A big reason for data gaps is cloud
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and snow cover. Second, in the C6 DT land algorithm, dark pixels are first

selected based on 2.13-µm reflectance; fine- and coarse-mode aerosol-type

LUTs are built and corrected for elevation. The LUT simulations are in-

dexed by seven values at 550 nm AOT, which are 0.0, 0.25, 0.5, 1.0, 2.0, 3.0,

and 5.0 (Levy et al., 2010). Then the inversion is conducted at 2.12-, 0.66-,

and 0.47-µm wavelengths: the path and surface reflectance are a function

of τ(0.55 µm) , and this part of the algorithm attempts to find the surface

reflectance at 2.12 µm and the value of τ . Although this should match

the 0.47-µm band, the 0.66-µm band may have errors. Thus, the solution is

found when the error at 0.66 µm is minimized. The exact procedure is shown

as Equation 3.12, Equation 3.13 and Equation 3.14. The calculated error

evaluates the AOT retrieval result and an indicator (quality assessment,

QA) is set from 0 to 3. For example, if ε is more than 0.25, QA confidence

will be set at 0. As for some pixels in hazy conditions, integrated using

Equation 3.12 and Equation 3.14, Equation 3.13 is solved and an extremely

low ρ∗0.66 value is obtained compared with ρm0.66, which causes ε to exceed

the limitation (0.25), and MOD04 of Optical Depth Land And Ocean only

presents data of specific quality (QA confidence flag= 3).

ρm
0.47 − ρ∗0.47 = 0 (3.12)

ρm
0.66 − ρ∗0.66 = ε (3.13)

ρm
2.12 − ρ∗2.12 = 0 (3.14)

where ρ∗0.47, ρ
∗
0.66 and ρ∗2.12 are the calculated spectral total reflectance

values at the top of the atmosphere, which are the weighted sums of the
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spectral reflectance from fine- and coarse-dominated models; ρm0.47, ρ
m

0.66

and ρm2.12 are the MODIS measured reflectance values. Third, the C6 DT

algorithm includes a thin-cirrus test to determine clouds which may lead

to aerosol contamination. Pixels with ρ1.38 > 0.01 are deemed to be thin

cirrus and the QA confidence of these pixels is then reduced to zero. The

C6 also updates the code such that AOT values close to a cloudy area are

not retrieved. For example, as shown in Figure 3.6A and Figure 3.6B, hazy

weather is usually accompanied by clouds; thus, C6 may miss haze aerosol

retrieval in areas of thin cirrus or close to clouds.

Several null data AOT pixels may be acquired using the EHARA method,

as shown in Figure 3.10B. The reason is that aerosol (ρAer(θ0, θ, φ)) and

Rayleigh reflectance (ρRay(θ0, θ, φ)) are obtained by experience formulas

Equation 3.6 and Equation 3.8, which may lead to the equation5 < 0 in

some pixels. This may be related to the influence of weather and viewing

angle. Nevertheless, this phenomenon is significantly less evident than in

MODIS DT aerosol products, as shown in Figure 3.10B and Figure 3.10D

5ρ
TOA(λ)

(θ0, θ, φ)− ρAer(θ0, θ, φ)− ρRay(θ0, θ, φ)
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Figure 3.10: (A) True-color MODIS image on 12 July 2014. (B) EHARA AOT values.

(C) Interpolation of EHARA AOT and (D) MODIS C6 DT 10-km AOT values. (E)

Interpolation of MODIS C6 DT 10-km AOT values (black dots are Beijing environmental

monitoring stations).

3.4.3 Differences in Aerosol Models

The C6 aerosol products have been updated with new aerosol type selec-

tions; however, their overall spatial distribution remains the same as defined

for the C5 version (Levy et al., 2013). The weakly absorbing (SSA = 0.95)

and the moderately absorbing (SSA = 0.91) aerosol models in C6 are gen-

erally adopted for the North China Plain (Levy et al., 2010). However, the

EHARA uses intraday AERONET SSA to retrieve AOT. Another issue for

the MODIS DT land retrieval algorithm is that it often selects the dust
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aerosol model over land areas where dust is unlikely to be found. This is

especially likely when AOT values are small (Mielonen et al., 2011).

3.4.4 Application to air quality assessment

To assess air pollution levels at large scales, the relationship between satellite-

based AOT values and ground-based air-pollution data, including air qual-

ity index (AQI) PM2.5 and PM10 values, is useful. However, as shown in

Figure 3.10D, the C6 aerosol products omit a number of the Beijing en-

vironmental monitoring stations, which obstructs the spatial assessment of

air pollution and the mapping of air quality. To solve this problem, interpo-

lation is conducted, as shown in Figure 3.10E. Nevertheless, it is clear that

the resulting AOT spatial distribution differs from that in Figure 3.10C.

The inappropriate interpolation is due to the large number of missing val-

ues southeast of Beijing. Thus, the null data limit the application of the

C6 aerosol products for air quality assessment. Additionally, the contrast

between Figures 3.10B and 3.10D indicates that EHARA AOT values are

more spatially complete than the C6 AOT values. Figure 3.10B and Figure

3.10C show that using interpolation for the null EHARA AOT data results

in almost the same spatial distribution as the original data. Moreover, most

importantly, the EHARA can provide better performance for AOT values on

hazy days and result in more appropriate air quality assessment. Another

problem for the C6 AOT application is that of output of negative values. It

should be noted that the MODIS retrieval algorithm permits negative AOT

values, and negative retrieval results are especially common on days with

low-AOT values (Hyer, Reid, and Zhang, 2011).
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3.5 Summary

In this chapter, MODIS measurements were used to develop an enhanced

haze aerosol retrieval algorithm. This method can work not only on hazy

days but also on normal weather days. Based on 12-year (2002-2014)

AERONET aerosol property data, empirical single scattering albedo (SSA)

and asymmetry factor (AF) values were chosen to assist haze aerosol re-

trieval. For validation, EHARA AOT values, along with MODIS Col-

lection 6 dark-pixel and deep blue aerosol products, were compared with

AERONET data. The results show that the EHARA can achieve greater

AOT spatial coverage under hazy conditions with a high accuracy (73%

within error range) and work a higher resolution (1-km). Additionally, this

chapter presents a comprehensive discussion of the differences between and

limitations of the EHARA and the MODIS C6 DT land algorithms.
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Chapter 4

Fine mode aerosol-algorithm for

determining the fine mode fraction

4.1 Introduction

Atmospheric aerosols generally have a bimodal distribution and the smaller

particles are referred to as the fine mode aerosols, these aerosols are also

known as fine particles. These particles have diameter between 0.2 and 0.5

microns. The larger particles comprise the coarse mode. Through previous

research, from 2000 to 2010, the pollution of fine mode aerosol is worsen-

ing in central and eastern China (Wang et al., 2013). However, at present,

FMF as a key parameter to calculate FM-AOT is still difficult to obtain by

satellite data. Thus, the objectives of this chapter are to determine the pos-

sibility of simultaneously retrieving the FMF using MODIS images and to

characterize their temporal and spatial distributions. This chapter proposes

a method, the lookup table-based SDA (LUT-SDA), which is designed for

satellite images based on only two wavelengths of AOT to solve the FMF

problem.
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4.2 Data and methods

4.2.1 Study area

This study was conducted in Beijing and the surrounding area. The city’s

elevation decreases gradually from west to east due to the distribution of

mountains and plains (Figure 4.1). With the development of the capital

city, including large areas of new construction, the land coverage in Beijing

has changed markedly. Many main roads and residential buildings have

been built to accommodate the increase in population, with a consequent

increase in the number of motor vehicles. Even though the Beijing city

government has made great efforts to improve the environment, urban air

pollution problems have become increasingly serious.

Figure 4.1: Study area
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4.2.2 LUT-SDA

As showed in SDA (O’Neill, Dubovik, and Eck, 2001), it was developed as

a simple and efficient method for calculating fine and coarse mode based on

total AOT spectrum. The basic idea is that:

τa = τf + τc (4.1)

Where τa is total aerosol optical depth at a reference wavelength, τf is fine

mode optical depth, τc is coarse mode optical depth. Angstrom exponent

(AE) can be written as:

α = −d ln τa
d lnλ

=
αfτf + αcτc

τa
(4.2)

Where Equation 4.2 is defined as a weighted function including fine and

coarse mode terms. α is total Angstrom exponent at the wavelength of λ,

αf and αc are fine and coarse mode Angstrom exponent.

The FMF (η) can be calculated by:

η =
τf
τa

(4.3)

Applying Equation 4.3 to Equation 4.2:

α = αfη + αc(1− η) (4.4)
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Thus:

η =
α− αc
αf − αc

(4.5)

Defining t as a parameter:

t = α− αc −
α′ − αc′

α− αc
(4.6)

Where α′ is AE derivative, and αc
′ is Angstrom exponent derivative of αc.

αf can be using a simple expression:

αf =
1

2(1− a)
(t + b∗+ D) + αc (4.7)

Where

D =
√

(t + b∗)2 + 4(1− a)c∗

b∗ = b + 2αca

c∗ = c + (b + aαc)αc−αc
′

 (4.8)

with

a = (alower + aupper) /2

b = (blower + bupper) /2

c = (clower + cupper) /2

 (4.9)

Where aupper = − 0.22, alower = −0.3, bupper = 10−0.2388λ1.0275, cupper =
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100.2633λ−0.4683, clower = 0.63.

In SDA, αc = −0.15, αc
′ = 0, τa, τ and α′ can be derived from a second-

order polynomial fit that ln τa versus lnλ applied to each measured τa spec-

trum (at least 3 wavelength AOT), then η can be obtained. However, AOT

retrieval by remote sensing image is always in blue and red band, which only

has 2 wavelength AOT values. Thus, in order to use 2 wavelength AOT for

FMF calculation, AE can be calculated by:

α = −
ln(τ1τ2 )

ln(λ2λ1 )
(4.10)

Embedded Equation 4.8 to Equation 4.7, then Equation 4.7 can be written

as:

αf1 = 1
2(1−a){(α− αc −

α′−αc′
α−αc + b∗) + [(α− αc − α′−αc′

α−αc + b∗)2

+4c ∗ (1− a)]1/2}+ αc
(4.11)

And Equation 4.5 can be written as:

αf2 =
α− αc
η

+ αc (4.12)

Let η change from 0 to 1, and α′ from -2 to 2 to build a look up table for

Equation 4.11 and Equation 4.12, thus:

(η1, α′1) = min(αf1 − αf2)

αf
1 = α−αc

η1 + αc

 (4.13)
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Where η1, α′1 and αf
1 are uncorrected estimate of η, α′ and αf . Finally,

through α′ bias error correction (Appendix A1) and the mean of extreme

(MOE) modification (Appendix A2, same as SDA Version 4.1), η can be

obtained.

4.2.3 AOT and AE retrieval from remote sensing data

AOT and AE are two key parameters for LUT-SDA, which can be directly

influence FMF outcome. Bilal et al. (2013) proposed a Simplified Aerosol

Retrieval Algorithm (SARA), and was successful applied and validated in

Beijing (Bilal, Nichol, and Chan, 2014). SARA for calculating AOT as

showed:

τa =
4µsµv
ω0Pa

[
ρ
TOA
− ρRay −

e−(τR+τa)/µse−(τR+τa)/µvρs
1− ρs(0.92τR + (1− g)τa)exp[−(τR + τa)]

]
(4.14)

Where τa is AOT, τR is the Rayleigh optical depth, ρ
TOA

is satellite measured

top of the atmosphere (TOA) reflectance, ρRay is Rayleigh reflectance, ρs

is surface reflectance (MOD09), µs is cosine of solar zenith angle, µv is

cosine of sensor zenith angle, g is the asymmetry factor (AF). ω0 is the

single scattering albedo (SSA), Pa is the aerosol scattering phase function.

Finally, AOT is obtained and AE can be calculated by Equation 4.10.
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4.2.4 MODIS data

The MODIS Terra level 1B (MOD02HKM calibrated radiances and MOD03)

and MODIS surface reflectance product (MOD09) were acquired from De-

cember 2013 to July 2015 in cloud free day. The obtained data MOD02HKM

was for estimation TOA reflectance, MOD03 provided satellite and solar an-

gles. MODIS MOD04 Collection 6 (C6) aerosol product was also obtained

for comparison purpose. Dark-target (DT) algorithm based AOT at 550

nm and FMF were extracted from MOD04 C6. The C6 updates of the DT

algorithm include refinements and code bug fixes, but they are based on the

same principles as the C5 version (Sayer et al., 2014). The C6 still uses the

VISvs2.1 surface reflectance parameterization with NDVIswir dependence

(Levy et al., 2013), which is described in Levy et al. (2007).

4.2.5 AERONET

The AERONET program is a federation of ground-based remote sensing

aerosol networks (Holben et al., 2001). AERONET collaboration provides

globally distributed observations of spectral AOT, inversion products, and

other AOT-dependent products. Aerosol optical depth data are computed

for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-

screened), and Level 2.0 (cloud-screened and quality-assured). In this study,

three AERONET stations were used as showed in Figure 1, they were lo-

cated in Beijing city area (Beijing, CAMS and RADI). AOT and FMF were

obtained by these AERONET site Beijing (level 2), CAMS and RADI (level

1.5).
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4.3 Results and discussion

4.3.1 LUT-SDA and optimal for satellite images

The LUT used in the LUT-SDA is shown in Figure 4.2. The solid line repre-

sents the FMF (η) , with constant values (0.1 to 1, scale = 0.2). The dashed

line represents the AE derivative, with constant values (-2 to 2, scale = 1,

the dashed line of the AE derivative with 1 and 2 is short, and very close to

0, and therefore the solid line is not annotated in Figure 4.2). Utilizing the

LUT-SDA, we found that the AE derivative (α′) had a great influence on

the retrieved FMF. The range and scale of the AE derivative in the LUT

are key factors for the FMF. Of course, the finer the scale, the more ac-

curate the AE derivative is. However, for satellite images, a fine scale and

large range of the AE derivative will substantially increase the calculation

time. Thus, for the satellite data, a reliable method with less running time

is necessary. In AERONET, the daily AE derivative from 2009 to 2012 was

obtained (Figure 4.3). It can be found that the daily AE derivative ranges

from -1.2 to 1.2 accounting for most phenomenon in Beijing. Thus, in this

study, the AE derivative is set the range from -1.2 to 1.2 with scale 0.001

for LUT to calculate satellite FMF (η is set the range from 0 to 1 with scale

0.01). To validate the LUT-SDA performance, we used the AERONET 500

nm AOT and AE from January 2013 to June 2013 as input data to calculate

the FMF, and the outcomes were then compared with the AERONET FMF

(500 nm). Figure 4.4 shows the comparison of the LUT-SDA FMF, it can

be found that the LUT-SDA FMF matched the AERONET FMF well, and

can provide accurate and reliable outcomes.
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Figure 4.2: Lookup table (LUT) used in the LUT-based spectral deconvolution algorithm

(LUT-SDA)

Figure 4.3: Histogram of the AE derivative from 2009 to 2012
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4.3.2 Satellite FMF validation

The simplified high resolution MODIS aerosol retrieval algorithm (SARA)-

retrieved AOT at 500 m resolution was validated with the AERONET AOT

(Figure 4.5 A). The linear regression of SARA AOT values against the

AERONET observations yielded an R of 0.95 (N = 130). SARA AOT

values gave a low RMSE of 0.18, which indicated that the retrieved AOT

values were of high quality, which agreed with Bilal, Nichol, and Chan

(2014). However, the SARA AOT-retrieved AE had a relatively low cor-

relation coefficient (R = 0.30) with AERONET AE (Figure 4.5 B). Levy

et al. (2010) indicated that the MODIS cannot capture the variability of the

ground-truth AE due to it not being a multi-viewing angle measurement.

The validation of FMF is shown in Figure 4.5 C and shows a fairly good

correlation coefficient (R = 0.32) and RMSE (0.16). Although there were

some errors in the retrieved FMF, it was much better than the MODIS

FMF and was comparable with the AERONET FMF, as shown in Figure

6 of Zhang and Li (2015) and Figure 1 (right) of Jethva et al. (2010). We

further studied the dependence of the FMF error using the retrieved AE,

which was based on ∆α1 being less than 0.2 in good comparisons. The

results are shown in Figure 4.6 and clearly indicate that the error of the re-

trieved FMF decreased significantly as the AE was retrieved with a higher

accuracy. The correlation coefficient improved from 0.32 to 0.8.

1∆α = abs(αSARA − αAERONET )
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Figure 4.6: Comparison with the Aerosol Robotic Network (AERONET) (A: Angstrom

exponent (AE) validation with ∆α < 0.2; B: lookup table-based spectral deconvolution

algorithm (LUT-SDA) fine mode fraction (FMF) validation with improved AE)

4.3.3 Comparison with MODIS aerosol products

From Figure 4.7 A and B, it can be seen that the AOT retrieved by SARA

agrees well with MOD04 AOT, which indicates there was a high AOT south-

east of Beijing on this date (18 May 2014). This area includes the main

city region where roads are crowded and the population is dense. In ad-

dition, many construction projects, such as a new subway station, are in

progress, as described in Yan et al. (2015). The MODIS FMF is shown in

Figure 4.7 C, where it can be seen that many pixel values are 0 and a high

FMF was present west of Beijing. This result may not be realistic because

a pure coarse mode (FMF = 0) AOT in an urban area seems impossible.

The LUT-SDA FMF is shown in Figure 4.7 D, where it can be seen that a

high FMF was also discovered west of Beijing, but in the city area, there

was still a high FMF (0.6-0.7). By comparison, in Figure 4.7C and Figure

4.7D, the LUT-SDA FMF had a better spatial coverage than the MOD04
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FMF, and there was no extreme value of 0, which seems more reasonable.

From Figure 4.7 B and D, it can be seen that the FMF over land did not

have a strong correlation with AOT, which was also found by Zhang and Li

(2015).

Figure 4.7: Comparison with MODerate resolution Imaging Spectroradiometer (MODIS)

MOD04 products (A: MOD04 DT aerosol optical thickness (AOT); B: SARA AOT; C:

MOD04 DT fine mode fraction (FMF); D: LUT-SDA FMF)

4.3.4 Seasonal average FMF in Beijing

The FMF retrieved with a high accuracy was selected to analyse its seasonal

average spatial distribution in Beijing (Figure 4.8). The FMF was found to

be around 0.6-0.65 over most of Beijing in March-April-May (MAM) (Figure

4.8 B). From a comparison of Figure 4.8 B with A and C, it can be seen that,
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in the spring, the FMF was lower than that in summer and winter. This is

because Beijing experiences sand storms originating from the west of China

and the Mongolian Gobi desert in spring (Zhang et al., 2014). These sand

storms can lead to larger sized aerosols (dust) and result in a lower FMF

(Ramachandran, 2007). However, the FMF was high during June-July-

August (JJA) in Beijing, and exceeded 0.75 in most places. In JJA, Beijing

typically experiences a summer monsoon, which can reduce the influence of

sand storms in this region. Under these conditions, anthropogenic aerosol

is the main contributor to the total AOT, which results in a high FMF. In

December-January-February (DJF), the FMF was observed to be between

0.65-0.7 in most areas, which indicates the dominance of fine mode aerosols

in winter. This is due to heating in winter, when coal combustion increases

significantly and enhances the emission of anthropogenic aerosols (Zhao et

al., 2014). From Figure 4.8, it can also be seen that the FMF was high

in the urban centre of Beijing where there is always a high traffic flow and

dense population. In these regions, Ramachandran (2007) reported that fine

mode aerosols are mainly due to gas to particle conversion and automobile

emissions. To validate the seasonal pattern of the FMF derived by the LUT-

SDA, the FMF for the corresponding period from AERONET was obtained

for comparison. As shown in Figure 4.9, the AERONET FMF displayed

the same seasonal pattern as the LUT-SDA FMF.
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4.3.5 Expansion of the LUT-SDA to a large area

To test the ability of the LUT-SDA, we applied it to a large area. The

results are shown in Figure 4.10. The test MODIS image was obtained on

16 October 2014; it was found that the FMF had a significant spatial pat-

tern on this day. A large FMF was discovered in the North China Plain,

including Beijing, Tianjin and Baoding. The North China Plain is one of

the most populated and industrialized areas in China, and its rapid devel-

opment of urbanized construction has led to severe PM2.5 pollution (Quan

et al., 2011; Tao et al., 2012). Xin et al. (2014) reported a PM2.5 concen-

tration distribution, which is similar to the retrieved FMF in this region.

Datong, Shuozhou and Xinzhou are the other areas with a large FMF and

are located in the Shanxi Provinces. The FMF values were mostly above

0.6 in these regions. Ma et al. (2014) reported that the Shanxi Provinces

also experienced high levels of PM2.5 pollution. From Figure 10 it can be

seen that the LUT-SDA can be successfully applied on a large-scale study,

but further studies of its correlation with PM2.5 are required.
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4.3.6 Discussion

A high accuracy of FMF retrieval is very difficult to obtain for satellite

images because AE, as the key parameter for FMF retrieval, has many un-

certainties in satellite measurements. As shown in Figure 4.6, when the

accuracy of AE is enhanced, the accuracy of the retrieved FMF is clearly

improved. Although the derived AOT can have a high precision, the derived

AE is generally imperfect. Hasekamp and Landgraf (2007) indicated that

uncertainties in the surface reflectance that is used were one of the largest

error sources in aerosol properties retrieved from MODIS. They also found

that single-viewing angle measurements of intensity alone did not provide

sufficient information regarding aerosol properties. Sayer et al. (2013) re-

ported that the latest C6 MOD04 Deep Blue AOT has a strong correlation

with the AERONET AOT (R = 0.93); however, the AE validation had a

weaker correlation (R = 0.45). Levy et al. (2010) revealed that MODIS

does not provide quantitative information about aerosol size over land, and

recommend that users should not use size products quantitatively. In the

latest MOD04 Collection 6 aerosol product, the AE over land (based on the

dark target algorithm) has been deleted, and therefore users need to de-

rive it themselves, making it difficult to obtain the AE (Levy et al., 2013).

Therefore, to obtain an accurate FMF, a reliable method for AE retrieval

needs to be developed. Due to MODIS not being a multi-viewing angle mea-

surement, the use of ground-based data (e.g., AERONET) is a solution for

improving the retrieval accuracy. Jethva et al. (2010) found that using the

new absorbing aerosol model (SSA = 0.85), which is based on AERONET,

for the Indian region could improve the retrieval accuracy of FMF.
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4.4 Summary

In this chapter, MODIS measurements were used to develop a lookup table-

based spectral deconvolution algorithm (LUT-SDA). This method was com-

pared with ground-based data and had a high accuracy compared to the

AERONET FMF. The LUT-SDA was then applied to MODIS data for

the period of December 2013 to July 2015. The results showed that the

Angstrom exponent (AE) had a significant impact on the derived FMF.

When the accuracy of the AE was improved (R increased from 0.30 to

0.89), the errors in FMF outcomes were significantly reduced (R increased

from 0.32 to 0.68). In comparison with the C6 MOD04 FMF, the LUT-SDA

FMF had a better spatial coverage and there was no extreme value 0, which

seems more reasonable. Based on the LUT-SDA, the seasonal average spa-

tial distribution of FMF in Beijing was obtained. The FMF in Beijing was

observed to have a seasonal pattern, which was in good agreement with

the phenomenon obtained by AERONET. In addition, this study used the

LUT-SDA to study large areas, with the outcomes showing that it could be

feasibly used for further PM2.5 estimations.
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Chapter 5

Monitoring surface PM2.5 based on

fine mode aerosol optical thickness

5.1 Introduction

In recent years, air pollution, especially PM2.5 pollution has become a seri-

ous environmental problem all over the world. PM2.5 easily absorbs heavy

metals and organic matters, thus negatively affects human health such as

increasing mortality rates and aggravating respiratory symptoms. However,

it is difficult to estimate the surface-level PM2.5 using satellite-based AOT

because the relevant correlation is influenced by many factors, such as re-

trieval AOT algorithms and meteorological influence. As shown in Chapter

4, it proposed a LUT-SDA method for satellite FMF and the outcome which

showed a high correlation with AERONET FMF. In addition, a Simplified

Aerosol Retrieval Algorithm (SARA) was developed to derive AOT from

MODIS by Bilal et al. (2013) , which could provide 500 m spatial resolu-

tion AOT and has been validated in Hong Kong and Beijing (Bilal, Nichol,

and Chan, 2014). Therefore, the objective of this chapter is to develop a

ground-level PM2.5 retrieval model based on FM-AOT, which is incorpo-
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rated with LUT-SDA, SARA and the physical method of PM2.5 remote

sensing method.

5.2 Data and methods

5.2.1 AERONET

In this study, AOT and FMF were collected by AERONET site Beijing

(level 2), CAMS and RADI (level 1.5) from December 2013 to June 2015.

5.2.2 SARA-retrieved AOT

The MODIS MOD02HKM, MOD03 and MOD09 cloud free data were ac-

quired (https://ladsweb.nascom.nasa.gov) for AOT retrieval as shown in

Table 5.1. The SARA was applied in this study due to its effective and

high accuracy. AOT derived by SARA was validated in Beijing and the

results showed a very good correlation with AERONET AOT (0.97-0.99)

and low Root Mean Square Error (RMSE) 0.067-0.133 (Bilal, Nichol, and

Chan, 2014).
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Table 5.1: The MODIS data used in Chpater 5

Date Month Year Date Month Year

11 12 2013 16 10 2014

12 12 2013 17 10 2014

14 12 2013 13 11 2014

26 12 2013 17 11 2014

28 12 2013 22 11 2014

30 12 2013 1 12 2014

1 1 2014 3 12 2014

3 1 2014 17 12 2014

13 1 2014 24 12 2014

22 1 2014 31 12 2014

3 2 2014 2 1 2015

4 2 2014 6 1 2015

27 2 2014 11 1 2015

2 3 2014 27 1 2015

14 3 2014 30 1 2015

22 3 2014 5 2 2015

7 4 2014 17 2 2015

2 5 2014 26 2 2015

7 5 2014 3 3 2015

16 5 2014 11 3 2015

18 5 2014 21 3 2015

3 6 2014 23 3 2015

12 6 2014 21 4 2015

27 6 2014 22 4 2015

28 6 2014 24 4 2015

10 7 2014 26 4 2015

12 7 2014 4 5 2015

15 8 2014 7 5 2015

25 8 2014 19 5 2015

3 9 2014 26 5 2015

8 9 2014 2 6 2015

9 9 2014 8 6 2015

15 9 2014 18 6 2015
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5.2.3 Ground-measured PM2.5

The hourly ground-measured PM2.5 data over Beijing region from Decem-

ber 2013 to June 2015 were acquired from the Beijing Municipal Environ-

mental Monitoring Center (http://zx.bjmemc.com.cn). PM2.5 monitoring

sites are plotted in Figure 5.1, which shows that the majority of moni-

toring sites are located in urban areas and a few are in rural areas. The

PM2.5 measurement is based on the Chinese National Ambient Air Quality

Standard (GB3095-2012) by the tapered element oscillating microbalance

method (TEOM) or the beta-attenuation method (Li et al., 2015).

Figure 5.1: Study area

88



5.2.4 LUT-SDA FMF

As shown in Chapter 4, the LUT-SDA is developed for satellite images based

on only two wavelengths of AOT to solve the FMF problem. This method is

based on SDA which is currently used in the AERONET. Thus, the outcome

of LUT-SDA can match AERONET’s well and can be properly used as an

input parameter for the AERONET FMF-based model. The successful use

of the LUT-SDA applied to MODIS data not only verified the application

of this method to the urban scale (Beijing), but also verified its application

to a large area (northeast China). The retrieved FMF images are able

to represent the spatial distribution of the fine aerosol contribution to the

total AOT with complex surface types. Therefore, in this study we used

LUT-SDA to retrieval FMF and further correlated with PM2.5 estimation.

5.2.5 PBLH and RH

Weather Research and Forecasting (WRF) model 3.6.1 was applied to pro-

duce the needed PBLH and RH. WRF model is a next-generation mesoscale

numerical weather prediction system that was validated as a good perfor-

mance for simulation of meteorological data (Ying et al., 2009; Grgurić et

al., 2014). Initial and boundary conditions stemmed from the National Cen-

ters for Environmental Prediction (NCEP) Final (FNL) Operational Global

Analysis data (http://rda.ucar.edu/datasets/ds083.2/). NCEP FNL is pro-

vided globally 1 degree resolution every 6 hours. The physics options se-

lected for the WRF simulation for this research are same as Zheng et al.

(2016).
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5.2.6 Ground-level PM2.5 retrieval model

Zhang and Li (2015) developed a PM2.5 remote sensing method for the

ground-level PM2.5 estimation and validated it at Jinhua city of China

(Li et al., 2016). This method proposed a relationship between AOT and

PM2.5 concentration based on AERONET data, which including FM-AOT

conversion, fine particle volume calculation, PBLH and RH correction. The

surface PM2.5 concentration can be obtained by:

PM2.5 = AOT · FMF · V Ef · ρf ·dry
PBLH · f(RH)

(5.1)

Where FMF is fine mode fraction, VEf is columnar volume-to-extinction ra-

tio of fine particulates, ρf ·dry is density of dry PM2.5, PBLH is the planetary

boundary layer height and f(RH) is optical hydroscopic growth function.

And VEf can be calculated by:

V Ef = 0.2887FMF 2 − 0.4663FMF + 0.356 (0.1 ≤ FMF ≤ 1.0) (5.2)

In this study, f(RH) is based on Chen et al. (2015):

f(RH) =

 1.02× (1−RH/100)−0.21×RH/100 (RH/100 < 0.6)

1.08× (1−RH/100)−0.26×RH/100 (RH/100 ≥ 0.6)
(5.3)

ρf ·dry is assumed as a constant value 1.5 g/cm3 in Zhang and Li (2015)

and Li et al. (2016). However, in this study we deemed that ρf ·dry may

differ for each day and the detail of this issue will be described in Section

5.3.3. Thus, this study proposed a pseudo density of PM2.5 (ρpseudo) which

can be calculated by:
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ρpseudo = AOT · FMF · V Ef · PMV
2.5

PBLH · f(RH)
(5.4)

Where AOT and FMF are obtained by AERONET corresponding to satel-

lite overpass, PBLH and f (RH) are produced by WRF.

In Equation 5.4, PM2.5 is calculated by visibility. Previous studies had

been indicated that PM2.5 can be calculated by visibility from the power

function (Leung, Wu, and Yeung, 2009):

PMV
2.5 = A · xB (5.5)

Where x is visibility (km) which is obtained from weather station for Bei-

jing (https://www.wunderground.com/). A and B are parameters for this

equation which are discussed in Section 5.3.3.

Therefore, the schematic diagram of ground-level PM2.5 retrieval method

for this research is shown in Figure 5.2. There are mainly two steps: (i)

calculate ρpseudo assistant by visibility data using Equation 5.5; (ii) incor-

porate ρpseudo to Equation 5.1 with SARA-AOT (500 m), LUT-SDA FMF,

PBLH and RH correction for surface PM2.5 retrieval.
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5.3 Result and discussion

5.3.1 Comparison FM-AOT and AOT for PM2.5 estimation

Comparison between retrieval PM2.5 by total AOT and FM-AOT is shown

in Figure 5.3. This comparison was divided into two groups based on nor-

mal and haze weather conditions. There were 778 samples collected for

statistical regression analysis in the normal days. The correlation between

total AOT and PM2.5 with R2 = 0.43 and r = 0.66 is shown in Figure

5.3A. However, the correlation is reduced using the FM-AOT instead of to-

tal AOT as presented in 5.3B (R2 = 0.35 and r = 0.6). Boyouk et al. (2010)

also found that R2 was decreased significantly from 0.73 to 0.65 when the

total AOT was replaced by FM-AOT. Nevertheless, as shown in Figure 5.3C

and Figure 5.3D, when the PBLH and RH correction was incorporated, the

correlation between FM-AOT and PM2.5 had an obvious improvement (R2

from 0.35 to 0.46 and r from 0.6 to 0.68), and some improvements could

also be observed in total AOT’s (R2 from 0.43 to 0.45 and r from 0.66 to

0.67).

As for in haze condition, Figure 5.3E and Figure 5.3F showed that FM-

AOT had a slight better relationship with PM2.5 (R2 = 0.33 and r = 0.58)

than total AOT’s (R2 = 0.31 and r = 0.55). The similar phenomenon is

also found by Zhang and Li (2013), but the improvement by FM-AOT in

this research is not as significant as theirs. This is because the test data

in Zhang and Li (2013) were in winter (January) while in this study was

nearly 2 years. Di Nicolantonio et al. (2007) indicated that different months

could have distinct impact on the correlation of total AOT and FM-AOT

with PM2.5 concentration. From Figure 5.3G and Figure 5.3H, we cannot
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observe any improvement when the PBLH and RH correction are accounted.

This is because the relationship between aerosol extinction coefficient and

height does not follow exponential attenuation model under haze condition

(Lv et al., 2013), which makes the PBLH correction unsatisfactory. In

addition, when PM2.5 < 200 µg/m3 and RH < 80%, RH correction can

achieve a good outcome (Zhang and Li, 2013). However, in haze days the

PM2.5 is frequent more than 200 µg/m3, which makes the RH correction

inapplicable since the relationship between aerosol scattering coefficient and

RH does not obey the hygroscopic growth.

Figure 5.3: Comparison between total AOT and FM-AOT for PM2.5 (A, B, C and D are

in the normal weather days, N=778; E, F, G and H are in haze days, N = 248)
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5.3.2 LUT-SDA FMF

As shown in Equation 5.1 and Equation 5.2, FMF is a very important

parameter which can directly affect not only VEf but also final PM2.5 out-

comes. Thus, a reliable FMF is necessary for the PM2.5 retrieval. In

this study, FMF was calculated by LUT-SDA and comparison between

AERONRT and MODIS FMF was presented in Figure 5.4. From the series

FMF plots, it is obvious that LUT-SDA FMF has a good agreement with

AERONET FMF. However, MODIS FMF missed most of data in this study

period. Levy et al. (2010) indicated that MODIS-retrieved FMF over land

is still an experimental product and has little physical validity. Li et al.

(2016) also mentioned that the accuracy of MODIS retrieval FMF limits

the Equation 5.1 application and validation. From Figure 5.4, it shows

that LUT-SDA FMF is a good choice instead of MODIS FMF, which can

achieve widely covered FMF. Although LUT-SDA FMF is not accurate as

field measurement, it can provide a better spatial view of FMF while the

field measurement only has point-scale values.
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5.3.3 Pseudo density for PM2.5

Many studies had been presented that particle density of PM2.5 has strong

seasonal and diurnal variations (Zhao et al., 2013; Wang et al., 2014; Liu

et al., 2015). As shown in Table 5.2, density of PM2.5 in the warm season

is always higher than the cold seasons. On average, the density of PM2.5

can increase from 1.68 g/cm3 in the cold season to 1.81 g/cm3 in the warm

season due to the organic matter contribution during the cold season in

Beijing (Liu et al., 2015). Thus, it is difficult to use a constant empirical

PM2.5 density value in Beijing. Because of this issue, a rough estimate

of ambient particle density for PM2.5 is necessary for improving accuracy

of surface PM2.5 retrieval. Therefore, in this study, a pseudo density was

proposed to solve this challenge. Based on Chen et al. (2015), PM2.5 can

be directly calculated by the visibility through the power functions under

different relative humidity conditions, as shown in Table 5.3. Then, by

Equation 5.4 and Equation 5.5, the daily pseudo density of PM2.5 was

calculated in this study period. As shown in Figure 5.5, the pseudo density

of PM2.5 has significant changes in each day due to different weather and

pollution conditions. The daily PM2.5 pseudo density is up to 2.5 g/cm3

or low to 0.23 g/cm3 for the specific days. The statistics for PM2.5 pseudo

density is showed in Figure 5.6, the mean value is 1.02 g/cm3 with confidence

interval from 0.97 to 1.06 g/cm3 and the standard deviation is up to 0.62.

By Figure 5.5 and Figure 5.6, assuming a variable PM2.5 density in the

retrieval model for each day seems more suitable than the constant density

assumption.
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Table 5.2: Density of PM2.5 in Beijing from literature

Reference Density(g/cm3) Sampling time

Liu et al. (2015) 1.60 ± 0.43 July to September 2014

Zhao et al. (2013) 1.66 ± 0.74 January to February 2010

1.82 ± 0.33 July to August 2009

Gao et al. (2007) 1.5 April to August 2005

Cao et al. (2012) 1.79 ± 0.23 June to July 2003

1.65 ± 0.37 January 2003

Wang et al. (2014) 1.72 ± 0.94 December 2002 to February 2003

1.82 ± 0.47 July to August 2002

Table 5.3: Power function for PM2.5 in Beijing

Relative humidity Power function for PM2.5 (mg/m3)

RH<70% PM2.5 = 0.6977x−0.9517

70%6RH680% PM2.5 = 0.3628x−1.028

80%<RH690% PM2.5 = 0.2957x−0.9463

Figure 5.5: Variation of PM2.5 pseudo density (unit: g/cm3) from December 2015 to June

2015

98



Figure 5.6: Statistics of PM2.5 pseudo density in this study period

5.3.4 PM2.5 retrieval results and validation

To evaluate the performance of the PM2.5 retrieval model proposed in this

study, we took two retrieval results as example. Figure 5.7 shows the PM2.5

estimation on 6 January 2015. We can see that AOT by SARA ranges from

0.05 to 0.27 and its the highest value is always centered in the south of

Beijing (Figure 5.7A), while the FMF derived by LUT-SDA presents the

highest value in the center and south east of urban area that always has

high traffic and dense population (Figure 5.7B). These areas with high FMF

indicate that contribution of fine particles to total AOT is large. The PBLH

and RH produced by WRF are showed in Figure 5.7C and Figure 5.7E. The

PBLH presents an obviously different spatial coverage on this day. In the

north of Beijing, PBLH reaches up to 605-746 m and more than 474 m

in the most of center areas. However, in the east and west of Beijing,
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the PBLH is always around 366-417 m. Figure 5.7E shows that the RH

decreases gradually from northwest (0.29-0.33) to southeast (0.18-0.21) of

Beijing. Corresponding to RH, the f(RH) is showed in Figure 5.7D and we

can see that its spatial pattern is similar to Figure 5.7E. Finally, the derived

PM2.5 is presented in Figure 5.7F, and the results show that PM2.5 spatial

pattern is slightly different with the AOT shown in Figure 5.7A. High-level

PM2.5 in the southern and eastern urban is clearly seen, which indicates

anthropogenic pollution is heavy in these areas. However, the PM2.5 mass

concentration is low in the northern rural regions which is around 6-23

µg/m3.
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Figure 5.7: PM2.5 estimation on 6 January 2015 (unit: PBLH is m, PM2.5 is µg/m3)

In order to further test the PM2.5 retrieval model, we extend the study

area to Beijing nearby cities. The test data was obtained on 16 October

2014 and the derived results are showed in Figure 5.8. The highest AOT

is located in the south of Beijing, east of Tianjin, southwest and east of

Hebei (Figure 5.8A). From Figure 5.8B, it is observed that FMF value
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is high in the center of Beijing, south of Hebei and east of Tianjin. The

PM2.5 retrieval result is showed in Figure 5.8C, we can see that high PM2.5

polluted regions are the south part of Beijing and Hebei, and also in the east

part of Tianjin. This result is consistent with the findings by Zhang and Li

(2015), Ma et al. (2014) and Zheng et al. (2016). Comparing Figure 5.8A

and Figure 5.8C, the derived PM2.5 has similar spatial pattern with AOT,

but with some differences due to FMF, RH and PBLH correction, such as

the west of Hebei where the AOT is high, but the PM2.5 is medium.
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Figure 5.9A shows the mean values of PM2.5 for satellite retrieved and

ground-based measurements from December 2013 to June 2015. High-level

PM2.5 in the southern urban area can be clearly seen where the concentra-

tion is 42-44 µg/m3 for satellite retrieval and 42-48 µg/m3 for ground-based

measurements. In contrast, the level of PM2.5 is much lower in the north

and west of Beijing where the population is sparser and vehicle is less in

these rural areas. From Figure 5.9A, a good agreement is found between

the satellite retrieval and in situ measurements, and the spatial distribution

of derived PM2.5 is similar to previous study by Li et al. (2015). Figure

5.9B presents the validation results of derived PM2.5 with in situ PM2.5.

A total of 921 in situ measurements were collected. The dotted red lines

are the estimated error envelope line ±0.4 · PM2.5in situ and the 1:1 line,

respectively. Linear regression shows a slope 0.67 and an intercept 9.5 with

coefficient of determination R2 = 0.67 (N = 921), root mean square er-

ror (RMSE) is 18.9 µg/m3. From the result of validation, it can be found

that derived PM2.5 well matches in situ observations, indicating that the

retrieval model achieves a good performance.
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5.3.5 Discussion

In this study, we found that FM-AOT may have a better correlation with

ground-level PM2.5 concentration than the total AOT’s. However, it re-

quests PBLH and RH information to correct the data from the space to the

ground. If we do not have PBLH and RH information, it is fine to use total

AOT to estimate PM2.5. As for haze days, since the aerosol properties have

obvious differences with normal days’ (Yan et al., 2016) and its relationship

with PBLH and RH is not clear (Lv et al., 2013), we suggest using FM-

AOT to retrieval ground-level PM2.5 without PBLH and RH correction.

From the FMF comparison between MODIS, LUT-SDA and AERONET,

the MODIS FMF is observed with a great uncertainty and a lot of data are

not available. Because of this issue, Zhang and Li (2015) also mentioned

that the mean absolute error of the PM2.5 retrieval is 64 µg/m3 by using

MODIS FMF which seems large. One possible reason is that the relation-

ship between V Ef and FMF is based on AERONET inversion method data

for Equation 5.1, however, the FMF from MODIS C6 product is derived

by different method and has different definition. It could exist huge un-

certainties for V Ef calculation by MODIS C6 FMF instead of AERONET

FMF. Therefore, this can be a huge limitation for Equation 5.1 and Equa-

tion 5.2 application. To alleviate this problem, we used LUT-SDA FMF

in this study, which is more reliable and accuracy as showed in Figure 5.9.

For another hand, a constant density assumption seems not suitable for the

real time PM2.5 estimation due to distinct diurnal and seasonal variations

(Liu et al., 2015). Hoff and Christopher (2009) suggested that satellite AOT

should combine with ground-based measurement to improve PM estimation

from space. Therefore, assistant by ground-based data, the intraday pseudo
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density is calculated for each satellite image. By these means, the derived

PM2.5 has a good performance with RMSE 18.9 µg/m3.

5.4 Summary

This chapter presents a ground-level PM2.5 retrieval model based on fine

mode AOT (FM-AOT), which incorporates SARA, LUT-SDA and the PM2.5

remote sensing method. In comparison, the meteorological factor can im-

prove correlation between FM-AOT with surface PM2.5 (R2 increased from

0.35 to 0.46, r increased from 0.6 to 0.68) larger than total AOT (R2 in-

creased from 0.43 to 0.45, r increased from 0.66 to 0.67). And the LUT-SDA

FMF is found to be more available and accurate than the MODIS FMF. In

order to improve the estimation accuracy, this chapter proposed a pseudo

density for PM2.5 retrieval aided by the real time visibility data. Finally,

the developed model was applied to retrieval surface PM2.5 over Beijing

from December 2013 to June 2015 in cloud free day. The derived results

were compared with the ground-based values with R2 = 0.64 and RMSE

= 18.9 µg/m3 (N = 921). This validation shows that the model exhibits a

good performance with a high accuracy.
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Chapter 6

Conclusion

In summary, monitoring the spatial distribution of particles is of significant

importance to the assessment of public health and the control of environ-

mental population. Therefore, this thesis comprehensively describes the dif-

ferent retrieval algorithms of suspended particulate matters ranging from

large to small sizes, including dustfall, haze aerosol, fine-mode aerosol and

PM2.5.

6.1 Concluding summary

(1) Dustfall is found having a significant impact on leaf spectral fea-

tures, especially in the near-infrared band (780-1300 nm), where dusty

leaves have lower reflectance values than clean leaves. Specifically, r(865)

and r(1240) are most closely related to dustfall, with the correlation coeffi-

cients reaching -0.48 and -0.47, respectively. Through a BP neural network

model, Beijing city’s dustfall distribution was estimated. The results re-

vealed that dustfall easily accumulated and increased in the south of the city.

The concentrations of dustfall in the city conformed more to the circular

zonation pattern. The validation of the results showed a satisfactory perfor-
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mance compared with the actual sampling bottles dustfall weight (RMSE =

3.6 g/m2). Using dustfall images, two main sources of dustfall were found:

construction sites and low-rise building with old and inappropriate land

use, which corroborates earlier observations (Tsang, 1996; Weng and Yang,

2006). This study illustrates that using remote sensing to detect dustfall can

be an effective and appropriate method of monitoring air pollution levels.

(2) The EHARA is developed to retrieve haze aerosol and compare the

outcomes with the latest MODIS C6 aerosol products. Based on 12 years

of AERONET data, it was proposed empirical SSA and AF values for haze

aerosol retrieval: 0.9 (SSA) and 0.71 (AF) for the blue band, and 0.92 (SSA)

and 0.67 (AF) for the red band. Comparison with ground-based AERONET

data showed that EHARA-derived AOT had a fine spatial resolution of 1-km

and a high level of accuracy (73% within error range and 3.4% missed value),

which is higher than MODIS C6 DT 10-km (66% within error range and

43% missed value) and 3-km (53% within error range and 38% missed value)

aerosol products. In this study, the C6 DB also has a good performance

under haze or normal weather days (68% within error range and 9% missed

value). The main reasons for the high accuracy of the EHARA are thought

to be the use of real time AERONET data to determine the aerosol model

(SSA and AF values) and the differences in assumptions regarding surface

reflectance. Additionally, because of its haze detection, the EHARA can

assign an appropriate aerosol model for haze pixels, and successfully retrieve

more AOT values on hazy days. This thesis also discussed the differences

between the EHARA and MODIS C6 DT land algorithm in detail. The

main limitations for the MODIS C6 DT aerosol products are related to null

data and negative AOT values. This study offers a fast and effective method
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for investigating aerosol spatial distributions at large scales, especially for

haze aerosol monitoring. Environmental authorities can use this method

for aerosol distribution mapping and air quality assessment in large areas.

(3) An FMF retrieval algorithm for fine mode aerosol is proposed in

this thesis. The successful use of the LUT-SDA applied to MODIS data not

only verified the application of this method to the urban scale (Beijing),

but verified its expansion to large areas. The retrieved FMF images were

able to represent the spatial distribution of the fine aerosol contribution to

the total AOT with complex surface types. The ground-based LUT-SDA

validation demonstrated a high level of accuracy compared with AERONET

measurements. In comparison with the C6 MOD04 DT FMF product, the

LUT-SDA FMF had better spatial coverage and there was no extreme value

0, which seems more reasonable. Using the LUT-SDA, the seasonal average

FMF in Beijing had a clear seasonal pattern, where the FMF was highest

in summer and lowest in spring. This result was in good agreement with

the phenomenon obtained by AERONET. This study shows that the LUT-

SDA can be used as an effective and appropriate method to derive the FMF

using MODIS. In addition, the LUT-SDA provides an alternative solution

for the estimation of PM2.5 when FMF is used as a parameter, and can

be further modified and applied to other satellite images (e.g., Landsat or

the National Polar-orbiting Partnership (NPP)/Joint Polar Satellite System

(JPSS) satellites).

(4) A ground-level PM2.5 retrieval model is developed by MODIS satel-

lite instrument and FM-AOT. This model includes LUT-SDA, SARA and

the PM2.5 remote sensing method, which is examined by the surface PM2.5

over Beijing from December 2013 to June 2015. Compared with AERONET
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data, the LUT-SDA FMF was found to be more reliable and accurate than

MODIS FMF. Then, a pseudo density was proposed for improving PM2.5

estimation based on real time visibility data. The pseudo density of PM2.5

showed a significant variation (standard deviation is 0.62). The PM2.5 re-

trieval model exhibits a good performance with R2 = 0.64 and RMSE =

18.9 µg/m3 (N = 921).

6.2 Main contributions

Main contributions of this thesis comprise four parts, being located in Chap-

ter 2 to Chapter 5, which apply MODIS imagery for different sizes of sus-

pended particulate matter retrieval.

(i) Dustfall Retrieval: Since the spectral information of the dustfall is

very difficult to gain, there are few studies that retrieve the spatial distri-

bution of dustfall based on satellites. Chapter 2 proposed the concept of

“Clean Day”and extracted the spectral features of the dustfall through the

comparison of the “Dust Day”remote sensing data. Furthermore, a neu-

ral network was built by the ground-measured spectrum of the dustfall to

improve the retrieval accuracy.

(ii) Haze aerosol: There is a significant difference in properties between

the haze aerosol and the normal aerosol, which makes the traditional meth-

ods inapplicable to the aerosol retrieval in haze weather. In order to solve

this issue, Chapter 3 extracted the haze pixels by the thresholds of the haze

and integrated the measured data of the haze aerosol properties to improve

the accuracy.

112



(iii) Fine mode aerosol: So far it is still a challenging to compute the

fine-mode aerosol based on satellites due to the difficult acquisition of the

FMF. Although the traditional SDA can calculate the FMF precisely, it

needs multiple bands of AOT. Therefore, it is very difficult to apply SDA

to the satellite images. Chapter 4 proposed a LUT-SDA, which used only

two bands of AOT to calculate the FMF. This improvement can make the

SDA applicable to the satellites and get a whole spatial scale of FMF.

(iv) PM2.5: The traditional method to retrieve the ground PM2.5

based on remote sensing is to build the relationship between the total AOT

and PM2.5; however, it is widely known that PM2.5 is mainly contributed

by the fine mode particles. Thus, retrieving the FMF of the total AOT

is of significant importance to the PM2.5 retrieval. Chapter 5 presented

a new model of PM2.5 based on the fine mode aerosol and improved the

model accuracy by the aid of the real-time ground-measured pseudo density

of PM2.5 and WRF data.
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Appendix A

A.1 AE derivative bias error correction

O’Neill et al. (2003) proposed AE derivative bias error correction in SDA.

This study used the same method to correct AE derivative which is calcu-

lated by LUT-SDA. The method is as below:

α′error = 0.65× exp[−(η1 − 0.78)2/(2× 0.182)] (A.1)

Where η1 is uncorrected estimate of η as showed in Equation 4.13. Then:

α′corrected = α′1 + α′error (A.2)

tcorrected = α− αc −
α′corrected − αc′

α− αc
(A.3)

Dcorrected =

√
(tcorrected + b∗)2 + 4(1− a)c∗ (A.4)

αfcorrected =
1

2(1− a)
(tcorrected + b∗+ Dcorrected) + αc (A.5)

ηcorrected =
α− αc

αfcorrected − αc
(A.6)
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A.2 Mean of extreme (MOE) modification

The error of αf can be expressed as:

∆αf
2 =

(
k1

∂αf

∂α′ + k2
∂αf

∂α

)2
(

∆τa
τa

)2

+
(
∂αf

∂a ∆a
)2

+
(
∂αf

∂b ∆b
)2

+
(
∂αf

∂c ∆c
)2

+
(
∂αf

∂α′
c
∆α′c

)2

+
(
∂αf

∂αc
∆αc

)2

(A.7)

Where k1 = 10, k2 = −2.5, ∆τa is nominal RMS error of AOT at the refer-

ence wavelength, τa is AOT at the reference wavelength, ∆α′c = 0.15, ∆αc =

0.15, ∆a = (aupper−alower)/2, ∆b = (bupper−blower)/2, ∆c = (cupper−clower)/2.

And:

∂αf
∂α′

=
−1

ηcorrectedDcorrected
(A.8)

∂αf
∂α

=
t+

ηcorrectedDcorrected
(A.9)

t+ = α− αc −
α′corrected − αc′

α− αc
(A.10)

∂αf
∂a

=
(αfcorrected−αc)

(1−a)
+

1

Dcorrected

(
αc(2αfcorrected−αc)−

c∗
(1− a)

)
(A.11)

∂αf
∂b

=
αfcorrected
Dcorrected

(A.12)

∂αf
∂c

=
1

Dcorrected
(A.13)

∂αf
∂α′c

=
1

Dcorrected
(

1

ηcorrected
− 1) (A.14)
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∂αf
∂αc

=
tcorrected
Dcorrected

(
1

ηcorrected
− 1) (A.15)

Thus, ∆αf can be computed as:

∆αf =
√

∆αf 2 (A.16)

Then, set the theoretical max of αf is:

αfMAX = min(4, 10(0.18∗log10(λ)+0.57)) (A.17)

If αfcorrected + ∆αf > αfMAX , αfcorrected + ∆αf = αfMAX .

If αfcorrected −∆αf > αfMAX , αfcorrected −∆αf = αfMAX .
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