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Abstract

Quantum information science is a rapidly growing research area. It concerns infor-

mation theory that makes use of quantum nature of the microscopic world. In reality,

quantum systems are vulnerable to disturbance from an external environment, which

can lead to decoherence in the system. Thus, the system must be protected from the

environmental noise to keep information stored in the quantum registers. In order

to realize a working quantum computer and dependable quantum information pro-

cessing, researchers and engineers have to overcome this difficulty. One of the most

promising candidates for overcoming decoherence is Quantum Error Correction. The

idea of quantum error correction is to protect quantum information from errors due

to decoherence and other quantum noise during the transmission of information in

quantum channels. One fundamental question of quantum error correction is the

existence of quantum error correcting code for a noisy quantum system. Moreover,

constructing practical and operational quantum error correcting schemes in actual

quantum computing is of great interest to quantum information scientists.

In this thesis, stabilizer codes and a scheme for constructing recovery channels

without error syndrome detection are studied. The motivation for construction of

recovery channel without error syndrome detection is also given. We first review

some basic concepts on stabilizer groups and stabilizer codes. In particular, we

consider theories and principles involved in the construction of encoding circuits from

the generators of stabilizer group, and propose a new procedure to derive recovery
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channel for a well known quantum code, the rn, k, ds code.

First, an algorithm to obtain the generators for a stabilizer code and the cor-

responding computational basis codewords defined in terms of Pauli operators are

reviewed and illustrated in detail. Examples are given to demonstrate the rela-

tion between the X´ and Z´ matrices of generators of stabilizer group and the

corresponding encoding circuit. Then based on the general framework of operator

quantum error correction, we provide a general scheme on the construction of en-

coding and decoding circuits for the rn, k, ds codes. Finally, a detailed procedure to

construct the recovery channel using encoding circuits and encoded computational

basis codewords are demonstrated for r5, 1, 3s code and r8, 3, 3s code step by step as

examples, with heuristic explanations based on necessary and sufficient conditions

for quantum error correction. Possible future study and open problems will also be

mentioned.

vi



Acknowledgements

Research needs relentless efforts and interactions with people around you. I owe my

thanks to the individuals who have guided me, enlightened me, and supported me

during my pursuit of PhD and I would like to bear their help and kindness in mind

for the rest of my life.

First and foremost, I would like to express my gratitude for my supervisor Dr.

Raymond Sze, for his patience and kindness and selfless support during my study in

PolyU. What I have learned from him will benefit me in so many ways and aspects.

Also, I wish to express my deep thanks to Professors Chi-Kwong Li and Yiu-Tung

Poon for their helpful talks and discussions during meetings with them.

I also would like to thank some people who helped me when I encountered diffi-

culties and had no clue what to do, Michelle Feng, Huili Zhang, Shunjun Wang and

Zhiyuan Dong.

Finally, I would like to express my special thanks to my parents and my relatives

for their support, help and love.

vii



viii



Contents

Certificate of Originality i

Abstract v

Acknowledgements vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Introduction to quantum error correction . . . . . . . . . . . . . . . . 1

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 6

2 Stabilizer Codes 9

2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Stabilizer Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 stabilizer group S . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Standard forms of encoded Pauli X i and Zi operator . . . . . 25

2.2.4 Explanation of generation of encoding circuit . . . . . . . . . . 28

2.2.5 Clifford Codes v.s. Stabilizer Codes . . . . . . . . . . . . . . . 34

ix



3 Operator Quantum Error Correction 39

3.1 Standard model of quantum error correction . . . . . . . . . . . . . . 39

3.2 Noiseless subsystems and decoherence free subspaces . . . . . . . . . 40

3.3 Theory of Recovery without Error Syndrome Detection . . . . . . . . 44

3.4 Application to collective noise . . . . . . . . . . . . . . . . . . . . . . 45

4 Recovery Channel for [5,1,3] Code 51

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Demonstration for r5, 1, 3s code . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Steps to obtain the recovery operations for r5, 1, 3s code. . . . 55

4.2.2 Detail procedure for the construction . . . . . . . . . . . . . . 58

4.2.3 Circuit diagram for r5, 1, 3s code . . . . . . . . . . . . . . . . . 60

4.3 Theoretical explanation for the circuit diagram construction . . . . . 61

4.4 A new proposed approach to obtain the circuit diagram for rn, k, ds
code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Recovery Channel for [8,3,3] Code 67

5.1 Construction for r8, 3, 3s code . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 procedure to construct recovery channel for [8,3,3] code . . . . 73

6 Conclusion and Future Work 77

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Matlab code for searching recovery operations of r5, 1, 3s and r8, 3, 3s
codes 81

B Linear rank preservers of tensor products of rank one matrices 95

B.1 Introduction and statement of main results . . . . . . . . . . . . . . . 95

B.2 Bipartite case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.3 Proof of the main results . . . . . . . . . . . . . . . . . . . . . . . . . 107

x



Bibliography 115

xi



xii



List of Figures

3.1 An encoding and decoding circuit for 3-qubit quantum channel with
error operators tXb3, Y b3, Zb3u. . . . . . . . . . . . . . . . . . . . . . 46

3.2 An encoding and decoding circuit for 5-qubit quantum channel with
error operators tXb5, Y b5, Zb5u. . . . . . . . . . . . . . . . . . . . . . 46

3.3 An encoding and decoding circuit for 4-qubit quantum channel with
error operators tXb4, Y b4, Zb4u. . . . . . . . . . . . . . . . . . . . . . 47

3.4 An encoding and decoding circuit for 6-qubit quantum channel with
error operators tXb6, Y b6, Zb6u. . . . . . . . . . . . . . . . . . . . . . 47

3.5 An encoding and decoding circuit for 3-qubit quantum channel with
error operators tUb3 : U P SUp2qu. . . . . . . . . . . . . . . . . . . . 47

3.6 An encoding circuit for 5-qubit quantum channel with error operators
tUb5 : U P SUp2qu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 An encoding circuit for 7-qubit quantum channel with error operators
tUb7 : U P SUp2qu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 An syndrome detection circuit of [5,1,3] code. . . . . . . . . . . . . . 52

4.2 An encoding and error correcting circuit of [5,1,3] code. . . . . . . . . 53

4.3 NS against fully correlated noise. . . . . . . . . . . . . . . . . . . . . 53

4.4 An encoding circuit of [5,1,3] code. . . . . . . . . . . . . . . . . . . . 54

4.5 Step one of Recovery channel for [5,1,3] code. . . . . . . . . . . . . . 58

4.6 Step two of recovery operations for [5,1,3] code. . . . . . . . . . . . . 58

4.7 Step three of recovery operations for [5,1,3] code. . . . . . . . . . . . 59

4.8 Step four of recovery operations for [5,1,3] code. . . . . . . . . . . . . 59

xiii



4.9 An encoding and decoding quantum circuit of [5,1,3] code. . . . . . . 61

5.1 An encoding circuit of [8,3,3] code. . . . . . . . . . . . . . . . . . . . 69

5.2 Step one of recovery channel for [8,3,3] code. . . . . . . . . . . . . . . 73

5.3 Step two of recovery channel for [8,3,3] code. . . . . . . . . . . . . . . 74

5.4 Step three of recovery channel for [8,3,3] code. . . . . . . . . . . . . . 74

5.5 Step four of recovery channel for [8,3,3] code. . . . . . . . . . . . . . . 75

5.6 Step five of recovery channel for [8,3,3] code. . . . . . . . . . . . . . . 75

5.7 Step six of recovery channel for [8,3,3] code. . . . . . . . . . . . . . . 76

5.8 An encoding and decoding quantum circuit of r8, 3, 3s code. . . . . . . 76

6.1 An encoding circuit of [10,4,3] code. . . . . . . . . . . . . . . . . . . . 78

xiv



List of Tables

4.1 Relation between the subspaces ES and Spj1j2j3j4q. . . . . . . . . . . 56

4.2 Relation between the the error operator E and U :EU . . . . . . . . . 64

5.1 Relation between the subspaces XjS and Spj1j2j3j4j5q. . . . . . . . . 69

5.2 Relation between the subspaces YjS and Spj1j2j3j4j5q. . . . . . . . . 70

5.3 Relation between the subspaces ZjS and Spj1j2j3j4j5q. . . . . . . . . 70

6.1 Relation between the subspaces XjS and Spj1j2j3j4j5j6q. . . . . . . . 79

6.2 Relation between the subspaces YjS and Spj1j2j3j4j5j6q. . . . . . . . 80

6.3 Relation between the subspaces ZjS and Spj1j2j3j4j5j6q. . . . . . . . 80

xv



xvi



Chapter 1

Introduction

1.1 Introduction to quantum error correction

Quantum information science concerns information theory that makes use of quan-

tum nature of the microscopic world. In quantum information theory, the elementary

unit of information is represented by a quantum bit, which has two basic states |0y

and |1y. The two states forms a computational basis. And a quantum bit can be

in any superposition state of the two basic states, which is |φy “ α |0y ` β |1y , α

and β are complex numbers satisfying |α|2 ` |β|2 “ 1. Therefore, the qubit can be

in a continuous state, and contains classical bit 0 and 1 with probability α and β

respectively.

In reality, quantum systems are vulnerable to noise from the environment, which

may leads to errors and decoherence in the system. Thus, the system must be pro-

tected against from noise to keep information uncorrupted in the quantum registers.

Further, we want to achieve fault-tolerant quantum computation that can deal not

only with noise on stored quantum information, but also with faulty quantum gates,

faulty quantum preparation, and faulty measurements. In order to realize a work-

ing quantum computer and dependable quantum information processing, researchers

and engineers have to overcome this difficulty. One of the most promising candidates

is Quantum Error Correction(QEC) (see [1, 17, 15, 16, 14, 25, 29, 30]). The idea of
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QEC is to protect data against from the noise by encoding the data together with

some ancillary(redundant) states, so that even if the combined data is corrupted by

the noise, there is still enough redundancy for the data to be recovered/decoded.

In quantum information theory, a quantum code C is a subspace of the state

space of a quantum system. For a given code, the set of detectable error operators

are closed under linear combinations. So one only has to check the elements of a

linear basis for the space of error operators. In quantum error correction, the main

question is that for given a set of error operators, when there is a code such that all

the errors can be detected and corrected.

Stabilizer code is one of the schemes to correct error in quantum system, in

particular to tensor products of Pauli operators (see [49]). Given a stabilizer code, it

is easy to determine which Pauli product errors are detectable, and can be interpreted

as the classical linear code. A stabilizer code of length n is a subspace of state space

of n qubits that is characterized by the set of products of Pauli operators leaving

each state in the code invariant. A quantum code with stabilizer S will detect all

the errors that are either in S or anticommute with some element of S. To perform

the error correction operation for a stabilizer code, one can measure the eigenvalues

of each generator of the stabilizer. There are several ways to describe the stabilizer.

One is to use binary vector spaces, which is often written as pn ´ kq ˆ n binary

matrices. Another approach is connected with the classical theory of codes over the

field GF p4q (see [4]).

Another key issue in quantum error correction is fault tolerance operation. A

fault tolerant operation is an operation for which a single operational error can only

product one error within a single encoded block of the code. Operations for which

each qubit in a block only interacts with the corresponding qubit, either in another

block or in a specialized ancilla, are called transversal operations. Any transversal
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operation is fault tolerant. For example, if one measures the operator σz1σz2 in the

Shor’s nine-qubit code, the eigenvalue is `1 if the first two qubits are the same, and

´1 if they are not. If the first two qubits interact with the same ancilla qubit |0y

by CNOT operations, then a single phase error on the ancilla qubit could produce

errors in both data qubits, which produce two errors in the block. So, this procedure

is not a transversal operation. In order to have transversal operation, one has to pick

the superposition state |00y`|11y as the ancilla state and perform CNOT operations

from data qubits to ancilla qubits. Then measuring the ancilla qubits will tell us

the parity of the data qubits, but one won’t deduce the state of the data, that is,

measuring the ancilla will not destroy a superposition of these two states of the data.

Bounds for the quantum error correcting codes, which is related to the efficiency

of an error correcting code of a given block size, is also of interest in the quantum in-

formation community. One of the upper bounds is quantum Hamming bound, which

can be used to determine the efficiency of nondegenerate codes. For the degenerate

codes, one has Knill-Laflamme bound. In classical coding theory, researchers used

the weights of codewords, which contain a lot of information. The distribution of

weights is often encoded in coefficients of polynomials, and algebraic relations be-

tween the polynomials can be used to set bounds for the classical codes. Part of this

idea was adapted to give bounds on the quantum error correcting codes too.

1.2 Literature review

Quantum error correction, which is necessary for preserving coherent states against

noise and other unwanted interactions with the environment, has been studied by

many researchers (see [3, 4, 29, 53]). The first example of quantum error-correcting

code was constructed by Shor[52]. Later, Calderbank and Shor[5] and Steane[55]

proposed a general approach to construct quantum codes.
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In [5], Calderbank and Shor brought up the idea of good quantum error correcting

codes. They proposed that a quantum error correcting code should be a unitary

mapping of k qubits into a subspace of the quantum state space of n qubits such

that when any t of the qubits go through arbitrary decoherence, the resulting n

qubits can be used to reconstruct the original quantum state of the encoded qubits.

In [3], Entanglement purification protocols(EPP) and Quantum error correcting

code(QECC) were studied to protect quantum states from being corrupted by the

environment. The difference and connection were given by the authors to show that

in certain condition, EPP can be transformed into QECC and vice versa. They also

showed that certain noisy channel can be used to realize trustworthy transmission of

quantum states with two-way communication, but not practical only with one-way

communication.

In [53], Steane gave out a new type of uncertain relation concerning the information-

bearing properties of a discrete quantum system, which places a limit on the largest

minimum distance simultaneously achievable in two different basis. He also showed

that a pair of states which are microscopically different can form a superposition in

which the interference phase is measurable.

In [29], Knill and Laflamme developed a general theory of quantum error correc-

tion based on encoding states into larger Hilbert spaces. They obtained necessary

and sufficient conditions for the recovery of an encoded state after corruption by an

interaction. The authors also brought up a recovery-operator-independent definition

of error correcting codes and related this definition to four other: the existence of

a left inverse of the interaction, an explicit representation of the error syndrome

using tensor products, perfect recovery of the completely entangled state, and an

information theoretic identity.

In [4], Calderbank, Rains, Shor and Sloane transformed the problem of find-

ing quantum error correcting codes into the problem of finding additive codes over
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the field GF p4q, which is self orthogonal with respect to some trace inner product.

Specifically, the authors transformed the problem into finding a particular type of

binary space first, and then showed that these spaces are equivalent to a certain class

of additive codes over GF p4q. The authors also gave out upper and lower bounds on

cyclic, self dual codes and other codes.

In [51], Schumacher and Nielsen studied the properties of noisy quantum channel,

and gave a necessary and sufficient condition for perfect quantum error correction to

exist.

A universal quantum computation on decoherence free subsystem(DFS) is ex-

amined in [24], and also a necessary and sufficient condition for the existence of

decoherence free (noiseless) subsystem in Markovian regime was derived for the first

time. A stabilizer formalism for DFSs was also given which allows us to understand

these in their dual role as quantum error correcting codes explicitly.

Recently, Li et al. studied quantum error correction for general noise and fully

correlated noise in [34, 35, 36]. They proved that although it is hard to physically

realize quantum error correction without error syndrome measurement, they can im-

plement the method called Operator Quantum Error Correction(OQEC) by applying

unitary gates followed by a partial trace operation.

1.2.1 Contributions of the thesis

Based on the theory given by Li et al and other scholars on OQEC(see [32]), we

implement this scheme on the well known rn, k, ds codes. In particular, we provide

a general scheme on the construction of encoding and decoding circuits for rn, k, ds

codes and give detail examples for r5, 1, 3s code and r8, 3, 3s code. Contrary to the

traditional approach to error correction, the scheme saves pn ´ kq ancillary qubits

that are used in the error syndrome detection.
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1.2.2 Research Methodology

This research is based on the quantum theory, coding theory and operator theory. We

first compared the results in classical error correction and quantum error correction.

We also studied and summarized the existing quantum error correcting codes, and

proposed some general rules for effective construction of quantum error correcting

codes. We also studied the possibility to construct some new codes that can improve

the flaws of existing quantum error correcting codes.

We investigated mechanisms that can be used to control the quantum error and

find numerical/computational algorithms of detecting and correcting quantum error,

and constructing error detection and correction subsystem. We also studied prac-

tical methods for recovering error(noise) generated from various quantum systems.

For example, quantum systems with collective noise as well as quantum systems

influenced by errors from certain Pauli group, and other realistic quantum systems

proposed by experimentalists are studied in detail. Each target quantum system is

examined carefully and we mainly focus on the following directions.

1. study the existence of quantum error correcting code for target quantum sys-

tems.

2. find simple/recursive methods for constructing correcting codes.

3. decide simple quantum encoding and decoding circuits for the target systems.

4. implement these models/circuits in experiments with experimentalists.

1.2.3 Structure of the thesis

The remains of the thesis go as follows:

• Chapter 2 introduces the background and basic concepts of stabilizer codes

and we use examples to interpret the structure of stabilizer codes and how to
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construct stabilizer codes. We will introduce the encoding scheme first given

out in [7]. and try to explain this algorithm in a more straightforward way,

which will help us in constructing the recovery channel for several specific

stabilizer codes.

• Chapter 3 introduces another approach to quantum error correction.

• Chapter 4 will give out some recovery channel for r5, 1, 3s code.

• Chapter 5 will give out a recovery channel for r8, 3, 3s code and we will illustrate

and prove that there indeed exists a realizable algorithm to construct a recovery

channel for a stabilizer code as long as this stabilizer code exists.

• Chapter 6 will conclude our present work and discuss the possible directions

and approaches to apply the idea to a more general stabilizer code.

• In Appendix A, the Matlab codes used for searching recovery operations of

r5, 1, 3s and r8, 3, 3s codes in Chapters 4 and 5 will be presented.

Apart from the topic of stabilizer code and quantum error correction, the author

also works with his supervisor and Dr. Zejun Huang on the topic of linear pre-

server raised from quantum information science. In particular, they gave a complete

characterization for linear maps φ : Mn1¨¨¨nk
ÑMn1¨¨¨nk

satisfying

rankφpA1 b ¨ ¨ ¨ b Akq “ rank pA1 b ¨ ¨ ¨ b Akq for all Ai PMni
, i “ 1, . . . , k

for only rank one matrices A1b¨ ¨ ¨bAk with Ai PMni
. The detail will be presented

in Appendix B, see also [22].
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Chapter 2

Stabilizer Codes

The purpose of this chapter is to review the basic theories on stabilizer codes. We

will give an detailed description of how to construct the generators of stabilizer codes,

how to transform the associated matrices of generators into standard forms and how

to use the standard forms to construct the encoding circuit.

2.1 Basic concepts

Let’s recall some basic concepts first.

Definition 2.1. We can describe a classical system by a finite set of states denoted

by Γ. A quantum system can be described by a Hilbert space denoted by Γ with a

standard orthonormal basis t|φy : φ P Γu.

If a quantum system is in the state |φiy with probability pi, we say such a system

is in a mixed state, while a system whose vector is uniquely specified is said to be

in a pure state, and a pure quantum state is a unit vector |φy P Γ defined to be

within a phase factor c such that |c| “ 1. In other words, a quantum state is a one-

dimensional subspace in Γ. And the evolution of a quantum state in a given time

interval is given by |φy ÞÑ U |φy, where U is a unitary operator.

A density matrix is a convex combination of pure states in general, and it can be

denoted by

9



ρ “
řn
i“1 pi |φiy xφi|.

A quantum system composed of two separate components is called bipartite. And

a state |φy “
ř

i pi |φ1,iy b |φ2,iy P H, where0 ď pi ď 1,
ř

i pi “ 1, decomposed as

a sum of tensor products is called a separable state. Non-separable states are called

entangled states.

Definition 2.2. Let Hn be a 2n´dimensional Hilbert space(n qubits), and let C

be a k´dimensional subspace of Hn. Then C is an pn, kq (binary) quantum error

correcting codepQECCq correcting the set of errors E = Ea if and only if there exists

R such that R is a quantum operation and R ˝Eap|ψyq “ |ψy for all Ea P E and all

|ψy P C. R is called the recovery and serves to actually perform the correction of the

state.

Definition 2.3. Given a finite dimensional complex Hilbert space H, a quantum

channel can be viewed as a trace preserving completely positive linear map

Φ : BpHq ÝÑ BpHq,

with the operator sum representation

Φpρq =
ř

aEaρE
:
a with

ř

aE
:
aEa = I.

And we are interested in a general evolution of a quantum system, which is

described by quantum operation. One kind of quantum operation is a unitary time

evolution of a closed system.

Let ρs be a density matrix of a closed system at t “ 0 and let Ut be the time

evolution operator. Then the quantum map ε is defined to be

εpρsq “ UtρsU
:
t .
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Definition 2.4. A map which describes a general change of the state from ρs to εpρsq

is called a quantum operation.

A quantum operation maps a density matrix to another density matrix, such an

operator is called a superoperator.

A map λ which maps a positive operator acting on Hs to another positive operator

acting on Hs is said to be positive. Moreover if its extension λT “ λb In remains a

positive operator for an arbitrary n P N , then it is called a completely positive map.

And a quantum channel is a completely positive trace preserving map.

2.2 Stabilizer Codes

2.2.1 Introduction

In general, a quantum error correcting code is a subspace of a Hilbert space designed

so that any of a set of errors can be corrected by an appropriate quantum opera-

tion.(see [30, 53]) A quantum code C can detect an error operator E if for every

quantum state |xy in C, PE |xy “ c |xy , where P is the operator projecting the

quantum system onto C and c is a constant depending on E.

Researchers are interested in codes that correct any error affecting t or fewer

physical qubits. First we introduce Pauli matrices.

I =

„

1 0
0 1



, X =

„

0 1
1 0



, Y =

„

0 ´i
i 0



, Z =

„

1 0
0 ´1



.

And let us consider tensor products of the Pauli matrices. Define the Pauli group

Pn as the group consisting of tensor products of I,X, Y and Z on n qubits, with

an overall phase of ˘1 or ˘i. The weight wtpP q of a Pauli operator P P Pn is the

number of qubits on which it acts as X, Y or Z. Then the Pauli operators of weight

t or less form a basis for the set of all errors acting on up to t or fewer qubits, so a
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QECC which corrects these Pauli operators will correct all errors acting on up to t

qubits.

Now we will introduce the concept of rn, k, ds code.

Let’s consider the following local operators on n-qubit system

E “ σ1 b σ2 b ¨ ¨ ¨ b σn with σj P tI,X, Y, Zu.

The weight of the operator E is defined to be the number of states σj where it is

different from I, i.e. wpEq “ #tj : σj ‰ Iu.

The distance between two operators Ea and Eb is defined to be

dpEa, Ebq “ wpE:aEbq.

Let S be a set of commuting Pauli matrices in the n-qubit system and tM1,M2, ...,Mpu

be the generators of the set. Let

V “ t|ψy : M |ψy “ |ψy , @M P Su.

The generators tM1,M2, ...,Mpu can distinguish Ea and Eb if for any |ψy P V, DM P S,

s.t. xψ|E:aMEa |ψy ‰ xψ|E
:

bMEb |ψy.

The subspace V of C2n with stabilizer S is an rn, k, ds code if

1. dimpV q “ 2k,

2. tM1,M2, ...,Mpu can distinguish Ea and Eb for any Ea, Eb with dpEa, Ebq ă d.

2.2.2 stabilizer group S

A QECC that encodes k qubits into n qubits is through an encoding map from the

k´qubit Hilbert space onto a 2k´dimensional subspace of the n´qubit Hilbert space
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Hn
2 , and a QECC is identified with the image space Cq. In quantum stabilizer codes,

Cq is identified with the unique subspace of F n
2 which is fixed by the elements of an

Abelian group S.

Theorem 2.1. ([29]) A quantum code Cq can be extended to an error correcting code

if and only if for all encoded computational basis |iy, |jypi ‰ jq and error operators

Ea, Eb P E:

xi|E:aEb|iy “ xj|E
:
aEb|jy, (2.1)

and

xi|E:aEb|jy “ 0. (2.2)

Proof. Here we give a simple proof for the necessary condition, since Cq can be

extended to an error correcting code, which implies there exists a trace preserving

recovery operation R such that for each Ea P E and Rr P R, RrEa “ γraI, and since

R is trace preserving, Rr should satisfy

ř

r R
:
rRr “ I.

Thus,

xi|E:aEb|jy “ xi|E
:
aIEb|jy

“
ÿ

r

xi|E:aR
:
rRrEb|jy

“
ÿ

r

xi|γ‹raγrb|jy

“ p
ÿ

r

γ‹raγrbqδij

“ λabδij.

(2.3)
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λab is independent of computational basis. And the Kronecker delta guarantees

that (2.1) and (2.2) are satisfied.

Remark 2.1. Conditions (2.1) and (2.2) can be summarized into one:

xi|E:aEb|jy “ Cabδij. (2.4)

Define matrix C “ pCabq, then it is not hard to see that C is a Hermitian matrix.

A quantum error correcting code is said to be degenerate if C is singular. And a

quantum error correcting code has distance d if all errors Ei P E of weight less than

d satisfy xi|E|jy “ CEδij, while there exists at least one error that does not satisfy

this condition.

Remark 2.2. Cq can detect an error E if

xi|E|jy “ CEδij. (2.5)

The most widely used mathematical structure gives a class of codes known as

stabilizer codes(see[4, 15]). They are less general than arbitrary quantum codes, but

have useful properties that make them easier to work with than the general QECC.

Definition 2.5. Let S Ă Pn be an Abelian subgroup of the Pauli group that does not

contain ´I or ˘iI, and let CpSq “ t|ψy : P |ψy “ |ψy, @P P Su. Then CpSq is a

stabilizer code and S is its stabilizer.

Because of the simple structure of the Pauli group, the order of any Abelian

subgroup is 2n´k for some k and can easily be specified by giving a set of n ´ k

commuting generators.

The codewords of the QECC are by definition in the `1-eigenspace of all elements

of the stabilizer. An error E acting on a codeword will move the state into the ´1-

eigenspace of any stabilizer element M which anticommutes with E:
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MpE |ψyq “ ´EM |ψy “ ´E |ψy.

Thus, measuring the eigenvalues of the generators of S will tell us information

about the error that has occurred. The set of such eigenvalues can be represented

as an pn´ kq´dimensional binary vector known as error syndrome. Note that error

syndrome does not tell us anything about the encoded state, but only about the

error that has occurred.

We use rn, k, ds to denote a quantum error correcting code, and use rrn, k, dss to

refer to a stabilizer code. The middle term k refers to the number of encoded qubits,

and not the dimension 2k of the encoded space.

Notice that SK is the set of Pauli operators that commute with all elements of

the stabilizer. They would appear to be errors that cannot be detected by the code.

However, the theorem specifies the distance of the code by considering SKzS. A

Pauli operator P P S cannot be detected by the code, but there is no need to detect

it, since all codewords remain fixed under the action of P , making it equivalent to

the identity operation. A distance d stabilizer code which has nontrivial P P S with

wtpP q ă d is called degenerate, whereas one which does not is called non-degenerate.

The stabilizer group S can be constructed from a set of n´k operators g1, g2, ¨ ¨ ¨ , gn´k

known as the generators of S. Each element can be expressed as a unique product

of the generators.

s “ gp11 g
p2
2 ¨ ¨ ¨ , g

pn´k

n´k , pi P Z.

We notice that each generator has order 2, i.e. g2i “ 1, which means that S is

isomorphic to F n´k
2 , which is the vector space of n ´ k components, where F is the

field containing 0, 1,´1, and so the order of S is 2n´k. And notice that S does not

contain the elements ´I or ˘iI.
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Definition 2.6. Let Cq be a stabilizer code with generators g1, g2, ¨ ¨ ¨ , gn´k and let

e be an error in the Pauli group, that is, e P Gn. The error syndrome Speq is the bit

string l “ l1, l2 ¨ ¨ ¨ ln´k, where li, i “ 1, ¨ ¨ ¨ , n´ k are determined by

li “

#

0, if re, gis “ 0

1, if te, giu “ 0.
(2.6)

Remark 2.3. 1. Any error which has a nontrivial error syndrome must anti-

commute with a subset of the generators of S, and for such error, it satisfies

xi| e |jy “ 0 for all computational basis codewords |iy and |jy , i, j “ 0, ¨ ¨ ¨ , n´1.

2. Let E “ tEau be errors in Gn for which SpE:aEbq ‰ 0 for all Ea and Eb P E,

they satisfy xi|E:aEb |jy “ 0, for all basis codewords |iy and |jy.

3. Errors which have a trivial syndrome Speq “ 0 commute with all the generators.

The set of errors e P Gn which commute with all the generators is defined to

be the centralizer of S, denoted by CpSq.

Theorem 2.2. ([14]) Let E be an error and S be the stabilizer group for a stabilizer

code. If S contains an element s that anticommutes with E, then for all |cy, |c1y P Cq,

E |cy is orthogonal to |c1y:

xc1|E |cy “ 0.

Proof. Since s anticommutes with E, we have

E |cy “ Es |cy

“ ´sE |cy ,
(2.7)

and
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xc1|E |cy “ ´ xc1| sE |cy

“ ´ xc1|E |cy .
(2.8)

Therefore, xc1|E |cy “ 0, for all |c1y P Cq.

Theorem 2.3. ([14]) Two errors e1, e2 P Gn have the same error syndrome if and

only if they are in the same coset of CpSq.

Proof. By the definition of CpSq, if e1 and e2 are in the same coset, then there exists

an element c P CpSq, such that e1 “ e2c, and c commutes with all the elements in S,

e1gi “ e2cgi

“ e2gic

“ p´1ql
e2
i gie2c

“ p´1ql
e2
i gie1,

(2.9)

which means if le2i “ 0, i.e. e2gi “ gie2, e1gi “ gie1, that is, le1i “ 0, and if le2i “ 1,

i.e.e2gi “ ´gie2, e1gi “ ´gie1, that is le1i “ 1.

If e1 and e2 have the identical error syndrome detection, we have le1i “ le2i , i “

1, ¨ ¨ ¨ , n´ k. Since

e1gi “ p´1ql
e1
i gie1,

and

e2gi “ p´1ql
e2
i gie2,

we have

e1e2gi “ p´1ql
e2
i e1gie2

“ p´1ql
e1
i `l

e2
i gie1e2

(2.10)
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Since le1i “ le2i , we get e1e2gi “ gie1e2, thus, e1e2 P CpSq, that means there exists

an element denoted by g such that e1e2 “ g, and e2 “ e:1g, e1 has order 2, e2 “ e1g,

which means e1 and e2 are in the same coset of CpSq.

We define the distance of a QECC to be d if all errors ei P Gn of weight less than

d are detectable, and there exists at least one error of the weight d is non detectable.

Non detectable errors are in CpSq´S, a QECC have distance d if and only if CpSq´S

has an element of weight d and does not contain errors of weight less than d.

Theorem 2.4. ([14]) A quantum stabilizer code Cq with distance d is a degenerate

code if and only if its stabilizer S has an element of weight less than d, excluding the

identity element.

Proof. By the definition of degenerate code, the coefficient matrix C is singular, and

there exists a linear combination F of errors Ei such that

F |iy “ 0, for all basis codewords |iy,

here F “
ř

a UaEa ,U “ pUaq diagonalizes C. suppose F “ E1 ´ E2, then pE1 ´

E2q |iy “ 0. Thus E1 |iy “ E2 |iy, that is E:1E2 |iy “ |iy, so E:1E2 P S. Since E1 and

E2 are correctable, xi|E:1E2 |jy “ C12δij, and thus E:1E2 is detectable, since Cq has

distance d, thus the weight of E:1E2 is less than d.

Conversely, if s P S has weight less than d. Take sa ‰ s and let sas “ sb, then

s:asb P S, so s:asb |iy “ |iy, that is, sa |iy “ sb |iy, so psa ´ sbq |iy “ 0, for all basis

codewords |iy. And sa´ sb is correctable, and so xi| psa´ sbq
:psa´ sbq |jy “ 0, which

means coefficient matrix C has an eigenvalue 0, so Cq is degenerate.

Remark 2.4. Suppose Cq is a non degenerate QECC. And let Ea and Eb be two

linearly independent errors with error syndrome SpEaq and SpEbq respectively. We

can see that E:aEb has weight less than d, and it is not in S since Cq is non degenerate,
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and it is not contained in CpSq´S, since the distance is d, so E:aEb P Gn´CpSq, so

it anticommutes with at least one generator. Thus, SpEaq ‰ SpEbq, that is, linearly

independent correctable errors have different error syndromes.

The phenomenon of degeneracy has no analogue for the classical error correcting

codes, and makes the study of quantum codes substantially more difficult than the

study of classical error correcting codes.

An example of a stabilizer code is the five-qubit code, a rr5, 1, 3ss code whose

stabilizer can be generated by

X b Z b Z bX b I,

I bX b Z b Z bX,

X b I bX b Z b Z,

Z bX b I bX b Z.

The five-qubit code is a non-degenerate code, and is the smallest possible QECC

which corrects one error.

It is useful to consider other representations of stabilizer codes. For instance,

P P Pn can be represented by a pair of n´bit binary vectorsppX |pZq where pX is 1

for any location where P has an X or Y tensor factor and is 0 elsewhere, and pZ

is 1 for any location where P has an Z or Y tensor factor and is 0 elsewhere. So

two Pauli operators P and Q are commutative if and only if pX ‚ qZ ` pZ ‚ qX “ 0.

The the stabilizer for a code becomes a pair of pn´ kq ˆ n matrices. Another useful

representation is to map the single-qubit Pauli operators I,X, Y and Z to the finite

field GF p4q.

According to the principles of error syndrome detection, the stabilizer codes

should satisfy three conditions.(see [7])
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1. All the columns of the X´, Y´ and Z´matrices should be pairwise different.

2. The sum of X´, Y´ and Z´matrices should be all one matrix modulo 2.

3. The X´, Y´ and Z´matrices should satisfy pY `ZqX 1`pX`ZqY 1`pX`Y qZ 1

should be zero matrix modulo 2.

Definition 2.7. Define the X´vector of X´matrix of of the generator

gi “ gi1gi2 ¨ ¨ ¨ gin

as the n´bit vector, denoted by Xgi, where

pXgiqj “

#

1, if gij “ X or Y

0, if gij “ I or Z.
(2.11)

The Z´vector of gi, denoted by Zgi, is defined as

pZgiqj “

#

1, if gij “ Z or Y

0, if gij “ I or X.
(2.12)

And the X´matrix of the generators g1, g2, ¨ ¨ ¨ , gn´k is defined as the nˆpn´ kq

matrix, denoted by Xg, where

pXgqji “

#

1, if gij “ X or Y

0, if gij “ I or Z.
(2.13)

that is , the columns of the X´matrix are Xg1 , Xg2 , ¨ ¨ ¨ , Xgn´k
. The Z´matrix of

g1, g2, ¨ ¨ ¨ , gn´k, denoted by Zg, is defined similarly.

Example 2.1. Generators for an eight-qubit code protecting three-qubit states with

at most one error are as follows:
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g1 “ X bX bX bX bX bX bX bX,

g2 “ Z b Z b Z b Z b Z b Z b Z b Z,

g3 “ X b I bX b I b Z b Y b Z b Y,

g4 “ X b I b Y b Z bX b I b Y b Z,

g5 “ X b Z b I b Y b I b Y bX b Z.

(2.14)

The X´matrix and Z´matrix for the generators (5.1) of the 8-qubit code are as

follows:

Xg =

»

—

—

—

—

—

—

—

—

—

—

–

1 0 1 1 1
1 0 0 0 0
1 0 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 0 1 1
1 0 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Zg =

»

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

In general, generator whose X´vectors are linearly independent are called pri-

mary generators, and generators whose X´vectors are null are called secondary

generators. Generators can always be transformed so that they contain primary and

secondary ones.

To choose the code words, we add a set of seed generators(see [7]) to the n ´

k generators in a way that seed generators and the n ´ k generators are linearly

independent and each seed generator commutes with each secondary generator.

Let M1, ¨ ¨ ¨ ,Mb, L1, ¨ ¨ ¨ , Ln´k´b and N1, ¨ ¨ ¨ , Nk be the primary, secondary and

seed generators, then each k´qubit basis state |c1c2 ¨ ¨ ¨ cky can be associated with a

quantum codeword,

1?
2b

ř

ta1,a2,¨¨¨ ,abuPt0,1u
b Ma1

1 M
a2
2 ¨ ¨ ¨Mab

b N
c1
1 N

c2
2 ¨ ¨ ¨N

ck
k |0y

bn.
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Then we can see that these 2k codewords are mutually different and orthogonal to

each other.

we can rewrite the expression as

1?
2b
pI `M1qpI `M2q ¨ ¨ ¨ pI `MbqN

c1
1 N

c2
2 ¨ ¨ ¨N

ck
k |0y

bn.

And we can see that the expression is stabilized by each primary Mi and secondary

generators Lj.

Example 2.2. For the 8-qubit code, the seed generators can be chosen as follows:

N1 “ X bX b I b I b I b I b I b I,

N2 “ X b I bX b I b I b I b I b I,

N3 “ X b I b I b I bX b I b I b I.

(2.15)

Remark 2.5. Operators of the form 1?
2
pI `Mq are not unitary, so we need explore

the properties of stabilizer codes to construct the efficient gate arrays, that is, the

encoding circuit.

The encoding mainly consists of two parts:

1. X-matrix and Z-matrix of the generators are converted into standard forms.

2. The set of generators of the stabilizer group are converted into a gate array

according to the standard forms of X-matrix and Z-matrix.

The procedure of encoding is presented in detail:

1. First, we can convert the X-matrix into one of the following form using Gaus-

sian elimination:
„

O A
O I
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and Z-matrix has no special form. Suppose it has the form:

„

B C
D E



2. Then we can apply the same procedure to the submatrix B of Z-matrix, and a

block matrix of the following form will be derived:

»

–

O B1 C1

O I C2

D2 D1 E

fi

fl

then we analyze the rank of the first subblock O of this matrix, since the

counterpart of X-matrix for the columns that O lies in is

»

–

O
O
O

fi

fl

then we get that the submatrix D2 should not be O, otherwise the correspond-

ing generator is the tensor product of all I’s. Thus we will get that the corre-

sponding generators don’t commute with those of last b columns. Therefore

the Z-matrix should be of the form:

»

–

B1 C1

I C2

D1 E

fi

fl

3. Then we set up the standard forms of the seed generators, and by the rule of

the relationship between the seed generators and the primary and secondary

ones we may have the following forms for the X´matrix and Z´matrix of the

seed generators:
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»

–

I
BT

1

O

fi

fl ,

»

–

O
O
O

fi

fl

we can verify that the generator of the stabilizer group are commutative. That

is why we set the X´matrix and Z´matrix of seed generators to be of the

form above.

»

–

I
BT

1

O

fi

fl

T »

–

B1

I
D1

fi

fl “
“

I B1 O
‰

»

–

B1

I
D1

fi

fl “ B1 `B1 “ O.

that means the seed generators and the secondary generators are commutative.

4. Finally, we put the standard forms of the primary generators, secondary gen-

erators and seed generators together to form an augmented matrix. The aug-

mented matrices, denoted by X‹ and Z‹ have the following block matrix form:

X‹
“

»

–

I O A1

BT
1 O A2

O O I

fi

fl , Z‹ “

»

–

O B1 C1

O I C2

O D1 E

fi

fl .

Remark 2.6. The reason why we want the submatrix I to be at the lower right of

the standard form of the X-matrix is that when we augment the standard form with

those of the seed generators, we want two different I’s to be at different positions of

the augmented matrix, so that when we apply the actions of the N’s and M’s to the

n-qubit, we want the two types of actions triggered by two sets of parameters, and

the other reason is that the X-matrix of the primary and seed generators should be

linearly independent.

In order for the two sets of parameters to act without interfering with each other,

we have to put two different I’s at two different positions.
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Example 2.3. The augmented X´matrix and Z´matrix for the generators (5.1) of

the 8-qubit code are as follows:

X‹ =

»

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
1 1 1 0 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Z‹ =

»

—

—

—

—

—

—

—

—

—

—

–

0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 1
0 0 0 1 1 0 1 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0
0 0 0 1 0 0 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The first three columns correspond to seed generators, the fourth column correspond

to secondary generators, and the last four columns correspond to primary generators.

2.2.3 Standard forms of encoded Pauli X i and Z i operator

The principle that plays an important part is that encoded Pauli X i and Zi operator

should be commutative with generators of the stabilizer group S.

First we introduce an inner product which maps two vectors onto F2, if v1 “

pa1|b1q, v2 “ pa2|b2q P F
2n
2 ,

ă v1, v2 ą“ a1 ‚ b2 ` a2 ‚ b1, here ‚ denotes an inner product of two vectors. .

Let

J “

„

O In
In O



,

then

ă v1, v2 ą“ vT1 Jv2.

And let vppX iqT q “ pu1piq
T , u2piq

T , u3piq
T |v1piq

T , v2piq
T , v3piq

T q, here u1piq
T and

v1piq
T have r components, u2piq

T and v2piq
T have n´ k ´ r components, and u3piq

T
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and v3piq
T have k components, so that the partition matches the standard forms of

X´ matrix and Z´matrix of generators.

By the rules of choices of encoded Pauli X i and Zi operators, they satisfy the

following conditions:

1. ă vppX iqq, vppgjqq ą“ 0, j “ 1, ¨ ¨ ¨ , n´ k

2. ă vppX iqq, vppZjqq ą“ 0, j ‰ i,

3. ă vppX iqq, vppXjqq ą“ 0,

4. ă vppX iqq, vppZiqq ą“ 1,

The vector vppX iqT q has 2n components, and there are n´k`k´1`k`1 equations,

so the components of vppX iqT q has n´ k degrees of freedom.

We can put u1piq
T “ O and v2piq

T “ O, then

vppX iqT q “ pO, u2piq
T , u3piq

T |v1piq
T , O, v3piq

T q.

Since

X =

»

–

O A1

O A2

O I

fi

fl , Z =

»

–

B1 C1

I C2

D1 E

fi

fl,

we have

„

I A2 A1 E C2 C1

O O O D1 I B1



»

—

—

—

—

—

—

–

v1piq
O
v3piq
O
u2piq
u3piq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

= O.

Thus we can obtain the following equations:

v1piq ` A1v3piq ` C2u2piq ` C1u3piq “ O,

u2piq `B1u3piq “ O.
(2.16)

Let

26



χ “

»

—

—

–

vT pX1q

vT pX2q

¨ ¨ ¨

vT pXkq

fi

ffi

ffi

fl

=
“

O uT2 uT3 | vT1 O vT3
‰

.

By the conditions mentioned before, we have

χJχ “ O.

That is

O =
“

O uT2 uT3 | vT1 O vT3
‰

»

—

—

—

—

—

—

–

v1
O
v3
O
u2
u3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

= uT3 v3 ` v
T
3 u3.

We can put u3 “ I and v3 “ O. And put them back in (2.16), we can get

χ =
“

O BT
1 I| pBT

1 C
T
2 ` C

T
1 q O O

‰

Next one can use X´ and Z´ matrices to produce the gate array of the encoding

circuit.

Generation of the encoding circuit

By the encoding rule of the stabilizer code, we need to construct a gate array to

realize the following operation:

|c1c2 ¨ ¨ ¨ cky b|0y
bd
ÞÝÑ

ř

ta1,a2,¨¨¨ ,abuPt0,1u
b Ma1

1 M
a2
2 ¨ ¨ ¨Mab

b N
c1
1 N

c2
2 ¨ ¨ ¨N

ck
k |0y

bn.

The operation above can be decomposed as a composition of two actions:

1. |c1c2 ¨ ¨ ¨ cky b|0y
bd
ÞÝÑ 1?

2b

ř

ta1,a2,¨¨¨ ,abuPt0,1u
b |c1c2 ¨ ¨ ¨ cky b |0y

br
b |a1a2 ¨ ¨ ¨ aby

2. |c1c2 ¨ ¨ ¨ cky b |0y
br
b |a1a2 ¨ ¨ ¨ aby ÞÝÑ Ma1

1 M
a2
2 ¨ ¨ ¨Mab

b N
c1
1 N

c2
2 ¨ ¨ ¨N

ck
k |0y

bn
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The process is basically made up of two steps:

1. First, |0ybb is transformed into 1?
2b

ř

ta1,a2,¨¨¨ ,abuPt0,1u
b |a1a2 ¨ ¨ ¨ aby, and the rea-

son why we have this operation is that in the second step, the set of qubits

taiu play the role of control qubits, so that when the initial state is put into

the encoding circuit, the set of qubits taiu can control the action of encoding

on the target qubits to realize the encoding.

2. Secondly, the |a1a2 ¨ ¨ ¨ aby and |c1c2 ¨ ¨ ¨ cky are used to trigger the action of the

operator Ma1
1 M

a2
2 ¨ ¨ ¨Mab

b and N c1
1 N

c2
2 ¨ ¨ ¨N

ck
k .

2.2.4 Explanation of generation of encoding circuit

The computational basis codewords have the following expression:

|δ1δ2 ¨ ¨ ¨ δky “ ξ |δ1δ2 ¨ ¨ ¨ δky,

here ξ is the encoding map and

|δ1δ2 ¨ ¨ ¨ δky “ Xδ1
1 X

δ2
2 ¨ ¨ ¨X

δk
k |0y

bk.

Thus we have another further expression for |δ1δ2 ¨ ¨ ¨ δky as follows:

|δ1δ2 ¨ ¨ ¨ δky “ ξXδ1
1 X

δ2
2 ¨ ¨ ¨X

δk
k |0y

bk,

which is

pξXδ1
1 ξ

:qpξXδ2
2 ξ

:q ¨ ¨ ¨ pξXδk
k ξ

:qξ|0ybk,

and we can rewrite it as

pX1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk |0ybn,

We can show that the basis codeword |0ybn is convenient to be defined as

|0ybn “
ř

sPS s|0y
bn.
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Since S is the stabilizer group and it can be generated by its n ´ k generators,

therefore we can write the codeword equivalently as follows:

|0ybn “
śn´k

i“1 pI ` giq|0y
bn.

Therefore,

|δ1δ2 ¨ ¨ ¨ δky “ pX
1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk |0ybn,

that is,

|δ1δ2 ¨ ¨ ¨ δky “ pX
1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk

śn´k
i“1 pI ` giq|0y

bn,

The encoding circuit we want to implement is to realize the action above with the

application of an appropriate sequence of single-qubit and controlled multiple qubit

operations to the initial n-qubit input state |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky.

1. First, we need to transform the expression so that the right hand side have an

item of |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky, which depends on the action of pX1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk ,

and we can find out that the result is realized by the standard form of Xj, j “

1, 2, ¨ ¨ ¨ , k.

The standard form of Xj is

„

0 uT2 pjq uT3 pjq
vT2 pjq 0 0



,

where uT3 pjq “ p0 ¨ ¨ ¨ 1j ¨ ¨ ¨ 0q and the subscript j shows the column number.

Since the first row corresponds to the X´vector and the second row corre-

sponds to the Z´vector, we find that Xj, j “ 1, ¨ ¨ ¨ , k, have the more specific

expression as follows:

Xj
“ pXr`1q

u2,1pjqpXr`2q
u2,2pjq ¨ ¨ ¨ pXn´kq

u2,n´k´rpjq

ˆ pZ1q
v1,1pjqpZ2q

v1,2pjq ¨ ¨ ¨ pZrq
v1,rpjqpXn´k`jq, (2.17)
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thus when pX1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk acts on |0ybn, we can find that the last com-

ponent pXn´k`jq can transform |0n´k`jy into |δn´k`jy.

Denote pXr`1q
u2,1pjqpXr`2q

u2,2pjq ¨ ¨ ¨ pXn´kq
u2,n´k´rpjqpZ1q

v1,1pjqpZ2q
v1,2pjq ¨ ¨ ¨ pZrq

v1,rpjq

by Ũj, then we have

pX1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk |0ybn “ p
śk

j“1 Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky.

We can see that Ũj
δj

is a controlled´Ũj operation. And when δj “ 0, the state

|0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky won’t change and when δj “ 1, Ũj will act on the state.

2. To acquire the basis codewords |δ1δ2 ¨ ¨ ¨ δky, we still need to apply
śn´k

i“1 pI`giq

to p
śk

j“1 Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky, and we split the product into two parts:

śr
i“1pI ` giq and

śn´k
j“r`1pI ` gjq.

Notice that gi, i “ 1, . . . , r, are primary generators and gi, i “ r` 1, . . . , n´ k,

are secondary generators. Thus we can write the basis codewords as follows:

|δ1δ2 ¨ ¨ ¨ δky “ pX
1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk

śr
i“1pI ` giq

śn´k
j“r`1pI ` gjq|0y

bn,

since Xj, j “ 1, ¨ ¨ ¨ , k are in CpSq, i.e. the center of the stabilizer group.

We can interchange the order of the actions of pX1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk and
śr

i“1pI ` giq, since they are commutative.

|δ1δ2 ¨ ¨ ¨ δky “
śr

i“1pI ` giqpX
1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk

śn´k
j“r`1pI ` gjq|0y

bn,

Since gj, j “ r ` 1, ¨ ¨ ¨ , n ´ k are secondary generators, which means it fixes

|0ybn, we can write the codeword as follows:

|δ1δ2 ¨ ¨ ¨ δky “
śr

i“1pI ` giqpX
1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk |0ybn,
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Plugging

pX1qδ1pX2qδ2 ¨ ¨ ¨ pXkqδk |0ybn “ p
śk

j“1 Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky.

into the codeword, we can obtain

|δ1δ2 ¨ ¨ ¨ δky “
śr

i“1pI ` giqp
śk

j“1 Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky.

The standard form of gj is

„

0 ¨ ¨ ¨ 1j ¨ ¨ ¨ 0 A1pjq A2pjq
Bpjq C1pjq C2pjq



,

Similarly, the first row corresponds to the X´vector and the second row corresponds

to the Z´vector. and

gj “ TjXjZ
Bjpjq
j ,

here Tj is the operators that remain when we factor out X operator and Z operator

associated with qubit j, and subscript j also points to the column number.

pI ` gjqp
k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky “ p

k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky

`TjXjZ
Bjpjq
j p

k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky .

(2.18)

We notice that p
śk

j“1 Ũj
δj
q acts on qubit r` 1 to n´k, and j ă r, thus XjZ

Bjpjq
j

and p
śk

j“1 Ũj
δj
q can be exchanged, and

XjZ
Bjpjq
j |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky “ |0 ¨ ¨ ¨ 1j ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky.

Therefore we have

pI ` gjqp
k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky “ p

k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky

`Tjp
k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 1j ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky .

(2.19)
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|δ1δ2 ¨ ¨ ¨ δky “
r
ź

i“1

pI ` giqp
k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky . (2.20)

And we want to show that we can construct the basis codewords using Hadamard

gates and controlled gates. Let Hj be the single qubit Hadamard gate acting on qubit

j,

Hj |δjy “
1?
2
p|0y ` p´1qδj |1yq, δj “ 0, 1.

Therefore we have

Hjp

k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky “ p

k
ź

j“1

Ũj
δj
qHj |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky

“ p

k
ź

j“1

Ũj
δj
qp|0 ¨ ¨ ¨ 0j ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky ` |0 ¨ ¨ ¨ 1j ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δkyq.

(2.21)

Here we use the fact that Hj and
śk

j“1 Ũj
δj

are commutative since they act on

different qubits, and we have omitted the factor of 1?
2
.

Finally, in order to obtain the basis codewords, we have to apply the controlled

quantum gates, that is, Wj “ T
αj

j , j “ 1, ¨ ¨ ¨ , r, αj “ 0, 1, then we find that

WjHjp

k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky “ Wjp

k
ź

j“1

Ũj
δj
qHj |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky

“ Wjp

k
ź

j“1

Ũj
δj
qp|0 ¨ ¨ ¨ 0j ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky ` |0 ¨ ¨ ¨ 1j ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δkyq

“ p

k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0j ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky ` Tjp

k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 1j ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky .

(2.22)

Since p
śk

j“1 Ũj
δj
q acts on qubits r ` 1 to n ´ k so it won’t change the value of αj,

which remains to be o in the first term and 1 in the second one. That means Wj “ I

in the first term and Wj “ Tj in the second term. We can see that
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WiHip
śk

j“1 Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky “ pI ` giqp

śk
j“1 Ũj

δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky.

So for the basis codewords, we have

|δ1δ2 ¨ ¨ ¨ δky “
r
ź

i“1

pI ` giqp
k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky

“ p

r
ź

i“1

WiHiqp

k
ź

j“1

Ũj
δj
q |0 ¨ ¨ ¨ 0δ1δ2 ¨ ¨ ¨ δky .

(2.23)

Remark 2.7. The aim is to construct the basis codewords using controlled quantum

gates, since in (2.19), the right hand side has two parts, which implies that we can

use controlled gates to realize the action, so that we can apply Hadamard gate first

then apply controlled gate.

The first step can be realized by use of Hadamard gate, and for the second step,

take [8,3,3] code for example, it can be realized by the following action:

»

—

—

—

—

—

—

—

—

—

—

–

c1
c2
c3
0
a1
a2
a3
a4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ÞÝÑ

»

—

—

—

—

—

—

—

—

—

—

–

1 1 1 0 1 1 1 0
1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

c1
c2
c3
0
a1
a2
a3
a4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The second step is also crucial since it determines the transformation from a matrix

to a specific encoding circuit.

The matrix is exactly the augmented matrix of the generators of the stabilizer

group. So as long as we can acquire a set of generators of the stabilizer code, then

we can apply the procedure above to obtain the encoding circuit, which is the most

important part of quantum error correction.
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Remark 2.8. The k-qubits input may be at different positions, but the correspon-

dence between the action of the operators M1,M2, ¨ ¨ ¨ ,Md and the n-qubits should be

unchanged, that is the each operator is a tensor product of Pauli matrix, and each of

the component should act on the correspondent qubit.

2.2.5 Clifford Codes v.s. Stabilizer Codes

Definition 2.8. A finite group E is said to be an abstract error group if it has a

faithful irreducible unitary representation ρ of degree “ |E : ZpEq|1{2.

In the special case of binary stabilizer code the error group is given by an extra

special 2-group and the representing matrices ρpgq by tensor products of Pauli ma-

trices. The irreducibility of the representation ensures that any error acting on the

code space Cd can be expressed as a linear combination of the matrices ρpgq, with

g P E. The faithfulness of the representation and the largest possible degree ensures

that the set of matrices tρpgq|g P T u, where T is a set of representatives of E{ZpEq.

A clifford code is constructed with the help of a normal subgroup N of the error

group E and an irreducible character χ of N .

Definition 2.9. Let φ denote the irreducible character corresponding to the repre-

sentation ρ of E, that is φpgq “ Trρg for g P E. Suppose that N is a normal

subgroup of E and χ is an irreducible character of N such that pχ, φNq ą 0. Then

the Clifford code C corresponding to pE, ρ,N, χq is defined to be the image of the

orthogonal projector

P “ χp1q
|N |

ř

nPN χpn
´1qρpnq,

that is, a subspace of dimension trP of Cd. And if the normal subgroup N is abelian,

then the Clifford code is called a stabilizer code (see [27, 28]). And pχ, φNq ą 0

implies that dim C ą 0.
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The criteria to decide whether a clifford code is a stabilizer code or not is based

on the quasikernel of the group E.

Let Q be a Clifford code with data pE, ρ,N, χq. The inertia subgroup is

T “ tg P E|χpnq “ χpgng´1q @n P Nu,

which consists of all the elements g of E such that ρpgqQ “ Q. Let ωpIrrpEqq denote

the character such that rω, φT s ‰ 0, and rωN , χs ‰ 0. This is the character afforded

by the irreducible CT´module Q. The quasikernel

Zpωq “ tg P E| |ωpgq| “ ωp1qu

consists of the elements g of E that act on the code Q by scalar multiplication. These

two groups characterize the errors in E that are detectable by the code.

An error ρpgq is detectable by the code Q if and only if g R T ´Zpωq. The group

Zpωq can tell us whether the Clifford code Q is a stabilizer code or not.

Denote by A the set of all normal subgroups A of E that are contained in Zpωq.

And the following results show that in the case thatQ is a stabilizer code, its stabilizer

can be found in terms of a maximal group of A.

Lemma 2.1. If A P A, then there exists a linear character θ of A such that the

image of the orthogonal projector

PA “
1
|A|

ř

aPA θpa
´1qρpaq

contains Q, meaning that PAv “ v holds for all v P Q.

Lemma 2.2. Let A be an abelian normal subgroup of E with linear character θ. If

the image of the projector contains the Clifford code Q, then A ď Zpωq.

35



Theorem 2.5. Let Q be a Clifford code with data pE, ρ,N, χq, and denote by φ the

irreducible character of E afforded by the representation ρ. Keeping the notations

above, we can conclude that Q is a stabilizer code if and only if

dimQ “ |AX ZpEq|
φp1q

A

holds for some A P A.

Example 2.4. Let G be the finite group generated by three elements a, b, c subject to

the relations:

a2 “ b2 “ ra, bs “ 1 and ac “ b, bc “ a, c4 “ 1.

This is the index group that we introduce.

An abstract error group E is obtained by a central extension of the index group

G by a cyclic group of order 2. More explicitly, E is presented by four generators

a, b, cd that are subject to the relations

a2 “ b2 “ ra, bs “ 1 and d2 “ ra, ds “ rb, ds “ rc, ds “ 1.

The group E is nilpotent of class 3 and of order 32. A faithful irreducible represen-

tation of E is given by

ρpaq =

»

—

—

–

‚ ‚ ´1 ‚

‚ ‚ ‚ ´1
´1 ‚ ‚ ‚

‚ ´1 ‚ ‚

fi

ffi

ffi

fl

, ρpbq =

»

—

—

–

‚ ‚ ‚ ´i
‚ ‚ i ‚

‚ ´i ‚ ‚

i ‚ ‚ ‚

fi

ffi

ffi

fl

, ρpcq =

»

—

—

–

‚ 1 ‚ ‚

1 ‚ ‚ ‚

‚ ‚ ´i ‚

‚ ‚ ‚ i

fi

ffi

ffi

fl

.

and the generator d of the enter of E is represented by ρpdq “ ´1, and it has a

nonabelian index group and yet all its Clifford codes are stabilizer codes. This follows

from the fact that all nontrivial normal subgroups of G are abelian.
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Chapter 3

Operator Quantum Error

Correction

3.1 Standard model of quantum error correction

The Standard Model for error correction of quantum operations(see [3, 29, 52, 54])

consists of triples pR,E,Cq where C is a quantum code, a subspace of some Hilbert

space H associated with a given quantum system. The error E and recovery R are

quantum operations on BpHq such that R annihilates the effects of E on C in the

following sense:

pR ˝ Eqpσq “ σ,@σ “ PCσPC,

where PC is the projection of H onto the subspace C. When there exists such an R

for a given pE,Cq, the subspace C is said to be correctable for E. The existence of a

recovery operation R of E “ tEau on C may be phrased in terms of tEau as follows

(see [29, 54]):

PCE
:
aEbPC “ λabPC@a, b

for some Hermitian matrix Λ “ pλabq. It is easy to see that this condition is inde-

pendent of the operator-sum representation for E.
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3.2 Noiseless subsystems and decoherence free sub-

spaces

Definition 3.1. An open system undergoes decoherence if its evolution is a non

unitary evolution. And an open system undergoing purely unitary evolution is called

a decoherence free subsystem.

In [31, 32], Kribs et al. developed a new scheme called operator quantum error

correction formalism that combined three know techniques, the standard error cor-

rection model, the method of decoherence-free subspaces and the noiseless subsystem

method. Also a generalized framework has been introduced for noiseless subsystems

that can be applied to arbitrary quantum operations.

Definition 3.2. Let E = tEau be a quantum operation onH. Let A be the C‹´algebra

generated by the Ea, so A = AlgtEa, E
:
au is the set of polynomials in the Ea and E:a.

Then A has a unique decomposition up to unitary equivalence of the form

A –
À

pMmJ
b 1nJ

q.

This means that there is an orthonormal basis such that the matrix representa-

tions of operators in A with respect to this basis have the form of direct sum of tensor

products. And A is called the interaction algebra associated with the operation

E.

The standard noiseless subsystem method makes use of the operator algebra

structure of the noise commutant associated with E.

A1 “ tσ P BpHq : Eσ “ σE,@E P tEa, E
:
auu.

And when E is unital, all the states encoded in A1 are immune to the errors of

E. The structure of A implies that the noise commutant is unitarily equivalent to
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A –
À

p1mJ
bMnJ

q.

The elements of A1 are immune to the errors of A when E is unital. And in [26],

the converse of the statement was proved. Specially, when E is unital, the noise

commutant coincides with the fixed point set for E.

A1 “ FixpEq “ tσ P BpHq : Epσq “
ř

aEσE
: “ σu.

This is why A1 can be used to produce noiseless subsystems for unital E. And the

noiseless subsystems may be regarded as containing the method of decoherence-free

subspaces as a special case, in the sense that this method uses 1mJ
bMnJ

where

mJ “ 1 inside the noise commutant A1 for encoding information.

Also, a generalized framework for noiseless subsystems that can be applied to

arbitrary quantum operations is brought up. A subsystem that is noiseless for a

certain map will also be noiseless for any other map whose Kraus operators are linear

combinations of the Kraus operators of the original map. Hence, for the purpose of

noiseless encoding, any map whose Kraus operators span is closed under conjugation

is equivalent to a unital map.

The structure of A induces a natural decomposition of the Hilbert space

H “
À

pHA
J bHB

J q,

where the noisy subsystems HA
J have dimensionmJ and the noiseless subsystems

HB
J have dimension nJ .

First, the case where information is encoded in a single noiseless sector of BpHq

is considered, and hence

H “ pHA bHBq ‘K.
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with dimpHAq = m and dimpHBq = n. We write σA for operators in BpHAq

and σB for operators in BpHBq. Thus the restriction of the noise commutant A1 to

HA b HB consists of operators of the form σ “ 1A b σB, where 1A is the identity

element of BpHAq.

Kribs used the orthonormal bases and matrix representation of the subalgebra

A1 to prove the following property:

Lemma 3.1. The map Γ : BpHq ÝÑ BpHq given by Γ “ tPklu satisfies the following

equality: Γpσq “
ř

k,l PklσpPklq
: “ 1A b ptrA ˝Pqpσq P 1A b BpHBq, for all operators

σ P BpHq, so in particular, ΓpσA b σBq91A b σB for all σA and σB, where P “

řm
i“1 Pii, and Pkl “ |αky xαl| b 1B, @1 ď k, l ď m with respect to the orthonormal

basis t|αiyu
m
i“1, so that PH “ HA bHB.

Also, Kribs brought up a genearlized noiseless subsystem method (see [31, 32]).

In this framework, the quantum information is also assumed to be encoded in σB, i.e.

the state of noiseless subsystem. But the case that the noisy subsystem remains in

the maximally mixed state 1A under E is not assumed, as is the case for the noiseless

subsystems of unital channels, so it could get mapped to any other state.

Lemma 3.2. Given a fixed decomposition H “ pHA b HBq ‘ K, and a quantum

operation E the following properties of the noiseless subsystem B are equivalent:

1. @σA and σB , DτA s.t. EpσA b σBq “ τA b σB;

2. σB , DτA s.t. Ep1A b σBq “ τA b σB;

3. @σ “ σA b σB for some σA and σB, trA ˝ P ˝ Epσq “ trApσq.

Definition 3.3. The subsystem B is said to be noiseless for E when it satisfies one

of the conditions in 3.2.
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Also, he proved a necessary and sufficient condition for a subsystem to be noiseless

for a map E “ tEau.

Theorem 3.1. Let E “ tEau be a quantum operation on BpHq and let U “ tσ P

BpHq : σ “ σA b σB for some σA and σBu. Then the following three conditions are

equivalent:

1. The B´sector of U encodes a noiseless subsystem for E(decoherence-free sub-

space in the case m “ 1).

2. The subspace PH “ HAbHB is invariant for the operators Ea and the restric-

tions Ea |PH belong to the algebra BpHAq b 1B.

3. The following two conditions hold for any choice of matrix unitstPkl : 1 ď

k, l ď mu for BpHAq b 1B:

PkkEaPll “ λaklPkl, @a, k, l

for some set of scalars pλaklq and

EaP “ PEaP @a.

Example 3.1. [32] As a simple illustration of a noiseless subsystem in a non-unital

case, consider the quantum channel E : M4 ÝÑ M4 with errors E “ tE1, E2u

obtained as follows. Fix γ, 0 ď γ ď 1, and with respect to the basis t|0y , |1yu, let

F =

„?
γ 0

0
?

1´ γ



, F =

„

0
?
γ

?
1´ γ 0



.

and we define Ei “ Fi b I2, for i “ 0, 1. Then
ř

iE
:

iEi “ I4 follows from
ř

i F
:

i Fi “

I2. Decompose C4 “ HA b HB, with respect to the standard basis, so that HA “

HB “ C2. Then for all σ “ σA b σB, we have
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E “
ř1
i“0Eiσ

A b σBE:i “ p
ř1
i“0 Fiσ

AF :i q b σ
B.

The operator τ is given by τ “
ř1
i“0 Fiσ

AF :i in this case. It follows that B encodes

a noiseless subsystem for E. Also as opposed to the completely error-free evolution

that characterizes the unital case, we have EpIA b σBq ‰ IA b σB in this case.

3.3 Theory of Recovery without Error Syndrome

Detection

Peres showed that the ability to distinguish non-orthogonal quantum states could be

used to construct a cyclic process that would violate the second law of thermody-

namics (see [47]). And it is impossible to unambiguously distinguish non-orthogonal

quantum states.

When constructing a quantum error correcting code that can detect and correct a

set of errors tEau, we must be able to distinguish the error Ea acting on a codeword

|ψiy from the error Eb acting on a different codeword |ψjy. Based on this theorem, the

erroneous image Ea |ψiy and Eb |ψjy must be orthogonal if the code is to distinguish

these errors correctly.

In [29], Knill and Laflamme gave a necessary and sufficient condition for the

existence of a quantum error correcting code.

Theorem 3.2. Let Φ : BpHq ÝÑ BpHq be a quantum channel. Suppose V is a

subspace of H and PV is the orthogonal projection of H with V as the range space.

Then the following statements are equivalent:

1. V is a QECC for Φ.

2. PVE
:
aEbPV = λabPV for some complex number λab for all possible Ea, Eb.
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In [36], Li, Nakahara, Poon, Sze and Tomita have slightly modified the above

result as follows:

Theorem 3.3. Let Φ :Mn ÝÑMn be a quantum channel, and suppose the necessary

and sufficient condition for QECC holds and P = WW : with W :W = Ik so that a

density matrix ρ P Mn satisfying PρP = ρ has the form Wρ̃W : with ρ̃ P Mk. Then

there is a R P Upnq and a positive definite matrix ξ P Mq with q ď mintr, n
k
u such

that for any density matrix ρ̃ PMk and ρ = Wρ̃W : PMn, we have

R:ΦpρqR = pξ b ρ̃q ‘ 0n´qk.

In particular, if k divides n so that Mn can be regarded as Mn
k
bMk, then

R:ΦpρqR = ξ̃ b ρ̃, with ξ̃ = ξ ‘ 0n
k
´q.

A recovery channel can be constructed as the map Ψ : Mn ÝÑMn defined by

Ψpρ1q = Wtr1pR
:pρ1qRqW :.

As a result, a decoding scheme can be realized by a unitary operation followed by a

partial trace operation.

3.4 Application to collective noise

This new approach was applied to the study of collective noise. The collective noise

was studied by many scholars [39, 40, 56, 61]. In particular, Li et al studied error of

the form tXbn, Y bn, Zbnu in [34], that is, all qubits constituting the codeword are

affected by the same Pauli operator. They showed that (i) ann-qubit quantum system

can encode pn´ 1q data qubits when n is odd while (ii) an n-qubit quantum system

can encode pn´ 2q data qubits when n is even. Quantum circuits implementing this

scheme were also proposed in their paper.
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|0y

Quantum
Channel

‚ |˚y

|ρ1y ‚ ‚ |ρ1y

|ρ2y ‚ ‚ |ρ2y

Figure 3.1: An encoding and decoding circuit for 3-qubit quantum channel with error
operators tXb3, Y b3, Zb3u.

|0y

Quantum
Channel

‚ |˚y

|ρ1y ‚ ‚ |ρ1y

|ρ2y ‚ ‚ |ρ2y

|ρ3y ‚ ‚ |ρ3y

|ρ4y ‚ ‚ |ρ4y

Figure 3.2: An encoding and decoding circuit for 5-qubit quantum channel with error
operators tXb5, Y b5, Zb5u.

In another paper [35] of Li et al., they also studied the general collective noise,

namely, error of the form tUbn : U P SUp2qu. By consider the decomposition into

irreducible representations up to unitary similarity, every error operator has the

form
À

j Irj b Bj with Bj P Mnj
with

ř

j rjnj “ 2n. Take Mn
2 »

`

Irj bMnj

˘

‘Mq

with q “ 2n ´ rjnj,. According to this decomposition, this will give raise to a

noiseless subsystem. The author also suggested the implementation in terms of

quantum circuits for n “ 3 and all odd n using a recursive construction so that

pn ´ 1q{2 qubit state can be encoded in the circuits, see Figures 3.5, 3.6 and 3.7.

Here, G1 “
1?
3

„

1
?

2
´
?

2 1



and G2 “
1?
2

„

1 1
´1 1



. This scheme is also extended to

the study of quantum error correction for qudit in [18, 33].
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|0y H ‚

Quantum
Channel

‚ H |0y

|0y |0y

|ρ1y ‚ ‚ |ρ1y

|ρ2y ‚ ‚ |ρ1y

Figure 3.3: An encoding and decoding circuit for 4-qubit quantum channel with error
operators tXb4, Y b4, Zb4u.

|0y H ‚

Quantum
Channel

‚ H |0y

|0y |0y

|ρ1y ‚ ‚ |ρ1y

|ρ2y ‚ ‚ |ρ2y

|ρ3y ‚ ‚ |ρ3y

|ρ4y ‚ ‚ |ρ4y

Figure 3.4: An encoding and decoding circuit for 6-qubit quantum channel with error
operators tXb6, Y b6, Zb6u.

|0y G1 ‚

Quantum
Channel

‚ G1 |0y

|ψy ‚ Z Z ‚ |˚y

|ρy ‚ G2 G2 ‚ |ρy

U3

Figure 3.5: An encoding and decoding circuit for 3-qubit quantum channel with error
operators tUb3 : U P SUp2qu.
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|0y

U3
Quantum
Channel

¨ ¨ ¨

|0y

U3

¨ ¨ ¨

|0y ¨ ¨ ¨

|c1y ¨ ¨ ¨

|c2y ¨ ¨ ¨

Figure 3.6: An encoding circuit for 5-qubit quantum channel with error operators
tUb5 : U P SUp2qu.

|0y

U3
Quantum
Channel

¨ ¨ ¨

|0y

U3

¨ ¨ ¨

|0y

U3

¨ ¨ ¨

|0y ¨ ¨ ¨

|c1y ¨ ¨ ¨

|c2y ¨ ¨ ¨

|c3y ¨ ¨ ¨

Figure 3.7: An encoding circuit for 7-qubit quantum channel with error operators
tUb7 : U P SUp2qu.
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Chapter 4

Recovery Channel for [5,1,3] Code

4.1 Motivation

For an rn, k, ds code, the classical approach for error correction is syndrome detection

and correction method. The information is encoded in the quantum states, then

passed the noisy quantum channel. Then one has to measure the error syndrome

and correct the error based one the syndrome detected, as stated in the following

diagram.

Encoding
Operation

Quantum
Channel

Syndrome
Detection

Error
Correction

Decoding
Operation

For r5, 1, 3s code, the traditional approach is that we use four ancillary qubits to

detect error syndrome, as in Figure 4.1.

So the traditional encoding and error correcting circuit for r5, 1, 3s code is Figure

4.2:

In this approach, other than the n´ k ancillary qubits used in encoding, another

n ´ k qubits are needed in order to measure the error syndrome. In this chapter, a

new error correction approach for rn, k, ds code will be introduced, namely, an error

correction approach without error syndrome detection and correction for rn, k, ds
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Z X X

Z Z X

X Z Z

X X Z

Z X X Z

|0y H ‚ H

|0y H ‚ H

|0y H ‚ H

|0y H ‚ H

Figure 4.1: An syndrome detection circuit of [5,1,3] code.

code, as showed in the following diagram.

Encoding
Operation

Quantum
Channel

Decoding
Operation

And in 2011, Li, Nakahara, Poon, Sze and Tomita showed that an n-qubit quan-

tum system can encode pn ´ 1q data qubits when n is odd and encode pn ´ 2q

data qubits when n is even. AND they can avoid fully correlated noise of the form

tXbn, Y bn, Zbnu without using ancillary qubits.

In 2013, Kondo, Bagnasco and Nakahara showed that they can avoid fully corre-

lated noise by making use of a three qubit NMR quantum computer experimentally,

requiring no equipment of ancillary qubits, see Figure 4.3.

We will first demonstrate this approach for r5, 1, 3s code.

4.2 Demonstration for r5, 1, 3s code

The r5, 1, 3s code whose stabilizer can be generated by

g1 “ X b Z b Z bX b I,
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|ρy Z Z

Quantum
Channel

|0y H ‚ Z Z

|0y Z Z H ‚

|0y Z H ‚

|0y Z H ‚ Z

Z X X

Error
Correction

Decoding
Operation

Z Z X

X Z Z

X X Z

Z X X Z

|0y H ‚ H

|0y H ‚ H

|0y H ‚ H

|0y H ‚ H

Figure 4.2: An encoding and error correcting circuit of [5,1,3] code.

|0y G1 ‚

E U :E|vy Z ‚

|ψy ‚ G2

Figure 4.3: NS against fully correlated noise.

g2 “ I bX b Z b Z bX,

g3 = X b I bX b Z b Z,

g4 = Z bX b I bX b Z.

The five-qubit code is the smallest possible QECC which corrects one error, see

for example [14]. In the following, we show that we can fully recover the original

information without detecting error syndromes.

We have the following encoding:
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‚ |0yL = 1
4
pI ` g1qpI ` g2qpI ` g3qpI ` g4q|00000y.

‚ |1yL = 1
4
XpI ` g1qpI ` g2qpI ` g3qpI ` g4q|00000y.

Here X = X bX bX bX bX.

As mentioned in Chapter 2, it can be easily verified that |0yL and |1yL are invariant

under the action of the four generators. However the factors pI`gkq above mentioned

are not unitary and therefore it is different to be implemented. Practically, it can be

verified that the two codewords can be formulated by

|0yL “ V3V4V5V2Z1|00000y and |1yL “ V3V4V5V2Z1|10000y,

where

V3 “ pI b I b |0yx0|H b I b Iq ` pI b Z b |1yx1|H bX b Zq ,

V4 “ pI b I b I b |0yx0|H b Iq ` pZ b I b Z b |1yx1|H bXq ,

V5 “ pI b I b I b I b |0yx0|Hq ` pX b Z b I b Z b |1yx1|Hq ,

V2 “ pI b |0yx0|H b I b I b Iq ` pX b |1yx1|H b Z b I b Zq .

(4.1)

are all unitary operators. Then one can construct the encoding circuit with the above

unitary operations, as in Figure 4.4, see also [45].

|ρy Z Z

|0y H ‚ Z Z

|0y Z Z H ‚

|0y Z H ‚

|0y Z H ‚ Z

Figure 4.4: An encoding circuit of [5,1,3] code.
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4.2.1 Steps to obtain the recovery operations for r5, 1, 3s code.

After we encode the single qubit quantum information, we want to make sure that

the receiver receives the correct information. Inevitably, there are single qubit error

operators acting on the quantum state during the transmission.

We have the following observation that helps us to build the recovery operations

for r5, 1, 3s code, since we have assumed that at most one qubit error can occur,

and each error operator can act on each qubit, and there are three types of Pauli

operators, thus we have p3 ˆ 5q possible error operators plus one identity operator.

We will consider pairs of codewords tE|0yL, E|1yLu, where E is one of the error

operators including the identity operator. There are totally 16 pairs. On the other

hand, the Hilbert space under consideration is 25 “ 32 dimensional and the quantum

subspace spanned by t|0yL, |1yLu is 2´dimensional, and we are only interested in this

single qubit subspace, while the ancillary subspace is not really important, so we

will separate the Hilbert space to 16 different 2-dimensional subspaces spanned by

t|0j1j2j3j4yL, |1j1j2j3j4yLu, where

|0j1j2j3j4yL “ V3V4V5V2Z1|0j1j2j3j4y and |1j1j2j3j4yL “ V3V4V5V2Z1|1j1j2j3j4y,

for j1, j2, j3, j4 P t0, 1u. Let

S “ t|0yL, |1yLu and Spj1j2j3j4q “ Span t|0j1j2j3j4yL, |1j1j2j3j4yLu.

Also denote ES “ Span tE|0yL, E|1yLu for any error operators E. After comparing

these two sets of 2-dimensional subspaces, we obtained the following table indicating

the relation between them.

That is, the subspace X1S is equal to the subspace Sp0011q. Furthermore, the

operators displayed in the third column in the table has the following meaning, say

X1|0yL “ XV3V4V5V2Z1|00011y and X1|1yL “ XV3V4V5V2Z1|10011y.
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X1S Sp0011q X

X2S Sp1110q X

X3S Sp1011q ´Y

X4S Sp1001q ´Y

X5S Sp1111q X

Y1S Sp0010q ´Y

Y2S Sp0110q X

Y3S Sp1100q ´Y

Y4S Sp1101q ´Y

Y5S Sp0101q X

Z1S Sp0001q Z

Z2S Sp1000q I

Z3S Sp0111q I

Z4S Sp0100q I

Z5S Sp1010q I

Table 4.1: Relation between the subspaces ES and Spj1j2j3j4q.

Remark 4.1. The reason why we can compare seemingly unrelated two sets of

codewords is that we find that each set consists of an orthogonal codewords which

means that they can form a basis of the whole space. And since each basis can be

represented by the other and vice versa, we want to find out what is the difference

between the two basis. And from the table above we can see that for the encoded

computational basis codewords |iyL and |jyL , i ‰ j, we have

xi|LE
:
aEb |jyL “ 0, xi|L IEb |jyL “ 0,

which verifies the necessary and sufficient conditions for the existence of QECC.

Detail will be discussed in the later section.

Next, we want to do is to construct the recovery operation for r5, 1, 3s code. And
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we have the following observation: there are ten bit flip errors and six phase flip

errors we need to correct during the construction of the recovery operation with

respect to the single qubit quantum information. And in order to construct such a

recovery operation we have to take all these errors into consideration once and for

all. Here we can choose to correct bit flip errors first then deal with phase flip error

to extract the original information.

The algorithm is to use the binary system and controlled gates and double con-

trolled gates to transform the ancillary qubits of some corrupted codewords into a

fixed state and ancillary qubits of other corrupted codewords will be transformed

into some other state, and it won’t be the same as the fixed state. Then we use the

fixed state ancillary qubits as controlled qubits to act on the single qubit target in-

formation to correct the bit flip error, but since there are ten bit flip errors, we won’t

be able to fix them using just one controlled gate, at least we need two controlled

gates to correct the bit flip error.

And when we use two controlled gates, we need to transform three out of four

ancillary qubits into a fixed state, which implies a triple controlled gate. But triple

controlled gate is hard to find in the process of searching, since it needs to transform

three ancillary qubits into the same quantum state, which may take quite a few

quantum gates to realize that, so here we use two double controlled gates to fix eight

bit flip error. And then use single controlled gate to fix the remaining two.

As for which three ancillary qubits to choose as the controlling qubits, we also

have to search based on the number of quantum gates to transform them and the

states of the rest of error corrupted encoded codewords after being transformed by

these quantum gates, because we need them to correct the rest errors. So in all, we

have to construct the quantum gates step by step. But the central idea is clear, we

transform ancillary qubits into a fixed state so that we can use them as controlling

qubits to fix the bit and phase flip errors for the recovery channel. We now present

57



the detail procedure.

4.2.2 Detail procedure for the construction

1. First we use two, three or more controlled gates to transform one ancillary

qubit into fixed state, then use this state to fix eight bit flip errors out of

ten. For example, we can choose ancillary qubits |0100y, |0101y, |0110y, |0111y,

|1100y, |1101y, |1110y, |1111y to be the transformed quantum state and use the

second ancillary qubit to be the control qubit. And to realize the single qubit

controlled gate we can use the following circuit to correct eight qubit error first.

‚

‚ ‚

‚ ‚

‚

Figure 4.5: Step one of Recovery channel for [5,1,3] code.

2. After we have corrected eight bit flip errors, we want to fix the remaining

two, and we need also to transform the remaining two computational basis

codewords into a fixed state so that we can use a triple controlled quantum

gate to fix the remaining two errors.

‚ ‚

‚

‚ ‚

Figure 4.6: Step two of recovery operations for [5,1,3] code.
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3. Based on the quantum gates used, we can obtain what the codewords corrupted

by phase flip operators have been transformed into. And since we need to

correct six phase flip error. Similar to the process of finding recovery channel

for bit flip errors, we need to fix four phase flip errors first and then the rest

two.

Z

‚

‚

‚

Figure 4.7: Step three of recovery operations for [5,1,3] code.

4. The last step is a bit more complex since we need to find a triple qubit controlled

gate to fix two phase flip errors, which means that we need to transform three

ancillary qubits into a fixed quantum state so that we can use these three qubits

to control the action on the target qubit. And we have

Z

‚

‚

‚

‚ ‚ ‚

Figure 4.8: Step four of recovery operations for [5,1,3] code.

Remark 4.2. Each step is dependent on the one before and the quantum gates we

have searched will in a way have impact on the gates in the following steps, so we
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have to be careful about the gates we choose in each step.

And the basic routine here is to correct bit flip and phase flip errors with double

controlled gates and triple controlled gates, to derive that, we need to determine

which ancillary qubits need to be transformed and what states we want to transform

them into.

Since usually we need to fix even number of bit flip errors and phase flip errors,

thus we can always decompose the correction into several steps based on the binary

expression of the number of errors.

For [5,1,3] code, the decomposition is 23 ` 2 and 22 ` 2 for bit flip and phase

flip errors respectively. So correspondingly, we use a single qubit controlled gate and

triple controlled gate to fix bit flip errors and a double controlled gate and triple

controlled gate to fix phase flip errors.

Using the 1-1 correspondence between the set of error corrupted encoded code-

words and the set of encoded computational basis codewords, we can give a recovery

channel without error syndrome detection. All we need to do is to decode and apply

the circuit we have found, then the original information is guaranteed to be received

correctly.

4.2.3 Circuit diagram for r5, 1, 3s code

After the above discussion in the previous two subsections, we have the following

circuit diagram for r5, 1, 3s code.
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|ρy Z Z

Quantum
Channel

|0y H ‚ Z Z

|0y Z Z H ‚

|0y Z H ‚

|0y Z H ‚ Z

Z Z Z Z |ρy

Z Z ‚ H ‚ ‚ ‚ ‚

‚ H Z Z ‚ ‚ ‚ ‚ ‚

‚ H Z ‚ ‚ ‚ ‚
|˚y

Z ‚ H Z ‚ ‚ ‚ ‚ ‚ ‚ ‚


Figure 4.9: An encoding and decoding quantum circuit of [5,1,3] code.

4.3 Theoretical explanation for the circuit diagram

construction

Recall that

g1 “ I b Z bX bX b Z

g2 “ Z b I b Z bX bX

g3 “ X b Z b I b Z bX

g4 “ X bX b Z b I b Z

In theory, the two codewords |0yL and |1yL are defined in principal by

|0yL “
1

4
pI ` g1qpI ` g2qp1` g3qp1` g4q|00000y,

|1yL “
1

4
XpI ` g1qpI ` g2qp1` g3qp1` g4q|00000y.
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Notice that for any two distinct error operators Ea and Eb with wpEaq and wpEbq

are at most one, there exists gk such that E:aEb is anti-commute with gk. Then

E:aEbpI ` gkq “ pI ´ gkqE
:

iEj. Then pI ` gkq
:pI ´ gkq “ 0 implies

xi|LE
:
aEb|jyL “ 0 i, j P t0, 1u. (4.2)

However, as previously mentioned, the factors pI` gkq are not unitary and there-

fore it is different to be implemented. Practically, it can be verified that the two

codewords can be formulated by

|0yL “ V3V4V5V2Z1|00000y and |1yL “ V3V4V5V2Z1|10000y

where V3, V4 ,V5, and V2 are unitary operators defined in (4.1). Let U “ V3V4V5V2Z1

and for consistence of notation, set G3 “ g1, G4 “ g2, G5 “ g3, and G2 “ g4. Also

let Si and Tj are the two tensor product components in the definition of Vj, that is,

Vj “ Sj ` Tj. It is now claim that for any tensor product of Pauli matrices

Q “ Q1 bQ2 bQ3 bQ4 bQ5 with Qj P tI,X, Y, Zu,

U :QU is also always a tensor product of PAuli matrices, i.e., we have

U :QU “ P1 b P2 b P3 b P4 b P5 with Pj P tX, Y, Zu.

We divide the proof into four cases. Fix an index k. If Qk “ I, then

QVk “

#

pSk ` TkqQ if QTk “ TkQ

pSk ´ TkqQ if QTk “ ´TkQ

and hence

V :kQVk “

#

pSk ` Tkq
:pSk ` TkqQ “ Q if QTk “ TkQ

pSk ` Tkq
:pSk ´ TkqQ “ XjQ if QTk “ ´TkQ
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If Qk “ X, then

V :kQVk “

#

ZkGkQ if pQXkqTk “ TkpQXkq

YkGkQ if pQXkqTk “ ´TkpQXkq

If Qk “ Y , then

V :kQVk “

#

´YkGkQ if pQYkqTj “ TkpQYkq

´ZkGkQ if pQYkqTj “ ´TkpQYkq

Finally, if Qk “ Z, then

V :kQVk “

#

XkZkQ if pQZkqTj “ TjpQZkq

ZkQ if pQZkqTj “ ´TjpQZkq

In all cases, V :kQVk are tensor products of Pauli matrices and and so as U :QU . Thus,

the claim holds. It follows that for any error operator E, for any j P t0, 1u,

U :EU |j0000y “ UpP1 b P2 b P3 b P4 b P5q|j0000y

“ pP1|j0000y b |P2|0y b P3|0y b P4|0y b P5|0yq ,

therefore

U :EU |j0000y “ ˘P1|jy b |j2j3j4j5y for some j2, j3, j4, j5 P t0, 1u. (4.3)

Furthermore, for any error operators Ea and Eb, by the fact that pU :EaUq
:pU :EbUq “

U :E:aEbU and the equation (4.2), one can see that if

U :EaU |j0000y “ ˘P a
1 |jy b |j

a
2j

a
3j

a
4j

a
5y and U :EbU |j0000y “ ˘P b

1 |jy b |j
b
2j
b
3j
b
4j
b
5y,

then |ja2j
a
3j

a
4j

a
5y and |jb2j

b
3j
b
4j
b
5y are linearly independent. Thus, if one absorbs the sign

of the vector, then

 

U :EU |j0000y : all error E and j P t0, 1u
(

“ t|j1j2j3j4j5y : j1, j2, j3, j4, j5 P t0, 1uu .

63



E U :EU U :EU |00000y U :EU |10000y

X1 X b I b I bX bX |10011y |00011y
X2 X b Y bX b Y b Z |11110y |01110y
X3 Y bX b I bX b Y |11011y ´|01011y
X4 Y bX b Z b I b Y |11001y ´|01001y
X5 X bX bX b Y b Y |11111y |01111y

Y1 Y b I b I bX b I |10010y ´|00010y
Y2 X b Z bX b Y b Z |10110y |00110y
Y3 Y bX bX b I b Z |11100y ´|01100y
Y4 Y bX b Y b I b Y |11101y ´|01101y
Y5 X b I bX b Z b Y |10101y |00101y

Z1 Z b I b I b I bX |00001y ´|10001y
Z2 I bX b I b I b I |01000y |11000y
Z3 I b I bX bX bX |00111y |10111y
Z4 I b I bX b I b I |00100y |10100y
Z5 I bX b I bX b I |01010y |11010y

Table 4.2: Relation between the the error operator E and U :EU .

In fact, direct computations show that following.

In the final stage, we perform further recovery operation R so that all the oper-

ation P1 in equation (4.3) become identity, that is,

RU :EU |j0000y “ ˘|jy b |j2j3j4j5y for some j2, j3, j4, j5 P t0, 1u.

As explained before, the current recovery operations obtained in Figure 4.9 is by

computer search.

4.4 A new proposed approach to obtain the circuit

diagram for rn, k, ds code

Based on the construction and theoretical explanation for the case of r5, 1, 3s code,

we proposed the following general approach to obtain the circuit diagram for rn, k, ds

code.
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1. Given a set of generators gi of the rn, k, ds code is obtained, following the

algorithm presented in Section 2.2.3, construct the computational codewords

for the code.

2. Define the control-unitary operations based on the generators pI ` giq, similar

to Section 4.2. Then the encoding circuit can be obtained accordingly.

3. Compare two sets of codewords ES and Spj1 ¨ ¨ ¨ jn´kq which are mutually or-

thogonal to each other, and find the mapping relation between them.

4. Build the correspondence between the related two codewords and find the types

of corresponding codewords.

5. Based on the types obtained and the number of bit flip and phase flip errors,

search for possible quantum gates to apply to the encoded qubits, which may

takes double or triple controlled gates to realize that.

In Chapter 5, we will demonstrate that the above proposed algorithm will also

work another code, namely, r8, 3, 3s code.
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Chapter 5

Recovery Channel for [8,3,3] Code

The purpose of this chapter is to demonstrate the proposed approach for r8, 3, 3s

code and give out specific recovery operations for this code.

5.1 Construction for r8, 3, 3s code

As we have mentioned in Chap. 2, generators for an eight-qubit code protecting

three-qubit states with at most one error are as follows:

g1 “ X bX bX bX bX bX bX bX,

g2 “ Z b Z b Z b Z b Z b Z b Z b Z,

g3 “ X b I bX b I b Z b Y b Z b Y,

g4 “ X b I b Y b Z bX b I b Y b Z,

g5 “ X b Z b I b Y b I b Y bX b Z.

(5.1)

and the seed generators given have the following forms:

N1 “ X bX b I b I b I b I b I b I,

N2 “ X b I bX b I b I b I b I b I,

N3 “ X b I b I b I bX b I b I b I.

(5.2)
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Define

V1 “ pI b I b I b I b I b I b I b |0y x0|Hq

` pI b Y bX bX b Z b Z b I b |1y x1|Hq

V2 “ pI b I b I b I b I b I b |0y x0|H b Iq

` pX b I b Y bX b Z b I b |1y x1|H b Zq ,

V3 “ pI b I b I b I b I b |0y x0|H b I b Iq

` pX b Y b I b Y b Z b |1y x1|H b Z b Iq ,

V4 “ pI b I b I b I b |0y x0|H b I b I b Iq

` pX bX b Y b Z b |1y x1|H b Z b I b Iq ,

C1 “ p|0y x0| b I b I b I b I b I b I b Iq

` p|1y x1| b I b I bX b I b I b I b Iq ,

C2 “ pI b |0y x0| b I b I b I b I b I b Iq

` pI b |1y x1| b I bX b I b I b I b Iq ,

C3 “ pI b I b |0y x0| b I b I b I b I b Iq

` pI b I b |1y x1| bX b I b I b I b Iq .

Set U “ V1V2V3V4C1C2C3 and define

|c1c2c3yL “ U |c1c2c300000y c1, c2, c3 P t0, 1u.

Then these eight quantum states form an 8-dimensional QECC for r8, 3, 3s code. Let

S “ t|000yL , . . . |111yLu. One can now construct the encoding circuit with the above

unitary operations as in Figure 5.1.

After encoding operation, a total of 256 basis codewords

U |00000000y , U |00000001y ¨ ¨ ¨ , U |11111111y

are obtained. On the other hand, there are 200 codewords in the set

tES : error operators Eu.
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|c1y ‚

|c2y ‚ Y Y

|c3y ‚ Y Y

|0y Z Y

|0y Z H ‚ Z Z Z

|0y H Z ‚ Z

|0y Z H Z ‚

|0y Z H Z ‚

Figure 5.1: An encoding circuit of [8,3,3] code.

Next, we can find out that here exists an injective map between the two sets. So that

means we can build an one to one correspondence between two sets of 200 codewords

which is the basis for our recovery channel for r8, 3, 3s code. Similar to the case of

r5, 1, 3s code, after some computation, we have the following relations between the

two sets of 8-dimensional subspaces in Tables 6.1, 6.2, and 6.3.

We can fix the error according to the correspondence and the deviation between

each two groups of codewords. The procedure is a little bit longer, basically we have

X1S Sp00001q ´X b Y b I

X2S Sp10101q ´Y b I bX

X3S Sp01011q ´Z bX b Y

X4S Sp00111q X b Y b Y

X5S Sp11111q I b I b I

X6S Sp10011q X b I b I

X7S Sp01101q I bX b I

X8S Sp11001q I b I bX

Table 5.1: Relation between the subspaces XjS and Spj1j2j3j4j5q.
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Y1S Sp10001q X b Y b I

Y2S Sp11101q Y b I bX

Y3S Sp01111q Z bX b Y

Y4S Sp00101q ´X b Y b Y

Y5S Sp00011q Z b Z b Z

Y6S Sp01001q ´Y b I b I

Y7S Sp11011q ´I b Y b I

Y8S Sp10111q ´I b I b Y

Table 5.2: Relation between the subspaces YjS and Spj1j2j3j4j5q.

Z1S Sp10000q I b I b I

Z2S Sp01000q I b I b I

Z3S Sp00100q I b I b I

Z4S Sp00010q I b I b I

Z5S Sp11100q Z b Z b Z

Z6S Sp11010q Z b I b I

Z7S Sp10110q I b Z b I

Z8S Sp01110q I b I b Z

Table 5.3: Relation between the subspaces ZjS and Spj1j2j3j4j5q.

two approaches, fix the bit flip error then the phase flip error or phase flip error first

then bit flip error.

Remark 5.1. Similar to r5, 1, 3s code, The reason why we compare seemingly unre-

lated two sets of codewords is that each set consists of codewords which are mutually

orthogonal to each other. And the difference between r8, 3, 3s code and r5, 1, 3s code

is that for r5, 1, 3s code, the two sets have the same number of codewords, while
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for r8, 3, 3s code, there are 3 ˆ 23 ˆ 23 error corrupted encoded codewords, and the

encoded computational basis codewords are 28, which means that some encoded com-

putational basis codewords won’t be used or be mapped to. And we find out that the

corrupted set is a subset of the set consisting of encoded basis codewords. Although

it is not one to one correspondence, but we can still apply the similar procedure to

find the recovery channel for r8, 3, 3s code.

Then we want to construct the recovery channel for r8, 3, 3s code. And we have the

following observation: different from r5, 1, 3s code, there are three qubit information

we need to encode and for that we need to apply three rounds of recovery for each

qubit, the idea seems straightforward, and it is hard to correct all the bit flip errors

for the three qubit once and for all then correct the phase flip errors for them.

Because the same bit flip error operator on different qubits have different types of

results, which lead to the difficulty of correct one type of error at the same time and

the other type of error after that.

Based on the table and types we observe that there are eight bit flip errors and

eight phase flip errors we need to correct for each qubit during the construction of the

recovery channel with respect to three qubit quantum information. And in order to

construct such a recovery channel we need to correct bit flip and phase flip errors for

the three qubit one by one. And in each round of correction we can choose to correct

bit flip errors first then deal with phase flip error to extract the original information.

Similary, the algorithm is to controlled gates and double controlled gates and

triple controlled gates to transform the ancillary qubits of some corrupted codewords

into a fixed state, and we use the fixed state ancillary qubits as controlled qubits to

act on each single qubit target information to correct the bit flip error and phase flip

error, but since there are eight bit flip errors and eight phase flip errors, it is possible

that we correct the eight errors using just one double controlled quantum gate, but in
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reality, we could not find such gates for all three qubits, since the action of quantum

gates on each corrupted codeword will impact the state of ancillary qubits thus have

influence on the choice of quantum gates for the remaining two or one qubit ,which

will result in the difficulty of finding quantum gates for the next qubit, and so on

and so forth. So we have to turn around to also use triple controlled gates in the

process of correction.

And when we use controlled gates, we need to transform two out of five ancillary

qubits into a fixed state for a double controlled gate or three out of five ancillary

qubits into a fixed state for a triple controlled gate. But triple controlled gate is

hard to find in the process of searching, especially for the later corrections. And

since it need to transform two or three ancillary qubits into the same quantum state,

which may take several quantum gates to realize that, and here we use one triple

controlled gate and two double controlled gates to correct bit flip and phase flip

errors respectively for the first two qubits, and two double controlled gates to correct

bit flip errors and two double controlled gates to correct phase flip errors for the

third qubit.

Also, as for which ancillary qubits need to be chosen as the controlling qubits,

we have to determine based on the number of quantum gates to transform them,

and the number of gates is the smaller the better. And we also need to observe the

states of the rest of error corrupted encoded codewords after being transformed by

these quantum gates, because we need them to correct the rest errors. So all in all,

we have to construct the quantum gates for the three qubits one by one and step by

step. But the main idea is similar, we transform ancillary qubits into a fixed state

so that we can use them as controlling qubits to fix the bit and phase flip errors for

the recovery channel.
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5.1.1 procedure to construct recovery channel for [8,3,3] code

1. First we use two, three or more controlled gates to transform two ancillary

qubits into a fixed state, then use these two ancillary qubits to fix eight bit flip

errors. For example, we can choose ancillary qubits |00001y, |00011y, |00101y,

|00111y, |10001y, |10011y, |10101y, |10111y to be the transformed quantum state

and use the second and fifth ancillary qubits to be the control qubits. And to

obtain the double qubit controlled gate, we can use the following circuit to

correct eight bit flip errors first (Figure 5.2).

X

‚

‚

‚

‚ ‚

Figure 5.2: Step one of recovery channel for [8,3,3] code.

2. After we have corrected eight bit flip error operators for the first qubit, what

we need to do is to correct eight phase flip errors. But we find that after the

action of quantum gates in the step one, we can not find a double controlled

gate to correct them. So we have to use two triple controlled gates to realize

it (Figure 5.3).

3. Based on the quantum gates used for the correction of errors for the first qubit,

we can obtain for the second qubit what the codewords related to the second

qubit corrupted by error operators have been transformed into. And similarly

we need to correct eight bit flip error first (Figure 5.4).
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Z Z

‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚

‚

‚ ‚ ‚

Figure 5.3: Step two of recovery channel for [8,3,3] code.

X

‚ ‚

‚

‚

‚ ‚

‚

Figure 5.4: Step three of recovery channel for [8,3,3] code.

4. What we need to do now is to correct eight phase flip errors for the second

qubit. Similarly we find that after the action of quantum gates applied to the

second qubit for the bit error correction, we can not find a double controlled

gate to correct them. So we have to use two triple controlled gates to realize

it (Figure 5.5).

5. For the third qubit, it is a little bit more complex than the first two qubits,

since we can not find a double controlled gate to correct eight bit flip errors

at the same time. We need two triple controlled gates to correct them (Figure

5.5).
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Z Z

‚ ‚

‚

‚ ‚ ‚

‚

‚ ‚

Figure 5.5: Step four of recovery channel for [8,3,3] code.

X X

‚ ‚

‚ ‚ ‚

‚ ‚

‚ ‚

‚ ‚

Figure 5.6: Step five of recovery channel for [8,3,3] code.

6. And finally for the third qubit, similarly we need to use two triple controlled

gates to correct eight phase flip errors (Figure 5.6).

Finally, the complete realization of encoding and decoding circuit diagram without

error syndrome detection for r8, 3, 3s code is presented in Figure 5.8.
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Z Z

‚ ‚

‚ ‚

‚ ‚ ‚

Figure 5.7: Step six of recovery channel for [8,3,3] code.

|c1y ‚

Quantum
Channel

‚

|c2y ‚ Y Y Y Y ‚

|c3y ‚ Y Y Y Y ‚

|0y Z Y Y Z

|0y Z H ‚ Z Z Z Z Z Z ‚ H Z

|0y H Z ‚ Z Z ‚ Z H

|0y Z H Z ‚ ‚ Z H Z

|0y Z H Z ‚ ‚ Z H Z

X Z Z |c1y

X Z Z |c2y

X X Z Z |c3y

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ |˚y

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚


Figure 5.8: An encoding and decoding quantum circuit of r8, 3, 3s code.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, stabilizer codes are reviewed and a scheme for constructing recovery

channels without error syndrome detection is proposed. We first review some basic

concepts on stabilizer groups and stabilizer codes. In particular, we consider theories

and principles involved in the construction of encoding circuits from the generators

of stabilizer group, and propose a new procedure to derive recovery channel for a

well known quantum code, the rn, k, ds code.

Next, an algorithm to obtain the generators for a stabilizer code and the cor-

responding computational basis codewords defined in terms of Pauli operators are

reviewed and illustrated in detail. Then based on the general framework of oper-

ator quantum error correction, we provide a general scheme on the construction of

encoding and decoding circuits for the rn, k, ds codes.

Finally, a detailed procedure to construct the recovery channel using encoding

circuits and encoded computational basis codewords are demonstrated for r5, 1, 3s

code and r8, 3, 3s code step by step as examples, with heuristic explanations based

on necessary and sufficient conditions for quantum error correction.

Contrary to the traditional approach to error correction, the scheme saves pn´kq

ancillary qubits that are used in the error syndrome detection. Although there might
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be some time tradeoff, the computability of number of quantum gates in recovery

channel for simple quantum error correcting codes is obvious. So we can use limited

number of quantum gates and n qubits, without using ancillary qubits, to recover

the original information.

6.2 Future Work

After studied r5, 1, 3s and r8, 3, 3s code, the next possible code to be studied is

r10, 4, 3s. Following the algorithm proposed in Section 4.4, we can first obtain an

encoding circuit diagram in Figure 6.1.

|c1y ‚ Z Z Z

|c2y ‚ Y Z Z

|c3y ‚ Y Y

|c4y ‚ Y Z

|0y Z Z H ‚ Z Z Z

|0y Z Z HZ ‚ Z Z

|0y Z Z H ‚

|0y Z Z Z Z Z HZ ‚

|0y Z Z Z Z Z H ‚

|0y Z

Figure 6.1: An encoding circuit of [10,4,3] code.

Then we can compare the two sets of codewords ES and Spj1j2j3j4j5j6q and

obtained the relation listed in Tables 6.1, 6.2, and 6.3. The remaining and the most

difficult part is to construct and search for possible quantum operations that can fix

these bit flip and phase flip errors listed in the tables. The main difficulty is that

we have to consider 26 dimensional subspace, which the computer program searching

time is huge. So alternative method should be explored to find the right recovery
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operations.

Actually, apart from the r10, 4, 3s code, the r11, 1, 5s code is also another target

code that is under consideration. Notice that there are a total of 627 different error

operators for this code. Therefore, although only one qubit state have to be fixed,

the computational complexity is also huge.

X1S Sp101110q I b I bX bX

X2S Sp101010q X b Y b Y bX

X3S Sp001001q I bX b I bX

X4S Sp111001q Y b Z b Y b Z

X5S Sp010101q I b I b I b I

X6S Sp010001q Z b I b I b Z

X7S Sp111111q X b I b Z b Z

X8S Sp111011q I b Y b Z b I

X9S Sp110001q I b I b Y b Z

X10S Sp110101q I b Z b Z bX

Table 6.1: Relation between the subspaces XjS and Spj1j2j3j4j5j6q.
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Y1S Sp001110q Z b I b Y bX

Y2S Sp111010q Y b Y b Y b Y

Y3S Sp000001q Z bX b I b Y

Y4S Sp000101q X b I bX b I

Y5S Sp000011q I b I b I b I

Y6S Sp110011q I b I b I b I

Y7S Sp010011q Y b Z b I b Z

Y8S Sp100011q I bX b Z b I

Y9S Sp111101q Z b Z bX b Z

Y10S Sp001101q Z b Z b I b Y

Table 6.2: Relation between the subspaces YjS and Spj1j2j3j4j5j6q.

Z1S Sp100000q Z b I b Z b I

Z2S Sp010000q Z b I b I b Z

Z3S Sp001000q Z b I b I b Z

Z4S Sp111100q Z b Z b Z b Z

Z5S Sp010110q I b I b I b I

Z6S Sp100010q Z b I b I b Z

Z7S Sp101100q Z b Z b Z b I

Z8S Sp011000q I b Z b I b I

Z9S Sp001100q Z b Z b Z b I

Z10S Sp111000q Z b I b Z b Z

Table 6.3: Relation between the subspaces ZjS and Spj1j2j3j4j5j6q.

80



Appendix A

Matlab code for searching recovery

operations of r5, 1, 3s and r8, 3, 3s

codes

In this appendix, we present the Matlab code used for searching recovery operations

of r5, 1, 3s and r8, 3, 3s codes in Chapters 4 and 5.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Setup of operators, single qubit controlled gates, double qubit and triple controlled

gates

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

I = [1 0; 0 1];

X = [0 1; 1 0];

Z = [1 0; 0 -1];

Y = [0 -1; 1 0];

e0 = [1 0]’;

e1 = [0 1]’;

V1 = kron(kron(kron(e0,e0),e0),e0);

V2 = kron(kron(kron(e0,e0),e0),e1);

V3 = kron(kron(kron(e0,e0),e1),e0);

V4 = kron(kron(kron(e0,e0),e1),e1);

V5 = kron(kron(kron(e0,e1),e0),e0);

V6 = kron(kron(kron(e0,e1),e0),e1);
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V7 = kron(kron(kron(e0,e1),e1),e0);

V8 = kron(kron(kron(e0,e1),e1),e1);

V9 = kron(kron(kron(e1,e0),e0),e0);

V10 =kron(kron(kron(e1,e0),e0),e1);

V11 =kron(kron(kron(e1,e0),e1),e0);

V12 =kron(kron(kron(e1,e0),e1),e1);

V13 =kron(kron(kron(e1,e1),e0),e0);

V14 =kron(kron(kron(e1,e1),e0),e1);

V15 =kron(kron(kron(e1,e1),e1),e0);

V16 =kron(kron(kron(e1,e1),e1),e1);

V=[V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16];

V11 =kron(kron(kron(e1,e0),e1),e0);

V7 = kron(kron(kron(e0,e1),e1),e0);

V5 = kron(kron(kron(e0,e1),e0),e0);

V6 = kron(kron(kron(e0,e1),e0),e1);

V14 =kron(kron(kron(e1,e1),e0),e1);

V12 =kron(kron(kron(e1,e0),e1),e1);

V15 =kron(kron(kron(e1,e1),e1),e0);

V4 = kron(kron(kron(e0,e0),e1),e1);

V10 =kron(kron(kron(e1,e0),e0),e1);

V16 =kron(kron(kron(e1,e1),e1),e1);

E0 = [1 0; 0 0];

E1 = [0 0; 0 1];

CONT1 = kron(kron(kron(E0,I),I),I)+kron(kron(kron(E1,I),I),X);

CONT2 = kron(kron(kron(E0,I),I),I)+kron(kron(kron(E1,I),X),I);

CONT3 = kron(kron(kron(E0,I),I),I)+kron(kron(kron(E1,X),I),I);

CONT4 = kron(kron(kron(I,E0),I),I)+kron(kron(kron(I,E1),I),X);

CONT5 = kron(kron(kron(I,E0),I),I)+kron(kron(kron(I,E1),X),I);

CONT6 = kron(kron(kron(I,E0),I),I)+kron(kron(kron(X,E1),I),I);

CONT7 = kron(kron(kron(I,I),E0),I)+kron(kron(kron(I,I),E1),X);

CONT8 = kron(kron(kron(I,I),E0),I)+kron(kron(kron(I,X),E1),I);

CONT9 = kron(kron(kron(I,I),E0),I)+kron(kron(kron(X,I),E1),I);

CONT10 = kron(kron(kron(I,I),I),E0)+kron(kron(kron(I,I),X),E1);

CONT11 = kron(kron(kron(I,I),I),E0)+kron(kron(kron(I,X),I),E1);
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CONT12 = kron(kron(kron(I,I),I),E0)+kron(kron(kron(X,I),I),E1);

CONT = [CONT1; CONT2; CONT3; CONT4; CONT5; CONT6;

CONT7; CONT8; CONT9; CONT10; CONT11; CONT12;]

DCONT1 = kron(kron(kron(E1,E1),I),X)+kron(kron(kron(E0,E0),I),I)

+kron(kron(kron(E0,E1),I),I)+kron(kron(kron(E1,E0),I),I);

DCONT2 = kron(kron(kron(E1,E1),X),I)+kron(kron(kron(E0,E0),I),I)

+kron(kron(kron(E0,E1),I),I)+kron(kron(kron(E1,E0),I),I);

DCONT3 = kron(kron(kron(E1,I),E1),X)+kron(kron(kron(E0,I),E0),I)

+kron(kron(kron(E0,I),E1),I)+kron(kron(kron(E1,I),E0),I);

DCONT4 = kron(kron(kron(E1,X),E1),I)+kron(kron(kron(E0,I),E0),I)

+kron(kron(kron(E0,I),E1),I)+kron(kron(kron(E1,I),E0),I);

DCONT5 = kron(kron(kron(E1,I),X),E1)+kron(kron(kron(E0,I),I),E0)

+kron(kron(kron(E0,I),I),E1)+kron(kron(kron(E1,I),I),E0);

DCONT6 = kron(kron(kron(E1,X),I),E1)+kron(kron(kron(E0,I),I),E0)

+kron(kron(kron(E0,I),I),E1)+kron(kron(kron(E1,I),I),E0);

DCONT7 = kron(kron(kron(I,E1),E1),X)+kron(kron(kron(I,E0),E0),I)

+kron(kron(kron(I,E0),E1),I)+kron(kron(kron(I,E1),E0),I);

DCONT8 = kron(kron(kron(X,E1),E1),I)+kron(kron(kron(I,E0),E0),I)

+kron(kron(kron(I,E0),E1),I)+kron(kron(kron(I,E1),E0),I);

DCONT9 = kron(kron(kron(I,E1),X),E1)+kron(kron(kron(I,E0),I),E0)

+kron(kron(kron(I,E0),I),E1)+kron(kron(kron(I,E1),I),E0);

DCONT10 = kron(kron(kron(X,E1),I),E1)+kron(kron(kron(I,E0),I),E0)

+kron(kron(kron(I,E0),I),E1)+kron(kron(kron(I,E1),I),E0);

DCONT11 = kron(kron(kron(I,X),E1),E1)+kron(kron(kron(I,I),E0),E0)

+kron(kron(kron(I,I),E0),E1)+kron(kron(kron(I,I),E1),E0);

DCONT12 = kron(kron(kron(X,I),E1),E1)+kron(kron(kron(I,I),E0),E0)

+kron(kron(kron(I,I),E0),E1)+kron(kron(kron(I,I),E1),E0);

DCONT = [DCONT1; DCONT2; DCONT3; DCONT4; DCONT5; DCONT6;

DCONT7; DCONT8; DCONT9; DCONT10; DCONT11; DCONT12;]

TCONT1 = kron(kron(kron(E1,E1),E1),X)+kron(kron(kron(E0,E0),E0),I)

+kron(kron(kron(E0,E0),E1),I)+kron(kron(kron(E0,E1),E0),I)

+kron(kron(kron(E0,E1),E1),I)+kron(kron(kron(E1,E0),E0),I)

+kron(kron(kron(E1,E0),E1),I)+kron(kron(kron(E1,E1),E0),I);

TCONT2 = kron(kron(kron(E1,E1),X),E1)+kron(kron(kron(E0,E0),I),E0)
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+kron(kron(kron(E0,E0),I),E1)+kron(kron(kron(E0,E1),I),E0)

+kron(kron(kron(E0,E1),I),E1)+kron(kron(kron(E1,E0),I),E0)

+kron(kron(kron(E1,E0),I),E1)+kron(kron(kron(E1,E1),I),E0);

TCONT3 = kron(kron(kron(E1,X),E1),E1)+kron(kron(kron(E0,I),E0),E0)

+kron(kron(kron(E0,I),E0),E1)+kron(kron(kron(E0,I),E1),E0)

+kron(kron(kron(E0,I),E1),E1)+kron(kron(kron(E1,I),E0),E0)

+kron(kron(kron(E1,I),E0),E1)+kron(kron(kron(E1,I),E1),E0);

TCONT4 = kron(kron(kron(X,E1),E1),E1)+kron(kron(kron(I,E0),E0),E0)

+kron(kron(kron(I,E0),E0),E1)+kron(kron(kron(I,E0),E1),E0)

+kron(kron(kron(I,E0),E1),E1)+kron(kron(kron(I,E1),E0),E0)

+kron(kron(kron(I,E1),E0),E1)+kron(kron(kron(I,E1),E1),E0);

CONT = [CONT1; CONT2; CONT3; CONT4; CONT5; CONT6;

CONT7; CONT8; CONT9; CONT10; CONT11; CONT12;]

DCONT = [DCONT1; DCONT2; DCONT3; DCONT4; DCONT5; DCONT6;

DCONT7; DCONT8; DCONT9; DCONT10; DCONT11; DCONT12;]

TCONT = [TCONT1; TCONT2; TCONT3; TCONT4;]

CONTROL=[CONT; DCONT; TCONT;]

%%%%%%%%%%%%%%%%%%%%%

Step one to correct eight bit flip errors.

%%%%%%%%%%%%%%%%%%%%%

p=1;

index = 1;

for t = 0:23;

for s = 0:23;

for r = 0:23;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Iteration depends on which qubits we want to transform into fixed state, here we find

that two controlled gates won’t work, so we try to search three layers of quantum

gates.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

q=1;
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CONTROLV1=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])*V4;

CONTROLV2=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])*V5;

CONTROLV3=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])*V6;

CONTROLV4=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])*V7;

CONTROLV5=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])*V10;

CONTROLV6=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])*V11;

CONTROLV7=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])*V12;

CONTROLV8=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])*V14;

CONTROLV9=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])*V15;

CONTROLV10=CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])*V16;

CONTROLV = [CONTROLV1 CONTROLV2 CONTROLV3 CONTROLV4 CONTROLV5 CONTROLV6

CONTROLV7 CONTROLV8 CONTROLV9 CONTROLV10];

for i = 1:10;

for j = 1:16;

if CONTROLV(:,i) == V(:,j);

A(p,q) = j;

q=q+1;

end;

end;

end;

for m = 9:-1:1;

for n = 9:-1:10-m;

if A(p,n+1) ă A(p,n);

a= A(p,n+1);

A(p,n+1) = A(p,n);

A(p,n) = a;

end;

end;

end;

if A(p,:) == [5 6 7 8 10 12 13 14 15 16];

B(index,:) = [t s r];

index = index+1;

end;

p=p+1;

end;
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end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%

Result of step one to correct eightbit flip errors.

%%%%%%%%%%%%%%%%%%%%%%%%%%

15 4 22 DCONT4*CONT5*DCONT11

15 13 22 DCONT4 DCONT2 DCONT11

15 22 13 DCONT4 DCONT11 DCONT2

22 15 13 DCONT11 DCONT4 DCONT2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

So there are four kinds of operations that can transform eight of ten bit flip errors

to normal for the choice of [5 6 7 8 13 14 15 16].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%

Step two to correct remaining two bit flip errors.

%%%%%%%%%%%%%%%%%%%%%%%%%%

B = [5 6 7 8 10 12 13 14 15 16];

p=1;

index=1;

for t = 0:23;

q=1;

RCONTROLV1= DCONT4*CONT5*DCONT11*V4;

RCONTROLV2= DCONT4*CONT5*DCONT11*V5;

RCONTROLV3= DCONT4*CONT5*DCONT11*V6;

RCONTROLV4= DCONT4*CONT5*DCONT11*V7;

RCONTROLV5= DCONT4*CONT5*DCONT11*V10;

RCONTROLV6= DCONT4*CONT5*DCONT11*V11;

RCONTROLV7= DCONT4*CONT5*DCONT11*V12;

RCONTROLV8= DCONT4*CONT5*DCONT11*V14;

RCONTROLV9= DCONT4*CONT5*DCONT11*V15;
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RCONTROLV10=DCONT4*CONT5*DCONT11*V16;

CONTROLV1= CONTROL([(t*16+1):(t+1)*16],[1:16])*RCONTROLV1;

CONTROLV2= CONTROL([(t*16+1):(t+1)*16],[1:16])*RCONTROLV2;

CONTROLV3= CONTROL([(t*16+1):(t+1)*16],[1:16])*RCONTROLV3;

CONTROLV4= CONTROL([(t*16+1):(t+1)*16],[1:16])*RCONTROLV4;

CONTROLV5= CONTROL([(t*16+1):(t+1)*16],[1:16])*RCONTROLV5;

CONTROLV6= CONTROL([(t*16+1):(t+1)*16],[1:16])*RCONTROLV6;

CONTROLV7= CONTROL([(t*16+1):(t+1)*16],[1:16])*RCONTROLV7;

CONTROLV8= CONTROL([(t*16+1):(t+1)*16],[1:16])*RCONTROLV8;

CONTROLV9= CONTROL([(t*16+1):(t+1)*16],[1:16])*RCONTROLV9;

CONTROLV10=CONTROL([(t*16+1):(t+1)*16],[1:16])*RCONTROLV10;

CONTROLV = [CONTROLV1 CONTROLV2 CONTROLV3 CONTROLV4 CONTROLV5 CONTROLV6

CONTROLV7 CONTROLV8 CONTROLV9 CONTROLV10];

for i = 1:10;

for j = 1:16;

if CONTROLV(:,i) == V(:,j);

A(p,q) = j;

q=q+1;

end;

end;

end;

if A(p,8) ă A(p,5);

a= A(p,8);

A(p,8) = A(p,5);

A(p,5) = a;

end;

if [A(p,5) A(p,8)] == [8 16];

B(index,:) = [t];

index = index+1;

else if [A(p,5) A(p,8)] == [12 16];

B(index,:) = [t];

index = index+1;

else if [A(p,5) A(p,8)] == [14 16];

B(index,:) = [t];

index = index+1;
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else if [A(p,5) A(p,8)] == [15 16];

B(index,:) = [t];

index = index+1;

end;

end;

end;

end;

p=p+1;

end;

%%%%%%%%%%%%%%%%%%%%%%%

Step three to correct four phase flip errors.

%%%%%%%%%%%%%%%%%%%%%%%

RCONTROLV0= DCONT4*CONT5*DCONT11*V2;

RCONTROLV1= DCONT4*CONT5*DCONT11*V4;

RCONTROLV2= DCONT4*CONT5*DCONT11*V5;

RCONTROLV3= DCONT4*CONT5*DCONT11*V6;

RCONTROLV4= DCONT4*CONT5*DCONT11*V7;

RCONTROLV5= DCONT4*CONT5*DCONT11*V10;

RCONTROLV6= DCONT4*CONT5*DCONT11*V11;

RCONTROLV7= DCONT4*CONT5*DCONT11*V12;

RCONTROLV8= DCONT4*CONT5*DCONT11*V14;

RCONTROLV9= DCONT4*CONT5*DCONT11*V15;

RCONTROLV10=DCONT4*CONT5*DCONT11*V16;

DCONTROLV0= DCONT6*RCONTROLV0;

DCONTROLV1= DCONT6*RCONTROLV1;

DCONTROLV2= DCONT6*RCONTROLV2;

DCONTROLV3= DCONT6*RCONTROLV3;

DCONTROLV4= DCONT6*RCONTROLV4;

DCONTROLV5= DCONT6*RCONTROLV5;

DCONTROLV6= DCONT6*RCONTROLV6;

DCONTROLV7= DCONT6*RCONTROLV7;

DCONTROLV8= DCONT6*RCONTROLV8;

DCONTROLV9= DCONT6*RCONTROLV9;

DCONTROLV10=DCONT6*RCONTROLV10;
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p=1;

index=1;

ind=1;

for t = 0:27;

q=1;

CONTROLV0= CONTROL([(t*16+1):(t+1)*16],[1:16])*DCONTROLV0;

CONTROLV1= CONTROL([(t*16+1):(t+1)*16],[1:16])*DCONTROLV1;

CONTROLV2= CONTROL([(t*16+1):(t+1)*16],[1:16])*DCONTROLV2;

CONTROLV3= CONTROL([(t*16+1):(t+1)*16],[1:16])*DCONTROLV3;

CONTROLV5= CONTROL([(t*16+1):(t+1)*16],[1:16])*DCONTROLV5;

CONTROLV6= CONTROL([(t*16+1):(t+1)*16],[1:16])*DCONTROLV6;

CONTROLV = [CONTROLV0 CONTROLV1 CONTROLV2 CONTROLV3 CONTROLV5 CONTROLV6];

for i = 1:6;

for j = 1:16;

if CONTROLV(:,i) == V(:,j);

A(p,q) = j;

q=q+1;

end;

end;

end;

for m = 5:-1:1;

for n = 5:-1:6-m;

if A(p,n+1) ă A(p,n);

a= A(p,n+1);

A(p,n+1) = A(p,n);

A(p,n) = a;

end;

end;

end;

if A(p,:) == [2 6 7 8 14 16];

B(index,:) = [t];

index = index+1;

end;

if A(p,:) == [2 6 7 8 15 16];

C(ind,:) = [t];
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ind = ind+1;

end;

p=p+1;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%

Step four to correct remaining two phase flip errors.

%%%%%%%%%%%%%%%%%%%%%%%%%%%

RCONTROLV0= DCONT4*CONT5*DCONT11*V2;

RCONTROLV1= DCONT4*CONT5*DCONT11*V4;

RCONTROLV2= DCONT4*CONT5*DCONT11*V5;

RCONTROLV3= DCONT4*CONT5*DCONT11*V6;

RCONTROLV4= DCONT4*CONT5*DCONT11*V7;

RCONTROLV5= DCONT4*CONT5*DCONT11*V10;

RCONTROLV6= DCONT4*CONT5*DCONT11*V11;

RCONTROLV7= DCONT4*CONT5*DCONT11*V12;

RCONTROLV8= DCONT4*CONT5*DCONT11*V14;

RCONTROLV9= DCONT4*CONT5*DCONT11*V15;

RCONTROLV10=DCONT4*CONT5*DCONT11*V16;

DCONTROLV0= DCONT6*RCONTROLV0;

DCONTROLV1= DCONT6*RCONTROLV1;

DCONTROLV2= DCONT6*RCONTROLV2;

DCONTROLV3= DCONT6*RCONTROLV3;

DCONTROLV4= DCONT6*RCONTROLV4;

DCONTROLV5= DCONT6*RCONTROLV5;

DCONTROLV6= DCONT6*RCONTROLV6;

DCONTROLV7= DCONT6*RCONTROLV7;

DCONTROLV8= DCONT6*RCONTROLV8;

DCONTROLV9= DCONT6*RCONTROLV9;

DCONTROLV10=DCONT6*RCONTROLV10;

PCONTROLV0= CONT7*DCONTROLV0;

PCONTROLV1= CONT7*DCONTROLV1;

PCONTROLV2= CONT7*DCONTROLV2;

PCONTROLV3= CONT7*DCONTROLV3;

PCONTROLV5= CONT7*DCONTROLV5;
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PCONTROLV6= CONT7*DCONTROLV6;

p=1;

index=1;

ind=1;

for t = 0:27;

for s = 0:27;

for r = 0:27;

q=1;

CONTROLV0= CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])

*PCONTROLV0;

CONTROLV1= CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])

*PCONTROLV1;

CONTROLV2= CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])

*PCONTROLV2;

CONTROLV3= CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])

*PCONTROLV3;

CONTROLV5= CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])

*PCONTROLV5;

CONTROLV6= CONTROL([(t*16+1):(t+1)*16],[1:16])*CONTROL([(s*16+1):(s+1)*16],[1:16])*CONTROL([(r*16+1):(r+1)*16],[1:16])

*PCONTROLV6;

CONTROLV = [CONTROLV0 CONTROLV1 CONTROLV2 CONTROLV3 CONTROLV5 CONTROLV6];

for i = 1:6;

for j = 1:16;

if CONTROLV(:,i) == V(:,j);

A(p,q) = j;

q=q+1;

end;

end;

end;

if A(p,4) ă A(p,1);

a= A(p,4);

A(p,4) = A(p,1);

A(p,1) = a;

end;

if [A(p,1) A(p,4)] == [12 16];

B(index,:) = [t s r];
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index = index+1;

else if [A(p,1) A(p,4)] == [14 16];

B(index,:) = [t s r];

index = index+1;

else if [A(p,1) A(p,4)] == [15 16];

B(index,:) = [t s r];

index = index+1;

end;

end;

end;

p=p+1;

end;

end;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Result of step four to correct remaining two phase flip errors.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B =

3 8 9

5 6 10

5 9 10

5 10 9

5 18 10

5 20 10

5 22 9

6 5 10

8 3 9

8 9 10

8 10 9

8 18 9
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8 20 10

8 22 9

9 5 10

10 8 9

11 3 9

11 6 10

11 18 9

11 18 10

12 8 9

14 5 10

16 5 10

17 8 9

18 5 10

18 8 9

19 9 10

19 10 9

19 20 10

19 22 9

20 5 10

21 6 10

21 18 10

22 8 9

23 3 9

23 18 9

24 5 10

24 8 9

25 5 10
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26 8 9

And the corresponding controlled gates for some of these are:

3 8 9 CONT4*CONT9*CONT10

5 6 10 CONT6*CONT7*CONT11

5 9 10 CONT6*CONT10*CONT11

6 5 10 CONT7*CONT6*CONT11

8 3 9 CONT9*CONT4*CONT10

8 9 10 CONT9*CONT10*CONT11

9 5 10 CONT10*CONT6*CONT11

10 8 9 CONT11*CONT9*CONT10

11 3 9 CONT12*CONT4*CONT10

11 6 10 CONT12*CONT7*CONT11
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Appendix B

Linear rank preservers of tensor

products of rank one matrices

B.1 Introduction and statement of main results

Let n ě 2 be positive integers. Denote by Mn the set of n ˆ n complex matrices

and Cn the set of complex column vectors with n components. Linear preserver

problems concern the study of linear maps on matrices or operators with some special

properties, which has a long history. In 1897, Frobenius [13] showed that a linear

operator φ : Mn Ñ Mn satisfies detpφpAqq “ detpAq for all A P Mn if and only if

there are M,N PMn with detpMNq “ 1 such that φ has the form

A ÞÑMAN or A ÞÑMAtN.

Since then, lots of linear preservers have been characterized, see [11, 37] and their

references. In particular, Marcus and Moyls [44] determined linear maps that send

rank one matrices to rank one matrices, which have the form A ÞÑ MAN or A ÞÑ

MATN for some nonsingular matrices M and N .

Recently, linear maps that preserve certain properties of tensor products are

studied. The tensor product (Kronecker product) of two matrices A P Mm and

B P Mn is defined to be A b B “ raijBs, which is in Mmn. In [11], the authors

determined linear maps on Hermitian matrices that leave the spectral radius of all
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tensor products invariant. In [8, 10, 9, 38] the authors determine linear maps on

Mmn that preserve Ky Fan norms, Shattern norms, numerical radius, k-numerical

range, product numerical range of all matrices of the form AbB with A PMm and

B P Mn. Notice that the set of matrices of tensor product form shares only a very

small portion in Mmn and the sum of two tensor products is in general no longer a

tensor product form. Therefore, such linear preserver problems are more challenging

than the traditional problems. In some of the above mentioned papers, the authors

have also extended their results to multipartite system, i.e., matrices of the form

A1 b ¨ ¨ ¨ b Ak with k ě 2.

In the literature, rank preserver problem is known to be one of the fundamental

problems in this subject as many other preserver problems can be deduced to rank

preserver problems. For example, the result Marcus and Moyls [44] on linear rank

one preservers have been applied in many other preserver results. More discussion

can be found in [20]. Let n1, . . . , nk be positive integers of at least two. In [62],

Zheng, Xu and Fošner showed that a linear map φ : Mn1¨¨¨nk
ÑMn1¨¨¨nk

satisfies

rankφpA1 b ¨ ¨ ¨ b Akq “ rank pA1 b ¨ ¨ ¨ b Akq for all Ai PMni
, i “ 1, . . . , k (B.1)

if and only if φ has the form

φpA1 b ¨ ¨ ¨ b Akq “Mpψ1pA1q b ¨ ¨ ¨ b ψkpAkqqN (B.2)

where M,N P Mn1¨¨¨nk
are nonsingular and ψi, i “ 1, . . . , k, is either the identity

map or the transpose map. Their proof was done by induction on k with some smart

argument on the rank of sum of certain matrices. The same authors also considered

in [60] the injective maps on the space of Hermitian matrices satisfying (B.1) for rank

one matrices only. By using a structure theorem of Westwick [57], Lim [43] improved

the result of Zheng et al. and showed that a linear map φ : Mn1¨¨¨nk
Ñ Mn1¨¨¨nk

satisfies (B.1) for rank one matrices and nonsingular matrices has the form (B.2)

too.
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In this paper, we characterize linear maps φ : Mn1¨¨¨nk
ÑMn1¨¨¨nk

satisfying (B.1)

for only rank one matrices A1b¨ ¨ ¨bAk with Ai PMni
. In this case, the structure of

maps is more complicated and the maps of the form (B.2) is only one of the special

cases. To state our main result, we need the following notations. Denote by

Cm
bCn

“ txby : x P Cm, y P Cn
u and MmbMn “ tAbB : A PMm, B PMnu.

Also Cn1 bCn2 b ¨ ¨ ¨ bCnk can be defined accordingly. For a matrix A “ raijs PMn,

denote by

vecpAq “ ra11 a12 ¨ ¨ ¨ a1n a21 a22 ¨ ¨ ¨ a2n ¨ ¨ ¨ an1 an2 ¨ ¨ ¨ anns
T
P Cn2

.

In particular, if A “ xyT is rank one matrix with x, y P Cn, then vecpxyT q “ x b y.

Given a set S, a partition tP1, . . . , Pru of S is a collection of subsets of S such that

Pi X Pj “ H for i ‰ j and P1 Y ¨ ¨ ¨ Y Pr “ S.

We are now ready to present the main result of this paper.

Theorem B.1. Let n1, . . . , nk be positive integers larger than or equal to 2 and

m “
śk

i“1 ni. Suppose φ : Mm ÑMm is a linear map. Then

rank pφpA1b¨ ¨ ¨bAkqq “ 1 whenever rank pA1b¨ ¨ ¨bAkq “ 1 for all Ai PMni
,

(B.3)

if and only if there is a partition tP1, P2, P3, P4u of the set K “ t1, . . . , ku, a m ˆ

p1p2p
2
3 matrix M and a mˆp1p2p

2
4 matrix N with p` “

ś

iPP`
ni and p` “ 1 if P` “ H,

for ` “ 1, 2, 3, 4, satisfying

KerpMq X

˜

â

iPP1YP2

Cni b
â

jPP3

pCnj b Cnjq

¸

“ t0u

and

KerpNq X

˜

â

iPP1YP2

Cni b
â

jPP4

pCnj b Cnjq

¸

“ t0u
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such that

φpA1 b ¨ ¨ ¨ b Akq “M

˜

â

iPP1

Ai b
â

iPP2

ATi b
â

iPP3

vecpAiq b
â

iPP4

vecT pAiq

¸

NT . (B.4)

Furthermore, for any given partition tP1, P2, P3, P4u of K, there always exists some

M and N that satisfy the above kernel condition, except the case k “ 2, K “ t1, 2u,

2 P tn1, n2u, and pP1, P2, P3, P4q “ pH,H, K,Hq or pH,H,H, Kq.

Shortly after the authors obtained the above result, they learned via a private

communication that, by using another structure result of Westwick [58, 59], Lim [41]

has also obtained a characterization of linear maps between rectangular matrices over

an arbitrary field that is rank one non-increasing on tensor products of matrices. In

the same project, Lim also considered linear maps sending tensor products of (non)-

symmetric rank one matrices to (non)-symmetric rank one matrices.

The rest of the paper is organized as follows. In Section 2, the bipartite case

(k “ 2) of the main result will be discussed and examples will be given to demonstrate

the importance of the kernel condition for the matrices M and N stated in Theorem

B.1. The proof of the main result and related corollaries will be presented in Section

3.

B.2 Bipartite case

In this section, we will focus on the bipartite case (when k “ 2). Let tE11, . . . , Emmu

be the standard basis of Mm. A matrix X PMmn can be expressed as

X “

»

—

–

X11 ¨ ¨ ¨ X1m
...

. . .
...

Xm1 ¨ ¨ ¨ Xmm

fi

ffi

fl

“
ÿ

1ďi,jďm

Eij bXij with Xij PMn.
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The partial transposes of X on the first and the second system are defined by

XPT1 “
ÿ

1ďi,jďm

Eji bXij and XPT2 “
ÿ

1ďi,jďm

Eij bX
T
ij .

Also denote by

XR1 “
ÿ

1ďi,jďm

vecpEijq bXij and XR2 “
ÿ

1ďi,jďm

Eij b vecpXijq.

Furthermore, define the m2 ˆ n2 realigned matrix of X by

XR
“

ÿ

1ďi,jďm

vecpEijq b vecT pXijq.

In particular, XPT1 “ XT
1 b X2, X

PT2 “ X1 b XT
2 , XR1 “ vecpX1q b X2, X

R2 “

X1 b vecpX2q, and XR “ vecpX1q b vecT pX2q if X “ X1 bX2.

Finally, for any two linear maps ψ1 and ψ2 on matrix spaces, we say that these

two maps are permutationally similar if there are permutation matrices P and Q

such that ψ2pAq “ Pψ1pAqQ for all A. For example, it is clear that A ÞÑ vecpAq and

A ÞÑ vecpAT q are permutationally similar.

Proposition B.1. Let n1, n2 be positive integers and m “ n1n2. Given ψP : Mm Ñ

Mm defined by ψP pAq “ APTj with j “ 1, 2. The composite map ψR ˝ ψP is permu-

tationally similar to the map ψR , when ψR is one of the following maps.

(i) A ÞÑ ARj , (ii) A ÞÑ AR, or (iii) A ÞÑ vecpAq.

Proof. For j “ 1, 2, it is obvious that there is a permutation matrix Pj P Mnj
such

that vecpXT
j q “ Pj vecpXiq for all Xj P Mnj

. Also there is a permutation matrix

P12 P Mm such that vecpX1 b X2q “ P12 pvecpX1q b vecpX2qq for all Xi P Mni
,

i “ 1, 2. We now consider the case when j “ 1. The case j “ 2 can be proved in a

similar way.
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First suppose ψR : A ÞÑ AR1 . For any Xi PMni
, i “ 1, 2,

ψR ˝ ψP pX1 bX2q “
`

pX1 bX2q
PT1

˘R1
“ pXT

1 bX2q
R1 “ vecpXT

1 q bX2

“ pP1 b In2qpvecpXq bX2q “ pP1 b In2qpX1 bX2q
R1 “ pP1 b In2qψRpX1 bX2q.

By linearity of the two maps, we conclude that ψR ˝ ψP pAq “ pP1 b In2qψRpAq for

all A PMm.

Suppose now ψR : A ÞÑ AR. For any Xi PMni
, i “ 1, 2,

ψR ˝ ψP pX1 bX2q “
`

pX1 bX2q
PT1

˘R
“ pXT

1 bX2q
R
“ vecpXT

1 q b vecT pX2q

“ P1pvecpXq b vecT pX2qq “ P1pX1 bX2q
R
“ P1ψRpX1 bX2q.

Thus, the same conclusion holds. Finally assume ψR : A ÞÑ vecpAq. For any Xi P

Mni
, i “ 1, 2,

ψR ˝ ψP pX1 bX2q “ vecpXT
1 bX2q “ P12

`

vecpXT
1 q b vecpX2q

˘

“ P12pP1 b In2q pvecpX1q b vecpX2qq

“ P12pP1 b In2qP
T
12vecpX1 bX2q

“ P12pP1 b In2qP
T
12ψRpX1 bX2q.

Again by linearity of the maps, we conclude that ψR˝ψP pAq “ P12pP1bIn2qP
T
12ψRpAq

for all A PMm.

It turns out that for the bipartite case (k “ 2), Theorem B.1 can be expressed in

terms of partial transpose and realigned matrix as follows.

Theorem B.2. Let n1, n2 be positive integers larger or equal to two and m “ n1n2.

Suppose φ : Mm ÑMm is a linear map. Then

rank pφpA1 b A2qq “ 1 whenever rank pA1 b A2q “ 1 for all Ai PMni
, i “ 1, 2,

(B.5)

if and only if φ “ ψT ˝ ψM ˝ ψR ˝ ψP , where
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(i) ψP : A ÞÑ A, A ÞÑ APT1 or A ÞÑ APT2;

(ii) ψR : A ÞÑ A, A ÞÑ AR1, A ÞÑ AR2, A ÞÑ AR or A ÞÑ vecpAq ;

(iii) ψM : A ÞÑMANT ;

(iv) ψT : A ÞÑ A or A ÞÑ AT ,

which has totally 16 different forms, and M and N are matrices of appropriate size

satisfying

(1) KerpMqXpCn1 b Cn2q “ t0u and KerpNqXpCn1 b Cn2q “ t0u if ψR is the map

A ÞÑ A;

(2) KerpMqXpCn1 b Cn1q “ t0u and KerpNqXpCn2 b Cn2q “ t0u if ψR is the map

A ÞÑ AR;

(3) KerpMq X pCn1 b Cn1 b Cn2q “ t0u and N has full column rank equal to n2 if

ψR is the map A ÞÑ AR1;

(4) KerpMq X pCn1 b Cn2 b Cn2q “ t0u and N has full column rank equal to n1 if

ψR is the map A ÞÑ AR2;

(5) KerpMq X pCn1 b Cn1 b Cn2 b Cn2q “ t0u and N is a mˆ 1 nonzero matrix if

2 R tn1, n2u and ψR is the map A ÞÑ vecpAq.

Proof. It is easy to verify that the two maps

X1 bX2 ÞÑ X1 bX2 and X1 bX2 ÞÑ X2 bX1

are premuationally similar. Applying Theorem B.1 with k “ 2 and taking the above

observation into account, the equation (B.4) can be reduced to the following 16 cases.

1) tP1, P2, P3, P4u “ tt1u, t2u,H,Hu and

φpA1 b A2q “MpA1 b A
T
2 qN

T “MpA1 b A2q
PT2NT .
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2) tP1, P2, P3, P4u “ tt2u, t1u,H,Hu and

φpA1 b A2q “MpAT1 b A2qN
T “MpA1 b A2q

PT1NT .

3) tP1, P2, P3, P4u “ tt1u,H, t2u,Hu and

φpA1 b A2q “MpA1 b vecpA2qqN
T “MpA1 b A2q

R2NT .

4) tP1, P2, P3, P4u “ tt2u,H, t1u,Hu and

φpA1 b A2q “MpvecpA1q b A2qN
T “MpA1 b A2q

R1NT .

5) tP1, P2, P3, P4u “ tt1u,H,H, t2uu and

φpA1 b A2q “MpA1 b vecT pA2qqN
T “

`

NppA1 b A2q
PT1qR2MT

˘T
.

6) tP1, P2, P3, P4u “ tt2u,H,H, t1uu and

φpA1 b A2q “MpvecT pA1q b A2qN
T “

`

NppA1 b A2q
PT2qR1MT

˘T
.

7) tP1, P2, P3, P4u “ tH, t1u, t2u,Hu and

φpA1 b A2q “MpAT1 b vecpA2qqN
T “MppA1 b A2q

PT1qR2NT .

8) tP1, P2, P3, P4u “ tH, t2u, t1u,Hu and

φpA1 b A2q “MpvecpA1q b A
T
2 qqN

T “MppA1 b A2q
PT2qR1NT .

9) tP1, P2, P3, P4u “ tH, t1u,H, t2uu and

φpA1 b A2q “MpAT1 b vecT pA2qqN
T “

`

NpA1 b A2q
R2MT

˘T
.

10) tP1, P2, P3, P4u “ tH, t2u,H, t1uu and

φpA1 b A2q “MpvecT pA1q b A
T
2 qqN

T “
`

NpA1 b A2q
R1MT

˘T
.

11) tP1, P2, P3, P4u “ tH,H, t1u, t2uu and

φpA1 b A2q “MpvecpA1q b vecT pA2qqN
T “MpA1 b A2q

RNT .

12) tP1, P2, P3, P4u “ tH,H, t2u, t1uu and

φpA1 b A2q “MpvecT pA1q b vecpA2qqN
T “

`

NpA1 b A2q
RMT

˘T
.
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13) tP1, P2, P3, P4u “ tt1, 2u,H,H,Hu and

φpA1 b A2q “MpA1 b A2qN
T .

14) tP1, P2, P3, P4u “ tH, t1, 2u,H,Hu and

φpA1 b A2q “MpAT1 b A
T
2 qN

T “
`

NpA1 b A2qM
T
˘T

.

15) tP1, P2, P3, P4u “ tH,H, t1, 2u,Hu and

φpA1 b A2q “M pvecpA1q b vecpA2qqN
T “MP T

12 pvecpA1 b A2qqN
T .

16) tP1, P2, P3, P4u “ tH,H,H, t1, 2uu and

φpA1 b A2q “M
`

vecT pA1q b vecT pA2q
˘

NT “
`

NP T
12pvec pA1 b A2qqM

T
˘T

.

Here, M and N are matrices with appropriate size, and satisfy the kernel condition

in Theorem B.1 (In some cases, the roles of M and N may interchange). Also

the cases 15) and 16) hold only when 2 R tn1, n2u. In all these cases, the map

φ can be represented by A ÞÑ ψT ˝ ψM ˝ ψR ˝ ψP pAq where ψP , ψM , ψR, ψT are

of the forms in (i), (ii), (iii) and (iv) respectively. Furthermore, by Proposition

B.1, if ψP is a partial transport map with respect to the jth subsystem, ψR ˝ ψP

is permutationally similar to ψR, when ψR has the form A ÞÑ ARj , A ÞÑ AR or

A ÞÑ vecpAq. Therefore, instead of 15 different types, there are actually only 9

different types of compositions of ψR ˝ ψP . Finally, since pAPT1qT “ APT2 and

pAPT2qT “ APT1 , the maps A ÞÑ pMAPT1NT qT and A ÞÑ pMAPT2NT qT are the

same as A ÞÑ NTAPT2M and A ÞÑ NTAPT1M , respectively. Therefore, the map

ψT ˝ ψM ˝ ψR ˝ ψP has totally 16 different forms only.

In the following, we give some low dimensional examples of M and N that satisfy

the conditions (2), (3) and (5) of Theorem B.2.

Example B.1. Assume pn1, n2q “ p2, 3q and define the 6ˆ4 matrix M and the 6ˆ9
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matrix N by

M “

»

—

—

—

—

—

—

–

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and N “

»

—

—

—

—

—

—

–

1 0 0 0 ´1 0 0 0 0
0 1 0 0 0 ´1 0 0 0
0 0 1 0 0 0 ´1 0 0
0 0 0 1 0 0 0 ´1 0
0 0 0 0 0 0 0 0 ´1
0 0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Clearly, rank pMq “ 4 and rank pNq “ 5. Also

KerpMq “ t0u and KerpNq “
!

“

a b c d a b c d 0
‰T

: a, b, c, d P C
)

.

Therefore, KerpNq does not contain any nonzero element in C3bC3. Then the map

A ÞÑ MARNT satisfies the condition (B.5) and its range space contains matrices of

rank at most 4 only.

Example B.2. Assume pn1, n2q “ p2, 3q and define the 6 ˆ 12 matrix M and the

6ˆ 3 matrix N by

M “
“

I6 M̂
‰

“

»

—

—

—

—

—

—

–

1 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 ´1 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and N “

»

—

—

—

—

—

—

–

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Clearly, KerpNq “ t0u. Suppose Mpx b y b zq “ 0 for some nonzero x, y P C2 and

z P C3. Then

0 “Mpxb y b zq “Mpxb I6qpy b zq “ px1I6 ` x2M̂qpy b zq,

where x “ rx1 x2s
T . So px1I6 ` x2M̂q is singular and hence x1 “ 0 as detpx1I6 `

x2M̂q “ x61. Thus, the vector y b z is in the kernel of M̂ . However, KerpM̂q “
!

ra 0 0 0 a 0sT : a P C
)

, which does not contain any nonzero element of C2 b C3.
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Therefore, even KerpMq is a 6 dimensional subspace of C12, KerpMq does not contain

any nonzero element of C2 b C2 b C3.

Example B.3. Assume pn1, n2q “ p3, 3q and define the 9ˆ 81 matrix M by

M “
“

I9 R R2 R3 ´I9 ´R ´R2 ´R3 R4
‰

with

R “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
´1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
´1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Notice that

KerpRq Ď KerpR2
q Ď KerpR3

q

Ď KerpR4
q “

!

“

a b c d a b c d 0
‰T

: a, b, c, d P C
)

.

Suppose Mpx b y b z b wq “ 0 for some nonzero x, y, z, w P C3. Set x b y “

ru1 ¨ ¨ ¨ u9s
T
P C9 and define

U “Mpxb y b I9q “ pu1 ´ u5qI9 ` pu2 ´ u6qR` pu3 ´ u7qR
2
` pu4 ´ u8qR

3
` u9R

4.

Then

0 “Mpxb y b z b wq “Mpxb y b I9qpz b wq “ Upz b wq.

Now let

U5 “ u9I9 and Uk “ puk ´ uk`4qI9 ` Uk`1R for k “ 1, 2, 3, 4.

Then it can be verified that

U1 “ pu1´u5qI9`ppu2 ´ u6qI9 ` ppu3 ´ u7qI9 ` ppu4 ´ u8qI9 ` pu9I9qRqRqRqR “ U.
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For k “ 1, 2, 3, 4, because R is singular, Uk is singular if and only if uk ´ uk`4 “ 0,

or equivalently, Uk “ Uk`1R. Furthermore, when Uk is singular,

KerpUkR
k´1
q “ KerpUk`1RR

k´1
q “ KerpUk`1R

k
q.

Suppose at least one of U1, . . . , U5 is nonsingular, say U` is nonsingular for some

1 ď ` ď 5 and U1, ¨ ¨ ¨U`´1 are all singular. Then

KerpUq “ KerpU1q Ď KerpU2Rq Ď ¨ ¨ ¨ Ď KerpU`R
`´1
q “ KerpR`´1

q Ď KerpR4
q.

But this is impossible since Upw b zq “ 0 while KerpR4q does not contain any

nonzero element of C3 b C3. Therefore, all U1, . . . , U5 are singular. In this case, we

have uk ´ uk`4 “ 0 for k “ 1, 2, 3, 4 and u9 “ 0, or equivalently, x b y has the form

“

u1 u2 u3 u4 u1 u2 u3 u4 0
‰T

, and contradiction again arrived. Thus, one

can conclude that KerpMq does not contain any nonzero element of C3 bC3 bC3 b

C3. Now take any 9 ˆ 1 nonzero matrix N . Then the composition map φ : A ÞÑ

MvecpAqNT satisfies condition (B.5). In this case, rank pφpAqq ď 1 for all A PM9.

Remark B.1. For condition (1) of Theorem B.2, both M and N have size mˆm. In

this case, any nonsingular matrices M,N PMm satisfy case (1). But there exists sin-

gular matrices that satisfy the condition (1) too. For example, when pn1, n2q “ p2, 2q

one can construct a rank three 4ˆ 4 matrix M with KerpMq “
!

ra 0 0 asT : a P C
)

,

which does not contain any nonzero vector in C2 b C2.

For condition (2) of Theorem B.2, the same observation as above follows if n1 “

n2. If n1 ă n2, M can be chosen to be any m ˆ n2
1 matrix with full column rank,

i.e., rank pMq “ n2
1. Similarly, N can be chosen to be any m ˆ n2

2 matrix with full

column rank if n1 ą n2.

Finally, it has to point out that the partial transpose and realignment are two

useful concept in the study of separable problem, which is one of the most important
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problem in quantum information science. Although it have been showed that the

general characterization of separable states is NP-hard [19], researchers are interested

in finding effective criterion to determine separability of a quantum state. A quantum

state (density matrix) X is PPT (positive partial transpose) if XPT1 (or equivalently

XPT2) is positive semi-definite. One of the classical and popular criteria is PPT

criterion introduced by Peres [48]. The PPT criterion states that if X is separable,

then X is PPT and these two conditions are equivalent if m “ n1n2 ď 6 [21]. Another

strong criterion is CCNR criterion [6, 50], which confirmed that }XR}1 ď 1 if X is

separable. It has to note that researchers also studied preservers on separable states,

see [2, 12, 23]. In particular, the authors in [12] studied linear maps that send the

set of separable states onto itself in multipartite system.

B.3 Proof of the main results

In this section, we will present the proof of Theorem B.1. The proof relies on the

structure result of Westwick [57, Theorem 3.4] on preservers of nonzero decomposable

tensors, and we restate this result as follows.

Theorem B.3. Let U1, . . . , Up and W1, . . . ,Wq be finite dimensional vector spaces

over a field F with dimpUiq ě 2 and define U “
Âp

i“1 Ui and W “
Âq

j“1Wj.

Suppose f : U Ñ W is a linear map sending nonzero decomposable tensors into

nonzero decomposable tensors. Then there is a partition tS1, . . . , Squ of t1, . . . , pu

(Sj can be an empty set) and linear functions fj :
Â

iPSj
Ui Ñ Wj sending nonzero

decomposable tensors to nonzero vectors, such that

fpx1 b ¨ ¨ ¨ b xpq “
q
â

j“1

fj
`

biPSj
xi
˘

.

Here, fj is defined to be a nonzero constant function, i.e., fjp¨q “ wj for some

nonzero wj P Wj, if Sj “ H.
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We will prove the following equivalent version of Theorem B.1.

Theorem B.4. Let n1, . . . , nk be positive integers larger than or equal to 2 and let

m “
śk

i“1 ni. Suppose φ : Mm ÑMm is a linear map. Then

rank pφpA1 b ¨ ¨ ¨ bAkqq “ 1 whenever rank pA1 b ¨ ¨ ¨ bAkq “ 1 for all Ai PMni

(B.6)

if and only if there are two subsets K1, K2 of K “ t1, . . . , ku, a mˆm1m2 matrix M

and a mˆm2{pm1m2q matrix N with mt “
ś

iPKt
ni or mt “ 1 if Kt “ H, t “ 1, 2,

satisfying

KerpMqX

˜

â

iPK1

Cni b
â

jPK2

Cnj

¸

“ t0u and KerpNqX

˜

â

iRK1

Cni b
â

jRK2

Cnj

¸

“ t0u

(B.7)

such that

φ
`

x1y
T
1 b ¨ ¨ ¨ b xky

T
k

˘

“M

˜

â

iPK1

xi b
â

jPK2

yj

¸˜

â

iRK1

xi b
â

jRK2

yj

¸T

NT (B.8)

for all xi, yi P Cni. Furthermore, for any given subsets K1, K2 of K, there always

exists some M and N that satisfy the above kernel condition, except the case k “ 2,

K “ t1, 2u, 2 P tn1, n2u, and either K1 “ K2 “ K or K1 “ K2 “ H.

Proof. The necessary part is clear. For the sufficient part, define a linear map f :

Cm2
Ñ Cm2

such that

f

˜

k
â

i“1

pxi b yiq

¸

“ vec

˜

φ

˜

k
â

i“1

xiy
T
i

¸¸

for all xi, yi P Cni ,

and by linearity, extend the definition of f to all vectors in Cm2
. Recall that vecpAq “

x b y if A “ xyT is rank one. As φ satisfies (B.6), the map f will send all nonzero

vectors of the form
Âk

i“1pxi b yiq to some nonzero vectors of the form u b v P
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CmbCm, i.e., f sends nonzero decomposable elements of
Âk

i“1Cni bCni to nonzero

decomposable elements of Cm b Cm. Applying Proposition B.3 ([57, Theorem 3.4])

with p “ 2k and q “ 2, there are two partitions tK1, K1u and tK2, K2u of K “

t1, . . . , ku, and linear maps f1 : Cm1m2 Ñ Cm and f2 : Cm2{pm1m2q Ñ Cm, where mt

is defined as in statement of the theorem, such that

f

˜

k
â

i“1

pxi b yiq

¸

“ f1

˜

â

iPK1

xi b
â

jPK2

yj

¸

b f2

˜

â

iPK1

xi b
â

jPK2

yj

¸

.

As f1 and f2 are linear, there exist a m ˆm1m2 matrix M and a m ˆm2{pm1m2q

matrix N such that f1pzq “Mz and f2pwq “ Nw. Thus, φ has the form as described

in (B.8). Further, f1pzq ‰ 0 for all z P
Â

iPK1
Cni b

Â

jPK2
Cnj and f2pwq ‰ 0 for

all w P
Â

iRK1
Cni b

Â

jRK2
Cnj as Kj “ KzKj, and hence, M and N satisfy the

condition (B.7). The last statement will be confirmed by Proposition B.3.

Now the equivalence of Theorems B.1 and B.4 can be seen as follows.

Proof of Theorem B.1. Suppose φ satisfies the rank condition (B.3). Then Theorem

B.4 implies that φ has the form (B.8) with M and N satisfying (B.7). Set P1 “

K1zK2, P2 “ K2zK1, P3 “ K1 XK2, and P4 “ KzpK1 YK2q. First, there exists a

permutation matrix Qx such that for any xi, yi P Cni ,

Qx

˜

â

iPP1

xi b
â

jPP2

yj b
â

kPP3

pxk b ykq

¸

“

˜

â

iPP1

xi b
â

iPP3

xi b
â

jPP2

yj b
â

jPP3

yj

¸

“

˜

â

iPK1

xi b
â

jPK2

yj

¸

.
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Similarly, there exists another permutation matrix Qy such that for any xi, yi P Cni ,

Qy

˜

â

jPP1

yj b
â

iPP2

xi b
â

kPP4

pxk b ykq

¸

“

˜

â

iPP2

xi b
â

iPP4

xi b
â

jPP1

yj b
â

jPP4

yj

¸

“

˜

â

iRK1

xi b
â

jRK2

yj

¸

.

Now for any rank one matrix Ai “ xiy
T
i with xi, yi P Cni , i “ 1, . . . , k,

φ pA1 b ¨ ¨ ¨ b Akq “ φ
`

x1y
T
1 b ¨ ¨ ¨ b xky

T
k

˘

“ M

˜

â

iPK1

xi b
â

jPK2

yj

¸˜

â

iRK1

xi b
â

jRK2

yj

¸T

NT

“ MQx

˜

â

iPP1

xi b
â

jPP2

yj b
â

kPP3

pxk b ykq

¸˜

â

jPP1

yj b
â

iPP2

xi b
â

kPP4

pxk b ykq

¸T

QT
yN

T

“ MQx

˜

â

iPP1

xi b
â

jPP2

yj b
â

kPP3

pxk b ykq

¸˜

â

jPP1

yTj b
â

iPP2

xTi b
â

kPP4

pxk b ykq
T

¸

QT
yN

T

“ MQx

˜˜

â

iPP1

xi

¸˜

â

iPP1

yTi

¸

b

˜

â

jPP2

yj

¸˜

â

jPP2

xTj

¸

b
â

kPP3

pxk b ykq b
â

kPP4

pxk b ykq
T

¸

QT
yN

T

“ MQx

˜

â

iPP1

xiy
T
i b

â

jPP2

yjx
T
j b

â

kPP3

pxk b ykq b
â

kPP4

pxk b ykq
T

¸

QT
yN

T

“ MQx

˜

â

iPP1

xiy
T
i b

â

jPP2

pxjy
T
j q

T
b

â

kPP3

vecpxky
T
k q b

â

kPP4

vecT pxky
T
k q

¸

QT
yN

T

“ MQx

˜

â

iPP1

Ai b
â

jPP2

pAjq
T
b

â

kPP3

vecpAkq b
â

kPP4

vecT pAkq

¸

QT
yN

T .

By linearity, the equality holds for any matrix Ai P Mni
and hence we have (B.4).

Finally, the kernel condition can be easily reduced from (B.7).

Next we show that the matrices M and N in Theorem B.4 (equivalently, Theorem
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B.1) always exist, except for two special cases, namely, when k “ 2, K “ t1, 2u,

2 P tn1, n2u, and K1 “ K2 “ K or K1 “ K2 “ H. For simplicity, we focus on the

existence of M . For positive integers p1, . . . , pr, denote by Epp1, . . . , prq the collection

of subspaces S of Cp1¨¨¨pr such that

S X pCp1 b ¨ ¨ ¨ b Cprq “ t0u.

The subspace S is called a completely entangled subspace in [46]. In the same paper,

the author also obtained the maximum dimension of S in Epp1, . . . , prq as follows.

Proposition B.2. [46, Theorem 1.5] Let p1, . . . , pr be positive integers. Then

max
SPEpp1,...,prq

dimS “
r
ź

i“1

pi ´
r
ÿ

i“1

pi ` r ´ 1.

It has to mention that an explicit construction for maximum completely entangled

subspace for bipartite case (r “ 2) was also given in [46]. Based on the above

proposition, we can deduce the following result which showed that the matrix M

always exists, except for one special case.

Proposition B.3. Let n1, . . . , nk be positive integers larger than or equal to 2, K “

t1, . . . , ku, and K1, K2 Ď K. Define m “
ś

iPK ni and mt “
ś

iPKt
ni for t “ 1, 2.

Then there always exists a mˆm1m2 matrix M such that

KerpMq X

˜

â

iPK1

Cni b
â

jPK2

Cnj

¸

“ t0u,

except the case when K1 “ K2 “ K “ t1, 2u and 2 P tn1, n2u.

Proof. If m ě m1m2, then any m ˆ m1m2 matrix with full column rank, i.e.,

rank pMq “ m1m2 will satisfy the kernel condition. Let us assume that m ă m1m2.

Notice that KerpMq is a subspace of Cm1m2 . By Proposition B.2, the maximum
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dimension of subspace of Cm1m2 which does not contain any nonzero element of
Â

iPK1
Cni b

Â

jPK2
Cnj is equal to

dpK1, K2q :“ m1m2 ´
ÿ

iPK1

ni ´
ÿ

jPK2

nj ` |K1| ` |K2| ´ 1

“ m1m2 ´
ÿ

iPK1

pni ´ 1q ´
ÿ

jPK2

pnj ´ 1q ´ 1.

On the other hand, dim KerpMq ě m1m2´m for all mˆm!m2 matrices and the equal

holds when M has full row rank, i.e., rank pMq “ m. Therefore, the mˆm1m2 matrix

M satisfying the kernel condition will always exist when dpK1, K2q ě m1m2 ´m, or

equivalently,

m ě
ÿ

iPK1

pni ´ 1q `
ÿ

jPK2

pnj ´ 1q ` 1. (B.9)

Notice that for any positive integers a1, . . . , ak,

k
ź

j“1

paj ` 1q ě
ÿ

1ďiăjďk

aiaj `
k
ÿ

j“1

aj ` 1 ě
k
ÿ

j“1

aj `
k
ÿ

j“1

aj ` 1 “ 2
k
ÿ

j“1

aj ` 1 if k ě 3.

Assume k ě 3 and take aj “ nj ´ 1 in the above equation, we have

m “
ź

iPK

ni ě 2
ÿ

iPK

pni ´ 1q ` 1 ě
ÿ

iPK1

pni ´ 1q `
ÿ

jPK2

pnj ´ 1q ` 1.

Therefore, the matrix M exists when k ě 3. For k “ 2,

m “

2
ź

j“1

nj “ 2
2
ÿ

j“1

pnj ´ 1q `
2
ź

j“1

pnj ´ 2q ě
ÿ

iPK1

pni ´ 1q `
ÿ

jPK2

pnj ´ 1q ` 0,

and the equality holds if and only if K1 “ K2 “ K “ t1, 2u and at least one of ni

is equal to 2. In all other cases, the above inequality is strict, and therefore, the

inequality (B.9) holds. Finally, suppose K1 “ K2 “ K “ t1, 2u and 2 P tn1, n2u. We

may assume n1 “ 2, then

dpK1, K2q “ 4n2
2 ´ 2n2 ´ 1 ă 4n2

2 ´ 2n2 ď dim KerpMq
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for any p2n2qˆ p2n2qp2n2q matrix M . Therefore, there is no matrix M satisfying the

kernel condition in this case.

After we obtained the above result, it has come to our attention that Lim [42] has

already given a necessary and sufficient condition for the existence of linear maps

preserving nonzero decomposable tensor for any algebraically close field, see [42,

Proposition 2.8]. This existence condition is actually equivalent to the inequality

(B.9) in our proof. Also a similar conclusion on linear maps on matrix space is

obtained in a recent work of Lim in [41] too.

Finally, we apply Theorem B.1 to obtain the following corollaries, which gener-

alize the results of Zheng et al. [62] and Lim [43].

Corollary B.1. Let n1, . . . , nk be positive integers larger than or equal to 2 and let

m “
śk

i“1 ni. Suppose φ : Mm ÑMm is a linear map. If

rank pφpA1b ¨ ¨ ¨bAkqq “ 1 whenever rank pA1b ¨ ¨ ¨bAkq “ 1 for all Ai PMni
,

and there is a matrix X1 b ¨ ¨ ¨ bXk with Xi PMni
and rankXi ą 1 for i “ 1, . . . , k

such that

rank pφpX1 b ¨ ¨ ¨ bXkqq “ rank pX1 b ¨ ¨ ¨ bXkq,

then φ has the form

φpA1 b ¨ ¨ ¨ b Akq “Mpψ1pA1q b ¨ ¨ ¨ b ψkpAkqqN
T

for all Ai PMni
with i “ 1, . . . , k, where ψj is the identity map or the transpose map

for j “ 1, . . . , k, and M,N PMm satisfy

KerpMq X pCn1 b ¨ ¨ ¨ b Cnkq “ t0u and KerpNq X pCn1 b ¨ ¨ ¨ b Cnkq “ t0u.

Proof. By Theorem B.1, φ has the form (B.4) with partition tP1, P2, P3, P4u as de-

fined in the theorem. Notice that rank pvecpAqq “ 1 for any matrix A. Suppose
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P3 Y P4 ‰ H. Then

rank pφpX1 b ¨ ¨ ¨ bXkqq ď

˜

ź

jPP1YP2

rank pXjq

¸˜

ź

jPP3YP4

rank pvecpXjqq

¸

“

˜

ź

jPP1YP2

rank pXjq

¸

ă rank pX1 b ¨ ¨ ¨ bXkq ,

which contradicts the assumption. So P3YP4 “ H and φ has the asserted from.

Corollary B.2. Let n1, . . . , nk be positive integers larger than or equal to 2 and let

m “
śk

i“1 ni. Suppose φ : Mm ÑMm is a linear map. Then

rank pφpA1b ¨ ¨ ¨bAkqq “ 1 whenever rank pA1b ¨ ¨ ¨bAkq “ 1 for all Ai PMni
,

and φpX1 b ¨ ¨ ¨ b Xkq is nonsingular for some X1 b ¨ ¨ ¨ b Xk with Xi P Mni
if and

only if there exist nonsingular matrices M,N PMm such that

φpA1 b ¨ ¨ ¨ b Akq “M pψ1pA1q b ¨ ¨ ¨ b ψkpAkqqN for all Ai PMni
, i “ 1, . . . , k,

where ψj, j “ 1, . . . , k is either the identity map or the transpose map.

Proof. The sufficient part is clear. For the necessary part, by Theorem B.4 and a

similar argument as in the proof of Corollary B.1, one can show that P3 Y P4 “ H

and M and N are both nonsingular. Then the result follows.
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[9] A. Fošner, Z. Huang, C.-K. Li, and N.-S. Sze. Linear maps preserving ky fan
norms and schatten norms of tensor product of matrices. SIAM J. Matrix Anal.
Appl., 34:673–685, 2013.
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[60] J. Xu, B. Zheng, and A. Fošner. Linear maps preserving rank of tensor products
of rank-one hermitian matrices. Journal of the Australian Mathematical Society,
98:407–428, 2015.

[61] C. Yang and J. Gea-Banacloche. Three-qubit quantum error-correction scheme
for collective decoherence. Phys. Rev. A, 63:022311, 2001.
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