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Abstract 

Advances in wireless networking technologies and powerful portable mobile 

devices have engendered the new paradigm of mobile computing, whereby mobile 

users carrying portable devices can access the information and services for various 

tasks regardless of their physical locations or movement behaviors. Mobile 

computing is a branch of distributed computing, but mobile networks have 

fundamentally different characteristics from traditional wired networks in aspects of 

communication, mobility and resource constraints. These characteristics make the 

development of distributed algorithms much more difficult. In this thesis, we 

investigate the challenging issues in designing algorithms for solving distributed 

computing problems in mobile wireless networks. We focus on two distributed 

coordination problems: the consensus problem and the mutual exclusion problem.  

The consensus problem arises in many distributed computing applications, such 

as atomic commitment, atomic broadcast, and file replication. So far, little work has 

been reported on achieving consensus in mobile environments. This thesis makes the 

following original contributions in this field.  

First, we develop a general technique named “Look-Ahead” to speed up the 

execution of consensus protocols by making use of future messages. Nearly all 

existing consensus protocols for asynchronous systems are executed in asynchronous 

rounds and each round is divided into several phases. Due to the asynchrony, some 

“future” message may be delivered to a receiver that has not yet entered the phase or 

round of the message. By making use of such future messages, hosts can decide to 

stop waiting for a message with a long delay or sent late, so as to speed up their 

executions.  

Second, we improve message efficiency and scalability of consensus protocols for 

mobile ad hoc networks (MANETs) using a hierarchy imposed on the mobile hosts. 

By clustering the mobile hosts into clusters, a two-layer hierarchy is established. 

Then, the messages from and to the hosts in the same cluster are merged/unmerged 
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by the clusterhead in order to reduce the message cost and improve the scalability. 

Based on different ways for clustering hosts, we propose two hierarchical protocols. 

The first protocol is based on a static set of clusterheads, in which the function of 

clustering hosts and the function of achieving consensus are interlaced. In the second 

hierarchical protocol, clusterheads are dynamically selected, and the functions of 

clustering hosts and of achieving consensus are separated using a modular approach. 

With such an approach, the design of hierarchical consensus protocols is simplified, 

similar as the separation of failure detection and achieving consensus in failure 

detector based protocols. We define a new oracle, named “eventual clusterer”, which 

is in charge of the construction and maintenance of the hierarchy in a MANET. 

Based on the eventual clusterer oracle, we design a hierarchical consensus protocol.  

The third contribution to the consensus problem is the design of an eventual 

leader protocol for “dynamic” infrastructured mobile networks, where the number of 

participating hosts can change arbitrarily as time passes and an unbounded number 

of hosts can join or leave the system at any time. The proposed eventual leader 

protocol can be used to design consensus protocols for dynamic infrastructured 

mobile networks. 

Another coordination problem addressed in this thesis is mutual exclusion 

(MUTEX), one of typical coordination problems, which is concerned with the 

coordination of accesses to critical section (CS) mutual exclusively. We propose the 

first permission-based MUTEX algorithm for MANETs. Unlike token-based 

algorithms, a permission-based algorithm needs neither to maintain any logical 

topology nor to propagate any message if no host requests the CS. However, a 

permission-based algorithm has to send messages for each request of hosts, which 

significantly increases the average message cost. Based on the “look ahead” 

technique, which enforces the MUTEX only among the hosts that are currently 

competing for CS, we propose a message efficient MUTEX algorithm for MANETs. 

The algorithm can also tolerate link and host failures by using timeout-based fault 

tolerance mechanisms.  
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Chapter 1. Introduction 

A distributed system consists of a collection of computing processes/hosts1 that 

are interconnected by a computer network. The hosts communicate and coordinate 

their actions by only passing messages [44]. The main motivation factor for 

constructing distributed systems is resource sharing. However, distributed systems 

potentially provides much more significant advantages, including communication, 

enhanced performance, improved reliability and availability, good extensibility, and 

modular expandability [29][147].  

In a distributed system, there is no global clock or shared memory. On the other 

hand, there are concurrent components, which can execute in parallel and fail 

independently. Therefore, we need to design algorithms and protocols for distributed 

operating systems or middleware to coordinate the concurrent components.  

 

 
Figure 1-1 Taxonomy of distributed coordination problems 

“Coordination” is a general concept which refers to coordinating the operations of 

distributed hosts or components to cooperatively perform some specific task. As 

shown in Figure 1-1, according to the problem addressed, coordination can be 

divided into two broad categories: synchronization and consistency.  

“Synchronization” refers to the control of the sequence of some critical operations 

performed by the hosts in a distributed system. Synchronization involves many 

                                                 
1 In this thesis, the terms “process” and “host” are used interchangeably. 
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different aspects, including leader election, termination detection, deadlock detection 

and mutual exclusion.   

A leader election algorithm is for choosing a unique process to play a particular 

role in performing a distributed task, e.g. scheduling jobs, regenerating the token 

[44]. There are two fundamental requirements for leader election. Safety requires that 

there should never be more than one leader, and liveness requires that eventually 

some host is elected.  

“Termination detection” refers to the necessity of determining whether a set of 

distributed processes have entered a “silent” status where all processes are idle and 

no further computation is possible, taking unpredictable message delays into account 

[147]. It has applications in diffusion computation and distributed garbage collection. 

It also serves a part in checking stable states (such as deadlock and token loss) in a 

distributed system. 

A deadlock occurs when processes holding some resources request to access other 

resources held by other processes in the same set. There are two types of deadlock: 

resource deadlock and communication deadlock. A deadlock requires the attention of 

a process outside those involved in the deadlock for its detection and resolution. A 

deadlock is resolved by aborting one or more processes involved in the deadlock and 

granting the released resources to other processes. 

In this thesis, our research on synchronization focuses on the mutual exclusion 

problem, which is introduced in Section 1.2. 

“Consistency” refers to achieving agreement by processes on some value or the 

results of some operation. Consistency problems include logical time, transaction, 

snapshot and consensus.  

To address the lack of physical global clock in a distributed system, people 

propose and implement the “logical clock” to obtain a “logical” global time [132]. In 

a system of logical clocks, every process has a logical clock that is advanced using a 

set of rules. Every event is assigned a timestamp, by which a process can infer the 

causality relation between events.  
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The algorithm to record the global state of a distributed system is called 

“snapshot” algorithm [32][88]. Snapshot algorithms are fundamental for many 

important distributed applications, such as deadlocks detection [25], termination 

detection [106] and checkpoint/recovery [2].  

The transaction is used to protect shared resources, especially data fields, against 

inconsistent access by different processes. Generally, a transaction is a sequence of 

code in execution, such that the code will transform a database or server from one 

consistent state to another consistent state [151]. In distributed transactions, a 

transaction operates on data that are distributed across more than one host.  

In this thesis, our research on consistency focuses on the consensus problem, 

which is introduced in Section 1.1. 

1.1. Consensus 

Consensus problem is one of the fundamental problems in distributed systems. It 

arises in many distributed computing applications, e.g. atomic commitment, atomic 

broadcast, file replication [70][74][75]. Generally, consensus involves getting a set 

of processes to agree on a value proposed by one or more of the processes [44]. The 

consensus problem can be defined in terms of two primitives: “propose” and 

“decide”. Initially, each process pi selects a value vi from a set of possible values and 

invokes the primitive “propose” with this value. A process ends its participation by 

executing “decide”, during which some value is decided upon. 

The consensus problem is usually studied in environments with host failures 

[43][60][61][97][152] (without failure, achieving consensus is a trivial task).  A 

process is said to be correct if it behaves according to an agreed specification during 

the run of a consensus protocol; otherwise, a failure occurs and the process is said to 

be faulty. A consensus protocol is said to be t-resilient if it operates correctly as long 

as no more than t processes fail before or during the execution. A correct consensus 

protocol should have the following three correctness properties:  

Termination: Every correct process eventually decides upon some value; 
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Agreement: All the values decided upon are the same; 

Validity: Any value decided upon should have been proposed some process. 

The termination property defines the liveness associated with the consensus 

protocol, while the agreement property and validity property define the safety. 

According to the agreement property above, faulty processes may decide differently 

from correct ones. This is undesirable sometimes because it does not prevent a faulty 

process to propagate a different decision before crashing. Therefore, a more restrict 

agreement property is defined as follows: 

Uniform-Agreement: No two processes (correct or faulty) decide differently. 

The design of consensus protocols is closely related to the underlying system 

model, such as the synchronous model and partially synchronous model.  Among 

different models, the asynchronous model with oracles has attracted most attention. 

Our study in this thesis is also based on this model. 

In an asynchronous system, there is no bound on the clock drift, process speed or 

message delivery delay, which make the problem difficult. Fischer et al. [61] have 

proved that the consensus problem is unsolvable in an asynchronous system even if 

only one process can crash. To circumvent this impossibility, three types of oracles 

have been proposed: the random number generator [22], the eventual leader oracle 

[31] and the unreliable failure detector (FD for short) oracle [31]. An oracle is an 

abstract tool to provide some kind of information about the state of the system. The 

detailed description of different system models in presented Chapter 3. 

1.2. Mutual Exclusion 

Mutual exclusion (MUTEX) is a typical problem in distributed computing, where 

a group of hosts intermittently require the use of a shared resource or a piece of code 

called Critical Section (CS), which can be accessed by only one host at a time.  A 

solution to the MUTEX problem must satisfy the following correctness properties: 

Mutual Exclusion (Safety): At most one host is allowed to enter the CS at any 

moment; 
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Deadlock Free (Liveness): If any host is waiting for the CS, then in a finite 

time some host enters the CS;  

Starvation Free (Fairness)2: If a host is waiting for the CS, then in a finite 

time the host enters the CS. 

Singhal presented the taxonomy of MUTEX algorithms in [145]. With reference 

to Singhal’s work, here we introduce a 3-dimension classification model, which is 

illustrated in Figure 1-2. 

 
Figure 1-2 A classification of MUTEX algorithms 

The first dimension is the approach used to achieve MUTEX. All the MTUEX 

algorithms can be categorized into two classes: token-based algorithms and 

permission-based algorithms.  

In token-based algorithms, a unique token3 is shared among all the hosts. A host is 

allowed to enter CS only if it possesses the token, thereby the MUTEX is achieved.  

According to the strategies used to schedule the token, token-based algorithms can 

be further divided into two types: token-circulating and token-asking.  

                                                 
2 Sometimes, the deadlock free property is merged into the starvation free property.  
3 The token is sometimes named “privilege” of entering the CS. 
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Token-circulating means that the token is automatically circulated along a logical 

topology, e.g. a ring. When a host wants to enter the CS, it just waits until the token 

is passed to it. On exiting the CS, it just passes the token to its successor in the ring.  

In token-asking algorithms, a host needs to send request for the token before it 

can obtain the token. The request can be sent by a broadcast or along some logical 

structure, e.g. a directed tree [124] or graph [162]. In the tree-based algorithms, the 

host holding the token is the root of the tree. A request for the token propagates 

serially along the tree to the root, and the token is passed in the contrary direction. 

The edges in the tree are redirected with respect to the passing of the token so that 

the token holder is always the root. In graph-based algorithms, a directed graph 

rather than a tree is used to organize the hosts. The token holder is the sink node in 

the graph. The token and requests for token are propagated in the similar way as in 

tree-based algorithms. The main difference between these two logical structures is 

that using the graph structure is more reliable, because it can tolerate link and host 

failures. Of course, additional messages are necessary to prevent cycles. 

Different from token-based algorithms, a permission-based MUTEX algorithm 

does not need a shared token. The requesting host must first get the permissions from 

other hosts by exchanging messages. Usually, there are two kinds of messages: the 

request message and the reply message. Sometimes, the release message is also used.  

There are two different kinds of permissions: the Ricart-Agrawala permission 

(“R-permission”) [133] and the Maekawa permission (“M-permission”) [98]. In the 

R-permission, a host grants the permission to a requesting host immediately if the 

host itself is not requesting the CS or its own request has a lower priority. Otherwise, 

it defers granting the permission until the request of itself has been met. The 

Semantics of the R-permission is “as far as I am concerned, it is OK for you to enter 

the CS” [145]. Therefore, a host may simultaneously grant permission to more than 

one host. A host can enter the CS after it gets permission from all hosts.  

On the contrary, in the M-permission, a host can grant the permission to at most 

one host at any time. The semantics of the M-permission is “as far as all the hosts are 
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concerned in my opinion, it is OK for you to enter the CS” [145]. In M-permission 

based MUTEX algorithms, a host needs to get permission from a quorum of hosts 

before it can enter the CS. This is why such algorithms are usually called “quorum-

based” algorithms [96]. 

Each MUTEX approach has its own advantages and disadvantages. The token-

based approach has many desirable features, e.g. hosts only need to keep information 

about their neighbors and few messages are needed to pass the privilege to enter the 

CS. However, token-based algorithms usually have two critical issues to address. 

The first is the fairness in scheduling the token pass. The second is how to precisely 

detect the token loss, caused by link or host failures, and regenerate the token.  

Compared with the token-based approach, permission-based algorithms have the 

following advantages: 1) there is no need to maintain the logical topology to pass the 

token, and 2) there is no need to propagate any message if no host requests to enter 

CS. However, the permission-based approach requires a large number of messages 

for hosts to get permissions.  

The second dimension of the classification model is the dynamism property of 

MUTEX algorithms. If the execution of a MUTEX algorithm depends on the current 

system state (or history), the algorithm is called a “dynamic” algorithm. Otherwise, 

it is a static algorithm. The actions of a dynamic MUTEX algorithm are influenced 

by how the system has evolved.  

The third dimension of the classification model is the network environment that a 

MUTEX algorithm is designed for. Besides traditional fixed networks, there are two 

types of mobile networks: infrastructured networks and mobile ad hoc networks. 

Mobile networks will be introduced in Chapter 2.  

1.3. Contributions of the Thesis 

The aim of this research is to study and solve coordination problems in mobile 

environments. Mobile computing is one branch of distributed computing. For 

traditional distributed systems, much work has been done and many good solutions 
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have been proposed to solve the coordination problems [97] [152]. However, mobile 

computing environments introduce many new challenges. Mobile users who carry 

portable devices can access the information services via various kinds of wireless 

networks. Mobile networks have fundamentally different properties from traditional 

wired networks in aspects of communication, mobility and resource constraints. 

These characteristics make the development of distributed algorithms much more 

difficult. Traditional distributed algorithms must be adapted or even re-designed to 

meet the requirements of mobile environments. 

 The main purposes of our research are: 1) investigating the characteristics of 

distributed computing in the mobile environments, 2) identifying the key issues in 

solving distributed coordination problems in mobile environments, and 3) designing 

new algorithms for distributed coordination for mobile environments. 

In this thesis, we focus on the design of algorithms for two coordination problems: 

consensus and MUTEX. 

1.3.1. Contributions in Consensus 

Up to now, little work has been done for solving the consensus problem in context 

of mobile networks. In our research, we consider three issues in solving the 

consensus problem: time efficiency, message efficiency and dynamism of the system.  

1.3.1.1. Speeding up the Execution of Consensus Protocols 

We propose a fast consensus protocol based on the failure detector ◊S, which 

outperforms existing ◊S based protocols in terms of time efficiency. ◊S based 

consensus protocols suffer from the slowdown caused by host failures and mistakes 

made by the failure detector. Our protocol copes with such slowdown using two 

novel techniques.  

The first technique is a simple and efficient approach to guarantee the Round-

Zero-Degradation property (an extension of the Zero-Degradation property) in order 

to avoid the slowdown caused by a failed coordinator. By dynamically selecting the 

coordinator of a round, a crashed coordinator can be replaced so as to avoid the 
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failure of decision making in the round due to a failed coordinator. This technique is 

effective when the failure detector performs well.  

The second technique, named “Look-Ahead”, helps speed up the execution, by 

making use of the messages delivered before their receivers enter the corresponding 

phases or rounds of the messages. This technique works well regardless the 

performance of the underlying failure detector. Look-Ahead is in fact a general 

technique that can be applied to consensus protocols based on any oracle, e.g. ◊S.  

1.3.1.2. Achieving Message Efficiency in Consensus Protocols 

Message efficiency is essential for designing effective and efficient algorithms for 

mobile environments. Fewer messages consume fewer resources, e.g. bandwidth and 

energy. To achieve message efficiency, we propose efficient consensus protocols for 

mobile ad hoc networks. The basic idea is to impose a two-layer hierarchy upon the 

hosts by clustering the mobile hosts into clusters. Then the messages from and to the 

hosts in the same cluster are merged/unmerged by the clusterhead so as to reduce the 

message cost and improve the scalability.  

However, adding such a hierarchy is not trivial. First, the messages are not simply 

forwarded by the clusterhead, and a cluster member needs to synchronize with its 

clusterhead in the message exchange. Due to mobility or clusterhead failure, a 

mobile host may need to switch between clusterheads that are executing different 

steps. Therefore, the switching procedure should be delicately handled in order to 

maintain the synchronization between a mobile host and its clusterhead. Second, the 

change of the hierarchy may cause message losses, even if the communication 

channel is reliable. To cope with such message losses, some redeeming messages 

should be sent. What and when redeeming messages should be sent depends on the 

execution state of the mobile host and clusterhead.  

Based on different approaches for clustering hosts, we propose two hierarchical 

protocols. The first protocol is based on a static set of clusterheads. The function of 

clustering hosts and the function of achieving consensus are interlaced. On the 

contrary, in the second protocol, clusterheads are dynamically selected. The function 
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of clustering hosts and the function of achieving consensus are separated using a 

modular design method. The clustering function, named eventual clusterer (denoted 

by ∆), is proposed to construct and maintain a cluster-based hierarchy over the 

mobile hosts. Since ∆ provides the fault tolerant clustering function transparently, it 

can be used as an oracle for the design of reliable hierarchical consensus protocols. 

We then design a hierarchical consensus protocol using the eventual clusterer oracle. 

We also propose an implementation of ∆, based on the unreliable failure detector ◊S. 

1.3.1.3. Handling Dynamic Mobile Systems 

The above two contributions focus on respectively the message efficiency and 

time efficiency of consensus protocols, so as to cope with the resource constraints of 

mobile environments. Our third contribution to consensus is on designing protocols 

for dynamic mobile systems, where the number of participating hosts can change 

arbitrarily as time passes and an unbounded number of hosts can join or leave the 

system at any time. 

We study how to implement the eventual leader oracle Ω in infrastructured 

mobile networks. We adopt a time free approach proposed for implementing Ω in 

fixed networks [109][111]. Each host broadcasts queries and collect responses from 

others hosts in rounds. With some assumption on the system behaviors, Ω can be 

implemented. We extend such an approach to infrastructured mobile networks.  

The set of mobile support stations is a static system while the MHs constitute a 

dynamic system. By exchanging queries and responses among the mobile support 

stations, a correct mobile host is eventually elected as the leader. However, due to be 

mobility of the hosts, the algorithm in [109][111] does not work in a mobile network. 

We make some additional assumptions and modify the message exchange procedure 

to implement an eventual leader oracle for mobile systems.  

1.3.2. Contributions in Mutual Exclusion 

Another coordination problem studied is mutual exclusion. We propose the first 

permission-based MUTEX algorithm for mobile ad hoc networks. Compared with 
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the token-based approach, permission-based algorithms have two main advantages. 

First, no logical structure is maintained so that no message cost or memory cost is 

caused by such structures. Second, no message need to be propagated if no host 

requests the CS. These advantages make the permission-based approach well 

suitable for MANETs, where the resources are scarce.  

One problem of the permission-based approach is the large number of messages 

to be exchanged to get permissions. To reduce the message cost, we propose a 

MUTEX algorithm using the "look ahead" technique [146], which enforces mutual 

exclusion only among the hosts currently competing for the critical section. The 

constraint of FIFO (First In First Out) channel in the original "look ahead" technique 

is relaxed. We also propose mechanisms to handle dozes and disconnections. Using 

timeout, a fault tolerance mechanism is introduced to tolerate link and host failures. 

1.3.3.  Summary 

In summary, the main contributions of this thesis are as follows: 

1. The investigation of new challenges in solving distributed coordination 

problems in mobile environments; 

2. The design and application of a general technique named “Look-Ahead” to 

speed up the execution of consensus protocols; 

3. The design of two message efficient consensus protocols for mobile ad hoc 

networks, which reduce the message cost by using clustering mechanisms; 

4. The design of a new oracle, named “eventual clusterer” ∆, which can group 

mobile hosts into clusters to help design consensus protocols achieving message 

efficiency; 

5. The design of an eventual leader protocol for dynamic infrastructured mobile 

networks, which can be used for designing consensus protocols in dynamic 

infrastructured mobile networks; 

6. The design of the first permission-based MUTEX algorithm for mobile ad hoc 

networks, which can reduce message cost and tolerate link and host failures. 
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1.4. Outline of the Thesis 

The rest of the thesis is organized as follows. We discuss the new challenges in 

mobile computing environments in Chapter 2. Mobile networks are first introduced 

and then their characteristics are summarized. Based on these characteristics, we 

investigate the new challenges in the design of distributed coordination algorithms in 

mobile environments. 

Chapter 3 reviews existing work related to the two distributed coordination 

problems investigated in this thesis – consensus and MUTEX. For the consensus 

problem, different system models are also introduced. 

Chapter 4 deals with the time efficiency in achieving consensus. We first 

introduce the Look-Ahead technique and then describe our fast consensus protocol 

with the Look-Ahead technique. The proposed protocol also has the Round-Zero-

Degradation property. 

Chapter 5 handles the message efficiency of consensus protocols. First, a 

hierarchical consensus protocol for mobile ad hoc networks is presented, where all 

MHs are grouped into clusters with predefined clusterheads. Using a dynamically 

clustering approach, we define the new oracle ∆ for consensus, and then propose 

another hierarchical consensus protocol based on ∆. 

Chapter 6 studies the consensus problem in dynamic mobile systems with 

dynamic join and leave hosts and no pre-defined number of hosts. We present the 

design of an eventual leader protocol for dynamic infrastructured mobile networks. 

Chapter 7 describes a permission-based MUTEX algorithm, which is the first of 

the same kind for mobile ad hoc networks.  

Finally, Chapter 8 concludes the thesis with discussion on directions of our future 

work. 
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Chapter 2. Mobile Computing Environment 

Mobile computing is a new computing paradigm of distributed systems. Same as 

traditional wired distributed systems, the distributed coordination problems are still 

at the core of mobile computing. On the one hand, the applications, e.g. atomic 

broadcast and file replication, where coordination problems arise from, are still 

desirable in mobile systems. On the other hand, many new applications and 

scenarios, e.g. wireless channel allocation [86], emerge in mobile computing. 

Unfortunately, compared with traditional wired systems, the constitution of mobile 

systems is more flexible and mobile hosts are more loosely coupled, which make the 

design of distributed coordination algorithms more challenging.  

Mobile computing is distinguished from traditional distributed computing in many 

ways. The most important ones are the underlying networking infrastructure, the 

characteristics of the systems, and applications built on the network. In this chapter 

we first introduce various kinds of mobile networks and their characteristics, and 

then discuss the new challenges brought to the design of distributed algorithms. 

2.1. Mobile Network 

“Mobile network” is a network that consists of mobile hosts. Mobile networks 

often use wireless communication, so in this thesis we use “wireless network” and 

“mobile network” interchangeably. At present, there are many different mobile 

networks proposed, such as Personal Communication Systems (PCS), Wireless LAN, 

Wireless MAN, Paging Network [85][125][157]. The architectures of all the mobile 

networks can be classed into two classes: infrastructured networks and ad hoc 

networks [8][114][115][157].  

2.1.1. Infrastructured Network 

An infrastructured network consists of two distinct sets of entities: a large number 

of mobile hosts (MHs for short) and relatively fewer but more powerful mobile 

support stations (MSSs for short). Figure 2-1 gives an example network architecture 
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for infrastructured mobile networks. MSSs are interconnected using a wired network, 

while MHs are connected to MSSs using wireless communications.  

Each MSS is in charge of a cell. A cell is a logical or geographical coverage area 

under a MSS. Each MH that has identified itself with a particular MSS is considered 

to be local to the MSS. A MH can directly communicate with a MSS (and vice versa) 

only if the MH is physically located within the cell serviced by the MSS. MHs are 

able to connect to the static segment of the network from different locations at 

different times. Consequently, the overall network topology changes dynamically as 

MHs move from one cell to another. However, at any given instant of time, a MH 

can belong to only one cell and its current cell defines the MH’s “location”. 

 

 

Figure 2-1 The infrastructured network Figure 2-2 The mobile ad hoc network 

2.1.2. Ad Hoc Network 

As shown in Figure 2-2, a mobile ad hoc network (MANET) consists of a 

collection of autonomous MHs communicating with each other through wireless 

channels. Whether two hosts are directly connected is determined by the signal 

coverage range and the distance between the hosts. Each host is a router and the 

communication between two hosts can be multiple-hop. Both link and host failures 

may frequently occur. The topology of a MANET can dynamically change due to the 

mobility of MHs and link or host failures. 

Compared with infrastructured networks, MANET provides greater flexibility at 

the expense of a larger overhead that stems from the use of broadcasting which is 

Cell 

Wired Network 

Cell

Cell 

MSS 

MSS MSS 

MSS 

MH MH 
MH 

MHMH MH 
MH 

MH 

MH 
MHMH 

Cell

MH 

MH

MH

MH

MH

MH 

MH 

MH



Chapter 2. Mobile Computing Environment 

 15

typically employed to locate MHs. Such overhead also limits the scalability of 

MANETs. With the help of MSSs, infrastructured networks can reduce the overhead 

involved in location management and updating. Moreover, MSSs have fewer 

constraints in resource and processing power, so computation and coordination 

should be executed on MSSs as much as possible in order to reduce the load of MHs.  

2.2. Characteristics of Mobile Network 
Mobile networks have fundamentally different properties from wired networks in 

aspects of communication, mobility and resource constraint [63][84][138][148][164].  

2.2.1. Network Communication 

Since MHs access information through wireless links, the effect of wireless 

communication is probably the most prominent in a mobile computing environment. 

Wireless communication faces more obstacles than wired communications, because 

the surrounding environment interacts with the wireless signal, which may block the 

signal path and introduce noise and echoes. Wireless connections can be lost or the 

bandwidth is degraded due to the movement of users or the dynamical variation of 

the number of users. The limitation of power is another factor that effects the 

wireless communications. As a result, the wireless communication is characterized 

by lower bandwidth, higher error rate, and more frequent spurious disconnection. 

The challenges of wireless communication are follows: 

– Disconnection and Doze  

In mobile networks, there are two types of disconnections: “accidental 

disconnections” and “voluntary disconnections”, which have different effects on the 

design of mobile systems. An accidental disconnection refers to the disconnection 

caused by network failures. Because wireless communication is so susceptible to 

network failure, disconnections occur more frequently and unpredictably. On the 

other hand, a voluntary disconnection is predictable. To reduce the consumption of 

power and other resources, a MH may voluntarily disconnect from the network. 

Because such a disconnection does not result from failures, the MH can inform the 
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system before the disconnection occurs and execute a disconnection protocol if 

necessary. For example, the detached participant can prefetch necessary data to work 

in a stand-alone mode, and can offload the data or state information, pertaining to an 

ongoing algorithm execution, to MSSs or other MHs so that the distributed 

algorithm can continue. 

The doze mode is also a voluntary operation, by which a MH can reduce power 

consumption. In doze mode, the clock speed is reduced and no user computation is 

performed. The host simply waits passively to receive messages sent to it. When 

such a message arrives, the host is waked up and resumes its regular mode.  

Therefore, a MH in doze mode is reachable form other hosts, which is different from 

a disconnected host. 

– Low Bandwidth and High Bandwidth Variability 

Bandwidth is the most critical aspect of wireless communications. Compared with 

wired networks, the bandwidth of a wireless network is far lower because of the 

physical limitation of transmission devices. Another related problem is bandwidth 

variation. The bandwidth can be affected by the landform and noise. Some MHs, e.g. 

laptops, may use both a wired link and a wireless link, so the bandwidth can vary 

from one to four orders of magnitude. Fluctuant traffic load can also have effect on 

the bandwidth to a certain extent. 

– Asynchronous Communication 

There are two basic types of communication paradigms in a distributed system: 

“synchronous communication” and “asynchronous communication”. Synchronous 

communication is easy to handle. However, because of frequent disconnections and 

low bandwidth with high variability, synchronous communications between mobile 

hosts become unpractical. The two peers of communication may not connect at the 

same time. Therefore, asynchronous communication is often assumed for mobile 

environments. 

– Heterogeneous Network 
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In contrast to most stationary computers, which stay connected to a single network, 

mobile hosts encounter more heterogeneous network connections with different 

transmission speeds, protocols or even different networks. For example, when a MH 

switches from a cellular coverage in a city to satellite coverage in the country, it 

encounters two different networks.  

– Security Risks  

Creating a connection to a wireless network is much easier than that to a wired 

network, so the security of wireless communication can be much more easily 

compromised. Secure communication over insecure channels is accomplished by 

encryption, which can be done in software or, more quickly, by specialized hardware. 

2.2.2. Mobility 

Mobility is about moving around. In mobile computing, there are generally two 

forms of mobility: device or terminal mobility and user mobility [40][153]. Some 

people extend the concept of mobility to resource constraint [20].  

– Terminal Mobility 

Terminal mobility refers to both the ability of a terminal to access resources and 

services while in motion, and the capacity of connecting at different points of 

attachment in new hosting networks.  Terminal mobility may be the most directly 

meaning of “mobile environment”. 

Terminal mobility has two aspects effect: physical space and connection space. 

Movement in physical space means the change of physical location, which affects 

the quality of connection, e.g. poor connectivity or even disconnection. The network 

must reconnect the user with respect to new location to adapt the movement. Data 

and file operations should also be adapted to support disconnection file operations.  

Connection space refers to the links that connect between various computer 

platforms. The movement in this space corresponds to selecting route between links, 

selecting a specific type platform and other configuration information, such as local 

name server, time zone.  
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– User Mobility  

User mobility refers to the ability of a user to access the mobile system from any 

terminal at any place with a uniform vision of her/his working environment.   To 

handle user mobility, mobile computing systems must provide mechanism to 

authenticate user accesses and organize the working environment according to 

profile information and currently required services. Compared with the research of 

terminal mobility, the research of user mobility is lagging behind, but is attracting 

more and more attention.  

2.2.3. Resource Constraint 

Due to the limited size, MHs, e.g. portable computers, PDAs or SmartPhones, 

consequently have limited resources.  

– Low Power 

Generally, batteries are the major power source of a MH. Due to the constraint of 

size, the life of batteries is usually relative short. Therefore saving power is a very 

important consideration for both hardware and software designers. Though reducing 

the voltage and clock frequency of chips, power can be saved. Applications can 

conserve power by reducing their appetite for computation, communication and 

memory. 

– Limited Processing Power  

The CPU or process of a MH is much slower than that of a desktop computer. 

Therefore, software designers must reduce the computation and other operations as 

much as possible to lower the load of CPU. 

– Small Storage Capacity 

Coping with limited storage is not a new problem. Solutions include compressing 

files automatically, accessing remote storage over the network, sharing code libraries, 

and compressing virtual memory pages. Reducing the size of code, for example 

using interpretive script languages instead of executing compiled object codes, is one 

efficient method to solve this problem.  

– Risk to Data 
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Making computers portable increase the risk of physical damage, unauthorized 

access, loss, and theft. Breaches of privacy or total loss of data become more likely. 

Minimizing essential data kept on board, encrypting data stored on disks and 

memory cards, and making backup copies can reduce the risk of data.   

– Small User Interface 

The size constraint on a portable computer results in a small interface, including 

display and input. Adapted window environments and analog input technologies, e.g. 

handwriting recognition, voice recognition, would help solve this problem. 

2.3. New Challenges for Distributed Coordination 

The challenges of mobile computing are caused by the constraints stemmed from 

communication, mobility and portability as described in the previous section. These 

constraints necessarily make the distributed software systems for mobile computing 

different from those for traditional ones. In this section, we discuss the main 

challenges in designing distributed algorithms.  

2.3.1. Reducing Message Cost 

To cope with low bandwidth, in both hardware and software scope, many 

treasures can be taken to improve the bandwidth per user, such as overlapping cells 

on different wavelengths, reducing transmission ranges, and compressing/buffering 

the data to be exchanged. However, for a designer of distributed algorithms, the only 

way can cope with the bandwidth constraint is to reduce messages to exchange.  

Besides saving bandwidth, another great benefit of reducing messages is saving 

power. Every operation needs consume power, so fewer messages means less power 

consumption. A useful characteristic of mobile communication is that the costs of 

transmission and reception are asymmetric. The former requires about 10 times as 

much power as that of reception. Therefore, power can be saved by substituting the 

transmission operation for a reception one. 

To sum up, reducing messages is much more imminence in mobile environments 

than that in traditional distributed environments.  
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2.3.2. Handling Topology Change 

Many distributed algorithms rely on logical topologies or structures, such as a ring, 

tree or graph [16]. Such a topology can provide a certain degree of “order” and 

predictability to the communication among the hosts. Messages exchanged within 

such topologies follow only selected paths. Now, in a mobile network, the topology 

is no longer stable due to the frequent movements or disconnections of MHs. 

Consequently, the corresponding topology information kept by the hosts must be 

updated to reflect the movements or disconnections, which results in additional 

message traffic and even search overhead (to locate a MH that moved away).  

Therefore, in mobile environments, the cost and benefit of using a topology 

among MHs must be carefully balanced. In infrastructured systems, a good approach 

is to impose a logical topology upon MSSs [16][128], which can obtain similar 

benefit as imposing a logical topology upon MHs, but the cost of maintaining a 

logical topology is shifted to MSSs. In MANETs, this problem is more difficult to 

deal with. Constructing the topology dynamically/on-the-fly is a good solution [17]. 

For MANETs, a more severe effect of the topology change is partitioning. 

Because of mobility and failures, a MANET may be partitioned into two or more 

disconnected sub-networks. Partitions may cause a distributed algorithm blocked or 

even failed. How to handle partitions should be considered seriously. 

2.3.3. Reducing Computation 

Compare with other constraints, power constraint has much more universal effect 

on mobile computing. Because any computation and will consume power, reducing 

computation load of MHs becomes a new consideration in mobile environments. 

There are two ways to do this: reducing the absolute computation task or shifting the 

load to the possibly existing MSSs.  

2.3.4. Handling Disconnection 

As described before, there are two types of disconnections. Accidental 

disconnections are unpredictable, so an algorithm must have fault tolerance 
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mechanism to reduce the effect of such disconnections. The more autonomous a MH 

is, the better it can tolerate such a disconnection. If possible, the computation and 

communication should be done within the static segment of the network to the extent 

possible [16]. 

Compared with accidental disconnections, voluntary disconnections can be 

handled more easily because a MH can predict such a disconnection. When a MH 

wants to disconnect from the network, it can offload the data and other information 

needed by other hosts to the MSS (in an infrastructured network) or some other MHs 

(in a MANET) and executes a disconnection protocol before the disconnection takes 

place [146].  

Another effect of disconnection is the change of the topology of the mobile system 

[16][128]. This will be discussed in Section 2.3.3.  

2.3.5. Handling Dynamism of the System 

Here, “dynamism” refers to the change of the constitution of a system. The 

classical system model for distributed systems is characterized by the following 

attributes. The system is made up of n hosts (processes); n is fixed and known by 

each process; no two processes have the same identity; the whole set of identities is 

known by each process.  

It is worth notice that (since the very early of the eighties) this static model has 

been questioned by theoreticians interested in the computability power of distributed 

systems. Their efforts were focused on the following fundamental question [13]: 

“How much does each process in a network need to know about its own identity, the 

identities of other processes, and the underlying connection network, in order to be 

able to carry out useful functions?” This research direction has given rise to notions 

such as “local knowledge” vs. “global knowledge” [33], anonymous networks, sense 

of direction [62], etc. 

The advent of mobile systems consequently questioned the relevance of the static 

distributed computing model from a practical point of view. Dynamic systems allow 
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hosts (or processes) to dynamically enter and leave the system, which is more 

feasible and reasonable for mobile networks. It follows that no host can know how 

many hosts currently constitute the system. Roughly speaking, there is no global safe 

information on the whole system structure that can be used by the hosts.  
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Chapter 3. Background and Literature 

Review 

In the past decade, a lot of attention has been attracted to solving distributed 

coordination problems in mobile wireless environments. In this chapter, we review 

existing work according to the problems addressed. Since our research is focused on 

the consensus problem and MUTEX problem, we first briefly describe works for 

other problems and then provide a detailed survey of existing consensus protocols 

and MUTEX algorithms. 

For the leader election problem, several algorithms have been proposed in recent 

years. Park [121] proposed an algorithm for infrastructure mobile networks based on 

Garcia Molina’s bully algorithm [68]. Like in other algorithms for infrastructured 

networks, MSSs act as proxies of MHs for reducing the work load of MHs. Other 

existing leader election algorithms are all designed for MANETs. Based on the well-

known diffusion computation based termination detection algorithm by Dijkstra and 

Scholten [48], Vasudevan et al. [158] designed an election algorithm. Malpani et al. 

[102] developed an election algorithm based on the TORA routing protocol [122]. 

Hatzis et al. [78] proposed two leader election algorithms based on the geographical 

positions of the MHs. Nakano et al. [117] proposed two randomized algorithms for 

single-hop and two-hop single channel MANETs respectively. In these two 

algorithms, the leader is elected by the collision state of the channel in which the 

MHs emit signals randomly and synchronously.  

Termination detection algorithms have been proposed for infrastructured mobile 

networks. Malpani et al. [102] developed an algorithm based on Dijkstra and 

Scholten’s algorithm [48]. In [102], the MSS can help the MHs merge more than one 

message together so as to reduce the communication cost at MHs. Tseng and Tan 

[155] proposed another algorithm using a hybrid mechanism: the weight-throwing 

scheme [81][104][154] on the wired network side, and the diffusing computation 
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based scheme [48] within each wireless cell. Such a hybrid protocol can better pave 

the gaps of computation and communication capability between static and mobile 

hosts, so it is scalable to large distributed systems. 

For deadlock detection and logical time, to our knowledge, there is no solution 

proposed for mobile environments up to now. 

For the snapshot problem, we can find two algorithms. Based on the Chandy-

Lamport algorithm [32], Sato et al. [137] designed a snapshot algorithm for 

infrastructured networks. The main mechanism in [137] is the same as that in [32]. 

The algorithm handles the change of connections based on the information 

piggybacked on handoff messages, called “IPH” (Information Piggybacked with a 

Handoff message). Agbaria and Sanders [3] proposed another algorithm based on the 

Chandy-Lamport algorithm. Considering the FIFO channel is not feasible for 

channels between MHs, in [3], the authors made use of MSSs to help ensure the 

message order between a marker message and application messages. 

For the transaction problem, much work has been done [95][99][141][142][163], 

including new models for mobile environments and new protocols.  

3.1. Consensus Protocols 

Since the design of consensus protocols are closely related to the underlying 

system model, we first describe the system models for consensus and then introduce 

existing consensus protocols.  

Figure 3-1 shows a classification of distributed system models for solving the 

consensus problem. Three aspects of a system are involved in developing a 

consensus protocol: failure model, synchronicity model, and communication channel 

model. 

3.1.1.  Failure Model 

There are several widely used models for host failures. They can be classified in 

terms of their “severity” [77][151]. One failure is less severe than another if the 

faulty behavior allowed by the former is a strict subset of that allowed by the latter. 
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According to such a classification, the least severe one is fail-silent or crash failure 

model where a process fails by crashing when it stops computing sending any 

message. 

A more severe type of failure is the omission failure in which the process fails to 

response. Under this model, there are further two different cases: receive-omission 

failure and send-omission failure. In the receive-omission failure, a process may 

have not gotten the message sent to it. Such a case may happen, e.g. when the 

connection between two processes has been correctly established but no one 

listening to the incoming message. Likewise, a send-omission failure happens when 

the process has done its work but somehow fails in sending a response. Such a 

failure may happen, e.g. a send buffer overflows. 

 
Figure 3-1 The system model for consensus 

Timing failures occur when the message arrives too late or too early. A response 

failure occurs when the response message is incorrect. Two kinds of response 

failures may happen. In the case of a value failure, a wrong reply is provided to a 
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request. For example, a search engine returns results with no relation to the key 

words. The other one is known as the state transition failure. For example, if a server 

host receives a message that it cannot recognize and no measure has been defined to 

handle such a message, a state transition failure happens. 

The most severe failure is the arbitrary failure (also called Byzantine failure), 

typical of a process exhibiting an absolutely arbitrary behavior (e.g. sending wrong 

and conflicting messages to different processes, or arbitrarily changing its state). 

3.1.2. Synchronicity Model 

The synchronicity dimension defines how closely components in the systems can 

be synchronized. The two extremes of this property are synchrony and asynchrony 

[61][70]. In a synchronous model, three assumptions should hold:  

1) There is a known upper bound on the local clock drift;  

2) There is a known upper bound on the processing speed;  

3) There is a known upper bound on the message delivery delay.  

Based on these properties, failure detection is easy to perform by using simple 

mechanisms like timeouts, and then the consensus problem becomes easy to solve. 

However in a real distributed system, it is difficult to guarantee the above bounds. 

Therefore, the asynchronous model attracts more attention because of its 

practicability. Different asynchronous models related to consensus have been 

proposed. 

3.1.2.1. Asynchronous Model with Oracles 

In an asynchronous system, there is no bound on the clock drift, process speed, or 

message delivery delay, which makes the consensus problem difficult to solve. 

Fischer et al. [61] proved that the consensus problem is unsolvable in an 

asynchronous system even if only one process can crash.  

To circumvent this impossibility, three types of oracles have been proposed: the 

random number generator [22], the eventual leader oracle [31] and the unreliable 

failure detector (FD for short) oracle [31]. An oracle is an abstract tool that provides 

some kind of information about the state of the system. 
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Unreliable FDs are introduced by Chandra and Toueg [31]. In their work, every 

pair of processes is connected by a reliable communication channel, and the 

processes can fail by only crashing. A FD gives (possibly incorrect) hints about 

which process may have crashed so far. It consists of several modules, each of which 

is local to a process and periodically consulted by the corresponding process. Each 

module produces a list of processes suspected to be crashed. The modules are 

intrinsically unreliable. They can make mistakes, so the lists dynamically change 

during the computation (and it is possible for two or more lists to be different at the 

same time).  

FDs can be classified according to their accuracy and completeness properties. 

The accuracy property restricts the mistakes a FD can make, while the completeness 

represents the capacity of suspecting an actually crashed process. More precisely, 

two completeness properties and four accuracy properties were defined: 

Strong Completeness: eventually every crashed process is permanently suspected 

by every correct process; 

Weak Completeness: eventually every crashed process is permanently suspected 

by some correct process; 

Strong Accuracy: no process is suspected before it crashes; 

Weak Accuracy: some correct process is never suspected; 

Eventual Strong Accuracy: there is a time after which correct processes are not 

suspected by any correct process; 

Eventual Weak Accuracy: there is a time after which some correct process is never 

suspected by any correct process.  
Table 3-1 Eight classes of FDs 

Accuracy Completeness 
Strong Weak Eventual Strong Eventual Weak 

Strong Perfect 
P 

Strong 
S 

Eventually Perfect 
◊P 

Eventually Strong 
◊S 

Weak Q Weak 
W 

◊Q Eventually Weak 
◊W 

Each pair of accuracy and completeness can define a detector class. Totally there 

are eight classes as shown in Table 3-1. Interestingly, the eight classes are not 



Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006 

 28

independent of each other. “Reducibility” is introduced to demonstrate the 

relationships among them [31]. Intuitively, a detector D’ is reducible to another 

detector D means that D can emulate D’, so any problem that can be solved using D’ 

can be solved by using D instead. Obviously, D must provide at least as much 

information about failures as D’ does. Therefore, we can say that D’ is weaker than D.  

A concept related to “reducible” is “equivalent”. If D is reducible to D’ and D’ is 

reducible to D, it is said that D and D’ are equivalent. If D’ is reducible to D but D 

and D’ are not equivalent, D’ is said “strictly weaker” than D. The relationships 

among all the classes are shown in Figure 3-2. It is important to notice that each 

class of detectors with the weak completeness as shown in Table 3-1 is equivalent to 

the corresponding one with the strong completeness. This enables people to focus on 

the four classes with strong completeness only.  

 
Figure 3-2 Relationships among failure detector classes 

Interestingly, Chandra, Hadzilacos and Toueg [30] have proved that to solve the 

consensus problem, any FD has to provide at least as much information as ◊W. Thus, 
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The failure detector approach is particularly attractive. FDs are not defined in 

terms of any particular implementation (involving network topology, message delays, 

local clocks, etc.) but in terms of abstract properties (related to the detection of 

failures) that allow us to solve problems despite process crashes. The FD approach 

allows a modular decomposition that not only simplifies the consensus protocol 

design but also provides general solutions [31][82][83][139]. A protocol can be 

designed and proved correct based on only the properties provided by a FD class. 
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Therefore, this protocol depends only on a well defined set of abstract properties 

rather than low-level parameters. The implementation of a FD of the assumed class 

can be addressed separately. 

However, not all the eight classes of FDs are helpful for consensus. It has been 

reported that the implementation of FDs of with the strong accuracy or weak 

accuracy is as difficult as the consensus problem itself [93], which claims that the 

consensus protocol based on the FDs of class P, Q, W or S are unprofitable. Even for 

the other four classes, based on the impossibility result in [61], it is also impossible 

to implement them in a purely asynchronous system [93]. Therefore, existing 

implementations of FDs are all based on models with synchrony in some degree 

[23][31][59][93]. 

The eventual leader oracle, usually denoted by Ω, was also proposed by Chandra 

and Toueg [31]. An eventual leader provides the processes with a leader primitive 

leader() that outputs a process id if it is invoked.  Ω satisfies the following eventual 

leadership property:  

Eventual leadership: Eventually, all invocations of Ω  return the same id, and that 

id is the identity of a correct process.  

Such an oracle is not very powerful, in the sense that there is no knowledge on 

when a correct leader is elected. Before this occurs, several distinct leaders (possibly 

conflicting) can co-exist. On the other hand, the leader oracle is powerful because it 

is possible to solve the consensus problem in asynchronous distributed system 

equipped with such a “weak” oracle [30][110]. It has also been shown that, as far 

as failure detection is concerned, Ω and ◊S have the same computational power in 

asynchronous distributed systems prone to process crashes [30][39]. This is why Ω is 

sometimes viewed as one special type of FD. 

A random number generator oracle [22] provides each process pi with a function 

random() that outputs a binary value randomly chosen. Basically, the primitive 

random() outputs the value with some probability. Since there is no property defined 

for the output of a random number generator, it cannot be used to solve the 
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consensus problem deterministically, which is different from the other two types of 

oracles. Its main advantage lies in the robustness of the resulting consensus protocol: 

the behavior of such a protocol does not depend on how the system actually behaves. 

3.1.2.2. Partial Synchrony Model 

A synchronicity model between asynchronous model and synchronous model is 

the “partial synchrony” model. Analyzing the impossibility result in [61], there 

appears to be three different types of asynchrony: 

Process asynchrony: a process may "go to sleep" for arbitrarily long finite 

amounts of time while other processes continue to run; 

Communication asynchrony: no prior bound exists on message delivery time; 

Message order asynchrony: messages can be delivered in a different order from 

the one in which they have been sent. 

Investigating the influence of the different types of asynchrony, Dolev et al. [49] 

found that it is not necessary to have all the above types of asynchrony to obtain the 

impossibility result. This observation inspires the definition of the partial synchrony 

model [53].  

Te partial synchrony model is originated relaxing the requisite of synchrony for 

processes and/or communications. According to this work, calling D and F the upper 

bounds on message transmission and on relative clock speeds of processes 

respectively, a partial synchrony can be caused by two conditions: 

– The bounds exist but are not known; 

– The bounds are known, but they hold after some unknown time. 

In the former case, the system is de facto synchronous, so the impossibility result 

does not hold. The problem is to manage the messages exchange without the 

knowledge of the real values of D and F: using non correct values for these bounds 

will obviously affect correctness or performance of the protocol. In the latter case, an 

instant of time, called Global Stabilization Time (GST), is supposed to exist such 

that the bounds are valid from GST on. 
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3.1.2.3. Quasi-synchronous Model 

Based on some observations on the real-time system, Verissimo and Almeida 

[9][10][11][12] proposed the quasi-synchronous model. The respect of all the timing 

constraints is mandatory when life-critical applications are considered. However, 

there are other real-time applications where, despite the need for dependability, it is 

acceptable to eventually miss some of the timing constraints (assuming to achieve 

the most important ones).  Using Almeida and Verissimo wording, a system is 

synchronous if there are: 

P1. Bounded and known processing speeds; 

P2. Bounded and known message delivery delays; 

P3. Bounded and known local clock rate drift; 

P4. Bounded and known load patterns; 

P5. Bounded and known difference among local clocks. 

Consequently, a quasi-synchronous system is defined as follows:  

D1. It can be defined by properties Px; 

D2. There is at least one bound where there is a known probability (>0) that the 

bound assumption does not hold; 

D3. Any property can be defined in terms of a series of pairs. 

A quasi-synchronous system can be viewed as a synchronous system in which the 

absolute bounds on messages transmission delays, local clock drift rates and process 

execution times are far away from those observed during the normal operative mode.  

Therefore, it is more convenient to use different values, even if the coverage of such 

assumptions is not equal to one [129].   

3.1.2.4. Timed Asynchronous Model 

The basis of the definition of the timed asynchronous model is the consideration 

that existing fault-tolerant services for asynchronous distributed systems are usually 

timed. The specification of the services not only describes the states transitions and 

the outputs in response to invocations of operations, but also the time interval within 

which these transitions have to complete [42].  
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The timed asynchronous system model is characterized by following assumptions: 

i) All the services are timed, so it is possible to associate some timeout whose 

expiration produces a performance failure; 

ii) Processes communication with one another using an unreliable datagram 

service with omission and/or performance failure semantics; 

iii) Processes have crash/performance failure semantics [41]; 

iv) All processes have access to private hardware clocks that run within a linear 

envelope of real-time; 

v) No bound exists on the rate of communication and process failures. 

The timed asynchronous model is asynchronous in the sense that it does not 

require the existence of upper bounds for the message transmission and scheduling 

delay. However, the access to local hardware clocks and the definition of timeouts 

enable us to define the performance failure as the failure that occurs when an 

experienced delay is greater than the associated timeout delay.  

3.1.2.5.  Comparisons of Synchronicity Models 

All the considered models try to overcome the impossibility result in [61] by 

strengthening the asynchronous system model, i.e. trying to add a sufficient amount 

of "synchrony" to the system in order to allow the solvability of the consensus 

problem. Obviously, there are some differences between different models, because 

the assumptions that they rely upon are different. 

The first comparison can be made between the partially synchronous system and 

the timed asynchronous system. As described before, the former model assumes the 

existence of bounds on the process speed and message transmission delay with 

coverage equal to 1. On the contrary, the timed asynchronous model only assumes a 

bound on clock drift rate (with a coverage equal to 1) and makes no assumption on 

the load pattern or message transmission delay. The timed asynchronous system 

model has some points in common with the partially synchronous system model: the 

Global Stabilization Time of the partially synchronous system model reminds the 

concept of stability of the timed asynchronous system, but, while the Global 
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Stabilization requires that the system is not affected by any (timing or crash) failure 

after a certain instant, the stability of a timed asynchronous system is valid only for 

bounded time intervals. 

It is interesting to compare the partial synchrony model with the notion of an 

unreliable FD. For every partial synchrony model we considered, it is easy to 

implement an eventual perfect FD (a FD that satisfies strong completeness and 

eventual strong accuracy). In fact, one could implement such a FD with an even 

weaker model of partial synchrony: one in which the bounds on message 

transmission delay and process speed exist, but they are unknown and hold only after 

some unknown time.  

It is more difficult is to compare the asynchronous model with oracles with the 

timed asynchronous model. In [58], the impossibility to implement a perfect FD in a 

timed asynchronous system has been proved. The main difference between the two 

models is in the philosophy of the design of the system. FDs hide to higher 

abstraction levels all the aspects related to the time of the fault-tolerant distributed 

computation. This can constitute a problem if the abstraction levels are more than 

two. In such a situation all the timeouts are used in each level because a level that 

depends on another one has to be able to detect its failures [41]. For this reason the 

meaning of timeouts change in correspondence of the levels they are associated to 

(usually the higher is the level, the greater is the timeout and the more severe is its 

violation).  

Let us consider now the difference between the partial synchrony model and the 

quasi-synchronous model. In the latter, it is necessary to define a given bound for the 

message delay (although the bound does not hold with probability 1), while in the 

former, this bound is unknown or it holds after an unknown instant.  

For the consensus problem, the asynchronous model with oracles has attracted 

most attention. Our study in this thesis is also based on this model. 
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3.1.3. Communication Model 

The dimension of communication channel can be defined using three properties: 

reliability, creation, and duplication. All the channels listed in Figure 3-1 have the 

no-creation property and no-duplication property [71]: 

Property 1 (no-creation): if process q receives a message m, then some process p 

has sent m to q. 

Property 2 (no-duplication): every message m sent by any process p is received at 

most once. 

The difference among different channels lies in the reliability, which is defined as 

follows [71][97][120][131]: 

Property 3 (Reliable): if process p send a message m to process q, and q does not 

crash, then q eventually receives m. 

Property 4 (CR-reliable): if process p sends a message m to process q, and neither 

p nor q crashes, then q eventually receives m. 

Property 5 (Stubborn): if process p sends a message m to process q, neither p nor 

q crashes, and p indefinitely delays sending any further message to q, then q 

eventually receives m. 

Property 4 (Best-effort): if process p sends a message m to process q, and neither 

p suspects q nor q suspects p, then q eventually receives m. 

Property 5 (Fair-lossy): if process p sends an infinite number of messages to 

process q, and q does not crash, then q receives an infinite number of these messages. 

Property 6 (Strong-lossy): if process p sends messages to process q, there is no 

guarantee on the delivery of any message, i.e. all these messages may be lost. 

The definitions of these channels are self-explanatory except the stubborn channel. 

Basically, Property 5 says that, if a correct process p sends message m and 

afterwards is able to indefinitely delay the sending of any further message then q 

eventually receives m. This does not mean that p is not allowed to send any new 

message m’ to q after sending m. m’ can be sent when either m has been received or 
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m may be never received. Intuitively, a stubborn channel guarantees the delivery of 

the last message transmitted though it. 

In general, the degree of reliability of these channels gradually decreases from the 

reliable channel to the strong-lossy channel. However, for the best-effort channel and 

fair-lossy channel, it is hard to say which one is more reliable. The reliability of a 

best-effort channel is directly dependent on the failure detection mechanism. When a 

false suspicion occurs, no reliability is provided at all. 

A channel with higher reliability can be implemented using a channel with lower 

reliability by message retransmitting mechanism [19][71]. For example, a CR-

reliable channel can be implemented using a fair-lossy channel by periodically 

retransmitting all previous messages. Of course, this may require unbounded buffer 

space. On the contrary, a stubborn channel requires only finite buffer space if it is 

implemented using a fair-lossy channel. This is in fact the main motivation of 

proposing the stubborn channel [71]. 

In consensus protocols, people usually assume reliable channels in the system 

[31][51][83][110]. Interestingly, all such protocols are still correct in the 

environment with CR-reliable channels. Guerraoui et al. [71] and Olivira et al. [120] 

have proposed some protocols based on the stubborn channel. In fact, the consensus 

problem is solvable with fair-lossy channels [50]. 

3.1.4. Protocols for Traditional Fixed Environments 

3.1.4.1. FD-based Protocols 

Among all the three types of oracles, FD has attracted the most attention. Up to 

now, all FD-based consensus protocols use a FD of class ◊S or S. However, it has 

been reported that the implementation of S is as difficult as the consensus problem 

itself [93], which claims that the solutions based on S are unprofitable. Therefore, 

only the protocols based on ◊S are described here.  

Chandra et al. [31], Hurfin et al. [83] and Schiper [139] have proposed consensus 

protocols with the same assumption that a majority of all the n processes are correct, 

which has been proved a necessary condition for solving the consensus problem in 
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asynchronous systems [31]. All of the protocols adopt the rotating coordinator 

paradigm and are executed in asynchronous rounds. A round is usually divided into 

several phases. Each process keeps an estimate of the final decision value.  

During each round, a coordinator process, predefined using some deterministic 

function e.g. (r mod n)+1, tries to impose its own estimate on others by sending 

proposal messages to all processes. On the reception of the proposal from the 

coordinator, a process updates its own estimate and sends the echo message to some 

or all processes. Based on the echo messages received during a round, a process 

updates its estimate and checks if it can make a decision.  

These protocols mainly differ in the message exchange pattern in a round. The 

protocol presented in [31] adopts a centralized message exchange pattern, while the 

protocols in [83][139]  use the fully distributed pattern. The latter two protocols 

differ in the way they cope with failures and mistakes made by the FD. More 

precisely, the protocol in [83] “trusts” the FD, while the protocol in [139] does not.  

Hurfin et al. [82] proposed a versatile FD-based protocol (denoted by HMR). 

HMR has two orthogonal versatility dimensions: the class of the FD (class S or ◊S) 

and the message exchange pattern. Since the HMR protocol is the basis of our 

proposed consensus protocols in this thesis, we introduce it in more details.  

There are totally n processes in the system, and f of them can crash, where f<n/2. 

Same as other FD-based protocols, HMR adopts the coordinator rotating paradigm 

and is executed in asynchronous rounds. Each round of HMR is divided into two 

phases. In the first phase of a round r, the coordinator pcc, defined by the function 

coord(r), sends its current estimate estcc to each process (including itself) with the 

proposal message PROP(r, estcc). A process pi waits for the estimate value from pcc 

unless pcc is suspected. When a PROP(r, estcc) is received, pi updates its own 

estimate value esti and timestamp tsi and then proceeds to the next phase.  

In the second phase, the message exchange pattern is determined by two sets of 

processes, D and A.  The set D, standing for Decision-makers, is the set of processes 
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that need to check the decision status, i.e. whether it can decide in the current round. 

D is defined with the following two requirements: 

• D is deterministic, i.e. all the processes have the same D for the same round; 

• D contains the current coordinator. 

The set A stands for Agreement_keepers. Since different processes may decide in 

different rounds, A is used to ensure that once a value has been decided upon in a 

round by some process, no other value can be adopted as the decision value in later 

rounds. To maintain the agreement property, in the second phase of a round, each 

process in A needs to receive estimate values from other processes and update its 

estimate to the value with the highest timestamp. Since the coordinator of the “next” 

round will send proposals to others, it must have a “correct” estimate. Therefore, A 

can be any set of processes that includes the coordinator of the next round. 

After entering the second phase of a round r, each process pi sends an echo 

message ECHO(r, esti, tsi) to each process pj in D∪A. pj waits until it receives echo 

messages ECHO(r, *, *) from no less than n-f processes and then sets its estimate to 

the value carried by the ECHO message with the highest timestamp. A process pd in 

set D checks the timestamps of the echo messages received. If pd receives f+1 echo 

messages with a timestamp “r”, pd can decide.  The number “f+1” ensures that at 

least one correct process knows the decision value. Once a process decides, it 

broadcasts the DECISION(est) message using a reliable broadcast mechanism to 

disseminate its decision value, and then stops participating in the protocol. 

All above protocols rely on reliable communication channels between hosts. 

Protocols that can tolerate message losses are reported in [50][71][120]. The 

protocol in [50] is based on fair-lossy channels while the protocols in [71][120] 

adopt stubborn channels. Same as others, these protocols adopt the rotating 

coordinator paradigm and are executed in asynchronous rounds. However, to tolerate 

message losses, each host needs to periodically resend the latest message it has sent 

and, if some message from a higher round is received a host skips to some higher 

round (the next round or the round of the message received).  
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The difference between [50] and [71][120] lies in the message resending 

mechanism. In [50], the resending is undertaken by the consensus protocol itself, 

while in [71][120] this is delegated to the underlying communication channels. More 

precisely, the consensus protocol [50] implements stubborn channels implicitly. The 

protocol in [71] differs from that in [120] in the message exchange pattern and 

consequently the buffer size for resending messages. 

3.1.4.2. Leader-based Protocols 

Based on the leader oracle Ω, several consensus protocols have been proposed. 

The first leader-based consensus protocol is proposed by Lamport [90]. Based on a 

part-time parliament protocol used by residents of an ancient Greek island Paxos, 

Lamport devised an algorithm, named Paxos, to implement a highly available 

deterministic service by replicating it over a set of processes communicating through 

message passing. A consensus protocol named Synod is at the core of Paxos. 

Because the description in [90] is difficult to understand, efforts have been put to 

simplify and deconstruct it [24][46][89]. However, the Paxos algorithm is not 

dedicated for solving consensus so there is no explicit consensus protocol presented.  

The Synod algorithm can only guarantee the agreement property and validity 

property of the consensus problem. To guarantee the termination property, two 

additional issues are involved. First, a leader oracle is assumed for determining the 

process to initiate the algorithm. Second, there should be a mechanism to determine 

when to initiate the above algorithm. If the algorithm is invoked by new leaders too 

frequently, it is possible that each run of the algorithm is ended by a run with a 

higher number. In [90], it is assumed that it is eventually possible to obtain the 

precise delay of a message and the time of processing a message, so as to estimate 

the duration of a run. 

The protocols in [51][110] can guarantee all the three correctness properties.  Like 

FD-based protocols, they are executed in asynchronous rounds, but there is no 

predefined coordinator for a round. Each round of the protocol in [110] consists of 

three phases. In the first phase, each process broadcasts its estimate value to others 
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and then waits for the values from the leader process (selected by the leader oracle). 

If such a value is received, the process updates its estimate value to the value 

received and broadcasts the new value received from its leader (if any) or the value 

“⊥” (a value that can never be accepted, which means that the sender failed to get a 

value from its leader). If a process received the same value v (v ≠⊥) from a majority 

of processes in the second phase, it broadcasts the value v in the third phase. 

Otherwise, it broadcasts the value “⊥”. Finally, based on the messages received in 

the third phase, a process updates its own estimate and makes a decision if it receives 

the same value (v ≠⊥) from a majority of processes. The protocol in [51] uses a 

similar procedure but the first two phases are merged into one. 

A uniform consensus protocol based on a leader oracle was proposed in [24]. The 

protocol described in [92] is based on a leader oracle named ◊C. Different from the 

commonly used Ω, ◊C is defined by a completeness property and an eventual 

consistent accuracy property. It can be seen as an adaptation of the CT protocol [31].  

3.1.4.3. Random Number Generator based Protocols 

The first consensus protocol based on the random number generator is proposed 

in [22]. Same as other consensus protocols, it is executed in asynchronous rounds, 

but no process acts as a coordinator or leader in a round. A process updates its 

estimate with the help of a random number generator. Basically, the primitive 

random() outputs the value 0 (respectively 1) with probability 1/2, so [22] solves the 

binary consensus, i.e. the decision value is 0 or 1. 

Ezhilchelvan et al. [55] proposed a multi-valued consensus protocol based on a 

random number generator. Each process first reliably broadcasts the value vi 

proposed by itself and collects the values from others. Then, the processes execute 

asynchronous consecutive rounds until a decision is made. A round is made up of 

two communication phases. During the first phase of a round r, the processes 

exchange their own current estimates by broadcasting. If a process pi discovers that a 

majority of estimates have the same value v, it updates esti to v; otherwise, it updates 

esti to ⊥, a value that cannot be decided upon. Then the processes enter the second 
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phase during which they exchange the new content of their esti variables. If a process 

pi receives the same value v such that v≠ ⊥ from a majority of processes, it 

decides on v. Otherwise, it adopts any estimate value not equal to ⊥ (if such a value 

is received) or a randomly selected value from the values received at the beginning 

of the execution (if all the values received in the second phase are ⊥). Then pi starts 

the next round. 

3.1.4.4. Hybrid Protocols 

Some hybrid consensus protocols [7][113] make use of FD and random number 

generator at the same time. The first attempt to build a general consensus framework 

is proposed in [108], which unifies a leader oracle, a random number generator 

oracle, and a failure detector oracle. Unfortunately, algorithms derived by 

instantiating that framework with a given oracle are clearly not as efficient as ad hoc 

algorithms devised directly with that oracle. Efficient consensus protocols with 

different oracles are presented in [51], where a specific protocol is given for each 

oracle. An efficient uniform consensus framework is presented in [73]. 

3.1.4.5. Summary 

It is interesting to compare the protocols based on different oracles. A common 

inconvenience of the FD-based protocols is caused by the rotating coordinator 

paradigm. A consensus protocol cannot achieve consensus until there is a round 

coordinated by an unsuspected host. Because the hosts take turns to act as the 

coordinator of some round in a predefined order, hosts still have to execute a round 

that coordinated by a crashed and suspected host, which will delay the decision 

making. Leader-based protocols solve this problem by dynamically selecting rather 

than statically defining the leader host. One drawback caused by this change is that, 

in the same round, the leaders selected by different hosts may be different. To cope 

with this, the leader information must be exchanged in the all-to-all pattern together 

with the proposal messages [51][110], which is not so flexible as FD-based protocols 

in terms of the message exchange pattern. In random number generator based 

protocols, however, no coordinator/leader is needed, so it does not depend on the 



Chapter 3. Background and Literature Review 

 41

behaviors of the system. The price to pay for this advantage is that such protocols 

cannot guarantee the termination deterministically. 

3.1.5.  Consensus Protocols for Mobile Environments 

So far, very little work has been done on the consensus problem in mobile 

environments. Several protocols have been proposed for infrastructured networks. 

Based on the CT protocol [31], Badache et al. [15] proposed a consensus protocol 

for infrastructured mobile networks, which is denoted by BHM. In BHM, the 

decision value is a set of values proposed by at least α hosts (α can be determined by 

the application) instead of a single value. MSSs collect initial values from MHs and 

achieve consensus on behalf of MHs. The activity of a MSS is divided into three 

main subtasks: 

i)   To interact with its local MHs to collect their initial values; 

ii)  To interact with other MSSs to agree on a subset of proposed values; 

iii) To interact with its local MHs to disseminate the final outcome. 

Compared with CT, BHM has several differences. First, in CT, a host can change 

it estimate only when it adopts the value proposed by the coordinator, but in BHM a 

MSS can also change its proposed value if it gets new values from MHs. Second, 

once the MSS changes its value set, it sends a new proposal to the coordinator, so a 

MSS may send more than one proposal message in one round. After a MSS has got 

enough initial values and sent a positive acknowledgment to a coordinator, it 

behaves in a way similar to that of a process in CT.  

BHM uses a simple handoff mechanism to handle the movements of MHs. The 

new and old MSSs change their MH lists and the MH sends its initial value to the 

new MSS if the value is never collected by the new MSS.  

The protocol in [140] extends the BHM protocol by considering the dynamism of 

the set of MSSs. Due to the mobility of MHs, some cells may become empty, i.e. 

there is no MH in these cells. Using a group membership protocol, the MSSs of such 

cells are deleted from the set of MSSs executing the consensus protocol. The 

membership protocol and the consensus protocol are executed concurrently. Since 
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the group membership problem can also be solved by a consensus protocol [75], 

there can be two consensus protocols involved.  

Both protocols in [15] and [140] rely on the help of MSSs. The principle is to shift 

the workload from MHs to MSSs. In MANETs, however, there is no MSS and all the 

work has to be done by MHs themselves.  

Chockler et al. [37] developed consensus protocols for a special type of MANETs, 

single-hop MANETs, where the hosts are located within the communication range of 

each other. Their work focuses on message losses due to transmission collisions. 

Collision detectors are designed to monitor the communication media and detect 

transmission collisions. With the help of collision detectors, in a single-hop MANET 

can achieve consensus. To achieve consensus in a multi-hop MANET, the network is 

divided into non-overlapping grids, each of which is a single-hop sub-network. 

Single-hop consensus is first achieved within each grid and then each host gossips its 

grid consensus value. Finally, a host can decide after it has received a value for every 

grid. 

Another consensus protocol for MANETs is reported in [160]. The authors 

developed several fault tolerant broadcast algorithms for MANETs and then apply 

these broadcast algorithms to the consensus protocol in [55]. As described before, 

the protocol in [55] is a randomized protocol relying on a random number generator 

so it can only probabilistically guarantee the termination property.  

Both the consensus protocols in [37] and [160] are probabilistic with respect to 

their approaches of achieving a global consensus in MANETs. Of course, protocols 

for traditional networks can be used in MANETs, but they are not efficient in terms 

of the message cost, especially for large scale MANETs [123][166]. 

3.2. MUTEX Algorithms 

Many algorithms have been proposed for the distributed MUTEX problem 

[21][27][145][159], but few of them are designed for mobile environments. We first 
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briefly introduce algorithms for traditional fixed environments and then review 

algorithms for mobile environments.  

3.2.1. Algorithms for Traditional Fixed Environments 

3.2.1.1. Token-based MUTEX Algorithms 

The first token-circulating algorithm is proposed by Le Lann [40], where all hosts 

are logically organized in a ring and the token circulates following the ring. When 

the token is received by a host, it enters its CS if it is requesting, and after exiting CS, 

it sends the token to its successor in the ring. 

To reduce the meaningless circulation of the token when no host wants to enter 

the CS, algorithms combining token-circulating and token-asking are proposed in 

[18] and [103]. A fault tolerant token-circulating algorithm is proposed in [107] 

which addressing the token loss detection problem using a time free approach. There 

are two tokens circulated simultaneously along the same ring while only one of them 

carries the privilege of entering the CS. These two tokens monitoring each other 

using a sequence number based mechanism to detect the token loss. 

Ricart and Agrawala [134] proposed a broadcast based algorithm that requires at 

most n (the total number of hosts) messages to achieve MUTEX. The requesting host 

sends the request message to all other n-1 hosts and waits for responses. When the 

token holder needs to send the token, the successor is chosen in a circular manner if 

there is any pending request; otherwise, it keeps the token idly. Based on the idea in 

[133][134], Suzuki and Kazami [150] proposed an algorithm in which the queue of 

requesting hosts is piggybacked on the token. This queue is updated by a local queue 

of each visited host in an ascending order of id so as to ensure the liveness property.  

The algorithm in [119] extends the algorithm in [150] by adding timeout-based 

fault tolerance. The algorithm can tolerate various failures and using timeout based 

mechanism, a lost token can be regenerated and duplicated tokens are eliminated. 

Singhal [144] improved the performance of the Suzuki and Kazami algorithm by 

sending requests only to the hosts probably holding the token instead of all the hosts. 
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The knowledge of each host about the requesting hosts is passed together with the 

token, so a host can guess what hosts are the probable token holders using a 

heuristically method. The algorithm proposed in [34] is similar to the one in [144] 

except that different data structures are used to store the request information of hosts. 

Tree-based MUTEX algorithms can be found in [35][47][79][116][130]. Different 

from broadcast based algorithms, such algorithms make use of the logical tree to 

forward requests for the token and pass the token to requesting hosts. The token 

holder is always the root of the tree. A parent host sends request on behalf of its 

children so as to reduce message cost. These algorithms differ in the mechanism of 

maintaining the tree and the request queue.  

Raymond’s algorithm [130] requires at most O(LogN) messages (N is the total 

number of hosts) to enter the CS. The tree is maintained by the logical pointers 

distributed over the hosts and directed to the token holder. A request message is 

routed to the root along the path of pointers from the requestor to the token holder. 

The token is sent back over the reverse path. The links passed by the token must be 

reversed so as to always point to the token holder. Based on Raymond's algorithm, 

Chang et al. [35] developed an algorithm that can tolerate link and host failures by 

maintaining multiple paths to search the token. The algorithm tries also to avoid 

cycles when the token returns to the requester along the reversal links. In [47], 

Dhamdhene and Kulkarni developed an algorithm which aims to eliminate the still 

remaining cycle in [35]. 

Different from Raymond’s algorithm, in [116], the hosts are arranged in a dynamic 

logical tree, where the structure of the tree may be changed with respect to the 

request status of the hosts. No queue of pending requests is maintained by the hosts or 

the token. Such a queue is implicitly maintained by the state of each host using two 

variables: LAST and NEXT. LAST indicates the last host from which a request was 

received and the neighbor host in the path to the root to which this host needs to send a 

request message for its new request. NEXT indicates the host to whom the token will be 

granted after this host leaves CS.  
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 Helary et al. [79] proposed a general tree-based MUTEX scheme, including an 

information structure and the associated algorithm. The information structure 

includes, in particular, a dynamic rooted tree structure logically connecting the hosts, 

and a behavior attribute (transit or proxy) dynamically assigned to each host. This 

general structure not only covers, as particular cases, several known algorithms, but 

also allows for the design of new ones that are well suitable for various topology 

requirements. 

The graph-based MUTEX algorithms [80][118] are  similar to those tree-based 

algorithms except that a directed acyclic graph (DAG for short) rather than a tree is 

used to pass the requests and token. In [80], a host requesting the CS sends requests 

to its neighbors and waits for the token. After completing the execution of the CS, 

the host finds the oldest request from its own pending queue, updates the time of that 

request in the token's array with its logical clock, and then sends the token through 

the return path. The algorithm [118] is similar to the tree-based algorithm [116] 

except that the hosts are arranged in a DAG rather than a tree.  

3.2.1.2. Permission-based MUTEX Algorithms 

As introduced before, two different types of permissions have ever been used in 

existing permission-based algorithms [145]. The R-permission is first proposed in 

the Ricart-Agrawala algorithm [133]. A host requesting the CS sends request 

messages to all other hosts. Requests for CS are assigned globally unique priorities, 

e.g. Lamport-like timestamps [91]. The receiver of a request grants permission to the 

requester immediately by sending a reply, if it is not requesting the CS or its priority 

is lower. Otherwise, it grants the permission after its own execution of the CS.  A 

variant of the Ricart-Agrawala algorithm is proposed in [28], by remembering the 

recent history of the CS execution in order to reduce message cost. Singhal [143] 

proposed a dynamic R-permission based algorithm by dynamically change the set of 

the hosts to which a requesting host needs to send request messages.  

Another type of permission is M-permission [98], where a requesting host needs 

to send requests to a quorum of hosts. Many quorum based MUTEX algorithms have 
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been proposed. Since our study does not adopt the M-permission, we do not 

introduce them here. A good survey can be found in [27].  

3.2.2.  MUTEX Algorithms for Mobile Environments 

We first briefly describe existing algorithms and then present the comparison and 

analysis.  

3.2.2.1. Mutual Exclusion Algorithms for Infrastructured Networks 

The BBAI algorithm [16] focuses on handling the mobility of MHs. The authors 

proposed a two-tier structure to make full use of MSSs. A guiding principle of this 

paper is that “the computation and communication demands of an algorithm should 

be satisfied within the static segment of the system to extent possible.”  To do so, a 

logical ring is imposed on all the MSSs and the token visits each MSS in a 

predefined sequence. A MH that wants to access the CS needs to send a request to its 

local MSS. When the token visits this MSS, all pending requests at this MSS are 

serially serviced. Two strategies are adopted to handle the movements of MHs. One 

is to let a MH proactively inform the MSS about its updated location while the other 

lets the token holder search a MH before sending the token.  

The LPRM algorithm [124] improved Raymond’s algorithm [130] by introducing 

a d-level hierarchical logical tree. The main principle of LPRM is similar to that in 

[16]: letting MSSs act as the proxies of MHs. The tree is imposed on only the MSSs. 

A host sends a request to the token holder (i.e. the root of the tree) when it wants to 

enter CS. Because there are much less MSSs than MHs, the message cost is reduced 

compared with Raymond’s algorithm. Although a d level tree may help reduce 

message cost, the overhead to maintain such a multi-level tree may be high.  

Singhal [146] presented a MUTEX algorithm (denoted as MSM) based on the 

“look ahead” technique which can reduce message cost by enforcing the MUTEX 

only among those concurrently competing for CS in stead of all the hosts. The 

Ricart-Agrawala approach [133] is directly adopted to achieve MUTEX.  
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The basic idea of the “look ahead” technique is that if a host Si informs Sj of its 

request status, then Sj automatically gets informed whenever Sj requests CS. On each 

host, there are two sets. The Info_Seti includes the id of the hosts that Si needs to 

inform if it has a request, and the Status_Seti includes the id of the hosts that will 

inform Si when they request for the CS.   For each host, the following conditions 

must be satisfied (S is the set of all hosts):  

1) ∀Si: Info_Seti∪Status_Seti =S;∀Si: Info_Seti∩Status_Seti =Ø 

2) ∀Si∀Sj: Si ∊ Info_Setj ⇒ Sj ∊ Status_Seti 

Through adjusting the two sets according to specific rules, each host can know 

what other hosts are concurrently requesting CS. Thus, the number of messages 

exchanged is decreased.  

When a host wants to disconnect from the network, it offloads the current values 

of its data structures to its local MSS which will then act on behalf of the host in the 

execution of the MUTEX algorithm. 

3.2.2.2. Mutual Exclusion Algorithms for MANETs 

Several MUTEX algorithms for MANETs have been proposed. A good survey of 

such algorithms can be found in [21].   

Baldoni et al. [17] presented an algorithm (denoted as RBVP) which aims at 

reducing the meaningless control messages when no host requests to access the CS. 

In the RBVP algorithm, the structure of the logical ring is computed on-the-fly, and 

there is a coordinator for each round. A host needs to send a request message to the 

coordinator when it wants to access the CS. If there is no pending request, the 

coordinator holds the token idly so as to avoid meaningless circulation of the token. 

Walter et al. [161] proposed a token-asking algorithm, denoted by JWSK, which is 

derived from Raymond’s tree-based algorithm [130] with the improvement to handle 

link failures caused by host mobility. This algorithm defines a DAG of token-

oriented pointers, maintaining multiple paths leading to the token holder. Like in 

[130], requests are forwarded to the token holder along a path in the DAG and the 

token is delivered along the reverse path to the requesting host. When a host cannot 
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find a path to the token holder due to failures, it initiates the “update” procedure to 

find a new path. When a reverse path is broken, the token holder needs to search the 

requesting host before sending the token. In [162] a variant of the algorithm in [161] 

is presented to eliminate the overhead introduced by searching the requestor. Instead 

of that the token holder searches the hosts, a host needs to resend its request when it 

detects that there is a failure of an outgoing link. 

Malpani et al. [101] proposed a parametric token-circulating algorithm with many 

variants. A dynamic logical ring is imposed on the MHs and the successor of a host 

is computed on-the-fly. By applying different polices to determine the successor, 

different variants are derived. Based on the Local-Recency (LR) policy, Chen et al. 

[36] proposed a MUTEX algorithm (denoted by YCJW) for MANETs. A ring is 

determined at the beginning of each round, and will not be changed until a new 

round begins. To guarantee the liveness property, YCJW requires that the topology to 

be static while the algorithm is converging. To tolerate token losses, one special host 

acts as a leader. The leader generates the token and sets timeout for it. Each token is 

marked with an id, which is equal to the round number. If a timeout happens, the 

leader would generate a new token. Through fixing the visit path for each round, the 

correctness is guaranteed even if there is more than one token in the system.  

3.2.2.3. Comparison and Analysis 

Now, let us compare different algorithms. There are three classical metrics for 

distributed MUTEX algorithms [145]:  

Number of Messages Per CS Entry (MPCS): the average number of messages 

exchanged among the hosts for each execution of the CS. 

Synchronization Delay (SD): the number of sequential messages exchanged after a 

host leaves the CS and before the next host enters the CS. 

Response Time (RT): the time interval that a host waits to enter the CS after its 

request for CS arrives.   

We also use these metrics to evaluate the performance of MUTEX algorithms, but 

new measures suitable for mobile environments are adopted. In traditional fixed 
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networks, the cost of each message is viewed as the same. However, in mobile 

environments, the communications among MHs become more complicated. There 

are both wireless links and wired links. The costs of messages sent through different 

links are also different and should be calculated differently. Similar as in [16], we 

use different measures for the cost of communications through wired and wireless 

links. The notations used in the performance analysis are as follows: 

n: the number of MHs; 

m:  the number of MSSs; 

Cf: a message between two fixed stations; 

Df: the time delay of Cf; 

Cw: a message sent through wireless links. In an infrastructured network, it refers 

to a message between a MH and the MH’s MSS. In a MANET, this refers to a point-

to-point message between two MHs; 

Dw: the time delay of Cw;  

Cl: messages incurred to search a MH. it depends on the searching mechanism. 

Dl: the time delay of Cl. Of course, it can be expressed by Df. 

Since the performance of a MUTEX algorithm usually depends on the load level 

of the system, two special load levels often been involved: low load level and high 

load level. Under low load levels, there is seldom more than one request for CS 

simultaneously in the system. On the contrary, under high load levels, there is always 

a pending request at each host, i.e. a host sends out a request as soon as it exits CS.  

In mobile environments, there is a new important condition –mobility, which has 

important effect on the performance of MUTEX algorithms. Under high mobility 

levels, a MH changes its location very frequently, while under low mobility levels, a 

MH rarely does so.  

Table 3-2 shows the performance of the algorithms described above 4 . The 

performance of BBAI algorithm varies strongly under different load levels. In 

                                                 
4 Since the SD under low load levels depends on the interval of two requests for CS, we only analyze the SD 

under high load levels. 
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general, under low load levels, the performance is bad, which is caused by 

meaningless token circulation when there is no request at all. The performance of 

BBAI is also affected by the mobility level. If the “inform” mechanism is used, 

under high mobility levels, many informing messages are needed. However, if using 

the search mechanism, the performance of BBAI is not affected by the mobility level.  
 

Table 3-2 Performance of MUTEX algorithms for infrastructured networks 

 BBAI LPRM MSM 

MUTEX  
Mechanism 

Ring-based Tree-based Permission-based 

Property static dynamic dynamic 
Low 
load 

3Cw+O(m)Cf+ Cl * 
3Cw+O(m)Cf+ k*Cf ** 

3Cw+O(logm) *2Cf+Cl n*(2Cw+Cf) 

MPCS 
High 
load 

3Cw+Cf+ Cl 
3Cw+Cf+ k*Cf 

3Cw+2Cf+Cl 3n*(2Cw+Cf)/2 

SD High 
load 

2Cw +Cf +Cl 
2Cw +Cf  

2Cw+Cf+Cl 2Cw+Cf 

Low 
load  

3Dw +O(m)*Df + Dl 
3Dw +O(m)*Df 

3Dw+O(logm)*2Df+Dl 4Dw+2Df 

RT 
High 
load 

O(m)*Df+O(n)*(2Dw+E+Dl) 
O(m)*Df+O(n)*(2Dw +E) 

O(m)*2Df+O(n)*(2Dw+E+Dl) n*(2Dw+Df+E)/2 

Contributions Reducing message cost 
Handling topology change 

Reducing message cost 
Handling topology change 

Reducing message cost 

Drawbacks Additional mechanism to ensuring 
the fair access to token. 

The overhead to maintain a 
multi-level tree. 

No mechanism for 
disconnection 

Notes 
*: this is the MPCS value for search mechanism, and the same to SD, RT 
**: this is the MPCS value for inform mechanism, where k is number of movements after 
requesting, the same to SD, RT 

The performance of LPRM algorithm is similar to BBAI because they are both 

token based and both use MSSs as proxies of MHs. The wireless message cost of 

LPRM is the same as that of BBAI. The difference lies in the wired part. BBAI is a 

token-circulating algorithm while LPRM is a token-asking algorithm. Therefore, 

under low load levels, the performance of LPRM is better than BBAI with the search 

mechanism. However, under high load levels, the BBAI performs better because it 

does not need any request message. 

MSM algorithm is fundamentally different from the others, because it uses the 

permission-based MUTEX mechanism. Not making full use of MSSs makes MSM 

costs more messages, especially under high load levels. The RT of MSM is also 

larger than that of BBAI and LPRM. However, the advantage of MSM is that no 

logical structure is needed. 
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Table 3-3 shows the performance of the algorithms for MANETs. The 

performance of MVW is similar to typical token-circulating algorithms. Profiting 

from the combination of token-circulating and token-asking, the RBVP algorithm 

performs well under low load levels. However, the introduction of request messages 

makes the performance worse under high load levels, compared with typical token-

circulating algorithms, e.g. MVW.   

Like the LPRM algorithm, JWWV is a logical structure based algorithm, so the 

load level has similar effect on these two algorithms. However, since the graph is 

imposed on the MHs rather than MSSs in JWWV, the overhead of maintaining such 

a structure is high due to the mobility of MHs. Additional messages are needed if the 

graph is changed due to the link break or establishment. The performance of YCJW 

is nearly the same as MVW, except that under high load levels, the MPCS of YCJW 

is larger. The difference comes from the relative fixed visit path of YCJW, which lets 

some requesting hosts send out the token without access the CS 
 

Table 3-3 Performance of MUTEX algorithms for MANETs 

 RBVP JWSK MVW(LR) YCJW 

MUTEX 
Mechanism 

Token-asking + 
token-circulating 

Graph-based Token-circulating Token-circulating 

Property dynamic dynamic dynamic dynamic 
Low load O(n)*Cw O(logn)*(2+k)Cw O(n)*Cw O(n)*Cw MPCS 
High load 2Cw (k+1)Cw Cw >Cw 

SD High load Cw Cw Cw  Cw 
Low load  O(logn)Dw O(logn)* (2+k)Dw O(n)* Dw  O(n)* Dw  RT 
High load O(n) * (2Dw+ E)  O(n)*((2+k)Dw +E) O(n) * (Dw+ E) O(n) * (Dw+ E) 

Contributions Reducing message 
cost 

Handling disconnection 
Handling topology change 

Handling topology 
change 

Handling topology change 
Tolerance of token loss 

Drawbacks Dependence on the 
route protocol. 

Repeated requests. Additional information 
for token passing 

Large size message(token) 
Fixed leader host 

From the analysis we can see that, the load level has very important effect on the 

performance of MUTEX algorithms. Nearly all the algorithms have better 

performance under high load levels. The network type can also affect MUTEX 

algorithms. In infrastructured networks, the design is easier because MSSs can be 

used to carry out much work.  
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The MUTEX mechanism is also an important factor in the design of MUTEX 

algorithms.  Up to now, nearly all the MUTEX algorithms for mobile environments, 

especially for MANETs, are token-based. Token-circulating algorithms perform 

better under high load levels, while token-asking algorithms are better if the load 

level is low.  

Token-based mechanisms have many desirable features for mobile networks: the 

host only needs to keep information about its neighbors, few messages needed to 

pass the privilege to enter the CS and so on. However, the fatal problem—token loss 

makes the token-based mechanisms not so robust. What is worse, the mobility and 

frequent disconnections make the token loss more serious and the maintenance of a 

logical structure more costly.  

Compared with the token-based approach, permission-based algorithms have the 

following advantages: 1) there is no need to maintain the logical topology, and 2) 

there is no need to propagate any message if no host requests the CS. These 

advantages make the permission-based approach well suitable for mobile networks, 

where all the resources, e.g. the network bandwidth and the battery power, are scarce. 

A problem of the permission-based approach is the large number of messages 

exchanged to get permissions. Therefore, to design a permission-based algorithm, 

the key issue is to reduce the message cost. 

Another important problem is fault tolerance. In a mobile environment, especially 

a MANET, link failures (e.g. signal shielded) and host failures (e.g. battery 

exhausted) occur very frequently. Link failures can lead to message loss while host 

failures may result in accidental disconnections. Furthermore, MHs may enter the 

"doze" mode to save power. Unfortunately, these issues have not been adequately 

addressed in existing MUTEX algorithms for mobile environments. 
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Chapter 4. Speeding up the Execution of 

Consensus Protocols 

4.1. Overview 

Our study in this chapter focuses on the execution speed of consensus protocols, 

which is important in both handling topology change and reducing computation load. 

In general, the earlier a protocol achieves consensus, the less the topology may 

change and the less resource, e.g. bandwidth and memory, is consumed.  

The main objective of this chapter is to cope with the slowdown caused by the 

mistakes made in the execution of ◊S based protocols. All existing oracle based 

consensus protocols allow the oracle to make mistakes, which is referred as the 

indulgence property [69][73]. The price to pay for indulgence is the slowdown of the 

execution.  

Usually, there is at least one coordinator or leader for each round of FD or leader 

based protocols and the coordinator or leader process attempts to impose its own 

current estimate of the decision value on other processes. Due to the indulgence 

property, processes have to keep executing consecutive rounds, even if in fact the 

decision cannot be made due to failures or false suspicions. This slows down the 

execution speed of a consensus protocol. Although some optimizations, including 

Zero-Degradation (ZD for short) [45][51][135], One-Step-Decision [51][73] and fast 

recovery [52]  have been developed to speed up the execution of indulgent consensus 

protocols, they are either unsuitable for ◊S based protocols or difficult to be applied.  

We propose a fast consensus protocol based on the failure detector ◊S, which can 

circumvent slowdowns caused by indulgence, using two novel techniques.  

The first technique uses a simple but efficient approach to guarantee the Round-

Zero-Degradation (RZD for short) property, which is an extension of ZD. ZD means 

that, when all the failures are initial crashes and the oracle makes no mistake, two 

communication steps are sufficient to reach a global decision [51][73]. An initial 
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crash refers to a crash that occurs before the execution of the protocol starts. ZD is 

important especially because a consensus protocol is typically invoked from time to 

time and a process failure occurred during one execution will appear as an initial 

failure in the subsequent executions [73]. However, ZD only takes into account the 

first round of an execution. Here, we extend it to “Round-Zero-Degradation”. A 

consensus protocol is said to have the “Round-Zero-Degradation” property if it can 

achieve the global decision within any round (two communication steps) when the 

underlying oracle makes no mistake in the round and all failures are “round initial 

crashes”, i.e. all crashes occur before the round starts5.  

Compared with ZD, RZD is more useful. Nearly all implementations of FDs 

[31][93] rely on the partial synchrony system model [53], where the bounds on the 

message delay and processing speed are unknown and hold only after an unknown 

stabilization interval. This implies that the FD is likely to fail in the beginning of the 

execution of a consensus protocol. Thus, “Zero-Degradation” is hard to satisfy.  

ZD and RZD are desirable properties. The key point to guarantee ZD or RZD is 

how to select only correct processes as the coordinator. For leader-based protocols 

[51][73][110], ZD is guaranteed by nature, because a leader oracle dynamically 

elects the leader based on the status information. However, most existing FD-based 

consensus protocols cannot guarantee the ZD or RZD property. FD-based protocols 

usually adopt rotating coordinator paradigm and the order for processes to be the 

coordinator is predefined, so they have to execute such rounds that are coordinated 

by crashed and suspected processes, which defers the decision. Although some 

solutions [45][51][135] have been proposed to help FD-based protocols achieve ZD, 

they are either not Round Zero Degrading or too complicated.  

In the proposed protocol, a simple and efficient approach is designed to guarantee 

RZD. The principle is to replace a suspected coordinator when a round starts. 

However, unlike leader oracle, a FD only provides a process the status information 

                                                 
5 The start of a round is defined as the time that the first process enters this round. 
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of other processes but cannot indicate which process should be the coordinator. An 

arbitrarily selected coordinator may result in the violation of the termination property. 

Therefore, how to dynamically select coordinators is not trivial.  

The first technique, as described above, is effective only in good cases6. When the 

FD performs badly, it will not work. The second technique proposed in this chapter, 

called “Look-Ahead”, speeds up the execution of the proposed protocol in general 

cases. The main idea of Look-Ahead is making use of the future messages so as to 

reduce useless wait time. Due to the asynchrony of the system, some messages of 

“future” phases or rounds may be delivered to “slow” processes in advance. Based 

on the information carried by such messages, a process can adapt its execution state 

to the future so as to speed up its execution. However, not all future messages are 

beneficial, because some future messages may mislead the receivers so as to 

postpone potential decisions.  

Some papers [50][52] mentioned the use of future messages to handle omission 

failure or achieve consensus with a lower bound number of rounds after the 

stabilization interval. On the reception of a future message, a process directly skips 

to the round of the future message. Such an approach is too extreme in sense of 

efficiently speeding up the execution because it may destroy potential decisions. The 

proposed Look-Ahead technique is designed delicately to avoid negative effect of 

future messages, so Look-Ahead can help speed up execution in general cases.  

Look-Ahead is in fact a general technique which can be easily applied to any 

round based indulgent consensus protocols. However, it is important to notice that, 

although the Look-Ahead technique is not special for mobile environments, it is 

especially suitable for mobile environments, where the asynchrony is stronger than 

that in fixed networks due to the dynamics of mobile hosts. 

                                                 
6 According to the behaviours of the hosts and oracles, execution cases of a consensus protocol can 

be informally divided into three categories. A “good” case means that no new crash occur and the 

oracle performs perfectly (makes no mistake), while a “bad” case means there are new crashes and the 

oracle performs badly. A “general” case simply refers to any case. 
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To evaluate the performance of the proposed protocol, we conduct extensive 

simulations. The proposed protocol is compared with one classical protocol. The 

results show that the proposed protocol can always achieve the consensus with fewer 

rounds, regardless the performance of the failure detector and other conditions. In 

terms of the execution time, the proposed protocol also performs better unless the 

failure detector makes many mistakes (with an error rate greater than about 35%). 

Simulations also show that the Look-Ahead technique itself is always effective 

regardless the performance of the FD and other conditions, which indicates that our 

objective to avoid destroy of potential decisions is fulfilled.  

4.2. A Fast Consensus Protocol with RZD Property 

4.2.1. System Model and Data Structures 

The system model for the proposed protocol is the same as in [14][31][61][97]. A 

distributed system consists of a finite set of n processes: Π = {p1,p2,…,pn}, n > 1. 

Processes communicate only by sending and receiving messages. Every pair of 

processes is connected by a reliable channel that does not create, duplicate, alter, or 

lose messages. There is no bound on the message delay or the processing speed of a 

host.  

A process can only fail by crashing, i.e. prematurely halting. A process that 

crashes in a run is faulty in that run, otherwise it is correct. A faulty process executes 

correctly until it crashes. The maximum number of faulty processes in a run is 

denoted by f. To guarantee a majority of the processes to be correct, f is bounded by 

n/2, i.e. f < n/2. Each process is equipped with a FD module of class ◊S, which 

provides unreliable information about the status of other processes. 

When executing the protocol, each process pi needs to maintain necessary 

information about its state. Such information is stored in the following variables. 

ri: the sequence number of the current round that pi is participating in.  

esti: the current estimate of the decision value. Initially, it is set to be the value 

proposed by pi.  
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tsi: the timestamp of esti. The value is the sequence number of the round in which pi 

receives the current value of esti from the coordinator process. 

fldi: the flag to indicate whether pi has made the decision.  

The following message types are used in the proposed protocol. 

PROP(ri, esti, cc): the proposal message sent in round ri by process pi to all other 

processes, where cc is the id of the current coordinator selected by pi. This 

message serves two purposes: 1) exchanging the coordinator id among all 

processes; 2) delivering the proposal value from the coordinator to all processes. 

ECHO(ri, esti, tsi): the echo message sent in round ri, from process  pi to all 

processes. 

DECISION(v): the message sent from a process that has decided to propagate the 

decision value v.  

4.2.2. Description of the Protocol 

Figure 4-1 shows the pseudocode of the proposed protocol. Like most existing 

consensus protocols, there are two tasks. Task 1 is for making the decision and 

constitutes the main body of the protocol. Task 2 is for propagating the value that has 

been decided upon.  

We describe Task 1 first. At the beginning of a round, a process pi first determines 

the coordinator (line 3 to line 5). Two functions are involved. The coord(ri) function, 

as used in existing FD-based protocols, determines the default coordinator of round 

ri. It is deterministic and always returns the same value given the round number. This 

guarantees that each process selects the same default coordinator in the same round. 

To skip crashed coordinators, we introduce a new function ncoord(cc). Given the id 

of the current candidate for the coordinator, this function returns the “next” 

candidate for the current round. Similar to coord(),  ncoord() is deterministic, i.e. all 

processes get the same result with the same input. A simple implementation of 

nccoord() is ncoord(cc)= (cc+1) mod n. ncoord() is invoked repeatedly until a 

“trusted” process is returned. 
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The remaining actions in a round are divided into two phases. In Phase 1, each 

process pi sends its current estimate esti to all processes, using the proposal message 

PROP(ri, esti, cc). Then pi waits for the PROP messages from all processes (line 7).  

pi stop waiting if any of the following three conditions holds: i) pi receives the PROP 

message from pcc and additional n-f-1 processes, ii) pi receives an ECHO message 

with a timestamp no less than ri, i.e. ECHO(*, *, ≥ ri), or iii) pcc is suspected.  

 
Figure 4-1 Pseudocode of the fast consensus protocol 

After pi stops waiting at line 7, it checks the messages it has received for this 

phase. There are three possible cases.  

1) pi has received a  PROP(ri, estcc, cc) message from pcc and a PROP(ri, *, *) 

message from additional n-f-1 processes. Then pi updates its own estimate value esti 

----------------------------------------Task 1: Consensus------------------------------------------------------ 
// The code executed by each process, pi 
BEGIN: 
(1)  ri ←0;  esti ← vi;  tsi ← 0; fldi ← false;   
(2)  while (fldi=false){ 
(3) ri←ri+1; cc = coord(ri);  
(4) while (pcc ∈ suspectedi){ 
(5)  cc = ncoord(cc);} 

----------------------- Phase 1 Collect Proposal --------------------------------- 
(6) send PROP(ri, esti, cc) to Π; 
(7) wait until ((received PROP(ri, *, *) from pcc and n-f -1 other processes)  

or (received ECHO(*, *, ≥ ri ) from some process)  
or pcc ∈ suspectedi);  

(8) if(received PROP(ri, estcc, cc) from pcc and  
PROP(ri, *, cc) from n-f -1 other processes){ 

(9)  esti← estcc; tsi ← ri;} 
(10) else if(received ECHO(ri, v, ri) from some process ){ 
(11)  esti← v; tsi ← ri;} 
 -------------------------Phase 2 Collect Echo - ---------------------------------- 
(12) send ECHO(ri, esti, tsi) to Π; 
(13) wait until ((received ECHO(ri, *, *) from n-f processes)  

or (received  ECHO(*, *, > ri) from some process)) ; 
(14) if(received ECHO(ri, *, *) from n-f processes and  

there are f+1 ECHO(ri, est, ri) messages) { 
(15)  esti ← est; 
(16)  send DECISION(esti) to Π \ pi; 
(17)  fldi←true;}   
(18) else   esti ← est’ carried by the ECHO with the highest timestamp; 
        }//endwhile 
-----------------------------------Task 2:  Reliable broadcast ------------------------------------------------ 
// The code executed by each process, pi 
(19) upon reception of DECISION(est) from process pj: { 
(20) send DECISION(est) to Π \{ pi, pj};  
(21) fldi←true; } 
END 
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to estcc and tsi to ri (line 9).  

2) pi has received an ECHO(ri, v, ri) message. pi will update its own estimate esti 

to v and tsi to ri.  

3) Neither 1) nor 2) is satisfied. pi will not change its estimate or timestamp.  

Phase 2 starts by sending ECHO messages. pi first sends a  ECHO(ri, esti, tsi) 

message to all processes including itself and then waits for ECHO messages (line 

13).  pi  stops waiting at line 13 if any of the following two conditions occur : 1) 

receiving ECHO messages with round number ri (i.e. ECHO(ri,*,*)) from no less 

than n-f processes, or 2) receiving an ECHO message with a timestamp greater than 

ri, i.e. ECHO(*,*,>ri)). Then pi checks the ECHO messages received to determine 

whether it can make the decision. If pi receives ECHO(ri,*,*) messages from no less 

than n-f processes and at least f+1 of them contain a timestamp equal to ri, i.e. the 

messages received are of the form ECHO(ri, est, ri), pi decides upon the value est 

and broadcasts est using the  DECISION(v) message. Otherwise, pi updates its 

estimate value esti to the value est’ that is carried by the ECHO message with the 

highest timestamp. Then pi enters the next round.  

Task 2 is simple. When a process receives a DECISION message but has not 

decided, the process forwards the DECISION message to all other processes except 

the sender, and then makes the decision. 

Obviously, the proposed protocol has the RZD property.  In any round r 

(including the first round), the proposed protocol achieves the global decision within 

two communication steps, if no new crash occurs and the underlying FD makes no 

mistake during this round (i.e. any crashed process is suspected by all correct 

processes and any correct process is not suspected by any correct process). This is 

achieved as follows. In the beginning of round r, each correct process selects the 

coordinator by executing line 3 to line 5. Because both coord() and ncoord() are 

deterministic, all correct processes select the same coordinator px.  Then all correct 

processes send out PROP(r, *, x) messages. Because the FD makes no mistake, all 

correct processes execute line 9 or line 11 and consequently send out ECHO(r, estx, r) 
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at line 12. At line 13, each process waits for ECHO messages. Obviously, no process 

proceeds to the next round, so no ECHO message with a timestamp greater than r 

can be received at line 13. Eventually, each process must receive ECHO(r, estx, r) 

from at least n-f processes and then makes the decision at line 18. The global 

decision is achieved within two communication steps: the transfer of PROP 

messages and the transfer of ECHO messages.  

4.2.3.  The Look-Ahead Technique 

The basic idea of the Look-Ahead technique is to speed up the execution of 

consensus protocols by making use of the future messages delivered in advance. In 

an asynchronous system, the delay of transmitting messages and the processing 

speed of different processes may vary significantly. Therefore, when executing a 

consensus protocol, some processes may proceed faster than others because the 

processes may be slow in handling messages or some messages take longer time to 

arrive. Therefore, different processes may be in different phases or rounds at a given 

moment. Thus, a message may be delivered before the receiver enters the 

corresponding phase or round. In the view of the receiver, such a message carries 

information about the “future”, which can be used by the process to optimize its 

operations, e.g. stop waiting for some message that is delayed for a very long time, 

so as to speed up its execution.   

However, not all future messages are beneficial. For example, if some process, 

which proceeds faster than the others, falsely suspects a correct coordinator or leader, 

this process sends out negative messages to other processes that are waiting for 

proposal messages from the correct coordinator or leader. The receivers may be 

misled by the “future” message from the fast process, i.e. they will stop waiting for 

the proposal from the correct coordinator or leader. Consequently, the decision that 

might be made in this round will not be reached. Similar scenarios may appear in the 

phase of exchanging the echo messages. Our proposed Look-Ahead technique is 

delicately designed to avoid such negative effect. 
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The lines 7 and 13, which are boxed, are the embodiment of the Look-Ahead 

technique. While waiting at line 7, if a process pi receives an ECHO message 

carrying an estimate value with a timestamp equal to the sequence number of the 

current or a “future” round, pi stops waiting immediately. Reception of such an 

ECHO message means that some process (may not be the sender of the ECHO 

message) has received no less than n-f PROP messages for the current or a “future” 

round with the same value of the coordinator field. Therefore, pi no longer needs to 

wait for more PROP messages and can go ahead. 

 
Figure 4-2 Examples of Look-Ahead technique 

While waiting at line 13, a process pi can stop waiting immediately if pi receives 

an ECHO message carrying an estimate value with a timestamp equal to the 

sequence number of a “future” round. Receiving such an ECHO message indicates 

that at least n-f processes have proceeded to that future round. The probability for pi 

to make the decision in the current round is low. Therefore, it would be better for pi 

to give up this round and immediately proceed to the next round.  

Figure 4-2 illustrates two example scenarios that demonstrate the use of the Look-

Ahead technique. Figure 4-2-(a) shows a scenario of looking ahead in Phase 1 of a 

round r. There are totally three processes in the system and at most one process can 

crash. At the beginning of round r, all the three processes select p1 as the coordinator 

and send PROP messages to one another. Now let us examine the execution of p2. In 

Phase 1, p2 waits for the PROP message from p1. However, due to the asynchrony, 

the PROP message from p1 to p2 has been delayed much longer than other PROP 
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messages. After p3 receives the PROP message from p1 and itself, it sends out 

ECHO(r, v, r) to all three processes. Consequently, p2 receives the ECHO message 

from p3 before the PROP message from p1. Then p2 stops waiting for the “slow” 

PROP message and updates its estimate and timestamp based on the ECHO(r, v, r). 

Obviously, the execution time of Phase 1 is shortened. 

Figure 4-2-(b) shows a scenario of the looking ahead in Phase 2 of a round r. 

Similar to the case in Figure 4-2-(a), there are three processes in the system and at 

most one process can crash. At the beginning of round r, all the three processes 

select p1 as the coordinator and send PROP messages one another. Each process 

waits for the PROP from p1 in Phase 1. However, p2 and p3 suspect p1 before they 

receive the PROP messages from p1. Then p2 and p3 send out ECHO(r, *, <r) 

messages and proceed to round r+1. In round r+1, p2 and p3 both select p3 as the 

coordinator and send out PROP messages. After p3 receives the PROP(r+1, *, 3) 

from itself and p2, it sends out ECHO(r+1, est3, r+1). Due to the asynchrony, p1 

receives the ECHO(r+1, est3, r+1) from p3 before the ECHO(r, *, <r) from p2. Then 

p2 stops waiting for the “slow” ECHO message and update its estimate based on the 

ECHO(r+1, est3, r+1). The execution time of Phase 2 is shortened.  

Figure 4-2 gives only two possible scenarios. Considering the asynchrony of the 

underlying system, there are many other situations that can occur in the real 

execution of a consensus protocol. Therefore, future messages appear frequently and 

the “Look-Ahead” technique can significantly improve the performance of a 

consensus protocol.  

The performance of the Look-Ahead technique is significantly affected by the 

degree of asynchrony. The more the message delay or processing speed varies, the 

more time is saved by one useful future message and the more beneficial future 

messages appear. Consequently, larger speedup is made by Look-Ahead. Therefore, 

the Look-Ahead technique is suitable for the system with “high” asynchrony, e.g. 

mobile networks. In mobile environments, the network topology is changing from 

time to time, which increases the diversity of the message delay.  
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4.3. Correctness of the Proposed Protocol 

4.3.1. Validity 

Lemma 1.  In a round r, if a process sends out an ECHO(r, v, r) message at time tr, 

then before tr: 

1) at least n-f processes have sent out PROP(r, *, cc) and pcc has sent out 

PROP(r, estcc, cc), where cc is the id of the common coordinator; 

2) v = estcc. 

Proof. Let us represent all the echo messages ECHO(r, *, r) as an ordered list L = 

[me0, me1, me2, …, mem], where the messages are sorted in the ascendant order of the 

time that they are sent. The sender of mei is denoted by pmei and the estimate of mei is 

denoted by vi. Now, let us consider the message me0 = ECHO(r, v0, r). An ECHO 

message can be sent only at line 12. Before pme0 sends me0 at line 12 in round r, pme0 

must have finished waiting at line 7. Since me0 is the first ECHO message with the 

timestamp equal to r in round r, me0 must have updated its estimate at line 9. 

Therefore, pme0 has received PROP(r, estcc, cc) from pcc and PROP(r, *, cc) from 

additional n-f -1 processes (line 8). Part 1) of the lemma holds. 

The proof of part 2) is by induction on the sequence number i of the ECHO 

messages in the list L.  

Base case: i = 0. As proved above, pme0 has received PROP(r, estcc, cc) from pcc 

and additional n-f -1 processes before it sends out me0. Obviously, pme0 updated its 

estimate to estcc at line 9 and sent out ECHO(r, estcc, r) at line 12. Therefore, v0 = 

estcc. The lemma holds.  

Induction hypothesis: 0 ≤ i ≤ k.  Let us assume vi= estcc, 0 ≤ i ≤ k. Now we prove 

that v(k+1) = estcc. Before sending me(k+1), pme(k+1) must have updated its estimate at 

line 9 or line 11, so it had received: either PROP(r, estcc, cc) from pcc and PROP(r, *, 

cc) from other n-f -1  processes, or an ECHO(r, vj, r), denoted by mej, at line 7. For 

case 1), obviously v(k+1) =estcc. For case 2), pme(k+1) updated its estimate to vj at line 
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11. From the definition of list L, we have 0≤ j<k+1. From the induction hypothesis, 

we have vj = estcc, so v(k+1) =estcc. The lemma holds.� 

Theorem 1 (Validity). If a process decides upon some value v, then some process 

has proposed v.  

Proof. If a process decides upon a value at line 21, then this value must have been 

decided upon by another process at line 17. Therefore, we only consider the values 

decided upon at line 17.  

If a process decides upon v at line 17 in round r, then v must come from an ECHO 

message (line 14). Furthermore, the value carried by the ECHO message must come 

from a PROP message at line 6 (by Lemma 1). Therefore, the value v comes from 

the estimate stored by a process at the beginning of round r. Of course, each estimate 

kept by a process at the beginning of a round k is the same as the estimate kept by 

the process at the end of the previous round k-1. By simple induction, we can 

conclude that v is the estimate value proposed by some process in the beginning of 

the execution. The theorem holds.� 

4.3.2. Termination 

Lemma 2. If no process decides in any round r’≤ r, then all correct processes start 

round r+1.  

Proof. If some correct process blocks forever before round r+1, then there must be a 

earliest round, say rs (rs < r+1), during which some correct process is blocked 

forever. Now, we only need to prove that “no correct process can be blocked in 

round rs forever.”  

The proof is by contradiction. Assume that some correct process pi is blocked 

forever in round rs. Then, pi must be blocked at some “wait” statement on line 7 or 

line 13, in round rs.  

First, let us examine the case where pi is blocked at line 7. Since rs is the earliest 

round where a correct process is blocked forever, all correct processes eventually 

proceed to round rs and send out PROP messages. Consequently, pi can receive at 
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least n-f PROP messages. If the coordinator pcc selected by pi, is a correct process, pi 

eventually receives the PROP message from pcc and is unblocked. Otherwise, pcc is a 

faulty process and will eventually crash. Then pi eventually suspects  pcc and 

unblocks. Therefore, pi cannot be blocked forever at line 7. 

Now, let us consider the case where process pi is blocked at line 13. As proved 

above, no correct process can be blocked forever at line 7 in round rs, so each 

correct process sends ECHO(ri, *, *) message at line 12. Since at most f process(es) 

can crash, each correct process can receive at least n-f ECHO messages from correct 

processes. Therefore, pi cannot be blocked forever at line 13. 

Therefore, no correct process can be blocked forever in round rs, which 

contradicts the assumption.  The lemma holds.� 

Lemma 3. For any round r, if the process pi is the first process that finishes the 

round r, then pi cannot receive any ECHO(x, *, y) with x>r or y>r before it finishes 

the round r. 

Proof. The proof is by contradiction. Assume that pi receives an ECHO(x, *, y) with 

x>r from some process pj during round r. Obviously, pj must have finished round r 

before it sends out the ECHO(x, *, y) to pi, which contradicts the definition of pi 

(“the first process that finishes round r”). Then we have x≤ r. Trivially, we have y≤ x, 

so y≤ x≤ r.    The lemma holds.� 

Theorem 2 (Termination). If a process is correct, it decides eventually. 

Proof. If one (correct or faulty) process decides, all correct processes eventually 

decide due to the reliable broadcast in Task 2. Therefore, we just need to prove that 

“at least one process decides.” 

The proof is by contradiction. Assume that no process decides.  According to the 

accuracy of ◊S, there is a time t after which: 1) no new crash occurs, i.e. all faulty 

processes crashed before t, and 2) there is a correct process px that is no longer 

suspected by any correct process. Without loss of generality, let rx be the first round 

that starts after time t and x = coord(rx). By assumption, no process decides, so all 

correct processes start round rx eventually (by Lemma 2). As px is no longer 
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suspected by any correct process after t, all correct processes select px as the 

coordinator at line 3 and skip line 5. Then each correct process sends PROP(rx, *, x) 

to all processes and wait for PROP messages at line 7. Now let us consider the first 

process, say pf, which finishes round rx.  

First, we prove that pf must update its estimate to estx and its timestamp to rx at 

line 9 or line 11. Since no correct process suspects px, the only possible conditions 

for pf to end the waiting at line 7 are: 1) receiving PROP(rx, estx, x) from pcc and 

PROP(rx, *, x) from other n-f-1 processes, or 2) receiving an ECHO(x, *, y) with y ≥ 

rx from some process pj. If condition 1) holds, pf must update its estimate to estx and 

timestamp to rx at line 9. Otherwise, condition 2) holds. Since pf is the first process 

that finishes round rx, by Lemma 3, we have y≤ x≤ rx. Combining y ≥ rx and y≤ x≤ 

rx, we have x=y=rx, so ECHO(x, *, y) must be an ECHO(rx, *, rx). By Lemma 2, pf 

updates its estimate to estx and timestamp to rx at line 11.  

After pf updates its estimate to estx and its timestamp to rx at line 9 or line 11, pf 

sends out ECHO(rx, estx, rx) at line 12 and waits for ECHO messages from all 

processes at line 13. By Lemma 1 and Lemma 2, all correct processes send out 

ECHO(rx, estx, rx) at line 12. Since pf is the first process that finishes round rx, pf 

must receive ECHO(rx, estx, rx) from n-f processes at line 13 (by Lemma 3). 

Consequently, pf decides at line 17. The theorem holds.� 

4.3.3. Agreement 

Lemma 4. If r is the smallest round in which some process decides upon some value 

v at line 17, then every process that completes round r has an estimate equal to v at 

the end of the round r. 

Proof. Without loss of generality, let pi be the process that decides at line 17 in round 

r. Then pi must have sent DECISION(v) messages at line 16. Obviously, pi has 

received ECHO(ri, *, *) from n-f processes and at least f+1 of them are with the 

same estimate value v, i.e. they received at least f+1 ECHO(r, v, r) messages. By 

Lemma 2, at least n-f processes selected the same coordinator pcc and estcc = v. Let us 
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denote all the processes that complete round r by a list P= [pr0, pr1, pr2, …, prm], 

where the processes are sorted in the ascendant order of the time when they finish 

round r.   

The proof of the lemma is by induction on the sequence number i of the processes 

in the list P. 

Base case: i = 0. Obviously, pr0 is the first process that finishes round r. By 

Lemma 3, pr0 must have received ECHO(r, *, *) messages from at least n-f 

processes at line 13 in round r. Since (n-f)+(f+1)>n, pr0 must have received an 

ECHO message from some process pk which had sent ECHO(r, v, r) to pi. By 

Lemma 3, r must be the highest timestamp of all the ECHO messages received by 

pr0. Therefore, pr0 must update its estimate to v at line 15 or 18. The lemma holds. 

Induction hypothesis: 0 ≤ i ≤ k.  Assume esti= v, 0 ≤ i ≤ k at the end of the round r. 

Now we prove that est(k+1) =v at the end of round r. Let us consider the behaviours of 

process pr(k+1) when it ends the waiting for ECHO messages at line 13. There are two 

possible conditions for pr(k+1) to stop waiting at line 13: 1) receiving ECHO(r, *, *) 

from n-f processes, or 2) receiving an ECHO(x, vy, y) with y>r, from some process pj. 

For condition 1), we can prove est(k+1) =v at the end of round r in the same way as in 

the base case. Then let us consider condition 2).  Since x≥ y, pj must send out the 

ECHO(y, vy, y) at line 12 in round y. By Lemma 1, the value vy comes from the 

estimate of the coordinator pt, which was selected by at least n-f processes in round y 

and pt had send out PROP(y, vy, t) at line 6 in round y. Since an estimate value can 

be adopted by a process only after the value is proposed by some process at line 6, 

the estimate carried by an ECHO message must be equal to the estimate of the 

coordinator at the end of the previously round. By a simple induction, we know that 

vy equals to the estimate of some process pz at the end of round r.  Obviously, pz has 

finished round r before pr(k+1) does so. Therefore, we have pz = prs where 0 ≤ s ≤ k.  

By the induction hypothesis, we have vy = v. The lemma holds.� 

Theorem 3 (Agreement).  No two processes decide differently. 

Proof. If a process decides upon some value at line 21, then this value must have 
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been decided upon by another process at line 17. Therefore, we only consider the 

values decided upon at line 17.  

Let r be the earliest round in which some process pi decides upon the value v at 

line 17. Assume that another process pj decides upon another value y in round k. By 

the definition of r, we have k≥ r. If k=r, by Lemma 1, we have y = v.  If k>r, every 

process that executes round k must have finished round r. By Lemma 4, every 

process that finishes round k has estimate value v at the end of round r. Therefore, no 

other value can be decided upon in subsequent rounds, so we have y = v.  The 

theorem holds.� 

4.4. Performance Evaluation 

We have carried out simulations to evaluate the performance of the proposed 

protocol. We first describe the simulation setup and then report the results of 

performance evaluation. 

4.4.1. Simulation Setup 

The simulated system consists of three main parts: the network, the failure 

detector and the consensus protocol. The main parameters of the simulations are 

listed in Table 4-1. Faulty 

processes are selected 

randomly and the life time 

of a faulty process 

satisfies the exponential 

distribution. For message 

routing, we used the well-

known “least hops” policy, 

which is adopted in many 

existing routing protocols. As in existing implementations of ◊S, the underlying 

network is set to be partial synchronous [8]: the timing attributes are bounded, but 

the bounds are unknown and hold only after an unknown stabilization interval. The 

Table 4-1 Simulation settings for the Look-Ahead 

consensus protocol 

No. of processes, n 20 

Maximum of the crashed processes, f 9 

Mean life of crashed processes, λh 25 ms 

Stabilization interval, GST 500 ms 

Mean link delay, λl From 1 ms to 45 ms 

Max link delay for synchronous period 1000 ms  

Error rate of failure detector, errfd From 0% to 80% 

Interval of Heartbeat messages 10 ms 

Routing Protocol/Policy Least hops 
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message delay is also assumed to satisfy an exponential distribution. Since the error 

rate of FD and the mean link delay can affect the performance significantly, we 

varied these two parameters to observe their effects. 

To compare with existing work, we also simulated the HMR protocol [82]. 

Although HMR is simple, it is versatile and can derive different protocols. To clearly 

show the benefit of our two proposed techniques, we also simulated a variant of the 

proposed protocol without using Look-Ahead. For convenience, the proposed 

protocol and its variant are named “ZD-LA” protocol and “ZD” protocol, 

respectively. 

4.4.2. Performance Metrics 

In literature, “number of communication steps (or rounds)” is usually used to 

evaluate the performance of a consensus protocol [83][139]. This metric is closely 

related to both time cost and message cost because, roughly speaking, more rounds 

or communication steps mean more time and more messages. However, this metric 

cannot precisely reflect either of the two costs. Consensus protocols are executed in 

asynchronous rounds and the communications are asynchronous. The number of 

rounds only indicates how many rounds are needed, but the rounds may overlap each 

other due to the asynchrony and the duration of one round in different protocols or 

scenarios may be different. Similarly, besides the number of rounds, the number of 

messages exchanged in one communication step or round also affects the message 

cost significantly. To evaluate the performance more precisely, we adopt the 

following three metrics in the simulations:  

NR (Number of Rounds): the average number of rounds executed by the 

processes to achieve the global decision. 

NM (Number of Messages): the total number of messages exchanged to achieve 

the global decision.  

ET (Execution Time): the “real” time needed by a consensus protocol to achieve 

the global decision. 
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The simulation is run 300 times and the average values of metrics are reported. 

In each run of the simulation, the consensus protocols are invoked 30 times.  

4.4.3. Simulation Results 

 We discuss the simulation results according to the three metrics.  In the 

following figures, if no indication is made, errfd= 5% and λl = 5ms.   

4.4.3.1. Number of Rounds, NR 

Figure 4-3 shows the results of NR with varied errfd. First, we can see that, with 

the ZD property, when errfd is 0 or very small (less than 5%), both ZD protocol and 

ZD-LA protocol terminate within nearly one round. The little deviation from 1 is due 

to the stabilization interval of the system. Since it is hard to examine the RZD 

property by simulations, only the ZD property is discussed here. 

Now let us examine the effect of errfd. With the increase of errfd, NR of all three 

protocols also increases. This can be explained by the effect of errfd on the 

probability of termination of a round. The more mistakes are made by the FD, the 

higher possibility the current coordinator is falsely suspected. Consequently, it is 

more likely that this round will fail to make decision, so more rounds are needed to 

achieve the consensus.  

 
Figure 4-3 NR vs. error rate of FD Figure 4-4 NR vs. mean link delay 

However NR does not increase linearly with the increase of errfd. When errfd 

reaches about 50%, the increase of NR slows down. This indicates that the effect of 

errfd becomes smaller when its value becomes large. The protocols are executed in 

repeated form, so most of the runs are executed in the stable state, i.e. no new crash 

happens and at least one process pg is trusted by all correct processes (by the 
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property of ◊S). When errfd is large enough, it becomes almost impossible to make a 

decision in a round not coordinated by pg, i.e. the protocol can terminate only when 

pg is the default coordinator. Since each process has the same probability to become 

the default coordinator, the average number of rounds is approximately n/2, i.e. 10, 

in the simulations, as shown in Figure 4-3. 

Now we compare the three protocols. As shown in Figure 4-3, HMR needs the 

largest number of rounds among the three protocols, whereas ZD-LA needs the 

fewest. The difference between HMR protocol and the ZD protocol is due to the ZD 

property. With the increase of errfd, the advantage of ZD protocol decreases. This 

indicates that, even if the FD indeed makes some mistakes, the ZD mechanism can 

still help to some extent, and the better the FD performs the better the ZD performs. 

ZD is more useful than expected because it is effective not only in good cases.  

We see that ZD-LA always performs better than ZD. The performance gain by 

ZD-LA comes from the Look-Ahead technique. Since the Look-Ahead technique can 

shorten the duration of a round, fewer crashes and false suspicions will happen 

during a round and the probability of making the decision during the round is 

increased. Consequently, fewer rounds are needed. 

The results of NR under varied λl are shown in Figure 4-4. With the increase of λl, 

NR of all the three protocols increases. When λl increases, more time is needed to 

deliver a message. Therefore, the duration of a round is increased. Consequently, 

more crashes and false suspicions may happen during the round. The probability of 

making the decision during this round decreases and more rounds are needed to 

achieve the consensus. The difference among the protocols is similar to that in 

Figure 4-3 except that the difference between ZD and ZD-LA becomes greater as λl 

increases. The larger difference is attributed to the feature of the exponential 

distribution of link delay. When λl increases, the variance of link delay, and thus 

message transmission delays, also increases. Therefore, the advantage of using the 

Look-Ahead technique becomes more obvious. 
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4.4.3.2. Number of Messages, NM 

The results of NM with varied errfd and λl is shown in Figures 5 and 6 

respectively. Each curve in Figure 4-5 (or Figure 4-6) has similar trend as in Figure 

4-3 (or Figure 4-4). NM is determined by two factors: NR and the number of 

messages exchanged in one round (NMR for short). Since NMR is stable for each 

protocol, for the same protocol, NR dominates the change of NM.  

For different protocols, however, their performance also depends on NMR, as 

shown by the curves in Figure 4-5 or Figure 4-6. For HMR, it has the largest NR but 

the smallest NM, largely due to the effect of NMR. HMR has the smallest NMR: it 

needs n+n2 messages in each round whereas ZD and ZD-LA needs 2n2 messages. On 

the contrary, ZD and ZD-LA have the same NMR, so NR dominates the difference 

between the performance of the ZD protocol and ZD-LA protocol.  

 
 Figure 4-5 NM vs. error rate of FD  Figure 4-6 NM vs.  mean link delay 

 

 

4.4.3.3. Execution Time, ET 

The results of ET with varied errfd and λl are shown in Figures 7 and 8 

respectively. ET is significantly affected by NR and NM. Because of the joint effect 

Figure 4-7 ET vs. error rate of FD Figure 4-8 ET vs. mean link delay 
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of NR and NM as shown in Figure 4-3 to Figure 4-6, HMR achieves consensus 

faster than ZD only when λl or errfd is large. Benefiting from the Look-Ahead 

technique, ZD-LA can always terminate earlier than the other two protocols. It is 

important to notice that ZD-LA can always achieve consensus with fewer rounds and 

shorter time than ZD, which demonstrates that the Look-Ahead technique can avoid 

the negative effect of future messages. 

 

Figure 4-9 The Look-Ahead technique 

4.5. Applying Look-Ahead to Other Protocols 

In this section, we describe how to apply the Look-Ahead technique to existing 

oracle based consensus protocols. We first propose a general scheme of applying the 

technique with a consensus protocol and then illustrate the use of the scheme with 

examples. 

-------------------------------------------------Task 1: Consensus-------------------------------------------------- 
// The code executed by each process, pi 
initialization;   
while (not decide yet){ //a new round starts; 
          
     determine pcc, the  coordinator or leader for the new round; 
     -------------------------------- Phase 1 Collect Proposal ------------------------------------------ 

     
⎭
⎬
⎫

processeach
pcc sends PROPOSAL message to all processes; 

     wait until (PROPOSAL is received from
⎩
⎨
⎧

processesofquoruma
pcc  )or (pcc ∈ suspected) 

            or (ECHO with an estimate value updated in the current or some future round is received) ;  
 
     update estimate if possible; 
     ----------------------------------Phase 2 Collect Echo -------------------------------------------- 
     send ECHO  message to Π; 

     
⎭
⎬
⎫

processeach
processesspecificsome

wait until (ECHO is  received from a quorum of  processes)  

             or (ECHO with an estimate value updated in some future round is received) ;  
 
      make decision and broadcast the decision value if possible; 
      update estimate if possible; 
} 
-------------------------------------------Task 2:  Reliable broadcast --------------------------------------------- 
upon reception of DECISION(est) from process pj: { 
        make decision and send DECISION(est) to Π \ pi \pj; } 
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4.5.1. A Scheme of Using Look-Ahead 

Figure 4-9 shows the general description of the proposed technique. Consensus 

protocols, including FD-based and leader-based protocols, are abstracted into a 

general form. Statements in brackets represent different operations for FD-based 

protocols and leader-based protocols. The upper line is for FD-based protocols 

whereas the lower line is for leader-based protocols. Although existing protocols [31] 

[110] may be proposed in a different way, they can be easily converted into the form 

of Figure 4-9. The two in boxes constitute the Look-Ahead technique.  

In each round, there are two phases to make the decision. In Phase 1, the 

coordinator or leader tries to impose its own estimate value on other processes. With 

the Look-Ahead technique, a process stops waiting for the proposal message if it 

receives an echo message with an estimate value updated in the same or some future 

round. Obviously, such an estimate value has been adopted by others. Because the 

value decided upon is unique, such a skip does not prevent any potential decision to 

be made. 

In Phase 2, decision makers (some or all processes) wait for ECHO messages 

and try to make the decision based on these messages. With the Look-Ahead 

technique, a process stops waiting for ECHO messages if it receives an ECHO 

message with an estimate value updated in some future round. This will not affect 

any potential decision. Decision is made based on the ECHO messages from some 

quorum of processes, e.g. a “majority” [31][110] or “n-f” [82]. If a quorum of 

processes has changed to some future phase or round, either correctly or falsely, the 

remaining processes can follow them. If a process receives an ECHO message with 

an estimate updated in a future round, the quorum must have finished the current 

round, because the coordinator or the leader of the “future” round has received 

ECHO messages from a quorum processes in the “current” round. 

The Look-Ahead technique is said to be “general” because of two important 

features. First, Look-Ahead can help speed up the execution of an indulgent 

consensus protocol in general cases (see footnote at page 6), because it does not 
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impose any assumption on the behavior of the oracle or processes. Second, Look-

Ahead can be easily applied to nearly all round based indulgent consensus protocols 

in asynchronous systems, including both the leader-based and FD-based protocols.  

4.5.2. Application of Look-Ahead Technique 

In this section, two example protocols are given to show how to apply the Look-

Ahead technique. The first example is HMR protocol [82]. The second example is a 

leader-based protocol proposed in [51]. We chose these two protocols because they 

are representative and simple. Here we present only the revised pseudocode.  

 

 
Figure 4-10 HMR protocol with Look-Ahead technique 

----------------------------------------Task 1: Consensus------------------------------------------------------ 
// The code executed by each process, pi 
BEGIN: 
(1)  ri ←0;  esti ← vi;  tsi ← 0; fldi ← false;   
(2)  while (fldi=false){ 
(3) ri←ri+1; cc = coord(ri);  

----------------------- Phase 1 Collect Proposal --------------------------------- 
(4) if(i=cc) send PROP(ri, esti) to Π; 
(5) wait until ((received PROP(ri, *) from pcc )  
                or (received ECHO(*, *, ≥ ri ) from some process)  

or pcc ∈ suspectedi);  
(6) if(received PROP(ri, estcc) from pcc){ 
(7)                       esti← estcc; tsi ← ri; } 
               else if (received an ECHO(ri, v, ri) ){ 
(8)               esti← v; tsi ← ri;} 
 -------------------------Phase 2 Collect Echo - ---------------------------------- 
               // D is any set that { pcc }⊆ D⊆  Π; 
               // A is any set that { pnc }⊆ A⊆  Π, where nc = coord(ri+1); 
(9) send ECHO(ri, esti, tsi) to D∪A;  
(10) if(pi∈ D∪A) { 
(11)                     wait until ((received ECHO(ri, *, *) from n-f processes)  

               or (received  ECHO(*, *, > ri) from some process)) ; 
(12)              if(received ECHO(ri, *, *) from n-f processes and  

               there are f+1 ECHO(ri, est, ri) messages) { 
(13)                 esti ← est; 
(14)                 send DECISION(esti) to Π \ pi; 
(15)                  fldi←true;}   
(16)              else   esti ← est’ carried by the ECHO with the highest timestamp; 
              }endif 
     }//endwhile 
-----------------------------------Task 2:  Reliable broadcast ------------------------------------------------ 
// The code executed by each process, pi 
(17) upon reception of DECISION(est) from process pj: { 
(18) send DECISION(est) to Π \{ pi, pj};  
(19) fldi←true; } 
END 
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The revised HMR protocol with Look-Ahead technique is shown in Figure 4-10. 

Although HMR presents a unifying approach based on two different classes of FDs, 

for simplicity, only the protocol based on ◊S is reported in Figure 4-10.  

The revised leader-based protocol in [51] with Look-Ahead technique is shown 

in Figure 4-11. To present the protocol in the form similar to as in Figure 4-9, we 

change some variable and message names.  

The detailed correctness proof of the revised protocols can be easily derived 

based on original papers. 

 

 
Figure 4-11 A leader-based protocol with Look-Ahead technique 

----------------------------------------Task 1: Consensus------------------------------------------------------ 
// The code executed by each process, pi 
BEGIN: 
(1)  ri ←0;  esti ← vi; newesti ← ┴; leaderi ← ┴;  fldi ← false; 
(2)  while (fldi=false){ 
(3)   leaderi ←Ω.trusted; newesti ← ┴; 

----------------------- Phase 1 Collect Proposal --------------------------------- 
(4) send PROP (ri, esti, leaderi) to Π; 
(5) wait until ((received PROP (ri, *, *) from leaderi and 
                             ┌(n+1)/2┐-1other processes) 

or (received ECHO (≥ ri, newv) where newv≠ ┴ from some process)  
or leaderi ≠ Ω.trusted);  

(6) if(received PROP (ri, etsl, leaderi) from leaderi and  
PORP (ri, *, leaderi) from ┌(n+1)/2┐-1 other processes){ 

(7)  newesti← etsl;} 
(8) else if(received ECHO(ri, v) from some process ){ 
(9)  newesti← v;} 
 -------------------------Phase 2 Collect Echo - ---------------------------------- 
(10) send ECHO(ri, newesti) to Π; 
(11) wait until ((received ECHO(ri, *) from ┌(n+1)/2┐processes) 

or (received ECHO(>ri, newest) where newest≠ ┴ from some process)) ; 
(12) if(received ECHO (ri, v) with v ≠ ┴ from ┌(n+1)/2┐processes){ 
(13)  esti ← v; 
(14)  send DECISION(esti) to Π \ pi; 
(15)  fldi←true;} 
(16) else   esti ← v’, where v’ ≠ ┴ and carried by ECHO with the highest round number; 
(17) ri←ri+1;  
        }//endwhile 
-----------------------------------Task 2:  Reliable broadcast ------------------------------------------------ 
// The code executed by each process, pi 
(18) upon reception of DECISION(est) from process pj: { 
(19) send DECISION(est) to Π \{ pi, pj};  
(20) fldi←true; } 
END 
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4.6. Summary 
This chapter is concerned with time efficiency of consensus protocols. By using 

two novel techniques, we proposed a ◊S based fast consensus protocol that can 

circumvent the slowdowns caused by failures and false suspicions. The first 

technique is an efficient approach to guarantee the Round-Zero-Degradation property, 

which can speed up the execution of the proposed protocol when the underlying 

failure detector performs well. The coordinator of a round is dynamically selected 

based on the process status information provided by the failure detector, so as to 

eliminate the slowdown caused by an already crashed coordinator.  

The second technique is Look-Ahead, which speeds up the execution of the 

proposed protocol regardless the performance of the underlying failure detector. Due 

to the asynchrony, some messages may be delivered to such receivers that have not 

yet entered the corresponding phase or round. By making use of the information 

carried by future messages, a “slow” process can skip some messages it is waiting 

for so as to speed up its execution. Besides speeding up the execution of the 

consensus protocol in general cases, Look-Ahead can also be easily applied to other 

indulgent consensus protocols for asynchronous systems. To facilitate the application 

of Look-Ahead technique, an abstraction of the Look-Ahead technique is presented 

with two examples.  

Extensive simulations are conducted to evaluate the performance of the proposed 

protocol. The results show that, compared with existing consensus protocols, the 

proposed protocol can achieve consensus with fewer rounds under various 

conditions and shorter time when the failure detector performs well (with an error 

rate less than about 35%). 
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Chapter 5. Improving Message Efficiency of 

Consensus Protocols 

5.1. Overview 

The goal of this chapter is to improve the message efficiency of achieving 

consensus in MANETs. Here, the message cost is in terms of the number of hops, 

rather than the number of end-to-end messages as in existing works. The former can 

reflect the message cost of a distributed algorithm/protocol more precisely, so it is 

important in mobile environments, where resource constraints are serious. This is 

discussed in more detail in the performance evaluation part of this chapter.  

We adopt the clustering approach, which has been widely used in MANETs to 

reduce message cost of achieving consensus. By clustering the mobile hosts into 

clusters, a two-layer hierarchy is established. The messages sent by the hosts in the 

same cluster can be merged by the clusterhead before they are forwarded to other 

hosts. Similarly, when a message needs to be sent to the hosts in the same cluster, it 

can be sent to the corresponding clusterhead, which will unmerge these messages 

and deliver them. In this way, the message cost can be significantly reduced. Based 

on different ways for clustering hosts, we propose two hierarchical protocols.  

The first protocol, named “HC” (“Hierarchical Consensus”), uses a predefined set 

of clusterheads. The HC protocol follows the architecture of the HMR protocol [82], 

extending it to a hierarchical approach. Using a predefined set, some hosts are 

selected to act as clusterheads, and each MH is associated with one clusterhead.  

However, adding the hierarchy is not trivial. First, the messages are not simply 

forwarded by the clusterhead, and a cluster member needs to synchronize with its 

clusterhead in the message exchange step. Due to the mobility and clusterhead 

failure, a MH may need to switch between clusterheads that are executing different 

steps. Therefore, the switch procedure should be delicately handled in order to 

maintain the synchronization between a MH and its clusterhead. Second, nearly all 
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consensus protocols, including the CT protocol [31], HMR protocol [82] and BHM 

protocol [15], requires that no message can be lost. However, the change of the 

hierarchy in a MANET may cause message losses, even if the communication 

channel is reliable. To cope with such message losses, some “redeeming” messages 

should be sent. What and when such messages should be sent depends on the 

execution state of the MH and its clusterhead. In HC, we develop efficient 

mechanisms to send and handle redeeming messages.  

Unfortunately, the HC protocol has three problems. First, the function of 

achieving consensus is tightly coupled with the function of clustering. When a MH 

switches to a new cluster, its execution has to be changed with respect to the status 

of the new clusterhead. Such a design makes the protocol complicated. Second, the 

set of clusterheads is predefined, so it cannot adapt to the crashes that occur during 

the execution, which delays the decision making. Finally, the protocol requires a 

failure detector of class ◊P, which is stronger than the weakest and most commonly 

used failure detector ◊S [31]. 

To address these problems, we therefore propose the second hierarchical protocol, 

named HCD (“Hierarchical Consensus based on Delta”). The functions of clustering 

hosts and achieving consensus are separated using a modular approach. The 

clustering function, named eventual clusterer (denoted by ∆), is proposed to 

construct and maintain the cluster-based hierarchy over MHs. Since ∆ provides the 

fault tolerant clustering function transparently, it can be used as a new oracle for the 

design of hierarchical consensus protocols. 

Base on ∆, we design the HCD protocol. With the help of ∆, the problems of HC 

are easily solved. However, how to handle the change of the clusterhead of a MH 

must be seriously considered. When a host switches from one cluster to another, the 

consensus protocol must change its state to adapt to the new clusterhead. Since the 

clustering procedure is transparently carried out by ∆, the consensus protocol cannot 

participant in the switch procedure. In HCD, we adopt a variant of the Look-Ahead 
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technique to solve this problem. The basic idea is that once a mobile host finds that 

its new clusterhead is in a higher round than its own, it skips to that round.  

In the rest of this chapter, we first describe the HC protocol. Then, the clusterer 

oracle ∆ is defined and implemented based on ◊S. Finally, the HCD protocol is 

presented. 

5.2. The HC Protocol 

5.2.1. System Model 

We consider in a MANET that consists of a set of n (n>1) MHs, M = {m1, m2,…, 

mn}. All MHs are distributed into clusters. Some of the MHs are selected as 

clusterheads, and each is in charge of one cluster. The number of clusterheads is 

denoted by k. A MH can only fail by crashing, i.e. prematurely halting, but it acts 

correctly until it possibly crashes. A MH that crashes in a run is faulty in that run, 

otherwise it is correct. The maximum number of faulty MHs in a run, denoted as f, is 

bounded by k and n/2, i.e. f < minimum(k, n/2).  

MHs communicate by sending and receiving messages. Every pair of MHs is 

connected by a reliable channel that does not create, duplicate, alter, or lose message. 

It is important to notice that the assumption on reliable channels can be reduced to 

one on lossy channels, which are more feasible for MANETs, but require a much 

more complicated design. This is discussed in Section 5.2.6. For simplicity, we 

assume the channels are reliable in the description of the HC protocol. 

The system is equipped with an unreliable FD of class ◊P. ◊P is defined using the 

following properties: 

Strong Completeness: eventually each crashed process is permanently suspected 

by each correct process. 

Eventual Strong Accuracy: there is a time after which every correct process is not 

suspected by any correct process. 

Among all the eight classes of FDs proposed by Chandra and Toueg, ◊S is the 

weakest but strong enough to solve the consensus problem [30][31]. ◊P has stronger 
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accuracy property than ◊S, but it has been proved that ◊P and ◊S are equivalent in 

the power of solving the consensus problem [64]. Although ◊P is stronger than ◊S, 

existing implementations of ◊P [31][93] are not more complex than those of ◊S. Of 

course, ◊P may take more time to reach a stable state. 

Our protocol uses ◊P instead of ◊S because the eventually strong accuracy 

property is necessary to guarantee the termination. There are two necessary 

conditions to guarantee the termination of our HC protocol. First, there is at least one 

correct host to act as a clusterhead eventually. This can be satisfied by including 

more than f MHs in the set of clusterheads. Second, after some time, some correct 

clusterhead must be no longer suspected by any correct MH. A FD of class ◊S can 

only guarantee that at least one correct host is never suspected after some time. 

However, such a host may not be a clusterhead. Therefore, ◊P is necessary to satisfy 

the second condition (see the proof in Section 5.2.4 for more details). 

5.2.2. Data Structures and Message Types 

When executing the protocol, each host needs to maintain necessary information 

about its state. Such information is stored in the following variables.  

fli: the flag indicating whether mi has made the decision. The initial value is false. 

ri: the sequence number of the current round that mi is participating in.  

phi: the phase number of the current phase that mi is participating in. 

esti: the current estimate of the decision value. Initially, it is set to the value 

proposed by mi.  

tsi: the timestamp of esti. The value is the round number of the round in which mi 

receives the esti proposed by the coordinator host. The update of tsi is entailed by the 

reception of estimate from a coordinator. 

During the execution of the protocol, the mobile hosts need to communicate with 

each other by exchanging messages. The message types involved in the proposed 

protocol are as follows.  
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PROP(r, estcc): the proposal message sent from the coordinator to clusterheads or 

from a clusterhead to the hosts in its cluster. estcc is the current estimate kept by the 

coordinator. In each round, the coordinator tries to impose estcc on other hosts by 

sending proposal messages. 

ECHOL(r, esti, tsi): the echo message from mi to its clusterhead in the round r. 

ECHOG(r, v, tsv, x, y): the echo message from a clusterhead to other clusterheads 

in round r. ECHOG(r, v, tsv, x, y) is constructed by merging the ECHOL messages in 

the same cluster. v is the estimate carried by the ECHOL message with the highest 

timestamp and tsv is the timestamp of v. x is the set of MHs that send the ECHOL 

message with tsv whereas y is the set of MHs that send other ECHOL messages. 

LEAVE(r, sn): the message sent by a MH to its clusterhead to inform the 

clusterhead that the MH wants to disassociate itself from the current cluster. sn is the 

sequence number to distinguish different LEAVE messages from the same host. 

JOIN(ri, sn): the message sent by a MH to the clusterhead of a new cluster that 

the MH wants to join. sn is a sequence number to distinguish JOIN messages from 

the same host. 

DECISION(est): the message sent by a MH to broadcast the decision value est. 

PROPH(r, estcc): same as a PROP message except that this is for a MH that 

newly joins. 

5.2.3. Operations of HC Protocol 

A two-layer hierarchy is imposed on the network of MHs. The Clusterhead layer 

consists of a predefined set H of MHs which act as clusterheads to merge/unmerge 

and forward messages for the MHs. The Host layer consists of a set M of all MHs, 

including those in set H.  

Only the hosts in set H can act as coordinators, decision_makers, or 

agreement_keepers. To guarantee the termination of the protocol, at least one correct 

host should be included in H, i.e. |H| = k≥ f+1. Each host chooses the nearest7 

                                                 
7 A threshold of the distance difference between the distance to the old and new clusterheads can be set.  
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unsuspected clusterhead in H as its clusterhead. The distance between two hosts is 

defined as the path length in hops. Such distance information can be obtained 

through the underlying routing protocol, which is in charge of the establishment and 

maintenance of the path between any two hosts8. Obviously, a clusterhead host 

always chooses itself. The hosts that choose the same clusterhead constitute a cluster. 

A host associated with a clusterhead is called a “local host” of the clusterhead and 

correspondingly, the clusterhead is called “local clusterhead” of its local hosts.   

To balance the workload and energy consumption, MHs can take turns (e.g. 

according to some deterministic function) to serve as clusterhead for different runs 

of the protocols. Since the only requirement for forming the H set is that at least one 

clusterhead is correct, it does not matter that a crashed host appeared in the H set, 

and MHs can always find and join a correct clusterhead in H. Although H remains 

unchanged for each run of the protocol, it can be periodically re-formed, and a MH 

can switch to be a clusterhead and vice versa.  

The proposed protocol consists of four tasks. Like most existing consensus 

protocols, Task 1 is the main body of the protocol for making decision and Task 2 is 

a simple broadcast algorithm for propagating the value decided upon. Other two 

additional tasks are designed in our protocol. Task 3 is used to handle late ECHOL 

messages arrived at a clusterhead and Task 4 is used to switch the cluster of a host. 

The pseudocode of Task 1 and Task 2 is shown in Figure 5-1 and the pseudocode of 

Task 3 and Task 4 is shown in Figure 5-2. In the following, we describe the tasks in 

more detail. 

  Task 1: This task consists of two phases. In the beginning of round r, the current 

coordinator mcc sends PROP(r, estcc) to the hosts in set H. Upon receiving the 

PROP(r, estcc) message from mcc, a clusterhead forwards the PROP message to all its 

local hosts. If a clusterhead suspects mcc before receiving PROP(r, estcc), it sends a 

PROP(r, ┴) message to its local hosts, where “┴” is a value that can never be 

                                                 
8 For geographical routing protocols, the “distance” can be defined as the geographical distance between two 

hosts. The distance information can still be obtained through the underlying routing protocol. 



Chapter 5. Improving Message Efficiency of Consensus Protocols 

 85

proposed or adopted. A host mi waits until a PROP(r, -) message is received from its 

local clusterhead, the local clusterhead is suspected, or its local clusterhead is no 

longer the nearest one. The symbol “–” in the message means any possible value. If a 

PROP(r, v) message with v ≠ ┴ is received, mi updates its estimate value to v and 

timestamp to r. If the local clusterhead is suspected or its local clusterhead is no 

longer the nearest one, mi invokes Task 4, the “switch” procedure, to associate with 

another clusterhead, which will be presented later. Then Phase 1 is finished. 

In Phase 2, the message exchange pattern is determined by a set DA, the set of 

decision_makers and agreement_keepers. Same as in HMR, decision_makers (in set 

D) are the hosts that have to check the decision predicate that allows them to know if 

they can decider during the current round; agreement_keepers (in set A) are the hosts 

that should keep the updated estimate of the final decision. Different from HMR, we 

use a single set to store both the decision_makers and agreement_keepers. The roles 

of a decision_maker and an agreement_keeper are the same in terms of message 

exchange. Combining the sets D and A can help increase the probability of making 

decision in a round without any additional overhead caused. Therefore, in HC, each 

host in DA simultaneously plays two roles: decision_maker and agreement_keeper. 

DA is defined by the function dec_agr(r), which has to satisfy the following three 

constraints: 

i) dec_agr(r) is deterministic so that all hosts have the same DA in the same round. 

ii) dec_agr(r) contains only clusterheads, i.e. DA ⊆H. 

iii) dec_agr(r) contains the coordinator of the rounds r and r+1. 

Phase 2 is started by sending ECHOL messages. Each host first sends an echo 

message ECHOL(ri, esti, tsi) to its local clusterhead. If the host itself is not a 

clusterhead, it enters the next round r+1. Each clusterhead waits for an echo message 

ECHOL(r, -, -) from each local host that is not suspected. Then each clusterhead 

constructs an echo message ECHOG(r, v, tsv, x, y) by merging the ECHOL(r, -, -) 

messages collected. v is the estimate value carried by the ECHOL(r, -, -) message 

with the highest timestamp and tsv is that timestamp. x is the set of the hosts that 
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send the ECHOL(r, -, -) messages with tsv whereas y is the set of the hosts that send 

ECHOL(r, -, -) messages with other timestamps.  

 

 

Figure 5-1 HC protocol - Task 1and Task 2   Figure 5-2 HC protocol - Task 3 and Task  4 

--------------------Task 1: Consensus---------------------- 
// The code executed by each host, mi 
COBEGIN: 
(1) ri ←0; esti ← vi; tsi ← 0; fli ← false;  

 while (fli≠true){ 
(2)      ri←ri+1; phi←1; cc = coord(ri); 
---------- Phase 1: from mcc to clusterheads ------------- 
         //p denotes the local clusterhead of mi 
(3)    if(i=cc) send PROP(ri, esti) to H; 
         if(mi∈H) { 
(4)         wait until (PROP(ri, estcc) is received or  
                                                  mcc ∈ suspectedi); 
(5)         if(PROP(ri, estcc) message received from pcc) 
                       broadcast (PROP(ri, estcc) locally; 
(6)         else broadcast (PROP(ri, ┴) locally; }//endif 
(7)     wait until PROP(ri, v) from p is received or  
                        p is suspected or p is not the nearest one ;
(8)     if(PROP((ri, v) is received and v ≠ ┴){ 
               esti← v; tsi←ri;} 
(9)     if(p is suspected or p is not the nearest one) 

invoke Task 4; 
-----------Phase 2: from all to H -------------------------- 
          phi←2; 
(10)   send message ECHOL(ri, esti, tsi) to  p; 
          if (mi∈ H) { 
(11)       wait until an ECHOL(ri, -, -) is received from  
                           each local host mj or mj∈ suspectedi; 
(12)        merge the ECHOL messages{ 
                   tsv←the highest timestamp; 
                   v← the estimate of the ECHOL with tsv; 
                   x← the hosts that send ECHOL with tsv; 
                   y← the hosts that send other ECHOL;} 
(13)       send ECHOG(ri, v, tsv, x, y) to DA; 
 if(mi∈ DA){ 
(14)            wait until ((∪x∪y)of ECHOG(ri, -, -, x, y)     
                           received includes at least n-f hosts) or   
                           (ECHOG(-,-,>ri,-,-) received); 
(15)            if(i≠cc) esti←the est  with the highest ts; 
(16)            if(ECHOG with (ts= r=ri) represent 
                           at least (f+1) hosts){ 
                         fli←true; 
(17)          ∀j ≠ i: send DECISION(esti) to mj;} 

} 
        } 
} 
---------------Task 2:  Reliable broadcast --------------- 
(18) upon reception of DECISION(est) from host mk: 
            fli←true; ∀j ≠ i, k: send DECISION(est) to mj; 
COEND 

------------Task 3: Handling Late ECHOL---------------- 
// The code executed by each clusterhead; 
while (fli≠true){ 
(19)  upon reception of ECHOL (r,v,ts) with (r<ri) or (r=ri 
and an ECHOG(ri, *, *, *,*) has been sent); 
(20)       construct an new ECHOG and send it to DA;} 
-------------Task 4: Clusterhead switch ------------------ 
--------Task 4.1: code executed by host mi ------------ 
(21) while(fli≠true and (p∈ suspectedi or  
                             p is not the nearest one)) { 
(22)      sn←sn+1; q ←the nearest unsuspected clusterhead;
(23)      send a LEAVE(ri, sn) to p; 
(24)      send a JOIN(ri, sn) to q; 
(25)      wait until PROPH(rq, v)received or q∈ suspectedi; 
             if (PROPH(rq, v) received){ 
                 if(ri< rq){ 
(26)      ri ← rq; 
(27)      for(tsi ≤ rr<ri) send ECHOL(rr, esti, tsi) to q; 
(28)      if(v ≠ ┴){ esti← v; tsi←ri;} 
(29)      GOTO (10); 
                 }else if (ri = rq){ 
                     if(phi =1){ 
(30)          for(tsi≤ rr< ri) send ECHOL(rr, esti, tsi) to q;
(31)          if(v ≠ ┴){esti← v; tsi←ri;} 
(32)          GOTO (10);  

     }else if (phi =2){ 
(33)          for(tsi≤ rr≤ ri) send ECHOL(rr, esti, tsi) to q;
(34)          ri ← ri+1; GOTO (4);} 
                 }else if(ri > rq){ 
                     if(phi =1){ 
(35)          for(tsi≤ rr< ri) send ECHOL(rr, esti, tsi) to q;
(36)          GOTO (4); } 

     else if (phi =2){ 
(37)          for(tsi≤ rr≤ ri) send ECHOL(rr, esti, tsi) to q;
(38)          ri ← ri+1; GOTO (4);}} 
            } else GOTO (22); 
       } 
----------Task 4.2: code executed by clusterhead g------ 
       while(fli≠true){ 
             upon reception of LEAVE(ri, sn) from host mi{ 
(39)             delete mi from local host list;} 
             upon reception of JOIN(ri, sn) from host mi { 
                    add mi to local host list; 
(40)       if(phg=2){ 
                          if(PROP(rg, estcc) received from mcc) 

                send PROPH(rg, estcc) to mi; 
(41)           else send PROPH(rg, ┴) to mi;}} 
        }//endwhile; 
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The clusterhead then sends the ECHOG(r, v, tsv, x, y) message to the hosts in the 

sets DA. Each clusterhead in DA waits for ECHOG messages until: 1) the 

ECHOG(r,-,-,-,-) messages received represent no less than (n-f) hosts, or 2) an 

ECHOG(-,-,tsv,-,-) with tsv>r is received. Here, “represent” means the host is 

included in the set x or y of the ECHOG message. A clusterhead in DA updates its 

estimate to the value carried by the ECHOG message with the highest timestamp, 

but keeps the timestamp unchanged. Finally, a clusterhead in DA checks whether it 

can decide in the current round. If there are f+1 or more hosts in x sets of the 

ECHOG(r, v, tsv, x, y) messages with tsv=r, it decides upon the value v and 

broadcasts the final value.  

Task 2: Task 2 simply broadcasts the decision value. When a host receives a 

DECSION message, it decides upon the same value and forwards the DECSION 

message to all other hosts except the sender.  

Task 3: Task 4 handles the late ECHOL messages. An ECHOL message is “late” if 

it arrives at a clusterhead after the clusterhead has sent out an ECHOG message for 

the corresponding round. This happens when a clusterhead p suspects a correct local 

host or a host mi joins a new cluster where the clusterhead is in a round greater than 

the tsi. The hosts in set H may be blocked forever if a late ECHOL message is 

ignored. To avoid this, when a clusterhead p receives an ECHOL(ri, esti, tsi) with (ri 

< rp) or (ri = rp but p has sent out an ECHOG for the round ri), p constructs a 

redeeming ECHOG for mi and sends it to all clusterheads. 

Task 4: This task is for a mobile host to switch its clusterhead. It is invoked when 

a host mi suspects its current clusterhead p or p is no longer the nearest clusterhead. 

mi needs to choose a new clusterhead q, which is the nearest among the unsuspected 

clusterheads. First, mi sends a message LEAVE(ri, sn) to p and a message JOIN(ri, sn) 

to q. Upon reception of the leave message, p deletes mi from its local host list. Upon 

reception of the join message, q adds mi to its local host list. Then if q is in Phase two 

it sends PROPH(rq, estcc) or PROPH(rq, ┴) to mi as it has sent to other local hosts in 
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Phase one. Upon reception of the PROPH(rq, w) message from q, the behaviors of 

host mi can be classified into 3 cases.  

Case 1: (ri< rq) or (ri = rq, phi =1): mi updates its round number to rq and sends 

ECHOL(rr, esti, tsi) messages to q where tsi ≤ rr<rq. If w≠ ┴, mi sets its estimate to w 

and timestamp to rq. mi then resumes the normal execution by entering Phase 2 of 

round rq.  

Case 2: (ri > rq, phi =1): mi sends ECHOL(rr, esti, tsi) messages to q where tsi ≤ 

rr<ri and then resumes the normal execution by continue the Phase 1 of round ri.  

Case 3: (ri = rq, phi =2) or (ri > rq, phi =2): mi sends ECHOL(rr, esti, tsi) messages 

to q where tsi ≤ rr≤ ri and then resumes the normal execution by entering the next 

round ri+1. 

5.2.4. Correctness of the HC Protocol 

Since the validity property of the proposed protocol is obvious, in this section, we 

only present proofs for the termination property and agreement property. The term 

“indirect suspicion” used here refers to the situation that a host itself does not 

suspect the current coordinator but it receives a PROP(r, ┴) from its clusterhead. 

5.2.4.1. Termination 

Lemma 1. If no host decides in a round r’≤ r, then all correct hosts eventually start 

round r+1.  

Proof. If some correct host blocks forever before round r+1, then there must be a 

smallest round, say rs (rs < r+1), during which some correct host is blocked forever. 

Therefore, we only need to prove that “no correct host can be blocked in the round rs 

forever.” The proof is by contradiction.  

Assume that some correct host mi is blocked forever in round rs. Then mi must be 

blocked in a wait statement, i.e. lines 5, 8, 25, 11 or 14, in the round rs. Let us 

analyze these cases one by one. 

Case 1: mi is blocked at line 4. Obviously, mi is a clusterhead. If i =cc, mi cannot 

be blocked (it receives the proposal message sent by itself). Then, i ≠ cc. If the 
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coordinator mcc is a correct host, mi eventually receives the proposal message from 

mcc. If mcc is a faulty host, mi eventually suspects mcc after mcc crashes.  Therefore, mi 

cannot be blocked forever at line 4. 

Case 2: mi is blocked at line 7. If mi is a clusterhead, it is the local clusterhead of 

itself. Since mi cannot be blocked forever at line 4, it eventually receives the 

PROP(r,-) message sent by itself at line 5 or 6. If mi is not a clusterhead, on the other 

hand, there are two possible situations. Let p be the local clusterhead of mi. If p is a 

correct host and keeps to be the nearest to mi, it eventually sends out a PROP(r, -) 

message (the clusterhead cannot be blocked at line 4 forever) and mi eventually 

receives it. Otherwise, after p crashes or turns to be no longer the nearest to mi, mi 

eventually suspects it and invokes the clusterhead switch procedure. Therefore, mi 

cannot be blocked forever at line 7.  

Case 3: mi is blocked at line 25. Obviously, the clusterhead switch procedure has 

been invoked. There are two possible cases. If the new clusterhead selected is a 

faulty host, mi eventually suspects it after it crashes and invokes the clusterhead 

switch procedure again. Since at least one clusterhead is correct (k≥ f+1), mi 

eventually finds a correct clusterhead (by the eventually strong accuracy of ◊P). This 

case turns to be the second one. For the second case, i.e. the new clusterhead selected 

is a correct host, it eventually sends a PROPH(r,-) message to mi (no host is blocked 

at line 4 forever) and mi eventually receives the message. Therefore, mi cannot be 

blocked forever at line 25. 

Case 4: mi is blocked at line 11. Obviously mi is a clusterhead and is waiting for 

ECHOL messages from its local MHs. All hosts in the local host list of mi can be 

categorized into three classes: a) faulty hosts, b) correct hosts that have left mi (but 

mi has not received their LEAVE messages) and c) the other hosts. For hosts in class 

a), mi eventually suspects them after they crash. For hosts in class b), each of them 

must have sent a LEAVE message to mi before it leaves mi (line 23). mi eventually 

receives the LEAVE messages and deletes them from local host list. For class c), mi 
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eventually receives an ECHOL from each of them because they cannot be blocked at 

line 4, line 7 or line 25. Therefore, mi cannot be blocked forever at line 11. 

Case 5: mi is blocked at line 14. Obviously, mi is a decision_maker and 

agreement_keeper. There are two possible conditions to unblock mi: 1) mi receives 

ECHOG messages that can represent no less than n-f hosts or 2) mi receives an 

ECHOG message with timestamp ts>rs. We now prove that at least one of the two 

conditions is satisfied eventually. Since at most f hosts can crash, there are at least n-f 

correct hosts. By assumption, rs is the smallest round in which a correct host is 

blocked forever, so all these n-f correct hosts eventually proceed to the round rs and 

execute line 10. Then we categorize all the correct hosts into two classes:  

i) the hosts with correct clusterheads when they execute line 10, and  

ii) the hosts with faulty clusterheads when they execute line 10.  

For a host mj in class i), the local clusterhead of mj eventually receives mj’s 

ECHOL message and includes mj in an ECHOG message to mi.  

For a host mj in class ii), after its clusterhead crashes, mj eventually invokes the 

cluster switch procedure, finds a correct clusterhead host q, after one or more cluster 

switches, and receives a PROPH(rp,-) message from q. Then we consider different 

situations according to tsj:  

ii. a) if tsj≤ rs, an ECHOL(r, estj, tsj) is sent to q at line 27, 30, 33, 35 or 37;  

ii. b) if tsj>rs, an ECHOL(-,-,>rs) is sent to q at line 27, 30, 33, 35 or 37.  

Considering q is a correct host, it eventually includes mj in an ECHOG to mi. Let 

examine the ECHOG messages received by mi in round rs. If some host belongs to 

class ii)-b), mi eventually receives an ECHOG(-,-,>rs,-,-) and consequently condition 

2) is satisfied; otherwise all n-f correct hosts belong to class i) or ii)-a), and mi 

eventually receives enough ECHOG(r,-,-,-,-), i.e. the condition 1) is satisfied.  

Therefore, mi cannot be blocked forever at line 14. � 

Lemma 2. For any round r, if the coordinator cr sends out a PROP(r, v) at time tr 

and less than n-f hosts suspect  cr  directly or indirectly in Phase 1 of  r, then no 

PROP(r’, v) with r’>r can be sent out before tr. 
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Proof. The proof is by contradiction. Assume that at least one PROP(r’, v) message 

with r’>r has been sent out by the time tr. Let rm be the greatest round number of all 

the PROP(r’, v) messages that have been sent out by time tr, then rm>r and rm-1≥ r.  

Obviously the coordinator of the round rm, i.e. the host crm, must have finished line 

14 in round rm-1 (since it has sent out PROP(rm, v) before tr). Since the timestamp 

of the estimate at any host can only be changed at line 8, 28 or 31, and rm is the 

greatest round number in PROP(r’, v) messages by time tr, crm must have not 

received a ECHOG with ts>rm-1 in round rm-1. Therefore, crm must have received 

ECHOG messages representing at least n-f hosts at line 14 of round rm-1. This 

means that at least n-f hosts sent out ECHOL(rm-1,-,-) messages in round rm-1 

before time tr, so at least  n-f hosts finished Phase 1 of round rm-1 before time tr. 

Since rm-1≥ r, at least n-f hosts finished Phase 1 of the round r before cr sends out 

PROP(r, v) in the round r. Therefore at least n-f hosts suspected cr directly or 

indirectly in Phase 1 of round r, which contradicts the assumption in the lemma.� 

Corollary 1. In any round r, if the coordinator of r+1, cr+1, receives an ECHOG 

message with ts>r, then at least n-f hosts suspect cr+1 directly or indirectly in Phase 

1 of round r+1.  

Proof.  By the assumption in the lemma, at least one PROP message with round 

number s>r has been sent out. Since cr+1 has not yet finished round r, no PROP 

message with round number r+1 can be sent out. Therefore, s>r+1. By Lemma 2, at 

least n-f hosts suspect cr+1 directly or indirectly in Phase 1 of round r+1.� 

Theorem 1. If a host is correct, it eventually decides. 

Proof. If one host decides, all correct hosts eventually decide due to the reliable 

broadcast mechanism (lines 17 and 18). Therefore, we only prove that at least one 

host decides. The proof is by contradiction.  

Assume that no host decides. According to the accuracy and completeness of ◊P, 

there is a time t after which all correct hosts are never suspected by any correct host 

and all faulty hosts are permanently suspected by every correct host after they crash. 

Since there is at least one correct host mx, in set H after time t (k≥ f+1), every correct 
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host eventually associate itself with a correct clusterhead. Let r be the first round 

coordinated by mx and started after t. By the assumption (no process decides) and 

Lemma 1, all correct hosts eventually enter round r. Since no new suspicion occurs 

after time t and at most f hosts can crash, there are at least n-f correct hosts that 

execute round r. By Corollary 1, mx cannot receive an ECHOG with ts>r at line 14, 

so mx eventually decides in round r, which contradicts the assumption “there is no 

host decides.”� 

5.2.4.2. Agreement   

Lemma 3. Let r be the first round in which f+1 hosts send ECHOL(r, v, r) and r’ be 

any round that r’ ≥ r. Then: 

1) No host decides before r; 

2) If the coordinator of r’ sends a PROP message, this message carries the 

estimate value v.  

Proof.  Proof for 1): The proof is by contradiction. If no host decides at line 16, no 

host can decide at line 18, we therefore only consider the decision at line 16. Assume 

that some host mj decided at line 16 in some round s before r, i.e. s < r and the 

decision value is u. mj must have received at least one ECHOG message carrying a 

timestamp equal to s and the union set of the x sets in those ECHOG messages 

includes at least f+1 hosts. Since all ECHOG messages are constructed based on 

ECHOL messages, at least f+1 ECHOL(s, u, s) must have been sent out. From the 

definition of r (“…first round in which…”), we have r ≤ s, which contradicts the 

assumption s<r. Part 1) holds.   

Proof for 2): In any round r, the timestamp ts of the estimate at any host can only 

be changed to r at line 9, 28 or 31. By the assumption in the lemma, a PROP(r, v) 

has been sent out by cr, the coordinator of round r and at least f+1 hosts have 

received the PROP(r, v) in Phase 1 of round r. Let tp be the moment that cr sent out 

the PROP(r, v) message. Since n-(f+1)<n-f, by Lemma 2, all PROP(r’, -) messages 

with r’>r must be sent out after time tp. Let R be the list of the round numbers of all 

PROP(r’, -) messages with r’>r. Without loss of generality, we assume R= (r0=r, r1, 



Chapter 5. Improving Message Efficiency of Consensus Protocols 

 93

r2, r3,…,ri,…), where the round numbers are sorted in the ascending order of the 

moments when the corresponding PROP messages are sent out.  

Now, we prove that for each round ri in R, the proposal value carried by PROP(ri, 

u) is equal to v, i.e. u=v. The proof is by induction on the sequence number i in R.  

Base case: i=0. According to the HC protocol, a host sends an ECHOL(r, v, r) 

only if it has received a PROP(r, v) or PROPH(r, v). Therefore, the local clusterhead 

of this host must have received a PROP(r, v). The lemma holds.  

Induction hypothesis: i>0. Assume that the lemma holds for any round ri such that 

0 ≤ i ≤ k, we show that the lemma holds for round rk+1. Now, we define two sets of 

hosts. 

• The set G includes all the hosts that have received a PROP(ri, w) or PROPH(ri, w) 

message with 0 ≤ i ≤ k. By the induction hypothesis, ∀mj ∈ G: estj =w= v and 

tsj=ri. Since at least f+1 hosts send ECHOL(r, v, r), |G| ≥ f+1. 

• The set B includes the hosts that have not received a PROP(ri, w) message with 0 

≤ i ≤ k. Obviously, ∀mj ∈ B: tsj < r. Therefore, all timestamps of the hosts in set B 

are less than those of the hosts in set G. 

Now Let us consider the behaviors of host crk+1 in Phase 2 of the round (rk+1)-1. 

By the definition of DA, crk+1∈DA during the round (rk+1)-1, so crk+1 waits for the 

ECHOG messages at line 14 of the round (rk+1)-1. There are two conditions to stop 

the wait at line 14.  

1) crk+1 receives an ECHOG(-, u, tsm, -, -) with tsm >(rk+1)-1. Then crk+1 updates 

its estimate to the value u at line 15. In fact the value u must come from an ECHOL(-, 

u, tsm), so the sender of this ECHOL must have received a PROP(tsm, u) or 

PROPH(tsm, u). This means that the local clusterhead of the sender of this ECHOL 

message must have received a PROP(r, u). By the definition of R and the induction 

hypothesis, tsm∈{r0, .., rk}, so u=v. 

2) crk+1 receives ECHOG((rk+1)-1,-, -, -, -) messages that can represent at least n-f 

hosts, which means that at least n-f message ECHOL((rk+1)-1, -, -) are merged. Let X 

denote the set of the hosts that sent these ECHOL messages. Obviously, |X|≥ n-f. At 
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line 15, crk+1 updates its estimate to the value u carried by the echo message 

ECHOL((rk+1)-1, u, tsm), where tsm is the highest timestamp. Since |G|≥ f+1, G∩X ≠ 

Ø. Therefore, the ECHOL((rk+1)-1, u, tsm) message must be sent by a host in G. By 

the definition of G, u=v. 

Then for both cases 1) and 2), the estimate value of crk+1 is updated to v in round 

(rk+1)-1 and consequently in round rk+1, crk+1 sends out a PROP( rk+1, v). The lemma 

holds.� 

Theorem 2. No two hosts decide upon different values. 

Proof. If a host decides upon a value at line 18, then this value must have been 

decided upon by another host at line 16. Therefore, we only consider values decided 

upon at line 16.  

Let mi be a host that decides upon a value vi in round ri. Since mi decides in round 

ri, it has received at least one ECHOG(ri, vi, ri, -, -) message. Therefore, the 

coordinator of round ri had sent out a PROP(ri, vi).  Similarly, if another host mj 

decided upon another value vj in round rj, the coordinator of round rj must have sent 

out PROP(rj, vj). Let r be the round characterized in Lemma 3 (the first round in 

which f+1 hosts send ECHOL(r, v, r)). By Lemma 3, r≤ ri and r≤ rj, so v=vi=vj.�  

5.2.5. Performance Evaluation 

In this section, we evaluate and compare the performance of the HC protocol, the 

HMR protocol and the BHM protocol by simulations in a MANET environment.  

5.2.5.1. Performance Metrics 

Besides the three metrics used in Chapter 4, a new metric “NH” is used here. In a 

MANET, the concepts of “message” and “hop” must be distinguished. In traditional 

distributed systems, the performance is computed in terms of the number of 

messages, where one “message” means one “end-to-end” message. However, one 

message may take one or more hops to reach the destination in the underlying 

network. One “hop” means one network layer message, i.e. a point-to-point message. 

In traditional systems, messages that cost different number of hops are regarded as 
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messages with the same cost. However, in a MANET, the resource constraint is 

serious. We propose the new metric, the number of hops to measure the message cost 

more precisely.  Therefore, here, we use the following four metrics:  

NR (Number of Rounds): the average number of rounds executed by the hosts to 

achieve consensus. 

ET (Execution Time): the “real” time needed by a consensus protocol to achieve 

the global decision.  

NM (Number of Messages): the total number of messages exchanged to achieve 

the global decision. For the HC protocol, the messages for cluster switch are also 

included. 

NH (Number of Hops): the total number of hops of the messages exchanged to 

achieve the global decision.  

5.2.5.2. Simulation Setup 

The simulation system consists 

of three modules: mobile network, 

FD and consensus protocol. The 

main parameters of the 

simulations are shown in Table 5-1.  

 All hosts are randomly 

scattered in a rectangular territory. 

To evaluate the scalability of the 

protocols, we varied the number of 

hosts (i.e. the system scale) and 

accordingly the territory scale in 

proportion, so that the 

performances under different 

number of hosts are comparable. 

To simulate the movements of hosts, the well-known random waypoint mobility 

model [26] is adopted. The mobility level, defined as the percentage of the time that 

Table 5-1 Simulation settings for the hierarchical 

consensus protocol 

No. of the Hosts 10 to 100 

Territory (m) 200 to 630 

f/n 10% to  50% 

Mean life of crashed hosts 30 ms 

Stabilization interval 600 ms 

Transmission radius 100 m 

Mean link delay 5 ms 

Max link delay  

(after stabilization interval) 
100 ms  

Error rate of failure detector 10% 

Interval of Heartbeat messages 10 ms 

Routing Protocol/Policy Least hops 

Threshold of clusterhead switch  2 hop 

Min Speed  10 m/s 

Max Speed  30 m/s 

Mobility model Random Waypoint 

Mobility Level 50% 
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a host does move over the total life time of the host, is fixed to 50%. The speed of 

the movements satisfies the uniform distribution between 10m/s and 30m/s. 

To guarantee the properties of ◊P, the network is set to be partially synchronous 

[31]: the bounds on the message delay and processing speed are unknown and hold 

only after an unknown stabilization interval. Each host can crash, but the total 

number of crashes is bounded by f. We varied f by changing the value of f/n from 

10% to 50%. The life time of a faulty host satisfies the exponential distribution.  

For message routing, we implemented a simple protocol based on the “least hops” 

policy, which is adopted in many classical routing protocols in MANETs, such as 

AODV [127], DSDV [126] and DSR [87]. A routing table is maintained at each host 

proactively. The message delay is also assumed to satisfy an exponential distribution. 

The threshold of clusterhead switch in the HC protocol is 2 hops. 

FD is simulated using a heartbeat mechanism which is the adopted in nearly all 

implementations of unreliable FDs [93]. Each host is augmented with a FD module. 

FD modules make mistakes randomly with an average error rate of 10%. However, 

to guarantee the properties of ◊P, no mistake is made after the stabilization interval.  

All the three protocols are implemented as separate modules at each host. For 

HMR, a variant with a single set DA of decision_makers and agreement_keepers, as 

in our HC protocol, is simulated. As to the BHM protocol, since it relies on MSSs, it 

cannot be implemented in a MANET directly. Because there is no MSS in MANETs, 

we simulated a variant of the BHM by selecting 2f+1 MHs as the privileged hosts. 

The privileged hosts execute the HMR protocol with |DA|=2 and the rest of hosts 

only passively wait for the decision value (because each MH has its own initial value, 

it does not need to collect initial values from others). To get stable results, each 

execution was repeated 100 times and the average values are reported.  

5.2.5.3. Simulations Results 

 Since HMR is the basis of the other two protocols, we first examine the 

performance of HMR. Then the performance of our HC protocol is studied. Finally 

all the three protocols are compared and discussed. 
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1) Performance of HMR 

The performance of HMR under different numbers of faulty hosts (f/n) is shown 

in Figure 5-3 to Figure 5-6. We varied the size of DA, the major parameter that can 

significantly affect the performance of HMR. The two extreme sizes of DA are 2 (the 

current and next coordinator) and n (all the hosts). Besides 2 and n, we also 

simulated the HMR with a middle size DA, n/2. The curves with different sizes of 

DA are labeled “SmallSetDA”, “MiddleSetDA” and “FullSetDA” respectively.  

 
Figure 5-3 The NR of HMR 

 
Figure 5-4 The ET of HMR 

The effect of system scale is simple. The larger the system is, the more messages 

are needed in a round. Consequently, a round lasts longer and more failures may 

occur. Therefore, NR, ET, NM and NH all increase with the increase of system scale.  

(a) f/n=10%

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100
n

N
o.

 o
f R

ou
nd

s

SmallSetDA MiddleSetDA
FullSetDA

(b) f/n=20%

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

SmallSetDA MiddleSetDA
FullSetDA

(c) f/n=30%

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

SmallSetDA MiddleSetDA
FullSetDA

(d) f/n=40%

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

SmallSetDA
MiddleSetDA
FullSetDA

(e) f/n=50%

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

SmallSetDA
MiddleSetDA
FullSetDA

(e) f/n=50%

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n 
Ti

m
e 

(m
s)

SmallSetDA
MiddleSetDA
FullSetDA

(d) f/n=40%

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100
n

E
xe

cu
tio

n 
Ti

m
e 

(m
s) SmallSetDA

MiddleSetDA
FullSetDA

(c) f/n=30%

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n 
Ti

m
e 

(m
s)

SmallSetDA
MiddleSetDA
FullSetDA

(b) f/n=20%

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n 
Ti

m
e 

(m
s)

SmallSetDA
MiddleSetDA
FullSetDA

(a) f/n=10%

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n 
Ti

m
e 

(m
s)

SmallSetDA
MiddleSetDA
FullSetDA



Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006 

 98

 
Figure 5-5 The NM of HMR 

Now, let us see the effect of the size of DA. When |DA|=n (|DA|=2), HMR needs 

the fewest (most) rounds, and when |DA| = n/2, NR is in the middle. This is because 

that a smaller DA results in a smaller probability of making decision in a round. 

Consequently, more rounds are needed to achieve the consensus. The effect of |DA| 

on ET and NM/NH is more complex. When |DA|=n (|DA|=2), HMR needs the 

shortest (longest) time but the most (fewest) messages/hops. The ET or NM/NH is 

the accumulation of two values: the number of rounds and the time/message cost per 

round. A smaller DA results in fewer messages and shorter time per round but more 

rounds. However, the value of NR is much smaller than the number of messages per 

round (O(10) vs. O(n2)), the number of messages per round dominates the change of 

NM/NH when |DA| changes, as shown in Figure 5-5 and Figure 5-6. However, Figure 

5-4 shows that the change of ET with different sizes |DA| is dominated by NR, which 

indicates that the change of time cost per round with different |DA| sizes is small.  

In general, there is a tradeoff between the message cost and time cost of HMR, 

when |DA| changes. A smaller DA results in a smaller message cost but larger time 

cost. However, the effect on ET is not so significant as that on NM/NH, so we fix 

|DA| to 2 in the rest of simulations9.  

                                                 
9 |DA|=2 may not be the optimal value, but adopting this value does not affect the fairness of the following 

comparisons of the three protocols, because |DA| is also a parameter for both the HC protocol and BHM protocol. 
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Figure 5-6 The NH of HMR 

 
Figure 5-7 Performance of HMR vs. f/n, with |DA| =2 
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more rounds. On the other hand, more faulty hosts result in fewer hosts really 

participating in the execution. As a joint result, the fewest messages/hops are needed 

when f/n reaches about 40%. 

2) Performance of HC 

Besides the system scale, which affect the performance of HC similarly as it does 

in HMR, the size of DA and the size of H, i.e. the parameter k, are other parameters 

that significantly affect the performance of the HC protocol. Since DA is inherited 

from HMR, based on the simulations results of HMR, we fixed |DA| to 2 in the 

simulation of HC. To examine the effect of k, the performance of HC against k/n is 

plotted in Figure 5-8. The value of f/n is fixed to 10%, because under a large f/n, due 

to the constraint of f<k, k/n cannot be varied with a large scope10.   

From Figure 5-8 we can see that, with the increase of k/n, the NR increases slowly 

while the ET decreases. This can be explained by the operation at line 14 in the HC 

protocol. The wait at line 14 may be ended earlier due to the reception of an ECHOG 

message with a high timestamp (Figure 5-1). Such an operation can shorten the 

average wait time of a host at line 14 but may destroy a potential decision. A larger 

k/n means more ECHOG messages exchanged in a round, and due to the asynchrony 

of the network, more hosts end the wait at line 14 earlier. Consequently, more rounds 

but shorter time is needed to achieve the consensus. 

The NM decreases very slowly when k/n increases. The effect of k/n on NM is 

two-edged. The increase of k/n causes the increase of global messages (i.e. messages 

between DA and H) but the decrease of the messages for cluster switches, including 

LEAVE, JOIN, late ECHOL (in Task 4.1) and PROPH messages (Figure 5-8-e). As 

an accumulative result, the NM changes very little when k/n increases. The change in 

Figure 5-8-e can be explained as follows. Since a clusterhead host always selects 

itself as its local clusterhead, the more hosts act as clusterheads, the fewer hosts need 

to switch their clusters and the fewer messages are cost by cluster switches.  

                                                 
10 In fact, due to the constraint of f<k, f is set to (n*10%)-1, but for convenience, we still use “10%” to refer to 

the value of f/n. To guarantee the fairness of comparisons, the f of HMR and BHM is set in the same way. 
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Same as NM, the NH also decreases very slowly with the increase of k/n, except 

that there is thorough in the middle (especially when the system scale is large). NH is 

affected by NM and the number of hops per message. When k/n becomes large, the 

average distance between a host and its clusterhead in hops is reduced and 

consequently the average number of hops per message is reduced. As an 

accumulative result of the NM and number of hops per message, NH becomes the 

least when k/n is about 30%.  

 

Figure 5-8 Performance of HC vs. k/n, with |DA| =2 and f/n = 10% 

 
Figure 5-9 Performance of HC vs. f/n, with |DA| =2 and k/n = 50% 
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as that on HMR, so Figure 5-9 can be explained similarly as Figure 5-7.  It is worth 

notice the results in Figure 5-9-e, which shows that the additional message cost 

introduced by the two-layer hierarchy is small (in most cases it is less than 15%), 

especially when the system scale is large. 

 

 
Figure 5-10 Performance comparison of HMR, BHM and HC – NR 

 

 
Figure 5-11 Performance comparison of HMR, BHM and HC – ET 
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the three protocols. Without loss of generality, the k/n of HC is fixed to 50% in the 

comparisons.  

i) Comparisons in NR and ET 

Figure 5-10 and Figure 5-11 show the NR and ET of all the protocols under varied 

f/n values respectively. When the percentage of faulty hosts and system scale are 

small, the BHM can achieve consensus with the fewest rounds and shortest time. 

This because that, under a small f/n, the BHM protocol involves much fewer hosts in 

the procedure of achieving consensus, i.e. it can be viewed as a HMR protocol 

running in a much smaller system. Therefore, BHM can achieve consensus with 

fewer rounds and shorter time. However, with the f/n increasing from 10% to 50%, 

the number of hosts really executing the protocol in BHM gradually turns to be the 

same as in HMR and consequently the performance of BHM becomes the same as 

that of HMR.  

The other factor affecting the difference between BHM and the other two 

protocols is the system scale. When the system scale becomes large, the NR and ET 

of BHM increase sharply and become the worst among the three protocols. As 

discussed above, BHM can be viewed as a HMR protocol running in a system of 

2f+1 hosts. The real percentage of faulty hosts in such a “smaller system” may be 

between f/n and f/(2f+1), though the average of this percentage is equal to f/n. Since 

a large percentage of faulty hosts results in the sharp increase of NR in HMR (as 

shown in Figure 5-7), NR and ET of BHM under a large system scale becomes the 

largest.  

The difference in NR and ET between HMR and HC is also affected by the value 

of f/n and n. Basically, due to the message forwarding mechanism by clusterheads, 

HC needs two more communication steps than HMR. Therefore, each round of HC 

lasts longer than that of HMR and more failures may happen during one round. 

Consequently, HMR achieves the consensus earlier and faster.  

However, when the f/n is large, HC performs better in terms of NR and ET. This is 

also caused by the two-layer hierarchy.  In HMR protocol, when an ordinary host (i.e. 
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a host does not belong to DA) suspects the coordinator, it proceeds to the next round 

after sending echo messages. However, in HC protocol, a host outside the set H has 

to wait its clusterhead to forward the proposal from the coordinator, so the 

proceeding of HC in the first phase is determined by only clusterheads. Therefore, 

the effect of false suspicions made by ordinary hosts is avoided and consequently 

fewer rounds are needed to make the decision. With the increase of f/n, the 

probability of such a false suspicion increases. Therefore, the difference between HC 

and HMR is reversed under a large f/n.  

With the increase of the system scale, the advantage of HC in NR and ET also 

increases. This can also be explained based on the discussion above. The proceeding 

of the first phase is determined by only clusterheads, so the effect of system scale on 

NR in the HC protocol stems from the change of the number of clusterheads, i.e. |H|. 

Since |H|=n/2, |H| changes more slowly than n changes and consequently the NR and 

ET of HC increase more slowly than those of HMR. 

 
Figure 5-12 Performance comparison of HMR, BHM and HC – NM 

ii) Comparisons in NM and NH 

Figure 5-12 and Figure 5-13 show the performance in NM and NH respectively. 

The HC protocol performs badly only when very few hosts crash and the system 

scale is very small. With the increase of f/n and n, HC performs better and better. 

When f/n = 50% and n =100, HC achieves the consensus with only less than half of 
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the hops cost by BHM or HMR. As discussed before, both NM and NH are 

determined by two aspects: NR and the message cost per round. Comparing Figure 

5-12 with Figure 5-10 we can see that, the relationships among the three protocols in 

NM are nearly the same as in NR. Therefore, NR dominates the difference in NM.  

 
Figure 5-13 Performance comparison of HMR, BHM and HC – NH 

The difference in NH between BHM and HMR is also determined by NR. 

However, the difference between HC and the other two is not dominated only by NR. 

When the system scale is not very small, HC can achieve consensus with the fewest 

hops even if its NR is not the smallest. Such an advantage comes from the two-layer 

hierarchy, which reduces the message cost per round in hop by merging messages 

with the same type. The larger the system is, the more messages are merged and 

consequently the more cost is saved. This indicates that our objective to reduce 

message cost using the two-layer hierarchy is fulfilled.  

5.2.6. Tolerance of Message Loss 

Same as most consensus protocols, our HC protocol assumes reliable 

communication channels between hosts. However, compared with wired networks, 

MANETs are more prone to message losses due to the characteristics of wireless 

communications. To cope with this, one direction is to design reliable 

communication protocols for MANETs, Efforts have been made to improve the 

reliability of end-to-end communications in MANETs [54][149][165]. However, 
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how to provide reliable end-to-end channels is still a challenging topic in MANETs. 

Here, we take an alternative approach by enhancing the HC protocol to handle 

message losses by itself. We divide the channel failures into two types: permanent 

failures and transient failures, and design solutions for handling the two types of 

channel failures respectively. 

5.2.6.1. Handling Message Losses as Host Failures 

If a channel fails by crashing, i.e. permanently losing all the messages transmitted 

through it, a permanent failure occurs. To handle message losses caused by a crashed 

channel, a possible solution is to treat the message loss caused by communication 

channels as host crashes. If a channel between a pair of hosts loses some message, 

then the sender, instead of the channel, is said to be faulty. In this way, the system 

has only host failures and all channels can be thought of as reliable. Although the 

correctness of the protocol will not be affected, the resilience, i.e. the capability of 

tolerating faults, of the HC protocol is degraded. There can be at most t (t< 

minimum(k, n/2)) host failures during a run of the protocol, including those caused 

by the lossy channels.  

5.2.6.2. Reducing Reliable Channels to Fair-lossy Channels 

A channel with a transient failure only loses messages for some finite time and 

then recovers to be a correct channel again. Such a failure may recur for the same 

channel. More precisely, such a channel is defined as a fair-lossy channel [50][120]: 

If a host mi sends an infinite number of messages to host mj, then the channel 

attempts to deliver an infinite number of messages to mj.  

Following the approach in [120][131], our HC protocol can be extended for use in 

a system with fair-lossy channels. To tolerate message losses caused by channels 

with transient errors, the following three rules are added: 

i) When a clusterhead host p enters a new round r that is not coordinated by p, it 

sends a NEW(r) message to all other clusterheads; 

ii) Each host periodically re-sends the latest message it ever sends out. For 

example, during the wait at line 7 of round ri, a clusterhead periodically re-
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sends the PROP(ri, *) message to its local hosts, i.e. it periodically repeats 

the execution of line 5 to line 6; 

iii) When a host mi, either an ordinary host or a clusterhead, receives a message 

with a higher round number r with r>ri, mi aborts its current round and enters 

the round r. 

With these rules, a correct host is eventually unblocked if it is blocked due to a 

message loss of the channel. Therefore, the termination property is not violated due 

to message losses. Since the other two correctness properties, validity and agreement 

are not affected by messages losses, the enhanced HC protocol still satisfies the 

correctness requirements of a consensus protocol.  

5.3. The Clusterer Oracle ∆ 

5.3.1. System Model 

We consider an asynchronous MANET system consisting of a set of n (n>1) MHs, 

M = {m1, m2,…, mn}. A MH can only fail by crashing, i.e. prematurely halting, but it 

acts correctly until it possibly crashes. There is at least one correct host in the system. 

MHs communicate by sending and receiving messages. Every pair of MHs is 

connected by a reliable channel that does not create, duplicate, alter or lose messages.  

5.3.2. Definition of ∆ 

Like unreliable failure detectors or other oracles, the eventual clusterer oracle ∆ is 

also a tool that provides some kind of information about the system. ∆ groups the 

hosts in a MANET into clusters, each which is dominated by a clusterhead, so as to 

establish a two-layer hierarchy in the system. Each host is associated with an 

eventual clusterer oracle module. On the query from a host mi, the clusterer oracle 

module returns three outputs:  

i)   ∆.CH: a set of MHs that currently act as clusterheads; 

ii)  ∆.trusted: a set of hosts that are currently trusted by ∆ (correct hosts); 

iii) ∆.clusterhead: the clusterhead host that mi currently associates with, i.e. the 

local clusterhead of mi. 
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Similar to the definition of unreliable failure detectors [31], we define the 

eventual clusterer oracle ∆ using abstract properties. Though we also define the 

completeness property and accuracy property as in [31], the names of the properties 

are reversed, i.e. the completeness (accuracy) in [31] is named accuracy 

(completeness) here. This is because that the properties in [31] are defined for the set 

of suspected hosts but here they are defined for the set of trusted hosts. 

Completeness: There is a time after which some correct host is permanently 

included in the clusterhead set ∆.CH and trust set ∆.trusted at each correct host. 

Accuracy: Eventually every host that crashes is permanently excluded from the 

clusterhead set ∆.CH and trust set ∆.trusted at each correct host. 

Uniformity: Eventually, all correct hosts permanently keep the same clusterhead 

set ∆.CH. 

Stability: There is a time after which each correct host is associated with some 

correct clusterhead permanently.  

From the definition we can see that, like other oracles, there is a Global 

Stabilization Time (GST) for ∆ to reach a stable state. Before GST, different hosts 

may have different clusterhead set ∆.CH and a host may switch to a new cluster 

again and again. However, after GST, all correct hosts have the same ∆.CH and each 

correct host associates with a correct host in ∆.CH. We call such a clusterhead set 

CH a “stable CH”. It is important to notice that a stable CH includes only correct 

hosts (but maybe not all hosts).  

Same as other oracles, ∆ facilitates the design of consensus protocols by 

separating the function of detecting the status of the system and the function of 

achieving consensus. But ∆ is more powerful in the sense that it can help the 

consensus protocols built on top of it improve their message efficiency and 

scalability, which is especially important for large scale MANETs. The messages 

from and to the hosts in the same cluster are merged by the clusterhead so as to 

reduce the message cost and improve the scalability. 
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5.3.3. An Implementation of ∆ 

To implement a ∆, there are two main issues to be addressed: a) failure detection, 

i.e. the construction of ∆.trusted and, b) the construction of clusters. Since unreliable 

failure detectors have been proposed in [31], we adopt the unreliable failure 

detectors to detect failures. The properties of the failure detector ◊S are as follows: 

Strong Completeness: Eventually, every process that crashes is permanently 

suspected by every correct process. 

Eventually Weak Accuracy: There is a time after which some correct process is 

never suspected by any correct process. 

Comparing the properties of ∆ and ◊S, we know that the completeness and 

accuracy of ∆.trusted are the same as the accuracy and completeness of ◊S 

respectively. Therefore we adopt the unreliable failure detector ◊S to detect failures. 

The second issue can be further divided into two problems: i) the selection of 

clusterheads, i.e. the construction of ∆.CH, and ii) the construction and maintenance 

of clusters. Analyzing the properties of ∆, we know that the only difference between 

∆.trusted and ∆.CH is the uniformity. We adopt the flush algorithm in [39], which 

reduces a leader oracle to the ◊W failure detector11, to establish ∆.CH based on the 

∆.trusted. The corresponding pseudocode is shown as Task c1 in Figure 5-14. The 

code is simple and self-explanatory. Since Figure 5-14 shows the implementation of 

∆, we use “CH” and “clusterhead” rather than “∆.CH” and “∆.clusterhead” to refer 

to the clusterhead set and local clusterhead respectively. 

The pseudocode for the construction and maintenance of clusters is shown as 

Task c2 in Figure 5-14. First, we show how to construct clusters based on the 

clusterhead set ∆.CH. The clustering procedure is cluster member initiated. Each 

host in ∆.CH acts as a clusterhead and dominates the corresponding cluster. A host mi 

selects the nearest host, say mn, in ∆.CH using the function NEAR(∆.CH) and sends a 

JOIN message to mn to join the corresponding cluster. On the reception of the JOIN 

                                                 
11 ◊W is equivalent to ◊S. 
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message, mn sends a positive or negative ACK message to mi. The type of the ACK 

depends on the state of mn. If mn is the clusterhead of itself (a self-aware clusterhead), 

it accepts the request of mi and sends a positive ACK message; otherwise, it rejects 

the request of mi and sends a negative ACK message. Then, if a positive ACK is 

received, mi ends the switch procedure. Since the ∆.CH is set to M in the beginning, 

each MH selects itself as the clusterhead and gets positive ACK when the algorithm 

starts to execute.  

 
Figure 5-14 The implementation of ∆ 

COBEGIN// The code executed by a host, mi 
------------Task c1: Construction of Clusterhead Set CH ------------------------- 
 (c01) CH ← M; seqi← 0; //M is the set of all MHs, seqi is a sequence number; 
------------------Task c1.1: Send CH ----------------------------------- 
(c02) while(true){ 
(c03)      CH ← CH ∩◊S.trusted; 
(c04)      send (CH, seqi) to M;} 
------------------Task c1.2: Receive CH ------------------------------- 
(c05) upon reception of (CH’, seqq) from host mq: 
(c06)     if (seqq= seqi) CH ← CH ∩ CH’; 
(c07)     if (seqq > seqi) { CH ← CH’; seqi ←seqq;} 
(c08)     if (CH = φ) { CH ← M; seqi ←seqi +1;  
(c09)                  send (CH, seqi) to M;} 
------------Task c2: Clustering Host --------------------------------- 
(c10) clusterhead←i; rejected ←φ; sn ← 0; 
-----------------Task c2.1: Action of Cluster Member --------------------------------- 
(c11) while(true){ 
(c12)     if(clusterhead∉ CH or  (a RELEASE(sn’) from mk with clusterhead = k)){ 
(c13)      if(clusterhead = i) 
                          send RELEASE(sn) to all local hosts except mi; 
 (c14)          else 
                           send LEAVE(sn) to clusterhead; 
(c15)           sn←sn+1; rejected ←φ; 
(c16)           if (CH \rejected)= φ){ rejected ←φ; sn←sn +1;} 
(c17)           clusterhead←NEAR(CH \rejected); 
(c18)           send JOIN(sn) to clusterhead; 
(c19)           wait until ACK(type, sn) received from clusterhead; 
(c20)           if(ACK.type = false){ 
(c21)                   rejected ← rejected {∪ clusterhead}; 
(c22)                  GOTO (c15);} 
             } 
        } 
-----------------Task c2.2: Action of Clusterhead --------------------------------------- 
(c23) while(true){ 
(c24)   upon reception of a JOIN(sn) message from a host mk: 
(c25)        if(clusterhead≠i) send ACK(false, sn) to mk; 
(c26)          else {add mk to local host list;  
(c27)                    send ACK(true, sn) to mk;} 
(c28)   upon reception of a LEAVE(sn) message from a host mk: 
(c29)        if(clusterhead=i) delete mk from local host list; 
          } 
COEND 
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Then let us consider the maintenance of clusters. Due to failures or false 

suspicions, a clusterhead may be removed from the set ∆.CH. Then the members of 

the corresponding cluster have to switch to a new cluster. When a host mi needs to 

switch to another cluster (finding the current clusterhead is removed from∆.CH or 

receiving a RELEASE message from its current clusterhead), it firstly sends a 

LEAVE message to its current clusterhead if it is not the clusterhead of itself or 

sends a RELEASE message to inform the cluster members if it is the current 

clusterhead of itself. Then mi selects the nearest host in ∆.CH as the candidate of the 

new clusterhead and sends a JOIN message to the candidate. If a positive ACK is 

received from the candidate, the switch successes; otherwise, mi selects a new 

candidate and sends a JOIN message again. This can be repeated again and again 

until mi is accepted by a clusterhead host.  

Since the communication channels are not FIFO, a sequence number sn is 

attached to each JOIN, LEAVE, ACK or RELEASE message to avoid the effect of 

disorder. When a host receives one of such messages, it needs to check the sn of the 

message to guarantee that only updated messages are handled.  

Based on the properties of ◊S and the correctness of the flush algorithm in [39], it 

is easy to prove that the proposed implementation of ∆ satisfies the definition of ∆, 

i.e. the algorithm in Figure 5-14 is correct.  

5.4. The HCD Protocol 

The HC protocol is based on the same system model as the HC protocol, except 

that in HCD, each host is equipped with a clusterer oracle in stead of a ◊P.  

5.4.1. Data Structures and Message Types 

When executing the proposed consensus protocol, each host, say mi, needs to 

maintain necessary information about its state. Such information is stored in the 

following variables.  

fli: the flag indicating whether mi has made the decision. The initial value is false. 

ri: the sequence number of the current round that mi is participating in.  



Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006 

 112

esti: the current estimate of the decision value. Initially, it is the value proposed by 

mi.  

tsi: the timestamp of esti. The value is the sequence number of the round in which 

mi receives the value of esti, which is proposed by a coordinator host. The update of 

tsi is entailed by the reception of estimate from a coordinator. 

lri: the sequence number of the last round that mi has completed normally, i.e. mi 

has collected an echo message from its clusterhead, in Phase 2 of round lri. 

During execution of the protocol, MHs need to communicate with each other by 

exchanging messages. The message types involved in a round ri are as follows.  

PROPL(ri, esti, lri, cc): the proposal message sent by a host mi to its clusterhead. 

cc is the ID of the coordinator host selected by mi. 

PROPG(ri, X, L, C, Y): the proposal message sent by a clusterhead to all 

clusterheads. PROPG is constructed by merging the PROPL messages received from 

the hosts in the cluster.  Y is the set of the IDs of the hosts that send the PROPL 

messages; X is the set of estimate values corresponding to Y; L is the set of lr values 

corresponding to Y; C is the set of cc values corresponding to Y. 

PROP(ri, est): the proposal message sent by a clusterhead to the hosts in its 

cluster. PROP is constructed based on the PROPG messages received. est is equal to 

estcc (the estimate of the coordinator selected by the clusterhead) or “┴”(a value that 

can not be decided upon). 

ECHOL(ri, esti, tsi): the echo message from a host mi to its clusterhead. 

ECHOG(ri, v, tsv, W, Z): the echo message from a clusterhead to all clusterheads. 

ECHOG is constructed by merging the ECHOL messages from the hosts in the 

cluster. v is the estimate carried by the ECHOL with the highest timestamp and tsv is 

the timestamp of v. W is the set of MHs that send the ECHOL with tsv whereas Z is 

the set of MHs that send other ECHOL messages. 

ECHO(ri, vm, tsvm, A, B): the echo message from a clusterhead to the hosts in the 

cluster. ECHO is constructed based on the ECHOG messages received. vm is the 

estimate carried by the ECHOG with the highest timestamp and tsvm is the 
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timestamp of vm. A is the set of MHs that send the ECHOL (not ECHOG) with tsvm 

whereas B is the set of MHs that send other ECHOL (not ECHOG) messages. 

DECISION(est): the message sent by a MH to propagate the decision value est. 

NEWR(r): the message sent by a clusterhead to ask its local MHs to enter a new 

round r.  

 

 
Figure 5-15 The consensus protocol based on ∆ – Task 1 and Task 2 

COBEGIN // The code executed by each host, mi 
--------------------Task 1: Consensus ------------------------------------------------------  
(101) ri ←0; esti ← vi; tsi ← 0; lri←0; fli ← false; 
(102) while (fli≠true){ 
(103)     ri←ri+1;  
(104)     cc = MIN(∆.CH); ch = ∆.clusterhead; 
---------------------------- Phase 1: Collect Proposal --------------------- 
(105)     send PROPL(ri, esti, lri, cc) to mch; 
              if(i=ch){// mi is a clusterhead; 
(106)         wait until (received a PROPL(ri, *,*, *) from each local host mj∈ ∆.trusted); 
(107)         merge the PROPL messages received into a PROPG(ri, X, L, C,Y) and send it to ∆.CH; 
                                 //X: set of estimates; L: set of lr values; C: set of cc values; Y: set of hosts IDs;  
(108)         wait until ((received PROPG(ri, X, L,C,Y) messages where |∪Y |≥ n-f  and mcc∈ ∪Y) or  
                                      mcc ∉ ∆.trusted or mi∉ ∆.CH);  
(109)         if(mcc∈ ∪Y , lrcc=ri-1and mcc appears at least n-f times in ∪C)  
                            send (PROP(ri, estcc) to all local hosts; 
(110)         else send (PROP(ri, ┴) to all local hosts;} 
(111)    wait until ((received PROP(ri, v) from mch) or ch ≠ ∆.clusterhead); 
(112)    if(PROP((ri, v) is received and v ≠ ┴){esti← v; tsi=ri;} 
-------------------------------Phase 2: Collect Echo -------------------------- 
(113)    send message ECHOL(ri, esti, tsi) to mch; 
             if (i=ch) { 
(114)         wait until(received ECHOL(ri,*,*) from each local host mj∈ ∆.trusted); 
(115)         merge the ECHOL messages received into an ECHOG(ri, estm, tsm, W, Z);                   
                       // tsm: the greatest ts; estm: the estimate value with timestamp tsm; 
                       //W: the hosts that sent ECHOL with tsm; Z: the hosts that sent other ECHOL; 
(116)         send ECHOG(ri, estm, tsm, W, Z) to ∆.CH; 
(117)         wait until ((received ECHOG(ri, *, *, W, Z) messages with |∪W∪Z| ≥ n-f ) or mi∉ ∆.CH); 
(118)         merge ECHOG messages into ECHO (ri, vm, tsvm,A,B) and send it to all local hosts;} 
(119)     wait until ((received ECHO(ri, vm, tsvm,A,B) from mch) or ch ≠ ∆.clusterhead); 
(120)     if ((received ECHO(ri, vm, tsvm,A,B) from mch){ 
(121)         esti← estm; lri ←ri; 
(122)         if(tsm =ri and |A|≥ f+1){ 
(123)             ∀j ≠ i: send DECISION(esti) to mj; 
(124)         fli←true;}} 
         }endwhile 
---------------Task 2:  Reliable Broadcast ---------------------------------------------- 
         upon reception of DECISION(est) from host mk: 
(201)     if(fli≠true) { 
(202)             ∀j ≠ i, k: send DECISION(est) to mj;  
(203)             fli←true;} 
COEND 
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5.4.2. Description of the Protocol 

 The proposed consensus protocol consists of four tasks. Task 1 is the main body 

of the protocol for making decision and Task 2 is a simple broadcast algorithm for 

propagating the value decided upon. The pseudocode of Task 1 and Task 2 is shown 

in Figure 5-15. Task 3 is used to handle late PROPL and ECHOL messages at a 

clusterhead while Task 4 handles futures messages. The pseudocode of Task 3 and 

Task 4 is presented in Figure 5-16 and Figure 5-17 respectively. In the following 

paragraphs, we describe the tasks in detail.  

Task 1: Like most consensus protocols, Task 1 is executed in asynchronous 

rounds, each of which is divided into two phases. In each round, each MH selects 

one coordinator.   

At the beginning of a round ri, a host mi first queries the clusterer oracle ∆ to get 

the ID of the coordinator and clusterhead, i.e. cc and ch. The remaining actions 

during the round are divided into two phases. In Phase 1, mi first sends PROPL(r, 

esti, lri, cc) to mch, where cc is the ID of the coordinator selected by mi. If mi itself is 

not the clusterhead, it waits until it receives a PROP message from mch unless mch is 

removed from ∆.CH. 

Each clusterhead mch needs to collect one PROPL message from each correct host 

in its cluster, including mch itself. Following this, mch merges the PROPL messages 

received into one PROPG(ri, X, L, C, Y) message (where Y is the set of the IDs of the 

hosts that send the PROPL messages; X is the set of estimate values corresponding to 

Y; L is the set of lr values corresponding to Y; C is the set of cc values corresponding 

to Y) and sends this PROPG to all hosts in the clusterhead set ∆.CH. mch then waits 

for the PROPG messages from others clusterheads until: i) mcc and additional n-f-1 

hosts are included in the PROPG messages received, or ii) mcc is removed from 

∆.CH. 

After mch finishes the wait at line 108, it checks the PROPG messages received. If 

condition i) is satisfied and mcc has finished last round normally, i.e. lrcc = ri-1, mch 

sends PROP(ri, estcc) to the hosts in its cluster, including itself; otherwise it sends 
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PROP(ri, ┴) to the hosts in its cluster, including itself. Upon the reception of 

PROP(ri, v) with v ≠ ┴ from the clusterhead, each host mi (maybe a clusterhead) 

updates its estimate esti to v and timestamp tsi to ri.  Phase 1 ends.  

Phase 2 is started by sending ECHOL messages. In Phase 2, each host mi first 

sends an ECHOL(ri, esti, tsi) to mch. If mi itself is not the clusterhead, it waits until it 

receives an ECHO message from mch, unless mch is removed from ∆.CH. 

Each clusterhead mch needs to collect one ECHOL message from each correct 

host in its cluster, including mch itself. Then mch merges the ECHOL messages 

received into one ECHOG(ri, estm, tsm, W, Z) message (where tsm is the greatest ts 

in the ECHOL messages; estm is the estimate value with timestamp tsm; W is the IDs 

of the hosts that have sent the ECHOL messages with timestamp tsm; Z is the IDs of 

the hosts that have sent other ECHOL messages) and sends this ECHOG to all hosts 

in the clusterhead set ∆.CH. mch then waits for the ECHOG messages from others 

until n-f hosts are included in the ECHOG messages received, i.e. |∪W∪Z| ≥ n-f. 

After getting enough ECHOG messages, mch merges the ECHOG messages received 

into an ECHO(ri, vm, tsvm, A, B) message and sends it to the hosts in mch’s cluster 

(vm is the estimate carried by the ECHOG with the highest timestamp and tsvm is 

the timestamp of vm. A is the set of MHs included in the “W” sets of ECHOG 

messages with timestamp tsvm whereas B is the set of other MHs included in the 

ECHOG messages, i.e. B= (∪W∪Z)\A.).  

When a host mi (maybe a clusterhead) receives the ECHO(ri, vm, tsvm, A, B)  

message from its clusterhead, it updates its estimate esti to vm and lri to ri. Then, if 

tsm= ri and |A| ≥ f+1, mi makes the decision upon vm and sends the value to all other 

hosts using the message DECISION(vm). 

Task 2: This task simply broadcasts the decision value. When a host receives a 

DECISION message, it decides upon the same value and forwards the DECISION 

message to all other hosts except the sender. 

Task 3: This task handles late PROPL and ECHOL messages. A PROPL/ECHOL 

message is “late” if it arrives at a clusterhead after the clusterhead has sent out a 
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PROPG/ECHOG message for the corresponding round. This happens when a 

clusterhead mch suspects a correct host in the cluster or a host newly joins the cluster. 

Clusterheads may be blocked forever if a late PROPL or ECHOL message is ignored. 

To avoid this, when a clusterhead mch receives a PROPL (or ECHOL) message from 

a MH mi with a round ri where (ri<rch) or (ri=rch but mch has sent out a PROPG (or 

ECHOG) for round rch), mch constructs a redeeming PROPG (or ECHOG) sends it to 

all clusterheads. Moreover, for a late PROPL message, if mi is a local host of mch and 

mch has sent out a PROP(rch, lv) message, mch sends a redeeming PROP(rch, lv) to mi. 

 

 
Figure 5-16 The consensus protocol based on ∆ – Task 3 

 
Figure 5-17 The consensus protocol based on ∆ – Task 4 

Task 4: This task handles future messages. A message msg is a future message if it 

arrives at a MH before the MH enters the corresponding round of msg. When a MH 

mi receives a future message with the round number r>ri, it stops waiting for 

messages for round ri (at the wait statements in Task 1) and skips to the round r. If mi 

is a clusterhead host, it sends a NEWR(r) to its local hosts before it skips to r, so that 

the local hosts can also skip to round r. 

------------Task 3: Handling Late Messages------------------------------------------ 
// The code executed by each clusterhead mch; 
 
 (301) upon reception of PROPL(ri, *, *, *) from mi, with ((ri<rch) or  
                   (ri=rch but mch has sent a PROPG(rch, *, *, *,*) )){ 
(302)            construct a PROPG for the PROPL and send it to ∆.CH; 
(303)            if(mi is a local host and a PROP(rch, lv) has been sent ) 
                           send PROP(rch, lv) to mi;   
         } 
(304) upon reception of ECHOL(ri, *, *) from mi, with ((ri<rch) or  
                   (ri=rch but mch has sent an ECHOG(ri, *, *, *,*) )){ 
(305)            construct an ECHOG for the ECHOL and send it to ∆.CH; 
         } 

------------Task 4: Handling Future Messages------------------------------------- 
// The code executed by each MH mi; 
  
(401) upon reception of a message msg with r>ri: 
        { 
(402)            if(i=ch and msg is not a NEWR message) // for a clusterhead 
                          send NEWR(ri) to local hosts; 
(403)            ri← r; GOTO (104); 

} 
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5.4.3. Correctness of the HCD Protocol  

In this section, we prove the correctness of the proposed consensus protocol. 

Since the validity property is obvious, here, we only present proofs for the 

termination property and agreement property.  

Theorem 1 (Termination). If a host is correct, it eventually decides. 

Proof. If one host decides, all correct hosts eventually decide due to the reliable 

broadcast mechanism (lines 124 and 202). Therefore, we only prove that at least one 

host decides. The proof is by contradiction. 

We assume that no host decides. By the properties of ∆, after the time GST all 

correct hosts get the same stable CH set denoted as GT. Let p=MIN(∆.CH) and rm be 

the highest round number held by correct hosts at time GST. Since all correct hosts 

never crash, they eventually receive a message from some correct host in round rm 

and move to round rm.  

By the assumption, no host decides in round rm. This could only happen if in 

round rm: 1) no more than n-f-1 hosts select the same correct coordinator, 2) no less 

than n-f hosts select the same correct coordinator mx, but mx did not execute line 121 

in round rm-1, i.e. lrx ≠ rm-1,  or 3) no less than n-f hosts select the same correct 

coordinator mx, but one or more hosts suspect mx, move to round rm+1 and cause f+1 

or more hosts move to round rm+1 before they send out an ECHOL(rm, *) message. 

Let examine these three cases as follows.  

Cases 1) and 2): All possible PROP messages sent by clusterheads are PROP(rm, 

┴). By the definition of stable CH, eventually only hosts in GT act as clusterheads 

and each correct host joins a cluster with a clusterhead in GT. Therefore, in round rm, 

all possible PROP messages sent are PROP(rm, ┴) and all possible ECHO messages 

sent at line 118 are ECHO(rm, *, <rm, *, *). Therefore, all correct hosts eventually 

enter a round greater than rm after they finish the wait at line 119 or receive a 

message with a round number greater than rm.  

Case 3): Obviously, at least one correct host enters round rm+1. Then, all correct 

hosts eventually enter round rm+1 after they receive messages from that correct host 
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already in round rm+1.   

From the analysis of the three cases above we know that, if no host decides in 

round rm, all correct hosts eventually enter a round greater than rm.  Such a scenario, 

i.e. no host decides in a round rn≥ rm and all correct hosts eventually enter a round 

greater than rn, may be repeated again and again until the first round started after 

time GST12. Let rx denote this round.  

Now, let us consider the execution of round rx. By the definition of the stable CH, 

in round rx, all correct hosts selected the same coordinator mp and never suspect it. 

Then each clusterhead eventually collects one PROPL message (maybe a late 

PROPL) from each correct local host and exchanges PROPG message with others. 

Because at most f hosts can crash, each clusterhead eventually collects PROPG 

messages which is constructed based on at least n-f PROPL messages, including the 

one from mp, i.e. PROPL(rm, v, lrp, p) with v≠ ┴.  

The following execution depends on the value of lrp. There are two possible 

cases. First, lrp = rx-1. Each clusterhead sends PROP (rm, v) to the hosts in its 

cluster and each correct host eventually receives the PROP(rm, v). Then each correct 

host updates its est to v and ts to rm, and sends an ECHOL(rm, v, rm) message to its 

clusterhead. Eventually each clusterhead collects one ECHOL message (maybe a late 

ECHOL) from each correct local host. Following this, all clusterheads exchange 

ECHOG messages and each of them eventually collects ECHOG messages which 

are constructed by merging at least n-f ECHOL messages. Since all ECHOL 

messages are with the same values, i.e. ECHOL(rm, v, rm), each clusterhead sends 

an ECHO(rm, v, rm, W, φ) message with |W| ≥ f+1. Therefore, each correct host 

eventually decides after it receives the ECHO message from its clusterhead, which 

contradicts the assumption “no host decides.” The theorem holds. 

Second, lrp ≠ rx-1. All possible PROP messages sent by clusterheads are 

PROP(rx, ┴). Eventually all correct hosts enter round rx+1 after they update their lr 

                                                 
12 The start of a round means that some host firstly enters the round. 
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values to rx. The execution of round rx+1 is the same as the execution of round rx 

except that the lr of each host equals to rx. Therefore, each correct host eventually 

decides in round rx+1, which contradicts the assumption “no host decides.” The 

theorem holds.� 

Lemma 1. Let r be the smallest round in which some host receives an ECHO(r, vm, 

tsvm, A, B) messages with tsvm = r and |A| ≥ f+1.Then, in any round r’>r, if a host 

receives a PROP(r’, v’) with v’ ≠ ┴ at line 111, v’ = v. 

Proof. Without loss of generality, let mi be the host that receives the ECHO(r, vm, 

tsvm, A, B) message with tsvm = r and |A| ≥ f+1 in round r. Then, ECHOL(r, v, r) 

messages have been sent in round r by at least f+1 hosts and merged into ECHOG 

messages by one or more clusterheads. Assume that rs is the first round after round r, 

in which some host, say mh, sends a PROP message with a estimate value not equal 

to v or ┴ , i.e. PROP(rs, vx) with vx ≠ ┴ and vx ≠ v,. Let mcx denote the coordinator 

selected by mh in round rs. Therefore, mh must have received PROPG(rs,X,L,C,Y) 

messages with mcx∈ ∪Y, lrcx = rs-1 and mcx appears at least n-f times in the set ∪C.  

This means that mcx has executed line 121 of round rs-1 and updated its estimate to 

vx. Therefore, mcx must have received ECHO(rs-1, vx, tsx, A, B) at line 124 in round 

rs-1. Obviously, tsx≤ rs-1. Since rs>r and at least f+1 hosts have sent out ECHOL(r, 

v, r) messages in round r (by assumption in the lemma), we have tsx≥ r (the highest 

timestamp at any host, which executes line 121 in round rs-1, must be no less than r). 

Then we have r ≤ tsx≤ rs-1. Since a host updates its timestamp ts only when it 

receives PROP message with estimate not equal to ┴, there must be some host that 

have sent a PROP(tsx, vx) with a estimate value not equal to v or ┴ before round rs 

but after round r. This contradicts the assumption “rs is the first round in which 

some host sends a PROP message with a estimate value not equal to v or ┴.” The 

lemma holds.� 

Theorem 3 (Agreement).  No two processes decide differently. 

Proof. If a process decides upon a value at line 203, then this value must have been 

decided upon by another process at line 124. Therefore, we only consider the values 
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decided upon at line 124. Let r be the smallest round in which some host mi decides 

upon a value x at line 124. 

Assume that another process mj decides upon another value y in round k. By the 

definition of r, we have k≥ r. If k=r, obviously, y = x.  If k>r, y must come from a 

PROP(k, y). By lemma 1, y =x.  The theorem holds.� 

5.5. Summary 

This chapter is concerned with the message efficiency of achieving consensus in 

MANETs. A cluster based two-layer hierarchy is imposed on the system by 

clustering MHs into clusters. Each cluster is dominated by a MH acting as the 

clusterhead. With the hierarchy, a coordinator sends proposal messages only to 

clusterheads and a clusterhead unmerges and forwards the proposal to its local hosts. 

On the other hand, the echo messages from the hosts in the same cluster are merged 

into one message before they are sent to decision makers. In such a way, the message 

cost can be significantly reduced.  

Based on different mechanisms of clustering the MHs, We develop two different 

hierarchical protocols. In the first protocol, the set of clusterheads is predefined and 

the functions of clustering hosts and achieving consensus are closely coupled. The 

second protocol adopts a modular approach to select clusterheads dynamically. The 

function of achieving consensus and the function of clustering MHs are separated by 

defining the eventual clusterer oracle ∆. ∆ is in charge of constructing and 

maintaining the cluster-based two-layer hierarchy over MHs.  

Since ∆ provides the fault tolerant clustering function transparently, it can be used 

as a new oracle for the design of reliable hierarchical consensus protocols. ∆ can be 

implemented using ◊S, so it is equivalent to ◊S in terms of the power of failure 

detection. However, ∆ is more powerful in the sense that it can help the consensus 

protocols built on top of it improve their message efficiency and scalability, which is 

especially important for large scale MANETs. 
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Chapter 6. Handling Dynamic Mobile Systems 

6.1. Overview 

In recent years, a major advance in distributed computing is due to the 

development of dynamic systems, e.g. peer-to-peer systems, mobile systems, where 

an unbounded set of processes can join or leave the system at any time and the 

number of participating processes can change arbitrarily as time passes.  

The inherent dynamic nature of processes introduces a new kind of uncertainty, 

constitution uncertainty: the global constitution of the network is unknown to the 

processes. This additional difficulty makes dynamic system more challenging than 

traditional ones, in designing coordination protocols, e.g. consensus protocols. 

Efforts have been made to implement the eventual leader protocol [109][111] in 

dynamic wired systems and then consensus can be achieved in dynamic systems 

[5][6][38][67][72]. However, to our knowledge, the consensus problem in dynamic 

mobile systems is not considered. 

In this chapter, we investigate the implementation of the eventual leader oracle Ω 

in dynamic infrastructured mobile networks. MSSs and the network connecting them 

form a static asynchronous system. The number of MSSs is known. We adopt a time 

free approach proposed in [109][111] and extends it to the context of mobile 

environments by combining it with the notion of process accessibility [100]. This 

time free approach explicitly uses the values of n, the number of processes in the 

system, and t, the upper bound on the number of processes that can crash. It relies on 

an assumption on the behavior of the flow of messages exchanged. More precisely, 

processes can broadcast query and then wait for responses from other processes. The 

first (n - t) responses received are winning (the other responses, if any, are called 

losing responses; they can be slow or never sent because their sender has crashed). It 

is shown in [111] that Ω can be built if the following behavioral property is satisfied: 

“there is a correct process p and a set Q of t+1 processes such that eventually the 
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responses of p to each query issued by any q ∈Q is always a winning response.” 

Intuitively, this means that for any q, the link connecting q to p is not among the t 

slowest links of q. We can also think of process p as being eventually accessible by 

processes in set Q.  

To extend this idea in a dynamic system, we assume that each MSS is equipped 

with a device that provides it with partial information about the mobile processes 

that are present in the system. More precisely, each MSS bi is provided with a set 

local_trusti of mobile process identities that represents bi’s current view of the 

mobile processes that are currently present in the systems. We consider the following 

additional assumption MPdyn: “There is a stable13 mobile process m and a time τ such 

that, �τ’>τ , there is a set Qτ’ of at least 2t + 1 MSSs such that �bi∈Qτ’, either bi 

locally trusts m at time τ’ or bi has crashed by time τ’.” It is important to notice that 

the set of “witnesses” MSSs Q can vary over time. 

Let us say that a mobile process m is x-accessible at time τ if it appears in the 

local trusted list local_trusti of x MSSs at timeτ. Moreover, we define local_trusti at 

time τ for a MSS bi that has crashed before that time as the whole set of mobile 

processes. MPdyn can thus be interpreted as follows: “there is a stable mobile process 

m that eventually becomes permanently (2t+1)-accessible.” This study investigates 

MPdyn and shows that, if a majority of the MSSs are correct, the oracle Ω can be built 

on top of asynchronous mobile environment that satisfy the assumption MPdyn. 

Interestingly, no additional assumption is required on MSSs. In that sense, the 

proposed protocol is time-free. Nearly all the computation and communication are 

carried out by MSSs, so that the workload of a MH is minimized.  

6.2. Computational Model 

The mobile environment is a distributed system consisting of two distinct sets of 

entities: a set of mobile hosts (MHs) and a set of fixed hosts usually named mobile 

support station (MSSs). The set of MSSs and the communications channels between 

                                                 
13 a stable mobile process is a process that after entering the system, does not crash nor be disconnected. 
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them form a static distributed system.  On the other hand, the mobile processes can 

be viewed as a dynamic system. The mobile hosts move in a geographical area, 

which is partitioned into cells. Each MSS covers one cell and a MH can only 

communicate (and vice versa) with the MSS responsible the cell in which it is 

located. A MH is connected to the system if and only if it is up and running and 

located in a cell covered by an alive MSS.  

For the ease of the exposition, we assume the existence of a global discrete clock. 

This clock is a fictional device which is not known by the processes; it is only used 

to state specifications or prove protocol properties. The range Г of clock values is the 

set of natural integers. We denote B = {b1,..., bn} the set of MSSs processes (for B 

stands for base stations) and M= {m1,m2,...}, the set of MHs. 

6.2.1. Mobile Support Stations: a Static System 

The set of MSSs and its underlying communication network is modeled as a static 

asynchronous system. The set of MSSs and its underlying communication network is 

modeled as a static asynchronous system. The wired network of MSSs is made of a 

finite set of n ≥ 2 fixed processes, namely, B = {b1,..., bn}. A MSS can fail by 

crashing, i.e., prematurely halting. It behaves correctly (i.e., according to its 

specification) until it possibly crashes. A process bi is correct in a run if it does not 

crash in that run, otherwise it is faulty. We assume that a majority of MSSs are 

correct. We use the following notations concerning the B of MSSs: 

t: the maximum number of faulty MSSs in a run, 1≤t≤n/2. 

C: the set of MSSs that are correct in a run, C⊆B.  

MSSs communicate by sending and receiving messages through reliable yet 

asynchronous channels. Each pair of MSSs {bi, bj} is connected by a wired channel. 

Channels are reliable in the following sense: they do not alter, create or lose 

messages. However, channels are asynchronous: the time to transfer a message from 

bi to bj is finite but unbounded, i.e. if bi sends a message to bj, then bj eventually 
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receives the message unless it fails (let us observe that channels are not required to 

be FIFO). There is no assumption about the relative speed of processes.  

Query-response mechanism. We consider that each process is provided with a 

query-response mechanism. Such a query-response mechanism can be easily 

implemented in a time-free manner on top of an asynchronous distributed system. 

More precisely, any MSS bi can broadcast (to other MSSs) a QUERY message and 

then wait for corresponding RESPONSE from n-t MSSs (these are the winning 

responses for that query). The other RESPONSE messages associated with the query, 

if any, are systemically discarded (they are the losing responses for that query).  

Both QUERY messages and RESPONSE messages can be used to piggyback data. 

This allows the querying process to disseminate data to all the processes and obtain 

data from other processes. 

A query issued by bi is terminated if bi has received n-t corresponding responses. 

We assume that a process issues a new query only when the previous one has 

terminated. Without loss of generality, the response from a process to its own query 

is assumed to always arrive among the first n-t responses. Moreover, QUERY and 

RESPONSE are assumed to be implicitly tagged in order not to confuse RESPONSE 

messages corresponding to different QUERY messages. It is assumed that a MSS bi 

issues forever sequential queries until it possibly crashes.  

6.2.2. Mobile Hosts: a Dynamic System 

The system has infinitely many mobile hosts M= {m1,m2, . . .} but each run of the 

leader election protocol has only finitely many. This means that there is no bound on 

the number of MHs for all runs: whatever be the integer value k, there are runs with 

more than k MHs. There is a bound on the number of MHs in each run, but a 

protocol does not know that information because it varies from run to run. This is the 

finite arrival model described and investigated in [4][105].  

Each mobile process has a unique identity. A process knows its own identity but 

does not necessarily know the identities of other MHs. Moreover, identities are 
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comparable. In the following, we consider that identities are taken from the set of 

positive integers. mi denotes the MH whose identity is i. Like MSSs, MHs are 

asynchronous and can suffer from crash failures. After a MH has crashed, it is seen 

as permanently disconnected from the system.  

A MH is connected only if it is located in a cell covered by a MSS. A MH can 

only directly communicate with the MSS located in its current cell. Messages 

between two MHs must be forwarded by corresponding MSSs. When a MH moves 

from one cell to another, it executes a JOIN operation to inform the MSS of the new 

cell. A hand-off procedure is then executed between the MSSs of the old and new 

cell.  

We assume the existence of an underlying routing layer that allows messages 

being forwarded in the static system from the source MSS to the local MSS of the 

destination MH. If the local MSS crashes, the link between the MH and the rest of 

the system is lost. However, the MH can reconnect by moving into a new cell 

covered by an alive MSS. 

We use the following notation concerning the set M of MHs:  

up(τ): the set of mobile hosts that are connected to the system at time τ, up(τ) ⊆

M. Obviously, these MHs joined the system before time τ and, never crash or 

disconnects before time τ.  

6.3. Problem Definition and Additional Assumptions 

Like other leader oracle protocol, some assumptions are needed to cope with the 

impossibility of implementing a leader oracle in an asynchronous system [111].  

6.3.1. Stability Condition  

The set of MHs is inherently dynamic: due to mobility, crash failures or energy 

saving, MHs can join or leave the system at any time. However, if each MH 

periodically join and then leave the system, being connected only for a short period 

(i.e., the system is unstable), it is impossible to elect any MH. To allow electing a 
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leader, the system should exhibit stable periods that last long enough. The following 

set definition captures this notion of stability [65][112]: 

STABLE = {mi |∃τ,∀τ’≥ τ: mi ∊up(τ’)}. STABLE is the set of MHs that, once 

have entered the system, do not crash or disconnect. To guarantee the termination of the 

proposed protocol, we assume that STABLE ≠ Ø. 

6.3.2. Problem Definition  

A leader oracle is a distributed facility that provides the mobile processes with a function 

leader() that returns the identity of a mobile process each time it is invoked. A 

unique mobile process is eventually elected but there is no knowledge of when the 

leader is elected. Moreover, to be useful the eventual unique leader ml must be a 

stable mobile process (i.e., ml ∊STABLE). More precisely, the leader oracle Ω 

satisfies the following property: 

Eventual Leadership: There is a time τ and a mobile process ml ∊STABLE, such 

that after τ, any invocation of leader() by any process mi returns l. 

6.3.3. Local Failure Detection 

We suppose that each MSS bi is able to gather partial knowledge about the mobile 

processes that are present in the system. We define the information available to 

MSSs in the failure detector framework [30][31].  

We assume that each MSS bi is equipped with a local failure detector that 

provides a set local_trusti ⊆M, which means that the MHs in the set currently up 

and connected. More precisely, at each MSS bi, the set local_trusti satisfies the 

following properties (local trusti
τ denotes the value of local_trusti at process bi at 

time τ): 

Eventual Accuracy: ∃τ,∀τ’≥τ: STABLE ⊆∪i∊C local_trusti
τ’ 

Completeness: If mobile mj never join the system, crashes or permanently leaves 

the system then ∃τ,∀τ’≥τ: mj ∉∪i∊C local trusti
τ’ 

The completeness part requires that a MH that crashes or permanently leaves the 

system is eventually no longer trusted by any MSS. The accuracy part requires that 
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eventually, at least one stable mobile process m is continuously trusted by MSSs. 

However, it is not necessary that the same MSS eventually permanently trust this 

stable mobile process m. On the contrary, we only require that after some time, m is 

always trusted by some MSS and at different time it may be trusted by different 

MSSs.  

From a practical point of view, this failure detection capability can be 

implemented as follows. Each MSS monitors the mobile processes located in its cell 

by periodically broadcasting queries. When a mobile process receives such a query, 

it sends back its identity. To ensure that stable mobile processes are continuously 

trusted, some delay is necessary before a MSS removes a MH from its local_trusti, 

after the MH is perceived to be disconnected from the cell.  

A different approach along the line of gossip-based failure detection 

implementation [66][76] can also be used. An alive MH periodically broadcasts 

ALIVE messages through the wireless medium. When a process (mobile or fixed 

station) receives such a message, forwards it. When a MSS bi receives such a 

message, it adds the initiator of the message to its local_trusti. If the ALIVE message 

has not been received from a MH m for ∆ units of time, m is removed from the 

local_trusti. The value of ∆ depends on the behavior of the underlying network. 

Investigating implementations of such a local failure detector service is out of the 

scope of this thesis. 

 Let us observe that this failure detector does not provide much information on 

MHs that are present in the system. It only guarantees that eventually, at least one 

stable mobile process m is trusted by some MSS at each time instant, but is possible 

that the local_trust sets permanently disagree. Since communications between MSSs 

are asynchronous and a MSS may have a different local_trust set at each time instant, 

MSSs cannot agree on the stable mobile processes they trust.  
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6.3.4. An Assumption on the Movement of MHs 

We consider the following additional assumption, called MPdyn (a shortcut for 

dynamic mobility pattern):  

There are a stable mobile process m and a time τ (m and τ are not known in 

advance) such that at any time instant τ’≥ τ, there exists a set Qτ’⊆B that satisfies the 

following property: 

∀τ’≥τ: |Qτ’|≥ 2t+1; 

∀b ∊Qτ’: if b has not crashed by time τ, m∊ local_trustb
τ’. 

The intuition that underlies this property is the following. Even if nothing is 

known about the movement of mobile processes, it is possible that their behavior 

exhibits some regularity that can be exploited in order to implement a leadership 

facility. More precisely, the assumption MPdyn states that, eventually, there is a set of 

2t+1 MSSs that trust the same mobile process. Moreover, this set can continuously 

change over the time. 

The property MPdyn can be interpreted as follows: among the mobile processes, 

there is at least one stable mobile process m that eventually moves “fast enough” 

across a “large enough” (namely, 2t + 1) number of cells. Due to the latency between 

the instants at which a mobile process leaves the cell of a MSS bi and the instant at 

which it is removed from the set local_trusti, it follows that if the mobile process m 

permanently traverses sufficiently fast at least 2t + 1 distinct cells then at any point 

of time, the stations responsible for those 2t + 1 cells locally trust m. 

Another possible solution to guarantee the MPdyn assumption is to deploy a 

multiple coverage mobile network. Each point in the territory is covered by at least 

2t+1 MSSs rather than one MSS. Then each MH keeps contact with at least 2t+1 

MSSs simultaneously. In such a way, the MPdyn assumption can be guaranteed 

deterministically. Although in existing infrastructured mobile systems, e.g. GSM and 

CDMA networks, one point is typically covered by one MSS, some area is covered 

by more than one MSS to smooth the handoff procedure or deal with the shadow 

fading problem [1][56][57][94].  
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With the advance in hardware technologies, in the future, it should be more 

feasible to deploy a fully (2t+1)-coverage cellular system to provide better 

performance and service with little additional cost.  

 
Figure 6-1 Eventual leadership protocol: code for MSSs 

6.4. Description of the Protocol 

The protocol is described in Figure 6-1 and Figure 6-2. It extends ideas that 

previously appear in [39][111][112]. The MSSs act as servers to provide an eventual 

init: sni ← 0; trusti ←┬; 

Task 1 

(01) Repeat foreach j ∊ B do send PH1_QUERY() to bi endfor; 

(02)       wait until corresponding PH1_RESPONSE() has been received form ≥ n-t MSSs; 

(03)       PH1_reci = {j: a PH1_RESPONSE received from bj at line 03}; 

(04)       foreach  j ∊ B do send PH2_QUERY(sni, trusti) to bj endfor; 

(05)       wait until corresponding PH2_RESPONSE(L_TURST) received from ≥ n-t MSSs; 

(06)       PH1_reci = {j: a PH2_RESPONSE received from bj at line 06}; 

(07)       let REC_FROMi =∪i∊PH1_reci∩PH2_reci L_TRUSTj; 

(08)       trusti ←trusti∩REC_FROMi; 

(09) endrepeat 

 

Task 2 

(10) upon reception of PH1_QUERY() from bj: 

(11)       query_starti[j] ←current_time(); send PH1_RESPONSE() to bj; 

(12) upon reception of PH2_QUERY() from bj: 

(13)       if sni = snj then trusti ←trusti ∩trustj endif; 

(14)       if sni < snj then trusti ←trustj, sni ←snj endif; 

(15)    if trusti = Ø then trusti←┬, sni←sni +1 endif; 

(16)       LOCAL_TRUSTi ←∪query_starti[j]≤τ≤current_time() local_trusti
τ; 

(17)       send PH2_RESPONSE( LOCAL_TRUSTi ) to bj; 

(18) upon reception of LEADER_QUERY(m) from a mobile host m: 

(19)       if trusti = Ø ∨trusti = ┬ then li = m; 

(20)       else li = min(trusti); 

(21)       endif 

(22)       send LEADER(li) to m; 
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leadership service to the mobile processes. To attain this goal, each MSS bi 

maintains a set trusti of identities of mobile processes. The aim of the protocol is for 

the MSSs to eventually have the same set of identities. When a mobile process m 

invokes the primitive leader(), it sends a LEADER REQUEST message to its local 

MSS (Figure 6-2). When a MSS receives such a message, it deterministically 

chooses an identity among the mobile processes it currently trusts and sends back 

this identity (line 18 to line 22). 

The protocol consists in two tasks run in parallel at each MSS. Task 1 is the core 

task in which each process initiates sequential queries and wait for corresponding 

responses. Task 2 is triggered by reception of messages. It implements the response 

mechanism associated with the queries: when a process bi receives a query, it sends 

back a response carrying values that depend on the type of query received (line 11 

and line 17). 

Each process bi associates with its trusti set a sequence number sni. sni is a logical 

date defining the “age” of set trusti. The period, during which the sni keeps the same 

value, is called an “epoch”. When bi receives a pair < snj , trustj > (line 12), it 

updates trusti according to the respective values of sni and snj. If they are equal, it 

considers trusti∩trustj as the new value of the set of mobiles processes it trusts (line 

13). 

 
Figure 6-2 Eventual leadership protocol: code for MHs 

If its current knowledge is too old, it adopts the set received (line 14). Otherwise, 

it discards the message received. If bi then discovers that its set trusti is empty, bi 

starts a new “epoch” by increasing its sequence number sni and resets trusti to its 

initial value (line 15). Let us notice that during an “epoch”, a set trusti can only 

decrease or remain constant. The proof shows that it exists an epoch with a finite age 

When Leader() is invoked: 

(23) send LEADER_QUERY(m) to the current local MSS; 

(24) wait until LEADER(l) is received; 

(25) return (l) 
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after which the sni values no longer increase and the sets trusti are (and remain) non-

empty and equal. They actually converge towards to a subset of the STABLE set. The 

mobile process in these trusti sets with the smallest identity is then elected as the 

unique leader. 

In order to benefit from the MPdyn assumption, each process bi collects local trust 

sets of other processes by sequentially issuing two-phase query-responses cycles. In 

the first phase, bi broadcasts a PH1_QUERY. When a process bj receives such a 

query, it sends back a PH1_RESPONSE and starts recording the identities of 

processes it locally trusts until it receives a PH2_QUERY from bi. The PH2_ 

RESPONSE message sent back by bi carries the identities of the mobile processes 

that have been locally trusted by bj since it has received the matching PH1_QUERY 

of bi (lines 16-17). To see why this two-phase query-response cycle is necessary, let 

us assume that when a process bj received a query at a time τ, its sends back a 

response message that contains the value of local trustj at time τ. bi collects n-t local 

trust sets, but these sets may have been “seen” at distinct times. Since the set Q of 

“witness” processes defined in property MPdyn can change over time, it is possible 

that the local trust sets collected by bi does not satisfied any global 13 property, even 

if the property MPdyn is established. On the contrary, we will show in the proof that 

this two-phase query-response mechanism guarantees that the sets REC_FROMi (i.e., 

the union of local_trust collected, lines 07) eventually satisfy a global property. 

More precisely, Lemma 1 states that there exists a stable mobile process that 

eventually is always contained in any REC_FROM sets. 

┬ is a special symbol that represents the whole universe of the mobile processes. 

Moreover, ┬∩A = A (where A is any set of mobile processes). 

6.5. Correctness Proof 

In the following xi
τ denotes the value of the local variable x of process pi (MH or 

MSS) at time τ. Given an execution, C is the set of MSSs that are correct in that 
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execution. STABLE is the set of mobile processes that, after having entered the 

system, do not crash or disconnect. 

Lemma 1 There is a time τ and a stable mobile process m (i.e. m ∊STABLE) such 

that every REC_FROM set computed (at line 07) after τ is such that m ∊REC_FROM. 

Proof. Given an execution that satisfies the MPdyn assumption, there is a time τ0 and 

a mobile process m ∊STABLE such that ∊τ’≥ τ0, there exists a set Qτ⊆B where: 

(1) |Qτ | ≥  2t + 1 and  

(2) ∀bi ∊Qτ: m ∊local_trusti. 

Let us consider a MSS bi that starts a query (at line 02) after τ0. Let bj be a MSS 

such that j∊PH1_reci ∩PH2_reci. This means that, for each phase of the query issued 

by bi, the responses messages sent by bj arrived among the first n- t ones at process bi. 

Let τ_startj be the time instant at which the PH1_QUERY from bi is delivered to bj 

and τ_ endj be the time at which bj sends back the PH2_RESPONSE message. Let us 

observe that the PH2_RESPONSE message sent by bj carries the identities of all the 

mobile processes that has been trusted at least once by bj during the time interval 

[τ_startj, τ_ endj] (lines 16-17). The rest of the proof relies on the two following 

observations: O1: |PH1_reci∩PH2_reci| ≥ n-2t; O2: ∃τ,∀j∊ PH1_reci∩PH2_reci: τ 

∊[τ_startj, τ_ endj]. 

Let us consider the set REC_FROMi computed by bi after completing its query. 

This set is the union of the mobile processes that has been trusted by the MSSs bj, j∊ 

PH1_reci∩PH2_reci at some time instant between the beginning and the end of the 

two-phase query of bi. Let τ1 be the time instant introduced in observation O2. In 

particular, ∪j∊ PH1_reci∩PH2_recilocal_trustj
τ1⊆REC_FROMi. As τ1 ≥ τ0, it follows from 

the assumption MPdyn that  at time τ1 there exist a set Qτ1 of at least α≥ 2t + 1 MSSs 

that either have crashed or trust m at time τ1 . Since |PH1_reci∩PH2_reci| ≥ n-2t 

(O1), it follows that Qτ1∩(∪j∊ PH1_reci∩PH2_recilocal_trustj
τ1), from which we conclude 

that m∊REC_FROMi. 
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We have shown that there exists a time τi after which any REC_FROMi set 

computed by bi contains the identity of the stable mobile m. Taking τmax = max{τi: i ∊

B} completes the proof. 

Observation O1: For any process bi that initiates and completes a two phases query, 

|PH1_reci∩PH2_reci| ≥ n-2t ≥ 1. 

Proof of O1: Since in each phase of the query, bi waits for n-t winning responses, we 

have |PH1_reci| ≥ n-t and |PH2_reci|≥ n-t. Consequently, sets PH1_reci and 

PH2_reci differ in at most t identities. It follows that |PH1_reci∩PH2_reci| ≥ n-2t. 

As t < n/2, PH1_reci∩PH2_reci ≠ Ø. End of proof O1 

Observation O2: Let bi be a process that initiates and completes a two-phase query: 

∩j∊ PH1_reci∩PH2_reci[τ_startj, τ_ endj]≠ Ø. 

Proof of O2: Let j∊  PH1_reci. Let us recall that τ_startj is the time at which 

PH1_QUERY is delivered at process bj and τ_endj is the time at which bj sends the 

PH2_RESPONSE message to bi. Let τ be the time at which the second phase of the 

query is initiated by bi (i.e., the time at which bi broadcasts a PH2_QUERY message, 

line 04). We show that τ∊[τ_startj, τ_endj]. When bi starts the second phase of the 

query, it has received a PH1_RESPONSE() from bj. As bj sends such a message 

when it has delivered a PH1_QUERY from bi, we have τ_startj < τ. Similarly, bj 

sends a PH2_RESPONSE to bi when it has received the corresponding PH2_QUERY 

from bi, which implies that τ<τ_ endj. Consequently, we obtain that τ∊[τ_startj, 

τ_endj].End of proof O2 � 

Lemma 2 ∃SN, ∃τ, ∀i ∊B,∀τ’≥τ: i∊C ⇒ sni(τ’) = SN. 

Proof. Let τ0 be a time such that: 1) all faulty MSSs have crashed, and 2) all 

messages sent by faulty MSSs have been delivered. Let τ1 be the time defined in 

Lemma 1 and let τclean = max(τ0, τ1). The idea is that after time τclean the system 

exhibits a “clean” behavior. 

Let SNτclean be the maximal sequence number sni among the correct MSSs bi at 

time τclean. Moreover, if there is a correct MSS bj such that trustj = trusted and snj = 
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sn, we say that “the set trusted is associated with the sequence number sn” (please 

notice that several sets can be associated with the same sequence number). 

Claim C1. If Ø is associated with SNτclean, then: (1) a process bj that executes the 

reset statement at line 15, after which we have (trustj, snj) = (┬, SNτclean + 1), and (2) 

(┬, SNτclean + 1) is sent to all the processes. 

Proof of C1. Let us first observe that (Observation O3) a set trusti can only decrease 

while sni remains equal to SNτclean, (Observation O4) there is no gap in sequence 

numbers (which means that if a sequence number variable is equal to SN, then there 

are sequence number variables that had previously the values 0, 1, . . . , SN-1), and 

(Observation O5) the update by a process bj of its snj variable to the value SN+1 (at 

line 13 or 14) is always due to the fact that some process bk (which is possibly bj 

itself) has executed snk ←snk+1 at line 15 (where SN is the value of snk before the 

update; notice that bk also sets trustk to ┬).  

Let bi be a process that associates Ø with SNτclean. If the pair (trusti, sni) remains 

equal to (Ø, SNt) until bi receives a PH2_QUERY, it executes line 15 and 

consequently resets (trusti, sni)) to (┬, SNτclean + 1). 

The only other possibility for that pair to be modified is at line 14, but in that case 

pi received a sequence number > SNτclean, and it follows from the observations O4 

and O5 that some process bj has executed line 14, updating the pair (trusti, sni) to (┬, 

SNτclean + 1). This proves the first part of the claim. 

The proof of the second part of the claim is by contradiction. Let us assume that 

no process sends a PH2_QUERY with the pair (┬, SNτclean + 1). This means that the 

pairs that are sent have the form (X, SNτclean + 1) with X ≠ ┬. Let bi1 be a process 

such that at some time τi1 we have (trusti1, sni1) = (┬, SNτclean + 1). As it sends at 

some time τi1’ > τi1 the pair (Xi1, SNτclean + 1) with Xi1 ≠ ┬ (by assumption), we 

conclude that, between τi1 and τi1’, bi1 received a query from some process bi2 

carrying (Xi2, SNτclean + 1) with Xi2 ≠ ┬. The same reasoning can be applied to bi2, 

from which we conclude that there is a process bi3, etc. It follows that we can 

construct an infinite chain of distinct processes, which is clearly impossible as there 
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is a finite number of mobile support stations. It follows that there is a process that 

sends a PH2_QUERY carrying the pair (┬, SNτclean + 1). End of the proof of Claim C1. 

We show that SN = SNτclean or SN = SNτclean + 1. According to the definitions of 

τclean and SNτclean, there exists a correct process bi such that sni = SNτclean. Due to the 

gossiping mechanism, after some time we will have snj >SNτclean for each j∊C. We 

consider two cases: 

Case 1: Ø is never associated with SNτclean. In that case, no correct process bi will 

ever execute the reset statement at line 15. It follows that no process bi will increase 

its sni variable, and the lemma follows. 

Case 2: Ø is associated with SNτclean. From the claim C2, there is inevitably a 

process bj that executes the reset statement at line 15, after which we have (trustj, snj) 

= (┬, SNτclean + 1), and this pair is sent to all the correct processes. This means that 

after some time, each process bi will be such that sni ≥ SNτclean + 1. As this occurs 

after time τ1, the time defined in Lemma 1, it follows that from now on, any set trusti 

permanently contains the stable mobile process m defined in Lemma 1. This is 

because each time bi updates its set of trusted mobile processes (line 08), it intersects 

trusti which has been reset to ┬ (the whole universe of mobile processes) with 

REC_FROMi that always contains m. Consequently, no PH2_QUERY(Ø, SNτclean + 1) 

are sent. Hence, no process can execute the reset statement at line 15, from which we 

conclude that no sequence number SNτclean + 1 can be generated and the lemma 

holds.� 

Theorem 1 In any execution that satisfies the MPdyn assumption, the protocol 

described in Figure 6- 1 implements a leader facility in a mobile environment. 

Proof. Given a run that satisfies MPdyn, let PL = ∩{trusti : i ∊C ∧trusti is associated 

with SN}, where SN is defined in Lemma 2. 

We first show that PL ≠ Ø. Due to lemma 2, no sequence number greater than SN 

can be generated. This implies that Ø cannot be associated with SN. Moreover, it 

follows from Lemma 1 and updates of trusti (line 08) that any trusti associated with 

SN contains the stable mobile process m introduced in Lemma 1. 
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We now show that PL⊆STABLE. This a consequence of the completeness 

property satisfied by the local trusti. More precisely, the completeness property states 

that a mobile process that crashes or gets disconnected from the system is eventually 

no longer locally trusted by each MSS b. Consequently, there is a time after which 

every REC_FROM does not contain crashed or disconnected mobile processes. 

Therefore, there is a time after which the REC_FROMi contains only stable 

processes. Moreover, as the trusti sets are never reset to ┬, it follows that, after that 

time, these trusti sets can contain only stable mobile processes. 

Finally, there is a time τ after which we have ∀i∊C: trusti = PL. This is a 

consequence of the finite arrival model (after some time, no more mobile processes 

join the system) and the gossiping mechanism (lines 04 and reception of 

PH2_QUERY in Task 2). Let us consider an invocation made after τ of leader() that 

returns ml. We have ml = min (trusti) where i is the identity of some correct MSS. 

Since trusti = PL⊆STABLE, it follows that any of these invocations returns the same 

stable mobile process.� 

6.6. Summary 

Leader primitive is at the core of many coordination problems, e.g. consensus. We 

investigated the implementation of the eventual leader oracle Ω in the context of 

dynamic infrastructured mobile environments, where the number of participating 

processes can change arbitrarily as time passes and processes can join or leave the 

system at any time.  

The set of MSSs is viewed as a static system, while the MHs constitute a dynamic 

system. It has shown that as soon as there is a stable mobile process continuously 

seen by a large enough set of MSSs, Ω can be implemented. Moreover, this set can 

be different at different time. Interestingly, no additional assumption is made on the 

network of MSSs. This fact, combining with the dynamic nature of assumption 

MPdyn, makes attractive to investigate this approach in the context of unstructured 

mobile networks, e.g., MANETs. 
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Chapter 7. A Permission-based MUTEX 

Algorithm for MANETs 

7.1. Overview 

As discussed before, all existing MUTEX algorithms for MANETs use token-

based approaches. In this chapter, we propose the first permission-based MUTEX 

algorithm for MANETs. The proposed algorithm is based on the “look ahead” 

technique [146] proposed for infrastructured mobile networks. To apply the “look 

ahead” technique in MANETs, the following issues have to be considered.  

First and most importantly, there is no MSS in a MANET, so some additional 

steps should be taken to ensure that the algorithm can continue its execution after 

one or more hosts disconnect or doze. Second, the algorithm in [146] does not 

provide methods for some important functions. There is no method for initializing 

the two key data structures – Info_set and Status_set. Third, the assumption about the 

FIFO channel becomes infeasible in MANETs. Because the route between two MHs 

changes from time to time due to the movements of the MHs, implementing the 

FIFO channel in MANETs is very costly. Finally, there is no fault tolerance 

mechanism for handling host failures or link failures. 

The problems above are all addressed in our proposed algorithm. We propose a 

simple and efficient method to initialize Info_set and Status_set. The disconnections 

and dozes of hosts are also handled. When a host wants to disconnect from the 

network or enter the doze mode, it informs other hosts by sending messages. Both 

the sender and receiver modify the information maintained accordingly. When a host 

wakes up from the "doze" mode, it resumes the execution immediately without 

performing any special action. When a host reconnects to the network, it informs 

other hosts and resumes the execution.  

To relax the constraint of requiring FIFO channels, we add a new variable Qreq. In 

[146], if a channel is not FIFO, a REPLY message from a host Si (with lower priority) 
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to a host Sj (with higher priority) may be delivered following the REQUEST 

message from Si to Sj. On the reception of the REPLY message, Sj moves Si to the 

Status_setj and consequently Si can never get a REPLY from Sj. With the help of Qreq, 

such a request is recorded and the host with the lower priority would not be put in 

Status_set after the reception of the REPLY. FIFO is no longer necessary.  

Using timeout, a fault tolerance mechanism is developed to tolerate both link and 

host failures. A timeout value is set for each request message sent out.  Intermittent 

and recoverable link and host failures are handled by resending request messages 

when the timeout expires.  

7.2. System Model and Assumptions 

A MANET consists of a collection of n autonomous MHs, S = {S1, S2,…, Sn}, 

communicating with each other through wireless channels. Whether two hosts are 

directly connected is determined by the signal coverage range and the distance 

between the hosts. Each host is a router and the communication between two hosts 

can be multiple hops. Both link and host failures can occur. The topology of the 

interconnection network can change dynamically due to mobility of hosts and 

failures of links and hosts.  

At any moment, each MH is in one of three different states: normal, doze, and 

disconnection. For the disconnection mode, two different cases are considered: 

voluntary disconnection and accidental disconnection. An "accidental 

disconnection" refers to disconnection aroused by failures of links or hosts. Such 

disconnections occur more frequently and unpredictably than that in wired networks 

due to the unstable links and characteristics of mobile hosts. A MH may also 

voluntarily disconnect from the network to save the battery power [17][115]. Since 

the MH knows such a disconnection in advance, it can execute predefined operations 

for the distributed algorithm that it currently participates in.  

A distributed system built on a MANET is an asynchronous system, so there is no 

bound on the processing speed of hosts or message delay. To provide support for 
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tolerating recoverable link and host failures, we use the timeout and message 

retransmission mechanisms. We assume that the link failure or host failure is 

eventually recovered within the retrying period.  

7.3. Data Structures and Message Types 

Following the definitions in [136][146], each host Si maintains two sets, which 

are defined below: 

Info_seti: an array of the IDs of the hosts to which Si needs to send request 

messages when it wants to enter CS.  

Status_seti: an array of the IDs of the hosts which, upon requesting to access CS, 

would send the request messages to Si. 

To ensure the correctness of the algorithm, the following conditions must be 

satisfied: 

1) ∀Si: Info_Seti∪Status_Seti =S;∀Si: Info_Seti∩Status_Seti =Ø 

2) ∀Si∀Sj: Si∊Info_Setj ⇒Sj∊Status_Seti 

Obviously, Condition 1) guarantees that host Si knows the request status of all the 

other hosts and there is no redundancy information. Condition 2) guarantees the 

consistency among the sets of all MHs. 

In addition, each host maintains the following data structures. 

tsreq: the timestamp for the request of Si. It is used as the priority of the request of 

Si. If Si is not requesting for CS, it is set to NULL. 

Qreq: the array of the IDs of the hosts which have sent requests to Si but Si has not 

sent back a reply yet. 

TOreq: the array of timers each associated with a REQUEST message sent out.  

Trec: the timestamp of the last reconnection. It is set to “0” initially. 

The messages used in the algorithm are classified into the following types.  

REQUEST: the message sent from a host requesting CS to other hosts for getting 

their permissions. The message contains the priority of the request (e.g. a unique 

timestamp). 
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REPLY: the message sent by a receiver of a REQUEST to grant the permission of 

accessing CS. 

DOZE: the message to inform others that the sender is entering the doze mode. 

DISCONNECT: the message to inform others that the sender is disconnecting 

voluntarily. 

RECONNECT: the message to inform others that the sender has reconnected to 

the network after a voluntary or accidental disconnection. The message contains the 

priority (e.g. a unique timestamp) of the reconnection.  

7.4. Description of the Algorithm 

7.4.1. Initialization of Info_set and Status_set 

The algorithm for initializing the Info_set and Status_set is shown in Figure 7-1. 

We use an n ×n matrix M, where n is the number of hosts in the network, to represent 

the relationships among the hosts. The value of each element of M, mij, represents 

the relationship between the pair of hosts Si and Sj. If mij = 0, Sj is in the Info_set of 

Si. If mij = 1, Sj is in the Status_set of Si. To ensure that the sets of all the hosts satisfy 

the conditions 1) and 2) specified in Section 7.3, an arbitrary host, say S0, is selected 

to act as the initiator of the algorithm. The initial value of M is determined by the 

initiator.  

 
Figure 7-1 Algorithm for initialization of Info_set and Status_set 

S0 generates the upper triangular matrix Mu randomly and broadcasts Mu to all 

other hosts.  Then, all the hosts, including S0, set the value of each element of the 

lower triangular matrix Ml to be the 2’s complement of the corresponding element in 

--Executed by all the hosts: ----- 
//Step 1: Generate the Lower Triangular Matrix Ml 
for{ i = 0 to |S|-1}  
         for{j= 0 to i-1} mij =1-mji;  endfor 
endfor 
//Step 2: Initialize the Info_set and Status_set 
// for host Si// 
for { j= 0 to |S|-1and j !=i}  

if {mij==0} put Sj into Info_seti; 
else  put Sj into Status_seti; 

endfor 

--Executed by the initiator: -- 
//Generate the Upper Triangular Matrix Mu 
for{ i = 0 to |S|-1} 
        for{j= i+1 to |S|-1}  
                 mij = random(0,1); 
        endfor 
endfor 
broadcast Mu to all other hosts; 
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the upper triangle. Finally, according to the corresponding row in M, each host 

initializes its Info_set and Status_set. It is easy to verify that our initialization 

algorithm meets the specified conditions with only a few messages.  

In the initialization algorithm, the failures of hosts or links are not considered.  To 

tolerate failures, each host sets a timeout for the message of Mu. If the timeout 

expires, the host sends a query message to the initiator. This may be repeated until 

Mu is received from the initiator. Since a host eventually recovers from a failure, 

each host eventually receives the Mu and initializes its sets. 

 

 

Figure 7-2 Body of the permission-based MUTEX algorithm 

CoBegin 
//Send Request// 
if(host Si wants to enter CS  
{   set tsreq to the current time; 
    for(Sj∈Info_seti ) do begin 
        Send REQUEST to Sj; 
        Set timeout in TOreq for Sj;  
   endfor 
   goto “Enter CS”;} 
//Enter CS// 
if(TOreq ==Φ) Enter CS; 
//Exit CS// 
    Set tsreq to NULL; 
    for (Sj∈Info_seti) do begin 
         Send REPLY to Sj; 
         Remove Sj from Qreq; 
    Endfor 
//Enter Doze Mode// 
Broadcast “DOZE”; 
Set Status_set= Φ; 
Set Info_set= S;  
//Exit Doze Mode// 
Set Status_set= Φ; 
Set Info_set= S;  
//Disconnect voluntarily// 
Broadcast “DISCONNECT”; 
Set Status_set= Φ; 
Set Info_set= S;  
//Reconnect// 
Broadcast “RECONNECT”; 
Sets Status_set= Φ; 
Info_set= S; 
//Handling timeout// 
if(timeout happens for host Sj )  
{     Resend REQUEST o Sj; 
       Set timeout for Sj in TOreq;} 

//Handling messages// 
Upon Si receives a message from Sj: 
if(REQUEST) 
{   Put Sj into Qreq;  
     if (Sj ∈Status_seti) 
    {   Move Sj into Info_seti; 
         if (Si is with lower priority)  
        {    Send REQUEST to Sj; 
              Set timeout in TOreq for Sj;} 
         }   
         if (Si is not requesting or  
              priority of Si is lower) 
         {     Send REPLY to Sj; 
               Remove the Sj from Qreq;}       
     } 
}      
if(REPLY) 
{  if(Sj∉ Qreq)  
   {   Move Sj to Status_seti, 
        Remove Sj from TOreq ; 
        goto “Enter CS”;}  
} 
if(DISCONNECT or DOZE) 
{    Remove Sj from TOreq and Qreq; 
       if(Sj∈ Info_seti) 
           Move Sj into Status_seti; 
} 
if(RECONNECT) 
    if(Trec<timestamp of RECONNECT)   
    {    Remove Sj from TOreq and Qreq; 
          Move Sj into Status_seti; 
     }    
CoEnd 
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7.4.2. Normal Execution (without Disconnection or Doze) 

The pseudocode of the proposed MUTEX algorithm is shown in Figure 7-2. All 

the hosts execute the same code. 

When a host wants to enter the CS, it first sets tsreq to the current time and sends 

the REQUEST messages to all the hosts in its Info_set. To tolerate link and host 

failures, a timeout is set in TOreq for each request message sent. The host then waits 

for a REPLY message corresponding to each REQUEST message sent out. If the 

Info_set is empty, it enters CS immediately. 

When a host Si receives a REQUEST message from another host Sj, it moves Sj to 

Info_seti and records the request in Qreq. If Si itself is not requesting for CS or its 

priority is lower, it sends a REPLY message to Sj and removes the record for Sj in 

Qreq. If Sj is in Status_seti before Si receives the REQUEST form Sj and Si is 

requesting for CS with a lower priority, Si sends a REQUEST to Sj.  

Upon receiving of a REPLY message from host Sj, Si removes the timeout (in 

TOreq) associated with Sj. If Si finds no request from Sj in its Qreq, Sj is moved to 

Status_seti.  

When the timeout for a REQUEST message expires, the requesting host sends a 

REQUEST again. When all the replies for REQUEST messages have been received, 

the requesting host enters CS.  

On exiting CS, a host sends REPLY messages to all hosts in its Info_set. 

It is worth notice that when two hosts compete for the CS simultaneously, if we 

do not recorder the REQUEST separately in Qreq, it is possible that the host with the 

lower priority never gets a REPLY from the other host. This is caused by the non-

FIFO property of communication channels. The following example execution shown 

in Figure 7-3 illustrates the usage of Qreq clearly. 

The example execution shows the scenario with only two hosts. At the beginning, 

the host Si is in the Status_setj while Sj is in the Info_seti (Figure 7-3-(a)). Then Si and 

Sj each generate a request while Si has a higher priority. Since Sj is in Info_seti, Si has 

to send a REQUEST message to Sj (Figure 7-3-(b)). Upon receiving the REQUEST 
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message from Si, Sj moves Si from Status_setj to Info_setj and records the request in 

its Qreq. Because the priority of Sj is lower, Sj sends a REPLY and a REQUEST to Si. 

However, due to the non-FIFO channel, the REQUEST arrives at Si first, and 

consequently Si records this request in Qreq (Figure 7-3-(c)). In Figure 7-3-(d), the 

REPLY arrives at Si, but Si does not move Sj into Status_seti because there is a 

request from Sj recorded in Qreq.  After receiving replies for all REQUEST messages 

sent out, Si enters the CS. Upon exiting from the CS, Si sends a REPLY message to Sj 

(Figure 7-3-(e)) (Without Qreq, Sj should be in Status_seti and cannot get the REPLY). 

Sj moves Si to Status_setj and enters CS (Figure 7-3-(f)).  
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Figure 7-3 An example execution of the permission-based algorithm 

7.4.3. Handling Doze and Disconnection 

When a host Si wants to enter the "doze" mode, it broadcasts a DOZE message to 

all other hosts and moves all hosts in its Status_set to its Info_set. All other hosts 
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move Si into their Status_set after they receive the DOZE message from Si. This 

ensures that the dozing host would not be disturbed. When a dozing host wakes up, it 

resumes the execution without any special operation.  

If a host Si wants to disconnect voluntarily, the same steps would be taken except 

that Si will broadcast a DISCONNECT message, rather than a DOZE message. 

When a host Si reconnects to the network after a disconnection, either a voluntary 

one or an accidental one, Si needs to broadcast a RECONNECT message to inform 

other hosts and move all the hosts in its Status_seti to its Info_seti.  

When a host Sj receives a RECONNECT message from Si, it compares its Trec 

with the timestamp of the received RECONNECT message. If Trec is less, moves Si 

to Status_seti and if it is waiting for a REPLY message from Si, Sj removes the 

corresponding timeout in TOreq. The comparison is necessary because several hosts 

may send out a RECONNECT message concurrently. For example, if Si and Sj send 

out RECONNECT concurrently, they will move each other to Status_set if they do 

not compare the time of reconnection. This violates the conditions for Status_set and 

Info_set specified before. 

7.5. Correctness of the Proposed Algorithm 

In this section we prove the correctness of the proposed algorithm by showing 

that the three correctness requirements for distributed MUTEX algorithms are 

satisfied. 

Lemma 1: Based on the assumptions, the effect of recoverable link or host failures 

can be eliminated.  

Argument.  Without loss of generality, we assume that the link between Si and Sj 

fails and some message is lost. If neither of the two hosts is waiting for reply from 

another, the link failure has no effect on their executions. So, we assume that Si is 

waiting for the reply of Sj. Eventually, the timeout for Sj would expire and the 

request is resent. Since we assume that a link failure can be recovered within the 

retrying period, Sj eventually will receive the request after the request is resent one 
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or more times.  

Similarly, when a host e.g. Si, fails, only the hosts waiting for the reply from Si are 

affected. Since Si can recover within the specified time period for retrying, it can 

eventually receive the request after it reconnects to the network.� 

Lemma 2: If a host Si wants to enter CS, it eventually learns about all the hosts 

concurrently requesting CS. 

Argument.  For a host Sj in Status_seti of host Si, if Sj wants to enter CS, it will send 

a REQUEST message to Si. Si will receive this request even there are failures 

(Lemma 1). For a host Sk in Info_seti of host Si, Si sends a REQUEST message to Sk. 

Sk will eventually receive the request (Lemma 1). If Si receives the reply from Sk, it 

knows that Sk is not requesting CS. Otherwise, Si is blocked until Sk sends a reply.� 

Theorem 1: At most one host can be in the CS at any time (safety). 

Argument. We prove the theorem by contradiction. Assume that two hosts Si and Sj 

are executing the CS simultaneously. From Lemma 2, each of them has learned the 

status of the other, which implies that they had sent reply to each other before they 

entered the CS. However, this is impossible because no two hosts have the same 

priority. This is a contradiction.� 

Theorem 2: The algorithm is deadlock free (liveness).  

Argument.  A deadlock occurs when there is a circular wait and there is no REPLY 

in transit. This means that each host in the cycle is waiting for a REPLY from its 

successor host in the cycle.  Since each request has a distinct priority, there is a host, 

e.g. Sh whose priority is the highest. Assume that the successor of Sh as Sj. We claim 

that Sh eventually receives one REPLY from host Sj. In the cases with no failure or 

disconnection, the safety property can be proved in a way similar to that in [146]. 

Here we only consider the cases with failures or disconnections.  

Case 1: Sj fails. If Sj failed before it sent out reply to Sh, it will send the reply after 

it recovers (Lemma 1). Eventually Sh can receive the reply from Sj. 

Case 2: Sj runs normally. In this case, Sj would receive the request from Sh and 

handle it. This can be further divided into two cases: 1) Sj has no request for CS or 
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its request has a lower priority (because Sh has highest priority). Then Sj would send 

reply to Sh immediately. 2) Sj is in the CS. Qreq is set for Sh, and Sh should be moved 

to Info_setj if it is in Status_setj before. After Sj exits CS, it must send a reply to Sh.  

In all cases, the circular wait is broken eventually. The theorem holds.� 

Theorem 3: The algorithm is starvation free (fairness).  

Argument. In the cases with no failure or disconnection, the safety property can be 

proved in a way similar to that in [146]. Therefore we only need to consider the 

situations with failures and disconnections. If there are link failures or host failures, 

the effect would be eventually eliminated by the timeout mechanism (Lemma 1). If 

there are disconnected hosts, all their current requests would be deleted after they 

reconnection or wake up. So, failures and disconnections do not affect the fairness of 

the algorithm. The fairness is guaranteed.� 

7.6. Performance Evaluation 

7.6.1. Analytic Evaluation 

In this section, we analyze the performance of the proposed algorithm. As 

discussed in Chapter 3, the performance is computed under two special load levels: 

low load level and high load level. Under low load levels, there is seldom more than 

one request for CS simultaneously in the system; while under high load levels, there 

is always a pending request for CS at a host. We use three commonly used measures 

[145] in the analysis: 

Number of Messages Per CS Entry (MPCS): the average number of messages 

exchanged among the hosts for each execution of the CS. 

Synchronization Delay (SD): the number of sequential messages exchanged after 

a host leaves the CS and before the next host enters the CS. 

Response Time (RT): the time interval that a host waits to enter the CS after its 

request for CS arrives. 

 Since it is hard to quantitatively study the performance under failures, in the 

following analysis, we consider only the normal executions without failure or 
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disconnection. The performance of the proposed algorithm under failures is 

evaluated using simulations and the results are reported in the next section.  

7.6.1.1. Number of Messages per CS Entry 

The MPCS of the proposed algorithm is in fact determined by the average size of 

the Info_set. In general, all the hosts are equally active, so a host is put in an Info_set 

and a Status_set with same probability. Therefore, the average size of the Info_set is 

n/2. Under low load levels, there is usually only one or no request in the system at 

any moment of time. When a host requesting for the CS sends REQUEST messages 

to the hosts in its Info_set, those hosts send back REPLY messages immediately. 

Therefore, MPCS under low load levels is: 

                                 MPCSlow=2*n/2=n 

Under high load levels, each host always has a pending request.  For an arbitrary 

host Si, on average, n/2 hosts will issue their current requests for CS earlier than Si 

does.  In general, half of these n/2 hosts are in the Status_set of Si, and they will send 

REQUEST messages to Si. On the reception of REQUEST messages from these n/4 

hosts, Si sends REQUEST messages back to the senders (Si has the lower priority). 

For each REQUEST message, one REPLY message must be sent. Therefore, the 

average number of messages for one CS entry at a host under high load levels is: 

                              MPCShig=2*(n/2+n/4)=3*n/2 

In the above analysis, the load at each host is assumed to be the same. However, 

as discussed in [146], an interesting feature of Info_set is that its average size is 

affected by the activeness of the hosts, i.e. the Info_set of the host requesting for CS 

is smaller if the arrival of CS requests is localized at few hosts. In such conditions, 

the MPCS under low load levels and high load levels are |Φ| and 3*|Φ|/2 respectively, 

where Φ is the set of active hosts. This results in a substantial reduction in message 

cost. The effect of this feature is validated in the simulations.  

It is important to notice that, the condition that “the arrival of CS requests is 

localized at a few hosts” does not mean that only these few hosts have requests for 
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CS during the execution. The set Φ may vary from time to time. As long as it can 

keep stable for a “quite” long time, the proposed algorithm can benefit.    

7.6.1.2. Synchronization Delay 

The synchronization delay is meaningless under low load levels, because it 

measures the interval between the arrivals of two requests. Under high load levels, 

when a host Si exits the CS, it will send REPLY messages to all the hosts in its 

Info_set, i.e. the hosts that have pending requests. Then, the host issuing request at 

the earliest time will enter the CS immediately after it receives the REPLY from Si. 

Therefore, the synchronization delay under high load levels is:  

                           SDhig= 1, i.e. the time of transferring one message. 

7.6.1.3. Response Time 

Under low load levels, most of the time, no more than one host competes for the 

CS. When a host wants to enter CS, it sends REQUEST messages to the hosts in its 

Info_set and then all these hosts send REPLY immediately after they receive the 

REQUEST. Therefore the response time under the low load levels is: 

                          RTlow = 2, i.e. twice of the time of transferring one message.  

Under high load levels, there is always a pending request at each host. The hosts 

are in the waiting chain with respect to the timestamps of their requests, i.e. the time 

when they issue requests for CS. A host in the chain can enter CS after its 

predecessor exits, so each host needs to wait for the hosts whose requests are earlier.  

On average, each host has to wait for n/2 such hosts. Assuming the average time of 

an execution of CS is E, the response time under high load levels is: 

                           RThig=(E+ SDhig)*n/2= (E+1)*n/2 

7.6.2. Simulation Study 

Simulations have been carried out to evaluate the performance of the proposed 

algorithm. In the simulation, we adopted Glomosim [156] as the platform which has 

been widely used for simulating algorithm in MANETs.  The proposed algorithm is 

implemented as an application level protocol.  
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7.6.2.1. Simulation Parameters and Setup 

In the simulations, we set the parameters of the MANET with the same values as 

those used in [17]. Since the network partition problem is not considered, we 

adopted such a territory scale that can minimize the probability of network partitions 

while maximizing the number of hops for each application message [17].   

All the hosts are scattered into a rectangular territory.  To evaluate the scalability 

of the algorithm, we varied the number of hosts, and accordingly the territory scale 

in proportion, so that the 

performances under 

different numbers of 

hosts are comparable. 

The number of hosts 

with corresponding 

territory scale and other 

main parameters are shown in Table 7-1. 

We used UDP as the transport layer protocol at first, but the high percentage of 

packet loss (more than 50%) always made the simulation blocked. Therefore we 

finally used TCP. However, even using TCP, there are still some packets lost (near 

2%), which may be caused by the movements of the hosts. 

The arrival of the requests at a host is assumed to satisfy a Poisson distribution 

with mean λ, which represents the number of requests generated by a single host per 

second. Simulations were carried out under three different load levels, i.e. high 

(λ=1.00E-2), middle (λ=1.00E-3) and low (λ=1.00E-4). 

The simulations can be divided into three parts. First, there are only link failures 

in the network.  Just as mentioned above, packet loss is already there, so we did not 

simulate link failures by ourselves in this part. Second, we introduced host failures. 

The arrival of host failures at a host is also assumed to satisfy a Poisson distribution 

and the duration of host failures satisfies the exponential distribution. To simplify the 

simulation, we fixed the percentage of host failure to 10%, a value that is quite high.  

Table 7-1 Simulation settings for the MUTEX algorithm

Number of Hosts 4, 8, 12, 16, 20 

Territory Scale 313m, 443m,543m,626m, 700m

Average speed of movement 20m/sec 

Mobility model Random-waypoint 

Transmission radius 200m 

Routing-protocol     BELLMANFORD 

Link bandwidth 2M bits/Sec 

Simulation Time 300 Hours 
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In the two parts described above, the load levels of all the hosts are the same, i.e. 

the arrival rates of requests at the hosts are uniform. However, as discussed in 

Section 7.6.1, one feature of the algorithm is that the performance is better if the 

arrival of CS requests is localized at few hosts. This feature makes the algorithm 

scalable to large system. Therefore, we also conducted simulations under the 

condition that different hosts have different load levels. 

All simulation were carried out under three different mobility levels set by 

adjusting the pause time so that the time a host does move accounts for 100%, 50% 

and 10% of the total simulation time  respectively. 

7.6.2.2. Simulation Results and Discussion 

In the simulations, we measured the message cost using two metrics. Besides the 

MPCS introduced before, the number of hops per CS entry (HPCS) is also adopted. 

In this thesis, a "message" means an application layer message, i.e. the end-to-end 

message; while a "hop" means a network layer message, i.e. the point-to-point 

message. Obviously, the latter can reflect the message cost of an algorithm more 

precisely. Because of the resource constraints, HPCS is important for MANETs. As 

to the cost in time, we measured the RT of our algorithm. However, the following 

discussions focus on the MPCS and HPCS, which is at the core of the paper. The 

simulation results are described and discussed according to the main factors that 

affect the performance.  

To understand the simulation results well, we first need to find out the 

relationship between MPCS and HPCS. The difference between the two metrics 

depends on the number of hops per message, which is affected by the topology of a 

MANET. In a MANET, the topology is dynamic due to the movements and failures 

of hosts. Therefore, the number of hops per message is significantly affected by the 

mobility of the hosts, which has been validated in [17]. Figure 7-4 depicts the 

average number of hops needed for each application level message with 20 hosts in 

our simulation environment. When the mobility increases, the number of hops 

decreases. In fact, the number of hops is determined by the distance between the 
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source and destination host. In a MANET, the distance between any two hosts is 

changed from time to time. However, the higher the mobility is, the higher the 

probability for the distance between any two hosts to be short. Therefore, under high 

mobility, the number of hops is small. Of course, the limitation of the number of 

hops is one. 
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Figure 7-4 No. of hops per application message 

 

Figure 7-5 MPCS/HPCS vs. No. of hosts - effect of mobility 
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1) Effect of System Scale 

Both Figure 7-5 and Figure 7-7 show that MPCS/HPCS increases linearly while 

the number of hosts increases.  Using the "look ahead" technique, a host only needs 

to send requests to those hosts in the Info_set or competing for the CS concurrently. 

Since all the hosts are equally active, the average size of the Info_set is in proportion 

with the system scale, as analyzed in previous section. Therefore, the message cost 

increases nearly linearly when the system scale increases, and the algorithm is 

scalable to the system scale. When the activeness of hosts is not uniform, the 

scalability of our algorithm is much better. See "5) Effect of uniformity of load 

level" for more discussions. 

The effect of system scale on RT is shown in Figure 7-6 and Figure 7-8. Same as 

HPCS/MPCS, the response time increases with the increase of the system scale. A 

large number of hosts in the system lead to more messages exchanged and higher 

competitions for CS, so a host needs to wait longer before it can enter the CS.  

2) Effect of Mobility 

Figure 7-5 and Figure 7-6 show the effect of mobility on MPCS/HPCS and RT 

respectively. Under different load levels, the MPCS without host movement is 

always the best. This is easy to understand. If the hosts do not move, the TCP 

connections can be established easily and keep stable. So, all the requests are 

handled quickly and no message re-sending is needed. When hosts move during the 

execution, it becomes difficult to establish and maintain a connection due to the 

package loss caused by host movements. As a result, the number of messages 

increases.  However, MPCS under low mobility is higher than that under high 

mobility. This can be explained using the effect of mobility on the distance between 

two hosts. Just as discussed before, the higher the mobility is, the shorter the average 

distance between any two hosts is and the higher probability for the connection to be 

established. Therefore, the response time would be shorter (as shown in Fig 6) and 

fewer hosts compete for the CS concurrently, leading to less request messages. 
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Figure 7-6 RT vs. No. of hosts - effect of mobility 
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that wants to enter CS needs to send request messages to not only all the hosts in its 

Info_set, but also those requesting for the CS. Therefore, the MPCS increases.  

Figure 7-8 shows the effect of the load level on RT, similar to the effect on MPCS. 

The higher the load level is, the higher the RT.  

 

Figure 7-7 MPCS vs. No. of hosts - effect of load level and host failures 
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4) Effect of Host Failure 

From Figure 7-7 and Figure 7-8, we can see that more time and messages are 

needed when there are host failures. The curves with host failures are named with a 

suffix “-Fail”. Under different load levels and system scales, the increase in MPCS 

caused by host failures varies strongly. In some cases, the number of messages is 

doubled, but for most cases, about 40% more messages are needed. Considering the 

high failure rate (10%), this is acceptable.  

5) Effect of Uniformity of Load Level  

As discussed in Section 7.6.1, the performance of the propose protocol is affected 

by the activeness of the hosts. To evaluate this feature, we let some hosts generate 

requests more actively than others. In this part of simulations, we fix the number of 

hosts to 20 and mobility to 50%. The requests for CS of four hosts out of all the 20 

hosts constitute 80% of all requests, while the rest of the hosts generate only 20% 

requests. Under a non-uniform load level, some hosts have a higher load level than 

the others, but the total load level of all the hosts is the same as that under a uniform 

load level. 

To measure the performance precisely, more load levels were examined.  Figure 

7-9 shows the HPCS against the load level. Obviously, if some hosts are more active 

than others, the message cost is significantly reduced, which agrees to the analysis in 

Section 7.6.1. This feature is especially important to the scalability, because it makes 

the increase of message cost slower than the increase of system scale. 
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7.7. Making the Algorithm More Robust 

In the algorithm described in Section 7.4, permanent link or host failures are not 

considered. In an asynchronous system, there is no solution to precisely detect such 

failures. However, the algorithm can be extended to handle permanent failures, with 

the assumption that such failures can be suspected using some approach, e.g. a 

timeout based approach. Once a permanent failure or network partition is perceived 

to occur, we enhance our algorithm in the following way to handle it.  

7.7.1. Permanent Host Failures 

First, let us consider the permanent failures during the initialization. As described 

in Section 7.4, a timeout is set for the initialization message from the initiator. To 

handle the permanent failure of the initiator, a host Si sends query messages to all 

other hosts rather than only the initiator, when the timeout expires. On the reception 

of the query, the receivers send back replies with the possibly received Mu. If no host 

receives the initialization Mu, a new initiator can be selected using some predefined 

order, e.g. ID_new_initiator = (ID_old_initiator +1) mod n. Then the initialization is 

tried again. 

Now, we discuss how to handle permanent failures in the mutual exclusion. To 

handle permanent host failures, a straightforward method is to set a threshold for 

resending a REQUEST message.  When the number of the times of resending a 

REQUEST reaches the threshold, the destination host is perceived to be crashed and 

it is moved to the Status_set. However, the accuracy of detecting permanent host 

failures using such a method is significantly affected by the load levels. To avoid this, 

another method is to detect such failures using a separate heartbeat like mechanism, 

which is commonly used in distributed systems. After the crash of a host is detected, 

the host is move to Status_set. 

7.7.2. Network Partition 

The execution of a host may be blocked when the network is partitioned (because 

of link failures, host failures, or host movements) until the partitions are merged. If 
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the partitions keep unconnected for very long time, the delay caused may be 

intolerable. Whether such a long time delay can be avoided depends on the property 

of the CS. If the CS cannot be accessed by two or more hosts at any moment of time, 

even if they are in unconnected partitions, no action can be taken.  

Otherwise, if the hosts in different partitions can access the CS simultaneously, it 

is possible to reduce the wait time caused by partitions. In fact, the main difficulty to 

handle the network partitioning is how to detect it, which is out of scope of this 

paper. Here, we assume there is such a partition detection module available. With 

such a module, handling the partitioning is simple. Once a partition is detected, a 

host moves all the hosts in other partitions to its Status_set. However, it is more 

complex to handle the merging of partitions. The relationship between the hosts in 

different partitions must be considered. For a pair of hosts in two different partitions, 

it is possible that both hosts put each other in the Status_set, which violates the 

conditions specified in Section 7.3, when the partitions are merged. To deal with this, 

at least one host has to change its Status_set. A simple but efficient method is that the 

host with the small ID moves the other host from Status_set to Info_set.  

7.8. Summary 

In this chapter, we propose an efficient and reliable permission-based MUTEX 

algorithm for MANETs. This algorithm does not depend on any logical topology so 

as to eliminate the cost of maintaining such a topology. To reduce the number of 

message exchanged, the “look ahead” technique is used. We designed a fault 

tolerance mechanism using timeout to tolerate intermittent and recoverable link/host 

failures, which very frequently occur in MANETs. The algorithm can also handle 

dozes and disconnections of hosts. The simulation results show that the algorithm 

performs better under low load levels and high mobility level. One important feature 

of the algorithm is the scalability to large system scale, especially when some hosts 

are more active than the others. 
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Chapter 8. Conclusions and Future Directions 

8.1. Conclusions 

In this thesis, we first investigated the characteristics of mobile networks, in 

aspects of communication, mobility and resource constraints, and identified the new 

challenges caused by these characteristics in the design of distributed algorithms. 

Based on the investigations, we study how to design distributed coordination 

algorithms in mobile wireless environments. We focus on solutions to two 

distributed coordination problems: consensus and mutual exclusion. 

Our work on consensus consists of three parts. The first part is concerned with 

how to increase the execution speed of consensus protocols. Usually, the execution 

of a consensus protocol is slowed down by host failures and mistakes made by the 

underlying oracle, e.g. the failure detector or leader oracle. To avoid such slowdowns, 

we developed the Look-Ahead technique, which can speed up the execution of 

consensus protocols by making use of “future” messages. Due to the asynchrony of 

the system, some messages may be delivered to their destination hosts that have not 

entered the corresponding phase or round. On the reception of such future messages, 

the receiver host can extract the knowledge about the future of its execution and then 

adapt its state to the future situation so as to reduce the waiting time for some slow 

messages. Look-Ahead is a general technique that can be easily applied to existing 

consensus protocols. 

The second part is concerned with improving the message efficiency of consensus 

protocols in MANETs. A two-layer hierarchy is imposed on the MHs by grouping 

MHs into clusters. The clusterheads help merge/unmerge the messages with 

destinations in the same cluster so as to reduce the message cost and improve the 

scalability. Using different clustering approaches, we developed two hierarchical 

consensus protocols. In the first protocol, the set of clusterheads is defined in 

advance and the MHs find and associate themselves with the clusterheads. This 
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protocol requires a failure detector ◊P, which is stronger than the commonly used ◊S. 

Moreover, the functions of achieving consensus and clustering hosts are interlaced, 

which makes the protocol complicated. To address these problems, we designed 

another hierarchical protocol, in which the function of clustering hosts is undertaken 

by a separate module named clusterer oracle ∆. ∆ is equivalent to ◊S in the power of 

tolerate failures in solving consensus but it is more powerful in the sense that it can 

help the consensus protocols built on top of it improve their message efficiency and 

scalability, which is especially important for large scale MANETs. 

The last part of our research on consensus is about achieving consensus in 

dynamic mobile systems, where the number of participating processes can change 

arbitrarily as time passes and processes can join or leave the system at any time. We 

proposed an eventual leader protocol for dynamic infrastructured mobile networks. 

The network of MSSs is a static system, while the MHs constitute a dynamic system.  

By exchanging queries and responses among the MSSs using a time free approach, a 

correct MH is eventually elected as the leader. 

For the mutual exclusion problem, we developed a permission-based algorithm, 

which adopts the “look ahead” technique (proposed by Singhal et al. [146]) to 

achieve message efficiency. A host needs to get permissions from a subset instead of 

all MHs before it can access the CS. Timeout-based fault tolerance mechanisms are 

designed to tolerate both link and host failures.  

 Extensive evaluations, including analysis and simulations, have been conducted 

to examine the performance of our proposed algorithms. The results show that our 

objectives are well fulfilled. 

8.2. Future Directions 

Our research in this thesis mainly focuses on the efficiency and fault tolerance in 

MANETs. It remains as our future work to improve the proposed algorithms and to 

investigate related research directions.  
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One issue that deserves further study is to improve the implementation of the 

clusterer oracle ∆. In our current implementation, the set of clusterhead is too large at 

the beginning (all the hosts are included); while it may be too small at the end (there 

may be only one host in the set). Such extreme sizes significantly affect the 

efficiency of the two-layer hierarchy. For the former case, the size can be simply 

reduced using a uniform initial value, e.g. half the number of MHs. The latter case, 

however, it is more difficult to handle. The underlying reason for this problem is the 

weak accuracy of ◊S. One possible solution is to replace ◊S with a stronger FD, ◊P, 

but this violates one of the objectives to define ∆: clustering MHs with the weakest 

FD of ◊S.   

Another interesting topic is combining the time efficiency approach and message 

efficiency approach so as to save both time cost and message cost in consensus 

simultaneously. In this thesis, the time efficiency and message efficiency are studied 

separately. However, combining the approaches for these two aspects is not trivial. 

There is some connection between our proposed techniques/protocols for time 

efficiency and message efficiency. In the hierarchical protocols, to handle the 

message losses caused by the dynamics of the two-layer hierarchy, “future” 

messages are also involved. Therefore, how to integrate the mechanisms the use of 

“future” messages in Look-Ahead technique and hierarchical protocols should be 

investigated carefully.  

The dynamic system is one promising research direction in distributed computing. 

In this thesis, an eventual leader protocol for dynamic infrastructured mobile 

networks has been proposed, but many other topics, such as how to elect an eventual 

leader in dynamic MANETs and how to achieve consensus based on these eventual 

leader oracles, still need further study.  

In infrastructured networks, the system is modeled as two sub-systems: the static 

system of MSSs and the dynamic system of MHs. With such a model, existing 

eventual leader protocols for wired dynamic system can be adapted to the sub-

system of MSSs, which will elect the eventual leader on behalf of MHs. In MANETs, 
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however, there is no MSS and all the work must be done by MHs themselves. 

Intuitively, in a dynamic MANET, the implementation of eventual leader still needs 

some “stable” part as the sub-system of MSSs in an infrastructured network. 

Therefore, how to define and make use of such a stable sub-system is at the core of 

an eventual leader protocol in dynamic MANETs.  

Besides the implementation of oracles, the design of consensus protocols in 

dynamic systems is also worth investigation. In infrastructured networks, the 

principle is still letting MSSs do as much work as possible. With the help of MSSs, 

which can be modeled as a static system, achieving consensus should be much easier 

than in MANETs. Similar as the implementation of the eventual leader in dynamic 

MANETs, how to define and make use of a stable sub-system is the key issue.  

Finally, we would like to investigate whether it is possible to achieve consensus 

with certain specified probability. In this thesis, only deterministic consensus is 

considered. However, due to the characteristics of mobile wireless networks, 

probabilistic consensus may be more suitable and efficient for some applications in 

MANETs. Although some efforts have been made to develop randomized consensus 

protocols using random number generator, how to guarantee a specified probability 

of achieving consensus is a challenging task due to the asynchrony of the mobile 

system.  
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