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I 

 

ABSTRACT 

To ensure the safety and functionality of civil structures, it is vital to detect and 

quantify structural deteriorations in a timely manner for remedial work, before 

these deteriorations propagate and become detrimental to the entire structure. 

Structural health monitoring has been developing in past two decades, aiming to 

continually monitor loading conditions and assess structural conditions so that 

prompt decisions can be made if any damage is detected and quantified. 

Vibration-based damage identification, as a significant focus for structural 

condition assessment and health monitoring, has been the subject of many research 

efforts in recent years. Despite considerable progress in the structural health 

assessment of oil rigs, mechanical systems, and aerospace structures, such 

assessment still encounters some obstacles when it is applied to complex civil 

structures. These barriers mainly exhibit the following aspects: (1) the limited 

number of sensors compared to the number of structural components, which 

makes it difficult to capture enough dynamic responses for structural condition 

assessment; (2) the significance of model error, which is due to the difficulty of 

establishing a finite element (FE) model to represent the real dynamic behavior of 

large and complex structures; (3) the ill-posedness and non-identifiability of the 

inverse problem, which is due to the significant dimension of damaged areas 

corresponding to the numerous structural components; (4) the fact that the higher 

mode vibrations of cumbersome civil structures, which are more sensitive to local 
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damage, are not easily excited under operating conditions; and (5) the enormous, 

unaffordable computational demand associated with the large dimensions of 

discretized FE model matrices and the scope of dynamic FE analysis during 

iterations.  

Taking these obstacles into consideration, this thesis aims to develop novel 

vibration-based damage identification methods specifically suited for application 

to civil structures of large-scale and geometric complexity. To accomplish this 

aim, the following research efforts have been made. First, an optimal multi-type 

sensor placement method is proposed for the best response reconstruction on the 

location where no sensors are installed as well as the time evolution of the 

pre-located deterministic excitations; Second, sparse regularization is proposed to 

replace the traditional Tikhonov regularization in finite element (FE) model 

updating based damage identification.  The superiority of sparse regularization is 

highlighted not only in constraining the solution norm but also in promoting 

solution sparsity. Third, the Kalman filter based response reconstruction and 

multi-type response fusion are integrated with the sparse regularized FE model 

updating to supplement the limitation of sensor measurements as well as take the 

benefits of both global and local response fusion in structural damage 

identification. Fourth, the proposed response reconstruction-oriented damage 

identification strategy is extended from circumstances where the time evolution of 

external excitations is required to the conditions where external excitations acting 

on the structure are unknown. And finally, multi-level damage identification via 

response reconstruction is proposed for identification of element-level damages on 
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large civil structures. This method firstly detects possible damaged regions over 

the condensed and assembled substructures through dynamic substructuring 

technique using measured responses; then, the damage at the element level is 

further localized and quantified over suspicious substructures using the 

reconstructed responses of the identified substructures. As a result, the damage 

dimensions are dramatically decreased in the identification of both levels; the 

computational efforts are dramatically decreased, while the identifiability of the 

damage is increased.  

Besides the theoretical studies, numerical studies and experimental investigations 

are also conducted to demonstrate the procedures of these proposed methods and 

verify their effectiveness. Simulation studies and experimental investigations are 

performed on an overhanging beam of 40 elements on the following issues: 

optimal sensor placement for joint response and excitation reconstruction, sparse 

regularization in FE model updating based damage identification, and damage 

identification via response reconstruction under both known and unknown 

excitations. Performance evaluation of the proposed optimal sensor placement 

method for joint response and excitation reconstruction as well as multi-level 

damage identification via response reconstruction is also conducted through 

experimental investigation on the long-span Tsing Ma suspension bridge testbed at 

the Structural Dynamic Laboratory of The Hong Kong Polytechnic University. 

The research works presented and the results obtained in this thesis contribute to 

the damage identification of the major civil structures. 
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û  Estimate of excitation u  

ˆ su  Transformed external forces applied to the s-th substructure 

u  Assembled transformed external forces of all the substructures 

U   Left singular vectors of S  

V  Right singular vectors of S  

w , v  Modeling error and measurement noise  

W  Weighting matrix 

x  State vector 

p
x  The p-norm of the vector x . 

ˆ −x   Priori state estimates of state vector x   

ˆ +x  Posteriori state estimates of state vector x  

y  Observation vector 



 

XXXIV 

ry , ey and ny  Real, estimated and noise-polluted response 

ay   Analytical response 

ampy  Noise amplitude  

 
 
 
 
 
 
 
 
 
 
 



 

XXXV 

LIST OF ABBREVIATIONS 

ANN Artificial neural network 

CMS Component mode synthesis  

CoMAC Coordinate modal assurance criterion 

DOF Degree of freedom 

DLV Damage locating vector  

DPR Driving point residue 

EfI Effective independence  

EMA Experimental modal analysis 

EMD Empirical mode decomposition 

FBG Fiber Bragg grating 

FE Finite element 

FEA Finite element analysis 

FIM Fisher information matrix 



 

XXXVI 

FRF Frequency response function  

GCV Generalized cross-validation  

IE Information entropy  

IMF Instinct Mode Functions 

KE Kinetic energy  

KF Kalman filter 

KF-UI Kalman filter under unknown input 

MAC Modal assurance criteria 

MSE Modal strain energy  

PSD Power spectral density  

PDF Probability density functions  

RBF Radial-basis-function  

RHS Right-hand-side 

RPE Response percentage error 

SHM Structural health monitoring 



 

XXXVII 

SPO Sensor placement optimization 

SNR Signal to noise ratio  

STD Standard deviation 

TMB Tsing Ma Bridge 

TSVD Truncated singular value decomposition  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

XXXVIII 

 
 
 
 
 
 
 
 
 



 

1 

CHAPTER 1 

 INTRODUCTION 

1.1 Research Motivation 

The aging and deterioration of large infrastructures, such as long-span bridges under 

heavy loadings and harsh environment conditions, have become major worldwide 

concerns. According to the American Infrastructure Report Card issued by the 

American Society of Civil Engineers (ASCE 2013), one in nine bridges in the United 

States are either structurally deficient or functionally obsolete, and that clearing the 

deficient bridges before 2028 would require an annual investment of $20.5 billion 

USD, which is $8 billion USD greater than the current level. A similar report by the 

Institution of Civil Engineers (ICE 2014) indicates that one-third of the local 

transportation systems in the United Kingdom require urgent maintenance. In 

Canada, more than 40% of the bridges currently in use were built over 50 years ago 

(Bisby el al, 2004), and a significant number of these structures need strengthening, 

rehabilitation, or replacement, using limited maintenance budgets. Japan currently has 

over 140,000 existing bridges, each 15 meters long or longer. The average age of 

bridges will soon reach 40 or even 50 years, and so the necessity of frequent and 

detailed inspection and maintenance/repair is also expected to increase significantly in 

the near future (Fujino et al, 2011). The economic boom in China has prompted the 

construction of massive large-scale and complex civil structures over the past three 

decades. Similar to other emerging economies, China is expected to experience 

infrastructure deterioration in the very near future. This phenomenon emphasizes the 
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need for the autonomous and economical monitoring and maintenance of these civil 

structures. 

Structural health monitoring (SHM), which aims to monitor the loading conditions 

continually and assess the structural condition of structures, has been recently 

proposed as a solution to the issue at hand (Aktan et al., 2000; Ko and Ni, 2005; Xu 

and Xia, 2011). To identify structural deterioration at an early stage for maintenance 

and repair works and to maximize the lifespan of the structure at minimum life-cycle 

costs, it is necessary to perform long-term continuous health monitoring of the 

structure during its service life. As indicated and demonstrated by Xu and Xia 

(2011), although SHM systems have found certain practical applications in 

monitoring loading and environmental effects, verifying the design criteria and 

guiding the timely inspection and maintenance on large civil structures, such as 

long-span suspension bridges, to perform robust damage detection and quantification 

on these structures, as the core task of SHM, is still in their infancy at the present 

stage.   

In the past decades, many studies have attempted to detect structural damage using 

vibration data. Vibration-based damage identification mainly involves the practice of 

detecting, localizing and quantifying defects in structures from using the measured 

vibration responses. The damage identification outcomes made through monitoring 

may subsequently be used to make informed decisions on remedial work. 

Vibration-based damage identification posits that structural defects will change the 

dynamic features of a structure, including its acceleration response, frequency 

response function, frequency, and mode shapes. As its fundamental process, 
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vibration-based damage identification maps the relationship between the changes in 

the dynamic features and local damages of the structure. Given its increasing 

complexity, the damage assessment problem can be classified into the following 

hierarchies (Rytter, 1993): (1) detection, or determining the presence of a damage in a 

structure, (2) localization, or locating the spatial position of the damage, (3) 

quantification, or quantifying the extent of the damage, and (4) prognosis, or 

predicting the future structural condition. In this thesis, vibration-based damage 

identification involves the localization and quantification of the actual damage in a 

structure.  

Many vibration-based damage identification methods have been developed over the 

past decades (Doebling et al., 1996, Sohn et al., 2003, Farrar et al., 2000). The 

literature review reveals that there are roughly two kinds of approaches addressing the 

damage identification problem, namely, the model-based approach and the data-driven 

(or model-free) approach. Figure 1.1 shows the main comparison between these two 

kinds of methods.  

Data-driven approaches are entirely built upon the availability of an extensive 

collection of vibration data without recourse to law-driven models. The dynamic 

responses of the structure are processed using several signal processing technologies, 

such as empirical mode decomposition, Hilbert–Huang transform, principal 

component analysis, wavelet analysis and others, to extract the dynamic sensitive 

features. These features are then used to interpret the condition of the structure through 

nonparametric techniques, such as statistical pattern recognition, support vector 

machines, and neural networks and others, to establish classification schemes that can 
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detect structural defects from vibration data.  

Data-driven damage identification, which does not require a priori information upon 

the physical model of the structure, is particularly advantageous in dealing with 

complicated structures. However, predicting the dynamic behaviors of these structures 

requires a parametric model that is nearly impossible to construct. By contrast, given 

the difficulty in establishing an explicit relationship between the damage and the 

structure, the results from nonparametric methods cannot be easily interpreted because 

of their “black-box” nature. Moreover, the limited amount of data on damaged 

structures in real-world scenarios makes the data-driven damage identification 

approaches unsuitable for assessing conditions of civil structures; higher-level 

damage identification methods, such as damage localization and severity 

quantification, are even more difficult to use. 

Model-based damage identifications commonly rely on the availability of an 

analytical model, such as FE model, state-space model or polynomial model 

(autoregressive model with exogenous input or autoregressive–moving-average 

model with exogenous inputs and others), which represents the dynamics of the 

structure under suspicion. After establishing an initial analytical model based on the 

laws of physics, the dynamic properties extracted from the experimental data are used 

to update the analytical model and make this model consistent with the tested 

structure. Damage detection, localization, and quantification are then conducted 

through the solution of an inverse problem using the data collected from the damaged 

structure.  
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The FE model updating method is the first notable scheme for model-based damage 

identification (Friswell, 1995; Brownjohn et al., 2011). Given the advancements in FE 

modeling and analysis, the FE model updating method has drawn a significant amount 

of research attention over the past decades because of its capability of not only 

detecting damage and quantifying its extent. The structural defects in the FE model are 

localized and quantified through model updating by minimizing the discrepancy 

between the measured features of the damaged structure and the analytical features 

predicted by the FE model. Although several numerical and laboratory experiments 

have been successfully conducted on some simple and regular structures, the FE 

model updating method has rarely been successfully applied to large structures. The 

robust identification of damages in large civil structures is mainly hindered by the 

following factors: 

1. For the model-based identification of damage to great civil structures, establishing 

an analytical model has been proven difficult because of the challenges in setting up an 

elaborate FE model of a vast and complex civil structure. The FE models of actual 

structures show inevitable discrepancies, and civil structures usually operate in 

outdoor conditions where measurement noises are omnipresent. Therefore, such 

discrepancies and measurement noises must be considered when formulating a 

damage identification method for civil structures.  

2. A complex civil structure typically consists tens of thousands of structural 

components. The corresponding damage vector has a very large dimension. 

Identifying structural damage over a significant damage space presents a difficult task 

because of the ill-posedness and non-identifiability of the problem. Therefore, a proper 
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regularization technology that imposes additional constraints to the solution must be 

proposed.  

3. Given the budget constraints and measurement inaccessibility under operational 

conditions, the sensor deployments for capturing the structural responses of large civil 

structures are always limited compared with the substantial structural components. 

Therefore, a damage identification method that heavily relies on dense sensor 

installments and measurements cannot be applied to large civil structures.  

4. Despite the global and disastrous effects of structural failure, damage generation 

and propagation are common local phenomena. Therefore, both global and local 

responses are required to detect the incipient damage before such impairment spreads 

into and negatively affects the entire structure. The advancements in sensor 

technology allow for the deployment of a heterogeneous mix of multi-type sensors on 

a civil structure. Fusing the global (i.e., acceleration and displacement) and local 

responses (i.e., strain) captured by multiple sensors and taking advantage of the 

heterogeneity of these responses have significant roles in identifying the damages in 

civil structures. 

5. Unlike mechanical structures, large and cumbersome civil structures rarely 

experience high-mode vibrations, which are more sensitive to local damage. In this 

regard, high-mode-vibration-based damage identification approaches are unsuitable 

for identifying damage in large civil structures. Besides, civil structures are often 

monitored under operational conditions in which the environmental effects and 

operational loads can hinder the interpretation of vibration data. Therefore, civil 
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structures require a damage identification method that mainly depends on several 

low-order vibrations and is highly robust to environmental effects. 

6. The FE modeling and updating of large civil structures are computationally 

demanding because of the large dimension of the discretized FE model matrices and a 

large number of dynamic FE analyses involved in the updating procedure. 

Furthermore, FE model updating may not guarantee the global identifiability of 

damage despite the unaffordable computational costs of this method.    

Given the above problems, a novel damage identification method that integrates 

multi-type responses reconstruction and fusion with multi-level sparse regularized FE 

model updating must be proposed for the accurate identification of damages in the 

major civil structures. Multi-type responses reconstruction is performed to overcome 

the limitations in sensor measurement and obtain comprehensive information, while 

multi-level damage identification is conducted to enhance the identifiability of 

damage and decrease the computation costs. 

1.2 Research Objectives 

This thesis proposes a novel model-updating-based method for identifying damage in 

the major civil structures. This method applies multi-type response reconstruction to 

address the limitations in sensor measurements, sparse regularization to handle the 

ill-posedness problem, and the substructuring technique to enhance the identifiability 

of damage. The main aims of this research are specifically described as follows: 

1. To propose a multi-type sensor placement method that optimally fuses the 
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multi-metric measurements of the sensors to reconstruct the unmeasured responses on 

the key locations and the excitation acting on the structure. 

2. To exploit the superiority of sparse regularization over the traditional Tikhonov 

regularization in dealing with the ill-posedness problem involved in model 

updating-based damage identification. 

3. To propose a response reconstruction oriented damage identification method to 

overcome the limitations in sensor measurements and to take advantage of the benefits 

of multi-type response fusion in identifying damages in the major civil structures. 

4. To extend the proposed damage identification via response reconstruction method 

from the situation where the excitation acting on the structure must be fully described 

to the situation where the knowledge on excitation time history is not required. 

5. To propose a multi-level damage identification method via the response 

reconstruction method to enhance the identifiability of the incipient damage in large 

structures and to decrease the computation costs in iterative updatings. 

6. To demonstrate and verify the effectiveness of the proposed method by conducting 

simulated and experimental studies on a simple overhanging beam and a relatively 

large structure as the Tsing Ma Bridge testbed. 

1.3 Assumptions and Limitations 

The development and application of multi-sensing and multi-level damage 

identification via the proposed response reconstruction framework are subjected to the 
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following assumptions and limitations: 

1. In the optimal sensor placement for joint response and excitation reconstruction, the 

system modeling errors and measurement noises are assumed to be normally 

distributed and independent of one another, thereby indicating a zero covariance 

between these two. Besides, sufficient measurement instants are assumed to dirive the 

state error variance converge to a stable value, which is directly related to the response 

reconstruction error. 

2. In damage identification, the structural damage can be modeled as a degradation of 

the stiffness (or mass) of the damaged region and simulated as saw-cut in a laboratory 

test. The main reason is that the severity of saw cut damage can be more easily 

controlled and quantified accurately. The structure is supposed to behave linearly and 

operate under the same working conditions before and after the occurrence of damage.   

3. In multi-level damage identification, the FE model discrepancy induced by the 

Craig-Bampton reduction is much less than that caused by structural damage. The 

substructure partition, the location of the master degree of freedom, and the number of 

kept interior partitions of fixed-interface normal modes are all related to the accuracy 

of the dynamic substructuring technique.   

4. In identifying the damages in the Tsing Ma suspension bridge, the dynamic 

vibrations of the cable system are adequately small to ignore the non-linear behavior 

of bridge motion. The damage-induced stress redistribution under gravity can also be 

neglected. 
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1.4 Outline and Scope 

This thesis covers various topics to achieve the objectives above. This thesis is divided 

into 10 chapters, and Figure 1.2 presents an overview of the thesis structure. The 

chapters are organized as follows: 

Chapter 1 introduces the problem, motivation, objectives, assumptions, and scope of 

this work. 

Chapter 2 presents an extensive literature review on relevant topics, including the 

dynamic response reconstruction method, the optimal sensor placement method, the 

FE model updating based damage identification method in both frequency and time 

domains, the associated regularization techniques, and the dynamic substructuring 

technologies.  

Chapter 3 introduces a multi-type sensor placement of response reconstruction in the 

absence of external excitation. The Kalman filter under unknown input is introduced, 

and the convergence properties of its state and input estimation are used for the 

optimal sensor placement design. 

Chapter 4 addresses the ill-posedness in FE model updating based damage 

identification methods. Sparse regularization, or specifically 1 norm regularization, 

is proposed to constrain the solution norm and promote the sparsity of the solution. 

The motivation of sparse regularization and its difference from the popular Tikhonov 

technique are highlighted.  
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Chapter 5 combines the Kalman filter based response reconstruction method with the 

sparse regularized FE model updating method to identify the damage in large 

structures. The advantages of fusing multi-metric responses in damage identification 

are also investigated. 

Chapter 6 extends the framework of the response reconstruction oriented damage 

identification method established in Chapter 5 from the situation of known excitation 

to that of unknown excitation.  

Chapter 7 presents experimental studies over an overhanging beam to investigate the 

issues in optimal sensor placement for response and excitation reconstruction, sparse 

regularization in FE model updating, and damage identification via response under 

known and unknown excitations. 

Chapter 8 proposes a multi-level damage identification method to narrow down the 

damage dimension in both substructure- and element- level damage identification and 

to enhance the identifiability of damage in large structures. 

Chapter 9 examines the effectiveness of the proposed optimal sensor placement 

method for response and excitation reconstruction and that of the multi-level damage 

identification method via response reconstruction in identifying the damage in a 

relatively large and complex structure, namely, the Tsing Ma suspension bridge 

testbed. 

Chapter 10 summarizes the contributions, findings, and conclusions of this thesis. The 

limitations of this study are discussed and some recommendations for future study are 
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provided. 
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CHAPTER 2 

 LITERATURE REVIEW 

Equation Section 2As mentioned in Chapter 1, this thesis aims to develop novel model 

updating based damage identification methods in consideration of response 

reconstruction, sparse regularization, and substructuring technique for large civil 

structures. The current state-of-the-art development of some relevant topics will be 

reviewed in this chapter, including dynamic response reconstruction, optimal sensor 

placement, model updating based damage detection and the associated regularization 

techniques, dynamic substructuring technique, and some advances in damage 

identification of large structures. 

2.1 Dynamic Response Reconstruction 

Due to sensor cost and installment accessibility, it is not practical to instrument sensors 

on every point of a structure and the measured set of dynamic responses is thus usually 

incomplete. This is the main reason for the implementation of response reconstruction. 

Dynamic response reconstruction is the process of estimating an unmeasured response 

of a structure by using the limited measured response on other locations.  

The literature review on recent studies reveals several types of approaches for dynamic 

response reconstruction of a structure. The first type of response reconstruction 

methods can be classified as the transmissibility based method. The transmissibility is 

initially defined as the ratio of the response amplitude over the harmonic excitation 
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amplitude for a single DOF system (Urgueira et al., 2011). Later it has been extended 

to the N DOF systems by Ewins and Liu (1998) and Varoto et al. (1998). Basing on the 

generalized transmissibility concept in the frequency domain proposed by Ribeiro et 

al. (2000), Law et al. (2010) performed dynamic response reconstruction in a 

substructure as: 

 ( ) ( ) ( )u aku kω ω ω=X T X   (2.1) 

where ( )ωX is the response in the frequency domain and the time-domain response 

should be obtained through inverse Fourier transformation; the subscript u and k

denote unknown response and known response, respectively and a denotes the 

excitation acting location. The transmissibility matrix ( )aku ωT is expressed as: 

 ( ) ( ) ( ) †

aku ua kaω ω ω =  T H H   (2.2) 

in which ( )ωH is the frequency response function (FRF); the symbol † denotes the 

pseudo-inverse. The sensors number should be larger than the excitation number and 

the excitation location should be known. Li et al. (2011) extended this method to the 

wavelet domain using the unit impulse response function. Simulation studies show 

that discrete wavelet transform yields more accurate response reconstruction than 

discrete Fourier transformation. Kammer (1997) presented a similar method, in which 

the responses of a structure at the inaccessible locations during its operation are 

reconstructed by transforming the response at other locations as: 

 [ ]†u u m m=y H H y   (2.3) 
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where H is the Markov parameter matrix, which represents the response of the 

structure to unit force pulses at the excitation locations; the subscript m and u

denote the measured and unmeasured response, respectively. Similarly, this approach 

requires the knowledge of external excitations location and the number of sensors 

larger than that of excitation. Moreover, it is usually applicable for the single type of 

structural response only. The associated issue of optimal sensor placement was 

investigated in the reference (Wang et al., 2014). Zhang et al. (2011) utilized the 

truncated mode shape matrixΓ in the forming of transmissibility matrix for response 

reconstruction as: 

 
1 †T T

u u m u m m m

−
 = = y Γ Γ Γ Γ y ΓΓ y   (2.4) 

The shape matrix { },
TT T=Γ Φ Ψ includes the strainΨ and displacementΦmode shape 

derived from finite element (FE) model and a fusion of strain and displacement was 

conducted to predict the unobserved strain and displacement response of interest 

better. A normalization procedure was employed to deal with the ill-posedness due to 

the different magnitudes of strain and displacement responses. 

The second type of response reconstruction methods is based on mode decomposition. 

Empirical mode decomposition (EMD) (Norden et al., 1998) together with the FE 

model of a structure is a notable approach of this kind. The measurement data 

available at limited locations are decoupled into several Intrinsic Mode Functions 

(IMFs), which is considered to be the approximation of modal response, using the 

EMD method as: 



 

18 

 ( ) ( ) ( ) ( ) ( )
1 1

m m

m mi i mi
i i

y t q t r t x t r tφ
= =

= + = +∑ ∑   (2.5) 

where ( )mix t is the modal response (also an IMF) for the i-th mode, which is a 

mono-component response; miφ is the i-th model shape on m location and ( )iq t  is 

the generalized modal response. Term ( )r t represents the mean trend or constant of 

the signal. Those IMFs are applied to extrapolate the dynamic response at the critical 

locations where the direct response measurements are not available as: 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

m m

u ui i ui mi mi
i i

y t q t r t x t r tφ φ φ
= =

= + = +∑ ∑   (2.6) 

He et al. (2012) performed the structural response reconstruction based on the EMD 

with intermittency criteria and the transformation equations derived from the FE 

model of the structure. Wan et al. (2014) combined the EMD method with the 

transmissibility method and made it applicable to the situation where the structure 

exhibits the vibration of closely-spaced modes. Besides, Ma et al. (2001) 

reconstructed the transient response using Karhuen-Loeve mode decomposition (also 

termed as proper orthogonal decomposition). The results of a series of experiments 

with a three-bay linear truss showed that the Karhuen-Loeve based low-order models 

can capture satisfactory dynamics of the truss, but less so in the higher-order modes.  

Through the above reviews, it is noted that the quality of the response reconstruction 

relies heavily on the mode decomposition technique. 

Another kind of dynamic response reconstruction is the state estimation based method. 

State estimation is usually fulfilled through a filter or an observer, which uses an 
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analytical model and measurements of a system to provide estimates of the state of the 

system. A block diagram of state estimation based response reconstruction is 

depicted in Figure 2. 1. The basic idea of this approach is that after the state estimate 

is abstained through an estimator, the measured noise-corrupted response can be 

estimated with noise filtered out and the unmeasured responses can be reconstructed 

using the observation matrix of these unmeasured locations. Various estimators can 

be employed in kind of method. The Kalman filter (Kalman, 1960) is the most 

renowned estimator with a broad range of applicability. Zhang et al. (2012) and Xu et 

al. (2016) presented a Kalman filter based dynamic response reconstruction method, in 

which the state vector of generalized coordinates was obtained using the real-time 

responses measured by limited sensors; then the response at the locations of interest 

can then be reconstructed by multiplying their mode shapes with the estimated state 

vector. Nasseri et al. (2010) presented a similar method for seismic response 

reconstruction. Kalman filter under unknown input (KF-UI) was also used by Lourens 

et al. (2012) for response reconstruction under unknown excitation using acceleration 

measurement. A practical application example was presented in reference (Limongelli, 

2016). Liu et al. (2016) derived an extended Kalman filter under unknown (EKF-UI) 

similar to the procedures of KE-UI and applied the filter to estimate structural 

displacement and unknown inputs by fusing of displacement and acceleration. 

Aside from the aforementioned three kinds of methods, some other types of the 

response reconstruction methods have also been developed. Hong (2010) utilized two 

types of finite impulse response filters to reconstruct dynamic displacement responses 

using measured acceleration responses. Setola (1998) reconstructed the dynamic 
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response of a flexible beam basing on the interpolation of available measurements by 

spline shape functions. A very similar method was presented by Liongelli (2003). The 

unknown responses of a multi-story frame were reconstructed based on the 

interpolation of available response through a spline shape function.  The accuracy of 

reconstructed responses increases with the number of recorded sensors, and it is 

strongly influenced by the number and layout of sensors.  

2.2 Sensor Placement Optimization 

The success of damage detection largely depends on the quality of measurement data. 

Thus, an important question is the placement of sensors regarding types, numbers, and 

locations on the structure. These areas should be given attention to ensure that 

predefined sensors capture informative dynamic signature regarding the structural 

condition. The goal in sensor placement is to determine the spatial location for a 

collection of sensors in a spatial domain that maximizes the information achievable for 

structural condition assessment. Generally, sensor placement addresses the questions 

that could be stated as “given a set of n possible locations, find the subset of a 

locations, where a n<< , which provides the best possible performance” (Padula et al., 

1991; Doebling et al., 1996). Given that sensors should be deployed at discrete 

locations corresponding to the notes of the discretized FE model, the sensor placement 

optimization (SPO) issue could be mathematically formatted as a discrete optimization 

problem. Thus, the topic of SPO mainly involves two subproblems, namely, what 

evaluation criterion is used and how the optimization problem is solved. This section 

presents the theoretical basis underlying several approaches and the optimization 

solving methods for SPO. The descriptions have been kept intentionally 
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mathematically light for easy understanding. 

2.2.1 Theoretical Basis 

The position of sensors can be determined according to various evaluation criteria for 

different purposes, which results in the development of many SPO methods. The main 

theoretical basis of the existing SPO methods is introduced in the subsequent section, 

followed by the reviews on the optimization methods for SPO. 

Effective independence based method 

On the basis of the principles of sensitivity analysis, Kammer et al. (1991) and 

Kammer and Tinker (2004) proposed the effective independence (EfI) method, which 

is closely related to the Fisher information matrix (FIM), as expressed in Eq.(2.7).  

 
12

T

σ
−

 
=  
 

H
Φ Φ

  (2.7) 

where m n×∈ℜΦ is a matrix of n target modes with m measurement locations and 2σ  is 

the noise variance level on each sensor. The EfI method tends to select sensor positions 

that make the mode shapes of interest as linearly independent as possible while 

reserving sufficient responses of the target modes in the measurements. Two 

assumptions are implicitly assumed in the EfI method. First, the target mode shape 

matrixΦ should be a rectangle, which indicates that the number of sensors must be no 

less than the number of the target modes, and second, measurement noise is assumed 

uncorrelated among sensors and of equal variance 2σ . From different optimization 

criteria, several methods were proposed based on the FIM matrix. Kammer (1991) first 

defined the EfI distribution vector, as expressed in Eq.(2.8), to distinguish critical 
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DOFs from redundant DOFs: 

 ( )1T T
D diag

−
 =  E Φ Φ Φ Φ   (2.8) 

The contribution of each DOF to the rank of the matrix ( )TΦ Φ is determined by 

sorting the elements in the vector DE . The DOF with the smallest contribution should 

be removed, and the number of DOFs could be reduced until the required number is 

achieved by repeating the process. EfI leads to making the mode shapes of interest as 

linearly independent as possible for the selected sensor locations. The determinant of 

the FIM indicates the linear independence of the target modes on the reduced set of 

sensor locations. This idea was exploited in several references (Kammer et al., 1992; 

Yao et al., 1993) through the maximization of the determinant of the FIM. Several 

derivative methods based on EfI are proposed (Kirkegaard et al., 1994; Meo et al., 

2005). In other studies (Zavoni et al., 1998; Zavoni et al., 1999), optimal sensor 

configuration has been chosen as the method to minimize the expected Bayesian loss 

function involving the trace of the inverse of the FIM. 

However, in the EfI method, sensor locations with low energy content could be 

selected, which makes the measurement vulnerable to noise. The EfI-DPR method 

proposed by Imamovic (1998) eliminates the locations with low energy by multiplying 

the EfI of the candidate sensor contribution with the driving point residue (DPR) 

coefficient:  

 
jD D jDPR=E E   (2.9) 



 

23 

in which the DPR is expressed with the form: 
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where jij is the j-th element of the i-th mode shape, and iω is the i-th modal frequency. 

The DPR provides a measure of the contribution of any point to the overall modal 

response. This adaptation leads to a greater likelihood of sensors being placed in 

locations of high vibration strength.  

Kinetic energy based method 

The kinetic energy (KE) of a flexible structure is usually unevenly distributed over 

every location. Positions with high KE are heuristically selected to increase the 

signal-to-noise ratio. This idea later evolved into the KE method, which selects sensor 

locations based on the ranking of their dynamic contribution to the target mode shapes 

(Heo et al., 1997; Papadopoulos et al., 1998; Worden et al., 2001). This method 

follows a similar procedure used in the EfI method, but the key difference is that a KE 

measure, as expressed in Eq.(2.11), is maximized. 

 TKE =Φ MΦ   (2.11) 

The KE can be regarded as the FIM weighted by the corresponding component of the 

mass matrix M . The sensor locations that provide the highest KE are selected as the 

measurement locations. The connection between the EfI and the modal KE methods 

was addressed by Li et al. (2007). In the cited study, the KE method is an iterated 

version of the EfI method and the reduced mode shapes are repeatedly 
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orthonormalized during iterations of the KE method.  

Another SPO method that bears the similar idea is the model reduction based method. 

Model reduction is commonly used to condense the original model to reduce the DOFs 

while giving much faster computation. In model reduction, the DOFs of the initial 

model are divided into two parts as { }, T
m s=x x x , in which mx and sx denote the master 

DOF and the slave DOF, respectively. Guyan reduction method (Guyan, 1965) 

assumes that the inertial items on the slave DOFs can be ignored and it can be obtained 

that: 

 sm m ss s+ =K x K x 0   (2.12) 

 { } { }1
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m m
s ss sm

−

   
= = =   −   

x I
x x T x

x K K
  (2.13) 

where subscript m and s denote the master and the slave DOFs, respectively. The 

reduced mass matrix mM and stiffness matrix mK can be calculated as: 

 ; ;T T
m m= =M T MT K K MK   (2.14) 

Some researcher (Jarvis, 1991; Penny et al., 1994) exploited the idea of model 

reduction for SPO by assuming that the master DOF selected by the model reduction 

method are the appropriate measurement locations for the model test. SPO is 

conducted through a process of sequential deletion of slave DOFs from the original FE 

model until the retained master DOFs of the reduced model matches the number of 

sensors required.  
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Information entropy based method 

Information entropy (IE), which measures uncertainty in structural parameters, has 

been adopted as the performance measure of a sensor configuration by several 

researchers (Papadimitriou et al., 2004; Papadimitriou et al., 2000; Yuen et al., 2001; 

Papadimitriou, 2004; Papadimitriou, 2005). In particular, the optimal sensor 

placement is selected by minimizing the IE, which is defined as follows: 

 ( ) ( ) ( ) ( )ln lnH D E p D p D p D dθ  = − = −  ∫θ θ θ θ   (2.15) 

where θ is the uncertain parameter set to be estimated; D is the dynamic test data; and 

Eθ denotes the mathematical expectation onθ . Papadimitriou (2004) showed that the 

IE depends on the determinant of the FIM asymptotically for large data. 

Controllability and observability based method 

In structural control engineering, many sensor placement schemes have long been 

developed (Kubrusly et al., 1985; Abdullah et al., 2001) based on the concept of 

controllability and observability (Skelton, 1988; Gawronski, 2004). If the so-called 

observability matrix as Eq. (2.16) has rank n, i.e., ( )rank nΟ = , the linear 

discrete-time system is observable; if the controllability matrix, defined by Eq. (2.17) 

has full rank, i.e., ( )rank C n= , the linear discrete-time system is controllable, where

n n
d

×∈ℜA , n r
d

×∈ℜB and m n
d

×∈ℜC are the system matrices. 
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 ( ) ( )1, , , , n r nn
d d d d d d dC × ⋅− = ∈ℜ A B B A B A B   (2.17) 

It is well known from control theory that the observability of a system depends 

critically on the location of the sensors. Lim (1990) employed the generalized Hankel 

matrix to develop an approach to determine sensor locations based on a given rank for 

the system observability matrix while satisfying modal test constraints. Park et al. 

(2003) presented an optimal placement method for sensors and actuators by using new 

measures of modal controllability and observability defined in a balanced coordinate 

system to assure that the most controllable and observable locations could be selected 

as the optimal sensor locations. Sassano et al. (2014) introduced the notion of dynamic 

generalized controllability and observability functions for sensor deployment and 

model reduction problems.  

Sensitivity based method 

In damage identification applications, Cobb and Liebst (1997) initially proposed a 

sensitivity-based method that prioritizes the DOFs to instrument sensors by examining 

the sensitivity of the first-order partial eigenstructure with respect to changes in the 

structural stiffness of each element. Shi et al. (2000) proposed the eigenvector 

sensitivity method for the optimal placement of sensors with attention to damage 

detection. Zhou et al. (2013) presented a similar method for structural damage 

detection considering measurement uncertainties. Danai (2013) demonstrated an 

optimal sensor location selection for structures via response sensitivities analysis in 

the timescale domain. The sensitivities of sensor outputs to structural properties could 

be assessed by transforming output sensitivities via continuous wavelet transforms 

into a time-scale domain. Azarbayejani et al. (2004) demonstrated a probabilistic 
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approach to optimal sensor location for SHM by utilizing a priori knowledge of 

probable damage locations and severities in the structure.  

Besides, there also are some SPO methods for several specific objectives. Wang et al. 

(2013) presented a sensor placement method for improving the force identification in 

state space based on the correlation analysis of the Markov matrix. Moreover, a 

two-step SPO method is also presented (Wang et al., 2014) for dynamic response 

reconstruction. The response reconstruction is based on the transmissibility matrix 

between two sets of sensor locations. Firstly, the initial combination of the sensor is 

determined based on the ill-posedness of the response reconstruction equation and 

then in the second step, the number and locations of the final sensor placement were 

obtained basing on the minimization of the defined measurement noise index. Zhang 

et al. (2012) proposed an optimal multi-type sensor placement for response 

reconstruction based on the classical Kalman filter theory, in which the modeling 

errors and measurement noise were taken into consideration. He et al. (2015) proposed 

a methodology to determine the minimal number and optimal location of actuators and 

sensors for vibration control of building structures in a combination of response 

reconstruction under earthquake excitation. 

2.2.2 Optimization Strategy 

The problem of deriving the optimal sensor configuration could be formulated as a 

discrete minimization problem. Considering that m sensors of the same type are 

intended to be deployed among a set of n candidate locations, the criterion would have 

to be evaluated among the ( )! ! !m
nC n m n m=  −   different candidate sensor suites, let 
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alone in the situation of multi-type sensors. A number of traditional deterministic 

optimization methods (e.g., Newton iteration and the recursive quadratic 

programming) can be used for simple and regular structures. However, for a civil 

structure that usually comprises tens of thousands of components, an exhaustive 

search of the optimal sensor configuration is probably computationally prohibitive. 

Kammer and Yao (1994) proposed an efficient iterative algorithm for sensor 

placement, in which sensors resulting in the lowest reduction in the determinant of the 

FIM are sequentially removed from the candidate locations until the desired number of 

sensors is reached. Udwadia (1994) demonstrated that using the trace feature of the 

FIM is computationally attractive because the solution of the underlined discrete 

optimization problem is straightforward. Lopes et al. (2004) formulated the optimal 

sensor placement as a binary mixed integer nonlinear programming problem, where 

each possible sensor location is represented by a binary variable. Two computationally 

efficient heuristic algorithms, namely, the forward and backward sequential sensor 

placements (SSP), were presented in several references (Papadimitriou et al., 2004; 

Papadimitriou et al., 2005) based on the theoretical asymptotic results on IE and FIM. 

In the forward SSP algorithm, the N-th optimal sensor is determined in such a way that, 

in addition to the fixed (N -1) selected sensors, placing one sensor at a position will 

result in the highest reduction in the objective function. The backward SSP algorithm 

is the inverse of the forward SSP algorithm. Although the SSP algorithm could not be 

guaranteed as the optimal algorithm, this algorithm is well-known because of its 

computational efficiency in obtaining a proper sensor configuration (Liu et al., 2000). 

The numerical results indicate that this systemic and heuristic SSP algorithm provides 
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suboptimal sensor configurations that could generate good approximations of the 

optimal sensor configuration (Papadimitriou, 2004; Papadimitriou, 2005). Zhang 

(2012) employed a similar strategy, such as backward SSP, when deriving the optimal 

multi-type sensors for best response reconstruction. These heuristic algorithms are 

simple to implement in software and are computationally efficient. 

Genetic algorithms (GA), which are well suited for approximately solving the 

resulting discrete optimization problem, have been proposed as an effective alternative 

(Papadimitriou et al., 2000; Yuen et al., 2001; Papadimitriou, 2004; Yao et al., 1993) to 

the previous heuristic algorithm. Intelligent techniques, such as neural networks and 

swarm algorithms (Yao et al., 1993; Abdullah et al., 2001; Worden and Burrows, 

2001), which yield optimal solutions, are used to improve the optimality of the 

selected sensor configuration.  

2.2.3 Comments on the Existing Methods 

Although extensive research effort has been devoted to the problem of SPO over the 

past decades, there are still some issues that should be addressed when designing 

optimal sensor placement for large civil structure. Firstly, basing on the above reviews, 

it is noted that the optimal sensor placement configuration indeed varies along with the 

optimization objective to achieve and sensor type to deploy. Most of the existing SPO 

methods were proposed for the purpose of modal test, parameter identification or 

damage detection. For the dynamic response reconstruction which is very promising 

and fulfilling in condition assessment of large civil structure, the transmissibility based 

method presented in reference by Wang et al. (2014) did not take model error into 
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account; while Kalman filter based method proposed by Zhang et al. (2012), the 

external excitations are needed. All the features limit their applications in civil 

structures. Secondly, due to advance in sensor development, many types of sensor are 

available for civil structure. Some are localized, and some are distributed, with their 

own advantages and disadvantage. Different sensors provide more comprehensive 

information and various features. However, their distinct properties considerably 

complicate the design procedure of optimal multi-type sensor deployment. This 

problem has not been explicitly addressed in the existing SPO methods except the 

method proposed by Zhang et al. (2012). Another obstacle is that most of the existing 

SPO methods are model based, in which the well-established FE model or the mode 

shape matrix is needed. The error in model building or extracting mode shapes from 

field measurement should be taken into consideration for robust sensor placement. 

Lastly, the large size of large civil structure usually results in large numbers of initial 

candidates of sensor location. An exhaustive searching over the candidate location is 

forbidden due to great computational expense. Therefore, a feasible multi-type sensor 

optimal placement procedure for jointly reconstructing response and excitation 

should be developed. 

2.3 FE Model Updating Based Damage Identification  

2.3.1 Problem Formulation 

The model updating method involves deriving the parameters of a structural model to 

minimize the residual between the measured data and the corresponding quantities 

calculated from the model (Mottershead et al., 1993). This method was initially 
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developed in the model validation process with the motivation of improving the 

accuracy of an initial FE model, such that the predicted dynamic behavior matches the 

observed features during an experiment. Recently, abundant applications have been 

determined in structural damage identification. The main reason is that the method 

could locate and quantify the damage after establishing the explicit relationship 

between damage and dynamic behavior. Comprehensive literature reviews on the 

model updating techniques (Natke et al., 1993; Mottershead et al., 1993) and their 

applications to damage detection and structural health monitoring (SHM) (Doebling et 

al., 1998) could be found.  

FE model updating based damage identification is commonly based on the availability 

of a well-established FE model that represents the dynamics of the structure under 

suspicion. After an initial analytical model has been established, dynamic properties 

extracted from experimental data are employed to update the analytical model for 

consistency with the tested structure. Damage detection, location, and quantification 

are possibly obtained by solving the inverse problem formed using the analytical 

model and the collected data in test. The problem is usually formulated in a 

least-squares sense as the minimization of the following objective function: 

 ( ) ( )( ) 21 2

2

T
m z zJ = − =θ W z z θ ε Wε   (2.18) 

where ( )z θ is the prediction of the FE model, which is dependent on the structural 

parameters vector θ ; mz represents the corresponding measurements from the 

physical structure and tε is the residual vector between the two. W is a weight matrix 

that eases the ill-conditioning of the problem. All the dynamic features in the modal 
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domain, such as natural frequencies (Salawu, 1997), mode shapes and their derivatives 

(Pandey et al., 1991), and flexibility (Pandey et al., 1994; Jaishi et al., 2006), and in the 

time domain, such as response sequences (Lu et al., 1994) and statistical moments of 

responses (Xu et al., 2009; Zhang et al., 2007), are possibly selected to assess the 

integrity of the structures.  

After the formation of the objective function ( )J θ , its minima may be sought through 

some optimization methods and thus the optimal estimate of the unknown parameters. 

The two broad categories concerning model updating techniques are the direct and the 

iterative updating methods.  

2.2.3 Direct Updating Methods 

Most direct methods for FE model updating directly update the global mass and 

stiffness matrices or the perturbation matrices of the damaged structure by 

contemplating single matrix equations (Natke et al., 1993; Natke et al., 1994; Friswell 

et al., 1998; Kim et al., 1993). The Lagrange multiplier (Baruch et al., 1978; Berman et 

al., 1983; Shih et al., 1988), error matrix (He et al., 1986; Sidhu et al., 1984), matrix 

mixing (Ross, 1971; Thoren, 1972; Caesar, 1987), and eigenstructure assignment 

methods (Ziaei-Rad et al., 1996; Cawley et al., 1979) are all well-known direct 

updating methods. The basic idea of the Lagrange multiplier method is that, among 

three sets of parameters, including the measured modes as well as the analytical mass 

and stiffness matrices, one set is considered correct and the other two sets will be 

updated by minimizing a penalty function constrained by Lagrange multipliers. Error 

matrix methods comprise a group of methods that directly estimate the error in the 
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mass and stiffness matrices. The matrix mixing methods assume that all vibration 

modes are measured at all DOFs, and the mass and stiffness matrices could be 

constructed directly. The eigenstructure assignment method is developed from the 

view of system control. In the method, a feedback matrix is found, such that a looped 

system has the desired eigenvalues and eigenvectors. Then, the feedback matrix 

perturbs the stiffness and damping matrices to obtain an updated model. 

The updated model generated from each of these direct updating methods could 

reproduce the reference data exactly, and no iteration is required in the updating 

procedure. Nonetheless, test data needed in these direct updating methods should be 

measured on all DOFs of the analytical FE model. However, in most cases, the number 

of DOFs measured in the test is smaller than that in the FE model. An alternative 

scheme is to reduce the number of discretized elements on the initial FE model or to 

expand the test data, although reduction and expansion might bring erroneous 

information into the process. The methods are usually unable to keep the connectivity 

and physical meaning of the structure. Thus, fully populated matrices are usually 

generated after updating and the sparseness of the matrices of the initial FE model is 

destroyed. Moreover, the positive definiteness of the updated mass and stiffness 

matrices cannot be guaranteed. 

Given that the parametric FE model of the structure is not required in the direct model 

updating, the connection between updated matrices and damage is implicit. Moreover, 

the physical meanings of the updated matrices are difficult to retain. For these reasons, 

the iterative updating methods are more well-known in damage identification. 
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2.2.3 Iterative Updating Methods 

In contrast to direct updating methods, which focus on global system matrices, 

iterative sensitivity-based model updating employs a parametric FE model, which is 

defined regarding physical parameters, such as its geometrical or physical properties. 

Structural damage could be determined by seeking the physical parameters of the 

damaged state through the minimization problem expressed in Eq.(2.18). In the 

sensitivity-based model updating method, the solution to the nonlinear minimization 

problem is usually sought by linearizing the residual using as a truncated Taylor series 

and solving iteratively as 

 k k k∆ = ∆S θ z   (2.19) 

in which k k∆ = −θ θ θ  and ( )1 2
k m k∆ = ⋅  −  z W z z θ . kS is the sensitivity matrix 

obtained from the first derivatives of the predictions with respect to the parameters as:   

 1 2
kk =

∂
= ⋅

∂ θ θ
yS W
θ

  (2.20) 

An ideal dynamic feature (usually called the damage indicator) that is sensitive to 

structural damage while robust to environment effects should be selected as z in 

Eq.(2.18). From the dynamic feature used in the formulation of the penalty function, 

two categories of methods, namely, modal domain and time domain, could be 

classified. 

2.2.3.1 Minimization of Modal Domain Residuals 
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The frequencies and possibly mode shapes of a structure are the first notable 

pioneering indicator for model updating based damage identification (Natke et al., 

1993, Salawu, 1997). Frequencies are analytically direct indicators that reflect 

variation in the stiffness and/or mass of a structure, and model shapes have advantages 

in indicating the spatial location of damage. The first-order derivatives of frequencies 

and mode shapes were derived by Fox and Kapoor (1968). The result for the derivative 

of the r-th eigenvalue rλ with respect to the k-th parameter kθ is: 

 Tr
r r r

k k k

λ λ
θ θ θ

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

M Kφ φ   (2.21) 

where M, K are the FE mass and stiffness matrices, respectively. rφ is the r-th mode 

shape and its sensitivity can be empirically expressed as (2.22) basing on expanding 

the gradients into a weighted sum of the eigenvectors. 
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in which the factor rkha is in the form 
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  (2.23) 

Other methods for calculating mode shape derivatives have been proposed by Ojalve 

(1987), Tan et al. (1989), and Nelson (1976). As a preliminary step, a number of 
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corresponding modes must be identified from the measured responses. The pairing of 

predicted and measured modes is needed and often performed by a quantitative 

measure, such as the modal assurance criteria (MAC) coefficient, which measures the 

spatial correlation and similarity between two tested and analytical mode shapes. In 

MAC, a value of 0 indicates complete dissimilarity and a value of 1 indicates complete 

similarity between the two compared mode shapes. From this principle, several forms 

of penalty functions are defined and used for model updating applying the model 

parameters (Cobb et al., 1996; Link et al., 1992; Farhat et al., 1993; Fritzen et al 1998; 

Friswell et al., 1995). 

However, frequency, as the global indicator of a structure, is insensitive to local and 

incipient damage. One of the notable facts on using natural frequency information for 

damage detection is that the shift of natural frequencies could be induced by the effects 

of the ambient environment. Experimentally, fundamental frequencies can show 5% to 

10% change because of natural ambient environment variations (Cobb et al., 1996). 

Therefore, if damage occurs to an important part of the structure that brings 

approximately less than 10% change in the natural frequency, then such damage would 

stand unrecognized (Chen et al., 1995). Experimental proofs are obtained by 

conducting tests on the I-40 Bridge (Farrar et al., 1994).  

Another damage indicator adopted in model updating based damage identification is 

the modal strain energy (MSE). The MSE confined to the specific i-th mode iφ is 

expressed by Eq.(2.24)  
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where EI denotes the flexural stiffness. It has been used for damage identification in 

several references (Cornwell et al., 1999; Shi et al., 1998; Shi et al., 2000; Wang, 

2013).  

Besides, the modal flexibility matrix is also adopted in defining the penalty function 

due to its higher sensitivity to damage. It can be constructed directly basing on 

available eigenvalues λ and eigenvectors φ as:  

 
1

1rN
T

r r
r rλ=

=∑F φ φ   (2.25) 

Several researchers have employed the modal flexibility matrix in model updating for 

damage identification (Wu et al., 2004a; Wu et al., 2004b; Jaishi et al., 2006; Yan et al. 

2014). The sensitivity of truncated modal flexibility can be derived basing the 

sensitivity of natural frequencies and mode shapes. A direct algebraic derivation of 

modal flexibility sensitivity was also provided by Yan et al. (2014).   

The frequency response functions (FRF) of a structure could provide comprehensive 

information to identify and locate damage (Pereira et al., 1994; Richardson et al., 

1990; Huang et al., 2012). FRF has the basic formula as: 
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in which rΩ and rζ are the r-th natural frequency and modal damping coefficient, 

respectively. One remarkable advantage of using FRFs in sensitivity-based model 

updating is that FRF model updating exempts the necessity of extracting modal 

parameters from the measurement and mode pairing exercises. Thus, the propagation 

of errors in the process of parameter estimation is avoided. Another distinct difference 

is that, in contrast to the updating of eigenvalues and eigenvectors, the updating 

penalty function computations, as indicated in Eq.(2.19), could be easily performed 

into an overdetermined set of equations at many frequency points. Thus, a massive 

collection of references is devoted to this topic (Park et al., 2003; Asma et al., 2005; 

Esfandiari et al., 2010; Sanayei et al., 2012; Esfandiari et al., 2010; Wang et al., 2012; 

Garcia et al., 2013; Gang et al., 2014; Yuan et al., 2015). The penalty function could be 

defined in terms of nodal forces (input data) or structural responses (output data).  

Moreover, other modal domain properties are used in model updating for damage 

identification. Steenackers et al. (2007) presented a new technique to update the FE 

model from output-only transmissibility measurement, which refers to the ratio of the 

response spectra ( )i ωX and ( )j ωX as Eq. (2.27) 

 ( ) ( )
( )

( )
( )

i ik
ij

j jk

ω ω
ω

ω ω
= =

X H
T

X H
  (2.27) 

in which ( )ik ωH and ( )jk ωH are the measured FRFs between output DOF i and j, 

respectively, when input acts at the DOF k. It is assumed that the location of the 

excitation force is known. Zheng et al. (2015) investigated the utilization of response 

power spectral density (PSD) expressed as Eq.(2.28) for damage identification.  
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 ( ) ( ) ( )2
xx ffω ω ω=S H S   (2.28) 

where ( )ωH is the FRF and ( )ff ωS is the auto-power spectrum of stationary random 

excitation. The dynamic response of structures and sensitivity of PSD are obtained 

using stationary, random excitation with the pseudo-excitation method to obtain the 

damage parameters through model updating. 

From the previously presented reviews, we find that the limitations of the frequency 

domain damage detection methods lay in the following aspects: 

(1) Modal identification, which extracts the modal properties from the measurement 

of response and mode pairing exercises, is always needed in frequencies and 

mode shapes based on damage identification. These procedures inevitably 

introduce subsequent errors in frequencies and mode shapes, and the right pairing 

of modes is not necessarily guaranteed. 

(2) Natural frequencies of a structure are insensitive to local damages and have only 

minimal capacity in indicating damage locations. Moreover, the mode shapes of 

higher modes cannot be easily measured and their accuracy is usually low 

because of limited measurement points and unavoidable measurement noises. 

(3) For the FRF or response transmissibility-based damage identification, the 

amplitude varies largely because of resonance and antiresonance, which make the 

ill-posedness problem prominent.   

We can see that although these methods appear intuitive and straightforward, the 
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modal parameters based damage identification methods pose significant technical 

challenges and limitations in application. Given these limitations, research has been 

focusing on model updating algorithms using the time domain response directly.  

2.2.3.2 Minimization of Time Domain Residuals 

Another group of techniques is employed to detect identification using the raw 

measurement in time domain directly to overcome the limitations of modal parameters 

based on damage identification. Compared with the frequency domain approach, the 

time domain FE model updating takes advantage of the time dimension with a large 

amount of measured data to formulate an overdetermined set of equations in the 

penalty function. Another remarkable advantage is that the process of extracting 

modal parameters from the measurements and mode pairing exercises are exempted; 

thus, the propagation of errors involved in these procedures is avoided.  

Majumder and Manohar (2003) developed a time domain approach within the 

framework of FE model updating to detect the damages in bridge structures using the 

vibration data induced by a moving vehicle. The time domain approach developed in 

this study leads to solving a set of overdetermined linear algebraic equations for 

damage indicator variables. Lu et al. (2003) proposed a structural damage 

identification approach based on response sensitivity analysis in the time domain. The 

relationship between the responses and fractional damage in elements was explicitly 

derived and used for identifying elemental level damages. Ding et al. (2008) proposed 

a time domain damage identification method based on energy variations of responses 

decomposed using wavelet packet transform. The method takes advantage of 
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sufficient measure data and yields satisfactory results. Cacciola et al. (2011) presented 

a time domain least square identification method based on the minimization of a 

penalty function using the time domain deterministic and stochastic responses. One of 

the main advantages of the proposed procedure operating in the time domain is the 

avoidance of rank deficiency, which reduces biasing. Various numerical tests have 

been conducted, such as the ASCE benchmark that manifested perfect matching 

between the targets and estimated structural parameters. Zhang et al. (2011) 

investigated a novel structural damage detection method with the statistical moments 

of dynamic responses of the shear building as a new damage index. Various damage 

scenarios of the frame structure showed that the moments of dynamic responses are 

sensitive to structural damage and insensitive to measurement noise, even with a 

high-level measurement noise of 15%. A stochastic damage detection method was 

proposed by Xu et al. (2011) for damage detection of structures with uncertainties. The 

damage locations and severities are identified based on a special probability function 

that is calculated by using the probability density functions of the structural stiffness 

parameters before and after damage occurrence. One of the advantages of the proposed 

method is that it can deal with uncertainty parameters of non-normal distributions. 

2.2.4 Regularization Techniques in FE Model Updating 

Due to the limitation of sensors compared with the uncertain parameter number, Eq. 

(2.19) involved in model updating based damage identification probably formed as an 

ill-posed problem. Then, the sensitivity matrix S is close to being rank deficient and a 

small disturbance in∆z may lead to a significant deviation in∆θ  from its exact value. 

Two regularization techniques, namely, truncated singular value decomposition 



 

42 

(TSVD) (Golub et al., 1996; Hansen, 1998) and Tikhonov regularization technique 

(Tikhonov et al., 1977; Groetsch, 1984; Bui, 1994; Hansen et al., 1998) are widely 

employed to address the ill-posedness problem, and these techniques will be 

introduced in the subsequent section. 

Truncated Singular Value Decomposition  

A straightforward approach to obtaining a rational solution is to truncate the least 

square solution to Eq.(2.19), yielding 
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where tn is truncation level. Since the contribution of ti n> -th singular value to the 

solution is omitted to decrease the solution error, the choice of the truncation level in 

the TSVD method should be chosen delicately. iσ , iu and iv are the singular values, 

the portion of left and right singular vectors obtained by performing a singular value 

decomposition on the sensitivity matrix m n×∈ℜS  as 
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Tikhonov Regularization 

Tikhonov regularization (Tikhonov et al., 1977) approximates the solution of Eq. 

(2.19) by transferring it into the following well-posed problem: 
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where λ is a positive number and if can be viewed as a kind of filter factor: if iσ  

approaches to 0 , if approaches to 0 at the same time; otherwise, if approaches to 1. 

Thus the contribution of these near-zeros singular values to the solution is filtered out. 

It can be noted that Eq. (2.31) reverts back to the least square solution forλ = 0. An 

optimal regularization factor is needed and usually determined by the several 

well-defined methods such as the L-curve method (Hansen, 1992), generalized 

cross-validation (GCV) method, geometric mean scheme (Park, 2002), and the 

variable regularization factor (Lee et al., 1999). 

In the realm of damage identification, D’Ambrogio et al. (1998) applied the TSVD 

method as a regularization technique to reduce ill-conditioning in model updating, in 

which the truncation parameter tn was chosen by simultaneous minimization of the 

natural frequency error and response residual error. 

Ahmadian et al. (1998) presented the adoption of L-curve and GCV methods for 

determining the regularization parameter in FE model updating. Ziaei-Rad and 

Imregun (1999) investigated a number of regularization methods and concluded that 

the L-curve method was straightforward in determining the regularization parameter. 

Mares et al. (2002) explored the robust estimation and the Tikhonov regularization 

methods for the output-error-based FE model updating by using only modal 

frequencies and applied an uncertainty bound model and L-curve method to determine 

the regularization parameters. Titurus and Friswell (2007) investigated the 

output-error-based model updating method with an additional regularization criterion 

by using experimental modal frequencies and mode shapes and explored the 

regularization technique from a geometric perspective. Weber et al. (2009) applied 
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Tikhonov regularization and TSVD consistently to a nonlinear updating problem. The 

optimal regularization parameter is determined by the GCV method. Hua et al. (2009) 

proposed a minimum product criterion to select the optimal regularization parameter 

during every iteration in output-error-based FE model updating for damage 

identification. Compared with the commonly used L-curve method and the GCV 

through numerical studies of a truss bridge using noise-free and noise-corrupted modal 

data, the minimum product criterion was effective and robust in determining the 

regularization parameter. An adaptive regularization approach for solving the model 

updating problem was presented by Li et al. (2010). A reference value is selected to 

ensure that the accumulated damage vector is less than 0. The study revealed that the 

adaptive Tikhonov regularization was superior to the traditional Tikhonov 

regularization. 

2.4 Dynamic Substructuring Technique  

2.4.1 General Framework 

Dynamic substructuring technique refers to dividing a large and complex structure 

into several smaller substructures, modeling and reducing them separately and 

reassembling the reduced models together in order to investigate the dynamic of 

structures which are too big to be analyzed as one piece. After the division of the 

structure into substructures, more insight can be gained over the local dynamic of the 

substructures and local reanalysis is feasible. More specifically, the procedure of 

dynamic substructuring technique can be described as follows: (1) separate the whole 

structure into different substructures or components; (2) reduce the substructure 
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model and describe the linear substructures in their dominant dynamics; (3) 

reassemble the substructure models to form a reduced-order model with respect to the 

boundary connections between the interfaces of different components; (4) perform the 

time-domain or frequency domain analysis of the whole condensed model; (5) obtain 

the analysis of concerned components in the initial physical coordinate by coordinate 

transform. 

The substructuring techniques can be classified as the fixed-interface method, the 

free-interface method or the hybrid interface method that combines the two, depending 

upon whether the generalized coordinates are obtained with boundary DOFs fixed or 

free. The first ideas for dynamic substructuring were published by Hurty (1965) and 

Gladwell (1964). Gladwell proposed to use so-called branch modes for the reduction. 

Hurty (1965) proposed to use a combination of vibration modes, rigid body modes and 

static modes. Both of them are the fixed-interface methods. Later, Craig and Bampton 

simplified this approach and the classical component mode synthesis (CMS) methods 

(Craig et al., 1968) were introduced. Nowadays the Craig-Bampton method and its 

refinements (Rixen, 2004) are widely used because the procedure is straightforward 

and typically produces accurate models with few component modes. Other popular 

methods were developed by Mac Neal (1971) and Rubin (1975). These methods have 

found a broad range of applications in the field of structural dynamics for evaluating 

the dynamic behavior of large structures. From the 1980’s onward, substructuring 

coupling techniques caught the attention of the experimental society. Due to much 

improved measurement hardware and experimental techniques, measurements could 

now be used in substructuring analyses (Jetmundsen et al., 1998). Crowley et al. 
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(1984) presented a method for the direct assembly of FRFs for structural modification 

using experimental FRFs. An alternative method was proposed by Jetmundsen et al. 

(1988), and it is often referred to as the classical frequency based substructuring 

method. Recently, De Klerk et al. (2006) proposed a frequency based substructuring 

approach using the dual assembly formalism, which became known as Lagrange 

multiplier frequency based substructuring. For a more extensive historical overview of 

substructuring methods, the interested reader is referred to the reference (De Klerk, 

2008).  

Following the general introduction given above, a brief introduction of dynamic 

substructuring will be given. The application of dynamic substructuring techniques in 

the community of SHM and damage identification will be reviewed in Section 2.5. 

2.4.2 Model Portioning and Reduction 

A large structure is assumed to be divided into nN non-overlapping substructures. The 

s-th physical substructure is described by its mass, stiffness and damping distributions 

given by the sM , sK and sC matrices respectively and the associated displacements 

( )s tx .The equations of motion for the s-th substructure are given as: 

 ( ) ( ) ( ) ( ) ( )s s s s s s s st t t t t+ + = +M x C x K x f g    (2.32) 

where fs (t) and gs (t) are the applied external forces and the connecting forces from the 

adjacent substructures, respectively. Model reduction is performed by approximating 

the full set of DOFs { }sx using a set of possible generalized DOFs { }sq as:  
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 { } { }s s s
c=x T q   (2.33) 

Then, Eq.(2.32) can be reduced by substitution of Eq.(2.33): 

 ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )s s ss s s s st t t t t+ + = +M Cx x x f gK    (2.34) 

where 

 ˆ ˆ, , ( ) ; ( )ˆˆ ˆ ;s sT s s s sT s s s sT s s sT sT
c c c c c c

s s
c c

s st t= = == =K T K T M T M T C T C fT Tf g gT   (2.35) 

In theory, all the model reduction methods such as Guyan reduction (Guyan, 1965), 

Craig-Bampton reduction (Craig, 1968), Rubin reduction (Rubin, 1975) and others 

can be used in Eq.(2.33). These reductions use different modes (in fact Ritz vectors) as 

the reduction basis, such as exact eigenmodes, free interface vibration modes, the 

interface constraint modes, fixed-interface normal modes, etc. Craig-Bampton 

reduction (Craig and Bampton, 1987) is preferred among them due to its 

straightforward implement and considerably high accuracy. Detailed introduction of 

this method can be found in Chapter 8. 

2.4.3 Substructures Assembling 

In general, we can identify two domains in which dynamic substructuring coupling 

can be performed: the time domain and frequency domain. In the time domain, the 

structure is assembled in terms of generalized (modal) DOF and their associated 

reduced matrices; while in the later former substructures are assembled whose 

dynamics are described in terms of FRF. Regardless of whether the substructures are 
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modeled in the time or frequency domain, compatibility condition and equilibrium 

condition must be satisfied when assembling the substructures. The former states that 

interface displacements of the substructures must be compatible while the latter 

ensures the forces connecting the substructures’ interface DOFs in equilibrium. Two 

common assembly methods in FE modeling which satisfy both conditions are:  

(1) Primal assembly: by choosing a unique set of degrees of freedom (DOF), one set of 

interface DOF is eliminated. Both substructures thus share the same set of interface 

DOF, and compatibility and equilibrium are both a priori satisfied. 

(2) Dual assembly: by choosing a unique set of interface forces, which will a priori 

satisfy the equilibrium condition, to enforce the connection forces on both sides of the 

interface in equilibrium. The compatibility condition is then explicitly added to the set 

of equations.  

We can see that the difference between primal and dual assembly is that in the primal 

assembly a unique set of DOFs is found and thereby merges both interfaces to one 

unique interface. Dual assembly, on the other hand, retains all the substructure DOFs 

and uses an additional set of coupling DOFs to connect the substructures. 

2.4.3.1 Substructures Assembly in Time Domain 

The reduced substructures should be assembled so that the dynamics of the entire 

structure can be analyzed. The equations of motion of the nN substructures that are to 

be coupled can be block-diagonally assembled as: 

 ( ) ( ) ( ) ( ) ( )t t t t t+ + = +Mq Cq Kq f g    (2.36) 
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with  

( ) ( ) ( )1 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , ; , , , , ; , , , ,n n nN N Ns s sdiag diag diag= = =M M M M K K K K C C C C       

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ, , , , ; , , , , ; , , , ,n n nN T N T N TT T sT T T sT T T sT    = = =    q q q q f f f f g g g g       

where qn∈ℜq (
1

ˆn
q ss

n n
=

=∑ ) is the vector of generalized coordinates for all the n 

substructures. The compatibility condition can also be written in a matrix form as: 

 =Bq 0   (2.37) 

where the B matrix operates on the interface degrees of freedom and is a signed 

Boolean matrix which contains only 1, -1, and 0. The compatibility condition states 

that any pair of matching interface degrees of freedom must have the same 

displacement. The equilibrium condition writes in the matrix form as： 

 T =L g 0   (2.38) 

where the matrix L is the Boolean matrix localizing the interface DOF of the 

substructures in the global set of DOFs, making that sum of connection forces acting 

on each boundary DOFs equals to zero. Since multiple substructures may share some 

common boundary DOFs, there are multiple entries for these boundary DOFs in the 

assembled vector q . It can be proved that B and L are in each other's null space as

=BL 0 .  

Substructures assembly can be performed in the time domain using the interface 

displacements, using interface forces or using mixed interface. The former is 



 

50 

introduced as follows.  

Primal assembly using the interface displacements 

In a primal assembly, a unique set of interface DOFs q is defined that automatically 

satisfies the compatibility condition: 

 ( ) ( )t t=q Lq   (2.39) 

By substituting Eq.(2.39) into Eq. (2.36) and pre-multiplying with TL , the primal 

assembled structure is obtained as: 

 ( ) ( ) ( ) ( )Tt t t t+ + =Mq Cq K Lq f        (2.40) 

with the primal assembled structure matrices defined as:  

 ; ;T T T= = =L LM ML C CL K KLL    (2.41) 

 Please be noted that the equilibrium condition allows removing the interface forces g 

from the equations, since T =L g 0 .  

Dual assembly using the interface displacements 

In dual assembly, the full set of degrees of freedom q is retained while the interface 

forces are chosen in the form of 

 T= −g B λ   (2.42) 

The interface forces are now described by the Lagrange multipliers λ , which are the 
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interface force intensities. Due to the construction of B the interface forces on both 

sides of the connection will always be opposite and equal, so equilibrium on the 

interface is a priori satisfied since T T− =L B λ 0 . The system of equations (2.36) now 

reduces to 

 
            

+ + =           
           

TM 0 C 0 q fK Bq q
0 0 0 0 λ 0B 0λ λ

   
  (2.43) 

The main difference between the primal and dual assembly of interface displacements 

is that in primal assembly the compatibility condition is satisfied a priori, whereas in 

dual assembly the equilibrium is satisfied a priori. Physically this can be interpreted as 

an assembly by interface displacements or interface forces, respectively. 

2.4.3.2 Substructures Assembly in Frequency Domain 

Performing a Fourier transform on Eq.(2.36) , Eq.(2.37) and Eq.(2.38) gives the 

following set of governing equations in the frequency domain: 

 
( ) ( ) ( ) ( )

( ) ( ); T

ω ω ω ω
ω ω

 = +
 = =

Z q f g
Bq 0 L q 0

  (2.44) 

in which ( )ωf and ( )ωg  are the acting and connecting forces in Fourier domain; 

( )ωZ is the block-diagonal matrix containing the dynamic stiffness matrices of the 

substructures, i.e.,  

 ( ) 2j jω ω ω= − + +Z M C K   (2.45) 
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The same procedure as before can be followed to obtain either a primal or dually 

assembled system of equations.  

Primal Formulation in the Frequency Domain 

The interface compatibility is imposed by choosing a unique set of interface DOF as 

 =Zq f   (2.46) 

where T=Z L ZL and T=f L f are the primal assembled frequency response function 

matrices and forcing amplitudes. 

Dual assembly in the Frequency Domain 

For a dual assembly of Eq.(2.44), the equilibrium condition is imposed by choosing 

the interface forces a ( ) ( )Tω ω= −g B λ . Analog to dual assembly in the time domain, the 

set of equations given in (2.47) is assembled.  

 
     

=    
    

T q fZ B
λ 0B 0

  (2.47) 

The above equation can be rewritten from a dynamic equation in terms of stiffness to 

one in terms of flexibility. 

 
 = −


=

Tq Yf YB λ
Bq 0

  (2.48) 

The first equation can be substituted in the compatibility condition as: 

 − =TBYf BYB λ 0   (2.49) 
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The first term ( BYf ) describes the deformation of the (separate) interfaces due to the 

external forces, thereby resulting in a gap between the substructures. The second term 

( TBYB λ ) describes the deformation of the (separate) interfaces due to the external 

forces, thereby resulting in a gap between the substructures. The second term is written 

as:  

 ( ) 1−
= Tλ BYB BYf   (2.50) 

By substituting this expression into the equations of motion a direct and convenient 

expression for the dual assembled system is obtained. 

 ( ) 1−
= − T Tq Yf YB BYB BYf   (2.51) 

The obtained set of equations is known as Lagrange multiplier frequency based 

substructuring (Klerk et al., 2006; Jetmundsen et al., 1988). 

Dynamic substructuring technique allows analyzing large structures that would 

otherwise be too large and/or complex to be analyzed as a whole.  Recently, it has 

been developed with the attention of being applied to model updating and damage 

identification of large structures, which will be introduced in the next section.  

2.5 Damage Identification for Large Civil Structures 

As mentioned in Chapter 1, although certain achievements have been obtained in 

damage identification on small and moderate structures, the application of 

vibration-based damage identification to large civil structures is still a long way to go. 
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Currently, research efforts have been dedicating to promoting damage identification 

methods that are more suitable for large structures in several aspects.  

2.5.1 Multi-scale Sensing for Damage Identification 

The first method is fusing multiple responses for SHM and damage identification, 

which is called multi-scale sensing SHM or damage detection in several references 

(Sim and Spencer, 2007; Sung et al., 2013). In light of rapid advances in sensor 

technologies, various types of sensors are usually deployed in the SHM system to 

measure different types of responses of large-scale structure (Balageas et al., 2006; Xu 

and Xia, 2011; Farrar and Worden, 2012). Heterogeneous responses captured by 

various types of sensors are capable of providing comprehensive (local and global) 

information regarding the condition of the structure. For instance, among frequently 

used responses, acceleration is often preferred because of relatively more KE on 

higher vibrational modes and easy installment of accelerometers. Displacement, which 

contains more energy in the modal vibration of low orders, sometimes could directly 

indicate structural integrity (e.g., inter-story displacement of high-rise buildings). 

These two types of responses are usually regarded as a global response, which has the 

advantage of indicating that the existing damage globally. Strain, as a kind of local 

response, is utilized because of its better capacity of providing quantification on local 

structural degradation. However, achieving the functionality of strain sensors usually 

requires that sensors should be located near areas of damage. A fusion of different 

types of responses, which manifests a broad spectral bandwidth, is expected to take 

full advantage of these dynamic responses for structural condition assessment. 
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Data fusion that combines different types of responses was first investigated for better 

structural response monitoring. For example, a fusion of GPS and acceleration data 

(Chan et al., 2006; Meng et al., 2007; Smyth et al., 2007) has been explored for better 

displacement measurement. Park et al. (2003) presented a displacement sensing 

system based on the fusion of strain and acceleration measurements and further 

implemented this method into a wireless sensor network for displacement estimation 

in simply supported bridges (Park et al., 2014). Smyth and Wu (2007) applied the 

multi-rate Kalman filter to fuse displacement and acceleration with different sampling 

rates to produce more accurate velocity and displacements. Papadimitriou et al. (2010) 

adopted the Kalman filter to predict strain response by using output-only strain 

measurements in the case of stochastic excitations for estimating damage 

accumulation of a metallic structure. Hernandez et al. (2013) proposed a finite element 

model-based state estimator that could account for spatial correlation and the colored 

nature of the excitation to estimate wind-induced stresses and fatigue damage. Various 

experimental results of stress estimation in a cantilever beam using 

noise-contaminated acceleration measurements were reported by Erazo et al. (2014). 

Palanisamy et al. (2015) presented an experimental validation of Kalman filter-based 

strain estimation of structures subjected to nonzero mean input by fusing different 

types of data of acceleration, strain, and tilt responses. Zhang (2012) and Xu et al. 

(2016) developed a Kalman filter-based dynamic response reconstruction method 

using multi-type real-time measurement and investigated the optimal sensor 

placement method for best response reconstruction. 

Furthermore, studies have explored damage identification with a fusion of multi-type 
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sensors. Studer and Peters (2004) presented a damage identification method with 

fusion multi-scale measurements, including strain, integrated strain, and strain 

gradient strain fields by embedded fiber optic sensors. A neural network data fusion 

approach was proposed for a realistic fusion of data and their different forms. A 

simulation study of a two-dimensional isotropic, linear elastic, and homogeneous 

plane with cracks shows the feasibility and significant improvement in damage 

identification provided by the combined use of multi-scale sensing data and neural 

network data fusion. Sim and Spencer (2011) proposed a multi-metric damage 

detection approach based on the stochastic damage-locating vector (DLV) method 

using a combined flexibility matrix, including displacement and strain flexibility 

matrices, to detect structural damage. Numerical simulations were performed on a 

53-DOF planar truss model excited by a band-limited white noise input force. Damage 

was simulated by using 40% stiffness reduction in one element. The results indicated 

that the proposed multi-scale data damage detection strategy could yield better results 

than the stochastic DLV method (Bernal, 2006) that uses only a single type of data in 

numerical simulation. Sung et al. (2013) proposed a multi-scale sensing and diagnosis 

system combining accelerometers and gyroscopes for bridge health monitoring in a 

two-step strategy. The damage diagnosis based on acceleration measurement that is 

first performed on the entire structure of a simply supported beam by using deflection 

estimated by modal flexibility. The angular-velocity-based damage diagnosis is 

additionally conducted to localize the damage near the hinged support, which was 

missed by acceleration-based approaches. Experimental validations have been carried 

out to confirm the superiority of the proposed multi-scale sensing system. 
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The previous studies showed that damage detection methods that use multi-scale 

measurements outperform methods that use only one type of measurement. 

Multi-scale sensing may be used for more effective SHM, such as better displacement 

monitoring. However, potential benefits of utilizing multi-type responses for damage 

identification have not been fully explored. Moreover, few references are available on 

the problem of multi-type response reconstruction and multi-scale sensing fusion for 

damage detection. Damage may occur at locations that are remote from the measured 

locations. As a result, integrating multi-scale sensing and response reconstruction is 

more desirable for identifying damage on large-scale civil structures.  

2.5.2 Substructuring Methods for Damage Identification 

Some research efforts have been devoted to deal with the large-scale computation 

demand and the non-global identifiability of damage identification for large civil 

structures. 

The first notable strategy is the dynamic substructuring technique, or specifically, the 

CMS-based methods. Detailed introduction to the dynamic substructuring techniques 

can be found in Section 4.4. For damage detection in terms of model updating, Weng et 

al. (2010) proposed a substructure-based FE model updating method performed in the 

frequency domain for damage identification. Computational demand was dramatically 

reduced given that only concerned substructures and the eigenequation of the 

condensed structure were reanalyzed in updating procedures. Liu et al. (2014) 

combined the CMS technique with Kriging predictor in the model updating of a 

complex structure using eigenvalues of the structure. Updating the FE model of an 
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arch bridge was investigated to demonstrate the effectiveness of the proposed method. 

Chen et al. (2014) applied the free-interface modal synthesis method to substructure 

sensitivity-based damage detection. Simulation study of an 11-story frame structure 

indicated that the substructure-based method could detect damage with better speed 

and stability in multi-damage cases. Papadimitriou et al. (2013) integrated the CMS 

technique as an efficient model reduction technique into Bayesian FE updating by 

using modal characteristics to alleviate the computation burden involved in damage 

identification of a highway bridge. A similar strategy was reported (Jensen et al., 2014) 

in Bayesian FE updating using dynamic response data. Shan (2015) introduced a novel 

FE model updating method for bridge structures by combining the substructure FE 

model updating method with the response surface method using natural frequency and 

static displacement. Yu et al. (2016) applied the free-interface CMS method to the 

element-by-element model updating of large-scale structures. The global model is 

updated using the assembled eigensensitivity of the global structure using the 

eigensensitivities of each substructure with respect to the element parameters. Thus, 

computational time was shorter compared with that consumed by the conventional 

global-based approach. 

Another similar but different strategy has been reported in substructural damage 

identification. In substructural identification, the entire structure is divided into 

substructures with a certain substructure selected as the target substructure for 

analysis. Usually, the focus is on structural degradations inside the investigated 

substructure and treating interaction effects at the interface DOFs as external forces to 

the substructure. A diverse set of methods of the topic has been reported by many 
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researchers. Koh et al. (1991) proposed a first-noted application of substructural 

identification and adopted the extended Kalman filter to solve the state and 

observation equation with and without overlapping members for the identification of 

structural parameters in the time domain. With a limited set of measured acceleration 

response, substructural identification significantly outperformed the identification 

using the complete structural model. Yun and Lee (1997) proposed a substructural 

identification method for the estimation of local damage in the compound structure 

using sequential prediction error and an autoregressive and moving average with 

stochastic input model. A new technique, that is, the progressive substructure 

identification, was proposed and investigated by Koh et al. (2003) and Trinh and Koh 

(2011) to identify the stiffness parameters of a chain structure with GA. The proposed 

strategy works by gradually expanding the substructure under survey while including 

new unknown parameters for identification. The numerical results of Koh et al. (2003) 

showed that progressive substructure identification performs best compared with 

substructure identification with overlap and without overlap. Tee et al. (2005) 

provided two methods for system identification at the substructural level in first-order 

and second-order models, which used the eigensystem realization algorithm and the 

Kalman filter. 

The superiority of substructural level identification over global structural 

identification was illustrated by numerical simulation studies of a 12-story shear 

building and a 50-story shear building in terms of improvement in accuracy and 

computational efficiency. Yuen and Katafygiotis (2006) presented a substructure 

identification procedure in a Bayesian context in the frequency domain. A numerical 
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simulation of a 100-DOF structure was conducted with successful detection of 

damages as small as 5% stiffness loss in one floor. Hou et al. (2011) developed a 

substructure isolation method by adding a virtual fixed support to the substructure. 

Then, system identification could be performed on the isolated substructure. Xing and 

Mita (2012) applied a time domain substructural identification to shear buildings with 

discrete masses by utilizing an autoregressive and moving average with exogenous 

terms model of one-DOF substructures. The simulation study results of a five-story 

shear building showed that damage was detected with statistical significance for all the 

damage cases with stiffness loss greater than 20%. Li et al. (2012) proposed a 

substructural damage identification approach in which the responses and forces at the 

interface DOFs were reconstructed using the unit impulse response function in the 

wavelet domain. The substructural FE model updating was performed on the FE 

model of the target substructure by using acceleration data on the damaged 

substructure. The simulated damage on a three-dimensional box section girder can be 

identified effectively even with 10% measurement noises. Weng et al. (2012) proposed 

a new substructural model updating method in which the modal data measured from 

the global structure was disassembled to obtain the dynamic flexibility matrices of 

independent substructures. The extracted substructural flexibility matrices are then 

used as references for updating the corresponding substructural models, in which only 

the sub-models were reanalyzed in the updating process, resulting in a rapid 

convergence of optimization.  

2.5.3 Multi-scale Modeling for Damage Identification 

Essentially, the damage is a complex process and affects structures at many different 
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scales. At the incipient stage, the damage is initiated by cracks or intrinsic material 

imperfection in structural components. As damage progresses, the properties of the 

component are degraded, which ultimately causes component-level changes and even 

comes to a structure-level failure without timely remedial works. A multi-scale 

modeling that characterizes the complicated process in multifarious scale is needed for 

elaborate and accurate damage simulation and detection. Another motivation for 

developing multi-scale model is related to computation accuracy and efficiency. In 

civil infrastructures, such as long-span bridges in kilometers, incipient damage occurs 

typically on hotspot connections or components of the order of millimeters due to 

localized stress concentration. Thus, to model numerically and analyze the global and 

local behavior of response and damage is impossible in a unified spatial scale. To 

capture accurately minor or localized damage generation and growth in hotspot 

locations, elaborate FE models at small scale are needed to obtain high-resolution 

dynamic properties of these substructures. Also, other substructures can be modeled in 

coarse elements with large scale for computation ease.  

The concept of using multi-scale FE model for SHM or damage identification has been 

embraced by several researchers. Li et al. (2007) developed an approach for the 

multi-scale analysis of structural dynamic response and local damage in a multi-scale 

model of the Tsing Ma Bridge. The global dynamic response of the bridge and local 

damage accumulation of two typical weld details in the longitudinal truss of TMB 

under traffic loading are numerically analyzed by using the developed model and 

computational procedures. A concurrent multi-scale FE modeling for civil 

infrastructures, where a large-scale model is adopted for the global responses of 
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structures with a linear behavior, and a small-scale model is used for nonlinear damage 

analysis of the local welding was investigated by Li et al. (2009) and applied to the 

cable-stayed Runyang Bridge (Chan et al., 2009). Ding et al. (2010) developed a 

multi-scale FE model that combines a global scale model for modal analysis of the 

entire bridge and local-scale models for local stress analysis of the concerned 

components for a long-span cable-stayed bridge. The results of the multi-scale FE 

model agreed well with the measured ones in terms of modal properties and stress 

distributions. Zhu et al. (2014) established a multi-scale FE model of Stonecutters 

Bridge, in which the twin-box deck of the bridge was modeled by using elaborate shell 

elements and other components using simple beam or truss elements. Each segment of 

the girder was condensed into a super-element by using the substructuring method. 

This model could achieve a balance between the modeling of precise geometry and 

computation time.  

Furthermore, Xiao et al. (2014) updated the multi-scale model by minimizing an 

objective function that involves dynamic response (modal frequencies) and static 

response (displacement and stress influence lines). The response surface method was 

adopted in the updating process to enhance computation efficiency. He and Zhu (2013) 

proposed an adaptive scale damage detection strategy, in which dynamic equations 

and modal properties of beam structures are modeled by spatially varying the 

beam-type wavelet FE model. Thus, damage could be detected progressively. The 

suspected region is first identified using a low-scale structural model and the more 

accurate location and severity of the damage could then be estimated by using a 

multi-scale model with local refinement in the suspected region. Experimental 
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validation of a one-bay steel portal frame was also presented (Zhu et al., 2014). Sun et 

al. (2016) developed a new multi-scale model for fatigue damage accumulation 

evaluation, which could describe continuous average damage evolution for easier 

engineering application and internal collective behavior of short and long cracks for a 

better understanding of metal fatigue failure mechanisms. The multi-scale fatigue 

model was further used in the image-based simulation of the collective process of the 

short crack nucleation and growth in micro-scale, as well as continuous fatigue 

damage evolution in macro-scale (Sun et al., 2016). 

From the previously presented references, research efforts in several aspects are 

required for the realization of damage identification on large civil structures. First, a 

model-dependent damage identification method requires a multi-scale model that 

could characterize the damage on hotspot locations in high-resolution while balancing 

computation demand. Second, multi-type sensors that capture the global and local 

responses should be deployed at optimized locations and a fusion of the mixed 

response should provide more comprehensive information regarding structural 

condition. Finally, the local damage on the structure should be sought in the 

appropriate manner to overcome the computation burden constraints and guarantee the 

global identifiability of locally exciting damages. A framework that incorporates all 

the aspects is desperately desired for damage identification in larger civil structures. 
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CHAPTER 3 

 OPTIMAL MULTI-TYPE SENSOR PLACEMENT 

FOR JOINT RESPONSE AND EXCITATION 

RECONSTRUCTION 

3.1 Introduction 

Equation Chapter (Next) Section 3Accurate knowledge of structural response is vital 

to vibration-based structural performance monitoring of a civil structure. The need to 

perform dynamic response reconstruction always arises as the sensor deployment is 

often limited to a few predefined locations due to measurement accessibility and 

budget constraint, especially for a large civil structure. Besides, advances in sensor 

technologies enable installing multiple types of sensors on the monitored structure to 

measure not only global response (e.g. acceleration and displacement) but also local 

response (e.g. stress and strain). As a result, how to design an optimal sensor 

configuration of multi-type sensors for the best reconstruction of the responses of key 

components where there are no sensors installed becomes a meaningful question that 

should be answered to ensure the functionality of the SHM system. Zhang et al. (2012) 

and Xu et al. (2016) presented a multi-type sensor placement method for dynamic 

response reconstruction, in which the classical Kalman filter was used to reconstruct 

the responses at the key locations by taking advantages of the structural model 

information and the real-time responses measured by limited sensors. Their method 

accounts for the effect of measurement noise and modeling errors. However, the full 
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description of external excitation (in terms of time history and excitation location) is 

required in the procedure. The necessity of knowledge on external excitation has 

constrained the application of their method in the circumstances where the acting 

excitations on the structure are difficult to be measured. This chapter thus presents an 

algorithm for optimal placement of multi-type sensors, including strain gauges, 

displacement meters, and accelerometers, for the best reconstruction of desired 

structural responses of key locations as well as the best estimation of external 

excitations acting on the structure simultaneously. The algorithm is developed in the 

framework of Kalman filter under unknown input (KF-UI), in which 

minimum-variance unbiased estimates of the generalized state of the structure and the 

external excitations are obtained by virtue of limited sensor measurements. The 

structural responses of key locations without sensors can then be reconstructed with 

the estimated generalized state and excitation. The asymptotic stability feature of the 

filter is utilized for optimal sensor placement. The number and spatial location of the 

multi-type sensors are determined by a forward sequential sensor placement method: 

adding the n-th optimal sensor which gains the maximal reduction of the estimation 

error of reconstructed responses when the first (n-1) optimal sensors are fixed. A 

simply-supported overhanging steel beam under multiple types of excitation is 

numerically studied to demonstrate the feasibility and superiority of the proposed 

method, and the corresponding experimental works on the overhanging beam will be 

presented in Chapter 7. 
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3.2 State Space Representation 

3.2.1 Continuous State Space Model 

The dynamics of a structure modeled by n degrees of freedom (DOFs) can be 

expressed by 

 ( ) ( ) ( ) ( )t t t tMd + Cd + Kd = Lu    (3.1) 

where ,M C and n n×∈ℜK denote the mass, damping and stiffness matrices of the 

structure, respectively; the matrix n p×∈ℜL is the mapping matrix relating the 

excitations with the corresponding DOFs of the structure; the vector ( ) pt ∈ℜu

contains p inputs; and ( ) nt ∈ℜd is the vector of nodal displacement, and a dot over the 

vector denotes differentiation with respect to time. Using the coordinate 

transformation ( ) ( )t t=d Φq and premultiplying by TΦ , Eq. (3.1)can be transformed 

to 

 ( ) ( ) ( ) ( )t t t tT T T TΦ MΦq +Φ CΦq +Φ KΦq =Φ Lu    (3.2) 

in which n n×∈ℜΦ is the matrix of mode shapes, which can be obtained by undamped 

eigenvalue analysis from 2KΦ = MΦΩ . If mass-normalized eigenvectors are chosen, 

TΦ MΦ = I and T 2Φ KΦ = Ω . If the proportional damping is further assumed, 

TΦ CΦ = 2ΞΩ  holds.  Eq. (3.2) can be further decoupled as 

 ( ) ( ) ( ) ( )t t t t2 Tq + 2ΞΩq +Ω q =Φ Lu    (3.3) 
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Where n n×∈ℜΩ and n n×∈ℜΞ are the diagonal matrices containing the 

eigenfrequencies iω in rad/s and the modal damping ratio iξ , respectively. Eq. (3.3) 

can be further written in state-space form as: 

 ( ) ( )
( ) ( )

( )
( )

t t t
t t t

c c

c c

x = A x + B u
y = C x + D u


  (3.4) 

with 

 ( )
( )

,
( )
t

t
t

     
=      
     

c c2 T

q 0 I 0
x A = ,B =

q -Ω -2ΞΩ Φ L
  (3.5) 

where ( ) nNt ∈ℜx and ( ) mNt ∈ℜy denote the state vector and the observation vector, 

respectively, of the structure, where 2nN n=  is the system mode number; n nN N
c

×∈ℜA ,

n nN N
c

×∈ℜB , m nN N
c

×∈ℜC and mN p
c

×∈ℜD represent the continuous state matrix, input 

matrix, output matrix and transmission matrix, respectively; and n nN N×∈ℜI  is the 

identity matrix. If strain, displacement and acceleration are output responses, the 

observation vector should be as follows: 

 ( )
( )

( )
( )

( )
( )

( )

t
t

t t t
t

t

     
       ⋅                

2 T

ε Ψ 0 0
q

y = d = + uΦ 0 0
q

d -ΦΩ -2ΦΞΩ Φ ΦL





  (3.6) 

where Ψ is the strain mode shapes. The output matrix and transmission matrix 

corresponding to Eq. (3.6) should be 
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 ,
-2

c c

   
   = =   
      

2 T

Ψ 0 0
C DΦ 0 0

-ΦΩ ΦΞΩ Φ ΦL
  (3.7) 

3.2.2 Discrete State Space Model 

As measurement data of structural responses are always recorded at the discrete time 

by sampling, the continuous-time state space model in Eq. (3.4) shall be transferred 

into a discrete-time state space model as: 

 1k d k d k

k d k d k

+x = A x + B u

y = C x + D u
  (3.8) 

where ( )k k t∆x = x is the discrete-time state vector with 0,1,2,...k =  ; and t∆ is the 

sampling interval. The relationships of system matrices between the discrete model 

and the continuous model are established as  

 0 1

1

;
;

c t
d d d

d c d c c

e ∆ = = +


= = +

AA B B A B
C C ∆ C B ∆

  (3.9) 

in which the matrix 0B and 1B depends on the inter-sample assumption on the input u . 

The most common assumptions about the inter-sample behavior are zero order hold 

(ZOH) and first order hold (FOH). For the ZOH assumption, it states that ( ) kτ =u u (

( )1k t k tt∆ ≤ < + ∆ ); while for the FOH assumption, ( ) ( ) ( )1 k kt tttt  = − ∆ + ∆u u u  (

( )1k t k tt∆ ≤ < + ∆ ).The closed form solutions of 0B and 1B for ZOH and FOH 

assumptions are presented in Table 3.1. The detailed derivation of the relationships 

between Eq.(3.4) and Eq.(3.8) is given in Appendix A. The FOH assumption is 
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adopted in this study due to its higher accuracy.  

Under in-service conditions, high modes of vibration of the structure usually have 

minimal and negligible contributions to total structural responses. As a result, 

structural responses can be expressed as the superposition of the first several mode 

responses ( ) ( ) r rt t=d Φ q , where r n r×∈ℜΦ is the collection of the selected first r n<

mode shapes. The matrices , , ,d d d dA B C D should then be formatted with proper 

dimensions accordingly. Considering the modeling error and sensor noise corruption 

in practice, Eq. (3.8) shall be written as 

 1k d k d k k
m m

k d k d k k

+ = + +

= + +m

x A x B u w

y C x D u v
  (3.10) 

where my denotes the sensor measurements; m
dC and m

dD are composed of the mode 

shapes with measured DOFs; ( )2 ~ 0,r
k N∈ℜw Q and ( )~ 0,mN

k N∈ℜv R represent the 

independent, white, and normally distributed modeling error and measurement noise 

vectors with covariance matrices T
p q pqE δ  = w w Q and T

p q pqE v v δ  =  R , respectively, 

where pqδ denotes the Kronecker delta. If kw and kv are correlated, it is easy to 

transform Eq. (3.10) into an equivalent system where modeling error and measurement 

noise are uncorrelated (Anderson, 1979). The deterministic excitation vector ku is 

assumed to be unknown in this study.  
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3.3 Response and Excitation Reconstruction 

3.3.1. Joint State and Input Estimation  

The development of filters for state estimation in the presence of unknown excitations 

has attracted considerable attention in recent years. A recursive three-step filter was 

proposed by Gillijns et al. (2007) for unbiased minimum-variance state and excitation 

estimation, and it was also derived by Pan et al. (2007) in the perspective of weighted 

least-square estimation. The necessary and sufficient conditions for the existence of 

unbiased minimum variance estimate of state and input were also given. Recently, 

Lourens et al. (2012) extended the filter for joint input-response reconstruction using 

limited acceleration measurement. However, the sensor placement issue was not 

investigated. The invertibility condition of a linear system for instantaneous input 

estimation or joint input-state estimation was derived in the reference (Maes et al., 

2015), which provides a fundamental guideline for sensor network design. This filter 

is briefly introduced in the following section, and the detailed derivation can be found 

in the Appedix B. The framework of this filter and its asymptotically stable 

convergence properties are the major premise of the optimal multi-type sensor 

placement for response reconstruction as proposed in this study. 

Denote ˆ k
−x and ˆ k

+x as the priori and posteriori state estimates of the structure at time 

instant k and assume the filter with the initial unbiased estimate 0
−x and the error 

variance 0
x−P . The excitation and state estimates can be computed recursively by the 

three steps in the following form 
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 1ˆ ˆ ˆk d k d k
− +
+ = +x A x B u   (3.11) 

 ( )ˆ ˆm m
k k k d k

−= −u M y C x   (3.12) 

 ( )ˆ ˆ ˆ ˆm m
k k k k d k d k
+ − −= + − −x x K y C x D u   (3.13) 

The minimum-variance unbiased estimate of excitation ˆ ku is obtained by Eq.(3.12)  

with the gain matrix kM given by 

 ( ) 11 1mT m mT
k d k d d k

−− −=M D R D D R    (3.14) 

in which kR is expressed as. 

 m x mT
k d k d

−= +R C P C R   (3.15) 

where ( )T⋅ denotes the transposition of the matrix. The variance of the excitation 

estimate error, defined as ( )( )ˆ ˆ Tu
k k k k kE  = − − P u u u u  is then given by  

 ( ) 11u mT m
k d k d

−−=P D R D   (3.16) 

The minimum-variance unbiased estimate of the state vector ˆ k
+x is obtained by Eq. 

(3.13)with the Kalman filter gain kK given by  

 x mT
k kk k
−= P CK R   (3.17) 

The corresponding state estimation error covariance is now updated to the posterior 
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state estimation error covariance as 

 ( )m mT T
k k d

x
k k k
x

k d
u+ −= −−P K R D P D KP    (3.18) 

Then the optimal state estimate ˆ k
+x at time instant k is propagated to the next time 

instant priori estimate 1ˆ k
−
+x using Eq. (3.11), and its error covariance matrix is 

 [ ]1

x xu T
x k k d

k d d ux u T
k k d

+
−
+

   
= +   

   

P P A
P A B Q

P P B
  (3.19) 

in which ( )( )ˆ ˆ Txu uxT m u
k k k k k k k d kE + = − − = − =P P x x u u K D P denotes the cross-covariance 

of the estimate errors of both state and excitation. Consequently, unbiased minimum 

variance estimates of state and excitation are simultaneously derived using the above 

three-step recursive filter.  

3.3.2. Response and Excitation Reconstruction  

It is noted from the above implementation of the filter that no prior information on the 

type and statistics of excitations is required except for their locations on the structure. 

It is also noted that the filter works on condition that the matrix ( )1mT m
d d

−D R D in Eq. 

(3.12) is non-singular or in other words that the rank of excitation matrix m
dD  is equal 

to the number of external excitations, i.e., ( )rank m
d p=D .  This condition implies that 

the number of sensors should not be less than the number of excitations, i.e. m p≥ . 

Furthermore, when response reconstruction is performed using mode superposition 

method in which the transmission matrix is constructed as 
TrT rm

d  =  0 Φ LD 0 Φ , it is 
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readily shown that ( ) ( )rank min , ,m
d m p r=D , where r refers to the number of modes 

required for response reconstruction, and that the number of modes used shall be larger 

than the number of excitations, r p≥  . The global optimality of the above filter is 

proven in reference (Hsieh, 2010). 

After the minimum-variance unbiased estimates ˆ k
+x and ˆ ku are obtained, the 

reconstructed responses e
ky at the interested locations and their real values r

ky are 

respectively 

 ˆ ˆe e e
k d k d k

+= +y C x D u   (3.20) 

 r e e
k d k d k= +y C x D u   (3.21) 

where e
dC and e

dD are composed of strain and displacement mode shapes with the DOFs 

of the concerned response reconstruction locations where no sensors are installed.  

The accuracy of the reconstructed responses can then be measured by the 

reconstruction error kδ  defined as follows: 

 ( ) ( )ˆ ˆr e e e e e e e
k k k d k d k d k d k d k d k

+ += − = + − + = +δ y y C x D u C x D u C x D u    (3.22) 

The covariance matrix of reconstruction error is expressed as: 

 
( )

xu eT
kT e e e eTd

T

x
k

k k k d d d deTxu u
dk

k
k

E
P

+   
    = = =         

P C
Δ δ δ C D C P C

P

DP
  (3.23) 
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3.4 Sensor Placement for Response and Excitation Reconstruction 

3.4.1. Asymptotic Stability of the Reconstruction Error  

The prior error covariance of state vector at time step 1k + is 

 [ ] [ ] [ ]1

x xu T
Tk k d

d d d d k d dux u T
k

x
k

k d

+
−
+

   
= + = +   

   

P P A
A B Q A B P A B

P P
P Q

B
  (3.24) 

It can be further expressed as: 

 ( ) ( )1

Tm m T
d k d d k d

x
k

x
k kk
− −
+ = − − + +A H C A H C H RHP P Q   (3.25) 

where 

 ( )m
k d k d k d k= − +H A K I D B MM   (3.26) 

If the external excitations are known and the classical Kalman filter is used, the priori 

state error covariance of state vector at time step 1k + is given as (Anderson, 1979): 

 ( ) ( ) ( )1

T Tm m
k d d k d k d d k d d k d k
− −
+ = − − + +P A A K C P A A K C A K R A K Q   (3.27) 

It is noticed that similarities exist between Eq.(3.25) and Eq.(3.27). Therefore, the 

stability condition of the classical Kalman filter can be extended to the present case 

(Fang et al., 2012). As a result, if the matrix ( )m
d k d−A H C  in Eq. (3.27) has all the 

eigenvalues inside the unit circle and ( )1 2,dA Q is stabilizable, the prior error 

covariance matrix x
k
−P  exponentially converges to a unique positive x−P  for any 
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nonnegative initial condition 0
x−P  (Fang et al., 2013). 

 lim x x
kk

− −

→∞
=P P   (3.28) 

Eq. (3.28) indicates that if the measurement data are long enough and the recursive 

steps are large enough, the prior error covariance matrix x−P is bounded and 

asymptotically stable and the steady state error covariance x−P is the solution of the 

following equation. 

 ( ) ( )Tm m T
d d d

x
d

x− −= − − + +A HC A HC HRHP P Q   (3.29) 

with 
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M

M
  (3.30) 

Using Eq. (3.24) and Eq.(3.23), one can further conclude that the reconstruction error 

covariance matrix is also asymptotically stable, converging to a fixed value Δ  for any 

initial condition if a considerable large number of measurement instants are available. 

 lim kk→∞
=Δ Δ   (3.31) 

In the case of the standard Kalman filter, the steady state error covariance can be 

obtained by solving the associated Riccati equation (Anderson, 1979). However, it is 

not straightforward to solve Eq. (3.29) for the steady state error covariance. To obtain 

the steady state error covariance x−P and then the constant state reconstruction error 
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covariance Δ , one can assign the initial value 0
x−P any nonnegative value and use Eq. 

(3.15) ~(3.19) recursively until a stable value is reached. In consideration that the 

reconstruction error covariance Δ is stable and independent of the external excitation

ku , it is desirable to develop the optimal sensor placement method based on the 

constant state reconstruction error covariance for the best response reconstruction. 

3.4.2. Optimal Multi-type Sensor Placement Design 

To determine the optimal multi-type sensor placement based on the steady state 

reconstruction error covariance for the best response reconstruction, the response 

reconstruction location set and the measurable location fixed for the structure shall be 

determined first. The response reconstruction location set is the collection of those 

locations whose responses are critical to the condition assessment of the structure. The 

size of response construction location set is often much smaller than the number of 

DOFs of the structure because the responses of some DOFs are so small that they can 

be ignored in the condition assessment and excluded from the response reconstruction. 

The measurable location set is the collection of those locations where the sensors can 

be installed, and the responses can be measured. The measurable location set is often 

the subset of the response reconstruction location set. For instance, it is tough, if not 

impossible, to measure rotational responses and thus these sites shall not be included 

in the measurable location set. Furthermore, some sites are even inaccessible for 

measurement under the in-service condition and they shall be excluded from the 

measurable location set as well. As a result, the optimal multi-type sensor placement in 

this study becomes a fundamental optimization problem that the type, number, and 
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location of sensors shall be selected from the measurable location set to achieve the 

minimum response reconstruction error from the response reconstruction location set. 

The objective function can then be expressed as 

 ( )arg min
N

P
S S

S trace
∈

 =  Δ   (3.32) 

in which Δ , parameterized by the output matrix e
dC and transmission matrix e

dD , is the 

steady response reconstruction error covariance of the response reconstruction 

location set; nN is the number of locations in the response reconstruction location set; 

PS implies the optimal sensor placement configuration and NS denotes the set of all 

distinct sensor configurations.  

In the references (Zhang et al., 2012; Zhu et al., 2013; and Xu et al., 2016), the 

optimization procedure was implemented by deleting the sensor location from the 

measurable location set one by one, producing the least response reconstruction error. 

This procedure is easily implemented for simple structures, but when the measurable 

location set is large, especially when the optimal sensor number is small compared 

with the size of the measurable location set, the entire procedure is computationally 

intensive and time-consuming. In this study, the optimization procedure is 

implemented by adding the sensor location one by one within the measurable location 

set. The similar strategy was utilized in reference (Papadimitriou, 2004) named 

sequential sensor placement algorithm when performing optimal sensor placement for 

parametric identification. It should be pointed out that the global optimal sensor 

placement configuration should be obtained through an exhaustive search over all 
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sensor configurations, which is extremely time-consuming and computation 

unaffordable for most cases of practical interest. The proposed algorithm cannot 

guarantee the global optimality since when adding the n-th sensor that contributes 

most in minimization of the objective function, the first (n-1) selected sensor 

configuration is fixed. However, this algorithm is much more computationally 

efficient and practical, often giving quite accurate results.  

To this end, the first step in the proposed procedure is to decide the least number of 

sensors and their locations. The least number of sensors shall be larger than the 

number of excitations to meet the non-singular condition as discussed before. Also, the 

least number of sensors shall be selected so that the matrix m
d d − A HC has all the 

eigenvalues inside the unit circle in the complex plane. After the least sensor number

0n is determined, the initial optimal sensor in term of type and locations can be so 

determined that the minimum value of ( )trace  Δ can be achieved by an exhaustive 

search among the ( )0
0 0! ! !n

N n nC N n N n=  −    possible location configurations and its 

layout be termed as 0S . 

The next step of the optimal multi-type sensor placement is to add one more sensor to 

the initial optimal sensor. There are ( )0nN n− alternative configurations, namely

0 kS s+ , where ks denotes the additional one selected from the left ( )0nN n− locations. 

The sensor that introduces the minimum response reconstruction error among the

( )0nN n−  possible location is chosen as the ( )0 1n + -th optimal one. Consequently, the 

steady reconstruction error is further reduced due to the additional sensor. In a similar 
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fashion, the same procedure could be repeated for the left ( )0 1nN n− − possible sensor 

location. In this way, the type, number, and location of sensors can be finally 

determined. 

It shall be mentioned that multi-type sensors are used in this study and the signal and 

noise levels for each type of sensors are different, which make the matrix 

( )m x mT
d k d

− +C P C R ill-conditioned. Zhang et al. (2012) proposed a normalization 

procedure to make the Kalman filter numerically stable. The similar treatment is 

adopted here using the weighting matrix W to scale the reconstructed multi-type 

responses. The normalized output matrix and transmission matrix are calculated by 

 1 2 1 2,m m m m
d d d d= =C W C D W C   (3.33) 

The measured responses my are also normalized as 

 1 2m m=y W y   (3.34) 

As a straightforward and shared case, the weighting matrix W could be set as the 

inversion of covariance of the noise, namely 1−=W R , and then the reconstructed 

response is an unbiased estimate for response at each location. It can be seen from 

above discussions that the entire procedure for the optimal multi-type sensor 

placement can be conducted in the absence of external excitations. Thus, the optimal 

multi-type sensor placement achieved can be used for any external excitation, 

provided that the number of mode shapes, loading locations, and environmental noise 

remains the same. 
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3.5 Numerical Investigation 

3.5.1 Descriptions of a Beam and Its FE Model 

This section describes a numerical investigation to demonstrate the optimization 

procedure of multi-type sensor placement and the superiority of the optimal sensor 

placement over alternative placements. A simply-supported overhanging steel beam, 

which was tested in a laboratory and will be introduced in Chapter 7, is employed for 

numerical investigation in this section. 

The geometric configuration of the simply-supported overhanging beam is shown in  

Figure 3.1. It is 4 m in length and has a cross-sectional area ( )  h (hwid eith t)ghb ×

50 15.6 mm= × . The beam is constrained by a hinge support at1 m from the left-side 

end and a roller support at 1 m from the right-side end, respectively. The elastic 

modulus of the beam is 2.6 GPa and the density is 37780 Kg m . It is discretized into 40 

Euler beam elements with 41 nodes and 120 DOFs (exclude two supports).  

A stochastic force with a frequency bandwidth ranging from 2 Hz to 102 Hz is applied 

on node 18 vertically. The excitation frequency bandwidth covers the first seven 

modes of vibration (as shown in Table 3). Classical Rayleigh damping model is 

adopted here and defined as α β= +C M K , in which α and β are the mass and 

stiffness proportional damping coefficient, respectively. The first two modal damping 

ratios are set as 1 0.010ξ =  and 2 0.008ξ = based on the modal test results. The mass 

and stiffness damping coefficients can thus be obtained with 
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( ) ( )2 2
1 2 1 2 2 1 2 12α ωω ξ ω ξ ω ω ω= − −  and ( ) ( )2 2

2 2 1 1 2 12β ξ ω ξ ω ω ω= − − . The sampling 

frequency is 500 Hz, and the sample duration is 16 s. The dynamic response is 

numerically simulated with FOH state space formulation. To include noise corruption, 

the normally distributed random noise is added to the response as 

 amp
n r y= + ×y y e   (3.35) 

where ny and ry are the noise-polluted response and pollution-free response 

respectively; e  denotes a standard normal distribution vector with zero mean and unit 

standard deviation; ampy is the noise amplitude, and it is assigned 0.201με , 0.01 mm

and 20.04 m s for strain gauge, displacement transducer and accelerometer, 

respectively, in this simulation study based on the laboratory measurement data.  

3.5.2. Optimal Multi-type Sensor Placement 

For this simple overhanging beam, the axial response can be omitted as the excitation 

acts vertically. A total of 200 multi-type responses, including 40 element strain 

responses, 39 vertical displacements and acceleration responses and 41 rotational 

displacement and acceleration responses, are considered to form the response 

reconstruction location set. In considering that it is not easy to measure the rotational 

responses, the rotational responses are eliminated when deciding the measurable 

location set. As a result, totally 118 multi-type responses, including 40 element strain, 

39 vertical displacement and acceleration responses, are selected to form the 

measurable location set. 
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The rational process noise covariance Q  and the measurement noise covariance R

are indispensable for the good estimation and even the convergence of the Kalman 

filter. From the theoretical basis above, we can see that these two statistics also 

influence the optical sensor placement layout. In this study, they are assigned by the 

auto-covariance least-squares method proposed by Odelson (2006) for its easy 

computation and implementation. The multi-type sensor placement optimization is 

then performed with the initial state error covariance 0
x−P as 12 14 141.0 10− ×× × I . The first 

7 modes of vibration are used in the optimization. The least sensor number is 2 to make 

the filter stable. In this circumstance, the stable reconstruction error is independent of 

the initial state error covariance 0
x−P theoretically. The optimal locations of the two 

sensors are decided as one strain gauge on element 14 and one accelerometer on node 

21 by an exhaustive search over the 2
118C  sensor configurations. Then, the optimal 

sensor is added one by one to gain the maximum reduction of response reconstruction 

error until it is less than the threshold value. 

Figure 3.2 illustrates a variation of the average trace of reconstruction error covariance 

with the number of sensors increasing from 2 to 118. Clearly, the average trace of 

reconstruction error covariance decreases as the growth of optimal sensor number, but 

when the number of sensors increases to above 10, the reduction of reconstruction 

error becomes very small. This tendency can be used to determine the number of 

selected sensors as the optimal sensor configuration. In this study, the first 11 sensors, 

which include 4 strain gauges, 1 displacement transducer, and 6 accelerometers, are 

finally used as the optimal sensor placement for the beam. This configuration is 

denoted as the reference sensor placement configuration (SP0). To assess the 
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superiority of the proposed optimal placement method, another three sensor placement 

configurations are considered. The first one (SP1) is that the number of each type 

sensor is identical to that in SP0, but the locations are chosen differently from SP0. In 

the second configuration (SP2), 6 accelerometers and 5 strain gauges are arranged 

alternately on the beam without displacement transducer. In the last configuration 

(SP3), only 11 accelerometers are arranged on the beam with equal space. The four 

sensor placement configurations are all shown in Figure 3.3.  

To facilitate comparison, a relative response percentage error (RPE) is defined as a 

metric of response reconstruction accuracy: 

 ( ) 2

2

, 100%
r e

r e
r

RPE
−

= ×
y y

y y
y

  (3.36) 

where ry and ey are the real and reconstructed response vectors, respectively. ⋅  

denotes the Frobenius norm. 

3.5.3. Superiority of Optimal Sensor Placement  

The superiority of the optimal multi-type sensor placement is first confirmed by 

considering a broadband white noise excitation as shown in Figure 3.4. Its bandwidth 

is 2 ~ 102 Hz , covering the first seven mode shapes of the beam (see Figure 3.5), and 

its standard deviation is 6.4 N. 

Figure 3.6 presents a close view of the original and reconstructed vertical 

displacement of node 23 with the optimal sensors placement configuration SP0. The 
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noise-corrupted response termed as “measured” response, is also plotted in Fig. 6. It is 

found that the reconstructed response matches well with the real one. Figure 3.7 shows 

a close view of the real and estimated excitations with the same optimal sensors 

placement configuration. A good correspondence is also found between the estimated 

excitation and real excitation. These results demonstrate that the aforementioned 

three-step filter works well for reconstructing response as well as excitation.  

The average RPEs of response and excitation of the first three placement 

configurations are listed in Table 3.2, where symbols S, A, D and U represents the 

strain, acceleration, displacement and excitation, respectively, and the subscripts 

denote the coordinate direction. Figure 3.8 gives the comparison of reconstruction 

results between SP0 and SP1 configurations. It can be found that in general, the 

reconstructed strain and displacement response match well with their real values with 

average RPEs less than 5%. The other observation is that acceleration, especially 

rotational acceleration, has the greatest reconstruction error among the three types of 

responses. This is related to the fact that acceleration responses contain more 

high-frequency components and that there are no rotational responses used for 

response reconstruction. By comparing the results of SP0 with those of SP1 and SP2, 

one may conclude that the optimal multi-type sensor placement is superior to the SP1 

and SP2 configurations, for the mean RPEs of responses as well as the excitation in 

SP0 are all less than those in SP1 and SP2. 

For the sensor placement configuration SP3, it is showed that using 11 equally spaced 

accelerometers leads the estimated excitation error to diverge, giving unacceptable 

response reconstruction error. Actually, the numerical results indicate that the 
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maximum radius of eigenvalues of the matrix ( )m
d d−A HC is 0.986, 0.966 and 0.987, 

respectively, for SP0, SP1 and SP2 configuration but this value is 1.0 for SP3 

configuration, indicating that the filter is not stable in this sensor placement 

configuration. As a result, the mean RPEs of reconstructed responses for SP3 

configuration are meaningless and not presented here. This scenario, however, further 

demonstrates the necessity and superiority of the proposed multi-type sensor 

placement method for collective response and excitation reconstruction. Table 1 also 

shows that the trace of prediction state error covariance is 1.67e-6, 5.12e-6 and 

5.15e-6, respectively, for the sensor placement configuration SP0, SP1 and SP2 with 

the smallest value for the configuration SP0. 

3.5.4 Independence of Optimal Sensor Placement on Excitation 

As pointed out in the previous section, the optimal sensor placement can be conducted 

in the absence of external excitation. To examine the independence of optimal sensor 

placement on excitation type, the overhanging beam is further investigated in 

consideration of two more different excitations, namely triangular pulsing excitation 

and harmonic excitation in addition to the white noise excitation discussed previously.  

The amplitude of the triangular pulsing excitation is 50 N and its duration is from 

0.008 ~ 0.032 s  (see Figure 3.9). The single-sided spectrum of the pulsing excitation is 

shown in Figure 3.10. For the optimal multi-type sensor placement SP0, the 

reconstructed, real and virtually “measured” vertical acceleration responses of node 23 

are plotted in Figure 3.11. It is observed that the signal-to-noise ratio (SNR) of the 

response decreases as vibration amplitude decays. The filter yields a satisfying 
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response reconstruction compared with the measured one, especially when the SNR is 

low. The triangular pulsing excitation is also well estimated by using the optimal 

sensor placement configuration SP0, as shown in Figure 3.9.  

The harmonic excitation, expressed as ( ) ( )12 sin 2 30u t tπ= × × N, acting on node 18 of 

the overhanging beam is adopted as another loading condition. By using the optimal 

multi-type sensor placement configuration SP0, the reconstructed strain response of 

element 23 and the estimated excitation are given in Figure 3.12 and Figure 3.13 

respectively. It can be seen that the response and excitation both are well reconstructed 

as the real and estimated response and excitation display a high degree of agreement.  

Table 3.3 presents the mean standard deviations (STDs) of response and excitation 

reconstruction errors of the beam with the optimal sensor placement configuration 

SPO under the three different types of excitations. It can be seen that with the optimal 

sensor placement configuration SPO, the trace of steady priori state error stays the 

same. Accordingly, the STD of response reconstruction error also stays the same 

although the excitation type varies. This implicates that the response reconstruction 

error is directly related to the sensor placement configuration and independent of the 

type of external excitation. Thus, it is readily inferred that the optimal sensor 

placement can be applied to any other type of external loading, provided that the 

external loading location, the modes used in response reconstruction and 

environmental noise characteristics stay the same. 
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3.6 Concluding Remarks 

An optimal multi-type sensor placement method for a structure under unknown 

excitation has been proposed in this chapter for the best excitation and response 

reconstruction at the key locations where no sensors are installed. The joint response 

and excitation reconstruction using the noise-corrupted measurement data from the 

limited sensors is performed by extending the simultaneous input and state estimation 

theory of a linear stochastic system. Basing on that, an optimal multi-type sensor 

placement has been proposed by selecting a proper subset from the measurable 

location set to minimize the stable reconstruction error covariance trace. The 

effectiveness of the proposed method has been demonstrated by virtue of numerical 

studies of an overhanging beam. Basing on the study, the following remarks should be 

highlighted: 

(1) When the number of measurement instants is large enough, the state error or the 

error covariance matrix exponentially converges to a unique positive value for any 

nonnegative initial condition. This asymptotic stability property is the theoretical 

basis of the proposed SPO method for joint response and excitation reconstruction. 

(2) There is no assumption set on the excitation type when deriving the recursive filter. 

The designed optimal sensor works well for any excitation, provided that the 

selected subset of modes is fixed, the excitation location is determined, and the 

environmental noise characteristics remain the same. Selecting the proper subset 

of mode shapes for response reconstruction can be performed basing on the expert 

knowledge about the operation conditions or analysis on the loading histories. 



 

89 

(3) Different types of sensor have their own properties. Fusion of the sensors of 

multiple types is advantageous to increase the accuracy of response and excitation 

reconstruction. Although only 3 frequently-used sensors, including strain gauges, 

displacement meters, and accelerometers, are used in this study, other types of 

sensors, for example, clinometer, velocity-instrument and others could also be 

incorporated in the proposed framework for some specific objectives. Different 

types of sensor are equally weighted in this study by setting the weighting matrix 

as the inversion of noise covariance. Other weighting strategies, for instance taking 

the cost of each type sensor into consideration, could also be employed in practical 

applications.   

(4) When solving the optimization, an exhaustive searching is computationally 

unaffordable, especially for a large civil structure. Thus the sequential sensor 

placement algorithm which produces a sub-optimal solution with a great decrease 

in computation effort may be a wise choice.  

The proposed SPO method can handle the multi-type sensor placement issue in the 

absence of knowledge of exerted excitations. It can make up the limitation number of 

measurement sensors, thus benefiting greatly to the vibration based damage 

identification problem that will be investigated in Chapter 6. The experimental 

validation of the proposed SPO method will be represented in Chapter 7. Before that, 

the ill-posedness problem involved in damage identification shall be paid special 

attention to and it will be discussed in the forthcoming chapter. 
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Table 3.1 Closed discrete form input to state matrices 

Inter-sample assumption 0B   1B  
Zero order hold ( ) 1

d c c
−−A I A B  0 

First order hold ( ) 1
1d c c

−− −A I A B B  ( ) 2
d c c ct t−− ∆ − ∆A A I A B  

 

Table 3.2 RPE of responses and excitation under random excitation 

Mean RPE S Dy Dz Ay Az U 
-Trace( )xP  

SP0 1.96 1.29 1.35 5.63 12.30 27.16 1.67e-4 
SP1 2.40 1.83 1.89 6.03 12.52 47.23 5.12e-4 
SP2 2.29 1.96 1.97 5.86 12.32 30.55 5.15e-4 

 

Table 3.3 Mean STDs of response and excitation reconstruction errors under various 
types of excitation 

Mean STD 
S Dy Dz Ay Az U ( )-Trace xP  

uε mm mm ms-2 ms-2 N —  

Random 0.215 0.010 0.011 0.203 0.375 0.821 1.67e-6 

Pulsive 0.215 0.010 0.011 0.203 0.375 0.821 1.67e-6 

Harmonic 0.215 0.010 0.011 0.203 0.375 0.821 1.67e-6 
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Figure 3.1 Geometric configuration of an overhanging steel beam 

 

Figure 3.2 Variation of the average trace of reconstruction error covariance with the 

number of sensors (Right top: a close-view) 

 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 3.3 Four sensor placement configuration on a simply supported overhanging 

steel beam: (a) SP0, (b) SP1, (c) SP2 and (d) SP3 
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Figure 3.4 Time history of random excitation 

 

Figure 3.5 Single-sided amplitude spectrum of random excitation 

 

Figure 3.6 Close view of the real, measured and reconstructed displacement on N23 

 

Figure 3.7 A close review of real and estimated random excitation 
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(c) 

Figure 3.8 Comparison of response reconstruction result between SP0 and SP1for (a) 

strain, (b) displacement and (c) acceleration 

 

Figure 3.9 Close view of the real and estimated impulsive excitation 
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Figure 3.10 Single-sided amplitude spectrum of the impulsive excitation 

 

 

Figure 3.11 The reconstructed acceleration of Node 23 under the impulsive excitation: 

the whole evolution (top) and a close-view (bottom) 
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Figure 3.12 A close the real, measured and reconstructed strain of E 23 

 

Figure 3.13 A close of real and estimated harmonic excitation 

 

10 10.2 10.4 10.6 10.8 11
-5

0

5

x 10
-6

Time (s)

St
ra

in
 (m

/m
)

 

 
Real Measured Reconstructed

10 10.1 10.2 10.3 10.4 10.5
-20

-10

0

10

20

Time (s)

Ex
ci

ta
io

n 
(N

)

 

 
Real input Estimated input



 

99 

CHAPTER 4 

SPARSE REGULARIZATION FOR FE MODEL 

UPDATING BASED DAMAGE IDENTIFICATION 

4.1 Introduction 

Sensitivity-based finite element (FE) model updating for structural damage 

identification is essentially an inverse problem, in which the structural defect is sought 

and quantified using vibration measurement. The inverse problem is prone to 

ill-posed, especially when the dimension of damage vector is large and the effective 

measurements are limited. The ill-posedness features can injury the existence and 

uniqueness of the solution, inducing much difficulty in seeking the physically 

meaningful damage vector. Tikhonov regularization, also termed as 2 norm 

regularization, is a common approach to handling the ill-posedness problem and 

yields an acceptable and smooth solution. It enjoys more popular applications due to 

its explicit solution, computational efficiency, and convenience for implementation. 

However, as the 2 norm term promotes smoothness, the solution is sometimes 

over-smoothed, especially in the case that the sensor number is limited compared 

with the entire structural components. Due to the fact that typically only a small 

number of components of the structure are damaged in comparison with the whole 

structure, the solution to the inverse problem usually bears sparse properties. In this 

regard, this chapter proposes an alternative way, sparse regularization, or specifically

1 norm regularization, to handle the ill-posedness problem involved in response 
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sensitivity based damage identification. The motivation and implementation of 

sparse regularization are firstly introduced, and its differences with Tikhonov 

regularization are highlighted. Re-weighting sparse regularization is adopted to 

enhance the sparsity in the solution as well as to alleviate the difficulty in choosing 

regularization parameter. Simulation studies on a planar frame, and a simply 

supported overhanging beam are finally presented, and the results show that the 

sparse regularization exhibits certain superiority over Tikhonov regularization as less 

false-positive errors (indicating damage when it is not present) exist in damage 

identification results.  

4.2 Inverse Problem in Damage Identification 

Structural damage identification is essentially an inverse problem, in which the 

structural defects (usually modeled as damage vector) are sought to account for the 

discrepancy between the damaged and intact states of the structure. Sensitivity-based 

FE model updating method is a common approach to detecting as well as quantifying 

the damage of civil structures (Friswell, 1995). It seeks the damage vector by 

minimizing the residue of FE model-predicted dynamic features of modal domain or 

time and the measured one in the damaged state. Traditionally, modal features, such 

as natural frequencies and/or mode shapes, are the preferred quantities for defining 

the penalty function in model updating (Doebling et al., 1996). Alternative strategies 

are proposed recently in the time-domain FE model updating (Majumder et al., 2003; 

Lu et al., 2007; Cacciolaa et al., 2011; Zhang et al., 2011) since transient or 

closed-loop responses are available more readily during operation and appear to be 

more suitable for online damage detection than approaches based on frequency 
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changes. Besides, immediate utilization of time-domain dynamic response can avoid 

information-losing in data manipulations such as Fourier transform. The response 

sensitivity based damage identification usually formulates the damage identification in 

a least-squares sense as a minimization problem: 

 ( ) ( )( ) 21 2

2

T
d aJ = − =θ W y y θ ε Wε   (4.1) 

where mn
d ∈ℜy are the measured response in damage state and ( )ay θ is the predicted 

response from the FE model; ( )d a= −ε y y θ is the residual vector between the two 

responses. W is the diagonal weighting matrix which eases the ill-posedness of the 

problem; its entries could be set as the reciprocals of the variance of the response of the 

structure without damage. The subscript T denotes vector transpose. en∈ℜθ is the 

vector of structural physical parameters, such as stiffness or elasticity modulus.

m m tn N N= × , in which mN and tN are the number of sensors and time instants 

recorded by each sensor. It should be pointed out that the dynamic response of a 

structure is dependent to the external excitations. To make sure that the response 

discrepancy is only induced by the damage, the excitation should stay the same before 

and after damage occurrence. The residual in Eq. (4.1) is a non-linear function of the 

parameters and the minimization is usually solved through a gradient-based 

optimization like Gaussian-Newton iteration as: 

 1k k k+∆ = ∆S θ y   (4.2) 

where ( )1 2k k = ∂ ∂ S W y θ θ  is the weighted sensitivity matrix of the measured DOFs 
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with respect to damage parameter θ in the k-th iteration; it could be calculated by 

theoretical formulation (Greene et al., 1991; Li et al., 2010) when damage takes 

certain formulations or using numerical central difference method as:  

 ( ) ( )
2

i k j i k jk i
ij

j j

d d
d

θ θ

θ θ

+ − −∂
= =
∂

y θ y θyS   (4.3) 

Where jdθ is a small disturbance on j-th component of damage parameter θ . The 

right-hand side ( )1 2 1 2k k k
d a d a

   ∆ = − = −  y W y y θ W y y is the weighted response 

discrepancy on the measured DOFs of the damaged structure with the analyzed ones 

and 
1

k
k l

l=
= ∆∑θ θ is the cumulative damage parameter in all k-th iterations. kS and k∆y

are assembled by stacking the columns of sensitivity sequences and response 

discrepancy sequences, respectively, namely 
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  (4.5) 

in which the entries are expressed as Eq.(4.5). 

The flowchart of the damage identification procedure is shown in Figure 4.1. If the 
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following convergence criterion is met, iteration could be finished. 

 k k Tol∆ ≤θ θ   (4.6) 

4.3 Regularization Techniques 

In practical applications, some modeling uncertainties, environmental influences, and 

measurement noise can make Eq. (4.2) difficult to solve directly. Another difficulty 

exists that due to budgetary constraints, the number of available sensors that can be 

utilized is relatively small, may even less than the number of damage parameter. All of 

these issues make Eq. (4.2) an ill-posed equation, in which some singular values of the 

inverse of sensitivity matrix kS are close to zeros and an arbitrary slight perturbation 

in the right-hand-side (RHS) of Eq. (4.2) can lead to unrealistic and enormous 

deviation in the solution. The least square solution of Eq. (4.2) is expressed as: 

 ( ) 1T T−
∆ = ∆θ S S S y   (4.7) 

It is noted that the subscript j is omitted here for simplicity. Perform singular value 

decomposition on the sensitivity matrix m en n×∈ℜS as: 

 
1

r
T T

k k k
k

σ
=

= =∑S UΣV u v   (4.8) 

where 1 2, , ,
mn =  U u u u and 1 2, , ,

e

TT
n =  V v v v are the left and right singular 

vectors. [ ]( )1 2, , , rdiag σ σ σ=Σ  is the singular value vector in which the elements 

are arranged in non-increasing order, i.e., 1 2 rσ σ σ≥ ≥ ≥ . Then the least square 
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solution is expressed as  

 
1

ˆ
Tr
i

k
k kσ=

∆
∆ =∑u yθ v   (4.9) 

Common for all discrete ill-posed problems is that the matrix S has a cluster of 

singular values at zero. Then any certain noise in the right-hand-side of Eq. (4.7) will 

probably introduce tremendous error in the solution since the noise could be greatly 

amplified by the near-zero singular value. Regularization, which refers a process of 

introducing additional constraints, is often needed to obtain a stable and meaningful 

solution of such problems. A well-established regularization method, which has been 

extensively used in damage detection, is the so-called Tikhonov regularization 

(Tikhonov, 1977). For the sake of comparison, Tikhonov regularization is briefly 

introduced in next section, followed by the adaptation motivation and detailed 

introduction of sparse regularization.  

4.3.1 Tikhonov Regularization 

After introduced independently by Tikhonov (Tikhonov, 1977) almost half a century 

ago, Tikhonov regularization has been extensively analyzed and used for the solution 

of discrete ill-posed problems. Tikhonov regularization in its simplest form replaces 

the linear problem Eq. (4.2) by the following optimization problem: 

 ( )2 22
2 2

ˆ argmin λ
∆ ∈ℜ

∆ = ∆ − ∆ + ∆
θ

θ S θ y θ   (4.10) 

where 2 0λ ≥ is a regularization parameter to be chosen. It balances the trade-off 
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between the norm of residual and the norm of the solution. An explicit solution, 

denoted by ˆ∆θ , is given by 

 ( ) 12ˆ T Tλ
−

∆ = + ∆θ SS I S y   (4.11) 

It can be observed that the estimated vector ˆ∆θ converges to the solution obtained from 

the least-squares method as the parameter 2λ approaches zero. Using Eq.(4.8), the 

regularized solution is thus given by 

 ( )
212 2

2 2
1

ˆ
Tr

T k k
k

k k k

σ
λ

σ λ σ
−

=

∆ = + ∆ =
+∑ u Δyθ V Σ I ΣU y v   (4.12) 

We can see that ( )2 2 2
k kσ σ λ+ can be viewed as a filtering factor, which suppresses the 

solution terms corresponding to the small singular values and makes the solution 

insensitive to disturbances. By letting 2 0λ = , Eq. (4.12) reduces to the unregularized 

least-squares solution as Eq.(4.9) in which the filter factors are the unit for all singular 

values. Using the orthogonality condition of singular vectors, the solution norm is 

 ( )
222

2 22 1

ˆ
Tr

k k

k k k

σ
η λ

σ λ σ=

 
= ∆ =  + 

∑ u Δyθ   (4.13) 

This quantity represents the smoothness of the solution. The residual norm can be 

expressed as  

 ( )
222

2 22 1

ˆ
Tr
k

k k k

λr λ
σ λ σ=

 
= ∆ − ∆ =  + 

∑ u ΔyS θ y   (4.14) 
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The regularization parameter which balances the trade-off between the solution norm 

( )η λ and the residual norm ( )ρ λ should be chosen properly. The optimal 

regularization parameter λ is usually unknown and often determined by an ad hoc 

method in practical problems. The L-curve criterion (Hansen, 1998), the discrepancy 

principle (Morozov, 1984) and the general cross-validation (GCV) (Golub et al., 

1979) are popular techniques for the selection of the regularization parameter. In the 

following studies, the L-curve criterion will be employed due to its easy 

implementation. The L-curve is a plot in log–log scale of the corresponding values of 

the residual norm ( )ρ λ and solution norm ( )η λ as a function of the regularization 

parameter λ. The corner of the L-curve, where the curvature has a maximum value, 

approximately indicates an optimal regularization parameter. 

4.3.2 Sparse Regularization 

Sparsity refers to that only very few entries in a vector are non-zero. Recently, sparsity 

constraints are increasingly applied to regularize inverse problems in the field of 

applied mathematics (Bruckstein et al., 2009; Ghosh et al., 2009). In the context of 

detecting the incipient and isolated damage to the structures, damage solution bears 

the sparse properties since usually only part of elements or substructures of the whole 

structure are damaged. A more accurate solution is probably provided in such an 

inverse problem if this sparse property of the solution is properly exploited (Bao et 

al., 2012; Hernandez et al., 2014). If the sparsity restriction is imposed to the solution, 

the regularization term in Eq. (4.10) should be changed as 
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 ( )2

2
ˆ argmin p

p
λ

∆ ∈ℜ
∆ = ∆ − ∆ + ∆

θ
θ S θ y θ  (4.15) 

where pp
p

x= ∑x is the p-norm of the vector x . Mathematically, the regularization 

norms p

p
∆θ  with 0 1p≤ ≤ all can enforce sparsity in solution ˆ∆θ  (Candes et al., 

2008). From Figure 4.2, we can see that as p approaches zero, p
k p

x approaches the 

indicator function which is 1 for nonzero kx and 0 for zero kx , so that 
00

lim
pp→
=x x  

counts the number of nonzero entries in x . It also gives some motivation for why the 

choice 0 1p≤ ≤ in the penalty p

p
∆θ leads to sparser solutions. When p=0, 0 -norm 

regularization is an NP-hard problem. Solving the 0 -norm problem is more difficult 

due to its strong no-convexity. It can be theoretically proved that 1 -norm 

minimization is equivalent to 0 -norm minimization on signal recovery if the 

restricted isometric property (Candes and Tao, 2006; Donoho, 2006) is satisfied. 

Due to the non-smoothness of the regularization norms p

p
∆θ ( 0 1p≤ ≤ ), methods 

capable of handling the non-smoothness are necessary for computing minimizers 

involving these norms. Here we specify the sparse regularization as 1 -norm 

regularization, i.e., 1p = in Eq.(4.15). The main reason is that although the 1 -norm is 

weaker than the 1p < norm in ensuring sparsity (as shown in Figure 4.1). 1 -norm 

regularized optimization is a convex problem and admits efficient solution via linear 

programming techniques (Malioutov, 2003; Boyd et al., 2004). Then Eq. (4.15) is 

solved in a sparse regularization strategy as Eq. (4.16) as: 
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 ( )2

2 1
ˆ argmin m

∆ ∈ℜ
∆ = ∆ − ∆ + ∆

θ
θ S θ y θ   (4.16) 

in which the term 2

2
∆ − ∆S θ y forces the residual to be small, whereas the term 1

∆θ

enforces sparsity of the solution. The parameter 0µ > controls the tradeoff between 

the sparsity of the solution and the residual norm. Physically, the damage parameter 

should be constrained as 1 0jθ− ≤ ≤  ( 1,2, , ej N=  ). If the constraint is imposed to 

Eq.(4.15), the problem is formed as sparse regularization with constraint.    

Care must be taken to choose the right proper regularization parameter to come up 

with an acceptable solution. Sometimes we must do multiple runs to determine the 

right penalty parameter. However, this difficulty can be relieved by using a 

re-weighting strategy as explained in next section. It can be proved that 1 norm 

minimization is sparseness promoting (Santosa et al., 1986). For an intuitive 

explanation of why the 1  norm is sparseness promoting, a two-dimensional example 

that compares the 1 norm and 2  norm solution is presented in Figure 4.3. In Figure 

4.3, we notice that the 1  norm solution has a zero entry in the intersection point while 

the 1 norm solution has two nonzero entries. There are much more opportunities for 

the components of the solution to be zero subject to the 1  constraint, or in other 

words, the 1  norm regularization induces sparsity by having a discontinuous 

gradient at zero. Actually, the regularization term in 2  norm and  1 norm 

regularization is the following respectively.  

 2 2
2

1

eN

k
k

θ
=

∆ = ∆∑θ   (4.17) 
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 1 2
1

1 1

e eN N

k k k
k k

wθ θ
= =

∆ = ∆ = ∆∑ ∑θ   (4.18) 

 
1 , 0

, 0

k
kk

k

w
θ

θ
θ

 ∆ ≠ ∆= 
 ∞ ∆ =

  (4.19) 

where eN is the dimension of∆θ . Comparing Eq. (4.17) and (4.19), it is found that in 2

norm regularization every entry of ∆θweights equally while in 1 norm regularization 

every entry of ∆θweights inversely proportion to the solution amplitude. In other 

words, small entries in the solution weight heavily, which is the reason why 1 norm 

regularization promotes sparsity. This observation suggests more generally that large 

weights could be used to encourage zero entries in the solution, while small weights 

could be used to promote nonzero entries. Basing on this, reweighted 1 norm 

minimization was proposed to enhance the sparsity in reference recently (Candes et 

al., 2008; Friedlande et al., 2012). It is modified and adopted in this study as follows: 

1. For the initial reweighting iteration, the iteration count and initial weighting 

factors are set as 0n = and 0 1,  1, , .i ew i N= =    

2. The formed weighted 1 norm regularization problem ˆ n∆ =θ

2

2
1

argmin
eN

n
k k

k
w θ

∆ ∈ℜ =

 
∆ − ∆ + ∆ 

 
∑

θ
S θ y  is solved. 

3. Update the weights as Eq. (4.20) and solve

21 1
2

1

ˆ argmin
eN

n n
k k

k
w θ+ +

∆ ∈ℜ =

 
∆ = ∆ − ∆ + ∆ 

 
∑

θ
θ S θ y  
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 1 1n
k n

k

w
θ ε

+ =
∆ +

  (4.20) 

4. The reweight iteration terminates on the convergence 1ˆ ˆn n Tor+∆ − ∆ ≤θ θ or when n

reaches a preset maximum iteration number maxn . Otherwise, set 1n n= + and go to 

step 2. 

In Eq. (4.20) 0ε > is introduced to provide stability and to ensure that zero-valued 

entries in n∆θ do not strictly prohibit a nonzero estimate at the next step. Simulation 

results show that the solution ˆ∆θ  is reasonably robust to the choice of ε . It is set as

0.001ε = and 3maxn = in this study. The iterative strategy to determine the weights W

tends to permit better estimation of the nonzero entry locations successively. Even if 

the inaccurate solution is obtained in the early iterations, the largest entries in the 

solution are most likely to be identified as nonzero. These locations are then 

down-weighted to pass weights to the remaining small but nonzero entries once they 

are identified in the early iterations. In this regard, the difficulty to choose the proper 

regularization parameter λ is alleviated as nonzero entries of the solution can still 

successively identified in re-weighting sparse regularization even when the 

regularization parameter λ is roughly selected.  

In contrast to Tikhonov regularization problem in Eq. (4.10) , which has an explicit 

solution and can be readily solved in the orthonormal basis associated with the 

singular value decomposition (Hansen,1998), the sparse regularization in Eq. (4.16) 

has no closed form solution and its solving procedure should be paid special attention 

to. There are a number of solvers with strong theoretical guarantees that are available 
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to solve the problem (Tibshirani, 1996; Beck et al., 2009; Yun et al., 2011). The 

primal-dual interior point algorithm proposed by Boyd (2004) is employed in this 

study.  

4.4 Numerical Studies 

Most common types of damage on civil structures are stiffness reduction due to steel 

corrosion or extensive concrete cracking, thus stiffness damage can be modeled as 

Eq.(4.21), while inertial properties are assumed unchanged before and after damage 

occurrence. 

 ( ) ( )
1

, 1 0
eN

d u i i i
i
θ θ

=

= + − ≤ ≤∑K θ K K  (4.21) 

in which uK is the global stiffness matrix of the structure under the intact state; iK is 

i-th element stiffness in the global coordinates and iθ is the fractional stiffness damage 

parameter of iK . The i-th element is undamaged when 0iθ = and the stiffness of the 

i-th element is completely lost when 1iθ = − . eN is the number of the elements. It 

should be pointed out that damage identification solution bears sparsity property when 

damage is modeled in such a way that damage-free corresponds the zero while 

damage-existence corresponds to nonzero in damage parameter. For example, if the 

damage in Eq. (4.21)is modeled as
1

eN

d i i
i
θ

=

=∑K K , where iθ should be 0 1iθ≤ ≤ for 

physical meaning, the solution of damage is then not sparse. However, it is very easy 

to transfer damage vector to be sparse if the baseline (damage-free) is set as zero.  
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We will exam two types of structures in this section; the first one is a 25 degree of 

freedom (DOFs) planar truss and the second one is an overhanging beam composed of 

40 elements. The convergence criteria are set as 72 10Tol −= × , and the maximal 

iteration number is 40 in the following simulation section. 

4.4.1 A Planer Truss 

A planar truss composed of 31 bar elements as shown in Figure 4.4 serves as the first 

numerical case study. The section dimension is 0.05m 0.05mb h× = × with the elastic 

modulus of 70GPaE =  and the density of 32770 Kg mρ = . The length is 1.52m for 

vertical and horizontal components and 2.15m for diagonal bars. It is simply 

supported on the two ends (node 1 and node 7), forming 25 effective DOFs. The first 

24 mode frequencies are shown in Table 4.1. 

A stochastic force sequence is applied on node 12 vertically and node 14 horizontally 

simultaneously. Rayleigh damping model is adopted here and defined as 

α β= +C M K , in whichα and β are the mass and the stiffness proportional Rayleigh 

damping coefficient, respectively. The first two modal damping ratios are set as

1 2 0.01ξ ξ= = in this study. The sampling frequency is 2000 Hz with a duration length of 

5s. The dynamic response is numerically simulated with First-Order-Hold state space 

formulation. To include noise corruption, normally distributed random noise is added 

to the response as 

 ( )n r r
stdR std= + ⋅ ⋅y y y e   (4.22) 
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where ny and ry are the noise polluted response and pollution-free response , 

respectively; stdR is the standard deviation ratio of noise and response and it is set as

0.05stdR = in this study; e is a standard normal distribution vector with zero mean and 

unit standard deviation. The vertical acceleration of node 8 and horizontal acceleration 

of node 12 are utilized in the following damage identification. 

4.4.1.1 Single-damage scenario 

Single damage is simulated as 10% reduction of elastic modulus on element 3. Figure 

4.5-a illustrates the result of response sensitivity based damage identification using 

Tikhonov regularization. It is found that although the damage on the element is 

roughly identified, there are considerable false-positive errors on some elements, such 

as element 5, 11, 25 and element 26. When using sparse regularization, the 

single-damage is identified remarkably accurate (as shown in Figure 4.5-b), only 

approximately 3% errors occur on element 5 and element 11. If the constraint

( )1 0iθ− ≤ ≤ is set in the iteration process, the damage identification result is shown in 

Figure 4.5c. We can see that the false-positive error on element 11 is suppressed.  

4.4.1.2 Multi-damage scenario 

The case that there are 12%, 15% and 10% reduction of elastic modulus on element 3, 

8 and 24 respectively is designed to serve as a multi-damage scenario of the truss. The 

result of Tikhonov regularized damage identification is given in Figure 4.6-a. It is 

noticed that there are significant false-positive errors on some elements, and damage 

on element 24 even cannot be localized exactly. A remarkable improvement is 
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observed when using sparse regularization (shown in Figure 4.6-b), as all the three 

damages are identified almost exactly, although about 2% errors exist on quantifying 

the damage severity/ extent of element 8 and 24. If the additional constraint

( )1 0iθ− ≤ ≤ is imposed to the updating, the sparsity of the solution increases (shown in 

Figure 4.6-c). However, a slight decade in damage quantification is also noticed. The 

possible reason is that the fractional damage parameter is constrained as 1 0− ≤ ∆ ≤θ in 

each updating rather than constraining θ . Besides, the iteration number may be 

different for with and without constraint cases even with the same convergence 

criterion. So although the sparse regularization with constraint can remove the positive 

errors, it may distort damage quantification to some extent.  

4.4.2 An Overhanging Beam 

A simply supported overhanging steel beam (shown in Figure 4.7) corresponding to 

the testbed in the laboratory is adopted as the second numerical case study. The length 

of the beam is 4mL = and its cross-sectional area is 50 15.65mmb h× = × . It is modeled 

by 40 Euler beam elements with 41 nodes and a total of 123 DOFs. The beam is 

constrained by a hinge support on the node 11 and a roller support on the node 31. The 

physical parameters of the FE model can be found in Chapter 3. 

A broadband stochastic excitation with a standard deviation of 6.4 N is applied on 

node 18 vertically. Its frequency bandwidth ranges from 2 Hz to 302 Hz. The mass and 

the stiffness proportional Rayleigh damping coefficient are determined with the first 

two modal damping ratios as 1 0.010ξ = and 2 0.008ξ = according to the laboratory 

modal test result. Sample frequency is 1250Hz, and the sample duration is 8s. The 
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dynamic response is numerically simulated with FOH state space formulation. Noise 

corruption is simulated as normally distributed random noise adding to the noise-free 

response; the noise amplitude is set as 20.04 m s for acceleration, yielding an 

approximate 6% standard deviation ratio of response and noise. The vertical 

accelerations of 6 nodes as shown in Figure 4.7 are captured and utilized for damage 

identification in next section. 

4.4.2.1 Single-damage scenario 

Single-damage of the beam is simulated as 20% reduction of elastic modulus on 

element 23. Figure 4.8a gives the result of response sensitivity based damage 

identification using Tikhonov regularization. It is found that although the damage on 

the element is roughly identified, there are considerable false-positive errors on a large 

number of elements. If sparsity constraint is set in solution, the single-damage is 

identified remarkably accurate (as shown in Figure 4.8b), as the damage extent on 

element 23 is identified as -19.65% while the pre-set damage is -20%. Comparing the 

two, we can conclude that Tikhonov regularization yields non-sparse solutions, while 

sparse regularization has the advantage of promoting a sparse solution. 

4.4.2.2 Multi-damage scenario 

Multi-damage of the beam is simulated as 10% and 20% reduction of elastic modulus 

on element 7 and element 23 respectively. To show the variations of damage parameter 

in whole updating procedure, the evolutions of damage parameter along with iterations 

are illustrated in Figure 4.9. It is seen that that for the case of Tikhonov regularization, 
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the damage parameter begins from zero values corresponding to damage free 

condition and converge to a fixed value after 16 iterations; the updating procedure 

stops as the preset convergence criteria are met. However, there are remarkable errors 

as many near zero entries in the final identification. Contrarily, the damage parameters 

obtained from sparse regularization almost converge to the true value after only 5 

iterations. As already pointed out, the existence of closed form solution of Tikhonov 

regularization allows its solutions to be calculated computationally efficiently. 

However, much less iterations can drive sparse regularization convergence, thus 

generally sparse regularized model updating is more computationally efficient than 

Tikhonov regularization. This result evidences the superiority of the sparse 

regularization over the Tikhonov in terms of not only identification accuracy but also 

computational consumption. The final results of the two cases are presented in Figure 

4.10. As shown in Figure 4.10-a, Tikhonov regularized damage identification 

generates an incorrect non-sparse solution. Besides many false-positive errors in many 

elements, there is even a false-negative error (no indication of damage when it is 

present) that the existence of damage on element 7 is not detected. A noteworthy 

improvement is observed when using sparse regularization (shown in Figure 4.10-b), 

as the damages on elements 7 and 23 are both identified almost exactly, although less 

than 2% errors exist on quantifying the damage extent. The simulation case of 

overhanging beam further exhibits that sparse regularization can prevent the solution 

from spreading out and provide a more accurate solution. 

4.5 Concluding Remarks 

To handle the ill-posedness problem in structural damage identification, sparse 
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regularization is adopted in the context of response sensitivity based model updating 

for damage identification. This idea corresponds to minimizing discrepancy between 

the analytical and tested response as well as keeping the number of non-zero entries in 

solution as small as possible in order to describe the solution accurately. The sparsity 

promoting property of 1 norm regularization, contrary to the Tikhonov regularization 

is emphasized, and the re-weighted sparse regularization is employed to enhance the 

sparsity of solution as well as alleviate the difficulty in choosing regularization 

parameter. Comparative simulation studies of a planar truss and an overhanging beam 

show that the proposed sparse regularization is superior to the traditional Tikhonov 

regularization in terms of identification accuracy as well as computational efficiency 

when using the noise-corrupted response from a small number of sensors. Basing on 

the studies, some concluding remarks are given as follows: 

(1) The traditional Tikhonov regularization constrains the norm of the solution to be 

small while the sparse regularization not only constrains the solution norm but 

also promotes the sparseness of the solution, i.e. keeping the number of nonzero 

entries in the solution as small as possible. This motivation is consistent with the 

fact of incipient damage. Thus a better damage identification result is obtained 

using the sparse regularization under the same conditions.    

(2) An explicit solution exists for Tikhonov regularization; thus it is easier to be 

implemented for computation. Although several methods have been proposed 

for solving the sparse regularization, solving the problem is still not a 
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straightforward task. However, according to the studies, sparse regularization is 

found to exhibit a quicker convergence in the FE model updating iterations for 

damage identification.  

(3) Although the p-norm ( 0 1p≤ < ) constraint promotes more sparsity, 1 norm 

regularization ( 1p = ) is adopted in this study. The main reason is that 1 norm 

regularized optimization is a convex problem and admits efficient solution via 

linear programming techniques.  

(4) The regularizing parameter which balances the trade-off between the residual 

norm and the solution norm should be chosen properly. For Tikhonov 

regularization, several well-known methods like L-curve method or GCV are 

available in determining the regularization parameter. For the sparse 

regularization, although GCV can be also used, to select a reliable 

regularization parameter is not a straightforward task. Fortunately, the 

solution to the 1 norm regularization is not so sensitive to the regularization 

parameter. Additionally, the re-weighted strategy could also be adopted to 

alleviate the difficulty in choosing regularization parameter.   

Thus, this sparse regularization, which provides more accurate results for solving the 

inverse problem of damage identification, will be employed in the forthcoming 

damage identification via response reconstruction in Chapter 5-6 and multi-level 

damage identification in Chapter 8, based on the works presented in Chapter3. The 
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corresponding experimental studies on the overhanging beam to assess the 

performance of the sparse regularization will be presented in Chapter 7.  
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Table 4.1 First 24 mode frequencies of the truss 

Mode Freq (Hz) Mode Freq (Hz) 
1 36.43 13 570.52 
2 76.10 14 576.94 
3 133.82 15 604.16 
4 223.39 16 654.32 
5 250.19 17 700.81 
6 359.37 18 724.81 
7 372.88 19 727.25 
8 443.57 20 742.43 
9 478.43 21 753.25 
10 508.03 22 757.09 
11 538.52 23 802.06 
12 547.43 24 936.42 
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Figure 4.1 Flowchart of the damage identification procedure 
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Figure 4.3 Illustration of (left) and minimization (right) in   

 

Figure 4.4 Geometric configuration of a planar truss 

 

(a) 
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(b) 

 

(c) 

Figure 4.5 Single-damage identification of a truss using (a) Tikhonov regularization, 

(b) sparse regularization and (c) using sparse regularization with constraint. 
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(b) 

 

(c) 

Figure 4.6 Multi-damage identification of a truss using (a) Tikhonov regularization, 

(b) sparse regularization and (c) using sparse regularization with constraint. 

 

Figure 4.7 Geometric configuration of an overhang beam and the spatial deployment 

of the accelerometers 
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(a) 

 

(b) 

 

(c) 

Figure 4.8 Single damage identification of an overhanging beam using (a) Tikhonov 

regularization, (b) sparse regularization and (c) sparse regularization with constraint. 
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(b) 

Figure 4.9 Damage parameter evolutions in iteration using (a) Tikhonov 

regularization and (b) sparse regularization 
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(c) 

Figure 4.10 Multi-damage identification of an overhanging beam using (a) Tikhonov 

regularization, (b) sparse regularization and (c) sparse regularization with constraint. 
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CHAPTER 5 

DAMAGE IDENTIFICATION VIA RESPONSE 

RECONSTRUCTION UNDER KNOWN 

EXCITATION 

5.1 Introduction 

One outstanding obstacle that hinders robust application of FE model updating based 

damage identification to civil structures is that the point measurements captured by 

the predefined sensors cannot cover adequately all possible damage location, which 

is not known a priori on a complex civil structure. Kalman filter based response 

reconstruction and the associated optimal sensor placement method proposed by 

Zhang (2012) and Xu et al. (2016) are promising in supplementing the limitation of 

sensor measurements and beneficial to vibration based damage identification of civil 

structures. Besides, the responses of multi-type sensors are fused together for the best 

response reconstruction in this method, which is also potentially advantageous to 

damage identification. Every type of response has its own merits and drawbacks. For 

instance, acceleration is frequently preferred due to its easy measurement and 

relatively more kinetic energy on higher vibrational modes. Strain response, 

regarding as a kind of local response, is also utilized because of its better capacity of 

indicating local degradation on condition that they are in the vicinity of damage. 

Displacement, containing more energy in the vibration of low order modes, 

sometimes can directly indicate the structural integrity (e.g. inter-story displacement 
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of a high-rise building). These multiple responses, which manifest a large spectral 

bandwidth, could capture both local and global response features and provide 

comprehensive information about the structure’s condition. But to date, these kinds 

of dynamic responses are usually utilized individually and little effort has been 

devoted to exploring the potential benefits of utilizing multi-type response for 

damage identification.  

To explore the potential benefits of response reconstruction and fusion of 

heterogenous response for damage identification, this chapter presents a novelty 

damage identification method by combining the response reconstruction technique, 

which is partially discussed in Chapter 3, with the sparse regularized finite element 

(FE) model updating, which is fully presented in Chapter 4. The number and location 

of various sensors, such as accelerometers, displacement transducers, and strain 

gauges are optimally determined to obtain the best reconstruction of multi-type 

responses of a structure before damage. After damage occurrence, radial basis 

function (RBF) network is employed to predict the mode shapes using the modal 

properties extracted from the measurement data by experimental modal analysis 

(EMA), and these modal properties are further used to reconstruct responses of the 

damaged structure. The reconstructed responses are finally used to identify the 

damage in terms of sensitivity-based FE model updating. In every updating, the 

sparse regularization is employed to increase the identification accuracy. The same 

simply supported overhanging steel beam composed of 40 elements and used in the 

previous two chapters serves as a numerical study to demonstrate the procedure and 

feasibility of the proposed method.  
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5.2 Kalman Filter Based Response Reconstruction 

One possible solution to alleviating the necessity of deploying dense sensors for local 

damage identification is to reconstruct the responses of key locations where no sensors 

are installed using FE model information and limited measurement data. Zhang (2012) 

and Xu et al. (2016) presented a multi-type sensors optimal placement method that 

aimed to reconstruct multi-type responses best using Kalman filter. As a foundation of 

the proposed method, it is briefly introduced in this section. 

Including model errors and observation noise, the dynamics of a structure can be 

represented in a discrete-time state space formulation in modal coordinate system as 

Eq.(5.1), which has been fully introduced in Section 3.2. 

 1k d k d k k+ = + +x A x B u w   (5.1) 

where ( ) { } 2Tr r r
k k kk t= ∆ = ∈ℜx x q q is the discrete-time state vector with 0,1,2,...k = ; t∆

is the sampling interval; ( )2 ~ 0,r
k N∈ℜw Q  the normally distributed modeling error 

with covariance matrices T
p q pqE δ  = w w Q . Usually, only a part of outputs are 

measured with limited deployed sensors, and accordingly, the measurement equation 

can be expressed as  

 m m m m
k d k d k k= + +y C x D u v   (5.2) 

where m
ky denotes the measurements at k-th instants and ( )~ 0,mN

k N∈ℜv R represent 

the normally distributed measurement noise; m
dC and m

dD are the associated 
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measurement matrix and the feedthrough matrix, composed of the strain and 

displacement mode shapes of the measurement location.  

Kalman filter is a recursive data processing algorithm which can obtain an unbiased 

minimal-variance estimate of the state vector by taking advantages of the system 

model and measurement information (Kalman, 1960; Zhang, 2012). By setting the 

initial conditions as 1 0 0ˆ ; k
−= =x x P P  Kalman filter is capable of providing an optimal 

estimate of state vector as: 

 ( )( ) ( )1ˆ ˆm m m
k k d d k d k k k d k−= − + + −x I K C A x B u K y D u   (5.3) 

in which kK is the Kalman gain, which is optimally determined as   

 ( ) 1mT m mT
k k d d k d m

−− −= +K P C C P C R   (5.4) 

where k
−P  is the priori state error covariance. Then the desired responses of key 

locations can be reconstructed as: 

 ˆe e e
k d k d k= +y C x D u   (5.5) 

in which e
dC and e

dD are composed of modal shapes corresponding to DOFs of the key 

location, whose responses are to be reconstructed. The reconstruction error kδ and 

associated covariance matrix are expressed as  

 ( ) ( ) ( )ˆ ˆe e e e e
k d k d k d k d k d k k= + − + = −δ C x D u C x D u C x x   (5.6) 
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 T e x eT
k k k d k dE  = = Δ δ δ C P C   (5.7) 

where x
kP  is the posteriori state error covariance of the state vector at time step k and 

E denotes the expectation operator. It can be proved that reconstruction error 

covariance matrix converges to a stable valueΔ , independent of external excitation ku

when the measurement instants m
ky are enough, and the Kalman filter is well-structured. 

The number and location of sensors are optically designed by selecting the proper 

measurement output matrix m
dC  and transmission matrix m

dD to obtain the well 

estimated ˆ kx and then minimize the trace of stable reconstruction error covariance 

matrixΔ . The optimal configuration and the number of sensors could be determined 

when the average reconstruction error approaches a stable value in an optimization 

procedure.  

The limited measured dynamic responses of the structure at intact state are collected 

through the optimized sensors that are installed on the structure. The FE model of the 

structure is updated using the measured dynamic response if needed. The precise FE 

model corresponding to the structure of the intact state is established; it is further used 

for later damage identification as a reference model.  

5.3 RBF Network for Mode Shape Prediction  

As mentioned before, the responses from limited sensors installed on a real-world 

structure may not contain enough information for identifying local damages. An 

intuitive idea is to reconstruct the responses at the locations that are in the vicinity of 
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damage. However, it is not straightforward to reconstruct the responses of the structure 

in the damaged state based on Kalman filter as introduced in the above section. From 

Eq.(5.1)~Eq.(5.5), we note that the estimation system matrices  dA ， dB ，
m
dC and m

dD

are composed of modal properties, including frequencies, damping ratios and modal 

shapes corresponding to the measurement points, which are all possibly extracted from 

the limited measured data by the EMA. EMA is a procedure whereby the natural 

frequencies, damping ratios and mode shapes of a linear, time-invariant structural 

system are derived from experimentally measured response data. Several 

well-established techniques are reported in the literature to extract modal parameters 

from measured noise-corrupted response. Subspace identification methods have drawn 

tremendous research interest and have been widely recognized for its computational 

efficiency and strong capacity in modal identification. For reconstructing the response 

of unmeasured positions, the modal shapes of these locations e
dΨ and e

dΦ are needed 

in the formulation of e
dC and e

dD . Here artificial neural network (ANN) is adopted to 

estimate the strain and displacement modal shapes of unmeasured places in the 

damaged state.  

5.3.1 RBF Network 

ANNs are computational tools inspired by the human biological brain and nervous 

system functioning, whereby they imitate the parallel and distributed processing 

nature of the biological neurons to approach a specific problem by using certain rules 

to achieve favorable results. Usually, a typical ANN structure consists of an input 

layer, an output layer and at least one hidden layer. The processing elements, namely 
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neurons, are interconnected with the next layer through their connectivity. 

Radial-basis-function (RBF) network is a kind of the multi-hidden-layer feedforward 

network with sigmoid and linear functions as activation (transfer) functions for the 

neurons in the hidden layers and the output layer, respectively. Park and Sandberg 

(1991) proved that radial-basis-function (RBF) networks are capable of providing an 

arbitrarily good approximation to any prescribed function using only a finite number 

of parameters. A typical RBF network with i input and j output is shown in Figure 5.1. 

The output of the network is a function of the input vector and is given by: 

 ( ) ( )
1

lN

i p p
p

y f ω y
=

= = −∑x x c   (5.8) 

where Nl is the number of neurons in the hidden layer, pc is the center vector for 

neuron p, and pω  is the weight of neuron p in the linear output neuron. ψ , termed as 

RBF, is the function that depends only on the distance from a center vector and radially 

symmetric about that vector. The output y is then taken to be a linear combination of 

the basis functions, which is a function of the input x and the center vector pc .  

Network training is a process to find the weights pω  and the center vector pc  such that 

the function goes through the data points in the training set{ },i ix y . 

5.3.2 Mode Shape Prediction with RBF Network 

ANNs have found extensive applications, including function approximation, data 

processing, classification, and system control. Application of ANN for mode shape 

prediction has been investigated in by Goh et al. (2013). The basic idea of ANN 
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applications in mode shapes prediction is to build a model to establish relationships 

between modal parameters and mode shapes through a training process. The RBF 

network is employed in this study to predict displacement and strain mode shapes of 

the structure in the damaged state due to its easier implementation and fast training. 

The input of the network is frequencies and mode shapes of the structure in the 

damaged state, which can be extracted by EMA. To avoid the mass normalization (a 

scaling procedure to ensure the modal shape matrix mass-normalized as T =Φ MΦ I ) in 

EMA, the coordinate modal assurance criterion (CoMAC) defined below is utilized: 

 ( ) ( )
( )( )

2

,
mT m
u dm m

u d mT m mT m
u u d d

CoMAC
⋅

=
Φ Φ

Φ Φ
Φ Φ Φ Φ

  (5.9) 

where m
uΦ and d

mΦ are the displacement mode shapes of the structure in damage-free 

and damaged state at a relatively small number of discrete measurement points, 

respectively. ( ),m m
u dCoMAC Φ Φ is a symmetric matrix indicating the spatial comparison 

of mode shapes before and after damage, and only its lower triangular parts are 

utilized; when the strain mode shape before damage m
uΨ and after damage m

dΨ are 

used in Eq. (5.9), it forms the strain CoMAC. In a word, the frequencies, displacement 

CoMAC and strain CoMAC are imported to the trained RBF network to predict 

mass-normalized displacement mode shapes e
dΦ .  Then the strain mode shapes 

could be predicted as e e
d d=Ψ BΦ .  

Although ANNs mimic the mechanism of the brain, they do not have analytical 

function form, and ANNs should be trained using modal data of sets of damage 
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scenarios. The appropriate training sets (damage scenarios) are obtained by numerical 

analysis. For k-th damage scenario, the input data and output data for ANN is 

( ) ( ){ }, , , ,m m m m
k u k u kTri CoMAC Tri CoMAC      f Ψ Ψ Φ Φ  and ( )1,2,k k N=Φ  , 

respectively, where kf is frequencies; m
kΨ and m

kΦ are the strain and displacement 

mode shapes of the measurement points in the k-th damage scenario and N is the 

number of training sets; Tri converts a symmetric matrix n n×  A into a vector of 

( )Tri A = [ 11A , 21A , 22A , 31A ,..., 1nA , 2nA ,..., nnA ]. 

The RBF networks are trained using the virtually generated damage scenarios to make 

the sum-squared error to approach the preset value. The mode shapes and damping 

ratios extracted from EMA and the mass-normalized mode shapes predicted by EMA 

are used to format the system matrices of the damaged state. Then in the damaged 

state, the response of the structure can be reconstructed using the Kalman filter-based 

method introduced in Section 5.2. 

5.4 Damage Identification via Response Reconstruction  

5.4.1 Sparse Regularized FE Model Updating 

FE model updating as introduced in Section 4.2 is employed to identify damage. The 

main difference is that the reconstructed responses ( )2s en n ne
d

⋅ +∈ℜy instead of the limited 

measured responses s en nm
d

⋅∈ℜy are used in RHS of Eq.4.2, and the response sensitivity 

matrix corresponding to the reconstructed response locations is used in left-hand-side 

(LHS) of Eq.4.2. Thus the problem is formatted as 
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 , 1 ,e k k e k+∆ = ∆S θ y   (5.10) 

where ( ),e k e e k
d a∆ = −y y y θ is the response discrepancy between the reconstructed 

responses of damaged state and the analytical responses of the corresponding 

locations. 
1

k
k l

l=
= ∆∑θ θ is the cumulative damage parameter in all k-th iterations. ,e kS

and ,e k∆y are formatted by stacking the columns of sensitivity sequences and response 

discrepancy sequences respectively as 

 
, , , ,

1

, , , ,
1

m

m

e kT e kT e kT e kT
i n

e kT e kT e kT e kT
i n

 =  
 = ∆ ∆ ∆ 

S S S S

y y y y

 

 
  (5.11) 

Similarly, the sparsity regularization or specifically 1 norm regularization (Zhang et 

al. 2016) is employed to constrain the solution. Then, Eq. (5.10) is formatted as 

 ( )
1

2 11 , 1 , 1

2 1
ˆ argmin

k p

k e k k e k km
+

+ + +

∆ ∈ℜ
∆ = ∆ − ∆ + ∆

θ
θ S θ y θ   (5.12) 

where
11

1

k+∆θ is the 1 -norm of the vector 1k+∆θ ; the term
2, 1 ,

2

e k k e k+∆ − ∆S θ y

constrains the residual, whereas the term 
11

1

k+∆θ enforces sparsity of the solution. The 

tradeoff between the two terms is balanced by the penalty parameter 0µ > , of which 

the proper value should be chosen carefully for an acceptable solution. A re-weighting 

strategy as explained in Section 4.3 could be employed to relieve this difficulty. The 

primal-dual interior point algorithm proposed by Boyd (Boyd, 2004) is adopted to 

solve Eq. (5.12) in this study.  
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5.4.2 Flowchart and Computation Procedure 

The flowchart of the proposed damage detection via response reconstruction is shown 

in Figure 5.2, and Figure 5.3 shows the schematic illustration of response 

reconstruction process based on mode shape prediction using ANN. The whole 

procedure is introduced in detail as follows. 

Step 1: The numbers and locations of accelerometers, displacement transducers, and 

strain gauges are optimized using a sensor placement optimization proposed in (Zhang 

et al., 2012; Zhu et al., 2013) to obtain the best reconstruction of multi-type responses 

of a structure in its intact state. The optimized sensors are installed at the selected 

locations. 

Step 2: On the damage-free state, the multi-sensing responses m
uy  are collected by the 

optimally selected sensors. The finite element model corresponding to the intact state 

of the structure is updated using these measured responses to establish a precise 

reference model for the subsequent damage identification.  

Step 3: After damage occurs, the multi-sensing responses m
dy are also collected and 

utilized for response reconstruction, and they are combined with model updating for 

damage identification. In this process, the modal parameters extracted from EMA are 

imported into the trained RBF neural network to predict the mass-normalized mode 

shapes in the damaged state. Then the response on interested locations can be 

reconstructed by virtue of Kalman filter. 

Step 4: Response sensitivity-based updating is performed to identify the existing 
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damage. For 0k = , the damage parameter is set as 0 =θ 0  for the intact state.  

Response sensitivity matrix 0S  on the instate state is calculated with FEA and 

assembled in the form of Eq.(5.11). Damage perturbation vector 1∆θ is calculated by 

Eq. (5.10)with 0∆y being the normalized difference between reconstructed responses

e
dy  and the analytical responses ( )0

ay 0 . The FE of the structure is updated with the 

damage vector
1

1

1

i

i=
= ∆∑θ θ . 

Step 5: For the next iteration 1,k k= +  the analytical responses k
ay  are derived by FEA 

with the updated damage parameter θ . Response sensitivity matrix kS for k-th 

iteration is calculated and assembled as Eq. (5.11)and then normalized accordingly. 

Damage perturbation vector 1k+∆θ is obtained by , 1 ,e k k e k+⋅ ∆ = ∆S θ y with ,e k e k
d a∆ = −y y y . 

The sparse regularization is employed to give a meaningful solution. Then the FE of 

the structure is further updated with new damage vector 
1

1

1

k
k i

i

+
+

=

= ∆∑θ θ . 

Step 6: The stiffness damage vector is updated iteratively. Repeat Step 3 until the 

convergence criterion is satisfied. 

5.5 Numerical Studies  

5.5.1 An Overhanging Beam 

A simply-supported overhanging steel beam corresponding to the testbed in a 

laboratory serves as the numerical study. The geometric dimension and physical 

parameters have been introduced in Section 3.5.1. In this study, the damage is 
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simulated as a corresponding reduction of element stiffness and mass matrix as Eq. 

(5.13) because cutting the sectional width of the beam on the corresponding element 

causes the element stiffness and mass reduction to the same extent simultaneously.  

 ( )
1 1

, , 1 0
e eN N

d u i i d u i i i
i i
θ θ θ

= =

= + = + − ≤ ≤∑ ∑K K K M M M  (5.13) 

in which uK and uM are the global stiffness and mass matrix of the structure before 

damage occurrence, respectively; iK and iM are the stiffness and mass matrix 

contributions of the i-th element and iθ is the fractional damage parameter. The 

damping matrix is formed using the Rayleigh damping model as α β= +C M K whereα

and β are determined with the first two damping coefficients set as 1 2 0.01ξ ξ= = .  

The external excitation vertically applied on node 18 is a broadband stochastic force 

sequence with a standard deviation of 6.4 N (same as that of laboratory test). 

Integration time step is 1/500 s, and the sample duration is 40s. Based on the studies in 

Chapter 3, it is noted that the 7-th mode of the beam (with a frequency around 99.7 Hz) 

has a negligible contribution to the overall response, thus the excitation sequences are 

deliberately designed as in a frequency bandwidth of 2 Hz to 82 Hz, only covering the 

first 6 modes. The dynamic response is numerically simulated with FOH state space 

formulation. Noise corruption is simulated by adding normally distributed random 

noise to the noise-free response as Eq.3.35; the noise amplitude is set as 0.201με , 

0.01 mm  and 20.04 m s for strain, displacement and acceleration, respectively 

according to the laboratory measurement data; and the standard deviation of  noise 

over the  standard deviation of noise corrupted response, is approximately 1%~2% in 
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the simulation. 

5.5.2 Optimal Sensor Placement 

Firstly, the optimized sensor placement is obtained with aforementioned multi-type 

sensors placement optimization method. The strain gauges are attached to the upper 

face at the middle of the elements to measure the flexural deformation of the beam. 

Rotational DOFs are excluded in the candidate location considering that it was 

difficult to measure the rotations at nodes directly. As a result, 40 element strains, and 

39 vertical nodal displacements and 39 vertical nodal accelerations are selected as the 

candidate locations for three types of sensors.  The first 6 modes are used for response 

reconstruction, i.e. mN 6= , since the excitation bandwidth only covers the first 6 orders 

mode (as shown in Table 7.3). For a detailed introduction on this subtopic, please refer 

to the references (Zhang et al. 2012; Zhu et al., 2013). Here the final optimization 

results are listed: if 11 optimal sensors are selected, there are 5 strain gauges and 2 

displacement transducers and 4 accelerometers; the corresponding placement 

configuration is shown in Figure 5.4. 

5.5.3 RBF Network Training 

Damage scenarios are virtually generated by introducing given damage to the intact 

FE model. Then analytical dynamic responses are added by the normally distributed 

noise sequences at laboratory test level. Modal identification is further performed to 

derive the modal parameters. Due to the computer's limited memory, the virtually 

simulated damage scenarios only cover the case that damages are on single or two 

elements and damage extent is from 0 to -0.2 at an increment of -0.1 and the number of 
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training sets N=3200. The accuracy of modal identification is crucial to the realization 

of this proposed method, since if the level of uncertainty is higher than or close to the 

level of actual changes of modal properties due to structural damage, the real 

information of structural damage will be masked and the structural damage cannot be 

accurately identified. In order to increase the robustness of the trained ANN over the 

uncertainty induced by the procedure of modal identification, zero-mean Gaussian 

white noise processes are added to the simulated responses and modal parameters 

extracted from the noise-corrupted response of these scenarios are then dedicated to 

training the BBF networks.  In each damage scenario, the input data for ANN training 

are the vector ( ) ( ){ }, , , ,
T

m m m m
k u k u kTri CoMAC Tri CoMAC      f Φ Φ Ψ Ψ which is derived 

from the model properties extracted through EMA; and the output data kΦ is obtained 

through model analysis. It should be pointed out that each mode shape of 

{ }1, 2, ,, , ,
mk k k N kφ φ φ=Φ  in different damage scenario may be in the same or opposite 

direction. A preprocessing procedure is performed to make mode shapes in all damage 

scenarios are in the same direction: if ( ), , 0T
i u i kφ φ⋅ < , then , ,i k i kφ φ= − where 

1,2, , mi N=   and ,i uφ is the i-th mode shape of the structure in the undamaged state. 

The RBF network is trained using the virtually generated damage scenarios, and the 

sum-squared error goal in RBF Network training is set as 5e-8 for displacement mode 

shapes prediction. Then the strain mode shapes could be predicted as e e
d d=Ψ BΦ . 

5.5.4 Damage Identification 

The damage is simulated by cutting notches with different sectional width reduction 



 

143 

on the corresponding element area, generating an equal reduction of element stiffness 

matrix and element mass matrix. Two typical damage scenarios have been considered 

in this simulation study: single damage scenario and multi-damage scenario. Please 

note that in this section, damages are virtually introduced in the area where no sensors 

are installed. This is purposely designed to demonstrate the superiority of the proposed 

response reconstruction in damage identification. The convergence criteria are set as

51 10Tol −= × , with a maximal iteration of 20 in the following study, which is enough 

for convergence of iteration. 

5.5.4.1 Single-damage scenario 

The single-damage scenario is designed as reducing 20% of width on element 23. 

Firstly, the noise-corrupted responses virtually recorded by the 11 optimized sensors 

are utilized for identifying the frequencies, displacement mode shapes, and strain 

mode shapes. These modal parameters are extracted through subspace algorithms for 

the identification of combined deterministic-stochastic systems (N4SID) (Overschee, 

1994), and the identified modal parameters are listed in Table 5.1. Then the 

frequencies df as well as the displacement CoMAC and strain CoMAC are imported to 

the trained RBF network to predict mass-normalized strain and displacement mode 

shapes. The predicted mode shapes are further used in response reconstruction. The 

reconstructed and real strain responses are plotted in Figure 5.5. These two curves of 

responses are almost overlapping, which demonstrates that more damaged state 

information is contained in the reconstructed response. 

Finally, the reconstructed responses are used for damage identification in iteratively 
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updating as introduced in section 5.4. Reweighting sparse regularization is also 

utilized for solving Eq.(5.12); all the results shown here are achieved through sparse 

regularized FE model updating. The identification result (shown in Figure 5.6b) 

indicates that the accuracy of damage detection via response reconstruction is pretty 

satisfactory, as the damage extent on element 23 is identified as -17.6% and errors on 

other elements are acceptable. For the sake of comparison, the result of damage 

identification without response reconstruction, namely directly using the noised 

responses on the 11 sensors for damage identification, is also presented in Figure 5.6a. 

It can be found that as the sparse is imposed on the solution, there are much less 

false-positive (indicating damage when it is not present) errors in the identification 

result, but the damage on element 23 is mistakenly located at element 21. 

Accelerometers are widely employed in vibration test due to its easy installment and 

relatively high sign-to-noise ratio. To show the superiority of using multi-type 

responses for damage detection, the result using acceleration on the equivalent 

locations, i.e. the response virtually collected from 9 accelerometers installed on node 

1, 7, 12, 16, 22, 26, 32, 36 and 41, is also shown in Figure 5.6c. It is noted that with 

only acceleration, the 20% damage on element 23 is identified as around 6% in 

element 21: both damage location and severity are mistakenly identified. These results 

demonstrate that the proposed method has certain superiority. 

5.5.4.2 Multi-damage scenario 

A case of 20% reduction of sectional width on element 23 and 10% reduction on 

element 7 with respect to the original value is employed here representing a 

multi-damage scenario to investigate the effectiveness of multi-sensing damage 
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detection with response reconstruction. It is noted that this damage scenario is not used 

in ANN training. The frequencies, strain mode shapes and displacement mode shapes 

obtained using the sensors’ data are listed in Table 5.2. Then the frequencies, as well as 

the displacement CoMAC and strain CoMAC, are imported to the trained RBF 

network to predict mass-normalized strain and displacement mode shapes. Then the 

reconstructed responses are used in sparse regularized updating as introduced in the 

above section. To save the computation effort, the reconstructed response of 2s’ 

duration is used for damage identification. The identification results without and with 

response reconstruction are both illustrated in Figure 5.7, respectively. By comparing 

the two, it is observed that without response reconstruction, the damage on element 7 

and element 23 cannot be identified. Besides, there are false-positive errors in the 

same elements. While with response reconstruction, both the damage location and the 

damage extent are identified with satisfactory accuracy. Figure 5.7c depicts the 

identification result of first 2 iterations merely using accelerations on the equivalent 

locations. The updating stopped after 2 iterations because the accumulated damage on 

elements 21 and 25 are less than -1, making the beam singular (inadequately 

constrained) and iteration divergent.  

Comparing the results, it is observed that the proposed method has certain superiority 

over both the immediate utilization of multi-type responses at limited locations and 

homogeneous acceleration response on the equivalent locations. The results of the 

numerical studies indicate that more damaged state information is contained in the 

reconstructed response, which is beneficial to identify the local damages. 
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5.6 Concluding Remarks 

This chapter presents a damage detection method via response reconstruction in a 

strategy of combining response reconstruction and sensitivity-based FE model 

updating to identify local damage in a structure. The fractional damage parameter is 

updated iteratively by minimizing the discrepancy between the reconstructed and 

their simulated counterparts obtained from an analytical model of the structure. The 

mass normalized mode shapes are predicted by the RBF network for reconstructing 

the structural response in the damaged state. Numerical studies of a simply supported 

overhanging beam are conducted to demonstrate the procedure and effectiveness of 

the proposed method. Basing on these studies, the following remarks should be 

highlighted: 

(1) Strain is usually regarded as a local response while displacement and acceleration 

reflect more global behavior of a structure. Fusion of multi-type response, 

including global and local response, is advantageous to not only the response 

reconstruction but also the consequent damage identification.  

(2) The response reconstruction is implemented in the Kalman filter, which has a 

remarkable superiority in handling the modeling error and measurement noise. 

To make the filter operate optimally, the modeling error covariance Q  and the 

measurement noise covariance mR should be properly selected. It is assumed that 

the structure works in the same conditions, i.e., the measurement noise 

covariance mR stays the same before and after damage.  
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(3) RBF network is employed to predict the mass normalized mode shapes of 

damaged state, which is used for response reconstruction in the damaged state. 

The frequencies, strain and displacement CoMAC value are imported to the 

trained RBF network. Theoretically, other dynamic features can be used in RBF 

network; even other mode shapes prediction method could be used in the 

proposed method. 

(4) Comparison of the damage identification results by using the reconstructed 

responses with those by immediate using of measured response shows the 

former has certain superiority. The results indicate that the proposed response 

reconstruction method is capable of capturing the kinetic information of the 

damaged structure.  

Numerical studies show that the Kalman filter based multi-type response 

reconstruction and fusion do benefit to damage identification in supplementing the 

limitation of sensor measurements. The corresponding laboratory test work will be 

provided in Chapter 7 for validation. However, the full description of excitation is 

required in the Kalman filter based response reconstruction in this chapter. In the 

next chapter, the response reconstruction-oriented strategy will be extended to 

alleviate the necessity of knowing excitations.  
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Table 5.1 Identified dynamic properties for single damage 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

df  4.9837 8.2870 17.0609 42.0704 63.8434 71.5694 
Ξ  0.0064 0.0039 0.0019 0.0012 0.0011 0.0011 

m
dΦ  

S1 1.60E+02 1.47E+02 -1.12E+02 1.98E+02 1.31E+02 -3.04E+02 
S2 4.58E+02 3.60E+02 -2.15E+02 8.84E+01 -7.21E+01 2.42E+02 
S3 6.49E+02 -1.62E+01 1.90E+02 5.97E+01 5.85E+01 3.69E+01 
S4 5.73E+02 -2.25E+02 2.60E+01 3.24E+02 -4.56E+01 7.34E+01 
S5 3.80E+02 -3.50E+02 -2.32E+02 -2.20E+02 -1.89E+01 -1.76E+02 

m
dΨ  

D1 9.28E+01 8.59E+01 -7.15E+01 2.14E+02 2.22E+02 -5.96E+02 
D2 -3.09E+01 -9.05E+00 -4.97E+01 2.94E+02 3.44E+01 1.83E+02 
D3 -3.06E+01 9.32E+00 -4.85E+01 -3.18E+02 3.16E+01 -1.95E+02 
D4 9.19E+01 -8.71E+01 -6.91E+01 -2.27E+02 2.12E+02 6.16E+02 

 

Table 5.2 Identified modal parameters for multi-damage 

 
 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

df  4.9850  8.2827  17.0356  42.0282  63.8426  71.6200  
Ξ  0.0063  0.0039  0.0019  0.0012  0.0011  0.0011  

m
dΦ  

S1 -1.58E+02 -1.43E+02 9.62E+01 2.27E+02 -1.31E+02 -3.00E+02 
S2 -4.48E+02 -3.48E+02 1.84E+02 9.98E+01 7.34E+01 2.44E+02 
S3 -5.63E+02 2.18E+02 -2.21E+01 3.76E+02 4.68E+01 7.43E+01 
S4 -3.73E+02 3.39E+02 2.00E+02 -2.56E+02 1.93E+01 -1.76E+02 
S5 -1.56E+02 1.44E+02 9.30E+01 -2.43E+02 -1.28E+02 3.13E+02 

m
dΨ  

D1 -9.14E+01 -8.35E+01 6.13E+01 2.48E+02 -2.24E+02 -5.97E+02 
D2 3.03E+01 8.68E+00 4.27E+01 3.40E+02 -3.51E+01 1.82E+02 
D3 3.00E+01 -8.97E+00 4.14E+01 -3.68E+02 -3.23E+01 -1.97E+02 
D4 -9.02E+01 8.42E+01 5.93E+01 -2.63E+02 -2.16E+02 6.15E+02 
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Figure 5.1 The architecture of a typical RBF neural network with i input and j output 

 

Figure 5.2 Flowchart of damage identification via response reconstruction 

 

Figure 5.3 Response reconstruction strategy of damaged state  
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Figure 5.4 Geometric configuration of a simply supported overhanging steel beam and 

the optimal sensor placement for known excitation 

 

Figure 5.5 Close-view of strain response on Element 33 

 

(a) 
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(b) 

 

(c) 

Figure 5.6 Damage identification result for single damage scenario: (a) without 

response reconstruction; (b) with response reconstruction; and (c) with equivalent 

acceleration response. 

 

(a) 
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(b) 

 

(c) 

Figure 5.7 Damage identification for multi-damage: (a) without response 

reconstruction; (b) with response reconstruction; and (c) with equivalent acceleration 

response.  
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CHAPTER 6 

DAMAGE IDENTIFICATION VIA 

RESPONSE RECONSTRUCTION UNDER 

UNKNOWN EXCITATION 

6.1 Introduction 

Equation Section 6To overcome the shortages of response measurements acquired by 

limited sensors for structural condition assessment, Chapter 5 has established a 

response reconstruction combined FE model updating strategy for damage 

identification of the major civil structures. The dynamic response reconstruction is 

performed using multi-type responses through the classical Kalman filter. However, 

the time series evolution of excitation acting on the structure is required in the classical 

Kalman filter based response reconstruction. To alleviate the necessity of measuring 

excitations in response reconstruction, Chapter 3 presents a Kalman filter under 

unknown input (KF-UI) based response reconstruction method, in which the response 

reconstruction and the excitation can be reconstructed simultaneously and the optimal 

multi-type sensors design is also investigated. In view of these, this chapter intends to 

extend the damage identification via response reconstruction strategy established in 

Chapter 5 from the situation that excitations are needed to the situation that excitations 

are absent.  Response and excitation are reconstructed simultaneously through the 

implementation of KF-UI. Radial-basis-function (RBF) network is employed to 

predict the mode shapes using modal properties extracted by experimental modal 
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analysis (EMA) after damage occurrence. The reconstructed response and excitation 

are finally integrated into to sensitivity-based FE model updating for localizing and 

quantifying the damage. The sparse regularization, which is introduced in Chapter 4, 

is also employed to produce more accurate damage identification. A numerical 

simulation study is conducted on an overhanging steel beam under unknown 

excitation. The feasibility and effectiveness of the proposed method are further 

ascertained by laboratory tests of the beam, which will be presented in Chapter 7. 

6.2 Response Reconstruction under Unknown Excitation 

6.2.1 Discrete State Space Model of a Structure 

By assuming that the structure behaves linearly in operational conditions, the dynamic 

vibrations can be expressed as the superposition of the first several model responses as

( ) ( ) r rt t=d Φ q , where r n r×∈ℜΦ is the collection of the selected several 

mass-normalized mode shapes and ( )r tq is the vector of modal displacement and a dot 

over it denotes differentiation with respect to time. The dynamics of a structure can be 

further represented in a discrete-time state space model as: 

 1k d k d k k+ = + +x A x B u w   (6.1) 

 m m m m
k d k d k k= + +y C x D u v   (6.2) 

where ( ) { } 2Tr r r
k k kk t= ∆ = ∈ℜx x q q is the discrete-time state vector with 0,1,2,...k = ; t∆

stands for the sampling interval. The system matrices dA , dB , m
dC and m

dD are 
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composed of modal properties of the structure, including the collected strain mode 

shapes mΨ and displacement mode shapes mΦ ,  diagonal matrices sΩ containing the 

eigenfrequencies iω in rad/s and sΞ containing the modal damping ratio iξ as 

introduced in section 4.2 in detail. The vector r
k ∈ℜu denotes the r external 

excitation acting on the structure. 2r
k ∈ℜw and mNm

k ∈ℜv represent the independent 

white Gaussian modeling error and measurement noise vectors with covariance 

matrices Q and mR  , respectively. 

6.2.2 Joint Response and Excitation Reconstruction in Damaged State 

Kalman filter as a well-known state estimator has found certain applications in 

response reconstruction (Zhang et al.2012; Papadimitriou et al. 2010; Hernandez et al. 

2013; Palanisamy et al. 2015) and consequent applications (for example, cumulative 

fatigue prediction (Papadimitriou et al. 2010) and structural control (He et al., 2015) ) 

recently. However, in the response reconstructions, the time evolution of the 

deterministic excitation as the input to the structural system is usually assumed to be 

available. The recent development of filters for minimum-variance state estimation in 

the presence of unknown excitations has made response reconstruction without 

knowing excitation possible, which has introduced and demonstrated in Chapter 3. A 

recursive three-step filter (Gillijns et al., 2007; Pan et al., 2011) named KF-UI is 

adopted for joint response and excitation reconstruction. In what follows, it will be 

briefly introduced for completeness. 

Assuming the filter with the initial unbiased estimate 0
−x and the error variance 0

x−P , 
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the excitation and state estimates can be estimated recursively by the three steps in the 

following form: 

 1ˆ ˆ ˆk d k d k
− +
+ = +x A x B u   (6.3) 

 ( )ˆ ˆm m
k k k d k

−= −u M y C x   (6.4) 

 ( )ˆ ˆ ˆ ˆm m
k k k k d k d k
+ − −= + − −x x K y C x D u   (6.5) 

where ˆ k
−x and ˆ k

+x denote the priori and posteriori state estimates at time instant k, 

respectively. The minimum-variance unbiased estimate of excitation ˆ ku is obtained by 

Eq.(6.4) with the gain matrix kM given by 

 ( ) 11 1mT m mT
k d k d d k

−− −=M D R D D R    (6.6) 

where m x mT m
k d k d

−= +R C P C R . The minimum-variance unbiased estimate of the state 

vector ˆ k
+x is obtained by Eq.(6.5) with the filter gain expressed as: 

 x mT
k kk k
−= P CK R   (6.7) 

The corresponding state estimation error covariance is now updated to the posterior 

state estimation error covariance as 

 ( )m mT T
k k d

x
k k k
x

k d
u+ −= −−P K R D P D KP    (6.8) 

in which ( ) 11u mT m
k d k d

−−=P D R D denotes the excitation estimate error covariance. Then the 
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optimal state estimate ˆ k
+x at time instant k is propagated to the next time instant priori 

estimate 1ˆ k
−
+x using Eq. (6.3) and its error covariance matrix is:  

 [ ]1

x xu T
x k k d

k d d ux u T
k k d

+
−
+

   
= +   

   

P P A
P A B Q

P P B
  (6.9) 

in which ( ) ( )( )ˆ ˆ
T Txu ux m u

k k k k k k k d kE + = − − = − =P P x x u u K D P is the cross-covariance of 

the estimate errors of both state and excitation. Consequently, unbiased minimum 

variance estimates of state and excitation are simultaneously derived using the above 

three-step recursive filter. After the minimum-variance unbiased estimates ˆ k
+x and ˆ ku

are obtained, the reconstructed responses e
ky is expressed as  

 ˆ ˆe e e
k d k d k

+= +y C x D u   (6.10) 

where e
dC and e

dD are composed of strain mode shape eΨ and displacement mode 

shape eΦ corresponding the DOFs of the reconstructed locations. We can see that the 

excitation sequences can be recursively estimated provided that three-step filter is well 

structured by choosing the proper measurement locations and the number and location 

of the acting excitation should be known when forming the system matrices dB and

m
dD . It is worth highlighting that the sensor configuration should be optimally 

designed since improper sensor placement could degrade the response reconstruction 

accuracy and even causes divergence in state and input estimation, thus prejudicing the 

final damage identification. 



 

158 

6.3 Damage Identification via Response Reconstruction 

6.3.1 Mode Shape Prediction with RBF Network 

Referring to Eq. (6.1) and (6.10), we note that the estimation system matrix dA ， dB

，
e
dC and e

dD are composed of modal parameters, including frequencies, damping ratios 

and mode shapes of the structure in the damaged state, of which the former two could 

be possibly extracted by the experimental modal analysis (EMA).  For the later, 

Radial-basis-function (RBF) network is employed to estimate the displacement mode 

shapes of the damaged structure due to its easier implementation and fast training. 

Radial-basis-function (RBF) network is a kind of the multi-hidden-layer feed-forward 

artificial neural network (ANN) with sigmoid and linear functions as activation 

(transfer) functions for the neurons in the hidden layers and the output layer, 

respectively.  Application of ANN for mode shape prediction has been investigated 

by Goh et al. (2013). The basic idea of ANN applications in mode shape prediction is 

to build a model to establish relationships between modal parameters and mode shapes 

through a training process. The input of the network is frequencies and the 

displacement coordinate modal assurance criterion (CoMAC) defined as 

( ),u d
m mCoMAC =Φ Φ  ( )( )2uT d uT u dT d

m m m m m m
 ⋅ ⋅ ⋅ Φ Φ Φ Φ Φ Φ of damaged state, where u

mΦ

and d
mΦ are the displacement mode shape of damage-free and damaged state at a 

relatively small number of discrete measurement points, respectively; when the strain 

mode shape before damage u
mΨ and after damage d

mΨ are used, it forms the strain 

CoMAC. The appropriate training sets (damage scenarios) are obtained by numerical 



 

159 

analysis. For k-th damage scenarios, the input data and output data for ANN is 

( ) ( ){ }, , , ,k u k u k
m m m mTri CoMAC Tri CoMAC      f Φ Φ Ψ Ψ and ( )1,2,k k N=Φ  , respectively, 

where sk
m

m×∈ℜΦ and sk n×∈ℜΦ are the mode shapes corresponding to the 

measurement points and the mass-normalized mode shapes in k-th damage scenarios 

and N is the number of training sets. ( )Tri ⋅ is denoted as the lower triangular parts of a 

matrix, which means only the lower triangular parts of the symmetric matrix are 

utilized. 

The RBF networks are trained using the virtually generated damage scenarios over the 

preset damage domain to make the sum-squared error approach the preset value. The 

mode shapes and damping ratios extracted from EMA and the mass-normalized mode 

shapes predicted by EMA are used to form the system matrices of the damaged state. 

Then the responses of the damaged structure can be reconstructed using the recursive 

three-step filter introduced above. 

6.3.2 Sparse Regularized FE model Updating 

After the responses of the structure in the damaged state have been reconstructed, 

damage identification can be performed through response sensitivity-based model 

updating, which seeks the damage parameter that minimizes the difference between 

the reconstructed response of the damage state and analytical counterparts obtained 

from the FE model of the structure. As introduced in Section 4.2, this problem is 

usually solved using a gradient-based optimization like Gaussian-Newton iteration as: 

 1k k k+∆ = ∆S θ y   (6.11) 
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with 

 ( )1 2k k
a= ∂ ∂S W y θ θ   (6.12) 

 ( ) ( )1 2 ˆ ˆ, ,k e k
d d a

 ∆ = − y W y θ u y θ u   (6.13) 

where kS is the weighted sensitivity matrix for the k-th iteration; and W is a diagonal 

weighting matrix whose entries could be set as the reciprocals of the variance of the 

response on the intact state. k∆y is the weighted response residual vector; ( )e
dy θ and 

( ) 1m tN N
a

⋅ ×∈ℜy θ are the reconstructed and computed dynamic response vectors; mN and 

tN are the number of sensors and time instants recorded by each sensor. It is noticed 

that the main difference of Eq. (6.11) with Eq. 5.10 is that the analytical response 

calculated by the estimated excitation û . eN∈ℜθ is the damage vector and 
1

k
k l

l=
= ∆∑θ θ

is the cumulative damage parameter in all k-th iterations. kS and k∆y are assembled by 

stacking the columns of sensitivity sequences and response discrepancy sequences, 

respectively, namely: 

 1 1,
m m

kT kT kT kT kT kT kT kT
i N i N   = ∆ = ∆ ∆ ∆   S S S S y y y y      (6.14) 

Similarly, the 1 norm regularization, which has been introduced in Section 4.3, is 

imposed to promote the sparsity in the solution, and Eq. (6.11) can be solved 

equivalently as: 

 ( )
1

2 11 1 1

2 1
ˆ argmin

k

k k k k km
+

+ + +

∆ ∈ℜ
∆ = ∆ − ∆ + ∆

θ
θ S θ y θ   (6.15) 
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in which 
1
⋅ denotes the 1 norm. The parameter 0µ > should be optimally 

determined to control the tradeoff between the residual 
21

2

k k k+∆ − ∆S θ y  and the 

sparsity of the solution. The primal-dual interior point algorithm presented by Boyd 

(2004) is employed to solve the problem. Updating iterations are performed until the 

convergence criterion k k Tol∆ ≤θ θ  is met. 

6.3.3 Flowchart and Computation Procedure 

The flowchart of the proposed damage detection via response reconstruction under 

unknown excitation is shown in Figure 6.1, and the strategy of response reconstruction 

in the damaged state is shown in Figure 6.2. The whole procedure is introduced in 

detail as follows. 

Step 1: The optimized multi-type sensors designed by the sensor placement 

optimization proposed in Chapter 3 are installed at the selected location. 

Step 2: On the damage-free state, the finite element model corresponding to the intact 

condition of the structure is updated using these measured responses m
uy collected by 

the optimal limited sensors to establish a precise reference model for the following 

damage identification.  

Step 3: After damage occurs, the multi-sensing responses m
dy are also collected and 

utilized for response reconstruction combined with model updating for damage 

identification. In this process, the modal parameters extracted from EMA are imported 

into the trained RBF neural network to predict the mass-normalized mode shapes in 
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the damaged state. Then the responses on interested locations as well as the external 

excitation can be reconstructed through KF-UI as introduced in Section 6.2. 

Step 4: Response sensitivity-based updating as introduced in section 6.3 is performed 

to identify the existing damage. For 0k = , the damage parameter is set as 0 =θ 0  for 

the intact state.  Response sensitivity matrix 0S  on the intact state is calculated with 

FEA using the reconstructed excitation ( )ˆ tu  and assembled in the form of Eq.(6.14). 

Damage perturbation vector 1∆θ is calculated by Eq. (6.15) with 0∆y being the 

difference between the reconstructed responses ( )e
d ty  and the analytical responses

( )0
a ty  when 0 =θ 0 . The FE of the structure is updated with the damage vector

11
1

s
s=

= ∆∑θ θ . 

Step 5: For the next iteration 1,k k= +  the analytical responses k
ay  are derived by FEA 

with the updated damage parameter kθ and reconstructed external excitation ( )ˆ tu . 

Response sensitivity matrix kS for k-th iteration is calculated and the damage 

perturbation vector 1k+∆θ is also obtained by Eq. (6.15). Then the FE of the structure is 

further updated with new damage vector 
1

1

1

k
k i

i

+
+

=

= ∆∑θ θ . 

Step 6: The stiffness damage vector is updated iteratively. Repeat Step 3 until 

following convergence criterion k k Tol∆ ≤θ θ is satisfied. 

We can see that the whole procedure of the damage detection via response 

reconstruction under unknown excitation is similar to that of the situation where 
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excitations are known. The differences between these two cases include: (1) in 

response reconstruction part, the state vecto ( )ˆ tx composed of generalized 

coordinates and external input ( )ˆ tu are both optimally estimated by adopting the 

KF-UI for the response reconstruction at the key locations; thus the response 

reconstruction error stem not only from the estimated state vector but also from the 

estimated excitation; (2) in model updating part, the analytical responses k
ay and 

sensitivity matrix kS are calculated by FEA using the estimated excitation ( )ˆ tu . 

6.4 Numerical study 

6.4.1 An Overhanging Beam 

To illustrate the procedure of the proposed method, the overhanging beam as adopted 

in Section 5.5 is revisited. The same beam serves as a numerical study with two 

aspects of differences: (1) the optimal sensor placement configuration is different and 

(2) the time histories of the excitation acting on the beam are assumed to be unknown 

in this simulation study.    

The simulated responses on the DOFs and the elements corresponding to the sensor 

placement configuration optimized in Chapter 3 for joint response and excitation 

reconstruction are used as virtually “measured” response in the numerical study. There 

are 11 sensors selected, including 4 strain gauges and 1 displacement transducers and 6 

accelerometers; the corresponding placement configuration is shown in Figure 6.3. We 

may notice that the layout of designed optimal sensor placement is a bit different from 

the result of situations where excitation is known. The main reason is that under 
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unknown excitations, the error of response reconstruction stems from not only the 

estimated state variables but also the estimated excitations.  

6.4.2 RBF Network Training 

In this study, the damage is simulated as an equivalent reduction of element stiffness 

and mass matrix as Eq. 5.13 because cutting the sectional width of the beam on the 

corresponding element causes the element stiffness and mass reduction at the same 

extent simultaneously. 

The RBF Network used for mode shape prediction is trained using modal data of sets 

of damage scenarios. Damage scenarios are virtually generated by introducing given 

damage to the intact FE model. Due to the computer's limited memory, the virtually 

simulated damage scenarios only cover the case that damages are on single or two 

elements and damage extent is from 0 to -0.2 at an increment of -0.1 and the number of 

training sets N=3200. The accuracy of modal identification is crucial to the realization 

of this proposed method, since if the level of uncertainty is higher than or close to the 

level of actual changes of modal properties due to structural damage, the real 

information of structural damage will be masked and the structural damage cannot be 

accurately identified. In order to increase the robustness of the trained ANN over the 

uncertainty induced in the procedure of modal identification, zero-mean Gaussian 

white noise processes are added to the simulated responses and modal parameters 

extracted from the noise-corrupted response of these scenarios are then dedicated to 

training the RBF networks. The RBF network is trained and the sum-squared error 

goals are set as 1.0e-7 for displacement mode shapes prediction.  
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To check the accuracy of mode shape prediction using the trained RBF Network, the 

mode assurance criterion MAC between the predicted displacement mode shapes and 

the analytical ones calculated by eigenvalue analysis on the damaged state is depicted 

in Figure 6.4, from which we can see that a good correlation exists between these two 

parts, indicating the ability of RBF Network in mode shape prediction. Then the strain 

mode shapes could be predicted as e e=Ψ BΦ . 

6.4.3 Damage Identification 

The damage is simulated as a reduction of sectional width on corresponding element 

area, generating an equivalent reduction of element stiffness matrix and mass matrix. 

Two typical damage scenarios as listed in Table 6.1 have been considered in this 

simulation study and the subsequent experimental study. The convergence criteria are 

set as 51 10Tol −= × , and the maximal iteration number is 15 in the subsequent updating. 

Firstly, the noise-corrupted responses on the 11 optimized sensors are utilized for 

identifying the frequencies, displacement mode shapes, and strain mode shapes. These 

modal parameters are extracted through subspace algorithms for the identification of 

combined deterministic-stochastic systems (N4SID) (Overschee 1994). Then the 

identified frequencies df , as well as the displacement CoMAC and strain CoMAC, 

are imported to the trained RBF network to predict the mass-normalized displacement 

mode shapes.  Then the response and excitation can be reconstructed by the 

implement of KF-UI as introduced in Section 2. The reconstructed excitation and the 

preset real excitation are depicted in Figure 6.5. A good overlapping between the real 

excitation and the estimated one is observed.  
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Then the reconstructed excitation is used to calculate the analytical responses and the 

discrepancies between the analytical responses and reconstructed responses are 

minimized in sparse regularized updating to localize as well as quantify the preset 

damage. The identification results for these two damage scenarios are illustrated in 

Figure 6.6, respectively. For the single damage scenario, the 20% damage on element 

23 is identified almost correctly. The false-positive error (indicating damage when it is 

not present) in the adjacent element 22 is also acceptable. For the multi-damage 

scenario, the two damages are both localized correctly. A bit error in quantifying the 

damage severity on element 7 is also noticed. These errors probably stem from the 

deviation in mode shape prediction using RBF Network. However, considering the 

fact that external excitation is unknown and reconstructed in this proposed method, the 

results are still satisfactory. 

6.5 Concluding Remarks 

This study extends the proposed response reconstruction-based damage identification 

method from situations of known excitation to the situations where the external 

excitations are unknown. The response reconstruction is performed in this case by 

using Kalman filter under unknown input. The same overhanging beam serves as the 

numerical model to demonstrate the procedure and feasibility of the proposed method. 

Compared with the results obtained in Chapter 5, the following remarks should be 

highlighted: 

(1) The main difference from the method presented in Chapter 5 is that the response 

reconstruction approach is different. From Eq.(6.3) to Eq.(6.5), it can be observed 
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that the excitation can be estimated recursively after the priori state estimate is 

obtained. This is the rationale of making the joint response and excitation 

reconstruction feasible.  

(2) In the situation of unknown excitation, the unbiased minimum variance estimate of 

external excitation is obtained and further used in response reconstruction and 

analytical response calculation. Response reconstruction can be conducted without 

imposing any assumptions on the unobserved excitation. Thus, damage 

identification can be performed under any type of excitation. 

(3) When the excitation is absent, the optimal sensor placement is a bit different from 

that under known excitation. Besides, instantaneous estimation of the external 

excitation induces a bit of degradation in response reconstruction accuracy and 

thus influences the final damage identification quality. However, it should be noted 

that absence of excitation does not introduce noteworthy degradation in final 

damage identification. One possible reason is that the reconstructed excitation is 

used in both calculating the reconstructed and analytical response, and the errors 

induced by reconstructed excitation into the residual between the reconstructed 

and analytical response are mutually compensated.  

Provided that the sensor locations are predefined, all types of excitations, such as 

impulsive, harmonic and random excitation, can be reconstructed, making the 

proposed response reconstruction-oriented damage identification enjoy a wider range 

of applicability. However, if the time histories of the excitation are available, the 

response can be reconstructed with higher accuracy. Experimental studies on these 
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issues will be presented in the next chapter.   
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Table 6.1 Damage scenarios 

Damage scenario Damage description 

Single damage 20% a at Elem 23 

Multi-damage 20% at Elem 23;10% at Elem 7 

a. The percentage of reduction of the beam width 
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Figure 6.1 Flowchart of damage identification via response reconstruction under unknown 

excitation 

 

Figure 6.2 Response reconstruction of damaged state under unknown excitation 

 

Figure 6.3 Optimal sensor placement under unknown excitation 
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Figure 6.4 MAC between the predicted and real displacement mode shape 

 

Figure 6.5  Comparison between the reconstructed and the actual excitation 
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(b) 

Figure 6.6 Damage identification with joint response and excitation reconstruction: (a) for 

single damage and (b) for multi-damage 
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CHAPTER 7 

EXPERIMENTAL INVESTIGATION ON 

RESPONSE RECONSTRUCTION AND DAMAGE 

DETECTION OF AN OVERHANGING BEAM 

7.1 Introduction 

Equation Section 7In Chapter 3, the optimal sensor placement for joint response and 

excitation is investigated. Simulation on an overhanging beam has been conducted to 

demonstrate the effectiveness of the proposed response reconstruction method. To 

handle the ill-posedness in damage identification of large civil structure, the sparse 

regularization is proposed to constrain the norm as well as promote the sparseness of 

the solution in Chapter 4. Chapter 5 and Chapter 6 present the response reconstruction 

combined FE model updating for damage identification in the circumstances of known 

and unknown excitation, respectively. The procedure and feasibility of these two 

approaches have been demonstrated in numerical studies of the same overhanging 

beam. To validate the effectiveness of these proposed methods, relevant experimental 

studies will be conducted in this chapter. A steel overhanging beam with the same 

geometric dimension, physical parameters and boundary conditions will be employed 

in a laboratory test to validate the performance of these approaches. Specifically, the 

following studies will be carried out on the beam in laboratory: (1) joint response and 

excitation reconstruction using the optically deployed multi-type sensors; (2) 

comparative studies on the performance of the Tikhonov regularization and sparse 
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regularization in FE model updating; (3) damage identification via response 

reconstruction under known excitation; and (4) damage identification via response 

reconstruction under unknown excitation. In this chapter, the experimental setup of 

the overhanging beam will be firstly introduced in detail, followed by the time domain 

FE model updating to provide a refined FE model for the following studies. Then the 

listed four problems will be investigated in sequence.   

7.2 Experiment Setup 

7.2.1 Sensor Installation 

Experimental studies of the simply-supported overhanging steel beam were conducted 

in a laboratory as shown in Figure 7.1. The geometrical and physical properties of the 

beam are the same as those described in the numerical investigation and shown in 

Table 7.2. An LDS V451 electromagnetic vibrator (see Figure 7.3a) together with a 

B&K signal generator and an LDS PA500 power amplifier were mounted on the beam 

at1.8 m from the left end of the beam, generating a white noise excitation vertically 

acting on the beam. The vibrator was connected to the beam by a load cell to record the 

applied excitation and a spring with a small stiffness (Figure 7.3-b) to shield the side 

effect of the vibrator on the steel beam. The beam was constrained by a hinge support 

on the node 11 and a roller support on the node 31. The strain gauges are stuck on the 

upper surface of the beam at the middle of the element to measure the flexural 

deformation of the beam. Non-contacting laser displacement transducers are installed 

to measure the vertical displacements. Accelerometers of 6.5g weight for each are 

stuck on the top surface of the beam to acquire the acceleration data. The total 
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multi-type sensors, including 8 BX120-55AA strain gauges, 2 LK-503 laser 

displacement transducers and 9 KD1008 accelerometers, are installed on the beam in 

the test and they are shown in Figure 7.2. This configuration covers the optimal sensor 

placement under both known excitation (as shown in Figure 5.3) and unknown 

excitation (as shown in Figure 6.3). When the responses captured by the selected 

optimal sensors are utilized for response reconstruction, the responses on the other 

sensors could be used to verify the effectiveness of response reconstruction. The 

general information on sensor placement in the test is listed in Table 7.1. 

7.2.2 Data Acquisitions 

The vibration data of the beam under low-frequency excitation and high-frequency 

excitation are recorded respectively for the different purposes. In the former case, the 

bandwidth of the excitation is from 2 Hz to 102 Hz, which covers the first 7 modes as 

shown in Table 7.3. The sampling frequency is 500 Hz the sample duration is 24 

seconds with zero initial condition. In the high-frequency excitation case, the 

excitation bandwidth is 2 ~ 802 Hz, which covers the first 11 modes. The test data are 

recorded at a frequency of 5000 Hz, and with a sampling duration of 8 seconds 

including the zero initial condition. The data of low-frequency excitation are used in 

response reconstruction and the consequent damage identification while the 

low-frequency excitation set is used for comparative studies on Tikhonov 

regularization and sparse regularization in damage identification. The acceleration 

signal was amplified by KD5008C charge amplifier (Figure 7.3-e). All three types of 

responses were collected by the Kyowa EDX-100A data recorder (see Figure 7.3-d) 

and stored into the personal computer. Data conditioning programs, such as band-pass 
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filtering and detrending, were employed to perform preliminary data processing before 

analysis. 

7.2.3 Damage Generation  

Damage was induced by cutting notches of different widths on the element region 

(Figure 7.6-a), generating an equal reduction of element stiffness matrix and mass 

matrix. The steel beam was fixed by installed clamps (Figure 7.6-b) when cutting to 

make the boundary condition stay the same before and after damage. It should be 

noticed that there were no sensors installed at the damaged locations. This was 

arranged to demonstrate the superiority of damage identification method. According to 

the actual test condition, the element stiffness and mass were damaged to the same 

extent simultaneously. Thus, the damage hereby should be modeled as Eq. 5.13. 

Two typical damage scenarios as listed in Table 6.1including single damage and 

multi-damage with different damage severities were designed and accomplished in the 

laboratory test to verify the effectiveness of the proposed method. 

7.3 FE Model Updating 

A finite element model of the beam was established as presented in the numerical 

investigation. Uncertainties in geometric dimension, physical property, and boundary 

conditions will induce deviations in the FE model built using the nominal values. Thus 

a model updating is needed to produce an FE model that represents the actual dynamic 

behavior of the structure. To date, most reported model updating case studies make use 

of modal-based formulations and these are often restricted to updating eigenvalues 
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only. Since the dynamic responses are mainly investigated in response reconstruction 

and directly used in damage identification, a two-stage model updating of the FE 

model is now conducted to provide an elaborate FE model for the following studies. 

The first-step model updating is performed in the frequency domain to find out initial 

values of the updated parameters while the second-step model updating is conducted 

in the time domain to determine the final values of the updated parameters. The data of 

high-frequency excitation are used for updating the initial FE model. The raw data is 

resampled to 1250 Hz and band-pass filtered between 2 Hz and 302 Hz using 8-order 

Butterworth filter before utilization. In the first-step model updating, 7 parameters are 

selected to be updated. They are the elastic modulus and density of the steel, the width 

and height of the beam section, the positions of two supports, and the additional mass 

of fixture connecting the vibrator to the beam. The objective is to minimize the 

discrepancies in the natural frequencies between the analytical and experimental 

results by adjusting 7 parameters. The modal parameters are extracted through 

data-driven stochastic subspace identification algorithm (SSI-data). The objective 

function in the first step updating is defined as 

 
2 2

1 1

(1 )
1  

a mN N
ii i

i im
i ii i

MACf fObjFun a b
f MAC= =

− −
= + 

 
∑ ∑   (7.1) 

where a
if and m

if are the analytical and experimental frequencies of the i th−

mode; ia and ib are the weighting factors, whose values depend on the accuracy of 

identified natural frequencies and mode shapes. They are set as 1.0 and 0.1, 

respectively, in this study. iMAC is the modal assurance criteria (MAC) value for the

i th− analytical and experimental mode. 
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Based on the updated results from the first step model updating, the second-step model 

updating is performed in the time domain to further refine the FE model by minimizing 

the discrepancies between the dynamic responses from the analytical FE model and 

the experimental measurement. The objective of this round of model updating is to 

make the simulated dynamic responses from the FE model match the measured ones as 

close as possible by adjusting structural damping. The classical Rayleigh damping

α β= +C M K is adopted to model the structural damping of the beam. The mass and 

stiffness proportional damping coefficient α and β are determined by two measured 

mode damping ratios only without considering other measured mode damping ratios. 

Moreover, it is well known that it is very difficult to identify the damping ratio 

accurately. In this regard, the damping coefficients α and β are also chosen as 

updated parameters in the second-step model updating. The measured responses from 

11 sensors are used in this round model updating. The objective function in the second 

step updating is expressed as 

 2

1
2

2
m

a mN
i i

m
i i

ObjFun
=

−
=∑

y y

y
  (7.2) 

where a
iy and m

iy are the analytical and experimental dynamic responses from the

i th− sensor; mN is the number of sensor measurements. The results of the two-step 

FE model updating are presented in Table 7.2. It is found that remarkable changes 

occur in the two Rayleigh damping coefficients from the second-step model updating. 

This is probably because the initial Rayleigh damping coefficients are approximately 

calculated using the identified two modal damping ratios only. 
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Table 7.3 presents a comparison between the calculated modal frequencies of the 

updated FE model and those identified experimentally. The fit goodness of responses 

between calculated and tested ones from the 6 accelerometers as shown in Figure 4.7 is 

examined by fitR = ( )1 100a m m
i i i− − ×y y y , and they are listed in Table 7.5. It is found 

that after the two-step updating, the analytical frequencies computed by the FE model 

match well with the measured frequencies. The maximum discrepancy, which occurs 

in the seventh mode, is 1.1%. The response fit goodness is dramatically improved to 

around 70%, exhibiting the high accuracy of the updated FE model presents the 

acceleration simulated by the updated computational model and recorded in the test on 

node 26. As seen in Figure 7.7, there is an excellent match between the simulated 

response and recorded response. The time-domain FE model updating takes into 

consideration different contribution weights of different mode responses while the 

frequency-domain FE model updating usually counts each mode equally. Therefore 

the time-domain FE model updating presents a more elaborate FE model than the 

frequency-domain FE model updating in terms of dynamic response representation. 

7.4 Joint Response and Excitation Reconstruction 

The test data of the low-frequency excitation with of bandwidth of 2~102 Hz are used 

in the joint response and excitation reconstruction. The dynamic responses recorded 

by the 11 sensors in their optimal locations as shown in Figure 3.3-a are imported into 

the KF-UI as introduced in Chapter 3 to reconstruct the responses of the beam within 

the response reconstruction set where no sensors are equipped. The first 7 modes are 

utilized in response reconstruction. The initial state estimate is set 0ˆ 0− =x as the zero 
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initial condition is used in the measurement. The initial state estimate error covariance

0
x−P is assigned the value as 121.0 10−× on its diagonal. The small values indicate a low 

level of uncertainty regarding the initial state estimate. However, it should be 

mentioned that the results are relatively insensitive to these initial values. 

External excitation was also collected by load cell installed between the beam and the 

vibration to check the accuracy of excitation estimation. Figure 7.4 illustrates the 

estimated and measured excitations. The two excitation time histories are almost 

overlapping, indicating very high excitation reconstruction accuracy.  

 Table 7.4 shows the mean RPEs of the excitation and the responses at 8 sensors 

(except the 11 optimally designed sensors) installed for verification. All the RPEs of 

response are less than 15%, indicating that a good reconstruction of response and 

excitation is obtained. Figure 7.5 also presents the reconstructed responses of each 

kind with the maximum discrepancy with the measured ones. It is observed that a 

good correspondence is found in both the time and frequency domains, 

demonstrating the effectiveness of the proposed optimal multi-type sensor placement 

method. 

7.5 Sparse Regularization for Damage Identification 

The test data of the high-frequency excitation with of bandwidth of 2~302 Hz are used 

to examine the effectiveness of sparse regularization for damage identification. The 

dynamic responses recorded by the 6 accelerometers (as shown in Figure 4.7) as well 

as the excitation record by load cell are utilized for damage identification.  Tikhonov 

regularization and sparse regularization are employed in response sensitivity-based 
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model updating, respectively. The constraint ( )1 0iθ− ≤ ≤  is also imposed in the 

sparse regularized updating. The convergence criteria are set as 31 10Toler −= × , and 

maximal iteration number is 20 in the experimental study. For computation ease, only 

4~5s measurement of 1250 time instants data is used for damage identification. The 

final results are shown in Figure 7.8 for the single damage and in Figure 7.9 for 

multi-damage scenarios, respectively. It is observed that when using the Tikhonov 

regularization, besides the remarkable false-positive errors, there are plenty of tiny 

errors, exhibiting the possible over-fitting of Tikhonov regularization. While using the 

sparse regularization, the false-positive errors are dramatically reduced, as shown in 

Figure 7.8-b and Figure 7.9-b. The damage extents are identified as -0.191 on element 

23 for the single damage scenarios and -0.078 on element 7 and -0.182 on element 23 

for the multi-damage scenarios. The result demonstrates the superiority of sparse 

regularization in sensitivity-based model updating for damage identification. 

7.6 Damage Identification via Response Reconstruction  

The data set of low-frequency excitation is adopted in this section to demonstrate the 

superiority of response reconstruction in damage identification. Since the 7th modal 

vibration contains low kinetic energy, the first 6 modes are used for response 

reconstruction. The raw data passed through a band-pass filter of 2 ~ 82 Hz before 

utilization.  

7.6.1 Damage Identification under Known Excitation  

The dynamic responses recorded by 11 sensors (shown in Figure 5.4) and excitation by 
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load cell are imported into the Kaman filter to reconstruct the responses of the beam 

where no sensors were equipped. To check the accuracy of the FE model and the result 

of response reconstruction, Figure 7.10 also presents the analytical response by FEA 

and the corresponding reconstructed responses using Kalman filter. It can be seen that 

the reconstructed responses match even better than the simulated ones compared with 

the tested responses. The Kaman filter could obtain the optimal estimated state, thus 

giving more accurate responses when the model error and noise effect are taken into 

consideration. 

The reconstructed responses of the beam in each damaged state are used for 

sensitivity-based updating with sparsity regulation separately. Considering the 

asymptotical convergence property of Kalman filter, the reconstructed responses of 

first 1000 time instants are eliminated in model updating and only the reconstructed 

responses, as well as the directly measured responses of 2s' duration, are utilized for 

damage identification. The results of identification are depicted in Figure 7.11 for 

single damage and Figure 7.12 for multi-damage, respectively. In the single damage 

scenario, it is noted that the identified damage extent is quite accurate, while the 

damage location, which should be element 23, not rather element 17, is totally wrong. 

This result indicates the response on the limited sensors cannot provide enough 

information for damage location. However, using multi-sensing damage detection via 

response reconstruction, the damage locations and severity extents are identified to a 

certain accuracy. In the multi-damage scenario, we found that there is an obvious 

false-positive error on element 34 and false-negative error on element 7, damage 

extent on element 23 are not correctly predicted when directly using the measured 
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responses. While using multi-sensing damage detection via response reconstruction, 

there are small false-positive errors on the element adjacent to the damage location, 

but they are acceptable compared with the rough damage of 10% at element 7 and 20% 

at the element 23. These small false-positive errors, as well as slight inaccuracy of 

damage quantification, are mainly attributed to the mode prediction error using RBF 

network. More accurate mode shapes prediction using more well-trained networks or 

other mode shapes prediction methods will improve the damage identification 

accuracy. 

7.6.2 Damage Identification under Unknown Excitation 

After damage occurrence, the dynamic properties are extracted through EMA. Then 

the frequencies, as well as the displacement CoMAC and strain CoMAC, are imported 

to the trained RBF network to predict mass-normalized strain and displacement mode 

shapes in the damaged state. The dynamic responses recorded by 11 sensors (shown in 

Figure 6.3, different from the set under known excitation) are imported into the KF-UI 

to reconstruct the responses of the beam where no sensors were equipped and the 

external excitation exerted to the beam. Figure 7.13 presents the measured strain 

response of element 31 and the corresponding reconstructed counterpart using KF-UI. 

The reconstructed excitation is also shown in Figure 7.14, compared with the recorded 

one by the load cell. It can be seen that the reconstructed response, as well as the 

excitation, match well with the measured responses and excitation respectively. These 

results indicate that the response of the structure in the damaged state can be 

reconstructed, even in the absence of knowing excitation, which will be advantageous 

to the subsequent damage identification. 
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The reconstructed responses of the beam in each damaged state are used for 

sensitivity-based updating with sparse regulation separately. The results of 

identification are shown in Figure 7.15. It is noted that while using damage detection 

via response reconstruction, the damage location and severity extent are identified 

roughly. There are small false-positive errors, in particular on the elements adjacent to 

the damage location, but they are still acceptable. 

7.7 Concluding Remarks 

This chapter presents the experimental validations of the 4 approaches which are 

proposed to promote the vibration-based damage identification applied to large civil 

structures. A simply-supported overhanging beam equipped with 19 sensors of 3 types 

is employed in the laboratory test. A two-step FE model updating, i.e., 

frequency-domain comes first, and time-domain follows, is conducted to establish a 

delicate FE model for the subsequent studies. According to the experimental results, 

the following remarks should be noted: 

(1) For joint response and excitation reconstruction, all the RPEs of response on the 

8 validation sensors are less than 15%, indicating that with the designed optimal 

sensor deployment a good reconstruction of response as well as excitation can be 

obtained.  

(2) For model updating based damage identification, the sparse regularization has 

certain superiority over the traditional Tikhonov regularization. When using 

sparse regularization, the errors between damage identification results using the 
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measured and simulated data are also acceptable.  

(3) Both simulative and experimental study results show that the response 

reconstruction-oriented damage identification is more capable of locating and 

quantifying the damage under both known and unknown excitation 

circumstances.  

Up to now, the numerically and experimentally investigated structure (an overhanging 

beam) is quite simple, and the dimension of the damage vector is not so large. To cope 

with the high dimensional damage identification that is more frequently encountered 

for the large civil structure, a multi-level damage identification method will be 

proposed and investigated in the forthcoming Chapter 8. 
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Table 7.1 General information of sensor installment 

Scenario  Optimal Multi-type Sensor 
Sum Strain gauge Disp. meter Accelerometer 

Known Excitation 4 1 6 11 
Unknown Excitation 5 2 4 11 

Total 8 2 9 19 

Table 7.2 Result of two-steps FE model updating 

Updating 
parameters 

 

E  ρ  h  b  aL  bL  kM  α  β  

MPa  
3kg m  mm  mm  m  m  kg  rad s  s rad  

Initial value 2.06E+5 7780 15.6 50.0 1.000 3.000 0.32 0.20 1.5E-05 
First-step 
updating 2.09E+5 8110 15.6 52.0 0.999 3.002 0.25 — — 

Second-step 
updating 2.12E+5 7465 15.0 48.8 1.001 2.996 0.30 0.48 2.2E-06 

Table 7.3 Measured and analytical frequencies 

Mode Tested 
Before updating After first  

step updating 
After second  
step updating 

Analytical 
(Hz) 

Error 
(％) 

Analytical 
(Hz) 

Error 
(％) 

Analytical 
(Hz) 

Error 
(％) 

1 5.04 5.03 -0.172 4.98 -0.989 4.99 -0.880 

2 8.32 8.36 0.547 8.28 -0.990 8.29 -0.314 

3 17.01 17.09 0.441 16.94 -0.847 16.98 -0.208 

4 42.12 42.33 0.512 41.94 -0.932 42.12 -0.005 

5 63.86 64.40 0.833 63.75 -1.006 63.87 0.004 

6 71.59 72.24 0.909 71.60 -0.885 71.59 -0.002 

7 99.66 101.00 1.346 99.67 -1.316 100.75 1.100 

8 154.00 155.42 0.923 154.02 -0.902 154.58 0.379 

9 194.44 197.88 1.773 195.95 -0.978 196.17 0.892 

10 208.71 212.07 1.608 210.05 -0.952 210.32 0.771 

11 252.43 255.93 1.385 253.29 -1.030 254.82 0.948 
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Table 7.4 RPEs of the excitation and the responses on 8 sensors for verification  

Sensor S1 S2 S3 S4 D1 A1 A2 A3 U 

Mean RPE 13.97  14.49  6.73  13.48  5.45  6.73  2.90  7.53  26.24  

 

Table 7.5 Response fit goodness (100%) 

Sensor 

Number 

Before 

updating 

After first 

step updating 

After second 

step updating 

A1 11.35 35.03 65.74 

A2 -1.09 30.16 73.58 

A3 17.31 35.34 73.67 

A4 64.08 60.15 69.87 

A5 15.94 34.73 73.85 

A6 11.95 36.28 66.18 
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Figure 7.1 Laboratory test setup 

 

Figure 7.2 Total multi-type sensor placement in laboratory test 

  

(a).                       (b) 

   

(c).                        (d). 
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(e)                         (f) 

Figure 7.3 Experiment instruments: (a) electromagnetic vibrator, (b) load cell and 

spring, (c) charge amplifier, (d) data acquisition board, (e) roller bearing and (f) 

accelerometer  

 

Figure 7.4 Comparison of measured and estimated excitation (Top: the time history; 

Bottom: a close-up view) 
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(a) 

 
(b) 

 
(c) 

Figure 7.5 Verification of accuracy of response reconstruction method: (a) strain 

response at sensor S2, (b) displacement responses at sensor D1 and (c) acceleration 

responses at sensor A3. (Left: close-up view of time history; Right: single-sided 

amplitude spectrum) 

    

 (a)                   (b) 

Figure 7.6 Damage generation: (a) clamp to fix the beam when cutting; (b) generated 

rectangular notches  
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(a) 

 

(b) 

Figure 7.7 Acceleration on node 26: (a) the whole duration, (b): a close-view 
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(b) 

 

(c) 

Figure 7.8 Identification of single-damage in laboratory test using (a) Tikhonov 

regularization (b) sparse regularization and (c) error between tested and simulated 

when using sparse regularization. 
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(b) 

 

(c) 

Figure 7.9 Identification of multi-damage in laboratory test using (a) Tikhonov 

regularization (b) sparse regularization and (c) error between tested and simulated 

when using sparse regularization. 
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(b) 

Figure 7.10 Comparison of analytical and reconstructed response: (a) bending strain 

at element 26 and (b) vertical displacement at node 22 

 

 

Figure 7.11 Test result of single damage scenario without response reconstruction 

(top) and with response reconstruction (bottom) 
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(a) 

 

(b) 

 Figure 7.12 Test result of multi-damage scenario: (a) without response 

reconstruction and (b) with response reconstruction 

 

Figure 7.13 Comparison of analytical and reconstructed strain at Element 31 
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Figure 7.14 Comparison of tested and reconstructed excitation  

 

(a) 

 

(b) 

Figure 7.15 Test result of damage identification under unknown excitation: (a) for 

single damage and (b) for multi-damage 
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CHAPTER 8 

MULTI-LEVEL DAMAGE IDENTIFICATION VIA 

RESPONSE RECONSTRUCTION 

8.1 Introduction 

Equation Section 8Another obstacle existing in the finite element (FE) model updating 

based damage identification for large civil structures is due to the fact that a complex 

civil structure typically composes of tens of thousands structural components, and the 

dimension of the corresponding damage vector is often enormous. Aside from 

enormous computation efforts needed in iterative updating, the ill-condition and 

non-global identifiability features of the solution probably make it cumbersome, even 

impossible, to solve the inverse problem directly. Following a divide-and-conquer 

strategy, a multi-level damage identification via response reconstruction method is 

proposed in this chapter. The entire structure is decomposed into several manageable 

substructures and further condensed as a super element assembly using the component 

mode synthesis (CMS) technique. The damage identification is performed at two 

levels: the first is at the substructure level to locate the potential damage region over 

the partitioned substructures and the second is over the suspicious substructures to 

further locate as well as quantify the element-level damage location and severity. In 

each level’s identification, the damage searching space over which model updating is 

performed is notably narrowed down, not only reducing the computation amount but 

also increasing the damage identifiability. Besides, the Kalman filter based response 
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reconstruction is performed at the second level to reconstruct the response of the 

suspicious substructure for exact damage quantification. Numerical studies are 

conducted on a relatively larger structure, the Tsing Ma Bridge (TMB) testbed to 

demonstrate the procedure as well as to verify the effectiveness of the proposed 

multi-level damage identification via response reconstruction.  

8.2 Multi-level Damage Identification 

A complex real civil structure usually consists of tens of thousands structural 

components, and the associated potential damage dimension is very large. The 

response sensitivity-based model updating is in general computationally demanding 

due to the large dimension of the discretized FE model matrices and the large number 

of dynamic FE analysis during the updating procedure. Directly solving the inverse 

problem of damage identification over the large potential damage space is a tough 

task, especially when the sensor number is limited compared with the number of 

discrete DOFs of the structure. To address this, a multi-level damage identification 

strategy is proposed, in which the CMS technique, or more specifically the 

Craig-Bampton method, as a kind of dynamic substructuring technique, is employed 

to divide the entire structure into several substructures. The separated substructures are 

then condensed and assembled to represent the dynamic behavior of the structure for 

computation ease. Based on that, the damage process is stratified, and a multi-level 

damage identification method is proposed to narrow the potential damage space for 

computation convergence: damage identification is firstly performed on the reduced 

substructure level to locate the suspicious region where the damage may occur and 

then at the element level to localize the exact damage location as well as to quantify the 
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damage extent. Figure 8.1 depicts a schematic diagram of the proposed multi-level 

damage identification with response reconstruction. In this diagram, the entire FE 

model of a large-scale structure is decomposed into Nn substructures, and the scenario 

that damage exists in the s-th substructure is taken as an example for illustration. It is 

noted that the blocks with colored background indicate the regions over which model 

updating is performed for damage identification. In what follows, the multi-level 

damage identification will be introduced in detail. 

8.2.1. The Problem Formulation of Damage Identification 

The dynamics of a linear and time invariant structure can be represented by the 

following equation of motion as: 

 ( ) ( ) ( ) ( )t t t t+ + =Md Cd Kd Lu    (8.1) 

in which n n×∈ℜM and K are the globally assembled mass and stiffness matrices of the 

structure. Rayleigh damping is used to characterize the damping effect, that is

α β= +C M K , where theα and β are damping coefficients. ( ) nt ∈ℜd is the vector of 

displacements and a dot over it denotes differentiation with respect to time t. n p×∈ℜL

is the mapping matrix, connecting the external force vector ( ) pt ∈ℜu to the 

corresponding DOFs. 

Here it is assumed that structural defects only cause certain deteriorations in the 

stiffness matrix and it depends linearly on the damage parameter 1 2, , ,
e

T

Nθ θ θ =  θ  , 

in which eN is the number of elements and iθ  ( 1,2, , ei N=  ) denotes the i-th damage 
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coefficient corresponding to the i-th element of the structure. In this way, the damage 

can be modeled as:  

 ( ) ( ) ( )
1 1

1 1 0 ;
e eN N

d i i u i i i d u
i i

θ θ θ
= =

= + = + − ≤ ≤ =∑ ∑K θ K K K M M   (8.2) 

where n n
d

×∈ℜK and uK are the globally assembled stiffness matrices with and 

without damage, respectively; iK  ( 1,2, , ei N=  ) is the constant global stiffness 

matrix partition contributed by the element i and 
1

eN

u i
i=

=∑K K ; It is assumed that the 

global mass matrix before damage uM  and after damage dM stay the same. The 

subscript d  and u  denote the damaged state and undamaged state of the investigated 

structure.  

8.2.2. Substructures Partitioning, Reduction and Assembly 

Without losing generality, a large structure is divided into Nn non-overlapping 

substructures.  For the s-th substructure, the stiffness submatrix sK is in the 

dimension of s sn n× . The substructure number Nn should be properly selected: too 

small number of substructures will induce considerable accuracy sacrifice of the 

reduced model, and too large number of substructures will cause too much 

computation workloads. Accordingly, the damage vector should also be partitioned as: 

 1 2, , , , , nN TT T T sT =  θ θ θ θ θ    (8.3) 

in which sNs ∈ℜθ , and
1

nN

s e
s

N N
=

=∑ . The dynamic behavior of the s-th isolated 
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substructure can be described by the equation of motion as: 

 ( ) ( ) ( ) ( ) ( )s s s s s s s st t t t t+ + = +M d C d K d u g    (8.4) 

where s sn ns ×∈ℜM , sC and sK are the mass, damping and stiffness matrices of the FE 

model of the s-th substructure, respectively; us (t) is the applied external forces, and gs 

(t) is the connecting forces from the neighboring substructures. Model reduction 

usually partitions the total DOFs into the set of internal DOFs 
s
ins

i ∈ℜd and the set of 

boundary DOFs
s
bns

b ∈ℜd and s s
s i bn n n+= . The mass, stiffness and damping matrices of 

the s-th isolated substructure are also partitioned accordingly as: 

 ; ;
s s s s s s

s s sii ib ii ib ii ib
s s s s s s
bi bb bi bb bi bb

     
= = =     
     

M M K K C C
M K C

M M K K C C
  (8.5) 

where the subscript b and i denote the boundary and internal DOFs, respectively. 

Craig-Bampton reduction (Craig and Bampton, 1987) assumes that the internal DOFs 

can be described in terms of the constraint modes s
ibΨ and the fixed-interface vibration 

modes s
iiΦ . The displacement transformation from the boundary DOFs to all the 

DOFs then takes the form as: 

 { } ,
s s s s s s s s s

s s s s si ik k ib b ik ib k k
k cs s s s s s

b b bk bb b b

         +        = = = = =                          

d Φ η Ψ d Φ Ψ η η
d Φ Φ T q

d d 0 I d d
  (8.6) 

where
s s
i kn ns

ik
×∈ℜΦ is the s

kn kept interior partition of fixed-interface normal modes 

s s
i in ns

ii
×∈ℜΦ  ( s s

k in n< ), which can be obtained by restraining all the boundary DOFs of 
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the s-th substructure and solving the generalized eigenvalue problem 

( )s s s s s
ii ii ii ii− =K Λ M Φ 0 with the fixed-interface normal modes normalized as

sT s s s
ii ii ii ii=Φ M Φ I ; and

s
kns

k ∈ℜη is the truncated set of generalized modal coordinates. 

{ },
Ts s s

c ib bb=Φ Ψ I is the interface constraint mode, which is calculated by setting a unit 

displacement on the boundary coordinates ( )s
b td and zero forces in the internal DOFs; 

its interior partition could be obtained as ( ) 1s s s
ib ii ib

−
= −Ψ K K .Substituting Eq. (8.6) into 

Eq. (8.4) and pre-multiplying with sTT , it yields: 

 ˆ ˆˆ ˆˆ( ) ( ) ( ) ( ) ( )s s s s ss ss t t t t t+ + = +M Kq C q q u g    (8.7) 

where the reduced matrices of the substructures and transformed forces are given by: 

 ˆˆ, , ( ) ; ( )ˆˆ ˆ ;s sT s s sT s s sT s sT sTs s s s s s st t== == =T T T u gK T K M T M C T C T T gu   (8.8) 

Since s s
k in n< , the Craig-Bampton transformation matrix ˆs sn ns ×∈ℜT ( ˆ s s

s k bn n n= + ) is a 

rectangular matrix ( ˆs sn n< ) and the substructure matrix is considerably reduced. 

The nN reduced substructures should be assembled together to represent the dynamics 

of the entire structure. To this end, the equations of motion of the nN reduced 

substructures that are to be coupled can be block-diagonally assembled as: 

 ( ) ( ) ( ) ( ) ( )t t t t t+ + = +Mq Cq Kq u g    (8.9) 

with 
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 ( )1

1

ˆ ˆ ˆ ˆ, , , ,
n

n

N
Ns

s
s

blockdiag
=

= =∑K K K K K    (8.10) 

in which ˆ
sK ( )1,2, , ns N=  denotes the global stiffness contribution offered by the s

-th substructure and it is formulated as: 

 
1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ, , , , , ,
s s s s N Nn n

s
s n n n n n n n ndiag

− − + +× × × ×
 =  K 0 0 K 0 0    (8.11) 

The mass M and damping matrices C should be block-diagonally assembled 

similarly. Additionally, 

 1 1 1ˆ ˆ ˆˆ ˆ ˆ, , , , ; , , , , ; , , , ,n n nN T N T N TT T sT T T sT T T sT     = = =     q q q q u u u u g g g g       (8.12) 

where qn∈ℜq (
1

ˆnN
q ss

n n
=

=∑ ) is the vector of generalized coordinates for all the n  

substructures; u and g are the assembled external forces and the connecting forces, 

respectively. Since some boundary DOFs are shared by multiple substructures, there 

are multiple entries for these boundary DOFs in the assembled vector q . In a primal 

assembly, a unique set of the generalized coordinates (including the interface DOFs 

and the truncated generalized modal coordinates) pn∈ℜp is defined that automatically 

satisfies the compatibility condition: 

 ( ) ( )t t=q Lp   (8.13) 

where the matrix q pn n×∈ℜL is the Boolean matrix localizing the interface DOF of the 

substructures in the global set of DOF; 
1 1

n bN Ns s
p k bs s

n n n
= =

= +∑ ∑  in which s
bn is the 



 

204 

number of DOFs at the interface s and bN is the number of the unique interfaces. By 

substituting Eq. (8.13) into Eq.(8.9) and pre-multiplying with TL , the primal 

assembled structure is obtained as: 

 ( ) ( ) ( ) ( )Tt t t t+ + = L uMp Cp Kp     (8.14) 

with the primal assembled structure matrices defined as:  

 ; ;T T= = =M M C C KL L L LKL L    (8.15) 

It is noted that the equilibrium condition allows to remove the interface forces g from 

the equations, since T =L g 0 , making that the sum of connection forces acting on each 

boundary DOF equals to zero. Traditional time integration methods like Newmark 

method or state space formulation could be used for dynamic response calculation of 

the boundary DOFs and the truncated generalized modal coordinates in Eq. (8.14). 

Besides, the local response inside the substructures, for example, the strain on the 

elements of s-th substructure, can also be obtained by the transformation from the 

boundary displacement as follows:  

 s s s s s s= =ε B d B T q   (8.16) 

where s sN ns ×∈ℜB characterizes the relationship between displacement and strain of 

the s-th substructure. 

8.2.3. Substructure Level Damage Detection 

It is assumed that the s-th substructure composes of sN elements and its stiffness 
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matrix s sn ns ×∈ℜK takes the form similar to Eq. (8.2) as: 

 ( ) ( ) ( )
1 1

1 1 0
s sN N

s s s s s s s s
d i i u i i i

i i
θ θ θ

= =

= + = + − ≤ ≤∑ ∑K θ K K K   (8.17) 

where s
iK  is the constant segmental stiffness matrix contributed by the element i to the 

stiffness matrix of the s-th substructure. The stiffness matrix in a damaged state s
dK  is 

a function of damage vector 2, ,
Ts s s s

i Nsθ θ θ =  θ  . To decrease the damage vector 

dimension, it is assumed at this moment that the stiffness deterioration caused by the 

certain elements in the s-th substructure is expressed as an equivalent deterioration on 

the substructure as:  

 ( ) ( ) ( ) ( )
1 1

1 1 1
s sN N

s s s s s s
d i i s i s u

i i
θ θ θ

= =

= + = + = +∑ ∑K θ K K K    (8.18) 

If any members of the s-th substructure are damaged, this parameter sθ shows the 

‘equivalent’ damage extent of the substructure. Equation (8.10) and (8.15) show the 

reduced substructural matrices are block-diagonally assembled and transformed by the 

Boolean matrix L to constitute the condensed whole structural matrices. By combining 

Eq.(8.8) with Eq.(8.11), it is noted that ˆ
sK is linearly related to sK under the 

assumption (8.18)as: 

 ( ) ( )1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ1 , , , 1 , , ,

s s s s N Nn n

sT s
s s n n n

s
n s n n n ndiagθ θ

− − + +× × × ×
 + = + K T0 0 T 0 0K     (8.19) 

Then, submitting Eq.(8.10) and Eq.(8.19) into Eq.(8.15), it can be proved that the 

reduced substructural matrices linearly depend on the substructure level damage 
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parameter 1, , , , n
TNsθ θ θ =  θ     as: 

 ( ) ( ) ( ) ( )
1 1 1 1

ˆ ˆ1 1 1
n n n nN N N N

d s s s s s s u s s
s s

T

s s

T θ θ θ θ
= = = =

 
= + = + = + = + 

 
∑ ∑ ∑ ∑K θ K K K KL L L KL         (8.20) 

in which the dimension of damage vector is remarkably reduced from eN to nN . By 

performing the partial differential on both sides of Eq.(8.14) with respect to the s-th 

entry sθ of the equivalent damage parameterθ , it yields: 

 ( ) ( ) ( ) ( ) ( )s
s s s

t t t
t tβ

θ θ θ
∂ ∂ ∂

+ + = −  +  ∂ ∂ ∂
p p p

M C K K p p
 

   
  

  (8.21) 

It can be seen that if the measurement locations are all in the boundary DOFs, the 

response sensitivity can be obtained by calculating ( ) st θ∂ ∂p  in Eq.(8.21) using the 

well-known time integration method like Newmark method or stat-space formulation 

with the excitation as ( ) ( )s s t tβ= −  +  u K p p  . When the measurement matrix is the 

collection of the multiple responses, such as strain ( )tε , displacement ( )td , and 

acceleration ( )td , that is ( )t =y ( ) ( ) ( ){ }; ; t mN Nt t t ⋅∈ℜε d d , its sensitivity matrix

( )
S stθ θ= ∂ ∂S y

  can be transformed as follows: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ); ;
s ss s s

s s s s

s s s s s s s

tt t t t t t
θ θ θ θ θ θ θ

 ∂∂ ∂ ∂ ∂ ∂ ∂ = = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂

B dd p d p ε p
T L T L B T L

 

      
 (8.22) 

in which 
1 1 1ˆ ˆ ˆ ˆ, , , ,0 , ,

s s Nn

s s
n n n ndiag

− +
 =  T 0 0 T 0  , 1,2, , ns N=  ; mN denotes the number 

of measurement sensors and tN is the number of measurement instants. In the 
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substructure level damage detection, the equivalent damage parameterθ can be sought 

using the discrepancy between the measured responses and the analytical responses of 

the reduced model of the structure through model updating as: 

  1 ,k k m k
d

+∆ = ∆θS θ y
   (8.23) 

where ( ), , m tN Nm k m m k m m k
d d a d a

⋅ ∆ = − = − ∈ℜ y y y y y θ are the discrepancy of measured 

response in a damaged state m
dy and the analytical response on the measurement 

location m
ay produced by the FE model with kθ ;

1
, , , , m t n

s Nn

N N Nk k k k
θ θ θ

⋅ × = ∈ℜ θS S S S     is 

the sensitivity matrix of the analytical response m
ay with respect the equivalent damage 

vector. Substructure level damage detection is performed over the nN condensed 

substructures through the sparse regularized FE model updating as: 

 ( )1

2 11 1 , 1

2 1
min

Nk n

k k k m k k
d m

+

+ + +

∆ ∈ℜ
∆ = ∆ − ∆ + ∆θθ
θ S θ y θ



     (8.24) 

Generally, the number of substructures is much less than that of the total elements, i.e.

n eN N<< , making the inverse problem easier to be solved and computationally 

efficient. If the s-th entry is identified to be a certain negative value, some damages 

probably exist in the region corresponding to the s-th substructure. Then the second 

(element) level damage identification is further performed: more precisely damage 

localization and quantification over the suspiciously damaged region identified in the 

substructure level damage detection. 
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8.2.4. Element Level Damage Identification 

8.2.4.1 Damage Identification over the Suspicious Substructure 

Without losing generality, the scenario that the s-th substructure is identified as the 

suspiciously damaged one in substructure level damage detection is taken as an 

example for illustration. By substituting the stiffness matrix of the s-th substructure, 

Eq.(8.17), into Eq.(8.2), the global stiffness matrix of the structure is expressed as:   

 ( ) ( )
1

sN
s s s

d d u i i
i
θ

=

= = +∑K θ K θ K K   (8.25) 

where s ss
i

s T= L K LK is the contribution offered by the i-th element in the s-th 

substructure to the global stiffness of the structure and sn ns ×∈ℜL is a Boolean matrix 

mapping the DOFs of the s-th substructure to the global stiffness matrix of the 

structure. Please be noted that the damage dimension in Eq.(8.25) is sN , which is 

different from that of eN in Eq.(8.2). By submitting the damaged stiffness matrix as 

Eq.(8.25) into Eq. (8.2) and then performing the partial differential on both sides of 

Eq. (8.2)  with respect to the i-th entry s
iθ of the damage parameter sθ , it yields: 

 ( ) ( ) ( ) ( ) ( )s
is s s

i i i

t t t
t tβ

θ θ θ
∂ ∂ ∂

 + + = − + ∂ ∂ ∂
d d d

M C K K d d
 

    (8.26) 

Similar to Eq.(8.21), the sensitivity matrix ( )s
i

s
it

θ
θ= ∂ ∂S y  can be obtained basing on 

the time integration of Eq.(8.26)as: 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ); ; ; ;s
i s s s s s

i i i i i

t t t t
t t t

θ θ θ θ θ θ
 ∂ ∂ ∂ ∂∂  = = =   ∂ ∂ ∂ ∂ ∂ 

y d d d
S ε d d B


   (8.27) 

Then, the element level damage identification could be performed through model 

updating over the subset damage parameter sNs ∈ℜθ . It is reasonable that the local 

response inside the substructure is mostly advantageous for the element level damage 

identification. However, in practical situations, there probably exists the scenario that 

the installed sensors are far from the potentially damaged region. A preferable strategy 

is to reconstruct the local responses at the locations inside the suspicious substructure. 

Kalman filter based response reconstruction for damage identification is briefly 

introduced in the following section.  

8.2.4.2 Response Reconstruction on the Suspicious Substructure 

The responses inside the suspicious substructure identified in substructure level 

damage detection are focused on and reconstructed for the element-level damage 

identification. A state-space formulation of the structural system is needed in Kalman 

filter based state estimation and response reconstruction. Theoretically, the full model, 

global model or hybrid model (condensed model on the non-suspicious substructure 

and full model on the suspicious substructure) are all possible alternatives in 

formulating the state-space model. To avoid the tedious transformation from boundary 

DOFs to internal DOFs, the full FE model is employed. Then the equation of motion of 

the structure expressed in Eq. (8.1) can be formatted into a discrete-time modal 

state-space representation as: 

 1k d k d k k+ = + +x A x B u w   (8.28) 
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 m m m
k d k d k k= + +y C x D u v   (8.29) 

where { } 2Tr r r
k k k= ∈ℜx q q is the discrete-time state vector; 2r

k ∈ℜw and mN
k ∈ℜv  

denote the white Gaussian system modeling error and measurement noise vectors with 

covariance matrices Q and mR , respectively. In this representation, the vibration of 

the structure is supposed to be expressed as the superposition of the first several modal 

responses as ( ) ( ) r rt t=d Φ q , where r n r×∈ℜΦ is the collection of first r columns of the 

mass-normalized mode shape Φ , which is obtained by eigenvalue analysis

( )2− =K Ω M Φ 0 . Kalman filter, as a well-known unbiased and minimal variance 

estimator, is adopted here to give an optimal estimate of state vector kx (Kalman, 

1960; Zhang et al., 2012) as: 

 ( )( ) ( )1 1 1ˆ ˆm m m
k k d d k d k k k d k+ + += − + + −x I K C A x B u K y D u    

in which the Kalman gain ( ) 1mT m mT m
k k d d k d

−
= +K P C C P C R . In the element level damage 

identification, the responses of the suspicious substructure are intended to be 

reconstructed from the measured responses due to their high correlation with the 

damages in the suspicious substructure. The reconstructed responses at the desired 

locations are obtained as: 

 ˆe s s
k d k d k= +y C x D u   (8.30) 

in which 2rN rs
d

×∈ℜC and rN ps
d

×∈ℜD  consist of modal shapes corresponding to DOFs 

of the suspicious substructures, where rN denotes the number of locations whose 
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responses are reconstructed.  

From Eq.(8.28) and Eq.(8.29), it is noted that the frequencies, damping ratios and 

mode shapes of measurement points in the damaged state are needed in deriving the 

estimator ˆ kx through Kalman filter. The former two could be extracted by the 

experimental modal analysis (EMA) and the later can be replaced by mode shapes of 

measurement points in the intact state since these mode shapes usually alter slightly 

when the installed sensors away from damage. When reconstructing the responses of 

the suspicious substructure as Eq.(8.30), the availability of the mode shapes of the 

suspicious substructure in the damaged state is of main concern. As introduced in 

Chapter 5 and Chapter 6, they are possibly obtained by using Radial-basis-function 

(RBF), which is a kind of the multi-hidden-layer feedforward network artificial neural 

network (ANN) with sigmoid functions as transfer functions for the neurons in the 

hidden layers and linear functions for the output layer. The basic idea of RBF network 

applications in mode shape prediction is to build a model to establish the relationships 

between modal parameters and mode shapes through a training process using the input 

and output data of the appropriate training sets.  

We set the connection between the parameters extracted from the measurement on the 

limited sensors and the mode shapes of the suspicious substructure through the RBF 

network. Thus, the input to the network could be the frequency-domain parameters, 

such as frequencies, displacement (strain) coordinate modal assurance criterion 

(CoMAC) values or the combination of them, or the frequency response function 

(FRF) related properties; and the output of the network is the collection of 

mass-normalized mode shape of the suspicious substructure. In Chapters 5 and 6, the 
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frequencies, displacement, and strain CoMAC are used as the inputs to RBF network. 

However, simulation studies show that modal identification using the responses on 35 

sensors through the subspace state space system identification is too time-consuming 

to afford. Therefore, in the element-level damage identification of TMB, the 

integration of frequency response function (FRF) is alternatively used as the input to 

RBF network for mode shape prediction. Then the procedure of model properties 

extraction could be avoided to save the computation efforts. The basic formula of FRF 

expresses as:  

 ( ) ( )
( ) 2 2

1 2

m
j jr ir

ji
ri r r rj

ω j j
ω

ω ω ω ξ ω ω=

= =
− +∑

X
H

F
  (8.31) 

where ( ) ( )
( ) 2 2

1 2

m
j jr ir

ji
ri r r rj

ω j j
ω

ω ω ω ξ ω ω=

= =
− +∑

X
H

F
is the displacement of the structure on 

the j-th measurement location in the frequency domain and ( )i ωF is the input to the 

structure at the i-th location in the frequency domain; jrj and irϕ are the r-th mode 

shapes on the site j and i, respectively; rω and rξ is the circular frequency and modal 

damping ratio of the r-th mode and m denotes the number of modes. FRF can be 

viewed as a function of frequency which describes the relationship between the 

excitation force and the response. Clearly, it characterizes the essential features of 

structures. The integration of its amplitude, expressed as ( )u

l
j jiI d

ω

ω
ω ω= ∫ H , which 

represents the overall information on frequency, mode shape and damping ratio of the 

structure, is used as the inputs to RBF network. 

The appropriate training sets (damage scenarios) generated by numerical analysis 



 

213 

using the FE model of the damage free structure are used in network training. In each 

damage scenarios, the elements of the suspicious substructure are impaired to the 

certain value of the training damage sets. Then the dynamic responses on the 

measurement points are achieved by transient analysis using the predefined damage. 

To make the designed RBF network more robust to measurement noise in mode shapes 

prediction, the simulated responses are added by certain simulated measurement noise. 

The network training input data can be obtained through the noise-corrupted dynamic 

responses. The output data s
kΦ can be obtained by eigenvalue analysis using the full 

FE model of the structure with certain preset damages. Finally, the RBF network is 

trained using the input and output data by tuning the weight and center vector of 

neurons.  

8.2.4.3 Element-level damage identification via response reconstruction  

After damage occurrence, the integration of FRF derived using the measurement data 

can be imported into the trained RBF network to predict the mass-normalized 

displacement mode shapes s
dΦ and the strain mode shapes s

dΨ of the suspicious 

substructure. Finally, the response of the damaged suspicious substructure can be 

reconstructed using the Kalman filter-based method introduced in above section. And 

local damages exist inside the substructure can be further located and quantified 

through FE model updating as 

 , 1 ,
s

k s k e k
d

+∆ = ∆
θ

S θ y   (8.32) 

in which , ,e k e e k
d d a∆ = −y y y denotes the discrepancy of the reconstructed response e

dy of 
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the suspicious substructure and the analytical response ( ), ,e k e s k
a a=y y θ on the s-th 

substructure; 
1
, , , , r t s

s s s s
i Ns

N N Nk k k k
θ θ θ

⋅ × = ∈ℜ  θ
S S S S  is the sensitivity matrix of the 

analytival response ,e k
ay  with respect the damage vector ,s kθ . Besides, the dimension 

of updating vector is also dramatically decreased since s eN N<< . Similarly, sparse 

regularization is employed to solve Eq.(8.32) as: 

 ( )
1

2 1, 1 , 1 , , 1

12
argmin s

k Ne

s k k s k e k s k
d m

+

+ + +

∆ ∈ℜ
∆ = ∆ − ∆ + ∆

θ
θ

θ S θ y θ   (8.33) 

Then the final damage vector as Eq. (8.3) is obtained as: 

 
1 1 1
; ; ; ; ; ,

s s Nn

s
N N N N− +

 =  θ 0 0 θ 0 0    (8.34) 

8.2.5. Some Considerations of the Proposed Method 

For the proposed multi-level damage identification via response reconstruction 

method, the following aspects are worth highlighting: 

1. In the proposed method, response reconstruction is only performed in the 

element-level damage identification. The main reason is that to predict the mode shape 

of on the boundary DOFs of the entire structure using the RBF network, which is 

needed in reconstructing the response of damaged state, is an intractable task. Thus the 

substructure level damage detection is firstly performed to decrease the computation 

demand of the mode shape prediction as well as response reconstruction while 

increasing the mode shape prediction accuracy. 
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2. In the substructure level damage detection, the damage dimension is remarkably 

reduced, making the damage detection over the condensed substructures by directly 

using the limited measured responses feasible. An equivalent damage vector is sought 

to account and signify the existence of damages on the suspicious substructure, while 

the extent of the identified damage vector, which only shows the relative severity of 

the damage, is not of such importance.  

3. In the element-level damage identification, theoretically, the local damage can be 

identified by performing model updating using limited measured response over the 

suspicious substructure, of which the damage dimension is significantly reduced. 

However, considering that the installed sensors probably are not in the vicinity of the 

suspicious substructure, the multi-type responses of the substructure are thus 

reconstructed using the Kalman filter based method. The full FE model of the structure 

is employed in response reconstruction to avoid the tedious transformation from 

boundary DOFs to internal DOFs. 

8.3 Testbed of TMB 

Up to now, there are still no successful applications of vibration-based damage 

identification applied to large civil structures (Xu and Xia, 2012). The main reason is 

that large civil structures, such as long-span suspension bridges, are usually large in 

dimension and complex in structural components. Besides, the operational 

environments also have significant effects on the energetic vibrations of the structure. 

In consideration of all the above, it is necessary and meaningful to examine the 

feasibility and performance of the proposed multi-level damage identification method 
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in the well-controlled laboratory environment before applying it to real civil 

structures.   

A laboratory-based testbed of the Tsing Ma suspension bridge, shown as in Figure 8.2, 

was established in the Structural Dynamic Laboratory of The Hong Kong Polytechnic 

University. The testbed was modeled and constructed based on the prototype of Tsing 

Ma suspension bridge in a geometric scale of 1:150. Tsing Ma Bridge (TMB) is the 

longest suspension bridge in the world carrying both highway and railway, connecting 

the Tsing Yi Island and Ma Wan Island in Hong Kong. The main span across the Tsing 

Yi Island and Ma Wan Island is 1,377 m long. All of the major structural components 

of the Tsing Ma Bridge have been included in the testbed so that the model can 

represent the real vibration of the major structural components of long suspension 

bridges and structural condition related studies can be conducted on this testbed. Two 

kinds of materials were chosen in the bridge model design and fabrication: (1) steel is 

used for the bridge towers, piers, cables, suspenders, and anchorages; and (2) 

aluminum is utilized for the bridge deck. More details on the design principles and 

setup of the physical bridge model can be found in references in by Zhang (2012) and 

Xu (2012).  

The bridge model is settled on a rectangular hollow section steel foundation beam in 

length of 14.64 m. The foundation beam, sitting on five sets of roller bearings with a 

uniform spacing of 3.16 m, can be moved perpendicular to or along the bridge liking a 

shaking table or kept fixed (see Figure 8.3). For a better control of the testing 

condition, the foundation beam is fixed, and the superstructure of the TMB testbed is 

excited by an exciter laterally acting on the deck. 
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The bridge deck, as the main component focused on in this study, is a composite steel 

structure consisting of a series of cross frames supported on longitudinal trusses acting 

compositely with stiffened steel plates. There is a total of 242 cross frames in the 

bridge deck model. These cross frames are linked up by two outer longitudinal trusses 

and two inner longitudinal trusses by welding. The diagonal bracings are arranged 

between two neighboring cross frames throughout the entire two outer longitudinal 

trusses. In the two inner longitudinal trusses, the diagonal bracings are arranged 

between two neighboring cross frames only in the side spans and the areas near the 

bridge towers. To simulate the stiffened steel plates of the prototype bridge deck, 

aluminum plates of 0.5 mm thick are laid on the lower level of the bridge deck in the 

middle by a special adhesive. Geometric measurements and modal tests are 

subsequently conducted on the physical bridge model to identify its geometric 

configuration and dynamic characteristics. Finally, the FE model of the physical 

bridge model is established using a commercial software ANSYS, and then FE model 

updating is performed using the measured modal properties. 

8.4 Numerical Investigation on the TMB Testbed 

To evaluate the feasibility and performance of the proposed multi-level damage 

identification via response reconstruction method, numerical investigations on the 

considerably large TMB testbed are to be conducted in this section.  

8.4.1 FE Model of TMB Testbed 

For the model dependent damage identification, a delicate FE model of the physical 



 

218 

model which correctly captures the actual structural dynamic behavior in some 

pre-determined range is indispensable. A member-based detailed three-dimensional 

FE model of the TMB testbed is needed in the structural condition evaluation related 

studies. The FE model was firstly established by Zhang (2012) in the commercial 

software ANSYS. The tower legs with varying cross-section were modeled by the 

three-dimensional tapered spatial Beam44 elements; the portal beams connecting the 

two adjacent tower legs were modeled with prismatic spatial Beam4 elements; Piers 

M1, M2, T1, T2, and T3 were all similarly modeled using the Beam4 elements with 

fixed constraints. The main cable and suspender as the load-bearing member were 

modeled using the uniaxial tension-only Link10 elements. The geometric nonlinearity 

in the main cables due to cable and suspenders tension under the weight of the deck 

was considered in the elements by activating the stress stiffness effect. Mass21 

elements were added in the connection of suspenders with main cable and deck 

respectively to account for the masses of the clampers. The deck truss was constituted 

by 242 frame grids of 2 typical configurations modeled using the Beam4 elements 

along the bridge deck. Besides, the element Shell63 was used to model the plate laying 

on the bottom chords of the cross frames. More detailed introduction on the FE model 

can be found in the references by Zhang (2012).  

The original FE model is too complex for the inverse problem of damage 

identification. Thus it is refined to a more tight one while without losing its 

representing capacity. The refined FE model of TMB testbed (as shown in Figure 8.4) 

is composed of 7658 elements and 3262 nodes and forms 18752 active DOFs after 

imposing boundary conditions. A pre-stressed non-linear static analysis is conducted 
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in ANSYS to form the effective stiffness and mass matrices of the TMB in working 

condition. Then all the model details, including the effective stiffness and mass 

matrices, node, element, and DOFs are imported to MatLab for the subsequent 

processing for CMS condensation and multi-level damage identification.    

The TMB testbed is horizontally excited by a narrow-banded force sequence with a 

bandwidth of 2-8.25 Hz on the windward edge (Node 12024) of the 102-th frame grid 

from Man Wan (MW) side to Tsing Yi (TY) side. Its dynamic responses are calculated 

using first-order hold (FOH) state space formulation in modal coordinate system 

expressed by Eqs. (8.28) and (8.29), in which first 28 truncated modes are used and the 

time integration interval 1 500t s∆ = . The numerical time duration is 16s. To include 

the noise effect, the simulated responses are added by the normally distributed noise 

sequences as Eq.3.35. The standard deviations of noise sequences are set as 60.14 10−×

m/m, 50.58 10−× m and 20.56 10−× m/s2 for strain, displacement, and acceleration, 

respectively, which are similar to those measured in the laboratory test. The standard 

deviation of noise and real response varies from 0.84%~11.4% since the noise 

amplitude of each type response stays the same while the simulated real (noise-free) 

response varies along the locations.  

8.4.2 Optimal Sensor Placement Design 

As the main stress-bearing components, the responses of the 8 longitudinal beams are 

mainly monitored in the study, including horizontal displacement and acceleration of 

the nodes and strain on the midpoint of the elements. These locations are selected as 

the target sensor locations set. For response reconstruction, the active 1928 horizontal 
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DOFs out of 1936 nodes on the 8 longitudinal beams and 1928 elements of the 8 

longitudinal beams are chosen as the candidate sensor location set. The optimal sensor 

placement should be optimized individually for known excitation scenario and 

unknown excitation scenario and the final sensor placement configuration should 

incorporate the two scenarios.  

8.4.2.1 Mode selection in response reconstruction 

As we known, the contribution of each analytical mode to the overall dynamic 

vibration differs from one to another. Besides, some analytical modes may not be 

excited under certain excitation. As the vibration of the deck is of main concern in this 

study, the local mode of side span cable can be abandoned in response reconstruction. 

Therefore, a proper subset of modes that contribute mostly to the reconstruction 

accuracy should be chosen when conducting the response reconstruction on such a 

large structure.  

The first 28 vibration modes from the FE model, as listed in Table 8.1, are considered 

as candidates for the estimation of the state vector. The target modes for sensor 

location optimization and response reconstruction are selected from these modes. 

Zhang (2012) proposed a method to check the contribution of j-th mode by deleting the 

j-th row and column of the measurement system matrices corresponding to the j-th 

mode in response reconstruction, and the induced reconstruction accuracy is regarded 

as the contribution of the j-th mode. And the modes that contribute mostly are selected 

as the proper mode subset. Using this method, the contribution coefficient of the first 

28 analytical modes is shown in Figure 8.5. It is noted that the first mode contributes 

mostly as expected. Thus 11 modes, including 1st, 3rd, 5th, 6th, 7th, 11th, 12th, 18th, 



 

221 

19th, 25th and 26th mode are chosen for response reconstruction. 

8.4.2.2 Response reconstruction results 

Figure 8.6 shows the steady reconstruction error covariance trace variation along the 

increasing optimal sensor number. It is observed that with the increase of the optimal 

sensors number, the reconstruction error decreases dramatically in the first 20 selected 

sensors but it converges to a stable value when the sensor number exceeds 30. Besides, 

when using the same number of sensors, the reconstruction error when the excitations 

are unknown is a bit bigger than that when the excitations are known. It is because the 

estimated excitations introduce additional errors in response reconstruction when the 

excitation is unknown. If 35 optimal sensors are selected, the optimal sensors include 8 

accelerometers, 4 displacement meters and 23 FBG sensors for the scenario of known 

excitation and 8 accelerometers, 5 displacement meters and 22 FBG sensors for the 

scenario of unknown excitation. Due to the restriction of the laser displacement meters 

in the laboratory and for easy measurement, some modifications are conducted in the 

sensor configuration.  

Table 8.2 shows the overall information of the final sensor placement configuration 

with the sensor numbers before modification listed in brackets. The sensor locations 

finally selected for measurement can be found in Table 8.3 and Table 8.4 for known 

excitation and unknown excitation respectively, in which the index of the grid frame is 

shown in Figure 8.7. Figure 8.8 depicts the spatial configuration of the finally selected 

sensor locations in the test.  

The accuracy of the reconstructed response with the designed optimal sensor 
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placement configuration is measured by the relative percentage accuracy (RPA) 

expressed as Eq.(8.35). 

 2

2

1 100
e r
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 −
 = − ×
 
 

y y

y
  (8.35) 

When the value approaches 100, the response reconstruction accuracy is higher. The 

minimal, maximal and average RAP of each type response under both known and 

unknown excitation are listed in Table 8.5.  It is observed that all the 3 types of 

reconstructed responses are of high accuracies with the mean RAP above 98 %.  

Some typical responses of 3 types are shown in Figure 8.9 when the full knowledge of 

acting excitations is available. When the external excitations are unknown, the RAP of 

reconstructed excitation is 98.78%. However, it is also noted that the accuracy of the 

reconstructed responses is a bit degraded compared with that of known excitation 

scenario.  Some typical reconstructed responses and excitation are presented in 

Figure 8.10. 

8.4.3 Multi-level Damage Identification via Response Reconstruction 

8.4.3.1 FE model condensation and damage simulation  

The vibration and structural condition of TMB testbed deck is of special concern in 

this study. It is composed of 8 longitudinal beams and 242 frame grids of 2 typical 

configurations (shown in Figure 8.7) longitudinally along the bridge deck. Each frame 

grid has 8 intersection points with the 8 longitudinal beams and they are ranked as 

index number 1-8 as shown in Figure 8.7. The frame grids from Ma Wan side to Tsing 

Yi side are numbered as grid 1~ grid 242. CMS condensation is performed on the 
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entire bridge deck whilst the other components, including suspension cables, 

suspenders, towers and piers are fully modeled without any condensation processing. 

Every 2 grids and the associated beams constitute a substructure in CMS condensation 

except the last 3 frame grids constituting the 120-th substructure, forming totally 120 

substructures in the entire deck. The intersection points of longitudinal beams and 

frame grids on the boundary of substructures, suspender connection points and 

external loading acting points are selected as the boundary DOFs; the others are 

internal DOFs. Some typical substructures are depicted in Figure 8.11. Each 

substructure is reduced using CMS condensation, and the first 8 fixed-interface normal 

modes are kept when forming the transformation matrix as Eq.(8.6). Then the reduced 

substructures are assembled into a whole condensed structure with 9248 DOFs using 

the primal assembly method. 

Modal analysis is firstly conducted using the full FE model in ANSYS, and the first 10 

modal frequencies are tabulated in Table 8.6. To check the accuracy of the CMS 

condensation, modal analysis is firstly conducted using the reduced FE model in 

MatLab and listed in Table 8.6. Comparing the two, it is found that the model 

condensation using CMS method is of high accuracy. The maximal discrepancy along 

the first 10 frequencies is -0.020%, indicating that the condensed FE model is of high 

representing capacity although the number of DOFs is dramatically decreased from 

19875 to 9248.  

Structural damages are generated by cutting 2 longitudinal beams (E4930 and E4942) 

which belong to the 67-th substructure. Consequently, the stiffness contribution of the 

2 elements to the global structure is set zero while the mass contribution is reserved as 
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Eq.(8.2). This is deliberately designed to simulate the stiffness reduction due to 

structural damage. Model analysis is then conducted after introducing damage by 

performing eigenvalue analysis using the stiffness and mass matrices of the damaged 

structure. It is observed that the preset damage introduces noticeable discrepancy with 

a maximum of 3.42 percentages on the first mode, much larger than that caused by 

CMS condensation processing. Please be reminded that the stress redistribution due to 

omitting the stiffness contribution of the two damaged elements under gravity is 

ignored in this damage simulation. This is an important assumption in the following 

damage simulation. To check the stress redistribution (consequently affect the 

effective stiffness of cable system) due to damage in the non-linear static analysis, the 

damage is also simulated by setting the elastic modulus of the damaged beams as an 

infinitely small value, i.e. 1e-16, then the pre-stressed large-deformation static 

analysis is performed. The relative percentages errors of strain, defined as

( ) 100u d us s s −  ×  , on the 95 suspenders on the south and north side of TMB are 

depicted in Figure 8.12. Here us and ds are the elastic strains before and after damage, 

respectively. The horizontal axis is the frame grid number, and the red dash line 

indicates the section where generated damages exist. It is evident that the largest strain 

variation in the suspenders occurs in the vicinity of damage location, with the largest 

value of 0.3%. The strain variation in suspenders shows that stress redistribution due 

to damage is slight. Besides, the pre-stressed modal analysis is performed after a 

non-linear static analysis in ANSYS, in which the stress redistribution in static 

analysis is included. The first 10 frequencies are tabulated in Table 8.6. For 

comparison, Table 8.6 also lists the first 10 modal frequencies of damaged structure 

simulated in MatLab ignoring stress redistribution effect, where the stiffness 
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contributions of element E4930 and E4942 are subtracted from the global effective 

stiffness matrix. It can be seen that stress redistribution due to damage is negligible 

since these two damage simulation schemes introduce almost the same frequency 

discrepancies. Thus in the following section, the stress redistribution of cable system 

under gravity is ignored for computation ease. 

8.4.3.2 Substructure level damage detection 

The simulated responses at the locations of the selected sensors are firstly used for 

damage detection over the 120 condensed super elements, in which the equivalent 

damage parameter 120∈ℜθ is updated using Eq.(8.23). The identification results on the 

substructure level are shown in Figure 8.13. It is observed that noticeable negative 

variation of -0.86 occurs on the 67-th super element, signifying that certain damages 

arise in the corresponding substructure. This is understandable since inside the 67-th 

substructure, the element 4930 and 4942 are damaged. They introduce the overall 

equivalently damage on the substructure with a value that is supposed to fall within the 

range of -1~0.  

As pointed out before, although damage may occur on certain elements in a 

substructure with different severities, a uniform damage extend is assumed and 

represented by an entry in the equivalent damage vector to narrow the damage 

dimension. The narrowed damage vector amounts to the real damage vector in terms 

of making the dynamic properties of the supposed substructure-level damaged 

structure are as close as possible to that of the actual damaged structure.  

Table 8.7 lists the first 10 modal frequencies of the structure with equivalent damage 
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vector and the damage-free structure, compared with that of the real damaged 

structure. It is observed that the frequencies of the structure with equivalent damage 

vector are very close to those of the preset damaged structure. The discrepancies 

between them are much less than the ones between the damage-free structure and the 

really damaged structure. On the first mode, which contributes mostly to overall 

vibration of the deck, the relative error, express as ( ) 100d e df f f− ×  , is -0.015%, 

much less than the relative error (-3.59%) between real damage and damage-free 

structure. 

Figure 8.14 also shows the RPEs (Eq.3.36) of the dynamic response of the 

equivalently damaged structure with respect to that of really damaged structure on the 

35 virtually measurement locations. Most of the RPEs are less than 15% except some 

strain measurement locations (S3, S6, S9, S13, S18, and S19), indicating that the 

substructure level identified structure is capable of representing the dynamic response 

of the damaged structure. For comparison, the RPEs of the dynamic response of the 

damage-free structure on that of the damaged structure are also plotted. Clearly, the 

RPEs of the equivalently damaged structure are dramatically less than that the 

damage-free structure. Thus, the substructure level identified structure is equivalent to 

the damaged structure regarding modal properties and dynamic responses on the 

measurement locations.  

To further check the ability to identify the damage over the segmented substructures, 4 

damage scenarios (as listed in Table 8.8) are designed and the substructure level 

damage detection is performed. The identification results are presented in Figure 8.15 

and the summarized in Table 8.8. It is noted that when structural defects occur in the 
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two elements 4930 and 4942 or the elements 4942 is totally disabled; the damaged 

substructure can be correctly detected.  However, when the element 4942 is partially 

disabled with an extent of -0.90, besides the actual damage exists in the 67-th 

substructure detected, the 103-th substructure is mistakenly detected as damaged. 

When the damage severity is decreased to -0.75 (damage scenario 5), the substructure 

level damage is falsely identified in the wrong substructure. We can see that when the 

damage extents are slight (less than -1.0 in the single element), the proposed method 

has the limited capability to detect the damage in substructure level. 

8.4.3.3 Element level damage identification 

The integration of the FRF amplitude on the 35 virtually measured locations calculated 

and imported to the trained RBF network to predict the strain mode shape and 

horizontal displacement mode shape of the identified 67-th substructure. The lower- 

and upper-frequency boundary is 2 Hz and 8.25 Hz, respectively. Welch's averaged 

periodogram method is used to estimate the transfer FRF. The output of the RBF 

network is the 34 horizontal displacement mode shapes and 39 strain mode shapes on 

the 8 longitudinal beams inside the detected 67-th substructure.  The mode shape 

prediction effectiveness using RBF network is examined by the diagonal value of the 

coordinate mode assurance criteria (CoMAC) between the predicted coordinate mode 

shapes and the analytical ones obtained by eigenvalue analysis using the FE model of 

the damaged structure. Table 8.9 lists the CoMAC values of the 11 modes used in 

response reconstruction. It is observed that the mode shape prediction using RBF 

network is quite satisfying. Most displacement mode shapes are predicted with a quite 

high accuracy with the 5-th mode bearing the lowest CoMAC of 0.9650. A further 
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check reveals the amplitude of the 5-th mode is quite small compared with others, 

which is probably the main reason. In general, the shape prediction accuracy of 

strain mode is a bit degraded compared with that of the displacement mode. 

The diagonal CoMAC between the predicted and the real strain mode shapes 

values are 0.9996 ~ 0.9999.  

After the strain and displacement mode shape are predicted, the strain, displacement, 

and acceleration on the 67-th substructure can be reconstructed using Eq.(8.30).  The 

reconstructed responses on the identified substructures, together with the response on 

the measurement points, are finally further used for model updating at the element 

level over the detected substructure, of which the damage vector dimension is 52.  

The identification results on the element level are shown in Figure 8.16. Physically, 

the damage vector should be constrained as 1 0s− ≤ ≤θ . Figure 8.16-a shows the 

damage identification result without constraints 1≥ −θ , which indicates that there are 

approximately two damages of -0.8 and -1.4 on the 34-th and 46-th elements, 

respectively.  

From Table 8.10 which lists the elements inside the 67-th substructure, we can find the 

34-th and 46-th elements are exactly the elements E4930 and E4942. The damages are 

correctly localized, and the extents are approximately quantified. If the constraint

1 0s− ≤ ≤θ  is set in updating, the identification result is given in Figure 8.16-b, which 

demonstrates that the damage extents are exactly quantified on the elements E4930 

and E4942. Figure 8.17 shows the result of element level damage identification on the 

67-th substructure without response reconstruction. From the figure, it is noted that 
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although the result indicates certain damage on the 46-th element of the 67-th 

substructure, the preset damage on the 34-th element is not recognized and the damage 

severity on the 46-th element is notably larger than the preset one. Comparison 

between Figure 8.16 and Figure 8.17 clearly demonstrates the superiority and the 

necessity of response reconstruction in the element level damage identification. 

8.5 Concluding Remarks  

To alleviate the difficulty in identifying local damage over a damage space of large 

dimension, a multi-level damage identification via response reconstruction method is 

proposed in this chapter. Following a divide-and-conquer strategy, the entire massive 

structure is divided into several manageable substructures, and each substructure is 

condensed using the CMS technique. Consequently, the dimension of the damage 

vector is dramatically reduced, and the identifiability of damage is increased. After the 

damage region is detected, accurate damage localization and further damage 

quantification are performed over the elements of the suspicious damage region. Since 

local responses inside the damaged substructure are mostly beneficial for regional 

damage localization and quantification, Kalman filter based response reconstruction is 

performed to reconstruct the responses on the substructure. Basing on the simulation 

studies of the TMB testbed, some concluding remarks that should be noted are given 

as follows:   

(1) A prerequisite of model condensation to reduce the damage dimension is that the 

condensed FE model should be of enough accuracy. The model discrepancy 

involved in model condensation procedure should be remarkably less than that 
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caused by structural damage. Thus the CMS technique, as one kind of dynamic 

substructuring technique, is employed in the proposed multi-level damage 

identification method over the traditional static substructuring technique. 

Simulation studies on the TMB show that the CMS technique is adequately 

accurate for model condensation. Besides, the number of substructure portioning, 

the master DOFs selection and the number of fixed-interface normal modes all 

have influences on the accuracy of the CMS technique. They should be properly 

handled when using the CMS technique. 

(2) Regarding the mode shape prediction in damaged state, RBF network is employed 

in this study. The output of the RBF network is the strain and displacement mode 

shapes of the key locations. Basing on the identification result of the substructure 

level detection, only the strain and displacement mode shapes of the key locations 

inside the suspicious substructure are predicted in the element level damage 

identification. Thus the efforts in mode prediction using RBF network are 

dramatically reduced and the prediction accuracy is increased.  

(3) Considering the remarkable complexity in the model building of the TMB testbed 

and computational demand in damage identification, the FE model of the TMB 

testbed is established using the commercial software ANSYS and the damage 

identification is performed in MatLab. The non-linear effect is included in forming 

the effective stiffness matrix and the mass matrix of TMB testbed by conducting 

the pre-stressed large-deformation static analysis. However, after the effective 

stiffness matrix is formed, it is assumed that the TMB behaves linearly under 

normal working condition. The stress redistribution due to damages on the deck is 
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ignored. Simulation results show that this assumption is acceptable.  

The results of the TMB testbed demonstrate that the proposed multi-level damage 

identification via response reconstruction does improve the identification accuracy of 

damage localization and quantization considerably. However, its effectiveness should 

be further checked in laboratory test before practical application, which will be 

investigated in Chapter 9.  
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Table 8.1  Mode selection for sensor placement optimization 

Mode  Analyzed  Measured Direction Span Parts 
1 3.858  3.907  Lateral Main cables, deck 
2 5.126    Lateral Main cables 
3 5.257  4.981  Lateral Main cables 
4 5.281    Lateral Main cables 
5 5.404  5.371  Lateral Main cables, deck 
6 5.915  5.273  Vertical Main cables, deck 
7 6.346  5.664  Vertical Main cables, deck 
8 8.401  7.875  Lateral Ma Wan cables 
9 8.415    Lateral Ma Wan cables 

10 8.635    Lateral Main cables 
11 8.693  7.911  Lateral Main cables, deck 
12 9.139  8.643  Lateral Main cables 
13 9.188    Lateral Main cables 
14 9.194  8.789  Torsion Main cables, deck 
15 9.415  9.081  Lateral Tsing Yi cables 
16 9.427    Lateral Tsing Yi cables 
17 9.490  9.191  Vertical Tsing Yi cables 
18 9.620    Torsion Main cables, deck 
19 9.718  9.766  Torsion Main cables, deck 
20 10.843  9.961  Vertical Main, Tsing Yi cables, deck 
21 12.173    Lateral Main cables, deck 
22 12.189  10.890  Lateral Main cables, deck 
23 13.256  12.452  Lateral Main cables, deck 
24 13.267    Lateral Main cables, deck 
25 13.925  14.064  Lateral, Torsion Main cables, deck 
26 15.034    Lateral, Torsion Main cables, deck 
27 15.841    Lateral Main cables 
28 15.875  14.259  Lateral Main cables 

 

 

Table 8.2  Optimal sensor placement results 

 Excitation Accelerometer Disp. transducer FBG sensors  subtotal 
Known 9 (8) 3 (4) 23 (23) 35 

Unknown 7 (8) 4 (5) 24 (22) 35 
Final 14 4 35 53 
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Table 8.3 Final sensor placement for known excitation scenario  

Accelerometer 
Sensor NO.  Grid NO. Node Index  SE NO. 

1 94 1869 4 47 
2 96 1909 4 48 
3 108 12147 7 54 
4 116 12303 6 58 
5 134 2667 3 67 
6 144 12861 5 72 
7 158 13149 8 79 
8 166 13309 8 83 
9 182 13629 8 91 

 

Table 8.3 (continued) 

Displacement  meter 
Grid NO. Node Index SE NO. 

118 12347 7 59 
128 2549 4 64 
152 3029 4 76 
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Table 8.3 (continued) 

FBG Strain 
 Sensor NO.  Grid NO. Node Index SE NO. 

1 16 3999 7 8 
2 42 4202 2 21 
3 42 4206 6 21 
4 55 4306 2 27 
5 57 4326 6 28 
6 93 4610 2 46 
7 98 4654 6 49 
8 102 4683 3 51 
9 102 4687 7 51 
10 113 4771 3 56 
11 127 4882 2 63 
12 129 4899 3 64 
13 129 4903 7 64 
14 130 4911 7 65 
15 132 4923 3 66 
16 137 4966 6 68 
17 142 5002 2 71 
18 208 5531 3 104 
19 208 5534 6 104 
20 209 5538 2 104 
21 209 5543 7 104 
22 211 5557 5 105 
23 214 5578 2 107 

 

Table 8.4 Final sensor placement for unknown excitation scenario  

Accelerometer (Final Unknown) 
 Sensor NO.  Grid NO. Node Index SE NO. 

1 94 1869 4 47 
2 128 2547 3 64 
3 128 2549 4 64 
4 134 2667 3 67 
5 136 12707 7 68 
6 138 12741 5 69 
7 138 12747 7 69 
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Table 8.4 (continued) 

Displacement  meter 
 Sensor NO.  Grid NO. Node Index SE NO. 

1 118 12347 7 59 
2 128 2549 4 64 
3 140 2789 4 70 
4 152 3029 4 76 

 

Table 8.4 (continued) 

FBG Strain 
 Sensor NO.  Grid NO. Node Index SE NO. 

1 1 3873 1 1 
2 17 4003 3 8 
3 55 4305 1 27 
4 93 4610 2 46 
5 94 4622 6 47 
6 95 4630 6 47 
7 107 4722 2 53 
8 117 4806 6 58 
9 127 4882 2 63 
10 128 4890 2 64 
11 128 4894 6 64 
12 129 4899 3 64 
13 129 4903 7 64 
14 130 4911 7 65 
15 132 4923 3 66 
16 142 5002 2 71 
17 156 5118 6 78 
18 208 5531 3 104 
19 208 5534 6 104 
20 209 5538 2 104 
21 209 5543 7 104 
22 210 5551 7 105 
23 211 5558 6 105 
24 214 5578 2 107 
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Table 8.5 RPA of the reconstructed responses 

Response Type 
Known Excitation Unknown Excitation 

Min Max Mean Min Max Mean 
Strain  69.03 99.87 99.18 67.08 99.34 98.66 

Displacement 97.17 99.89 99.80 96.59 99.31 99.12 
Acceleration 82.62 99.79 98.95 77.81 99.49 98.17 

 

Table 8.6 Frequencies of the FE model of TMB testbed 

Mode  
ANSYS_Full MatLab_Reduced ANSYS_Damage MatLab_Damage 

f (Hz) F (Hz) Error (%) f (Hz) Error (%) f (Hz) Error (%) 
1 3.858 3.857 0.018 3.725 3.424 3.722 3.512 
2 5.126 5.127 -0.002 5.128 -0.023 5.127 -0.002 
3 5.257 5.258 -0.005 5.258 -0.016 5.257 0.000 
4 5.281 5.283 -0.024 5.283 -0.022 5.283 -0.024 
5 5.404 5.405 -0.018 5.383 0.376 5.382 0.401 
6 5.915 5.915 -0.001 5.915 0.009 5.896 0.333 
7 6.346 6.346 -0.007 6.262 1.317 6.236 1.730 
8 8.401 8.402 -0.020 8.403 -0.022 8.402 -0.019 
9 8.415 8.416 -0.020 8.417 -0.022 8.416 -0.020 

10 8.635 8.635 -0.001 8.637 -0.025 8.635 -0.001 
 

 

Table 8.7 Frequencies of the structure with the equivalent damage and real damage 

Mode 
Real damage Equivalent damage Damage-free 

df  (Hz) ef   (Hz) Error (%) uf    (Hz) Error (%) 
1 3.722 3.723 -0.015 3.856 -3.592 
2 5.127 5.127 0.000 5.127 0.000 
3 5.257 5.256 0.023 5.258 -0.007 
4 5.283 5.283 0.000 5.283 0.000 
5 5.382 5.383 -0.017 5.404 -0.401 
6 5.896 5.905 -0.158 5.896 -0.012 
7 6.236 6.198 0.608 6.326 -1.444 
8 8.402 8.402 0.000 8.402 0.000 
9 8.416 8.416 0.000 8.416 0.000 
10 8.635 8.635 0.000 8.635 0.000 
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Table 8.8 Summary of substructure level damage identification results 

Scenario 
Designed Damage  Identification 

Result  E4930 E4942 
1 -0.50 -1.00 Correct 
2 0 -1.00 Correct 
3 0 -0.90 Partially correct 
4 0 -0.75 Wrong 

 

Table 8.9 CoMAC value of the RBF network predicted displacement and strain mode 
shape with the analytical mode shape of damaged structure 

Mode Serial  
Number 

Mode Num 
in FE model Strain  Displacement  

1 1 0.9998 1.0000 
2 3 0.9998 1.0000 
3 5 0.9998 1.0000 
4 6 0.9999 1.0000 
5 7 0.9998 0.9650 
6 11 0.9996 1.0000 
7 12 0.9998 1.0000 
8 18 0.9999 1.0000 
9 19 0.9996 1.0000 
10 25 0.9998 1.0000 
11 26 0.9998 1.0000 
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Table 8.10 List of beam elements in the 67-th substructure  

Index 
Elem 

number 
Elem 

material 
Elem 
type 

Real 
constant 

Node 
Left 

Node 
Right 

1 2129 1000 4 1001 2661 2663 
2 2130 1000 4 1001 12661 12663 
3 2131 1000 4 1001 2661 12661 
4 2132 1000 4 1002 2663 2664 

… … … … … … … 
33 4929 1100 4 1011 2641 2661 
34 4930 1100 4 1011 2643 2663 
35 4931 1100 4 1011 2647 2667 
… … … … … … … 
45 4941 1100 4 1011 12661 12681 
46 4942 1100 4 1011 12663 12683 
47 4943 1100 4 1011 12667 12687 
48 4944 1100 4 1011 12669 12689 
49 5933 1200 4 1012 2647 2663 
50 5934 1200 4 1012 12647 12663 
51 6175 1200 4 1012 2663 2687 
52 6176 1200 4 1012 12663 12687 
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Figure 8.1 Schematic diagram of multi-level damage identification via response 

reconstruction 

 

Figure 8.2 Tsing Ma Bridge testbed in the laboratory 
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Figure 8.3 Configuration of Tsing Ma Bridge testbed 

 

Figure 8.4 The FE model of TMB testbed established in ANSYS    
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Figure 8.5 Mode contribution in response reconstruction 
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Figure 8.6 Response reconstruction error covariance trace along the increasing optimal 

sensor number 
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(b) 

Figure 8.7 Two typical frame grid in the deck  
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(c) 

Figure 8.8 Total sensor placement layout in test: (a) FBG sensors, (b) Displacement meters and (c) Accelerometers meters 
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(c) 

Figure 8.9 Comparison of reconstructed response with the noise-free and 

noise-polluted response under known excitation: (a) strain on element 3885; (b) 

displacement of node 2489 (c) acceleration on node 4958; 
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(c) 

 

(d) 

Figure 8.10 Comparison of reconstructed response with the noise-free and 

noise-polluted response: (a) strain on Element 3885; (b) displacement of Node 2489 

(c) acceleration on Node 4958 and (d) excitations. 
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Figure 8.11 CMS condensed FE model 

 

 

Figure 8.12 Strain variation in the suspenders along the frame grids: south side (top) 
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and north side (bottom)   

 

Figure 8.13 Damage identification of TMB testbed at substructure level 
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Figure 8.14 Response RPEs of damaged structure with damage-free structure and the 

equivalently damaged structure 
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(c) 

 

(d) 

Figure 8.15 Substructure-level damage identification results of 4 damage scenarios: 

(a) case 1, (b) case 2, (c) case 3 and (d) case 4  
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(b) 

Figure 8.16 Damage identification of TMB testbed at element level with response 

reconstruction: (a) with constraint 0s ≤θ and (b) with constraint 1.0 0s− ≤ ≤θ    

 

Figure 8.17 Damage identification of TMB testbed at element level without response 

reconstruction  
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CHAPTER 9 

EXPERIMENTAL INVESTIGATION OF 

MULTI-LEVEL DAMAGE IDENTIFICATION ON 

THE TMB TESTBED 

9.1 Introduction 

Equation Section 9In Chapter 3, the optimal multi-type sensor placement under 

unknown excitation has been introduced; the relevant experimental studies have been 

conducted on an overhanging beam, and the results were presented in Chapter 7. 

Nevertheless, even remarkable satisfying response reconstruction results were 

obtained on the simple overhanging beam, it is necessary to further check the 

effectiveness of the proposed method on a relatively large structure before applying it 

to real large structures. In Chapter 8, the multi-level damage identification via 

response reconstruction was introduced, and simulation studies on a relatively large 

structure Tsing Ma Bridge (TMB) testbed concerning the Tsing Ma suspension bridge 

in Hong Kong were conducted. With the multi-level damage identification framework 

established in Chapter 8, it is possible to solve the intractable damage identification of 

a large structure in a multi-level way: firstly in the manageable substructure level and 

then inside the suspicious substructure on the detailed element level. This chapter aims 

to apply the multi-type sensor optimal placement for response and excitation 
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reconstruction and multi-level damage identification via response reconstruction to the 

well-controlled TMB testbed in the laboratory. The main objectives of laboratory tests 

on the TMB testbed include the following: (1) verify the effectiveness of optimal 

multi-type sensor placement for response reconstruction when the external excitations 

are unknown, and (2) verify the effectiveness and practicability of multi-level damage 

identification via response reconstruction when the external excitations are known. 

The experience obtained from this exercise can shed light on the application of the 

proposed method to real long-span suspension bridges. 

9.2 Experimental Setup  

9.2.1 Sensors Installation 

There are three types of sensors, including Fiber Bragg grating (FBG) strain sensors, 

displacement meters, and accelerometers, were installed at the optimally selected 

locations of the physical bridge model, as determined in Chapter 8, to measure the 

structural responses. The total sensor deployment incorporates the designed sensor 

placements for the two scenarios: known excitation and unknown excitation. These 

two scenarios share some sensors in common. When a subset of sensors for one 

scenario is used for response reconstruction, the other sensors could be used for 

validation. Besides, 5 extra FBG sensors were also installed for validating the 

performance of response reconstruction under both known and unknown excitations. 

To avoid the additional mass and damping induced by strain gauges and wires, FBG 
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sensors were utilized in the experiment instead of strain gauges to measure the strain 

responses. The FBG sensors were attached on the side face of the beam at the middle 

of the elements to measure the combined axial and flexural deformation of the beam. 

Stuck on the structural components, the FBG underwent certain deformation and 

introduced some shift in Bragg wavelength. The relative shift in the Bragg wavelength

λ λ∆ due to an applied strain (ε ) and a change in temperature T∆ is approximately 

given by 

 tK K Tε
λ ε
λ
= + ∆

∆
  (9.1) 

The measured strain can be expressed as: 

 m K c Tε
λε ε
λ

= = + ∆
∆

  (9.2) 

in which 0.79Kε ≈  is the coefficient of strain; both tK and c are coefficients, which are 

617.79 10 / oC−×  and 622.52 10 / oC−× respectively for the FBG stuck on steel host 

structures. In the test, 3 temperature compensation FBG sensors were installed in the 

MW span, TY span and main span, respectively; then the strain introduced by the 

structural deformation can be calculated as m tε ε ε= − , where tε is the recorded strain in 

the temperature compensation sensors. There are 3 extra FBG sensors installed in the 

TY span, main span and MW span respectively for temperature compensation. 

LK-503 laser displacement transducers and KD1008 accelerometers were also 

equipped to capture the lateral vibration of the selected nodes on the deck. The weight 
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of each accelerometer is 1.2 g so that the additional weight of the accelerometers has 

little influence on the dynamic properties of the bridge model. All the sensor 

installations are shown in Figure 9.1. 

9.2.2 Excitation Generation 

The superstructure of the TMB testbed was driven by a random force series with 

frequencies ranging from 2 Hz to 8.25 Hz produced by a JZK-5 excitor at the forward 

edge of the 102-th frame grid. The excitation series were generated by a B&K 

3160-B-022 signal generator and amplifiered by an SINOCREA YE5871 power 

amplifier to make the maximal excitation amplitude is about 9 N. For easier 

calculating the dynamic response, the amplitude of the excitation series varied from 

zero to a stable value by tuning the power amplifier, making the testbed vibrate from 

static state. The overview of the excitation generation setup is shown in Figure 9.2. 

Figure 9.3 shows the excitation time-history in 3 tests before damages were 

introduced. The sampling frequency for all tests was 1,000 Hz. It is observed that the 

repeatability of the excitation is quite satisfying and the excitation generation system is 

quite robust.  

9.2.3 Data Acquisition 

In this experiment, KD 5006 charge amplifiers were used as the signal conditioner to 

amplify the acceleration signals from the accelerometers. The displacement signals 

from the laser displacement transducers were conditioned by the LK 2503 
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conditioners. All the conditioned displacement and acceleration signals were collected 

and then processed by a 32-channel data acquisition system KYOWA EDX-100A, as 

shown in Figure 9.4. The optical sensing interrogator SM130 was employed to output 

light source for the FBG sensors and measure the wavelength of the light reflected 

from the FBG sensors. The dynamic strain responses from FBG sensors were recorded 

by using the V1.1 ENLIGHT system. The data acquisition systems are also illustrated 

in Figure 9.4.  

The displacement and acceleration responses are captured using the different data 

acquisition unit from that used for capturing strain responses. The synchronization of 

the three types of responses to the same time is required for the reconstruction of the 

multi-metric responses. Therefore, a synchronous strain hammer was designed to 

fulfill the synchronization of the strain, displacement, and acceleration responses. One 

FBG sensor and one resistance strain gauge were embedded in this hammer, as shown 

in Figure 9.5. This hammer was used to generate an impact signal by hitting on a 

simple structure, which is totally separated from the bridge model. The impact signal 

was generated just before the recording of the measurement data from the bridge 

during the tests. On the one hand, the impact response of the FBG sensor of the 

hammer was collected by the SM130 optical sensing interrogator system, which also 

collected the responses from all the FBG sensors on the bridge. On the other hand, the 

impact response from the resistance strain gauge of the hammer was recorded by the 

DCS-100A data collection system, which also recorded the responses from all the 

displacement transducers and accelerometers on the bridge. The two sets of response 
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time histories were then utilized to determine the synchronous time for the strain, 

displacement, and acceleration responses by locating the impact peaks. 

9.2.4 Experimental Procedure 

Before damage occurs, the exciting sequence recorded by the load cell and the 

responses of 3 type captured by the 58 installed sensors were collected at a sampling 

frequency of 1,000 Hz and a sampling duration of the 80s. In each testing, the 

synchronous hammer was used to generate the impulsive signal for time 

synchronization. A typical strain data on the synchronous hammer was shown in 

Figure 9.6. The collected data were synchronized to the same time and resampled to 

500 Hz before utilization. This portion of the data served to update the FE model built 

with nominal values to establish a baseline model for undamaged structure. Besides, 

they were also used to verify the effectiveness of multi-type response reconstruction 

under both known and unknown excitation. For the second portion of the experiment, 

the beam members in the locations corresponding to the preset damage were cut in 

order to simulate damage imposed to the structure. The excitations were repeated, and 

the responses of the TMB testbed in the damaged state were also collected. The 

resulting data were then used for multi-level damage identification. 

9.3 FE Model Updating 

Finite element model discrepancy between the real structures under investigation is 

inevitable due to the simplifications made during the modelling process and 
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unavoidable uncertainties in geometrical dimension, physical properties and boundary 

conditions. FE model updating is to be performed in this section to provide to refined 

reference model for the following response reconstruction and damage identification 

studies. 

9.3.1 FE Model Updating Flow Chart 

A parameterized FE model updating is performed to refine the established FE model in 

the time domain. Although the FE model of TMB testbed has been updated by Zhang 

(2012) using an objective function defined in terms of frequencies and mode shapes, it 

is further updated with an objective defined using the dynamic response in this section. 

The main reason is that a more delicate FE model that can represent the structure's 

dynamic behavior is needed for model-dependent damage identification. Besides, 

some parameters, for example, the damping effect, which was not included in the 

frequency domain updating, should be tuned for better dynamic response 

representation. Considering the remarkable model building and non-linear static 

analysis capacity of ANSYS and outstanding dynamic response simulation and 

optimisation algorithms solving capacity of MatLab, the time domain updating is 

performed by synergistically executing ANSYS and MatLab: the parameterized FE 

model is built and the pre-stressed large deformation static analysis is conducted by 

programming in ANSYS Parametric Design Language (APDL); the dynamic response 

is calculated and the optimisation is solved in MatLab; the interface linking between 

the two is fulfilled by executing the APDL file in MatLab programming. The 

optimization flow diagram is shown in Figure 9.7. In the proposed updating strategy, 
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the following advantages should be pointed out: 

(1) The parametric FE model is defined in terms of variables by means of APDL, and 

thus the values of the different variables will be changed according to the updating 

loop until a minimum is reached. 

(2) The geometric stiffness of the cables and suspenders, mainly caused by the weight 

of the bridge, are included in the exported active stiffness matrix by performing the 

pre-stressed large deformation static analysis in ANSYS using the APDL file.  

(3) The ANSYS and MatLab are jointly linked by the script like: ‘!C:\Program 

Files\ANSYS Inc\...\ANSYS140.exe -b -p ane3fl -i E:\Temp\...\mainupdating.inp 

-o E:\Temp\...\out.txt’, in which the ‘mainupdating.inp’ is an executable APDL file 

that establishes and analyzes the FE model as well as export the effective stiffness 

and mass matrices in ANSYS. 

Using the above updating strategy, the optimization parameters can be easily 

modified due to the advantages of creating and solving a parametric FE model by 

means of APDL. Thus the overall proposed updating loop can be created without 

user intervention so that the proposed updating methodology is done completely 

automatically until the solution is found or stopping criteria is achieved.  

9.3.2 Updating Parameters and Objective Functions 

The parameters to be updated should be properly selected to achieve a satisfying and 
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physical meaningful updating result. To this end, physical and mathematical insights, 

as well as engineering experience, are always demanded. On the one hand, the selected 

parameters should represent some uncertainties of the model and the updated results 

should preserve the physical meaning of the model. On the other hand, the defined 

objective function should be sensitive to the selected parameters. Sources of the 

discrepancies between the experimental and analytical results may lie in the 

imprecision of the geometrical and material parameters, the boundary conditions, and 

the connections of the member components.  

For this reduced-scale bridge model, the geometrical parameters can be comparatively 

accurately measured, and the boundary conditions can be simulated under control. 

Thus, the geometrical parameters and the boundary conditions in the initial FE model 

will not be updated. However, the rigid connections among beam elements and 

between beam elements and shell (plate) elements in particular may not represent the 

real connections very well; neither do the spring connections between the deck and 

towers. It is thus reasonable to consider adjusting the stiffness of the cross frame, plate, 

longitudinal beams, and diagonal bracings as well as springs. Besides, the axial forces 

in the cables and suspenders in the physical model, to some extent, are likely to be 

different from those in the FE analysis. In this connection, the sectional stiffness of the 

suspenders and the cables are also chosen as the candidates for adjustment. 

Furthermore, the member masses are not weighted or measured against those of the 

analytical ones, and accordingly, the densities of the main cross frame, longitudinal 

beams, and the plate may also be selected as updated parameters. 
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A sensitivity analysis computes the sensitivity coefficient defined as the rate of change 

in a particular response quantity with respect to a change in a structural parameter. The 

parameters with high sensitivity can be further examined and selected for model 

updating, while those with low sensitivity can be eliminated from the updating 

parameters. A well-conditioned updated problem necessitates the selection of those 

parameters which will be most effective in reducing the discrepancies between the 

analytical results and their identified counterparts. In this study, the sensitivity analysis 

is performed by calculating the sum of the dynamic response variation norm on the 

measurement points when each parameter increases by 10% with respect to the 

nominal value.  

It is observed from Figure 9.8 that among the 20 candidate parameters to be potentially 

updated; the Young’s modulus of bearing between MW tower, M2 pier and deck Ectd, 

the spring stiffness of lateral connection between TY, MW tower and deck Kconl and 

added stiffness due to the installed exciter ak show almost negligible influences on the 

dynamic responses. As a result, a total of 17 parameters (see Table 9.1) were chosen 

for updating.  

The objective functions are formulated in terms of the discrepancy between analytical 

and experimental dynamic response as shown below 
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where p denote the selected parameters for updating, and m is the number of sensors 

used in updating. Among the totally deployed 58 sensors of 3 types, the responses of 

16s on the 24 sensors including 9 accelerators, 3 displacement meters and 12 FBG 

strain sensors (as listed in Table 9.1) are used for updating. All the responses on other 

sensors are used for validating the updating results.  

To make the updating result physically meaningful, the parameters of Young’s 

modulus and density are constrained as 0 00.8 1.2p p p≤ < , where 0p is the nominal value 

of the parameter. Considering large uncertainties exist on the constraints between the 

deck and piers, towers, the stiffness’ of connection are constrained as

6 6
0 01.0 10 1.0 10p p p−× ≤ < × . Moreover, the Rayleigh damping ratios are also 

constrained similarly. Finally, The FE model updating forms a constrained 

minimization problem. Among the different optimization algorithms available in 

MatLab, the primal-dual interior point method has been selected to optimize the 

problem.   

9.3.3 FE Model Updating Results 

Table 9.2 lists the variations in the updating parameters. The initial values of the 

parameters of Young’s modulus and density in the table are the design values, and the 

initial values of constraint stiffness are provided by Zhang (2012). It can be seen that 

there are slight to moderate reductions in the elastic modulus and density of the 

components, indicating that the initial guess of the modules is relatively accurate. It 

can also be found that the connection stiffness and Rayleigh damping ratio have 
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significant changes.  

The updating results are checked in term of dynamic response. Simulated results were 

regenerated with the updated model and are compared with the experimental results. 

Figure 9.9, Figure 9.10 and Figure 9.11 depict the comparison of tested and simulated 

response on accelerometer A10, displacement meters D3 and FBG strain sensor S24, 

respectively. It is evident that after FE model updating the tested responses match 

better with simulated responses than that before model updating. These results show a 

significant improvement in the FE model’s ability to reflect the actual behavior of the 

tested TMB.  

Figure 9.12 shows the relative norm of discrepancy between the tested and simulated 

responses on the updating sensors. It is observed that after updating the discrepancies 

are dramatically decreased among the 24 updating sensors, and the mean relative norm 

of the discrepancy is reduced from 0.6 to 0.3 approximately. Figure 9.13 shows the 

differences on the other 34 sensors for validation. We can see that almost all the 

differences of 39 validating sensors are decreased remarkably except that 2 FBG 

sensors (S10 and S 39) are a bit increased. It is also noticed that relative percentage 

errors on S2, S3 and S39 are a bit higher. This is mainly because these FBG sensors are 

installed near the fixing ends of the deck, and the vibration amplitudes of them are 

quite small.    
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9.4 Response and Excitation Reconstruction and Validation 

The joint response and excitation reconstruction is performed through Kalman filter 

under unknown input (KF-UI) by using the measured responses from the 35 optimized 

sensors (as shown in Table 8.4) and the updated FE model of TMB testbed. The typical 

comparison of reconstructed and recorded responses from accelerometer A10, 

displacement meters D3 and FBG strain sensor S24 are respectively shown in Figure 

9.14, Figure 9.15 and Figure 9.16. It is observed that the reconstructed responses 

match the tested ones very well. Compared with the simulated responses shown in 

Figure 9.9 to Figure 9.11, the reconstructed response matches even better than the 

simulated response with reference to the actual response. This is mainly because 

Kalman filter based response reconstruction could take advantages of the model 

information as well as the measurement information, thus inducing more accurate 

response estimation. Figure 9.17 also depicts the reconstructed excitation series and 

the tested excitation series. We can see that the reconstructed excitation coincides with 

the tested one to a certain satisfaction. The relative norm of the discrepancy is also 

employed to measure the discrepancy between the tested and reconstructed responses 

on the validation sensors (those sensors that are not used in response reconstruction) 

and the results are shown in Figure 9.18. It is observed that on almost all the validation 

sensors, the reconstructed responses match better than simulated responses produced 

by the FE model, except for S20, S39, and A14. It should be pointed out that the tested 

response is noise-corrupted. Thus it does not represent the real response of the 

structure and just used here as a reference for validation.  
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9.5 Multi-level Damage Identification and Validation 

9.5.1 Substructure Level Damage Identification 

In consideration of the actual sensors deployment (especially the FBG sensors) and 

easy operation circumstances, the damage on the bridge deck is generated by cutting 2 

longitudinal beams as shown in Figure 9.19. Consequently, the stiffness contributed by 

the components to the overall stiffness is prejudiced while the contributions of mass 

are reserved. This is purposely designed to simulate the component degradation due to 

crack or connection looseness and others. Both of the pre-set damages belong to the 

67-th substructure.  

Firstly, the measured responses of the 35 sensors are used for detecting the preset 

damage over the 120 substructures. For computation ease, only the recorded data of 

4s (12s~16s) after the testbed are excited steadily are used in the multi-level damage 

identification. The substructure element level damage detection result is shown in 

Figure 9.20. It is noted that about certain damage is detected on the 67-th 

substructure with a value of -0.797, a bit less than that in the simulation study in 

Chapter 8. Additionally, a small minus value of -0.045 is also noticed in the adjacent 

66-th substructure. However, this tiny error is negligible compared with the value on 

the 67-th substructure. The result indicates that certain damages exist inside the 67-th 

substructure, which is consistent with the fact that the generated damages on E4930 

and E4942 locate inside the 67-th substructure.  
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9.5.2 Element Level Damage Identification 

The strain, displacement, and acceleration of 67-th substructure are firstly 

reconstructed prior to the element level damage identification. The FRFs of the 

responses on the 35 sensors are calculated using the Welch's averaged periodogram 

method with a frequency resolution of 500 4096 0.12sf nfft = = Hz. The FRF 

amplitudes are integrated in the range of 2~8.25 Hz, and they are then used as the 

inputs to RBF network to predict the horizontal displacement mode shapes and strain 

mode shapes on the 8 longitudinal beams inside the detected 67-th substructure. The 

predicted strain and horizontal displacement mode shapes are depicted Appendix C, 

compared with the analytical ones calculated by eigenvalue analysis using the FE 

model of the damaged structure. The coordinate modal assurance criteria (CoMAC) 

values between the predicted mode shape and the analytical model shapes are 

tabulated in Table 9.3. We note that the accuracy of the predicted mode shapes using 

the tested data is slightly decreased compared with that of the predicted mode shapes 

using the simulated responses. The multi-type response of the identified 67-th 

substructure can be reconstructed using the Kalman filter based theory. Finally, the 

reconstructed responses of the identified substructures, together with the response on 

the measurement points, are used for the element level damage identification over the 

detected 67-th substructure.  

The identification results on the element level are shown in Figure 9.21. Figure 9.21-a 

shows the damage identification result without constraining 1≥ −θ , which indicates 

that there are approximately two damages of -3.8 and -2.7 on the 34-th and 46-th 
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elements (corresponding to the 34-th and 46-th elements), respectively. We can see 

that the damages are correctly localized but the damage extents are not quantified. If 

the constraint 1 0s− ≤ ≤θ  is set in updating, the identification result is given in Figure 

9.21-b, which demonstrates that the damage extents are exactly quantified on the 

elements E4930 and E4942. There are no false-positive errors on the other elements, 

mainly because the sparsity promoting property of sparse regularization. To 

demonstrate the benefits of response reconstruction for local damage identification, 

Figure 9.22 shows the result of element level damage identification on the 67-th 

substructure without response reconstruction. It is obvious that although the preset 

damage on the 34-th element is identified with a rough severity of -1.2, the preset 

damage on the 46-th element is not detected. What’s more, a notable false-positive 

error is found on the 38-th element. The results in Figure 9.21 and Figure 9.22 clearly 

indicate the superiority and the necessity of response reconstruction in identifying 

local damages. 

9.6 Concluding Remarks 

This chapter presents the experimental studies on the TMB testbed. Two issues are 

investigated, including the optimal multi-type sensor placement for response 

reconstruction when the external excitations are unknown and multi-level damage 

identification via response reconstruction when the external excitations are known. 

Before that, time domain FE model updating in terms of dynamic response is 

performed by interfacing ANSYS and MatLab. According to the experimental results, 
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some remarks are given as follows: 

(1) The integration of ANSYS and MatLab for model updating can take advantages 

of the remarkable model building and non-linear static analysis capacity of 

ANSYS and outstanding dynamic response simulation and optimization 

algorithms solving capacity of MatLab. This strategy is especially suitable in the 

circumstances where the FE model is too complex to be established, or the 

nonlinear relationship between the FE model and the updating parameters are 

difficult to be expressed. The discrepancies between analytical response and 

tested response are dramatically decreased after the model updating.  

(2) Response reconstruction results show that the designed sensor placement is 

capable of not only reconstructing the response of interested location but also 

estimate the deterministic excitation series exerted to the structure. The 

reconstructed responses are more accurate than the analytical responses compared 

to the tested response. This is mainly attributed to the fact that KF-UI based 

response reconstruction can take into consideration of the model building error 

and measurement noise.  

(3) In the multi-level damage identification, the non-linear effect is included in 

forming the effective stiffness matrix of TMB testbed by conducting the 

pre-stressed large-deformation static analysis in ANSYS. However, the geometric 

stiffness variation due to stress redistribution induced by small damages on the 

deck is ignored. Test results show that this assumption is acceptable.  



 

271 

 

The response reconstruction under unknown excitations and the multi-level damage 

identification via response reconstruction have been numerically and experimentally 

verified on the relatively large structure, the testbed of Ting Ma suspension bridge. 

Some conclusions and recommendations regarding the whole thesis will be given in 

the next chapter.    
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Table 9.1 Sensor selection for model updating and validation 

Sensor 
Type 

Sensors for Updating Sensors for Validation Total 
Sensors Sensor Tag Num. Sensor Tag Num. 

Accl. A10, A9, A6, A11, A7, 
A8, A12, A13, A14 9 A4 A5, A3, A1, A2, 5 14 

Disp. D3, D2, D4 3 D1 1 4 

Strn. 
S38, S23, S40, S22, 
S25, S24, S35, S20, 
S21, S33, S27, S17 

12 

S19, S36, S18, S5, S37, S4, 
S34, S6, S7, S9, S31, S39, 

S8, S30, S26, S16, S32, 
S15, S29,S14, S11, S28, 
S12, S10, S13, S3, S2,  

28 39 

Table 9.2 Variations in updated parameters 

Updating Parameters Initial 
Values 

Updated 
Values 

Changes 
(%) Description Symbol 

E of steel tower Est 2.05E+11 2.22E+11 8.2 
E of main cables Emc 9.40E+10 1.13E+11 20.0 

E of box frames (aluminum alloy) Ebf 6.89E+10 6.47E+10 -6.1 
E of plates Epl 2.00E+10 2.05E+10 2.5 

E of suspenders Esup 9.40E+10 1.12E+11 19.4 
D of steel Ds 7.80E+03 8.68E+03 11.3 

D of aluminum alloy Dt 2.72E+03 3.26E+03 20.0 
D of steel strand Dc 6.24E+03 4.99E+03 -20.0 

D of plates where masses are added Dp 4.47E+04 5.34E+04 19.5 

D of truss beam density where 
masses are added Db 8.25E+04 8.51E+04 3.2 

Thickness of plates Tk 5.00E-04 4.94E-04 -1.2 
K of vertical connection between 

TY tower and deck Kcont 3.00E+04 7.47E+04 149.1 

K of vertical connection between 
M1,T1,T2,T3 pier and deck Kconp 1.12E+05 2.48E+05 120.8 

K of lateral connection between 
TY, MW tower and deck Kconl 3.25E+08 1.02E+08 -68.6 

K of vertical connection between 
MW tower, M2 pier and deck Kconv 4.50E-06 9.19E-06 104.2 

Mass Rayleigh damping ratio Dampa 2.09E-01 3.66E-01 74.8 
Stiffness Rayleigh damping ratio Dampb 5.85E-04 5.89E-12 -100.0 
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Table 9.3 CoMAC value of the predicted displacement and strain mode shape with the 

analytical mode shape of damaged structure 

Mode Serial  
Number 

Mode Num 
in FE model 

Strain  Displacement  
Simu. Test Simu. Test 

1 1 0.9998 0.9092 1.0000 0.9999 
2 3 0.9998 0.8760 1.0000 0.9996 
3 5 0.9998 0.9109 1.0000 0.9999 
4 6 0.9999 0.9726 1.0000 0.9708 
5 7 0.9998 0.8681 0.9650 0.9510 
6 11 0.9996 0.6798 1.0000 0.9996 
7 12 0.9998 0.7079 1.0000 0.9981 
8 18 0.9999 0.8052 1.0000 0.9991 
9 19 0.9996 0.7910 1.0000 0.9995 
10 25 0.9998 0.7465 1.0000 0.9401 
11 26 0.9998 0.9161 1.0000 0.9955 
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Figure 9.1 Sensor installations in the test: FBG sensor (top left), installed FBG sensors 

for temperature compensation (bottom left), laser displacement transducers (top right), 

and accelerometers (bottom right). 

(a) (b)

(e)(c) (d)  

Figure 9.2 Excitation generation system in the test: (a) the overall view of the 

excitation system, (b) the steel column to host the excitator, (c) SINOCREA YE5871 

power amplifier, (d) B&K 3160-B-022 signal generator and (e) JZK-5 exciter.  



 

275 

 

(a) 

 

(b) 

  Figure 9.3 Excitation time-history in 3 tests: (a) overall view of the time-history and 

(b) a close-view in 7~12 s 
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(d)(b)

(a)

(c)  

Figure 9.4 Data acquisition systems in the test: (a) the overall view of the system, (b) 

KD 5006 charge amplifiers, (c) KYOWA EDX-100A data acquisiter and (d) optical 

sensing interrogator sm130. 

 

Figure 9.5 Synchronous strain hammer 
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(a) 

 

(b) 

  Figure 9.6 Impulsive signal generated by (a) strain gauge and (b) FBG sensor for 

time synchronization 
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Figure 9.7 Flow diagram of FE model updating by interfacing MatLab and ANSYS 
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Figure 9.8 Response Sensitivity of TMB Model to Selected Parameters: Est (E of steel 

tower),  Ebf (E of box frames), Elb (E of longtudinal beam), Epl (E of plates), Emc (E 

of main cables), Esup (E of suspenders), Dt (D of aluminium alloy), Ds (D of steel), 

Dc (D of steel strand), Tk (thickness of plates), Kcont (K of vertical connection 

between TY tower and deck), Kconp (K of vertical connection between M1,T1,T2,T3 

pier and deck), Kconl (K of lateral connection between TY, MW tower and deck), 

Ectd: E of bearing between MW tower, M2 pier and deck), Kconv (K of vertical 

connection between MW tower, M2 pier and deck), Dp (D of plates where masses are 

added), Db (D of truss beam density where masses are added), ak (added stiffness due 

to the installed excitor), Dama (mass Rayleigh damping ratio) and Damb (stiffness 

Rayleigh damping ratio), in which E denotes Young’s modulus, D denotes density and 

K denotes spring stiffness. 
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Figure 9.8 (Continued) 

 

Figure 9.9 Comparison of tested and simulated acceleration response on A10: before 

model updating (top) and after model updating (bottom) 
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Figure 9.10 Comparison of tested and simulated displacement response on D3: before 

model updating (top) and after model updating (bottom) 
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Figure 9.11 Comparison of tested and simulated strain response on S24: before model 

updating (top) and after model updating (bottom) 
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Figure 9.12 Relative norm of discrepancy between the tested and simulated responses 

on the updating sensors 
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Figure 9.13 Relative norm of discrepancy between the tested and simulated responses 

on the validation sensors 
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Figure 9.13 (continued) 
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Figure 9.14 Comparison of tested and reconstructed acceleration response on A10: an 

overall view (top) and a close-up view between 1~7s (bottom) 
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Figure 9.15 Comparison of tested and reconstructed acceleration response on D3: an 

overall view (top) and a close-up view between 1~7s (bottom) 

 

 

Figure 9.16 Comparison of tested and reconstructed acceleration response on S24: an 

overall view (top) and a close-up view between 1~7s (bottom) 
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Figure 9.17 Comparison of tested and reconstructed excitation: an overall view (top) 

and a close-up view between 1~7s (bottom) 
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Figure 9.18 Norm of the discrepancy on the validation sensors  
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Figure 9.20 (continued) 

 

Figure 9.19 Beam cutting to simulate the structural damage in the test  
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Figure 9.20 Substructure level damage in the test  
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(b) 

Figure 9.21 Substructure level damage with response reconstruction in the test: (a) 

with constraint 0s ≤θ and (b) with constraint 1.0 0s− ≤ ≤θ   

 

Figure 9.22 Substructure level damage without response reconstruction in the test 
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CHAPTER 10 

 CONCLUSIONS AND RECOMMENDATIONS 

10.1 Conclusions 

This thesis focuses on the development of novel finite element (FE) model 

updating-based damage identification methods for large civil structures in 

consideration of optimal multi-type sensor placement, joint response and excitation 

reconstruction, sparse regularization, and substructuring technique. In particular, this 

study is dedicated to: (1) proposing an optimal multi-type sensor placement method 

for best joint response and excitation reconstruction, using the Kalman filter under 

unknown input (KF-UI); (2) proposing a sparse regularization, specifically 1 norm 

regularization, to replace traditional Tikhonov regularization to constrain the norm of 

the solution as well as to promote the sparsity of the solution in FE model 

updating-based damage identification; (3) combining the Kalman filter-based 

response reconstruction with the sparse regularized FE model updating for damage 

identification of large structures with limited sensors; (4) extending the dynamic 

response reconstruction-oriented damage identification method to situations where the 

time histories of excitations are unknown; (5) proposing a multi-level damage 

identification method for large civil structures using the substructuring technique and 

response reconstruction; and (6) conducting experimental studies on a simple 

overhanging beam and a relatively large structure (i.e., the Ting Ma suspension bridge 

testbed) to validate the effectiveness of the proposed methods. The main contributions 

and conclusions of this study are summarized below. 
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1. The multi-type structural responses as well as pre-located excitations can be 

reconstructed simultaneously through the KF-UI by using the noise-corrupted 

measurement from the limited sensors, and the FE model of the structure, in which the 

measurement noise and model error can be dealt with, providing the 

well-reconstructed responses for the structure at key locations where no sensors are 

installed and the deterministic excitations acting upon the structure.  

2. Proper multi-type sensor placement is optimized based on the asymptotic stability 

property of the state estimation error from the KF-UI, which allows the best joint 

response and excitation reconstruction. A heuristic forward sequential sensor 

placement algorithm, which produces near-optimal sensor deployment, is more 

computationally efficient for solving the optimization problem and, thus, more 

applicable to optimal sensor placement on larger civil structures. The designed sensor 

placement works independently of external excitation, provided that the locations of 

excitations on the structure, the subset of modes adopted in response reconstruction 

and environmental noise characteristics remain the same. 

3. Compared to traditional Tikhonov regularization, sparse regularization not only 

constrains the norm of the solution but also promotes the sparsity of the solution (i.e., 

it maintains the smallest number of non-zero entries in the solution as possible). This 

motivation is consistent with incipient structural damage, which typically occurs in 

certain elements or substructures, so that only some entries in the solution are non-zero 

while the others are zero. Thus, the sparse regularization bears some superiority in 

terms of less iteration to achieve convergence and less false–positive errors in the 

solution when performing the FE model updating-based damage identification.  
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4. To obtain a meaningful solution in the sparse regularized model updating for 

damage identification, the regularizing parameter, which balances the trade-off 

between the residual norm and the solution sparsity, should be selected properly. 

Different from the Tikhonov regularization in the aspect that several well-known 

methods, such as the L-curve method or general cross-validation, are available, there 

are no reliable or generally applicable methods for determining optimal regularizing 

parameters for sparse regularization. This difficulty could be alleviated by using a 

re-weighted strategy, which iteratively increases the weights of small entries to 

encourage zero entries in the solution.    

5. Kalman filter-based response reconstruction is beneficial to damage identification 

of large structures because it supplements the limitations of sensor measurement, 

under the circumstances of both known excitation and unknown excitation. A fusion of 

the multi-type responses is advantageous not only to increase the accuracy of 

responses and excitation reconstructions but also to enhance the accuracy of damage 

identification. This is primarily due to different types of sensors being able to capture 

structural responses in different frequency regions, and the fusion of multi-type 

responses manifests a broad bandwidth that incorporates both global and local 

information regarding the structural conditions. 

6. When performing FE model updating based damage identification on large 

structures that usually consist of massive elements or substructures, a multi-level 

damage identification strategy may be a wise choice when searching for local damage 

over a large dimensional damage space. Substructure-level damage detection is first 

performed over condensed substructures through component mode synthesis (CMS) 
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technique to identify possible damaged regions; an equivalent damage vector is sought 

to account for the overall consequence of damages inside the substructure. Further 

damage localization and quantification are conducted over the elements belonging to 

suspicious substructures using the reconstructed multi-type responses of the 

substructure, which are effective for identifying local damages inside a substructure. 

The proposed multi-level damage identification not only narrows the damage space in 

substructure- and element-level damage identification but also dramatically decreases 

the computation efforts of iterative updating, thus increasing the identifiability of 

damage in the entire procedure.  

7. Experimental validations were conducted on a simple overhanging beam, 4 m in 

length, and the relatively complex Tsing Ma Suspension Bridge (TMB) testbed. Test 

results from the overhanging beam demonstrate the superiority of sparse 

regularization over traditional Tikhonov regularization in FE model updating based 

damage identification. It is also shown that under both known and unknown 

excitations, multi-type response reconstruction and fusion benefit to damage 

identification in obtaining more accurate results when the sensor number is limited. 

Both test results from the overhanging beam and the TMB testbed verify the feasibility 

of joint response and excitation reconstruction with the optimized sensor placement 

configuration. Using the proposed multi-level damage identification with response 

reconstruction method, the preset damages on two longitudinal beams in the deck of 

the TMB testbed are correctly localized and quantified.  
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10.2 Recommendations for Future Studies 

Although progress has been made in these studies in the development and promotion 

of a model updating based damage identification that is more applicable to large civil 

structures, several important issues require further investigations. 

1. Although in theory, both single and multiple deterministic excitations of any type 

(random, harmonic, impulsive, or other) can be reconstructed using KF-UI-based 

response reconstruction when the number of excitations is not larger than the sensor 

number or the mode number, only the case of single excitation acting upon the 

structure is numerically and experimentally investigated in this thesis. The 

effectiveness of the proposed optimal sensor placement method for joint response and 

excitation under the circumstances of multiple excitations should be examined in 

further studies. Joint response and excitation reconstruction under moving loads, 

which is also a significant loading condition for long-span bridges, is also worth being 

paid attention to in the future studies.   

2. Only three frequently-used sensors, including strain gauges (or Fiber Bragg grating 

strain sensors), displacement meters, and accelerometers, are used in this thesis for the 

best response reconstruction. Different types of sensor are equally weighted in this 

study by setting the weighting matrix as the inversion of noise covariance. With the 

development of sensor technologies, other types of sensors, such as inclinometers and 

velocity instruments, could also be employed within the proposed optimal sensor 

placement framework for specific objectives. Other weighting strategies, such as 

taking the cost of each type of sensor into consideration, could also be used in practical 
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applications. 

3. Among the several p-norm ( 0 1p≤ ≤ ) sparsity promoting regularizations, 1 norm 

regularization ( 1p = ) is adopted in this thesis to enhance the accuracy of damage 

identification because 1 norm-regularized optimization is a convex problem 

admitting efficient solution through the use of linear programming techniques. 

However, when 0 1p≤ < , p-norm regularization promotes increased sparsity. Its 

advantage in model updating based damage identification is worth investigating. 

Moreover, a reliable and generally applicable method to determine the regularizing 

parameters to balance the trade-off between the residual norm and the solution norm is 

also needed.    

4. Because Kalman filter-based response reconstruction is a kind of model based or 

modal properties based method, the mode shapes of desired locations are required and 

obtained from the radial basic function network after certain damage occurs. Other 

mode shape prediction methods could be also incorporated in the proposed response 

reconstruction-oriented damage identification method. Variations of Kalman filters, 

such as the extended Kalman filter or robust Kalman filter that are used for state 

estimation, can also be used to increase response reconstruction accuracy.   

5. Although the proposed multi-level damage identification with response 

reconstruction has been demonstrated in simulation studies and validated in laboratory 

tests over the Tsing Ma suspension bridge testbed, the robustness of the method should 

be further examined before practical application. The uncertainty involved in the 

proposed method is also worth analyzing and quantifying.    
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6. In this thesis, structural damage is modeled as stiffness degradation to simulate 

common defects, such as crack growth, corrosion, or bolts loosening in structures. 

However, a more elaborate damage model is needed to capture the detailed 

characteristics of specific structural damage. The structural nonlinearity because of 

damage, which has been ignored in this study, should be included in future research for 

more accurate structural condition evaluations.  

7. Damage prognosis, which predicts structural safety and operational lifetime, has not 

been touched in this thesis. For that, the established damage evolution and loading 

prediction models are indispensable. To exploit the advantages of response 

reconstruction for damage prognosis is also a meaningful research topic. 
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APPENDIX A 

CONVERSION OF STATE SPACE MODEL IN 

CONTINUOUS TIME TO DISCRETE TIME 

Equation Section 1The continuous-time state-space description of a linear time 

invariant system 

 
( ) ( ) ( )
( ) ( ) ( )

c c

c c

t t t

t t t

= +

= +

x A x B u

y C x D u


  (A.1) 

First equation of Eq. (A.1) can be formatted into Eq.(A.2): 

 ( ) ( ) ( )c ct t t− =x A x B u   (A.2) 

Multiplying cte−A to the both sides of Eq.(A.2)yields:  

 ( ) ( ) ( )c ct t
c ce t t e t− − −  = 

A Ax A x B u   (A.3) 

Eq.(A.3) is equivalently expressed as the following 

 
( )

( )
c

c

t
t

c

d e t
e t

dt

−
−

   =
A

A
x

B u   (A.4) 

Defining a time step t∆ , and assuming that the state ( )k k t= ∆x x at the time kt k t= ∆  (

1,2,k = ) is known, convolution integral on the both sides of Eq.(A.4) at the interval

[ ]1,k kt t + is expressed as: 
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 ( ) ( )1 1k k
c c

k k

t tt
ct t

d e t e dt tt + +− −  = ∫ ∫A Ax B u   (A.5) 

The integral of left side of Eq.(A.5) is: 

 ( ) ( ) ( )1
11 1

1 1

,
,

k
c c c k c k c k c

k

t k kt t t t t t
k k k kt

k k

x t
d e t e t e e e e

x t
+

++ +− − − − − − ∆
+ +  = = − = − ∫ A A A A A Ax x x x x x  (A.6) 

Zero-order-hold assumption:  

Tow assumptions are usually made for the inter-sample behavior of ( )tu . If the 

zero-order-hold assumption, that is ( ) kt =u u ( ( )1k kt t t +< < ), is adopted, the integral of 

the right side of Eq.(A.6) is expressed as: 

 
( ) ( )

( )( ) ( )

1 1 1 11

1 1

k k k kc c c c

kk k k

c k c k c k c

t t t t

c c k c k c c ktt t t

t t t t t
c c k c c k

e d e d e d e

e e e e

tttt   tttt   + + + +− − − −−

− +∆ − − − ∆− −

 = = = −  
 = − − = − − 

∫ ∫ ∫A A A A

A A A A

B u B u B u A B u

A B u A I B u
 (A.7) 

Combing Eq.(A.6) with Eq.(A.7), it is finally derived that 

 ( ) 1
1

c ct t
k k c c ke e∆ −
+ = + −A Ax x I A B u   (A.8) 

Thus continuous-time state-space as Eq.(A.1) can be written in the discrete-time 

formulation as: 

 1

1

k d k d k

k d k d k

+

+

= +
= +

x A x B u
y C x D u

  (A.9) 

in which the discrete-time system matrices are expressed as: 
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 ( ) 1; ; ;c ct t
d d c c d d d de e∆ ∆ −= = − = =A AA B I A B C C ∆∆    (A.10) 

First-order-hold assumption: 

If the zero-order-hold assumption, that is ( ) ( )1
k

k k k
t tt

t +

− = + − ∆ 
u u u u ( ( )1k kt t t +< < ), 

is adopted, the integral of the right side of Eq.(A.6) is expressed as: 
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1 1

1
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∫ ∫

∫ ∫

A A
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B u B u u u

B u B u u

A B u A I B u

 (A.11) 

The first part of the right side of Eq.(A.11) is easily obtained as Eq.(A.7). Moreover, 

the second part of the right side of Eq.(A.11) is 
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∆

∫ ∫A A A

A A

A A

A A A

A A
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 

  (A.12) 

All integrals in (A.5) are assembled, forming the following equation: 

 

( ) ( )
( ) ( )

1
1

1 1 1
1

1

c k c c k c
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+

− = −

−  + ∆ + − − ∆

A A A A

A A A

x x A I B u

A I A A B u u  (A.13) 
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The above Eq.(A.13) is finally derived as: 
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  (A.14) 

Submitting Eq.(A.14) into the second equation of Eq.(A.9), it can be derived that 

 0 1

1

;
;

c t
d d d

d c d c c

e ∆ = = +


= = +

AA B B A B
C C ∆ C B ∆

  (A.15) 

in which 

 ( ) ( )1 2
0 1 1;d c c d c c ct t− −= − − = − ∆ − ∆B A I A B B B A A I A B   (A.16) 
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APPENDIX B 

DERIVATION OF KALMAN FILTER UNDER 

UNKNOWN INPUT 

Equation Section 2The dynamics of a structure can be represented in a discrete-time 

state space representation as:  

 1k d k d k k
m m m
k d k d k kx u
+ = + +

= + +

x A x B u w

y C D v
  (B.1) 

where n
k ∈ℜx is the state vector, p

k ∈ℜu is an unknown input vector, and mm
k ∈ℜy is 

the measurement. The process noise n
k ∈ℜw and the measurement noise m

k ∈ℜv are 

assumed to be mutually uncorrelated, zero mean, white random signals with known 

covariance matrices ( )cov ,k j kjδ=w w Q and ( )cov ,k j kjδ=v v R .We suppose that

( ) , m
d dA C is observable and that 0x is independent of and for all k. Also, we assume 

that an unbiased estimate 0x̂ of the initial state 0x is available with the covariance 

matrix ( )0 0 0cov , x=x x P . We consider a recursive three-step filter of the form: 

 1 1ˆ ˆ ˆk d k d k
− +

− −= +x A x B u   (B.2) 

 ( )ˆ ˆm m
k k k d k

−= −u M y C x   (B.3) 

 ( )ˆ ˆ ˆm m
k k k k d k
+ − −= + −x x K y C x   (B.4) 



 

302 

where ˆ k
−x and ˆ k

+x denotes the a priori the a posteriori estimate and of the state vector 

kx and ˆ ku is the estimate of external excitation ku .The matrices m p
k

×∈ℜM and

n p
k

×∈ℜK should be determined when designing the three-step filter. 

Firstly we will estimate kx using the measurements up to time 1k − . The error in the 

estimate ˆ k
−x given by Eq. (B.2) is expressed by 

 ( ) ( )1 1 1 1 1 1 1 1ˆ ˆk k k d k d k k d k d k d k d k k
− − + +

− − − − − − − −= − = + + − + = + +x x x A x B u w A x B u A x B u w    (B.5) 

in which ˆk k k
+ += −x x x and ˆk k k= −u u u . Consequently, the covariance matrix of ˆ k

−x is 

given by 

 ( ) [ ] 1 1
1

1 1

x xu T
Tx k k d

k k k d d kux u T
k k d

E
+

− − − − −
−

− −

    = = +         

P P A
P x x A B Q

P P B
    (B.6) 

with ( )Tx
k k kE+ + + =   

P x x  , ( )Tu
k k kE  =  P u u   and ( ) ( )Txu ux T

k k k kE + = =  P P x u  . 

Then we will estimate the unknown input. The innovation is defined as

ˆm m m
k k k k

−= −y y C x  

 ( )ˆ ˆ ˆm m m m m m m m
k k d k d k d k k d k d k k d k k d k k

− − −= − = + + − = − + + = +y y C x C x D u v C x C x x D u v D u e  (B.7) 

 ( )ˆm m
k d k k k d k k

− −= − + = +e C x x v C x v   (B.8) 

Since ˆ k
−x is unbiased, it follows from (B.8) that [ ] 0kE e = and consequently, 



 

303 

 [ ] [ ] ( ) [ ]ˆ m m m m
k k k k d k k d d k k d kE E E E E   = = + = =  u M y M D u e M D u M D u   (B.9) 

Thus an unbiased estimator for all possible ku can be obtained if and only if kM

satisfies m
k d =M D I . The matrix 1( )mT m mT

d dk d
−=M D D D corresponding to the least square 

(LS) solution satisfies the condition. However, from the Gauss–Markov theorem, it is 

not necessarily minimum-variance because in general  

 T x T
k k k k k kE c− = = + ≠ R e e C P C R I   (B.10) 

Under the assumption that kR is positive definite, an invertible matrix  kS satisfying

 T
k k k= RS S    ( kR is symmetric) can always be found, for example, by a Cholesky 

factorization.  

 1 1 1
1

m
k d k kk k k

− − −
−= +y DS S eSu    (B.11) 

Under the assumption that 1 m
dk

−S D has full column rank, the LS solution 1ˆ k−u of Eq. 

(B.11) equals  

 ( )1 11

1ˆ m m
k

T mT
d k d d k k

−

−
− −= D R D D R yu      (B.12) 

Note that solving Eq. (B.11) by LS estimation is equivalent to solving (B.7) by 

weighted LS estimation with weighting matrix 1
k
−R . Then for the kM given by 

 ( )1 11m mT mT
k kk d d d

−− −=M D R D D R    (B.13) 
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ˆ ku is the minimum-variance unbiased estimator of ku given ky . 
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APPENDIX C 

PREDICTED MODE SHAPES OF THE 

SUBSTRUCTURE USING RBF NETWORK 

 

(a) 

 

(b) 

0 5 10 15 20 25 30 35 40
-0.1

-0.05

0

0.05

0.1

Element

M
od

e 
sh

ap
e

 

 
Real Estimated

0 5 10 15 20 25 30 35 40
-10

-5

0

5
x 10

-3

Element

M
od

e 
sh

ap
e

 

 

Real Estimated



 

306 

 

(c) 

 

(d) 

 

(e) 

0 5 10 15 20 25 30 35 40
-0.04

-0.02

0

0.02

0.04

Element

M
od

e 
sh

ap
e

 

 
Real Estimated

0 5 10 15 20 25 30 35 40
-0.01

-0.005

0

0.005

0.01

Element

M
od

e 
sh

ap
e

 

 
Real Estimated

0 5 10 15 20 25 30 35 40
-0.05

0

0.05

0.1

0.15

Element

M
od

e 
sh

ap
e

 

 
Real Estimated



 

307 

 

(f) 

 

(g) 

 

(h) 

0 5 10 15 20 25 30 35 40
-0.02

-0.01

0

0.01

Element

M
od

e 
sh

ap
e

 

 

Real Estimated

0 5 10 15 20 25 30 35 40
-0.05

0

0.05

0.1

0.15

Element

M
od

e 
sh

ap
e

 

 
Real Estimated

0 5 10 15 20 25 30 35 40
-0.05

0

0.05

Element

M
od

e 
sh

ap
e

 

 
Real Estimated



 

308 

 

(i) 

 

(j) 

 

(k) 

Figure C.1 Predicted strain mode shape of the 67-th substructure: (a) ~ (k) for the 

1-st~11-th mode shape 
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(j) 

 

(k) 

Figure C.2 Predicted horizontal displacement mode shape of the 67-th substructure: 

(a) ~ (k) for the 1-st~11-th mode shape 
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