

 i

Abstract

Advances in wireless networking technologies and powerful portable mobile

devices have engendered the new paradigm of mobile computing, whereby mobile

users carrying portable devices can access the information and services for various

tasks regardless of their physical locations or movement behaviors. Mobile

computing is a branch of distributed computing, but mobile networks have

fundamentally different characteristics from traditional wired networks in aspects of

communication, mobility and resource constraints. These characteristics make the

development of distributed algorithms much more difficult. In this thesis, we

investigate the challenging issues in designing algorithms for solving distributed

computing problems in mobile wireless networks. We focus on two distributed

coordination problems: the consensus problem and the mutual exclusion problem.

The consensus problem arises in many distributed computing applications, such

as atomic commitment, atomic broadcast, and file replication. So far, little work has

been reported on achieving consensus in mobile environments. This thesis makes the

following original contributions in this field.

First, we develop a general technique named “Look-Ahead” to speed up the

execution of consensus protocols by making use of future messages. Nearly all

existing consensus protocols for asynchronous systems are executed in asynchronous

rounds and each round is divided into several phases. Due to the asynchrony, some

“future” message may be delivered to a receiver that has not yet entered the phase or

round of the message. By making use of such future messages, hosts can decide to

stop waiting for a message with a long delay or sent late, so as to speed up their

executions.

Second, we improve message efficiency and scalability of consensus protocols for

mobile ad hoc networks (MANETs) using a hierarchy imposed on the mobile hosts.

By clustering the mobile hosts into clusters, a two-layer hierarchy is established.

Then, the messages from and to the hosts in the same cluster are merged/unmerged

 ii

by the clusterhead in order to reduce the message cost and improve the scalability.

Based on different ways for clustering hosts, we propose two hierarchical protocols.

The first protocol is based on a static set of clusterheads, in which the function of

clustering hosts and the function of achieving consensus are interlaced. In the second

hierarchical protocol, clusterheads are dynamically selected, and the functions of

clustering hosts and of achieving consensus are separated using a modular approach.

With such an approach, the design of hierarchical consensus protocols is simplified,

similar as the separation of failure detection and achieving consensus in failure

detector based protocols. We define a new oracle, named “eventual clusterer”, which

is in charge of the construction and maintenance of the hierarchy in a MANET.

Based on the eventual clusterer oracle, we design a hierarchical consensus protocol.

The third contribution to the consensus problem is the design of an eventual

leader protocol for “dynamic” infrastructured mobile networks, where the number of

participating hosts can change arbitrarily as time passes and an unbounded number

of hosts can join or leave the system at any time. The proposed eventual leader

protocol can be used to design consensus protocols for dynamic infrastructured

mobile networks.

Another coordination problem addressed in this thesis is mutual exclusion

(MUTEX), one of typical coordination problems, which is concerned with the

coordination of accesses to critical section (CS) mutual exclusively. We propose the

first permission-based MUTEX algorithm for MANETs. Unlike token-based

algorithms, a permission-based algorithm needs neither to maintain any logical

topology nor to propagate any message if no host requests the CS. However, a

permission-based algorithm has to send messages for each request of hosts, which

significantly increases the average message cost. Based on the “look ahead”

technique, which enforces the MUTEX only among the hosts that are currently

competing for CS, we propose a message efficient MUTEX algorithm for MANETs.

The algorithm can also tolerate link and host failures by using timeout-based fault

tolerance mechanisms.

 iii

Publications
Journal Papers

1. Weigang Wu, Jiannong Cao, Jin Yang, Michel Raynal, Design and

Performance Evaluation of Efficient Consensus Protocols for Mobile Ad Hoc

Networks, IEEE Transactions on Computers, Major revision version

submitted.

2. Weigang Wu, Jiannong Cao, Jin Yang, A Fault Tolerant Mutual Exclusion

Algorithm for Mobile Ad Hoc Networks, Pervasive and Mobile Computing,

Elsevier, Major revision version submitted.

3. Weigang Wu, Jiannong Cao, Jin Yang, Michel Raynal, A Fast Consensus

Protocol Based on the Unreliable Failure Detector ◊S, Journal of Parallel

and Distributed Computing, Elsevier, under major revision.

4. Jin Yang, Jiannong Cao, Weigang Wu, Chengzhong Xu, Efficient

Algorithms for Fault Tolerant Mobile Agent Execution, International Journal

of High Performance Computing and Networking (IJHPCN) (Accepted).

5. Jin Yang, Jiannong Cao, Weigang Wu, Chengzhong Xu, Models and

Mechanisms for Mobile Agent Transactions, International Journal of

Wireless and Mobile Computing (IJWMC) (Accepted).

Conference Papers

1. Weigang Wu, Jiannong Cao, Jin Yang, A Scalable Mutual Exclusion

Algorithm for Mobile Ad Hoc Networks, Proceedings of the Fourteenth

International Conference on Computer Communications and Networks

(ICCCN’05), October 17-19, 2005, San Diego, California USA

2. Weigang Wu, Jiannong Cao, Jin Yang, Michel Raynal, A Hierarchical

Consensus Protocol for Mobile Ad Hoc Networks, Proceedings of the 14th

Euromicro Conference on Parallel, Distributed and Network based

Processing (PDP’06), February 15-17, 2006, Montbéliard, France.

3. Jin Yang, Jiannong Cao, Weigang Wu, CIC: An Integrating Solution for

Checkpointing in MA Systems, Proceedings of the 2nd International

 iv

Conference on Semantics, Knowledge and Grid (SKG2006), October 31-

November 3, 2006, Guilin, China.

4. Jin Yang, Jiannong Cao, Weigang Wu, Checkpoint Placement Algorithms for

Mobile Agent System, Proceedings of the 5th International Conference on

Grid and Cooperative Computing (GCC’06), October 21-23, 2006, Changsha,

China.

5. Jiannong Cao, Michel Raynal, Xianbing Wang, Weigang Wu, The Power

and Limit of Adding Synchronization Messages for Synchronous Agreement,

Proceedings of the 35th International Conference on Parallel Processing

(ICPP’06), August 14-18, 2006, Columbus, USA.

6. Jin Yang, Jiannong Cao, Weigang Wu, Corentin Travers The Notification

based Approach for Implementation Failure Detector, Proceedings of the

First International Conference on Scalable Information System

(InfoScale’06), May 29-June 1, 2006, Hong Kong.

7. Jin Yang, Jiannong Cao, Weigang Wu, Chengzhong Xu, Parallel Algorithms

for Fault-Tolerant Mobile Agent Execution, Proceedings of the 6th

International Conference on Algorithms and Architectures (ICA3PP’05),

246-256, October 2-5 , 2005, in Melbourne, Australia.

8. Jin Yang, Jiannong Cao, Weigang Wu, Chengzhong Xu, A Framework for

Transactional Mobile Agent Execution, Proceedings of the 4th International

Conference on Grid and Cooperative Computing (GCC’05), November 30-

December 3, 2005, Beijing, China.

9. Jiannong Cao, Jin Yang, Weigang Wu, Chengzhong Xu, Exception

Handling in Distributed Workflow Systems Using Mobile Agents,

Proceedings of the 2005 IEEE International Conference on e-Business

Engineering (ICEBE’05), October 18-20, 2005, Beijing, China.

 v

Acknowledgements

I am deeply grateful to Professor Jiannong Cao for his rigorous supervision of my

research. I thank him for his support, patience and encouragement during my Ph.D.

study. He unremittingly trained me to be a good researcher. He taught me how to

find research issues and how to solve thorny problems. Time after time, he showed

me how to express my ideas and write academic papers. His vision, passion, and

attitude towards the research deeply affected me. Moreover, his kindness helped me

handle problems in my life satisfactorily. What I have learned and experienced

during the time I spent in his laboratory will benefit me much in the future.

Another excellent and distinguished person I would like to thank is Professor

Michel Raynal from IRISA. I would like to express my heartfelt gratitude to him for

his insightful and illuminative suggestions on my research. His acuminous insight

and guidance is invaluable to the accomplishment of this thesis.

I thank Corentin Travers from IRISA, and Jin Yang for our fruitful collaborations

and discussions. We explored ideas and wrote papers together. My thanks also go to

Hui Cheng, Xiaopeng Fan, Yu Huang, Miaomiao Wang, Kirk Wong, Gang Yao, Yuan

Zheng, and all other members of Prof. Cao’s research group that I cannot enumerate

here. I thank them for interesting discussions and suggestions on my work.

Also, I wish to acknowledge my appreciation to Yi Xie, Xiapu Luo and Shuyuan

Jin, who shared with me the pain and pleasure of the PhD study at The Hong Kong

Polytechnic University.

Last, but not least, I would like to thank my family. Their love, understanding,

support and encouragement were in the end what made this dissertation possible.

 vi

 vii

Table of Contents
Abstract..i

Publications ...iii

Acknowledgements ..v

Table of Contents..vii

List of Figures...x

List of Tables...xii

List of Abbreviations...xiii

Chapter 1. Introduction..1

1.1. Consensus ... 3
1.2. Mutual Exclusion... 4
1.3. Contributions of the Thesis... 7

1.3.1. Contributions in Consensus... 8
1.3.2. Contributions in Mutual Exclusion.. 10
1.3.3. Summary ... 11

1.4. Outline of the Thesis.. 12

Chapter 2. Mobile Computing Environment..13

2.1. Mobile Network ... 13
2.1.1. Infrastructured Network .. 13
2.1.2. Ad Hoc Network ... 14

2.2. Characteristics of Mobile Network .. 15
2.2.1. Network Communication .. 15
2.2.2. Mobility ... 17
2.2.3. Resource Constraint... 18

2.3. New Challenges for Distributed Coordination.. 19
2.3.1. Reducing Message Cost .. 19
2.3.2. Handling Topology Change... 20
2.3.3. Reducing Computation.. 20
2.3.4. Handling Disconnection .. 20
2.3.5. Handling Dynamism of the System... 21

Chapter 3. Background and Literature Review...23

3.1. Consensus Protocols .. 24
3.1.1. Failure Model .. 24
3.1.2. Synchronicity Model ... 26
3.1.3. Communication Model.. 34
3.1.4. Protocols for Traditional Fixed Environments .. 35
3.1.5. Consensus Protocols for Mobile Environments... 41

3.2. MUTEX Algorithms .. 42
3.2.1. Algorithms for Traditional Fixed Environments ... 43
3.2.2. MUTEX Algorithms for Mobile Environments... 46

Chapter 4. Speeding up the Execution of Consensus Protocols......................53

4.1. Overview... 53
4.2. A Fast Consensus Protocol with RZD Property.. 56

4.2.1. System Model and Data Structures.. 56
4.2.2. Description of the Protocol.. 57
4.2.3. The Look-Ahead Technique .. 60

 viii

4.3. Correctness of the Proposed Protocol ..63
4.3.1. Validity.. 63
4.3.2. Termination ... 64
4.3.3. Agreement... 66

4.4. Performance Evaluation ...68
4.4.1. Simulation Setup... 68
4.4.2. Performance Metrics ... 69
4.4.3. Simulation Results .. 70

4.5. Applying Look-Ahead to Other Protocols...73
4.5.1. A Scheme of Using Look-Ahead .. 74
4.5.2. Application of Look-Ahead Technique... 75

4.6. Summary ..77

Chapter 5. Improving Message Efficiency of Consensus Protocols................ 79

5.1. Overview...79
5.2. The HC Protocol ..81

5.2.1. System Model ... 81
5.2.2. Data Structures and Message Types.. 82
5.2.3. Operations of HC Protocol.. 83
5.2.4. Correctness of the HC Protocol... 88
5.2.5. Performance Evaluation.. 94
5.2.6. Tolerance of Message Loss ... 105

5.3. The Clusterer Oracle ∆..107
5.3.1. System Model ... 107
5.3.2. Definition of ∆ .. 107
5.3.3. An Implementation of ∆.. 109

5.4. The HCD Protocol ... 111
5.4.1. Data Structures and Message Types ...111
5.4.2. Description of the Protocol ..114
5.4.3. Correctness of the HCD Protocol...117

5.5. Summary ..120

Chapter 6. Handling Dynamic Mobile Systems ... 121

6.1. Overview...121
6.2. Computational Model..122

6.2.1. Mobile Support Stations: a Static System ... 123
6.2.2. Mobile Hosts: a Dynamic System... 124

6.3. Problem Definition and Additional Assumptions ...125
6.3.1. Stability Condition .. 125
6.3.2. Problem Definition.. 126
6.3.3. Local Failure Detection... 126
6.3.4. An Assumption on the Movement of MHs ... 128

6.4. Description of the Protocol ...129
6.5. Correctness Proof ..131
6.6. Summary ..136

Chapter 7. A Permission-based MUTEX Algorithm for MANETs 137

7.1. Overview...137
7.2. System Model and Assumptions ...138
7.3. Data Structures and Message Types...139
7.4. Description of the Algorithm ..140

7.4.1. Initialization of Info_set and Status_set... 140
7.4.2. Normal Execution (without Disconnection or Doze).. 142
7.4.3. Handling Doze and Disconnection.. 143

7.5. Correctness of the Proposed Algorithm...144
7.6. Performance Evaluation ...146

7.6.1. Analytic Evaluation... 146

 ix

7.6.2. Simulation Study ... 148
7.7. Making the Algorithm More Robust.. 156

7.7.1. Permanent Host Failures.. 156
7.7.2. Network Partition .. 156

7.8. Summary .. 157

Chapter 8. Conclusions and Future Directions ..159

8.1. Conclusions .. 159
8.2. Future Directions... 160

References ...163

 x

List of Figures
Figure 1-1 Taxonomy of distributed coordination problems1

Figure 1-2 A classification of MUTEX algorithms..5

Figure 2-1 The infrastructured network ...14

Figure 2-2 The mobile ad hoc network..14

Figure 3-1 The system model for consensus..25

Figure 3-2 Relationships among failure detector classes...28

Figure 4-1 Pseudocode of the fast consensus protocol ..58

Figure 4-2 Examples of Look-Ahead technique..61

Figure 4-3 NR vs. error rate of FD ..70

Figure 4-4 NR vs. mean link delay ..70

Figure 4-5 NM vs. error rate of FD..72

Figure 4-6 NM vs. mean link delay ..72

Figure 4-7 ET vs. error rate of FD ...72

Figure 4-8 ET vs. mean link delay...72

Figure 4-9 The Look-Ahead technique..73

Figure 4-10 HMR protocol with Look-Ahead technique ..75

Figure 4-11 A leader-based protocol with Look-Ahead technique76

Figure 5-1 HC protocol—Task 1and Task 2 ..86

Figure 5-2 HC protocol—Task 3 and Task 4 ..86

Figure 5-3 The NR of HMR ...97

Figure 5-4 The ET of HMR ...97

Figure 5-5 The NM of HMR ..98

Figure 5-6 The NH of HMR...99

Figure 5-7 Performance of HMR vs. f/n, with |DA| =2..99

Figure 5-8 Performance of HC vs. k/n, with |DA| =2 and f/n = 10%101

Figure 5-9 Performance of HC vs. f/n, with |DA| =2 and k/n = 50%101

Figure 5-10 Performance comparison of HMR, BHM and HC – NR......................102

Figure 5-11 Performance comparison of HMR, BHM and HC – ET102

Figure 5-12 Performance comparison of HMR, BHM and HC – NM.....................104

Figure 5-13 Performance comparison of HMR, BHM and HC – NH105

Figure 5-14 The implementation of ∆.. 110

 xi

Figure 5-15 The consensus protocol based on ∆ – Task 1 and Task 2113

Figure 5-16 The consensus protocol based on ∆ – Task 3116

Figure 5-17 The consensus protocol based on ∆ – Task 4116

Figure 6-1 Eventual leadership protocol: code for MSSs..129

Figure 6-2 Eventual leadership protocol: code for MHs ...130

Figure 7-1 Algorithm for initialization of Info_set and Status_set140

Figure 7-2 Body of the permission-based MUTEX algorithm141

Figure 7-3 An example execution of the permission-based algorithm143

Figure 7-4 No. of hops per application message..151

Figure 7-5 MPCS/HPCS vs. No. of hosts—effect of mobility151

Figure 7-6 RT vs. No. of hosts—effect of mobility ...153

Figure 7-7 MPCS vs. No. of hosts—effect of load level and host failures..............154

Figure 7-8 RT vs. No. of hosts—effect of load level and host failures....................154

Figure 7-9 HPCS w/t non-uniform load level..155

 xii

List of Tables
Table 3-1 Eight classes of FDs...27

Table 3-2 Performance of MUTEX algorithms for infrastructured networks50

Table 3-3 Performance of MUTEX algorithms for MANETs51

Table 4-1 Simulation settings for the Look-Ahead consensus protocol68

Table 5-1 Simulation settings for the hierarchical consensus protocol......................95

Table 7-1 Simulation settings for the MUTEX algorithm149

 xiii

List of Abbreviations
CS: Critical Section.

DAG: Directed Acyclic Graph.

ET: Execution Time.

FD: Failure Detector.

FIFO: First In First Out.

GST: Global Stabilization Time.

HC: Hierarchical Consensus.

HCD: Hierarchical Consensus based on Delta.

HPCS: number of Hops Per CS entry.

MANET: Mobile Ad hoc NETwork.

MH: Mobile Host.

MPCS: number of Messages Per CS entry.

MUTEX: MUTual EXclusion.

NH: Number of Hops.

NM: Number of Messages.

NR: Number of Rounds.

RT: Response Time.

RZD: Round-Zero-Degradation.

ZD: Zero-Degradation.

Chapter 1. Introduction

 1

Chapter 1. Introduction

A distributed system consists of a collection of computing processes/hosts1 that

are interconnected by a computer network. The hosts communicate and coordinate

their actions by only passing messages [44]. The main motivation factor for

constructing distributed systems is resource sharing. However, distributed systems

potentially provides much more significant advantages, including communication,

enhanced performance, improved reliability and availability, good extensibility, and

modular expandability [29][147].

In a distributed system, there is no global clock or shared memory. On the other

hand, there are concurrent components, which can execute in parallel and fail

independently. Therefore, we need to design algorithms and protocols for distributed

operating systems or middleware to coordinate the concurrent components.

Figure 1-1 Taxonomy of distributed coordination problems

“Coordination” is a general concept which refers to coordinating the operations of

distributed hosts or components to cooperatively perform some specific task. As

shown in Figure 1-1, according to the problem addressed, coordination can be

divided into two broad categories: synchronization and consistency.

“Synchronization” refers to the control of the sequence of some critical operations

performed by the hosts in a distributed system. Synchronization involves many

1 In this thesis, the terms “process” and “host” are used interchangeably.

Snapshots

Synchronization
Termination detectionCoordination

Consistency

Leader election

Deadlock detection

Mutual exclusion

Consensus

Logical time

Transaction

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 2

different aspects, including leader election, termination detection, deadlock detection

and mutual exclusion.

A leader election algorithm is for choosing a unique process to play a particular

role in performing a distributed task, e.g. scheduling jobs, regenerating the token

[44]. There are two fundamental requirements for leader election. Safety requires that

there should never be more than one leader, and liveness requires that eventually

some host is elected.

“Termination detection” refers to the necessity of determining whether a set of

distributed processes have entered a “silent” status where all processes are idle and

no further computation is possible, taking unpredictable message delays into account

[147]. It has applications in diffusion computation and distributed garbage collection.

It also serves a part in checking stable states (such as deadlock and token loss) in a

distributed system.

A deadlock occurs when processes holding some resources request to access other

resources held by other processes in the same set. There are two types of deadlock:

resource deadlock and communication deadlock. A deadlock requires the attention of

a process outside those involved in the deadlock for its detection and resolution. A

deadlock is resolved by aborting one or more processes involved in the deadlock and

granting the released resources to other processes.

In this thesis, our research on synchronization focuses on the mutual exclusion

problem, which is introduced in Section 1.2.

“Consistency” refers to achieving agreement by processes on some value or the

results of some operation. Consistency problems include logical time, transaction,

snapshot and consensus.

To address the lack of physical global clock in a distributed system, people

propose and implement the “logical clock” to obtain a “logical” global time [132]. In

a system of logical clocks, every process has a logical clock that is advanced using a

set of rules. Every event is assigned a timestamp, by which a process can infer the

causality relation between events.

Chapter 1. Introduction

 3

The algorithm to record the global state of a distributed system is called

“snapshot” algorithm [32][88]. Snapshot algorithms are fundamental for many

important distributed applications, such as deadlocks detection [25], termination

detection [106] and checkpoint/recovery [2].

The transaction is used to protect shared resources, especially data fields, against

inconsistent access by different processes. Generally, a transaction is a sequence of

code in execution, such that the code will transform a database or server from one

consistent state to another consistent state [151]. In distributed transactions, a

transaction operates on data that are distributed across more than one host.

In this thesis, our research on consistency focuses on the consensus problem,

which is introduced in Section 1.1.

1.1. Consensus

Consensus problem is one of the fundamental problems in distributed systems. It

arises in many distributed computing applications, e.g. atomic commitment, atomic

broadcast, file replication [70][74][75]. Generally, consensus involves getting a set

of processes to agree on a value proposed by one or more of the processes [44]. The

consensus problem can be defined in terms of two primitives: “propose” and

“decide”. Initially, each process pi selects a value vi from a set of possible values and

invokes the primitive “propose” with this value. A process ends its participation by

executing “decide”, during which some value is decided upon.

The consensus problem is usually studied in environments with host failures

[43][60][61][97][152] (without failure, achieving consensus is a trivial task). A

process is said to be correct if it behaves according to an agreed specification during

the run of a consensus protocol; otherwise, a failure occurs and the process is said to

be faulty. A consensus protocol is said to be t-resilient if it operates correctly as long

as no more than t processes fail before or during the execution. A correct consensus

protocol should have the following three correctness properties:

Termination: Every correct process eventually decides upon some value;

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 4

Agreement: All the values decided upon are the same;

Validity: Any value decided upon should have been proposed some process.

The termination property defines the liveness associated with the consensus

protocol, while the agreement property and validity property define the safety.

According to the agreement property above, faulty processes may decide differently

from correct ones. This is undesirable sometimes because it does not prevent a faulty

process to propagate a different decision before crashing. Therefore, a more restrict

agreement property is defined as follows:

Uniform-Agreement: No two processes (correct or faulty) decide differently.

The design of consensus protocols is closely related to the underlying system

model, such as the synchronous model and partially synchronous model. Among

different models, the asynchronous model with oracles has attracted most attention.

Our study in this thesis is also based on this model.

In an asynchronous system, there is no bound on the clock drift, process speed or

message delivery delay, which make the problem difficult. Fischer et al. [61] have

proved that the consensus problem is unsolvable in an asynchronous system even if

only one process can crash. To circumvent this impossibility, three types of oracles

have been proposed: the random number generator [22], the eventual leader oracle

[31] and the unreliable failure detector (FD for short) oracle [31]. An oracle is an

abstract tool to provide some kind of information about the state of the system. The

detailed description of different system models in presented Chapter 3.

1.2. Mutual Exclusion

Mutual exclusion (MUTEX) is a typical problem in distributed computing, where

a group of hosts intermittently require the use of a shared resource or a piece of code

called Critical Section (CS), which can be accessed by only one host at a time. A

solution to the MUTEX problem must satisfy the following correctness properties:

Mutual Exclusion (Safety): At most one host is allowed to enter the CS at any

moment;

Chapter 1. Introduction

 5

Deadlock Free (Liveness): If any host is waiting for the CS, then in a finite

time some host enters the CS;

Starvation Free (Fairness)2: If a host is waiting for the CS, then in a finite

time the host enters the CS.

Singhal presented the taxonomy of MUTEX algorithms in [145]. With reference

to Singhal’s work, here we introduce a 3-dimension classification model, which is

illustrated in Figure 1-2.

Figure 1-2 A classification of MUTEX algorithms

The first dimension is the approach used to achieve MUTEX. All the MTUEX

algorithms can be categorized into two classes: token-based algorithms and

permission-based algorithms.

In token-based algorithms, a unique token3 is shared among all the hosts. A host is

allowed to enter CS only if it possesses the token, thereby the MUTEX is achieved.

According to the strategies used to schedule the token, token-based algorithms can

be further divided into two types: token-circulating and token-asking.

2 Sometimes, the deadlock free property is merged into the starvation free property.
3 The token is sometimes named “privilege” of entering the CS.

Network Type

Token-asking
Dynamic

Static

Ring-based Graph-based

Token-circulating

Broadcast-based

Token-based

Infrastructured network

Ad hoc network

Logical-structure-based

Permission-based

MUTEX Algorithm

R-type M-type

Property

MUTEX Approach

Tree-based

Fixed network

Mobile network

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 6

Token-circulating means that the token is automatically circulated along a logical

topology, e.g. a ring. When a host wants to enter the CS, it just waits until the token

is passed to it. On exiting the CS, it just passes the token to its successor in the ring.

In token-asking algorithms, a host needs to send request for the token before it

can obtain the token. The request can be sent by a broadcast or along some logical

structure, e.g. a directed tree [124] or graph [162]. In the tree-based algorithms, the

host holding the token is the root of the tree. A request for the token propagates

serially along the tree to the root, and the token is passed in the contrary direction.

The edges in the tree are redirected with respect to the passing of the token so that

the token holder is always the root. In graph-based algorithms, a directed graph

rather than a tree is used to organize the hosts. The token holder is the sink node in

the graph. The token and requests for token are propagated in the similar way as in

tree-based algorithms. The main difference between these two logical structures is

that using the graph structure is more reliable, because it can tolerate link and host

failures. Of course, additional messages are necessary to prevent cycles.

Different from token-based algorithms, a permission-based MUTEX algorithm

does not need a shared token. The requesting host must first get the permissions from

other hosts by exchanging messages. Usually, there are two kinds of messages: the

request message and the reply message. Sometimes, the release message is also used.

There are two different kinds of permissions: the Ricart-Agrawala permission

(“R-permission”) [133] and the Maekawa permission (“M-permission”) [98]. In the

R-permission, a host grants the permission to a requesting host immediately if the

host itself is not requesting the CS or its own request has a lower priority. Otherwise,

it defers granting the permission until the request of itself has been met. The

Semantics of the R-permission is “as far as I am concerned, it is OK for you to enter

the CS” [145]. Therefore, a host may simultaneously grant permission to more than

one host. A host can enter the CS after it gets permission from all hosts.

On the contrary, in the M-permission, a host can grant the permission to at most

one host at any time. The semantics of the M-permission is “as far as all the hosts are

Chapter 1. Introduction

 7

concerned in my opinion, it is OK for you to enter the CS” [145]. In M-permission

based MUTEX algorithms, a host needs to get permission from a quorum of hosts

before it can enter the CS. This is why such algorithms are usually called “quorum-

based” algorithms [96].

Each MUTEX approach has its own advantages and disadvantages. The token-

based approach has many desirable features, e.g. hosts only need to keep information

about their neighbors and few messages are needed to pass the privilege to enter the

CS. However, token-based algorithms usually have two critical issues to address.

The first is the fairness in scheduling the token pass. The second is how to precisely

detect the token loss, caused by link or host failures, and regenerate the token.

Compared with the token-based approach, permission-based algorithms have the

following advantages: 1) there is no need to maintain the logical topology to pass the

token, and 2) there is no need to propagate any message if no host requests to enter

CS. However, the permission-based approach requires a large number of messages

for hosts to get permissions.

The second dimension of the classification model is the dynamism property of

MUTEX algorithms. If the execution of a MUTEX algorithm depends on the current

system state (or history), the algorithm is called a “dynamic” algorithm. Otherwise,

it is a static algorithm. The actions of a dynamic MUTEX algorithm are influenced

by how the system has evolved.

The third dimension of the classification model is the network environment that a

MUTEX algorithm is designed for. Besides traditional fixed networks, there are two

types of mobile networks: infrastructured networks and mobile ad hoc networks.

Mobile networks will be introduced in Chapter 2.

1.3. Contributions of the Thesis

The aim of this research is to study and solve coordination problems in mobile

environments. Mobile computing is one branch of distributed computing. For

traditional distributed systems, much work has been done and many good solutions

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 8

have been proposed to solve the coordination problems [97] [152]. However, mobile

computing environments introduce many new challenges. Mobile users who carry

portable devices can access the information services via various kinds of wireless

networks. Mobile networks have fundamentally different properties from traditional

wired networks in aspects of communication, mobility and resource constraints.

These characteristics make the development of distributed algorithms much more

difficult. Traditional distributed algorithms must be adapted or even re-designed to

meet the requirements of mobile environments.

 The main purposes of our research are: 1) investigating the characteristics of

distributed computing in the mobile environments, 2) identifying the key issues in

solving distributed coordination problems in mobile environments, and 3) designing

new algorithms for distributed coordination for mobile environments.

In this thesis, we focus on the design of algorithms for two coordination problems:

consensus and MUTEX.

1.3.1. Contributions in Consensus

Up to now, little work has been done for solving the consensus problem in context

of mobile networks. In our research, we consider three issues in solving the

consensus problem: time efficiency, message efficiency and dynamism of the system.

1.3.1.1. Speeding up the Execution of Consensus Protocols

We propose a fast consensus protocol based on the failure detector ◊S, which

outperforms existing ◊S based protocols in terms of time efficiency. ◊S based

consensus protocols suffer from the slowdown caused by host failures and mistakes

made by the failure detector. Our protocol copes with such slowdown using two

novel techniques.

The first technique is a simple and efficient approach to guarantee the Round-

Zero-Degradation property (an extension of the Zero-Degradation property) in order

to avoid the slowdown caused by a failed coordinator. By dynamically selecting the

coordinator of a round, a crashed coordinator can be replaced so as to avoid the

Chapter 1. Introduction

 9

failure of decision making in the round due to a failed coordinator. This technique is

effective when the failure detector performs well.

The second technique, named “Look-Ahead”, helps speed up the execution, by

making use of the messages delivered before their receivers enter the corresponding

phases or rounds of the messages. This technique works well regardless the

performance of the underlying failure detector. Look-Ahead is in fact a general

technique that can be applied to consensus protocols based on any oracle, e.g. ◊S.

1.3.1.2. Achieving Message Efficiency in Consensus Protocols

Message efficiency is essential for designing effective and efficient algorithms for

mobile environments. Fewer messages consume fewer resources, e.g. bandwidth and

energy. To achieve message efficiency, we propose efficient consensus protocols for

mobile ad hoc networks. The basic idea is to impose a two-layer hierarchy upon the

hosts by clustering the mobile hosts into clusters. Then the messages from and to the

hosts in the same cluster are merged/unmerged by the clusterhead so as to reduce the

message cost and improve the scalability.

However, adding such a hierarchy is not trivial. First, the messages are not simply

forwarded by the clusterhead, and a cluster member needs to synchronize with its

clusterhead in the message exchange. Due to mobility or clusterhead failure, a

mobile host may need to switch between clusterheads that are executing different

steps. Therefore, the switching procedure should be delicately handled in order to

maintain the synchronization between a mobile host and its clusterhead. Second, the

change of the hierarchy may cause message losses, even if the communication

channel is reliable. To cope with such message losses, some redeeming messages

should be sent. What and when redeeming messages should be sent depends on the

execution state of the mobile host and clusterhead.

Based on different approaches for clustering hosts, we propose two hierarchical

protocols. The first protocol is based on a static set of clusterheads. The function of

clustering hosts and the function of achieving consensus are interlaced. On the

contrary, in the second protocol, clusterheads are dynamically selected. The function

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 10

of clustering hosts and the function of achieving consensus are separated using a

modular design method. The clustering function, named eventual clusterer (denoted

by ∆), is proposed to construct and maintain a cluster-based hierarchy over the

mobile hosts. Since ∆ provides the fault tolerant clustering function transparently, it

can be used as an oracle for the design of reliable hierarchical consensus protocols.

We then design a hierarchical consensus protocol using the eventual clusterer oracle.

We also propose an implementation of ∆, based on the unreliable failure detector ◊S.

1.3.1.3. Handling Dynamic Mobile Systems

The above two contributions focus on respectively the message efficiency and

time efficiency of consensus protocols, so as to cope with the resource constraints of

mobile environments. Our third contribution to consensus is on designing protocols

for dynamic mobile systems, where the number of participating hosts can change

arbitrarily as time passes and an unbounded number of hosts can join or leave the

system at any time.

We study how to implement the eventual leader oracle Ω in infrastructured

mobile networks. We adopt a time free approach proposed for implementing Ω in

fixed networks [109][111]. Each host broadcasts queries and collect responses from

others hosts in rounds. With some assumption on the system behaviors, Ω can be

implemented. We extend such an approach to infrastructured mobile networks.

The set of mobile support stations is a static system while the MHs constitute a

dynamic system. By exchanging queries and responses among the mobile support

stations, a correct mobile host is eventually elected as the leader. However, due to be

mobility of the hosts, the algorithm in [109][111] does not work in a mobile network.

We make some additional assumptions and modify the message exchange procedure

to implement an eventual leader oracle for mobile systems.

1.3.2. Contributions in Mutual Exclusion

Another coordination problem studied is mutual exclusion. We propose the first

permission-based MUTEX algorithm for mobile ad hoc networks. Compared with

Chapter 1. Introduction

 11

the token-based approach, permission-based algorithms have two main advantages.

First, no logical structure is maintained so that no message cost or memory cost is

caused by such structures. Second, no message need to be propagated if no host

requests the CS. These advantages make the permission-based approach well

suitable for MANETs, where the resources are scarce.

One problem of the permission-based approach is the large number of messages

to be exchanged to get permissions. To reduce the message cost, we propose a

MUTEX algorithm using the "look ahead" technique [146], which enforces mutual

exclusion only among the hosts currently competing for the critical section. The

constraint of FIFO (First In First Out) channel in the original "look ahead" technique

is relaxed. We also propose mechanisms to handle dozes and disconnections. Using

timeout, a fault tolerance mechanism is introduced to tolerate link and host failures.

1.3.3. Summary

In summary, the main contributions of this thesis are as follows:

1. The investigation of new challenges in solving distributed coordination

problems in mobile environments;

2. The design and application of a general technique named “Look-Ahead” to

speed up the execution of consensus protocols;

3. The design of two message efficient consensus protocols for mobile ad hoc

networks, which reduce the message cost by using clustering mechanisms;

4. The design of a new oracle, named “eventual clusterer” ∆, which can group

mobile hosts into clusters to help design consensus protocols achieving message

efficiency;

5. The design of an eventual leader protocol for dynamic infrastructured mobile

networks, which can be used for designing consensus protocols in dynamic

infrastructured mobile networks;

6. The design of the first permission-based MUTEX algorithm for mobile ad hoc

networks, which can reduce message cost and tolerate link and host failures.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 12

1.4. Outline of the Thesis

The rest of the thesis is organized as follows. We discuss the new challenges in

mobile computing environments in Chapter 2. Mobile networks are first introduced

and then their characteristics are summarized. Based on these characteristics, we

investigate the new challenges in the design of distributed coordination algorithms in

mobile environments.

Chapter 3 reviews existing work related to the two distributed coordination

problems investigated in this thesis – consensus and MUTEX. For the consensus

problem, different system models are also introduced.

Chapter 4 deals with the time efficiency in achieving consensus. We first

introduce the Look-Ahead technique and then describe our fast consensus protocol

with the Look-Ahead technique. The proposed protocol also has the Round-Zero-

Degradation property.

Chapter 5 handles the message efficiency of consensus protocols. First, a

hierarchical consensus protocol for mobile ad hoc networks is presented, where all

MHs are grouped into clusters with predefined clusterheads. Using a dynamically

clustering approach, we define the new oracle ∆ for consensus, and then propose

another hierarchical consensus protocol based on ∆.

Chapter 6 studies the consensus problem in dynamic mobile systems with

dynamic join and leave hosts and no pre-defined number of hosts. We present the

design of an eventual leader protocol for dynamic infrastructured mobile networks.

Chapter 7 describes a permission-based MUTEX algorithm, which is the first of

the same kind for mobile ad hoc networks.

Finally, Chapter 8 concludes the thesis with discussion on directions of our future

work.

Chapter 2. Mobile Computing Environment

 13

Chapter 2. Mobile Computing Environment

Mobile computing is a new computing paradigm of distributed systems. Same as

traditional wired distributed systems, the distributed coordination problems are still

at the core of mobile computing. On the one hand, the applications, e.g. atomic

broadcast and file replication, where coordination problems arise from, are still

desirable in mobile systems. On the other hand, many new applications and

scenarios, e.g. wireless channel allocation [86], emerge in mobile computing.

Unfortunately, compared with traditional wired systems, the constitution of mobile

systems is more flexible and mobile hosts are more loosely coupled, which make the

design of distributed coordination algorithms more challenging.

Mobile computing is distinguished from traditional distributed computing in many

ways. The most important ones are the underlying networking infrastructure, the

characteristics of the systems, and applications built on the network. In this chapter

we first introduce various kinds of mobile networks and their characteristics, and

then discuss the new challenges brought to the design of distributed algorithms.

2.1. Mobile Network

“Mobile network” is a network that consists of mobile hosts. Mobile networks

often use wireless communication, so in this thesis we use “wireless network” and

“mobile network” interchangeably. At present, there are many different mobile

networks proposed, such as Personal Communication Systems (PCS), Wireless LAN,

Wireless MAN, Paging Network [85][125][157]. The architectures of all the mobile

networks can be classed into two classes: infrastructured networks and ad hoc

networks [8][114][115][157].

2.1.1. Infrastructured Network

An infrastructured network consists of two distinct sets of entities: a large number

of mobile hosts (MHs for short) and relatively fewer but more powerful mobile

support stations (MSSs for short). Figure 2-1 gives an example network architecture

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 14

for infrastructured mobile networks. MSSs are interconnected using a wired network,

while MHs are connected to MSSs using wireless communications.

Each MSS is in charge of a cell. A cell is a logical or geographical coverage area

under a MSS. Each MH that has identified itself with a particular MSS is considered

to be local to the MSS. A MH can directly communicate with a MSS (and vice versa)

only if the MH is physically located within the cell serviced by the MSS. MHs are

able to connect to the static segment of the network from different locations at

different times. Consequently, the overall network topology changes dynamically as

MHs move from one cell to another. However, at any given instant of time, a MH

can belong to only one cell and its current cell defines the MH’s “location”.

Figure 2-1 The infrastructured network Figure 2-2 The mobile ad hoc network

2.1.2. Ad Hoc Network

As shown in Figure 2-2, a mobile ad hoc network (MANET) consists of a

collection of autonomous MHs communicating with each other through wireless

channels. Whether two hosts are directly connected is determined by the signal

coverage range and the distance between the hosts. Each host is a router and the

communication between two hosts can be multiple-hop. Both link and host failures

may frequently occur. The topology of a MANET can dynamically change due to the

mobility of MHs and link or host failures.

Compared with infrastructured networks, MANET provides greater flexibility at

the expense of a larger overhead that stems from the use of broadcasting which is

Cell

Wired Network

Cell

Cell

MSS

MSS MSS

MSS

MH MH
MH

MHMH MH
MH

MH

MH
MHMH

Cell

MH

MH

MH

MH

MH

MH

MH

MH

Chapter 2. Mobile Computing Environment

 15

typically employed to locate MHs. Such overhead also limits the scalability of

MANETs. With the help of MSSs, infrastructured networks can reduce the overhead

involved in location management and updating. Moreover, MSSs have fewer

constraints in resource and processing power, so computation and coordination

should be executed on MSSs as much as possible in order to reduce the load of MHs.

2.2. Characteristics of Mobile Network
Mobile networks have fundamentally different properties from wired networks in

aspects of communication, mobility and resource constraint [63][84][138][148][164].

2.2.1. Network Communication

Since MHs access information through wireless links, the effect of wireless

communication is probably the most prominent in a mobile computing environment.

Wireless communication faces more obstacles than wired communications, because

the surrounding environment interacts with the wireless signal, which may block the

signal path and introduce noise and echoes. Wireless connections can be lost or the

bandwidth is degraded due to the movement of users or the dynamical variation of

the number of users. The limitation of power is another factor that effects the

wireless communications. As a result, the wireless communication is characterized

by lower bandwidth, higher error rate, and more frequent spurious disconnection.

The challenges of wireless communication are follows:

– Disconnection and Doze

In mobile networks, there are two types of disconnections: “accidental

disconnections” and “voluntary disconnections”, which have different effects on the

design of mobile systems. An accidental disconnection refers to the disconnection

caused by network failures. Because wireless communication is so susceptible to

network failure, disconnections occur more frequently and unpredictably. On the

other hand, a voluntary disconnection is predictable. To reduce the consumption of

power and other resources, a MH may voluntarily disconnect from the network.

Because such a disconnection does not result from failures, the MH can inform the

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 16

system before the disconnection occurs and execute a disconnection protocol if

necessary. For example, the detached participant can prefetch necessary data to work

in a stand-alone mode, and can offload the data or state information, pertaining to an

ongoing algorithm execution, to MSSs or other MHs so that the distributed

algorithm can continue.

The doze mode is also a voluntary operation, by which a MH can reduce power

consumption. In doze mode, the clock speed is reduced and no user computation is

performed. The host simply waits passively to receive messages sent to it. When

such a message arrives, the host is waked up and resumes its regular mode.

Therefore, a MH in doze mode is reachable form other hosts, which is different from

a disconnected host.

– Low Bandwidth and High Bandwidth Variability

Bandwidth is the most critical aspect of wireless communications. Compared with

wired networks, the bandwidth of a wireless network is far lower because of the

physical limitation of transmission devices. Another related problem is bandwidth

variation. The bandwidth can be affected by the landform and noise. Some MHs, e.g.

laptops, may use both a wired link and a wireless link, so the bandwidth can vary

from one to four orders of magnitude. Fluctuant traffic load can also have effect on

the bandwidth to a certain extent.

– Asynchronous Communication

There are two basic types of communication paradigms in a distributed system:

“synchronous communication” and “asynchronous communication”. Synchronous

communication is easy to handle. However, because of frequent disconnections and

low bandwidth with high variability, synchronous communications between mobile

hosts become unpractical. The two peers of communication may not connect at the

same time. Therefore, asynchronous communication is often assumed for mobile

environments.

– Heterogeneous Network

Chapter 2. Mobile Computing Environment

 17

In contrast to most stationary computers, which stay connected to a single network,

mobile hosts encounter more heterogeneous network connections with different

transmission speeds, protocols or even different networks. For example, when a MH

switches from a cellular coverage in a city to satellite coverage in the country, it

encounters two different networks.

– Security Risks

Creating a connection to a wireless network is much easier than that to a wired

network, so the security of wireless communication can be much more easily

compromised. Secure communication over insecure channels is accomplished by

encryption, which can be done in software or, more quickly, by specialized hardware.

2.2.2. Mobility

Mobility is about moving around. In mobile computing, there are generally two

forms of mobility: device or terminal mobility and user mobility [40][153]. Some

people extend the concept of mobility to resource constraint [20].

– Terminal Mobility

Terminal mobility refers to both the ability of a terminal to access resources and

services while in motion, and the capacity of connecting at different points of

attachment in new hosting networks. Terminal mobility may be the most directly

meaning of “mobile environment”.

Terminal mobility has two aspects effect: physical space and connection space.

Movement in physical space means the change of physical location, which affects

the quality of connection, e.g. poor connectivity or even disconnection. The network

must reconnect the user with respect to new location to adapt the movement. Data

and file operations should also be adapted to support disconnection file operations.

Connection space refers to the links that connect between various computer

platforms. The movement in this space corresponds to selecting route between links,

selecting a specific type platform and other configuration information, such as local

name server, time zone.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 18

– User Mobility

User mobility refers to the ability of a user to access the mobile system from any

terminal at any place with a uniform vision of her/his working environment. To

handle user mobility, mobile computing systems must provide mechanism to

authenticate user accesses and organize the working environment according to

profile information and currently required services. Compared with the research of

terminal mobility, the research of user mobility is lagging behind, but is attracting

more and more attention.

2.2.3. Resource Constraint

Due to the limited size, MHs, e.g. portable computers, PDAs or SmartPhones,

consequently have limited resources.

– Low Power

Generally, batteries are the major power source of a MH. Due to the constraint of

size, the life of batteries is usually relative short. Therefore saving power is a very

important consideration for both hardware and software designers. Though reducing

the voltage and clock frequency of chips, power can be saved. Applications can

conserve power by reducing their appetite for computation, communication and

memory.

– Limited Processing Power

The CPU or process of a MH is much slower than that of a desktop computer.

Therefore, software designers must reduce the computation and other operations as

much as possible to lower the load of CPU.

– Small Storage Capacity

Coping with limited storage is not a new problem. Solutions include compressing

files automatically, accessing remote storage over the network, sharing code libraries,

and compressing virtual memory pages. Reducing the size of code, for example

using interpretive script languages instead of executing compiled object codes, is one

efficient method to solve this problem.

– Risk to Data

Chapter 2. Mobile Computing Environment

 19

Making computers portable increase the risk of physical damage, unauthorized

access, loss, and theft. Breaches of privacy or total loss of data become more likely.

Minimizing essential data kept on board, encrypting data stored on disks and

memory cards, and making backup copies can reduce the risk of data.

– Small User Interface

The size constraint on a portable computer results in a small interface, including

display and input. Adapted window environments and analog input technologies, e.g.

handwriting recognition, voice recognition, would help solve this problem.

2.3. New Challenges for Distributed Coordination

The challenges of mobile computing are caused by the constraints stemmed from

communication, mobility and portability as described in the previous section. These

constraints necessarily make the distributed software systems for mobile computing

different from those for traditional ones. In this section, we discuss the main

challenges in designing distributed algorithms.

2.3.1. Reducing Message Cost

To cope with low bandwidth, in both hardware and software scope, many

treasures can be taken to improve the bandwidth per user, such as overlapping cells

on different wavelengths, reducing transmission ranges, and compressing/buffering

the data to be exchanged. However, for a designer of distributed algorithms, the only

way can cope with the bandwidth constraint is to reduce messages to exchange.

Besides saving bandwidth, another great benefit of reducing messages is saving

power. Every operation needs consume power, so fewer messages means less power

consumption. A useful characteristic of mobile communication is that the costs of

transmission and reception are asymmetric. The former requires about 10 times as

much power as that of reception. Therefore, power can be saved by substituting the

transmission operation for a reception one.

To sum up, reducing messages is much more imminence in mobile environments

than that in traditional distributed environments.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 20

2.3.2. Handling Topology Change

Many distributed algorithms rely on logical topologies or structures, such as a ring,

tree or graph [16]. Such a topology can provide a certain degree of “order” and

predictability to the communication among the hosts. Messages exchanged within

such topologies follow only selected paths. Now, in a mobile network, the topology

is no longer stable due to the frequent movements or disconnections of MHs.

Consequently, the corresponding topology information kept by the hosts must be

updated to reflect the movements or disconnections, which results in additional

message traffic and even search overhead (to locate a MH that moved away).

Therefore, in mobile environments, the cost and benefit of using a topology

among MHs must be carefully balanced. In infrastructured systems, a good approach

is to impose a logical topology upon MSSs [16][128], which can obtain similar

benefit as imposing a logical topology upon MHs, but the cost of maintaining a

logical topology is shifted to MSSs. In MANETs, this problem is more difficult to

deal with. Constructing the topology dynamically/on-the-fly is a good solution [17].

For MANETs, a more severe effect of the topology change is partitioning.

Because of mobility and failures, a MANET may be partitioned into two or more

disconnected sub-networks. Partitions may cause a distributed algorithm blocked or

even failed. How to handle partitions should be considered seriously.

2.3.3. Reducing Computation

Compare with other constraints, power constraint has much more universal effect

on mobile computing. Because any computation and will consume power, reducing

computation load of MHs becomes a new consideration in mobile environments.

There are two ways to do this: reducing the absolute computation task or shifting the

load to the possibly existing MSSs.

2.3.4. Handling Disconnection

As described before, there are two types of disconnections. Accidental

disconnections are unpredictable, so an algorithm must have fault tolerance

Chapter 2. Mobile Computing Environment

 21

mechanism to reduce the effect of such disconnections. The more autonomous a MH

is, the better it can tolerate such a disconnection. If possible, the computation and

communication should be done within the static segment of the network to the extent

possible [16].

Compared with accidental disconnections, voluntary disconnections can be

handled more easily because a MH can predict such a disconnection. When a MH

wants to disconnect from the network, it can offload the data and other information

needed by other hosts to the MSS (in an infrastructured network) or some other MHs

(in a MANET) and executes a disconnection protocol before the disconnection takes

place [146].

Another effect of disconnection is the change of the topology of the mobile system

[16][128]. This will be discussed in Section 2.3.3.

2.3.5. Handling Dynamism of the System

Here, “dynamism” refers to the change of the constitution of a system. The

classical system model for distributed systems is characterized by the following

attributes. The system is made up of n hosts (processes); n is fixed and known by

each process; no two processes have the same identity; the whole set of identities is

known by each process.

It is worth notice that (since the very early of the eighties) this static model has

been questioned by theoreticians interested in the computability power of distributed

systems. Their efforts were focused on the following fundamental question [13]:

“How much does each process in a network need to know about its own identity, the

identities of other processes, and the underlying connection network, in order to be

able to carry out useful functions?” This research direction has given rise to notions

such as “local knowledge” vs. “global knowledge” [33], anonymous networks, sense

of direction [62], etc.

The advent of mobile systems consequently questioned the relevance of the static

distributed computing model from a practical point of view. Dynamic systems allow

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 22

hosts (or processes) to dynamically enter and leave the system, which is more

feasible and reasonable for mobile networks. It follows that no host can know how

many hosts currently constitute the system. Roughly speaking, there is no global safe

information on the whole system structure that can be used by the hosts.

Chapter 3. Background and Literature Review

 23

Chapter 3. Background and Literature

Review

In the past decade, a lot of attention has been attracted to solving distributed

coordination problems in mobile wireless environments. In this chapter, we review

existing work according to the problems addressed. Since our research is focused on

the consensus problem and MUTEX problem, we first briefly describe works for

other problems and then provide a detailed survey of existing consensus protocols

and MUTEX algorithms.

For the leader election problem, several algorithms have been proposed in recent

years. Park [121] proposed an algorithm for infrastructure mobile networks based on

Garcia Molina’s bully algorithm [68]. Like in other algorithms for infrastructured

networks, MSSs act as proxies of MHs for reducing the work load of MHs. Other

existing leader election algorithms are all designed for MANETs. Based on the well-

known diffusion computation based termination detection algorithm by Dijkstra and

Scholten [48], Vasudevan et al. [158] designed an election algorithm. Malpani et al.

[102] developed an election algorithm based on the TORA routing protocol [122].

Hatzis et al. [78] proposed two leader election algorithms based on the geographical

positions of the MHs. Nakano et al. [117] proposed two randomized algorithms for

single-hop and two-hop single channel MANETs respectively. In these two

algorithms, the leader is elected by the collision state of the channel in which the

MHs emit signals randomly and synchronously.

Termination detection algorithms have been proposed for infrastructured mobile

networks. Malpani et al. [102] developed an algorithm based on Dijkstra and

Scholten’s algorithm [48]. In [102], the MSS can help the MHs merge more than one

message together so as to reduce the communication cost at MHs. Tseng and Tan

[155] proposed another algorithm using a hybrid mechanism: the weight-throwing

scheme [81][104][154] on the wired network side, and the diffusing computation

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 24

based scheme [48] within each wireless cell. Such a hybrid protocol can better pave

the gaps of computation and communication capability between static and mobile

hosts, so it is scalable to large distributed systems.

For deadlock detection and logical time, to our knowledge, there is no solution

proposed for mobile environments up to now.

For the snapshot problem, we can find two algorithms. Based on the Chandy-

Lamport algorithm [32], Sato et al. [137] designed a snapshot algorithm for

infrastructured networks. The main mechanism in [137] is the same as that in [32].

The algorithm handles the change of connections based on the information

piggybacked on handoff messages, called “IPH” (Information Piggybacked with a

Handoff message). Agbaria and Sanders [3] proposed another algorithm based on the

Chandy-Lamport algorithm. Considering the FIFO channel is not feasible for

channels between MHs, in [3], the authors made use of MSSs to help ensure the

message order between a marker message and application messages.

For the transaction problem, much work has been done [95][99][141][142][163],

including new models for mobile environments and new protocols.

3.1. Consensus Protocols

Since the design of consensus protocols are closely related to the underlying

system model, we first describe the system models for consensus and then introduce

existing consensus protocols.

Figure 3-1 shows a classification of distributed system models for solving the

consensus problem. Three aspects of a system are involved in developing a

consensus protocol: failure model, synchronicity model, and communication channel

model.

3.1.1. Failure Model

There are several widely used models for host failures. They can be classified in

terms of their “severity” [77][151]. One failure is less severe than another if the

faulty behavior allowed by the former is a strict subset of that allowed by the latter.

Chapter 3. Background and Literature Review

 25

According to such a classification, the least severe one is fail-silent or crash failure

model where a process fails by crashing when it stops computing sending any

message.

A more severe type of failure is the omission failure in which the process fails to

response. Under this model, there are further two different cases: receive-omission

failure and send-omission failure. In the receive-omission failure, a process may

have not gotten the message sent to it. Such a case may happen, e.g. when the

connection between two processes has been correctly established but no one

listening to the incoming message. Likewise, a send-omission failure happens when

the process has done its work but somehow fails in sending a response. Such a

failure may happen, e.g. a send buffer overflows.

Figure 3-1 The system model for consensus

Timing failures occur when the message arrives too late or too early. A response

failure occurs when the response message is incorrect. Two kinds of response

failures may happen. In the case of a value failure, a wrong reply is provided to a

Synchronous

R
esponse

B
yzantine

Tim
ing

O
m

ission

C
rash

Timed Asynchronous

Quasi-synchronous

Partial-synchronous

Asynchronous

Communication
Channel

Synchronicity

H
ost Failure

Reliable

Fair-lossy

Stubborn
CR-reliable

Strong-lossy

Best-effort

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 26

request. For example, a search engine returns results with no relation to the key

words. The other one is known as the state transition failure. For example, if a server

host receives a message that it cannot recognize and no measure has been defined to

handle such a message, a state transition failure happens.

The most severe failure is the arbitrary failure (also called Byzantine failure),

typical of a process exhibiting an absolutely arbitrary behavior (e.g. sending wrong

and conflicting messages to different processes, or arbitrarily changing its state).

3.1.2. Synchronicity Model

The synchronicity dimension defines how closely components in the systems can

be synchronized. The two extremes of this property are synchrony and asynchrony

[61][70]. In a synchronous model, three assumptions should hold:

1) There is a known upper bound on the local clock drift;

2) There is a known upper bound on the processing speed;

3) There is a known upper bound on the message delivery delay.

Based on these properties, failure detection is easy to perform by using simple

mechanisms like timeouts, and then the consensus problem becomes easy to solve.

However in a real distributed system, it is difficult to guarantee the above bounds.

Therefore, the asynchronous model attracts more attention because of its

practicability. Different asynchronous models related to consensus have been

proposed.

3.1.2.1. Asynchronous Model with Oracles

In an asynchronous system, there is no bound on the clock drift, process speed, or

message delivery delay, which makes the consensus problem difficult to solve.

Fischer et al. [61] proved that the consensus problem is unsolvable in an

asynchronous system even if only one process can crash.

To circumvent this impossibility, three types of oracles have been proposed: the

random number generator [22], the eventual leader oracle [31] and the unreliable

failure detector (FD for short) oracle [31]. An oracle is an abstract tool that provides

some kind of information about the state of the system.

Chapter 3. Background and Literature Review

 27

Unreliable FDs are introduced by Chandra and Toueg [31]. In their work, every

pair of processes is connected by a reliable communication channel, and the

processes can fail by only crashing. A FD gives (possibly incorrect) hints about

which process may have crashed so far. It consists of several modules, each of which

is local to a process and periodically consulted by the corresponding process. Each

module produces a list of processes suspected to be crashed. The modules are

intrinsically unreliable. They can make mistakes, so the lists dynamically change

during the computation (and it is possible for two or more lists to be different at the

same time).

FDs can be classified according to their accuracy and completeness properties.

The accuracy property restricts the mistakes a FD can make, while the completeness

represents the capacity of suspecting an actually crashed process. More precisely,

two completeness properties and four accuracy properties were defined:

Strong Completeness: eventually every crashed process is permanently suspected

by every correct process;

Weak Completeness: eventually every crashed process is permanently suspected

by some correct process;

Strong Accuracy: no process is suspected before it crashes;

Weak Accuracy: some correct process is never suspected;

Eventual Strong Accuracy: there is a time after which correct processes are not

suspected by any correct process;

Eventual Weak Accuracy: there is a time after which some correct process is never

suspected by any correct process.
Table 3-1 Eight classes of FDs

Accuracy Completeness
Strong Weak Eventual Strong Eventual Weak

Strong Perfect
P

Strong
S

Eventually Perfect
◊P

Eventually Strong
◊S

Weak Q Weak
W

◊Q Eventually Weak
◊W

Each pair of accuracy and completeness can define a detector class. Totally there

are eight classes as shown in Table 3-1. Interestingly, the eight classes are not

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 28

independent of each other. “Reducibility” is introduced to demonstrate the

relationships among them [31]. Intuitively, a detector D’ is reducible to another

detector D means that D can emulate D’, so any problem that can be solved using D’

can be solved by using D instead. Obviously, D must provide at least as much

information about failures as D’ does. Therefore, we can say that D’ is weaker than D.

A concept related to “reducible” is “equivalent”. If D is reducible to D’ and D’ is

reducible to D, it is said that D and D’ are equivalent. If D’ is reducible to D but D

and D’ are not equivalent, D’ is said “strictly weaker” than D. The relationships

among all the classes are shown in Figure 3-2. It is important to notice that each

class of detectors with the weak completeness as shown in Table 3-1 is equivalent to

the corresponding one with the strong completeness. This enables people to focus on

the four classes with strong completeness only.

Figure 3-2 Relationships among failure detector classes

Interestingly, Chandra, Hadzilacos and Toueg [30] have proved that to solve the

consensus problem, any FD has to provide at least as much information as ◊W. Thus,

◊W is indeed the weakest FD for consensus in asynchronous systems with a majority

of correct processes.

The failure detector approach is particularly attractive. FDs are not defined in

terms of any particular implementation (involving network topology, message delays,

local clocks, etc.) but in terms of abstract properties (related to the detection of

failures) that allow us to solve problems despite process crashes. The FD approach

allows a modular decomposition that not only simplifies the consensus protocol

design but also provides general solutions [31][82][83][139]. A protocol can be

designed and proved correct based on only the properties provided by a FD class.

Strictly weaker

Equivalent

P

Q

S
W

◊Q

◊P

◊W

◊S

Chapter 3. Background and Literature Review

 29

Therefore, this protocol depends only on a well defined set of abstract properties

rather than low-level parameters. The implementation of a FD of the assumed class

can be addressed separately.

However, not all the eight classes of FDs are helpful for consensus. It has been

reported that the implementation of FDs of with the strong accuracy or weak

accuracy is as difficult as the consensus problem itself [93], which claims that the

consensus protocol based on the FDs of class P, Q, W or S are unprofitable. Even for

the other four classes, based on the impossibility result in [61], it is also impossible

to implement them in a purely asynchronous system [93]. Therefore, existing

implementations of FDs are all based on models with synchrony in some degree

[23][31][59][93].

The eventual leader oracle, usually denoted by Ω, was also proposed by Chandra

and Toueg [31]. An eventual leader provides the processes with a leader primitive

leader() that outputs a process id if it is invoked. Ω satisfies the following eventual

leadership property:

Eventual leadership: Eventually, all invocations of Ω return the same id, and that

id is the identity of a correct process.

Such an oracle is not very powerful, in the sense that there is no knowledge on

when a correct leader is elected. Before this occurs, several distinct leaders (possibly

conflicting) can co-exist. On the other hand, the leader oracle is powerful because it

is possible to solve the consensus problem in asynchronous distributed system

equipped with such a “weak” oracle [30][110]. It has also been shown that, as far

as failure detection is concerned, Ω and ◊S have the same computational power in

asynchronous distributed systems prone to process crashes [30][39]. This is why Ω is

sometimes viewed as one special type of FD.

A random number generator oracle [22] provides each process pi with a function

random() that outputs a binary value randomly chosen. Basically, the primitive

random() outputs the value with some probability. Since there is no property defined

for the output of a random number generator, it cannot be used to solve the

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 30

consensus problem deterministically, which is different from the other two types of

oracles. Its main advantage lies in the robustness of the resulting consensus protocol:

the behavior of such a protocol does not depend on how the system actually behaves.

3.1.2.2. Partial Synchrony Model

A synchronicity model between asynchronous model and synchronous model is

the “partial synchrony” model. Analyzing the impossibility result in [61], there

appears to be three different types of asynchrony:

Process asynchrony: a process may "go to sleep" for arbitrarily long finite

amounts of time while other processes continue to run;

Communication asynchrony: no prior bound exists on message delivery time;

Message order asynchrony: messages can be delivered in a different order from

the one in which they have been sent.

Investigating the influence of the different types of asynchrony, Dolev et al. [49]

found that it is not necessary to have all the above types of asynchrony to obtain the

impossibility result. This observation inspires the definition of the partial synchrony

model [53].

Te partial synchrony model is originated relaxing the requisite of synchrony for

processes and/or communications. According to this work, calling D and F the upper

bounds on message transmission and on relative clock speeds of processes

respectively, a partial synchrony can be caused by two conditions:

– The bounds exist but are not known;

– The bounds are known, but they hold after some unknown time.

In the former case, the system is de facto synchronous, so the impossibility result

does not hold. The problem is to manage the messages exchange without the

knowledge of the real values of D and F: using non correct values for these bounds

will obviously affect correctness or performance of the protocol. In the latter case, an

instant of time, called Global Stabilization Time (GST), is supposed to exist such

that the bounds are valid from GST on.

Chapter 3. Background and Literature Review

 31

3.1.2.3. Quasi-synchronous Model

Based on some observations on the real-time system, Verissimo and Almeida

[9][10][11][12] proposed the quasi-synchronous model. The respect of all the timing

constraints is mandatory when life-critical applications are considered. However,

there are other real-time applications where, despite the need for dependability, it is

acceptable to eventually miss some of the timing constraints (assuming to achieve

the most important ones). Using Almeida and Verissimo wording, a system is

synchronous if there are:

P1. Bounded and known processing speeds;

P2. Bounded and known message delivery delays;

P3. Bounded and known local clock rate drift;

P4. Bounded and known load patterns;

P5. Bounded and known difference among local clocks.

Consequently, a quasi-synchronous system is defined as follows:

D1. It can be defined by properties Px;

D2. There is at least one bound where there is a known probability (>0) that the

bound assumption does not hold;

D3. Any property can be defined in terms of a series of pairs.

A quasi-synchronous system can be viewed as a synchronous system in which the

absolute bounds on messages transmission delays, local clock drift rates and process

execution times are far away from those observed during the normal operative mode.

Therefore, it is more convenient to use different values, even if the coverage of such

assumptions is not equal to one [129].

3.1.2.4. Timed Asynchronous Model

The basis of the definition of the timed asynchronous model is the consideration

that existing fault-tolerant services for asynchronous distributed systems are usually

timed. The specification of the services not only describes the states transitions and

the outputs in response to invocations of operations, but also the time interval within

which these transitions have to complete [42].

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 32

The timed asynchronous system model is characterized by following assumptions:

i) All the services are timed, so it is possible to associate some timeout whose

expiration produces a performance failure;

ii) Processes communication with one another using an unreliable datagram

service with omission and/or performance failure semantics;

iii) Processes have crash/performance failure semantics [41];

iv) All processes have access to private hardware clocks that run within a linear

envelope of real-time;

v) No bound exists on the rate of communication and process failures.

The timed asynchronous model is asynchronous in the sense that it does not

require the existence of upper bounds for the message transmission and scheduling

delay. However, the access to local hardware clocks and the definition of timeouts

enable us to define the performance failure as the failure that occurs when an

experienced delay is greater than the associated timeout delay.

3.1.2.5. Comparisons of Synchronicity Models

All the considered models try to overcome the impossibility result in [61] by

strengthening the asynchronous system model, i.e. trying to add a sufficient amount

of "synchrony" to the system in order to allow the solvability of the consensus

problem. Obviously, there are some differences between different models, because

the assumptions that they rely upon are different.

The first comparison can be made between the partially synchronous system and

the timed asynchronous system. As described before, the former model assumes the

existence of bounds on the process speed and message transmission delay with

coverage equal to 1. On the contrary, the timed asynchronous model only assumes a

bound on clock drift rate (with a coverage equal to 1) and makes no assumption on

the load pattern or message transmission delay. The timed asynchronous system

model has some points in common with the partially synchronous system model: the

Global Stabilization Time of the partially synchronous system model reminds the

concept of stability of the timed asynchronous system, but, while the Global

Chapter 3. Background and Literature Review

 33

Stabilization requires that the system is not affected by any (timing or crash) failure

after a certain instant, the stability of a timed asynchronous system is valid only for

bounded time intervals.

It is interesting to compare the partial synchrony model with the notion of an

unreliable FD. For every partial synchrony model we considered, it is easy to

implement an eventual perfect FD (a FD that satisfies strong completeness and

eventual strong accuracy). In fact, one could implement such a FD with an even

weaker model of partial synchrony: one in which the bounds on message

transmission delay and process speed exist, but they are unknown and hold only after

some unknown time.

It is more difficult is to compare the asynchronous model with oracles with the

timed asynchronous model. In [58], the impossibility to implement a perfect FD in a

timed asynchronous system has been proved. The main difference between the two

models is in the philosophy of the design of the system. FDs hide to higher

abstraction levels all the aspects related to the time of the fault-tolerant distributed

computation. This can constitute a problem if the abstraction levels are more than

two. In such a situation all the timeouts are used in each level because a level that

depends on another one has to be able to detect its failures [41]. For this reason the

meaning of timeouts change in correspondence of the levels they are associated to

(usually the higher is the level, the greater is the timeout and the more severe is its

violation).

Let us consider now the difference between the partial synchrony model and the

quasi-synchronous model. In the latter, it is necessary to define a given bound for the

message delay (although the bound does not hold with probability 1), while in the

former, this bound is unknown or it holds after an unknown instant.

For the consensus problem, the asynchronous model with oracles has attracted

most attention. Our study in this thesis is also based on this model.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 34

3.1.3. Communication Model

The dimension of communication channel can be defined using three properties:

reliability, creation, and duplication. All the channels listed in Figure 3-1 have the

no-creation property and no-duplication property [71]:

Property 1 (no-creation): if process q receives a message m, then some process p

has sent m to q.

Property 2 (no-duplication): every message m sent by any process p is received at

most once.

The difference among different channels lies in the reliability, which is defined as

follows [71][97][120][131]:

Property 3 (Reliable): if process p send a message m to process q, and q does not

crash, then q eventually receives m.

Property 4 (CR-reliable): if process p sends a message m to process q, and neither

p nor q crashes, then q eventually receives m.

Property 5 (Stubborn): if process p sends a message m to process q, neither p nor

q crashes, and p indefinitely delays sending any further message to q, then q

eventually receives m.

Property 4 (Best-effort): if process p sends a message m to process q, and neither

p suspects q nor q suspects p, then q eventually receives m.

Property 5 (Fair-lossy): if process p sends an infinite number of messages to

process q, and q does not crash, then q receives an infinite number of these messages.

Property 6 (Strong-lossy): if process p sends messages to process q, there is no

guarantee on the delivery of any message, i.e. all these messages may be lost.

The definitions of these channels are self-explanatory except the stubborn channel.

Basically, Property 5 says that, if a correct process p sends message m and

afterwards is able to indefinitely delay the sending of any further message then q

eventually receives m. This does not mean that p is not allowed to send any new

message m’ to q after sending m. m’ can be sent when either m has been received or

Chapter 3. Background and Literature Review

 35

m may be never received. Intuitively, a stubborn channel guarantees the delivery of

the last message transmitted though it.

In general, the degree of reliability of these channels gradually decreases from the

reliable channel to the strong-lossy channel. However, for the best-effort channel and

fair-lossy channel, it is hard to say which one is more reliable. The reliability of a

best-effort channel is directly dependent on the failure detection mechanism. When a

false suspicion occurs, no reliability is provided at all.

A channel with higher reliability can be implemented using a channel with lower

reliability by message retransmitting mechanism [19][71]. For example, a CR-

reliable channel can be implemented using a fair-lossy channel by periodically

retransmitting all previous messages. Of course, this may require unbounded buffer

space. On the contrary, a stubborn channel requires only finite buffer space if it is

implemented using a fair-lossy channel. This is in fact the main motivation of

proposing the stubborn channel [71].

In consensus protocols, people usually assume reliable channels in the system

[31][51][83][110]. Interestingly, all such protocols are still correct in the

environment with CR-reliable channels. Guerraoui et al. [71] and Olivira et al. [120]

have proposed some protocols based on the stubborn channel. In fact, the consensus

problem is solvable with fair-lossy channels [50].

3.1.4. Protocols for Traditional Fixed Environments

3.1.4.1. FD-based Protocols

Among all the three types of oracles, FD has attracted the most attention. Up to

now, all FD-based consensus protocols use a FD of class ◊S or S. However, it has

been reported that the implementation of S is as difficult as the consensus problem

itself [93], which claims that the solutions based on S are unprofitable. Therefore,

only the protocols based on ◊S are described here.

Chandra et al. [31], Hurfin et al. [83] and Schiper [139] have proposed consensus

protocols with the same assumption that a majority of all the n processes are correct,

which has been proved a necessary condition for solving the consensus problem in

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 36

asynchronous systems [31]. All of the protocols adopt the rotating coordinator

paradigm and are executed in asynchronous rounds. A round is usually divided into

several phases. Each process keeps an estimate of the final decision value.

During each round, a coordinator process, predefined using some deterministic

function e.g. (r mod n)+1, tries to impose its own estimate on others by sending

proposal messages to all processes. On the reception of the proposal from the

coordinator, a process updates its own estimate and sends the echo message to some

or all processes. Based on the echo messages received during a round, a process

updates its estimate and checks if it can make a decision.

These protocols mainly differ in the message exchange pattern in a round. The

protocol presented in [31] adopts a centralized message exchange pattern, while the

protocols in [83][139] use the fully distributed pattern. The latter two protocols

differ in the way they cope with failures and mistakes made by the FD. More

precisely, the protocol in [83] “trusts” the FD, while the protocol in [139] does not.

Hurfin et al. [82] proposed a versatile FD-based protocol (denoted by HMR).

HMR has two orthogonal versatility dimensions: the class of the FD (class S or ◊S)

and the message exchange pattern. Since the HMR protocol is the basis of our

proposed consensus protocols in this thesis, we introduce it in more details.

There are totally n processes in the system, and f of them can crash, where f<n/2.

Same as other FD-based protocols, HMR adopts the coordinator rotating paradigm

and is executed in asynchronous rounds. Each round of HMR is divided into two

phases. In the first phase of a round r, the coordinator pcc, defined by the function

coord(r), sends its current estimate estcc to each process (including itself) with the

proposal message PROP(r, estcc). A process pi waits for the estimate value from pcc

unless pcc is suspected. When a PROP(r, estcc) is received, pi updates its own

estimate value esti and timestamp tsi and then proceeds to the next phase.

In the second phase, the message exchange pattern is determined by two sets of

processes, D and A. The set D, standing for Decision-makers, is the set of processes

Chapter 3. Background and Literature Review

 37

that need to check the decision status, i.e. whether it can decide in the current round.

D is defined with the following two requirements:

• D is deterministic, i.e. all the processes have the same D for the same round;

• D contains the current coordinator.

The set A stands for Agreement_keepers. Since different processes may decide in

different rounds, A is used to ensure that once a value has been decided upon in a

round by some process, no other value can be adopted as the decision value in later

rounds. To maintain the agreement property, in the second phase of a round, each

process in A needs to receive estimate values from other processes and update its

estimate to the value with the highest timestamp. Since the coordinator of the “next”

round will send proposals to others, it must have a “correct” estimate. Therefore, A

can be any set of processes that includes the coordinator of the next round.

After entering the second phase of a round r, each process pi sends an echo

message ECHO(r, esti, tsi) to each process pj in D∪A. pj waits until it receives echo

messages ECHO(r, *, *) from no less than n-f processes and then sets its estimate to

the value carried by the ECHO message with the highest timestamp. A process pd in

set D checks the timestamps of the echo messages received. If pd receives f+1 echo

messages with a timestamp “r”, pd can decide. The number “f+1” ensures that at

least one correct process knows the decision value. Once a process decides, it

broadcasts the DECISION(est) message using a reliable broadcast mechanism to

disseminate its decision value, and then stops participating in the protocol.

All above protocols rely on reliable communication channels between hosts.

Protocols that can tolerate message losses are reported in [50][71][120]. The

protocol in [50] is based on fair-lossy channels while the protocols in [71][120]

adopt stubborn channels. Same as others, these protocols adopt the rotating

coordinator paradigm and are executed in asynchronous rounds. However, to tolerate

message losses, each host needs to periodically resend the latest message it has sent

and, if some message from a higher round is received a host skips to some higher

round (the next round or the round of the message received).

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 38

The difference between [50] and [71][120] lies in the message resending

mechanism. In [50], the resending is undertaken by the consensus protocol itself,

while in [71][120] this is delegated to the underlying communication channels. More

precisely, the consensus protocol [50] implements stubborn channels implicitly. The

protocol in [71] differs from that in [120] in the message exchange pattern and

consequently the buffer size for resending messages.

3.1.4.2. Leader-based Protocols

Based on the leader oracle Ω, several consensus protocols have been proposed.

The first leader-based consensus protocol is proposed by Lamport [90]. Based on a

part-time parliament protocol used by residents of an ancient Greek island Paxos,

Lamport devised an algorithm, named Paxos, to implement a highly available

deterministic service by replicating it over a set of processes communicating through

message passing. A consensus protocol named Synod is at the core of Paxos.

Because the description in [90] is difficult to understand, efforts have been put to

simplify and deconstruct it [24][46][89]. However, the Paxos algorithm is not

dedicated for solving consensus so there is no explicit consensus protocol presented.

The Synod algorithm can only guarantee the agreement property and validity

property of the consensus problem. To guarantee the termination property, two

additional issues are involved. First, a leader oracle is assumed for determining the

process to initiate the algorithm. Second, there should be a mechanism to determine

when to initiate the above algorithm. If the algorithm is invoked by new leaders too

frequently, it is possible that each run of the algorithm is ended by a run with a

higher number. In [90], it is assumed that it is eventually possible to obtain the

precise delay of a message and the time of processing a message, so as to estimate

the duration of a run.

The protocols in [51][110] can guarantee all the three correctness properties. Like

FD-based protocols, they are executed in asynchronous rounds, but there is no

predefined coordinator for a round. Each round of the protocol in [110] consists of

three phases. In the first phase, each process broadcasts its estimate value to others

Chapter 3. Background and Literature Review

 39

and then waits for the values from the leader process (selected by the leader oracle).

If such a value is received, the process updates its estimate value to the value

received and broadcasts the new value received from its leader (if any) or the value

“⊥” (a value that can never be accepted, which means that the sender failed to get a

value from its leader). If a process received the same value v (v ≠⊥) from a majority

of processes in the second phase, it broadcasts the value v in the third phase.

Otherwise, it broadcasts the value “⊥”. Finally, based on the messages received in

the third phase, a process updates its own estimate and makes a decision if it receives

the same value (v ≠⊥) from a majority of processes. The protocol in [51] uses a

similar procedure but the first two phases are merged into one.

A uniform consensus protocol based on a leader oracle was proposed in [24]. The

protocol described in [92] is based on a leader oracle named ◊C. Different from the

commonly used Ω, ◊C is defined by a completeness property and an eventual

consistent accuracy property. It can be seen as an adaptation of the CT protocol [31].

3.1.4.3. Random Number Generator based Protocols

The first consensus protocol based on the random number generator is proposed

in [22]. Same as other consensus protocols, it is executed in asynchronous rounds,

but no process acts as a coordinator or leader in a round. A process updates its

estimate with the help of a random number generator. Basically, the primitive

random() outputs the value 0 (respectively 1) with probability 1/2, so [22] solves the

binary consensus, i.e. the decision value is 0 or 1.

Ezhilchelvan et al. [55] proposed a multi-valued consensus protocol based on a

random number generator. Each process first reliably broadcasts the value vi

proposed by itself and collects the values from others. Then, the processes execute

asynchronous consecutive rounds until a decision is made. A round is made up of

two communication phases. During the first phase of a round r, the processes

exchange their own current estimates by broadcasting. If a process pi discovers that a

majority of estimates have the same value v, it updates esti to v; otherwise, it updates

esti to ⊥, a value that cannot be decided upon. Then the processes enter the second

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 40

phase during which they exchange the new content of their esti variables. If a process

pi receives the same value v such that v≠ ⊥ from a majority of processes, it

decides on v. Otherwise, it adopts any estimate value not equal to ⊥ (if such a value

is received) or a randomly selected value from the values received at the beginning

of the execution (if all the values received in the second phase are ⊥). Then pi starts

the next round.

3.1.4.4. Hybrid Protocols

Some hybrid consensus protocols [7][113] make use of FD and random number

generator at the same time. The first attempt to build a general consensus framework

is proposed in [108], which unifies a leader oracle, a random number generator

oracle, and a failure detector oracle. Unfortunately, algorithms derived by

instantiating that framework with a given oracle are clearly not as efficient as ad hoc

algorithms devised directly with that oracle. Efficient consensus protocols with

different oracles are presented in [51], where a specific protocol is given for each

oracle. An efficient uniform consensus framework is presented in [73].

3.1.4.5. Summary

It is interesting to compare the protocols based on different oracles. A common

inconvenience of the FD-based protocols is caused by the rotating coordinator

paradigm. A consensus protocol cannot achieve consensus until there is a round

coordinated by an unsuspected host. Because the hosts take turns to act as the

coordinator of some round in a predefined order, hosts still have to execute a round

that coordinated by a crashed and suspected host, which will delay the decision

making. Leader-based protocols solve this problem by dynamically selecting rather

than statically defining the leader host. One drawback caused by this change is that,

in the same round, the leaders selected by different hosts may be different. To cope

with this, the leader information must be exchanged in the all-to-all pattern together

with the proposal messages [51][110], which is not so flexible as FD-based protocols

in terms of the message exchange pattern. In random number generator based

protocols, however, no coordinator/leader is needed, so it does not depend on the

Chapter 3. Background and Literature Review

 41

behaviors of the system. The price to pay for this advantage is that such protocols

cannot guarantee the termination deterministically.

3.1.5. Consensus Protocols for Mobile Environments

So far, very little work has been done on the consensus problem in mobile

environments. Several protocols have been proposed for infrastructured networks.

Based on the CT protocol [31], Badache et al. [15] proposed a consensus protocol

for infrastructured mobile networks, which is denoted by BHM. In BHM, the

decision value is a set of values proposed by at least α hosts (α can be determined by

the application) instead of a single value. MSSs collect initial values from MHs and

achieve consensus on behalf of MHs. The activity of a MSS is divided into three

main subtasks:

i) To interact with its local MHs to collect their initial values;

ii) To interact with other MSSs to agree on a subset of proposed values;

iii) To interact with its local MHs to disseminate the final outcome.

Compared with CT, BHM has several differences. First, in CT, a host can change

it estimate only when it adopts the value proposed by the coordinator, but in BHM a

MSS can also change its proposed value if it gets new values from MHs. Second,

once the MSS changes its value set, it sends a new proposal to the coordinator, so a

MSS may send more than one proposal message in one round. After a MSS has got

enough initial values and sent a positive acknowledgment to a coordinator, it

behaves in a way similar to that of a process in CT.

BHM uses a simple handoff mechanism to handle the movements of MHs. The

new and old MSSs change their MH lists and the MH sends its initial value to the

new MSS if the value is never collected by the new MSS.

The protocol in [140] extends the BHM protocol by considering the dynamism of

the set of MSSs. Due to the mobility of MHs, some cells may become empty, i.e.

there is no MH in these cells. Using a group membership protocol, the MSSs of such

cells are deleted from the set of MSSs executing the consensus protocol. The

membership protocol and the consensus protocol are executed concurrently. Since

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 42

the group membership problem can also be solved by a consensus protocol [75],

there can be two consensus protocols involved.

Both protocols in [15] and [140] rely on the help of MSSs. The principle is to shift

the workload from MHs to MSSs. In MANETs, however, there is no MSS and all the

work has to be done by MHs themselves.

Chockler et al. [37] developed consensus protocols for a special type of MANETs,

single-hop MANETs, where the hosts are located within the communication range of

each other. Their work focuses on message losses due to transmission collisions.

Collision detectors are designed to monitor the communication media and detect

transmission collisions. With the help of collision detectors, in a single-hop MANET

can achieve consensus. To achieve consensus in a multi-hop MANET, the network is

divided into non-overlapping grids, each of which is a single-hop sub-network.

Single-hop consensus is first achieved within each grid and then each host gossips its

grid consensus value. Finally, a host can decide after it has received a value for every

grid.

Another consensus protocol for MANETs is reported in [160]. The authors

developed several fault tolerant broadcast algorithms for MANETs and then apply

these broadcast algorithms to the consensus protocol in [55]. As described before,

the protocol in [55] is a randomized protocol relying on a random number generator

so it can only probabilistically guarantee the termination property.

Both the consensus protocols in [37] and [160] are probabilistic with respect to

their approaches of achieving a global consensus in MANETs. Of course, protocols

for traditional networks can be used in MANETs, but they are not efficient in terms

of the message cost, especially for large scale MANETs [123][166].

3.2. MUTEX Algorithms

Many algorithms have been proposed for the distributed MUTEX problem

[21][27][145][159], but few of them are designed for mobile environments. We first

Chapter 3. Background and Literature Review

 43

briefly introduce algorithms for traditional fixed environments and then review

algorithms for mobile environments.

3.2.1. Algorithms for Traditional Fixed Environments

3.2.1.1. Token-based MUTEX Algorithms

The first token-circulating algorithm is proposed by Le Lann [40], where all hosts

are logically organized in a ring and the token circulates following the ring. When

the token is received by a host, it enters its CS if it is requesting, and after exiting CS,

it sends the token to its successor in the ring.

To reduce the meaningless circulation of the token when no host wants to enter

the CS, algorithms combining token-circulating and token-asking are proposed in

[18] and [103]. A fault tolerant token-circulating algorithm is proposed in [107]

which addressing the token loss detection problem using a time free approach. There

are two tokens circulated simultaneously along the same ring while only one of them

carries the privilege of entering the CS. These two tokens monitoring each other

using a sequence number based mechanism to detect the token loss.

Ricart and Agrawala [134] proposed a broadcast based algorithm that requires at

most n (the total number of hosts) messages to achieve MUTEX. The requesting host

sends the request message to all other n-1 hosts and waits for responses. When the

token holder needs to send the token, the successor is chosen in a circular manner if

there is any pending request; otherwise, it keeps the token idly. Based on the idea in

[133][134], Suzuki and Kazami [150] proposed an algorithm in which the queue of

requesting hosts is piggybacked on the token. This queue is updated by a local queue

of each visited host in an ascending order of id so as to ensure the liveness property.

The algorithm in [119] extends the algorithm in [150] by adding timeout-based

fault tolerance. The algorithm can tolerate various failures and using timeout based

mechanism, a lost token can be regenerated and duplicated tokens are eliminated.

Singhal [144] improved the performance of the Suzuki and Kazami algorithm by

sending requests only to the hosts probably holding the token instead of all the hosts.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 44

The knowledge of each host about the requesting hosts is passed together with the

token, so a host can guess what hosts are the probable token holders using a

heuristically method. The algorithm proposed in [34] is similar to the one in [144]

except that different data structures are used to store the request information of hosts.

Tree-based MUTEX algorithms can be found in [35][47][79][116][130]. Different

from broadcast based algorithms, such algorithms make use of the logical tree to

forward requests for the token and pass the token to requesting hosts. The token

holder is always the root of the tree. A parent host sends request on behalf of its

children so as to reduce message cost. These algorithms differ in the mechanism of

maintaining the tree and the request queue.

Raymond’s algorithm [130] requires at most O(LogN) messages (N is the total

number of hosts) to enter the CS. The tree is maintained by the logical pointers

distributed over the hosts and directed to the token holder. A request message is

routed to the root along the path of pointers from the requestor to the token holder.

The token is sent back over the reverse path. The links passed by the token must be

reversed so as to always point to the token holder. Based on Raymond's algorithm,

Chang et al. [35] developed an algorithm that can tolerate link and host failures by

maintaining multiple paths to search the token. The algorithm tries also to avoid

cycles when the token returns to the requester along the reversal links. In [47],

Dhamdhene and Kulkarni developed an algorithm which aims to eliminate the still

remaining cycle in [35].

Different from Raymond’s algorithm, in [116], the hosts are arranged in a dynamic

logical tree, where the structure of the tree may be changed with respect to the

request status of the hosts. No queue of pending requests is maintained by the hosts or

the token. Such a queue is implicitly maintained by the state of each host using two

variables: LAST and NEXT. LAST indicates the last host from which a request was

received and the neighbor host in the path to the root to which this host needs to send a

request message for its new request. NEXT indicates the host to whom the token will be

granted after this host leaves CS.

Chapter 3. Background and Literature Review

 45

 Helary et al. [79] proposed a general tree-based MUTEX scheme, including an

information structure and the associated algorithm. The information structure

includes, in particular, a dynamic rooted tree structure logically connecting the hosts,

and a behavior attribute (transit or proxy) dynamically assigned to each host. This

general structure not only covers, as particular cases, several known algorithms, but

also allows for the design of new ones that are well suitable for various topology

requirements.

The graph-based MUTEX algorithms [80][118] are similar to those tree-based

algorithms except that a directed acyclic graph (DAG for short) rather than a tree is

used to pass the requests and token. In [80], a host requesting the CS sends requests

to its neighbors and waits for the token. After completing the execution of the CS,

the host finds the oldest request from its own pending queue, updates the time of that

request in the token's array with its logical clock, and then sends the token through

the return path. The algorithm [118] is similar to the tree-based algorithm [116]

except that the hosts are arranged in a DAG rather than a tree.

3.2.1.2. Permission-based MUTEX Algorithms

As introduced before, two different types of permissions have ever been used in

existing permission-based algorithms [145]. The R-permission is first proposed in

the Ricart-Agrawala algorithm [133]. A host requesting the CS sends request

messages to all other hosts. Requests for CS are assigned globally unique priorities,

e.g. Lamport-like timestamps [91]. The receiver of a request grants permission to the

requester immediately by sending a reply, if it is not requesting the CS or its priority

is lower. Otherwise, it grants the permission after its own execution of the CS. A

variant of the Ricart-Agrawala algorithm is proposed in [28], by remembering the

recent history of the CS execution in order to reduce message cost. Singhal [143]

proposed a dynamic R-permission based algorithm by dynamically change the set of

the hosts to which a requesting host needs to send request messages.

Another type of permission is M-permission [98], where a requesting host needs

to send requests to a quorum of hosts. Many quorum based MUTEX algorithms have

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 46

been proposed. Since our study does not adopt the M-permission, we do not

introduce them here. A good survey can be found in [27].

3.2.2. MUTEX Algorithms for Mobile Environments

We first briefly describe existing algorithms and then present the comparison and

analysis.

3.2.2.1. Mutual Exclusion Algorithms for Infrastructured Networks

The BBAI algorithm [16] focuses on handling the mobility of MHs. The authors

proposed a two-tier structure to make full use of MSSs. A guiding principle of this

paper is that “the computation and communication demands of an algorithm should

be satisfied within the static segment of the system to extent possible.” To do so, a

logical ring is imposed on all the MSSs and the token visits each MSS in a

predefined sequence. A MH that wants to access the CS needs to send a request to its

local MSS. When the token visits this MSS, all pending requests at this MSS are

serially serviced. Two strategies are adopted to handle the movements of MHs. One

is to let a MH proactively inform the MSS about its updated location while the other

lets the token holder search a MH before sending the token.

The LPRM algorithm [124] improved Raymond’s algorithm [130] by introducing

a d-level hierarchical logical tree. The main principle of LPRM is similar to that in

[16]: letting MSSs act as the proxies of MHs. The tree is imposed on only the MSSs.

A host sends a request to the token holder (i.e. the root of the tree) when it wants to

enter CS. Because there are much less MSSs than MHs, the message cost is reduced

compared with Raymond’s algorithm. Although a d level tree may help reduce

message cost, the overhead to maintain such a multi-level tree may be high.

Singhal [146] presented a MUTEX algorithm (denoted as MSM) based on the

“look ahead” technique which can reduce message cost by enforcing the MUTEX

only among those concurrently competing for CS in stead of all the hosts. The

Ricart-Agrawala approach [133] is directly adopted to achieve MUTEX.

Chapter 3. Background and Literature Review

 47

The basic idea of the “look ahead” technique is that if a host Si informs Sj of its

request status, then Sj automatically gets informed whenever Sj requests CS. On each

host, there are two sets. The Info_Seti includes the id of the hosts that Si needs to

inform if it has a request, and the Status_Seti includes the id of the hosts that will

inform Si when they request for the CS. For each host, the following conditions

must be satisfied (S is the set of all hosts):

1) ∀Si: Info_Seti∪Status_Seti =S;∀Si: Info_Seti∩Status_Seti =Ø

2) ∀Si∀Sj: Si ∊ Info_Setj ⇒ Sj ∊ Status_Seti

Through adjusting the two sets according to specific rules, each host can know

what other hosts are concurrently requesting CS. Thus, the number of messages

exchanged is decreased.

When a host wants to disconnect from the network, it offloads the current values

of its data structures to its local MSS which will then act on behalf of the host in the

execution of the MUTEX algorithm.

3.2.2.2. Mutual Exclusion Algorithms for MANETs

Several MUTEX algorithms for MANETs have been proposed. A good survey of

such algorithms can be found in [21].

Baldoni et al. [17] presented an algorithm (denoted as RBVP) which aims at

reducing the meaningless control messages when no host requests to access the CS.

In the RBVP algorithm, the structure of the logical ring is computed on-the-fly, and

there is a coordinator for each round. A host needs to send a request message to the

coordinator when it wants to access the CS. If there is no pending request, the

coordinator holds the token idly so as to avoid meaningless circulation of the token.

Walter et al. [161] proposed a token-asking algorithm, denoted by JWSK, which is

derived from Raymond’s tree-based algorithm [130] with the improvement to handle

link failures caused by host mobility. This algorithm defines a DAG of token-

oriented pointers, maintaining multiple paths leading to the token holder. Like in

[130], requests are forwarded to the token holder along a path in the DAG and the

token is delivered along the reverse path to the requesting host. When a host cannot

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 48

find a path to the token holder due to failures, it initiates the “update” procedure to

find a new path. When a reverse path is broken, the token holder needs to search the

requesting host before sending the token. In [162] a variant of the algorithm in [161]

is presented to eliminate the overhead introduced by searching the requestor. Instead

of that the token holder searches the hosts, a host needs to resend its request when it

detects that there is a failure of an outgoing link.

Malpani et al. [101] proposed a parametric token-circulating algorithm with many

variants. A dynamic logical ring is imposed on the MHs and the successor of a host

is computed on-the-fly. By applying different polices to determine the successor,

different variants are derived. Based on the Local-Recency (LR) policy, Chen et al.

[36] proposed a MUTEX algorithm (denoted by YCJW) for MANETs. A ring is

determined at the beginning of each round, and will not be changed until a new

round begins. To guarantee the liveness property, YCJW requires that the topology to

be static while the algorithm is converging. To tolerate token losses, one special host

acts as a leader. The leader generates the token and sets timeout for it. Each token is

marked with an id, which is equal to the round number. If a timeout happens, the

leader would generate a new token. Through fixing the visit path for each round, the

correctness is guaranteed even if there is more than one token in the system.

3.2.2.3. Comparison and Analysis

Now, let us compare different algorithms. There are three classical metrics for

distributed MUTEX algorithms [145]:

Number of Messages Per CS Entry (MPCS): the average number of messages

exchanged among the hosts for each execution of the CS.

Synchronization Delay (SD): the number of sequential messages exchanged after a

host leaves the CS and before the next host enters the CS.

Response Time (RT): the time interval that a host waits to enter the CS after its

request for CS arrives.

We also use these metrics to evaluate the performance of MUTEX algorithms, but

new measures suitable for mobile environments are adopted. In traditional fixed

Chapter 3. Background and Literature Review

 49

networks, the cost of each message is viewed as the same. However, in mobile

environments, the communications among MHs become more complicated. There

are both wireless links and wired links. The costs of messages sent through different

links are also different and should be calculated differently. Similar as in [16], we

use different measures for the cost of communications through wired and wireless

links. The notations used in the performance analysis are as follows:

n: the number of MHs;

m: the number of MSSs;

Cf: a message between two fixed stations;

Df: the time delay of Cf;

Cw: a message sent through wireless links. In an infrastructured network, it refers

to a message between a MH and the MH’s MSS. In a MANET, this refers to a point-

to-point message between two MHs;

Dw: the time delay of Cw;

Cl: messages incurred to search a MH. it depends on the searching mechanism.

Dl: the time delay of Cl. Of course, it can be expressed by Df.

Since the performance of a MUTEX algorithm usually depends on the load level

of the system, two special load levels often been involved: low load level and high

load level. Under low load levels, there is seldom more than one request for CS

simultaneously in the system. On the contrary, under high load levels, there is always

a pending request at each host, i.e. a host sends out a request as soon as it exits CS.

In mobile environments, there is a new important condition –mobility, which has

important effect on the performance of MUTEX algorithms. Under high mobility

levels, a MH changes its location very frequently, while under low mobility levels, a

MH rarely does so.

Table 3-2 shows the performance of the algorithms described above 4 . The

performance of BBAI algorithm varies strongly under different load levels. In

4 Since the SD under low load levels depends on the interval of two requests for CS, we only analyze the SD

under high load levels.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 50

general, under low load levels, the performance is bad, which is caused by

meaningless token circulation when there is no request at all. The performance of

BBAI is also affected by the mobility level. If the “inform” mechanism is used,

under high mobility levels, many informing messages are needed. However, if using

the search mechanism, the performance of BBAI is not affected by the mobility level.

Table 3-2 Performance of MUTEX algorithms for infrastructured networks

 BBAI LPRM MSM

MUTEX
Mechanism

Ring-based Tree-based Permission-based

Property static dynamic dynamic
Low
load

3Cw+O(m)Cf+ Cl *
3Cw+O(m)Cf+ k*Cf **

3Cw+O(logm) *2Cf+Cl n*(2Cw+Cf)

MPCS
High
load

3Cw+Cf+ Cl
3Cw+Cf+ k*Cf

3Cw+2Cf+Cl 3n*(2Cw+Cf)/2

SD High
load

2Cw +Cf +Cl
2Cw +Cf

2Cw+Cf+Cl 2Cw+Cf

Low
load

3Dw +O(m)*Df + Dl
3Dw +O(m)*Df

3Dw+O(logm)*2Df+Dl 4Dw+2Df

RT
High
load

O(m)*Df+O(n)*(2Dw+E+Dl)
O(m)*Df+O(n)*(2Dw +E)

O(m)*2Df+O(n)*(2Dw+E+Dl) n*(2Dw+Df+E)/2

Contributions Reducing message cost
Handling topology change

Reducing message cost
Handling topology change

Reducing message cost

Drawbacks Additional mechanism to ensuring
the fair access to token.

The overhead to maintain a
multi-level tree.

No mechanism for
disconnection

Notes
*: this is the MPCS value for search mechanism, and the same to SD, RT
**: this is the MPCS value for inform mechanism, where k is number of movements after
requesting, the same to SD, RT

The performance of LPRM algorithm is similar to BBAI because they are both

token based and both use MSSs as proxies of MHs. The wireless message cost of

LPRM is the same as that of BBAI. The difference lies in the wired part. BBAI is a

token-circulating algorithm while LPRM is a token-asking algorithm. Therefore,

under low load levels, the performance of LPRM is better than BBAI with the search

mechanism. However, under high load levels, the BBAI performs better because it

does not need any request message.

MSM algorithm is fundamentally different from the others, because it uses the

permission-based MUTEX mechanism. Not making full use of MSSs makes MSM

costs more messages, especially under high load levels. The RT of MSM is also

larger than that of BBAI and LPRM. However, the advantage of MSM is that no

logical structure is needed.

Chapter 3. Background and Literature Review

 51

Table 3-3 shows the performance of the algorithms for MANETs. The

performance of MVW is similar to typical token-circulating algorithms. Profiting

from the combination of token-circulating and token-asking, the RBVP algorithm

performs well under low load levels. However, the introduction of request messages

makes the performance worse under high load levels, compared with typical token-

circulating algorithms, e.g. MVW.

Like the LPRM algorithm, JWWV is a logical structure based algorithm, so the

load level has similar effect on these two algorithms. However, since the graph is

imposed on the MHs rather than MSSs in JWWV, the overhead of maintaining such

a structure is high due to the mobility of MHs. Additional messages are needed if the

graph is changed due to the link break or establishment. The performance of YCJW

is nearly the same as MVW, except that under high load levels, the MPCS of YCJW

is larger. The difference comes from the relative fixed visit path of YCJW, which lets

some requesting hosts send out the token without access the CS

Table 3-3 Performance of MUTEX algorithms for MANETs

 RBVP JWSK MVW(LR) YCJW

MUTEX
Mechanism

Token-asking +
token-circulating

Graph-based Token-circulating Token-circulating

Property dynamic dynamic dynamic dynamic
Low load O(n)*Cw O(logn)*(2+k)Cw O(n)*Cw O(n)*Cw MPCS
High load 2Cw (k+1)Cw Cw >Cw

SD High load Cw Cw Cw Cw
Low load O(logn)Dw O(logn)* (2+k)Dw O(n)* Dw O(n)* Dw RT
High load O(n) * (2Dw+ E) O(n)*((2+k)Dw +E) O(n) * (Dw+ E) O(n) * (Dw+ E)

Contributions Reducing message
cost

Handling disconnection
Handling topology change

Handling topology
change

Handling topology change
Tolerance of token loss

Drawbacks Dependence on the
route protocol.

Repeated requests. Additional information
for token passing

Large size message(token)
Fixed leader host

From the analysis we can see that, the load level has very important effect on the

performance of MUTEX algorithms. Nearly all the algorithms have better

performance under high load levels. The network type can also affect MUTEX

algorithms. In infrastructured networks, the design is easier because MSSs can be

used to carry out much work.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 52

The MUTEX mechanism is also an important factor in the design of MUTEX

algorithms. Up to now, nearly all the MUTEX algorithms for mobile environments,

especially for MANETs, are token-based. Token-circulating algorithms perform

better under high load levels, while token-asking algorithms are better if the load

level is low.

Token-based mechanisms have many desirable features for mobile networks: the

host only needs to keep information about its neighbors, few messages needed to

pass the privilege to enter the CS and so on. However, the fatal problem—token loss

makes the token-based mechanisms not so robust. What is worse, the mobility and

frequent disconnections make the token loss more serious and the maintenance of a

logical structure more costly.

Compared with the token-based approach, permission-based algorithms have the

following advantages: 1) there is no need to maintain the logical topology, and 2)

there is no need to propagate any message if no host requests the CS. These

advantages make the permission-based approach well suitable for mobile networks,

where all the resources, e.g. the network bandwidth and the battery power, are scarce.

A problem of the permission-based approach is the large number of messages

exchanged to get permissions. Therefore, to design a permission-based algorithm,

the key issue is to reduce the message cost.

Another important problem is fault tolerance. In a mobile environment, especially

a MANET, link failures (e.g. signal shielded) and host failures (e.g. battery

exhausted) occur very frequently. Link failures can lead to message loss while host

failures may result in accidental disconnections. Furthermore, MHs may enter the

"doze" mode to save power. Unfortunately, these issues have not been adequately

addressed in existing MUTEX algorithms for mobile environments.

Chapter 4. Speeding up the Execution of Consensus Protocols

 53

Chapter 4. Speeding up the Execution of

Consensus Protocols

4.1. Overview

Our study in this chapter focuses on the execution speed of consensus protocols,

which is important in both handling topology change and reducing computation load.

In general, the earlier a protocol achieves consensus, the less the topology may

change and the less resource, e.g. bandwidth and memory, is consumed.

The main objective of this chapter is to cope with the slowdown caused by the

mistakes made in the execution of ◊S based protocols. All existing oracle based

consensus protocols allow the oracle to make mistakes, which is referred as the

indulgence property [69][73]. The price to pay for indulgence is the slowdown of the

execution.

Usually, there is at least one coordinator or leader for each round of FD or leader

based protocols and the coordinator or leader process attempts to impose its own

current estimate of the decision value on other processes. Due to the indulgence

property, processes have to keep executing consecutive rounds, even if in fact the

decision cannot be made due to failures or false suspicions. This slows down the

execution speed of a consensus protocol. Although some optimizations, including

Zero-Degradation (ZD for short) [45][51][135], One-Step-Decision [51][73] and fast

recovery [52] have been developed to speed up the execution of indulgent consensus

protocols, they are either unsuitable for ◊S based protocols or difficult to be applied.

We propose a fast consensus protocol based on the failure detector ◊S, which can

circumvent slowdowns caused by indulgence, using two novel techniques.

The first technique uses a simple but efficient approach to guarantee the Round-

Zero-Degradation (RZD for short) property, which is an extension of ZD. ZD means

that, when all the failures are initial crashes and the oracle makes no mistake, two

communication steps are sufficient to reach a global decision [51][73]. An initial

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 54

crash refers to a crash that occurs before the execution of the protocol starts. ZD is

important especially because a consensus protocol is typically invoked from time to

time and a process failure occurred during one execution will appear as an initial

failure in the subsequent executions [73]. However, ZD only takes into account the

first round of an execution. Here, we extend it to “Round-Zero-Degradation”. A

consensus protocol is said to have the “Round-Zero-Degradation” property if it can

achieve the global decision within any round (two communication steps) when the

underlying oracle makes no mistake in the round and all failures are “round initial

crashes”, i.e. all crashes occur before the round starts5.

Compared with ZD, RZD is more useful. Nearly all implementations of FDs

[31][93] rely on the partial synchrony system model [53], where the bounds on the

message delay and processing speed are unknown and hold only after an unknown

stabilization interval. This implies that the FD is likely to fail in the beginning of the

execution of a consensus protocol. Thus, “Zero-Degradation” is hard to satisfy.

ZD and RZD are desirable properties. The key point to guarantee ZD or RZD is

how to select only correct processes as the coordinator. For leader-based protocols

[51][73][110], ZD is guaranteed by nature, because a leader oracle dynamically

elects the leader based on the status information. However, most existing FD-based

consensus protocols cannot guarantee the ZD or RZD property. FD-based protocols

usually adopt rotating coordinator paradigm and the order for processes to be the

coordinator is predefined, so they have to execute such rounds that are coordinated

by crashed and suspected processes, which defers the decision. Although some

solutions [45][51][135] have been proposed to help FD-based protocols achieve ZD,

they are either not Round Zero Degrading or too complicated.

In the proposed protocol, a simple and efficient approach is designed to guarantee

RZD. The principle is to replace a suspected coordinator when a round starts.

However, unlike leader oracle, a FD only provides a process the status information

5 The start of a round is defined as the time that the first process enters this round.

Chapter 4. Speeding up the Execution of Consensus Protocols

 55

of other processes but cannot indicate which process should be the coordinator. An

arbitrarily selected coordinator may result in the violation of the termination property.

Therefore, how to dynamically select coordinators is not trivial.

The first technique, as described above, is effective only in good cases6. When the

FD performs badly, it will not work. The second technique proposed in this chapter,

called “Look-Ahead”, speeds up the execution of the proposed protocol in general

cases. The main idea of Look-Ahead is making use of the future messages so as to

reduce useless wait time. Due to the asynchrony of the system, some messages of

“future” phases or rounds may be delivered to “slow” processes in advance. Based

on the information carried by such messages, a process can adapt its execution state

to the future so as to speed up its execution. However, not all future messages are

beneficial, because some future messages may mislead the receivers so as to

postpone potential decisions.

Some papers [50][52] mentioned the use of future messages to handle omission

failure or achieve consensus with a lower bound number of rounds after the

stabilization interval. On the reception of a future message, a process directly skips

to the round of the future message. Such an approach is too extreme in sense of

efficiently speeding up the execution because it may destroy potential decisions. The

proposed Look-Ahead technique is designed delicately to avoid negative effect of

future messages, so Look-Ahead can help speed up execution in general cases.

Look-Ahead is in fact a general technique which can be easily applied to any

round based indulgent consensus protocols. However, it is important to notice that,

although the Look-Ahead technique is not special for mobile environments, it is

especially suitable for mobile environments, where the asynchrony is stronger than

that in fixed networks due to the dynamics of mobile hosts.

6 According to the behaviours of the hosts and oracles, execution cases of a consensus protocol can

be informally divided into three categories. A “good” case means that no new crash occur and the

oracle performs perfectly (makes no mistake), while a “bad” case means there are new crashes and the

oracle performs badly. A “general” case simply refers to any case.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 56

To evaluate the performance of the proposed protocol, we conduct extensive

simulations. The proposed protocol is compared with one classical protocol. The

results show that the proposed protocol can always achieve the consensus with fewer

rounds, regardless the performance of the failure detector and other conditions. In

terms of the execution time, the proposed protocol also performs better unless the

failure detector makes many mistakes (with an error rate greater than about 35%).

Simulations also show that the Look-Ahead technique itself is always effective

regardless the performance of the FD and other conditions, which indicates that our

objective to avoid destroy of potential decisions is fulfilled.

4.2. A Fast Consensus Protocol with RZD Property

4.2.1. System Model and Data Structures

The system model for the proposed protocol is the same as in [14][31][61][97]. A

distributed system consists of a finite set of n processes: Π = {p1,p2,…,pn}, n > 1.

Processes communicate only by sending and receiving messages. Every pair of

processes is connected by a reliable channel that does not create, duplicate, alter, or

lose messages. There is no bound on the message delay or the processing speed of a

host.

A process can only fail by crashing, i.e. prematurely halting. A process that

crashes in a run is faulty in that run, otherwise it is correct. A faulty process executes

correctly until it crashes. The maximum number of faulty processes in a run is

denoted by f. To guarantee a majority of the processes to be correct, f is bounded by

n/2, i.e. f < n/2. Each process is equipped with a FD module of class ◊S, which

provides unreliable information about the status of other processes.

When executing the protocol, each process pi needs to maintain necessary

information about its state. Such information is stored in the following variables.

ri: the sequence number of the current round that pi is participating in.

esti: the current estimate of the decision value. Initially, it is set to be the value

proposed by pi.

Chapter 4. Speeding up the Execution of Consensus Protocols

 57

tsi: the timestamp of esti. The value is the sequence number of the round in which pi

receives the current value of esti from the coordinator process.

fldi: the flag to indicate whether pi has made the decision.

The following message types are used in the proposed protocol.

PROP(ri, esti, cc): the proposal message sent in round ri by process pi to all other

processes, where cc is the id of the current coordinator selected by pi. This

message serves two purposes: 1) exchanging the coordinator id among all

processes; 2) delivering the proposal value from the coordinator to all processes.

ECHO(ri, esti, tsi): the echo message sent in round ri, from process pi to all

processes.

DECISION(v): the message sent from a process that has decided to propagate the

decision value v.

4.2.2. Description of the Protocol

Figure 4-1 shows the pseudocode of the proposed protocol. Like most existing

consensus protocols, there are two tasks. Task 1 is for making the decision and

constitutes the main body of the protocol. Task 2 is for propagating the value that has

been decided upon.

We describe Task 1 first. At the beginning of a round, a process pi first determines

the coordinator (line 3 to line 5). Two functions are involved. The coord(ri) function,

as used in existing FD-based protocols, determines the default coordinator of round

ri. It is deterministic and always returns the same value given the round number. This

guarantees that each process selects the same default coordinator in the same round.

To skip crashed coordinators, we introduce a new function ncoord(cc). Given the id

of the current candidate for the coordinator, this function returns the “next”

candidate for the current round. Similar to coord(), ncoord() is deterministic, i.e. all

processes get the same result with the same input. A simple implementation of

nccoord() is ncoord(cc)= (cc+1) mod n. ncoord() is invoked repeatedly until a

“trusted” process is returned.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 58

The remaining actions in a round are divided into two phases. In Phase 1, each

process pi sends its current estimate esti to all processes, using the proposal message

PROP(ri, esti, cc). Then pi waits for the PROP messages from all processes (line 7).

pi stop waiting if any of the following three conditions holds: i) pi receives the PROP

message from pcc and additional n-f-1 processes, ii) pi receives an ECHO message

with a timestamp no less than ri, i.e. ECHO(*, *, ≥ ri), or iii) pcc is suspected.

Figure 4-1 Pseudocode of the fast consensus protocol

After pi stops waiting at line 7, it checks the messages it has received for this

phase. There are three possible cases.

1) pi has received a PROP(ri, estcc, cc) message from pcc and a PROP(ri, *, *)

message from additional n-f-1 processes. Then pi updates its own estimate value esti

--Task 1: Consensus--
// The code executed by each process, pi
BEGIN:
(1) ri ←0; esti ← vi; tsi ← 0; fldi ← false;
(2) while (fldi=false){
(3) ri←ri+1; cc = coord(ri);
(4) while (pcc ∈ suspectedi){
(5) cc = ncoord(cc);}

----------------------- Phase 1 Collect Proposal ---------------------------------
(6) send PROP(ri, esti, cc) to Π;
(7) wait until ((received PROP(ri, *, *) from pcc and n-f -1 other processes)

or (received ECHO(*, *, ≥ ri) from some process)
or pcc ∈ suspectedi);

(8) if(received PROP(ri, estcc, cc) from pcc and
PROP(ri, *, cc) from n-f -1 other processes){

(9) esti← estcc; tsi ← ri;}
(10) else if(received ECHO(ri, v, ri) from some process){
(11) esti← v; tsi ← ri;}
 -------------------------Phase 2 Collect Echo - ----------------------------------
(12) send ECHO(ri, esti, tsi) to Π;
(13) wait until ((received ECHO(ri, *, *) from n-f processes)

or (received ECHO(*, *, > ri) from some process)) ;
(14) if(received ECHO(ri, *, *) from n-f processes and

there are f+1 ECHO(ri, est, ri) messages) {
(15) esti ← est;
(16) send DECISION(esti) to Π \ pi;
(17) fldi←true;}
(18) else esti ← est’ carried by the ECHO with the highest timestamp;
 }//endwhile
-----------------------------------Task 2: Reliable broadcast --
// The code executed by each process, pi
(19) upon reception of DECISION(est) from process pj: {
(20) send DECISION(est) to Π \{ pi, pj};
(21) fldi←true; }
END

Chapter 4. Speeding up the Execution of Consensus Protocols

 59

to estcc and tsi to ri (line 9).

2) pi has received an ECHO(ri, v, ri) message. pi will update its own estimate esti

to v and tsi to ri.

3) Neither 1) nor 2) is satisfied. pi will not change its estimate or timestamp.

Phase 2 starts by sending ECHO messages. pi first sends a ECHO(ri, esti, tsi)

message to all processes including itself and then waits for ECHO messages (line

13). pi stops waiting at line 13 if any of the following two conditions occur : 1)

receiving ECHO messages with round number ri (i.e. ECHO(ri,*,*)) from no less

than n-f processes, or 2) receiving an ECHO message with a timestamp greater than

ri, i.e. ECHO(*,*,>ri)). Then pi checks the ECHO messages received to determine

whether it can make the decision. If pi receives ECHO(ri,*,*) messages from no less

than n-f processes and at least f+1 of them contain a timestamp equal to ri, i.e. the

messages received are of the form ECHO(ri, est, ri), pi decides upon the value est

and broadcasts est using the DECISION(v) message. Otherwise, pi updates its

estimate value esti to the value est’ that is carried by the ECHO message with the

highest timestamp. Then pi enters the next round.

Task 2 is simple. When a process receives a DECISION message but has not

decided, the process forwards the DECISION message to all other processes except

the sender, and then makes the decision.

Obviously, the proposed protocol has the RZD property. In any round r

(including the first round), the proposed protocol achieves the global decision within

two communication steps, if no new crash occurs and the underlying FD makes no

mistake during this round (i.e. any crashed process is suspected by all correct

processes and any correct process is not suspected by any correct process). This is

achieved as follows. In the beginning of round r, each correct process selects the

coordinator by executing line 3 to line 5. Because both coord() and ncoord() are

deterministic, all correct processes select the same coordinator px. Then all correct

processes send out PROP(r, *, x) messages. Because the FD makes no mistake, all

correct processes execute line 9 or line 11 and consequently send out ECHO(r, estx, r)

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 60

at line 12. At line 13, each process waits for ECHO messages. Obviously, no process

proceeds to the next round, so no ECHO message with a timestamp greater than r

can be received at line 13. Eventually, each process must receive ECHO(r, estx, r)

from at least n-f processes and then makes the decision at line 18. The global

decision is achieved within two communication steps: the transfer of PROP

messages and the transfer of ECHO messages.

4.2.3. The Look-Ahead Technique

The basic idea of the Look-Ahead technique is to speed up the execution of

consensus protocols by making use of the future messages delivered in advance. In

an asynchronous system, the delay of transmitting messages and the processing

speed of different processes may vary significantly. Therefore, when executing a

consensus protocol, some processes may proceed faster than others because the

processes may be slow in handling messages or some messages take longer time to

arrive. Therefore, different processes may be in different phases or rounds at a given

moment. Thus, a message may be delivered before the receiver enters the

corresponding phase or round. In the view of the receiver, such a message carries

information about the “future”, which can be used by the process to optimize its

operations, e.g. stop waiting for some message that is delayed for a very long time,

so as to speed up its execution.

However, not all future messages are beneficial. For example, if some process,

which proceeds faster than the others, falsely suspects a correct coordinator or leader,

this process sends out negative messages to other processes that are waiting for

proposal messages from the correct coordinator or leader. The receivers may be

misled by the “future” message from the fast process, i.e. they will stop waiting for

the proposal from the correct coordinator or leader. Consequently, the decision that

might be made in this round will not be reached. Similar scenarios may appear in the

phase of exchanging the echo messages. Our proposed Look-Ahead technique is

delicately designed to avoid such negative effect.

Chapter 4. Speeding up the Execution of Consensus Protocols

 61

The lines 7 and 13, which are boxed, are the embodiment of the Look-Ahead

technique. While waiting at line 7, if a process pi receives an ECHO message

carrying an estimate value with a timestamp equal to the sequence number of the

current or a “future” round, pi stops waiting immediately. Reception of such an

ECHO message means that some process (may not be the sender of the ECHO

message) has received no less than n-f PROP messages for the current or a “future”

round with the same value of the coordinator field. Therefore, pi no longer needs to

wait for more PROP messages and can go ahead.

Figure 4-2 Examples of Look-Ahead technique

While waiting at line 13, a process pi can stop waiting immediately if pi receives

an ECHO message carrying an estimate value with a timestamp equal to the

sequence number of a “future” round. Receiving such an ECHO message indicates

that at least n-f processes have proceeded to that future round. The probability for pi

to make the decision in the current round is low. Therefore, it would be better for pi

to give up this round and immediately proceed to the next round.

Figure 4-2 illustrates two example scenarios that demonstrate the use of the Look-

Ahead technique. Figure 4-2-(a) shows a scenario of looking ahead in Phase 1 of a

round r. There are totally three processes in the system and at most one process can

crash. At the beginning of round r, all the three processes select p1 as the coordinator

and send PROP messages to one another. Now let us examine the execution of p2. In

Phase 1, p2 waits for the PROP message from p1. However, due to the asynchrony,

the PROP message from p1 to p2 has been delayed much longer than other PROP

p2

p3

p1p1

PROP message of
round r

ECHO message
of round r

PROP message of
round r+1

ECHO message
of round r+1

Look-aheadLook-ahead

(a) (b)

p2

p3

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 62

messages. After p3 receives the PROP message from p1 and itself, it sends out

ECHO(r, v, r) to all three processes. Consequently, p2 receives the ECHO message

from p3 before the PROP message from p1. Then p2 stops waiting for the “slow”

PROP message and updates its estimate and timestamp based on the ECHO(r, v, r).

Obviously, the execution time of Phase 1 is shortened.

Figure 4-2-(b) shows a scenario of the looking ahead in Phase 2 of a round r.

Similar to the case in Figure 4-2-(a), there are three processes in the system and at

most one process can crash. At the beginning of round r, all the three processes

select p1 as the coordinator and send PROP messages one another. Each process

waits for the PROP from p1 in Phase 1. However, p2 and p3 suspect p1 before they

receive the PROP messages from p1. Then p2 and p3 send out ECHO(r, *, <r)

messages and proceed to round r+1. In round r+1, p2 and p3 both select p3 as the

coordinator and send out PROP messages. After p3 receives the PROP(r+1, *, 3)

from itself and p2, it sends out ECHO(r+1, est3, r+1). Due to the asynchrony, p1

receives the ECHO(r+1, est3, r+1) from p3 before the ECHO(r, *, <r) from p2. Then

p2 stops waiting for the “slow” ECHO message and update its estimate based on the

ECHO(r+1, est3, r+1). The execution time of Phase 2 is shortened.

Figure 4-2 gives only two possible scenarios. Considering the asynchrony of the

underlying system, there are many other situations that can occur in the real

execution of a consensus protocol. Therefore, future messages appear frequently and

the “Look-Ahead” technique can significantly improve the performance of a

consensus protocol.

The performance of the Look-Ahead technique is significantly affected by the

degree of asynchrony. The more the message delay or processing speed varies, the

more time is saved by one useful future message and the more beneficial future

messages appear. Consequently, larger speedup is made by Look-Ahead. Therefore,

the Look-Ahead technique is suitable for the system with “high” asynchrony, e.g.

mobile networks. In mobile environments, the network topology is changing from

time to time, which increases the diversity of the message delay.

Chapter 4. Speeding up the Execution of Consensus Protocols

 63

4.3. Correctness of the Proposed Protocol

4.3.1. Validity

Lemma 1. In a round r, if a process sends out an ECHO(r, v, r) message at time tr,

then before tr:

1) at least n-f processes have sent out PROP(r, *, cc) and pcc has sent out

PROP(r, estcc, cc), where cc is the id of the common coordinator;

2) v = estcc.

Proof. Let us represent all the echo messages ECHO(r, *, r) as an ordered list L =

[me0, me1, me2, …, mem], where the messages are sorted in the ascendant order of the

time that they are sent. The sender of mei is denoted by pmei and the estimate of mei is

denoted by vi. Now, let us consider the message me0 = ECHO(r, v0, r). An ECHO

message can be sent only at line 12. Before pme0 sends me0 at line 12 in round r, pme0

must have finished waiting at line 7. Since me0 is the first ECHO message with the

timestamp equal to r in round r, me0 must have updated its estimate at line 9.

Therefore, pme0 has received PROP(r, estcc, cc) from pcc and PROP(r, *, cc) from

additional n-f -1 processes (line 8). Part 1) of the lemma holds.

The proof of part 2) is by induction on the sequence number i of the ECHO

messages in the list L.

Base case: i = 0. As proved above, pme0 has received PROP(r, estcc, cc) from pcc

and additional n-f -1 processes before it sends out me0. Obviously, pme0 updated its

estimate to estcc at line 9 and sent out ECHO(r, estcc, r) at line 12. Therefore, v0 =

estcc. The lemma holds.

Induction hypothesis: 0 ≤ i ≤ k. Let us assume vi= estcc, 0 ≤ i ≤ k. Now we prove

that v(k+1) = estcc. Before sending me(k+1), pme(k+1) must have updated its estimate at

line 9 or line 11, so it had received: either PROP(r, estcc, cc) from pcc and PROP(r, *,

cc) from other n-f -1 processes, or an ECHO(r, vj, r), denoted by mej, at line 7. For

case 1), obviously v(k+1) =estcc. For case 2), pme(k+1) updated its estimate to vj at line

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 64

11. From the definition of list L, we have 0≤ j<k+1. From the induction hypothesis,

we have vj = estcc, so v(k+1) =estcc. The lemma holds.�

Theorem 1 (Validity). If a process decides upon some value v, then some process

has proposed v.

Proof. If a process decides upon a value at line 21, then this value must have been

decided upon by another process at line 17. Therefore, we only consider the values

decided upon at line 17.

If a process decides upon v at line 17 in round r, then v must come from an ECHO

message (line 14). Furthermore, the value carried by the ECHO message must come

from a PROP message at line 6 (by Lemma 1). Therefore, the value v comes from

the estimate stored by a process at the beginning of round r. Of course, each estimate

kept by a process at the beginning of a round k is the same as the estimate kept by

the process at the end of the previous round k-1. By simple induction, we can

conclude that v is the estimate value proposed by some process in the beginning of

the execution. The theorem holds.�

4.3.2. Termination

Lemma 2. If no process decides in any round r’≤ r, then all correct processes start

round r+1.

Proof. If some correct process blocks forever before round r+1, then there must be a

earliest round, say rs (rs < r+1), during which some correct process is blocked

forever. Now, we only need to prove that “no correct process can be blocked in

round rs forever.”

The proof is by contradiction. Assume that some correct process pi is blocked

forever in round rs. Then, pi must be blocked at some “wait” statement on line 7 or

line 13, in round rs.

First, let us examine the case where pi is blocked at line 7. Since rs is the earliest

round where a correct process is blocked forever, all correct processes eventually

proceed to round rs and send out PROP messages. Consequently, pi can receive at

Chapter 4. Speeding up the Execution of Consensus Protocols

 65

least n-f PROP messages. If the coordinator pcc selected by pi, is a correct process, pi

eventually receives the PROP message from pcc and is unblocked. Otherwise, pcc is a

faulty process and will eventually crash. Then pi eventually suspects pcc and

unblocks. Therefore, pi cannot be blocked forever at line 7.

Now, let us consider the case where process pi is blocked at line 13. As proved

above, no correct process can be blocked forever at line 7 in round rs, so each

correct process sends ECHO(ri, *, *) message at line 12. Since at most f process(es)

can crash, each correct process can receive at least n-f ECHO messages from correct

processes. Therefore, pi cannot be blocked forever at line 13.

Therefore, no correct process can be blocked forever in round rs, which

contradicts the assumption. The lemma holds.�

Lemma 3. For any round r, if the process pi is the first process that finishes the

round r, then pi cannot receive any ECHO(x, *, y) with x>r or y>r before it finishes

the round r.

Proof. The proof is by contradiction. Assume that pi receives an ECHO(x, *, y) with

x>r from some process pj during round r. Obviously, pj must have finished round r

before it sends out the ECHO(x, *, y) to pi, which contradicts the definition of pi

(“the first process that finishes round r”). Then we have x≤ r. Trivially, we have y≤ x,

so y≤ x≤ r. The lemma holds.�

Theorem 2 (Termination). If a process is correct, it decides eventually.

Proof. If one (correct or faulty) process decides, all correct processes eventually

decide due to the reliable broadcast in Task 2. Therefore, we just need to prove that

“at least one process decides.”

The proof is by contradiction. Assume that no process decides. According to the

accuracy of ◊S, there is a time t after which: 1) no new crash occurs, i.e. all faulty

processes crashed before t, and 2) there is a correct process px that is no longer

suspected by any correct process. Without loss of generality, let rx be the first round

that starts after time t and x = coord(rx). By assumption, no process decides, so all

correct processes start round rx eventually (by Lemma 2). As px is no longer

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 66

suspected by any correct process after t, all correct processes select px as the

coordinator at line 3 and skip line 5. Then each correct process sends PROP(rx, *, x)

to all processes and wait for PROP messages at line 7. Now let us consider the first

process, say pf, which finishes round rx.

First, we prove that pf must update its estimate to estx and its timestamp to rx at

line 9 or line 11. Since no correct process suspects px, the only possible conditions

for pf to end the waiting at line 7 are: 1) receiving PROP(rx, estx, x) from pcc and

PROP(rx, *, x) from other n-f-1 processes, or 2) receiving an ECHO(x, *, y) with y ≥

rx from some process pj. If condition 1) holds, pf must update its estimate to estx and

timestamp to rx at line 9. Otherwise, condition 2) holds. Since pf is the first process

that finishes round rx, by Lemma 3, we have y≤ x≤ rx. Combining y ≥ rx and y≤ x≤

rx, we have x=y=rx, so ECHO(x, *, y) must be an ECHO(rx, *, rx). By Lemma 2, pf

updates its estimate to estx and timestamp to rx at line 11.

After pf updates its estimate to estx and its timestamp to rx at line 9 or line 11, pf

sends out ECHO(rx, estx, rx) at line 12 and waits for ECHO messages from all

processes at line 13. By Lemma 1 and Lemma 2, all correct processes send out

ECHO(rx, estx, rx) at line 12. Since pf is the first process that finishes round rx, pf

must receive ECHO(rx, estx, rx) from n-f processes at line 13 (by Lemma 3).

Consequently, pf decides at line 17. The theorem holds.�

4.3.3. Agreement

Lemma 4. If r is the smallest round in which some process decides upon some value

v at line 17, then every process that completes round r has an estimate equal to v at

the end of the round r.

Proof. Without loss of generality, let pi be the process that decides at line 17 in round

r. Then pi must have sent DECISION(v) messages at line 16. Obviously, pi has

received ECHO(ri, *, *) from n-f processes and at least f+1 of them are with the

same estimate value v, i.e. they received at least f+1 ECHO(r, v, r) messages. By

Lemma 2, at least n-f processes selected the same coordinator pcc and estcc = v. Let us

Chapter 4. Speeding up the Execution of Consensus Protocols

 67

denote all the processes that complete round r by a list P= [pr0, pr1, pr2, …, prm],

where the processes are sorted in the ascendant order of the time when they finish

round r.

The proof of the lemma is by induction on the sequence number i of the processes

in the list P.

Base case: i = 0. Obviously, pr0 is the first process that finishes round r. By

Lemma 3, pr0 must have received ECHO(r, *, *) messages from at least n-f

processes at line 13 in round r. Since (n-f)+(f+1)>n, pr0 must have received an

ECHO message from some process pk which had sent ECHO(r, v, r) to pi. By

Lemma 3, r must be the highest timestamp of all the ECHO messages received by

pr0. Therefore, pr0 must update its estimate to v at line 15 or 18. The lemma holds.

Induction hypothesis: 0 ≤ i ≤ k. Assume esti= v, 0 ≤ i ≤ k at the end of the round r.

Now we prove that est(k+1) =v at the end of round r. Let us consider the behaviours of

process pr(k+1) when it ends the waiting for ECHO messages at line 13. There are two

possible conditions for pr(k+1) to stop waiting at line 13: 1) receiving ECHO(r, *, *)

from n-f processes, or 2) receiving an ECHO(x, vy, y) with y>r, from some process pj.

For condition 1), we can prove est(k+1) =v at the end of round r in the same way as in

the base case. Then let us consider condition 2). Since x≥ y, pj must send out the

ECHO(y, vy, y) at line 12 in round y. By Lemma 1, the value vy comes from the

estimate of the coordinator pt, which was selected by at least n-f processes in round y

and pt had send out PROP(y, vy, t) at line 6 in round y. Since an estimate value can

be adopted by a process only after the value is proposed by some process at line 6,

the estimate carried by an ECHO message must be equal to the estimate of the

coordinator at the end of the previously round. By a simple induction, we know that

vy equals to the estimate of some process pz at the end of round r. Obviously, pz has

finished round r before pr(k+1) does so. Therefore, we have pz = prs where 0 ≤ s ≤ k.

By the induction hypothesis, we have vy = v. The lemma holds.�

Theorem 3 (Agreement). No two processes decide differently.

Proof. If a process decides upon some value at line 21, then this value must have

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 68

been decided upon by another process at line 17. Therefore, we only consider the

values decided upon at line 17.

Let r be the earliest round in which some process pi decides upon the value v at

line 17. Assume that another process pj decides upon another value y in round k. By

the definition of r, we have k≥ r. If k=r, by Lemma 1, we have y = v. If k>r, every

process that executes round k must have finished round r. By Lemma 4, every

process that finishes round k has estimate value v at the end of round r. Therefore, no

other value can be decided upon in subsequent rounds, so we have y = v. The

theorem holds.�

4.4. Performance Evaluation

We have carried out simulations to evaluate the performance of the proposed

protocol. We first describe the simulation setup and then report the results of

performance evaluation.

4.4.1. Simulation Setup

The simulated system consists of three main parts: the network, the failure

detector and the consensus protocol. The main parameters of the simulations are

listed in Table 4-1. Faulty

processes are selected

randomly and the life time

of a faulty process

satisfies the exponential

distribution. For message

routing, we used the well-

known “least hops” policy,

which is adopted in many

existing routing protocols. As in existing implementations of ◊S, the underlying

network is set to be partial synchronous [8]: the timing attributes are bounded, but

the bounds are unknown and hold only after an unknown stabilization interval. The

Table 4-1 Simulation settings for the Look-Ahead

consensus protocol

No. of processes, n 20

Maximum of the crashed processes, f 9

Mean life of crashed processes, λh 25 ms

Stabilization interval, GST 500 ms

Mean link delay, λl From 1 ms to 45 ms

Max link delay for synchronous period 1000 ms

Error rate of failure detector, errfd From 0% to 80%

Interval of Heartbeat messages 10 ms

Routing Protocol/Policy Least hops

Chapter 4. Speeding up the Execution of Consensus Protocols

 69

message delay is also assumed to satisfy an exponential distribution. Since the error

rate of FD and the mean link delay can affect the performance significantly, we

varied these two parameters to observe their effects.

To compare with existing work, we also simulated the HMR protocol [82].

Although HMR is simple, it is versatile and can derive different protocols. To clearly

show the benefit of our two proposed techniques, we also simulated a variant of the

proposed protocol without using Look-Ahead. For convenience, the proposed

protocol and its variant are named “ZD-LA” protocol and “ZD” protocol,

respectively.

4.4.2. Performance Metrics

In literature, “number of communication steps (or rounds)” is usually used to

evaluate the performance of a consensus protocol [83][139]. This metric is closely

related to both time cost and message cost because, roughly speaking, more rounds

or communication steps mean more time and more messages. However, this metric

cannot precisely reflect either of the two costs. Consensus protocols are executed in

asynchronous rounds and the communications are asynchronous. The number of

rounds only indicates how many rounds are needed, but the rounds may overlap each

other due to the asynchrony and the duration of one round in different protocols or

scenarios may be different. Similarly, besides the number of rounds, the number of

messages exchanged in one communication step or round also affects the message

cost significantly. To evaluate the performance more precisely, we adopt the

following three metrics in the simulations:

NR (Number of Rounds): the average number of rounds executed by the

processes to achieve the global decision.

NM (Number of Messages): the total number of messages exchanged to achieve

the global decision.

ET (Execution Time): the “real” time needed by a consensus protocol to achieve

the global decision.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 70

The simulation is run 300 times and the average values of metrics are reported.

In each run of the simulation, the consensus protocols are invoked 30 times.

4.4.3. Simulation Results

 We discuss the simulation results according to the three metrics. In the

following figures, if no indication is made, errfd= 5% and λl = 5ms.

4.4.3.1. Number of Rounds, NR

Figure 4-3 shows the results of NR with varied errfd. First, we can see that, with

the ZD property, when errfd is 0 or very small (less than 5%), both ZD protocol and

ZD-LA protocol terminate within nearly one round. The little deviation from 1 is due

to the stabilization interval of the system. Since it is hard to examine the RZD

property by simulations, only the ZD property is discussed here.

Now let us examine the effect of errfd. With the increase of errfd, NR of all three

protocols also increases. This can be explained by the effect of errfd on the

probability of termination of a round. The more mistakes are made by the FD, the

higher possibility the current coordinator is falsely suspected. Consequently, it is

more likely that this round will fail to make decision, so more rounds are needed to

achieve the consensus.

Figure 4-3 NR vs. error rate of FD Figure 4-4 NR vs. mean link delay

However NR does not increase linearly with the increase of errfd. When errfd

reaches about 50%, the increase of NR slows down. This indicates that the effect of

errfd becomes smaller when its value becomes large. The protocols are executed in

repeated form, so most of the runs are executed in the stable state, i.e. no new crash

happens and at least one process pg is trusted by all correct processes (by the

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0% 5% 10% 15% 20% 25% 30% 40% 50% 60% 70% 80% 90%

Err. rate of FD

N
o.

 o
f R

ou
nd

s

ZD
ZD-LA
HMR

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1 5 10 15 20 25 30 35 40 45 50

Message Delay (ms)

N
o.

 o
f R

ou
nd

s

ZD
ZD-LA
HMR

Chapter 4. Speeding up the Execution of Consensus Protocols

 71

property of ◊S). When errfd is large enough, it becomes almost impossible to make a

decision in a round not coordinated by pg, i.e. the protocol can terminate only when

pg is the default coordinator. Since each process has the same probability to become

the default coordinator, the average number of rounds is approximately n/2, i.e. 10,

in the simulations, as shown in Figure 4-3.

Now we compare the three protocols. As shown in Figure 4-3, HMR needs the

largest number of rounds among the three protocols, whereas ZD-LA needs the

fewest. The difference between HMR protocol and the ZD protocol is due to the ZD

property. With the increase of errfd, the advantage of ZD protocol decreases. This

indicates that, even if the FD indeed makes some mistakes, the ZD mechanism can

still help to some extent, and the better the FD performs the better the ZD performs.

ZD is more useful than expected because it is effective not only in good cases.

We see that ZD-LA always performs better than ZD. The performance gain by

ZD-LA comes from the Look-Ahead technique. Since the Look-Ahead technique can

shorten the duration of a round, fewer crashes and false suspicions will happen

during a round and the probability of making the decision during the round is

increased. Consequently, fewer rounds are needed.

The results of NR under varied λl are shown in Figure 4-4. With the increase of λl,

NR of all the three protocols increases. When λl increases, more time is needed to

deliver a message. Therefore, the duration of a round is increased. Consequently,

more crashes and false suspicions may happen during the round. The probability of

making the decision during this round decreases and more rounds are needed to

achieve the consensus. The difference among the protocols is similar to that in

Figure 4-3 except that the difference between ZD and ZD-LA becomes greater as λl

increases. The larger difference is attributed to the feature of the exponential

distribution of link delay. When λl increases, the variance of link delay, and thus

message transmission delays, also increases. Therefore, the advantage of using the

Look-Ahead technique becomes more obvious.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 72

4.4.3.2. Number of Messages, NM

The results of NM with varied errfd and λl is shown in Figures 5 and 6

respectively. Each curve in Figure 4-5 (or Figure 4-6) has similar trend as in Figure

4-3 (or Figure 4-4). NM is determined by two factors: NR and the number of

messages exchanged in one round (NMR for short). Since NMR is stable for each

protocol, for the same protocol, NR dominates the change of NM.

For different protocols, however, their performance also depends on NMR, as

shown by the curves in Figure 4-5 or Figure 4-6. For HMR, it has the largest NR but

the smallest NM, largely due to the effect of NMR. HMR has the smallest NMR: it

needs n+n2 messages in each round whereas ZD and ZD-LA needs 2n2 messages. On

the contrary, ZD and ZD-LA have the same NMR, so NR dominates the difference

between the performance of the ZD protocol and ZD-LA protocol.

 Figure 4-5 NM vs. error rate of FD Figure 4-6 NM vs. mean link delay

4.4.3.3. Execution Time, ET

The results of ET with varied errfd and λl are shown in Figures 7 and 8

respectively. ET is significantly affected by NR and NM. Because of the joint effect

Figure 4-7 ET vs. error rate of FD Figure 4-8 ET vs. mean link delay

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0% 5% 10% 15% 20% 25% 30% 40% 50% 60% 70% 80% 90%

Err. rate of FD

N
o.

 o
f M

es
sa

ge
s

ZD
ZD-LA
HMR

500

600

700

800

900

1000

1100

1200

1 5 10 15 20 25 30 35 40 45 50
Message Delay (ms)

N
o.

 o
f M

es
sa

ge
s

ZD
ZD-LA
HMR

0

100

200

300

400

500

600

0% 5% 10% 15% 20% 25% 30% 40% 50% 60% 70% 80% 90%

Err. rate of FD

Ex
ec

ut
io

n
tim

e

ZD
ZD-LA
HMR

0

200

400

600

800

1000

1200

1400

1 5 10 15 20 25 30 35 40 45 50

Message Delay (ms)

Ex
ec

ut
io

n
tim

e

ZD
ZD-LA
HMR

Chapter 4. Speeding up the Execution of Consensus Protocols

 73

of NR and NM as shown in Figure 4-3 to Figure 4-6, HMR achieves consensus

faster than ZD only when λl or errfd is large. Benefiting from the Look-Ahead

technique, ZD-LA can always terminate earlier than the other two protocols. It is

important to notice that ZD-LA can always achieve consensus with fewer rounds and

shorter time than ZD, which demonstrates that the Look-Ahead technique can avoid

the negative effect of future messages.

Figure 4-9 The Look-Ahead technique

4.5. Applying Look-Ahead to Other Protocols

In this section, we describe how to apply the Look-Ahead technique to existing

oracle based consensus protocols. We first propose a general scheme of applying the

technique with a consensus protocol and then illustrate the use of the scheme with

examples.

---Task 1: Consensus--
// The code executed by each process, pi
initialization;
while (not decide yet){ //a new round starts;

 determine pcc, the coordinator or leader for the new round;
 -------------------------------- Phase 1 Collect Proposal --

⎭
⎬
⎫

processeach
pcc sends PROPOSAL message to all processes;

 wait until (PROPOSAL is received from
⎩
⎨
⎧

processesofquoruma
pcc)or (pcc ∈ suspected)

 or (ECHO with an estimate value updated in the current or some future round is received) ;

 update estimate if possible;
 ----------------------------------Phase 2 Collect Echo --
 send ECHO message to Π;

⎭
⎬
⎫

processeach
processesspecificsome

wait until (ECHO is received from a quorum of processes)

 or (ECHO with an estimate value updated in some future round is received) ;

 make decision and broadcast the decision value if possible;
 update estimate if possible;
}
---Task 2: Reliable broadcast ---
upon reception of DECISION(est) from process pj: {
 make decision and send DECISION(est) to Π \ pi \pj; }

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 74

4.5.1. A Scheme of Using Look-Ahead

Figure 4-9 shows the general description of the proposed technique. Consensus

protocols, including FD-based and leader-based protocols, are abstracted into a

general form. Statements in brackets represent different operations for FD-based

protocols and leader-based protocols. The upper line is for FD-based protocols

whereas the lower line is for leader-based protocols. Although existing protocols [31]

[110] may be proposed in a different way, they can be easily converted into the form

of Figure 4-9. The two in boxes constitute the Look-Ahead technique.

In each round, there are two phases to make the decision. In Phase 1, the

coordinator or leader tries to impose its own estimate value on other processes. With

the Look-Ahead technique, a process stops waiting for the proposal message if it

receives an echo message with an estimate value updated in the same or some future

round. Obviously, such an estimate value has been adopted by others. Because the

value decided upon is unique, such a skip does not prevent any potential decision to

be made.

In Phase 2, decision makers (some or all processes) wait for ECHO messages

and try to make the decision based on these messages. With the Look-Ahead

technique, a process stops waiting for ECHO messages if it receives an ECHO

message with an estimate value updated in some future round. This will not affect

any potential decision. Decision is made based on the ECHO messages from some

quorum of processes, e.g. a “majority” [31][110] or “n-f” [82]. If a quorum of

processes has changed to some future phase or round, either correctly or falsely, the

remaining processes can follow them. If a process receives an ECHO message with

an estimate updated in a future round, the quorum must have finished the current

round, because the coordinator or the leader of the “future” round has received

ECHO messages from a quorum processes in the “current” round.

The Look-Ahead technique is said to be “general” because of two important

features. First, Look-Ahead can help speed up the execution of an indulgent

consensus protocol in general cases (see footnote at page 6), because it does not

Chapter 4. Speeding up the Execution of Consensus Protocols

 75

impose any assumption on the behavior of the oracle or processes. Second, Look-

Ahead can be easily applied to nearly all round based indulgent consensus protocols

in asynchronous systems, including both the leader-based and FD-based protocols.

4.5.2. Application of Look-Ahead Technique

In this section, two example protocols are given to show how to apply the Look-

Ahead technique. The first example is HMR protocol [82]. The second example is a

leader-based protocol proposed in [51]. We chose these two protocols because they

are representative and simple. Here we present only the revised pseudocode.

Figure 4-10 HMR protocol with Look-Ahead technique

--Task 1: Consensus--
// The code executed by each process, pi
BEGIN:
(1) ri ←0; esti ← vi; tsi ← 0; fldi ← false;
(2) while (fldi=false){
(3) ri←ri+1; cc = coord(ri);

----------------------- Phase 1 Collect Proposal ---------------------------------
(4) if(i=cc) send PROP(ri, esti) to Π;
(5) wait until ((received PROP(ri, *) from pcc)
 or (received ECHO(*, *, ≥ ri) from some process)

or pcc ∈ suspectedi);
(6) if(received PROP(ri, estcc) from pcc){
(7) esti← estcc; tsi ← ri; }
 else if (received an ECHO(ri, v, ri)){
(8) esti← v; tsi ← ri;}
 -------------------------Phase 2 Collect Echo - ----------------------------------
 // D is any set that { pcc }⊆ D⊆ Π;
 // A is any set that { pnc }⊆ A⊆ Π, where nc = coord(ri+1);
(9) send ECHO(ri, esti, tsi) to D∪A;
(10) if(pi∈ D∪A) {
(11) wait until ((received ECHO(ri, *, *) from n-f processes)

 or (received ECHO(*, *, > ri) from some process)) ;
(12) if(received ECHO(ri, *, *) from n-f processes and

 there are f+1 ECHO(ri, est, ri) messages) {
(13) esti ← est;
(14) send DECISION(esti) to Π \ pi;
(15) fldi←true;}
(16) else esti ← est’ carried by the ECHO with the highest timestamp;
 }endif
 }//endwhile
-----------------------------------Task 2: Reliable broadcast --
// The code executed by each process, pi
(17) upon reception of DECISION(est) from process pj: {
(18) send DECISION(est) to Π \{ pi, pj};
(19) fldi←true; }
END

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 76

The revised HMR protocol with Look-Ahead technique is shown in Figure 4-10.

Although HMR presents a unifying approach based on two different classes of FDs,

for simplicity, only the protocol based on ◊S is reported in Figure 4-10.

The revised leader-based protocol in [51] with Look-Ahead technique is shown

in Figure 4-11. To present the protocol in the form similar to as in Figure 4-9, we

change some variable and message names.

The detailed correctness proof of the revised protocols can be easily derived

based on original papers.

Figure 4-11 A leader-based protocol with Look-Ahead technique

--Task 1: Consensus--
// The code executed by each process, pi
BEGIN:
(1) ri ←0; esti ← vi; newesti ← ┴; leaderi ← ┴; fldi ← false;
(2) while (fldi=false){
(3) leaderi ←Ω.trusted; newesti ← ┴;

----------------------- Phase 1 Collect Proposal ---------------------------------
(4) send PROP (ri, esti, leaderi) to Π;
(5) wait until ((received PROP (ri, *, *) from leaderi and
 ┌(n+1)/2┐-1other processes)

or (received ECHO (≥ ri, newv) where newv≠ ┴ from some process)
or leaderi ≠ Ω.trusted);

(6) if(received PROP (ri, etsl, leaderi) from leaderi and
PORP (ri, *, leaderi) from ┌(n+1)/2┐-1 other processes){

(7) newesti← etsl;}
(8) else if(received ECHO(ri, v) from some process){
(9) newesti← v;}
 -------------------------Phase 2 Collect Echo - ----------------------------------
(10) send ECHO(ri, newesti) to Π;
(11) wait until ((received ECHO(ri, *) from ┌(n+1)/2┐processes)

or (received ECHO(>ri, newest) where newest≠ ┴ from some process)) ;
(12) if(received ECHO (ri, v) with v ≠ ┴ from ┌(n+1)/2┐processes){
(13) esti ← v;
(14) send DECISION(esti) to Π \ pi;
(15) fldi←true;}
(16) else esti ← v’, where v’ ≠ ┴ and carried by ECHO with the highest round number;
(17) ri←ri+1;
 }//endwhile
-----------------------------------Task 2: Reliable broadcast --
// The code executed by each process, pi
(18) upon reception of DECISION(est) from process pj: {
(19) send DECISION(est) to Π \{ pi, pj};
(20) fldi←true; }
END

Chapter 4. Speeding up the Execution of Consensus Protocols

 77

4.6. Summary
This chapter is concerned with time efficiency of consensus protocols. By using

two novel techniques, we proposed a ◊S based fast consensus protocol that can

circumvent the slowdowns caused by failures and false suspicions. The first

technique is an efficient approach to guarantee the Round-Zero-Degradation property,

which can speed up the execution of the proposed protocol when the underlying

failure detector performs well. The coordinator of a round is dynamically selected

based on the process status information provided by the failure detector, so as to

eliminate the slowdown caused by an already crashed coordinator.

The second technique is Look-Ahead, which speeds up the execution of the

proposed protocol regardless the performance of the underlying failure detector. Due

to the asynchrony, some messages may be delivered to such receivers that have not

yet entered the corresponding phase or round. By making use of the information

carried by future messages, a “slow” process can skip some messages it is waiting

for so as to speed up its execution. Besides speeding up the execution of the

consensus protocol in general cases, Look-Ahead can also be easily applied to other

indulgent consensus protocols for asynchronous systems. To facilitate the application

of Look-Ahead technique, an abstraction of the Look-Ahead technique is presented

with two examples.

Extensive simulations are conducted to evaluate the performance of the proposed

protocol. The results show that, compared with existing consensus protocols, the

proposed protocol can achieve consensus with fewer rounds under various

conditions and shorter time when the failure detector performs well (with an error

rate less than about 35%).

Chapter 5. Improving Message Efficiency of Consensus Protocols

 79

Chapter 5. Improving Message Efficiency of

Consensus Protocols

5.1. Overview

The goal of this chapter is to improve the message efficiency of achieving

consensus in MANETs. Here, the message cost is in terms of the number of hops,

rather than the number of end-to-end messages as in existing works. The former can

reflect the message cost of a distributed algorithm/protocol more precisely, so it is

important in mobile environments, where resource constraints are serious. This is

discussed in more detail in the performance evaluation part of this chapter.

We adopt the clustering approach, which has been widely used in MANETs to

reduce message cost of achieving consensus. By clustering the mobile hosts into

clusters, a two-layer hierarchy is established. The messages sent by the hosts in the

same cluster can be merged by the clusterhead before they are forwarded to other

hosts. Similarly, when a message needs to be sent to the hosts in the same cluster, it

can be sent to the corresponding clusterhead, which will unmerge these messages

and deliver them. In this way, the message cost can be significantly reduced. Based

on different ways for clustering hosts, we propose two hierarchical protocols.

The first protocol, named “HC” (“Hierarchical Consensus”), uses a predefined set

of clusterheads. The HC protocol follows the architecture of the HMR protocol [82],

extending it to a hierarchical approach. Using a predefined set, some hosts are

selected to act as clusterheads, and each MH is associated with one clusterhead.

However, adding the hierarchy is not trivial. First, the messages are not simply

forwarded by the clusterhead, and a cluster member needs to synchronize with its

clusterhead in the message exchange step. Due to the mobility and clusterhead

failure, a MH may need to switch between clusterheads that are executing different

steps. Therefore, the switch procedure should be delicately handled in order to

maintain the synchronization between a MH and its clusterhead. Second, nearly all

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 80

consensus protocols, including the CT protocol [31], HMR protocol [82] and BHM

protocol [15], requires that no message can be lost. However, the change of the

hierarchy in a MANET may cause message losses, even if the communication

channel is reliable. To cope with such message losses, some “redeeming” messages

should be sent. What and when such messages should be sent depends on the

execution state of the MH and its clusterhead. In HC, we develop efficient

mechanisms to send and handle redeeming messages.

Unfortunately, the HC protocol has three problems. First, the function of

achieving consensus is tightly coupled with the function of clustering. When a MH

switches to a new cluster, its execution has to be changed with respect to the status

of the new clusterhead. Such a design makes the protocol complicated. Second, the

set of clusterheads is predefined, so it cannot adapt to the crashes that occur during

the execution, which delays the decision making. Finally, the protocol requires a

failure detector of class ◊P, which is stronger than the weakest and most commonly

used failure detector ◊S [31].

To address these problems, we therefore propose the second hierarchical protocol,

named HCD (“Hierarchical Consensus based on Delta”). The functions of clustering

hosts and achieving consensus are separated using a modular approach. The

clustering function, named eventual clusterer (denoted by ∆), is proposed to

construct and maintain the cluster-based hierarchy over MHs. Since ∆ provides the

fault tolerant clustering function transparently, it can be used as a new oracle for the

design of hierarchical consensus protocols.

Base on ∆, we design the HCD protocol. With the help of ∆, the problems of HC

are easily solved. However, how to handle the change of the clusterhead of a MH

must be seriously considered. When a host switches from one cluster to another, the

consensus protocol must change its state to adapt to the new clusterhead. Since the

clustering procedure is transparently carried out by ∆, the consensus protocol cannot

participant in the switch procedure. In HCD, we adopt a variant of the Look-Ahead

Chapter 5. Improving Message Efficiency of Consensus Protocols

 81

technique to solve this problem. The basic idea is that once a mobile host finds that

its new clusterhead is in a higher round than its own, it skips to that round.

In the rest of this chapter, we first describe the HC protocol. Then, the clusterer

oracle ∆ is defined and implemented based on ◊S. Finally, the HCD protocol is

presented.

5.2. The HC Protocol

5.2.1. System Model

We consider in a MANET that consists of a set of n (n>1) MHs, M = {m1, m2,…,

mn}. All MHs are distributed into clusters. Some of the MHs are selected as

clusterheads, and each is in charge of one cluster. The number of clusterheads is

denoted by k. A MH can only fail by crashing, i.e. prematurely halting, but it acts

correctly until it possibly crashes. A MH that crashes in a run is faulty in that run,

otherwise it is correct. The maximum number of faulty MHs in a run, denoted as f, is

bounded by k and n/2, i.e. f < minimum(k, n/2).

MHs communicate by sending and receiving messages. Every pair of MHs is

connected by a reliable channel that does not create, duplicate, alter, or lose message.

It is important to notice that the assumption on reliable channels can be reduced to

one on lossy channels, which are more feasible for MANETs, but require a much

more complicated design. This is discussed in Section 5.2.6. For simplicity, we

assume the channels are reliable in the description of the HC protocol.

The system is equipped with an unreliable FD of class ◊P. ◊P is defined using the

following properties:

Strong Completeness: eventually each crashed process is permanently suspected

by each correct process.

Eventual Strong Accuracy: there is a time after which every correct process is not

suspected by any correct process.

Among all the eight classes of FDs proposed by Chandra and Toueg, ◊S is the

weakest but strong enough to solve the consensus problem [30][31]. ◊P has stronger

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 82

accuracy property than ◊S, but it has been proved that ◊P and ◊S are equivalent in

the power of solving the consensus problem [64]. Although ◊P is stronger than ◊S,

existing implementations of ◊P [31][93] are not more complex than those of ◊S. Of

course, ◊P may take more time to reach a stable state.

Our protocol uses ◊P instead of ◊S because the eventually strong accuracy

property is necessary to guarantee the termination. There are two necessary

conditions to guarantee the termination of our HC protocol. First, there is at least one

correct host to act as a clusterhead eventually. This can be satisfied by including

more than f MHs in the set of clusterheads. Second, after some time, some correct

clusterhead must be no longer suspected by any correct MH. A FD of class ◊S can

only guarantee that at least one correct host is never suspected after some time.

However, such a host may not be a clusterhead. Therefore, ◊P is necessary to satisfy

the second condition (see the proof in Section 5.2.4 for more details).

5.2.2. Data Structures and Message Types

When executing the protocol, each host needs to maintain necessary information

about its state. Such information is stored in the following variables.

fli: the flag indicating whether mi has made the decision. The initial value is false.

ri: the sequence number of the current round that mi is participating in.

phi: the phase number of the current phase that mi is participating in.

esti: the current estimate of the decision value. Initially, it is set to the value

proposed by mi.

tsi: the timestamp of esti. The value is the round number of the round in which mi

receives the esti proposed by the coordinator host. The update of tsi is entailed by the

reception of estimate from a coordinator.

During the execution of the protocol, the mobile hosts need to communicate with

each other by exchanging messages. The message types involved in the proposed

protocol are as follows.

Chapter 5. Improving Message Efficiency of Consensus Protocols

 83

PROP(r, estcc): the proposal message sent from the coordinator to clusterheads or

from a clusterhead to the hosts in its cluster. estcc is the current estimate kept by the

coordinator. In each round, the coordinator tries to impose estcc on other hosts by

sending proposal messages.

ECHOL(r, esti, tsi): the echo message from mi to its clusterhead in the round r.

ECHOG(r, v, tsv, x, y): the echo message from a clusterhead to other clusterheads

in round r. ECHOG(r, v, tsv, x, y) is constructed by merging the ECHOL messages in

the same cluster. v is the estimate carried by the ECHOL message with the highest

timestamp and tsv is the timestamp of v. x is the set of MHs that send the ECHOL

message with tsv whereas y is the set of MHs that send other ECHOL messages.

LEAVE(r, sn): the message sent by a MH to its clusterhead to inform the

clusterhead that the MH wants to disassociate itself from the current cluster. sn is the

sequence number to distinguish different LEAVE messages from the same host.

JOIN(ri, sn): the message sent by a MH to the clusterhead of a new cluster that

the MH wants to join. sn is a sequence number to distinguish JOIN messages from

the same host.

DECISION(est): the message sent by a MH to broadcast the decision value est.

PROPH(r, estcc): same as a PROP message except that this is for a MH that

newly joins.

5.2.3. Operations of HC Protocol

A two-layer hierarchy is imposed on the network of MHs. The Clusterhead layer

consists of a predefined set H of MHs which act as clusterheads to merge/unmerge

and forward messages for the MHs. The Host layer consists of a set M of all MHs,

including those in set H.

Only the hosts in set H can act as coordinators, decision_makers, or

agreement_keepers. To guarantee the termination of the protocol, at least one correct

host should be included in H, i.e. |H| = k≥ f+1. Each host chooses the nearest7

7 A threshold of the distance difference between the distance to the old and new clusterheads can be set.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 84

unsuspected clusterhead in H as its clusterhead. The distance between two hosts is

defined as the path length in hops. Such distance information can be obtained

through the underlying routing protocol, which is in charge of the establishment and

maintenance of the path between any two hosts8. Obviously, a clusterhead host

always chooses itself. The hosts that choose the same clusterhead constitute a cluster.

A host associated with a clusterhead is called a “local host” of the clusterhead and

correspondingly, the clusterhead is called “local clusterhead” of its local hosts.

To balance the workload and energy consumption, MHs can take turns (e.g.

according to some deterministic function) to serve as clusterhead for different runs

of the protocols. Since the only requirement for forming the H set is that at least one

clusterhead is correct, it does not matter that a crashed host appeared in the H set,

and MHs can always find and join a correct clusterhead in H. Although H remains

unchanged for each run of the protocol, it can be periodically re-formed, and a MH

can switch to be a clusterhead and vice versa.

The proposed protocol consists of four tasks. Like most existing consensus

protocols, Task 1 is the main body of the protocol for making decision and Task 2 is

a simple broadcast algorithm for propagating the value decided upon. Other two

additional tasks are designed in our protocol. Task 3 is used to handle late ECHOL

messages arrived at a clusterhead and Task 4 is used to switch the cluster of a host.

The pseudocode of Task 1 and Task 2 is shown in Figure 5-1 and the pseudocode of

Task 3 and Task 4 is shown in Figure 5-2. In the following, we describe the tasks in

more detail.

 Task 1: This task consists of two phases. In the beginning of round r, the current

coordinator mcc sends PROP(r, estcc) to the hosts in set H. Upon receiving the

PROP(r, estcc) message from mcc, a clusterhead forwards the PROP message to all its

local hosts. If a clusterhead suspects mcc before receiving PROP(r, estcc), it sends a

PROP(r, ┴) message to its local hosts, where “┴” is a value that can never be

8 For geographical routing protocols, the “distance” can be defined as the geographical distance between two

hosts. The distance information can still be obtained through the underlying routing protocol.

Chapter 5. Improving Message Efficiency of Consensus Protocols

 85

proposed or adopted. A host mi waits until a PROP(r, -) message is received from its

local clusterhead, the local clusterhead is suspected, or its local clusterhead is no

longer the nearest one. The symbol “–” in the message means any possible value. If a

PROP(r, v) message with v ≠ ┴ is received, mi updates its estimate value to v and

timestamp to r. If the local clusterhead is suspected or its local clusterhead is no

longer the nearest one, mi invokes Task 4, the “switch” procedure, to associate with

another clusterhead, which will be presented later. Then Phase 1 is finished.

In Phase 2, the message exchange pattern is determined by a set DA, the set of

decision_makers and agreement_keepers. Same as in HMR, decision_makers (in set

D) are the hosts that have to check the decision predicate that allows them to know if

they can decider during the current round; agreement_keepers (in set A) are the hosts

that should keep the updated estimate of the final decision. Different from HMR, we

use a single set to store both the decision_makers and agreement_keepers. The roles

of a decision_maker and an agreement_keeper are the same in terms of message

exchange. Combining the sets D and A can help increase the probability of making

decision in a round without any additional overhead caused. Therefore, in HC, each

host in DA simultaneously plays two roles: decision_maker and agreement_keeper.

DA is defined by the function dec_agr(r), which has to satisfy the following three

constraints:

i) dec_agr(r) is deterministic so that all hosts have the same DA in the same round.

ii) dec_agr(r) contains only clusterheads, i.e. DA ⊆H.

iii) dec_agr(r) contains the coordinator of the rounds r and r+1.

Phase 2 is started by sending ECHOL messages. Each host first sends an echo

message ECHOL(ri, esti, tsi) to its local clusterhead. If the host itself is not a

clusterhead, it enters the next round r+1. Each clusterhead waits for an echo message

ECHOL(r, -, -) from each local host that is not suspected. Then each clusterhead

constructs an echo message ECHOG(r, v, tsv, x, y) by merging the ECHOL(r, -, -)

messages collected. v is the estimate value carried by the ECHOL(r, -, -) message

with the highest timestamp and tsv is that timestamp. x is the set of the hosts that

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 86

send the ECHOL(r, -, -) messages with tsv whereas y is the set of the hosts that send

ECHOL(r, -, -) messages with other timestamps.

Figure 5-1 HC protocol - Task 1and Task 2 Figure 5-2 HC protocol - Task 3 and Task 4

--------------------Task 1: Consensus----------------------
// The code executed by each host, mi
COBEGIN:
(1) ri ←0; esti ← vi; tsi ← 0; fli ← false;

 while (fli≠true){
(2) ri←ri+1; phi←1; cc = coord(ri);
---------- Phase 1: from mcc to clusterheads -------------
 //p denotes the local clusterhead of mi
(3) if(i=cc) send PROP(ri, esti) to H;
 if(mi∈H) {
(4) wait until (PROP(ri, estcc) is received or
 mcc ∈ suspectedi);
(5) if(PROP(ri, estcc) message received from pcc)
 broadcast (PROP(ri, estcc) locally;
(6) else broadcast (PROP(ri, ┴) locally; }//endif
(7) wait until PROP(ri, v) from p is received or
 p is suspected or p is not the nearest one ;
(8) if(PROP((ri, v) is received and v ≠ ┴){
 esti← v; tsi←ri;}
(9) if(p is suspected or p is not the nearest one)

invoke Task 4;
-----------Phase 2: from all to H --------------------------
 phi←2;
(10) send message ECHOL(ri, esti, tsi) to p;
 if (mi∈ H) {
(11) wait until an ECHOL(ri, -, -) is received from
 each local host mj or mj∈ suspectedi;
(12) merge the ECHOL messages{
 tsv←the highest timestamp;
 v← the estimate of the ECHOL with tsv;
 x← the hosts that send ECHOL with tsv;
 y← the hosts that send other ECHOL;}
(13) send ECHOG(ri, v, tsv, x, y) to DA;
 if(mi∈ DA){
(14) wait until ((∪x∪y)of ECHOG(ri, -, -, x, y)
 received includes at least n-f hosts) or
 (ECHOG(-,-,>ri,-,-) received);
(15) if(i≠cc) esti←the est with the highest ts;
(16) if(ECHOG with (ts= r=ri) represent
 at least (f+1) hosts){
 fli←true;
(17) ∀j ≠ i: send DECISION(esti) to mj;}

}
 }
}
---------------Task 2: Reliable broadcast ---------------
(18) upon reception of DECISION(est) from host mk:
 fli←true; ∀j ≠ i, k: send DECISION(est) to mj;
COEND

------------Task 3: Handling Late ECHOL----------------
// The code executed by each clusterhead;
while (fli≠true){
(19) upon reception of ECHOL (r,v,ts) with (r<ri) or (r=ri
and an ECHOG(ri, *, *, *,*) has been sent);
(20) construct an new ECHOG and send it to DA;}
-------------Task 4: Clusterhead switch ------------------
--------Task 4.1: code executed by host mi ------------
(21) while(fli≠true and (p∈ suspectedi or
 p is not the nearest one)) {
(22) sn←sn+1; q ←the nearest unsuspected clusterhead;
(23) send a LEAVE(ri, sn) to p;
(24) send a JOIN(ri, sn) to q;
(25) wait until PROPH(rq, v)received or q∈ suspectedi;
 if (PROPH(rq, v) received){
 if(ri< rq){
(26) ri ← rq;
(27) for(tsi ≤ rr<ri) send ECHOL(rr, esti, tsi) to q;
(28) if(v ≠ ┴){ esti← v; tsi←ri;}
(29) GOTO (10);
 }else if (ri = rq){
 if(phi =1){
(30) for(tsi≤ rr< ri) send ECHOL(rr, esti, tsi) to q;
(31) if(v ≠ ┴){esti← v; tsi←ri;}
(32) GOTO (10);

 }else if (phi =2){
(33) for(tsi≤ rr≤ ri) send ECHOL(rr, esti, tsi) to q;
(34) ri ← ri+1; GOTO (4);}
 }else if(ri > rq){
 if(phi =1){
(35) for(tsi≤ rr< ri) send ECHOL(rr, esti, tsi) to q;
(36) GOTO (4); }

 else if (phi =2){
(37) for(tsi≤ rr≤ ri) send ECHOL(rr, esti, tsi) to q;
(38) ri ← ri+1; GOTO (4);}}
 } else GOTO (22);
 }
----------Task 4.2: code executed by clusterhead g------
 while(fli≠true){
 upon reception of LEAVE(ri, sn) from host mi{
(39) delete mi from local host list;}
 upon reception of JOIN(ri, sn) from host mi {
 add mi to local host list;
(40) if(phg=2){
 if(PROP(rg, estcc) received from mcc)

 send PROPH(rg, estcc) to mi;
(41) else send PROPH(rg, ┴) to mi;}}
 }//endwhile;

Chapter 5. Improving Message Efficiency of Consensus Protocols

 87

The clusterhead then sends the ECHOG(r, v, tsv, x, y) message to the hosts in the

sets DA. Each clusterhead in DA waits for ECHOG messages until: 1) the

ECHOG(r,-,-,-,-) messages received represent no less than (n-f) hosts, or 2) an

ECHOG(-,-,tsv,-,-) with tsv>r is received. Here, “represent” means the host is

included in the set x or y of the ECHOG message. A clusterhead in DA updates its

estimate to the value carried by the ECHOG message with the highest timestamp,

but keeps the timestamp unchanged. Finally, a clusterhead in DA checks whether it

can decide in the current round. If there are f+1 or more hosts in x sets of the

ECHOG(r, v, tsv, x, y) messages with tsv=r, it decides upon the value v and

broadcasts the final value.

Task 2: Task 2 simply broadcasts the decision value. When a host receives a

DECSION message, it decides upon the same value and forwards the DECSION

message to all other hosts except the sender.

Task 3: Task 4 handles the late ECHOL messages. An ECHOL message is “late” if

it arrives at a clusterhead after the clusterhead has sent out an ECHOG message for

the corresponding round. This happens when a clusterhead p suspects a correct local

host or a host mi joins a new cluster where the clusterhead is in a round greater than

the tsi. The hosts in set H may be blocked forever if a late ECHOL message is

ignored. To avoid this, when a clusterhead p receives an ECHOL(ri, esti, tsi) with (ri

< rp) or (ri = rp but p has sent out an ECHOG for the round ri), p constructs a

redeeming ECHOG for mi and sends it to all clusterheads.

Task 4: This task is for a mobile host to switch its clusterhead. It is invoked when

a host mi suspects its current clusterhead p or p is no longer the nearest clusterhead.

mi needs to choose a new clusterhead q, which is the nearest among the unsuspected

clusterheads. First, mi sends a message LEAVE(ri, sn) to p and a message JOIN(ri, sn)

to q. Upon reception of the leave message, p deletes mi from its local host list. Upon

reception of the join message, q adds mi to its local host list. Then if q is in Phase two

it sends PROPH(rq, estcc) or PROPH(rq, ┴) to mi as it has sent to other local hosts in

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 88

Phase one. Upon reception of the PROPH(rq, w) message from q, the behaviors of

host mi can be classified into 3 cases.

Case 1: (ri< rq) or (ri = rq, phi =1): mi updates its round number to rq and sends

ECHOL(rr, esti, tsi) messages to q where tsi ≤ rr<rq. If w≠ ┴, mi sets its estimate to w

and timestamp to rq. mi then resumes the normal execution by entering Phase 2 of

round rq.

Case 2: (ri > rq, phi =1): mi sends ECHOL(rr, esti, tsi) messages to q where tsi ≤

rr<ri and then resumes the normal execution by continue the Phase 1 of round ri.

Case 3: (ri = rq, phi =2) or (ri > rq, phi =2): mi sends ECHOL(rr, esti, tsi) messages

to q where tsi ≤ rr≤ ri and then resumes the normal execution by entering the next

round ri+1.

5.2.4. Correctness of the HC Protocol

Since the validity property of the proposed protocol is obvious, in this section, we

only present proofs for the termination property and agreement property. The term

“indirect suspicion” used here refers to the situation that a host itself does not

suspect the current coordinator but it receives a PROP(r, ┴) from its clusterhead.

5.2.4.1. Termination

Lemma 1. If no host decides in a round r’≤ r, then all correct hosts eventually start

round r+1.

Proof. If some correct host blocks forever before round r+1, then there must be a

smallest round, say rs (rs < r+1), during which some correct host is blocked forever.

Therefore, we only need to prove that “no correct host can be blocked in the round rs

forever.” The proof is by contradiction.

Assume that some correct host mi is blocked forever in round rs. Then mi must be

blocked in a wait statement, i.e. lines 5, 8, 25, 11 or 14, in the round rs. Let us

analyze these cases one by one.

Case 1: mi is blocked at line 4. Obviously, mi is a clusterhead. If i =cc, mi cannot

be blocked (it receives the proposal message sent by itself). Then, i ≠ cc. If the

Chapter 5. Improving Message Efficiency of Consensus Protocols

 89

coordinator mcc is a correct host, mi eventually receives the proposal message from

mcc. If mcc is a faulty host, mi eventually suspects mcc after mcc crashes. Therefore, mi

cannot be blocked forever at line 4.

Case 2: mi is blocked at line 7. If mi is a clusterhead, it is the local clusterhead of

itself. Since mi cannot be blocked forever at line 4, it eventually receives the

PROP(r,-) message sent by itself at line 5 or 6. If mi is not a clusterhead, on the other

hand, there are two possible situations. Let p be the local clusterhead of mi. If p is a

correct host and keeps to be the nearest to mi, it eventually sends out a PROP(r, -)

message (the clusterhead cannot be blocked at line 4 forever) and mi eventually

receives it. Otherwise, after p crashes or turns to be no longer the nearest to mi, mi

eventually suspects it and invokes the clusterhead switch procedure. Therefore, mi

cannot be blocked forever at line 7.

Case 3: mi is blocked at line 25. Obviously, the clusterhead switch procedure has

been invoked. There are two possible cases. If the new clusterhead selected is a

faulty host, mi eventually suspects it after it crashes and invokes the clusterhead

switch procedure again. Since at least one clusterhead is correct (k≥ f+1), mi

eventually finds a correct clusterhead (by the eventually strong accuracy of ◊P). This

case turns to be the second one. For the second case, i.e. the new clusterhead selected

is a correct host, it eventually sends a PROPH(r,-) message to mi (no host is blocked

at line 4 forever) and mi eventually receives the message. Therefore, mi cannot be

blocked forever at line 25.

Case 4: mi is blocked at line 11. Obviously mi is a clusterhead and is waiting for

ECHOL messages from its local MHs. All hosts in the local host list of mi can be

categorized into three classes: a) faulty hosts, b) correct hosts that have left mi (but

mi has not received their LEAVE messages) and c) the other hosts. For hosts in class

a), mi eventually suspects them after they crash. For hosts in class b), each of them

must have sent a LEAVE message to mi before it leaves mi (line 23). mi eventually

receives the LEAVE messages and deletes them from local host list. For class c), mi

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 90

eventually receives an ECHOL from each of them because they cannot be blocked at

line 4, line 7 or line 25. Therefore, mi cannot be blocked forever at line 11.

Case 5: mi is blocked at line 14. Obviously, mi is a decision_maker and

agreement_keeper. There are two possible conditions to unblock mi: 1) mi receives

ECHOG messages that can represent no less than n-f hosts or 2) mi receives an

ECHOG message with timestamp ts>rs. We now prove that at least one of the two

conditions is satisfied eventually. Since at most f hosts can crash, there are at least n-f

correct hosts. By assumption, rs is the smallest round in which a correct host is

blocked forever, so all these n-f correct hosts eventually proceed to the round rs and

execute line 10. Then we categorize all the correct hosts into two classes:

i) the hosts with correct clusterheads when they execute line 10, and

ii) the hosts with faulty clusterheads when they execute line 10.

For a host mj in class i), the local clusterhead of mj eventually receives mj’s

ECHOL message and includes mj in an ECHOG message to mi.

For a host mj in class ii), after its clusterhead crashes, mj eventually invokes the

cluster switch procedure, finds a correct clusterhead host q, after one or more cluster

switches, and receives a PROPH(rp,-) message from q. Then we consider different

situations according to tsj:

ii. a) if tsj≤ rs, an ECHOL(r, estj, tsj) is sent to q at line 27, 30, 33, 35 or 37;

ii. b) if tsj>rs, an ECHOL(-,-,>rs) is sent to q at line 27, 30, 33, 35 or 37.

Considering q is a correct host, it eventually includes mj in an ECHOG to mi. Let

examine the ECHOG messages received by mi in round rs. If some host belongs to

class ii)-b), mi eventually receives an ECHOG(-,-,>rs,-,-) and consequently condition

2) is satisfied; otherwise all n-f correct hosts belong to class i) or ii)-a), and mi

eventually receives enough ECHOG(r,-,-,-,-), i.e. the condition 1) is satisfied.

Therefore, mi cannot be blocked forever at line 14. �

Lemma 2. For any round r, if the coordinator cr sends out a PROP(r, v) at time tr

and less than n-f hosts suspect cr directly or indirectly in Phase 1 of r, then no

PROP(r’, v) with r’>r can be sent out before tr.

Chapter 5. Improving Message Efficiency of Consensus Protocols

 91

Proof. The proof is by contradiction. Assume that at least one PROP(r’, v) message

with r’>r has been sent out by the time tr. Let rm be the greatest round number of all

the PROP(r’, v) messages that have been sent out by time tr, then rm>r and rm-1≥ r.

Obviously the coordinator of the round rm, i.e. the host crm, must have finished line

14 in round rm-1 (since it has sent out PROP(rm, v) before tr). Since the timestamp

of the estimate at any host can only be changed at line 8, 28 or 31, and rm is the

greatest round number in PROP(r’, v) messages by time tr, crm must have not

received a ECHOG with ts>rm-1 in round rm-1. Therefore, crm must have received

ECHOG messages representing at least n-f hosts at line 14 of round rm-1. This

means that at least n-f hosts sent out ECHOL(rm-1,-,-) messages in round rm-1

before time tr, so at least n-f hosts finished Phase 1 of round rm-1 before time tr.

Since rm-1≥ r, at least n-f hosts finished Phase 1 of the round r before cr sends out

PROP(r, v) in the round r. Therefore at least n-f hosts suspected cr directly or

indirectly in Phase 1 of round r, which contradicts the assumption in the lemma.�

Corollary 1. In any round r, if the coordinator of r+1, cr+1, receives an ECHOG

message with ts>r, then at least n-f hosts suspect cr+1 directly or indirectly in Phase

1 of round r+1.

Proof. By the assumption in the lemma, at least one PROP message with round

number s>r has been sent out. Since cr+1 has not yet finished round r, no PROP

message with round number r+1 can be sent out. Therefore, s>r+1. By Lemma 2, at

least n-f hosts suspect cr+1 directly or indirectly in Phase 1 of round r+1.�

Theorem 1. If a host is correct, it eventually decides.

Proof. If one host decides, all correct hosts eventually decide due to the reliable

broadcast mechanism (lines 17 and 18). Therefore, we only prove that at least one

host decides. The proof is by contradiction.

Assume that no host decides. According to the accuracy and completeness of ◊P,

there is a time t after which all correct hosts are never suspected by any correct host

and all faulty hosts are permanently suspected by every correct host after they crash.

Since there is at least one correct host mx, in set H after time t (k≥ f+1), every correct

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 92

host eventually associate itself with a correct clusterhead. Let r be the first round

coordinated by mx and started after t. By the assumption (no process decides) and

Lemma 1, all correct hosts eventually enter round r. Since no new suspicion occurs

after time t and at most f hosts can crash, there are at least n-f correct hosts that

execute round r. By Corollary 1, mx cannot receive an ECHOG with ts>r at line 14,

so mx eventually decides in round r, which contradicts the assumption “there is no

host decides.”�

5.2.4.2. Agreement

Lemma 3. Let r be the first round in which f+1 hosts send ECHOL(r, v, r) and r’ be

any round that r’ ≥ r. Then:

1) No host decides before r;

2) If the coordinator of r’ sends a PROP message, this message carries the

estimate value v.

Proof. Proof for 1): The proof is by contradiction. If no host decides at line 16, no

host can decide at line 18, we therefore only consider the decision at line 16. Assume

that some host mj decided at line 16 in some round s before r, i.e. s < r and the

decision value is u. mj must have received at least one ECHOG message carrying a

timestamp equal to s and the union set of the x sets in those ECHOG messages

includes at least f+1 hosts. Since all ECHOG messages are constructed based on

ECHOL messages, at least f+1 ECHOL(s, u, s) must have been sent out. From the

definition of r (“…first round in which…”), we have r ≤ s, which contradicts the

assumption s<r. Part 1) holds.

Proof for 2): In any round r, the timestamp ts of the estimate at any host can only

be changed to r at line 9, 28 or 31. By the assumption in the lemma, a PROP(r, v)

has been sent out by cr, the coordinator of round r and at least f+1 hosts have

received the PROP(r, v) in Phase 1 of round r. Let tp be the moment that cr sent out

the PROP(r, v) message. Since n-(f+1)<n-f, by Lemma 2, all PROP(r’, -) messages

with r’>r must be sent out after time tp. Let R be the list of the round numbers of all

PROP(r’, -) messages with r’>r. Without loss of generality, we assume R= (r0=r, r1,

Chapter 5. Improving Message Efficiency of Consensus Protocols

 93

r2, r3,…,ri,…), where the round numbers are sorted in the ascending order of the

moments when the corresponding PROP messages are sent out.

Now, we prove that for each round ri in R, the proposal value carried by PROP(ri,

u) is equal to v, i.e. u=v. The proof is by induction on the sequence number i in R.

Base case: i=0. According to the HC protocol, a host sends an ECHOL(r, v, r)

only if it has received a PROP(r, v) or PROPH(r, v). Therefore, the local clusterhead

of this host must have received a PROP(r, v). The lemma holds.

Induction hypothesis: i>0. Assume that the lemma holds for any round ri such that

0 ≤ i ≤ k, we show that the lemma holds for round rk+1. Now, we define two sets of

hosts.

• The set G includes all the hosts that have received a PROP(ri, w) or PROPH(ri, w)

message with 0 ≤ i ≤ k. By the induction hypothesis, ∀mj ∈ G: estj =w= v and

tsj=ri. Since at least f+1 hosts send ECHOL(r, v, r), |G| ≥ f+1.

• The set B includes the hosts that have not received a PROP(ri, w) message with 0

≤ i ≤ k. Obviously, ∀mj ∈ B: tsj < r. Therefore, all timestamps of the hosts in set B

are less than those of the hosts in set G.

Now Let us consider the behaviors of host crk+1 in Phase 2 of the round (rk+1)-1.

By the definition of DA, crk+1∈DA during the round (rk+1)-1, so crk+1 waits for the

ECHOG messages at line 14 of the round (rk+1)-1. There are two conditions to stop

the wait at line 14.

1) crk+1 receives an ECHOG(-, u, tsm, -, -) with tsm >(rk+1)-1. Then crk+1 updates

its estimate to the value u at line 15. In fact the value u must come from an ECHOL(-,

u, tsm), so the sender of this ECHOL must have received a PROP(tsm, u) or

PROPH(tsm, u). This means that the local clusterhead of the sender of this ECHOL

message must have received a PROP(r, u). By the definition of R and the induction

hypothesis, tsm∈{r0, .., rk}, so u=v.

2) crk+1 receives ECHOG((rk+1)-1,-, -, -, -) messages that can represent at least n-f

hosts, which means that at least n-f message ECHOL((rk+1)-1, -, -) are merged. Let X

denote the set of the hosts that sent these ECHOL messages. Obviously, |X|≥ n-f. At

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 94

line 15, crk+1 updates its estimate to the value u carried by the echo message

ECHOL((rk+1)-1, u, tsm), where tsm is the highest timestamp. Since |G|≥ f+1, G∩X ≠

Ø. Therefore, the ECHOL((rk+1)-1, u, tsm) message must be sent by a host in G. By

the definition of G, u=v.

Then for both cases 1) and 2), the estimate value of crk+1 is updated to v in round

(rk+1)-1 and consequently in round rk+1, crk+1 sends out a PROP(rk+1, v). The lemma

holds.�

Theorem 2. No two hosts decide upon different values.

Proof. If a host decides upon a value at line 18, then this value must have been

decided upon by another host at line 16. Therefore, we only consider values decided

upon at line 16.

Let mi be a host that decides upon a value vi in round ri. Since mi decides in round

ri, it has received at least one ECHOG(ri, vi, ri, -, -) message. Therefore, the

coordinator of round ri had sent out a PROP(ri, vi). Similarly, if another host mj

decided upon another value vj in round rj, the coordinator of round rj must have sent

out PROP(rj, vj). Let r be the round characterized in Lemma 3 (the first round in

which f+1 hosts send ECHOL(r, v, r)). By Lemma 3, r≤ ri and r≤ rj, so v=vi=vj.�

5.2.5. Performance Evaluation

In this section, we evaluate and compare the performance of the HC protocol, the

HMR protocol and the BHM protocol by simulations in a MANET environment.

5.2.5.1. Performance Metrics

Besides the three metrics used in Chapter 4, a new metric “NH” is used here. In a

MANET, the concepts of “message” and “hop” must be distinguished. In traditional

distributed systems, the performance is computed in terms of the number of

messages, where one “message” means one “end-to-end” message. However, one

message may take one or more hops to reach the destination in the underlying

network. One “hop” means one network layer message, i.e. a point-to-point message.

In traditional systems, messages that cost different number of hops are regarded as

Chapter 5. Improving Message Efficiency of Consensus Protocols

 95

messages with the same cost. However, in a MANET, the resource constraint is

serious. We propose the new metric, the number of hops to measure the message cost

more precisely. Therefore, here, we use the following four metrics:

NR (Number of Rounds): the average number of rounds executed by the hosts to

achieve consensus.

ET (Execution Time): the “real” time needed by a consensus protocol to achieve

the global decision.

NM (Number of Messages): the total number of messages exchanged to achieve

the global decision. For the HC protocol, the messages for cluster switch are also

included.

NH (Number of Hops): the total number of hops of the messages exchanged to

achieve the global decision.

5.2.5.2. Simulation Setup

The simulation system consists

of three modules: mobile network,

FD and consensus protocol. The

main parameters of the

simulations are shown in Table 5-1.

 All hosts are randomly

scattered in a rectangular territory.

To evaluate the scalability of the

protocols, we varied the number of

hosts (i.e. the system scale) and

accordingly the territory scale in

proportion, so that the

performances under different

number of hosts are comparable.

To simulate the movements of hosts, the well-known random waypoint mobility

model [26] is adopted. The mobility level, defined as the percentage of the time that

Table 5-1 Simulation settings for the hierarchical

consensus protocol

No. of the Hosts 10 to 100

Territory (m) 200 to 630

f/n 10% to 50%

Mean life of crashed hosts 30 ms

Stabilization interval 600 ms

Transmission radius 100 m

Mean link delay 5 ms

Max link delay

(after stabilization interval)
100 ms

Error rate of failure detector 10%

Interval of Heartbeat messages 10 ms

Routing Protocol/Policy Least hops

Threshold of clusterhead switch 2 hop

Min Speed 10 m/s

Max Speed 30 m/s

Mobility model Random Waypoint

Mobility Level 50%

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 96

a host does move over the total life time of the host, is fixed to 50%. The speed of

the movements satisfies the uniform distribution between 10m/s and 30m/s.

To guarantee the properties of ◊P, the network is set to be partially synchronous

[31]: the bounds on the message delay and processing speed are unknown and hold

only after an unknown stabilization interval. Each host can crash, but the total

number of crashes is bounded by f. We varied f by changing the value of f/n from

10% to 50%. The life time of a faulty host satisfies the exponential distribution.

For message routing, we implemented a simple protocol based on the “least hops”

policy, which is adopted in many classical routing protocols in MANETs, such as

AODV [127], DSDV [126] and DSR [87]. A routing table is maintained at each host

proactively. The message delay is also assumed to satisfy an exponential distribution.

The threshold of clusterhead switch in the HC protocol is 2 hops.

FD is simulated using a heartbeat mechanism which is the adopted in nearly all

implementations of unreliable FDs [93]. Each host is augmented with a FD module.

FD modules make mistakes randomly with an average error rate of 10%. However,

to guarantee the properties of ◊P, no mistake is made after the stabilization interval.

All the three protocols are implemented as separate modules at each host. For

HMR, a variant with a single set DA of decision_makers and agreement_keepers, as

in our HC protocol, is simulated. As to the BHM protocol, since it relies on MSSs, it

cannot be implemented in a MANET directly. Because there is no MSS in MANETs,

we simulated a variant of the BHM by selecting 2f+1 MHs as the privileged hosts.

The privileged hosts execute the HMR protocol with |DA|=2 and the rest of hosts

only passively wait for the decision value (because each MH has its own initial value,

it does not need to collect initial values from others). To get stable results, each

execution was repeated 100 times and the average values are reported.

5.2.5.3. Simulations Results

 Since HMR is the basis of the other two protocols, we first examine the

performance of HMR. Then the performance of our HC protocol is studied. Finally

all the three protocols are compared and discussed.

Chapter 5. Improving Message Efficiency of Consensus Protocols

 97

1) Performance of HMR

The performance of HMR under different numbers of faulty hosts (f/n) is shown

in Figure 5-3 to Figure 5-6. We varied the size of DA, the major parameter that can

significantly affect the performance of HMR. The two extreme sizes of DA are 2 (the

current and next coordinator) and n (all the hosts). Besides 2 and n, we also

simulated the HMR with a middle size DA, n/2. The curves with different sizes of

DA are labeled “SmallSetDA”, “MiddleSetDA” and “FullSetDA” respectively.

Figure 5-3 The NR of HMR

Figure 5-4 The ET of HMR

The effect of system scale is simple. The larger the system is, the more messages

are needed in a round. Consequently, a round lasts longer and more failures may

occur. Therefore, NR, ET, NM and NH all increase with the increase of system scale.

(a) f/n=10%

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100
n

N
o.

 o
f R

ou
nd

s

SmallSetDA MiddleSetDA
FullSetDA

(b) f/n=20%

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

SmallSetDA MiddleSetDA
FullSetDA

(c) f/n=30%

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

SmallSetDA MiddleSetDA
FullSetDA

(d) f/n=40%

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

SmallSetDA
MiddleSetDA
FullSetDA

(e) f/n=50%

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

SmallSetDA
MiddleSetDA
FullSetDA

(e) f/n=50%

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n
Ti

m
e

(m
s)

SmallSetDA
MiddleSetDA
FullSetDA

(d) f/n=40%

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100
n

E
xe

cu
tio

n
Ti

m
e

(m
s) SmallSetDA

MiddleSetDA
FullSetDA

(c) f/n=30%

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n
Ti

m
e

(m
s)

SmallSetDA
MiddleSetDA
FullSetDA

(b) f/n=20%

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n
Ti

m
e

(m
s)

SmallSetDA
MiddleSetDA
FullSetDA

(a) f/n=10%

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n
Ti

m
e

(m
s)

SmallSetDA
MiddleSetDA
FullSetDA

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 98

Figure 5-5 The NM of HMR

Now, let us see the effect of the size of DA. When |DA|=n (|DA|=2), HMR needs

the fewest (most) rounds, and when |DA| = n/2, NR is in the middle. This is because

that a smaller DA results in a smaller probability of making decision in a round.

Consequently, more rounds are needed to achieve the consensus. The effect of |DA|

on ET and NM/NH is more complex. When |DA|=n (|DA|=2), HMR needs the

shortest (longest) time but the most (fewest) messages/hops. The ET or NM/NH is

the accumulation of two values: the number of rounds and the time/message cost per

round. A smaller DA results in fewer messages and shorter time per round but more

rounds. However, the value of NR is much smaller than the number of messages per

round (O(10) vs. O(n2)), the number of messages per round dominates the change of

NM/NH when |DA| changes, as shown in Figure 5-5 and Figure 5-6. However, Figure

5-4 shows that the change of ET with different sizes |DA| is dominated by NR, which

indicates that the change of time cost per round with different |DA| sizes is small.

In general, there is a tradeoff between the message cost and time cost of HMR,

when |DA| changes. A smaller DA results in a smaller message cost but larger time

cost. However, the effect on ET is not so significant as that on NM/NH, so we fix

|DA| to 2 in the rest of simulations9.

9 |DA|=2 may not be the optimal value, but adopting this value does not affect the fairness of the following

comparisons of the three protocols, because |DA| is also a parameter for both the HC protocol and BHM protocol.

(a) f/n=10%

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

10 20 30 40 50 60 70 80 90 100
n

N
o.

 o
f M

sg
s

SmallSetDA
MiddleSetDA
FullSetDA

(e) f/n=50%

0

10000

20000

30000

40000

50000

60000

70000

80000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f M

sg
s

SmallSetDA
MiddleSetDA
FullSetDA

(d) f/n=40%

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f M

sg
s

SmallSetDA
MiddleSetDA
FullSetDA

(c) f/n=30%

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f M

sg
s

SmallSetDA
MiddleSetDA
FullSetDA

(b) f/n =20%

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

10 20 30 40 50 60 70 80 90 100
n

N
o.

 o
f M

sg
s

SmallSetDA
MiddleSetDA
FullSetDA

Chapter 5. Improving Message Efficiency of Consensus Protocols

 99

Figure 5-6 The NH of HMR

Figure 5-7 Performance of HMR vs. f/n, with |DA| =2

Figure 5-7 shows the effect of f/n clearly. When f/n increases, more rounds are

needed. This is because that a large f/n means a large probability that the round is

coordinated by a crashed host, which is prone to fail to make a decision.

Consequently, more rounds are executed to achieve the consensus. The sharp

increase when f/n increases from 40% to 50% may be caused by the sharp increase

of false suspicion of coordinators. The ET changes similarly to NR when f/n changes,

but NM/NH is affected differently. With the f/n increasing from 10% to 50%, NM/NH

decreases first and then increases again. On the one hand, more faulty hosts cause

(d) NH

0

10000

20000

30000

40000

50000

10% 20% 30% 40% 50%

f/n

N
o.

 o
f H

op
s

n=20 n=40
n=60 n=80
n=100

(c) NM

0

2000

4000

6000

8000

10000

10% 20% 30% 40% 50%

f/n

N
o.

 o
f M

sg
s

n=20 n=40 n=60

n=80 n=100

(b) ET

0

500

1000

1500

2000

2500

10% 20% 30% 40% 50%

f/n

E
xe

cu
tio

n
Ti

m
e

(m
s)

n=20 n=40
n=60 n=80
n=100

(a) NR

0

2

4

6

8

10

12

14

16

10% 20% 30% 40% 50%

f/n

N
o.

 o
f R

ou
nd

s

n=20 n=40
n=60 n=80
n=100

(e) f/n=50%

0

50000

100000

150000

200000

250000

300000

350000

400000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f H

op
s

SmallSetDA
MiddleSetDA
FullSetDA

(d) f/n=40%

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f H

op
s

SmallSetDA
MiddleSetDA
FullSetDA

(c) f/n=30%

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f H

op
s

SmallSetDA
MiddleSetDA
FullSetDA

(b) f/n=20%

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f H

op
s

SmallSetDA
MiddleSetDA
FullSetDA

(a) f/n=10%

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f H

op
s

SmallSetDA
MiddleSetDA
FullSetDA

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 100

more rounds. On the other hand, more faulty hosts result in fewer hosts really

participating in the execution. As a joint result, the fewest messages/hops are needed

when f/n reaches about 40%.

2) Performance of HC

Besides the system scale, which affect the performance of HC similarly as it does

in HMR, the size of DA and the size of H, i.e. the parameter k, are other parameters

that significantly affect the performance of the HC protocol. Since DA is inherited

from HMR, based on the simulations results of HMR, we fixed |DA| to 2 in the

simulation of HC. To examine the effect of k, the performance of HC against k/n is

plotted in Figure 5-8. The value of f/n is fixed to 10%, because under a large f/n, due

to the constraint of f<k, k/n cannot be varied with a large scope10.

From Figure 5-8 we can see that, with the increase of k/n, the NR increases slowly

while the ET decreases. This can be explained by the operation at line 14 in the HC

protocol. The wait at line 14 may be ended earlier due to the reception of an ECHOG

message with a high timestamp (Figure 5-1). Such an operation can shorten the

average wait time of a host at line 14 but may destroy a potential decision. A larger

k/n means more ECHOG messages exchanged in a round, and due to the asynchrony

of the network, more hosts end the wait at line 14 earlier. Consequently, more rounds

but shorter time is needed to achieve the consensus.

The NM decreases very slowly when k/n increases. The effect of k/n on NM is

two-edged. The increase of k/n causes the increase of global messages (i.e. messages

between DA and H) but the decrease of the messages for cluster switches, including

LEAVE, JOIN, late ECHOL (in Task 4.1) and PROPH messages (Figure 5-8-e). As

an accumulative result, the NM changes very little when k/n increases. The change in

Figure 5-8-e can be explained as follows. Since a clusterhead host always selects

itself as its local clusterhead, the more hosts act as clusterheads, the fewer hosts need

to switch their clusters and the fewer messages are cost by cluster switches.

10 In fact, due to the constraint of f<k, f is set to (n*10%)-1, but for convenience, we still use “10%” to refer to

the value of f/n. To guarantee the fairness of comparisons, the f of HMR and BHM is set in the same way.

Chapter 5. Improving Message Efficiency of Consensus Protocols

 101

Same as NM, the NH also decreases very slowly with the increase of k/n, except

that there is thorough in the middle (especially when the system scale is large). NH is

affected by NM and the number of hops per message. When k/n becomes large, the

average distance between a host and its clusterhead in hops is reduced and

consequently the average number of hops per message is reduced. As an

accumulative result of the NM and number of hops per message, NH becomes the

least when k/n is about 30%.

Figure 5-8 Performance of HC vs. k/n, with |DA| =2 and f/n = 10%

Figure 5-9 Performance of HC vs. f/n, with |DA| =2 and k/n = 50%

Figure 5-9 shows the performance of HC against f/n with k/n =50%. Comparing

Figure 5-7 and Figure 5-9, we can find that the effect of f/n on HC is nearly the same

(e) Overhead of clustering

0%

10%

20%

30%

40%

10% 20% 30% 40% 50%
k/n

M
sg

s_
sw

itc
h/

N
M

n=20 n=40 n=60
n=80 n=100

(d) NH

0

5000

10000

15000

20000

25000

30000

10% 20% 30% 40% 50%
k/n

N
o.

 o
f H

op
s

n=20 n=40
n=60 n=80
n=100

(c) NM

0

2000

4000

6000

8000

10000

12000

10% 20% 30% 40% 50%
k/n

N
o.

 o
f M

sg
s

n=20 n=40 n=60
n=80 n=100

(b) ET

0

100

200

300

400

10% 20% 30% 40% 50%

k/n

E
xe

cu
tio

n
Ti

m
e

(m
s)

n=20 n=40 n=60
n=80 n=100

(a) NR

1.0

2.0

3.0

4.0

5.0

10% 20% 30% 40% 50%

k/n

N
o.

 o
f R

ou
nd

s

n=20 n=40 n=60
n=80 n=100

(e) Overhead of clustering

0%

10%

20%

30%

40%

10% 20% 30% 40% 50%
f/n

M
sg

s_
sw

itc
h/

N
M

n=20 n=40 n=60
n=80 n=100

(d) NH

0

5000

10000

15000

20000

25000

10% 20% 30% 40% 50%
f/n

N
o.

 o
f H

op
s n=20 n=40 n=60
n=80 n=100

(c) NM

0

2000

4000

6000

8000

10000

12000

10% 20% 30% 40% 50%
k/n

N
o.

 o
f M

sg
s n=20 n=40 n=60

n=80 n=100

(b) ET

0

100

200

300

400

500

600

700

800

10% 20% 30% 40% 50%

f/n

E
xe

cu
tio

n
Ti

m
e

(m
s)

n=20 n=40 n=60
n=80 n=100

(a) NR

1

2

3

4

5

6

7

10% 20% 30% 40% 50%

f/n

N
o.

 o
f R

ou
nd

s

n=20 n=40 n=60
n=80 n=100

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 102

as that on HMR, so Figure 5-9 can be explained similarly as Figure 5-7. It is worth

notice the results in Figure 5-9-e, which shows that the additional message cost

introduced by the two-layer hierarchy is small (in most cases it is less than 15%),

especially when the system scale is large.

Figure 5-10 Performance comparison of HMR, BHM and HC – NR

Figure 5-11 Performance comparison of HMR, BHM and HC – ET

3) Performance of BHM and Comparisons

The performance of the BHM protocol is shown in Figure 5-10 to Figure 5-13.

Similar as the other two protocols, both the message cost and time cost increase with

the increase of the system scale and percentage of faulty hosts. Now, let us compare

(e) f/n=50%

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

HMR
HC
BHM

(d) f/n=40%

0
2
4
6
8

10
12
14
16
18

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

HMR
HC
BHM

(c) f/n=30%

0
2
4
6
8

10
12
14
16
18

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s

HMR
HC
BHM

(b) f/n=20%

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f R

ou
nd

s
HMR
HC
BHM

(a) f/n=10%

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100
n

N
o.

 o
f R

ou
nd

s

HMR
HC
BHM

(e) f/n=50%

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n
Ti

m
e

(m
s) HMR

HC
BHM

(d) f/n=40%

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100
n

E
xe

cu
tio

n
Ti

m
e

(m
s)

HMR
HC
BHM

(c) f/n=30%

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n
Ti

m
e

(m
s)

HMR
HC
BHM

(b) f/n=20%

0
100
200
300
400
500
600
700
800
900

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n
Ti

m
e

(m
s)

HMR
HC
BHM

(a) f/n=10%

0
50

100
150
200
250
300
350
400
450
500

10 20 30 40 50 60 70 80 90 100

n

E
xe

cu
tio

n
Ti

m
e

(m
s)

HMR
HC
BHM

Chapter 5. Improving Message Efficiency of Consensus Protocols

 103

the three protocols. Without loss of generality, the k/n of HC is fixed to 50% in the

comparisons.

i) Comparisons in NR and ET

Figure 5-10 and Figure 5-11 show the NR and ET of all the protocols under varied

f/n values respectively. When the percentage of faulty hosts and system scale are

small, the BHM can achieve consensus with the fewest rounds and shortest time.

This because that, under a small f/n, the BHM protocol involves much fewer hosts in

the procedure of achieving consensus, i.e. it can be viewed as a HMR protocol

running in a much smaller system. Therefore, BHM can achieve consensus with

fewer rounds and shorter time. However, with the f/n increasing from 10% to 50%,

the number of hosts really executing the protocol in BHM gradually turns to be the

same as in HMR and consequently the performance of BHM becomes the same as

that of HMR.

The other factor affecting the difference between BHM and the other two

protocols is the system scale. When the system scale becomes large, the NR and ET

of BHM increase sharply and become the worst among the three protocols. As

discussed above, BHM can be viewed as a HMR protocol running in a system of

2f+1 hosts. The real percentage of faulty hosts in such a “smaller system” may be

between f/n and f/(2f+1), though the average of this percentage is equal to f/n. Since

a large percentage of faulty hosts results in the sharp increase of NR in HMR (as

shown in Figure 5-7), NR and ET of BHM under a large system scale becomes the

largest.

The difference in NR and ET between HMR and HC is also affected by the value

of f/n and n. Basically, due to the message forwarding mechanism by clusterheads,

HC needs two more communication steps than HMR. Therefore, each round of HC

lasts longer than that of HMR and more failures may happen during one round.

Consequently, HMR achieves the consensus earlier and faster.

However, when the f/n is large, HC performs better in terms of NR and ET. This is

also caused by the two-layer hierarchy. In HMR protocol, when an ordinary host (i.e.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 104

a host does not belong to DA) suspects the coordinator, it proceeds to the next round

after sending echo messages. However, in HC protocol, a host outside the set H has

to wait its clusterhead to forward the proposal from the coordinator, so the

proceeding of HC in the first phase is determined by only clusterheads. Therefore,

the effect of false suspicions made by ordinary hosts is avoided and consequently

fewer rounds are needed to make the decision. With the increase of f/n, the

probability of such a false suspicion increases. Therefore, the difference between HC

and HMR is reversed under a large f/n.

With the increase of the system scale, the advantage of HC in NR and ET also

increases. This can also be explained based on the discussion above. The proceeding

of the first phase is determined by only clusterheads, so the effect of system scale on

NR in the HC protocol stems from the change of the number of clusterheads, i.e. |H|.

Since |H|=n/2, |H| changes more slowly than n changes and consequently the NR and

ET of HC increase more slowly than those of HMR.

Figure 5-12 Performance comparison of HMR, BHM and HC – NM

ii) Comparisons in NM and NH

Figure 5-12 and Figure 5-13 show the performance in NM and NH respectively.

The HC protocol performs badly only when very few hosts crash and the system

scale is very small. With the increase of f/n and n, HC performs better and better.

When f/n = 50% and n =100, HC achieves the consensus with only less than half of

(e) f/n=50%

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f M

sg
s

HMR
HC
BHM

(d) f/n=40%

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f M

sg
s

HMR
HC
BHM

(c) f/n=30%

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f M

sg
s

HMR
HC
BHM

(b) f/n =20%

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100
n

N
o.

 o
f M

sg
s

HMR
HC
BHM

(a) f/n=10%

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100
n

N
o.

 o
f M

sg
s

HMR
HC
BHM

Chapter 5. Improving Message Efficiency of Consensus Protocols

 105

the hops cost by BHM or HMR. As discussed before, both NM and NH are

determined by two aspects: NR and the message cost per round. Comparing Figure

5-12 with Figure 5-10 we can see that, the relationships among the three protocols in

NM are nearly the same as in NR. Therefore, NR dominates the difference in NM.

Figure 5-13 Performance comparison of HMR, BHM and HC – NH

The difference in NH between BHM and HMR is also determined by NR.

However, the difference between HC and the other two is not dominated only by NR.

When the system scale is not very small, HC can achieve consensus with the fewest

hops even if its NR is not the smallest. Such an advantage comes from the two-layer

hierarchy, which reduces the message cost per round in hop by merging messages

with the same type. The larger the system is, the more messages are merged and

consequently the more cost is saved. This indicates that our objective to reduce

message cost using the two-layer hierarchy is fulfilled.

5.2.6. Tolerance of Message Loss

Same as most consensus protocols, our HC protocol assumes reliable

communication channels between hosts. However, compared with wired networks,

MANETs are more prone to message losses due to the characteristics of wireless

communications. To cope with this, one direction is to design reliable

communication protocols for MANETs, Efforts have been made to improve the

reliability of end-to-end communications in MANETs [54][149][165]. However,

(e) f/n=50%

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f H

op
s

HMR
HC
BHM

(d) f/n=40%

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f H

op
s

HMR
HC
BHM

(c) f/n=30%

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f H

op
s

HMR
HC
BHMA

(b) f/n=20%

0

5000

10000

15000

20000

25000

30000

35000

40000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f H

op
s

HMR
HC
BHM

(a) f/n=10%

0

5000

10000

15000

20000

25000

30000

10 20 30 40 50 60 70 80 90 100

n

N
o.

 o
f H

op
s

HMR
HC
BHM

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 106

how to provide reliable end-to-end channels is still a challenging topic in MANETs.

Here, we take an alternative approach by enhancing the HC protocol to handle

message losses by itself. We divide the channel failures into two types: permanent

failures and transient failures, and design solutions for handling the two types of

channel failures respectively.

5.2.6.1. Handling Message Losses as Host Failures

If a channel fails by crashing, i.e. permanently losing all the messages transmitted

through it, a permanent failure occurs. To handle message losses caused by a crashed

channel, a possible solution is to treat the message loss caused by communication

channels as host crashes. If a channel between a pair of hosts loses some message,

then the sender, instead of the channel, is said to be faulty. In this way, the system

has only host failures and all channels can be thought of as reliable. Although the

correctness of the protocol will not be affected, the resilience, i.e. the capability of

tolerating faults, of the HC protocol is degraded. There can be at most t (t<

minimum(k, n/2)) host failures during a run of the protocol, including those caused

by the lossy channels.

5.2.6.2. Reducing Reliable Channels to Fair-lossy Channels

A channel with a transient failure only loses messages for some finite time and

then recovers to be a correct channel again. Such a failure may recur for the same

channel. More precisely, such a channel is defined as a fair-lossy channel [50][120]:

If a host mi sends an infinite number of messages to host mj, then the channel

attempts to deliver an infinite number of messages to mj.

Following the approach in [120][131], our HC protocol can be extended for use in

a system with fair-lossy channels. To tolerate message losses caused by channels

with transient errors, the following three rules are added:

i) When a clusterhead host p enters a new round r that is not coordinated by p, it

sends a NEW(r) message to all other clusterheads;

ii) Each host periodically re-sends the latest message it ever sends out. For

example, during the wait at line 7 of round ri, a clusterhead periodically re-

Chapter 5. Improving Message Efficiency of Consensus Protocols

 107

sends the PROP(ri, *) message to its local hosts, i.e. it periodically repeats

the execution of line 5 to line 6;

iii) When a host mi, either an ordinary host or a clusterhead, receives a message

with a higher round number r with r>ri, mi aborts its current round and enters

the round r.

With these rules, a correct host is eventually unblocked if it is blocked due to a

message loss of the channel. Therefore, the termination property is not violated due

to message losses. Since the other two correctness properties, validity and agreement

are not affected by messages losses, the enhanced HC protocol still satisfies the

correctness requirements of a consensus protocol.

5.3. The Clusterer Oracle ∆

5.3.1. System Model

We consider an asynchronous MANET system consisting of a set of n (n>1) MHs,

M = {m1, m2,…, mn}. A MH can only fail by crashing, i.e. prematurely halting, but it

acts correctly until it possibly crashes. There is at least one correct host in the system.

MHs communicate by sending and receiving messages. Every pair of MHs is

connected by a reliable channel that does not create, duplicate, alter or lose messages.

5.3.2. Definition of ∆

Like unreliable failure detectors or other oracles, the eventual clusterer oracle ∆ is

also a tool that provides some kind of information about the system. ∆ groups the

hosts in a MANET into clusters, each which is dominated by a clusterhead, so as to

establish a two-layer hierarchy in the system. Each host is associated with an

eventual clusterer oracle module. On the query from a host mi, the clusterer oracle

module returns three outputs:

i) ∆.CH: a set of MHs that currently act as clusterheads;

ii) ∆.trusted: a set of hosts that are currently trusted by ∆ (correct hosts);

iii) ∆.clusterhead: the clusterhead host that mi currently associates with, i.e. the

local clusterhead of mi.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 108

Similar to the definition of unreliable failure detectors [31], we define the

eventual clusterer oracle ∆ using abstract properties. Though we also define the

completeness property and accuracy property as in [31], the names of the properties

are reversed, i.e. the completeness (accuracy) in [31] is named accuracy

(completeness) here. This is because that the properties in [31] are defined for the set

of suspected hosts but here they are defined for the set of trusted hosts.

Completeness: There is a time after which some correct host is permanently

included in the clusterhead set ∆.CH and trust set ∆.trusted at each correct host.

Accuracy: Eventually every host that crashes is permanently excluded from the

clusterhead set ∆.CH and trust set ∆.trusted at each correct host.

Uniformity: Eventually, all correct hosts permanently keep the same clusterhead

set ∆.CH.

Stability: There is a time after which each correct host is associated with some

correct clusterhead permanently.

From the definition we can see that, like other oracles, there is a Global

Stabilization Time (GST) for ∆ to reach a stable state. Before GST, different hosts

may have different clusterhead set ∆.CH and a host may switch to a new cluster

again and again. However, after GST, all correct hosts have the same ∆.CH and each

correct host associates with a correct host in ∆.CH. We call such a clusterhead set

CH a “stable CH”. It is important to notice that a stable CH includes only correct

hosts (but maybe not all hosts).

Same as other oracles, ∆ facilitates the design of consensus protocols by

separating the function of detecting the status of the system and the function of

achieving consensus. But ∆ is more powerful in the sense that it can help the

consensus protocols built on top of it improve their message efficiency and

scalability, which is especially important for large scale MANETs. The messages

from and to the hosts in the same cluster are merged by the clusterhead so as to

reduce the message cost and improve the scalability.

Chapter 5. Improving Message Efficiency of Consensus Protocols

 109

5.3.3. An Implementation of ∆

To implement a ∆, there are two main issues to be addressed: a) failure detection,

i.e. the construction of ∆.trusted and, b) the construction of clusters. Since unreliable

failure detectors have been proposed in [31], we adopt the unreliable failure

detectors to detect failures. The properties of the failure detector ◊S are as follows:

Strong Completeness: Eventually, every process that crashes is permanently

suspected by every correct process.

Eventually Weak Accuracy: There is a time after which some correct process is

never suspected by any correct process.

Comparing the properties of ∆ and ◊S, we know that the completeness and

accuracy of ∆.trusted are the same as the accuracy and completeness of ◊S

respectively. Therefore we adopt the unreliable failure detector ◊S to detect failures.

The second issue can be further divided into two problems: i) the selection of

clusterheads, i.e. the construction of ∆.CH, and ii) the construction and maintenance

of clusters. Analyzing the properties of ∆, we know that the only difference between

∆.trusted and ∆.CH is the uniformity. We adopt the flush algorithm in [39], which

reduces a leader oracle to the ◊W failure detector11, to establish ∆.CH based on the

∆.trusted. The corresponding pseudocode is shown as Task c1 in Figure 5-14. The

code is simple and self-explanatory. Since Figure 5-14 shows the implementation of

∆, we use “CH” and “clusterhead” rather than “∆.CH” and “∆.clusterhead” to refer

to the clusterhead set and local clusterhead respectively.

The pseudocode for the construction and maintenance of clusters is shown as

Task c2 in Figure 5-14. First, we show how to construct clusters based on the

clusterhead set ∆.CH. The clustering procedure is cluster member initiated. Each

host in ∆.CH acts as a clusterhead and dominates the corresponding cluster. A host mi

selects the nearest host, say mn, in ∆.CH using the function NEAR(∆.CH) and sends a

JOIN message to mn to join the corresponding cluster. On the reception of the JOIN

11 ◊W is equivalent to ◊S.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 110

message, mn sends a positive or negative ACK message to mi. The type of the ACK

depends on the state of mn. If mn is the clusterhead of itself (a self-aware clusterhead),

it accepts the request of mi and sends a positive ACK message; otherwise, it rejects

the request of mi and sends a negative ACK message. Then, if a positive ACK is

received, mi ends the switch procedure. Since the ∆.CH is set to M in the beginning,

each MH selects itself as the clusterhead and gets positive ACK when the algorithm

starts to execute.

Figure 5-14 The implementation of ∆

COBEGIN// The code executed by a host, mi
------------Task c1: Construction of Clusterhead Set CH -------------------------
 (c01) CH ← M; seqi← 0; //M is the set of all MHs, seqi is a sequence number;
------------------Task c1.1: Send CH -----------------------------------
(c02) while(true){
(c03) CH ← CH ∩◊S.trusted;
(c04) send (CH, seqi) to M;}
------------------Task c1.2: Receive CH -------------------------------
(c05) upon reception of (CH’, seqq) from host mq:
(c06) if (seqq= seqi) CH ← CH ∩ CH’;
(c07) if (seqq > seqi) { CH ← CH’; seqi ←seqq;}
(c08) if (CH = φ) { CH ← M; seqi ←seqi +1;
(c09) send (CH, seqi) to M;}
------------Task c2: Clustering Host ---------------------------------
(c10) clusterhead←i; rejected ←φ; sn ← 0;
-----------------Task c2.1: Action of Cluster Member ---------------------------------
(c11) while(true){
(c12) if(clusterhead∉ CH or (a RELEASE(sn’) from mk with clusterhead = k)){
(c13) if(clusterhead = i)
 send RELEASE(sn) to all local hosts except mi;
 (c14) else
 send LEAVE(sn) to clusterhead;
(c15) sn←sn+1; rejected ←φ;
(c16) if (CH \rejected)= φ){ rejected ←φ; sn←sn +1;}
(c17) clusterhead←NEAR(CH \rejected);
(c18) send JOIN(sn) to clusterhead;
(c19) wait until ACK(type, sn) received from clusterhead;
(c20) if(ACK.type = false){
(c21) rejected ← rejected {∪ clusterhead};
(c22) GOTO (c15);}
 }
 }
-----------------Task c2.2: Action of Clusterhead ---------------------------------------
(c23) while(true){
(c24) upon reception of a JOIN(sn) message from a host mk:
(c25) if(clusterhead≠i) send ACK(false, sn) to mk;
(c26) else {add mk to local host list;
(c27) send ACK(true, sn) to mk;}
(c28) upon reception of a LEAVE(sn) message from a host mk:
(c29) if(clusterhead=i) delete mk from local host list;
 }
COEND

Chapter 5. Improving Message Efficiency of Consensus Protocols

 111

Then let us consider the maintenance of clusters. Due to failures or false

suspicions, a clusterhead may be removed from the set ∆.CH. Then the members of

the corresponding cluster have to switch to a new cluster. When a host mi needs to

switch to another cluster (finding the current clusterhead is removed from∆.CH or

receiving a RELEASE message from its current clusterhead), it firstly sends a

LEAVE message to its current clusterhead if it is not the clusterhead of itself or

sends a RELEASE message to inform the cluster members if it is the current

clusterhead of itself. Then mi selects the nearest host in ∆.CH as the candidate of the

new clusterhead and sends a JOIN message to the candidate. If a positive ACK is

received from the candidate, the switch successes; otherwise, mi selects a new

candidate and sends a JOIN message again. This can be repeated again and again

until mi is accepted by a clusterhead host.

Since the communication channels are not FIFO, a sequence number sn is

attached to each JOIN, LEAVE, ACK or RELEASE message to avoid the effect of

disorder. When a host receives one of such messages, it needs to check the sn of the

message to guarantee that only updated messages are handled.

Based on the properties of ◊S and the correctness of the flush algorithm in [39], it

is easy to prove that the proposed implementation of ∆ satisfies the definition of ∆,

i.e. the algorithm in Figure 5-14 is correct.

5.4. The HCD Protocol

The HC protocol is based on the same system model as the HC protocol, except

that in HCD, each host is equipped with a clusterer oracle in stead of a ◊P.

5.4.1. Data Structures and Message Types

When executing the proposed consensus protocol, each host, say mi, needs to

maintain necessary information about its state. Such information is stored in the

following variables.

fli: the flag indicating whether mi has made the decision. The initial value is false.

ri: the sequence number of the current round that mi is participating in.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 112

esti: the current estimate of the decision value. Initially, it is the value proposed by

mi.

tsi: the timestamp of esti. The value is the sequence number of the round in which

mi receives the value of esti, which is proposed by a coordinator host. The update of

tsi is entailed by the reception of estimate from a coordinator.

lri: the sequence number of the last round that mi has completed normally, i.e. mi

has collected an echo message from its clusterhead, in Phase 2 of round lri.

During execution of the protocol, MHs need to communicate with each other by

exchanging messages. The message types involved in a round ri are as follows.

PROPL(ri, esti, lri, cc): the proposal message sent by a host mi to its clusterhead.

cc is the ID of the coordinator host selected by mi.

PROPG(ri, X, L, C, Y): the proposal message sent by a clusterhead to all

clusterheads. PROPG is constructed by merging the PROPL messages received from

the hosts in the cluster. Y is the set of the IDs of the hosts that send the PROPL

messages; X is the set of estimate values corresponding to Y; L is the set of lr values

corresponding to Y; C is the set of cc values corresponding to Y.

PROP(ri, est): the proposal message sent by a clusterhead to the hosts in its

cluster. PROP is constructed based on the PROPG messages received. est is equal to

estcc (the estimate of the coordinator selected by the clusterhead) or “┴”(a value that

can not be decided upon).

ECHOL(ri, esti, tsi): the echo message from a host mi to its clusterhead.

ECHOG(ri, v, tsv, W, Z): the echo message from a clusterhead to all clusterheads.

ECHOG is constructed by merging the ECHOL messages from the hosts in the

cluster. v is the estimate carried by the ECHOL with the highest timestamp and tsv is

the timestamp of v. W is the set of MHs that send the ECHOL with tsv whereas Z is

the set of MHs that send other ECHOL messages.

ECHO(ri, vm, tsvm, A, B): the echo message from a clusterhead to the hosts in the

cluster. ECHO is constructed based on the ECHOG messages received. vm is the

estimate carried by the ECHOG with the highest timestamp and tsvm is the

Chapter 5. Improving Message Efficiency of Consensus Protocols

 113

timestamp of vm. A is the set of MHs that send the ECHOL (not ECHOG) with tsvm

whereas B is the set of MHs that send other ECHOL (not ECHOG) messages.

DECISION(est): the message sent by a MH to propagate the decision value est.

NEWR(r): the message sent by a clusterhead to ask its local MHs to enter a new

round r.

Figure 5-15 The consensus protocol based on ∆ – Task 1 and Task 2

COBEGIN // The code executed by each host, mi
--------------------Task 1: Consensus --
(101) ri ←0; esti ← vi; tsi ← 0; lri←0; fli ← false;
(102) while (fli≠true){
(103) ri←ri+1;
(104) cc = MIN(∆.CH); ch = ∆.clusterhead;
---------------------------- Phase 1: Collect Proposal ---------------------
(105) send PROPL(ri, esti, lri, cc) to mch;
 if(i=ch){// mi is a clusterhead;
(106) wait until (received a PROPL(ri, *,*, *) from each local host mj∈ ∆.trusted);
(107) merge the PROPL messages received into a PROPG(ri, X, L, C,Y) and send it to ∆.CH;
 //X: set of estimates; L: set of lr values; C: set of cc values; Y: set of hosts IDs;
(108) wait until ((received PROPG(ri, X, L,C,Y) messages where |∪Y |≥ n-f and mcc∈ ∪Y) or
 mcc ∉ ∆.trusted or mi∉ ∆.CH);
(109) if(mcc∈ ∪Y , lrcc=ri-1and mcc appears at least n-f times in ∪C)
 send (PROP(ri, estcc) to all local hosts;
(110) else send (PROP(ri, ┴) to all local hosts;}
(111) wait until ((received PROP(ri, v) from mch) or ch ≠ ∆.clusterhead);
(112) if(PROP((ri, v) is received and v ≠ ┴){esti← v; tsi=ri;}
-------------------------------Phase 2: Collect Echo --------------------------
(113) send message ECHOL(ri, esti, tsi) to mch;
 if (i=ch) {
(114) wait until(received ECHOL(ri,*,*) from each local host mj∈ ∆.trusted);
(115) merge the ECHOL messages received into an ECHOG(ri, estm, tsm, W, Z);
 // tsm: the greatest ts; estm: the estimate value with timestamp tsm;
 //W: the hosts that sent ECHOL with tsm; Z: the hosts that sent other ECHOL;
(116) send ECHOG(ri, estm, tsm, W, Z) to ∆.CH;
(117) wait until ((received ECHOG(ri, *, *, W, Z) messages with |∪W∪Z| ≥ n-f) or mi∉ ∆.CH);
(118) merge ECHOG messages into ECHO (ri, vm, tsvm,A,B) and send it to all local hosts;}
(119) wait until ((received ECHO(ri, vm, tsvm,A,B) from mch) or ch ≠ ∆.clusterhead);
(120) if ((received ECHO(ri, vm, tsvm,A,B) from mch){
(121) esti← estm; lri ←ri;
(122) if(tsm =ri and |A|≥ f+1){
(123) ∀j ≠ i: send DECISION(esti) to mj;
(124) fli←true;}}
 }endwhile
---------------Task 2: Reliable Broadcast --
 upon reception of DECISION(est) from host mk:
(201) if(fli≠true) {
(202) ∀j ≠ i, k: send DECISION(est) to mj;
(203) fli←true;}
COEND

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 114

5.4.2. Description of the Protocol

 The proposed consensus protocol consists of four tasks. Task 1 is the main body

of the protocol for making decision and Task 2 is a simple broadcast algorithm for

propagating the value decided upon. The pseudocode of Task 1 and Task 2 is shown

in Figure 5-15. Task 3 is used to handle late PROPL and ECHOL messages at a

clusterhead while Task 4 handles futures messages. The pseudocode of Task 3 and

Task 4 is presented in Figure 5-16 and Figure 5-17 respectively. In the following

paragraphs, we describe the tasks in detail.

Task 1: Like most consensus protocols, Task 1 is executed in asynchronous

rounds, each of which is divided into two phases. In each round, each MH selects

one coordinator.

At the beginning of a round ri, a host mi first queries the clusterer oracle ∆ to get

the ID of the coordinator and clusterhead, i.e. cc and ch. The remaining actions

during the round are divided into two phases. In Phase 1, mi first sends PROPL(r,

esti, lri, cc) to mch, where cc is the ID of the coordinator selected by mi. If mi itself is

not the clusterhead, it waits until it receives a PROP message from mch unless mch is

removed from ∆.CH.

Each clusterhead mch needs to collect one PROPL message from each correct host

in its cluster, including mch itself. Following this, mch merges the PROPL messages

received into one PROPG(ri, X, L, C, Y) message (where Y is the set of the IDs of the

hosts that send the PROPL messages; X is the set of estimate values corresponding to

Y; L is the set of lr values corresponding to Y; C is the set of cc values corresponding

to Y) and sends this PROPG to all hosts in the clusterhead set ∆.CH. mch then waits

for the PROPG messages from others clusterheads until: i) mcc and additional n-f-1

hosts are included in the PROPG messages received, or ii) mcc is removed from

∆.CH.

After mch finishes the wait at line 108, it checks the PROPG messages received. If

condition i) is satisfied and mcc has finished last round normally, i.e. lrcc = ri-1, mch

sends PROP(ri, estcc) to the hosts in its cluster, including itself; otherwise it sends

Chapter 5. Improving Message Efficiency of Consensus Protocols

 115

PROP(ri, ┴) to the hosts in its cluster, including itself. Upon the reception of

PROP(ri, v) with v ≠ ┴ from the clusterhead, each host mi (maybe a clusterhead)

updates its estimate esti to v and timestamp tsi to ri. Phase 1 ends.

Phase 2 is started by sending ECHOL messages. In Phase 2, each host mi first

sends an ECHOL(ri, esti, tsi) to mch. If mi itself is not the clusterhead, it waits until it

receives an ECHO message from mch, unless mch is removed from ∆.CH.

Each clusterhead mch needs to collect one ECHOL message from each correct

host in its cluster, including mch itself. Then mch merges the ECHOL messages

received into one ECHOG(ri, estm, tsm, W, Z) message (where tsm is the greatest ts

in the ECHOL messages; estm is the estimate value with timestamp tsm; W is the IDs

of the hosts that have sent the ECHOL messages with timestamp tsm; Z is the IDs of

the hosts that have sent other ECHOL messages) and sends this ECHOG to all hosts

in the clusterhead set ∆.CH. mch then waits for the ECHOG messages from others

until n-f hosts are included in the ECHOG messages received, i.e. |∪W∪Z| ≥ n-f.

After getting enough ECHOG messages, mch merges the ECHOG messages received

into an ECHO(ri, vm, tsvm, A, B) message and sends it to the hosts in mch’s cluster

(vm is the estimate carried by the ECHOG with the highest timestamp and tsvm is

the timestamp of vm. A is the set of MHs included in the “W” sets of ECHOG

messages with timestamp tsvm whereas B is the set of other MHs included in the

ECHOG messages, i.e. B= (∪W∪Z)\A.).

When a host mi (maybe a clusterhead) receives the ECHO(ri, vm, tsvm, A, B)

message from its clusterhead, it updates its estimate esti to vm and lri to ri. Then, if

tsm= ri and |A| ≥ f+1, mi makes the decision upon vm and sends the value to all other

hosts using the message DECISION(vm).

Task 2: This task simply broadcasts the decision value. When a host receives a

DECISION message, it decides upon the same value and forwards the DECISION

message to all other hosts except the sender.

Task 3: This task handles late PROPL and ECHOL messages. A PROPL/ECHOL

message is “late” if it arrives at a clusterhead after the clusterhead has sent out a

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 116

PROPG/ECHOG message for the corresponding round. This happens when a

clusterhead mch suspects a correct host in the cluster or a host newly joins the cluster.

Clusterheads may be blocked forever if a late PROPL or ECHOL message is ignored.

To avoid this, when a clusterhead mch receives a PROPL (or ECHOL) message from

a MH mi with a round ri where (ri<rch) or (ri=rch but mch has sent out a PROPG (or

ECHOG) for round rch), mch constructs a redeeming PROPG (or ECHOG) sends it to

all clusterheads. Moreover, for a late PROPL message, if mi is a local host of mch and

mch has sent out a PROP(rch, lv) message, mch sends a redeeming PROP(rch, lv) to mi.

Figure 5-16 The consensus protocol based on ∆ – Task 3

Figure 5-17 The consensus protocol based on ∆ – Task 4

Task 4: This task handles future messages. A message msg is a future message if it

arrives at a MH before the MH enters the corresponding round of msg. When a MH

mi receives a future message with the round number r>ri, it stops waiting for

messages for round ri (at the wait statements in Task 1) and skips to the round r. If mi

is a clusterhead host, it sends a NEWR(r) to its local hosts before it skips to r, so that

the local hosts can also skip to round r.

------------Task 3: Handling Late Messages--
// The code executed by each clusterhead mch;

 (301) upon reception of PROPL(ri, *, *, *) from mi, with ((ri<rch) or
 (ri=rch but mch has sent a PROPG(rch, *, *, *,*))){
(302) construct a PROPG for the PROPL and send it to ∆.CH;
(303) if(mi is a local host and a PROP(rch, lv) has been sent)
 send PROP(rch, lv) to mi;
 }
(304) upon reception of ECHOL(ri, *, *) from mi, with ((ri<rch) or
 (ri=rch but mch has sent an ECHOG(ri, *, *, *,*))){
(305) construct an ECHOG for the ECHOL and send it to ∆.CH;
 }

------------Task 4: Handling Future Messages-------------------------------------
// The code executed by each MH mi;

(401) upon reception of a message msg with r>ri:
 {
(402) if(i=ch and msg is not a NEWR message) // for a clusterhead
 send NEWR(ri) to local hosts;
(403) ri← r; GOTO (104);

}

Chapter 5. Improving Message Efficiency of Consensus Protocols

 117

5.4.3. Correctness of the HCD Protocol

In this section, we prove the correctness of the proposed consensus protocol.

Since the validity property is obvious, here, we only present proofs for the

termination property and agreement property.

Theorem 1 (Termination). If a host is correct, it eventually decides.

Proof. If one host decides, all correct hosts eventually decide due to the reliable

broadcast mechanism (lines 124 and 202). Therefore, we only prove that at least one

host decides. The proof is by contradiction.

We assume that no host decides. By the properties of ∆, after the time GST all

correct hosts get the same stable CH set denoted as GT. Let p=MIN(∆.CH) and rm be

the highest round number held by correct hosts at time GST. Since all correct hosts

never crash, they eventually receive a message from some correct host in round rm

and move to round rm.

By the assumption, no host decides in round rm. This could only happen if in

round rm: 1) no more than n-f-1 hosts select the same correct coordinator, 2) no less

than n-f hosts select the same correct coordinator mx, but mx did not execute line 121

in round rm-1, i.e. lrx ≠ rm-1, or 3) no less than n-f hosts select the same correct

coordinator mx, but one or more hosts suspect mx, move to round rm+1 and cause f+1

or more hosts move to round rm+1 before they send out an ECHOL(rm, *) message.

Let examine these three cases as follows.

Cases 1) and 2): All possible PROP messages sent by clusterheads are PROP(rm,

┴). By the definition of stable CH, eventually only hosts in GT act as clusterheads

and each correct host joins a cluster with a clusterhead in GT. Therefore, in round rm,

all possible PROP messages sent are PROP(rm, ┴) and all possible ECHO messages

sent at line 118 are ECHO(rm, *, <rm, *, *). Therefore, all correct hosts eventually

enter a round greater than rm after they finish the wait at line 119 or receive a

message with a round number greater than rm.

Case 3): Obviously, at least one correct host enters round rm+1. Then, all correct

hosts eventually enter round rm+1 after they receive messages from that correct host

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 118

already in round rm+1.

From the analysis of the three cases above we know that, if no host decides in

round rm, all correct hosts eventually enter a round greater than rm. Such a scenario,

i.e. no host decides in a round rn≥ rm and all correct hosts eventually enter a round

greater than rn, may be repeated again and again until the first round started after

time GST12. Let rx denote this round.

Now, let us consider the execution of round rx. By the definition of the stable CH,

in round rx, all correct hosts selected the same coordinator mp and never suspect it.

Then each clusterhead eventually collects one PROPL message (maybe a late

PROPL) from each correct local host and exchanges PROPG message with others.

Because at most f hosts can crash, each clusterhead eventually collects PROPG

messages which is constructed based on at least n-f PROPL messages, including the

one from mp, i.e. PROPL(rm, v, lrp, p) with v≠ ┴.

The following execution depends on the value of lrp. There are two possible

cases. First, lrp = rx-1. Each clusterhead sends PROP (rm, v) to the hosts in its

cluster and each correct host eventually receives the PROP(rm, v). Then each correct

host updates its est to v and ts to rm, and sends an ECHOL(rm, v, rm) message to its

clusterhead. Eventually each clusterhead collects one ECHOL message (maybe a late

ECHOL) from each correct local host. Following this, all clusterheads exchange

ECHOG messages and each of them eventually collects ECHOG messages which

are constructed by merging at least n-f ECHOL messages. Since all ECHOL

messages are with the same values, i.e. ECHOL(rm, v, rm), each clusterhead sends

an ECHO(rm, v, rm, W, φ) message with |W| ≥ f+1. Therefore, each correct host

eventually decides after it receives the ECHO message from its clusterhead, which

contradicts the assumption “no host decides.” The theorem holds.

Second, lrp ≠ rx-1. All possible PROP messages sent by clusterheads are

PROP(rx, ┴). Eventually all correct hosts enter round rx+1 after they update their lr

12 The start of a round means that some host firstly enters the round.

Chapter 5. Improving Message Efficiency of Consensus Protocols

 119

values to rx. The execution of round rx+1 is the same as the execution of round rx

except that the lr of each host equals to rx. Therefore, each correct host eventually

decides in round rx+1, which contradicts the assumption “no host decides.” The

theorem holds.�

Lemma 1. Let r be the smallest round in which some host receives an ECHO(r, vm,

tsvm, A, B) messages with tsvm = r and |A| ≥ f+1.Then, in any round r’>r, if a host

receives a PROP(r’, v’) with v’ ≠ ┴ at line 111, v’ = v.

Proof. Without loss of generality, let mi be the host that receives the ECHO(r, vm,

tsvm, A, B) message with tsvm = r and |A| ≥ f+1 in round r. Then, ECHOL(r, v, r)

messages have been sent in round r by at least f+1 hosts and merged into ECHOG

messages by one or more clusterheads. Assume that rs is the first round after round r,

in which some host, say mh, sends a PROP message with a estimate value not equal

to v or ┴ , i.e. PROP(rs, vx) with vx ≠ ┴ and vx ≠ v,. Let mcx denote the coordinator

selected by mh in round rs. Therefore, mh must have received PROPG(rs,X,L,C,Y)

messages with mcx∈ ∪Y, lrcx = rs-1 and mcx appears at least n-f times in the set ∪C.

This means that mcx has executed line 121 of round rs-1 and updated its estimate to

vx. Therefore, mcx must have received ECHO(rs-1, vx, tsx, A, B) at line 124 in round

rs-1. Obviously, tsx≤ rs-1. Since rs>r and at least f+1 hosts have sent out ECHOL(r,

v, r) messages in round r (by assumption in the lemma), we have tsx≥ r (the highest

timestamp at any host, which executes line 121 in round rs-1, must be no less than r).

Then we have r ≤ tsx≤ rs-1. Since a host updates its timestamp ts only when it

receives PROP message with estimate not equal to ┴, there must be some host that

have sent a PROP(tsx, vx) with a estimate value not equal to v or ┴ before round rs

but after round r. This contradicts the assumption “rs is the first round in which

some host sends a PROP message with a estimate value not equal to v or ┴.” The

lemma holds.�

Theorem 3 (Agreement). No two processes decide differently.

Proof. If a process decides upon a value at line 203, then this value must have been

decided upon by another process at line 124. Therefore, we only consider the values

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 120

decided upon at line 124. Let r be the smallest round in which some host mi decides

upon a value x at line 124.

Assume that another process mj decides upon another value y in round k. By the

definition of r, we have k≥ r. If k=r, obviously, y = x. If k>r, y must come from a

PROP(k, y). By lemma 1, y =x. The theorem holds.�

5.5. Summary

This chapter is concerned with the message efficiency of achieving consensus in

MANETs. A cluster based two-layer hierarchy is imposed on the system by

clustering MHs into clusters. Each cluster is dominated by a MH acting as the

clusterhead. With the hierarchy, a coordinator sends proposal messages only to

clusterheads and a clusterhead unmerges and forwards the proposal to its local hosts.

On the other hand, the echo messages from the hosts in the same cluster are merged

into one message before they are sent to decision makers. In such a way, the message

cost can be significantly reduced.

Based on different mechanisms of clustering the MHs, We develop two different

hierarchical protocols. In the first protocol, the set of clusterheads is predefined and

the functions of clustering hosts and achieving consensus are closely coupled. The

second protocol adopts a modular approach to select clusterheads dynamically. The

function of achieving consensus and the function of clustering MHs are separated by

defining the eventual clusterer oracle ∆. ∆ is in charge of constructing and

maintaining the cluster-based two-layer hierarchy over MHs.

Since ∆ provides the fault tolerant clustering function transparently, it can be used

as a new oracle for the design of reliable hierarchical consensus protocols. ∆ can be

implemented using ◊S, so it is equivalent to ◊S in terms of the power of failure

detection. However, ∆ is more powerful in the sense that it can help the consensus

protocols built on top of it improve their message efficiency and scalability, which is

especially important for large scale MANETs.

Chapter 6. Handling Dynamic Mobile Systems

 121

Chapter 6. Handling Dynamic Mobile Systems

6.1. Overview

In recent years, a major advance in distributed computing is due to the

development of dynamic systems, e.g. peer-to-peer systems, mobile systems, where

an unbounded set of processes can join or leave the system at any time and the

number of participating processes can change arbitrarily as time passes.

The inherent dynamic nature of processes introduces a new kind of uncertainty,

constitution uncertainty: the global constitution of the network is unknown to the

processes. This additional difficulty makes dynamic system more challenging than

traditional ones, in designing coordination protocols, e.g. consensus protocols.

Efforts have been made to implement the eventual leader protocol [109][111] in

dynamic wired systems and then consensus can be achieved in dynamic systems

[5][6][38][67][72]. However, to our knowledge, the consensus problem in dynamic

mobile systems is not considered.

In this chapter, we investigate the implementation of the eventual leader oracle Ω

in dynamic infrastructured mobile networks. MSSs and the network connecting them

form a static asynchronous system. The number of MSSs is known. We adopt a time

free approach proposed in [109][111] and extends it to the context of mobile

environments by combining it with the notion of process accessibility [100]. This

time free approach explicitly uses the values of n, the number of processes in the

system, and t, the upper bound on the number of processes that can crash. It relies on

an assumption on the behavior of the flow of messages exchanged. More precisely,

processes can broadcast query and then wait for responses from other processes. The

first (n - t) responses received are winning (the other responses, if any, are called

losing responses; they can be slow or never sent because their sender has crashed). It

is shown in [111] that Ω can be built if the following behavioral property is satisfied:

“there is a correct process p and a set Q of t+1 processes such that eventually the

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 122

responses of p to each query issued by any q ∈Q is always a winning response.”

Intuitively, this means that for any q, the link connecting q to p is not among the t

slowest links of q. We can also think of process p as being eventually accessible by

processes in set Q.

To extend this idea in a dynamic system, we assume that each MSS is equipped

with a device that provides it with partial information about the mobile processes

that are present in the system. More precisely, each MSS bi is provided with a set

local_trusti of mobile process identities that represents bi’s current view of the

mobile processes that are currently present in the systems. We consider the following

additional assumption MPdyn: “There is a stable13 mobile process m and a time τ such

that, �τ’>τ , there is a set Qτ’ of at least 2t + 1 MSSs such that �bi∈Qτ’, either bi

locally trusts m at time τ’ or bi has crashed by time τ’.” It is important to notice that

the set of “witnesses” MSSs Q can vary over time.

Let us say that a mobile process m is x-accessible at time τ if it appears in the

local trusted list local_trusti of x MSSs at timeτ. Moreover, we define local_trusti at

time τ for a MSS bi that has crashed before that time as the whole set of mobile

processes. MPdyn can thus be interpreted as follows: “there is a stable mobile process

m that eventually becomes permanently (2t+1)-accessible.” This study investigates

MPdyn and shows that, if a majority of the MSSs are correct, the oracle Ω can be built

on top of asynchronous mobile environment that satisfy the assumption MPdyn.

Interestingly, no additional assumption is required on MSSs. In that sense, the

proposed protocol is time-free. Nearly all the computation and communication are

carried out by MSSs, so that the workload of a MH is minimized.

6.2. Computational Model

The mobile environment is a distributed system consisting of two distinct sets of

entities: a set of mobile hosts (MHs) and a set of fixed hosts usually named mobile

support station (MSSs). The set of MSSs and the communications channels between

13 a stable mobile process is a process that after entering the system, does not crash nor be disconnected.

Chapter 6. Handling Dynamic Mobile Systems

 123

them form a static distributed system. On the other hand, the mobile processes can

be viewed as a dynamic system. The mobile hosts move in a geographical area,

which is partitioned into cells. Each MSS covers one cell and a MH can only

communicate (and vice versa) with the MSS responsible the cell in which it is

located. A MH is connected to the system if and only if it is up and running and

located in a cell covered by an alive MSS.

For the ease of the exposition, we assume the existence of a global discrete clock.

This clock is a fictional device which is not known by the processes; it is only used

to state specifications or prove protocol properties. The range Г of clock values is the

set of natural integers. We denote B = {b1,..., bn} the set of MSSs processes (for B

stands for base stations) and M= {m1,m2,...}, the set of MHs.

6.2.1. Mobile Support Stations: a Static System

The set of MSSs and its underlying communication network is modeled as a static

asynchronous system. The set of MSSs and its underlying communication network is

modeled as a static asynchronous system. The wired network of MSSs is made of a

finite set of n ≥ 2 fixed processes, namely, B = {b1,..., bn}. A MSS can fail by

crashing, i.e., prematurely halting. It behaves correctly (i.e., according to its

specification) until it possibly crashes. A process bi is correct in a run if it does not

crash in that run, otherwise it is faulty. We assume that a majority of MSSs are

correct. We use the following notations concerning the B of MSSs:

t: the maximum number of faulty MSSs in a run, 1≤t≤n/2.

C: the set of MSSs that are correct in a run, C⊆B.

MSSs communicate by sending and receiving messages through reliable yet

asynchronous channels. Each pair of MSSs {bi, bj} is connected by a wired channel.

Channels are reliable in the following sense: they do not alter, create or lose

messages. However, channels are asynchronous: the time to transfer a message from

bi to bj is finite but unbounded, i.e. if bi sends a message to bj, then bj eventually

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 124

receives the message unless it fails (let us observe that channels are not required to

be FIFO). There is no assumption about the relative speed of processes.

Query-response mechanism. We consider that each process is provided with a

query-response mechanism. Such a query-response mechanism can be easily

implemented in a time-free manner on top of an asynchronous distributed system.

More precisely, any MSS bi can broadcast (to other MSSs) a QUERY message and

then wait for corresponding RESPONSE from n-t MSSs (these are the winning

responses for that query). The other RESPONSE messages associated with the query,

if any, are systemically discarded (they are the losing responses for that query).

Both QUERY messages and RESPONSE messages can be used to piggyback data.

This allows the querying process to disseminate data to all the processes and obtain

data from other processes.

A query issued by bi is terminated if bi has received n-t corresponding responses.

We assume that a process issues a new query only when the previous one has

terminated. Without loss of generality, the response from a process to its own query

is assumed to always arrive among the first n-t responses. Moreover, QUERY and

RESPONSE are assumed to be implicitly tagged in order not to confuse RESPONSE

messages corresponding to different QUERY messages. It is assumed that a MSS bi

issues forever sequential queries until it possibly crashes.

6.2.2. Mobile Hosts: a Dynamic System

The system has infinitely many mobile hosts M= {m1,m2, . . .} but each run of the

leader election protocol has only finitely many. This means that there is no bound on

the number of MHs for all runs: whatever be the integer value k, there are runs with

more than k MHs. There is a bound on the number of MHs in each run, but a

protocol does not know that information because it varies from run to run. This is the

finite arrival model described and investigated in [4][105].

Each mobile process has a unique identity. A process knows its own identity but

does not necessarily know the identities of other MHs. Moreover, identities are

Chapter 6. Handling Dynamic Mobile Systems

 125

comparable. In the following, we consider that identities are taken from the set of

positive integers. mi denotes the MH whose identity is i. Like MSSs, MHs are

asynchronous and can suffer from crash failures. After a MH has crashed, it is seen

as permanently disconnected from the system.

A MH is connected only if it is located in a cell covered by a MSS. A MH can

only directly communicate with the MSS located in its current cell. Messages

between two MHs must be forwarded by corresponding MSSs. When a MH moves

from one cell to another, it executes a JOIN operation to inform the MSS of the new

cell. A hand-off procedure is then executed between the MSSs of the old and new

cell.

We assume the existence of an underlying routing layer that allows messages

being forwarded in the static system from the source MSS to the local MSS of the

destination MH. If the local MSS crashes, the link between the MH and the rest of

the system is lost. However, the MH can reconnect by moving into a new cell

covered by an alive MSS.

We use the following notation concerning the set M of MHs:

up(τ): the set of mobile hosts that are connected to the system at time τ, up(τ) ⊆

M. Obviously, these MHs joined the system before time τ and, never crash or

disconnects before time τ.

6.3. Problem Definition and Additional Assumptions

Like other leader oracle protocol, some assumptions are needed to cope with the

impossibility of implementing a leader oracle in an asynchronous system [111].

6.3.1. Stability Condition

The set of MHs is inherently dynamic: due to mobility, crash failures or energy

saving, MHs can join or leave the system at any time. However, if each MH

periodically join and then leave the system, being connected only for a short period

(i.e., the system is unstable), it is impossible to elect any MH. To allow electing a

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 126

leader, the system should exhibit stable periods that last long enough. The following

set definition captures this notion of stability [65][112]:

STABLE = {mi |∃τ,∀τ’≥ τ: mi ∊up(τ’)}. STABLE is the set of MHs that, once

have entered the system, do not crash or disconnect. To guarantee the termination of the

proposed protocol, we assume that STABLE ≠ Ø.

6.3.2. Problem Definition

A leader oracle is a distributed facility that provides the mobile processes with a function

leader() that returns the identity of a mobile process each time it is invoked. A

unique mobile process is eventually elected but there is no knowledge of when the

leader is elected. Moreover, to be useful the eventual unique leader ml must be a

stable mobile process (i.e., ml ∊STABLE). More precisely, the leader oracle Ω

satisfies the following property:

Eventual Leadership: There is a time τ and a mobile process ml ∊STABLE, such

that after τ, any invocation of leader() by any process mi returns l.

6.3.3. Local Failure Detection

We suppose that each MSS bi is able to gather partial knowledge about the mobile

processes that are present in the system. We define the information available to

MSSs in the failure detector framework [30][31].

We assume that each MSS bi is equipped with a local failure detector that

provides a set local_trusti ⊆M, which means that the MHs in the set currently up

and connected. More precisely, at each MSS bi, the set local_trusti satisfies the

following properties (local trusti
τ denotes the value of local_trusti at process bi at

time τ):

Eventual Accuracy: ∃τ,∀τ’≥τ: STABLE ⊆∪i∊C local_trusti
τ’

Completeness: If mobile mj never join the system, crashes or permanently leaves

the system then ∃τ,∀τ’≥τ: mj ∉∪i∊C local trusti
τ’

The completeness part requires that a MH that crashes or permanently leaves the

system is eventually no longer trusted by any MSS. The accuracy part requires that

Chapter 6. Handling Dynamic Mobile Systems

 127

eventually, at least one stable mobile process m is continuously trusted by MSSs.

However, it is not necessary that the same MSS eventually permanently trust this

stable mobile process m. On the contrary, we only require that after some time, m is

always trusted by some MSS and at different time it may be trusted by different

MSSs.

From a practical point of view, this failure detection capability can be

implemented as follows. Each MSS monitors the mobile processes located in its cell

by periodically broadcasting queries. When a mobile process receives such a query,

it sends back its identity. To ensure that stable mobile processes are continuously

trusted, some delay is necessary before a MSS removes a MH from its local_trusti,

after the MH is perceived to be disconnected from the cell.

A different approach along the line of gossip-based failure detection

implementation [66][76] can also be used. An alive MH periodically broadcasts

ALIVE messages through the wireless medium. When a process (mobile or fixed

station) receives such a message, forwards it. When a MSS bi receives such a

message, it adds the initiator of the message to its local_trusti. If the ALIVE message

has not been received from a MH m for ∆ units of time, m is removed from the

local_trusti. The value of ∆ depends on the behavior of the underlying network.

Investigating implementations of such a local failure detector service is out of the

scope of this thesis.

 Let us observe that this failure detector does not provide much information on

MHs that are present in the system. It only guarantees that eventually, at least one

stable mobile process m is trusted by some MSS at each time instant, but is possible

that the local_trust sets permanently disagree. Since communications between MSSs

are asynchronous and a MSS may have a different local_trust set at each time instant,

MSSs cannot agree on the stable mobile processes they trust.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 128

6.3.4. An Assumption on the Movement of MHs

We consider the following additional assumption, called MPdyn (a shortcut for

dynamic mobility pattern):

There are a stable mobile process m and a time τ (m and τ are not known in

advance) such that at any time instant τ’≥ τ, there exists a set Qτ’⊆B that satisfies the

following property:

∀τ’≥τ: |Qτ’|≥ 2t+1;

∀b ∊Qτ’: if b has not crashed by time τ, m∊ local_trustb
τ’.

The intuition that underlies this property is the following. Even if nothing is

known about the movement of mobile processes, it is possible that their behavior

exhibits some regularity that can be exploited in order to implement a leadership

facility. More precisely, the assumption MPdyn states that, eventually, there is a set of

2t+1 MSSs that trust the same mobile process. Moreover, this set can continuously

change over the time.

The property MPdyn can be interpreted as follows: among the mobile processes,

there is at least one stable mobile process m that eventually moves “fast enough”

across a “large enough” (namely, 2t + 1) number of cells. Due to the latency between

the instants at which a mobile process leaves the cell of a MSS bi and the instant at

which it is removed from the set local_trusti, it follows that if the mobile process m

permanently traverses sufficiently fast at least 2t + 1 distinct cells then at any point

of time, the stations responsible for those 2t + 1 cells locally trust m.

Another possible solution to guarantee the MPdyn assumption is to deploy a

multiple coverage mobile network. Each point in the territory is covered by at least

2t+1 MSSs rather than one MSS. Then each MH keeps contact with at least 2t+1

MSSs simultaneously. In such a way, the MPdyn assumption can be guaranteed

deterministically. Although in existing infrastructured mobile systems, e.g. GSM and

CDMA networks, one point is typically covered by one MSS, some area is covered

by more than one MSS to smooth the handoff procedure or deal with the shadow

fading problem [1][56][57][94].

Chapter 6. Handling Dynamic Mobile Systems

 129

With the advance in hardware technologies, in the future, it should be more

feasible to deploy a fully (2t+1)-coverage cellular system to provide better

performance and service with little additional cost.

Figure 6-1 Eventual leadership protocol: code for MSSs

6.4. Description of the Protocol

The protocol is described in Figure 6-1 and Figure 6-2. It extends ideas that

previously appear in [39][111][112]. The MSSs act as servers to provide an eventual

init: sni ← 0; trusti ←┬;

Task 1

(01) Repeat foreach j ∊ B do send PH1_QUERY() to bi endfor;

(02) wait until corresponding PH1_RESPONSE() has been received form ≥ n-t MSSs;

(03) PH1_reci = {j: a PH1_RESPONSE received from bj at line 03};

(04) foreach j ∊ B do send PH2_QUERY(sni, trusti) to bj endfor;

(05) wait until corresponding PH2_RESPONSE(L_TURST) received from ≥ n-t MSSs;

(06) PH1_reci = {j: a PH2_RESPONSE received from bj at line 06};

(07) let REC_FROMi =∪i∊PH1_reci∩PH2_reci L_TRUSTj;

(08) trusti ←trusti∩REC_FROMi;

(09) endrepeat

Task 2

(10) upon reception of PH1_QUERY() from bj:

(11) query_starti[j] ←current_time(); send PH1_RESPONSE() to bj;

(12) upon reception of PH2_QUERY() from bj:

(13) if sni = snj then trusti ←trusti ∩trustj endif;

(14) if sni < snj then trusti ←trustj, sni ←snj endif;

(15) if trusti = Ø then trusti←┬, sni←sni +1 endif;

(16) LOCAL_TRUSTi ←∪query_starti[j]≤τ≤current_time() local_trusti
τ;

(17) send PH2_RESPONSE(LOCAL_TRUSTi) to bj;

(18) upon reception of LEADER_QUERY(m) from a mobile host m:

(19) if trusti = Ø ∨trusti = ┬ then li = m;

(20) else li = min(trusti);

(21) endif

(22) send LEADER(li) to m;

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 130

leadership service to the mobile processes. To attain this goal, each MSS bi

maintains a set trusti of identities of mobile processes. The aim of the protocol is for

the MSSs to eventually have the same set of identities. When a mobile process m

invokes the primitive leader(), it sends a LEADER REQUEST message to its local

MSS (Figure 6-2). When a MSS receives such a message, it deterministically

chooses an identity among the mobile processes it currently trusts and sends back

this identity (line 18 to line 22).

The protocol consists in two tasks run in parallel at each MSS. Task 1 is the core

task in which each process initiates sequential queries and wait for corresponding

responses. Task 2 is triggered by reception of messages. It implements the response

mechanism associated with the queries: when a process bi receives a query, it sends

back a response carrying values that depend on the type of query received (line 11

and line 17).

Each process bi associates with its trusti set a sequence number sni. sni is a logical

date defining the “age” of set trusti. The period, during which the sni keeps the same

value, is called an “epoch”. When bi receives a pair < snj , trustj > (line 12), it

updates trusti according to the respective values of sni and snj. If they are equal, it

considers trusti∩trustj as the new value of the set of mobiles processes it trusts (line

13).

Figure 6-2 Eventual leadership protocol: code for MHs

If its current knowledge is too old, it adopts the set received (line 14). Otherwise,

it discards the message received. If bi then discovers that its set trusti is empty, bi

starts a new “epoch” by increasing its sequence number sni and resets trusti to its

initial value (line 15). Let us notice that during an “epoch”, a set trusti can only

decrease or remain constant. The proof shows that it exists an epoch with a finite age

When Leader() is invoked:

(23) send LEADER_QUERY(m) to the current local MSS;

(24) wait until LEADER(l) is received;

(25) return (l)

Chapter 6. Handling Dynamic Mobile Systems

 131

after which the sni values no longer increase and the sets trusti are (and remain) non-

empty and equal. They actually converge towards to a subset of the STABLE set. The

mobile process in these trusti sets with the smallest identity is then elected as the

unique leader.

In order to benefit from the MPdyn assumption, each process bi collects local trust

sets of other processes by sequentially issuing two-phase query-responses cycles. In

the first phase, bi broadcasts a PH1_QUERY. When a process bj receives such a

query, it sends back a PH1_RESPONSE and starts recording the identities of

processes it locally trusts until it receives a PH2_QUERY from bi. The PH2_

RESPONSE message sent back by bi carries the identities of the mobile processes

that have been locally trusted by bj since it has received the matching PH1_QUERY

of bi (lines 16-17). To see why this two-phase query-response cycle is necessary, let

us assume that when a process bj received a query at a time τ, its sends back a

response message that contains the value of local trustj at time τ. bi collects n-t local

trust sets, but these sets may have been “seen” at distinct times. Since the set Q of

“witness” processes defined in property MPdyn can change over time, it is possible

that the local trust sets collected by bi does not satisfied any global 13 property, even

if the property MPdyn is established. On the contrary, we will show in the proof that

this two-phase query-response mechanism guarantees that the sets REC_FROMi (i.e.,

the union of local_trust collected, lines 07) eventually satisfy a global property.

More precisely, Lemma 1 states that there exists a stable mobile process that

eventually is always contained in any REC_FROM sets.

┬ is a special symbol that represents the whole universe of the mobile processes.

Moreover, ┬∩A = A (where A is any set of mobile processes).

6.5. Correctness Proof

In the following xi
τ denotes the value of the local variable x of process pi (MH or

MSS) at time τ. Given an execution, C is the set of MSSs that are correct in that

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 132

execution. STABLE is the set of mobile processes that, after having entered the

system, do not crash or disconnect.

Lemma 1 There is a time τ and a stable mobile process m (i.e. m ∊STABLE) such

that every REC_FROM set computed (at line 07) after τ is such that m ∊REC_FROM.

Proof. Given an execution that satisfies the MPdyn assumption, there is a time τ0 and

a mobile process m ∊STABLE such that ∊τ’≥ τ0, there exists a set Qτ⊆B where:

(1) |Qτ | ≥ 2t + 1 and

(2) ∀bi ∊Qτ: m ∊local_trusti.

Let us consider a MSS bi that starts a query (at line 02) after τ0. Let bj be a MSS

such that j∊PH1_reci ∩PH2_reci. This means that, for each phase of the query issued

by bi, the responses messages sent by bj arrived among the first n- t ones at process bi.

Let τ_startj be the time instant at which the PH1_QUERY from bi is delivered to bj

and τ_ endj be the time at which bj sends back the PH2_RESPONSE message. Let us

observe that the PH2_RESPONSE message sent by bj carries the identities of all the

mobile processes that has been trusted at least once by bj during the time interval

[τ_startj, τ_ endj] (lines 16-17). The rest of the proof relies on the two following

observations: O1: |PH1_reci∩PH2_reci| ≥ n-2t; O2: ∃τ,∀j∊ PH1_reci∩PH2_reci: τ

∊[τ_startj, τ_ endj].

Let us consider the set REC_FROMi computed by bi after completing its query.

This set is the union of the mobile processes that has been trusted by the MSSs bj, j∊

PH1_reci∩PH2_reci at some time instant between the beginning and the end of the

two-phase query of bi. Let τ1 be the time instant introduced in observation O2. In

particular, ∪j∊ PH1_reci∩PH2_recilocal_trustj
τ1⊆REC_FROMi. As τ1 ≥ τ0, it follows from

the assumption MPdyn that at time τ1 there exist a set Qτ1 of at least α≥ 2t + 1 MSSs

that either have crashed or trust m at time τ1 . Since |PH1_reci∩PH2_reci| ≥ n-2t

(O1), it follows that Qτ1∩(∪j∊ PH1_reci∩PH2_recilocal_trustj
τ1), from which we conclude

that m∊REC_FROMi.

Chapter 6. Handling Dynamic Mobile Systems

 133

We have shown that there exists a time τi after which any REC_FROMi set

computed by bi contains the identity of the stable mobile m. Taking τmax = max{τi: i ∊

B} completes the proof.

Observation O1: For any process bi that initiates and completes a two phases query,

|PH1_reci∩PH2_reci| ≥ n-2t ≥ 1.

Proof of O1: Since in each phase of the query, bi waits for n-t winning responses, we

have |PH1_reci| ≥ n-t and |PH2_reci|≥ n-t. Consequently, sets PH1_reci and

PH2_reci differ in at most t identities. It follows that |PH1_reci∩PH2_reci| ≥ n-2t.

As t < n/2, PH1_reci∩PH2_reci ≠ Ø. End of proof O1

Observation O2: Let bi be a process that initiates and completes a two-phase query:

∩j∊ PH1_reci∩PH2_reci[τ_startj, τ_ endj]≠ Ø.

Proof of O2: Let j∊ PH1_reci. Let us recall that τ_startj is the time at which

PH1_QUERY is delivered at process bj and τ_endj is the time at which bj sends the

PH2_RESPONSE message to bi. Let τ be the time at which the second phase of the

query is initiated by bi (i.e., the time at which bi broadcasts a PH2_QUERY message,

line 04). We show that τ∊[τ_startj, τ_endj]. When bi starts the second phase of the

query, it has received a PH1_RESPONSE() from bj. As bj sends such a message

when it has delivered a PH1_QUERY from bi, we have τ_startj < τ. Similarly, bj

sends a PH2_RESPONSE to bi when it has received the corresponding PH2_QUERY

from bi, which implies that τ<τ_ endj. Consequently, we obtain that τ∊[τ_startj,

τ_endj].End of proof O2 �

Lemma 2 ∃SN, ∃τ, ∀i ∊B,∀τ’≥τ: i∊C ⇒ sni(τ’) = SN.

Proof. Let τ0 be a time such that: 1) all faulty MSSs have crashed, and 2) all

messages sent by faulty MSSs have been delivered. Let τ1 be the time defined in

Lemma 1 and let τclean = max(τ0, τ1). The idea is that after time τclean the system

exhibits a “clean” behavior.

Let SNτclean be the maximal sequence number sni among the correct MSSs bi at

time τclean. Moreover, if there is a correct MSS bj such that trustj = trusted and snj =

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 134

sn, we say that “the set trusted is associated with the sequence number sn” (please

notice that several sets can be associated with the same sequence number).

Claim C1. If Ø is associated with SNτclean, then: (1) a process bj that executes the

reset statement at line 15, after which we have (trustj, snj) = (┬, SNτclean + 1), and (2)

(┬, SNτclean + 1) is sent to all the processes.

Proof of C1. Let us first observe that (Observation O3) a set trusti can only decrease

while sni remains equal to SNτclean, (Observation O4) there is no gap in sequence

numbers (which means that if a sequence number variable is equal to SN, then there

are sequence number variables that had previously the values 0, 1, . . . , SN-1), and

(Observation O5) the update by a process bj of its snj variable to the value SN+1 (at

line 13 or 14) is always due to the fact that some process bk (which is possibly bj

itself) has executed snk ←snk+1 at line 15 (where SN is the value of snk before the

update; notice that bk also sets trustk to ┬).

Let bi be a process that associates Ø with SNτclean. If the pair (trusti, sni) remains

equal to (Ø, SNt) until bi receives a PH2_QUERY, it executes line 15 and

consequently resets (trusti, sni)) to (┬, SNτclean + 1).

The only other possibility for that pair to be modified is at line 14, but in that case

pi received a sequence number > SNτclean, and it follows from the observations O4

and O5 that some process bj has executed line 14, updating the pair (trusti, sni) to (┬,

SNτclean + 1). This proves the first part of the claim.

The proof of the second part of the claim is by contradiction. Let us assume that

no process sends a PH2_QUERY with the pair (┬, SNτclean + 1). This means that the

pairs that are sent have the form (X, SNτclean + 1) with X ≠ ┬. Let bi1 be a process

such that at some time τi1 we have (trusti1, sni1) = (┬, SNτclean + 1). As it sends at

some time τi1’ > τi1 the pair (Xi1, SNτclean + 1) with Xi1 ≠ ┬ (by assumption), we

conclude that, between τi1 and τi1’, bi1 received a query from some process bi2

carrying (Xi2, SNτclean + 1) with Xi2 ≠ ┬. The same reasoning can be applied to bi2,

from which we conclude that there is a process bi3, etc. It follows that we can

construct an infinite chain of distinct processes, which is clearly impossible as there

Chapter 6. Handling Dynamic Mobile Systems

 135

is a finite number of mobile support stations. It follows that there is a process that

sends a PH2_QUERY carrying the pair (┬, SNτclean + 1). End of the proof of Claim C1.

We show that SN = SNτclean or SN = SNτclean + 1. According to the definitions of

τclean and SNτclean, there exists a correct process bi such that sni = SNτclean. Due to the

gossiping mechanism, after some time we will have snj >SNτclean for each j∊C. We

consider two cases:

Case 1: Ø is never associated with SNτclean. In that case, no correct process bi will

ever execute the reset statement at line 15. It follows that no process bi will increase

its sni variable, and the lemma follows.

Case 2: Ø is associated with SNτclean. From the claim C2, there is inevitably a

process bj that executes the reset statement at line 15, after which we have (trustj, snj)

= (┬, SNτclean + 1), and this pair is sent to all the correct processes. This means that

after some time, each process bi will be such that sni ≥ SNτclean + 1. As this occurs

after time τ1, the time defined in Lemma 1, it follows that from now on, any set trusti

permanently contains the stable mobile process m defined in Lemma 1. This is

because each time bi updates its set of trusted mobile processes (line 08), it intersects

trusti which has been reset to ┬ (the whole universe of mobile processes) with

REC_FROMi that always contains m. Consequently, no PH2_QUERY(Ø, SNτclean + 1)

are sent. Hence, no process can execute the reset statement at line 15, from which we

conclude that no sequence number SNτclean + 1 can be generated and the lemma

holds.�

Theorem 1 In any execution that satisfies the MPdyn assumption, the protocol

described in Figure 6- 1 implements a leader facility in a mobile environment.

Proof. Given a run that satisfies MPdyn, let PL = ∩{trusti : i ∊C ∧trusti is associated

with SN}, where SN is defined in Lemma 2.

We first show that PL ≠ Ø. Due to lemma 2, no sequence number greater than SN

can be generated. This implies that Ø cannot be associated with SN. Moreover, it

follows from Lemma 1 and updates of trusti (line 08) that any trusti associated with

SN contains the stable mobile process m introduced in Lemma 1.

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 136

We now show that PL⊆STABLE. This a consequence of the completeness

property satisfied by the local trusti. More precisely, the completeness property states

that a mobile process that crashes or gets disconnected from the system is eventually

no longer locally trusted by each MSS b. Consequently, there is a time after which

every REC_FROM does not contain crashed or disconnected mobile processes.

Therefore, there is a time after which the REC_FROMi contains only stable

processes. Moreover, as the trusti sets are never reset to ┬, it follows that, after that

time, these trusti sets can contain only stable mobile processes.

Finally, there is a time τ after which we have ∀i∊C: trusti = PL. This is a

consequence of the finite arrival model (after some time, no more mobile processes

join the system) and the gossiping mechanism (lines 04 and reception of

PH2_QUERY in Task 2). Let us consider an invocation made after τ of leader() that

returns ml. We have ml = min (trusti) where i is the identity of some correct MSS.

Since trusti = PL⊆STABLE, it follows that any of these invocations returns the same

stable mobile process.�

6.6. Summary

Leader primitive is at the core of many coordination problems, e.g. consensus. We

investigated the implementation of the eventual leader oracle Ω in the context of

dynamic infrastructured mobile environments, where the number of participating

processes can change arbitrarily as time passes and processes can join or leave the

system at any time.

The set of MSSs is viewed as a static system, while the MHs constitute a dynamic

system. It has shown that as soon as there is a stable mobile process continuously

seen by a large enough set of MSSs, Ω can be implemented. Moreover, this set can

be different at different time. Interestingly, no additional assumption is made on the

network of MSSs. This fact, combining with the dynamic nature of assumption

MPdyn, makes attractive to investigate this approach in the context of unstructured

mobile networks, e.g., MANETs.

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 137

Chapter 7. A Permission-based MUTEX

Algorithm for MANETs

7.1. Overview

As discussed before, all existing MUTEX algorithms for MANETs use token-

based approaches. In this chapter, we propose the first permission-based MUTEX

algorithm for MANETs. The proposed algorithm is based on the “look ahead”

technique [146] proposed for infrastructured mobile networks. To apply the “look

ahead” technique in MANETs, the following issues have to be considered.

First and most importantly, there is no MSS in a MANET, so some additional

steps should be taken to ensure that the algorithm can continue its execution after

one or more hosts disconnect or doze. Second, the algorithm in [146] does not

provide methods for some important functions. There is no method for initializing

the two key data structures – Info_set and Status_set. Third, the assumption about the

FIFO channel becomes infeasible in MANETs. Because the route between two MHs

changes from time to time due to the movements of the MHs, implementing the

FIFO channel in MANETs is very costly. Finally, there is no fault tolerance

mechanism for handling host failures or link failures.

The problems above are all addressed in our proposed algorithm. We propose a

simple and efficient method to initialize Info_set and Status_set. The disconnections

and dozes of hosts are also handled. When a host wants to disconnect from the

network or enter the doze mode, it informs other hosts by sending messages. Both

the sender and receiver modify the information maintained accordingly. When a host

wakes up from the "doze" mode, it resumes the execution immediately without

performing any special action. When a host reconnects to the network, it informs

other hosts and resumes the execution.

To relax the constraint of requiring FIFO channels, we add a new variable Qreq. In

[146], if a channel is not FIFO, a REPLY message from a host Si (with lower priority)

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 138

to a host Sj (with higher priority) may be delivered following the REQUEST

message from Si to Sj. On the reception of the REPLY message, Sj moves Si to the

Status_setj and consequently Si can never get a REPLY from Sj. With the help of Qreq,

such a request is recorded and the host with the lower priority would not be put in

Status_set after the reception of the REPLY. FIFO is no longer necessary.

Using timeout, a fault tolerance mechanism is developed to tolerate both link and

host failures. A timeout value is set for each request message sent out. Intermittent

and recoverable link and host failures are handled by resending request messages

when the timeout expires.

7.2. System Model and Assumptions

A MANET consists of a collection of n autonomous MHs, S = {S1, S2,…, Sn},

communicating with each other through wireless channels. Whether two hosts are

directly connected is determined by the signal coverage range and the distance

between the hosts. Each host is a router and the communication between two hosts

can be multiple hops. Both link and host failures can occur. The topology of the

interconnection network can change dynamically due to mobility of hosts and

failures of links and hosts.

At any moment, each MH is in one of three different states: normal, doze, and

disconnection. For the disconnection mode, two different cases are considered:

voluntary disconnection and accidental disconnection. An "accidental

disconnection" refers to disconnection aroused by failures of links or hosts. Such

disconnections occur more frequently and unpredictably than that in wired networks

due to the unstable links and characteristics of mobile hosts. A MH may also

voluntarily disconnect from the network to save the battery power [17][115]. Since

the MH knows such a disconnection in advance, it can execute predefined operations

for the distributed algorithm that it currently participates in.

A distributed system built on a MANET is an asynchronous system, so there is no

bound on the processing speed of hosts or message delay. To provide support for

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 139

tolerating recoverable link and host failures, we use the timeout and message

retransmission mechanisms. We assume that the link failure or host failure is

eventually recovered within the retrying period.

7.3. Data Structures and Message Types

Following the definitions in [136][146], each host Si maintains two sets, which

are defined below:

Info_seti: an array of the IDs of the hosts to which Si needs to send request

messages when it wants to enter CS.

Status_seti: an array of the IDs of the hosts which, upon requesting to access CS,

would send the request messages to Si.

To ensure the correctness of the algorithm, the following conditions must be

satisfied:

1) ∀Si: Info_Seti∪Status_Seti =S;∀Si: Info_Seti∩Status_Seti =Ø

2) ∀Si∀Sj: Si∊Info_Setj ⇒Sj∊Status_Seti

Obviously, Condition 1) guarantees that host Si knows the request status of all the

other hosts and there is no redundancy information. Condition 2) guarantees the

consistency among the sets of all MHs.

In addition, each host maintains the following data structures.

tsreq: the timestamp for the request of Si. It is used as the priority of the request of

Si. If Si is not requesting for CS, it is set to NULL.

Qreq: the array of the IDs of the hosts which have sent requests to Si but Si has not

sent back a reply yet.

TOreq: the array of timers each associated with a REQUEST message sent out.

Trec: the timestamp of the last reconnection. It is set to “0” initially.

The messages used in the algorithm are classified into the following types.

REQUEST: the message sent from a host requesting CS to other hosts for getting

their permissions. The message contains the priority of the request (e.g. a unique

timestamp).

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 140

REPLY: the message sent by a receiver of a REQUEST to grant the permission of

accessing CS.

DOZE: the message to inform others that the sender is entering the doze mode.

DISCONNECT: the message to inform others that the sender is disconnecting

voluntarily.

RECONNECT: the message to inform others that the sender has reconnected to

the network after a voluntary or accidental disconnection. The message contains the

priority (e.g. a unique timestamp) of the reconnection.

7.4. Description of the Algorithm

7.4.1. Initialization of Info_set and Status_set

The algorithm for initializing the Info_set and Status_set is shown in Figure 7-1.

We use an n ×n matrix M, where n is the number of hosts in the network, to represent

the relationships among the hosts. The value of each element of M, mij, represents

the relationship between the pair of hosts Si and Sj. If mij = 0, Sj is in the Info_set of

Si. If mij = 1, Sj is in the Status_set of Si. To ensure that the sets of all the hosts satisfy

the conditions 1) and 2) specified in Section 7.3, an arbitrary host, say S0, is selected

to act as the initiator of the algorithm. The initial value of M is determined by the

initiator.

Figure 7-1 Algorithm for initialization of Info_set and Status_set

S0 generates the upper triangular matrix Mu randomly and broadcasts Mu to all

other hosts. Then, all the hosts, including S0, set the value of each element of the

lower triangular matrix Ml to be the 2’s complement of the corresponding element in

--Executed by all the hosts: -----
//Step 1: Generate the Lower Triangular Matrix Ml
for{ i = 0 to |S|-1}
 for{j= 0 to i-1} mij =1-mji; endfor
endfor
//Step 2: Initialize the Info_set and Status_set
// for host Si//
for { j= 0 to |S|-1and j !=i}

if {mij==0} put Sj into Info_seti;
else put Sj into Status_seti;

endfor

--Executed by the initiator: --
//Generate the Upper Triangular Matrix Mu
for{ i = 0 to |S|-1}
 for{j= i+1 to |S|-1}
 mij = random(0,1);
 endfor
endfor
broadcast Mu to all other hosts;

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 141

the upper triangle. Finally, according to the corresponding row in M, each host

initializes its Info_set and Status_set. It is easy to verify that our initialization

algorithm meets the specified conditions with only a few messages.

In the initialization algorithm, the failures of hosts or links are not considered. To

tolerate failures, each host sets a timeout for the message of Mu. If the timeout

expires, the host sends a query message to the initiator. This may be repeated until

Mu is received from the initiator. Since a host eventually recovers from a failure,

each host eventually receives the Mu and initializes its sets.

Figure 7-2 Body of the permission-based MUTEX algorithm

CoBegin
//Send Request//
if(host Si wants to enter CS
{ set tsreq to the current time;
 for(Sj∈Info_seti) do begin
 Send REQUEST to Sj;
 Set timeout in TOreq for Sj;
 endfor
 goto “Enter CS”;}
//Enter CS//
if(TOreq ==Φ) Enter CS;
//Exit CS//
 Set tsreq to NULL;
 for (Sj∈Info_seti) do begin
 Send REPLY to Sj;
 Remove Sj from Qreq;
 Endfor
//Enter Doze Mode//
Broadcast “DOZE”;
Set Status_set= Φ;
Set Info_set= S;
//Exit Doze Mode//
Set Status_set= Φ;
Set Info_set= S;
//Disconnect voluntarily//
Broadcast “DISCONNECT”;
Set Status_set= Φ;
Set Info_set= S;
//Reconnect//
Broadcast “RECONNECT”;
Sets Status_set= Φ;
Info_set= S;
//Handling timeout//
if(timeout happens for host Sj)
{ Resend REQUEST o Sj;
 Set timeout for Sj in TOreq;}

//Handling messages//
Upon Si receives a message from Sj:
if(REQUEST)
{ Put Sj into Qreq;
 if (Sj ∈Status_seti)
 { Move Sj into Info_seti;
 if (Si is with lower priority)
 { Send REQUEST to Sj;
 Set timeout in TOreq for Sj;}
 }
 if (Si is not requesting or
 priority of Si is lower)
 { Send REPLY to Sj;
 Remove the Sj from Qreq;}
 }
}
if(REPLY)
{ if(Sj∉ Qreq)
 { Move Sj to Status_seti,
 Remove Sj from TOreq ;
 goto “Enter CS”;}
}
if(DISCONNECT or DOZE)
{ Remove Sj from TOreq and Qreq;
 if(Sj∈ Info_seti)
 Move Sj into Status_seti;
}
if(RECONNECT)
 if(Trec<timestamp of RECONNECT)
 { Remove Sj from TOreq and Qreq;
 Move Sj into Status_seti;
 }
CoEnd

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 142

7.4.2. Normal Execution (without Disconnection or Doze)

The pseudocode of the proposed MUTEX algorithm is shown in Figure 7-2. All

the hosts execute the same code.

When a host wants to enter the CS, it first sets tsreq to the current time and sends

the REQUEST messages to all the hosts in its Info_set. To tolerate link and host

failures, a timeout is set in TOreq for each request message sent. The host then waits

for a REPLY message corresponding to each REQUEST message sent out. If the

Info_set is empty, it enters CS immediately.

When a host Si receives a REQUEST message from another host Sj, it moves Sj to

Info_seti and records the request in Qreq. If Si itself is not requesting for CS or its

priority is lower, it sends a REPLY message to Sj and removes the record for Sj in

Qreq. If Sj is in Status_seti before Si receives the REQUEST form Sj and Si is

requesting for CS with a lower priority, Si sends a REQUEST to Sj.

Upon receiving of a REPLY message from host Sj, Si removes the timeout (in

TOreq) associated with Sj. If Si finds no request from Sj in its Qreq, Sj is moved to

Status_seti.

When the timeout for a REQUEST message expires, the requesting host sends a

REQUEST again. When all the replies for REQUEST messages have been received,

the requesting host enters CS.

On exiting CS, a host sends REPLY messages to all hosts in its Info_set.

It is worth notice that when two hosts compete for the CS simultaneously, if we

do not recorder the REQUEST separately in Qreq, it is possible that the host with the

lower priority never gets a REPLY from the other host. This is caused by the non-

FIFO property of communication channels. The following example execution shown

in Figure 7-3 illustrates the usage of Qreq clearly.

The example execution shows the scenario with only two hosts. At the beginning,

the host Si is in the Status_setj while Sj is in the Info_seti (Figure 7-3-(a)). Then Si and

Sj each generate a request while Si has a higher priority. Since Sj is in Info_seti, Si has

to send a REQUEST message to Sj (Figure 7-3-(b)). Upon receiving the REQUEST

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 143

message from Si, Sj moves Si from Status_setj to Info_setj and records the request in

its Qreq. Because the priority of Sj is lower, Sj sends a REPLY and a REQUEST to Si.

However, due to the non-FIFO channel, the REQUEST arrives at Si first, and

consequently Si records this request in Qreq (Figure 7-3-(c)). In Figure 7-3-(d), the

REPLY arrives at Si, but Si does not move Sj into Status_seti because there is a

request from Sj recorded in Qreq. After receiving replies for all REQUEST messages

sent out, Si enters the CS. Upon exiting from the CS, Si sends a REPLY message to Sj

(Figure 7-3-(e)) (Without Qreq, Sj should be in Status_seti and cannot get the REPLY).

Sj moves Si to Status_setj and enters CS (Figure 7-3-(f)).

S jS i

 ...Sj

...

... ...

Si...

...

REQUEST

S jS i

 ...Sj

...

... Si...

...

Si...

1 2

REQUEST
S jS i

 ...Sj

...

...Sj Si...

...

Si...

1 2

REPLY
S jS i

 ...Sj

...

...Sj ...

...

Si...

1 2

REPLY

S jS i

 ...Sj

...

... ...

...

Si...

2
S jS i

 ...Sj

...

... ...

Si...

...

(a) (b)

(c) (d)

(e) (f)

Info_set

Status_set

Qreq

Info_set

Status_set

Qreq

Info_set

Status_set

Qreq

Info_set

Status_set

Qreq

Info_set

Status_set

Qreq

Info_set

Status_set

Qreq

Figure 7-3 An example execution of the permission-based algorithm

7.4.3. Handling Doze and Disconnection

When a host Si wants to enter the "doze" mode, it broadcasts a DOZE message to

all other hosts and moves all hosts in its Status_set to its Info_set. All other hosts

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 144

move Si into their Status_set after they receive the DOZE message from Si. This

ensures that the dozing host would not be disturbed. When a dozing host wakes up, it

resumes the execution without any special operation.

If a host Si wants to disconnect voluntarily, the same steps would be taken except

that Si will broadcast a DISCONNECT message, rather than a DOZE message.

When a host Si reconnects to the network after a disconnection, either a voluntary

one or an accidental one, Si needs to broadcast a RECONNECT message to inform

other hosts and move all the hosts in its Status_seti to its Info_seti.

When a host Sj receives a RECONNECT message from Si, it compares its Trec

with the timestamp of the received RECONNECT message. If Trec is less, moves Si

to Status_seti and if it is waiting for a REPLY message from Si, Sj removes the

corresponding timeout in TOreq. The comparison is necessary because several hosts

may send out a RECONNECT message concurrently. For example, if Si and Sj send

out RECONNECT concurrently, they will move each other to Status_set if they do

not compare the time of reconnection. This violates the conditions for Status_set and

Info_set specified before.

7.5. Correctness of the Proposed Algorithm

In this section we prove the correctness of the proposed algorithm by showing

that the three correctness requirements for distributed MUTEX algorithms are

satisfied.

Lemma 1: Based on the assumptions, the effect of recoverable link or host failures

can be eliminated.

Argument. Without loss of generality, we assume that the link between Si and Sj

fails and some message is lost. If neither of the two hosts is waiting for reply from

another, the link failure has no effect on their executions. So, we assume that Si is

waiting for the reply of Sj. Eventually, the timeout for Sj would expire and the

request is resent. Since we assume that a link failure can be recovered within the

retrying period, Sj eventually will receive the request after the request is resent one

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 145

or more times.

Similarly, when a host e.g. Si, fails, only the hosts waiting for the reply from Si are

affected. Since Si can recover within the specified time period for retrying, it can

eventually receive the request after it reconnects to the network.�

Lemma 2: If a host Si wants to enter CS, it eventually learns about all the hosts

concurrently requesting CS.

Argument. For a host Sj in Status_seti of host Si, if Sj wants to enter CS, it will send

a REQUEST message to Si. Si will receive this request even there are failures

(Lemma 1). For a host Sk in Info_seti of host Si, Si sends a REQUEST message to Sk.

Sk will eventually receive the request (Lemma 1). If Si receives the reply from Sk, it

knows that Sk is not requesting CS. Otherwise, Si is blocked until Sk sends a reply.�

Theorem 1: At most one host can be in the CS at any time (safety).

Argument. We prove the theorem by contradiction. Assume that two hosts Si and Sj

are executing the CS simultaneously. From Lemma 2, each of them has learned the

status of the other, which implies that they had sent reply to each other before they

entered the CS. However, this is impossible because no two hosts have the same

priority. This is a contradiction.�

Theorem 2: The algorithm is deadlock free (liveness).

Argument. A deadlock occurs when there is a circular wait and there is no REPLY

in transit. This means that each host in the cycle is waiting for a REPLY from its

successor host in the cycle. Since each request has a distinct priority, there is a host,

e.g. Sh whose priority is the highest. Assume that the successor of Sh as Sj. We claim

that Sh eventually receives one REPLY from host Sj. In the cases with no failure or

disconnection, the safety property can be proved in a way similar to that in [146].

Here we only consider the cases with failures or disconnections.

Case 1: Sj fails. If Sj failed before it sent out reply to Sh, it will send the reply after

it recovers (Lemma 1). Eventually Sh can receive the reply from Sj.

Case 2: Sj runs normally. In this case, Sj would receive the request from Sh and

handle it. This can be further divided into two cases: 1) Sj has no request for CS or

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 146

its request has a lower priority (because Sh has highest priority). Then Sj would send

reply to Sh immediately. 2) Sj is in the CS. Qreq is set for Sh, and Sh should be moved

to Info_setj if it is in Status_setj before. After Sj exits CS, it must send a reply to Sh.

In all cases, the circular wait is broken eventually. The theorem holds.�

Theorem 3: The algorithm is starvation free (fairness).

Argument. In the cases with no failure or disconnection, the safety property can be

proved in a way similar to that in [146]. Therefore we only need to consider the

situations with failures and disconnections. If there are link failures or host failures,

the effect would be eventually eliminated by the timeout mechanism (Lemma 1). If

there are disconnected hosts, all their current requests would be deleted after they

reconnection or wake up. So, failures and disconnections do not affect the fairness of

the algorithm. The fairness is guaranteed.�

7.6. Performance Evaluation

7.6.1. Analytic Evaluation

In this section, we analyze the performance of the proposed algorithm. As

discussed in Chapter 3, the performance is computed under two special load levels:

low load level and high load level. Under low load levels, there is seldom more than

one request for CS simultaneously in the system; while under high load levels, there

is always a pending request for CS at a host. We use three commonly used measures

[145] in the analysis:

Number of Messages Per CS Entry (MPCS): the average number of messages

exchanged among the hosts for each execution of the CS.

Synchronization Delay (SD): the number of sequential messages exchanged after

a host leaves the CS and before the next host enters the CS.

Response Time (RT): the time interval that a host waits to enter the CS after its

request for CS arrives.

 Since it is hard to quantitatively study the performance under failures, in the

following analysis, we consider only the normal executions without failure or

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 147

disconnection. The performance of the proposed algorithm under failures is

evaluated using simulations and the results are reported in the next section.

7.6.1.1. Number of Messages per CS Entry

The MPCS of the proposed algorithm is in fact determined by the average size of

the Info_set. In general, all the hosts are equally active, so a host is put in an Info_set

and a Status_set with same probability. Therefore, the average size of the Info_set is

n/2. Under low load levels, there is usually only one or no request in the system at

any moment of time. When a host requesting for the CS sends REQUEST messages

to the hosts in its Info_set, those hosts send back REPLY messages immediately.

Therefore, MPCS under low load levels is:

 MPCSlow=2*n/2=n

Under high load levels, each host always has a pending request. For an arbitrary

host Si, on average, n/2 hosts will issue their current requests for CS earlier than Si

does. In general, half of these n/2 hosts are in the Status_set of Si, and they will send

REQUEST messages to Si. On the reception of REQUEST messages from these n/4

hosts, Si sends REQUEST messages back to the senders (Si has the lower priority).

For each REQUEST message, one REPLY message must be sent. Therefore, the

average number of messages for one CS entry at a host under high load levels is:

 MPCShig=2*(n/2+n/4)=3*n/2

In the above analysis, the load at each host is assumed to be the same. However,

as discussed in [146], an interesting feature of Info_set is that its average size is

affected by the activeness of the hosts, i.e. the Info_set of the host requesting for CS

is smaller if the arrival of CS requests is localized at few hosts. In such conditions,

the MPCS under low load levels and high load levels are |Φ| and 3*|Φ|/2 respectively,

where Φ is the set of active hosts. This results in a substantial reduction in message

cost. The effect of this feature is validated in the simulations.

It is important to notice that, the condition that “the arrival of CS requests is

localized at a few hosts” does not mean that only these few hosts have requests for

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 148

CS during the execution. The set Φ may vary from time to time. As long as it can

keep stable for a “quite” long time, the proposed algorithm can benefit.

7.6.1.2. Synchronization Delay

The synchronization delay is meaningless under low load levels, because it

measures the interval between the arrivals of two requests. Under high load levels,

when a host Si exits the CS, it will send REPLY messages to all the hosts in its

Info_set, i.e. the hosts that have pending requests. Then, the host issuing request at

the earliest time will enter the CS immediately after it receives the REPLY from Si.

Therefore, the synchronization delay under high load levels is:

 SDhig= 1, i.e. the time of transferring one message.

7.6.1.3. Response Time

Under low load levels, most of the time, no more than one host competes for the

CS. When a host wants to enter CS, it sends REQUEST messages to the hosts in its

Info_set and then all these hosts send REPLY immediately after they receive the

REQUEST. Therefore the response time under the low load levels is:

 RTlow = 2, i.e. twice of the time of transferring one message.

Under high load levels, there is always a pending request at each host. The hosts

are in the waiting chain with respect to the timestamps of their requests, i.e. the time

when they issue requests for CS. A host in the chain can enter CS after its

predecessor exits, so each host needs to wait for the hosts whose requests are earlier.

On average, each host has to wait for n/2 such hosts. Assuming the average time of

an execution of CS is E, the response time under high load levels is:

 RThig=(E+ SDhig)*n/2= (E+1)*n/2

7.6.2. Simulation Study

Simulations have been carried out to evaluate the performance of the proposed

algorithm. In the simulation, we adopted Glomosim [156] as the platform which has

been widely used for simulating algorithm in MANETs. The proposed algorithm is

implemented as an application level protocol.

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 149

7.6.2.1. Simulation Parameters and Setup

In the simulations, we set the parameters of the MANET with the same values as

those used in [17]. Since the network partition problem is not considered, we

adopted such a territory scale that can minimize the probability of network partitions

while maximizing the number of hops for each application message [17].

All the hosts are scattered into a rectangular territory. To evaluate the scalability

of the algorithm, we varied the number of hosts, and accordingly the territory scale

in proportion, so that the

performances under

different numbers of

hosts are comparable.

The number of hosts

with corresponding

territory scale and other

main parameters are shown in Table 7-1.

We used UDP as the transport layer protocol at first, but the high percentage of

packet loss (more than 50%) always made the simulation blocked. Therefore we

finally used TCP. However, even using TCP, there are still some packets lost (near

2%), which may be caused by the movements of the hosts.

The arrival of the requests at a host is assumed to satisfy a Poisson distribution

with mean λ, which represents the number of requests generated by a single host per

second. Simulations were carried out under three different load levels, i.e. high

(λ=1.00E-2), middle (λ=1.00E-3) and low (λ=1.00E-4).

The simulations can be divided into three parts. First, there are only link failures

in the network. Just as mentioned above, packet loss is already there, so we did not

simulate link failures by ourselves in this part. Second, we introduced host failures.

The arrival of host failures at a host is also assumed to satisfy a Poisson distribution

and the duration of host failures satisfies the exponential distribution. To simplify the

simulation, we fixed the percentage of host failure to 10%, a value that is quite high.

Table 7-1 Simulation settings for the MUTEX algorithm

Number of Hosts 4, 8, 12, 16, 20

Territory Scale 313m, 443m,543m,626m, 700m

Average speed of movement 20m/sec

Mobility model Random-waypoint

Transmission radius 200m

Routing-protocol BELLMANFORD

Link bandwidth 2M bits/Sec

Simulation Time 300 Hours

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 150

In the two parts described above, the load levels of all the hosts are the same, i.e.

the arrival rates of requests at the hosts are uniform. However, as discussed in

Section 7.6.1, one feature of the algorithm is that the performance is better if the

arrival of CS requests is localized at few hosts. This feature makes the algorithm

scalable to large system. Therefore, we also conducted simulations under the

condition that different hosts have different load levels.

All simulation were carried out under three different mobility levels set by

adjusting the pause time so that the time a host does move accounts for 100%, 50%

and 10% of the total simulation time respectively.

7.6.2.2. Simulation Results and Discussion

In the simulations, we measured the message cost using two metrics. Besides the

MPCS introduced before, the number of hops per CS entry (HPCS) is also adopted.

In this thesis, a "message" means an application layer message, i.e. the end-to-end

message; while a "hop" means a network layer message, i.e. the point-to-point

message. Obviously, the latter can reflect the message cost of an algorithm more

precisely. Because of the resource constraints, HPCS is important for MANETs. As

to the cost in time, we measured the RT of our algorithm. However, the following

discussions focus on the MPCS and HPCS, which is at the core of the paper. The

simulation results are described and discussed according to the main factors that

affect the performance.

To understand the simulation results well, we first need to find out the

relationship between MPCS and HPCS. The difference between the two metrics

depends on the number of hops per message, which is affected by the topology of a

MANET. In a MANET, the topology is dynamic due to the movements and failures

of hosts. Therefore, the number of hops per message is significantly affected by the

mobility of the hosts, which has been validated in [17]. Figure 7-4 depicts the

average number of hops needed for each application level message with 20 hosts in

our simulation environment. When the mobility increases, the number of hops

decreases. In fact, the number of hops is determined by the distance between the

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 151

source and destination host. In a MANET, the distance between any two hosts is

changed from time to time. However, the higher the mobility is, the higher the

probability for the distance between any two hosts to be short. Therefore, under high

mobility, the number of hops is small. Of course, the limitation of the number of

hops is one.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 50 80 100
Mobility(%)

H
op

s/
M

sg

Figure 7-4 No. of hops per application message

Figure 7-5 MPCS/HPCS vs. No. of hosts - effect of mobility

No. of Msgs under Low Load Level

0

5

10

15

20

25

4 8 12 16 20
(a) No. of Hosts

M
PC

S

Mobility-low
Mobility-mid
Mobility-high
Mobility-no

No. of Hops under Low Load Level

0

10

20

30

40

50

60

4 8 12 16 20
(d) No. of Hosts

H
PC

S

Mobility-low
Mobiltiy-mid
Mobility-high
Mobility-no

No. of Msgs under Middle Load Level

0

10

20

30

40

50

4 8 12 16 20
(b) No. of Hosts

M
PC

S

Mobility-low
Mobility-mid
Mobility-high
Mobility-no

No. of Msgs under High Load Level

0

10

20

30

40

50

60

70

4 8 12 16 20
(c) No. of Hosts

M
PC

S

Mobility-low
Mobility-mid
Mobility-high
Mobility-no

No. of Hops under Middle Load Level

0

20

40

60

80

4 8 12 16 20
(e) No. of Hosts

H
PC

S

Mobility-low
Mobility-mid
Mobility-high
Mobility-no

No. of Hops under High Load Level

0

20

40

60

80

100

120

4 8 12 16 20
(f) No. of Hosts

H
PC

S

Mobility-low
Mobility-mid
Mobility-high
Mobility-no

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 152

1) Effect of System Scale

Both Figure 7-5 and Figure 7-7 show that MPCS/HPCS increases linearly while

the number of hosts increases. Using the "look ahead" technique, a host only needs

to send requests to those hosts in the Info_set or competing for the CS concurrently.

Since all the hosts are equally active, the average size of the Info_set is in proportion

with the system scale, as analyzed in previous section. Therefore, the message cost

increases nearly linearly when the system scale increases, and the algorithm is

scalable to the system scale. When the activeness of hosts is not uniform, the

scalability of our algorithm is much better. See "5) Effect of uniformity of load

level" for more discussions.

The effect of system scale on RT is shown in Figure 7-6 and Figure 7-8. Same as

HPCS/MPCS, the response time increases with the increase of the system scale. A

large number of hosts in the system lead to more messages exchanged and higher

competitions for CS, so a host needs to wait longer before it can enter the CS.

2) Effect of Mobility

Figure 7-5 and Figure 7-6 show the effect of mobility on MPCS/HPCS and RT

respectively. Under different load levels, the MPCS without host movement is

always the best. This is easy to understand. If the hosts do not move, the TCP

connections can be established easily and keep stable. So, all the requests are

handled quickly and no message re-sending is needed. When hosts move during the

execution, it becomes difficult to establish and maintain a connection due to the

package loss caused by host movements. As a result, the number of messages

increases. However, MPCS under low mobility is higher than that under high

mobility. This can be explained using the effect of mobility on the distance between

two hosts. Just as discussed before, the higher the mobility is, the shorter the average

distance between any two hosts is and the higher probability for the connection to be

established. Therefore, the response time would be shorter (as shown in Fig 6) and

fewer hosts compete for the CS concurrently, leading to less request messages.

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 153

Figure 7-6 RT vs. No. of hosts - effect of mobility

The effect of mobility on the HPCS, shown in Figure 7-5-(d), (e) and (f), is

similar to that on the MPCS, except that the performance under no movement is no

longer the best. This is because that, besides its effect on the establishment of a

connection, the mobility level also affects the average number of hops per message

as discussed in Figure 7-4. If there is no movement, the number of hops per message

becomes large, which makes the performance bad.

As shown in Figure 7-6, the mobility affects the RT in a very similar way as it

does on MPCS. More messages mean longer delay and more competitions, so RT

varies with the same trend of MPCS. It is important to notice that when the MHs do

not move, the RT is much less than that with movements. This is because that the

mobility of MHs affects not only the establishment of connections among hosts but

also the transmission of a message.

3) Effect of Load Level

Figure 7-7 shows the MPCS against the load level. In general, MPCS increases

with the increase of the load level. From the curves in Figure 7-7 we can see, under

low load levels, a host needs to send request messages to nearly half of all hosts.

Under high load levels however, there are pending requests at any time, so a host

Response time under Low Load Level

0

20

40

60

80

100

120

4 8 12 16 20
(a) No. of Hosts

R
T

(s
)

Mobility-low
Mobility-mid
Mobility-high
Mobility-no

Response time under Middle Load Level

0

50

100

150

200

250

4 8 12 16 20
(b) No. of Hosts

R
T

(s
)

Mobility-low
Mobility-mid
Mobility-high
Mobility-no

Response time under High Load Level

0

50

100

150

200

250

300

4 8 12 16 20
(c) No. of Hosts

R
T

(s
)

Mobility-low
Mobility-mid
Mobility-high
Mobility-no

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 154

that wants to enter CS needs to send request messages to not only all the hosts in its

Info_set, but also those requesting for the CS. Therefore, the MPCS increases.

Figure 7-8 shows the effect of the load level on RT, similar to the effect on MPCS.

The higher the load level is, the higher the RT.

Figure 7-7 MPCS vs. No. of hosts - effect of load level and host failures

Figure 7-8 RT vs. No. of hosts - effect of load level and host failures

No. of Msgs w /o Mobility

0

10

20

30

40

50

60

4 8 12 16 20
 (d) No. of Hosts

M
PC

S

Low load
Low load-Fail
Midload
Midload-Fail
Highload
Highload-Fail

No. of Msgs w /t Low Mobility

0
10
20
30
40
50
60
70
80
90

4 8 12 16 20
(a) No. of Hosts

M
PC

S

Low load
Low load-Fail
Midload
Midload-Fail
Highload
Highload-Fail

No. of Msgs w /t Middle Mobility

0
10
20
30
40
50
60
70
80

4 8 12 16 20
(b) No. of Hosts

M
PC

S

Low load
Low load-Fail
Midload
Midload-Fail
Highload
Highload-Fail

No. of Msgs w /t High Mobility

0

10

20

30

40

50

60

70

80

4 8 12 16 20
(c) No. of Hosts

M
PC

S Low load
Low load-Fail
Midload
Midload-Fail
Highload
Highload-Fail

Response Time w /o Mobility

0

5

10

15

20

25

30

4 8 12 16 20
 (d) No. of Hosts

R
T

(s
)

Low load
Low load-Fail
Midload
Midload-Fail
Highload
Highload-Fail

Response Time w /t Low Mobility

0
50

100
150
200
250
300
350
400
450
500

4 8 12 16 20
(a) No. of Hosts

R
T

(s
)

Low load
Low load-Fail
Midload
Midload-Fail
Highload
Highload-Fail

Response Time w /t High Mobility

0

50

100

150

200

250

300

350

4 8 12 16 20
(c) No. of Hosts

R
T

(s
)

Low load
Low load-Fail
Midload
Midload-Fail
Highload
Highload-Fail

Response Time w /t Middle Mobility

0
50

100
150
200

250
300
350
400

4 8 12 16 20
(b) No. of Hosts

R
T

(s
)

Low load
Low load-Fail
Midload
Midload-Fail
Highload
Highload-Fail

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 155

4) Effect of Host Failure

From Figure 7-7 and Figure 7-8, we can see that more time and messages are

needed when there are host failures. The curves with host failures are named with a

suffix “-Fail”. Under different load levels and system scales, the increase in MPCS

caused by host failures varies strongly. In some cases, the number of messages is

doubled, but for most cases, about 40% more messages are needed. Considering the

high failure rate (10%), this is acceptable.

5) Effect of Uniformity of Load Level

As discussed in Section 7.6.1, the performance of the propose protocol is affected

by the activeness of the hosts. To evaluate this feature, we let some hosts generate

requests more actively than others. In this part of simulations, we fix the number of

hosts to 20 and mobility to 50%. The requests for CS of four hosts out of all the 20

hosts constitute 80% of all requests, while the rest of the hosts generate only 20%

requests. Under a non-uniform load level, some hosts have a higher load level than

the others, but the total load level of all the hosts is the same as that under a uniform

load level.

To measure the performance precisely, more load levels were examined. Figure

7-9 shows the HPCS against the load level. Obviously, if some hosts are more active

than others, the message cost is significantly reduced, which agrees to the analysis in

Section 7.6.1. This feature is especially important to the scalability, because it makes

the increase of message cost slower than the increase of system scale.
Uniform vs Non-uniform

0

10

20

30

40

50

60

70

2.50E-05 5.00E-05 1.00E-04 1.00E-03 2.50E-03 5.00E-03 1.00E-02

Load level

H
PC

S

uniform-load

non-uniform-load

Figure 7-9 HPCS w/t non-uniform load level

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 156

7.7. Making the Algorithm More Robust

In the algorithm described in Section 7.4, permanent link or host failures are not

considered. In an asynchronous system, there is no solution to precisely detect such

failures. However, the algorithm can be extended to handle permanent failures, with

the assumption that such failures can be suspected using some approach, e.g. a

timeout based approach. Once a permanent failure or network partition is perceived

to occur, we enhance our algorithm in the following way to handle it.

7.7.1. Permanent Host Failures

First, let us consider the permanent failures during the initialization. As described

in Section 7.4, a timeout is set for the initialization message from the initiator. To

handle the permanent failure of the initiator, a host Si sends query messages to all

other hosts rather than only the initiator, when the timeout expires. On the reception

of the query, the receivers send back replies with the possibly received Mu. If no host

receives the initialization Mu, a new initiator can be selected using some predefined

order, e.g. ID_new_initiator = (ID_old_initiator +1) mod n. Then the initialization is

tried again.

Now, we discuss how to handle permanent failures in the mutual exclusion. To

handle permanent host failures, a straightforward method is to set a threshold for

resending a REQUEST message. When the number of the times of resending a

REQUEST reaches the threshold, the destination host is perceived to be crashed and

it is moved to the Status_set. However, the accuracy of detecting permanent host

failures using such a method is significantly affected by the load levels. To avoid this,

another method is to detect such failures using a separate heartbeat like mechanism,

which is commonly used in distributed systems. After the crash of a host is detected,

the host is move to Status_set.

7.7.2. Network Partition

The execution of a host may be blocked when the network is partitioned (because

of link failures, host failures, or host movements) until the partitions are merged. If

Chapter 7. A Permission-based MUTEX Algorithm for MANETs

 157

the partitions keep unconnected for very long time, the delay caused may be

intolerable. Whether such a long time delay can be avoided depends on the property

of the CS. If the CS cannot be accessed by two or more hosts at any moment of time,

even if they are in unconnected partitions, no action can be taken.

Otherwise, if the hosts in different partitions can access the CS simultaneously, it

is possible to reduce the wait time caused by partitions. In fact, the main difficulty to

handle the network partitioning is how to detect it, which is out of scope of this

paper. Here, we assume there is such a partition detection module available. With

such a module, handling the partitioning is simple. Once a partition is detected, a

host moves all the hosts in other partitions to its Status_set. However, it is more

complex to handle the merging of partitions. The relationship between the hosts in

different partitions must be considered. For a pair of hosts in two different partitions,

it is possible that both hosts put each other in the Status_set, which violates the

conditions specified in Section 7.3, when the partitions are merged. To deal with this,

at least one host has to change its Status_set. A simple but efficient method is that the

host with the small ID moves the other host from Status_set to Info_set.

7.8. Summary

In this chapter, we propose an efficient and reliable permission-based MUTEX

algorithm for MANETs. This algorithm does not depend on any logical topology so

as to eliminate the cost of maintaining such a topology. To reduce the number of

message exchanged, the “look ahead” technique is used. We designed a fault

tolerance mechanism using timeout to tolerate intermittent and recoverable link/host

failures, which very frequently occur in MANETs. The algorithm can also handle

dozes and disconnections of hosts. The simulation results show that the algorithm

performs better under low load levels and high mobility level. One important feature

of the algorithm is the scalability to large system scale, especially when some hosts

are more active than the others.

Chapter 8. Conclusions and Future Directions

 159

Chapter 8. Conclusions and Future Directions

8.1. Conclusions

In this thesis, we first investigated the characteristics of mobile networks, in

aspects of communication, mobility and resource constraints, and identified the new

challenges caused by these characteristics in the design of distributed algorithms.

Based on the investigations, we study how to design distributed coordination

algorithms in mobile wireless environments. We focus on solutions to two

distributed coordination problems: consensus and mutual exclusion.

Our work on consensus consists of three parts. The first part is concerned with

how to increase the execution speed of consensus protocols. Usually, the execution

of a consensus protocol is slowed down by host failures and mistakes made by the

underlying oracle, e.g. the failure detector or leader oracle. To avoid such slowdowns,

we developed the Look-Ahead technique, which can speed up the execution of

consensus protocols by making use of “future” messages. Due to the asynchrony of

the system, some messages may be delivered to their destination hosts that have not

entered the corresponding phase or round. On the reception of such future messages,

the receiver host can extract the knowledge about the future of its execution and then

adapt its state to the future situation so as to reduce the waiting time for some slow

messages. Look-Ahead is a general technique that can be easily applied to existing

consensus protocols.

The second part is concerned with improving the message efficiency of consensus

protocols in MANETs. A two-layer hierarchy is imposed on the MHs by grouping

MHs into clusters. The clusterheads help merge/unmerge the messages with

destinations in the same cluster so as to reduce the message cost and improve the

scalability. Using different clustering approaches, we developed two hierarchical

consensus protocols. In the first protocol, the set of clusterheads is defined in

advance and the MHs find and associate themselves with the clusterheads. This

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 160

protocol requires a failure detector ◊P, which is stronger than the commonly used ◊S.

Moreover, the functions of achieving consensus and clustering hosts are interlaced,

which makes the protocol complicated. To address these problems, we designed

another hierarchical protocol, in which the function of clustering hosts is undertaken

by a separate module named clusterer oracle ∆. ∆ is equivalent to ◊S in the power of

tolerate failures in solving consensus but it is more powerful in the sense that it can

help the consensus protocols built on top of it improve their message efficiency and

scalability, which is especially important for large scale MANETs.

The last part of our research on consensus is about achieving consensus in

dynamic mobile systems, where the number of participating processes can change

arbitrarily as time passes and processes can join or leave the system at any time. We

proposed an eventual leader protocol for dynamic infrastructured mobile networks.

The network of MSSs is a static system, while the MHs constitute a dynamic system.

By exchanging queries and responses among the MSSs using a time free approach, a

correct MH is eventually elected as the leader.

For the mutual exclusion problem, we developed a permission-based algorithm,

which adopts the “look ahead” technique (proposed by Singhal et al. [146]) to

achieve message efficiency. A host needs to get permissions from a subset instead of

all MHs before it can access the CS. Timeout-based fault tolerance mechanisms are

designed to tolerate both link and host failures.

 Extensive evaluations, including analysis and simulations, have been conducted

to examine the performance of our proposed algorithms. The results show that our

objectives are well fulfilled.

8.2. Future Directions

Our research in this thesis mainly focuses on the efficiency and fault tolerance in

MANETs. It remains as our future work to improve the proposed algorithms and to

investigate related research directions.

Chapter 8. Conclusions and Future Directions

 161

One issue that deserves further study is to improve the implementation of the

clusterer oracle ∆. In our current implementation, the set of clusterhead is too large at

the beginning (all the hosts are included); while it may be too small at the end (there

may be only one host in the set). Such extreme sizes significantly affect the

efficiency of the two-layer hierarchy. For the former case, the size can be simply

reduced using a uniform initial value, e.g. half the number of MHs. The latter case,

however, it is more difficult to handle. The underlying reason for this problem is the

weak accuracy of ◊S. One possible solution is to replace ◊S with a stronger FD, ◊P,

but this violates one of the objectives to define ∆: clustering MHs with the weakest

FD of ◊S.

Another interesting topic is combining the time efficiency approach and message

efficiency approach so as to save both time cost and message cost in consensus

simultaneously. In this thesis, the time efficiency and message efficiency are studied

separately. However, combining the approaches for these two aspects is not trivial.

There is some connection between our proposed techniques/protocols for time

efficiency and message efficiency. In the hierarchical protocols, to handle the

message losses caused by the dynamics of the two-layer hierarchy, “future”

messages are also involved. Therefore, how to integrate the mechanisms the use of

“future” messages in Look-Ahead technique and hierarchical protocols should be

investigated carefully.

The dynamic system is one promising research direction in distributed computing.

In this thesis, an eventual leader protocol for dynamic infrastructured mobile

networks has been proposed, but many other topics, such as how to elect an eventual

leader in dynamic MANETs and how to achieve consensus based on these eventual

leader oracles, still need further study.

In infrastructured networks, the system is modeled as two sub-systems: the static

system of MSSs and the dynamic system of MHs. With such a model, existing

eventual leader protocols for wired dynamic system can be adapted to the sub-

system of MSSs, which will elect the eventual leader on behalf of MHs. In MANETs,

Distributed Coordination in Mobile Wireless Environments, PhD Thesis, Weigang Wu, 2006

 162

however, there is no MSS and all the work must be done by MHs themselves.

Intuitively, in a dynamic MANET, the implementation of eventual leader still needs

some “stable” part as the sub-system of MSSs in an infrastructured network.

Therefore, how to define and make use of such a stable sub-system is at the core of

an eventual leader protocol in dynamic MANETs.

Besides the implementation of oracles, the design of consensus protocols in

dynamic systems is also worth investigation. In infrastructured networks, the

principle is still letting MSSs do as much work as possible. With the help of MSSs,

which can be modeled as a static system, achieving consensus should be much easier

than in MANETs. Similar as the implementation of the eventual leader in dynamic

MANETs, how to define and make use of a stable sub-system is the key issue.

Finally, we would like to investigate whether it is possible to achieve consensus

with certain specified probability. In this thesis, only deterministic consensus is

considered. However, due to the characteristics of mobile wireless networks,

probabilistic consensus may be more suitable and efficient for some applications in

MANETs. Although some efforts have been made to develop randomized consensus

protocols using random number generator, how to guarantee a specified probability

of achieving consensus is a challenging task due to the asynchrony of the mobile

system.

 163

References
[1] B. J. Abbari, E. Dinan, W. and Fuhrmann, Performance Analysis of a Multilink Packet

Access for Next Generation Wireless Cellular Systems, Proc. of the 9th IEEE Int’l

Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC’98), pp. 131-

135, 1998.

[2] A. Agbaria, H. Attiya, R. Friedman, and R. Vitenberg, Quantifying Rollback Propagation

in Distributed Checkpointing, Proc. of the 20th Symposium on Reliable Distributed

Systems (SRDS’01), pp. 36-45, 2001.

[3] A. Agbaria, and W. H. Sanders, Distributed Snapshots for Mobile Computing Systems,

Proc. of the 2nd Int’l Conference on Pervasive Computing and Communications

(PerCom04), pp. 177-186, 2004.

[4] M.K. Aguilera, A Pleasant Stroll Through the Land of Infinitely Many Creatures, ACM

SIGACT News, Distributed Computing Column, vol. 35 no. 2, pp. 36-59, 2004.

[5] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg, Communication-

Efficient Leader Election and Consensus with Limited Link Synchrony, Proc. of the

23rd ACM Symposium on Principles of Distributed Computing (PODC’04), ACM

Press, pp. 328-337, 2004.

[6] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg, On Implementing

Omega with Weak Reliability and Synchrony Assumptions, Proc. of the 22nd ACM

Symposium on Principles of Distributed Computing (PODC’03), pp. 306-314, 2003.

[7] M.K. Aguilera, and S. Toueg, Failure Detection and Randomization: A Hybrid Approach

to Solve Consensus, SIAM J. Computing, vol. 28 no. 3, pp. 890-903, 1998.

[8] S. A. Ahson, and I. Mahgoub, Research Issues in Mobile Computing, Proc. of IEEE Int’l

Performance, Computing, and Communications Conference (IPCCC’98), pp. 209-

215, 1998.

[9] C. Almeida, and P. Verissimo, An Adaptive Real-Time Group Communication Protocol,

Proc. of the 1st IEEE Workshop on Factory Communication Systems, pp. 63-71, 1995.

[10] C. Almeida, and P. Verissimo, The Quasi-Synchronous Approach to Distributed Real-

Time Databases, INESC tech rep RT/02-96, 1996.

[11] C. Almeida, and P. Verissimo, Timing Failure Detection and Real-time Group

Communication in Quasi-Synchronous Systems, Proc. of the 8th Euromicro Workshop

on Real-Time Systems, pp. 230-235, 1996.

[12] C. Almeida, and P. Verissimo, Using Light-Weight Groups to Handle Timing Failures in

Quasi-Synchronous systems, Proc. of the 19th IEEE Real-Time System Symposium, pp.

 164

430-439, 1998.

[13] D. Angluin, Local and Global Properties in Networks of Processes. Proc. 12th ACM

Symp. on Theory of Computing (STOC’80), ACM Press, pp. 82-93, 1980.

[14] H. Attiya, and J. Welch, Distributed Computing: Fundamentals, Simulations and

Advanced Topics, McGraw-Hill, 1998.

 [15] N. Badache, M. Hurfin. and R. Macedo, Solving the Consensus Problem in a Mobile

Environment, Proc. of the 18th IEEE Int’l Performance Computing and

Communications Conference (IPCCC’99), pp. 29-35, 1999

[16] B. Badrinath, A. Acharya, and T. Imielinski, Designing Distributed Algorithms for

Mobile Computing Networks, Computer Communications, vol. 19 no. 4, pp. 309-320,

1996.

[17] R. Baldoni, A. Virgillito, and R. Petrassi, A Distributed Mutual Exclusion Algorithm for

Mobile Ad-Hoc Networks, Proc. of the 7th IEEE Symp. on Computers and

Communications (ISCC’02), pp. 539-544, 2002.

[18] S. Banerjee, and P. K. Chrysanthis, A New Token Passing Distributed Mutual

Exclusion Algorithm, Proc. of the 16th International Conference on Distributed

Computing Systems (ICDCS’96), pp. 717 -724, 1996.

[19] A. Basu, B. Charron-Bost, and S. Toueg, Simulating Reliable Links with Unreliable

Links in the Presence of Process Crashes, Proc.of the 10th International Workshop on

Distributed Algorithms (WDAG’96), LNCS 1151, pp. 105-122, 1996.

[20] P. Bellavista, A. Corradi, and C. Stefanelli, A Mobile Agent Infrastructure for Terminal,

User, and Resource Mobility, Proc. of the 7th IEEE/IFIP Network Operations and

Management Symposium (NOMS’00), pp. 877-890, 2000.

[21] M. Benchaïba, A. Bouabdallah, N. Badache, and M. Ahmed-Nacer, Distributed Mutual

Exclusion Algorithms in Mobile Ad Hoc Networks: an Overview, ACM SIGOPS

Operating Systems Review, vol. 38 no.1, pp. 74-89, 2004.

[22] M. Ben-Or, Another Advantage of Free Choice: Completely Asynchronous Agreement

Protocols, Proc. of the 2nd ACM Symposium on Principles of Distributed Computing

(PODC ’83), pp. 27-30, 1983.

[23] M. Bertier, O. Marin, and P. Sens, Implementation and Performance Evaluation of an

Adaptable Failure Detector, Proc. of International Conference on Dependable Systems

and Networks (DSN ‘02), pp. 354-363, 2002.

[24] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui, Deconstructing Paxos, SIGACT

News, Distributed Computing Column, vol.34 no.1, pp. 47-67, 2003.

[25] G. Bracha, and S. Toueg, A Distributed Algorithm for Generalized Deadlock Detection,

Distributed Computing, vol. 2, pp. 127-138, 1987.

[26] T. Camp, J. Boleng, and V. Davies, A Survey of Mobility Models for Ad Hoc Network

 165

Research, Wireless Communications & Mobile Computing (WCMC), vol. 2 no. 5, 2002

[27] G. Cao and M. Singhal, A Delay-Optimal Quorum-based Mutual Exclusion Algorithm

for Distributed Systems, IEEE Trans. on Parallel and Distributed Systems, vol. 12 no.

12, pp. 1256-1268, 2001

[28] O. S. F. Carvalho and G. Roucairol, On Mutual Exclusion in Computer Networks,

technical correspondence, Communications of the ACM, vol. 26 no. 2, pp. 146-149,

1983.

[29] T. L. Casavant, and M. Singhal, Readings in Distributed Computing Systems, IEEE

computer society press, 1994.

[30] T. Chandra, V. Hadzilacos, and S. Toueg, The Weakest Failure Detector for Solving

Consensus, Journal of the ACM, vol. 43 no. 4, pp. 685-722, 1996.

[31] T. Chandra, and S. Toueg, Unreliable Failure Detectors for reliable distributed Systems,

Journal of the ACM, vol.43 no. 2, pp. 225-267, 1996.

[32] K. M. Chandy, and L. Lamport, Distributed Snapshots: Determining Global States of

Distributed Systems, ACM Transactions on Computer Systems, vol. 3 no.1, pp. 63-75,

1985.

[33] K.M. Chandy, and J. Misra, How Processes Learn. Distributed Computing, vol. 1 no. 1,

pp. 40-52, 1986.

[34] Y. Chang, M. Singhal, and M. Liu, A Dynamic Token-based Distributed Mutual

Exclusion Algorithm, Proc. of the 10th Annual International Phoenix Conference on of

Computers and Communications, pp. 240-246, 1991

[35] Y. Chang, M. Singhal, and M. Liu, A Fault Tolerant Algorithm for Distributed Mutual

Exclusion, Proc. of the 9th IEEE Symp. on Reliable Dist. Systems (SRDS’90), pp. 146-

154, 1990.

[36] Y. Chen and J. Welch, Self-stabilizing Mutual Exclusion Using Tokens in Mobile Ad

Hoc Networks, Proc. of the 6th International Workshop on Discrete Algorithms and

Methods for Mobile Computing and Communications (Dial-M’02), pp. 34-42, 2002.

[37] G. Chockler, M. Demirbas, S. Gilbert, C. C. Newport, and T. Nolte, Consensus and

Collision Detectors in Wireless Ad Hoc Networks, Proc. of the 24th ACM Symp. on

Principles of Distributed Computing (PODC’05), pp. 197-206, 2005.

[38] G. Chockler and D. Malkhi, Active Disk Paxos with Infinitely Many Processes, Proc. of

the 21st ACM Symposium on Principles of Distributed Computing (PODC ’02), pp.

78-87, 2002.

[39] F. Chu , Reducing Ω to ◊W, Information Processing Letters, vol. 76 no. 6, pp.293-298,

1998.

[40] L. Cininiera, P. Maggi, and R. Sisto, SCARAB: Innovative Services Supporting User

and Terminal Mobility, Proc. of Int’l Conf. on Distributed Computing Systems

 166

Workshop (ICDCSW), pp. 487-493, 2001.

[41] F. Cristian, Understanding Fault-tolerant Distributed System, Communications of the

ACM, vol.34 no. 22, pp. 56-78, 1991.

[42] F. Cristian, and C. Fetzer, The Timed Asynchronous Distributed System Model, IEEE

Transactions on Parallel and Distributed Systems, vol.10 no. 6, pp.642-657, 1999

[43] A. Coccoli, A. Bondavalli, and L. Simoncini, Consensus in Asynchronous Distributed

Systems, Proc. of the 5th Int. Conf. on Integrated Design and Process Technology

(IDPT’00),. 2000.

[44] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts and Design

(3rd edition), Addison-Wesley, 2001.

[45] X. Defago, and A. Schiper, Semi-passive replication and Lazy Consensus, Journal on

Parallel and Distributed Computing, vol. 64 no. 12, pp. 1380-1398, 2004.

[46] R. De Prisco, B. Lampson, and N. Lynch. Revisiting the Paxos Algorithm, Theoretical

Computer Science, vol. 243 no. 1-2, pp. 35-91, 2000.

[47] D. Dhamdhere, and S. Kulkami, A Token based k-resilient Mutual Exclusion Algorithm

for Distributed Systems, Information Processing Letters, vol. 50, pp. 151-157, 1994.

[48] E. Dijkstra and C. Scholten, Termination Detection for Diffusing Computations,

Information Processing Letters, vol. 11 no. 1, pp. 1-4, 1980.

[49] D. Dolev, C. Dwork, and L. Stockmeyer, On the Minimal Synchronism Needed for

Distributed Consensus, Journal of the ACM, vol. 34, no. 1, pp. 77-97, 1987.

[50] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi, Failure Detectors in Omission Failure

Environments, Technical Report: TR96-1608, Department of Computer Science,

Cornell University, Sep. 1996.

[51] P. Dutta, and R. Guerraoui, Fast Indulgent Consensus with Zero Degradation, Proc. of

the 4th European Dependable Computing Conference (EDCC’02), France, LNCS 2485,

pp. 191-208, 2002.

[52] P. Dutta, R. Guerraoui, and I. Keidar, The Overhead of Consensus Failure Recovery, IC

Technical Report 200456, EPFL, Jun. 2004.

[53] C. Dwork, N. Lynch, and L. Stockmeyer, Consensus in the Presence of Partial

Synchrony, Journal of the ACM, vol. 35 no. 2, pp. 288-323, 1988.

[54] H. Elaarag, Improving TCP Performance over Mobile Networks, ACM Computing

Surveys (CSUR), vol. 34 no. 3, pp. 357-374, 2002.

[55] P. Ezhilchelvan, A. Mostefaoui, and M. Raynal, Randomized Multivalued Consensus,

Proc. of the 4th IEEE Int’l Symp. on Object-Oriented Real-Time Computing, pp. 195-

200, 2001.

[56] J. Fernandes, and J. Garcia, Cellular Coverage for Efficient Transmission Performance

in MBS, Proc. of the 52nd IEEE Vehicular Technology Conference (VTC'00), pp. 2225-

 167

2232, 2000.

[57] J. Fernandes , and J. Garcia, Multiple coverage for MBS environments, Proc. of the 11th

IEEE Int’l Symp. on Personal, Indoor, and Mobile Radio Communications

(PIMRC’00), pp. 644-649, 2000.

[58] C. Fetzer, and F. Cristian, Fail-aware Failure Detectors, Proc. of the 15th Symposium on

Reliable Distributed Systems (SRDS’96), pp. 200-209, 1996.

[59] C. Fetzer, M. Raynal, and F. Tronel, An Adaptive Failure Detection Protocol, Proc. of

the 8th Pacific Rim International Symposium on Dependable Computing (PRDC’01),

pp. 146-153, 2001

[60] M. Fischer, The Consensus Problem in Unreliable Distributed Systems (A Brief Survey),

Research Report YALE/DCS/RR-273, Yale Univ., 1983.

[61] M. Fischer, N. Lynch, and M. Paterson, Impossibility of Distributed Consensus with

One Faulty Process, Journal of the ACM, vol. 32 no. 2, pp. 374-382, 1985.

[62] P. Flocchini, B. Mans, and N. Santoro, Sense of Direction in Distributed Computing,

Proc. 12th Int’l Symp. on Distributed Computing (DISC’98), Springer-Verlag LNCS

#1499, pp. 1-16, 1998.

[63] G. Forman, and J. Zahorjan, The Challenges of Mobile Computing, IEEE Computer, vol.

27 no. 4, pp. 38-47, 1994.

[64] R. Friedman, A. Mostefaoui, M. Raynal, On the Respective Power of ◊P and ◊S to

Solve One-Shot Agreement Problems, Technical Report of IRISA, No. 1547, Jul. 2003.

[65] R. Friedman, M. Raynal, and C. Travers, Two Abstractions for Implementing Atomic

Objects in Dynamic Systems, Proc. of the 9th Int’l Conf. on Principles of Distributed

Systems (OPODIS’05), pp. 73-87, 2005.

[66] R. Friedman, and G. Tcharny, Evaluating Failure Detection in Mobile Ad-Hoc Networks,

Tech Report #CS-2003-06, Computer Science Departement, Technion (Israel), 2003.

[67] E. Gafni, and L. Lamport, Disk Paxos, Proc. of the 14th Int’l Symposium on Distributed

Computing (DISC’00), LNCS #1914, pp. 330-344, 2000.

[68] H. Garcia-Molian, Elections in a Distributed Computing System, IEEE Transactions on

Computers, vol. C-31 no. 1, pp. 48-59, 1982.

[69] R. Guerraoui, Indulgent Algorithms, Proc. of the 19th ACM Symp. on Principles of

Distributed Computing, (PODC’00), ACM Press, pp. 289-298, 2000.

[70] R. Guerraoui, M. Hurfin, A. Mostefaoui, R. Oliveira, M. Raynal, and A. Schiper,

Consensus in Asynchronous Distributed Systems: A Concise Guided Tour, Advances in

Distributed Systems, LNCS 1752, pp. 33-47, 2000.

[71] R. Guerraoui, R. Oliveira, and A. Schiper, Stubborn communication channels, Technical

report, LSE, Ecole Polytechnique Federale de Lausanne, Switzerland, 1996.

[72] R. Guerraoui, and M. Raynal, The Alpha and Omega of Asynchronous Consensus, Tech

 168

Report #1676, IRISA, University of Rennes 1 (France), 2005.

[73] R. Guerraoui, and M. Raynal, The Information Structure of Indulgent Consensus, IEEE

Transactions on Computers, vol. 53 no. 4, pp. 453-466, 2004.

[74] R. Guerraoui, and A. Schiper, Consensus: the Big Misunderstanding, Proc. of the 6th

IEEE Workshop on Future Trends of Distributed Computing Systems, pp. 183-188,

1997.

[75] R. Guerraoui, and A. Schiper, The Generic Consensus Service, IEEE Transactions on

Software Engineering, vol. 27 no. 1, pp. 29-41, 2001.

[76] I. Gupta, T. D. Chandra, and G. S. Goldszmidt, On Scalable and Efficient Distributed

Failure Detectors, Proc. of the 20th ACM Symp. on Principles of Distributed

Computing (PODC ’01), pp. 170-179, 2001.

[77] V. Hadzilacos, and S. Toueg, Fault-tolerant Broadcasts and Related Problems,

Distributed Systems, Addison-Wesley, 1993.

[78] K. P. Hatzis, G. P. Pentaris, Paul G. Spirakis, Vasilis T. Tampakas, and Richard B. Tan,

Fundamental Control Algorithms in Mobile Networks, Proc. 11th Annual ACM Symp.

on Parallel Algorithms and Architectures, pp. 251-260, 1999.

[79] J. Helary, A. Mostefaoui, and M. Raynal, A General Scheme for Token- and Tree-Based

Distributed Mutual Exclusion Algorithms, IEEE Transactions on Parallel and

Distributed Systems, vol.5 no.11, pp.1185-1196, 1994.

[80] J. Helary, N. Plouzeau, and M. Raynal, A Distributed Algorithm for Mutual Exclusion

in an Arbitrary Network, Computer Journal, vol.31 no. 4, pp. 289-295, 1988.

[81] S.-T. Huang, Detecting Termination of Distributed Computations by External Agents,

Proc. of the 9th Int’l Conf. on Distributed Computing Systems (ICDCS’89), pp. 157-

172, 1989.

[82] M. Hurfin, A. Mostefaoui, and M. Raynal, A Versatile Family of Consensus Protocols

Based on Chandra-Toueg’s Unreliable Failure Detectors, IEEE Trans. on Computers,

vol.51 no. 4, pp. 395-408, 2002.

[83] M. Hurfin, and M. Raynal, A Simple and Fast Asynchronous Consensus Protocol Based

on a Weak Failure Detector, Distributed Computing, vol. 12 no. 4, pp. 209-223, 1999.

[84] T. Imielinski, and B. R. Banrinath, Mobile Wireless Computing: Challenges in Data

Management, Communications of the ACM, vol. 37 no. 10, pp. 18-28, 1994.

[85] T. Imielinski, and H. F. Korth, Mobile Computing, Kluwer Acdemic Publishers, 1996.

[86] J. Jiang, T. Lai, and N. Soundarajan On Distributed Dynamic Channel Allocation in

Mobile Cellular Networks, IEEE Transactions on Parallel and Distributed Systems,

vol. 13 no. 10, pp. 1024-1037, 2002

 169

[87] D. Johnson, and D. Maltz, Dynamic Source Routing in Ad Hoc Wireless Networks,

Mobile Computing, Chapter 5, Kluwer Academic Publishers, 1996.

[88] A. Kshemkalyani, M. Raynal, and M. Singhal, An Introduction to Snapshot Algorithms

in Distributed Computing, Journal of Distributed Systems Engineering, vol. 2 no. 4,

pp. 224-233, 1995.

[89] L. Lamport, Paxos Made Simple, ACM SIGACT News, Distributed Computing Column,

vol. 32 no. 4, pp. 34-58, 2001.

[90] L. Lamport, The Part-time Parliament, Technical Report 49, Systems Research Center,

Digital Equipment Corp, Palo Alto, Sep. 1989 (A revised version of the paper also

appeared in ACM Transaction on Computer Systems, vol. 16 no. 2, May 1998).

[91] L. Lamport, Time, Clocks and Ordering of Events in Distributed Systems,

Communications of the ACM, vol. 21 no. 7, pp. 558-565, 1978.

[92] M. Larrea, A. Fernandez, and S. Arevalo, Eventually Consistent Failure Detectors, Proc.

of ACM Symp. on Parallel Algorithms and Architectures, pp. 326-327, 2001.

[93] M. Larrea, A. Fernandez, and S. Arevalo, On the Implementation of Unreliable Failure

Detectors in Partially Synchronous Systems, IEEE Trans. on Computers, vol. 53 no. 7,

pp. 815-828, 2004.

[94] W.C.Y. Lee, Overview of Cellular CDMA, IEEE Transactions on Vehicular Technology,

vol. 40 no. 2, pp. 291-302, 1991.

[95] Q. Lu, and M. Satyanarayanan, Isolation-Only Transactions for Mobile Computing,

ACM Operating Systems Review, vol. 28 no. 2, pp. 81-87, 1994.

[96] W.-S. Luk, and T.-T. Wong, Two New Quorum Based Algorithms for Distributed

Mutual Exclusion, Proc. of the 17th International Conference on Distributed

Computing Systems (ICDCS’97), pp100-106, 1997.

[97] N. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

[98] M. Maekawa, A √N Algorithm for Mutual Exclusion in Decentralized Systems, ACM

Trans. on Computer Systems, vol. 3 no. 3, pp. 145-159, 1985.

[99] S. K. Madria, and B. Bhargava, A Transaction Model for Mobile Computing, Proc. of

Database Engineering and Applications Symposium (IEDAS’98), pp. 92-102, 1998.

[100] D. Malkhi, F. Oprea, and L. Zhou, Meets Paxos: Leader Election and Stability without

Eventual Timely Links, Proc. of the 19th Int’l Symp. Distributed Computing (DISC’05),

Springer-Verlag LNCS #3724, pp. 199-213, 2005.

[101] N. Malpani, N. Vaidya, and J. Welch, Distributed Token Circulation on Mobile Ad

Hoc Networks, Proc. of the 9th International Conference on Network Protocols

(ICNP’01), pp. 4-13, 2001.

[102] N. Malpani, J.Welch, and N. Vaidya, Leader Election Algorithms for Mobile Ad Hoc

Networks, Proceedings of the 4th international workshop on Discrete Algorithms and

 170

Methods for Mobile Computing and Communications (Dial-M’00), pp. 96-103, 2000.

[103] A. Martin, Distributed Mutual Exclusion on a Ring of Processes, Science of Computer

Programming, vol. 5, pp. 265-276, 1985.

[104] F. Mattern, Global Quiescence Detection Based on Credit Distribution and Recovery,

Information Processing Letters, vol. 30, pp. 195-200, 1989.

[105] M. Merritt, and G. Taubenfeld, Computing Using Infinitely Many Processes, Proc. of

the 14th Int’l Symp. on Distributed Computing (DISC’00), Springer-Verlag LNCS

#1914, pp. 164-178, 2000.

[106] B. P. Miller, J. Choi, Breakpoints and Halting in Distributed Programs, Proc. of the 8th

Int’l Conf. on Distributed Computing Systems (ICDCS’88), pp. 316-323, 1988.

[107] J. Misra, Detecting Termination of Distributed Computations Using Markers, Proc. of

the 2nd ACM Symp. on Principles of Distributed Computing (PODC’83), pp. 290-295,

1983.

[108] A. Mostefaoui, S. Rajsbaum, and M. Raynal, A Versatile and Modular Consensus

Protocol, Proc. of Int’l IEEE Conf. Dependable Systems & Networks (DSN ’02), pp.

364-373, 2002.

[109] A. Mostefaoui, E. Mourgaya, and M. Raynal, Asynchronous Implementation of Failure

Detectors, Proc. Int’l IEEE Conf. on Dependable Systems and Networks (DSN’03),

IEEE Computer Society Press, pp. 351-360, 2003.

[110] A. Mostefaoui, and M. Raynal, Leader-based Consensus, Parallel Processing Letters,

vol. 11 no. 1, pp. 95-107, 2001.

[111] A. Mostefaoui, M. Raynal, and C. Travers, Crash-Resilient Time-Free Eventual

Leadership, Proc. of the 23r Symp. on Reliable Distributed Systems (SRDS’04), pp.

208-217, 2004.

[112] A. Mostefaoui, M. Raynal, C. Travers, S. Patterson, D. Agrawal, and A. El Abbasi,

From Static Distributed Systems to Dynamic Systems. Proc. of the 24th Symp. on

Reliable Distributed Systems (SRDS’05), pp. 109-118, 2005.

[113] A. Mostefaoui, M. Raynal, and F. Tronel, The Best of Both Worlds: A Hybrid

Approach to Solve Consensus, Proc. Int’l IEEE Conf. Dependable Systems &

Networks (DSN ’00), pp. 513-522, 2000.

[114] A. Murphy, Algorithm Development in the Mobile Environment, Proc. of Int’l Conf.

on Software Engineering, pp. 728-729, 1999.

[115] V. Murthy, Mobile Computing: Operational Models, Programming Modes and

Software Tools, Proc. of the 15th IEEE International Parallel and Distributed

Processing Symposium (IPDPS’01), pp. 2016-2025, 2001.

[116] M. Naimi, and M. Trehel, How to Detect a Failure and Regenerate the Token in the

log(n) Distributed Algorithm for Mutual Exclusion, Proc. of the 2nd Int’l Workshop on

 171

Distributed Algorithms (DISC’87), LNCS#312, pp. 155-166, 1987.

[117] K. Nakano, and S. Olariu, Randomized Leader Election Protocols for Ad Hoc

Networks, Proc. of the 7th Int’l. Colloquium on Structural Information and

Communication Complexity (SIROCCO’00), pp. 253-267, 2000.

[118] M.L. Neilsen, and M. Mizuno, A DAG-based Algorithm for Distributed Mutual

Exclusion, Proc. of the 11th Int’l. Conference on Distributed Computing Systems

(ICDCS’91), pp. 354-360, 1991.

[119] S. Nishio, K.F. Li, and E.G. Manning, A Resilient Mutual Exclusion Algorithm for

Computer Networks, IEEE Transactions on Parallel and Distributed Systems, vol. 1

no. 3, pp. 344-355, 1990.

[120] R. Oliveira, Solving Consensus: From Fair-Lossy Channels to Crash-Recovery of

Processes, PhD Thesis 2139, Swiss Federal Inst. of Technology (EPFL), 2000.

[121] Sung-Hoon Park, An Election Protocol in a Mobile Environment, Proc. of the Int’l

Conf. on Parallel and Distributed Processing Techniques and Applications

(PDPTA’00), Jun. 2000.

[122] V. D. Park, and M. S. Corson. A Highly Adaptive Distributed Routing Algorithm for

Mobile Wireless Networks, Proc. of the 16th Conf. on Computer Communications

(INFOCOM’97), pp. 1405-1413, 1997.

[123] T. Park, and K. G. Shin, Optimal Tradeoffs for Location-Based Routing in Large-Scale

Ad Hoc Networks, IEEE/ACM Transaction On Networking, vol. 13 no. 2, pp. 398-410,

2005.

[124] L. M. Patnaik, A. K. Ramakrishna, and R. Muralidharan, Distributed Algorithms for

Mobile Hosts, IEE Proc.Computers and Digital Techniques, vol. 144 no. 2, pp. 49-56,

1997.

[125] C. E. Perkins, Mobile IP, IEEE Communications Magazine, vol. 35 no. 5, pp. 84-99,

1997.

[126] C. Perkins, and P. Bhangwat, Highly Dynamic Destination-Sequenced Distance-Vector

(DSDV) Routing for Mobile Computers, Proc. of ACM SIGCOMM Symp. on

Communications, Architectures and Protocols (SIGCOMM’94), pp. 234-244, 1994.

[127] C. Perkins, and E. Royer, Ad-hoc On-Demand Distance Vector Routing, Proc. of the

2nd IEEE Workshop on Mobile Computing Systems and Applications(WMCSA’99), pp.

90-100, 1999.

[128] E. Pitoura, and B. Bhargava, Dealing with Mobility: Issues and Research Challenges,

Technical Report CSD-TR-93-070, Department of Computing Sciences, Purdue

University, Nov. 1993.

[129] D. Powell, Failure Mode Assumptions and Assumption Coverage, Proc. of the 22nd

Int’l. Conf. on Fault-Tolerant Computing (FTCS’92), pp. 386-395, 1992.

 172

[130] K. Raymond, A Tree-based Algorithm for Distributed Mutual Exclusion, ACM

Transactions on Computer Systems, vol. 7 no.1, pp. 61-77, 1989.

[131] M. Raynal, A Short Introduction to Failure Detectors for Asynchronous Distributed

Systems, ACM SIGACT News, Distributed Computing Column, vol. 36 no. pp. 53-70,

2005.

[132] M. Raynal, and M. Singhal, Logical Time: Capturing Causality in Distributed Systems,

Computer, pp. 49-56, 1996.

[133] G. Ricart and A. K. Agrawala, An Optimal Algorithm for Mutual Exclusion in

Computer Networks, Communications of the ACM, vol. 24 no. 1, pp. 9-17, 1981.

[134] G. Ricart and A.K. Agrawala, Author Response to “On Mutual Exclusion in Computer

Networks” by Carvalho and Roucairol, Communications of the ACM, vol. 26 no. 2,

pp.147-148, 1983.

[135] L. Sampaio, and F. Brasileiro, Adaptive Indulgent Consensus, Proc. of Int’l IEEE Conf.

on Dependable Systems & Networks (DSN ’05), pp. 422-431, 2005.

[136] B. A. Sanders, The Information Structure of Distributed Mutual Exclusion Algorithms,

ACM Trans. on Computer Systems, vol. 5 no. 3, pp. 284-299, 1987.

[137] Y. Sato, M. Inoue, T. Masuzawa, and H. Fujiwara, A Snapshot Algorithm for

Distributed Mobile Systems, Proc. of the 16th International Conference on

Distributed Computing Systems (ICDCS’96), pp. 734-743, 1996.

[138] M. Satyanarayanan, Fundamental Challenges in Mobile Computing, Proc. of the 15th

ACM Symp. on Principles of Distributed Computing (PODC’96), pp. 1-7, 1996.

[139] A. Schiper, Early Consensus in an Asynchronous System with a Weak Failure Detector,

Distributed Computing, vol. 10 no. 3, pp. 149-157, 1997.

[140] H. Seba, N. Badache, A. Bouabdallah, Solving the Consensus Problem in a Dynamic

Group: an Approach Suitable for a Mobile Environment, Proc. 7th IEEE Symp. on

Computers and Communications (ISCC’02), pp. 29-35, 1999

[141] P. Serrano-Alvirado, C. Roncancio, and M. Adiba, Analyzing Mobile Transactions

Support for DBMS, Proc. of 12th International Workshop on Database and Expert

Systems Applications, pp. 595-600, 2001.

[142] P. Serrano-Alvarado, C. Roncancio, M. Adiba, and C. Labbe, Context Aware Mobile

Transactions, Proc. of IEEE International Conference on Mobile Data Management

(MDM’04), p. 167, 2004.

[143] M. Singhal, A Dynamic Information Structure Mutual Exclusion Algorithm for

Distributed Systems, IEEE Trans. on Parallel and Distributed Systems, vol. 3 no. 1,

pp. 121-125, 1991.

[144] M. Singhal, A Heuristically-aided Algorithm for Mutual Exclusion, IEEE

Transactions on Computers, vol. 38 no. 5, pp. 651-662, 1989.

 173

[145] M. Singhal, A Taxonomy of Distributed Mutual Exclusion, Journal of Parallel and

Distributed Computing, vol. 18 no. 1, pp. 94-101, 1993.

[146] M. Singhal, and D. Manivannan, A Distributed Mutual Exclusion Algorithm for

Mobile Computing, Proc. of IASTED International Conference on Intelligent

Information Systems (IIS '97), pp. 557-561, 1997.

[147] M. Singhal, and N. G. Shivaratri, Advanced Concepts in Operating Systems:

Distributed, Database, and Multiprocessor Operating Systems, McGraw-Hill, 1994.

[148] W. Stallings, Wireless Communications and Networks (2nd Edition), Pearson/Prentice

Hall, 2005.

[149] K. Sundaresan, V. Anantharaman, H. Hsieh, and R. Sivakumar, ATP: a Reliable

Transport Protocol for Ad-hoc Networks, IEEE Transactions on Mobile Computing, vol.

4 no. 6, pp. 588- 603, 2005.

[150] I. Suzuki, and T. Kazami, A Distributed Mutual Exclusion Algorithm, ACM

Transactions on Computer Systems, vol. no. 4, pp344-349, 1985.

[151] A. S. Tanenbaum and M. V. Steen, Distributed Systems–Principles and Paradigms,

Prentice-Hall, 2002.

[152] G. Tel, Introduction to Distributed Algorithms, 2nd edition, Cambridge University

Press, 2000.

[153] B. Thai, and A. Seneviratne, IPMOA: Integrated Personal Mobility Architecture, IEEE

Symposium on Computers and Communications (ISCC’01), pp. 485-490, 2001.

[154] Y. Tseng, Detecting Termination by Weight-Throwing in a Faulty Distributed System,

J. Parallel and Distributed Computing, vol. 25 no. 1, pp. 7-15, 1995.

[155] Y. Tseng, and Cheng-Chung Tan, Termination Detection Protocols for Mobile

Distributed Systems, IEEE Trans. on Parallel and Distributed Systems, vol. 12 no. 6,

pp. 558-566, 2001.

[156] UCLA Parallel Computing Lab., GloMoSim Manual v1.2, http://pcl.cs.ucla.edu/

[157] U. Varshney, Networking Support for Mobile Computing, Communications of AIS, vol.

1 article. 1, pp. 1-30, 1999.

[158] S. Vasudevan, J. Kurose, and D. Towsley, Design and Analysis of a Leader Election

Algorithm for Mobile Ad Hoc Networks, Proc. of 12th IEEE International Conference

on Network Protocols (ICNP’04), pp. 350-360, 2004.

[159] M. G. Velazquez, A Survey of Distributed Mutual Exclusion Algorithms, Technical

report CS- 93-116, Colorado State University, 1993

[160] E. Vollset, and P. D. Ezhilchelvan, Design and Performance-Study of Crash-

tolerant Protocols for Broadcasting and Reaching Consensus in MANETs, Proc. of the

24th IEEE Symposium on Reliable Distributed Systems (SRDS’05), pp. 166-175, 2005.

[161] J. Walter and S. Kini, Mutual Exclusion on Multihop, Mobile Wireless Networks,

 174

Technical Report TR97-014, Texas A&M Univ., College Station, Dec. 1997.

[162] J. Walter, J. Welch, and N. Vaidya, A Mutual Exclusion Algorithm for Ad Hoc Mobile

Networks, Wireless Networks , vol. 9 no. 6, pp. 585-600, 2001.

[163] P. Waters, and A. Walter, Trusted Transactions in a Mobile Environment, Proc. of 3G

Mobile Communication Technologies, pp. 359- 363, 2003.

[164] J. Wei, T. He, and T. Huang, Challenges of Communication in Mobile Computing,

Proc. of Technology of Object-Oriented Languages (TOOLS Asia'98), pp. 196-203,

1998.

[165] X. Yu, Improving TCP Performance over Mobile Ad Hoc Networks by Exploiting

Cross-layer Information Awareness, Proc. of the 10th Int’l Conf. on Mobile Computing

and Networking (MobiCom’04), pp. 231-244, 2004.

[166] Q. Zhao, and L. Tong, Energy Efficiency of Large-Scale Wireless Networks: Proactive

Versus Reactive Networking, Journal on Selected Areas in Communications, vol. 23

no. 5, pp. 1100-1112, 2005.

	theses_copyright_undertaking
	b2094049x

