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Abstract

Video coding with low-delay hierarchical prediction structure is essentially in-

troduced for real time video applications. This structure is currently adopted in

various emerging video coding standards including MPEG4-Part 10 (H.264), high

efficiency video coding (HEVC) and multi-view video coding (MVC). The only dis-

advantage of this structure is the requirement of motion estimation in distant refer-

ence frames. For maintaining high coding efficiency, a large search range in motion

estimation can be employed in distant reference pictures. However, computational

complexity will thus be increased dramatically.

In addition to the hierarchical prediction structure, the vision of the latest HEVC

video coding standard provides a more flexible framework by confronting the trade-

off between coding efficiency and computational complexity. It is able to gain cod-

ing efficiency up to 50% bitrate reduction comparatively to H.264. By this advan-

tage, HEVC is the emerging standard in the industry for providing video streaming

applications and online TV advancements. The achievement of HEVC is obtained

by introducing the new coding quad-tree structure on block partitions in motion es-

timation. However, this flexibility of recursive block partitioning for coded video

quality induces heavy computations in an HEVC encoder. Therefore, this work in-

vestigates computational complexity reduction algorithms in emerging video coding

standards.

The work on this thesis then contrives a number of fast algorithms for motion

estimation. The adoption of motion vector composition (MV composition) for a fast

motion estimation scheme in a low-delay hierarchical P-frame structure is firstly
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proposed. It expedites the motion estimation process for distant reference frames in

the hierarchical P structure. In addition, a vector selection algorithm is tailor-made

with the proposed hierarchical P coding scheme to further improve the coding effi-

ciency. Simulation results show that the proposed scheme can deliver a remarkable

complexity savings and coding efficiency improvement on coding a frame in low

temporal layers of the hierarchical P structure.

The rest of this work proposes to perform motion locus prediction before motion

estimation. By this motion locus prediction, a suitable search range can be adjusted

adaptively for motion estimation. Thanks to the rapid development of MVC and 3D

videos, the state-of-the-art 3D coding framework provides multi-view plus depth

video (MVD) in which the depth map is additional information to be encoded in

the coded bitstreams. Depth maps record the distances of various objects in the

scene from a viewpoint. With the depth maps from MVD sequences, we reveal the

depth variation and the spatial correlation between blocks as well as the temporal

correlation between the depth maps and the motion in texture, motion locus perdition

can be achieved for speeding up the texture coding in an HEVC encoder. The depth

information brings new room for designing an efficient adaptive search range (ASR)

algorithm in HEVC. Simulation results show that the proposed ASR algorithms can

offer a significant complexity reduction with negligible loss of coded video quality.
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Chapter 1

Introduction

1.1 Overview

Digital video becomes one of the essential principal media for daily content es-

tablishment and distribution. The proliferation of digital video is due to the de-

mands on video streaming services, and popular usage of computers and mobile

devices [1]. As an enormous amount of video data is being generated, transmitted,

and stored all over the world, video compression is necessary for reducing the data

rate. Digital video coding adopting motion estimation (ME) is initially designed as

a crucial technique for the data compression [2]. It has revolutionized the broadcast

and data storage industries over several decades. From broadcasting video contents

coded by MPEG-2 [3], the coding techniques has been evolved to MPEG-4 [4, 5],

H.264 [6, 7], and the most advanced High Efficiency Video Coding (HEVC) [8, 9].

All of them facilitate the convenience of exchanging and retrieving digital video.

They are commonly adopted in video delivery applications such as high-definition

1



2 1.1. OVERVIEW

television (HDTV), video-on-demand, Internet video, and video sharing [10, 11].

Among the standards, H.264 has been the most popular formats and was jointly

developed by the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC

Moving Picture Experts Group (MPEG) [12]. Applications such as Blu-ray play-

ers, online video streaming, web-based software applications, satellite television

services, cable television services, and real-time video conferencing are commonly

manipulated by H.264 over one decade [13]. Nowadays, the HEVC standard is the

most recent joint work from the VCEG and MPEG [14, 15]. HEVC has been devel-

oping in the industry to have a bitrate reduction of 50% at similar perceptual quality

compared to H.264 [37]. It facilitates video streaming applications and online TV

advancements including over-the-top (OTT) delivery [16]. All these developments

on emerging standards aim for supporting the near future video viewing experience

such as ultra high definition (UHD) and 3D video viewing [17].

To support manifold video applications, the flexibility of the hierarchical coding

structure in H.264 is firstly evoked and extended to HEVC later on [18, 19]. How-

ever, it becomes a challenge in video coding systems, of which high temporal depen-

dency between frames may be destroyed. As a result, additional computations are

required for motion locus prediction in or before ME in order to maintain the coding

accuracy, which is not favor in real time applications [20–22]. Furthermore, HEVC

which is the successor of H.264 achieves almost 50% of bitrate reduction with the

similar level of video quality by its flexibility of block partitioning [23]. However,

this flexibility of block partitioning in HEVC causes extra computational complex-

ity in ME which aims for the prediction accuracy. It causes burden to an HEVC en-

coder. The research work in this thesis aims to reduce the computational complexity
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in video coding by some enhanced motion locus prediction methods for the emerg-

ing coding standards in the delay-sensitive scenario. The development of emerging

coding standards and new coding features are introduced in Section 1.2. As a wide

variety on applications with video contents is desired, Section 1.3 discusses the pro-

liferation of flexibility on prediction structure and partitioning in digital video cod-

ing standards. The challenges by implementing flexibility in the emerging video

coding standards, H.264 [6, 7] and HEVC [8, 9, 14], are then briefed in Section 1.4.

Furthermore, the motivations and objectives of this research studies for faster mo-

tion locus prediction are mentioned in Section 1.5. Finally, the organization of this

thesis is presented in Section 1.6.

1.2 Development of Emerging Coding Standards and

their New Coding Features

The flexible choice of arbitrary coding structure, which was impossible in previ-

ous video coding standards including H.261 [24], H.263 [25], MPEG-2 [26], and

MPEG-4 visual [27], is allowed since H.264 [18, 19]. The increased flexibility in

H.264 permits any frame to be acted as a reference frame for the arbitrary coding

structure. It is formally named as hierarchical prediction structure in H.264 [28–30].

This hierarchical structure provides flexibility and improves coding efficiency but

causing much burden in encoders due to extra computations and memory require-

ments [20, 21], as illustrated in the block diagram of Figure 1.1.
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Figure 1.1: Illustration of relationship between emerging coding standards and new

coding features.

The hierarchical prediction structure is also widely adopted in the emerging stan-

dards, HEVC [31] and mult-view coding (MVC) [32, 33]. Besides, HEVC also

adopts quad-tree coding unit (CU) and prediction unit (PU) partitioning which are

recursive representations [23]. With the increased flexibility on block partitioning,

HEVC offers the best coding efficiency up to 50% bitrate reduction compared to

H.264 [34] while the subjective quality of video encoded by HEVC has been proved

to be maintained [35]. However, the new coding tools of HEVC lead to an increase

in computational complexity [34], as illustrated in the block diagram of Figure 1.1.

HEVC induces heavy coding computations caused by its new coding tools during

ME for the above achievements [31,36]. The Main profile of HEVC requires an en-

coder complexity ratio of 1.5× in average in hierarchical coding structure compared
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to that in the High profile of H.264 [37]. The main reasons for the computation bur-

den are from the flexible coding structures in frames and partitioning arrangement

in a CU. It motivates us to reduce the complexity of the emerging coding standards.

Furthermore, with the proliferation of MVC and 3D video coding applications

[38], texture plus depth or multi-view plus depth (MVD) is one of the efficient data

representation formats in MVC and 3D video systems where virtual views gener-

ation is employed by a depth-image-based rendering (DIBR) technique [39, 40].

There are additional data to be encoded in the bitstreams for MVC and 3D displays

which further increase the computational complexity and are not in favor of real-time

applications [41, 42]. But, at the same time, we believe that they may provide some

extra useful non-coded and coded information, such as coded motion vectors (MVs)

and the depth intensity map for 3D videos as depicted in Figure 1.1, to expedite the

video coding process in H.264 and HEVC. For instance, depth maps in 3D video

provide extra characteristics on the distance of objects and movements in a scene

from a viewpoint, which can be revealed to assist the coding process. Inheritance

of coded parameters from texture to depth coding is commonly adopted [43, 44]. In

our studies, reverse philosophy is applied. Depth information is utilized in speeding

up the texture coding process.

1.3 Flexibility on Video Coding Structures

H.264 and HEVC are designed in response to the emerging needs for various video

applications with high compression requirement. They are contrived to facilitate the
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Figure 1.2: Illustration of typical HB coding structure with the GOP size of 8.

adoption of the encoded video representation in a flexible way for different scenar-

ios. The new flexible encoding structures in H.264 and HEVC include hierarchical

coding structure in which hierarchical B (HB) and hierarchical P (HP) structures are

commonly used, quad-tree prediction structure and multi-view plus depth videos.

1.3.1 Hierarchical Coding Structure

In video coding standards, HB and HP structures are two common types of hierar-

chical prediction structures. A typical HB prediction structure [28, 29] is illustrated

in Figure 1.2. In this figure, I/P-frames are key frames in the temporal base layer,

denoted by T0 which are firstly coded in a group of pictures (GOP). The non-key

frames within the GOP are coded as B pictures. The B-frame in layer T1 is coded

with two reference frames in the lower temporal layer, T0 [22]. After that, it becomes

one of the reference frames to the frames in the next temporal layer, T2 and so on.

The HB structure applies bi-directional prediction which references from a future
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Figure 1.3: Illustration of typical HP coding structure with the GOP size of 8.

frame. As a result, the coding order for this HB structure has to be re-arranged such

that future frames are coded before reference frames. This increases the associated

coding delay and memory requirement [20, 21].

1.3.2 Temporal Hierarchical Coding Structure for Delay-Sensitive

Applications

Constraining delay is of great importance for real-time applications such as video

conferencing, live event broadcasting, and video surveillance [30, 45] in which the

long-delay HB prediction structure in Figure 1.2 is not desirable. As a consequence,

B-frame is not supported in the Baseline Profile of H.264, which is targeted to ultra-

low delay video coding applications. Besides, a list of conditions requiring low

algorithmic delay is specified in the newest HEVC standard [46–48]. An important

concern of video coding for real-time applications is to achieve low latency without

reordering of pictures during displays. Therefore, the HB structure is not favorable
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for these real-time applications. In order to satisfy the low delay constraint [45, 49],

a HP structure, as shown in Figure 1.3, employing only P-frames has been designed

[30, 45]. This HP structure provides the same degree of temporal scalability as

the HB structure but it does not employ motion-compensated prediction from future

frames [28,50]. A typical HP structure with 4 hierarchy/temporal layers is illustrated

in Figure 1.3. The leading I-frame and the last P-frame are the key frames in the

temporal base layer, T0. In this figure, the longest arrow represents the prediction

at T0 from the first I-frame, I0, to the eighth P-frame, P8 . The fourth P-frame,

P4, is in T1 while the second and sixth P-frames, P2 and P6 , respectively are in

the temporal layer, T2. The predictions for temporal layers, T1 and T2, are shown

accordingly in solid lines with different prediction distances. The predictions in

T3 are showed by dotted arrows in Figure 1.3. The non-key frames within a GOP

are coded as P frames, which are different from the HB structure [19]. Since no

B-frames are inserted, the frames can be coded according to the display order, as

stated in Figure 1.3. It implies that the HP structure is a low-delay coding structure

and is very suitable for delay-sensitive applications. However, HP structure requires

ME between the current frame and a large distant reference frame. This is one of

the limitations in the emerging video coding standard which motivates our research

work on efficient ME techniques.

1.3.3 Quad-tree Prediction Structure in HEVC

HEVC achieves the coding gain mainly from its adoption of more flexible block par-

titions. However, high computational complexity is induced [51–53] since a quad-
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Figure 1.4: Flexible CU block partitioning in HEVC. (a) CU partition and its split.

(b) CU quad-tree structure.

tree structure is applied for every prediction block where a recursive split of a CU is

conducted for ME [54]. In the encoding process for a CU as shown in Figure 1.4, the

largest size of a CU in 64× 64 is the root of the split [55–57]. The CU will be split

into four partitions, each with a size of 32× 32 during ME. The optimal 32× 32 CU

(with partition index of 1) will be selected if it obtains the minimum rate-distortion

(RD) cost among the 4 partitions and followed by another CU splitting process as

depicted in Figure 1.4(a). The CU splitting process will be conducted until reaching

the smallest size of the CU in 8 × 8. Finally, an optimal quad-tree structure will

be formed as shown in Figure 1.4(b). The white dots are nodes as the non-split

blocks while the black dots are the selected nodes to undergo the splitting process
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(a) (b) 

Figure 1.5: Color texture and its associated depth map for a frame. (a) Color texture

in “Balloons”. (b) Depth map in “Balloons”.

in each CU layer. With this flexible block partitioning mechanism, inter prediction

consumes about 60-70% of the whole encoding time [23, 34].

1.3.4 Multi-view plus Depth Videos

In recent years, we have witnessed the rapid development of 3D video technology.

Among various 3D video representations, the multiview video plus depth (MVD)

[39] is emerging as the most flexible format. The MVD includes both the color

texture and the depth map of the captured scene. A texture frame of “Balloons” and

its associated depth map are shown in Figure 1.5. In Figure 1.5(a), the objects in

front are the bundle of balloons, and then the man holding a large balloon. The color

texture stream captures both luminance and chrominance information of every pixel

in the scenes while the depth map in Figure 1.5(b) records the distances of the objects

associated with every pixel of the color textures. The lighter of the grayscale in the

depth map, the closer of the object to the viewer. Therefore, the depth map reflects
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the bundle of balloons in lighter grayscale than that of the man. At the decoder side,

depth maps provide the flexibility that can be used to synthesize arbitrary numbers

of extra views through Depth-Image-Based Rendering (DIBR) techniques [58]. It

implies that the depth map for each frame is a piece of additional information to be

encoded in the state-of-the-art 3D video encoder.

1.4 Problem Formulation from Flexibility Structure

on Video Coding

Various flexible prediction structures in H.264 and HEVC result in increased com-

putational complexity. This is absolutely not a favor for video coding in real time ap-

plications. Therefore, this thesis work starts investigations on the limitations due to

increased flexibility in the prediction structures of both emerging H.264 and HEVC

coding standards.

1.4.1 Limitations of Low-delay Hierarchical P Coding in H.264

In the HP structure mentioned in Section 1.3.2, encoding complexity is much higher

than that of the classical IPPP structure. It is because ME over remote reference

frames does occur in the base layer, T0 in Figure 1.3. It causes rate-distortion (RD)

performance deterioration. Such problem can be solved by using a larger search

range (SR) in ME but the computational complexity will be increased significantly.

Therefore, we propose to utilize the existing information provided in the bitstream

to solve the complexity issue in video coding. In hopes of reducing the computa-
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tional complexity in ME, MVs from previous frames are one kind of the existing

information to exhibit the motion locus of the current block before ME for texture

coding.

1.4.2 Limitations of Quad-tree Prediction in HEVC

With the implementation of the hierarchical coding structure [59] and the quad-tree

block partitioning structure, HEVC requires higher computational complexity than

previous coding standards [60]. With the recent exploration success of MVC and

3D video streams coded by HEVC, it is easily imagine that a geometric growth of

the computations in ME will be induced because of the quad-tree block partitioning

and more dependent bitstreams. A literature review in the aspect will be provided

in Chapter 2. In order to reduce the computational complexity in ME of HEVC,

estimating the motion locus as early as possible during the encoding process is an

efficient research direction. Furthermore, in emerging standards such as HEVC and

MVC, depth map information becomes an extra pieces of cue for the locus prediction

for texture coding.

1.5 Motivation and Objectives

For computational complexity reduction in video coding, utilizing existing coded

and non-coded information for reference in motion locus prediction during coding

a bitstream is preferred. In this thesis, we are going to explore the available infor-

mation in H.264 and HEVC for the enhanced motion locus prediction as depicted in

Figure 1.6. Different existing information in H.264 and HEVC will be studied that
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Figure 1.6: Illustration of the proposed enhanced motion locus prediction.

can be use to speed up the coding process. Therefore, the objective of this research

work is to make use of the available information, motion history formed by MVs

and depth maps respectively, in H.264 and HEVC to reduce computational com-

plexity in ME for real-time applications. Firstly, we propose a new vector selection

algorithm between reference frames in MV composition for HP coding structure. It

results in accurate predicted MVs in large distant reference frames without much

increased complexity. Secondly, depth intensity variance in depth maps are revealed

for motions along z-direction and formulating the probable motion ranges for x- and

y-direction. As a result, adaptive search range can be figured out such that complex-

ity reduction can be achieved.
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Figure 1.7: Illustration of the proposed MV composition for enhanced motion locus

prediction in H.264.

1.5.1 MV Composition between Long Distance Frames

In the past, little research effort has been given to the HP structure, which requires

ME for the current frame to a long distance reference frame. The simplest suggestion

was enlarging the search range for ME but it will cause much more computational

complexity. Our work proposes to adopt the technique of motion vector composi-

tion (MV composition) in coding videos with the HP structure. The MV components

used in the proposed MV composition scheme are provided in the bitstream. In Fig-

ure 1.7, it shows that the existing information used for achieving the objective is

the short distance MVs which are the MVs between consecutive frames. In addi-

tion to using our proposed vector selection algorithm for choosing the optimal short

distance MVs, MV composition is conducted to form a long distance MV for HP

coding. Without enlarging the search range for ME, our proposed MV composition

successfully provides an accurate long distance MV and better RD performance. As

a result, reasonable computational complexity is achievable in HP coding.
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Figure 1.8: Illustration of the proposed adaptive depth-based weights for enhanced

motion locus prediction in HEVC.

1.5.2 Spatial and Temporal Correlation and Depth Variations on

Motion Locus

The state-of-the-art 3D coding framework contains texture plus depth map coding

in which the depth map is an additional information to be included in the coded

bitstreams for the viewing experience. Furthermore, depth maps contain intensity

variations which record the distances of objects and movements in the scene from a

viewpoint. Besides, the depth intensity is a piece of indicative information to decide

how probable some blocks belong to the same object provided that blocks obtains

same or very similar depth intensity values within a frame. Furthermore, it reveals

characteristics of the movements in the frame and between frames to some extent.

They are able to spot out the high activities regions across frames. In our work, depth

maps with the high spatial and temporal correlation are explored to speed up HEVC

texture coding by enhanced motion locus prediction as depicted in Figure 1.8. We

observe that the depth intensity variance in depth maps between blocks and frames
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reflecting the motion along z-direction reveals the probable motion locus ranges in

x- and y-directions. It figures out object movements in texture streams. There-

fore, this thesis aims to reduce the computational complexity of texture coding in an

HEVC encoder by assigning a suitable search range in ME adaptively by exploiting

motion history and depth maps. The depth intensity variance in depth maps are used

to link up with the motion vectors from history in order to predict the motion ranges

of the locus.

1.6 Organization of this Thesis

This thesis comprises six chapters. Prior to our description of the objectives and

the main contributions in this thesis, Chapter 2 commences with a broad literature

review of video coding techniques that are related to this work. The problems of flex-

ible coding structure adoption in coded video due to the use of motion-compensated

prediction in H.264 and HEVC are then addressed. The difficulties of extra compu-

tational complexity for the conventional ME in the emerging coding standards are

issued in delay-sensitive applications. Previous schemes for tackling the intensive

computational complexity in ME are introduced. All these motivate our research

work on enhanced motion locus prediction in or before ME for alleviating the cod-

ing complexity.

In Chapter 3, a review of an MV composition technique in HP is presented. The

usage of MV composition for complexity reduction in coding the HP structure is

described. We discuss the issues in long distance motion locus prediction by MV

composition in details. We argue that the conventional MV composition algorithms
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suffer from inaccuracy of new composed MVs when the prediction between far away

frames is required. By exploring the existing relevant motion information in the

H.264 video, a new MV composition algorithm with the proposed vector selection

method is suggested that could provide better performance for long distance motion

locus prediction in the HP coding structure.

Chapter 4 initiates with an idea of an adaptive search range (ASR) adjustment for

ME. It investigates the motion locus by the spatial correlation between neighboring

blocks and their depth intensity variations. With this consideration on the depth

intensity variation, a weighted motion locus will be established for reducing the

search range in ME. As a result, computational complexity of HEVC can be reduced.

Chapter 5 extends the proposed ASR algorithm by considering the temporal cor-

relation between the depth maps and motion in texture. It introduces how temporal

motions in texture and depth intensity variation in depth map formulate the motion

locus in details. A relationship map is then constructed for defining the proposed

ASR. This chapter also reveals the influence of 3D-to-2D projection on motion ac-

tivity on a 2D image plane. This projection factor is further proposed to be used

for the ASR adjustment to achieve a more accurate motion locus. Comparisons and

evaluations will be further conducted between works in Chapter 4 and Chapter 5.

Chapter 6 is devoted to conclusions of the work herein. We also summarize the

contributions of this thesis in this chapter. Suggestions are also included for further

research in this area.



Chapter 2

Literature Review

2.1 Background Research

The latest video coding standards such as H.264 [6] and High Efficiency Video Cod-

ing (HEVC) [14, 15] are basically developed for the convenience of storage and

transmission. These standards aim at reducing the data size of video by adopting

motion-compensated predictive coding in which only the residues between adjacent

frames are stored instead of the frames themselves. Therefore, the data redundancy

can be eliminated. However, spatial dependency among blocks and temporal depen-

dency among frames will be established by motion-compensated predictive coding.

Nowadays, the proliferation of delay sensitive video applications in high resolution

videos, and multi-view and 3D videos leads to the demand on handling much more

data volume in video coding [61]. Consequently, more computational effort is re-

quired in data redundancy elimination for compression provided that the spatial and

temporal dependency will not be destroyed for the standards. It implies that algo-

18
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rithms for reducing the computational complexity in video coding is desired. In

recent years, various research efforts have been conducted for the purpose of com-

plexity reduction.

To understand the rationale, objectives, and results of this thesis, background

of this research is provided in this chapter. We are going to review the motion-

compensated predictive techniques used in the emerging video coding standards in

Section 2.2. Afterward, the limitations of using motion compensated predictive cod-

ing are addressed due to the spatial and temporal dependencies. In Section 2.3, a

literature review for improving low-delay hierarchical P (HP) coding efficiency is

presented. MV composition is one of the reliable solutions. Computational com-

plexity increment of HEVC compared to H.264 is revealed in Section 2.4. As a con-

sequence, a literature review for complexity reduction in HEVC will be provided.

Finally, the chapter summary follows.

2.2 Digital Video Compression Fundamentals

Digital video is defined by video contents being stored and sent in digital form.

However, it requires huge amount of data. Directly storing and transmitting digital

video are not recommended because the bitrate is extremely high for most networks

and storage devices to handle. The problem can be alleviated by compressing the

video at the cost of degraded visual quality so that the format is more suitable for

transmission and storage. Video compression techniques have been continually im-

proving over decades in the video coding industry [62].

Different video coding standards are being developed to satisfy the requirements
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of various applications with different requirements. It includes providing better pic-

ture quality, higher coding efficiency and higher error robustness. The Moving Pic-

ture Experts Group (MPEG) and Video Coding Experts Group (VCEG) are two

major teams collaborating to develop digital video coding standards. The MPEG

is a working group of the International Organization for Standardization (ISO) and

the International Electrotechnical Commission (IEC). It aims at developing stan-

dards for compression, processing and representation of moving pictures and audio.

MPEG-1 (ISO/IEC 11172) [63] and MPEG-2 (ISO/IEC 13818) standards [26] allow

wide adoption of commercial products and services including DVD format, digital

TV, and MP3 players. The VCEG is a working group of the International Telecom-

munication Union Telecommunication Standardization Sector (ITU-T). It develops a

series of essential standards for video communications over telecommunication net-

works and computer networks. H.261 videoconferencing standard [64] was ratified

and became a model for digital video coding. The following H.263 standard [65],

informally known as H.263+ and H.263++, was created to improve the coding effi-

ciency . One of the most commonly used video compression standards in the indus-

try nowadays is H.264 which is also known as MPEG-4 Part 10 [5,6]. It was jointly

proposed by the ITU-T VCEG and the ISO/IEC MPEG in 2003. It aims at having an

improved coding efficiency and provision of a video representation being friendly to

network which addresses storage, broadcast and streaming applications. HEVC, the

high efficiency video coding, is the most recent joint video standard development of

the ITU-T VCEG and the ISO/IEC MPEG [8, 9]. It inherits coding features from

H.264, and then introduces a larger block structure with the flexible sub-partitioning

mechanism for higher coding efficiency. It has been reported that a bitrate reduction
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of 50% can be achieved by HEVC as compared to H.264 with the similar subjective

quality [37].

2.2.1 Hybrid Motion-compensated Predictive Coding

Compression of video data without noticeable degradation of the visual quality is

possible since video consists of a high degree of redundancy. Digital video is re-

garded as a sequence of still pictures or frames. Unlike images, a video sequence

contains temporal redundancy in addition to spatial redundancy. Spatial redundancy

always exists within each frame due to the correlation between neighboring pixels.

On the other hand, an object moving in front of a static background causes covered

and uncovered regions in relatively small areas. Thus, temporally adjacent frames

are often in high correlation in a video sequence, and this highly correlated frames

of a video sequence results in temporal redundancy.

By removing the redundancy in a video sequence, it is possible to represent

or compress the video data in a more compact form [66]. The higher the redun-

dancy, the higher the achievable compression. Therefore, coding standards utilize

the redundancy inherent in digital video data so as to achieve a impressive bitrate

reduction.

2.2.1.1 Intra-frame Coding for Spatial Redundancy Elimination

In most still images and video frames, it is observed that the values of neighboring

pixels are highly correlated. Therefore, the major techniques adopted to reduce the

spatial redundancy are similar to that in image coding. Discrete cosine transform
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Figure 2.1: A typical example of a quantization matrix.

(DCT) [67–71], quantization, and zig-zag scanning for entropy coding are used in

H.264 and HEVC [72, 73]. DCT allows every block of pixels transformed into fre-

quency domain to form a bundle of transform coefficients. The transformation packs

the signal energy into a small number of coefficients, which can achieve efficient

compression. HEVC supports various lengths of DCT in the sizes of 4, 8, 16, and

32 [74]. In natural images, if pixels in the block vary smoothly without any edges,

several DCT coefficients could be enough to express the information of an entire

block.

The DCT coefficients are set in a matrix according to their frequency. The most

upper left corner coefficient in a block is the DC coefficient showing the average

intensity value of the block. The rest are AC coefficients. They are arranged from

low frequency to high frequency across the lower right corner. The DCT coefficients

in the upper left corner, which stand for low frequency components, are more im-

portant than the high frequency coefficients in the lower right corner in a block. The

reason is that the frequency response of human eyes tends to drop off as increasing
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Figure 2.2: A DCT block after quantization and zig-zag scanning.

spatial frequency. Human eyes are more sensitive to tiny variation of intensity in

slowly varying regions than in complex regions.

The output coefficients of DCT are entered to the quantization process [55, 75–

77], which aims at expressing the sampled data at a finite number of levels. Each

DCT coefficient is divided by the corresponding quantization factor at the corre-

sponding position from a pre-defined 2D quantization matrix and is then rounded to

the nearest integer to obtain the quantized DCT value. Figure 2.1 shows one exam-

ple of a typical quantization matrix applied to a DCT block. The numerical values

of the quantization matrix correspond to the relative importance of the DCT coeffi-

cients in terms of visual picture quality. This arrangement is due to the frequency

response of human eyes. The higher the number, the less important the correspond-

ing coefficients, as shown in Figure 2.1. The objective of this process is reducing

the dimension of the DCT coefficients matrix and discarding those unimportant co-

efficients so that less bandwidth is required for transmission. Figure 2.2 shows a

DCT block after quantization. Many quantized DCT block in the transform domain
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Figure 2.3: Scanning patterns for 4 ×4 a transform block in (a) diagonal, (b) vertical,

and (c) horizontal order.

contain a large number of zeros, particularly in higher frequency regions [78]. The

quantizer design for HEVC is similar to that of H.264 where the range of the quan-

tization parameter (QP) is in the range from 0 to 51 [74].

After the quantization, zig-zag scanning [79,80] is used to arrange the quantized

coefficients into a 1-D array for entropy encoding for a transform block. The order

of zig-zag scanning is depicted in Figure 2.2. This scanning order puts the low

frequency coefficients prior to the high frequency coefficients [81]. Reordering in

this zig-zag pattern tends to create long of runs of zero-value coefficients and this is

beneficial to variable length coding (VLC) [80,81]. Hence, higher coding efficiency

is obtained since shorter code words is needed because large number of zero-value

coefficients can be removed.

In the early development stage of HEVC, a diagonal scanning has been intro-

duced to replace the conventional zig-zag scanning [82]. It is able to remove the

context selection dependency on recently processed coefficients for all positions in

the transform block without impact on coding efficiency. Later on, HEVC divides
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a transform block into 4 × 4 sub-blocks and into categorized regions for paral-

lelism [72]. In the final development stage, HEVC provides more scanning patterns

for a 4 × 4 transform block according to different intra prediction modes used in a

prediction block [83]. The scanning patterns include diagonal, horizontal and ver-

tical orders for the adoption of the mode dependent coefficient scanning in HEVC.

They are illustrated in a 4 × 4 transform block, respectively, in Figure 2.3(a), Fig-

ure 2.3(b), and Figure 2.3(c).

2.2.1.2 Inter-frame Coding for Temporal Redundancy Elimination

The previous section has briefly described the basic principles of intra-frame coding.

In addition to intra-frame coding, inter-frame coding employs motion-compensated

prediction to remove temporal redundancy between adjacent frames. Instead of di-

rectly transmitting pixels in a frame, pixels are predicted from a previously coded

reference frame. This technique is known as motion estimation (ME) and motion

compensation (MC), and is essentially the core of most hybrid video coding stan-

dards [84] like H.264 and HEVC.

In general, ME can improve the prediction accuracy between temporally adja-

cent frames by estimating any motion that has been taken place between the frame

being encoded and its reference frame. ME can be performed with different granu-

larities such as a pixel, a block, or an irregular region. Among them, the block-based

approach is considered the most mature and practically useful one [85]. It makes an

assumption that objects are in translational motion and the object displacement is

constant within a small 2D block of pixels. The block-based approach does not aim

at tackling problems related to rotational motion. For block-based ME, each video
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frame is divided into non-overlapping prediction blocks for ME as illustrated in Fig-

ure 2.4. In H.264 standard, they are called macroblocks (MBs) and each MB is 16

× 16 pixels, which is the basic coding unit for ME. In HEVC, the blocks are called

coding units (CUs) and the largest CU size is 64 × 64 pixels. Other CU sizes are 32

× 32 pixels, 16 × 16 pixels, and the smallest size is in 8 × 8 pixels. For the sake of

simplicity, the basic coding unit is denoted as a block in this thesis for both H.264

and HEVC standards.

In Figure 2.4, the target block to be encoded in the current frame will undergo

inter-frame prediction with reference to the previous coded frame. Within a pre-

defined search range of which the center is aligned by a MV predictor (MVP) [86]

as shown in Figure 2.4, all pixels of a block in the current frame are compared on

a pixel by pixel basis on the corresponding block in the preceding reference frame.

This is known as the matching criterion. There are many choices for the matching

criteria. Among these criteria, the sum of absolute difference (SAD) is the most
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Figure 2.5: Block diagram of hybrid motion-compensated predictive encoder.

popular one. When the closest match is located, the relative displacement between

the current block and the best matched block in the reference frame is encoded as

the motion vector (MV) shown in Figure 2.4.

For ME, the amount of computation is proportional to the number of candidate

blocks in the search range. The full-search (FS) algorithm evaluates the SAD at

all possible locations of the search window to find the optimal MV. Hence, it is

able to find the best-matched block which guarantees to obtain the minimal SAD.

Nevertheless, ME is a computationally intensive task [85].

After ME, the predicted block is obtained from the reference frame based on
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the MV using MC as shown in Figure 2.5. Then, the predicted block becomes the

predictor for the current block and is subtracted from the current block to generate

a residual block [66]. The more accurate the ME process is, the less entropy energy

is obtained in the residual block after MC. Discrete cosine transform (DCT) [67–

71], quantization, and entropy coding are further used in order to reduce the spatial

redundancy [87] before it is stored or transmitted together with MVs. This procedure

is quite similar in principle to that described in encoding of intra-frames. There is a

build-in decoder in the encoder. Its job is to reconstruct the reference frame for ME

and MC as depicted in Figure 2.5.

The decoder in Figure 2.6 uses the received MV to re-generate the predicted

block since the reference frame is already in the decoder’s buffer. The decoder

then decodes the residual block and adds it to the predicted block to reconstruct the

current frame. Compared to Figure 2.5, the structure of the decoder is essentially

the same as the encoder, except the decoder does not need to perform ME. Since the

decoder structure is part of the encoder, the predictions in the encoder and decoder

are then synchronized.
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2.2.2 Frame Types with Dependency

As we can see from the above, there are two basic types of frames adopted in

video coding standards: those are encoded independently, not referencing from other

frames (using intra-frame coding) and those are predicted from other frames (using

inter-frame coding). The first are named as intra-coded frames (I-frames), which

are coded independently without any temporal prediction to other frames. In other

words, I-frames do not exploit any temporal redundancy. I-frames should be used

at regular intervals in order to act as an access point for normal video playback

and allow a random access operation as it is encoded without prediction from other

frames. Although I-frames can provide these important features, the compression

ratio is relatively small as only spatial redundancy reduction is carried out.

On the other hand, there are two types of inter-coded frames: predictive frames

(P-frames) and bi-directional predictive frames (B-frames). P-frames undergo inter-

frame coding using motion-compensated prediction from the preceding I- or P-

frame to reduce temporal redundancy. By doing so, a significantly higher compres-

sion ratio is obtained. In practice, however, the number of P-frames between each

successive pair of I-frames is limited. The reason behind is that any errors in the

P-frame will be propagated to the next frame. In B-frames, the ME and MC further

employ both past and future frames for prediction, which provides better ME when

an object moves in front of or behind another object.

Figure 2.7 shows a sequence including all three frame types. The frames in-

between successive I-frames is entitled a group-of-pictures (GOP). In this example,

the GOP size is 12. In Figure 2.7, the first frame is an I-frame followed by two
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B-frames and one P-frame alternatively. The structure or size of each GOP can be

changed in any standard in order to suit various applications. In Figure 2.7, the use

of P-frames and B-frames exhibits temporal dependency in coded video data. In this

example, P9 depends on a prediction from a previously coded P6, P3, and then I-

frame, I0. The relationships among frames is denoted by black arrows in Figure 2.7.

In addition, B-frames conduct predictions based on the preceding and following I-

or P-frames. For instance, B8 is referenced by the preceding P-frame, P6 which

is also referenced by P3 and I0. Therefore, B-frames should be encoded after the

relevant P-frames. For this reason, the coding order is different from the display

order. From the above discussion, temporal dependency is generally unavoidable in

video coding. Such dependency favors the compression capability.

2.3 Complexity Reduction in HP Coding

In [28,30,45], the HP structure without backward motion prediction has successfully

provided a low-delay encoded bitstream with the same degree of temporal scalability
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as the HB structure. However, the increased temporal distance in the hierarchical

prediction structure reduces the motion compensation accuracy [21]. Especially, a

very long prediction distance in the lowest temporal layer, T0, always incurs higher

prediction error. Since all frames in T0 are further acted as references for frames in

succeeding temporal layers, it is desirable to improve the coding efficiency of the

lowest layer whose predictions are based on long distance reference frames. Simply

apply larger search range may tackle the problems but requires more computations

in ME.

2.3.1 Search Range in HP Coding

To improve the HP coding efficiency, using more than one reference picture was

suggested to be used in the reference picture list for a P-frame. In [28], the reference

picture list includes preceding frames with the same temporal layer as the current

P-frame. This idea successfully improves the concerned efficiency in HP coding

when only two reference frames are utilized. However, the size of the storage buffer

in the decoder is greatly increased since every preceding frame in the same layer

should be saved, which may be from the previous GOP. In [88], a dual HP struc-

ture was proposed to tackle this shortcoming by allowing only the first frame of

the corresponding GOP, which originally is kept in the single reference HP coding

structure, to be the additional reference frame. This arrangement does not require

extra storage buffer in the decoder anymore. However, it still involves predictions of

a frame with a long distance reference. A straightforward way to improve the cod-

ing efficiency for the HP structure is to employ larger search range. However, the
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computational complexity will also be increased significantly. This motivates us to

propose a ME technique over a long distance reference frame without increasing the

computational burden in the encoder. Therefore, a novel MV composition technique

in ME is proposed to be adopted in HP coding in this thesis. Furthermore, a new vec-

tor selection approach has also been proposed for accurate ME results. Only ME on

the current block to its short distant reference frame is required such that relatively

smaller search range is enough for the predictions. Consequently, the motion locus

for the current block to the long distance reference could be formulated by the short

distance MV composition. This MV composition technique can therefore reduce the

computational complexity while maintaining the efficiency. The conventional MV

composition algorithms in video transcoding will be discussed in the next section.

In addition to using our proposed vector selection algorithm for choosing the

optimal short distance MVs, MV composition is conducted to form a long distance

MV for HP coding. Without enlarging the search range for ME, our proposed MV

composition successfully provides an accurate long distance MV and better RD per-

formance. As a result, reasonable computational complexity is achievable in HP

coding.

Therefore, a novel MV composition technique is proposed to be adopted in HP

coding in this thesis. Only ME on the current block to its short distant reference

frame is required such that relatively smaller search range is enough for accurate ME

results. Consequently, the motion locus for the current block to the long distance

reference could be formulated by the short distance MV composition. This MV

composition technique can therefore reduce the computational complexity while

maintaining the efficiency. The conventional MV composition algorithms in video
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Figure 2.8: MV composition between current frame and reference frame.

transcoding will be discussed in the next section.

2.3.2 Existing Vector Selection Algorithms in MV Composition

MV composition, which is initially suggested for video transcoding [89, 90], is one

of the solutions for reducing computational complexity in HP coding. The resul-

tant MV is formed by the summation of selected MVs between a pair of consecu-

tive frames as depicted in Figure 2.8. Therefore, the resultant MV is composed by

MVa +MVb +MVc +MVd. The following sections will introduce some existing

vector selection algorithms for choosing MVa, MVb, MVc, and MVd.

2.3.2.1 Median Vector Selection

In the median algorithm [91] as depicted in Figure 2.9, B1
t is the block being encoded

in the current frame t and MV 1
t−1→t is the MV of B1

t referencing to the previous
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frame t − 1. Based on MV 1
t−1→t, it points and covers some area in its reference

frame t − 1. The desired vector selection is to compute the median MV among

motion vectors of the four neighboring block (MV 1
t−2→t−1, MV 2

t−2→t−1, MV 3
t−2→t−1,

MV 4
t−2→t−1). The resultant MV between the current frame t and its final reference

frame t− 2 of B1
t , MV 1

t−2→t, is computed as

MV 1
t−2→t = medMVt−2→t−1 +MV 1

t−1→t (2.1)

where

medMVt−2→t−1 = median{MV 1
t−2→t−1,MV 2

t−2→t−1,MV 3
t−2→t−1,MV 4

t−2→t−1}.

(2.2)

Using only the median vector to represent the in-between motions may lead to

inaccurate results since irrelevant motion information in various block contents may

be used if the objects undergo vigorous motions along frames.
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Figure 2.10: Forward dominant vector selection (FDVS).

2.3.2.2 Forward Dominant Vector Selection (FDVS)

Figure 2.10 illustrates an example of MV composition using FDVS [92, 93]. For

each block, FDVS selects one dominant MV. A dominant MV is defined as the

MV carried by the dominant block. The dominant block is the block that has the

largest overlapping segment with the motion-compensated block of B1
t in frame

t − 1. In Figure 2.10, the motion-compensated block of B1
t (in dotted square in

Frame t − 1) overlaps with four blocks, B1
t−1, B

2
t−1, B

3
t−1 and B4

t−1 in frame t − 1.

In the illustration from Figure 2.10, FDVS selects B1
t−1 as the dominant block since

it has the largest overlapping segment with the motion-compensated block of B1
t ,

while its MV, MV 1
t−2→t−1, becomes the dominant MV in the first step.

This dominant vector selection process is repeated until the target reference is

reached, i.e. frame t−3 in this example. Therefore, in the second step of FDVS, the

selected dominant MV in step 1, MV 1
t−2→t−1, is used to point out the location of the

motion-compensated block of B1
t−1 in frame t − 2. Within the compensated area,

B3
t−2 has the largest overlapping segment in frame t − 2 as shown in Figure 2.10.
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Figure 2.11: Enhanced forward dominant vector selection (E–FDVS).

FDVS defines it as the dominant block and its MV, MV 3
t−3→t−2, is chosen as the

dominant MV in this stage.

Therefore, the composed MV 1
t−3→t is composed by summing up the selected

dominant MVs and can be written as

MV 1
t−3→t = MV 3

t−3→t−2 +MV 1
t−2→t−1 +MV 1

t−1→t. (2.3)

The idea of FDVS is to find the most correlated blocks in-between frames for

the current block and then use the MVs of these most correlated blocks to build

the linkage between the current frame and the target reference frame. It could pro-

vide promising results for MV composition in frame-skipping transcoding [91, 93]

and becomes the most popular vector selection algorithm in comparison with other

existing algorithms.

2.3.2.3 Enhanced FDVS (E–FDVS)

E–FDVS [94] is the enhanced version of FDVS [92, 93] by further considering the

difference between the selected dominant block and the selected dominant MV from
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the incoming MV candidates. In Figure 2.11, the first step of the dominant MV se-

lection is the same as that in FDVS. By MV 1
t−1→t, the selected dominant block is

B1
t−1 and the dominant MV is MV 1

t−2→t−1 since B1
t−1 has the largest overlapping

segment. At this moment, E–FDVS aims to avoid the mismatch between the domi-

nant block and the dominant MV in frame t−1 propagating to frame t−2. It figures

out the delta vector, dvt−1 between the dominant block and MV as shown in frame

t− 1 of Figure 2.11. This dvt−1 is appended to the dominant MV to locate the com-

pensated area in frame t − 2. The overlapping compensated area is then refined by

this dvt−1 and the largest overlapping segment in frame t−2 by E-FDVS is different

from that obtained by FDVS. E–FDVS selects B4
t−2 as the dominant block for frame

t− 2 and its MV, MV 4
t−3→t−2 becomes the dominant MV.

From Figure 2.11, the delta vector between the dominant block and MV, denoted

as dvt−1, is added into the selected dominant MV and the refined resultant MV can

be written as

MV 1
t−3→t = MV 4

t−3→t−2 +MV 1
t−2→t−1 +MV 1

t−1→t. (2.4)

Various vector selection algorithms provide promising short distance MV choices

in consecutive frames for MV composition. However, when the number of MV com-

position steps is increased, their selection criteria may lead to an inaccurate resultant

MV since the relevant area in their considerations is diminished after several com-

position steps and no longer fully matches with the dominant blocks. Therefore, our

proposed vector selection algorithms in MV composition aims to tackle this problem

and the solution will be provided in Chapter 3.
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Figure 2.12: Flexible block partitioning in HEVC: CTUs, CUs, and PUs.

2.4 Complexity Reduction in HEVC

The latest HEVC standard is targeted for efficient compression of high resolution

(720p and 1080p) and 3D videos [95]. Compared with the H.264 standard, HEVC

can reduce the bit rate by almost 50% with the similar perceptual video quality [37].

HEVC adopts the same block-based hybrid video coding scheme [14] used in the

prior video compression standards. The achievement in coding gain results mainly

from its more flexible block partition mechanism at the cost of high computational

complexity [51–53]. In the encoding process as shown in Figure 2.12, each picture
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is divided into coding tree units (CTUs), which is the base unit in HEVC [55–57].

The size of a CTU can be chosen as 64× 64, 32× 32, 16× 16, or 8× 8. A CTU is

composed of a luma coding tree block (CTB), two chroma CTBs, and the associated

syntax elements. The luma and chroma CTBs can be further partitioned into smaller

blocks using a quad-tree structure [96]. The leaves of the CTBs are specified as cod-

ing blocks (CBs). One luma CB, and its corresponding two chroma CBs, together

with the syntax elements form a coding unit (CU). The CU shares the identical pre-

diction mode (intra, inter, skip, or merge), and it acts as the root for a prediction

unit (PU) partitioning structure. Figure 2.12 lists out all possible PU modes. The

PU is composed of prediction blocks (PBs) where the same prediction process is

applied for its luma and chroma PBs. In the PU partitioning structure of HEVC,

each luma/chroma CB can be further partitioned into one, two, or four rectangular

shaped PBs. In HEVC, it adopts square motion partitions, symmetric motion parti-

tions, and asymmetric motion partitions [97], as shown in Figure 2.12. It means that

every CU undergoes motion predictions by various types of PU partitions. With this

flexible block partitioning mechanism, inter prediction consumes about 60-70% of

the whole encoding time [23, 34].

Recently, many researchers have devoted their efforts to expedite the inter pre-

diction process using some fast mode decision, early mode termination and fast

search approaches in HEVC [98–103]. This section will categorize them and deliver

the literature reviews on them. They tackle the problem of complexity increment in

ME but may induce various kinds of drawbacks by themselves.



40 2.4. COMPLEXITY REDUCTION IN HEVC

2.4.1 Early Termination and Fast ME Algorithms for Complex-

ity Reduction

Early termination based on various coding information was suggested in [98–101].

For instance, zero coded block [98,99] and the selection of SKIP mode [100,101] are

employed to trigger early termination of CU size decision. The works in [102, 103]

further exploited the spatio-temporal analysis, motion homogeneity, and RD cost to

determine the condition of early termination. These methods focus on reducing the

computational complexity of selecting the best CU and PU, which are also highly

related to the ME algorithm.

Fast ME algorithms always restrict the number of search locations. Test Zone

Search (TZS) is one of the popular methods implemented in the HEVC test model

(HM) [104, 105]. TZS starts with a diamond or square search pattern with different

stride lengths of 1, 2, 4, 8, 16, 32, and 64 to locate an initial search point. This

initial search point is taken as the center search point for the possible raster search

and refinement. In [106], a rotating hexagonal grid with alternate horizontal/vertical

hexagonal patterns was suggested for TZS to locate the global minima with early

termination. However, the multiple initial search point decision is still a major bur-

den on TZS [107]. In addition to TZS, other search strategies such as directional

search were suggested in [108,109]. These works focus on applying specific search

patterns to reduce search points within a fixed search range. Nevertheless, various

search patterns are not preferable for hardware implementation due to their irregular

data flow [110].
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2.4.2 Adaptive Search Range for Complexity Reduction

In this circumstance, full search with an adaptive search range (ASR) can provide

both search point reduction and regular data flow in hardwares. Besides, ASR

can also be applied to various search patterns in software implementation to fur-

ther reduce the number of search points. In [111, 112], the search range is mod-

eled by the Cauchy distribution and Laplace distribution, which exhibit good re-

sults in terms of quality and complexity in H.264. Other ASR algorithms pro-

posed in H.264 correlates the search range of the current block with the motion

characteristics of its neighbors. Examples of these motion characteristics include

MVPs [113,114], sum of absolute difference [115], and motion activities [116] from

neighboring blocks, MV differences in previous frames [117], etc. Recently, these

concepts of ASR have been directly extended to support the flexible block partition

in HEVC [110, 118–121]. The three most recent algorithms are Maximum Likeli-

hood Estimation Laplace Distribution Algorithm (MLELD) [117], Large and Small

Motion Frame Algorithm (LSMF) [118], and Linear Adaptive Model for Adaptive

Search Range Algorithm (LAMASR) [119].

MLELD [117] models the MV differences of the previous frame by the zero-

mean Laplace distribution where the parameters are solved by maximum likelihood

estimation (MLE) for a motion estimator. The estimated distribution model is then

used to set the final ASR. In LSMF [118], it classifies the current block either in

a small motion frame (SMF) or a large motion frame (LMF) by the distribution

of MV differences in the previous frame. Consequently, it differentiates the current

block into two sub-classes of different degrees of motion activity by the average MV
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difference of the co-located CTU. Larger ASR is assigned in high motion activity

blocks and vice versa. The algorithm of LAMASR [119] adopts a linear adaptive

search range model including an overdetermined equation system. The parameters

in the system can be solved by PU size, MV difference and motion vector predictors.

The ASR is then finalized with a fixed scale factor.

The recursive CU partitioning mechanism suffers from the expensive compu-

tations in ME and fast search pattern approaches in a fixed search range may not

suitable for the regular data flow in hardware configurations. This motivates us to

propose adaptive search range for complexity reduction instead of suggesting any

new search patterns. Furthermore, there are only a few of literatures trying to adopt

the new features provided in bitstreams for ASR. For example, the ASR algorithm

given in [121] uses the correlation between views in 3D-HEVC for ASR adjustment.

However, the disparity among views might reduce the correlation between the search

range of the view being coded and the MVs of its neighboring views. In [122], the

authors tried to reveal the usage of depth information for fast mode decision. The

depth information is useful for revealing the relatively movements between objects

along a period of time. This algorithm makes the fast decision on selecting SKIP,

inter-mode, and intra-mode in H.264 coding only. To the best of our knowledge,

there is no existing work of ASR considering the depth information of 3D videos,

which has gained great attention recently. In this thesis, the depth information brings

new room for designing an efficient ASR algorithm in HEVC. Depth intensity vari-

ance in depth maps are revealed for motions along z-direction and formulating the

probable motion ranges for x- and y-directions. As a result, adaptive search range

can be figured out such that complexity reduction can be achieved.
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2.5 Chapter Summary

In this chapter, we initially gave an overview of the hybrid motion-compensated pre-

dictive coding. It aims for coding efficiency by reducing the video data redundan-

cies. Only the residual signal is coded by the motion-compensated predictive coding.

Therefore, the residual signal form spatial dependency between blocks and temporal

dependency between frames in the coded bitstream. By these dependencies, some

limitations are raised during encoding among blocks and frames of the coded data.

For example, coding order and display order cannot be arbitrary changed. Oth-

erwise, more effort is paid for normal encoding process. Literature reviews were

made in MV composition for defining the motion locus on the coding frame and

its far away reference. Apart from the MV composition technique, its vector selec-

tion algorithms such as median vector selection, FDVS, and its enhanced version

E–FDVS were introduced.

Furthermore, since the computational complexity reduction is the scope of our

research, literature reviews on existing fast algorithms in various categories for

HEVC complexity reduction were presented in this chapter. The ASR approach

raises our motivation on motion locus prediction in an earlier stage than ME such

that less computations in ME can be conducted. The three most recent ASR al-

gorithms were reviewed. In the following chapters, we examine the possibility of

improving the MV composition algorithms by novel vector selection techniques.

Nevertheless, motion locus prediction from depth map and the spatial and tempo-

ral correlation of the coded information will be illustrated for HEVC complexity

reduction.



Chapter 3

Determinations on Motion Locus by

Motion Vectors Composition

3.1 Introduction

MV composition is proposed to be used in HP coding since short distance MVs

can be summed to form motion locus for a long distance MV. By this arrangement,

large search range can be avoided in coding a frame with a long distance reference,

especially in the lowest temporal layer. Therefore, computational complexity can

be reduced in ME. The organization of this chapter is as follows. In Section 3.2,

the motivation of this research work on HP coding is stated. Section 3.3 describes

the adoption of the proposed MV composition in coding videos with the HP struc-

ture. Section 3.4 evaluates the idea of the proposed MV composition scheme in

HP coding and a popular vector selection algorithm in MV composition steps. Sec-

tion 3.5 reveals the impact of the vector selection algorithm on the proposed scheme.

44



CHAPTER 3. DETERMINATIONS ON MOTION LOCUS BY MOTION VECTORS
COMPOSITION 45

Based on this observation, a tailor-made motion vector selection algorithm is further

adopted in MV composition. This section then provides simulation results in Bjon-

tegaard (BD) measurement [123] and computational complexity among various MV

selection algorithms in the HP coding scheme. Finally, conclusions are given in

Section 3.6.

Parts of the contents of this chapter are extracted from our published work

in [124] c⃝2013 Elsevier and [125] c⃝2013 IEEE:

• Tsz-Kwan Lee, Yui-Lam Chan, and Wan-Chi Siu, “Motion Estimation in

Low-delay Hierarchical P-frame Coding Using Motion Vector Composition,”

Journal of Visual Communication and Image Representation, 24 (8) (2013)

1243-1251.

• Tsz-Kwan Lee, Yui-Lam Chan, and Wan-Chi Siu, “Motion Vector Compo-

sition in Low-delay Hierarchical P-Frame Coding,” in Proceedings of IEEE

China Summit and International Conference on Signal and Information Pro-

cessing (ChinaSIP 2013), Beijing, China, July, 2013, pp. 551-555.

3.2 Motivation for MV Composition Scheme in HP

Coding

Chapter 2 has mentioned a straightforward way to improve the coding efficiency for

the HP structure in lower temporal layers by employing larger search range (SR).

However, the computational complexity will also be increased significantly. Simu-
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Table 3.1: RD performances of HP coding in various search ranges versus size of

R = 8.

Sequences

R = 8 R = 16 R = 32

Bitrate PSNR Bitrate PSNR Bitrate PSNR

(kbits/s) (dB) (kbits/s) (dB) (kbits/s) (dB)

Bus 5364.9 35.10 -1.57% +1.18 -5.85% +1.50

Football 2804.4 34.54 -9.75% +0.32 -14.99% +0.56

Stefan 2687.5 34.34 -5.99% +0.14 -8.56% +0.22

Rush hour 20686.2 40.55 -15.20% -0.18 -26.49% -0.02

Spin-calendar 53684.9 35.59 -5.49% +0.22 -21.85% +0.54

RD Performances in Average -6.89% +0.41 -12.77% +0.79

Computational Complexity Increase +276.80% +1361.94%

lations in Table 3.1 were conducted in the H.264 JM17.2 codec [126]. All sequences

were encoded in 100 frames. Table 3.1 shows that the improvement on RD perfor-

mance of the base and the first layers, denoted as T0 and T1, respectively when the

SR increases in ME. In the table, R = x represents the size of the SR in ±x, where

x =8, 16, and 32 in this experiment. In average, Table 3.1 exhibits that a larger SR

used in ME improves RD performance in a great extent at the expense of remark-

able increment in computational complexity. From this table, bitrate reduction by

about 6% in average and PSNR improvement of video quality by about 0.4 dB can

be achieved once SR is doubled from R =8 to R =16. However, the computational



CHAPTER 3. DETERMINATIONS ON MOTION LOCUS BY MOTION VECTORS
COMPOSITION 47

complexity increases by 276.80% and even by 1361.94% when SR expands in two

dimensions by a factor of 2 and 4, respectively. In conclusion, a large SR is useful

to maintain or get better RD performance in the lower temporal layers. However, it

demands a significant increase in computational complexity. Therefore, a novel MV

composition technique is proposed to be adopted in HP coding so as to reduce the

computational complexity while maintaining the coding efficiency.

3.3 Proposed MV Composition Scheme in HP Coding

To start with, some symbols for the sake of illustration of the proposed scheme

are defined. In the HP structure with the GOP size of L, each current frame Ft to

be coded has its corresponding reference frame Fr which has different prediction

distances according to temporal layers, Tk, where r = 0, 1, .., log2L. The indexes t

and r are related as

r = t− 2(log2L)−k. (3.1)

In a ME process between frames, let Bcorner
t = (x, y) be the top left coordinate

of the current block being coded and MVr→t be a MV of a frame Ft referenced by

a frame Fr . The sum of absolute differences (SAD) of the block with the size of

N ×N pixels is calculated as

fSAD(B
corner
t ,MVr→t) =∑i=N−1

i=0

∑j=N−1
j=0 | Ft(B

corner
t + (i, j))− Fr(B

corner
t +MVr→t + (i, j)) | .

(3.2)
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Figure 3.1: Notations of the proposed HP coding scheme.

The proposed scheme involves MV composition as a new coding framework in

HP coding. It is the approach of MV reuse in composition. The proposed scheme

consists of three core steps. First, all MVs between adjacent frames are estimated

through ME with a relatively small SR. Second, we obtain composed MVs for lower

layers using the computed MVs in the previous step. It also involves selection algo-

rithm between the computed MVs. Third, the final MV can be obtained by perform-

ing refinement of the composed MV over a narrow SR.

3.3.1 ME in Consecutive Frames with a Smaller SR

By minimizing fSAD(B
corner
t ,MVr→t) in (3.2), through the conventional full-search

(FS) ME with a small SR, MVs of all blocks in Ft pointing to the previous frame,

Ft−1, where t is the current frame index, are obtained. From the illustration of

Figure 3.1, all these MVs form a set of MV between Ft and Ft−1, and it is denoted

as a set of MV R
t−1→t where R will be the amplitude of the SR. It is noted that the

MVs in the highest layer, T3, are obtained in this step. They are the vectors between

each pair of consecutive frames.
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3.3.2 Optimal MV Selection and Composition

In lower layers, MV composition is conducted with the help of MV R
t−1→t obtained

above in layer T3. We are the first to propose MV composition in HP coding as a new

coding framework. To compute the MV of Ft in lower layers with its corresponding

reference Fr, MVr→t, they are composed by a general form as

MVr→t =
t∑

q=r+1

selMV R
q−1→q, (3.3)

where selMV R
q−1→q ∈ MV R

q−1→q.

For each MV composition step, selMV R
q−1→q is a MV for a selected block from

MV R
q−1→q, which consists of motion vectors between consecutive frames. For a

clear illustration, one example is shown in Figure 3.1 where a set of MVs between

Ft and Ft−1 is denoted as one of MV R
t−1→t. Then, the selMV R

t−1→t is selected

from MV R
t−1→t for a block between this pair of consecutive frames. Furthermore,

according to (3.3), the composed MV t−4→t for Ft in T1, which uses Ft−4 as the

reference frame, can be computed as

MV t−4→t = selMV R
t−4→t−3 + selMV R

t−3→t−2 + selMV R
t−2→t−1 + selMV R

t−1→t.

(3.4)

The way to choose selMV R
q−1→q in each composition step is of great importance

to the proposed HP coding scheme. One straightforward way is to adopt the forward

dominant vector selection (FDVS) [93], which is a well-known technique used in

video transcoding for MV composition. Figure 3.2 also illustrates an example of
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Figure 3.2: Vector selection algorithm FDVS adopted in the proposed HP coding.

using FDVS in the HP coding scheme for layer T1 where the distance between the

current frame and the reference frame is 4 frames. Only four neighboring blocks

within a frame are shown in Figure 3.2. In this example, Bn
t represents the nth block

in Ft, and its MV referencing to its previous frame is denoted by MV (Bn
t ). To

compute the new composed MV t−4→t of MV (B1
t ) using FDVS as shown in Fig-

ure 3.2, one dominant MV carried by a dominant block is chosen in each pair of

consecutive frames. The dominant block is the one that has the largest overlapping

segment with the motion compensated block of MV (B1
t ) in the previous reference

frame. In Figure 3.2, the motion compensated block (dotted square in Ft−1) overlaps

with four blocks, B1
t−1, B

2
t−1, B

3
t−1, and B4

t−1, in Ft−1. B1
t−1 is selected in the first

step of FDVS as the dominant block while MV (B1
t−1) is the dominant MV. There-

fore, selMV R
t−2→t−1 is set to MV (B1

t−1). This dominant vector selection process

is repeated until the desired reference frame is reached, i.e. Ft−4 in this example.

From the example shown in Figure 3.2, the new MV t−4→t of B1
t is then composed

by summing up the selected dominant MVs and can be written as
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MV t−4→t of B1
t = MV (B3

t−3) +MV (B3
t−2) +MV (B1

t−1) +MV (B1
t ). (3.5)

3.3.3 Refinement after MV Composition

After MV composition, a small refinement vector ϵ⃗ is added to the resultant MV,

which is expressed as

ϵ⃗ = (ϵx, ϵy) where ϵx, ϵy ∈ [−1, 0, 1] . (3.6)

The refinement operation provides fine tunings for the MV composition. It adds

an optimum ϵ⃗opt which can yield a minimum value of fSAD, such that

ϵ⃗opt = argmin
ϵ⃗

fSAD(B
corner
t ,MV r→t + ϵ⃗). (3.7)

With (3.7), a final MV, denoted as M̂V r→t with refinement is calculated as

M̂V r→t =
t∑

q=r+1

selMV R
q−1→q + ϵ⃗opt. (3.8)

From the above illustration, the forward coded MVs between adjacent frames

are utilized in each composition step. Only ME among adjacent frames is necessary.

In this case, a small SR is sufficient. The computational complexity thus can be sig-

nificantly reduced by eliminating the need to search for temporal remote reference

frames. It can be seen that the coding order of MV composition is also the same as
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the display order shown in HP coding structure, which does not impose extra delay

in the coding process.

3.4 Simulation Results on the Proposed HP Coding

Scheme

In this section, we present some simulation results to evaluate the performance of

adopting FDVS for MV composition in HP coding. All the simulations were con-

ducted based on the H.264 JM17.2 codec [126]. The test sequences used in the

simulations were in yuv format with 4:2:0 sampling. They included “Bus (CIF)”,

“Football (CIF)”, “Stefan (CIF)”, “Rush hour (720p)”, and “Spincalendar (720p)”.

They are representative for simulations in video coding. It is because they comprise

various common characteristics among natural sequences, such as rich texture, cam-

era and objects movements, which provide a wide range of compression difficulty

and subject matter. Each sequence encodes 100 frames. In HP coding, a quantiza-

tion parameter (QP) is increased monotonically for the cascaded quantization [127]

for each kth temporal layer (QP k), as

QPk = QPbase + k where k = 0, 1, 2, 3. (3.9)

Here, QP k depends on the QP for the base layer denoted as QP base. For RD

performance analysis, QP base was set to 20, 24, 28, and 32. The bitstreams were

encoded with the HP structure by different algorithms. The evaluation in BD mea-

surement of the proposed HP coding algorithm versus the full-search (FS) algorithm



CHAPTER 3. DETERMINATIONS ON MOTION LOCUS BY MOTION VECTORS
COMPOSITION 53

0

5

10

15

20

25

Various sequences

D
e
cr

e
a
se

in
%

BD Bitrate Decrease by MV Composition

Bus

Football

Stefan

Rush hour

Spincalendar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Various sequences

In
cr

e
a
se

in
d

B

BD PSNR Increase by MV Composition

Bus

Football

Stefan

Rush hour

Spincalendar

(a)   (b) 

Figure 3.3: Results by the proposed HP coding scheme with FDVS: (a) BD-bitrate

decreases, and (b) BD-PSNR increases.

was conducted. The SR amplitude of the FS and the proposed algorithm between

the frames were set to 8 and 16 for the CIF and 720p sequences, respectively. To

evaluate the proposed HP coding scheme effectively, comparisons were focus on

frames in T0 and T1 that have distant references in a GOP.

From Figure 3.3, the proposed HP coding scheme with FDVS shows a significant

BD improvement. BD-bitrate decrease usually reaches 3% to 5%, and up to 23%

in video sequences with high motion activities such as “Spincalendar (720p)” as

depicted in Figure 3.3(a). In addition, BD-PSNR increase shown in Figure 3.3(b)

has been obtained from 0.4 dB to 1.5 dB among various sequences. It is proved

that the proposed HP coding scheme can provide remarkable performance in the

view point of rate and distortion in comparison with the FS algorithm in coding with

distant reference frames. More details of evaluation in complexity of the proposed

HP coding scheme will be shown in Section 3.5.2.
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Figure 3.4: (a) FDVS adopted in HP coding, and (b) relevant area in hatched and

shaded regions by FDVS in (a).

3.5 Impact of Vector Selection Algorithms on The Pro-

posed MV Composition Scheme in HP Coding

The success of the proposed HP coding scheme depends on the reliability of the MV

selection and composition algorithm in coding the current frame with its reference

frame. Owing to a very long prediction distance in the low temporal layers, FDVS

cannot guarantee to obtain promising results. This can be explained by Figure 3.4,

in which Figure 3.4(a) is redrawn from Figure 3.2 for better illustration and compar-

ison. Figure 3.4(b) highlights the relevant area of the target block, B1
t , during the

MV composition process when FDVS is used for the vector selection algorithm. In
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Ft−1 of Figure 3.4(b), the dot-bordered area shows the motion compensated area of

B1
t . According to the area size, B1

t−1 is the defined dominant the block.

In B1
t−1, only the shaded area is actually relevant to B1

t . After that, B1
t−1 is

defined the dominant block by its largest overlapping segment size. This shaded

area is combined with the non-shaded area in B1
t−1, which is an irrelevant area to

the target coding block, B1
t , to determine the dominant block in Ft−2. The selec-

tion of the dominant block is continuous till the desired reference frame, Ft−4 in

Figure 3.4(b). It can be observed that the relevant area of B1
t further diminishes in

the selection process by FDVS. The relevant area of B1
t in Ft−4 (shown in vertical

hatched region) is even laid out of the dominant block, B3
t−4 as depicted in Ft−4 of

Figure 3.4(b). It incurs inaccuracy of the composed MVs since a large irrelevant area

to the target coding block is used to decide the dominant block. And it may lead to

a worse coding performance when the number of composition steps increases. The

reason is that the dot-bordered area under consideration for each frame is not only

the content relevant to area (grey region) of the target block in the previous frame

but also a large portion of the non-relevant area (white region) which may reduce

the reliability of the selected dominant MVs.

In [128], the concept of utilizing only the relevant areas in the target block and

maximizing these areas was suggested by us, and referred to as a multiple candidate

vector selection (MCVS) algorithm. Although MCVS in [128] aims at improving

the accuracy of MV composition in video transcoding for fast-forward playback,

it motivates us to modify MCVS such that it is best suited for our new HP coding

framework when the temporal distances between the reference and current frames

are far away in lower temporal layers.
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Figure 3.5: Example of adopting AMCVS in HP coding: (a) only relevant area to

determine dominant block for MV selection, and (b) Merge process in MV selection.

3.5.1 Proposed Adaptive-Multiple Candidate Vector Selection

The proposed adaptive-multiple candidate vector selection (AMCVS) algorithm may

lead to different resultant composed MVs from FDVS. In FDVS, selMV R
q−1→q is de-

fined as the MV from the dominant compensated block which gets the largest size

of compensated area, i.e. MV (B1
t−1) in Ft−1 of the example shown in Figure 3.4(a).

It will further select B3
t−2 as the dominant block for selMV R

t−3→t−2 by the largest

dot-bordered area in Ft−2. This criterion for selection may lead to a worse coding

performance when the number of composition steps increases. The reason is that

the dot-bordered area in Ft−2 under consideration is not only the content relevant to

area (grey region) of the target block in Ft−1 but also a large portion of non-relevant
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area (white region) which may reduce the reliability ofselMV R
t−3→t−2. In compari-

son to FDVS, AMCVS is no longer simply utilizing the whole dot-bordered area to

select a dominant block in each MV composition step. The main philosophy of the

proposed AMCVS is exemplified in Figure 3.5.

3.5.1.1 Actual Relevant Area Utilization

In the example of Figure 3.5(a), AMCVS only uses the actually relevant dominant

compensated area which is the grey area or hatched area instead of the dot-bordered

area in each composition step to determine the next dominant block and its dom-

inant MV. Therefore, the result of dominant block determination in Ft−2 is B4
t−2,

The selMV R
t−3→t−2 becomes MV (B4

t−2), which is different from that obtained by

FDVS (MV (B3
t−2)). By only taking the relevant areas to the target coding block into

consideration, the resultant MV t−4→t of B1
t by AMCVS shown in Figure 3.5(a) can

be computed as

MV t−4→t of B1
t = MV (B4

t−3) +MV (B4
t−2) +MV (B1

t−1) +MV (B1
t ). (3.10)

Although the above selection process guarantees only the relevant area of the

target coding B1
t is used in MV composition, the area for deciding the dominant

block still becomes smaller and smaller along the frames, as shown in Ft−4 of Fig-

ure 3.5(a). The situation is more serious for MV composition in lower temporal

layers, which involves more composition steps with the dominant block and MV

determinations for a composed MV in a distant reference. It results in reducing the

accuracy of the resultant MVs.
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3.5.1.2 Maximization of Dominant Area by Merging

To further increase their accuracy, the relevant area to the target block should be

kept as large as possible during MV composition by also considering non-dominant

areas, but relevant to the target coding B1
t . To achieve this, AMCVS can entirely

make use of the homogeneity of MVs in which compensated areas in blocks with

the same MV are merged.

For the example in Figure 3.5(b), the areas in B3
t−2 and B4

t−2 denoted by the

diagonal hatched pattern in Ft−2, which have the same MV, are merged for dominant

block determination in Ft−3. Under this merging process, the final selected dominant

MV for selMV R
t−4→t−3 is picked according to this merged area, and the resultant

MV t−4→t of B1
t can be formed in

MV t−4→t of B1
t = MV (B3

t−3) +MV (B4
t−2) +MV (B1

t−1) +MV (B1
t ). (3.11)

From Figure 3.5(a) and Figure 3.5(b), it can be observed that the areas determin-

ing the block selection increase significantly when homogeneity of MVs is taken

into consideration. Consequently, the final resultant MV should be more reliable.

This merging process is specifically more appropriate for areas with homogeneous

motion such as blocks in the background and inside the moving objects.

3.5.1.3 Multiple Candidates Selection

For object boundary of a video object, the merging process cannot help since the

neighboring MVs of blocks are not identical. In fact, AMCVS is a greedy algo-

rithm that only considers the maximum size of relevant compensated area in each
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composition step and selects the optimal vector in the particular step for the entire

composition. For each composition step, it makes the locally optimal choice with

the hope of locating the global optimum. Thus, the MV selection in the rest of

composition steps has been decided by the initial step. To increase the probability

of obtaining the locally optimal solution that is closer to the global optimum, the

AMCVS algorithm also keeps more than one candidate block for MV composition.

The candidates are ranked by their relevant segment size. Using more candidates

in each step provides more combinations of composition paths to go further. In our

proposed AMCVS, we heuristically use different number of candidates, NCand, in

different temporal layers, Tk, which have different prediction distances, and NCand

can be given by

NCand =



NCandmax, k = 0

NCandmax

2
, k = 1 ,

NCandmax

4
, k ≥ 2

(3.12)

where NCandmax is set to 4 because the maximum number of overlapping blocks

is 4 in the first composition step. From (3.12), it is seen that four candidates are used

in T0, which has the longest prediction distance. Two candidates are then enough

for T1 while one candidate is used for other higher layers.

Among these multiple candidates, the final optimal composed MV for the current

block being encoded, Bn
t , is selected by minimizing the Lagrangian cost function,

Jmotion as
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Jmotion(M̂V r→t(Cand), λmotion) =

fSAD(B
corner
t , M̂V r→t(Cand)) + λmotion ·Rmotion(M̂V r→t(Cand) −MV P ) ,

(3.13)

where Bcorner
t is the top left coordinate of Bn

t , MV P is the MV used for predic-

tion, M̂V r→t(Cand) is one of the refined composed MV candidates where Cand is

the index presenting a candidate, λmotion is the Lagrangian multiplier for motion es-

timation (ME), Rmotion(M̂V r→t(Cand) − PMV ) is the estimated number of bits for

coding M̂V r→t(Cand), and fSAD is the sum of of absolute differences between the

block Bn
t being coded and its reference block, which is defined in (3.2). The one

with smallest Jmotion is determined to be the final composed MV. The flowchart of

the new AMCVS for coding frames in Tk is then shown in Figure 3.6.

3.5.2 Simulation Results of AMCVS

The simulation results we present in this section were also obtained with the “Bus

(CIF)”, “Football (CIF)”, “Stefan (CIF)”, “Rush hour (720p)”, and “Spincalendar

(720p)” sequences, using the parameters and performance criterion described in Sec-

tion 3.4. More evaluations in BD measurement of the proposed HP coding scheme in

various vector composition algorithms versus FS were conducted. The vector com-

position algorithms between consecutive frames include FDVS [93], its enhanced

version (E–FDVS) [94], median algorithm (MEDIAN) [91] and the AMCVS pro-

posed in Section 3.5.1. To evaluate the impact of various vector composition algo-

rithms in HP coding in details, the BD measurement was conducted in two groups,

and they are listed in Table 3.2 and Table 3.3.
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Figure 3.6: Flowchart of AMCVS for coding frames in Tk.



62
3.5. IMPACT OF VECTOR SELECTION ALGORITHMS ON THE PROPOSED MV

COMPOSITION SCHEME IN HP CODING

Table 3.2: BD and complexity measurement for T0 & T1: MV composition of

selMV 8
q−1→q versus FSR=8.

Sequences Measurement(s)
Vector Selection Algorithms in MV composition

FDVS E–FDVS MEDIAN AMCVS FSR=16

B
us

BD-Bitrate(%) -3.52 -6.01 -0.81 -10.15 -13.55

BD-PSNR(dB) +0.36 +0.63 +0.09 +1.07 +1.49

∆Complexity(%) +2.77 +2.77 +2.77 +2.77 +276.80

Fo
ot

ba
ll

BD-Bitrate(%) -1.76 -2.78 -2.14 -4.91 -14.08

BD-PSNR(dB) +0.13 +0.20 +0.17 +0.36 +1.11

∆Complexity(%) +2.77 +2.77 +2.77 +2.77 +276.80

St
ef

an

BD-Bitrate(%) -2.17 -3.59 -0.30 -3.97 -8.21

BD-PSNR(dB) +0.19 +0.31 +0.02 +0.34 +0.70

∆Complexity(%) +2.77 +2.77 +2.77 +2.77 +276.80

1. Table 3.2 is the BD measurement for CIF sequences. The SR of the FS al-

gorithm was set to 8 and 16, and they are denoted by FSR=8 and FSR=16,

respectively. For the proposed scheme with various MV composition algo-

rithms, the SR of conducting ME in the consecutive frames was set to 8.

2. Table 3.3 is the BD measurement for 720p sequences. The SR of the FS al-

gorithm was set to 16 and 32, and they are denoted by FSR=16 and FSR=32,

respectively. For the proposed scheme with various MV composition algo-

rithms, the SR of conducting ME in the consecutive frames was set to 16.
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Table 3.3: BD and complexity measurement for T0 & T1: MV composition of

selMV 16
q−1→q versus FSR=16.

Sequences Measurement(s)
Vector Selection Algorithms in MV composition

FDVS E–FDVS MEDIAN AMCVS FSR=32

R
us

h
ho

ur BD-Bitrate(%) -3.04 -9.18 -0.36 -14.76 -16.17

BD-PSNR(dB) +0.15 +0.51 0 +0.88 +1.08

∆Complexity(%) +0.73 +0.73 +0.73 +0.73 +280.00

Sp
in

ca
le

nd
ar BD-Bitrate(%) -23.47 -23.62 -15.94 -24.49 -23.67

BD-PSNR(dB) +1.54 +1.56 +1.02 +1.56 +1.43

∆Complexity(%) +0.73 +0.73 +0.73 +0.73 +280.00

From Table 3.2, all MV composition algorithms in HP coding for CIF sequences

in T0 and T1 outperform FSR=8 by bitrate reduction and quality increment. A similar

trend appears in all MV composition selection algorithms for 720p sequences when

they are compared with FSR=16 in Table 3.3. This implies that MV composition

algorithms can enhance ME in T0 and T1 when temporal remote reference frames

are used. It shows that MV composition can be successfully adopted in HP coding.

Moreover, among the MV composition algorithms in HP coding, AMCVS can

provide higher coding efficiency comparing to FDVS, E–FDVS and MEDIAN. In

comparison to FDVS, E–FDVS and MEDIAN, the performance in both BD-PSNR

and BD-Bitrate of AMCVS for CIF sequences gets closer to FSR=16, as shown in

Table 3.2. For 720p sequences in Table 3.3, AMCVS even outperforms FSR=32 in

one testing sequence. The reason for AMCVS outperforming other MV composition
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algorithms is that it only utilizes related partition of compensated area to the target

block for MV selection. AMCVS enlarges the relevant partition as large as possible

in every MV composition step by merging homogeneous area while ensuring the

resultant MV is highly correlated to the target block in the current frame, which

cannot be achieved by FDVS, E–FDVS and MEDIAN.

In Table 3.2 and Table 3.3, ∆Complexity represents the computational com-

plexity change in percentage. The positive values mean increment whereas neg-

ative values mean decrement in complexity against FSR=8 and FSR=16 for CIF

sequences and 720p sequences, respectively. All MV composition algorithms only

require a small amount of extra complexity compared to FS with the same SR in

adjacent frames by 2.77% and 0.73% for FSR=8 and FSR=16, respectively. On

the other hand, they can successfully reduce the number of search points compared

with FSR=16 for CIF and FSR=32 for 720p sequences without sacrificing the coding

efficiency.

3.6 Chapter Summary

In this chapter, we have proposed to adopt MV composition algorithms in the HP

coding framework so as to avoid using a large search window in ME in lower tem-

poral layers. This strategy can reduce computational burdens without sacrificing

the coding efficiency. Furthermore, the proposed HP coding scheme can provide

better performance when utilizing the new proposed AMCVS for vector selection

since it is more reliable in composing MV in low temporal layers. Simulation re-

sults showed that the proposed scheme with MV composition performs well in HP
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structure coding, in which our AMCVS has been proven to outperform other MV

composition algorithms. Under the same searching conditions, our entire MV com-

position scheme can even perform better for a long distance reference as compared

with the FS algorithm under the same size of the search range.



Chapter 4

Determinations on Motion Locus by

Spatial Correlation and Depth

Variations

4.1 Introduction

HEVC outperforms H.264 by providing a bitrate reduction of about 50% while hav-

ing almost the same perceptual quality. It adopts more flexible partitioning in motion

estimation (ME) which gains higher coding efficiency at a cost of increased coding

complexity. This chapter exploits depth maps in the emerging multi-view plus depth

(MVD) videos. By the depth variation and the spatial correlation between blocks,

the proposed algorithm determines the motion locus before ME. By the proposed

motion locus, the adjustment of the search range (SR) in ME for HEVC is con-

ducted for complexity reduction. With the aid of depth intensity variations among

66
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spatial neighboring blocks, the proposed algorithm in this work derives weights to

the neighboring blocks and establishes an adaptive search range (ASR) according to

the weighted sum of the motion vectors from the neighboring blocks. The rest of this

chapter is organized as follows. Section 4.2 reveals the advantage for the adoption

of ASR among the existing fast ME strategies. Section 4.3 illustrates the motiva-

tion of using depth maps for SR determination. The proposed ASR determination

by neighboring depth intensity weighted sum is introduced in Section 4.4. Simu-

lation results of the proposed algorithm applied to the full-search (FS) and the fast

Test Zone Search (TZS) algorithm are provided in Section 4.5. Finally, Section 4.6

summarizes this chapter.

Parts of the contents of this chapter are extracted from our published work

[129] c⃝2016 The Institution of Engineering and Technology:

• Tsz-Kwan Lee, Yui-Lam Chan, and Wan-Chi Siu,“ Adaptive Search Range

by Neighbouring Depth Intensity Weighted Sum for HEVC Texture Coding,”

Electronics Letters, vol. 52, no. 12, pp. 1018-1020, June 2016.

4.2 Adaptive Search Range and Fast ME Strategies

The coding gain of HEVC is mainly from its more flexible block partitioning in

ME, which is especially crucial for coding high resolution 3D videos in the MVD

format [130]. However, the flexible block partitioning mechanism in HEVC induces

more ME computations. In hybrid video coding, ME performs block-based search

for every location within a pre-defined search range [130]. With the motion vector
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predictor (MVP) from a neighbouring block as the search centre, the optimal MV is

selected by minimizing the RD cost within the pre-defined search range. The true

motion vector (TMV) of the current block is then formed by

TMV = MVP + MV. (4.1)

HEVC utilizes an advanced motion vector predictor (AMVP) for the determina-

tion of MVP to a block as an initial search centre [14]. With a fixed search range

of 64 pixels for both FS and TZS integer-pixel ME, MV is obtained from a range

of [-64, +64]. TZS is one of the fast ME algorithms adopted in the HEVC test

model [104] by restricting the number of search locations. In TZS, a diamond or

square search pattern with various sizes is used for its centre search point initializa-

tion. However, the multiple initial search point selection is still a major burden on

TZS.

Irregular Search Patterns: Other works focus on applying specific search pat-

terns or directional search to reduce search points within a fixed search range [109].

Nevertheless, various search patterns bring irregular data flow which is not prefer-

able for hardware implementation [110]. Besides, spatial neighbouring blocks con-

tain highly homogenous contents to the current block; AMVP is therefore selected

among their MVs. It implies if MVP is very similar to TMV, MV becomes very

small as stated in (4.1). In this circumstance, the search range can be reduced adap-

tively. Unnecessary search point computations can therefore be avoided for saving

coding time. An adaptive search range (ASR) algorithm can then deliver both search

point reduction and regular data flow.
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Adaptive Search Range in ME: As discussed in Section 2.4.2, some existing

ASR algorithms correlate the search range of the current block with the motion char-

acteristics of its neighboring blocks. In [110], Cauchy distribution is used to model

the search range for one frame and MV differences in the neighboring blocks are

used to adjust the search range for the block being encoded. In [120], the maximum

difference of the estimated true MV and the optimal AMVP is used to give the ASR

in HEVC. Such ASR, however, can only be determined from the results of AMVP

selection. In [118], MV in the co-located block is used to define the ASR without

considering whether the co-located block is within the same object. The most recent

ASR algorithm in [119] adopts a linear adaptive search range model (LAM) with

an overdetermined equation system. The parameters in the system can be solved if

the size of PU, MVs, and predictors are given. The ASR is then adjusted by a fixed

scale factor.

To the best of our knowledge, no work has noted so far to adopt the new features

provided in MVD videos for defining an ASR. In this thesis, we propose to make

use of depth maps in MVD videos and MVs from neighbouring blocks to yield the

ASR algorithm for HEVC.

4.3 Adaptive Search Range Adjustment by Motion Lo-

cus Prediction

An object in a video frame always occupies a region covered by several blocks. It

is obvious that spatial neighboring blocks contain highly homogeneous contents to
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(a) (b)

(c) (d)

Figure 4.1: Color texture and its associated depth map for a frame. (a) Color texture

in “Lovebird1”. (b) Depth map in“Lovebird1”. (c) Color texture in “Newspaper”.

(d) Depth map in “Newspaper”.

the current block. Consequently, MVs of spatial neighboring blocks can be utilized

to estimate the motion range of the current block. This formulates the motion locus

prediction such that a suitable SR can be assigned before ME. In the proposed ASR

algorithm, a SR is adaptively adjusted by determining whether the current block and

its spatially neighboring blocks belong to the same object. The correlation among

MVs in the same object can then be employed to specify the new SR adaptively.

In Section 1.3.4, we have reviewed MVD [39] video format which is one of the

emerging 3D video representations. The MVD is composed of the color texture
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and the depth map of the captured scene. Two MVD sequences are illustrated in

Figure 4.1. Figures 4.1(a) and 4.1(c) show the texture streams for “Lovebird1” and

“Newspaper”, respectively. In depth maps of Figures 4.1(b) and 4.1(d), gray scale

intensity values are assigned to represent the distance of an object from the capturing

camera in a 3D scene.

In [122], the authors utilized depth information for fast mode decision. By using

depth information, a video scene is divided into near, middle, and far regions. Vari-

ous mode candidates of a macroblock are chosen according to the classified region

the macroblock belongs to. Instead of fast mode decision, the work on this chapter

proposes a depth information based ASR algorithm to adjust the SR to speed up ME.

Depth maps are able to provide the additional intimation on areas/pixels belonging

to objects in the same distance. In Figure 4.1(b) and Figure 4.1(d), the distinguished

objects can be obviously figured out by the depth map since different video objects

should have the distinct distance in the scene. In other words, the partitions which

share similar motion activities in the same object can easily be identified by the

depth maps. Once the spatial correlation of an object is located, a particular SR can

be applied to an object in order to expedite ME. Therefore, in this chapter, depth in-

formation is suggested to be a good feature to exploit the correlation between MVs

of spatially neighboring blocks for generating adaptive search range.
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NB NB NB

MV MVcur

NB Bcur

MVMVMV

Figure 4.2: Illustration of spatial neighboring blocks with high motion homogeneity

to current block and their associated MVs.

4.4 Proposed ASR by Neighboring Depth Intensity

Weighted Sum for HEVC Texture Coding

The ASR algorithm proposed in this chapter takes a weighted sum of the neigh-

boring blocks MVs to predict the SR of the current block Bcur in order to reduce

unnecessary computations in ME. In Figure 4.2, NMVi is the MV with two compo-

nents (NMV xi,NMV yi) in the horizontal and vertical directions respectively from

a neighboring block NBi where i = 0, 1, 2, and 3. The new ASR of the current

block denoted by Rx(Bcur) and Ry(Bcur) for the horizontal and vertical directions,

respectively, can then be estimated from NMVi in Figure 4.2, and can be written as

Rx(Bcur) = ⌈
3∑

i=0

|NMV xi| ·
ωi∑3
j=0 ωj

⌉, (4.2)

and

Ry(Bcur) = ⌈
3∑

i=0

|NMV yi| ·
ωi∑3
j=0 ωj

⌉. (4.3)
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= block depth intensity(B )

- block depth intensity(NB )

NB NB

NB B
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Figure 4.3: Neighboring blocks with higher similarity in block depth intensity are

very likely representing the same object.

In (4.2) and (4.3), a weighted factor ωi of each NBi reflects the relevance of its

NMV xi, and NMV yi on Rx(Bcur) and Ry(Bcur) of the current block respectively,

and it is formed by making use of depth information in MVD videos. By considering

the characteristics of the depth maps, ωi can be formulated by

ωi = e−|di|, (4.4)

where ωi is the output of the exponential decay function of which e is Euler’s num-

ber with the decay rate 1
e
. Using the exponential decay function aims to suppress

the non-dominant blocks. The exponent |di| is the absolute difference in average

depth intensity values between the neighboring block NBi and the current block

Bcur. Values with small |di| output an exponentially high ωi and vice versa. Smaller

depth intensity difference hints that the probability of NBi and Bcur comprising the

same object is high, which reflects this NBi is more correlated to Bcur. The ratio-

nale is that a depth map can presumably reveal the object distance within a 3D space.
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Therefore, it is a piece of indicative information to decide which blocks belong to the

same object as illustrated in Figure 4.3. In the proposed algorithm, a higher weight

ωi will be issued to MV in which its associated block NBi represents higher content

similarity to Bcur (i.e. a smaller value of |di|). From the example in Figure 4.3,

|d0| < |d2| < |d1| < |d3| is observed. It can be concluded that ω0 > ω2 > ω1 > ω3.

Therefore NB0 is closest to Bcur in terms of depth distance and contents. The ASR

is then determined based on the amplitude of the weighted MVs of the neighboring

blocks (i.e. NMV0 has a stronger influence than other MVs in this example). Fi-

nally, MV of Bcur, MVcur , can be obtained by ME with the horizontal and vertical

SRs as [- Rx(Bcur), + Rx(Bcur)] and [- Ry(Bcur), + Ry(Bcur)], respectively.

4.5 Simulation Results and Discussions

4.5.1 Simulation Conditions

The proposed ASR algorithm using neighboring depth intensity weighted sum has

been integrated into the HM 14.0 reference software, and is referred to as NDIWS.

Its asymmetric ASR for FS was compared with the conventional FS using a fixed

SR of [-64, +64] and the most recent LAMASR algorithm for ASR [119]. It is

noted that TZS is designed for squared search windows. Therefore, the SR us-

ing NDIWS was computed as max(Rx(Bcur),Ry(Bcur)) when TZS with NDIWS

(TZS+NDIWS) was tested, where max( ) is the maximum function aiming at bound-

ing all probable movement among the x and y directions. TZS+NDIWS was further

compared to the conventional TZS with the fixed SR and the ASR determined by
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LAMASR [119]. All tested algorithms were evaluated with four QPs of 22, 27, 32,

and 37 under the low-delay P configuration specified in the common test condition

of HEVC [104]. Full quad-tree structure for all CU, PU, and TU was utilized. Bjon-

tegaard (BD) measurement in terms of BD-rate (%) and BD-PSNR (dB) were used

to measure the average coding efficiency, and ∆time (%) represents coding time

change in percentage as compared with the benchmarking algorithms. Positive and

negative values denote increments and decrements, respectively. The test platform

used for simulations was a 64-bit MS Windows 8.1 OS running on an Intel Core

i7-4770 CPU of 3.4 GHz and 16.0 GB RAM.

4.5.2 Performance evaluation of proposed NDIWS in FS

Table 4.1 lists the performance of NDIWS compared to FS with the fixed SR. It

averagely saves 95% coding time over FS while its BD-PSNR drops 0.02dB and

its BD-rate increases by 0.64%. In comparison to LAMASR [119], NDIWS saves

encoding time by 31% while only introducing an insignificant BD-rate increase of

0.06%. From Table 4.1, the proposed NDIWS saves more time as its asymmetric

SR considers movement in the horizontal and vertical directions separately. It is due

to the fact that most of the objects do not move diagonally.

4.5.3 Performance evaluation of proposed NDIWS in TZS

By integrating the proposed ASR into TZS, Table 4.2 showed that TZS+NDIWS

reduces 65% time on average compared to the conventional fixed search range TZS.

The corresponding BD-PSNR decreases by 0.02dB while the BD-rate increases by
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Table 4.1: Performance evaluation of proposed NDIWS to conventional fixed search

range FS and existing fast algorithm LAMASR in HM14.0.

Sequences

NDIWS compared to

FS using Fixed SR FS using LAMASR

∆time BD-PSNR BD-rate ∆time BD-PSNR BD-rate

(%) (dB) (%) (%) (dB) (%)

Balloons -96.04 -0.01 +0.38 -68.18 -0.01 +0.25

Kendo -98.50 -0.03 +0.85 -39.71 0 +0.06

Lovebird1 -99.26 -0.01 +0.24 +5.13 0 -0.07

Newspaper -98.47 -0.01 +0.43 -40.47 0 +0.13

Poznan Hall2 -92.22 -0.01 +0.56 -21.56 0 +0.02

Undo Dancer -91.06 -0.05 +1.43 -38.19 0 -0.03

GT Fly -89.65 -0.02 +0.60 -20.17 0 +0.05

Average -95.03 -0.02 +0.64 -31.88 0 +0.06

0.53%. As compared with TZS using LAMASR [119], TZS+NDIWS reduces aver-

agely 26% of coding time while only introducing an insignificant BD-rate increase

of 0.12%. The reason is that LAMASR [119] only formulates a fixed relationship of

the motion information by offline trainings. Instead, TZS+NDIWS utilizes the depth

intensity correlation for the current block from its neighboring blocks adaptively in

order to reduce unnecessary computations with insignificant BD loss.
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Table 4.2: Performance evaluation of proposed NDIWS to conventional fixed search

range TZS and existing fast algorithm LAMASR in HM14.0.

Sequences

TZS+NDIWS compared to

TZS using Fixed SR TZS using LAMASR

∆time BD-PSNR BD-rate ∆time BD-PSNR BD-rate

(%) (dB) (%) (%) (dB) (%)

Balloons -73.07 -0.01 +0.36 -37.86 0 +0.07

Kendo -67.89 -0.03 +1.09 -29.63 -0.01 +0.42

Lovebird1 -84.71 -0.02 +0.49 -54.29 -0.01 +0.37

Newspaper -82.83 -0.02 +0.54 -55.63 -0.01 +0.40

Poznan Hall2 -67.81 0 +0.13 -33.45 0 +0.12

Undo Dancer -43.30 -0.03 +0.90 -18.44 +0.01 -0.32

GT Fly -40.87 -0.01 +0.19 +40.69 +0.01 -0.19

Average -65.78 -0.02 +0.53 -26.94 0 +0.12

4.6 Chapter Summary
In this chapter, an ASR algorithm has been proposed by considering depth informa-

tion. The ASR is determined by a weighted sum of the neighboring blocks MVs

in which their weights depend on the absolute difference of depth intensity values

between the neighboring blocks and the current block. It results in a complexity re-

duction. The proposed ASR is compatible with FS and other fast search algorithms

such as TZS in HEVC. Simulation results demonstrated that it is able to reduce 65%

of coding time on average in the fast TZS with negligible BD loss.



Chapter 5

Depth-based Motion Locus for

Texture Coding

5.1 Introduction

We have observed from the previous chapter that the use of the spatial correlation in

depth maps is able to adjust a search range for motion estimation (ME) in HEVC. As

aforementioned, the depth map provides an intimation of the objects’ distance from

the projected screen in a 3D scene, which is very suitable to explore in adaptive

search range (ASR) determination. Chapter 4 utilizes all the MV amplitudes from

the most spatially nearest blocks to formulate the ASR. Different from the work in

Chapter 4, the work in this chapter selectively maps the most correlated candidate

blocks in temporal domain by the depth intensity values. It further exposes the usage

of the temporal correlation in depth maps for relieving the computational burden of

HEVC. By utilizing this correlation, a depth/motion relationship map is built for

78
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a mapping process. For each block, this forms a tailor-made search range with

a motion-aware asymmetric shape to skip unnecessary search points in ME. The

obtained search range (SR) can be further adjusted by taking the influence of 3D-to-

2D projection into consideration. Besides, the proposed SR determination can work

well with other fast search ME algorithms in the literature.

The rest of this chapter is organized as follows. Section 5.2 exploits the temporal

correlation between the depth map and the motion in texture. The correlation makes

the development of a new ASR algorithm possible for speeding up the ME process

in HEVC. The proposed idea of linkage between depth maps and motions for the

purpose of SR adjustment is then introduced in Section 5.2. First, we describe the

construction of a depth/motion relationship map (DMRMap) based on the correla-

tion between the depth map and the motion in texture. Second, by making use of the

DMRMap, the retrieval of ASR for the block being encoded is presented. Further-

more, the final adjustment of the SR due to the influence of the 3D space to the 2D

image plane projection is discussed in Section 5.3. The entire proposed depth-based

ASR algorithm based on the construction of DMRMap and the SR adjustment due to

3D-to-2D projection is conveyed in Section 5.4. Simulation results of the proposed

algorithm are provided in Section 5.5. Finally, Section 5.6 concludes this chapter.

Parts of the contents of this chapter are extracted from our published work

[131] c⃝2016 IEEE and [132] c⃝2016 IEEE:

• Tsz-Kwan Lee, Yui-Lam Chan, and Wan-Chi Siu, “Adaptive Search Range

for HEVC Motion Estimation based on Depth Information,” IEEE Transac-

tions on Circuits and Systems for Video Technology. (Accepted on 11 June,
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2016)

• Tsz-Kwan Lee, Yui-Lam Chan, and Wan-Chi Siu, “Depth-based Adaptive

Search Range Algorithm for Motion Estimation in HEVC,” in Proceedings

of International Conference on Digital Signal Processing (DSP 2014), Hong

Kong, Aug. 2014, pp.919-923.

5.2 Temporal Correlation between Depth Map and

Motion in Texture Streams
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Figure 5.1: The maximum amplitude of x-component motion vectors MV in quarter

pixel of color texture for various average depth intensity values between consecutive

frames, (a) Frame 3 and (b) Frame 4 of “Lovebird1”.
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Figure 5.2: The maximum amplitude of y-component motion vectors MV in quarter

pixel of color texture for various average depth intensity values between consecutive

frames, (a) Frame 13 and (b) Frame 14 of “Lovebird1”.

The motivation of using temporal correlation between the depth maps and mo-

tion in texture are depicted in Figures 5.1(a) and 5.1(b), which plot the maximum

amplitude of MVs of color texture in the x-direction for various average depth in-

tensity values of all blocks in two consecutive frames. Meanwhile, Figures 5.2(a)

and 5.2(b) show the maximum amplitude of MV of color texture in the y-direction

for various average depth intensity. From these graphs, it can be seen that they have

very similar distribution. It is because the depth information of an object not only

represents the physical object position but also exhibits the motion activities of the

object itself on each frame. It reflects that blocks with similar average depth inten-

sity value will usually have similar MVs over a period of time. By making use of

this temporal correlation between the depth map and motion in texture, we establish
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depth and motion relationship for each frame, and it is referred to as a depth/motion

relationship map (DMRMap).

With the aid of the relationship map, motion activities of objects between con-

secutive frames could be roughly predicted by depth maps. In this chapter, the SR is

adopted according to the proposed DMRMap. Therefore, unnecessary search points

within the pre-defined SR can be removed.

5.2.1 DMRMap Construction in Reference Frame

This chapter proposes a framework to obtain and maintain the DMRMap of a ref-

erence frame, which can be used to determine the SR of the current frame. The

DMRMap captures the relationship between motion activity and average depth in-

tensity of all blocks in a reference frame. The proposed algorithm should start with

any frame other than the first inter-frame because the reference frame of the first

inter-frame is intra-coded, and no MVs from this reference frame can be obtained.

Therefore, the first inter-frame will go through a conventional full rate-distortion

optimization (RDO) inter coding. Once the MVs of all blocks in the frame are ob-

tained, its DMRMap is constructed for ME of the next frame. Let d be the average

depth intensity values of a block in the reference frame, where 0 ≤ d ≤ 255. It is

noted that depth maps are always estimated using stereo matching methods [133],

which induces slight variation or noise of depth values within the same object. To

tolerate the variation of depth values in an object, d is divided into an appropriate

number of ranges, each containing many similar values of d. To do so, d is quantized

uniformly by a quantization factor Q into d̂, where 0 ≤ d̂ ≤ ⌈255/Q⌉. Note that ⌈ ⌉
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is the ceiling function. The DMRMap relates the largest MVs to all possible values

of d̂ in the reference frame. Assume that S d̂
x and S d̂

y are the sets of MVs in the x-

and y-direction, respectively, with the blocks in which their quantized average depth

intensity value is d̂. The largest MV amplitudes, (MV xmax(d̂),MV ymax(d̂)), in the

x- and y-directions are respectively the maximum values in S d̂
x and S d̂

y as

MV xmax(d̂) = max(S d̂
x) (5.1)

and

MV ymax(d̂) = max(S d̂
y), (5.2)

where max(S) gives the maximum value of the set S. Actually, MV xmax(d̂) and

MV ymax(d̂) can be used to describe the DMRMap, which constructs the relationship

between the largest MVs and d̂. In other words, the largest MV in both of the x- and

y-directions can be determined for the given d̂.

The DMRMap will be updated frame by frame. Two relationship maps in the x-

and y-directions constructed from a pair of consecutive frames for “Lovebird1” are

illustrated in Figures 5.3(a) and 5.3(b), respectively, in which Q is set to 8. They

record MV xmax(d̂) and MV ymax(d̂) for each d̂ within the frame, where d̂ is from 0

to 31. The value of Q depends on the level of noise in the depth map. The more the

noise in the depth map, the larger the value of Q is used to absorb depth variation in

the same object. However, a large Q results in affecting the precision of DMRMap,

and detailed discussion will be given in Section 5.5. Setting Q to 8 is always appro-

priate for the quality of most depth maps recommended by the ISO/IEC and ITU-T

JCT-3V group with the reasonably good DMRMap. From Figures 5.3(a) and 5.3(b)
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Figure 5.3: The largest motion vector amplitudes (a) MV xmax(d̂) in the x-direction,

and (b) MV ymax(d̂) in the y-direction from a pair of consecutive frames for “Love-

bird1”.

for the DMRMap, it can be observed that the distributions are very similar to each

other for consecutive frames in both of the horizontal and vertical movements.
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5.2.2 ASR Decision based on Mapping Process using DMRMap

By utilizing the temporal correlation of DMRMaps between two consecutive frames,

the mapping process from the average depth intensity for the nth block being en-

coded in frame t, Bn
t , to its SR, denoted as Rx(Bn

t ) and Ry(Bn
t ) in the x- and

y-directions, respectively, is conducted. The mapping is based on the DMRMap in

the reference frame as defined in (5.1) and (5.2). Let QDepth(Bn
t ) be the average

depth intensity values after quantization for Bn
t . From (5.1) and (5.2), Rx(Bn

t ) and

Ry(Bn
t ) can respectively be computed as

Rx(Bn
t ) = MV xmax(QDepth(Bn

t )) (5.3)

and

Ry(Bn
t ) = MV ymax(QDepth(Bn

t )). (5.4)

This mapping process is to correlate the temporal information by the average

depth intensity value of Bn
t being encoded to those blocks in the reference frame.

Since depth maps indicate the location of an object in the video scene from the im-

age plane, the average depth intensity value could therefore be a criterion for distin-

guishing various objects with different distances from the camera in a video scene.

Based on this observation, it is likely that the blocks belonging to one particular

video object across consecutive frames have consistent motion associated with the

similar average depth intensity values. Once the average depth intensity value of the

current block, Bn
t , is matched to those in the same intensity value of the reference

frame, ASR decision can be made from the DMRMap in the reference frame. It is

noted that, if QDepth(Bn
t ) is empty in the DMRMap of the reference frame, the
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SRs of Bn
t in both x- and y-directions are set to 64. It is the default SR of the main

profile in HEVC, which is larger or equal to the values obtained in (5.3) and (5.4).

After all MVs of the frame being encoded are determined, the DMRMap is updated

for both x- and y-directions for the next frame.

5.3 Influence of 3D-to-2D Projection on Motion Ac-

tivity on 2D Image Plane

The working principle of the mapping process in (5.3) and (5.4) is based on the very

strong temporal correlation of DMRMaps between the current and reference frames.

However, an object moving towards and away from the camera, or zoom effect from

the camera changes the distance between the object being captured and the camera

between frames. This motion activity along the camera axis (z-axis) has the poten-

tial to weaken the degree of this correlation, which reduces the prediction accuracy

of the SR in (5.3) and (5.4). Taking this into consideration, a scale factor for the

proposed ASR of Bn
t , ρ(Bn

t ), is added to offer extra flexibility in the determination

of the SR in (5.3) and (5.4). The SR prediction is then scaled as

Rxρ(Bn
t ) = ρ(Bn

t )×MV xmax(QDepth(Bn
t )) (5.5)

and

Ryρ(Bn
t ) = ρ(Bn

t )×MV ymax(QDepth(Bn
t )). (5.6)

Note that ρ(Bn
t ) = 1 is the case for the scene without motion along the z-axis.

In this case, (5.5) and (5.6) are equal to (5.3) and (5.4), respectively. The change in
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Figure 5.4: Geometric relationship between depth of object and motion activity on

the 2D image plane.

depth intensity between frames actually reflects the degree of z-axis motion, which

in turn gives a good estimation of ρ(Bn
t ). The way to determine ρ(Bn

t ) is underlying

on the motion parallax. It states that, given the same horizontal or vertical motions

of objects in the 3D space, objects that are closer to the camera move faster on the

2D image plane than the objects that are farther. In other words, the degree of the

projected displacement of an object on the 2D image plane is always influenced by

how close it is located to the camera in the 3D space. When the object is closer to

the camera, projected displacement on the 2D image plane is larger. This situation

is illustrated in Figure 5.4. In this figure, an example of the geometric relationship
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between the depth information of an object moving towards the camera and its dis-

placement variation on the 2D image plane is depicted. Let Oref denote a 3D position

of an object in the 3D space. It is noted that the subscript “ref”’ represents the ref-

erence position in the following discussion. The actual distance value between Oref

and the camera is Zref, and its SR is assumed to be SR3D
ref in the 3D space. Assume

that Oref moves to Ot with the actual distance value of Zt at time t. In this case

of the object moving towards the camera, Zt is smaller than Zref since Ot is closer

to the camera than Oref, as shown in Figure 5.4. Similarly, the SR of Ot is SR3D
ref .

In Figure 5.4, SR2D
ref and SR2D

t are therefore the projections of SR3D
ref and SR3D

t on

the 2D image plane, respectively. For the same SR for Oref and Ot in the 3D space

(i.e., SR3D
ref = SR3D

t = r), SR2D
ref is smaller than SR2D

t on the 2D image plane after

projection, as illustrated in Figure 5.4. Consequently, this phenomenon can be used

to determine ρ(Bn
t ). In (5.5) and (5.6), ρ(Bn

t ) is a factor to scale the SR projected on

the 2D image plane at time t due to the motion along the z-axis, which is the ratio

of SR2D
t to SR2D

ref defined by

ρ(Bn
t ) =

SR2D
t

SR2D
ref
. (5.7)

The dotted lines in Figure 5.4 indicate the trajectory of the projections through

the camera lens onto the 2D image plane. Using triangular similarity, the relation-

ship between SR2D
ref and SR2D

t can be correlated to the actual distances, Zref and Zt

in the 3D space as

SR2D
ref

f
=

r

Zref
(5.8)
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and
SR2D

t

f
=

r

Zt

, (5.9)

where f is the focal length of the camera, and r is the SR amplitude of the object in

the 3D space. By combining (5.7), (5.8), and (5.9), ρ(Bn
t ) can be formulated as

ρ(Bn
t ) =

Zref

Zt

= 1 +
∆Z

Zt

, (5.10)

where ∆Z is the change in the actual distance between Oref and Ot in the 3D space

due to the z-axis motion of the object, as shown in Figure 5.4. The positive ∆Z

means the object moving towards the camera since physically Zt < Zref while the

negative Z means the object moving away from the camera due to Zt > Zref. In

addition, there is no z-axis motion when ∆Z is equal to zero.

In (5.10), it introduces the scale factor based on the changes in the actual distance

between the current and reference blocks. The actual distances, Zt and Zref, in the 3D

space can be computed from the average depth intensity values without quantization

in the depth maps, Depth(Bn
t ) and Depth(Bn

ref), for Bn
t in the current frame and its

co-located block Bn
ref in the reference frame, respectively, as

Zt = 1/

[
Depth(Bn

t )

255
×

(
1

Znear
− 1

Zfar

)
+

1

Zfar

]
(5.11)

and

Zref = 1/

[
Depth(Bn

ref)

255
×
(

1

Znear
− 1

Zfar

)
+

1

Zfar

]
, (5.12)

where Znear and Zfar are, respectively, the smallest and the largest actual distances

among all points captured by the camera, which are recorded in the camera configure
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Table 5.1: Values of Znear and Zfar in various sequences

Sequences Znear (cm) Zfar (cm)

Balloons 448.251214 11206.280350

Kendo 448.251214 11206.280350

Lovebird1 -2228.745812 -156012.206815

Newspaper -2715.181648 -9050.605493

Poznan Street -34.506386 -2760.510889

Poznan Hall2 -23.394160 -172.531931

Undo Dancer 2289 213500

GT Fly
changes every frame between a range of

{Znear, Zfar} ={3156.3, 1000000000}

files of the test sequences recommended by the ISO/IEC and ITU-T JCT-3V group.

Their values of Znear and Zfar are listed in Table 5.1 in which positive or negative

values denote the viewing direction of the camera. It is noted that the values of

Znear and Zfar are signaled with the 3D videos for a correct geometric displacement

in synthesized intermediate views [134] at the decoder side. By putting (5.11) and

(5.12) into (5.10), ρ(Bn
t ) is expressed as

ρ(Bn
t ) =

Depth(Bn
t )(Zfar − Znear) + 255× Znear

Depth(Bn
ref)(Zfar − Znear) + 255× Znear

, (5.13)
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and it can be summarized as

case 1 : ρ(Bn
t ) > 1, Depth(Bn

t ) > Depth(Bn
ref)

case 2 : ρ(Bn
t ) = 1, Depth(Bn

t ) = Depth(Bn
ref)

case 3 : ρ(Bn
t ) < 1, Depth(Bn

t ) < Depth(Bn
ref)

, (5.14)

where case 1 represents a scenario that the object moving towards the camera, case 2

represents the object without z-axis motion, and case 3 represents the object moving

away from the camera.

5.4 The Proposed DMRMap-based ASR Algorithm

Figure 5.5 shows the flowchart of the proposed DMRMap-based ASR algorithm to

encode a frame in HEVC. The proposed ASR algorithm has three new features:

(a) DMRMap construction of the reference frame; (b) ASR determination using

DMRMap; and (c) ASR update based on 3D-to-2D motion projection. Combining

these three techniques, the proposed DMRMap-based ASR algorithm can be applied

to the block Bn
t being encoded as follows.

Step (i): Construct the DMRMap of the reference frame by (5.1) and (5.2).

Step (ii): Compute QDepth(Bn
t ) for the mapping process.

Step (iii): If QDepth(Bn
t ) is available in DMRMap, go to Step (iv); otherwise, go

to Step (vii).

Step (iv): Obtain the horizontal Rx(Bn
t ), and the vertical Ry(Bn

t ) based on the

mapping processing in (5.3) and (5.4), respectively.
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Figure 5.5: Flowchart of the proposed DMRMap-based ASR algorithm.
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Step (v): Determine the scale factor ρ(Bn
t ) as (5.13).

Step (vi): Update the horizontal Rx(Bn
t ) to Rxρ(Bn

t ) and the vertical Ry(Bn
t ) to

Ryρ(Bn
t ) according to (5.5) and (5.6), respectively by ρ(Bn

t ). Go to Step

(viii).

Step (vii): Set both of the horizontal Rxρ(Bn
t ) and the vertical Ryρ(Bn

t ) to 64.

Step (viii): Perform ME using Rxρ(Bn
t ) and Ryρ(Bn

t ).

5.5 Simulation Results and Discussions

To evaluate the performance of the DMRMap-based ASR algorithm, the techniques

proposed in Section 5.2 and Section 5.3 have been integrated into the HM 14.0

reference software [135], and tested under the low-delay P configuration specified

in the common test condition [136] of the HEVC standardization in which the main

profile of HEVC was used. An I-frame was allowed in the first frame only, and the

rest were encoded as P-frames. All CU-level of 64 × 64, 32 × 32, 16 × 16, and

8 × 8 were enabled. For PU and TU, a full quad-tree structure was utilized. All

tested algorithms were evaluated with four QPs of 22, 27, 32, and 37 using eight test

sequences with two resolutions of 720p and 1080p.

5.5.1 Simulation Conditions

Two sets of experiments were performed to evaluate the overall efficiency of ap-

plying our proposed DMRMap-based ASR algorithm to various ME search strate-

gies. First, the proposed DMRMap algorithm with and without the scale factor
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ρ(Bn
t ) in (5.13) have been incorporated into the conventional full-search (FS) in

order to provide ASR for ME, and let us call them FS+DMRMap+Scaling and

FS+DMRMap, respectively. Q was set to 8 in both of FS+DMRMap+Scaling and

FS+DMRMap. Three most recent ASR algorithms [117–119] have also been imple-

mented for comparisons, and they are referred to as FS+MLELD [117], FS+LSMF

[118], and FS+LAMASR [119], respectively. Second, we demonstrate the perfor-

mance of the proposed DMRMap applied to the Test Zone Search (TZS), named

as TZS+DMRMap+Scaling. TZS was employed in the H.264 joint scalable video

model (JSVM) [34], and TZS is also the only fast method adopted in the HEVC

reference software [104, 105]. It can be proved that our proposed DMRMap-based

algorithm is compatible to a fast ME algorithm.

In all simulations, Bjontegaard (BD) measurement [123] in terms of BD-rate

(%) and BD-PSNR (dB) were used to measure the average coding efficiency of

various algorithms, and ∆time (%) represents coding time change in percentage as

compared with the benchmarking algorithms. Positive and negative values denote

increments and decrements, respectively. Note that the coding time includes the

computational cost for all CU quad-tree levels. The test platform used for simula-

tions was a 64-bit MS Windows 8.1 OS running on an Intel Core i7-4770 CPU of

3.4 GHz and 16.0 GB RAM.

5.5.2 Results of Applying DMRMap to FS

The full-search (FS) algorithm gives the best and optimal rate-distortion (RD) per-

formance in block-based ME since it searches all points inside the predefined SR.
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Table 5.2: Bjontegaard (BD) measurement and coding time change of FS+LSMF,

FS+MLELD, FS+LAMASR, FS+DMRMap, and FS+DMRMap+Scaling for ASR

against FS in HEVC
FS+DMRM +S ASR FS HEVC 

Seq. QP 

FS FS+LSMF FS+MLELD FS+LAMASR FS+DMRMap FS+DMRMap+Scaling

PSNR 
(dB) 

Bitrate 
(kbps) 

time 
(%) 

BD- 
PSNR 
(dB) 

BD- 
rate 
(%) 

time 
(%) 

BD- 
PSNR 
(dB) 

BD- 
rate 
(%) 

time 
(%) 

BD- 
PSNR 
(dB) 

BD- 
rate 
(%) 

time 
(%) 

BD- 
PSNR 
(dB) 

BD- 
rate  
(%) 

time 
(%) 

BD- 
PSNR 
(dB) 

BD- 
rate  
(%) 

720p

B
al

lo
o

n
s 37 38.38 335.94 

-40.54 +0.01 +0.13 -63.17 0.00 +0.07 -74.01 0.00 -0.06 -93.43 -0.01 +0.18 -89.63 -0.01 +0.26
32 41.24 593.35 

27 43.56 1171.64 

22 45.46 3134.29 

K
en

d
o
 37 39.66 372.48 

-53.53 0.00 +0.07 -80.74 -0.01 +0.23 -89.99 -0.01 +0.25 -93.01 -0.01 +0.30 -94.01 -0.01 +0.26
32 42.27 654.66 

27 44.44 1236.53 

22 46.29 2900.38 

L
o

v
eb

ir
d

1
 37 34.32 164.72 

-71.10 -0.01 +0.35 -87.87 0.00 +0.12 -94.96 0.00 +0.06 -99.42 0.00 +0.11 -99.46 0.00 +0.08
32 37.22 353.62 

27 40.29 830.90 

22 43.64 2069.84 

N
ew

sp
ap

er
 37 35.71 242.51 

-54.77 -0.02 +0.45 -73.84 -0.02 +0.47 -90.94 -0.01 +0.23 -95.82 -0.01 +0.39 -97.23 -0.01 +0.31
32 38.45 451.86 

27 41.08 960.40 

22 43.81 2711.91 

1080p

P
o

zn
an

 
_

S
tr

ee
t 37 35.10 461.62 

-39.99 -0.01 +0.55 -42.87 -0.01 +0.51 -69.47 -0.02 +0.74 -96.38 -0.01 +0.48 -97.15 0.00 +0.17
32 37.48 1142.23 

27 39.94 4223.58 

22 43.24 24872.19 

P
o

zn
an

 
_

H
al

l2
 37 39.59 237.06 

-22.98 0.00 +0.05 -41.25 -0.01 +0.28 -40.37 -0.01 +0.22 -85.24 -0.01 +0.50 -86.72 -0.01 +0.41
32 41.09 501.60 

27 42.25 1568.65 

22 44.24 13711.65 

U
n

d
o
 

_
D

an
ce

r 37 33.01 1525.83 

-25.14 -0.01 +0.42 -36.78 -0.01 +0.39 -34.74 -0.02 +0.69 -94.59 -0.01 +0.29 -91.74 -0.01 +0.30
32 35.76 4303.43 

27 39.02 11217.01 

22 42.69 25191.12 

G
T

_
F

ly
 37 35.82 1166.74 

-25.41 0.00 0.00 -27.32 0.00 +0.03 -36.41 0.00 +0.14 -96.56 -0.01 +0.21 -95.47 -0.01 +0.27
32 38.44 3023.78 

27 41.10 7445.85 

22 43.85 16927.17 

Average: -41.68 -0.01 +0.25 -56.73 -0.01 +0.26 -66.36 -0.01 +0.28 -94.31 -0.01 +0.31 -93.93 -0.01 +0.26

The objective of the proposed DMRMap-based ASR algorithms is to provide a suit-

able and reasonable SR for both vertical and horizontal directions per block for ME

in HEVC. As a result, unnecessary search points can be skipped such that better

resource utilization in ME can be achieved.
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Table 5.2 lists the BD measurement and ∆time of our proposed FS+DMRMap

and FS+DMRMap+Scaling against FS for the eight depth-enhanced sequences. FS

undergoes its fixed SR of 64 pixels, which means that 16641 search points are used

for each block in ME. From Table 5.2, FS+DMRMap and FS+DMRMap+Scaling

can averagely save 94.31% and 93.93% of coding time over FS, respectively. The

SRs obtained by FS+DMRMap and FS+DMRMap+Scaling are always smaller than

that of FS since they utilize the high temporal correlation of motions revealed by

depth intensity mapping. A significant time reduction of around 99% by the pro-

posed FS+DMRMap and FS+DMRMap+Scaling can be observed at “Lovebird1”

sequence. This can be explained by the fact that “Lovebird1” consists of large

portion of slow movement so that the proposed techniques can offer remarkable

reduction in SR in the mapping process. As a result, both proposed algorithms,

FS+DMRMap and FS+DMRMap+Scaling, only consume about 1% encoding time

of FS. While significant coding time reduction can be achieved, the coding efficiency

of the proposed FS+DMRMap and FS+DMRMap+Scaling can be maintained as

compared to FS. From the results of Table 5.2, FS+DMRMap obtains negligible

loss on BD-PSNR by 0.01dB as compared to FS while only 0.31% of BD-rate is

raised. With the help of the proposed scale factor ρ(Bn
t ) on SR due to the 3D-to-

2D projection, FS+DMRMap+Scaling also attains negligible loss on BD-PSNR by

0.01dB as compared to FS. At the same time, it only costs an increment of 0.26% in

BD-rate.

Table 5.2 further lists out the results of FS+LSMF [118], FS+MLELD [117],

and FS+LAMASR [119]. It can be observed that FS+LSMF, FS+MLELD, and

FS+LAMASR reduce the computational complexity by averagely 41.68%, 56.73%,
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and 66.36%, respectively while the proposed FS+DMRMap+Scaling reduces the

complexity by 93.93%. The proposed FS+DMRMap+Scaling can save more com-

putational time by about 52%, 37%, and 27%, respectively, as compared with the

algorithms in the literature, FS+LSMF, FS+MLELD, and FS+LAMASR. Mean-

while, these algorithms obtain very similar BD-rate deterioration. The reason is

that FS+DMRMap+Scaling considers the SR in the x- and y-directions separately

for tracing the true MVs. Furthermore, FS+DMRMap+Scaling utilizes an adaptive

scale factor for ASR adjustment. On the other hand, all the algorithms in [117–119]

consider the SR in the x- and y-directions jointly. In addition, FS+LAMASR simply

multiplies a fixed scale factor to the sum of the amplitude for ASR.

From the results of Table 5.2, it can be found that the gain in computational

time for 1080p sequences is less significant compared to that of 720p sequences in

FS+LSMF, FS+MLELD, and FS +LAMASR. This can be explained by the fact that

FS+LSMF and FS +MLELD adopt the MV difference distribution of the previous

frame to determine the SR, and FS+LAMASR uses the sum of amplitude differences

among all motion vector predictors of the current block to initialize the ASR. In gen-

eral, the motion vector differences among blocks are used as the hint to guide the SR

determination for these three ASR algorithms. However, motion activities in 1080p

test sequences are always richer than those in 720p test sequences [137]. In other

words, MV differences between blocks are more likely to have abrupt change such

that FS+LSMF, FS+MLELD, and FS+LAMASR will have a larger SR in 1080p

sequences (i.e. less time reduction as a result). On the contrary, our proposed

FS+DMRMap and FS+DMRMap+Scaling can obtain the consistent gain in com-

putational time for both 1080p and 720p sequences, as shown in Table 5.2, since
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they only use the depth map for SR determination, which is insensitive to the video

resolution.

Table 5.3 further compares the average sizes of the SR in the x- and y-directions

of FS, FS+LSMF, FS+MLELD, FS+LAMASR, and the proposed work, FS +DM-

RMap+Scaling. This table records the x- and y-dimensions of the SR (Dnx and

Dny, respectively) and the average number of search points (Sp) per block for the

five tested algorithms. For FS, FS+LSMF, FS+MLELD, and FS+LAMASR, Dnx is

equal to Dny, and they are 64, 47, 39, and 34 on average, respectively, as shown in

Table 5.3. It implies that all FS, FS+LSMF, FS+MLELD, and FS+LAMASR obtain

a search window with aspect ratio of 1. For FS+DMRMap+Scaling, the SRs in the

x- and y-directions are computed independently. Along the sequences, the aspect

ratio of the search window is no longer equal to 1, and it depends on the motion

characteristics of the sequence. The proposed FS+DMRMap+Scaling therefore can

adopt the search window with various aspect ratios for well fitting the true motion.

As a result, the average number of search points for each CU is computed as (5.15)

and listed in Table 5.3.

Sp = (2Dnx + 1)× (2Dny + 1). (5.15)

In (5.15), Sp is defined as the number of search points in a search window

based on Dnx and Dny. Finally, Table 5.3 shows that FS+LAMASR only requires

around one third of search points per CU compared to FS whereas the proposed

FS+DMRMap+Scaling only occupies averagely less than one tenth of search points

for compared to FS.
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Figure 5.6: The maximum absolute amplitude of motion vectors, MV xmax(d̂) us-

ing FS and FS+DMRMap, and ASR with d̂ = 7 along frames for color texture of

“Lovebird1”.
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Figure 5.7: The maximum absolute amplitude of motion vectors, MV ymax(d̂) using

FS and FS+DMRMap, and ASR with d̂ = 14 along frames for color texture of

“Newspaper”.
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Figure 5.8: The maximum absolute amplitude of motion vectors, MVx
max(d̂) using

FS and FS+DMRMap+Scaling, and ASR with d̂ = 7 along frames for color texture

of “Lovebird1”.
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FS and FS+DMRMap+Scaling, and ASR with d̂ = 14 along frames for color texture

of “Newspaper”.
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5.5.3 Gains of Scaling Technique on DMRMap

From the results in Table 5.2, we can see that FS+DMRMap+Scaling obtains a

slight decrease in BD-rate compared with FS+DMRMap. The gain is contributed

from the scale factor ρ(Bn
t ) in (5.13) that can adjust the final ASR based on z-

axis motion. Figure 5.6 and Figure 5.7 exemplify the inefficiency in FS+DMRMap.

In these figures, MV xmax(d̂) and MV ymax(d̂) represent the largest MVs in the x-

and y-directions at the quantized depth value d̂, respectively, obtained by FS and

FS+DMRMap. Figure 5.6 displays MV xmax(d̂) at d̂ = 7 in “Lovebird1” from frame

1 to frame 80. In most of the time, MV xmax(d̂) of FS+DMRMap is the same as that

of FS. However, there are some discrepancies in a number of frames. It can be ob-

served that MV xmax(d̂) of FS+DMRMap cannot follow the increase in MV xmax(d̂)

of FS. This is because ASR decision of FS+DMRMap makes use of depth/motion

relationship in the reference frame. It implies that the ASR at particular d̂ of the

current block cannot be larger than MV xmax(d̂) of the reference frame.

The ASR decision based on the DMRMap of the reference frame is also plotted

in Figure 5.6 (the blue curve marked with circle dots). It is clearly shown that the

resultant ASR is non increasing along frames due to the use of the DMRMap in the

reference frame. This situation is more obvious in Figure 5.7 where MV xmax(d̂) at

d̂ = 14 in “Newspaper” is shown. For instance, starting from frame 20 in “News-

paper”, there is motion of an object along the z-axis, which results in reducing the

temporal correlation of DMRMaps between the current and reference frames, as

discussed in Section 5.3. As a consequence, FS+DMRMap may not catch the ac-

tual motions for the moving object, and may lead to RD deterioration. By contrast,
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FS+DMRMap+Scaling utilizes ρ(Bi
t) to provide additional flexibility in ASR deci-

sion for fitting the maximum texture motion. Figure 5.8 and Figure 5.9 illustrate

how ρ(Bn
t ) can contribute the prediction accuracy of ASR. From these figures, it

can be seen that FS+DMRMap+Scaling is able to catch up with MV xmax(d̂) and

MV ymax(d̂) of FS along frames. It is due to the reason that the derivation of ρ(Bn
t )

from (5.13) complies with the influence of 3D-to-2D projection such that the ASR

can be enlarged or diminished accordingly. In other words, ρ(Bn
t ) allows ASR to

rebound to a larger value, as depicted in Figure 5.8 and Figure 5.9.

The advantage shown in Figure 5.8 and Figure 5.9 of FS+DMRMap+Scaling

cannot be fully depicted in the results of Table 5.2 as the phenomenon in Figure 5.6

and Figure 5.7 only happens in a very short period of most sequences. However, both

of the BD-rate and BD-PSNR in Table 5.2 measure the whole sequence in which

the gain of FS+DMRMap+Scaling as compared with FS+DMRMap might be aver-

aged out. To demonstrate this benefit of FS+DMRMap+Scaling, Figure 5.10 further

shows the performance of FS+DMRMap+Scaling over FS+DMRMap in very short

time period. Figure 5.10(a) shows the variation of the average search complexity

depending on the SR size for all d̂ with respect to the frame number from 216 to

249 in “Poznan Street”. During this period, “Poznan Street” contains a car mov-

ing forward along the z-axis and a man walking away to the background, as shown

in Figure 5.11. Figure 5.12 also shows the corresponding depth maps that exhibit

remarkable changes in the moving object. Those changes in depth maps can be

detected by FS+DMRMap+Scaling. In contrast to FS+DMRMap, the SR obtained

by FS+DMRMap+Scaling is then enlarged or diminished accordingly, as shown

in Figure 5.10(a). This mechanism allows FS+DMRMap+Scaling to successfully
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Figure 5.10: Performance of FS+DMRMap+Scaling over FS+DMRMap (from

frame 216 to frame 249) in “Poznan Street”. (a) Search complexity in term of am-

plitude of search dimensions. (b) Resultant PSNR.
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(a) (b) (c)

Figure 5.11: Sample texture frames of “Poznan Street”. (a) Frame 216. (b) Frame

232. (c) Frame 248.

(a) (b) (c)

Figure 5.12: Sample depth frames of “Poznan Street”. (a) Frame 216. (b) Frame

232. (c) Frame 248.

provide a more adaptive SR for ME. Furthermore, PSNR results for coding “Poz-

nan Street” are plotted against the same series of frames in Figure 5.10(b). From

the results, FS+DMRMap+Scaling achieves a better quality of coded frames over

FS+DMRMap. The observed PSNR gains by FS+DMRMap+Scaling verify that the

proposed scaling scheme can provide a proper adjustment of the SR. In conclusion,

FS+DMRMap+Scaling can balance the SR prediction accuracy, the complexity of

ME, and the PSNR performance with the help of the scale factor ρ(Bn
t ).
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Table 5.4: Bjontegaard (BD) measurement and coding time change of TZS+LSMF,

TZS+MLELD, TZS+LAMASR and TZS+DMRMap+Scaling for ASR against TZS

in HEVC

Seq. QP 

TZS TZS+LSMF TZS+MLELD TZS+LAMASR TZS+DMRMap+Scaling

PSNR 

(dB) 

Bitrate 

(kbps) 

time 

(%) 

BD-PSNR 

(dB) 

BD-rate 

(%) 

time 

(%) 

BD-PSNR 

(dB) 

BD-rate 

(%) 

time 

(%) 

BD-PSNR 

(dB) 

BD-rate 

(%) 

time 

(%) 

BD-PSNR 

(dB) 

BD-rate 

(%) 

720p 

B
al

lo
o

n
s 37 38.36 337.13 

-12.07 -0.01 +0.11 -15.48 -0.01 +0.14 -14.24 0.00 +0.02 -48.92 0.00 -0.01 
32 41.24 594.51 

27 43.56 1171.83 

22 45.46 3131.69 

K
en

d
o

 37 39.64 372.91 

-16.90 0.00 +0.03 -17.46 0.00 +0.12 -25.92 -0.01 +0.30 -50.14 0.00 +0.13 
32 42.27 655.30 

27 44.44 1238.99 

22 46.29 2901.65 

L
o

v
eb

ir
d

1
 37 34.32 164.99 

-19.75 -0.01 +0.14 -29.30 -0.01 +0.26 -37.90 0.00 +0.02 -63.06 0.00 +0.10 
32 37.22 353.52 

27 40.30 831.54 

22 43.64 2073.03 

N
ew

sp
ap

er
 

37 35.71 242.02 

-21.80 -0.02 +0.34 -26.98 -0.02 +0.45 -22.34 0.00 +0.13 -54.50 -0.01 +0.24 
32 38.44 452.42 

27 41.09 960.82 

22 43.80 2710.81 

1080p 

P
o
zn

an
 

_
S

tr
ee

t 

37 35.09 462.86 

-14.89 -0.01 +0.16 -22.98 -0.01 +0.30 -21.36 -0.01 +0.64 -56.63 -0.01 +0.23 
32 37.47 1144.32 

27 39.94 4223.44 

22 43.24 24864.72 

P
o
zn

an
 

_
H

al
l2

 37 39.56 238.55 

-28.10 0.00 +0.22 -39.54 0.00 +0.04 -31.37 0.00 0.00 -54.25 0.00 +0.14 
32 41.07 502.38 

27 42.24 1562.84 

22 44.24 13723.17 

U
n
d
o
 

_
D

an
ce

r 37 32.99 1532.64 

-5.70 -0.01 +0.17 -12.82 -0.01 +0.15 -5.98 -0.02 +0.58 -55.56 -0.01 +0.19 
32 35.75 4327.77 

27 39.01 11262.33 

22 42.68 25270.98 

G
T

_
F

ly
 37 35.78 1169.20 

-26.96 0.00 +0.02 -20.29 0.00 +0.01 -30.14 0.00 +0.09 -42.61 0.00 +0.12 
32 38.41 3040.38 

27 41.08 7481.00 

22 43.84 16976.31 

Average: -18.27 -0.01 +0.15 -23.11 -0.01 +0.18 -23.66 -0.01 +0.22 -53.21 0.00 +0.14 

5.5.4 Results of Applying DMRMap to Fast TZS

Section 5.5.2 and Section 5.5.3 demonstrate that the proposed DMRMap-based ASR

algorithm with the scaling factor is successful in FS for complexity reduction. It is
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worth noting that our proposed algorithm for SR determination is not only applied

to FS, it is also compatible with other fast search algorithms in HEVC. To validate

this, our proposed ASR determination has been also used by the fast TZS in HEVC,

named as TZS+DMRMap+Scaling. TZS only searches points on the vertexes of

the blocks and the diamond patterns with various sizes inside the fixed SR. Instead

of using fixed SR in TZS, an ASR is determined by TZS+DMRMap+Scaling. It

is noted that the search strategy of TZS is only suited for a squared search window.

However, the DMRMap-based ASR algorithm can handle the horizontal and vertical

search ranges separately. For the sake of simplicity, based on (5.5) and (5.6), the SR

of the squared search window is then computed by max(Rxρ(Bn
t ), Ryρ(Bn

t )).

Table 5.4 shows the BD measurement and the coding time change of the pro-

posed TZS+DMRMap+Scaling compared to TZS. As far as TZS+DMRMap+Scaling

concerned, 42.61% to 63.06% coding time can be saved. Meanwhile, the coding

efficiency almost has no loss in terms of BD-PSNR and BD-rate (0.14% incre-

ment). The above result indicates that the proposed DMRMap-based ASR algo-

rithm is well compatible with the fast search strategy in HEVC and provides up to

around 53.21% time saving on average with only negligible loss in BD measure-

ments. Besides, Table 5.4 also shows the results when LSMF in [118], MLELD

in [117], and LAMASR in [119] are used in TZS for ASR determination as de-

noted by TZS+LSMF, TZS+MLELD, and TZS+LAMASR, respectively. On av-

erage, TZS+DMRMap+Scaling attains a better BD performance comprising 0.01

dB BD-PSNR gain and a range from 0.01% to 0.08% BD-rate decrement com-

pared to others. As shown in Table 5.4, TZS+DMRMap+Scaling can reduce more

coding time from 29% to 34%. It shows that an accurate ASR determination by
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TZS+DMRMap+Scaling is very crucial in the fast search ME process. The above

experimental results demonstrate the proposed ASR scheme based on the tempo-

ral correlation of depth/motion relationship maps and the 3D-to-2D projection can

figure out a more precise range for ME. As a result, motion vectors are obtained

quickly.

5.5.5 Influence of Q on DMRMap Accuracy

(c) 

(a) (b)

(d) (e) 

Figure 5.13: (a) Depth map, and (b) the corresponding texture of “Undo Dancer”.

Magnified regions with similar depth intensity values in parts of (c) hand, (d) leg,

and (e) head with different amplitudes of MVs.

In the following, we discuss the influence of the quantization factor Q on the

performance of the proposed DMRMap-based algorithm. As mentioned in Sec-

tion 5.2.2, Q is used to absorb depth variation in DMRMap construction due to the
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(a) 

(b) 

B 

A1 

A 

A2 

B1 

B2 

Figure 5.14: Illustration of DMRMaps with various Q, (a) Q = 8, and (b) Q = 16,

in “Undo Dancer”.
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noise of a depth map. Figure 5.14 illustrates two DMRMaps using different Q. For

the example in Figure 5.14(b) where Q = 16, group A is exactly equivalent to group

A1 and group A2 (Q = 8) in Figure 5.14(a) with the same largest MV. It implies that

the DMRMaps using Q = 8 and Q = 16 will not affect the accuracy of the mapping

processing. In contrast, group B1 and group B2 in Figure 5.14(a) of Q = 8 associate

with different largest MVs while they are combined to group B in Figure 5.14(b)

of Q = 16. It means that a large SR is required for large Q, but has a chance to

achieve better BD-rate in this scenario. It is also the tradeoff between the compu-

tational complexity and BD performance of the proposed FS+DMRMap+Scaling.

The evidence can be seen in Table 5.5 where the performances in terms of the BD

measurement and the coding time change for various Q are shown. As expected,

the complexity reduction increases as Q decreases for all sequences. Neverthe-

less, it only shows little variation for nearly all sequences, except “Balloons” and

“Undo Dancer”.

It is interesting to note that the depth map of “Undo Dancer”, as shown in Fig-

ure 5.13(a), is different from most of other sequences. Its depth map is computer

generated sequence using 3D models and its depth map is ground truth without

noise. Besides, the dancer contains diverse motion activities in different parts of his

body, as shown in Figure 5.13(b) to Figure 5.13(e). However, these different parts

of his body have very close depth values. The quantization process in the construc-

tion of DMRMap might merge parts with different motions of the hand, leg, and

head into one group if Q is large, which leads to the increase in the computational

complexity of “Undo Dancer”, as shown in Table 5.5. It also happens in “Balloons”

where the balloons in the foreground have similar depth values, but diverse mo-
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Table 5.6: BD performances and ∆time obtained by work in Chapters 4 and 5

Average performance

NDIWS in Chapter 4 DMRMap+Scaling in Chapter 5

∆time BD-PSNR BD-rate ∆time BD-PSNR BD-rate

(%) (dB) (%) (%) (dB) (%)

Applying on FS -95.03 -0.02 +0.64 -93.93 -0.01 +0.26

Applying on TZS -65.78 -0.02 +0.53 -53.21 0 +0.14

tions. In conclusion, for sequences having noiseless depth maps and complicated

motion with similar depth value, it is beneficent to adopt small Q for the DMRMap

construction.

5.5.6 Evaluation on Depth-based ASR with Spatial Correlation

in Chapter 4 and Temporal Correlation in this chapter

In Table 5.6, it shows the encoding performance with the proposed ASR applying

on both FS and TZS by NDIWS algorithm in Chapter 4 and DMRMap+Scaling al-

gorithm in this chapter, respectively. The proposed NDIWS algorithm utilizes depth

map difference to formulate decaying weights to the neighbouring blocks and the

ASR is their weighted sum on the MV amplitudes. It facilitates the search point

reduction on FS and TZS such that about 12% of encoding time can be saved as

compared to DMRMap+Scaling algorithm in this chapter. It is because spatial cor-

relation is specially suitable for obtaining a huge search points reduction in local

homogeneous area. However, it obtains a trade-off of larger RD deterioration since
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it could not follow the motion’s trail along time. Instead, from Table 5.6, DM-

RMap+Scaling algorithm in this chapter obtains better coding efficiency compar-

atively by around 0.4% of BD-rate decrement. It utilizes the temporal correlation

linkage which can attain more accurate motion locus along time since it always se-

lects the maximum probable motion ranges by the mapped MV amplitudes within

the same object by the depth intensity.

5.6 Chapter Summary

In this chapter, we have proposed an efficient ASR algorithm for HEVC to reduce

the computational complexity of ME by exploiting the temporal correlation between

the depth map and motion in texture. The new depth/motion relationship map (DM-

RMap) is then established, and is interpreted to control the ASR for each block.

DMRMap builds the linkage on the same object among consecutive frames which

reflects the probable range of movements for the object. Based on this, a depth inten-

sity mapping is contrived to form an asymmetric SR for ME. It results in reducing

unnecessary search points in ME. Furthermore, the impact of the depth intensity

variations of the block in 3D-to-2D projection on ASR has been analyzed. By tak-

ing this into account, a scale factor has been proposed to comply with the impact

of 3D-to-2D projection. The proposed DMRMap could be jointly worked with FS

and other fast search algorithms such as TZS in HEVC for complexity reduction.

Simulation results demonstrated that the proposed DMRMap-based ASR algorithm

is able to reduce up to 53% of average coding time among various sequences in fast

ME algorithms. In the meantime, the coding efficiency can be maintained compared
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to FS and TZS in terms of the BD measurement.

We further evaluate the encoding performance of the proposed ASR applying on

both FS and TZS by NDIWS algorithm in Chapter 4 and DMRMap+Scaling algo-

rithm in this chapter, respectively. It is found that NDIWS algorithm in Chapter 4

can save more encoding time comparatively up to about 12% but it induces around

0.4% of BD-rate increment, compared to DMRMap+Scaling algorithm in this chap-

ter.



Chapter 6

Conclusions and Future Work

In this thesis, we have investigated the motion locus prediction before the compu-

tational intensive motion estimation (ME) process in video coding. Intensive ME

search is not only required in remote reference frames in the hierarchical P (HP)

structure, but also adopted in the state-of-the-art HEVC recursive block partition-

ing structure. By the motion locus prediction, unnecessary motion search can be

skipped such that coding complexity can be reduced. In each chapter, motivation

in various applications were revealed followed by analyses in details. The proposed

algorithms with the corresponding rationales were introduced with illustrations. Af-

terwards, simulation results were provided with analyses and discussions. In this

final chapter, the main contributions of this thesis are summarized. After that, we

discuss some possible directions that could be the focus for future research.
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6.1 Contributions of the Thesis

Our contributions mainly include a comprehensive study with a series of literature

review in Chapter 2 and constructive proposals of (1) a new motion vector compo-

sition (MV composition) algorithm and its vector selection algorithm in the support

of the low-delay HP structure; (2) adaptive search range (ASR) determination by

depth-weighted sum of neighboring MVs; and (3) depth-based ASR adjustment by

depth/motion relationship maps. All the work are in the objective of computational

complexity reduction in HEVC.

In particular, our conclusions are:

• The adoption of a MV composition technique in the HP video coding structure

was explored in Chapter 3. This HP structure is used in many emerging video

applications like delay sensitive video conferencing. In the HP structure, the

prediction distance of frames in the low temporal layer is very large. To pre-

vent from using a large search window in ME at the low temporal layer, we are

the first to consider the MV composition algorithms in HP coding. Further-

more, the proposed Adaptive Multiple-Candidate Vector Selection (AMCVS)

in MV composition results in good capability to carry out ME to a remote

reference frame. Simulation results have proven that the AMCVS succeeds

in achieving better coding efficiency when ME is conducted on a temporal

remote reference frame in MV composition.

• Our results in Chapter 4 demonstrated that the proposed ASR algorithm is

able to reduce averagely 65% of coding time with negligible loss on BD per-

formance as compared to the fast test zone search (TZS) algorithm. The pro-
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posed ASR is determined by considering the absolute difference in average

depth intensity with neighboring blocks and formulating the weighted sum

of their MVs. It results in a complexity reduction in ME by this ASR. The

proposed ASR is compatible with full-search (FS) and other fast search algo-

rithms such as TZS in HEVC.

• A further usage of depth information in multi-view plus depth (MVD) video

was proposed in Chapter 5 to construct the depth and motion relationship map

(DMRMap) between frames. By making use of the novel DMRMap, the tem-

poral correlation between the depth map and motion in texture is exploited. It

constructs the linkage on the same object among consecutive frames. This can

give the object an expected search range. Afterwards, an asymmetric ASR for

ME is established for skipping unnecessary search. Furthermore, a scale fac-

tor has been designed to alleviate the impact of the depth intensity variations

of the block in 3D-to-2D projection on ASR. The proposed technique is well

suited for both FS and other fast search algorithms such as TZS in HEVC for

complexity reduction. Simulation results reveal that, compared to other fast

approaches, the proposed algorithm can reduce the complexity up to 53% on

average whereas the coding efficiency can be maintained.

• Having research and evaluation work in Chapter 4 focusing the spatial corre-

lation and Chapter 5 focusing the temporal correlation, it is further revealed

that using depth information to weight the spatial motion ranges could saving

more encoding time in Chapter 4. However, it obtains a trade-off of larger RD

deterioration. The work utilizing the temporal correlation linkage in Chapter 5
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can attain more accurate motion locus along time since it always selects the

maximum probable motion ranges by the mapped MV amplitudes within the

same object by the depth intensity.

• In our present work, several techniques have been investigated that can re-

duce the computational complexity of the new tools introduced in HEVC. We

believe that the results achieved in this work contribute remarkably to the ef-

ficient realization of the modern HEVC coding system.

6.2 Future Work

With the successful techniques proposed and implemented in this thesis and well

proved by a wide range of simulation works, we now give some opinions on the

trend for the future development of our related studies.

• The hierarchical B (HB) for random access, which includes the use of future

frames as a reference, is also well established in the HEVC and 3D video

coding standards. The motion vector composition technique in HP has been

investigated here. It is worth investigating the video coding scheme that the

HB structure is considered. While the MV composition problem becomes

much more complicated, a new vector selection algorithm should be pursued

in the future.

• In Chapter 5, we proposed a depth-based ASR adjustment algorithm by DM-

RMap construction. The proposed DMRMap-based algorithm is now inde-

pendent from quantization parameters (QPs), it only involves a fixed step size
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Figure 6.1: AMVP selection from MV among neighbouring blocks.

quantization, Q of average block depth intensity in DMRMap construction for

better classification. As mentioned in Chapter 5, Q in DMRMap construction

depends on the noise level of depth maps, the amount of complicated motion

activities in a same object, the diversity of motion activities in different objects

with similar depth values, etc. Since the QPs also play an important role on

HEVC mode decision for accuracy, some efficient ways to determine the QP

together with the Q in DMRMap construction will be studied. A challenging

research topic is to generalize our DMRMap under different kinds of depth

maps by a sequence-dependent Q. This could be a point for our immediate

future work.

• Advanced motion vector prediction (AMVP) is another key inter prediction

coding tool adopted in the emerging HEVC standard, which provides great

coding efficiency. AMVP in HEVC is the extension work of finding the

predictor in SKIP mode of H.264. In HEVC, MV for SKIP mode of a cur-

rent block is equal to the advanced motion vector predictor (AMVP) [138],

i.e. MV skip
cur = AMV P . The AMVP is selected from one of the candidates
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Figure 6.2: Geometric relationship of the projected dimension change by depth in-

tensity difference between two objects.

who obtains the least RD cost among a set of neighboring blocks [139]. The

AMVP candidates from neighboring blocks are NMV 0, NMV 1, NMV 2,

and NMV 3 as shown in Figure 6.1. In SKIP mode, the current block uses the

identical MV amplitude by AMVP directly. However, if the current block and

the AMVP block are in different distance in a 3D space, the projected blocks

of them will be in distinct dimensions as illustrated in Figure 6.2.

From Figure 6.2, assume there are two objects, Ocur and Oref with their cor-

responding distance from the camera in the real 3D space, Zcur and Zref, re-

spectively. When they have the same dimension in the real 3D space denoted

as x3D
cur = x3D

ref = r, the projected dimension lengths are formed on the 2D

image plane as depicted in Figure 6.2. Their projected dimension lengths of

Ocur and Oref are represented by x2D
cur and x2D

ref respectively. By this geometric
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relationship, even the same dimension of objects are applied in the 3D space,

two objects with different distance from camera (i.e. Zcur ̸= Zref) will form

different projected dimension lengths (i.e. x2D
cur ̸= x2D

ref ) in the 2D image plane.

If the neighboring blocks have different depth intensities, AMVP should not

be directly used for the predictor of the current block. Thus, extending our

depth-based HEVC framework to AMVP will be of great interest to the re-

search community and industry.

• Previous work in merge mode [140] has shown that redundant sets of coding

information like motion vectors can be successfully reduced by merging the

leaf nodes of the particular quad-tree structure. Following the same concept of

using depth information, the study of merge mode together with depth maps

should provide an enhanced performance of HEVC.
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