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Abstract

We consider the second-order methods for solving two classes of nonconvex mini-

mization problem arising from diverse applications of optimization. By second-order

methods, we refer to those methods involving second-order information of the ob-

jective function. The first class of nonconvex problem is the so-called Affine Rank

Minimization Problem (ARMP), whose aim is to minimize the rank of a matrix

over a given affine set. The other one is the Partially Separable Minimization Prob-

lem (PSMP), which is to minimize the objective function with a partially separable

structure over a given convex set. This thesis hence can be sharply divided into two

distinct parts.

In the first part, we focus on exploring the ARMP utilizing the matrix factoriza-

tion reformulation. Under some particular situations, we show that the correspond-

ing factorization models are of the property that all second-order stationary points

are global minimizers. By presuming such property holds, we propose an algorithm

framework which outputs the global solution of the ARMP after solving a series of its

factorization models with different ranks to the second-order necessary optimality.

Finally, we put forward a conjecture that the reduction between the global minima of

the low-rank approximation with consecutive ranks is monotonically decreasing with

the increase of the rank. If this conjecture holds, we can accelerate the estimation

of the optimal rank by an adaptive technique, and hence significantly increase the

efficiency of the overall performance of our framework in solving ARMP.

i



In the second part of this thesis, we mainly study the PSMP over a convex con-

straint. We first propose an adaptive regularization algorithm for solving PSMP, in

which the expense of using high-order models is mitigated by the use of the partially

separable structure. We then show that the algorithm using an order p model needs

at most Opε´
p`1
p q evaluations of the objective function and its derivatives to arrive

at an ε-approximate first-order stationary point. The complexity in terms of ε is un-

affected by the use of structure. An extension of the main idea is also presented for

the case where the objective function might be non-Lipschitz continuous. We apply

the algorithm with an adaptive cubic regularization term to solving the problem of

data fitting involving the q-quasi norm for q P p0, 1q and it turns out that even for

non-Lipschitz case, the complexity bound Opε´
3
2 q can be retained.

ii
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Chapter 1

Introduction

In this thesis, we study second-order methods for nonconvex optimization problems

that involves two classes of problems. The first one is minimizing the rank of a

matrix over an affine set. We refer to this as the Affine Rank Minimization Problem

(ARMP), which arises in a diverse set of areas such as control, system identification,

statistics, and signal processing, to name a few.

The other one is minimizing an objective function over a convex set, which is

partially separable in terms of decision variables but may be nonconvex and non-

Lipschitz. We refer to it as the Partially Separable Minimization Problem (PSMP).

The partially separable structure studied here is ubiquitous in applications of opti-

mization. It subsumes sparse optimization as a special case, which has been widely

used in image restoration and statistics.

For these two classes of problems, we will investigate thoroughly their structures

and optimality conditions. Based on that, we will devise second-order methods

for solving them, respectively. By second-order methods, we here mean that the

methods that utilize the second-order information of the problem, i.e., the second-

order derivatives of the objective function.
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1.1 Affine Rank Minimization Problem (ARMP)

The affine rank minimization problem (ARMP), whose aim is to find an unknown

matrix of low rank subject to a given system of linear equality constraints, has

increasingly gained a great amount of attention in recent years. Such a prevailing

trend can not only be ascribed that ARMP can be viewed as, in some sense, an

extension of matrix completion problem [14, 46, 72, 83, 84] and compressive sensing

[13, 34, 84], but also be attributed to the wide applications of ARMP, the good

property of low-rank and the rich content in matrix topics.

First of all, ARMP abstracts a lot of problems arisen from a diverse set of ap-

plication domains, such as machine learning, dimensionality reduction and control

theory. Specific applications of ARMP include dynamic system identification [61] and

state covariance estimation [26, 58, 103] in control theory, collaborative filtering [55]

and multi-class learning [1, 33] in machine learning, phase retrieval [10], Euclidean

embedding and dimensionality reduction in sensor networks [51, 78, 90, 91], Direc-

tion of Arrival (DOA) estimation in radar signal processing [94] and index coding in

information theory [32]. And see [53] for more discussions of relative topics.

The property of low-rankness provides us with a special and efficient perspective

in handling a lot of diversely large-scale problems since it extracts the essential

characteristics of a wide range of concepts. For instance, dimensionality, complexity

or order can often be expressed as the rank of some appropriate matrix. See [31, 35,

60] for more details. Moreover, analysis of the low-rank minimization model may also

be extended to many other specific low-rank models, such as Principle Component

Analysis (PCA), robust PCA [11], Non-negative matrix factorization (NMF) [57],

tensor completion [38, 71] and so forth.

Last but not least, the topic of matrix is just like a tropical forest consisting of

various populations. It usually involves a blend of many disciplines, such as linear

— 2 —
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algebra, optimization, information theory, probability, graph theory and algebraic

geometry and thus the investigation of rank minimization problem will not only be

advantageous to interdisciplinary collaboration and also may lead to new spark of

thoughts.

1.1.1 Approaches for Solving ARMP

As mentioned at the very beginning, there are two elements, i.e., low-rankness and

consistency with linear equality constraints, in modeling the matrix rank minimiza-

tion. An ARMP can usually be cast as the following rank minimization problem:

minimize
XPRnˆm

rankpXq

subject to ApXq “ b,

(1.1)

where b is a p-dimensional column vector and A : Rnˆm Ñ Rp is a linear operator1.

More specifically, operator A can be defined as follows,

ApXq “ pxA1, Xy, xA2, Xy, . . . , xAp, Xyq
T ,

where Ai P Rnˆm pi “ 1, 2, . . . , pq are called the column matrices of operator A, and

xM1,M2y :“ trpMT
1 M2q denotes the inner product of two matrices with same size.

It should be noted that if there exists a nonzero vector c P Rp such thatATpcq “ 0,

then the linear operator A is row linearly dependent which means the redundancy of

the constraint Apxq “ b. Here AT denotes the adjoint operator of A (see Section 2.2

of Chapter 2 for details), which actually has an explicit expression (to be deduced

in Section 2.2 of Chapter 2). Due to the linearity of operator A, a collection of

independent constraints can be selected and the rest of constraints can be expressed

as the linear combination of the selected independent constraints.

Hence, without loss of generality, to simply invoke the second-order optimality

condition in the further analysis, it is reasonable for us to concentrate on the cases

1 Any linear operator from Euclidean space to Euclidean space is bounded.
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in which the operator A is of full row rank2, namely, ATpcq “ 0 implies c “ 0. For

the convenience of later analysis, we generalize it as the following assumption and

assume it always holds throughout this thesis.

Assumption 1.1. The operator A is of full row rank, that is, ATpcq “ 0 implies

c “ 0 for any c P Rp.

The rank function is a discrete function and is difficult to deal with directly.

There are usually two different approaches to handle problem (1.1). The first one is

to relax (1.1) to a nuclear norm minimization problem

minimize
XPRnˆm

}X}˚

subject to ApXq “ b,

(1.2)

where }X}˚ is called the nuclear norm or the Ky-Fan n-norm of X, i.e., the sum of

all singular values of X; see, e.g., [48].

Fazel et al. in [34, 35] introduced the nuclear norm ( i.e., the sum of singular

value of a matrix) as the surrogate of the rank function for problem (1.1) and thus

obtain the relaxed minimization (1.2). The nuclear norm of a matrix can be seen

as the `1 norm of the vector consisting of all singular values of that matrix while

the rank of the matrix is `0 norm of that vector. Hence, the `1 norm relaxation

techniques can be naturally extended to rank minimization case.

On the side of theory, a series of excellent works [14, 46, 72, 83, 84] established

the recoverability for matrix completion problems. It has been shown that for ma-

trix completion problem (1.4), solving the corresponding problem (1.2) will exactly

recover matrix M with high probability if M of rank r satisfies the so-called incoher-

ence condition and Oprn log2 nq entries of it are uniformly revealed. Negahban et al.

in [74, 75] also gave the so-called restricted strong convexity property to guarantee

2 See Definition 2.3 for details.
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exact reconstruction for matrix completion. [74, 79, 80, 85] extended the null space

conditions to matrix case from its vector counterpart and established exact recovery

theory.

On the side of computation, the nuclear norm is a convex function which can

be optimized efficiently and globally. In fact, problem (1.2) can be reformulated as

semidefinite program (SDP) and hence solved to global minimizer by standard SDP

solvers if the problem scale is not large (say, the dimension of matrix smaller than

500). For large-scale problem, quite a few efficient algorithms have been proposed as

well over the past ten years, such as the SVT (singular value thresholding) algorithm

[9, 49], the Bregman iterative algorithm [40, 64], the alternating direction method of

multipliers [20, 59, 100] and accelerated proximal gradient method [97].

In the CS, the performance of `p p0 ă p ă 1q approximation is often better

than that of `1 relaxation in terms of recovery condition and result. Following the

same idea, the so-called Schatten p-norm [54, 65] minimization, which is the `p norm

of the vector consisting of all the singular values of a given matrix, is utilized to

approximate the rank minimization problem. However, the Schatten p-norm min-

imization is difficult to solve. A tractable way is the iterative reweighted method,

which can be as well applied to `0 minimization of the singular values directly, see

[36, 56, 62, 69, 70]. In [63], the authors proposed a block coordinate descent algo-

rithm to solve the penalized rank minimization problem directly. In [98], the authors

extended orthogonal matching pursuit method from the vector case to the matrix

case, and obtain an efficient and scalable approach for matrix completion problems.

The second approach is to re-express the decision variable matrix X as the de-

composition form X “ Y ZT where Y P Rnˆk and Z P Rmˆk according to the fact

that any matrix with rank no more than k can be decomposed into the product of two

matrices of rank k. In this case, the constraint of rankpXq ď k is embedded into the

objective function. Then (1.1) can be reformulated as the following unconstrained

— 5 —
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optimization problem

minimize
Y PRnˆk,ZPRmˆk

fpX, Y q :“ }ApY ZT
q ´ b}22. (1.3)

Decomposition based formulation (1.3) has attracted increasing attention in the rec-

ommender systems field and served as the foundation of many algorithms for the

Netflix Prize [55, 96].

In the era of big data, tremendous amounts of data arisen from online mer-

chants, mobile devices, sensors and so forth, need to be analyzed and handled, which

brings about a lot of large-scale problems. However, the singular value decompo-

sition computation, which is prohibitively expensive, is heavily involved when one

applies nuclear norm based method to search the solution of problem (1.1) and it

takes up the main computational cost per iteration.

To get rid of the excessive invoking of the singular value decomposition calculation

and solve large-scale problems more efficiently, people turn to another direction,

namely, methods based on model (1.3), or the matrix factorization-based methods.

LMaFit [99], for instance, using a series of matrix factorization models with different

k (the approximation of the optimal rank) to describe the matrix completion problem,

turns out to be an efficient and robust alternative to the nuclear norm relaxation

model.

Another method based on factorization model (1.3) is called alternating squares

(ALS) method which alternatively fixed Y and Z and solves the linear least squares

with respect to Y and Z, respectively, see [47, 50] for details.

Matrix factorization is also used to tackle SDP problems. For instance, [8, 52]

introduced an equivalent factorization model for SDP through the Cholesky decom-

position. Mishra in [68] used a factorization to make the trace norm differentiable

in the search space and the duality gap numerically computable, which is a similar

approach to SVD.

— 6 —
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However, the factorization model (1.3) is nonconvex. More specifically, it is a

quartic polynomial optimization problem. It may contain exponentially many local

minimizers or saddle points. Hence, solving problem (1.3) to the global optimality

is usually unachievable.

Recently, Candès and Li in [12] proposed a so-called Wirtinger Flow (WF) method

to solve the phase retrieval problem, which is, like (1.3), essentially a quadratic least

squares problem and quartic polynomial problem. The WF algorithm consists of

two phases, one is a careful initialization stage realized by a spectral method, and

the other is the local minimization stage invoking a gradient descent algorithm with

a restricted stepsize. The authors proved that if the random sampling vectors obey

certain distribution and there is no noise in the observation, the sequence generated

by the gradient descent scheme will converge linearly to a global solution with high

probability. Sun and Luo in [93] applied a similar idea to analyze the matrix com-

pletion problems described by factorization formulation, in which an initialization

step is followed by a general first-order algorithm framework. Under the standard

assumptions on incoherence condition [13] and the random observations similar to

[12], the authors of [93] showed their framework can converge to a global solution

linearly.

1.1.2 Relation to Matrix Completion

Many interesting models arisen from various application domains requires to seeking

an eligible matrix with the lowest possible rank given a partial subset of that matrix,

which is the so-called matrix completion problem. For instance, in machine learn-

ing scenarios, one is usually required to estimate the missing entries of a low-rank

covariance matrix of a process based on partial observations. It was first put for-

ward by the famous online movie-provider company Netflix [2]. The past five years

have seen the surge of interest in studying the matrix completion problem due to

— 7 —
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its wide applicability in many areas. The model of low-rank matrix completion is

also ubiquitous in collaborative filtering, latent semantic analysis and factor analysis

[86, 92].

Suppose the coefficients of matrix M are partially revealed as Ω Ă tpi, jq|1 ď

i ď n, 1 ď j ď mu with |Ω| “ p. And one is required to fill in the unknown entries

of M such that the resulting matrix has the as low as possible rank according the

the partially observation Ω. The matrix completion problem will solve the following

problem

minimize rankpXq

subject to Xij “Mij, pi, jq Ă Ω.
(1.4)

In many application settings, the entries of Ω are assumed to identically yield cer-

tain probability distribution (such as Bernoulli distribution, uniform distribution or

Gaussian distribution).

Problem (1.1) includes problem (1.4) as a special case. To see this, it is sufficient

to illustrate that the constraint of (1.4) is a special case of that of (1.1). Suppose

that Eij is a matrix with all entries equal to 0 except that the pi, jq-th entry is 1.

Let bΩ
t “ xEitjt ,My and AΩ

t “ Eitjt for all t “ 1, 2, ¨ ¨ ¨ , p with p “ |Ω|. Then the

constraint of (1.4) can be reformulated as the form of the constraint of (1.1), that

is,

AΩ
pXq “ bΩ,

here AΩp¨q “
`

xAΩ
1 , ¨y, . . . , xA

Ω
t , ¨y, . . . , xA

Ω
p , ¨y

˘T
and bΩ “ pbΩ

1 , . . . , b
Ω
t , . . . , b

Ω
p q

T.

1.1.3 Relation to Compressed Sensing

Over the past decade, compressed sensing (CS) has attracted considerable attention

in communities of applied mathematics, computer science and electrical engineering.

We have mentioned that ARMP can be regarded as a natural extension of CS in the
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matrix domain. To see this, just let matrix X variable in problem (1.1) be diagonal,

the ARMP reduces to finding a sparse vector in an affine subspace, which is exactly

the so-called compressed sensing problem.

In compressed sensing, the goal is to reconstruct a sparse or compressible repre-

sentation x P Rn1 from a small set of linear, nonadaptive observations. This process

can be represented mathematically as

minimize }x}0

subject to Ax “ y,
(1.5)

where }x}0 :“ #tk : xk ‰ 0, k “ 1, . . . , n1u is the number of non-zero entries in

x, A is an n2 ˆ n1 matrix and y P Rn2 . The matrix A, which maps Rn1 into Rn2 ,

designates the dimensionality reduction. Usually, n1 is very large and n2 is typically

much smaller than n1.

Nevertheless, it is difficult to solve problem (1.5) directly due to the nonconvex-

ity of the objective function from the perspective of both theory and computation.

Actually, it is a combinatorial optimization problem and one can show that even

finding a approximating solution is NP-hard for a general matrix A [72, 73]. Over

the past decade, a variety of heuristic methods have been proposed to solve CS. We

refer to [37, 66, 82] for projection pursuit and [22, 30, 81] for orthogonal matching

pursuit.

1.2 Partially Separable Minimization Problem

Partially separable optimization was proposed by Griewank and Toint in [45], studied

for more than twenty years (see [21, 39, 41, 67, 104] for instance) and extensively used

in the popular CUTE(st) testing environment [42] as well as in the LANCELOT [29]

and FILTRANE [43] packages, amongst others. In particular, the design of trust-

region algorithms exploiting the partially separable decomposition was investigated
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by Conn, Gould, Sartenaer and Toint in [28, 27] and Shahabuddin [89].

We here consider the following partially separable convexly constrained nonlinear

optimization problem:

minimize
xPF

fpxq “
m
ÿ

i“1

fipUixq “
m
ÿ

i“1

fipxiq (1.6)

where f : Rn Ñ R, F is a non-empty closed convex set and for i P t1, . . . ,mu,

xi :“ Uix with Ui a (fixed) ni ˆ n matrix and ni ď n. Without loss of generality,

we assume that the union of the ranges of the UT
i matrices spans R, which can also

be equivalently expressed as the intersection of the nullspaces of the Ui is reduced to

the origin. The partially separable structure defined in this problem is ubiquitous in

applications of optimization. It is most useful in the frequent case where ni ! n and

subsumes that of sparse optimization (in the special case where the rows of each Ui

are selected rows of the identity matrix). Moreover the decomposition in (1.6) has

the advantage of being invariant for linear changes of variables (only the Ui matrices

vary).

Using the partially separable nature of a function f can be very useful if one

wishes to use derivative of f of order larger than one in the context of the p-th order

Taylor series

Tf,ppx, sq “ fpxq `
p
ÿ

j“1

1

j!
∇j

xfpxqrss
j, (1.7)

the notation T rssi meaning that the tensor T is applied to i copies of the vector s.

Indeed, it can be verified that

∇1
xfpxqrss “

m
ÿ

i“1

pUi∇xifipxiqq
Ts “

m
ÿ

i“1

∇xifipxiqrUiss,

∇2
xfpxqrss

2
“

m
ÿ

i“1

sT
pUT

i ∇2
xi
fipxiqqs “

m
ÿ

i“1

∇2
xi
fipxiqrUiss

2

— 10 —
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and, in general, that

∇j
xfpxqrss

j
“

m
ÿ

i“1

∇j
xi
fipxiqrUiss

j
pj ě 1q.

This last expression indicates that only the m tensors t∇j
xi
fipxiqu

m
i“1 of dimension

nji needs to be computed and stored, a very substantial gain compared to the nj-

dimensional ∇j
xfpxq when (as is common) ni ! n for all i. It can therefore be argued

that exploiting derivative tensors of order larger than 2 — and thus using the high-

order Taylor series (1.7) as a local model of fpx` sq in the neighborhood of x — is

practically feasible if f is partially separable.

Interestingly, the use of high-order Taylor models for optimization was recently

investigated by Birgin et. al. [6] in the context of adaptive regularization algorithms

for unconstrained problems. Their proposal belongs to this emerging class of methods

pioneered by Griewank [44], Nesterov and Polyak [77] and Cartis, Gould and Toint

[16, 17] for the unconstrained case and by these last authors in [18] for the convexly

constrained case of interest here. Such methods are distinguished by their excellent

evaluation complexity, in that they need at mostOpε´
p`1
p q evaluations of the objective

function and their derivatives to produce an ε-approximate first-order critical point,

compared to the Opε´2q evaluations which might be necessary for the steepest descent

and Newton’s methods (see [15] and [76] for details).

However, most adaptive regularization methods rely on a non-separable regu-

larization term in the model of the objective function, making the exploitation of

structure difficult.3

3 The only exception that we are only aware of is the unpublished note [95] in which a p-th order
Taylor model is coupled with a regularization term involving the (totally separable) q-th power of
the q norm (q ě 1).
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1.3 Contributions of the Thesis

This thesis can be sharply divided into two distinct parts. The first part includes

Chapter 2 and Chapter 3. These two chapters focus on the first class of nonconvex

problem, i.e., the Affine Rank Minimization Problem (ARMP). And the second

part includes Chapter 4 and Chapter 5, which are devoted to the Partially Separable

Minimization Problem (PSMP).

It is worthwhile to mention that the notations in these two distinct parts are to-

tally independent, which can be distinguished without any ambiguity in due courses.

According the structure of the thesis, our contributions are natural to be divided

into two different parts.

Throughout Chapter 2 and Chapter 3, we mainly discuss problem (1.3). We

observed that some local optimal solvers can often find a global solution of problem

(1.3) by starting from a randomly chosen initial guess even if the linear operator

A of (1.3) does not involve any stochastic property. One main contribution of this

thesis is to theoretically investigate the relationship between the global optimality

of problem (1.3) and its second-order optimality under certain scenarios, which can

partly explain the above mentioned phenomenon.

In order to study this phenomenon, we introduce a concept call “SNIG” condi-

tion, which is the abbreviation of “Second-order Necessary optimality Implies Global

optimality”. Its exact definition will be introduced in the coming Chapter 2 (see

Definition 2.1). Based on SNIG condition, the contribution of the first part can

generalized as follows:

• we find several scenarios where the SNIG condition holds and prove it, which

includes

– the SNIG condition always holds over the cone consisting of all the rank
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deficient points in Rnˆm ˆ Rnˆm,

– the SNIG condition holds when the number of observation entries is equal

to the total number of unknowns,

– the SNIG condition holds if the operator A enjoys the special structure

mentioned in [105], more specifically, A maps a matrix to a part of it and

the missing part is a block of the matrix;

• we propose a framework which utilizes the SNIG condition to solve the affine

rank minimization problem and some numerical examples are also presented.

Chapter 4 and Chapter 5 then focus on the partially separable minimization

problem (1.6). In this part, the contributions are twofold:

• we first introduce an algorithm using a partially separable regularization term

and to show that its evaluation complexity retains the excellent bound of

Opε´pp`1q{pq evaluations while exploiting structure;

• we then extend the algorithm and complexity to the (non-Lipschitz) problem of

data fitting involving the so-called q-quasi norm for q P p0, 1q. Such problems

were already investigated by Bian, Chen and Ye in [3, 4, 5] in the context of

trust-region methods.

1.4 Organization of the Thesis

The thesis is structured as follows.

• Chapter 2 first gives the exact definition of the so-called SNIG condition, then

present some preliminaries and finally three different scenarios where the SNIG

condition can hold.
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• Chapter 3 focuses on the algorithm framework for solving the affine rank mini-

mization problem (1.1), which is based on the matrix factorization model (1.3)

using the property of SNIG condition.

• Chapter 4 is devoted on the partially separable algorithm with cubic regu-

larization and the complexity analysis of function value evaluations for this

algorithm.

• Chapter 5 extends the partially separable algorithm and its complexity of func-

tion value evaluations to the non-Lipshchitz problem of data fitting with the

q-quasi norm for q P p0, 1q.

• Chapter 6 ends the whole thesis with some concluding remarks.
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Chapter 2

Theoretical Analysis of SNIG

The purpose of this chapter is to discuss the “Second-order Necessary optimality

Implies Global optimality” (SNIG) condition and the theoretical results when using

the SNIG condition to analyze problem (1.3). We first begin with the exact definition

of the SNIG condition. Then we present some preliminaries which will be used in

the later theoretical analysis, which include the concepts of the adjoint operator of a

linear operator, Fréchet differentiability in abstract space and permutation matrix.

The first two concepts are both of importance in deducing the optimality condi-

tions. And both of them are well-known results which can be found in any standard

textbook for functional analysis and optimization theory ([88] and [7] for instance).

The third one serve as an essential role in our theoretical analysis. Subsequently,

we introduce the optimality conditions of problem (1.3). Finally we manifest three

distinct scenarios where the SNIG condition holds and end up with this chapter with

an example in which the SNIG condition fails to hold.

Problem (1.3) is essentially a Nonlinear Least Squares problem. For the sake of

convenience, we abbreviate it as (NLS-k) and restate it below. That is, consider the

following unconstrained matrix factorization problem

minimize
Y PRnˆk,ZPRmˆk

fpY, Zq :“
1

2
||ApY ZT

q ´ b||22 “
1

2

p
ÿ

i“1

`

xAi, Y Z
T
y ´ bi

˘2
, (NLS-k)
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where b “ pb1, . . . , bpq
T P Rp is a column vector, A P BpRnˆm,Rpq is a bounded

linear operator mapping n ˆm matrices to p-dimensional Euclidean space which is

defined specifically by

ApXq “ pxA1, Xy, ..., xAp, Xyq
T , (2.1)

with Ai P Rnˆm pi “ 1, ..., pq are the p column matrices of A. And xW1,W2y :“

trpWT
1 W2q designates the inner product of two matrices W1 and W2 with the same

size.

2.1 SNIG: Second-order Necessary optimality Im-

plies Global optimality

Clearly, the Nonlinear Least Squares problem (1.3), i.e., problem (NLS-k) is bounded

from below. We first introduce the following notation for the sake of simplicity.

Denote by

Πpn,m,pq :“ BpRnˆm,Rp
q X tA | AT

pcq ‰ 0, @c ‰ 0, c P Rp
u

the set consisting of all linear bounded operators satisfying Assumption 1.1.

Further, we present another another assumption as follows.

Assumption 2.1. Problem (NLS-k) has zero residual solution.

By “zero residual solution” here, we mean those solutions in which their corre-

sponding optimal values vanish. It is clear that the global optimality of (NLS-k)

becomes checkable: fpY, Zq “ 0 once Assumption 2.1 holds. For the convenience of

our analysis, throughout this thesis, we also assume Assumption 2.1 holds.

Let K :“ t1, 2, ¨ ¨ ¨ ,minpn,mqu. Note that once a triplet pA,b, kq P Πpn,m,pq ˆ

Rp ˆK is given, a specific instance of problem (NLS-k) is immediately determined.

For convenience, once we say pA,b, kq satisfies Assumption 2.1, it refers to the fact

— 16 —



PhD Thesis CHAPTER 2. THEORETICAL ANALYSIS OF SNIG

that problem (NLS-k) satisfies Assumption 2.1. Moreover, if pA,b, kq satisfies As-

sumption 2.1, there must exist at least one rank-k matrix W P Rnˆm such that

ApW q “ b. Denote

r˚ “ min
W
trankpW q : ApW q “ bu,

we have r˚ ď k ď minpn,mq.

Although solving the nonlinear least squares problem (NLS-k) to the global op-

timality is NP-hard in general, obtaining a second-order stationary point can be

achieved in polynomial time and there is no gap between them in quite some scenar-

ios.

Definition 2.1. Given a triplet pA,b, kq P Πpn,m,pq ˆRp ˆK satisfying Assumption

2.1. Let C be a subset of Rnˆk ˆ Rmˆk. Then, if for any pY, Zq P C satisfying the

second-order necessary optimality condition of (NLS-k), pY, Zq is a global optimizer

of (NLS-k), we call the SNIG (Second-order Necessary optimality Implies Global

optimality) condition holds at the triplet pA,b, kq over C. Particularly, if C “ Rnˆkˆ

Rmˆk, we say the SNIG condition holds at the triplet pA,b, kq.

2.2 Preliminaries

Denote by X , Y and Z three finite-dimensional real Hilbert spaces. And X 1 desig-

nates the dual space of X .

Adjoints in Hilbert Space

Suppose that BpX ,Yq is the set consisting of all bounded linear operators mapping

X to Y and A P BpX ,Yq. Let y P Y be a fixed vector, and consider the following

functional:

gy : X Ñ R, where gy :“ xAx, yy.

The the functional gy is
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• linear, since both A and x¨, yy are linear;

• bounded, since |gypxq| ď }Ax}Y}y}Y ď }A}}x}X }y}Y with A bounded.

In other words, gy P X 1.

Proposition 2.1 (Riesz Representation Theorem). If H is a Hilbert space and g :

H Ñ R is a linear and bounded functional. Then there exist a unique y P H such

that

gpxq “ xx, yy, @x P H.

Proof. Readers can find the proof in any standard textbook concerning functional

analysis, see [88] for instance.

Definition 2.2. By Riesz representation theorem, for each y P Y there exists a

unique z “ zy P X such that

gypxq “ xx, zyy, @x P X .

So we can define legitimately a mapping AT : Y Ñ X , called the adjoint of A, by the

relationship zy “ ATpyq.

The defining property of AT is then:

xAx, yyY “ xx,AT
pyqyX . (2.2)

Moreover, AT further has the following properties:

• AT is the only mapping from Y to X that satisfies (2.2);

• AT is linear and bounded, i.e., AT P BpY ,X q.

The range of A is denoted by

RpAq :“ ty P Y |y “ Apxq for x P X u,
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and the nullspace of A is denoted by

NpAq :“ tx P X |Apxq “ 0u.

For a linear operator A P BpX ,Yq, we have that NpAq Ă X , RpAq Ă Y and

tRpAquK “ NpATq.

Definition 2.3. If RpAq “ Y, then A is called full row rank.

Proposition 2.2. Suppose that y “ py1, y2, . . . , ypq
T P Rp and A P BpRnˆm,Rpq

defined by (2.1). Then the adjoint of A can be written explicitly, namely,

AT
pyq “

p
ÿ

i“1

yiAi. (2.3)

Proof. Since A is of full row rank, for any y P Rp, there must exist at least one

X P Rnˆm such that y “ ApXq, i.e., yi “ xAi, Xy for all i “ 1, 2, ¨ ¨ ¨ , p.

From (2.2), it follows that

xZ,AT
pyqy “ xApZq,yy “ xApZq,ApXqy, @Z P Rnˆm. (2.4)

On the other hand,

xZ,
p
ÿ

i“1

yiAiy “
p
ÿ

i“1

yixZ,Aiy “ xApZq,ApXqy, @Z P Rnˆm. (2.5)

Combining (2.4) and (2.5), we have that for any Z P Rnˆm, there holds

xZ,AT
pyqy “ xZ,

p
ÿ

i“1

yiAiy,

which implies that

AT
pyq “

p
ÿ

i“1

yiAi.

The uniqueness of ATpyq is directly follows from Riesz representation theorem.

The proof is completed.
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Fréchet Derivatives

To begin with, we first give the definition of Fréchet differentiability as follows. For

more details of differentiability in abstract spaces, we refer readers to [7, Section 2.2].

Definition 2.4. A mapping Ψ : X Ñ Y is said to be Fréchet-differentiable at x P X

if there exists a linear and continuous operator, denoted by JΨpxq such that

Ψpx`∆xq ´Ψpxq ´ JΨpxqr∆xs “ op}∆x}q, ∆x P X .

Suppose that F : X ˆ Y Ñ Z is a mapping. If F is Fréchet-differentiable at

px, yq P pX ,Yq, then we use JF px, yq to denote the Fréchet derivative of F at px, yq

and JxF px, yq to denote the partial Fréchet derivative of F at px, yq with respect to

x.

Let the gradient of F

∇F px, yq :“ JF px, yqT

be the adjoint of JF px, yq (respectively, ∇xF px, yq :“ JxF px, yqT, the adjoint of

JxF px, yq). If F is further twice Fréchet differentiable at px, yq P X ˆ Y , we define

J 2F px, yq :“ J pJF qpx, yq,

J 2
xxF px, yq :“ JxpJxF qpx, yq,

∇2F px, yq :“ J p∇F qpx, yq,

∇2
xxF px, yq :“ Jxp∇xF qpx, yq.

Permutation Matrix

In this section, we give the definition of permutation matrix and list some properties

of it without proof, which will act an important role in the later theoretical analysis.

Definition 2.5. A matrix P P Rnˆn is called a permutation matrix if every row and

every column contains one 1 and zeros otherwise.
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Then we give some properties of the permutation matrix which may be useful in

the following analysis.

Proposition 2.3. The following statements hold:

1. If P is a permutation matrix, then PT is also a permutation matrix.

2. If P P Rnˆn is a permutation matrix, then

pPTP qij “
n
ÿ

k“1

PkiPkj “ δij

with δij the Kronecker delta, and thus PTP “ I which implies that permutation

matrix is orthogonal.

3. If π : t1, 2, ¨ ¨ ¨ , nu Ñ t1, 2, ¨ ¨ ¨ , nu is a permutation, given in two-line form by

ˆ

1 2 ¨ ¨ ¨ n
πp1q πp2q ¨ ¨ ¨ πpnq

˙

then the matrix P “ ppijq with

pij “

#

1, if j “ πpiq

0, otherwise

is a permutation matrix. Indeed, every permutation matrix is of this form.

Particularly, identity matrix is a permutation matrix.

4. If Pπ is the permutation matrix corresponding to the permutation π, then

pP´1
π qij “ 1 if and only if j “ πpiq. Hence the permutation matrix P´1

π corre-

sponds to the permutation π´1. Hence, we have that

P´1
π “ Pπ´1 “ PT

π .
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5. If Pπ “ ppijq P Rnˆn and Qσ “ pqijq P Rmˆm are two permutation matrices

respectively corresponding to permutation π and σ, then let W “ pwijq be a

nˆm matrix, we have

pPπW qij “
n
ÿ

k“1

pikwkj “ Wπpiqj

for all pi, jq P rns ˆ rms. This shows that multiplying a permutation matrix

from left reorders the rows of W . Moreover, we have

pWQσqij “

m
ÿ

k“1

wikqkj “ Wiσ´1pjq

and hence multiplying a permutation matrix from the right reorders the columns

of W .

2.3 Optimality Conditions

With the above preparation in hand, we are now ready to present the optimality

condition of problem (NLS-k). In this section, we first give the optimality conditions

of formulation (NLS-k) and then take a further look at the SNIG condition.

2.3.1 First- and Second-order Optimality Conditions

According to the discussion on Fréchet derivative in the above Subsection 2.2, it is

not difficult to know that the gradient of the objective function in problem (NLS-k)

can be expressed as

∇fpY, Zq “
„

∇Y fpY, Zq
∇ZfpY, Zq



,

where

∇Y fpY, Zq “ AT
pApY ZT

q ´ bqZ;

∇ZfpY, Zq “ pAT
pApY ZT

q ´ bqqTY.
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Here AT : Rp Ñ Rnˆm denotes the adjoint operator of A. It follows from Proposition

2.2 that for any y “ py1, y2, . . . , ypq P Rp

AT
pyq “

p
ÿ

i“1

yiAi.

Furthermore, the Hessian of fpY, Zq can be expressed as

∇2fpY, Zq “

„

∇2
Y Y fpY, Zq ∇2

Y ZfpY, Zq
∇2
ZY fpY, Zq ∇2

ZZfpY, Zq



, (2.6)

where

∇2
Y Y fpY, ZqrSY s “ AT

pApSYZT
qqZ; (2.7a)

∇2
Y ZfpY, ZqrSZs “ AT

pApY ST
Z qqZ `AT

ppApY ZT
q ´ bqqSZ ; (2.7b)

∇2
ZY fpY, ZqrSY s “ pAT

pApSYZT
qqq

TY ` pAT
pApY ZT

q ´ bqqqTSY ; (2.7c)

∇2
ZZfpY, ZqrSZs “ pAT

pApY ST
Z qqq

TY, (2.7d)

for all SY P Rnˆk and SZ P Rmˆk.

Since (NLS-k) is s a twice continuously differentiable unconstrained optimization

problem, we can directly give its first-order and second-order necessary optimality

condition as follows, respectively.

Definition 2.6. A pair of matrices pY ˚, Z˚q P Rnˆk ˆ Rmˆk is called a stationary

point of (NLS-k) if ∇fpY ˚, Z˚q “ 0.

Proposition 2.4. Let pY ˚, Z˚q be a local minimizer of (NLS-k), then it must be a

stationary point and ∇2fpY ˚, Z˚q is positive semi-definite. Namely,

||ApY ˚ST
Z ` SY pZ

˚
q
T
q||

2
2 ` 2trpST

YAT
pApY ˚pZ˚qT ´ UV T

qqSZq ě 0, (2.8)

for all SY P Rnˆk, SZ P Rmˆk where pU, V q is a fixed point satisfying ApUV Tq “ b.
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Proof. The first part directly follows from the first-order optimality condition. Next,

we give the proof of the second part. The Hessian ∇2fpY ˚, Z˚q is positive semi-

definite due to the second-order optimality necessary condition. We derive from the

positive semi-definiteness of ∇2fpY ˚, Z˚q and the relation (2.6) that

xSY ,∇2
Y Y fpY

˚, Z˚qrSY sy ` xSY ,∇2
Y ZfpY

˚, Z˚qrSZsy

`xSZ ,∇2
ZY fpY

˚, Z˚qrSY sy ` xSZ ,∇2
ZZfpY

˚, Z˚qrSZsy ě 0 (2.9)

holds for all SY P Rnˆk and SZ P Rmˆk. Substituting relations (2.7) into (2.9), we

can obtain (2.8) which completes the proof.

Definition 2.7. A pair of matrices pY ˚, Z˚q P RnˆkˆRmˆk is called a second-order

stationary point of (NLS-k), if it is a stationary point and the second-order necessary

optimality condition (2.8) holds for all SY P Rnˆk, SZ P Rmˆk.

Obviously, a local minimizer must be a second-order stationary point, but not

necessarily vice versa.

2.3.2 A Further Look at the SNIG Condition

Now let us back to the SNIG condition. Our original motivation is actually to find

the solution of problem (1.1) without heavily involving singular value decomposi-

tion, which will prohibitively expensive from the perspective of computation when

handling large-scale problems.

Actually, to obtain formulation (1.3) or (NLS-k), the affine rank minimization

problem is first cast as the following Linear Least Squares problem with a rank

constraint:

minimize
XPRnˆm

ekpXq :“ }ApXq ´ b}22

subject to rankpXq ď k,

(LLS-k)
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where k is an positive integer. For brevity, we denote this Linear Least Squares

problem as (LLS-k).

But the global minimizer of (LLS-k) with a fixed k is not attainable in practice due

to the nonsmooth and nonconvex rank constraint. So we use matrix factorization to

embed such rank constraint into the objective and hence consider problem (NLS-k).

(NLS-k) is still a nonconvex problem that may exist many local minimizers or saddle

points, which the gap between global minimizer and local minimizer are nonzero.

Based on quite a few preliminary analyses, both theoretically and numerically,

we observed that there exist a lot of scenarios where the gap between the global

minimizer and the second-order stationary point is zero. The SNIG condition actu-

ally focus on the gap between the global minimizer and the second-order stationary

point of (NLS-k). And it extracts the scenarios where the gap between the second-

order stationary point and the global optimizer vanishes. It somewhat resembles

the convexity which rule out the cases at which the local minimizers and the global

minimizer has no gap. And hence, for any problem instance with triplet satisfying

the SNIG condition, its global minimizer can be attained by invoking any local opti-

mization method which terminates at a second-order stationary point, which is the

basic idea of our propose algorithm framework in Chapter 3.

2.4 Three Scenarios where the SNIG Condition

Holds

The main purpose of this section is to present our theoretical results, i.e., three

scenarios of triplet pA,b, kq under which the SNIG condition holds. We first give the

special case of rank deficient second-order stationary point and then the case in which

the operator A is a bijection. Finally, we focus on the case that the operator is a

projection mapping taking a special structure like the structure investigated in [105].
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A simple example is first presented to illustrate the idea of our proof techniques.

Then we give the main result. Subsequently, a special case is analyzed carefully and

detailedly. The ultimate conclusion is achieved by permutating the corresponding

projection matrix with respect to the aforementioned special case.

2.4.1 Rank Deficient Second-order Stationary Point

In this section, we show that the SNIG condition holds at a rather general scenario

of triplet pA,b, kq over a particular subset of Rnˆk ˆ Rmˆk.

Theorem 2.1. Let pA,b, kq P Πpn,m,pq ˆ Rp ˆK be a triplet satisfying Assumption

2.1. Then the SNIG condition holds at the triplet pA,b, kq over the set

C̄ :“ tpX, Y q P Rnˆk
ˆ Rmˆk

| at least one of X and Y is rank deficientu.

Proof. Let pY, Zq P Rnˆk ˆ Rmˆk be any second-order stationary point of (NLS-k)

satisfying that at least one of Y and Z is rank deficient.

Denote pU, V q as a global optimizer of (NLS-k). It follows from Assumption 2.1

and k ě r˚ that fpU, V q “ 0. Namely, ApUV Tq “ b holds. Therefore we can rewrite

the objective function of (NLS-k) as

fpY, Zq “
1

2
||ApY ZT

q ´ApUV T
q||

2
2. (2.10)

Without loss of generality, we assume that Y is rank deficient, i.e., there exists a

nonzero vector ỹ P Rk satisfying Y ỹ “ 0. Without loss of generality, we assume ỹl ‰ 0

for some l P t1, 2, . . . , ku. We prove the conclusion by contradiction. Suppose there

exists ps, tq P tpi, jq | 1 ď i ď n, 1 ď j ď mu satisfying η “ pATpApY ZT´UV Tqqqst ‰

0.

Then, we set SY P Rnˆk as follows

pSY qi1i2 “

#

η, if i1 “ s and i2 “ l,

0, otherwise.
(2.11)
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Let SZ “ z̃ỹT, and set z̃ P Rm as follows

z̃j “

#

´ξỹl, if j “ t,

0, otherwise,
(2.12)

where ξ ą ||AprszT
l q||

2
2{2ỹ

2
l . Here rs P Rn is the s-th column of identity matrix In

and zl denotes the l-th column of Z.

Recall Proposition 2.4, we have

||ApY ST
Z ` SYZ

T
q||

2
2 ` 2trpST

YAT
pApY ZT

´ UV T
qqSZq ě 0, (2.13)

for all SY P Rnˆk, SZ P Rmˆk and ||SY ||
2
F ` ||SZ ||

2
F ‰ 0.

Plugging (2.11) and (2.12) into (2.13), we obtain

||ApY ST
Z ` SYZ

T
q||

2
2 ` 2trpST

YAT
pApY ZT

´ UV T
qqSZq

“ ||ApY ỹz̃T
` SYZ

T
q||

2
2 ` 2trpST

YAT
pApY ZT

´ UV T
qqz̃ỹT

q

“ ||ApSYZT
q||

2
2 ` 2trpỹTST

YAT
pApY ZT

´ UV T
qqz̃q

“ η2
||AprszT

l q||
2
2 ´ 2ξη2ỹ2

l ă 0.

Hence, the second-order necessary optimality condition is violated, which is contrary

to the fact that pY, Zq is a second-order stationary point. Therefore ATpApY ZT ´

UV Tqq “ 0, which implies ApY ZT´UV Tq “ 0 due to the full rankness of A. Namely,

fpY, Zq “ 0. We complete the proof.

Theorem 2.1 tells us that for any (NLS-k) with zero-residual, any rank deficient

second-order stationary point is a global minimizer. In this chapter, we show this

result and utilize it to prove our subsequent results in the following two sections. Ac-

tually, this result might be much more useful than we have explored here. Specifically

speaking, if we can design an algorithm which always terminates at rank deficient

second-order stationary point if the problem has, then we can use Theorem 2.1 to

directly check the global optimality.
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2.4.2 The Scenario When A is a Special Bijection

In this section, we consider the case that p “ nm and a special case of affine constraint

ApXq “ b, namely

CTXD “ B

where C P Rnˆn, D P Rmˆm and B P Rnˆm are given.

Consider p “ nm and the special class of triplet pApC,Dq,bpBq, kq where

A
pC,Dq
i`pj´1qn “ CiD

T
j and b

pBq
i`pj´1qn “ Bi,j, i “ 1, ..., n, j “ 1, ...,m, (2.14)

with Ci and Dj the i-th column of C and j-th column of D, respectively. Then it is

not difficult to verify that

}ApC,DqpXq ´ bpBq}22 “ }CTXD ´B}2F. (2.15)

C and D are Identity Matrices

When C “ In and D “ Im where Iq is the q-dimensional identity matrices, the

function of the operator ApIn,Imq is to select all elements of a given matrix and stack

them column by column as a column vector. The the triplet pApIn,Imq,b, kq satisfies

the SNIG condition. Intuitively, this is right without doubt since we of course can

reconstruct a matrix by observing all coefficients of that matrix. But in order to

abstract the idea and methodology, we begin our investigation with such simply and

obviously special case.

Lemma 2.1. Suppose that the triplet pApIn,Imq, bpBq, kq defined by (2.14) with C “ In

and D “ Im satisfies Assumption 2.1. Then the SNIG condition holds at the triplet

pApIn,Imq,bpBq, kq.

Proof. Suppose that the triplet pApIn,Imq, bpBq, kq defined by (2.14) with C “ In and

D “ Im satisfies Assumption 2.1 that k ě rankpBq and there exist U P Rnˆk and
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V P Rmˆk such that bpBq “ ApIn,ImqpUV Tq. Namely, pU, V q is a global optimizer

of (NLS-k) corresponding to the triplet pApIn,Imq,bpBq, kq. By (2.15), the objective

function of (NLS-k) can be reformulated as

fpY, Zq “
1

2
}Y ZT

´B}2F.

Assume that pY, Zq is a second-order stationary point of problem (NLS-k) with

respect to pApIn,Imq, bpBq, kq. The first-order optimality condition can be written as

"

Y TpY ZT ´ UV Tq “ 0,
pY ZT ´ UV TqZ “ 0.

(2.16)

After rearranging, we have

"

Y TY ZT “ Y TUV T,
Y ZTZ “ UV TZ.

(2.17)

Recall Theorem 2.1, the triplet pApIn,Imq,b, kq satisfies the SNIG condition if

either Y or Z is rank deficient. So we now only need to consider the case that both

of Y and Z are of full rank, which implies that both Y TY and ZTZ are nonsingular.

Then it directly from (2.17) that Y and Z have the following expressions

"

Y “ UV TZpZTZq´1,
Z “ ppY TY q´1Y TUV TqT.

(2.18)

The relation (2.17) also gives us the following equality

Y T
pY ZT

´ UV T
qZ “ 0, (2.19)

which can be reformulated as

Y TY ZTZ “ Y TUV TZ. (2.20)

Then Y TU and V TZ are also nonsingular which follows from (2.20) and the non-

singularity of Y TY and ZTZ.
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Hence, the following relation holds from (2.20)

pZTZq´1
pY TY q´1

“ pV TZq´1
pY TUq´1. (2.21)

Combining (2.18) and (2.21), we obtain

Y ZT
´ UV T

“ UpV TZpZTZq´1
pY TY q´1Y TU ´ IqV T

“ 0.

Namely, fpY, Zq “ 0. We complete the proof.

C and D are Diagonal Matrices

The same conclusion of Lemma 2.1 also holds when C and D are both nonsingular

diagonal matrices. To see this, suppose that

C “

»

—

—

—

–

c1 0 ¨ ¨ ¨ 0
0 c2 ¨ ¨ ¨ 0

0 0
. . . 0

0 0 ¨ ¨ ¨ cn

fi

ffi

ffi

ffi

fl

and D “

»

—

—

—

–

d1 0 ¨ ¨ ¨ 0
0 d2 ¨ ¨ ¨ 0

0 0
. . . 0

0 0 ¨ ¨ ¨ dn

fi

ffi

ffi

ffi

fl

,

with ci ‰ 0 p@i “ 1, . . . , nq and dj ‰ 0 p@j “ 1, . . . ,mq, then

ApC,DqpXq “
´

xA
pC,Dq
1 , Xy, . . . , xApC,Dqn , Xy, . . . , xA

pC,Dq
1`pm´1qn, Xy, . . . , xA

pC,Dq
nm , Xy

¯T

“
`

CT
1 XD1, . . . , C

T
nXD1, . . . , C

T
1 XDm, . . . , C

T
nXDm

˘T

“
`

c1d1e
T
1X1, . . . , cnd1e

T
nXm, . . . , c1dmeT

1Xm, . . . , cndmeT
nXm

˘T
,

(2.22)

where ei is the i-th column of identity matrix In for i “ 1, . . . , n and Xj is the j-th

column of matrix X for j “ 1, . . . ,m.

It follows from Proposition 2.2 and (2.22) that

pApC,DqqTpApC,DqpXqq “
n
ÿ

i“1

m
ÿ

j“1

pcidje
T
i XmqCiD

T
j

“

n
ÿ

i“1

m
ÿ

j“1

pc2
i d

2
je

T
i XmqEij

“ C2XD2,
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where Eij is a n by m matrix with the ij-th position equal to 1 and 0 otherwise,

C2 “ Diagpc2
1, . . . , c

2
nq and D2 “ Diagpd2

1, . . . , d
2
mq are both diagonal matrices.

Then the first-order optimality condition of (NLS-k) with respect to pApC,Dq,b, kq

can expressed as (for simplicity, we below use A, C and D to denote ApC,Dq , C2 and

D2 in the analysis)

#

ATpApY ZT ´ UV TqqZ “ CpY ZTD ´ CUV TqDZ “ pỸ Z̃T ´ Ũ Ṽ TqZ “ 0

Y TpATpApY ZT ´ UV Tqq “ Y TCpY ZTD ´ CUV TqD “ Y TpỸ Z̃T ´ Ũ Ṽ Tq “ 0

(2.23)

where U P Rnˆk and V P Rmˆk such that ApUV Tq “ b and

Ỹ “ CY, Z̃T
“ ZTD, Ũ “ CU, Ṽ T

“ V TD. (2.24)

As a result, the optimality condition (2.23) can imply

ApY ZT
´ UV T

q “ 0,

whose proof is totally same with the counterpart of Lemma 2.1, we here omit the

details.

On the other hand, the singularity of Y TỸ and Z̃TZ is determined by the singu-

larity of Y and Z. This is because it follows from (2.24) that

#

Y TỸ “ Y TCY “ Y TC
1
2C

1
2Y “ pC

1
2Y qTpC

1
2Y q

Z̃TZ “ ZTDZ “ ZTD
1
2D

1
2Z “ pD

1
2ZqTpD

1
2Zq

where C
1
2 “ Diagp|c1|, . . . , |cn|q and D

1
2 “ Diagp|d1|, . . . , |dm|q.

Combining the above two conclusions, we can ultimately conclude that the same

result holds of Lemma 2.1 holds when C and D are diagonal and nonsingular matri-

ces.
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C and D are Nonsingular Matrices

Applying the same idea, we actually can extend the conclusion of Lemma (2.1) to

more general case. Below, we present the result which illustrate that pApC,Dq,bpBq, kq

shall satisfy the SNIG condition only if C and D are nonsingular and k ě r˚.

Theorem 2.2. Suppose that the triplet pApC,Dq, bpBq, kq defined by (2.14) satisfies

Assumption 2.1. If both C P Rnˆn and D P Rmˆm are nonsingular, then the SNIG

condition holds at the triplet pApC,Dq,bpBq, kq.

Proof. It follows from the triplet pApC,Dq,bpBq, kq satisfying Assumption 2.1 that k ě

rankpBq and there exist U P Rnˆk and V P Rmˆk such that bpBq “ ApC,DqpCTpUV TqDq.

Namely, pU, V q is a global optimizer of (NLS-k) corresponding to the triplet pApC,Dq,bpBq, kq.

By (2.15), the objective function of (NLS-k) can be reformulated as

fpY, Zq “
1

2
}CT

pY ZT
qD ´B}2F.

Assume that pY, Zq is a second-order stationary point of problem (NLS-k) with

respect to pApC,Dq, bpBq, kq. The first-order optimality condition can be written as

"

Y TCCTpY ZT ´ UV TqDDT “ 0,
CCTpY ZT ´ UV TqDDTZ “ 0.

(2.25)

Denote Ỹ “ CCTY , Z̃T “ ZTDDT, Ũ “ CCTU , Ṽ T “ V TDDT, (2.25) can be

rearranged as

"

pỸ Z̃T ´ Ũ Ṽ TqZ “ 0,

Y T pỸ Z̃T ´ Ũ Ṽ Tq “ 0.

First we consider the case that both Y TỸ and Z̃TZ are nonsingular, we have

#

Ỹ “ Ũ Ṽ TZpZ̃TZq´1,

Z̃ “ ppY TỸ q´1Y TŨ Ṽ TqT,
(2.26)
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and then

Y T
pỸ Z̃T

´ Ũ Ṽ T
qZ “ 0 ñ Y TỸ Z̃TZ “ Y TŨ Ṽ TZ,

which indicates that Y TŨ and Ṽ TZ are both nonsingular as well. Moreover, we can

obtain

pŨTZq´1
pY TṼ q´1

“ pZ̃TZq´1
pY TỸ q´1. (2.27)

Together with (2.26) and (2.27), we have

pApC,DqqTpApC,DqpY ZT
´ UV T

qq “ Ỹ Z̃T
´ Ũ Ṽ T

“ Ũ Ṽ TZpZ̃TZq´1
pY TỸ q´1Y TŨ Ṽ T

´ Ũ Ṽ T

“ ŨpṼ TZpZ̃TZq´1
pY TỸ q´1Y TŨ ´ IkqṼ

T

“ 0,

which indicates ApC,DqpY ZT ´ UV Tq “ 0 due to the full rankness of ApC,Dq.

Finally, we notice that Y TỸ “ pCY qTpCY q and Z̃TZ “ pDZqTpDZq. It then

follows from the nonsingularity of C and D that the nonsingularity of Y TỸ or Z̃TZ

implies the rank deficiency of Y or Z. Then we recall Theorem 2.1, and complete

the proof.

2.4.3 The Scenario When A Takes a Special Form

In this section we present a scenario of SNIG condition holding, where A is a projec-

tion mapping enjoying a special structure which has been investigated in [105]. To

better illustrate the idea behind our proof, we begin with discussing a simple case

in which the rank of the unknown matrix is 1, and then extend the argument to its

general parallel.
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A Simple Case: Rank of M is 1

As discussed in Chapter 1, formulation (NLS-k) includes matrix completion as a

special case. Suppose that PΩ is the projection operator mapping a matrix onto the

observation set Ω, now consider the following problem.

minimize
Y PRnˆk,ZPRmˆk

}PΩpXY
T
´Mq}2F, (2.28)

where M is the target matrix to be recovered and k is an integer to refer to the rank

estimation of matrix M .

Suppose that e is the vector with all entries equal to one of certain dimension.

i) M P R6ˆ6 with the last entry missing:

In problem (2.28), set k “ 1, M “ eeT P R6ˆ6 and Ω “ t1, ¨ ¨ ¨ , 6uˆt1, ¨ ¨ ¨ , 6uztp6, 6qu.

Denote that

x “

„

x1

a



, y “

„

y1

b



,

and rewrite the vector e in the form of block matrix correspondingly,

e “

„

e1

1



.

Then we have that

xyT
´M “

„

x1y
T
1 ´ e1e

T
1 bx1 ´ e1

ayT
1 ´ eT

1 ab´ 1



and

PΩpxyT
´Mq “

„

x1y
T
1 ´ e1e

T
1 bx1 ´ e1

ayT
1 ´ eT

1 0



.

Hence, the gradient of the objective function can be calculated as follows.

PΩpxyT
´Mqy “

„

px1y
T
1 ´ e1e

T
1 qy1 ` pbx1 ´ e1qb

payT
1 ´ eT

1 qy1



, (2.29)
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and

PΩpxyT
´MqTx “

„

py1x
T
1 ´ e1e

T
1 qx1 ` pay1 ´ e1qa

pbxT
1 ´ eT

1 qx1



. (2.30)

Plugging (2.29) and (2.30) into the following first-order optimality condition and

write in a compact form,

#

PΩpxyT ´Mqy “ 0,

PΩpxyT ´MqTx “ 0,

we can obtain that

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pyTyqx1 “ pe
Tyqe1, (2.31a)

pyT
1 y1qa “ eT

1 y1, (2.31b)

pxTxqy1 “ pe
Txqe1, (2.31c)

pxT
1 x1qb “ eT

1 x1. (2.31d)

From (2.31a) and (2.31c), we know that x1,y1 P spante1u. So we can assume that

#

x1 “ ce1, (2.32a)

y1 “ de1. (2.32b)

Substituting (2.32a) and (2.32b) into (2.31d) and (2.31b), respectively, we obtain

that
#

bc “ 1,

ad “ 1.
(2.33)

Recall that x “

„

x1

a



“

„

ce1

a



, this together with (2.31c) and (2.32b), we know that

p5c2
` a2

qd “ 5c` a. (2.34)

Multiplying d in both sides of (2.34), and then combine with ad “ 1, we obtain that

cd “ 1. (2.35)
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(2.33) and (2.35) jointly give that ab “ 1. And hence we obtain that xyT ´M “ 0,

that is, px,yq is the global optimizer of problem (2.28).

ii) M P Rnˆm with the last entry missing:

The same conclusion in case i can be extended any rank-1 rectangular matrix M

in Rnˆm with the last entry unobserved. Some details in the below analysis will be

dropped due to the same analysis idea.

In problem (2.28), set k “ 1, M “ eeT P Rnˆm and Ω “ t1, ¨ ¨ ¨ , nuˆt1, ¨ ¨ ¨ ,muztpn,mqu.

Given two vectors u P Rn and v P Rm such that M “ uvT. Rewriting all vectors

in block form, that is,

u “

„

u1

u



, v “

„

v1

v



, x “

„

x1

x



, y “

„

y1

y



.

Then,

xyT
´M “

„

x1y
T
1 ´ u1v

T
1 yx1 ´ vu1

xyT
1 ´ uvT

1 xy ´ uv



,

PΩpxyT
´Mq “

„

x1y
T
1 ´ u1v

T
1 yx1 ´ vu1

xyT
1 ´ uvT

1 0



.

The first-order optimality condition can be expressed as follows.

$

’

’

’

’

&

’

’

’

’

%

PΩpxyT
´Mqy “

„

px1y
T
1 ´ u1v

T
1 qy1 ` pyx1 ´ vu1qy

pxyT
1 ´ uvT

1 qy1



“ 0,

PΩpxyT
´MqTx “

„

py1x
T
1 ´ v1u

T
1 qx1 ` pxy1 ´ uv1qx

pyxT
1 ´ vu

T
1 qx1



“ 0.

That is,
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pyTyqx1 “ pv
Tyqu1,

pyT
1 y1qx “ pv

T
1 y1qu,

pxTxqy1 “ pu
Txqv1,

pxT
1 x1qy “ pu

T
1 x1qv.

(2.36)
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Let x1 “ αu1 and y1 “ βv1, then the above equation (2.36) can be simplified as

αpβ2
}v1}

2
` y2

qu1 “ pβ}v1}
2
` vyqu1,

βx “ u,

βpα2
}u1}

2
` x2

qv1 “ pα}u1}
2
` uxqv1,

αy “ v,

which implies that αβ “ 1 and xy “ uv. Therefore, xyT ´M “ 0.

iii) M P Rnˆm with one arbitrary entry missing:

A natural question is if the missing entry in M has to be at pn,mq-th position.

The answer might be not so apparent but fortunately no. That is, the only missing

entry can be at any position of M .

In problem (2.28), set k “ 1, M “ eeT P Rnˆm and the pi0, j0q-th entry is

missing, i.e., the observation set is Ω “ t1, ¨ ¨ ¨ , nu ˆ t1, ¨ ¨ ¨ ,muztpi0, j0qu with

1 ď i0 ď n, 1 ď j0 ď m.

Given u P Rn and v P Rm such that M “ uvT. Rewrite all vectors in the form

of block matrix, that is,

u “

»

–

u1

u
u2

fi

fl , v “

»

–

v1

v
v2

fi

fl , x “

»

–

x1

x
x2

fi

fl , y “

»

–

y1

y
y2

fi

fl ,

where u and x are the i0-th entry of u and x, v and y are the j0-th entry of v and

y, respectively. Then we have that

xyT
´M “

»

–

x1y
T
1 ´ u1v

T
1 yx1 ´ vu1 x1y

T
2 ´ u1v

T
2

xyT
1 ´ uvT

1 xy ´ uv xyT
2 ´ uvT

2

x2y
T
1 ´ u2v

T
1 yx2 ´ vu2 x2y

T
2 ´ u2v

T
2

fi

fl ,

PΩpxyT
´Mq “

»

–

x1y
T
1 ´ u1v

T
1 yx1 ´ vu1 x1y

T
2 ´ u1v

T
2

xyT
1 ´ uvT

1 0 xyT
2 ´ uvT

2

x2y
T
1 ´ u2v

T
1 yx2 ´ vu2 x2y

T
2 ´ u2v

T
2

fi

fl .

(2.37)
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Hence, the first-order optimality condition can be expressed as follows.

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

PΩpxyT
´Mqy “

»

–

px1y
T
1 ´ u1v

T
1 qy1 ` pyx1 ´ vu1qy ` px1y

T
2 ´ u1v

T
2 qy2

pxyT
1 ´ uvT

1 qy1 ` pxyT
2 ´ uvT

2 qy2

px2y
T
1 ´ u2v

T
1 qy1 ` pyx2 ´ vu2qy ` px2y

T
2 ´ u2v

T
2 qy2

fi

fl “ 0,

PΩpxyT
´MqTx “

»

–

py1x
T
1 ´ v1u

T
1 qx1 ` pxy1 ´ uv1qx` py1x

T
2 ´ v1u

T
2 qx2

pyxT
1 ´ vu

T
1 qx1 ` pyx

T
1 ´ vu

T
2 qx2

py2x
T
1 ´ v2u

T
1 qx1 ` pxy2 ´ uv2qx` py2x

T
2 ´ v2u

T
2 qx2

fi

fl “ 0.

(2.38)

That is,

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pyTyqx1 “ pv
Tyqu1, pyTyqx2 “ pv

Tyqu2, (2.39a)

pyT
1 y1 ` yT

2 y2qx “ pv
T
1 y1 ` vT

2 y2qu, (2.39b)

pxTxqy1 “ pu
Txqv1, pxTxqy2 “ pu

Txqv2, (2.39c)

pxT
1 x1 ` xT

2 x2qy “ pu
T
1 x1 ` uT

2 x2qv. (2.39d)

Let x1 “ αu1, x2 “ αu2, y1 “ βv1 and y2 “ βv2, then equation (2.39) gives the

following relationship.

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

αpβ2
p}v1}

2
2 ` }v2}

2
2q ` y

2
q “ βp}v1}

2
2 ` }v2}

2
2q ` vy,

βx “ u,

βpα2
p}u1}

2
2 ` }u2}

2
2q ` x

2
q “ αp}u1}

2
2 ` }u2}

2
2q ` ux,

αy “ v,

(2.40)

which implies that αβ “ 1 and xy “ uv, and hence gives that xyT ´M “ 0.

iv) How many entries can be removed to guarantee exact recovery?

According to the above argument, we know that for any rank-1 matrix M P

Rnˆm, pPΩ,M, 1q satisfies the SNIG condition if the observation set contains nm´ 1

elements. Then next needs to be considered are the following questions.

• How many at most entries can be removed?
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• What the relationship of positions among those entries?

Along the idea of writing the vector in block form which has been used repeatedly

above, we assume that the target matrix M “ uvT with u P Rn and v P Rm two

given column vectors. And suppose also that px,yq P Rn ˆ Rm is the first-order

stationary point of problem (2.28). Then we will rewrite u, v, x and y in different

forms in term of block vector as necessary.

Remove the last two entries in the last column. In this case, the observation

set Ω “ rns ˆ rmsztpn´ 1,mq, pn,mqu. Denote that

u “

„

u1

u2



, v “

„

v1

v



, x “

„

x1

x2



, y “

„

y1

y



,

with u1,x1 P Rn´2, u2,x2 P R2, v1,y1 P Rm´1 and v, y P R. Then we have that

M “ uvT
“

„

u1v
T
1 u1v

u2v
T
1 u2v



, xyT
“

„

x1y
T
1 x1y

x2y
T
1 x2y



, (2.41)

and hence

xyT
´M “

„

x1y
T
1 ´ u1v

T
1 x1y ´ u1v

x2y
T
1 ´ u2v

T
1 x2y ´ u2v



,

PΩpxyT
´Mq “

„

x1y
T
1 ´ u1v

T
1 x1y ´ u1v

x2y
T
1 ´ u2v

T
1 0



.

(2.42)

Thus the first-order optimality condition can be expressed explicitly as follows,

$

’

’

’

’

&

’

’

’

’

%

PΩpxyT
´Mqy “

„

px1y
T
1 ´ u1v

T
1 qy1 ` px1y ´ u1vqy

px2y
T
1 ´ u2v

T
1 qy1



“ 0,

PΩpxyT
´MqTx “

„

py1x
T
1 ´ v1u

T
1 qx1 ` py1x

T
2 ´ v1u

T
2 qx2

pyxT
1 ´ vu

T
1 qx1



“ 0,

(2.43)
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which can be further reformulated as

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

x1py
Tyq “ u1pv

Tyq, (2.44a)

x2py
Tyq “ u2pv

Tyq, (2.44b)

ypxTxq “ vpuTxq, (2.44c)

ypxT
1 x1q “ vpuT

1 x1q. (2.44d)

Due to (2.44a), (2.44b) and (2.44c), we can set x “ αu, and y1 “ βv1.

Substitute back x1 “ αu1 into (2.44d), we obtain αy “ v. Then substitute

x “ αu, y “
“

βvT
1 y

‰T
and αy “ v into (2.44b), we have αβ “ 1. Therefore,

xyT ´M “ 0 can be easily achieved just by simple verification.

Remove two entries in secondary diagonal. In this case, the observation set

Ω “ rns ˆ rmsztpn´ 1,mq, pn,m´ 1qu. Denote that

u “

»

–

u1

u1

u2

fi

fl , v “

»

–

v1

v1

v2

fi

fl , x “

»

–

x1

x1

x2

fi

fl , y “

»

–

y1

y1

y2

fi

fl ,

with u1,x1 P Rn´2, v1,y1 P Rm´2 and ui, vi, xi, yi P R pi “ 1, 2q. Then

xyT
´M “

»

–

x1y
T
1 ´ u1v

T
1 x1y1 ´ u1y1 x1y2 ´ u1v2

x1y
T
1 ´ u1v

T
1 x1y1 ´ u1v1 x1y2 ´ u1v2

x2y1 ´ u2v
T
1 x2y1 ´ u2v1 x2y2 ´ u2v2

fi

fl ,

PΩpxyT
´Mq “

»

–

x1y
T
1 ´ u1v

T
1 x1y1 ´ u1y1 x1y2 ´ u1v2

x1y
T
1 ´ u1v

T
1 x1y1 ´ u1v1 0

x2y1 ´ u2v
T
1 0 x2y2 ´ u2v2

fi

fl .

(2.45)

The first-order optimality condition is

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

PΩpxyT
´Mqy “

»

–

px1y
T
1 ´ u1v

T
1 qy1 ` px1y1 ´ u1v1qy1 ` px1y2 ´ u1v2qy2

px1y
T
1 ´ u1v

T
1 qy1 ` px1y1 ´ u1v1qy1

px2y
T
1 ´ u2v

T
1 qy1 ` px2y2 ´ u2v2qy2

fi

fl “ 0,

PΩpxyT
´MqTx “

»

–

py1x
T
1 ´ v1u

T
1 qx1 ` py1u1 ´ v1u1qx1 ` py1x2 ´ v1u2qx2

py1x
T
1 ´ v1u

T
1 qx1 ` px1y1 ´ u1v1qx1

py2x1 ´ v2u1qx1 ` px2y2 ´ u2v2qx2

fi

fl “ 0,

— 40 —



PhD Thesis CHAPTER 2. THEORETICAL ANALYSIS OF SNIG

that is,

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

x1py
Tyq “ u1pv

Tyq, (2.46a)

x1py
T
1 y1q ` x1y

2
1 “ u1pv

T
1 yq ` u1v1y1, (2.46b)

x2py
T
1 y1q ` x2y

2
2 “ u2pv

T
1 y1q ` u2v2y2, (2.46c)

y1px
Txq “ v1pu

Txq, (2.46d)

y1px
T
1 x1q ` x

2
1y1 “ v1pu

T
1 x1q ` u1v1x1, (2.46e)

y2px
T
1 x1q ` x

2
2y2 “ v2pu1x1q ` u2v2x2. (2.46f)

Unfortunately, it cannot be concluded that xyT´M “ 0 from the above (2.46).

Remove the last column. In this case, the observation set Ω “ rnsˆrmsztpi,mq|1 ď

i ď nu. Denote that

u “

»

—

—

—

–

u1

u2
...
un

fi

ffi

ffi

ffi

fl

, v “

„

v1

v



, x “

»

—

—

—

–

x1

x2
...
xn

fi

ffi

ffi

ffi

fl

, y “

„

y1

y



.

Then we have that

xyT
´M “

»

—

—

—

–

x1y
T
1 ´ u1v

T
1 x1y ´ u1v

x2y
T
1 ´ u2v

T
1 x2y ´ u2v

...
...

xny
T
1 ´ unv

T
1 xny ´ unv

fi

ffi

ffi

ffi

fl

, and PΩpxy´Mq “

»

—

—

—

–

x1y
T
1 ´ u1v

T
1 0

x2y
T
1 ´ u2v

T
1 0

...
...

xny
T
1 ´ unv

T
1 0

fi

ffi

ffi

ffi

fl

.

So the first-order optimality condition can be written as follows.

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

PΩpxy ´Mqy “

»

—

—

—

–

px1y
T
1 ´ u1v

T
1 qy1

px2y
T
1 ´ u2v

T
1 qy1

...
pxny

T
1 ´ unv

T
1 qy1

fi

ffi

ffi

ffi

fl

“ 0,

PΩpxy ´MqTx “

„
ř

i“1 x
2
iy1 ´

řn
i“1 xiuiv1

0



“ 0,

(2.47)
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which indicates that βxi “ ui pi “ 1, ¨ ¨ ¨ , nq and αβ “ 1 if we set x “ αu

and y1 “ βv1. But we have no idea about the relation between v and y since

the second row of PΩpxyT´MqTx vanishes. Therefore, we could not conclude

that xyT ´M “ 0.

Nevertheless, the above analysis show that we can obtain αy “ v if there exists

at least one nonzero entry in the last column of PΩpxyT ´Mq. And hence we

can conclude xyT´M “ 0. Therefore, we can claim that it can be removed at

most n´ 1 entries in the last column to guarantee exact recovery for the case

that the rank of M is one.

Main Results and Proof Outline

Actually, using the same idea and proof techniques, we can extend the argument on

rank one matrix M in Subsection 2.4.3 to more general case, i.e., the rank of matrix

M is not necessarily restricted to one. And similar conclusion can be achieved as

well.

Consider the triplet pAΩ,bΩ, kq P Πpn,m,pq ˆ Rp ˆK with pAΩ,bΩq defined by

AΩ
pXq “ pxAΩ

1 , Xy, . . . , xA
Ω
p , Xyq

T, bΩ
“ pbΩ

1 , . . . , b
Ω
p q

T, (2.48)

where Ω Ă tpi, jq|1 ď i ď n, 1 ď j ď mu, p “ |Ω| is the cardinality of Ω, and

AΩ
t “ Eitjt ppit, jtq P Ω, 1 ď t ď pq. Here Eij P Rnˆm is a matrix with pi, jq-th entry

equal to 1 and 0 otherwise. We call Ω the observation-index set.

Any triplet pAΩ,bΩ, kq determines a concrete instance of (NLS-k) as the following

minimize
Y PRnˆk,ZPRmˆk

fpY, Zq :“
1

2
||AΩ

pY ZT
q ´ bΩ

||
2
2. (2.49)

If the triplet pAΩ,bΩ, kq satisfies Assumption 2.1, as mentioned before, there

exists at least one matrix M such that

AΩ
pMq “ bΩ,
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or equivalently,

Mitjt “ bΩ
t , pit, jtq P Ω, 1 ď t ď p.

We call such matrix M an observation matrix with respect to the triplet pAΩ,bΩ, kq.

Suppose the observation-index set Ω in (2.48) has the following form

Ω “ I1 Y I2 Y I3, (2.50)

where

I1 “ tpis, jtq|1 ď s ď ñ, 1 ď t ď m̃u,

I2 “ tpis, jtq|1 ď s ď ñ, m̃` 1 ď t ď mu,

I3 “ tpis, jtq|ñ` 1 ď s ď n, 1 ď t ď m̃u,

(2.51)

for given ñ P t1, ¨ ¨ ¨ , nu, m̃ P t1, ¨ ¨ ¨ ,mu. Clearly, Ω defined by (2.50) consists of ñ

rows and m̃ columns of the observation matrix M .

Our main results can be stated as follows.

Theorem 2.3. Let pAΩ,bΩq be defined as (2.48) and Ω be in the form of (2.50).

Suppose the triplet pAΩ,bΩ, kq satisfies Assumption 2.1 and M is its corresponding

observation matrix with rank r. If the rank of the submatrices MIi indexed by Ii

satisfies rankpMIiq “ rankpMq “ r where Ii pi “ 1, 2, 3q is given by (2.51), then the

SNIG condition holds at the triplet pAΩ, bΩ, kq.

Remark 2.1. We notice that the scenario discussed in Theorem 2.3 is much more

general than the one discussed in Theorem 2.2. The number of observations (the

number of known entries of the observation matrix M) here is p “ m̃n` ñpm´m̃q ă

mn. The smallest choice of p is kpm` nq when m̃ “ ñ “ k, which is much less than

the lowest requirement, i.e. pm ` nq logpm ` nq, on the number of observations to

guarantee the exact recovery.

The proof of Theorem 2.3 will be divided into two parts:
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i) Firstly, we prove that the SNIG condition holds at the triplet pAΩ̃,bΩ̃, kq with

the observation set Ω̃ being a special case of (2.50);

ii) Secondly, we show that for any Ω defined as (2.48), there exists Ω̃ being of

the structure mentioned above and the same cardinality with Ω, and satisfying

that problems (NLS-k) determined by pAΩ,bΩ, kq and pAΩ̃,bΩ̃, kq share the

same optimality properties, i.e. function values, optimality conditions.

The Situation that Ω̃ is of Special Structure

In particular, suppose the special triplet pAΩ̃,bΩ̃, kq satisfies Assumption 2.1 where

pAΩ̃,bΩ̃q is defined by (2.48) and the observation-index set is of the form

Ω̃ “ Ĩ1 Y Ĩ2 Y Ĩ3 (2.52)

where

Ĩ1 “ tpi, jq|1 ď i ď ñ, 1 ď j ď m̃u,

Ĩ2 “ tpi, jq|1 ď i ď ñ, m̃` 1 ď j ď mu,

Ĩ3 “ tpi, jq|ñ` 1 ď i ď n, 1 ď j ď m̃u,

(2.53)

which contains all the indices of the first ñ rows and the first m̃ columns of the

corresponding observation matrix, say M̃ .

Hence, problem (2.49) can further be reformulated as,

minimize
Ỹ PRnˆk,Z̃PRmˆk

f̃pỸ , Z̃q :“
1

2
||AΩ̃

pỸ Z̃T
q ´ bΩ̃

||
2
2. (2.54)

Lemma 2.2. Let pAΩ̃,bΩ̃q be defined by (2.48) and Ω̃ be in the form of (2.52).

Suppose the triplet pAΩ̃,bΩ̃, kq satisfies Assumption 2.1 and M̃ is the corresponding

observation matrix with rank r̃. If the rank of the submatrices M̃Ĩi
indexed by Ĩi

satisfies rankpM̃Ĩi
q “ rankpM̃q “ r̃ where Ĩi pi “ 1, 2, 3q is given by (2.53), then the

SNIG condition holds at the triplet pAΩ̃,bΩ̃, kq.
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Proof. Suppose pŨ , Ṽ q P Rnˆk ˆ Rmˆk is the global minimizer of (2.54), namely,

M̃ “ Ũ Ṽ T and bΩ̃ “ AΩ̃pŨ Ṽ Tq. Let pỸ , Z̃q P Rnˆk ˆ Rmˆk be a second-order

stationary point of problem (2.54). Next, we are going to prove the lemma by the

following two folds.

I: Either Ỹ or Z̃ is rank deficient. In this case, the SNIG condition holding at

pAΩ̃,bΩ̃, kq directly follows from Theorem 2.1 and hence the proof is completed.

II: Both of Ỹ and Z̃ are of full column rank. According to the structure of Ω̃

in the form of (2.52), we rewrite the matrices Ũ , Ṽ , Ỹ and Z̃ as follows

Ũ “

„

U1

U2



, Ṽ “

„

V1

V2



, Ỹ “

„

Y1

Y2



, Z̃ “

„

Z1

Z2



,

where U1, Y1 P Rñˆk, U2, Y2 P Rpn´ñqˆk, V1, Z1 P Rm̃ˆk and V2, Z2 P Rpm´m̃qˆk. Then

it follows from straightforward calculations that

pAΩ̃
q
T
pAΩ̃

pỸ Z̃T
q ´ bΩ̃

q “ pAΩ̃
q
TAΩ̃

pỸ Z̃T
´ Ũ Ṽ T

q “

„

Y1Z
T
1 ´ U1V

T
1 Y1Z

T
2 ´ U1V

T
2

Y2Z
T
1 ´ U2V

T
1 0



.

Hence, the first-order optimality condition of (2.54) can be expressed as follows,

$

’

’

’

’

&

’

’

’

’

%

ppAΩ̃
q
T
pAΩ̃

pỸ Z̃T
q ´ bΩ̃

qqZ̃ “

„

pY1Z
T
1 ´ U1V

T
1 qZ1 ` pY1Z

T
2 ´ U1V

T
2 qZ2

pY2Z
T
1 ´ U2V

T
1 qZ1



“ 0,

ppAΩ̃
q
T
pAΩ̃

pỸ Z̃T
q ´ bΩ̃

qq
TỸ “

„

pZ1Y
T

1 ´ V1U
T
1 qY1 ` pZ1Y

T
2 ´ V1U

T
2 qY2

pZ2Y
T

1 ´ V2U
T
1 qY1



“ 0

that is

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

pY1Z
T
1 ´ U1V

T
1 qZ1 ` pY1Z

T
2 ´ U1V

T
2 qZ2 “ 0, (2.55a)

pY2Z
T
1 ´ U2V

T
1 qZ1 “ 0, (2.55b)

pZ1Y
T

1 ´ V1U
T
1 qY1 ` pZ1Y

T
2 ´ V1U

T
2 qY2 “ 0, (2.55c)

pZ2Y
T

1 ´ V2U
T
1 qY1 “ 0. (2.55d)
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By rearranging (2.55a) and (2.55c), we have

$

&

%

Y1pZ̃
TZ̃q “ U1pṼ

TZ̃q, (2.56a)

Z1pỸ
TỸ q “ V1pŨ

TỸ q. (2.56b)

Combining (2.56), (2.55b) and (2.55d) together, we obtain

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Y1 “ U1pṼ
TZ̃qpZ̃TZ̃q´1, (2.57a)

Z1 “ V1pŨ
TỸ qpỸ TỸ q´1, (2.57b)

Y2pZ
T
1 Z1q “ U2pV

T
1 Z1q, (2.57c)

Z2pY
T

1 Y1q “ V2pU
T
1 Y1q. (2.57d)

As we know, the second-order necessary optimality condition of problem (2.54)

can be formulated as

}AΩ̃
pỸ ST

Z̃
` SỸ Z̃

T
q}

2
2 ` 2trpST

Ỹ
ppAΩ̃

q
T
pAΩ̃

pỸ Z̃T
´ Ũ Ṽ T

qqqSZ̃q ě 0, (2.58)

for all SỸ P Rnˆk, SZ̃ P Rmˆk.

We further prove our argument through discussing the following four cases of

different structures of pY1, Z1q,

i. Y1 is rank deficient and Z1 is of full column rank;

ii. Y1 is of full column rank and Z1 is rank deficient;

iii. both Y1 and Z1 are rank deficient;

iv. both Y1 and Z1 are of full column rank.

i. Y1 is rank deficient and Z1 is of full column rank. Due to the rank

deficiency of Y1, there exists a nonzero vector ỹ “ py1, . . . , ykq
T P Rk satisfying

Y1ỹ “ 0. Without loss of generality, we assume that yl ‰ 0 for some l P t1, ¨ ¨ ¨ , ku.
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Then we can conclude that Y1Z
T
2 “ U1V

T
2 . Otherwise, suppose that there exists

ps, tq P t1, ¨ ¨ ¨ , ñu ˆ tm̃` 1, ¨ ¨ ¨ ,mu satisfying η “ pY1Z
T
2 ´ U1V

T
2 qst ‰ 0.

Then we set

SỸ “

„

SY1

0



and SZ̃ “

„

0
SZ2



(2.59)

where

pSY1qi1i2 “

#

η, if i1 “ s and i2 “ l,

0, otherwise,
and SZ2 “ z̃ỹT

with z̃ P Rm´m̃ given by

z̃j “

#

´ξyl, if j “ t,

0, otherwise,

and ξ ą }AΩprsz
T
l q}

2
2{2y

2
l . Here rs P Rñ is the s-th column of identity matrix Iñ and

zl denotes the l-th column of Z.

Substituting (2.59) into (2.58), we obtain

}AΩ
pY ST

Z2
` SY1Z

T
q}

2
2 ` 2trpST

Y1
pY1Z

T
2 ´ U1V

T
2 qSZ2q

“}AΩ
pSY1Z

T
q}

2
2 ` 2trpỹTST

Y1
pY1Z

T
2 ´ U1V

T
2 qz̃q

“η2
}AΩ

prsz
T
l q}

2
2 ´ 2ξη2ỹ2

l ă 0,

which implies that the second-order necessary condition is violated at pỸ , Z̃q. There-

fore, it holds that Y1Z
T
2 “ U1V

T
2 . Together with (2.55a), (2.55b), we obtain Ỹ pZT

1 Z1q “

ŨpV T
1 Z1q.

From the assumption rankpM̃Ĩ1
q “ r̃ “ k, we know rankpU1V

T
1 q “ r̃ “ k, which

implies U1 and V1 are full column rank. Thus, V T
1 Z1 is nonsingular. Consequently,

Y1 “ U1pV
T

1 Z1qpZ
T
1 Z1q

´1

is of full column rank, which contradicts to the assumption that Y1 is rank deficient.
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ii. Y1 is of full column rank and Z1 is rank deficient. We can show the same

contradiction as case i. in the same manner and hence omit the detailed proof.

iii. Both Y1 and Z1 are rank deficient. By the same argument in case i, it follows

from the second-order optimality (2.58) that

#

Y1Z
T
2 “ U1V

T
2 ,

Y2Z
T
1 “ U2V

T
1 ,

(2.60)

due to the rank deficiency of Y1 and Z1.

It follows from the relationship (2.60) and rankpM̃Ĩi
q “ rankpM̃q “ r̃ (i “ 1, 2, 3)

that r̃p“ rankpŨ Ṽ Tq “ rankpM̃qq ă k. Hence there exist Ū P Rnˆr̃ and V̄ P Rmˆr̃

such that Ū V̄ T “ Ũ Ṽ T “ M̃ . Denote Ū and V̄ as

Ū “

„

Ū1

Ū2



and V̄ “

„

V̄1

V̄2



.

Similar to (2.57) and (2.60), we obtain

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Y1 “ Ū1pV̄
TZ̃qpZ̃TZ̃q´1, (2.61a)

Z1 “ V̄1pŪ
TỸ qpỸ TỸ q´1, (2.61b)

Y2pZ
T
1 Z1q “ Ū2pV̄

T
1 Z1q, (2.61c)

Z2pY
T

1 Y1q “ V̄2pŪ
T
1 Y1q. (2.61d)

and
#

Y1Z
T
2 “ Ū1V̄

T
2 ,

Y2Z
T
1 “ Ū2V̄

T
1 .

(2.62)

It follows from (2.61b), the second equation of (2.62) and the full column rankness

of Ū2, V̄1 that

spantZ1u “ spantV̄1u. (2.63)
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Define H̄ :“ Y1Z
T
1 ´ Ū1V̄

T
1 P Rñˆm̃. Due to (2.63), it holds that H̄y “ 0, for any

y K spantZ1u. On the other hand, for any y P spanpZ1q, there exists λ P Rm̃

satisfying y “ Z1λ. Using (2.55a) and the first equation of (2.62), we have H̄y “ 0.

Consequently, we can conclude that H̄y “ 0, for all y P Rm̃, which implies H̄ “ 0.

Together with (2.62), we have pAΩ̃qTpAΩ̃pỸ Z̃Tq ´ bΩ̃q “ 0. Due to the full rankness

of AΩ̃, we have AΩ̃pỸ Z̃Tq ´ bΩ̃ “ 0.

iv. Both Y1 and Z1 are of full column rank. Define

Ĥ “ Y2Z
T
1 ´ U2V

T
1 P Rpn´ñqˆm̃.

The full column rankness of Z1 and equation (2.57b) imply

spantZ1u “ spantV1u. (2.64)

Therefore, we can prove Ĥy “ 0 holds for any y K spantZ1u. By the optimality

condition (2.55b), we have Ĥy “ 0 holds for any y P spantZ1u. Thus, for any

y P Rm̃, it holds that Ĥy “ 0, which further implies

Ĥ “ 0. (2.65)

Similarly,

Y1Z
T
2 ´ U1V2 “ 0. (2.66)

Together with (2.55a), we have pY1Z
T
1 ´ U1V

T
1 qZ1 “ 0. On the other hand, (2.64)

implies pY1Z
T
1 ´ U1V

T
1 qz “ 0 holds for any z K spantZ1u. Therefore,

Y1Z
T
1 ´ U1V

T
1 “ 0. (2.67)

Collecting (2.65), (2.66) and (2.67), we obtain pAΩ̃qTpAΩ̃pỸ Z̃Tq ´ bΩ̃q “ 0. Due to

the full rankness of AΩ̃, we have AΩ̃pỸ Z̃Tq ´ bΩ̃ “ 0.

To sum up, we conclude that if pỸ , Z̃q is a second-order stationary point of

problem (2.54), thenAΩ̃pỸ Z̃Tq´bΩ̃ “ 0, i.e., pỸ , Z̃q is a global minimizer of problem
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(2.54), which implies that the SNIG condition holds at the triplet pAΩ̃,bΩ̃, kq. We

complete the proof.

Remark 2.2. Let pAΩ̃,bΩ̃q be defined by (2.48) with bΩ̃
i “ 1 pi “ 1, . . . , pq and Ω̃ of

the form

Ω̃ “ tpi, jq|1 ď i ď 2, 1 ď j ď 2uYtpi, jq|1 ď i ď 2, 3 ď j ď 4uYtpi, jq|3 ď i ď 4, 1 ď j ď 2u,

which implies n “ m “ 4 and p “ |Ω| “ 12. Set

Ũ “ Ṽ “

?
2

2

„

1 1 1 1
1 1 1 1

T

,

and denote M̃ “ Ũ Ṽ T as the obervation matrix, we can easily verify that pAΩ̃,bΩ̃, kq

satisfies Assumption 2.1 and the SNIG condition holds at pAΩ̃,bΩ̃, 2q.

Set

Ỹ “

„

1
2

1
2

0 0
1
2

1
2

1 1

T

, Z̃ “

„

1 1 2 2
1 1 0 0

T

.

Clearly, pỸ , Z̃q is also a global minimizer of (2.54). However, Ỹ Z̃T ‰ M̃ , which

means the exact recovery does not hold at pAΩ̃,bΩ̃, kq.

Permutation between (2.49) and (2.54)

Let Ω be any observation-index set defined by (2.50), and pAΩ,bΩq be defined by

(2.48). Suppose M is the corresponding observation matrix of triplet pAΩ,bΩ, kq,

which implies that Assumption 2.1 is satisfied. Denote S “ pSijq by

Sij “

#

1, pi, jq P Ω,

0, otherwise.

It is not difficult to verify that there exist two permutation matrices, say P and Q,

such that

S̃ “ PSQT, (2.68)
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and the observation-index set Ω̃ corresponding to S̃, i.e.

S̃ij “

#

1, pi, jq P Ω̃,

0, otherwise,

satisfies (2.52). Let AΩ̃ be defined by (2.48), and bΩ̃ be defined by

bΩ̃
t “ M̃itjt , pit, jtq P Ω̃, t “ 1, 2, ..., p :“ |Ω|,

where M̃ “ PMQT.

Problem (NLS-k) determined by pAΩ,bΩ, kq and pAΩ̃,bΩ̃, kq can be reformulated

as

minimize
Y PRnˆk,ZPRmˆk

fpY, Zq “
1

2
}S ˝ pY ZT

´Mq}2F, (2.69)

and

minimize
Ỹ PRnˆk,Z̃PRmˆk

f̃pỸ , Z̃q “
1

2
}S̃ ˝ pỸ Z̃T

´ M̃q}2F, (2.70)

respectively, where ˝ designates the Hadamard product of two matrices with the

same size.

We first reveal the relationship between the rank of the submatrices of M and

M̃ .

Lemma 2.3. Let M be the observation matrix with respect to pAΩ,bΩ, kq and M̃ “

PMQT with P and Q defined by (2.68). Suppose that Ii and Ĩi are defined by (2.51)

and (2.53) for i “ 1, 2, 3, then the submatrix MIi and M̃Ĩi
have the same rank, that

is,

rankpMIiq “ rankpM̃Ĩi
q, i “ 1, 2, 3.

Proof. It is well known that multiplying a permutation matrix from the left and

right side of a matrix is only reorder the rows and columns of that matrix. From

M̃ “ PMQT, we know that actually M̃Ĩi
“ MIi , @i “ 1, 2, 3. Thus, it holds that

rankpM̃Ĩi
q “ rankpMIiq p@i “ 1, 2, 3q.
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To obtain the equivalence of (2.69) and (2.70), we need the following relationship.

Lemma 2.4. Let P and Q be two permutation matrices and S P Rnˆm be a 0 ´ 1

matrix. Then we have

S ˝W “ PT
pPSQ ˝ PWQqQT, @W P Rnˆm. (2.71)

The proof of Lemma 2.4 directly follows from the definition of Hadamard product

and the basic properties of permutation matrix, and hence is omitted here.

Now, we arrive at our main theorem.

Theorem 2.4. Problem (2.69) and problem (2.70) share the following optimality

properties:

1. fpY, Zq “ f̃pỸ , Z̃q, for any Y P Rnˆk, Z P Rmˆk, Ỹ “ PY and Z̃ “ QZ;

2. if pY ˚, Z˚q is a second-order stationary point of problem (2.69), then pPY ˚, QZ˚q

is a second-order stationary point of problem (2.70), and vice versa.

Proof. 1.

f̃pỸ , Z̃q “
1

2
}S̃ ˝ pỸ Z̃T

´ M̃q}2F

“
1

2
}PSQT

˝ P pY ZT
´MqQT

}
2
F

“
1

2
}PT

pPSQT
˝ P pY ZT

´MqQT
qQ}2F

“
1

2
}S ˝ pY ZT

´Mq}2F “ fpY, Zq.

The third equality is due to the orthogonality of P and Q, and the fourth

results from (2.71).

2. What we need to prove is that pY ˚, Z˚q satisfying the optimality conditions of

problem (2.69) implies that pPY ˚, QZ˚q satisfying the optimality conditions of
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problem (2.70), and vice versa. For simplicity of notations, we below drop the

corner mark “˚” in pY ˚, Z˚q and pPY ˚, QZ˚q. Then the first order optimality

conditions are as follows.

Problem (2.69):

$

&

%

pS ˝ pY ZT
´MqqZ “ 0,

pS ˝ pY ZT
´MqqTY “ 0.

(2.72)

Problem (2.70):

$

&

%

pS̃ ˝ pỸ Z̃T
´ M̃qqZ̃ “ 0,

pS̃ ˝ pỸ Z̃T
´ M̃qqTỸ “ 0.

(2.73)

It is not difficult to verify that (2.72)ô (2.73). Indeed,

“ñ”
#

pS ˝ pY ZT ´MqqZ “ 0,

pS ˝ pY ZT ´MqqTY “ 0,

(2.71)
ùùùñ

#

pPTpPSQT ˝ P pY ZT ´MqQTqQqZ “ 0,

pPTpPSQT ˝ P pY ZT ´MqQTqQqTY “ 0,

P,Qnonsingular
ùùùùùùùùùùùùñ

#

S̃ ˝ pỸ Z̃T ´ M̃qZ̃ “ 0,

pS̃ ˝ pỸ Z̃T ´ M̃qqTỸ “ 0.

“ð”
#

pS̃ ˝ pỸ Z̃T ´ M̃qqZ̃ “ 0,

pS̃ ˝ pỸ Z̃T ´ M̃qqTỸ “ 0,

P,Qnonsigular
ùùùùùùùùùùùñ

#

PTpPSQT ˝ P pY ZT ´MqQTqQZ “ 0,

QTpPSQT ˝ P pY ZT ´MqQTqTPY “ 0,

(2.71)
ùùùñ

#

pS ˝ pY ZT ´MqqZ “ 0,

pS ˝ pY ZT ´MqqTY “ 0.

Next, we show that the second-order optimality conditions of problem (2.69)
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and (2.70) are equivalent. Their second-order optimality conditions are equiv-

alent to the following inequalities.

Problem (2.69): }S˝pY ST
Z`SYZ

T
q}

2
F`2trpST

Y pS˝pY Z
T
´MqqSZq ě 0 (2.74)

holds for any SY P Rnˆk and SZ P Rmˆk.

Problem (2.70): }S̃˝pỸ ST
Z̃
`SỸZ

T
q}

2
F`2trpST

Ỹ
pS̃˝pỸ Z̃´M̃qqSZ̃q ě 0 (2.75)

holds for any SỸ “ PSY and SZ̃ “ QSZ .

It is also not difficult to verify that

(2.74) holds forSY P Rnˆk andSZ P Rmˆk
ô (2.75) holds forSỸ andSZ̃ .

Actually,

}S ˝ pY ST
Z ` SYZ

T
q}

2
F

(2.71)
ùùùùù}PT

pPSQT
˝ P pY ST

Z ` SYZ
T
qQT

qQ}2F

P,Qorthogonal
ùùùùùùùùùùùù}S̃ ˝ pỸ ST

Z̃
` SỸ Z̃

T
q}

2
F,

and

trpST
Y pS ˝ pY Z

T
´MqqSZq

(2.71)
ùùùùùtrpST

Y rP
T
pPSQT

˝ P pY ZT
´MqQT

qQsSZq

“trpSỸ pS̃ ˝ pỸ Z̃
T
´ M̃qqSZ̃q.

Hence, we have that

}S ˝ pY ST
Z ` SYZ

T
q}

2
F ` 2trpST

Y pS ˝ pY Z
T
´MqqSZq

“}S̃ ˝ pỸ ST
Z̃
` SỸZ

T
q}

2
F ` 2trpST

Ỹ
pS̃ ˝ pỸ Z̃ ´ M̃qqSZ̃q

(2.76)

holds for any SY P Rnˆk, SZ P Rmˆk and SỸ “ PSY and SZ̃ “ QSZ .

Equation (2.76) implies the equivalence of the second-order optimality between

(2.69) and (2.70). We hence achieve the proof.
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Proof of Theorem 2.3

Proof. From Lemma 2.3, rankpM̃Ĩi
q “ rankpMIiq pi “ 1, 2, 3q. Then for any triplet

pAΩ,bΩ, kq, we can find a corresponding triplet pAΩ̃,bΩ̃, kq according to the pro-

cedure introduced in the previous subsection, and hence pAΩ̃,bΩ̃, kq satisfies the

assumptions of Theorem 2.3 and Theorem 2.2. Suppose that pỸ , Z̃q is a second-

order stationary point of problem (2.70), it follows from Theorem 2.4 that pY, Zq “

pPTỸ , QTZ̃q is a second-order stationary point of problem (2.69). By (2.71) and

Theorem 2.2, we have

pAΩ
q
T
pAΩ

pY ZT
q ´ bΩ

q “ S ˝ pY ZT
´Mq “ PT

pS̃ ˝ pỸ Z̃T
´ M̃qqQ

“ PT
ppAΩ̃

q
T
pAΩ̃

pỸ Z̃T
q ´ bΩ̃

qqQ “ 0,

which implies AΩpY ZTq´bΩ “ 0 due to the full rankness of A, namely, fpY, Zq “ 0.

Therefore, the SNIG condition holds the triplet pAΩ,bΩ, kq. The proof is completed.
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Chapter 3

An Algorithmic Framework for

Solving ARMP

The purpose of this chapter is to investigate an algorithm framework for solving

the affine rank minimization problem based our SNIG condition. To start with, we

establish the equivalence between (LLS-k) and (NLS-k) in the sense of sharing the

same local minima, and then illustrate some properties of the SNIG condition. Then

we propose a new algorithm framework based on the SNIG condition for finding

the solution of the affine rank minimization problem. Finally, we put forward a

conjecture about the reduction between the global minima of the problems with

consecutive ranks, and show how this conjecture plays an important role in our

propose algorithm framework.

3.1 Relationship between the Linear Least Squares

problem (LLS-k) and the Nonlinear Least Squares

problem (NLS-k)

The only difference between (LLS-k) and (NLS-k) is that (NLS-k) introduces the

variable change X “ Y ZT. By continuity, it is not difficult to verify that if X is a

local minimizer of (LLS-k), each pair of pY, Zq satisfying X “ Y ZT must be a local

minimizer of (NLS-k). However, the converse may not hold. In another word, the
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change of variables may perhaps introduce extraneous local minima. The following

lemma points out that the above situation cannot happen.

Lemma 3.1. Suppose that Ȳ P Rnˆk, Z̄ P Rmˆk, and X̄ “ Ȳ Z̄T. Then X̄ is a local

minimizer of (LLS-k), if and only if pȲ , Z̄q is a local minimizer of (NLS-k).

Proof. Using the continuity of the map pY, Zq ÞÑ Y ZT, we can obtain that if X̄ is a

local minimizer of (LLS-k), pȲ , Z̄q is a local minimizer of (NLS-k).

Now we consider the case when pȲ , Z̄q is a local minimizer of (NLS-k). Suppose

X̄ “ Ȳ Z̄T is not a local minimizer of (LLS-k) at this time. Then there exists a

sequence tXju such that each Xj is feasible to (LLS-k), ekpX
jq ă ekpX̄q for each j

and lim
jÑ8

Xj “ X̄.

Let Y jΣjpV jqT be the k-dominant singular value decomposition of Xj. Namely,

the columns of Y j P Rnˆk and V j P Rmˆk are the left and right singular vectors of Xj,

respectively, associated with the k largest singular values ofXj which are the diagonal

entries of the diagonal matrix Σj P Rkˆk. Let Zj “ V jΣj. We have Xj “ Y jpZjqT

due to the feasibility of Xj (rankpXjq “ k). According to the definition, it holds that

||Y j||2 “ 1 and ||Zj||2 “ ||X
j||2. Since tXju is bounded, we obtain the boundedness

of tpY j, Zjqu. Hence, there exists a subsequence of tpY j, ZjqujPJ converging to some

pY, Zq. Clearly, we have Y ZT “ X̄. It follows from ekpY
jpZjqTq “ ekpX

jq ă ekpX̄q “

ekpY Z
Tq that pY, Zq is not a local minimizer and hence pȲ , Z̄q is not either due to

the fact that Y ZT “ Ȳ Z̄T, which leads to the contrary. We complete the proof.

3.2 The Algorithm Framework for ARMP

In this subsection, we propose a complete algorithm framework for (1.1) through

solving a series of (NLS-k). We start with the relationship between (LLS-k) and

(1.1).
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Proposition 3.1. Suppose Assumption 2.1 holds and r˚ is the solution of (1.1).

For any given k, suppose X˚ is a global minimizer of (LLS-k), then the following

statements are true:

1. If ekpX
˚q “ 0, then k ě r˚.

2. If ekpX
˚q ą 0, then k ă r˚.

Proof. Suppose ekpX
˚q “ 0. Then we have ApX˚q “ b holds, namely ApX˚q is a

feasible point of (1.1). If k ě r˚ is not true, then rankpX˚q ď k ă r˚, which is

contrary to the definition of r˚. Hence, k ě r˚.

Now we come to the second part. Suppose that k ě r˚, then combining with

Assumption 2.1, we obtain that the global minimum of (LLS-k) should be zero.

Namely, the second part holds.

It directly follows from Proposition 3.1 that

e˚k “ 0, e˚k´1 ą 0 (3.1)

holds when k “ r˚, where e˚k and e˚k´1 denote the global minima of (LLS-k) and (LLS-

pk ´ 1q), respectively. This means that we can obtain r˚ through solving (LLS-k)

several times with respect to different k until criterion (3.1) holds.

Proposition 3.1 provides a way to check whether an estimate rank is optimal or

not. However, it is not practically useful in general, because solving each (NLS-k)

to global optimality is required. The following proposition combines Proposition 3.1

with the SNIG condition, and then obtain the following stronger result.

Proposition 3.2. Suppose A P Πpn,m,pq, b P Rp, and pA,b, kq satisfies the SNIG

condition for any k ě r˚. If pY ˚, Z˚q is a second-order stationary point of (NLS-k),

then the following statements are true:

1. If fpY ˚, Z˚q “ 0, then k ě r˚.
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2. If fpY ˚, Z˚q ą 0, then k ă r˚.

The proof directly follows from Proposition 3.1, Definition 2.1 and Lemma 3.1,

and hence is omitted.

Based on the above proposition, suppose f˚k and f˚k´1 are the function values of

a second-order stationary point of (NLS-k) and (NLS-pk ´ 1q), respectively. Then

f˚k “ 0 and f˚k´1 ą 0 if and only if k “ r˚. Hence, we can design the following

algorithm framework for solving (1.1).

Algorithm 3.1: Factorization Framework for Affine Rank Minimization

/* Initialization */

1 Input A P Πpn,m,pq and b P Rp; Set initial rank interval Φ :“ t1, ...,minpn,mqu.

2 Initialize k P Φ, Y 0 P Rnˆk and Z0 P Rmˆk.

/* Main Iteration */

3 Solve (NLS-k) to a second-order stationary point pY ˚, Z˚q.

4 if fpY ˚, Z˚q “ 0 then
5 Delete all elements greater than k from Φ;

6 else
7 Delete all elements less equal than k from Φ.

8 if |Φ| ą 1 then
9 Select k from Φ by a preset strategy;

10 Goto Step 3;

11 else
12 Terminate and return Y ˚pZ˚qT.

The preset strategy in Step 9 of Algorithm 3.1 can be enumerating from 1 to r˚

or the bisection method. For each of them, the number of total times that we need

to call the inner local optimization solver in the worst-case can easily be determined

as follows.

Theorem 3.1. Suppose that the SNIG condition holds at pA,b, kq for any k ě r˚.

Algorithm 3.1 terminates after invoking Step 3 at most r˚, or logpmintn,muq times,

if the Step 9 utilizes the enumeration or bisection, respectively.
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Proof. We skip the detailed proof, because it is a direct corollary of Proposition

3.2.

In Step 3 of Algorithm 3.1, we can invoke any local optimization algorithm that

terminates when the second-order necessary optimality condition is satisfied. A

practically efficient choice is the trust-region Newton method, see [23, 28, 101, 102]

for details.

Recently, to estimate the worst-case iteration complexity or function value evalua-

tion complexity becomes more and more popular for some first-order methods. There

are some works discussing the worst-case complexity for the second-order methods.

For instance, [5] showed the Opε´
3
2 q complexity for a second order interior point

method to solve the constrained non-Lipschitz nonconvex optimization problem to

an ε second order stationary point. In [19], the authors proved the Opε´3q com-

plexity for ARC method to solve a general unconstrained nonconvex problem. Since

trust-region Newton method is a special case of ARC, it should share a comparable

worst-case complexity.

In what follows, we illustrate by a simple numerical experiment how Algorithm 3.1

works with trust-region Newton method as the local solver and the bisection strategy

is taken to choose the estimate rank sequence tku. For simplicity, K denotes the

whole set of k selected. We consider the following matrix completion problems. The

target matrix M P Rnˆm with rank r is randomly generated with standard Gaussian

distribution. The sampling 0´ 1 matrix S of p 1-entries is also randomly generated

with uniform distribution. We denote the ratio between the number of measurements

and the number of entries in the matrix by sr “ p{pnmq (sampling ratio). Hence,

there are four parameters to determine a test instance: pn,m, sr, rq. We choose three

different small size instances with parameters p40, 40, 0.9, 20q, p40, 80, 0.6, 10q and

p200, 200, 0.3, 6q, respectively. See Figure 3.1 for details. As introduced in [19], the
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following stopping criterion is used in our algorithm.

||∇fpY, Zq||2F ď ε, λminp∇2fpY, Zqq ě ´
?
ε, (3.2)

where λmin denotes the smallest eigenvalue of a matrix.

Each curve is to illustrate how the total iteration number Iterk changes to meet

reach different tolerances of ε with a particular k P K. We display several curves

associated with different k P K, which are in the sequence chosen by our algorithm.

According to Figure 3.1, we notice that the trust-region Newton method does

share a similar worst-case iteration complexity with ARC method. Moreover, we

observe that most of the estimated ranks k are greater or much greater than the

real rank r˚. Since the computational cost per iteration of the trust-region Newton

method significantly expands with the increasing of k, to invoke the local solver in

the case of big k is definitely not desired. In this sense, the bisection strategy is not

a good option for Algorithm 3.1. Clearly, the enumeration strategy is not either.

Since it requires too many unnecessary inner layer loops.

In the next subsection, we would like to introduce a clever strategy for Step 9

of Algorithm 3.1. By which, we need solve much fewer (NLS-k) than enumeration

before finding the optimal rank r˚, and the estimated ranks k become much less than

those required in bisection strategy.

3.3 The Global Minima Reduction Conjecture

Let pApIn,Imq,bBq be defined by (2.14) where In denotes the nˆn identity matrix and

B is any give matrix. In this case, (LLS-k) is nothing but the k-dominant singular

value decomposition of the given data matrix B.

Proposition 3.3. Let e˚k be the global minimum of (LLS-k) with pApIn,Imq, bpBqq
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defined by (2.14). We have

e˚k “

mintn,mu
ÿ

i“k`1

σ2
i pBq, k “ 1, 2, ...,mintn,mu,

where σipBq denotes the i-th largest singular value of matrix B.

The proof of the above proposition directly follows from the equivalence between

(LLS-k) with such particular ApIn,Imq and the singular value decomposition.

Denote e˚0 “ }Ap0q ´ b}2F “
řmintn,mu
i“1 σ2

i pBq, then we have

e˚k´1 ´ e
˚
k “ σ2

kpBq,

and the following monotonically decreasing reduction:

e˚0 ´ e
˚
1 ě e˚1 ´ e

˚
2 ě ¨ ¨ ¨ ě emintn,mu´1 ´ emintn,mu. (3.3)

A natural conjecture is whether the relationship (3.3) holds for any combination

of A and b.

Conjecture 3.1. Let e˚k be the global minimum of (LLS-k) with any given pA,bq.

The reduction between e˚k´1 and e˚k is monotonically decreasing. Namely, (3.3) holds.

Now let us come back to Step 9 of Algorithm 3.1. Suppose we know that the

real rank r˚ is very small, namely, r˚ ! mintn,mu. Then to sequentially choose

k “ 1, 2, ... is often better than to use the bisection technique. If the conjecture

holds, then we can further optimize our choice. Suppose we have e˚j´1 and e˚j , then

the next k can be j `
Q

e˚
j

e˚
j´1´e

˚
j

U

, where rxs denotes the smallest integer not less than

x. This is because of the following proposition.

Proposition 3.4. If Conjecture 3.1 holds, then

r˚ ě j `

R

e˚j
e˚j´1 ´ e

˚
j

V

, j “ 1, 2, ...,mintn,mu ´ 1. (3.4)
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Proof. It follows from the relationship e˚r˚ “ 0 and Conjecture 3.1 that

e˚j “ e˚j ´ e
˚
r˚ “

r˚
ÿ

i“j`1

pe˚i ´ e
˚
i´1q ď pr

˚
´ jqpe˚j ´ e

˚
j´1q,

which gives us the inequality (3.4). We complete the proof.

We numerically check Conjecture 3.1 by the same matrix completion problems

introduced in the last subsection. In order to obtain a high quality global minimum

of (LLS-k), we invoke the trust-region Newton approach to solve the nonlinear least

square problem (NLS-k) initiated from N randomly generated starting points. The

“computed global minimum” is set to be the smallest value among all the function

values of the N computed solutions. Theoretically, when N goes to infinity, the

computed global minimum equals to ek with probability one. Empirically, we set

N “ maxtm,nu and believe the computed global minimum is good enough for these

small size problem. The reductions between the computed global minima of two

consecutive ranks are illustrated in Figure 3.2.

According to Figure 3.2, we can learn that Conjecture 3.1 holds in the testing

matrix completion problems. It is reasonable to believe that Conjecture 3.1 holds

in a large bunch of linear constrained rank minimization problems. We will further

analyze Conjecture 3.1 to obtain better understanding in our future work.

Finally, we check whether the overall performance of Algorithm 3.1 can be im-

proved by using Conjecture 3.1. We still use the aforementioned three matrix com-

pletion problems. We use the enumeration with the acceleration by Proposition 3.4

in the Step 9 of Algorithm 3.1. For simplicity, we call it the modified enumeration

strategy. We observe how the total weighted iteration number

ÿ

kPK
Iterk ¨

k

r˚
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changes with different tolerance of ε.

Figure 3.3 verifies the worst-case iteration complexity of the trust-region Newton

method again, and also shows the set K when the new strategy is used in Step 9 of

Algorithm 3.1. Figure 3.4 demonstrates the advantage of the modified enumeration

strategy comparing with the bisection strategy, since the former one requires much

less weighted total iteration numbers than the latter one especially when r˚ is far

less than the scale of mintm,nu.
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Figure 3.1: iteration numbers required by the trust region Newton method in reaching
different tolerance of ε
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Figure 3.2: reductions between the computed global minima of two consecutive ranks
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Figure 3.3: iteration numbers required by the trust region Newton method in reaching
different tolerance of ε
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Figure 3.4: weighted total iteration numbers required by using bisection strategy
and modified enumeration strategy
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Chapter 4

A Regularization Algorithm for

PSMP

In this chapter, we turn to the second class of nonconvex optimization problem, i.e.,

the partially separable convexly constrained nonlinear problem (1.6). We first intro-

duce a partially separable algorithm with adaptive regularization term for solving

problem (1.6). Then we present the worst-case complexity evaluation of function

value, first- and second-order gradient value. For the sake of convenience, we begin

this chapter with restating problem (1.6) as follows:

minimize
xPF

fpxq “
m
ÿ

i“1

fipUixq “
m
ÿ

i“1

fipxiq (4.1)

where f : Rn Ñ R, F is a non-empty closed convex set and for i P t1, . . . ,mu,

xi :“ Uix with Ui a (fixed) ni ˆ n matrix and ni ď n. And tUiu
m
i“1 are given m

matrices to satisfy that the ranges of the UT
i matrices span R, or equivalently, the

intersection of the nullspaces of the Ui is reduced to the origin.

4.1 Details of the Algorithm

Consider problem (4.1) and assume that each element function fi is p times contin-

uously differentiable and its p-the order derivative tensor ∇p
xi
fi is globally Lipschitz
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continuous with constant Li in the sense that, for all xi, yi P Rni and some constant

Li ě 0,

}∇p
xi
fipxiq ´∇p

xi
fipyiq}p ď Li}xi ´ yi} (4.2)

where }x} is the standard Euclidean norm of x and }T }p is the recursively induced

Euclidean norm of the p-th order tensor T (see [6] for details). It can be shown (see

Lemma 4.2 below) that this assumption implies that, for i P t1, . . . ,mu,

fipxi ` siq “ Tfi,ppxi, siq `
1

p!
τiLi}si}

p`1 with |τi| ď 1, (4.3)

where si “ Uis.

Because the quantity τiLi in (4.3) is usually unknown in practice, it is impossible

to use (4.3) directly to model the objective function in a neighborhood of x. However,

we may replace this term with an adaptive parameter σi, which yields the following

pp` 1q-th order model for the i-th element:

mipxi, siq “ Tfi,p `
1

p!
σi}si}

p`1. (4.4)

Summing up those element models, we obtain the full model given by

mpx, sq “
m
ÿ

i“1

mipxi, siq “ Tf,ppx, sq `
1

p!

m
ÿ

i“1

σi}si}
p`1. (4.5)

The algorithm considered in this paper exploits the model (4.5) as follows. At

each iteration k, the model (4.5) taken at the iterate x “ xk is (approximately)

minimized in order to define a step sk. If the decrease in the objective function

value along sk is comparable to that predicted by the Taylor model, the trial point

xk` sk is accepted as the new iterate and the regularization parameters σi,k possibly

updated. The process is terminated when an approximate local minimizer is found.
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If x P F is a local minimizer for problem (4.1) then

χf,1pxq :“

ˇ

ˇ

ˇ

ˇ

min
x`dPF ,}d}ď1

gpxqTd

ˇ

ˇ

ˇ

ˇ

“ 0 (4.6)

where gpxq :“ ∇1
xfpxq.

Observe that the underlying optimization problem in (4.6), if F “ Rn, χf,1pxq “

}gpxq} yielding back the familiar first-order necessary condition for unconstrained

optimization.

Having defined the criticality measure (4.6), it is natural to use them also for

terminating the approximate model minimization: we therefore minimize mpxk, sq

over s until

χm,1pxk, sq ď κ}s}p (4.7)

for some constant κ ě 0, where the derivatives in (4.6) are taken with respect to the

second argument of m.

We now introduce some notation useful for describing our algorithm. Define

xi,k :“ Uixk, si,k :“ Uisk.

Also let

δfi,k :“ fipxi,kq ´ fipxi,k ` si,kq and δfk :“ fpxkq ´ fpxk ` skq “
m
ÿ

i“1

δfi,k,

δmi,k :“ mipxi,k, 0q ´mpxi,k, si,kq and δmk :“ mpxk, 0q ´mpxk, skq “
m
ÿ

i“1

δmi,k,

δTk :“ Tf,ppxk, 0q ´ Tf,ppxk, skq

The partially separable adaptive regularization algorithm is now formally stated as

the following Algorithm 4.1.

The requirement that ρk ě η in both (4.11) and (4.12) is intended to prevent

a situation where a particular regularization parameter is increased and another
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decreased at a given unsuccessful iteration, followed by the opposite situation at

the next iteration, potentially leading to cycling. Other more elaborate mechanisms

can be designed to achieve the same goal, such as attempting to reduce a given

regularization parameter at most fixed number of times before the occurrence of a

successful iteration, but we do not investigate in detail those alternative here.

Algorithm 4.1: Partially Separable Adaptive Regularization

/* Initialization */

1 Input x´1 and tσi,0u
m
i“1 ą 0 as well as constants 0 ă γ0 ă 1 ă γ1 ă γ2, η P p0, 1q,

κ ě 0, σmin P p0,mini“1,...,m σi,0s and κbig ą 1. Initialize x0 as the projection of

x´1 onto F and set k “ 0;

/* Main iteration */

2 Evaluate fpxkq and t∇ixfpxkqu
p
i“1;

3 if χf,1pxkq ď ε then
4 return xε “ xk and terminate;

5 else
6 Evaluate a step sk such that xk ` sk P F , mpxk, skq ď mpxk, 0q and (4.7) holds;

7 Compute

ρk “
δfk
δTk

(4.8)

and set xk`1 “ xk ` sk if ρk ě η, or xk`1 “ xk otherwise;

8 if
fipxi,k ` si,kq ą mipxi,k, si,kq i P t1, . . . ,mu (4.9)

then
9 set

σi,k`1 P rγ1σi,k, γ2σi,ks. (4.10)

10 else if
ρk ě η and δfi,k ď 0 and δfi,k ă δmi,k ´ κbig|δfk| (4.11)

or
ρk ě η and δfi,k ą 0 and δfi,k ą δmi,k ` κbig|δfk| (4.12)

then
11 set

σi,k`1 P rmaxrσmin, γ0σi,ks, σi,ks. (4.13)

12 else
13 set

σi,k`1 “ σi,k. (4.14)

14 Increment k by one and go to Step 2;
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4.2 Complexity Evaluation of the Algorithm

We start our worst-case analysis by formalizing our assumptions for problem (4.1).

Assumption 4.1. The feasible set F is closed, convex and non-empty.

Assumption 4.2. Each element function fi pi P t1, . . . ,muq is p times continuously

differentiable in an open set containing F .

Assumption 4.3. The p-th derivative of each fi pi P t1, . . . ,muq is Lipschitz con-

tinuous on F , in the sense of (4.2).

Assumption 4.4. There exists a constant flow such that fpxq ě flow for all x P F .

Note that Assumption 4.4 is necessary for problem (4.1) to be well-defined.

We first observe that our assumption on the partially separable nature of the

objective function imply the following useful bounds.

Lemma 4.1. There exist constants 0 ă ςmin ď ςmax such that, for all s P Rn and all

r ě 1,

ςrmin}s}
r
ď

m
ÿ

i“1

}si}
r
ď mςrmax}s}

r. (4.15)

Proof. Assume that, for every ς ą 0 there exists a unit vector sς such that maxi“1,...,m }Uisς} ă

ς}sς} “ ς. Then taking a sequence of tςiu converging to zero and using the compact-

ness of the unit sphere, we obtain that the sequence tsςiu has at least one limit point

s0 with }s0} “ 1 such that maxi“1,...,m }Uis0} “ 0, which is impossible since we as-

sumed that the intersection of the nullspace of the Ui is reduced to the origin. Thus

our assumption is false and there is constant ςmin ą 0 such that, for every s P Rn,

max
i“1,...,m

}si} “ max
i“1,...,m

}Uis} ě ςmin}s}.
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The first inequality of (4.15) then follows from the fact that

m
ÿ

i“1

}si}
r
ě max

i“1,...,m
}si}

r
ě ςrmin}s}

r.

We have also that

m
ÿ

i“1

}si}
r
ď m max

i“1,...,m
}Uis}

r
ď m max

i“1,...,m
p}Ui}}s}q

r,

which yields the second inequality of (4.15) with ςmax “ maxi“1,...,m }Ui}.

Taken for q “ 1, this lemma states that
řm
i“1 } ¨ } is a norm on Rn whose equiv-

alence constants with respect to the Euclidean on are ςmin and mςmax. In most

applications, these constants are very moderate numbers. We also define

Lmax :“ max
i“1,...,m

Li, and Lf “ mςp`1
maxLmax (4.16)

and formally state the consequences of Assumption 4.2 and Assumption 4.3.

Lemma 4.2. Suppose that Assumption 4.2 and Assumption 4.3 hold. Then, for

k ě 0,

fipxi,k ` si,kq “ Tfi,ppxi,k, si,kq `
τi,k
p!
Li}si,k}

p`1 with |τi,k| ď 1, (4.17)

for all i P t1, . . . ,mu,

fpxk ` skq “ Tf,ppxk, skq `
τk
p!
Lf}sk}

p`1 with |τk| ď 1, (4.18)

and

}∇1
xfpxk ` skq ´∇1

sTf,ppxk, skq} ď
1

p!
Lf}sk}

p. (4.19)
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Proof. The Lipschitz continuity (4.2) implies (4.17) for each i P t1, . . . ,mu (see [6]).

Moreover, using (4.15) and the definitions (4.16),

m
ÿ

i“1

Li}si}
p`1

ď p max
i“1,...,m

Liq
m
ÿ

i“1

}si}
p`1

“ Lf}s}
p`1,

and thus (4.17) implies that the p-th derivative tensor of f , ∇p
xf , is also Lipschitz

continuous with constant Lf , from which (4.18) and (4.19) may in turn be derived.

The definition of the model in (4.5) also implies a simple lower bound on model

decrease.

Lemma 4.3. For all k ě 0,

δTk ě
1

p!
σmin

m
ÿ

i“1

}si,k}
p`1, (4.20)

sk ‰ 0 and (4.8) is well-defined.

Proof. The bound directly follows from the observation that

Tf,ppxk, 0q “ fpxkq “ mpxk, 0q ě mpxk, skq “ Tf,ppxk, skq `
1

p!

m
ÿ

i“1

σi,k}si,k}
p`1

and (5.61). Moreover, χm,1pxk, 0q “ χf,1pxkq ą ε. As a consequence, (4.7) cannot

hold for sk “ 0 since termination would have then occured in Step 4 of Algorithm 4.1.

Hence, at least one }si,k} is strictly positive because of (4.15) and (4.20) therefore

implies that (5.56) is well-defined.

Our next step is to verify that the regularization parameters cannot grow un-

bounded.
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Lemma 4.4. Suppose that Assumption 4.2 and Assumption 4.3 hold. Then, for all

k ě 0,

σi,k P rσmin, σmaxs (4.21)

where σmax :“ γ2Lmax.

Proof. Assume that, for some i P t1, . . . ,mu and k ě 0, σi,k ě Li. Then (4.17) gives

that

fipxi,k ` si,kq ď Tfi,ppxk, skq `
1

p!
Li}si,k}

p`1
“ mipxi,k, si,kq `

1

p!
}si,k}

p`1
pLi ´ σi,kq

and (5.57) fails, ensuring (4.21) because of the mechanism of the algorithm.

The final technical ingredient is to ensure that the steps sk are sufficiently large

compared to the considered criticality measures computed at the next iterate. Let

S “ tk ě 0 | ρk ě ηu and U “ tk ě 0 | ρk ă ηu. (4.22)

Lemma 4.5. Suppose that Assumption 4.1-Assumption 4.3 hold. Then, for all k P S

}sk} ě

„

χf,1pxk`1q

2pLf ` κ`mς
p`1
maxσmaxq


1
p

. (4.23)

Proof. Observe first that,

}∇1
s}si}

p`1
}1 ď pp` 1qςp`1

max}s}
p, (4.24)

where we used the definitions of the induced tensor norm and ςmax. This last condition

and by definition of the trial point ensure that xk`1 “ xk ` sk. Observe now that

(4.19), (4.21) and (4.24) imply that

}∇1
xfpxk`1q ´∇smpxk, skq}1 ď

1

p!
Lf}sk}

p
`m

pp` 1q

p!
ςp`1
maxσmax}sk}

p

ă
“

Lf `mς
p`1
maxσmax

‰

}sk}
p,

(4.25)
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and also that

χf,1pxk`1q “ |∇1
xfpxk`1qrdk`1s|

ď |∇1
xfpxk`1qrdk`1s ´∇1

smpxk, skqrdk`1s| ` |∇1
smpxk, skqrdk`1s|,

(4.26)

where the first equality defines the vector dk`1 with

}dk`1} ď 1. (4.27)

Assume now, for the purpose of deriving a contradiction, that (4.23) fails at iteration

k P S. Using (4.25) and (4.27), we obtain that

´∇1
xfpxk`1qrdk`1s `∇1

smpxk, skqrdk`1s

ď |∇1
xfpxk`1qrdk`1s ´∇1

smpxk, skqrdk`1s|

“ |p∇1
xfpxk`1q ´∇1

smpxk, skqqrdk`1s|

ď }∇1
xfpxk`1q ´∇1

smpxk, skq}1}dk`1}

ă pLf `mς
p`1
maxσmaxq}sk}

p.

(4.28)

The failure of (4.23) and the first part of (4.26) then imply that

´∇1
xfpxk`1qrdk`1s `∇1

smpxk, skqrdk`1s ă
1

2
χf,1pxk`1q “ ´

1

2
fpxk`1qrdk`1s,

which in turn ensures that

∇1
smpxk, skqrdk`1s ă

1

2
∇1

xfpxk`1qrdk`1s ă 0.

Moreover, xk`1 ` dk`1 P F by definition of χf,1pxk`1q, and hence, using (4.27),

|∇1
smpxk, skqrdk`1s| ď χm,1pxk, skq. (4.29)

We may then substitute this inequality in (4.26) to deduce as above that

χf,1pxk`1q ď |∇1
xfpxk`1qrdk`1s ´∇1

smpxk, skqrdk`1s| ` χm,1pxk, skq

ď pLf ` κ`mς
p`1
maxσmaxq}sk}

p
(4.30)

where the last inequality results from (4.28), the identity xk`1 “ xk ` sk and (4.7).

But this contradicts our assumption that (4.23) fails. Hence (4.23) must hold.
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We are now ready to consider our first complexity result, whose proof uses the

definitions

Sk :“ t0, . . . , ku X S, and Uk :“ t0, . . . , kuzSk (4.31)

of the sets of successful and unsuccessful iterations, respectively.

Theorem 4.1. Suppose that Assumption 4.1-Assumption 4.4 hold. Then Algorithm

4.1 requires at most

κSpfpx0q ´ flowqε
´
p`1
p

successful iterations to return a point xε P F such that χf,1pxεq ď ε, for

κS “
p! r2p1`mςp`1

maxγ2qpLf ` κqs
p`1
p

ησminς
p`1
min

. (4.32)

Proof. Let k P S be index of a successful iteration before termination. As a conse-

quence, we obtain, using Assumption 4.4 and Lemma 4.3, that

fpx0q ´ flow ě fpx0q ´ fpxk`1q

ě
ÿ

`PSk

rfpx`q ´ fpx` ` s`qs

ě η
ÿ

`PSk

rfpx`q ´ Tf,ppx`, s`qs

ě
η

p!
|Sk|σmin min

`PS

«

m
ÿ

i“1

}si,`}
p`1

ff

.

Hence we deduce, using (4.15), Lemma 4.5, the definition of σmax in Lemma 4.4 and

(4.23), that

fpx0q ´ flow ě
η

p!
|Sk|σminς

p`1
min min

`PSk,j
}s`}

p`1

ě |Sk|
ησminς

p`1
min

p!
“

2p1`mςp`1
maxγ2qpLf ` κq

‰

p`1
p

ε
p`1
p .
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Thus

|Sk| ď κSpfpx0q ´ flowqε
´
p`1
p

where κS is given by (4.32), and the desired iteration bound then results from the

observation that ε´
p`1
p ă ε´

p`1
p´1 .

To complete our analysis in terms of evaluations rather than successful iterations,

we need to bound the total number of all (successful and unsuccessful) iterations.

Lemma 4.6. Assume that Assumption 4.2 and Assumption 4.3 hold. Then, for all

k ě 0,

k ě κa|Sk| ` κb,

where

κa :“ 1`
m| log γ0|

log γ1

and κb :“
m

log γ1

log

ˆ

σmax

σmin

˙

.

Proof. Define

Ii,k :“ tj P t0, . . . , ku | (5.58) holds with k Ð ju ,

(the set of iterations where σi,j is increased) and

Di,k :“ tj P t0, . . . ,mu | (5.61) holds with k Ð ju Ă Sk

(the set of iterations where σi,j in decreased), the final inclusion resulting from the

condition that ρk ě η in both (5.59) and (5.60). Observe also that the mechanism

of the algorithm, the fact that γ0 P p0, 1q and Lemma 4.4 impose that, for each

i P t1, . . . ,mu,

σminγ
|Ii,k|
1 γ

|Sk|
0 ď σ0,iγ

|Ii,k|
1 γ

|Di,k|
0 ď σi,k ď σmax.

Dividing by σmin ą 0 and taking logarithms yields that, for all i P t1, . . . ,mu and all

k ą 0,

|Ii,k| log γ1 ` |Sk| log γ0 ď log

ˆ

σmax

σmin

˙

. (4.33)
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Note now that, if (5.57) fails for all i P t1, . . . ,mu, then

δfk “
m
ÿ

i“1

δfi,k ě
m
ÿ

i“1

δmi,k “ δmk

and, in view of (5.56), ρk ě 1 ą η, making iteration k successful. Thus, if iteration

k is unsuccessful, at least one σi,k is increased with (5.58). Thus

|Uk| ď
m
ÿ

i“1

|Ii,k| ď m max
i“1,...,m

|Ii,k|. (4.34)

The desired bound follows from (5.75) and (5.76) by using the fact that k “ |Sk| `

|Uk| ´ 1 ď |Sk| ` |Uk|, the term ´1 in the equality accounting for iteration 0.

We may now state our main evaluation complexity result.

Theorem 4.2. Suppose that Assumption 4.1-Assumption 4.3 hold. The Algorithm

4.1 requires at most

κaκSpfpx0q ´ flowqε
´
p`1
p ` κb ` 1

iterations and evaluations of f and its first p derivatives to return a point xε P F

such that χf,1pxεq ď ε.

Proof. If termination occurs at iteration 0, the theorem obviously holds. Assume

therefore that termination occurs at iteration k ` 1, in which case there must be

at least one successful iteration. We may therefore deduce the desired bound from

Theorem 4.1, Lemma 4.6 and the fact that each successful iteration involves the

evaluation of fpxkq and t∇i
xfpxkqu

p
i“1, while each unsuccessful iteration only involves

that of fpxkq and t∇i
xfpxkqu

p
i“1.

Remark 4.1. This theorem suggests some comments:

• This complexity result in Opε´pp`1q{pq evaluations is identical in order to that

presented in [6] for the unstructured unconstrained case.
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• The algorithm (and theory) presented here is considerably simpler than that

discussed in [28, 27] in the context of structured trust-regions. In addition,

the present assumptions are also weaker. Indeed, not only is the unpleasantly

strong assumption of uniform boundedness of all involved derivatives replaced

by a single Lipschitz continuity requirement, but an additional condition on

long steps (see AA.1s in [28, p.364]) is no longer needed.

• The idea of parts 2 and 3 of (5.59) and (5.60) is simply to identify cases

where the model mi overestimates the element function fi to an excessive extent,

leaving some space for reducing the regularization and hence allowing long steps.

Again, other expressions to the same effect are thus acceptable without altering

our results.
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Chapter 5

Partially Separable Minimization

Problem in Non-Lipschitz Case

In Chapter 4, we consider the partially separable minimization problem with convex

constraint, in which the element functions of the objective function are all smooth

with high order gradient Lipschitz continuous. In this chapter, we turn to the non-

Lipschitz partially separable minimization problem, in which the objective function

might be nonsmooth and non-Lipschitz. We restrict the value of p in Chapter 4

to 2 and apply the corresponding algorithm with an adaptive cubic term to solving

the following problem and expect to establish corresponding worst-case complexity

result:

minimize
xPF

fpxq :“ f0pxq `
m
ÿ

i“1

ϕp}Uix}
q
1q (5.1)

where F is a non-empty closed convex set, f0 : Rn Ñ R` :“ r0,8q, ϕ : R` Ñ R`,

Ui P Rmiˆn for i “ 1, . . . ,m, 0 ă q ă 1 and

}Uix}
q
1 “ }xi}

q
1 “ p

mi
ÿ

j“1

|xi,j|q
q, xi “ pxi,1, . . . , xi,miq

T
P Rmi .

Problem (5.1) has many applications in engineering and science. Using the non-

Lipschitz regularization function in the second term of the objective function f has
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remarkable advantages for the restoration of piecewise constant images in image

sciences and sparse variable selection in food safety and bioinformatics.

Typical choices of Ui include the identity matrix, first order difference operator,

second order difference operator in image sciences and group index matrix in group

variable selection.

We assume that f0 is twice continuously differentiable and its Hessian ∇2f0pxq is

globally Lipschitz continuous with constant L0. Moreover, ϕ satisfies the following

assumption.

Assumption 5.1. 1. ϕ is twice continuously differentiable and concave in p0,8q,

and ϕ2 is globally Lipschitz continuous.

2. ϕ is continuous at 0 with ϕp0q “ 0. And for all t, t` P p0,8q, there exists a

constant c such that

0 ď ϕ1ptq ď c and |ϕ2pt`q ´ ϕ2ptq| ď c|t` ´ t|. (5.2)

5.1 First-order Necessary Condition

In this section, we first present the first-order necessary condition for the local min-

imizer of problem (5.1) by a reduced problem of (5.1) in a subspace of Rn, which is

derived from the orthogonal decomposition method. Then we give the definition of

the first-order and ε approximate first-order stationary point of (5.1), which has been

studied in [4, 23] for a special case of problem (5.1) where F :“ tx P Rn : Ax´b ď 0u,

mi “ 1, i “ 1, . . . ,m and } ¨ }1 “ | ¨ | with an ` ˆ n matrix A and an `-dimensional

vector b.

Given a vector x̄ P Rn and ε ě 0, denote

Iεx̄ “ ti P t1, . . . ,mu : }Uix̄}1 ď εu, J εx̄ “ ti P t1, . . . ,mu : }Uix̄}1 ą εu

Vεx̄ “ tUT
i : i P Iεx̄u.
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For convenience, if ε “ 0, we denote Ix̄ :“ Iεx̄, Jx̄ :“ J εx̄ and Vx̄ :“ Vεx̄. By the

assumption that the intersection of the nullspaces of the Ui is reduced to the origin,

spanVx̄ “ Rn is equivalent to x̄ “ 0, and f is non-Lipschitz at x̄ if Vx̄ is nonempty.

On the other hand, if x̄ is non-zero, then Vx̄ is a proper subspace of Rn and hence

has a non-empty null space.

Suppose that Yx̄ is an n ˆ pn ´ rq matrix whose columns form an orthonormal

basis of Vx̄ and Zx̄ is an nˆr matrix whose columns are an orthonormal basis for the

null space of Vx̄. If x̄ “ 0, then f “ f0 and spanVx̄ “ Rn, which implies that Zx̄ “ 0

and Yx̄ can be set as the nˆn identity matrix. Otherwise, namely, x̄ ‰ 0, any x P Rn

can be decomposed uniquely as x “ Yx̄y ` Zx̄z, where y P Rn´r and z P Rr. Due to

the non-empty of the null space of Vx̄, r ą 0 and Zx̄ has r orthonormal columns. By

the definition of Zx̄, it is not difficult to verify that

UiZx̄ “ 0, @i P Ix̄ and x̄ “ Zx̄z̄, (5.3)

where z̄ “ ZT
x̄ x̄ is uniquely determined by x̄ with ZT

x̄ the transpose of Zx̄.

For simplicity of notations, we hereinafter denote

ΦpUixq “

#

q∇tϕptqt“}Uix}q1}Uix}
q´1
1 , if Uix ‰ 0,

0, otherwise.

For a vector v P Rmv , define the sign function of v as signpvq “ psignpv1q, . . . , signpvmvqq
T.

Then we have

signpUixq “ signpxiq “

»

—

–

signpxi,1q
...

signpxi,miq

fi

ffi

fl

“

»

—

–

signpui,1xq
...

signpui,mixq

fi

ffi

fl

.

For any x P Rn, further denote

gpxq “ ∇f0pxq `
m
ÿ

i“1

ΦpUixqU
T
i signpUixq, (5.4)
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which is the gradient of objective function of (5.1) at x̄ when Ix̄ “ H.

Lemma 5.1 (first-order necessary condition). Under Assumption 5.1, if x̄ P F is a

local minimizer of problem (5.1), then there holds

χf,1px̄q :“

ˇ

ˇ

ˇ

ˇ

minimize
x̄`dPF ,}d}ď1,dPRpZx̄q

gpx̄qTd

ˇ

ˇ

ˇ

ˇ

“ 0, (5.5)

where RpMq denotes the range space of matrix M .

Proof. If x̄ “ 0, then Zx̄ “ 0 which means that (5.5) can hold vacuously. Now

suppose that x̄ is a nonzero local minimizer of problem (5.1), then r ą 0 and Zx̄ has

r orthonormal columns. Moreover, there exists δx̄ such that

fpx̄q “ minimize
xPRn

tf0pxq `
m
ÿ

i“1

ϕp}Uix}
q
1q : x P F , }x´ x̄} ď δx̄u

“ minimize
yPRn´r,zPRr

tf0pYx̄y ` Zx̄zq `
m
ÿ

i“1

ϕp}UipYx̄y ` Zx̄zq}
q
1q :

Yx̄y ` Zx̄z P F , }Yx̄y ` Zx̄z´ Zx̄z̄} ď δx̄u

ď minimize
zPRr

tf0pYx̄0` Zx̄zq `
m
ÿ

i“1

ϕp}UipYx̄0` Zx̄zq}
q
1q :

Yx̄0` Zx̄z P F , y “ 0, }Zx̄z´ Zx̄z̄} ď δx̄u

“ minimize
zPRr

tf0pZx̄zq `
m
ÿ

i“1

ϕp}UiZx̄z}
q
1q : Zx̄z P F , }Zx̄z´ Zx̄z̄} ď δx̄u

“ minimize
zPRr

tf0pZx̄zq `
ÿ

iPJx̄

ϕp}UiZx̄z}
q
1q : Zx̄z P F , }Zx̄z´ Zx̄z̄} ď δx̄u,

where the last inequality is due to ϕp0q “ 0 and (5.3).

Then we introduce a new problem, which is the reduced problem of (5.1) in Rr,

namely,

minimize
zPRr

vpzq “ f0pZx̄zq `
ÿ

iPJx̄

ϕp}UiZx̄z}
q
1q,

subject to Zx̄z P F ,
(5.6)
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where vpzq is continuously differentiable and the gradient ∇vpzq is locally Lipschitz

continuous in some neighborhood of z̄.

Again using ϕp0q “ 0 and (5.3), we obtain that

vpz̄q “ f0pZx̄z̄q `
ÿ

iPJx̄

ϕp}UiZx̄z̄}
q
1q “ fpZx̄z̄q “ fpx̄q.

Therefore, we have

vpz̄q ď minimize
zPRr

tvpzq : Zx̄z P F , }Zx̄pz´ z̄q} ď δx̄u.

Since Zx̄ is of full column rank, z̄ is a local minimizer of problem (5.6). Hence, we

have

∇vpz̄qT pz´ z̄q ě 0, Zx̄z P F . (5.7)

From (5.3), ϕp0q “ 0 and the definition of gpx̄q, we obtain

∇vpz̄q “ ZT
x̄

˜

∇f0px̄q `
ÿ

iPJx̄

ΦpUiZx̄z̄qU
T
i signpUiZx̄z̄q

¸

“ ZT
x̄ gpx̄q (5.8)

and

Zx̄pz´ z̄q “ Zx̄z´ x̄.

Let d “ Zx̄pz´ z̄q. Then (5.7) gives

gpz̄qTd ě 0, x̄` d P F , d P RpZx̄q. (5.9)

Moreover, from

td “ 0u Ă td | x̄` d P F , }d} ď 1,d P RpZx̄qu Ă td | x̄` d P F ,d P RpZx̄qu,

we obtain (5.5). We complete the proof.

Definition 5.1 (first-order stationary point). We call x̄ a first-order stationary point

of (5.1), if x̄ satisfies the relation (5.5) in Lemma 5.1.
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Definition 5.2 (ε approximate first-order stationary point). For ε ą 0, we call x an

ε approximate stationary point of (5.1), if x satisfies

χf,1pxq :“

ˇ

ˇ

ˇ

ˇ

min
x`dPF ,}d}ď1,dPRpZεxq

gpxqTd

ˇ

ˇ

ˇ

ˇ

ď ε, (5.10)

where RpZε
xq is the range space of Zε

x.

Proposition 5.1. Let xε be an ε pε ą 0q approximate first-order stationary point of

(5.1). Then any cluster point of txεuεą0 is a first-order stationary point of (5.1) as

εÑ 0.

Proof. Suppose that x̄ is a limit point of txεku as k Ñ 8 with xεk being an εk

approximate first-order stationary point of (5.1) and εk Ñ 0 as k Ñ 8.

If x̄ “ 0, then spantVx̄u “ Rn and hence Zx̄ “ 0, which means that (5.5) holds

vacuously and hence x̄ is a first-order stationary point. Hence, we hereinafter assume

that x̄ ‰ 0, that is, spantVx̄u is a proper subspace of Rn.

First of all, we claim that there must exist kx̄ P N such that Vk Ă Vx̄ for any

k ě kx̄ with Vk :“ Vεkxεk . Otherwise, there will be a subsequence of txεku, say txεkj u,

such that limjÑ8 εkj “ 0 and Vkj Ę Vx̄ for all j. Since Vkj Ă tUT
1 , . . . , U

T
mu which is

a set consisting of finite many elements, then there must exist UT
i0
P tUT

1 , . . . , U
T
mu

such that UT
i0
P Vkjt but UT

i0
R Vx̄, where tkjtu Ă tkju, t “ 1, 2, ¨ ¨ ¨ . For convenience,

we hereinafter still use tkju to denote its subsequence tkjtu. Hence, we have

}Ui0x
εkj }1 ď εkj .

Let j go to8, it follows from the above inequality that }Ui0x̄}1 “ 0, which contradicts

the fact that UT
i0
R Vx̄. Thus, we conclude that Vk Ă Vx̄ for any k ě kx̄ with some

kx̄ P N . Let Zk :“ Zεk
xεk , which is a matrix whose columns are an orthonormal basis

of the null space of Vk. For any k ě kx̄, Vk Ă Vx̄ implies nulltVx̄u Ă nulltVku.
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Therefore, for k ě kx̄, we can choose Zk such that the columns of Zk contains all

columns of Zx̄.

For any fixed εk approximate first-order stationary point xεk , consider the follow-

ing two minimization problems.

minimize gpxεkqTd,

subject to xεk ` d P F , }d} ď 1, d P RpZkq;
(5.11)

minimize gpxεkqTd,

subject to xεk ` d P F , }d} ď 1, d P RpZx̄q.
(5.12)

Since d̄ “ 0 is a feasible point of problem (5.11) and (5.12), the minimum values of

(5.11) and (5.12) are both nonpositive. Moreover, it follows from nulltVx̄u Ă nulltVku

that RpZx̄q Ă RpZkq, which implies that the minimum value of (5.12) is not smaller

than that of (5.11).

Hence, from (5.10), we have that for any xεk , there holds

ˇ

ˇ

ˇ

ˇ

minimize
xεk`dPF ,}d}ď1,dPRpZx̄q

gpxεkqTd

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

minimize
xεk`dPF ,}d}ď1,dPRpZxεk q

gpxεkqTd

ˇ

ˇ

ˇ

ˇ

ď εk. (5.13)

Suppose that dεk is a minimizer of problem (5.12), then (5.13) implies that

´ εk ď gpxεkqTdεk ď 0, (5.14)

where dεk should satisfy that xεk ` dεk P F , }dεk} ď 1 and dεk P RpZx̄q.

Since x̄ ‰ 0, it follows from the assumption on Ui pi “ 1, . . . ,mq that Jx̄ ‰ H

and thus Zx̄ is an n by r matrix with r ą 0. Then for any dεk P RpZx̄q, there exists

hεk P Rr such that dεk “ Zx̄h
εk and }hεk} “ }dεk} ď 1 due to the definition of Zx̄.
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Note that

gpxεkqTdεk “

˜

∇f0px
εkq `

m
ÿ

i“1

ΦpUix
εkqUT

i signpUix
εkq

¸T

dεk

“ ∇f0px
εkq

Tdεk `
m
ÿ

i“1

ΦpUix
εkqsignpUix

εkq
TUid

εk

“ ∇f0px
εkq

TZx̄h
εk `

m
ÿ

i“1

ΦpUix
εkqsignpUix

εkq
T
pUiZx̄qh

εk

“ ∇f0px
εkq

TZx̄h
εk `

ÿ

iPJx̄

ΦpUix
εkqsignpUix

εkq
T
pUiZx̄qh

εk .

(5.15)

From the compactness of th | }h} ď 1u, we know that there must exist a sub-

sequence of thεku such that hεkj Ñ h̄ P Rr as j goes to infinity. For simplicity of

notation, we still use thεku to denote its subsequence thεkj u.

Since for i P Jx̄, we have limkÑ8 ΦpUix
kq “ ΦpUix̄q, letting k go to infinity in

(5.14) and (5.15), we immediately obtain that

0 “ gpx̄qTd̄ “ ∇f0px̄q
TZx̄h̄`

ÿ

iPJx̄

ΦpUix̄qsignpUix̄q
T
pUiZx̄qh̄,

where d̄ “ Zx̄h̄, which means that

minimize
x̄`dPF ,}d}ď1,dPRpZx̄q

gpx̄qTd “ gpx̄qTd̄ “ 0.

We complete the proof.

For the special case where F :“ tx P Rn : Ax ´ b ď 0u, by the similar proof in

Lemma 5.1, we can show that if x̄ P F is a local minimizer of (5.1), then there exists

a nonnegative vector λ P R` such that

ZT
x̄

`

gpx̄q ` ATλ
˘

“ 0, (5.16a)

Ax̄´ b ď 0, pAx̄´ bqTλ “ 0. (5.16b)
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This is the KKT condition for problem (5.1) with F :“ tx P Rn : Ax ´ b ď 0u and

Ix̄ “ H.

We can use the generalized KKT (5.16) to present the ε approximate stationary

point given by Definition 5.2.

Proposition 5.2. For ε ą 0, given x P F , x is an ε approximately stationary point

if and only if there exists a nonnegative vector λ P R` such that

}pZε
xq

T
`

gpxq ` ATλ
˘

} ` |pAx´ bqTλ| ď ε, (5.17)

where, Zε
x is an nˆ rx matrix whose columns form an orthonormal basis of the null

space of Vεx.

Proof. Suppose that }d} ď 1, d P RpZε
xq and x ` d P F , then there exists h P Rrx

such that d “ Zε
xh and

gpxqTd “ gpxqTZε
xh “

`

pZε
xq

T
pgpxq ` ATλq

˘T
h´ pAZε

xhq
Tλ

ě
`

pZε
xq

T
pgpxq ` ATλq

˘T
h` pAxε ´ bqTλ

ě ´

ˇ

ˇ

ˇ

`

pZε
xq

T
pgpxq ` ATλq

˘T
h
ˇ

ˇ

ˇ
` pAxε ´ bqTλ

ě ´}pZε
xq

T
pgpxq ` ATλq}}h} ` pAx´ bqTλ

ě ´}pZε
xq

T
pgpxq ` ATλq} ` pAxε ´ bqTλ, (5.18)

where the first inequality is from the feasibility of x` d and the fourth results from

}h} “ }d} ď 1. Since d̄ “ 0 is a feasible point with gpxqTd̄ “ 0, from (5.17) and

(5.18), the minimal value of the minimization problem in Definition 5.2 is within

r´ε, 0s. Hence, x is an ε approximate stationary point.

Conversely, if x is an ε stationary point, consider the following constrained convex
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minimization problem

minimize gpxqTZh,

subject to Apx` Zhq ď b,

}h} ď 1.

(5.19)

For simplicity of notation, we denote Z :“ Zε
x in (5.19).

Denote by C1 “ th | Apx ` Zhq ď bu and C2 “ th | }h} ď 1u. Then h˚ is a

minimizer of problem (5.19) if and only if

0 P ZTgpxq `NC1XC2ph
˚
q, (5.20)

where NC designates the normal cone of the set C. Since x is feasible, h̄ “ 0 is a

point of C1 and the relative interior point of C2 at h˚. It follows from Corollary

23.8.1 in [87] that

NC1XC2ph
˚
q “ NC1ph

˚
q `NC2ph

˚
q. (5.21)

Note NC1 “ tpAZqTλ | pApx ` Zh˚q ´ bqTλ “ 0, λ ě 0u. Hence, there exists a

nonnegative vector λ˚ P R` such that pAZqTλ˚ P NC1 and pApx`Zh˚q´bqTλ˚ “ 0.

By (5.20) and (5.21), we obtain that

0 P ZT
pgpxq ` ATλ˚q `NC2ph

˚
q. (5.22)

Consider the following minimization problem

minimize
`

gpxq ` ATλ˚
˘T
Zh` pAx´ bqTλ˚,

subject to }h} ď 1.
(5.23)

Note that (5.22) implies that h˚ is a minimizer of problem (5.23). Denote by

dpλ˚q the optimal value of problem (5.23), then we have that

dpλ˚q “
`

gpxq ` ATλ˚
˘T
Zh˚ ` pAx´ bqTλ˚

“ gpxqTZh˚ ` pApx` Zh˚q ´ bqTλ˚

“ gpxqTZh˚.

(5.24)
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On the other hand, it follows from Cauchy-Schwartz inequality that for any h P

th | }h} ď 1u

pgpxq ` ATλqTZh ě ´}ZT
pgpxq ` ATλq}}h} ě ´}ZT

pgpxq ` ATλq},

which implies that the optimal value of problem (5.23) is

dpλ˚q “ pAx´ bqTλ˚ ´ }ZT
pgpxq ` ATλ˚q}. (5.25)

Since x is feasible and an ε stationary point, we know that pAx´bqTλ˚ ď 0 and

|gpxqZh˚| ď ε. It immediately follows from (5.24) and (5.25) that (5.17) holds

5.2 A Smoothing Method

We construct a twice continuously differentiable smoothing function of the absolute

value function, namely,

θpt, µq “

"

|t|, if |t| ą µ,
´ 1

8µ3 t
4 ` 3

4µ
t2 ` 3

8
µ, if |t| ď µ.

(5.26)

By straightforward calculation, we can obtain

θ1pt, µq “

#

signptq, if |t| ą µ,

´ 1
2µ3 t

3 ` 3
2µ
t, if |t| ď µ.

(5.27a)

θ2pt, µq “

#

0 if |t| ą µ,

´ 3
2µ3 t

2 ` 3
2µ
, if |t| ď µ.

(5.27b)

and the Clarke subdifferential of θ2

Bθ2pt, µq “

$

’

’

’

’

&

’

’

’

’

%

t0u, if |t| ą µ

r0, 3
µ2 s, if t “ ´µ

r´ 3
µ2 , 0s, if t “ µ

t´ 3
µ3 tu, if |t| ă µ.

(5.28)
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It is easy to see that for any fixed µ ą 0, θp¨, µq is convex, increasing in r0,8q

and decreasing in p´8, 0s. Moreover, θp0, µq “ mint θpt, µq “ 3µ{8 for µ ą 0.

Replacing |xi,j| by θpxi,j, µq in problem (5.1), we obtain a smoothing function of

f as follows

f̃px, µq :“ f0pxq `
m
ÿ

i“1

ϕpΘq
i pxi, µqq,

where

Θipxi, µq “
mi
ÿ

j“1

θpxi,j, µq.

Let

fipxiq “ ϕp}Uix}
q
1q, i “ 1, . . . ,m

and

f̃ipxi, µq “ ϕpΘq
i pxi, µqq, i “ 1, . . . ,m.

Then

f̃px, µq “ f0pxq `
m
ÿ

i“1

f̃ipxi, µq

satisfies assumptions Assumption 4.1-4.4 with F “ Rn and p “ 2. And without loss

of generality, we assume flow “ 0.

For a fixed µ ą 0, we apply Algorithm 2.1 with p “ 2 to solve

minimize
xPF

f̃px, µq :“
m
ÿ

i“1

f̃ipxi, µq. (5.29)

Since for any fixed µ ą 0, θpt, µq ą 0, by Assumption 5.1 on function ϕ and

(5.26), the smoothing function f̃p¨, µq satisfies Assumption 4.2-4.4 with p “ 2.

By Theorem 4.2, Algorithm 4.1 needs at mostOpε´3{2q evaluations of the objective

function and its first and second derivatives to produce an ε approximate first-order
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stationary point x of problem (5.29), namely,

χf̃ ,1pxq :“

ˇ

ˇ

ˇ

ˇ

minimize
x`dPF ,}d}ď1

∇f̃px, µqTd

ˇ

ˇ

ˇ

ˇ

ď ε. (5.30)

However, these constants κS and κb in Theorem 4.2 are dependent on the Lipschitz

constants of f̃p¨, µq, and its first and second derivatives which are dependent on µ.

These constants can go to infinity as µÑ 0.

Now we consider an ε approximate first-order stationary point defined in Def-

inition 5.2, which is weaker than (5.30) but reduces to (5.30) when Iεx “ H. We

will show that Algorithm 4.1 needs at most Opε´3{2q evaluations of the smoothing

objective function and its first and second derivatives to produce such ε approximate

first-order stationary point x of problem (5.1). Moreover, these constants κS and κb

are independent on µ.

It is worth noting that f is not differentiable and not Lipschitz continuous only

at

Dc
“ tx : }Uix} “ 0, for some i P t1, . . . ,muu,

which means that the Lipschitz constants can go to infinity only some iterates ap-

proach to Dc. On the other hand, by Assumption 5.1, ϕ is continuous at 0, ϕ1ptq ě 0,

and ϕp0q “ 0, which means that we may neglect these terms in ϕp}Uix}
q
1q (5.1) when

}Uix}1 is very small. In particular, for the non-Lipschitz continuous problem (5.1), we

want to find evaluation complexity for finding an ε approximate first-order stationary

x satisfies the generalized ε approximate first-order condition (5.10).

In what follows, we consider

Ui P R
1ˆn, i “ 1, . . . ,m.
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In such case, fi : R` Ñ R`, i “ 1, . . . ,m. Moreover, it follows from (5.10) that

χf,1pxq “

ˇ

ˇ

ˇ

ˇ

min
x`dPF ,}d}ď1,dPRpZεxq

gpxqTd

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

min
x`dPF ,}d}ď1,dPRpZεxq

∇f0pxq
Td`

ÿ

|xi|ąε

f 1ipxiqUid

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε.

For the smoothing function fp¨, µq given by (5.26), we have

0 ď f̃px, µq ´ fpxq ď c
ÿ

|xi|ăµ

p
3µ

8
q
q,

and if µ ď ε, then f̃ipxi, µq “ fipxiq and f̃ 1pxi, µq “ f 1ipxiq for |xi| ą ε. Hence,

χf,1pxq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

min
x`dPF ,}d}ď1,dPRpZεxq

∇f0pxq
Td`

ÿ

|xi|ąε

f 1ipxiq
TUid

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

min
x`dPF ,}d}ď1,dPRpZεxq

∇f0pxq
Td`

ÿ

|xi|ąε

f̃ 1ipxi, µq
TUid

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

min
x`dPF ,}d}ď1,dPRpZεxq

∇f̃px, µqTd

ˇ

ˇ

ˇ

ˇ

(5.31)

holds for µ P p0, εs.

Since d “ 0 is a feasible point of the minimization problems in (5.30) and (5.31),

the optimal values of both minimization problem are not positive. Hence, we have

that if 0 ă µ ď ε, then

χf,1pxq ď χf̃ ,1pxq,

which implies that an ε approximate first-order stationary point x of the smoothing

minimization problem (5.29) is a generalized ε approximate first-order stationary

point of the original minimization problem (5.1).
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It follows from the first equality of (5.31) that χf,1pxq for µ P p0, εs does not involve

a smoothing function. We can provide the complexity bound which is independent

from the smoothing parameter.

5.3 A Class of Special Cases

In this section, we consider the following minimization problem

minimize
m
ÿ

i“1

|Uix|
q

subject to x P X :“ tx P Rn : }Ax´ b} ď σu,

(5.32)

where Ui P R1ˆn for i “ 1, . . . ,m, 0 ă q ă 1, A P R`ˆn, b P R` and σ ą 0 are given.

We assume that the feasible set X is a non-empty closed convex set and }b} ą σ,

which means that the zero vector is not a feasible solution.

Let

U “

»

—

–

U1
...
Um

fi

ffi

fl

, y “ Ux.

We consider the following problem

minimize fpyq :“
m
ÿ

i“1

|yi|
q

subject to y P F :“ ty P Rm : y P RpUq, }By ´ b} ď σu,

(5.33)

where B “ ApUTUq´1UT P R`ˆm.

Note that problems (5.32) and (5.33) are equivalent in the following sense:

• if x˚ is a solution of (5.32), then y˚ “ Ux˚ is a solution of (5.33);

• if y˚ is a solution of (5.33), then any x˚ satisfying y˚ “ Ux˚ is a solution of

(5.32).

— 99 —



CHAPTER 5. NON-LIPSCHITZ CASE PhD Thesis

5.3.1 The Smoothing Approximation

In what follows, we consider the complexity of Algorithm 4.1 for solving problem

(5.33). We use the following smoothing function of |t|

θpt, µq “

"

|t|, if |t| ą µ,
t2

2µ
`

µ
2
, if |t| ď µ.

(5.34)

For any µ ą 0, θp¨, µq : RÑ R`` is continuously differentiable, convex, increasing in

r0,8q and decreasing in p´8, 0s. Moreover, θp0, µq “ mint θpt, µq “ µ{2 for µ ą 0.

Hereinafter, when mentioning the smoothing function θp¨, µq, we refer to the

smoothing function defined by (5.34). The gradient of the smoothing function θp¨, µq

is:

θ1pt, µq “

#

signptq, if |t| ě µ,
t
µ
, if |t| ă µ.

(5.35)

Let

fipyiq “ |yi|
q, i “ 1, . . . ,m

and

f̃ipyi, µq “ θqpyi, µq, i “ 1, . . . ,m.

Then for a fixed µ ą 0, we obtain a smoothing version of problem (5.33) as

follows:

min f̃py, µq :“
m
ÿ

i“1

f̃ipyi, µq

s.t. y P F “ ty P Rm : y P RpUq, }By ´ b} ď σu.

(5.36)

Let Iεy “ ti P t1, . . . ,mu, |yi| ď εu and |Iεy| “ r. Then Zε
y “ rej1 , ..., ejrs P Rmˆr

where eji is the ji column of the mˆm identity matrix and ji P I
ε
y.
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For fixed µ P p0, εs, we have

χf,1pyq “

ˇ

ˇ

ˇ

ˇ

min
y`dPF ,}y}ď1,dPRpZεyq

gpyqTd

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

min
y`dPF ,}y}ď1

ÿ

|yi|ěε

f 1ipyiqdi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

min
y`dPF ,}y}ď1

ÿ

|yi|ěε

f̃ 1ipyi, µqdi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

min
y`dPF ,}d}ď1,dPRpZεyq

∇f̃py, µqTd

ˇ

ˇ

ˇ

ˇ

,

(5.37)

where di is the i-th element of d and gpyq “
řm
i“1 Φpxiqeisignpxiq with

Φpxiq “

#

f 1ipxiq, if |yi| ą ε,

0, otherwise.

Then by the same argument with the above section, an ε approximate first-order

stationary point y of the smoothing minimization problem (5.36) is a generalized ε

approximate first-order stationary point of the original minimization problem (5.33)

due to

χf,1pyq ď χf̃ ,1pyq “

ˇ

ˇ

ˇ

ˇ

min
y`dPF ,}d}ď1

∇f̃py, µqTd

ˇ

ˇ

ˇ

ˇ

.

So for µ P p0, εs, the second equality sign in (5.37) shows that χf,1pyq does not involve

the smoothing parameter µ as well.

5.3.2 The Model with Adaptive Cubic Regularization

Consider the univariate exponential function tq for t P p0,8q. Since qpq ´ 1qpq ´

2qpq ´ 3qtq´4 ă 0 holds for all t ą 0, it is easy to see that for any t`, t ą 0, there

holds

tq` ď tq ` qtq´1
pt`´ tq`

qpq ´ 1qtq´2

2
pt`´ tq

2
`
qpq ´ 1qpq ´ 2qtq´3

6
pt`´ tq

3. (5.38)
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Let

y “ py1, . . . , ymq
T
P Rm and s “ ps1, . . . , smq

T
P Rm.

Note that θp¨, µq ą 0, replacing t` and t with θpyi ` si, µq and θpyi, µq in (5.38),

we know that

f̃ipyi ` si, µq ď Tf̃i,2pyi, si, µq `
qpq ´ 1qpq ´ 2qθq´3pyi, µq

6
pδθiq

3, (5.39)

where

Tf̃i,2pyi, si, µq “ f̃ipyi, µq ` qθ
q´1
pyi, µqδθi `

qpq ´ 1qθq´2pyi, µq

2
pδθiq

2

and

δθi “ θpyi ` si, µq ´ θpyi, µq. (5.40)

It is worth noting that in Tf̃i,2, we do not use the first and second derivatives of

f̃ .

It follows from (5.35) that

|δθi| “ |θpyi ` si, µq ´ θpyi, µq| ď |si|, i “ 1, . . . ,m. (5.41)

For fixed µ, denote vi “ θpyi, µq and

D “

»

—

–

v1

. . .

vm

fi

ffi

fl

, α “

»

—

–

α1
...
αm

fi

ffi

fl

.

It follows from θpyi, µq ě
µ
2
ą 0 that vi ą 0 for i “ 1, . . . ,m and hence the

diagonal matrix D is positive definite. Thus, for any s P Rm, there must exist a

unique α P Rm such that

s “ Dα. (5.42)

Let α “ pα1, . . . , αmq
T be given such that (5.42) holds, then si “ αivi.
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Combining (5.39), (5.41) and (5.42), we have that for all i P t1, . . . ,mu

f̃ipyi ` si, µq ď Tf̃i,2pyi, αi, µq `
qpq ´ 1qpq ´ 2qθqpyi, µq

6
|αi|

3, (5.43)

where si “ αivi and

Tf̃i,2pyi, αi, µq “ f̃ipyi, µq ` qθ
q´1
pyi, µqδθipαiq `

qpq ´ 1qθq´2pyi, µq

2
pδθipαiqq

2,

with

δθipαiq “ θpyi ` αivi, µq ´ θpyi, µq. (5.44)

It is not difficult to see the objective function f̃py, µq is level bounded, i.e., for

any y0 P F , the level set t}y}8 : f̃py, µq ď f̃py0, µqu is bounded. Then there exists

a constant, say Γ ą 1, such that |f̃ipyi, µq|
q ď Γ for all i “ 1, . . . ,m.

Therefore, (5.43) further implies that

f̃ipyi ` si, µq ď Tf̃i,2pyi, αi, µq `
Li
3
|αi|

3, (5.45)

where si “ αivi and Li “
1
4
Γ due to qp1´ qqp2´ qq ď 1

2
.

Since vi “ θpyi, µq is only determined by yi and µ for i P t1, . . . ,mu, then for

fixed y and µ, it is easy to see that for si “ αivi with i P t1, . . . ,mu

Bf̃py `Dα, µq

Bαi
“
Bf̃py ` s, µq

Bsi
vi,

which implies that

∇αf̃py ` s, µq “ D∇sf̃py ` s, µq (5.46)

if α and s are given such that (5.42) holds.

Since the quantity Li in (5.45) is usually unknown in practice, we hence replace

this term with an adaptive parameter σi, which yields the following third-order model

for the i-th element:

m̃ipyi, αi, µq “ Tf̃i,2pyi, αi, µq `
σi
3
|αi|

3. (5.47)
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Summing up those element models, we obtain the full model given by

m̃py, α, µq “
m
ÿ

i“1

m̃ipyi, αi, µq “ Tf̃ ,2py, α, µq `
1

3

m
ÿ

i“1

σi|αi|
3, (5.48)

where

Tf̃ ,2py, α, µq “
m
ÿ

i“1

Tf̃i,2pyi, αi, µq.

5.3.3 The Criticality Measure

For fixed y and µ P p0, εs, let s “ Dα, then the first-order criticality measure of

(5.36) in α is as follows,

χf̃ ,1py `Dαq :“

ˇ

ˇ

ˇ

ˇ

min
y`Dα`DβPF ,}β}ď1

∇f̃py `Dα, µqTDβ
ˇ

ˇ

ˇ

ˇ

(5.49)

which is obviously dependent on the smoothing parameter µ.

It follows from Lemma 5.1 that the criticality measure of (5.33) in α can be

defined as

χf,1py `Dαq :“

ˇ

ˇ

ˇ

ˇ

ˇ

min
y`Dα`DβPF ,}β}ď1,DβPRpZεy`Dαq

pDgpy `DαqqTβ

ˇ

ˇ

ˇ

ˇ

ˇ

, (5.50)

where gpxq is given by (5.4).

From the definitions of Zε
y`Dα and gpy`Dαq, (5.50) can be rewritten as follows

χf,1py `Dαq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

min
y`Dα`DβPF ,}β}ď1

ÿ

|yi`αivi|ěε

f 1ipyi ` αiviqpDβqi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (5.51)

By the definition of the smoothing function f̃ipyi, µq, we can further express (5.51)
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as the following form,

χf,1py `Dαq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

min
y`Dα`DβPF ,}β}ď1

ÿ

|yi`αivi|ěε

f̃ 1ipyi ` αivi, µqpDβqi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

min
y`Dα`DβPF ,}β}ď1,DβPRpZεy`Dαq

∇f̃py `Dα, µqTDβ

ˇ

ˇ

ˇ

ˇ

ˇ

(5.52)

Compare (5.51) with (5.49), we know that

χf,1py `Dαq ď χf̃ ,1py `Dαq,

which implies that an ε approximate first-order stationary point x of problem (5.36)

is a generalized ε approximate first-order stationary point of problem (5.33). (5.51)

tells us that χf,1py `Dαq will do not involve the smoothing parameter µ if µ is set

to satisfy 0 ă µ ď ε. Furthermore, we have

0 ď f̃py `Dα, µq ´ fpy `Dαq ď
ÿ

|yi`αivi|ăµ

p
µ

2
q
q.

For fixed µ P p0, εs, define

χ̃f̃ ,1py `Dαq :“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

min
y`Dα`DβPF ,}β}ď1

ÿ

|yi`αivi|ěε

f̃ 1ipyi ` αivi, µqpDβqi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

min
y`Dα`DβPF ,}β}ď1

ÿ

|yi`αivi|ěε

f 1ipyi ` αiviqpDβqi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

min
y`Dα`DβPF ,}β}ď1

ÿ

|yi`αivi|ěε

pfiq
1
αi
pyi ` αiviqβi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(5.53)

where pfiq
1
αi

denote the derivative of fi in αi. And the χ̃f̃ ,1 does not involve the

smoothing parameter µ for 0 ă µ ď ε according the above argument.
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5.3.4 The Algorithm

The algorithm considered in this section exploits the model (5.48) as follows. At

each iteration k, the model (5.48) taken at the iterate y “ yk is (approximately)

minimized to attain an αk which can be used to define a step sk. If the decrease in

the objective function value along sk is comparable to that predicted by the Taylor

model, the trial point yk ` sk is accepted as the new iterate and the regularization

parameter σi,k possibly updated. The process is terminated when an approximate

local minimizer is found.

Suppose that y “ yk is the iterate at iteration k. Let yk “ py1,k, . . . , ym,kq,

sk “ ps1,k, . . . , sm,kq and si,k “ αi,kvi,k with vi,k “ θpyi,k, µq for i “ 1, . . . ,m, then

sk “ Dkαk where

Dk “

»

—

–

v1,k

. . .

vm,k

fi

ffi

fl

, αk “

»

—

–

α1,k
...

αm,k

fi

ffi

fl

.

Having defined the criticality measure (5.53), it is natural to use it also for ter-

minating the approximate model minimization: we therefore minimize m̃pyk, α, µq

over α until

}χ̃m̃,1pyk `Dkαq} ď κ}α}2. (5.54)

for some constant κ ą 0 to obtain αk for constructing the new step as sk “ Dkαk and

thus the trial point yk`1 “ yk `Dkαk. In the algorithm, we further add restrictions

on the step size and the smoothing parameter as follows.

|αi,k| ď ρ, µ P p0, ε{p1` ρqs, (5.55)

where ρ P p0, 1q.

For |yi,k`1| ě ε, we have

|yi,k| ě µ.
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Otherwise,

|yi,k`1| “ |yi,k ` αi,kvi,k| ď |yi,k| ` |αi,k||vi,k| “ |yi,k| ` |αi,k||
y2
i

2µ
`
µ

2
| ă ε,

which contradicts to |yi,k`1| ě ε. Hence, we know that vi,k “ θpyi,k, µq “ |yi,k|, which

implies that

yi,k`1yi,k “ pyi,k ` αi,kyi,kqyi,k “ y2
i,kp1` αi,kq ě y2

i,kp1´ ρq ą 0.

Denote by

δf̃i,k :“ f̃ipyi,k, µq ´ f̃ipyi,k ` si,k, µq and δf̃k :“ f̃pyk, µq ´ f̃pyk ` sk, µq “
m
ÿ

i“1

δf̃i,k,

with sk “ Dkαk and

δm̃i,k :“ m̃ipyi,k, 0, µq´m̃ipyi,k, αi,k, µq and δm̃k :“ mpyk, 0, µq´mpyk, αk, µq “
m
ÿ

i“1

δm̃i,k.

Also let

δTk :“ Tf̃ ,2pyk, 0, µq ´ Tf̃ ,2pyk, αk, µq.

The partially separable adaptive regularization algorithm for solving problem
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(5.33) is now stated as Algorithm 5.1 as follows.

Algorithm 5.1: Non-Lipschitz Partially Separable Adaptive Regularization

/* Initialization */

1 Input y´1, ρ ą 0 and µ P p0, ε{p1` ρqs, tσi,0u
m
i“1 ą 0 as well as constants

0 ă γ0 ă 1 ă γ1 ă γ2, η P p0, 1q, κ ě 0, σmin P p0,mini“1,...,m σi,0s and
κbig ą 1. Initialize y0 as the projection of y´1 onto F and set k “ 0;

/* Main iteration */

2 Evaluate f̃pyk, µq, tθ
q´1pyi,k, µqu

m
i“1 and tθq´2pyi,k, µqu

m
i“1 ;

3 if χ̃f̃ ,1pykq ď ε then

4 return yε “ yk and terminate;

5 else
6 Minimize m̃pyk, α, µq to return an αk such that yk `Dkαk P F ,

m̃pyk, αk, µq ď m̃pyk, 0, µq, (5.54) and (5.55) hold;

7 Compute

ρk “
δf̃k
δTk

(5.56)

and set yk`1 “ yk `Dkαk if ρk ě η, or yk`1 “ yk otherwise;

8 if

f̃ipyi,k ` αi,kvi,k, µq ą m̃ipyi,k, αi,k, µq, @i P t1, . . . ,mu (5.57)

then
9 set

σi,k`1 P rγ1σi,k, γ2σi,ks. (5.58)

10 else if

ρk ě η and δf̃i,k ď 0 and δf̃i,k ă δm̃i,k ´ κbig|δf̃k| (5.59)

or
ρk ě η and δf̃i,k ą 0 and δf̃i,k ą δm̃i,k ` κbig|δf̃k| (5.60)

then
11 set

σi,k`1 P rmaxrσmin, γ0σi,ks, σi,ks. (5.61)

12 else
13 set

σi,k`1 “ σi,k. (5.62)

14 Increment k by one and go to Step 2;
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5.4 Complexity Analysis

To begin with, we cite a well-know result on the equivalence of different norms in

Euclidean space.

Proposition 5.3. Let 1 ď s ď t ă 8 and α P Rm, then

}α}t ď }α}s ď m
1
s
´ 1
t }α}t, (5.63)

where }α}r :“ p
řm
i“1 |αi|

rq
1
r for any r ě 1.

The definition of the model in (5.48) implies a simple lower bound on the model

decrease.

Lemma 5.2. For all k ě 0,

δTk ě
1

3
σmin

m
ÿ

i“1

|αi,k|
3, (5.64)

αk ‰ 0 and (5.56) is well-defined.

Proof. The bound directly follows from the observation that

Tf̃ ,2pyk, 0, µq “ f̃pyk, µq “ m̃pyk, 0, µq ě m̃pyk, αk, µq “ Tf̃ ,2pyk, αk, µq`
1

3

m
ÿ

i“1

σi,k|αi,k|
3

and (5.61). Moreover, χ̃m̃,1pykq “ χ̃f̃ ,1pykq ą ε. As a consequence, (5.54) cannot

hold for αk “ 0 since termination would have then occurred in Step 3 of Algorithm

5.1. Hence at least one |αi,k| is strictly positive due to (5.63) when t “ 2 and s “ 1.

Moreover, (5.64) implies that (5.56) is well-defined.

Our next step is to verify that regularization parameters cannot grow unbounded.

Lemma 5.3. For all k ě 0,

σi,k P rσmin, σmaxs (5.65)

where σmax :“ γ2Γ.
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Proof. Assume that, for some i P t1, . . . ,mu and k ě 0, σi,k ě Li. Then (5.45) gives

that

f̃ipyi,k`αi,kvi,k, µq ď Tf̃i,2pyi,k, αi,k, µq`
1

3
Li|αi,k|

3
“ m̃ipyi,k, αi,k, µq`

1

3
|αi,k|

3
pLi´σi,kq

and (5.57) fails, ensuring (5.65) because of the mechanism of the algorithm.

The following lemma reveals that for |yi,k`1| ě ε, the derivatives of the element

smoothing functions and the element cubic models can be bounded by }αk}
2 if the

step size αi,k and the smoothing parameter µ satisfies (5.55).

Lemma 5.4. Given ε ą 0, if the step size and the smoothing parameter satisfies

(5.55), then there holds that

›

›

›

›

›

›

ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qe

T
i ´

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqe

T
i

›

›

›

›

›

›

ď

ˆ

1

4
Γp1´ ρq´3

` σmax

˙

}αk}
2.

(5.66)

where ei is the i-th column of the m-dimensional identity matrix.

Proof. By the above argument, we know that for |yi,k`1| ě ε, it holds

|yi,k| ě µ, yi,k`1yi,k ą 0

if the step size αi,k and the smoothing parameter µ satisfy (5.55).

For simplicity, we consider yi,k ą 0 and yi,k`1 ą 0. Then for yi,k`1 “ yi,k `

αi,kvi,k ą ε, we know that

f̃ipyi,k`1, µq “ fipyi,k`1q “ yqi,k`1,

f̃ipyi,k, µq “ fipyi,kq “ yqi,k,

vi,k “ θpyi,k, µq “ yi,k.
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It follows that for yi,k`1 ě ε

Tf̃ ,2pyi,k, αi,k, µq “ yqi,k ` qy
q
i,kαi,k `

1

2
qpq ´ 1qyqi,kα

2
i,k,

pTf̃ ,2q
1
αi
pyi,k, αi,k, µq “ qyqi,k ` qpq ´ 1qyqi,kαi,k

and

pf̃iq
1
αi
pyi,k`1, µq “ pf̃iq

1
αi
pyi,k ` αi,kyi,k, µq “ qpyi,k ` αi,kyi,kq

q´1yi,k.

By Taylor’s expansion, we can obtain that

pyi,k ` αi,kyi,kq
q´1

“ yq´1
i,k ` pq ´ 1qyq´2

i,k αi,kyi,k `
1

2
pq ´ 1qpq ´ 2qŷq´3

i,k αi,ky
2
i,k

where

minpyi,k, yi,k`1q ď ŷi,k ď maxpyi,k, yi,k`1q.

Hence, we have

pf̃iq
1
αi
pyi,k`1, µq “ qyqi,k ` qpq ´ 1qyqi,kαi,k `

1

2
qpq ´ 1qpq ´ 2qŷqi,kŷ

´3
i,kα

2
i,ky

3
i,k

“ pTf̃i,2q
1
αi
pyi,k, αi,k, µq `

1

2
qpq ´ 1qpq ´ 2qŷqi,kŷ

´3
i,kα

2
i,ky

3
i,k.

It is not difficult to see that

ŷ´3
i,k y

3
i,k ď

#

1, if yi,k ď yi,k`1,

y´3
i,k`1y

3
i , otherwise,

(5.67)

and

y´3
i,k`1y

3
i,k “ p1` αiq

´3
ď p1´ ρq´3, (5.68)

which still holds for yi,k ă 0 and yi,k`1 ă 0 by the same argument.

Therefore, for |yi,k`1| “ |yi,k ` αi,kyi,k| ě ε, we have

|pfiq
1
αi
pyi,k ` αi,kyi,kq ´ m̃

1
αi
pyi,k, αi,kq| ď

1

4
Γp1´ ρq´3α2

i,k ` σi,kα
2
i,k,
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which implies

›

›

›

›

›

›

ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qe

T
i ´

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqe

T
i

›

›

›

›

›

›

“

›

›

›

›

›

›

ÿ

|yi,k`1|ěε

“

pfiq
1
αi
pyi,k`1q ´ pm̃iq

1
αi
pyi,k, αi,kq

‰

eT
i

›

›

›

›

›

›

ď

ˆ

1

4
Γp1´ ρq´3

` σmax

˙

}αk}
2.

The above inequality gives the desired result.

The final technical ingredient is to ensure that the step αk are sufficiently large

compared to the considered criticality measures computed at the next iterate. Let

S “ tk ě 0 | ρk ě ηu and U “ tk ě 0 | ρk ă ηu.

Lemma 5.5. For all k P S and i “ 1, . . . ,m, if yk`1 “ yk `Dkαk, then there holds

}αk} ě

«

χ̃f̃ ,1pyk`1q

2
`

1
4
Γp1´ ρq´3 ` σmaxq ` κ

˘

ff
1
2

. (5.69)

Proof. Note that yk`1 “ yk`Dkαk with the step size αk and the smoothing param-

eter µ satisfying (5.55). It follows from (5.66) in Lemma 5.4 that

›

›

›

›

›

›

ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qe

T
i ´

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqe

T
i

›

›

›

›

›

›

ď

ˆ

1

4
Γp1´ ρq´3

` σmax

˙

}αk}
2.
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It follows that

χ̃f̃ ,1pyk`1q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qβi,k`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qβi,k`1 ´

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqβi,k`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqβi,k`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(5.70)

where the first equality defines the vector βk`1 “ pβ1,k`1, . . . , βm,k`1q
T with

yk`1 `Dkβk`1 P F , }βk`1} ď 1. (5.71)

Assume now, for the purpose of deriving a contradiction, that (5.69) fails at iteration

k P S. Using (5.71), we obtain that

´
ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qβi,k`1 `

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqβi,k`1

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qβi,k`1 ´

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqβi,k`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|yi,k`1|ěε

“

pfiq
1
αi
pyi,k`1q ´ pm̃iq

1
αi
pyi,k, αi,kq

‰

eT
i βk`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

›

›

›

›

›

›

ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qe

T
i ´

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqe

T
i

›

›

›

›

›

›

}βk`1}

ă

ˆ

1

4
Γp1´ ρq´3

` σmax

˙

}αk}
2.

(5.72)
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The failure of (5.69) and the first part of (5.70) then imply that

´
ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qβi,k`1 `

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqβi,k`1

ă
1

2
χ̃f̃ ,1pyk`1q “ ´

1

2

ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qβi,k`1,

which in turn ensures that

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqβi,k`1 ă

1

2

ÿ

|yi,k`1|ěε

pfiq
1
αi
pyk`1qβi,k`1.

Moreover, yk`1 `Dkβk`1 P F by definition of χ̃f̃ ,1pyk`1q, and hence, using (5.71),

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|yi,k`1|ěε

pm̃iq
1
αpyi,k, αi,kqβi,k`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď χ̃m̃,1pyk`1q.

We may then substitute this inequality in (5.70) to deduce as above that

χ̃f̃ ,1pyk`1q ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|yi,k`1|ěε

pfiq
1
αi
pyi,k`1qβi,k`1 ´

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqβi,k`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|yi,k`1|ěε

pm̃iq
1
αi
pyi,k, αi,kqβi,k`1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă

ˆ

1

4
Γp1´ ρq´3

` σmax

˙

}αk}
2

(5.73)

where the last inequality results from (5.72) and (5.54). But this contradicts our

assumption that (5.69) fails. Hence (5.69) must hold.

We are now ready to consider our first complexity result, whose proof uses the

definitions

Sk :“ t0, . . . , ku X S and Uk :“ t0, . . . , kuzSk

of the sets of successful and unsuccessful iterations, respectively.
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Theorem 5.1. Algorithm 5.1 requires at most

κSpf̃py0, µq ´ f̃lowqε
´ 3

2

successful iterations to return a point yε P F such that χ̃f̃ ,1pykq ď ε, for

κS “
3p1

2
Γp1´ ρq´3 ` 2σmax ` 2κq

3
2

ησminm
´ 1

2

. (5.74)

Proof. Let k P S be index of a successful iteration before termination. As a conse-

quence, we obtain, using Assumption 4.4 and Lemma 5.2, that

f̃py0, µq ´ f̃low ě f̃py0, µq ´ f̃pyk`1, µq

ě
ÿ

`PSk

”

f̃py`, µq ´ f̃py` ` s`, µq
ı

ě η
ÿ

`PSk

“

Tf̃ ,2pyk, 0, µq ´ Tf̃ ,2py`, α`, µq
‰

ě
η

3
|Sk|σmin min

`PSk

«

m
ÿ

i“1

|αi,`|
3

ff

.

Hence we deduce, using the second inequality of (5.63) with s “ 2 and t “ 3, Lemma

5.5, the definition of σmax in Lemma 5.3 and (5.69), that

f̃py0, µq ´ f̃low ě
η

3
|Sk|σminm

´ 1
2 min
`PSk

}α`}
3

ě |Sk|
ησminm

´ 1
2

3p1
2
Γp1´ ρq´3 ` 2σmax ` 2κq

3
2

min
`PSk

χ̃f̃ ,1py` `D`α`q
3
2

ě |Sk|
ησminm

´ 1
2

3p1
2
Γp1´ ρq´3 ` 2σmax ` 2κq

3
2

ε
3
2 .

Thus

|Sk| ď κSpf̃py0, µq ´ f̃lowqε
´ 3

2

where κS is given by (5.74).
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To complete the analysis in terms of evaluations rather than successful iterations,

we need to bound the total number of all (successful and unsuccessful) iterations.

Lemma 5.6. For all k ě 0,

k ď κa|Sk| ` κb,

where

κa :“ 1`
m| log γ0|

log γ1

and κb :“
m

log γ1

log

ˆ

σmax

σmin

˙

.

Proof. Define

Ii,k :“ tj P t0, . . . , ku | (5.58) holds with k Ð ju,

(the set of iterations where σi,j is increased) and

Di,k :“ tj P t0, . . . , ku | (5.61) holds with k Ð ju Ă Sk

(the set of iterations where σi,j is decreased), the final inclusion resulting from the

condition that ρk ě η in both (5.59) and (5.60). Observe also that the mechanism

of the algorithm, the fact that γ0 P p0, 1q and Lemma 5.3 impose that, for each

i P t1, . . . ,mu,

σminγ
|Ii,k|
1 γ

|Sk|
0 ď σ0,iγ

|Ii,k|
1 γ

|Di,k|
0 ď σi,k ď σmax.

Dividing by σmin ą 0 and taking logarithms yields that, for all i P t1, . . . ,mu and all

k ą 0,

|Ii,k| log γ1 ` |Sk| log γ0 ď log

ˆ

σmax

σmin

˙

. (5.75)

Note now that, if (5.57) fails for all i P t1, . . . ,mu, then

δf̃k “
m
ÿ

i“1

δf̃i,k ě
m
ÿ

i“1

δm̃i,k “ δm̃k
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and, in view of (5.56), ρk ě 1 ą η, making iteration k successful. Thus, if iteration

k is unsuccessful, at least one σi,k is increased with (5.58). Thus

|Uk| ď
m
ÿ

i“1

|Ii,k| ď m max
i“1,...,m

|Ii,k|. (5.76)

The desired bound follows from (5.75) and (5.76) by using the fact that k “ |Sk| `

|Uk| ´ 1 ď |Sk| ` |Uk|, the term ´1 in the equality accounting for iteration 0.

We may now state our main evaluation complexity result.

Theorem 5.2. Algorithm 5.1 requires at most

κaκSpf̃py0, µq ´ f̃lowqε
´ 3

2 ` κb ` 1

iterations and evaluations of h̃ and its first 2 derivatives to return a point yε P F

such that χ̃f̃ ,1pykq ď ε.

Proof. If termination occurs at iteration 0, the theorem obviously holds. Assume

therefore that termination occurs at iteration k ` 1, in which case there must be

at least one successful iteration. We may therefore deduce the desired bound from

Theorem 5.1, Lemma 5.6 and the fact that each successful iteration involves the

evaluation of f̃pyk, µq, tθ
q´1pyi,k ` αi,kvi,k, µqu

m
i“1 and tθq´2pyi,k ` αi,kvi,k, µqu

m
i“1,

while each unsuccessful iteration only involves that of f̃pyk, µq, tθ
q´1pyi,k, µqu

m
i“1 and

tθq´2pyi,k, µqu
m
i“1.

5.5 Numerical Experiments

In this section, we use the so-called `2-`p problem to illustrate the performance of

Algorithm 5.1 and verify the complexity result. All the numerical experiments are

conducted by MATLAB R2016a on a Lenovo PC equipped with 64-bit Windows
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10 operating system, 3.60 GHz Intel(R) Dual Cores(i7) processor and 32.00 GB of

RAM.

We consider the following `2-` 1
2

minimization problem

minimize
yPRn

fpyq :“ }Ay ´ b}22 ` λ
n
ÿ

i“1

|yi|
1
2 (5.77)

where λ ą 0, A P Rn̂ˆn and b P Rn̂ with n̂ an positive integer.

To intuitively observe the behavior of the sequences generated by our algorithm,

we first restrict our attention on the 2-dimensional space R2 and then the high

dimensional space.

5.5.1 The Case of 2-dimensional Space

Throughout this case, the parameters listed in Table 5.1 are kept constant during

implementation of Algorithm 5.1, where ε and µ are the tolerance and the smoothing

parameter, respectively.

Table 5.1: Constant Parameters in Implementing Algorithm 5.1

ε ρ µ η γ0 γ1 γ2 κ κbig

1.00e-4 0.98 0.50e-4 0.20 0.25 1.50 3.00 1.00e2 5.00

Let n “ 2, A “ p1, 1qT and b “ 1, then minimization problem (5.77) can be

simplified as follows

minimize
yPR2

fpyq “ py1 ` y2 ´ 1q2 ` λp
a

|y1| `
a

|y2|q. (5.78)

The authors in [25] used this example to explain the optimality conditions.

As well known, for different values of λ, the optimal solutions of (5.78) vary.

For λ “ 8{p3
?

3q, p1{3, 0q and p0, 1{3q are two nonzero points which conform to the

first- and second-order optimality conditions proposed in [24]. But only p0, 0q is the
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unique global minimizer. For λ “ 1, (5.78) has two optimal solutions p0, 0.7015q and

p0.7015, 0q with optimal value 0.927.

We generate 20 initial points for λ “ 8{p3
?

3q and λ “ 1, respectively. All the

initial guess y0 are generated by the MATLAB built-in function randn(2,1) and

then projected onto the interval r0, 1s. To better observe the results, we divide them

into two groups with every group 10 initial points and one implementation. In every

implementation, the initial regularization parameter σ0 :“ pσ1,0, σ2,0q
T are generated

by the MATLAB statement 4*rand(2,1) and the value of σmin is minimum value in

the entries of σ0.

From Fig. 5.1 and 5.2, it is not difficult to see that all the sequences starting from

the above initial guesses converge to the minimizers of problem (5.78). Particularly,

all the sequences converge to the global minimizer for λ “ 8{p3
?

3q. Furthermore,

Table 5.2 generalizes the corresponding iteration numbers for solving problem (5.78)

to arrive at its optimal solutions.

Table 5.2: Iteration Numbers to Reach Optimality

#Group λ #Iter

1
8

3
?

3
122 100 129 145 125 125 114 115 115 112

1 215 201 114 139 136 168 137 166 198 169

2
8

3
?

3
143 154 133 158 199 137 153 139 148 141

1 121 64 113 53 31 56 53 96 94 101

5.5.2 The Case of High Dimensional Space

Now we consider the high dimensional case. That is, in problem (5.77), we set

A “ p1, . . . , 1q P Rn, b “ 1 and the dimension n is allowed to be changed. To

make sure the numerical results checkable, in every implementation, we use the same

procedures with the 2-dimensional case to generate 10 initial guesses for λ “ 8{p3
?

3q
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and λ “ 1, respectively. And then we check if the function value of the sequences

generated by Algorithm 5.1 converge and what value they converge.

First of all, we keep the parameters listed in Table 5.1 invariant and conduct an

implementation for n “ 10, n “ 100 and n “ 1000, respectively. Fig 5.3 are the

simulation results, which shows that for small size problem (n=10) the sequences

generated from 10 arbitrary initial guesses indeed converge whereas the function

values do not arrive at the optimal value for n “ 100 and n “ 1000 even if all of

them are decreasing before the criticality measure arrives at the prescribed tolerance.

To investigate the above phenomenon, we further conduct another 2 implemen-

tation after set the tolerance ε to be 1e-6 and 1e-8, respectively. Note that the

smoothing parameter µ “ 0.5ε. Hence, both ε and µ are changed and other param-

eters listed in Table 5.1 are kept constant. Fig 5.4 and Fig 5.5 are the simulation

results. Fig 5.4 shows that the function value of the sequences become to converge

for n “ 100 when the tolerance is improved to 1e-6. And Fig 5.5 encloses that to

guarantee convergence for n “ 1000, the tolerance should be further improved to

1e-8.

Moreover, we also list the specific iteration numbers for our algorithm to reach

the point where the criticality measure is below prescribed precision ε, see Table 5.3

for details.
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Table 5.3: Iteration Numbers to Reach Optimality in High Dimensional Case

ε λ n #Iter

1e-4

8
3
?

3

10 92 87 95 90 88 94 91 89 89 87
100 69 70 78 75 66 71 74 70 69 82
1000 54 56 52 51 54 54 52 55 54 56

1
10 170 114 120 143 152 148 119 109 144 115
100 85 84 83 85 92 87 95 87 86 83
1000 63 70 67 67 70 73 66 71 70 65

1e-6

8
3
?

3

10 357 345 348 358 347 349 351 352 350 354
100 201 212 200 213 215 199 210 220 210 214
1000 165 167 174 166 172 172 195 175 168 177

1
10 579 594 579 781 772 739 678 592 359 792
100 255 245 252 253 250 263 264 257 262 257
1000 205 197 204 198 201 190 206 198 207 208

1e-8

8
3
?

3

10 819 824 82 836 830 806 815 832 813 845
100 708 703 658 706 687 735 667 761 699 666
1000 483 495 488 507 491 510 498 489 489 489

1
10 1399 1385 3510 2411 3774 1400 3781 1393 3522 3495
100 815 827 784 811 797 816 827 800 804 812
1000 650 631 617 624 674 624 633 609 830 817
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(a) Behavior of yk `Dkαk for λ “ 8{3
?

3

(b) Convergence of fpyk `Dkαkq for λ “ 8{3
?

3

(c) Behavior of yk `Dkαk for λ “ 1

(d) Convergence of fpyk `Dkαkq for λ “ 1

Figure 5.1: Results of Group 1 (the magenta circles mark the initial guesses).
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(a) Behavior of yk `Dkαk for λ “ 8{3
?

3

(b) Convergence of fpyk `Dkαkq for λ “ 8{3
?

3

(c) Behavior of yk `Dkαk for λ “ 1

(d) Convergence of fpyk `Dkαkq for λ “ 1

Figure 5.2: Results of Group 2 (the magenta circles mark the initial guesses).
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(a) n “ 10, λ “ 8{p3
?

3q (b) n “ 100, λ “ 8{p3
?

3q (c) n “ 1000, λ “ 8{p3
?

3q

(d) n “ 10, λ “ 1 (e) n “ 100, λ “ 1 (f) n “ 1000, λ “ 1

Figure 5.3: Convergence of fpyk `Dkαkq for ε=1e-4

(a) n “ 10, λ “ 8{p3
?

3q (b) n “ 100, λ “ 8{p3
?

3q (c) n “ 1000, λ “ 8{p3
?

3q

(d) n “ 10, λ “ 1 (e) n “ 100, λ “ 1 (f) n “ 1000, λ “ 1

Figure 5.4: Convergence of fpyk `Dkαkq for ε=1e-6
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(a) n “ 10, λ “ 8{p3
?

3q (b) n “ 100, λ “ 8{p3
?

3q

(c) n “ 1000, λ “ 8{p3
?

3q (d) n “ 10, λ “ 1

(e) n “ 100, λ “ 1 (f) n “ 1000, λ “ 1

Figure 5.5: Convergence of fpyk `Dkαkq for ε=1e-8
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Chapter 6

Concluding Remarks

This chapter draws conclusions on the thesis with several concluding remarks and

list several possible research directions in the future.

6.1 Affine Rank Minimization Problem

The rank minimization problems with linear constraints are usually NP-hard and

hence are difficult to solve. The approaches using the convex approximation mod-

els are of theoretical guarantee for the solution quality, however, lack of efficiency

in general due to extensive invoking singular value decomposition solvers. Methods

based on the low rank approximation or the factorization model are usually numer-

ically efficient, but lack of theoretical guarantee. Because the factorization model is

a quartic polynomial and hence to solve it to global optimality is NP-hard. Another

difficulty of using factorization model is how to iteratively obtain a suitable rank for

factorization which should be close and no less than the global minimum of the rank

minimization problem.

In the first part of this thesis ( i.e., Chapter 2 and Chapter 6), we point out the

property that second-order necessary optimality condition implies global optimality

perhaps holds on a large variety of scenarios. However, we also show by a special

instance that such property is not always satisfied. By using such SNIG condition,
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we propose a new algorithm framework for solving (1.1) by solving a series of factor-

ization model (NLS-k) to the second-order optimality. Any second-order methods

which guarantees to terminate at a second-order stationary point can be used in

this stage. We further put forward the conjecture that the reductions between the

global minima of (LLS-k) with two consecutive ranks are monotonically decreasing.

This conjecture, if holds, can significantly increase the efficiency of our algorithm

framework.

6.2 Partially Separable Minimization Problem

The partially separable minimization problem with convex constraint is ubiquitous

and of importance in many applications of optimization. Such structure also includes

sparse optimization as a special case, which has been widely used in image restoration

and statistics. And high-order Taylor models for optimization is recently popular in

the context of adaptive regularization algorithms for unconstrained problem. Such

methods are well-known for their remarkable evaluation complexity, in which they

need at most Opε´
p`1
p q evaluations of the objective function and their derivatives to

arrive at an ε-approximate first-order stationary point while the steepest and New-

ton’s methods need the Opε´2q. Nevertheless, most adaptive regularization methods

rest on a non-separable regularization term, which makes the study of such separable

structure difficult.

In the second part of this thesis ( i.e., Chapter 4 and Chapter 5), we first devise

an algorithm with a partially separable p` 1 order regularization term. Then under

mild conditions, we show that such regularization algorithm also has the remarkable

Opε´
p`1
p q evaluation complexity of objective function value and its derivatives when

utilizing the separable structure. Subsequently, we extend the algorithm with p “

2 to solve the problem of data fitting involving the q-quasi norm for q P p0, 1q

— 128 —



PhD Thesis CHAPTER 6. CONCLUDING REMARKS

which might be nonconvex and non-Lipschitz. Finally, we show that the excellent

complexity bound Opε´
3
2 q can also hold even for the non-Lipschitz case.

6.3 Future Research

The affine rank minimization problem and the partially separable minimization prob-

lem are two classes of optimization problems since both of them subsume a lot of

problems as their special cases and hence have wide applications in scientific and

engineering domains. We will pay further attention to these problems and anticipate

that more progresses can be made along the following possible directions.

• For the affine rank minimization problem:

– we hope to find more triplets pA,b, kq at which the SNIG condition holds;

– we will also consider extend our current results without noise to their

counterpart scenarios with the observations contaminated by noises;

– we will try to improve the overall performance of our algorithm framework

by utilizing the trust-region method on the manifold to solve problem

(NLS-k) and then compare it with the existing algorithms.

• For the partially separable minimization problem:

– we will find more accessible numerical examples and compare our algo-

rithm with existing algorithms since our current numerical tests are only

designed to check the performance and verify our iteration complexity

result;

– we will also try to improve the performance of our algorithm by paralleliz-

ing the regularization parameters updating step in the algorithm, that is,

Step 8-13 in Algorithm 5.1.
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