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Abstract 

 

Inspired by the success of deep learning in big data image 

recognition in Restricted Boltzmann Machine, Conditional Restricted 

Boltzmann Machine which was the original design to forecast human 

motion movement had been modified to forecast financial time series. As 

far as the author is aware of, this is the first attempt to apply deep learning 

in financial time series forecasting. Conventionally, deep learning is 

applied in image classification and several layers of deep learning in the 

huge dataset could increase its accuracy. The traditional forecasting 

method is using Euclidean distance to map the dataset into a higher 

dimension which facilitates to draw a hyperplane to separate the data. The 

more the cluster of the data in the hyperplane, the closer the distance of 

those neighbour data. As a result, those cluster data are the foundation to 

forecast. A new approach in Restricted Boltzmann Machine is to assign 

low energy based on probability concept to those connections that are 

relevant to each other while high energy is assigned to those that are 

irrelevant. The advantage of this method over Euclidean distance is that 

the probability energy assignment can be done one layer at a time and 

extend to many layers. Each layer information is retained and passed on 

to another layer to be trained again. As a consequence, all the information 

in the dataset is carefully scrutinized to obtain the best result.  
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In this research, it has been demonstrated in the following 

Chapters that deep learning using modified Conditional Restricted 

Boltzmann Machine is able to handle high dimensionality data which is 

over 100 with the dataset array as big as 600000x100.  This setup enables 

it to capture the information of the high dimensions in each layer. 

Eventually, it will improve the forecasting accuracy. This was not 

possible before as our previous research has experienced. Historical 

records are not as important as the dimension of the financial time series 

problem domain. 30 or 20 years of stock history may not have that much 

impact on the current stock price in one stock. As the financial market is 

closely related to other markets, the stock price of a particular security is 

heavily dependent on other stocks in the same market as well as the 

performance of other markets. Hence, it is more important to increase the 

dimensionality or features of the data. In other words, including more 

factors such as the price of others stocks, economic factors such as 

interest rates and GDP can enhance the performance. 

The algorithm based on Conditional Restricted Boltzmann 

Machine has demonstrated remarkable forecasting accuracy as reported 

in Chapter 4 and 5.  
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applied in financial time series study. The uni-dimensional data is 
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dimension using RDP or EMA methods. This is very similar to the 

normalization technique which transforms the data into certain value 

range, for example, o to 1 or -1 to 1. In windowize method, one dimension 

of data has been multiplied into 2 or 3 dimensions and the information 

embedded in the data can be fully exploited by an appropriate algorithm. 
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Chapter 3.4 for the Support Vector Regression. It is a challenge of the 
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distribution. 
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The last one is the application of Conditional Restricted 

Boltzmann Machine in Financial Time Series Forecasting with a 
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look into the inter-relationship of each market and use as many as 
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dimension has many applications but not limited to financial forecasting 

domain. 
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Chapter 1   Introduction and Objectives of 
the Research 
 

1.1 Introduction 

 

Forecasting is sometimes regarded as an art rather than science. 

Statistical theory has provided a solid foundation on modern forecasting 

theory. Estimation of parameters and testing of the hypothesis are the two 

cornerstones of modern statistics (He, Liu, Wang, & Hu, Optimal 

bandwidth selection for re-substitution entropy estimation, 2012). The 

parameter could be dependent or independent which is defined by the 

nature of the study domain. In financial time series forecasting, stock 

price can be taken as one of the parameters. From the statistical point of 

view, all data are classified into different types of distribution using 

statistical analysis. Not all data are available such as the income of each 

individual in society, statistical samples are taken and a parameter to 

represent the population such as the mean (average income of the society) 

is estimated from the sample using statistical inference. Here, the 

estimation of the parameter is for present phenomena. In financial time 

series forecasting, historical samples are known and there is no need to 

estimate the parameter. The goal is to forecast the future movement of 

stock price.  

With the help of the modern computer technology, many 

algorithms and theories have been established in the last 20 to 30 years. 
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They are either from statistical background such as Autoregressive 

Integrated Moving Average (ARIMA), General Autoregressive 

Heteroskedasticity(GARCH) or computational background such as 

Neural Network (NN) or Support Vector Machine (SVM). Many 

statistical forecasting methods such as ARIMA or GARCH are still 

playing a key role in the forecasting society. In fact, statistical 

significance is an important measurement on the outcome of prediction. 

However, the forecasting society is still debating which approach, 

statistical or computational intelligent, is better to do the job. The 

Forecasting Competition for Artificial Neural Network (ANN) and 

Computational Intelligence recruit talents and nurture new brains to get 

better forecasting model and result. It is essentially a competition 

between the performance of statistical and computational intelligent 

forecasting method.  We depend very much on forecasting events ranging 

from the weather forecast to economic trend.  The world would be very 

different if we are not presented with the possible future events that we 

can prepare in advance. However, the methodology that provides 

forecasting events for us is still debatable and controversial. Whether the 

statistics can forecast better than Artificial Intelligence or vice versa is 

not the scope of this research for discussion but we would like to explore 

the best from our research. 

The argument over the practical use of Artificial Intelligence to 

forecast financial time series is a very sensitive and controversial issue. 

In the book of Forecasting economic time series (Clements & Hendry, 

Forecasting Economic Time Series, 1998), there is clear definition of 
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what is predictable and unpredictable. The definition of unpredictability 

is equivalent to the statistical independence of an m-dimensional 

stochastic variable Vt  (with non-degenerate density Dvt(.)) from an 

information set denoted Tt-1. Then, Vt is unpredictable with respect to Tt-

1 if the conditional and unconditional distributions coincide: Dvt(V t|Tt-

1)=Dvt(Vt).  The concept does not connote to erratic or wild that nothing 

useful can be said. Rather, it entails that knowledge of Tt-1 does not 

improve prediction or reduce any aspect of the uncertainty about Vt. The 

main message is that we cannot forecast the unpredictable. In the book of 

Investment (Bodie, Kane, & Marcus, Investments, 2005), it says the 

prices of securities fully reflect available information in the Efficient 

Market Hypothesis (EMH), a cornerstone of finance theory for over 40 

years. Investors buying securities in an efficient market should expect to 

obtain an equilibrium rate of return. The strong form hypothesis asserts 

that stock prices reflect all relevant information including insider 

information. The semi-strong form hypothesis asserts that stock prices 

already reflect all publicly available information. It is the boldest testable 

version of EMH (Aronson, Evidence-Based Technical Analysis, 2007) 

which asserts that no information in the public domain, either 

fundamental or technical, can be used to generate risk-adjusted returns in 

excess of the market index. Both strong and semi-strong forms of EMH  

defining the market is unpredictable. However, it cannot pass the 

statistical definition of  unpredictability as described in (Clements & 

Hendry, Forecasting Economic Time Series, 1998). From (Aronson, 

Evidence-Based Technical Analysis, 2007) cross-sectional time series 
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studies, price movements are predictable to some degree with stale public 

information, and excess risk-adjusted returns are possible. Here, stock 

prices and other data used in technical indicators are useful. This is very 

good news for technical analysis and very bad news for EMH.  

 

1.2 Problem Statement 

 

In financial time series market, the Holy Grail is to formulate an 

algorithm that can predict the market movement which could generate 

huge profit from it. This notion is not that far-fetched as companies with 

huge resource and deep pocket have been doing it for many years. We are 

not aware of it because the market somehow has been manipulated by so-

called algorithm transaction. The first man-made financial crisis in 1988 

was believed to be the result of the computer-generated transaction to 

dump the stock at the predetermined level set by the designer, which led 

to a catastrophic consequence or the so-called butterfly effects on the 

world financial market. The necessity of a proper forecasting tool to assist 

the financial manager to make decisions in trading is beyond any doubt. 

However, it is a constant struggle with the latest trading technology and 

information available to the market. Big data has pushed the limit of 

forecasting to another level where not only new hardware is required but 

also new software must be available to cope with the change.  
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 1.3 General Definition 

 

         The general definition of the terminology forecasting in time 

series tY is best depicted in Figure 1 Forecasting Time Line 

 

 

 
 

Figure 1 Forecasting Time Line 

 

 The Ex-ante forecast accuracy is the benchmark to judge the 

performance of the algorithm. The forecast error is the difference 

between the actual and the forecast values, expressed as ttt YYe
^

−= . The 

notation tY
^

 is the predicted value which falls in Ex-ante forecast period 

in which no observations on the time series variable exists. 

 

The following definitions are to measure the forecasting error  
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Equation 1 

Mean of the absolute percentage error 
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Symmetric Mean of the absolute percentage error 
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Mean square error 
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Equation 4 

              
Root mean square error 
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Equation 5 

                                                                                                         

 

Throughout this research, MAPE and SMAPE will be the major 

benchmark to compare the performance of the models. These two are 

selected because, in forecasting society such as Artificial Neural Network 

& Computational Intelligence Forecasting Competition NN3 (Artificial 

Neural Network & Computational Intelligence Forecasting Competition 

NN3, 2007), these two benchmarks are used to judge the accuracy of all 

the participants. 

 

 



7 

 

 

1.4 Objective of The Research 

 

The objective of this research is to seek out the most appropriate 

model that can encapsulate the big data in financial time series analysis 

and produce a fruitful result. Like all models which depend on the quality 

and quantity of the input, big data has a higher chance to provide the high 

quality and huge quantity of data as more resources and the focus are in 

this domain. The notion that knowledge is power has begun to spread as 

whoever left behind will not be able to compete and eventually have to 

step out. However, it is not easy for any organization to let individuals 

master the technique in big data analysis.  To commence with, the 

hardware requirement is the first obstacle. In order to cope with the 

computational requirement, a new computer with 2 hard disks each with 

4T memory running on an i7-4770 CPU@3.40 GHz  RAM 32GB 64-bit 

operating system x64-based processor together with a NVIDIA GeForce 

GTX670 2GB graphic card  is acquired for this research. The computer 

speed of this machine is 102.3 Giga FLOPS for CPU and 3,120,223 

GFLOPS for GPU.  It is impossible for this research to conduct an 

experiment on actual big data due to the limitation of resources. 

Accordingly, only a fraction of the big data has been selected. Chinese 

stock market with high transaction historical records from 2000 to 2013 

is employed in this research and the new computer is able to handle this. 

Conditional Restricted Boltzmann Machine as one of the deep learning 

techniques is used to analyse the data.  The future stock price is predicted 
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and MAPE and SMAPE of the result will be calculated to compare with 

other models which the author has been investigated in previous research. 

The results in the competition of forecasting in ENUNITE (Lin, Chen, & 

Chang, Load Forecasting using Support Vector Machines: A study on 

ENUNITE Competition 2001, 2001) and Neural Network Competition 

NN3 (Artificial Neural Network & Computational Intelligence 

Forecasting Competition NN3, 2007),  have inspired our research to set 

the forecasting accuracy to below 2 of the MAPE value. 

 

1.5 Motivation of The Research 

 

The candidate’s original research domain was in manufacturing 

optimization. The objective was to reduce the idle time in a 

manufacturing operation in order to cut cost. Optimization and 

forecasting are closely related. Classification is the first step in 

optimization analysis. Once the problem domain is properly classified, 

the forecasting technique is required to do the optimization. 

Manufacturing optimization is not an easy task and the research is 

confined to  the data available from the manufacturing environment. 

Needless to say, each manufacturing environment has its own problem 

domain and it may not be applicable to other sectors. As the research hit 

to an obstacle that the problem domain data was not enough to carry on, 

the candidate decided to refocus on the financial time series forecasting 

domain.  
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As the world is relying more and more on forecasting news 

ranging from natural phenomena like an earthquake, eclipse or storm, to 

social behaviours like political vote decision and to financial market 

direction, it has intrigued the candidate to investigate on what the 

theoretical background and techniques in forecasting are. Financial time 

series is selected as the new problem domain simply because there are 

many electronic data available on the Internet. The two domains are very 

similar in nature and it would be effortless to transfer to another domain. 

Unlike the previous manufacturing domain which limited the data 

resources to a single industry and in fact restricted to a single enterprise, 

financial time series domain has a wider source of data accessible through 

the Internet. In the beginning of this new problem domain research, the 

candidate is using only the available financial data from the  website with 

a limited size of data and dimension in order to experiment with  the 

prevailing forecasting techniques such as NN, SVM, GARCH, ARIMA 

and wavelet transform. The research and experiment are conducted in 

MATLAB environment which equips with the proper tool on all the 

forecasting techniques mentioned above. As high dimensional data is 

employed at a later stage of this research, there is a constant struggle to 

reduce the dimensions of the data by using feature reduction method such 

as IsoMAP in order to fit the requirement of the forecasting model. 

After a few years of research on this path, the candidate has 

discovered that financial time series is a very complicated problem 

domain.  Although it is easy to get a pretty good forecasting result from 

one stock in one market using the prevailing techniques, it would be 
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ignorant not to consider the other attributes such as the other stocks in the 

same market and the effect of other markets towards a particular market. 

For example, to forecast the close value of the Hang Seng Index in Hong 

Kong market using historical records of the Open, High, Low and Close 

values, this simple setup with 4 attributes can accurately forecast the 

future close value around 0.5 MAPE value on average according to our 

experiments in Chapter 3.2.  However, it would be difficult for the tools 

which we have experienced to handle more attributes and high volume 

data. Big data is the current hot topic and almost every sector of the 

industry that involved in digital management must deal with it. The 

message hidden in big data collect either in text format from online chat 

like Twitter or Facebook to high volume transaction in exchange centre 

is a treasure waiting to be discovered. In this new era of a digital 

generation, raw data is abundant but useful information is getting harder 

and harder to find and most people get lost in this digital fortress. The 

demand to get new tools to discover information from big data is strong. 

Inspired by this request, this research attempts to find meaningful 

information from big data. 

 

1.6 Outline of The Thesis 

 

The problem domain in this research has been clearly defined in 

Chapter one and the scope of the experiments has been laid out.  The 

complexity to work on big data and the potential benefit of getting useful 



11 

 

 

information in financial time series from the gigantic digital fortress has 

been briefly depicted too. The various methodologies either from 

statistical or from computational intelligence background have been 

stated based on the current literature review in Chapter Two. The purpose 

of utilizing these methods is focused in financial time series forecasting. 

In Chapter Three, various models which have been experienced by the 

previous researchers relating to financial time series analysis have been 

reported. It contains all the experimental results using limited dataset and 

narrow data dimension. Analysis on the limitation of each approach has 

been specified. It is the path where the candidate has been guided from 

limited datasets to big data. Deep learning method using Conditional 

Restricted Boltzmann Machine (CRBM) method in the miniature of big 

dataset is scrutinized in Chapter Four. The advantage and disadvantage 

of this method have been pointed out. The ultimate performance and 

comparison of the new method with the previous methods have been 

analysed in Chapter Five. Finally, the conclusion and future development 

are summarized in Chapter Six.   
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Chapter 2   Literature Reviews on 

Forecasting Methodologies  

 

2.1 Neural Network 

 

NN has been used with success in many areas, in pattern 

classification (Lai & Liu, A Neural Network and CBR-based Model for 

Allocating Work in Progress, 2008) (Lai & Liu, WIPA:Neural network 

and case base reasoning models for allocating work in progress, 2012), 

pattern recognition (Majumdar, Majumdar, & Sarkar, An investigation 

on yarn engineering using Artificial Neural Networks, 2006), weather 

forecasting (Lee & You, iJade WeatherMan - A Multiagent Fuzzy-Neuro 

Network Based Weather Prediction System, 2001), data mining and 

knowledge discovery (Lai & Liu, A Neural Network and CBR-based 

Model Sewing Minute Value, 2009) (Hui & Ng, A new approach for 

prediction of sewing performance of fabrics in apparel manufacturing 

using Artificial Neural Networks, 2006) (Wong, Prediction of clothing 

sensory comfort using Neural Networks and fuzzy logic, 2002), stock 

prices (Lee, Kim, Jang, & Lim, Forecasting Short-Term KOSPI Time 

Series Based on NEWFM, 2008) (Wang W. , Zhao, Li, & Liu, A Novel 

Hybrid Intelligent Model for Financial Time Series Forecasting and its 

Application, 2009), foreign exchange forecasting (Lee & Liu, iJade Stock 

Predictor - An Intelligent Multi-Agent Based Time Sereis Stock 
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Prediction System, 2001) and have shown themselves to be more accurate 

than other AI tools, such as Genetic Algorithms (GA) and Fuzzy Logic.   

In the following diagram, a simple Neural Network is a 3-layer 

structure which consists of input, hidden and output layers. Basically, it 

is a mesh wire of nodes interconnected. 

 

Figure 2 Schematic Diagram of Neural Network 

                            

The above feedforward Neural Network is presented in order to 

compare with the Extreme Learning Machine concept later on.  The 

precise description is single hidden layer feedforward networks (SLFNs) 

(Liang, Huang, Saratchandran, & Sundararajan, A Fast and Accurate 

Online Sequential Learning Algorithm for Feedforward Networks, 
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2006)and the following equations define the relationship of the nodes and 

the corresponding weight vector. 

Output of additive hidden nodes: 

)*(),,( iiii bxagxbaG +=  

Equation 6                                                                                                                          

Output of Radial Basis Function hidden nodes: 

||)||(),,( iiii axbgxbaG +=  

Equation 7                                                                                                          

The output function of SLFNs is: 

∑ =
= L

i iiiL xbaGxf
1

),,()( β  

iβ : Output weight vector connecting the ith hidden node and the output 

nodes 

Equation 8 

                                   
                                                                                       

2.2 Support Vector Machine and Least Square 

Support Vector Machine 

 

Support Vector Machine (SVM) has been used in many machine 

learning tasks such as pattern recognition, object classification, and with 

regression analysis in time series prediction in Support Vector Regression, 

or SVR, a methodology in which a function is estimated using observed 

data which in turn is used to train the SVM (Vapnik, Golowich, & Smola, 

Support Vector method for function approximation, regression 
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estimation, and signal processing, 1997). It differs from traditional time 

series prediction methodologies in that there is no model in the strict 

sense – the data drives the prediction (Burges, A Tutorial on Support 

Vector Machines for Pattern Recognition, 2005). (Malyscheff, Trafalis, 

& Raman, From Support Vector Machine learning to the determination 

of the minimum enclosing zone, 2002) used SVR to determine the 

minimum enclosing zone and (Fernandex, Irma, Zanakis, Stelios, & 

Walczak, Knowledge discovery techniques for predicting country 

investment risk, 2002) used SVR  to predict investment risk in a country. 

In (Lv & Zhang, Application of least squares support vector machine in 

futures price forecasting, 2011), the future price is forecasted using least 

squares support vector machines. The contract prices of stock index 

futures were forecasted in (Yang, Su, Zhou, & He, Support Vector 

Mchine Based Forecasting of the Contract Prices of Stock Index Futures, 

2011) using support vector machine-based forecasting model. The freight 

volume is forecasting using a hybrid model of support vector machine 

and least squares vector machines  (Wang, Zhao, & Zhgn, 2011). 

SVR has been used in  long-term stock market forecasting. (Pasila, 

Ronni, & Wijaya, Long-term Forecasting in Financial Stock Market 

using accelerated LMA on Neuro-Fuzzy structure and additional Fuzzy 

C-Means Clustering for optimizing the GMFs, 2008) used an accelerated 

Levenberg-Marquardt algorithm to predict the stock market series of the 

Jakarta Stock Indices over 10 months, achieving an RMSE of 1.96%. 

(Bao, Lu, & Zhang, Forecasting Stock Price by SVMs Regression, 2004) 

applied SVR to forecast the price trend for a single Chinese stock. 
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(Mitsdorffler & Diederich, Prediction of First-Day Returns of Initial 

Public Offering in the US Stock Market using rule extration from Support 

Vector Machines, 2008) used SVR to predict the first day returns of US 

stock market IPOs, but found to be accurate in only 18% of cases. (Zhai, 

Hsu, & Halgamuge, Combining News and Technical Indicators in Daily 

Stock Price Trends Prediction, 2007) claimed a profit over two months 

using a methodology that combined news and technical indicators. Huang 

et al (Huang, Nakamori, & Wang, Forecasting Stock market movement 

direction with Support Vector Machine, 2004) used SVR to forecast the 

direction of stock movements which was correct 73% of the time. 

(Sivakumar & Mohandas, Modeling and Predicting Stock Returns using 

the ARFIMA-FIGARCH a case study on Indian stock data, 2009) 

reported the use of SVR in financial time series prediction over a 5-day 

forecasting horizon.  

The following is a brief description  of the book (Ingo & 

Christmann, Support Vector Machine, 2008) SVR  for nonlinear function 

estimation such as the financial time series. In the primal weight space, 

the model takes the form  

bxxf T += )()( ϕω  

Equation 9 

With the given training data 
N
kkk yx 1},{ = and (.)ϕ : nhn RR → a mapping to 

a high dimensional feature space which can be infinite dimensional and 

is only implicitly defined. Note that in this nonlinear case the vector ω 

can also become infinite dimensional. The optimization problem in the 

primal weight space becomes  
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Applying the Lagrangian and conditions for optimality, the 

following is the dual problem 
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Equation 11 

             Here the kernel trick has been applied with 

)()()( , l
T

klk xxxxK ϕϕ= for k, l = 1,...,N. The dual representation of the 

model becomes 

∑
=

+−=
N

k
kkk bxxKxf

1

* ),()()( αα  

Equation 12                                                                                                                                

Consider the following Vapnik’s ε-insensitive loss function  
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Equation 13 

            Equation 13  is a convex cost function where L(.) is convex. 

Primal problem   
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                        0, * ≥kk εε  

Equation 14 

where 
*, kk εε  are slack variables. Here, kx  is mapped to a higher 

dimensional space by the function φ and ξk is the upper training error (ξk
* 

is the lower) subject to the ε–insensitive tube εϕ ≤−− |)(| bxwy k
T

k
. The 

parameters which control the regression quality are the cost of error C, 

the width of the tube ε, and the mapping function φ. 

   The constraints imply that we should put most data xk in the tube 

εϕ ≤−− |)(| bxwy k
T

k
. If xk is not in the tube, there is an error ξk or ξk

* which 

we must minimize the objective function SVR to avoid under-fitting or 

over-fitting of the training data by minimizing the training error   

∑
=

+
N

k
kk LLC

1

* ))()(( εε   as well as the regularization term 
2

1wTw. 

 
The Lagrangian for this problem is  
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Equation 15                                                      

With Lagrange multipliers 0,,, ** ≥kkkk ηηαα  for k=1,…,N. 

 
Dual problem 
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Equation 16 

Equation 10  to Equation 12  are the SVM for linear function 

estimation mathematical expression. Equation 13 to Equation 16 are the 

SVM for nonlinear function estimation mathematical expression.  

LSSVM regression (Suyken, et al., 2002) is closely related to 

regularization networks, Gaussian processes and reproducing kernel 

Hilbert spaces but with emphasis on primal-dual interpretations in the 

context of constrained optimization problems. It is relatively a new tool, 

there is very little research in financial forecasting using LSSVM such as 

(Gen & Ma, Least Squares Support Vector Regression Based CARRX 
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Model for Stock Index Volatility Forecasting, 2008) (Gestel, et al., 

Financial Time Series Prediction using Least Squares Support Vector 

Machines within the Evidence Framework, 2001) (Shen, Zhang, & Ma, 

Stock Return Forecast with LS-SVM and Particle Swarm Optimization, 

2009) (Zhang & Shen, Stock Yield Forecast based on LS-SVM in 

Bayesian inference, 2009).  

The following is a brief description of LSSVM mechanism on 

regression problems by the book (Ingo & Christmann, Support Vector 

Machine, 2008). Given a training data { }N

kkk yx 1, = , we can formulate the 

following optimization problem in the primal weight space 
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such that    yk =ωT  φ (xk)+b+ ek,         k= 1,…,N                

Equation 17 

 Equation 17 is modified here at two points comparing with 

Equation (10). First, instead of inequality constraints, one takes equality 

constraints where the value yk at the left hand side is rather considered as 

a target value than a threshold value. Upon this target value, an error 

variable ek is allowed such that misclassifications can be tolerated in the 

case of overlapping distributions. These error variables play a similar role 

as the slack variables ξi in SVR. Secondly, a squared loss function 
2
ke  is 

taken for this error variable. These modifications will greatly simplify the 

problem which has been demonstrated in the book (Ingo & Christmann, 

Support Vector Machine, 2008). 
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2.3 Wavelet Transform 

 

The wavelet transform (WT) has been found to be particularly 

useful for analysing signals which can best be described as aperiodic, 

noisy, intermittent and transient (Addison, The Illustrated Wavelet 

Transform Handbook, 2002). It really began in the mid-1980s where they 

were developed to interrogate seismic signals. The application of wavelet 

transform analysis in science and engineering really began to take off at 

the beginning of the 1990s. WT and Fourier transform (FT) are very 

similar in nature especially FT has been around since the 1800s (Crowley, 

A guide to wavelets for economists, 2007). FT is built from sine and 

cosine functions which are periodic waves that continue forever. This 

approach is only good for signals that have time-independent wave-like 

features, signals which have more localized features for which sines and 

cosines do not model very well. WT is a different set of building blocks 

to model these types of signals (Boggess & Narcowich, A first course in 

wavelets with fourier analysis, 2009). WT will be tested if it can improve 

the forecasting accuracy of financial time series which by definition is 

not with time-independent wave-like features. Based on (Zhou & Tian, 

Predicting Corporate Financial Distress based on Rough Sets and 

Wavelet Support Vector Machine, 2007) work, we have developed an 

algorithm that combines SVM and WT to perform the test. Wavelet is a 

mathematical function used to divide a given function or continuous-time 
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signal into different scale components. A wavelet transform is the 

representation of a function by wavelets. The wavelets are scaled and 

translated copies (known as “daughter wavelets”) of a finite-length or 

fast-decaying oscillating waveform (known as “mother wavelet”). It is 

widely applicable to time series analysis. In (Dai & Lu, Financial Time 

Series Forecasting using a Compound Model Based on Wavelet Frame 

and Support Vector Regression, 2008), multi-resolution discrete wavelet 

transforms combining with SVR technique was applied to forecast the 

opening cash index of Nikkei 225 with MAPE value at 0.31 which is a 

very good result. (Rua, A wavelet approach for factor-augmented 

forecasting, 2010) predicted GDP growth one- and two-quarter-ahead of 

Germany, France, Italy and Spain using multi-resolution discrete wavelet 

transforms. The best mean squared error was 65% better relative to the 

autoregressive benchmark in Spain but it was 10% worst in Italy. 

However, GDP growth cannot be compared with the financial index as 

the latter is more volatile. 

DWT is any wavelet transform for which the wavelets are 

discretely sampled. It was invented by the Hungarian mathematician 

Alfred Haar. The most commonly used set of DWT was formulated by 

the Belgian mathematician Ingrid Daubechies in 1988 which is one of the 

methods considered in this research. This formulation is based on the use 

of recurrence relations to generate progressively finer discrete samplings 

of an implicit mother wavelet function; each resolution is twice that of 

the previous scale. There are a number of families in Daubechies and 

Haar is the first one. Daubechies wavelets are quite asymmetric, in order 
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to improve symmetry while retaining simplicity, Daubechies proposed 

Symmlets as a modification to her original wavelets (also symmlets). The 

Daubechies and Symmlets wavelets are employed here in this research. 

(Rua, A wavelet approach for factor-augmented forecasting, 2010)  

described the conventional factor model, and the data-generating process 

of each variable is the sum of two components: a component associated 

with factors common to all series and an idiosyncratic term. The 

underlying idea is that one can summarize the large information set into 

a small number of variables, the common factors, which retain the main 

features. Wavelet multi-resolution analysis allows one to decompose a 

time series into a low-frequency base scale and higher-frequency scales. 

A more detailed description on wavelet multi-resolution can be found on 

(Bjorn & Wim, An Overview of Wavelet Based Multiresolution 

Analyses , 2010). Those frequency components can be analysed 

individually or compared across variables. Firstly, time series are 

decomposed to orthogonal components of different frequencies. Then, 

each time scale uses a model to fit in. Finally, the overall forecast is 

obtained by recombining the components. (Rua, A wavelet approach for 

factor-augmented forecasting, 2010) only used Symmlet wavelet at level 

4. Here, we used Symmlet wavelet functions with coefficients from 2 to 

8 and Daubechies wavelet function coefficients from 1 to 20 for 

comparison. The selections of such coefficients are based on the work 

(Kong, Wong, Lee, & Liu, Fuzz- IEEE, 2009). The application of wavelet 

methodology in Financial Time Series Forecasting is also rare such as 

(Zhou & Tian, Predicting Corporate Financial Distress based on Rough 
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Sets and Wavelet Support Vector Machine, 2007) and it is always a 

combination with the other forecasting techniques such as rough set, 

support vector machine or neural network. 

The discrete wavelet transform (DWT) can be written as: 

∫
∞

∞−
= dtttxT nmnm )()( ,, ψ  

Equation 18 

where the integers m and n control the wavelet dilation and translation 

respectively. By choosing an orthonormal wavelet basis, )(, tnmψ , we can 

reconstruct the original signal in terms of the wavelet coefficients, nmT , , 

using the inverse discrete wavelet transform as follows: 

∑ ∑
∞

−∞=

∞

−∞=

=
m n

nmnm tTtx )()( ,, ψ  

Equation 19 

The orthonormal discrete wavelets are associated with scaling 

functions and their dilation equations as follows: 

)2(2 2/
, ntmm
nm −= −− φφ  

Equation 20 

They have the property 

1)(0,0 =∫
∞

∞−
dttφ  

Equation 21 

The scaling function can be convolved with the signal to produce 

approximation coefficients as follows: 
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∫
+∞

∞−
= dtttxS nmnm )()( ,, φ  

Equation 22 

We can represent a signal x(t) with a combined series expansion 

using both the approximation coefficients and the wavelet coefficients as 

follows: 

∑ ∑ ∑
∞

−∞= −∞=

∞

−∞=

+=
n

m

m n
nmnmnmnm tTtStx

0

00
)()()( ,,,, ψφ  

Equation 23 

 

2.4 ARIMA and GARCH 

 

The only useful function of a statistician has been defined by 

William Edward Deming to make predictions (1900-1993).  

Autoregressive Integrated Moving Average (ARIMA) model or Box-

Jenkins model has been the golden standard in prediction with strong 

statistical background.  Despite the glory of the ARIMA model is not as 

shine as it used to be, this is still a very important model which this 

research must compare to.   

The following description of ARIMA model is based on the work 

of (Asteriou & Hall, ARIMA Models and the Box–Jenkins Methodology, 

2011). ARIMA(p,d,q) is the general form but most time series in practice 

do not exceed 2. Consider the following ARIMA(1,1,1)  
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tt BxB εθφ )1()1( 11 −=∇−  

Equation 24 

Which simplifies to 

12111)1( −−− −+−+= ttttt xxx θεφφ  

Equation 25 

And ARIMA(2,1,0) process 

ttxBB εφφ =∇−+ )1( 2
2

1
1  

Equation 26 

Which can be written as 

ttttttt xxxxxx εφφ +−+−+= −−−−− )()( 3222111  

Equation 27 

  If an autoregressive moving average model (ARMA model) is 

assumed for the error variance, the model is a General Autoregressive 

Conditional Heteroskedasticity (GARCH, Bollerslev 1986) (Bollerslev, 

Glossary to ARCH (GARCH), 2007) model. ARIMA model or Box-

Jenkins model (Box & Jenkins, Time Series Analysis: Forecasting and 

Control, 1970) is a standard textbook material in econometrics and finance 

for many years. There are many families of GARCH as described in 

(Hentschel, Nesting symmetric and asymmetric GARCH models, 1997) 

and its application is throughout the financial institutes. GARCH models 

are designed to capture certain characteristics that are commonly 

associated with financial time series such as fat tails, volatility clustering 

leverage effects. One branch of GARCH called Ngarch as described in 

(Posedel, Analysis of the exchange rate and pricing foreign currency 
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options on the Coration market : The NGARCH models as an alternative 

to the Black-Scholes model, 2006) is an alternative approach to the 

famous Black Scholes Model. ARFIMA-FIGARCH from (Sivakumar & 

Mohandas, Modeling and Predicting Stock Returns using the ARFIMA-

FIGARCH a case study on Indian stock data, 2009) that could predict the 

Indian Stock Data during the period 3 July, 1990 to 18 September 2009 

accurately. In the paper by (Huang & Wu, Wavelet-Based Relevance 

Vector Machines for Stock Index Forecasting, 2008), GARCH prediction 

on NK225 has the RMSE value of 0.2013 while that of the pure SVM is 

0.1820 and the best RMSE value from Wavelet-based RVM is 0.0202 

while the pure SVM value is 0.182. 

The following description of GARCH model is based on the work 

by (Engle, GARCH 101: The Use of ARCH/GARCH Models in Applied 

Econometric, 2011).The GARCH(p,q) model (where p is the order of the 

GARCH terms and q is the order of the ARCH terms) is given by 

∑ ∑
= =

−−−−−− ++=++++++=
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Equation 28 

 

2.5 Chart Pattern Matching 

 

Chart patterns are the earliest and still a very popular tool for 

technical analysis. Yet, how to identify and discover the chart pattern is 

the most subjective part of this body of knowledge. The skill to identify 
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chart pattern is the part that most students and even professionals have 

problems mastering. Sometimes, that it is referred as an art rather than 

science. There are 53 patterns according to the book encyclopaedia of 

stock patterns (Bulkowski, Encyclopedia of Chart Patterns, 2005) but 

only 7 patterns have been selected for study due to the limitation of the 

resources. They are No. 2 Broadening Formations, Right-Angled and 

Ascending, No. 3 Broadening Formations, Right-Angled and Descending, 

No. 24 Head-and-Shoulders Bottoms, No. 26  Head-and-Shoulders Tops, 

No. 47 Triangles, Ascending, No. 48 Triangles, Descending,  No. 49   

Triangles, Symmetrical, please refer to Figure 3 for their shape. These 7 

patterns can be classified into   2 categories which are triangles and head 

and shoulder. It is rather difficult to classify how many categories in the 

53 patterns from the literature but these 2 are the most common. They are 

chosen because the frequency of appearance in time series is very high.  

The identification guidelines are provided in Appendix. Chart reading 

takes a bit of intuition and observation. It is a skill to be developed and 

honed with experience. Algorithms have been written in an attempt to 

spot the above 7 patterns from 90 different Hong Kong equities. The 

results are quite promising as it will be explained in Chapter 3 Section 

3.4. In the following Figure 3, 7 patterns have been selected from the 

book (Bulkowski, Encyclopedia of Chart Patterns, 2005). 

 



29 

 

 

                                    

 

Figure 3 Seven Chart Patterns Easily Identified 

 

2.6 Black-Scholes Formula 

 

The following is the Black-Scholes pricing model which is based 

on (Chance, Derivation and interpretation of the Black-Scholes-Merton 

Model, 2011) 

tttt dWSdtSdS σµ +=  

Equation 29 

where Wt   is a standard Brownian motion. It is assumed that interest 

rates are constant. C(S,T) denotes (stock price, price of the call option 

and time) the value of a call option at time t.  

By Ito’s lemma 

Chart 2 Chart 3 Chart 24

Chart 26 Chart 47 Chart 48

Chart 49
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             Now consider a self-financing trading strategy where at each time 

t we hold tx  units of the cash account and ty  units of the stock. Then 

tP  the time 0 value of the trading strategy satisfies 

ttttt SyBxP +=  

Equation 31 

Equation 31,  tB  represents a certain amount of money put in a 

bank, tS  represents a certain amount of money to buy stock which is a 

representation of an option. We can choose xt and yt in such a way that 

the strategy replicates the value of the option. The self-financing 

assumption implies that 

ttttt dSydBxdP +=  

Equation 32 

)( ttttttt dWSdtSydtBrxdP σµ ++=    

))( tttttttt dWSydtSyBrxdP σµ ++=  

Equation 33 

Rewriting terms. We can equate terms in Equation 30 with the 

corresponding terms in Equation 32 to obtain 

S

C
yt ∂

∂=  

Equation 34 
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P is the amount of money before replication should be the same 

as the call option. If we set P0 = C0 then it must be the case that Pt = Ct 

for all t since C and P have the same dynamics. This is true by 

construction after we equate terms in Equation 30 with the corresponding 

term in Equation 33. 

We get the Black-Scholes PDE by substituting Equation 30 into 

Equation 35 to get: 
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Equation 37 

In order to solve the partial differential Equation 36, the 

following original formula is copied from the book of (Bodie, Kane, & 

Marcus, Investments, 2005). 

)()( 2100 dNXedNSC rT−−=  
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Tdd σ−= 12  

0C= Current call option value 

0S= Current stock price 
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N(d) = The probability that a random draw from a standard normal 

distribution will be less than d. 

X = Exercise price 

r = Risk-free interest rate (the annualized continuously compounded 

rate on a safe asset the same maturity as the expiration of the option, 

which is to be distinguished from rf, the discrete period interest rate.) 

T = Time to maturity of option, in years 

σ = Standard deviation of the annualized continuously compounded 

rate of return of the stock. 

Equation 38 

It is quite complicated to develop Black-Sholes formula but the 

fundamental concept is still normal distribution. The impact of such 

assumption has a serious impact on stock forecasting. It has been 

discovered by Lévy that stock price movement is not always normal but 

Lévy distribution. 

 

2.7 Extreme Learning Machine 

 

Sequential learning algorithm for single hidden layer feedforward 

network (SLFN) as per Figure 2 is the backbone of Extreme Learning 

Machine (ELM) (Huang, Chen, & Siew, Universal Approximation Using 

Incremental Constructive Feedforward Networks with Random Hidden 

Nodes, 2006). The following equations outline the major characteristic of 
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the algorithm. The following description on ELM is based on (Huang, 

Zhu, & Siew, Extreme learning machine: theory and applications, 2006).   

Output function of “generalized” SLFNs 

∑
=

=
L

i
iiiL xbaGxf

1

),,()( β  

Equation 39 

The hidden layer output function (hidden layer mapping): 

)],,(),...,,,([)( 11 xbaGxbaGxh LL=  

Equation 40 

The output functions of hidden nodes can be but are not limited 

to: 

Sigmoid:  )*(),,( iiii bxagxbaG +=  

Equation 41 

RBF:   
||)||(),,( iiii axbgxbaG −=  

Equation 42 

Here is the new learning theory – learning without iterative tuning: 

Given any non-constant piecewise continuous function g, if continuous 

target function F(x) can be approximated by SLFNs with adjustable 

hidden nodes g, then the hidden node parameters of such SLFNs needn’t 

be tuned (Huang, Chen, & Siew, Universal Approximation Using 

Incremental Constructive Feedforward Networks with Random Hidden 

Nodes, 2006). There are two advantages. The first proves the existence 

of the networks and the learning solutions. The second is these hidden 

node parameters can be randomly generated without the knowledge of 

the training data. As a result, ELM is a very efficient algorithm as it does 
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not rely on the iterative tuning of the parameters in the hidden nodes, 

compared with the NN or SVR algorithm it requires very less 

computational power. This latest forecasting technique has many 

applications such as (Cao, Lin, & Huang, Self-Adaptive Evolutionary 

Extreme Learning Machine, 2012) and it has attracted many researchers 

to conduct new experiments. NN has lost its moment for quite sometimes 

and many conferences and journals have lost its interest using NN. But 

this ELM has revived NN and provides a new perspective for the NN 

researchers to redefine the role and structure of the classical NN. 

 

2.8 Conditional Restricted Boltzmann Machine 

 

Entia non sunt multiplicanda praeter necessitatem (Entities should 

not be multiplied beyond necessity) by William of Ockham (1288-1348) 

is a famous statistical remark on the dimension of data that is necessary 

to do forecasting. Is the dimension a curse or blessing? When 

computational ability is weak, feature extraction algorithm like ISOmap 

is employed to reduce the dimension in order to handle the complexity. 

As computational power is growing stronger, the more dimensions are 

input to search for better results. Today, the Big data era has come and 

demands for new algorithm to work with the gigantic volume of data 

which is unprecedented in the short history of computer science. One of 

the prevailing algorithms is Boltzmann machine (Minh, Larochelle, & 

Hinton, Conditional Restricted Boltzmann Machines for Structured 
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Output Prediction, 2010)which is basically an energy based algorithm. It 

uses energies concept to define probabilities of the hidden nodes similar 

to the diagram as depicted in the neural network. The node with more 

information or strong connection has low energy while others will be 

assigned with high energy. The probability of the final configuration over 

both visible and hidden units depends on the energy of that joint 

configuration compared with the energy of all other joint configurations. 

The Restricted Boltzmann Machine (RBM) has one hidden and one 

visible layer with only interlayer connections. Each layer is trained 

independently without any reference to the second layer and the weight 

vector is updated with another layer after it has been trained. Deep 

learning is the result of training multiple layers of networks and it 

involves normally 6 to 15 layers by definition. Deep Boltzmann Machine 

(DBM) is a type of binary pairwise Markov Random Field with multiple 

layers of hidden random variables. In the paper – A better Way to Pre-

train Deep Boltzmann Machines by (Salakhutdinov & Hinton, A Better 

Way to Pretrain Deep Boltzmann Machines, 2010), the authors applied 

the DBM to train the MNIST and NORB image datasets and 

demonstrated that the new pre-training algorithm can learn much better 

than generative models. It is the frequently used algorithm in deep 

learning research. RBMs have primarily been used for learning new 

representations or classification of data while CRBM is generally used in 

prediction area.  
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Figure 4 Restricted Boltzmann Machine 

 

In Figure 4 m and n are the number of visible and hidden units 

while weight wij is assigned to each connect unit pair (vi, hj) and every 

unit has an associated bias term ai and bi for vi and hj respectively. RBM 

is an undirected graphical model that defines a probability distribution 

over a vector v and h as depicted in the above diagram. 

The following description on the RBM is based on the definition of a joint 

probability over v and h in RBM as follows 

,/)),(exp(),( ZhvEhvp −=
 

Equation 43 

The energy function of a given joint configuration (v, h) is defined 

as 

hTvTT bhbvWhvhvE −−−=),(  

Equation 44 
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To obtain p(v) one simply marginalizes out h from the joint 

distribution: 

∑ −=−=
h

ZvFZhvEvp /))(exp(/)),(exp()(  

Equation 45 

F(v) is called the free energy and can be computed in time linear 

in the number of elements in v and h: 

∑ −−=
h

hvEvF )),(exp(log)(  

∑ ++−−=
j

j
Th

j
vT WvbbvvF ))exp(1log()(  

Equation 46 

RBMs have generally been trained using gradient descent in 

negative log-likelihood –l(ϴ) for some set of training vectors V. 
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Equation 47 
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Figure 5 Schematic Diagram for Restricted Boltzmann Machine 

 

Figure 5 is extracted from the paper, page 2 of (Mnih, Larochelle, 

& Hinton, 2011). RBMs have generally been trained using gradient 

descent in negative log-likelihood )(θl−  for some set of training vectors 

V with the following definition 
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Equation 48 

            And differentiating )(θl−  with respect to some parameter θ, we 

get the gradient 
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Equation 49 

RBM and CRBM can be compared with the following equations 

hTuhTuvTvTvhT bhhWuvWubvWvuhvE −−−−−=),,(  

Equation 50 

With the associated free energy 

)),,(exp(log),( uhvEuvF
h
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Equation 51 

The CRBM model defines the following probability distribution: 
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The gradient of the negative log conditional likelihood for a 

CRBM is given by 
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Equation 53 

Here, CRBM models the distribution p(v|u) by using an RBM to 

model v and using u to dynamically determine the biases or weights of 

the RBM. 
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Chapter 3   Analysis on Existing Methods 

and Limitations 

 

3.1 The Accuracy of Three Different Stock 

Forecasting Models 

 

3.1.1 Introduction 

 

NNs and SVMs are both standard, mature machine learning 

approaches with applications in prediction based on times series data.  

They are well known to handle non-linear prediction data such as stock 

forecasting. NNs have been used with success in pattern classification 

and recognition, weather forecasting, data mining and knowledge 

discovery, and in time series prediction tasks such as financial market 

prediction of stock prices and foreign exchange forecasting. Lee iJade 

Stock Predictor (Lee & Liu, iJade Stock Predictor - An Intelligent Multi-

Agent Based Time Sereis Stock Prediction System, 2001)and iJade 

WeatherMan (Lee & You, iJade WeatherMan - A Multiagent Fuzzy-

Neuro Network Based Weather Prediction System, 2001) are good 

examples exploring the use of agent technology and artificial intelligence 

techniques. They have shown themselves to be more accurate than other 



41 

 

 

AI tools, such as Genetic Algorithms and Fuzzy Logic. (Wang & Li, A 

Novel Nonlinear RBF Neural Network Ensemble Model for Financial 

Time Series Forecasting, 2009)  have demonstrated that a single RBF-

NN model prediction on S&P500 NMSE value is 0.2389 while the ν–

SVMR model NMSE value is 0.0670. In our experiment, NN model has 

advantages in long-term forecast  during the volatile period. 

SVR has been used in long-term stock market forecasting. (Pasila, 

Ronni, & Wijaya, Long-term Forecasting in Financial Stock Market 

using accelerated LMA on Neuro-Fuzzy structure and additional Fuzzy 

C-Means Clustering for optimizing the GMFs, 2008) used an accelerated 

Levenberg-Marquardt algorithm to predict the stock market series of the 

Jakarta Stock Indices over 10 months, achieving an RMSE of 1.96%. 

(Bao, Lu, & Zhang, Forecasting Stock Price by SVMs Regression, 2004) 

applied SVR to forecast the price trend for a single Chinese stock. 

(Mitsdorffler & Diederich, Prediction of First-Day Returns of Initial 

Public Offering in the US Stock Market using rule extration from Support 

Vector Machines, 2008) used SVR to predict the first day returns of US 

stock market IPOs, but found to be accurate in only 18% of cases. (Zhai, 

Hsu, & Halgamuge, Combining News and Technical Indicators in Daily 

Stock Price Trends Prediction, 2007) claimed a profit over two months 

using a methodology that combined news and technical indicators. Huang 

et al (Huang, Nakamori, & Wang, Forecasting Stock market movement 

direction with Support Vector Machine, 2004) used SVR to forecast the 

direction of stock movements which was correct 73% of the time. 

(Sivakumar & Mohandas, Modeling and Predicting Stock Returns using 
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the ARFIMA-FIGARCH a case study on Indian stock data, 2009) 

reported the use of SVR in financial time series prediction over a 5-day 

forecasting horizon.  

The performances of GARCH, NN and SVM in stock price 

prediction on the Dow Jones Industrial Average Index (DJ) based on 30 

stocks, Hang Seng Index (HSI) based on 50 stocks and Shanghai 

Composite based on 1038 stocks over a 5-day and 22-day horizon 

respectively are thoroughly examined in this section. It is inspired by the 

work of (Bao, Lu, & Zhang, Forecasting Stock Price by SVMs 

Regression, 2004) and Lin et al (Lin, Chen, & Chang, Load Forecasting 

using Support Vector Machines: A study on ENUNITE Competition 

2001, 2001) who both applied SVM technique in stock and power 

consumption prediction respectively. We carried out experiments in SVR 

using the software system from (Lin & Chang, LIBSVM, 2001), and that 

NN & GARCH using standard MATLAB command. 

 

3.1.2 Empirical Modeling 

 

The objective is to investigate different means of predicting the 

5-day and 22-day horizons of the 3 indices market value given their 

historical values. The historical data of the 3 markets from years 2002 to 

2007 were downloaded from the Yahoo financial website.  They are 

organized in four datasets. The first two sets, corresponding to year 2006 

and years 2002 to 2006 are used to predict the 3 market values for January 
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of year 2007. The third and fourth sets, corresponding to year 2007 and 

years 2003 to 2007 are used to predict the 3 market value for January of 

year 2006. It has been mentioned in the early section that these 3 models 

are mature ones in literature but it has not been examined under an 

extreme situation such as the financial tsunami. The candidate has 

explored different parameters in the 3 models to seek out the best output.      

 

 

 

Figure 6 Data Set of Year 2006 
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Figure 7 Data Set of Year 2007  

 

Figure 8 Data Set for Year 2002 to 2006 
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Figure 9 Data Set for Year 2003 to 2007
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Table I Three Stock Indices Volatility Range and Average 

    2006 2002 to 2006 2007 2003 to 2007 

Dow Jones Max 46.522 72.977 131.386 131.729 

  Min -29.196 -36.009 -31.669 -36.009 

  Average 0.661 1.000 6.167 1.829 

Hang Seng Max 83.889 83.889 111.539 111.539 

  Min -34.028 -34.855 -35.116 -35.116 

  Average 3.057 1.475 5.891 3.170 

Shanghai Max 107.728 113.068 124.091 124.091 

  Min -30.911 -46.634 -48.695 -48.695 

  Average 7.897 2.920 3.848 3.814 

 

Table II Three Stock Indices Kurtosis and Skewness 

    2006 2002 to 2006 2007 2003 to 2007 

Dow Jones Kurtosis 2.821 2.360 2.710 2.080 

Hang Seng Kurtosis 2.333 2.254 4.042 2.198 

Shanghai Kurtosis 5.273 3.428 5.092 1.742 

Dow Jones Skewness -0.387 0.763 0.289 -0.308 

Hang Seng Skewness 0.326 0.612 1.092 0.774 

Shanghai Skewness 0.766 0.741 1.830 -0.016 

 

The above figures are from the high and low values of the relative 

datasets and MATLAB command “chaikvolat” was used to calculate on 

10-period exponential moving average and 10-period difference volatility 

value. Despite the fact that the command “chaikvolat” is a standard tool, 

the value of volatility obtained from such command is still important to 

analyse the relationship between the volatility and the predicted result. 

As the 4 datasets have different records, it is impossible to put all of them 

in the same scale along the horizontal and vertical axes. The volatility 

value as depicted in Table I is a fair comparison for all these datasets. The 

average volatility value in Figure 6 for 2006 is 3.87 and the individual 

index is DJ 0.66, HSI 3.06 and SH 7.9.  The average volatility value in 
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Figure 7 is 5.3 for 2007 and the individual index is DJ 6.17, HSI 5.9 

and SH 3.85. The maximum and minimum volatility range in Figure 6 is 

141.76 and in Figure 7 is 180.08. It can be concluded that the 2007 dataset 

is more volatile than 2006. The average volatility value in Figure 8 for 

2002 to 2006 is 1.8 and the individual index is DJ 1.0, HSI 1.47 and SH 

2.29. The average volatility value in Figure 9 is 2.94 for 2003 to 2007 8 

and the individual index is DJ 1.83, HSI 3.17 and SH 3.81. The maximum 

and minimum volatility range in Figure 8 is 159.7 and in Figure 9 is 

180.42. It can be concluded that the 2003 to 2007 datasets are more 

volatile than 2002 to 2006 datasets.  

The short-term forecasting goal in this work is to predict a 

window of 5-day closing values for the first 5 trading days of January 

2007 and January 2008 respectively. The long-term forecasting goal is to 

make prediction for a window of 22-day closing values for the first 22 

trading days of January 2007 and January 2008. 

 

3.1.3 Experiments and Results 

 

The following, describes three experiments using MATLAB 

programming with scripts written by the candidate. In GARCH model, 3 

different Variance Models are provided in the MATLAB software which 

is GARCH, EGARCH and GJR. The best results are selected from each 

model to compare with NN and SVR model. In NN model, there are 4 

different types of networks provided in the MATLAB software which are 
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RBE, RB, GRNN and PNN. Please refer to the MATLAB manual for 

the details of the Variance Models in GARCH and different types of 

networks in NN. In SVR model, standard RBF kernel is selected. 

 

3.1.3.1 Experiments on GARCH 

 

The stock prices are transformed from prices to returns so that it 

can produce a stationary time series. This process is similar to 

normalization which can limit the data volatility into a narrow range. It is 

a technique to fit the datasets into the GARCH model. We performed the 

GARCH experiment in MATLAB software and selected the EGARCH 

model which has additional leverage terms to capture asymmetry in 

volatility clustering. As the dataset is from financial tsunami period, thus 

asymmetry in volatility clustering is assumed. The other families of the 

GARCH model performance are not as good as EGARCH. 
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Table III Prediction Result of GARCH Model 

Market Horizon Model Kurtosis Skewness Volatility MAPE5 MAPE22 

Dow Jones 2002-2006 EGARCH 2.360 0.763 1.00 1.447 4.458 

  2006 EGARCH 2.821 -0.387 0.66 1.280 4.063 

  2003-2007 EGARCH 2.080 -0.308 1.83 6.369 19.082 

  2007 EGARCH 2.710 0.289 6.17 6.790 21.993 

Hang Sang 2002-2006 EGARCH 2.254 0.612 1.47 2.054 9.914 

  2006 EGARCH 2.333 0.326 3.06 1.825 9.180 

  2003-2007 EGARCH 2.198 0.774 3.17 6.605 28.620 

  2007 EGARCH 4.042 1.092 5.90 7.317 34.864 

Shanghai 2002-2006 EGARCH 3.428 0.741 2.92 2.404 13.640 

  2006 EGARCH 5.273 0.766 7.90 1.330 10.556 

  2003-2007 EGARCH 1.742 -0.016 3.81 2.977 25.241 

  2007 EGARCH 5.092 1.830 3.83 4.943 36.428 

Average  value of 3 markets on MAPE5 and  MAPE23 respectively 3.779 18.170 

Average  value of 3 markets on MAPE5 and MAPE23 10.974 

 

The data set of 2006 is used for short term forecast with 2007 5-

day forecasting horizon (MAPE5 the forecasting result) while the data set 

of 2002 to 2006 is used for 2007 5-day forecast horizon. Both target the 

same 5-day forecasting horizon while the former only inputs 1 year of 

historical values but the latter involves 5 years of inputs.  It is the same 

principle for data set 2007 and 2003 to 2007. The reason to pick 5-day 

forecasting horizon is that it is the number of trading days in 1 week. On 

the other hand, the long-term forecast is 22-day horizon and MAPE22 is 

the forecasting result. Again, the reason to pick 22-day forecasting 

horizon is because the number of trading days in a month is roughly 22 

days. In financial time series forecasting, weekly and monthly forecasts 

give a general forecasting pattern. 

The lowest MAPE5 value is 1.280 from Dow Jones market using 

2006 data set. It is the same for the lowest MAPE22 value which is 4.063 
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also from Dow Jones market using 2006 data set. This is consistent with 

the lowest volatility value in Dow Jones 2006 dataset. In general, the 

higher the volatility value, the higher the MAPE value. Also, the group 

volatility value average in years 2006 of the 3 markets is 3.87 while the 

average MAPE value is 4.71. The group volatility value average in years 

2007 of the 3 markets is 5.3 while the average MAPE value is 18.72. The 

group volatility value average in years 2002 to 2006 of the 3 markets is 

1.8 while the average MAPE value is 5.65. The group volatility value 

average in years 2003 to 2007 of the 3 markets is 2.94 while the average 

MAPE value is 14.82. The co-relationship of volatility value and the 

MAPE value is quite obvious. However, the overall result of the GARCH 

model which takes the average of all the result in Table III  is 10.974. 

Compared to the best 1.280 from the lowest MAPE5, it is not ideal at all, 

The GARCH model is a famous mean reverting forecasting model and it 

is designed to handle linear time series. But the 3 markets are definitely 

not linear which could explain why its prediction result is not up to the 

expectation. In terms of volatility ranking, the lowest volatility value is 

in the 2006 Dow Jones Index which is 0.66 and the model predicted 

MAPE5 and MAPE22 value is 12.8 and 4.063 which is also the best. The 

highest volatility values all happen in 2007 in all three markets and all 

their predicted MAPE5 and MAPE22 are almost the highest. There is an 

anomaly data which is 2006 Shanghai Composite Index that has the 

highest volatility value 7.9 but the second best MAPE5 value of 1.33 and 

even the MAPE5 value of 10.536 ranked the fifth. From Table II, the 

kurtosis value of 2006 Shanghai Composite Index is 5.273 which is 
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highest in the group and since the value is greater than 3, it is not a 

normal distribution.  The skewness value is 0.766, it is a positive skew 

which means the right tail is longer and the mass of distribution is 

concentrated on the right of the dataset.  A possible explanation of this 

could be Shanghai Composite Index has its unique market characteristic 

and is less affected by the market of Hang Seng and Dow Jones in 2006. 

In 2007, the year before the financial tsunami crisis, the influence of both 

Hang Seng and Dow Jones to Shanghai market is higher. However, the 

relationship between volatility value and MAPE value is not always 

proportional to the ranking scale.  Finally, the average MAPE value in 

Dow Jones is 8.185, Hang Seng is 12.547 and Shanghai 12.19. 

 

3.1.3.2  Experiments on Neural Network 

 

We performed the NN also in MATLAB environment.  Three 

types of neural networks are selected for comparisons. The first one is 

Probabilistic Neural networks (PNN) which are used for classification 

problem and matching the input to a training input in order to produce a 

probabilistic output vector. The second is Radial Basis Neural Networks 

(RB). A radial basis network is a network with two layers. A hidden layer 

of radial basis neurons and an output layer of linear neurons. With the 

correct weight and bias values for each layer, and enough hidden neurons, 

a radial basis network can fit any function with any desired accuracy. The 

third is the Generalized Regression Neural Networks (GRNN) which is 
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used for function approximation. It has a radial basis layer and a special 

linear layer. Open, High, Low and Close values of each trading day are 

the input parameters. There are more than 20,000 iterations at each run. 

As the results for each kernel function vary between runs, we provide the 

results for only the best of ten runs. The following table selected the best 

result from each kernel of the corresponding datasets. 

 

Table IV Prediction Result of NN models 

Market Horizon Kurtosis Skewness Volatility Model MAPE5 Model MAPE22 

Dow Jones 2002-2006 2.360 0.763 1.00 grnn 0.273 grnn 1.209 

  2006 2.821 -0.387 0.66 grnn 0.351 rb 1.222 

  2003-2007 2.080 -0.308 1.83 pnn 2.094 pnn 4.893 

  2007 2.710 0.289 6.17 pnn 2.094 pnn 4.893 

Hang Sang 2002-2006 2.254 0.612 1.47 rb 2.635 grnn 5.088 

  2006 2.333 0.326 3.06 rb 2.635 grnn 5.183 

  2003-2007 2.198 0.774 3.17 pnn 1.070 pnn 6.450 

  2007 4.042 1.092 5.90 grnn 1.549 grnn 8.485 

Shanghai 2002-2006 3.428 0.741 2.92 rb 7.321 rb 18.248 

  2006 5.273 0.766 7.90 rb 7.321 rb 18.248 

  2003-2007 1.742 -0.016 3.81 rb 7.593 grnn 7.891 

  2007 5.092 1.830 3.83 grnn 7.436 pnn 6.929 

Average  value of 3 markets on MAPE5 and MAPE22 respectively   3.827   7.957 

Average  value of 3 markets on MAPE5 and MAPE23 5.892 

 

The forecasting result in NN is much better than GARCH. The 

overall average in NN is 5.463 while GARCH is 10.974. Like GARCH 

model, Dow Jones has the lowest MAPE5 value which is 0.273 using 

GRNN and lowest MAPE22 value which is 1.209 also using GRNN but 

it has the second-lowest volatility value 1 in the 2002 to 2006 Dow Jones 

Market. The anomaly in section 3.1.3.1 2006 Shanghai market which has 

the highest volatility value 7.9 but the second best MAPE5 value of 1.33  
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has not been found using NN model. The average MAPE5 and 

MAPE22 value from GRNN is 4.163, for PNN is 5.791 and RB is 8.153. 

It is concluded not only GRNN has the lowest MAPE5 value of 0.273, it 

is also the best performer. As GRNN has both linear and non-linear 

function approximation abilities embedded in its structure, it seems that 

it is quite suitable to handle the above datasets. In terms of the best 

performance, EGARCH has 0.66 in MAPE5 and 1.28 in MAPE22 in 

Dow Jones 2006 while GRNN has 0.273 in MAPE5 and 1.209 in 

MAPE22. In terms of percentage there is 31% improvement and as a 

whole, there is 50% better than EGARCH. In each market, Dow Jones 

average MAPE value is 3.054 which is 168% better than EGARCH, Hang 

Seng average MAPE value is 6.301 which is 99% better than EGARCH 

and Shanghai average MAPE value is 12.829 which is 4% worse than 

EGARCH. Again, the relationship between volatility value and the 

MAPE value is not always proportional to the ranking scale.   

 It would seem not fair to compare GARCH model as there is only 

1 input (close value) while NN has 4 inputs (open, high, low and close). 

However, these 2 models have different designs as the first one is mean 

reverting while the latter uses hidden layers concept which in theory must 

use more inputs to build up hidden layers. The famous Black-Scholes 

formula in Section 2.8 only uses the stock price as 1 input into the model. 

From the pragmatic point of view, there is no harm to compare as our 

research objective is to seek out the most useful one not necessary the 

best one.  
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3.1.3.3  Experiments on Support Vector Regression 

 

Table V Prediction Result of SVR Model 

Market Horizon Model Kurtosis Skewness Volatility MAPE5 MAPE22 

Dow Jones 2002-2006 SVR 2.360 0.763 1.00 0.700 1.300 

  2006 SVR 2.821 -0.387 0.66 0.380 1.300 

  2003-2007 SVR 2.080 -0.308 1.83 1.140 2.740 

  2007 SVR 2.710 0.289 6.17 1.940 4.550 

Hang Sang 2002-2006 SVR 2.254 0.612 1.47 2.240 4.800 

  2006 SVR 2.333 0.326 3.06 2.240 4.830 

  2003-2007 SVR 2.198 0.774 3.17 0.800 6.120 

  2007 SVR 4.042 1.092 5.90 0.820 4.330 

Shanghai 2002-2006 SVR 3.428 0.741 2.92 7.320 18.250 

  2006 SVR 5.273 0.766 7.90 9.740 19.240 

  2003-2007 SVR 1.742 -0.016 3.81 1.850 8.890 

  2007 SVR 5.092 1.830 3.83 1.850 8.630 

Average  value of 3 markets on MAPE5 and MAPE22 respectively 2.585 7.082 

Average  value of 3 markets on MAPE5 and MAPE23 4.833 

 

From Table V, SVR model is the best among the three as it has 

the lowest average value of 4.833. Again, Dow Jones has the lowest 

MAPE5 value 0.38 and MAPE22 value 1.30. It also has the lowest 

volatility value 0.66. Despite the best forecasting result in SVR, it is the 

most difficult model to implement. GARCH model only requires 

converting the data set from daily value to daily return while NN can 

directly feed the daily value into the model. GARCH model has 3 

different Variance Models while NN has 4 different network types for 

selection. It is still very easy to implement and it does not take too long 

to practice it. However, SVR is a completely different story. As explained 

in Chapter 2 Section 2.2, C is the value in Equation 10 and g is the 

parameter of the mapping functionφ .  These 2 parameters are very 
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important in selection in order to gain a fruitful result. Based on our 

previous work (Lai & Liu, Stock forecasting using Support Vector 

Machine, 2010) (Lai, Hu, & Liu, A weighted Support Vector Data 

Description based on Rough Neighborhood approximation, 2012) there 

are 50 combinations of C & g parameters to test in the algorithm.  

In each market, Dow Jones average MAPE value is 1.756 which 

is 366% better than EGARCH, Hang Seng average MAPE value is 3.273 

which is 283% better than EGARCH and Shanghai average MAPE value 

is 9.471 which is 88% better than EGARCH. In fact, SVR has all the best 

average MAPE in the 3 markets. It has the lowest 4.833 MAPE value 

among the 3 forecasting methods. Once again, the relationship between 

volatility value and MAPE value is not always proportional to the ranking 

scale.  SVR is easily compared with NN as both use 4 inputs while it is 

controversial to compare with GARCH model. Using the same reason in 

section 3.1.2.3, there is no harm to make the comparison as our research 

objective is to seek out the most useful one not necessary the best one.   

 

Table VI Average MAPE Value of Each Model in Each Market 

Model Market Average MAPE5 Average MAPE22 

SVR Dow Jones 1.445 2.267 

NN Dow Jones 3.105 3.065 

GARCH Dow Jones 3.972 10.713 

SVR Hang Seng 2.431 4.502 

NN Hang Seng 5.059 6.053 

GARCH Hang Seng 4.450 17.405 

SVR Shanghai 6.584 12.319 

NN Shanghai 9.485 12.160 

GARCH Shanghai 2.914 17.756 

 



56 

 

 

Table VI is a summary of the performance of 3 models in the 3 

markets. Each MAPE value is the average of all the values from the data 

sets 2006, 2002 to 2006, 2007 and 2003 to 2007. SVR model is the best 

in Dow Jones MAPE5 and MAPE22 and in Hang Seng markets MAPE5.  

NN is the best in MAPE22 Hang Seng market and MAPE22 in Shanghai 

composite index. GARCH is the best in Shanghai market MAPE5. SVR 

is a controversial concept despite its strong statistical background which 

many neural network computer scientists believe it is just an extension of 

a new type of neural network. Nevertheless, it is not the focus here to 

discuss the root of the problem but to show from our experiments that 

both models perform very similar. From the above, SVR has 3 scores 

while NN has 2 scores and GARCH 1 score. Hence, it is difficult to judge 

whether SVR is better than NN or not.  But from our experiments, NN is 

much easier to handle while SVR is very complicated. 

 

Table VII Performance of Each Model in The 3 Markets 

Market Period GARCH GARCH NN NN SVR SVR 

    MAPE5 MAPE22 MAPE5 MAPE22 MAPE5 MAPE22 

Dow Jones 2002-2006 1.447 4.458 0.273 1.209 0.700 1.300 

Dow Jones 2006 1.280 4.063 0.351 1.222 0.380 1.300 

Dow Jones 2003-2007 6.369 19.082 2.094 4.893 1.140 2.740 

Dow Jones 2007 6.790 21.993 2.094 4.893 1.940 4.550 

Hang Sang 2002-2006 2.054 9.914 2.635 5.088 2.240 4.800 

Hang Sang 2006 1.825 9.180 2.635 5.183 2.240 4.830 

Hang Sang 2003-2007 6.605 28.620 1.070 6.450 0.800 6.120 

Hang Sang 2007 7.317 34.864 1.549 8.485 0.820 4.330 

Shanghai 2002-2006 2.404 13.640 7.321 18.248 7.320 18.250 

Shanghai 2006 1.330 10.556 7.321 18.248 9.740 19.240 

Shanghai 2003-2007 2.977 25.241 7.593 7.891 1.850 8.890 

Shanghai 2007 4.943 36.428 7.436 6.929 1.850 8.630 
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3.1.4  Conclusions 

 

  As a conclusion, the best result in the above experiments is SVR 

with the lowest average MAPE value of 4.833. This conclusion is 

consistent with the literature review that SVR outperforms many other 

methodologies. The average volatility value in the Dow Jones index in 

Figure 6 to Figure 8 is 2.414, 3.398 in Hang Seng Index and 4.62 in 

Shanghai Composite Index. Dow Jones Index MAPE value is the best in 

all 3 algorithms and except EGARCH has better performance in Shanghai 

composite Index than Hang Seng, the others basically follow the trend 

that Dow Jones, Hang Seng and the last Shanghai Composite Index. 

Despite the relationship of volatility value to MAPE value is not strong, 

it is a good indicator. In GARCH model, when the volatility value is 

greater than 3, there are 3 MAPE5 less than 3 MAPE value. In NN, there 

are 4 MAPE5 less than 3 MAPE value. In SVR, there are 6 MAPE5 less 

than 3 MAPE value. Based on this fact, it seems SVR has better ability 

to deal with volatile datasets.  From Table VII, SVR has 12 best results, 

NN has 6 and GARCH has 6. In this respect, SVR is also a winner.  As a 

conclusion, SVR is a good candidate that we would like to carry on with 

our research. 

 However, the overall performance of SVR in the above data sets 

is not consistent. GARCH outperforms SVR both in short term and long 

term forecast in Shanghai 2002 to 2006 datasets. Both GARCH and SVR 

have strong statistical backgrounds. It is inconclusive to judge which 
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model supersedes the other as the result is not supportive enough. On 

the surface, SVR is better with volatile data because of its robustness in 

transforming data into hyperplane without knowing the mechanism of the 

transformation. GARCH stipulates stationary data which could be the 

reason why it performs better in non-volatile data especially in 2002 to 

2006 with average volatility value 2.92. From the literature review, it is 

difficult to improve the accuracy of GARCH. As far as the NN model is 

concerned, it performs no good at all in Hang Seng Index. SVR and NN 

are very similar in structure but NN is an evolutionary algorithm which 

can handle a huge amount of data. Even though we only use 1 hidden 

layer in the NN model, it seems the complex structure has its 

disadvantage in short-term forecast.  

It is necessary to point out that despite these three mature models, 

we have provided a very critical and sensitive conclusion in this section. 

As expected, each model is sensitive to certain data range, Table III and 

Table IV have demonstrated which dataset is the best for which model in 

both GARCH and NN models. SVR is very sensitive towards C & g 

parameters and in our previous work (Lai & Liu, Stock forecasting using 

Support Vector Machine, 2010) the C & g parameters corresponding to 

the result in Table V has been published. Without the critical method and 

parameters set in the above models, the outcome will be very different. 

The limitations of the above models are their heavy dependency on 

parameters and tuning of the models.  
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3.2 The wavelet-based Stock Forecasting 

Models Reviews 

 

3.2.1 Introduction 

 

(Bjorn, Questioning the Inefficient Market Hypotheses, 2003) 

explained that US equity returns have been predictable for many years 

especially in the long run. Earnings yield has had clear empirical 

advantages over dividend yield. Earnings yield is the benchmark on how 

well the company performs while dividend yield is the ability of the 

company to distribute its profit. It is not always a good indicator as 

banking and utilities sectors have steady dividend yield while new Initial 

Public Offering (IPO) will not be so generous. The use of dividend yield 

as a predictive variable leads to a basis in forecasting regression. (Leroy, 

Risk Aversion and the Martingale Property of Stock Prices, 1973) proved 

that random walk is not a sufficient and necessary condition for EMH. 

(Zhang Z. , Is China a weak-form Efficient Market Hypothesis market, 

2001) found out that Chinese stock market cannot be classified as weak-

form EMH. (Famma, Efficient Capital Markets II, 1991) proved that the 

β parameter of a company (which measures the extent to which returns 

on the stock and the market moves together) and the stock return lacks 

significant relationship.  Capital Asset Pricing Model – CAPM is based 

on market portfolio but in reality, it is difficult to find. (Li Y. F., Research 
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on Stock Value Investment Based on Artificial Intelligence, 2008) 

stated that CAPM is not applicable to recent Chinese stock market. (Li Y. 

F., Research on Stock Value Investment Based on Artificial Intelligence, 

2008) also mentioned CAPM is robust but Arbitrage Pricing Theory 

(APT) can easily analyse all factors affecting the stock price. The proof 

of CAPM is rigid but not APT. In 1992, using NYSE, AMEX and 

NASDAQ, (Li Y. F., Research on Stock Value Investment Based on 

Artificial Intelligence, 2008) found out β has nothing to do with the 

company size. All these findings using modern investment theories could 

be confusing as it is difficult to draw a conclusion on how to use it. This 

is probably because the market is not easy to be defined and there is no 

single market that would not be affected by others. Today’s economic 

model is quite different from that 10 or 20 years ago and it would make 

the financial forecast even more challenging. As the above result from 

the 3 models cannot reach lower than MAPE 2 even in 5-day forecasting 

horizon, it has not reached the objective of this research. The MAPE5 in 

GARCH model is 3.779, NN is 3.531 and SVR is 2.585. Hence, it is 

necessary to develop new tools and methodologies in the financial 

forecast as the markets are becoming more robust and complicated.  

The above section 3.1 is our first attempt in our research on 

financial time series forecasting. The employment of NN, GARCH and 

SVR methodologies is pretty standard.  Many of the tools have a 

relatively long history in the artificial intelligence society. Even the latest 

SVR has over 30 years of history.  It is obvious from the result of section 

3.1 that we need to improve the prediction accuracy of SVR by fine-
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tuning the parameters c and g. The latest SVR algorithm has provided 

an easy approach to optimize those parameters. However, the application 

is not that successful in the real world. There is not much we can improve 

the accuracy of the forecast by simply tuning the parameters and another 

approach must be deployed to seek out a better model.  From the literature 

review, there are many research papers which combine NN, GARCH and 

SVR with other tools such as Wavelet transform, Genetic algorithm, 

Particle swarm optimization, Ant colony optimization and Relevance 

Vector Machine to form a hybrid algorithm.  In view of this trend, 

GARCH, SVR and LS-SVM will be combined with wavelet-transform in 

this section to form hybrid algorithm.  Wavelet transform technique is 

applied as the key hybrid algorithm in order to study the difference 

between hybrid algorithm and standalone algorithm. The expectation is 

to get a better result after the data has been transformed by wavelet 

technique. This approach is encouraged by the success of wavelet 

transform in financial forecasting in the literature review (Huang, Huang, 

& Hang, Financial Time Series Forecasting based on Wavelet kernel 

Support Vector Machine, 2012). Other financial theory such as Copula 

(Cherubini, Luciano, & Vecchiato, Copula Methods in Finance, 2004) or 

efficient market theory (Wunder & Mayo, Study Supports Efficient 

Maket Hypothesis, 1995) (Malkiel, The Efficient Market Hypothesis & 

Its Critics, 2003) will be incorporated into the new models if it is 

appropriate.  

The objective of this section is to review the wavelet-based 

forecasting models through which we would like to test the predictability 
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of the models and compare those without the wavelet-based models. 

The models are based on GARCH, SVR and LSSVM. They are set to 

forecast the actual daily close value of Hong Kong Hang Seng Index (HSI) 

given the past 5-year records. HSI has been selected because it reflects 

the semi-strong-form EMH (Bodie, Kane, & Marcus, Investments, 2005). 

Hong Kong being the third largest financial trading centre cannot be 

compared with the US market which has a very long history, enormous 

trading volume, pioneer of financial reform and impeccable securities law. 

Before Hong Kong was a follower of the US market until recently that 

Chinese market has a significant impact on it. Hong Kong investment 

advisor (Wong, Winner of Bull and Bears market, 2010) has pointed out 

that the Hong Kong Stock market is not efficient and in lack of volume 

like the US stock market to support the development of other approaches 

like artificial intelligence method. Wong’s theory will be challenged and 

it will be demonstrated that the proposed models can accurately predict 

Hong Kong Stock market using the latest forecasting techniques. (Chen, 

Hardle, & Jeong, Forecasting Volatility with SVM-Based GARCH 

Model, 2010) predicted the volatility of stock index and (Olson & 

Mossman, Cross-correlations and Predictability of Stock Returns, 2001) 

predicted the stock returns, which is an indirect approach for the actual 

index value. The actual index value from these approaches may not be 

useful. It is well known throughout the literature that financial time series 

particularly stock index is non-linear. The three main factors of such time 

series are trend, seasonal and stochastic. These 3 factors affect the 

prediction result in the stock index as it is impossible to develop a model 
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to integrate all these factors. (Kong, Wong, Lee, & Liu, Fuzz- IEEE, 

2009) used Chaotic Oscillatory-based Neural Networks and Lee 

Oscillator to successfully catch the variability period of HSI between 

2007 and 2008. But it was a pattern prediction rather than actual value 

forecast. The application of the stochastic factor in the stock forecast is 

limited, hence we focus on the trend and season and our challenge is to 

find out the best model for the prediction task. Despite the fact that stock 

index forecast has been conducted for many decades, the latest artificial 

intelligence techniques such as GARCH, SVR and LSSVM have 

improved the degree of prediction accuracy. Our objective is to seek the 

best algorithm from the current techniques and apply it to recent financial 

time series. 

The following section explores the prediction performances of 

wavelet-based models such as WL_GARCH, WL_SVR and 

WL_LSSVM in  stock price prediction on the Hang Seng Index (HSI) 

over a 4-day and 20-day forecasting horizons respectively. There are 5 

trading days in a week but wavelet-based models can only deal with even 

number of days and hence a 4-day cycle is chosen to represent a week. In 

order to compare the 4-day short-term forecast, a 20-day long-term 

forecast is selected which is 4 weeks to represent a month. The model 

will give a 4-day and a 20-day ahead forecast respectively. In addition, 

the same datasets were employed in GARCH, SVR and LSSVM without 

the wavelet-based kernel as comparison. As an extension of our previous 

work from (Lai & Liu, Stock forecasting using Support Vector Machine, 

2010) and (Lai & Liu, The Accuracy of Stock Forecasting Models - 
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GARCH, Neural Network and Support Vector Machine, 2012) which 

employed SVR in stock forecasting, here wavelet-based kernel is 

introduced. SVR was conducted with the software system from (Lin & 

Chang, LIBSVM, 2001), LSSVM was conducted using the LS-SVMLAB 

toolbox which was provided by Katholieke Universiteit Leuven 

(Katholieke Universiteit Leuven, n.d.) while the experiment of GARCH 

was conducted with MATLAB GARCH toolbox. The three wavelet-

based algorithms, WL_GARCH, WL_SVR and WL_ LSSVM, are 

developed by the candidate under MATLAB environment using GARCH, 

SVR and LSSVM as the basic kernel. 

 

3.2.2 Empirical Modeling 

 

3.2.2.1 Data 

 

The objective of this model is to predict the 4-day and 20-day 

horizon of HSI closing value given the historical data of HSI. The 

historical data of HSI during July 2005 till June 2011 is downloaded from 

the financial website Yahoo. They are organized per time period, a total 

of four datasets. The first and second datasets, during 3 July 2009 till 30 

June 2010 with 248 records and during 5 July 2005 till 30 June 2010 with 

1232 records are used to predict the July HSI value of the year 2010. The 

third and fourth datasets, during 5 July 2010 till 30 June 2011 with 248 

records and during 30 June 2006 till 30 June 2011 with 1236 records are 
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used to predict the July HSI value of 2011. It is obvious the datasets 

covered the notorious financial tsunami period during October 2008 till 

March 2009. The selection of such data range is an extension of our 

previous work (Lai & Liu, Stock forecasting using Support Vector 

Machine, 2010) which we chose the dataset during January 2002 till 

December 2007. Basically, the 4 datasets are separated into 5-year and 1-

year records which are trained to predict the next 4-day ahead and 20-day 

ahead value.  

A 4-day instead of 5-day forecast horizon is applied here. It is 

because that the discrete wavelet transform (DWT) function only accepts 

even numbers. In our previous work (Lai & Liu, Stock forecasting using 

Support Vector Machine, 2010), we adopted 5- and 22-day forecast 

horizon for one week and one month forecast but odd numbers cannot 

apply DWT. Hence, we changed it from 5 to 4. In addition, we used 5 

parameters: the 15-day Exponential Moving Average (EMA15), 5-day 

Relative Difference in Percentage of price (RDP5), RDP10, RDP15 and 

RDP20 of the Hang Seng Index Close value as input into our previous 

models. As mentioned by (Thomason, The practitioner methods and tools, 

1999), the advantage of using RDP is that the distribution of the 

transformed data will become more symmetrical and will follow more 

closely to a normal distribution. In (Cao, Zhan, & Wu, Application of 

SVM in Financial Research, 2009), EMA15 is used to maintain as much 

information contained in the original closing price as possible since the 

application of the RDP transform to the original closing price may 

remove some useful information. 
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The historical data of HSI during August 2003 till June 2009 is 

downloaded from Yahoo financial website and it is separated into two 

datasets. The first during 5 July 2007 till 30 June 2009 with 488 records 

is used to predict the 4-day with a sliding window of 248 days which is 

roughly one-year records. The first shift-window during 5 July 2007 till 

8 July 2008 is used to predict the next 4-day from 9 July 2008 onward. 

The next shift-window during 11 July 2007 till 14 July 2008 is used to 

predict the next 4-day from 15 July 2008 onward. Totally, there are 60 

results. Another set, during 18 August 2003 till 30 June 2009 with 1448 

records is used to predict the 20-day with a sliding window of 248 days. 

The first shift-window during 18 August 2003 till 16 August 2004 is used 

to predict the next 20-day from 17 August 2004 onward. The next shift-

window during 16 September 2003 till 13 September 2004 is used to 

predict the next 20-day from 14 September 2004 onward. Totally, there 

are 60 results. The above data range is a test of the model robustness to 

highly volatile market as it ended near the financial tsunami. As a 

summary, one-year sliding window of 248 days is applied to the 488 

records (5.7.2007-30.6.2009) to predict the stock price in the next 4 days, 

and to the 1448 records (18.8.2003-30.6.2009) in order to predict the 

stock price in the next 20 days.  The purpose is to test the general 

forecasting ability of each model.  

Using the same methodologies, two sets of index values of 

Shanghai composite Index and Dow Jones Index with the same record 

length and roughly the same period (Shanghai composite index 

17.7.2003-30.6.2009 & 3.7.2007-30.6.2009 and Dow Jones 30.9.2003-
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30.6.2009 & 25.7.2007-30.6.2009) were analysed by these models. As 

mentioned in the introduction, Shanghai composite index – China stock 

market is a weak-form EMH, HSI – Hong Kong stock market is semi-

strong-form EMH and Dow Jones Index – US stock market is a strong-

form EMH. Our purpose is to put these 3 markets to test the above models 

and hypothesis that strong form EMH should perform better than weak 

form. It also provides a foundation that our models can handle all kinds 

of markets and their robustness in handling extreme data values during 

financial tsunami. The unprecedented financial tsunami is once-in-a-

lifetime experience for all financial institutions to handle. Compared with 

the financial crisis back in 1997 due to the collapse of Long Term Capital 

Management, the magnitude is far greater. The following figures are the 

characteristics of these data ranges. 
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Figure 10 Shanghai, HSI and Dow Jones Indices from 2007 to 2009  
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Figure 11 Shanghai, HSI and Dow Jones Jones Indices from 2003 to 
2009 

 

Only one parameter, the daily close value is used and a new data 

pre-processing technique – windowize is considered. It makes a nonlinear 

Auto Regressive predictor with a nonlinear regressor. The last elements 

of the resulting matrix will contain the future values of the time series, 

the others will contain the past inputs. The following is a simple example. 
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W=windowize(A,[1 2 3]) 
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Figure 13 Matrix A Transform to W after Windowize

 

 

Windowize is the relative index of data points in matrix A, data 

points are selected to make a window. Each window is put in a row of 

matrix W. The matrix W contains as many rows as there are different 

windows selected in A. The matrix A with dimension 3x7 is transformed 

into matrix W with dimension 9x5. Obviously, it is not dimensionality 

reduction. The novelty of this technique is that the last elements of the 

resulting matrix W will contain the future values of the time series, others 

will contain the past. In this way, the data distribution is widening more 

than the RDP and EMA method. It has been discovered this method 

outperforms the RDP as it is easier to apply. (Cao, Tay, & Francis, 

Support Vector Machine With Adaptive Parameters in Financial Time 

Series Forecasting, 2010) employed RDP5, RDP10, RDP15 and RDP20 
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to perform the same function as the windowize. 

 

3.2.2.2 Forecasting Models and Parameters 

 

Appendixes A to F has illustrated the 6 algorithms of the models 

which are developed by the candidate based on the guideline provided by 

the literature. There are parameters in each model that require the 

algorithm to search in order to get the best result. Based on our previous 

work (Lai & Liu, Stock forecasting using Support Vector Machine, 2010), 

the C and g parameters are set to 500, 1,000, 5,000, 10,000, 20,000, 

40,000 and g 1, 2 for the SVR and WL_SVR model. For the wavelet-

based kernel, discrete wavelet transform is used and two types of methods 

are employed. The first is Daubechies with coefficients from 1 to 20 and 

the other is Symmlet with coefficients from 2 to 8.  

 

3.2.2.3 Empirical Results 

 

The following tables described the result from the simulation of 

the models. 

 

 

 

 

 



72 

 

 

Table VIII Three Indices Markets Performance 

Index Average SH SH 
Hang 
Sang 

Hang Sang 
Dow 
Jones 

Dow 
Jones Average 3 markets 

Data sets range 2007_9 2003_9 2007_9 2003_9 2007_9 2003_9 2007_9 2003_9 

Volatility 3.521 5.365 4.355 2.937 0.391 1.252     

Kurotsis 3.212 3.646 1.859 2.994 1.534 2.816     

Skewness 0.676 1.299 -0.106 0.928 -0.311 -0.170     

Forecast 
Horizon 

MAPE4 MAPE20 MAPE4 MAPE20 MAPE4 MAPE20 MAPE4 MAPE20 

SVR 1.376 6.490 2.879 4.139 2.090 2.524 2.115 4.384 

WL_db_svm 1.510 21.487 3.537 9.218 2.578 6.003 2.542 12.236 

WL_sym_svm 1.697 22.797 4.538 8.955 4.076 6.583 3.437 12.778 

LSSVM 2.092 3.949 2.469 2.787 1.914 3.949 2.159 3.562 

WL_db_lssvm 2.779 7.718 3.604 5.343 2.301 7.718 2.894 6.926 

WL_sym_lssvm 3.198 6.910 3.930 4.582 2.585 6.910 3.238 6.134 

Garch 6.320 20.694 7.950 16.485 6.543 12.690 6.938 16.623 

WL_db_garch 8.072 24.522 6.721 12.546 4.517 7.193 6.437 14.753 

WL_sym_garch 3.200 20.580 3.328 10.622 2.447 6.150 2.992 12.451 

 

In Table VIII, the average MAPE4 and MAPE20 of the 60 results 

in each model is displayed and LSSVM gives the best result because 4 

out of 6 MAPE values are the lowest. The improvement of MAPE 

accuracy in wavelet functions only happen in GARCH model. The 

average of the MAPE4 and MAPE20 in Shanghai Composite Index is 

9.188, average volatility is 4.443 average kurtosis is 3.429 and average 

skewness is 0.988. The average of the MAPE4 and MAPE20 in Hang 

Seng Index is 6.313, average volatility is 3.646, average kurtosis is 2.427 

and average skewness is 0.411. The average of the MAPE4 and MAPE20 

in Dow Jones Index is 4.932, average volatility is 0.822, average kurtosis 

is 2.175 and average skewness is -0.241. This is an amazing finding that 

the lower the values in volatility, kurtosis and skewness, the more 

accurate the forecasting result (less value in MAPE). In fact, volatility, 

kurtosis and skewness values are in descending order from Dow Jones to 
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Shanghai Indices.   It is obvious that Dow Jones outperforms the other 

indices in this exercise as it has the least MAPE value 4.932. From the 

literature and the definition of EMH in the book (Bodie, Kane, & Marcus, 

Investments, 2005), the market is more predictable if it is EMH which 

means the MAPE value should be smaller. From the above experiment, 

Dow Jones MAPE4 and MAPE20 average MAPE is 28.01% less than 

HSI and 86.31% less than Shanghai Composite Index. From the statistical 

benchmark point of view, Dow Jones Index kurtosis value is 2.175 lowest 

among the 3 indices. It is less than 3 and should behave like the normal 

distribution and it also has the lowest skewness value -0.241 which has a 

slightly negative skew with a long tail on the left side.  Hang Seng Index 

kurtosis is still within value 3 and its skewness value is 0.411 which is 

positive skew and a long tail at the right side. Hang Seng Index is similar 

to Dow Jones Index except the skewness is bigger which mean the tail is 

also thicker. Shanghai Composite Index kurtosis is higher than 3 which 

define it is not a normal distribution. Its skewness value is 0.988 which is 

a positive skew with a long tail on the right and it is even thicker than 

Hang Seng Index. This confirms our speculation that strong-form EMH 

market should get a better result in the above models. Dow Jones Index 

and Hang Seng Index average MAPE4 and MAPE20 values are very 

close suggesting that the US and Hong Kong security market are closely 

related most likely due to Hong Kong currency peg with the US. The US 

and Hang Seng Index have large average MAPE difference 4.257 and 

2.857 to Shanghai composite index. It is interesting to point out in the 

famous financial tsunami crisis in 2008, the property of the datasets from 
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2007 to 2009 had slightly changed in the order of volatility. Shanghai 

Composite Index has less volatility value 3.521 than Hang Seng Index 4. 

However, the volatility of the Dow Jones Index still remains the lowest 

0.392.  Even China was not affected by the crisis due to its closed 

economic structure while the US was severely impacted by it but the 

stock market behaviour was not. It followed the US and China stock 

market trend.  After the 1997 financial crisis, the Hang Seng Index 

constituent stocks included many Chinese stocks in it. Thus, the stock 

market of US has been impacting on China market.  Concerning the 

above 6 algorithms, each of them has a MAPE4 forecast window for 2007 

to 2009 in order to forecast 60 sliding windows or time frames. Likewise, 

the MAPE20 forecasts windows for 2003 to 2009 in order to forecast 60 

sliding windows or time frames. Thus, it is an average forecasting result 

with a 60 MAPE4 and MAPE20 sliding windows for the corresponding 

period. It can capture all the important events and reflected all the 

characteristics of the markets. The average MAPE4 and MAPE20 MAPE 

of each market in Table VIII is a true representation of the forecasting 

pattern of the 3 markets. Compared to the result in section 3.1 from Table 

III to Table VI, they both indicated a similar conclusion that MAPE value 

from Dow Jones Index is the best. 

 In general, the improvement of accuracy using wavelet function 

also only happens in GARCH models. The degree of accuracy in GARCH 

and its wavelet function are poor compared with that of SVR and LSSVM. 

As explained in our data section, the pre-processing data method in 

GARCH cannot use windowize method and it is very likely why its result 
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is so poor. The strength of GARCH is its flexible adaptation of the 

dynamics of volatilities and its ease of estimation when compared to other 

models. It is a return-based model but it might neglect the important 

intraday information. E.g. when today’s closing price is equal to last 

day’s closing price, the price return will be zero, but the price variation 

during today might be volatile. (Li H. Q., Forecasting Financial Volatility 

using Intraday Information, 2010) explained the model is not able to 

capture the information. Despite the renowned reputation in GARCH and 

previous work on the successful application of GARCH with wavelet 

based kernel to financial time series, our experiment cannot repeat the 

same result. However, the effect of wavelet based kernel is still a major 

contributing factor in the overall result in GARCH model. Perhaps 

another type of GARCH model should be employed to achieve a better 

result. This will be in our future work and not the scope of this research. 

In this section, the focus is to compare and identify the fundamental 

factors that cause the difference in different models and markets. We 

simply provide the best model for the above exercises based on our 

findings. The following table is a matching of which model is better in a 

given input data. 
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Table IX Three Markets Performance Max and Min Difference 

Index  Sh Composite Sh Composite Hang Seng Hang Seng Dow Jones Dow Jones 

Data sets range 2007 to 2009 2003 to 2009 2007 to 2009 2003 to 2009 2007 to 2009 2003 to 2009 

Forecast Horizon MAPE4 MAPE20 MAPE4 MAPE20 MAPE4 MAPE20 

SVR 7.342 19.078 21.176 32.105 18.679 21.268 

WL_db_svm 6.228 95.153 15.793 44.205 14.734 28.063 

WL_sym_svm 8.266 91.076 23.396 42.931 15.505 38.824 

LSSVM 9.160 18.449 7.676 9.720 12.840 18.449 

WL_db_lssvm 8.148 24.504 14.627 29.549 12.927 24.504 

WL_sym_lssvm 8.513 17.538 18.080 21.668 15.072 17.538 

Garch 16.070 51.949 27.157 69.700 20.388 74.682 

WL_db_garch 19.685 96.633 26.019 66.376 18.026 39.089 

WL_sym_garch 6.735 81.815 13.722 56.916 14.955 32.631 
 

Table IX shows the difference between the maximum and 

minimum MAPE of the 60 results. This is crucial when selecting which 

model to use in forecasting. Remember these results are from the extreme 

volatile period caused by financial tsunami. Combining Table VIII and 

XX, Shanghai composite index in SVR model has the best average 

1.3755 and the least difference 7.3422 in 4-day forecast. It is very likely 

that China stock market is still a close market and the impact of financial 

tsunami is small. In HSI, LSSVM model has the best average 2.4693 and 

least difference 7.6761 for 4-day and best average 2.7868 and least 

difference 9.7202.  It should be noted that SVR has the best average 

2.8785 and least difference 21.174 for 4-day and best average 4.1385 and 

least difference 32.1048 which is second to LSSVM in terms of accuracy. 

As far as the objective is concerned, we need to find out which is the best 

model for HSI forecast. From Table VIII and Table IX, it is obvious the 

choice is LSSVM but points to SVR. As XX is from the most current data 

while Table VIII and Table IX  are average MAPE values throughout a 
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fixed forecasting horizon, our final recommendation is SVR. Despite a 

bigger difference value, it has the smallest MAPE 0.4037.  XX illustrates 

the accuracy of the forecasting tool while Table VIII and Table IX show 

the average forecasting ability during a fixed horizon.  For the second 

choice, LSSVM is a good candidate for financial advisors for their 

decision making. 

 

Table X Descriptive Statistics for Three Stock Indices during 2007 to 

2009 

Returns SH Composite Index Hang Seng Index Dow Jones Index 

  Statistics p-value h-value Statistics p-value h-value Statistics p-value h-value 

Mean -0.0567     -0.0393     -0.1006     
Variance 6.1035     7.8655     4.2002     
Skewness -0.0332     0.1709     0.1807     
Kurtosis 4.1061     6.1697     7.1703     
Normality 24.9141 0 1 206.2428 0 1 355.5439 0 1 

Q(6) 6.0892 0.4133 0 5.427 0.4903 0 29.6717 0 1 

Q(6)* 13.2112 0.0398 1 191.5078 0 1 195.1023 0 1 

ARCH(6) 11.7167 0.0686 0 96.4186 0 1 112.366 0 1 

 

Table XI Descriptive Statistics for Three Stock Indices during 2003 to 

2009 

Returns SH Composite Index Hang Seng Index Dow Jones Index 

  Statistics p-value h-value Statistics p-value h-value Statistics p-value h-value 

Mean 0.0452     0.0385     -0.0065     
Variance 3.536     3.2458     1.7012     
Skewness -0.2169     0.0918     0.0575     
Kurtosis 5.999     12.3643     14.7956     
Normality 553.6119 0 1 5289 0 1 8390 0 1 

Q(6) 19.0444 0.0041 1 9.8543 0.1309 0 63.3866 0 1 

Q(6)* 128.4139 0 1 852.7444 0 1 839.8699 0 1 

ARCH(6) 83.7537 0 1 366.6877 0 1 412.3289 0 1 
Notes : Normality is the Bera-Jarque(1981) normality test;Q(6) is the Ljung-Box 
Q test at 6 order for raw returns;Q(6)*is LB Q test for squared returns;ARCH(6) 
Is Engle's (1982) LM test for ARCH effect. 
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Table X and Table XI report the summary of the descriptive 

statistics for various stock indices during the two periods based on log-

return analysis. If skewness is negative, it shifts to the left and vice versa. 

If it is a normal distribution, kurtosis is 3. When kurtosis is greater than 

3, it is more outlier-prone than normal distribution and vice versa. When 

normality h = 1, it is a normal distribution. When Q(6) h = 1, the statistic 

of raw returns indicates significant autocorrelation. When Q(6)* h = 1, 

the statistic of squared raw returns indicates significant correlation. When 

ARCH(6) h = 1,  ARCH result shows significant evidence in support of 

GARCH effects (i.e. heteroscedasticity). Shanghai composite series has 

the lowest kurtosis value 4.1061 in 2007 to 2009, others are typically 

characterized by excessive kurtosis more than 5 and asymmetry. It can be 

concluded that the above series are characterized by heteroscedasticity 

and time-varying autocorrelation; therefore, GARCH class models 

should fit the dataset. However, it is only a statistical conclusion on 

whether a dataset is suitable for GARCH model or not. Also, it is clearly 

from the statistical point of view all the above datasets will not behave 

like normal distribution as all of their kurtosis value is more than 3. As 

seen from Figure 9, Figure 10, Table X and Table XI all series exhibit 

more variability, skewness, kurtosis and volatility clustering such that 

nonlinear asymmetric EGARCH model should fit it more accurately. In 

section 3.1.3.1Table III, all the result are generated from the EGARCH 

model. The statistical indicator here is not useful as the result from Table 
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VIII and Table IX clearly demonstrated that GARCH model is not good 

in the above forecasting experiment. 
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Figure 14 Volatility of The Three Markets from 2003 to 2009 

 

Figure 15 Volatility of The Three Markets from 2007 to 2009 
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Table XII Three Stock Indices Volatility Range and Average 

Index Range 2006 20026 2007 20037 20079 20039 

Dow Jones Max 46.522 72.977 131.386 131.729 65.726 77.071 

  Min -29.196 -36.009 -31.669 -36.009 -38.410 -38.410 

  Average 0.661 1.000 6.167 1.829 0.391 1.252 

Hang Seng Max 83.889 83.889 111.539 111.539 116.347 116.347 

  Min -34.028 -34.855 -35.116 -35.116 -40.099 -40.099 

  Average 3.057 1.475 5.891 3.170 4.355 2.937 

Shanghai Max 107.728 113.068 124.091 124.091 113.061 837.527 

  Min -30.911 -46.634 -48.695 -48.695 -36.586 -74.053 

  Average 7.897 2.920 3.848 3.814 3.521 5.365 

 

Table XIII Three Stock Indices Kurtosis and Skewness 

    2003 to 2009 2007 to 2009 

Dow Jones Kurtosis 2.816 1.534 

Hang Seng Kurtosis 2.994 1.859 

Shanghai Kurtosis 3.646 3.212 

Dow Jones Skewness -0.170 -0.311 

Hang Seng Skewness 0.928 -0.106 

Shanghai Skewness 1.299 0.676 

 

Figure 14 and Figure 15 are the corresponding volatility value of 

this section datasets. Table XII depicts all the details of the volatility of 

the datasets for the section 3.1 and section 3.2. 

 

3.2.3 Conclusions 

 

Based on EMH, we have tested our models with 3 markets. The 

winner is LSSVM model as it produces the best MAPE4 and MAPE20 

with value 2.86 and can perform equally well in the 3 markets. To 

continue our previous work using artificial intelligence in financial 

forecast, we have illustrated that it is possible to get MAPE forecast value 
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under 2 from our experiment.  The accuracy for long-term forecast in 

our case, i.e. 20-day or one month is always difficult but our results have 

demonstrated that it is still possible to get MAPE under 2. We believe 

this is a significant improvement and a very useful tool in financial time 

series analysis. The decision maker can rely on our models to analyse the 

market trend or benchmark for investment portfolio. From our 

experiment, it is a tedious task to search for the right parameters for our 

models and so far there is no simple solution to the above problem. The 

science of forecasting is still relying on trial and error approach. However, 

our experiments have provided a consistent approach which is to optimize 

the parameters using the recent historical data. The disadvantage could 

be time-consuming but it seems the ends justify the means if the objective 

is achieved. 

The wavelet-based models in our experiments did not produce the 

best result as we would have expected. It is necessary to point out that 

there is no ground to compare the above result with Chapter 3 Section 3.1 

as they are using different data set range. Also, it is too primitive at this 

stage to conclude wavelet-based model is weaker than the ordinary model 

as it is highly dependent on the data and the parameter setting. We may 

never know which is better unless we exhaust all the resource to test all 

available data set and wavelet-base algorithm which is beyond the scope 

of this research. One important finding in this section is the statistical 

inference on the trend or pattern of the data set has a significant influence 

on the choice of model. This means from the statistical point of view, the 

identification of the data set is an important step to choose the right model. 
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For example, the dataset which exhibits normal distribution behaviour 

ARIMA or GARCH model can be easily deployed with fruitful result. 

For the time being, we believe our models are sufficient to handle the 

current market demand even under extreme condition such as the 

financial tsunami. The limitation of wavelet-based forecasting is the 

difficulty in analysing the wavelet. To choose the right algorithm to 

analyse the wavelet is the key to success but it is not easy as there are 

many wavelet forms to choose from. This will make the forecasting 

difficult and the result not promising. 

The study on forecasting based on EMH is rare in the literature 

review. (Liu Y. X., Discussing on Trend to Efficient Market Hypothesis 

of Securities and Futures Market, 2009) and (Timmermann & Granger, 

Efficient Market Hypothesis and Forecasting, 2004) are one of the few 

but there is no indication or benchmark on the correlation between EMH 

and the forecasting result. The research on the correlation between fuel 

prices and electricity market price by (Zhe, Zhao, & Sanderson, The 

Efficient Market Hypothesis and Electricity Market Efficiency Test, 2005) 

can only demonstrate the existence of the historical correlation but not 

the forecasting prices of both fuel and electricity market price. Recently 

research on financial time series forecasting using EMH has been 

neglected mainly because it is surprisingly difficult to test and 

considerable care has to be exercised in empirical tests. It is necessary to 

point out that this research only used the market dataset set which satisfies 

the EMH definition such as Dow Jones Industrial Average Index. It does 

not attempt to proof if it is EMH or not, which is beyond the scope of this 
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research. The above result demonstrates a strong correlation between 

the forecasting result and the actual market behaviour of EMH, which is 

the contribution of this paper. An EMH weak form market such as 

Shanghai Composite has the largest average MAPE values from 3.021 to 

16.297 in the above experiment. An EMH strong form market such as 

Dow Jones Industrial Average has 6 out of 9 best average MAPE value 

in the above experiment. Hence, the experiment has proofed strong form 

EMH has a better result than the weak form EMH using different AI 

forecasting technique.   

 

3.3 Chart Pattern and Least Square Support 

Vector Machine in Stock Forecasting  

 

3.3.1 Introduction 

 

The analysis of Chart Pattern has been conducted for many 

decades. It is an important investment tool which has been employed by 

investors before the dawn of computer age. According to the book 

encyclopaedia of stock patterns by (Bulkowski, Encyclopedia of Chart 

Patterns, 2005) there are 53 patterns. The famous head and shoulder 

pattern is the key market trend indicator on the immediate future of the 

stock price. There is over 80% that the market will revert when the 
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upward head and shoulder pattern is recognized. The predictability of 

stock pattern has been supported by many investors. In fact, the market 

news is full of forecasting trend based on pattern analysis. Under the 

classical definition, it is controversial to spot a particular stock pattern 

like head and shoulder as there is no pattern that can perfectly match the 

definition. From the investment point of view, there are two types of 

analysis − namely fundamental and technical. Pattern recognition is 

classified as technical analysis. All these approaches require expert 

knowledge which can only be obtained through intensive training. There 

are many discussions on how to employ fundamental analysis but very 

little in technical analysis - stock pattern recognition. It is probably 

because there is no systematic method to deter pattern. Fundamental 

analysis is based on financial and economic data, price/return movement 

of the stock and there has been an enormous amount of data accumulated 

throughout the past decades and it is relatively easy to obtain that in 

public domain. The recent development of Artificial Intelligence has 

drastically improved the efficiency in fundamental analysis.  To a certain 

extent, it can also help to identify stock pattern recognition.  However, 

this is not easy especially all the algorithms are developed under the 

guideline of the experts.  But the guideline is not clean cut and sometimes 

it could be ambiguous. Unlike fundamental analysis which can provide 

an equation to develop an algorithm, the same cannot be applied in stock 

pattern recognition algorithm. One of the reasons is the interpretation of 

each pattern which is not a science but rather an art. For example, in the 

upward head and shoulder pattern, the general pattern is shoulder, head 
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and shoulder. However, there is no strict definition of how far a head 

and a shoulder should be departed or how much a head should be higher 

than a shoulder. There is no strict rule on the minimum difference of the 

two shoulders. On top of that, the above classification is getting more and 

more difficult as there are so many stocks in different countries. The 

information from the stock pattern could be many but only a few can 

benefit from it. This model attempts to build a pattern recognition 

algorithm based on the book by (Bulkowski, Encyclopedia of Chart 

Patterns, 2005)  to deter the pattern using the historical data of HK equity. 

In the above section 3.2, the robustness and steady performance 

of SVM and LS-SVM have inspired this paper to explore the hybrid 

algorithm combining chart pattern and LS-SVM. In order to seek out a 

better forecasting model to increase the predictability of the above models, 

chart pattern is another approach to explore. If the pattern of the data set 

can be identified, it would definitely help the forecasting model to 

improve the accuracy. Hence, the following section continues the work 

of section 3.2. 

 

3.3.2 Chart Pattern-based Algorithms  

 

Seven forecasting algorithms have been developed by the 

candidate under the guidance by (Bulkowski, Encyclopedia of Chart 

Patterns, 2005) in order to test the predictability of the chart pattern. 20 

years of historical data of 74 Hong Kong stocks have been scrutinized to 
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detect an obivous pattern. Once it is discovered, 1 year of historical data 

of that stock prior to the detected pattern will be inputted into the LS-

SVM model to forecast the future close value. The objective is to get an 

accuracy of mean absolute percentage error (MAPE) value below 2. As 

each algorithm is unique and based on the characteristic of the 

corresponding chart pattern, the outcome of each algorithm will be a 

reflection of the accuracy of that algorithm. The algorithms are the 

combination of chart pattern recognition and forecasting which is rare in 

the literature review. The comparison of each algorithm will be explained 

in the following sections.   

 

3.3.2.1 Data 

 

74 stocks from Hong Kong Stock Exchange have been selected 

for this experiment which covered the blue chips and red chips stock. 

These 74 stocks data with 20 years of historical data were downloaded 

from finance.yahoo.com. Only 7 chart patterns which have been 

classified into 2 categories in Section 2.5 are selected and the algorithm 

together with the identification guideline has been shown in the 

Appendixes. Each algorithm is applied to these 74 datasets to train up the 

model to seek out the possible chart pattern matching. 

 

3.3.3 Empirical Modeling 
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3.3.3.1 Forecasting Model and Parameters 

 

Our previous work (Lai & Liu, Support Vector Machine and Least 

Square Support Vector Machine Stock Forecasting Models, 2013) have 

demonstrated the advantage of employing SVM and LS-SVM in 

forecasting equities indices of US, Hong and China market. The 

robustness and steady performance of SVM and LS-SVM in (Zhang & 

Shen, Stock Yield Forecast based on LS-SVM in Bayesian inference, 

2009) have inspired our research to explore the hybrid algorithm 

combining chart pattern and LS-SVM. From section 3.2.2.3 Table VI, the 

performance of LSSVM has encouraged the candidate to continue the 

research in this forecasting technique. Despite the fact that there are many 

discussions in the literature on chart pattern discovery using different 

methodologies such as (Lee, Liaw, & Hsu, Investment decision making 

by using fuzzy candlestick pattern and genetic algorithm, 2011) and, we 

believe the advantages of these algorithms are the ability to first discover 

the chart pattern and perform the forecasting later. The design of the 

algorithms ensures the chart pattern is discovered according to the 

literature guideline.  

The approach is to select a time frame of 120 days transaction and 

divide it into 4 sections.  High and low of each section were discovered 

within the 30 records and totally there were 4 highs and lows in 4 different 

sections. As per the chart identification guideline from (Bulkowski, 

Encyclopedia of Chart Patterns, 2005) these highs and lows within the 
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sections are the key indicators if that section can be classified as a 

particular chart pattern. After a chart pattern is identified, one year of 

historical stock records dated back from the time frame discovery are 

used as training data to forecast the next 5-day and 22-day forecast 

horizons using LS-SVM. To seek chart pattern, high and low of the 

historical records are used but in the forecasting model, only close value 

is used which predicts the 5-day and 22-day future close values. LS-SVM 

model is selected because comparing to SVR, it is easier to operate 

without too many parameters to tune in order to get the best result which 

has been discovered in our previous work.   

The 7 forecasting algorithms the candidate developed are Chart 2, 

Chart 3, Chart 24, Chart 26, Chart 47, Chart 48 and Chart 49. As the name 

implied, each algorithm targets a particular chart pattern, Chart 2 

algorithm is designed to seek out pattern which exhibits the behaviour of 

Chart 2 as per Figure 3. Despite the facts these 7 algorithms are under the 

guideline of the book (Bulkowski, Encyclopedia of Chart Patterns, 2005), 

the algorithms are unique and specially designed to fit the Hong Kong 

stock market. The time horizon in the algorithm is set to 120 days which 

is roughly according to the stock market behaviour of the Hong Kong 

stock market. The flexibility of the algorithms is high as there are no 

parameters to input.  

 

3.3.3.2  Empirical Result 
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The following results are based on the 7 algorithms. 

 

 

Figure 16 Best MAPE5 Result  

 

 

Figure 17 Chart 2 Forecast Result   
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Figure 18 Chart 2 Best MAPE22 Result  

 

 
Figure 19 Chart 2 Forecast Result 
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Figure 16 to Figure 19 demonstrated the 120 records time frame 

that Chart 2 pattern is identified and the immediate forecasting result used 

one-year prior record as training. There are 23 out of 74 stocks that have 

been detected in the Chart 2 pattern. The best MAPE value for 5-day is 

0.22 and 22-day is 0.28 they all come from stock no. 0002.  21 out of 23 

stocks which fit the Chart 2 pattern recognition have MAPE value under 

2 in 5-day forecast. 16 out of 23 stocks which fit the Chart 2 pattern 

recognition have MAPE value under 2 in 2-day forecast. As a summary, 

there is 91.3% in 5-day forecast horizon and 69.57% in 22-day forecast 

horizon that the predicted MAPE value is under 2 in Chart 2 pattern.  
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Figure 21 Chart 3 Best MAPE5 Result  

 

 

Figure 22 Chart 3 Best MAPE22 Result 
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 Figure 23 Chart 3 Best MAPE22 Result  

 

Figure 20 to Figure 23 demonstrated the 120 records time frame 

that Chart 3 pattern is identified and the immediate forecasting result used 

one-year prior record as training. There are 60 out of 74 stocks that have  

been detected in the Chart 3 pattern. The best MAPE value for 5-day is 

0.25 and 22-day is 2.05 which come from stock no. 0008 and stock no. 

1114 respectively.  25 out of 60 stocks which fit the Chart 3 pattern 

recognition have MAPE value under 2 in 5-day forecast but none in 22-

day forecast. As a summary, there is 41.67% that the predicted MAPE 

value is under 2 in 5-day forecast horizon.  
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Figure 24 Chart 24 MAPE5 and MAPE22 Result  

 

 
Figure 25 Chart 24 Forecast Result 
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Figure 24 and Figure 25 demonstrated the 120 records time 

frame that Chart 24 pattern is identified and the immediate forecasting 

result used one-year prior record as training. There are 23 out of 74 stocks 

that have been detected in the Chart 24 pattern. The best MAPE value for 

5-day is 0.22 and 22-day is 0.28 they all come from stock no. 0002.  21 

out of 23 stocks which fit the Chart 2 pattern recognition have MAPE 

value under 2 in 5-day forecast. 16 out of 23 stocks which fit the Chart 

24 pattern recognition have MAPE value under 2 in 2-day forecast. As a 

summary, there is 91.3% in 5-day forecast horizon and 69.57% in 22-day 

forecast horizon that the predicted MAPE value is under 2 in Chart 24 

pattern.  

 

 

Figure 26 Chart 26 Best MAPE5 and MAPE22 Result 
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Figure 27 Chart 26 Forecast Result 

 

Figure 26 and  Figure 27 demonstrated the 120 records time frame 

that Chart 26 pattern is identified and the immediate forecasting result 

used one-year prior record as training. There are 8 out of 74 stocks that 

have been detected in the Chart 26 pattern. The best MAPE value for 5-

day is 0.88 and 22-day is 1.29 they all come from stock no. 0966.  4 out 

of 8 stocks which fit the Chart 26 pattern recognition have MAPE value 

under 2 in 5-day forecast. 2 out of 8 stocks which fit the Chart 26 pattern 

recognition have MAPE value under 2 in 2-day forecast. As a summary, 

there is 50% in 5-day forecast horizon and 25% in 22-day forecast 

horizon that the predicted MAPE value is under 2 in Chart 26 pattern. It 

is a famous head and shoulder top pattern but the result is not promising. 
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identified as Chart 26 pattern and the forecasting result is only within 

the average. 

 

 

 

Figure 28 Chart 47 Best MAPE5 Result 
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Figure 29 Chart 47 Forecast Result 

 

 

Figure 30 Chart 47 Best MAPE22 Result 
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Figure 31 Chart 47 Forecast Result  

 
 
 

Figure 28 to Figure 31 demonstrated the 120-record time frame 

that Chart 47 pattern is identified and the immediate forecasting result 

used one-year prior record as training. There are 72 out of 74 stocks that 

have detected the Chart 47 pattern. The best MAPE value for 5-day is 

0.16 and 22-day is 0.62 they come from stock no. 0330 and 0066 

respectively.  54 out of 72 stocks which fit the Chart 47 pattern 

recognition have MAPE value under 2 in 5-day forecast. 23 out of 72 

stocks which fit the Chart 47 pattern recognition have MAPE value under 

2 in 2-day forecast. As a summary, there is 75% in 5-day forecast horizon 

and 31.94% in 22-day forecast horizon that the predicted MAPE value is 

under 2 in Chart 47 pattern. This algorithm identified the most stocks and 

produce the best result. 
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Figure 32 Chart 48 Best MAPE5 Result  

 

Figure 33 Chart 48 Forecast Result 
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Figure 34 Chart 48 Best MAPE22 Result  

 
 

 
Figure 35 Chart 48 Forecast Result 
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used one-year prior record as training. There are 30 out of 74 stocks 

that have detected the Chart 48 pattern. The best MAPE value for 5-day 

is 0.2 and 22-day is 0.45 they come from stock no. 0388 and 0002 

respectively.  24 out of 30 stocks which fit the Chart 48 pattern 

recognition have MAPE value under 2 in 5-day forecast. 11 out of 30 

stocks which fit the Chart 48 pattern recognition have MAPE value under 

2 in 2-day forecast. As a summary, there is 80% in 5-day forecast horizon 

and 36.67% in 22-day forecast horizon that the predicted MAPE value is 

under 2 in Chart 48 pattern.  

 

 

Figure 36 Chart 49 Best MAPE5 Result  
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Figure 37 Chart 49 Forecast Result 

 

 

Figure 38 Chart 49 Best MAPE22 Result 
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Figure 39 Chart 49 Forecast Result 

 
Figure 36 to Figure 39 demonstrated the 120 records time frame 

that Chart 49 pattern is identified and the immediate forecasting result  

used one-year prior record as training. There are 46 out of 74 stocks that 

have detected the Chart 49 pattern. The best MAPE value for 5-day is 

0.16 and 22-day is 0.54 they come from stock no. 0012 and 0293 

respectively.  35 out of 46 stocks which fit the Chart 49 pattern 

recognition have MAPE value under 2 in 5-day forecast. 22 out of 46 

stocks which fit the Chart 49 pattern recognition have MAPE value under 

2 in 2-day forecast. As a summary, there is 76.09% in 5-day forecast 

horizon and 47.83% in 22-day forecast horizon that the predicted MAPE 

value is under 2 in Chart 49 pattern.  
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Table XIV  Number of Patterns Discovered 

 
Chart      
No. Discover 

5-day < 2  
MAPE 

22-day < 2  
MAPE 

 2 33 24 13 

 3 60 25 0 

 24 13 5 2 

 26 8 4 2 

 47 72 54 23 

 48 30 24 11 

 49 46 35 22 

 

 

Table XV Best MAPE Forecasting Result in Each Pattern 

 

Chart      

No. 

Stock      

Code 

5-day < 2  

MAPE 

Stock      

Code 

22-day < 2  

MAPE 

 2 2 0.298 2 0.556 

 3 8 0.253 1114 2.058 

 24 322 0.415 322 1.564 

 26 966 0.879 966 1.286 

 47 330 0.164 66 0.616 

 48 388 0.199 2 0.452 

 49 12 0.163 293 0.535 

 

Table XVI Worst MAPE Forecasting Result in Each Pattern 

 
Chart      
No. 

Stock      
Code 

5-day < 2  
MAPE 

Stock      
Code 

22-day < 2  
MAPE 

 2 700 6.736 700 12.172 

 3 267 8.889 353 23.026 

 24 64 7.724 65 8.055 

 26 966 14.036 966 10.183 

 47 2600 18.473 2600 30.620 

 48 9 3.780 388 9.951 

 49 2600 19.618 1898 36.010 
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Table XVII Average MAPE Forecasting Result in Each Pattern 

     

Chart No. MAPE5 MAPE22 

2 1.696 3.072 

3 3.128 7.534 

24 3.562 4.562 

26 3.935 4.935 

47 1.940 4.447 

48 1.135 3.045 

49 2.060 4.605 

Average 2.494 4.600 

 

From   Table XV , the best result in this experiment is Chart 49 5-

day MAPE 0.163 Stock No. 0012 and Chart 2 22-day MAPE 0.556 Stock 

No. 0002. But it also has the worst MAPE value from Table XVI . The 

best performance chart pattern from Table XVII  is 48 with average MAPE 

1.135. This is a very important finding that matches the expectation of 

this objective to search below 2 MAPE value. In fact, chart 47 and 48 

have achieved this goal in 5-day horizon. Chart 49 is also very close.  The 

famous head and shoulder, both top and bottom patterns are not as good 

as the others. In most cases, they are worse than the other chart pattern 

forecasting result. One of the reasons is the occurence of head and 

shoulder pattern is low as indicated in Table XV , only 13 and 8 patterns 

are discovered out of 74 stocks in Chart 24 and Chart 26 respectively. 

The other possible reason is that technical analysis has become very 

popular and these famous patterns are easily spotted by many experts. As 

a result, the market could over-react once the news is available and affect 

the market normal trend. Despite the fact Chart 24 and Chart 26 are not 
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as good as the other patterns forecast result, it is still a good forecasting 

benchmark using the above algorithm as the average. 

 

3.3.4 Conclusions 

 

Compared to Chapter 3 Sections 3.1 and 3.2, the 7 algorithms are 

relatively easy to manipulate as there are no parameters to tune. The end 

user has nothing to operate but get the result very easily. Having said so, 

it should not underestimate the difficulty in implementing the algorithms 

as the definition of each chart pattern is getting blurred and the window 

frame is getting narrower. The above experiment has a window frame of 

30 days to demonstrate the effect and in accordance with the textbook 

definition but in reality it could be shorter. In day trade operator, the 

window frame is in minutes instead of hours. It is a pattern which can get 

the results very quickly and easily but it is very difficult to manage. From 

Table XV, 14 of the best MAPE value has 13 of them under 2 and 10 

them under 1. Our objective in the beginning of this research has set the 

MAPE value to 2. It can be regarded as a significant improvement 

compared to the result in Sections 3.1 and 3.2. The results from these 7 

algorithms are much better than the previous models. From Table XVII, 

the average MAPE5 is 2.494 which is better than the SVR model MAPE5 

2.585. However, it is only a rough comparison as the result from Table 

VII and from Table V is not the same dataset or environment. The dataset 

from the forecasting result in Table XVII is selected by the chart pattern 
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algorithm while the dataset in Table V has no pre-screening process.  

However, it is worthy to point out Chart pattern algorithm has an 

advantage in this case.    

The future of chart pattern identification will be heavily relying 

on computer-generated patterns and domain expert knowledge gained by 

us. In other words, the more computer resources, the higher accuracy you 

will get. In fact, many banking institutes already have allocated very 

heavy investment on IT infrastructure to get an edge in this very 

competitive digital war game so that the algorithm can spot the market 

pattern earlier than the competitors. In addition, the LSSVM only uses 

the close value of the stock as input feature and this methodology will 

continue due to computerization of program trading. Waves of buy 

programs and sell programs generated by algorithm trading would move 

the market irregularly. Electronic trading will react so fast that the volume 

will be less important and hence the key performance index is price only. 

The experiment is limited to 74 stocks and 7 out of 54 patterns but it 

should be extended to all stocks not restricted to one market but many 

markets worldwide with all spotted patterns. 

It has been shown that the hybrid algorithm combining chart 

pattern and LS-SVM can produce a very promising result. Compared to 

our previous work (Lai & Liu, Stock forecasting using Support Vector 

Machine, 2010),  this algorithm offers a methodology to get the better 

MAPE forecasting value by screening the chart pattern first before 

forecasting. The findings have also included the most common pattern 

like head and shoulder which is not as good as the other patterns in terms 
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of forecasting result. The application is wide - not only for financial 

forecast but also other scientific fields with obvious graphical patterns in 

data representation. This section is part of the overall strategy in dealing 

with forecasting problem. Section 3.1 to Section 3.2 have employed 

statistical benchmark such as kurtosis and skewness to seek out the useful 

model in different markets.  This section has an important discovery to 

this research which is the property of the datasets. The analysis of the 

chart pattern is similar to the analysis of the stock market such as Dow 

Jones, Hang Seng and Shanghai. It has been pointed out in Table II  and 

Table XIII  of Section 3.1 and Section 3.2 there is a certain relationship of 

the forecasting outcome and the kurtosis and skewness value. They both 

are the characteristics of the datasets defined by the statistical benchmark. 

The reason to revisit these values is its significance in the definition of 

pattern from the statistical point of view. In summary, the meaning of 

these values such as kurtosis is 0 means the pattern is normal distribution 

when the skewness value is 0. The limitation of chart pattern is the 

dependency of the appearance of the pattern from the literature. This 

means there is no forecasting without the spotted chart pattern. The 

application of this methodology is very limit. In the following section, 

normal distribution pattern has been thoroughly discussed on the effect 

of the forecasting result. 
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3.4 Support Vector Regression with Lévy 

Distribution Kernel 

 

3.4.1 Introduction 

 

Normal distribution is widely used in the financial model (Chen, 

Hardle, & Jeong, Forecasting Volatility with SVM-Based GARCH 

Model, 2010). In the famous Black-Scholes details in the book (Bodie, 

Kane, & Marcus, Investments, 2005)  formula in Section 2.6 for call 

option price, the stock price is based on Brownian motion which follows 

the normal distribution. Robert Merton and Myron Scholes won the 

Nobel Prize in Economic Sciences in 1997 because of this workable 

option-pricing model. This famous formula also led to the collapse of 

Long Term Capital Management Incorporation which made a 5 Trillion 

US dollar hole in financial history. Subsequently, it sparked the financial 

crisis in 1997 which hit all Asian markets drastically. Yet, it is still widely 

used by options market participants even after the notorious financial 

tsunami in 2007. It is arguable whether the financial tsunami has anything 

to do with the assumption that market behaves like the normal 

distribution.  But the connection of the assumption to the first financial 

crisis has been widely recognized particularly the Black-Scholes formula 

stock price is simulated under the normal distribution.  On the other hand, 

Mandelbrot (1963) has observed that logarithm of relative price changes 
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on a financial and commodities markets exhibit a long tailed 

distribution. His conclusion was that Brownian motion in exp(Bt) should 

be replaced by symmetric-stable Lévy motion with index α < 2. This 

yields a pure-jump stock-price process. Roughly speaking, one may 

envisage this process as changing its values only by jumps. Normal 

distributions are α-stable distributions with α = 2, so Mandelbrot's model 

may be seen as a complement to the Osborne (1959) or Samuelson (1965) 

model. 

In the above section 3.3, there are many Chart Pattern analyses in 

the literature review and our contribution in that section would not be 

significant but our approach has pointed to the right direction and has 

improvement compared to that of section 3.1 and section 3.2. The chart 

pattern algorithm has a significant disadvantage. It can only forecast the 

future event if and only if a Chart pattern is discovered. The application 

of Chart Pattern forecasting will be limited by this restriction. But our 

work is not in vain as it is obvious the dataset pattern is crucial in 

forecasting. Another approach is to fit the historical data into a known 

distribution function. Usually, the Normal distribution is assumed but we 

would like to investigate the Lévy distribution approach. Our motivation 

is based on the paper, Process in Finance: Theory, Numerics, and 

Empirical Facts by (Raible, Lévy Processes in Finance: Theory, 

Numerics, and Empirical Facts, 2001), which illustrated that the adoption 

of Lévy distribution instead of Normal distribution has many advantages.  

  In the following section,  it explains the discovery that the 

historical stock movement does not follow normal distribution; rather, it 
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follows heavy tail like distribution such as Lévy distribution according 

to literature review (Tu, Clyde, & Wolpert, Lévy Adaptive Regression 

Kernels, 2007). The reason to employ normal distribution in stock 

movement is its simplicity and the characteristics of normal distribution. 

It is a continuous distribution with conjugate family, moment of 

generating function and the famous central limit theorem that a large 

number of independent random variables, each with a well-defined mean 

and well-defined variance, will be approximately normally 

distributed.  Lévy distribution is one of the few distributions which 

is stable and that has probability density functions which can be 

expressed analytically, the others being the normal distribution and 

the Cauchy distribution. All three are special cases of the stable 

distributions that do not generally have a probability density function 

which can be expressed analytically.  

  The following work objective is to extend the work of (Lai & 

Liu, Stock forecasting using Support Vector Machine, 2010) to develop 

a consistent approach in stock forecasting using SVR so that a platform 

to compare different forecasting tools can be established. The 

performances of  SVR in predicting stock prices in the Hang Seng Index 

(HSI), Dow Jones Industrial Index (DJ) and Shanghai Composite Index 

(SH) over a 5-day and 22-day horizons respectively have been examined. 

The experiments are carried out in MATLAB R2011 environment with 

algorithms developed by the candidate. 
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3.4.2 Normal and Lévy Distribution 

 

The probability density function (pdf) of the distribution is used 

to simulate the stock movement in financial forecasting.  To use pdf in 

(4) of the SVR, it must satisfy the Mercer condition and it should be 

positive definite. Normal distribution is the good choice for reasons 

mentioned above with the following pdf Equation 54 and Figure 40 
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As one of the few stable distributions, Lévy distribution also satisfies 
Mercer Condition with the following pdf Equation 45 and Figure 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41 Lévy Probability Density Function 
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3.4.3 Experiments and results 
 

 

Figure 42 Dow Jones 2006 Data Set 

 

 

Figure 43 Dow Jones 2002 to 2006 Data Set 
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Figure 44 Hang Seng Index 2006 Data Set 

 

 

Figure 45 Hang Seng Index 2002 to 2006 Data Set 
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Figure 46 Shanghai Composite Index 2006 Data Set 
 
 
 
 

 

Figure 47 Shanghai Composite Index 2002 to 2006 Data Set 
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normally distributed. The difference among Figure 42 to Figure 47 

compared with the normal distribution curve is the heavy tail behaviour.  

       As explained in the introduction, SVR maps data into higher 

dimensional space using kernel function. In (4) RBF kernel function is

)()()( , l
T

klk xxxxK ϕϕ= . The formula in that kernel function is 

))(*( 2
lk xxgammae −−

 which is a normal pdf. Another kernel using Lévy pdf 

with the formula 
2/3

))(*(

)( lk

xxgamma

xx

e lk

−

−−

 has been included in SVR model. Table 

XVIII is the result from SVR using normal distribution kernel. The higher 

the C, the less the percentage of error. The g which stands for the gamma 

in the kernel function also has different settings. The value of g is to adjust 

the kernel function and the higher the value the greater the mapping 

dimension is. The parameters C and g were based on our previous work 

(Lai & Liu, Stock forecasting using Support Vector Machine, 2010). 

 

Table XVIII Prediction Result of SVR Using Normal Distribution 

Market Volatility Kurtosis Skewness MAPE5 SMAPE5 

DJ2002_6 1.00 2.360 0.763 0.7 1.22 

DJ2006 0.66 2.821 -0.387 0.38 1.22 

DJ2003_7 1.83 2.080 -0.308 1.14 2.86 

DJ2007 6.17 2.710 0.289 1.94 4.48 

HSI2002_6 1.47 2.254 0.612 2.71 5.58 

HSI2006 3.06 2.333 0.326 2.71 5.58 

HSI2003_7 3.17 2.198 0.774 0.94 5.52 

HSI2007 5.90 4.042 1.092 1.75 5.07 

SH2002_6 2.92 3.428 0.741 7.32 18.23 

SH2006 7.90 5.273 0.766 9.74 19.24 

SH2003_7 3.81 1.742 -0.016 1.85 8.6 

SH2007 3.83 5.092 1.830 1.85 8.53 

Overall average of MAPE value 4.965 
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Short term forecast for 2007 with 5-days horizon considers the 

2006 dataset only as input. The lowest MAPE result is 0.38 in DOW 

Index. For 2007 with 5-day forecast horizon using a dataset from 2002 to 

2006, the lowest result is 0.70 also in DOW Index. Long term forecast 

for 2007 with 22-day horizon considers the 2006 dataset only as input, 

the lowest result is 1.22 in Dow Index. For 2007 with 22-day forecast 

horizon using a dataset from 2002 to 2006, the lowest result is 1.22 in 

DOW Index.     

Short term forecast for 2008 with 5-days horizon considers the 

2007 dataset only as input. The lowest MAPE result is 1.75 in Hang Seng 

Index. For 2008 with 5-day forecast horizon using a dataset from 2003 to 

2007, the lowest result is 0.94 also in Hang Seng Index. Long term 

forecast for 2008 with 22-day horizon considers the 2007 dataset only as 

input, the lowest result is 4.48 in Dow Jones Index. For 2008 with 22-day 

forecast horizon using a dataset from 2003 to 2007, the lowest result is 

2.86 also in Dow Jones Index. In Table XVIII, there are 10 MAPE values 

out of 24 lower than 2. 

     SVR requires much effort to tune the parameters c and g in 

order to get a better result. It is rather difficult to determine which setting 

is correct. We discovered from the experiments that the parameter c has 

to be set with the range between 1,000 and 8000 in order to produce 

meaningful results and the c value must be more than 500, please refer to 
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(Lai & Liu, Stock forecasting using Support Vector Machine, 2010)  for 

details.  

 

Table XIX Prediction Result of SVR Using Lévy Distribution 

Market Volatility Kurtosis Skewness MAPE5 SMAPE5 

DJ2002_6 1.00 2.360 0.763 2.69 3.29 

DJ2006 0.66 2.821 -0.387 0.36 0.98 

DJ2003_7 1.83 2.080 -0.308 1.24 3.21 

DJ2007 6.17 2.710 0.289 1.94 4.48 

HSI2002_6 1.47 2.254 0.612 3.22 3.3 

HSI2006 3.06 2.333 0.326 7.13 7.15 

HSI2003_7 3.17 2.198 0.774 1.15 5.36 

HSI2007 5.90 4.042 1.092 1.6 5.45 

SH2002_6 2.92 3.428 0.741 9.88 12.07 

SH2006 7.90 5.273 0.766 4.14 6.49 

SH2003_7 3.81 1.742 -0.016 21.7 28.76 

SH2007 3.83 5.092 1.830 1.98 6.71 

Overall average of MAPE value 6.012 

 
 

 

Table XIX demonstrates  the improvement using Lévy 

distribution in the 3 markets. There are 2 in DOW market better than the 

result in Table XVIII, 2 in Hang Seng and 4 in Shanghai. It seems the 

more efficient the market, the less Lévy distribution kernel can improve 

the forecasting result.  The significant improvement using Lévy 

distribution in Shanghai market is remarkable.  There are 9 out of 24 

results having an improvement and the Shanghai market SH2006 was 

improved from 19.24 to 6.49 using Lévy distribution kernel. It is a weak-

form EMH market and it is not likely to follow normal  distribution 

movment in its price trend.  One of the advantages of SVR is the mapping 

of data into higher dimension using kernel and avoid finding the 
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distribution parameters of the original data. The kurtosis of the log 

return dataset DJ 2006, DJ2007, SH2006, SH2002-6 and SH2007 are  

4.24, 4.56, 5.6, 7.03 and 4.95 respectively. After the dataset is mapped 

into higher dimension using normal distribution, the kurtosis of the log 

return dataset  DJ 2006, DJ2007, SH2006, SH2002-6 and SH2007 are  

6.25, 10.63, 21.92, 117.23 and 6.36 respectively.After the dataset is 

mapped into higher dimension using Lévy distribution kernel, the log 

return kurtosis reduces to 4.09, 4.54, 6.17, 7.94 and 4.35 respectively. It 

seems the closer the kurtosis value of the higher dimension data to the 

original dataset, the better the forecasting result. The significant 

improvement is from SH2006 MAPE22 which is 12.75 less than the 

Normal distribution SVR. It is the same for SH2006 MAPE5 which is 5.6  

less than the Normal distribution kernel in SVR. From  

Table XIX, SH2006 has the highest volatility value 7.9, kurtosis 

5.273 and the skewness 0.766 ranked the 4th highest. For SH2002_6, its 

MAPE22 value is 6.16 less than the Normal distribution kernel SVR.  The 

volatility value is 2.92 which ranked the 8th highest, the kurtosis value is 

the 4th highest and the skewness value is 0.741 which ranked the 6th 

highest. This is another evidence that the higher the volatility and kurtosis 

value which means the market is more fluctuating and volatile, the more 

accurate is the use of Lévy distribution kernel in SVR.  The four highest 

skewness values in HSI2003_7, HSI2007, SH2006 and SH2007 are 0.774, 

1.092, 0.766 and 1.83 respectively.  Lévy distribution kernel in SVR has 

improvement in these four dataset. The fat tails effect is the pattern that 
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Lévy distribution identified and this experiment has proved it is 

successful based on the result. 

 

3.4.4 Conclusions 

 

The potential to use Lévy distribution in SVR model has been 

demonstrated with convincing evidence and promising future application. 

The improvement in forecasting accuracy is significant in the 3 markets, 

especially in Shanghai market. We believe this is a contribution in 

forecasting methodology as there is no such finding yet in the literature 

review. Our finding shows that there is a strong correlation between 

MAPE value with the volatility as well as the skewness value.  

It is important to point out that the experiments have demonstrated 

promising forecasting result in strong form EMH market such as DOW 

in the USA especially using SVR model. 6 out of 8 forecasting values 

have MAPE under 2 which is the objective of this research. For HSI Hong 

Kong market, the performance is similar to DOW despite it is a semi-

strong EMH market but it can still provide a good decision-making 

platform for investment.  For weak form EMH SH in China, the 

forecasting ability is obviously poor. This is because the volatility of the 

market strongly affects the forecasting power. In the future, it is necessary 

first to forecast the volatility of the market and then develop a hybrid SVR 

model to input the  volatility attribute into it in order to improve the 

performance.      
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 Attempt to fit historical data into known distribution function 

is not novel. Yet, there is no perfect fit especially in financial time series 

data. From  the theoretical point of view, there are more than hundred of 

distribution functions and more will be discovered due to big data era. 

The parameters (such as µ location and c >0 in Lévy distribution) and 

characteristics (such as probability density function, cumulative density 

function or moment generating function also  in Lévy distribution) in 

each distribution has a very rigid statistical definition. It is impossible that 

a historical data will fall into a particular distribution function. MATLAB 

or EasyFit software (Mathwave Technologies, 2004) have offered simple 

fitting to their database distribution function. However, there are many 

discreprencies in the parameters and characteristics. Thus, those sofware 

programs are just assumed it will fit into a certain distribution which is 

similar to many research approaches. Statisticians have their very 

important role in the history of forecasting as mentioned in Chapter 2 

Section 2.4. The fundamental assumption that many data may fall into 

normal distribution function has a very long root from these people. Our 

finding has challenges if this assumption is a necessary and sufficient to 

support the forecasting theory.   There are a few more distribution 

functions that can be employed as SVR kernel such as Hyperbolic Sceant, 

Student’s t and  Laplace distribution which the candidate has already 

tested but not included in the study. Lévy distribution has outperformed 

the others as far as our research is concerned. It is obvious from  

Table XIX that the overall MAPE of the Lévy distribution is not 

good as it is only 6.012 much higher than the normal distribution 4.965. 
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As pointed out earlier there are 9 out of 24 better results using Lévy 

distribution kernel which means there are 15 worse results compared to 

Normal distribution kernel. Despite the fact that there are more worst 

results than better results, this kernel is still worthy to check and carry on 

with another approach.  Improving the SVR mechanism is not easy but 

this Lévy distribution has definitely improved the accuracy under specific 

data characteristics. It seems for financial time series, it is necessary to 

use different approaches to seek out the best result. However, the above 

SVR algorithm is not good at handling high dimensional data especially 

in big data environment. The limitation of the above algorithms is that 

Lévy distribution could be significant but not necessary contribute to all 

financial time series pattern.  There are many that do not conform to Lévy 

distribution and the application therefore is not universal. The difficulties 

in applying Lévy Distribution kernel in SVR is the mapping mechanism 

using kernel method is unknown in the literature review and by 

assumption there is no need to. As the data is mapped into a higher 

dimension which could be infinite, it is very difficult to control the result 

after the mapping. 

 

3.5 Extreme Learning Machine  

 

3.5.1 Introduction 

 



126 

 

 

ELM has been highly praised as the path towards human brain 

alike learning by Guang-Bin Huang (2013) (Huang & Chen, Enhanced 

random search based incremental extreme learning machine, 2008) 

(Huang G. B., What are Extreme Learning Machines? Filling the Gap 

between Frank Rosenblatt's Dream and John von Neumann's Puzzle, 

2015). The classical NN has lost its attention in the research domain  

mainly because of the difficulty in handling parametric techniques 

especially when it is approximating complex nonlinear mappings directly 

from the input samples. SLFNs has been investigated to be the feasible 

solution to compensate for this problem. There are two types of SLFNs 

network architectures investigated in this research. The first one is SLFNs 

with additive hidden nodes and the second is (RBF) networks in (ELM). 

The SLFNs is best employed in online applications such as (Bosman, 

Iacca, & Wortche, Online Extreme Learning on Fixed-Point Sensor 

Networks, 2013) or (Janakiraman, Nguyen, & Assanis). In batch learning,  

each new data set must be used to re-train the learning parameters such 

as learning rate, number of learning epochs, stopping criteria and other 

predefined parameters which takes long computational power while 

online SLFNs are much shorter. In the first SLFNs architectures with 

additive hidden nodes,  the back-propagation (BP) algorithm is basically 

a batch learning algorithm and it is the  backbone of this architecture. 

From Sections 3.1 to 3.4 in Chapter 3, various forecasting 

algorithms have been studied and some of them have achieved the 

objective of under 2 in MAPE value. However, all the above algorithms 

are based on mature forecasting techniques which have been more than 
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two decades of history. ELM is relatively a new technique but with 

strong NN background and similarity to SVM. The research in financial 

time series forecasting is incomplete without the investigation of ELM. 

With the simpler hidden nodes structure combined with back-propagation 

network, it is expected that ELM should be able to generate a better result 

than the models described above. 

In this model, two architectures are investigated using the same 

dataset as described in Section 3.6.1. The objective is to use ELM as a 

forecasting platform to compare different forecasting tools. The 

performances of SVR in predicting stock prices in the Hang Seng Index 

(HSI), Dow Jones Industrial Index (DJ) and Shanghai Composite Index 

(SH) over a 4-day and 20-day horizons respectively have been examined. 

The experiments are carried out in MATLAB R2011 environment with 

the algorithm developed by the Guang-Bin Huang. 

 

3.5.2 Empirical Modeling 

 

The SLFNs network functions with n hidden nodes are expressed 

in the following. 

∑ ∑
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Equation 56 
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where ig  or ),,( ii baxG denotes the output function of the thi  hidden 

node and iβ  is the (output) weight of the connection between the thi  

hidden node and the output node. 

While additive hidden nodes are calculated as follows:- 

)()( iii bxagxg +×= ,  
d

i Ra ∈ ,    Rbi ∈ ,                                                                           

Equation 57 

where g is the activation function of hidden nodes, 

And RBF hidden  nodes are calculated as follows:- 

||)||()( iii axbgxg −= ,  
d

i Ra ∈ ,    Rbi ∈ .                                                                         

Equation 58 

 

3.5.3 Empirical Results 

 

The results of the ELM model are compared with that of  ARIMA 

and MA models.  
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Table XX ELM Prediction Result 

Market Volatility Kurtosis Skewness MAPE5 MAPE22 

        Linear Linear 

DJ2002_6 1.00 2.360 0.763 3.555 6.691 

DJ2006 0.66 2.821 -0.387 3.443 6.373 

DJ2003_7 1.83 2.080 -0.308 4.281 7.467 

DJ2007 6.17 2.710 0.289 4.335 6.861 

HSI2002_6 1.47 2.254 0.612 1.721 10.438 

HSI2006 3.06 2.333 0.326 1.612 9.961 

HSI2003_7 3.17 2.198 0.774 2.065 11.683 

HSI2007 5.90 4.042 1.092 1.861 10.986 

SH2002_6 2.92 3.428 0.741 1.836 7.061 

SH2006 7.90 5.273 0.766 1.541 6.722 

SH2003_7 3.81 1.742 -0.016 1.934 7.716 

SH2007 3.83 5.092 1.830 1.844 7.515 

Average value on 3 markets on MAPE5 and MAPE22 5.396 

 

Table XX has indicated clearly that the RBF kernel has no effect 

on improving the accuracy of the forecasting. The average MAPE value 

is 5.396. Unlike the result using Support Vector Machines in Chapter 3 

Section 3.1 where RBF kernel has the best performance, RBF kernel did 

not improve the result. Even in NN model, the use of kernel is much better 

than the linear model. One of the possible explanations of the difference 

is RBF kernel is better with more hidden layers structure while SLFNs is 

a single hidden layer structure which the kernel has very limited effect on 

the  adaptation process.  In general, ELM model has very good 

performance on Shanghai complex index and Hang Seng Index as almost 

all MAPE5 value is under 2. This is an interesting finding as SVR models 

have better performance in Dow Jones index. The overall MAPE average 

of ELM ranked only the third with reference to Table VI. NN is 5.463 

while ELM is 5.396 but it would not be fair to judge that ELM is better 
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than NN.  As pointed out in the above section, it is also important to 

judge the complexity of the model. The running time of all models is very 

fast and ELM is also very easy to implement, unlike SVR model as the 

hidden nodes/neurons do not need to be iteratively turned in wide types 

of neural networks and learning modes in ELM.  Here, it is necessary to 

point out the advantage of the structure of ELM which can facilitate a 

huge amount of data in the model, therefore is an ideal choice in a big 

data environment. In Chapter 4, a much larger dataset than the above 4 

data sets will be employed to compare with ELM. 

Tables XXI – XXII give results tested on ARIMA and MA 

models. 

Table XXI ARIMA and MA Model MAPE5 Results 

Market Volatility Kurtosis Skewness MAPE5 MAPE5 MAPE5 

        ARIMA ARIMA  MA 

        (0,1,1) (1,1,0)   

DJ2002_6 1.00 2.360 0.763 0.238 0.244 0.258 

DJ2006 0.66 2.821 -0.387 0.230 0.231 0.258 

DJ2003_7 1.83 2.080 -0.308 2.204 2.207 2.371 

DJ2007 6.17 2.710 0.289 2.196 2.196 2.371 

HSI2002_6 1.47 2.254 0.612 0.990 0.991 0.972 

HSI2006 3.06 2.333 0.326 0.989 0.989 0.972 

HSI2003_7 3.17 2.198 0.774 2.196 2.197 1.657 

HSI2007 5.90 4.042 1.092 2.176 2.176 1.657 

SH2002_6 2.92 3.428 0.741 2.224 2.227 2.957 

SH2006 7.90 5.273 0.766 2.162 2.168 2.957 

SH2003_7 3.81 1.742 -0.016 1.235 1.235 1.083 

SH2007 3.83 5.092 1.830 1.227 1.227 1.083 

average       1.506 1.507 1.550 
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The best MAPE5 result is from model ARIMA(0,1,1) which is 

0.230 while the SMAPE5 is 0.115.  However, ARIMA(0,1,1), 

ARIMA(1,1,0) and MA models all have very similar MAPE5 results. 

Moving average model is just a simple average of the last two transaction 

day values. It is not covered in the Literature Review Chapter 2 as it is a 

very simple model which is  self-explanatory.  The short-term 5-day 

financial time series forecasting is quite accurate using 2 days moving 

average forecasting method as the smoothing effect is lesser.  This is 

because the 5-day fluctuation is normally not very bumpy except in very 

special financial circumstance like 2008 financial tsunami crisis. It is 

interesting to point out the best MAPE value is in DJ2006 which has the 

lowest volatility value 0.66. 

 

Table XXII AIRMA and MA Model MAPE22 Results 

Market Volatility Kurtosis Skewness MAPE22 MAPE22 MAPE22 

        ARIMA  ARIMA  MA 

        (0,1,1) (1,1,0)   

DJ2002_6 1.00 2.360 0.763 0.530 0.532 0.504 

DJ2006 0.66 2.821 -0.387 0.545 0.545 0.504 

DJ2003_7 1.83 2.080 -0.308 5.716 5.717 5.878 

DJ2007 6.17 2.710 0.289 5.709 5.709 5.878 

HSI2002_6 1.47 2.254 0.612 1.737 1.738 1.712 

HSI2006 3.06 2.333 0.326 1.735 1.735 1.712 

HSI2003_7 3.17 2.198 0.774 9.165 9.165 8.569 

HSI2007 5.90 4.042 1.092 9.142 9.142 8.569 

SH2002_6 2.92 3.428 0.741 4.767 4.769 6.003 

SH2006 7.90 5.273 0.766 4.484 4.500 6.003 

SH2003_7 3.81 1.742 -0.016 6.538 6.538 6.595 

SH2007 3.83 5.092 1.830 6.538 6.538 6.595 

Average       4.717 4.719 4.877 
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Table XXII shows the best MAPE22 result is from MA model. 

ARIMA and MA models are different from NN and SVR models. The 

MAPE5 value and the first 5 values of MAPE22 are the same in ARIMA 

and MA models as they are just based on the last values to generate the 

future value. In NN and SVR, the model uses the last 22 days value to 

validate the training model in order to generate the future 22 values.  

GARCH model is similar to ARIMA model. The best MAPE22 value in 

all the models is in DJ200-6 which has the second lowest volatility value 

1.00. 

 

Table XXIII ARIMA and MA Model Prediction Results 

Market MAPE MAPE MAPE 

All ARIMA (0,1,1) ARIMA (1,1,0) MA 

Average 3.111 3.113 3.213 

 

Table XXIII shows the best result is from ARIMA(0,1,1) with 

average MAPE value 3.111. This value will be used as a benchmark to 

compare with the other models results in Chapter 4 using Conditional 

Restricted Boltzman Machine. In fact, financial time series is not affected 

by seasonal factor like clothing or food market industry. There is no 

indication that Summer financial activity is lower than Spring or vice 

versa. The global effect on financial time series is strong as the developed 

world economy moves more or less at the same pace. That is why Hang 

Seng Index will follow the Dow Jones Average Index movement.  

However, the global trend may move at the same pace but not necessary 

at exactly at the same time except the big events like financial  tsunami. 
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Each market is different despite the influence of other markets and the 

effect of the global trend may be different too. Hence, it is still worthwhile 

to study the individual market and able to forecast the future event.  

ARIMA(1,1,0) model has more or less the same result as the 

ARIMA(0,1,1) which is 3.113. The difference is not significant to 

differentiate which one is better.  ARIMA(0,1,1)  is equivalent to MA(1,1) 

model while ARIMA(1,1,0) is equivalent to AR(1,1) model. 

 

3.5.4 Conclusions 

 

ELM model is the latest neural network forecasting tool which 

has great potential to develop such as (Cao, Huang, & Sun, Optimization-

Based Extreme Learning Machine with Multi-kernel Learning Approach 

for Classification, 2014) and (Atsawaraungsuk, Horata, Sunat, 

Chiewchanwattana, & Musigawan, Evolutionary Circular Extreme 

Learning Machine, 2013). In the paper (Huang G. B., What are Extreme 

Learning Machines? Filling the Gap between Frank Rosenblatt's Dream 

and John von Neumann's Puzzle, 2015), it has been clearly pointed out 

the fundamental advantage of ELM is that there is no need to iteratively 

tuned in wide types of neural networks and learning models the hidden 

nodes/neurons. As a consequence, ELM has a faster computational speed 

than any of the models in this thesis. It is by far the most efficient and 

easiest to handle the algorithms and can handle quite a large amount of 

data.  Nevertheless, the RBF kernel in ELM did not improve the accuracy 
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of the above models but there are 11 more networks such as Threshold 

networks (Huang, et al., Can threshold networks be trained directly?, 

2006), fully complex neural networks (Huang, Saratchandran, & 

Sundararajan, Fully complex extreme learning machine, 2005) or Fourier 

series (Huang, Chen, & Siew, Universal Approximation Using 

Incremental Constructive Feedforward Networks with Random Hidden 

Nodes, 2006) that can be incorporated into ELM to improve the accuracy. 

More datasets with different applications other than financial time series 

forecast have to be conducted in order to find out the reason. Only Close 

value of the 3 market indices is inputted into the ELM model which is the 

same as ARIMA GARCH and MA models. ELM average MAPE value 

is 5.396 which is not as good as ARIMA model 3.111. They all use the 

same input parameter but adopt a very different approach in forecasting. 

ARIMA has very strong statistical background using Yule-walker 

equation to calculate the auto-correlation function while ELM is a 

relatively new model but it rapidly gathers all the attention due to its 

theoretical complement to Support Vector Machine. The average MAPE 

value of SVR model is 4.833 and is better than ELM 5.396 value. This is 

intriguing as both using partition theory to distinguish or classify the data 

in order to select the crucial points to represent the whole data set. Later, 

these points are used to forecast the result. Again, it is not easy to judge 

if ELM is better than SVR based on the above experiment.  As there are 

parameters to tune, ELM is definitely much better than SVR in terms of 

usage. The limitation of ELM is not deep learning and it does not gather 

each layer of the network to perform the forecasting.  
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Box-Jenkins model from George Box and Gwilym Jenkins is a 

famous time series analysis algorithm using autoregressive moving 

average ARMA or ARIMA to fit the historical record.  Once a formula is 

discovered to fit the historical data, it will be projected into the future 

events. Here, it should point out that ARIMA so far has the best 

performance in forecasting the 3 market Indices value particularly in a 5-

day horizon but it is not very practical for long term forecasting. ARIMA 

is difficult to achieve long-term prediction as per (Nkayam, Ata, & Oka, 

Predicting time series of individual trends with resolution adaptive 

ARIMA, 2013), this is partly due to the ARIMA employed Yule-Walker 

equation to estimate parameters by replacing the theoretical covariance 

with estimated value. For long term forecasting, it is very difficult to fit 

the parameters into an equation. Therefore, Resolution Adaptive ARIMA 

in (Nkayam, Ata, & Oka, Predicting time series of individual trends with 

resolution adaptive ARIMA, 2013) is developed to increase the long-term 

prediction ability.  SVR selects support vector from the dataset to 

represent the whole data even though it depends on the spread of the data, 

it is still possible for SVR to perform long-term forecasting. ARIMA 

model uses all the data to search for the best fit and in terms of the fitness 

to historical data, ARIMA is better for stationary data and short-term 

forecast than SVR as the MAPE5 of SVR is 2.585 while MAPE5 of 

ARIMA is 1.506 and all the MAPE5 value in SVR are higher than 

ARIMA model. The more data to fit the historical data, the  better the 

result. However, ARIMA can only view the data in a simple plane and it 

is not easy to classify which data is more important while SVR can map 



136 

 

 

the data into hyperplane in order to select some points to represent the 

pattern. In this respect, SVR methodology is much better than ARIMA. 

Judging from the result, the average MAPE in ARIMA is 3.111 while 

SVR is 4.833. We cannot simply say ARIMA is much better than SVR. 

The average ARIMA MAPE22 value is 4.717 while SVR is 8.109. But 

there are 4 datasets in which  MAPE22 value in SVR is better than 

ARIMA. The strength of SVR comes from its ability to classify while 

ARIMA is strong in regression. Both algorithms enjoy high reputation in 

its own field from the literature review.  The history of these two 

algorithms is relatively new no more than 30 years compared to the 

classic statistical theories which could be more than 250 years old such 

as Bayseian theory.  It is sufficient to say that up to this point ARIMA 

has produced by far the best result (lowest MAPE5 value 0.23) from the 

above experiments and it is a very good means to forecast Dow Jones 

Average Index. The limitation of ARIMA is not suitable for high 

dimension data. It is a statistical conceptual model which is not designed 

to handle high dimension data. 
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Chapter 4   New Approach Using 

Conditional Restricted Boltzmann Machine 

 

4.1 Introduction 

 

With the dawn of big data environment, there are many new 

techniques to handle such vast volume of data. The MNIST 

database (Mixed National Institute of Standards and 

Technology database) is a large database of handwritten digits that is 

commonly used for training various image processing systems.  The 

database contains 60,000 training images and 10,000 testing images. This 

is a very near-human performance. In the paper presented by (Hinton, 

Osindero, & Teh, A Fast Learning Algorithm for Deep Belief Nets, 2005), 

the generalization performance of the network has a 1.25% error on the 

10,000-digit official test set. This beats the 1.5% achieved by the best 

backpropagation nets when they are not handcrafted for this particular 

application. It is also slightly better than the 1.4% errors reported by 

Decoste and Schoelkopf (2002) for support vector machines on the same 

tasks.  In the program conducted by Ruslan Salakhutdinov and Geoff 

Hinton using Restricted Boltzmann Machine (RBM) in deep learning 

training environment, the error rate is 1.5%. It is not the focus of this 

research to discuss the research development of MNIST dataset but to 
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point out the Restricted Boltzmann Machine has obtained a remarkable 

success.  Inspired by this success, Conditional Restricted Boltzmann 

Machine (CRBM) which has the ability to forecast future event is 

selected for this research as part of a further investigation for the domain 

of this research – forecasting problem.  In (Cai & Lin, Forecasting High 

Dimensional Volatility Using Conditional Restricted Boltzmann 

Machine on GPU, 2012), the application of CRBM in high dimensional 

data to forecast the volatility of multivariate asset return is a typical 

example of how this tool can handle high dimensional data. In this section 

CRBM is selected as a candidate for a forecasting model is not only 

because of its ability and success in handling big data but the conceptual 

difference between CRBM and all other forecasting models should 

provide a different perspective in the research domain. Forecasting using 

big data is an unexplored territory and many literature reviews in 

forecasting only selected some low dimension segment of data for 

forecasting. It is a reasonable deduction that high dimensional big data 

should provide a wider and deeper spectrum of hidden information for 

the right forecasting tool to exploit. 

 The classic neural network or supporting vector machine theory 

on classification is based on Euclidean distance method. The shorter the 

distance, the more cluster the data. The mapping of the dataset into higher 

dimension will facilitate to draw a hyperplane to separate the data but it 

is still under Euclidean distance concept. RBM has a different approach. 

It assigns low energy based on probability concept to those connections 

that are relevant to each other while high energy to those that are 
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irrelevant. RBM also combines the deep learning theory which only 

trains one layer at a time to obtain proper information. The conceptual 

details of deep learning theory can be found on the IPSAM Summer 

School 2012 (Research, 2012).  From the conceptual point of view, 

Euclidean distance methodology is limited to finding the centre point to 

calculate the distance. Distance cannot be calculated without a point of 

reference. Here, which centre point is the most relevant is very crucial to 

the success of the algorithm.  In RBM, probability concept is applied 

throughout the whole dataset. The centre point is irrelevant as each point 

will be calculated independently without reference to any point using an 

energy-based model with probability distribution calculation method. 

Conditional RBM or (CRBM) is similar to RBM but many non-

conditional RBM algorithms are not applicable to train CRBM. The 

Equation 44 which defines a joint probability over v and h of RBM and 

Equation 52 which defines probability distribution v and u of CRBM 

have indicated that CRBM models the distribution p(v|u) by using an 

RBM to model v and using u to dynamically determine the biases or 

weights of that RBM.  By definition, RBM neurons must form a bipartite 

graph: a pair of nodes from each of the two groups of units, commonly 

referred to as the "visible" and "hidden" units respectively, may have 

symmetric connection between them, and there are no connections 

between nodes within a group. Conditioning vector u is to determine 

increments to the visible and hidden biases of the RBM and therefore a 

unique distribution p(v|u) is generated.  CRMB are generally used for 

forecasting (Cai & Lin, Forecasting High Dimensional Volatility Using 
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Conditional Restricted Boltzmann Machine on GPU, 2012), (Minh, 

Larochelle, & Hinton, Conditional Restricted Boltzmann Machines for 

Structured Output Prediction, 2010) and (Taylor, Sigal, Fleet, & Hinton, 

Dynamical Binary Latent Variable Models for 3D Human Pose Tracking, 

2010). RBMs have found applications in dimensionality reduction 

(Hinton & Salakhutdinov, Reducing the Dimensionality of Data with 

Neural Networks, 2006), classification, (Teh & Hinton, 2001) and 

(Larochelle & Bengio, Classification using discriminative restricted 

Boltzmann machines (PDF, 2008)  collaborative filtering (Salakhutdinov, 

Hinton, & Minh, Restricted Boltzmann machines for collaborative 

filtering., 2007),  feature learning (Coates, Lee, & Ng, ). An analysis of 

single-layer networks in unsupervised feature learning, 2011) and topic 

modelling (Salakhutdinov & Hinton, Replicated softmax: an undirected 

topic model, 2011) 

 

4.2 Empirical Modeling 

 

In Chapter 3 forecasting models, the output value is either 

predicted by using 4 attributes Open, High, Low and Close or just the 

close value in the case of ARIMA or GARCH model. The historical data 

consist of around 1200 records and hence the data matrix is about 1200x4. 

The famous Black-Scholes formula uses only one value or attribute for 

stock price prediction and yet it is still used in many financial markets for 

option trading. It is not our research to challenge or even validate the 
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accuracy of the Black-Scholes formula despite its controversial 

assumption that the market behaves like a normal distribution.  There is 

a lot of research using different approaches instead of the Black-Scholes 

formula but it has not yet gained world-wide recognition in either 

academic research or in the financial institution. We would like to offer 

a different approach in financial time series analysis which is using more 

attributes other than one stock but stocks with similar activity in open 

markets such as the index constituents of Dow Jones or Hang Seng Index. 

From (L., 2012), the market interdependence is an important aspect 

which must incorporate into the forecasting domain. In the beginning of 

this research, it has been pointed out clearly that financial tsunami has a 

great impact on the financial market on a global scale. To what extent it 

affects each market is beyond the scope of this research. However, 

several markets’ interdependence can be investigated with proper 

forecasting model. It is due to this theory that the candidate contemplates 

more attributes input into the model can discover the interdependence. As 

a result, the better the forecasting result. 

Since the research focuses on financial time series forecasting, 

CRBM is employed because it works on the miniature big financial time 

series data which by definition is a continuous data. The program for 

CRBM was provided by Graham Taylor, Geoffrey Hinton and Sam 

Roweis (Taylor, Hinton, & Roweis, Modeling Human Motion Using 

Binary Latent Variables, 2006) which is originally designed to forecast 

robot movements. The candidate modified the algorithm in order to apply 
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financial time series data into it. It can handle up to 120 dimensions of 

data with 60000 records.  

It is not the intention of this research to study the characteristics 

of Human Motion as it is a big topic.  However, it is interesting to borrow 

the concept of style translation process which is transforming an input 

motion into a new style while preserving its original content. Human 

Motion is a coordination of head, hand, body and foot movement. To a 

certain extent, financial time series is also a coordination of different 

markets their movement at the same time. In (L., 2012), it has been 

pointed out the breadth and depth of financial markets’ interdependence 

has been blamed for their domino effects during recent financial crises.  

Modern economic and investment theories already showed this feature.   

The technical specification of the model is as follows which is 

based on (Taylor, Hinton, & Roweis, Modeling Human Motion Using 

Binary Latent Variables, 2006). This program trains a Conditional 

Restricted Boltzmann Machine in which visible, Gaussian-distributed 

inputs are connected to hidden, binary, stochastic feature detectors using 

symmetrically weighted connections. Learning is done with 1-step 

Contrastive Divergence. Directed connections are present, from the past 

configurations of the visible units to the current visible units, and the past 

configurations of the visible units to the current hidden units. It is a 2-

step deep learning procedure to return the visible units and hidden units 

weight factor. These factors will be used to generate the future value of 

the model. A frame is selected from the original dataset as a point of 



143 

 

 

reference to generate 5-day or 22-day forecasting values. The following 

is a brief description of the algorithm. 

As described before, RBM used energy-based learning method a 

details description can be found in (LeCun, Chopra, Hadsell, Ranzato, & 

Huang, A Tutorial on Energy-Based Learning, 2006). The dependency 

between variables in Energy-Based Model (EBM) is achieved by 

associating a scalar energy with each configuration of the variables. The 

observed configurations of the variables are given lower energies while 

the unobserved configurations are given high energies.  An energy 

function in called “negative parabolic log likelihood function” is setting 

the value of the observed variable and finding values of the remaining 

value that minimize the energy. This means for any setting of the hidden 

units, the visible unit is defined by the following equation. 
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Equation 59 

The σi is the standard deviation of the Gaussian noise for visible 

unit i. 

The main advantage of using this undirected, “energy-based” 

model rather than a directed “belief net” is that inference is very easy 

because the hidden units become conditionally independent when the 

states of the visible units are observed. The conditional distributions 

(assuming σi = 1) are: 
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Equation 60 
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Equation 61 

where f(·) is the logistic function, N(µ, V ) is a Gaussian, bj and ci are the 

“biases” of hidden unit 

j and visible unit i respectively, and wij is the symmetric weight between 

them. 

Maximum likelihood learning is slow in an RBM but learning still works 

well if we approximately 

follow the gradient of another function called the contrastive divergence. 

The learning rule is: 

reconjidatajiij hvhvw ><−>∝<∆  

Equation 62 

where the first expectation (over hidden unit activations) is with respect 

to the data distribution and the second expectation is with respect to the 

distribution of “reconstructed” data. The reconstructions are generated by 

starting a Markov chain at the data distribution, updating all the hidden 

units in parallel by sampling Equation 60 and then updating all the visible 

units in parallel by sampling Equation 61. For both expectations, the 

states of the hidden units are conditional on the states of the visible units, 

not vice versa. The learning rule for the hidden biases is just a simplified 

version of Equation 62: 
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Equation 63 

So far the RBM has not incorporated any temporal information. 

Temporal dependencies can be modelled by treating the visible variables 

in the previous time slice as additional fixed inputs. Fortunately, this does 

not complicate the inference. Two types of directed connections are 

added : autoregressive connections from the past n  configurations (time 

steps) of the visible units to the current visible configuration, and 

connections from the past m visible to the current hidden configuration. 

The addition of these directed connections turns the RBM into a 

conditional RBM (CRBM).  

Inference in the CRBM is not more difficult than in the standard 

RBM. Given the data at time t, t − 1, . . . , t − n, the hidden units at time t 

are conditionally independent. We can still use contrastive divergence for 

training the CRBM. The only change is that when we update the visible 

and hidden units, we implement the directed connections by treating data 

from previous time steps as a dynamically changing bias. The contrastive 

divergence learning rule for hidden biases is given in Eq. 5 and the 

equivalent learning rule for the temporal connections that determine the 

dynamically changing hidden unit biases is: 
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t
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Equation 64 
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where qt
ijd −  is the log-linear parameter (weight) connecting visible unit 

i at time t − q to hidden unit j for q = 1..n. Similarly, the learning rule for 

the autoregressive connection 
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qt
ki ><−∝∆ −−  

Equation 65 

where qt
kia −  is the weight from visible unit k at time t−q to visible unit i. 

The origin algorithm is to model human motion and generate the 

motion from the captured data. As the model is able to efficiently capture 

complex non-linearity in the data without sophisticated pre-processing or 

dimensionality reduction, it is also suitable for other high-dimensional 

time series such as financial time series in a big data environment.  The 

candidate was inspired by this algorithm and modified it for financial data 

forecasting. Human motion and financial movement are similar in nature. 

The head and shoulder movement is restricted by the body structure while 

financial movement is bounded by the economy and political 

environment. However, the past time steps for financial forecasting is set 

to 1 for visible and 1 for hidden variables. But in human motion, the past 

time steps m and n values are set to 3. In human motion, the updates are 

conditional upon the past 2 to 3 time steps in learning a model because 

the complexity of motions requires a few steps to gather the information. 

The relationship between head and shoulder has more information than 

financial movements between 2 equities. Hence, more detailed 

information is required in order to update the learning model. In financial 

movement, 1 past step is enough to update the training model because 2 
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or 3 past time steps information could be redundant as the movement is 

affected by external factors such as the political environment or economic 

situation. 

 

4.3 Empirical Results 

 

In order to compare with the models in Chapter 3,  the previous 3 

markets indices of Dow Jones, Hang Seng and Shanghai complex with 

the same time horizon 2006, 2002 to 2006, 2007 and 2003 to 2007 are 

used as inputs for the CRBM model.   

 

 Table XXIV Overall result of All Models 

Methods MAPE5 MAPE 22 Overall 

  DJ  HSI  SH  DJ  HSI  SH  Average 

A(011) 1.217 1.588 1.712 3.125 5.445 5.582 3.111 

A(110) 1.219 1.588 1.714 3.126 5.445 5.586 3.113 

MA 1.390 1.325 2.307 3.241 5.181 6.668 3.352 

SVR RBF 1.040 1.525 5.190 2.473 5.020 13.753 4.833 

CRBM 2.901 1.121 5.389 5.336 6.470 8.181 4.900 

NN 1.203 4.219 4.533 3.054 4.154 13.035 5.033 

SVR Lévy 1.556 3.276 9.425 3.026 5.504 13.847 6.106 

ELM 3.972 4.450 2.914 12.399 20.644 21.466 10.974 

GARCH 3.972 4.450 2.914 12.399 20.644 21.466 10.974 

  MAPE4 MAPE 20   

SVR RBF 1.376 2.879 2.09 6.49 4.139 2.524 3.250 

WL_db_lssvm 2.779 3.604 2.301 7.718 5.343 7.718 4.911 

WL_sym_garch 1.593 1.717 3.319 7.982 10.803 18.480 7.316 

WL_sym_SVR 1.224 1.870 3.801 7.619 12.265 22.399 8.196 

WL_db_SVR 1.184 1.891 4.991 7.767 13.846 22.750 8.738 

WL_db_garch 1.685 2.660 7.976 9.430 13.187 19.276 9.036 

WL_sym_lssvm 1.776 1.801 3.624 53.361 7.441 33.574 16.930 

LSSVM 11.533 19.338 24.743 12.721 15.052 22.020 17.568 

 



148 

 

 

In Table XXIV, CRBM ranked the fourth which is not too bad 

by any standard.  CRBM model has an overall average MAPE value of 

4.9 while the best overall average MAPE from ARIMA(0,1,1) is 3.111. 

The difference is 57.5% which need to improve.  

CRBM is the only model that simultaneously forecast all the 

MAPE values in Table XXIV which attempt to use the interdependence 

of these 3 markets for forecasting. From this experiment, it is not 

successful. There could many reasons one of which could be there is only 

3 markets which many not be easy to seek out the correlation. The other 

reason could be the historical data is not long enough only 1200 records. 

The last but not least reason is the dataset selected within the financial 

tsunami period which is too volatile to capture the interdependence 

information. Despite this is not satisfactory, the candidate is not 

discouraged and has presented another approach using this method in 

different dataset environment to improve the accuracy. 
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Table XXV Best Result of Each Model in a Specify Time Horizon  

Methods MAPE4 MAPE5 Market Horizon Structural difference remarks 

CRBM NA 1.03 HSI  2002-7 12 attributes to input parameters time step = 1 

A(011) NA 0.230 DJ 2006 yule-walker equation regression   

A(110) NA 0.231 DJ 2006 yule-walker equation regression   

MA NA 0.258 DJ 2006 Last 2 records average regression   

ELM NA 1.541 SH 2006 Linear kernel   

NN NA 0.273 DJ 2002-6 grnn network   

SVR RBF NA 0.380 DJ 2006 rbf kernel parameter c =1000 g = 1  

SVR Lévy NA 0.360 DJ 2006 rbf kernel parameter c =1000 g = 1  

GARCH NA 1.280 DJ 2006 EGARCH network transformed prices to returns 

Chart 
pattern_LSSVM NA 0.163 NA NA Pattern 49 search result   

SVR RBF 0.318 NA DJ 2006 rbf kernel parameter c =1000 g = 1 

WL_db_SVR 0.501 NA DJ 2006 daubechies wavelet   

WL_sym_SVR 0.354 NA DJ 2006 symmlets wavelet   

WL_db_lssvm 0.262 NA DJ 2002-6 daubechies wavelet   

WL_sym_lssvm 0.262 NA DJ 2006 symmlets wavelet   

GARCH 1.040 NA DJ 2006 EGARCH network   

WL_db_garch 0.617 NA HSI  2007 daubechies wavelet   

WL_sym_garch 0.758 NA SH 2007 symmlets wavelet   

 

Table XXV gives a summary of all the models structural 

difference. They are compared using the 4 datasets as described in the 

above section. Except CRBM, most of the forecasting models are based 

on literature.  The candidate has selected 4 datasets around the financial 

tsunami period to check the models’ performance. The best performance 

has been listed out and the corresponding conditions and criteria have 

been described on how to reach it. The best result is from the chart pattern 

LSSBM model 0.163 but it is not within the 4 datasets and the design of 

the algorithm is quite different from the others. However, the algorithm 

is only usable if chart pattern is discovered. The candidate has conducted 

many experiments in order to summarize the result as per the above table 

of which should be considered as a contribution in financial time series 
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forecasting. Despite most of the models are from literature for many 

years and there have been many applications but to compare all of them 

using the same benchmark and obtain a remarkable result is difficult. All 

the above MAPE value is under 2 which has been the objective of this 

thesis. The above table could a guidance of which model to apply in a 

different market and time horizon. 

In the following experiment, 9 different markets are used instead 

of 3. It seems the performance is much better.  

 

Table XXVI Nine Different Markets MAPE Using CRBM 

Market MAPE5 MAPE22 
Dow Jones 0.533 5.129 
Hang Seng 1.594 1.966 

Nikkei 1.216 4.498 
Shanghai 3.095 8.096 

Straits 0.979 1.269 
Korea 0.488 1.598 

Philippine 1.778 8.535 
Bangkok 1.683 7.661 
Taiwan 1.038 2.561 

Overall average MAPE value 2.984 
 

In Table XXVI, there are 9 indices of which 8 of them are Asian 

Indices plus the US major stock index. The assumption is that the Asian 

stock index has been influenced by US stock movement for a very long 

time and its impact is still in effect. From the DataStream financial data 

resource centre (Thomson, 2012), only 2563 trading days were recorded 

prior to 29 August, 2014 of the above 9 indices. Thus, the experiment can 

only use 2563 records and input into the model. The close value of each 

market is selected. In other words, the data matrix is 2563x9. Table XXVI 
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has a remarkable improvement in its accuracy. The number of records 

in this experiment 2563 is more than that in Table XXIV of which it has 

only 1200 records. The average MAPE 2.984 is even better than the best 

result 3.111 from ARIMA(0,1,1). In contrast to Table XXVI which only 

has 3 markets Open, High, Low and Close values as input, only 9 Close 

values are used in Table XXVII. It seems the more dimensions, the better 

the CRBM model. We would like to look at more examples to examine 

whether the dimension is a curse or a blessing. Despite the previous 

argument on Shanghai Complex Index which is not a good market 

indicator, it is not bad when it is combined with other Asian Stock Index. 

As expected before, the longer the historical records and more market 

involve, the interdependence is easier to capture. As a result, the 

forecasting accuracy is higher. 

So far the dataset is focused on Index value. Although stock 

exchange index plays a significant role in the market movement as well 

as a key indicator of how a particular stock will trade, it is still not as 

good as to directly forecast the individual stock.   
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Table XXVII Constituents of Thirty Stocks in Dow Jones Index  

 Constituents MAPE5 MAPE22 

1 3M 0.277 1.42 

2 AE 0.452 2.344 

3 AT&T 1.384 1.389 

4 Boeing 1.988 1.891 

5 Caterpillar 1.049 3.655 

6 Chevron 0.603 4.241 

7 Cisco 1.374 1.889 

8 Coca-Cola 1.156 5.841 

9 DuPont 0.347 4.307 

10 Exxon 0.527 3.063 

11 GE 0.824 1.441 

12 Goldman Sachs 1.394 3.859 

13 Home Depot 1.386 8.009 

14 Intel 0.915 1.741 

15 IBM 0.405 0.742 

16 J&J 0.891 4.404 

17 JP Morgan 1.215 2.813 

18 McDonalds 1.487 1.739 

19 Merck 1.526 4.219 

20 Microsoft 0.889 4.887 

21 Nike 1.331 4.772 

22 Pfizer 1.474 1.563 

23 P&G 0.553 5.679 

24 Travelers 0.506 3.182 

25 United Health 3.49 4.469 

26 United Tech 0.789 4.332 

27 Verizon 1.738 2.474 

28 Visa 0.752 1.665 

29 Walmart 0.909 3.29 

30 Walt Disney 1.037 1.805 

Average  1.089 3.238 

Overall average MAPE value 2.163 

 

Table XXII has average MAPE value 2.163 which is even better 

than Table XXVI. Only 707 records were found in the 50 stocks of SSE 

50 prior to 29 August 2014. Hence, only 707 close values of each stock 

are inputted into the model. In other words, the data matrix is 707x30.  
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The dimensionality of this data set is 30 instead of 9 in the above. As 

all the records are in the Dow Jones Industrial Average constituents, the 

close relationship is assumed but it is still amazingly to find out the 

accuracy is that high. Unlike the other forecasting techniques which can 

only forecast one value at a time, the CRBM model does forecast all the 

values at the same time. Each stock MAPE value is calculated 

independently e.g. 3M stock forecasted 5 days stock price will be 

compared with the actual stock price to derive the MAPE5 value. This is 

very efficient to use in online trading. The forecasting technique of 

CRBM is different than the other model as it uses the relative movement 

of all the stocks in one time step as an anchor to infer all the stocks 

movement in the next time step. While the other models deducted the 

historical pattern of a stock and forecast the next time step based on that 

pattern, CRBM has a significant structural difference compare to them.  
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Table XXVIII Constituents of Fifty Stocks in Hang Seng Index 

No. Constituents MAPE5 MAPE22 No. Constituents MAPE5 MAPE22 

1 1299 HK Equity 1.085 2.504 26 101 HK Equity 0.936 4.049 

2 3988 HK Equity 1.683 2.222 27 11 HK Equity 0.69 1.551 

3 3328 HK Equity 1.716 3.87 28 12 HK Equity 5.378 6.542 

4 23 HK Equity 0.99 1.735 29 1044 HK Equity 0.854 3.494 

5 1880 HK Equity 2.273 5.192 30 3 HK Equity 1.285 2.716 

6 2388 HK Equity 0.693 3.617 31 388 HK Equity 2.218 2.455 

7 293 HK Equity 3.246 1.474 32 5 HK Equity 0.388 0.981 

8 1 HK Equity 2.781 7.522 33 13 HK Equity 1.083 4.938 

9 939 HK Equity 1.754 3.997 34 1398 HK Equity 1.983 3.407 

10 2628 HK Equity 2.972 2.447 35 135 HK Equity 0.95 6.583 

11 2319 HK Equity 3.385 7.495 36 992 HK Equity 5.22 9.245 

12 144 HK Equity 0.801 3.512 37 494 HK Equity 1.761 11.474 

13 941 HK Equity 4.957 7.955 38 66 HK Equity 1.156 2.239 

14 688 HK Equity 2.862 9.318 39 17 HK Equity 2.236 3.094 

15 386 HK Equity 2.4 7.248 40 857 HK Equity 4.047 4.563 

16 291 HK Equity 2.228 14.604 41 2318 HK Equity 2.422 5.376 

17 1109 HK Equity 2.785 5.536 42 6 HK Equity 1.57 3.26 

18 836 HK Equity 2.584 6.158 43 1928 HK Equity 8.587 21.544 

19 1088 HK Equity 2.18 2.729 44 83 HK Equity 1.329 6.319 

20 762 HK Equity 4.773 6.485 45 16 HK Equity 0.87 1.842 

21 267 HK Equity 2.482 10.134 46 19 HK Equity 1.347 2.544 

22 2 HK Equity 1.357 2.678 47 700 HK Equity 1.869 8.446 

23 883 HK Equity 1.938 5.268 48 322 HK Equity 1.2 3.751 

24 1199 HK Equity 4.087 7.891 49 151 HK Equity 7.451 8.416 

25 27 HK Equity 5.902 22.428 50 4 HK Equity 1.993 4.547 

Average 2.455 5.748 

Overall average MAPE value 4.101 

 

Similarly, in Table XXVIII, the average MAPE value 4.101 

which is not too bad compared to Chapter 3 results. In fact, the MAPE5 

average value 2.455 which is close to our target under 2. In order to 

compare with Table XXVII which used 707 records, the same number of 

records are inputted into the model. In other words, the data matrix is 

707x50.  The dimensionality of this data set is 50 instead of 30 in the 
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above. Like Table XXVII all the records are in the Hang Seng Index 

constituents. 

 
Table XXIX Constituents of Fifty Stocks in SSE50 

No. Constituents MAPE5 MAPE22 No. Constituents MAPE5 MAPE22 

1 601288 1.482 1.382 26 600332 3.171 9.139 

2 600585 2.128 1.777 27 600837 2.818 2.799 

3 601169 7.560 7.826 28 601688 2.943 5.500 

4 601328 3.259 1.705 29 600015 2.653 1.055 

5 600637 0.350 1.730 30 601398 1.633 1.094 

6 601299 1.613 5.182 31 601166 2.475 2.577 

7 601818 1.384 4.713 32 600111 1.197 4.259 

8 601118 1.457 17.482 33 600887 6.018 3.943 

9 601628 3.476 2.987 34 600010 2.491 20.128 

10 600036 1.863 1.830 35 600518 1.169 3.034 

11 600999 2.222 3.988 36 600519 3.398 2.376 

12 600016 1.633 3.351 37 600406 5.725 6.504 

13 601117 1.390 6.623 38 601336 4.221 2.430 

14 601601 3.606 2.103 39 601857 1.219 1.592 

15 600028 4.453 5.337 40 601318 2.679 2.444 

16 601088 2.346 1.755 41 600048 3.014 5.838 

17 601989 6.768 13.344 42 600104 5.365 9.462 

18 601668 1.834 6.182 43 600703 1.787 8.176 

19 600050 2.908 3.483 44 600031 1.835 3.921 

20 600030 3.950 2.007 45 600547 0.648 3.626 

21 601766 2.150 2.264 46 600196 1.170 2.188 

22 601006 5.532 9.073 47 600018 4.350 12.578 

23 601901 2.253 1.876 48 600832 0.172 1.624 

24 600383 0.977 7.662 49 600000 2.034 1.649 

25 600256 9.594 10.235 50 600089 5.531 7.690 

Average 2.918 5.030 

Overall average MAPE value 3.974 

 
 

In Table XXIX, we cannot use the Shanghai Stock Exchange 

Composite Index which is a stock market index of all stocks (A share and 

B share) that are traded on the Shanghai Stock Exchange for comparison 

as it has 1083 constituents which are beyond the scope of this research. 
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Instead, SSE 50 Index is selected from the 50 largest stocks in Shanghai 

Stock Exchange which have the most influential impact on the market. 

Like Table XXVII and Table XXVIII, 707 trading days close value 

records on 29 August, 2014 are inputted into the model. Only 707 records 

were found in the 50 stocks of SSE 50 after 29 August 2014 and it is the 

reason to select 707 trading days.  The performance of the model in SSE 

50 is even better than Hang Seng Index. The overall average is 3.974 

while Hang Seng Index is 4.101.  It is fair to conclude the result is similar. 

However, the MAPE value is a different story.  2.918 comparing to 2.455 

in Hang Seng Index indicates that the short term forecasting is better than 

SSE 50. Hence, the short-term forecast MAPE5 value ranking is Dow 

Jones, Hang Seng and SSE50. This is in line with Chapter 3 Section 

3.2.2.2 EMH analysis and it is consistent with different data sets even 

though it is not the same forecasting technique. As explained in the result 

of Table XXIX that Shanghai complex index is not an open market and 

there are 1021 stocks in the index, the co-ordination of Dow Jones and 

Hang Seng Index with Shanghai complex index is not obvious. As Dow 

Jones only has 30 and Hang Seng has 50, Shanghai Complex Index could 

be too complicated to present a clear picture of the market. On top of that, 

Shanghai Complex Index also contains A and B share stocks of which B 

share is not normally being traded in Shanghai Stock Exchange market. 

The result in Table XXIX clearly indicates that SSE50 stocks are closely 

related and can give a clear direction on the market movement. It would 

not be fair to compare Table XXVI with Table XXVII to Table XXIX as 
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it has 2563 trading days. Hence, the following Table XXX only takes 

707 trading days ended on 29 August 2014 for comparison. 

 

Table XXX Forecasting Result of The Nine Markets with Less Input 

Records 

Market MAPE5 MAPE22 
Dow Jones 0.618 2.147 

Hang Seng 1.633 2.056 

Nikkei 1.809 3.304 

Shanghai 3.247 5.594 

Straits 0.779 1.433 

Korea 0.461 0.935 

Philippine 1.502 4.999 

Bangkok 1.373 4.995 

Taiwan 1.002 1.139 

Overall average MAPE 
value 

2.168 

 

Here, the overall MAPE value has been improved from 2.984 to 

2.168. This is an interesting finding and also a typical example that 

dimension is not always a curse but could be a blessing. Why 2563x9 

historical records forecasting result is not as good as 707x9. A possible 

explanation in financial time series is that the impact of long historical 

records could have less impact on recent events as today’s markets are 

interwoven with current event less than a year, few years or 10 years ago. 

More experiments on this theory will be demonstrated in Chapter 5.  

Unlike natural phenomena such as sun black spot, the longer the historical 

records, the better the forecasting result because the fluctuation of the 

data is not as volatile as the financial market and the pattern will be 

clearer if more historical records are available for input.  
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4.4 Conclusion 

 

In this chapter, a revolutionary model has been introduced for 

financial time series forecasting.  We believe this is the first attempt to 

apply Conditional Restricted Boltzmann Machine in financial time series 

forecasting. The potential for this model based on big data technology is 

very broad. Big data not only induce impacts on large enterprises but to 

a certain extent most of our daily life. Our data storage is no longer 

measured by MB but by GB and will easily go to TB or more. Technology 

to deal with big data in a computer environment is still restricted in the 

hands of a few companies like Horton. However, the benefit to acquire 

valuable knowledge from the big data is almost unlimited. Due to the 

limit of this research, we only use a very small fraction of the financial 

market data from Bloomberg, Data stream and Shanghai Exchange high 

frequent databases. This is no comparison with the real big data which is 

usually more than 10 Peta bytes in financial data alone. There are lots of 

financial information in other formats such as chat forum in text format 

which is also very valuable for analysis on how the market sentiment will 

turn into. We just demonstrated one type of data format that can be 

handled by latest big data analysis algorithm. 

The advantage of CRBM is its ability to handle high dimension 

data although it is not a fast algorithm. High dimension data in this 

research means the number of parameter in the dataset. The structural 
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difference between CRBM has a significant advantage over other 

models in the literature. The reason to input high dimension data for 

CRMB is to study all the multiple variables characteristic and infer the 

next time step based on the information acquired. This novel approach 

has wide application in short-term forecasting particularly in a high 

frequent transaction environment. In the next section, this application will 

be further elaborated.   The model is a 2 step deep learning algorithm 

which cannot run on a normal desktop computer but customized 

computer with high computational power. In additional, the basic idea in 

CRBM is to seek out the co-relationship between different attributes but 

if there is a not a number (NaN) value in one of the attributes, the model 

will return NaN and will not be able to generate results. Hence, the dataset 

must filter out the NaN values so that the model can work properly. That 

is why in the about example only 707 records are selected because not all 

the stocks in SSE50 have more than 707 trading days records. In this 

section, we have demonstrated that the best forecasting result so far is 

from using more attributes and less historical records on the same 

segment of the market like Dow Jones, Hang Seng and Shanghai complex 

Index constituents stock.  It is not our intention to seek out the most 

accuracy forecasting tool in financial time series as it would be 

impossible to define and maintain as explained in Chapter 1 Section 1.1. 

Like MNIST image dataset analysis, there is always room for 

improvement with newly improved algorithms. Instead, we would like to 

contribute a new methodology in financial time series analysis. In 

Chapter 3, there are many classical forecasting technologies introduced 
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which are applicable in many fields but can only forecast one attribute 

at a time even they can input many attributes into the model like ELM.  

In our example, it is the future close index value of the corresponding 

stock index. Many models like ARIMA or GARCH only use one attribute 

to forecast its own future value. It seems this approach, despite its 

successful reputation, should consider another alternative.  
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Chapter 5   Performance and Evaluation 

on CRBM 

 

5.1 Application of CRBM in Big Data 

Environment 

 

From Chapter 4, we have demonstrated the advantage of using 

CRBM algorithm. So far, we have investigated the forecasting techniques 

of Neural Network, Support Vector Machine, Least Square Support 

Vector Machine, ARIMA, GARCH, Wavelet based Support Vector 

Machine, Wavelet based Least Square Support Vector Machine, Wavelet 

based GARCH, Extreme Learning Machine and Conditional Restricted 

Boltzmann Machine and their respectively forecasting results are 

illustrated from Table III to Table XXX. All these datasets are not huge 

as the biggest one is only 2568x9 in the above experiments. We have 

mentioned that CRBM is generally involved in big data and the following 

section attempts to employ big data environment and use the above model 

to analyse the data. In this Chapter, the Shanghai Stock Exchange High 

Frequency data from 2003 to 2013 which is provided by the library of 

Hong Kong Polytechnic University is analysed using CRBM model. The 

data is originally from GTA Information Technology Company and its 
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name is Level-1 China Security Market Trade & Quote Research 

Database 2012 version. Its recording interval is ranging from 1 minute, 5 

minutes, 10 minutes, 15 minutes, 30 minutes to 60 minutes. Please refer 

to (CSMAR, China Security Market Trade & Quote Research Database, 

2013) for the data structure. The high frequency financial data has 

provided a unique platform to study the microscopic structure of the 

market movement. The total database size is 1.8 T bytes. There are many 

types of files in financial time series such as csv, excel, text and mat. 

Even in this dataset, there are 2 types csv and txt formats and it must be 

converted to Matlab data format MAT in order to be utilized in Matlab 

program.  This is very computationally expensive. Unlike MNIST or 

NORB image dataset which is provided by a research institute in MAT 

format, it is very difficult to manipulate many financial time series data 

storage formats and converting them into MAT format is very tedious. 

This is quite a challenge for time series research. Not only is the data 

format difficult to handle, but the integrity of the data is also a problem. 

Datastream, Yahoo or Bloomberg are famous companies to keep track of 

the financial record, there are still many gaps in between due to some 

particular event to a company and this happens quite a lot in SSE50. 

CRBM was based on RBM as described in section 4.1. The 

application of big data in RBM has many examples in the literature 

review in the last few years. But many are in the areas of optimization 

and classification such as MNIST or NORB datasets. Big data has given 

birth to the demand of new algorithms to handle such huge volume of 

data. At the same time, it has also miraculously broken many of the 
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records in optimization and classification domain which has no 

breakthrough for many years.  We, in the history of computational 

complexity domain, have never attained such success. It has also revived 

many of the classical algorithms such as the neural network backward 

propagation to revisit its application in big data environment and has 

attained unprecedented breakthrough. As one of the inventors of this 

algorithm Geoffrey Hinton from Canadian Institute for Advanced 

Research puts it “we discover this algorithm too soon without a properly 

environment to fully utilize its potential 30 years ago”, now the destiny 

of this algorithm has finally revealed. The above is just a tip of iceberg as 

many breakthroughs in different domains will be coming. Classic 

theories and algorithms will be revisited to seek out its application in this 

new era. However, in forecasting domain, the application is still rare. One 

of the possible reasons is that traditional forecasting algorithm such as 

ARIMA or GARCH cannot be applied easily in a big data environment 

due to its inability to handle high dimension data which has been 

discussed in section 3.5.4. SVM has many applications in classification 

problem in big data but the SVR in forecasting domain is rare. The other 

possible reason is the availability of data in forecasting domain is not that 

many. Scientific data such as weather, natural phenomena, earthquake 

historical data and interstellar position data are very difficult to obtain 

and usually excluded from public access. Most of the time, the user must 

pay to access and analyse such data such Hadoop.  Financial time series 

data are the most popular one as they encourage the investor to study but 

still some of the data like the dataset employed in this research must be 
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purchased from the data warehouse. From Chapters 3 to 4, all the 

datasets are from the public source such as finance yahoo or the Hong 

Kong stock exchange. High frequent transaction financial data are not 

open to the public and not easy to get. 

  

5.2 SSE50 High Frequent Financial Data 

Analysis 

 

Year 2010 to 2013 SSE50 high frequent data are employed here 

to compare the result from previous Chapter 4.  Each year, there are 12 

months of records but not all stocks have records in all the months. Not 

all 50 stocks of SSE50 have the same volume of high frequent data at the 

time the data is captured as some stocks have a higher volume of 

transaction. One of the possible reasons is that they are suspended from 

trading under the security act if the daily fluctuation of the stock price is 

more than 10%.  The other reason is it is a new stock just added into the 

SEE50 family. For example, there are 7 stocks which only started to have 

full records from 2012. Hence, there are only 43 stocks in SSE50 in 2011 

and 50 stocks in SSE50. On top of that, each stock in the same year or 

month has different records than the other stock in the SSE50 constituent 

stocks.  Hence, the datasets of CSMAR are filtered so that the same 

number of records of each stock in each year is picked. 
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The last 4 years from 2010 to 2013 are selected for this 

experiment because all the data files are in csv format. The rest is in txt 

format. We would like to test all the dataset in the same format to ensure 

the integrity of the data is preserved. As a result, the data structure of all 

the datasets in these years are as follows. In year 2013, it is 312555x50 

records and 365396x43. This mean there are 50 stocks which have 

312555 records in each stock and there are 43 stocks which have 365396 

records in each stock. In year 2012, it is 266128x50 and 419558x43. In 

year 2011 is 455923x43 and year 2010 is 395517x43.  There are 3 

accumulated years of records, from 2012 to 2013 is 579183x50 and 

784954x43, from 2011 to 2013 is 1240877x43 and from 2010 to 2013 is 

1636394x43. These datasets are huge compared to the previous 2563x12. 

It is tedious and computational expensive algorithm to run the simulation. 

Without the latest computer hardware setup as depicted in Section 1.4, it 

is not possible to run in an ordinary laptop. The running time of each of 

the above setup is more than 48 hours. It is a big disadvantage compared 

to all the models in Chapter 3 and 4. However, the preliminary success in 

Chapter 4 has triggered a further investigation on the potential ability of 

this model. It took more than a month to produce the following result. 

Despite saying so, it does not mean that it is time-consuming and 

therefore not worthwhile nor significant. Certainly, it will be a waste of 

time and resource if the end does not justify the mean. Without the 

success of Chapter 4 using CRBM, it would be too ambitious to exploit 

the resource to seek out the benefit of CRBM in this dataset.  
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5.3 Empirical Results 

 

Table XXXI SSE50 Forecasting Result in Year 2013 

SSE50 Constituents MAPE500 SSE50 Constituents MAPE500 
1 600000 4.5428 26 600832 7.250 

2 600010 6.6320 27 600837 2.976 

3 600015 5.9076 28 600887 5.066 

4 600016 8.7228 29 600999 6.096 

5 600018 6.8908 30 601006 3.382 

6 600028 3.3252 31 601088 2.722 

7 600030 3.0228 32 601117 2.700 

8 600031 8.0970 33 600118 11.149 

9 600036 1.9601 34 601166 4.187 

10 600048 8.3414 35 601169 3.129 

11 600050 2.8730 36 601288 1.727 

12 600089 5.2806 37 601299 4.703 

13 600104 3.1120 38 601318 5.004 

14 600111 10.6813 39 601328 5.445 

15 600196 10.3960 40 601336 1.415 

16 600256 12.3538 41 601398 3.628 

17 600332 7.6767 42 601601 2.547 

18 600383 4.6453 43 601628 2.686 

19 600406 3.1035 44 601668 3.551 

20 600518 3.8809 45 601688 1.624 

21 600519 6.7135 46 601766 4.884 

22 600547 14.0277 47 601818 3.599 

23 600585 3.5379 48 601857 1.625 

24 600637 6.4399 49 601901 6.397 

25 600703 8.0345 50 601989 4.327 

Average 5.240 

 
As described before, one day of the transaction could have 

generated more than 2,000 to 3,000 records. Therefore, we need to 

forecast around 500 future values or roughly half a day transaction to 

compare. The forecasting window of 500 is based on the percentage of 
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the daily transaction volume. If it is 2,000 records, it is almost a quarter 

of a day. The SSE is open for trading from Monday to Friday. The 

morning session begins with centralized competitive pricing from 07:45 

to 07:55 and continues with consecutive bidding from 09:30 to 11:30. 

This is followed by the afternoon consecutive bidding session, which 

starts from 13:00 to 15:00. Hence, it is roughly 4 hours per day. The 

forecasting window of 500 is approximately 1-hour trading details of all 

the stocks involved. This is very useful for online trading particularly in 

option related derivative as they are heavily being traded in the stock 

market. The fluctuation in 1 hour may not be that intensive for many 

stocks but the momentum could be very strong for option price. In 

Chapter 4, the forecasting horizon for consideration is 5-day and 22-day 

which corresponds to roughly 1 week and 1 month trading periods. The 

result from Table XXXI is very encouraging as the MAPE500 value is 

5.24 compared to Table XXIX MAPE value of 3.974. Again the dataset 

matrix in the result of is Table XXIV 707x50 while the Table XXXI is 

312555x50. The running time is 34610 seconds for 312555x50 and the 

Table XXXI is an average of 5 runs which is around 2 days computational 

time. It would be meaningless to use only 707 records in this experiment 

as it is less than 1 transaction day. In order to reduce the computation 

time, 11775 records are selected to see if the accuracy can be improved 

with less historical records. From experimental point of view, there is no 

harm trying as it is necessary to reduce the running time so that it can be 

applicable in an ordinary computer set up or in a mobile computing 

platform. 
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Table XXXII SSE50 in Year 2013 with 11775 Input Records 

SSE50 Constituents MAPE500 SSE50 Constituents MAPE500 
1 600000 0.234 26 600832 0.944 

2 600010 0.287 27 600837 0.204 

3 600015 0.636 28 600887 0.290 

4 600016 0.469 29 600999 0.799 

5 600018 0.190 30 601006 0.635 

6 600028 0.477 31 601088 0.121 

7 600030 0.464 32 601117 0.338 

8 600031 0.163 33 600118 4.387 

9 600036 0.817 34 601166 0.291 

10 600048 0.766 35 601169 0.200 

11 600050 0.188 36 601288 0.260 

12 600089 0.316 37 601299 0.284 

13 600104 0.226 38 601318 0.248 

14 600111 0.172 39 601328 0.199 

15 600196 1.086 40 601336 0.149 

16 600256 0.173 41 601398 0.178 

17 600332 0.577 42 601601 0.226 

18 600383 2.401 43 601628 0.146 

19 600406 0.163 44 601668 0.210 

20 600518 0.363 45 601688 0.195 

21 600519 0.344 46 601766 0.539 

22 600547 0.495 47 601818 0.179 

23 600585 0.193 48 601857 0.166 

24 600637 0.286 49 601901 0.454 

25 600703 0.585 50 601989 0.227 

  0.479 

 

With less number of historical records, the accuracy has been 

improved from 1.823 to 0.479 as per the result from Table XXXII and 

once again demonstrating that the stocks within the same region or 

market are very closely related. The MAPE value of 0.479 based on 

forecasted of next 500 transactions cannot directly be compared with the 

best result from ARIMA 3.111 as per Table XXIII. First, the previous one 

MAPE500 is most likely on the same day with volatility -0.16 while the 
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latter MAPE22 is the next 2 transaction days forecast with volatility 

3.48.  In order to compare the result with another algorithm that is also 

suitable in the big data environment, ELM is used as a reference. The 

reason why only 11557 records are selected is because it is the maximum 

data matrix the ELM can handle. This was the testing result on an 

ordinary computer with 2G RAM i-3 Laptop with only 80G hard disk 

memory. The following table is the result of ELM.  

Table XXXIII SSE50 Forecasting Using ELM 

SSE50 Constituents MAPE500 SSE50 Constituents MAPE500 
1 600000 0.169 26 600832 1.146 
2 600010 0.000 27 600837 0.351 
3 600015 0.277 28 600887 0.144 
4 600016 0.609 29 600999 0.665 
5 600018 0.258 30 601006 0.598 
6 600028 0.373 31 601088 0.147 
7 600030 0.520 32 601117 0.254 
8 600031 0.110 33 600118 0.254 
9 600036 0.501 34 601166 0.136 
10 600048 0.331 35 601169 0.171 
11 600050 0.195 36 601288 0.218 
12 600089 0.213 37 601299 0.238 
13 600104 0.172 38 601318 0.414 
14 600111 0.071 39 601328 0.162 
15 600196 0.431 40 601336 0.091 
16 600256 0.152 41 601398 0.157 
17 600332 0.152 42 601601 0.137 
18 600383 0.318 43 601628 0.097 
19 600406 0.127 44 601668 0.258 
20 600518 0.190 45 601688 0.160 
21 600519 0.645 46 601766 0.512 
22 600547 0.634 47 601818 0.168 
23 600585 0.154 48 601857 0.086 
24 600637 0.330 49 601901 0.556 
25 600703 0.299 50 601989 0.098 

Average 0.289 
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With the same data matrix 11557x50, the result from 2 different 

forecasting models is very close. CRBM MAPE500 value is 0.386 while 

ELM is 0.289.  Without doubt, ELM is better in CRBM in this regard but 

the mechanism is quite different. Each stock is forecasted individually in 

ELM and the remaining 49 stocks are used as a reference benchmark. In 

other words, it cannot simultaneously forecast all the values at once but 

use one value at a time in the process. Thus the running time is quick as 

less computational power is required.  

 

Table XXXIV  Summary Result of Year 2010 to 2013 

Year Data structure MAPE500 Volatility Kurtosis Skewness 

2010  395,517x43  1.513 1.6E+241 2.40 0.60 

2011  455,923x43  6.808 5.1E+235 2.16 0.06 

2012  419,558x43  8.429 2.6E+188 2.37 0.09 

2013  365,396x43  6.111 1.1E+186 2.45 0.39 

2012to13  784,954x43  15.158 1.3E+188 2.41 0.24 

2011to13  1,240,877x43  18.106 1.7E+235 2.33 0.18 

2010to13  1,636,394x43  25.607 4.0E+240 2.35 0.28 

2010  11,775x43  0.372 0.22 3.78 0.70 

2011  11,775x43  0.832 0.21 2.68 1.22 

2012  11,775x43  0.119 0.35 2.26 -0.32 

2013  11,775x43  0.451 -0.22 2.60 -0.01 

2012  419,558x50  13.634  2.2E+188 2.39 0.11 

2013  313,055x50  5.24 9.3E+185 2.42 0.37 

2012to13  732,613x50   13.725 1.1E+188 2.41 0.24 

2012  11,775x50   13.634 0.35 2.24 -0.34 

2013  11,775x50  0.479 -0.16 2.49 0.00 

 

Table XXXIV gives the summary of all the results from 2010 to 

2013. The maximum data this model can handle is 1,636,394x43 

dimension of data for the accumulated records of all 43 stocks from years 
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2010 to 2013 and it took at least 1 week to run 5 times of the algorithm. 

It is necessary to point out in the CMAR data provided by the candidate, 

only 43 stocks were found with records from year 2010 to 2013. The 

MAPE500 result is disappointing as it is 19.26 which is way beyond our 

target value at 2. However, the encouraging news is all the 11775x43 and 

11775x43 datasets MAPE500 value from year 2010 to 2013 are under 2 

which satisfied our objective. 

 

5.4 Conclusion 

 

It is difficult to represent financial factors in our model. There are 

many financial factors such as interest rate, GDP, political environment, 

monetary policy, exchange rate, economic cycle, inflation rate, 

unemployment rate and many others. The interest rate has been relatively 

stable in recent years and in our experiment, there is almost no impact on 

the output. Comparatively, many other factors do not have any significant 

effect on short-term forecasting. Unlike stock data which reflects the 

performance and market sentiment in a particular market, all other factors 

are more general in nature and to pinpoint  the effects on a particular stock 

is very difficult. Stock market sometimes refers to irrational market 

which cannot be represented by simple economic factors but only the 

stock price itself. In fact, the recent algorithm trading only focuses on 

price and neglect other factors, particularly in daily or short-term 

trading.The characteristics of big data can be described by 5 V which are 
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Volume, Velocity, Variety, Veracity and Value. The CRMB model in 

this section major addresses the volume aspect of the big data. Volume 

refers to the vast amount of data generated every second in the Shanghai 

Stock Exchange. Many of the models in the above experiments only use 

daily close value parameter for forecasting. The total number of 

parameters in the datasets is limited. High dimensional data means many 

parameters are included in the dataset. They are not from the same stock 

but are traded in the same market. In SSE50 dataset used in this 

experiment, there are totally 50 parameters. They are the close values of 

50 stocks which vary in value every minute.  

This algorithm trains CRBM in which Gaussian visible units are 

connected to hidden, binary, stochastic feature detectors using 

symmetrically weighted connections. Learning is done with 1-step 

Contrastive Divergence. Directed connections are present, from the past 

configurations of the visible units to the current visible units, and the past 

configurations of the visible units to the current hidden units. It is a  2-

step deep learning procedure to return the weight factor of the visible 

units and hidden units . Hence, the depth of the CRBM model is 2. 

The number of epochs is set to 2000 which can ensure the network 

is well trained. There is no need to proceed sequentially through the 

training data sequences. The updates are only conditional on the past n 

time steps, not the entire sequence. Instead, a mini-batches with a size of 

roughly 8% of the corresponding dataset is set as the testing data. This is 

a unique training method and the number of hidden units is set to 150. 

The running time of the dataset with dimensional data 1,636,394x43 was 
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around 96 hours while the shortest 11,775x43 was around 1 hour using 

the computer as depicted in Chapter 1.4. 

We have identified the potential of recurrent deep learning and 

leads to the development of CRBM model. The recurrent neural network 

is equipped with additional recurrent connections that have important 

capabilities not found in feedforward networks. It is regarded as an 

expressive model to deal with non-linear sequential processing tasks. The 

previous ARMIA or GARCH model, on the other hand, assumes that the 

market is linear by nature even the algorithm itself is autoregressive. 

Given the autoregressive nature of financial time series data, the recurrent 

deep learning algorithm is a perfect match for it. 

The following figures demonstrated the learning ability of CRBM 

in the dataset SSE2012 11775x43 from 1 layer to 3 layers. The third layer 

is for demonstration purpose as the model only goes to 2 layers. It is 

obvious the deeper the learning mechanism, the more accurate the result 

and therefore it should be the future development of this research. 
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Figure 48 CRBM First Layer Learning Error 

 

 

 

 
Figure 49 CRBM Second Layer Learning Error 
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Figure 50 CRBM Third Layer Learning Error  
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Chapter 6   Research Conclusion and 

Future Development 

 

There are many negative comments on financial time series 

forecasting.  The most famous one is “no one is poor if it is workable”. 

To a certain extent, it does affect our motivation in this research as it is 

no longer a popular subject and it would be difficult to make contribution, 

let alone the breakthrough, because there have been so many literature 

reviews and theories throughout many decades. As the Chinese saying 

goes, “the boat will turn straight when it reaches the end of a bridge”, the 

big data era has inspired almost every domain in computational 

intelligence and it also inspired the candidate to carry on this thesis. The 

theoretical background on forecasting is based on statistical theory but 

many of them are not easy to make a breakthrough. Many of them have 

a very long history such as Bayesian theory which was proposed over 250 

years ago and there are not many related literature reviews on forecasting. 

Many papers focus on the financial part but not the forecasting part since 

modern financial theory may include so many topics ranging from 

economic, politics to international business. Forecasting theory, on the 

other hand, is relatively covering a narrow subject with more or less 

statistical and artificial intelligence elements to support the theoretical 

background. To combine these 2 topics to form the research topic 

financial time series forecasting is very difficult  because it is necessary 
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to balance between the financial and forecasting theory.  Many models 

presented in this study only investigated the forecasting ability but 

neglected the financial factors. This is because financial factors such as 

interest rate, political stability, currency rate and many others are not 

easily represented in a forecasting model. In fact, we have put these 

factors into the models but this does not affect the result nor have any 

influence on the models. The famous Black-Sholes model as described in 

Chapter 2 Section 2.6 is a good example that only the current stock price 

is relevant and not the others. We have not identified a model that can 

incorporate financial factors such as interest rate, currency rate, 

unemployment rate or inflation rate to affect the result of the forecasting 

model. Our approach, on the other hand, is to look at different markets 

with different financial characteristics such as EMH theory. Although the 

same model is applied, the result reveals the characteristics of the 

financial market. 

Despite the negative sentiment, the importance of financial time 

series forecasting is very obvious in the financial institution. It is well 

known that many big financial institutions have many supercomputers to 

monitor and trade in the financial market. They have outperformed many 

regular investors due to their unique in-house algorithms developed by 

their own specialists using latest forecasting methodologies. There are so 

many forecasting techniques on the website of financial service providers 

but it is still very primitive and it does not consider the use of latest 

artificial intelligence models. Many financial researchers have used a 

very simple mean reverting technique to do financial forecasting and it 
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serves the purpose most of the time.  In Chapter 3, we have 

demonstrated that a simple 2-day moving average model already ranked 

the third among other models. This may work for a particular stock with 

very low volatility. However, more researches on different methods are 

required. In our research, we have explored many techniques that 

combine traditional statistical theory and the latest artificial intelligence 

methodology to get better results.  

Our contribution in this paper is the discovery of CRBM 

algorithm to forecast all the constituent stocks in a market index at the 

same time with very good accuracy. When computational power was 

limited in early ages, dimension reduction is very important as it can 

dramatically reduce the workload and speed. However, the trade-off is 

the relevant information that could be lost during the reduction process. 

We have shown that CRBM algorithm can handle high dimensional data 

file which could track the relationship of all the dimensions in the dataset. 

Our application of the model in Index market has pointed out all the 

relevant stocks movement that are closely related and it cannot be proved 

easily without this model. The application of CRBM in the high frequent 

data in the above experiment has distinguished advantage in online 

trading as the model can provide more information about the stock 

movement within a very short period of time. This is similar to predict 

the next frame of human motion based on the previous frame but the 

motion is running at a very slow speed. In financial time series 

forecasting, this edge is the survival mode for a large volume 

programming transaction which only relies on the result of the data.  
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It is true that many financial data must be pre-processed due to 

different data format and storage chronological factors. On top of that, 

there are too many financial institutions which provide financial 

information but without a unified standard.  Thus, the future work of this 

CRBM algorithm must cater to all kinds of data format from the financial 

ocean of data. Text format is a big challenge for this model. As a 

conclusion, there is no holy grail in forecasting model but only the most 

useful one according to our research. We have found CRMB algorithm a 

novel approach in financial time series forecasting with the high potential 

application. Unlike many algorithms such as SVR, ARIMA, wavelet-

based or neural network, this algorithm does not need to tune parameters 

so that the model can obtain good forecasting result. Hence, it is very 

convenient and quick to use. 

The possible future development of this algorithm could be in 

mobile computing. This prevailing technology enables everyone to get 

access to mobile data anywhere in the world. Mobile banking is a service 

that almost every banker must provide for the clients. It is based on 

mobile data management technology which has to solve the data 

dissemination, caching, replication in mobile environments and most 

importantly the location dependent data services problem. The mobile 

service providers have become the largest big data collectors as the 

number of user of mobile devices are more than computers. Baidu has 

launched a heat map of where Chinese travellers are heading to, coming 

from, and which routes are most popular during the Lunar New Year, the 

country’s largest national holiday. 
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The heat map, which went online January 27 2014, was created 

by data Baidu gathered from smartphones through the use of the location-

based Baidu Maps mobile app, which has more than 200 million 

registered users and receives 3.5 million position requests every day. The 

heat map updates every four to eight hours, showing the most popular 

destinations, points of origin, and travel routes. The above CRBM 

algorithm can be modified and installed as one of the mobile apps to 

forecast the next destination for travellers so that the users can avoid the 

peak traffic. 
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Appendixes 
 

Charts Identification Guidelines 
 

Chart 2- pattern recognition. A horizontal, or nearly so, trend line that 
connects the minor lows. Must have at least two distinct minor lows 
before drawing a trend line. An up-sloping trend line bounds the 
expanding price series on top. Must have at least two minor highs to 
create trend line. 
 
Chart 3 – pattern recognition. A horizontal line of resistance joins the tops 
as a trend line. Must have at least two distinct touches (minor) highs 
before drawing a trend line. The expanding price series is bounded on the 
bottom by a down-sloping trend line. Must have at least two distinct 
minor lows to create a trend line. 
 
Chart 24 – pattern recognition. A three-trough formation with the centre 
trough below the other two. It looks like a head-and-shoulders bust 
flipped upside down. The three troughs and two minor rises should appear 
well defined. The left and right shoulders should be opposite one another 
about the head, somewhat equidistant in both time and price. There are 
wide variations, but the formation is noticeably symmetrical about the 
head. 
 
Chart 26 – pattern recognition. After an upward price trend, the formation 
appears as three bumps, the centre one is the tallest, resembling a bust.  
The two shoulders appear at about the same price level. Distance from 
the shoulders to the head is approximately the same. There can be wide 
variation in the formation’s appearance, but symmetry is usually a good 
clue to the veracity of the formation. 
 
Chart 47 – pattern recognition. Two price trend lines, the top one 
horizontal and the bottom one sloping up, form a triangle pattern. The 
two lines join at the triangle apex.  Prices rise up to and fall away from a 
horizontal resistance line at least twice (two minor highs). Prices need not 
touch the trend line but should come reasonably close (say, within $0.15). 
The line need not be completely horizontal but usually is. Prices decline 
to and rise away from an up-sloping trend line. Prices need not touch the 
trend line but should come close (within $0.15). At least two trend line 
touches (minor lows) are required. 
 
Chart 48 – pattern recognition. A triangular-shaped pattern bounded by 
two trend lines, the bottom one horizontal and the top one sloping down, 
that intersect at the triangle apex. A horizontal (or nearly so) base acts to 
support prices. Prices should touch the base at least twice (at least two 
minor lows that either touch or come close to the trend line). 
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Chart 49 – pattern recognition.  Compute the formation height by 
subtracting the lowest low from the highest high. For upward breakouts, 
add the difference to the highest high or for downward breakouts, subtract 
the difference. Alternatively, symmetrical triangles can be halfway points 
in a move, so project accordingly.  As consolidation, prices usually leave 
the triangle in the same direction as when they enter. 
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