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Abstract

Quantum information science is a rapidly growing research area. It concerns infor-
mation theory that makes use of quantum nature of the microscopic world. In reality,
quantum systems are vulnerable to disturbance from an external environment, which
can lead to decoherence in the system. Thus, the system must be protected from the
environmental noise to keep information stored in the quantum registers. In order
to realize a working quantum computer and dependable quantum information pro-
cessing, researchers and engineers have to overcome this difficulty. One of the most
promising candidates for overcoming decoherence is Quantum Error Correction. The
idea of quantum error correction is to protect quantum information from errors due
to decoherence and other quantum noise during the transmission of information in
quantum channels. One fundamental question of quantum error correction is the
existence of quantum error correcting code for a noisy quantum system. Moreover,
constructing practical and operational quantum error correcting schemes in actual
quantum computing is of great interest to quantum information scientists.

In this thesis, stabilizer codes and a scheme for constructing recovery channels
without error syndrome detection are studied. The motivation for construction of
recovery channel without error syndrome detection is also given. We first review
some basic concepts on stabilizer groups and stabilizer codes. In particular, we
consider theories and principles involved in the construction of encoding circuits from

the generators of stabilizer group, and propose a new procedure to derive recovery



channel for a well known quantum code, the [n, k, d] code.

First, an algorithm to obtain the generators for a stabilizer code and the cor-
responding computational basis codewords defined in terms of Pauli operators are
reviewed and illustrated in detail. Examples are given to demonstrate the rela-
tion between the X — and Z— matrices of generators of stabilizer group and the
corresponding encoding circuit. Then based on the general framework of operator
quantum error correction, we provide a general scheme on the construction of en-
coding and decoding circuits for the [n, k, d] codes. Finally, a detailed procedure to
construct the recovery channel using encoding circuits and encoded computational
basis codewords are demonstrated for [5, 1, 3] code and [8, 3, 3] code step by step as
examples, with heuristic explanations based on necessary and sufficient conditions
for quantum error correction. Possible future study and open problems will also be

mentioned.
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Chapter 1

Introduction

1.1 Introduction to quantum error correction

Quantum information science concerns information theory that makes use of quan-
tum nature of the microscopic world. In quantum information theory, the elementary
unit of information is represented by a quantum bit, which has two basic states |0)
and |1). The two states forms a computational basis. And a quantum bit can be
in any superposition state of the two basic states, which is [¢) = a|0) + F]1), «
and 8 are complex numbers satisfying |a|? + |3]?> = 1. Therefore, the qubit can be
in a continuous state, and contains classical bit 0 and 1 with probability a and (£
respectively.

In reality, quantum systems are vulnerable to noise from the environment, which
may leads to errors and decoherence in the system. Thus, the system must be pro-
tected against from noise to keep information uncorrupted in the quantum registers.
Further, we want to achieve fault-tolerant quantum computation that can deal not
only with noise on stored quantum information, but also with faulty quantum gates,
faulty quantum preparation, and faulty measurements. In order to realize a work-
ing quantum computer and dependable quantum information processing, researchers
and engineers have to overcome this difficulty. One of the most promising candidates

is Quantum Error Correction(QEC) (see [1, 17, 15, 16, 14, 25, 29, 30]). The idea of



QEC is to protect data against from the noise by encoding the data together with
some ancillary(redundant) states, so that even if the combined data is corrupted by

the noise, there is still enough redundancy for the data to be recovered/decoded.

In quantum information theory, a quantum code C' is a subspace of the state
space of a quantum system. For a given code, the set of detectable error operators
are closed under linear combinations. So one only has to check the elements of a
linear basis for the space of error operators. In quantum error correction, the main
question is that for given a set of error operators, when there is a code such that all

the errors can be detected and corrected.

Stabilizer code is one of the schemes to correct error in quantum system, in
particular to tensor products of Pauli operators (see [49]). Given a stabilizer code, it
is easy to determine which Pauli product errors are detectable, and can be interpreted
as the classical linear code. A stabilizer code of length n is a subspace of state space
of n qubits that is characterized by the set of products of Pauli operators leaving
each state in the code invariant. A quantum code with stabilizer S will detect all
the errors that are either in S or anticommute with some element of S. To perform
the error correction operation for a stabilizer code, one can measure the eigenvalues
of each generator of the stabilizer. There are several ways to describe the stabilizer.
One is to use binary vector spaces, which is often written as (n — k) x n binary

matrices. Another approach is connected with the classical theory of codes over the

field GF(4) (see [4]).

Another key issue in quantum error correction is fault tolerance operation. A
fault tolerant operation is an operation for which a single operational error can only
product one error within a single encoded block of the code. Operations for which
each qubit in a block only interacts with the corresponding qubit, either in another

block or in a specialized ancilla, are called transversal operations. Any transversal



operation is fault tolerant. For example, if one measures the operator o,,0,, in the
Shor’s nine-qubit code, the eigenvalue is +1 if the first two qubits are the same, and
—1 if they are not. If the first two qubits interact with the same ancilla qubit |0)
by CNOT operations, then a single phase error on the ancilla qubit could produce
errors in both data qubits, which produce two errors in the block. So, this procedure
is not a transversal operation. In order to have transversal operation, one has to pick
the superposition state |00)+ |11) as the ancilla state and perform CNOT operations
from data qubits to ancilla qubits. Then measuring the ancilla qubits will tell us
the parity of the data qubits, but one won’t deduce the state of the data, that is,

measuring the ancilla will not destroy a superposition of these two states of the data.

Bounds for the quantum error correcting codes, which is related to the efficiency
of an error correcting code of a given block size, is also of interest in the quantum in-
formation community. One of the upper bounds is quantum Hamming bound, which
can be used to determine the efficiency of nondegenerate codes. For the degenerate
codes, one has Knill-Laflamme bound. In classical coding theory, researchers used
the weights of codewords, which contain a lot of information. The distribution of
weights is often encoded in coefficients of polynomials, and algebraic relations be-
tween the polynomials can be used to set bounds for the classical codes. Part of this

idea was adapted to give bounds on the quantum error correcting codes too.

1.2 Literature review

Quantum error correction, which is necessary for preserving coherent states against
noise and other unwanted interactions with the environment, has been studied by
many researchers (see [3, 4, 29, 53]). The first example of quantum error-correcting
code was constructed by Shor[52]. Later, Calderbank and Shor[5] and Steane[55]

proposed a general approach to construct quantum codes.



In [5], Calderbank and Shor brought up the idea of good quantum error correcting
codes. They proposed that a quantum error correcting code should be a unitary
mapping of k£ qubits into a subspace of the quantum state space of n qubits such
that when any ¢ of the qubits go through arbitrary decoherence, the resulting n
qubits can be used to reconstruct the original quantum state of the encoded qubits.

In [3], Entanglement purification protocols(EPP) and Quantum error correcting
code(QECC) were studied to protect quantum states from being corrupted by the
environment. The difference and connection were given by the authors to show that
in certain condition, EPP can be transformed into QECC and vice versa. They also
showed that certain noisy channel can be used to realize trustworthy transmission of
quantum states with two-way communication, but not practical only with one-way
communication.

In [53], Steane gave out a new type of uncertain relation concerning the information-
bearing properties of a discrete quantum system, which places a limit on the largest
minimum distance simultaneously achievable in two different basis. He also showed
that a pair of states which are microscopically different can form a superposition in
which the interference phase is measurable.

In [29], Knill and Laflamme developed a general theory of quantum error correc-
tion based on encoding states into larger Hilbert spaces. They obtained necessary
and sufficient conditions for the recovery of an encoded state after corruption by an
interaction. The authors also brought up a recovery-operator-independent definition
of error correcting codes and related this definition to four other: the existence of
a left inverse of the interaction, an explicit representation of the error syndrome
using tensor products, perfect recovery of the completely entangled state, and an
information theoretic identity.

In [4], Calderbank, Rains, Shor and Sloane transformed the problem of find-
ing quantum error correcting codes into the problem of finding additive codes over

4



the field GF'(4), which is self orthogonal with respect to some trace inner product.
Specifically, the authors transformed the problem into finding a particular type of
binary space first, and then showed that these spaces are equivalent to a certain class
of additive codes over GF'(4). The authors also gave out upper and lower bounds on
cyclic, self dual codes and other codes.

In [51], Schumacher and Nielsen studied the properties of noisy quantum channel,
and gave a necessary and sufficient condition for perfect quantum error correction to
exist,.

A universal quantum computation on decoherence free subsystem(DFS) is ex-
amined in [24], and also a necessary and sufficient condition for the existence of
decoherence free (noiseless) subsystem in Markovian regime was derived for the first
time. A stabilizer formalism for DFSs was also given which allows us to understand
these in their dual role as quantum error correcting codes explicitly.

Recently, Li et al. studied quantum error correction for general noise and fully
correlated noise in [34, 35, 36]. They proved that although it is hard to physically
realize quantum error correction without error syndrome measurement, they can im-
plement the method called Operator Quantum Error Correction(OQEC) by applying

unitary gates followed by a partial trace operation.

1.2.1 Contributions of the thesis

Based on the theory given by Li et al and other scholars on OQEC(see [32]), we
implement this scheme on the well known [n, k, d] codes. In particular, we provide
a general scheme on the construction of encoding and decoding circuits for [n, k, d]
codes and give detail examples for [5,1, 3] code and [8,3,3] code. Contrary to the
traditional approach to error correction, the scheme saves (n — k) ancillary qubits

that are used in the error syndrome detection.



1.2.2 Research Methodology

This research is based on the quantum theory, coding theory and operator theory. We
first compared the results in classical error correction and quantum error correction.
We also studied and summarized the existing quantum error correcting codes, and
proposed some general rules for effective construction of quantum error correcting
codes. We also studied the possibility to construct some new codes that can improve
the flaws of existing quantum error correcting codes.

We investigated mechanisms that can be used to control the quantum error and
find numerical /computational algorithms of detecting and correcting quantum error,
and constructing error detection and correction subsystem. We also studied prac-
tical methods for recovering error(noise) generated from various quantum systems.
For example, quantum systems with collective noise as well as quantum systems
influenced by errors from certain Pauli group, and other realistic quantum systems
proposed by experimentalists are studied in detail. Each target quantum system is

examined carefully and we mainly focus on the following directions.

1. study the existence of quantum error correcting code for target quantum sys-

tems.
2. find simple/recursive methods for constructing correcting codes.
3. decide simple quantum encoding and decoding circuits for the target systems.
4. implement these models/circuits in experiments with experimentalists.

1.2.3 Structure of the thesis

The remains of the thesis go as follows:

e Chapter 2 introduces the background and basic concepts of stabilizer codes

and we use examples to interpret the structure of stabilizer codes and how to

6



construct stabilizer codes. We will introduce the encoding scheme first given
out in [7]. and try to explain this algorithm in a more straightforward way,
which will help us in constructing the recovery channel for several specific

stabilizer codes.
e Chapter 3 introduces another approach to quantum error correction.
e Chapter 4 will give out some recovery channel for [5, 1, 3] code.

e Chapter 5 will give out a recovery channel for [8, 3, 3] code and we will illustrate
and prove that there indeed exists a realizable algorithm to construct a recovery

channel for a stabilizer code as long as this stabilizer code exists.

e Chapter 6 will conclude our present work and discuss the possible directions

and approaches to apply the idea to a more general stabilizer code.

e In Appendix A, the Matlab codes used for searching recovery operations of

[5,1,3] and [8, 3, 3] codes in Chapters 4 and 5 will be presented.

Apart from the topic of stabilizer code and quantum error correction, the author
also works with his supervisor and Dr. Zejun Huang on the topic of linear pre-
server raised from quantum information science. In particular, they gave a complete

characterization for linear maps ¢ : M, ...,, — M,,...,, satisfying
rank p(A; ® - ® Ag) =rank (A1 ® ---® A) forall A, e M, i=1,...,k

for only rank one matrices A; ®---® Ag with A; € M,,,. The detail will be presented

in Appendix B, see also [22].






Chapter 2

Stabilizer Codes

The purpose of this chapter is to review the basic theories on stabilizer codes. We
will give an detailed description of how to construct the generators of stabilizer codes,
how to transform the associated matrices of generators into standard forms and how

to use the standard forms to construct the encoding circuit.

2.1 Basic concepts

Let’s recall some basic concepts first.

Definition 2.1. We can describe a classical system by a finite set of states denoted
by I'. A quantum system can be described by a Hilbert space denoted by T with a
standard orthonormal basis {|¢) : ¢ € T'}.

If a quantum system is in the state |¢;y with probability p;, we say such a system
1 in a mizved state, while a system whose vector is uniquely specified is said to be
in a pure state, and a pure quantum state is a unit vector |¢) € T defined to be
within a phase factor ¢ such that |c| = 1. In other words, a quantum state is a one-
dimensional subspace in . And the evolution of a quantum state in a given time
interval is given by |¢) — U |p), where U is a unitary operator.

A density matriz is a convexr combination of pure states in general, and it can be

denoted by



p =21 pildi){dil

A quantum system composed of two separate components is called bipartite. And
a state |¢p) = > pilP1i) ® |p2i) € H, whereD < p; < 1, p; = 1, decomposed as
a sum of tensor products is called a separable state. Non-separable states are called

entangled states.

Definition 2.2. Let H, be a 2"—dimensional Hilbert space(n qubits), and let C
be a k—dimensional subspace of H,. Then C is an (n,k) (binary) quantum error
correcting code(QQECC') correcting the set of errors € = E, if and only if there exists
R such that R is a quantum operation and R o E,(|Y)) = |¢) for all E, € € and all
[y e C. R is called the recovery and serves to actually perform the correction of the

state.

Definition 2.3. Given a finite dimensional complex Hilbert space H, a quantum

channel can be viewed as a trace preserving completely positive linear map
®: B(H) — B(H),
with the operator sum representation

®(p) =Y., EupEl with Y, ETE, = 1.

And we are interested in a general evolution of a quantum system, which is
described by quantum operation. One kind of quantum operation is a unitary time
evolution of a closed system.

Let ps be a density matrix of a closed system at ¢ = 0 and let U; be the time

evolution operator. Then the quantum map € is defined to be

e(ps) = UtpsUtT'

10



Definition 2.4. A map which describes a general change of the state from ps to €(ps)
18 called a quantum operation.

A quantum operation maps a density matrixz to another density matriz, such an
operator 1s called a superoperator.

A map A which maps a positive operator acting on Hs to another positive operator
acting on Hs s said to be positive. Moreover if its extension A\p = A® I,, remains a
positive operator for an arbitrary n € N, then it is called a completely positive map.

And a quantum channel is a completely positive trace preserving map.

2.2 Stabilizer Codes

2.2.1 Introduction

In general, a quantum error correcting code is a subspace of a Hilbert space designed
so that any of a set of errors can be corrected by an appropriate quantum opera-
tion.(see [30, 53]) A quantum code C' can detect an error operator E if for every
quantum state |z) in C, PE|z) = c¢|z) , where P is the operator projecting the

quantum system onto C' and c is a constant depending on F.

Researchers are interested in codes that correct any error affecting ¢ or fewer

physical qubits. First we introduce Pauli matrices.

R R P

And let us consider tensor products of the Pauli matrices. Define the Pauli group
P, as the group consisting of tensor products of I, X,Y and Z on n qubits, with
an overall phase of +1 or +i. The weight wt(P) of a Pauli operator P € P, is the
number of qubits on which it acts as X,Y or Z. Then the Pauli operators of weight

t or less form a basis for the set of all errors acting on up to t or fewer qubits, so a

11



QECC which corrects these Pauli operators will correct all errors acting on up to ¢

qubits.

Now we will introduce the concept of [n, k, d] code.

Let’s consider the following local operators on n-qubit system
E=01®0® - -®o, witho; e {I,X,Y, Z}.

The weight of the operator E is defined to be the number of states o; where it is
different from I, i.e. w(E) = #{j : 0; # I}.

The distance between two operators F, and Ej is defined to be
d(E,, Ey) = w(E!E).

Let S be a set of commuting Pauli matrices in the n-qubit system and {M;, M, ..., M}

be the generators of the set. Let

Vi=A{lb): M) =[¢), VM e 5}.

The generators {M;, M, ..., M,} can distinguish E, and Ej if for any 1)) € V,3M € S,

s.t. (Y| EIME, [y # (| EJM E, [¥).

The subspace V of C*" with stabilizer S is an [n, k, d] code if

L. dim(V) = 2%,

2. {My, My, ..., M,} can distinguish E, and Ej, for any E,, E, with d(E,, E}) < d.
2.2.2 stabilizer group S

A QECC that encodes k qubits into n qubits is through an encoding map from the

k—qubit Hilbert space onto a 2¥—dimensional subspace of the n—qubit Hilbert space

12



HZ, and a QECC is identified with the image space C;. In quantum stabilizer codes,
C, is identified with the unique subspace of F}' which is fixed by the elements of an

Abelian group S.

Theorem 2.1. ([29]) A quantum code C, can be extended to an error correcting code

if and only if for all encoded computational basis |i), |j)(i # j) and error operators

E,, EyeE:

GIELEiy = (IEIE]j), (2.1)

and

GETEy|7) = 0. (2.2)

Proof. Here we give a simple proof for the necessary condition, since C, can be
extended to an error correcting code, which implies there exists a trace preserving
recovery operation R such that for each E, € F and R, € R, R.E, = 7,..I, and since

R is trace preserving, R, should satisfy
> RIR, =1.
Thus,
GIELEy[j) = GIEL Ey]5)
= Z@EZRIRTEZJW
= > Cibvamli) (2.3)
= O ¥ m) 05

= Al

13



Aap 18 independent of computational basis. And the Kronecker delta guarantees

that (2.1) and (2.2) are satisfied. O

Remark 2.1. Conditions (2.1) and (2.2) can be summarized into one:

GIETEy|5) = Capbs;. (2.4)

Define matrix C' = (Cyy), then it is not hard to see that C'is a Hermitian matrix.
A quantum error correcting code is said to be degenerate if C' is singular. And a
quantum error correcting code has distance d if all errors F; € E of weight less than
d satisfy (i|E|j) = Cgdij, while there exists at least one error that does not satisfy

this condition.

Remark 2.2. C; can detect an error E if

GIE[j) = Crbyj. (2.5)

The most widely used mathematical structure gives a class of codes known as
stabilizer codes(see[4, 15]). They are less general than arbitrary quantum codes, but

have useful properties that make them easier to work with than the general QECC.

Definition 2.5. Let S < P, be an Abelian subgroup of the Pauli group that does not
contain —I or +il, and let C(S) = {|¢) : Py = |v), VP € S}. Then C(S) is a

stabilizer code and S is its stabilizer.

Because of the simple structure of the Pauli group, the order of any Abelian
subgroup is 2" % for some k and can easily be specified by giving a set of n — k
commuting generators.

The codewords of the QECC are by definition in the +1-eigenspace of all elements
of the stabilizer. An error E acting on a codeword will move the state into the —1-
eigenspace of any stabilizer element M which anticommutes with E:
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M(E[¢)) = —EM[p) = —E ).

Thus, measuring the eigenvalues of the generators of S will tell us information
about the error that has occurred. The set of such eigenvalues can be represented
as an (n — k)—dimensional binary vector known as error syndrome. Note that error
syndrome does not tell us anything about the encoded state, but only about the

error that has occurred.

We use [n, k,d] to denote a quantum error correcting code, and use [[n, k,d]] to
refer to a stabilizer code. The middle term k refers to the number of encoded qubits,

and not the dimension 2* of the encoded space.

Notice that S* is the set of Pauli operators that commute with all elements of
the stabilizer. They would appear to be errors that cannot be detected by the code.
However, the theorem specifies the distance of the code by considering S+\S. A
Pauli operator P € S cannot be detected by the code, but there is no need to detect
it, since all codewords remain fixed under the action of P, making it equivalent to
the identity operation. A distance d stabilizer code which has nontrivial P € S with
wt(P) < d is called degenerate, whereas one which does not is called non-degenerate.

The stabilizer group S can be constructed from a set of n—k operators g1, g2, - - - , gn—&k
known as the generators of S. Each element can be expressed as a unique product

of the generators.

_p1,.D2 Pn—k
5=¢g19y " Gpp »Di € L.

We notice that each generator has order 2, i.e. g? = 1, which means that S is
isomorphic to FQ"”“, which is the vector space of n — k components, where F' is the
field containing 0,1, —1, and so the order of S is 2" *. And notice that S does not

contain the elements —1 or +:/.
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Definition 2.6. Let C, be a stabilizer code with generators gi, g2, -+ , gn—r and let
e be an error in the Pauli group, that is, e € G,,. The error syndrome S(e) is the bit

string l = 11,1y l,_, where l;,i =1,--- ,n—k are determined by
0, 1 | =0
L ?f le, gi] (2.6)
17 Zf {e7gi} = 0.

Remark 2.3. 1. Any error which has a nontrivial error syndrome must anti-
commute with a subset of the generators of S, and for such error, it satisfies

(i eljy = 0 for all computational basis codewords |iy and |j),i,7 =0,--- ,n—1.

2. Let E = {E,} be errors in G,, for which S(EIE}) # 0 for all E, and E, € E,
they satisfy (i| EIEy |j> = 0, for all basis codewords |iy and |j).

3. Errors which have a trivial syndrome S(e) = 0 commute with all the generators.

The set of errors e € G, which commute with all the generators is defined to

be the centralizer of S, denoted by C(S).

Theorem 2.2. (/14]) Let E be an error and S be the stabilizer group for a stabilizer
code. If S contains an element s that anticommutes with E, then for all |c), |¢') € C,,

E|c) is orthogonal to |):
(| Eley =0.

Proof. Since s anticommutes with E, we have

Elc) = FEs|c)
(2.7)
= —sEle),

and
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(| Ele) = ={d]sE]c)

=—{(d|Elc).

Therefore, (| E'|c) = 0, for all |') € C,.

(2.8)

]

Theorem 2.3. ([1}]) Two errors ey, es € G,, have the same error syndrome if and

only if they are in the same coset of C(S5).

Proof. By the definition of C'(S), if e; and eq are in the same coset, then there exists

an element ¢ € C'(S), such that e; = eyc, and ¢ commutes with all the elements in S,

€19; = €2Cg;

= €23;C
= (1) gieac
= (_1)li29i617

which means if [;? = 0, i.e. e2g; = gi€2, €19; = gieq, that is, [

i.e.eagi = —gie2, €19; = —giey, that is [f* = 1.

(2.9)

— 0, and if [ = 1,

If e; and ey have the identical error syndrome detection, we have [[* = [{2,i =

1,---,n— k. Since
e1g; = (—1)4 gieq,
and
192
€209; = (_1) v gi€a,
we have

€1629; = (_1>li2€1gi62

€2

= (-1 gieres

17
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Since [;* = [?, we get ejeag; = gie1ea, thus, ejes € C(5), that means there exists
an element denoted by g such that e;es = g, and ey = eig, e1 has order 2, e5 = €19,

which means e; and e are in the same coset of C(S). O

We define the distance of a QECC to be d if all errors e; € G, of weight less than
d are detectable, and there exists at least one error of the weight d is non detectable.
Non detectable errors are in C(S)—.S, a QECC have distance d if and only if C'(S)—S

has an element of weight d and does not contain errors of weight less than d.

Theorem 2.4. (/14]) A quantum stabilizer code C, with distance d is a degenerate
code if and only if its stabilizer S has an element of weight less than d, excluding the

tdentity element.

Proof. By the definition of degenerate code, the coefficient matrix C' is singular, and

there exists a linear combination F' of errors E; such that
F iy = 0, for all basis codewords i),

here F' = ), U,E, .U = (U,) diagonalizes C. suppose F' = E; — E,, then (E; —
E,) |y = 0. Thus By |i) = E, |i), that is EJE, |i) = [i), so E]E, € S. Since E; and
E, are correctable, (i| E1Ey|j) = C126;;, and thus E]F, is detectable, since C, has
distance d, thus the weight of ElE, is less than d.

Conversely, if s € S has weight less than d. Take s, # s and let s,s = s, then
sisy € S, s0 slsy|iy = |i), that is, s, ]i) = sp]i), 50 (54 — 8p) iy = 0, for all basis
codewords |i). And s, — s is correctable, and so (i| (s, — $3)T (54 — 83) [7) = 0, which

means coefficient matrix C' has an eigenvalue 0, so C; is degenerate. [

Remark 2.4. Suppose C; is a non degenerate QECC. And let E, and E be two
linearly independent errors with error syndrome S(E,) and S(Ey) respectively. We

can see that E} E, has weight less than d, and it is not in S since C,, is non degenerate,
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and it is not contained in C(S)— S, since the distance is d, so ElE, € G,, —C(S), so
it anticommutes with at least one generator. Thus, S(E,) # S(Ey), that is, linearly

independent correctable errors have different error syndromes.

The phenomenon of degeneracy has no analogue for the classical error correcting
codes, and makes the study of quantum codes substantially more difficult than the

study of classical error correcting codes.

An example of a stabilizer code is the five-qubit code, a [[5,1,3]] code whose

stabilizer can be generated by
XRZI®ZIRQXR®I,
IRX®RZI®RZ® X,
XRI®RXRZR® Z,

ZQXRIR®X®Z.

The five-qubit code is a non-degenerate code, and is the smallest possible QECC

which corrects one error.

It is useful to consider other representations of stabilizer codes. For instance,
P € P, can be represented by a pair of n—bit binary vectors(px|pz) where px is 1
for any location where P has an X or Y tensor factor and is 0 elsewhere, and pz
is 1 for any location where P has an Z or Y tensor factor and is 0 elsewhere. So
two Pauli operators P and () are commutative if and only if px e ¢z + pz @ qx = 0.
The the stabilizer for a code becomes a pair of (n — k) x n matrices. Another useful
representation is to map the single-qubit Pauli operators I, X, Y and Z to the finite
field GF'(4).

According to the principles of error syndrome detection, the stabilizer codes
should satisfy three conditions.(see [7])
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1. All the columns of the X—, Y— and Z—matrices should be pairwise different.
2. The sum of X—, Y— and Z—matrices should be all one matrix modulo 2.

3. The X—, Y— and Z—matrices should satisfy (Y +2)X'+(X+2)Y'+(X+Y)Z'

should be zero matrix modulo 2.

Definition 2.7. Define the X —vector of X —matrix of of the generator
gi = girgi2 "+ " Gin

as the n—"bit vector, denoted by X,,, where

1, ifg;=XorY
(X)) = o (2.11)
0, ifgij=1orZz.
The Z—wvector of g;, denoted by Z,,, is defined as
1, ifgii =2 orY
(Zg.); = Y (2.12)
0, ngijZIOT'X.

And the X —matriz of the generators g1, go, -+ , gn—r 1S defined as the n x (n —k)

matriz, denoted by X,, where

(2.13)

1, ifg,=XorY
(Xg)ji = LY
O, ’Lfgij:[OT'Z.

that is , the columns of the X —matriz are X4, X,,, -+, X,, . The Z—matriz of

91,92, , gn—k, denoted by Z,, is defined similarly.

Example 2.1. Generators for an eight-qubit code protecting three-qubit states with

at most one error are as follows:
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T=XRXRXRIXRIXR®XRXRLX,
P=ZLQRIRIRQIQLIRIRILRZ,
B3=XQRIRX®IQRZRYRZRY, (2.14)
u=XRIRY R ZIXXQIRY ® Z,

B=XRZIQVIRYRIQY R3X® Z.

The X —matriz and Z—matriz for the generators (5.1) of the 8-qubit code are as

follows:
[1 0 1 1 1] [0 1 0 0 0]
10000 01001
10110 01010
1 0001 01011
XV_l 00 1 0’%“01 1 00
1 0101 01101
10011 01110
1 010 0] 01 1 1 1]

In general, generator whose X —vectors are linearly independent are called pri-
mary generators, and generators whose X —vectors are null are called secondary
generators. Generators can always be transformed so that they contain primary and
secondary ones.

To choose the code words, we add a set of seed generators(see [7]) to the n —
k generators in a way that seed generators and the n — k generators are linearly
independent and each seed generator commutes with each secondary generator.

Let My,--- My, Ly, -+, L,_r_p and Ny,---, N, be the primary, secondary and
seed generators, then each k—qubit basis state |cica - - ¢x) can be associated with a

quantum codeword,

\/L?b Z{al,aQ,--- an)ef01)? M{ll M;Z - Mélein N2C2 e N]jk|0>®n‘
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Then we can see that these 2% codewords are mutually different and orthogonal to
each other.

we can rewrite the expression as

(L4 My)(I+ My) -+ (I + My)N{'Ng2 - - Ng# [0y,

And we can see that the expression is stabilized by each primary M; and secondary

generators L;.

Example 2.2. For the 8-qubit code, the seed generators can be chosen as follows:

N=XQXQI®I®I®I®I®I,
Ny=XQIQX®I®I®I®IQI, (2.15)

Ny =XQRIQ~IQ~IRXRQIRIRQI.

Remark 2.5. Operators of the form \%(I + M) are not unitary, so we need explore
the properties of stabilizer codes to construct the efficient gate arrays, that is, the

encoding circuit.
The encoding mainly consists of two parts:
1. X-matrix and Z-matrix of the generators are converted into standard forms.

2. The set of generators of the stabilizer group are converted into a gate array

according to the standard forms of X-matrix and Z-matrix.

The procedure of encoding is presented in detail:

1. First, we can convert the X-matrix into one of the following form using Gaus-

o 7]
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and Z-matrix has no special form. Suppose it has the form:
B C
D FE

. Then we can apply the same procedure to the submatrix B of Z-matrix, and a

block matrix of the following form will be derived:

O B G
O I G
Dy, Dy E

then we analyze the rank of the first subblock O of this matrix, since the

counterpart of X-matrix for the columns that O lies in is

O
O
O

then we get that the submatrix Dy should not be O, otherwise the correspond-
ing generator is the tensor product of all I's. Thus we will get that the corre-
sponding generators don’t commute with those of last b columns. Therefore

the Z-matrix should be of the form:

B,
I G
D, E

. Then we set up the standard forms of the seed generators, and by the rule of
the relationship between the seed generators and the primary and secondary
ones we may have the following forms for the X —matrix and Z—matrix of the

seed generators:
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I O
Bf|.,|O
O O

we can verify that the generator of the stabilizer group are commutative. That
is why we set the X —matrix and Z—matrix of seed generators to be of the

form above.

T

I Bl Bl
BT I'|=[I BL O] | I |=Bi+B=0.
O D1 Dl

that means the seed generators and the secondary generators are commutative.

. Finally, we put the standard forms of the primary generators, secondary gen-
erators and seed generators together to form an augmented matrix. The aug-

mented matrices, denoted by X* and Z* have the following block matrix form:

I 0 A O B C
X*=|BT 0 A, z2=|0 I G
O O I O D, E

Remark 2.6. The reason why we want the submatriz I to be at the lower right of

the standard form of the X-matrix is that when we augment the standard form with

those of the seed generators, we want two different I’s to be at different positions of

the augmented matriz, so that when we apply the actions of the N’s and M’s to the

n-qubit, we want the two types of actions triggered by two sets of parameters, and

the other reason is that the X-matriz of the primary and seed generators should be

linearly independent.

In order for the two sets of parameters to act without interfering with each other,

we have to put two different I’s at two different positions.
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Example 2.3. The augmented X —matriz and Z—matriz for the generators (5.1) of

the 8-qubit code are as follows:

10001110 0001O0O00O0O0
01001101 00010101
00101011 00011010
e 11100111 7 _ 000111QO0O0
00001O0O0O0]|" 00011111
000O0O0OT1TTO0O 00011O0O0T1
00 00O0O0OT@O 0001O01T1OQ0
0000000 I 0001001 1]

The first three columns correspond to seed generators, the fourth column correspond

to secondary generators, and the last four columns correspond to primary generators.

2.2.3 Standard forms of encoded Pauli X’ and Z' operator

The principle that plays an important part is that encoded Pauli X* and Z? operator
should be commutative with generators of the stabilizer group S.
First we introduce an inner product which maps two vectors onto Fy, if v; =

(a1]b1), v2 = (ag|bs) € 3",
< v1,V9 >= aq ® by + ay ® by, here o denotes an inner product of two vectors. .

Let

<
I

o I,
I, O
then

< V1,Up >= vavg.

And let v((XHT) = (u ()T, ua ()T, us (i) vy (1)T, va ()T, v3(i)T), here uy(i)T and

v1(i)T have r components, uy(i)” and vy(7)” have n — k — r components, and u3z(7)T
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and v3(i)7 have k components, so that the partition matches the standard forms of
X — matrix and Z—matrix of generators.
By the rules of choices of encoded Pauli X¢ and Z¢ operators, they satisfy the

following conditions:
1< o((XD),0((¢7) >=0,j =1, ,n—k
2. < (X)), 0((29) >=0, j # 1,
3. < u((X")),v((X7)) >=0,
4. < o((X))0((27) >= 1,

The vector v((X*%)T) has 2n components, and there are n—k+k—1+k+1 equations,
so the components of v((X*)T) has n — k degrees of freedom.

We can put u1(i)7 = O and vy(i)7 = O, then

V(X)) = (0, ua (i), us (i) o1 (8)", O, v3(i) ).

Since
O Al Bl CVl
X=10 Al.Zz=|1 0,
O I D, F
we have

I Ag A1 E 02 Cl Ug(i) -0
O O O D I B -

<
)

Thus we can obtain the following equations:

Ul<i> + Aﬂ]g(i) + CQUQ(Z) + Clu;g(l) = O,
(2.16)

Let
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JT(X)
T(y2
X = v (X) =0 uf | of O o]

UT'(;);Y k)
By the conditions mentioned before, we have
xJx = 0.
That is

U1
@)
U3
O
Uz
Uus

O=[0 ui uf| of O vf] = ul vz + vl us.

We can put uz = [ and v3 = O. And put them back in (2.16), we can get
x=1[0 Bf I (Bfci+cCT) O O]

Next one can use X — and Z— matrices to produce the gate array of the encoding

circuit.
Generation of the encoding circuit

By the encoding rule of the stabilizer code, we need to construct a gate array to

realize the following operation:
lerca - ey ®|0)E — 3 MOME - MO NSNS -« Nk |0)Y2"
C1C2 - Ck {a1,az2, ap}e{0,1}° 1 M2 b V1 V2 k :
The operation above can be decomposed as a composition of two actions:
®d 1 ®r
L Jesez - e O™ — 75 Dy aa,oeantetonys 110277 ) @ [0)7 @ laray - ay)

2. Jeres ) ® [00% @ |aras - - ap) —> MEIMS2 - MPNENG - - - N [0)E"
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The process is basically made up of two steps:

1. First, [0)®" is transformed into \/L?b 2ar.an aplef0.1)® |@1G2 - ap), and the rea-
son why we have this operation is that in the second step, the set of qubits
{a;} play the role of control qubits, so that when the initial state is put into
the encoding circuit, the set of qubits {a;} can control the action of encoding

on the target qubits to realize the encoding.

2. Secondly, the |ajas - - ap) and |cies - - - ¢k ) are used to trigger the action of the

operator My My? --- M;® and Ny*Ny?--- Ng¥.

2.2.4 Explanation of generation of encoding circuit

The computational basis codewords have the following expression:
[6182 1) = €16182 - 0,
here ¢ is the encoding map and
10102 - Oy = XPXG - X4 |0)®F.
Thus we have another further expression for [0;d, - - - 05y as follows:
0102+ 8y = EXTX57 - X |0),
which is
(EXTEN(EXTET) - (6X €0,
and we can rewrite it as
(X (X2)% - ()% [0y,
We can show that the basis codeword |0>W is convenient to be defined as

00" = Dies 5100
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Since S is the stabilizer group and it can be generated by its n — k generators,

therefore we can write the codeword equivalently as follows:
[0 = TTZHT + 90)[0)°"
Therefore,
0162 8y = (X1 (X2)% - (XH)[0)",
that is,
(0102 6y = (X1 (X%)% - (XTI + 9)]0)%",

The encoding circuit we want to implement is to realize the action above with the
application of an appropriate sequence of single-qubit and controlled multiple qubit

operations to the initial n-qubit input state [0--- 00105 - - - I ).

1. First, we need to transform the expression so that the right hand side have an
item of [0 - - 08,0 - - - %y, which depends on the action of (X1)% (X2)% ... (X*)%,
and we can find out that the result is realized by the standard form of X7, j =

1,2, k.

The standard form of X7 is

v () 0

where ul(j) = (0---1;---0) and the subscript j shows the column number.
Since the first row corresponds to the X —vector and the second row corre-
sponds to the Z—vector, we find that X7,j = 1,--- , k, have the more specific

expression as follows:
XJ = (XT+1)U2,1(j)(XT+2)U2,2(j) .. (Xn_k)ulnfkfr(j)
< (202200 (27 ) Koy, (217)
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thus when (X1)%(X2)% ... (X*)% acts on [0)®", we can find that the last com-

ponent (X,,_x+;) can transform [0,,_g;) into |dp_+;)-

Denote (XTH)“?JU)(X,,+2)“2,2(j) . (Xnik)uznfkfr(j)(Zl)vl,l(j)<22)vl,2(j) e (Zr)vl,r(j)

by Uj, then we have
(X (X5 - (X 02 = ([T, 0570+ 061, -6
We can see that Ujdj is a controlled—Uj operation. And when §; = 0, the state

000162 - - - 6y won't change and when 0, = 1, Uj will act on the state.
. To acquire the basis codewords [d,0, - - - 05y, we still need to apply [ 17— (I + g;)
to (]_[f:1 Ujéj) |0---00103 - - - Ik, and we split the product into two parts:
r n—k
[T[i-,( + ¢;) and Hj=r+1(] +95)-

Notice that g;,# = 1,...,r, are primary generators and ¢;,i =r+1,...,n—k,

are secondary generators. Thus we can write the basis codewords as follows:
(6165 -+ 6ry = (X1 (X2)% - (X T (1 + 6) T2 (1 + 97100,

since X7,7 = 1,--- ,k are in C(S), i.e. the center of the stabilizer group.
We can interchange the order of the actions of (X1)%(X?2)%...(X*)% and

[T._,(I + g;), since they are commutative.

(0182 01y = [Ty (1 + ga) (X)) (X2)%2 - (XF) TR (1 + g)|0)%,

Since gj,j = 7+ 1,--- ,n — k are secondary generators, which means it fixes

105", we can write the codeword as follows:

(0105 -+ 01) = TTi_y (2 + i) (X1)H(X)% - (XF)*%[0,%",

30



Plugging
(X)) (X400 = (TT5-, T;) [0 0818, - - 61).
into the codeword, we can obtain
1002 0y = [Ty (1 + 0 (TTE, 0) [0+ 0810 - 8.
The standard form of g; is

[O"'lj"'o A1(j) A2(j)}
B(j) Ci(j) Ca2(4) |

Similarly, the first row corresponds to the X —vector and the second row corresponds

to the Z—vector. and
o T,X,ZB]'(J')
g5 = 1A j ;

here Tj is the operators that remain when we factor out X operator and Z operator

associated with qubit 7, and subscript j also points to the column number.
k k
~ 6]. ind 5j
(]+gj)(HUj )]0+ 00109 - - 0p) = (HUj )]0+ 08109 - - g
=1

i j

<

(2.18)

S ~ 65
+ X, 20O ] 0;7) 1006185 - 6

-

J

Il
—_

~ 5. (s
We notice that (H;?:l U;”) acts on qubit r +1 to n—k, and j < r, thus XjZ]B](J)

and (1_[;‘3:1 Uj(;j) can be exchanged, and
B;(j) —
X, 27790000105 0y = |0+ 1+ 00182 - ).

Therefore we have

k k
(I +g)[[0™)10--- 06186 = ([ [ U,

J=1 J=1

d;
)10+ 06185 - - - 65)

(2.19)



U,7)(0- 06,0, - 8, (2.20)

.:]?r

10105 - Oy = H[Jrgz

7=1
And we want to show that we can construct the basis codewords using Hadamard

gates and controlled gates. Let H; be the single qubit Hadamard gate acting on qubit
Js
H;[6;) = 55(10) + (=1)% [1)),4; = 0,1.

Therefore we have

~ 5
Hy([T0,")10-- 06,8560 = ([ [T, )H; 0+ 05,6 - - 6

i=1 j=1

<

(2.21)

, ‘)(‘0 00610 Oy + 0150810y - - - 5p)).

<
Il
—

~ 6
Here we use the fact that H; and Hle U;” are commutative since they act on
different qubits, and we have omitted the factor of \/Li
Finally, in order to obtain the basis codewords, we have to apply the controlled

quantum gates, that is, W; = Tjaj,j =1,---,r,0 = 0,1, then we find that

5T
e

k

~§]

Ui")[0--- 0010 - - - o) = W H J H |0--- 00102 -+ gy
7j=1

k
~ &
= W ([ TU;")(0- 0508185 6> + 0+ 1, 08,8 -+~ 6,))  (2.22)

=1

-] U, 0 +0016 -+ x) + Ti(] | U )00 150818, 0y -

j=1 7j=1
Since (H?Zl Ujaj) acts on qubits r + 1 to n — k so it won’t change the value of o,
which remains to be o in the first term and 1 in the second one. That means W; = I

in the first term and W; = T} in the second term. We can see that
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~ 6]. ~ 5j
WiH(TT_, U7 ) 10006105+ 6y = (T + g:) (T T5_, U;7) [0+ 06135 - 0.

So for the basis codewords, we have

r k
— ~ 6]
61020y = [ [(L+ g )(J [U;7)10-- 08105~ 61

i=1 j=1

(2.23)
r k
~ 5].
i=1 j=1

Remark 2.7. The aim s to construct the basis codewords using controlled quantum
gates, since in (2.19), the right hand side has two parts, which implies that we can
use controlled gates to realize the action, so that we can apply Hadamard gate first

then apply controlled gate.

The first step can be realized by use of Hadamard gate, and for the second step,

take [8,3,3] code for example, it can be realized by the following action:

e 11101 110] g
¢ 1000110 1| |e
cs 0100101 1| ]ecs
0 00100 1T11]|]o0
al” 10000100 0| |a
as 0000010 0| |a
as 000000O0T1O0]| |ay
| ay (0000000 1] [a4]

The second step is also crucial since it determines the transformation from a matrix

to a specific encoding circuit.

The matrix is exactly the augmented matrix of the generators of the stabilizer
group. So as long as we can acquire a set of generators of the stabilizer code, then
we can apply the procedure above to obtain the encoding circuit, which is the most

important part of quantum error correction.
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Remark 2.8. The k-qubits input may be at different positions, but the correspon-
dence between the action of the operators My, My, --- , My and the n-qubits should be
unchanged, that is the each operator is a tensor product of Pauli matrix, and each of

the component should act on the correspondent qubit.

2.2.5 Clifford Codes v.s. Stabilizer Codes

Definition 2.8. A finite group E is said to be an abstract error group if it has a

faithful irreducible unitary representation p of degree = |E : Z(E)|1/2.

In the special case of binary stabilizer code the error group is given by an extra
special 2-group and the representing matrices p(g) by tensor products of Pauli ma-
trices. The irreducibility of the representation ensures that any error acting on the
code space C? can be expressed as a linear combination of the matrices p(g), with
g € E. The faithfulness of the representation and the largest possible degree ensures
that the set of matrices {p(g)|g € T'}, where T is a set of representatives of E/Z(FE).

A clifford code is constructed with the help of a normal subgroup N of the error

group F and an irreducible character y of N.

Definition 2.9. Let ¢ denote the irreducible character corresponding to the repre-
sentation p of E, that is ¢(g) = Trpg for g € E. Suppose that N is a normal
subgroup of E and x is an irreducible character of N such that (x,¢n) > 0. Then
the Clifford code C' corresponding to (E, p, N, x) is defined to be the image of the

orthogonal projector
P = 50 S X(n ()
IN| ZineN X pn),

that is, a subspace of dimension trP of C¢. And if the normal subgroup N is abelian,
then the Clifford code is called a stabilizer code (see [27, 28]). And (x,én) > 0

implies that dim C > 0.
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The criteria to decide whether a clifford code is a stabilizer code or not is based

on the quasikernel of the group FE.

Let @ be a Clifford code with data (E, p, N, x). The inertia subgroup is
T ={ge Elx(n) = x(gng™') ¥ne N},

which consists of all the elements g of E such that p(¢)Q = Q. Let w(Irr(FE)) denote
the character such that [w, ¢r] # 0, and [wy, x| # 0. This is the character afforded
by the irreducible CT'—module (). The quasikernel

Z(w) ={g € E[ lw(g)| = w(1)}
consists of the elements g of E that act on the code @) by scalar multiplication. These
two groups characterize the errors in E that are detectable by the code.

An error p(g) is detectable by the code @ if and only if g ¢ T'— Z(w). The group

Z(w) can tell us whether the Clifford code @) is a stabilizer code or not.

Denote by A the set of all normal subgroups A of E that are contained in Z(w).
And the following results show that in the case that @) is a stabilizer code, its stabilizer

can be found in terms of a maximal group of A.

Lemma 2.1. If A € A, then there exists a linear character 6 of A such that the

image of the orthogonal projector

Pa = 151 2aea 0(a™)p(a)

contains (), meaning that Pyv = v holds for all v e Q.

Lemma 2.2. Let A be an abelian normal subgroup of E with linear character 0. If

the image of the projector contains the Clifford code Q, then A < Z(w).
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Theorem 2.5. Let Q) be a Clifford code with data (E, p, N, X), and denote by ¢ the
irreducible character of E afforded by the representation p. Keeping the notations

above, we can conclude that Q) is a stabilizer code if and only if
1
dim@ = |A n Z(E)\%

holds for some A € A.

Example 2.4. Let G be the finite group generated by three elements a,b, ¢ subject to

the relations:
a?=10%=[a,b] =1 and a° = b,b° = a,c* = 1.

This is the index group that we introduce.
An abstract error group E is obtained by a central extension of the index group
G by a cyclic group of order 2. More explicitly, FE is presented by four generators

a, b, cd that are subject to the relations
a’> =0 =[a,b] =1 and d* = [a,d] = [b,d] = [c,d] = 1.

The group E is nilpotent of class 3 and of order 32. A faithful irreducible represen-

tation of E is given by

° ° —1 ° e o o —J e | e o

° ° o —1 e o | o 1 o o o
p(a) - —1 o ° ° ’ p(b) T e —7 e e ’ p(c) T e e —7 e

o —1 e ° 7 e e e e o o
and the generator d of the enter of E is represented by p(d) = —1, and it has a

nonabelian index group and yet all its Clifford codes are stabilizer codes. This follows

from the fact that all nontrivial normal subgroups of G are abelian.
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Chapter 3

Operator Quantum Error
Correction

3.1 Standard model of quantum error correction

The Standard Model for error correction of quantum operations(see [3, 29, 52, 54])
consists of triples (R, E, C) where C is a quantum code, a subspace of some Hilbert
space H associated with a given quantum system. The error E and recovery R are
quantum operations on B(H) such that R annihilates the effects of E on C in the
following sense:

(RoE)(0) = 0,Yo = ProPy,

where Pg is the projection of H onto the subspace C. When there exists such an R
for a given (E, C), the subspace C is said to be correctable for E. The existence of a
recovery operation R of E = {E,} on C may be phrased in terms of {E,} as follows
(see [29, 54]):

PeElEyPe = Ay PeVa, b

for some Hermitian matrix A = (\,). It is easy to see that this condition is inde-

pendent of the operator-sum representation for E.
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3.2 Noiseless subsystems and decoherence free sub-
spaces

Definition 3.1. An open system undergoes decoherence if its evolution is a non
unitary evolution. And an open system undergoing purely unitary evolution is called

a decoherence free subsystem.

In [31, 32|, Kribs et al. developed a new scheme called operator quantum error
correction formalism that combined three know techniques, the standard error cor-
rection model, the method of decoherence-free subspaces and the noiseless subsystem
method. Also a generalized framework has been introduced for noiseless subsystems

that can be applied to arbitrary quantum operations.

Definition 3.2. Let £ = {E,} be a quantum operation on H. Let A be the C*—algebra
generated by the E,, so A = Alg{E,, El} is the set of polynomials in the E, and E.

Then A has a unique decomposition up to unitary equivalence of the form
A= PM,,, ®1,,).

This means that there is an orthonormal basis such that the matrix representa-
tions of operators in A with respect to this basis have the form of direct sum of tensor

products. And A is called the interaction algebra associated with the operation

E.

The standard noiseless subsystem method makes use of the operator algebra

structure of the noise commutant associated with F.
A ={0ceB(H): Eoc =cE,VE e {E,, El}}.

And when E is unital, all the states encoded in A’ are immune to the errors of

E. The structure of A implies that the noise commutant is unitarily equivalent to
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A= P, @M,,).

The elements of A" are immune to the errors of A when F is unital. And in [26],
the converse of the statement was proved. Specially, when E is unital, the noise

commutant coincides with the fixed point set for F.
A = Fiz(E) ={c e B(H) : E(oc) =), EFoE" = o}.

This is why A’ can be used to produce noiseless subsystems for unital £. And the
noiseless subsystems may be regarded as containing the method of decoherence-free
subspaces as a special case, in the sense that this method uses 1,,, ® M,,, where

my = 1 inside the noise commutant A’ for encoding information.

Also, a generalized framework for noiseless subsystems that can be applied to
arbitrary quantum operations is brought up. A subsystem that is noiseless for a
certain map will also be noiseless for any other map whose Kraus operators are linear
combinations of the Kraus operators of the original map. Hence, for the purpose of
noiseless encoding, any map whose Kraus operators span is closed under conjugation

is equivalent to a unital map.

The structure of A induces a natural decomposition of the Hilbert space
H =@M ®HT),

where the noisy subsystems #4 have dimensionm ; and the noiseless subsystems

HEZ have dimension n;.

First, the case where information is encoded in a single noiseless sector of B(H)

is considered, and hence

H=H'@HE)DK.
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with dim(H4) = m and dim(H?) = n. We write o for operators in B(H%)
and o® for operators in B(H?). Thus the restriction of the noise commutant A’ to
HA Q@ HP consists of operators of the form o = 14 ® o, where 14 is the identity

element of B(H™).

Kribs used the orthonormal bases and matrix representation of the subalgebra

A’ to prove the following property:

Lemma 3.1. The map I' : B(H) — B(H) given by I' = { Py} satisfies the following
equality: T(0) = 3, Puo(Pu)t = 14 ® (tra o P)(0) € 11 @ B(HP), for all operators
o € B(H), so in particular, T'(c? ® oB)oc1? @ 0P for all 0 and o, where P =
St P, and Py = |ogy (| ® 18, Y1 < k,1 < m with respect to the orthonormal
basis {|a;)}™,, so that PH = HA @ HB.

Also, Kribs brought up a genearlized noiseless subsystem method (see [31, 32]).

In this framework, the quantum information is also assumed to be encoded in o, i.e.

the state of noiseless subsystem. But the case that the noisy subsystem remains in
the maximally mixed state 14 under £ is not assumed, as is the case for the noiseless

subsystems of unital channels, so it could get mapped to any other state.

Lemma 3.2. Given a fized decomposition H = (H* @ HP) ® K, and a quantum

operation £ the following properties of the noiseless subsystem B are equivalent:
1. Yot and 0B |, 374 s.t. E(6? ®0P) = T4 ®@P;
2. 08 3t st E11®0P) =14 ®0P;
3. VYo =c2®ac® for some o and o8, tryoPo&(a) = tra(o).

Definition 3.3. The subsystem B s said to be noiseless for € when it satisfies one

of the conditions in 3.2.
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Also, he proved a necessary and sufficient condition for a subsystem to be noiseless

for a map € = {E,}.

Theorem 3.1. Let £ = {E,} be a quantum operation on B(H) and let U = {o €
B(H): 0 =0c*®c? for some o4 and oP}. Then the following three conditions are

equivalent:

1. The B—sector of U encodes a noiseless subsystem for & (decoherence-free sub-

space in the case m = 1).

2. The subspace PH = HAQHP is invariant for the operators E, and the restric-
tions E, |py belong to the algebra B(H*) ® 1.

3. The following two conditions hold for any choice of matriz units{Py : 1 <

k.l <m} for B(HY) @1B:
PuEoPu = Aok P, Va, k, 1
for some set of scalars (Aaw) and
E,P=PE,P Va.

Example 3.1. [32] As a simple illustration of a noiseless subsystem in a non-unital
case, consider the quantum channel € : My —> My with errors € = {Ey, Ea}
obtained as follows. Fix v,0 < v < 1, and with respect to the basis {|0),|1)}, let
JoR RV =] Y VI
© 0 IT—~| 77" VI =7

and we define E; = F; @ I, fori=0,1. Then ), EJEz = 14 follows from ), FZ-TFZ- =
Ir. Decompose C* = HA @ HE, with respect to the standard basis, so that H* =
HB = C2. Then for all 0 = 0 ® 0B, we have
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=Y, Eo*®o"E] = (Xiso Fo'F)®@o®.

The operator T is given by T = Zil=0 EO'AFiT wn this case. It follows that B encodes
a noiseless subsystem for €. Also as opposed to the completely error-free evolution

that characterizes the unital case, we have E(IA ® UB) £ [4® 0P in this case.

3.3 Theory of Recovery without Error Syndrome
Detection

Peres showed that the ability to distinguish non-orthogonal quantum states could be
used to construct a cyclic process that would violate the second law of thermody-
namics (see [47]). And it is impossible to unambiguously distinguish non-orthogonal

quantum states.

When constructing a quantum error correcting code that can detect and correct a
set of errors {F,}, we must be able to distinguish the error F, acting on a codeword
|1;) from the error Ej, acting on a different codeword [¢;). Based on this theorem, the
erroneous image E, |¢;) and Ej |¢;) must be orthogonal if the code is to distinguish
these errors correctly.

In [29], Knill and Laflamme gave a necessary and sufficient condition for the

existence of a quantum error correcting code.

Theorem 3.2. Let & : B(H) — B(H) be a quantum channel. Suppose V is a
subspace of H and Py is the orthogonal projection of H with V as the range space.

Then the following statements are equivalent:

1. Vis a QECC for .

2. PVE];EbPV = APy for some complex number Ay, for all possible E,, Ey.
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In [36], Li, Nakahara, Poon, Sze and Tomita have slightly modified the above

result as follows:

Theorem 3.3. Let ® :M,, — M,, be a quantum channel, and suppose the necessary
and sufficient condition for QECC holds and P = WWT with WIW = I, so that a
density matriz p € M, satisfying PoP = p has the form WpW'T with p € My. Then
there is a R € U(n) and a positive definite matriz § € My with ¢ < min{r, 7} such

that for any density matriz pe My and p = WpWT e M,,, we have
R'®(p)R = (£® p) ® Ongr-
In particular, if k divides n so that M, can be regarded as M=» ® Mj, then
RI®(p)R = £® p, with £ = £ 0a_,.
A recovery channel can be constructed as the map ¥ : M,, — M,, defined by
U(p') = Wir (RN (p)R)WT.

As a result, a decoding scheme can be realized by a unitary operation followed by a

partial trace operation.

3.4 Application to collective noise

This new approach was applied to the study of collective noise. The collective noise
was studied by many scholars [39, 40, 56, 61]. In particular, Li et al studied error of
the form {X®" Y®" Z®"} in [34], that is, all qubits constituting the codeword are
affected by the same Pauli operator. They showed that (i) ann-qubit quantum system
can encode (n — 1) data qubits when n is odd while (ii) an n-qubit quantum system
can encode (n — 2) data qubits when n is even. Quantum circuits implementing this

scheme were also proposed in their paper.
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0> —p D )
p1) B Qe g p1)
p2) D |p2)

Figure 3.1: An encoding and decoding circuit for 3-qubit quantum channel with error
operators {X®3 Y®3 7&31

0) —B P %)
1p1) S % lp1)
p2) % %11?5;? < |p2)
Zy P D p3)
12 D |pa)

Figure 3.2: An encoding and decoding circuit for 5-qubit quantum channel with error
operators { X®° Y®5 7&5}

In another paper [35] of Li et al., they also studied the general collective noise,
namely, error of the form {U®" : U € SU(2)}. By consider the decomposition into
irreducible representations up to unitary similarity, every error operator has the
form (—Bj I., ® B; with B; € M, with Zj rin; = 2" Take M} ~ ([Tj ®Mnj) @ M,
with ¢ = 2" — r;n;,. According to this decomposition, this will give raise to a
noiseless subsystem. The author also suggested the implementation in terms of
quantum circuits for n = 3 and all odd n using a recursive construction so that

(n — 1)/2 qubit state can be encoded in the circuits, see Figures 3.5, 3.6 and 3.7.
Here, G| = \/Lg [_i@ \{i] and Gy = \% [_11 1] This scheme is also extended to

the study of quantum error correction for qudit in [18, 33].
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0> PP Quantum D—D 10)
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Figure 3.3: An encoding and decoding circuit for 4-qubit quantum channel with error
operators {X®! Y®4 711

0) —{H] [H}—[0)
0) oD P—P 0)
lp1) S Quantum P 1)
102 & P Channel P & 102
lp3) D P |p3)
|pa) P D 12,

Figure 3.4: An encoding and decoding circuit for 6-qubit quantum channel with error
operators {X®6 y®6 7&61

0y {61 o— d—o—Gi}F |0)

4> 2] f | ot f 2] [

p) ——]Gs ] - Do (G —— |p)
......................................... g

Figure 3.5: An encoding and decoding circuit for 3-qubit quantum channel with error
operators {U®? : U € SU(2)}.
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Figure 3.6: An encoding circuit for 5-qubit quantum channel with error operators
{U® .U e SU(2)}.

0) ..

|0> | U3 B U3 _ U3 | Quantum |

Channel

1) — - — ] .

Ie2) - | .

lc3) .

Figure 3.7: An encoding circuit for 7-qubit quantum channel with error operators

(UST . U e SU@2)}.
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Chapter 4

Recovery Channel for [5,1,3] Code

4.1 Motivation

For an [n, k, d] code, the classical approach for error correction is syndrome detection
and correction method. The information is encoded in the quantum states, then
passed the noisy quantum channel. Then one has to measure the error syndrome
and correct the error based one the syndrome detected, as stated in the following

diagram.

Encoding Quantum Syndrome Error Decoding
Operation Channel Detection Correction Operation

For [5,1, 3] code, the traditional approach is that we use four ancillary qubits to
detect error syndrome, as in Figure 4.1.

So the traditional encoding and error correcting circuit for [5, 1, 3] code is Figure
4.2:

In this approach, other than the n — k ancillary qubits used in encoding, another
n — k qubits are needed in order to measure the error syndrome. In this chapter, a
new error correction approach for [n, k, d| code will be introduced, namely, an error

correction approach without error syndrome detection and correction for [n,k,d|
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0y {H]—e H
0y {H] H
0) {H] H
0) {H] H

Figure 4.1: An syndrome detection circuit of [5,1,3] code.

code, as showed in the following diagram.

Encoding Quantum Decoding
Operation Channel Operation

And in 2011, Li, Nakahara, Poon, Sze and Tomita showed that an n-qubit quan-
tum system can encode (n — 1) data qubits when n is odd and encode (n — 2)
data qubits when n is even. AND they can avoid fully correlated noise of the form
{X@n y®n 7® without using ancillary qubits.

In 2013, Kondo, Bagnasco and Nakahara showed that they can avoid fully corre-
lated noise by making use of a three qubit NMR quantum computer experimentally,
requiring no equipment of ancillary qubits, see Figure 4.3.

We will first demonstrate this approach for [5, 1, 3] code.

4.2 Demonstration for [5,1,3] code

The [5, 1, 3] code whose stabilizer can be generated by
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Figure 4.3: NS against fully correlated noise.

=20 XQRIRX®Z.

The five-qubit code is the smallest possible QECC which corrects one error, see
for example [14]. In the following, we show that we can fully recover the original
information without detecting error syndromes.

We have the following encoding:
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o |00, = (I + g1)(I+ g2)(I + g3)(I + g4)|00000).
o 1), =1X(I+ g1)(I+ g2)(+ g3)(I + ga)|00000).

Here X = XX RX QX R X.

As mentioned in Chapter 2, it can be easily verified that [0); and |1); are invariant
under the action of the four generators. However the factors (I +g;) above mentioned
are not unitary and therefore it is different to be implemented. Practically, it can be

verified that the two codewords can be formulated by

01 = V3ViV5VaZ1]00000) and |1y, = V3V3V5VaZ,[10000),

where
Vi = (IQIQXNHRIRN+(IRZINIXIHRX® Z),
Vi = IQIQIRINOHR +(ZQI®Z®NIX1H®X), )
4.1
Vi = IQIQIRI®|N0H)+(X®Z®I®ZQ|1)X1|H),
V, = UQIXHRI®IQD + ( XQNIHRQZRI®Z).

are all unitary operators. Then one can construct the encoding circuit with the above

unitary operations, as in Figure 4.4, see also [45].

0) —{H] \_T_l 1z}

N
0) 7] (ZHH 14—
0) ZHH o
0 —{zH#] 7z

N
e %

%

Figure 4.4: An encoding circuit of [5,1,3] code.
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4.2.1 Steps to obtain the recovery operations for [5, 1, 3] code.

After we encode the single qubit quantum information, we want to make sure that
the receiver receives the correct information. Inevitably, there are single qubit error
operators acting on the quantum state during the transmission.

We have the following observation that helps us to build the recovery operations
for [5,1,3] code, since we have assumed that at most one qubit error can occur,
and each error operator can act on each qubit, and there are three types of Pauli
operators, thus we have (3 x 5) possible error operators plus one identity operator.
We will consider pairs of codewords {F|0)r, E|1).}, where E is one of the error
operators including the identity operator. There are totally 16 pairs. On the other
hand, the Hilbert space under consideration is 2° = 32 dimensional and the quantum
subspace spanned by {|0).,|1).} is 2—dimensional, and we are only interested in this
single qubit subspace, while the ancillary subspace is not really important, so we

will separate the Hilbert space to 16 different 2-dimensional subspaces spanned by

{1051 J273J4) 15 [171J273J4) 1}, where
0j12J3da)r = VaVaVsVaZi|0j1jagajsy and  |1jijajajayr = VaVaVsVaZi|ljijagaja),
for ji, 2, j3, ja € {0, 1}. Let
S={l0)r,|)r} and  S(jijejsja) = Span{|0jijajsia)r, [Liij2dsjayr}-

Also denote ES = Span {E|0),, E|1);} for any error operators E. After comparing
these two sets of 2-dimensional subspaces, we obtained the following table indicating
the relation between them.

That is, the subspace X3S is equal to the subspace S(0011). Furthermore, the

operators displayed in the third column in the table has the following meaning, say
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XS
X5S
X3S
XyS
X8
YiS
Y28
Y3S
Y,S
YsS
ZS
ZsS
Z3S
Z,S
Z5S

(0011)
(1110)
(1011)
(1001)
(1111)
(0010)
(0110)
S(1100)
(1101)
(0101)
(0001)
(1000)
(0111)
(0100)
(1010)

Table 4.1: Relation between the subspaces ES and S(j17273J4)-

Remark 4.1. The reason why we can compare seemingly unrelated two sets of
codewords is that we find that each set consists of an orthogonal codewords which
means that they can form a basis of the whole space. And since each basis can be
represented by the other and vice versa, we want to find out what is the difference

between the two basis. And from the table above we can see that for the encoded

computational basis codewords |iy; and |j); ,i # j, we have

(il BYEy |5y, = 0,

which verifies the necessary and sufficient conditions for the existence of QECC.

Detail will be discussed in the later section.

Next, we want to do is to construct the recovery operation for [5,1, 3] code. And

26

<Z‘L1Eb ‘j>L = 07




we have the following observation: there are ten bit flip errors and six phase flip
errors we need to correct during the construction of the recovery operation with
respect to the single qubit quantum information. And in order to construct such a
recovery operation we have to take all these errors into consideration once and for
all. Here we can choose to correct bit flip errors first then deal with phase flip error
to extract the original information.

The algorithm is to use the binary system and controlled gates and double con-
trolled gates to transform the ancillary qubits of some corrupted codewords into a
fixed state and ancillary qubits of other corrupted codewords will be transformed
into some other state, and it won’t be the same as the fixed state. Then we use the
fixed state ancillary qubits as controlled qubits to act on the single qubit target in-
formation to correct the bit flip error, but since there are ten bit flip errors, we won’t
be able to fix them using just one controlled gate, at least we need two controlled
gates to correct the bit flip error.

And when we use two controlled gates, we need to transform three out of four
ancillary qubits into a fixed state, which implies a triple controlled gate. But triple
controlled gate is hard to find in the process of searching, since it needs to transform
three ancillary qubits into the same quantum state, which may take quite a few
quantum gates to realize that, so here we use two double controlled gates to fix eight
bit flip error. And then use single controlled gate to fix the remaining two.

As for which three ancillary qubits to choose as the controlling qubits, we also
have to search based on the number of quantum gates to transform them and the
states of the rest of error corrupted encoded codewords after being transformed by
these quantum gates, because we need them to correct the rest errors. So in all, we
have to construct the quantum gates step by step. But the central idea is clear, we
transform ancillary qubits into a fixed state so that we can use them as controlling

qubits to fix the bit and phase flip errors for the recovery channel. We now present
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the detail procedure.

4.2.2 Detail procedure for the construction

1. First we use two, three or more controlled gates to transform one ancillary
qubit into fixed state, then use this state to fix eight bit flip errors out of
ten. For example, we can choose ancillary qubits [0100), |0101), [0110), |[0111),
11100), |1101), |1110), [1111) to be the transformed quantum state and use the
second ancillary qubit to be the control qubit. And to realize the single qubit

controlled gate we can use the following circuit to correct eight qubit error first.

N
A\

D
UV
/AR
UV

Jh)
GV

Figure 4.5: Step one of Recovery channel for [5,1,3] code.

2. After we have corrected eight bit flip errors, we want to fix the remaining
two, and we need also to transform the remaining two computational basis
codewords into a fixed state so that we can use a triple controlled quantum

gate to fix the remaining two errors.

——

N
V

Figure 4.6: Step two of recovery operations for [5,1,3] code.
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3. Based on the quantum gates used, we can obtain what the codewords corrupted
by phase flip operators have been transformed into. And since we need to
correct six phase flip error. Similar to the process of finding recovery channel
for bit flip errors, we need to fix four phase flip errors first and then the rest

two.

—12

D
%

Figure 4.7: Step three of recovery operations for [5,1,3] code.

4. The last step is a bit more complex since we need to find a triple qubit controlled
gate to fix two phase flip errors, which means that we need to transform three
ancillary qubits into a fixed quantum state so that we can use these three qubits

to control the action on the target qubit. And we have

7

N
GV

N
%

D
%

Figure 4.8: Step four of recovery operations for [5,1,3] code.

Remark 4.2. Each step is dependent on the one before and the quantum gates we
have searched will in a way have impact on the gates in the following steps, so we

99



have to be careful about the gates we choose in each step.

And the basic routine here is to correct bit flip and phase flip errors with double
controlled gates and triple controlled gates, to derive that, we need to determine
which ancillary qubits need to be transformed and what states we want to transform
them into.

Since usually we need to fix even number of bit flip errors and phase flip errors,
thus we can always decompose the correction into several steps based on the binary
expression of the number of errors.

For [5,1,3] code, the decomposition is 23 + 2 and 22 + 2 for bit flip and phase
flip errors respectively. So correspondingly, we use a single qubit controlled gate and
triple controlled gate to fix bit flip errors and a double controlled gate and triple
controlled gate to fix phase flip errors.

Using the 1-1 correspondence between the set of error corrupted encoded code-
words and the set of encoded computational basis codewords, we can give a recovery
channel without error syndrome detection. All we need to do is to decode and apply
the circuit we have found, then the original information is guaranteed to be received

correctly.

4.2.3 Circuit diagram for [5,1,3] code

After the above discussion in the previous two subsections, we have the following

circuit diagram for [5, 1, 3] code.
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Figure 4.9: An encoding and decoding quantum circuit of [5,1,3] code.

4.3 Theoretical explanation for the circuit diagram
construction

Recall that

g = IR XR®X®Z
G2 = ZQ®IRZIXR®X
g3 = XQ@IRQRI®RZ®X

g = XQXQRZIRI®Z
In theory, the two codewords |0), and |1); are defined in principal by

0 = T+ (7 +02)(1+ g5)(1 + 42)|00000),

D = ZX(I +91)(I + g2)(1 + g3)(1 + g4)[00000).
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Notice that for any two distinct error operators E, and E, with w(E,) and w(E;)
are at most one, there exists g such that EZE;, is anti-commute with g,. Then

EIEy(I + gx) = (I — gx)EE;. Then (I + g;)'(I — g) = 0 implies
G|LElEy|jy, =0 4,5 € {0,1}. (4.2)

However, as previously mentioned, the factors (I + g;) are not unitary and there-
fore it is different to be implemented. Practically, it can be verified that the two

codewords can be formulated by
0y, = VaVaVVaZi|00000) and |1y, = V3VaVsVaZi|10000)

where V3, V, Vs, and V, are unitary operators defined in (4.1). Let U = V3V, V51474
and for consistence of notation, set G3 = g1, G4 = g2, G5 = g3, and G5 = g4. Also
let S; and T} are the two tensor product components in the definition of Vj, that is,

Vi = S; +Tj. It is now claim that for any tensor product of Pauli matrices
RQ=0100:0Q:®Q®Q5 with Q;e{l, XY, 7},

UTQU is also always a tensor product of PAuli matrices, i.e., we have
UQU=P®P,®P®P,®P; with P;je{X,Y,Z}.

We divide the proof into four cases. Fix an index k. If @y = I, then

QVi, = (Sk +Tx)Q if QT = T1,Q
TS - TQ i QT = ~ThQ

and hence

(Sk + Tk)T(Sk + Tk)Q = Q if QTk = TkQ

i _
Ve QVi = {(Sk +T)N(Sk — T)Q = X;Q  if QT = —-T:Q
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If Q) = X, then

VoV, ZGrLQ i (QXE) Tk = Th(QXk)
R NGQ i (QX0)T = ~Th(QX))
If Q. =Y, then
i ) NGQ i (QYR)T = Ti(QYr)
VeV = {—ZkaQ if (QVi)T; = ~Ti(QY4)

Finally, if Q) = Z, then

XpZpQ i (QZy)T; = TH(QZy)

VIiQV, =
@V {ZkQ it (QZ6)T; = —T;(QZ)

In all cases, V,JQV;C are tensor products of Pauli matrices and and so as UTQU. Thus,

the claim holds. It follows that for any error operator E, for any j € {0, 1},

UTEU|j0000y = U(Pi® P, ® Ps® Py ® P5)|j0000)
= (11]70000) ® [P[0) @ P3|0) ® P4[0) @ F5|0)),
therefore
UTEU|j0000) = +Py|j) ® |jajsjajsy for some  ja, js, ja, js € {0, 1}, (4.3)

Furthermore, for any error operators E, and Ej, by the fact that (UTE,U) (UTE,U) =

U'E!E,U and the equation (4.2), one can see that if
U'E,U|[j0000) = +P5) ® [55574j¢) and U'E,U|j0000) = +PP[5) ® [45755552),

then [j4j4755¢) and |j558585E) are linearly independent. Thus, if one absorbs the sign

of the vector, then
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E U'EU UTEU|00000) UTEU|[10000)
X, XRIQI®X®X 110011) 100011)
X XRYRRXRQY®Z |11110) 101110
X; YRX®I®XR®Y 111011) —|01011)
X, YRX®ZQIQY 111001) —|01001)
X; XRXRX®RYQ®Y 111111) 01111)
Y, YRIQI®X®I 110010 —]00010)
Y; XRZQXQY RZ 110110 100110)
Ys YRXRX®RIRZ 111100 —|01100)
Y, YRXQYRI®QY 111101) —|01101)
Y; XRIX®RZ®Y 110101) 100101)
A ZRI®IRIRX 100001 ) —[10001)
Zy IRXQRIQRI®I 101000 111000)
Zs IRIRXRXR®X 100111) 110111)
Z, IRIRXRI®I 100100 110100)
Zs IRXRIRXQI 101010 111010)

Table 4.2: Relation between the the error operator E and UTEU.

In fact, direct computations show that following.

In the final stage, we perform further recovery operation R so that all the oper-

ation P; in equation (4.3) become identity, that is,
RUTEUUOOOO> = i|.]> ® |j2j3j4j5> for some j27j3aj47j5 € {0’ ]-}

As explained before, the current recovery operations obtained in Figure 4.9 is by

computer search.

4.4 A new proposed approach to obtain the circuit
diagram for [n,k,d] code

Based on the construction and theoretical explanation for the case of [5, 1, 3] code,
we proposed the following general approach to obtain the circuit diagram for [n, k, d]

code.
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1. Given a set of generators g; of the [n,k,d] code is obtained, following the
algorithm presented in Section 2.2.3, construct the computational codewords

for the code.

2. Define the control-unitary operations based on the generators (I + g;), similar

to Section 4.2. Then the encoding circuit can be obtained accordingly.

3. Compare two sets of codewords ES and S(ji - - jn_x) which are mutually or-

thogonal to each other, and find the mapping relation between them.

4. Build the correspondence between the related two codewords and find the types

of corresponding codewords.

5. Based on the types obtained and the number of bit flip and phase flip errors,
search for possible quantum gates to apply to the encoded qubits, which may

takes double or triple controlled gates to realize that.

In Chapter 5, we will demonstrate that the above proposed algorithm will also

work another code, namely, [8, 3, 3] code.
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Chapter 5

Recovery Channel for [8,3,3] Code

The purpose of this chapter is to demonstrate the proposed approach for [8,3, 3]

code and give out specific recovery operations for this code.

5.1 Construction for [8,3,3] code

As we have mentioned in Chap. 2, generators for an eight-qubit code protecting

three-qubit states with at most one error are as follows:

g1

g2

g3

94

s

XOXRXQXQX®XQX® X,
ZRIQIQIQIQIRZ® 7,
XQIRX®IQZIQY ®ZQY, (5.1)
XQIQY®ZQXQI®Y QZ,
XQZQIQYQIQY ®X®Z.

and the seed generators given have the following forms:

Ny
Ny

N3

- XRX®I®I®I®I®I®I,
- XRI®X®I®I®QI®I®I, (5.2)
- XRI®I®I®X®IQIQI.
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Define
Vi = (IQIQIRI®I®IX®RI®|0){0|H)
+IRXYRXRX®ZQZQI®|1)(1|H)

Ve = I®IQIQIQI®I®|0)(0|H®I)
+HXRIRYRX®ZQIQIDAH®Z),

Vi = (IQIQRI®IR®RI®|I0NHO0OHRIRI)
+(XRYRIQYQRZRIDAIHRZR®I),

Vi = (IQRI®IRI®|0)O0HRIRIRI)
T (XRXQYRZQDIIHRZQI®I),

¢ = (00RIRIRIRIVIRVIRI)
+(IDARIRIRX®IRIRQI®I),

Cy = IRV IRIVIRKIRIRI)
+IRHARXIRXRIRIRIRI),

C; = (IQIRNO|QRIRI®IQIRI)
+IQRIRINA|RXQIQIQIRI).

Set U = ViVLaV3V,CCyC5 and define
|010263>L =U ‘61020300000> C1,C2,C3 € {0, 1}

Then these eight quantum states form an 8-dimensional QECC for [8, 3, 3] code. Let
S = {|000), ,...|111);}. One can now construct the encoding circuit with the above
unitary operations as in Figure 5.1.

After encoding operation, a total of 256 basis codewords
U [00000000», U [00000001)--- U |[11111111)
are obtained. On the other hand, there are 200 codewords in the set

{ES : error operators E}.
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Figure 5.1: An encoding circuit of [8,3,3] code.

Next, we can find out that here exists an injective map between the two sets. So that
means we can build an one to one correspondence between two sets of 200 codewords
which is the basis for our recovery channel for [8,3,3] code. Similar to the case of
[5,1,3] code, after some computation, we have the following relations between the
two sets of 8-dimensional subspaces in Tables 6.1, 6.2, and 6.3.

We can fix the error according to the correspondence and the deviation between

each two groups of codewords. The procedure is a little bit longer, basically we have

X8 S(00001) ~XQY®I
XoS S(10101) Y QRI®X
X3S S(01011) —ZQX®Y
X4S S(00111) XQYQY
X5S S(11111) IQIQI
XeS S(10011) XQI®I
X:S S(01101) IQX®I
XS S(11001) IQI®X
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YsS S(10111 —I®IQY

Y18 S(10001) XQY®I
Y2S S(11101) YRI®X
Y3S S(01111) ZOXQY
V.S S(00101) _XQY®Y
Y58 S(00011) AVANA
YeS S(01001) Y QIQI
V7S S(11011) —IQY®I
( )

7,8 S(10000) I®IQI
758 S(01000) IQIQI
758 S(00100) IQIQ]
748 S(00010) [®IQ]
758 S(11100) AYANA
768 S(11010) ZRI®1
7:8 S(10110) IQZQI
758 S(01110) I®IQZ

two approaches, fix the bit flip error then the phase flip error or phase flip error first

then bit flip error.

Remark 5.1. Similar to [5, 1, 3] code, The reason why we compare seemingly unre-
lated two sets of codewords is that each set consists of codewords which are mutually
orthogonal to each other. And the difference between [8, 3, 3] code and [5, 1, 3] code

is that for [5,1,3] code, the two sets have the same number of codewords, while
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for [8,3,3] code, there are 3 x 23 x 23 error corrupted encoded codewords, and the
encoded computational basis codewords are 28, which means that some encoded com-
putational basis codewords won’t be used or be mapped to. And we find out that the
corrupted set is a subset of the set consisting of encoded basis codewords. Although
it is not one to one correspondence, but we can still apply the similar procedure to

find the recovery channel for [8,3, 3] code.

Then we want to construct the recovery channel for 8, 3, 3] code. And we have the
following observation: different from [5, 1, 3] code, there are three qubit information
we need to encode and for that we need to apply three rounds of recovery for each
qubit, the idea seems straightforward, and it is hard to correct all the bit flip errors
for the three qubit once and for all then correct the phase flip errors for them.
Because the same bit flip error operator on different qubits have different types of
results, which lead to the difficulty of correct one type of error at the same time and
the other type of error after that.

Based on the table and types we observe that there are eight bit flip errors and
eight phase flip errors we need to correct for each qubit during the construction of the
recovery channel with respect to three qubit quantum information. And in order to
construct such a recovery channel we need to correct bit flip and phase flip errors for
the three qubit one by one. And in each round of correction we can choose to correct
bit flip errors first then deal with phase flip error to extract the original information.

Similary, the algorithm is to controlled gates and double controlled gates and
triple controlled gates to transform the ancillary qubits of some corrupted codewords
into a fixed state, and we use the fixed state ancillary qubits as controlled qubits to
act on each single qubit target information to correct the bit flip error and phase flip
error, but since there are eight bit flip errors and eight phase flip errors, it is possible

that we correct the eight errors using just one double controlled quantum gate, but in
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reality, we could not find such gates for all three qubits, since the action of quantum
gates on each corrupted codeword will impact the state of ancillary qubits thus have
influence on the choice of quantum gates for the remaining two or one qubit ,which
will result in the difficulty of finding quantum gates for the next qubit, and so on
and so forth. So we have to turn around to also use triple controlled gates in the
process of correction.

And when we use controlled gates, we need to transform two out of five ancillary
qubits into a fixed state for a double controlled gate or three out of five ancillary
qubits into a fixed state for a triple controlled gate. But triple controlled gate is
hard to find in the process of searching, especially for the later corrections. And
since it need to transform two or three ancillary qubits into the same quantum state,
which may take several quantum gates to realize that, and here we use one triple
controlled gate and two double controlled gates to correct bit flip and phase flip
errors respectively for the first two qubits, and two double controlled gates to correct
bit flip errors and two double controlled gates to correct phase flip errors for the
third qubit.

Also, as for which ancillary qubits need to be chosen as the controlling qubits,
we have to determine based on the number of quantum gates to transform them,
and the number of gates is the smaller the better. And we also need to observe the
states of the rest of error corrupted encoded codewords after being transformed by
these quantum gates, because we need them to correct the rest errors. So all in all,
we have to construct the quantum gates for the three qubits one by one and step by
step. But the main idea is similar, we transform ancillary qubits into a fixed state
so that we can use them as controlling qubits to fix the bit and phase flip errors for

the recovery channel.
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5.1.1 procedure to construct recovery channel for [8,3,3] code

1. First we use two, three or more controlled gates to transform two ancillary
qubits into a fixed state, then use these two ancillary qubits to fix eight bit flip
errors. For example, we can choose ancillary qubits [00001), [00011), 00101,
|00111), [10001), |[10011), |10101), |10111) to be the transformed quantum state
and use the second and fifth ancillary qubits to be the control qubits. And to
obtain the double qubit controlled gate, we can use the following circuit to

correct eight bit flip errors first (Figure 5.2).

X

JaA)
N\
&

D
N>

AR\
YV

Figure 5.2: Step one of recovery channel for [8,3,3] code.

2. After we have corrected eight bit flip error operators for the first qubit, what
we need to do is to correct eight phase flip errors. But we find that after the
action of quantum gates in the step one, we can not find a double controlled

gate to correct them. So we have to use two triple controlled gates to realize

it (Figure 5.3).

3. Based on the quantum gates used for the correction of errors for the first qubit,
we can obtain for the second qubit what the codewords related to the second
qubit corrupted by error operators have been transformed into. And similarly

we need to correct eight bit flip error first (Figure 5.4).
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Figure 5.3: Step two of recovery channel for [8,3,3] code.
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Figure 5.4: Step three of recovery channel for [8,3,3] code.

4. What we need to do now is to correct eight phase flip errors for the second
qubit. Similarly we find that after the action of quantum gates applied to the
second qubit for the bit error correction, we can not find a double controlled
gate to correct them. So we have to use two triple controlled gates to realize

it (Figure 5.5).

5. For the third qubit, it is a little bit more complex than the first two qubits,
since we can not find a double controlled gate to correct eight bit flip errors
at the same time. We need two triple controlled gates to correct them (Figure

5.5).
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Figure 5.5: Step four of recovery channel for [8,3,3] code.
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Figure 5.6: Step five of recovery channel for [8,3,3] code.

6. And finally for the third qubit, similarly we need to use two triple controlled

gates to correct eight phase flip errors (Figure 5.6).

Finally, the complete realization of encoding and decoding circuit diagram without

error syndrome detection for [8,3,3] code is presented in Figure 5.8.
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Figure 5.7: Step six of recovery channel for [8,3,3] code.
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Figure 5.8: An encoding and decoding quantum circuit of [8,3, 3] code.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, stabilizer codes are reviewed and a scheme for constructing recovery
channels without error syndrome detection is proposed. We first review some basic
concepts on stabilizer groups and stabilizer codes. In particular, we consider theories
and principles involved in the construction of encoding circuits from the generators
of stabilizer group, and propose a new procedure to derive recovery channel for a
well known quantum code, the [n, k, d] code.

Next, an algorithm to obtain the generators for a stabilizer code and the cor-
responding computational basis codewords defined in terms of Pauli operators are
reviewed and illustrated in detail. Then based on the general framework of oper-
ator quantum error correction, we provide a general scheme on the construction of
encoding and decoding circuits for the [n, k, d] codes.

Finally, a detailed procedure to construct the recovery channel using encoding
circuits and encoded computational basis codewords are demonstrated for [5,1, 3]
code and [8, 3,3] code step by step as examples, with heuristic explanations based
on necessary and sufficient conditions for quantum error correction.

Contrary to the traditional approach to error correction, the scheme saves (n—k)

ancillary qubits that are used in the error syndrome detection. Although there might
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be some time tradeoff, the computability of number of quantum gates in recovery
channel for simple quantum error correcting codes is obvious. So we can use limited
number of quantum gates and n qubits, without using ancillary qubits, to recover

the original information.

6.2 Future Work

After studied [5,1,3] and [8,3,3] code, the next possible code to be studied is
[10,4,3]. Following the algorithm proposed in Section 4.4, we can first obtain an

encoding circuit diagram in Figure 6.1.

|c2) Y &> Z [z
L i

T T n

sy [~51
|ca) Y A

P A
0) 7] 1 Z] [ H] 1 Z | 1 Z | Z
0y -2 ’EZ; HZ (7] [z

B=a

0) 47 ,Eé | H |
0y [Z}F—+Z] E 7] ZHHZ
0 {zHz (7] Z [z —
0 DM [~ \—/l\_l )
|> N N U N |£, U U U

Figure 6.1: An encoding circuit of [10,4,3] code.

obtained the relation listed in Tables 6.1, 6.2, and 6.3. The remaining and the most
difficult part is to construct and search for possible quantum operations that can fix
these bit flip and phase flip errors listed in the tables. The main difficulty is that
we have to consider 2° dimensional subspace, which the computer program searching

time is huge. So alternative method should be explored to find the right recovery
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operations.

Actually, apart from the [10,4, 3] code, the [11,1,5] code is also another target
code that is under consideration. Notice that there are a total of 627 different error
operators for this code. Therefore, although only one qubit state have to be fixed,

the computational complexity is also huge.

X8 S(101110) I®IQX®X
X,8 S(101010) XQY®Y®X
X3S S(001001) IOXQRI®X
X4S S(111001) YQRZQY QZ
XS S(010101) IQIRIRI

XoS S(010001) ZRIQIQZ
X-S S(111111) XQIQRZ®Z
XsS S(111011) IQYRZ®I
XoS S(110001) IQIQY®Z
X108 S(110101) IRZQZ®X
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Appendix A

Matlab code for searching recovery
operations of [5,1,3] and (8, 3, 3]
codes

In this appendix, we present the Matlab code used for searching recovery operations

of [5,1,3] and [8, 3, 3] codes in Chapters 4 and 5.

%% %% % %% % % %0 % % %0 %0 %0 % %0 %0 %0 % %0 %0 %0 %o %0 %0 %0 %o %0 %0 Y %0 %0 %0 % %0 %0 %0 %o %0 %0 %0 %0 %0 %0 Yo
Setup of operators, single qubit controlled gates, double qubit and triple controlled

gates

9% % %% % %0 %% % 70 %% % %0 %0 %0 %0 %0 %0 %0 70 %0 %0 %0 %00 Yo 7 %00 Yo 70 %0 %o Yo 76 %0 %o Yo 76 %0 %o Yo

I=[10;01];

X =1[01;10]
=[10;0-1];

Y =[0-1;10];

e0 = [1 0]%;

el = [01];

V1 = kron(kron(kron(e0,e0),e0),e0);
V2 = kron(kron(kron(e0,e0),e0),el);
V3 = kron(kron(kron(e0,e0),el),e0);
V4 = kron(kron(kron(e0,e0),el),el);
V5 = kron(kron(kron(e0,el),e0),e0);

( (

V6 = kron(kron(kron(e0,el),e0),el);
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V7 = kron(kron(kron(e0,el),el),e0);

V8 = kron(kron(kron(e0,el),el),el);

V9 = kron(kron(kron(el,e0),e0),e0);

V10 =kron(kron(kron(el,e0),e0),el);

V11 =kron(kron(kron(el,e0),el),e0);

V12 =kron(kron(kron(el,e0),el),el);

V13 =kron(kron(kron(el,el),e0),e0);

V14 =kron(kron(kron(el,el),e0),el);

V15 =kron(kron(kron(el,el),el),e0);

V16 =kron(kron(kron(el,el),el),el);
V=[V1V2V3V4V5V6V7V8V9 V10 V11l V12 V13 V14 V15 V16];
V11 =kron(kron(kron(el,e0),el),e0);

V7 = kron(kron(kron(e0,el),el),e0);

V5 = kron(kron(kron(e0,el),e0),e0);

V6 = kron(kron(kron(e0,el),e0),el);

V14 =kron(kron(kron(el,el),e0),el);

V12 =kron(kron(kron(el,e0),el),el);

V15 =kron(kron(kron(el,el),el),e0);

V4 = kron(kron(kron(e0,e0),el),el);

V10 =kron(kron(kron(el,e0),e0),el);

V16 =kron(kron(kron(el,el),el),el);

E0 = [10;00];

E1=1[00;01];

CONT1 = kron(kron(kron(EO0,I),I),I)+kron(kron(kron(E1,I),I),X);
CONT?2 = kron(kron(kron(E0,I),I),I)+kron(kron(kron(E1,I),X),I);
CONT3 = kron(kron(kron(EQ,I),I),I)+kron(kron(kron(E1,X),I),I);
CONT4 = kron(kron(kron(I,E0),I),I)+kron(kron(kron(I,E1),I),X);
CONT5 = kron(kron(kron(I,E0),I),I)+kron(kron(kron(I,E1),X),I);
CONT6 = kron(kron(kron(I,E0),I),I)+kron(kron(kron(X,E1),I),I);
CONT7 = kron(kron(kron(LI),E0),I)+kron(kron(kron(I,I),E1),X);
CONT8 = kron(kron(kron(I,I),E0),I)+kron(kron(kron(I,X),E1),I);
CONT9 = kron(kron(kron(LI),E0),I)+kron(kron(kron(X,I),E1),I);
CONT10 = kron(kron(kron(LI),I),E0)+kron(kron(kron(I,I),X),E1);

CONT11 = kron(kron(kron(LI),I),E0)+kron(kron(kron(I,X),I),E1);
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CONT12 = kron(kron(kron(LI),I),E0)+kron(kron(kron(X,I),I),E1);
CONT = [CONT1; CONT2; CONT3; CONT4; CONT5; CONTS;
CONT7; CONTS; CONT9; CONT10; CONT11; CONT12;]

DCONT1 = kron(kron(kron(E1,E1),I),X)+kron(kron(kron(E0,E0),I),I)
+kron(kron(kron(E0,E1),I),I)+kron(kron(kron(E1,E0),I),I);

DCONT2 = kron(kron(kron(E1,E1),X),I)+kron(kron(kron(E0,E0),I),I)
+kron(kron(kron(E0,E1),I),I)+kron(kron(kron(E1,E0),I),I);

DCONT3 = kron(kron(kron(E1,I),E1),X)+kron(kron(kron(E0,I),E0),I)
+kron(kron(kron(E0,I),E1),I)+kron(kron(kron(E1,I),E0),I);

DCONT4 = kron(kron(kron(E1,X),E1),I)4+kron(kron(kron(E0,I),E0),I)
+kron(kron(kron(EO0,I),E1),I)+kron(kron(kron(E1,I),E0),I);

DCONT5 = kron(kron(kron(E1,I),X),E1)+kron(kron(kron(E0,I),I),E0)
+kron(kron(kron(E0,I),I),E1)+kron(kron(kron(E1,I),I),E0);

DCONT6 = kron(kron(kron(E1,X),I),E1)+kron(kron(kron(E0,I),I),E0)
+kron(kron(kron(EO,I),I),E1)+kron(kron(kron(E1,I),I),E0);

DCONT?7 = kron(kron(kron(I,E1),E1),X)+kron(kron(kron(I,E0),E0),I)
+kron(kron(kron(I,E0),E1),I)+kron(kron(kron(I,E1),E0),I);

DCONT8 = kron(kron(kron(X,E1),E1),I)+kron(kron(kron(I,E0),E0),I)
+kron(kron(kron(I,E0),E1),I)+kron(kron(kron(I,E1),E0),I);

DCONT?9 = kron(kron(kron(I,E1),X),E1)+kron(kron(kron(I,E0),I),E0)
+kron(kron(kron(I,E0),I),E1)+kron(kron(kron(I,E1),I),E0);

DCONT10 = kron(kron(kron(X,E1),I),E1)+kron(kron(kron(I,E0),I),EO0)
+kron(kron(kron(I,E0),I),E1)+kron(kron(kron(I,E1),I),E0);

DCONT11 = kron(kron(kron(I,X),E1),E1)+kron(kron(kron(1,I),E0),E0)
+kron(kron(kron(I,I),E0),E1)+kron(kron(kron(LI),E1),E0);

DCONT12 = kron(kron(kron(X,I),E1),E1)+kron(kron(kron(I,I),E0),E0)
+kron(kron(kron(I,I),E0),E1)+kron(kron(kron(L,I),E1),E0);

DCONT = [DCONT1; DCONTZ2; DCONT3; DCONT4; DCONT5; DCONT®;
DCONT7; DCONTS; DCONT9; DCONT10; DCONT11; DCONT12;]
TCONT1 = kron(kron(kron(E1,E1),E1),X)-+kron(kron(kron(E0,E0),E0),I)
+kron(kron(kron(E0,E0),E1),I)+kron(kron(kron(E0,E1),E0),I)
+kron(kron(kron(E0,E1),E1),I)+kron(kron(kron(E1,E0),E0),I)
+kron(kron(kron(E1,E0),E1),I)+kron(kron(kron(E1,E1),E0),I);

TCONT2 = kron(kron(kron(E1,E1),X),E1)+kron(kron(kron(E0,E0),I),E0)
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+kron(kron(kron(E0,E0),I),E1)+kron(kron(kron(E0,E1),I),E0)
+kron(kron(kron(E0,E1),I),E1)+kron(kron(kron(E1,E0),I),E0)
+kron(kron(kron(E1,E0),I),E1)+kron(kron(kron(E1,E1),I),E0);

TCONT3 = kron(kron(kron(E1,X),E1),E1)+kron(kron(kron(EO0,I),E0),E0)
+kron(kron(kron(EO0,I),E0),E1)+kron(kron(kron(EOQ,I),E1),E0)
+kron(kron(kron(E0,I),E1),E1)+kron(kron(kron(E1,I),E0),E0)
+kron(kron(kron(E1,I),E0),E1)+kron(kron(kron(E1,I),E1),E0);

TCONT4 = kron(kron(kron(X,E1),E1),E1)+kron(kron(kron(I,E0),E0),E0)
+kron(kron(kron(I,E0),E0),E1)+kron(kron(kron(I,E0),E1),E0)
+kron(kron(kron(I,E0),E1),E1)+kron(kron(kron(I,E1),E0),E0)
+kron(kron(kron(I,E1),E0),E1)+kron(kron(kron(I,E1),E1),E0);

CONT = [CONT1; CONT2; CONT3; CONT4; CONT5; CONTG;
CONT7; CONTS; CONT9; CONT10; CONT11; CONT12;]

DCONT = [DCONT1; DCONT2; DCONT3; DCONT4; DCONT5; DCONTG;
DCONT?7; DCONTS; DCONT9; DCONT10; DCONT11; DCONT12;]

TCONT = [TCONT1; TCONT2; TCONT3; TCONT4;]
CONTROL=[CONT; DCONT; TCONT;]
%% %% %% % % % %% %% % % % % % %% %o

Step one to correct eight bit flip errors.

90%0%0 %0 %0 %0 7090700 %0 %0 70 %0 7070700 %o Yo Yo

p=1;

index = 1;
for t = 0:23;
for s = 0:23;
for r = 0:23;

%% % %% % %0 %% % 70 %0 %0 %0 %% %0 %0 %0 %0 Yo 70 %0 %o Yo 70 %0 %0 Yo 0 %0 % Yo 0 %0 %o o %0 %0 Yo 70 %0 %o o
Iteration depends on which qubits we want to transform into fixed state, here we find
that two controlled gates won’t work, so we try to search three layers of quantum
gates.

90%0%%0 %0 %0 % %0700 %0 %0 70 %0 707070 %0 %o o o 0 %0700 Yo Yo o o 70700 Yo Yo o o 0 %0700 Vo Yo o o Yo

q=1;
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CONTROLV1=CONTROL([(t*16+1):(t+1)*16],[1:16]) *CONTROL([(s*16+1): (s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1) ¥16],[1:16]) ¥V4;
CONTROLV2=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1)*16],[1:16]) ¥V'5;
CONTROLV3=CONTROL([(t*16+1):(t+1)*16],[1:16]) *CONTROL([(s*16+1): (s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1) ¥16],[1:16]) ¥V6;
CONTROLV4=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1)*16],[1:16]) ¥V 7;
CONTROLV5=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16]) *CONTROL([(r¥16+1): (r+1)*16],[1:16]) ¥V10;
CONTROLV6=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1): (s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1)*16],[1:16]) ¥V11;
CONTROLV7=CONTROL([(t*¥16+1):(t+1)*16],[1:16])*CONTROL([(s*¥16+1):(s+1)*16],[1:16]) *CONTROL([(r¥16+1): (r+1)*16],[1:16]) ¥V12;
CONTROLV8=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1): (s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1)*16],[1:16]) ¥V14;

CONTROLV9=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(1*16+1): (r+1)*16],[1:16])*V15;

CONTROLV10=CONTROL([(t*16+1):(t+1)*16],[1:16]) *CONTROL([(s*1641): (s+1)*16],[1:16]) *CONTROL([(r*16+1): (r41)*16],[1: 16]) *V 16;

CONTROLV = [CONTROLV1 CONTROLV2 CONTROLV3 CONTROLV4 CONTROLV5 CONTROLV6
CONTROLV7 CONTROLV8 CONTROLV9 CONTROLV10];
for i = 1:10;

for j = 1:16;

if CONTROLV(:,i) == V(.,j);

A(p,q) = j;

q=q+1;

end;

end;

end;

for m = 9:-1:1;

for n = 9:-1:10-m;

if A(p,n+1) < A(p,n);

a= A(p,n+1);

A(pn+1) = A(p;n);

A(pn) = a;

end;

end;

end;

if A(p,:) == [5 67810 12 13 14 15 16];
B(index,:) = [t s r];

index = index+1;

end;

p=p+1;

end;
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end;
end;

%% %% % %% % % %0 % %0 % %% % %0 %0 % % %0 %0 % %0 %0 %

Result of step one to correct eightbit flip errors.

%% %% % %% % % %% % % %% % %0 %% % %0 %0 %0 %0 %0 %

15 4 22 DCONT4*CONT5*DCONT11

15 13 22 DCONT4 DCONT2 DCONT11

15 22 13 DCONT4 DCONT11 DCONT?2

22 15 13 DCONT11 DCONT4 DCONT2

%% %% % % %% % %0 % %0 %0 %0 %0 %0 %0 %0 %0 % %0 %0 %0 %0 %0 %0 %o %o %0 %0 Y6 %0 %0 %0 %0 %0 %0 %0 %o %0 %0 %0 %0 %0 %0 Yo
So there are four kinds of operations that can transform eight of ten bit flip errors

to normal for the choice of [5 6 7 8 13 14 15 16].

% % %% % %% % % %% % % %% % %0 %0 % % %0 %0 %0 %0 %% %0 %0 6% % %0 %0 %0 % %0 %0 %0 % 0% %0 % 0% Yo
%% %% % %% % % %0 % % % %% % %0 %% % %0 %0 % %0 %0 %

Step two to correct remaining two bit flip errors.

90%0%0% % %0 % %0700 %0 %0 %0 %0 %0700 %o Yo o %0 %070 %0 Yo

B=1[5678101213 14 15 16];

p=1
index=1;
for t = 0:23;
a=1;

RCONTROLV1= DCONT4*CONT5*DCONT11*V4;
RCONTROLV2= DCONT4*CONT5*DCONT11*V5;
RCONTROLV3= DCONT4*CONT5*DCONT11*V6;
RCONTROLV4= DCONT4*CONT5*DCONT11*VT;
RCONTROLV5= DCONT4*CONT5*DCONT11*V10;
RCONTROLV6= DCONT4*CONT5*DCONT11*V11;
RCONTROLV7= DCONT4*CONT5*DCONT11*V12;
RCONTROLV8= DCONT4*CONT5*DCONT11*V14;

RCONTROLV9= DCONT4*CONT5*DCONT11*V15;
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RCONTROLV10=DCONT4*CONT5*DCONT11*V16;

CONTROLV1= CONTROL([(t*16+1):(t+1)*16],[1:16])* RCONTROLV 1;
CONTROLV2= CONTROL([(t*1641):(t-+1)*16],[1:16]) *RCONTROLV2;
CONTROLV3= CONTROL([(t*16-+1):(t+1)*16],[1:16])*RCONTROLV3;
CONTROLV4= CONTROL([(t*16+1):(t+1)*16],[1:16])* RCONTROLV4;
CONTROLV5= CONTROL([(t*1641):(t-+1)*16],[1:16]) *RCONTROLV;
CONTROLV6= CONTROL([(t*16-+1):(t+1)*16],[1:16])*RCONTROLV;
CONTROLV7= CONTROL([(t*16+1):(t+1)*16],[1:16])*  RCONTROLVT;
CONTROLV8= CONTROL([(t*16+1):(t+1)*16],[1:16])* RCONTROLVS;
CONTROLV9= CONTROL([(t*1641):(t-+1)*16],[1:16]) *RCONTROLVY;
CONTROLV10=CONTROL([(t*16+1):(t-+1)*16],[1:16]) *RCONTROLV 10;
CONTROLV = [CONTROLV1 CONTROLV2 CONTROLV3 CONTROLV4 CONTROLV5 CONTROLV6
CONTROLV7 CONTROLV8 CONTROLV9 CONTROLV10];

for i = 1:10;

for j = 1:16;

if CONTROLV(:,i) == V(3,j);

Apa) =3J;

q=q+1;

end;

end;

end;

if A(p,8) < A(p,5);

a= A(p,8);

A(p8) = A(p,5);

A(p5) = a;

end;

if [A(p,5) A(p,8)] == [8 16];

B(index,:) = [t];

index = index+1;

else if [A(p,5) A(p,8)] == [12 16];

B(index,:) = [t];

index = index+1;

else if [A(p,5) A(p,8)] == [14 16];

B(index,:) = [t];

index = index+1;
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else if [A(p,5) A(p,8)] == [15 16];
B(index,:) = [t];

index = index+1;

end;

end;

end;

end;

p=p+1;

end;

%% %% % %% % % %% % % %0 % % %0 % % % %0 % %
Step three to correct four phase flip errors.

90%0% % %0 %0 %0 %0%0%0 %0 %0 %0 %0 707070 %0 %0 %o %o %o Yo

RCONTROLV0O= DCONT4*CONT5*DCONT11*V2;
RCONTROLV1= DCONT4*CONT5*DCONT11*V4;
RCONTROLV2= DCONT4*CONT5*DCONT11*V5;
RCONTROLV3= DCONT4*CONT5*DCONT11*V6;
RCONTROLV4= DCONT4*CONT5*DCONT11*V7;
RCONTROLV5= DCONT4*CONT5*DCONT11*V10;
RCONTROLV6= DCONT4*CONT5*DCONT11*V11;
RCONTROLV7= DCONT4*CONT5*DCONT11*V12;
RCONTROLV8= DCONT4*CONT5*DCONT11*V14;
RCONTROLV9= DCONT4*CONT5*DCONT11*V15;
RCONTROLV10=DCONT4*CONT5*DCONT11*V16;
DCONTROLV0O= DCONT6*RCONTROLVO;
DCONTROLV1= DCONT6*RCONTROLV1;
DCONTROLV2= DCONT6*RCONTROLV2;
DCONTROLV3= DCONT6*RCONTROLV3;
DCONTROLV4= DCONT6*RCONTROLV4;
DCONTROLV5= DCONT6*RCONTROLVS5;
DCONTROLV6= DCONT6*RCONTROLV6;
DCONTROLV7= DCONT6*RCONTROLVT;
DCONTROLV8= DCONT6*RCONTROLVS;
DCONTROLV9= DCONT6*RCONTROLVY;

DCONTROLV10=DCONT6*RCONTROLV10;
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p=1;

index=1;

ind=1;

for t = 0:27;

q=1;

CONTROLV0O= CONTROL([(t*16+1):(t+1)*16],[1:16])* DCONTROLVO0;
CONTROLV1= CONTROL([(t*16+1):(t+1)*16],[1:16])* DCONTROLV1;
CONTROLV2= CONTROL([(t*16+1):(t+1)*16],[1:16])* DCONTROLV2;
CONTROLV3= CONTROL([(t*16+1):(t+1)*16],[1:16])* DCONTROLV 3;
CONTROLV5= CONTROL([(t*16+1):(t+1)*16],[1:16])* DCONTROLV5;
CONTROLV6= CONTROL([(t*16+1):(t+1)*16],[1:16])* DCONTROLV6;
CONTROLV = [CONTROLV0 CONTROLV1 CONTROLV2 CONTROLV3 CONTROLV5 CONTROLVG6];
for i = 1:6;

for j = 1:16;

if CONTROLV (:,i) == V(.,j);

A(pa) = J

a=q+1;

end;

end;

end;

for m = 5:-1:1;

for n = 5:-1:6-m;

if A(p,n+1) < A(p,n);

a= A(p,n+1);

A(pn+1) = A(p;n);

A(pn) = a;

end;

end;

end;

if A(p,:) == [267 8 14 16];

B(index,:) = [t];

index = index+1;

end;

if A(p,:) ==1[26 7 815 16];

C(ind,:) = [t];
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ind = ind+1;
end;

p=p+1;
end;

%% %% % %% % % %% % % %% % %0 %% % %0 %0 % % % % %
Step four to correct remaining two phase flip errors.

90%0%% % %0 % % %% %0 %0 %0 0 %0 %0 %0 %0 %0 %o %o o0 % %0 %0 %0 Yo

RCONTROLV0O= DCONT4*CONT5*DCONT11*V2;
RCONTROLV1= DCONT4*CONT5*DCONT11*V4;
RCONTROLV2= DCONT4*CONT5*DCONT11*V5;
RCONTROLV3= DCONT4*CONT5*DCONT11*V6;
RCONTROLV4= DCONT4*CONT5*DCONT11*V7;
RCONTROLV5= DCONT4*CONT5*DCONT11*V10;
RCONTROLV6= DCONT4*CONT5*DCONT11*V11;
RCONTROLV7= DCONT4*CONT5*DCONT11*V12;
RCONTROLV8= DCONT4*CONT5*DCONT11*V14;
RCONTROLV9= DCONT4*CONT5*DCONT11*V15;
RCONTROLV10=DCONT4*CONT5*DCONT11*V16;
DCONTROLV0= DCONT6*RCONTROLVO;
DCONTROLV1= DCONT6*RCONTROLV1;
DCONTROLV2= DCONT6*RCONTROLV2;
DCONTROLV3= DCONT6*RCONTROLV3;
DCONTROLV4= DCONT6*RCONTROLV4;
DCONTROLV5= DCONT6*RCONTROLV5;
DCONTROLV6= DCONT6*RCONTROLVG6;
DCONTROLV7= DCONT6*RCONTROLVT;
DCONTROLV8= DCONT6*RCONTROLVS;
DCONTROLV9= DCONT6*RCONTROLVY;
DCONTROLV10=DCONT6*RCONTROLV10;
PCONTROLV0O= CONT7T*DCONTROLVO;
PCONTROLV1= CONTT*DCONTROLVI;
PCONTROLV2= CONT7*DCONTROLV2;
PCONTROLV3= CONTT*DCONTROLV3;

PCONTROLV5= CONT7*DCONTROLVS5;
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PCONTROLV6= CONT7T*DCONTROLVG6;

p=1;
index=1;
ind=1;

for t = 0:27;
for s = 0:27;
for r = 0:27;
a=1;

CONTROLV0= CONTROL([(t*16+1):(t+1)*16],[1:16])* CONTROL([(s*16+1):(s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1) *16],[1:16])
*PCONTROLVO;
CONTROLV1= CONTROL([(t*16+1):(t+1)*16],[1:16])* CONTROL([(s*16+1):(s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1)*16],[1:16])
*PCONTROLV;
CONTROLV2= CONTROL([(t*16+1):(t+1)*16],[1:16])* CONTROL([(s*16+1):(s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1) *16],[1:16])
*PCONTROLV?;
CONTROLV3= CONTROL([(t*16+1):(t+1)*16],[1:16])* CONTROL([(s*16+1):(s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1)*16],[1:16])
*PCONTROLV3;
CONTROLV5= CONTROL([(t*16+1):(t+1)*16],[1:16])* CONTROL([(s*16+1):(s+1)*16],[1:16]) *CONTROL([(r*16+1): (r+1) *16],[1:16])
*PCONTROLVS;

CONTROLV6= CONTROL([(t*16+41):(t41)*16],[1:16])* CONTROL([(s*16+1):(s41)*16],[1:16]) *CONTROL([(r*16+1):(r+1) *16],[1:16])

*PCONTROLV6;

CONTROLV = [CONTROLV0 CONTROLV1 CONTROLV2 CONTROLV3 CONTROLV5 CONTROLV6];
for i = 1:6;

for j = 1:16;

if CONTROLV(:,i) == V(3,j);
A(pa) = j

a=q+1;

end;

end;

end;

if A(p,4) < A(p,1);

a= A(p,4);

A(p4) = A(p,1);

A(p,1) =

end;

if [A(p,1) A(p4)] == [12 16];

B(index,:) = [t s 1];
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index = index+1;

else if [A(p,1) A(p,4)] == [14 16];
B(index,:) = [t s r];

index = index+1;

else if [A(p,1) A(p,4)] == [15 16];
B(index,:) = [t s r];

index = index+1;

end;

end;

end;

p=p+1;

end;

end
end

% %% %% % %% %% % % % %% % % % %0 % % % % %% %0 % % %0 % % % %o
Result of step four to correct remaining two phase flip errors.
% %% %% % %% %% % % % %6 % % % % %0 % %0 % % %% % % % %% % % %
B =

389

5610

5910

5109

518 10

520 10

5229

65 10

839

8910

8109

8189
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8 20 10
8229
9510
1089
1139
11 6 10
11189
11 18 10
1289
14 510
16 5 10
1789
18 510
1889
19910
19109
19 20 10
19229
20 5 10
21 6 10
211810
2289
2339
23189
24510
2489
25510
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2689

And the corresponding controlled gates for some of these are:
3 8 9 CONT4*CONT9*CONT10
56 10 CONT6*CONT7*CONT11
59 10 CONT6*CONT10*CONT11
6 5 10 CONT7T*CONT6*CONT11

8 39 CONT9*CONT4*CONT10

8 9 10 CONT9*CONT10*CONT11
9510 CONT10*CONT6*CONT11
10 8 9 CONT11*CONT9*CONT10
11 3 9 CONT12*CONT4*CONT10
11 6 10 CONT12*CONT7T*CONT11
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Appendix B

Linear rank preservers of tensor
products of rank one matrices

B.1 Introduction and statement of main results

Let n > 2 be positive integers. Denote by M, the set of n x n complex matrices
and C" the set of complex column vectors with n components. Linear preserver
problems concern the study of linear maps on matrices or operators with some special
properties, which has a long history. In 1897, Frobenius [13] showed that a linear
operator ¢ : M, — M, satisfies det(¢p(A)) = det(A) for all A € M, if and only if
there are M, N € M,, with det(MN) = 1 such that ¢ has the form

A MAN or A~ MA'N.

Since then, lots of linear preservers have been characterized, see [11, 37| and their
references. In particular, Marcus and Moyls [44] determined linear maps that send
rank one matrices to rank one matrices, which have the form A — MAN or A —
MATN for some nonsingular matrices M and N.

Recently, linear maps that preserve certain properties of tensor products are
studied. The tensor product (Kronecker product) of two matrices A € M, and
B e M, is defined to be A® B = [a;;B], which is in M,,,. In [11], the authors
determined linear maps on Hermitian matrices that leave the spectral radius of all
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tensor products invariant. In [8, 10, 9, 38] the authors determine linear maps on
M,,,, that preserve Ky Fan norms, Shattern norms, numerical radius, k-numerical
range, product numerical range of all matrices of the form A ® B with A € M,, and
B € M,. Notice that the set of matrices of tensor product form shares only a very
small portion in M,,, and the sum of two tensor products is in general no longer a
tensor product form. Therefore, such linear preserver problems are more challenging
than the traditional problems. In some of the above mentioned papers, the authors
have also extended their results to multipartite system, i.e., matrices of the form
A ® - ® A with k > 2.

In the literature, rank preserver problem is known to be one of the fundamental
problems in this subject as many other preserver problems can be deduced to rank
preserver problems. For example, the result Marcus and Moyls [44] on linear rank
one preservers have been applied in many other preserver results. More discussion
can be found in [20]. Let ni,...,ng be positive integers of at least two. In [62],

Zheng, Xu and Fosner showed that a linear map ¢ : My, ..., — My, ..., satisfies
rank p(A; @ - ® Ay) =rank (A, ®---®A;) forall ;e M,, i=1,....k (B.1)
if and only if ¢ has the form
P(A1®- @A) = M(1(A1) @+ @vUy(Ax))N (B.2)

where M, N € M,,..,, are nonsingular and v;, ¢ = 1,...,k, is either the identity
map or the transpose map. Their proof was done by induction on k£ with some smart
argument on the rank of sum of certain matrices. The same authors also considered
in [60] the injective maps on the space of Hermitian matrices satisfying (B.1) for rank
one matrices only. By using a structure theorem of Westwick [57], Lim [43] improved
the result of Zheng et al. and showed that a linear map ¢ : M,,..,, — Mp,..n,

satisfies (B.1) for rank one matrices and nonsingular matrices has the form (B.2)

too.

96



In this paper, we characterize linear maps ¢ : M,,,...,, — M,,..n, satisfying (B.1)
for only rank one matrices 4; ®---® Ay with A; € M,,,. In this case, the structure of
maps is more complicated and the maps of the form (B.2) is only one of the special

cases. To state our main result, we need the following notations. Denote by
C"RC" ={z®y:xeC™ yeC"} and M,QM, ={A®B:Aec M,,, Be M,}.

Also C" @C™ ®---®@C"™ can be defined accordingly. For a matrix A = [a;;] € M,,

denote by
vec( ) [CLH Q19 "+ Q1p A21 Q92 "+ QAop " Qp1 Ap2 * - am] € .

In particular, if A = zy” is rank one matrix with z,y € C", then vec(zy?) = r ® y.
Given a set S, a partition {P;,..., P} of S is a collection of subsets of S such that
PnP=@fori#jand PLu---uP. =S5.

We are now ready to present the main result of this paper.

Theorem B.1. Let ny,...,n. be positive integers larger than or equal to 2 and

m = Hle n;. Suppose ¢ : M,, — M,, is a linear map. Then

rank (¢(A1® - ®Ay)) =1 whenever rank (A1®---®Ax) =1 forall A; e M,,,

(B.3)
if and only if there is a partition {Py, Ps, P3, Py} of the set K = {1,...,k}, a m x
pip2ps matriz M and a mx pipap; matriz N with py = [ [;ep, ni andpe = 1if Py = &,
for ¢ =1,2,3,4, satisfying

Ker(M) n < X C"® @(C”f’@@"f)) = {0}

and

Ker(N) n ( X C"e X (CY ®<C"f)) = {0}

’iEP1 UPQ j€P4
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such that

€ePy 1€P> i€Ps 1€Py

(A ® - @A) =M (@ A ® QAT @ (X) vec(4;) @ (X) VecT(Ai)> NT. (B.4)

Furthermore, for any given partition {Py, Ps, P3, Py} of K, there always exists some

M and N that satisfy the above kernel condition, except the case k = 2, K = {1, 2},
2 € {n17n2}; and (P17P27P37P4> = (@7@7‘[{7 @) or (@7@7@7}()

Shortly after the authors obtained the above result, they learned via a private
communication that, by using another structure result of Westwick [58, 59], Lim [41]
has also obtained a characterization of linear maps between rectangular matrices over
an arbitrary field that is rank one non-increasing on tensor products of matrices. In
the same project, Lim also considered linear maps sending tensor products of (non)-

symmetric rank one matrices to (non)-symmetric rank one matrices.

The rest of the paper is organized as follows. In Section 2, the bipartite case
(k = 2) of the main result will be discussed and examples will be given to demonstrate
the importance of the kernel condition for the matrices M and N stated in Theorem
B.1. The proof of the main result and related corollaries will be presented in Section

3.

B.2 Bipartite case

In this section, we will focus on the bipartite case (when k = 2). Let {E\1, ..., Epnm}

be the standard basis of M,,. A matrix X € M,,, can be expressed as
X o Xim

X = T = Z Eij ®XZJ with Xij (S Mn

X1 o X 1<i,j<m
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The partial transposes of X on the first and the second system are defined by

XM= Y Ey®X; and X™= Y E;®X[

1<i,j<m 1<i,j<m
Also denote by

XR1 = Z vec(Eij) ®X1] and XR2 = Z Eij ®V6C(Xij).

1<i,j<m 1<i,j<m

Furthermore, define the m? x n? realigned matrix of X by

X = Z vec(Ey;) ® vec! (X,;5).
1<i,j<m
In particular, X771 = XT @ Xy, X2 = X; @ XTI, XB1 = vec(X)) ® Xy, X =
X1 ®vec(Xs), and X® = vec(X;) ® vee! (Xs) if X = X; ® Xo.
Finally, for any two linear maps 1, and 15 on matrix spaces, we say that these
two maps are permutationally similar if there are permutation matrices P and @)
such that ¥5(A) = P (A)Q for all A. For example, it is clear that A — vec(A) and

A+ vec(AT) are permutationally similar.

Proposition B.1. Let ny,ny be positive integers and m = ning. Given ¥p : M, —
M, defined by p(A) = APTi with j = 1,2. The composite map g © Yp is permu-

tationally similar to the map Vg , when Yg is one of the following maps.
(i) A— A% (i) A AR or (i) A vec(A).

Proof. For j = 1,2, it is obvious that there is a permutation matrix P; € M, such
that vec(X]) = P;vec(X;) for all X; € M, . Also there is a permutation matrix
Py € M, such that vec(X; ® Xs) = Pia(vec(X;) ® vec(Xy)) for all X; € M,,,
1 = 1,2. We now consider the case when j = 1. The case j = 2 can be proved in a
similar way.
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First suppose g : A — AR For any X; € M,,, i =1,2,

Yrovp(X1®Xs) = (X3 ®X2)PTI)R1 = (X{ ® Xo)™ = vee(X]) @ X,
= (PL® I,,)(vee(X) @ X3) = (PL® L,) (X1 ® X)) = (P, ® I,)Ur(X1 ® Xa).

By linearity of the two maps, we conclude that g o ¥p(A) = (P, ® I,,)vr(A) for
all Ae M,,.

Suppose now g : A+ AR For any X; € M,,., i = 1,2,

YR o tp(X; ® Xa) = (X ® X)) = (XT @ X,)F = vee(XT) @ vec” (X5)
= Py(vec(X) @ vec' (X3)) = P (X1 ® Xo)f = Pip( X, ® Xs).
Thus, the same conclusion holds. Finally assume ¢ : A — vec(A). For any X, €
M, i=1,2,
YroYp(Xi ® Xs) = vee(X] ® Xy) = Pip (vec(X]) ® vec(X>))

= Pi(P® I,,) (vec(X;) ® vec(Xs))
= Pi(P®I,,) Phvec(X; ® Xo)
= Pi(Pr ® L,) Phr(X: ® Xa).

Again by linearity of the maps, we conclude that 9o p(A) = Po(Pi®I,,)PLwr(A)

for all Ae M,,. O

It turns out that for the bipartite case (k = 2), Theorem B.1 can be expressed in

terms of partial transpose and realigned matrix as follows.

Theorem B.2. Let ny,ny be positive integers larger or equal to two and m = nins.

Suppose ¢ : M,, — M,, is a linear map. Then

rank (¢(A; ® A2)) =1  whenever rank (A; ® As) =1 forall A;e My, i =1,2,
(B.5)
if and only if ¢ = Y oy oY 0 Yp, where
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(i) vp: A— A, A APTL or A s APT2;

(i) Yr: A A, A AR A s AR A s AR o1 A s vec(A) ;
(iii) ¢ar : A> MANT;

(iv) vp: A— A or A— AT,

which has totally 16 different forms, and M and N are matrices of appropriate size

satisfying

(1) Ker(M)n(C™ @ C") = {0} and Ker(N)n (C" ® C") = {0} if g is the map
A— A;
(2) Ker(M)n(C" @ C™) = {0} and Ker(N)n (C" ® C") = {0} if i is the map

A — AR;

(3) Ker(M) n (C" @ C" @ C™?) = {0} and N has full column rank equal to ny if
Vg s the map A — AR,

(4) Ker(M) n (C" @ C" @ C™?) = {0} and N has full column rank equal to ny if
Vg s the map A — AR2;

(5) Ker(M) n (C"@C" @C" ®C") = {0} and N is a m x 1 nonzero matriz if
2 ¢ {ny,ne} and Vg is the map A — vec(A).

Proof. 1t is easy to verify that the two maps
X1®@Xo—» X1®Xy and X;0X,— Xo® X,

are premuationally similar. Applying Theorem B.1 with k£ = 2 and taking the above

observation into account, the equation (B.4) can be reduced to the following 16 cases.
1) {Ph P27 P37 P4} = {{1}7 {2}7 @7 @} and
H(AL ® As) = M(A; @ AL)NT = M(A; @ Ay)PT2NT.
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2) {Pl, PQ, P3, P4} = {{2}, {1},@, @} and
H(A1 ® Ay) = M(AT @ A))NT = M(A; ® Ay)PTINT.

3) {P17P27P37P4} = {{1}7@7 {2}7@} and
¢(A1 ®A2) = M(Al ®V€‘C<A2>)NT = M(Al ®A2)R2NT.

4) {Py, Py, P3, P} = {{2}, &, {1}, &} and
gb(Al ®A2) = M(VeC(Al) ®A2)NT = M(A1 ®A2)R1NT.

5) {P1, P2, P3, Py} = {{1}, &, &, {2}} and
B(A; ® Ay) = M(A; ® vecT (Ay))NT = (N((A; ® Ap)PT)E2 7))

6) {P1, P2, P3, Py} = {{2}, 0, &, {1}} and
$(A; ® Ay) = M(vecT(A;) ® Ay)NT = (N((A; ® Ap)PT2)B ™)

7) {Pl, Pg, P3, P4} = {@, {1}, {2}, @} and
S(A;1 @ As) = M(AT @ vec(As))NT = M((A; @ Ap)PT)F2NT.

8) {Py, P2, P3, Py} = {,{2}, {1}, I} and
¢(A1 ®A2) = M(VGC(Al) ®Ag))NT = M((Al ®A2)PT2)R1NT.

9) {P1, Py, Ps, Py} = {J,{1},d,{2}} and
$(A; ® Ay) = M(AT @ vec (Ay))NT = (N(A; ® Ay)F2MT)"

10) {P1, P, Py, Pi} = {5, {2}, &, {1}} and
$(A; ® Ay) = M(vecT(A)) @ AT))NT = (N(4A; ® Ay)MT)"

11) {P, P, P3, Py} = {&, &, {1}, {2}} and
H(A; ® Ay) = M (vec(A;) @ vecT (A2))NT = M(A; ® Ay)ENT.

12) {Py, P, P3, Py} = {J, &, {2}, {1}} and

G(A; ® Ay) = M(vecT (A;) ® vec(Az))NT = (N(A, ® Ay)EMT)".
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]-3) {PlaPQaP3aP4} = {{1a2}a®7®7@} and
P(A1 ® Ay) = M(A; ® As)NT.

14) {P17P27P37P4} = {@7 {172}7®7@} and
$(A; ® Ay) = M(AT @ A)NT = (N(A; ® A,)M”)".

15) {P17P27P37P4} = {@7@7 {172}7@} and
H(A; ® Ag) = M (vec(A;) @ vec(Ay)) NT = M PL (vec(A; ® A)) NT.

16) {P1, P, P3, P} = {3, J, I, {1,2}} and
B(A; ® Ay) = M (vecT(Ay) @ vecT (A3)) NT = (NPh(vec (A ® Ay)) MT)".

Here, M and N are matrices with appropriate size, and satisfy the kernel condition
in Theorem B.1 (In some cases, the roles of M and N may interchange). Also
the cases 15) and 16) hold only when 2 ¢ {n;,ns}. In all these cases, the map
¢ can be represented by A — 17 o ¢y 0 g o Pp(A) where Yp, Yy, g, Pr are
of the forms in (i), (ii), (iii) and (iv) respectively. Furthermore, by Proposition
B.1, if ¢p is a partial transport map with respect to the jth subsystem, ¥g o ¥p
is permutationally similar to ¥g, when g has the form A — Afi_ A — AP or
A — vec(A). Therefore, instead of 15 different types, there are actually only 9
different types of compositions of ¥r o ¥p. Finally, since (APT)T = AFT2 and
(APT)T = APTY the maps A — (MAPIINT)T and A — (MAPT2NT)T are the
same as A — NTAPT2)N and A — NTAFPTLM | respectively. Therefore, the map

Wr o 0 Yr o Yp has totally 16 different forms only. ]

In the following, we give some low dimensional examples of M and N that satisfy

the conditions (2), (3) and (5) of Theorem B.2.

Example B.1. Assume (n1,ns) = (2,3) and define the 6 x 4 matrix M and the 6 x 9
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matrix N by

10 0 0] 1 000 -1 0 0 0 0]
0100 01000 -1 0 0 0
0010 0010 0 0 -1 0 0
M=1g 001 2 N=1g 001 0 0 0 -1 0
000 0 0000 O 0 0 0 -1
[0 0 0 0] 0000 0 0 0 0 0

Clearly, rank (M) = 4 and rank (N) = 5. Also
Ker(M) = {0} and Ker(N) = {[a b cdadcd O]T : a,b,c,de(C}.

Therefore, Ker(N) does not contain any nonzero element in C*® C3. Then the map
A — MAENT gatisfies the condition (B.5) and its range space contains matrices of

rank at most 4 only.

Example B.2. Assume (n1,n2) = (2,3) and define the 6 x 12 matrix M and the

6 x 3 matrix N by

10000001 0 000 10 0]
01000000 1 00 0 01 0

. 00100000 0 100 00 1
M=[ls M=/ g 6010010 0 010]| ™ N=1{g¢ o
00001000 0 00 1 00 0
00000100 1000 | 00 0

Clearly, Ker(N) = {0}. Suppose M(z ® y ® z) = 0 for some nonzero z,y € C* and
z € C3. Then

0=MzRy®z2)=MzRI)(y®:z) = (1l + 22M)(y ® 2),

where z = [x; a:Z]T. So (w11 + :EQM) is singular and hence z; = 0 as det(z1/s +

23M) = 8. Thus, the vector y ® z is in the kernel of M. However, Ker(M) =
{[a 000a0]" :ae (C}, which does not contain any nonzero element of C* ® C?.
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Therefore, even Ker(M) is a 6 dimensional subspace of C'?, Ker(M) does not contain

any nonzero element of C? ® C?® C3.

Example B.3. Assume (ny,ny) = (3,3) and define the 9 x 81 matrix M by

M=[ly, R > R* —I, —-R —R®> —R® R']

with

[0 1 00 0O0O0O0 O]

0O 01 00 O0OOTDO

0O 001 0O0O0OO0OTDO

-1 00 01O0O0O0TO0

R=[0 000O0T1O0O0TDO0

0 00 0O0O0OOT1TO0OTDO

0O 00 0O0O0OOOT1O

-1 00 01 O0O0O01

| 0O 0000000 0]

Notice that
Ker(R) € Ker(R?) < Ker(R?)
4 T
< Ker(RY) = {[a bedabcdo :a,b,c,de(C}.
Suppose M(z ® y ® 2 ® w) = 0 for some nonzero z,y,z,w € C*. Set 1 @y =
[u; - ug]” € C? and define
U=MrzQy®Iy) = (ug —us)ly + (uy — ug) R + (uz — ur) R* + (uy — ug) R* + ug R*.
Then
0=MrzRy®:20w)=Mrz®y® ) (2®@w) =U(zQw).
Now let
Us = ugly and Uy = (ur — ugsa)lo + Upy1 R for k=1,2,3,4.

Then it can be verified that

Uy = (u1—us) Lo+ ((ug — ug) Iy + ((ug — uy)ly + ((ug — ug)ly + (ugly) R) R) R) R = U.
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For k = 1,2, 3,4, because R is singular, Uy is singular if and only if u; — up,4 = 0,

or equivalently, U, = U, R. Furthermore, when Uy, is singular,
Ker(Upy RF1) = Ker(Upy 1 RR¥) = Ker (U1 RY).

Suppose at least one of Uy,...,Us is nonsingular, say U, is nonsingular for some

1</¢<b5andUy,-- Uy are all singular. Then
Ker(U) = Ker(U;) € Ker(UyR) < --- < Ker(U,R*™) = Ker(R*™) < Ker(R?).

But this is impossible since U(w ® z) = 0 while Ker(R?) does not contain any
nonzero element of C3 ® C3. Therefore, all Uy, ..., Us are singular. In this case, we
have up, — up4 = 0 for k = 1,2,3,4 and ug = 0, or equivalently, x ® y has the form
[u1 Uy U3 Ug UT Uz U3 Uy O]T, and contradiction again arrived. Thus, one
can conclude that Ker(M) does not contain any nonzero element of C* ® C3 ® C* ®
C3. Now take any 9 x 1 nonzero matrix N. Then the composition map ¢ : A —

Mvec(A)NT satisfies condition (B.5). In this case, rank (¢(A)) < 1 for all A € My.

Remark B.1. For condition (1) of Theorem B.2, both M and N have size m x m. In
this case, any nonsingular matrices M, N € M, satisfy case (1). But there exists sin-

gular matrices that satisfy the condition (1) too. For example, when (nq,ns) = (2,2)
one can construct a rank three 4 x 4 matrix M with Ker(M) = {[a 00al” :ac (C},

which does not contain any nonzero vector in C? ® C2.

For condition (2) of Theorem B.2, the same observation as above follows if n; =
ng. If ny < ng, M can be chosen to be any m x n% matrix with full column rank,
i.e., rank (M) = n?. Similarly, N can be chosen to be any m x n3 matrix with full

column rank if n; > ns.

Finally, it has to point out that the partial transpose and realignment are two
useful concept in the study of separable problem, which is one of the most important
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problem in quantum information science. Although it have been showed that the
general characterization of separable states is NP-hard [19], researchers are interested
in finding effective criterion to determine separability of a quantum state. A quantum
state (density matrix) X is PPT (positive partial transpose) if X771 (or equivalently
XPT2) is positive semi-definite. One of the classical and popular criteria is PPT
criterion introduced by Peres [48]. The PPT criterion states that if X is separable,
then X is PPT and these two conditions are equivalent if m = nyny < 6 [21]. Another
strong criterion is CCNR criterion [6, 50|, which confirmed that | X, < 1 if X is
separable. It has to note that researchers also studied preservers on separable states,
see [2, 12, 23]. In particular, the authors in [12] studied linear maps that send the

set of separable states onto itself in multipartite system.

B.3 Proof of the main results

In this section, we will present the proof of Theorem B.1. The proof relies on the
structure result of Westwick [57, Theorem 3.4] on preservers of nonzero decomposable

tensors, and we restate this result as follows.

Theorem B.3. Let Uy,...,U, and Wi, ..., W, be finite dimensional vector spaces
over a field F with dim(U;) > 2 and define U = Q;_, U; and W = Qi_, W;.
Suppose f : U — W is a linear map sending nonzero decomposable tensors into
nonzero decomposable tensors. Then there is a partition {Si,...,5;} of {1,...,p}
(S; can be an empty set) and linear functions f; : ®z’esj Ui, — W; sending nonzero

decomposable tensors to nonzero vectors, such that

LS

f($1 CORRE ®Ip> = ®fJ (®i€5jxi) .

j=1
Here, f; is defined to be a monzero constant function, i.e., f;(-) = w; for some
nonzero w; € Wj, if S; = .
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We will prove the following equivalent version of Theorem B.1.

Theorem B.4. Let ny,...,ni be positive integers larger than or equal to 2 and let

m = Hle n;. Suppose ¢ : M,, — M, is a linear map. Then

rank (p(A;1 ® - ® Ag)) =1 whenever rank (A ®---® Ag) =1 for all A; € M,

(B.6)
if and only if there are two subsets K1, Ky of K = {1,...,k}, a m x mymy matriz M
and a m x m?/(mymsy) matriz N with m; = [Lick, i ormy =1 if Ky = &, t=1,2,

satisfying

Ker(M)n (@ C"® ) C”j) ={0} and Ker(N)n (@ C"® ) C”J) = {0}

€Ky JEK2 ¢ K JEK2
(B.7)

such that

¢ (21y] @ @ x4y ) :M<® xi®®yj) (@ 7; ® ®yj> NT  (BS)

iEKl jEKQ i$K1 ]¢K2

for all x;,y; € C". Furthermore, for any given subsets K1, Ky of K, there always
exists some M and N that satisfy the above kernel condition, except the case k = 2,

K ={1,2}, 2 € {n1,na}, and either K1 = Ko = K or K; = Ky = (J.

Proof. The necessary part is clear. For the sufficient part, define a linear map f :

C™* — C™" such that

k k
/ (@(% ®yz>> = vec <¢ (@ sz?)) for all x;,y; € C™,
=1

i=1

and by linearity, extend the definition of f to all vectors in C™. Recall that vec(A) =
r®y if A= xy? is rank one. As ¢ satisfies (B.6), the map f will send all nonzero
vectors of the form @, (z; ® y;) to some nonzero vectors of the form u ® v €

108



Cm®C™, i.e., f sends nonzero decomposable elements of @le C" ®C"™ to nonzero
decomposable elements of C™ ® C™. Applying Proposition B.3 ([57, Theorem 3.4])
with p = 2k and ¢ = 2, there are two partitions {K;, K;} and {Ky, Ky} of K =
{1,...,k}, and linear maps f; : C"™"2 — C™ and f : Cm*/tmmz) _, Cm where m

is defined as in statement of the theorem, such that

f <é($i®yi)> =h (@:m@ X yj> ® fa (@:ﬂi@ & yj> .

i=1 ieKq jEK> €K1 jeKa

As fi and f; are linear, there exist a m x mymy matrix M and a m x m?/(myms)
matrix N such that f1(z) = Mz and fo(w) = Nw. Thus, ¢ has the form as described
in (B.8). Further, fi(2) # 0 for all z € &);cx, C" ® Kjeg, € and fo(w) # 0 for
all w € Quex, C" @ Rjupe, C as K; = K\Kj, and hence, M and N satisfy the

condition (B.7). The last statement will be confirmed by Proposition B.3. O

Now the equivalence of Theorems B.1 and B.4 can be seen as follows.
Proof of Theorem B.1. Suppose ¢ satisfies the rank condition (B.3). Then Theorem
B.4 implies that ¢ has the form (B.8) with M and N satisfying (B.7). Set P, =
K\K3y, Py = Ko\Ky, P = K1 n Ky, and P, = K\(K; U K3). First, there exists a

permutation matrix (), such that for any z;,y; € C™,

Qq <®$i®®yj®®($k®yk)>

el jePs kePy

(@xi@)@xi@@w@@%)

€Py i€P3 JEPs JjePs3

(geege)

€Ky jeK>
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Similarly, there exists another permutation matrix @), such that for any z;,y; € C*,

I

<®$i®®xi®®yj®®yj>

i€EP, i€Py jeP; JjePy

Qy <®9j®®$i® ®(l’k®yk))

jEPI i€Ps kePy

= (@xi@)@yj).

itK, j¢K>
Now for any rank one matrix A; = x;y! with z;,y; € C%, i =1,... k,

P(A® - ®A) =0 (n1y @ - ®zayy)

_ M<®xi® ®yj> <®xi® ®yj)TNT

€Ky jeK2 ¢ Ky JEK>

= MQ, (@m@@yj@@(:ck@yk)) (@yj®®xi®®($k®yk>> QINT

iePy jePs kePy jePy iePs kePy

= MQ, ®xi®®y]~®®<mk®yk>> (@yf@@w?@@(m@yﬁ)@iﬂ

iGPl jEPQ k€P3 jEP1 iGPQ kEP4

- MQ, (@ x) (@ y?) ® <® yj> (@xf) ® Q) (21 @ yp) ® ®<xk®yk)T> Q,N"

i€Py i€Py jeP> jeP> kePs kePy

= MQ. | @z @ Q7] ® X (k@) ® X (wn @M) QyN"

iePy jEPQ k€P3 kEP4

= 310, (@ © @) © @ veelol) © @ <y>) o

i€Py jeP> kePs kePy

= MQ, | ¥ A® XK (A)" ® ) vec(Ar) @ X) VeCT(Ak)> QiNT.

i€Py j€P2 kGPg kEP4

By linearity, the equality holds for any matrix A; € M,, and hence we have (B.4).

Finally, the kernel condition can be easily reduced from (B.7). O

Next we show that the matrices M and N in Theorem B.4 (equivalently, Theorem
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B.1) always exist, except for two special cases, namely, when k = 2, K = {1,2},
2 € {n1,ny}, and K1 = Ky = K or K1 = Ky = ¢J. For simplicity, we focus on the
existence of M. For positive integers py, .. ., p,, denote by E(py, ..., p.) the collection

of subspaces § of CP'"Pr such that
Sn(C"r®---®CPr) = {0}.

The subspace S is called a completely entangled subspace in [46]. In the same paper,

the author also obtained the maximum dimension of S in £(py,...,p,) as follows.

Proposition B.2. [46, Theorem 1.5] Let p1,...,p, be positive integers. Then

max )dimS = ﬁpi—ipi—i—r— 1.
i=1 i=1

Se&(p1y...,pr

It has to mention that an explicit construction for maximum completely entangled
subspace for bipartite case (r = 2) was also given in [46]. Based on the above
proposition, we can deduce the following result which showed that the matrix M

always exists, except for one special case.

Proposition B.3. Let nq,...,n. be positive integers larger than or equal to 2, K =
{L,....k}, and Ky, Ky € K. Define m = [[;ceni and my = [, mi fort = 1,2.

Then there always exists a m x mymg matriz M such that

€Ky jEKQ

Ker(M) n (@ C"® ) (C”f> = {0},

except the case when K1 = Ky = K = {1,2} and 2 € {ny,ns}.

Proof. If m = myms, then any m x mimo matrix with full column rank, i.e.,
rank (M) = mymy will satisfy the kernel condition. Let us assume that m < myms.

Notice that Ker(M) is a subspace of C™™2. By Proposition B.2, the maximum
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dimension of subspace of C™™2 which does not contain any nonzero element of

Rier, C" @ ®je x, C" is equal to

d(Kl,Kg) = Mmimsy — 2 n; — Z n; + ’K1| + |K2| —1

’iEKl jEKz
= mlmg—Z(ni—l)—Z(nj—l)—l.
€K1 JjeK>

On the other hand, dim Ker(M) = m;mq—m for all m x myms matrices and the equal
holds when M has full row rank, i.e., rank (M) = m. Therefore, the m xm;my matrix

M satisfying the kernel condition will always exist when d(K7, K3) = mymy —m, or

equivalently,
m= > (ni—1)+ > (n;—1)+ 1. (B.9)
€Ky JEK>
Notice that for any positive integers aq, ..., a,
k k k
[Ta+1)= > aa+>a+1= Z +Za]+1_22aj+1 if k> 3.
j=1 I<i<j<k j=1 j=1 j=1

Assume k > 3 and take a; = n; — 1 in the above equation, we have

m = Hn, QZ(ni—l)—Fl) Z(ni—l)—i- Z(nj—1)+1.

ieK ieK €K jeK>

Therefore, the matrix M exists when k£ > 3. For k = 2,

nj=2> (=D +[[(n;=2)= > (m— 1)+ > (n; —1) +0,

j=1 j=1 €Ky jeEK2

3
|
T

and the equality holds if and only if K; = Ky = K = {1,2} and at least one of n;
is equal to 2. In all other cases, the above inequality is strict, and therefore, the
inequality (B.9) holds. Finally, suppose K; = Ky = K = {1,2} and 2 € {n;,n,}. We

may assume n; = 2, then

d(K1, Ky) = 4nj — 2ny — 1 < 4n3 — 2ny < dim Ker(M)
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for any (2ns) x (2n2)(2n9) matrix M. Therefore, there is no matrix M satisfying the

kernel condition in this case. O

After we obtained the above result, it has come to our attention that Lim [42] has
already given a necessary and sufficient condition for the existence of linear maps
preserving nonzero decomposable tensor for any algebraically close field, see [42,
Proposition 2.8]. This existence condition is actually equivalent to the inequality
(B.9) in our proof. Also a similar conclusion on linear maps on matrix space is

obtained in a recent work of Lim in [41] too.

Finally, we apply Theorem B.1 to obtain the following corollaries, which gener-

alize the results of Zheng et al. [62] and Lim [43].

Corollary B.1. Let nq,...,ng be positive integers larger than or equal to 2 and let

m = Hle n;. Suppose ¢ : M,, — M,, is a linear map. If
rank (p(A1®---®Ax)) =1 whenever rank (A ®---®Ag) =1 for all A; € M,,,

and there s a matric X1 ® - -- @ Xy with X; € M,,, and rank X; > 1 fori=1,...,k
such that

rank (¢(X; ® - ® X)) = rank (X; ® - - - ® Xy),
then ¢ has the form

DA ® @A) = M1 (A1) ® - @ y(Ar))NT

for all A; € M, withi =1,..., k, where 1; is the identity map or the transpose map
forj=1,...,k, and M, N € M,, satisfy

Ker(M)n (C"®---®@C"™) = {0} and Ker(N)n (C"®---®C"™) = {0}.

Proof. By Theorem B.1, ¢ has the form (B.4) with partition {P;, Py, P, P;} as de-

fined in the theorem. Notice that rank (vec(A)) = 1 for any matrix A. Suppose
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P;u Py # . Then

rank (¢(X; @@ X3)) < ( l_[ rank(Xj)>< l_[ rank(vec(Xj))>

jEPl UP2 j€P3uP4

= ( 1_[ rank(Xj)><rank (Xi®- ®Xy),

j€P1 UPQ
which contradicts the assumption. So P3 u Py = ¢ and ¢ has the asserted from. [

Corollary B.2. Let ny,...,ng be positive integers larger than or equal to 2 and let

m = ]_[le n;. Suppose ¢ : M,, — M, is a linear map. Then
rank (¢(A;1®---®Ag)) =1 whenever rank (A ®---®Ag) =1 for all A; € M,,,

and ¢(X1 ® --- ® Xy) is nonsingular for some X; ® --- ® Xy with X; € M,, if and

only if there exist nonsingular matrices M, N € M,, such that
where v;, 7 =1,...,k 1s either the identity map or the transpose map.

Proof. The sufficient part is clear. For the necessary part, by Theorem B.4 and a
similar argument as in the proof of Corollary B.1, one can show that P; u Py = &

and M and N are both nonsingular. Then the result follows. O
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